

MICROBOX II the 6809 single board computer that you build yourself

Gary Herman: Editor
Ian Pitt: Assistant Editor
Paul Chappell: Project Editor
Jerry Fowler: Technical Illustrator
Paul Stanyer: Ad. Manager
C̄aroline Faulkner:
Classified Sales Executive
Kerry Fowler: Copy Control
Dave Bradshaw: Group Editor

- Electronics

Peter Welham: Publishing Director
Jim Connell: Chairman
PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Eolden Square, London W1R 3AB.
DISTRIBUTED BY:
Argus Press Sales \& Distribution Lid.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd.
The Garden CIty Press Lid
COVERS DESIGNED B
MM.Design \& Print.
MM.Design \& Print.
COVERS PRINTED BY:

COVERS PRINTED B
Alabaster Passmore.

ABC | Member of the |
| :--- |
| Audit Bureau |
| of Circulation |

Electronics Today is normally published on the first Fri day in the month preceding cover date. \square The contents of this publicatfon including all articles. deslgns, plans drawings and proyrams and all copvright and other in-
tellectual property rights therein belong to Argus tellectual property rights therein belong to Argus
Specialist Publications Limited. All rights conferred by specialist Publications amited. Alirghts conferred by rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv reproduction reoulres the prior written consent of the Company. (c) , 985 Argus Specialist Publications Lid Li All reasonable Care is taken in the preparation of the magazlne contents, but
the publishers cannot be held levally responsible for errors. Where mistakes do occur, a correction will norerrors. Where mistakes do occup, a correction will normally be published as soon ds possible afrerwards. All cepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or av ailability which may occur after the publica. tlon has closed for press.

- Subscription Rates. UK $£ 16.30$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

TI Announce E-Beam Semi-Custom IC Service

E

- lectronic Equipment manufacturers will soon be able to have small quantities of semicustom ICs produced to their specific requirements at low cost and in about a third of the usual time. The service will be operated by Texas Instruments from their Bedford headquarters starting in the autumn and will use electron beam lithography, a technology which not previously been available commercially anywhere in the world.

TI will be supplying semicustom chips based upon 3micron single level HCMOS gate arrays. Customers will be able to design ICs on their own miniand micro computers using low-cost CAD packages supplied by Texas. Tested prototype ICs should be ready for delivery about two weeks after the design has been completed, a considerable improvement when compared with the six week period usually required by traditional procedures.
The electron beam system is faster because the circuit is literally carved out of a slice of silicon by a computer-guided beam.

This takes substantially longer than the usual photographic method, but the time and expense saved through not having to make an elaborate photographic mask more than makes up for this and there is the added advantage that even single chips can be produced economically. This will enable the facility to be used for prototyping as well as for low-volume production, and chips developed using the system can be transferred to standard fabrication plants for later mass production.

TI say that the introduction of this service will enable European electronics manufacturers to produce specialised equipment for low-volume markets and still make a profit. They hope that this will help to insulate the European industry from the problems of fluctuating demand and fierce price cutting which currently characterise the high-volume - markets dominated by Japan and the USA.

Texa Instruments Ltd, Manton Lane, Bedford Mk41 7PA, tel 0234-63211.

Enclosed Rotary Switches

Dean Electronics have introduced a range of rotary selector switches which are fully enclosed and can be sealed to provide protection from water, con-
taminants and most solvents. They are available in three sizes in a wide variety of contact arrangements and the manufacturers claim that they all meet or exceed the

Liquid Crystal Shutter

Epson have developed a liquid crystal display which is normallyopaque but becomes transparent when activated. With a light placed behind it the unit combines all the advantages of LCDs with high brightness, and the manufacturers also expect it to find applications as a shutter in specialist cameras.

The display is known as the Black Shutter and uses a black dye which has very high light absorption qualities. This removes the need for the two polarisers found in conventional twisted nematic LCDs. The display has a contrast ratio of up to 25 to 1 and is available in two versions, one designed for use in cars which has a permitted temperature range of $-30^{\circ} \mathrm{C}$ to
$+80^{\circ} \mathrm{C}$ and the other designed for use in consumer goods and rated for use over the range $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Conventional LCD displays offer low consumption but emit no light and have a restricted viewing angle. The back-lit Black shutternot only offers high brightness which allows it to be seen under any lighting conditions but also has a wide viewing angle and still uses little power. Epson anticipate applications in a wide range of consumer goods and in large indoor and outdoor display units such as those found at railway stations, airports, sports grounds, etc. The Black shutter is already being used both in the UK and in lapan for motor car instrumentation.
Epson (UK) Ltd, Dorland House, 388 High Road, Wembley. Middlesex HA9 6UH, tel 01-902 8892.
relevant military specifications.
The 3600 series switches are the largest in the new range at $1^{\prime \prime}$ diameter and are available with from one to six poles and from four to twelve ways. The indexing varies with the number of positions, being either $30^{\circ}, 36^{\circ}, 45^{\circ}$, 60° or 90°. The positions are thus spaced evenly around the rotation of the switch and an adjustable end-stop is not necessary.

The 1800 series switches are $0.5^{\prime \prime}$ in diameter and are single pole with from two to sixteen ways. Three different indexing angles are available and they can be supplied with or without adjustable end-stops.

The smallest switches in the range are the 1500 series at $0.32^{\prime \prime}$ in diameter. They are available with two different indexing angles and have fixed end-stops. A number of switching arrangements can be accomodated and a printed circuit disc in the base of the switch allows BCD and other coding systems to be implemented.

All three sizes in the range have self-cleaning roller bearing contacts for high current carrying capacity and pure silver contacts to give low resistance. Hardened steel sprockets and ball bearing detent mechanisms ensure a positive detent action and the rotors and stators are moulded from diallyl pthalate thermosetting plastic to give excellent electrical and mechanical properties. The manufacturers claim a mechanical life in excess of 100,000 cycles.

The switches meet or exceed the applicable MIL-S-3768, Style SR20 requirements and can be supplied with an internal seal to provide full protection in harsh environments. They are expected to find applications in military equipment, in aircraft and in commercial fields such as industrial controls and medical electronics.

Dean Electronics Ltd, Glendale Park, Fernbank Road, Ascot, Berkshire SL5 8JB, tel 0344 885661.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Modular Audio Processing System

Tanrak is a $19^{\prime \prime}$ subrack assembly which accepts a range of plug-in audio processing and effects modules. It is aimed at musicians, smaller studios and others on a tight budget, allowing a system to be built up gradually as finances allow, and to reduce costs still further the rack and modules are available in kit form.

Eight modules are currently available, a compressor/limiter, a parametric equaliser, a multidelay unit which can be used for chorus and other effects, a noise gate, a dynamic filter, a modulation osciallator and input and output modules. Other modules are promsied including an infinite flanger and a microphone preamplifier. The modules slot in to a 4 U ($7^{\prime \prime}$) high $19^{\prime \prime}$ subrack which can house up to eleven of them plus a DC power supply.

The system is designed so that signals enter the system via a front panel jack on the input module, are processed by switching in and adjusting other modules as required, and then leave via another front panel jack on the output module which also has a headphone monitor socket. When used in this way the system can

handle mono signals only, but each module has a series of jack sockets which protrude through the rear of the subrack and can be used as a patchbay to permitstereo and other arrangements in which modules handle different signals. The noise gate, noise filter and compressor limiter are stereo modules so only one of each would be needed for stereo operation. Other units would have to be used in pairs.
The modules all have a high specification and have been optimised for operation at -10 dBv , although all will work quite happily at 0 DBm . The power supply provides $\pm 12 \mathrm{~V}$ DC at 500 mA which is also available via a $\mathrm{D} I \mathrm{~N}$ socket on the rear
panel to drive other equipment or a slave rack should eleven modules not be sufficient. The socket can also be used to plug in a supply from an external power unit.
The modules have black anodised front panels with orange lettering and matching knobs and switches. The aluminium subrack has a textured stove finish and can be supplied with a matching sei of metal cover plates if it is to be used free standing. Blanking panels are available to cover unused module positions.

The subrack costs $£ 47.95$ ready built (backplane assembled but supplied flat ready for screwing together) or $£ 33.95$ in kit form. The power unit costs $£ 42.95$
ready built or $£ 33.95$ in kit form and the other modules range in price from $£ 46.95$ ready built for the input and output models ($£ 32.95$ in kit form) up to $£ 110.95$ for the multi-delay unit ($£ 79.95$ in kit form). All prices include VAT and postage. For those whoare little worried about tackling kit construction, the manufacturers also offer a get-itgoing service which will repair any faults on a completed kit for a standard charge of 20% of the kit price.

For more information and detailed specifications of the various modules, contact Tantek Services, Enterprise House, Elder Way, Stevenage, Hertfordshire SG1 1TL, tel 10438-726155.

Budget Sound Level Meter

Testing for compliance with noise legislation requires expensive Type 1 sound level meters, but there are many applications where the sophistication of such instruments is unnecessary. With this in mind, Castle Associates have introduced a general purpose noise meter which is designed to offer accurate, repeatable noise measurements at low cost.
The GA301 Noise Survey Meter is a Type 3 instrument which covers the range $35-130 \mathrm{~dB}(\mathrm{~A})$ in 10 dB steps. The result is displayed on an analogue meter and a switch selects either fast or slow re sponse. The specification exceeds the requirements of British Standard 5969 for Type 3 sound level meters and also meets or exceeds the requirements of the equivalent foreign standards.
Suggested applications for the GA30i include the balancing of noise levels in different areas covered by large public address systems and demonstrations of the physics of noise in schools and
other educational institutions. The meter could also be used to make initial surveys of noisy environments and for routine checking in factories, etc, allowing expensive Type 1 meters to be used only where there are definite grounds for suspecting a breach of the regulations. Any occupied area providing a reading within 3 dB of the accepted limit (usuaily 90 $d B(A)$ in this country) should be considered suspect and checked with a Type 1 instrument.

The GA301 is housed in a steel case which measures $175 \times 54 \times$ 60 mm . A calibration unit is also available. As a special introductory offer, Castle Associates are offering a kit which consists of the GA301, the calibrator and accessories in a small attache for £135.00, the usual cost of the meter and the calibrator alone.

Castle Associates LId, Salter Road, Cayton Low Road Industrial Estate, Scarborough, North Yorkshire YO11 3UZ, tel 0723 584250.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Thermally Compensated Infra-Red Detector

F Itec Instruments have deve-

 L loped a pyroelectric infrared detector with a unique crystal arrangement which compensates for unwanted signals generated by fluctuations in the ambient temperature of the detector housing itself.The Model 407 consists of two lithium tantalate sensing elements and a IFET source follower housed in a standard TO-5 transistor package with optical filter. One centrally located active sensing element is exposed to infra-red radiation entering through the detector optical filter window while the second compensating element is shielded from outside radiation. The elements are connected electrically in a parallel opposed configuration which produces cancellation of signals received by both as a result of

thermal changes in the detector housing.

The 407 has an optical bandwidth of 1.5 to 1000 um and an operating voltage range of $3-15 \mathrm{~V}$. The recommended operating temperature range is -10° to $+50^{\circ} \mathrm{C}$. Eltec say the device will allow reliable sensing in applications where temperature fluctuations previously presented a problem, and expect the 407 to be used in industrial control systems, infra-red telescopes and robotics as well as in a number of other applications.
Eltec Instruments Sa, Neugutstrasse 4, 8304 Wallisellen, Zurich, Switzerland.

Instant Thermal Joints

C harcroft Electronics are disC tributing a thermal jointing film which can be used instead of liquid thermal compound when assembling power semiconductors onto heatsinks. The film is coated on each side with a compound which remains solid at room temperature but turns to a liquid when heated, thus wetting the thermal joint each time the equipment is operated.
Charcroft claim that Crayo therm offers a high electrical resistance combined with a high thermal conductivity and that it avoids the mess and contamina-
tion associated with liquid compounds. Unlike conventional elastometric insulators, Crayotherm will not harden with time and component failure caused by reduced heat dissipation across the joint is eliminated.
The film can be supplied in roll or sheet form or pre-cut to fit popular semiconductor packages such as T03, T036, T066 and D04. Charcroft say they will gladly supply free samples to readers.
Charcroft Electronics Lid, Charcoft House, Sturner, Haverhill, Suffolk CB9 7XR, tel 0440 705700.

- Electrovalue have issued the June 1985 edition of their mailorder catalogue which remains valid until the end of September. The new catalogue has 48 A5 pages, four more than the previous issue, and includes an expanded range of test gear as well as other new lines and all the usual items. Electrovalue Ltd, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB, tel 0784-33603.
- Impectrom are distributing a full-colour, 14-page, A4 catalogue from Sharp which describes their range of LEDs. The catalogue provides full technical information on over 500 LED indicators, arrays, backlights and alphanumeric and symbolic displays, and copies are available free-ofcharge from Impectron Ltd, Foundry Lane, Horsham, West Susex RH13 5PX tel 0403 . 50111.

FREE CAREER BOOKLET

Train for success, for a better job, better pay!
Enjoy all the advantages of an ICS Diploma Course, tralning you ready for a new, higher paid, more exciting career.
Learn in your own home, In your own time, at your own pace, through ICS home study, used by over 8 million already!
Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for
you to use you to use
Send for your FREE CAREER BOOKLET today - at no cose or obllgation at all.

	Choose from over 40 ' O ' and ' A ' level subjects.	\square
COMPUTER PROGRAMMING	CAR MECHANICS	\square
BOOK-KEEPING \& ACCOUNTANCY	INTERIOR DESIGN	\square
POLICE ENTRANCE	HOTEL MANAGEMENT	\square
ELECTRONICS $\quad \square$	COMMERCIAL ART	\square

Please send FREE DETAILS for the courses ticked above.
Name
Address

P. Code

Dept. EBS65, 312/314 High Street, Sutton Surrey SM1 1PR. Tel: 01-643 9568/9 or $041-2212926$ (both 24 hours)

BRITAINS FOREMOST QUALITY COMPONENT SUPPLIERS

NEWS: NEWS: NEWS:

Aid For People With Speech Impairments

Claudivs Converse is a speech synthesiser which can produce words, phrases and even sentences at the touch of a button. It has been developed by British Telecom to help people who cannot speak, and can be used both on its own and in conjunction with a telephone.

Claudivs stands for Calling Line Announcements Using Digitally Integrated Voice Synthesis, but is also named after the Roman emperor who had a speech defect. Up to 64 phrases selected by the user are recorded and then stored in digital form in the machine. This allows it to reproduce both male and female speech and to cope with any language.

A built-in lodspeaker allows Claudivs to be used on its own for normal conversations but it can also be directly connected to a telephone line. When so connected, four red buttons provide instant dialling of ambulance and other emergency service numbers and a message including the caller's home address is automatically sent.
About 120 of the units are already in use by BT customers and more are on the way at a cost of about $£ 250.00$ each. One of the first users of the device is Beattie Brooks of Littlehampton, Sussex, who lost her voice after a throat operation two years ago. In spite of her disability she is the local secretary for the RSPCA and raises money for them by making soft toys. Many of the phrases recorded on her machine were chosen in conjunction with a speech therapist to help her in this work.

British Telecom PLC, 81 Newgate Street, London EC1A 7A), tel 01-356 6591.

- Does not having your own mains adaptor make you blue, are you red with rage because your adaptor doe sn't work or just green with envy because your friend's does? Then despair no longer, for First Castle Components have launched a range of low voltage mains adaptors in colours to suit your every mood. Whether they
will also match your every equipment we do not know because the press release doesn't contain much technical information, butif you write to First Castle Components Ltd, 263 Church Road, Thundersley, Essex SS7 4QN, they'll probably give it to you in black and white.

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology
- Build an oscilloscope and master circuit diagram.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?
 SEND-HIS COUPON NOW

01-208 1177 Technomatic Lid 01-208 1177
 BBC Micro Computer System
 DISC DRIVES

ACORN COMPUTER SYSTE BBC Madel B Special ofter	a)
BBC Model B+Econet m........	$\underline{5355}$ (a)
BBC Model B+DFS.	¢345 (a)
BBC Model B+DFS + Econet	E309 (a)
UPGRADE KITS	
A to B Upgrade Kh.	885 (d)
DFS Kht.	c95 (d)
Econet Kit	855 (d)
Speech KH	847 (d)
ACORN ADD-ON PRODUCTS	
280 2nd Processor	c340 (8)
6502 2nd Processor	$\underline{175}$ (a)
Tellext Adaptor	8190 (b)
IEEE Intertace	5282 (b)
Prestel Adaptor	509 (b)
RH Light pen.	£30.50 (c)

Termi Emulator	
Communicator.	659 (d)
mmste	

TORCH UNICON products Including the IBM Computible GRADUATE in stock For detailed specification on any of the BBC Firmware/Peripherals listed here or information on our complete range please write to us.

PRINTERS
 EPSON

RX80FT £225(a) RX80T£215(a) FX80£315(a) FX100£435(a) KAGA TAXAN
KP 810 (80 col) £255 (a) KP910 (156col) £349 (a)
JUKI 6100 £325 (a)
BROTHER HR15 £325 (a)

ACCESSORIES

32K Internal Buffer Parallel E 99 (b) EPSON
Serial Interface: 8143 £28 (c); 8148 with $2 \mathrm{~K} £ 59$ (c)
Paper Roll Holder £17 (d); FX80 Tractor Attachment £37 (c)
Ribbons: FX/RX/MX80 £5 (d) FX/RX/MX100 £10 (d)
RX/FX80 Dust Cover $\mathbf{£ 4 . 5 0 \text { (d) }}$

KAGATAXAN

RS232 with 2K Buffer $\mathbf{£ 8 5}$ (c) KP810/910 Ribbon $\mathbf{£ 6 . 0 0}$ (d)

JUKI 6100

RS232 with 2K Buffer $\mathbf{£ 6 5}$ (c) Rlbbon $\mathbf{£ 2 . 5 0}$ (d)
Tractor Attachment $£ 99$ (a) Sheet Feeder $£ 180$ (a) BBC Parallel Lead $£ 7$ (d) Serial Lead $£ 7$ (d) 2000 Sheets Fanfold Paper with extra fine perforation $9.5^{\prime \prime} \times 11^{\prime \prime} \mathrm{\Sigma} 13$ (b) $14.5^{\prime \prime} \times 11^{\prime \prime} £ 17.50$ (b) Labels per 1000's; single row $31 / 2^{\prime \prime} \times 17 / 16^{\prime \prime}$ ($£ 5.25(\mathrm{~d})$ Triple Row $27 / 16^{\prime \prime} \times 17 / 16^{\prime \prime} \mathrm{E} 5$ (d)

MODEMS

- All modems listed below are BT approved

MIRACLE WS2000:
The ultimate world standard modem coverall all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the world. The boards enhance the considerable taciallities already provided on the modem. Mains powered $£ 129$ (b). Auto Dial Board/Auto Answer Board £30(c) each. (awaiting BT approval) Software lead $£ 4.50$.

BUZZ BOX:

This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main economic cost. Battery or malns oper ated economic cost. Battery or malns operated,
$\mathbf{\varepsilon} 2$ (c). Mains adaptor $\mathbf{~} 8$ (d)
ع62(c). Mains adaplor £e(d).
BBC to Modem data lead 87 .

TORCH UNICON products including the IBM Computibie GRADUATE in stock
For detailed specification on any of the BBC Firmware/Peripherals listed here or information on our connplete range please write to us

These are fully cases and wired drives with slim line mechanisms of high quality, Shuggart A400 standard interface. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. All 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.

3M 51/4" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each discis individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box
40T SS DD £13 (c)
$80 T$ SS DD £22 (c)
$40 T$ DS DD 18 (c) $80 T$ DS DD \&24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kh with 20 disposable cleaning discs ensures continued optimum performence of the drives \qquad
Dual Disc Cable ...
30 (c)

30 Disc Case... 8.50 (d)

MONITORS

MICROVITEC 14" RGB:

1431 Standard ResolutionE185 (a)
1451 Medium Resolution. $\varepsilon 240$ (a)
1441 Hi Resolution. $\varepsilon 399$ (a)
1431 AP Std Res PAL/AUDIO. $\varepsilon 210$ (a)
1451 AP Med Res PAL/AUDIO $\varepsilon 280$ (a)
1451 DQ3 Med Res for QL ع239 (a)
Above monitors are now available in plastlcor metal cases, please specify your requlrement.
KAGA Super Hi Res Vision III RGB

Hi Res Vision II.

MONOCHROME MONITORS 12":
Kaga Green KX1201GHi Res. .199 (a)
Kaga Amber KX1201 A Hi Res............................... $£ 105$ (a)
Sanyo Green DM8112CX Hi Res...
Swivel Stand for Kaga Monochrome $£ 21$ (c)
All monitors are supplied with leads sultable for the BBC
Computer. Spare leads available.

ATTENTION
 All prices in in. Joubie page adverusment arf
 ALL PRICES EXCLUUDE VAT
 Please add carriage 50 p unless indiceted as follows:
 (a) 88 (b) 2250 (c) $£ 1.50$ (d) $\varepsilon 1.00$

SPECIAL OFFER 2764-2550
$\ldots ~ ع 6.00$

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up toeight eproms al a time and accepts all single rail eproms up to 27256. Can reduce pro gramming time by 80% by using manuuacturer's sugoested algorithms Fixed Vpp of 21825 volts
and variable Vop factory set at 125 yolts LCD display with alpha moving message $\varepsilon 395$ (b).

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764 . Displays 512 byte page on TV - has a serial and parallel l/O routines Can
 Adaptor for $2764 / 2564$. E25,00(c)

UV ERASERS

All erase

UV1 B erases up to 6 eproms at a time UV1 T as above but with a timer UV1.40 erases up to 14 eproms at a time

READ/WRITE

Newrad

Dear Sir

ETI in conjunction with John Linsley Hood produced what appeared to be an excellent amplifier design. I would imagine that the design appealed to many electronics hobbyists and possibly like myself many of them were delighted that Newrad Instrument Cases was to supply a complete kit of parts. You will appreciate the major problems of electronics as a hobby: namely the supply of components of a suitable quality and the frequent inability to obtain an adequate professional enclosure for the finished item. 1 am always pleased when manufacturers such as Newrad Instrument Cases produce the parts in one complete package.

As an electronics hobbyist I could easily understand the difficulties experienced by Newrad Instrument Cases in obtaining parts, effecting changes in circuit design, and also anticipating the number of kits they would need. Even the greatest degree of understanding and patience wears a little thin after a year. I have telephoned Newrad Instrument Cases on numerous occasions and certainly over the last few months have been met by an Ansaphone machine during normal business hours although I admit that my letters have been answered promptly. It would also be worth noting that Mr. Phillips sounds a very reasonable person on the telephone but has had difficulty in fulfilling his promises particularly in respect of time, and has needed reminding on occasions.

The final promise for completion of this kit in respect of the item that Newrad should have found the most easy to produce, namely the case, promised for three weeks delivery some two months ago has finally worn my patience out. I wrote to Newrad Instrument Cases two weeks ago by recorded delivery letter threatening legal action if my money had not been returned by Monday, 3 June. It would appear that Newrad Instrument Cases are
uninfluenced by the right and proper use of the legal system and before proceeding further I felt I should inform you. I appreciate that you have no direct legal responsibility in the respect of the supply of the components by mail order but I am sure that you will accept a large moral responsibility for recommending Newrad Instrument Cases as the sole supplier for a product initiated by John Linsley Hood and Electronics Today International. I would imagine that a large number of your readers have ordered such kits from Newrad and, like myself some years ago, are probably not in a position to take on the companies who dishonour their public agreements. I am in a better position today to meet such people head-on and although I have no desire to be a martyr I am fully prepared to take this case to its limit and demonstrate that large numbers of people cannot be treated so shabbily.

I have spoken with my solicitor but am prepared to withold instructions until the next publication of ETI in order that you may publish this letter in part or in whole and give me a much better idea of the scale of the problem that Newrad have created. I have no idea how many people are involved but, expressed in round figures, $£ 100$ or $£ 250$ units tens of time over, invested for thę period of about a year, would come to an enormous sum of money. I would certainly welcome your own comments re the above and should you decide to publish the letter / would like to hear from anybody else in a similar situation to assess the full nature of the best.

> Yours faithfully
> Dr. P.A. Joiner
> Caithness.

We have decided to print Dr Joiner's letter in full because, despite assurances from Newrad that the problems with the Linsley Hood MOSFET amplifier would be cleared up by now, we are still receiving complaints. We accept that we have a moral responsibility to our readers who may be being ill-served by Newrad despite having received an implicit
recommendation from us to deal with the company. In fairness, I should point out that the level of complaints has dropped off since Chris Phillips of Newrad gave his assurances. I should also point out that we can continue to recommend Newrad's products (including the ILH amplifier) without reservation. They are undoubtedly of high quality and good value. However, such recommendation is undermined if the products are unavailable, for whatever reason. Like Dr. Joiner, we urge any other readers still awaiting delivery of the JLH amplifier kit (in whole or part) to write to us (please don't phone) so we can gauge the extent of the problem, if problem there be. Armed with this information, we will be able to approach Newrad, if necessary, from a strong position in order to discharge our moral responsibility. Regrettably, the Mail Order Protection scheme - under the terms of which it is possible to claim compensation for goods paid for but not received - only applies in the case of a mail order supplier ceasing to trade. To the best of our knowledge, Newrad are not in this position. - Ed.

