

LEAD THE WAY

Bulld our amp/speaker combo unit for lead, bass or keyboards

Single Board Controller based on the Microtan
Voltage Controlled Digital Oscillator - add extra synth waveforms cheaply

 \title{
TAKE COMPL ETIE CONTROL
 \title{
TAKE COMPL ETIE CONTROL OF YOUR NUSIC with the暗基童＝童 protessional qualliy WIDD－controlled sampling unit
}

Once again，Powertran and E\＆MM combine to bring you versalility and top quality from a product out of the realms of fantasy and within the reach of the active musician．

The MCS－1 will take any sound，store it and play it back from a keyboard（either MIDI or Iv／octave）．Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated，looping system．

All the usual delay line features Nibrato，Phasing， Flanging，ADI，Echo）are available with delays of up to 32 secs．A special interface enables sampled sounds to be stored digitally on a floppy disc via a BBC
microcomputer．
The MCS－1 gives you many of the effects created by top professional units such as the Fairlight or Emulator．But the MCS－1 doesn＇t come with a 5 －figure price tag．And，if you＇re prepared to invest your time，it＇s almost cheap！

Write or phone now to place an order Powertran Cybernetics Limited， Portway Industrial Estate，
\boxed{E}
POWERTRAN cybernetics Itd

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
Telex 8811896

FEATURES

DIGEST
 .7

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Assistant Editor Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Kerry Fowler: Copy Control Jim Connell: Chairman

PUBLISHED BY:
Argus Specialist Publications Ltd. 1 Golden Square, London W1R 3'AB 1 Golden Square,
DISTRIBUTED BY.
Argus Press Sales \& Distribution Ltd:,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY:
Alabaster Passmore
OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead
and their CERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC
 Audit Bureau
 of Circulation

Electronics Todav is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property
rights and by virtue of international copyright convenrights and by virtue of international copyright conven-
tions are specifically reserved to Argus Specialist tions are specifically reserved to Argus Specialist
Publications Limited and any reoroduction requires the Publications Limited and any reoroduction reauires the
prior written consent of the Company. © 1985 Argus prior written consent of the Company. (c) 1985 Argus
Specialist Publications Ltd \sqcup All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally ke published as soon as possible afterwards. All prices and data conlained in advertisements are acpress. Neither the advertisers nor the publishers can be held res ponsible, however, for any variations affecting price or availability which may occur after the publicatori has closed for press.
\square Subscription Rates. UK $£ 15.00$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

Some tough facts to swallow.
THE REAL COMPONENTS 29 John Linsley Hood lifts the cap off of capacitors, the lid off pots, and renders transistors transparent.
TECH TIPS 54

WIRE TO ONE FOIL LAYER

PROJECTS

ETI readers go soldering on.

DISTORTION METER

43
John Linsley Hood sorts out the

 fundamentals.
PARAGRAPH EQUALISER
 49

Barry Porter describes the construction of this novel design.

DIGITAL FRAMESTORE.
 59

The fourth part of Daniel Ogilvie's TV serial, and a memorable one it is, too.

VOLTAGE CONTROLLED DIGITAL

 OSCILLATORGives your synthesiser those little bits extra.

ETI 'SONNETI' COMBO 22
Phil Walker has come up with some variations on an old theme.

SINGLE BOARD

CONTROLLER
The new processor board from MCS offers improved performance, but a stripped-down version also has its attractions.

INFORMATION

NEXT MONTH'S ETI 56
ETI BOOK SERVICE 65
ADVERTISERS' INDEX 66
ETI PCB SERVICE 71

WATFORD ELECTRONICS

33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND. MAIL ORDER, CALLERS WELCOME Tel. Watford (0923) 37774/40588 Telex. 8956095
ALL DEVICES FULLY GUARANTEED SEND CHEQUE, P.O.S, CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTE P\&P ADD 750 TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGE AT COST. PRICES P\&P ADD 75 P TO ALL CASH ORDERS. OVER
SUBJECT TO CHANGE WITHOUT NOTICE.
VAT
Export orders no VAT. Applicable to U.K. Customers only. Unless stated othewis
all prices are exclusive of VAT. Please add $\mathbf{1 5 \%}$ to the total cost including P\&P.
We stock thousands more items. It pays to viait us. We are situated behind Wattord foot
Nearest Underground/BR Staton: Watford High Street.
Open Monday to Saturday: 9.00 am to 6.00 pm. Ample Free Car parking space available.
ELECTROLYTIC CAPACITORS: (Values In UF) 500v; 10uf 52; 4778 p ; 83V: 0.47, 1.0. 1.5, 22.3.3, 478 p 10 10p

 6p; 470 20p; 680 34p; $100027 \mathrm{p} ; 1500$ 31p; 2200 28p; 470072 p
TAG-END CAPACITORS: 64V: 2200 120p; 3300 145p; 4700 245p; 50V: 2200 95p; 3300 155p; 40V: 4700 160pi 25V: 2200 70p; 3300 85p; 4000, 4700
$400 V$: $1 \mathrm{nF}, 1 \mathrm{n} 5.2 \mathrm{n} 2.3 \mathrm{n} 3,4 \mathrm{n7}, 6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$,
 POLYESTER RADIAL LEAD CAPACITORS: 250 V

$\begin{array}{ll}\text { TANTALUM BEAD CAPACITORS } & \text { POTENTIOMETERS: Carbon Tr } \\ \text { 35V: 0.1uF } 0.22 .0 .3315 p ~ 0.47,0.68, & \text { Rotary } 0.25 \mathrm{~W} \text { Log \& LIN Values, }\end{array}$ $10,1.516 p ; 2.2,3.318 p ; 4.7,6.822 p$
$1028 p ; 16 \mathrm{~V}: 2.2 .3316 \mathrm{p} ; \mathbf{4}, 7,6.8 .10$ 18p; 15, 36p; 22 45p; 33, 4750p; 100
95p; 10V: 15, 22, 26p; 33,4750p; 100 95p; 10V: $15,22,2 \mathrm{p}$
80p; $6 \mathrm{~V}: 100$ 55p. MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 1 \mathrm{nF}, 2.4,4 \mathrm{nF}, 106 \mathrm{p} ; 15 \mathrm{nF}, 22 \mathrm{n}$,
$30 \mathrm{~m}, 40 \mathrm{n}, 47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}, 100 \mathrm{n}, 200 \mathrm{n} 9 \mathrm{p} ;$ 470R: $1 K \& 2 K$
Single Gang
$5 K-2 M$ $\begin{array}{lll}5 K-2 M & \text { Single Gang Log \& Lin } & 35 p \\ 5 K-2 M & \text { Single Gang DP Switcn } & 95 p \\ 5 K-2 M & \text { Double Gang } & 99 p\end{array}$ $\begin{array}{ll}5 K-2 M & \text { Single Gang DP } \\ 5 K-2 M & \text { Double Gang }\end{array}$
SLIDER POTENTIOMETERS
0.25 W log and linear values 6
 $33 \mathrm{nF} ; 47 \mathrm{nF}$.
$200 \mathrm{nF} / 6 \mathrm{VBp}$. $\frac{200 \mathrm{nF}}{\mathrm{POLY}} 10 \mathrm{pF}$

POLYSTYRENE CAPACITORS: 10 pF to 1 nF Bp ; 1.5 nF to 12 nF 10p.
 MINIATURE TRIMMERS Capacitors 2.6pF 2-10pF 22p; 2-25pF; 5-65pF 30p; 10-88pF 36p.

TRANSISTORS

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

System on a Chip? Well, Perhaps

Rapid Recall has just announced a new Intel soft-ware-on-silicon product which features a full BASIC interpreter in ROM on a single chip.
Known as the 8052 AH-BASIC, this 40-pin device is specifically designed for process control,
measurement and instrumentation applications. It consists of an 8052 AH micro-controller with a full-feature BASIC interpreter resident in the 8 K bytes of available ROM. The interpreterallows 8052 AH users to write programs in BASIC instead of assembly language.
MCS BASIC- 52 contains all the standard BASIC commands and functions, including BCD floating point arithmetic and transcendental operations. It also has many unique features to perform tasks that usually require assembly language programming. Bit-wise logic operators
(such as AND, OR and EXCLUSIVE-OR) are supported, as is hexadecimal arithmetic.
Additionally, almost all of the 8052 AH's special function registers can be accessed with MCS BASIC-5 2, allowing the user to set the timer or interrupt modes within the constructs of a BASIC program. MCS BASIC-52 also has a built-in 5 msec real time clock which can be enabled, disabled and used to generate interrupts. Interrupts can be handled either by BASIC or assembly language.
A powerful feature of MCS BASIC-52 is that it generates all the timing necessary to program any standard EPROM or E2PROM with the user's application program. All that is required to implement this feature is a transistor, a gate and two passive components. Very little external hard-
ware is required to construct small systems.
Unlike most other BASIC interpreters, MCS BASIC-52 allows programs to reside in both RAM and EPROM/E2PROM. With the additional facility that up to 255 programs may reside in EPROM' E^{2} PROM. Programs can also be transferred from EPROM/E2PROM to RAM for editing purposes.
An interrupted language, MCS BASIC-52 allows the user to develop a program interactively without the tiresome processes required by assemblers and compilers. Its design permits a programmer to develop resident high-level language software using the 8052 AH microcontroller. Rapid Recall Limited, Rapid House, Denmark Street, High Wycombe, Bucks, HP11 2ER, tel 049426271.

Time Lapse VCR

The Video Systems department of Panasonic Industrial have introduced a video cassette recorder which provides all the features normally found on such machines but in addition has the facility to produce time lapse recordings. The machine can be usedwith a conventional $T V$ set or as part of a closed circuit television system for use in security/ surveillance, education and information applications.
The AG-6010 is a VHS machine which can make recordings of up to three hours in the normal way orover a continuous period of 18 , 36 or 72 hours in time lapse mode. The three-head design is described as microprocessor con-
trolled and provides a wide range of functions including still, slow, frame shift, reverse play and high speed forward or reverse search. A built-in timer allows time and date to be superimposed upon the recorded images and timed recordings can be stopped and started within a 24 -hour period. Other featuresinclude automatic repeat recording, automatic recording after a power failure and alarm recording at normal speed. It is designed to complement Panasonic's range of CCTV products, including the mini CCTV system which allows up to three low-cost cameras to be used with a 9 " monitor which has a built in sequential decoder.
The AG-6010 is now available through Panasonic's CCTV dealer network and the recommended retail cost is $£ 1295.00$ plus VAT. Panasonic UK Ltd, 300-318 Bath Road, Slough, Berkshire SL1 6/B, tel 0753-34522.

By the 1st of January 1986 almost every company in the country will be required to display the new, EEC approved safety signs. As a reminder, the British Safety Council have produced a full colour poster which features a sculpted figure not unlike the present occupant of 10, Downing

Street. The wording on the poster reads "How dare you ignore the new safety signs". Readers wishing to acquire a copy for correction/contemplation/worship/to throw darts at should write to the councilat $62-64$ Chancellors Road, London W6 9RS, tel 01-741 1231.

'Walker In Manchester Shock

Pictured above in classic pose - praying that he won't get any more technical enquiries - is erstwhile ETI Project Editor Phil Walker. Unconfirmed reports suggest that he is now in the Manchester area, scene of many
previous exploits (no, of course we're not going to tell you; use your imagination).
Sensitive Mancunians are advised to approach with care as this man's jokes have been known to stun at twenty paces. Those encountering him should approach with care and, if verbally assaulted, utter the terrible cry 'technical enquiry'. That should send him packing!
P.S. Sorry, Phil. And best of luck in your new job.

ELECTRONIC SIREN KIT

Produces an extremely loud piercing swept 9.15 V supply. Enable input for easy con to alarm circuits. Includes Sin Horn Speaker

Mini Siren
As above, but with a small speaker (instead of horn speaker) for internal use. Complete with box

SECURITY PRODUCTS

Protect your home and property and save by building your own burglar alarm system

Stair Mat 23:7in (950 120) Floor Mat 29 - 16 in 1950125 Tamper-proof connecting block 19501101
f1 70 Door/Window Contacts. Flush mounting, 4 wire, Magnet'switch Per Pair. 950 140 wide 50 m Window ${ }^{950} 145$)
Window Tape Terminations
Per parr. (950 150)
Kev-operated Switch. 1.5A 250V
SPS i Heavy chrome metal
5030
£1.05
f2. 50
f0. 36
(350 128)
Passive Infra-Red Detector
Detects intruder's body heat. Range 10 metres. 12 V DC. nio \& nic contact. Alarm Control Unit. 4 input circuits, 2. instant and 2 delayed. Adjustable entry. exit and alarm times. Buitt and tested. Full instructions supplied. Size: $180 \cdot 130 \times$ 30 mm . Supoly (950 160)
£26.00 Ultrasonic Burglar Alarm. Selt-contained with horn and AC adaptor Imputs for pres. with horn and AC adaptor. Imputs for pres-
sure mats and other sensors together with sure mats and other sensors together with
exituentry delays enable this unit to be used exil/entry delays enable this unit to be used
as a complete system. $\mathbf{~ 4 5 . 0 0 * p \& o f ~} 220$ 8 W Horn Speaker. 5.5 ins .8 ohm ideal for sirens, etc. 2.5 m lead and 3.5 mm fack
plug. 1403148) $\quad \mathbf{f 6 . 1 5}$

IR GARAGE DOOR CONTROLLER KIT

For controiling motorsed garage doors and switching
garage and drive righis on off up
a range of 40 ft
cots ot appl
cations like
ontrolling lights
and TVs
etc. In the home Ideat for agen or dis abled persons. this coded kit compinses a normally open relay outpul plus two latched transistor outputs, battery powered transmitter and opto isolated solld state mans switch.

XK 103 £25.00
XK105 Extra transmitters £ 10.50

PANTEC KITS

PN2	FM Micro Transmitter	¢7.50
PN3	Stabilised Power Supply	£13.70
N5	2. 10w Stereo Amplifier	f14.50
PN6	2-40w Stereo Amplifier	E24.95
PN7	Pushbution Sterea Preamp	¢12.80
PN8	Tone \& Voluine Contiol	¢13.60
PN1 1	3w FM Yransmitter	95
PN13	Single Channel FM	
	Transmuter	
PN14	Receiver tor	15

TOP QUALITY . . TOP SERVICE BOTTOM PRICES!

For FREE CATALOGUE send $9^{\prime \prime} \times 6^{\prime \prime}$ SAE - contains full list of stock range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add $75 p$ p\&p $+15 \%$ VAT to all UK orders. Overseas customers add $£ 2.75$ pfp Europe, $£ 6.50$ elsewhere. Giro No. 529314002. Goods by return subject to availability. Shop open 9am - 5pm (Mon-Fri). 10am-4pm Sat). ALL PRICES EXCLUDE VAT

INFRA-RED REMOTE CONTROL KITS

COMPONENT PACKS

PACK 1 650 Ressistors 47 R 10M
10 mer value $£ 4.00$
PACK 2 40. 16V Electrol 10.1000 F F 5 per value:
60.

Capa
$\quad 5$ values
PACK 4
45 Prespets 100 IM
PACK 5
30 - Low Pruthe 1 M
f3 25

citors. $0.011_{\mu} 250 \mathrm{~V}$
 citors. 0.011 FF 250 V

PACK 5 30-Low Pinfle IC Soters 8. $14 \& 16 ;$
PACK 6 25RFLED 15 mm f2 40
\rightarrow - - CRO- Q -

-

LCD DIGITAL MULTIMETERS

LOW COST1 10 M ohm. $3 \frac{1}{2}$ digit 04 in display. Auto zero and polarity. low batt indicatior, overload protection Includes test leads, battery, spare fuse manual. AC Volts: 0
AC volts: $0 \quad 200 \cdot 500$.
DC Volts: 0-2-20.200-1000
DC Current: 0-20m 200 mA
Resistance: $0.2 \mathrm{k} \cdot 20 \mathrm{k} 200 \mathrm{k} 2 \mathrm{M}$
Size: $138 \times 86 \times 36 \mathrm{rmm}$
(405 202)
Profossional $10 \mathrm{M}, 05$ in $\mathbf{f 2 5 . 9 5}$ Overrange and low $0.5 \mathrm{in}, 3 \frac{1}{2}$ digit. Overload protection includes ieads. spare fuse, battery, includes leads, Transistor Checker Size $175 \times 93 \times$ 42 mn .
AC Volts: $0.200-750$.
AC Volts: $0.200-750.20 \cdot 200-1000$ DC Current: $020 \mathrm{u}-2 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot 200 \mathrm{~mA}$ OC C
0.
Ohms 0.200-2k.20k-200k 2 M . 0.20M.
MK 19 Stereo Amplifier Controller Kit for remote control of bass, treble and volume (or balance) by MKII. Includes a one of lodecoder remote channel or input selection. power amp of almost any audio system

MK 12 Receiver Kit .- mans powered with 16 latched or momentary outputs. atched version is for applications re quiring one output on at a time. eg TV hannel selection. Momentary type gives an output onlv during transmission. Lines may be latched as required.
Size: $9 \times 4 \times 2 \mathrm{cms}$
MK 15 Dual Latched Solid State Relay for switching mains loads such as lamps TVs, etc. from the oulputs of the MK 12 momentary). 15 items may be switched independently using 8 MK 15 s . Triacs Inot supplied) switch at mains zero to reduce interference $\quad \mathbf{£ 4 . 5 0}$

CONNECTORS

Mector
Master flush, $\quad 19601101 £ 300$
 Saster imini surface $\begin{array}{ll}\text { Secondary tminisurfl } & 1960 \text { i171f3.00 } \\ \text { Dual outlet adaptor } & 1960 \text { Y181 } 4.20 \\ 4 .\end{array}$ Dual outlet adaptor
\qquad (405 204)

Auto Ranging. digit 10 mm display. Continuity buzzer, low bartery, overload and range indication. 10A internal shunt measurement. Curry ing case supplied. $A C$ Volts: 0.2-20-200-600. DC Volts: 0.0.2 2 20-200-1000 AC Current: O-200mA. O. 10 A Resistance: $0-200 \cdot 2 \mathrm{k}-2 \mathrm{k}-200 \mathrm{k}, 0.2 \mathrm{M}$ Resistance. $160 \times 20 \times 2 \mathrm{~mm}$ Size. 400×206) 49 mm 1405
High Sensitivity Temperature
$\mathbf{f 4 4 . 8 5}$ High Sensitivity Temperature Probe
For use with a multimeter temperatures from $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$. temperatures from $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$.
Accuracy: $1.5^{\circ} \mathrm{C} @ 25^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} @ 100^{\circ} \mathrm{C}$. Response time (in waterl. 5 seconds. Includes case, calibrated scale and in.
 £ 10.70
f1350 $19601131 \mathrm{f3.50}$
1960114162.65 Secondaryisurtace: $\quad 19601161$ E2.65 plug to spade ter 60 130i fO 20 per m

MICROPROCESSOR TIMER KIT

Designed to control 4 outputs

 independently switching on and off at preset times cycle. LED display of time and day, easily programmed via 20 way keyboard ideal for central heating control lincluding different switching times for weekendsl. Battery back-up circuit. Includes box
18 time settings
CT6000K
539.00

XK114. Relay Kit for CT6000 includes PCB, connectors and one relay. Will accept up to 4 relays. 3A/240V clo contacts 701115 Additional Relays

ELECTRONIC LOCK KIT

With hundreds of uses indoors, garages, car anti-theft devices, electronic equipment, etc. Only the correct easily changed four-digit code will open it! Requires a $5-15 \mathrm{~V}$ DC supply. Output 750 mA . Fits into standard electrical wall box.
Complete kit (except front panel) XK 101
111.50

Electric Lock Mechanism for use with existing door locks and the above kit. (Requires relay.) 12 V ACIDC cail
(701 150)
HOME LIGHTING KITS

These kits are
designed to
replace a stan-
dard wall switch
300 w of lighting

TOR300K Remote Controlled Light Dimmer
£14.95
MK6 Transmittertor

TD300K Touch Dimmer $\quad \mathbf{7} 75$
TS300K Touch Switch f7.75
TDE/K 2-wayextension

LD300K Rotary contrailed
$\$ 3.95$

DISCO LIGHTING KITS

DL1000K This value for money 4 wav chaser teatures bi-directional sequence DLZ 1000K - A lower cost uni-directionai version of the above. Zero switching to reduce interference. $\mathbf{f 8 . 9 5}$ Optional opto inputa/1) hight response (DLA/1)
teatures zero voltage sound to light kit features zero voltage switching, auto$\begin{array}{ll}\text { phone. } 1 \mathrm{~kW} \text { per channel } & \mathbf{f 1 2 . 9 5}\end{array}$

DVMIULTRA SENSITIVE THERMOMETER KIT

Based on the ICL 7126 and a $31 / 2$ digit hquid crystal display, this kit will form the basis of a digital multimeter fonly a few additional resistors and switches are required details supplied or a sensitive
digital thermometer $150^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$) digital thermometer $150^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$ reading $0.1^{\circ} \mathrm{C}$. The kit has a sensitivity of 200 mV for a full-scale leading automatic $\begin{array}{ll}\text { polarity and overload indication. Typical } \\ \text { battery life of } 2 \text { years (PP3) } & \mathbf{£ 1 5 . 5 0}\end{array}$

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

12 MHz AM/FM Sweep Function Generator

The series 8120 multipurpose function generator from Global Specialties Corporation provides sine, triangle, square, and pulse wave forms with variable amplitude, symmetry and offset over a frequency range of 1 mHz to 12 MHz . Frequencies can be amplitude or frequency modulated with an internal 1 kHz sine signal or with an external signal or in a combination of both internal and external signal.
The output can be continuous, gated or triggered either by an
external switch or a front panel manual switch. The start phase of the output signal is continuously adjustable from -90° to $+90^{\circ}$. When used as a sweep generator, the series 8120 has an internal ramp with variable duration to provide a recurring linear sweep overa 100:1 frequency range or a 1000:1 range using an external signal.
Other features include an output amplitude to 30 V peak-topeak, an attenuation and amplitude control to 80 dB , a 20% to 80% variable symmetry and a DC/offset voltage adjustable from -7.5 to +7.5 V into 50 R . A3digit LED display gives an automatic and convenient readout of the frequency, output peak-to-peak voltage, output offset DC level and sweep stop frequency. This facility eliminates the need for external instruments such as oscilloscopes, digital multimeters, and counters, to monitor the output of the

function generator
The 8120 series comprises ten different models, each weighing approximately 4.5 kg and having an ambient operating temperature range of 0° to $40^{\circ} \mathrm{C}$. Prices
range from $£ 680.00$ to $£ 1,115.00$ exclusive of VAT and postage. Global Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ, tel 0799-21682.

Hiccough Monitor

Could a hicough in the mains cause chaos with your micro or other gear? The answer is 'yes', but the problems only start there, because it's often impossible to tell what actually has caused the failure or latch-up, especially if you're testing out something new.
Enter Mektronic Consultants with 'The Sentry' mains monitor. You could use it just to indicate when a mains transient has occurred, so that, when your micro has gone down and taken 300 hours of diligent machine code graphics programming with it, at least you will know it wasn't
your fault. Alternatively, you could use 'The Sentry' to check the available supplies at your location to see which is cleanest. And by noticing what happens when a supply transient is generated, you could eventually isolate which items are causing the transients.
It plugs into a standard 13A socket and provides an indication if a transient is detected. It will indicate three levels of transient: slight, moderate and severe, and once a transient is detected the indicator lamp remains lit until the unit is reset. 'The Sentinel' costs $£ 48.50$ including P\&P but excluding VAT (an extra $\mathbf{E 7 . 2 8)}$ from Mektronic Consultants, Linden House, 116 Rectory Lane, Prestwich, Manchester M25 5DB, tel 061-798 0803.

TI Turn Their Hand To Diesel

As temperatures plunge well below freezing point, drivers of diesel-engined vehicles are finding that they can start up, but that their engines are running roughly, and frequently stalling two or three minutes down the road.
In sub-zero conditions, diesel engines suffer the problem of fuel "waxing", in which the paraffin crystallises. The engine will then usually run until the wax reaches the filter, which clogs up and
leads to stalling.
Truckers associations advise owners to garage their vehicles overnight, and to use diesel fuel heaters or fuel additives. But many do not have garages or even sheltered parking places, and the fuel mixtures available in any but the coldest countries cannot cope with such extremes.

In February 1984, the Materials and Controls Division of Texas Instruments launched an easy-touse, semiconducting ceramic device which prevents the waxing of diesel fuel. This diesel fuel heater, known as the 30RT, uses ceramic elements as a heat source. Packaged in a highlyefficient heat exchanger, it is typically mounted between the filter head and the filter itself, or
alternatively in the fuel line.
The 30RT, in combination with an ambient temperature thermostat, switches on if the temperature falls below zero. The self-regulating nature of the ceramic means that it cannot overheat, and can be used on applications from 12-24V DC without any deterioration in performance.
Since the 30RT's introduction, many car, truck and filter makers have been evaluating it this winter or fitting it to their products. For example, it has recently been introduced on BMW's 300 series diesel models. Agricultural machinery maker International Harvester has been fitting 30RTs on its machines this winter, as has Fleetguard the truck maker on its

Cummins-engined vehicles.

