
 versatility and top quality from a product out of the realms of fantasy and within the reach of the active musician.
The MCS-1 will take any sound, store it and play it back from a keyboard (either MIDI or v/octave). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated looping system.
All the usual delay line features (Vibrato, Phasing, Flanging, ADT, Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digitally on a floppy disc via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS- 1 doesn't come with a 5 -figure price tag. And, if you're \square prepared to invest your time.

แ1! !!!!!!!!!!

 if's almost cheap! MCS- 1 complete only $\mathbf{8 8 4 9}+$ VAT Save even more with the MCS-1 kit: only $\mathbf{5 5 9 9}$ + VAT
Demonstration Tape $\mathbf{8 2 . 5 0}+$ VAT Powertran kits are complete down to the last nut and bolt, with easy-to-follow assembly instructions.

Specification
Memory Size: Variable from 8 bytes to 64 K bytes. Storage tirre at 32 KHz sampling rate: 2 seconds. Storage time at 8 KHz sampling rate: 8 seconds. Longest replay time (for special effects): 32 seconds. Converters. ADC \& DAC: 8 -bit companding. Dynamic range: 72 dB .
Audio Bandwidth: Variable from 12 KHz to 300 Hz . internal 4 pole tracking filters for anti-aliasing and recovery. Programmable wide range sinewave sweep generator. MIDI control range: 5 octaves.
+1 V/octave control range: 2 octave with optional transpose of a further 5 octaves.

POWERTRAN

POWERTRAN CYBERNETICS LIMITED
Portway Industrial Estate, Andover, Hants SP10 3ET, England Telephone: Andover (0264) 64455
Access/Visa cardholders - save time - order by phone.

Gary Herman: Editor
Ian Pitt: Assistant Editor
Jerry Fowler: Technical illustrator
Paul Stanyer: Ad. Manager
Kerry Fowler: Copy Control
Dave Bradshaw: Group Editor - Electronics

Peter Welham: Publishing Director Jim Connell: Chairman
PUBLISHED BY:
Argus Specialist Publications Ltd.
1 Colden Square, London W1R 3 今́B DISTRIBUTED BY
Argus Press Sales \& Distribution LId.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY
The Garden City Press Ltd.
COVERS DESIGNED BY
MM Design \& Print.
COVERS PRINTED BY:
Alabaster Passmore.
OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead and their GERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC
 Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Fri day in the month precedins cover date. \square The contents of this publication including all articles. designs, plans, drawings and prosrams and all copvright and other in ellectual property righls therein befong to Argus the Law of Copyricht and other intellectual property tights and by viftue of international copyright conven ions are specifically reserved to Argus Specialist Publications Limited and any reproduction reauires the prior written consenl of the Company. (C) 1985 Argus Specialist Publications Lid \sqcup All reasonable care is aken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur. a correction will normally be published as soon as possible afterwards. Al prepted by us in good faith as correct at time of aoing press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availablity which may occur after the publica ton has closed for press

- Subscription Rates. UK £16.30 including postage. For further details and Airmail rates etc, see the Readers' Services page

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1 R 3AB. Telephone 01-437 0626.
 Telex 8811896.

FEATURES

DIGEST

News from leading edge of every issue.

READ/WRITE.
Our letters page moves up front with some up-front letters.

DIGIVISION INSIDE OUT 16 Vivian Capel takes the back off the
latest thing in television technology and reveals all.

THE REAL COMPONENTS. 20
John Lirisley Hood gets on the TO-5 case and examines small signal and power transistors.

TECH TIPS

Yet more novel ideas from the files, devised by ETI readers with ETI readers in mind.

PROJECTS

6802 EVALUATION BOARD . . . 27 If machine code leaves you cold warm up with our cover project the painless way to understand microprocessors using the compact version of the trusty 6800 device.

UNIVERSAL EPROM

PROGRAMMER MkII \qquad Thank heavens for the MkII EPROM programmer, because little EPROMs get bigger and faster every day. Or rather, thank heavens for Mike Bedford and Gordon Bennett who have produced an upgrade of ETI's original programmmer which is com-
pletely software-driven and can handle all the latest devices.

LARGE DIGIT SCOREBOARD. . . 43 Forget LEDs, forget LCDs and get litup with light-bulbs using this stadium-sized four digit display, which is constructed in modules and can be controlled by computer or hardware switches. Design by Ken Wood.

STEREO SIMULATOR
50
Liven up your old record collection or just enhance your stereo with this add-on circuit developed around one specialised chip.

ETC

OPEN CHANNEL 59
Keith Brindley opens communications in our new department with the first of his monthly columns on all aspects of telecoms.

SCRATCH PAD

61ETI's new diary amplifies the current events in electronics and comes up
with a few shocks. Potentially different.

REVIEW

63This month we open the gate on 'Digital Lab' - a software package for the Commodore 64 designed, logically, to help with logic design.

INFORMATION

NEXT MONTH'S ETI 41
56BOOK SERVICE
READERS' SERVICES 62
PCB SERVICE. 53 ADVERTISERS' INDEX 66

WATFORD ELECTRONICS
 250 HIGH STREET．WATFORD，HERTS，ENGLAND．WDI $2 A N$ MAIL ORDER，CALLERS WELCOME
 Tel．Watford（0923）37774／40588 Telex． 8956095

ALL DEVICES FULLY GUARANTEED．SEND CHEQUE，P．O．S．CASH，BANK DRAFT WITH ORDERS．TELEPHONE ORDERS BY ACCESS／MASTER CHARGE ACCEPTED． GOVERNMENT \＆EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\＆PADD 75 DTO ALL CASH ORDERS．OVERSEAS ORDERS POSTAGE AT COST．PRICES SUBJECT TO CHANGE WITHOUT NOTICE

VAT

Expon orders no Vat．Applleable to U．K．Customere only．Uniess atated othewlo
We stock thousande more Iteme．＂pare to viat ue．
Open Monday to Seturday： 9.00 am to 6.00 pm ．Ample Free Car pefting apace avelisble．

 16p． 470 20p， 880 34p 1000 27p 150031 p， 2200 26p $470072 p$

transistors

$A C 12$ $A C 14$ $A C 17$ $A C 1$ $A D$ $A D$ $A D$ $A D$ A

POLYBTYRENE CAPACITOMS：
1ODF TO InF Bp； 1.5 FF to 12 nF Iop．
EILEA

 2，3．3，4．7，6．8，8．2．10，12，15．18，
22．27，33，38， $47,50,58,88,75$, 22．27，33，38，47，50，58，88，75， 82,
$85,100,120,150,180 \mathrm{pF} \quad 16 \mathrm{p}$ 200，220，250，270，300．330，380． $\begin{array}{ll}380.470,800,800,820 & 210 \text { esch } \\ 100,1200,1800.2200 & 30 \mathrm{p} \text { erch } \\ 3300,4700 \mathrm{ch}\end{array}$ MINIATURE TRIMMERS CApaction

AESISTORS Carbon Film，miniature．HHStab 5e 0.25 w
0.5 w
0.5

Caroon Film，miniature．histad se $\begin{array}{lll}2 \Omega 2-10 M & E 24 & 3 D \\ 2 \Omega 2-4 M 7 E 12 & 3 D \\ 2 \Omega 2-10 M E 12\end{array}$
$3 p$
$3 p$
$6 p$

$\begin{aligned} & \text { Hitachl } \\ & 288 k \end{aligned}$ DRAM
$\begin{gathered} 2784 \\ 2500 \end{gathered}$ ©,4,26
$\begin{aligned} & 27128 \\ & 250 \mathrm{n} \\ & \text { 250. } \end{aligned}$

2\％Matal Film
15 Motal Film
$100+$
mixec
RESISTORS NETWOAK S

 \％id
\qquad

COMP
 COMPU ICs
 21024 2114 2147 2516 2532 25132
 114 147 2516 2532 25132 2564
 2670. 2716.5 V 2732.4 2784.850

811 811 811
 81 LS 81 LS 8202

\section*{} | 821 |
| :--- |
| 821 |
| 82 |
| 82 |
| 82 |
| 8 | $4 p$

40
40 TM E24 ch yos る

$4164-2$
4532.3
4532.4
4816.400
4854.15
5514

$$
\begin{aligned}
& 811 \\
& 616 \\
& 616
\end{aligned}
$$

多合兌 3
万ร⿰工凡⿰工凡心夊

TDA2020

OMP POWER AMPLIFIER MODULES

world-wide reputation for quality, reliability and performance at a realistic price Four models

 available 10 suit the needs of the professional and hobby market. 4.e., Industry. Leisure Instrumental and Hi-Fi. etc. When comparing prices. NOTE all models include Toroidal Vu meter Open and short circuit proof. Supplied ready built and tested. OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms. Frequency Response $15 \mathrm{~Hz}=30 \mathrm{KHz}-3 \mathrm{~dB}$. T.H.D. 0.01%, S.N.R. -118 dB . Sens. for Max. output 500 mV at 10K, Size $360 \times 115 \times 72 \mathrm{~mm}$ OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms. Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{US}$. T.H.D. Typical 0.002%. Input Sensitivity 500 mV . S.N.R. 125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE OMP/MF200 Mos-Fet Output power 200 watts RM.S into 4 ohms. Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Facior 250. Slew Rate 50V/uS. T.H.D. Typical 0.001%, Input Sensitivity 500 mV . S.N.R. -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE E62.99 + $\mathbf{E 3} .50$ P $_{\text {\& }} \mathrm{P}$

OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms. Frequency Res ponse $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350, Slew Rate 60V/uS, T.H.D. Typica 0.0008%, Input Sensitivity 500 mV . S.N.R.
-130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE $-130 d B$, Size $330 X$
$£ 79.99$ - 4.50 P\&.

Vu METER

Compatible whit our four amplifiers detanled above. A very accurate visual display emploving 11 L.E D. diodes 17 green. red) plus an additional on/off indicator Sophisticated logic control circults for very fast rise and decay times. Tough moulded plasic case, with
50p P\&P.

LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedence

PO WER RANGE 8. 50 WATTG.M

 \qquad

Mckenz IE

150 WATT R Me

SOUNDLAB (Full Range Twin Cone

60 WATM.M.S. H.Fi/Multlie Array Disco

B" 60 WATT R.M.

Pa, Nircomponents complete with instructions. FM MICROTRANSMTTTER (8UG) $90 / 105 \mathrm{MHz}$ Whh vary sensitive microphone. Range 100

$$
\begin{aligned}
& \text { Price: } 88.62 \text {. } 750 \text { P\&P } \\
& 7
\end{aligned}
$$

3 WATT FM TRANSMITER 3 WATT B5/115MMz varicap controned protessional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ 12 von) Price: $133.74+75 \mathrm{p}$ P8 SINGL CHAANNEL RADN CONTROLLED TRANSMTTER/ RECEIVER 27 MHz Range up to 500 merres. Double coded modutation. Recoiver output operates relay winh $2 \mathrm{amp} / 240$ voh contacts. Ideal for
 PeP + 75 p each S.A.E. for complete list.

STEREO DISCO MIXER STEREO DISCO MIXER with 2×5 band L \& R. graphic equalisers and iwin 10 segment .O. Vu Melers. Many outstanding teatures Inputs with individual faders providing a useful combination of the following: nlables (Mag), 3 Mics, 4 Line plus Mic
talk over switch. Headphone Monitor Pol L. \& R. Master Output conirols Out

B. R. ELEGTRONGS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Call For Science Minister

Science needs a minister, say the Alliance for Science, a campaign set up by three trade unions who represent 100,000 scientists and technologists. They are also calling for a National Economic Develop-
ment Council (NEDC) to cover research and development, pinpointing crucial research areas to permit the most effective use of funds.
In a pamphlet entitled The case for a research and develop-
ment strategy, the group call on the government to co-ordinate such a strategy as suggested by the House of Lords Select Committee on science and technology. They argue that a science minister should head a cabinet committee to look at science funding and plot long term research and development objectives.
They call for more government funds to be pumped into research and development, particularly in areas such as information technology where we are said to be falling behind our competitors, and they believe that an NEDC is the best way of
ensuring that the money goes to where it is needed most.
The pamphlet is the second publication from the Alliance, which was launched in December of last year. The three unions involved are the Association of Scientific, Technical and Managerial Staffs (ASTMS), the Association of University Teachers (AUT) and the Institution of Professional Civil Servants.

For further information about the Alliance for Science contact Bill Brett of IPCS on 01-928 9951, Paul Cotterell of AUT on 01-221 4370, or Stan Davison of ASTMS on 01-267 4422.

Handheld Logic Analyser

An ultra-compact logic analyser, which provides a full range of measurement facilities in a handheld, battery-operated format, has been introduced to the UK by House of Instruments.

The SOAR 1300 Series, available in 10 MHz or 20 MHz versions, use a high-contrast liquid-crystal dot-matrix display to provide comprehensive logictiming, state and signature analysis on up to 16 channels, with features such as trigger position, trigger pass count and trigger delay included as standard. The 1 " $\times 3^{\prime \prime}$ display is mounted on the top and shows eight channels at a time.
The instrument measures 253 $\times 140 \times 38 \mathrm{~mm}$ and weighs only 1 kg , making it ideal for fieldservice use. Power is provided by
four AA batteries or an optional AC mains adaptor, while key setup parameters and acquisition data are retained for up to one year by an internal batterybackup memory function.

The 1300 Series may be used in single, repeat or compare acquisition modes, and data display, compare and search facilities are provided. Other display features include a $\times 4$ magnification, a window facility for examining part of a larger display, and a histogram display to compare the numbers of highand low-level bits.

The instrument has built-in self-checking facilities, including battery-low indication, and an automatic power-off function to conserve battery life between readings.

The price of the 10 MHz model

(1310) was not available when we went to press, but the 20 MHz version (1320) costs $£ 1987.00$ plus VAT. The instrument is also available in a form better suited to bench use, with the display on the front panel and a tilt stand. These models are designated
$1410(10 \mathrm{MHz})$ and 1420 (20 MHz), and the 1420 costs £2146.00 plus VAT.

House of Instruments, Raynham Road, Bishops Stortford, Hertfordshire CM23 5PF, tel 0279-55155.

Watford Moves

Watford Electronics, a company which started with one man working from his home, has just moved into new, pur-pose-built premises in Watford's High Street.

The company was founded twelve years ago by Nazir Jessa, an optician who spent his evenings and weekends selling components from a stock kept in the corner of his bedroom. Although he
advertised 'mail order only' Nazir spent his weekends serving the people who insisted on calling in person, and the queues often filled his lounge and hall and extended to the front gate and beyond.

Assisted by his younger Brother Raza, he build the company up until, after three years, he was able to buy the shop next door. Within a year the extra stock needed to serve the fast-expanding business filled even this space, and the problem has only been remedied with the move to the new building.

Called Jessa House, the premises house over 7000 different components and micro peripherals and cost $£ 700,000$ to build. Nowadays they actually welcome personal callers, and although they now have a staff of thirty Nazir and Raza still take their turn behind the counter.

Watford Electronics, 250 High Street, Watford, Hertfordshire WD1 2AN, tel 0923-37774.

- Electrovalue's spring '85 catalogue is now available and its 44 A5 pages list a wide range of components, tools, computer equipment, test gear and technical books. The catalogue can be obtained free of charge from Electrovalue Ltd, 28 St Judes Road, Englefield Green, Egham, Surrey TW20 0HB , tel 0784: 33603.
- Cirkit, the re-incarnation of component suppliers Ambit International, will be launching their spring catalogue on April 11th. It will be available from leading newsagents throughout the country for $£ 1.15$ and lists over 4000 components along with kits, tools and microcomputer peripherals. Circkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire EN10 7NQ.
- Weran out of space this month, but we'll make sure we give the results of the Reader Survey Free Subscription offer next month.

Events Diary

Amateur Radio \& Computer Fair - April 8th
Bretton Hall College, Wakefield, from 11.00am. Organised by North Wakefield Radio Club. Free Admission, various stalls, film shows, amateur radio talkin on 145.550 MHz , beer and refreshments available. Contact S. Thompson, G4RCH, 2 Alden Close, Morley, Leeds LS27 OSG, tel 0532-536633.

The Limits of Digital Audio - April 9th
The IEE, Savoy Place, London WC2 at 7.00 pm with tea from 6.45 pm . Lecture by Dr. Lagadec of Willi Studer AC organised by the Audio Engineering Society. Non AES members welcome to join-up on the evening.

Motorola Power Design Seminar - April 15th
Sheraton Hotel, Heathrow. Programme includes SIDAC technology, switchmode $1,11 \& 111$, switchmode rectifiers and power MOSFETs and cost is $£ 28.75$. Contact Betty Fogg, IEL Travel Ltd, 9 Argyll Street, London W1V 2HA, tel 01-7348200.

Innovation '85 - April 16-19th
Cranfield Institute of Technology, Cranfield, Bedford, from 10.00am to 5.30 pm daily. IT exhibition sponsored by Rank Xerox and intended to provide a clear overview of the technology for those considering installations and for students and others planning careers. Innovation '85, Bridge House, Oxford Road, Uxbridge, Middlesex UB8 1HS, tel 0895-51133.

Northern Computer Show - April 16-18th
Belle Vue, Manchester. Business and professional computer exhibition aimed at both established and first time users. Contact the Exhibition Manager, The Northern Computer Show, Reed Exhibitions, Surrey House, 1 Throwley way, Sutton, Surrey SM1 4QQ, tel 01-643 8040.

Computer Aided Design \& Engineering in the Aircraft Manufacturing Industry -April 17th
Institution of Mechanical Engineers at 6.00pm. Lecture by H. Hitch of British Aerospace Aircraft Group. Contact Peter J. Pugh. Engineering Manufacturing Forum, I. Mech. E., 1 Birdcage Walk, London SW1H 9JJ, tel 01-222 7899.

Hospital Broadcasting Conference - April 19-21st
Newport, Gwent. Residential weekend including training sessions, equipment exhibitions, seminars and debates organised by the National Association of Hospital Broadcasting Organisations. Nonmembers are welcome and the cost is $£ 51.00$ including full board. Contact Alf Partridge, Conference Chairman, NAHBO, c/o 56 Fleet Road, Benfleet, Essex SS7 5JN.

Scottish Design Engineering Show - April 23-25th
Anderston Exhibition Centre, Albany Hotel \& Holiday Inn, Clasgow. Exhibition of new design engineering ideas aimed at engineers and managers. Contact Cahners Exhibitions Ltd, Chatsworth House, 59 London Road, Twickenham, Middlesex TW1 3SZ, tel 01-891 5051.

Portable Computing Conference - April 25/26th

Fulcrum Centre, Slough. Conference and exhibition aimed at enabling management staff to assess the value and implications of portable computing techniques and including products from fifty or more leading suppliers. Costs from $£ 109.25$ for a half-day to $£ 281.75$ for two days. Contact the National Computing Centre, Oxford Road, Manchester M1 7ED, tel 061-228668962

The British Electronics Week - April 30th to May 2nd
Olympia, London, 10.00am to 6.00 pm daily. The exhibition brings together the All Electronics/ECIF Show, Fibre Optics and Electronic Product Design, and the organisers claim that virtually every electronics company will be represented. Free entry by ticket obtained in advance from Evan Steadman Services Ltd, The Hub, Emson Close, Saffron Walden, Essex, CB10 1HL, tel 079926699.

Electronic Production Efficiency Exposition - April 30th to May 2nd
NEC, Birmingham. See February issue for details or phone 0280 . 875226.

Framestores Make The World Go Round

Those of you who manage to stay awake in front of the television may have noticed a change recently in the style of the BBC 1 rotating globe symbol. The old mechanical model with its electric motor and fixed camera has gone, to be replaced by an all-electronic system using framestores.

The BBC's graphic designers came up with a new image of the world, with improved accuracy and detail. The symbol achieves a full three-dimensional effect using solid continents and islands mapped onto a transparent sphere, which is enhanced by colour shading and highlighting. The hardware for displaying the symbol was developed by Engineering Designs and the animation was produced by the staff of the BBC Computer Graphics Workshop. The original map database of 20,000 points was provided by Glasgow University.

The full rotation of the world takes 12 seconds which is equivalent to 600 television fields. To store this digitally would normally take some 250 Mbytes of memory, but a datasaving technique has been invented (patent applied for) which stores a single field of the world rotate. throughout. Ceefax. 01-927 5432.
in only 8 Kbytes. Each map is imprinted upon the foreground (the highlighted gold) and the background (the shaded blue). For each TV field a map is read from memory in sequence so that the world appears to

The hardware uses two 800 Kbyte full-resolution framestores to reproduce the blue and gold areas of the symbol and the captions. This data is stored as eight-bit samples in accordance with the internationally agreed coding standard (CCIR Rec. 601). The compressed map data is stored in a separate memory of more than 4.5 Mbytes. Erasable 28 Kbyte memories are used for all data storage, and high-speed digital tectniques are employed

Fourteen such equipments have been installed in the BBC's main and Regional centres, each with their own caption identification. The London equipment optionally displays a caption indicating the page number for programmes subtitled on

Engineering Information Department, BBC, Broadcasting House, London W1A 1AA , tel:

ETI Takes Allsorts

One of the advantages of working on a magazine is that you get some very interesting things through the post. Advertising agencies keen to catch your eye send out all manner of promotional novelties, and there is scarcely a desk in the company which does not groan under the weight of pens, ashtrays, diaries and 'executive' toys, each emblazoned with the name of some electronics company or other.

Occasionally some go a little further, and not a few desks still bear the lens-less spectacles, sparklers and mounted lump of coal which mark some of the more notable recent advertising campaigns.

But no-one ever bothered to send us anything to eat. Presumably, writers on food magazines spend their entire working lives chomping through the edible offerings from each morning's post bag but not so
electronics writers.
Until now, that is. Possibly labouring under the impression that ETI stood for Eating Oday International, Only Natural Products Ltd, part of the Bassett foods company, recently sent us a packet of their new Traditional Recipe Liquorice.

The accompanying press release waxed lyrical about mixtures of liquorice and aniseed and the marriage of traditional techniques with modern production methods which went into producing this fine product, and indeed, the liquorice does taste pretty good as the Assistant Editor can well testify. But none of this explains why they sent a sample to us.
Still, who's complaining. The Assistant Editor is now considering the idea of starting a regular food column in the hope of attracting more such samples, and wishes it to be known that, if Bassetts are planning any further promotional activity, he'd prefer it if they sent him some Liquorice Allsorts next. Please?
(P.S. Or some Fudge? Ed.) ETI

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System

ACORN COMPUTER SYSTEMS	
B8C Model B Special other.	£300 (a)
B8C Model B+Econet	¢335 (a)
BBC Model B+DFS	£346 (a)
BBC Model B + DFS + Econet	£399 (a)
UPGRADE KITS	
A to B Upgrade Ki	865 (d)
DFS KH.	595 (d)
Econet Klt	. 55 (d)
Speech Kit	[47 (d)
ACORN ADD-ON PRODUCTS	
Z80 2nd Processor	¢348 (a)
6502 2nd Processor	¢175 (a)
Teltext Adaptor	E190 (b)
IEEE Intertace g282	$\underline{282}$ (b)
Prestel Adaptor	599 (b)
PH Light pen	¢ 39.50 (c)

DISC DRIVES

These are fully cases and wired drives with slim line mechanisms of high quality, Shuggart A400 standard interface. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. TEAC 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format

	$2 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}^{\text {DS: }}$ (TD55MP with psu
$2 \times 100 \mathrm{~K} 40 \mathrm{TSS}$:TD55A with PSU.... E 250 (a)	x 400K 40/30TDS:TD55M Mitsubishi with
	psu..E350/a)
	CS55A with PSU \quad E125(b)
	CS55F with psu169(b)

3M 5¼" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each disc is individually tested and guar anteed for life. Ten discs are supplied in a sturdy cardboard box.
$40 T$ SS DD $£ 15$ (c)
$40 T$ DS DD $£ 18$ (c)
80T SS DD Eé2 (c) $80 T$ DS DD £24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives

MONITORS

MICROVITEC 14" RGB:

1431 Standard Resolution $\mathbf{£ 1 6 5}$ (a)
1451 Medium Resolution.. 240 (a)
1441 Hi Resolution .. $£ 399$ (a)
1431 AP Std Res PAL/AUDIO£210 (a)
1451 AP Med Res PAL/AUDIO £280 (a)
1451 DQ3 Med Res for QL 239 (a)
Above monitors are now available in plastic or metal cases, please specify your requirement.
KAGA Super Hi Res Vision III RGB£340 (a)
Hi Res Vision II... 2235 (a)
MONOCHROME MONITORS 12":
Kaga Green KX1201 G Hi Res. \qquad . 199 (a)
Kaga Amber KX1201 A Hi Res..............................£105 (a)
Sanyo Green DM8112CX Hi Res.............................. $\mathbf{\Sigma 9 0}$ (a)
Swivel Stand for Kaga Monochrome£21 (c)
All monitors are supplied with leads suitable for the BBC
Computer. Spare leads available.