Seeing The Light

Dear Sir,
In my original article ('Large Digit Scoreboard', ETI, May 1985), I mentioned the trouble I experienced with lamps blowing and taking their Triacs with them. I have since found a solution, which is applicable to any Triac controlled lamp project.

There are a number of situations where a Triac is used to control mains power to a bank of lamps, eg. the scoreboard, disco light shows, etc. In such situations, if a lamp blows it can form a momentary short circuit and the resulting current surge destroys the Triac. Typically, the Triac will go short circuit, and the other lamps in the bank will be permanently on.

The solution to this involves putting a current limiting resistance in series with the lamps, but for practical purposes a limiting resistor will be very wasteful of power. The answer is to wire the bank of lamps in series instead of
parallel. In this case, when a lamp fails, the others in the string act as a limiter and protect the Triac. Naturally, the string of lamps acts as a potential divider, so each lamp must operate from a lower voltage than normal, much the same way as for a string of Christmas tree lights. If, for example, the bank contains five lamps, each one should be rated at $250 / 5=50 \mathrm{~V}$ operation. A range of pygmy bulbs with ordinary bayonet bases called Sign bulbs is available from various suppliers. They are rated at 15 W , with a variety of operating voltages, and selecting from these should fill most requirements.

This idea is adaptable even to applications where a Triac drives a single bulb. Providing it is not a drawback to replace the single bulb with a cluster of lower voltage bulbs, the modification can be made and the Triac duly protected.

Yours sincerely,
Ken Wood,
Ipswich.
Not so much a case of 'If at first you don't succeed, Triac again', more a case of a light subject treated series-ly ... Ed.

ETI

The Enterprise 64 is one of the very latest micros to appear on the home market. It combines many features not found together in one small package. For example; stereo sound, 256 colours, built in joystick, wordprocessor, 64 k memory - expandable to 4000 k !
The language is standard BASIC, as is the interfacing circuits to printers and even local area networking. We like the Enterprise so much that we are giving you the chance to win one FREE in our easy to enter competition in our next issue.

This together with; Audio Analyser, Syndrum, CPC RS232 Interface, plus features galore makes buying Digital \& Micro Electronics your number one choice.

On Sale Friday 19th July!

THE REAL COMPONENTS

This month's topic is amplifiers in small packages, and as usual, John Linsley Hood has it all wrapped up.

|n the late 1950s, it occured to one of the semiconductor manufacturers in the USA that it would be possible to put together complete pieces of simple circuitry on a slice of P-type mono-crystalline silicon. The necessary components could be formed by suitable masking and diffusion processes.

For example, a resistor could be made by diffusing in a zig-zag track of fairly lightly doped N-type material, with a connector pad at each end (Fig. 1). A capacitor could be made byoxidising a small area of the silicon and putting a layer of evaporated aluminium metallising over

Fig. 1 A resistor formed by diffusing a zig-zag track of N-type material into a P-type substrate.
the top of it, with a buried N -type layer underneath as the other plate (Fig. 2). NPN and PNP transistors could be made as shown in Figs 3 and 4. However, there are snags.

Resistors and capacitors take up a disproportionate amount of room on the chip surface, unless the values are pretty small, and it is very difficult to get the values within limits closer than $\pm 30 \%$. In addition NPN transistors are not likely to be very good ones in terms of noise, current gain, or breakdown voltage because they have to be made by three separate sequential diffusions (an N type impurity, followed by a P-type impurity, followed by another N -type), each of which adds to the total impurity concentration within the collector, base and emitter region.

In the case of the PNP transistors shown in Fig. 4, the only one which is at all reasonable in performance is the
one which can use the substrate (usually connected to the we supplyline) as its collector. If the circuit doesn't allow this, it is necessary to use the lateral construction in which the base region is formed by masking off a narrow strip, with the emitter and collector regions diffused into the N-type zone as close together as possible. Even so, and with the best mask technology in the world, the current gain of such a transistor may be only 5-10 and its HF response will be pretty miserable.

Within these limitations it was possible to make some useful circuit blocks, and the circuit and mask layout designers learnt from their experience. They certainly needed to, since some of the early ICs, from my painful recollections as a user, left a lot to be desired in both performance and reliability.

Modern circuit techniques and circuit designs have transformed this situation, and my honest opinion now is that, if there is an IC which will do what one needs, then it is pointless to try to do the job with discrete components other than in a few specialised applications. After all, some of the best electronic circuit designers in the world work for the IC manufacturers.

Operational Amplifiers

These, normally known just as op-amps, are the most common form of IC which the user of linear circuitry will encounter. They can be regarded simply as gain blocks

Fig. 2 A capacitor consisting of an N-type diffused layer separated by an area of oxidisation from a layer of aluminium metallising.

Fig. 3 An NPN transistor formed by diffusing three layers one on top of another into a P-type substrate.

Fig. 4 PNP transistors formed by (a) lateral diffusions into a P-type substrate and (b) successive vertical diffusions into a P-type substrate.
of the form shown in Fig. 5, with a couple of input connections (one inverting and one non-inverting), an output pin, and a couple of leads for a dual rail supply. The supply voltage can lie anywhere between $\pm 1.5 \mathrm{~V}$ and \pm 18 V depending on the op-amp specification.

The basic circuit layout employed is of the form shown in Fig.6. The input transistors, Q1 and Q2, are connected as a long-tailed pair, Q5 is an amplifier stage, and Q6 and Q7 are a push-pull output stage biased into class

Fig. 5 The circuit symbol for an operational amplifier.
AB. In modern designs there will also be an internal HF compensation capacitor, which I have shown as Cc.

Although there has been a proliferation of op-amp types in the past decade, they all have certain features in common. These are an open loop gain (that is, the gain without externally applied negative feedback) in the range of 50,000-250,00, a low static power supply consumption, usually in the range $0.5-4 \mathrm{~mA}$, a high commonmode rejection ratio (by which is meant the ability of the op-amp to ignore signals which are present simultaneously on both inputs while amplifying the difference between such signals) and a high degree of rejection of any voltage variations on the supply lines.

This latter feature allows the circuit designer to ignore the need for supply line decoupling in a way

Fig. 6 Simplified internal circuitry of a basic operational amplifier.
which would have been disastrous for the valve circuit designer, and for which I, for one, am truly thankful.

Early general purpose op-amps were uncompensated. This meant that one had to be careful when applying negative feedback between the output and the inverting input, unless two external HF compensation networks of suitable values of R and C were connected between four of the pins.

At the time, this was a necessary requirement if a respectable HF bandwith for the amplifier was to be achieved, but it was an inconvenience which one could

Fig. 7 Simplified internal circuitry of a Bi-FET operational amplifier.
well do without Subsequent 'second generation' op amps like the familiar 741 had the worst-case HF compensation components built in, without too much sacrifice in performance.

A later development was to make dual and quadruple op amps in the same package. The dual ones, in an 8pin DIL or TO5 pack, have become very popular.

Drawbacks

Early op-amps, while they did what they were supposed to, had a lot of snags, which were seldom mentioned in the makers' catalogue descriptions.

Noise This was partly due to the fact that the whole of the electronic circuitry floated on top of a P-type silicon slice and was isolated from it by reverse biased diode junctions. As I mentioned in an earlier article, the leakage currents in reverse biased diodes are very noisy. Also, the transistors used were heavily and multiply loaded with impurities, which certainly didn't do their noise figures much good.

Output overload Again, in early types, no specific form of output overload protection was employed, so if the output became short-circuited the op-amp would burn out.

Latch-up If the output was driven hard in one direction or the other, it often just stayed there, regardless of what the signal at the input subsequently did.

Input protection No specific protection was included to prevent damage to the device if the input was taken, quite legitimately within the supply voltage range of the IC, to an ill-chosen voltage level.

Frequency response This was often quite poor when any significant output load was applied or if a wide output voltage swing was required. The slewing rate could also be poor and often differed for positive-going and negative-going output swings

Input impedance This could be quite low, and the input bias currents (those currents which must flow into the IC if it is to work) were often relatively high.

Third Generation Op-Amps

Most of these problems were removed in the second generation designs, such as the 741, but the problem of a relatively low input impedance remained, with a consequent need for a carefully matched resistance path in both the inverting and non-inverting input circuits. The HF bandwidth and noise figure were also not nearly as good as could be achieved with discrete components.

Careful attention to the doping of the various regions of the IC, and in the choice of dopants employed and the
way in which they are introduced, has led to great improvements in the noise figure of a modern IC opamps. Improvements in circuit design have also helped.

However, the major breakthrough came when techniques were evolved for producing FETs on the same chip as bipolar transistors. This allowed the construction of Bi-FET types of op-amp such as the Texas TLO7 1 and the National Semiconductors LF351, which have a remarkably good performance.

These have the general circuit layout shown, in slightly simplified form, in Fig. 7. This is very similar to the 741, whose structure I illustrated in Fig. 6, except that the cascode-connected PNP input transistors (used to compensate for the poor performance of the lateral PNP types), have been replaced with P-channel junction FETs.

This gives a noise performance which is very nearly as good as that obtainable from the best of the discrete component circuit layouts, an output voltage swing very nearly equal to the difference between the +ve and -ve supply rails over the whole audio bandwidth, and a harmonic distortion, on loads of 4 k 7 or greater, which is

Fig. 8 Pin connections for 8 -pin DIL and T05/T099 packaged single op-amps such as the 741, TLO71, LF351, NE5534, etc.
typically well below 0.01% for a stage gain of 20 x or less. In addition the input impedance is of the order of a million megohms, which means that one doesn't have to worry about the input circuit resistance values being precisely matched.

The pin connections used for the single op-amp designs are shown in Fig. 8.

A feature most modern IC op-amp designs possess is an offset-null facility, to allow the output DC voltage to be set precisely to zero volts plus or minus a few millivolts. This is commonly done by connecting a small trimmer potentiometer between pins 1 and 5 and taking the slider to the-ve supply rail, as shown in Fig. 9. It is wise to check the recommended connections and circuit values if the op-amp used is not a 741, LF351 or TL071 since some types differ in their requirements.

Nulling the DC output voltage (only practicable if the input voltages are near zero) is only necessary if the amplifier is being used in a DC application, such as a DC energised strain-gauge or thermocouple amplifier.

Since this isn't a very common application, the quite popular dual ICs such as the bipolar MC or LM 1458 or the LF353/TL072 BiFET types omit this connection. Their pin connection arrangements are shown in Fig. 10. With both inputs connected to the 0 V line and a gain of up to 100 x , a DC offset of less than 100 mV would be expected even without any HF DC nulling.

The type of circuit used with an op-amp as a general purpose AC amplifier stage is shown in Figs. 11 a and 11 b .

The non-inverting stage has a higher input impedance Rin, which can be as high as one likes, but a slightly worse distortion figure and an inferior sound in audio applications when compared with the phase-inverting circuit of Fig. 11 b , in which the input impedance is equal to Ra.

This difference is due to a slight failure in the op-amp common mode characteristics. It is only worth worrying about this in 'ultimate Fi' audio applications. For all normal purposes there is no measurable difference between the two.

Fig. 9 Offset-null arrangement in which a potentiometer is used to set the DC output voltage accurately at zero volts.

The third common configuration in both AC and DC usage is the unity-gain impedance converter layout of Fig. 11 c . This will convert an input signal at the megohms level to a very nearly identical signal at an output impedance of less than 1 kO .

In all of these applications, where negative feedback is being used to define the gain or improve the performance of the op-amp, it is prudent to include an output resistance of the order of 100-220R. This will reduce the likelihood of the amplifier becoming unstable should the output load have a particularly unfavourable reactance characteristic. If the circuit is driving something whose input impedance is purely resistive, this can be omitted.

The circuit applications in which op-amps can be used would fill a book - indeed they have already filled several books - so this is not the place to compete with this outpouring of ingenuity. The thing to remember is that the more recent designs are, inevitably, better than the earlier ones, partly as a result of competition between manufacturers and partly because new design techniques are continually being discovered which lead to better products.

Also, one should remember that there are, as the old saying has it, horses for courses. If one wants a very high input impedance indeed, for use, perhaps with an ionisation chamber, but low noise and low distortion are not terribly important, then a MOSFET input op-amp

Fig. 10 Pin connections for 8-pin DIL and T05/T099 packed dual op-amps such as the MC1458, TLO72, LF353, NE5532, etc.
like the RCA CA3140 or the more recent Intersil ICL 7611 DCPA, would be the best choice.

If on the other hand, very low noise indeed is required, perhaps for some audio application, but a high input impedance isn't particularly important, then the Signetics NE5534 or its dual package equivalent, the NE5532 would be a good choice. If cost is of no consideration whatever, a Precision Monolithics OP-27, currently the Rolls-Royce of bipolar op-amps, would make an enviable possession, particularly since it combines very low circuit noise with a very low DC drift and equally low distortion characteristics.

Other Op-Amp Types

Additional possibilities which exist in the op-amp field are devices like the TL061 (062 dual, 064 quad) series, which, in addition to a FET input, have a typical current consumption of 0.25 mA per amplifier and are ideal where economy in use of supply current is desirable. Even more frugal is the OP- 220 device with a consumption of 100 uA , or the OP-420 quad op-amp which lives on a beggarly 50 LA per amplifier.

Alternatively, ICs like the TLO91 (092 dual) offer the facility of operation from a single line supply, provided

Fig. 11 Common operational amplifier circuit configurations.
that the input and output voltage swings are not required to go outside the supply voltage range.

Where DC amplification for strain gauges or similar low output transducers is required, the National Semiconductor LM725 or the Precision Monolithics OP-07, OP-27 or OP-37 devices would be preferable.

There are also IC op-amps aimed at very fast response, wide-bandwidth applications, such as the National Semiconductors LHOO24 and LHOO32 designs which have a 70 MHz bandwid:h, and the LH0063/HA5033 unity gain buffer ICs, which have a DC-100MHz pass-band. However, it should be remembered that such devices will require a lot of care in the layout design if stable cperation is to be obtained.

If more muscle power is required there are also power op-amps, though a simple and relatively low-cost.

Fig. 12 Using a pair of transistors to increase the output power of an op-amp.
alternative is to hang a pair of transistors on the output of a conventional op-amp as I have shown in Fig. 12. Since the output transistors are zero biased they take verylittle quiescent current, but the residual crossover distortion would spoil the performance for audio use. If low THD is needed, the transistors must be biased into class A or class $A B$ as shown in Fig. 13. This produces a very good headphone amplifier design.

Interpreting The Specifications

Most of these are fairly simple to understand, but there are some IC parameters which are a bit confusing. Input Offset Voltage refers to the difference in the baseemitter voltages between Q1 and Q2 in Fig. 6. This

Fig. 13. An alternative method of boosting op-amp output power which introduces less distortion.
would give rise toa spurious apparent DC input signal, to be amplified by the op-amp voltage gain. Typical offset voltages for a 741 type op-amp would be in the range 25 mV , in the absence of an offset trim adjustment. FET input op-amps would be worse than this were it not for the fact that they are usuallylaser trimmed to around the 2 mV level.

Input Offset Current refers to the difference in the base currents of Q1 and Q2 in Fig. 6. It is usually a good bit less $(5-10 x)$ than the input bias currents, which are the actual base currents drawn by the input transistors. It will cause an unwanted voltage offset if the resistance of the two input circuit paths are unequal.

The input bias and offset currents in FET input opamps are usually toolow to be of great importance in normal circuitry.

All of these offset voltages will probably be worse at temperatures higher or lower than the $25^{\circ} \mathrm{C}$ figure normally specified for commercial grade ICs. Military or
industrial specification units will be better in this respect.

Input offset voltage drift is specified as a function of temperature and relates to the temperature stability of the circuit. It is influenced by care in matching the input transistor chip areas and doping levels, and is a parameter which is unlikely to be specified except in relation to Military op-amps or those which are intended for use in DC instrumentation applications.

Voltage Regulator ICs

The second class of linear ICs which I feel one should not try to do without is the three-terminal voltage regulator IC. This is an invaluable aid in ensuring that circuits work as well as one would hope by providing a

Fig. 14 A three terminal voltage regulator in a standard positive supply line regulator arrangement.
stable, precisely controlled, low ripple, low impedance and low noise DC supply line.

The type of circuit layout used is shown in Fig. 14 and the simplified internal circuitry is shown in Fig. 15. The only thing which it is necessary to remember in use is that the negative supply line regulators (usually listed as the 79 series) have a different pin configuration to the positive line (78 series) ones. The pin connections for a number of different packages are shown in Fig. 16.

In addition to the fixed output voltage types (7805, $7812,7815,7824$ etc.) there are adjustable output voltage versions. These are good, but not quite as good in performance as their fixed voltage brothers.

At present, there is a general limitation of 40 V as the maximum input voltage which may be applied. Higher

Fig. 15 Simplified internal circuitry of a positive supply line three terminal voltage regulator.

FEATURE: Real Components

voltage types are beginning to appear but at present they are very costly.

Unlike zener diodes, the three-terminal IC voltage regulators employ a relatively nose-free band-gap type of voltage reference which is compensated for temperature variations. They are amplified to give higher voltages than the 1.205 V silicon band-gap potential (the voltage which a forward conducting diode would have at absolute zero temperature), and so are preferable as sources of stable DC potential. However, at least 5% of the rated output current must be drawn from the device if a good performance is to be achieved.

Typical output impedances for such a voltage regulator IC can be well below 0.1 ohms down to as low as 1 Hz . It would require a decoupling capacitor of 1.5 farads to equal this! To ensure proper operation, the output capacitor, C1 in Fig. 14, should be at least 100 n . More than 10 u is unnecessary.

These ICs also contain internal circuit elements to provide protection against inadvertent output shortcircuit or thermal overload due to a combination of excessive current and input-output voltage drop.

Other Linear ICs

There are an enormous number of other linear ICs, and every month new ones appear. These are mainly aimed at special fields of application, such as TV sets, FM tuners, various industrial and automotive applications and audio circuitry. The competition in the TV and audio field is largely for low cost units for the relatively undiscriminating user, and the more of the circuitry which can be done with ICs, the lower the price tag will be.

Fig. 16 Pin connections for the most popular types of three terminal voltage regulators.

It is a fascinating field to explore, but I always remember the dozens of special purpose ICs which I have seen in the past and which are now no longer made. I try to stick with the rather longer lived general purpose designs, of which the op-amps and the voltage regulators seem to be the most useful.

Next month I will look at the strengths and weaknesses of the various types of digital ICs, such as standard TTL, ECL, Schottky, LS, ALS, CMOS and HCMOS.

HIGH QUALITY ELECTRONIC MODULES

- 100 W Mono $\&$ Stereo professional amplifiers shown in last months issue $£ 98$ \& $£ 140$.
- Disco Lighting Module 750 watts per chan, 4 chan, forward reverse chase £15.40.
- Disco Sequencer Moduel 1024 sequnces, 1000 watts per chan $3 / 4$ chan (selectable), zero cross and inductive load. $\mathbf{\Sigma 4 0 . 6 5}$.
- Amplifier Modules Mos-fet Low distortion . 008%, on board protection fuses and power supply requires only transformer \& heatsinks, saves £ef's.
Amplifier chassis from 100 W Mono to 250W Stereo. Professional Mosfet for O.E.M. from £36.95. All amplifiers are fitted with redpoint black on Heatsinks for reliability. Input Impedance 47 K ohm, Input sensitivity 0.775 volts. Total harmonic distortion $.008 \%$, Damp factor >400, frequency response DC - 40KHZ \& Slew rate 70 v/us.
- Heatsinks Ex Stock. $2.1 \mathrm{c} / \mathrm{w}$ red point heatsinks $£ 2.50$.
- Send 20 p and a large S.A.E. for specifications a price list on above products and morell!
Send to:
TECHNOCROWN LTD
42 Fallowfield, Luton, Bediordshire LU3 1PX Tel: 0582-598167 Mail order only.
Postal charges per order £1. Welcome schools, colleges, and Trade. - Securicor £10.00 delivery.

FROM A TO D AND BACK AGAIN

Data converters are finding their way into an ever increasing range of electronic equipment, including a number of ETI designs. Stuart Smith takes a closer look at some of the more common types.

Nowadays, digital circuitry is very often used to process signals which originate in analogue form. The results of the processing may need to be reconverted into analogue form, and different conversion methods have been developed to meet the needs of different applications. These vary from the high speed/low precision requirements of a video digitiser to the slow speed/high precision of a digital voltmeter.

Back To Front

Digital to analogue converters (DACs) are the simplest and l'll describe them first.

Usually the ouput of a digital circuit is in the form of a set of words of fixed bit-length. Occasionally it takes the form of a frequency. A frequency-to-voltage converter

Fig. 1 Structure of simple frequency-to-voltage converter.
will serve for the latter kind of output and the general principle is shown in Fig. 1.

The node X is switched to either Vcc or OV at a rate dependent on the input frequency. As long as the input pulses are of fixed width (which can be arranged using
edge-triggered monostables) the mean output voltage at Y is proportional to the input repetition frequency. If CMOS bilateral switches, such as the DG200 or 4066 types, are used for S1 and S2 their own ON resistance can provide the R component. The maximum input frequency is limited by the switching speeds of S1 and S2 and the minimum frequency by the value of C . If C is too high, the output will take a long time to respond to changes in frequency. If C is too small, the output will ripple as each input pulse arrives.

Fig. 2 Parallel input decoding giving an output whose pulse width is proportional to input.

Most digital circuits do not produce variablefrequency outputs - they give parallel digital data. To decode such inputs, the circuit of Fig. 1 can be effectively extended as in Fig. 2, although it is rather too slow for some applications. Instead of a variable rate, fixed width input, the technique uses variable width pulses at a fixed rate.

For higher speeds, the method of switching weighted resistors (Fig. 3) can be used. The illustration shows an 8-bit DAC with the weighted resistors so numbered that $R x=R .2^{8-x+1}$. In general, an n-bit DAC can be constructed with $R x=R .2^{n-x+1}$. In such an op-amp configuration, the inverting input is a virtual earth point and the current flowing in one of the resistors when it is switched in is Vref/Rx. The output voltage due to that current will be -Vref. ($R / R x$) which simplifies to -Vref. ($R /$ (R. $\left.2^{8-x+1}\right)$) or $-V r e t / 2^{8-x+1}$. For any particular input number, several resistors will be switched in and the output

Fig. 3 Basic weighted resistor D-to-A.
will be summed. For example, if the input is binary 11001 (decimal 25), the output will be Vref. $(1 / 256+1 /$ $32+1 / 16$) or Vref. $(25 / 256)$. A little calculation will show that the output of our 8 -bit DAC will be Vref.(A/256), where A is the number input in binary form. For an n-bit DAC, the output will be Vref. $\left(A / 2^{n}\right)$.

In a practical circuit, the switches $\$ 1$-S8 would have finite resistance and so the correct weighting of each input would be difficult to achieve. Apart from this problem, the type of converter shown in Fig. 3 requires a very large range of resistance values for even a modest ten bits. As the number of bits increase, the resistor tolerance constraints become tighter. Take the example of an input code change from 0111 . . . to $1000 . .$. . If the MSB resistor is one part in 2^{10} out then the analogue out-

Fig. 4 An R-2R ladder of the type used in many DACs.
put of a ten-bit DAC may actually decrease on this major carry. In fact, accuracy should be to within a half of the LSB weighing or, in the case of a ten-bit DAC, to 0.05\%.

Divide And Rule

Tolerances of this precision and beyond are difficult to maintain over a wide range of resistances and temperatures. It would, then, be useful to have a circuit which did not require such a large range of resistor values.

Such a circuit is the R-2R ladder network, a series of potential dividers which forms the basis of many DACs in use today (Fig. 4). It is widely used as part of the reference DAC in successive-approximation ADCs (see later).

At each node (W, X, Y, Z) current entering from the right 'sees' a resistance of $2 R$ to the left and $2 R$ down-
wards, so it divides equally down each arm. Thus binary weighting of currents is achieved in each vertical arm, and consequently, a binary weighting of voltages across the $2 R$ resistors. By suitable adjustment of the resistors, a logarithmic weighting can be achieved.

The $R-2 R$ ladder is very often used in the configuration of Fig. 5, which shows a 5 -bit DAC. The reference voltage, Vref, is converted to a current Iref $=$ Vref/Rin, flowing in the reference transistor Q1. The currents flowing in the other transistors can be switched to either the output or ground, depending on the setting of the bit switches. The switch resistance is unimportant because of the use of constant current sources T2 to T6.

In some commercial DACs the individual outputs may be switched to a true or complement current output; the sum of these two output currents is always equal.

The output of any DAC is proportional to the product of the voltage reference and input code. Some converters are designed so that the voltage reference may

Fig. 5 A five-bit DAC using the R-2R ladder.
vary widely during operation - these types are designated 'multiplying' converters. A high quality multiplying DAC may be used as a digitally controlled attenuator in an audio system; the Analogue Devices AD7110 is an example of a DAC specifically tailored for this application - it attenuates input signals in 1.5 dB steps according to input code.

Fig. 6 Voltage from a current output DAC.

The output signal is often wanted as a voltage, rather than a current. Of course, this can be achieved with a resistor, but the output voltage will always be negative (Fig. 6). Also the output voltage swing is limited by the 'compliance' of the DAC outputs, which is the range of output voltages over which constant output current will be delivered. Some are not capable of maintaining constant output current unless the output voltage stays close

tu zero. Finally, the output voltage will change if it is loaded by another resistance.