However, at present the average driver is still having to contend with waxing problems because the automotive industry typically takes at least a year to complete its evaluation of new products, such as the 30RT. By next winter, however, this device should be moving down from the luxury end of car ranges. It will also become available through the retrofit/DIY after-market, helping to reduce the hazards of winter driving for many more motorists. In the meantime, the major UK.filter manufacturer is presently adapting its range to provide compatibility with the 30RT. Texas instruments Lid, Manton Lane, Bedford, MK41 7PA, tel 023463211.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

-

Rapid Recall are making available a pamphlet written by two Digital Equipment Corporation engineers which outlines the more common microprocessor benchmarking techniques. The 8 -page A4 pamphlet also describes the various areas of system performance and proposes a performance measuring system, and copies can be obtained free of charge from Rapid Recall, Rapid House, Denmark Street, High Wycombe, Buckinghamshire HP11 2ER, tel 0494-26271.

British Telecom opened their first high-street shop at Southend on January 3rd. You can go in there, choose a new telephone, pay your bill. . . and two more shops will be opening in Newcastle and Plymouth later this year.

Decospray have developed a process which allows molten zinc to be applied to the surfaces of plastic enclosures without deforming or weakening them. The coating provides a high level of shielding against radio frequency interference and will allow plastics to be used in many applications which currently demand the screening properties of a metal enclosure. For more information contact C.C. Hammond at Decospray Ltd, Eastmore Street, Woolwich Road, Charlton, London SE78NA, tel01. 8585128.

- The British Standards Institution has published the following documents under the common title 'Harmonised system of quality assessment for electronic components':- BS9925 Inductor and transformer cores for telecommunications, part 0 , geometric specification (£22.80); BS9925 part 01.0 Sectional specification of magnetic oxide cores for inductor applications ($£ 16.20$); BS CECC 11100 Sectional specification of display storage tubes ($£ 16.20$); BSCECC 1700 Generic specification of mercury wetted make contact units ($£ 16.20$); BS CECC 18000 Generic specification of dry reed change-over contact units, mechanically biased ($£ 16.20$) ; BS CECC 30400 Sectional specification of fixed metallised polyethylene-terephthalate film dielectric capacitors for direct current ($£ 8.00$); BS CECC 75100 Sectional specification of two part and edge socket connectors for printed board application ($£ 22.80$). All of these standards are available at 50% discount to members from the Sales Department, BSI, Linford Wood, Milton Keynes MK14 6LE.

Who's A Pretty Pyrographite Then?

High technology has been applied to some pretty mundane products but as far as we know no-one is yet using a laser to produce bird cages. The device shown is, in fact, the screen grid of a 100 kW vapour-condensation cooled tetrode for medium and short wave radio transmitters. Manufactured by Siemens at their electronics tubes plant in Berlin, the grid was produced from a hollow cylinder of pyrographite using a laser as a precision cutting tool. The features are said to be remarkably smooth when compared with those of sand-blasted grids, and the material has excellent dimensional stability. In operation it will be loaded with as much as 24 W per square centimetre and will run at temperatures as high as 2000 K .

Siemens Ltd, Siemens House, Windmill Road, Sunbury-onThames, Middlesex TW16 7HS, tel 09327-85691.

The YearTo Go Bust

ast year, 1984, was the worst - year on record for business failures in the electrical industry, according to the latest survey by Dun \& Bradstreet Limited, the business information company. During the year companyliquidations in the industry amounted to 793, an increase of 4.9 per cent over 1983 and representing 5.8 per cent of the total liquidations in England and Wales.
48.4 per cent of liquidations were recorded in London and the South East. A further 16.5 percent occurred in the North West. Bankruptcies among firms, partnerships and individuals rose 19.8 per cent to 121 during the year.

In England and Wales as a whole, total company liquidations in 1984 reached 13,647 an increase of 9.5 per cent on 1983. Bankruptcies among individuals, firms and partnerships rose to 8,035 during 1984 representing an increase of 17.8 per cent over the previous year.

Let's just hope that 1985 is better for us all.

Motor Control Chip

D lessey Semiconductors has introduced the TDA 2088, a bipolar phase control integrated circuit optimised for current feedback applications but which can also be used in the open loop mode.

The new circuit, now available from the company and its distributors, has been designed primarily for AC universal motor speed control in applications such as power drills and domestic appliances (foodmixers, etc). A high level of system integration has resulted in low external component count, thus ensuring a low cost solution to such applications.

Powered direct from the $A C$ mains or a DC line, the TDA 2088 features an on-chip series regulator. This produces a smooth, low current $(-5 \mathrm{~V})$ supply for the internal analogue control functions which may be used to power ancillary circuitry
usually associated with this type of control system.

Voltage and current synchronisation inputs ensure that the triac firing pulse is at precisely the right moment under any load conditions. The negative triac firing pulse (a drive polarity preferred by most triac manufacturers) has a minimum guaranteed drive current of 100 mA with a typical current of 125 mA which ensures reliable firing of triacs capable of handling up to 40 Amps.
The TDA 2088 phase controller also produces awell-defined control voltage \langle phase angle relationship by using the international $-5 V$ reference circuit as the charging voltage for both the pulse timing ramp capacitor and as the reference voltage for the speed input potentiometer.

Compensation of motor speed with varying load is achieved by sensing motor current. The circuit design allows simple optimisation of control loop parameters.

Currently available in a 14 pin plastic dual-in-line (DIL) package it is planned to supply the TDA 2088 in a SO 14 package. Further information will be provided by Plessey Semiconductors Limited, Cheney Manor, Swindon SN2 2QW, tel 079336251.

HIGH OUALITY MODULES FOR STEREO, MONO \& OTHER AUDIO EQUIPMENT

Audio Amplifers

	POWER O/P	MAX SUP.	
O/No.	R.M.S.	VOLTAGE	PRICE
AL 30 A	10 Watts	30 V	$\mathbf{f 4 . 9 5}$
AL 60	25 Watts	$30-50 \mathrm{~V}$	$\mathbf{E 5 . 9 2}$
AL 80	35 Wats	$40-60 \mathrm{~V}$	$\mathbf{E 8 . 7 5}$
AL 120	50 Watts	$50-70 \mathrm{~V}$	$\mathbf{f 1 5 . 2 2}$
AL 250	125 Watts	$50-80 \mathrm{~V}$	$\mathbf{E 2 0 . 6 0}$

Stabilised Power Suppiies
Dutput current 25 Amps

ONo.	AC Input	Price
SPM 120:45	40-48V	88.05
SPM 120/55	$50-55 \mathrm{~V}$	¢8.05
SPM 120/65	60-65V	£8.05

Mono Pre-Amplifiers - Operating Vtg. 40-65V
$0 / \mathrm{No}$.
M 100 Suitable for Disco Mixer
MM 100G Suitable for Guitar Pre-Amp Mixer
Magnetic Cartridge Pre-Amplifier
ONo. MPA30. Sup Vtg 20-30V
Price $\mathbf{f 4 2 9}$
GE 100 MKII 10 ChannelOUR PRICE ONLY £20.00
Specifications and Data available on request.
Please send self-addressed envelope.
OPTO 7-Segment Displays Brand new ist Quality
LITRONXX DL 707R 14-pin
Fed 0.3"Common Anode Display 0.9 with right hand decimal point. TIL compatible. sv DC Sup ply. Data supplied

	5 pieces	53	(60p each)
IN	10 pieces	${ }^{\text {E }}$	(50p each)
PACKS	50 pieces	520	(40p each)
OF	100 pieces	C35	(35p each)

THE MORE YOU BUY
THE LESS YOU PAY

BI-PAK'S OPTO SPECIAL

A selection of large and small sized LED's in various shapes, sizes \& colours, togeth er with 7 Segment Displays both anode \& cathode plus photo transistors emitters and detectors. Cadmium Cell ORP12 and Germ. photo transistor OCP71 included. In all a total of 250 pto pieces valued over Q f12 Normal Price Order No. VP57 Price Just
£5.00
DIGITAL VOLT METER MODULE

7 segment displays Bass Circuit
$0-2 v \pm$ instructions provided to tend voltage \& current ranges. Operating voliage 9/12v. Typ /No. VP99 Once only price f9. 96
SINGLE SIDED FIBREGLASS BOARD
Order NoPieces Size Sq. Ins. Price $\begin{array}{llll}\text { FB1 } & 4 & 9 \times 234^{\prime \prime} & 100 \\ \text { FB2 } & 3 & 11 \times 3 & \mathbf{6 1 . 5 0} \\ \text { F83 } & 4 & 13 \times 3 & 6156 \\ \text { DOUBLE } & \text { SIDE } \\ \text { F200 }\end{array}$ DOUBLE SIDED FIBREGLASS BOARD

EDGE CONNECTORS
2×5 way - Pitch Edge Connector (Gold)
(0/No. AMP163279 2 I 120 each 50 .
(0)No. AMP163279 2) E120 each. ± 00 per 50 off

PICK-UP COIL
Large telephore pick-Lu coil tor high
sensitury Sucion pad lo sick to tele. sensinvity Suction pad to stick to telele-
phone socm lead to 35 jack p puag. Con nects direcet to to cas sette recoroder. Dims.

VALUE PACKS

OPTICALLY COUPLED MODULES

1 pair S01/131 Consisting $1 \times$ LS600 Silicon Light Sensor $\& 1 \times$ Matched Gallium Arsenide Light Source - Type TIL23, on ready mounted fibre BI-PAK Price ONLY $\mathbf{£ 0 . 6 0} \mathbf{p r}$.

LED DISPLAYS

VP130 $6 \quad$ RED 7 Seg. CC $14 \mathrm{~mm} \times 7.5 \mathrm{~mm}$ RDP FND353
$\begin{array}{ll}\text { VP131 } & 4 \\ \text { VP132 } & 5 \\ \text { GRED } \\ 7\end{array} 7$ Seg. CA $6^{\prime \prime}$ LDP XAN652
$\begin{array}{ll}\text { RP132 } & \text { RED } 7 \text { Seg. CC } 6^{\prime \prime} \text { DP XAN6940 } \\ \text { VP133 } & 6 \\ \text { RED Over-flow } .6^{\prime \prime} 3 \times C A 3 \times C C 653 / 50\end{array}$ GREEN Over-flow $6^{\prime \prime}$ CA XAN6530 REO 7 Seg. CA .3" XAN 3061 DUAL RED 7 Seg . $5^{\prime \prime}$ CA DL527 DPR OUAL RED 7 Seg. $51^{\prime \prime}$ CA DL727 OPR Assorted LED Displays - Our mix with Data
PDP $=$ Right Hand Oecimal Point \quad CC $=$ Common Cathode
RDP $=$ Right Hand Oecimal Point
$L O P=$ Left Hand Decimal Point
$C A=$ Common Anod

ANTENNA SWITCH 2 and 3 WAY

C-axial swich for one transceiver to two antennee or one antenna io wo transceivers. Dims: $86 \times 55 \times 32 \mathrm{~mm}$ (Body). As above but 3 -way

HICH PASS FILTER/SUPPRESSOR

CB/TV. High pass filter. Reduces unwanted signals picked up by antenna, Dims: $45 \times 25 \times 17 \mathrm{~mm}$. $0 /$ No. VP 115

Designed to reduce harmonics
on the VHS and TV band.
Cut-off frequency: 30 MHz .
V.S.W.R.: Less than 1.2 to 1.
Insertion loss: -0.2 dB @ 27 MHz.

Impedance: 50 ohms.
Dims: $80 \times 55 \times 40 \mathrm{~mm}$
£2.75

IC BARGAINS
40 Assorted ITL CMOS INTEGRATED CIRCUITS 74 Series \& CD4000 Series - All new Gates. Flip-Flops - MSI etc. GREAT VALUE Data 8 ook \& Sheets included. 40 Pieces (Our Mix) £4.00 0/No. UP40

TRANSISTOR PACKS

VP150 20 BC183B Sil. Trans. NPN $30 \mathrm{v} 200 \mathrm{~mA} \mathrm{Hfe} 240+\mathrm{TO} 2$ VP151 25 BC171B Sil. Trans. NPN 45v 100 mA Hfe240 + TO92 VP152 15 TIS90 Sil. Trans. NPN 40 V 400 mA Hfe $100+\mathrm{TO} 92$ TIS91 Sil. Trans. PNP 40 v 400 mA Hfe $100+$ TO92 MPSA56 Sil. Trans. PNP 80 v 800 mA Hfe50 + TO92 BF595 Sil. Trans. NPN eqvt. BF184 H.F. TO92 BF495 Sil. Trans. NPN eqvi. BF173 H.F. TO92 $2 T \times 500$ Series Sil. Trans. PNP Plastic 21×107 Sil. Trans. NPN equt. BC107 Plastic ZTX 108 Sil. Trans. NPN equt. BC108 Plastic $E 5024$ Sil. Trans. PNP equt. BC214L TO92 BC183L Sil. Trans. NPN 30v 200 mA TO92 SJE5451 Sil, Power Trans. NPN BOV 4A Hfe20+ NPN/PNP pairs Sil. Power Trans. like SJE5451 2N6289 Sil. Power Trans. NPN $40 v 40 \mathrm{~W}$ JA Hfe30 + BFT 33 NPN Sil. Trans. 80v 5A Hfe $50-200$ TO39 BFT34 NPN Sil. Trans. 100v 5A Hfe50-200 TO39 BUY69C NPN TO3 VCB 500 10A 100 w Hfe15+ BUY69C NPN TO3 VCB 500 10A 100 w Hfe
BC478 equt. BCY 1 PNP Sil. Trans. TO18

$\begin{array}{llll}\text { VP170 } & 10 & \text { Assorted Power Trans. NPN/PNP Coded \& Data } \\ \text { V171 } & 10 & \text { BF355 NPN TO- } 39 \\ \text { Sil. Trans. eqv. BF5 } \\ \text { VP172 }\end{array}$ VP172 10 SM1502 PNP TO39 Sil. Trans. 100 v 100 mA He $100+$

TRANSISTORS

100 Silicon NPN Transistors. All Per- 100 Silicon PNP Transistors. All Perfect. Coded Mixed. Types With fect Coded. Mixed. Types With Data And Eqvit. Sheet No Re- Data and Eqvi. Sheet. No Rejects. Fantasic Value. O/No. BP38
£3.00
The best known Power Transmitter in
the world 2N3055 NPN 115W.
Our Bi-Pak Special Offer Price.
10 off $\quad 50$ off $\quad 100$ off
$\mathbf{£ 3 . 5 0} \mathbf{£ 1 6 . 0 0 \quad £ 3 0 . 0 0}$

$$
\begin{aligned}
& \text { Data and Eqv. } \\
& \text { jects. Real Value. } \\
& \text { ONo. } 8 \text { P39 }
\end{aligned}
$$

f3.00
BD 312 COMPLIMENTARY PNP POWER TRANSISTORS TO 2N3055. Equiv. Price $\mathbf{£} 0.70$ each. 10 off $\mathbf{£} 6.50$

SEMICONDUCTORS FROM AROUND THE WORLD
100 A collection of Transistors, Diodes, Rectifiers \& Bridges, SCRs, Triacs, I.C.s \& Opto's all of which are current every day useable devices. Guaranteed Value Over $£ 10$ Normal Retail Price. Data etc. in every pack. Order No. VP56 Our Price $\mathbf{£ 4 . 0 0}$

TRANSISTOR CLEARANCE

100 All Sorts Transistors. A mixed bag NPN-PNP Silicon \& Germ. Mainly Uncoded You To Sort Pack includes instructions for making Simple Transistor Tester, Super Value.

Order No. VP60. $£ 1.00$
150 De-soldered Silicon Transistors from boards 10 mm leads all good. ONo. VP173
$£ 1.00$
TECASBOTY THE ELECTRONLC COMPONENTS AND
This collection of Components and Semiconductors for the hobbyist is probably the most value-packed selection ever offered, it consists of Resistors, carbon and wirewound of various values. Capacitors: All types, sorts and sizes including electrolytics. Potentiometers - single, dual, slider and preset. Switches, Fuses, Heatsinks, Wire, P.C.B. Board, Plugs, Sockets etc., PLUS a selection o SCR's, Diodes, Rectifiers. Triacs \& Bridges as well as a first class mix of Transistors and I.C.'s. In all, we estimate the value of this in mix of Transistors and I.C. S. In all, we estimate the value of this in
current retail catalogues to be aver E 25 ! So, help yourself to a great surprise and order a Box TODAY - ONLY at BI-PAK. JUSt Remember, stocks are limited so hurry! You can call us on 0920 $\mathbf{~ Y ~} 00$ $3182 / 3442$ and order with your Barclaycard or Access Card - 24 hr Answerphone Service NOW. Order No. VP 85.

ANTENNA COUPLER

Transceiver/car radio antenna coupler. With co-axial cables. One co-axial terminates in antenna plug and the other in PL259 plug. Dims: $67 \times 46 \times 30 \mathrm{~mm}$.
$\mathbf{£ 2 . 0 0}$

PRECISION MORSE KEYS
Well designed beginners key Fully adjustable. Dims: Base

ELECTRONIC SIREN 12v DC
Red plastic case with
adjustable fixing bracket. Emits high-pitched
wailing note of varying wailing note of varying
pitch - 100 cycles per pitch -
minute. minute. Cims: 90mmidia) Gommidepth
Power: 12 V
DC

POWER SUPPLY OUR PRICE £3.75
Power supply fits directly into 13 amp socket. Fused for safety. Polarity reversing socket. Voltage switch. Lead with multi plug input -240 v AC 50 Hz Output - 34.567 .59 \& 12v DC. Rating 300ma MW88.

TAPE RECORDER SWITCH

Unit to control motor of tape recorder. 1.8 m cord and 2.5 mm plug attached. On/OH switch. Dims: $55 \times$
$20 \times 20 \mathrm{~mm}$.
O / No. VP 127
f1.00

(LEARN A LNGGO) PILLOW SPEAKER

 Slim under pillow unil. 800 hms2^{*} speaker. 1.5 m lead with

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

New 726 Information Technology Scheme

A new City and Guilds Information Technology scheme (726) was launched on 18 January. C\&G say that this scheme represents a double breakthrough: it takes anentirelynew approach to educational and training methods as well as a uniquely broad consideration of vocational training in the rapidly developing and changing field of

Information Technology
The 726 series is intended to provide for very flexible study or training methods; it is entirely pupil paced, and the criterion referenced assessment is designed to ensure that successful candidates demonstrate an ability to do the job competently.
The approach is modular, but there are a limited number of modules and each is nationally devised so that employers will be able to assimilate and assess the content of each as well as deciding which combinations might best meet the needs of their workforce. Modules will relate to
and Guilds. This means that centhe three subject disciplines of: programming and software; electronics and hardware; and computer applications and operation. Module levels are defined as either introductory, elementary, intermediate or advanced. These levels relate to the subject matter and are not necessarily indicative of ability. C\&G say that many of the modules will be equally suitable for a very wide range of candidates; some will ideally suit YTS trainees and others will be pitched at supervisory and management personnel.

The scheme may be offered by any centre approved by the City
tres could be set up in schools, F.E. colleges, industrial premises, ITeC's or Skills Centres, etc anywhere where the necessary hardware, training personnel and accommodation can be provided.
The scheme is initially released at the Introductory and Elementary levels, but Intermediate and Advanced level modules will be available very soon. Scheme notes are now available and further information can be obtained from: Section 18, City and Guilds of London Institute, 46, Britannia Street, London WC1X 9RG, tel 01-278 2468.

Digital Signal Processor
 For Audio Applications

$1{ }^{1}$IT Semiconductors have produced a digital signal processor chip which can be used instead of analogue devices in many audio-frequency applications. The advantages of using digital processing include higher noise immunity, true phaselinearity and freedom from component drift problems caused by temperature and ageing.

The UDP101 CMOS chip is based on the Harvard architecture, and comes in a 40-pin plastic package. Two data buses and pipelining are used for speed of execution, and the basic instruc-
tion cycle time is 100 nanoseconds which makes it suitable for use in a wide variety of audio processing applications. The basic arithmetic operation is multiply and add using twos complement with a results resolution of 31 bits. The data and instruction wordlength is 16 bits and the internal memory comprises 1 K 16-bit words of program ROM, 72 words of data ROM, and 440 words of data RAM. Subroutines can be nested at up to four levels.

Three separate I/O facilities are available: fast serial at rates up to 5 Mbits/second, slow serial 1/O for communication with slave peripherals through the chip's IM bus interface, and a 16-bit parallel interface that's compatible with popular microprocessors, including the 68000 .

The UDPI01 operates on a single 5 V supply and consumes about 80 mW . AROMless version (UDPI01-EC) is available for development. Software tools include a cross assembler and

simulator written in FORTRAN 77.

The device's bandwidth allows a wide range of applications. In the telecommunications field it could be used in DTMF receivers, modems, vocoders, scramblers and echo-cancelling systems, and in the consumer field it's suitable
for audio processing in a variety o TV, hi-fi and radio applications. General industrial uses include speech recognition.
For further information contact Georgina Cole at ITT Semiconductors, 145-147 Ewell Road Surbiton, Surrey KT6 6AW, tel 01 3906578.

Light And Colour Principles

Anew volume - 'Light and Colour Principles' - has been published by the IBA as No. 22 in the series of occasional engineering texts under the general title of 'IBA Technical Review'.

Our sources say that this fullyillustrated 60 -page book provides not only a clear introduction to aspects of photometry and colorimetry essential to the understanding and engineering of colour television but also describes the recent development by IBA engineers of new, microcomputer-based spectrometric equipment and its practical application to the analysis
and optimisation of television cameras and monitors.

Contributions include: "The Measurement of Light" by Professor R.W.G. Hunt (City University, London, formerly Kodak Research Laboratories) and P.J. Darby (IBA).
"Colorimetry" by Professor R.W.G. Hunt.
"Colorimetryin Television"byP.J. Darby.
"Computer-operated Spectrophotometric Analysis of Cameras (COSAC)" by P.A. King (IBA) and P.J. Marshall (HTV, formerly (BA).
"Computer-operated Spectrophotometric Analysis of Monitors (COSAM)" by P.A. King and P.J. Marshall.

In an introduction, I.B. Sewter, IBA's Assistant Director of Engineering (Network and Development), points out that
the IBA has overall responsibility for the maintenance of high technical standards in Independent Broadcasting. Its engineers are much concerned with the technical performance of studio centres although the equipping and operation of such centres and the creative content of the programmes is the concern of the individual programme companies. During recent years broadcasters have achieved a more widespread understanding of colorimetry and its importance to television. The availability of microcomputers now makes it possible to process multiple measurements and the complex calculations needed to analyse and optimise cameras and monitor display. Together with improvements in optical components this had led to the development of a transportable IBA test
rig capable of a wide range of colorimetric measurements.
The early sections provide clear, unambiguous definitions of units based on the latest CIE and CIELUV 76 recommendations. These volumes are intended only for engineers and students directly involved in the field of broadcasting. Subject to availability of limited stocks, single copies may be obtained without charge. Complimentary copies are also available, on request, totechnical libraries and educational centres in the UK and overseas. IBA Technical Review No 22, 'Light and Colour Principles', technica editor Dr. Henry Palmer is published by IBA London. Enquiries to IBA Engineering Infor mation Services, Crawley Court, Winchester, Hampshire, SO21 2QA, telephone Winchester (0962) 822444.

ETI

01-208 1177 Techomatic Lid 01-208 1177

BBC Micro Computer System

RH Light pen.. 59.50 (c)

BBC FIRMWARE	
1.2 Operating System 87.50 (d)	
Basic II ROM....................................22.50 (d)	
View Word Processor ROM........... 4400 (c)	
Wordwise Word Processor ROM ...	
BCPL ROM/DISC ...00 (b)	
Disc Doctor/Gremlin Debug ROM E28 (d)	
XMON/TOOL KIT ROM上	228
Printmaster (FX80)/Graphics ROM........	
	528 an
ULTRACALC spreadsheet ROM $\mathbf{2} 60$ en (c)	
COMMUNICATION ROM	
Termi Emula	$\underline{528}$ (d)
Communicator	c59 (d)
Comms	$\underline{220}$ (d)

OACH UNICON products including the IBM Computibie GRADUATE in stock For detailed specification on any of the BBC Firmware/Peripherals lieted here or information on our complete range plame write to us.

PRINTERS

EPSON
RX80FT $£ 225$ (a)
FX80 $£ 315$ (a)
FX 100 £435 (a)
KAGA TAXAN
KP910 (156col) £359 (a)
KP 810 (80 col) $\mathbf{E 2 5 5}$ (a)
BROTHER HR15 £340 (a)
ACCESSORIES
32K Internal Buffer Parailel $\mathbf{8 7 5}$ (b) EPSON
Serial interface: 8143 £28 (c); 8148 with $2 \mathrm{~K} \mathbf{£ 5 7}$ (c)
Paper Roll Holder £17 (d); FX80 Tractor Attachment £37 (c)
Ribbons: FX/RX/MX80 £5 (d) FX/RX/MX100 10 (d)
RX/FX80 Dust Cover $\mathbf{£ 4 . 5 0 \text { (d) }}$
KAGA TAXAN
RS232 with 2K Buffer $\mathbf{£ 8 5}$ (c) KP810/910 Ribbon $\mathbf{£ 6 . 0 0}$ (d) JUKI 6100
RS232 with 2 K Buffer $£ 65$ (c) Ribbon $\mathbf{£ 2 . 5 0 ~ (d) ~}$
Tractor Attachment $£ 99$ (a) Sheet Feeder $£ 199$ (a) BBC Parailel Lead $£ 7$ (d) Serial Lead $£ 7$ (d) 2000 Sheets Fanfold Paper with extra fine perforation
$9.5^{\prime \prime} \times 11^{\prime \prime} £ 13$ (b) 14.5 " $\times 11^{\prime \prime} £ 18$ (b)
Self Adhesive Labels $23 / 4^{\prime \prime} \times 17 / 16^{\prime \prime}$
Single Row £5.25/1000 (d) Triple Row $£ 5 / 1000$ (d)

MODEMS

- All modems listed below are BT approved

MIRACLE WS2000:
The ultimate world standard modem coverall all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtualify any computer system in the world. The
optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facialities already provided on the modern. Mains powerec £129(b). Auto Diel Board/Auto Answer Board E30(c) each. Software lead $\mathbf{\Sigma 4 . 5 0}$.