ATTENTION

All örces in mis double page advertsment arce
ALL PRICES EXCLUDE VAT
Please add carriage 50 p unless indicated as follows
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

SPECIAL OFFER
2764-25........................... $\mathbf{\Sigma 4} .40$
27128-2 $£ 9.50$
6264LP-15 \qquad $£ 12$

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up to eight eproms al a time and accepts all single rall eproms up to 27256. Can reduce pro gramming time by 80% by using manufacturer's suggested algorithms. Fixed Vpp of 21825 volts display with alpha moving message £395(b).

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764. Displays 512 byte page on TV - has a serial and parallelVO routines. Can be used as an emulator, cassette interface. Softy II.
Adaptor for $2764 / 2564$. £25.00(c)

UV ERASERS

All erasers with built in safety switch and mains indicato
UV1 8 erases up to 6 eproms at a time. UV1 T as above but with a timer UV140 erases up 1014 eproms at a time. 888 (b) $847(c)$
$E 58(c)$

C00Ln 1 148

Koep your hot pans COO And RELIABLE
winh our range ol BRANO NEW prolessiona cooling fans
ETN1
Miniature 240 Vim $92 \times 92 \times 25 \mathrm{~mm}$
oquipment
fan complete with

Gorl Lu Je-3AR $1 / 3$ ret BUHLER ©9.11. 22. 8-16VOC MCIO ministure reversidie fan Uses a brushles sono motor for oxtremely high ar fio almost silent running and quaranteed 10.000

E12.95 complifte with date.
 Ian supolid tosted EX EOUIPME NT 240 va
C 6.25 or 110 v I 4.95 or BRAND NEW 240 v

BUDGET RALiCT

VIDFO MONITORS

At a price YOU can aflord our rang
EQUIPMENT video monitors dety ompetition!" All are for 240 v working with spe lested and set for up to 80 col use o
OBC micro Even where MINOR screen burns MAY exisl-normal data displays a
$12^{\prime \prime}$ KGM 320.321's SOLD TO DATE will display up to 132 columns $\times 25$ lines Housed in altractive fully enclused
brushed allov case. B/W only $£ 32.95$ brushed allov case B/W onty 8 whi: 95
$24^{\circ} \mathrm{KGM}$ large screen black 8 whe Ideal schools shops. clubs etc
Wiv 55.60 Carriage $£ 10.00$

DATA MODEMS

our super range of DATA MODEMS with prices and type
and budgeis"
MOSt modems are EX BRITISH
TELECOM and are made to the highest standard for continuous use and reliabillty
RS232 intertaces are slandard to all our with an RS232 serial intertace
DATEL $2 B$ see SPECIAL OFFER Centre of
MODEM 13A. 300 baud. Compact unit only

 MICRONET OT TELECOM GOLD Tested with data. $E 39.93$ + PP E6. 30.
MODEM 20
BaUdE99.
ONLY E49. 95
OACOM DSL2123 Multi Standard Modem

ANSWER modes plus LED stafus indica

 GATEL 2412 Made by SE LABS Io BT
 DATEL 4800. RACAL MPS4800 hiah

A Major company's over production problems, and a special BULK PURCHASE enable TWO outstanding offers.

COLOUR MONITOR SPECLALS

 'SYSTEM ALPHA' 14" Multi Input Monitor. Made in the UK by the famous REDIFFUSION Co. for their own professional computer system this monitor has all the features to suit your immediate and future monitor requirements. Two types of video input, RGB and PAL Composite Video, allow direct connection to most makes of mlcro computers and VCR's An internal speaker and audio amplifier may be connected to your system's output or direct to a VCR machine, giving superior colour and sound quallty. Many other features include PIL lube, Maiching BBC case colour, Major controls on front panel, Separate Contrast and Brightness - even in RGB mode, Two types of audlo input Separate Colour and audio controls for Composlte Video input, BNC plug for composite input, 15 way 'D' plug for RGB input, modular construction etc. etc.This must be ONE OF THE YEAR'S BEST BUYSI!!
Supplied BRAND NEW and BOXED, complete with DATA and 90 day guarantee SUPPLIED BELOW ACTUAL COST- ONLY £149 0 + Car

DECCA RGB 80-100 Monitor

Little or hardly used manufacturer's surplus enables us to offer this special converted DECCA RGB Colour Video TV Monitor at a super low price of only £99.00, a price for a colour monitor as yet unheard of! Our own interface, safety modification and special $16^{\prime \prime}$ high definltion PIL tube, combine with the tried and tested DECCA 80/100 series chassis to give 80 column definition and picture
quality found only on monitors costing 3 TIMES OUR PRICE. In fact. WE quality found only on monitors costing 3 TIMES OUR PRICE. In fact, WE be seen to be believed. Supplied complete and ready to plug directo to a BBC MICRO computer or any other system with a TTL RGB output. Other features include internal audio amp and speaker, Modular construction, auto degaussing $34 \mathrm{H} \times 24 \mathrm{D}, 90$ day guarantee. Supplied in EXCELLENT condition, ONLY $£ 99.00$ + Carr. Also available UN•MODIFIED but complete with MOD DATA. Only $£ 75.00$. Carriage and Insurance on monitors £ 10.00

SPECIAL 300 BAUD MODEM OFFER

Another GIGANTIC purchase of these EX BRITISH TELECOM, BA REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD OF PRICE OF ONLY £29.95 Mad the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data base business or hobby communications. All this and more!!

$$
\begin{aligned}
& \text { - } 300 \text { baud full duplex } \\
& \text { - Full remote control } \\
& \text { - CCITr one standards } \\
& \text { - Supplied with flll data OWALL. ANSWER and AUTO modes } \\
& \text { - Modular construction } \\
& \text { - STandard RS232 serial Interiace } \\
& \text { - Sirect isolated connection }
\end{aligned}
$$

SAVE
$£ 250$
SUPER PRINTER SCOOP 8RAND NEW CENTRONICS 739-2

Ent
E19

HUNDREDS OF PRINTERS

 EX STOCK FROM £49.00. Call Sales Office for Details.1 only large CALCOMP 1036 AO 3 pen drum plotter and offline 915 magtape controller. Good working order ADD VAT TO ALL PRICES

DEC CORNER

PDP 1140 System comprising of CPU
124 K memory + MMU 16 line RS 232
124 K memory + MMU 16 line RS232
nterlace RPO2 40 MB hard disk drive TU10 9 track 800 BPI Mag tape drive. dual rack system. VIS2 VOU elc. elc. Tested
E3750.00 BA11-MB 3.5"BOX. PSU. LTC $£ 385.00$ DH11.AD $16 \times$ RS232 DMA DLV11.J4 4 EIA interface DLVII-E Serial. Modem Suppor DUP11 Sych. Serial data i/o ع2100.00 ع310.00 £200.00 DO200 Dilog - mulli RK

O211-B 8 line RS232 mux board $£ 650.00$ KDF11.8 M8189 PDP $1123+$ \& 1100.00 LAX34-AL LA34 tractor feed E85.00 MS 11 -JP Unibus 32 kb Ram $\mathbf{~ E 8 0 . 0 0}$ $\begin{array}{ll}\text { MS11-LB Unibus } 128 \mathrm{~kb} \text { Ram } & \begin{array}{ll}〔 450.00 \\ \text { MS } 11-L 0 & \text { Unibus } 256 \mathrm{~kb} \text { Ram } \\ \text { E850.00 }\end{array}\end{array}$ MS11-LD Unibus 256 kb Ram MSC4804 Obus (Equiv MSVI POP11/05 Cpu Ram, i/o etc RT11 ver. 3 B documentation RKO5-J 25 Mb disk drives KLBJA PDP 8 async iv MIBE PDP 8 Bootstrap option VT50 VDU and Keyboard VT52 VDU with RS232 interlace | E175.00 |
| :---: |
| E250.00 |

1000° 's of EX STOCK spares tor DEC PDP8, PDP8A PDP11 systems \&
peripherals. Call for details. All types of
Compuler equilpment and spares wanted

READ/WRITE

To Boldly Go...

Dear Sir,
The article about Electronics for Peace in the April Issue of ETI shows clearly how Electronics Technicians can get themselves a bad name for political naivete. The organisers of this movement should know that including the word "Peace" in the title of any organisation means that it will be regarded as a front for Communist activity. If one then goes on to publish secret information on weapons systems, suspicions are heightened whatever the organisers may say. You may rest assured that anyone foolish enough to join such a movement will be certain to have their phone tapped! In due course they may also be invited to a Worker's Congress in Prague, the bourne whence no worthwhile technician ever returns.

This is not to say that a truly independent political organisation for technicians is not needed, indeed it is vitally necessary. But it should be organised under the banner of FREEDOM, something which is anaethema(sic) alike to Communist and Capitalist systems. (Electronics for Freedom -EfF)?

In every society of the world the Technician suffers exploitation by immature and often incompetent megalomaniacs. Technicians as a class are rather meek, but if we are to inherit the earth we have to find a better way to make the concensus (sic) of our views publicly known. We have to assist in creating a just society, make communication between peoples easier and use our skills to expand the capabilities of the mind. Electronics is vital in all this, so the objectives of the organisation would be as follows: 1. Making possible secret mass referenda on all important political issues by electronic means using N, radio or telephone. 2. Development of Computor Systems, Languages and Programmes to formulate just and unambiguous legislation, regulations and codes of practice.
3. Development of personalised communication systems with miniaturised privacy devices (scramblers), and computerised translation facilities.
4. Development of bioelectronic devices and biofeedback methods for mind control and expansion. Also to enable the assessment and evaluation of personality types.

The last objective is the final frontier of electronics - understanding the nature of the mind and discovering who are fit persons to be trusted with power. These activities are far more worthwhile than merely ferreting out details of obsolescent wepons systems for the benefit of the RIS.

Anyone who feels they would like to form an organisation on these lines can get in touch with me at the University of Surrey where I work.

> Yours faithfully,
> Keith Wakeham
> Church Crookham
> Hampshire

Nice try, Mr. Wakeham, but you can't fool us. 'The final frontier', all that stuff about 'Computor Systems', 'personalised communication systems' and expanding 'the capabilities of the mind'. Beam us up Scottie, if you're not Mr. Spock. By the way, we gather Captain Kirk's been looking for you.

Bass From The Wood

Dear Sir,
I have scanned The Final Link' by Vivian Capel (ETI April 1985) with interest. It was surprising for me that no mention was made of studio and concert hall acoustics. There were two programmes recently on Radio 3, concerning concert hall 'design' and the reactions of performers and listeners. Even in these programmes, I felt that the experts have somehow got several matters wrong.

It is well known that the Festival Hall and the Barbican are unsatis-factory-due, it is said, to the airconditioning ducts under the seats absorbing most of the deep bass.

No mention was made of Bayreuth or Covent Garden, and it was implied that hard walls (brick or stone) were good. My experience is that the bass from Bayreuth is very good, the walls being, I believe, of wood.

A visit to Covent Garden immediately exposes the good bass, but on my equipment the bass from there is rather weak. I wonder if this is because suspended microphones tend to 'blow away' from the deep bass?

A recent broadcast from a cathedral in Wales sounded very bad indeed (stone wall etc). It was a Mozart string orchestra, and even a moderate volume setting was too high. The only solution was to turn the volume very low.

If the bass of the hall is good, volume can be turned surprisingly high, with every pleasure, to my ears. Some Wagner records come through very well.
A particularly irritating habit of the $B B C$ is to broadcast a concert at reasonable volume level; then on return to the studio the voice is aften too loud, even painful, so the volume has to be turned down. This could be due to a combination of poor studio acoustics, poor monitor speakers and insensitive control engineers.

I also find that only tape at $71 / 2$ ips gives really good HiFi. Discs are not bad with the Goldring Epic cartridge (only $£ 15$) but here again volume has to be kept fairly low, to avoid listener fatigue and discomfort. Here again I suggest it is the deep bass which goes wonky. Of course, commercial discs do not give much in the way of really deep bass. I find that some popular discs have quite good bass almost regardless of the size and make of the speakers. I'd guess these attractive results are given by microphones on rigid heavy stands set close to the bass instruments.

I use a Quad 303 amplifier and my speakers are approximately 10 cubic feet each made of brick and stone. Upper register is via Treleax and Olidax horns (sic), attenuated
 MC 14011 ABCBS MC 14043 BAL MC 14079 UBCP MC 14518 BCL MC 14077 BECBS MC 14077 BBC

MD 7002A
MH 0009CG
MJ 2955
MJE 711
N8T38NS2B
N8T32-005NS2E
OP 20 GJ
NE555N
SN 7432N3
SN 7450J
SN 74156NP3
SN 74LS32NP3
SN 74LS112ANTA
SN 74LS86N
SN 74LS 123N
SN 74LS173 AN
SN 74LS191N
SN 74LS273N3
SN 74S240N
T23000
UA 741 TC
UA 759 UIC
UAA 170
ULN 2003AN
UPD 8251 AC
96LO2PC

SE
JAN 1N 4944
JAN 2N 2905
AF 125
BC 182L
8CY 70
BFY 50
BSX 20
BYV 27-100
87×88 C5V1
B2X 88 C3V3
$82 X 88$ C3V9
BZX 88 C4V7
$82 \times 88 \mathrm{C} 6 \mathrm{~V} 2$
$82 \times 88 \mathrm{C9V1}$
BZY 88 C 11
B7Y 88 C12
8ZX 61 C15
B2X 79 C5V6
87×79 C6V8
BZX 79 C13
DTS 425
MCR 106-1
MES 3640
OA 91
PN 3640
RGP 10M
21X 341
IKAB40
LED DL 340 M
LED TLL 31
4N35
SOCKETS
DIP sockets
Contact Strips
P.C.B. Socket Strips
P.C.B. Pin Strips

Power Transistor Sockets

Plug-in Bases
LED Holders
Transistor Mounting Pads Prices on application

STATIC RAMS

M58725P 16k static'ram 200 ons
5MSM2128RS-15 16k static ram 150 ns TMM2016P 16k static ram 150ns.
TMM2016P-1 16k static ram 100 n .
TC5516AP 16k cmos ram 250ns 2716 TC5517AP 16 k cmos ram 250 nS 2716. C5518.CL-20 16kcmosram 250 S 2716. uPD446C-1 16k cmos ram 250 ns 2716. UPD446C 16k cmos ram 25 cins 2716. uPD44.-2 16 cmos ram 20 ns 2716. HM6116P-2 16k cmos ram 120ns 2716. HM6116P-3 16k cmos ram 120ns 2716. HM6116LP-2 18k cmos ram 120 S 276. HM61161-2 16 k cmos ram 120 AS ceramic. TC5514AP- 2114 cmos ram 300 nS TC5501P 1 k cmos ram 5 V 450 ns 2114LC $1 \mathrm{kx4}$ static Pam 45 con . 2114LC-1 1k x 4 slatic ram 300 ns 2114LC-2 1kx4 static ram 200 ns HM6147P $4 \mathrm{k} x 1$ static ram 70 ns . 2147 Cl 4kx 1 static ram 70 . UPO2167-316kx 1 stalic ram $55 n$. HM6167P $16 k \times 1$ static ram 70 ns. HM6167LP-8 $16 \mathrm{k} \times 1$ stalic rem 100 ns. TC556PL- 16 r x a cmos static ram. HM6264LP-128kx 8 cmos stalic ram HM6264P-12 $\mathrm{B} \times 8$ Cmos stanc ram HM6264P $128 \mathrm{k} \times 8 \mathrm{cmos}$ static ram Prices on application

DYNAMIC RAMS
HM50256G-15 256 k dynamic ram 5 v
HM50256G-20 256k dynamict ram 5 V
200n
MH50257G-2/15 256k dynarric ram 5 v . 4614-20 64k dynamic ram 200 ns . 4164-15 64k dynamic ram 15mns.
$4164-12$ 64k dynamic ram 120 nS . M5K4164P-15 64k dram pin 1 retresh MS 13732LR 15 32k dyan 150ns
$4116 \mathrm{P}-3$ 16k dynamic ram 200 n 4116P-2 16k dynamic ram 150 nS. ET4116N-3 16k dynamic ram 200 ns HM4816AP-3 16k dram single rail 5 V

Prices on application

EPROMS

27256-30 256k 5v eprom 300 rs. 27256-25 256k $5 v$ eprom 250 ms 27128-30 128k 5 v eprom 300 rs . 27128-25 128k $5 v$ eprom $250 n s$ 2764-45 64 k 5 v eprom 450 ns $2764-4564 \mathrm{k} 5 \mathrm{v}$ eprom 450 ns $2764-3064 \mathrm{kv}$ eprom 350 s. 2764-25 64k 5 v eprom 200 ns 253232 k 5 v eprom 450 ns . 2532 32k 5v eprom 450 n . uPD27232C 32k eprom 450 S
2732-30 32k 5 v eprom 300 ns. 1 prog only.
2732-30 32k $5 v$ eprom $300 n s$ 2732-25 32k 5v eprom 250 HM48016P 16 k 5 v eprom 350 27C64-30 64k cmos eprom 30Mins $27 \mathrm{C} 64-25$ 64k cmos eprom 250 nS . Pilces on application

MICROPROCESSORS

HO6800 Microprocessor
H06802 Microprocessor
HD6809 Microprocessor.
HD6301 Microprocessor cmos 5801 HD6303 Micrprocessor cmos 6801/3 HD68000L-8Microprocessor $16-\mathrm{bit} 8 \mathrm{MHz}$ 80 C 35 Microprocessor cmos 8035. 80C39 Microprocessor cmos 8039 . MSM80C85ARS Micrprocessor cmos

TMP8035 Microprocessor 8-bit. M5L8039P-6/8 Microprocessor 8-bh. 8085A Mlicroprocessor 8-bh.
uPD8086D Mlcrprocessor 8-bit PDB088 Microprocessor 16-bit PD874 Micrprocessor + eprom P801 1 Microprocer + eprom 80A CPU Micrprocessor Sharp 4 MHz Prices on application

PERIPHERALS

780A-CTC Z80A peripheral
80A-PIO Z80A periphera
80A-SIO Z80A peripheral
Z80A-DMA $280 A$ peripherai
155 Ram $+1 / 0$
PD8155H Ram + $1 / 0$
PMB1C55RS Ram + $1 / 0 \mathrm{cmos}$ UPD8156 Ram + i/o
PD8212 I/O port.
PB8214 Priority Interupt Controller PB8216 Bus Driver.
uPB8228 System Control/Bus Driver. uPD8237A-5 DMA Controlle
uPD8243C $1 / O$ expander.
UPD82C43C I/O expander cmos.
8251A USART
MSM82C512ARS USART cmos 8253-5 Programmable Interval Timer. MSM82C53-5RS Programmable cmos interface. Controler.
uPD8259AC Programmable Interupt
Cont.
uPD8259C-5 Programmable Interup
Cont.
8279-5 Keyboard/Display Interface uPD8282 Octal Latch
PD82844 Clock Generator Driver. uPD8284A Clock Generatorivr. PD8286 8 -bit bus transcelver p8287 8-bubus ranse PD8289 Bus Arbler
uPD8289 Bus Aribler
HD46503 Floppy Disk Co.
H046503 Floppy Disk Controller
HD46505SP 6845 equivalent. F6821P Farichild MC6821 equivalent. HD68A40 Programmer TImer Module. HD4650 MC6850 equivalent. HD46850 ACIA.
H046852 SSDA
HD146818P Hitachi clock peripheral, Prices on apolication

MISCELLANEOUS IC'S upD765AC Floppy Disk Controlle Me8877 Fuitsu FDC FD1793. CM5B32RS OKIReal Time MSM5832RS OK! Real Time Clock micro. PD7001 8-bH cmos a-d convertor. PPD7201 Peripheral Controller. uPD7225 LCD Driver.
uPD3301D-2 Programmable CR
PO7210 GPIB Intertace Controlier PD72200 Graphics Controler. Prices on application

EGL RAMS

HM10414 256×1 ecl ram 10 ns
HM10422 $256 \times 4 \mathrm{ecl}$ ram 10 ns .
MBM10422 256×4 ecl ram 10 ns . MB7072EC 256×4 ecl ram 12nS Prices on application

MISCELLANEOUS

SWITCH AM2-A3-10-3
HOLDER FE1-031-143
TERMINAL GT 1265
KNOB LK25 (0-10/270 DEG) SWITCH MBS 4991 COIL MS 14049-5
SWITCH S5022CD03-0 ARRESTER TG1742-23 BALANCER TFM-2
PAD TO 18-013D
RELAY 20601-L28-231

PRICE
to suit $12^{\prime \prime}$ woofers set in the enclosures.

There are some listening room effects - it is a longish room with plastic/concrete floor.

I hope these remarks could lead to further work along the lines of Mr. Capel's aticle.

Yours sincerely,
John Elliott MSc
Farnborough
Hants.
Personally, we listen to most of our music in the bath and we sometimes wonder if the lack of fidelity isn't due to the water in our ears.

Film Facts

Dear Sir,

I read with interest Mr. Armstrong's feature on 'telecine' and whilst agreeing with almost all within there are several points of accuracy that I would contest.

1. The aspect ratio between the cinema and television is not necessarily different. The 1.33 to 1 (4 to 3) aspect ratio used by most IV stations throughout the world is in fact Motion Picture Academy Ratio. Almost all films pre-1950, many films of the 50's and 60's and all film series made for television are to this ratio. In the early years of television round display tubes were used and 5:4 would have been displayed with better efficiency; despite this 4:3 for television was chosen so as to be compatible with the cinema.
2. The frame of Cinemascope film is not the same size as an ordinary 35 mm film. A standard Academy frame is $.625^{\prime \prime}$ high, there are quite broad 'rack lines' between frames. The frame height of Cinemascope is .715" and the rack lines are very narrow (35 thou.)
3. A true Cinemascope, that is 20th Century Fox, film will have 4 track magnetic sound; to accommodate this and not encroach on the picture area the sprocket holes on the film are smaller, the pitch is the same, however.
4. In the sequence of operations for a projection system at step
two it is said that a claw engaging with the holes in the film moves the frame into position. Although 35 mm cameras may use claws, 35 mm projectors do not. The usual practise is to use an intermittent sprocket driven by a Maltese Cross mechanism.
5. Although it is common practice to refer to all anamorphic formats as Cinemascope this is rather akin to calling all vacuum cleaners Hoovers. Cinemascope was in fact a trade name of an anamorphic system used by 20th Century Fox. This system has now not been used for some years; most anamorphic films now are shot to the Panavision standard on their equipment.

Yours faithfully,
Nick Lyons
Normanton
West Yorkshire

Help-line

Dear Sir,

I have been a contented and successful project builder, reader of your magazine for quite a while now. With such outstanding comprehensive coverage and useful up to date information, not to mention those marvellous projects, that unanimously puts your magazine aside from the rest.

You must now be wondering why I am writing to you. It is because I am in need of some information. Being an electronic enthusiast for quite some years now, I was happily employed and able to carry out projects, now due to unexpected redundancy, I am now turning those projects into my profession.

I am now in the proces of setting up a design and production workshop, specialising in the designing and manufacturing of:Disco, Group, P A. Hifi and Studio Equipment. As these units will have a robust rugged but classic lookl Further to this the units will have high specifications, useful tailor-made units to suit.

With such a marvellous ornate new venture, I can not possibly let down the appearence of my units. By using the readily available commercial standard size and shapes slider potentiometers, plus the unavailability of stepped
rotary controls (pots), not to mention the control knobs. If you could be so kind as to enlighten me as to who or where I could obtain the following:

1. Slider potentiometers, with travel less than 40 mm both single and stereo.
2. Stepped rotary potentiometers.
3. Stepped slider potentiometers.
4. A manufcturer who would make any of the above to my specifications and finally control knobs not available to retail outlets.
Your help will be greatly appreciated from a happy and grateful reader.

> Yours faithfully,
> R. Leslie
> Wolverhampton

From one 'electronic enthusiast' to another - whirr, click, pyangg! No, but seriously, we've printed
Mr. Leslie's letter because we can't really help him, although his predicament must be shared by many. ETI would like to see itself helping those in need of technical information of the sort Mr. Leslie seeks - hobbyists and, especially, people seeking to make the best of enforced redundancy with the help of their hobby. Since we are already overstretched producing the magazine and answering specific queries about the projects we have published, there is room for a 'reader-to-reader' enquiry service, through which ETI readers could help each other.
If anyone can offer Mr. Leslie some assistance we would be pleased to forward any details. If anyone seeks help from other readers, not necessarily on matters dealing with ETI projects or features, we would be happy to publish their request in what we hope will become a special 'help line' section of the magazine.
The one thing we'd ask is that you keep your letters short, preferably sticking to the meat of the query. We will, in any case, edit them if necessary.
Please send letters for this page to: Read/Write, c/o the Editor, ETI, ASP Itd, 1 Golden Square, London W1R 3AB. Send Help Line queries to Help Line, c/o the Editor, ETI at the same address. Please note that any letter we receive is liable to be published unless clearly marked 'Not for publication'. We reserve the right to edit letters for space reasons.