It is, then, quite usual to add an op-amp to provide gain, buffering and the correct polarity of output voltage. Some proprietary DACs incorporate an output op-amp to provide voltage output. Figures 7 and 8 show two methods of connecting a current-output DAC as a voltage-output device.

Fig. 9 Direct decoded resistor ladder DAC.
Another DAC structure in common use incorporates a ladder of equal-value resistors -2^{n} of them for an n-bit converter. The reference voltage is applied across the ladder and a fixed fraction of it is tapped off by a series of switches. (Fig. 9).

This structure is unwieldy for many bits - at eight bits, an eight-line to 256 -line decoder with 256 control lines is required. An alternative arrangement uses more switches but incorporates decoding in the wiring and

Fig. 10 Tree decoded resistor ladder DAC.
requires only $2 . n$ control lines (Fig. 10). This method is known as tree decoding, and, since voltages are being switched, is probably best suited to MOS implementation, because MOS switches introduce no offset voltage.

Flash, Bang, Wallop . . .

The analogue-to-digital converter is a rather more complicated device than the DAC. ADCs often incorporatea DAC as a feedback element, to improve the performance of the ADC.

The most direct implementation of the A to D function is probably the parallel or'flash' converter, so called

Fig. 11 Flash analogue-to-digital conversion.

Fig. 12 Two-stage flash ADC.
because of its speed (up to 100 million conversions/sec) (Fig. 11).

A voltage reference is divided by an equal value resistor string into 2^{n} equal steps for n-bit conversion. These voltages are applied to the reference inputs of 2^{n} comparators. The input voltage is applied to all the comparators simultaneously. A priority encoder gives an n -bit digital output indicating where the comparator outputs change from low to high.

The flash converter is rather expensive - for ten bits no less than 1024 resistors and comparators are required, as well as a correspondingly large logic circuit to encode the output. An interesting variation on the flash converter, which sacrifices only a little of its speed whilst considerably reducing the complexity, is the two-stage converter, an example of which appears in Fig. 12.

During stage I, the analogue input is decoded with seven bit precision. A fast, accurate seven-bit DAC returns a value equivalent to the ADC output. The ADC output is st ered to the most significant bits of the output register. The DAC output is stored for use in stage II. In

Fig. 13 Successive approximation ADC - block diagram.
stage II, the previous DAC output is subtracted from the analogue input, leaving a remainder which is some fraction of the converter's most significant bit. This fraction is amplified by $128\left(=2^{7}\right)$ and converted by the flasth converter to provide the seven least significant bits.

Successful Approximation

Another important ADC method is successive approximation, which is of medium to high speed (up to 50,000 10-bit conversions/sec). Successive approximation is probably the most popular ADC method today.

Fig. 14 Three-bit successive approximation ADC.

A block diagram of a successive approximation converter is shown in Fig. 13. A register is filled with ones in one bit position at a time. The register output is applied to a DAC and the resulting analogue output compared with the ADC input. On the basis of this comparison a decision is made on whether to retain the bit just tested or discard it. The total conversion time is approximately n times the DAC setting time.

The basic hardware implementation of a sucessiveapproximation (SA) register, using S-R flip-flops, is shown in Fig. 14. The top line of flip-flops is the sequencer, which puts a one in successive code register flip-flops, MSB first. The bottom line of flip-flops is the code register,

Fig. 15 Ramp comparison ADC.
which holds estimates of the digital code representing the input signal.

On receipt of a STARTCONVERT pulse, the sequencer is set to 1000, which sets the code register to 100 . This code is applied to a DAC, and the resultant output is compared with the analogue input. If the estimated code is too high, the comparator outputgoes high. When a CLOCK pulse arrives, the sequencer output goes to 0100 and the R input of $F 2$ will be 1 , so the code register's MSB is reset to 0 , and the new code is 010 . At the next CK pulse F1 may be Reset, depending on the comparator state. This process repeats until all the bits have been tested.

During the SA process the analogue input must obviously remain constant. It is usual to sample and hold the input signal before applying it to the ADC.

If a high conversion speed is not required, a microprocessor (or microcomputer) can take the place of the

Fig. 16 Dual ramp comparison ADC.

Fig. 17 Using a DAC to generate a ramp voltage.

SA hardware. The program is very simple, and may allow a high precision, low-speed ADC to be built using just a comparator and precision DAC in addition to the processor.

Ramp Until Ready

In the ramp method (Fig. 15), a ramp voltage is generated by an integrator, synchronised with a clock. The clock is applied to a counter, which is stopped when the ramp voltage equals the input voltage. At this time the counter output is a binary number proportional to the input voltage.

The dual slope integrating converter (Fig. 16) is an extension of this idea, and is a popular circuit in digital voltmeters. The integrating capacitor is charged first of all for a fixed time by a current -Vref/Rref, and then

Fig. 18 Tracking ADC - block diagram.
discharged by the unknown current, Vin/Rref, until the integrator output reaches zero. A counter times this discharge period and the number it reaches is proportional to the analogue input.

In this way the Rref and Cref need not be precision components, and the comparator specifications can be relaxed as it has only to compare with a ground reference. It is also possible to null out offsets before every conversion by introducing a third stage during which 0 V is integrated and the resultant output stored.

Both these types of single and dual slope converters suffer from having to generate ramps by analogue means which are synchronised to digital circuitry. Another method uses a DAC on the counter output to generate a ramp voltage which is compared with the input voltage
(Fig. 17). When the comparator changes state, the clock is stopped. The conversion time of this type of ADC varies with word length and input voltage. It takes less time to ramp up to a small input, and if fewer bits are used, fewer clock cycles are required to reach a given fraction of full scale.

A more elaborate scheme uses two comparators and an up/down counter. This is the tracking type of converter (Fig. 18). The maximum conversion rate depends on the rate of change of the input signal, not it's absolute value. To prevent the output jittering about a code, the $1 / 2$ LSB offsets shown are introduced to the comparators. If the input is within this LSB wide window the counter is held.

A final type of circuit is the non-linear converter, which operates by assigning more codes to low input voltages, giving a higher resolution. An example of a coding law for a three-bit non-linear device is shown in Fig. 19.

Some types of signal - for instance, speech - show predominantly low levels. An eight-bit non-linear converter might have effective 12-bit resolution for signals from 0 to 25% of full scale, and only four bits for signals from 75 to 100% of full scale. But if the signal spends 80% of it's time between 0 and 25% of full scale, the effective signal-to-noise ratio is similar to that obtained from a 12 bit converter, but with only eight-bit complexity. These types of converters are used in telecommunications to reduce transmission bit-rates and hence bandwidth.

An example of this type of converter is the Precision Monolithics PMI DAC78, which uses the three most significant bits to select one of eight'chords' of output -

shorter for lower input codes - and the next four bits to select one of 16 levels within each chord.

Data converters are now available in many guises to make their implementation easier, multiple converters in one package, time-multiplexed converters in one package, devices with serial digital inputs or outputs, and some which accept BCD rather than straight binary inputs. Special devices, designed to be easy to interface to a microprocessor, are also on the market.

This variety, combined with the falling cost of complex digital hardware, leads the way to a future where data converters are alrost as commonplace as the opamp.

State disc format and add VAT to all prices

MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY SOUTHAMPTON
SO1 5AP
TEL: 0703780084

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.cb.s and the manuals.

(P.c.b.s range in price irom $£ 10.95$ to $£ 17.75$ + VAT; manuals $£ 1-£ 5$.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your nameandaddress witha21pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Cept T8E), 92 New Chester Road,
New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

RCL BRIDGE

With precision autoranging digital meters available to test just about every electrical quantity, the humble measuring bridge has been rather neglected of late. L. Boullart feels it's time we took another look.

s there still a need for a measuring bridge? As far as resistors are concerned a digital or FET multimeter will do the job just as well. We all know that digital capacitance meters can be very accurate pieces of gear, but they are quite expensive and I suspect that many hobbyists
don't have one. On the other hand, a measuring bridge - even a modern high-quality one - is reasonably cheap, and it is quite possible to obtain an accuracy of 1% or even better with a good design.

But doesn't it take longer to carry out a measurement? Not
really: I have never worked on a new design without it. Perhaps I am over-cautious, but I always test the capacitors, the resistors and the inductors before soldering them to the printed circuit board. If the design doesn't work properly from the start, at least I know it is not the Rs, C's and Ls!

Fig. 1 The complete circuit diagram of the measuring bridge.

A measuring bridge consists of three parts:

1) a generator which feeds an AC voltage to the bridge
2) the bridge proper with switchable elements (capacitors, inductors, resistors)
3) a measuring amplifier to indicate the tuning of the bridge.

The Generator

In older bridges the generator often used the 50 Hz signal from the mains, injected into the circuit by means of a suitable transformer. However, such a low frequency will seriously limit the range of capacitors and inductors that can be measured.

Consider, for example, the impedance of a 10 uH inductor at 50 Hz :

$$
\begin{aligned}
Z & =2 \pi f \mathrm{~L} \\
& =6.28 \times 0.05 \times 0.01 \\
& =0.00314 \mathrm{ohms}
\end{aligned}
$$

which means a virtual short circuit.
On the other hand, a capacitor
of $10 p$ will have an impedance:

$Z=\frac{10^{3}}{6.28 \times 0.05 \times 10 \times 10^{-6}}$
$=318 \times 10^{6} \Omega$

Fig. 2 A basic measuring bridge.
Clearly, we will have to look for a compromise.

First, let us assume a scale with a range from 0.1 to 10 times the central value, a sensible compromise of range and accuracy of reading. Next, what are the smallest and the largest values of C and L we wish to measure?

For capacitors there is no point in going below 10p and above 100u. Likewise, the inductance range should be from 1 uH to 10 H . Below 1 uH , the influence of the connecting wires will cause appreciable reading errors and so will stray capacitances below 10p.

The lowest standard values in our bridge will then be 100p and 10 uH and the highest will be 10 u and 1 HO . A little calculation will show that a frequency of 15 kHz represents the best compromise. At this frequency, both the lowest
induct $(10 \mathrm{uH})$ and the highest capacitance (10u) will have an impedance of approximately 1 R0.

It will be relatively easy to design an oscillator which can deliver a small voltage into a 1 R0 load. The requirements for such an oscillator are:
a) good frequency stability
b) a modest amount of harmonic distortion, say $\pm 1 \%$
c) constant output voltage
d) low-power output capability
e) symmetrical output, isolated from earth
f) simple circuitry.

These requirements can be met by using a standard op-amp, a Wien bridge oscillator and an external complementary output stage.

The Bridge

The working principle of a measuring bridge is illustrated in Fig. 2. The two resistors marked R are equal in value, $R_{\text {cal }}$ is the calibration resistor, R_{x} is the resistor whose value is being measured and M is an $A C$ meter. When the voltages at A and B are equal, the bridge will be in equilibrium and the meter will read zero. This will occur when $R_{\text {cal }}$ is equal to R_{x} so if a calibrated scale is provided for $R_{\text {cal }}$ the value of R_{x} can be read directly from it.

There are several possible circuit arrangements for a

HOW IT WORKS

The circuitry around IC1 is a Wienbridge oscillator with an external complementary output stage. The stabilising element in the negative feedback path could be an RA 53 thermistor, but this is rather expensive, so a combination of silicon diodes and resistors has been used. The configuration is simlar to the CA 3019 and gives excellent results as far as distortion and output stability are concerned.

Diodes D5-D8 form a bridge, which is stabilised by means of a series combination of resistor R7, diode D9 and zener 2D1. R5 and RV1 are shunted across the bridge and determine the onset of oscillation.

The oscillator frequency is fixed by R2, C4 and R3, C3, both networks having a period of 10.4 us. The output voltage is 3.9 V with rather befter than 1\% THD.
To feed the measuring bridge, 0.5 V RMS will be amply sufficient, and this supply voltage must be symmetrical to earth. An 8:1 transformer enables us to meet these requirements. The worst case loading on the secondary of this transformer is $Z=1 \mathrm{ohm}$. This impedance, when transformed into the primary, is equivalent to 64 R . The out-

Abstract

put current is then 62.5 mA and $P_{\text {out }}=250 \mathrm{~mW}$. outhis is beyond the capabilities of the CA3140 so a low impedance output stage is required, the simplest solution being a complementary pair of NPN/ PNP transistors such as the BC 548B/ 558 B.

The complementary pair is designed as a separate unit with biasing current through R7, R8 and D10, D11. There is no quiescent current in Q1, Q2, but the transistors are on the verge of conduction.

Oddly enough, this gives best results on heavy loads, and the arrangement provides a slightly lower harmonic distortion - 0.8\% for Vout $=3.8 \mathrm{~V}$ RMS. The reason is that the distortions in the CA3140 and the complementary pair partly cancel.

The output of $\mathbf{T 2}$ feeds into the bridge itself, the network consisting of R9 and 10, RV2 and the switchselected standard capacitors, C8-13 and standard inductors, L1-6. RV2 balances the bridge and has its wiper connected to ground. Since capacitive reactance falls with frequency and inductive reactance rises with frequency, the X and CAL positions for

these two components are the reverse of one another if the 0.1 to 10 balance scale is always to read in the right direction. For this reason, the standard capacitors are connected to one arm of the bridge and the standard inductors to the other.

Any voltage appearing when the bridge is out-of-balance will be fed via the potential divider R11/R12 into the non-inverting input of IC2, another CA3140 op-amp. A potentiometer, RV3, has been included in the gain setting network so that the sensitivity of the measuring amplifier can be reduced during initial balancing of the bridge. Another diode bridge, this time consisting of germanium diodes, drives the meter from the output of the opamp.
The power supply is conventional in every respect. A centre-tapped transformer, T 1 , feeds four rectifiers in a bridge arrangement to provide positive and negative rails, each of which is provided with a single 470 u reservoir capacitor. Two further eiectrolytic capacitors, C16 and 17, are included to aid smoothing and decouple noise, etc. picked up on the supply rails.

PARTS LIST

RESISTORS (all 0.3W 5\% film unless otherwise stated)		$\underset{C 8}{C 7,14}$	10u tantalum 100p 1\% polystyrene	L3 $\quad 1 \mathrm{mH}$ (Toko 181LY		
R1	470R (not needed if LED1 has integral resistor)		polystyrene 1n0 1\% polystyrene	14	10mH (Toko 181LY	
			10n 1\% polystyrene	15	-103) (Toko	
R2,R4	$6 \mathrm{ks} \mathrm{1} \mathrm{\%}$		100n 1\% (see text	15	$181 L Y$ - 104) ${ }^{\text {1 }}$ (${ }^{\text {doko }}$	
	3k3 1\%	C12	and Buylines)	16	1H0 (Toko 239LY -	
R4, R5, 6	6k8 3 kg		$\begin{aligned} & \text { 1u0 1\% (see text } \\ & \text { and Buylines) } \end{aligned}$	M1	105)	
R7		C13			(or 50ua - see	
$\stackrel{\text { R8 }}{\text { R9, }} 10$	4k7		10u axial elec-			
	470R	C15	trolytic (see text)	SK1-3	Buylines)	
R11	820k		140 polycarbonate or tantalum		4 mm binding post	
R12	3 M 3				terminals or similar	
R13	100R (or 220R -			SW1	SPST miniature	
RV1	500R horizontal	SEMICONDUCTORS		SW2	switch 1 pole, 12 way rotary switch (see	
	skeleton preset	IC1, 2	CA3140			
RV2	10k linear	$\begin{aligned} & \mathrm{Q1} \\ & \mathrm{O} 2 \end{aligned}$	18C548B		rotary switch (see text)	
	potentiometer	D1-4	1 N 4002	T1	6-0-6V, 3VA PCB-	
RV3	5 sko Linear poten-	D5-11	1N4148		mounting mains	
	tiometer (or 10k see Buylines)	$\begin{aligned} & \text { D12-16 } \\ & \text { ZD1 } \\ & \text { LED1 } \end{aligned}$	0 A91 5 V 1400 nW zener Panel-mounting	12	transformer Philips P22/13 pot core (or equivalent) with	
CAPACITORS					120 turn primary	
C1, 2	470u 16V radial	miscellaneous			and 15 turn secondary (see text).	
C3, 4	1n5 1\% polystyrene	L1	10uH (Toko 144LY	PCB; case, Teko Desko TEK 363 or similar; knobs; mains cable and strain relief bush; nuts, bolts and pillars to support PCB; solder pins, connecting		
C5	22u 16V radial		-100)			
C6	electrolytic 470 n talntalum	12	100uH (Toko			
C6	470n taintalum		144HY-101)			

measuring bridge, the two main ones being illustrated in Fig. 3. The arrangement shown at (a) is the simpler method because it is not symmetrical about earth and does not therefore require a transformer to couple it to the output from the AC generator. The circuit shown in Fig 3 b is symmetrical about earth and does require a transformer but it is far less likely to suffer from the effects of stray capacitance. This is the arrangement which is used in this design, and the stray capacitance in the prototype is below 2 p0.

There are six capacitance ranges and six inductance ranges on the prototype. It is not difficult to extend the bridge to measure resistance as well but this makes the range switching rather complicated and pushes up the cost.

A simpler alternative is to omit one of the standard capacitors. The range switch can be set to this blank position and an external decade resistance box connected in the L_{x} position, between the L and common terminals. An unknown resistance can then be connected in the C_{x} position (between the C and common terminals) and measurements carried out in the normal way.

Since electrolytic capacitors larger than 10 u are difficult to measure accurately without a polarising current, the 10 u range is
of limited value only. It can safely be discarded to leave a blank position, and if a high capacitance range is ever required a 10 u capacitor can be connected externally.

The Measuring Amplifier

With a 500 mV input to the bridge, a sensivity of 10 mV full scale will be more than sufficient: a difference of $0.1 \mathrm{mV}(1 / 100 \mathrm{th}$ of the full scale deflection) can still

Fig. 3 Two possible bridge arrangements; a) one side earthed and b) symmetrical about earth.
easily be seen. This means a maximum sensivity of 1 part in $5000(500 \mathrm{mV} / 0.1 \mathrm{mV}$). If the diameter of the calibrating scale for RV2 is $90 \mathrm{~mm}(235 \mathrm{~mm}$ scale length), 1 part in 5000 averages 0.047 mm . Are your eyes good enough to detect that small an increment?

The amplifier itself is another standard op-amp, here arranged as a voltage follower. A potentiometer is included to vary the gain of the stage, allowing the sensitivity to be reduced to make initial balancing of the bridge easier.

Construction

The prototype was built into a grey ABS case with a sloping aluminium front panel. Almost all of the components, including the mains transformer, mount directly onto the printed circuit board. The remaining components mount through the front panel and the PCB is supported against the underside of the panel. This makes for a neat and compact assembly, and the only construction work required on the other half of the case is to provide a hole and strain relief assembly for the mains cable to pass through.

The pot core must be wound with 120 turns of 34 SWG enamelled coper wire to form the primary and 15 turns of 24 SWG

Fig. 4 Component overlay for the measuring bridge PCB. SK1-3 and LED1 mount through the front panel but have been shown here for completeness. Note that the potentiometers and the rotary switch are mounted on the PCB and that capacitors C8-13 are mounted vertically with their upper leads taken directly to SW2.
enamelled copper wire to form the secondary. Other pot cores could be used provided they have an inductance factor $\left(\mathrm{A}_{\mathrm{l}}\right)$ of 250 $\mathrm{nH} / \mathrm{turn}^{2}$ or a turns factor (α) of 62.8 turns/ mH .

Before starting to assemble the components onto the PCB, line-up the board behind the case front panel and mark and drill the necessary holes. It is a good idea to start with the holes for the two potentiometers and the rotary switch, then loosely assemble these components through the board and the panel to check that they line-up correctly. The board can then be clamped to the front panel using the switch and potentiometer mounting bushes while the remaining holes are drilled.

When the drilling is complete, begin assembling the PCB by installing the solder pins, the wire links, the IC sockets, SW2, the potentiometers, T1 and T2 and then the resistors, capacitors and inductors. Note that R15 is soldered into the board at one end and onto one of the contacts of

RV3 at the other end. R11 must be soldered directly to the wiping contact of SW2 and kept away from other parts in order to keep stray capacitances to a minimum.

The standard capacitors C8-13 should be mounted vertically with one lead soldered through the board and the other bent over and taken to the appropriate switch contact. If you have been unable to find 1% tolerance 100 n and 1 u 0 capacitors for C11 and C12, leave these positions blank for the moment. Once the rest of the bridge is working, it can be used to select suitably accurate components from standard 5% and 10% stock.

If you intend to use the bridge for resistance measurements, you have the choice of either modifying the range switching arrangements or simply omitting one capacitor as discussed earlier. If you choose the latter option, simply leave out C13 and remember when you come to label the front panel that the 10 u range should be marked external instead.

When all of the other components have been soldered into place, the diodes and then the transistors can be added. The extended copper pads around the collectors of Q1 and Q2 are intended to help heat dissipation, and the collector leads should be trimmed to 4 mm or less before soldering. The other two leads on each transistor can be made a little longer to ease installation.

The remaining components should now be mounted on the front panel, these being the meter, the LED, SW1 and the three binding post connectors. It is important that the connectors are well isolated from the panel so as to keep stray capacitances to a minimum. This will largely depend on the construction of the connectors themselves, so choose fairly 'meaty' types which have as much plastic insulation between the metal conductor and the panel as possible. If stray capacitance is a problem, try cutting a single large hole in the panel and mount the connectors on a piece of paxolin or other insulating material.

BUYLINES

The resistors, the semiconductors and most of the capacitors are available from companies advertising in these pages and from the other usual sources. The inductors are all available from Cirkit, and West Hyde Developments stock the Teko case. Electrovalue can supply the pot core, a winding bobbin and a PCB mounting kit for the assembly. Their order codes are B65661 10250 A028 for the pot core, 865662 B0000 T001 or T002 for a single or double plastic bobbin, and B65665 C0004 $\times 000$ for the mounting kit. The pot core is available while stocks last at 60 p , after which it will be replaced by a similar item, B65661 N0250 A022 which will cost $£ 1.26$.
Some of the 1\% tolerance capacitors are available from Maplin but the $\mathbf{1 0 0 n}$ and $1 u 0$ are not. Philips manufacture a range of polystyrene capacitors
designated C424 and C444 which includes a 100n type, and constructors who have access to trade component suppliers may be able to obtain some of these. We do not know of any manufacturer who produces $1 u 0$ capacitors with a tolerance of 1%. Both types can be substituted by gathering together a number of wider tolerance capacitors and then using the otherwise completed bridge to select the most accurate. The procedure is described in the text.
Although a 100 ua meter is specified in the parts list, the prototype used a $50 u A$ Micronta meter from Tandy. If this or any other $50 u \mathrm{~A}$ meter is used, R13 and RV3 should be exchanged for the values shown in brackets. Nothing else should present any problems and the PCB is available from our PCB Service.

Attach the PCB to the front panel using four spacers and countersunk-head bolts. Solder a pair of leads to the points marked $X X$ on the PCB and connect the other ends to SW1. Connect up the meter carefully observing polarity and also solder leads from the PCB to the three connectors and to the LED. Note that R1 will not be needed if you use a panelmounting LED which has an integral resistor. Insert the two ICs into their sockets, making sure that they are the right way around.

Feed the mains lead through a hole in the bottom half of the case, secure it with a strain relief bush and solder the live and neutral leads to the pads near T1 primary. Connect the earth lead to the front panel by means of a solder tag under one of the PCB support bolts. This will reduce the effects of hand capacitance when testing small capacitors.

Calibration

Before starting the calibration procedure, the oscillator must be adjusted. This is done with the preset resistor RV1, which must be set such that the amplification factor is just a little above 3. If the gain is below 3, the oscillation stops altogether, and if it is too much above 3 the wave-form becomes very distorted. RV1 must therefore be set very carefully just a little above the point where oscillation starts.

If this point is not within the range of the preset, it will be necessary to make a slight correction to R5 (6 k 8). This can easily be done by shunting R5
with a high value resistor (on the copper side of the printed circuit board). In the prototype, 270k was just right.

An oscilloscope or a distortion meter will be very helpful here, but if these are not available just make sure that the oscillator output is $3.9 \mathrm{~V} \pm 2 \%$. As a final test of correct working conditions, connect a 1 R0 resistor across the secondary of T2. If the oscillator stops, the gain must be slightly increased by means of RV1.

Now we turn to the calibration. First we need a knob with a dial pointer, and this can be made from a piece of clear plastic glued to the underside of an instrument knob. You may be lucky enough to find a knob with threaded holes on the underside.

Make a provisional scale and tape it to the front panel, then turn SW2 to the free position. You will
need nine precision resistors of 100 R and one of $1 \mathrm{k0}$, preferably all of 0.5% tolerance.

Connect a 100 R resistor across C_{x} as the reference value and another 100R resistor across L_{x}. Adjust the calibration knob carefully to read a minimum on the meter and make a pencil mark on the scale. This will be the ' 1 ' position.

Next, connect two of these resistors in series across L_{x}, adjust the potentiometer for zero reading on the meter and mark a ' 2 ' on the scale.