TELEMOD 2 :
Complies with CCITT V233 1200/75 Duplex allow communications with VIEWDATA services like PRESTEL, MICRONET etc. as well as user to user communications. Mains powered ع84(b).

BUZZ BOX:

This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated, E52(c). Mains adaptor £\&(d).

BBC to Modem data lead $\mathbf{E 7}$.

GANG OF EIGHT INTELLIGENT FAST

 EPROM COPIERCopies up to eight eproms al a time and accepts all single rail eproms up to 27256. Can reduce pro gramming time by 80\% by using manufacturer's suggested algorithms Fixed Vpp of 21 \& 25 volts and variable Vpp factory set at 12.5 volts LCD display with alpha moving message $\mathbf{£ 3 9 5}$ (b).

SOFTY II

This low cost intelligent eprom programmer can program $2716,2516,2532,2732$, and with an adaptor, 2564 and 2764 . Displays 512 byte page tor, cassette interface Solty II..
Adaptor for 2764/2564. £25.00(c)

UV ERASERS

All erasers with built in satety switch and mains indicator.
UV1 B erases up to 6 eproms at a time.... $\mathbf{E 4 7}$ (c) UV1 T as above but with a timer £59(c) UV140 erases up to 14 eproms at a time.E61(b) UV14 1 as above but with a timer79(b)

DISC DRIVES

These are fully cases and wired drives with slim line mechanisms of high quality, Shuggart A400 standard interface. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. TEAC 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.

$1 \times$	
$1 \times 200 \mathrm{~K} 40 / 80 \mathrm{TSS}: T 555 \mathrm{~F}$	b)
$1 \times 400 \mathrm{~K} 40 / 80$ TDS:TS55F	fr145(a)
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS:TD55A	c250(a)
$2 \times 200 \mathrm{~K} 40 / 80 \mathrm{~T}$ SS:	c with

$2 \times 400 \mathrm{~K}$ 40/80T DS: TD55MP with psu $2 \times 400 \mathrm{~K} 40 / 80 \mathrm{TDS}: T D 55 \mathrm{M}$ Mitsubishl with OSU.... $40 / 80 T D S$:TD55M Misubishiwith CS55A with psu... E (CS55E whth psu..150(b) CS55F with psu.. 169 (b)

3M 51/4" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each discis individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box.
40T SS DD £15 (c)
$40 T$ DS DD $£ 18$ (c)
80 T SS DD $£ 22$ (c) $80 T$ DS DD E24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives $\mathbf{8} 14.50$ (c)
Single Disc Cable $\mathbf{I 6}$ (d) 10 Disc Library
 14.50 (c)

Case Isc Cable E (d) 10 Disc Library \qquad ع8.80 (d)

	.00(c)	30 Disc Case 88 (c)
30/40 Disc Lockable Box	$\underline{14}$ (c)	70/80 Disc Lockable Bok......................... \&18 (c)

MONITORS

MICROVITEC 14" RGB:

1431 Standard Resolution165 (a)
1451 Medium Resolution....................................... 240 (a)
1441 Hi Resolution ... $£ 399$ (a)
1431 AP Std Res PAL/AUDIO...............................£210 (a)
1451 AP Med Res PAL/AUDIO $\varepsilon 280$ (a)
1451 DQ3 Med Res for QL . 2239 (a)
Above monitors are now available in plastic or metal cases, please specify your requirement.
KAGA Super Hi Res Vision III RGB $\mathbf{8 4 0}$ (a)
Hi Res Vision II.. $£ 240$ (a)
MONOCHROME MONITORS 12":
Kaga Green KX1201 G Hi Res................................. $\mathbf{c 9 9}$ (a)
Kaga Amber KX1201 A Hi Res. . 105 (a)
Sanyo Green DM8112CX Hi Res .590 (a)
Swivel Stand for Kaga Monochrome .221 (c)
All monitors are supplied with leads suitable for the BBC
Computer. Spare leads available.

ATTENTION

ALL PRICES EXCLUDE VAT
Please add carriage 50p unless
indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

SPECIAL OFFER

2764-25 . 4.8 27128-25.. 27128-30 £11
6264-15 . .521
\qquad
6264-12 ...x

CONNECTOR SYSTEMS

VOLTAGE CONTRO OSCILLATOR

Tired of the same old sounds from your synth? Bring a new variety to its waveforms with the VCDO! Design by Richard Thorp, development by Simon Bailey.

Aconventional VCO can produce several waveforms, rich in harmonics, which may be filtered in order to alter the timbres. This is quite satisfactory for a wide range of musical requirements but the small range of waveforms available (usually sawtooth, square and triangle) and the coarse effects of analogue filters mean that it is impossible to produce many of the delicate, natural sounds which are so characteristic of modern digital synthesis. This module adds some exciting new possibilities to existing synthesisers by combining the flexibility of analogue voltage control with the clarity and realism of digitally generated waveforms.

As a unit, the voltagecontrolled digital oscillator (VCDO) may be regarded as an ordinary VCO, but with a far greater range of waveforms. The design is fully compatible with existing synthesiser systems (1V/) octave frequency control, 10 V peak-to-peak output, linear and exponential modulation inputs) and offers the versatility of 32 different waveforms covering a wide variety of sound textures. A particular waveform can be selected either with push-button switches using a simple incremental system or by a combination of a pushbutton switch and suitable electronic pulses to the input provided. The module has a wide frequency range (approximately 30 Hz to 10 kHz) which allows it to be used as either an audio or modulation source.

Design

The VCDO works on a very simple principle. The 32 waveforms are encoded in a 2716 EPROM. Each waveform is rep-
resented as a series of 648 -bit numbers (a wavetable). A binary counter is made to run at a frequency generated by a VCO and to count through the waveform data. A DAC converts each item of data into an analogue voltage.

The VCO is based on the familiar CEM 3340 from Curtis Electromusic Specialties. In this case, the frequency range has been shifted upwards by altering the timing components. Accurate calibration of the oscillator is

HOW IT WORKS

IC1 is a CEM 3340, which with the addition of a few external resistors and capacitors functions as a high quality VCO, featuring accurate exponential and linear control of frequency. Three output waveforms are provided (triangle, sawtooth and pulse), but in this application only the pulse output is required, which is available at pin 4. A positive-going control voltage to pin 5 allow adjustment of the duty cycle of the pulse wave from approximately 0% to 100%. Frequency control is by means of timing capacitor C4 (10pF in this application) and multiple voltage control via resistors R8-11 to pin 15, which is a virtual earth summing node. Additionally, pin 13 may be employed as a linear frequency control input, providing the facility of linear frequency modulation. The VCO is configured such that it may be calibrated for an accurate $+1 \mathrm{~V} / \mathrm{oct}-$ ave response using presets RV1 and RV3. Provision has also been made for connection to an external VC clock via SK4 which, if permanently connected, allows the removal of the CEM 3340 and associated circuitry.

The pulse output is suitably attenuated to 5 V by R17/ZD1 and is further processed by a Schmitt trigger (1/6 of IC2). Squaring of the pulse output is necessary as at extremely high frequencies an unacceptable amount of slewing is present, which inhibits operation of the next circuit block, a frequency doubler. The frequency doubling circuitry configured around IC 3a and IC 3b is included to provide an extra octave range. It functions by separately differentiating both edges of the square wave - C6/R18 differentiate negative edges and C7/R19 differentiate positive edges. The output of 1 C 3 b is then a series
of narrow pulses corresponding to both edges of the original square wave clock signal.

Ripple counter IC 4 steps through the lower six address bits of IC 9, a 2716 EPROM suitably programmed with wavetables. The data outputs at pins 917 of the 2716 go directly to IC 10, which is a high speed multiplying digital-toanalogue converter (DAC 0800). The data is thus converted to an analogue voltage which is buffered by IC 11. The same IC also scales the output to 10 V peak-to-peak.

Ripple counter IC 7 and IC 8 are used to select the required waveform Number and Group respectively. Their clock inputs (pin 1) are fed by IC 3c and IC 3d which invert and debounce the switches SW1 and SW2. Additionally, an external input is provided so that a suitable waveform or pulse train may be used to advance the waveform Number in a particular Group. ZD2/R20 are included to limit an incoming externally generated pulse to +5 V . R24 and C10 form a power-on reset network to take the reset inputs of the select counters high at switch-on in order to start at waveform Number 1 in Group 1.

IC 5 and IC 6 are BCD to decimal converters and LED drivers, displaying two decimal equivalents present on the upper five address lines of the 2716 . Thus the two highest address lines A9 and A10 are decoded to light one of four green LEDs representing the waveform Group whilst control lines A6 to As light one of eight red LEDs representing the waveform Number.

Power supply requirements to the VCDO are $+/-15 \mathrm{~V}$ at approximately 40 mA per rail and a separate +5 V rail at 500 mA .

LLED DIGITAL

achieved by means of four presets. Coarse and fine frequency controls are available as well as depth controls for exponential and linear modulation (Control 2 and FM).

The pulse output of the 3340 is used as the clock for the waveform generation circuitry. After being cut down to 5 V and passed through a Schmitt trigger to improve the shape, it is doubled in frequency by edge differentiation to give an extra octave range. Subsequently, a binary counter is incremented by the pulses and this steps through the 6 least significant address lines of the EPROM. A simple DAC and buffer convert the data outputs into voltages between 0 and +10 V .

The remaining circuitry is concerned with the waveform selection. Two push-buttons are debounced and used to clock a pair of binary counters. One controls
the 2 most significant address lines of the 2716 and thus splits it into 4 groups designated Groups 1 to 4. The other counter controls a further 3 address lines and thus can select one of eight waveforms. The combination of two counters means that any particular waveform is quickly accessible. Inserting a jack plug into the waveform select (No . Ci.) input enables electronic control of the incrementation, opening up the possibility of timbral modulation and sequencing etc.

Indication of the waveform selected is by means of 4 green LEDs and 8 red LEDs, representing wave Group and wave Number respectively. These are driven by BCD-to-decimal converter/drivers which monitor the address lines. A simple RC network ensures that Group 1, Waveform 1 (a sine wave) is selected at switch-on.

PARTS LIST

RESISTORS $(1 / 4 \mathrm{~W}$ stated)	5\% unless otherwise	$\begin{aligned} & C 3,5,10,15 \\ & C 4 \end{aligned}$	100n min polyester 10p polystyrene
R1	24k 1\%	C6,7	100p polystyrene
R2	5k6 1\%	C8,9	33n min polyester
R3	820R	C12,14	10u 35 V radial
R4,17,24	22 k		electrolytic
R5	10k	C13	10u 25 V axial
R6,16	1M0 1\%		electrolytic
R7,10	200k 1\%		
R8,9	100k 1\%	SEMICOND	
R11	2 M 2	IC1	CEM 3340
R12,15,22	470R	IC2	40106
R13	1k8 1\%	IC3	4011
R14	1M5 1\%	IC4,7,8	4024
R18,19	15k	IC5,6	7445
R20	1 k 0	IC9	2716
R21,23	200k	IC10	DAC0800
R25-32	180R (8 off)	IC11	741
R33-36	120R (4 off)	LED1-8	5 mm red LED
R37,38	10k 1\%	LED9-12	5 mm green LED
R39	7k5	ZD1,2	5 V 6400 mW zener
RV1,3	10k min multiturn		
RV2	10k horiz preset	MISCELLAN	
RV4	100k horiz Cermet preset	SW1,2 mom switches, S	push-button 5 mm min jack
RV5-8	100k lin rotary pots	sockets (SI DIL Socket	h break contacts), pin, 5×14 pin, $4 \times$
CAPACITORS C1,2,11	10n min polyester	16 pin, $1 \times$ knobs, etc.	PCB; wire, solder,

Construction

There are a number of wire links to be made on the board and these should be inserted first. The rest of the components should then be fitted onto the PCB in order of increasing height (i.e. zener diodes, resistors, IC sockets, presets and capacitors). Note the orientation of the electrolytic capacitors and ensure that all the ICs are inserted as shown on the component overlay as they do not all have the same orientation. The use of a PCB solvent cleaner to remove residual flux is recommended.

Off the board, there are 12 LEDs, four potentiometers, seven jack sockets and two push-button switches to be wired up. These components may be mounted on a front panel as shown or in any other format that individual constructors may wish to use. The actual connections to be made are readily ascertained by using the circuit diagram and component overlay together.

The PCB has a space for a four pin CHIRI-type connector which may be used for the power supply connections rather than hardwiring them to the board.

Calibration

Once construction is complete and the unit has been carefully checked, set all presets to midposition and power up. Calibration of the VCO circuitry is by way of four presets and is carried out as follows.

Firstly, RV2 is adjusted so that the unit operates over a frequency range from approximately 30 Hz up to 30 kHz . The correct setting of RV2 is likely to be slightly anticlockwise from mid-way and can be recognised when the frequency may be increased (e.g. by RV6) without any noticeable sudden jumps.

The two multiturn presets, RV1 and RV3, are used to achieve a precise 1 volt/octave CV to frequency relationship and may be calibrated in a number of ways. The most convenient method is to use a previously calibrated keyboard, but failing this a variable voltage source which can be increased by precisely one volt may be used. Also required is some means of checking the output frequency. The simplest way is to take the output through an amplifier and speaker and to calibrate it by ear, providing the ear concerned has had some musical training. Alternatively, a frequency
meter or oscilloscope may be used to visually display the frequency.

Proceed with the calibration as follows: firstly, adjust RV3 so that its wiper is at the earth end of the track. With the oscillator set at some point on the range 150 to 500 Hz (set by RV4/6/7), check that when the control voltage input at Cl is increased by exactly 1 V , the output frequency increases by one octave (ie, doubles). If not, adjust RV1 until it is. Repeat this check over the range 150 to 500 Hz .

Next, readjust the initial frequency to about 5 kHz . Adjust RV3 until increasing the control voltage at CI produces the required doubling of frequency.

Once these two adjustments have been done, the unit should track accurately over its entire range. Obviously, it is important that you should be able to measure the increase in the input control voltage accurately.

The final step in the calibration sequence is to adjust RV4 to give a convenient initial frequency when no inputs are connected, which to a large degree is a matter of personal taste. It may, for example, be set to 65.4 Hz , which is the lowest note on a four octave C-C keyboard.

In Use

The VCDO kit (see Buylines) is supplied with a pre-programmed EPROM containing the data for 32 64 -byte waveforms. Organised in 4
groups, these are as follows:1. Starting as a sine wave, this group progresses with the addition of extra harmonics in varying quantities, though none above the sixth are added.
2. The waveforms of this group contain some higher harmonics, and as a result sound brighter. 3. With lots of high harmonics and subdued lower harmonics and fundamental, these waveforms sound characteristically sharp and metallic.
4. This group contains some of the basic waveforms to be found on a conventional VCO (sawtooth, square, triangle, pulse etc.) plus one or two more unusual waveforms.

With suitable filtering and envelope shaping, a wide variety of sounds can be produced, both imitative and innovative. On the imitation side, Groups 1 and 2 can provide some very good church organs as well as xylophone, electric piano etc. Group 3 is ideally suited for bells, gongs, chimes and so on. Group 4 enables you to use the VCDO for conventional synthesis but it also includes some unusual waveforms unavailable on a standard VCO. As might be expected, the use of several VCDOs in a polyphonic system sounds especially impressive.

One or two unusual modes of operation yield some novel effects. Use of a linear FM patch produces sounds similar to those obtained from the recently popularised FM synthesisers. The waveform select input provides the possibility of cycling through any particular group, which can be quite dramatic when free-running or in time with the EG trigger from a sequencer/arpeggiator.

Additionally, the VCDO can operate as a modulation source. However, the output is stepped, and if being used as a frequency modulator for a VCO, for example, some form of filtering should be used in order to "smooth out" the waveform. This would be unnecessary for amplitude modulation.

> BUYLINES

[^0]TERMS OF BUSINESS carriage to order total before adding V.A.T.

* Carriage charges extra on all orders as follows: Components Books/Data/5oftware Printers, Monitors, Disc drives, etc.
£2.00
£4.50
* Strictly cash with order or credit card (Accesss or VISA) only
* Delivery is normally from stock but please allow up to 28 days.
* Any query or complaint regarding an order should be made in writing within 7 days of receipt of the order No telephone queries will be entertained
* Goods incorrectly ordered cannot be accepted for replacement without our prior agreement. Due to high processing costs, a minimum of 15% handling charge may be levied on any returns or cancelled orders
* We will issue a full immediate refund, if requested for out of stock items

Hi-Tech
 H-TECH COMPONENTS,

components

Connecting cables for personal computers

A comprehensive range of high quality interconnecting cables for popular micro computers. All cables utilise high quality connectors and are individually tested to ensure trouble free use.

Part number Video cables	Description	Computer	
CON100	Phono plug to phono plug (2M)		1.20
CON101	Phono plug to BNC plug (2M)		2.95
CON102	BNC plug to BNC plug (2M)		3.95
CON107	6 pin DIN to open end (IM)	BBC	1.05
CON108	6 pin DIN to 6 pin DIN (1M)	BBC	1.50
CON119 CON160	Phono plug to coax plug OiN plug to 2 phono plugs	Dragon	1.35
Cassette recorder cables			
CON109	7 pin DIN to open end	BBC	1.25
CON110	7 pin DiN to $2 \times 3.5 \mathrm{~mm}+1 \times 2.5 \mathrm{~mm}$ J/plug	BBC	2.50
CON111	7 pin DIN to 5 pin DIN +2.5 mm //plug	${ }_{\text {BBC }}$	2.50
CON118	5 pin DiN to $2 \times 3.5 \mathrm{~mm}$ J/plugs	Spectrum/ZX	2.50
CON117	5 pin DIN to $2 \times 3.5 \mathrm{~mm}+1 \times 2.5 \mathrm{~mm}$ //plug	Dragon	2.50
Parallel printer cables			
CON130	36 way ptug to 36 way plug (2M)	Sirius/Apricot	18.00
CON131	36 way plug to 36 way plug (5M)	Sirius/Apricot	26.50
CON132	36 way plug to 36 way secket (2M)		18.00
CON133	36 way plug to 36 way socket (SM)		26.50
CON144	36 way plug to 25 way male D type (2M)	IBM/TIPC	19.00
CON145	36 way plug to 25 way male D type (5 M)	IBM/TIPC	27.50
CONi34	36 way plug to 25 way male D type (2M)	RML/Apple	19.00
CON135	36 way plug to 25 way Male D type (5M)	RML/Apple	27.50
CON142	36 way plug to 20 way IDC socket (2M)	Dragon	13.95
CON139	36 way plug to 26 way IDC socket (2M)	${ }^{\text {BBC }}$	9.95
CON140	36 way plug to 26 way IDC socket (SM)	TRS80 Lev. 1	22.95 18.50
CON141	36 way plug to 34 way card edge (2M)		18.50
-JN143	36 way plug to 34 way IDC socket (2M)	TRS80Lev. 21 Memotech	10.95
RS232 Cables			
CON106	25 way male D type to 5 pin Din	BBC	5.85
CON128	'Universal' RS232 cable (pins 1-8. 20 connected		
	and 20 jumpered as required) 2 M		15.95
CON164	'Universal' RS232 cable as above but 5M		20.95
CON120	25 way male to male 1.25 connected (2M)		16.95
CON121	25 way male to male 1.25 connected (5 M)		22.50
CON122	25 way male to mate 1.25 connected (10M)		32.50
CON123	25 way male to male 1.25 connected (30 M)		68.00 1545
CONi24	25 way maie to femate 1-25 connected (2M)		15.45
CON125	25 way male to fermale 1.25 connected (5M)		21.00
CON126	25 way male to temale 1-25 connected (10M)		31.00
CON127	25 way male to temale 1-25 corinected (30M)		66.50
CON129	25 way male to 9 way male	Spectrum	15.95
CON162	25 way male to 9 way male	Mackintosh	15.95 14.95
CON163	25 way male to 5 pin DIN	RML 4802	14.95

THE ETI "SONNETI" COMBO

This month sees the departure of ETI Project Editor Phil Walker, who will shortly be returning to the electronics industry complete with his undisputed talents and indecipherable puns. But not before he's told us about the Sonneti, a combo unit guaranteed to turn anybody's farewell performance into the start of a new career.

The ETI Sonneti is an instrument amplifier suitable for use with lead guitar, bass guitar or keyboards. It doesn't have too many frills but it is capable of turning in a good performance without unnecessary fuss. The pre-amplifier and power supply have been designed to permit the simple addition of an echo

Fig. 1 Block diagram of the combo unit.
unit or similar effect, and whilst distortion-type effects are not specifically catered for there is no reason why they should not be included if desired.

The aim was to keep things as simple as possible, and to this end we have used a commerciallyavailable combo cabinet and a ready-built power amplifier mod-
ule. There is nothing to stop ambitious constructors building their own cabinets, but it was not felt to be worthwhile designing and building a power amplifier for so basic an application.

We used a Crimson Elektrik CE1008 module, mostly because we happened to have one lying around, but there are many other modules on the market which would be suitable. The CE1008 is capable of 100 W into an 8 ohm load when fed from a $\pm 45 \mathrm{~V}$ supply and quite adequate power for the present purpose when supplied with $\pm 25 \mathrm{~V}$. The output power can be increased by raising the supply voltage but the pre-amp regulator arrangements will have to be modified if more than $\pm 35 \mathrm{~V}$ is used.

The power supply is a straightforward centre-tapped transformer feeding a bridge rectifier to give the split-rail supply. The transformer secondary voitage is 18-0-18 to give the $\pm 25 \mathrm{~V}$ required and with a rating of 80 VA is under very little strain. For 100 W you would need $30-0-30 \mathrm{~V}$ at around 120 to 150 VA and C21 and 22 would have to be 63 V types. You would also need pre-regulators for the pre-amp power supply to drop it down to about $\pm 30 \mathrm{~V}$ - a simple resistor, transistor and zener diode arrangement would do.

The pre-amp section is

Fig. 2 Circuit diagram of the preamplifiers and regulators.
designed as two identical channels each with hi and lo level inputs and volume, treble and bass controls. Both channels feed into the two mixer stages, one of which is designed to feed an echo or similar effects unit while the other drives the power amplifier input. This latter stage also has an input for a return signal from the optional effects unit, a configuration which reduces the possibility of electrical feedback through the effects unit. The preamplifiers are designed to give sensitivities of around 4 and 10 mV on the hi and lo inputs respectively.

When this project was first assembled and tested using the author's guitar the sound produced was very muddy and "plonky". The guitar was known to produce a very wide range of sounds when used with commercial amplifiers, so the frequency response of the whole unit was tested and found to be flat to about 40 kHz . It was decided to change the circuitry around IC2 to give a boost to the higher frequencies. Some component values in the tone control section were adjusted to improve the treble and expand its control range, and the final circuit gives a very good sound.

HOW IT WORKS

The preamplifier is the only part of this project which needs much explanation. It consists of two virtually identical channels. The inputs are connected via R1 and 2 and C1 to the input of IC1a. The values of R1 and R2 are such that the R1 input is about 2.5 times more sensitive than the other. The value of $R 4$ connected as a negative feedback element round IC1a sets its gain to $\mathbf{1 0 0}$ from R1 input and $\mathbf{4 0}$ from the $R 2$ input.

The output from this stage is coupled via $\mathbf{C 2}$ to the volume control RV 1 . From here the signal passes to IC2a which is configured such that it has a gain of 1 at low frequencies and 2 at high frequencies, the change in gain occurring between about 800 and 1600 Hz .

The output from IC2a is a convenient low impedance drive for the tone control stage which follows. This is a familiar feedback configuration which is fairly simple but gives adequate results. Extra resistors have been incorporated in this and the previous stages so that the inputs to the op-amps will always have a DC path for their bias current should a potentiometer wiper become open circuit. This should prevent any alarming noises resulting from dirty contacts. The resistor $R 3$ at the input prevents static build-up.

The outputs from the tone control stage of each channel are applied to the inputs of two mixer stages. The output of one of these is intended to drive an echo
or similar special effect circuit while the output of the other mixer drives the power amplifier. This second mixer has an extra input to take the return signal from the effects unit.

The power amplifier can be considered as a single, rather expensive, component. All that needs to be done is to supply suitable voltages and signal input and take the output to a loudspeaker. The specified module is capable of supplying 100 W into an 8 ohm load but in this application the maximum output is somewhat less since the power supply voltage is only about $\mathbf{5 0}$ volts in total. The resulting output will be around 30 to 35 watts but could be raised by using a higher voltage transformer with appropriate modifications to associated components.

