

Iसमापास Toाs

P101Mk2

The P101 Mk 2 Hydraulic Robot Arm offers unrivalled value for money in the field of educational robots. Either as a selfcontained system or linked to an external micro, the P101 Nk 2 gives a realistic simulation of industrial robots. The P1C1 Mk 2 's robust construction makes it an excellent bass for experimentation and general robotics esearch. Six-axis Robot System kit $£ 1200+$ V. ςT

P102Mk2

The two-speed Hydraulic Robot Arm is designed to provide "hands-on" experience in practical robotics course \equiv The Genesis P102 Mk 2 has most of the features of large industrial robots costing from 10 times the price.
The P102 Mk 2 is supplied with its own micro-processor control system and remote control box. Alternatively an external microcomputer can be used to control the robot via its RS232C interface or parallel port. Complete Six-xis

Powertran kits are complete down to the last nut and bolt, with easy-o-follow assembly instructions.

POWERTRAN PLOTIER

Three-colour precision plotting on an A3 plane. This plotter is one of the most versatile peripherals that can be bought. Exchange the pen carriage for a router or a scriber for computer-controlled etching or machining. Available for BBC "B" or RML 3802. £270 + VAT

MICROGRASP

A real programmable robot for the price of a printer! MicroGrasp has four servo-controlled axes and an independent gripper. The robot can be connected to most popular computers via special Powertran adaptors.
Robot kit with power supply $£ 215+$ VAT
Universal interface board kit £57 + VAT

HEBOT III

With independent control of its two wheels, two-tone hooter flashing "eyes", retractable pen and four-way collision detectors, Hebot provides an ideal introduction to computer control. Connects to most popular micros.
Complete kit $£ 95$ + VAT
Universal computer interface board kit £11 + VAT
Access/Visa cardholders - save time -
order by phone: 026464455
Please send me the following kits

I enclose Cheque/Postal Order value £ (Don't forget to add V.A.T.)

Name

POWFIITHW CYBERNETICS LIMITED

Address

Dave Bradshaw: Editor Gary Herman: Editor from May Issue Ian Pitt: Assistant Editor Jerry Fowler: Technical lllustrator Paul Stanyer: Ad. Manager Kerry Fowler: Copy Control Peter Welham: Publishing Director Jim Connell: Chairman

PUBLISHED BY:
Argus Specialist Publications Ltd., 1 Golden Square, London W1R 3AB
DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd
12-18 Paul Street, London EC2A 4]S
(British Isles)
PRINTED BY
The Garden City Press Ltd
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY
Alabaster Passmore.
OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead and their CERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC
 Member of the
 Audit Bureau of Circulation

Electronics Ioday is normally publlshed on the first Friday in the moth preceding cover date. प The content drawings and programs and all coopyright and other in tellectual property rights therein belong to Argus Specialist Publications Limited. All rights conterred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conven tions are specifically reserved to Argus Specialis Publications Limited and anv reproduction requires the prior written consent of the Company. © 1985 Argus taken in the preparion the masine contents the publishers cannot be held tegally responsible for errors. Where mistakes do occur, a correction will nor mally be published as soon as possible afterwards. All prices and data contained in advertisements are ac cepted by us in good faith as correct at time of gorng to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations alfecting price or avallabllity which may occur after the publica Ion
\square Subscription Rates. UK $\mathbf{E 6 . 3 0}$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
 Telex 8811896.

FEATURES

DIGEST
All the news and views that missed the WPB file.

THE FINAL LINK
Beethoven to brain, Sibelius to stapes, Chopin to cochlea, it's all in the audio chain.

THE REAL

COMPONENTS
Not that there are any false components around! John Linsley Hood's discourse on why they can't be treated as little black boxes with idealised characteristics.

SECRETS OF TELECINE 41
Pushing out bad films on the airwaves isn't as easy as you might think. Andrew Armstrong shows how its done

ELECTRONICS FOR PEACE?. . . . 52
Or is it for war? We look at the organisation that wants to change all that.

READ'WRITE 63
You write, we read - sometimes we even reply?

PROJECTS

RS232 FOR ZX81/

SPECTRUM

23If I cold talk to the interface ... well, it's up to you to say and what to say it to, but an RS232 will certainly vastly increase the number that will understand you.

BUZBY METER

34 Hands up all those readers who dread what they might find when they open their'phone bill. Here's a project that will help to give you advance warning of what to expect.

DIGITAL FRAMESTORE 48
Final part of this top-notch project from Dan Ogilvie - details of some of the things you can use it for, the remaining PCB overlay and Buylines.

CCD DELAY LINE

57
The music goes round and round and round ... and the circuit comes out here. Design and development by Phil Walker.

INFORMATION

NEXT MONTH'S ETI 38
BOOK SERVICE 56
READERS' SERVICES 66
FOIL PATTERNS 67
PCB SERVICE 71
ADVERTISERS' INDEX 74

WATFORD ELECTRONICS
250 HIGH STREET. WATFORD, HERTS, ENGLAND. WD1 $2 A N$ MAIL ORDER, CALLERS WELCOME
Tel. Wattord (0923) 37774/40588 Telex. 8956095
ALL DEVICES FULLY GUARANTEED. SEND CHEOUE, P.O.S. CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&PADD 75 PTO ALL CASH ORDERS OVERSEAS ORDERS POSTAGE AT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

VAT

Export orden no VAT. Applicable to U.K. Customers only. Unless stated othowise
afl pricen ane enclusive of VAT. Plese add 15\% to the total cost including P\&P.
Wearest Undergroundur Station: Wattord Migh Street.
Open Monday to Saturday: 9.00 am to 8.00 pm. Ample Free Car parking space avallable.
ELECTROLYTIC CAPACITORS: (Values in UF) SOOV, 10 uf $52,4778 p, 63 \mathrm{~V}$ 0.47, 1.0, 1.5. 2.2. 3.3. 4.7 8p 1010 p $15.2212 p, 3315 p, 4712 p, 6820 p, 10019 p, 22026 p$. $100070 p, 220099 p, ~ S 0 V .6820 p, 10017 p, 22024 p p$
 33022p. 4702 2p: 680. 100034 p: 150042 p. 2200 50p, 34p. 470072 p.
TAG-END CAPACITORS: B4V: 22001 20p; $3300145 p ; 4700$ 245p; 50V: 2200 95p; 3300 155p; 40V: 4700
160p; 25V: 2200 70p; 3300 85p; 4000. 4700 75p; 10.000 250p; 15,000 270p; 16V: 22,000 200p.

TANTALUM BEAD CAPACITORS	POTENTIOMETERS: Carbon Track.			$18 n .22 n .27 n$, 33 n .39 n 47n	80
35v: 01 uF, 0.22. 0333 isp 0.47. 0.68.	Rotary 0.25W Log \& LiN Values.			39n. 56 n -	12p
1.0, 1.5 18p; 2.2. 3.3 18p; 4.7.6.8 22p	470R: 1K 82 K (Linear only)			82n. 100 n	
10 28p; 16V: 2.2, 3.3 18p; 4.7. 6.8. 10	Single Gan		35p		
18p; 15, 36p; 22 45p; 33.4750p; 100	$5 \mathrm{~K}-2 \mathrm{M}$	Single Gang Log 8 Lin	35 p	100 l $100 \mathrm{n}, 120 \mathrm{n}$	10p
95p; 10V: 15, 22.26p; 33, 47 SOp; 100	$5 \mathrm{~K}-2 \mathrm{M}$	Single Gang DP Swilch	950	150m 1 iban	12 p
80p; 8v: 10055 p .	$5 K-2 M$	Double Gang	99p	220n, 270 n	15p
MYLAR FILM CAPACITORS	SLIDER POTENTHOMETERS			470 n . 560n	26p
100 V : $1 \mathrm{nF}, 2.4,4 \mathrm{nF}, 10 \mathrm{6p}$; 15nF, 22 n ,	$0.25 \mathrm{~W} \log$ and linear values 60 mm				30p
30n, 40n, 47n 7p; 56n, 100n, 200n 9p:	5k-500k	single gang	80p.	1uF 34p 2 u 2	
50V: $470 n \mathrm{~F}$ 12p.	Graduated	Bezels for above	$45 p$		

CERAMIC CAPACITORS SOV:	PRESET POTENTIOMETERS		ACCESS Orders Just phone your
Range: 0.5 pF to $10 \mathrm{NF} 4 \mathrm{p}, 15 \mathrm{nF}, 22 \mathrm{nF}$	0.1 W Miniature Verical or		
$33 \mathrm{nF;}$ 47nF 5p. $100 \mathrm{nF} / 300 \mathrm{~V}$ 7p.	Horizonial, 100R to 4M7	8 P	Jusi phone your
$200 \mathrm{FF} / 6 \mathrm{~V} 8 \mathrm{p}$.	Q.25W Larger 100R to 3M3 Horz	12 p 120	

POLYSTYRENE CAPACITORS: 10pF to inF 8 p : 1.5 nF to 12 nF 10 p .		
	Mitachl 256k	
SILVER MICA (Values in pF)		
2. 3.3. $4.7,6.8,8.2,10.12 .15,18$.$22.27,33.39,47.50,56.68 .75 .82 . \quad £ 49$		
85. 100.120 .150 .180 pF 15p each	$\begin{aligned} & 2764 \\ & 250 \mathrm{~ns} \\ & \mathrm{c} 4.70 \end{aligned}$	
200. 220.250. 270.300. 330. 360.		
390.470.800.800. 820 210 esch		
100, 1200, 1800, 2200 30p each		
3300.4700 pF 80p	27128	
	250 na	
MINIATUAE TAIMMERS Capacizon 2-6pF 2.10pF 22p: 2.25pF: 5.65pF	¢16	
30p; 10-88pF 36 p .		

	Range	Val	1.99	$100+$
0.25W	2n2-10M	E24	30	1 D
0.5w	$2 \mathrm{n} 2-4 \mathrm{Mp}$	E12	3 D	10
1w	$2 \mathrm{m2}-10 \mathrm{M}$	E12	60	4 p
2\% Metal Firm	$51 \mathrm{n}-1 \mathrm{~m}$	E24	6 p	4 D

RESTSTORS NETWORK S.I.L 7 Commoned: (8 pins) 100 n . 680n. ik 2 k 2.4 K 7 . 10 K .47 K .100 K 25p	

TRANSISTORS

RF
HOKS
Miniature
CB type

나ㄴㅏㅜㅇ

740

$\frac{7}{2}$

TOOLTRONICS

MINIATURE TOOLS

PRECISION JEWELLERS' TOOLS
Plated Handies Swivel Heads for use
work
5 T21 SCREWDRIVER SET Sires - 08.14 .2 .24 .29 and 3
5T31 NUT DRIVER SET
 5 T41 TOOL SET

5 T51 WRENCH SET

SIGNAL INJECTOR

LOGIC PROBE

CURRENT/POL CHECKER

MINIATURE VICE

75p

13 PIECE TOOL KIT AND CASE

LOW COST CUTTERS/PLIERS

Minialure round nose cutters-
handies $41 / 2$ inch lengith. Orden

BA BOX SPANMER SET Comtans une of wach sire. OBA 2BA. 4BA 6BA

WNIVERSAL STAND

BRAND NEW LCD DISPLAY MULTITESTER
RE 188 m
ICO 10 MEGOHM INPUT IMPEDANCE
 poland NPN transisturs Allte nero. aittis

 proletiou
incluaced
Max indicatuen 1999 ur 1999

Zero adiuss
2ero adiust
Sampling tin
Semperataine 250 inllicer

Consumption $\quad 20 m \mathrm{~W}$
Sice
banges
DC Voltaye 0.200 mV
.2.20.200.10000 Acc
AC Votrage $0.200 \cdot 1000 \mathrm{~V}$
Acc $12^{\prime \prime}$ OC Current 0.200 uA
Resisiance $0.2 \cdot 20 \cdot 200 \mathrm{k}$ uhnis
$\mathbf{f} 45.00$
Leather case for $188 \mathrm{~m} \mathbf{£ 2 . 5 0} \mathbf{E A C H}$

ONO. 1322 OUR PRICE $\mathbf{£} 6.80$ only
HT320 MULTITESTER

Resislance $\quad 2 \mathrm{~K} .20 \mathrm{~K} \cdot 2 \mathrm{M} .20 \mathrm{M}$ Ohms
Af Outpur Toxt io - 22 sB lor
Eurrent ncoul OC Cisremt.
Order No. 1323 £15.40
BI-PAK PCB ETCHANT AND DRILL KIT
I Expu Mini Dill 10.000 RPM
3. Twist Bis

150 mm
Tath wack PERAIC CHLORIDE
crystals
3 shemes
2 shems rinteylass cumper
own PCB twaratis
Relal Vatur cever $\mathbf{E 1 5} 500$
ORDE RNO
OUR BLPAK SPECIAL KIT PRICE
$£ 9.95$
RATCHET SCREWDRIVER KIT

 tox one odd posicic tod isp cen fool arle.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Eurocard Rack Cases

OK Industries have added eight new 3-unit high card cases to their Elrack range. The cases accept both sizes of Eurocards and all other subassemblies designed for use with $19^{\prime \prime}$ sub-rack systems but offer constructors a choice of four widths instead of the standard rack width which is usually available.
The new cases are made from aluminium and are supplied in kit form. They are suitable for all subassemblies manufactured to DIN 41494, part 5 and accept both 100 $\times 160 \mathrm{~mm}$ and $100 \times 220 \mathrm{~mm}$ Eurocards. The top of the enclosure is
secured only by the rear fixing screws which allows it to be removed easily for internal access. The four widths available are 101, 203, 304 and 426 mm and each can be ordered in depths to suit either 160 or 220 mm Eurocards. Prices range from $£ 30.96$ to E52.63.
OK plan to extend the range still further in the near future with a series of 4,5 and 6 -unit high card cases in widths of 203, 304 and 426 mm . Further details and a full catalogue are available from $O K$ Industries UK Ltd, Dutton Lane, Eastleigh, Hampshire SO5 4AA, tel 0703-619841.

Come And Go At The Same Time

|t seems an obvious idea, really, but so far as we know, Norbain are the first to actually produce bidirectional opto couplers. Needless to say, this will probably provoke a mailbag or two of readers' letters along the lines of "When I was knee-high to an EF80, there was a company on the Edgware Road that sold two ORP12s glued to two 12 V light bulbs - mind you, you could only go at 2 baud with this set up. . ."
There are two new optocouplers, both using gallium arsenide LEDs with NPN silicon phototransistors for the outputs and designated the OP1 2500 and the OP1 2501. Both devices have an input to output isolation voltage of 1500 V with guaranteed minimum current transfer ratios of $\mathbf{1 2 . 5 \%}$ for the OP1 2500 and 20\% for the OP1 2501.
Additionally the OP1 2501 has
a CTR symmetry of 0.5 minimum and 2 maximum. In terms of a bidirectional optocoupler, CTR symmetry means that the output radiant power from both LEDs will not be identical with the same forward current. This will be reflected in the output waveform which will develop alternate peaks at two different amplitudes.
The power dissipation of the input diode is 100 mW derating linearly at $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$. The power dissipation of the output transistor on the OP1 2500 is 150 mW and 300 mW on the OP1 2501, derating linearly at $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ and $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ respectively. The output rise and fall time of the devices is typically $2 \mu s$ within an operational temperature range of $-55^{\circ} \mathrm{C}$ to $+100^{\circ}$ C. Norbain House, Boulton Road, Reading, Berkshire RG2 OLT, tel (0734) 864411.

Advance Buys House Of Instruments

Advance Power Supplies Ltd, say they are committed to providthe UK power-supply man- ing continuity for existing House ufacturer formed in April 1984 as a result of a management buy-out of the former Gould Power Conversion Division, has purchased instrument distributor House of Instruments.
Advance sees the move as a major step forward in its expansion and diversification plans, and is moving the existing House of Instruments operation from Saffron Walden to its Bishop's Stortford headquarters. Advance

Bradley Marshall Resurgent

W hen Bradley Marshall's Edgware Road component shop was severely damaged by a gas explosion next door, it was almost like an old friend dying.

Happily, the company has risen, phoenix-like, in a new shop opposite its old premises. And it's bigger and better, with more space, more components, more staff and a new computer of Instruments customers, and the sales staff are remaining with the company.

For the future, Advance intends to invest considerably in House of Instruments, both in terms of higher stocking levels to ensure speedier service and in completely new product lines and services. Advance Power Supplies Limited, Raynham Road, Bishop's Stortford, Herts, CM23 5 PF, tel 02795555.

centre.

London's Edgware Road will be even more welcoming to electronics enthusiasts now. Bradley Marshall, 382-386 Edgware Road, London W2 1BN, tel 01-723 4242.

- Monolithic Memories have produced an A2 sized wallchart which lists and compares bipolar PROMs from all of the leading manufacturers. the chart is available upon request from Mondlithic Memories Ltd, Monolithic House, 1 Queens Road, Farnborough, Hampshire GU14 6DJ, tel 0252-517431.

LED Along An Optical Guide

AEC-Telefunken have produced a printed circuit mounting LED which has a built-in flexible optical guide which will transmit light for distances of up to 2.0 metres. The device allows front panel indication to be achieved using a board-mounted LED, thus removing the need for off-board wiring, or it could be used with a photo-sensitive detector to form an opto-coupler with very high voltage isolation.

OVP POWER AMPLIFIER MODULES
PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDL OMP POWER AMPLIFIER MODULES

Now enjoy a available to suit the needs of the professional and hobby market, i.e. Industry. Leisure,
Instrumental and Hi -Fi. elc. When comparing prices, NOTE all models include Toroidal power supply. Integral heat sink. Glass fibre P.C.B.; and Drive circuits to power compatible Vu meter Open and short arcult prool Supplied ready built and tested.
 OMP100 Mk II Bi-Polar Output power 110 ponse $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$ TH.D 0.01% ponse 15 Hz - $30 \mathrm{KHz}-3 \mathrm{~dB}$. T.H.D. 0.01% 500 mV al 10 K . Size $360 \times 115 \times 72 \mathrm{~mm}$ PRICE $E 32.99+£ 2.50$ PGtP

OMP/MF100 Mos-Fet Output power 110 watts RM.S. into 4 ohms, Frequency Res. ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Facto 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical
0.002%. Input Sensitivity 500 mV S.N.R -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE $139.99+£ 2.50$ P\&P

OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}=100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 250. Slew Rate 50V/US. T.H.D. Typical 0.001%. Input Sensitivity 500 mV . S.N.R -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$, PRICE £62.99 + $£ 3.50$ P $_{8} P$

OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350. Slew Rate 60V/uS. T.H.D. Typical -130 dB , Sizut Sensitivity 500 mV . S.N.R ᄃ $79.99+14.50$ P\&P

VU METER mpatible with our four amplifers detated red) plus an additional on/off indicator Sophisticated logic green. ase, with vinted acrylictront. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $\subset 8.50$
\qquad

LOUDSPEAKERS
5 to 15 INCH Up to 300 WATTS R.M.S. All speakers 8 ohm Impedence

$20 \mathrm{O2}$. magnet. $1 / 2$ ally voice
6 KHz . $12^{-1} 100$ WATT R.M.S. Hi-Fi/DIS

\qquad MCKENZIE
12" 85 WATT R.M.S. C1285GP Lead guitar/ Keyboard/Disco.
$2^{\prime \prime}$ ally voice coil. Ally centre done. Res. Freq. 45 Hz Freq. Resp. 106.5 KHz . Sens. 98 dB . PRICE 624.99 12.85 WATT R.M.S. C1 285 TC P. A. DIsco 2 ally volce coil. Twin cone.
Res. Freq. 45 Hz . Freq. Resp. to 14 KH . PRICE $24.99+63.00 \mathrm{P} \& \mathrm{P}$ ea

BURGLAR ALARM

Thandar's famous 'Minder' Burglar Alarm System. comerior microwave principle. Supplied as three units GUARANTEED Control Unit Control Unlt - Houses microwave radar unit. range
up to is metres adjustable by sensutivity conerot up to 15 metres adjustable by senstivity control.
Three position. key operated lacia switch - ofl - test indermed 30 secondexit and enty delay rocoo oulput Outdoor Alarm - Electronic swept Irea. Siren 98dB Catse
Cost the control unt and outdoor alarm contain re Chargeable batieres which provive till orotectiven
during mans lailure. Power recuirement $200 / 260$ vol A 55160 Hz . Expardowle with door sensors. panic SAVE $£ 148.00$
BKE's PAICE 7 Sual Price $\{228.85$
, Phy buy a collection ol sell-assembly boarcos!
OMP LINNET LOUDSPEAKERS
The very best in quality and value. Made specially to suit todays need for compactiness with high sound output levels, Finished in

Delivery: Securicor $£ 8.00$ per par

STEREO CASSETTE DECK

STEREO CASSETTE DECK Ideal for installing into Disco and $\mathrm{Hi}-\mathrm{Fi}$ cabinet/Consoles Surface mounting (Horizontal). Supplied as one unit with mains power supply - Metal iop panel Black finish - Piano type keys including

* Normal/Chrome tape

- Twin Vu Meters

 - 3 Digit counter * Slider Record Level controlPRICE $£ 35.99+£ 3.00$ P\&P

1 K-WATT SLIDE DIMMER
 to 1 Kw

* Compact Size
$41 / 3 \times 1 \quad 21 \%$ Easy snap in fix Easy snap in fix ing through panel Ins ulated ase
Full wave con
rol using 8 am
trol using 8 am
BS800
- Suitable for both resist
ance and inductive loads In
numerable applications
numerable applications
industry. the home disco's. theatres etc disco s. theatres etc.
PRICE $£ 12.99+75 p$ P\&P

PIEZO ELECTRIC TWEETERS MOTOROLA

Jom the Piezo revolution. The low dynamic mass (no voice coll) of a Plezo iweeter produces an improved transient response with a lower distorlion level than ordmaiy dy namw iweeters. As a

 crossover is not required these units can be added to existing speaker systems of up to 100 watts(more it 2 put in sertes). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.
15.150 WATT R.M.S C15 Bass Guitar/Dlsco.
3^{3} allv vorcecoil. Die castchassis Res Freo. 40 Hz . Freq. Resp. 104 KHz . PRice $£ 49.99$ - $£ 4.00$ P\&P ea

NEM
70
 150 WATT R.M.S. Multiple Array Disco etc.
voice col Res Freq $48 \mathrm{~Hz}_{2}$ Freq. Resp. to 5 KHz . Sens 92 dB PRICE $\mathrm{f} 27.00+61.50$ P\&P.ea.
300 WATT R.M.S. Disco/Sound to enforcement etc.

\qquad
SOUNDLAB (Full Range Twin Conel
60 WATT R.M.S. Hi-FI/Mutiple Array Disco etc
 voice coll. Res Frequ 56 Hz Freq Resp to 20 KHz . Se
60 WATT R.M.S. Hi-FiV Multiple Array Disco atc

2xincHOBBY KITS. Proven designs including glass ribre printed circuit board and high quality FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ whth very sensinive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}(9$ volt) Price: $58.62+750$ PEP
3 WATT FM TRANSMITER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controhed professional pertormance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 voll) Price: $£ 13.74+75 p$ PRP
SINGLE CHANNEL RAONO SINGLE CHANNEL RADK CONTROLLED TRANSMTTTER RECENER 27 MHz . Ronge up to 500 metres Double coded modulation Recrenver output operstes rolay wh $2 \mathrm{mp} / 240$ voh contacts. Ideal to E17.82. Transmitter $80 \times 50 \times 15 \mathrm{~mm} \times 22 \mathrm{~mm}$ (9/12 voh). Price: 19 voll). Price: $£ 11.27$ PReP + 75p each. S.A.E. for complete list

TYPE 'A' (KSN2036A) $3^{\prime \prime}$ round with protective wire

STEREO DISCO MIXER STEREO DISCO MIXER with 2×5 band L. \&
R. graphic equalisers and twin 10 segmen R. graphic equalisers and twin 10 segment 5 Inputs with individual faders providing
useful combination of the following useful combination of the following
3 Turntables (Mag). 3 Mics. 4 Line wath talk over switch. Headphone Monitor put 775 mV \& R. Master Output controls
Size $360 \times 280 \times 90 \mathrm{~mm}$

8. K. ELEGTROTIOS

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

First Digital Recording Console

The first ever digital multitrack sound mixing console is now in full operation. Manufactured by Neve electronics, the digital console was installed at CTS recording studios in West London in just 24 hours with final adjustments taking place between Christmas and the New Year.

Neve claim to have spent some five years researching and developing this new digital console. In addition to collaboration with the BBC, much of the recent work on multi-track facilities was done
in conjunction with CTS engineers. Neve says that it has received numerous enquiries about its DSP console from studios and broadcast companies through the world and that it anticipates that over the next decade the digital business will expand to form a major addition to its already growing and developing analogue activity. Further DSP consoles are already in production.
Neve Electronics International Ltd, Melbourne, Royston, Hertfordshire SG8 6AU, tel $0763-$ 60776.

Computer Wars

The battle to the death continues and small black objects continue to hurtle down - in price. In the same week that Acorn suspended dealings in their shares because of financial problems, Sinclair announced a sharp reduction in the price of the Spectrum Plus computer.

The Spectrum Plus will now cost $£ 129.95$ including VAT instead of $£ 179.95$. At the same time the company announced that they will stop selling the original ZX Spectrum 48 K in the UK in order to concentrate on the

Versatile Data Capture For Laboratories

Data Harvest describe their latest product as a versatile laboratory instrument, or Vela for short. It is designed to record up to four analogue voltage inputs, store them in battery backed-up memory and then reproduce them in analogue form for display on an oscilloscope or chart recorder or in digital form for further processing on a microcomputer.
The four analogue inputs have individually selectable sensitivities of $\pm 25 \mathrm{v}, \pm 2.5 \mathrm{~V}$ and $\pm 250 \mathrm{mV}$ and store the recorded data in 1 K of CMOS RAM after conversion in an A/D converter whose resolution is 8 bits $\pm 1 / 4$ LSB. A TTL-compatible digital input is also provided on a 26 way IDC connector. The unit can be powered from the mains via an adaptor, from an external 8-13V supply or from internal cells, allowing it to be used for data capture 'in the field!. Fifteen programs allow the capture of everything from fast
voltage transients with an inter val of $30 \mu \mathrm{~s}$ between samples to slowly changing biological and other data with sampling interval of up to 999 seconds. A D/A converter with a resolution of 8 bits $+1 / 2$ LSB provides an analogue output for display on an oscilloscope or chart recorder while a TIL-compatible digital output allows the data to be fed to a BBC B, RML 380/480Z, Apple II or PET microcomputer or directly to a Centronics printer.

Vela uses a 6802 microprocessor and has 4 K of EPROM for applications software storage. A further 12 K of EPROM space is available for software expansion. A two-digit code entered via the keyboard selects the required program and a single key selets the recording channel and output mode. An LED display shows channel, time and voltage, allowing Vela to be used as a four channel digital voltmeter
and thus enabling sensor output voltages to be checked before recording. A pulse input is provided to trigger data capture and can also be used as a timing and counting input providing frequency measurement from 1 Hz to 15 kHz and timed periods from 1 ms to 65 seconds. Other possibilities include the storage of recorded data on disc after processing through a micromputer and the generation in conjunction with a micro of complex waveforms and sequences for use in control applications.

Vela measures 300×230 강 75 mm and weights 2.2 kg . It costs $£ 375.00$ plus VAT and is avilable from Data Harvest Ltd, 28 Lake Street, Leighton Buzzard, Bed fordshire LU7 8RX, tel 0525 373666. Vela is also available from STC Electronic Services, Edinburgh Way, Harlow, Essex CM20 2DF, tel 0279-26777

Spectrum Plus. Owners of the 48 K ZX Spectrum may have their machine upgraded to a Spectrum Plus for $£ 30.00$ or can purchase a kit and do the job themselves for $£ 20.00$. The introductory software six-pack which was previously included in the price of £179,95 will now be available separatelyat normal prices or at a special price of $£ 14.95$ to purchasers of the Spectrum Plus.