Repeat the procedure with 300 R to give the 3 position, 400R to give the 4 position and so on up to 10 . Intermediate points can be found by using two 100R resistors in parallel as one series element, giving 1.5, 2.5 , etc. To calibrate the other half of the scale, connect the 1 kO resistors across C_{x} as the reference and use series strings of the 100 R resistors to obtain 0.1 , 0.2 and so on and series-parallel chains to obtain the intermediate points.

If you were unable to find either or both of the 100 n and 1 u0 1% standard capacitors, you can now use the bridge to choose suitable examples. One method for selecting the 100 n capacitor is to set the bridge to 10 n and then test a batch of 100 n capacitors until you find one which gives a reading sufficiently close to 10 on the scale.

A more accurate method is to connect several 1\% 10n capacitors across the C_{x} connections and then select a 100 n capacitor which gives a reading of 0.1 or 0.2 or whatever is appropriate for the number of capacitors you have used. The more capacitors (and therefore, the nearer their

Fig. 5 Arrangement for making accurate measurements of inductance.
combined capacitance is to 100 n) the more accurate the selection will be. Once the 100 n capacitor has been selected, the process can be repeated to find a 140 capacitor.

The inductors specified in the parts list all have a tolerance of $\pm 5 \%$ except the 1 H 0 coll which has a tolerance of $\pm 10 \%$. These are rather low levels of accuracy but are generally regarded as acceptable for inductors. In my opinion it is not really worth spending much time and effort
improving on these figures, but if you particularly want a high level of accuracy then the following method should enable you to achieve it.

Figure 5 shows the circuit to be used. C is a capacitor of $\pm 1 \%$ tolerance or better and R is adjusted according to the impedance of LC at a given frequency. The frequency generator should be adjusted for minimum reading on the AC voltmeter and the frequency then noted using the DFM. The value of
the inductor can be calculated using the formula:-
$f=\frac{1}{2 \pi} \quad \sqrt{\frac{1}{L C}}$

Once the value of a particular inductor is known, it can be used to select other inductors by means of the procedure described for selecting capacitors.

Once the standard capacitors and inductors have all been soldered into place, the front panel can be secured to the bottom half of the case and a final calibrated scale prepared. It is a good idea to use a graduated arc and to plot a curve on millimetre scaled paper. This will reveal any serious errors arising from the calibration process and also yield a few extra intermediate points such as $1.1,1.2$, etc.

In use, the only point to remember is that there will be a residual capacitance of about 2 p 0 which should be taken into account when measuring small capacitances.

ETI

If an advertisement is wrong wére here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority.
ASA Led. Dept 3 Brook House. Torrington Place. London WC1E 7HN

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

ETI SORCERER STRING SYNTHESIZER

Contrary to popular belief, writes designer and author Graeme Durant, a string synthesizer is not a machine for making twine. Relax and unwind as the yarn unfolds.

The string synthesizer originated in the 1970s, and perhaps owes more to organ developments than synthesizer technology; the basic instrument being polyphonic with preset sounds, usually generated by an organ-type frequency divider, gating and filtering, followed by a chorus generator to enhance the massed string quality.

Although the string synthesizer is very commonly used in many types of music today, due to its unique ability to fill out the sound of a small band without being too forward, it is usually used as a backing instrument to other keyboards. So, with an average
sort of selling price in the order of four hundred pounds for a commercial unit, the string synthesizer is often out of the reach of many amateur musicians, as a mere second instrument

That is where the ETI Sorcerer comes in. For a mere fifty pounds outlay, the Sorcerer provides this lush backing sound albeit in monophonic form only, but with sufficient power to produce very emotive backdrops.

Facilities

The ETI Sorcerer is unlike most commercial synthesizers in that it is built along the lines of a general purpose analogue synth, using
similar circuit blocks such as VCOs and envelope generators. Its variable controls also mirror some of those more often found on analogue synths, providing great versatility and many sound options apart from the more usual string effects.

The basic keyboard is a three octave unit, but Sorcerer provides three switches akin to organ stops, which allow individual or simultaneous selection of three one octave spaced ranges. Selecting all three ranges allows an effect like holding down a bass note, a note an octave up and a note two octaves up. The results are extremely powerful. A glide

control allows slewing between played notes and a fine tune control means Sorcerer can be tuned to other instruments. A vibrato effect is included, and controls are available to adjust its speed and depth. There is also an envelope contour generator with variable attack and release rates.

To simulate strings it is not necessary to go to the expense of using a full ADSR envelope generator, as on most analogue synths. An AR generator with a 'sustain on/off' switch is perfectly adequate. To produce the effect of massed instruments, a powerful chorus generator is included in the unit, which can be bypassed if desired for solo playing. The Sorcerer has a line output for an amplifier and a high impedance headphone output for use during recording.

The keyboard is a touch operated unit, chosen primarily for reasons of economy. A conventional keyboard can be used if preferred and the budget allows.

A three octave range is provided for by a PCB keyboard with full width keys. Being electronic, it has been designed to delay its response slightly to
simulate the time usually taken for key travel and to ensure reliable detection of touch. As a result, it will not respond to fast playing, but this was not considered a particular disadvantage since Sorcerer was designed for slow backing-type use anyway. The keyboard includes circuits which detect when more than one key is being pressed. These provide a sort of multiple trigger function, similar to 'two key roll-over' found on computer keyboards, so that as long as only one key is pressed, it will be the one which is sounding.

Block Diagram

Sorcerer is built up on six printed circuit boards with a separate power supply board. This allows a modular construction and the possibility of adding new modules for special effects. The keyboard forms two of these boards, producing a key voltage proportional to musical pitch and two timing signals - gate and trigger:

The key voltage goes on to the VCO board. This board centres around a precision voltage-tofrequency converter which outputs a pulse train at a multiple
of the desired frequency. A low frequency oscillator provides the modulation for vibrato. The pulse train is divided in frequency to the three required pitches, at one octave spacings, and the square pulses resulting are given the required width characteristics. After passing through octave selector switches, the three signals pass on to the chorus boards. Here, the three signals are individually filtered to produce sounds closer to strings, and then mixed to form one composite signal. The signal is fed either via parallel delay lines to gain a heavy chorus effect or directly off board if the chorus mode is not switched in.

The signal now reaches the final processing board, the envelope circuits. These give the signal the desired amplitude contour for the synthesis and allow variation of the amplitude attack and release rates, as well as selection of the sustain time. Synchronization is obtained from the trigger and gate signals from the keyboard. The output is then buffered and sent to the output jack, and to a low-power amplifier suitable for driving high impedance headphones.

Fig. 1 Block diagram of the Sorcerer.

VCO SECTION

Fig. 2 Circuit diagram of the VCO section.

In Sorcerer, the VCO circuits are primarily concerned with converting the keyboard pitch voltage into a proportional frequency output. They also provide the facilities for glide and vibrato, and generate three one octave spaced pulse train outputs, with the correct markspace ratios.
The keyboard pitch voltage is applied to one end of RV1, the glide control. C1, a low leakage tantalum capacitor at the slider of RV1, provides the required variable slewing between notes. The other end of RV1 goes via buffer to the rest of the circuit. The buffer, IC1, is required so that the glide control sees a very high impedance (about 10^{12} ohms) otherwise the pitch of the VCO would be affected as the glide control was adjusted. The pitch voltage is then inverted by IC2 wired as a unity gain inverting amplifier. This is necessary since the voltage-tofrequency circuit used requires a negative input voltage.
The voltage-to-frequency converter circuit is based around IC3 and IC4. IC3 is either an LM331 or equivalent RC4151 which is somewhat cheaper. IC4 is another LF351, this time chosen for its low input offset current, and is wired as integrator. A simplified circuit is shown in Fig. 3.

The output voltage of IC4 goes go one input of a comparator inside IC3 at pin 7. The other input, pin 6, goes to a
circuit point at half the supply voltage. When the voltage at pin 7 is the greater, the comparator triggers the one-shot timer. This will turn on both the frequency output transistor and the switched current source for a time $t=1.1 R, C$. During this time, a current i will flow out of pin 1 into the input of the integrator. The integrator output will start to ramp down. This current will have an average magnitude of $I_{a v}=$ itF, where F is the frequency of oscillation. This average current perfectly balances the current due to the input voltage, $-V_{i n} / R_{\text {in }}$ at the integrator's virtual earth input. At the end of the one-shot timing period, the current source and the output transistor are both switched off. The integrator output will start to ramp positive again, until it exceeds the voltage at pin 6 of IC3, when the cycle will start again.

The frequency of oscillation can be determined from the balanced input current:
$-V_{i n} / R_{i n}=I_{a v}$
$I_{a v}=i t F$
$=V_{\text {ref }} / R_{\text {s }}$ which equals $1.9 / \mathrm{R}_{\mathrm{s}}$, since Vref $=1.9 \mathrm{~V}$ and is internal to IC3. Also:
$=1.1 R_{1} C_{1}$ so that
$F=-\left(V_{i n} / 2.09\right)$. $\left(R_{5} /\right.$
$\left.R_{\text {in }}\right)$. $\left(R_{1} \mathrm{C}_{1}\right)$) and F proportional to $-V_{\mathrm{in}}$.

In our case $R_{\text {s }}$ is made up from R16, RV4 and RV5. The latter two variable resistors make for fine and course tuning respectively. Instead of connecting the end of R_{5} to ground, it is fed from a buffer IC5a, driven by a variable lowfrequency and variable amplitude triangle wave generator. This standard integrator-Schmitt trigger oscillator generates a triangle wave which is symmetrical about 0 V . It slowly varies the frequency of the VCO, cyclically about its programmed pitch, by adjusting the current flowing through $R_{\text {s. }}$. This provides the vibrato function.
The frequency output of IC3 at pin 3 is divided by $2,4,8$, and

16 at pins 12, 11, 9 and 6 and IC6 respectively, a CMOS ripple counter. These outputs pass through IC7 and $1 C 8 C$, which convert the squarewave signals to pulse waves with a 25% duty cycle at the 4^{\prime} and 8^{\prime} outputs and with a 12.5% duty cycle at the 16^{\prime} ouput. These particular pulse widths have harmonic contents which much more closely approximate the sound of a volin and cello respectively, and are thus used for the basis of these sounds. The outputs are switched electronicaly using IC8a, b, and d, via front panel switches SW1, 2, and 3, to save routing signals to the front panel. The three, octave-spaced, signals pass on to the filter/ chorus boards.

The keyboard unit must take an input from the musician paying the keyboard, and produce information from the key operated, to tell the rest of the synthesizer what to do, and when to do it. This information is a voltage, proportional to the frequency of the required pitch, a trigger pulse produced every time a new note is operated and a gate pulse signal which is a local high for the duration of any key press.

Suitable touch switches come in three types, with different principles of operation. The simplest is the resistive type which detects the change of resistance between two contacts bridged by the fingers. This method was used some years back in an ETI project for a miniature organ keyboard. Although simple, it has serious
drawbacks - it is disabled by moisture and does not respond to musicians with dry skin! A much better, but more complex technique is to use the principle that a human body acts just like a small value capacitor with one end grounded, using a finger as the other connection. Such designs usually employ a high frequency oscillator and moderately complex detection circuits - not really suited to being reproduced thirty seven times on a keyboard! The technique chosen for Sorcerer uses hum-detection. The human body acts like a sort of aerial, picking up mains hum which can be detected using a high input impedance amplifier.

Each key is formed by an area of copper on the keyboard PCB, is linked to the non-inverting input of a low-power op-amp
and held to the supply voltage by a very large resistor. When the keys are untouched, the resistors pull the non-inverting inputs above the voltage of the inverting inputs, each tied to $0 v$, and so the op-amp outputs are high. When a key is touched, a 50 Hz signal is injected into the non-inverting input of the appropriate op-amp. Since the op-amps are used here as large gain comparators, the output is in the form of a 50 Hz pulse train between 0 V and 3.5 V which must be detected.

Each key is encoded with an eight-bit binary number which will eventually go for digital-toanalogue conversion. The coded numbers must be proportional to the required pitch voltages.

The relationship between the
frequency of the successive notes on a musical keyboard is exponential not linear. Each octave is a doubling in frequency and adjacent notes are multiples of the twelfth root of two in frequency! The usual method used in analogue synthezisers to achieve this musical scale is to design a keyboard which produces a linear voltage output, often a standard 1 volt/octave, passing this to a special VCO which responds in an exponential fashion. Thus, a simple keyboard is used to control a very complex and expensive VCO. The linear to exponential conversion technique is very prone to the effects of temperature change and component mismatch. If it can be avoided life becomes much simpler!

Sorcerer solves the problems

KEYBOARD UNIT

of stability and complexity at the price of precision. The keyboard produces an exponentially incremented pitch voltage output, using a series of exponentially related binary keycodes, and drives a linear VCO. Being digitally generated, the keyboard output is very stable, but since it is only limited to eight-bit precision, the voltages have small - but normally unnoticeable - errors referred to the exact voltage required.

The binary codes are programmed using a diode matrix. the key op-amp outputs are connected, where required, to the eight-bit data bus by reversed signal diodes D40 to D186, forming the exponential code (Table 1).
The data on the data bus is still in form of 50 Hz pulse trains and must be made into steady logic levels to drive the digital-to-analogue converter. The signals on the data bus are lowpass filtered by R97 to R112 and C7 to C14 to remove the 50 Hz component, and drive CMOS inverting Schmitt triggers in IC19 and IC20. If a dataline is inactive, the input to the Schmitt is held high by one of R105 to R112. An active line produces a high at the Schmitt trigger output, and an inactive line a low.

The resulting steady codes are passed on to IC21, an eight bit digital-to-analogue conver-
ter, to be changed into the output pitch voltage. Diodes D195 to D202 and storage capacitors C15 to C22 ensure that data is valid even if a key is operated for less time than it takes the DAC to latch.
The gate signal is produced by using an eight input diode OR gate (D187 to D194 and R113) connected to the eight logic level data lines. Pin 3 of IC22 will go low when any key is pressed. A delay is produced on this falling edge by R122, D203 and C23, so that the output of IC22b will go high shortly after any key is pressed, giving the data lines time to settle down.

D3 to D39 and R60 to R96 feed a filter-Schmitt trigger circuit using IC19a and b, the output of which will go low if two or more keys are pressed at the same time inhibiting the trigger and latch. This signal has its rising edge delayed by R123, D204 and C24, so that the data lines can settle down when two ' keys are pressed simultaneously and one is then released.

IC22c, C27 and R124 produce a negative pulse when there is a change from no keys or more than one key being pressed. This pulse is used to update the digital-to-analogue converter latches, and in inverted form, via IC22d, used as the trigger signal for the envelope generator.

NOTE	EXP. COD	BINARY CODE
C	31	00011111
C\#	33	00100001
D	35	00100011
D ${ }^{\text {H }}$	37	00100101
E	39	00100111
F	41	00101001
F\#	44	00101100
G	46	00101110
G\#	49	00110001
A	52	00110100
A."	55	00110111
B	59	00111011
C	62	00111110
C\#	66	01000010
D	70	01000110
D\#	74	01001010
E	78	01001110
F	83	01010011
F\#	88	01011000
G	93	01011101
G\#	98	01100010
A	104	01101000
A	110	01101110
B	117	01110101
C	124	01111100
C/	131	10000011
D	139	10001011
D\#	147	10010011
E	156	10011100
F	166	10100110
F\#	175	10101111
G	186	10111010
G\#	197	11000101
A	209	11010001
A ${ }^{\text {H }}$	221	11011101
B	234	11101010
C	248	11111000

Table 1 Sorcerer keyboard binary key codes.

Usually, one of the most criti- design have local references of cal parts of a music synthesizer their own, most based on very is the power supply unit. In an stable band-gap devices in the analogue design most of the ICs used. Thus a simply synthesizer parameters are regulated supply is all that is supply dependent. A pro- reguired.
fessional machine must have a Sorcerer requires three power drift free tuning, and as a conse- rails to run, and all of these are quence the power supply mains derived. A dual secondesign is very complex.
This is not the case in 8 VA is used as a source. This is Sorcerer. All critical parts of this conventionally rectified and
smoothed by BR1, C28 and C29. IC42 provides a +5 volt regulated output, and IC43 a -5 voit supply. The other supply required is a +10 volt output. Since it is not common to find fued ten volt regulators, a low current 5 volt device, IC44, is stacked on top of the main +5 volt rail. D205 ensures that the IC starts up correctly when driving a capacitive load.

Fig. 5 Circuit diagram of the PSU

Since the Sorcerer is a project of considerable length, we have been obliged - for reasons of space - to split it up into a number of parts. The circuit diagrams and descriptions of the envelope shaping and chorus sections of the synthesizer will appear next month. We hope to publish the PCB foil patterns and component overlays the following month, along with constructional details, information about modifiying the circuit for use with a conventional keyboard, details of the setting-up procedure, parts list and Buylines.

EX42 INTERFACE FOR THE BBC ' ${ }^{\prime}$ '

In response to a flood of readers' queries, we present a project devised and typed by Philip Ashby using a BBC computer and an EX42 daisywheel typewriter, in which he tells us how he did it.

In ETI, October 1983, we featured an interface that enabled a Silver Reed EX 42 electronic typewriter to convince itself it was a computer printer. The economic arguments for using a typewriter rather than forking out for a daisy-wheel printer are still just as valid - and you get a good quality keyboard thrown in as well!

For this author, the interface in its original form proved capable of many hours of trouble-free listings when coupled to a Jupiter ACE. The home computing capacity has since been upgraded to a BBC B,
and with that came the promise of more work for the EX42: not just listings but text print-outs, too, from the word-processing package. A couple of extra ICs and 180 or so bytes of machine code make for a conversion kit, to give compatibility with the Centronics port on the Beeb.

Repeat

The basic interface remains intact (Fig. 1), so if you don't have the board go scurrying back to October 1983's ETI, p21. To recap briefly: the processor inside the

Fig. 1 Block diagram of conversion for original interface.

Fig. 2 Circuit diagram of conversion hardware.
typewriter scans across an 8×8 matrix of switch contacts in the keyboard, looking to see which of the 8 horizontal lines has been connected to a vertical one. It does this by sending successive voltage pulses down each vertical and looking for them on the horizontals.

Connections run from the interface to each of the keyboard matrix lines in the typewriter. The interface 'fools' the typewriter's processor into thinking a physical contact has been made on the EX42 keyboard by mirroring the scanned pulse from an X line into the appropriate Y line.

Between them, the computer and interface have two major jobs: code translation (from output ASCII to a 6-bit code for the keyboard matrix) and overall control of data flow via the handshake lines.

HOW IT WORKS

IC2 in Fig. 4 forms a monostable timer with a period adjusted by R2 to approximately 25 . When triggered, it produces a positive pulse. The trigger to the timer is the output on D7 from the computer, gated with STROBE through the NANDs, ICla and lb. The timer will trigger with D7 at logic 1 and STROBE on a negativegoing edge going low. Output of the timer then extends the the ACK pulse to 2 secs: otherwise ACK is the logical inverse of BUSY from the interface and would be high for about 100 ms . The theoretical timer period is $1.1 \times \mathbf{R}_{\mathbf{3}} \times$ C_{2}. Adjust R_{3} if the actual period is too long or too short.

Fig. 3 Component overlay for conversion hardware.

Shake On It

There are two handshake lines between the interface and the computer (STROBE and
ACKNOWLEDGE on the BBC Micro) and, as a first job for the adaptor, their polarity needs to be inverted.

The handshake lines work like this: the parallel printer port on the Beeb will pulse STROBE down to 0 V when a set of valid data (the next character) exists on the lines. The data stays the same until the return handshake on
ACKNOWLEDGE. The protocol for ACK is to go negative when the printer has done its work. (For those readers expecting a line called BUSY, it exists as a contact pin on the socket of the Beeb, but it isn't used for control purposes.)

Number Crunching

The translation from ASCII to keyboard code in the modified design is done by software in the micro, and data lines DO to D5 carry the translated information. D6 is used to signal a shift character to the typewriter, and D7 to indicate when a carriage return is being sent. The latter logic signal is used to trigger a 2 s delay in the ACK pulse, to allow the printer head time to travel back to the left hand margin. It's strictly from the 'dirty tricks' side of electronic design: one 555 timer chip in hardware doing the job of several lines of software!
In contrast, software translation of ASCII to keyboard code was preferred because of the options available for future expansion different character sets (if, say, you save up your pennies for a new daisy wheel), or specials such as underlining. Software, like life, is never as simple as you hope, and two obstacles hit you straight away. BASIC won't suffice if you

want to output text when in wordprocessor mode. Resident ROMs within the computer such as VIEW and WORDWISE have the rather nasy habit of doing fairly powerful rearrangement of memory to suit their own ends when storing text. The driver software has to be in machine code and, together with the translation table, be tucked away in memory out of reach of the word-processing program. They are listed here as programs in BASIC to generate the translation table and machine code routine, and then relocate them. Generation need only be done once for any one version of the character code.

The location to store the program in is page C : COOh to CB8 h . This is normally used to store the fonts for extended character sets, so it's rather unlikely that it will ever clash with print demands from the EX42 unless you have a particularly exotic set of daisy-wheels!

The advantage of this Icoation is that the area is not grabbed by

SOFTWARE

The software falls into three main areas: generation of the translation table; generation of the machine code translation program; and a routine to load these programmes and modify vectors used by the Operating System so that the programs are called when appropriate.
Listing 1 generates the translation table, the data for which is printed as Listing 2. The programme prompts you to enter the codes for each ASCII character, display the results, and assembles the code into an array called TABLE. The array is then stored in a file known as chars. Readers with utility programmes resident in their machines would obviously have quicker ways of locating the table in memory and storing to disc.

Lines $\mathbf{1 0}$ to $\mathbf{3 0}$ set up addresses used for temporary storage of registers and a value used later for a call to a routine in the Operating System (an OS8YTE call). Line 50 sets the compilation address of the code, and lines 40 to 70 set up the BASIC assembler for two passes. When the programme is activated, it will be entered whenever the computer wishes to store a character (held in a register) into a buffer. This is accomplished by changing the value of a vector used by the operating system, resident at 22Ah. The Operating System identifies the required buf fer with a value in the X register held on entry to the routine. The value is 3 for the case of the print buffer, and this is checked by line 100, with branching on line 110.

If the print buffer is requested, the next job is to check whether it is full before attempting to fiddle the character! Lines 130 to $\mathbf{1 8 0}$ perform this task, and all being well, lines 190 to 220 make the change, using the code-table stored from OCOOh to translate the character.

The rest of the program restores various registers and assembles routines for the remaining branches. The address JUMPed to in line 260 is that of the original buffer routine.

Listing 3a is the BASIC program that assembles the translator machine-code program.

Listing 3b shows the screen display when the program is RUN and the code compiled. After compilation, type in "SAVE "mc" OC81 OCB3 to store the machine-code program.
You now have two files, "mc" and "chars" stored on tape or disc, and Listing 4 loads both of them into memory. It also activates them by inserting the program address (OC81h) into the vector location in memory (22Ah) used by the Operating System for buffer operations. For convenience, this has been created as a :BOOT file, assembled on disc, which will load and run on a SHIFT-BREAK. On completion, in this case, control is handed over to VIEW for word processing.

PROJECT: EX42/BBC Interface

```
10 CLS: PRINT TAB(5,5) "ASCII CHAR"
    20 DIM TABLE (128)
    30 FOR A=0 TO 31:TABLE(A) = 16:NEXT A
    40 TABLE (10)=137
    50 TABLE(13)=137
    60 FOR A= 32 TO 128
    7 0 ~ P R I N T ~ T A B ( 5 , 7 ) ~ S P C ( 1 5 )
    80 PRINT TAB(5,7); A;SPC(5);CHR$(A);
90 INPUT AI
00 TABLE(A
15 C = OPENOUT "chars"
120 FOR A= OTO 128
30 PRINT A;SPC(5); TABLE(A)
160 BPUTy C,TABLE (A)
70 NEXT A
8 0 \text { CLOSEA C}
190 END
```


Listing 1 Translation table generator.

other languages or wordprocessing ROMs, at least not in the author's experience. An alterantive location for disc users is page 8: 900h to 9B8h, an area normally used for tape buffers. The location of the program is set by lines 10, 20, 50 and 220 in Listing 3a and in Listing 4.

Construction and Installation

The convertor is assembled on a small PCB which sits piggyback over the site of the interface's original EPROM, which should be removed and replaced with wire links (Fig. 2). Before fitting the convertor, connect the links from pins 2, 3, 4, 5, 6, 7 and 8

Fig. 4 Connections between boards, on original ROM socket and to IDC plug.
to pins $16,15,14,13,11,10$ and 9, respectively, on the EPROM socket. Three connections (D7, 0 V and +5 V) are made from the convertor to the interface, fitting pins 1, 12 and 24 in the EPROM socket. If these are made in thick gauge wire, they serve to anchor the boards together sufficiently (Fig. 2).