DIGIVISION INSIDE OUT

A digital Dallas? Computerized Coronation Street? Vivian Capel takes a look at the future of television and finds it's much the same.

During the early days of post-war television when I worked with a television service company, engineers would often append the comment 'digital interference' to their job sheets. No, they weren't blaming interference from a nearby computer, they were few and far between in those days, and most, in any case, were analogue. Otherwise expressed, they were reporting 'finger trouble', faults brought on by the television viewer fiddling with the array of presets that adorned the rear panels and sides of the TV receivers of the day.

Digital techniques were then known only to a small ccierie - in the computer industry, mainly. Such things could never be applied to audio or television. Why, how could they accomodate the vast number of valves that would be needed, to say nothing of powering them?

The coming of semiconductors changed all that, but there seemed little to be gained from abandoning the simplicity of analogue signal processing. So, domestic sound and vision reproducers have remained firmly analogue - until recently. With its narrower bandwidth, audio was the obvious candidate for digitization. The compact disc has certainly shown what advantages can be obtained by digital signal storing and processing, with its low distortion and absence of noise.

But what about television? Professional studio equipment has employed digital techniques for many years. Independent television has had a digital standards converter in use since 1972, and the numerous weird effects increasingly seen on our TV screens demonstrate the growing use of digital video effects generators in broadcast studios.

Since 1977, ITT Semiconductors has been developing methods of applying digital techniques to domestic TV receivers. Seven years later, and at a cost of some £20 million, what is claimed to be the world's first digital domestic TV receiver went on sale - the Digivision D1000.

Reception

How does it work and what does it do? The principal source of signal degradation in any system is the transmission process - whether that be broadcasting or some form of analogue recording. The compact audio disc overdomes most signal degradation by recording
and replaying digital signals but this advantage is not obtainable with digital TV at present, because the television signal itself is not digital. The set can only do its best with whatever is presented to it in the way of a normal analogue transmission via the aerial.

Because of this, the tuner and the IF stages of the Digivision receiver are conventional, as is the vision demodulator. From that point on the digital circuits take over.

The vision signal is converted to a 7-bit digital data stream. By employing a system of averaging on alternate lines, 8 -bit resolution is achieved giving 255 sampling levels. As with a conventional TV, the colour or chroma signal is processed separately from this luminance or black-and-white portion.

The eye is less sensitive to colour definition than light and shade detail, which is why the chroma signal has a much smaller bandwidth than the luminance. Furthermore, the eye is less aware of small hue differences than shade gradations. Hence, the chroma signal is represented here by 63 sampling levels, obtained by a 6-bit data stream.

Ironically, it is the sound signal that gets the best treatment digitally; a 14-bit sampling system gives 16,383 levels. This is of course as it should be, because the ear is very sensitive to the distortion produced by an inadequate number of sampling levels, whereas the eye is less critical of gradation differences.

Processing

After conversion to digital signals the luminance information is filtered, the contrast is set, and black-level clamping and white balancing are carried out. A single chip is used for the video processing, and this includes the colour decoding. For PAL decoding a delay line is used in the normal analogue receiver. The function of this is to delay the signal for 64 us , or one complete line, in order to obtain the averaging on alternate lines to cancel phase aberrations. However, in place of the conventional glass delay line and ultrasonic transducers at each end, the delay is obtained by blocks of RAM with capability for storing the required one line. This occupies far less space than a glass delay line - only three square millimetres of chip area. The store is accomodated in the video processor chip along with the filters and other decoding functions.

The chip permits the decoding of NTSC colour signals as transmitted in America, and in this mode the delay circuit can be used as a comb filter for separation of the chrominance and luminance signals.

After processing and decoding, the digital signal is converted back to analogue. This task is performed on the same chip that carried out the A / D conversion. From there the three colour outputs are taken to conventional output stages to drive the display tube.

Deflection signals are generated digitally in a further chip in which division and count-down circuits provide both line and field scanning pulses which drive their respective output stages. These are synchronised from the digital video input.

A master clock generator provides the pulses for all the conversion and processing functions, and a microcomputer chip controls the whole operation. It scans the control keyboard which can have up to 32 keys covering brilliance, colour, and volume, among other things. Included is a phase-locked loop which provides tuning for VHF and UHF, plus a memory to store data for receiving up to 30 channels. The chip also incorporates a memory to store factory-programmed data for tube drive and timebase control. The clock generator runs at 17.73 MHz , four times the colour subcarrier frequency.

In the sound circuit, one chip converts to digital and back again to analogue to feed the sound output stages and speakers, just as with the video signal. It seems as

Fig. 1 Block diagram of the Digivision Circuit.
though the designers missed a trick here. If they had employed PWM (pulse width modulation) to drive the speakers there would have been no need of an analogue output stage which generates considerable distortion. In between the A / D and D / A conversions, another chip takes care of the sound signal processing. It includes the ability to deal with two-carrier TV stereo signals.

Sound reproduction is usually the lowest priority with most TV sets and the results are pretty 'lo-fi'. Here though, some attention has been given to this side of matters. The twin output stages deliver 15 watts each to two, three-driver speakers having bass-reflex loading.

Servicing

One thing that Digivision service engineers will not be able to report is 'digital interference' - in spite of it being a digital device. There are no viewer-accessible presets, only the normal controls. One internal preset sets the HT voltage, which is common practice with conventional TV's. All other adjustments such as picture height and width, tube-drive and timebases are made by re-programming the control computer. This can only be done by using a service computer that plugs into a socket provided for the purpose. ITT has dubbed this device an 'electronic screwdriver'. Maybe, but a conventional screwdriver costs a lot less! Dealers purchasing five Digivisions get one service computer

Fig. 2 Simplified function chart of the video processor IC.
free from the makers. The snag is that owners who are qualified and prefer to do their own servicing, especially after the guarantee has expired, will be without the means to do so.

Apart from the clock generator and tuner interface IC's there are six VLSI chips. If you didn't know, that stands for Very Large Scale Integration, and just how large can be gathered from the fact that one chip can contain up to 200,000 transistors.

Possible Enhancement

That brings us to the obvious question, is it all worth it? Are there dramatic improvements comparable to those obtained with digital audio recording? Given a good signal from the aerial and good programme material, a conventional a nalogue TV which is properly adjusted is capable of excellent results. What limitations there are arise from the transmission system. These are: horizontal definition, line structure - which is easily noticeable on very large screens - and mutual interference between colour and luminance signals due to the way the colour sub-carrier is interleaved into the video spectrum to save bandwidth.

The main processor board of the Digivision.
These, and degradation due to transmission and reception conditions, will be suffered by the digital set just as much as the analogue. Real improvement could only be expected when the transmissions themselves become digital - which is likely to be a long way ahead. What then about reliability?

The makers claim that peak performance is held longer than with conventional sets because the onboard computer monitors performance continually and makes the necessary adjustments to maintain it. However, to put things in perspective, modern TV sets need far less adjustment than did their predecessors. Most faults occur in the display tube and deflection circuits which are conventional with the Digivision. Most sets these days contain a number of chips, and all can and do break down. Statistically, the more semi-conductor elements a chip has, the greater the chance of failure. On this basis the VLSI IC's offer less prospect of longevity than the far simpler units employed in analogue receivers. All the same, there are many complex chips in daily use that have a good record of reliability and only time will tell with the Digivision.

In the absence of any major benefits to the viewer, it seems that digital television at present is an exploratory step.

The number of scanning lines could be increased. Plans are already afoot to double the line number by using 2.2 kbyte of RAM for line storage to enable each line to be traced twice. This would not increase the actual vertical definition, but the doubling of the lines would make them virtually indistinguishable, even on very large screens.

Another possibility is to use a field store that will hold a complete field of picture. By use of this the TV could be given a still-frame capability just like a video recorder. The only snag is that you could not continue viewing from where you left off, or inch to the next frame, since material transmitted while you were viewing the still frame would have passed. But some studio trick effects would be possible.

Two pictures could be displayed at the same time. With TV programmes as boring as they are, this could be a boon, as viewers could then transfer their attention to whichever seemed the most interesting! Zoom facilities could also be incorporated enabling a portion of the picture to be enlarged at will. A nother possibility is the enhancement of the received signal by identifying and eliminating ghosts caused by multipath reception. With the problems caused in some areas by high rise buildings, this would give a positive advantage over analogue sets.

Other Makers

ITT have proved to be the first in the field but others are following. The Finnish firm Salora have produced a digital receiver which is now on sale and uses the same chips as Digivision. They are the first with the smaller 20 and 22 -inch screen sizes, the ITT being 26 -inch. Salora call their offering the Digicomputer, which could be a little misleading. Optional extras include a satellite tuner and PAL/SECAM/NTSC converter.

We may be seeing many other makers producing digital TV's, because the ITT subsidiary Intermetall which makes the chips at Freidberg - are supplying packages of the complete line-up of chips to such firms as Matsushita, Toshiba, Sharp and Zenith. Some 21 companies have signed up to buy the package from Intermetall. Knowing the cut-throat competition exist-

The sound and picture goes in here and it comes out...
ing among these giants, it is almost certain that their research teams are busily finding ways to produce their own, with sufficient differences and perhaps improvements to circumvent the patent laws.

A further chip is being added to the package from Freidberg and that is one that will process any of the existing European teletext systems (except the French Antiope). To assemble all that on one chip is quite an achievement, especially as it includes automatic switching between the systems.

There are also plans to produce a digital VHS video recorder. This could be a major step forward, as the reproduction from domestic video recorders leaves much room for improvement. It all depends on whether they can digitize the main noise and distortion producing areas. Principally, these are in the recording process itself and with present technology digital video recording using the VHS format seems very unlikely.

As for those future gimmicks, the frame store and such, these are well in the future and present sets will not be adaptable. It requires about 4 megabits for a high quality frame store, and at present 1 megabit seems the maximum for a single chip.

It appears that digital TV - along with about practically everything else - is the set prospect for the future. (I wonder if we will ever get crisp, clear, digital hi-fi telephone conversations with no clicks, crackles and noise?). Present purchasers of digital sets will have the satisfaction of being in at the start of a new technology, but at present there are few other compensations for the extra cost.

ETI

? 5
 CABE SB B O S E

Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploma Course, training you ready for a new. higher paid, more exciting career. Laarn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wice ranga of opportunities awaiting you. Whatever your interest or skill. there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today-st no cost or
obligation at all.

CCE	
COMPUTER PROGRAMMING	RADIO AMATEUR'S LICENCE
ELECTRONICS	$\begin{aligned} & \text { INTERIOR } \\ & \text { DESIGN } \end{aligned}$
$\begin{aligned} & \text { COMMERCIAL } \\ & \text { ART } \end{aligned}$	WRITING FOR PROFIT
TV, RADIO \& AUDIO SERVICING	CAR MECHANICS
BOOK-KEEPING \& ACCOUNTANCY	
Prease send FREE DETAILS for the course ticked above.	
Address	

THE REAL COMPONENTS

We may be biased, but we think the majority of you will get quite carried away by John Linsley Hood's article on transistors.

looked last month at the way in which transistors were developed and how they had evolved into their present form. I now propose to look at some of the various contemporary types.

As a working electronics engineer I tend to look unsympathetically at the propaganda of the 'back to valves' brigade. The enormous scope for circuit design now available to the electronics fraternity is due entirely to the wealth of devices at our disposal. Of course, one has to know what devices are available and how to use them properly so that they give of their best, and it is also necessary to know their individual strengths and weaknesses so that one always uses the most appropriate device for the job in hand. There are a lot of them to choose from, so let us take a look.

Small Signal Junction
 Transistors

These exist as small metal cans or blobs of moulded plastic with three (or sometimes four) wires, as shown in Fig. 1. There isn't much difference nowadays between the longevity and reliability of plastic and metal can encapsulations, especially since the can is often just a receptacle into which epoxy resin has been poured to hold the silicon chip in place. Metal can types, especially those which are hermetically sealed, tend to be a good bit dearer than plastic moulded types.

Fig. 1 Common transistor connection arrangements.

The chip inside the encapsulation will normally be of either the planar or the epitaxial planar type, both of which are shown in Fig. 2. Epitaxial (or epitaxial base) types have an additional thin layer of a different type of silicon grown on the chip by vapour phase techniques before the other diffusions have been made. They are cheaper and generally work better than other types and are therefore the most commonly used.

Typical power dissipations for small signal plastic transistors range from about 250 to 650 milliwatts. Metal can ones will typically handle from 300-1000 milliwatts dissipation. It is good practice to keep dissipations down to about half of the rated maximum.

Small signal NPN and PNP transistors can generally be regarded as'maids of all work' in the small circuit field. They are easy to use, inexpensive, reasonably difficult to damage, and will work well when used within their limits. Certain types are particularly suited for use in very lownoise, low impedance applications. Because they can be used in complementary symmetry arrangements, some very crafty circuit layouts are possible. The circuit symbols for these devices are shown in Fig. 3a.

Darlington Transistors

These consist of a pair of small signal transistors coupled together in one case. They are available in NPN and PNP types and the circuit symbol for the NPN type is shown in Fig. 3b, with my own preferred symbol shown in Fig. 3c. They are similar to other junction transistors except that they have current gains of between 20000 and 50000 and relatively high input impedance. Typical input impedances would be from 100 k to 250 k for output currents of between 2 and 10 mA , which is the range

Fig. 2 The construction of a typical small-signal, plasticencapsulated transistor.

Fig. 3 Transistor circuit symbols.
over which they work best. The Motorola MPSA-12/14 (NPN) and the MPSA-62/64 (PNP) are good examples. Inevitably they are a bit dearer than standard single transistors.

Junction Field Effect Devices

These were the original high impedance transistor types and are represented in circuit diagrams by the symbols shown in Fig. 3d. Their physical construction is shown in Fig. 4.

They differ from junction bipolar transistors in that their input terminal, the gate, is normally nonconducting. In fact, it is a reverse biased junction diode, and the only current which will flow is the normal reverse leakage current of such a diode. Typical input impedances for good quality devices of this type range from ten thousand to a million megohms.

Contrary to popular legend, these devices will not
normally be damaged by static charges any more than any other small signal diode would be, so they don't need especial care in use. They come into their own where very high input impedances are needed, and where the extra cost of using a junction FET is justified they are about five times the cost of an equivalent bipolar device. The better examples are alsoless noisy in high impedance circuitry than bipolar devices but one needs to choose carefully because some of the cheap and cheerful junction FETs are not very good in this respect.

(NOTE UNSYMMETRICAL SHAPE OF DEPLETION REGION DUE TO GREATER DRAIN-GATE POTENTIAL)

Fig. 4 Cross-sectional view of an N-channel FET, showing the depletion regions which result when the device is just biased to cut-off.

Junction FETs also make good RF amplifier devices at frequencies up to about 300 MHz , and can offer very low noise in this application. In circuitry, they will tend to have a lower stage gain than bipolar devices, unless a very high impedance output load is employed which usually means an active load of some kind. They have a very flat drain current/drain voltage characteristic which makes them good at rejecting HTline ripple effects, and also allows them to be used as nearly ideal constant current sources.

The chip construction of a junction FET is shown in Fig. 5. The chip acts as a thin conducting layer of P-type or N-type silicon (germanium is almost never used, though it is still used sometimes in bipolar devices), into whicha depletion layer will expand, narrowing and finally cutting off the undepleted layer through which current may flow as the reverse bias potential applied to the gate is increased. Junction FETs are usually, though not always, symmetrical, so source and drain may be interchanged.

Small Signal
 MOSFETs

These devices, sometimes also known as insulated gate field effect transistors or IGFETs (MOSFET stands for Metal Oxide Silicon FET), have the general construc-

Fig. 5 Cross-sectional view of an N -channel small signal junction FET.

Fig. 6 Cross-sectional views showing the construction and operation of a MOSFET.
tion shown, for the wafer, in Fig. 6a. They work on the principle that if a charge (i.e., a voltage) is applied to an insulating layer, a charge of the opposite type will be attracted to the other face, as shown in Fig. 6b.

If that other face happens to lie in the body of a slice of high impedance (low impurity, or intrinsic) silicon, then current will flow in that charge layer. If the insulating layer is very thin, only a few volts need be applied to the gate in order to make current flow through the charge layer. The layer, which can be less than a micron thick, is usually made by oxidising the outer face of the silicon

Fig. 7 Cross-sectional view of a dual-gate MOSFET.
slice, so that a metal layer can be deposited on it without making contact. It is normally capable of withstanding an applied voltage of some 20 or 30 volts only, and can be damaged by static charges or careless handling.

In order to nake these devices a little less fragile in normal day to day use, it is customary to incorporate on the chip a couple of back-to-back zener diodes across the gate-source connections. This reduces the input impedance to perhaps a million megohms. It is possible to get unprotected MOSFETs which have a higher input impedance, but these need careful handling.

The most commoni variety of small signal MOSFET is the dual gate type shown in Fig. 7. This was specifically designed as a device for RF amplification and mixing in radio and TV tuners, and is usable up to a few hundred megahertz. The second gate can be used to screen the input signal gate from the out put signal on the drain, permitting stable RF amplification. In this application, it acts in a similar way to the screened-grid or RF pentode type of valve. I have shown the circuit symbol for these transistors in Fig. 3c.

All of these MOSFETs require a forward voltage applied to the gate electrode to cause them to conduct.

								COMMENTS
SMALL SIGNAL JUNCTION TRANSISTORS	0.5-20k	40-200	200k +	300 MHz	1dB	150V	500 mA	NOT VERY LINEAR WITHOUT NFB
SMALL SIGNAL DARLINGTON TRANSISTORS	250k	$100-500$	200k	100 MHz	6dB	40V	1A	TEMPERATURE SENSITIVE
JUNCTION FETS	${ }_{10}{ }^{11} \mathrm{R}$	10-30	10M	400 MHz	2.5 dB	30 V	15mA	LINEAR
DUAL-GATE MOSFETS	$10^{12} R$	50-100	500k	500 MHz	2dB	20 V	20mA	CAN BE DAMAGED BY STATIC CHARGES
SMALL POWER MOSFETS	$10^{12} \mathrm{R}$	50-200	250k	500 MHz	6dB	100V	14	CAN BE DAMAGED BY STATIC CHARGES. VERY LINEAR
POWER TRANSISTORS (NPN)	10-200R	10.30	5k	40MHz	N/A	400 V	25A	CAN SUFFER FROM 'HOLE' STORAGE EFFECTS
POWER TRANSISTORS (PNP)	10-200R	10-30	5k	10MHz	N/A	100V	15A	 SUFFER FROM 'HOLE' STORAGE
POWER DARLINGTONS	20k	50 +	5k	4 MHz	N/A	120V	$15 A$	SLUGGISH AND SUFFER FROM 'HOLE' STORAGE
POWER MOSFETS	100M +	50 +	10k	500 MHz	POOR	750V	10 A	HIGH INPUT CAPACITANCE-PRONE TO OSCILLATE IF NOT PREVENTED
POWER FETS	10M +	10 +	5k	100 MHz	N/A	?	?	HIGH OPERATING CURRENT REQUIRED

Table 1 A comparison of the characteristics of different transistor types.

Fig. 8 Cross-sectional views of MOSFETs.
This will be positive in the case of an N -channel MOSFET (operating on a positive DC supply line) and negative in the case of the less common P-channel types. Small signal devices of this type will typically have a mutual conductance or Gm of a few milliamps per volt. This allows a simple calculation of stage gain from

$$
\text { Gain }=\mathrm{Gm} \times \mathrm{RL}
$$

where $R L$ is the effective load impedance.
Recently, and to my great delight, small signal versions of the T-MOS type of power MOSFET have been introduced. These have a slightly different type of chip construction to the normal small-signal MOSFET, and I have shown this in Fig. 8. Their big advantage is that they can withstand drain voltages of up to about 100 V , whereas the average dual-gate device or small signal junction FET can only cope with some 20-30V.

By comparison with bipolar transistors, MOSFETs are much more linear in their characteristics and do not suffer from operational problems such as thermal runaway and hole storage. The absence of this latter defect makes small signal TMOS devices considerably better than bipolar junction devices when used in the class A stages of audio amplifiers, as in the case of the Audio Design power amplifier shown in ETI last summer.

The circuit symbol used for the TMOS device is the same as that used for other MOSFETs except that they are only available in single gate versions.

I have shown the normaloperating characteristics of the various small signal transistors in Table 1, and a group of curves showing their input voltage/output current characteristics in Fig. 9.

Bipolar Junction
 Power Transistors

These are heavier duty versions of the small signal transistors we have already come across, and range in current handling capacity from an ampere or so for some of the small plastic encapsulated types with a metal cooling tag to 400 amperes in the case of some of the big industrial devices.

Permitted dissipations, with adequate heat-sinking,
range from one to many hundreds of watts, and maximum collector voltages can be up to 500-1000 volts in specialised types, with $60-150 \mathrm{~V}$ being more common in easily found devices such as the 2 N3055 or 2 N3442.

There isn't a big difference in price between the plastic encapsulated types and the hermetically sealed metal TO66 or TO3 versions, so, for DIY projects where one isn't buying a lot of power transistors, the metal can versions may be preferable. They are certainly easier to cool.

Power junction transistors are available in NPN and PNP types, just like small signal devices, but the PNP ones tend to be a bit slower in action and a bit less burstproof than the NPN ones. One should beware of assuming that because they are complementary in characteristics they can be treated as identical. A nice comment I once heard was that ' NPN and PNP power transistors are as similar as a man and a woman of the same height and weight'.

The transition frequency of a power transistor, that is, the frequency at which the current gain falls to unity, will usually lie within the range $4-20 \mathrm{MHz}$, which is considerably lower than the transition frequency of a typical small signal device which would probably be between 100 and 400 MHz . In addition to being more sluggish than small signal types, power transistors also have lower current gains. Whereas a small signal junction transistor has a typical current gain of 100-500, a power device might have a current gain of only 15-80, with the lower

Fig. 9 Graphs showing the input voltage/output current characteristics of different types of transistor.

FEATURE : Real Components

values usually being found at higher collector currents.

Since this can occasionally be a nuisance where high output currents are required (remember that the required drive current is the output current divided by the current gain), compound Darlington power transistors are available which have current gains in the range $1000-10,000$. These are very useful, especially since they are not a lot dearer than single power transistors. However, they do have snags, of which the chief are that their output current for a given forward voltage is very temperature dependent and that they they are, if anything, even more sluggish than ordinary power output devices.

Fig. 10 Sectional views of a 2 N 3055 power transistor chip.
The major problem with bipolar junction power transistors is that of secondary breakdown. This arises because the forward voltage of a conducting semiconductor junction - such as the base emitter junction in a transistor - drops as the temperature of the junction rises. So, in a power transistor, which has a typical chip cross-section as shown in Fig. 10, if the current flow through the transistor makes the chip get hot, it is likely that some parts of its area will get hotter than others. The base-emitter junction forward voltage in these regions will then drop, and more current will flow through this region. This will cause the collector current opposite these areas to increase, which will make the areas concerned still hotter . . . and so on, until the device goes phut.

The only way to avoid this is to make sure that such transistors are always operated well within the 'safe operating area' specified by the manufacturers. Ensuring that this condition is always met can be tricky in equipments designed to drive dynamic loads such as loudspeakers or motors. Nevertheless, it is practicable.

Power MOSFETs

Small signal dual-gate devices have a lateral current flow, that is, in a direction parallel to the surface of the wafer, and consequently have a fairly high channel resistance. In order to use the MOSFET principle in power devices, a means had to be found of lowering the conducting resistance. The chip construction employed is shown in Fig. 8.

In this arrangement, the current flows in a vertical direction (ie., at right angles to the surface of the wafer). This means that the channel length is defined not so
much by the accuracy of the wafer masking during successive diffusions as by the actual thickness of the diffused layer, which can be very narrow indeed and quite accurately controlled.

Power MOSFETs are very fast devices by comparison with the relatively sluggish bipolar power devices. They are also very much more linear, although they don't have such a high gain. Apart from the fact that they require a forward bias of $2-3 \vee$ to force them into conduction, they are similar in characteristics to output 'Beam-tetrode' valves, but, of course, much more compact and free from the need for a cathode heater supply.