Sinclair says that they hope the price reductions willenable them to increase their 44% share in the UK market. The price of the QL remains unchanged at $£ 399.00$ including VAT. For Spectrum upgrade kits contact Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS, tel 0276-686100

Snail Update

Readers who saw the February News Digest may remember an item describing a microcomputer peripheral called Slomo, a device which slows down a micro so that complex games, etc can be learnt more easily. The address given at the end of the article was that of Cambridge Computing Research Ltd but we have since been told that CCR are in receivership and that no further orders should be sent to them. Slomo is stitl available from Nidd Valley Micro Products who originally designed it and the price is unchanged at $£ 14.95$ inclusive. They can be reached at Stepping Stones House, Thistle Hill, Knaresborough, North Yorkshire HG5 8JW, tel 0423-864488.

- Electronic Brokers have published a 20-page, two-colour catalogue which describes their range of test and computer equipment. It has sections on oscilloscopes and logic analysers, multimeters, generators, counters and timers powers supplies, line conditioners and EPROM programmers and also describes a range of DĖC Tektronix computer equipment. Copies of the catalogue are available from Electronic Brokers Ltd, 140-146 Camden Street, London NW1 9PB, tel 01-267 7070.
- Global Specialities Corporation have produced a 12 page catalogue which describes their range of design and test instruments. The catalogue includes power supplies, capacitance meters, function generators and multiplexers and is available from GSC, Shire Hill Industrial Estate, Saffron Walden, Essex CB113AQ, tel 0799-21682.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

- Marston Palmer's new catalogue describes their full range of aluminium heatsinks, from clipon types for individual semiconductors up to massive extruded sections. The catalogue also includes accessories such as thermal compound and stand-off pillars and has two pages of notes and formulae to help you select the right heatsink for your application. Marston Palmer Ltd, Wobaston Road, Fordhouses, Wolverhampton WV106 6QJ, tel 0902-783361.

Single-Action

Wire Stripper

B\& R ELectrical Products have introduced a self-adjusting wire stripper and cutter which will prepare the ends of insulated cables in one movement. The tool accepts most types of solid and stranded wires and the manufacturers claim that it costs only about a third of the price of comparable tools currently on the market.
The TC1017 is robustly constructed and self-adjusting during operation to enable fast and accurate stripping of insulation from most types of solid or stranded insulated wire with outside diameters from 0.5 to 5 mm . For particularly hard or soft insulation materials a manual adjustment is provided to alter the force of the blades, but such adjustment is not normally necessary.

The tool operates in one continuous action by gripping the insulating material in its metal jaws, simultaneously cutting through it and removing the insu* lation by the sliding action of the

- Texas Instruments have produced a new catalogue of their technical publications. Brief details are given of all the 41 books in the range, from data books and design manuals to text books aimed at the student, some of which are also available on video. The catalogue includes a price list and order form is available from the Customer Response Centre, Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA, tel 0234-67466
blades. Moulded into the jaws of the tool are graduations in millimeters and inches to assist measurement of the length of insulation to be stripped. The tool also incorporates a pair of tempered steel cutting blades to enable the wire to be cut and trimmed to length before stripping.
- Instrument Rentals have a wide range of test equipment of various types which they hire out for periods of one week or more. Prices range from $\mathbf{E 6 . 0 0}$ for an AVO-8 and $£ 7.00$ for a 15 MHz , dual trace 'scope up to several thousand pounds per week for some of the flashier network analysing gear. For a copy of their new catalogue contact Instrument Rentals (UK) Lid, Dorcan House, Meadfield Road, Langley, Slough SL3 8AL, tel 0753-44878.

The Model TC 1017 wire stripper costs $£ 4.30$ plus VAT (trade price) and is one of a series of new products to be included in the next edition of the $B \& R$ telephone and mail order components catalogue. B\&R Electrical Products Ltd, Temple Fields, Harlow, Essex CM20 2BG, tel 0279-443351.

Low-Cost Touch Screen

Microvitec have produced a touch sensitive clear screen which fits over their computer monitors and which can be used by the young, the disabled and others who have difficulty with keyboards to enable them to communicate with computers. The screen uses infra-red beams to detect the presence of a finger or a stylus, is inherently safe, and the manufacturers claim that it costs only a fraction of the price of currently available touch screens.
The Touchtech 501 consists of a stand into which metal-cased Microvitec monitors are secured and a screen bezel. The bezel contains a number of infra-red transmitters and sensors which project a network of beams across the screen area. The beams cannot, of course, be seen, but interrupting any of them with a finger or stylus will immediately be detected by the appropriate sensor and the co-ordinates fed to the computer. The information can then be interpreted by the software as required, for example, as a yes or no decision or as a choice between other alternatives.

The Touchtech 501 comes complete with a user's handbook and a diskette containing nine demonstration programs developed by the Governmentbacked Microelectronics Programme. The complete package is expected to sell for $£ 210.00$ plus VAT.

Microvitec PLC, Futures Way, Bolling Road, Bradford, West Yorkshire BD4 7TU, tel 0274 . 390011.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Low Cost Logic Analyser

Thurlby Electronics have introduced a portable, sixteen channel logic analyser which is claimed to offer high performance but will sell for under $£ 400$ excluding VAT in its basic form. Features include a 2000 word memory, comprehensive trigger facilities and an RS423 interface, and Thurlby hope that the low price will encourage organisations to equip each of their engineers with one rather than expecting a number of engineers to share one machine as at present.
The LA-160A has a maximum clock rate of 10 MHz and the LA160B has a maximum clock rate of 20 MHz , Both have sixteen data channels but can be enlarged to 32 channels using a clip-on extender module, whereupon the maximum clock rates become 5 MHz and 10 MHz respectively. The acquisition memory holds 1999 sixteen bit words and stores 999 before the triggering event and 999 after it. The memory size becomes 1000 32-bit words when the extender module is added. A built-in state domain display shows the data in either binary, octal, decimal or hex form or in a mixed display of binary and hex, and by connecting the unit to a conventional oscilloscope a full, multi-channel timing display can be obtained.

The trigger facilities include 20 bit trigger width, the ability to set the trigger word in any display format, selectable trigger hold-off and a trigger arm input with selectable delay. Data can be captured synchronously or asynchronously using either the clock of the circuit under test or the internal clock which has sixteen selectable frequencies from 1 KHz to

10 MHz or 20 MHz . Two clock qualifiers enable data to be captured selectively, for example on the Read cycle of the microprocessor bus.
The LA-160 is microprocessor controlled via an interactive keyboard with all the set-up information being stored in permanent memory. A non-volatile reference memory is also included. This can be loaded from the acquisition memory or the keyboard and allows reference data to be stored for comparison purposes.

The software facilities include word search, block memory compare, word by word memory compare and stop on equality or nonequality acquisition modes A built in RS423 interface enables the contents of the acquisition memory to be dumped to a computer. The inputs are fixed at TTL level but optional high impedance variable threshold data pods are available. Other options inlcude an IEEE-488 bus analysis connector and a printer interface for hard copy.

The LA- 160 weighs less than $1.8 \mathrm{~kg}(4 \mathrm{lb})$ and is compact enough to fit into a toolkit or briefcase. The 10 MHz version (LA-160A) costs $£ 395.00$ and the 20 MHz version (LA-160B) costs $£ 495.00$ the optional extras range in price from $£ 7.50$ for a logic grabber set up to $£ 125.00$ for the 32 channel extension module, and all prices exclude VAT. For further details and a list of distributors contact Thurlby Electronics Ltd, New Road, St. Ives, Cambridge PE17 4GB, tel 0480-63570.

High Sensitivity Relay

$1{ }^{1}$
π Switches (UK) Ltd claim to have produced the most sensitive single-coil bistable relay available. It only requires a 40 mW pulse for 10 ms to change it from state to state.

The RZ2T relay has a two-pole changeover configuration and uses bifurcated contacts. Being a bistable type, it will remain in its operated state until a pulse of reverse polarity is applied to move into the other state. The
contact bounce time is less than 0.5 ms which ITT claim is ten times better than the average performance of similar electromechanical relays. It is housed in a standard DIL PC-mounting case and will withstand most normal PCB cleaning processes except ultrasonic cleaning.
ITT Switches (UK) Ltd, 8 Roberts Way, Wickford, Essex SS1180D, tel 03744-66111.

$01-2081177$ Technomatic Lid 01-208 1177

BBC Micro Computer System

ACORN COMPUTER SYSTEMS
B8C Model B Special offer 8340 (a) B8C
B8C Model B+Econet§389 (a)
B8C Model B+DFS........................ $£ 409$ (a)
BBC Model B+DFS +Econet $\mathbf{\Sigma 4 5 0}$ (a)
UPGRADE KITS
DFS Kit... 595 (d)
Econet KH. $\mathbf{\Sigma 5 5}$ (d)
Speech Kit.. $¢ 47$ (d)
ACORN ADD-ON PRODUCTS
280 2nd Processor $\mathbf{3 5 2}$ (a)
6502 2nd Processor $£ 175$ (a)
Tehext Adaptor $\mathbf{E 1 9 0}$ (b)
IEEE Intertace £282 ¢282 (b)
restel Adaptor 599 (b)

RH Light pen 59.50 (c)

BBC FIRMWARE

1.2 Operating System ….................. $\mathbf{5 7 . 5 0 \text { (d) }}$
Basic II ROM22.50 (d) View Word Processor ROM $\$ 48.00$ (c) Wordwise Word Processor ROM SCPL ROM/Disc \quad [s8.00 (b) Disc Doćtor/Grerrilin Debug ROM $£ 28$ (d) EXMON/TOOL KIT ROM _..........ces (d) Printmaster (FX80)/Graphics ROM ULTRACALC spreadsheet ROM E89 en (c)

COMMUNICATION ROM

Terml Emulator .a....	128 (d)
Communicator	$\underline{59}$ (d)
Commstar	229 (d)

\qquad

TORCH UNICON products including the IBM Computible GRADUATE in stock For detailed apecification on any of the BBC Firmware/Peripherals linted here or information on our complete range please write to us.

PRINTERS

EPSON
RX80FT £225(a) RX80T£215(a) FX80£315(a) FX100£435(a) KAGA TAXAN
KP 810 (80 col) E 255 (a)
KP910 (156col) £359 (a)
JUKI 6100 £340 (a)
BROTHER HR15 £340 (a)

ACCESSORIES

32K Internal Buffer Parallel $\mathbf{\Sigma 9 9}$ (b) EPSON
Serial Interface: 8143 £28 (c); 8148 with 2K $\mathbf{5} 57$ (c)
Paper Roll Holder $£ 17$ (d); FX80 Tractor Attachment $£ 37$ (c) Ribbons: FX/RX/MX80 £5 (d) FX/RX/MX100 £10 (d) RX/FX80 Dust Cover $£ 4.50$ (d)

KAGA TAXAN

RS232 with 2K Buffer £85 (c) KP810/910 Ribbon £6.00 (d) JUKI 6100
RS232 with 2K Buffer $\mathbf{£ 6 5}$ (c) Ribbon $£ 2.50$ (d) Tractor Attachment £129 (a) Sheet Feeder £129 (a) BBC Parallel Lead $£ 7$ (d) Serial Lead $£ 7$ (d) 2000 Sheets Fanfold Paper with extra fine perforation $9.5^{\prime \prime} \times 11^{\prime \prime} £ 13$ (b) $14.5^{\prime \prime} \times 11^{\prime \prime} £ 18.50$ (b) Labels per 1000^{\prime} 's slngle row $31 / 2^{\prime \prime} \times 17 / 16^{\prime \prime}$ (55.25 (d) Triple Row $27 / 16^{\prime \prime} \times 17 / 16^{\prime \prime}$ \&5 (d)

MODEMS

- All modems listed below are BT approved

MIRACLE WS2000:

The ultimate world standard modem coverall all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the world. The boards enhance the considerable faclalities already provided on the modem. Mains powered £129(b). Auto Dial Board/Auto Answer Board £30(c) each. Software lead ع4.50.

TELEMOD $2:$
Complies with CCITT V233 1200175 Duplex and 1200/1200 HaH Duplex standards that allow communications with VIEWDATA services like PRESTEL, MICRONET etc. as well as user to user communications. Mains powered I84(b).
BUZZ Box:
This pocket sized modem complies with V21 $300 / 300$ Baud and provides an ideal solution for communications between users, with main fr ame compuiers and bulletin boards at a very economic cost. Battery or mains operated,
£52(c). Mains adaptor £e(d).

BBC to Modem data lead $£ 7$.
GANG OF EIGHT INTELLIGENT FAST EPROM COPIER
Coples up to eight eproms at a time and accepts all single rail eproms up to 27256. Can reduce pro gramming time by 80% by using manulacturers suggested algorithms. Fixed Vpp of 21825 volts display with alpha moving message $£ 395$ (b).

SOFTY II

This low cost intelilgent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764 . Displays 512 byte page on TV - has a serial and parallell/O routines Can be used as an emulator, cassette interface, $\mathbf{\text { Sofly }}$ (b) Solty II.
Adaptor for $2764 / 2564$ ($\mathbf{2} 25.00$ (c)

UV ERASERS

All erasers with built in safety switch and malns indicator.
UV1B erases up to 6 eproms at a time.... £47(c) UV1 T as above but with a timer £59(c)

DISC DRIVES

These are fully cases and wired drives with slim line mechanisms of high quality, Shuggart A400 standard interface. Drives supplied with cables manuals and formatting disc sultable for the BBC computer. TEAC 80 track drlves a'e supplled with $40 / 80$ track switching as standard. All drives can operate in single or dual density format.

$1 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS:T	c100 (b)
$1 \times 200 \mathrm{~K} 40 / 80 T S S$ TS5E	E140, ${ }^{\text {(b) }}$
$1 \times 400 \mathrm{~K} 40 / 80 \mathrm{TDS} \mathrm{TS55F}$	F145(a)
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS:TD55A	c250(a)
$2 \times 200 \mathrm{~K} 40 / 807$ SS:T	Ac with

3M 51/4" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each disc is individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box.
40T SS DO £15 (c)
$40 T$ OS DD $£ 18$ (c)
80 T SS DD 122 (c)
80T DS DD £24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kth with 20 disposable cleaning discs ensures continued optimum performance of the drives
£14.50 (c)
Single Disc Cable \&s (d) 10 Disc Library
Dual Disc Cable $\mathbf{c} .50$ (d)

30/40 Disc Lockable Box 14 (c) 70/80 Disc Lockable Box........................ 19 (c)

MONITORS

MICROVITEC 14" RGB:

1431 Standard Resolution 165 (a)
1451 Medium Resolution....................................... £240 (a)
1441 Hi Resolution .. 5399 (a)
1431 AP Std Res PAL/AUDIO $£ 210$ (a)
1451 AP Med Res PAL/AUDIO£280 (a)
1451 DQ3 Med Res for QL£239 (a)
Above monitors are now available in plastic or metal cases, please specify your requirement.
KAGA Super Hi Res Vision III RGB£340 (a)
Hi Res Vision II....................................
MONOCHROME MONITORS 12":
Kaga Green KX1201 G Hi Res £235 (a)

Kaga Amber KX1201 A Hi Res .

Sanyo Green DM8112CX Hi Res. £105 (a)

Swivel Stand for Kaga Monochrome .590 (a)
All monitors are supplied with leads suitable for the BBC
Computer. Spare leads available.

ATTENTION

All prices in this couble page advertisment are

Please add carriage 50p unless indicated as follows:
(a) $\varepsilon 8$ (b) $£ 2.50$ (c) $\Sigma 1.50$ (d) $\varepsilon 1.00$

SPECIAL OFFER
2764-25 . 1.90
27128-25 18
27128-30 £1

6264-15 . 116

6262LP-15 3
£2
6264-12£3

CONNECTOR SYSTEMS

EURO CONNECTDRS

DIN 41612

2×32 way St Pin 230p 275p
2×32 way Ang Pin 275p 320 p 3×32 way St Pin $260 p^{300 p}$
3×32 way Ang Pin $375 p_{40}$ 3×32 way Ang Pin 375p 400p IDC Skt A + C
For 2×32 way please specity spacing $(A+B, A+C)$.

THE FINAL LINK

The loudspeakers are obviously the final link in the hi-fi chain, some would say. Not, others would contradict, the room modifies the sound so must be counted. They're both wrong, as Vivian Capel will demonstrate.

The human ear makes all the other links in the hi-fi chain seem crude in construction and design. An understanding of these fascinating instruments with which we have been endowed can help us identify the important characteristics of the sounds that we hear. This in turn can shed light on the art of sound reproduction and hi-fi. The ear is divided into three sections, the outer, middle and inner ear; each section has its own specific function.

The Outer

The outer ear consists of the appendage known as the pinna, and the ear canal terminating in a diaphragm stretched across it, known as the ear-drum. The pinna is provided not merely for decoration or even to protect the ear from the intrusion of foreign bodies, though it does both to a certain extent. Its convolutions produce reflections which follow the direct sound into the canal with minute delays, hence with phase differences.

The reflections differ according to the angle of

Fig. 1 Our hearing system showing the three main sections: the outer, middle and inner ear.
incidence of the sound, so the resulting phase differences serve as a code to identify direction. The auditory section of the brain decodes this information instantly to locate the position of a sound source.

It is commonly believed that source location is due entirely to volume and phase differences existing between the two ears. If this were so, our sound location would be limited to the front horizontal plane, as it is with conventional stereo systems. However, as we have the facility of all-round location with vertical identification as well, there is evidently more involved. This can be demonstrated by plugging one ear and trying to identify the direction of a sound source. It is still possible, though the sense of direction is reduced.

The amount of phase difference generated by there being a path difference between direct and reflected sound depends on two things: the path difference itself and the wavelength of the sound concerned. The first of these will depend on the dimensions of the pinna convolutions, and if these are small in comparison to the wavelength, the phases difference will be quite small and probably undetectable. So, logically, we will get best sense of sound location with higher frequencies where the wavelengtyh is comparable to the pinna convolutions.

At mid-to-low frequencies, the wavelength of the sound becomes comparable to the head's size, so comparison of phase between the two ears may help location here. At lower frequencies, it would take pinnas (or possibly heads) of literally elephantine proportions to give good directional sense, and the practical problems in carrying around that lot must outweigh any advantages for everyone except the elephants themselves. However, this is not a major problem, as the majority of low-frequencyratural sounds do have higher frequency components that we can locate satisfactorily.

The Middle Ear

The directional-encoded sound travels down the ear canal to the ear-drum, or timpanum as it is also called, which vibrates in response. The next section, the middle
ear, has the function of impedance matching and dynamic range compression. The well-known rule which applies in electronics as well as mechanics is that to transmit the maximum amount of energy from one unit to another, impedances must be similar. Electrical impedances are matched between amplifier output stages and loudspeakers by transformers, and the mechanical impedance offered by the road wheels of a car is matched to the engine torque by the gearbox.

In the case of the ear, minute air pressure variations acting on the ear-drum make this a low impedance member, whereas the fluid-filled inner ear which converts the vibrations to neural signals is of a higher impedance. Matching is accomplished by three interjoined bones termed the hammer, anvil and stirrup. The first two of these are a pair of pivoted levers that produce a leverage ratio of nominally $3: 1$, and the stirrup, or stapes as it is also called, communicates the motion of the second lever to the window of the inner ear.

The three bones are held in position by tiny muscles. These can cause the pivot position to change and they can also stiffen to cause a decrease in the amount of movement. Hence these can reduce the sensitivity of the whole ear progressively as the input sound level increases. This enables the ear to handle an enormous range of sound levels, the loudest being 10^{12} times larger than the faintest. We can accommodate all the natural sounds we are likely to ever encounter - from the rustling of leaves to a nearby thunderclap - but we can have problems with man-made sounds such as the explosions, jet engines and machine tools, to name but a few.

If the middle ear were a completely sealed cavity, differences of atmospheric pressure would cause the eardrum to be stretched inward or outward depending on the atmospheric pressure. This would displace the three connecting bones and upset the sound compression. The eustachian tube connects the middle ear to the back of the throat, and so maintains atmospheric pressure on the inner surface of the ear-drum.

Inner Ear

The final bone of the trio, the stirrup, transmits the sound vibrations to the window of the inner ear. This is shaped like a snail's shell hence its name, the cochlea. It is really a long tube rolled up in a spiral. To understand what it does we will imagine that it is unrolled as depicted in Fig. 2. A horizontal membrane divides the tube into an upper and lower compartment along its entire length except at the end where there is a short gap. The membrane is termed the basilar membrane, the upper compartment the scala vestibuli; the lowerone, the scala tympani; and the end gap, the helicotrema.

Fig. 2 Diagram of basic components with cochlea straightened
out to show various features. out to show various features.

The whole tube is filled with fluid and is sealed at the far end so that a complete path is formed along one half, through the helicotsema and back along the other half. The top half or scala vestibuli has at its entrance a diaphragm termed the oval window, while the bottom one, the scala tympani, is termined at another diaphragm, the round window.

When pressure variations are communicated to the upper oval window by the stirrup, they travel along through the fluid to the far end, down through the helicotrema gap and back along the lower chamber to the round window. As fluid is incompressible, the round window serves to absorb the pressure variations and dissipate them to he air in the middle ear.

Nowas those vibrations travel along the upper chamber they pass through thousands of very sensitive hair cells on the upper surface of the dividing membrane. These are linked to the nerve fibres that are connected to the auditory part of the brain, and their movements produce the neural signals along the fibres.

Total length of the membrane averages 31 mm , and frequency response is distributed along its length; the region near the entrance is sensitive to the high frequencies, and the region near the end to low frequencies. The audio spectrum is divided into 24 bands with $1 / 3$ octave spacing, each with its own nerve path to the brain. Centre frequencies of each band start at 50 Hz for band 1 up to 13.5 kHz for band 24 .

Cut-off outside each band is not sharp but gradual, especially on the high side, although it is steeper on the low. Thus there is some overlap which fills in should any band become inoperative for any reason. Each band occupies a definite position along the basilar membrane with physical spacings of 1.3 mm ; spacings are termed barks, one bark being the space from one band to the next.

Frequency Response

The frequency response of the 'typical' ear is shown in Fig. 3. As can be seen, the response is by no means level, and varies considerably with absolute sound intensity.

The figure shows the levels at which pure tones of given frequency appear to equal the loudness of a 1 kHz

Fig. 3 Equal loudness contours. These show the amount of sound pressure required to produce sensations of equal loudness at various frequencies and volume levels. They are therefore the inverse of a frequency response curve.
reference tone, averaged over a large group of people in the 18 to 25 age range; these curves are now accepted as an international standard.

The most sensitive region at all sound levels is around 4 kHz , with lifts in response at around 400 Hz (for higher sound levels) and 12 kHz . The response at very low levels to bass and treble is comparatively much lower than at the higher levels, in particular on the bass end. This explains why some amplifiers have loudness controls to lift the bass response at low sound levels, to make the overall sound more 'natural' (or so the manufacturers say...).

As with most other abilities, there is a decline in the sensitivity of our hearing with age. Over the age of 30 , the high frequency response falls off at an increasing rate (Augh! - Ed.), and at 60 the response is some 15 dB down at 3 kHz as compared to the age of 20 . At 6 kHz . the response is even lower, at around 25 dB down. This progressive losss of sensitivity is known as presbycusis.

Warning Quo Fans!

Permanent damage can be inflicted on your ears by over-exposure to loud sounds. Short periods of over indulgence produces a temporary loss of sensitivty, after which your hearing will recover. However, if you listen to such a sound for long enough, permanent damage will occur, and the 'safe' time depends on the level of the sound.

There are maximum permitted times for which workers in the UK can be exposed to industrial noise, and these could be used as a guide; the starting point is at sound level of 90 dB , which is permitted for up to 8 hours. From this, the maximum permitted time halves for each additional 3 dB ; so for $93 \mathrm{~dB}, 4 \mathrm{hrs}$ max is allowed; $96 \mathrm{~dB}, 2$ hrs; $99 \mathrm{~dB}, 1 \mathrm{hr} ; 102 \mathrm{~dB}, 1 / 2 \mathrm{hr} ; 105 \mathrm{~dB}, 1 / 4 \mathrm{hr} ; 108 \mathrm{~dB}, 71 / 2 \mathrm{mins} ;$ $111 \mathrm{~dB}, 33 / 4 \mathrm{mins}$.

Damage can be greater if the noise contains impulsive components caused by percussive sources. However, irrespective of the frequency or nature of the noise which produced the damage, the effect is always the same, a reduction in sensitivity centred around 4 kHz , ie. the frequency region for speech. Lower and higher frequencies are less affected if at all. As the damage increases with further exposure, the band of affected frequencies broadens until it sometimes reaches down to 1 kHz .

The effect of listening to loud rock music can now be appreciated. Unlike classical music where loud peaks are interspersed with quieter passages, rock music is usually reproduced at a continuously high level, often at wellover 100 dB . Furthermore, the percussive beatadds its toll. So be warned!

Listening Levels

What volume level then, should orchestral music be reproduced? If too quiet it lacks colour and interest, while if too loud, as is more often the case, it is unnatural. One reason for this, even if the amplifier can handle the peaks without stress, is those aural response curves. The frequency balance is distorted at very high levels just as much as at low ones. For optimum fidelity, the sound pressure level at the ears should be about what it would be in the concert hall.

What sort of levels could we expect there? A lot depends on the acoustics, the size hall and the position of the listener. Taking Bristol's Colston Hall as an example, from a centre position in the 11 th row, considered among the best, peaks of 86 dB were measured during an orchestral concert. On another occasion, in the 9th row and with a different orchestra, 90 dB was clocked.

From a similar position, during a large scale orchestral and choral work, a peak of 94 dB was recorded.

Those peaks were rare and momentary. The quietest passages were pianissimo strings which measured 45 dB and were just audible. Woodwind solos were in the 60 dB range, while most of the orchestral playing was in the $60-80 \mathrm{~dB}$ region. Thus, a dynamic range of some 45 dB from quietest to loudest is called for which is well within the range of hi-fi producers, in fact many exceed this unnecessarily.

If you are keen on getting the level right, a sound level meter should be used. Not all are expensive, some are available without the sophisticated of professional instruments, quite reasonably. However, if you feel indisposed to shell out for even one of these, a few common sound pressure levels might help to get things in perspective. Soft whisperat 1 metre, 45 dB ; normal conversation at 1 metre, 65 dB ; vacuum cleaner at 1 metre, 75 dB ; cruising motor coach inside, 70 dB ; whistling kettle at 1 metre, 85 dB ; pneumatic drill at 1 metre, 110 dB.

Decibels

We've been using the term 'decibel' or ' dB ' for some time in the article, so it's about time we said what it is. It expressed a logarithmic ratio between two quantities. In the case of sound pressure levels, it is between the one being expressed and a reference which is the accepted threshold of hearing, 20μ Pascals, of 200μ dynes $/ \mathrm{cm}^{2}$. Being logarithmic, it more closely expresses the perceived sound levels, because of the ear's sound level compression. A differençe of 1 dB is the absolute minimum that can be detected, but usually it needs some 3 dB difference before a change of level is perceived. Doubling the sound pressure level produces a 6 dB increase in the logarithmic scale, but a subjective doubling of the sound level requires an increase of some 10 dB which is three times the actual level.

Identifying Sounds

How is it then that we can identify sounds, especially musical instruments that are playing the same note? The standard explanation is that we do it by means of harmonics and overtones.

When a string or column of air in an instrument vibrates, in addition to the fundamental vibration, there are harmonics at twice, three times, fourtimes and so on the fundamental frequency. As well ss these various parts of the instrument body vibrate at resonant frequencies which may be harmonically unrelated to the note being played. All these harmonics and overtones produce a characteristic pattern or formant which is different for each instrument and gives it its special tone.