The power supply is a straightforward split rail configuration which gives about 25-0-25V from the 18-0-18V transformer. This is smoothed by C21 and 22 and applied to the power amplifier module. Integrated regulators IC5 and IC6 reduce this to the $\pm 15 \mathrm{~V}$ required by the preamplifier and small capacitors connected across the supplies ensure stability and reduce the impedance at high frequencies. The regulated supply is made available to the effects card via the same connector which carries the effects input and output, and the 10R resistors R39 and R40 reduce the level of any noise produced on the card.

Fig. 3 Component overlay of the preamplifier and regulator board.
PARTS LIST

RESISTORS (1/4W carbon film 5\%)	C15,16	$4 \mu \mathbf{7 6 3 V}$ axial	SK1-4	1/4' chassis-
R1,10,21,30 22k		electrolytic		mounting jack
R2,22 56k	C17,18	$4 \mu 725 \mathrm{~V}$ axial		sockets
R3,6,7,14, 15, 16, 17,		electrolytic	SW1	DPST mains toggle
20,23,26,27,34,35,	C19,20	100n 100V		switch
36,37 100k	C21,22	$4700 \mu 40 \mathrm{~V}$ can	T1	$0-18+0.18 \mathrm{~V}$,
R4,24 2M2		electrolytic		80 VA toroidal
R5,9,13,25,29,33 4M7				transformer
R8,12,28,32 10k	SEMICONDUCTORS		PCB; Crimson Elektrik CE1008 ampli-	
R11,31 2k2	IC1-4	TL072 or NE5532		
R18,38 1M0		- see text	fier m	inilar; two heatsinks,
R19 100R	IC5	7815	Maplin	or equivalent; PCB
R39,40 10R	IC6	7915	conne	
$\begin{array}{ll}\text { RV1,4 } & \begin{array}{ll}\text { 100k logarithmic } \\ \text { potentiometer }\end{array}\end{array}$	BR1	200V 6A bridge rectifier	$\begin{aligned} & 10 \text { wa } \\ & \text { pairs; } \end{aligned}$	way plug and socket IL sockets; six knobs
$\begin{array}{ll}\text { RV2,5 } & \begin{array}{l}\text { 100k linear } \\ \text { potentiometer }\end{array}\end{array}$	MISCELLANEOUS		Newrad N819 or similar aluminium case; sheet aluminium for sub-chassis/	
$\begin{array}{ll} \text { RV3,6 } & \begin{array}{l} \text { 25k linear } \\ \text { potentiometer } \end{array} \end{array}$	FS1	1A anti-surge 20 mm fuse and holder	scree front or wo C21	er screen and dummy -built combo cabine to build; clamps for relief bush for main
CAPACITORS (layer type PCB mount polyester unless stated)	LP1	240V neon indicator,	cat cable; throu	mets for wires passing screen; grommet fo
$\begin{array}{ll}\text { C1,2,7,8,9,14 } & 1 \mu 0100 \mathrm{~V} \\ \mathrm{C3,10} & 1 \mathrm{nO} 250 \mathrm{~V}\end{array}$	LS1	Prenel-mounting		or $1 / 4$ 'jack socket and
C4,6,11,13 56n 250V		McKenzie		ts, bolts, solder tags,
C5,12 ${ }^{\text {c }}$ 4 7250 V		C1285GP or similar	wire,	

Construction

The preamplifier PCB should be assembled first. The board has been designed so that PCB-type connectors can be used for the wiring to the potentiometers, input sockets and the optional effects card, and if you plan to use this system you should begin construction by soldering the appropriate connector halves to the PCB.

Plugs should be used for the potentiometer and input socket connections but the wiring to the effects card includes the supply rails and a socket should therefore be used so that there is no risk of bare pins being accidentally shortcircuited. If you do not wish to use connectors simply poke the wires through the holes and solder in the usual way when the rest of the board has been assembled. If you intend using sockets for the ICs these should also be soldered into position before the rest of the components are installed.

Continue assembly by installing the two wire links and the solder pins and then the resistors and capacitors, taking particular care with the electrolytic capacitors C15-18 which may be damaged if they are not wired the correct way around. Pads are provided on the PCB for two 10p capacitors, $C x$ and $C y$, in the feed-
back loops around IC1a and b. These will reduce the risk of radio frequency interference (RFI) and need only be installed if you have good reason to expect RFI problems. It is easy enough to add them later if you encounter problems when the unit is finished.

The last items to be soldered into position are the ICs. We used TL072 dual op-amps for ICs 1-4 but the more expensive NE5532 could be used if you require lower noise. A reasonable compromise would be to use an NE5532 in the IC1 position and TL072s in the other positions. If you use sockets it will be easy to swop ICs over to compare the performance of different types.

The amplifier is built into an aluminium box which is a little smaller than the slot at the top of the combo cabinet. An enlarged front panel, cut to suit the recess on the front of the cabinet, is

Fig. 4 Layout of the major components within the amplifier case.
attached to the amplifier box by means of the potentiometer securing nuts, the jack socket bushes and two small screws. The complete unit is then held in place by two self-tapping screws which pass through either end of the panel and into the wooden uprights of the cabinet.

The internal layout of the amplifier is shown in Fig. 4. The power supply and the power amplifier module are mounted on a sub-chassis which is bent up at the front so as to form a screen between these components and the preamplifier. The advantages of using the sub-chassis are that it reduces the number of holes required in the bottom of the case and that this section can be built and wired up before being bolted into place. If you can't find anything that will serve as both sub-chassis and screen you could simply mount the components onto the bottom of the case and then use a piece of aluminium supported on brackets as the screen.

The preamplifier board is mounted vertically on two rightangle brackets immediately behind the front panel. This allows the input sockets and control potentiometers to be connected up using very short lengths of cable. By positioning the preamplifier board to one side, sufficient space is left to accommodate an effects board at a later date. A second screen is placed between the preamplifier and input circuitry and the mains switch and indicator at the far end of the panel. A small piece of thin aluminium is sufficient, bent at a right angle and held in place by the toggle switch.

Two heatsinks are bolted onto the rear of the case in line with the aluminium bracket on the power amplifier module. If the Newrad NB19 case is used as in our prototype, the heatsinks will project slightly beyond the back of the cabinet when the amplifier is slotted into place. This helps ensure a good flow of air for cooling but might be considered undesirable. Using a slightly shallower box will reduce or remove the projection, and if you can find one made from heavy gauge aluminium or bend one up yourself you might find that you don't need the heatsinks anyway. Whichever method you use, don't forget to smear some heatsink compound between the surfaces before assembly.

The wiring should present no problems provided the arrangement shown in Fig. 5 is followed closely. All of the earths are returned to one point so as to prevent the formation of hum loops, and care should be taken to ensure that no earth connection is inadvertently made elsewhere. The $1 / 4^{\prime \prime}$ jack sockets which are generally available have no connection between the earth tag and the mounting bush, but if for any reason you decide to use different sockets you should make sure that they are insulated from the panel.

Twin screened cable should be used for the connections to the volume controls and the input sockets, and single screened cable for the signal connection between the pre-and power amplifiers. The rest of the wiring, including the tone control connections, can all be made using un-screened wire. The short connections between the reservoir capacitors, the bridge rectifier and the earthing tag and the link between the earth connections on each pair of input sockets can all be made using tinned copper wire of a suitably

Fig. 5 Wiring diagram. Note that all the earth connections are brought to one point.

heavy gauge.

The leads are brought out from the loudspeaker enclosure through a small hole in the bottom of the amplifier space. Rather than attach the leads permanently to the amplifier, we left a length hanging from the back of the cabinet, fitted it with a jack plug and provided a corresponding socket on the back of the amplifier. This allows the amplifier to be removed easily from the combo and used on its own.

BUYLINES

The cabinet we used was supplied by Wilmslow Audio, 35-39 Church Street, Wilmslow, Cheshire SK9 1AS, and they also stock a loudspeaker which is suitable but has a higher power rating than is needed for this project. The most recent prices we have are $£ 35.75$ inclusive for the cabinet and $£ 32.45$ for the C12 100 GP loudspeaker, but we suggest you check with them before ordering; their telephone number is 0625-529599. We obtained the McKenzie loudspeaker used in the prototype from B.K. Electronics and you will find the price and other information you need in their advertisement elsewhere in this magazine. Crimson Elektrik amplifier modules are available from Bradley Marshall at their shop in London's Edgware Road, from Wilsmlow Audio at the address above, or direct from the manufacturers at their Phoenix Works, 500 King Street, Longton, Stoke-onTrent ST2 1EZ, tel 0782-330520. The most recent price we have for the CE1008 is $£ 27.50$ inclusive but again we recommend that you check this before ordering. The metal case for the amplifier was obtained from Newrad whose address and telephone number you will find in their advertisement. The only other items likely to cause any problems are the aluminium panels. If you live in the London area you could try H.L. Smith in the Edgware Road who will supply aluminium panels cut and bent to customer's requirements for a small charge. If you live elsewhere you will have to try local hardware shops or salvage some scrap aluminium and brush up your metal-bashing skills. The PCB is available from our PCB Service.

A CCD-delay line effects board for this project is currently under development, and we hope to bring you constructional details of it in a month or two. It will of course, require controls, so readers who intend building it are advised to postpone painting and lettering the front panel until it is published.

OVP POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES

Now enjoy a world-wide reputation for quality, reliability and performance at a realistic price Four model available to suit the needs of the professional and hobby market. i.e. Industry, Leisure,
Instrumental and Hi-Fi. etc. When comparing prices, NOTE all models include Toroidal power supply, Integral heat sink. Glass fibre P.C.B. and Drive circuits to power compatible Vu meter. Open and short circuit proof. Supplied ready built and tested.
 OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms. Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01%. S.N.R. -118 dB . Sens. for Max. output 500 mV at 10 K , Size $360 \times 115 \times 72 \mathrm{~mm}$ PRICE $£ 32.99+£ 2.50$ P\&P
OMP/MF100 Mos-Fet Output power 110 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.002%. Input Sensitivity 500 mV , S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE $f 39.99+£ 250$ P\&P
OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate 50V/uS, T.H.D. Typical 0.001%. Input Sensitivity 500 mV . S.N.R. -130 dB . Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE £62.99 + £3.50 P\&P
OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350, Slew Rate 60V/uS. T.H.D. Typical 0.0008%. Input Sensitivity 500 mV , S.N.R -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE f79.99 + f4.50 P\&P

Vu METER Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 L.E.D. diodes (7 green, 4 ed) plus an additional on/off indicator Sophislicated logic control case, with tinted acrylic front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $f 8.50+$ 50p P\&P
NOTE: Mos Fets are supplied as standard $(100 \mathrm{KHz}$ bandwidih \& Input Sensitivity 50 OmV$)$ if required
P.A version (50 KHz bandwidth \& Input Sensitivity 775 mV) Order - Standard or PA.

LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedence.

POWER RANGE
8" 50 WATT R.M.S. Hi-Fi/Disco
20 oz magnet. 1 li" ally voice coil Ground ally fixing escuicheon Res. Freq, 40Hz. Freq Resp to

frea magnet 2 ally voice corl. Ground ally fixing escutcheon. Die-cast chassis. White cone Res
25Hz. Freq. Resp. $104 \mathrm{KHz}_{2}$ Sens. 95 dB . PRICE $£ 26.00-£ 300 \mathrm{P} 8 \mathrm{P}$ ea
$15^{\prime \prime} 100$ WATM R.M.S. Hi. Fi/Disco

MCKENZIE
12" 85 WATT R.M.S. C1285GP Lead guitar/keyboard/Disco
2" ally voice coil. Ally centre dome Res. Freq. 45 Hz . Freq. Resp. 106.5 KHz . Sens 98dB. PfICE $£ 2499$ ${ }_{2}{ }^{73.00} 85 \mathrm{PAP} \mathrm{Pa}$

15 . 150 WATR R.M.S. C15 Bass Guitar/Disco.
3^{\prime} ally volce coll Die-cast chassis Res. Freq. 40 Hz . F
wem
" 70 WATT R.M.S. Multiple Array Disco etc.
 " 150 WATR R.M.S. Multiple Array Disco etc.
 10 " 300 WATT R.M.S. Disco/Sound re-enforcement etc.
$11 / 2$ voice coil. Res. Freq. 35 Hz . Freq. Resp to 4 KHz Sens.

voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens 94 dB . PRICE $£ 38.00+£ 3.00 \mathrm{P} 8 \mathrm{P}$ ea
SOUNDLAB (Full Range Twin Cone)
"" 60 WATT R.M. M. Hice coil Res Fi/ Multiple Array Disco etc.
voice coil. Res. Fres. 633 Hz Frey Resp. to 20K Hz. Sens. 86dB. PRICE $£ 8.99+f 100 \mathrm{P} \mathrm{\& P}$ ea
2 voice coil. Res Freq 56 Hz . Freq. Resp. to Disco ett
ver
" 60 WATT R.M.S. Hi-Fi/Multiple ARray Disco etc.
HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG) 90/105MHz with very sensitive microphone, Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt

3 WATT FM TAANSMITTER 3 WATI $85 / 115 \mathrm{MHz}$ varicap controlle professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$

SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER RECEIVER 27MHz. Range up to 500 metres. Double coded modulation Receiver output opergtes relay with 2 amp $/ 240$ volt coniacts. Ideal for E17.82. Transmiter $80 \times 50 \times 150 \times 22 \mathrm{~mm}$ \{9/12 volt). Price P\&P +75 p each SA . $\times 50 \times 15 \mathrm{~mm}(9 / 12$ volt). Price: $£ 11.27$ BODIES, ETC. PRICES INCLUSIVE OFV.A.T. SALES COUNTER VISA/ACCESS/C.O.D. ACCEPTED

SERVICE * LARGE S.A.E. 28p STAMP FOR CURRENT LIST

BURGLAR ALARM

Better lo be 'Alarmed' then territied. Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units,
complete with interconnection cable FULLY GUARANTEED
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control - armed. 30 second exit and entry delay indoor alarm - Electronic swept 104 dB output. outpul Housed in Electronic swept frea siren. 98 dB case
Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection
during mains failure. Power requirement $200 / 260$ volt $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors panic buttons etc. Complete with instructions
SAVE $\mathbf{f 1 4 8 . 0 0}$ Usual Price 1228.85
BKE'S PRICE $£ 79.99+£ 4.00$ P\&P

DEAL for Work Shops, Factories etc supplied

 F-al

OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to suit todays hard wearing black vynide with protective corners. grille and carry handle. Ail models 8 ohms. Full Range $45 \mathrm{~Hz}-20 \mathrm{KHz}$ OMP $12 / 100$ watts $20^{\circ \prime} \times 15^{\prime \prime} \times 12^{\prime \prime} \leqslant 125.00$ per pai OMP $10 / 200$ watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 145.00$ per pair OMP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} 1169.00$ per pair

Delivery Securicor $f 8.00$ per pair

STEREO CASSETTE DECK

STEREO CASSETTE DECK
1 K-WATT Ideal for installing into Disco and Hi-Fi cabinet/Consoles. Surface mounting (Horizontal). Supplied as one unit with all electronics including mains power supply.

* Metal top panel black finish * Piano type keys including pause
\star Normal/Chrome tape
\star Twin Vu Meters
* 3 Digit counter
\star Slider Record Level control Size $171 \times 317 \mathrm{~mm}$ Depth 110 mm PRICE $£ 35.99+£ 3.00$ P\&P

SLIDE DIMMER
 Control loads up
1 kw
 $4^{3} / 3^{\prime \prime} \times 11^{\prime \prime} \times 21 / 2^{\prime \prime}$
${ }^{3}$ Easy snap in fix ing through in fixing through pane cabinet cut out
$*$ \star Insu
case
$*$ Full * Full wave con-
trol using 8 amp triac
$*$ Conforms 8 amp

BS800

* Suitable for both resist-
ance and inductive loads In-
numerable applications in
disco's, theatres etc PRICE $f 1299+75 \mathrm{p}$ P\&P

BSR P256 TURNTABLE

P256 turntable chassis os shaped tone arm - Belibrated counter balance © Anti-skate fibias) | calibreed |
| :--- |
| devicel - Damped cueing lever $\bullet 240$ volt $A C$ | operation (izz) © Cut out template supplied Completely manual arm. This deck has a com. pletely manual arm and is designed primarify

for disco and studio use where all the advan. sco and studio use where all the advan
tages of a manual arm are required.
Price $£ 33.60$ each. $£ 300$ P\&P ea
ADC 04 mag. cartridge for above. Price 54
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass ino voice colly of a Piezo tweeter produces an
improved transient response with a lower distortion level than ordinaiy dynamic crossover is not required these units can be added to existing speaker systems of up to 100 watts
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A'(KSN2036A) 3" round with protective wire mesh, ideal for bookshelf and medium
speakers. Price 54.90 each +40 p P\&P. speakers. Price $\mathbf{E 4 . 9 0}$ each +40 p P\&P.
TYPE 'B' (KSN1005A) $31 / 2$ ' super horn. For general purpose speakers. disco and P.A. systems etc. Price E5.49 each +40 PRP.
TYPE
C' (KSN $6016 A ~$
TYPE 'C' (KSN6016A) 2" $\times 5$ " wide dispersion horn. For quality Hi-fi systems and quality discos etc.
Price $\mathbf{E 6 . 4 9}$ each +40 p P P. Price 66.49 each +40 p P\& P.
TYPE ' D^{\prime} (KSN1025A)
hrPe upper (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz). Suitable for high quality +40 p P\&P
TYPE ' E ' (KSNIO38A) $33 / 4$ " horn iweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $\mathbf{f 5 . 4 9}$ each +40 p P\&P. ing plate. level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$ Price $\mathrm{f3} .99+40 \mathrm{p}$ P\&P

STEREO DISCO MIXER

STEREO DISCO MIXER with 7 band graphic

 equaliser and 10 segment L.E.D. Vu Meters. Many outstanding features.5 inputs with individual fader controls:-
2 Mag . turntable. 2 Aux. plus Mic. with talk-over with Hi-Low outputs. Compatible with our OMP Power Amplifiers
Size: $360 \times 200 \times 120 \mathrm{~mm}$. Supply $240 \mathrm{~V} / 50 \mathrm{~Hz}$ AC.

RECHARGEABLE BATTERIES

Ory Fit Maintenance FREE by Sonnenschein.
A300 07191315 12v 3 AH same as RS 501.770 NEW A13.95. A30007191202 $6.0-67.8$ AH same as R8 591. 382 EX EQUIP E4.99 Miniature PCB mount 3.6 v 100
Mah as RS 591477 NEW E1.OO SAFT VR2C 1.2 v " C "
 - easily split to single cells $£ 10.50+$ pp $\varepsilon i .90$

EX-STOCK INTEGRATED CIRCUITS

2732 ex equip £3.25. $27128-250$ ns NEW £12.00.

B116-200 E4.50.6116-250 33.95 | $6264 L p-150 \varepsilon 22.00 ; 4164-200 £ 3,50,4864-150 £ 4.00$, |
| :--- |
| $4116-300 £ 1.20 .2114$ | $4118-300, £ 1.20,2114 \mathrm{E1.75} 6800 £ 2.50,.6821 \mathrm{E1.00}$, D8085AH-2 £1 2:00, DBOB6 £20.00, Z80A £2.9日.

HOT LINE DATA EASE

THE ORIGINAL FREE OF CHARGE dial up data base 1000 sor slock items and one oft bargains. ONLINE NOW - 300 baud, full duplex CCITT tones, 8 bit $\begin{array}{ll}\text { word. no parity } & 01-6791888\end{array}$ MAINS FILTERS

COLRUMR2 'CAB'
All in one quality computer
cabinet with integral switched
mode PSU, Mains filtering. and twin fan cooling. Originally made for the famous DEC PDP8 computer
system costing thousands of pounds. Made to run 24 system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a
massive $+5 v D C$ at 17 amps , $+15 v$ DC at 1 amp and $-15 v$ massive $+5 v D C$ at $17 \mathrm{amps},+15 v$ OC at 1 amp and - $15 v$
$D C$ at 5 amps. The complete unit is fully enctosed with removable top lid, tiltering. trip switch. 'Power' and 'Run' LEDs mounted on Ali front panel, rear cable entries. etc etc. Units are in good. but used condition - supplied for $240 v$ operation complete with full circuit and tech. man Give your system that professional finish for only $£ 49.95$ + Carr Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deed $10.5^{\prime \prime}$ high

00014 R $14 B$

 Kep your oo Coctin Eann A2er Bura
 UUHLER OQ.11.22. $\cdot 116$ v DC micto CuALER Ro. $11.2,2.8,16$ voc mecio Sono molat tor extromet hioh hit liow

 Citain cime Ton wiomed nitio Cis 20

EPROM COPIERS

The amaing sofy 2 The Complete Tool

 "GANG OF EIGHT" "GANG OF EIGHT" intelligent 280 controlled gang programmer typ. ONLY 3 MINUTES!! Internal LCD dispiay and checking routines tor IDIOT PROOF
operation ontyE $395.00+$ ppes.00 operation owiye $395.00+$ PP EJ.00. "GANG OF EIGHT PLUS" same spec as
above but with additional RS232 serial interface for down line loading data from computer
etc. Data sheets on request.

DATA MODEMS

Join the communications revolution with
Our super range of DATA MODEMS with prices and types to sutt all applications and budgets"
Most modems are EX BRITISH
TELECOM and are made to the highest standard for continuous use and reliability RS232 interfaces are standard to all our
modems, so will connect to ANY micro etc. with an RS232 serial interface.
DATEL 2B see SPECIAL OFFER centre of
this ad
MODEM
$2^{\prime \prime}$ high and same size as telephone unit only Standard CCITT tones. CALL mode only. Tested with data. ON IVEAS.00 + PPE EA SO. MODEM 20.1, $75 \cdot 1200$ baud. Compact unit
for USe as subscriber end to PRESTEL. OI USe as subscriber end to PRESTEL,
MICRONET Or TELECOM GOLD. Tested with
data E39.95 $+\$ E 6.50$. data $E 39.95$ + DE E6.50.
MODEM 20-2 same a
MODEM 20-2, same as 20.1 but $1200-75$
baudE99.00. TRAN E 59.00 .
TRANSDATA 307 A 300 baud acoustic
coupler. Brand new with RS232 inte coupler. Brand ne
DACOM DSL2 2123 Multi Standard Modem,
switchable CCITT or USA BELLL 103 standard.
V21 $300-300$. V23.75.1200. V 231200.75 or $1200-1200$ half duplex. Auto answer via MODEM or CPU. CALL or
ANSWER modes plus LED status indication Dim 2.5" $\times 8.5^{\prime \prime} \times 9^{\prime}$. BRAND NEW fully Guaranteed owlyE268.00 + + NE E S SO. DATEL 2412 Made by SE LABS for BT this two part unit is for synchronious data links at
1200 or 2400 baud using $2780 / 3780$ protocol. Many teatures include Auto 2 or 4 wire working etc etc. COST OVER
e800. oun priciflis.oo. DATEL 4800, RACAL MPS4800 high spe good concition EJeJ.00 GARE 510.00 ,

PRICE BARRIER SHATTERED ON 16" RGB CASED COLOUR MONITORS

A scoop purchase from a major London Hotel enables us to offer this special Converted DECCA 100 COLOUR video TV at a super iow price of £99.00!! Low enough to suit any budget!! Solid state modular construction, $16^{\prime \prime}$ high definition results in $80+$ column text convergence problems and our own special modification results in $80+$ column text definition and picture quality not seen on monitors costing three times as much!! In fact we guarantee you will be delighted with this product, the quality has to be seen to be believed. Supplied complete and ready to plug direct to a BBC MICRO COMPUTER or any other system with a TLL RGB
output. Uther features include internal audio amp and speaker compact output. Other features include internal audio amp and speaker, compact dimensions only. $52 \mathrm{~cm} \mathrm{~W} \times 34 \mathrm{H} \times 24 \mathrm{D}$, a uto degaussing circuit, attractive teak finished case, 30 day guarantee. ONLY E99.00 + E10.00 GARR.
Also available unmodified complete with mod data (Mod costs less than $£ 12.00$) $£ 80.00$.

SPECIAL 300 BAUV MODEM OFFER
Another GIGANTIC Purchase of these EX BRITISH TELECOM, BRAND NEW or little used 2 B data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD OF PRICE OF ONLY E29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2B has all the standard requirements for data base, business or hobby communications. All this and more!!

- Full baud full duplex - Full rernote control - CCITT tone standards - Supplied with full data - Modular construction
\qquad SNOW ONLY
\sum E29.95 - Standard RS232 se Builf in test switching
$240 v$ Mains overation - i year maill guarantee - I year full guarantee
SUPER PRINTER SCOOP BRAND NEW
 $=5250$ CENTRO
739-2

HUNDREDS OF PRINTERS

 EX STOCK FROM £49.00. Call Sales Office for Details.1 only large CALCOMP 1036 AO 3 pen drum plotter and offline 915 magtape controller. Good working order. E2500.00.

