

MUNICATIONS:. COMMINICATIONS...COMMUNICATD

THE TROCLOGRI

Talking through rook with very low frequencies

YOUR MODEM WTH OUR

- bado rate苗 CONVERTER

HELMET INTERCOM
LEARN ABOUT LASERS

Gary Herman: Editor
Ian Pitt: Deputy Editor
Paul Chappell: Project Editor
Jerry Fowler: Technical Illustrator
Paul Stanyer: Ad. Manager
Stuart Taylor:
Classified Sales Executive
Pam Smithson : Copy Control
Dave Bradshaw: Group Editor

- Electronics

Peter Welham: Managing Director

PUBLISHED BY:
Argus Specialist Publications Ltd. 1 Golden Square, London W1R 3'AB. DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd.
COVERS DESIGNED B
Argus Press Design.
COVERS PRINTED BY
Alabaster Passmore.

ABC Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus specialist Publications Limited. All rights conterred by
the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specitically reserved to Argus Specialist Publications Limited and anv reproduction reauires the prior written consent of the Company. © 1986 Argus Specialis: Publications Ltd $ப$ All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally pe published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be
held responsible however for any variations affecting held responsible. however, for any variations affecting price or availability which may occur after the publica-
tion has closed tor press tion has closed tor press.

- Subscription Rates. UK: $£ 18.10$. Overseas: $£ 22.50$. USA: $\$ 29.50$. Airmail:

EDITORIAL AND ADVERTISEMENT OFFICE 1 Golden Square, London W1 R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST

The news chronicled.

READ/WRITE 18
Letters leaves.

FIBRE OPTICS AND LASERS.... 21
Electronic engineers are lighting-up.
Roger Bond explains how and why.
THE ETI TROGLOGRAPH 24
Deep in an English cave, Mike Bedford has been soak-testing his latest particular, welcome very low frequencies.

AUTOMATIC TESTING ON A

 HOME MICROThis circuit solution by Alan Paton explains the hardware and software needed to test logic chips on almost any home micro.

TECH TIPS
56
ideas logically sound.

PROJECTS

MICROLIGHT INTERCOM 28

Ian Coughlan gets into conversation in a noisy environment.

BAUD RATE CONVERTER 33

Give your modem a new lease of life,
expand your communications endwork and make your bits go faster or slower, courtesy of Ola Borrebaek.

80M DIRECT CONVERSION RECEIVER
 40

S. Niewiadomski says that 80 metres is a good introduction to short-wave for the beginner and has designed a receiver to prove it.

PORTABLE PA
John Linsley Hood's design for the power amp section of his portable, battery-operated PA.

ETCETERA

REVIEWS
 61

A Q'Lection of books on the QL hardware.
OPEN CHANNEL 62
More on long-distance communications.

TRAINS OF THOUGHT 62
Roger Amos re-trains

PLAYBACK 63
What noise annoys Vivian Capel?

ALF'S PUZZLE INFORMATION
COUPONS 14
NEXT MONTH'S ETI 55
PCB FOIL PATTERNS. 58
READERS' SERVICES 60
AD INDEX 62

Due to continued illness, we very much regret that the promised part of the Digital Sound Sampler has had to be heid over for yet another month. Our apologies to all readers interested in pursuing this project. We assure you that we will bring you the conclusion of this project as soon as possible.

	Unit 1, Hill Farm Industrial Estate Boxted, Colchester Essex 004 5RD
	AVAILABLE NOW

The Rapid Guarantee -
 * Same day despatch * Lowest prices
 * Brand new components \star In-depth stocks

[^0]
NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:

DIGEST

256K CMOS DRAM from Hitachi

H
itachi have introduced a 256K DRAM (dynamic random access memory) which uses CMOS technology.
The device offers the high capacity and high packing density of dynamic memories coupled with the low power requirements of CMOS, including the possibility of battery back-up.

The new DRAM is designated the HM51256 and is available in two versions, suffix P and suffix LP. The low power LP version draws between 40 and 60 ma maximum in active mode (depending on access speed) and requires refreshing once every 32 ms rather than once every 4 ms as most conventional NMOS 256 K DRAMs do. This reduces the average stand-by current from the 11 mA required by NMOS devices to 300 uA .

The access times available are 100,120 and 150 ns but a high speed page mode allows these devices to achieve access times of 55,65 and 80 ns respectively.
the HM51256P/LP is available in a plastic 16 -pin DIL package and is pin-compatible with Hitachi's existing HM50256 256 K DRAM.
Also new from Hitachi is a 32 Kx 8 pseudostatic RAM which they claim is much nearer in operation to true static RAMs than are existing pseudo-static types.
The HM65256BP requires minimal refresh control circuitry and can be interfaced directly with a microprocessor. It offers access times of 60,75 or 100 ns , a power consumption of 175 mW (typical) in active mode, and is expected to cost around onefifth as much as a 256 K static RAM. The device is available in a 28-pin DIL package, a skinny DIP or a SOP plastic package.
For further information on either of these products contact John Vickerton at Hitachi Electronic Components (UK) Ltd, Hitec House, 221-225 Station Road, Harrow, Middlesex HA1 2XL, tel 01-861 1414.

ETI PCB Service

E agle-eyed readers may have page is not included in this issue. We will hasten to point out that this does not, we hope, mark a new round of problems with our suppliers, but rather reflects the popularity of the service. A considerable backlog of orders built up during the period for which the service was unavailable, and the number of orders received since the service restarted has exceeded all our expectations. The result is
that we are finding it difficult to meet the 28 -day delivery deadline on orders, as some readers have already discovered to their cost.

Because of this, we have decided not to advertise the service this month in order to give our suppliers a chance to catch up a bit. We advise those readers who were thinking of ordering boards from us to hold on until things are straightened out, by which time we will be in a position to process their orders promptly.

Instrument Cases With Battery Compartments

The latest addition to BICCVero's line-up of instrument cases is a range of stylish, twotone ABS enclosures which include an otpional battery compartment.

Known as the Lux range, the cases are moulded in textured ABS and offer a choice of twotone grey or two-tone brown colour schemes. One section of the three-part construction is designed to unclip from the outside and provide access to the optional battery compartment which can hold up to four AA cells.

The cases are designed to hold standard $100 \times 160 \mathrm{~mm}$ Eurocards and come in two sizes, $150 \times 118 \mathrm{x}$ 57 mm and $190 \times 148 \times 67 \mathrm{~mm}$. The larger size will accept up to six Eurocards. The front panel is of aluminium and can either be fitted into a retaining slot in the case or screwed into place for greater security. The safe operating temperature of the Lux range is -20 to $90^{\circ} \mathrm{C}$.

Also new from BICC-Vero is a development kit which contains ten blank front panels for Eurocards along with all the necessary handles, screws, etc. It is designed
to allow greater freedom in the siting of front panel controls on Eurocards, allowing the handle and other attachments to be placed in non-standard positions or even dispensed with entirely. The panel sizes available are $3 U x$ 4, 5, 6 and 12 HP widths and $6 \mathrm{U} \times 4$, 6 and 10 HP widths.
BICC-Vero Electronics, Unit 5; Industrial Estate, Flanders Road, Hedge End, Southampton SO3 3LG, tel 04892-5824.

SPECTRUM OSCILLOSCOPE

 YES! Your Spectrum Computer can do this:-

The AliDin Scope Module plugs into the $Z \times$ Spectrum expansion port and is completely controlled from the computer's keyboard, thus there are no knobs or dials and all settings are displayed on the screen, see above screen dump.

The waveform seen on the TV screen is a continuously updated waveform as seen on any normal digital oscilloscope, however it may be captured and held on the screen or in memory whilst displaying another signal for comparison.

The screen may also be printed out and this is useful for reports and handbooks.
*Real-time or Storage
*Trace Accumulation
*Printing Option
*AC and DC inputs
*Single Shot feature
*Settings displayed on screen
*Further software under
development
*Comprehensive triggers

You need:-
a) The Module at $£ 49.95$ complete with signal input leads.
b) The Scope software at $£ 24.95$ complete with handbook.

Further software is under development to enable the module to be used as other test instruments.

Send your cheque or P.O. for $£ 74.95+£ 1.00$ P\&P or SAE for full details to:- AliDin,

A 39 KINGSCLERE ROAD, OVERTON, HANTS.
 RG25 3JB.
 TEL: 0256770488

AFFORDABLE ACCURACY

Quality Multimeters from

 19 measuring ranges 20 measuring ranges 16 measuring ranges with each model.
Please add 15%
for VAT and
60 p for $\mathrm{p} \& \mathrm{p}$

HM-102BZ - 10ADC Range, $20 \mathrm{k} \Omega \mathrm{VDC}$, Buzzer, Battery Test Scale $£ 12.50$

HM-102R - Low end voltage \& current ranges, Jack for Audio $0 / \mathrm{p}$ voltages ... $\$ 11.00$

HM-1015 - Rugged, Pocket sized meter, for general purpose use $\$ 7.5$

Battery, Test Leads and Manual included
A
comprehensive
range of
Analogue and (Pushbutton or

Rotary
Switched)
Digital Models

DIGITAL
HC-7030
0.1\% Accuracy. Standard Model $£ 39.50$

HC-6010
.25\% Accuracy. Standard Model £33.50 HC-5010
0.25% Accuracy. TR Test Facility $£ 39.50$ M-1 05
.5\% Accuracy. Pocketable
$\$ 21.50$
All models have full functions and ranges and feature: $3 \frac{1}{2}$ digit 0.5 " LCD display - low battery indication - auto zero \& auto polarity - ABS plastic casing - DC AC l0amp range (not $\mathrm{DM}-105$) - Overload protection on all ranges battery, spare fuse, test leads and manual

Full details and specification from:

Cirkit Distribution Ltd

Park Lane, Broxbourne, Herts, EN10 7NQ
Telephone (0992) 444111 Telex 22478 TRADE ENQUIRIES WELCOME

QurfROM JAYTEE

PREAMPLIFIER MODULES

All modules are supplied with in line connectors but require potentionmeters, switches. etc. If used with our power amps they are powered from the
Type Application Functions Price

HY73........Guitar Pre-Amp................... Two Guitars plus Microphone . 1445
HY78......Stereo Pre-Amp AsHY66 lesstonecontrols $£ 13.45$
NEW! HY83 Guitar and Special EffectsPre-Amp as HY 73 Plus Overdrive and Reverb $£ 18.95$
MOUNTING BOARDS: For ease of construction we recommend the 86 for HY6 $£ 0.95$. B 66 for HY66-83 $£ 1.45$

MOSFET MODULESIdeal for Disco's, public address and	Type	Output Power Watts (rms)	LoadImpedence	
applications with complex loads line	MOS 128	60.	4.	£34.45
transformers etc.). Integral Heatsink	MOS 248	120	4	. 339.45
slew rate $20 \mathrm{v} / \mu \mathrm{s}$ distortion less than 0.01%	MOS364	180	4	¢64.45

THE SPECIAL DISTRIBUTOR FOR SPECIAL AMPLIFIERS

ILP have long been recognised as manufacturers of top quality amplifiers.
All ILP products are built to extremely high specification for the ultimate in hi-fi performance. They're unique in being completely encapsulated with integral heatsinks, and can bolt straight onto the chassis. They're also extremely robust, ensuring high levels of reliability as well as performance.
ILP Amplifiers are now available through Jaytee. The UK Distributor with the availability and service to match the quality of the amplifiers.
POWER BOOSTER AMPURERS
The C15 and C1515 are power booster amplifiers designed to increase
the output of your exisiting car radio or cassette player to 15 watt rms.
C15 15 watts ... $£ 10.65$
C1515................. 15 + 15 watts...78

LP LOUDSPEAKER

```
power ............... 350 watt rms
size.................. 12 inches
mpedance ....... 8 ohms
range ................ 20 Hz to 5 KHz
NEW £78.61
```

FOR FREE DATA PACK PLEASE
WRITE TO OUR SALES DEPT.

Jaytee Electronic Services, 143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 All Prices include VAT, Post \& Packing

Creditable Stereo

Thhe idea of the 'credit card' radio has been around foralittle while now and several companies have bRought out AM and mono FM models in this style Now Sony have gone a stage further and introduced a radio receiver which is no larger than any of the other models on sale but offers full FM stereo reception.

The SRF 201 has the outline dimensions of a standard credit card (around $31 / 2^{\prime \prime} \times 214^{\prime \prime}$) and is just $3 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)$ thick. Three tiny buttons on the top edge control power on/off, volume increase and volume decrease while tuning is achieved by means of a knob set into the front surface of the radio and projecting slightly at one side. The two padded earpieces are joined by thin, lightweight wire and are connected to the radio by means of a flat, moulded connector which slides onto one corner.

The radio has internal rechargeable batteries and a separate charger unit is included. This takes the form of a black plastic box about the size of a cigarette packet with a slot on the front into which the radio clips.

Bright Buoys

Many of the navigation buoys around Britain's coast will soon be powered by electricity derived from the action of the waves.

The lighthouse authority Trinity House have been conducting tests in the Harwich area using a device called the Whale Wave Activated Turbine Generator. They now plan to extend the test to cover the North West coast, the North Sea area and the Isle of Wight, after

The radio can be used normally whilst charging is taking place and all of the controls remain accessible. The charger operates either from the mains by means of an adaptor (not supplied) or from four AA-size cells, allowing the radio to be carried about even when it is being charged.
Sony were happy to lend us an SRF 201 and the ETI staff were just as happy to try it out for a couple of weeks. The sound quality is quite excellent and the volume level obtainable is enough to satisfy all but the most diehard of aural masochists. The earpieces are very light and generally quite comfortable but a number of people had difficulty perusading them to stay in place. Not everyone, it seems, has ears which conform to the Sony model.
The sensitivity is pretty good but, as might be expected, it is often impossible to find a signal strong enough to ensure continuous stereo. As a result, when walking around with the radio on, the reception tends to change from stereo to mono and back again with each change in direction.
which they hope to use the turbine to power about 100 of the 400 lighted buoys they are responsible for.
The generator is based upon a deviceknown as the Wells turbine which is named after its inventor, DrAlan Wells, a former professor at Queen's University, Belfast. It relies on a flow of air to drive it but, unlike other turbines, the blades always turn in the same direction regardless of the way the air flows.

This makes it ideal for use on buoys. The conventional nagivation buoy has an open tube run-

This problem is exacebrated a little by tuning difficulties. Because the tuning knob is quite small and has no reduction drive, it is not easy to set it accurately to give the best reception. It was generally felt that Sony might have done better to use a large knob which extended to both sides of the radio. It would then be possible to twiddle the knob
ning right through it and extending some three metres or so into the water. The tube is designed to add stability. The turbine will be placed at the top of this tube, about two metres above the water level. Movement of the buoy causes the water column to rise and fall and so produces a flow of air which will drive the turbine.

Trinity House say they are sufficiently convinced of the turbine's reliability to allow it to be used to protect shipping. Buoys powered by batteries or gas cylinders have to be senviced at intervals of six months or less, and the
between thumb and index finger which would give much greater control.
These criticisms aside, the SRF 201 represents a considerable achievement and is undoubtedly well made and presented. However, at a recommended retail price of $£ 69.95$ we supsect it is destined to remain soemthing of a novelty.
increasing. use of radar beacons and other electrical equipment is reducing battery life still further. It is hoped that the wave-powered buoys will only need servicing every three years or so apart from routine checks on moorings.
The manufacturers of the turbine, Munster Simms Engineering Ltd of County Down, Ireland, say they have received enquiries from many lighthouse authorities around the world. They point out. that the system has many possibilities including, eventually, the supply of electricity to mains grids.

We have featured so many wire strippers in these pages that it is hard to believe anyone still thinks the market is worth getting into, but Plasplugs are apparently undaunted. They have launched their new product with considerable publicity and sent several free samples to ETI.

The tool is designed to remove the insulation from single and multicore round cables in one action. The wire is inserted into the jaws to the desired length (graduations along the jaws act as a guide) and the handle then squeezed until the insulation is fully removed. A second aperture carries a blade which will cut cleanly through cables of up to 5/ $16^{\prime \prime}(8 \mathrm{~mm})$ diameter.

We found that the samples
supplied generally worked well and stripped away insulation on both stranded and solid-cored wire without visible damage to the insulation. However, whilst the tool worked well on cables of $0.5 \mathrm{~mm}^{2}$ and above (3 A mains cable, 16/0.2 stranded wire, etc). it was less efficient with some of the thinner connecting wires often used in electronics. Because of this, it will probably be of more use to the DIY enthusiast involved with domestic mains wiring than to the electronics hobbyist.
The Plasplugs Automatic Wire Stripper will be available from DIY and hardware stores, etc, and the recommended retail price is $£ 3.95$.

OSCILOSCOPES TELEQUIPMENT D67 Dual Trace 50 MHz Dela Sweep with manual
COSSOR CDU150. Dutal Trace 35 MHz E Solid State. Portable $8 \times 10 \mathrm{~cm}$ display. With Manual. S.E. LABS SM111. Dual Trace 18MHZ Solid State. Portable $A C$ or Extemal DC operation 80
$\times 10 \mathrm{~cm}$ display XIOCm display. With Manual ... 15 Mins Wit Manual TELEQUIPMENT S54A. Single Trace IOMIZ ... Solid State. With Manual

PHILIPS DIGITAL MULTIMETERS 4 digit auto ranging. Complete with batteries TYPE PM25

MULTIMETERS

AVO 8 Mk4 Complete with battenes $\&$ leads $£ 60$ AVO 8 MK2 Complete with batteries \& leads $\mathrm{E50}$ AVO TEST SET NO 1 (Miliary version of Avo 8). Complete with batteries, leads \& carying AVO \& carring case $7 \times$. Complete with batteries, leads AVO Model 73. Pocket Multimeter (Analowe 30 ranges. Complete with batteries \& leads $\mathbf{5 1 8}$ AVO 72 - Similar to above but no AC current range. With batteries \& leads.................. 10
ELEMIC Multimeters. Un-used. Supplied with leads \& batterie
ries......
... (pap
EBM20-37 Ranges
SUPER 50-57 Ranges (incl carrying case) $£ 0$ Other models

STEPPING MOTORS

Type 1.200 Steps per rev. 4 Phase (5 wire) 12 24. Torque 250 z inch (will run on 5 V with reduced torguel............................... $£ 15$ ea Type 2.612 Steps per rev. 3 priase. 12224 E | (will work on 5 V |
| :--- |
| type 3. NORTH AMEBICAN P 8 e ea. 5 off 17.50 | type 3. NORTH AMERICAN PHILIPS 24 Steps Rers rev. 4 wire $5 \mathrm{~V} 3.3 \mathrm{Amps} 0-250 \mathrm{rpm} 0-200$ Type 4.200 Steps per rev. 120 V (3 3 wire) Torque 25 ozinch... por wi. 20 (s wire) Type 7. WARNER 24 Steps per rev. 3 Phase (6 wire). 28V. Holding Torque 4502 inch.. \&5 ea This is a VEAY SMAL SAMPLE OF STOCK SAE T E.................................. 1 availabity beotore ordering. CARRIAGE all units $£ 12$. VAT to be added to Total Goods \& Carriage. STEWART OF READING Telephone: 073468041 WHE 110 WYKEHAM ROAD, READING, BERKS RG6 1PL

Caliers wetcome 9 a.m. to 5.30 p.m.
Mon-Fri (until 8pm Thurs)

Universal Semiconductor Devices Ltd.

17 Granville Court, Granville Road, Hornsey, London N4 4EP, England. Tel: 348 9420/9425* Tlx: 25157 usdco g

We offer one of the largest ranges of semiconductors at highly economical prices. The following semiconductor types are available from stock. If we don't stock what you need then we can get it fast from our facilities in West Germany and USA upon request.
TRANSISTORS - Bipolars - Germanium and Silicon Small signal
Power
Darlingtons - all shapes and sizes
VHF/UHF devices - all shapes and sizes
FETS - Power Mosfets Unijunctions

DIODES - Germanium and Silicon Rectifiers and Bridges Opto-Electronic devices LEDs of all shapes and sizes
THYRISTORS and TRIACS - All shapes
 INTEGRATED CIRCUITS: Consumer - Digital/Analogue Microprocessors and Peripherals IC Sockets
JAPANESE COMPONENTS - Vast range of discrete's and consumer IC's System A - All semiconductors avallable from USD. Amp - $£ 75.00$ incl. VAT \& p\&p. Pre-amp - $£ 90.00$ incl. VAT \& $\mathrm{p} \& \mathrm{p}$.
Mail order customers: Please send for our comprehensive price list, enclosing $£ 1.00$ in

SYSTEM A AMP
Ail semi-conductors available. Amp plus pre-amp $£ 90$, amp amp only £75 Catalogue sent tree of charge, when requested on official letterhead (without refund), to OEM's, Schools, Colleges, Universities, Goverece institutions, Computer Films, Electronic Repair Firms and Distributors. Special discounts and payment terms are available to above institutions.

Please enquire for quantity discounts. WE WELCOME TELEPHONE AND TELEX ENQUIRIES!

MICROBOX || the 6809 single board Computer that You build yourself

OUTPUTS

2 ST. STEPHEN'S ROAD • CHELTENHAM • GLOUCESTERSHIRE GL515AA Telephone: Cheltenham (0242) 510525

The latest additions to AvelLindberg's range are a series of 6 and 12 VA PCB-mounting transformers which are less than one inch high.
Fully encapsulated in flat thermoplastic cases, the transformers conform to what is known as the 'American footprint' for pin spacing and feature four moulded holes which allow them to be screwed to the board for additional security.
The ZFL6 (6VA) and ZFL12 (12VA) ranges are available with either 110,115 or 120 volt dual primary windings and $5,6,6.3,8$, $9,10,12,15,17$ and 18 volt dual secondary windings. The construction uses separate, nonconcentric bobbins to give low inter-winding capacitance and complete immersion in epoxy resin enables them to withstand a proof
test at 5000 VAC . The maximum operating temperature is $+40^{\circ} \mathrm{C}$, the insulation is to class E and both ranges conform to IEC 65 class 2, BS415 class 2 and VDE 0551 class 2.

The ZFL6 range have maximum dimensions of $22 \mathrm{~m}\left(0.86^{\prime \prime}\right)$ high x $53 \mathrm{~mm}\left(2.09^{\prime \prime}\right) \times 44 \mathrm{~m}\left(1.73^{\prime \prime}\right)$. Maximum dimensions for the ZFL12 range are $24 \mathrm{~mm}\left(0.93^{\prime \prime}\right)$ high $\times 68 \mathrm{~mm}\left(2.67^{\prime \prime}\right) \times 57 \mathrm{~mm}$ (2.24").

Also available from Avel Lindberg is a leaflet which describes their range of ultra-thin transformers in ratings from 0.8 VA to 30 VA . The 0.8 VA type is claimed to be the thinnest transformer in the world and was featured in News Digest in ETI January 1984.

Avel-Lindberg Ltd, South Ockendon, Essex, England RM15 5TD, tel 0708-853444.

A group with the catch title of UK National Coordinating Committee on Satellites in Education has got together to, well, coordinate the use of satellites in education. They are stressing the possibilities offered by satellites not just in science and technology courses but also in geography and modern language teaching, and are keen to liase with teachers and others who have ideas for projects or research. Their 40 page Guide For Teachers costs $£ 3.50$ inclusive from AMSAT (UK), 94 Herongate Road, Wanstead Park, London E12 5EQ (cheques payable to SEUK) and their strategy paper is available free-ofcharge from Dr John Gilbert, Department of Educational Studies, University of Surrey, Guildford GU2 5XH.

We have run out of the digital panel meters which were on special offer in last month's issue, but mensurative readers may be interested to hear that Electronics and Computer Workshop Ltd offer a 3-digit DPM kit for $£ 17.90$ inclusive. Known as the K2032, it will display readings
from $-99 m V$ to $+999 m V$ full scale, has positive and negative overflow indications and features a resolution of $\pm 1 \mathrm{mV}$ and nonlinearity of 0.1%. The input resistance is 100 M and it requires a 5 V DC supply at 250 mA . ECW Ltd, 171 Broomfield Road, Chelmsford, Essex CMT 1RY, tel 0245 - 262 149.

- The Health and Safety Executive say that more accidents are caused by defective plugs, leads and sockets than by faults in the appliances to which they are connected. Because of this, they have issued a Guidance Note called Flexible Leads, Plugs, Sockets, Etc which gives practical advice on safe working procedures, repairs and sensible precautions. The note is designated GS37 and costs $£ 2.25$ from HMSO bookshops. Also available is a leaflet on health and safety requirements which is aimed at the selfemployed and those running small businesses. Contact the Health and Safety Executive, Regina House, 259-269 Old Marylebone Road, London NW1 5 RR, tel 017233418.

HARDWARE SOFTWARE

Operative Systems

MDEX Professional Dev. System £95
CORTEX POWER-BASIC disc extensions: CDOS £43
MDEX Extensions
FORTH with Screen editor assembler \quad £55

- Graphic extensions £35

PASCAL by Pre Brinch Hansen £85
QBASIC Compatable with
CPM CBASIC - only complied! £150
WINDOW Full screen editor \quad £150
CORTEX LISTINGS/CDOS DISCS
PENGO, BLUE-BIRD, GOLF
£13
SPACE-BUGS, BREAKOUT, PONTOON, MICROPEDE £13
CDOS WORD PROCESSOR (DISC ONLY) £13 DRAWTECH (DISC ONLY)

DISC DRIVES

80 Track half height, double sided, double density IM £125
40 Track half height, single sided, double density 256 K £ 110
E-Bus cards
9995 Processor Board
64/128k RAM Card
Floppy/Winchester Interface Card

	PAL'S Built	$\begin{array}{r} £ 52 \\ £ 175 \end{array}$
Blank +	PAL	£42
Blank	Built	£145/245
		£32
	Built	£135
Blank		£13
Part kit		£36
Full kit		23

LIMITED OFFER ONLY: 9909's Full kit
£43
STATE DISC FORMAT \& ADD VAT TO ALL PRICES

MicroProcessor Eng Ltd
21 Hanley Road. Shirley
Southampton - SO1 5AP
Tel: 0703780084

4/aster
 Bectronics-Microprocessors -Now! The ProcticalWay!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.

Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Fobby?

SEND THIS COUPON NOW.

Interak 1

 AN EXPANDABLE DISK-BASEDZ80A DEVELOPMENT SYSTEM
YOU CAN BUILD YOURSELF! Universities, Colleges, Industry, Enthusiasts
Unlike home computers, development systems haveentirely "open" architectures, use standard TTL etc. chips (ie no ULA's!), and are built in a proper engineering fashion. Usually these superior products carry a correspondingly superior price tag, but you can build interak yourself board by board and thus afford a system which would normally be out of your reach and/or understanding.

The initial development system has 64 K of RAM, a 4 MHz Z80A CPU, parallel ASCII keyboard interface, VDU Interface (TV set or monitor), and a floppy disk drive interface for up to 4 drives. Anysize (including $8^{\prime \prime}$ double density) can be used, but our 1 Megabyte $3.5^{\prime \prime}$ drives are proving very popular because they can fit into the system rack, (and they only cost £87.00 each + VAT). CP/M 2.2 is available, giving access to thousands of "public domain" programs.
The system can be described as "future proof" because it uses plug in $4.5^{\prime \prime} \times 8^{\prime \prime}$ cards in an industrial quality $19^{\prime \prime} 3 \mathrm{U}$ rack. We have been established since 1970, and this system was first made in 1977 so (unlike almost all other computers) it has stood the test of time
Send two second class stamps, or telephone for a detailed descriptive leaflet, specification, prices, etc.

Greenbank
Greenbank Electronics (Dept T4E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG. Tel: 051-645 3391

. . . That there is a real difference at Cricklewood Electronics. That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety. competitive prices and service from the U.K.'s number one 100% component shop. No gimmicks, no gadgets or computers, just components, millions of them, all easily available by mail order. calling or credit card telephone orders. Just pick up the phone (or a pen) to get your FREE copy now (no SAE required). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED

 40 Cricklewood Broadway, London NW2 3ETTel: 01-450 0995/01-4520161

$$
\text { Telex: } 914977
$$

52 PAGE CATALOGUE FREE ON REOUEST

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:

Spray-On EMI RFI Screening

Computer cabinets, VDU Cenclosures and countless other electronic equipment housings can now-be provided with electrical screening quickly and easily using Electrolube's sprayon Nickel Screening Compound.
The compound comes in 200 ml (250 g) aerosol containers and can be used on ABS and most other commonly-used plastics. It becomes touch-dry in about fifteen minutes at room temperature and goes on to develop its full electrical properties over 24
hours or so. It forms an electric-ally-conductive dark grey coating which has a surface resistivity of 0.7 ohms per square and offers 50 dB attenuation (typical) to 100 MHz signals.

Electrolube expect the compound to be used for post-production screening in industry and point out that it is ideal for use on moulded housings with complex shapes.

Electrolube Limited, Blakes Road, Wargrave, Berkshire RG10 BAW, tel 0735223014.