Connection to the micro is by means of 26-way ribbon cable, with an insulation displacement connector at the micro, which plugs into the parallel printer

LOC	CONT	CH	LOC	CONT	CH	LOC	CONT	CH	LOC	CONT
0	16		32	1	@	64	10		96	68
1	16	!	33	71	A	65	¢ 8	a	97	23
2	16	"	34	103	E	66	93	b	98	29
3	16	\pm	35	90	C	67	94	c	99	30
4	16	\$	56	102	D	68	86	d	100	22
5	16	\%	37	69	E	69	78	e	101	14
6	16	2	38	101	F	70	118	f	102	54
7	16		39	68	G	71	85	9	103	21
8	16	(40	100	H	72	117	h	104	53
9	16)	41	67	I	73	108	i	105	44
10	137	*	42	82	J	74	84	j	106	20
11	16	+	43	115	K	75	116	k	107	52
12	16	,	44	60	L	76	83	1	108	19
13	137	-	45	2	M	77	92	m	109	2 B
14	16	-	46	27	N	78	125	n	110	61
15	16	1	47	59	0	79	75	0	111	11
16	16	0	48	35	F	80	107	P	112	43
17	16	1	49	7	0	81	79	q	113	15
18	16	2	50	39	F	82	110	r	114	46
19	16	3	51	6	5	85	119	5	115	55
20	16	4	52	38	T	84	77	t	116	13
21	16	5	53	5	U	85	76	4	117	12
22	16	6	54	37	v	86	126	\checkmark	118	62
23	16	7	55	4	W	87	111	w	119	47
24	16	8	56	36	X	88	127	8	120	63
25	16	9	57	3	Y	89	109	y	121	45
26	16	:	58	1 B	Z	90	95	z	122	31
27	16	;	59	51	[91	202	¢	123	1
28	16	$<$	60	196	1	92	1	!	124	187
29	16	$=$	61	99]	93	138	3	125	1
30	16	\rangle	62	194	人	94	1	\sim	126	1
31	16	$?$	63	123	-	95	66		127	16

Listing 2 Decimal data for translation table.
socket on the underside of the computer. IDC connectors are the answer to many a constructor's prayer as a means of connecting so many wires at once: they can be bought ready assembled, but are simplicity itself to make up. Just position the cable over the plug, matching wires with contact points, fit the plastic cover plate, taking care to line it up, and tap gently with a hammer. With luck all connections are made at once and it then only remains to fit the strain relief clamp over the cable.

```
10 store \(=\& 0 C B 7\)
20 storey = \&OCB8
30 OSBYTE \(=\) \&FFF4
40 FOR opt \(\%=0\) TO 3 STEP ?
\(50 \mathrm{P} \%=\& 0 \mathrm{C} 81\)
60 C
70 OPT opt \(\%\)
80 PHP
90 STY storey
100 CPX /\$\&03
110 BNE exit
120 STA store
130 LDA \(\# \& 80\)
140 LDX \#\&FC
150 LDY \#\&FF
160 JSR OSBYTE
170 CPX \#\&00
180 BEQ escape
190 LDA store
200 AND \(\# \& 7 F\)
210 TAX
220 LDA \&0COO,X
230 LDX //\&03
240 . exit PLP
250 LDY storey
260 JMP \&E4B3
270 .escape LDA store
280 LDX \(\$ 1803\)
290 JMP exit
300 ]
310 NEXT ope\%
320 END
```

Listing 3a BASIC program to assemble translation program.

PROJECT: EX42/BBC Interface

At the interface end, you can use a D-type plug and socket but with a little care and patience it's perfectly possible to do without this, and solder wires from the ribbon cable directly into the PCBs.
A reminder that $B U S Y$ and STROBE are connected from
convertor to interface, while ACK and STROBE run from convertor to micro. Connection details (courtesy of the BBC handbook) are shown in Table 1 and the IDC plug pin numbering can be seen in Fig. 2.

Signal IDC wire no.

STROBE	1
DO	3
D1	5
D7	7
D3	9
D4	11
D5	13
D6	15
D7	17
ACK	19
Ground 20 (and all even nos.)	

Table 1 IDC plug connection details.

Further Developments

The one drawback to using D7 to signal carriage return is that the original design reserved this line to denote the alternative character set which is needed for certain ASCII characters (assuming you have that daisy-wheel fitted). This

```
-BUILD IBOOT (recurn), then type
    -LOAD chars OCOO
    *LOAD mc 0C81
    *WORD
    (ESCAPE)
```

Listing 4 Program to assemble !BOOT file to load and run translation program from disc.
can still be done, but the penalty is a 2 s delay every time such a character is printed. Further software could make use of the delay when back-spaces are output, for underlining. The keyboard code for a back-space is 25 (decimal) and this could be assigned to one of the unused ASCII codes and built into a specialised printer driver routine from the word-processor.

Further details of Operating System routines in the BBC Micro can be found in 'The Advanced User Guide For The BBC Micro', by Bray, Dickens and Holmes published by the Cambridge Microcomputer Centre at $£ 12.95$.

ETI

MOSFET POWER AMPLIEIERS

PAT 500 IMono Unith

A range of 3 Mosfet Power amplifiers which incorporate the lates developments in Mosfet technology. using new techniques developed by CSL Sound Systems in the professional and Audiophile market these amplifiers out perform the standard Mosfet amplifiers in specification and musicality giving a smooth response throughout the audio range with dynamic low frequency performance often lacking in Mosfet amplifiers. All of the P A.T. series use 160 v Mosfets to give incredible headroom with exemplary distortion and noise levels.

PAT 500 illustrated 500w into 4 ohms, 280w into 8 ohms $£ 45.00$ kit, $£ 49.60$ built

PAT120 120w
into 8 ohms
$£ 18.50$ kit, $£ 21.00$ built
PAT 200 200w
into 8 ohms
$£ 28.00$ kit, $£ 30.50$ built
AMP - 01 - M
state of the art pre-amp,
now available. as deschibed
in hiff news magazine. s.a.e.
for details.
P.S.U Capacitors 15000 uf 100 vw
computor grade $\mathbf{f 6 . 9 5}$
10000 uf 80 vw industrial grade f 4.80 400 v 35 amp bridge rectiffers $£ 2.95$ 400 v A.C. $\mathbf{f a n , ~} 120 \mathrm{~mm}$, $90 \mathrm{cfm} \mathrm{f} £ 14.00$ 24 v D.C. $\mathrm{Fan}, 120 \mathrm{~mm}, 90 \mathrm{cfm} \mathrm{c} 22.00$ D.C. fan controller Increases fan speed as temperature rises $\mathbf{£ 8 . 5 0}$

Fan guards for above fans, block plastic £1.45
Toroid
f11.50
Toroid
£16.50
Toroid

AP100 Pre-amplifer

AP100 £9.80 kit, £11.45 built

Manufactured to complement the P.A.T series amplifiers, designed to the highest standards of performance. Low noise Op amp circuitry gives an output swing up to ± 12 (adjustable on the board). External switching (not supplled) allows RIAA equalisation for magnetic pickups or user adjustable equalisation. T.H.D typically 0.004%, SNR better than 80db's for 5 mv RIAA, the standard AP100 has on board regulators to allow the unit to be run directly from the P.A.T amplifier supply please specify AP100/S for $\pm 24 \mathrm{v}$ operation.

Protection circuit
Protect your costly ipeakers from D.C. damage due to incorrect inputs or P.S.U. fallures, this unit cortains a heavy duty relay to disconnect the speakers If a D.C. condition appears at te amplifers output.
$\mathbf{£ 7 . 5 0} \mathbf{k i t}$, $\mathbf{£ 8 . 3 0}$ built

A Stereo 2×10 LED unit, displays the output voltage of the PAT units in db's, green amber and one red LED give warning of clipping levels. each channet is adjustable to varlous loads and outpu powers. Note, this unit is fitted with flat top LEDs to allow a flush panel mounting
£12.95 kit, $\mathbf{~} 15.10$ built

C.S.L Sound Systems

Unit 27. Tything Road West
Arden Forest Ind. est.
Alcester, Warwickshire B49 6EP
Tel: (0789) 764710

E-Bus Board For The Cortex

Designed by Richard Roberts of Micro-Processor Engineering, this project will give the Cortex computer two digital joystick ports, a Centronics printer port and 22 bits of programmable input/output (PIO). The board was originally designed around the 74 LS2001 Dynamic Memory Access Controller, a chip which is now rather difficult to obtain. To overcome this problem, the project includes details of a TTL header board which directly replaces the 74 LS2001 and could also be used in other applications where this exotic IC is specified. Two further Cortex projects by the same designer are also in the pipeline, a twin RS232 board and a stereo sound board, and we hope to bring you these in the near future.

Flat Screen Television

People have been trying to produce flat screen televisions for a very long time, but most of the designs which have made it to the market place so far are based upon conventional cathode ray tube technology. Keith Brindleywill be looking at the alternatives, including thin film transistors, liquid crystal displays, electroluminescence, plasma panels, vacuum flourescence and electrochromic displays. He concludes that, whatever direction development takes, the television of the future will be very different from what we have now.

ROM Board For The Spectrum

Promised for this month but (blush, blush!) unavoidably held over, this project enables the Spectrum owner to enjoy the advantages of having a'sideways ROM' facility similar to that found on some other micros. The ROM board disables the top 32 K of RAM in the Spectrum and replaces it with between $2 \mathrm{~K} \times 8$ and $32 \mathrm{~K} \times 8$ of EPROM. The lower 16 K of memory is left intact. Suitable for use with the popular 27 series of EPROMS (2716 to 27256), the design will give Spectrum owners some valuable flexibility.

Direct Injection Box

It is often necessary to split a signal from a musical instrument so that it can be fed to both the musician's own combo or amp and cab and also to the main PA system. The device used for this purpose is a direct injection box, a battery or phantom powered buffer amplifer which has one high impedance input and either one high and one low or two low impedance outputs. We have made our design battery powered so that it can be used with any system, and provided it with a high impedance input for the instrument and two low impedance outputs which should feed without problems into just about any amplifier or mixer input. In addition, we have incorporated an optional balancing arrangement on one of the outputs so that the box can be connected directly to mixers having balanced inputs.

THE SEPTEMBER ISSUE WILL BE ON SALE FROM AUGUST 3RD. ORDER IT NOW TO AVOID MISSING OUT!

EPROM EMULATOR

At long last, this much-delayed project hits the pages of ETI. Design by new project editor, Paul Chappell.

The EPROM emulator described here is primarily intended to assist with the preparation of programs for the '6802 Evaluation board' (ETI, May 1985), although it can equally well be used with any other system using 2716 EPROMs. The circuit uses a bare minimum of parts and the cost and construction time should be similarly minimal.

In use, a computer is connected to port A, and port B goes to the EPROM socket of the circuit that will run the program. With S1 in the 'program' position, the program to be tested is loaded from the computer into the 6117 memory IC. SW1 is then set to the 'EPROM' position and the program is run. If the program fails to perform as intended, SW1 is
returned to the 'program' position and modifications are made from the computer. The new program can then be run, and so the process continues until the program does what is required of it.

Construction

The connections on the right hand side of the board are

Fig. 1 Circuit diagram of the emulator
arranged so that a length of 24way ribbon cable can be connected to a 24-pin DIL header to plug into the EPROM socket of the host system. If an insulation displacement type of header is used, the connections will automatically be in the right order; otherwise, wires should be soldered to alternate sides of the header, with the bottom connection to pin 24 , the next to pin 1, next pin 23, then 2, and so on.

A double sided board is used, and where possible through connections have been made via component leads, so check the top (component side) of the board carefully to make sure that any pads around component leads have been soldered. Positions where a wire through-link is required are marked with a ${ }^{\text {*' }}$ on the component overlay. The memory IC can be socketed but the less expensive ICs should be soldered directly to the board to make it easier to solder the top side of the lead where this is required.

HOW IT WORKS

PARTS LIST

Switches SW2 to SW6 allow the emulator to be placed at any convenient point within the computer's memory map. I they are all set to 0 , the emulator memory will represent the first 2 K of the computer's memory, and each binary code increment will shift it upwards by 2 K . Suppose your computer has 16 K of memory and you your computer has 16 K of memory and you
would like the emulator board to run from 16 K would like the emulator board orun from 16 K
to 18 K . You want to shift the emulator location to 18 K . You want to shift the emulator location
upwards by 16 K , so the switches would have to upwards by 16 K , so the s witches would have o
be set to 00100 , because this is the binary for ' 8 ; and you want a shift of $8 \times 2 \mathrm{~K}$. The switch codes are, in fact, compared directly with the upper 5 address lines from the computer by IC7. IC1, IC3 and IC5 allow the computer access to the memory on the emulator board when a valid address and the appropriate control signals are received. The computer then writes to or reads from the emulator memory as if it were reads from the emulator memory
an extension of its own memory.
With switch SW1 in the 'EPROM' position, the computer no longer has access to the emulator's memory; instead, IC2, IC4 and IC6 are enabled by CE and OE signals from the host system, which will now have access to the emulator's memory for read operations only - as if it were an EPROM.

RESISTORS	
R1-9	1k miniature carbon film
CAPACITORS	
C1-10	100n disc ceramic
SEMICONDUCTORS	
$\begin{aligned} & \text { IC1 } \\ & \text { IC2-6 } \end{aligned}$	$\begin{aligned} & \text { 74LS245 } \\ & 74 \text { LS54 } \end{aligned}$
1C7	7415684
IC8	6117
IC9	74LS32
MISCELLANEOUS	
SW1	PCB mounting miniature SPST toggle switch
SW2-6	Six section, SP make DIL switch (one off)
Length of 24 plug; PCB; ca to computer.	bon cable; 24-way DIL socket for connection

BUYLINES

The components for the prototype were all supplied by Watford, who have everything in stock. The 6117 RAM and 74LS684 comparator might prove problematic if sought
from other suppliers, but everything else should be easily available. The PCB is supplied by ETI PCB Service.

Fig. 2 Component overlay of the emulator

PRINTER BUFFER

Following on from last month's article which covered the design and construction, Nick Sawyer describes the connection, testing and use of the buffer and presents a full listing of the EPROM contents.

Abstract

It is recommended that the power supply is built and

 checked before adding anything else that could be damaged by a power supply fault. First solder in diodes D2 and D3, capacitors C38 and the 7805 voltage regulator, IC17. When wired up to the transformer and plugged into the mains, this combination should give five volts plus or minus 5% at the output of the regulator.If the 5 volt supply is not present then check the orientation of the diodes, smoothing electrolytic and regulator as

It has to be decided at this point how the connections to the unit are going to be made. The best method of making the input connection is by mounting a right angle 36 way connector on the PCB. This means that the printer lead you were already using will plug straight into the buffer. As connectors are rather expensive however, it might be decided
socket. The other end of the cable can be terminated in a 36 way IDC connector ready for connection to the printer. The two LEDs and the two switches are mounted on the front of the box and wired to the relevant points on the printed circuit board.

Testing

It is a good idea at this stage to check that the regulator is still producing 5 volts. If all is well and with the input and output leads now
these are all that can be at fault. If all is well, disconnect from the transformer for ease of working and proceed with fitting the other components and sockets to the board.
to
hard-wire straight into the board using either ribbon or conventional cable. It is suggested that the output connections are made using either a 26 way ribbon cable soldered direct into the PCB or a 26 way IDC plug and
fitted, insert the Z80 microprocessor and the 2716 EPROM into their respective sockets. Do not insert any of the dynamic RAM chips into their sockets at this stage. Connect the buffer output cable to a printer and switch both units on. The 'buffer ready LED should illuminate after about a second if all is

0000
0019
0.1019

0020
100 ごい
0040
0050
M， 00
．，07＂，
OOEV
0061
$4 ., 1990$
HOAO
GOSO
COAO
0060
OOLO
OUD．
OUD．
UOE
OUFO

F：LS 8000000000 00 0000000000000000

 （1．1）00 00 vO 000000 FB C3 00040000000000 י．．wo do 00 wo 000000 F3 C3 000400000000

 $\therefore 1$ FF I -1 ED $50 ~ 01$ OO 80 SE 0002 UA FE OU CA $9 A$ OU L＇9 LG JF OE BO D9 LJ BE OU OI UO CO JE OÚ O2 UA FE UU CA AF in D9 リ6 7F OE CO D9 C3 EG UO OI UO OU UЯ UG BF UE $001192100 \quad 40 \quad 36$ OO 23 7C RB LI HB OU 7 D H9 LZ BE 00 SA UO 10 C3 00 O1 0000

 4000 00 00 u4 0000000000000000000000
1.400

0410
0420
0430
9440
0450
0460
.470
0480
0490
O4AC，
04EO
4． 0
04 CO
O4EO
O4FO

333311002021 CO 14 TE FE FF CA $1 E 04$ DE FF ES 日O CA OE O4＇E $12 \quad 32$ OU 30 04 TE FE FF CA 3704 DE FF EG B0 CA 27 O4 TE 12
 4 C 0478 FE 7 F 3E 33 CA 4C 04 3E 344 AF DB FF E6 BU CA 4D $047412 \quad 32003078$ FE 3 FF 3E 36 CA 6H 04 7B FE 7F 3E 32 CA $6 B$ O4 JE 3 B $4 F$ DH FF EG BO

 OO 30 DB FF EG BO CA 9204 UE GA $12 \quad 32$ OO 30 C3 000521 E2 04 7E FE FF CA ED 04 DB FF E6 80 CA $A B 04$ TE 32 U0 $20 \quad 32003023$ C3 AS 04 C3 0001 $\begin{array}{llllllllllllllllllllllll}52 & 61 & 6 D & 20 & 74 & 65 & 73 & 74 & 20 & 73 & 74 & 61 & 72 & 74 & 65 & 64\end{array}$
 $2 U$ FF $52616020746573742063 \quad 6 F$ 6D 70 6C

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
olao
O1EO
01 CO
0100
OIEO OIFO

U1 U0 40110040210000 3E FF 320020 FE 00 F3 CJ 80 OI JE FF BD C2 21 O1 D9 7B D9 EC CA $3 E$ $O 1$ DE FF E6 40 CA $3 E$ O1 SA OO $1002 \quad 2303$ JE OO
 CA UO O1 DB FFF E6 BO CA 111 O1 1 AA 32000203200 30 2E 13 3E OO EB C2 11101 D9 79 D9 EA C2 11101
 0000000000000000 vO 0000000000000000 U0（11） 00 OU 00 00 $00000000000000 \quad 00 \quad 0000$
 00000000000000000000000000000000

 00 vo OU 00 OU 00 00 00 vo vo 00 0i 00 00 00 00
 00 （10 00 00 00 00 00 00 vo 00 00 00 c3 1401

0500
0510
0520
0530
0540
0550
0560
0570
u580
0590
05AO
05AO
USBCO
$05 C 0$
USDO OSFO

210040 7D 84 2F 7723 C3 日O OS 000000 000000 jo 0U 00 00 00 00 00 00 00 00 00 00 00 $00000000000000 \quad 0000100000000000000$ $0000000000 \quad 00$ 00 00 00 00 00 00 00 100 00 00

 u0 00 00 00 00 0U 00 00 00 00 00 00 00 00 00 00 000000000000000000000000000000 Ln

 00000000000000000000000000000000

$\begin{array}{lllllllllllllllll}30 & 31 & 32 & 33 & 34 & 35 & 36 & 3 & 38 & 39 & 41 & 42 & 43 & 44 & 45 & 46\end{array}$

0210 0220
0230
0240
0250
0260
0270
0280
0290
0240
$92 \mathrm{~B}^{\prime}$
3280
02 C
02 CO
O2EO O2FO 47 EG 21 AO $027 E$ FEFF CA 2D O2 DB FF EG 80 CA
 OF OF E6 OF OF 2602 DE FF E6 BU CA 370272 $00203200307 A E 6$ OF GF DE FF E6 BO CA 4902 7 F O 0 OF OF OG UF GF DB $7 E \quad 3200 \quad 20 \quad 3200 \quad 307 B$ OF OF OF OF EG UF GF DB
 GF DH FF E6 BU CA 71 O2 7 FE 32000203200 30 DB FF E6 BO CA 7F O2 IE OD $320020 \quad 320030$ DE FF

 7469 OF GE 20 3A 20 FF UO゙ 00000000000000 00 OO OO vo 00 OU OO OU 0000000000000000

0610 0620 0630 0640 0650 0650 0660 0670 0680 0690 0640 0680 O6CO 0600 OGEO OBFO

0600 7C D9 49 D9 C2 030570 FE 00 C2 030511 FF 7F
 10000000000000000 u0 00000000000000

 $000000 \quad 0000100 \quad 00000000000000000000$
 $00000000 \quad 0000 \quad 0000 \quad 00 \quad 00000000000000$

 0000000000000000000001000000000000 $00 \quad 000000000000000000000000000000$ 00000000000000000000000000000000

UJOO II CE OJ TE FE FY CA 1E OJ DE FF EG By CA O9 OJ
 UF 工F E6 OF 2602 GF UB FF E6 80 CA 27 O3 7E 32 0330 OO $20 \quad 3200307 B$ E2 2F E6 OF $6 F$ DB FF E6 80 CA
 0350 JE OD 32 OO $20 \quad 32$ OO 30 DE FF E6 EO CA 58 O3 $3 E$ OA 32002032 OO 3021 DF OS 7E FE FF CA 83 UE FF E6 日U CA 70 O3 7E $320020 \quad 32$ OO 3023 C3 OA U． 78 OF OF OF OF E6 OF 2602 6F DE FF E6 80 0390 CA 日D O3 7E 32 OO 203200 30 78 E 6 OF OF DE FF OJAU EG GU CA OF OS 7E $320020 \quad 320030$ DB FF EG 80 OBAO ES AD US $3 E$ OD 320020320030 DE FF EG BO CA EAC UD JE OA 32 OO 20320030 C3 OO O1 4461474 EC US． $3 E$ OA 32 OO $20 \quad 32$ OO 30 C3 OO O1 44 G1 $\begin{array}{lllllllllllllllll}03 D 0 & 01 & 20 & 71 & 72 & 69 & 74 & 74 & 65 & 6 E & 20 & 20 & 3 A & 20 & F F & 44 & 61 \\ 03 E 0 & 74 & 61 & 20 & 72 & 65 & 74 & 75 & 72 & 6 E & 65 & 64 & 20 & 3 A & 20 & F F & 00\end{array}$ $\begin{array}{lllllllllllllllll}03 E O & 74 & 61 & 20 & 72 & 65 & 74 & 75 & 72 & 6 E & 65 & 64 & 20 & 3 A & 20 & F F & 00 \\ 03 F O & O U & 10 & 00 & 10 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$

 0770 0780 0790 07AO 0780 $07 C 0$ 070 07D0 O7EO
 0000000000000000000000000000000 0000000000000000000000000000000000
 $0000 \quad 00 \quad 0000 \quad 00 \quad 001000000 \quad 000000 \quad 000000$

 00 OO C3 OB O7

Table 1 Full listing of the software which must be programmed into the 2716 EPROM．
well with the buffer，and the ＇printer ready＇LED should light and extinguish as the printer is put on－line／off－line．

If all is well press the test button．The printer should pro－ duce＂RAM Test Started＂ followed immediately by＂RAM Present： $16 \mathrm{~K}^{\prime \prime}$ and ten seconds
later by＂RAM Fail at Location $4000^{\prime \prime}$ ．This shows all is well，that the unit is functioning and that those expensive dynamic RAM chips can now be used．The first pair of RAMs is inserted（observ－ ing normal MOS precautions）in positions IC11 and IC14，the next pair in IC10 and IC13 and the
last pair in IC9 and IC12．Take great care that these devices are the right way around in their holders．The buffer will work with either 16,32 or 48 K of RAM provided the RAM chips are in－ stalled in the right sockets．

Having installed all the RAM you think necessary，switch every－
thing back on and repeat the test as above. The results should be the same except that the "RAM present" figure should reflect the amount of RAM that you have installed, and after ten seconds the printer should produce "Ram Test Passed".

The buffer is now ready to use. Plug in the lead from your computer and try LLIST on a fairly long program. The computer should come back READY within a few seconds, and the printer should carry on printing until it is finished - with no errors of course!

Faultfinding

Having built the buffer, if you are unfortunate enough to find that nothing happens when you switch on, check the obvious first. Is the printer on-line? If it is then the 'printer ready' LED should be glowing, if it is not, check carefully the output lead from the buffer to the printer.

Next check the 5 volt supply from the regulator. If it has dropped from five to only one or two volts, then it is likely that there is

Fig. 4 Map of the memory locations.
either a short circuit between two solder joints or that a component has been soldered in the wrong way round. If this is the case a hot component will result and can easily be tracked down by the burning smell. If the 5 volt supply is still all right, then it is more likely that you have missed
a solder joint out. Check all the through board connections for continuity, and check especially the output wiring from the buffer to the printer plug.

If all still appears well but the buffer fails to function the services of an oscilloscope will ideally be required. Check first for a 2 MHz clock signal on pin 6 of the Z80, then check the operation of each address, data and control line. If they have a varying signal on them then all is well, otherwise suspect a short circuit at some point.

In Use

The use of the printer buffer is absolutely straight forward as it is completely transparent to the user and his computer. Merely leave the unit connected to the printer, and power it up whenever the printer is switched on. Any data sent from the computer will then be buffered and passed on at a speed suitable for your printer, leaving the computer free for use.

UNIVERSAL EPROM PROGRAMMER MKII

This hex dump spells a fully operational EPROM Programmer and you can't byte that. Gordon Bennett performed the magic.

Last month, lack of space obliged us to hold over the software listings for the EPROM Programmer. This month we remedy that omission with a complete hex dump of the Universal EPROM Programmer software. Unfortunately, space reasons forbid the publication of the complete disassembled listings - which runs to some 26 pages of print-out.