Their main drawback is that they are inclined to see wires connected to their pins as small inductances, whereupon they will happily oscillate at a few hundred megahertz until they burn out either themselves or some other, weaker link. This can be avoided simply by the use of a suitable'gate stopper' resistor, in the range $250 \mathrm{R}-2 \mathrm{k} 2$. They also have an absolute limit on the voltage which can be applied to their gates in either a forward or a reverse direction. This usually requires both attention to the circuit design, and some form of zener diode protection.

Cost considerations apart, I think that they have overtaken bipolar junction transistors as power amplifier output devices provided that they are correctly employed. Moreover, they are quite immune to 'secondary breakdown', and whilst they do have other problems, there is nothing that cannot fairly easily be avoided.

Power MOSFETs are currently available in working voltages up to 500 V , and current ratings up to 50 amperes - although not both in the same package. Maximum power ratings are now up to the 150 watt mark, and rising.

Combination devices are beginning to appear, consisting of small power MOSFETs driving large power bipolar transistors, all on the same chip and in the same package. They combine the easy drive characteristics of power MOSFETs with the very high current capabilities of power transistors, mainly for uses like motor driving. Also appearing are power MOSFETs with built-in logic elements, to give muscle to low-power logic circuitry.

Power Junction FETs

These were introduced by Sony, in Japan, just before the general acceptance and widespread manufacture of power MOSFETs. They are, in effect, just bigger versions of the small signal devices described above, with higher voltage, current, and dissipation ratings. The few audio amplifiers built by Sony using these had a good reputation.

I am not sure whether the success of the 'vertical' power MOSFET will mean that power junction FETs (which behave in a manner very similar to that of valve triodes) have now become obsolete, or whether in the fullness of time they will be made by other manufacturers and become widely available.

I propose to look next month at the topic of transistor parameters, y, z and h, and the techniques of performance calculations using these. I will also look a bit more closely at the way in which transistors are employed, with particular reference to some of the hidden snags, since the quality of the designs which we make for ourselves will depend a lot on our ability to avoid unforseen problems and to choose the most appropriate device and the best way of using it. After all, it often costs no more to make up a good design than a less satisfactory one, and the same components may serve for both.

6802 EVALUATION BOARD

The 6802 is not a microprocessor we have paid a lot of attention to in the past. C.P. Atkins has come up with this straightforward design for those who would like to get to know it a little better.

This project was designed for people who wish to break into the world of microprocessors. Many such systems have been designed in the past but most are still too complicated for the hobbyist to understand. Other people buy expensive computer systems and find they still know very little about the micro and how it works, quite often because of a monitor program which controls every move.

The project described is very simple and of basic design yet forms a powerful base upon which to design complex systems. It was primarily designed to allow people to teach themselves microprocessor hardware design and machine-code, allowing the user not only to program the circuit but also to program the vectors. Hex displays are added so that the programmer can actually see the result. In time the user should find it unnecessary to keep designing new circuits and just reprogram the board for each requirement instead.

The draw back with this project is that every time you wish to change or modify the program you will have to reprogram an EPROM, unless you are lucky enough to have access to an EPROM emulator. Because most of the people likely to construct this project will own or have access to a computer, I have also designed an EPROM emulator which will run the board, and this will be described in a future article. Simply by loading an area of RAM with micro-code and then isolating the RAM from the computer, the 6802 board can be made to think it is addressing EPROM. In this way machine code can be
changed with care and can also be stored on tape or disk when a program is completed or modified. By building up in this way a powerful system can be put together quite cheaply.

The 6802 Microprocessor

The 6802 microprocessor was used because it has the familiar 6800 instruction set, but it also includes some additional features. The 6802 is an eight bit microprocessors which contains all the registers and accumulators of the present 6800 plus an internal clock oscillator and drives. It also has 128 bytes of RAM at hex address 0000 to 007 F . The first 32 bytes at hex address 0000 to 001 F may be retained in a low power mode by using Vcc standby, thus retaining memory on powerdown, but this feature is not incorporated on the evaluation board.

The processor has three sixteen bit registers and three eight bit registers. These are the Program Counter, Stack Pointer, Index Register, A and B accumulators and a condition code register or status register. The program counter is a two byte (16 bit) register that points to the current program address. The stack pointer is also a two byte register and contains the address of the next available location in an external push down, pop up stack. This stack is normally the part of the RAM which can be put anywhere in your memory map.

The index register is a very useful register brcause it is also two bytes wide and can be used as a general purpose register or, more importantly, for the indexed mode of memory addressing. Two eight bit accumulators are used to store
results from the arithmetic logic unit (ALU). The last register mentioned is the status register or condition code register which holds the condition flags of the ALU. Only the first six bits are used, the last two being held at one. The flags are Negative (N), zero (2), overflow (V), carry from bit 7 (C), and half carry from bit 3 (H). These bits of the condition code register are used to test conditions for the conditional branch instructions. Bit 4 is the interrupt mask bit (I).

Fig. 1 The registers provided on the 6802.

The control and timing signals for the 6802 are identical to those of the 6800 except that TSC, DBE, 01, 02 and two unused pins have been eliminated and some signal and timing lines have been added. These are RAM enable (RE), crystal connections Extal and Xtal, memory ready (MR), Vcc standby. and enable 02 output (E).

The internal oscillator is crystal controlled, but ouner clocks may be used if desired. The connections are for a series resonant crystal. A divide-by-four circuit is
included, so a 4 MHz crystal is used and the board effectively runs at 1 MHz .

The 6802 has a set of 72 different instructions which are exactly the same as those of the 6800. The instruction set is very elegant (unlike, for example, the instruction sets of the Intel 8080 and 3085 micros) and for this reason is ideal for learning with. The full instruction set is given in a book called "6800 microprocessor applications manual," which any constructor who is serious about learning micro-programming should purchase.

The 6802 uses the $\overline{\text { RESET }}$ signal for its start and restart procedures. A low on the RESET input causes it to go to address FFFE H and fetch the most significant byte of the restart address stored there. The 6802 then increments its program counter to FFFF H and fetches the least significant byte of the restart address stored there. While this signal is low all the registers are cleared and the interrupt mask bit is set. This is bit 4 in the condition code register.

The restart address is loaded into the program counter and fetches its next instruction from that address. Since the 6802 always goes to FFFE H and FFFF H to get the RESET vector address, the user must ensure that the starting address of the EPROM is stored there. This is 8000 H on the 6802 evaluation board (H means hex).

Interrupts

There are three different types of interrupts: non-maskable interrupt (NMI), interrupt request (IRQ) and a software interrupt. The non-maskable interrupt is, as the name suggests, not maskable. A low on this pin causes the processor to finish its current instruction and push the return address, index register, accumulators, and condition code register on the stack. The 6802 then goes to address FFFC H to get the most significant byte. After that it goes to FFFD H to get the least significant byte. These two bytes are then loaded into the program counter and the interrupt subroutine is started somewhere in memory.

The interrupt request works a little differently because it is maskable. A low on the IRQ pin will have no effect unless the interrupt mask has been cleared. If

The board contains just seven chips. These are one 6802 microprocessor, one 2716 EPROM, one 7400, two 6821 PIA's (peripheral interface adaptors) and two TIL 311 hex displays. The microprocessor is connected up in a minimum configuration, which is to say that there are no fancy extras.

The data bus is 8 bits wide and is connected to both PIA's and the EPROM. The address bus is 16 bits wide. A0 to A10 are fed into the EPROM giving a memory area of 2 K . A15 is taken off the bus, inverted through a two input NAND gate, and used to enable the EPROM via pins 18 and 20 . The 2 K memory starts at hex address 8000 H . This figure is arrived at in the manner shown in Fig. 3.
signals. These have all been linked together and connected to the $\overline{\operatorname{TRQ}}$ and NMI signal on the micro, just to keep things simple. The remaining 20 pins on each chip, namely PAO-PA7, PBO-PB7, and the four control lines CA1, CA2, CB1 and CB2, are all connections to the outside world. It is from here that you will see the results of the program you have written.

To help you to see this, two TIL 311 hex displays have been linked to the PAOPA7 lines of PIA 1. These displays take one four bit word and decode and drive the seven segment display. So, using your PIA data register as a memory location, you can display your answer or the result of a program. These displays

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	8			0			0		0			0			

Fig. 3 Derivation of the memory start address.

The end of the EPROM is $8000+2 K$ which is 87 FF . When the reset switch is pushed for a restart the micro thinks it is looking at address FFFE but in this case it is 87 FE . So our reset or restart vectors are stored in 87 FE and 87 FF . Since the EPROM starts at address $8000 \mathrm{H}, 80 \mathrm{H}$ will be stored in address 87 FE and 00 H will be stored in 87 FF . Obviously if the EPROM was being programmed in an external programmer the 8000 H would be the same as $\mathbf{0 0 0 0 H}$.

Decoding of the PIA's is made simple by the number of chip enables the 6821 has to its credit. RS0, RS1, and CS1 are connected to A0, A1, and A2 respectively, and this is the same on both PIA1 and PIA2 (IC3, IC4). On PIA1 (IC3) the four register addresses were decoded for 5004 H to 5007 H , so A14 was connected to CS2 and A12 is NANDed with the valid memory address line and connected to CSO. PIA2 is decoded for 4004 H to 4007 , so A14 is connected to CSO and A15 is connected to CS2. The R/W, Reset, and E(02 clock) signals are straightforward connections to similar pins on the micro.

That leaves the $\overline{\text { IRQA }}$ and $\overline{\text { IRQB }}$
it has been cleared an $\overline{\mathrm{RQ} Q}$ input will cause the 6802 processor to push the return address, index register, accumulators, and condition code register on the stack after it has finished its current instruction.

It then goes to address FFF8H to get the most significant byte and to FFF9H to get the least significant byte. The processor then sets the interrupt mask so that no other IRQ interrupt routine can start, after which the program counter is loaded with the contents of FFFH and FFFC H and the interrupt routine starts.

Note that NMI has a higher priority than hat of IRQ. On the
are also latched so a result will stay until changed. Including these eight lines, there are thirty two input/output lines and eight control tines, which is more than you would get in a home computer.

The 6802 has an oscillator and a driver circuit, so the clock is produced simply by putting a 4 MHz crystal between the XTAL and EXTAL pins of the micro (pins 38 and 39). Because the circuit is so small, pull up resistors are fitted to some of the signals. In a bigger system with more chips these signals would automatically be dragged up.
For our use some signals are held high. These are RAM enable (RE), memory ready (MR) and Halt. Other signals that are in operation but are pulled-up are the interrupt lines, (pins 4 and 6), the VMA (valid memory address) signal which should be gated to the peripheral chips in some way, and the Reset signal which is also connected to a micro switch for use with restart procedures. This leaves the BA (Bus Available) signal which we are not really interested in. This is left disconnected.
evaluation board NMI and IRQ are linked together and connected to the interrupt pins on the 6821 PIA's, so that all the interrupts are controlled via the PIA (peripheral interface adapters) handshake lines. These are CA1, CA2, CB1 and CB2, and these will be explained later.

The software interrupt request

VECTOR		LS
FFFE	FFFF	DESCRIPTION
FFFC	FFFD	RESET
FFFA	FFFB	SOFTWASABLE INTERRUPT
FFFB	FFFQ	INTERRUPT REOUEST

Fig. 2 The interupt vector byte locations.

Fig. 4 Circuit diagram of the evaluation board.
is controlled by micro-code, and registers are stored on the stack. The program counter is loaded with the contents of FFFAH and FFFBH and then jumps to the interrupt routine in memory. It can also be used as a break function.

Address Modes

There are seven address modes that can be used by the programmer. They are:- Accumulator addressing, immediate, direct, extended, indexed, implied, and relative addressing.

In direct addressing, the 8 bit address of the operand must be stored in the lowest 256 memory locations, from 0000 to 00 FF ,

Direct addressing is sometimes called base page addressing because the operand must be in the first 256 -byte page of memory. The 6802 uses address locations FFF8 to FFFF to store reset and interrupt addresses so as to keep the lowest 256 addresses free for direct addressing.

An example of this mode is the ADD $\$ 09$ instruction, which adds the contents of memory location 09 H to the contents of the A accumulator and leaves the result in accumulator A . The advantage of this mode of addressing is that it is quicker than extended addressing because it uses two instructions instead of three.

Extended addressing uses the second and third bytes of the instruction to store the address of the operand, a rather different approach to that used in the Intel and Zilog processors. The second byte contains the high order address byte and the third byte contains the low order address byte. For example ADDA \$073A would be written in three memory bytes as BB 073A. This instruction adds the contents of memory location 073A to Accumulator A. Extended addressing is used for all memory beyond \$FF, but can be used for memory below that point. Note that \$ also denotes Hexadecimal in 6802 assembler. As an

example, compare these two instructions:

They both have the same effect.
With indexed addressing, the operand is obtained from an effective address. The address is calculated by adding the offset number in the second byte of the instruction to the contents of the 16 bit index register. For example, suppose the index register contains a base address of 4321 H . The instruction Add A \$30 in index addressing first calculates the effective address from which it will get its operand by adding the displacement of 30 H to the base address of 4321 H . This gives an effective address of 4351 . The 6802 then fetches the byte from memory at the effective address of 4351 H , adds the contents to Accumulator A, and then leaves the result in Accumulator A.

In the implied addressing mode the operand address is contained in the instruction opcode. For example the command 'DEX' is simply written as 09. Only one byte is used in implied addressing.

In relative addressing a displacement contained in the second byte of the instruction is added to the program counter. The next instruction is fetched from the address. The displace-
ment is stored in the second byte, and the most significant bit of this second byte is the sign bit which allows the displacement to be positive or negative. A number from -128 to +127 can be derived.

Because the program counter automatically increments after each fetch, the displacement is added to the address after that in which the displacement byte was stored. Therefore, when measured from the instruction address, the relative addressing range is $\mathbf{- 1 2 6}$ to +129 addresses. When jumping to a location you actually state the address you wish to jump to. The easy way to remember relative addressing is to bear in mind that you always branch or jump relative to a memory location. For example:

	0050	
Branch	0051	20 FE
Jump	0053	
	0050	
	0051	$6 E 0050$
	0054	

The above two examples have the same effect, which is to go back one address space.

Accumulator addressing is a special case of implied addressing. The operand is one of the accumulators and this is indicated in the op code for the instruction. An example of this would be CLR A which is a one-byte code.

Little has been said so far about the Peripheral Interface Adaptors, of which there are two on the evaluation board. In effect, it will be these chips which the operator will program, so an insight into their operation will be useful.

An input/output port must provide a versatile programmable interface between the microprocessor and the external system devices (peripherals). These devices or peripherals can be simple lamps, switches or keyboards or more complex devices such as tape recorders, visual displays or other circuits. There are no special instructions for the PIA because, as far as the 6802 is concerned, it appears as a block of four memory addresses which can be read from or written into like any other RAM.

The addresses chosen must be consecutive and in the case of the evaluation board these addresses are $5004 \mathrm{H}, 5005,5006$ and 5007 for PIA1 (IC3). For PIA 2 (IC4) the addresses 4004, 4005, 4006 and 4007 are used. The eight data lines of the PIA are simply connected to the MPU data bus as normal and it will be noticed that several control lines are also connected between the two as discussed earlier.

Small differences aside, the PIA can be considered as two identical halves, side A and side B each having eight data (I/O) input/ output lines and two special lines used for control or handshake purposes. To avoid repetition the A side only will be described.

PAO to PA7 are data I/O lines which can be used as either inputs or outputs dependent upon how the programmer writes the initialisation routine. You could, for example, programme three lines as inputs and five as outputs. CA1 and CA2 are peripheral control lines; CA1 is always an input but CA2 can be initialised as an input or output.

There are three registers for each half of the PIA but one register serves two purposes. The Control register may cause some problems as it contains all the control flags. At this stage we are only concerned with bit 2 , because it is this bit which decides which register has this memory address. When bit 2 is 0 , the address 5004 (4004 for PIA 2) belongs to the direction register. When bit 2 is 1 the address 5004 belongs to the data register. The remaining bits are all connected with the behaviour of the control

O- through board link

Fig. 6 Component owerlay of the evaluation board.
lines CA1 and CA2 (CB1 and CB2 for the other side of PIA 1).

The addresses are well thought out in that, when the reset switch is operated, all the registers in the PIA are reset to zeros. This includes bit 2 in the control register. So the first time address 5004 H is used, it will address the direction register. After this the programmer will ensure that bit 2 is set to 1 , so that any further references to 5004 H will address the data register. It is most unlikely that you will have to change the direction register contents in the same program but if so, it would be necessary to clear bit 2 first and reset it again afterwards.

As discussed earlier, I/O lines can be programmed as input or output in any configuration. For example if the direction register was initialised with 00001111 , PAO-PA3 would be inputs and PA4-PA7 would be outputs. The register is available to the
programmer as address 5004 H . Once initialised, the data register is the one most used by the programmer and therefore has priority over the direction register which also shares memory address 5004 H .

Unfortunately more has to be said about the control register flags. The main differences between sides A and B of the PIA are here and this is best shown in Fig. 8. Bit 2 has already been discussed, but every other bit in this register also has some effect upon the behaviour of the peri-

Fig. 7 Register addresses on the evaluation board.

PARTS LIST

RESISTORS	
R1-R5	
	3 k 3
SEMICONDUCTORS	
IC1	6802
IC2	2716
IC3,4	6821 OR 6820
IC5,6	TIL 311
IC7	74 SS00
MISCELLANEOUS	
SW1	SPDT micro switch
XTAL1	$4 M H z$ crystal
PCB;	

PCB; IC sockets - 3 off 40 pin, 1 off 24 pin and 3 off 14 pin; 42 off PC terminal pins.

BUYLINES

Everything here is widely available with the possible exception of the TIL 311 display ICs, and these are sold by Technomatic. The PCB is available from our PCB Service.
pheral control lines CA1, CA2, CB1 and CB2. A detailed explanation can be found on a Motorola 6821 applications sheet.

CA1 and CA2 only are shown in Fig. 8 , but side B is the same (CB1 and CB2). The illustration may be a bit confusing, and for this reason some examples will be given later. For simple programming little knowledge is needed of the control register, but as you progress an understanding will become essential.

Construction and Testing

The complete project is contained on one, small, doublesided PCB. The tracks are necessarily very close together so great care must be taken during soldering to ensure that adjacent tracks are not accidentally bridged. Terminal pins are used for the external connections and these should be pushed through the board before any other components are installed. IC sockets are recommended and these should be soldered into place next, followed by the switch, the resistors and the crystal. Finally solder the display onto the board and then insert the ICs into their sockets, taking care that they are the right way around.

When the board has been assembled, check it carefully and then connect up the 0 and 5 V rails. The TIL 311 displays should illuminate and show the letters FF. If all is well, the next stage is to try a test program.

Fig. 8 Operation of the PIA control register flags.

To do this you will need either a programmed EPROM or an EPROM emulator. For those who do not already have one, an EPROM emulator design will be described in a follow-on article, but other emulators such as the one described in our July and August issues last year should be suitable. Constructors who do not have an emulator but do have access to an EPROM programmer and a UV eraser can simply load the test program onto a 2716 EPROM.

ADDRESS	PROGRAM
0000	$8 E 000 F$
0003	CD FF04
0006	FF 5006
0009	8655
$000 \mathrm{B7} 5006$	
000 E	$3 F$
07 FE	80 RESET VECTOR
07 FF	00 RESET VECTOR
	Program 1

Program 1 is very simple and should cause the displays to show 5 S when the reset switch is pushed. If this fails to work check the program. If it still does not work, check the signals described earlier with an oscilloscope. You need not worry about the complicated waveforms, just check that a switching signal is present or, in some cases, that the signal is held high.

Once this works you are ready to start writing your own programs.

Remember that complicated PIA, and note that it was initialised by two simple lines using the index register.

CE FFO4
FF 5006
In full this would be written quite differently using the accumulators

86FF	LDA \#FF
B75006	STA 5006
8604	LDA \#04
B75007	STA 5007

You can see how the 16 bit index register can simplify things. Overall program speed can be increased using this method, although it would be no advantage in the initialisation routine. It comes into its own in the subroutines.

In the example, the contents of the index register are said to be stored in location 5006 H . You may

Fig. 9 flow diagrams of programs 1 (left) and 2.
have thought this strange, trying to stuff 16 bits into 8 . What the processor actually does is to store the least significant byte in 5007 H and the most significant byte in location 5006H.

Because the programmer may like to be able to see a change on the displays, delays are a widely used subroutine. Again the 16 bit ,Idex register comes into use. An example of this is shown, giving a delay of around a second.

CE0000	LDX	0000
09	DEX	
$26 F D$	BRE	

This can be used in a program such as Program 2, which is a count sequence. This will cause the display to count up to FF before resetting to 00 .

ADDRESS		PROGRAM		
0000	8 E	000F	LDS	000F
0003	CE	FF04	LDX	FF04
0006	FF	5006	STX	5006
0009	86	00	LDA	00
000B	C6	01	- LDAB ${ }^{\text {\# }}$	01
000D	B7	5006	STA	5006
0010	CE	0000	4 LDX	0000
0013	09		1 DEX	
0014	26	FD	BRE	
0016	C6	01	LDAB*	01
0018	18		ABA	
0019	20	FO	BRA	
07FE	80	00		
		Program 2		

WOULD YOU HAVE THE COURAGE TO JOIN DATELINE?
 If all your friends are married, you're not meeting anyone at work, you've moved to a new area or you are newly single again, joining Dateline is really just a sensible way of meeting lots of compatible people, and perhaps

'Well, you've got to do something!'Clive and Sara To Clive, without a wide circle of friends after his divorce, joining Dateline seemed 'logical', and to Sara, a single parent with little opportunity to make a social life, joining Dateline was simply a decision to 'do something' about it. They were attracted to each other when they first met over a cup of tea at Sara's home, and Clive thought Sara had done marvellously well to bring up such a joyful lirle girl on her own. Initial liking and attraction grew into love and Clive and Sara were married six months later.

someone special...

'The best thing I could have done.' John and Margaret - married. As she was rather shy, one of Margaret's friends from work who had met and married someone through Dateline suggested she should join, and John joined us as a last ditch effort to invigorate his social life at home before emigrating to South Africa. Four years of marriage and two children later, they still think it's the best thing they could have done!

'It took about a week to fall in love' Margaret and Michael - married. Within two weeks Margaret and Michael were salking about marriage. 'It might seem a little bit far-feiched, but we weren't prepared to settle for just anything to try to regain happiness. We both wanted something a little bit special, and thanks to Dateline, we've got it now.

WHO JOINS DATELINE?

People just like you! Thousands of people join Dateline each month so you probably already know people who have used the Dateline service or met through Dateline.
People who join Dateline come from all over the country - from farms, villages, market towns and cities. The problems of meeting people are not confined to any particular locality, occupation or class. What all Dateline members have in common is an optimistic, positive attitude in tackling the problem practically.

Most people at some point in their lives have felt the need to meet new people, get out of a rut, or find someone special, and there really are very few ways you can meet the kind of people you want to meet. Dateline is simply the most honest, realistic way of being introduced to a wide choice of compatible partners.

HOW DOES DATELINE WORK?

Forget fears of cold-hearted computers! You choose the sort of people you want to meet. When you join Dateline you will complete a very comprehensive questionnaire. Information from this will be locked into our computer memory, and the matching process, in which your data is compared with that of every Dateline member of the opposite sex, will begin. The most compatible matches will be found and their details forwarded to you. You will also be matched to other compatible people and they will contact you, and so a whole new social life begins.

IS DATELINE SUCCESSFUL?

Many thousands of couples like those on this page, have met and married through Dateline. The Dateline questionnaire is designed to match couples through many facets of physical type, personality and life-style; not just matching those who want to meet people similar to themselves, but those who also want to meet someone different.
If you think you would like so join the thousands of people all over the country who have been finding a new social life or love and happiness through Dateline, simply complete the questionnaire below. We will send you confidentially and completely free, full details about Dateline and how it works, and details of just one of the Dateline members who are compatible with you. Send to: Dateline Computer Dating, 23 Abingdon Road.

Master
 Electronics-Microprocessors -Now! The PracticalWar!

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.