- Science \& Technology Products Ltd only list a small selection of items in their catalogue but claim that they can supply to order a wide range of equipment and parts for electronics, physics, chemistry, biology, astronomy, etc, etc. The list includes-military spec and other hard-to-obtain semiconductors, vacuum devices such as GM and camera tubes, standard and non-standard connectors, switches, transducers and much more. They also offer a custom transformer service. For details contact them at PO Box 192, Poole, Dorset BH15 4AL.
- It's not often we get any feedback from the companies whose products we feature in Digest, so we're very grateful to EMC Datacare for their recent letter. We described their clamp-on RF choke in our September 1985 issue, and according to their figures (obtained by asking potential purchasers where they had heard of the device) the item drew at least a dozen or more responses. Admittedlythis is nowherenear as many as were gained from some of the more specialised trade journals, but what particularly caught our attention was the fact that our
article was in print and producing responses long before those in any of the other monthlies. Indeed, the only publication to print the article ahead of us was the weekly trade journal Electronic Times. So remember, folks, where electronics news is concerned, you read it here first! (Well, probably.)
- Anyone faced with a mean photo-multiplier tube might like to take a tip from Thorn EMI Electron Tubes, who describe two methods of calculating the mean gain of such devices in their technicalpaper RP-076. Contact them at Bury Street, Ruis lip, Middlesex HA4 7TA, tel 08956-30771.
- Electronic Brokers have produced a six-page colour catalogue describing the Grundig range of test equipment for which they were recently appointed UK distributors. The catalogue covers television servicing equipment and oscilloscopes and includes what is claimed to be the world's first oscilloscope with automatic software controlled timebase selection. For copies contact Electronic Brokers Ltd, 140-146 Camden Street, London NW1 9PB, tel 01-267 7070.

Write or telephone for full
details of our complete range
Order by teephone or post
using
vsis your credit card

DIGITAL ULTRASONIC DEEECTOR US 5063

Suitable metal enclosure £2.95+V.A.T.

MAKE YOUR INTERESTS PAY!

More than 8 million students throughout the world have found it worth their whilet An ICs home-study course can help you get a better job, make more money and have more
fun out of life! ICs has over go years experience in home-study courses and is the largest fun out of life! ics has over go years experiencern home-study ace, when and where you want under the guidance of expert 'personal' tutors. Find out how we can help you. post or phone today for your FREE INFORMATION PACK on the course of vour choice.
(Tick one box only!)

Subscription Order Form

To：ETI Subscriptions Department，Infonet Ltd， Times House， 179 The Marlowes，Hemel Hempstead， Herts HP1 1BB．
Please commence my subscription to Electronics Today International．I enclose a cheque＊／Postal Order＊／Interna－ tional Money Order＊for the appropriate fee，made out to ASP Ltd．
Please debit my Access＊／Barclaycard＊account number

Signature
（＊delete as appropriate）
Please indicate subscription required and fee enclosed
UK \＆Rep of Ireland：
Overseas（Acclerated Surface Post）
USA（Accelerated Surface Post）
Overseas air mail：
£18．10 口

PLEASE
IN BLOCK CAPITALS
Name
Address
£22．50 口
\＄29．50 ㅁ
£49．50 口
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

 Date of orderTHIS COUPON IS VALID UNTIL 31st May 1986

Backnumber Order Form

To：ETI Backnumbers Department，Infonet Ltd， Times House， 179 The Marlowes，Hemel Hempstead， Herts HP1 1 BB．
Please supply me with the following backnumber（s）of ETI
Month Year．

Month ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Year
Month ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Year．
I enclose cheque＊／Postal Order＊／International Money Order＊to the value of $£ 1.60$ per magazine ordered， made out to ASP Ltd（＊delete as appropriate）．
Total money enclosed $£$ ．
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name
\qquad

Binder Order Form

To：ASP Readers＇Services，PO Box 35，Wolsey House，
Wolsey Road，Hemel Hempstead，Herts HP2 4SS．
Please send me
binder（s）for ETI．
I enclose a cheque＊／Postal Order＊／International Money Order＊to the value of $£ 5.20$ per binder ordered，made out to ASP Ltd（＊please delete as appropriate）．

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS IN
－BLOCK CAPITALS
Years required：198．．．．．．198．．．．．．198．．．．．．198．．．．．．
Name
Address

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order
Note that binders cost the same for UK and overseas； overseas orders will be send by surface mail．

THIS COUPON IS VALID UNTIL 31st May 1986 Photocopy Order Form
I London W1R 3AB．
Please supply me with the following photocopies：
Month．．．．．．．．．．Year．．．．．．．．．．．．．．．．．．．．．．．．．Page No
．．．．．．．．．．．．．．．

Page No
Tick box if you require INDEX（cost $£ 1.50$ ）
1 enclose cheque＊／Postal Order＊／International Money －Order＊to the value of $£ 1.50$ per photocopyordered，made
－
－Total money enclosed $£$ ．
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name
Address

Note that the cost is the same for overseas orders as for UK orders；overseas orders will be sent by surface mail．
PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING．

THIS COUPON IS VALID UNTIL 31st May 1986

DIARY

Low Energy Ion Beams - April 7-10th
University of Sussex, Falmer, Brighton. See March' 86 ETI or contact the Meetings Officer of the Institute of Physics, 47 Belgrave Square, London SW1 8QZ, tel 01-255 6111.

Design of Printed Circuits - April 7-11th
Cranfield Institute of Technology, Bedford. See April ' 86 ETI or contact Brian Phelps on 0234-750113 extension 2737.

The Internepcon Production Show - April 8-10th
NEC, Birmingham. Exhibition and conference devoted to electronic production technology, including CAD and ATE equipment and two special featüres on surface mounted technology. For details contact Cahners at the address below.

CAD/CAM '86 - April 8-10th
NEC, Birmingham. Exhibition and conference covering computer aided design, manufacture and testing. The conference includes symposia organised by the Institution of Mechanical Engineers and the IEE'sCADMAT Unitas well as a series of CADCAM First-Time Seminars. For details contact EMAP International Exhibitions Ltd, Abbot's Court, 34 Farringdon Lane, London EC1R 3AU, tel 01-608 1161.

British Electronics Week - April 29-May 1st
Earls Court and Olympia, London. See April ' 86 ETI or contact Evan Steadman Services Ltd, The Hub, Emson Close, Saffron Walden, Essex CB10 1HL, tel 0799-26699.

Communications '86 - May 13-15th
Metropole Hotel, NEC, Birmingham. Exhibition and conferenceorganised by the IEE which aims to provide a forum for designers and other engineers involved in communications. For details contact the IEE at the address below.

Ichiban: The Japanese Approach To The Training Of Technicians And Engineers - May 15th
Royal Angus Thistle Hotel, Birmingham, 6.00 pm . Lecture organised by the IEE. For details, contact them at the address below.

Electrical Insulation Conference - May 19-22nd
Brighton. See March ' 86 ETI or contact the British Electrical and Allied Manufacturers Association, Leicester House, 8 Leicester Street, London WC2H 7BN, tel 01-437 0678.

Hertz and Randall - Pioneers of Radiation - May 29th
Institution of Electrical Engineers, London, 6.00 pm. Lecture by Dr.M.J. Lazarus of Lancaster University. For details contact the IEE at the address below.

Advanced Infrared Detectors And Systems - June 3-5th
Institution of Electrical Engineers, London. See March' 86 ETI or contact the IEE at the address below.

Network ' 86 - June 10-12th
Wembley Conference Centre, London. For details see March'86 ETI or contact Online at the address below.

Power Electronics And Variable Speed Drives - June 10-12th institution of Electrical Engineers, London. Conference covering the integration of microprocessors, power electronics and machines. For details contact the IEE at the address below.

Addresses:

Cahners Exhibitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.
Institution of Electrical Engineers, Savoy Place, London WC2 OBL, tel 01-240 1871.
Online Conferences Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, tel 01-868 4466.

BEST PRIGE DEVIGES

ALL THE LATEST FASTEST DEVICES NOT TO BE CONFUSED WITH THE SLOWER OLD STOCK OFFERED ELSEWHERE
DRAM
EPROM
5V NMOS 150 nS
N
$416464 \mathrm{~K} \times 1$
£1.20 $27162 \mathrm{k} \times 8$
41256256×1
$\begin{array}{lll}£ 2.80 & 2732 & 4 \mathrm{k} \times 8 \\ \mathrm{f} .80 \\ 2764 & 8 \mathrm{k} \times 8\end{array}$
$4146464 \mathrm{k} \times 4$
SRAM
$5 V$ CMOS 150nS
$61162 \mathrm{k} \times 8$
$61162 k \times 8$
$62648 k \times 8$
$\begin{array}{lr}62648 \mathrm{k} \times 8 & £ 1.65 \\ \mathrm{£} 3.50\end{array}$
$£ 2.95$
$£ 3.00$

EX-EQUIPMENT MEMORIES -
TREMENDOUS VALUE
Guaranteed UV Erased, Cleaned \& Tested

				REGULATORS
7812	$£ 0.35$	10 For Oniy $£ 3.00$		
$78 M 12$	$£ 0.35$	10 For Only 3.000		
LM337	$£ 1.20$	10 For Only $£ 10.00$		

ORDERS OVER £25 DEDUCT 10\% DISCOUNT ADD 15\% VAT

 SENT POST FREEORDERS UNDER £25 ADD 15\% VAT PLUS 50p P\&P
OVERSEAS ORDERS ADD £2.00 P\&P (No VAT)
DESPATCH BY RETURN C.W.O
MICROKIT LIMITED
MANOR PARK RAUNDS NORTHANTS NN9 6PD

Now Dīstributed by Riscomp

PRE-AMPLIFIERS \& MIXERS

PA 207 - A quality stereo pre-amplifier and tone control unit suitable for driving any of the above amplifiers. Operates from a supply rail of $40-70 \mathrm{~V}$.

MM 100-3 input mixer featuring individual level controls, master volume, treble \& base controls, with inputs for microphone, magnetic pick-up
and tape or second pick-up (selectable). Operates

MM 100G - As MM 100 except inputs are for $\mathbf{~} \mathbf{2}$
guitar + microphone.

POWER SUPPLY
SPM90/45/55/65. A stabiliser module available in 3 voltages, $45 / 55$ \& 65 V providing a stabilised output of up to 2 A and providing a superior performance especially with the higher power
audio modules. (Requires an appropriate audio modules. (Requires an appropriate
transformer + reservoir capacitor).

All modules supplied with a
comprehensive Data Sheet.

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System

DISC DRIVES

These are fully cased and wired drives with slim line high quality mechanisms. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.

BBC Master Serles

AMB15 BEC MASTER Foundatio computer 128 K AMB12 BBC MASTER Econet Co. $£ 435$ (a) 128 K (only ANFS) computer AMC06 Turbo (65C102) Expansion $\{348$ (a) Module
ADF13 Rom Cartridge. $£ 87$ (b) ADF10 Econet Module $£ 13$ (d) ADJ22 Ref Manual Part I $£ 49$ (c) ADJ23 Ref Manual Part …... $£ 14.50$ (c) ADJ23 Ref. Manual Part II..... $£ 14.50$ (c)
ADJ24 Advanced Ref. Manual . 19.50 (c) ACORN COMPUTER SYSTEMS
BBC B PLUS with 128 K
BBC B PLUS Econet \& DFS £389 (a) BBC Dust Cover UPGRADE KITS
Econet Kit
1770 DFS Upgrade for Model B (d) 1.2 OS ROM

DNFS ROM........................... $£ 17.50$ ((δ)
ADFS Rom
DFS \& B Plus 1 with 1770
64 K Upgrade
for BPlus
TORCH UNICORN products including the IBM Compatble GRADUATE in stock
For detalled speclifcation or information on our comprehensive BBC range please write to us.

PRINTERS

 EPSONLX-80NLQ. EPSON\&195 (a)
FX85 (80col) NLQ 8K RAM $£ 315$ (a)
Optional Tractor Feed
FX105 (136col)
f20 (c)
JX80 4 colour printer
LQ800 (80col)
LQ1500 (136col) 2K buffer 5595 (a
LQ1500 (136 col) 32 K buffer. $£ 950$ (a) PLOTTERS
Epson H180: A4 4 colour Plotter....£345(a)
Hitachi 672 : A34 colour Plotter£465,(a)
TAXAN KAGA:
KP810 80 Col NLQ.............. £195 (a)
KP910 156 Vol NLQ................ £339 (a)
JUKI 6100 Daisy Wheel....... £289 (a)
HR15LX (Serial)
HR15LX (Serial) £365 (a)
Paper:
2000 Sheets Fanfold:
9.5" $\times 11^{\prime \prime}$................................... 813 (b)
$14.5^{\prime \prime} \times 11^{\prime \prime} ~$
Labels: (per 1000)

Econet Starter Kit

Econet Socket Set
File Server Level 1
File Server Level II
10 Statinter Server Rom
10 Station Lead set
Adv. Econet User Guide
ACORN ADD-ON PRODUCTS
Z80 2nd Processor............................. £329 (a
6502 2nd Processor 169 (a
Teltext Adaptor ... 278 (b
OMS
COMMUNICATIONS ROMS
Termulator .. 25 (d)
Commstar... 49 (d
BBC FIRMWARE \& SOFTWARE
Database Management Systems
Word Processors Languages
Spreadsheets Utilities
For full details on the wide range of above packages please write to us.
2716×1716 Triple row5.00 (d)

ACCESSORIES	
FX plus sheet feeder................................ 5129.00 (b)	
LX80 Sheet feeder849.00 (b)	
Paper Roll Holder $\mathbf{£ 1 7 . 0 0}$ (d)	
FX80 Tracto	or attachment............................337.00 (c)
Interlaces: 8143 RS232...........................e.exs.00 (c)	
8132 Apple II..05 (c)8165 IEEE + cable................ (c)	
Serial \& Parallel Interfaces with larger butfers available.	
Ribbons:	RX/FX/MX8055.00 (d)
RX/FX/MX100.......................... $\mathbf{8 1 0 . 0 0}$ (d)	
	LX80..86.00 (d)
Spare pens for H18087.50/set (d)	
FX80 Tractor Attachment £37 (c)	
Kaga taxan	
$\begin{aligned} & \text { RS232 Interface + 2K Buffer .. (c) } \\ & \text { Ribbon KP810/910 } \end{aligned}$	
JUKI:	
RS232 Inter	race ..85 (c)
Spare Daisy Wheel814.00 (d)	
Ribbon 22.50 (d)	
Tractor Feed Attachment $\mathbf{8 1 2 9}$ (a)	
BROTMER MR15:	
Sheet Feed	- ...8189 (a)
Tractor Feeder...899 (a)	
Ribbons Carbon or Nyion............................... $\mathbf{4 . 5 0}$ (d)	
Red Correction RibbonE2.00 (d) BEC Pirnter Lead:	
Parallel (42")...87.00 (d)	
Serial \qquad 87.00 (d)	

MODEMS

- All modems listed below are BT approved

MIRACLE 3000:

A new range of microprocessor based modems offering of upto 2400 baud, full duplex. Features include 'HAYES' protocol compatibility, auto answer, auto dial, speed buffering, printer port, data security optionetc. Mains powered.
WS3000 V2123 (V21 \& V23).............. 2295 (b) WS3000 V22 (as above plus 1200 baud full W $\$ 3000$ v22bis2400 (as above plus 2400 baud full duplex)
A worid staridard modem covering V21, V23 (Bell 103/113/108 outside UK) and including $75,300,600,1200$ baud ratings. Optional Auto dial, auto answer ciards, complete control from computer keyboard. WS2000 £125 (b)

 .230 (d) Auto Answere Card$£ 10$ (d) GEC DATACHAT 1223: BABT approved modem complying with CCITT V23 standard. Supplied with soltware $£ 86$ (b) Data Cables for above modems available for most computers.

Serial Test Cable
Serlal Cable swichable at both ends allowing pin options to bere-routed or linked at eitherend usinga 10 way switch making it possible to produce almost any cable contiguration on site.
Available as M/M or M/F ع24.75 (d)

PD800P ($2 \times 400 \mathrm{~K} / 2 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS) with built in monitor stand. P800 ($2 \times$. 6279 (a) DS) TS 400 . $\times 4$.................... 249 (a) SS $4001 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K} 40 / 80 \mathrm{~T}$ PS400 with psu $1 \times 400 \mathrm{~K} / 1 \times 640 \mathrm{~K}$

40/80T DS

3M FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each discis individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box.

$544^{\prime \prime}$ DISCS

40 SS DD 812 (d)
80 T SS DD 821 (d)
$40 T$ DS DD 816 (d)
31/2" DISCS
80T SS DD 830 (d$)$
80 T DS DD 838 (d)

DISC ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives:... $31 / 2^{\prime \prime} £ 16$ (d), $51 / 4^{\prime \prime} £ 14.50$ (d) Single Disc Cable................................... (d) Dual Disc Cable50 (d)
 MICROVITEC
All 14" monitors now available in plastic or metal cases, please specify your requirement.

SANYO DM8112CX Hi Res 12" Green Screen .. 695 (a)

KAGA KX1201G Hi Res 12" Etched Green Screen .. 99 (a)
KAGA KX1203A Hi Res 12" Etched Amber Screen 105 (a)
PHILIPS BM7502 12" Hi Res Green Screen . 875 (a)
PHILIPS BM7522 12" Hi Res Amber Screen... 21 (a)
Swivel Base for Kaga Monochrome fitted with Digital Clock

SPECIAL OFFER
2764-25£2.20
27128-25 £2.75
6264LP-15
£3.75

ATTENTION

All prices in this double page advertisement are subject to change without notice. ALL PRICES EXCLUDE VAT Please add carriage 50 p unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

Serial Mini Patch Box
Allows an easy method to reconfigure pin functions without rewirlng the cable assy. Jumpers can be used and reused.

Serial Mini Test
Minitors RS232C and CCITT V24 Transmissions, indicating status with dual colour LEDs on 7 most significant lines. Connects in Line.

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up to eight eproms at a time and accepts all single rail eproms up to 27256. Can reduce programming time by 80% by using manufacturer's suggested aigorithms. Fixed Vpp of 21 \& 25 volts and variable Vpp factory set at 12.5 volts. LCD display with alpha moving message. £395(b).

SOFTY II

This low cost intelligent eprom programmer can program $2716,2516,2532,2732$, and with an adaptor, 2564 and 2764 . Displays 512 byte page be used as an emulator cassette interface Can Softy II........ Adaptor for $2764 / 2564 . \dot{25} .00$ (c)

UV ERASERS

All erasers with built in safety switch and mains indicator.
UV1 B erases up to 6 eproms at a time. . . . $\mathbf{E 4 7}$ (c) UV1 1 as above but with a timer £59(c) UV140 erases up to 14 eproms at a time IV141 as above but with a timer.

CONNECTOR SYSTEMS

EDGE CONNECTORS

RIBBON

(grey/metre)			
10-way	40p	34-way	160 p
16-way	60 p	40 -way	180 p
20-way	85 p	50 -way	200 p
26-way	120p	64 -way	$\mathbf{2 8 0 p}$

DIL HEADERS		
	Solder	ID
14 pin	40p	100p
16 pin	50p	110p
18 pin	60p	
20 pin	75 p	
24 pin	100p	150p
28 pin	160p	200p
40 pin	200p	225p

TECHNOLINE VIEWDATA SYSTEM Using 'Prestel' type protocols
for information and orders phone 01-450 9764. 24 hour service, 7 days a week.

READ/WRITE

Pot Shop

Dear Sir,
With reference to K.G. Vergis' letter 'Scope for Improvement' (Read/Write, ETI March 1986). Neosid Small Orders, PO Box 86, Welwyn Garden City, stopped trading in 1983. The PO Box number address was discontinued when further communications became a matter for the postal authorities to return to sender.

Whilst I sympathise with your cotrespondent's dilemma, I regret there is nothing I can do to assist at this stage as regards return of the postal order. However, if you will furnish K. G. Vergis' full address we will be pleased to send an ET30 pot core with our compliments.

Would-be purchasers should in the first instance write to me and I will arrange supplies.

M.J. Bass

Neosid Limited.

We were delighted to receive the above letter and have passed on K.G. Vergis' address as requested. We have also spoken to Neosid to confirm the offer made at the end of the letter. Mr Bass tells us that although his company no longer has a small orders department they will be happy to deal with individual orders for the ET30. Readers who require this pot core for the ETI Oscilloscope should telephone Neosid on 0707 325011 and ask for the sales desk. - Ed.

Hi-fi Praise

Dear Sir,
I'd like to react to all the complaints about the John Linsley Hood Audio Design Amplifier by saying 'Stick with it - it is well worth the effort.' I have built up the amplifier and preamplifier myself and have nothing but praise for the design.

Regarding the difficulty with components, the small signal MOSFET type VN1210M is manufactured by Siliconix. Readers outside the UK should try their agents (Electrolink in South Africa).

Finally, I wish to congratulate ETI. The audio design series was well presented, easy to follow, and had few errors.

I thank you.
Yours faithfully,
Hugh Hacking
Johannesburg,
South Africa.

Simply Not Good Enough

Dear Sir,
I have been a regular reader of ETI since it first appeared in the early seventies. However, I feel that the quality of the projects over the past year leaves a lot to be desired. Many have either been esoteric projects at extortionate cost or re-hashes of past designs. I feel that some simpler projects and new ideas are sorely needed. To this end, I enclose a list of items I would like to see in the pages of ETI:

1) Digital recording of audio signals in the picture circuits of a $V C R$ for high quality.
2) In car graphic equaliser/ power booster/quadraphonic simulator.
3) Video enhancer and booster.
4) Car exhaust gas analyser.
5) Home computer based engine fault diagnostic aid.
6) Home computer to VCR Interface.
7) Extension to the above to allow control down a telephone line.
8) Use of a home computer for sub-titling on video recordings and for superimposition of messages and time on the picture.
9) Circuits to allow decoding of VCR composite Video to $R G B$ to allow direct coupling to an RGB equipped TV.
10) Switch, amplifier and distribution centre for TV/VCR/ aerials.
11) Interface circuits and software for widely available surplus hard disk drives.
12) Projects for the Amstrad computer range, for example, interfacing a standard $51 / 4^{\prime \prime}$ drive to the CPC6128.
13) Comprehensive central
heating controller, possibly using a ZX81.
14) Digital audio mixer/sound processor circuits.
15) Touch screen system for a home computer using a network of infra-red LEDs and diodes surrounding the screen.
F.R. Felgate,

Camberley,
Surrey.
Thank you for your suggestions for simple (?) projects. We will bear them in mind. - Ed.

PROMises, PROMises ...

Dear Sir,
Some time ago I constructed an EPROM programmer from a design published in the August and September 1984 issues of ETI. As it happened, I had to modify the front end to use it with my BBC micro. Much of the software had to be re-written, but after a lot of midnight oil it now all works.

I was highly delighted when in the May 1985 issue you published an upgrade to the board. I sent off and received the PC board and duly made up the modification. Then, in the July 1985 issue it was mentioned that a version for the $B E E B$ was about to be produced, with the driving software in Sideways ROM. Since then I have seen nothing more on the subject. I have held off modifying my working board to include the update so as not to break down the programmer for a second time. Can you please let me know if this article will appear?

Yours faithfully,
M.D.J. Foreman,

Frenchay,
Bristol.
We are still expecting to publish a design for an EPROM programmer to use with the BBC computer, but at the moment it is not possible to say when it will appear. Our apologies to all frustrated BEEB owners but we can assure you that it will be worth waiting for. - Ed.

AUNTIE STATIC'S PROBLEM CORNER

Dear Auntie,

I have built a flashgun slave trigger unit, but I can't get the circuit to work. I have tested the circuit with my multi-meter, but the results are so spurious that I cannot pinpoint the error. I am now reaching desperation point over what should be such a simple project (this is my fourth attempt!) I have sent my circuit, so will you please have a look at it and tell me what I am doing wrong.

Yoursh faithfully,
Gerry Barlow B.Sc.,
Colwyn Bay,
Clwyd.
Before I begin, I must point out that in general we do not encourage readers to send us circuits for modification or repair. If we started doing it regularly, we'd have no time to design any projects! We made an exception in Mr. Barlow's case, but this is not intended to set a precedent.

The circuit, as it arrived, is shown above. It derives its power supply from the trigger input of the flash gun - on the slave flash unit sent in by Mr. Barlow about 150 V was present under open circuit conditions. This voltage comes from a very high source resistance and a load of 3M3 is enough to reduce the voltage to less than half and also to prevent the gun from triggering - hence the 5M6 resistor in the trigger circuit. The available current would not be enough to fire SCR1, which requires $200 \mu \mathrm{~A}$ gate current, so C1 is included as a 'reservoir'. ZD1 prevents the voltage across C1 from rising above 20 V . Q1 has a high resistance in darkness and a
low resistance in light, so the idea of the circuit is that the flash from the master gun is picked up by Q1, causing a sudden rise in voltage at the top of R1 which fires the SCR via Q2 and C2, in turn triggering the slave flash gun. This is the theory, anyway.

Naturally, Mr Barlow's first instinct was to get out his multimeter and try to trace the fault. Unfortunately, a standard 20k per volt multi-meter on the 20 V range will have a resistance of 400 k . This resistance is quite low enough to discharge C1 to a greater or lesser extent whenever any readings are made on the circuit. The results will bear very little relation to the actual operating voltages, and witi not be directly comparable with each other since C1 will dischange by varying amounts depending on where the readings are made. The way round this is to comnecta. temporary voltage supply of, say 18 V across C 1 . Not 20 V , by the way; as the zener will then be on the point of conduction, with possibly disastrous results, You = could, of course, usenapuply of about 25 K and atenty resistor, but unless you suspect hat ZD1 is not working which is quitereasy to test anyway why bother? You will still have to lake the meter resistance into account when meastring the voltage acrosFR1 but at least the readings will how makeisome kind of sense.

With the 18 V test supply connected, the voltage across R1 was checked with variour light levels. Two things would make the value of R1 unsuitable: if if was too low, very intense lighting would be required to raise the voltage across it by an appreciable amount, and if it was too high, normal room lighting would take the voltage across it almost to the supply rail level and leave little margin for a voltage rise when the master flash goes off. In fact, the value of 560 k is fine in both respects and was not changed.

Although the value of $R 2$ was perfectly good with the 18 V supply connected, it was too low for reliable operation when powered by the flash gun. As the slave flash
would not necessarily be used in pitch darkness, allowance must be made for the fact that there will be some voltage developed across R2 from background lighting falling on Q1. A quick calculation shows that a drop of about 250 mV across R 2 would be enough to sink all the current from R4, discharge C1, and prevent the circuit from working at all.

Are there any disadvantages in raising the value of R2? As its only purpose is to provide a discharge path for C2 after the trigger has operated, the main requirement is that the time constant of R2 + R3 and C 2 should be small enough to allow a reasonably quick recovery. The value could be raised to several megohms from this point of view so there is no need to worry. The final value settled on was 100 k , which is quite adequate to cure the discharge problem and leaves plenty of room for increasing the values of C2 and R3.

RYou feel that R2 has some

 othe thation besides discharging C2-Peinaps you think in some vague(u) that emitter followers need emitter resistors - I suggest that you try removing R2 from the circuit Make sure that the 'left hand' plate of C2 is discharged to ground then try using the trigger. You'll find it will work perfectly well once but won't fire a second time, tomake it work again, you will have todischarge C2 to ground which is the function of R2, Is I have said...)C1 must s oreenough charge to operate the circuit and maintain conductton in the SCR during the entire triggering period. The value of C1 was a little low to do this reliably and the value was raised to 100 n . This still gives a charge time via R4, which is less than the time Mr'Barlow's flash gun needs to echarge.
Jo test the values of C2 and R3 Isimply attempted to trigger the flash, with the 18 V supply in place, by shorting the collector and emitter of Q2. Once again, triggering was unreliable with the original values and the solution was to increase C2 and R3 to 470 n and 100 k respectively, bearing in mind the recovery time of C2 as already mentioned. R3 could have been replaced by a 200 k preset as a 'sensitivity' control.

The final component values for the circuit were: R1 560k, R2 100k, R3 100k, R4 5M6, C1 100n, C2 470. - Auntie.

FIBRE OPTICS
 ANDLASERS

In this, the first of a series of articles, Roger Bond takes a close look at the technologies that are set to revolutionise our communications systems.
 energy is supplied to the electron it will revolve around

 eard the one about the Englishman, the American and the Japanese? They are all racing each other to get higher and higher bit rates down optical fibre.In 1982 British Telecom engineers at Martlesham, near Ipswich, showed how an optical signal could be sent at $140 \mathrm{Mbit} / \mathrm{s}$ over a distance of 100 km without repeaters. A bit rate of $140 \mathrm{Mbit} / \mathrm{s}$ is sufficientto handlea 625 line television signal or 1920 telephone circuits. In spring 1983 the Japanese transmitted at $445 \mathrm{Mbit} / \mathrm{sover}$ 134 km withouta repeater and with an error rate of only 1 in 10°. Then in September 1983 the US Bell Laboratories transmitted at $420 \mathrm{Mbit} / \mathrm{s}$ over 161 km with an error rate of only 5 in 10^{9}. At these high information rates it is possible to transmit thirty volumes of the Encyclopedia Britannica in one second, and at the above error rates, one letter of the alphabet might be wrong for every five encyclopedia sets.

Whythe sudden interest in optical communications? An optical ray has the advantage of wide bandwidth and immunity from electrical noise. For example, the maximum bandwidth obtained from operatingon a carrier of 10 kHz is 10 kHz for each sideband. The maximum bandwidth obtainable from a carrier of $10^{14} \mathrm{~Hz}$ is 10^{14} Hz for each sideband, and it is in this frequency range (the infra red) that lasers operate.

Some Light On The Laser

Laser stands for light amplification by the stimulated emission of radiation. Light travels in discrete bundles or photons, and light falling on photosensitive materials will stimulate electrons. The opposite is also true. If electrons are sufficiently stimulated, light will be emitted.