The hex dump provides everything you need in order to enter the code to run the programmer. Notes on the various ocations involved can be found in last month's introductory article and below. If anyone should require the disassembled listing, for the purposes of modification or out ot simple interest, we can provide a photocopy at a price of $£ 3$. Please send a cheque, made out to ASP Ltd., to ETI, Dept. UEP, 1 Golden Square, London W1R
$3 A B$, and enclose a large stamped addressed envelope. The author will provide a ready programmed EPROM plus listing for $£ 10.00$ or a tape including source and object code (for use with the TUG two pass/assembler editor) for $£ 5.00$. Please write to 187 Beaulieu Gardens, Blackwater, Camberley, Surrey GU17 0LF. Note that this address is different from the one published last month, and is the correct address. Please allow 28 days for delivery on any of these items.

The following hex dump was performed using the DUMP command in the EPROM Programmer software. The first address on a line is the absolute address in memory, the second is the offset address from the current Base selected. Then there are 16 bytes of data and the final number is the checksum computed from that line of data. With reference to
last month's notes, the screen clear routine is located at EFEC h to EFFF h, inclusive. It may be removed for the addition of extra facilities in the program. It is called twice, by the command JSR CLRSCRN (the hex bytes 20 EC EF), at locations E9CF h and EA23 h (the header and the help routines). Locations E861 h through E8C8 h contain the type numbers of the EPROMs supported by the software. Length parameters are contained in the locations E8C9 h through E8D5 h. Messages used in the programme are contained in locations E8F6 h through E9Ch. The table used to set up PIO ports for the EPROMs supported are contained in locations E806 h through E860 h. These tables could be altered to support different EPROMs, but once again - close study of the disassembled listing is recommended.

The hex dump from E800 h to EFFF h.

$E 800$	0000	$4 C$	08	$E 9$	$4 C$	$E 7$	$E 9$	$3 C$	34	34	34	34	0661					
$E 810$	0010	34	34	34	98	98	98	90	90	98	92	92	90	92	92	90	90	0814
$E 820$	0020	18	18	18	08	08	18	10	10	10	10	10	10	00	88	88	88	0268
$E 830$	0030	85	$A 5$	88	22	$C 2$	00	22	$C 2$	$C 1$	$C 5$	01	01	01	01	01	10	0515
$E 840$	0040	02	02	10	02	02	01	01	06	06	06	06	06	$0 A$	06	06	$0 A$	0058
$E 850$	0050	06	06	06	06	01	01	01	01	01	00	01	01	00	01	01	01	0022
$E 860$	0060	01	32	37	35	38	20	20	20	20	32	37	31	36	20	20	20	0287
$E 870$	0070	20	32	35	31	36	20	20	20	20	32	37	33	32	20	20	20	$029 C$
$E 880$	0080	20	32	37	33	32	41	20	20	20	32	35	33	32	20	20	20	$02 B B$
$E 890$	0090	20	32	37	36	34	20	20	20	20	32	37	36	34	41	20	20	$02 C 7$
$E 8 A 0$	$00 A 0$	20	32	35	36	34	20	20	20	20	32	37	31	32	38	20	20	$02 B 5$
$E 8 B 0$	$00 B 0$	20	32	37	31	32	38	41	20	20	32	37	32	35	36	20	20	$02 E B$

E980 0180
E990 0190
E9AO 01A0
E9BO 0180
E9CO O100
E900 0100
E9EO O1E0
E9FO $01 F 0$
EA00 0200
EA10 0210
EA20 0220
EA30 0230
EA40 0240
EA50 0250
EA60 0260
EATO 0270
EA80 0280
EA90 0290
EAAO $02 A 0$
EABO 02B0
EACO 02 CO
EADO 0200
EAEO 02 E 0
EAFO O2FO
EEOG 0300
EB10 0310
EE20 0320
EBG0 0330
EB40 0340
EESO 0350
EE60 0360
EET0 0370
EB80 1380
EE90 0390
EBAO O3A0
EBEO 03EO
EBCO 0300
EBDO 0300
EBEO OBEG
EBFO 03FO
ECOO 0400
EC10 0410
EC20 0420
EC30 0430 EC40 0440 EC50 0450
 $40404544 \quad 20 \quad 20 \quad 5645 \quad 52494659494 E \quad 47 \quad 2 E \quad 0450$ $0045 \quad 50 \quad 52 \quad 4 \mathrm{~F} \quad 4 \mathrm{D} \quad 20 \quad 43 \quad 48 \quad 45 \quad 43 \quad 4 \mathrm{~B} \quad 20 \quad 46 \quad 49 \quad 4 \mathrm{E}$ 03FE $\begin{array}{lllllllllllllllllllll}49 & 53 & 48 & 45 & 44 & 00 & 45 & 50 & 52 & 4 F & 40 & 20 & 56 & 45 & 52 & 49 & 0446\end{array}$

 $\begin{array}{lllllllllllllllll}5 A & 45 & 20 & 45 & 58 & 43 & 45 & 45 & 44 & 45 & 44 & 00 & 20 & 20 & 20 & 20 & 0376\end{array}$

 EC EF AO B1 20 GE EF 6020 C 2 EA 20 DF EA 20 CF 09AA E9 2026 EB 2068 EB 2023 EA EA 20 DF EA 201400701
 F0 08 ES EO OA DO FE 4C EB E9 EA UA AA BO EO E8 0AT3 85 5C ES BD EO E8 8550 AD F5 E8 48 AD F4 ES 48 OAD3 6 C 5 C 0020 EC EF $20 \mathrm{OC} F 8 \mathrm{AO}$ OF 20 6B EF A9 0000749 8553 A5 52 DA OA OA AA BD 61 ES 20 OE FE ES EG 0791 53 A5 $53 \quad 190890$ F1 A0 A7 $206 E$ EF A5 4 E 20 1 A A 0788 F8 A5 4A 20 1A FE A2 00 BD 67 EA C9 00 F0 07200709
 $\begin{array}{llllllllllllllll}28 & 51 & 29 & 75 & 69 & 74 & 00 & 28 & 54 & 29 & 65 & 73 & 74 & 00 & 28 & 52\end{array} 0479$ $2965 \leqslant 1 \leqslant 4002856296572696679002846 \quad 04 A 1$ $29 \quad 617374205072 \quad 6 \mathrm{~F} \quad 672 \mathrm{E} \quad 00285329 \quad 6 \mathrm{C} \quad 6 \mathrm{~F} \quad 04 \mathrm{E} 3$
 $\begin{array}{lllllllllllllll}4 E & 29 & 65 & 77 & 20 & 74 & 79 & 70 & 65 & 00 & 28 & 42 & 29 & 61 & 73 \\ 65 & 050 E\end{array}$

 BC 85486020 OC F8 Ag $3 E 20$ IE FE 6020 OL FE $069 E$
 EE 20 C4 EF 20 EG EF AZ 008652 A0 01 E1 OA C9 0852 20 F0 24 00 61 E8 DO 05 C8 E8 4C 30 EB E6 52 A5 0930

 2010 EB 20 [4 EF AO 002017 Fg A5 1385 4A A5 06 F 6
 $53854 C 8540$ A 9 FF $854 E$ A6 52 BO CF EG EO OC DO DE AG TF $20 \mathrm{AD} E E$ A9 80 E5 40 A9 FF 85 4F 200852
 $206 B$ EF SO AO 8 E 20 6E EF 20 7A EF A0 9F 20 6E 0705 EF 2098 EF 20 A3 EF D0 0320 AA EF 4C B6 EB 2008 C 1 99 EC 20 CO EC 2059 EF A9 80 日S 51 A9 0085470839 $85 \quad 5320 \quad 35$ ED 2044 EE DO 1320 DF EA AS 47 FO 0814 $0 \leqslant A 0 \quad 3 B \quad 20 \quad 6 \mathrm{~B} \quad \mathrm{EF} \quad 60 \mathrm{AO} 50 \quad 20 \quad 6 \mathrm{E}$ EF $60 \quad 20$ IF EC $06 B 0$ A9 01854720 A3 EF DO 0320 AA EF $4 C$ F2 EB AO 0870 BE 20 \& E EF 20 7A EF A0 9 E 20 EE EF 2090 EF A0 0882 9 F 206 B EF 2098 EF 602099 EC 20 CC EC 20 OC 070
 EF 20 E6 EF 207 A EF 20 E6 EF 20 E6 EF A2 00 A1 099A

EC60 0460
EC：70 0470
EC80 1480
EC90 0490
ECAO I4AO
ECBO O4BO
ECCO 0400
ECDO 1400
ECEO G4ED
ECFO © 14 FO
EDOG 0500
ED $10 \quad 0510$
E020 0520
ED30 0530
ED40 0540
E050 0550
ED $60 \quad 0500$
ED70 0570
EDEO 0580
ED90 0590
EDAD OSAO
EDBO 0．5BO
EDCO a5C0
EDOO 0500
EDEO OSEO
EDFO OSFO
EEOO 0600
EE $10 \quad 0 \leq 10$
EE20 0．620
EES0 0630
EE40 0640
EE50 1650
EE60 0．660
EET0 0670
EESO 068
EEPO $\quad 1690$
EEAO 06A0
EEEO OSEO
EECO 0600
EEDO ISDO
EEEG ISEO
EEFO $06 F 0$
EFGG 0700
EF $10 \quad 0710$
EF20 0720
EF30 0730
EF40 0740
EF50 0750
EF601 0760
EFPO 0770
EFBO 0780
EFF゙0 0790
EFAO 07 BAO
EFEO OTEO
EFEO 07C0
EFDO 07DO
EFEO GフEO
EFFG GアFG

TECH TIPS

BCD To Binary Conversion

A．J．Holme
Warrington

The following circuit converts two binary－coded decimal digits into seven－bit binary form．The circuit was originally designed to produce a binary output from two BCD encoded thumbwheel switches． The ten digit bits are labelled TO－ T3 and the units digit bits are labelled U0－U3．The encoding into binary bits uses two 7483 4－bit binary full adders with fast carry．It may be understood by considering the following sum：

$$
\text { T3 T2 T1T0 } 0 \text { (} 2 \times \text { tens) }
$$

T3 T2 T1 T0 0000 （ $8 \times$ tens）
$+\quad$ U3 U2 U1 U0（units） B6 B5 B4 B3 B2 B1 B0（binary）

For example，the BCD rep－ resentation of 94 is 10010100 （that is，a＇ 9 ＇followed by a＇ 4 ＇）．Fill－ ing in the above sum，we get：

10010
1001000 0100 $+\quad 0110$
1011110

which is the binary representation of 94 ．

The two 7483s are configured so that all the relevant bits are added and the binary sum output in the appropriately labelled posi－ tion．The 74283 could be used－it is functionally identical but has a somewhat more logical pin－out．

Communication of commands or data to the printer is carried out by a handshaking subroutine like that of lines 9942 and 9944 of the BASIC programe，or its machine equivalent．

Two Utilities for ETI Spectrum／ Centronics Interface

P．H．Sheather Cranleigh
Surrey

Two programmes are presented here for the Spectrum Interface （ETI，December 1984）．The first produces a printed listing of any BASIC programme between designated line numbers．Anyone who has significant experience of programme development and debugging will know that it is invaluable to be able to work on a printed listing rather than the VDU．

The second is a routine inten－ ded for use with graphics packages and enables the screen contents to be reproduced on the printer pixel by pixel．

The programmes are written for a 48 K SPECTRUM and an EPSON FX80 printer．All necessary inter－ face and printer initialisation is included．

Both programmes read from the screen buffer．In the first the
listing is automatically presented on the screen line by line，and transferred to the printer．In the second the screen display will have already been generated by the user．

```
```

9900 REM EASIC LISIING FROGRAMMM

```
```

9900 REM EASIC LISIING FROGRAMMM
000***********
000***********
9902 GO TO 9914 ClC LISTING",
9902 GO TO 9914 ClC LISTING",
99C6 PRINI "MERG- programme for
99C6 PRINI "MERG- programme for
!日!ana"
!日!ana"
9910 fRINI "Then use RUN 9900"
9910 fRINI "Then use RUN 9900"
:60 10 9994
:60 10 9994
9 9 1 2 ~ R E M ~ S e l e c t ~ r a n g e ~ o f ~ l i n e ~ n u ~
9 9 1 2 ~ R E M ~ S e l e c t ~ r a n g e ~ o f ~ l i n e ~ n u ~
mbers
mbers
9914 LEI bas=65234
9914 LEI bas=65234
9916 INPUT "Farge line number?
9916 INPUT "Farge line number?
9918 INFUT "Last line number? "
9918 INFUT "Last line number? "
111 L92O LET HO=INT (11/256)
111 L92O LET HO=INT (11/256)
9922 LET 10-41-256"no
9922 LET 10-41-256"no
9924 FOKE OAE, 10
9924 FOKE OAE, 10
9926 POKE (bas+1),ho
9926 POKE (bas+1),ho
9976 LET 111ne=65236
9976 LET 111ne=65236
9430 LET HO=INT (11/256)
9430 LET HO=INT (11/256)
9932 LET 10=11-256*h
9932 LET 10=11-256*h
9934 POHE lline,io
9934 POHE lline,io
9938 00 10 9948
9938 00 10 9948
994(,) REM Handshaking subroutine
994(,) REM Handshaking subroutine
9940.) REM Handshaking subroutine
9940.) REM Handshaking subroutine
9944 OUT I23,n: REIURNN
9944 OUT I23,n: REIURNN
9944 OUT 123,n: RETURN
9944 OUT 123,n: RETURN
M48 OUT 255,79: FAUSE 10
M48 OUT 255,79: FAUSE 10
Y950 OUT 251.15: PAUSE 10
Y950 OUT 251.15: PAUSE 10
4%52 KEM Clear, print bufter
4%52 KEM Clear, print bufter
GOS.b LET n=64: GO SUB 9942
GOS.b LET n=64: GO SUB 9942
9958 LET n=24: GO SU8 9942
9958 LET n=24: GO SU8 9942
YOU RANOLIMIZE USR 650CM
YOU RANOLIMIZE USR 650CM
990% CLS I PRINT AT 11.13:"OH
990% CLS I PRINT AT 11.13:"OH
9964 60 10 9999
9964 60 10 9999
900 REM Autoload instructons
900 REM Autoload instructons
OQOU LLEAF \$4999: FKINT AT 11,13
OQOU LLEAF \$4999: FKINT AT 11,13
\&"WAIT": LOAD "ObJ"CODE 65000: R

```
```

\&"WAIT": LOAD "ObJ"CODE 65000: R

```
```



```
"WAIf": LOAD "Ob,"CODE 65000: R
```

```
"WAIf": LOAD "Ob,"CODE 65000: R
```

Clockwise from above：the BASIC listing program，hex dump of m / c listing program，the screen dump routine．

Abstract

 FDF F FE 7 D B9 D2 OU FE C9 0 FEUO JE OZ CD O1 16 CD OE OD FEO日 oo 3 E O2 FD 360200 CD $\begin{array}{lllllllll}\text { FE10 } & 30 & 25 & C 4 & \text { O1 } & 16 & \text { DF } & \text { CD } & 70 \\ \text { FE18 } & 20 & 39 & 14 & \text { DF } & \text { FE } & 3 B & 29 & \text { O4 }\end{array}$ $\begin{array}{llllllll}\text { FE18 } & 20 & 30 & 14 & \text { DF FE } & \text { FB } & 29 & \text { O4 } \\ \text { FE } 20 & \text { FE } & 2 C & 20 & \text { U6 E7 } & \text { CL } & 82 & 10\end{array}$ FE2B 18 OB CD EG IC 18 OS CD $\begin{array}{lllllll}\text { FE2 } & 18 & \text { O8 CD } & \text { E6 } & \text { IC } & 18 & 03 \\ \text { FED } \\ \text { CD }\end{array}$ FE 3 E ED 48 D2 FE 78 E6 $3 F$ C7 FE40 69212249 EC 23 CD 27 $\begin{array}{lllllllll}\text { FE } 48 & 19 & 1 \mathrm{E} & \text { O1 } & \text { CD } & 55 & 18 & 23 & 7 E \\ \text { FE } 50 & 32 & \mathrm{D} 2 & \mathrm{FE} & \text { 2B } & 7 \mathrm{E} & 32 & \mathrm{D} 3 & \mathrm{FE}\end{array}$ $\begin{array}{llllllllll}\text { FESE } & \text { 3E } & \text { 7F } & \text { D7 } & \text { OO } & \text { 3E } & 00 & 32 & \text { D6 }\end{array}$ FE70 D7 FE 470478 FETB SA DG FE AF OO OD O5 CD FEBO $38 \quad 25$ CD F1 $2 \mathrm{~B} \quad 57$ OO FE FEBE TF 20 OA 3 A D 7 FE FE O1 FE9B FE O1 20 18 Ob OA $3 E 20$ FEHO D3 78 C9 OO $7 A$ CD AB FE FEBE OO $3 A$ D 7 FE FE 2020 AF FECO JE OA CD AB FE 18 GA OO FECE 3E OA CD AB FE OO C3 EE FEDO FD 00 OO OO FF FF 00 Oo

 FDFB OO OE OA LU 3D IF JE IE FEOO CD 6D FE SE 40 CD GU IE FLuB 3E 1B CD OL FE 16 HO SE FEIO 1B CD OD FE JE 41 CD OD

 FE3日 61 CD 6 D FE 1 E UW 26 U0 FE4： $2 E$ U1 TA Y5 47 4B D5 E5 ＋E48CD LE 22 CD 44 IE E1 D1 FESU CB O4 84 b／2C TD FE 09

 FE70 FE 0020 FA 78 DS 78 Ca

Mr Discrete's Car Alarm

Guy Mellor
Macclesfield

Most designs for car alarms use IC timers such as 555 s , 14528 s or 74221 s , but here is a design that can readily be made from discretes out of your junkbox.

On power up, C1 will pass current until fully charged, keeping

Q2 turned on for about ten seconds. While Q2 is on, the gate of SCRI is low, ensuring that the SCR is off. In this period it is safe to get out of the car as any turn on signal by the courtesy light to Q1 will be ignored. Assuming the car door is now shut the state of circuit is Q1 and Q2 off. Any intruder opening the door now will turn Q1 on which will put the gate of SCRI high thus latching on. The voltage across C 2 will now ramp up and the emitter of Q4 will follow it

until sufficient potential appears on the gate of SCR2 which will latch RLA1 on, disabling ignition, and the RLA2 will click on and off, sounding the horn intermittently.

None of the parts used are critical so no buying-in should be necessary, with the possible exceptions of SW1 and RLA2. SW1 is specified as a keyswitch, but any ordinary switch with 1A contacts can be used if its location is concealed. Do not conceal the switch too well, because the circuit only gives you about 9 seconds to turn the alarm off before it does the old waking the neighbours act. RLA2 is specified as a 2 PCO with 20A contacts. In the prototype I used an 11 pin relay with 10 A contacts, but since 11 pin relays are 3 PCO , two of the NO pairs were connected in parallel for RLA2/2. RLA2/1 is still just one pair.

SCR2 is specified as a thyristor but the acual device I used was a BT139 (which is a triac). This is because I happened to have a BT139 which wanted using, and in any case, either a thyristor or a triac wifl do. The same design criteria apply to SCRI.

The listing programme has both BASIC and machine code parts. Type in the BASIC section first and save it with SAVE "list" LINE 9968 and verify. Do not attempt to run it without the machine code or it will almost certainly be lost. Enter the machine code with a hex loader or similar and save this on tape immediately after the BASIC with SAVE "obj" CODE 65000,240, and verify. It should now be possible to autoload the whole programme with LOAD "list". Operating instructions will be displayed on the VDU.

The BASIC programme starts at line 9900 so any programme to be listed should have a lower maximum line number than this.

The screen dump routine is quite independent of the other and may be placed in any convenient location in memory as it has no internal absolute jumps.

It should be entered with a hex loader to say 65000 , and then saved with SAVE "scr" 65000.

To call it from a BASIC programme, a line of the form RANDOMISE USR 65000 would be used.

For those who wish, I can provide a tape with both programmes at a cost of $£ 3$. Requests should be addressed to 14 Waverleigh Road, Cranleigh, Surrey.

ETI

PCB FOIL PATTERNS

」

The top and bottom foils for the EPROM Emulator.

The foil pattern for the RCL Bridge PCB.

The EX42 Interface Board.

ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering. The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third and fourth are the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until after we receive payment.

1981	
\square	E/8109-1 Mains Audio Link (3 bds) . . 8.45
\square	E/8109-4 Laboratory PSU 5.21
\square	E/8110-1 Enlarger Timer. 3.91
\square	E/8110-2 Sound Bender 3.05
\square	E/8111-1 Voice Over Unit 4.57
\square	E/8111-3 Phone Bell Shifter. 3.40
\square	E/8112-4 Component Tester. 1.71
1982	
\square	E/8202-2 Allez Cat Pest Repeller ... 1.93
\square	E/8202-5 Moving Magnet Stage. . . 4.01
\square	E/8202-6 Moving Coil Stage 4.01
\square	E/8203-4 Capacitance Meter(2bds) 11.66
\square	E/8205-1 DV Meg 3.13
\square	E/8206-1 Ion Generator (3 bds) 9.20
\square	E/8206-4 MOSFET Amp Module . . 7.80
\square	E/8206-5 Logic Lock 3.52
\square	E/8206-6 Digital PWM 3.84
\square	E/8206-9 Oscilloscope (4 bds) 13.34
\square	E/8212-2 Servo Interiace (2 bds) ... 6.75
\square	E/8212-4 Spectracolumn 5.54
1983	
\square	E/8301-1 Fuel Gauge. 3.45
\square	E/8301-2 ZX ADC. 2.59
\square	E/8301-3 Programmable PSU. 3.45
\square	E/8303-1 SoundBoard 12.83
\square	E/8303-2 Alarm Module 3.62
口	E/8303-3 ZX81 User Graphics 1.07
\square	E/8303-4 Logic Probe 2.50
\square	E/8304-1 Real Time Clock 8.74
\square	E/8304-4 Stage Lighting-Main . . 13.73
\square	E/8304-5 Stage Lighting - Display 3.45
\square	E/8305-1 Compressor/Limiter 6.19
\square	E/8305-2 Single PSU. 3.16
\square	E/8305-3 Dual PSU 4.01
\square	E/8305-4.2 NDFL Amp 7.88
\square	E/8305-5 Balance Input Preamp. . . . 3.23
-	E/8305-6 Stage Lighting Autofade . . 6.19
\square	E/8305-7 Stage Lighting - Triac bd . 4.74
\square	E/8306-1 to 3 Pseudo ROM (3bds) . 3.62
\square	E/8306-5 Atom Keypad. 5.18
\square	E/8307-1 Flash Sequencer. 2.67
\square	E/8307-2 Trigger Unit Main Board. . . 2.67
\square	E/8307-3 Trigger Unit Transmitter 1.66
\square	E/8307-4 Switched Mode PSU. . . . 16.10
\square	E/8308-1 Graphic Equalisr. 9.10
\square	E/8308-2 Servo Fail-Safe (4 off) 2.93
\square	E/8308-3 Universal E PROM prog . . 9.64
\square	E/8309-1 NiCad Charger/ Regen . . 3.77
\square	E/8309-2 Digger. 3.40
\square	E/8309-3 64K DRAM 14.08

E/8310-1 Supply Protector 2.19
310-2 Car Alarm.
E8310-3 Typewriter Interface 4.17
E/8311-1 Mini Drum Synth 3.07
8311-2 Alarm Extender. 3.21
E/8311-3 Multiswitch 3.59
E/8311-4 Multiple Port 4.34
E/8311-5 DAC/ADC Filter 3.22
E/8311-6 Light Pen 4.60
8311-7 Logic Clip. .
E/8311-8 MC Head (ILLH) 3.17
E/8312-2 A 10 D Board 12.83
E/8312-3 Light Chaser (2 bds) 7.54
E/8312-4 ZX Alarm 6.04
(M02-1 Speech 80ard
E/8402-2 MP (Modular Preamp) Disc
inpul (mono) 3.73
E/8402-3 MP Output stage (stereo) 3.73
E/8402-5 MP Tone, main (monol..... 3.73
E/8402-6 MP Tone, filter (stereo) . . . 3.73
E/8402-7 MP Balanced output (st) . . . 3.73
E/8402-8 MP Headphone amp (st) . . . 3.73
E/8402-9 MP Mother board 9.01
8403-1 Power Meter 5.81
E/8403-2 Z80 DRAM.