Testing and servicing radio - T, V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?
 SEND THIS COUPON NOW

```
IRHE! COLOUR BROCHURE OR TELEPHONE U50626872598 %-= 
```



```
NAME I am interested in
ADDGESS
!N
```



```ELECTRONICS MICROPROCESSORS
```

\square


``` radio amateur licence Other Subjects
Brtiah Mational Rediod Electromics School P.O. Box 7, Teignnouth, Devan,TQ4AOHS
```


certery
 HARDWARE SOFTWARE

MDEX disc O/S + BASIC
295
MDEX Professional Dev. Sys. £275
CORTEX POWER-BASIC disc extensions £43

MDEX Extensions

Editor
$\varepsilon 35$
Relocating Assembler/linker £35
FORTH - screen editor, assembler

- graphics - better than BASIC £35

PASCAL - by Pre Brinch Hansen
£35
QBASIC - fast BASIC complier
UCSD Pascal, SPL, META, WINDOW, SPELL
CORTEX tape software
Pengo - fast machine code action
Golf - excellent animation
Micropede - rampant caterpillar
Space Bugs, Pontoon, Breakout
Cassette/CDOS word processor each ${ }^{26}$

Add $£ 2$ for software on CDOS disc
Disc Drives
80 track double-sided double-density
$\Sigma 190$
40 track single-sided double density
E-BUS Floppy/Winchester Controller E-BUS 64/128 Kbytes DRAM card
$\Sigma 120$
$\Sigma 135$
E-BUS 9995 Processor card
£145/£245
80*24 Character video card
$\Sigma 145$

State disc format and add VAT to all prices IIBrainstem Issue 2 out soonI!

MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY
SOUTHAMPTON
SO1 5AP
TEL: 0703780084

that there is a real difference at Crick/ewood Elecrronics That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, comperifive prices and service from the U.K. s number one 100% component shop. No gimmicks, no gadgets or computers, just components, miltions of them, all easily available by mail order calling or credit card telephone orders. Just pick up the phone (or a pen) to get your FREE copy now (no SAE required). You have nothing to lose

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01.450 0995/01-4520161 Telex: 914977

UNIVERSAL EPROM PROGRAMMER MARK II

Make programming even exotic EPROMs easy with our upgraded Universal EPROM programmer. Mike Bedford (hardware) and Gordon Bennett (software) produce a softwaredriven version of this invaluable device in both upgrade and selfcontained form.

As far as the world of microelectronics is concerned, a lot of water can pass under the bridge in 18 months. In August 1983, a design for a universal EPROM programmer was published in ETI and, as its name suggests, this piece of equipment allowed virtually all the common single supply EPROMs to be programmed. At this time the largest device avaiable was the 27128 , only preliminary data being available for the 27256. In the intervening period the 27256, 27512 and 27513 have become available and since they use a different programming voltage to the previous devices may not be programmed by the original programmer. The 2764A and 27128A have also made an appearance, these being lower programming voltage versions of the 2764 and 27128 respectively. This being the case, it seemed appropriate to introduce a MkII version of the EPROM programmer to support these new devices and at the same time make some other improvements. We have produced an upgrade board to allow existing users of the MkI board to enhance it and also a single MkII board for those without the earlier board.

The MkII Universal EPROM Programmer is capable of pro-
gramming a comprehensive range of single supply EPROMs varying in size from the 2758 to the 27512 and 27513 and including the 27series, 25 -series and the Motorola 68 -series as well as a number of EEPROMs. In addition it allows the 2764 and larger devices to be programmed by the intelligent programming method hence reducing programming times drastically. All supply voltages have been made switchable under program controls so there is no need for a switch on the programming console. Two LEDs have been provided to indicate the current status of the programmer - in particular whether or not it is safe to remove the device. A modification to speed up EPROM reading has been made and, as a final enhancement, it is easier to set up since the adjustment of the programming voltages has been made much finer and the potentiometers are now more accessible when the board is rackmounted.

In both versions, the programmer is fully programmable and everything is controlled by software. It is designed around the Tanbus specification which means that it should be an easy task to interface it to any 6502 or 6809 based system and users of a

Tangerine computer will be able to plug the programmer directly into the system rack.

New Devices

Before describing the new programmer it is helpful to outline the advances in the realm of EPROMs which have made this upgrade necessary. Table 1 shows the pinouts of all the devices which are supported. A similar illustration was included with the original article showing how standard pinouts made designing a universal programmer relatively easy. The new devices conform to the same standard and also have JEDEC pinouts.

This family of devices must now include the largest single page EPROMs which will be used with 8 -bit processors, as the capacity of a 27512 is 64 K bytes - in other words, it occupies the entire memory map of an 8 -bit system. The 27513 has the same capacity as the 27512 but the memory is organised differently having 4 pages of 16 K bytes each and therefore representing the first of a new class of devices - paged EPROMs. To specify the page to be accessed a write operation is performed. The least significant 2 bits of the following data word
then specify the page number.
The major fact about the 27256 and 27512/2513 which makes them incompatible with the original EPROM programmer is that the programming voltage is 12.5 V . This follows the trend of decreasing programming voltages as the capacity increases and the silicon die size decreases, the devices up to and including the 2732 using 25 V and the 2764 and 27128 using 21 V . In addition, versions of the 2764 and 27128 which also use the new 12.5 V Vpp have been released. These are known as the M2764A and 27128A.

Intelligent programming is possible on all devices from the 2764 upwards. In this case, 1 ms programming pulses are applied to the EPROM until it verifies, at which point a further pulse is applied. This contrasts with the standard programming method in which a 50 ms programming pulse is always used. As the larger EPROMs are introduced, intelligent programming becomes increasingly desirable. It can reduce programming times from almost one hour to about eight minutes for the 27512.

Intelligent programming

 requires the supply voltage to be raised from the normal 5 V to 6 V during the programming cycle, a facility not available on the Mkl board. A different programming time reduction method has been introduced on the latest version of the Texas 25 series devices and on some manufacturers' recent 2732 s and 2764 s. These devices use a fixed length programming pulse of 10 mS rather than the

The console of the programmer. standard 50 mS pulse.

Another facility introduced on some of the newer devices is referred to as 'intelligent identifier' or 'auto select mode'. After applying +12 V to A9, where this facility is available, one of two bytes may be read out depending on the logic level of AO. These two bytes contain codes identifying both the device type and the manufacturer. It was decided not to implement this mode for two reasons. Firstly, the facility was designed for industrial production programming where the process is often carried out by those with a minimal knowledge of electronics. By contrast, the home user will probably
be clear about what device type is being used. Secondly, not all devices include the facility, and it is reasonable to assume that applying +12 V to A9 of EPROMs without intelligent identifier will be detrimental. In an environment in which all devices from the 2758 upwards are to be programmed, the provision of the feature will increase the likelihood of destroying EPROMs.

The price of EPROMs has been influenced by the fact that quartz windows could only be fitted in ceramic packages. Recent advances now allow a seal to be made between quartz and plastic and, as a result, some manufacturers are releasing EPROMs in plastic packages at a significant cost reduction. Over the past few years, the price of EPROMs has already reduced to the point where they are comparable to the price of ROMs. Since a large proportion of the remaining cost is due to the quartz window, manufacturers have also started producing EPROMs without the quartz window at an even lower price.

The lack of quartz window means that these devices cannot be exposed to ultra voilet and erased. They are referred to as production EPROMs or OTP EPROMs (One Time Programmable). Since these EPROMs are electrically identical to standard EPROMs, they are programmed in exactly the same way.

Some EPROMs are now available not only in the standard 24 or 28 pin DIL (dual-in-line) packages but also in the newer, smaller, LCC (leadless-chip-carrier) packages which have pins spaced at

2812	${ }^{1912}$	\%man	$\max _{\text {max }}$	3 men	mma	mm	${ }_{3} 8$	ma	mix	${ }^{2188}$	270	$\stackrel{7}{ }$
N/C	A15	vpp	vpp	vpe	VPP							1
A12	A12	A12	A 12	$\overline{\text { cs } 1}$	A12							2
A)	A7	A7	A)	A7	3/1							
A6	A6	As	46	A6	Ab	A6	as	A6	A6	As	A	4/2
A5	A5	as	as	A5	as	A5	As	as	as	As	as	5/3
A4	A 4	A4	A	A4	814							
A3	A3	A3	${ }^{4} 3$	${ }^{\text {A }}$	A3	A3	A3	${ }^{4} 3$	A3	A3	${ }^{\text {A }}$	1/5
A2	\sim^{2}	A2	A2	8/8								
${ }^{1} 1$	${ }^{\text {A }}$	A1	${ }^{\text {A }}$	${ }^{\text {A }}$	A)	A1	A1	A1	${ }^{1}$	A)	A1	97
AO	A0	AO	AO	AO	10/8							
-	Do	Do	-	Do	Do	-	Do	Do	Do	Do	Do	11/9
D1	01	D1	D1	D1	${ }^{0} 1$	D1	D1	D1	D	D1	D1	12/10
D2	13/19											
GND	GND	GND	and	GND	GND	Gnd	GND	and	GND	GND	gmo	14/12

-mo.	2 m	${ }_{2514}^{2714}$	072	$\operatorname{mima~}_{178}$	808	© $7 \times$	27ena	zen	${ }^{27120}$	3730	2312	2019
28							vcc	vcc	vcc	Vcc	vcc	vcc
27							FGm	C53	PGm	A14	A14	WE
28/24	vcc	vcc	vcc	vcc	vcc	vcc	N/C	N/C	A 13	413	413	A1
25123	A8	A	A	A8	A 8	As	A8	As	As	As	48	A 0
24/22	49	A9	49	A9	A9	A9	A 9	A9	49	A9	A9	A9
23/21	vpp	vpp	AR	A11	VFP	A 12	A11	A12	A11	A11	411	A11
22/20	OE	OE	$\begin{array}{\|c\|} \hline \mathbf{E} / \\ \text { VPP } \end{array}$	$\begin{aligned} & \mathrm{OE} / \\ & \mathrm{VPP} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{PPO} \\ \hline \mathrm{Pr} / \mathrm{m} \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{E} \mid \\ \text { Vpp } \end{array}$	OE	PO	OE	OE	$\begin{array}{\|l\|} \hline \mathbf{O E} \\ \text { VPP } \end{array}$	$\begin{aligned} & \overline{O E /} \\ & \mathrm{VPP} \end{aligned}$
21/18	AR	A10	A10	A 10	A10	A 10	A 10	A 10	A 10	A10	A 10	A 10
20/10	$\begin{array}{\|l\|} \hline \mathrm{CE} / \\ \hline \mathrm{COM} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CE} \\ \hline \mathrm{PGM} \\ \hline \end{array}$	A11	$\begin{array}{\|l\|} \hline \text { CEE } \\ \hline \text { PGIM } \\ \hline \end{array}$	A11	A11	CE	A11	CE	CE		CE
19/17	D7	07										
18/18	D6	D*	D6	D6	D8	D 6	06	D8	D6	D6	D8	D6
17/15	D6	O5	D6	05	O5	D6	O5	D5	D6	D5	D5	05
78/14	D4											
15/13	D3	03	D3	D3	D3							

Table 1 Pin-outs of all devices supported by the programmer.

Table 2 Pin-outs of all LCC devices which could be supported by the programmer.
$0.05^{\prime \prime}$ on 4 sides of a rectangle and so allow a much greater PCB packing density. Internally these devices are identical to conventionally packaged EPROMs and as a result the programming requirements are the same. To handle them, the EPROM programmer only needs to be provided with a different socket on the console. Table 2 shows the pin-out of those devices currently available in this package. It should be noted that the 25 series devices differ from each other and the 27 series devices in this configuration more than in the standard DIL package. Accordingly, it would be advisable to consider programming only the 27 series EPROMs in LCC configuration or to provide a number of different sockets.

Similar Devices

The term EPROM is usually taken to mean UV erasable PROM, but there is a closely related family of devices - electrically erasable programmable read-only memories, known as EEPROMs or E ${ }^{2}$ PROMs. At the time of designing the original programmer, the extra complexity involved in supporting EEPROMs
was not considered justifiable in view of their high cost. The price of EEPROMs has not dropped drastically and they are, therefore, still quite rare among home computer users. But numerous enhancements to these devices have been made which simplify the programming and accordingly they may be supported by the MkII programmer.

The fact which complicated the programming of the original Intel 2816 ($2 \mathrm{~K} \times 8$ EEPROM) was the fact that it used a 21 V programming voltage which had to be shaped by an RC circuit to give an exponential rise. the next development still used 21 V for programming but the waveform shaping requirement was relaxed, the only restriction then being on the fall time of the Vpp pulse. The latest EEPROMs don't even require a high programming voltage, in ternal circuitry generating this from the $+5 V$ supply. In addition, there are now some devices which support these very latest programming techniques but are compatible with earlier devices, accepting either 21 V or TTL programming levels.

EEPROMs have also developed in the method of programming.

On the first devices, a byte could only be programmed if it were first erased, either by writing an FF(HEX) to that byte or by using the complete chip erase facility. On the more recent devices, bytes may be directly re-programmed without the need for erasing first. Programming times and the number of programming cycles have also seen improvements. The first 2816 required 10 mS programming pulses whereas some of the newer versions will programme in 2 mS per byte. The technology used in EEPROMs, HMOS-E FLOTEX cell design, has an inherent limitation on the number of programming cycles. The original EEPROMs had a lifetime of 10,000 cycles but 1 million cycles is now not uncommonly quoted.

Unfortunately, there isn't the same degree of standardisation among EEPROMs as with UV EPROMs. Although a 2816 is always a $2 \mathrm{~K} \times 8$ EEPROM, different manufacturers' devices with this number may represent a number of different points within the progression outlined above. In addition 2816A, 2817, 2817A and 5213 are variations on the same theme by various manufacturers. Because of these complications, we won't give a list of EEPROM type numbers which are supported by the MkII Universal EPROM programmer. It will, in fact, handle all those $2 \mathrm{~K} \times 8$ devices which feature TTL level programming. Some $8 \mathrm{~K} \times 8$ EEPROMs are also becomming available - for example, the 2864 and 52B33. Where these are programmed by TTL levels, they may also be supported by the MkII programmer.

Mark II Board -
 Hardware

This section refers to either the MkII EPROM programmer or the MkI with the addition of the upgrade board, the hardware of these two configurations being identical with one exception. The MkI board has 4×6821 PIAs, of which 2 are used by the programmer for control functions leaving 2 free for general use. The MkII board utilises 3 PIAs for controlling the programmer, the 4 th having been omitted in order to fit the extra circuitry onto the PCB. The upgrade board makes use of the 3rd PIA on the MkI board but does not, however, affect the 4 th one which means that this configuration gives a spare PIA, the true MkII board not having this facility. (See 'How It Works' for part
numbering.)
Table 3 is a memory map of the MkII Universal EPROM Programmer in which the function of each bit is outlined. Some bits control certain functions such as Vcc and Vpp voltage levels, the majority, however, control the signal levels on various pins of SK3, the EPROM socket. For all bits connected to SK3, except those marked Vcc or Vpp, writing a 1 will set the pin to a logic high, whereas writing a 0 will set it to a logic low. For the Vcc and.Vpp bits, a 1 sets the pin to the currently selected Vcc or Vpp voltage and a 0 sets the pin to 0 V . It will be noticed that some pins have more than one bit controlling
them. This happens where a particular pin can take either a logic level or a Vpp voltage. In such cases, although this wouldn't normally be required, it would not be harmful to set both bits high at the same time since the two corresponding outputs are isolated by use of diodes.

Finally, in the 6821 PIA, the data direction registers are double addressed with the corresponding 1/O port register. Bit 2 in the appropriate control register determines which of these two registers actually will be addressed, a 1 selecting the I/O port register and a 0 selecting the data direction register. Once the data direction

Table 3 Memory map of the programmer.
register is selected, setting a 1 to a bit in this register selects the corresponding bit in the I/O port to be an output whereas a 0 selects the I/O port bit to be an input.

The Upgrade Board Construction

Construction of the upgrade board for the MkI programmer is straightforward and no special comments need to be made. Interfacing to the main board and setting up do require explanation. The procedure is as follows:
A. Remove the regulator IC10 from the main board. This may be re-used as IC12 or IC13 on the upgrade board.
B. Remove R4, R5 and C1 from the main board. RV1, RV2, RV3, Q3, Q4 and R6 may also be removed if required.
C. Remove SW1 if fitted to the main PCB or if not fitted remove the two wire links in its place.
D. Remove D1 on the main board.
E. Add D3 to the main board, connecting the cathode to SK3 pin 1 and the anode to IC9 pin 9. F. Replace $\mathrm{C} 5(10 \mathrm{n})$ by 100 n on the main board.
G. Physically fix the upgrade board to the main board by use of three plastic bolts. If the fixing holes marked on the upgrade board are used they will allign with 'trackfree' areas of the main board. The photographs with this article illustrate the means of interconnection.
H. make the connections between the two boards as shown in Table 4.

An early prototype of the upgrade
J. If using a programming console remove the switch, connecting the two wires which this interrruped directly to the appropriate ZIF socket pins and add 1 green and 1 red LED which are wired to connector A on the upgrade board via a 4-way cable as follows:

A1 Green LED anode
A/2 Green LED cathode
A/3 Red LED anode
A/4 Red LED cathode
K. Installation is now complete and Vcc and Vpp voltages need to be set up as follows after first temporarily removing the wires to connector C :

1. Apply +5 V to C 7 only and adjust RV4 to give +5 V on B 4 . 2. Apply +5 V to C 6 only and adjust RV5 to give +12.5 V on B4.
2. Apply +5 V to C 5 only and adjust RV6 to give +21 V on $\mathrm{B4}$. 4. Remove +5 V from C5 and adjust RV7 to give +25 V on $\mathrm{B4}$. 3. Apply +5 V to C4 only and adjust RV8 to give +5 V on $\mathrm{B2}$. 4. Remove $+5 \vee$ from C 4 and adjust RV9 to give +26 V on B 2 .
```
UPGRADE BOARD CONNECTOR
    C/ }
    Cl}
    Cl 2 IC7 PIN 13
    Cl 3 IC7 PIN 12
    C/ 4 IC8 PIN 17
    C/ 5 IC8 PIN 15
    C/ }
    C/8
    C/ 9 IC7 PIN 11
    C/10 IC8 PIN 12
    IC8 PIN 12
    NO CONNECTION
    SK3 PIN 28
O/P (CENTRE) OF IC10
    SK3 PIN 1
    OV (IC11 PIN 11)
    SK3 PIN 22
    +5V (IC11 PIN 13)
```

Table 4 Connections between the upgrade board and the original programmer.

Fig. 1 Circuit diagram of the upgrade board (note component numbering).

HOW IT WORKS

Readers should note that the component numbers on Fig. 1 - the upgrade board circuit diagram - do not start at 1. Instead they follow on from the component numbers on the main MkI board. The following description assumes a knowledge of the workings of the MkI board to which the upgrade board is connected and a description of which may be found in ETI August 1983.

The upgrade board supplies Vpp (selectable to $+5 \mathrm{~V},+12.5 \mathrm{~V},+21 \mathrm{~V}$ or +25 V , Vcc (selectable to +5 V or +6 V), a replacement driver for $\overline{\mathrm{OE}}$ (the active low output enable line) and drivers for two LEDs. The old part of the Vpp circuitry which generates an unregulated +30 V by use of a $78 \mathbf{S 4 0}$ has been retained. However, the regulator consisting of a LM317MP and a resistor chain, in which portions of the chain could be switched out by transistors, has been replaced. The new regulator is similar to the one on the MKI board but differs in two respects. Firstly each variable resistor in the chain has a fixed resistor in series with it, hence giving a more accurate means of setting up the voltages. Secondly an extra resistor portion and transistor have been added to allow the +12.5 V programming voltage to be selected. This regulation circuit comprises IC12, Q13, Q14, Q15 and the associated passive components. An unswitched Vpp is passed to various Vpp switches on the main board. Transistors Q9 and Q10 provide a switched Vpp which replaces the supply to EPROM pin 1, previously switched manually. IC14 and its associated components form a second step-up circuit providing a +8 V supply which is regulated to either +5 V or +6 V for Vcc. This regulator circuit is built around IC13 and is a similar configuration to the Vpp regulator. Transis-
tors Q11 and Q12 provide a switched Vcc supply which replaces the original, manually switched supply to EPROM pin 28.

It should be noted that the Vcc supply to pin 24 on the EPROM need not come from this circuitry as no 24 pin devices feature intelligent programming so +5 V will always be used.
On the original board a 10 nF capacitor, C5, was connected between $\overline{\mathrm{EE} /}$ Vpp on pin 22 of the EPROM socket and 0 V . This was a compromise between the 100 nF suppression capacitor actually specified in the 2732 data sheet and a value which wouldn't slow down logic edges too much. On the new circuit the recommended 100 nf capactitor is used but logic signals are not significantly slowed down as a result of the Q21/Q22 combination which provides a high current $\overline{\mathrm{OE}}$ signal capable of charging the capacitor rapidly and Q24 which provides a logic low signal bypassing the suppression capacitor. Capacitor C5 should be changed on the original board.
Transistor Q23 provides a NOR function, turning Q24 on when neither of the signals driving EPROM pin 22 are present.
Transistors Q17, Q18, Q19 and Q20 simply form iwo darlington drivers with built-in current limiting resistors to drive two LEDs indicating programmer status. In addition to the extra circuitry on the upgrade board an extra diode, D3, is added to the main board. This is to provide the extra address line A15 to pin 1 of the EPROM socket, the diode being required to isolate it from the Vpp supply which can also be present on this pin. This diode - an OA91 - should be fitted between SK3 pin 1 (cathode) and IC9 pin 9 (anode).

40
Fig. 2 Overlay diagram of the upgrade board.

PARTS LIST
RESISTORS (all $1 / 4 \mathrm{~W}, \mathbf{5 \%}$ unless stated)
R17, 18,35,37,43,

45	10k
R19,22	240R
R20,23,44,46	1k0
R21,24	100k
R25,29	560R
R26,27	1k2
R28,36,38	470R
R30	82R
R31,32,33,34	4k7
R39	OR22 W/W
R40	12k
R42	2k2
R47	120R 1/2W
RV4,8,9	220 R vertical min preset
RV5,6,7	470 R vertical min preset
CAPACITORS	
C5 (replace on main board)	100n ceramic
C11,13	100n ceramic
C12,14	1utantalum
C15	100 u 16 V axial
C16	4 n 7 polyester

SEMICONDUCTORS

IC12,13	LM317 MP
IC14	78540

Q9,11,13,14,15,16,
Q17,18,19,20,21,

23,24	BC184L
Q10,12,22	BC214L
D1,D4,D5 D3 (fit on main board)	OA91
BA91	

MISCELLANEOUS
L2
31uH, 13 turns 22
SWG on RM6 pot
core ($\mathrm{AL}=250$)
Connectors A, B,C $0.1^{\prime \prime}$ pitch right
angled molex
connectors. 4,9 and
8 ways respectively.
PCB, three plastic bolts and nuts for attaching to main PCB.

BUY LINES

> All components are standard. The biggest problem may be in finding a 28pin ZIF socket. These are supplied by Watford Electronics and Technomatic. Electrovalue and Maplin will supply a OR22 wirewound resistor and Electrovalue will also supply the RM6 pot cores. The Molex connectors are standard inter-PCB connectors and the Euro connector for the MkII board likewise. The version of the LM317 you should look for is one in a TO 202 or TO 220 case -a 317 M or 317 T will do if you can't find a 317 MP. All semiconductors should be available from any supplier with a good stock - Technomatic, Rapid and TK advertise the LM 317 T, Watford advertises all the other ICs.