Harmonic analysis reveals that the pattern changes considerably with some instruments between their lower, middle and upper registers. The flute for example has few if any harmonics in its upper register, being perhaps one of the purest toned of instruments, yet in its lower range it can have up to ten. The bassoon has an upper register that is fairly conventional, with strong fundamental and a series of harmonics of diminishing amplitude, but its middle compass has a weak fundamental with the second harmonic actually stronger, and the following ones irregular in strength. The low register is different again with a very weak fundamental and harmonics increasing in amplitude as high as the fifth.

Also, many instruments have a quite different harmonic pattern when played softly to when played loudly; the piano is an example, Yet, with all this we can

Fig. 4 Formant of glockenspiel: a pure tone with low harmonic content; very difficult to identify without starting transients.

Fig. 5 Piano played pp: mainly second harmonic with fundamental as seen from broader negative half-cycles.

Fig. 6 Piano played mf: stronger second harmonic with others, mainly even.

Fig. 7 Trumpet: stronger harmonic content whan piano note but not dissimilar, when starting and finishing sections removed. Harder sound than piano.

Fig. 8 French horn: mellower tone then trumpet, but similarity in waveform can be seen.

Fig. 9 Clarinet: distinctive pattern consisting of strong fundamental with strong odd harmonics in large number.

Fig. 10 Violin: large number of harmonics both odd and even gives rounder, less incisive tone than clarinet. Yet without starting and finishing portions, it is difficult to distinguish them (even the violinist had it wrong).
still recognise the instruments whatever their register and level.

Clearly somethingelse must be responsible for giving the characteristic sound in addition to harmonic content. Another factor which has been suggested is the 'shape' of the sound, that is the way it starts, decays, and finishes. Percussive instruments produce very steep starting transients, but quickly decay to inaudibility. The attack of the bow on stringed instruments is quite different and the notes can be sustained or even increased in volume at the will of the player, and the cessation is abrupt as the bow is lifted. Wind instruments also have a characteristic start and can be sustained or increased. Further complications are vibrato, in the case of strings, whereby the performer makes small rapid changes of pitch to give expression, and tremulo with some wind instruments such as the flute, which is mainly amplitude variations.

Experiment

To test the validity of this theory, I set up an experiment with the cooperation of a smali amateur orchestra. Six instruments were chosen that were unalike in tone: trumpet, French horn, B-flat clarinet, glockenspiel, violin, and piano. Each instrument played in turn an ascending scale of C-major starting at middle C. Each note was played deliberately and slowly, with novibrato or tremulo and duly recorded on a reel-to-reel taperecorder.

Next, each note was 'topped-and-tailed'; that is the start and finish were edited out leaving only the middle portion, and the order of the instruments re-arranged.

Finally, members of the orchestra, members of a choir that frequently performed with it, and some hi-fi enthusiasts were asked to try and identify the instruments from the doctored recording. Each participant had an answer sheet and was asked to put the name of each instrument dow: as it was heard. They were asked not to guess, but put down only if they thought they knew the identity of the instrument, and also not to put the final one or two down by process of elimination. If they were not sure they were asked to leave the space blank. All we told which instruments were being played but not their order. Some participants were the original players.

In view of this knowledge and familiarity with the sound of the instrument, one would expect a high score. In fact only 25\% got all the answers right, and no instrument was correctly identified by all participants. A breakdown of the correct answers was: trumpet 65%, horn 85%, clarinet 85%, glockenspiel 85%, violin 45%, piano 70\%.

The trumpet was not too difficult, but it sounded strange and foxed 35%; the horn was, to my ears, unmistakable - even so, 15% got it wrong. The clarinet was much more difficult, but was given away by a slight breathiness on a couple of notes; without this, fewer would have got it right.

In spite of its high score, the glockenspiel was very difficult. It was given away by a slight tinkle on one note due to insufficient chopping of the starting transient when editing. The effect was of a pure clear tone very much like the flute. The violin was also difficult, many confusing it with the clarinet and vice-versa. It was even mistaken for the trumpet and piano in some answers.

A most peculiar elfect was given by the piano, and 30% failed to get it right. The sound was more like a mellow brass instrument! All participants said that the test was difficuit, and many, though giving the right
answers, said they were not entirely certain.
So, the conclusion is that starting transients in particular, and the decay and termination in addition, play an important part in the recognition of musical sounds. This emphasizes the need of good tranisent response and avoidance of transient distortion in amplifiers and speaker systems. On the other hand, a perfectly level response in the upper region, though desirable, is of less importance because the harmonics that fall in this region vary so much in amplitude. This is possibly the reason why many speakers, though having a rocky-looking treble response, sound perfectly acceptable. large peaks though, should be avoided for another reason as we shall see.

Listening Fatigue

A strange effect this, and often unsuspected. After a spell of listening to recorded music, various symptoms may arise. These can range from a mild feeling of having heard enough, to feelings of unease and actual irritation. It may not be actually associated with the sound heard, but these nevertheless are the cause.

So what causes listening fatigue? Distortion is certainly one of them. Even harmonics generated by the reproducing equipment, although related as harmonic distortion are harmonious with the fundamentals and can be tolerated in quite large doses. Odd harmonics are dissonant, and small amounts can be unpleasant. Crossover distortion, inherent with simple class-B output stages, consists mostly of third harmonics. Although reduced to very low levels by sophisticated design, it can still have an effect, even if to a lesser extent.

Another cause is intermodulation distortion. Here, harmonically unrelated spurious frequencies are generated by the interaction of two signal frequencies. Complex waveforms consisting of many frequencies can generate an abundance of spurious ones, and nearly all discordant. This too can result in fatigue.

A further cause is excessive high-frequency response. Peaks in the treble can over-emphasize the natural harmonics of the musical instruments. The effect may be an apparent brilliance which is not unpleasant, but even stimulating to start with, yet can soon produce fatigue symptoms.

Holophony

A couple of years ago (in July 1983) we published an article on Holophony, and for fuller information you should look there. However, since that article was published, the editor has had a chance to discuss the holophony with the inventor, Hugo Zucarrelli. The basis of h is theory is that the ear actually emits a sound of its own, which interferes with the incoming sound. This interference pattern is decoded by the cochlea, which, with sound travelling in opposite structure as a sonic interferometer.

As readers will guess, reactions to this sort of theory have ranged from polite disinterest to noisy dismissal. This hasn't been helped by the somewhat disappointing results on the holophony demonstration record, or Hugo Zucarrelli's rather secretive attitude towards his invention. However, he certainly convinced the editor that the standard explanation for how we locate sound sources is inadequate.

Over-efficient loudspeaker tweeters, spurious oscillation in cross-over networks, and tweeters that beam sound directly at the listener can all be responsible. Boomy bass can be fatiguing, though this is less heard nowadays than it used to be.

Some interesting experiments were conducted at Kings College, Cambridge, by Dr G Cross in the early part of the last decade, on listening fatigue. It was found that valve amplifiers produced less fatigue than transistor ones. At that time crossover distortion was more pronounced with the then current transistor designs, whereas many valve amplifiers operated in class-A. However, another possible contributing factor is the extended HF response of transistor amps compared to that of valves. Transient distortion is another amplifier defect that could have an aural effect. It is caused by delay in the negative feed back signal reaching an earlier controlled stage, so that it is too late to reduce sudden transient signals. The result is an overloaded stage and severe distortion. However, because it passes quickly it may not be consciously noticed.

Dr Cross also found that fatigue was produced when the reproducing system was upgraded. This was explained by a frame of reference being established by the inferior equipment. If used for a period, this is taken as 'normal'. This difference in performance of the new system, say an improved HF response, violates the established frame of reference. In time, the new system itself becomes accepted as the norm, but during the adjustment period, fatigue symptoms can be encountered.

Yet another effect could be described as the 'new equipment anxiety syndrome'. This is possibly more likely with hi-fi enthusiasts than with listeners who buy equipment just to listen and enjoy the music. Enthusiasts tend to be very critical, so having spent much time and effort evaluating different products, then finally taking the plunge and acquiring a particular outfit, there is anxiety, conscious or unconscious, as different favourite records are played, lest the new purchase be found wanting in some respect.

This could explain why those folk who are constantly changing their equipment never seem to get any real enjoyment from it, and so make yet another change they are in a constant state of anxiety!

Listening fatigue though is not brought on only by reproduced sounds. Dr Cross's research was intially stimulated by the fact that some lecturers at the college were holding students' attention while others with the same material and teaching techniques were not. It was found that the voices of the unsuccessful ones were in fact producing listening fatigue which affected attention and also retentivity of students.

One interesting fact that came to light was that female voices were less likely to produce fatigue than male. Apart from the possibility of the students being predominantly male, hence more likely to be attentive to a female speaker, a possible explanation for this is the harmonic content of the female voice. Although the female voice is pitched higher than the male, it has fewer harmonics, hence a purer tone. The male voice, though deeper, has more harmonics and therefore extends higher in the overall frequency spectrum. As we have previously seen, an excess of high frequencies, or prominent harmoncis can result in fatigue.

We do not know all the mechanisms and psychological effects that are involved between the outer ear and the sensations of sound produced in the brain, but the outline here presented should help us appreciate the equipment with which we have been endowed and how it relates to reproduced sound in our homes.

IT WON'T COST YOU A PENNY.

BEING WITHOUT ONE COULD COST YOU DEARLY.

The 1985 Midwich catalogue is now available, absolutely free.

It's the most comprehensive catalogue yet, containing many of the latest and very best computer components on the market, at highly competitive Midwich prices and a service that is second to none.

Which means it will provide your organisation with a vital source of information including numerous
technical specifications and pin-out diagrams.
Fill in the coupon and send for your copy today. organisation can afford to be without one.

You'll soon dis- $\sqrt{\text { Reply to Dept ET14 Midwich Comouter Company }}$

Postcode

ELECTRONIC COMPONENTS
441 Princes Road, Dartford, Kent DA1 1RB

VSA

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio \& C.B. user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist. Sections are headed as follows:

Aerials, Amplifiers, Audio Accessories, Batteries, Boxes, Bulbs, Capacitors, Crystals, Car Components, Car Audio, CB \& Ham Equipment, Computer Connectors, Fuseware, Hardware, Headphones, Knobs, Lamps, Leads, Loudspeakers, Microphones, Meters, Opto, PCB, Resistors, Semiconductors, Special Effect Equipment, Switches, Power Supplies, Test Equipment, Tools, Transformers, Wound Components.

In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.

How many suppliers do you have at the moment that offer a service like this?

Please Fill in coupon below and send with £1.25 print clearly as coupon is used as address label.

Catalogue contains £2.50 Dlscount order form you make a profit straight away.

NAME. \qquad
ADDRESS \qquad
\qquad
\qquad
\qquad

RS232 I/O FOR ZX81 OR SPECTRUM

Designed for use with either the ZX81 or the spectrum, this project is for those whou would like to be able to communicate with printers and other computers. Design and development by Peter Moore in conjuction with Newtech (Micro) Developments Ltd.

This RS232 interface provides a wide range of software programmable baud rates and a true positive/negative voltage swing at its output. The facility is provided for a 'ready' signal from external equipment to be read by the computer and the interface

Function
'Ready' line input
'Ready' line output
OV/GND
Serial output (TX)
Serial input (RX)
provides its own 'ready' signal for external equipment. The interface plugs into the rear edge connector of your ZX81 or Spectrum and a rear edge connector is provided so that further periperhals can be plugged in behind.

Construction

All the components used in this project are mounted on a single sided fibreglass PCB. There are fifteen links to be made on the PCB not counting the pads marked A, B and C. These pads are used to select either an active high (logic 1) or active low (logic 0) ready signal from the RS232 interface: if

Fig. 1 Overlay diagram of the interface board
you link A to C the ready out signal will be active high; linking A to B will select an active low signal. Decide which you require and solder a link accordingly.

Solder the remaining fifteen links in position; note that three of these are located beneath ICs 1, 2

PARTS LIST

and 3; you may wish to solder these on the copper side of the board, in which case use insulated wire.

Next insert and solder the two diodes D1 and D2 and Zener diodes ZD1 and ZD2, making sure they are the right way round. Solder resistors R1 (10M) and 2 and 3 (1 kO).

Now insert and solder the IC sockets one at a time taking care to ensure that all pins are soldered and that there are no solder bridges across any of the PCB tracks.

Solder IC9 in position taking care to mount it with the flat, allmetal side facing the nearest edge of the PCB. Insert and solder capacitors C1 to C6: C3, 4 and 5 are electrolytics, so be careful to get the polarity right on these. Insert the solder crystal X1 and $0.1^{\prime \prime}$ PC plug SK2.

Finally, insert the edge connector and solder it, leaving a gap of 5 mm between the body of the connector and the PCB surface.

If you wish to be able to plug further peripherals in behind your RS232 interface you will need to solder the ege connector strip (supplied in the kit) to the rear of the PCB behind SK1. Place the edge connector strip between the pins of SK1 (see Fig. 2) and, with a

Fig. 2 Connecting the rear edge connector.
pair of pliers or pincers, gently squeeze the two rows of pins together so that they touch their corresponding tracks on the edge connector stip. Make sure that the key edge connector strip is at the same end as the key of SK1 and then solder the edge connector strip into position taking care not to allow solder to flow back onto the copper side of the PCB.

Before inserting the ICs, make a final check of all your soldered joints and make sure there are no solder bridges across any of the PCB tracks. Carefully insert the ICs making sure that they are the right way round, in the right sockets (!) and that no IC pins become bent under their respective ICs.

You can check that your RS232 interface is working correctly by temporarily connecting SO and SI directly together; data sent to the RS232 board to be transmitted should appear at the RS232 input port.

Programming

The RS232 interface provides software control over the transmission/reception baud rate, the number of data bits per character and the number of stop bits appended. Programming is accomplished by means of a data byte written to the interface board's status port (see Table 2). A logic 1 in bit D7 (TSB) will select two stop bits while logic 0 will select 1 stop bit.

NB2	N81	Bits/char
0	0	5
0	1	6
1	0	7
1	1	8

Table 3 NB1 and NB2 programming. Note that the Bits/char figure excludes stop and start bits. A combination of two stop bits and five bits per character will result in $1 \frac{1}{2}$ stop bits.

NB1 and NB2 select the number of data bits per character (see Table 3). Where the number of data bits per character is five and the number of stop bits selected is two, $1 \frac{1}{2}$ stop bits will be appended. To select (for example) two stop bits, eight bits per character at 1200 baud: $11111011_{2}=$ FB $_{16}$ $=251_{10}$ (D4 is unused and can be either 0 or 1).

Three bits read from the RS232 interface's status port indicate the current state of the UART and the equipment it is communicating with (by means of the ready line) DAV is the UART data available flag; this will be logic 1 when data (which has not yet been read by the computer) has been received by the UART. DAV connects to

D7	D6	D5	D4	D3	D2	D1	D0
TSB	NB2	NB1	not used				
							Baud rate selected

Table 2 Significance of bits used to program the interface.

IC3 is an AY-3-1015 UART (Universal Asynchronous Receiver/Transmitter). One of the most useful devices ever produced, it is designed to interface serial to parallel and parallel to serial data channels.

The AY-3-1015 consists of two main sections: a transmitter, which converts parallel data latched into the IC into serial form, adds start and stop bits and transmits the data from its serial output, and a receiver which converts serial data appearing at the serial input to parallel data.

The UART requires a clock signal sixteen times the required baud rate; IC2 is a programmable baud rate generator which, in conjunction with crystal X1, R2, C1 and C2, supplies a range of software programmable baud rates.
UART flag TBMT (Transmitter Buffer Empty) is at logic 1 when the UART can receive further data to be transmitted in serial form. The state of TBMT and the ready input line RDY (for transmitting data) and DAV (Data Available) for receiving data are read into the computer by a read from the status port ($\mathrm{A} 6=0$).

When such a status read operation is made, the output of ICAd is taken to logic 0 ; this line is taken to IC5c (whose output is connected in open collector fashion to D6), IC5c then communicates the current state of the ready input to the computer data bus. IC4d's output is also connected to the SWE (Status Word Enable) input of the UART; when SWE is taken to logic 0 , DAV and TBMB (which are tri-state outputs) are enabled and pass the current UART status to data bus line D0 and D7 respectively.

Data to be transmitted in serial form is latched into IC3 by DS being strobed to logic 0. When IORQ, A7 and WR are at logic 0 , DS will be taken low latching the data on the data bus into the UART. The UART converts this data into serial form adding start and stop bits (no parity - NP is connected to Vcc) and outputs it to the UART serial out (SO) line.

IC8 is an RS232 line driver IC which inverts the serial data providing approx +9 volts for a logic 0 input -9 volts for logic 1. IC8 is powered from the + 9 volt line from the computer; it also requires a negative supply of similar

D3	D2	D1	D0	Baud rate
0	0	1	0	50
0	0	1	1	75
1	1	1	1	110
0	1	0	0	134.5
1	1	1	0	150
0	1	0	1	200
1	1	0	1	300
0	1	1	0	600
1	0	1	1	1200
1	0	1	0	1800
0	1	1	1	2400
1	0	0	1	4800
1	0	0	0	9600

Table 4 Baud rate selection.

Fig. 3 Circuit diagram.
voltage. IC7 is a voltage converter IC (also powered from the 9 volt line) which produces a negative voltage at its output (C4 is shown connected the right way round with its positive lead connected to GND).

Serial data appearing at the RS232 interface's serial input is clipped to TLL levels by ZD1 and R2; IC6d buffers and inverts this signal before sending it to the UART's serial input. The start bit of data received at this point is a logic 0 ; data arriving at the UART serial input resets the latch formed by IC6b and c to indicate a 'not ready' state to the equipment transmitting data to the interface board. When data is read from the UART (by taking RDE, Read

Data Enable, to logic 0) this latch is set once again indicating 'ready' (ie that the UART can receive further serial datal. Both outputs of the latch are made available to provide a choice of active high or active low indication, selected by means of a wire link on the PCB.
Indication to the computer that the UART has received a byte of data is supplied by the UART's DAV (Data Availablel flag. This line will be at logic 0 except when the UART is holding data received from its serial input When the UART is read by the computer DAV is reset by RDAV (Reset Data Available) being taken to logic 0 together with RDE (Read Data Enable)
which places the data received by the UART onto the data bus.
The number of data bits, stop bits and the baud rate are programmed by a wire operation to the status port. IC1 is a quad latch IC whose inputs are connected to data bus lines D0-D3. Data is latched into IC1 by a negative strobe in its PL (Parallel Load) input (Jue to $I O R Q=A 6=W R=0$) supplied at the output of IC5a; this line is also inverted by IC6a to provide a positive strobe for the CS (Control Strobe) input of the UART. This strobes the required number of bits per character and number of stop bits (the data on TSB, NB2 and NB1) into the UART.
data bus line D0 during status read operations.

TBMT is the UART transmitter buffer empty flag and is at logic 1 when the UART can receive further data for transmission. TBMT is connected to D7 during status read operations.

The ready line (RDY IN) indicates the state of the devices with which the RS232 board is communicating: depending on this piece of equipment, RDY will be either 0 or 1 when further data can
be transmitted. RDY connects to D6 during status read operations.

Spectrum Programming

Two IN/OUT port addresses are used by the RS2 32 Board: OUT 65471 is the (status out) program port;
IN 65471 is the status input port; OUT 65407 is the data output port;
IN 65407 is the data input port. Before being used to transmit and receive data, the UART should
be read (to reset DAV if necessary and also the ready output line) and the required baud rate, number of data bits per character and number of stop bits required should be written to the status port, eg:
70 PAUSE 1 : LET A=IN 65407 20 OUT 65471, x where x is the UART programming data.

The subroutines listed in Fig. 4 could be used for data input/ output operations. An alternative

```
icgg REM Spectrum subroutines - iriput sata
101ल PAUSE 1: LET GEIN 65471: IF a/Z=INT (a/2) THEN GO TC 1010:
REM looD if DAV=&
1a2e PAUSE 1: LET a=IN 65467: RETUPN
:e3g REM Outputting data
1@4% FAUSE 1: LET a=IN 65471: IF a<192 THEN GO TO 104N: REM ISOP
    if RDY or TBMT =C
1050 CUT 65497,n: RETURN
```

1635 REM Alternative line 1649
1045 PAUSE 1: LET $a=I N 65471$: IF a<128 OR a>191 THEN GO TO 1046
Fig. 4 Spectrum subroutines.

```
    1 REM Program to output at string of data to a printer
```



```
rn
    110 FOR f=1 TO LEN i$: LET n=CODE i$(f)
    120 GO SUB 1g30: NEXT F: GO TO 19%
```

Fig. 5 Spectrum program to output a string of data to a printer.

line 1040 is given where the ready line from the equipment with which the RS232 Board is communicating is active low (logic 0). Fig. 5 gives an example of a short program which will output a string of characters typed into the Spectrum to a printer.

ZX81 Programming

Since the ZX81 has no IN and OUT commands, three short machine code routines are used (see Fig. 6). Before being used to transmit and receive data, the UART should be read (to reset DAV if necessary and also the ready output line) and the required baud rate, number of data bits per character and number of stop bits required should be written to the status port, eg:
10 POKE 16545, x
15 RAND USR 16544
where x is the UART program data.
To read data in from the RS232 input port use:
LET A=USR 16514
The subroutine checks the
state of DAV and, if $D A V=1$, inputs the data and returns it in variable A. Since it is highly undesirable (from the user's point of view) for the computer to enter a machine code loop (if DAV is 0), the
subroutine returns whether or not new data has been received; if it has, A will return holding a number greater than 255, otherwise A will of course) be less than 256.

Fig. 7 gives a BASIC subroutine that could be used to wait for the input of a byte of data.
To output data to the RS232 port, use:
POKE 16540, x
LET A=USR 16528
where x is the data to be output.
As before, the subroutine does not cause the computer to enter a loop if TBMT and/or RDY is inactive. The number returned in A will be less than 256 if the data has been output, otherwise A will be greater than 255.

Fig. 7 also gives a short BASIC subroutine that could be used to output data.

Ren 000000000000000000000000000000000000 (reserve
Fin $=16514$ TO 16554 byten)
prentr F ,
IMINT N
paint n
pare F,
MEX :

16514	1	L0 BCrm	Entry poiat for date input
16515	191	c	status port
16516	1	b	
16517	238	In r , (c)	
16518	125	$r=A$	
16519	243	Lit b, r	
1652	71	b-口, ra A	
1691	2414	Bet z	
16522	5	Sec ib	
16523	14	LD C, n	
16524	127	data port	
16525	237	In r, (c)	
16526	72	F-C	
16537	2\%1	Et	
16588	1	Le BC, m	Bntry point for data outpue
16529	191	c	status port
1653 ${ }^{-1}$	1	\checkmark	
$16531{ }^{\circ}$	237	In r, C (
16532	124	5	
16533	246	OR, n	
16534	63	-	nask
16535	254	Cr, ${ }^{\text {n }}$	
16536	255	n	test for tekt = indy $=1$
16537	192	Ret nz	
16538	5	Esce ${ }^{\text {B }}$	
16539	62	LD An	data to be output
1654	,	Paxed	
16541	211	OUT (n , , A	
16542	127		
16543	201	ET	
16544	62	LD $4, n$	
16545	*	PCased uare	gram deta.
16546	211	OUT (n), A	progras Unt
16547	191	n	
16548	219	IN(A), n	
16549	127	n	clear bay
1655\%	211	xt	

Fig. 6 ZX81 BASIC machine code subroutine, with a program to get it into the memory. If RDY is active low, data for 16536 should be 191.

```
1m
Im\5 LLT A = Us& 16514
140 IF A 255 mem ooto im|s
1/15 retumer
1/2%
1/25
1%3%
4025
IF A 255 TMPN coto.1%3%
(4) metumar
```

Fig. 7 ZX81 machine subroutine.

BUYLINES

> All components used in this project with the exception of the PCB are readily available from electronic component suppliers. The PCB is available from Newtech (Micro) Developments Ltd. for $\mathbf{£ 5 . 8 0}$. Newtech also supply a full kit of parts for the project at $\mathbf{£ 2 8 . 9 5}$ and will also supply the RS232 interface built and tested and mounted in a case for $£ 33.95$. These prices are all inclusive. You can find Newtech at 1, Courtlands Road, Newton Abbot, Devon TQ12 2JA.

IUIII Audotronic
Abbots Hill Chambers 1 st Floor, Gower Street, Derby DE1 1 SD

Tel: Derby 0332/382433

Modules	Power RMS	Load	Volt Max	Size (mm)	Price
RVM150S	70-150W	4.8,	± 60	$31 \times 80 \times 100$	$1+27.00$
	120-300W				$10+22.97$
RVM300S		4-8.	± 65	31×102×136	$20+22.77$
					$1+37.80$
					$10+32.13$
					$20+30.24$
RVM400S	170-400w	4-8.	± 65	$47 \times 89 \times 136$	47.05
RVM700S	300.700 W	2-8	± 70	$47 \times 90 \times 197$	70.10
RVM700S	unted on	Sink			70.40

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIER MODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

All prices include post \& packing.
(Quantity discount available)

To order send cash with order, or cheque/postal order. Delivery on our Modules and Heat Sink or same day dispatch when order is recelved with cash, allow 7 days with cheque or postal order.

Please call or write
SME Limited. Steyning, Sussex, BN4 3GY Telephone: 0903814321 Telex: 877808 G

Dont put it off diy longer

Protect your family and property with your know how and our security modules. Complete

 systems start from as little as
A COMPLETE SECURITY SYSTEM FOR ONLY £39.95
 + V.a.t.
 Encloosure
 Key Swith \& 2 ters
 Sing Morn Soester
 Swulches

SELF-CONTAINED ULTRASONIC UNIT CK 5063
With onty a tew hours of your ume it is possible to ossamble and install on

 onytur winh soolinonat magnelic swichel pressure peds onsy be entended al

Component

For
Electronic and
other small parts
A large variety of components can easily be kepi well organized 60 storage pôckets per unit.

Unit size:

L400 W125 H7.7mm.
Material: Injection-moulded in
impact resistant polystyrene.
4 and 6 Drawer Steel cabinets
available.
The 6 Drawer cabinet practical for field service, has lock and carrying handle Recommended prices (excluding V.AT.): 6 drawer cabinet with lock and handle 4 drawer cabinet with lock and handle Single drawer.
$£ 92.00$
$£ 59.00$
£11.00

Typical Minifile applications:
R \& D Departments Prototype Kits
Production Test \& Rework Service Departments
Field Service Engineers The Electronic Hobbyist
Repair kits for computers CNC. machines.
Stocked by:
Bradley Marshall. 325 Edgware Road, London W2 1BN. Tel: 01.723 4242
Enfield Electronics, 208 Baker Street, Enfield, Middlesex EN1 3JY. Tel: 01-366 1873
Henry's. 404-406 Edgware Road, London W2. Tel 01-724 0323
TK Electronics, 11.13 Boston Road, London W7 3SJ. Tel: 01-5799794
Watford Electronics. 33/34 Cardiff Road. Watford. Herts. Tel (0923) 40588

MACENTA ETI KITS

Full kits include pcbs, hardware, cases (unless stated otherwise), IC sockets, wire, nuts \& bolts. Article reprints extra 70p each.