E/8404-1 Scho
E/8405-1 Auto Light Switch. 4.01
8805-2 ZX81 EPROM Prog 10.53
05-3 Mains Borne RC
E/8405-4 Centronics Interface 4.09

E/8406-1 Oric EPROM Bd. 19.58
8406-2 Spectrum loystick 3.30
E/8407-1 Warlock Alarm 8.19
E/8408-2 EPROM Emulator.
E/8408-3 Infrared Transmitter 3.70 808-4 Infrared Receiver. 3.98
E/8408-5 CMOS Tester. 4.60 E/8409-2 Bansheee Siren.... 3.19
E/8409-3 Dry Cell Charger. 2.80 E/8410-2 Digital Casselte 9.80 E/8410-3 Disco/Party Strobe 4.80

How to order, indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, ArgusSpecialist Publications Ltd, 1 Golden Square, London W1 R 3AB. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.
Total for boards
Add 45p p\&p
£..........................
Total enclosed

PLEASE ALLOW 28 DAYS FOR DELIVERY

E/8411-1 AM/FM Radio (4 bds) 13.02
E/8411-2 Control Port-control bd 12.15
E/8411-3 Control Port-1/O bd 6.33
E/8411-4 Capacitance Meter. 3.55
E/8411-5 Video Vandal (3 bds) . . . 12.10
E/8411-6 Temperature Controller. . . 2.88
E/8411-7 Mains Failure Alarm. 2.54
E/8411-8 Knite Light. 3.25
E/8411-9 Stage Lighting Interface. . . 3.73 E/8411-10 Perpetual Pendulum 3.14 E/8412-1 Spectrum Centronics 3.51 E/8412-2 Experimenter's DRAM. . . 14.08 E/8412-3 Active-8: Motherboard . . . 9.37 E/8412-4 Active8: Protection Unit 3.67 E/8412-5 Active-8: Crossover 3.67 E/8412-6 Active-8: LF EQ. 3.67 E/8412-7 Active-8: Equaliser. 3.67 E/8412-8 Aclive-8: Delay Unit. 3.67 1985

E/8501-1 Active 8ass Speaker 2.79
E/8501-2 DRAM Card Update. 3.66
E/8501-3 Digital Delay (2 bds) . . 26.00 E/8502-1 Digital Delay Expander. . 10.79
E/8502-2 Data Logger 5.17
E/8503-1 Combo preamplifier. 4.49 E/8503-2 THD meter mV \& osc. bds 7.02
E/8503-3 THD meter mains PSU . . 3.49 E/8503-4 THD meter battery PSU ... 1.36
E/8503-5 ParaGraph Equaliser
IP/MSP \& OP/PSU bds.
.9 .30

- E/8503-6 ParaGraph Equallser filter bd .
4.51
- E/8504-1 Framestore Memory ... 11.53

E/8504-2 Framestore ADC/DAC. .. 5.23
E/8504-3 Framestore Control 16.51
E/8504-4 Buzby Meter. 4.38
E/8504-5 CCD Delay 3.70
E/8505-1 6802 board. 7.87
E/8505-2 EPROM prog. upgrade . . . 4.71
E/8505-3 Scoreboard controller,
PSU and opto-isolator bds 11.54 E/8505-4 Scoreboard digit driver . . . 4.11 E/8505-5 Stereo SImulator. 3.55 E/8506-1 Audio mixer main bd 5.40 E/8506-2 Audio mixer PSU bd 3.87 E/8506-3 Audio mixer RIAA bd 2.36 E/8506-4 Audio mixer tone ctrl. 2.68 E/B506-5 EPROM Prog MkII 14.25 E/8507-1 Noise Gate 5.72 E/8508-1 RCL Bridge P.O.A. E/8508-2 EX42/B8C Interface ... P.O.A. E/8508-3 EPROM Emulator P.O.A.

DIGITAL
 CONTROL
 SYSTEMS

Book

C.H. Houpis and G.B. Lamont

McGrawHill Book Co. (UK) Ltd.
Shoppenhangers Road
Maidenhead
Berkshire
SL6 2QL
price: $£ 34.95$

Have you ever dreamed of finding a textbook on your favourite electronics topic that was readable, lucid, stimulating and exciting? One where the author's enthusiasm for the subject shone from every pager
You may have found your dream already, but - sad to say - I'll have to keep on dreaming 'Digital Control Systems' is the intellectual equivalent of a stiff dose of castor oll - hard to swallow, and the chances are it won't do much good anyway.

In the introduction, we are treated to some examples of control systems straight from 'The Boys' Own Book of Digital Control'. My favourite is the man on the motorbike with an American-style speed cop spying on him from behind an advertising hoarding 'This example,' say the authors, 'illustrates the beauty of the human being operating as a digital control system.' The motorbike rider, it seems, represents a multiple-input, multipie-output (MIMO) control system. A few pages later, it's suggested that we might analyse such systems using the root-locus method, or - if all else fails - a quick blast of the state variables might do the trick Okay, I'm game. How?

Unenlightened, we reach the next chapter, which begins with a ten-page explanation of the binary system (yawn!) followed by a potted version of 'How To Do Logic and Computers'. Then, without warning we are plunged into an intensely mathematical analysis of a generalised control system which assumes the reader to be conversant with fourier and Laplace Transforms.

In my estimation, the number of people who are au fait with Compex Frequency Domain analysis yet need ten pages to come to terms with the mysteries of binary arithmetic could be counted on the fingers of one elbow.
In fairness, this book probably contains as many facts to the square inch as any other text book. It is merely another example of the kind of sludge students have been subjected to since time immemorial. Polytechnics will love it I don't

Paul Chappell

MICRO COMPUTER HANDBOOK

Book
 J.A. McCrindle (ed)
 Collins Professional and
 Ṫechnical Publishers
 8 Grafton Street
 London W1

price: $£ 30$

It could have been subtitled 'Everything you wanted to know
about microcomputers but were afraid to ask'. It is $\mathbf{6 2 2}$ pages long, which works out at about $5 p$ a page, and it contains papers on everything from the origins of the microcomputer, through ICs, buses, peripherals and software to test instrumentation. The authors are drawn from the most august ranks Marconi, Ferranti, Motorola, TI, BT, the University of Manchester, AMD, Intel, NEC, Hitachi, Zilog, Digital Research, Shugart, QUME, GEC, Hewlett Packard and Tektronix, to name some of them. Alt-in-all, it should be the last word in micros, but somehow something seems to be missing.

The problem, I think, is that the field is such a rapidly moving and expanding one that any book aiming at comprehensiveness is working at a severe disadvantage. For example, I could only find a throwaway reference to battery-backed, single-package RAMs such as the Mostek 48Z02, which has been around a couple of years now, in what is an otherwise useful chapter on memory devices. The Apple Macintosh is included as an unknown new Apple model. The IBM PC and PC XT ase here but not the AT. There is less than a nod in the direction of data encryption. I couldn't find anything on HCMOS technology, although CMOS, NMOS and PMS are all there. The LSI 11 and and 68020 mpus are barely mentioned. In the chapter on systems, the only manufacturers mentioned at any length are Apple, Commodore, IBM and Tandy (Radio Shack). DIL is dealt with but not JEDEC. V24/ RS232 gets some treatment but there seems to be no mention of the Centronics standard. Indeed, there is very little of any depth on interfacing as such, but a considerable amount on buses, networks, printers and operating systems. There is almost nothing on modems and while there are useful chapters on high and low level languages, the treatment of applications (word-processing spreadsheets and so on) is cursory, to say the least.
I could go on, but the point is well-made. Any reader of this book is likely to be able to construct their very own list of missing and shallowly treated topics at least as long as mine. They will aiso be able to point out all the apparent discrepancies in the emphasis on the topics that are covered. The
conclusion is really quite easy to draw.

In trying to cover the subject from as many angles as possible, the editor and publishers have foregone the selectivity that might have given this book a sharper focus. It doesn't take much to see that no-one involved in the production of the book is too clear as to the indentity of its target market In the preface, editor McCrindle writes 'I hope that this handbook, by providing in one volume, information on all facets of microcomputers, will prove an invaluable reference on a technology that has come so far in such a short space of time.' Inelegance part, the hope, I'm afraid, is forlorn. 'The book,' writes McCrindle, 'should be . . . of use to scientists, engineers, consultants and managers as weil as lecturers and students.' This aim, transformed into an assertion by the simple expedient of replacing the word 'should' with the word 'will', is echoed in the blurb.
Parts of the volume will clearly be of use to managers, consultants and students - ali of whom, it can be safely assumed, seek authoritative but palatable enlightment. After all, many of the contributors know what they're talking about. Scientists, engineers and lecturers, however, would be advised to keep away from this book unless, that is, they happen to be engaged in biology, bridgebuilding Engiish literature or some other field largely unrelated to microcomputers. Had the editor decided to go for a thoroughly popular approach, he might have been better rewarded, for there is a need for a book like this on the shelves of every informed citizen in any society under the impact of the microcomputer.

Had he decided to hit the technological nail squarely on the head, I might now be reviewing a valuable collection of technical papers. As it is, this is something of a curate's egg part buyers guide, part history, part introductory treatment of some complex topics, part technical manual and part survey. The parts are by no means equal: some may serve as useful additions to a reference library (even given a less than adequate index), while others may be wholly unsatisfactory or merely redundant.

Gary Herman ETI

A company called HHB were having a demonstration - something to do with digital audio, which the editor thought sounded interesting. It seemed worth dragging my lazy carcass down to the Smoke. While I was there, would I like to look at some new equipment that Marantz are meant to be exhibiting at the audio trade show?
After about an hour on the train going from the sticks to Euston station, and about twenty minutes travelling two stops on the tube, I arrived at HHB to find that a well organized exposition had just started. It was soon clear that HHB are a company who are firmly committed to the supply of digital audio recording equipment to professional studios.

Picture This

The equipment in question on this occasion is all Sony gear imported from Japan, and its function is to convert analogue audio signals into a digital form suitable for recording on a video cassette using an ordinary VCR. This is both more difficult and more useful than it may at first appear.
Because the video cassette machine requires a video signal to keep it in sync, the 16 bit digital audio has to be buffered to take account of the sync pulses (during which signals cannot be recorded) and then added to sync pulses to give a composite 'video' output. Once this process can be made to work reliably and economically, master tapes can be made and copied, yea unto the third and fourth generation, without degradation of quality.

Hi Numbers

The equipment which got the whole thing going properly were two processors intended for the hi- $f i$ buff. For digital processors, these were and are very economically priced, though they cost more than the videocassette recorder they are intended to work with! The number of people willing to pay $£ 700$ for a PCM701ES, or $£ 1,200$ for a PCM F1, is clearly somewhat limited. Indeed, people who spend this much on an entire stereo system are probably an oppressed minority.
The people at HHB realised that, while this gear was a bit expensive for most hi-fi, it was very competitive as audio equipment. Its quality, in terms of frequency response and signal-tonoise ratio compared very favourably with analogue equipment.

At the same time, it was becoming clear that compact disc was here to stay, and that sooner or later this medium would find mass sales. In order to make good use of the quality available from this system, digital master tapes are essential. It would be absurd, afterall, for the average domestic hi-fi user to have at their disposal equipment capable of better sound reproduction than is available from the master tapes.

The Hit Machine

Supporting HHB's claims about the quality of digital audio was a videotaped interview with Phil Collins, who takes his work home with him in the form of a PCM F1 processor. He commented that many musicians do not
that if they make good use of digital recording technology they won't have to.

Statistics

This was done in part to publicise the fact that Sony have, largely due to the influence of HHB , restarted production of their economical digital encoding units. Just as HHB had made a start on renting and selling these units, Sony decided that the domestic market for these items was not big enough to support production. They dismantled the plant! HHB smartly bought up all the stocks they could get their hands on, and started trying to talk Sony into restarting production. They thought that the next item in the range, a large scale professional
estimate for 1985 is 3 million.

CLUEdo

To assist the use of this digital equipment in recording studios, HHB have developed a computerbased editing aid, called Computer Logging Unit and Editor, which permits butt editing to the nearest frame. The only convenient means of editing with these cheap digital processors used to be by turning the signal into analogue form and back again.
Of course, editing to the nearest frame (or did they really mean field?) is not good enough to perform edits in the middle of a track on most rock music - doubly so at the PAL frame rate of 25 Hz as against the NTSC rate of 29.99

Easy lover loves his PCM 701 ES and PCM 1610 digital sound processors.
'fine tune' the sound to the n-th degree because they know that by the time it gets onto the master disc no one will be able to hear it He reckoned that in studios where digital recording is used, musicians can put in the effort to get sound quality spot on in the knowledge that people will have a chance to appreciate it. Well said. A far cry from the day when the LPs were so bad that you needed three or four tries to find a reasonable copy.

Maybe the record companies will go back to recycling the LP labels in order to lower the quality of LPs and 'encourage' people to change to the more expensive compact discs, but my guess is
processor costing a cool $£ 15,000$ was too costly for a number of professional applications.

The percentage growth in the use of digital equipment is rapid. In 1982, an estimated 1\% of recording studios used digital equipment. In 1983 the number rose to 15% and in 1984 reached 40%. HHB estimates (hopes) that the figure will soon be 75%. Of the studios using digital, H HB expect that 80% will be using $F 1$ and 701 processors supplied by them.
The growth in the use of digital technology in the recording studio runs parallel with the sales of compact discs in this country. These rose from $1 / 4$ million in 1983 to nearly 1 million in 1984. The

Hz. Still, different tracks can be joined together on one tape without the addition of noise and distortion, and the the information stored on disc by CLUE enables the recording engineer to work out what edits to carry out before transferring to more expensive equipment. CLUE controls the videocassette recorders for you, and finds the marked places, so there is time for the recording engineer to drink his coffee while the computer does some of the fiddly bits.

I must admit that I am moved to wonder why, with the buffering which is required anyway in the encoding system, they could not edit to the nearest line instead of
the nearest frame, and simply detect the end of the next digital word to use as the actual edit point. Maybe it's more difficult than it appears, but to me it seems like spoiling the ship for ha' p'orth of tar. Perhaps the people at HHB, CLUEd up as they are, had a severely limited timescale and had to do what they could with equipment avialable off the shelf, and only minor mods.

All Gas And Gates

By no means all the applications for PCM 701 and F1 digital processors are in recording studios. The low background noise (approximately 6dB per bit or $6 * 16=96$ dogbiscuits) make these digital processors useful for the accurate analysis required in speech recognition. British Telecom, among others, use the equipment for this purpose.
The Gas Board use the equipment to aid analysis of mechanical resonance in detecting metal fatigue. Nobody went into a lot of details about this, but apparently with analogue recording, the subtleties which actually indicate what is going on would be lost in the noise.
All this is a far cry from the origins of HHB's business. in 1976, when they started hiring
out PA equipment for bands doing live performances.

Sansui and Sensibility

After this, the piece of trade show I visited was a slight anticlimax. The people on the Marantz stand told me that I needed to talk to the technical man - 1 realised that - but several people were waiting to see him already. Could I come back in half an hour? I conceded that I could and wandered off to see what else was around.

One of the first products I looked at (because it was near the door) was a Sansui digital encoder designed to record audio on a VCR. This is definitely intended for the domestic market, as it only uses 14 bits rather than the 16 used by the Sony equipment. This would give a theoretical signal to noise ratio of 84 dB at best, which is still good compared with other domestic recording equipment. The encoder has the advantage that it can record successfully on video recorders running at half speed. Thus, on VCRs with this extended play mode, up to eight hours of recording are possible on one tape. I wonder how bad the dropouts are in this mode, and what effect they have on the sound?

Much of the equipment on the Sansui display looked similas to that available in most hifi shops, but there were some novel items. One was a graphic equaliser incorporating remote control, and a bardisplay of settings. The remote control boxslides into the front of the unit to work as the local controller if required. This unit formed part of a rack system, at the top of which was a stereo amplifier featuring what looked like a video game display. It was actually the function indicator and power level meter.
On the left, a parametric equaliser control panel looked like .nission control but was well laid out and should be easy to use. The whole assembly, including tuner, dual cassette deck, and computerised turntable, is called an 'Intelligent Super Compo' but I reckon it's the operator who has to be intelligent. With two types of equaliser to set for the right frequency response it is definitely for the initiated.

Round and Surround

Back to Marantz. The technical man is tied up and could I come back a bit later? Grumble. Oh well, just one more time. The question is, if he is in that much
demand, why only one tech nical man?
A bit later he is still occupied and my feet are suffering from the strain so its down the road to the ETI offices for a sit down and a talk to the editor. A phone call to the Marantz offices resulted in a promise of information.

Sure enough, the man who had been in such heavy demand telephoned me a few days later to give me the lowdown on their new products. So new are they, that he had not had a chance to try them out properly himself before the show. The most interesting one is the Dolby surround sound decoder. It was news to met that rear channel information is encoded onto most prerecorded stereo videocassettes. The surround decoder allows the viewer to make use of this information, and it includes a stereo amplifier, so just add speakers and sit back

It might be a bit unnerving to hear the spaceship roar overhead while watching 'Star Wars' on a small screen, but people who hire videocassettes of a spectacular nature may often be very interested, particularly considering the £129 price tag.

Andrew Armstrong

OPEN
 CHANNEL

Advanced Micro Devices (AMD) has recently announced its intention to sample a chip set later this year, for integrating the simultaneous transmission, in digital form, of voice and data along a single telephone line. Such a chip set brings us one step nearer to the total integration of voice and data communications into one single network, as envisaged in the Integrated Services Digital Network (ISDN)

Chips With Everything

Although still a long way off,

 the ISDN will eventually replace the existing telephone network and many data networks too. It will be a purely digital network, and so each telephone terminal must be capable of converting the analogue voice signals to a digital form before transmission, and reconverting received digital signals into sound. Alongside the transmitted digital sound will be the capability to transmit data, too, at a fairly high rate -in the region of $64,000 \mathrm{bits} / \mathrm{sec}$.
For these purposes, some quite complex electronic circuits will be required, within each telephone terminal and within the many existing exchanges throughout the land; and of course the only way of approaching the problem is to design some chips to do the job. A number of semiconductor manufacturers are currently working on the designs.

The AMD chips set comprises five chips; the first two of which are the devices needed in the user's telephone terminal, the remaining devices are for exchanges. The company is to be congratulated for taking this brave step, given that worldwide standards are not yet finalised.

It really is about time that some of the governing bodies of the telecommunications world got their act together in this field. After all, how long do we want to be saddled with inferior data communications, at least when connected via the existing telephone network? It is rather archaic that to transmit data between telephone users we have to resort to devices which convert the digital data into analogue signals for transmission - modems. Theyre not exactly fast and they re certainly pricey.

The latest modem to hit the streets (in mid-May) follows CCITT Recommendation V32. which enables its use over ordinary dial-up telephone lines to a speed of only $9600 \mathrm{bits} / \mathrm{sec}$, at a cost of around $£ 3000$. Chicken feed? Hardly!

True, there are digital options such as Packet Switchstream. but they're costly too.

Pie in the Sky

Meanwhile, back to my favourite subject - or at least it seems to be my favourite subject; l've featured it quite regularly over the last few months - satellite television.
After long hassles over costings and finance, direct broadcasting by satellite (DBS) looks as if it may still get off the ground, if a little shakily. Only days before penning this column, the news broke that Unisat, the organisation which hopes to provide the satellites to be used, has finally retendered at a much lower price.

The Club of 21 (the operating consortium) appears to have won the round, after its gamble not to commit itself. Its argument was that Unisat's price was too high. Unisat finally appears to have agreed, and has given a number of options to
the Club of 21 , one of which is a much lower costing of (only) £290m over 10 years.
That option may not, of course, be the one which the Club of 21 picks, and it's unclear at the time of writing what the other options are .. watch this space....

Money To Burn - But Whose?

Finally, a package has landed on my desk from the Department of Trade and Industry. Called 'The Development of the Liberalised Telecommunications Market in the United Kingdom - An Information Pack' it is an extremely glossy press and publicity gimmick which seems to have been sent out to just about anyone with anything to do with electronics, telecoms, or computers (the ETI office alone received two packs). Basically comprising issues six to fifteen of the Department's occasional news letter 'Ringing the Changes', it aspires to sum up all of the changes in the telecommunications field over the last couple of years, with regard to liberalisation. Very interesting, but how much did it all cost? Did it really do any good? Is that my income tax you're spending?

Keith Brindley ETI

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!); - Other than through our letters page, Read/ Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as folloner. UK:
UK:
Overseas
£16.30
£18.30 Surface Mail
$\$ 24.00$ Surface Mail (USA)
£43.30 Air Mail
Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require the number is $\mathbf{(0 4 4 2)} \mathbf{4 8 4 3 2}$. Please allow 28 days for delivery.

We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an article appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982, the 1983 index in January 1984 and the 1984 index in January 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Colden Square, London W1R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we' re interested and give you all the boring details. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However problens can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplierwithin, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.

If you exhaust the above procedure and still do not obtain a satisfac tory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don' t write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you toobtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Digital Delay Line (December 1984 - January 1985) In Fig. 6 on page 21 of the December issue, C19 and C20 are both 100uF: In Fig. 8 on page 62 of the January issue, C3 should be marked 33 p. On the overlay diagram (Fig. 9, p.64), R37 is missing and should be connected between pin 3 of IC 9 and the 0 V line; R20 is missing and should be located in the holes immediately to the left of R18; R50 is missing and should be connected between pins $1 \& 2$ of IC14. Some components on the overlay have also been wrongly numbered:- C20 should be marked C19 and C21 should be marked C20; R12 (between ICs 5 \& 6) should be marked R22; R48 should be R44, R49 should be R45, R57 should be R46, R51 should be R47, R50 should be R48, and R 47 should be R49. The unmarked capacitor directly above what is now C19 is an un-numbered 100 n ceramic. C30 does not appearon any diagram or parts list and this is correct.
On the digital board, IC24 in Fig. 10 (p.55) is shown the wrong way around and IC35 at the bottom centre of the overlay should be marked IC25. The tracks to pins 8 and 9 of IC28 are the wrong way around but this should not affect the performance. It is quite easy to cut the tracks near the IC pins and connect across using wire llnks soldered into the adjacent through-board holes. D6 and R31 should be swopped over.
No frequency stabilising capacitor was included in the design but it has been found that in some cases the output frequency of IC30 is affected by stray capacitance and does not remain steady at 1 MHz . This affects all the system timing. To overcome this problem, a 33p capacitor should be carefully soldered directly on to pins 6 and 7 of IC30 on the underside of the board.

Single Board Controller (March 1985)
There were a number of errors in the parts list. RP2 is listed as a 10 k SIL pack but is actually four separate resistors, and the same applies to RP3. RP4 is also listed as a SIL pack but should consist of seven commoned resistors. R13 is always required, not just when a cassette interface is used as stated.

The Real Components (May 1985)

In Fig. 1 on page 20, the connections for the Texas L and 2 N transistors are incorrectly shown. They should read B, C and E from the top.

Heat Pen (June 1985)
The instruction in the penultimate paragraph on page 49 should read ". . . adjust RV2 for 2.73 V ..."', not 2.37 V as stated.

Low Cost Audio Mixer (June 1985)

In Fig. 6 on page 39, the PCB foil pattern has been incorrectly shown as though from the copper side. The board is shown correctly from the copper side in the foil pattern pages. In Fig. 10 on page 40, the positive power rail at lower left should be shown connected to pin 8 of the TL072s, (C1-5).

Noise About Noise (July 1985)
In Fig. 5 on page 24, no connection should be shown between the cathode of the diode and the negative side of the $470 u$ capacitor.

Printer Buffer (July 1985)

The case specified is actually larger than the one used for the prototype. It will, of course, work perfectly well, but if you want a compact unit use a Verocase $202-21038 \mathrm{H}$ ($180 \times 120 \times 65 \mathrm{~mm}$) rather than a Verocase 202-21035. The regulator IC17 should be bolted to the back of the case to provide heatsinking or, alternatively, fitted with a TO220 heatsink
you expect? The Company may be crazy, but it is no joke. Among its more notable achievements has been the overthrow of legitimate governments in Iran, Guatemala, Vietnam, Cambodia and Chile. It has propped up dictatorial regimes across the world and the shadowy presence of the CIA can be detected wherever dirty tricks are done.

For your part, you could find yourself working on 'computer systems and communications efforts unique to the $C I A^{\prime}$, according to the recruitment ad. Read 'bugging, surveillance and electronic eavesdropping'. The Company promises 'excellent compensation, comprehensive benefits, the opportunity for foreign travel, and the chance to advance the state of the art while contributing to the Agency's mission'.

Or, to put it another way, you could journey to exotic little countries like Nicaragua and help to subvert genuine democracies. Altematively, you might find yourself deep in the heart of the Soviet Union, or even listening in to overseas phone calls at Menwith Hill in North Yorkshire. And even if you do find yourself in a Russian jail serving a twenty-year term, you can console yourself with the thought of that 'excellent compensation' and those 'comprehensive benefits', like a pension when you get out and a pill to salve your conscience. geographically more accurate) one pain in its backside.
We know this at least in part because the CIA maintains a curiously high profile - reckoning, perhaps, that either it is so powerful or its schemes are so lunatic that it will be all but invincible. Compared to the National Security Agency, the Department of Army Intelligence (a contradiction in terms accordingto Groucho Marx) or even the game old FBI, the CIA is a publicity-crazed strumpet.

So, scanning a journal called 'Mini-Micro Systems' that recently came my way, it came as no great surprise to find the CIA advertising for electronics engineers. These days, it would seem, barbers are out.

Don't all rush. There is a snag. You have to be an American citizen. It would probably help if you didn't serve on the USS Nimitz too. Oh, and you should have experience in Telecoms, Networking, Mini and Micro Systems, Logic Design or Firmware Development.
Once you've passed the interview and promised not to spy for anybody else, what delights can

Wilson was doubtless proud of the inexpensive little trophy he was awarded. Indeed, he had his trophy (known as a TOBIE) with him in his car. The strange thing is that the carwas broken into and a bag containing the TOBIE and a few odds and ends was stolen. The thieves left some expensive electronic goodies also sitting in the car completely untouched. On the indubitable assumption that the runners-up in the TOBIE vote were not bad losers, there are two possible explanations for this curious theft. Either Wilson's award has annoyed somebody or Scottish thieves are notorious collectors of unsaleable baubles. Perhaps the Special Branch or MI5 will let me know if l've missed any pertinent points.