Over the next two months, we'll be dealing with an entirely self-contained version of the MkII and with the software to drive the upgrade.

electronics today international

 B00K SتR14CEHow to order：indicate the books required by ticking the boxes－and send this page，together with your payment to：ETI Book Service， Technical Book Service，Oak House，Cannon Hill Way．Maidenhead SL6 2EY．Make cheques payable to Technical Book Service．Payment in sterling only please．All prices include P \＆P．Prices may be subject to change without nolice．

BEGINNEAS GUIDE

Beginner＇s Guide to Basic Programming

 Stephenson

 Stephenson}Beginner＇s Guide to Digital Electronics
Beginner＇s Guide to Electronics
$£ 5.85$
Beginner＇s Guide to Integrated Circuits
85.85

Beginner＇s Guide to Computers
$\Sigma 5.85$

Beginner＇s Guide to Microprocessors | ع5．85 |
| :--- |

COOKBOOKS

－Microprocessor Cookbook M．Hordeski
ㅁ IC Op Amp Cookbook Jung
$\varepsilon 9.50$
Active Filer Cookbook Lancaster
$\varepsilon 15.10$
TV Typewriter Cookbook Lancaster
£14．30
C CMOS Cookbook Lancaster
£12．50
－TTL Cookbook Lancaster
E13．50
－Micro Cookbook Vol． 1 Lancaster
£15．30

ELECTRONICS

\square Principles of Transistor Circuits Amos
$\varepsilon 9.00$
\square Design of Active Filters with experiments Berlin
$\varepsilon 11.30$
Electronic Devices a Circuit Theory Boylestad
ع14．45
－Principles of Electronic Instrumentation De Sa
£11．45
\square Giant Handbook of Computer Software
$£ 12.95$
\square Glant Handbook of Electronic Circuils
C 11.00
$£ 13.60$
Electronic Logic Clircuits Gibson
13.60
56.45

Analysis and Design of Analogue Integrated Circuits Gray
－Basic Electronics Grob
£42．50

Introduction to Digital Electronics \＆Logic Joynson
$£ 13.00$
Electronic Testing and Fault Diagnosis Loveday
Essential Electronics A－Z Guide Loveday
87.85
\square Microelectronics Digital \＆Analogue circults and sys－
$\mathbf{£ 6 . 2 5}$ tems Millman
$\mathbf{\Sigma} .50$
$\mathbf{\varepsilon 1 2 . 2 5}$
Practical Solid State Circuit Design Olesky
$\varepsilon 28.50$
\square Power FETs and their application Oxner
£10．80
\square Electronic Drafting and Design Raskhodoff
\square Electronic Fault Diagnosis Sinclair
\square Physics of Semiconductor Devices Sze
£26．65
Digital Circuits and Microprocessors Taub
Active Filter Mandbook
\square Designing with TTL Integrated Circuits Texas
－Transistor Circuit Design Texas
Digital Systems：Principles and Applications Tocci
84.50
816.90
$\mathbf{\Sigma 1 6 . 9 0}$
$\mathbf{\Sigma 1 1 . 2 5}$
\square Master Mandbook of Telephones Tralster

COMPUTERS \＆MCROCOMPUTERS

－From BASIC Io PASCAL Anderson
UNIX－The Book Banaham
$\Sigma 11.30$
280 Microcomputer Mandbook Bar den
$£ 9.00$
Digital Computer Fundamentals Barter
£11．75
Microprocessor Interfacing Carr
£ 11.75
$\mathbf{\varepsilon} 8.50$
Microcomputer Interfacing Handbook A／D \＆D／A
£10．50 Carr
D．Microcomputers／Microcomputers－An Intro Gioone

Goodman

$\varepsilon 7.95$
$\varepsilon 8.50$
Let your BBC Micro Teach you to program Hartnell
How to Design，Build and Program your own working
ع10．50
Computer System Havilland
$£ 8.00$
Heffer
$\square \quad$ Microcomputer Builders＇Bible Johnson
£14．75
D Digital Circuits and Microcomputers Johnson
－PASCAL for Students Kemp
\square The C－Programming Language Kernighan
\square Guide to Good Programming Practice Meek
－Principles of Interactive Computer Graphics Newman
T．Theory and Practice of Microprocessors Nicholas
£16．95
ع6．95
$£ 24.45$
89.50

Microprocessor Circuitss Vol．1．Fundamentals and
$\varepsilon 11.45$ Microcontrollers Noll
－Beginner＇s Guide to Microprocessors Parr
Beginner＇s Guide to Microprocessors Pa
$\varepsilon 5.85$
\square Digital Hardware Design Peatman £11．75
\square Digital Hardware Design Peatman
\square Easy Programming for the ZX Specirum Stewart
\square Microprocessor Applications Handbook Stout
Mandbook of Microprocessor Design and Applications Stout
46.45

Programming the PET／CBM West
\square Computer Peripherals that you can build Wolfe

REfERENCE B00Ks

```
Electronic Engineers' Handbook FinkKaulfman

Handbook of Electronic Calculators Kauffman \(\mathbb{4 2 . 2 5}\)
Modern Electronic Circuit Reference Manual ع51．95 Marcus
－International Transistor Selector Towers
\(\varepsilon 14.50\)
\(\square\) International Microprocessor Selector Towers
\(\square\) International MOS Power and other FET Selector £10．95
International Digital IC Selector Towers
\(\varepsilon 10.95\)
\(\varepsilon 10.95\)
International Op Amp Linear IC Selector Towers
\(\varepsilon 9.50\)
Illustrated Dictionary of Electronics Turner

\section*{VIDEO}
```

\square Video Technique White

NEW TITLES

Techniques 2 nd Ed．Cooper
ELECTRONIC DATA BOOKS

THT 83／84 Data dictionary and comparison table
\square TVT A－Z Transistor equivalent book
－TVT 2N Transistor equivalent book
\square DAT 1 Part 1 of compendium covering transistors A． 55.30

BUY

\square DAT 2 Part 2 covering $C-Z$ transistors
\square DAT 3 Part 3 covering 2N21－2N6735
D DAT 4 Part 4 covering 2SA，2SB，2SC，2SD，2SJ， £10．50 2SK，3N，3SJ，3SK，4000
－LIN 1 Linear operational amplifiers data and com－
－LIN 2 Linear voltage stabilizers，data and comparison tables
D TTL TTL digital dala and equivalent book
DDV／1 Part 1 European diode data equivalent book
DDV／2 Part 2 Amerisan and Japanese diode data and
$£ 7.90$

Please send me the books indicated．I enclose cheque／postal order for

 c．．．．．．．．．．．．．．．．．．．．．．Prices include postage and packing． I wish to pay by Access／Barclaycard．Please debit my account．ロロロロロロロロロロロロロロロロ

Signed．
Name
\qquad

[^0]
LARGE DIGIT SCOREBOARD

Do your achievements go unnoticed? Build Ken Wood's big, bright display board and make sure that everyone knows the score.

This scoreboard has been designed for use in a gymnasium or other large space and uses mains light bulbs to provide a display which is large enough to be seen from a distance and bright enough to be read easily in daylight. The scores or other numerical information are normally entered via thumbwheel switches but the system could also be adapted to accept data from a microcomputer. The basic model has a four digit display which could be used, for example, to show a two-digit score for each of two teams, but the number of digits can easily be increased to suit other applications.

The Circuit

The heart of the project is a digit driver module. This uses a 7447A (BCD to seven segment decoder) to drive a digit composed of mains lamps via seven triacs. The BCD information is fed serially through a shift register, and picked off the drive the display.

One module is used per digit in the display, and they are chained together so that they form a long shift register of four bits per digit. The control logic is isolated from the mains by an opto-isolator module at the start of the chain, and only one of these is needed for the display.

The third module is a power supply. This provides two separate 5 V supplies, one for the circuitry in the display drivers and the other for circuitry isolated from the mains by the opto-isolator module. The supplies shown only offer up to 100 mA , so for displays with a ot of digits a different regulator may be needed.

Finally, there is a controller module. This takes data from up to

HOVE VISIIORS

HOW IT WORKS

The power supply is in two sections, each of which has a bridge rectifier and a smoothing capacitor followed by a voltage regulator (ICs $9 \& 10$). C6 and C8 cut out any high frequency spikes and protect the regulators from oscillation. Each section is also fitted with a LED and current limiting resistor as a visual check of operation.

The section that supplies power to the control electronics has its 0 V connected to earth as a safety precaution, and also provides mains sync pulses to the controller module. The bridge rectifier BR2 is isolated from the smoothing capacitor with a diode D1, so a full wave rectified AC waveform appears at the junction between D1 and R12. This is fed
to TR1, which is driven hard on for all but the brief interval when the waveform is at less than $0.7 \mathrm{~V}, 100$ times a second.
The mains sync pulses are not necessarily at the zero crossing point of the mains because of the phase shifts that can occur through the transformer. To overcome this, they are fed into a monostable IC1a which is trimmed so that its output is truly at the mains zero crossing point. This is fed into a second monostable whose output is gated with the controller blanking output to hold the triacs off for a period into the mains half cycle. This achieves the dimming function.
IC2a, 2b, 2c, and 3a produce a square wave clock at about 50 kHz . It is also used to control the operation of the remainder of the module.

IC4a, 4b, and 6a produce a pulse lasting for exactly one clock period at each mains crossing. This is used to reset IC7, a four bit counter. The counter controls IC8, an eight input multiplexer, to sequence through the bit inputs from the thumbwheel switches. Output D from the counter selects one switch bank or the other via IC2d.

Figures 2, 3, 4 and 5. Circuit diagrams of the power supply (top left), the controller (above), the optoisolators (above right) and the digit driver board. Note the use of separate earthed and floating +5 V supplies, the controller being operated from the earthed supply, and bear in mind that one digit driver board is required for each digit of the display.

When the counter reaches 15 the carry output goes high and the counter is inhibited via IC2e. This means that, after each mains zero crossing, the data bits from the thumbwheel switches appear in turn at the serial data output and via IC2f and 5 c at the shift data output to the digit drivers.
The beginning and end of this sequence is detected by IC3b which produces an envelope signal while data is coming out of the controller. The signal is made available to an external controllervia IC6, and also gates the shift data and shift clock outputs to the digit drivers. It is also fed into the blanking signal so that, even with a very short period set for the monostable IC1b, the triacs cannot come on while data is being transmitted.

The three control signals connected to the digit drivers are fed through an optoisolator circuit to prevent any mains potentials reaching the control circuits, hence making the unit completely safe for connection to, for example, a home

computer.

Each of the three channels is identical, so reference will be made to one channel only. An emitter follower transistor Q2 drives the LED in the opto-isolator IC11. The opto-isolator transistor, biased by R19 to improve its high frequency response, is buffered by a Schmitt trigger (IC14a\& R25), and a final output buffer IC14b drives the output.
IC15 is a four bit shift register, which converts the serial data to parallel at its outputs. The fourth output passes serial data on to the next driver module in the chain, thus with four digit drivers each gets its new data after sixteen clocks. The parallel BCD data is decoded by IC16 to form the segment drive to each of seven triacs.
The blanking signal drives Q5 which switches off the outputs of IC16, preventing the possibility of a digit being displayed while the shifting process goes on and allowing the display to be dimmed.

	$\begin{aligned} & \text { S LIST } \\ & \text { AND } \end{aligned}$
CONTROL PANEL	
$\begin{aligned} & \text { D2-17 } \\ & \text { FS1 } \end{aligned}$	1N4148
	panel-mounting fuse holder and 3A fuselink
LP1	panel-mounting
SK1	${ }_{7}^{\text {mains }}$-pin DIN socket
	or other multipole connector to choice
sw1-4	BCD ten position thumbwheel
	thumbwheel switch with true and inverse outputs
SW5	inverse outputs DPST toggle or
	other mains on-off switch

mains lights bulbs and batten lampholders as required; wood, brackets, etc, for enclosure; coloured filter for front of display; small aluminium panel for the controls and nuts and bolts to mount; cable ties or spiral wrap or similar; stand-off pillars, nuts and bolts for mounting PCB ; ribbon cable, writing, etc.
sided except for the controller which is double sided. The legs of the components on the controller board are used to bridge between tracks on each side of the board, so in places the components must be soldered on the top side of the board as well as underneath. This rules out the use of sockets for the ICs.

Printed circuit board pins are used for the flying lead connections to the power supply (except the mains into the transformer), the isolator module, and the

Fig. 6 Details of the cabinet used for the prototype.
display drivers (except for the triac-to-lamp connections). The pins should be installed first, followed by the wire links, the resistors, the capacitors, and the semiconductors. Be careful with the ICs as some of them are CMOS. Leave the power supply transformer until last and do not fit the triacs for the time being.

The triacs on the digit driver modules are mounted with a small heatsink sandwiched between them and the board. This is a length of aluminium strip, details of which are shown in Fig. 9. The heatsink also provides the extra two mounting points for the board. Each triac is bolted to the board through the heatsink with a mica washer and bush to insulate the tab. Silicone grease should be used between the tab and the aluminium to improve heatflow.

Two of the pins on each triac are

PARTS LIST POWER SUPPLY

SEMICONDUCTORS

IC9,10 78L0
Q1 BC184L
D1 1N4001
BR1,2 W005
LED1,2
miniature red LED
MISCELLANEOUS
T1
6-0-6V, 500mA mains transformer, chassis mounting
PCB; 1 mm terminal pins; earth tag; nuts and bolts for mounting transformer.

Fig. 7 Component overlay of the power supply board. Note the earth connection to the frame of the transformer and the mains connections taken directly to the transformer, not to the PCB.

PROJECT: Scoreboard

Fig. 8 Component overlay of a digit driver board. The lamp connections are made directly to the centre pins of the triacs.

Fig. 10 Mounting arrangements for the triacs.
bent down to pass through the board, while the centre pin is bent up for a flying lead connection to the lamps. Only after the triac -heatsink assembly has been completed should the triacs be soldered to the board.

mammid mans live
Fig. 11 How the lamps are connected to form a 7 -segment display.

The displays themselves are pygmy bulbs in bulb holders, mounted on a wooden panel. 15 W bulbs should give sufficient light for most applications. Three bulbs are used for each segment as shown in figure 11, but for larger

displays it might be better to use the small incandescent strip lamps commonly found in bedside lights for each segment.

The reverse of the lamp panel is used as a chassis, and the various circuit boards are screwed onto it through standoff pillars. Interwiring is kept neat by using spiral wrap around the cable

Fig. 12 Component overlay of the controller board.

PARTS LIST - CONTROLLER MODULE

RESISTORS (all \%W 5\%)		C3	4n7 5\% polycarbonate	$\begin{aligned} & \text { IC5 } \\ & \text { IC6 } \end{aligned}$	$\begin{aligned} & 4001 \\ & 4011 \end{aligned}$
R1	1k8				
R2-11		C4	22u 25 V radial	IC7	40163
RV1,2	220k miniature horizontal preset		electrolytic	IC8	4512
		SEMICONDUCTORS			
ACITORSC1,2		IC1	4098	MISC	
	120n 5\% poly-	IC2	4069		
	carbonate	IC3,4	4013	PCB	

PARTS LIST - ISOLATOR MODULE

Fig. 14 Interconnection of the boards.
looms, or ribbon cable as appropriate. Make sure that suitable cable is used for the mains supply to the lamps, between the lamps and the triacs, and the returns from the digit driver boards.

The supply, return, and earth wires have been taken individually to a central supply point, rather than chaining them from one point to the next. This includes the power supply module as well as each display. Remember that much of the wiring carries mains voltages and currents, and must be of a high standard to avoid the risk of accidents.

The diodes associated with the thumbwheel switches are mounted on the switches themselves, and the arrangement shown uses the inverse data outputs. If the switches used do not have inverse outputs, turn all the diodes round, swap the common connections for the two pairs of digits and alter the pull-up resistors on the controller module so that they pull down to 0 V . If a display of less than four digits is required, simply omit switches and diodes starting with SW1, then SW2, etc.

Any convenient connector can be used for the outlet to the external controller. A seven pin DIN socket has been used in the prototype. The external controller can interrogate the thumbwheel
switches by intercepting the serial data and control signals. It can inject data in place of the switch data by driving the switch disable input to a logic "1" (anything over 3.7 V), at which point the output of IC8 goes high impedance and can be driven externally.

If the switch inputs are never going to be used, the controller module may be dedicated to external control by omitting IC4, 7 , and 8, and R2-R9. The copper track on the component side of the board leading to IC3 pin 1 should be cut (close to the IC as it also goes to other places) and a wire link soldered between the pad of IC8 pin 15 and IC5 pin 2. This allows the external controller to generate the envelope signal. IC6 pins 5 and 6, and IC3 pins 4 and 5 must be wired to 0 V to protect their CMOS inputs.

Setting Up and Use

It is a good confidence booster if the power supply works when you switch it on. Try it with its outputs disconnected, and the LEDs should light to show that something is getting through. If you have a meter, check that both outputs are producing 5 V .

Unfortunately, very little intermediate checking can be performed on the rest of the circuit. Be careful when poking around the digit driver areas as these are
live when the mains is connected.
Make the set up adjustments with a single bulb plugged in somewhere, and arrange for the display to show all " 8 "s. Set RV1 on the controller module fully anticlockwise and RV2 fully clockwise. Switch on, and the lamp should be at full brightness. Using an insulated screwdriver so that mains hum pickup does not affect adjustments, slowly turn RV1 clockwise until the lamp suddenly goes dim, and stop there. Now turn RV2 anticlockwise, and the lamp should increase in brightness. The lamp may be set to the desired operating brightness, remembering that the cooler a lamp is run, the longer it will last.

If the display is to be run at full brightness, either because you need that much light or because you wish to keep RF interferences to a minimum, continue to turn RV2 anticlockwise until the lamp suddenly goes out then turn it back to the point where the lamp comes on again.

The display is now ready for use, so switch off and install all the lamps. It would be as well to have a few spare triacs in stock, because when bulbs blow they tend to take their triacs with them. Running the display at reduced brightness should help a little.

ETI

STEREO SIMULATOR

Liven up your mono recordings, give breadth to your stereo with this unit developed by the indefatigable Dave Bradshaw from an idea by B. Webb.

There are many occasions when you're stuck with a mono signal, but it seems a waste. Mono is particularly irritating when you're using stereo headphones - it feels as if everything is coming just from the exact centre of your head. Here's a little unit that can remove that irritation.

Let's get one point perfectly straight, though. When you're presented with a mono signal, there's no way that you can get a true stereo signal back again. There are complex processes available to synthesise an apparent stereo signal, but these are very costly and time consuming and are primarily of use in the recording studio.

So, what the circuit does here is a bit of sleight of hand. By introducing phase and amplitude differences between the two channels, a semblance of
ambience can be generated, and this can remove the more objectionable effects of listening to mono through a stereo medium. However, the unit described here does not restore the stereo information.

As a bonus, the unit can also be used to generate spatial stereo. In this, each channel is intermixed with the other channel out of phase. In theory, this expands the stereo image. In practice, the degree of success depends very strongly on the material being listened to. The effect can make the results from headphones rather more comfortable, so you might like to try out the spatial stereo as well as the pseudo variety.

The Circuit
The circuit used here is a more-
or-less direct 'lift' of the circuit in Mullard's application notes. The TDA3810 is a purpose-made device for pseudo and super stereo, so why reinvent the wheel?

To the special IC has been added a quad op-amp, to boost the signal to the level required for optimum noise performance, and to reduce and buffer the signal after the TDA3810. In the parts list, we specify a TL094, but any quad op-amp can be used provided there is sufficient supply voltage for it - it so happens that the TL094 can operate down to 4.5 V , which is the minimum supply voltage for the TDA3810. Maximum supply voltage for the 3810 is 16.5 V , which is below the maximum for the TL094.

Supply current will be in the region of 10 mA (without the LEDs), a little more to the top end of the supply range, a little less for

Fig. 1 Circuit diagram of the mono-to-stereo simulator.
a low supply voltage (around 7 mA for 5 V). Obviously, supply current with the LEDs depends on what LEDs you use.

If a relatively 'clean' supply is available, R 26 and C 17 may be omitted. This may be particularly of value when lower supply voltages are used, as the voltage drop across R26 may be significant.

The actual mode that the circuit is in is selected by the voltages applied to pins 11 and 12 of IC 2 according to Table 1. Pins 11 and 12 could either be permanently connected to the appropriate voltages, or could be attached via a two pole, three way mode selection switch -one vital point, the switch must be break before make, otherwise it will momentarily short the positive supply to ground when it is moved.

Sensible values of capacitors C13 and C14 depend on the input impedance of the circuit being fed by the unit. The outputs of IC1C and d will be at around half the supply voltage, so if you have to use electrolytic capacitors check the voltage at the input point to see which way round the capacitors should go. Also, check the input DC voltage, as it may be necessary to reverse the input capacitors.

HOW IT WORKS

In the stereo mode, operation is quite straightforward, as all the TDA3810 does is act as a buffer. The op amps IC1a and b are configured as $x 10$ amplifiers, for reasons that will be discussed later, and ICIc and d are \div 10 amplifiers. So the net result is no change.

In the pseudo-stereo mode, IC1a-d act as before. However, IC2 is configured somewhat differently by its internal switches. The two filters, F1 and F2 are brought into circuit. Basically, the signal applied to the Linput goes through to the L output with a small amplification and inversion. However, some of the inverted L input is passed to the input of the inverting amplifier in the R chain, via low-pass filter F1. This is combined with some of the non-inverted input fed in via the R terminal, which is passed through notch filter F2. Analysing what's going on in either F1 or F2 is difficult (particularly, in F2), and after several pages of algebra, we were little the wiser, so we cheated and used the values given in the manufacturer's data sheet! Let it suffice to say that the R channel has a different phase to the L channel as well
as a different frequency response, and that response varies with frequency.

Finally, in spatial stereo mode, the configuration is as shown in Fig. 3. The input signals are buffered then slightly intermixed by the resistors connected between the +1 buffers' outputs. The signals are passed to the op-amps which invert them. These op-amps are configured so as to produce anti-phase cross-talk, ie the right output contains 50\% of the left input, but inverted. At higher frequencies, capacitors C3 and C4 reduce the cross-talk.
Op-amps IC1a and b increase the input signal level to 2 V RMS, which assumes a 200 mV RMS input signal to the whole unit - probably more common than 2 V ! 2 V is the recommended minimum input voltage to the TDA3810 with a 12 V supply; obviously, if the supply voltage is significantly lower than this, then the input signal level to IC2 should be decreased to allow sufficient operating headroom for it and for IC1a and b . This will be detrimental to the noise performance. Obviously, the gains of IC1 a and b will have to be adjusted accordingly, as will the gains of IC1c and d.

Fig. 2 Block diagram of the circuit in pseudo-stereo mode.

Fig. 3 Block diagram of the circuit in spatial stereo mode.

Construction

The first move should be to insert the IC sockets, making sure that you get them the right way round. This makes it easier to locate the positions of all the other components. Next insert and solder the resistors, followed by the capacitors, and then the LEDs. Finally, before inserting the ICs, check your work carefully and, in particular, look for solder bridges.

Now pick your insertion point in the main system that you're adding the unit to. The best point would be before the volume control, if the signal here is of a suitable level. In this way, the unit receives a more-or-less constant input signal level which makes for optimum signal-to-noise ratio.

The supply requirements of the circuit have already been mentioned. With a standard split supply circuit, it will probably be sufficient to feed the circuit from just the +ve supply and the 0 V -
the current consumption requirements of the circuit are modest and should not cause any problems.

BUYLINES

No special problems should occur here. The TDA3810 (as well as the more common TL094) can be purchased from Technomatic. Of the other components, the only trouble you may have is with the $3 n 9$ capacitors for C 3 and 4 . Not many capacitor types are made with E12 series values nowadays, the E6 series being much more prevalent. However, polystyrene still seem to be available in E12 values, and this can be used here. The main problem with polystyrene capacitors is their size, but this has been allowed for on the PCB (in the main, polycarbonates have been specified for their relatively small size, not for any other reason; so long as the tolerance is 10\% or better, any type should do, as this circuit does not have super-fi pretensions!).

MODE	CONTROL INPUT STATE			$\begin{aligned} & \text { LED } \\ & \text { PSEUDO } \\ & \text { PIN } 8 \end{aligned}$
	PIN 11	PIN 12		
MONO PSEUDO-STEREO	HIGH	LOW	off	on
SPATIAL STEREO	HIGH	HIGH	on	off
STEREO	LOW		off	off

LOW $=0$ to 0.8 V (the less positive voltage)
HIGH $=2 \mathrm{~V}$ to Vp (the more positive voltage)
$X=$ don't care

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W}$ 5\%)	
R1,3,4,6,9-11,21,	
22,24,25	10k (11 off)
R2,5,12,20,23	100k (5 off)
R7,14	20k
R8	15k
R13	18k
R15,19	16k
	(15k+1k)
R16	11k
	(22k//22k)
R17,18	22k

CAPACITORS (polycarbonate unless stated)

C1,2	$2 \mu 216 \mathrm{~V}$ electrolytic
C3,4	$3 n 9$
C5	$10 n$
C6	$22 n$
C7,8	$15 n$
C9	$33 n$
C10	100 n ceramic
C11	$100 \mu 10 \mathrm{~V}$ electrolytic
C12	$47 \mu 16 \mathrm{~V}$ electrolytic
C13,14	1μ
C15	$100 \mu 16 \mathrm{~V}$ electrolytic

SEMICONDUCTORS

IC1	TL094
IC2	TDA3810
LED1,2	LEDs to choice

MISCELLANEOUS

PCB, wire, pins for off-board connections, switch if required (2-pole, 3-way, break before make).

Table 1 Mode-switching logic.