Figure 2a shows an atom consisting of a positive nucleus and a negative electron circling the nucleus. If

Fig. 1 A portion of the electromagnetic spectrum.
the nucleus at a greater distance from the centre. If the energy is sufficiently great, the electron could escape from the nucleus.

When atoms are close together as in a solid, the energy levels become energy bands (Fig. 2 b). At absolute zero temperature, the valency band would be filled and there would be no electrons in the conduction band.

The valency band determines which group of the periodic table an element belongs to. Between the valence and conduction bands is a forbidden gap. Electrons cannot possess energies within this gap. Therefore, in giving up its energy and dropping across this gap, an electron causes light to be emitted of the same wave length as the gap. For communications over optical fibre this wavelength is $0.85 \mu \mathrm{~m}$ or $1.3 \mu \mathrm{~m}$.

In lasers, the stimulation is achieved by a process known as pumping, in which electrons are deliberately raised to higher energy levels. The normal distribution of electrons is shown in Fig. 3a, and it will be seen that there are fewer electrons in outerorbits than there are in inner orbits around an atom.

If such an atom is stimulated using an electromagnetic signal of suitable wavelength, electrons will

Fig. 3 Electron distribution, normally and after population inversion.
move to the outer orbits until there are more of them there than in the inner orbits, a situation known as a population inversion (Fig. 3b). The electrons will not be stable in this state and will fall back to their previous energy levels within a few nanoseconds producing a spontaneous emission of light. As a result, this system produces pulsed rather than continuous emission.

Although pulsed lasers have their applications, most of the useful lasers emit coherent light. Coherent light can be described as being of the same frequency and travelling in the same direction, parallel and in phase. That is why lasers can burn holes in metal.

As examples of incoherent radiation consider the sun or a light bulb. Various frequencies at random intervals are emitted. The power obtained from focusing the sun's rays is well known to anyone who has tried to burn a hole in paper using a magnifying glass. Not only is a laser prefocused (parallel) but it continues to remain so. For instance, a spot light may diverge by 2° whereas a laser diverges by only a few seconds of arc. That is one reason for using a laser to communicate with say, astronauts on the moon. Light from a spotlight would be completely dissipated over the distance.

Fig. 4 Pulsed and metastable electron pumping.
To obtain this continuous emission, it is necessary to achieve what is known as metastable state. In this, electrons are raised to a much higher energy level and then remain there for a comparatively long period, microseconds or even milliseconds. The difference between this and the pulsed system is illustrated in Fig. 4. If electrons will not remain at energy level C , spontaneous emission will take place as before. If they will stay at C (a factor determined by the choice of material and the wavelength of the stimulating signal), continuous pumping can take place between levels A and C. All that is then required to achieve continuous emission is to stimulate the atoms with another signal whose wavelength is equivalent to the gap between B and C. In this way, a continuous population inversion will be maintained between these two levels.

Masers

Before going on to look at the differenttypes of lasers, we will consider briefly the device which preceded them, the maser.

Maser stands for microwave amplification by the stimulated emission of radiation, and the difference between masers and lasers is therefore one of frequency. While the former operate at microwave frequencies (about $10^{12} \mathrm{~Hz}$) the latter operate at light frequencies (around $10^{14} \mathrm{~Hz}$).

The ammonia maser was invented in 1954. The designers were trying to design an amplifier, butit ended up as an oscillator which worked at only one frequency and refused to be tuned even over a narrow range. That was when the designers decided it could be used as a clock.

The world's best clocks at that time accumulated errors of one second in ten years but the ammonia maser
accumulated an error of only one second over 10,000 years. Today, caesium and rubidium provide even more accurate clocks.

Masers were used in satellite communication and radio astronomy where a weak signal had to be detected in the presence of noise. The maser is ideal for this since it generates little noise itself compared to klystrons and travelling wave tubes. It saturates at power levels above 10^{-5} watts. In 1960 the Echo I satellite was used merely as a reflector to bounce the signal. 10 kW was beamed up at it and only 10^{-14} was reflected back. Later, Telstar amplified the signal before transmitting it back to earth, but even then the received signal was only 10^{-13} watt.

Molecular vibration stops at absolute zero, so the maser is operated at $1.5^{\circ} \mathrm{K}\left(-271.5^{\circ} \mathrm{C}\right)$ by immersing it in a helium bath. The maser used at the satellite station in Cornwall was ruby with 0.05% chromium. This front end amplifier has largely been replaced by parametric amplifiers, but that is a different story.

Crystal Lasers

The ruby laser was the first to be operated successfully by Maiman in 1960. Ruby is aluminium oxide $\mathrm{Al}_{2} \mathrm{O}_{3}$ with some of the aluminium atoms replaced by 0.05% chromium for effective lasing.

The ruby crystal was a rod 10 cm long and 1 cm in diameter (Fig. 5). Pumping and hence population inversion was obtained by means of an xenon flash tube spiralled around the crystal. A few kilovolts was discharged through the tube from a bank of capacitors of around 100 microfarads.

This flash energy was in the green and blue end of the colour spectrum which is the absorption band for ruby. Provided sufficient energy was supplied, the ruby crystal emitted its characteristic red in the visible part of the colour spectrum, at a wavelength of $10^{-8} \mathrm{~cm}$.

Fig. 5 The heart of a ruby laser.
The end faces of the rod were silvered in order to amplify the light. One end acted as a perfect reflector but the other end was only a partial reflector so that the radiation could burst through. Ruby was ideal because it is easy to cut and shape.

Liquid And Gas Lasers

Liquid lasers employ a group of compounds known as the rare earth chelates which give out vast quantities of fluorescent light. Unfortunately, their chemistry is rather complicated and quite outside the scope of this article, so we can do little more than acknowledge their existence and pass rapidly on to consider gas lasers.

The gas laserwas invented in 1961 and the prototype
used a mixture of helium and neon in the ratio 5:1 (Fig. 6). Helium and neon were chosen because they have similar energy levels, and population inversion can be obtained by energy transfer from one to the other. The tube was 1 metre long and of 1.5 cm internal diameter. Mirrors were mounted on the inside ends and were capable of adjustment so that they were parallei to each other.

Fig. 6 Helium-neon laser.
The object of using mirrors is to amplify the light by bouncing it back and forth. Nothing could be simpler, it's all done with mirrors and since we are dealing with light it seems logical to use mirrors. However since the gas is at low pressure, the mirrors have to be adjusted in a virtual vacuum which is not easy. This is now overcome by using external spherical mirrors.

Carbon dioxide is also used in gas lasers and in general, gas lasers are more directional and monochromatic than solids like ruby. Monochromatic means approximating to a single frequency, and this is possible because gases do nothave the physical imperfections of solids. Gas lasers can also emit a continuous beam at room temperatures without the need for cooling.

Semiconductor Lasers And LEDs

So far we have only dealt with laser light sources. In considering semiconductor lasers, however, it is convenient to look also at LEDs since they share the same technological base and have important applications in fibre optic communications.

The main difference between light emitting diodes and lasers is that LEDs emit spontaneously whereas lasers have to be stimulated. This can be seen in the characteristic curves of Fig. 7.

Fig. 7 Characteristics of semiconductor lasers and LEDs.
Stimulated emission is of higher fidelity than spontaneous emission because photons stimulate other photons of the same wavelength. Hence the linewidth of lasers is $1 \mathrm{~nm}\left(10^{-9} \mathrm{~m}\right)$ whereas the linewidth of LEDs is
about 20 nm . This means that the useful bandwidth of LEDs is limited since sidebands are produced which overlap. For the widest possible bandwidth, a single pure frequency is required.

The output of a LED is linear and can therefore be used to transmit an analogue signal. The laser curve rises slowly until a breakpoint or threshold is reached, then the emission takes off. Because of the shape of the laser curve, it is more suitable for transmitting digital signals in which the light is switched on and off.

LEDs operate in the $0.85 \mu \mathrm{~m}$ to $0.95 \mu \mathrm{~m}$ range, the infra-red. Figure 8 shows a high radiance light emitting diode (HRLED), also called a Burrus diode. The difference between this and an ordinary LED is that a welli is etched in the top. The well is usually $50 \mu \mathrm{~m}$ is diameter and a $50 \mu \mathrm{~m}$ optical fibre fits snugly into it, reducing coupling losses.

Edge light emitting diodes (ELEDS) are even more efficient than Burrus diodes. The Burrus diode uses a homojunction, a construction in which several layers of gallium arsenide (GaAs) with opposite charges are sandwiched together. ELEDs use heterojunctions, which have alternate layers of gallium arsenide and gallium aluminium arsenide. Figure 9 shows a double heterojunction.

Fig. 8 HRLED.
Fig. 9 eled.
The important feature is the stripe etched on the top which helps concentrate the emission from a very small area. The reflex index of the stripe needs to be uniform so that the output characteristic is a straight line.

The first semiconductor lasers were homojunctions, then heterojunctions were used and now double heterojunctions. The design is similar to that of ELEDs, but there is one big difference. The stripe in the ELED does not extend the whole length of the chip whereas it does in the laser.

The effect of having a stripe over the full length is to provide feedback and hence laser action. If the stripe does not extend to the end, the region without a stripe acts as an absorption region and light is absorbed here. Therefore there is no feedback and no lasing. The threshold current is the minimum current required to produce lasing and both the geometry of the stripe (5 to $20 \mu \mathrm{~m}$) and the double heterojunctions help to reduce the required current.

The laser chips are around $400 \mu \mathrm{~m}$ square with perpendicular ends as near perfect as possible and silvered as with all lasers. When a photon is emitted it reflects off the mirrored surface and, if it meets an electron about to emita photon, stimulated emission takes place releasing more photons.

The wavelength of the emission can be altered slightly by changing the concentration of aluminium. The active region is below the stripe and contains 5% aluminium. The other regions contain 35% aluminium and help the device to expand without cracking as heat is generated. The heat sinks are copper, soldered with indium. Typical outputs are around 5 mW and a laser's life at room temperature is about 10 years.

THE ETI TROGLOGRAPH

Mike Bedford gets down real low and sets the scene for a project using VLF for surface-to-underground communications. If you want to know more about very low frequencies and life beneath the Pennines, read on ...

Aloud cheer rang through the night air as the long awaited words came over the Molephone - the connection had been made. It was Saturday 28th May 1983 and the words in question came from a group of potholers 300 feet below informing the surface party that they had made the link up between Gaping Gill and Ingleborough Cave. An hour or so later they were to emerge from the mouth of Ingleborough Cave to an overwhelming array of reporters and TV cameras as the first people to make this elusive through trip.

This was the culmination of many years of exploration in the two caves in which the distance between the known extremities of the two systems gradually diminished but making the connection remained one of the greatest challenges in British potholing. The final push at making the link during 1982 and 1983 made considerable use of the Molephone, a newly developed piece of equipment allowing voice communication and radio location through solid rock.

This historic through trip has been named Dr Mackin's Delivery by the Bradford Pothole Club in recognition of the assistance given by the developer of the Molephone, and without which the feat would have been virtually impossible.

Cave Law

Gaping Gill is situated on the lower slopes of Ingleborough in the Yorkshire Dales National Park and must be considered one of the most famous potholes in Britain. The first descent of this 340 foot shaft was made in 1895 by the Frenchman Edward Martel who reported that no obvious passages radiated from the huge cavern which he found.

Throughout this century the cave system has attracted numerous potholers who proved that in marked contrast to Martel's initial reports, the main chamber is the hub of a sizeable array of passages and chambers totalling $7^{1 / 2}$ miles in length (excluding Ingleborough Cave) and ranking among the largest systems in the country.

Gaping Gill features prominently in the annals of caving folklore, being a cave of superlatives - the deepest shaft in Britain, the tallest waterfall, the largest cave chamber and also the second largest in the vast Mud Hall. Tales abound of Eric Hensler's solo exploration of the hundreds of yards of 18 -inch high passages which now bear his name. In 1953, crowds fearing for his sanity eagerly awaited the return of Ceoff Workman after his 14-day lone encampment in Sand Cavern aimed at discovering the effects on the human body of such a period cut off from our natural clock, the sun.

We can read of the 1968 discovery of the Whitsun Series with some of the longest known straw stalactites, accessed via the notorious'Font', a mud duck at the end of the Far East Passage. More recently numerous people have sampled the grandeur of the main chamber as public winch meets have been arranged at Spring and August Bank Holidays during which members of the public could be transported down the massive shaft in a bosun's chair.

A mile away in the wooded valley known as Trough Gill is the large mouth of Ingleborough Cave. Established as a show cave as long ago as 1838 , it is a major tourist attraction, drawing many visitors each year. The cave also has much to interest the potholer in the areas beyond the limit of the show cave, these flooded passages being the domain of cave divers using aqualung equipment.

For many years it had been realised that the stream thundering down the 340 -foot waterfall into Gaping Gill was the same one which emerged some time later out of the mouth of Ingleborough Cave. The fact that water could find a way through impelled the search for a link between the two caves through which a person could pass.

Later discoveries in Gaping Gill, the Far Country and Far Waters which were first explored during 1970, did appear to come very close to the Radaghast's Revenge area of Ingleborough Cave, discovered by diving in 1976. The way through would almost certainly require

Fig. 1 Attenuation of electromagnetic waves in sea water.
digging and, although both caves were reasonably well surveyed, it was very difficult to tell exactly which points in the two systems were the areas to concentrate on.

Technology To The Rescue

In the early 1980 s, the Molephone helped locate a point in Radaghast's Revenge that was found to be so close to the FarWaters of the Gaping Gill system that the surface team found it hard to believe that the link had not been made! The remaining few metres did not give up without a struggle, however.

Numerous digging parties made the long and laborious journey from Gaping Gill to the Far Waters passing through the so called Wallows in which the airspace was sometimes as little as one inch. By early 1983, sufficient progress had been made to start making plans for the through trip.

Planned with the precision of a military operation, the expedition involved a party on the surface, one entering Ingleborough Cave and another party entering Gaping Gill accompanied by a two man BBC film crew making a TV documentary on the link-up. Each party was in communication with the others by use of Molephones, the surface party tracking the Gaping Gill group across the moors and the Ingleborough Cave party being called into the cave once the other team were close to the connection area.

Even this final assault wasn't without its problems. The Gaping Gill party of thirteen took over $1 \frac{1}{2}$ hours to move themselves and their equipment through the final 20 feet from where Geoff Yeadon and Geoff Crossley were to dive through the sump pool into Ingleborough Cave.

Geoff's account of the through trip ${ }^{1}$ notes that the conditions of the final dig were appalling - extremely wet, mud-logged, cold, tight and loose clay (you name it, the connection certainly seems to have it!). All the same,

Dr. Mackin's Delivery is now history. ${ }^{2}$

Way Down Low

It will come as no surprise to most people that electromagentic radiation is greatly attenuated by solid rock. In actual fact, due to its greater conductivity, sea water is even more difficult to penetrate than rock, a fact which makes communication with submarines a significant problem. Since submarine communication is of military importance, a great deal of research has been carried out in this area and Fig. 1 shows a graph of attenuation through sea water against frequency. ${ }^{3}$

It will be noticed that the degree of attenuation increases with frequency except for a small band at the high frequency end which corresponds to the visible spectrum (light). To get some idea of the severe limitations imposed at normal radio frequencies, consider a frequency of 1 MHz which falls in the medium wave band and accordingly wouldn't normally be considered a particularly high frequency.

The attenuation here is 30 dB per metre - in other words, the power level is reduced by a factor of 1024 over this distance. After two metres at this degree of attenuation, the signal remaining from a high power 100 kW broadcaststation would be only a tenth of a watt. As a result of this situation, submarine communication has to take place in the ELF $(30-300 \mathrm{~Hz})$ portion of the electromagnetic spectrum.

A concept often used in submarine/subsurface communications is that of skin depth, a measure of how far signals will penetrate below the surface. The skin depth is given by the formula:

$$
\delta=(1 / \pi f \sigma \mu)^{1 / 2}
$$

where f is the frequency in Hertz, σ is the electrical conductivity of the medium in S / m and μ is the magnetic

permeability which is reasonably constant for media such as rock and sea water.

Since the conductivity of rock is generally in the region 10^{-1} to $10^{-3} \mathrm{~S} / \mathrm{m}$ compared to about $4 \mathrm{~S} / \mathrm{m}$ for sea water it is easy to see that considerably greater ranges can be achieved through rock at the same frequency. Alternatively, acceptable distances can be obtained at a higher frequency than those used for submarines. Since the rate of data transmission is limited by the bandwidth and hence the carrier frequency it is clearly advisable to use the highest frequency possible.

For caving use, where depths of much more than 400 feet are rarely met in Britain and where the rock is limestone (not a particularly conductive substance) a frequency of about 3 kHz is quite suitable for CW and direction finding and even an order of magnitude higher could be used if there was a requirement for speech communication.

Nevertheless, 3 kHz is a very low frequency (the VLF band is officially designated as 3 kHz to 30 kHz) with a correspondingly long wavelength. The generally accepted standard aerial, against which the gains of more sophisticated aerials are measured, is the half-wave dipole - such an aerial would be 50 kM long for 3 kHz and even a quarter wave aerial would be 25 kM or 16 miles in length.

Clearly such an aerial is not a feasible proposition in a cave! For submarine communications, aerials many miles in length are used but since even this length is small interms of wavelengths, extremely high power levels are used to compensate for the inefficiency of the aerial.

Field Strength

Electromagnetic radiation consists of two elements - the electric field and the magnetic field. Normally, when we refer to radio waves, it is the electric field which we really mean and it is these waves which require aerials of the order of a quarter of half wavelength in order to propagate. A magnetic wave, on the other hand, can be radiated from much smaller aerials, a current carrying multi-turn loop being a classic example.

As is the case for electric waves, the magnetic field will also pass through conductive materials if the frequency of the radiation is sufficiently low. The disadvantage of communicating by magnetic waves is that field strength decreases with the cube of distance compared with the electric waves which diminish with the square of distance. This means that long distances are out of the question for magnetic wave communications and is the reason why only the electric waves are usually considered as radio.

For cave communication, long distances are not required and the inverse cube law does not present a great problem. Magnetic field communication is sometimes referred to as inductive communication as its operation can be compared to that of a transformer with a very large separation between the primary and secondary windings.

It will probably have been noticed that the frequencies mentioned are within the band normally referred to as audio. Before going any further, let's clear up any confusion which may be caused by this.

Even though we may use audio frequencies, it is not correct to assume that the communications could be heard by someone close to the aerial. This is because the human ear cannot receive electromagnetic radiation. The ear is sensitive to mechanical vibrations of the air (normally called sound) and audio frequencies occupy just the range over which the ear might respond to air vibrations. ELF and low end VLF communciations could
therefore be said to use radio waves at audio frequencies.

Direction Finding

The Gaping Gill link-up made extensive use of the directional properties of magnetic waves to accurately map the appropriate areas of the caves both horizontally and vertically. Figure 2 shows the shape of the magnetic field generated by a current carrying loop.

Fig. 2 Magnetic field generated by a current loop.
In contrast to the electric field of normal radio communications, which radiates in straight lines from the aerial, the magnetic field is made up of closed elliptical

Gaping Gill

The author takes the Troglograph for a swim.
loops. As a result, direction finding is not as straightforward as the normal triangulation method used in radio location.

The method used in cave surveying involves taking a transmitter to the point of interest in the cave and switching on at a pre-determined time, having first ensured that the aerial coil is perfectly horizontal. The surface party on first receiving these signals will determine firstly the horizontal location and then the depth. If the field pattern illustrated in Fig. 2 were to be viewed from above (as will be the case with a transmitter in a cave), the lines of flux will appear to be straight lines radiating from the centre of the coil. This means that the

Fig. 3 Location and depth-finding.
point immediately above the transmitter (referred to as ground zero) can readily be found by triangulation.

Maximum signal strength is received when the lines of flux pass through the plane of the receiving coil, but in practice it will be found to be easier to detect nulls than peaks. By obtaining three nulls, a first approximation of ground zero can be obtained, a more accurate result then being found by repeating the procedure closer to this first point. Having found ground zero, the depth can then be determined.

Figure 3 shows how the force lines from the cave transmitter will break through the surface. In order to calculate depth it is necessary to determine the vertical angle of the field at various known distances from ground zero. It won't be of interest to most people to go into the mathematics; but suffice to say the depth is given by the formula:

$$
D=L(3 / 4 \operatorname{COTAN}(90-A))+1 / 4 \operatorname{COSEC}(90-A)
$$

where L is the distance to ground zero and A is the vertical angle. Clearly it is advantageous to have a programmable calculator in the field, a look or up graph can be used. More practical details on locating can be found in references 4 and 5 .

References

1. Bradford Pothole Club Bulletin. Vol. 6, No. 5, Winter 1984. 'Gaping Gill to Ingleborough Cave - The 150 Year Link Up'. G.W. Crossley.
2. 'Gaping Gill - 150 Years of Exploration'. Howard M. Beck. Robert Hale, 1984.
3. 'ELF Communications Antennas'. Michael L. Burrows. Peter Peregrins Ltd, 1978.
4. Bradford Pothole Club Bulletin, Vol. 6 No. 6, Spring 1985. 'Radio Location'. J. Rattray.
5. 73 Magazine, February 1984, p 42. 'Caveman Radio'. Frank S. Reid W9MKV.

To Be Continued.
ETI

MICROLIGHT INTERCOM

lan Coughlan describes a high-performance intercom system which is designed for use in microlight aircraft but lends itself to any application which demands short-range, two-way communication in a noisy environment.

The pleasures of microlight flying can be greatly enhanced by taking along a passenger, but, thanks to the noise-level, talking to each other can be a pain in the neck in more ways than one.

This article describes a highquality intercom system that was designed specifically for microlight aircraft but which has obvious applications in other areas, for example hang-gliding, motorcycling, and rallying. The system may be used either with headsets, or with modified crashhelmets.

The basic requirement of an intercom system is that it should provide a two-way communication link with sufficient audio quality and output to overcome background noise. Furthermore, it should be reliable and of rugged construction.

The system to be described boasts several advantages over commercially available intercoms, not least of which is the high output-power available. Each headset is served by its own 1.5 watt power amplifier, making very high sound pressure levels possible with the minimum of distortion. In addition, each microphone has its own automatic gain control device which reduces the dynamic range over which the headphone amplifiers have to operate, thereby reducing the possibility of the system being driven into overload. The overall performance of the system is excellent, and is certainly better than anything else that the author has tried. The prototype system has been up to 14,000 feet with nary a complaint from the pilot or his passenger!

Of Mikes And Men

The system comprises two identical control-boxes, each of which contains a microphone preamplifier with AGC and a headphone amplifier. Each also contains its own battery, batterycheck LED, and headphone volume control. The various internal components are protected against vibration by foam rubber padding and the diecast aluminium boxes help to minimise the problem of electrical noise from an aircraft engine.

Because the two stations of the intercom are identical rather than being 'master' and 'slave', any two control boxes made to this design can be interconnected. This might be of value to microlight flying clubs and other groups, where each member could be equipped with one control box. It would then be possible for any two members to establish an intercom link quickly and easily.
in use, each user connects a headset or helmet to their own
control-box by means of a latching DIN plug. This switches the control-box on, and provided the send-return link is not also connected the system will be in battery-check mode. The LED will light if the battery voltage is above about 6.5 Volts, and each microphone will be connected to the earphones in the same headset. This provides an opportunity to set the headphone volume to a comfortable level (although once in flight, it will almost certainly have to be turned up).

All being well, the two controlboxes are then linked by plugging the screened send-return link into the $1 / 4$-inch jack-sockets. Doing so disconnects the battery-check LED and the circuitry that drives it and also disconnects each microphone from the earphones in the same headset. These actions help to conserve battery power. Each microphone pre-amplifier's output is now sent only to the other user's headphone amplifier by means of the send-return link.

Fig. 1 Circuit diagram of one control box. Two identical control boxes are required for an intercom.

HOW IT WORKS

Each microphone is connected to an SL 6270 VOGAD integrated circuit. VOGAD stands for Voice Operated Gain Adjusting Device, and the device maintains an output of some 100 mV RMS over a wide range of microphone levels, allowing either user to shout without overloading the system. The attack and decay times of the VOGAD are set by R3 and C4. With the values shown, the attack time (the time taken for the device to reduce its gain in response to a large input) is somewhat less than 20 ms . The decay time, that is, the time taken for the device to return its gain to its former level when the large input is removed, is about 3 seconds.

R4 and $C 7$ serve to decouple the sensitive microphone preamplifier from the supply line, which may be subject to surges caused by the headphone amplifier. It will be noticed that the microphone pre-amplifier and the headphone amplifier have separate 0 V returns to the DIN socket; this is
because the headphone amplifier is capable of high output currents which would otherwise cause a voltage drop in the microphone pre-amplifier's oV return, resulting in instability.

The output from the microphone pre-amplifier goes to the 'ring' contact of the send-return jack-socket. When nothing is plugged into this socket, the microphone output is routed to the volume control and hence to the associated headset; when the sendreturn link is plugged-in, the microphone output is routed to the volume control in the other controlbox.
The wiper of the volume control goes to the input of the headphone amplifier, a TBAB20. This device is capable of producing an output in excess of 1.5 Watts into 4 ohms with a good 9 volt battery, falling to some 750 mw at 6 volts. The miniature loudspeakers used in the prototype have an impedance of 8 ohms , and are connected in parallel, giving 4 ohms. The
recommended microphone impedance is $\mathbf{3 0 0}$ ohms.
A FET-input op-amp and a 3.6 volt zener diode form the basis of the battery-check circuit. The op-amp is connected as a comparator with its output driving the LED. The invertinginput of the op-amp is connected to the 3.6 volt reference and the non-inverting-input is connected to a potential-divider between +9 V and 0 V . When the non-inverting-input exceeds 3.6 V , as it will for all battery voltages above 6.5 Volts, the output of the opamp will be high and the LED will light. As the battery voltage drops below 6.5 volts, the voltage on the non-invertinginput will drop below 3.6 V and the opamp output will go low, causing the LED to go out. This section of the circuitry is connected to 0 V via one of the contacts on the send-return jacksocket, so it is disconnected when the jack-plug is inserted to reduce the drain on the battery.

Fig. 2 The holes required in the two ends of the diecast box.

Construction

Begin construction by drilling the box as shown in Fig. 2, and don't forget to file the notch for the anti-rotation spiggot on the DIN socket. Rub the box down with wet-and-dry paper, clean it, and apply a coat of primer. When this is dry, paint the box in your chosen colour, preferably by spraying (orange was used on the prototypes because it makes them easy to spot on a grass airstrip). Lettering can be applied when the paint is dry, and should be protected by a coat of Let-Fix or Letracote.

Before mounting anything on the PCB, check it for shorts. The Veropins should be gently tapped into position with a (smal!!) hammer from the underside of the PCB.

Mount the resistors onto the PCB, followed by the capacitors, and the DIL sockets. Crop leads tightly to the board before soldering to reduce the risk of short circuits to the die cast box. Attach 150 mm lengths of insulated stranded wire to the Veropins and slide short pieces of 1 mm diameter silicone rubber sleeving over them, right down to the PCB. Note that one of the wires comes from the battery connector. Connect the miniature screened cable in the same way.

Cut a piece of thin foam-rubber ($56 \times 58 \mathrm{~mm}$) and glue it to the inside of the box where the PCB

Fig. 3 Component overlay for the intercom PCB.

PARTS LIST

RESISTORS (all \pm	(5\%)	MISCELLANEOUS
R1	1 ko	B1 9V battery, PP3 or
R2	2k2	similar, preferably
R3	1 MO	alkaline
R4	330R	LS1, 2 8R miniature
R5	2k7	loudspeakers
R6	680R	MIC1 300R dynamic
R7	12k	microphone
R8	15k	capsules
R9	10k	(see Buylines)
R10	120R	PL1, 2 stereo $1 / 4{ }^{\prime \prime}$ jack
R11	56R	plugs*
R12	1 R0	PL3 5-pin 180° latching
RV1	100k miniature	DIN plug
	logarithmic	SK1 stereo $1 / 4^{\prime \prime}$ jack
CAPACITORS C1		
		SK2
	10 u 16 V radial electrolytic	
$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{C} 3 \end{aligned}$	4 n 7 polystyrene	PCB; 8-pin DIL sockets, 3 off; panel-
	$4 u 710 \mathrm{~V}$ radial electrolytic	mounting bezel for LED1; diecast box, $113 \times 163 \times 28 \mathrm{~mm}$; PP3-type battery
C4, 11	47 u 10 V radial	connector; knob; foam rubber; thin screened cable for internal wiring;
	electrolytic	
C5, 6, 7, 9, 10, 14	100 u 16 V radial electrolytic	sleeving; length of twin-core screened microphone cable for slink between
C8	100n miniature	control boxes*; telephone-type fourcore coiled leads for headsets; pocket
	layer	
C12	680p polystyrene	clip for boxes; connecting wire, nuts,
C13	220n miniature	bolts, etc.
	layer	
C15	220u 16V radial	
	electrolytic	
SEMICONDUCTORS		
IC1	6270	
IC2	TLO81	
IC3	TBA820	*With the exception of PL1, PL2 and
ZD1	3V6 400 mW zener	the length of cable which joins them,
	(BZY88C3V6 or	all of the parts listed are for one con-
	equivalent)	trol box only and two of each will be
LED1	yellow 0.2" LED	required for a full system.

PROJECT: Intercom

 soldering is completed, the ICs can be inserted into their sockets.