SPECTRUM CEMTRONIC 8 INTERFACE DEC 84	MAIN\& BORNE REMOTE CONTROL RECEIYER) AOC 84
less case and pinter plug	(RECEIVER) Apr 84
LOUOBPEAKER SOUEAKER Nov 84 [4.13	STEREO POWER METER Mar Ba E57.48
DIOITAL CONTROL PORT (SPECTTRUM) 1/O	
BOARD Nov 84 less case	MINI MYNAM (ZX81 \& Spectrum) Feb 84
DIAECT READING CAPACITANCE METER	less case 549.90
Nov 84 E27.32	MIMI DRUM SYNTH Nov 83 E11.37
Kin less case 8 panel meter $\mathrm{Els.04}$	FAST LIAHT PEN Nov 83 less cas
IEMPERATUAE CONTROLLER NOV 8A	RADIO CONTROL SERVO FAIL-8AFE Iess case
less case [5.00	Aug 83 c3.14
MAINS FALURE ALARM Nov 84 CE. 20	BALANCED INPUT PRE-AMP no case May 83
KNITE LIOHT Nov 84 [12.03	£11.00
SIMPLEECHO UNIT (EZEKO) OCTB4 C25.80	COMPAE S8OWLMITER no Case May 83 E21.37
DIOITAL CONTROL POAT (SPECTAUM)	MIGH OUALITY PHONO AMPLIFIERS FEO 82
	moving Coil stace less case $\quad \mathbf{2 0 . 0 3}$
SIREN UNIT Sept 84 leas key swich E14.02	MOVING MAGMET STAGE less case $£ 20.40$
DAY CELL CHARGER Sept bs $¢ 13.70$	WATCHOOG SECURITY ALARM Hess battery
INFRA AED ALARM Juty/aug bu c31.90	Aug 81 [40.44
SIMPLE CMOS TESETEAUGQ4 C22.05	MANOCLAP SYNTHESISER Aug 81 E33.98
WARLOCKBURGLARALARM JUIY84 cmese	June 81. CROSS E3.25
SPECTHUM JOYS TICK INTERFACE June b4	Stareto.91 SPIAAL cbeb
AUTOMATIC SECURITY LIOHT SWITCH	QUITAR NOTE EXPANDER ADI 81 [19.62
	IUFRA RED ALARM FED 81 ces.90
May 84	4 INPUT MIXER Dec 80
ZTBEPROM PROGRAMMERMAYBA MIDI DRUM SYNTH May 84 MAINS BORNE REMOTE CONTROL (TRAN8NITTER) May B4	MUSICAL DOOREELL DEC 60 ¢ 13
	ULTRASONIC BURGLARALARMAUG80¢31.5
	CAPACITANCE METER Aug 80 c24.7
	CUCK ELIMIINATOR ADS 79 Es7.
(TAANSNITTER) MBy B4	Kntess case $\mathrm{E40.09}$
	2 -
CATALOGUE	C TO ID 35 STEPPER MOTOR INTEAFACE
1985 CATALOGUE Briet details of esch kh, our books, 8 illustrations of our fange of tools 8 componemts erc. CATALOGUEEPAICE LI8T-send E1 in stamps erc or add E1 to your order. Price lis: -9×4 sae.	B, arver IC. components. connactors 8 leads
	ded. Demonstration sotiware listings circuh
	OPTIONAL POWER SUPPLYPARTS $\mathrm{IC}^{4.67}$
	1035 STEPPEA MOTOA 114.50
	bbc trackball Controllea 2 " ball 2 fire
Catalogue fREE TO SCHOOLS/COLLEGES aEQUESTED ON OFFICIAL LETTERMEAD	buttone. Analogue input port connector. Includes
	simple sotware tit.ee

MAGENTA ELECTRONICS LTO. ET4, 135 Hunter St. Burtonnon-Trent ET4, 135 Hunter St. Burton-on- Tren (0283) 65435 SA. E. enquiries.

Add 60p p\&p to all orders. Prices
include VAT. Access \& Visa phone/post.

24 hr enswerphone for creak card ordere
OVERSEAS: Payment musi OVERSEAS: Payment muss be sterling
IRISHREPUBLIC + BFPO. UK PRICES IRISH REPUBLIC + BFPO - UK PRICES
EUAOPE: UK PRICES $+10 \%$. ELSAOPE UK PAICES + $+10 \%$.

A METAL Z8OA COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals $£ 1 \cdot £ 5$.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name and address with a 21 pstamp and we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T4E), 92 New Chester Road, New Ferry, Wirral, Merseyside.L62 5AG Telephone: 051-645 3391

THE REAL COMPONENTS

As a preamble to a discussion on the nasties of transistors, John Linsley Hood reveals that the carbon diode (more accurately, the coke diode) pre-dated germanium and silicon types.

When I was about nine years old, my grandfather gave me an old crystal radio to play with. This was one which he had made for himself, and used during the 1920s. My own reaction was that if it had worked once, it should work again, so I took it all to pieces, and cleaned it most carefully and put it back together, and indeed it did work again, though the 'crystal' was a bit decrepit and it needed a lot of patience to find a workable spot for the 'cats whisker'.

This set me to experimenting to see if I could find any useful substitute for the now rather eroded lump of lead sulphide, and I found in due course that a piece of domestic coke would work quite well. The reason why a crystal and 'cats whisker' works at all is shown in Fig. 1, and, surprisingly this forms the foundations for the whole of present day semi-conductor electronics.

Fig. 1 Generation of a depletion zone at point of contact between a metal cat's-whisker and lead sulphide crystal (greatly
magnified in dimensions) magnified in dimensions).

At a junction between a conductor (the copper or silver wire 'cats whisker') and a semiconductor (the occasional small areas on a crystal of lead sulphide, or, in my case coke), a'depletion zone' will arise in which electrons from the semiconductor will be absorbed by the conductor, leaving a region empty of electrons surrounding the point of contact. Current can now pass from the conductor into the semiconducting - now empty - region, but not conversely, unless a fairly high potential is applied; the junction acts as a rectifier.

In the case of a metal/semiconductor junction, the current vs. voltage characteristics of such a junction are as shown in Fig. 2 with the bit of the graph just around the origin expanded. This kind of characteristic is helpful if it is to be used as a detector in a crystal radio, since the voltages available at the rectifier are extremely small, virtually just what comes out of the aerial wire multiplied by the Q of the aerial tuned circuit; so any kind of 'dead space' around the zero voltage point on the graph would cause the signal to be lost.

This type of crystal/cats whisker diode was employed during the war years when small very high frequency rectifier diodes were needed for use as detectors (ie. rectifiers) at the input of centimetric radar receivers. Since it was not possible at that time to amplify the RF signals at those frequencies, all that could be done was to demodulate the RF input from the aerial, and then amplify the resultant relatively low frequency pulse signals.

The type of construction employed is shown in Fig. 3, and the semiconductor employed was a tiny chip of as nearly as possible single-crystal silicon. If the surface was carefully cleaned and etched, almost any point on it would work, and the 'whisker' could be kept in place with a filling of some hard wax, provided that this didn't seep between the metal whisker and the crystal surface.

So far as I was concerned, my experiments with crystal radios were a dead end, and as soon as pocket money and circumstances allowed, I moved up to thermionic

Fig. 3 War-time British 'Schottky' diode style radar signal rectifier and mixer.
valves - nice shiny things, whose glass envelopes could be polished, and which always worked if their filaments were intact. These were much more predictable than crystals and cats whiskers, and they could be used to amplify signals which crystals could not.

However, in the USA, Shockley and his colelagues at the Bell Telephone Labs, had not forgotten the crystal diode, and were actively considering the ways in which this could be made to amplify. Their approach was that shown in Fig. 4.
Fig. 4 Early pointFig. 4 Early point-
contact transistor.
collector

Point Contact Transistors

This type of device operated on the principle that a region of semiconducting material - by which I mean things which are neither metallic (and therefore good conductors) nor insulating (materials like germanium, silicon, and some forms of carbon, are examples) depleted of electrons by its contact with a conductor, would allow an input of electrons, but would now allow an outflow.

However, Shockley and his colleagues, Bardeen and Brattain, reasoned that if two-point contact diode' whiskers' were very close together, then current injected into the semiconductorby one metal point, and which would only need a low potential to achieve this forward con-- duction, might be swept up by the, other, reversebiassed diode and cause a current to flow in this where previously there had been none. The advantage of this would be that a relatively high voltage, several volts perhaps, could be applied to the collector whereas only a fraction of a volt would be required at the emitter - as the forward-biassed point was named.

Happily, the idea worked, and because the main characteristic of such a point contact device was that

- the resistance of the input electrode was low, whereas that of the output, reversed-bias electrode was high, the device was known as a transfer resistor (it transferred the current from a low resistance circuit to a high resistance one) or transistor for short.

The proportion of current which was actually transferred from one electrode to the other was known as alpha (α), and this was a measure of the skill in getting the points close together. Ideally it would be unity, which would imply that all the electrons emitted would be collected. Curiously, though, it could sometimes be higher than this if the interaction of the injected electrons with the base material caused new electrons to be generated.

For this type of transistor to work, the base material would have to be one having a deficiency of free electrons in its structure. Nowadays we would refer to this as P-type material.

Junction Transistors

Understandably, the kind of transistor which Shockley and his colleagues first developed would have been very tiresome to try to manufacture on any sort of com-
mercial scale, so the scheme shown in Fig. 5 was used instead, in which a slice of germanium was etched away from both sides by jets of hydrofluoric acid until the two cavities almost met. Point contact wires could then be applied from either side and would be separated by a region which was as narrow as the thickness of the residual base material.

Fig. 5 (left) Commercial point-contact transistors.
Fig. 6 (right) Improved point-contact transistors offering greater immunity to mechanical shock.

This was better, but still a bit awkward to make and not very shock proof. The answer to this was to replace the wire point contacts with deposited blobs of metal, as shown in Fig. 6. If these were made of Indium, this would diffuse into the P-type base, causing an N-type region which would work just as well as a metallic whisker contact. The final development of this system came with the structure shown in Fig. 7, where the base was just a thin layer of mono-crystalline germanium 10 to 20 thous. thick, with indium blobs applied to either side, and then heated to cause it to diffuse inward.
Fig. 7 First true junction
EMITTER
CONNECTING transistor.

The closer the two diffusion layers got together the higher the current gain would be, so it was a matter of some skill in the making of such devices to stop just in time. If the two inward diffusing regions met in the middle - like Aunt Emily's shingles - the result would be a defunct device. As an extension of this, if the user allowed the device to get hot, the diffusion would continue, and the transistor's current gain would get higher and higher, until finally it would short-circuit.

Silicon would be a better material to use from the point of view of its thermal stability, but it had not been favoured in the earlier transistor types because of the difficulty of obtaining high current gains. Speaking from the point of view of a traditional two-sided diffused junction transistor, current gains in the common emitter mode (β) of 50-100 could be obtained with germanium, but only in the range 15-25 with silicon.

This difficulty was resolved when the planar form of transistor construction was invented by the Fairchild Instrument Corporation. This is shown in Fig. 8.

FEATURE : Real Components

Planar Transistors

These employ a thin wafer of very high purity monocrystalline silicon as the substrate, doped with a suitable trace quantity of some impurity. For example boron will give a P-type result, and arsenic will make an N-type material. These impurities can be diffused into the crystal slice, from one side only (the term planar is supposed to imply this), and if a normally N-type substrate is diffused with sufficent P-type impurity, through some sort of vapour resistant diffusion mask, the result will be a P-

Fig. 8 Stages in the manufacture of a silicon planar transistor. Many would be made simultaneously on a single slice of silicon.
type area, as shown in Fig. 8. If the wafer is then masked again to give a smaller area, an N-type impurity could be diffused into the middle of this region, to give a transistor of the kind shown in Fig. 9.

Because the effective base region, the P-type sandwich filling between the two N -layers can be made very thin by careful control of the diffusion process, current gains of 400-500 are feasible. Moreover, if the device becomes hot, both regions will diffuse - if they do at all - in the same direction, so the problem of them meeting head-on is lessened.

However, the main advantage of this kind of construction is that it is possible to make many hundreds of

Fig. 9 Typical diffusion lay-out for small-signal silicon planar transistors.

transistors at a time on a single thin wafer of silicon. Nowadays these can be 5 or 6 inches in diameter, so, with a transistor occupying a chip probably only $0.1^{\prime \prime}$ square, the possible output per wafer can be visualised. This has brought the cost of such devices down dramatically, so that to a manufacturer who buys in bulk, small signal transistors will not cost much more than 1p each.

Epitaxial Planar Transistors

These are a development of the basic planar construction of Fairchild, with the difference that a thin layer of monocrystalline material is grown onto the surface of the wafer, as in Fig. 10, before the selective diffusion processes are begun, to arrive at the cross sectional structure shown in Fig. 11. This has the advantage that the base region is now formed in the epitaxially grown layer, and this will have just one impurity element, not two.
Fig. 10 Composite (two-layer)
crystal slice used in epitaxial base transistor manufacture.

Fig. 11 Epitaxial base type transistor

This is advantageous because the breakdown voltage of a transistor is determined by the base region, and a singly-doped layer will have better characteristics thàn a doubly-doped one. Also the emitter base junction will have better characteristics because the emitter will now have only two diffused - added - impurities instead of three.

Most modern small-signal transistors are of the epitaxial base type, because they are easier to make in good yields, and are as good or better in performance. There is also a small advantage in the noise characteristics of epi-base devices, in comparison with straight double-diffused planar ones, which is an added bonus.

Junction Transistors - How Do They Work?

The method of operation of the common base (ie, base connected to the common or OV line, and the input
sketched above in Fig. 4, is fairly easy to grasp; however, the way in which a common emitter junction transistor works is very much more difficult to visualise, or explain in any manner which would both be simple and also would reconcile the several physical concepts now accepted by the solid-state physicists. However, it is possible to offer a modem which doesn't take too many liberties with the accepted theories, and yet is fairly easy to follow. This is as follows.

Consider the semiconductor sandwich which I have sketched in Fig. 12, made from two layers. of N -type semiconductormaterial, on either side of a thin slice of P type. Now if a good connection is made to the P-type material (and for good transistor performance this is very necessary) and this is connected to the battery at the same point as the lower N -type slice, then the N -type region at the bottom of the diagram and the P-type region in the middle of the sandwich will be at the same potential. There is therefore no incentive for electronic current to flow from the (electron rich) N-type zone into the P-type (electron deficient) middle layer, so this remains short of mobile electrons, and when switch SW1 is closed, no current flows through the load resistor (R1) or the meter.
Fig. 12 Semiconductor

However, if the voltage on the P-type layer is gradually increased by a potentiometer, as shown in Fig. 13, eventually the forward bias on the middle layer will become high enough for electrons to be attracted from the lower - let us call it the emitter - N-type region into the middle P-type slice. If this layer is thin then most of these will be drawn across this region into the top N -type zone - which I propose to call the collector - and current will flow in the load resistor and meter.

Fig. 13 Semiconductor sandwich with voltage applied to the P-type layer.

The amount of current which will flow in the P-type region, which I propose to call the base, will be the difference between the number of electrons leaving the emitter region, and the number which is promptly swept up by the positively charged collector region. If all of them were to be lost to the collector, there would be no current flow in the base at all. I am not sure what would happen then!

The way in which the current flow in the collector circuit varies, as the voltage applied to the P-type base region in the middle of the sandwich is increased from 0 V upwards, is shown in Fig. 14. and I have shown the

base current flow in the same diagram. Conventionally, the ratio of total current to base current $\left(I_{e} / I_{b}\right)$ is known as the current gain or beta (β).

Several important conclusions can be drawn from this model. The first of these is that the thinner the base region, the higher the current gain will be. Also, since the only thing which stands in the way of current flow from the emitter to the collector is the thin base region, the thinner this is, the lower the collector-emitter breakdown voltage will be, though this also depends on the doping levels and extent of unwanted impurities in the three regions. Nevertheless, a transistor with a high current gain is likely to have a lower c-e breakdown voltage than a transistor with a low beta.

Another point which can be inferred from Fig. 12 is that if the base region is open circuited, leakage currents from the base region into the collector will cause the base to have a positive voltage, and will consequently cause an amplified emitter-collector leakage flow. So, make sure that the base circuit return path resistance is not too high. Also, since leakage currents get worse with temperature, if the device is going to get hot, it will need a lower base circuit resistance for a given overall collector leakage current level. Because transistors with high current gains require less base current for a given collector output current, and for a given base voltage, the input impedance, as seen at the base of the transistor, increases directly as the current gain is increased, and this makes such high-beta transistors useful in high impedance, low signal level circuitry.

The kind of device I have sketched, in crude form, in Figs. 12 and 13 is an NPN device (though in practice it would be made in the forms shown in Figs 8/9 or 11). The same sorts of argument are appropriate if one credits holes (places where electrons should be but aren't) with the same qualities and ability to move as positive electrons. For all practial purposes this is true, but the 'holes' move much more slowly, and they can become trapped or detained in unwanted impurities or crystal lattice defects, leading to delayed responses in operation particularly noticeable in pulse propagation systems.

Because PNP transistors have an N-type base region, where all the movement of charge is by electrons, PNP transistors usually have a lower noise level than NPN ones, and would usually be preferred for low signal level audio input circuits.

I will talk about some of the less common aspects of transistor operation later in this series, and also show how circuit calculations are done with the Y, Z and H parameters. However, next month I propose to take a closer look at small signal and power transistors, and their uses and limitations.

Printed Circuit Hardware \& Component Catalogue

* COPPER CLAD LAMINATES
* PHOTO-RESIST LAMINATE \& CHEMICALS
\star PRINTED CIRCUIT DRAUGHTING AIDS
\star PRINTEDCARD \& PROTOTYPING SYSTEMS
CONNECTORS/CASES/GENERAL HARDWARE
SELECTION OF COMPONENTS EDUCATIONAL COMPUTING ELECTRONICSKITS

Send for your free catalogue to

CHASHITR ㅍectronics-Microprocessors-Now! The PRACHCAL Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

BUZBY METER

Here's a project for all our readers who have contributed to that great national charity - British Telecom. Design and development by Nick Payne.

You stare blankly at a telephone bill which baldly delares" 4077 units $£ 205.30^{\prime \prime}$ and you wonder how it all happened. You use a neighbour's phone and are uncertain whether to leave 10 p or $£ 5$ or something in between. You may be a hesitant speaker on the phone worrying about how much it must be costing, which might, in fact, be surprisingly little or maybe, for business purposes, you would like to charge the cost of a call to a certain account.

From all these situations the Telephone Call Meter, sometimes known as the "Buzby Meter" described below can rescue you.

Overview

This device is an aid to checking the cost of telephone calls. Before a call is made, an amount equal to the cost of a small time interval (7.5 seconds) of the call is entered
on the keyboard and the cumulative cost of the call is shown on the display, incrementing every 7.5 secs. For convenience a list of the most used rates is attached to the device.

The device uses the autoconstant feature available on most calculators. It consists of an electronic calculator plus timing circuit, which operates on the auto-constant key of the calculator.

As an example, a call to a certain town might cost 2.6 p every 7.5 secs. Before the call is made $2.6+$
$=$ is entered on the keyboard. When the called party answers, the timer is started and 2.6 is added to the display every 7.5 secs, giving the true cost of the call as it progresses. The " + " key actuates the auto-constant in the add mode.

The circuit of Fig. 1 shows the timer circuit operating a CMOS analogue switch is in parallel with the "equals" key which causes the constant to be added.

Furthermore, the timer circuit automatically takes account of the

HOW IT WORKS

Referring to Fig. 1, IC1 is a 4060 CMOS oscillator ripple counter. The frequency of operation is controlled by C1, R1, R3 and RV1. It is trimmed to $68.2 \mathrm{~Hz} \pm 1 \%$ by RV1, setting the accuracy of the timer.
The A9 output cycles at $68.27 /$ 512 Hz or once every 7.5 secs. With the switch SW3 set at DIAL, this waveform is fed into the monostable formed by IC4b, R5 and C2. Negative edges on the Q9 waveform are converted into negative-going pulses of 50 ms duration. For the timer to run, SW2 is open, putting a low level on the reset input of IC1 and high level on the output of IC4a. This turns on CMOS analogue switch IC3c.
The positive going pulses are therefore switched through to IC3d. IC3d is wired in parallel with the "equals" key on the calculator keyboard, so that when it is pulsed on, the calculator chip responds by incrementing the displayed value.
When the telephone call is finished, the user resets the counter to prevent further incrementing of the display by closing SW2. Reset will force all counter outputs low. If $\mathbf{Q 9}$ is high before reset, resetting will present a negative going edge causing it to output a pulse. This pulse is prevented from reaching the calculator by the output of IC4a going low, turning off switch IC3c. R6 pulls the output of IC3c low when it is off. The feature for calculating the 3 minute minimum charge imposed on some operator calls is performed by the two latches formed by IC2a with IC2b and IC2c with IC2d and analogue switches IC3a and IC3b. The user sets SW3 to "OPER". Reíer to Fig. 2 for detailed timing of waveforms.

During reset, latch IC2a/b is set so that IC4b output is high and latch IC2c/d is set so that IC2d output is low. Therefore, switch IC3a is on and IC3b is off. R4 pulls the output of the switches low when they are both off.
When the reset is removed and the counter starts, 2 cycles of 2.13 Hz from Q5 passes through IC3a to the monostable, thus pulsing IC3d twice, causing the calculator to add the initial

KEYBOARO INPUT
displayed quantity to itself twice, effectively multiplying it by 3. This now represents the 3 minute minimum charge.

Q7 goes high after approximately one second resetting latch IC2a/b and turning off switch IC3a. This prevents any further pulses from Q5 reaching the monostable. After 2 minutes Q14 goes high resetting latch IC2b/c closing switch IC3b. This allows Q12, which next goes low after 3 minutes, to be fed through to the monostable, incrementing the displayed quantity at the end of 3 minutes and thereafter every minute.

The circuit will run off any voltage between 3 and 18 and would normally run off the same voltage as the
calculator. However, the RC oscillator clocking IC1 is less stable when the supply voltage is less than $\mathbf{4 V}$. Substituting a 74 HC 4060 and 74 HC 4016 for IC1 and IC3 would improve performance with a 3 and 4 V supply. A solar powered calculator may work here if the solar cells have enough excess power in normal light. At 4 to 5 V a 4066 is better than a 4016 for IC3. The supply rails to the calculator chip must lie inside the rails to the timing circuit for proper operation of switch IC3d. Supply current is approximately $70 \mu \mathrm{~A}$ at 6 V . The device will normally be 1% accurate at room temperature, which is the accuracy the clock can be trimmed to.

3 minute minimum charge

 imposed on some operator connected calls. The 3 minute minimum feature is activated by a switch. Also the device operates as a normal electronic calculator when the timer is not running.
Connecting The
 Calculator

To find if your calculator is suitable for this conversion, first it must have an auto-constant. This typically works as follows:- pressing $1+===$ causes the display to go 1,2,3, etc each time the $=$ key is pressed. In this case $=$ is the auto-
constant key with 1 being the constant. Your calculator may work slightly differently, but if you cannot get it to work in this fashion at all, it is not suitable. Otherwise make a note of which is your autoconstant key. This is the one which the timing circuit is connected to.

With the calculator switched off, open the back and find the leads that go from the keyboard to the chip. Keep the auto-constant key depressed, find with an ohmmeter which two of the leads are connected, and which are not connected when the key is released. On some calculators any impedance below 50 k is con-
sidered a connection. Do not use a X10k range on the ohmmeter or the chip may be damaged.

If you have an LCD or a modern LED calculator that is all that is needed, these two leads can be connected either way round to the output of the timing circuit. However, older LED and all flourescent display calculators have a negative bias rail of typically 30 V generated by a DCDC converter (see Fig. 4). In this case, with the calculator switched on, check which of the two keyboard leads selected above has the most negative voltage. This is the "D" lead. Better still with a

Fig. 3. Power supply when using a $3 V$ calculator (typical for LCD types).

Fig. 4 Power supply when using a fluorescent display calculator such as National Semiconductor 200.
'scope, the "D" lead will be seen to have negative going pulses on it, while the other lead, the " K " lead, will be floating. In this case add the extra circuit shown inside the dotted box in Fig. 1. (X2, X3, R7R9, Q1).

Mounting And Power Supply

With a larger calculator, there is probably room for the timing circuit somewhere inside the case and room for the switches on the front panel. For the smaller slimline calculator it is better to mount everything in a fliptop box, e.g. Vero $75-3018$ C. Fig. 5 shows this method of mounting.

In the author's version, and APF M1920 calculator was used. the two button cells are removed and two lengths of wire approximately 30 SWG, 8 " long are connected to the + and - pads. Two more pieces are connected with great care (the pc pads are small) across the $=$ key. A piece of masking tape can provide temporary strain relief for the four wires. The soldered joints should be kept low and smooth to avoid shorting to the back of the case.

Drill a small hole in the back of the calculator to allow passage for the four wires, and carefully remove all burrs. A matching hole should be drilled in the front panel of the flip-top box, along with holes for switches SW1-3, and any

1

Fig. 5 Mounting of LCD slimline calculator to front panel of flip-top box.
holes necessary to give access to the screws which hold the calculator body together. Glue the calculator case back to the panel of the flip-top box (or bolt it to the panel, if there's room inside the calculator case for the screw heads). Do make sure all the holes line up before the glue sets!

Feed the four wires from the calculator through the appropriate hole, then screw the calculator body onto its case back; make sure you pull the four wires through as the calculator body comes together.

The power supply is wired as Fig. 3 because 3 V is not enough to run the circuit board; this is got around by soldering a 3 V tap onto the battery holder. On the circuit board connect the two keyboard leads from the calculator to points A and B. Leave out links $\mathrm{X} 2, \mathrm{X} 3$ and R9 and Q1 but put in link X 1 .

Fluorescent Display Calculators

For an older LED display or a fluorescent (green) display calculator all components on the printed circuit board except X1 must be mounted. In this example a National Semiconductor 200 type calculator was used (for information on this chip MM5795 and calculators in general, refer to National Semiconductor MOS/LSI Databook 1977 Edition). The 'D' input which is the most negative keyboard line is connected to R7
and the ' K ' output, the floating input to the chip is connected to Q1 collector. See Fig. 4 for power connections; in general the $+V$ line to the circuit board should go to the most positive point found in the calculator, while the 0 V should go to a point not more than 15 V negative of this point. With luck you can use the calculator on-off switch to switch the circuit board as well.

Hand-held calculators of this type are too thick to mount on top of the front panel of a fliptop box, but can be clamped underneath with a cut-out for the keyboard and display. Also take the opportunity to mount bigger batteries then those that fit inside the calculator.

Trouble-Shooting

If nothing seems to work, first check that all components are correctly inserted and there are no dry joints or solder bridging of tracks. Then check the power is supplied to the board. Check the oscillator IC1, C1, R2. R3 and RV1 with a 'scope, signal tracer or audio amplifier. Then check the countdown chain Q4-Q14 (the outputs change slowly enough to be seen with a voltmeter). Check the rest of the circuitry with SW3 in the 'DIAL' position, referring to Fig. 2. C2 and R5 set the pulse length to the keyboard. If your calculator is slow it may not see this pulse. Try increasing C2 or R5.

	Peak (9-1, M-F)	Standard ((8-9, 1-6, M1-F)	Cheap (all other times)
L	0.45	0.34	$0.08+=$
a	1.35	0.90	$0.34+=$
b1	2.25	1.69	$0.67+=$
b	2.70	2.03	$0.84+=$

Table 1 Figures to enter to get the costs.

Using The Telephone Call Meter

If the meter is mounted in a fliptop box, you have a convenient place (in the lid) to glue the call charges. The machine works by adding on the charge for $71 / 2$ seconds of the call. Although telephone charges are reckoned

RESISTORS (\%W 5\%)	
R1,6,7,8	1M0
R2	1M5
R3,4*	47k
R5	470k
R9*	4k7
RV1	200k (or 220k) submin preset
CAPACITORS	
C1	4n7
C2	100n
SEMICONDUCTORS	
IC1	4060
IC2*	4001
IC3	4016
IC4	4069
Q1*	2N2907
MISCELLANEOUS	
SW1*	SPST (or DPST, see text) slide or toggle
	SPST slide or toggle
SW3*	SPDT slide or toggle
Box (Ver similar); wire, PCB	8C or 75-3019) or battery holder;
*May not be needed - see text.	

by 4.7 p message units, the length of which vary by the distance being called and the time of day, reckoning the call in $71 / 2$ second chunks does not lead to any great inaccuracy. For a b-rate trunk call (over 35 miles) at peak rate you get 15 secs for 4.7 p . Therefore $71 / 2$ seconds costs
$4.7 \times 7.5 / 15 p=2.35 p$ $=2.70$ p (inc 15% VAT)

To use the machine for such a call, set the OPR/DIAL switch to DIAL, key in $2.70 p+=$, dial the call and when the called party answers set the STOP/GO switch to GO. The display will show 2.70 and every $7 \frac{1}{2}$ seconds it will increment 5.4, 8.1, 10.8 etc. When the call ends, switch to STOP and the display will stop incrementing

and there will only be a one or two pence error in the displayed quantity.