DISK ORIVE SPECIALS

SIEMENS FDO-100-5 $51 / 4^{\prime \prime} 40$ track single sided. Ex new equipment tested, guaranteed working. Complete with data $\mathbf{E 7 5 . 0 0}$
SHUGART SA400 5 $1 / 4^{\prime \prime} 35$ track, single sided, Ex equipment, guaranteed
working ESS.00 SHUGART SAB
Hard disk drives, SAB50 8" drives plus spares EX Stock call for prices. Large quantities o
Large quantities of HARD DISK drives currently EX STOCK including:
DRE series 30 mb Front Load for DEC. NOVA etc
DIABLO 44/DRE 4000 A, B $5+5$ mb cartrid etc
FROM E295.00 CDC HAWK $5+5 \mathrm{mb}$ cartridge drive as new condition CDC 978280 mb DEC RMO3 compatible condition PERTEC D3422 5+5 cartridge drive Large quantities of spares and controllers avail

TA GENERAL. Cail sales office for details.

ADD VAT TO ALL PRICES

BUDGET RANGY

VIDEO MONITORS

At a price YOU can afford, our rang EOUIPMENT vIdeo monitors defy

 EQUIPMENT vIdeo monitors dety compeltion!? All are for 240 V working withstandard composite video inout Units are standard composite video input. Units are pre ested and set for up 1080 col use on
BBC micro. Even where MINOR screen burns MAY exist - normal data displays are unaffected. 1000's 50<0 70 DATE 12 "' KGM 320-321, high bandwidth input wilf display up to 132 columns $\times 25$ lines. Housed in attractive fully enclused
brushed alloy case. B/W only $\mathbf{E 3 2 . 9 5}$ brushed alloy case, $\mathbf{\text { 日/W }}$ only E 32.95
GREEN screen $\mathbf{E 3 9 . 9 5}$ GREEN screen E39.95
24" KGM large screen black 8 white
monitor fully enclosed in light alloy ca monitor fully enclosed in light allioy case
Ideal schools, shops, clubs etc Idealschools, shops, clubs etc
oHisE55.00 Carriage £ 10.00

DEC CORNER

PDP 1140 System comprising of CPU.
124K memary + MMU
124 k memory +MMU 16 line RS232
interface. RPO2 40 MB hard disk drive, TU10 9 track 800 BPI Mag tape drive. dual rack system. VT52 VDU etc. etc. Tested
and ruaning
$£ 3750.00$ BA11.MB 3.5" Box, PSU, LTC E385.00 DH11-AD $16 \times$ RS232 DMA
interface
DLV11-J $4 \times$ EIA interface
E2100.00 $\begin{array}{lr}\text { OLV11-J } 4 \times \text { EIA interface } & £ 310.00 \\ \text { DUP11 }\end{array}$ DOP11 Sych. Serial data i/o
DO200 Ditog-multi RK DQ200 Ditog - multi RK E 495.00 OZ11-8 8 tine RS232 mux board $\mathbf{E 6 5 0 . 0 0}$ LA36 Decwriter ElA or 20 ma loop $£ 270.00$ and buffer option $\quad \mathbf{1 3 0 . 0 0}$ LAX34-AL LA34 tractor feed $\mathbf{E 8 5 . 0 0}$ MS11-JP Unibus 32 kb Ram $\mathrm{EB0.00}$ $\begin{array}{ll}\text { MS11-LB Unibus } 128 \mathrm{~kb} \text { Ram } & \text { E450.00 } \\ \text { MS } 11 \text {-LD Unibus } 256 \mathrm{~kb} \text { Ram } & \mathbf{E 8 5 0 . 0 0}\end{array}$ MSC4804 Obus (Equiv MSV 11 . 256 kb
pOP11 £489.00

 M18E PDP 8 Bootstrap option
VT50 VDU
E75.00 VT50 VDU and Keyboard current loop
vi52 VOU with E 175.00
$\mathrm{E250.00}$
1000 's of EX STOCK spares for DEC PDPB, PDPBA, PDP1 1 systems \& peripherals. Call for details. All types of Computer equipment and spares wanted
for PROMPT CASH PAYMENT.

DEFLA'
 ELETE! K! !

THE REAL COMPONENTS

 In this short(ish) series, John Linsley Hood will be looking at a

 In this short(ish) series, John Linsley Hood will be looking at a range of components and their unwelcome characteristics.

 range of components and their unwelcome characteristics.}

It is becoming popular, among the lugubrious'things aren't what they used to be' fraternity, to complain that Electronics Engineers are degenerating into technicians who merely connect'black boxes' together, without any particular concern about what is in them or how they are made. But hasn't this always been true, to some extent, and isn't it also true of most other technical or engineering occupations?

In practice, everyone who uses bits and pieces provided by other people will be more concerned about how these are used, and how well they will work in that use, than about what they are. One doesn't expect an architect to be an expert in the manufacture of glass in order to be able to design windows, so why expect an electronics engineer to know just what is inside an 'op-ampIC' or a'MSICMOS gate'? Perhaps the mere fact that he can understand the jargon is an adequate qualification.

However, having set up the argument, I now want to nibble away at its foundations by saying that an architect who knows the relative qualities and costs of a borosilicate and a lead glass will be a better architect for this knowledge, and the mechanical engineer who knows the difference between EN20 and EN36 in steels will also be a more effective engineer because of that understanding.

So - how about our own bits and pieces, like the humble resistor and capacitor?

For a long time now, electronics engineers who have worked at the limits of this field, in very low noise systems, or at very high frequencies, or where high discrimination is needed between adjacent signals, have needed to be very fussy about component quality. Thanks to their efforts we now have some superb components at our disposal, whose qualities have come more into popular view because of the activities of the 'Ultra-Hi-Fi' buffs, who are very much sold on the need to use the most exotic things they can lay their hands on. But are these always as good for our purposes as the ' $\mathrm{U}-\mathrm{H}-\mathrm{F}$ ' brigade would have us think. Let us have a look.

Resistors

These are made in a variety of kinds, and their purpose is to cause a voltage drop when current flows through them (remember $V=1 \times R$.). They will get hot if the current or voltage is high enough (heat, in watts $=V \times 1$ or 1^{2} R.). With transistor circuitry, the dissipation will usually be pretty small, so the $1 / 4$ watt resistors are usually quite adequate, and will fit more tidily onto a printed circuit board. However, if one is in doubt, it is easy enough to check, using the formulas above, and a pocket calculator to ease the strain on the brain.

Wire Wound Types

For higher powers, it is most common to use 'wirewound' resistors (which range from a watt or two as far
upwards as one has the strength to carry them). These are, as their name suggests, made by winding wire around a suitable fire-proof former, and joining a connector wire (or terminal, if they are big ones) on to the end, as l've sketched in Fig. 1. Obviously, if they are likely

Fig. 1 A good quality wire-wound resistor (2-25W). toget hot, and we want them to have the same resistance value when they are hot as when they are cold, the wire must have a low temperature coefficient of resistance. This usually means that they are wound from'Eureka' or 'Constantan' wire. This a copper-nickel alloy, whose resistance doesn't change very much as it gets hot.

The snag with wire-wound resistors is that they have inductance, and the higher the value, and the more turns of wire that have to be wound round the former to get that resistance, the bigger the inductance will be. It is possible to make 'non-inductive' resistors by winding the wire in a zig-zag manner, so that there are just as many turns wound anti-clockwise, as there are wound in a clockwise rotation, but these are pretty rare.

A further point which has to be watched is that the former shouldn't expand as it warms up and stretch the wire wound round it, which would cause its resistance to increase - as in a strain gauge. Also, the wire has to be protected, to prevent it tarnishing or corroding, which would make it thinner. A layer of some heat-resistant vitreous enamel is usually fired on for this purpose, in the better WW resistors.

Apart from these snags, this is a pretty good type of resistor, which usually behaves in a nearly ideal manner.

Metal Glaze Types

These are made by firing onto a ceramic former a pottery type glaze, containing metallic salts, which make it

Fig. 2 Plastic encapsulated DIL metal glaze resistor array.
conductive. With proper composition these can have a low temperature coefficient, and can be made as noninductive high-wattage replacements for WW types. However, youare most likely to find them as the single or dual-in-line devices I have sketched in Fig. 2, where they are plastic moulded like ICs, though some of these are carbon-film varieties.

Carbon Rod Types

These are the realgrand-daddies of small power electronics resistors. They were around when I was a kid, and that was a good few years ago!

Their method of manufacture is to extrude a rod of mixed clay and graphite, in a combination which it is hoped will give the right sort of value. This is then chopped up intolengths, dried, fired in a kiln, and an end connection made by spraying it with metal, onto which a wire or other fixing can be soldered. I have shown the general scheme in Fig. 3. After the process is completed, the resistor will be impregnated with wax, and painted to say what value it is (for the time being).

Fig. 3 Carbon rod-type resistor ($1 / 2 \mathrm{~W}-2 W$).
There are a lot of problems with these resistors, the first of which is that no-one really knows what sort of value is likely to happen after the firing process, and no two resistor rods are going to be the same anyway. The manufacturers got around this problem by automatic sorting machines, which measured the resistance value, and dropped the resistor into the appropriate box. A consequence of this was that if one wanted a $10 \mathrm{k} 20 \%$ tolerance resistor, it might be $8 k$ or it might be $12 k$, but the only value it certainly wouldn't be is 10 k , because these would have been sorted out for the 5% tolerance cut!

Another snag, which I recall from my early days in messing around with valves and 'steam' radios, was that if the resistor got a bit hot in use, when it cooled down again, it would have a different value. These are not now thought to be very good resistor types to use, unless one isn't very fussy, since they have a pretty poor noise figure - more about that later.

Carbon Film Types

These were the first of the really high quality low wattage resistors to be made, and for quite a long time commanded a premium price. They are made by depositing a thin layer of graphite on to the surface of a smooth ceramic rod, affixing end caps, which are usually crimped into position, as shown in Fig. 4 , and then feeding them into an automatic machine, which measures their resistance, and then grinds a spiral groove through the film with a diamond cutter wheel, until the value has reached the required level, when the rod is dropped in to a collection chute.

The accuracy of these is as high as the accuracy of setting of the machine which made them, and it is quite common these days to find that a $\pm 5 \%$ carbon film resistor is, on measurement, within 1% of the quoted value. As with other types, the resistor will be given a coat of a hard protective lacquer, usually epoxy based, prior to the paint rings which denote its value being applied.

Fig. 4 Miniature carbon film high stability resistor ($1 / 1 \mathrm{~W}-2 \mathrm{~W}$).

Metal Oxide Types

These are usually made by firing a layer of thin oxide, which allows a low temperature coefficient, on to a 'Pyrex' glass rod former. Grooves are then ground, in spiral form, as in the carbon film types, to give the correct final value. They are then finished as the carbon film ones, though with rather more care. These were the first resistor types, I recall, to get the prestigious BS9000 approval, and, to my mind, are still the 'Rolls-Royce' of these components.

Metal Film Types

These are much like the carbon film ones except that a thin film of vacuum evaporated resistor alloy metal has been deposited on the surface, instead of a thin carbon layer. They are a bit more robust than carbon film types, and are available to very close tolerances.

Cermet Types

This is really just another name for 'metal glaze', though it is mainly used when this kind of resistor layer is going to be used in a potentiometer.

Some General Snags

Apart from the problems of inductance, temperature coefficient and instability of resistor value, mentioned above, there is also the snag about noise. This is partly a characteristic which is inherent in resistors, as the clouds of electrons inside them mill around, like crowds in a tube station at going-home time. Because, statistically, there will at any given moment be more going in one direction than in the other, and vice-versa, the net result is a'noise' voltage which appears across the resistor, and is proportional to the square-root of the resistor value. As the temperature increases, the crowds of electrons become more agitated, and mill about more, so the noise voltage increases. So, in very low noise circuits, it is necessary to keep the resistance values as low as possible.

However, in addition to this, there is alsothe problem of 'excess noise', which is a function of the way the resistor is made, and the composition of the materials, and is due to a variety of causes, from the trapping of electrons by impurity 'holes' to spurious electrochemical potentials, or to piezo-electric or tribo-electric effects. Our old friend the carbon rod resistor is the worst offender here.

An additional problem which would worry an audio amplifier designer, is the voltage dependence of resistance. By this I mean the sort of change in resistance value which can occur as a function of the voltage applied across it - regardless of its change in temperature. This can generate odd harmonics in the signal waveform.

The final problem is that of assymetry in resistance, due to slight rectification effects. Happily this is rare.

FEATURE : Real Components

Looking at these problems, which is the best resistor to use. Well, apart from inductance, the wire-wound ones are very snag free. Next, in descending order of goodness come the metal oxide or metal film, the carbon film the metal glaze, and a long way behind, the carbon rod types.

Capacitors

These are best divided into 'polar' (ie, electrolytic) and 'non-polar' (ie plastic film or ceramic) types. The polar ones are those which will give a lot of capacitance in a small space, but need, generally, to be connected the right way round or they become either medium value resistors, or miniature canons, depending on the voltage and current available. More fun to watch from the other side of a stout window, in someone else's amplifier.

Plastic Film Dielectric Types

The plastic film dielectric types - they used to be made from waxed paper, but happily no longer, except in some exotic polychlorinated biphenyl impregnated systems, for power use - are not fussy about which way round they are connected, but tend to be a bit bulky and dear if one wants much in the way of microfarads. These will normally use polystyrene, polyester, polycarbonate or polypropylene films as the insulating dielectric between the two 'plates' to which one makes the electrical connections.

The best kind of 'plate' in a plastic film capacitor is a thin foil of high conductivity aluminium. Two of these will normally be wound up in a 'swiss roll' fashion, sandwiched between a pair of strips of plastic film, as i have shown in Fig. 5. One or more conducting wires or

Fig. 5 The construction of 'film-foil' capacitors.
strips will then be led out of the body before it is wound, or perhaps while it is being wound, to make contact with the foils, and in the case of a polystyrene film capacitor, for example, the whole lot is then heated in an oven to make the plastic shrink and fuse, to give the shape shown in Fig. 6. Note at this point that one end will be identified, often with red dye, to tell you which is the outside layer of foil. If this is earthed, perhaps, it will screen the inner one.

Fig. 6 Finished 'film-foil' capacitor.
If one applies too high a voltage, the insulating film will puncture, and the capacitor will become 'short circuited'. This snag is avoided by using a vacuum evaporated, thin, layer of aluminium, on both sides of the film dielectric, as the conducting 'plate'. If the dielectric breaks down, in this case, the discharge of the capacitor through the pin-hole will blast away the evaporated metal layer around the puncture, and the
capacitor will'self heal'. The price which is paid for this, is that the metal plate, being much thinner, hasn't got as good a conductivity, so an attempt to keep the internal resistance of the capacitor low is made by sputteringor spraying metal all over the exposed ends of the evaporated layer, as I have sketched in Fig. 7.

Fig. 7 'Metallised film' capacitor.
Because the evaporated metal'plate' is so much thinner than a foil plate, these capacitor types give a bigger capacitance for the same physical size, and with the very thin film polycarbonate types, quite high capacitances, up to, say, 10 uF , can be obtained in relatively small packages. The most common capacitor of this type is the 'polyester' one, usually based on a 'mylar' or 'melinex' polyethylene terephthalate film. This is thin because it is stretched in both directions, like the soap film in a bubble.

Ceramic Capacitors

Ceramic dielectric capacitors take advantage of the fact that some fired materials, like titanium dioxide, barium titanate, or barium titanate-zirconate, can have dielectric constants anywhere between 90 and 45,000 , as compared with 2.2-4 for plastic films. Since the capacitance of a capacitor (its ability to store charge) depends directly ont he dielectric constant of the insulation (the formula is $C(u f)=0.225 A K / D$, where A is the area of each plate, in sq. in., K is the dielectric constant and D is the separation between the plates), the higher the dielectric constant the more uFs in a given size.

Well, what's the snag? It is that the dielectric constant of these ceramic materials is wildly temperature dependent. The capacitor will usually have its characteristics printed on the side; for example, N750 means a temperature coefficient which is negative, and to the tune of 750 parts per million, per degree centigrade. Similarly, P100 is positive (ie., the capacitance increases with temperature) to the tune of $100 \mathrm{ppm}^{\circ} \mathrm{C}$. NPO means that it doesn't change at all, but you'll only find these in values up to about 100 pF . The large capacitance, small size ones, like the pea sized 0.1 uF/60V types, willall be N750 or maybe even N4500. Also, when they say ' 0.1 uF ' they mean somewhere in the range of $0.25 \mathrm{uF}-0,1 \mathrm{uF}$!

Electrolytics

The electrolytic types, nowadays eitheraluminium or tantalum, rely on the formation of a thin continuous film of an insulating oxide layer on the 'anode', the + ve plate of the capacitor, as a result of electrolytic action occuring in the 'electrolyte'. Not only is the layer very thin, but
it has a fairly high dielectric constant, and if the 'plates' are etched to give a high effective surface area too, very high capacitance values can be obtained in small packages. Also, since the oxide film is formed by the passage of current through the unit, it follows that if it punctures, it will soon heal again by growing itself a bit of replacement oxide where the hole was.

The big problems with the electrolytic types, apart from some other more exotic defects which I will leave to later, were that they leaked (all the time!), they had a fairly high internal inductance, because of the way the plates were wound, and in use, theytended to behave as though they had a small resistor always connected in series with them, especially at higher frequencies. The big advantage of tantalum electrolytics is that their internal leakage can be exceedingly small, and they can even survive a small reverse voltage, say up to 1.5 V . Aluminium electrolytics will survive up to about only 0.5 V .

Recent developments have led to some very low leakage aluminium electrolytics too, and a big effort has, been made to produce low' equivalent series resistance' (lowESR) aluminium types. Theseare not yet quite in the league of tantalums for $\mu \mathrm{Fs}$ per ml , but they are catching up.

Snags

Some people (not me this time, I spent many years working on, and designing instruments to test, plastics films for capacitor dielectrics) consider the capacitor to be the weakest link in most electronics - especially $\mathrm{Hi}-\mathrm{Fi}$ - and think that the ideal audio amp. would be one without capacitors. Certainly, they have a lot of problems.

Consider how a capacitor works. A layer of some insulating material has a metal plate on either side, schematically shown in Fig. 8a. When a voltage is applied, the dielectric polarises, and negative and positive charges effectively move towards the two charged plates, giving the 'charging current', as in Fig. 8b. If the applied voltage is reversed the charges will require to

Fig. 8 Physical effects within a capacitor: (a) notional capacitor; (b) effect on charging; (c) effects on polarity reversal.
move towards the other plate, as in Fig.8c. The movement of these charges may, in reality, be occasioned by the physical rotation of a molecule with a lop-sided charge as part of its structure.

There may then be some frictional energy losses in its rotation, and the higher the frequency, the worse these may be. These are known as the 'dielectric losses' of the capacitor, or 'Tan δ^{\prime} ', (an expression of the ratio, as an angle, between the capacitative and resistive parts of the capacitor). But maybe not all of the molecules reorient on the change of charge, this leads to what is known as stored charge, or'hysteresis'. Or, again, what if the extent of polarisation is a bit non-linear with applied voltage. This would lead to the capacitance being voltage dependent, as well as being temperature and frequency dependent, which it will be anyway.

Voltage dependence of capacitance leads to the generation of harmonics in the current flow through the component, and is a well known troubleto power station engineers. Stored charge and hysteresis lead to lots of odd nasties. Internal series and leakage resistances lead to other problems, which the designer has to note. Finally, unlike resistors, capacitors don't usually have a precisely specified value: $\pm 20 \%$ is usually a fair average, apart from polystyrene ones, which are quite precisely specified. Electrolytics may be anywhere between $+100 \%$ and -25% in value. Fortunately, the actual value often doesn't matter all that much.

The stability of the capacitance value depends on a lot of factors. In the case of the plastic film types, it is mainly a question of the stability of the physical structure, though if there is a lot of self-healing, in metallised types, the available plate area will get less.

In electrolytics, the stability depends mainly on loss of electrolyte, and one should expect a steady and continuing decrease in capacitance with time. Advice here is to be generous in chosen values to begin with.

So - how does one choose the best capacitor for the job? The main moral is to use the biggest capacitor, physically, that you have room for. Usually small size implies a price which has to be paid somewhere. For HT supply decoupling, use a 'low ESR' type electrolytic, if one is available, and by-pass it by a suitable, low inductance non-polar type, say 0.22 uF or 0.1 uF . If you are really fussy, you can by-pass this by a smaller value (hencelower internalinductance) capacitoryet again, to make sure your HT lines offer as low an impedance to higher frequencies as they do to $50-60 \mathrm{~Hz}$.

In audio systems, choose the capacitor with the dielectric having the lowest dielectric loss, which will probably also be the one with the lowest hysteresis, since it implies either no charge movement, or little friction in this. Polypropylene is the best here, followed by polystyrene (a close second), polycarbonate, polyester, low k ceramics and high k ceramics. Finally, if it is essential to use an electrolytic at all in the signal path, use an aluminium electrolytic. Tantalums have a rather bad image, nowadays, in respect of sound clarity. Also, between capacitors having the same dielectric, metal foil plates are preferable to evaporated metal film ('metallised') types.

Also, be generous in respect of the voltage and, in power supplies, the ripple current ratings of your capacitors. Electrolytics may survive brief voltage overloads; foil types will not.

Nowadays, capacitors don't usually introduce much circuit noise, apart from the thermal noise associated with their effective impedance, but, remember, in an electrolytic, if there is current flow, that current will be discontinuous, and very noisy.
Next month, bipolar transistors.
ETI

MAGENTA ETI KITS

Full kits include pcbs, hardware, cases (unless stated otherwise), IC sockets, wire, nuts \& bolts. Article reprints extra 70p each.
SPECTRUM CENTHONICS INTEMFACE DOC BA less case and prinier plug SOUEAKER NOV 84 DOATAL CONTHOL PORT (SPECTRUM) VO DIRECT Noy 8100 Caso Nov B4
 TEMPEAATURE CONTROLLER Nov 84 MASNBFALLURE ALABM Nov 84 KNITE LIOHT NOU 84 DIMTAL CONTHOL PORT (EPECTRUM CONTMOL PBUEOARDOCTBA leas casezzs.S. SIREN UNIT SEpD 84 loss key swich DAY CELH CHATOER SEPT BA MFAA RED ALAMM Juy /Aug ${ }^{\text {an }}$ WAFOCKOUROLARALARM JUIY 84 SPECTRUM JOV AUTOMATIC BECURITY LOHT \&WITC
 MID DRUM SYNTH MAy 84 MAINE BORE REMOTE CONTHOL (TRAN\&MITEER) May 84

MAINS BORME REMOTE CONTROL (AECEEIVER) APr 84 TEAEO POWER METER Mar 84 857.44 KH leass case \& panel meters E 32.0 M MINI MYNAH (ZX81 \& Spectrum) Feb 84 less case
MINI DRUM BYNTH Nov 83 24.187
8 FABT LICHT PEN Nov 83 less cases 24.02 AADO CONTROL 8ERVO FAIL-8AFE Leas case BALANCED INPUT PRE-ANP no case May 83 COMPRE 88 OR/LIMITER nocase May 83 ez1. 37 HMCH QUALITY PHONO AMPLIFIERB Feb 82 MOVINO COIL STACE less Case C90.es MOVING MA ONET STACE loss case E20,4B Aug 81 E4.48 HAMDCLAP SYNTHEBIBER Aug 81 cag.en LED JEWELLERY JUne 81. GUTAR NOTE EXPANDER ADF 81 \&18.62 CNFRARED ALARM Feb 81 4 INPUT MIXER Dec 80 MUSICAL DOORBELL DeC 80 ULTRABONIC EURCLANALARMAug 81218 CAPACITANCE METER Aug 80 KH less case

OSSCILLOSCOPES OHS COU 150. Dual Trace 35 MHz Solid State. Portable. $8 \times 10 \mathrm{~cm}$ display. Complete with manual.............. $\mathbf{2 0 0}$ S.E. LABS SMIII. Dual Trace 18MHz Solid State. Portable AC or External DC Operation. $8 \times 10 \mathrm{~cm}$ display. Complete with manual...................... 175 EX-MNISTRY CT436. Dual beam
6 MHz . Size $10 \times 10 \times 16 \mathrm{ins}$. Complete 6 MHz . Size $10 \times 10 \times 16$ ins. Complete
with manual with manual. $\begin{aligned} & \text { NEW PROBESAVÄLABLE.Switched }\end{aligned}$

MAPCONIAMSIGNAL GENERATOR

$$
\text { TF144H/4. } 10 \mathrm{KHz}-72 \mathrm{MHz}
$$ Stability 0.002%. Attenuated Output 2 microVolt - 2 Volts. Complete with

 IGNAL GENERATOR SI21 OR SI21 Attenuated $0-30 \mathrm{~V}$ and 600 ohm Outputs. Complete withmanual .. £40 GENERATOR J1

$$
\begin{aligned}
& \text { GENERATOR J1 } \\
& 15 \mathrm{~Hz}-50 \mathrm{KHz}
\end{aligned}
$$

20dB Atter tor. 600 ohm \& 5 ohm Outputs.Co lete withmanual... £30 WAYNE KERR COMPONEN
BRIDGE B521 (CT 373) Resistance 1 milli-ohm-1 Mohm Capacitance 1 pf - 5 pf
Complete with manual

MARCONI VALVE VOLTMETER
TF2600
Twelve ranges $1 \mathrm{mV}-300$ Volts FSD up to 10 MHz
Complete with manual $\mathbf{E 7 5}$ ML-DC NANO-AMMETER $100 \mathrm{nA}-30 \mathrm{~mA} ; 100 \mathrm{mic}$
Centre zero meter.