Cut two pieces of foam-rubber to the dimensions given in Fig. 4. The narrower of the two mounts under the battery and the other goes over the PCB. These should be glued into place, but not until the unit has been tested.

The DIN plug wiring for the headsets is shown in Fig. 1. Telephone-type curly leads were used on the prototype system, but it is impossible to solder to the very flexible wire in these leads without losing the flexibility. It is recommended that the crimpedconnectors on these leads are retained, and cut as shown in Fig. 5. After cleaning with a Stanley knife or similar, these connectors can readily be soldered and none of the lead's flexibility lost.

Fig. 5 Modifying the connectors on the telephone-style coiled headset leads.

If the microphones and earphones are to be installed in helmets, bear in mind that helmets are constructed to a very high standard, and, for motorcyclists at least, must comply with safety standards laid down by the British Standards Institute. Modifying a helmet in just about any way will probably mean it no longer complies with safety standards. To the best of the author's knowledge, such standards are not applicable to helmets worn while flying microlight aircraft. It is left to

the individual constructor to decide whether such modificiations are morally and legally defensible.

Testing, Testing

Have a quick look over the PCB to make sure there's nothing obviously wrong, such as an IC fitted the wrong way round. Connect a PP3 battery, and, if nothing catches fire, plug the headset or helmet into the DIN socket. The battery-check LED should light. If it doesn't, disconnect the battery and check everything again. Also, check the

DIN plug for the wire link. If satisfied that all is as it should be, reconnect the battery. If the LED still does not light, check the voltages around that part of the circuit. If the LED does light, turn the volume up and try speaking to yourself! You should be able to hear your own voice clearly. Check the other control-box in the same way.

When both control-boxes are working individually, they should be tested together. You'll need a partner for this. The send-return link is simply two stereo jack-plugs connected by one metre of twincore screened cable. Choose the
most flexible cable you can get hold of, such as microphone cable. Note that the wires in this lead are reversed so that the 'tip' contact of one jack-plug goes to the 'ring' contact of the other.

With each user wearing a headset or helmet, plug in the send-return link. Both LEDs should go out. Neither user should be able to hear his own voice, but should, of course, be able to hear the other person's voice. If all is well, testing is complete and the pieces of foam mentioned above can be glued into place and the lids put on the boxes. The system is now ready for use.

BUYLINES

The resistors, capacitors and most of the semiconductors are widely available, the only exception being the 6270 which can be obtained from Cirkit or Watford (designated SL6270, SL6270CD, etc). Miniature loudspakers are available from the author, whose address is given below. The low-impedance dynamic microphone capsules used in the prototype were taken from a pair of stick microphones of the type supplied with cheaper music centres and portable cassette machines. These are often sold as 'accessory packs' for a few pounds in radio and electrical shops. It may even be possible to obtain helmets with suitable transducers already in place - have a look through some of the motoring magazines which cover car rallying. If you require a headset rather than separate transducers to mount in a helmet, try the secondhand and surplus stores.

Failing that, a glance through the adverts in one of the magazines aimed at amateur radio enthusiasts should yield some useful addresses, but note that many amateur radio headsets use electret microphones (which require a separate power supply) and that they may not block out ambient noise. If all else fails, a DIY microphone boom-arm could be added to a pair of cheap, 'Walkman'-style headphones.

The only components likely to cause any problems are the pocket clips and the coiled leads. The clips used on the prototype came out of the junk-box and we do not know of anyone who supplies new ones. However, early pocket bleepers appear frequently on the second-hand and suplus market and usually have a metal pocket clip attached by two rivets. These can be drilled out and the clip then attached to the intercom control box using nuts and bolts of a suitable size. The coiled
leads are not available as a new part either, but again can be found in second-hand and surplus shops. One of the companies who may be able to help with the above items is Henry's Audio Electronics, 301 Edgware Road, London W2, tel 01-724 3564.
One point to note is that Alkaline batteries (Duracell, Ever Ready Gold Seal etc) are recommended for use in the intercom. The battery drain can be quite considerable, especially if high volumes are being used to overcome wind noise in microlight flying, and ordinary zinc-carbon batteries may not last very long.
The PCB will be available from our PCB Service, but see the note in News Digest. The miniature loudspeakers cost $\boldsymbol{£ 2 . 5 0}$ inclusive per pair and can be obtained from 17d Stuart House, Burns Road, Cumbernauld, Glasgow G67 2AP.

BAUD RATE CONVERTER

Norwegian correspondent Ola Borrebaek provides a project designed to make the most out of data communications. If you're pining for the bauds, start here ...

There are two basic ways in which personal computers and peripherals communicate with each other. The first, parallel communication, is the simpler of the two because data is transmitted as it is stored - in byte-wide chunks. Speed of transfer is controlled by the peripheral device, which acknowledges reception of each data word by pulsing a control line running parallel to the data. The main drawback is that multiway or ribbon cable is very expensive if you need enough of it to transfer data over a long distance. If you intend to use a telephone line for parallel data, you would need some very complex circuitry.

For computer-to-terminal applications, synchronous serial transmission is often used. The data is sent serially (one bit after another) but parallel to a clock signal on another line. Asynchronous serial transmission does away with the clock signal altogether. In these cases, the peripheral device does not control the rate of data transfer. Instead, computer and peripheral must operate at the same speed and the start and finish of a block of data is usually signalled by particular bits bracketing the block. Although serial transmission is increasing in popularity - especially through growing use of modems (modulatorsं-demodulators) many computers on the market have only limited capabilities, especially when it comes to bidirectional serial communications with different transmission rates in each direction.

Problems

PC serial ports are often far from flexible. Some require resoldering to allow for a change in baud rate (measured as the average number of bits
transmitted per second), although most are software programmable. In some cases, programmable baud rates won't themselves be sufficient. For example, the Sinclair QL has two serial communication ports, configured in such a way that the computer can act as an originating device (DTE or Data Terminal Equipment) and an answering device (DCE or Data Circuit-terminating Equipment) at the same time. Both ports operate in full-duplex mode - that is, both can transmit and receive simultaneously - but all operations on both ports are restricted to the same, albeit programmable, baud rate. You will have problems using a split rate modem - 1200/75 or 75/1200, for example - or using a modem on one port and a printer on the other operating at different bit transmission rates.

Principles

The kind of serial data dealt with in this article is called asynchronous because the transfer of a character does not need to occur in synchrony with a clock signal or, indeed, simultanously with any particular event or events in time. The receiving part of an asynchronous serial connection will need to know when a character is being sent, so a start low level - bit always precedes the data bits which comprise the transmitted character (Fig. 1).

Fig. 1 The character ' A ' as 8 -bit asynchronous ASCII data (note the two stop bits).

There are typically between five and eight of these data bits, each one being a high or low state of equal duration to that of the start bit. The least significant bit is transmitted first.

One or two stop bits (high) signal the end of a character transfer. Note that with RS-232, the actual levels are inverted: a high being between -3 V and -12 V and a low being between 3 V and 12 V . The RS-232 protocol is quite old now - RS-423 describing a more recent but largely compatible system.

In European literature, the equivalent specification is referred to as V.24. V. 24 is actually a list of definitions for interfacing DTE with DCE: Commonly, these will be a computer and a modem, respectively. V. 28 gives electrical characteristics, while plugs are defined by an international standard (ISO 2110). All these aspects are covered by the American RS-232 standard (current revision level, C). RS-232 is the closest we have to an internationally agreed data transmission standard. Despite a wide variety of practical implementations and the fact that it and V.24/V. 28 were originally restricted to telephonic data transmission, it is the commonest serial communications specification in use today.

The number of stop bits specified for a particular port is the minimum number required. With asynchronous transmission, it is possible to insert as many highlevel bits as you like between data words, but this would decrease the baud rate, whose definition takes no account of any distinction between start, data and stop bits.

[^1]
HOW IT WORKS

One UART (IC1) is used for converting data from your PC to the peripheral device while the other (IC2) converts from the device to the PC (Fig. 4b). A high-level on either the PARITY ERROR or FRAMING ERROR outputs of IC2 will charge C1 and provide the ERROR LED with current via Q1 and Q2. The PARITY ERROR Output of IC1 is used to toggle a D flip-flop (IC3a). The state of this flip-flop determines the type of parity used by both UARTs (of course, only when parity is enabled - parity may be enabled at one UART only if desired).

The following applies for both UARTS:
When a character has been received and transferred to the RECEIVER HOLDING REGISTER the DATA RECEIVER Output (pin 19) will go high and force the TRANSMITTER HOLDING REGISTER LOAD input (pin 23) low. After a slight delay in IC4b and c , the DATA RECEIVER RESET input (pin 18) is forced low to reset pin 19 to a low state. Since the received-data outputs are directly connected to the transmit-data inputs, the character has now been transferred from the transmitter to the receiver section of the UART. The conversion of bit durations is accomplished by using different receive and transmit clocks. The above process will repeat itself for every received character.

The TRANSMITTER HOLDING REGISTER EMPTY output from IC1 is used as a CTS output (it is ANDed with the CTS output from the peripheral device to provide CTS for the PC). When the THR is empty, the character previously occupying this space has been transferred to the TRANSMITTER SHIFT REGISTER and while it is being shifted out a new character may be shifted in at the RECEIVER SHIFT REGISTER. But as long as a character is waiting to be transferred to the TSR, no character should be sent by the PC. In such case THRE is low and CTS is kept inactive.

The 4060 oscillator and binary counter (IC7, Fig. 4a) has several clock outputs which are derived from the quarts crystal, XTL1. They are given by 2.4576 MHz divided by 2^{n}, where n is the number of IC7's Q output. The divider circuit consists of a programmable down-counter (IC8). It will count down from a value set by SW1. After each countdown a pulse is outṕut on TC (ripple carry output, ICB pin 7) and the countdown is repeated when this pulse triggers the parallel load enable input, ICB pin 1 , which in turn reloads the value set by SW1. Before being fed to one of the UARTs, the pulse is squared (to achieve a 50\% duty cycle) by IC3b which divides by two.

Fig. 2 How 1200 baud plus an idle state makes 75 baud.
uses seven bits of character information. Following these bits can be an eighth bit called the parity bit. This bit is set high or low by the transmitter so that there are always an even number of high levels (in even parity) or always an odd number of high levels (in odd parity), excluding the start and
stop bits transmitted (Table 1).
If the received parity doesn't match the transmitted parity, at least one bit has altered during the transfer. This comparison provides a basic error checking mechanism, which is only guaranteed to detect single-bit errors.

Fig. 3 Optional PSU - components to right of dotted line are on main board.

PROJECT: Baud Board

Serial Conversion

Figure 2 shows two ways in which a single byte could be transmitted at 75 baud. Clearly, the maximum allowable duration for one bit at 75 baud is 13.33 ms (the reciprocal of 75), but most modems will report a framing error if bit duration is even a few percent short of this. This is because stop bits are not received when expected. The serial

Character	7-bit ASCII	As transmitted with even parity
A	1000001	s100 00010ss
- B	1000010	s100 00100ss
C	1000011	s100 00111ss

Table 1 How even parity works.
converter avoids any problems arising from such irregularities by stretching pulses where required. It will, in fact, convert Fig. 2 a into Fig. 2 b .

This facility is exploited in converting, say, a 1200 baud
transmission to a 75 baud one.
Stripped of its idle state, the data word of Fig. 2a would be transmitted at 1200 baud. Conversion to 75 baud (a down conversion) demands the insertion of idle states between the stop bits of one 1200 baud data word and the start bit of the next. This can be done simply by
deactivating the CTS line to the computer after the computer has transmitted each character. CTS will remain deactivated until the whole character has been transmitted down the line at the lower rate. Up conversion - say, from Fig. 2 b to Fig. 2 a - is simpler since, in this case, the transmitter does not have to wait for the receiver to catch up with it. If the transmitter is operating slowly (at 75 baud, for example) you can't actually speed it up (to 1200 baud, for example). What you can do it make sure that each 75 baud character is retransmitted at 1200 baud. Each character is then sent
out at a much higher speed than it was received from the computer, but there will be long pauses between characters while the original transmitter (the computer, that is) catches up.

UART For Art's Sake

The Universal Asynchronous Receiver and Transmitter is a chip normally used to provide a serial 1/O port connected to a computer data bus. The device specified in this circuit is a TR1863 by Western Digital, but it is actually pincompatible with the industry standard UART, the 6402 (see Buylines).

The receiver and transmitter circuits of the UART are independent and will convert data from serial to parallel and vice versa. Both the receiver and the transmitter contain two registers - one for shifting data in or out bit by bit and one for holding the data. Some of the UART pins are used to indicate when to load or

Fig. 4 The circuit of the baud rate converter in two parts: (a), left, shows the clock generator and rate-programming socket, (b), right, shows the input and output section.
read the parallel holding registers, but this circuit makes no use of the parallel data-handling features of the UART. The rates for shifting data in and out of the UART are controlled by receive and transmit clocks.

The converter actually contains two UARTS - one to convert data going from the computer to the peripheral and one to handle data flowing in the reverse direction. An LED indicates if this latter UART issues a framing or parity error. Both UARTs automatically adjust to the same parity as that received by the first UART. Parity may be enabled or disabled and the UARTs can be programmed for the number of data and stop bits. The in-circuit clock may be configured for a large number of baud rates and all programming is undertaken by setting links on two 16 -pin IC sockets and positions on a 4-way DIL switch.

Supply Demanded

The converter requires +12 V at 200 mA and -12 V at 50 mA as well as the more usual 5 V supply. Modems will use these voltages for the generation of RS-232 levels, and they are often available at an RS-232 socket. The pins that may be used for these voltages vary (as, indeed, do RS-232 sockets), so the appropriate connecting points should be checked in your documentation. Alternatively, a separate PSU could be used. The circuit for a suitable PSU is described in Fig. 3. The +12 V and -12 V supplies are not regulated - they will only drive the line interface directly. $\mathrm{A}+5 \mathrm{~V}$ supply is generated from the +12 V supply via a 7805 regulator mounted on the main PCB. This will get hot, but a heatsink is not necessary.

Handshaking

The RS-232 specification allows data to be transferred in two directions simultaneously (full duplex). If the peripheral device needs time (in addtion to the duration of the stop bits) to process the last received character, it will deactivate the Clear To Send (CTS) line. The computer will then deliver a highlevel (commencing an idle state) until CTS is reactivated. CTS will be activated. if the computer requests permission to send by activating the Request To Send ($R T S$) line.
computer is often held active. If the computer has no RTS output but an RTS input exists at the peripheral device, this input would have to be held active. Note that CTS and RTS have no effect on the data going from the peripheral device to the computer.

Common implementations of RS-232 use a Data Terminal Ready (DTR) line to enable the peripheral device. It is often held active inside the computer. A Data Set Ready (DSR) line may also be provided to inform the computer that data has been received by the modem and is ready to be transferred to the computer's serial port. This line is sometimes equal to the Carrier Detect (CDC) output from a modem. 'Data Set', incidentally, is American for 'modem'.

Construction

Before mounting the IC sockets (not used for IC10) be sure to solder the links, some of which run beneath the sockets. Not until all other components are mounted should the ICs be inserted into their sockets. For extra safety, you could also test that the regulator is working properly before inserting the ICs. This is done by connecting a 100 R resistor between +5 V and GND and connecting the +12 V supply. As a current now runs through the regulator, its output should be within a few percent of five volts.

When using off-board switches for SK1, SK2 or SW1, remember to keep the wires short. They will not
require screening, but do not twist them together as this may result in cross-talk and noisy clock-signals.
To avoid glitching, good quality switches should be used. If you want easy selection between several RTTY baud rates, off-board switches will have to be used for SW1 as well as SK2.

The link between pin 21 of ICs 2 and 1 should be made with insulated wire as it is rather long. When soldering in the crystal do not over-heat as this may destroy the quartz.

Normal precautions against static electricity should be taken when handling ICs. Inserting the ICs the wrong way round will probably destroy them, so note that IC7 is mounted the same way as SK2 - the opposite way to most of the ICs (Fig. 6).

The choice of cabinet is entirely up to the constructor but keep in mind that it may need to be large enough for both the main and the PSU PCBs (Figs. 5 and 6).

Two RS-232 connectors are used. SK3 connects to the computer and SK4 to the peripheral. These are not mounted on the PCB. The pin-outs given in the circuit diagram (Fig. 4b) are for standard main channel RS-232 25pin D-connectors. Some modems may use separate pins for back channel signals and the constructor will have to deal with this. Alternative pinouts are: (from peripheral device) BRD pin 16 , BCTS pin 13; (to peripheral device) BTD pin 14, BRTS pin 19. If the modem use these pins they

The RTS output from the
will have to be connected instead of pins $3,5,2$ and 4 respectively. Pins 4,6 and 20 of SK3 should be connected to the equipment pins on SK4. If a back channel configuration is used, connect pin 4 of SK3 to pin 19 of SK4 instead. Many devices use simpler, non-
standard connectors with only four or five pins. Appropriate connections should be obvious from a comparison of Fig. 4a and the wiring diagrams of these connectors to be found in the device documentation.

Fig. 6 Component overlay for main board.

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1	4 k 7
R2	4k7
R3	22k
R4	1k0
R5	4k7
R6	10M
R7, 8, 9, 10	10k
CAPACITORS	
C1	100 n polyester
C2	10μ elect.
C3	100 n ceramic
C4	100 n ceramic
C5	22p ceramic
C6	22p ceramic
C7	100n ceramic
C8	100 n ceramic
C9	$2200 \mu 25 \mathrm{~V}^{*}$ elect.
C10	$100 \mu 25 \mathrm{~V}^{*}$ elect.
C11	100 n ceramic
C12	100n ceramic
SEMICONDUCTORS	
IC1, IC2	TR1863
IC3	CD4013
IC4	CD4069
IC5	MC1488
IC6	MC1489A
IC7	CD4060
IC8	CD4029
IC9	CD4011
IC10	$78 \mathrm{MO5}$
Q1, 2	BC247
D1, 2	1N4148
D3, 4, 5, 6	1N4001*
LED1	Red LED
miscellaneous	
SW1	4-way DIL-switch
SW2	Mains switch*
FS1	50 mA fuse*
T1	$9 \mathrm{~V}-0-9 \mathrm{~V} 200 \mathrm{~mA}$ mains
SK1, 2	16-pin IC sockets with headers as required
SK3, 4	25-way female
IC sockets	D-sockets 3×14 pin, 4×16 pin,
IC sockets	$2 \times 40 \text { pin }$

XTAL1 2.4576 MHz parallel resonance crystal; PBC; case (*optional - PSU components).

BUYLINES

None of the components should provide particular problems. As mentioned in the text, Western Digital's TR1863 can be happily replaced by the CDP6402 (RCA), or General Instruments' AY3-1015. To be on the safe side, make sure you get a fast version, if different speed versions are available. The 78 M 05 is not absolutely necessary, an ordinary 7805 will do. Modems themselves are widely available, but particularly suitable models may be obtained (cheaply) from Cirkit, Maplin and Computer Warehouse - all of whom advertise regularly in ETI.

Use

The converter was originally intended for connection of a back channel modem to the Sinclair QL. The setup in Fig. 7 not only allows separate rates to be used, it also makes sure that all data received by the QL are of correct parity and thereby prevents the QL from issuing a'Xmit Error'. The Xmit Error interrupts any BASIC programme and is a real nuisance when trying to receive continuous text.

Switches could be connected to the serial converter so that the modem could operate on either $1200 / 75$ or $300 / 300$ without having to disconnect the converter and reprogram the computer. Some PCs require re-soldering to change baud rates and here a switchable converter would add new prospects of multi-baud operation if the PC did support separate transmit and receive rates in the first place.

There are many other applications. Converting RTTY from an amateur receiver to a PC is an interesting possibility. Converting 50/300 is shown in Fig. 8. Here only UART2 is used and UART1 need not be mounted. For RTTY operation, every baud rate is available (Table 2). For modem operation, even a Bell (US) 5-band back channel is obtainable.

A useful application could be to interface your PC to an old 110 baud teletype printer. The serial converter could also be used as a clock generator for other circuitry - just don't mount the UARTS.

Since there is only one programmable divider on board, 50 and 110 baud cannot be used at the same time. For interfacing

Fig. 7 The QL linked to a back channel ($75 / 1200$) modem.

Fig. 8 Converting 50 baud RTTY signal to $\mathbf{3 0 0}$ baud for a computer.

RTTY to a teletype printer an external clock would have to be used.

Programming

The number of stop bits and data bits used by each of the UARTS may be selected by connecting the SBS and WLS1/ WLS2 pins respectively of SK1 to GND or +5 V (see Table 3, Figs. 4 b and 9 a). GND and +5 V are provided at the socket so that any combination may be programmed without getting the wires crossed when hard-wiring. Parity may be inhibited by wiring Pl to +5 V . Pins $2,4,6$ and 8 are used for programming UART1 while pins $10,12,14$ and 16 are used for UART2.

How you choose to programme the UARTs will depend on the specifications of the computer and the peripheral - especially the latter as the computer is usually software programmable.

Note that the transmitter and receiver sections of the UARTS are not independently programmable. This means that true conversion of word length (altering the number of databits) is not possible. However, sending five bits of data to an eight bit receiving-port will result in the four most significant bits being set to 1 when upconverting, thanks to the idle state.

The alert reader will probably have noticed that true conversion could be achieved by using the

Standard baudrate	Used by converter	Deviation from standard (\%)	Divider setting	Divisor	Frequency (Hz)
5.000	5.000	0	1111	430	2400
45.45	46.15	+1.5	1101	26	19200
50.00	50.00	0	0011	6	4800
56.92	54.55	-4.2	1011	22	19200
74.20	75.00	+1.1	0001	2	2400
75.00	75.00	0	0001	2	2400
100.0	100.0	0	0011	6	9600
110.0	109.1	-0.8	1011	22	38400
120.0	120.0	0	0101	10	19200
150.0	150.0	0	Not used	Not used	2400
300.0	300.0	0	Not used	Not used	4800
600.0	600.0	0	Not used	Not used	9600
1200	1200	0	Not used	Not used	19200
2400	2400	0	Not used	Not used	38400
4800	4800	0	Not used	Not used	76800
9600	9600	0	Not used	Not used	153600

Table 2 Source frequencies and divider settings for 16 standard baud rates.

PROJECT: Baud Board

Fig. 9 Pin-outs for the programming sockets.
receiving section of one UART together with the transmitter of the other. This would introduce the need for a more expensive double-sided PCB and it would no longer be possible to use a different number of data bits in each direction. User-designed software is probably used when receiving RTTY (Baudot) code (with five bit data words) and including a mask instruction to clear the four ones should be easy.

SK2 and SW1 are used for programming the clock generator. Clock signals of 2^{n} multiples of 2400 Hz are available at SK2 (Figs. $4 a$ and $9 b$). These may be fed directly to the clock inputs of the UARTs, also available at SK2, or they may be fed through an onboard divider first.

+5 V on PI inhibits parity generation and checking.

0 is GND
1 is $+5 V$

Table 3 Programming the UARTS for number of stop bits (SBS) and word length (WLS).

Fig. 10 Programming configurations - a sample.

Fig. 11 Switch set-up to handle common baud rates.

The divider divides by two times the binary value set by SW1. Be careful not to connect any of the clock outputs together as this may destroy IC7. Note that the baud rate (maximum baud rate, to be precise) used by the UARTs is $1 / 16$ of the clock frequency. The frequencies and the divider settings used for some standard baud rates are shown in Table 2. Some examples of hard-wiring the sockets are shown in Fig. 10. When connecting off-board switches, some ingenuity will be demanded from the constructor as to how to achieve the switch-action
required. A set-up for use with a $1200 / 75+300 / 300$ modem is also shown in Fig. 11.

80m DIRECT CONVERSION RECEIVER

S. Niewiadomski describes a receiver for the popular 80 m band which should be of interest to those new to amateur radio as well as to those already working the amateur bands.

The construction of a direct conversion receiver is the first introduction for many to amateur radio. Its main advantages are simplicity of construction and ease of alignment, which makes the chances of first time success very high indeed. This article describes such a receiver, combining good performance with printed circuit board construction and using easily available components.

The 80 m amateur band has been chosen for the receiver as it offers a varied cross-section of amateur operation - "ragchewing" British stations during the daytime, Europeans during the hours of darkness, and the potential for more exotic DX at sunrise and sunset. The main features of the receiver can be summarised as:
a) operation on the 80 m amateur band
b) audio AGC System
c) high quality passive audio bandpass filter
d) high stability VFO design
e) two-speed slow motion drive
f) 1 watt audio output for phones or loudspeaker
g) construction on a single-sided PCB in a commercially available case
h) all inductors pre-wound, all components easily available
i) all connections to PCB via plugs and sockets, allowing easy board removal for servicing
g) operation from an external 12 V DC supply.

Direct Conversion

The principles of operation of direct conversion receivers have been explained many times. Briefly, a direct conversion receiver achieves in one signal conversion operation what a superhet achieves in two or more. By mixing a single side band (SSB) signal in a non-linear device with its original carrier frequency, one of the resulting products is the audio modulating frequency. This audio signal is filtered out from the other unwanted mixer products and

Fig. 1 Block diagram of the 80 m receiver.
amplified, forming the audio output of the receiver. Since most amplification and filtering take place at audio frequencies, the performance of a direct conversion receiver depends on high audio amplification and a selective audio filter.

To recover the modulating frequency exactly, the oscillator used for detection must be at precisely the original carrier frequency. If not, the received audio will be shifted in frequency, and may be completely unintelligible. Shifts of a few tens of Hz for SSB are unimportant and when receiving a CW signal, the audio frequency can be set to whatever the listener finds easiest to read.

The RF Circuitry

A block diagram of the receiver is shown in Fig. 1 and the circuit diagram of the receiver is shown in Fig. 2. Components which are not mounted on the printed circuit board, such as potentiometers, sockets, etc, are shown connected to the relevant plug on the board.

The VFO consists of a JFET Hartley oscillator, Q1, tuned by T1, CV1, C1 and C2. The combination of values used gives a tuning range of $3.5-3.8 \mathrm{MHz}$, with some overlap at each extreme. This circuit gives good stability and has the advantage of being a surestarter even when using a readymade inductor. The use of a dualspeed slow motion drive gives both a slow tuning rate so that no

Fig. 2 Complete circuit diagram of the receiver. It is intended that an external 12 V supply is used, so no power supply circuitry is shown here.
fine tuning control is needed and a faster rate for rapid frequency changes.

A stabilised 6.2 volt supply for the VFO JFET is derived from the 12 volt rail by R 4 and ZD1, and decoupled by C5, R2 and C4. Q2 is configured as an emitter follower to give high input and low output impedance, and its output can be varied by adjusting the preset potentiometer RV1. A maximum output of 500 mv peak-to-peak was available from RV1 on the prototype.

Although direct conversion receivers do not suffer from image reception problems in the same
way as superhets, an input RF filter is required to reduce the amount of unwanted RF energy reaching the product detector if intermodulation problems are to be avoided. The filter is formed by T2, C10, C11, C12 and T3 which can be set to cover the entire 80 m band without the need for any tuning during operation. The amount of signal from the antenna reaching the input filter can be varied by RV2 and this prevents the product detector from being overloaded on strong signals.

IC1 (an MC or LM 496) is a double-balanced mixer biased for operation from a single 12 volt
supply rail. This IC produces the sums and differences of various multiples of the two input frequencies applied to pins 1 and 10. In this case the frequency we want is the difference between the fundamentals, namely the output from the input RF filter (applied to pin 1) and the output of the VFO buffer (applied to pin 10). In a direct conversion receiver the required output of the detector stage is at audio frequencies, so the outputs of IC1 (pins 6 and 12) are decoupled to RF by C16 and C18. Both outputs of IC1 are used in this application because the voltages are in anti-phase to each

Fig. 3 Frequency response of the audio bandpass filter up to 10 kHz . Note that frequency is plotted on a linear scale so that the response at low frequencies can clearly be seen.
other which makes them ideal for driving the inverting and noninverting inputs of an operational amplifier. This effectively doubles the audio output from the product detector.

Direct conversion receivers are notorious for being sensitive to low levels of hum on the supply rails. This is mainly because the high level of audio amplification required to raise the wanted signal to an audible level also amplifies unwanted hum. With this receiver, careful decoupling has all but eliminated the problem. The supply for the product detector is decoupeld by R9 and C20 and all resistors supplying IC1 are connected to this decoupled supply.

Audio Filter

IC2 is an operational amplifier whose gain is set at 3.9 by its input and feedback resistors. Because IC2 is operated from a single supply rail, its inputs (and therefore its output) are baised to mid-rail by 222 from potential divider network R26 and R27. A low noise amplifier, a TLO71, was used for IC2, but it is debatable whether it is really merited. Other ICs with the same pinout (such as the 741) can be substituted without much degradation in performance. A decoupled supply for IC2 is provided by R23 and C22.

The output of IC2 drives the audio filter via the 1 kO resistor,

R25. One advantage of using an operational amplifier to drive an audio filter is that its output impedance is sufficiently low to be ignored, so the drive impedance of the filter (in this case, 1 kO) can be matched accurately by a series resistor. This question of drive impedance is often ignored, and mismatching the input can result in poor filter performance.

A series combination of a highpass and a lowpass filter is used to give the desired audio band pass response of approximately $300 \mathrm{~Hz}-3 \mathrm{kHz}$. The highpass filter consists of C23, L1, C24, L2 and C25. It is designed to have a cut-off frequency of 300 Hz and an attenuation of 60 dB at 100 Hz and more than 70 dB at 50 Hz . An elliptic design was chosen for the lowpass section which consists of C26, L3, C27, C28, L4, C29 and C30. You can see that it is an elliptic filter by the tuned circuits (L3/C27 and L4/ C29) which it contains. Elliptic filters give a very fast initial roll-off but the attenuation does not continue to rise in the stopband. It settles down to a more or less constant value, in this case approximately 50 dB .