A partial list of call charges appears on Table 1. They are worked out by dividing 40.54 by the number of seconds for one unit $(40.54=4.7 \times 7.5$ secs + 15% VAT) The final thing to do is to adjust RV1 until the calculator increments exacly once every 7.5 secs.

If the 3 minute minimum charge feature is not required leave out R4, IC2 and SW3, but ground pins 6 and 12 of IC3.

BUYLINES

Nothing here should cause any problems. The PCB is as ever available through our PCB service.

Fig. 6 Overlay diagram.

UNIVERSAL EPROM PROGRAMMER Mk II

When the Universal EPROM programmer was published in August 1983, it was capable of programming all the EPROMs commonly available on the amateur electronics/small business market, and a few more besides. Since then, technology hasn't stood still, and nor have we! We present the Mk II version, which will be capable of programming the newer EPROMs now in circulation. Readers who have built the earlier version need not despair, because an upgrade for this will also be described.

DIGITAL SCOREBOARD

So you really would like your name up in lights? Sorry, but we can't help just yet - but here is a project that will your score up in lights. The modular approach of this design makes it quite flexible, and it can be controlled either by thumb-wheel switches or from a computer I/O port.

DIGIVISION

The TV signal is sent in an analogue fashion - so what's the point of using digital signal processing in a TV? Vivian Capel investigates ITT's Digivision D1000, which has been seven years and $£ 20$ million in the making.

STEREO SIMULATOR

Finally, just in case you thought we'd gone completely digital, here's an audio project. It's a natty little device which can give you pseudo-stereo from a mono soyrce, and it can also give spatial stereo as well. And it's small enough to be used as an internal add-on in a variety of audio gear.

6802 EVALUATION BOARD

Here's a project that's been designed for people who would like to break into the world of machine code and microprocessors. It's based on the 6802 which is a version of the 6800 with one or two extra bits (no pun intended) added.

ALL THIS AND MORE IN NEXT MONTH'S ETI ON SALE APRIL 5TH - PLACE YOUR ORDER NOW OR YOU'LL RISK MISSING OUT.

OSCILLOSCOPES

Cosson CDU 150. Dual Trace 35 MHz Sosid Site Portable $8 \times 10 \mathrm{~cm}$ dieplay Complete with manualeren 8.E. LA: State. Portable AC or External DC Operation. $8 \times 10 \mathrm{~cm}$ display. Complete wth manual.. 175 EX-MINISTRY CT436. Dual beam 6MHz. Size $10 \times 10 \times 16 \mathrm{ins}$. Complete with manual.. 75 NEW PROBE8 AVAILABLE Swhthed $\times 1$;

MARCONI AM BICNAL OENERATOR TF144H/4, $10 \mathrm{KHz}-72 \mathrm{MHz}$ Stability 0.002%. Attenuated Output 2 microven - 2 volts. Complete whit 885
WAYNE KEMA AUDIO
SICNAL GENEAATOR 8121
$10 \mathrm{~Hz}-120 \mathrm{KHz}$
Aftenuated $0-30 \mathrm{~V}$ and 600 ohm Outputs.
WAYNE KERA COMPONENT
BRIDGE B521 (CT 373)
Alosistance 1 milli-ohm - 1 Mohm. Capacitance 1 pf-5 pl. L 1 microH-500KH. Complete with manuede3s

MARCONI VALVE VOLTMETEA
TF2800 HHz Conges imV-300 Vors FSD up to 10 MHz . Complete with manual.

ML-DC NANO-AMMETE

- MICROVOLTMETER
 zero meter. Unused\&15 pep $£ 7$

KINGSMILL STABILISED
P.8.V. Model 500
$0-60$ Volts; $0-0.5$ Amps. Current Limiting Metered. Size $8^{1 / 4 \times 6 \times 51 / 2 \mathrm{In}^{2}}$

VARIAC SAMP

input 240V; Output 0-285V. Cseed - sullable for Bench uesE20 plop 8

METROMM-BATTERY MECOER 500 VOLTS
Complete with Batteries and leads. In complete whth 8atterles and leads. In

NEW EOUIPMENT

 HAMEG OSCILLOSCOPE 605. Dual Trace 60MHZ Delay Sweep Componen Tester .. 518 HAMEG OSCILLOSCOPE 203.5 DUal Trace 20MHZ Component Tester.......£284BLACK STAR FREQUENCY COUNTERS. P\&P CL
Moteor $100-100 \mathrm{MHZ}$ \qquad ...$c 95$ Meteor $800-600 \mathrm{MHZ}$........................... \&121 BLACK STAR JUPITOR SOO FUNCTION GENERATOR Sine/Square/Trlangle $0.1 \mathrm{HZ}=500 \mathrm{KHZ}$. p\&p \&4..................... E 110

HUNG CHANG DMM $601031 / 2$ digit. Hand held 28 ranges including 10 AMp AC/DC Complete with batteries \& leads. p\& £4 ...833.50

MULTIMETERS

PHILIPS OMM 2517, 4 digil. Auto ranging Complote wth Batteries, Leads (Un-used) AVO AVO BMk5. Complete with Betteries. Юads A carrying case. pep E7........................40 AVO TEST SET No. 1 (Very similar to AVO AVO MULTIMINOR. Complete with Batteries. leads \& carrying case. p\&p CH_{3}

VO TRANSISTOR TESTER Type TT188 Hand hald. GO/NOGO for in-slu Teating Complete with Leads \& Instuctions ...220 plop © CROYDON RESIBTANCE BOX-MANGANIN 0.1-1111 Ohms (4 switches). Un-used E25 plp 87

ThIE 18 A VERY SMALL SAMPLE OF STOCK, SAE Or Telephone for LISTS Please check availability belore ordering. VAT to be adoed to Total ol Goods \& Carriage

British Code of Advertising Practice

AOVERTISEMENTS IN THIS PUBLICATION ARE REQUIRED TO CONFORM TOTHE BRITISH CODE OF ADVERTISING PRACTICE IN AESPECT OF MAIL ORDER ADVERTISEMENTS WHERE MONEYIS PAID IN ADVANCE. THE CODE REQUIRES ADVERTISERS TO FULFIL ORDERS WITHIN 28 DAYS. UNLESS A LONGER DELIVERY PERIOO IS STATED. WHERE GOODS ARERETURNED
UNDAMAGED WITHIN SEVEN DAYS. THE PIJRCHASER'S MONEY MUST 8 EREFUNDED. PLEASE RETAIN PROOF OF
POSTAGE/DESPATCH. AS THIS MAY BE NEEDED

Mail Order Protection Scheme

If you order goods from Mail Order advertisements in this miagazıne and pay by post in advance of delivéry Which Video? will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided

1. You have not received the goods or had your money returned and
2. You write to the Publisher of this
publication: summarising the situation not earlier than 28 days from the day
you sent your order and not later than iwo months from that day.
Please do not wait until the last moment to inform us. When you write. ne will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiserhas been declared bankrupt or insolvent lup to a limit of $£ 2,000$ per annum for any one Advertiser so affected and up to $£ 6.000$ per annum in respect of all insolvent Advertisers. Clsims may be psid for higher amounts. or when the above procedure has not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.)

This guarantee covers only advance payment sentin direct response tc an advertisement in this magazine Inot, for example, payment made in response to catalogues etc received as a result of answering such advertisements Classified advertisements are excluded

AMPLIFICATION

Before buying elsewhere check out the features of CRIMSON quality:

ALL OUR MODULES:-

- superior p.c.b., component identification, solder resist.
- non-potted so non-disposable if damaged
- metal film resistors.
- negligible noise and distortions.

OUR BIPOLAR POWER AMP MODULES:-

- fuseless electronic shut-down with re-set facility.
- reverse polarity protection.
- high output current capability (>25 Amps on CE1704).
- 18 transistors, 7 diodes.

OUR MOSFET POWER MODULES:- (FE908, FE1704)

- reponse down to d.c
- j-fet inputs.
- common source output for highest efficiency.

OUR CPR2 PREAMPLIFIER

- ultmate sound quality.
- 42 semiconductors and perfect symmetry topology.
- anti-thump circuitry.
- selected passive components.

Write or phone for details:-
CRIMSON ELEKTRIK STOKE,
Phoenix Works, 500 King St., Longton,
Stoke-on-Trent ST2 1EZ.
Tel: 0782330520
or contact our agents:-BRADLEY-MARSHALL, 325 Edgeware Road, London and (especially for demonstrations):WILMSLOW AUDIO, 35-39 Church St, Wilmsiow, Cheshire.

KEFE

Th. Saxiker Pinginavers

This is the CS9 - top model in the KEF range of designs for the home constructor. It is based on the famous 105.2 speaker but is housed in a conventional enclosure. There are five other models in the range to cover all domestic HiFi requirements, the quality of every design being assured by Kef's sophisticated computerised digital analysis techniques. Send for your free set of Kef Constructor Series leaflets (or send $£ 1.50$ for our comprehensive catalogue covering all aspects of DIY speakers).
WILMSLOW AUDIO Ltd.
35-39 Church Street, Wilmslow, Cheshire. Telephone 0625529599.

TELECINE

Ever wondered how 35 mm Cinemascope feature films are processed for presentation on television? Andrew Armstrong takes a look behind the scenes.

AImost everyone watches feature films on television from time to time. These are the films which you might have seen at the cinema a year or two ago, and they were probably produced on 35 mm colour film. Some pre-recorded video cassettes are also made from feature films, and in both cases the film is then viewed in a way not intended by the person who made it. Whether the dramatic material is as well suited to presentation on a small screen as on a large screen is often open to debate, but the technical quality of the programme is usually as good as we would expect it to be had the film been made specifically for television.

Colour Television

Before making any further reference to films, let's refresh our memories on the subject of colour television.

The television picture is built up by means of an interlaced raster scan, illustrated in Fig. 1. In Britain a 625 line frame is used, built up from two 312.5 line fields. Fifty fields per second are transmitted, forming twenty five complete frames. This method gives a reasonable compromise between vertical resolution and flicker, within the limits of the transmission bandwidth used.

Fig. 1 a) the odd field of a single frame of video is scanned by a TV camera and b), the odd and even frames combined to make up an interlaced raster.

As with the black and white system, colour television relies on the persistence of vision of the eye to prevent the viewer observing the scanning process which builds up the picture - it all happens too fast. The colour perception of the eye is also fooled into seeing that which is not there. The eye seems to assess the colour of the light it receives by evaluating the proportional stimulation of cells which respond to red, green, and blue light. The frequency response is sufficently broad for there to be an overlap of response between red and green, and green and blue.

If, for example, a spectrally pure yellow light (a sodium street lamp is a good approximation) is shone
into the eye, the green and red cells are both stimulated. The shade of yellow is determined by the proportional stimulation of the two types of cell. So far as the eye is conceıned, the same colour is present if a mixture of red and green light in the right proportions is used instead of a single yellow light. This is how colour television achieves the effect of colour.

There is always a problem because not everyone's eyes work in exactly the same way. Different people need slightly different proportions of primary colours (red, green, or blue lights) in order to produce the illusion of a certain spectral colour. The proportions are also affected by the precise wavelengths of the primary colours which are used. For this reason the choice of coloured dyes for film or light emitting phosphors for television is of great importance.

System Difference

The frame rate used for film is different from that used by any major television system in the world. Most film is taken at 24 fps (frames per second) but the television system in Britain works on 25 frames per c cond. This is close to the right speed, but American television gives worse problems with a rate of 30 fps .

Even if one were to run the film through a projector at the appropriate frame rate and televise the image directly, there would still be one major problem. The frame blanking period of the television system is much shorter than the time required to pull the next frame of film into view in the projector.

The sequence of operation in a projector is, approximately: 1) a shutter cuts off the light; 2) a claw, engaged with sprocket holes in the film, pulls the next frame into view; 3) the shutter uncovers the light source, so that the frame is visible. While the film frame is displayed it must be completely stationary or else it will appear blurred. Therefore a mechanical settling time is needed.

The result is that this means of televising a film, using a projector, screen, and television camera, would give black areas at the top and bottom of the picture. This occurs quite simply because the television camera is scanning while there is no image on the screen. If the phase of the projector and the television camera were to drift, there would be a black band moving up or down the picture, rather like a severe form of the effect observed on a television set whose main smoothing capacitor is failing.

The eye, of course, has no trouble with projected image, any more than it does with the scanning of the spot generating the raster in a television picture. In each case, the operation takes place faster than the eye can detect, being averaged out by the persistence of vision. The time taken for the eye to respond is normally assumed to be about $1 / 16$ th of a second, though this varies from person to person and is less around
the periphery of vision than in the central area.
There are other points of incompatibility between film and television, and these generally show up the inadequacies of television. First, the contrast range which can be reproduced on film is very much greater than available from a television set. This is particularly true in a well lit room where a mid-grey area may appear to be black: anything dimmer than mid grey will be indistinguishable.

Another difference is in the primary colours used. Different film stocks use different sets of primary colours, but none of them are the same as the ones used in colour television. This causes both mild desaturation (alteration of the colour towards a neutral grey of the same brightness) and a change of hue (colour).

The aspect ratio (the ratio between the height and width) also differs between film and television. This applies most seriously to cinemascope films. The frame of a cinemascope film is the same shape and sized as that of an ordinary film, and in fact there is no mechanical difference. The difference is in the anamorphic camera lens used, which compresses the image horizontally. In this way, the breadth of the scene filmed is greater compared with its height than the width of the film frame compared with its height.

Telecine Systems

The above incompatibilities demand a special piece of equipment to convert from film to television. One intractable difference, which no conversion equipment can alter, is that the ordinary television system in this country cannot approach the clarity and detail of even a fairly ordinary quality film. Small details, clear on the film, simply show up as blurs on a domestic television. With this reservation, a good telecine machine can provide television pictures which go a long way towards doing justice to the film.

A number of different methods of film to television transfer have been used, but many of them are variations on a theme. There are three main methods.

The first, and least useful method, is to use a projector, screen, and television camera. In order to avoid the problem of black bands across the picture, very long persistence camera tubes are used so that the image persists during the time that the screen is blanked to move to the next frame. This delay causes streaks to be invisible behind moving objects. Due to the differences between three coloured channels, the streaks are normally multicoloured: This effect is present to some extent in all the home video cameras I have seen.

The long persistance camera technique has been (and may still be) used at some small TV stations in the USA, and is employed in the telecine adaptors available for home video use. It is not widely used.

Flying Spot Scanner

Many variations of this idea have been used, and for a long time it has been the major basic technique. The method is to display a television raster on a small cathode ray tube, and focus the image of the raster on to the film. The light passes through the film and then through red, green, and blue dichroic colour splitters and into photomultipliers, which give an electrical output proportional to the light of each colour which passes through the film. This is illustrated in Fig. 2.

If these RGB (red, green \& blue) signals are fed to an RGB video monitor, together with the synchroni-

Fig. 2 The light passing through a colour film is directed through a series of dichroic filters to select the colours fed to the photomultipliers.
sation signals used to generate the original raster, a television picture of the film frame being scanned will be seen.

This method displays a single stationary film frame. To televise moving film, a method must be found to produce a stable picture. Most of these involve moving the image of the raster to track the movement of the film, by various electronic or optical means. One novel modern method used is to scan the film frame only while it is in a suitable position, and to store the television picture digitally to be read out at normal television rate. This means, of course, that the scanning for storage is carried out at a faster rate than normal television scanning, and in a non-interlaced manner.

Charge Coupled Devices

This led logically to the third major technique of televising film, which uses CCD (charge coupled device) line arrays to digitise the film line by line as it passes by. The digital signal generated is stored in a frame store and then read out at the normal television rate.

This technique has recently become very widespread. Two of the major telecine manufacturers, Marconi and Bosch, make only CCD based machines, while another major producer, Rank Cintel, makes both flying spot and CCD type telecine machines.

Flying Spot Variations

A flying spot scanner without a frame store must track the film movement with the image of the raster.This has not always been accomplished electronically. One idea which was tried was the hologon, a multi-faceted prism made to spin so as to present a new face to each film frame. Its angles are such that the image of the raster is deflected to follow the film movement. Several machines of this type have been used at the BBC for many years.

A difficulty in the use of this system is that movement of a heavy, spinning, block of glass must be matched to the television synchronisation signals so that the optical changeover from one facet to the next occurs during the frame blanking period. Because high quality pictures are required, this is more difficult than the control of the heads in a video cassette machine. The film, of course, also has to be synchronised in a similar manner, so there are two sources of mechanical error which must not add up, to a noticeable picture disturbance.

FEATURE : Telecine

Hopping Patch

In many ways, it is easier to move an image on a CRT than to move it optically. Hopping patch is so called because the patch on the CRT hops between two locations, which correspond to the positions of the film frame the first and second time it is scanned.

The movement of the film is in the opposite direction to the direction of scanning, so the resultant raster is half the size that would be required to scan a stationary frame. Figure 3 illustrates this.

Fig. 3 The 'hopping patch' system. The odd field is scanned first, then the scanning spot jumps up one frame height and carries out the even field scan. The vertical scan waveform is shown to the right.

This system still requires the film to be in the correct place at the correct time, but this is easier than synchronising a prism as well. It also has its own special problems. Because of the interlaced method of producing a television picture, alternate lines on the picture are scanned by the two rasters. If the positioning of each raster relative to the other is not very accurate, the picture details will not match between the two halves and a very visible jitter will result.

This applies to every part of each raster, so a deviation of more than half a television line width from the correct rectangular shape will cause an effect on the picture that would make some viewers seasick.

Film Tracking

Instead of forcing the film to be in the right place to be scanned at the right time, an electronic film
tracking system can be used. This determines which of the film frames passing nearby is best placed to be scanned for the next field, and scans it. The position of the film is sensed by optical sprocket hole detectors or by the use of shaft encoders on sprocket wheels. This means that any small disturbances in the control of the film position will not contribute to jitter on the picture. The attendant disadvantage is that the rasters do not always occur at exactly the same place on the CRT, so the job of keeping the shape and positioning accurate is more difficult.

The film tracking method does have an attractive spin-off, which is that the precise film speed no longer matters so far as providing a good picture is concerned. This would allow a film to be played at 24 fps instead of 25 fps , on a British television system. A film can be streched or compressed by a few percent to fit the standard programme times. In order not to upset those with perfect pitch, or even just good hearing, audio pitch correctors are available. These devices use memory to treat the sound rather in the way a frame store treats the video. This can result in some parts of the sound waveform being cut out, or played twice, but this is not normally noticeable.

Some Current Machines

Almost all of the telecine machines sold for professional uses nowadays incorporate framestores. The one exception to this is a new machine, shown for the first time at the IBC Exhibition in Brighton this year, by Independent Cine Equipment. This particular machine uses a film tracking technique to avoid the cost of a framestore, and to provide superior performance in those situations where a framestore is a liability rather than an asset. An illustrative example of a film tracking system is shown in Fig. 4.

The performance of this particular machine is probably comparable with that of some of the better known and more highly priced machines, but it does not offer computer controlled special functions. It is likely that, given the decreasing cost of memory, the extra cost of a frame store in an 'all singing, all dancing' machine would not be very significant.

Digiscan

The most widely sold flying spot telecine is the Rank Cintel Mk III C. This is available in a version using a hopping patch and a version using a frame store and a single patch position. The hopping patch option offers

Fig. 4 A simplified film tracking scheme. The resynchroniser resets the film position counter one film frame backwards on the first TV vertical sync pulse, following a sprocket wheel pulse which indicates that the next frame is in view. The composite signal (raster plus film motion) is generated digitally, so analogue drift is not a problem.
operation only at standard film speeds, but it does offer a higher resolution than the frame store version which is limited by the number of memory locations used. An ordinary domestic television set would not show any difference but broadcasters seem to prefer hopping patch machines.

The frame store version (named Digiscan) offers variable speed operation, because regardless of film speed, there is always an up to date picture stored in the frame store. There is also a digital picture enhancement system which, though it cannot produce resolution that is not there in the first place, can greatly improve the appearance of a picture. One method of doing this is illustrated in Fig. 5, were a video edge is artificially sharpened to make the outline of an object appear crisper.

Fig. 5 Edges may be made to appear sharper than they are on the video signal by adding overshoot and speeding the transition. No more detail is generated, but it fools the eye into perceiving a very crisp image.

The enhancement shown is carried out on a single video line, and would only sharpen vertical lines on the picture. A frame store allows the comparison of a picture line with the one before or after it, so that differences can be emphasised, thus sharpening horizontal lines.

There is another great advantage with the Digiscan telecine. Because the film frame is scanned from top to bottom rather than in an interlaced manner, there is no chance that the position of the two interlaced fields finally displayed will not match up correctly even if the geometry of the scanning is imperfect.

Colour Correction

Any system of transferring film to video must take account of the higher contrast available on film, and the differences in the primary colours used. The effect of the higher contrast on the film is that, without any form of correction, large picture areas would appear on the television as completely black or completely white. The signal range must be compressed (referred to as gamma correction) in order to provide a better representation of the film picture. The gamma law is

Antilog(Gamma*Log(signal))

and may result in a gain in the dark areas several hundred times the gain in the light areas.

The gamma law must be correct for each colour, or else the hue will be affected by the brightness. The hue of near black and near white must also be adjusted to compensate for differences in film stock, and even for different scenes. Typically this correction is controlled by three joysticks, with three overall level controls. Thus, the operator may turn the stem of the joystick to adjust the amount of gamma correction used, and adjust the position to determine how this is
shared between the red, green, and blue signals.
In addition to requiring the correct gamma for each colour individually, the gamma of each colour may need to be modified by the signals from the other two colours to compensate for the mismatch between the coloured dyes used in the film and the colours used for colour TV. On some types of film stock it can be impossible to achieve natural colours unless this process (referred to as masking) is carried out. Most machines have several preset masking matrices for different film types.

This vigorous correction has several consequences. The first is that there is too little dynamic range in an ordinary frame store to permit the correction to be carried out after storage. If this were tried, then areas which had to be amplified substantially would have the size of the minimum digital step of brightness similarly increased. Distinct stepped brightness levels would be clearly visible.

For this reason, the correction in the Digiscan system is carried out before the signal is digitised. The only problem here is that the digital store is not updated while the film is stationary, so in order to colour correct a scene the operator has to keep running the film back and trying again.

A computer control system is available to take account of the different colour correction needed for different scenes. This stores the correction settings for each scene, and applies them at the appropriate frame number.

Many other facilities are available, including an XY zoom system which will allow the operator to zoom in on any part of the film frame. A subset of this system allows the machine to televise cinemascope films. A portion of the picture width is enlarged to fill the whole screen, and the operator can pan the displayed portion across the frame. The degree of horizontal enlargement is chosen to alter the tall thin images to realistic proportions.
If the panning has not been done quite carefully enough, the viewer may begin to feel like a sepectator at a tennis match. You may occasionally notice the picture panning across to the person speaking just when he finishes what he was saying and someone on the other side of the picture speaks.
A cinemascope film may, instead, be shown with a blank above and below it on the television screen, to reduce the height to a realistic level, but this is not so common.

CCD Machines

There are several manufacturers of CCD type machines. They provide different facilities and are suitable for different applications.
One of the generic differences between flying spot and CCD telecines is that the CRTs used for flying spot scanners have the highest output in the green region, and well down in the blue and red regions. Because of this, the signal to noise ratio of the red and blue channels of a CRT based machine is normally unimpressive. On the other hand, the high output and better spectral response of the projector lamps used on CCD machines gives a good signal to noise ratio on all channels.

A major selling point of Rank Cintel's ADS1 is the facility to detect dirt and scratches on the film. This is possible because the light from the filament lamps used to illuminate the film, unlike the light from a CRT, contains a lot of infa-red. The dyes used on films are transparent to infra-red light, so only the dirt and

Fig. 6 The infra-red dirt detection system of the Rank Cintel CCD telecine.
scratches show up under this wavelength. A special channel is used to detect such blemishes, as illustrated in Fig. 6. Note the extra long optical path length and the special stop for the infra-red, because the focal length of the lenses is very different at this wavelength.

Once the scratch has been detected, it must be concealed. To do this, the video signal must be delayed to allow the concealment circuitry to work. The concealment circuitry is digital and generates a ramp from just before the scratch until just after it, neatly joining up the video waveform. This is illustrated in Fig. 7.

The ADS1 telecine carries out its colour correction by means of analogue circuitry before the frame store. It is very similar to the Digiscan machine in this respect.

The Marconi telecine machine does not offer dirt concealment. One of its special features is that it car-

Fig. 7 The concealment of the piece of dirt is carried out by joining the ends of the waveform on either side of it. The slight loss of detail on the picture is rarely detectable.
ries out the colour correction digitally. The block diagram of Fig. 8 illustrates this.

A normal frame store has too few bits to permit the extreme 'black stretch' which is often needed to gamma correct a film. Such is the case with this machine as well, but the DAC digitises the signal to an accuracy of 11 bits. The processing carried out to this accuracy makes good use of look-up tables - a more pedestrian method of processing would not be fast encugh.

In the logarithmic conversion, and again in the multiplication, an extra bit is added in the processing to avoid rounding errors. The signal is truncated from 13 bits to 8 bits in the antilog lookup table, and the resultant signal is stored in luminance and colour difference stores.

A German company, Bosch, make a CCD based telecine called the FDL 60. One of its major features is that, in televising cinemascope films, the entire width of the picture may be displayed on a monitor, with border lines superimposed to show which part of the picture is to be broadcast to fill the TV screen. This

Fig. 8 The Marconi digital colour control system. The filters before the ADCs prevent 'aliasing' - an optical beat between detail on the film and the discrete positions of the optical sensors in the CCD line array.
makes it easier for the operator to pan appropriately. The panning information is stored in a control computer, and used to control the machine 'live'.

The FDL 60 also features a grain reducer which does a very good job of hiding film grain, so a 16 mm film can look almost as good as 35 mm film. The grain reduction relies on the fact that the grain produces very rapid changes in picture content, which can safely be ignored in a slowly changing scene. If too much correction is used, the grain corrector will try to correct for movement in the scene. The picture would then resemble that obtained from a TV camera using a slow response tube.

Applications

There are two main applications for telecine machines in broadcasting. The obvious use is on-air transmission of films. The films used tend to be made specially for television, so the quality is uniform.

The somewhat limited dynamic range available from CCD machines is quite suitable for this type of film. The reliability and freedom from the need for constant readjustment of CCD machines thus make them desirable for on-air use.

Films which are not specifically made for television do not often have such an ideal characteristic, and are often processed and transferred to tape before broadcast. A flying spot scanner is preferred for this post production work. The ability to zoom, by altering the raster size, with no loss of resolution, and the higher contrast range which can be accommodated, all contribute to its popularity.

The Future

It would appear that the use of film in television is increasing, despite the use of, for example, electronic news gathering equipment. One might imagine that, as videotape based systems become more compact and convenient, film will finally decline as a medium for television.

This may not happen so soon as some people think, for two reasons. First, improvements in film still continue, so that smaller gauge films can be used to give the required quality. Second, when high definition television is introduced, film will be able to meet the picture standards while videotape systems may have a struggle at first.

The next question is - what type of telecine? Although CCD machines are improving, the resolution is limited by the number of elements in the line array, and further improvements are desirable even for present TV standards. It is very likely that the flying spot telecine will enjoy a renaissance if high definition is introduced in the forseeable future.

One might go further, and suggest that a telecine with a frame store is unlikely, at first, to meet with approval from broadcasters, and that a hopping patch system will be used. In this case, it might well be that the limitations of the basic system will mean that some kind of "film tracking system" will be used on machines for this purpose. Thus events have almost gone full circle, because the technical literature on film tracking for flying spot systems goes back for at least twenty years.