ETI PCB SERVICE

In order to ensure that you get the correct board，you must quote the reference code when ordering The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．

198	
－	E／8106－8 Wat Pha
口	E／8106－9 Alien Altack
－	E／8107－1 System A－Input （MM or MO．
\square	E／8107－2 System A－Preamp ．．．． 5.95
ㅁ	E／8107－3 Smart Battery Charger ．． 2.27
\square	E／8108－5 Watchdog Home Security（2 boards）
ㅁ	E／8109－1 Mains Audio Link（3 bds）．．． 8.45
\square	E／8109－4 Labordory PSU ．．．．．．．． 5.21
ㅁ	E／8110－1 Enlarger Timer．．．．．．．．．． 3.91
\square	E／8110－2 Sound Bender．．．．．．．．．．． 3.05
－	E／8111－1 Voice Over Unit ．．．．．．．． 4.57
\square	E／8111－3 Phone Bell Shifter．．．．．． 3.40
口	E／8112－4 Component Tester．．．．． 1.71
198	
口	E／8202－2 Allez Cat Pest Repeller ．．． 1.93
口	E／8202－5 Moving Magnet Stage ．．．． 4.01
口	E／8202－6 Moving Coil Stage ．．．．．． 4.01
\square	E／8203－4 Capacitance Meter （2 boards）．．．．．．．．．．．．．．．．．．． 11.66
\square	E／8205－1 DV Meg ．．．．．．．．．．．．． 3.13
\square	E／8206－1 Ion Generator（3 bds）．．．． 9.20
\square	E／8206－4 MOSFET Amp Module ．． 7.80
\square	E／8206－5 Logic Lock ．．．．．．．．．．．．． 3.52
－	E／8206－6 Digital PWM ．．．．．．．．．．． 3.84
\square	E／8206－7 Optical Sensor ．．．．．．．．． 2.00
\square	E／8206－9 Oscilloscope（4 bds）．．． 13.34
\square	E／8212－2 Servo Interiace（2 bds）．． 6.75
ㅁ	E／8212－4 Speciracolumn．．．．．．．．．．． 5.54
19	
\square	E／8301－1 Fuel Gauge，．．．．．．．．．．． 3.45
\square	E／8301－2 ZX ADC．．．．．．．．．．．．．． 2.59
\square	E／8301－3 Programmable PSU．．．．． 3.45
\square	E／8303－1 SoundBoard ．．．．．．．．．． 12.83
\square	E／8303－2 Alarm Module ．．．．．．．．． 3.62
\square	E／8303－3 ZX81 User Graphics ．．．． 1.07
\square	E／8303－4 Logic Probe ．．．．．．．．．．． 2.50
\square	E／8304－1 Real Time Clock ．．．．．．．． 8.74
\square	E／8304－4 Slage Lighting－Main ．． 13.73
\square	E／8304－5 Stage Lighting－Display 3.45
\square	E／8305－1 Compressor／Limiter ．．．．． 6.19
口	E／8305－2 Single PSU．．．．．．．．．．． 3.16
\square	E／8305－3 Dual PSU ．．．．．．．．．．．．． 4.01
\square	E／8305－4．2 NDFL Amp ．．．．．．．．．．． 7.88
\square	E／8305－5 8alance Input Preamp．．．． 3.23
\square	E／8305－6 Stage Lighting Autofade．．．．．．．．．．．．．．．．．．．．．．．．．．． 6.19
\square	E／8305－7 Stage Lighting－

	E／8306－1 to 3 PseudoROM
\square	E／8306－5 Atom
\square	E／8307－1 Flash Sequencer ．．．．．．．． 2.67
口	E／8307－2 Trigger Unit Main Board．．． 2.67
ㅁ	E／8307－3 Trigger Unit Transmitter 1.66
口	E／8307－4 Switched Mode PSU．．． 16.10
\square	E／8308－1 Graphic Equ
口	E／8308－2 Servo Fai－Safe （four－off）．
	E／8308－3 Universal EPROM prog ．． 9.64
	E／8309－1 NiCad Charger／Regen ．．． 3.77
D	E／8309－2 Digg
\square	E／8309－3 64 K DRAM ．．．．．．．．．．． 14.08
\square	E／8310－1 Supply Protector ．．．．．．． 2.19
	E／8310－2 Car Alarm．．．．．．．．．．．．． 3.98
	E／8310－3 Typewriter Interface ．．．．． 4.17
	E／8311－1 Mini Drum Synth ．．．．．． 3.07
	E／8311－2 Alarm Extender．．．．．．．．． 3.21
	E／8311－3 Multiswitch ．．．．．．．．．．． 3.59
\square	E／8311－4 Multiple Port ．．．．．．．．．．． 4.34
	E／8311－5 DAC／ADC Filter ．．．．．．． 3.22
	E／8311－6 Light Pen ．．．．．．．．．．．．． 4.60
	E／8311－7 Logic Clip ．．．．．．．．．．．．． 2.51
	E／8311－8 MC Head（JLLH）．．．．．．．． 3.17
	E／8312－1 Lightsaver．．．．．．．．．．．．．． 1.85
	E／8312－2 A－lo－D Board．．．．．．．．． 12.83
	E／8312－3 Light Chaser（2 bds）．．．．． 7.54
－	E／8312－4 ZX Alarm ．．．．．．．．．．．．．．． 6.04
1984	
	E／8401－1 Ve
－	E／8402－1 Speech Board （Mini－Mynah） \qquad 10.97
口	E／8402－2 MP（Modular Preamp）Disc input（mono）．．．．．．．．．．．．．．．．．． 3.73
	E／8402－3 MP Output stage（stereo） 3.73
	E／8402－4 MP Relay／PSU．．．．．．．．． 3.73
	E／8402－5 MP Tone，main（mano）．． 3.73
	E／8402－6 MP Tone，filter（stereo）．．． 3.73
	E／8402－7 MP Balanced output（st）．． 3.73
	E／8402－8 MP Headphone amp（st）．． 3.73
	E／8402－9 MP Mother board ．．．．．．． 9.01
	E／8403－1 Power Meter ．．．．．．．．．．． 5.81
	E／8403－2 280 DRAM．．．．．．．．．．．． 9.79
	E／8403－3 Obedient Die
\square	E／8404－1 School Timer．．．．．．．．．．． 4.07
	E／8405－1 Auto Light Switch．．．．．．． 4.01
	E／8405－2 ZX81 EPROM Prog ．．． 10.53
	E／8405－3 Mains Borne RC．．．．．．．． 5.07
\square	E／8405－4 Centronics Interiace ．．．． 4.09
	E／8405－5 Vario ．．．．．．．．．．．．．．．．． 6.62
	E／8405－6 Midi Drum Synth ．．．．．．． 3.5

How to order．indicate the boards required by ticking the boxes and send this page，together with your payment，to： ETI PCB Service，ArgusSpecialist Publications Ltd， 1 Golden Square，London W1 R 3AB．Make cheques payable to ETI PCB Service．Payment in sterling only please．Prices subject to change without notice．

Total for boards Add 45p p\＆p
£．．．．．．．．．．．．．．．．．．．．．．．
Total enclosed 0.45

PLEASE ALLOW 28 DAYS FOR DELIVERY

Signed
Name
Address

Walking-ring Sequencer

S. P. Giles
London

This simple circuit is quite useful for generating a number of functions. It can be used for trilling, vibrato or higher frequency modulation. It will also provide voltages for note sequences, gating, controlling filters, VCA's or any voltage controled module.

A 555 timer is used as a simple voltage controlled clock with the five megohm potentiometer determining sequence speed along with the voltage at the control voltage input. This input will vary the speed with a positive voltage applied. This function is non-linear, has a $3: 1$ range and increases speed as the voltage decreases. With the component values shown (5 M and 22 n) the range is 2 Hz to 7 KHz . Larger values of CR will result in slower rates, and small values, faster ones.

A 7474 flip-flop is wired as a walking ring counter. The outputs overlap, so the final output is apparent as four steps. Moving one

FET Grid-dip Oscillator

G. G. Mellor
 Macclesfield

A relatively up to date version of the well known triode valve griddip oscillator can be constructed very simply and cheaply by replacing the RF triode by a FET such as the 2 N 3819 , the BF245A or preferably, MPF106 in the trusty Hartley circuit. Although the physics of a triode and a FET are obviously different, they seem to operate in a similar fashion.
A non-mathematical explanation of the oscillation assumes an alternating RF potential on the source of Q1 which, due to the autotransformer action of L1, gets amplified without any phase change (to make good any circuit losses). This voltage is fed to the gate of Q1. Since we are using Q1 in source follower mode, FET action maintains the amplitude of the alternating RF we first assumed. The tank circuit, $\mathrm{L1}$ and C1, will provide the initial RF we require for this explanation on power-up.

The GDO must be calibrated and this can be done in one of (at least) two ways:
i) Listen for the GDO frequency on a good communications receiver and, using spot frequencies, calibrate the C1 scale.
ii) Measure the GDO frequency with meter using a high impedance probe on the source of Q1.
Using the GDO is simple, the appropriate coil for L 1 is plugged in and the GDO switched on. L1 (which is mounted on a 3 pin DIN plug external to the circuit) is brought in the vicinity of the tuned circuit under test (TCUT). C1 is adjusted for a local minimum in the

| CoilFrequency
 Range
 (MHz) | Number
 Of
 Turns | | Tap | Wire
 Gauge
 (SWG) | Number of
 Turns Per
 Inch |
| :---: | :---: | :---: | :---: | :---: | :---: | | Coil |
| :---: |
| Diameter |

of the four level controls moves the whole sequence. These should be adjusted for preferred operation. The primary disadvantage here is that individual notes are difficult to tune accurately so the sequence should be run fairly fast in order to minimise note inaccuracies when controlling a VCO.

The sequencer can be turned off at the gate input with a ground. No connection, or a positive voltage will allow the circuit to operate. This input is protected from normal synthesiser positive voltages, but negative voltages should not be applied unless you use the optional gate protection circuit. The 50 K pot on the output controls the level from 0 to 3.5 volts. The $1 \mu 0$ capacitor and switch are used to provide a slide function.

Note the power supply is 5 volts and must be regulated. Higher voltages may destroy the 7474 IC. If 5 volts is not available, use any 5 volt voltage regulator to step down a higher voltage.
meter reading and the frequency read off the scale. This "dip" in the reading occurs because some of the RF feedback in the GDO is absorbed by the TCUT consequently making the natural potential on the gate of Q1 less negative. It should be noted that loose coupling to the TCUT is essential to avoid the GDO frequency being "pulled" away from the value indicated on the scale. A dip can also occur when the GDO frequency is an integral sub-multiple of the TCUT frequency. However, practice in using the GDO will soon remedy this, and in any case there in no excuse for being a factor of 2 , 3 or 4 out of the waveband you are supposed to be working in!

Push-button Operated Change-over

D. Wells
 Newport Pagnell

The circuit shown was developed during the design of a DC controlled pre-amplifier. Using momentary contact switches allowed standardisation of all front panel switches. As well as giving a single or double pole change over switch the circuit ensures that the power up state of the switches is always the same. In the author's application only DC control voltages were being switched so the limitations of the 4066 switches at audio frequencies were unimportant; other applications may need to take account of these.

IC1a goes high when SW1 is pressed, R1 and C1 provide a debounce function. The outputs of IC2a change state on the positive edge of IC1a output. As the two outputs of IC2a are complementary and are connected to the control inputs of two switches in IC3, a change over switch is achieved by commoning the outputs of the two switches. R3 and LED1 are optional and form a visual indication of switch status.

IC1b provides a short high pulse at its output immediately after power up. The values of R2 and C2 ensure that this pulse is longer than
the pulse from IC1a. The high from IC1b is connected to the set input of IC2a and causes the power up state to always be:
point A connected to point B and point B to C open circuit.

As it stands the circuit only uses half the gates in all three IC's. One possible use for these spare gates is shown in the diagram. The positive pulse from IC1b is fed to one of the spare switches in IC3. This switch was connected in parallel with one of the source select inputs thus ensuring that the same source was always selected at power up (the source switches were latched by the audio switching IC used). Other functions that could be implemented include: two single pole single throw switches; another single pole change over switch; a double pole single throw switch.

Could G M. Heath get in touch with us over his contribution to Tech Tips and would all future contributors help us by marking their name and address on each sheet of their submission. Thanks.

PCB FOIL PATTERNS

The top and bottom patterns for the scoreboard controller module.

The digit driver board pattern for the scoreboard.

The pattern for the scoreboard opto-isolator module.

The EPROM Programmer upgrade board foil pattern.

The mono-to-stereo simulator foil pattern.

The power supply board pattern for the scoreboard.

The top and bottom patterns for the 6802 Evaluation Board.

OPEN CHANNEL

Keep it human

When electronic communications systems were in their infancy, it seemed that the existing news communicators newspapers - were in for a hard time. Pundits (then, and some even now) predicted the rise of the electronic newspaper and demise of the real McCoy. Well, the technology of the electronic newspaper is now with us, but it's being given a run for its money - after all, who on earth wants to sit in front of a computer display: CRT, LCD or other, to read the news when you could have a real, live newspaper folded on your lap.

The Financial Times will be the first UK publication to make use of SatStream North America and it obviously hopes to eliminate freighting costs, as well as being able to produce the paper in North America, hours earlier than previously possible.

A single satellite link is to be
used between the FT's head office at Bracken House in the City of London and the printer in New Jersey State, USA. Facsimile pages will be digitally transmitted from Bracken House to the printer at data rates upto 128 Kbits per second, via BTI's earth terminal, sited at Ealing. Confirmation of page reception will be provided by a low-data rate return path using BTI's KiloStream service.

The point I'm making is that, yes, electronic services can be super fast, super efficient, and just plain super, but they can also de-humanise a customer service, so much so that the customer will choose not to use it. The example l've used here shows that electronic services can be used to great advantage in the planning, preparation and production of a newspaper, but in the end the human consumer must be catered for. Paper newspapers do this, electronic newspapers don't. The principle is not restricted to newspapers, and planners of electronic services shouldn't forget it. It's for yoo-hoo

This month sees the planned start of British Rail's new service for commuting business - people : telephone links on-board
trains. The first stage will cover the London/Manchester and London/Liverpool lines, and goes into service with a single telephone in each first class executive Pullman carriage. BR plans to expand this rapidly (hopefully to second class, toosome of us fee-paying, ordinarymortal commuters know what a 'phone is, you know!) and foresees a high usage of electronic mail via portable terminals. In effect, commuters can use the train as a mobile office. Presumably, BR feels that its
commuters should get some more work done and stop wasting time reading humanised newspapers.

Keith Brindley

Open Channel welcomes letters and information on products and events to do with telecommunications. Please address correspondence to 'Open Channel', ETI, ASP Ltd., 1 Golden Square, London W1R 3 AB.

WE MANUFACTURER BEAUTIFUL ENCLOSURES- At prices you will find difficult to beat.
Alloy boxes from 80p to rack mounted units from £15 and a host of ranges and sizes in between. Well made - well finished - and all British.

Send large SAE for catalogue which includes $£ 5$ in vouchers.

ce 35 MHz	NEW EQUIPMENT hameg OSCILLOSCOPE 605. Dual Trace 60 MHZ Delay Sweep. Component \qquad	
State. Portable AC or External DC Opera	HAMEG OSCILLOSCOPE 203.5 Dual Trace 20MHZ Component Tester.......e2e4 BLACK STAR FREOUENCY COUNTERS.	
	PAP E4	
	Meteor $100-100 \mathrm{MHZ}$...................................... 121	
	Metoer 1000 -1GHZ	
	black star jupitor 500 FUnction GENERATOR Sine/Square/Trianglo	
microvolt - 2 Volts. Complete with	held 28 ranges including 10 AMP AC/DC.	
manual.. 8 st	Complete with batteries \& leads. pap $84 .$ \qquad c3150	
AYME KERR AUDIO AL GENERATOR 8121	MULTIMETER type U4324. 33 Ranges. Complete wh Batteries \& Leads PaP \&4.	
Attenuated $0-30 \mathrm{~V}$ and 600 chm Outputs. whth Batteries if Leads Ps P \& 4.		
Comply	MULTIMETERS	
Resistance 1 milil-ohm	PHILIPS DMM 2517, 4 digit. Auto ranging	
+	Complete with Batteries, Leads (Un-used)	
	p\&p ES..es8	
CONI	AVO 8 Mk5. Complote with Batteries. leeds	
Twelve ranges $1 \mathrm{mV}-300$ Vons FSD up to 10		
MHz Complot with manual SD up 07		
	AVO TEST SET No. 1 (Very similar to AVO 8x) .. $\mathbf{5 0}$	
$100 \mathrm{nA}-30 \mathrm{~mA}$; 100 microv- 30 V . Contre		
zero meter. Unused...................E15 plp 87	teries, laads \& carrying case. p\& $p=3$...92250	
0-60 Volts; 0-0.5 Amps. Current Limiting. Metered. Size $81 / 4 \times 6 \times 51 / 1 / \ln$	AVO TRAN8IBTOR TESTER Handheld. GO/NOGO for in-situ Testing. Complete with Leads \& Instructions	
.. 40 pip 87		
VARIAC SAMP Input 240V; Output 0-265V. Cased - sult-	Completo with Leads \& Insituctions ... 520 plep $£ 3$	
able for Bench use 220 plep $\varepsilon 7$	CROYDON RE8IBTANCE BOX-MANGANIN 0.1-1111 Ohms (4 switches). Un-used	
Complete with Batteries and loads. In loather case \qquad .540 pap $£ 5$.	MAINS ADAPTOR. New. 240V Inpul 9 V DC 800MA Output. Plugs directly into 13A Socket PAP 2	
	DELPAK D15-200 POWER SUPPLY	
avalab	MODULE. Enclapsulated Ex-eq. 210-250 Input. +/- 15V 200MA Output. P\&P 9	
VAT to be sdoed to total oigoods a Carriege	\qquad	

[^1]FIND YOUR WAY THROUGH THE DIGITAL ELECTRONICS MAZE

First there was SUPERKIT

and now

 SUPERKIT II

This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction manual and many more components, enabling you to design and use adders, subtractors, counters (ripple, up/down, synchronous, decade and Gray code), registers, pattern recognisers and 7 -segment displays. You need the board and components from SUPERKIT to enable you to build the circuits in SUPERKIT II. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer.
SUPERKIT. (8UP) E22.00 SUPERKIT II (8UP II) £18.00 Epecial price $\mathbf{E 3 5 . 0 0}$ for both (8UP +11) (inc. VAT and p \& p) The SUPERKIT series is backed by our theory courses. DIGITAL COMPUTER LOGIC (beginners' course), which covers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced). which covers the design of digital computers. MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.
dIGITAL COMPUTEN LOQIC (DCU E7.00
DICITAL CONPUTEA DESIGN (DCD) E9.60
MICROPROCESSORS AND MICROELECTRONICS (NIC) E8.6O
Please send for full information on these and our other courses. GUARANTEE If you are not completely satisfied. return the tem to us withen 28 dave for a fult refund. All pnces include worldwide surface postage lask for prepeyment invoice for sirmall Allow 28 days for delivery in UK Overseas payment by intemational credit card or by bank drah drawn on a London bank
CAMBRIDGE LEARNING LTD, Unit 10, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England.

Tel: 0480-67446

VAT No 313026022 Transcash No 2789159 Reg No 1328762
Please send me (initial letters used):

I enclose a cheque/PO payable to Cambridge Learning Ltd for $£$
Please charge my
credit card.
No
Expiry date
Telephone orders from credit card holders accepted on 048067446 (24 hrs)

Name

Address Signature.

CAMBRIDGE

 LEARNINGUnit 10, Rivermin sive, FREEPOST, 81 lvee, Combe PE17 4BR, England.

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $\mathbf{£ 1 0 . 9 5}$ to $£ 17.75$ + VAT; manuals £1- £5.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name and address with a 21 pstampand we'll send you 40 pages of details forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

drababyboard
 Printed Circuit Hardware \& Component Catalogue
 \star COPPER CLAD LAMINATES
 PHOTO-RESIST LAMINATE \& CHEMICALS PRINTED CIRCUIT DRAUGHTING AIDS VEROBOARD \& PROTOTYPING SYSTEMS CONNECTORS/CASES/GENERAL HARDWARE
 SELECTION OF COMPONENTS EDUCATIONAL COMPUTING ELECTRONICSKITS

Send for your free catalogue to.

KELAN ENGINEERING LTD. Circuit Products \& Components Division. 27-29 Leadhall Lane, Harrogate. North Yorkshire. HG2 9NJ.
Tel: (0423) 870938.
ETI/5/85
NAME
ADDRESS

SCRATCH PAD

by Flea-Byte

Steve Wozniak is one of the legends of the electronics world. While still hardly more than a teenager, he and his friend Steven Jobs built a smallish, microprocessor-based device in a garage in California. This was in the mid-seventies and, when they started to sell similar devices through their local electronic parts supplier, they caused quite a stir. They began manufacturing the device on uncased PCBs and gave it a name - the Apple computer. By the early eighties, Jobs and Wozniak were reckoned to have personal fortunes well in excess of $\$ 10 \mathrm{~m}$ each. But, while Jobs went on to lead the Apple Computer Co. to greater and greater things, Wozniak quit in 1983, taking his money with him. He went into rock promotion, lost a couple of million, and signed up for a degree course in computer engineering- as a student. A couple of years later, the mercurial Wozniak applied for a job... as an engineer working at Apple Computer. Despite his millions, he was accepted on the 'shop floor and helped develop products for the Apple IIe and IIc. Then,
early this year, he quit again saying he was fed-up with working on computers. Instead, says Wozniak, he is starting a company called MBF Corporation which stands for 'My Best Friend'. MBF's first product will be a controller for home video systems. 'It is not,' says Wozniak defiantly, 'a computer or a peripheral'.

Interesting to note the results of the latest poll in 'New Scientist'. Asked - among other things - to name three famous scientists, members of the Great British Public plumped overwhelmingly for 'Don't Know'. Don't Know is, of course, dead like most of the other scientists who appeared in the poll results. He or she is, however, thought to be responsible for inventing the wheel, viruses, sexual reproduction and the Third Law of Thermodynamics. Readers will be pleased to learn that, according to the poll results, the world's greatest living scientist (in fact, the world's only living scientist) is Sir Clive Sinclair, inventor of the tricycle.

The latest news from Silicon Valley suggests that maybe it should be renamed. Cocaine Valley, perhaps? Or Amphetamine Alley? Evidently, the use of 'uppers' like cocaine and amphetamines has become so widespread among the elec-
tronics community that many companies have had to consider screening prospective employees for signs of drug use. IBM has actually introduced a screening policy. (Perhaps the company should now be known as Big Blues!) Practically every other big name in the Valley has fought shy of such a move. They are doubtless aware of the fact that hardly anybody could stand the pace of developing breakthrough technologies every other day without recourse to stimulants. Also Intel, Nat Semi, Apple and the rest must know that there are more jobs around in their part of the world than qualified people to fill them. Indeed, with an average salary of $\$ 28,000$ which is already 75% higher than the US average, perhaps it's time for the high technology companies of Silicon Valley to start offering inducements in non-financial forms to
woo new talent. Could the sunrise industries become the snowfall industries?

While the robot population of Britain rose by 33% last year to a total of 2,623 (not including the occupants of the House of Commons or the cast of 'Crossroads'), the country is still only sixth in the league behind France, Italy, West Germany (with 6,600 robots), the US $(13,000)$ and Japan $(64,600)$. Of course, it's common knowledge that the Japanese have a different system for counting robots. For example, they claim to have developed a device controlled by 6716 and 8 -bit micios which can read music, listen to instructions, talk and play keyboards. In Britain, this would be known as Richard Clayderman.

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctiy but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift); - Other than through our letters page, Read/ Write, we willnot reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole; - We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want

Subscriptions

The prices of ETI subscriotions are as follows: UK:

£16.30

£18.30 Surface Mail
$\$ 24.00$ Surface Mail (USA)
£43.30 Air Mail
Send your order and money to: til subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).
ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1 BB. Cheques, postal orders, etc should be made payable to ASP Lid. We suggest that you telephone first to make sure there are still stocks of the issue you require: the number is (0442) 48432.

We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an article appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982. the 1983 index in January 1984 and the 1984 index in January 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your compiaint
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

EPROM Card (June 1984)
On the circuit diagram, Q2 base is shown connected to +25 V , but should be connected to +5 V . Q3 should not be connected to VV , but only to point a The capacitor connected between +25 V and 0 V is C 5 and should be $2 \mu 235 \mathrm{~V}$ tantalum bead. Switch connected across C4 is SW1 on overlay. Increase R8 to 2 k 7 if using suggested PSU. (R8 OK for 24 V).

Spectrum Joystick Interface (June 1984)

The PCB and the circuit diagram do not agree; the circuit diagram is correct, and all PCBs sent out by the PCB service should have been amended. IC3 is 74LS241, as correctly stated in the parts list but incorrectly given in the footnote to the circuit diagram.