Figure 3 shows the response of the complete filter. This is an excellent response for a direct conversion receiver whose main selectivity depends on the audio filter (and the ability of the human brain to concentrate on the desired signal, of course). Note
that this performance has been achieved using preferred value capacitors and miniature, prewound inductors. In general, a passive filter using inductors will give far superior performance to active designs using operational amplifiers which seem to have become popular these days.

The output impedance (again 1 kO) of the audio filter is matched by R28 which also provides the DC bias to the gate of the JFET, Q3. Because the input impedance of the gate of Q3 is very high, it does not affect the matching of the filter output. In addition, because it is connected as a source-follower, it has a low output impedance which enables it to drive the low input impedance of IC3 via C32. Decoupling for the supply to Q3 is provided by R30 and C31.

Audio AGC And Amplifier

IC3 is a 6270 VOGAD audio amplifier (Voice Operated Gain Adjusting Device - the same IC as that used in the Microlight Intercom elsewhere in this issue). This IC is normally used to regulate the audio input to the modulator stages of transmitters, but it gives excellent results in this receiver application. As well as giving a high maximum voltage gain (52 dB), the output of IC3 remains essentially constant for a 60 dB input voltage range. The attack and decay times and frequency response of the circuit are set by the external components C33, R31, C36 and C37. A stabilised, decoupled supply rail at 6.2 volts is provided for IC 3 by R32, ZD2 and C25. The output of IC3 drives the volume control, RV3, via C38.

IC4 is an LM386 audio power amplifier which in this configuration has a gain of approximately 20 . This IC produces less output noise than the popular LM380, and is housed in a more compact 8 pin DIL package. A standard outputstabilising Zobel network is fitted, consisting of R33 and C41. IC4 drives the phones socket SK5 via capacitor C42. The supply to IC4 is decoupeld by C39.

Details of the construction, testing and alignment of the receiver will appear next month, along with some notes on reception for those unfamiliar with SSB operation. ETI

PORTABLE PA AMPLIFIER

John Linsley Hood describes a fifty watt amplifier which is designed for public address applications and can be powered from a car battery using last month's DC-DC converter.

As those who saw the article in last month's ETI will know, this design was evolved to meet the need for a cheap, fullyportable amplifier system which requires the minimum of ancillary equipment and can be operated out-of-doors and in other locations where a mains supply is not readily available.

To meet these requirements, it was decided that the amplifier should be able to oeprate from a 12 V DC car battery supply. Rather than supply the amplifier directly at this low voltage, a DC-DC converter is employed which steps the 12 V up to 55 V . This simplifies the design of the amplifier stages considerably and reduces the need for compromises, allowing near 'hi-fi' levels of performance to be achieved at reasonable cost. This converter formed the subject of last month's article.

Amplifier Design Requirements

An output level of 50 watts was chosen as being a good compromise, providing reasonably high power without excessive battery drain. It was also decided that basic mixing facilities should be included so as to remove the need for an external mixer. The result is that a complete sound reinforcement system can be produced by adding a loudspeaker, a microphone and a car battery to the piece of equipment described here.

I decided that the target THD value at 50 W into 4 ohms should be 0.1% - not a very low distortion level by today's hi-fi standards, but entirely adequate for this purpose. In fact, if many of the PA systems I hear could get

down below 10% they would be much more pleasant to listen to. I also chose a fairly conventional bandwidth of $40 \mathrm{~Hz}-20 \mathrm{kHz}$. This allows the design of the amplifier to be both conventional and simple, which makes it easier to design and cheaper to build.

I used a single supply line system in the converter so that 12 V of the 55 V DC output could be provided directly by the battery, and also to simplify the

OOPS!

In the parts list which accompanied last month's DC-DC converter article, SK3 was listed as a two or three way connector. Please note that, for use with the amplifier described here, SK3 will need to have three or more ways since it must carry a +12 V supply as well as +55 V and ground.

DC output voltage regulation circuitry. This means that the amplifier cannot be directly coupled, although this has advantages since a capacitor coupling the output to the loudspeaker will help protect both the 'speaker and the amplifier from inadvertent misuse.

A design feature which 1 feel is an absolute essential in such a PA system is an amplifier overload indicator. This is necessary because the operator and/or the person behind the microphone are, invariably, behind the loudspeakers and therefore have no idea of the sort of sounds reaching the audience. One of the more unpleasant of these is the sound of the PA amplifier being driven hard into clipping. A bit of forethought at the design stage allows this condition to be indicated, so that the operator can make remedial adjustments to the

Fig. 1 Basic four-transistor power amplifier.
volume levels. After all, once an amplifier reaches its clipping level, no more volume can be obtained, only more noise and distortion.

The Power Amplifier Design

A simple audio power amplifier which is well suited to this sort of application is the four transistor design shown in Fig. 1. This is direct coupled from the base of Q1 to the junction of the emitter resistors of Q3 and Q4, and for maximum undistorted output the junction between R8 and R9 should sit at half the available DC supply potential. This can be achieved by a suitable choice of the reference DC potential to which Q1 base resistor is returned.

If the output transistors are power Darlington devices, quite high output power levels are possible. Also, because of the way it is laid out, the output capacitor, C4, can serve as a 'bootstrap' coupling capacitor to the bottom end of R5. This allows a high AC voltage swing to be obtained from Q2, which is the final class A voltage amplifier stage.

The overall AC gain of the amplifier is determined by the negative feedback resistors R7 and R3. With the values shown, the overall gain would be $23 x$. Since the output voltage swing for 50 watts into 4 ohms will be 14.14 V RMS, the required input signal level for maximum output will be 615 mV RMS.

To avoid excessive crossovertype distortion, the output transistors need to be biased

Fig. 2 An 'amplified diode'.
somewhat into conduction - say $40-60 \mathrm{~mA}$. This is achieved by using R4 to provide the necessary voltage difference between the two output transistor bases, and this could be made variable to allow for setting up to the desired value.

Circuit Improvements

One of the problems of this simple type of circuit is that the quiescent current through the output transistors is determined by the forward voltage drop of the base-emitter junctions of the output transistors, and the potential drop across R4. These are affected by operating temperature (the hotter the output devices become, the lower the Vb -e potential), and the supply voltage, which affects the current flow through the chain Q2, R4, R5 and R6//LS.

A considerable improvement to the output quiescent current stability is given if R4 is replaced by an 'amplified diode' layout of the kind shown in Fig. 2, particularly if Q5 is physically mounted on the heat sink of the output transistors.

The HF stability of the circuit is
also improved if an output Zobel network, typically 100 n in series with 8.2 ohms, is connected from the output to the 0 V line, effectively in parallel with the loudspeaker. This ensures also that the amplifier will still be stable with the loudspeaker disconnected.

The main HF stabilisation component is an internal HF rolloff capacitor, which can either be connected between the collector of Q2 and Q2 base, or, preferably, from the point of avoiding slewrate limiting effects, between Q 2 collector and Q1 emitter. I have always preferred the latter method.

Overload Indication

If a 'DC bootstrap' circuit (consisting of Q6 and R11 in Fig. 3) is interposed between Q1 and Q2, several advantages follow. The major one is that the gain of both Q1 and Q2 is substantially increased. This happens because the input impedance of the emitter follower in Fig. 1 (Q6) is higher than that provided by Q2, and this greatly increases the stage gain of Q1. In addition, the fact that Q 2 is now driven from a very low impedance also increases its stage gain.

I originally introduced this circuit dodge in my' 75 watt' amplifier of 1972, and it contributed greatly to the low distortion given by that design. However, a small phase-correcting capacitor, C5, is necessary to prevent the HF stability of the amplifier from being impaired. A further advantage offered by this circuit addition is that the collector current of Q6 (in Fig. 3) increases substantially if the amplifier is

Fig. 3 Using a 'DC bootstrap' to increase the gain of Q1 and Q2.
driven into clipping, and this can be employed to give an indication, by way of LED1, that the amplifier is being over-driven.

The only other point requiring attention concerns the output stage. As it stands, the amplifier circuit of Fig. 1 suffers from a brief 'hang-up' when driven into clipping, which makes the audible effects even worse. This defect can be removed simply by putting a couple of resistors, R14 and R15, in the base leads of the output devices, as shown in Fig. 4. This leads to the final power amplifier circuit shown in Fig. 5.

Circuit Component Value Calculations

Most of these are either not very critical or very straightforward. For example, R1, R2 and R3 are chosen simply to give a base potential at Q1, which will

Fig. 4 Modification to remove the risk of 'hang-up' when driven into clipping.
give half the supply voltage at the top end of C7 after allowing for the voltage drops along R4 and R14. R12 is present to allow C7 to charge or discharge if the
loudspeaker is not connected, and will prevent a bang sounding if this is connected up after the amplifier is switched on. It also allows the amplifier to work normally even without the LS load.

The value of R11 is chosen to give a DC current through Q3 which is a good bit greater than the likely 2 mA peak base currents demanded by Q5 and Q6 at maximum output. The value chosen puts Q3 collector current at about 10 mA , which is also high enough to ensure that the charging and discharging of the HF compensation capacitor C5 will not significantly affect the possible rate of change of voltage at Q3 collector, within the audio band.

Fig. 5 Complete circuit diagram of the power amplifier.

This helps give a good sound quality. The transistor used for Q3 should be capable of supporting some 80 V collector-emitter potential and have a permitted dissipation in excess of 550 mW . Apart from this, the type used isn't particularly critical.

R8 and R9 are chosen so that the $5-6 \mathrm{~mA}$ collector current which flows in Q2 under normal drive conditions will not light up to the LED. THis current level would provide about 1 V drop across R9. If, however, the amplifier is driven into clipping, Q2 will provide a progressively increased drive current to Q3 and the voltage drop across R9 will increase rapidly and light the LED. R8 is included to limit the worst case current flow to a peak value of 40 mA , and also to prevent excessive dissipation in Q2.

At maximum output the amplifier THD is about 0.1% at 1 kHz . This is mainly second harmonic, and decreases rapidly at levels below peak power output.

BUYLINES

[^2]The acoustically objectionable crossover residues, 7 th, 9 th and 17 th harmonics, are all' below 0.01% total and so should not be significant.

The Preamp

Although there may be other possible input requirements, the likely signal sources from which the power amplifier will be driven are a music source, such as a battery operated cassette player, and a voice source from a microphone. It will often be more pleasing in effect if these can be present simultaneously, so that the background music can be faded down when the microphone is used, giving a'voice over' effect.

This suggests that a simple mixer circuit with a couple of volume controls will be preferable to a simple selector switch. This is easy to arrange.

The power amplifier requires an input drive of some 620 mV RMS for full output. A typical battery operated cassette recorder output into a high impedance load will be about $250-300 \mathrm{mV}$. If the cassette recorder input circuit in the preamp is simply a unity gain impedance converter stage, included so that the volume control potentiometer doesn't directly load the cassette recorder output, a gain of 2.5 x will be necessary between the input buffer and the power amplifier input. This can be given by a

Fig. 6 Circuit diagram of the preamplifier. Note that component numbers beginning with 100 have been used to avoid confusion on the overlay.

PARTS LIST PREAMPLIFIER

RESISTORS (all $1 / 4$ W 5\%)	
R101-3	100k
R104	1 k 0
R105, 106	47k
R107	120k
R108	5k6
R109, 110	10k
R111	100R
RV101, 102	10k logarithmic slide potentiometer
CAPACITORS	
C101, 102	100n
C103	47 u 16 V tantalum
C104-107	14016 V tantalum
C108	100u 16V tantalum
C109	470 u 16 V axial electrolytic
SEMICONDUCTORS	
IC101	TL072
IC102	TL071
MISCELLANEOUS	
SK101, 102	DIN, pho or $1 / 4{ }^{\prime \prime}$
DIN, phono or 1/4"	jack socket as desired
PCB; IC sockets if desired	

virtual earth connected inverting op-amp stage, of the type shown as IC3 in Fig. 6.

IC2 is connected as a straight 100x gain stage for a microphone input. Most microphones have an output voltage in the range $2-$ 10 mV , and this will allow adequate gain without the likelihood of overloading IC2. The preamplifier is operated from a 12V DC supply obtained directly from the battery input, with some additional smoothing provided by R11 and C9 to remove any HF generator noise should the unit be operated from a car battery while the engine is running.

No voltage regulation is necesssary since the ICs can accept up to 30 V DC supply, and it is not possible for a 12 V car battery to get much higher than 15.5 V even under the worst conditions of overcharge.

On 12 V DC, the op-amps can deliver some 3.5-4V RMS, which allows an adequate overload margin to the power amplifier. In practice, if the gain controls are used sensibly, the only op-amp which could overload is IC2, for which the maximum input signal is 40 mV RMS.

Although I have only shown two input connections, the circuit

PROJECT: PA Amplifier

Fig. 7 Printed circuit board component overlay for
the combined preamplifier and power amplifier.

PARTS LIST - POWER AMPLIFIER

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$ unless otherwise stated)		CAPACITORS		Q2, 3 Q5	BC448 MJ3001	
		C1, 6	100n	Q6	MJ2501	
R1, 2	33k	C2	150 u 63 V axial	LED1	red LED	
R3	47k		electrolytic			
R4	100k	C3	470p	MISCELLANEOUS		
R5	4k7	C4	100 u 63 V axial electrolytic	$\begin{aligned} & \text { SK1 } \\ & \text { SK2 } \\ & \text { SK3 } \end{aligned}$	red 4 mm terminal black 4 mm terminal 3 pole chassis-	
R6, 12, 13, 15	1 kO					
R7	100 R	C5C 7	$\begin{aligned} & 200 \mathrm{p} \\ & 2200 \mathrm{u} 35 \mathrm{~V} \text { axial } \end{aligned}$			
R8	1k2 1W					
R9	180R		electrolytic		mounin P429 and	
R10	${ }_{2 k}{ }^{\text {820R }} 1 / 2 \mathrm{~W}$	C8	1000 u 63 V axial		P646 or P430SE	
R11 R14	2k ${ }^{2} \mathrm{~T}_{1 / 2 \mathrm{~W}}$		electrolytic 22u 16V axial		P646 or P430S plug to suit)	
R16, 17	OR22 1W	C9	electrolytic	PCB; heatskinks and insulating sets for		
R18	8R2 1W			Q5 and Q6; diecast metal box; panelmounting bush for LED1; nuts, bolts,		
RV1	4k7 horizontal skeleton preset	Q1, 4 8 C 182				

of IC1, RV1 and R7 can be replicated as many times as the user wishes to give additional inputs, the additional feed resistors (as R5 and R6) being taken to the inverting ('virtual earth') input of IC3.

Construction

The pre-amp/power amp combination is built in a 222 x 146 mm diecast box. The two output transistors are separately mounted on either side of the box, as shown in the photograph. Individual heat sinks are used since calculations have shown
that, at full power, a dissipation of 50 watts (total) will occur.

Two 10k slider pots are mounted through the top of the box at the opposite end to the power transistor connections and are wired to the PCB using screened cable, as are the input phono/DIN connectors.

Due care should be taken in the layout of the input and output wiring to avoid possible feedback problems, bearing in mind that 2 mV at the microphone input will become 14 V at the output transistors and loudspeaker terminals at full gain.

No on-off switch is provided
on the PA since there is a power switch on the DC-DC converter unit. The only items present on the PA top panel are the two slider controls and the overload warning LED, with the input sockets on the side wall at the opposite end of the box to the LS output terminals and the power supply input socket.

The quiescent current in the output stage is adjusted by RV1, and this will be correct (although the actual value is not particularly critical) when the total HT current drain from the PA unit is about 4050 mA .

ETI

AUTOMATIC TESTING ON A HOME MICRO

This package, designed and developed by Alan Paton, allows anybody to experiment with ATE.

The package consists of two parts, the software and an interface which holds the integrated circuit being tested. The test interface consists of a circuit board which contains three or four integrated circuits and a socket to hold the IC being tested. The circuit board is controlled by the host computer via two eight-bit ports, plus the required address bus, data bus, and control lines.

Several circuits were considered when designing this interface, the main problem being that the two eight-bit ports had to beable to configure any of their bits forinput or output in any combination. The data being sent to the IC under test had also to be latched while incoming data was read.

The final circuit, shown as a schematic diagram in Fig. 1 , uses a Peripheral Interface adaptor (PIA) to do most of the work. The PIA provides all the facilities required and the chip count for the circuit is minimal.

Properly Addressed

Figure 2 shows the circuit for a Z80 system (in this case, a Spectrum), while a 6502 system configuration is shown in Fig. 3.

For $\mathrm{Z80}$ systems thè allocation of ports is decided by the output pin used at IC2. Each pin will select agroup of four ports as shown in Table 1.

The port values are assigned at line 60 in the program (Listing 1) and the values are the first and third in the group. For example, if the program uses ports 90-95 (HEX) set $A=90 \mathrm{H}$ and $\mathrm{B}=92 \mathrm{H}$.

For 6502 systems, the PIA will have to be memorymapped which means decoding all 16 address lines
instead of just the first eight. The remaining eight address lines could be taken to an 8 -input NAND gate (74 LS 30) and the output taken to IC3 pins 4 and 5 (Fig. 3). The exact allocation of address lines will depend on the memory Icoations available. It should be borne in mind that IC2 must have pins 4 and 5 low (binary 0), and pin 6 high (binary 1), to operate.

Alternatively, the circuit of Fig. 3 could be used. Fourteen address lines (A2 to A15) are connected to the inputs of IC4 and IC5. The PIA (IC1) will be selected when all inputs to IC4 are at logic 1 and all inputs to IC5 are at logic 0 .

Depending on the system or individual requirements the four consecutive addresses are decoded as follows.

From the combinations of the six 1 s and eight 0 s the lowestaddress block possible is 252 to 255 (or00FCH to 00 FFH) which is 00000000111111 XX in binary where A15 is the leftmost bit and A0 is the rightmost bit. The two X s can be either 0 or 1 depending on which of the four locations are selected.

In this example address lines A15 to A8 would be connected to the inputs of IC5 and address lines A7 to A2 would be connected to the inputs of IC4. A0 and A1 are connected directly to the PIA at pins 35 and 36 .

The highest address therefore is 64512 to 64515 which is 11111100000000 XX in binary. Any location between these extremes may be used, which should cater for any computer system.

For example, a more useful location may be 25000; this converts to 01100001110010 XX binary or 61 A 8 H . Connect each address line to a 1 or 0 and the interface can be used at memory locations 25000 to 25003.

Fig. 1 Block diagram of the test rig.

IC2 pin no:	Hex Address	Decimal
15	$80-83$	$128-131$
14	$84-87$	$132-135$
13	$88-8 B$	$136-139$
12	$8 C-8 F$	$140-143$
11	$90-93$	$144-147$
10	$94-97$	$148-151$
9	$98-9 B$	$152-155$
7	$9 C-9 F$	$156-159$

Table 1 Allocating port addresses by means of a 74138 decoder.

Fig. 2 Circuit diagram for a $\mathbf{Z 8 0}$ system.

Method Of Testing

In order to test a logic gate for correct function, all possible combinations of logic level could be applied to its inputs while its output is monitored. This, in effect, produces a truth table for the particular function whose states are well known.

The rules of logic prove that the number of tests required to validate one gate is 2 to the power of the number of inputs. To completely test an 8 -input NAND gate, for example, would require 256 tests. In practice, a far smaller number is sufficient to identify the deviceand to prove that it will function correctly. Of course, multiple gate chips can have their gates tested simultaneously.

Provided the tests are carefully considered, four tests for each IC should be sufficient to identify the device and to assess its function. This means that any device with a number of 2-pin input gates will be completely
tested while almost all other devices will be tested with reasonable accuracy.

Power Supply

As it stands, the project is designed to test TTL and TTL-compatible combinational logic chips only. This means that $74,74 \mathrm{LS}, 74 \mathrm{~S}, 74 \mathrm{~F}, 74 \mathrm{ALS}, 74 \mathrm{~L}, 74 \mathrm{C}, 74 \mathrm{HC}$ and 74 HCT types are all catered for. The common J and N packages (that is, most of them in everyday use) have supply voltages on the highest number pin and the one diametrically op posite (5 V on 14,16 or 20 and 0 V on 7,8 or 10). Some TTL packages don't obey this convention, so be warned. Some chips are anomalous, the commonest being the 7473 and 7490,92 and 93 . These latter involve sequential logic and are not catered for by the project at present. Testing a chip with unconventional power supply pins will have no damaging effect on the chip or on the interface. The test results will, however, be meaningless.

Fig. 3 Circuit diagram for a 6502 system.

Logically Alike

Certain ICs, as mentioned, are 'logically similar' although electrically different. This is the case where the code number is the same - 7400 and 74 LS00, for example. Somedevices may have different codenumbers and yet still be logically similar.

For example, the 7400 and the 7403 both contain four 2-input NAND gates with the inputs and outputs of each gate using equivalent pins. In some cases, it would be possible to interchange these devices without affecting the operation of a circuit. The difference between them is that the 7400 is standard TTL, but the 7403 has open collector outputs which allow the wired-OR function, achieved by connecting the open collector outputs together and adding an external pull-up resistor. In fact, the quad 2 -input NAND gate is one of the most useful ICs available and for this reason it has the longest list of logically equivalent types.

Because of all this, it is sometimes extremely difficult precisely to identify a device. In practice this is not a problem - when a logic IC fails, it fails because it stops working, not because its electrical characteristics change. This does not always apply to other IC types, like amplifiers.

With this test package, any logically similar types will be printed with the result of the test, and since the vast majority of ICs have legible number codes on them, this can be checked against the test identification. The IC is first tested for correct function, then checked with test identification (one or more types) for characteristics.

```
I.C. PINS SET FOR INPUT....12, 11, 9, 8, 2, 3, 5,6,
[ TEST 1 ]
DATA A = 54
INP(A)=246
DATA B =54
INP(B)=246
\begin{tabular}{lllllll}
+50 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hdashline 14 & 13 & 12 & 11 & 10 & 9 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 0 & 1 & 1 & 0 & 1 & 1 & GND
\end{tabular}
I.C. PINS SET FOR INPUT....12, 11, 9, 8, 2, 3, 5,6,
[ TEST 2 ]
DATA A = 38
INP (A)=228
DATA B = 36
\begin{tabular}{ccccccc}
+54 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hdashline 14 & 13 & 12 & 11 & 10 & 9 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hdashline & 0 & 1 & 0 & 0 & 1 & GND
\end{tabular}
I.C. PINS SET FOR INPUT....12, 11, 9, 8, 2,3,5,6,
[ TEST 3 ]
DATA A = 10
INP (A)=210
DATA B = 1B
INP(B)=210
\begin{tabular}{ccccccc}
\(+5 V\) & 0 & 1 & 0 & 0 & 1 & 0 \\
\hdashline 14 & 13 & 12 & 11 & 10 & 9 & 9 \\
1 & 2 & 3 & 7402 & 1 & \\
\hdashline 0 & 1 & 0 & 0 & 1 & 0 & 7 \\
\hdashline & & GND
\end{tabular}
I.C. PINS SET FOR INPUT....12, \(11,9, B, 2,3,5,6\),
[ TEST 4 ]
DATA \(A=0\)
INP \((A)=201\)
DATA \(\mathrm{B}=0\)
\(\operatorname{INP}(B)=201\)
\[
\begin{array}{ccccccc}
+5 V & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
-1 & 0 & 0 & 1 & 0 & 0 & \text { GND }
\end{array}
\]
```

```
Device is 100% Functional
```