 AUPIO ELECTRONGS 301 Edgware Road, London W2 1BN Tel: 01-724 3564

Up 10 § 1000 instant credit Avallable
(Lombard Tricity Finance) (Lombard Tricity Finance)

that we receive telephone calls, personal visits and postal enquiries from new customers who usually state: 'I've been recommended to you by

Recommendation seems pretty sound evidence that we succeed in providing the right kind of service. Just take a look through our catalogue and you'll see what we mean. Send for your copy today, all items are in stock for fast deliverv.

CRICKLEWOOD ELECTRONICS LIMITED

40 Crickle wood Broadway, London NW2 3ET TELEPHONE 01-452 0161
Post this coupon now for your copy of the 1985 catalogue.

Name

Address

Texas
Instruments CrimsonFlektrik thandar VELLEMAN

BRADLEY MARSHALL are proud to announce the opening of their spacious new premises at 382-386 Edgware Road (opposite their old shop). The new premises are larger than before, enabling us to provide you with superior service. . . .

- Product line increased from 2000 to over 5000 stock items!
- Our brand new COMPUTER CENTRE stocks all the latest Hardware, Software and Peripherals, from Acorn, Sinclair, Commodore etc, at the most competitive prices in town!
- We have employed additional staff to serve you more efficiently!
- FREE CATALOGUE, and a first class mail order service (please 'phone before ordering for up to the minute prices)

TRADE AND EDUCATIONAL ENQUIRIES WELCOME Bradley Marshall's new premises offer you expert friendly advice

GIOBAL SPECIALTIES

BREADBOARD

DIGITAL FRAMESTORE

In this final part, we give the remaining PCB overlay, the Buylines and some details on picture manipulation. Design and development by Dan Ogilvie.

In this section I hope to explain one further method of image enhancement that can be performed on any computer and can produce some very useful results such as edge detection or noise filtering.

Let us for example consider how we might perform a high-pass filter function on our stored image. The simplest way to filter the picture would be an LCR network on the front end before we stored it. This is simple in theory, but variable filters at 6 MHz are difficult to design. If we wished to extend the filtering to include low-pass or band-pass filters more switchable elements would have to be added and the design would become increasingly difficult and complex.

Another approach some readers may have encountered would be to take the Fourier transform of the picture, and then to choose just the required coefficients before applying the inverse transform to restore the filtered version of the image. 'Taking a Fourier transform' is just the mathematical equivalent of splitting the signal into its consituent frequencies, the 'coefficients' referred to being the sizes of the different frequency components. Once a signal is split into its component parts this way, we can perform any filtering function we like, no matter how complex. It does not matter that the function we might choose does not have
an 'analogue' (LCR) counterpart. Two examples will illustrate how powerful this method can be.

The transmission of television pictures entails a high bandwidth because of the amount of information that has to be sent. 'This applies also to the storage of information where the large amount of memory (in this case about 393 K bytes for one image) means optical discs offer the Hobsons choice.

Any technique to reduce the amount of memory required to represent an image is worthwhile. Some simple methods can be used effective on documents or similar (one bit data) or on some images with little detail. But for any image with detail these techniques are of little use. However by examining the Fourier coefficients and running complex selection routines to select only those necessary to retain picture detail we can reduce the memory requirements dramatically. There are stores of a complex 24 bit colour (8 bits of red, green and blue) being reduced to one bit with little observed degredation of the image! Further reductions are possible if a degree of degredation is considered acceptable.

One further example is the removal of motion blur from a picture - for example, a photograph of a race horse passing by, taken with a stationary camera. Simplistically, if we could examine the

Fourier coefficients we should be able to identify the coefficients associated with the race horse's velocity and remove it from the spectrum, leaving the image without the blur.

Fourier analysis certainly offers

BUYLINES

No particular problems should be experienced with any of the components in the framestore. As was stated, the DRAMs used were Motorola MCM6664L20. In view of the number used it is well worthwhile shopping around for the best price. STC should offer a competitive price and accept Access and Barclaycard (tel. 0279 26777).

The ADC/DAC are obtainable from MCP Electronics Ltd, Alperton, Wembley, Middlesex HAO 4PE, tel. 01-902 5941. The full type numbers are ADCTDC 1014CJ7 and DAC TDC 1016J5C8. They have a minimum order of $£ 25$, which will not be a problem in this case!

The crystal is a special and was obtained from IQD Ltd, North Street, Crewkerne, Somerset TA18 7AR, tel. 046074433.

The TTL is standard. The 74 F devices can be obtained from Hi -Tech Components, Gilray Road, Diss, Norfolk (tel. 0379 4131), or STC amongst others.

The PCBs will be available from the ETI PCB Service; six memory and one each of the control and ADC/DAC card are required.
The TA6993W used in the external sync clrcuit will have to be shopped around fof. It is an RCA device. Try Macro Marketing (06286 4422) or STC.
us a lot in terms of the range of picture enhancements, but unless you have indeterminable patience or a PDP11 to hand, I do not think these techniques can be applied; I would certainly be interested in hearing from anyone who is attempting it.

Let us look at a technique that can be performed on images and is within the scope of our home micro.

The techniques discussed above would be performed in the frequency domain, ie, we would be manipulating coefficients of terms that represented all the frequencies present in the image. We could however manipulate the image in the spatial domain. In other words, by looking at the adjacent pixels to the one we are operating on and only changing it dependent on its own and the local pixel value we can perform a number of techniques similar to those we saw at first in the frequency domain.

The technique itself is called convolution. It is the spatial equivalent of Fourier analysis. Mathematically, it is sometimes possible to convert a Fourier operator to a convolver but generally speaking convolution is not so flexible.

Convolution takes each point on the screen, and from this and the immediately adjacent pixels, it generates a new pixel value. How this works and what it is capable of is probably best demonstrated by an example.

Fig. 19a shows a section of an image which is boring, absolutely flat and dark grey in tone. Fig. 19b shows a convolver. How it is used is as follows: the central term in the convolver (' 9 ' in this case) is placed over the pixel to be operated on, and the pixel and the surrounding pixels are multiplied by the equivalent terms in the convolver, as shown in Fig. 19 c . All the resultant terms are added up to form the new pixel value, as shown in Fig. 19d. In this case the new pixel value is exactly the same as the old value. (Note to the mathematically-minded this is not true matrix multiplication, thank Heaven!)

Let us suppose that a little further to the right of the same image there is an increase in the brightness, spreading over a couple of pixels, Fig. 19e. Applying the same convolver gives the values in Fig. 19f. Notice the extent to which the edge has
been enhanced, the pixels adjacent to the edge being turned to reference black (-10 would appear as 0) and very nearly peak white (60 , peak white is 63). If a threshold were imposed of, say, 32, so that every below 32 in pixel value were made 0 and every thing above 32 were made 63 , this convolver would have successfully picked the outline of the objects in the image in peak white on a black background.

This is one example of a convolver, which is 3×3 in size. There are a large variety of convolvers around, by no means all of them 3 $x 3$ in size. They perform a number of filtering routines - for example, the example shown could be considered the equivalent of a high-pass filter or differentiator - and some other quite 'intelligent' image manipula-

(b) $\left|\begin{array}{lll}-1 & -1 & -1 \\ -1 & +0 & -1 \\ -1 & -1 & -1\end{array}\right|$
(c) $\left|\begin{array}{lll}10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10\end{array}\right| \cdot\left|\begin{array}{lll}-1 & -1 & -1 \\ -1 & -0 & -1 \\ -1 & -1 & -1\end{array}\right|=\left|\begin{array}{lll}-10 & -10 & -10 \\ -10 & +60 & -10 \\ -10 & -10 & -10\end{array}\right|$
(d)

LINE No. 110		PIXEL No.		31	32	33	34	36
		10	10	10	20	30	30	30
	111	10	10	10	20	30	30	30
	112	10	10	10	20	30	30	30
	113	10	10	10	20	30	30	30
	114	10	10	10	20	30	30	30
(1)	118	10	10	10	20	30	30	30

LINE No.		PIXEL NO. $29 \quad 30$		31	32	33	34	35
		10	10	-20	+20	00	30	30
	111	10	10	-20	$+20$	00	30	30
	112	10	10	-20	$+20$	00	30	30
	113	10	10	-20	$+20$	60	30	30
	114	10	10	-20	$+20$	00	30	30
(1)	115	10	10	-20	$+20$	60	30	30

Fig. 19 (a) Digitised section of a flat image; (b) a convolver; (c) applying the convolver to one pixel; (d) the result of applying the convolver - back to square one; (e) a section of image with a change of brightness; (f) the convolver applied to this section.

tion functions.

This is unfortunately all the detail on image manipulation that I can justify here. Books on image processing tend to be very expensive and very heavy going. The one that I have found the easiest to get along with is 'Digital Image Processing by Rafael Conzalez and Paul Wintz, published by Addison Wesley Publishing in 1977. Perhaps it is high time that someone wrote a book aimed at the home micro user, as there are now a number of vision systems knocking around besides the framestore described in these articles.

Editorial Note

Far be it for us to discourage anyone from building an ETI project, but a few words on this framestore are needed. From the start, this project was conceived as being for experimenters, and by this, we mean someone with enough experience of electronics to fully understand a system of this complexity.

We hope that all our readers will have gained some insight into the techniques involved in storing and manipulating a TV picture, but, as this framestore uses an awful lot of expensive devices, some of them operating at very high speeds, we would expect relatively few readers to build it.

We sttrongly advise potential builders to be certain of their ability to de-bug a large digital system such as this before they begin. If you're not certain of your ability - or if you don't have access to the necessary test gear (say at least a 20 MHz dual-beam 'scope) - leave it alone until you are fully ready to have a go.

One final factor we would mention is that we are having difficulty finding someone to replace our former projects editor, Phil Walker, so our ability to answer technical enquiries will be severely limited for th foreseeable future.

We're sorry if this all sounds so negative. However, it's distressing for us - as it must be for the readers concerned - to find a batch of enquiries from people who'll never get their piece of dream hardware to work because they are well out of their technical depth.

ELECTRONICS FOR PEACE?
 \bullet

Abstract

Electronics for Peace describe themselves as a network of people connected with electronics who share a concern for the military implications of their profession. ETI has been talking to their co-ordinator, Tony Wilson, to find out more.

Tony Wilson is an independent reliability engineer who has worked on commercial space projects and the UK Chevaline programme. He is currently engaged in work on military land systems. He has been a member of Electronics for Peace since the group was formed and has recently become their coordinator, giving up much of his time to writing and speaking on the group's behalf. He has written a number of articles on various aspects of defence and technology which have been published in a wide range of trade and other technical journals. His skills in publicity seeking seem to have been recognised by the TOBIE awards committee who have nominated him as one of the three finalists for the title of Electronics Personality Of the Year. The result will be announced at a special ball to be held as part of the All Electronics/ ECIF show in April. We visited Tony at his Wiltshire home to ask him about his views and the objectives of Electronics for Peace.

When and where was EfP founded?

In October 1982, in Bracknell. Tim Williams and Steve Holmes had a letter published in Wireless World asking for people who were interested, and around twenty five got together as a result. I was one of them.

And has the membership grown since then?

It's been at between two and three hundred for the last eighteen months or so but I think it's going up a bit now.

Do people have to be employed in the electronics industry before they can become members?

We're open. So long as people are interested and concerned about the way things are, that's sufficient. At the same time, it's important that we're seen to have a certain level of expertise, so it's good that many of us do work in the industry and know what we're talking about.

Do many of your members work in the defence industry?
Our members cover a very wide field but are mostly engineers working in electronics or computing. I don't know exactly how many work in defence, I haven't analysed it, but I would think maybe 20%.

Do those who work in defence openly criticise the system?

I don't know of anyone in EfP who actually criticises the system from the inside in quite the same way that I do and gets away with it. There is somebody who started at a defence establishment and objected to working on military things, and he was thanked and booted out. But most people don't speak out. It's very difficult.

But you do speak out and your employers know your views.

Yes, they do. They open their magazines and they see my face and what l've written. When I first joined EfP I thought that it would be incompatible with my job, but now I think it's very good that I'm seen to criticise the system from inside. It gives me credibility. It also gives people inside the opportunity to do the same thing themselves, because there's this great fear when you're under the Official Secrets Act of opening your mouth at all, and that's absolutely wrong. People should be allowed to criticise any system that theyre in, but they seem unable to do so. I've been there and I know what that feels like.

You say that you thought being a member of EfP might be incompatible with your job: did you think that you might lose your job?

I'm always prepared for that possibility.

Your promotional literature refers to ". . . the appalling unreliability of modem complex weapons systems . . .". Your work involves trying to make weapons more reliable. Given your views, doesn't that create a conflict of interest?

In a better world than the one we live in now I wouldn't
see any problem in working to make our weapons more reliable, because we wouldn't have so many of them, we'd only have enough to defend ourselves. In the world we're in at the moment it is a bit of a problem, but then I have to make the best of the situation.

Current complex weapons are not reliable. In two or three weapons generations' time, when design and manufacturing and other techniques have improved, they will be ultra reliable. They will be as reliable as the public seems to think they are now, and when the commanders actually think they are that reliable theyII want to use them. One of the things that stops people using their weapons at the moment is that they know they won't work very well.

So the risk of war may increase as weapons improve. Does that make you more concemed to get your message across now?

We haven't got long, I'm sure of that.

You spoke of a better world in which we had only as many weapons as we needed to defend ourselves. Were you thinking particularty of nudear weapons or of all weapons?

To my mind, nuclear weapons are no worse than some of the conventional weapons we are now developing. It's the weapons themselves - weapons of mass destruction that we're against. We need to bring down the amount of armaments we have, and we need to bring down the influence we have on the third world in selling armaments and encouraging them to use them. We also need to bring down the amount of military funding and orientation within our own industry. Theyre the three main aims of EfP in the long term.

What are EfPs other aims?

To bring together electronic engineers who are concemed about the military implications of their profession, to provide technical information for people working in the field of nuclear and conventional disarmament and to encourage the development of socially useful applications of electronics.

So you don't have to believe in unilateral nudear disarmament or anything like that in order to become a member?

I'd be happy if there were anarchists and unilateralists talking to people who drive nuclear submarines. We want to open up the debate, to cut out the paranoia and make it clear that we're just people and that we have a cross section of views, instead of this left and right business.

So how is EfP related to the rest of the peace movement?

We're making a conscious effort to get a cross section of people in, people of all points of view, and I'm not sure that that's what other peace movement organisations are intending to do. That's probably one difference. We want to remain politically unaligned, and that's probably another difference between us and, say, CND who seem to get tied up with the Labour party. We want to provide very good technical information to everybody, not just the peace movement but to everybody, so we have to keep some distance in order to be credible.

So you see yourselves more as providers of information than as a group that's going to sit down in front of cruise missile transporters?

We're not involved in demonstrations or direct action. If individuals want to protest in that way then theyre free to do it, but not under the banner of EfP.

What practical steps have you taken in pursuit of your aims?

We researched and published a booklet called "The Ground-Launched Cruise Missile: A Technical Assessment" (reviewed in ETI January 1984 - Ed.). That was very well received and is about to be re-published. We want to keep up a steady flow of booklets and leaflets explaining modern weapons and other war systems and their implications for the UK and the world. Some of the topics we'd like cover are the effects of EMP and means of protecting against it, the link between arms spending and the crisis in the third world, the damaging effects of heavy military investment on commercial investment in research and development, and the effects of the Official Secrets Act on our economy and our freedom.

We're also keen to provide material for people working in peace education in schools, colleges and other organisations. Peace education involves ensuring that students and pupils are presented with as wide a variety of points of view as possible, with undistorted and complete statements of fact on a variety of subjects. These should include national and world defence and militarism, third world issues, racism, multi-national companies, etc. people can then be encouraged to put their own point of view, join in the debate and make their own minds up. We want to be able to provide advice and information, to help plan sessions, to provide speakers who can talk about their personal experiences of the industry or about positive aspects of technology, and to help produce high quality software and text books on relevant topics.

That's an ambitious program because we only have a few people working in this field at the moment, but we've already achieved quite a lot. Three first year polytechnic communications study students pro-
duced a tape/slide presentation on EfP, we've given a talk and developed a fantasy based on space and related concepts, we've discussed personal experiences of the industry with sixth form girls, given talks to around 100 electronics students on engineering and morality, talked about aspects of technology to 11 and 12 year olds and worked with a peace education working party to produce a PE programme and resources.

And what about the future?

I want to see EfP getting involved in arms conversion intiatives, in developing means whereby industrial plant and human and other resources currently used for military purposes may be switched over to work which is socially useful. It's not a case of moral extremism, of unreasonable demands for the removal of all military capacity. There's no reason why there shouldn't be a gradual change of emphasis from the military use of particular resources to a commercially sound mixture of military and civil projects, with the military content perhaps forming less than half of the total. With this sort of balance the two can benefit each other, whereas at present the military side is all too often dominant and causes gross inefficiency in the execution of the civilian work. l'd like to see more cooperative working, between individuals and small companies, and education, which is my personal interest. I'm sure others in EfP have got their own priorities. But the arms conversion thing, I think we should be fairly big on that soon. I've put a proposal into the GLC Arms Conversion Council and I'm pretty hopeful that they'll take at lease some of it up.

Are there any particular questions you'd like people to ask themselves after reading this?

What sort of world do you want for yourself and are you happy with what's going on? Do you believe that you could influence the world to be a better place? Do you really regard your job as part of your life, because, if not, you're dead for much of the time. Is that what you want to happen? If not, you've got to take part in deciding what you want to see in the world and doing something about it. Our actions and inaction directly affect the state of this nation and of the world, whether we acknowledge it or not. People starve in Ethiopia largely because the US and UK governments disapprove of the politics opf their government, and because we allow them to get away with it. We in the UK have a parmilitary police force which can easily gain access to records on every individual - because we allow them to get away with it. You may think that 1984 has passed: it hasn't, it's only just begun, but only if we allow it. My own life has changed incredibly since I decided to take responsibility for myself rather than sit back and let politicians, bureaucrats and business people screw things up in my name. I also enjoy life very much more now.

Tony Wilson and Electronics for Peace can be contacted at Townsend House, Green Lane, Marshfield, Chippenham, Wiltshire SN14 8/W, tel 0225-891710.

FULL FEATURE MODEM KIT

A complete kit including case, leads, power supply, plug and manual, based on AMD 7910 chip supplied. Easy to follow instructions, all you need is a fine soldering iron, some super glue and a steady hand. Full technical information included for you to write your own software.

* Auto Answer - answers, then uploads or downloads data into your micro.
* Auto Baud Rate Scan - scans incoming data and selects correct baud rate to receive. * Full and Half Duplex - one or two-way simultaneous transmission.
* Full UK, European and USA standards. * 300/300, 1200/75, 75/1200, 1200/1200 baud rates. * Fits all RS232/423 interfaces. All components BT approved Software (on ROM) available for BBC micro at $£ 20$ (Electron, Amstrad, Commodore, Sinclair and IBM PC to follow).
Software features include: Remote, enables you or your friends to dial and download or upload your micro from any other modem. * Prestel * Terminal for teletype and Prestel terminals * Password for bulletin board. Credit cards ring 01-839 $3348 \quad 182$ Royal College Street London NW1 9NN

Dealer inquiries ring Mark Simon on 019301612

To: Demon Electronics Ltd., 182 Royal College Street London NW1 9NN Please send me \qquad (qty) complete Modem kit(s) at $£ 53$ and \qquad (qty) BBC ROMS at £23 (Prices include VAT and p\&p). l enclose cheque to the value of $£$ _or debit my Access/Visa/American Express/Diners Card No.
Name \qquad Signature
Address \qquad
Postcode

Auto-Electronics of the future.

 AT-SO KITSFOR SELF-
ASSEMBLY
ELECTRONIC CAR ALARM \& SECURITY SYSTEM * Guard doors, boot and bonnet from unauthorised entry. * AT-40 - Armed/disarmed using concealed switch. * AT-80 - Armed/disarmed by magnetic key fob. * Flashes headlights and sounds horn. AT-UL ULTRASONIC INTRUDER DETECTOR * Supplementary to AT-40 and AT-80.

* Detects attempted break-in.

Other kits in the SPARKRITE range include
 (£37.95).

[^0]
electronics today international $: 001 / 5=1$

How to order: indicate the books required by ticking the boxes and send this page, together with your paymenfo: ETIBook Service, Technical Book Services, Oak House, Cannon Hill Way, Maidenhead SL6 2EY. Make cheques payable to ETIBook Service. Payment
in sterling only please. All prices include P \& P. Prices may be subject to change wilhout notice.

Beginner's Guide to Bāsic Programming Stephenson Beginner's Guide to Digital Electronics Beginner's Guide to Electronics Beginner's Guide to Integrated Circuits Beginner's Guide to Computers Beginner's Guide to Microprocessors	$\begin{aligned} & £ 5.35 \\ & £ 5.35 \\ & £ 5.35 \\ & £ 5.35 \\ & £ 5.35 \\ & £ 5.35 \end{aligned}$
COOK800KS	
Master IC Cookbook Hallmark Microprocessor Cookbook M. Hordeski IC Op Amp Cookbook Jung PLL Synthesiser Cookbook H. Kinley Active Filter Cookbook Lancaster TV Typewriter Cookbook Lancaster CMOS Cookbook Lancaster TTL Cookbook Lancaster Micro Cookbook Vol. 1 Lancaster BASIC Cookbook K. Tracton MC6809 Cookbook C. Warten	
ELECTRONICS	
Principles of Transistor Circults Amos	¢9.00
Design of Active Filters with experiments Berlin	E11.30
Electronic Devices 81 Circuit Theory Boylestad	¢14.45
49 Easy to Build Electronic Projects Brown	66.00
How to build Electronic Kits Capel	¢3.55
How to Design and build electronic instrumentation Carr	¢9.35
Introduction to Microcomputers Daglecs	¢7.20
Electronic Components and Systems Dennis	¢15.00
Principles of Electronic Instrumentation De Sa	£11.45
Giant Handbook of Computer Sotware	¢12.95
Glant Handbook of Electronic Circuits	£21.00
Giant Handbook of Electronic Projects	¢13.60
Electronic Logic Circuits Gibson	¢6.45
Analysis and Design of Analogue Integrated Circuits Gray	¢ 42.50
Basic Electronics Grob	¢11.30
Lasers - The Light Fantastic Hallmark	¢7.70
Introduction to Digital Electronics \& Logic Joynson	¢6.25
Electronic Testing and Faul(Diagnosis Loveday	¢7.85
Electronic Fault Diagnosis Loveday	£6.25
Essential Electronics A-Z Guide Loveday	67.50
Microelectronics Digital \& Analogue circuits and systems Millman	£12.25
103 Projects for Electronics Experimenters Minis	$¢ 8.30$
VLSI System Design Muroga	¢34.10
Practical Solid State Circult Design Olesky	¢28.50
Power FETs and their application Oxner	¢10,80
Master Handbook of IC Circuits Powers	¢12.85
Electronic Drafting and Design Raskhodoff	£26.65
VOM - VTVM Handbook Risse	¢8.50
Video and Digital Electronic Displays Sherr	£28.85
Understanding Electronic Components Sinclair	¢7.50
Electronic Fault Diagnosis Sinclair	¢4.50
Physics of Semiconductor Devices Sze	¢16.90
Digital Circuits and Microprocessors Taub	¢11.25
Active Filter Handbook	¢8.50
Designing with TTL Integrated Circuits Texas	E15.20
Translstor Circuit Design Texas	¢15.20
Digital Systems: Principles and Applications Tocci	¢14.95
Master Handbook of Telephones Traister	¢12.50
How to build Metal/Treasure Locators Traister	¢6.00
99 Fun to Make Electronic Projects Tymony	¢8.50
33 Electronic Music Projects you can build Winston	66.95

COMPUTERS \& MICROCOMPUTERS	
BASIC Computer Games AhI	
From BASIC to PASCAL Anderson	£11.30
UNIX - The Book Banaham	¢9.00
280 Microcomputer Handbook Barden	¢15.05
Microcomputer Maths Barden	£11.90
Digital Computer Fundamentals Barter	\&11.75
Visicalc Book. APPLE Edition Bell	¢15.55
Visicalc Book. ATARI Edition Bell	¢15.55
Introduction to Microprocessors Brunner	¢23.00
Programming your APPLE II Computer Bryan	$¢ 9.25$
Microprocessor Interfacing Carr	¢8.50
Microcomputer Interfacing Handbook AD \& D/A Carr	¢10.50
Musical Applications of Microprocessors Chamberlain	E28.85
30 Computer Programs for the Home Owner in BASIC D. Chance	¢9.25
Microcomputers Dirkson	£9.30
APPLE Personal Computer for Beginners Dunn	¢9.50
Microcomputers/Microcomputers - An Intro Gioone	£36.50

CCD DELAY LINE EFFECTS BOARD

The man and his puns have gone, but the echoes linger. Phil Walker describes an add-on CCD delay line effects board for the ETI "Sonneti" combo.

This echo unit was designed as an add-on for the "Sonneti" combo unit published in last month's ETI. It fits neatly into the space available and is wired to suit the unused effects board connector on the combo preamplifier PCB. It draws its power from the combo's regulated supply, but there is no reason why it could not be built as a separate unit or installed in another amplifier provided the appropriate supplies are available and the signal levels are correct.

The Circuit

The input from the preamplifier section arrives via the plug at IC2a which acts as a mixer to combine it with a proportion of the output signal. The combined signal then passes via a low-pass filter whose cut-off frequency is about 8 kHz . This filter was found to be essential to avoid aliassing in the delay line devices.

The signal then enters the first of the three bucket brigade delay line chips. This is either a TDA1022 device with 512 stages or a newer TDA1097 device with 1536 stages. Note that the PCB is laid out to take either device but R31 may need to be adjusted if the TDA1022 device is used since it has a loss of about 4 dB per stage as opposed to a nominal 0 dB for the TDA1097. For one 1022 R31 is 68 k , for two it is 47 k and for three it is 33 k . This will not give exact compensation but should prove adequate. In our prototype the two devices were mixed quite successfully.

The output from the delay devices is passed via another low-pass filter to remove most of the switching noise which might otherwise upset the main amplifier. The signal then passes to

Fig. 1 Block diagram of the effects board.

Fig. 3 Pin connections of the TDA1022.

Fig. 4 Pin connections of the TDA1097.
another mixer stage and then to the output pin on the plug. There are extra input points on both mixers (marked A, B and C) to allow the more adventurous to try other effects.

In order for the delay devices to work properly they must be supplied with a two phase, nonoverlapping clock signal. This is generated by IC3 and drives all the devices in parallel. The minimum frequency of this clock determines the maximum delay obtainable from the unit and should not be less than about 30 kHz in this design. The maximum frequency of the clock generator should not exceed 100 kHz for 1097 devices or

Fig. 5 Clock signal requirements for the CCD delay line ICs. These are supplied by IC3C and d in the circuit above.

300 kHz for 1022 s . The minimum clock frequency limit is determined by the input filter.