The Prince And The Leveller

'When His Royal Highness arrives,' said the man on the podium, 'you should all applaud but not stand up.' This was news to me - that you aren't required to rise when the Queen's consort enters a room. The room in question was the Great Hall at West minster School and the occasion, the Young Electronics Designer of the Year awards, 1985, sponsored by Cirkit Holdings plc, the component company, and organised by Professor John Eggleston of Warwick University.
Ironically, nobody had bothered to check the PA, which was not working when I arrived and the only person to think of doing a sound-check was presenter Petula Clark, an old show-biz pro. We were introduced to Ronald and Richard Bulgin (or was it Doug and Dinsdale) of Bulgin, the company which owns Cirkit, and HRH duly arrived. Nobody stood up. On this occasion, the Prince had evidently not been engaged to speak, so he didn't say anything (at least, not so's I could hear). The tension mounted as we waited for the prizes to be announced. Eighteen finalists had been selec ted from 1,000 entrants (some being teams) and four finalists in both a senior and junior category would be rewarded with cash amounts of between $£ 50$ and $£ 500$ plus help with their careers and the chance to market their ideas. Ontop of that, Texas Instruments were offering a computer to the top school in the senior category and several calculators to the top school in the junior category.

The entries were judged for originality, construction, everyday usefulness and commercia feasibility. There seemed little
doubt that the last was going to be the most important considera tion and some sophisticated but no doubt expensive designs that had made it to the final stood little chance of winning. Successful electronics design is often a case of using simple ideas to perform original tasks at as little cos as possible. Brilliant design may reveal genius, but in the real world genius is often an encumbrance to profitability.

There were plenty of devices employing tried and trusted ideas in crafty disguises - the rain detectors and LDR light detec tors of every elementary elec tronics course. One LDR circuit even won first prize in the senior section - Jonathan Kempster's audible spirit level, which used the liquid in an ordinary spirit level to break a beam to an LDR. And my personal favourite design the Heath-Robinsonian egg dipping controller gained first prize in the junior section for Daniel Rodenhurst with a very simple circuit. What pleased me most, however, was the numbe of designs aimed at helping the disabled. So take this column's independent awards Chris topher Howard, for your toy for the severely handicapped, Russell Vowles for your infra-red remote controller for immboilised people, Andrew Burrows for your granny alarm buzzer and junior entrant Gareth Arthurs for your milk tester for the partially sighted.

As a matter of fact, the edito tells me that readers can expec to see one or two of the designs appearing in these pages. Watch out for them.

No Mean Time

Hughes Aircraft, the company founded by the reclusive and eccentric Howard Hughes, has announced the development of a hydrogen maser clock accurate to one second in 30 million years This beats the previous record (held by caesium and rubidium gas-cellatomic clocks) bya facto of about 100. The clock, which originally weighed 500 kilos, has been miniaturised for use in satellite-based navigation systems. It now weighs around 20 kilos and is about the size of a portable television. This may well mean that nobody will have an excuse to be late for work any more.

FLECTRONICS TODAY INTERNATIONAL CLASSIFIED

Linpage:

40p per word (minimum 15 words)! Semi Display: (minimum 2 cms) $£ 1 \rtimes .00$ per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 0699 Ext 323
Send your requirements to: Caroline Faulkner ASP Ltd., 1 Golden Square, London W1.

COMPUTER ADD-ONS

EXTERNAL VIDEO BOARD for the CORTEX and other computers using the TMS9929 V.D.P. Fully synchronises the computer to a video fed from camera or V.T.R. Produces a combined picture at the outputs. Unpopulated P.C.B. circutis and detalls - $£ 30.00$. Fully bult £100.00. Tim Gray, 1, Larkspur Drive, Featherstone, Wolverhampton, West Mids. WV10 TTN.
** TANGERINE OWNERS *** 6809 CPU board, Flex O/S, 14K RAM card overlay Tanex, 32K-RAM-EPROM-BATTERY BACKED BOARD address switchable page selectable all avallable from STOCK also all the hard to get Tangerine chips in stock, loads of FLEX programmes, power supplies, Access/Barclaycard, s.a.e. fordetails. Ralph Allen Engineering, Forncette-End, Norwich, NR16 1HT. Tel: 095389420.

COLOUR GRAPHICS MEMORY ARDAY. Professionally designed, fully buffered, on-board shifts registers 4/8 planes 64K $\times 16 / 8$ bits (4146). Unpopulated PCB + App. Circuits $£ 125.00$. SAE 65 Northgate 8t., Colchester, Eseex COI 1EY.

MICROCOMPUTER REPAIRS

2X 8PECTRUM. Vic20, C64, BBC. QL 15 40/41. Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

American Co wants new product con American Co wants new product conorpts patented or unpetented, simple guaranteed. Conicential disciosure Call Invention Marketing Inc (of the USA).01-434 1272 or write to our London Otice.

Dept ETI, Victory Houee, 010/100 Regent street.

IRISH READERS

MAIL ORDER COMPONENTS

Top quality components

 Great pricesReturn-of-post service

Write or phone for free price list
WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6. Phone(01) 0001 if England 987507

Mail order only please

HUNT ELECTRONICS 1985. COMPONENTS CATALOGUE send 50 p in stamps. Refunded with first order to PO. 57, Derby DE6 6SN. Tel: (0283) 703071.

NI-CAD BATTERIES. AA, 500 MAH £1.00. C 1200 MAH £2.00. D, 1200 MAH £2.20. PP3 110 MAH £4.80. P\&P 40p. Free price list! Spectrum Radio \& Electronics, 36 Slater St Liverpool L1 4BX. 051-709-4628.

64K D RAM 150ns £2.95, from unfinished project. Any quantity 50p P\&P. T. Stiemeriling, 38 Cowper Rd., Bristol BS6 6NZ. Tel: 744 824. Only after 6pm.

CHEAP CA8E8 Abeoksto bargains, rack mounting it free tatanding. NEW, but menufacturere eeconde. No damege. Send s.e.e. tor list. C. Primet, The Leurdre Thptoe howd Weoton, Now Miten, Mants BMs ESU MAIL ORDER ONLY

RESISTORS, CAPACITORS. 1,000 mixed carbon film $1 / 8 W, 1 / 4 W$, $1 / 2 W, 2 \%, 5 \%, 10 \%$ resistors $£ 2.95$ $+50 p$ P\&P. SAE for details to: D.J. Hooker, Romney Marsh, Electronics, Clark Road, Greatstone New Romney, Kent TN28 8PB.

TRANSISTORS Special Offers. No VAT to add. (P\&P 50p on orders under £20) AD161/AD162/ BD135/BD136/2N22 18A/2N3053/ 2N5401 - ali 30p each. BC114/ BC117/BF198 - all 15p each BC117/BF107B/BC108B/BC149/ BC107/BC107B/BC108B/BC14 C159/BC182/BC209/BC320 BF195 - all 10p each - HUNT ELECTRONICS, P.O. Box 57 Derby DE6 6SN.
TRANSISTORS
Guar anteed top-spec devices
FCr $100+$ pC deduct 15%
All orders add 40 p P $8 \mathrm{P}+15 \% \mathrm{VAT}$
Rathy, Leicester LEE OXU

MISCELLANEOUS

HEATHKIT U.K. Spares and service centre. Cedar Electronics Unit 12, Station Drive, Bredon Tewksbury, Glous. Tel: 0684 73127

ELECTRONIC ORGAN KEY BOARDS and otherparts being cleared out as special offer Elvins Electronic Musical vinuments, 40A Dalston Lane London E8. 01-986 8455.

MINIATURE FM TRAN8MITTER8. Frequency $60-145 \mathrm{MHz}$ range $1 / 2$ mile S.G.F. - P.C.B. Al components. Full instructions 912v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. £6.95 Inc; or ready bullt 88.95 : Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate, Hallsham, E.Sussex BN27 2EW.
J. Linsley Hood Designs Disilinoltmeter kh kt $£ 25.00$ (p\& p $\varepsilon 1$ Case \& Panelfor above 812.00 ($\mathrm{p} \& \mathrm{p}$ \&1) ETI Mosfot P.A. kh csi.00 (p 8 p £1.50) Audio Signai Gen. (0.02%)
 FixedtrequencyGen. $£ 11.00$ (p\&p50p) Reg. P.S.U. $1.5 / 35$ voth

$$
\begin{aligned}
& \text { SAE for full inlormation } \\
& \text { Teleradio Electronis: } \\
& 325 \text { Fore } 8 \mathrm{st} \text {. London N19 OPE } \\
& \text { Tel: } 01-2073719
\end{aligned}
$$

PRINTED CIRCUIT BOARDS AND PLANS TO BUILD: Headlight activated switches, timers, metronomes, sirens etc. Two ready drilled boards $£ 2.85 \mathrm{p} \& \mathrm{p}$ 500 . Send to: Chataignes Product, Green Lane. Great Horkesley, Colchester, Essex, C 064 HO .

BOOKS \& PUBS.

WHO NEEDS A LOGIC ANALYSER? illustrated guide shows you how to decode microprocesses Buff signals using a stanrocesses Buff signals using a standard OScilloscope. Price 24.99 . 40p P\&P. Crossed cheques/P.O.' to:- Mr M Rimmer 20, Duddle Lane Walton-le-Dale, Preston, Lancs PR5 4UD.

PCB DESIGN \& LAYOUT. Taped artworks to your specifications and requirements. TRAX Limited, 497 Hitchin Road. Luton, Beds.

FREE PROTOTYPE of the inest quality with every P.C.B artwork designed by us Con atitive hourly rates and high petitive hourly rates, and high standard Limited. Tel: halstead Designs Limite
$(0787) 477408$

ETI. VCDO authentic musical instruments in EPROM E9.95. O Lucas, 45 Fotherby Ct , Maiden head, Berks SL6 1SU.

JBA ELECTRONICS

specialists in manufacture and

 design of:Micropracessor, Telemetry, and Audio-besed systems

UNIT 1 ,
BRECON INDUSTRIAL ESTATE
BRECON, POWYS, S. WALES Tel: (0874) 5844

LOWEST PRICED TOP QUALITY fire and intruder alarm equip ment, etc. S.A.E. for catalogue Security Services, 162 High St. Hythe, Kent CT21 5JR

POWER SUPPLIES

CLAIRTRONIC 3-Pin Plug AC Power Units. $240 / 12 \mathrm{~V}$ at 400 mA rms. 2-Metre Jack Lead. In-built Thermal Fuse. Price £ $\mathbf{2} .65$. P\&P \& VAT included. CLAIRTRONIC LTD, Churchfield Road, Chalfont St. Peter, Bucks. SL9 9EP

ADAPTORS

TELETEXT (Ceefax/Oracle) external adaptors fit any television free cordiess remote control. free cordiess remote colvol.
\&159.95 inc. VAT and delivery. $£ 159.95$ inc. VAT and delivery. Access/Visa. Nutax Ltai, Free-
post, Bristol BS6 7 YY. Tei: Bristol post, Bristol BS
(0272) 744500.

counsis

CONQUER THE CHIP . . .Master modern electronis the PRACTI CAL way by SEEING and DOING in your own home. Write for your in your own home. Write hor your free colour brochure, now to: British National Radio \& Elec tronics Schooi. P.O. EOX 7 Teignmouth, Devon TQ14 OHS.

> MICRO SOFTWARE TRAINING Selt-Paced, hand-on training on a variety of machines (BBC, OL. APFICOT) sheets, programming. W.P. Spread Micrscomputer Advistory Centre Polytechnic of the South Bank. Borough
Rd. London. SE1 OAA. Tel: 01-928 8989 ext. 2410.

100W AMPLIFIER - £9.95 built or use the same board for 50 W , $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details to:- ESS Amplification, 269 Hessle Road, Hull.

KIA RETURN AN AD No 21 Built \& tested amplifier modules for your project . . . 30 watt/ $\$ 3.79$.. for your project... 60 watt/£3. 100 watt/£7.50 ... 60 . + AD $21 \ldots$ - KIA, 8 Cunilffe Road, Ilkley. (We repair amplifiers fast!)

TEKTRONIX OSCILLOSCOPES 556 Dual Beam four trace 50 MHz . Delay Sweep $£ 395$, 547 Dual trace 50 MHz Delay Sweep display - switching £250 581A Dual trace 85 MHZ I195 545 A dual trace 24 MHz Delay Sweep $£ 135$. A.F. Spectrum analyser system £225. Sforage oscilloscopes, curve - tracers, manuals, plug-ins, spares. NOVA microcomputer Other test equipment. Tel: 01-868 4221

SHEETMETAL FOLDERS. $24^{\prime \prime} x$ 166" vice or bench model E50 leaflet 01-890-7838 day/eves.

PLANS 'N DESIGN

AMAZING ELECTRONIC plans lasers, gas, ruby, light shows high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, generator, S.A.E. Plancentre, catalogue. S.A.E. Plancentre, Ledbury HR8 2AA

REPAIRS

POWER SUPPLY REPAIRS. We offer a fast repair service on most makers of DC power units in the range of 1 amp to 30 amps . Crow bars etc, aiso fitted. Full details ring: 0536743496.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4 x 9", Paralab, Downton Wiltshire

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print. on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If youre not sure about which ones they are. however. drop us a line and well send you an abridged copy of the Advertising Code.

Then. if an advertisement bothers you. you ill be justified in bothering us.

The Advertising Standards Authority. If an advertisement is wrong, wére here to put it right. ASA Lid. Dept 2 Brook House. Tormngron Place. London WCIE 7HN

This space is donated in the interests of high standards of advertising.
ETI, AUGUST 1985 ADVERTISERS INDEX
BK Electronics 50
BNRES 11
CSL Sound System 44
Cricklewood 13
Cybernetic Applications 18
Display Electronics6
Electovalue 10
Greenbank 29
ICS 10
Maplin OBC
Marshalls IFC
Microprocessor Eng. 29
Newrad 35
Rapid8
R\&S Micros 12
SME 35
Stewarts of Reading 13
Technical Book Service IBC
Techcrown 18
Technomatic 14/15
TK Electronics 11
Watford Electronics 4/5

CLASSIFIED ADVERTISEMENT ORDER FORM

Rate 40p per word (min 15 words) Post to: ETI, 1 Golden Square, London W1 ADVERTISERS PLEASE ADD 15\% VAT

Please use BLOCK CAPITALS and include post codes.
Classification
Namo (Mr/Mrs/Miss/Ms)
Addreses.......................

SIgnature. ... Date.....................
Daytime Tel. No.
No.

SERVICES

QUANTUM TECHNOLOGY PRODUCTS
 From

Airwave Communication Ltd.
Manufactures to your design, specification or brief. From bare boards to systems. One offs, prototypes and small batch runs. Projects, Repairs, P.C.B. Service
S.A.E. or Phone for details. NO JOB SMALL Airwave Communication Lid., NO $\begin{gathered}\text { Lisandra House, } \\ \text { Fore Street, East Loe, } \\ \text { Cornwall PL13 1AD. } \\ (05036) 4739 \text { or } 3407\end{gathered}$

TO ADVERTISE

 IN THIS SPACE RING CAROLINE ON 01-437 0699 ext 323
electronics today international sook seives
 How to order: indicate the books required by ticking the boxes and send this page, together with your payment to: ETI Book Service,

 Technical Book Service, Oak House, Cannon Hill Way, Mardenhead Sl. 2 EV . Wake cheques payable to Technical Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice.
BECINNEAS GUIDE

Beginner's Guide to Basic Programming Stephenson Beginner's Guide to Digital Electronics £5.85 Beginner's Guide to Electronics Beginner's Guide to Integrated Circuits $£ 5.85$ Beginner's Guide to Computers
$\varepsilon 5.85$ Beginner's Guide to Microprocessors
\square Programming the PET/CBM West

Computer Peripherals that you can build Wolfe

REFERENCE BOOKS

Electronic Designers' Handbook Giacoletto
$\mathbf{5 6 6 . 6 0}$
Electronic Designers' Handbook Giacoletto $\mathbf{~} 77.75$
Handbook for Electronic Engineering Technicians £40.50 Kautiman
Hand book of Electronic Calcutations Kauftman $£ 42.25$
\square Modern Electronic Circuit Reference Manual 57.45

Marcus

Handbook of Microcircuit Design \& Applications

Stout \& Kaufman

International Transistor Selector Towers $£ 14.50$
International Microprocessor Selector Towers $\quad £ 16.00$ International MOS Power and other FET Selector $\quad £ 10.9$ international Digital IC Selector Towers International Op Amp Linear IC Selector Towers Illustrated Dictionary of Electronics Turner

Servicing Home Video Cassette Recorders Hobbs

Complete Handbook of Videocassette Recorders
ع10.50

Theory and Servicing of Videocassette Recorders $\mathbb{E 1 5 . 4 5}$

$£ 5.85$

Beginner's Guide to Video Matthewson

Video Recording: Theory and Practice Robinson $\mathbb{£ 1 6 . 0 0}$
Video Handbook Van Wezel $\mathbf{\Sigma 2 4 . 0 0}$
Yideo Technique White £16.25

NEW TITLES

\square Electronic Devices and Circuits Bell \quad £13.50
\square CP/M - The Soltware Bus: A programmers guide $\quad \mathbb{1 0 . 4 5}$
Clarke/Eaton \& Powys-Lybbe
Electronic Instrumentation and Measurement \quad E14.95 Techniques 2nd Ed. Cooper
Graphics on the BBC Microcomputer Cryer $\mathbb{E 8 . 4 5}$
\square The BBC Microcomputer for Beginners \quad [8.45
Dunn/Morgan $\mathbb{E 1 7 . 9 5}$
Engineering approach

A UNIX Primer Lomuto \quad| E15.55 |
| :--- |
| 1.90 |

Understanding Digital Logic Circuitr. Middleton $\mathbf{\Sigma 7 . 9 0}$
CP/M Primer Murtha/ Waite
$\varepsilon 16.40$
$£ 6.50$
\square Introducing Computers Peleu $\quad \mathbf{~} 6.50$
\square Dictionary of Computers/Data Processing and
Telecommunications Rosenberg
Computer Networks Tenenbaum $£ 19.00$
UNIX Primer Plus Waite/Martin \& Prata
$£ 19.00$
\square Introduction to PASCAL Welsh/Elder 99.45

ELECTRONIC DATA BOOKS

\square Microprocessor Applications Handbook Stout
Handbook of Microprocessor Design and Applications Stout

THT 83/84 Data dictionary and comparison table $£ 9.50$
TVT A-2 Transistor equivalent book
TVT 2N Transistor equivalent book $\quad \mathbf{~} 5.30$
DAT 1 Part 1 of compendium covering transistors A -
$£ 8.40$
DAT 2 Part 2 covering C- 2 transistors
$£ 10.50$
\square DAT 3 Part 3 covering 2N21-2N6735 $\quad £ 9.30$
\square DAT 4 Part 4 covering 2SA,2SB,2SC,2SD,2SJ, $\quad £ 10.50$
2SK,3N,3SJ,3SK,4000
\square LIN 1 Linear operational amplifiers data and com- $\quad \mathbf{E 6 . 5 0}$ parison tables
LIN 2 Linear voltage stabilizers, data and comparison tables
TTL TTL digital data and equivalent book
$£ 7.80$
$£ 7.90$
\square DDV/1 Part 1 European diode data equivalent book
DDV/2 Part 2 American and Japanese diode data and $\quad 87.90$ equivalent book

Kybett

\square From BASIC to PASCAL Anderson
$£ 11.30$
(1) UNIX - The Book Banaham
19.00
$\mathbf{~} 15.05$
$\square \mathbf{2 8 0}$ Microcomputer Handbook Barden
£11.75
\square Microprocessor Interdacing Carr Barter
\square Microcomputer Interfacing Handbook A/D \& D/A £12.80
Carr
Microcomputers/Microcomputers - An Intro Gioone
c. 36.50

Troubleshooting Microprocessors and Digital Logic
E12.80
Let your BBC Micro Teach you to program Hartriell
$\Sigma 7.95$
Programming your $2 X$ Spectrum Harinell
How to Design, Build and Program your own working
Computer System Havilland
$\$ 13.90$
\square BASIC Principles and Practice of Microprocessors Heffer
\square Microcomputer Builders' Bible Johnson
£14.75
\square Digital Circuits and Microcomputers Johnson

- PASCAL for Students Kemp
\square The C - Programming Language Kernighan
$£ 16.95$
$\mathbf{8} .95$

Guide lo Good Programming Practice Meek
$\varepsilon 9.50$
Principles of Interactive Computer Graphics Newman
$\varepsilon 9.50$

Theory and Practice of Microprocessors Nicholas
$£ 11.45$
\square Microprocessor Circuitss Vol.1. Fundamentals and
$\varepsilon 9.80$ Microcontrollers Noll
\square Microcomputer Based Design Peatman
\square Digital Hardware Design Peatman
$£ 11.75$
(D) BBC Micro Revealed Ruston
£10.75
Easy Programming for the $\mathbf{Z X}$ Spectrum Stewart

Signed

Address
Microprocessor Cookbook M. Hordeski
Active Filter
$\Sigma 10.65$

Active Filker Cookbook Lancaster
£15.50

- 6809 Cookbook
9.00

Eliciples Deran Boylestad
Electronic Devices \& Circult Theory Boylestad
Giant Handbook of Computer Soffware
1.45

Giant Handbook of Ectronic Circuits
Giant Handbook of Electronic Projects E13.60
Electronic Logic Circuits Gibson
\square Analysis and Design of Analogue Integrated
Basic Electronics Grob
Lasers, The Light Fantastic Halimark
©6.25
$£ 7.85$
86.25 2.25
\square Master Handbook of Telephones Traister

More This Month at Maplin

256K D-RAM 41256-150ns ONLY £6.95 (QY74R).
256K EPROM 27256-250ns ONLY $£ 14.95$ (QY75S)
Right-angle pcb mounling rotary switches 1P12W-FT56L 2P6W-FT57M; 3P4W FT58N: 4P3W - FT59P. All £2. 95 each. Steppęr motor 48 steps/rev, 12 V 0.13 A per phase, 4 -phose unipolar, 57 g , working torque 8 mNm max. ONLY $£ 9.95$ (FT73Q)
Driver chiptor motor: SAA 1027 ONLY £3. 75 (QY76H)
*SAVE * 1 Kir containing everything you need motor, SAA 1027, data sheet and passives ONLY £13.35 (LK76H).

Sounds Terrific

THIS/LAST
MONTH DESCRIPTION CODE PRICEBOOK 1. (1) " Live-Wire Detector LK63T $£ 2.95 \quad 14 \times \mathrm{XA14Q}$ 2. (2) 75W Mosiet Amp LW5IF £15.95 Best E8MM . (3) - Car Burglar Alarm LW78K E. 149 A XAOA4 - Portyite LW938 §10.95 Best E8MM - U/sonic intrudr Drcir LW83E £10.95 4 XA04E $\begin{array}{llll}\text { - 8W Amplifier } & \text { IW36P } & £ 4.95 & \text { Catoloque } \\ \text { * Lugh) Pen } & \text { LK51F } & £ 10.95 & 12 \text {)(Al2N }\end{array}$ - Lughal Pen *) Syntom Drum Synth - Computadrum LK51
(W8 9. $(6) \quad$ Computadru
10.
$1-1)$ - logic Probe

Over 100 other kits olso ovailable. All kits supplied with instructions. The descriptions above ore necessarily short. Pleose ensure you know exactly what the kit is and what it comprises before ordering, by checking the oppropriate Project Book mentioned in the lis obove.

> Is it a turtle? Is it a robot? Is it a buggy? Yes! it's zero 2.

More Choice In Multimeters

A new range of very high quality multimeters offering truly omozing quality ot the price. Pocket Multimeter, 16 ronges, 2,000n// DC/AC〔6.95 (Y)06G)
M-102BZ with continuily buzzer, battery lester and IOADC range, 23 ranges, $20,000 \mathrm{n} / \mathrm{NDC}$ §14.95 (YJO7H)
M-2020S with transistor, diode and LED tester and 10ADC range, 27 ranges, $20,0003 \mathrm{~N} / \mathrm{VC}$ £19.95 (YJO8J)
M-5050E Electronic Multimeter with very high impedance FET input, 53 ranges, including peak-1o-peak $A C$, centre-zero ond $12 A A C / D C$ ranges $£ 34.95$ (Y JO9K)
M-5010 Digital Mullimeter with 31 ranges including 20Ω and $20 \mu \mathrm{~A} D C / \mathrm{AC}$ FSD ranges, continuity buzzer, diode test, and gold-ploted pcb for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50$ (Yנ1OL)

The Maplin Service

All in-stock goods despaiched some doy for all orders received betore 2.00 pm
All our prices include VAT and carriage (tirst class up to 750 g).
A 50 p handling chorge must be added if your tatal order is less thon $£ 5.00$ on mail-order
lexcept cotalogue).

8 Phone before 2.00 p.m. forsame day despatch.

1985
CATALOGUE
Pick up a copy now al any branch of W.H. Smith or in one of our shops. Price $£ 1.35$, or by post £ 1.75 from our Rayleigh address
(quote CA02C).

All offers subject to avoilability.
Prices firm until 10th August 1985