KINGSHILL STABILISED P.S.V. Model 500 $0-60$ Volts; $0-0.5$ Amps. Current Limiting

Size $81 / 2 \times 6 \times 51 / 2$ ins. VARIAC 5AM̈P
Input 240V; Output 0-265V.
Cased - suitable for Bench use. £20 p\&p $£ 7$

AVO TRANSISTOR TESTER
Handheld. GO/NOGO for in-situ Testing. Complete with Leads \& Instructions. CROYDONRESISTANCE BOX-MANGANIN
$0.1 \cdot 1111$ Ohms (4 switches). Un-used. METROH: -....ititeny pap 1 MEGGER 500 VOLTS
Complete with Batteries and leads. In
 (Very similar to AVO 8X) Complete with Batteries, Leads and Carrying Case............ \&80 p\&p £7 AVO MULTIMETER MODEL 7 Complete with Batteries, Leads\& Carrying Case. . Compiete with Batteries, Leads \& Carrying Case.

TANDON 51/4" FLOPPY

 DISC DRIVES $1 / 2$ HEIGHT Single Sided Double Density..... $£ 75$ Double Sided Double Density... £100 Brand New. Complete with Information p\&p £5.| STEPPER MOTORS
 Type 1. 200 Steps 4 Phase (5 wire) $12 /$ 24 V 25 az inch. $21 / 4$ " dia. 815 Type 2. 6/12 Steps 3 Phase 12/24V. $13 / 4^{\prime \prime}$ dia. £2 ea 5 for 55.70 Type 3. 24 Steps 4 wire 5V 3.3A 0$250 \mathrm{rpm} 0-200 \mathrm{PPs} 23 / 4^{\prime \prime}$ dia £10 ea Type 4. 200 Steps 120 V (3 wire) 25 oz inch. 2\%" dia p\&p and VAT extra |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

Also in stock NEW OSCILLOSCOPES, MULTIMETERS etc.

Thi IS A VERY SMALL SAMPLE OF Please check availability before ordering. Carriage all units $£ 10$ VAT to be added to Total of Goods \& Carriage

24 hr answerphone for credit card orders OVEREAS: Payment must be sterling.
RFISH REPULLIC + EFFO -UK PRICES EUROPE: UK PRACES $+10 \%$.
ELSEMHERE. WRITE FORQUOTE

VAT No 313026022 Transcash No 2789159 Reg No 328762
Please send me (initial letters used):

e a cheque/PO payable to Cambridge Learning Ltd torf

No
Expiry date
Telephone orders from credit card holders accepted on $048067446(24 \mathrm{hrs})$

Name

Address

Signature

CAMBRIDGE

LEARNING
Unit 18, Rivermill Site, FREEPOS
St Ives, Cambs PE17 48R, England.

ROBOTS

For Education, Training and Industry

NEPTUNE 16 axes $; 8$ bit control system: 2.5 Kg capacity: 1120 mm reach.
NEPTUNE II 7 axes; 12 bit control system: 2.5 Kg capacity: 1120 mm reach.

MENTOR DC servo desktop robot; 8 dit control system: 300 gm capacity; 420 mm reach.
Robots programmed from keyboard or handneld simulator (model robot)

Robots may also be taught by lead by the nose' method.
Extensive sofware is supplied free with each robot.
Leacs available for comection to BBC, $\mathbf{Z X}$ spectrum, Appie lie, Commodore 64 and VIC 20.
Most other micros are also easily usable with these robots.

Interak

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $\mathbf{£ 1 0 . 9 5}$ to $£ 17.75$ + VAT; manuals £1-£5.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name and address with a 21 p stamp andwe'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T3E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

SINGLE BOARD CONTROLLER

Mike Bedford considers the new Single Board Controller from Microtan Computer Systems Ltd and describes some simple modifications which will allow it to be used as a low-cost control computer.

Despite the increasingly large number of home computers on the market there are still surprisingly few which are aimed at the electronics enthusiast. Most machines are entirely suitable for game playing and BASIC programming, having such facilities as medium resolution colour graphics and sound effects, but they do not lend themsleves to learning about the hardware or machine code programming. One product which has become known as a "hardware man's machine" is the Microtan 65, a number of add-ons for which have been featured in ETI. One drawback of the Microtan 65 is that the design is now somewhat dated, the single board having very little memory and being based upon the 6502 processor.

Out of the same stable has now come the Single Board Controller, which is being marketed by Microtanic Computer Systems Ltd. This board uses the same bus specification as the Microtan 65 and can therefore be interfaced with previous Tangerine peripheral boards, but it can also be configured to use the 6809, regarded by many as the most powerful 8 bit processor. Other suitable processors are the 6802 and the 6808 which are versions of the 6800 with on-chip clock and RAM, but in this article the discussion will be restricted to the 6502 and 6809 . The controller can also take up to 56 K of memory on the one board.

The controller is available either as a complete board, as a kit of parts or as a bare PCB, monitor EPROMs being available separately if this latter option is chosen. As such, the controller forms the basis of an attractive
system for the more serious home computing enthusiast and especially those with a hardware bias.

The System

The single board controller has been artworked in such a way that it may take either a 6502 or 6809 processor, so the types of system which may be built around it fall into two categories. A 6502 -based system will be similar in many ways to a system built around the original Microtan 65, although clock frequencies up to 1.5 MHz may be used which is twice the speed of the Microtan. The CBUG monitor will be used and will give

$$
\begin{array}{ll}
* & \text { BOOT } 5 \text { INCH DISC } \\
& \text { OPERATING SYSTEM } \\
/ & \text { BOOT } 8 \text { INCH DISC } \\
& \text { OPERATING SYSTEM } \\
\sim & \text { USER FUNCTION } \\
& \text { OPEN LAST ACCESSED } \\
\text { B } & \text { MEMORY ADDRESS } \\
\text { CISPLAY/MODIFY BREAKPOINTS } \\
\text { D } & \text { COPY MEMORY BLOCK } \\
\text { F } & \text { DISPLAY MEMORY BLOCK } \\
\text { G } & \text { GO (EXECUTE PROGRAM) } \\
\text { J } & \text { JUMP TO SUBROUTINE } \\
\text { M } & \text { MODIFYMEMORY } \\
\text { N } & \text { SETNULL PAD COUNT } \\
\text { P } & \text { TOGGLE PRINTER OUTPUT } \\
R & \text { DISPLAY/MODIFY REGISTER } \\
\text { S } & \text { DISPLAY STACK CONTENTS } \\
V & \text { COMPARE MEMORY BLOCK } \\
\text { W } & \text { WARM START FLEX } \\
& \text { OPERATING SYSTEM } \\
X & \text { REMOVE BREAKPOINTS } \\
b & \text { BUILD S1-S9 TAPE BLOCK } \\
\text { I } & \text { LOAD TAPE } \\
\text { S } & \text { SAVE MEMORY AS TAPE FILE } \\
V & \text { VERIFY TAPE }
\end{array}
$$

Table 1. Commands available with CBUG (6502).
all the usual facilities of display/ modify memory, setting breakpoints, etc, plus a line assembler and disassembler. This system will also allow BASIC resident in EPROM to be added.

A 6809 based system may be run at 1 MHz or 2 MHz and will use a system monitor called TVBUG. Monitor facilities are similar to those in CBUG except that the line assembler/disassembler is not included but routines for booting from disc and writing MIKBUG compatible records via the serial port are. It should be noted that the single board does not include any video circuitry, so a minimum system must either include the VDU card marketed by MCS Ltd or alternatively some sort of computer terminal interfaced via the RS232 port.

```
M MEMORY MODIFY/EXAMINE
LIST MEMORY
GO (EXECUTE PROGRAM)
REGISTER MODIFY/EXAMINE
    SINGLE STEP MODE
    NORMAL (NON SINGLE STEP)
    MODE
    PROCEED (IN SINGLE STEP
    MODE)
    OFFSETT CALCULATION
    COPY MEMORY BLOCK
    BASIC COLD START
    BASIC WARM START
    DUMP TO CASSETTE TAPE
    EXAMINE CASSETTE TAPE
    FETCH FROM CASSETTE TAPE
    TRANSLATE (SINGLE LINE
    ASSEMBLER)
I DIS-ASSEMBLER
```

Table 2. Commands available with TVBUG (6809).

PARTS LIST

RESISTORS		
R1	220R	only for $20 \mathrm{~mA} \mathrm{C/L}$
R2	220R	only for RS232
R3	4k7	only for RS232
R4	1 k 0	only for RS232
R5,11,12,14	4k7	
R6	120k	only for cassette interface
R7,8	10k	only for cassette interface
R9,13	470R	only for cassette interface
R10	10k	only for $20 \mathrm{~mA} \mathrm{C/L}$
RP1	4 k 7 SIL pack	(7 commoned)
RP2	1 kO SIL pack	(7 commoned)
RP3	10k SIL pack	(4 separate resistors)
RP4	1 kO SIL pack	(4 separate resistors)
CAPACITORS		
C1,7-14	100n	
C2,15	10n	
C3	100p	
C4,6	47 n	only for cassette interface
C5	100u	
DISCRETE SEMICONDUCTORS		
Tr1,3	BC184*	only for RS232
Tr2	BC184*	only for cassette interface
* NOTE BC184 HAS DIFFERENT PIN OUT TO BC184L		
D1	1N4001	only for serial 1/O
D2	1N4001	
D3	1N4001	
XTAL 1	8.0MHz or 6.0	8.0 MHz for 1 or 2 MHz operation 6.0 MHz for 0.75 or 1.5 MHz
XTAL 2	1.8432 MHz	only for serial I/O

INTEGRATED CIRCUITS

B1	6522
B2	6522
C1	74 LS393
C2	874 LS04
C3	LM358N
D1	6551
D2	6809
D3	6502
D4	75150
E2	74 LS244
E3	74 LS244
F3	74 LS139
C3	74 LS00
H3	74 LS266
J3	74 LS12
K3	74 LS10
L3	74 LS08
M3	74 LS138
N2	74 LS245
N3	$74 S 288$

E1,F1,F2,H1,H2
K1,K2,L1,L2

Always fitted for use in computer.
For control applications one or two 6522 s may be fitted depending on application. May be replaced by 6821 s as described in text. For frequencies above 1 MHz use 6522A/68B21.

Only for cassette interface
Only for serial I/O. For frequencies above 1 MHz use 6551A.
Either D2 or D3 should be selected.
For frequencies above 1 MHz use $68 \mathrm{B09/6502A}$. only required for RS232
May be replaced by wire links for single
board control application (see text).

74LS139
74LS00
74 LS12
74LS10

74LS1 38
74S288
Not required for single board applications. Memory mapping PROM. Must be programmed as described in text or obtained from MCS. An alternative for simple control application is described in the text.
Memory fitted as required
For 6502 computer system the minimum configuration is $\operatorname{CBUG}(2732)$ in $E 1,6116$ in F 2. For 6809 computer system the minimum configuration is TVBUG(2732) in E1, 6116 in L.1.

MISCELLANEOUS
PCB; edge connector 2×32 way A+B DIN Euro-connector; IC sockets as required.

From these minimal systems, which will allow 6502 or 6809 machine code programming and may well be adequate for those whose main interest is computer hardware, many upgrade paths are available. Hundreds of K of RAM or EPROM may be added in paged memory configuration. The addition of a disc controller and disc drives allows the FLEX or OS/9 operating system to be run on the 6809 board or TANDOS on the 6502 controller. Alternatively a Z80 card is available and allows the industry standard CP/M disc operating system to be run on systems with either processor. Other options include high resolution colour graphics, sound effects, serial and parallel I/O, EPROM programmers, real time clocks etc. Table 1 and Table 2 list the commands available under CBUG and TVBUG respectively.

The Board as a Controller

Some months ago, the author started to design a minimum configuration 6809 card to control the ETI Universal EPROM programmer in a stand-alone situation. It soon became clear that this was unnecessary because a board which would do this task at a reasonable cost was already available. Admittedly the 6502/6809 single board controller was not designed for this type of application, and it could be argued that it is a waste to use a board of this complexity for a pure control function.

This would be true if the board was only available fully built, but the fact that a bare board can be obtained and populated only as required for the particular application makes it quite suitable. The cost for control applications can be further reduced by some slight circuit modifications which remove the need for some of the more expensive components. For logic designs of reasonable complexity, the cost of a minimum configuration single board controller will be less than the component cost of a design using discrete TTL devices without even considering the time and expense of PCB artwork and manufacture.

The Circuit

The object of this section, How It Works and the constructional details is to open the board up to the electronics enthusiast. The
documentation currently provided by MCS Ltd does not really do justice to the product, a circuit diagram having only just been released, and the one presented here is more comprehensive being the result of many hours tracing the circuit from a bare PCB.

The circuit consists of: a) The processor, which may be either a 6502 or a 6809 running at a variety of clock frequencies. b) 9 sockets which will take standard JEDEC packages, allowing 2 K , 4 K or 8 K RAMs or EPROMs to be used depending on link selection. c) One 6551 configured to provide TTL serial, 20 mA current loop or RS232 I/O at various baud rates.
d) Two 6522 VIAs giving 40 bits of parallel I/O, 2 counter/timers and 2 shift registers, one of which controls a cassette interface. When used in a computer system these VIAs provide interfacing for a parallel keyboard and a Centronics printer. When used as a controller, a slight circuit modification allows the 6522 s to be replaced by the less expensive 6821 PIAs.
e) A bipolar PROM controlling the memory mapping of the board.
f) Signal buffering and implementation of various TANBUS signals to allow the board to be used as part of a large system by means of a system motherboard.

Construction

It is not the intention of this article to duplicate the information supplied by MCS Ltd, and this will mainly cover those points not covered by the instructions which accompany the PCB or kit. The only point to make is that the task should cause no problems to anyone familiar with the fundamentals of electronic construction. This section will cover the programming of the address decoding PROM and the ways in which the board may be modified slightly to reduce the cost of a minimum configuration system for control applications.

MCS Ltd supply a number of memory mapping PROMs for various applications but do not give instructions on how to work out the programming required to achieve a specific mapping configuration. The 74S288 PROM has a capacity of 32 bytes and, in this application, each of these bytes controls the memory configuration of a 2 K block of addressing space within the 64 K map. In other words, the first byte affects $0-2 \mathrm{~K}$

	745888 8.7 No.	function
9	7	ag in this eit enables memory SOCKETS T\& THIS IS FURTHER DECODED BY Bits 4,5 a 6
7	6	WHEREVER A 9 OCCURS IN BIT 7 A THRE BIT BINARY NUMBER SHOULD BE WHICH OF THE EIGHT SOCKETS IS TO BE ADDRESSED BIT NUMBER NUMBER $=1+$ THE THREE DOQ ADDRESSES SOCKET No. 1
6	5	
5	4	
4	3	tin this bit enables memory SOCKET No. 0 . THIS IS A SPEECLAL SOCKET
3	2	WHEREVER A B OCCURS IN BIT 7 ONE OF INDICATE WHETHER THE MEMORY SOCKET SPECIFJED BY BITS $4,5 \& 6$ IS TOBE CONSIDERED AS RAM OR EPROM FOR BLOCK ENABLING AND MEMORY BIT $2=1$ FOR RAMBIT $1=1$ FOR EPROM
2	1	
1	0	AT IN THIS BIT ENABLES THE TOP HALF OF THE 2K BLOCK TO BE THE Y/O AREA

Table 3. Memory mapping PROM bit designations.
($0000-07 \mathrm{FF}$), the second byte 2 K $4 \mathrm{~K} 0800-0 \mathrm{FF}$) etc.

Table 3 shows the significance of each bit within these bytes, bit 0 in this illustration being the least significant and bit 7 the most significant. As an example, Table 4
shows the programming of the standard memory map PROM for a 6502 CBUG system. Looking at the bit 7 column it is clear that the sockets 1-8 are enabled for addresses 0000-2000 and C000EFFF, these blocks being the only ones where a 0 is programmed. The columns for bits 4,5 and 6 indicate that sockets 1, 2, 3, 4, 7 and 8 are configured for 2 K devices as each of these sockets is addressed for only a single 2 K block and sockets 5 and 6 are addressed for 2 blocks each and are therefore 4 K devices. It can be seen that 0000-07 FF addresses socket 1, 0800-0FFF - socket 2 , 1000-17FF - socket 3 up to E800EFFF - socket 8.

By looking at the bit 1 and 2 columns we can see that, of these 8 sockets, the first four have a 1 for bit 2 and are therefore RAMs and the second four have a 1 for bit 1 and are therefore EPROMs. The last. two 2 K blocks have a 0 in bit 3 which selects socket 0 , the monitor EPROM which is obviously a 4 K device, and to complete the map, a 1 in bit 0 for the block B800-BFFF indicates that the I/O area is in the top half of this block ie BCOO-BFFF.

Table 4. Memory mapping PROM for 6502 CBUG configuration.

Fig. 1 Circuit diagram of the Single Board Controller. The numbers in brackets are the pin numbers of alternative devices, the 6502 which can be used instead of the 6809 and the 6526 instead of the 6522.

The heart of the circuit is either D2, the 6809 processor or D3, a 6502 (6802 or 6808) processor, these two using slightly offset sockets. On the circuit diagram (Fig. 1) the two possible pro-
cessors are shown as one block, the pin numbers and functions for the 6502 option being shown in brackets (where different from the corresponding 6809 functions) next to the 6809

pin numbers and functions. LK1 is used for enabling or disabling on chip RAM if the 6802/6808 is in use and LK9 allows a battery supply to be used with this same processor for power down data retention. The processor clock is provided by the circuitry around C1, a binary counter and its associated crystal oscillator. LK7 selects either the onboard crystal oscillator or an off-board master clock. LK3, LK4, LK5 and LK6 select the processor frequency and LK2 alters the clock configuration depending on the type of processor in use. The power-on reset circuit is the portion including onesixth of C2, D2 and capacitors C5 and C15. Buffering of the address bus is provided for on-board and external use by E2 and E3 whereas N2 buffers the data bus for off board peripherals only. E1, F1, F2, H1, H2, K1, K2, $L 1$ and L2 are sockets for JEDEC memory devices, the specific type of device in use being specified by links LK14-19, some of which control a single socket and some of which affect a pair of memory sockets. The chip select decoding of these memories comes from M3, a 3 to 8 line decoder which is used in conjunction with N3, a bipolar PROM which controls the memory mapping of the complete board. LK24 allows a 2 page memory configuration to be implemented on board, the page selection being controlled from B1, a 6522 VIA. The circuitry around 13 allows on board memory to be enabled or disabled via the external BE (block enable) signal which is generated on the system mother board and allows a paged memory configuration greater than 64 K to be achieved. LK21 and LK22 allow this facility to be disabled for on-board EPROM or RAM respectively. The same circuitry is sensitive to the Tanbus Inhibit RAM and Inhibit ROM signals which other boards may generate under various circumstances to disable portions of on-board memory. B1 and B2 are the 6522 VIAs, connection to the outside world being made via the DIL sockets A1, A2, A4 and A5. Socket B2 can take a 6526 in place of the 6522; this device has time of day registers and requires a 50 Hz clock which may be connected via LK25. The cassette interface is driven from B1 and the circuitry round C3, an LM358N op-amp. D1 is the 6551 UART, access to which is provided via DIL socket A3 and the circuitry around D4, T33 and Tr1 provides RS232 (transmitted and received data only not modem control lines) and 20 mA current loop signal levels. The address decoding for the $1 / O$ devices is provided by F3 while links $\mathrm{LK10-13}$ allow four optionai addresses for the onboard portion of the I/O area. The 1/O area select signal is also made available to off-board devices via the edge connector. Provision is made for DMA, the circuitry comprising G3 and H3 taking DMA request and generating DMA granted.

Fig. 2 The circuit which may be used for memory mapping instead of a PROM in control applications.

From the foregoing information it should be clear that virtually any memory map in 2 K steps can be specified by the programming of the PROM. However, for a minimal configuration as used for control applications, a cost reduction can be made by replacing this component with a number of wire links and a simple TTL device which could be soldered onto a DIL header and inserted into the PROM socket. Figure 2 shows the circuit diagram of such an arrangement which gives a crude but effective memory map for many control applications. In this map the I/O area repeats sixteen times in 2 K steps starting at 0400-07FF: socket 5 is addressed at 8000$9 F F F$, socket 6 at A000-BFFF, socket 7 at C000-DFFF and socket 8 at E000-FFFF. Obvously if 4 K devices are used they will repeat twice within the 8 K block and 2 K devices will repeat four times. It should be noted that this configuration does not give RAM at address 0 and accordingly will be more practical for a 6809 application than for the 6503 which generally requires zero page memory at this address.

The memory mapping PROM does not dictate the mapping of the various $/ / O$ devices within the 1/O area. This is partially fixed by the hardware and partially a function of LK10, LK11, LK12 and LK13, only one of which will be fit-
ted. Table 5 shows the I/O memory map.

When used as the basis of a computer system the 6522 VIAs will be required as their facilities are made use of by the system software, but in many control applications all that is required is the parallel I/O capability so the less expensive 6821 PIAs could be used. Unfortunately the pin-outs of the two devices are not identical, which means that a few tracks need cutting and few wire links require adding to the back of the board. Figure 3 shows the details of this modification. The 6821 only occupies an addressing space of 4 compared to the 16 bytes of the 6522 which means that, once the modification has been carried out, the 6821 registers will be spaced at intervals of 4 bytes. This need present no problem so long as it is not overlooked when writing the firmware.

To achieve further cost reductions for control applications it is merely necessary to omit those components which are not required for the particular application. One RAM and one EPROM will obviously be required as will at least one of the 6522 VIAs (or 681 PIAs). If no RS232 facility is required then D1, D4, Tr1, Tr3, X2 and their associated passive components may be left out. If the cassette interface is not to be used C3 and Tr2 together with their passive components can be omitted. As a final cost reducing exercise, assuming that no other boards are to be connected to the bus, the address and data bus buffers may be omitted. The data bus buffer N2 may be simply left out, but the address bus buffers E2 and E3 will require linking across as they supply on-board as well as off-board devices. This linking is done by omitting the chips in question and linking each input to its corresponding output, as may be seen from the circuit diagram (ie pins 13 to 7,17 to $3, \mathrm{etc}$).

LINK			
FITTED	$6522 \mathrm{B1}$	STARTADDRESS	
LK10	$1 / \mathrm{O}+00 \mathrm{H}+00 \mathrm{H}$	$1 / \mathrm{O}+00 \mathrm{H}+10 \mathrm{H}$	$1 / \mathrm{O}+00 \mathrm{H}+20 \mathrm{H}$
LK11	$1 / \mathrm{O}+40 \mathrm{H}+00 \mathrm{H}$	$1 / \mathrm{O}+40 \mathrm{H}+10 \mathrm{H}$	$1 / \mathrm{O}+40 \mathrm{H}+20 \mathrm{H}$
LK12	$1 / \mathrm{O}+80 \mathrm{H}+00 \mathrm{H}$	$1 / \mathrm{O}+80 \mathrm{H}+10 \mathrm{H}$	$1 / \mathrm{O}+80 \mathrm{H}+20 \mathrm{H}$
LK13	$1 / \mathrm{O}+\mathrm{COH}+00 \mathrm{H}$	$1 / \mathrm{O}+\mathrm{COH}+10 \mathrm{H}$	$1 / \mathrm{O}+\mathrm{COH}+20 \mathrm{H}$

Table 5. Memory map of I/O area.

Fig. 3 PCB modification to enable 6821 s to be used in place of 6522 s .

BUYLINES

The PCB is not available from the ETI PCB service but may be obtained from Microtanic Computer Systems Ltd, 102, Lordship Lane, Dulwich, London SE22, tel 01-299 1419. MCS Ltd also supply complete kits of parts for various 6502 and 6809 configurations, ready built boards and preprogrammed memory mapping PROMs and monitor EPROMs. For those obtaining just the PCB from them there should be few problems finding the necessary components from standard sources.

WE MANUFACTURER BEAUTIFUL ENCLOSURES At prices you will find difficult to beat.
Alloy boxes from 80 p to rack mounted units from $£ 15$ and a host of ranges and sizes in between. Well made - well finished - and all British.

Send large SAE for catalogue which includes £5 in vouchers.

We stock a full range of $74 L S$ series, and memory and microprocessors. Ring for our FREE catalogue and special quotation.

Cambridge Microcomputer Centre

153-4 East Road, Cambridge CBI IDD Telephone (0223) 355404 Telex 817445

Skybilice

ELECTRONIC COMPONENTS
441 Princes Road, Dartford, Kent DA1 1RB

VISA

avalican
EVTREES

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio \& C.B. user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist. Sections are headed as follows:

Aerials, Amplifiers, Audio Accessories, Batteries, Boxes, Bulbs, Capacitors, Crystals, Car Components, Car Audio, CB \& Ham Equipment, Computer Connectors, Fuseware, Hardware, Headphones, Knobs, Lamps, Leads, Loudspeakers, Microphones, Meters, Opto, PCB, Resistors, Semiconductors, Special Effect Equipment, Switches, Power Supplies, Test Equipment, Tools, Transformers, Wound Components.

In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.

How many suppliers do you have at the moment that offer a service like this?