Device is 100% Functional
Identified as... Quad 2-Input NOR
Identified as... Quad 2-Input NOR
Logically similar to....
7402 Quad 2-Input NOR Gate
7429 Quad 2-Input NOR Buffer
7433 Quad 2-Input NOR Gate (Open Collector)

```

Fig. 4 Successful test and identification.

\section*{Software}

The program (Listing 1) was written for a home-brew Z80 system, but is presented in a fairly standard Microsofttype BASIC which can be readily adapted. A Spectrum version does exist and can be bought, on cassette, from the author (see below). The biggest problems in adapting the software for other BASIC dialects will be in handling memory allocation, strings, cassette filing, printer routines and, inevitably, the screen display. The modular nature of the program should make adaptation as painless as possible.

A key component of the package is the data file which, as things stand, has to be loaded from cassette each time the program is used. Since data is lost each time the program crashes, it may be worth building in some error trapping routines. Alternatively, if your computer has sufficient memory and you have sufficient patience, the data file could be appended to the program as DATA statements. Best of all, get a disc system.

The program displays a menu of seven options:
1) SEARCH AND IDENTIFY
2) TEST SPECIFICIC
3) LIST ALL IC TYPES AVAILABLE
4) DELETE IC DATA FROM FILE
5) ADD IC DATA TO FILE
6) LOAD DATA FILE
7) SAVE DATA FILE

Initially, there is no data present and only Options 5 or 6 will be accepted. Option 5 enables the user to build up a data file from scratch as well as add to an existing one,

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1) & 27 & 219 & 27 & 219 & 18 & 246 & 18 & 246 & 9 & 237 & 9 & 237 & 0 & 228 & 0
0 & 228
201 & 1
3 \\
\hline 2) & 54 & 246 & 54 & 246 & 36 & 228 & 36 & 228 & 18 & 210 & 18 & 210 & 0 & 201 & 0 & 201 & 3 \\
\hline 3) & 21 & 213 & 21 & 213 & 5 & 229 & 5 & 229 & 1 & 233 & 1 & 233 & 0 & 234 & 0 & 234 & 9 \\
\hline 4) & 27 & 255 & 27 & 255 & 18 & 210 & 18 & 210 & 9 & 201 & 9 & 201 & 0 & 192 & 0 & 192 & 9 \\
\hline 5) & 29 & 221 & 31 & 223 & 13 & 239 & 13 & 237 & 5 & 231 & 4 & 228 & 0 & 226 & 0 & 224 & 11 \\
\hline 6) & 27 & 223 & 27 & 223 & 18 & 246 & 18 & 246 & 9 & 237 & 9 & 237 & 0 & 228 & 0 & 228 & 19 \\
\hline 7) & 6 & 223 & 63 & 255 & 4 & 249 & 15 & 207 & 2 & 251 & 3 & 195 & 0 & 249 & 0 & 192 & 25 \\
\hline 8) & 27 & 255 & 27 & 255 & 18 & 246 & 18 & 246 & 9 & 237 & 9 & 237 & 0 & 192 & 0 & 192 & 26 \\
\hline 9) & 54 & 246 & 54 & 246 & 36 & 237 & 36 & 237 & 18 & 219 & 18 & 219 & 0 & 201 & 0 & 201 & 1 \\
\hline 10) & 29 & 255 & 29 & 255 & 17 & 209 & 17 & 209 & 21 & 213 & 21 & 213 & 1 & 192 & 1 & & -1 \\
\hline 11) & 29 & 255 & 31 & 255 & 17 & 209 & 4 & 196 & .21 & 213 & 22 & 214 & 0 & 192 & 0 & 192 & 12 \\
\hline 12) & 27 & 255 & 27 & 255 & 18 & 214 & 18 & 214 & 9 & 205 & 9 & 205 & 0 & 196 & 0 & 196 & 20 \\
\hline 13) & 27 & 219 & 27 & 219 & 1.8 & 246 & 18 & 246 & 9 & 237 & 9 & 237 & 0 & 192 & 0 & 192 & 31 \\
\hline 14) & 51 & 243 & 51 & 243 & 34 & 238 & 34 & 238 & 17 & 221 & 17 & 221 & 0 & 192 & 0 & 192 & 34 \\
\hline 15) & 29 & 221 & .31 & 223 & 21 & 213 & 22 & 214 & 8 & 198 & 9 & 199 & 0 & 226 & 0 & 224 & 23 \\
\hline 16) & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 17) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 18) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 19) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 20) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 2 Contents of sub-file A.
while Option 6 loads a file from cassette.
Once loaded, you can select any of the seven options, returning to the Menu if you want by pressing ' \(M\) ' on the keyboard.

Option 1 will, if possible, identify an IC, printing out its code number, function and logically equivalent types. Option 2 tests a specified IC, checking whether it is present in the data file or not, printing out the appropriate
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Device & & & Pointers & \\
\hline 1) & 7400 & 1 & 1 & 0 & 1 \\
\hline 2) & 7402 & 1 & 1 & 3 & 9 \\
\hline 3) & 7402 & 2 & 1 & 0 & 2 \\
\hline 4) & 7403 & 1 & 1 & 3 & 1 \\
\hline 5) & 7404 & 3 & 0 & 0 & 3 \\
\hline 6) & 7405 & 3 & 3 & 0 & 3 \\
\hline 7) & 7406 & 9 & 3 & 4 & 3 \\
\hline 8) & 7407 & 9 & 3 & 4 & 3 \\
\hline 9) & 7408 & 4 & 1 & 0 & 4 \\
\hline 10) & 7409 & 4 & 1 & 3 & 4 \\
\hline 11) & 7410 & 5 & 1 & 0 & 5 \\
\hline 12) & 7411 & 10 & 1 & 0 & 11 \\
\hline 13) & 7412 & 5 & 1 & 3 & 5 \\
\hline 14) & 7413 & 6 & 5 & 0 & 6 \\
\hline 15) & 7414 & 11 & 5 & 0 & 3 \\
\hline 16) & 7415 & 10 & 1 & 3 & 11 \\
\hline 17) & 7416 & 9 & 3 & 4 & 3 \\
\hline 18) & 7417 & 9 & 3 & 4 & 3 \\
\hline 19) & 7420 & 6 & 1 & 0 & 6 \\
\hline 20) & 7421 & 12 & 1 & 0 & 12 \\
\hline 21) & 7422 & 6 & 1 & 3 & 6 \\
\hline 22) & 7426 & 1 & 1 & 4 & 1 \\
\hline 23) & 7427 & 13 & 1 & 0 & 15 \\
\hline 24) & 7428 & 2 & 2 & 0 & 2 \\
\hline 25) & 7430 & 7 & 1 & 0 & 7 \\
\hline 26) & 7432 & 8 & 1 & 0 & 8 \\
\hline 27) & 7433 & 2 & 3 & 0 & 2 \\
\hline 28) & 7437 & 1 & 2 & 0 & 1 \\
\hline 29) & 7438 & 1 & 2 & 3 & 1 \\
\hline 30) & 7440 & 6 & 2 & 0 & 6 \\
\hline 31) & 7486 & 14 & 1 & 0 & 13 \\
\hline 32) & 74132 & 1 & 5 & 0 & 1 \\
\hline 33) & 74136 & 14 & 1 & 3 & 13 \\
\hline 34) & 74266 & 14 & 1 & 3 & 14 \\
\hline 35) & 74386 & 14 & 1 & 0 & 14 \\
\hline 36) & -1 & -1 & -1 & -1 & -1 \\
\hline 37) & 0 & 0 & 0 & 0 & 0 \\
\hline 38) & 0 & 0 & 0 & 0 & 0 \\
\hline 39) & 0 & 0 & 0 & 0 & 0 \\
\hline 40) & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 3 Contents of sub-file B.
identity if it is and the result of the tests (Figs. 4 and 5). Option 3 lists all devices held on file. Option 4 deletes specified devices. Option 5 asks for a device codenumber, a functional specification, additional information such as 'open-collector outputs' and the appropriate test data in order to add the device to the file. If the device is already on file, its details will be displayed and the user will be given the chance to change all or some of them.

Option 6 loads the data file from tape. It comprises three'sub-files' designated A, B and C which are loaded in that order - A containing numerical test data foreach IC, B containing numerical device codes and pointers to other information and \(C\) containing alphanumerical information on logic functions (see Tables 2,3 and 4). Option 7 will save a new or amended data file to tape.

\section*{Formulation Of Test Data}

The IC being tested is held in a socket in the test interface. The connections to these sockets \((14,16\) or 20 pins) are shown in Fig6. Port A of the test interface's 6821 PIA controls the high number pins and Port B controls the low number pins. Each IC requires 16 numbers as test data since there are four tests and each test uses four data numbers. Each group of four numbers (one test) consists of two codes to be sent to Ports A and B and two codes to be compared with the data received from Ports A and B .
\begin{tabular}{|c|c|c|c|}
\hline 1) & Quad 2-Input NAND & \multicolumn{2}{|l|}{Array T\$} \\
\hline 2) & Quad 2-input NOR & & \\
\hline 3) & Hex Inverter & 1) & Gate \\
\hline 4) & Quad 2-Input AND & 2) & Buffer \\
\hline 5) & Triple 3-Input NAND & 3) & ( Open Collector) \\
\hline 6) & Dual 4-Input NAND & 4) & ( High voltage) \\
\hline 7) & 8-Input NAND & 5) & Schmitt Trigger \\
\hline 9) & Quad 2-Input OR & 6) & EOF \\
\hline 9) & Hex Buffer & 6) & \\
\hline 10) & Triple 3-Input AND & 7) & \\
\hline 11) & Hex & 8) & \\
\hline 12) & Dual 4-Input AND & 9) & \\
\hline 13) & Triple 3-Input NOR & 10) & \\
\hline 14) & Quad 2-Input EX-OR & & \\
\hline 15) & EOF & & \\
\hline 16 & & & \\
\hline 17 & & & \\
\hline 18 & & & \\
\hline 19 & & & \\
\hline 20 & & & \\
\hline
\end{tabular}

Table 4 Contents of sub-file C and of array T\$.

Consider the 7400 (Fig. 7). The inputs to the four NAND gates are pins 1, 2, 4, 5, \(9,10,12\) and 13 . It should be clear that to send a high to each of these pins involves taking PA0, PA1, PA3, PA4, PB0, PB1, PB3 and PB4 high. Taking binary weighting into account (PAn and PBn each correspond to \(2^{n}\) ), this means sendinga 27 to Port A and a 27 to Port B. This is done on the 6821 in a fairly roundabout manner.
\begin{tabular}{|c|c|c|}
\hline & 20 PIN DEVICE & \\
\hline NC & \(\square 1{ }^{1} 0\) & NC \\
\hline PB0 & - \(\square\) & +5V \\
\hline PB1 & \(\square \square\) & PAO \\
\hline PB2 & \(\square \square\) & PA1 \\
\hline PB3 & \(\square\) & PA2 \\
\hline PB4 & \(\square \square\) & PA3 \\
\hline PB5 & \(\square \square\) & PA4 \\
\hline P86 & \(\square\) & PA5 \\
\hline PB7 & \(\square \square\) & Pag \\
\hline GND & [10 11] & PA7 \\
\hline
\end{tabular}
14 PIN DEVICES

\section*{Fig. 6 Connections to test sockets.}

First, the data direction registers for Ports A and B must be setto receivedata. This is achieved by setting bit 2 of the control registers for Ports \(A\) and \(B\) to 0 . If Port \(A\) 's address is 144 (as here) then its control register will be located at add ress 145 . To write to Port A, bit 2 of location 145 must be set to zero. This is done in the program by the command OUTA \(+1,0\) (line 680), where A equals 144 or 90 H (line 60). Then the inputs to the chip under test must be set up by configuring them as outputs from the two ports. As far as Port A is concerned, this is done by means of the command OUT \(A, A(J, K)\) (line 690 ), where \(A\) is 144 again and \(A(J, K)\) is the test data - the number 27 we discussed above. This ensures that the right pins on the IC under test are connected to outputs from the 6821. All the port lines on the 6821 not configured as outputs will be treated as inputs and will be ignored by the 6821 when data is sent to the IC under test.


Fig. 7 The 7400, ins and outs and port connections.
Line 700 in the program then resets bit 2 of the control registers by actually setting all bits high (OUT \(A+1,255)\). Now the program has access to the peripheral hanging off the ports and all the right lines have been set to outputs and inputs. In line 830 (and in line 390,for that matter), we find the command OUTA, \(\mathrm{A}(\mathrm{J}, \mathrm{K})\) again. Having sent 27 , in the first instance, to Port A we now seem to be doing it again. The difference is that this time the command actually writes logical highs to the port lines which were defined as outputs the first time 27 was sent to Port A. In line 804, inputs from Port A and Port B appear in the guise of the functions \(\operatorname{INP}(A)\) and \(\operatorname{INP}(B)\). These read their respective ports and return numbers composed of
values from every line or bit of the ports. The value read from input lines will be determined by whatever is connected to those lines. The values read from the output lines will normally be whatever value was last written to those lines. (The only problem arising when Port A - and only Port A - is so heavily loaded that voltages on the data lines fall below 2 V for a high or rise above 0.8 V for a low).

Thus, if we send 27 to Port A and the 7400 is working properly, pins 11 and 8 and hence lines PA2 and PA5 will be low. The remaining data lines, PA6 and PA7, are held high by internal pull-up resistors (the Port B lines all have external pull-ups). The result will be that a read operation on Port A will return \(27+64+128\) - or binary 11011011 - or decimal 219. This number appears as the second (and fourth) item in data file \(A^{\prime}\) 's entry for the 7400 and is, therefore, the value ascribed to \(A(J, K+1)\) (and \(A(J, K+3)\) ). Line 840 (and line 400) of the program test that the value returned from read operations on Ports \(A\) and \(B\) does correspond to the proper data file entry. If there is any error, a device malfunction can be assumed under Option 2 of the program menu, or under Option 1, non-equivalence of the device under test and a library device follows.

The complete test data (held on sub-file A) for 7400 quad 2 -input NAND gate is:
272192721918246182469237923702280228. The format being 1) data out to Port A, 2) comparison data for Port A read operation, 3) data out to Port B, 4) comparison data for Port B read operation. The next group of four numbers form the second test, then come the third and fourth tests. Between them, they exhaust all possible input conditions for this IC.

A complete set of test data can be simply built-up by reference to a pin-out diagram and a functional specification of any device, bearing in mind the connections from the PIA ports to the test sockets. After entering a new device, the data can be verified by an actual test using a known functioning IC. Test data can be displayed and printed in order to help locate any mistakes in the test data or any malfunction of a device under test. The new data file should be saved to tape using Option 7. As it stands, the program includes too little in the way of error-checking and can crash quite easily. Each time it does, your data will be lost.

\section*{Program Structure And Operation}

The program can be split into seventeen sections. It is menu driven with seven of the sections being the options already listed. These, in turn, call subroutines as required before returning to the menu.

The program was designed to be easily expandable and adaptable to other types of IC. For this reason, fixed length files are not used. During program execution, frequent checks are made when accessing files to ensure that the end of file has not been reached. This slows down the speed of execution but, in practice, the devices tested with the current data files appear to be identified immediately when data is available.

The arrays are dimensioned in line 50 of the program; this is a requirement of BASIC and if larger files were required for future use these dimensions would have to be changed and the new program copy saved. This also applies to array T\$ which is loaded from data at line 2740. If different data were required, items would have to be added or changed at this line.

The structure of the arrays has been designed to make as efficient use of memory as possible, and where data could be buplicated the use of pointers has avoided this.

\section*{CIRCUIT SOLUTION: Automatic Testing}

Only 14 different sets of test data are used, but the package can test and identify 35 different IC types. Table 3 shows most clearly how pointers are used to maximize memory use.

\section*{Array Structure}

Array \(A\), which has been described during the formulation of test data, is two-dimensional with each row holding the 16 test numbers plus a pointer to an IC identified by this data. There may be more than one IC which could be identified from this data and, because of the design of the program, it does not matter which of the logically similar ones it is.

If the first element of a row, \(A(n, 1)\), contains -1 this is the 'end of file' marker. The last element, \(A(n, 17)\), of a row is -1 when test data has been erased.

Array B is two-dimensional with each row holding data as follows:
\(B(n, 1) \quad\) Numerical device code. \(A-1\) is the 'end of file' marker;
\(B(n, 2) \quad\) Pointer to an element of array \(C \$\) which describes the function of the device;
\(B(n, 3) \quad\) Pointer to an element of array \(T \$\) which describes the type of device;
\(B(n, 4) \quad\) Also pointer to array \(T \$\) if there is any further information (zero if none);
\(B(n, 5) \quad\) Pointer to array \(A\) which contains the test data for device \(B(n, 1)\). If this element contains -1 then the data has been erased.
C\$ is a one-dimensional alphanumeric array containing all the \(I C\) functions. It is referenced by \(B\) above during program execution. EOF is the 'end of file' marker.

\section*{Table 5 Program variables.}

\section*{Variable}

Temporary counter
Q Holds value of option chosen (1-7).
\(L D\) Data file flag. If \(L D=0\) file is empty. If \(L D=2\) file contains data.
J, K, O Temporary counters.
C1 Used to reference array \(B\), as in \(B(C 1,1)\).
L\$ String containing a row of dashes half of screen width.
Q\$ Holds single character from keyboard scan
A, B Address of ports used for testing, 90 H and 92 H in this case.
T Counts number of tests made for display of test process.
D Decimal number to be converted to binary.
A \(\$ \quad\) Binary numberto bedisplayedalongside \(I C\) being tested, to show logic levels.
S\$ Holds single character from keyboard scan.
PN \(\$ \quad\) Holds pin numbers used for input during display of test process.
P9 Temporary count, used when translating pin numbers from binary string A\$.
DN, DT Holds device number and device type number.
A1 Temporary count, used in loop to display test data.
X Free element of array B. Used when adding IC to data
\(C R \quad\) Change Record flag. If \(C R=0\) then IC data already on file is being amended.
DF \(\$ \quad\) Holds device function
D1 Temporary store for pointer.
Used when deleting IC from file.
A (X,Y) Two dimensional array, holds test data for all ICs on file, also the last element in each row holds a pointer to array \(B\).
\(B(X, Y)\) Two dimensional array, holds device codes and pointers to arrays \(A, C \$\) and \(T \$\).
\(C \$(X)\) One dimensional array, holds IC functions.
\(\mathrm{T} \$(X)\) One dimensional array, holds further device information.

T\$ is a one-dimensional alphanumeric array containing further device information. It also is referenced by B above during program execution. EOF is the 'end of file' marker.

\section*{Doing it Yourself}

The hardware requires very little effort to modify for your own system or to build. The author's original circuit was built on strip-board, looks fine and works well.

The program as it stands requires very little modification to work on an Amstrad, BBC or Commodore 64 computer, once you have sorted out the hardware addressing. The circuit given in Fig. 2 works with a Spectrum and Spectrum+ and the author will provide suitable software on cassette. The price is \(£ 2\) inclusive of p\&p from Alan Paton, 67 Bradford Road, Trowbridge, Wiltshire BA14 9AN.'Please make cheques payable to Alan Paton.

\section*{Listing 1 The IC Functional Test Program.}
\begin{tabular}{|c|c|}
\hline & REM ***** \\
\hline 20 R & REM FUNCTIONAL TEST OF INTEGRATED CIRCUITS A.D.Paton. \\
\hline 30 R &  \\
\hline 40 R & REM -....INITIALISATION \\
\hline 50. & CLEAR 500: DIM \(\mathrm{A}(20,17), \mathrm{B}(40,5), \mathrm{C}\) ( 20\()\), T \({ }^{(10)}\) \\
\hline 60 A & \(A=90: B=\$ 92: L \leqslant={ }^{\prime}\) \\
\hline 70 & \(\mathrm{C}=0\) \\
\hline 80. & C=C+1:READ T年( \({ }^{\text {c }}\) \\
\hline 901 & IF T\$(C)<>"EOF" THEN 80 \\
\hline 100 & \(A(1,1)=-1: B(1,1)=-1: C \$(1)=\) "EOF" \\
\hline 110 &  \\
\hline 120 & REM \(=====\triangle======\) TITLE AND OPTIONS \\
\hline 130 &  \\
\hline 140 & CLS : PRINT STRING \((64,42)\) : PT= \(0: P=0: C R=0: Q 5=\cdots\) \\
\hline 150 & PRINT. TAB (11) "INTEGRATED CIRCUIT FUNCTIONAL TEST PACKAGE" \\
\hline 160 & PRINT : PRINT STRING \({ }^{(64,42)}\) \\
\hline 170 & PRINT : PRINT TAB (14)"1) SEARCH AND IDENTIFY" \\
\hline 180 & PRINT TAB(14)"2) TEST SPECIFIC I.C." \\
\hline 190 & PRINT TAB(14) "3) LIST ALL. I.C. TYPES AVAILABLE" \\
\hline 200 & PRINT TAB(14) "4) DELETE I.C. DATA FROM FILE" \\
\hline 210 & PRINT TAB(14) "5) ADD I.C. DATA TO FILE" \\
\hline 220 & PRINT TAB (14) "6) LOAD DATA FILE" \\
\hline 230 & PRINT TAB (14) "7) SAVE DATA FILE" \\
\hline 240 & PRINT : PRINT TAB (18) "Select option (1 to 7 ) \\
\hline 250 & GET Q:IF Q<1 OR Q>7 THEN 250 \\
\hline 260 & CLS : If LD=2 OR Q \(=5\) DR \(\mathrm{Q}=6\) THEN 280 \\
\hline 270 & GOSUP 1250:GOTO 110 \\
\hline 280 & ON Q GUSUB \(330,750,970,2350,1540,2610,2680\) \\
\hline 290 & GOTO 110 \\
\hline 300 &  \\
\hline 310 & REM \(=============\) FUNCTIONAL TEST ROUTINE \(============\) \\
\hline 320 &  \\
\hline 330 & \(\mathrm{J}=0\) \\
\hline 34 & \(\mathrm{J}=\mathrm{J}+1\) \\
\hline 350 & IF \(A(J, 1)<0\) THEN GOSUB 630:RETURN \\
\hline 360 & IF \(A(J, 17)<0\) THEN 340 \\
\hline 370 & FOR K=1 TO 13 STEP 4 \\
\hline 380 & IF \(K=1\) THEN GOSUE 680 \\
\hline 390 & OUT \(A, A(J, K):\) OUT \(B, A(J, K+2)\) \\
\hline 400 & IF \(A(J, K+1)<>\operatorname{INP}(A)\) OR \(A(J, K+3)\langle>\) INP (B) THEN 340 \\
\hline 410 & NEXT K \\
\hline 420 & C1=A (J, 17) \\
\hline 430 & REM ********************************* \\
\hline 440 & REM \(============\) TEST O.K. ROUT INE \\
\hline 450 &  \\
\hline 460 & PRINT :PRINT "Device is \(100 \%\) Functional " \\
\hline 470 & PRINT "Identified as... ";:J=0 \\
\hline 480 & PRINT CF(B(C1, 2 ) : PRINT : PRINT "Logically similar to. \\
\hline 490 & \(\mathrm{J}=\mathrm{J}+1:\) IF \(\mathrm{B}(\mathrm{J}, \mathrm{I})<0\) THEN 520 \\
\hline 500 & IF \(\mathrm{B}(\mathrm{J}, 5)=\mathrm{B}(\mathrm{C} 1,5)\) THEN PRINT \(\mathrm{B}(\mathrm{J}, 1), \mathrm{C}(\mathrm{B}(\mathrm{J}, 2))\); \(\mathrm{T}(\mathrm{B}(\mathrm{J}, 3))\); T \\
\hline (BしJ & ,4)) \\
\hline 510 & G0TO 490 \\
\hline 520 & GESUB 2780 \\
\hline 530 & PRINT L¢L\%PRINT " D....Display Test Process P...Print Test \\
\hline & ocess M...MENU" \\
\hline 540 & PRINT TAB(20) "Select Option (D,P or M)...":J=B(C1,5):PRINT L \\
\hline * \({ }^{\text {F }}\) & \\
\hline 550 & GET QF:IF QS="" THEN 550 \\
\hline 560 & IF Q \(0=\) "D" THEN CLS : GOSUB 1050: RETURN \\
\hline 576 & IF \(\mathrm{Q}==\) "P" THEN CLS : GOSUB 1040:RETURN \\
\hline 580 & IF Q \(5=\) "M" THEN RETURN \\
\hline 590 & GOTO 550 \\
\hline 600 &  \\
\hline 610 & REM \(==========m=\) TEST FAIL ROUT INE \\
\hline 620 &  \\
\hline 630 & PRINT "Device malfunction or insufficient dat \\
\hline 640 & GOSUB 1260:RETURN \\
\hline 650 &  \\
\hline 660 & REM \(========\) Set up PIA for required input bits. \\
\hline 670 &  \\
\hline 680 & OUT \(A+1,0\) : OUT \(B+1,0\) \\
\hline 690 & OUT \(A, A(J, K):\) OUT \(B, A(J, K+2)\) \\
\hline 700 & OUT \(A+1,255\) : OUT B+1,255 \\
\hline 710 & RETURN \\
\hline
\end{tabular}

\section*{CIRCUIT SOLUTION：Automatic Testing}
```

720 R
******\#\#\#\#\#\#\#*******
740 REM ============= TEST SPECIFIC TYPE =============
750 PRINT "Enter No. of device to be tested (omit any letters)
760 INPUT "...";DT:C=0:PRINT
70 C=CH:M B(C,1)<0 THEN 880
700 IF B(C,5)=-1 THEN 770
C1=C:1)=DT THEN J=B(C,5) ELSE }7
C00 C1=C:GOSUB 920

```