Since the bucket brigade delay line devices work by sampling the input signal they are subject to the
rules of sampling theory. The main requirement is that the clock frequency must be greater than twice the highest input signal component. Since we cannot be sure what the input signal contains, a

PARTS LIST

RESISTORS (0.25W 5\% carbon film)		C7,14	150p polyestyrene
R1	220k		or ceramic
R2,3, 12, 13, 15, 16,		C8	$10 \mu 25 \mathrm{~V}$ tantulum
17,22,24,26,28,			bead
29,31,32,33	100k	C15	$1 \mu 0$
R4	1MO		
R5,6,7,8,11	10k	SEMICONDUCTORS	
R9, 10,14	150k	IC1	TL0072 or TL082
R18,23,25,27,30	47k	IC2	TL074
R19	3k9	IC3	40118
R20	5k6	IC4,5,6	TDA1022 or
R21	1 kO		TDA1097
RV1	100k linear	Q1	BC212L
	potentiometer	D1-4	1N4148
RV2,3	10k linear potentiometer	MISCELLANEOUS	
RV4	4 k 7 miniature horizontal preset	SW1	single pole on/off switch - could be part of RV1 if
CAPACITORS (mi ing polyester unle C1, 2,5,9-12,16-19	niature PCB mounts otherwise stated) 100n	PCB; off 14	desired ets -1 off 8 pin, 2 ff 16 pin; 5-way right
C1,2,5,9-12,16-19	100n		20 off vertical PCB
C3,4	220p miniature ceramic	mountin	s and nuts and bolts
C6,13	560p polystyrene or ceramic	to suit; minal	trol knobs; wire, ter-

HOW IT WORKS

IC2a acts as a virtual earth mixer to combine the input signal with a proportion of the output. This mixture then passes to IC2b which is connected as a low pass filter with a cut-off frequency of about $8 \mathbf{k H z}$. This filter is necessary to avoid problems with aliassing whereby high frequency components of the signal would be transformed into lower, non-harmonically related output frequencies.
The output from IC2b passes to IC4, 5 and 6, the three bucket-brigade delay line devices. Their signal input pins are biassed by R22, 24 and 26 from the voltage at the wiper of RV4. This voltage is by-passed by C8 to prevent interaction and signal feedback. The signal is AC coupled by C9, 10, 11 and 12 and DC conditions at the outputs of the delay chips are satisfied by R23, 25 and 27. An additional bias signal is tapped off the RV4 divider chain by R20 and 21 to feed IC4, 5 and 6.
The output signal from the delay devices is passed to IC2c which is connected as another low-pass filter. Its purpose is to remove most of the high frequency switching noise generated in the delay line. After this the signal passes to IC2d which is connected as another virtual earth mixer.
The high frequency, two-phase, nonoverlapping clock signal needed to drive the delay devices is generated by IC3. IC3c and d ensure that the outputs cannot be low simultaneously while IC3a and b provide a symetrical square wave oscillator. By means of D3 and D4 the frequency of oscillation can be varied.

Q1 and its associated resistors and potentiometers allow the voltage applied to D3 and 4 to be varied and thus alter the clock frequency and hence the delay time. D1 and D2 are fitted only as protection for Q1 and may not be necessary. RV3 allows the steady state delay time to be altered while RV2 regulates the amount of modulation applied from the low frequency oscillator.

IC1 is the low frequency oscillator. IC1b is connected as an integrator while IC1a acts as a Schmitt trigger. In normal operation with SW1 closed, when the output of IC1a is positive a current determined by RV1 and R4 will flow into C1. IC1b will prevent the inverting input from going high by ramping its output pin negative. When it reaches about -7.5 V (set by R1 and R2) IC1a will switch rapidly so that its output is negative. This will reverse the current flowing in RV1 and R4 and the output of IC1b will ramp in a positive direction. When it reaches about +7.5 V IC1a will change state again and the process will continue.

If SW1 is opened then the oscillator action will cease and the output of IC1b should slowly settle to about OV because of the action of R3. Note that R3 has no effect until SW1 is open.

Fig. 6 Component overlay of the effects board.
generator which can be used to modulate the frequency of the clock oscillator and thus vary the delay of the unit. This facility together with the extra mixer inputs should prove quite interesting. It may be found for these effects that one TDA1097 or up to three TDA1022s are better than several TDA1097s. In this case the input link should be moved to eliminate the IC4 and 5 positions as necessary.

Construction

Begin assembling the PCB by installing the wire link and, if you intend using them, the IC sockets and the right-angle PCB plug. The ICs can, of course, be soldered directly to the board if you prefer but we would recommend sockets for IC4, 5 and 6 at least because these devices are expensive and sensitive to static. The PCB plug is only necessary if you are building the unit for use with the "Sonneti".

Continue assembly by soldering the resistors and capacitors into place and finally install the diodes, the transistor and the ICs. If you do not require the variable frequency oscillator section you can omit IC1. The TDA 1022 s are sixteen pin devices and will occupy the whole of the IC4, 5 and 6 socket areas but the TDA1097s are 8 pin devices and should be connected to the middle eight pins only as shown on the overlay.

The delay line PCB should fit comfortably into the space between the "Sonneti" preamplifier board and the mains wiring screen, but you may find it necessary to move the preamplifier along a little to make room. If you have used a case other than the one specified and find you are short of space, one solution might be to take the mains switch and indicator outside of the case proper and mount them on the blank section of the front panel at the right hand end. That will leave plenty of room inside for the delay line board and also clear a section of front panel for the controls. Alternatively, the controls could be mounted in the middle of the panel between and just below the input sockets.

The PCB should be positioned with the component side facing forward and then pushed into the connector on the "Sonneti" preamplfier board. The wiring to the three potentiometers and the switch is not critical but it should

Fig. 7 Connection arrangements for echo/chorus, phase and flanger effects.
be kept away from the mains wiring. The two PCBs are very close together when the connector has been pushed home and it may be found that there is not sufficient clearance for the two adjacent mounting brackets. A little bit of filing should cure the problem.

Begin testing the board by carrying out a thorough visual check, including the wiring to the potentiometers and the switch, then remove the delay line ICs and switch on the power supply. Check that the oscillator is working correctly and that all appears to be generally well (i.e., no smoke!). Switch off, set RV4 to mid travel and insert the delay line ICs. Switch on again and you should find that the unit is working. If any distortion is present, adjust RV4 until it goes. If you are using the delay line as a self-contained unit or in a piece of equipment other than the "Sonneti", make sure that the input signal level is less than 1.5 V RMS because too high an input level will also cause distortion.

Experimental Effects

As designed, the unit can produce an echo effect with TDA1097s or a shorter echo with TDA1022s. For a chorus effect it would be advisable to use TDA1022s and increase the clock frequency with RV3. The LF oscillator should be used to modulate the delay. Both of these effects should be obtainable with the standard connection to the pre-amp.

For phase and flanging effects it may be necessary to take the output direct from the unit. It may also be necessary to adjust the resistor values in the mixer stages and provide variable gain controls in places to get the best effects.

BUYLINES
The TDA1022 is widely available and Crickelwood supply the TDA1097. The remaining semiconductors and all of the other components are perfectly standard and should present no problems. The PCB is available from our PCB Service.

1984/85 CATALOGUE

84 page A4 sizes - Bigger, Brighter, Better. - more components than ever beforef with each copy there's discount vouchers. Bargain List. Wholesnie Discoun Envelope. All for just 81.0011 (FREE to Schools alc) Winter Supplment OUT NOWII - Sendlarge SAE for your free copy.

TREKKER'

Computer-controlled Robot buit around The gearbox described below. Complete kit of parts inc PCB, program listings for BBC (other micros soon). §44.85 20 m ribetter) $51.30 / \mathrm{m}$ SAE for illustrated leatlet.

MOTORIZED GEARBOX
These units are as used in a computerized tank, and otfer the experimenter in robotics the oppontunity to ing remote controllec velicles the unit has $2 \times 3 \mathrm{~V}$ motors, linked to a magnetic clutch, thus enabling turning of the venicle, and a gearbox contained within the black ABS nousing. reducing the final orive speed to approx 50 ppm . Data supplied with the unit showing various options on driving the motors etc. Two new types of wheels can be supplied fine aluminum discs and smaller plastic whedsare now sold is 100 mm dia. Type B is a solid heary duty wheel 107 mm dia with a llat rigid tyre 17 mm wode. Photo shows gearbox with one of each type of wheel on M. PRICES: Gearbox whth dala sneets: $\mathbf{5 5}$. 95 ea: Wheel type A: co. 70 ea: Wheol type $\mathrm{B}: 50.80$ ee.

NI-CAD CHARGER PANEL $177 \times 114 \mathrm{~mm}$ PCE with one massive Varta Deac $57 \times$ 50 mm 32 ratec 7.2 V rotec 3.6 V 600 mA . The price of these Ni-ad stacks new is over $£ 20$. Also on the panet is a mains imput charger transtormer wht two separate secondaries wired via bridge rectifiers. smoothing capacitors and a relay to the output tags. The panel weighs 1 kgm . All this for ius 58.00 .

FIBRE OPTICS
Scoop purcha se of single and ivincabte. For use with visible light or intra-red. Core 1 mm dia. Overall
2.25 mm dia. Singte $50 \mathrm{~m} / \mathrm{m}: 21 \mathrm{~mm}$ call $\varepsilon 6.30$. Tmm $90 \mathrm{p} / \mathrm{m}$: 20 m coil c 11.00 .

PCB MOUNTING NI-CADS Much sought after 4.8 V 150 mA batis with PCB mntg tags on 25 mm phtch. Bath sire 25×16. Iteal for paral

STEPPING RELAY
Schrack 2 pole 10 way 24 V DC (works downto 15 V) only $39 \times 20 \times 24 \mathrm{~mm}$, Connexions by $0.1^{\prime \prime}$ pitch edge plug. Special low price §1.9.

MINIATURE RELAYS
PCB mounting. OPCO Aize $20 \times 15 \times 15 \mathrm{~mm}$. Available in 3, 9 or 12V. 11 each

> 1W AMPLIFIER

2814 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives 1 W output with 9 V supply. Swich and vol control Just connect batt. and speaker, Full details supplied. Onty E1.50 10 for $\mathbf{8 1 2}$; 25 for $\mathbb{5 2 5}$; 100 for 2715 St TTBae2 Marsion of above $115 \times 65 \mathrm{~mm}$ leaiuring 2 (TBAE2Mand dual vat control. [3.50; 10 for $\mathbf{2 3 0 ; 2 5}$ for E6s, 100 2.00.

AM TUNER PANEL
2910 For wit mono amp above. Neat pane
NI-CAD CHARGER SCOOP!
Ever-Ready model CH4, this charger witl take up to 4 AA. cor Dcells plus 2 PP3 H requred. Smartworione prey case $212 \times 97 \times 60 \mathrm{~mm}$. Only $£ 795$

POWERVU METER
Near unit 40 x 40 mm scaled 0.24200 uA
Onty $£ 1.00 ; 10$ for cs; 25 tor $£ 17 ; 10058$.
GREENWELD
Min Access or dGr value EL NO min CWO value. Ofincial orderstrom schools eic. wetcome - min invoice
charge sio.
open from 9.5.30 Mon Se: Como \& seo us

GREENWELD

 - The Pack People!! K 524 OPTO PACK - a variety of single point and seven segment LEDS (ithcl. dual types) of various colours and sizes, opio isolators, numicaiors, mumi red emiters and recevvers. 25 assoned r3.95; 100 c14.95; 250 c 35 .K 525 PRE SET PACK - Big, Big vanerty of types and sizes - submin, min and std, MP, shider. mulliturn and cermets are all includeo. Wide range of values from 20A to 5 M .100 assorled $\mathbf{\varepsilon 8 . 7 5 ;} 250$ £ 12.95; 1000 c4s.

K526 HEATSINK PACK - Lots of diflererut szes and shapes otheatininks for most diode and transistor case styies A pack of 25 assorted inchoing ceveral 100 C19.50.

K527 HARD WARE PACK - This has a kerge variety of pk and self rapper screws from $2 \times 1 / 2$ " up to $8 \times 1 / 4$ also washers, some BA. metric and Whit. screws plus other miscellaneous brackets, captime nuts and bits and preces 1 kg (up to 1000 pieces) 54 ; $3 \mathrm{~kg} \mathrm{C9}$; 10 kg ع25.
K528 ELECTROLVTIC PACK - All ready cropped or PCB mounting. thls pack ofters excellent value for money. Good range of values and vollages 1rom 1000 c32.

K531 PRECISION RESISTOR PACK - Mign quality, cose tolerance A 's with an extremely varied selection of values mosty $1 / 4$ and $1 / 4$ w tolerances from 0.1% to 2\%-ideal for meters, test gear etc. 250 e3 1000

K532 RELAYS - wde selection of styles vortages and contacts. $4 \mathrm{~V}-240 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}$, SP to 4 PCO 20 for C 6 ; 100 §25.

K517 ThANSISTOR PACK - 50 assorteo Null spec marked plastic devices PNP NPN AF AF. Type num255320 BF 19811411717218218319823925121 c7+ Special low price C2. 75 p.

K 323 RE SISTOR PACK - 1000 - yes 1000% and $1 / 4$ wat1 $5 \% \mathrm{hl}$-stab carbon film resistors whe pre-tor med leads for PCB mounting. Enormous range of prearreaveiues troma lewonms loa several Megonms.
(1)

3520 SWITCH PACK - 20 differant assoned swhenes - rocker, slide. push, rotary, toggte. micro efc. Amazing value at only 200p.
$K 22$ COPPER CLAD BOARD - All pincas too small or our etching kits. Mostly double-sided fibreglass. 250 p (approx, 110 sq. ins) tor 100p.
$K 503100$ WIAE WOUND RE SISTORS -FrOM 1 Wio $12 w$ with a good range of values $¢ 2.00$.

R505 20 ASSORTED POTENTIOMETEAS - All rypes including single. ganged, rotery and slider ع1.70.

W4700 PUSH BUTTON BANKS - An assoriement of latching and independent swithes on banks from 2107 way. OPCC to 6PCO. A total of at least 40 witches for E 2.95 : 100 ع6. $50 ; 250 £ 14.00$
K530 100 ASSORTED POLYESTER CAPS - All hew modern components, radial and axial leads. All values from 0.01 to iff at voltages from 63 to 10004 Super value at 〔 $£ .85$.

5518200 DISC CERAMIC CAPS - Dig variety to values and voltages trom fow PF to 2.2uF; 3V to 3kV $£ 1.00$.

LEADS AT SILLY PAICES
L618 DC adaptor for Walkman, 1.8 m long POLS
OL528 2 pin DiN line skt to phono plug $0.2 \mathrm{~m} \operatorname{logn}$
PLSOE 5 pin Din to 3 pin DIN auato lead 1.2 m long
PL541 Intercom extriead. 3.5 mm lime 3 st 103.5 mm plug. 6 m long 40 p .
PL708 Video lead. PL259 plug to F type plug 3 m low loss coar asp.
FM TUNING MODULE. This neat unin $75 \times 40 \times 19 \mathrm{~mm}$ is used in car radios etc. Standard 10.7 MHz If out. put. $9-12 \mathrm{~V}$ DC supply. Full connexion data supplied $\mathbf{\text { E240 }}$
CASSETTE HEAD. Only ©1.00.

iEC FILTER PLUG

Made by Rendar, integrated chassis mounted plug with mains filier rated 2A. Like RS238-514. Only ¢3.00.

2004 Panel $240 \times 165 \mathrm{~mm}$ with $6 \times 4099,723$ all in
 rs. $14 \mathrm{~A} / \mathrm{C}$ nerow $30 \times$ in 4001 , sub-min reta A's. C's. etc. £4.95.

443A Millbrook Road Southampton 501 OHX Tel (0703) 772501/783740 ALL PRICES INCLUDE VAT JUST ADD 60p P\&P

DON'T VAT THE PRESS

There are strong reasons to believe the Chancellor of the Exchequer is planning to impose VAT on your magazine.
Such a move would turn the clock back 130 years - the last tax on newspapers and journals was repealed in 1855. Since then 'No tax on knowledge' has been a principle agreed by all Governments, even in the darkest days of war.
A free Press is a tax-free Press.
No Government should be given the power to impose financial pressure on a Press it may not like.
Tell your MP to say 'NO' to any tax on reading.

Issued by the Periodical Publishers Association, London

If an advertisement is wrong wére here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority.
ASA Ltd, Dept 3 Brook House,
Torrington Place, London WC1E 7HN

PUT BBC BASIC IN CONTROL USE THE 6502 2ND PROCESSOR WITH BIG CONNECTIONS

FEATURE : Read/Write

Fruitless Wait

Dear Sir,
It is about time that the ETI team realised that there are other computers that deserve attention besides the $B B C$, the Electron, the Spectrum and the ZX81. How about doing a project for the Apple II for a change? Or is it too upmarket for you?

I for one have got increasingly fed up with you just doing everything useful for the above mentioned machines but totally disregarding the Apple. Maybe you could produce a version of the Electron speech board for the Apple, or a morse decoder (l'm particularly surprised that this hasn't been done if the ETI editor is indeed a ham), or even an EPROM programmer. It's infuriating when people come up to you and say "Your Apple can't do that" or "in order to do it from BASIC we have to go into machine code".

So come on ETI, forget the brand new machines and help the old ones catch up. If you can't, who will?

Yours sincerely.
Ian Topliss
Chelmsford

We'd love to help, but the solution is not as simple as you seem to imagine. Whenever we publish a major computer project we promptly receive hundreds of letters from people who want a version suitable for their machines, and given the wide range of microcomputers owned by our readers this is an impossible task. It would mean that for months after the appearance of such projects we would have to sacrifice new designs to make room for the modifications, and since most of our technical authors only have one machine the modifications would have to be developed 'in house', using up large quantities of our Project Editor's valuable time.

We have published designs for use with a wide range of microcomputers in addition to those you list, including the Ace, the Atom, the ZX80, the Sharp MZ80K and the Microtan 65, but it is inevitable that the designs we present will reflect the popularity of individual machines among our readership and that the less popular machines will receive little or no coverage. However, we will be looking carefully at the results of the recent

The Apple - Neglected? By Us?? Well . . .

Readers' Survey to see how trends in computer ownership are changing, and we always welcome innovative designs whatever machine they are intended for. So why not have a go at designing something yourself and let us have a look at the end result?

As to your comment about the ETI editor, he is indeed a radio amateur (callsign G1HRT) but ETI has a sister magazine called Ham Radio Today and projects related specifically to amateur radio are usually presented there rather than in ETI.
STOP PRESS! The assistant editor has just passed his RAE (with a distinction and credit, no less, just like his Ed.) but has yet to get his callsign.

Walking Into The History Books

Dear Sir,
1 read with great concern that you will soon be losing your Project Editor, Phil (pun-man) Walker, whose technical brilliance is matched only by his overloaded sense of humour.

Even though you are not in the habit of doing so, I think a brief resume of Mr. Walker coupled with a teensy photograph would be in order. This is absolutely necessary for my ETI hall of fame cabinet (I also need to locate him about projects that didn't work!).

Congratulations Mr. Walker (and ETI) for your excellent work. We appreciate it on this side of the globe too!

Sincerely yours,
Edwin Kinyanjui
Nairobi
Phil Walker has, alas, already departed, and he will not be an easy act to follow. As for publishing a resume of his career, the only aspects of it we are sufficiently familiar with are the bits he used to tell us about after the office Xmas party, and we're not going to publish things like that! We hope that the picture published in last month's News Digest pages looks good in your hall of fame.
Please send your letters for this page to: The Editor, Electronics Today International, ASP Ltd, 1 Gclden Square, London W1R $3 A B$. And please note that any letter we receive is liable to turn up on this page unless it is clearly marked 'Not for publication'.

READ/WRITE

David Versus A Goliath Tank?

Dear Sir,

The review of the UK defence industry, under the title "System Failure" in ETI January 1985, brought out many relevant facts but also demonstrated the fundamental truth that different observers almost inevitably see a given situation in quite different ways.

Take, for example, the unfortunate Belgrano incident. Would it have been sensible to use an expensive Stingray in circumstances where an older type of torpedo was available and clearly adequate for the task? There are situations of conflict in which a stone and a catapult would be just as effective as the latest Armalite rifle, and there are circumstances in which the catapult would be useless. For that matter, so might the rifle...

The nominal object of defence development is to support the growth of technologies which will cope with increasingly difficult combat situations. A new weapon creates a new threat, and calls for an effective countermeasure. A very large proportion of the total defence expenditure is accounted for by that sort of activity. Unfortunately, those who hold the purse strings, under pressure from the services, prefer to place orders for specific equipment which may be outdated by the time it is ready. The cost of research is paid for out of overheads, or from 'private venture' funding (i.e., out of profits!).

A particular difficulty in defence work is that it often calls for performance characteristics which arise nowhere else. Storage life may be important, and immunity from magnetic and radiation fields. This pushes up the cost, and makes adequate testing of specialised components more difficult.

Where the only possible test is a test to detruction, 'type testing' is the only option. Make a hundred copies of a certain device, test ten of them successfully, and you will have greater confidence that the other ninety will work. That is only valid, however, if the ten and the ninety are made as a single batch,
by identical method's and with identical pre-testing schedules.

The overall characteristics of a device are usually agreed by the purchasing agency and the supplier as a starting point. The supplier is then likely to sub-contract parts of the work on the basis of specifications drawn up to define each part precisely. There is usually a "fitness for use" clause which is intended to mop up anything that was left out of the specification, but the ploy rarely works.

An interesting example of this was a unit for use in civilian aircraft. Everything worked perfectly until ground pressurisation tests were carried out. Then the increased pressure pushed in the side of a metal can until it touched internal circuitry. Who would have though of specifying a test at atmospheric pressure plus? The expectation was that pressure would be more commonly below atmospheric.

The sub-contract specifications can be the weakest link in the whole chain, and administering them can call for expertise on a par with that provided by the subcontractor.

The same piece of aircraft equipment also illustrates the proposition that 'preventative maintenance' meant work which prevented the equipment working properly. In early service, there was continual trouble until the maintenance staff were persuaded to leave well alone. When that was done, the equipment received the acolade of being "the most reliable piece of aircraft equipment ever made".

On the commercial side, it is true that 'cost plus' has given way (nominally) to 'fixed price', but matters have gone even further. It was normal for the MOD to retain rights of control over foreign sales of a product. Under some contracts they now yield that right, and the supplier is then justified in reducing his charges in the expectation of profiting from foreign sales.

The commercial haggling before an order is placed can be intense, especially if American competition is involved, and the pressures that are created can have an adverse effect on the validity of
the technical claims which are made.

Back in the nineteen-fifties, a Technical Director remarked that his company's profits depended on development contracts rather than on manufacturing activities. This could still apply in some areas. Perhaps it should, since it is the research and development work that really matters.

Anyone who has worked in both commercial and military manufacturing and compares them - and most people stay on the side of the fence they know best is aware of a vast difference of approach. A commercial company may cut corners, relying on the experience of their engineers to safeguard them from catastrophe. In a military manufacturing environment there is a profound distrust of engineering judgement, and a second line of defence in which Quality Assurance excer- 1 cises control too many decisions. The control is mandatory for defence contracts, but it is no more effective in some cases than the blind leading the lame.

The furore over IC testing is an example of this. The ICs are said to have been tested to the 'wrong' specification, which was the normal standard version rather than one cooked up by people who know only a limited amount about the product, basing their requirements on an arbitrary set of rules.

This, perhaps, is the key to extended development timescales. There is a standard development cycle for electronic equipment, but it can be shortened, at risk, if a commercial approach is adopted. Quite probably, however, there will then be a demand for work to be repeated 'in the proper way', even if the result is entirely satisfactory.

One point was not covered in the original article. A high proportion of all ICs are partially or wholly made in Malaysia, Taiwan or Hong Kong. How could equipment using these devices be made in wartime? A sea/air blockade would cut off supplies only too easily.

Yours sincerely.

Bill Horne
 Greenock

We are looking for an electronic circuit designer to complete the editorial team on ETI - the UK's leading electronics magazine.
We need someone who can come up with their own ideas for designs, see them through from breadboard to working prototype, and write them up for publication. The person appointed will also act as technical adviser to other editorial staff and to magazine contributors.
It's likely that the successful candidate will have been an electronics hobbyist who has turned the interest into a profession, and who will alreaddy be familiar with ETI and other electronics magazines. He or she will have drive and enthusiasm, coupled with a wide range of circuit experience. Of particular advantage would be expertise in interfacing home computers.
We are open-minded as to the level of appointment and the qualifications required. You could have no paper qualifications but a wealth of experience, you could be a fresh graduate who's had electronics as a hobby since childhood, or you could be a graduate engineer with years of experience: the key qualification is the ability to do the job. We are genuinely open-minded as to the salary for this post, and it will be a matter of your justifying your requirement to us.

Please apply in writing to: Dave Bradshaw, Group Editor, Argus Specialist Publications Ltd, No 1 Golden Square, London W1R 3AB, enclosing your curriculum vitae.

SERVICE SHEET

Enquiries

We receive a verylarge number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in ob taining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcomeif our projects are used beyond their specifications;
- Where a project has apparently been construc ted correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if approp riate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!); - Other than through our letters page, Read/ Write, we will not reply to enquiries relating toother types of article in ETI. We may make some exceptions where the enquiry is very straightforward o where it is important to electronics as a whole
We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that his cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exacly wat inomamaion you want

Subscriptions

The prices of ETI subscriptions are as follows: UK:

£16.30
 $£ 18.30$ Surface Mai
 $\$ 24.00$ Surface Mail (USA)

£43.30 Air Mail
Send your order and money to: tll subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1BB (cheques should be made payable to ASP Ltd). Note that we :un special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require: the number is $(0442) 48432$.

We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an article appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982, the 1983 index in January 1984 and the 1984 index in January 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplierwithin, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask What they are doing about your complaint.

If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible foryou to obtain compensation. from time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

EPROM Card (June 1984)

On the circuit diagram, Q2 base is shown connected to +25 V , but should be connected to +5 V . Q3 should not be connected to 0 V , but only to point a. The capacitor connected between +25 V and 0 V is C 5 and should be $2 \mu 235 \mathrm{~V}$ tantalum bead. Switch connected across C4 is SW1 onoverlay. Increase R8 to 2 k 7 if using suggested PSU. (R8 OK for 24 V).
Spectrum Joystick Interface (June 1984)
The PCB and the circuit diagram do not agree; the circuit diagram is correct, and all PCBs sent out by the PCB service should have been amended. IC3 is 74LS241, as correctly stated in the parts list but incorrectly given in the footnote to the circuit diagram.
CMOS Tester (August 1984)
$C 3$ and C2 are reversed on the overlay: C3 is the electrolytic and C2 the polyester. R33 is 100 K , not 1 M as given in the parts list, and RV 1 is a 1 M horizontal skeleton preset R1-16 are two, eightresistor SIL packages, the component labelled Cl4 on the overlayis SK1, and the connections to D2 shown in Fig. 3 are reversed. On the circuit diagram, the eight lines connecting SW9-16 to the inverters are shown in reverse sequence. Some of the inverters have been given the wrong designations; the correct sequence, reading down from the top, is:- IC1 f, IC2 a, IC2 b, IC1e, IC1d, IC1 c, IC1b, IC1 a, IC2 c, IC2 d, IC2e, IC3d, IC3a, IC3b, IC3c, IC2f. Finally, the pin numbers are missing from $1 C$ s 3 e and f; the input of IC3e is pin 11 and its output pin 12, and the input of IC3 is pin 14 and its output is pin 15. The PCB is correct in all respects.
Sharp Joystick Interface (August 1984)
Some of the inverter pins are incorrectly labelled on the circuit diagram. Pins 11 and 10 are shown reversed on $\mathrm{ICI}^{\mathrm{b}}$, pins 9 and 8 are shown reversed on 1 Cl c , and the output of IC4 d is pin 10, not pin 20. Note that a number of the inverters have been incorrectly shown as norinverting buffers.
AM/FM Radio (November 1984)
In Fig. 2, the oscillator and IF sections should be shown connected to ground; the PCB is correct. In Fig. 4, C31 should be 10 n to give the 75 us deemphasis shown in Fig. 3, but $4 n 7$ has been found to give a brighter midrange. R 38 in Fig. 5 should, of course, be 820 k rather than 280 k and it and the bottom end of C38, C44 etc should be shown connected to ground. In the construction section on page 25 , four pieces of 8 mm plywood are mentioned but in fact only three are needed - the fourth side is the front panel. See also the note in December News Digest regarding availability of the inductors.
Digital Control Port (November 1984)
The second sentence in the "Testing" section on page 30 should include the words 'without any ICs in place. In the second paragraph of that section, the check for +5 V should be made on pin 3 of IC101. not IC1. At the bottom of the first column on page 31 , the last sentence should finish with $B 3=0$.