CMOS Tester (August 1984)

C3 and C2 are reversed on the overlay. C3 is the electrolytic and C2 the polyester. R33 is 100 K not 1 M as given in the parts list, and RV1 is a 1 M horizontal skeleton preset. R1-16 are two, eightresistor SIL packages, the component labelled C14 on the overlay is SK1, and the connections to D2 shown in Fig 3 are reversed. On the circuit diagram, the eight lines connecting SW9-16 to the inverters are shown in reverse sequence. Some of the inverters have been given the wrong designations; the correct sequence, reading down from the top, is:- IC1 f, IC2 a, IC2 b, IC1 e, IC1 d, IC1 c, IC1b, IC1a, IC2 c, IC2d, IC2e, IC3d, IC3a, IC3b, IC3c, IC2f. Finally, the pin numbers are missing from ICs 3 e and f, the input of IC3e is pin 11 and its output pin 12, and the input of IC3f is pin 14 and its output is pin 15. The PCB is correct in all respects.
Sharp Joystick Interface (August 1984) Some of the inverter pins are incorrectly labelled on the circuit diagram. Pins 11 and 10 are shown reversed on IC1b, pins 9 and 8 are shown reversed on ICl c , and the output of IC4 d is pin 10, not pin 20. Note that a number of the inverters have been incorrectly shown as noninverting buffers.
AM/FM Radio (November 1984)
In Fig. 2, the oscillator and IF sections should be shown connected to ground; the PCB is correct. In Fig. 4, C31 should be 10 n to give the 75 us deemphasis shown in Fig. 3,but $4 n 7$ has beenfound to give a brighter midrange. R38 in Fig. 5 should, of course, be 820 k rather than 280 k and it and the bottom end of C38, C44 etc should be shown connected to ground. In the construction section on page 25 , four pieces of 8 mm plywood are menioned but in fact only three are needed - the fourth side is the front panel. See also the note in December News Digest regarding availability of the inductors.

Digital Control Porl (November 1984)
The second sentence in the "Testing" section on page 30 should include the words 'without any ICs in place.' In the second paragraph of that section, the check for +5 V should be made on pin 3 of IC101, not IC1. At the bottom of the first column on page 31 , the last sentence should finish with $B 3=0$.

Video Vandal (November 1984)

In Fig. 8 on page 54, R16 and R17 should be shown connected to the base of Q4, and C12 and SW2 should be in the D output line rather than the OV line. It may also be beneficial to add a diode across $R 3$ with its anode connected to the slider of RV1. In Fig. 10, R52 and LED2 are shown connected across the +12 V supplybutit is better to place themacross the -12 V supply so as to even-up the dissipation in the ICs.

VCDO (March 1985)
RV2 should be 10k (right in parts list, wrong on circuit diagram).

REVIEW

Digital Lab
Computer software
Associate Services Ltd.
23 Chesham Street
London SW1X 8NQ
price: $£ 29.95$
For some years now, sophisticated circuit design and analysis software has been available for expensive minicomputers and mainframes. One of the most interesting developments in the micro field in recent months - interesting, that is, for those involved in electronics - is the introduction of cheap packages for circuit design and analysis on home computers.
Digital circuit design and testing would seem to be the obvious direction for software developers in this area to take. So it's surprising to find that the best packages (and there are only a handful of them) are actually devoted to modelling and analysing linear circuits.
Apart from Sinclair Research's 'Make-A-Chip' package for the

Spectrum, which pretends to be no more than educational, there has been nothing to my knowledge tackling the problems of either combinatorial or sequential logic design. Until now, that is.
'Digital Lab' is a package produced by Associated Services (London) Ltd., of 23 Chesham Street, London SW1X 8NQ, for the Commodore 64. The diskbased software comes with a 60page manual and costs around £30. In all fairness, Associated Services aim the program at 'pupils and students who would like to extend their practical approach to designing and constructing logic circuits' although they do claim that the program can be used to help actual circuit construction.

I must confess that I assumed 'Digital Lab' would turn out to be a real designer's tool before actually trying it out. In that respect, I was disappointed. The package allows you to link together as many gates as you can fit into a 99 row by 99 column matrix (windowed on the screen as a five by five matrix), but there are no NAND, NOR or EXNOR gates available these having to be built-up from ANDs, ORs and NOTs - and the

The initial screen of Digital Lab
maximum number of inputs to any one gate is only three. Neither does the package support sequential logic. except by allowing you to observe the action of single RS, D-type and JK bistables.

With these restrictions, 'Digital Lab' can only substantiate a claim to being an educational tool. And, despite one or two quirks, as an educational tool it works well. The quirks are largely to do with the style in which the software has been programmed. The author could have made one or two simple modifications to improve the package - for example, the
ability to hold the 'input-output screen' (in which the circuit you have designed is assigned input and output names) and alter the design would have been useful. As it stands, if you want to alter your circuit in any way, inputoutput lines have to be re assigned from the start. This is quite a tedious procedure.

I would expect to see more packages like this being produced in the future. No doubt, their authors will learn from this one and make what improvements they can. At the moment, 'Digital Lab' has the edge because the competition is practically non-existent. Its own merits are also clear. It is a powerful, value-for-money aid in learning about combinatorial logic. It is not really a designer's tool and, even as a learning aid, it should be used together with a good book on logic circuits. Its one virtue for the professional or advanced amateur is that the program takes the tedium out of calculating truth-tables for complex gate arrangements. For this reason alone, Commodore-64 owners involved in logic design may well have reason to be very grateful to Associated Services.

Gary Herman

TOROIDALS

The toroidal transformer is now accepted es the stenderd in industry. overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidels offer in size, weight, lower radiated field and thanks to I. L.P. PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can olter a prototype service within 14 DAYS together with ashort lead time on quantity orders which can be programmed to your requirements with no price penalty.

Prices inctuding PaP and VAT

Prices including Pap and VAT					
VA	Size	โ	VA	Size	c
15	0	7.06	160	5	12.17
30	1	7.67	. 225	6	13.75
50	2	8.90	300	7	14.97
80	3	10.06	500	8	19.60
120	4	10.65	625	9	22.30

Mail Order - Please make your crowsed cheques or postal orders paysble to ILP cheques or postal orders, pay sble to ILP
Electronics Lid. Elecronics Lid. Trede- We will open your credir account ordop.
Post to: ILP Electronics Lid., Dept. 4
Graham Bell House, Roper Close,
Canterbury, Kent. CT2 7EP
Tel: (0227) 454776 Telex: 965780

ELECTAONICS
LTD.

ELECTRONICS TODAY INTERNATIONAL

Lineage:
40p per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

$01-4370699$

Send your requirements to: Caroline Faulkner
ASP Ltd.,
1 Golden Square,
London W1.

ALARMS

LOWEST PAICEDTOP QUALITY fire and intruder alarm equipment, etc. S.A.E. for catalogue. Security Services, 162 High St., Hythe, Kent CT21 5JR.

IT'S ALARMING!
SOME PEOPLE DON'T PROTECT THEIR PROPERTY. PERSUADE THEM. ADVERTISE YOUR ALARM SYSTEM HERE.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×9 x, Paralab, Downton, Wiltshire

KITS

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer Elvins Electronic Musical nstruments, 40A Dalston Lane London E8.01-986 8455.

APPOINTMENTS

ELECTRONICS ENGINEER

Cloud Electronic Ltd who manufacture a range of high quality audio products amplifiers, mixers etc, require an Electronics Engineer to join their $R+D$ team. The ideal candidate will have an active interest in audio and relevant $R+D$ experience.

Write giving full details to: CLOUD ELECTRONICS LTD 511-515 Staniforth Road Sheffield S9 4RA

KITS

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride $60 p$. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft . Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

MINIATURE FM TRANSMIT. TERS. Frequency $60-145 \mathrm{MHz}$ range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 912v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. $£ 6.95$ inc; or ready built £8.95: Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate. Hailsham, E. Sussex BN27 2EW.

MINIATURE TRANSMITTER, transmits all voices and sounds to any VHF/FM radio up to 5 miles away, size 2 in $\times 1 / 2 i n$, tunable $70-$ 150 MHz complete kit, including sensitive microphone, $£ 4.95$ send cash/cheque/PO: Tectroniks, 22 Lambardes N.A.G., Nr. Dartiord, Kent DA3 8HX. Mail order only.

J. Linsley Hood Designs

Distortion Analyser Kit 825.00 (p\&p \&1) Millivoltmeter Kit $\quad \mathbf{1 2 . 2 5}$ (p\&p 75p) Case \& Panel \quad \&12.00 (P \& E1) ETIMosietPAmp.Kit \quad £ 51.00 (p\&p 12.50) Audio Signal Gen. (02\%) E2e.50 (p\&p £1) Audio Signal Gen. (.002\%) c3*. 00 (p \& p 52) Fixed Freq. Sig. Gen.Kh $£ 1100$ (p\&p50p) Send SAE for full information
TELERADIO ELECTRONICS 325 Fore Street 325 Fore Stroel

SERVICES

JBA ELECTRONICS

Manułactures to design or specifications. One offs, small batch prototypes Complete electronic service - no iob to small

1 st Floor, 4a Lion Yard
Brecon. Powys South Wales
Tel. (0874) 611177

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.
P.C.B. DESIGN \& LAYOUT, manually taped artwork professionally produced at competitive prices. James Gledhill. Tel: 01-674-8511.

PCB DESIGN a LAYOUT. Taped artworks to your specifications and requirements. TRAX Limited, 497 Hitchin Road, Luton, Beds.

SCOPES

Reparred \& recalibrated all makes, all models. Scopex Safgan OIder Tf-K TQ MENDASCOPE LTD Otter House
Western Underwood, Olney Bucks MK46 5JS
Tel: Bedford (0234) 712445
P.C.B.'s manufactured to your specification. Small/Large production. FAST PROTOTYPE SERVICE. Photography. Sensitised Laminate Supplled, U.V. Exposure Equipment from manufacturer. ORBITECHNIC, 38 Torquay Gardens, Redbridge, Essex. 01-5503610.

FOR SALE

100W AMPLIFIER - $£ 9.95$ built of use the same board for 50W, 150W, 200 W into 4 or 8 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details to:- ESS Amplification, 269 Hessle Road, Hull.

KIA RETURN AN AD. No. 19 . . New varlabe automatic protection power supplies $12-40 \mathrm{v} / 5 \mathrm{~A} / \mathrm{STAB}$ return AD19 + $£ 5.90-8$ Cunllife Rd., Ilkley . . Saletime, 1000 amplifiers - Giveaway prices!!

BARGAINII!

LED 7 SEGMENT DISPLAY, BRAND NEW 14 PIN DIL RED .43 inch, COMMON ANODE DISPLAY O-9 WITH RIGHT AND LEFT DECIMAL POINT

5 pieces	E2.00	(40p each)
10 pieces	$\ldots 3.50$	(35p each)
50 pieces	£15.00	(30p each)
100 pieces	£25.00	(25p each)
1000 pleces	250.00	(20p each)
LEPHO	ONE YOU	OER

KIA WISH YOU A HAPPY
EASTER . . . Treet yourself!! 100w. Powerfet amps + relay built \& tested . . Post this advert + £12 (inc). KIA-8, LS29 9DZ (Catalogue 50p)

CORTEX COMPUTER - RS232, RGB Interface, Centronic Printer Port, Extension BUS and $2 \times 51 / 4$ inch Disk Drive with CDOS operating system £500 o.n.o. Additional software MDEX with forth and graphics $£ 100$. Tel: 0480860821.

64K DRAMS. 4164 150nS 23.95 120 nS £4.95 Tested. Also one Shugart SA400 5 $1 / 4$ inch Drive $£ 55$ inclusive. Tel: 0386553767

COMPONENTS

RESISTORS, CAPACITORS. 1,000 mixed carbon film $1 / 8 \mathrm{~W}$, $1 / 4$ W, $1 / 2$ W, $2 \%, 5 \%, 10 \%$ resistors £2.95. 50 mixed ceramic tube capacitors E1.00. P\&P 50p. D.J. Hooker, Romney Marsh Electronics, Pennywood, Clark Road, Greatstone, Romney Marsh, Kent TN28 8PB

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-ot-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6 Phone (O1) 0001 If England 987507 Mail order only please

HUNT ELECTRONICS 1985. COMPONENTS CATALOGUE send 50 p in stamps. Refunded with first order, to P.O. 57, Derby, DE6 6SN. Tel: (0283) 703071.

COMPONENTS

```
Aosolute bargains. rack mounting & tree stand-
min. NEW, but manufacturers seconds. No
damage
```

> C. Phillipe "The Laurels Tiptoe Roed
Wooton. New Mition, Hants EH25 5 Sa Wooton. New Mition, Hants 8 H 25 ssMAIL ORDER ONLY

NI-CAD BATTERIES. AA, 500 MAH £1.00. C $1200 \mathrm{MAH} £ 2.00$. D, 1200 MAH £2.20. PP3 110 MAH £4.80. P\&P 40p. Free price list! Spectrum Radio \& Electronics, 36 Slater St., Liverpool L1 4BX. 051-709-4628.

BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH

Have you got lechnical books you no longer need? OR Do you need to read Up on a new topic? Then EXCHANGE BOOK CLUB can help YOU!
We buy and sell previously read books on electronics ánd computing
details of our guaranteed buy back plan SAE please to:
JAMESELEII, Leede LS26 OUY

TEST EQUIPMENT

TOP PRICES PAID
for surplus electronic test equipment.
ALWAYS a good selection of SIG-GENS, METERS, and SCOPES for sale
Phone 0920-8714301

ADD-ONS

TANGERINE OWNERS at last 2 "6809** C.P.U. board with expandable monitor in colour. FLEX compatible. Also 14K RAM card to free EPROM space on TANEX S.A.E. For details . . Ralph Allen Engineering; Forncett-End, Norwich. Tel: (095 389) 420

WANTED

TURN YOUR SURPLUS transistors, IC's etc Into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

MICROCOMPUTER REPAIRS

ZX SPECTRUM. Vic20,C64, BBC QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.

PLANS 'N dESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street, Ledbury HR8 2AA

COMPUTER

 ADD-ONSEXTERNAL VIDEO BOARD for the CORTEX and other computers using the TMS9929 V.D.P. Fully synchronises the computer to a video fed from camera or V.T.R. Produces a combined picture at the outputs. Unpopulated P.C.B. circutls and details - $£ 30.00$. Fully built £100.00. Tim Gray, 12 Larkspur Drive, Featherstone, Wolverhampton, West Mids. WV10 7TN.

OSCILLOSCOPES FOR SALE

TEKTRONIX OSCILLOSCCPES

585A dual trace. 85 MHz delay sweep $£ 250.546$ dual trace 50 MHz delay sweep £195. 564 storage dual trace 10 MHz £205. 575 curve tracer for transistors $£ 75$. Manuals, plug-ins, spares. NOVA 3 mini-computer. Tel: 01-868 4221.

EQUIPMENT

EPROM COPIER - STAND ALONE 2716-27128.
£175.00
TELEPHONE CONVERSATION
RECORDER $£ 75.00$
2 LINES INTO 1 ANSWERING
MACHINE
Switehing Unit £30.00
From L_K.F. Systems Lid St. Albans. Tel: 55084

PRINTED CIRCUIT BOARDS one-ofis and small quantities supplied. Artwork carried out. Fennel Industrial Electronics, 54 Watling Street, Nuneaton, Warks CV11 6JL. Tel: 0203382296.

WIRES 'N CABLES

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17 $01-531.1588$				
SWG	116	$80 z$	$40 z$	$20 \dot{z}$
$8 \cdot 34$	3.63	2.09	1.10	88p
35.39	3.82	2.30	1.26	93p
$42 \cdot 43$	5.20	2.91	2.25	1.60
44-47	8.56	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SILVER-PLATED COPPER WIRE				
14.30	9.09	5.20	2.93	1.97
TINNED COPPER WIRE				
14-30 3.97 2.41 1.390 .94Pricas include P\&P and VAT.Orders under				

SOFTWARE APPLICATIONS

MORSE DECODER. For the 1 K ZX81 16K ZX81 16/48K SPECTRUM. Full spaced alpha numeric decoding plus most punctuation. Works on clean signal fed into ear socket. 100\% MACHINE CODE AUTO SCROLL. Adustable speed 8/40 wpm. Introductory price £6.00, PLEASE STATE WHICH COMPUTER! We believe these programs are the most USERfriendly and reliable yet. CATRA SOFTWARE, 3 Pedmore Close, Redditch, Worcs B98 7XB.

TELEPHONE SOCKETS, New type, Main £3.50, Extension £2.50, Plug \& Cord £1.50, Cable 15p per mtr . Price includes instructions \& postage. SHANTRONIC 60 Oakhill Rd., Horsham, West Sussex. Tel: 040356563.

SPECTRUM P.I.O. 16-Bit Programmable £9.50 Also SPECTRUM ADC/DC 8-Channel, 8-Bit, with 240 V relay output, includes 16-Bit P.I.O. £24.95 Also SPECTRUM JOYSTICK INTERFACE using Kempston standard with any Atari-type controller $\mathbf{£ 5 . 5 0}$. Check/PO to:- R. Chandler 5 Norfolk Place, LEEDS LS7 4PT. Tel: 693540 comprehensive instructlons included.

EDUCATIONAL

IMPROVE YOUR PROSPECTS

with skills that employers want - leam the easy way with modern home study courses from ideal Schoots.

MODERN ELECTRONICS Train for success in the tastest ever growing industrial sector. COMPUTER PROGRAMMING The demand for Progremmers is increasing constantly - dorit miss out! For tree booklet write today to

IDEAL
DEAL SCHOOLS (Ref: ETD4)' 60 St. Enoch Sq Glasgow G1 UK. Tel: 041-248 5200

PRE-AMPS

ADAPTORS

TELETEXT
(Ceefax/Oracle) external adaptors fit any television free cordless remote control. £159.95 inc. VAT and delivery. Access/Visa. Nufax Ltd., Freepost, Bristol BS6 7YZ. Tel: Bristol (0272) 687801744500.

CLASSIFIED ADVERTISEMENT
ORDER FORM

ETI ADVERTISERS INDEX MAY 1985
Antex 25
Audio Electronics. 19 \& 59
BK Electronics 6
Bi Pak 26
B.N.R. \& E.S. 34
Book Service 42
Cambridge Learning 60
Cricklewood Electronics 34
Cybernetic Applications 34
Dateline 33
Display Electronics 12
Electrovalue 41
Greenbank 60
Henry's 61
ICS 19
ILP. 63
Kelan Engineering 60
Maplin OBC
Microprocessor Engineering 34
Newrad Inst. Cases. 59
Powertran IFC-IBC
Rapid Electronics. 8
Riscomp Ltd 41
SME 61
Stewart of Reading 59
Target Electronics 14
Technomatic 10 \& 11
TK Electronics 19
Watford Electronics 4 \& 5

Please mention ETI when replying to all advertisements

- it helps the advertiser and it helps ETI.

Thanks - Paul Stanyer.

IARTILIT TOIS

P101Mk2

The P101 Mk 2 Hydraulic Robot Arm offers unrivalled value for money in the field of educational robots. Either as a selfcontained system or
linked to an external micro, the P101 Mk 2 gives a realistic simulation of industrial robots. The P101 Mk 2 's robust construction makes it an excellent basis for experimentation and general robotics research. Six-axis Robot System kit $\quad £ 1320+$ VAT

P102Nk2

The two-speed Hydraulic Robot Arm is designed to provide"hands-on" experience in practical robotics courses. The Genesis P102 Mk 2 has most of the features of large industrial robots costing from 10 times the price.
The P102 Mk 2 is supplied with its own micro-processor control system and remote control box. Alternatively an external microcomputer can be used to control the robot via its RS232C interface or parallel port. Complete Six-axis Robot System kit £ 1795 + VAT

michoenasp

A real programmable robot for the price of a printer! MicroGrasp has four servo-controlled axes and an independent gripper. The robot can be connected to most popular computers via special Powertran adaptors.
Robot kit with power supply $\mathbf{E 2 1 5}+$ VAT
Univeısal interface board kit $£ 57$ + VAT

POWERTRAN PIOTIER

Three-colour precision plotting on an A3 plane. This plotter is one of the most versatile peripherals that can be bought. Exchange the pen carriage for a router or a scriber for computer-controlled etching or machining. Available for BBC "B" or RML 3802.
$\mathbf{E 2 7 0}$ + VAT

HEBOT III

With independent control of its two wheels, two-tone hooter, flashing "eyes", retractable pen and four-way collision detectors. Hebot provides an ideal introduction to computer control. Connects to most popular micros. Complete kit $\mathbf{8} 55$ + VAT
Universal computer interface board kit $£ 11$ + VAT
Access/Visa cardholders - save time -
order by phone: 026464455.

POW:HITHW CYBERNETICS LIMTTED

Plaase send me the following kits
I enclose Cheque/Postal Order. value $£$ (Don't forget to add V.A.T.)

Name

Address

From a gentle purr to a mighty roar the tightly controlled power of the beast is vours to command!

PROFESSIONAL QUALTY HICHPOWERLOUSSPEAKERS

A new range of superb quality loudspeakers.

* Virtually indestructible high temperature voice-coil reinforced with glass-fibre
* 100% heat overload tolerance
* Advanced technology magnet system
\star Rigid cast alloy chassis
* Linen or Plastiflex elastomer surrounds
* 5-year guarantee (in addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50 W to 300 W e.g.
5in. 50W 95dB 89: XG39N 16I!: XG40T £17.95§
8in. 100W 98dB 81: XG43W $£ 29.95 \S$
10in. 100W 100dB 8 Ω : XG46A £29.95§
12in. 100W 101dB 81: XG49D £29.95§
12 in . Twin Cone 100W 100dB 8s: XG50E 16s: XG51F 〔31.95§
Note - the outpul power doubles for each $3 d B$ increase (ref $1 \mathrm{~W}(\mathrm{a} 1 \mathrm{~m})$.

PREGESOW AOLD MULTIMETERS

A new range of very high quality multimeters offering truly amazing quallty at the price.
Pocket Multimeter, 16 ranges, $2000 \Omega 2$ V DC/AC $£ 6.95 \S$ (YJ06G)
$\mathrm{M}-102 \mathrm{BZ}$ with Continuity buzzer, battery tester and 10A DC range. 23 ranges, 20,000』 \vee VC $£ 14.95 \S$ (YJ07H)
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges 20,000 I2/V DC £19.95§ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53
ranges including peak-to-peak AC. centre-zero and 12A AC/DC ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20л and 20μ A DC.AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) £42.50§ (YJ1OL)
N.B. All our prices include VAT and Carriage. A 50 p handing charge must be added il your total order is less than $£ 5$ on mail order (except catalogue).

MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3. Rayleigh. Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barf, Tel: 021-356 7292.
- LONDON 159-161 King Street. Hammersmith. W6. Tel: 01-748 0926.
- MANCHESTER 8 Oxtord Road. Tel: 061 1-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road. Tel: 070325831
- SOUTHEND 282-284 London Rd. Westclif-on-Sea. Essex. Tel: 0702-554000 Shops closed all day Monday
§ Indicates that a lower price is available in our shops.

Our huge range of top quallty electronic components at very competitive prices are all detailed in our catalogue, and whth well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue. (The items below are NOT kits).

* Most phono and jack plugs now with integral strain relief sleeve - gola-plated types also available trom 14 p (gold from 70 p)
* Stereo Disco Mixer with cross-lade, talk-over, cue monitoring, aux input, slide controls. Only £58.95 (AF99H)

* 10-Channel Sterec Graphic Equalisers - 3 models - basic: with peak level meter; and with spectrum analyser - from $£ 77.95$

*Digital Delay Line permits Slap-back. Doubling, Flanging, Chorus and Echo 11 controls. Only $£ 19.5 .00$ (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
* Detailed descriptions of the exciting new 74HC range of IC's which combine the advantages of CMOS and TTL. From 46p
\# Keyboards: sloping keys, two tone grey, mounted in steel frame, very smart cases (extra) available 61 keys, only $£ 33.95$ (YJ12N) 79 keys, only £37.95 (YJ13P)
$\star 1 \%$ Resistors now $50 \mathrm{ppm}{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only $2 \mathrm{p} \mathrm{each!}$
* Auto transformers $120,240 \mathrm{~V} 50 \mathrm{VA}, ~ £ 10.75 \S$ (YJ56L). 100VA £14.95§
(YJ57M). 150VA $16.95 \S$ (YJ58N). 250VA £21.95§ (YJ59P).
* Digital Clinical Thermometer. Only £13.95 (FK51F)

8P Phone before 2pm for same day despatch.

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).
 CATALOGUE

Post this coupon now for your copy of the 1985 catalogue.
Price $£ 1.35+40$ p post and packing. If you live outside the U.K.
send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$.
Name
Address
ETI 585
All offers subject to availability.
Prices firm untll May 111985

[^0]: －

[^1]: E STEWART OF READING $\boldsymbol{\square}$
 110 Wykenham Road, Reading Berks RG6 1 PL Telephone: 073488041
 Callers welcome 9 a.m. to 5.30 pm . Monday to Saturday inclusive