```

 30 IF K=1 THEN GOSUB 68
 ,k+2)
 840 IF A(J,K+1)<>INP(A) OR A(J,K+Z)<>INP(B) THEN 870
8\&0 GOSUB
860 GOSUB 460:RETURN
PRINT :PRINT "{ DEVICE MALFUNCTION `":GOSUB 520:RETURN
800 PRINT "No record of I.C. type "DT" on file.":PRINT :GOSUB 12
89:RETSMRN***
900 REM ============= PRINT 1.C. No. and TYPE =============
920 PRINT "Number "B(C1,1)
930 PRINT "Type "C$(B(C1,2));T$(B(C1,3));T\&(B(C1,4)
:RETURN
940 REM \#************************************
SOM LIST AL I.C. TYPES =======================
970 C=0:PRINT (C)
980 C=C+1:IF B(C,1)<0 THEN GOSUB 1260: RETURN
IF
1000 PRINT B(C,1),C$(B(C,2));T&(B(C,3));T$(B(C,4)):GOTO 980
1010 REM **
1020 REM =========== DISPLAY OR PRINT PROCESS ===========
1040 GOSUB 27%0
1050 T=\:FOF K=1 TO 13 STEP 4
1060 IF K=1 THEN GOSUB 680:GOSUB 1320
1060 IF K=1 THEN GOSUB 680:GOSUB 1320
1080 FFINT "I.C. PINS SET FOR INPUT....."PN$:PRINT L$L
090 A9=INF (A):B9=INP (B)
1100 T=T+1:PRINT "[TEST "T"]":PRINT
11:0 D=A9:GOSUB 1440:PRINT "DATA A =":A(J,K)TAB(31)"+5V "A\$
1120 PRINT "INF (A)="A9TAB(30)L\$ 1, 10 g \&".PRINT TAB(30)
130 PRINT TAB(32)"14 13 12 1t 10 9 8":PRINT TAB(30)")
1150 PRINT "DATA B =";A(J,K+2)TAB(30)L\$
160 D=B9;GOSUB 1440:PRINT "INP(B)="B9;TAB(32)As"GND"
170 PRINT :PRINT :IF Q\&="P" THEN NEXT K:GOSUB 810:RETURN
1180 PRINT :PRINT "Press M for MENU - any key to continue test
1190 GET S*:IF S*="" THEN 1190
1200 IF SS<>"M" THEN NEXT K
1210 RETURN
1220 REM *********==*******************
1230 REM ================ KEYBOARD SCAN
1250 PRINT "No data availablePlease LOAD DATA FILE"
12s0 PRINT :PRINT "Press M to return to MENU";
1270 GET QS: IF Q\&<>"M" THEN 1270
1280 RETURN
1290 REM ***
LOCATE PIN NUMBERS ===============
*)
1320 PN$="":D=A(J,K):GOSUB 1440:P品=13
1330 FOR O=1 TO 24 STEP 4
1340 IF MID (A$,0,1)="1" THEN PN$=PN$+STR$(PQ)+","
1350 P9=Pロ-1:NEXT O
1360 D=A(J,K+2):GOSUB 1440:PG=1
1370 PG=1:FOR O=1 TO 24 STEP 4
1380 IF MID$ (A$,D,1)="1" THEN PN$=PN$+STR$(Pq) +",
1390 Pq=Pq+1 : NEXT O
1400 RETURN
410 REM **
420 REM =========== DECIMAL TO BINARY ROUTINE =========
1440 A*=""
1450 IF D=0 THEN A\$="0 0 0 0 0 0 ":RETURN
1460 IF INT (D/2)=D/2 THEN A *-A $+"D ":D=D/2:GOTD 1460
1470 A$=A \$+"1 ":D=D-1:IF D>0 THEN D=D/2:GOTO 1460
1480 IF LEN(A $)<24 THEN A }==A$+"| ":=GOTO 1480
1490 IF LEN (A\$) >24 THEN A \$=LEFT \$ (A$,24)
1500 RETURN
1510 REM *#**
1520 REM =============== ADD I.C. DATA TO FILE ================
1530 REM ***
1540 PRINT "* ADD I.C. DATA TO FILE"
1550 PRINT : INPUT "Enter Device No. (or - }1\mathrm{ to return to MENU).
";DN
1560 IF DN<O THEN FETURN
1570 REM DN<O THEN FETURN
1570 REM ...Is device on file
1580 J=0
1590 J=J+1:IF R(J,1)=-1 THEN 1680
1600 IF B(J,5)=-1 THEN 1590
1610 IF B(J,1)<\DN THEN 1590
1620 PRINT :PRINT "Device "DN" is on file with the following dat
a...":C1=J:GOSUB 920
1630 A1=B (J,5):PRINT :FOR K=1 TO 16:PRINT A(A1,K)" ";:NEXT K
1640 GOSUB 1980
1650 IF Q:*="N" THEN RETURIN
1660 IF Q$=""Y" THEN X=J:CR=1:GOTO 1740
1670 REM ...Device not found - find free location in File B
result into X
1680 J=0
1690 J=J+1:IF B(J,1)=-1 THEN B (J+1,1)=-1:GOTO 1720
1700 IF B(J,5)=-1 THEN 1720
1710 GOTO 1690
1720 X=J:B (X,1)=DN
1730 REM ...Get device details for data file
1740 IF CR=1 THEN PRINT "Current Function..."C=(B(X,2)):GOSuE 19
80
1750 IF Q }5="N" THEN 1800
1760 PRINT "Enler Device Function"
1750 IF $\mathrm{Q} 5=$＂N＂THEN 1800
1760 PRINT＂Enler Device Function＂

```

1770 INPUT＂（or L to 1 ist Functions on file）．．．＂；DFs
1770 INPUT＂（or L to 1ist Functions on file）．．．＂；DF
1780 IF DFs＝＂L＂THEN GOSUB 2290：PRINT ：GOTO 1740
1790 IF CR＝0 THEN GOSUB 2230 ELSE C \(\$(B(X, 2))=D F \%\)
1800 IF CR＝0 THEN 1830
1810 PRINT＂Current further details are．．．＂\(B(x, 3)\) ；\(T(B(x, 3)), B(x\) ，4）；Ts（B（X，4））
1820 GOSUB 1980：IF Q \(\$=\)＝＂N＂THEN 1860
1830 PRINT＂Enter further device details（No．1，No．2）＂
1840 INPUT＂（or 0,0 to \(1 i s t\) details available）．．．＂；\(B(x, 3), B(x, 4\)
1850 IF \(B(x, 3)=\) AND \(B(x, 4)=\emptyset\) THEN GOSUB 2190：PRINT \(=G O T O 1900\)
1860 GOSUB 2030：IF CR＝0 THEN 1880
1970 GOSUB 2150：GOSUB 1980：IF \(Q \$=" N "\) THEN 1960
1880 PRINT ：PRINT＂Enter test data（16 integer numbers）．．．＂
1890 FOR K＝1 TO 16：PRINT K＂．．．＂；
1900 IF CR＝1 TMEN PRINT＂Current test data．．．＂\(A(B(X, 5), K)\) ；
1910 INPUT＂．．．＂；A（A1，K）
1920 IF \(A(A 1, K)<\emptyset\) OR \(A(A 1, K)<>\operatorname{INT}(A(A 1, K))\) THEN PRINT＂INCORRECT
DATA＂：K＝K－1
1930 NEXT K
\(195(A 1,17)=X: B(X, 5)=A 1\)
1950 GOSUB 2080：GOTD 1580
1960 RETURN
1970 REM ．．．Get YES or ND response
1980 PRINT ：PRINT＂＊Change data？（Y or N）
2000 IF Q\＆く＞＂Y＂AND Q\＆く＞＂N＂THEN 1980
2010 RETURN
2020 REM ．．．Find free location in array \(A\)（result into Al）
\(2030 \mathrm{~J}=0\)
\(2040 \mathrm{~J}=\mathrm{J}+1\) ：IF \(A(\mathrm{~J}, 1)<0\) THEN \(A 1=J: A(J+1,1)=-1:\) RETURN
2050 IF \(A(J, 17)<0\) THEN \(A 1=J: R E T U R N\)
2060 GOTO 2040
2070 REM ．．．Is same test data already in use ？
\(2080 \mathrm{~J}=0\)
\(2090 \mathrm{~J}=\mathrm{J}+1:\) IF \(A(\mathrm{~J}, 1)<0\) THEN RETURN
2100 IF \(J=A 1\) THEN 2090
2110 FOR \(K=1\) TO 16：IF \(A(J, K)<>A(A 1, K)\) THEN 2090
2120 NEXT \(K\)
2120 NEXT K
\(2130 B(X, 5)=J=A(A 1,17)=-1\) ：RETURN
2140 REM ．．．Print test data from array \(A\)
2160 FOR \(K=1\) TO 16：PRINT \(A(B(X, 5), K) "\) ；；NEXT K
2160 FOR \(K=1\) TO 16 ：PRINT \(A(B(X, 5), K) "\)
2170 RETURN
2180 REM ．．．Print contents of array T\＄
2180 REM ．．．Print contents of array \(T\)
\(2200 \mathrm{~J}=\mathrm{J}+1:\) IF T \(\$(\mathrm{~J})=\)＂EOF＂THEN RETURN
2210 PRINT J，T\＄（J）：GOTO 2200
2220 REM ．．．Is Device Function（ \(\mathrm{DF} \$\) ）already in array \(\mathrm{C} \$\) ？
\(2230 \mathrm{~J}=0\)
\(2240 \mathrm{~J}=\mathrm{J}+1=\) IF C \((\mathrm{J})=\)＂EOF＂THEN 2260
2250 IF C \(\ddagger(J)=D F \$\) THEN 227 ELSE 2240
\(2280 \mathrm{C} \$(\mathrm{~J})=\mathrm{DF} \$: \mathrm{C} \$(\mathrm{~J}+1)=" E D F "\)
\(2270 \mathrm{~B}(\mathrm{X}, 2)=\mathrm{J}:\) RE TURN
2280 REM ．．．Print contents of array \(C\)＊
\(2290 \mathrm{~J}=0\)
\(2.300 \mathrm{~J}=\mathrm{J}+1\) ：IF Cs（J）＝＂EOF＂THEN RETURN
2310 PRINT J，C \(\$(J):\) GOTO 2300

2330 REM \(==============\) DELETE I C．FROM FILE \(================\)
2350 PRINT＂＊DELETE I．C．FROM FILE＂
2360 PRINT ：INPUT＂Enter Device No．（or -1 to return to MENU）．．．
2370 IF DNKO THEN RETURN
\(2380 \mathrm{~J}=0\)
\(2390 J=J+1:\) IF \(B(J, 1)=-1\) THEN PRINT＊＂Device No．＂DN＂not on file．
：GOTO 2360
2400 IF \(B(J, 5)=-1\) THEN 2390
2410 IF \(B(J, 1)<>D N\) THEN 2390
\(2420 C_{1=J: P R I N T}\)＂The following device to be deleted from file：－ ＂＝GOSUB 920
2430 PRINT ：PRINT TAB（22）＂Confirm or Reject ？（C or R）＂
2440 GET Q\＄：IF QF＝＂＂THEN 244『
2450 IF \(Q=\)＂R＂THEN RETURN
2460 IF Q\＆＜＜＂C．＂THEN 2360
2480 IF C1＜＞A（D1，17）THEN B（C1，5）＝－1：RETURN
\(2490 \mathrm{~B}(\mathrm{C} 1,5)=-1: J=0\) ，THEN GOSUB 2540．RETURN
\(2500 \mathrm{~J}=\mathrm{J}+1\) ：IF \(\mathrm{B}(\mathrm{J}, 1)<0\) THEN GOSUB 2540：RETURN
2510 IF \(B(J, 5)=D 1\) THEN \(A(D 1,17)=J:\) RETURN
2520 GOTO 2500
2530 REM ．．．．Delete test data from FILE A
\(2540 \mathrm{~K}=0\)
\(2550 K=K+1\) ：IF \(A(K, 1)<0\) THEN RETURN
2560 IF \(A(K, 17)=C 1\) THEN \(A(K, 17)=-1\)
2570 GOTO 2550
2590 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊H＊＊＊＊＊＊
2590 REM \(=\approx=========\pi n=\) LOAD DATA FILES \(==================\)
2600 REM \＃\＃＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
2610 PRINT＂．LOAD DATA FILES＂
2620 INPUT＂Start TAPE and press RETURN＂；Q\＄
2630 LOAD（＂FILE A＂）＠A：LOAD（＂FILE B＂）＠B：LOAD（＂FILE C＂）ec
2640 LD＝2：RETURN
2650 REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
2660 REM \(==============\) SGIVE DATA FILES \(===================\)
2680 PRINT＂＊SAVE DATA FILES＂
2680 PRINT＂\＃SAVE DATA FILES＂
2690 INPUT＂Start TAPE and press RETURN＂；Q \(\$\)
2700 PRINT＂FILE A＂：SAVE（＂FILE A＂）
2700 PRINT＂FILE A＂：SAVE（＂FILE A＂）eA
2710 PRINT＂FILE B＂：SAVE（＂FILE B＂）eB
2720 PRINT＂＂
2740 DATA＂Gate＂，＂Buffer＂，＂（ Open Collector ）＂，＂（ High Voltage ）
＂，＂Sehmitt Trigger＂，＂EOF＂＂
2750 REM ．．．．Switch on printer
2760 POKE 1401，\＄55：PRINT ：RETURN
2770 REM ．．．．Switch off printer
2790 POKE \(\$ 401\) ，\＄AA：RETURN


\section*{COMING TO THESE PAGES SOON}

Etienne Scrooge yawned, scratched himself and got up from his chair. 'June,' he said to himself, 'is busting out all over.' With that out of the way, he found himself with a little time on his hands. It was half an hour. He rushed to the window, seized with a sudden irrational fear. Luckily, the window was open and Etienne immediately proceeded to shake his hands vigorously in the air. The half an hour soared up and away. Time flies', Etienne muttered. He breathed a sigh of relief, for the time had been weighing heavily.
Turning from the open window, Etienne was aghast to notice the other half of the hour on the floor by the chair he had only recently been occupying. It was very still and Etienne wondered whether it had been standing that way for long. It certainly didn't look longer than a few minutes, which - in fact - it wasnt. Etienne pickedit upgingerly the room. 'Isupposeyou like auburnhe tip-toed outo
could call this "taking my time",' Etienne thought. could call this taking stepped outside into the hall
No sooner had he when the first half of the hour burst through the front door and raced by. It was musical time, and it had the right key. The second half sprang into action and pursued its one-time partner all the way dow the road man.' the shops. 'Time,' thought Efound a few minutes in the On his way to work, Etienne latest copy of ETI. Curiously, newsagents to pickupthe latest nothing about time in it. 'That there was almost for a song,' Etienne thought. But it sounds like the cue for a song
wasn't.

\section*{The Upgradeable Amp}

Easy for the beginner to build, yet equally easy to upgrade into quality amp, this design represents one school of audio thought in practice. Designer Graham Nalty will explain exactly why each critical component has been used and how each stage of upgrading can be accomplished. The result is an amplifier which at the most basic level provides outstanding quality for the cost of building it and, when fully upgraded, quite simply provides outstanding quality.

\section*{RF Oscillators}

In this general feature on radio frequency oscillators, design considerations and actual circuits are examined. These circuits are not only vital to communications devices, but can also be the basis of valuable test equipment and clock-controlled digital circuits.

\section*{MIDI to CV Converter}

Music to the ears of all those readers with pre-digital synthesizers. This project by Robert Penfold willallow full digital control of these instruments using the MIDI protocol as an input and a 1 V per octave control signal as an output:

\section*{PLUS}

All our usual features. Tech Tips, News Digest, Read/ Write, Circuit Solutions, Reviews, Open Channel, and much, much more.

\title{
THE JUNE ISSUE OF ETI ON SALE MAY 2nd MAKE YOUR SUMMERTIME SPECIAL
}

\title{
TECH TIPS
}

\section*{Courtesy Light Delay/Lights Minder}

\author{
G. S. Howe \\ Durham
}

This circuit was developed to provide a switch-off delay for a carcourtesy light and will also provide a reminder should you leave the car with its lights on.

Zener diodes ZD1 and ZD2 are included to prevent false triggering of the unit due to electrical noise on the positive supply. IC1 a and b provide a simple 30 s monostable, the inverted ouput from IC1 c being normally low. When a car door is
opened, the monostable is triggered and transistors Q1 and Q2 turn on.

After approximately 30 s the output of IC1 c will go low turning transistors Q1 and Q2 off and with them the courtesy light.

IC1d and e are configured as an astable multivaibrator. If the headlights have been left on, the output of IC1 e will be amplified by transistors Q3 and Q4. When a door is opened, the monostable is triggered which will cause thyristor SCR1 to conduct. This produces an audible alarm which will cease when the lights are turned off. The lights may be left on by simply switching off then on again, after the alarm has triggered.


\section*{Repairing Personal Hi-fi Systems}

Ian Pitt
Miniature stereo tape players of the 'Walkman' type are now in widespread use, and many of our readers must have been presented with an ailing example of the species at some time or another and asked to repair it.

The most common fault, it seems, is a poor connection at the headphone socket, resulting trom repeated insertion and removal of the jack plug and sideways pressure on the plug whilstin place. The obvious solution is to replace the jack socket, which is usually a PCBmounted component. In practice, this may not be necessary in many cases.

What appears to happen in an awful lot of these tape machines is that the stressing on the jack socket eventually causes one of the solder pins to become stripped of its plating. The plating remains attached to the (apparently intact) solder blob while the pin is free to move in and out as the jack socket moves. The result is a faulty connection which only 'makes' when the headphone plug is held in a particular position.
The solution is simply to try cooking each of the jack socket solder joints in turn with a soldering iron for a few seconds. With any luck this will cure the problem completely and you will have saved yourself the cost of a new jack socket and the work involved in gaining access to both sides of the PCB (gaining access to the solder side of the board alone is usually quite straightforward).

\section*{Simple Percussion Noise Gate}

\section*{Robin Foxland Sheffield}

This circuit can be fitted to the output of a compressor/limiter or installed on a mixer channel to give excellent noise gating on percussive sounds. It does this without losing any of the punchy attack as so often happens with VCA-based noise gates.

With no signal present Q1 acts as a low resistance to C3, C4 which filter off any noise from the signal path. Applying a signal produces a negative voltage at the output of IC1 and across D2, driving the gate of Q1 and increasing the N -channel resistance. This will cut off C3, C4, leaving the signal unaffected.

RV1 is fitted to allow the decay of the circuit to be matched to that of the signal. R1 and R2 may be omitted and replaced by the input and output resistance between stages. R3 controls the sensitivity and may be varied according to requirements, although obviously the circuit should not be made so sensitive that it is activated by its own noise level!

The results are very good, with hum and hiss virtually disappearing yet allowing a sharp crisp sound to remain. SW1 is used to disengage the circuit when signals with a slow attack are present.


\section*{Switching Regulator}

\section*{P. Cuthbertson Inverurie}

This circuit was originally intended to generate 5, V from a car battery, to powera BBC micro. There are no ICs in it, and all the semiconductors are readily available as I had to knock it up from bits and pieces that were lying around at the time.

Efficiencies of over \(60 \%\) are possible with this circuit. A linear regulator would attain an efficiency of between \(33 \%\) to \(42 \%\) maximum.

Q1 and Q2 form an astable multivibrator which provides a narrow positive going pulse at the base of Q3 every \(50 \mu \mathrm{~s}\), discharging the capacitor C 4 which recharges via the 2 k 7 resistor, providing a ramped voltage to the base of Q6.

Q9 and Q10 compare the reterence voltage from the ZN423 with a portion fo the regulator's output voltage, derived trom a potentiometer.

This potentiometer is the output voltage adjustment. It is inadvisable to use a zener instead of the ZN423 as its slope resistance will react badly to changing battery voltages.

As the potentiometer wiper voltage tends to rise above the reference voltage, Q8 turns on, and the ramp at the base of Q6 has to rise further to match the voltage on the base of Q7. This delays the turning on of the Darlington pair, Q4 and Q5, resulting in a narrower power output pulse to the choke. This in turns lowers the output voltage (a process known, of course, as pulse width modulation). The frequency of operation is nominally 20 kHz but can vary quite a bit with drifting or falling battery voltages.

Although I have specified a BY229-600 for the catch diode, in the prototype I used an ordinary high current rectifier which seemed to be all right. Perhaps 20 kHz is not too much for these devices. Most of the wasted energy goes into heating
up Q4, which should have a heat sink to suit.

The output voltage feedback attenuator uses 50 R resistors in order to draw 50 mA from the output. This is the minimum to maintain stability. As an alternative, shunt the output with a 100 R resistor and use a resistor and potentiometer of up to about 10k each to develop the correct feedback voltage. The drop in output voltage was 200 mV when drawing 5 A which works out to an output resistance of 40 milliohms

The ground points shown in heavy lines have high currents flowing to them and need to be tied back with nice thick wiring, PCB track, etc, to a point close to the incoming battery negative. This is standard practice, really.

No attempt has been made to current limit or crowbar the output. Crowbars are simple to rig and current limiting can be achieved by pulling up the base of Q9 somehow, thereby lowering the mark space ratio of the power pulses.


\title{
PCB FOIL PATTERNS
}


The foil pattern for the JLLH PA amplifier board.

The foil patterns for the Baud Rate Convertor main board (opposite) and the optional PSU board (below).



\title{
SERVICE SHEET
}

\section*{Enquiries}

We receive averylarge number of enquiries. Would prospective enquirers please note the following points:
We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been construc ted correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/ Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightfonvard or where it is important to electronics as a whole;
We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want

\section*{Subscriptions}

The prices of ETI subscriptions are as follows: UK:
£18.10
Overseas: \(£ 22.50\) Surface Mail \$29.50 Surface Mail (USA) £49.50 Air Mail
Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it

\section*{Backnumbers}

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require: the number is \((\mathbf{0 4 4 2}) 48432\). Please allow 28 days for delivery.
We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost \(£ 1.50\) (UK or overseas surface mail), irrespective of article length, but note that where an article appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982, the 1983 index in January 1984, the 1984 index in January 1985 and the 1985 index in December 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1 R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

\section*{Write For ETI}

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).

\section*{Trouble With Advertisers}

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending yourletter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible foryou to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

\section*{OOPS!}

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Low Cost Audio Mixer (June 1985)
In Fig. 6 on page 39, the PCB foil pattern has been incorrectly shown as though from the copper side. The board is shown correctly from the copper side in the foil pattern pages. In Fig. 10 on page 40, the positive power rail at lower left should be shown connected to pin 8 of the TLO72s, IC1-5).

Noise About Noise (July 1985)
In Fig. 5 on page 24, no connection should be shown between the cathode of the diode and the negative side of the 470 u capacitor.

Printer Buffer (July 1985)
The case specified is actually larger than the one used for the prototype. It will, of course, work perfectly well, but if you want to a compact unit use a Verocase \(202-21038 \mathrm{H}(180 \times 120 \times 65 \mathrm{~mm})\) rather than a Verocase 202-21035. The regulator IC17 should be bolted to the back of the case to provide heatsinking or, alternatively, fitted with a TO220 heatsink.
Please note that the designer, Nick Sawyer, has been in touch to inform us that the refresh problem we mentioned in September ETI is dealt with in the printer buffer software. In this case there is no need to replace the TMS 4416 dynamic RAMs, although as far as we know the replacement parts mentioned (Hitachi HM48416 DRAMs) will cause no problems. The full text of Nick Sawyer's letter will appear next month. Meanwhile, our apologies for any confusion caused.

Cortex Parallel 1/O (September 1985) Pins 1 and 2 of IC2 have been swopped over on both the circuit diagram (Fig. 1) and the Veroboard overlay (Fig. 2). Pin 1 should connect to pin 16 on theheader and pin 2 should connect to pin 2 on the header.
Intel 8294 Data Encryption Unit (September 1985) It should be apparent from the text, page 35 , that an actual program has been omitted. This program is for use with the SDK 8085 kit only, and copies may be obtained from us on receipt of a stamped addressed envelope.
Tech Tips - Novel Input Stage (October 1985) The caption against the lower figure should read "Lownoiseoutputat minimum gain", not maximum gain.
Chorus Unit (November 1985)
IC3 is shown on the circuit diagram on page 49 connected to the 9 V supply. It should be connected to the 5 V supply. The foil pattern connections to this IC are correct.
Foil Patterns (November 1985)
The foil patterns for the Modular Test Equipment Waveform Generator and the Chorus Unit are shown from the component side rather than the copper side.
The Rhyth-ROM (November 1985)
R2 has been omitted from the parts list on page 35 It's value is 39 k , as given on the circuit diagram. Also in the parts list, R821 should, of course, read R821.

Cymbal Synth (November 1985)
R18 is labelled as R20 on the circuit diagram (page 59) and the real R20 is missing altogether. It should be shown connected between the base of Q3 and the +ve rail. The overlay diagram is correct in both cases.
Digibaro (February 1986)
Capacitors C1, C3, C5 and C7 should be 470 u 25 V types as shown on the circuit diagram, not 47 u 25 V types as stated in the parts list. We have also been told that one of the companies mentioned in Buylines, Hawke Electronics, no longer supply the MPX100a pressure transducer. The other company recommended, Macro Marketing, should still be able to help.

\title{
REVIEWS - BOOKS
}

68000 User Guide
Lionel Fleetwood. Price: \(£ 8.95\)
Sigma Press, 5 Alton Road, Wilmslow, Cheshire.
The Sinclair QDOS Companion
Andrew Pennell. Price: \(£ 6.95\)
Inside The Sinclair QL
Jeff Naylor and Diane Rogers Price: \(£ 6.95\)
Sunshine Books, 12-13 Little Newport St., London WC2H 7 PP.

68000 Machine Code Programming
David Barrow. Price: \(£ 12.95\)
Collins, 8 Grafton Street, London W1X 3LA.

Having looked at some basic books for the QL (pun intended), we now move on to the heart of the matter - the 68008 and Sinclair's own operating system, coyly titled QDOS.

The growth in the number of relatively low cost computers using the 68000 -series processors (not least, the QL ) means that there will be a corresponding growth in the number of books to support the series. Most of them will pursue comprehensiveness, while some will hope to prepare new and established programmers for the ' 68000 Revolution'.

\section*{68000 Machine Code Programming}

This is quite a large book by paperback standards and the price is correpondingly large. As the title suggests, the book is concerned with the 68000, the 68008, the 68010, and it also contains a large amount of information on the immensely powerful 68020 .
It is a very comprehensive reference work, comprising all the essential information on the processors, and a whole lot more. Among other things, the book contains details of the internal architecture and data organisation of the chips, a summary of the addresing modes, exception handling, supervisor mode, assembler directives and 68020 emulation on the other 68000 s.
Other interesting features of this family of ICs are discussed, for example, concurrent bus and CPU activitiy, pipelined decoding and cache memory.
Around \(60 \%\) of the book is given over to appendices, which are dominated by two very large sections describing the \(68000 / 8\) / 10 and the 68020 instruction sets respectively.

If you have experience of machine code on other processors and want to move to the Motorolas then you will probably need to read another book before tackling this one. However, as a reference manual for a 68000 programmer or for someone moving from the smaller 68000 chips to the 68020 , the book may prove invaluable.

\section*{68000 User Guide}

Which can't be said for this one.
This book contains a 68000 overview and programming model, a brief look at some of the more universal assembler directives and conventions, a reasonable explanation of only the more frequently used op-codes and some general programming advice with unusual examples.
For a newcomer to machine code, the op-code chapter describes a subset of the instruction set quite well. Unfortunately, the examples given are usually in 'structuredidea' form rather than ready for typing into an assembler.

In fact, the author has tried to include too many topics in this short book and, in doing so, has sacrificed useful detail. No one topic is covered very thoroughly and most seem, at times, confusing.

The style is generally lighthearted, with some very strange programming examples. The book is certainly not a complete 68000 user guide, treating some of the more powerful features of the processorall too briefly and some not all all, and is neither a proper user guide nor a preparatory tome for the coming revolution.

The 68000 may be old-hat to some, in the shape of the QL's 68008, a cut-down version of the
full machine featuring an 8 -bit data bus for downward compatibility and an internal architecture like that of its big sister for upward compatability. So let's prise open the QL box and take a look inside.

\section*{Inside The Sinclair QL}

This book - another in Sunshine's growing QL library - purports to be our guide beneath the keyboard. It is divided into two parts.

The first deals with the fundamental principles of digital electronics, at a level suitable for people with very little or no knowledge of computer or any other sort of hardware. The text begins by attempting to describe the very nature of electricity, as we currently (!) theorise it. It then moves through logic gates (!) to show how TV pictures and sound are generated, ending up with a description of microprocessors and their associated systems.

The second section deals specifically with QL, and is more to do with software than hardware, or to be more precise, 68000 assembly language. With this switch, the book also changes for a considerabletime from 'educational' to reference format. Actually, some useful hardware information about the QL is included.
The text keeps our interest while explaining various aspects of computeroperation. This is a simplified description of a very complex piece of equipment and is suitable only as an introductory text for someone who would like to learn about the basics of computing electronics.

\section*{The Sinclair QDOS \\ Companion}

The professional programmer
will be more interested in this especially since it aims to give real help.

One of the problems of writing commercial software for Sir Clive's micros is that he too often decides to release a slightly revised computer. As like as not, your machine code, instead of proving the ultimate in cheque book reconciliation, merely crashes. One way around this, of course, is to rewrite the whole program, making slight changes here and there.
A far betterway - on the QL, at least - is to write your machine code in the first place using QDOS.

The aim of'The QDOS Companion' is to enable you to do just that. Of course, using QDOS has other advantages. Why write a program to print a character to the screen for example, when such a routine already exists in the ROM and is easily accessible through QDOS?

The book is basically a list of all the QDOS calls that can bemade, explaining the parameters needed to enter, the parameters returned from the routine, the function of the routine and so on. This comprehensive list can be divided into a number of sections: multitasking; the 8049 second processor (used for sound production and reading the keyboard); input and output (including microdrives); device drivers; exceptions; interrupts and the job scheduler; and QDOS ultilities

Other useful information includes how to add procedures to SuperBASIC, a complete list of the system variables and memory and microdrive maps.

This reference book will certainly be of value to anyone tho ownsa QLand understands 68000 assembly language.

Leigh Chappell

\section*{OPEN CHANNEL}

As reported last month, big blue IBM declined to join the Corporation for Open Systems, the group set up by a number of American computer manufacturers to define and implement standards which would conform to open systems interconnection (OSI). The idea of OSI is that any computer conforming to it will be able to talk to any other similarly conforming computer.
Now, in a distinctly embarrassing about-face, IBM have decided that a unified opposition to their own systems network architecture (SNA) would be too much too compete with and have joined COS.
In a similarly eye-opening move here in the UK, IBM have managed to weasel their way into a Department of Trade and Industry sponsored project to develop software which will test whether computers conform to the OSI standard.
I'm sorry to be cynical but I'm
sure the only reason why IBM have conducted such turnarounds is that there's gold in them thar hills. If IBM had thought for one minute that their SNA standard could win the day, they would have had no hesitation in maintaining it and making full use of patents, copyrights, royalties etc, in leasing the system to competitors. As the situation now stands, IBM will probably still be able to maintain their piece of the pie with SNA by using delaying tactics within the organisations they have decided to join - it will be many years before OSI finally takes off, remember. Oh well, if you can't beat 'em...

\section*{Just Another Socket In The Wall}

It looked, for a time, as if Oftel was getting to grips with British Telecom and was managing to gently persuade it to liberalise everything for the benefit of the customer. In a recent document, however, Oftel has suggested that, although domestic telephone extension wiring could be done by Bl's competitors, wiring of the master socket (the first socket on the user's premises) would still be in \(B T\) 's hands.

At first sight, this seems logical - it's BT's line and obviously they don't want any old Tom, Dick or Harry sticking an unauthorised connector on the end of it, wilfully or negligently committing damage. After all, BT will willingly come and install master and extension sockets for the user.

On the other hand, you have to consider what happens when you ask BT to do the job for you. First, it often takes a while for them to get their act together and send an engineer out to your house (the time span is better than it used to be, but we're still talking of up to a week or so). Second, you get a whopping great bill for a job that shouldn't cost even one fifth of the amount!
If \(B T\) maintains a monopoly on this condition, only BT benefits (that's what a monopoly is all about, isn't it?). The customer is overcharged and BT's competition is forced out of some essentially worthwhile work. After all, there is no reason why qualified private engineers couldn't do the conversions, and there is no reason why master sockets which the private engineers fit shouldn't be of a sufficiently high standard not to do damage (the other sockets which private contractors would
be allowed to fit presumablyare)
Come on, Oftel. Do the work you're supposed to do.

\section*{DBS}

Finally, the Home Office has decreed that a non-British satellite may be used to broadcast British DBS television channels. This may seem like a small concession, but the previous insistence on all British systems is the main reason why we haven't already got the originally proposed DBS service. As it happens, the British satellite manufacturers up to now haven't been able to provide a satellite which will make an economic proposition of DBS television. Perhaps this change of heart by the Government will make them see the folly of their ways. If they can't reduce costs, then the programme providers will go elsewhere.