Video Vandal (November 1984)

In Fig. 8 on page 54, R16 and R17 should be shown connected to the base of Q4, and C12 and SW2 should be in the D output line rather than the OV line. It may also be beneficial to add a diode across R3 with its anode connected to the slider of RV1. In Fig. 10, R52 and LED2 are shown connected across the +12 V supply but it is better to place them across the -12 V supply so as to even-up the dissipation in the ICs.
VCDO (March 1985)
RV2 should be 10k (right in parts list, wrong on circuit diagram).

READERS＇SERVICES

Subscription Order Form

To：ETI Subscriptions Department，Infonet Ltd， Times House， 179 The Marlowes，Hemel Hempstead， Herts HP1 1 BB ．
Please commence my subscription to Electronics Today International．I enclose a cheque＊／Postal Order＊／Interna－ tional Money Order＂for the appropriate fee，made out to ASP Ltd．
Please debit my Access＊／Barclaycard＊account number

Signature
（＊delete as appropriate）
Please indicate subscription required and fee enclosed
UK \＆Rep of Ireland：$\quad £ 16.30$ 口
$£ 18.30$ 口
$\$ 24.00$ 口
$£ 43.30$ 口
please complete your name and address
in block capitals
Name
Address \qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE Date of order．
THIS COUPON IS VALID UNTIL 31st May 1985
Backnumber Order Form
To：ETI Backnumbers Department，Infonet Ltd， Times House， 179 The Marlowes，Hemel Hempstead， Herts HP1 1BB．
Please supply me with the following backnumber（s）of ETI Month

Year．
Month
Year
Month Year

I enclose cheque＊／Postal Order＊／International Money Order＊to the value of $£ 1.60$ per magazine ordered， made out to ASP Ltd（＊delete as appropriate）．
Total money enclosed $£$
－

 \qquad
Address

please include postal code as appropriate

Date of order．
Note that the cost is the same for orders from overseas as for UK orders；overseas orders will be sent by surface mail． PLEASENOTETHATBACKNUMBERSARE HELDFOR ONE year only and some are now out of stock．

THIS COUPON IS VALID UNTIL 31st May 1985

Binder Order Form

To：ETI Binders Department，Infonet Ltd，Times House， 179 The Marlowes，Hemel Hempstead，Herts HP1 1 BB．

Please send me． ．binder（s）for ETI． I enclose a cheque＊／Postal Order＊／International Money Order to the value of $£ 5.00$ per binder ordered，made out to ASP Ltd（＊please delete as appropriate）．

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS iN BLOCK CAPITALS

Name
Address

please include postal code as appropriate

Date of order
Note that binders cost the same for UK and overseas； overseas orders will be send by surface mail．

THIS COUPON IS VALID UNTIL 31st May 1985

Photocopy Order Form

To：ETI Photocopies Department， 1 Golden Square， London W1 R 3AB．
Please supply me with the following photocopies：
Month
Year．
Article
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Page No

Month．．．．．．．．．Year．．．．．．．．．．Article
Page No
Tick box if you require INDEX（cost $£ 1.50$ ）
I enclose cheque＊／Postal Order＊／International Money Order＊to the value of $£ 1.50$ per photocopy ordered，made out to ASP Ltd（＊delete as appropriate）．
Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS in block Capitals

Name

Address

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order
Note that the cost is the same for overseas orders as for UK orders；overseas orders will be sent by surface mail．
PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING．

THIS COUPON IS VALID UNTIL 31st May 1985

FOIL PATTERNS

The solder side of the Framestore control card.

The top foil pattern for the Framestore control card.

FOIL PATTERNS

RS232 Interface foil pattern.

CCD Delay Line foil pattern.

The Buzby meter foil pattern.

ETI PCB SERVICE

In order to ensure that you get the correct board，you must quote the reference code when ordering The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．

1981	
\square	E／8106－8 Waa－Phase．．．．．．．．．．．． 1.76
\square	E／8106－9 Alien Attack ．．．．．．．．．．． 4.00
－	E／8107－1 System A．Input （MM or MO．．．．．．．．．．．．．．．．．．． 3.05
\square	E／8107－2 System A－Preamp ．．．． 5.95
\square	E／8107－3 Smart Battery Charger ．． 2.27
\square	E／8108－5 Watchdog Home Security（2 boards） \qquad
\square	E／8109－1 Mains Audio Link（3 bds）．． 8.45
\square	E／8109－4 Laboratory PSU ．．．．．．．． 5.21
\square	E／8110－1 Enlarger Timer．．．．．．．．．． 3.91
\square	E／8110－2 Sound 8ender．．．．．．．．．． 3.05
\square	E／8111－1 Voice Over Unit ．．．．．．．． 4.57
\square	E／8111－3 Phone 8ell Shifter．．．．．．．3．40
\square	E／8112－4 Component Tester．．．．．． 1.71
1982	
口	E／8202－2 Allez Cat Pest Repeller ．． 1.93
－	E／8202－5 Moving Magnet Stage．．． 4.01
\square	E／8202－6 Moving Coil Stage ．．．．．． 4.01
\square	E／8203－4 Capacitance Meter （2 boards）．．．．．．．．．．．．．．．．．． 11.66
\square	E／8205－1 DV Meg ．．．．．．．．．．．．． 3.13
\square	E／8206－1 Ion Generator（3 bds）．．．． 9.20
\square	E／8206－4 MOSFET Amp Module ．． 7.80
\square	E／8206－5 Logic Lock ．．．．．．．．．．．． 3.52
\square	E／8206－6 Digital PWM ．．．．．．．．．． 3.84
\square	E／8206－7 Optical Sensor ．．．．．．．．． 2.00
\square	E／8206－9 Oscilloscope（4 bds）．．． 13.34
\square	E／8212－2 Servo Interface（2 bds）．． 6.75
\square	E／8212－4 Spectracolumn ．．．．．．．． 5.54
1983	
口	E／8301－1 Fuel Gauge．．．．．．．．．．．．． 3.45
\square	E／8301－2 2X ADC．．．．．．．．．．．．．． 2.59
\square	E／8301－3 Programmable PSU．．．．． 3.45
\square	E／8303－1 Sound8oard ．．．．．．．．． 12.83
\square	E／8303－2 Alarm Module ．．．．．．．．．． 3.62
\square	E／8303－3 ZX81 User Graphics ．．．． 1.07
\square	E／8303－4 Logic Probe ．．．．．．．．．．． 2.50
\square	E／8304－1 Real Time Clock ．．．．．．．． 8.74
\square	E／8304－4 Stage Lighting－Main ．． 13.73
\square	E／8304－5 Slage Lighting－Display 3.45
\square	E／8305－1 Compressor／Limiter ．．．．6．19
\square	E／8305－2 Single PSU．．．．．．．．．．．． 3.16
\square	E／8305－3 Dual PSU ．．．．．．．．．．．．．． 4.01
\square	E／8305－4．2 NDFL Amp ．．．．．．．．．． 7.88
\square	E／8305－5 Balance Input Preamp．．． 3.23
\square	E／8305－6 Stage Lighting
	Autofade．．．．．．．．．．．．．．．．．．．． 6.19

\square	E／8305－7 Stage Lighting－ Triac Board．
－	E／8306－1 to 3 PseudoROM
－	E／8306－5 Atom Keyp
口	E／8307－1 Flash Sequencer．．．．．．．．．． 2.6
\square	E／8307－2 Trigger Unit Main Board．．． 2.67
口	E／8307－3 Trigger Unit Transmitter 1.66
－	E／8307－4 Switched Mode PS U．．．． 16.10
口	E／8308－1 Graphic Equa
\square	E／8308－2 Servo FaitSafe （ four－off）．．．．．．．．．．．．．．．．．．．．． 2.93
口	E／8308－3 Universal EPROM prog ．． 9.64
口	E／8309－1 NiCad Charger／Regen ．．． 3.77
\square	E／8309－2 Digger
口	E／8309－3 64 K DRAM ．．．．．．．．．．． 14.08
口	E／8310－1 Supply Protector ．．．．．．． 2.19
\square	E／8310－2 Car Alarm．．．．．．．．．．．．． 3.98
\square	E／8310－3 Typewriter Interface ．．．． 4.17
\square	E／8311－1 Mini Drum Synth ．．．．．．． 3.07
\square	E／8311－2 Alarm Extender．．．．．．．． 3.21
口	E／8311－3 Multiswitch
\square	E／8311－4 Multiple Port
\square	E／8311－5 DAC／ADC Filter
口	E／8311－6 Light Pen
\square	E／8311－7 Logic Clip
\square	E／8311－8 MC Head（JLLH）．．．．．．．． 3.17
\square	E／8312－1 Lightsave
\square	E／8312－2 A－to－D Board．．．．．．．．． 12.83
\square	E／8312－3 Light Chaser
\square	E／8312．4 2X Alarm
1984	
\square	E／8401－1 Vector Graphics
\square	E／8402－1 Speech Board （Mini－Mynah）．．．．．．．．．．．．．．．．．．． 10.97
口	E／8402－2 MP（Modular Preamp）Disc input（mono）．．．．．．．．．．．．．．．．． 3.7
\square	E／8402－3 MP Output stage（stereo） 3.7
口	E／8402－4 MP Relay／PSU．
\square	E／8402－5 MP Tone，main（mono）．．． 3.7
\square	E／8402－6 MP Tone，filter（stereo）．．． 3.73
\square	E／8402－7 MP Balanced output（st）．．3．73
\square	E／8402－8 MP Headphone amp（st）．． 3.7
\square	E／8402－9 MP Mother board ．．．．．．． 9.01
	E／8403－1 Power Meter ．．．．．．．．．．． 5.8
\square	E／8403－2 280 DRAM．．．．．．．．．．．． 9.7
\square	E／8403－3 Obedient Die
\square	E／8404－1 School Timer．．．．．．．．．．． 4.0
\square	E／8405－1 Auto Light Switch．．．．．．． 4.0
口	E／8405－2 2×81 EPROM Prog．．．． 10.5

How to order：indicate the boards required by ticking the boxes and send this page，together with your payment，to： ETI PCB Service，ArgusSpecialist Publications Ltd， 1 Golden Square，London W1 R 3AB．Make cheques payable to ETI PCB Service．Payment in sterling only please．Prices subject to change without notice．

Total for boards
Add 45p p\＆p
Signed

Total enclosed
0.45

PLEASE ALLOW
 PLEASE ALLOW DELIVERY

E／8405－3 Mains Borne RC ．．．．．．．． 5.07	
E／8405－4	Centronics Interface ．．．． 4.09
E／8405－	Vario ．．．．．．．．．．．．．．．．． 6.62
E／8405	Midi Drum Synth ．．．．．．．． 3.59
E／8406－	Oric EPROM Bd．．．．．．． 19.58
E／8406－	Spectrum Joystick ．．．．．． 3.30
E／8407－	Warlock Alarm ．．．．．．．．． 8.19
E／8408	Joystick Interface．．．．．．． 3.07
E／8408－	EPROM Emulator．．．．．．． 9.11
E／B408－3	Infrared Transmitter ．．．．3．70
E／8408	Infrared Receiver ．．．．．．． 3.98
E／8408	CMOS T
E／8409	EX42 Kybd．Interface ．．．． 3.82
1／8409－2	Bansheee Siren．．．．．．．．． 3.19
E／8409	Dry Cell Charger．．．．．．．． 2.80
E／8410－1	Echo Unit ．．．．．．．．．．．．． 3.92
E／8410	Digital Casselte ．．．．．．． 9.80
E／8410－3	Disco／Party Strobe ．．．．． 4.80
E／8411－	AM／FM Radio（4 bds）．． 13.02
E／8411－2	Control Port－control bd 12.15
E／8411－3	Control Port－1／O bd ．．．．． 6.33
E／8411	Capacitance Meter．．．．．． 3.55
E／8411－5	Video Vandal（3 bds）．． 12.10
E／8411．	Temperature Controller．．． 2.88
E／8411－7	Mains Failure Alarm．．．．． 2.54
E／8411－8	Knite Light ．．．．．．．．．．．． 3.25
E／8411－	Stage Lighting Interface．．． 3.73
E／8411－	0 Perpetual Pendulum ．．． 3.14
E／8412	Spectrum Centronics ．．． 3.51
E／8412－2	Experimenter＇s DRAM．． 14.08
E／8412－3	Active－8：Motherboard ．． 9.37
E／8412－4	Active－8：Protection Unit 3.67
E／8412－5	Active－8：Crossover ．．．．． 3.67
E／8412－6	Active－8：LF EQ ．．．．．．． 3.67
E／8412－7	Active－8：Equaliser．．．．．． 3.67
E／8412－8	Active－8：Delay Unit ．．．． 3.67
E／8501－1 Active 8ass Speaker ．．．．． 2.79	
E／8501－2 DRAM Card Update ．．．．． 3.66	
E／8501－3 Digital Delay（2 bds）．．． 26.00 E／8502－1 Digital Delay Expander．． 10.79	
E／8502－2 Data Logger ．．．．．．．．．． 5.17	
E／8503－1 Combo preamplifier．．．．． 4.49	
E／8503－2 THD meter mV \＆osc．bds 7.02	
E／8503－3 THD meter mains PSU ．． 3.49	
E／8503－4 THD meter battery PSU ．．． 1.36	
E／8503－5 ParaGraph Equaliser	
IP／MSP \＆OP／PSU bds．．．．．．．．．．．． 9.30 E／8503－6 ParaGraph Equaliser	
filter bd．．．．．．．．．．．．．．．．．．．．．．．．． 4.51	
E／8504／1 Framestore Memory ．． 11.53	
E／8504／2 Framestore ADC／DAC．． 5.23	
E／8504／3 Framestore Control ．．． 16.51	
E／8504／4 Buzby Meter．．．．．．．．．．．．． 4.38	

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:

40p per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements to: Caroline Faulkner ASP Ltd. 1 Golden Square, London W1.

BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH Have you got technical books you no Have you got technical books you no
longer neeor OR Do you need to read up on a new topic? Then EXCHANGE BOOK CLUB can help YOU:
We buy and sell previously read books on electronics and computing For list of currently available titles and details of our guaranteed buy back plan SAE please 10:

NICS, P.O. Box 2 Aothwell, Leeds LS26 OUY

B00Ks:

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics Computer software. S.A.E. 4×9 ", Paralab. Downton Wiltshire

TEST EQUIPMENT

```
TOP PRICES PAID
for surplus electronic test equipment.
ALWAYS a good selection ol S/G-GENS, METERS, and SCOPES for sale. Phone 0920-8714301
```


COMPUTERS

CORTEX COMPUTERS (E.T.I./ Powertran), cased, with RS232C. Fast, powerful. £195. Dellvered. Andrews 0963-70587, evenings, weekends

ADCD-ONS

TANGERINE OWNERS at last 2 **6809** C.P.U. board with expandable monitor in colour. FLEX compatible. Also 14 K RAM card to free EPROM space on TANEX S.A.E. For details . . . Ralph Allen Engineering; Forncett-End, Norwich. Tel: $(095389) 420$

MICROCOMPUTER

HOME GUARD SYSTEMS

If you want protessional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our tree illustra. ted catalogue.

Tel: 01-651 2449
Freepost, South Croydon Surrey CR2 9PU
(no stamp required)

3-butajepalis

ZX SPECTRUM. Vic20, C64, BBC, QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Lid., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.
Kravid KITS

PRINTED CIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitlve laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15 p . Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. Ali components. Full Instructions 912v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. £6.95 inc: or ready built £8.95: Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate. Hallsham, E.Sussex BN27 2EW.

J. LINSLEY HOOD

E.T.I. MOSFET POWER/AMP KIT £51.00 (pp £1.50)
aUdIo Signal generator 0.02% dist. $\mathbf{E 2 6 . 4 5}$ (pp £1.00) aUdio signal generator 0.002% dist. ($£ 36.80$ ($\mathrm{DP} £ 2.00$) in kit form

Send SAE for full intormation
TELERADIO ELECTRONICS 325 Fore Street, Loncon N9 0PE (01-807 3719)

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

SERVICES

JBA
 ELECTRONICS
 Manutactures to design or specifications. One offs small batch prototypes Analogue digital electronic equipment small
 1st Floor, 4a Lion Yard Brecon, Powys. South Wales Tel: (0874) 61 1177

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

PCB DESIGN \& LAYOUT. Taped artworks to your speciflcations and requirements TRAX Limited, 497 Hitchin Road, Luton, Beds.

SPECIAL OFFER

"100 WATT ITS CHILDSPLAY" - Superb quality fibreglass TO3 poweramps + data\&\&6.95-200 watt + controls \& sockets/\&15 -KIA-B, Cunliffe Road, IIkley.

PLANS 'N DESIGN

AMAZING ELECTRONIC plans lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street Ledbury HR8 2AA.

100W AMPLIFIER - 9.95 built or use the same board for 50W, 150W, 200W into 4 or 8 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details to:- ESS Amplification, 269 Hessle Road, Hull.

HACKERS one for you. Anderson Jacobson Accoustic Coupler. £75. Tektronix 453a Oscilloscope. Dual trace. £425. Ring 0494449859

COMPUTER ADD－ONS

EXTERNAL VIDEO BOARD for the CORTEX and other computers using the TMS9929 V．D．P．Fully synchronises the computer to a video fed from camera or V．T．R．Produces a combined picture at the outputs． Unpopulated P．C．B．circutis and detalis－$£ 30.00$ ．Fully built £100．00．Tim gray， 1 Larkspur Drive，Featherstone，Wolver－ hampton，West Mids．WV10 7TN．

ADAPTORS

TELETEXT（Ceefax／Oracle） external adaptors fit any television free cordless remote control．E149．95 inc．VAT and delivery．Access／Visa．Nufax Ltd．，Freepost，Bristol BS6 7 YZ． Tel：Bristol（0272）687801－ 744500.

USE THE E．T．I． Classified Section to sell your product／service either fill in the coupon or＇phone 01－437 0699 NOW！

COMPONENTS

RESIBTORS，CAPACITORS． 1,000 mlxed carbon film $1 / 2 \mathrm{~W}$ ， $1 / 4$ W， $1 / 2$ W，2\％，5\％，10\％resistors £2．95． 50 mixed ceramic tube capacitors E1．00．P\＆P 50p．D．J． Hooker，Romney Marsh Elec－ tronics，Pennywood，Clark Road， Greatstone，Romney Marsh，Kent TN28 8PB

IRISH

 READERSMAIL ORDER COMPONENTS

Top quality components

 Great prices Relurn－of－post serviceWrite or phone for tree price list
WAVEFORM ELECTRONICS 12 Effra Road，Rathmines，Dublin 6. Phone（01） 0001 if Engtand 987507 Mail order only please

SPECIAL OFFERS！SE250C signal injector £2．20， 15 watt amplifier board E7．65，Antex C S／iron £5．95 PxP 40p． Thousands of components in stock．Phone or write for price list－Spectrum Radio \＆Elec－ tronics Lid， 36 Slater St．，Liver－ pool L1 4EX．Tel：051－709－4628．

CLASSIFIED ADVERTISEMENT ORDER FORM

Rate 40p per word（min 15 words）
Post to：ETI， 1 Golden Square，London W1

PRINTED CIRCUIT BOARDS one－offs and small quantities supplied．Artwork carried out． Fennel Industrial Electronics， 54 Watling Street，Nuneaton，Warks CV11 6JL．Tel： 0203382296.

PARTRIDGE
ELECTRONICS
THE MIXER PEOPLE

EQUIPMENT

CONSTRUCTING AN AUDIO MIXER？

To achieve a high quality finish you need commercially produced printed panels－sub－frames－main frames etc designed and manufactured spcifically for this purpose．

56 Fleet Road， Benfleet，Essex SS7 5JN，England （Large S．A．E．please）

EPROM COPIER－STAND ALONE 2716－27128．．．．．．．．．．．．．\＆175．00 TELEPHONE CONVERSATION RECORDER ．．．．．．．．．．．．．．£75．00 2 LINES INTO 1 ANSWERING MACHINE Switching Unit

ع30．00
From LK．F． 8 yetoma Lid 8t．Albans．Tet：550e4

ḋON＇T LEAVE IT TO CHANCE －GIVE YOUR BUSINESS A BOOST BY ADVERTISING IN E．T．I．

Phone 01－437 0699 for details

Pease use BLOCK CAPITALS and include post codes．
Classification
Name（Mr／Mra／Mlas／Ms）
Address（deloto cocordinnuy）
\qquad
Signature．．．Date．．．．．．．．．．．．．．．．．．．．．．
DaytIme Tel．No．．

ETI ADVERTISERS INDEX APRIL ISSUE 1985

Armon Electronics Ltd 74
Audio Electronics 46
BK Electronics 8
B.N.R.\&E.S. 33
Bi Pak6
Bradley Marshall 47
Cambridge Micro Processor Systems 62
Cricklewood Electronics Ltd 46
Crimson Elektrik Stoke 40
Cybernetic Applications Ltd 51
Demon Marketing 55
Display Electronics 12
Electrovalue 40
ETI Book Service 56
Greenbank 28
Greenweld 61
Henry's Audio Electronics 37
I.C.S. 51
Kelan Engineering Ltd 33
Kemplant 27
Magenta Electronics Ltd 28
Micro Processor Engineering Ltd 33
Midwich 21
Maplin Electronic Supplies Ltd. OBC
Newrad Instrument Cases Ltd 39
Powertran Cybernetics Ltd IFC, IBC
RTVC 22
RVM Audiotronics 27
Rapid Electronics 10
Riscomp Lid 27
Ship Co Ltd 28
Skybridge Electronics Components 22
SME 27
Stewart of Reading 39
Sparkrite 55
System Electronique 74
Technomatic Lid 14\&15
TK Electronics 51
Watford Electronics 485
Wilmslow Audio 40
Please mention ETI when responding to all adverts, it helps the advertiser and it helps ETI. Many thanks - Paul Stanyer - Advertisement Manager.

TAKE GOMPLETE CONTROL OF YOUR MUSIC with the
 電

professional quality MIDI-controlled sampling unit

Once again, Powertran and E\&MM combine to bring you versatility and top quality from a product out of the realms of fantasy and within the reach of the active musician.

The MCS- 1 will take any sound, store it and play it back from a keyboard (either MIDI or IV/octave). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing, Flanging, ADI, Echo) are available with delays of up to 32 secs. A specicl interface enables sampled sounds to be stored digitally on a floppy disc via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS-1 doesnl come with a 5 -figure price tag. And, if you're prepared to invest your time, it's almost cheap!

Specification

Memory Size: Variable from 8 bytes to 64 K bytes.
Storage time at 32 KHz sampl ng rate: 2 seconds. Storage time at 8 KHz sampling rate: 8 seconds. Longest replay time (for special effects): 32 seconds. Converters, ADC \& DAC: 8 bit companding. Dynamic range: 72 dB .
Audio Bandwidth: Variable from 12 KHz to 300 Hz Internal 4 pole tracking filters for anti-aliasing and recovery.

Programmable wide range sinewave sweep generator. MIDI control range: 5 octaves.
+1 N/octave control range: 2 octaves with optional transpose of a further 5 octaves.

the tightly controlled power of the beast is yours to command！

PBOESROMA OJAD MBMDMER DISPEAKER

A new range of superb quality loudspeakers．
＊Virtually indestructible high temperature voice－coil reinforced with glass－fibre
－ 100% heat overload tolerance
＊Advanced technology magnet system
－Rigid cast alloy chassis
＊Linen or Plastiflex elastomer surrounds
＊5－year guarantee（in addition to statutory rights）

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16』！ impedances and with input powers ranging from 50 W to 300 W e．g
5in．50W 95dB 8 8 ：XG39N／16』2：XG40T £17．95§
8in． $100 \mathrm{~W} 98 \mathrm{~dB} 8 \Omega \mathrm{I}$ ：XG43W $£ 29.95 \S$
10in．100W 100dB 8II：XG46A £29．95§
12in．100W 101dB 81）：XG49D £29．95§
12in．Twin Cone 100W 100dB 8！2：XG50E 16！2：XG51F £31．95§
Note－the output power doubles for each 3 dB increase（ref $1 \mathrm{~W}(\pi) 1 \mathrm{~m})$ ．

PREGISON EOLD MULIMMETERS

A new range of very high quality multimeters offering truly amazing quality at the price．
Pocket Multimeter， 16 ranges， 2000 s2 V DC AC £6．95§（YJ06G）
M－102BZ with Continuity buzzer，battery tester and 10A DC range， 23 ranges， 20.000 SI V DC £14．95§（YJ07H）

M－2020S with Transistor．Diode \＆LED tester and 10A DC range， 27 ranges 20，000 © N N DC £19．95§（YJ08J）
M－5050E Electronic Multimeter with very high impedance．FET input． 53
ranges including peak－to－peak $A C$ centre－zero and 12A AC／DC ranges §34．95§（YJ09K）
M－5010 Digital Multimeter with 31 ranges including 20』！and $20 \mu \mathrm{~A} D \mathrm{DC}$ AC FSD ranges，continuity buzzer，diode test．and gold－plated PCB for long－term reliability and consistent high accuracy（ $0.25 \%+1$ digit DCV）$£ 42.50 \S$（YJ10L）

[^1]Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue，and with well over 600 new lines in our 1985 edition and many design improvements，it＇s well worth getting a copy．Here are just a few examples from the catalogue． （The items below are NOT kits）．
＊Most phono and jack plugs now with integral strain relief sleeve－gold－plated types also available from 14 p （gold from 70p）
＊Stereo Disco Mixer with cross－fade，talk－over，cue monitoring，aux input， slide controls．Only $£ 58.95$（AF99H）

＊10－Channel Stereo Graphic Equalisers－ 3 models－basic；with peak level meter；and with spectrum analyser－from £ 77.95

＊Digital Delay Line permits Slap－back．Doubling，Flanging，Chorus and Echo 11 controls．Only $£ 195.00$（AF98G）
＊Video Enhancer improves picture quality when recording from one VTR to another，and with TV＇s with monitor input．Only 28.95 （XG59P）
＊Detailed descriptions of the exciting new 74 HC range of IC＇s which combine the advantages of CMOS and TTL．From 46p
＊Keyboards：sloping keys，two－tone grey．mounted in steel frame．very smart cases（extra）available． 61 keys，only $£ 33.95$（YJ12N）

79 keys，only $£ 37.95$（YJ13P）
＊ 1% Resistors now 50 ppm C． 0.4 W ，only 2 p each！
＊Auto transiormers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, £ 10.75 \S$（YJ56L）．100VA £14．95§
（YJ57M）．150VA $16.95 \S$（YJ58N）．250VA £21．95§（YJ59P）．
＊Digital Clinical Thermometer．Only £13．95（FK51F）

Phone before 2pm for same day despatch．

Pick up a copy now at any branch of W．H． Smith or in one of our shops．The price is still just £1．35，or $£ 1.75$ by post from our Rayleigh address（quote CA02C）

Post this coupon now for your copy of the 1985 catalogue．
Price $£ 1.35+40$ p post and packing．If you live outside the U．K send $£ 2.40$ or 11 International Reply Coupons I enclose $£ 1.75$.

Name
Address

Prices lirm until May 111985

[^0]: SPARKRITE, Charles Street, Walsall, West Midlands WS2 9XW.

[^1]: N．B．All our prices include VAT and Cariage．A 50 p handling charge mus＇be added if your total order is less than 55 on mail order（except catalogue）．

 ## MAPLIN ELECTRONIC SUPPLIES LTD．

 Mail Order：P．O．Box 3．Rayleigh．Essex SS6 8LR．Tel：Southend（0702） 552911 SHOPS
 －BIRMINGHAM Lynton Square，Perry Barr．Tel：021－356 7292.
 －LONDON 159．161 King Street．Hammersmith．W6．Tel：01－748 0926
 －MANCHESTER 8 Oxford Road．Tel：061－236 0281.
 －SOUTHAMPTON 46.48 Bevois Valley Road．Tel： 070325831
 －SOUTHEND 282－284 London Rd．Westcifif on Sea．Essex．Tel：0702－554000
 Shops closed all day Monday