Please Fill in coupon below and send with $£ 1.25$ print clearly as coupon is used as address label.

Catalogue contains $£ 2.50$ Discount order form you make a profit straight away.

NAME \qquad
ADDRESS \qquad
\qquad
\qquad
\qquad
\qquad

Component

For

Electronic and other small parts. A large variety of components can easily be kept well organized. 60 storage pockets per unit.
Unit size
L400 W125 H77mm.
Material: Injection-moulded in
impact resistant polystyrene.
4 and 6 Drawer Steel cabinets
available.
The 6 Drawer cabinet practical for field service, has lock and carrying handle. Recommended prices (excluding V.A.T.): 6 drawer cabinet with lock and handle 4 drawer cabinet with lock and handle Single drawer
$£ 92.00$
£59.00
£11.00

Typical Minifile applications:

R \& D Departments Prototype Kits
Production Test \& Rework Service Departments
Field Service Engineers The Electronic Hobbyist
Repair kits for computers CNC-machines.

Stocked by:

Bradley Marshall, 325 Edgware Road. London W2 1BN. Tel: 01-723 4242
Enfield Electronics. 208 Baker Street, Enfield, Middlesex EN1 3JY. Tel: 01-366 1873
Henry's, 404-406 Edgware Road, London W2. Tel: 01-7240323
TK Electronics, 11-13 Boston Road, London W7 3SJ. Tel: 01-5799794
Watford Electronics, 33/34 Cardiff Road. Watford, Herts. Tel: (0923) 40588

Auto-Electronics of the future.

 5×2000 KITS FOR SELF-ASSEMBLY CONTACT TRIGGERED ELECTRONIC IGNITION * SX 1000 - Inductive Discharge.* SX 2000 - Reactive Discharge.
* Step-by-step assembly instructions.
* Highest Quality components. * Patented clip-to-coil fitting.

Other kits in the SPARKRITE range include
Electronic Ignitions TX1002 ($£ 24.95$). TX2002 ($£ 37.95$), AT-40 Electronic Car Alarm (£11.95). AT-80 Car Security ($£ 33.45$) and AT-UL Ultrasonic Detector ($£ 17.95$).

Name

Address

[^1]

DISTORTION METER

In the third and final part of this series, John Linsley Hood describes the construction and use of the instrument.

The THD meter is built on two main PCBs, one carrying the circuitry for the distortion meter itself and the millivoltmeter while the other carries the oscillator circuitry. A further PCB is required for the stabilised mains power supply or the dual-rail circuit if a single battery is to be used. No power supply circuitry is required if the distortion meter is to be operated directly from twin batteries. The mains power supply circuit is so standard that we have re-used an existing PCB rather than lay out a new one.

Assembly of the PCBs should present no problems if the overlay diagrams are followed carefully, and the only points to watch are the usual ones concerned with the orientation of ICs, electrolytic capacitors, diodes and any other polarity-conscious components. If you are planning to use IC sockets these should be soldered onto the boards first of all, followed by the resistors and capacitors and then the diodes. The ICs can then be inserted in their sockets when the soldering is complete. If you are not using sockets, solder the passive components into place first, then the diodes, etc, and last of all the ICs.

The choice of case will be largely determined by the method of powering you intend to employ. The single battery option will fit into a fairly small case,

OOPS!

The formula for calculating the null frequency of a Wien network, given in the first part of this series on page 58 of the January issue, was incorrect. It should be

$$
F_{o}=\frac{1}{2 \pi \sqrt{C_{1} C_{2} R_{3} R_{4}}}
$$

especially since there will be no problems of mains pick-up. The twin-battery option will require a slightly larger case but is otherwise as compact as the first type, while the mains-powered version will require extra space for the transformer plus enough clearance between this and the main circuitry to prevent the risk of hum pick-up. Whichever system you are using, it is advisable to choose a die-cast box rather than a pressed-steel or other metal one, and you should certainly not use a plastic box.

The PCBs are mounted below the front panel using stand-off pillars, and the total depth of the finished unit should be about two inches. This allows plenty of room for a metal screen and a mains power supply to be mounted in
the base of a suitable box without making the completed instrument unduly deep. It is a good idea, however, to give yourself plenty of room even if you are not building the mains version. Too tight a construction may lead to capacitive coupling between various parts of the circuit and this will introduce a number of problems. One particular example is the effect of coupling the feedback signal from the millivoltmeter into the early stages of the THD meter circuit. This gives rise to a spurious crossover distortion effect which mysteriously vanishes when the instrument is nulled.

The input attenuator resistors can be mounted between the tags of the rotary switch. If you are using the specified values this

Internal view of the prototype. A number of modifications have been incorporated in the final version, so don't try and follow this wiring too closely!

Fig. 13 Component overlay of the THD and millivoltmeter PCB.

SW2b 0.3\% POSITION \&

SCOPE OUTPUT

Fig. 14 Component overlay of the spot frequency oscillator PCB.

PARTS LIST - OSCILLATOR

PARTS LIST - MAINS PSU

Using The Distortion Meter

While the major application which will occur to the reader will undoubtedly be that of testing audio amplifiers, for example, to see whether the quiescent current setting of a transistor amplifier output stage is correct or to check that one is getting the results one should from a DIY unit, there are other uses.

There are three particular applications which are especially valuable. One is to check that the alignment of a pick-up cartridge on its arm is correct. For this one needs a test record with a track of 1 kHz or 3 kHz (the higher, the more difficult for the cartridge) recorded at, say, $5 \mathrm{cms} / \mathrm{sec}$. If the cartridge is properly aligned, the THD should be in the range 0.4 to 1.2%, depending on cartridge quality. A worn stylus will worsen these figures rapidly, especially at higher frequencies, so if one checks the 'off-record' THD from time to time, one can monitor the health of the stylus.

A second useful application is to check the correct recording and bias levels on a tape or cassette recorder. With the latter, on a reasonable machine, the THD should be of the order of 0.3% at -5 VU . This will worsen with increasing signal level, becoming perhaps 3% just below the recording overload level, which will allow the overload level to be determined for a particular machine/tape combination. A reel-to-reel machine, at 7.5 ins/ sec, should have THD levels of about half these values.

Since the bias level settings on a tape recorder are a compromise between flatness of frequency response and THD, the combination of oscillator, millivoltmeter and THD meter should allow one to check or reset

Fig. 15 Component overlay of the mains power supply PCB.
this level if it is not ideally chosen.
The final additional use for a THD meter is in setting up FM tuners. The THD of these depends on the alignment of the IF tuning coils and also upon the setting of the quadrature coil on the demodulator IC. By using the BBC test tones which are sometimes broadcast after the finish of programmes, the THD of the signal can be measured and optimised by adjustments to the controls.
lought at this stage to sound a small note of warning in that one should be reasonably sure what one is doing before coil-twiddling inside an expensive and complicated commercial FM tuner. If it is a DIY job, one should be able to get back to square one if things go wrong.

In all of these applications, the method of operation is the same:1. Set the THD meter input sensitivity to zero, and switch out both of the filter stages.
2. Set the $m V / T H D$ switch to THD, and set the Mode switch to Set FSD.
3. Connect the input of the meter to the output of the system under test, and gradually increase the input sensitivity control until the output meter reads full scale.
4. Switch the mode switch to 100% and alter the setting of the Coarse tune (RV 2 a and 2b) and Trim (RV4) controls, at an appropriate choice of frequency range (set by SW1). Adjust until the best practicable notch is obtained with the mode settings adjusted to the 10% and 3% positions.
5. Progressively increase the sensitivity given by the mode

Fig. 16 Component overlay of the single battery supply PCB.

PARTS LIST SINGLE BATTERY PSU

RESISTORS	
R56	$100 R$
R57, 58	$1 \mathrm{M0}$
CAPACITOR	
C33	$1 \mathrm{u0}$
SEMICONDUCTOR IC8 TL071 MISCELLANEOUS SW9 SPST toggle switch	

switch setting until the highest practical value is obtained, with the fine tune (RV3) and trim pots adjusted alternately until no lower value of residual reading can be obtained. Although the use of a single gang pot as RV3 is practicable, it does mean that it is necessary to try trim settings on either side of the apparent minimum position before adjusting the fine tune pot.

If the constructor uses the completed instrument to assess

Fig. 17 The front panel layout used in the prototype.
the quality of the built-in oscillator, the THD values obtained should be similar to those shown in Table 1 for the prototype. This is a useful first test, serving both to confirm that all is well with the meter and also giving some practice in using the instrument.

Interpreting The Results

In spite of all the publicity which attends the introduction of new, very high quality audio amplifiers, and in spite of the continuing efforts of designers me included - to produce very low distortion systems, I think a lot of the effort devoted to getting more 0 s after the decimal point is of small value to the user. Even with modern designs, in which most of the residual distortion will be due to crossover type defects which lead mainly to audibly unpleasant high-order harmonics, I do not believe it is possible to hear the difference between nil and 0.05%. For myself, 1 am convinced that if an amplifier doesn't sound well and the THD is less than 0.05%, the problem lies elsewhere, possibly in its transient response or maybe in incipient instability or overload hang-up effects.

I say this to save users from needless anxiety if, in testing a well loved unit, they find it has, say, 0.04% THD - or maybe even more. Most of that could be low order distortion which isn't audible, or even hum and noise. The corollary is also true, that an instrument with a lower THD limit of, say, 0.03% will still be a valuable aid in making sure that the domestic hardware isn't letting the side down!

BUYLINES

Metal film and carbon film resistors are

 available from many of the companies who advertise in ETI, as are all of the semiconductors and capacitors used in this project. Suitable rotary switches are sold by Electrovalue, Cricklewood, Maplin and others and Maplin also supply the RA53 thermistor. Large diecast boxes are not widely available but West Hyde Developments of 9-10 Park Street Industrial Estate, Aylesbury, Buckinghamshire, supply a range of sizes including one which measures $188 \times 120 \times 78 \mathrm{~mm}$ which might be suitable. The PCBs are available from our PCB service.EQUIPMENT•COMMUNICATIONS•COMPUTERS•COMPONENTS

DIGITAL MULTIMETERS
tos．me 91\％cmolsplay
3035 Singla trace 15 MHz 13 cm
$£ 205.85$
［5＂］disolay compenent lester
2227.70

3132 Dual 20 MHZ trig $1040 \mathrm{MHz} .2 \mathrm{mb} / \mathrm{\Delta iv} 130 \mathrm{~mm}(5)$ display，alpebralcal ado／aub Men OC $0 / P \cdot \mathrm{~F}$＋ 5 V and \pm 12 V ．Built－in component comparator 2341.50

SCOPEX

14015 Duai 15 MHZ 5 tube
TV SYNCH Z MOO E373．75
FS As above plus fitiod
0.2 HZ to 200 KHZ Function Generator $£ 488.75$
thandar 来类
2 year warranty
Sortable $32 \times 26 \mathrm{~mm}$ display
por portable $32 \times 26 \mathrm{~mm}$ display with batteries $\& 189.75$

DPTIONS Carrycase E6．84
AC adaptor／charger $£ 7.99$ Nicad pack $£ 12.65$

TRANSISTOR

TESTER

Dincc PMP／MPN and diotes
Hife．Ieakrge，etc．General purpose TC
UUK C／P C © © PD
227.95

STEREO TUNER／AMPLIFIER

1000^{\prime} s sold
4 wave－band ster so tu
by
GEC $M W / L W /$ SW sterso FM radio $10+10$ wath ster so ampilifier．Inpuls lor P lape infout．Suppliod as two
iss imblad units－ iusembled units－ensy to connec as illustrated $£ 21.95$ IUK C／P © 1.50 ）

NICADS

Everataiy b．voll heavy duty NiCAD approx 3% Diam x 3%

－KD25C 12 range 0．2A OC 2 Meg ohmis $\quad \mathbf{Z 7 . 9 5}$ －KD305 14 range 10A DC 2 Meg ohm（S） －KD30C 26 range IA AC／OC 20 meg ohm（A －METEX 350030 range IOA AC／OC 20 Mag onm（R）
－METEX 3510.30 range 10A AC／DC． 20 mea $\mathbf{~} \mathbf{h m}$ plus Hie tester plus cont tester（h） $\mathbf{\$ 4 6 . 5 2}$ CO1O28 range IOA AC／DC 20 Meg ohm（PB！$£ 43.50$ －KD55C 26 range lOA AC／DC 20 Meg ohm （R） KDG15 18 range 10A OC 2 Meg ohm $£ 44.50$ tester［ ［ 1 HC 501031 but 0.1° obasic（PB）\quad E53．95 ohm（A）
OM3350 Autorange plus cont． $\mathbf{2 4 9 . 9 5}$ $A C / 0 C 2$ Meg ohm（ A ）
OM2350 Mini autorange pius cont．tester $£ 49.95$ IOA AC／0C（20A Max）Mens conter 19 range 3100 Pen type auto rangiay $\mathrm{AC} / 0 \mathrm{C} V 20 \mathrm{Meg}$ ． 95 + Buzzer
$\mathbf{~} \mathbf{\$ 4 5 . 7 1}$ SOAR ME540 Manual／Autoranging plus cont buzzer 19 range 10A AC／OC 20 Meg ohm（ A ）$£ 47.77$

ANALOGUE MUETMETERS

（＊mirror scale］JUK C／P G5pl HC1015 15 range pockat lok／Volt 1 Meg ohm Hw ozaz＊ 22 range 20k／Volt 10A aC plus conl．buzzer 10 Mog ohm $£ 14.50$
ETU3000 20 res ETU3000 20 range $30 \mathrm{~K} / \mathrm{V}$ 12A DC．
 AH5GR． 12 meg ohm

E21．00 NH56A－ 22 range l0K／Volt 6 Meg ohm $£ 12.95$ 830A＇ 26 range $30 \mathrm{~K} /$ Volt $10 \mathrm{AC} / 0 \mathrm{C} 10 \mathrm{Meg}$ © hm
$360 \mathrm{TR} \cdot 23$ range bench． $100 \mathrm{~K} /$ Volt large scale $10 \mathrm{~A} \mathrm{AC} / 0 \mathrm{C}$ plus His lester 10 Meg ohm $\mathrm{E45.00}$ AT2100＇ 31 range de luxe loOk／Volt 10 A AC／OC AT2100 31 range de luxe louk 100 Mag ohm m
$\mathbf{~} 34.95$ AT $1020 \cdot 18$ range de luxe $20 \mathrm{~K} /$ Volt plus Hie
tester 5 meg ohm
$\mathbf{£ 2 2 . 5 0}$
 1 Map ohm KRT5001＊Range doubler 35 range total 50x／ Vott 10A OC 20 Meg ohm
$\mathbf{S T 3 0 3 T A} \cdot 22$ range 20 K ／Volt pius Hie testop 121.95 OC． 1 Meg ohm
THERMAL PRINTER COMPLETE WITH FULL HANDBOOK
£49．95 IUK C／P £1．05
SUITABLE FDR TANOY BBC ORIC NASCOM GEMINI ACORN ORAGON ETC．ETC．Interlace unlt wilh leads £ 5 －slate modal）｜your enquiries invited）．

CB／HAM RADIO

Large range in stock
ask for leailets

VARIABLE POWER
SUPPLIES
［UK C／P 1.000
$220 / 240 \mathrm{~V}$ AC innout
PP241 single meter PP24 1 single meter A／V
$0 / 30 \mathrm{~V} 1$ amp E37．95 PP243 3 a mp version $£ 58.95$ Sis
2302 Dual $0 / 30 \mathrm{v}$ ．B／2A Twin matar plus SV IA ant

UUK C／P \＆Ims 65pl ZaN
THANDAR battery porfable 8 digit LCO counters．

Opional：Carry case $\mathrm{E} 6.84 \quad \mathrm{AC}$ adaptor $\mathbf{£ 7 . 9 9}$
TFO4t 10 Hz to 40 MHZ ． 1 HZ Res． 49 mV sensilivity． $\mathbf{E 1 3 8 . 0 0}$
F200 10HZ to 200 MHz ． 10 Dm res． 10 mV sensitivity
many features．hes inputs．etc．
TP600 600M HZ prescaler \｛Powered by compulerl E 5189.75
TP 1000 1000MHZ｜IGHZ｜Prescaler with power supply $£ 74.75$
PFM200a Pockel 20Hz to 200M HZ LEO counter 01 HZ res
10mV．sensitivity
${ }^{8171573}$
NEW TFGOO LED 600 MHZ counter NT

Function and Pulse［UK C／P 650 ，
THANDAR bench mains portable．Size $255 \times 150 \times 50 \mathrm{~mm}$
Options：Carry case
£6．84
TG101 0.02 Hz to 200 KHZ function．sine．square，triangle．

TG102 O．2HZ to 2 MHZ lunction．Sine．square．triangle．
Variable DC oftset．TIL D／P．Exi．sweep mode variable 600
ohm 0／P． 10 V PP
TG 1055 HZ to 5 MHZ pulse．TTL and Sync $0 / \mathrm{P}$ ．Variable
50 ohm $0 / P$ ．Free run．gated or trig．modes．$\quad £ 120.75$

LCD \＆LED MULTIMETERS NAT
 TUK C／P 65pl
 50 mm Option：Caryy case $\mathbf{£ 6 . 8 4}$
 TM355 $31 / 2$ digil LED 29 ranges． 025% basic
 yOOmV res． 10 A AC／OC． 20 Mahm （AC adaptor option C 6.95 ）
 （AC auaptor option $£ 6.95$ ）
 7.7
 TM356 $31 / 2$ digit LCO 29 ranges as TM355． 3000 hour battery
 tife isupplied
 TM351 $31 / 2$ digit LCO 29 ranges． 0.1° o basic．月anges as above．
 2000 hour battery tile．
 £132．25

LED COUNTERS

 NW

METEOR mins or batitery porrable 8 digifi LEE counters
Size $219 \times 240 \times 98 \mathrm{~mm} .5 \mathrm{mv}$ sensitivity 0.1 H r resolution
$100 \mathrm{5HZ}$ to 100 MHz
$£ 113.85$
6005 HZ to $600 \mathrm{MHZ} A 88$ inputs $£ 144.90$
1000 SHZ to $1000 \mathrm{WHZ}||\mathrm{GHZ}| \mathrm{A} 8 \mathrm{~B}$ inguts $\mathrm{E} \mathbf{E 0 1 . 2 5}$
Options：
6 NICAOS e12．19
AF pickup Aarial

FUNCTION GENERATOR

IUK J OITER 500 Function ganerator 0．1 HZ to 500K HZ or belin
Sine． 8 quare．Iriangle $0 / P 10 \pm 30$ volts．TTL $0 / P$ ．OC offeet
ISV variable．Ext AM and sweep facililies $220 / 240 \mathrm{~V}$ AC
 operated．
© 126.50

CASSETTE

 MECHANISMSFitted counter．Mator．Stere racord and erase heads． Autostop．solenoid．

Rran new available 6y OC or 12 V 0 C
（state which $5 \mathbf{5 . 9 5}$（UK C／P 65pi
ALSO miniature sterso cassette replay mechanism 12v． $105 \times 100 \times 40 \mathrm{~mm}$ ．E5．50（UK C／P 65 pl ）

ITT 2020

CABINET

Prolastional computer case
with keyboard cutout． $18{ }^{\circ} x$
$15.5^{\circ} \times 4.5^{\prime \prime}$（from stopes）．Ideal
for single board computars like the
Multiboard $\{3$ cards．els］．Very hasyy pauge 1.25 ］ plastic with matat base Atractive silver grey tinish
$\mathbf{f 2 2 . 9 5}$ ． KK posi $\mathbf{2 . 0 5 1}$ £22．95｜UK posi $\mathbf{~ 2 . 0 5 |}$
LEAFLETS AVAILABLE FOR MOST ITEMS SEND LARGE SAE（UK 25p）tox latest cataiogue．

ALWAYS BARGAINS FOR CALLERS

GENERATORS

220／240V AC
1UKC／P． $1 \mathrm{C} £ 1.201$

AUDIO LEADER LAG27

$$
\begin{aligned}
& 5 \text { band sina/square } \\
& \text { op }
\end{aligned}
$$

$0 / P$ D／5V AMS Oist 0．050 10 HZ to $1 \mathrm{MHZ} \overline{\mathrm{E}} 106.95$ TE220 4 range sine／square 0／P 5V AMS $0.5^{\circ} 0^{\circ}$ 0ist 20 Hz to 200K HZ

Thio 56402σ range 100 KHZ to 30MHZ RF 0.1 AMS Int／er mod 8.82 .80 LEADER LSGI 76 band IOOKHZ to 150 MHZ 196 to 450 MHZ on Harmonics \mid RF 0.1 V AMS．Int／8x Mod． AF 1 KHZ vol If WHZ Xtal optional £3．50\} £ 132.25
TE20： 6 range low cosi version ot ahove up to TE200 6 range low cosi version ol above up to
110 MH2［300mHZ Harmonics）
E74．9
digital capacitance METER（UK C／P 65p） 0.1 pt to 2000 mlo LCD 8 ranges DMEO13
169.50 COMPONENTS／TOOLS．otc．Large range in stock． Tel： 01.723 t008．

OROER BY POST OR PHONE

2 vin
Up to f 1000 instant credit Aviiable through Lombard Tricity Finance

301 Edgware Poad．London．W2
Test Equipment．Audio．Communications 01－724 3564
404 Edgware Road：London．W2
Computers $01-4026822$ • Equipment 01 －724 0323 • Components 01 －723 1008

CALLIN AND SEE FOR YOURSELF All mail to Cubegate Ltd．1st Floor， 406 Edgware Road．London W2 1ED

Modules	Power RMS	Load	Volt Max	Size (mm)	Price
RVM150S	70-150W	4.8.	± 60	$31 \times 80 \times 100$	$\begin{array}{r} 1+27.00 \\ 10+22.97 \\ 20+22.77 \end{array}$
RVM300S	120-300W	4-8	± 65	$31 \times 102 \times 136$	$\begin{array}{r} 1+37.80 \\ 10+32.13 \\ 20+30.24 \end{array}$
RVM400S	170-400W	4-8,	± 65	$47 \times 89 \times 136$	47.05
RVM700S	300-700W	2-8.	± 70	$47 \times 90 \times 197$	70.10
RVM700S Mounted on Heat Sink					70.40

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIER MODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

All prices include post \& packing.
(Quantity discount available)

To order send cash with order, or cheque/postal order. Delivery on our Modules and Heat Sink or same day dispatch when order is received with cash, allow 7 days with cheque or postal order.

Send for your free catalogue to:

KELAN ENGINEERING LTD. Circuit Products \& Components Division. 27-29 Leadhall Lane, Harrogate. North Yorkshire. HG2 9NJ. Tel: (0423) 870938.

ETI/3/85

NAME

ADDRESS \qquad
-1..

INCLUDING VAT \& CASE PLUS £2.75 P \& P
For a special offer price of only $£ 29.95$ we're offering you this super Quaser Cassette Deck Kit. Including tape transport mechanism, n, ready punched and back printed quality circuit board and all electronic parts i.e semi-conducters, resistors, capacitors, hardware, top cover, printed scale, mains transformer and a self assembly simulated wood cabinet. You only supply solder and hook-up wire.

SPECIFICATIONS:

Case size $285 \times 260 \times 90 \mathrm{~mm}$ approx. Mechanism with automatic stop and tape counter with reset button. Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}(17 / 8$ in $/ \mathrm{sec}$). Wow \& Flutter: Typically 0.1%. Drive Motor: 12 V d.c. with electrical governor. Play Torque: $40-75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC). Rewind \& Fast Forward Torque: $\mathbf{6 0 - 1 4 0 \mathrm { g } / \mathrm { cm } \text { (STATIC). Rewind \& Forward }}$ Time: Less than 100 sec . for C60 tapes. Bias/Erase Oscillator: Externally variable, frequency $60-100 \mathrm{kHz}$. Output: (Adjustable) Up to 1 volt r.m.s. Mic. Sensitivity: 1 mV @ 47 k . DIN Sensitivity: 30 m $V @ 47 \mathrm{k}$. Frequency Response; $30 \mathrm{~Hz}-12.4 \mathrm{kHz}(-3 \mathrm{~dB})$. Signal to Noise Ratio. Noise reduction OFF-50dB. Noise reduction H.F. -56dB Noise reduction FLAT-70dB Cross Talk: Typically-50dB. CALLERS WELCOME: 323 EDGWARE RD., LONDON W2.

- Oven 6 davs a week 9.00 - 5.30 .

21 HIGH ST., ACTON LONDON W3 6NG
Tel: 01-992 8430 - Open 6 days a week $9.30 \cdot 5.30$ $1 / 2$ day closing Wednesdays

To: RT-VC, 21 A High St., Acton, London W3 6NG

Please send me Kit/s
One deck kit costs $£ 29.95$ plus $£ 2.75$ p\&p ($£ 32.70$)

\qquad
Address .

Access 'phone orders 01-992 8430
To: RT-VC, 21A High Street, Acton, London W3 6NG

PARAGRAPH EQUALISER

Are Barry Porter's paragraphs equal to the task of describing the construction of this innovative project? Read on and find out.

By now, it must be obvious that the ParaGraph need not be limited to the suggested ten frequency bands, but this number does seem to give the best opportunity of applying just about any required response characteristic. A suggested panel layout is shown in Fig. 14, based on standard $19^{\prime \prime}$ rack

OOPS!