About the time you read this, an advertisement will probably appear in the national press requesting potential operators of the DBS service. Later this year the operator whogets the job will be announced. Then, in only another three years (yawn, yawn) we may, just may, have DBS.

Keith Brindley

\section*{MAIL ORDER ADVERTISING}

\section*{British Code of Advertising Practice}

Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.

\section*{Mall Order Protection Scheme}

If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Argus Specialist Publications Ltd will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of this publication, summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent (up to a limit of \(£ 2,000\) per annum for any one Advertiser so affected and up to \(£ 6,000\) per annum in respect of all insolvent Advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with, at the discretion of this publication but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties)
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc., received as a result of answering such advertisements). Classified advertisements are excluded.

\section*{TRAINS OF THOUGHT}

Watch television in the same house as an operating model railway and you will soon be well aware of the amount of electrical noise they generate. Turn the light off in the railway room leav ing the trains running and you will see the multitude of spark-gap transmitters responsible, aided by.their direct coupling to a most effective antenna system, the track! Some proprietary model locomotives incorporate so-called 'suppressors' - in practice just small capacitors in parallel with the motor - but they do little to alleviate the problem.
The problem is only a petty
irritation until you try to operate certain kinds of logic circuit close to the layout. Circuits using TLL flip-flops may prove so susceptible to spurious sets and resets as to be useless. The trouble is that TL flip-flops can be tripped by pulses as low as 1 V , and with 12 V motors whizzing around on circuits all too prone to interruption, transients of 1 V occur quite frequently.
So what can we do? Keeping the track, the locomotive wheels and power pick-ups scrupulously clean undoubtedly helps to reduce the amount of sparking but is most unlikely to eliminate all of it. Connecting 47 R resistors in series with 100R capacitors between the rails at intervals of \(2 \mathrm{ft}(600 \mathrm{~mm})\) will reduce the amount of electromagnetic radiation, but will cause severe loading


\section*{PLAYBACK}

Question: What sort of a noise annoys an oyster? An up-dated version of this old chestnut could be: what sort of a noise annoys an audiophile? Noise has been one of the principal annoyances associated with sound reproduction from the earliest days. This is why noise specifications figure prominently in the specifications quoted for various items of equipment.

One of the chief sources of noise has been recording tape. Early examples had high noise levels, and wide tracks travelling at high speed were the only means of reducing noise at source whilst maintaining a reasonable high frequency response. The compact cassette would have been impossible with the tape then in use.

\section*{To ' \(\mathrm{B}^{\prime}\) Or...}

To reduce tape noise various noise-reduction systems were introduced. The best-known of these is Dolby B which is found on the majority of tape decks. This functions by increasing the recording gain of sounds below a
of high-frequency train lighting systems (or high-frequency track circuiting). Perhaps the best bet is to accept that electrical noise is a concommitant of model railways and to employ flip-flops purposedesigned for noisy environments.

One of my favourite techniques is our old friend the 555 timer, configured as an interval timer whose period is infinity. Ground the timing circuit input (pin 6) and use the trigger and reset inputs (pins 2 and 4 respectively) to set and reset the device. The 555 needs a pulse of \(\mathrm{Vcc} / 1.5\) to trip it, so it is pretty reliable when operated from a 12 V supply. I've never had any spurious sets or resets with one. Its push-pull output (pin 3) can usefully sink or source up to 200 mA , and the discharge path (pin 7) is uncommitted, allowing it to serve as an open-collector duplicate of the output which can interface to TTL inputs irrespective of the 555's supply voltage.

Of course, if this isn't satisfactory, you can always eliminate the source of interference. Let your trains use clockwork or live steam motive power! And if those are a bit too exotic for your tastes, you can always do as one of my friends does - run electrically-powered trains from on-board NiCad cells via a radio-controlled speed circuit!

Roger Amos.
certain level and within a particular frequency range, then reducing the same ones at playback. That restores the original proportion, but reduces anything that appeared between recording and playback, such as tape noise.
Though apparently an ideal solution, there are, as always, snags. Identical levels must be presented to the recording and playback processors or variations of frequency repsonse will result. Level differences can result from various causes including using another brand of tape. There can be modulation of the noise, and also of frequencies occuring simultaneously that are outside of the processed band. furthermore, as all circuits containing active components add distortion, the noise reduction circuitry can be no exception.

Thereare other noise-reduction systems such as Dolby C (which operates over a widerband), dbx, High Com, and ANRS, all of which have appeared on domestic recorders. These all have their good and bad points, but even the bad systems have been accepted as being preferable to the noise.

While all this has been going on, tape development has been steadily moving ahead. Numerous small improvements in particle shape, size, dispersion and other features have added up to significant improvements in performance, including a notable reduction in noise.

\section*{Noises Off}

You can check this for yourself. Record about a minute of silence on a high-grade tape with the recording level control right back. Now replay it at normal setting of the volume control, turning up the control until noise can be heard. This is the combined effect of all noise sources. Next, depress the pause control. The noise you now hear is that mainly due to the pre-amp circuits, the difference being that contributed by the tape. In many cases, especially in 'medium-fi' equipment there is only a marginal difference between the two levels.

So, tape noise may now be only a small part of the total. This raises the question: are noise-reduction circuits with their inherent drawbacks any longer necessary? Have they outlived their usefulness? If you record BBC music concerts you will find anothertype of noise far more annoying - audience noisel Which brings us back to our opening question. The answer if you haven't heard it before is: \(A\) noisy noise annoys an oyster; and some audiences can be very noisy!

Vivian Capel

\section*{ALF'S PUZZLE}

Passing Alf's workbench one day, we all noticed an interesting looking circuit diagram on a scrap of paper. 'What is it, Alf?' we asked. Alf replied that it was something he had invented, but he couldn't remember what it did. A simplified version of the circuit is shown in Fig. 1. The coffee stains and half a fish-paste sandwich have been omitted for clarity. What do you think it could be?


Fig. 1 The mystery circuit
When we first decided on a puzzle for the April issue, it was going to be slightly different from the one that actually appeared. It was going to begin with a capacitor charged up to 10 V , which would then be connected with another capacitor of the same value. The text-book formulae would show that either some charge had been gained or some energy lost in the process.

The answer would have been that energy was lost because the first capacitor would be effec tively short-circuited by the second, so losses would occur in the form of a spark, say, on heating of the capacitor leads.

At the last moment, Alf decided to confuse the issue further by using four capacitors. We thought that would make no difference to the answer. But when we came to look at the puzzle again, we found
that Alf had accidentally invented a new onel The odd effects that occur when you short one capacitor with another will do to explain the discrepancy in the puzzle as it was presented, but suppose that Alf had simply started off with the series-parallel arrangement of capacitors and compared them to a single capacitor (Fig. 2)?
The arrangement of capacitors in Fig. 2a should have the same value as the single capacitor in Fig. 2b. If we do a quick calculation of the total energy of Fig. 2a, it comes to \(25 \mu \mathrm{~J}\) for each capacitor, or \(100 \mu \mathrm{~J}\) total, the same as for the single \(2 \mu \mathrm{~F}\) capacitor. The charge, however, would appear to be \(10 \mu \mathrm{C}\) for each capacitor in Fig. 2 a , making a total of \(40 \mu \mathrm{C}\), as opposed to \(20 \mu \mathrm{C}\) for the single capacitor in fig. 2b.

If the series parallel arrangement stores twice as much charge as the single capacitor, how can they be equivalent? Wouldn't it take twice as much current for a given time to charge Fig. 2 ato 10 V as it would for Fig. 2 b ? what is going on?


Fig. 2 Last month's puzzle?
As the rules of Alf's puzzle say that we only have to give one answer each month, we're not going to tell you. If anyone would like to write in with a solution to this little mystery, we will publish the best answer (it must be clear enough to be understood by aten year old and convincing enough to persuade the most sceptical) and as an added incentive the author of the published reply will receive a prize of \(£ 10\).


\section*{ELECTRONICS TODAY INTERNATIONAL}

\section*{Lineage:}
\(45 p\) per word (minimum 15 words) Semi Display: (minimum 2 cms ) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)


01-437 0699 Ext 291

Send your requirements to: Stuart Taylor ASP Ltd., 1 Golden Square, London W1.


\section*{COMPONENTS}

\section*{ROMNEY MARSH ELECTRONICS (PROPRIETOR: D. J. HOOKER)}

RESISTORS
METAL FILM RESISTORS \(5 \% 1 / 1 / 20\) 20 EACH \(150 / 1080\) p/ 100 PER VALUE. 10 OF EACH VALUE 10R-1M E 12 SERIES 610 TOTAL \(£ 6.75,25\) OF EACH VALUE \(£ 12.95\). CAPACITORS
ELECTROLYTIC (RADIAL 16v) 10u,22u,47u,-6p; 100u.-7p;220u,-16p;470u,-18p; 1,000u, POLYSTYRENE ( \(160 \mathrm{~V} 5 \%\) ) \(10 \mathrm{DFF-1nF}, 9 \mathrm{p}: 1 \mathrm{1n5}-12 \mathrm{nF}, 11 \mathrm{p}\)
 MINIATURE 100v CERAMIC PLATE \(1,2 \mathrm{pF}-1,000 \mathrm{pF}, 6 \mathrm{p} ; 1,200 \mathrm{pF}-4,700 \mathrm{pF}, 7 \mathrm{p} ; 10 \mathrm{nF} / 63 \mathrm{v}\), \(22 \mathrm{FF} / 63 v, 8 \mathrm{D}\).
CERAMIC DISC 50 v 0.0.1uF, 4p;0.14F,8p.
SEMICONDUCTORS
DIODES 1N4001/2/3/4,4p; 1N4005/6/7,6p;1N5404/6,12p; 1N5408,16p; 1N4148,2p,f1.00/ 100.

ZENERS \(2 v 4400 \mathrm{mw}, 8 \mathrm{po} ; 2 v 7-39 \mathrm{v} 1.3 \mathrm{w}, 12 \mathrm{p}\). BRIDGE RECTIFIERS \(1.5 \mathrm{~A} 50 \mathrm{v}, 18 \mathrm{p} ; 100 \mathrm{v}, 20 \mathrm{p}\) TAANSISTOAS BC107/8/9,10D;BC182/3/4L,Bp;BC212/3/4L,8p;BFY50,20p;2N3055,40p. ICS 741, 18p;555,20p. REGULATORS 7805,7812,7815,7824,35p;7905,39p;78L05,78L12 LOW PROFILE D.IIL. IC. SOCKETS 8PIN, \(5 \mathrm{P}, 14\) PIN, 8p; 16 PIN;9p; 18PIN, 10 p ; \(20 \mathrm{PIN}, 11 \mathrm{p}\) : 24PIN, 12p;28PIN, 14p;40PIN, 19p. PLEASE ADD 60p POSTAGE \& PACKING, TO ORDER. PENNYWOOD, CLARK ROAD, GREATSTONE, NEW ROMNEY, KENT TN28 BPB


LOWEST PRICED TOP QUALITY fire and Intruderr alarm equipment, etc. SAE for catalogue Security Services, 62 High St, Hythe, Kent CT21 5JR.

\section*{BOOKS \& PUBS.}


\section*{We use only}
\(10 \%\) of our mental potentials

These are the words of Albert Einstein, the greatest physicist of recent times. L Fon Hubbard's discoveries in the field of the mind prove today that Einstein was right
Cience book "DIANETICS: The Modern cience of Mentai Health" L. Ron Hubbard takes one more giant step in this direction. He reveais how anyone can use his discoveries to isolate the exact barriers that have so far prevented people from using More and more people from all life use Dianetics technology today The many written reports on their suc cess are the best proof of the quality of this ook. Find out for yourself. Order your copy of his remarkable book toda Price \(£ 3.95\) paperback \(£ 17.50\) hardback. Send to Church of Scientology Saint Hit Foundation, FREEPOST (ETI). East Grinstead, Sussex RH19 4ZA (no stamp required)

\section*{COMPONENTS}

EGR Electronic
ESh components
- Full range of components
- Capacitors, Vero-boards LED's
- Audio Connectors \& Switches
- Amplifier Modules and Cases Free Price List available

13A STATION ROAD
CULLERCOATS, NORTH SHIELDS TYNE AND WEAR NE30 4PO 091-251 4363

\section*{COILS \& CHOKES.}

\section*{MAXI-Q}

COILS AND CHOKES PREVIOUSLY MADE BY DENCO S.A.E. PRICE LIST

8 BRUNEL UNITS, BRUNEL RD, gorse lane ind. estate, CLACTON, ESSEX CO15 4LU. TEL: (0255) 424152


\section*{COMPUTER ADD-ONS}

AMSTRAD OUTPUT PORT. Plugs into printer port and provides seven open-collector outputs. Easy to use from Basic or \(M / C\). £14.95 inc. S.A.E. for details. NCJ Electronics, 13 Binfield Square. Ella Street, Hull HU5 3AP
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
6809 CPU, 14; 32, \& 128K RAM/EPROM cards. Disk/Real-time Clock, VIA \& Plsupplies, K/boards, etc from stock, bulld your own 6809 Flex system from scratch. Sae for details: \\
RALPH ALLEN ENGINEERING Forncett End, Norwich NR18 1HT Tel: 095389420
\end{tabular} \\
\hline EQUIPMENT \\
\hline PRINTED CIRCUIT BOARDS one-offs and small quantities \\
\hline \multirow[t]{2}{*}{supplied. Artwork carried out. Fennell Industrial Electronics,} \\
\hline \\
\hline 54 Watling Street, Nuneaton, \\
\hline Warks CV11 6JL. Tel: 0203 \\
\hline
\end{tabular}


\section*{FOR SALE}

STEREOAMPS 120watt £21 (inc.) \(\ldots .(60+60)\) case stereo controls .... and din/sockets + magnetic pickup preamps and selector .... STAB/PSU .... 240 volt .... KIA, 8 Cunliffe Rd., Ilkley LS29 9DZ.

POWERTRAN D.D.L. Partially built £80. LINSLEY HOOD 75W deluxe amp built, needs testing £70. TRANSCENDENT 2000 built, excellent condition \(£ 100\). T20 +20 built £15. D.J90 MIXER partially built, 100 W amp. BSR TURNTABLE X2 in disco console. Never used £220 ono. POLYSYNTH + expander ( 8 voice total) excellent condition \(£ 400\) ono. (Cost £700). Tel: Weyhill (026477) 2763

MICROTAN/TANEX computer plus keypad. Fully assembled and working. Also keyboard. Offers? Tel: Stocksfield (0661) 843766.

\section*{KITS}

ETI KITS assembled and tested* by electronic trainees under supervision within a purpose built electronic workshop for as little as £10* (* depending on type of kit and complexity). Contact:- A.J Smith, Dept K.A. Electronics Workshop, Lincoln I.T.E.C. Dean Road, Lincoln LN2 4JZ. Tel. 0522 43532.

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out. Special Offer: Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.


\section*{J. Linsley Hood Designs}


\section*{POWER SUPPLIES}

150W SWITCHMODE PSU. +5 V at \(8.4 \mathrm{~A} ;+12 \mathrm{~V}\) at \(4.8 \mathrm{~A} ;+24 \mathrm{~V}\) at 1.7 A ; -12 V at 0.2 A . Perfect working order, over \(£ 70\) in Henries Radio £29 + Carr. 0245-50927 after 6.00 pm .

EX42 AND CP/M? "PRT-SYS", Z80 program simulates EPSON MX80 Operation. Full source code/manuals disk copying most formats: CP/MMSDOSAmstrad... SAE NETCOM, Highall Farm, Nettlestead, Suffolk.

\section*{SPECIAL OFFERS}

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited, Finsbury House, 31 Head St, Halstead, Essex C09 2BX.

VERSATILE Z80 BOARD complete with non-volatile S RAM, on board power supply, 7 sequential relay functions, outputting printer/ displays. If required programmed to your specification. Fennell Industrial Electronics, 54 Watling Street, Nuneaton, Warwickshire CV11 6JL. 0203382296.

DESIGN SERVICES, microprocessor, special interfaces, analogue, digital, signalling, alarm systems, PCB design and artwork. Prototype and small batch production. ALAB ELECTRONICS. Grantham (0476) 860089.

\section*{SCOPES}

\section*{MENDASCOPE LTD.}

REPAIR \& RECALIBRATE OSCILLOSCOPES.
ALL MAKES ALL MODELS.
NATIONWIDE COLLECTION \& DELIVERY FREE ESTIMATES
Phone 069-172-597

TEKTRONIX OSCILLOSCOPES 547 Dual Trace 50 MHz Delay Sweep E195. 545 B Dual Trace 24 MHz Delay Sweep \(£ 135.551\) Dual Trace 24MHz £125.556 Dual Beam Four Trace 50 MHz Delay Sweep \(£ 345\). 7 B 50A Time Base £295. 107 3n S Pulse Generator £45. Marconi. TF868 LCR Bridge £85. Telequipment D83 Scope 50 MHz Delay Sweep \(£ 445\). Tel: 01-868 4221.

CLEARANCE BARGAIN!! Thousands of LED 7 Segment Display, brand new 1.4 pin DIL RED .43 inch common anode display 0-9 with right and left decimal point in stock. 10 pieces \(£ 2.50\) ( 25 p each) 50 pieces \(£ 10.00\) (20p each) 100 pieces \(£ 15.00\) ( \(15 p\) each) 1000 pieces \(£ 100.00\) (10p each). Telephone your order to 0296613816.

FREE MEMBERSHIP to a new national electronics club. For details and a free gift of components worth over £ 10 send only E1 p\&p to Woodside, Dowselt Lane, Ramsden Heath, Essex CM11 1JL.

\section*{SWITCHES}

\section*{VOICE/SOUND ACTIVATED} SWITCHES Easy to follow diagrams and uses only \(£ 1\). Components and P.C.B.s available from HERRINGTON, 63 Homefarm Rd., Hanwell, London W7 1NL. Tel: 01 5786627.

\section*{TEST EQUIPMENT}

TOP PRICES PAID for surplus electronic test equipment. Always a good selection of SIG-GENS, METERS and SCOPES for sale. Phone (0438) 353828.

\section*{WANTED}

TURN YOUR SURPLUS tran sistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage tester, van de graph surveillance devices ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street, Ledbury HR8 2AA.

\section*{REPAIRS}

ZX SPECTRUM. VIC20, C64, BBC, QL 15 40/41 Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., Unit 7, Wentworth Industrial Court, Goodwin Road, Britwell, Slough. Tel: 075321391.

\section*{counses}

\section*{ For A NEW CAREER IN
COMPUTER OPERATING OR PROGRAMMING OR COMPUTER SERVICING}

We will offer you FREE training and help in finding a job. Check if you qualify * Over 19 ? * Out of full-time Education for 2 years or over? * Eligible for MSC TOPS/JTS
Sponsorship? (Check with local Job Centre) Sponsorship? (Check with local Job Centre)
If you live within, commutable distance of London, post this coupon for your FREE
Aptitude Test at our centre. Aptitude Test at our centre.

INTERESTED IN SERVICING \(\square\) PROGRAMMING \(\square\) OPERATING \(\square\) NAME..
ADDRESS

THE LONDON COMPUTER AND ELECTRONICS SCHOOL GLENTHORNE HOUSE, HAMMERSMITH GROVE, LONDON W6 OND

\section*{CLASSIFIED ADVERTISEMENT ORDER FORM}

Rate 45p per word (min 15 words) Post to: ETI, 1 Golden Square, London W1A 3RB

ADVERTISERS PLEASE ADD 15\% VAT
\begin{tabular}{|l|l|l|}
\hline & & \\
\hline
\end{tabular}

Please use 8LOCK CAPIIALS and include post codes.

\section*{Classification}

Name (Mr/Mrs/Miss/Ms)
(Nowis secor min wy
Addreses

SIgnature. .Oat Deytlme Tel. No. CROSSWORD


Solution to Crossword No. 3
\begin{tabular}{lll} 
Across & 18) Tuner & 4) Echo \\
\begin{tabular}{ll} 
1) Female & 19) PROMS
\end{tabular} & 5) Band pass \\
5) Banana & 20) Ears & 6) Algol \\
8) Headphone & 22) Wirewound & 7) Apple \\
9) Coil & 23) Access & 9) Colour code \\
10) Steel & 24) Needle & 12) Base bias \\
\begin{tabular}{lll} 
11) Spool & & 13) Terminal \\
15) ABS & Down & 17) Tesla \\
16) Open & 2) Electric & 18) Triac \\
& 3) Address Bus & 21) Neon.
\end{tabular}
\end{tabular}
18) Tuner
22) Wirewound
23) Access
24) Needle

Down
2)
3) Address Bus
4) Echo
) Band pass
6) Algol
9) Colour code
12) Base bias
13) Termina
18) Triac
21) Neon.

\section*{ADVERTISERS INDEX}
AliDin ..... 8
BK Electronics ..... IFC
B N R \& E S ..... 11
Cirkit Holdings ..... 8
Cricklewood Electronics ..... 12
Display Electronics ..... IBC
Electrovalue ..... 12
Greenbank ..... 12
ICS ..... 13
Jay Tee Electronic Supplies ..... 8
Maplin ..... OBC
Micro-Concepts ..... 10
Microkit ..... 15
Micro-Processor Engineering ..... 11
Rapid Electronics ..... 6
Riscomp ..... 13\&15
Stewarts of Reading ..... 10
T K Electronics ..... 12
Technomatic ..... 16\&17
Universal Semiconductor Devices ..... 10
Watford Electronics ..... 45

ACROSS
1) Make attractive to ferrous metals (9).
8) Computer peripheral, for converting desk top movement into cursor movement (5).
9) Method of manufacture of sturdy aluminium boxes (3-4).
11) Two channel (6).
12) Another name for an aerial (7).
13) Gas commonly used in high voltage lamps (4).
14) Commodore's famous desk top micro (3)
14) \(\mathbf{4 0 \%}\) of solder (3).
18) Standard equalization curve for phono signals \((1,1,1,1)\).
21) Light-pen-detectable data found on products on supermarket shelves (7)
23) One of the qualities of a musical note - not pitch or loudness (6).
24) Standard transistor technology as opposed to, say, field-effect (7).
25) One-way conductor? (5).
26) Storing data or audio signals on magnetic tape (9).

\section*{DOWN}
2) Adjust IF stages to peak performance (5).
3) Rechargeable batteries use this with cadmium (6).
4) World-wide manufacturer of electronic components and domestic electronics \((1,1,1)\).
5) One third of a transistor? (7).
6) It flows (7).
7) Oscillation at a natural, inherent frequency or one of its harmonics (9).
10) Coordination signal so that two or more circuits are triggered or oscillate independently but mutually (4).
12) Another term for signal level.
13) Variable resistor, but board mounted and only used in setting up the quiescent state of a circuit (7).
16) HF signal on which an LF signal is super-imposed (7).
19) Most common type of aerial used in television reception (4).
20) Arelay in the collector circuit of a power transistor may be called this (1, 1, 4).
22) FET terminal (5).
24) Type of UHF connector \((1,1,1)\).
)
:The ORIGINAL FREE OF CHARGE dial up data: - base. Buy, browse or place YOUR OWN AD for : goods or services to sell. 1000 's of stock item
spares and one off bargains. Updated daily. spares and one off bargains. Updated daily
ON LINE NOW. CCIT, 8 bit word, no parity

For 300 baud modems call 01-679 1888 : For 1200-75 baud modems call 01-679 6183
\(\qquad\) Your monitor from its computer!! For
only £24.95 it becomes a SUPERB HIGH QUALITY* COLOUR * TV SET The fabulous TELEBOX an INVALUABLE MUST for the owner o ANY video monito with a composite input, colour or monochrome
Made by a major UK Co as a TOP QUALITY, stand alone UHF uner and costing OVER£75 to manufacture, this opportunity to TELEBOX consists of a compact stylish two tone charcoal moulded case, containing ALL electronics tuner, power supply etc monitor into a HIGH QUALITY COLOUR' TV SET, giving, a rea sound-THE TELEBOXev uality te an external speaker, PLUS an auxiliary output for superb Quality television sound via your headphones \(h\) latest technology, BRITISH manufactura fully uneable 7 channe push buttontuner Auto AGC circuit, SAW filter
LED status indlcator, fully isolated 240 VAC power supply for total LIMITED QUANTITY- DON'T MISS THIS OFFER! ONLY £24.95 OR £19.95 if purchased with ANY of our video monitors. Supplied BRAND NEW with full instructions and 2 YEA

\section*{GOLOUR 8 MOWOGHROME MOUITOR SPEGALS}

\section*{SYSTEM ALPHA' \(14^{\prime \prime}\) COLOUR MULTI INPUT MONITOR}

Made by the famous REDIFFUSION Co for their own professional computer requirements. Two video inputs: RGB and PAL Composite Videa allow direct connection to BBC/IBM and most other makes of micro computers or VCR's, Connected to computer or VCR tor superior sound quality. Many other features: Contrast and Brightness - even in RGB mode Separate Colour and audio plug for RGB input, modular constructlon etcetc
This Must Be ONE OF THE YEAR'S BEST BUYS. PC USER Supplied BRAND NEW and BOXED complete with DATA and
guarantee ONLY £149.00 as above OR IBM PC Version \(£ 165.00\) guarantee ONLY £149.00 as above OR IBM PC Version \(£ 165.00\)
15 Day'D' skt \(£ 1.00\), BNC skt 75 p BBC Interface cable 55.50
DECCA \(8016^{\prime \prime}\) COLOUR monitor. RGB input.
Little or hardly used manufacturers surplus enables us to offer this special
converted DECCA RGB Colour Video TV Monitor at a super low price of only £99.00, a price for a colour monitor as yet unheard of! Our own interface, DECCA 80 series TV chassis give 80 column definition and quality found only on monitors costing 3 TIMES OUR PRICE. The quality for the price has to be computer or any oular construction auto degaussing circuit attractive guarantee Although used units are supplied in EXCELLENT condition.
DECCA \(80,16^{\prime \prime}\) COLOUR monitor. Composite video input Same as above VCR or AUDIO VISUAL use ONLY \(£ 99.00+\) Carr
REDIFFUSION MARK 3, 20" COLOUR monitor. Fitted with standard 75 ohm composite video input and sound amp This large screen colour display is idea
for SCHOOLS, SHOPDS, DISCOS, CLUBS and other AUDIO VISUAL appli

BUDGET RANGE EX EQUIPMENT MONOCHROME video monitors Units are pre tested and set up for up to 80 column use. Even when MINOR screen burns exist - normal data displays are unaffected 30 day guarantee

KGM \(320-1 \mathrm{~B} / \mathrm{W}\) bandwidth input, will display up to \(132 \times 25\) lines \(\mathbf{£ 3 2 . 9 5}\) \(\mathbf{9}^{\prime \prime}\) KGM 324 GREEN SCREEN fully cased very compact unit Only \(£ 49.00\)

\section*{} GOULD OF443 enclosed, compact switch mode supply with DC regulated 166 cm .110 or 240 V input. BRAND NEW only \(£ 16.95\)
GOULD GB-40A \(5 V 40\) amp switch mode supply NEW 130.00 AC-DC Linear PSU for DISK drive and SYSTEM applications. Constructed on a
rugged ALLOY chassis to continuously supply fully regulated DC rugged ALLOY chassis to continuously supply fully regulated DC outputs of +5 v
\(@ 3\) amps, \(-5 \mathrm{v} @ 0.6\) amps and \(+24 \mathrm{v} @ 5\) amps. Shot circuit and overvoltage

KGMMRDS
Manufacturer's BRAND NEW surplus DEC 434 ncoded keyboard with 67 quality gold plated switches on X-Y AMKEY MPNK-114 Superb word processor chassis keyboard on single PCB
with 116 keys Many features such as On bard Min coded character set with 31 function keys, numeric keypad cursor pad

\section*{ \\  \\ NOW only erses \\ Purchase ledger, supports up to} , minetain



 Bise iex

The central processor plinth contains the 64 K , Z80A processor, DUAL TEAC 55 F \(51 / 4\) CENTRONICS and system expansion ports and if that's nSU, 4 K of memory mapped SCreen RAM, disk controller, RS232, \(8^{\prime \prime}\) disk drives, either in double density or IBM format The ultra slim 92 key, detachable keyooard features 32 user definto FOUR USER peypad and text editing keys, even its own integral microprocessorwhich allows the maln ZBOA to devote ALL its time to a green, ant-glare etcher screst character problems found on other mach ines The attractive detachable \(12^{\prime \prime}\) monitor combines systemfA VP1 complete Professional PRESTEL Numeric keyad Climline desk top unit containing Modem, standard RGB colour monitor. Many other features port etc. BRAND NEW with DATA. A FRACTION OF ALPHATANTEL. Very compact unit with integral FULL ALPHA NUMERIC keyboard Just add a domestic TV receiver and you have a superb PRESTEL system and
via PRESTEL the cheapest TELEX service to be Memory dialling etces: CENTRONICS Printer output, DIY mod for RGB or Composite video outputs. AS NEW only E1 25.00
Post and packing


\section*{4164200 ,} \(£ 1.502112 £ 10.002114 \quad £ 2.502102 £ 2.00\) 6116 £ 2.50 EPROMS \(2716 £ 4.502732 £ 3.00\)
\(27644.9527128 £ 5.506800 £ 2.506821 \Sigma 1\) 8088 £8 NEC765 88 685A \(5.508086 £ 15\) £22 8251 £ 8748 £15 Z80A DART 8650 Z80A CPU £2.00. Thousands of IC's EX STOCK

\section*{DIER DRIVZ}

Japanese \(51 / 4^{\prime \prime}\) half height, 80 track double sided disk Sold as NEW with 90 day guarantee ONLY 885.00 TEC FB-503 Double slded HH 40 TRK NEW \(£ 75.00\) SUGART SA400 SS FH 35 TRK £55.00
SIEMENS FDD100 SS FH 40 TRK \(£ 65.00\)
carrlage on \(514^{\prime \prime}\) drives \(£ 5.50\). ISK CASES with internal PSU

 SHUGART800/801 SS EXI £175.00 SHUGART851 DS
\(£ 175.00\)
\(£ 250.00\)
martcase
£595.00 MITSUBISHI M2894463 8" DS 1 Mb equiv. to SHUGART SAB50R. BRAND NEW at \(£ 275.00 \quad\) +pp \(£ 8.50\)
DYSAN \({ }^{\prime \prime}\) Alignment disk \(\quad £ 29.00+\mathrm{pp} £ 1.00\) Various disk drive PSU's Ex Stock SEE PSU section. DRE/DIABLO Series 302.5 Mb front load \(\mathbf{8 5 2 5 . 0 0}\) Exchangeable version £295,00. ME3029 PSU£95.00
DIABLO \(44 /\) DRE4000A, \(5+5 \mathrm{Mb}\) from \(£ 750.00\) DIABLO 44/DRE4000A, B \(5+5 \mathrm{Mb}\) from 8750.00
CDC HAWK \(5+5 \mathrm{MbE795}, 00\). CDC 976280 Mb AMO3 Etc
PERTEC D \(34225+5 \mathrm{Mb}\)
RODIME \(514^{4 \prime}\) Winchesters ex-stock from \(£ 150\) CAL Clearance items - Sold as seen - No guarantee. ICL 2314 BRAND NEW 14" Mb Femovable pack hard \(\begin{array}{ll}\text { disk drive cost over } £ 2000 \text { with data } & \text { ONLY } £ 99.00 \\ \text { BASF } 6172 \mathbf{8}^{\prime \prime} & 23 \mathrm{Mb} \text { Winchesters }\end{array}\) Unless stated all drives are refurbished with 90 day
guarantee. Many other drives and guarantee Many other drives and spares in stock-call

Join the communications, revolution with our super to suit all applications and budgets. DACOM DSL2123 Multil standard \(300-300,1200-75\) Auto answer etc \(\quad\) E268.00
 DACOM DSL2123GT The CREAM of the intelligent etc. etc
Steebeck SB1 212 V22 1200 baud FULL EUPL. 20 Sync or async optional auto dial 1 £465.00 TRANSDATA 307A ACOUStic coupler 300 baud full
duplex originate only RS232 interface \(\quad\) E49.00 Ex BRITISH TELECOM full spec, CCITT, ruggedised RS232 interface. MODEM 13A 300 baud unit, only 2." high fits under MODEM 20-1. 75-1200 baud. Compact unit \(£ 45.00\) MICRONCTBer end to PRESTEL TELECOM GOLD MICRONET etc
MODEM 20-2 \(1200-75\) baud Same as \(20-1\) but for Computer end
DATEL 2412. Made by SE Labs for BT this two part unit is for synchronous data links at 1200 or 2400 COST OVER £800. Our price ONLY £199 +pp 88.00 DATEL 4800, RACAL MPS4B00 baud modem, EX

\section*{SPECIAL OFFER}
ire line. ONL
£85.00 PER PAIR + pD 10

\section*{}
speed matrix printers. Buift in Japan for the Hazeltine Corporation this unit features quality construction graphics; 6 type fonts. up to \(9.5^{" ~ s i n g l e ~ s h e e t ~ o r ~}\) paraliel interface. Many other features. BRAND NEW
and BOXED. COST 420 . Our price Only \(£ 199.00\) REGMAREABLE EATITRIES Dry Fit MAINTENANCE FREE by Sonnenschein \(\begin{array}{rrr}\text { A300 } 07191315 \text { †2v 3Ah NEW } & \mathbf{£ 1 3 . 9 5} \\ \text { A300 }\end{array}\) A300 071913126 V 3Ah NEW
A300 07191202 6-0-6v 1.8Ah TESTED Ex
Equip \(£ 5.95\)

\section*{voutarumats}

Standard VDU data entry terminals QUME QVT108. Current product terminal with detachable keyboard, \(12^{\prime \prime \prime}\) Green screen;
2 page RAM, TVI 925 , Hazeltine, ADMSA emulations,
software setup, \(25 \times 80\). Clock Swivel and tilt base, Printer port, Function keys etc. BRAND NEW and BOXED AT ALMOSTHALF PRICE Only £425:00 screen \(24 \times 80\) display, graphics, cursor addressing,
printer port etc Very good condition TESTED complete With manual only £225.00 ADDS 520 - Dumb terminal, used, \(12^{\prime \prime}\) b/w screen
RS232 interface and printer port. TESTED.
ONLY \(£ 125.00\). Carriage on terminals \(£ 10.00\)
100 's of other terminals in stock CALL for more details.

\section*{DBFLAM} ELETREATS

All prices quoted are for U.K. Mainland, paid cash with order in Pounds Sterling PLUS VAT. Minimum order value £2.00. Minimum Credit Card order \(\mathbf{1 0 . 0 0}\). Minimum BONA FIDE account orders from Government Depts, Schools, Universities and
9.30-5.30. Sat 10.30-5.30. We reserve the right to change prices and specifications without notice. Trade, Bulk and Export 32 Biggin Way, Upper Norwood, Lond spen SE19 3XF Telephone 01-679 4414 Telex 894502 Data 01-679 1888
```


[^0]:

[^1]: Error Detection
 ASCII (The American Standard Code for Information Interchange)

[^2]: We understand that some or all of the parts for this project will be available from Hart Electronic Kits Ltd, but we didn't have the time to sort out the details before going to press. We suggest contacting them directly at Penylan Mill, Oswestry, Shropshire SY10 9AF or on 0691-652 894. The boards will also be available from our PCB Service, but see the note in News Digest.