There were a number of errors in the first part of this project published last month. On page 31, in the formula for resonant frequency which appears towards the bottom of the third column under the heading 'Principle Of Operation', the bottom line should read $2 \pi R, C$.
In Fig. 5, the input stage circuit diagram, pin 2 of IC1b should be taken from the wiper of RV1 only. The link shown between this pin and the junction of RV1/R8 should not be there. There are also two resistors marked R10 on the diagram: the lower one, in the -15 V supply line, should be R11.

In Fig. 7, the main signal path circuit diagram, there are two capacitors marked C24: the one connected between ground and the junction of R28/ C27 should be C29.
In Fig. 8 , the state variable filter circuit diagram, the IC supply pin numbers are missing. The +15 V supply via $\mathrm{R39}$ connects to IC6 \& 7 pin 7 and the -15 V supply via R40 connects to IC6 \& 7 pin 4.

In Fig. 9, the balanced output stage diagram, the numbering of pins 2 and 3 on IC11 is reversed; the + and - signs on the two pins are correct. The input to R41/C42 should be marked "FROM SW2b" and C42 should be 330n, not 330k. The 'SET OUTPUT SYMMETRY' preset between R54 and R55 should be marked RV5, not RV4.
mounting dimensions, so there is a wide choice of suitable cabinets available.

Each filter stage is built onto a separate circuit board, which is attached to the front panel by the frequency and Q adjustment potentiometers. The board layout is shown in Fig. 11. The cut-out area allows different types of slide fader to be used and ensures that the rotary controls can be in line with the fader. Remember to purchase sliders which can be mounted by screws from the front, and use a dummy front panel if you don't want the screw heads to show.

The only components that differ between one filter board and another are the integrator capacitors, and plenty of space has been left for these. Instead of
attempting to mount the various capacitor types and sizes in the normal way, small terminal pins should be pressed through the capacitor mounting holes, and the components soldered to these from the top of the board.

Once the boards have been assembled, they should be attached to the front panel making sure that they are in the correct order. The busses which carry the various common connections should be fed through the circled holes and continued to the circuit board that contains the main signal path components (Fig. 12). A suitable guage of tinned copper wire should be used for the busses and this may be insulated with short lengths of sleeving if it is felt that there is any danger of short circuits occurring.

Fig. 10 Circuit diagram of the stabilised power supply.

PARTS LIST - FILTER BOARD

RESISTORS (all $1 / 4 \mathrm{~W} 1 \%$ metal film)		CAPACITORS	
R30, 31, 34	10k	C31, 33, 37	22p polystyrene
R32, 33,	20k	C32, 36	see Table 1
R32, 33 R35, 38	20k	C34	100n polycarbonate
R35,	4k3	C35	22u 16V nonpolarised radial
R37	47k		electrolytic
$\begin{aligned} & \text { R39, } 40 \\ & \text { RV2 } \end{aligned}$	10R 100 k linear dual	C38, 39	100u 25V radial
	gang rotary	C40, 41	electrolytic 100n polyester
RV3	22k linear dual gang rotary	SEMICONDUCTORS	
RV4	potentiometer 10k linear slider potentiometer	MISCEILANEO PCB; IC socke pins for C32 and	lesired; terminal 6.

Fig. 11 (above) Component overlay of the filter PCB. Note that you will need one filter board for each channel of the ParaGraph.

PARTS LIST -	
INPUTAND MAIN	
SICNALPATH BOARD	
RESISTORS (all $1 / 4 \mathrm{~W} 1 \%$ metal film)	
R1, 2	1 kB
R3, 4	8k2
R5, 6, 23-26	10k
R7, 8	4k7
R9, 22, 27	47k
R10, 11, 28, 29	10R
RV1	10k linear rotary potentiometer
CAPACITORS	
C1, 2	$1 \mathrm{n0}$ polystyrene
C3, 21, 25	100n polycarbonate
C4, 22, 26	22u 16V nonpolarised radial
	electrolytic
C5, 6, 27, 28	100u 25 v radial electrolytic
C7, 8, 29, 30	100n polyester
C23, 24	22p polystyrene
SEMICONDUCTORS	
IC1	NE5532
IC4, 5	NE5534
MISCELLANEOUS	
SK1	XLR or other threepole connetor to choice - see text
PCB; IC sockets if desired.	

Fig. 12 (left) Component overlay of the input stage and main signal path PCB.

Fig. 13 Component overlay of the tape buffer, balanced output and PSU board.

The output stage and tape buffer amplifiers are on a separate circuit board, together with the power supply stabilizers (Fig. 13). This board may be mounted at any convenient point within the cabinet, but should be kept as far away as
possible from the mains transformer and any mains wiring. Connections between the circuit boards and function switches should prove quite straightforward, using Fig. 1 as a reference. Due to the low impedance of the switched conec-

PARTS LIST -
 TAPE BUFFERS, BALANCED OUTPUT AND PSU BOARD

tions, unscreened wire may be used throughout.

If the recommended balanced inputs and outputs are employed, it is suggested that professional XLR 3 pin connectors are used. These can be obtained at a reasonable price from a number of sources, and will remain reliable for many years unlike some of their lesser brethren. There is a permanent confusion, even in the professional world, over the correct wiring of these connectors, so the generally accepted standard is given here:-
all signal inputs - via XLR 3 way chassis mounting sockets (termed female)
all signal outputs - via XLR 3 way chassis mounting plugs (termed male)
wiring to both plugs and sockets

Pin 1 - Earth
Pin 2 - Signal +
Pin 3 - Signal -
For unbalanced inputs or outputs, connect pin 3 to pin 1.

Unbalanced versions may be fitted with DIN or Phono sockets. If the latter are used it is well worth tracking down some gold plated ones, and be sure to mount them with insulation bushes so there is no electrical contact between the cabinet metalwork and the socket body.

For safety reasons, the metal cabinet must be connected to earth via the mains lead. If the signal earth is connected to the cabinet in any way, a nice juicy hum loop will probably be formed whenever the ParaGraph is used with other equipment which has common mains and signal earths. The best approach to this problem is to experiment once the unit is working correctly, so as an interim measure, make sure that the signal earth is floating at this stage.

Testing

Once the construction and internal wiring is complete, the moment has arrived for power to be applied for the first time. The ParaGraph should be connected to an oscillator and an oscilloscope, so that when the initial switch-on takes place an immediate indication

Fig. 14 Suggested front panel layout for the ParaGraph based on a $4 \mathrm{U}\left(\mathbf{7}^{\prime \prime}\right)$ height $19^{\prime \prime}$ racking case.
is given of the unit's correct operation - or otherwise. If signal does not appear at the output, the golden rule is: Do Not Panic. Assuming that the unit is located behind the regulation 6 ft wall of sandbags, crawl around and look for signs of smoke. You will probably find that in your excitement, you have forgotten to switch on the oscillator, but if, after taking a handful of Valium, you convince yourself that everything is as you
intended and that your new example of turbo-technology really is not working, carry out the usual checks for correct DC voltage rails and IC inputs and outputs. If all appears healthy the signal should be traced, using your oscilloscope, from the input socket through the circuitry until it disappears.

Once any faults have been located and rectified the correct operation of all the control functions should be checked, and

CONTROL CALIBRATION

Fig. 15 Calibration of the input level control.

Fig. 16 Calibration of the Q and frequency controls.
once you are satisfied that everything is working as intended, your ParaGraph may be fed its first dose of musical signal. You can then spend a pleasant hour twiddling the controls and discovering whether all the effort has been worthwhile, If so, you may wish to sally forth and build yourself another one, so that you can at least equalise yourself to distraction in stereo.

ETI

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd. P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.
(For shop addresses see back cover.)

MASTER 리ectronics-Microprocessors-Now! The PRAGIICAL Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

TECH TIPS

Pick-up

Preamplifier

Jeff Macaulay, Crawley

Overthe last few years, two schools of thought have emerged on the subject of audio pre-amplifier design. The 'British' approach, as it is sometimes termed, favours designs with the minimum of frills on the grounds that tone controls and the like introduce unnecessary distortion and phase shifts. The design described here is an example of this minimalist approach and possesses sufficient dynamic range to handle direct-cut and digitally mastered records without problems.

The circuit may be considered in two parts, each built around one of the op-amps. IC1 functions as an RIAA equaliser with R2, R3, C2 and C3 in the feedback loop providing

the correct response. R4 sets the midrange gain at 10 while C4 prevents the stage amplifying DC. The input overload factor is greater than 40 dB and this, combined with a signal to noise ratio of more than 70 dB gives the circuit a dynamic range of 110 dB .

IC2 has a flat frequency res-
ponse and provides extra gain for the equaliser stage or for an auxiliary input selected by SW1. Both opamps should be low noise, low distortion, audio quality devices such as the TL071, NE5534, LF351, OP27, etc, and either single or dual types would be suitable. A quad op-amp could be used if two of the pre-

Low Cost Z80 DRAM Drive \& Refresh

D. Allen
 Bolton

This circuit provides address multiplexing \& refresh for 16 K or 64 K DRAMs using only four chips and one invertor.
Memory Cycle: In a normal memory access the cycle is started by MREQ \& CS going low. This causes RAS to go low and the flip-flops are no longer held in reset. RAS gates the lower
seven (or eight) row address lines into the memory. On the first positive going clock edge after MREQ the SWMX flip-flop IC 2 b clocks. The Dinput is REF which will be high during memory cycles. Therefore the SWMX signal goes high and switches the column address lines to the DRAM. On the next negative going clock pulse CAS goes low and gates in the column address. Data can then be written to or read from memory depending on the Z80 RD line. The WR line is not used. The cycle ends when MREQ goes high causing both flip-flops to reset.
Refresh: Dynamic RAMs require RAS low and CAS high and only the lower 7 address lines are used to refresh. The $Z 80$ counts through the lower 7 address bits after each instruction fetch and sets REF low. MREQ and REF are gated together to produce RAS. Clock cycles do not change the state of IC2a because the D input is REF which is low. Therefore the multiplexer is not switched and CAS is not generated. Addressing: For 16K DRAMs A14 \& A15 are not connected to the multiplexer and will normally be gated to provide Chip Select (CS). In this case ground the inputs to the multiplexer.

When 64 K DRAMis are used the CS input may be a disabling signal to avoid double addressing with ROMs.

Regulator For DC Generators

J. Michael, Broadstone, Dorset

This circuit was developed to replace the regulator on a motorcycle when the original component failed and a replacement proved impossible to obtain. It is designed to control the output voltage of a 6 V dynamo used for charging a leadacid battery but it could easily be adapted to suit other voltages. Both positive and negative earth versions are illustrated and in either case the circuit will replace the original regulator without modification of the existing wiring.

Rx is the field current control resistor. On the original unit this was incorporated in the dynamo, but for most applications a separate resistor will have to be fitted in the regulator. A 10 W wirewound type should be used. The series diode D2 replaces the cutout in the original regulator. D2 and Q1 should be mounted on a small heatsink.

To set up the desired charging voltage (6.9 V in the case of a 6 V lead-acid battery) set RV1 fully clockwise and run the dynamo at maximum speed with a fullycharged battery connected. RV1 should then be adjusted until the battery voltage is correct.

TV Sync Generator

J. C. Barker, Morley

This crystal controlled sync generator uses only four cheap CMOS ICs, a 4 MHz crystal and a few Rs and Cs, and can be operated from a supply
of between 5 and 15 V .
IC3a gates the Q5, Q6, Q7 and Q8 outputs from IC1 to generate the H sync pulses. The V sync is generated by IC3b which gates Q8, Q13, Q14 and Q17 (the third output of IC2) to set the latch IC4a and bafter 19.488 ms . The latch is reset 512 us later by the Q12 output of IC1 via IC4c. IC4d then generates a positive going pulse to reset the two counters and start the cycle all over again.

Attention!

Would the authors of the following Tech tips please get in touch with us:-

CRU Interface For The Cortex

 Caravan Indicator Warning Light In each case the address of the author has been mislaid and we need to contact them before using the items.May we also take this opportunity of advising all Tech Tips authors to write their names and addresses on each sheet of their submissions rather than just on the title page. This ensures that, even if the sheets get separated, we will still know what belongs where. This is especially important with drawings which are treated separately from the text and therefore stand the most chance of going astray. With luck, if this advice is followed, even we won't be able to lose things!

THE FINAL LINK

Some people think of the loudspeaker as being the final link in the hi-fi chain, but it isn't. The final link is actually the ear, and the performance of this delicate piece of apparatus affects all the other items in the hi-fi chain. And we promise to do our best to avoid the appalling puns you've all been complaining about on the Readers' Survey forms. (Shouts of 'ear,! 'ear! from assembled ranks of readers.)

TELEPHONE CALL METER

Are you worried about your phone bill? Do you have an old calculator knocking around? Put the two together, and you could find yourself building the ETI telephone call meter. It's a real hackers' item.

RS232 FOR THE SPECTRUM/ZX81

Most RS232 ports are just one way, or at least, for these
two machines they are. Ours is two way, enabling your computer to talk to other machines, modems, and anything else interactive that has an RS232 interface on it.

ELECTRONICS FOR PEACE?

A very large number of electronics professionals are employed in the defence industry. Indeed, a large number of our readers must be employed in this way, either directly or indirectly, as sub-contractors to defence contractors. Is this a state of affairs we should be happy with? We'll be talking to one group who think not, to find out how they were set up and what their objectives are.

THE SECRETS OF TELECINE

It's not that easy to turn 'Towering Inferno' from a widescreen epic into a small-screen Sunday matinee, and not all the difficulties are those of imagination. We'llbe looking at the technicalities involved.

ALL THIS AND MORE IN THE APRIL ETI ON SALE MARCH 1st

a world of soldering

aex
SOLDEAING KIT
Frect How To soder booklet and pack of solder

Tomorrows Soldering Technology Today.

ANTEX has a worldwide reputation for quality \& service \& for many years has been one of the best known \& most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX Soldering lrons, the advanced design of the interface between the element \& the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an X $\$ 25$ watt iron can be used for tasks where a 40 watt iron would normally have been required.
ANTEX Soldering irons exhibit exceptionally low leakage currents \& hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.
Pengo - fast machine code action Golf - excellent animation
Micropede - rampant caterpiliar£6
Space Bugs, Pontoon, Breakout each $£ 6$
Cassette/CDOS word processor £13
Add $£ 2$ for software on CDOS disc
Disc Drives
80 track double-sided double-density
£190
40 track single-sided double density
E-BUS Floppy/Winchester Controller
E-BUS 64/128 Kbytes DRAM card
E-BUS 9995 Processor card
$80 * 24$ Character video card
£120
£135
£145/£245
£145
State disc format and add VAT to all prices !!Brainstem Issue 2 out soon!!

MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY SOUTHAMPTON
SO1 5AP
TEL: 0703780084
$£ 95$
£275 £43
$£ 35$
£35
$£ 55$
£35
£150
QBASIL - by Pre Brinch Hansen
UCSD Pascal, SPL, META, WINDOW, SPELL
MDEX disc O/S + BASIC
Professional Dev. Sys.
dex Extensions
Editor
Relocating Assembler/linker
FORTH - screen editor, assembler - graphics - better than BASIC
HARDWARE SOFTWARE

AMPLIFICATION

CHOOSE CRIMSON. THE NAME THAT MEANS QUALITY

Before buying elsewhere check out the features of CRIMSON quality:-

ALL OUR MOOULES:-

- superior p.c.b., component identification, solder resist.
- non-potted so non-disposable if damaged.
- metal film resistors.
- negligible noise and distortions.

OUR BIPOLAR POWER AMP MODULES:-

- fuseless electronic shut-down with re-set facility.
- reverse polarity protection.
- high output current capability (>25 Amps on CE1704).
- 18 transistors, 7 diodes.

OUR MOSFET POWER MODULES:- (FE908, FE1704)

- reponse down to d.c.
- j-fet inputs.
- common source output for highest efficiency.

OUR CPR2 PREAMPLIFIER

- ultmate sound quality.
- 42 semiconductors and perfect symmetry topology.
- anti-thump circuitry.
- selected passive components.

Write or phone for details:-
CRIMSON ELEKTRIK STOKE, Phoenix Works, 500 King St., Longton,
Stoke-on-Trent ST2 1EZ.
Tel: 0782330520
or contact our agents:-BRADLEY-MARSHALL, 325 Edgeware Road, London and (especially for demonstrations):WILMSLOW AUDIO, 35-39 Church St., Wilmsiow, Cheshire.

NEW PRODUCT: FET3 POWER MODULE UP TO 450W. 900W BRIDGED MODE. 100V R.M.S. BRIDGE. £74.50

Examples from our range of built, tested and guaranteed modules.

Module	Power/Load	Price Inc. VAT \& Delivery
CE608	60W/8R	$\S 21.00$
CE1004	$100 \mathrm{~W} / 4 \mathrm{R}$	$£ 24.50$
CE1008	$100 \mathrm{~W} / 8 \mathrm{R}$	$£ 27.50$
CE1704	$170 \mathrm{~W} / 4 \mathrm{R}$	$£ 35.00$
CE1708	$170 \mathrm{~W} / 8 \mathrm{R}$	$£ 35.00$
FE908	$120 \mathrm{~W} / 8 \mathrm{R}$	$£ 29.50$
FE1704	$240 \mathrm{~W} / 4 \mathrm{R}$	$£ 52.00$
CE3004	300W/4R	$£ 49.00$
BO1	BRIDGER	$£ 8.20$
CPR2	PREAMP	$£ 47.95$

DIGITAL FRAMESTORE

The project draws to a close with the last of the constructional details, suggestions on how to link the unit to a home micro and what to do with it when you've done this, and a mod to use an external sync source. All by Daniel Ogilvie.

Essentially the framestore is a large piece of memory. Various bits and bobs have been added to it to format the memory so that it can be easily written to and read from in a format compatible with a rasterscanned TV system. However at the heart of it all is a large piece (512 K) of dynamic RAM just waiting to be got at by your home computer. The home computer itself can perform some quite powerful image processing routines.

We have seen that grey level manipulations can be performed by the lookup table and for the type of thing discussed that offers us a faster non-destructive method. It could equally have been performed by the home micro. Indeed, a micro with access to the framestore memory was essential to construct the grey level histogram. Image storage is another area where the home computer can be of some use, although your average floppy disk will throw a fit at having to cram on the 393 K bytes necessary to store just one image. However parts of images may be stored and the more adventurous may choose to write some image compression routines, a 10:1 reduction being possible on simple images.

Getting At The RAM

Most home computers are based on either the 6502 or Z80 MPU's, with a smattering of 6809
and 68008 (just), amongst them. Mr Sinclair has chosen the right road with the QL for our average image processing buff, in that the 68008 can address 1 Mbyte of memory directly. The 512 K of the framestore can slot in nicely. Most micros are restricted to 64 K and by the time we have added an operating system or two and some of its own RAM there may be little left to access the framestore. There is a lot to be said, therefore, for a dedicated micro providing a serial or, preferably, a faster parallel interface to the home computer, or providing a DMA interface to shift chunks of the framestore memory's data to and from the micro's own RAM.

We will not take this approach, however, but will make the assumption that at least a 16 K block can be freed through which we can access the framestore RAM by bank selection. The popularity of the home micros has been reflected in two designs recently in ETI for dynamic RAM controllers for the 6502 and $\mathrm{Z80}$. Also recommended is the excellent Texas TMS4500A DRAM controller user manual, which provides circuits to interface some other microprocessors to DRAM, including the 68000, 8085 and TMS9995.

Other DRAM controllers are available, from AMD and Intel amongst others, with exhaustive application notes. We will concentrate therefore on the bank select logic and particular points regarding the interface to the
framestore RAM.
You will remember that each RAM card stores one bit of data. There are eight $64 \mathrm{~K} \times 1$ DRAMs on each card, which is configured to store $512 \mathrm{~K} \times 1$ of data. We provide an eight bit shift register on the card which temporarily stores the incoming data before we parallel load this 8 -bit byte into the RAM. This overcomes the relatively slow access time of the DRAM. Each DRAM therefore stores every eighth bit of the same DRAM address.

The facility has been provided on the card to turn off the drivers to the RAM address and control inputs. This allows access to an external DRAM controller. When the MPU line is pulled low (and MPU is high) the DRAM address multiplexors and W, RAS and CAS drivers are turned off (high impedance) as is IC17, the latch that drives the data lines to the RAM.

We now have complete access to the RAM on the card and are free to access any of the 64 K bits of RAM. We do, however, have to perform some muliplexing of the data and control lines to enable us to sequentially access pixels from the DRAM and not have to worry about the complications caused by the shift register. Were we not to do this, and, for example, tied each data line of the DRAMs to a separate MPU line, sequential pixels would appear on each line of the MPU data bus.

To access any of the remaining five data bits we would need to

select a separate part of memory. For example, assume we wish to read from the framestore memory. First set up the most significant address lines of the microprocessor bus (latching them into a port), then perform a memory read operation at the address we want to access. The DRAM controller performs the muliplexing of all but the lower three address lines and then strobes RAS and CAS low in turn. When CAS is strobed low, all eight dynamic RAMs turn on their output drivers and, after the CAS access time, the data at the address we have selected becomes valid.

In fact we access eight sequential pixels worth of data at the same time. The data outputs from the DRAM are taken to the eight to one muliplexor IC19. We select one of the eight DRAM outputs by means of the three lower address lines: the data bit appearing on the MPU data bus is thus just one of the selected pixels. If we wish to access the next sequential pixel we increment the address line by one. The address loaded in to the RAM is the same but the lower three address lines select the next bit from the next DRAM. This is performed on all six boards simultaneously - each board drives a separate MPU data line only DO-D 5 of the MPU data bus are used. This process is illustrated diagramatically in Fig. 17.

This method is not the most efficient to access the RAM, but it is simple. By strobing all of the CAS lines simultaneously (and thus turning on all of the RAM drivers simultaneously) maximum current is taken. We are turning on eight RAMs to access one per board. Ideally we should multiplex the CAS lines to the RAM's using the same method we use for writing.

Writing to the RAM is performed much the same as reading. The DRAM controller responds to a write access request by strobing RAS and CAS low to latch the two eight bit address inputs. Because the R/W arrives before CAS (read/ write is set up with the address lines by the MPU) the DRAMs perform an early write and the Q outputs will remain in a high impedance state. When R/W is low and a valid CS has been received, the 74LS138(IC14) decodes the lower three adddress lines and the appropriate Y output is strobed low driving the DRAM write line low, and latching in the data that has been set up on the D inputs (and buffered by IC18).

Although slightly more complicated, this method of accessing the DRAMs allows the MPU to "see" a logical memory map. The first pixel stored (top left of field 1) is at address 00000 H , the next along the line is at 00001 H , etc. The end of the first line (pixel
number 639) is at 0027 FH . The next line starts at address $640=00280 \mathrm{H}$ and ends at $004 \mathrm{FFH}=640+639$. The end of the first field is at (640X256) $-1=27$ FFFH. The next field starts at 28001 H and ends at (640×512) $-1=327679=4 \mathrm{FFFFH}$.

In this way, any dynamic RAM controller can access the framestore as if it were a conventional piece of memory. We have also seen that it is necessary to be able to address 327,679 bytes to have access to all of the framestore and this is beyond the addressing

PARTS LIST MEMORY CARD

RESISTORS (all $1 / 2 \mathrm{~W}$ 5\%)	
R1-10 3	33R
R11 2	2k2
CAPACITORS	
Unmarked decoupling - all 100n ceramic	
SEMICONDUCTORS	
IC1, 10	741S257N
IC2-9	MCM666L20
	($64 \mathrm{~K} \times 1200 \mathrm{~ns}$
	DRAM - see text)
IC11,12 7	74LS08N
IC13 7	7415244
IC14 7	74LS367 (8T97)
IC15 7	7415138
IC16 7	74LS138N
IC17,18 7	74LS195N
IC19 7	74LS374N
MISCELLANEOUS	
PCB: wire solder, etc	etc.

plete framestore ($20 \times 16 \mathrm{~K}=$ 327,679). The additional upper address lines we require can be stored in a latch by an additional MPU load instruction to select one of the twenty 16 K blocks before we perform a memory read or write. Normal read or write operations can now be performed within the block selected.

Synchronising The Framestore

The framestore as it stands is intended to be the master sync generator, ie, it will provide the synchronisation for all the other units in the system connected to it. However, this is not always possible, for example, when using video recorders, off-air broadcasts and some cheap video cameras. The modification described here allows the framestore to be externally synchronised.

The modification works by replacing IC5 on the control card; IC5 is the sync pulse generator IC. The heart of the replacement circuitry is the TA6993W, which is itself a sync pulse generator, but with the facility to synchronise to an external reference. This IC normally runs off the 500 kHz clock input to pin 23 (this should be derived from the 25 MHz clock already on the control card). The TA6993W generates an odd field pulse instead of an even field pulse (as with IC5, ZNA134J) but

this is not important, it just shifts our reference point.

The TA6993W contains a phase comparator and a phase-locked loop. When negative going mixed sync pulses are presented on its pin 20 it switches over from the external oscillator to an internal voltage controlled oscillator formed by the RC network on pins $6,22,24$. The frequency of this oscillator is varied until the internally generated line and external line input are locked in phase.

The vertical synchronization is achieved by integrating the mixed sync input via the 18 k and 1 nF capacitor, which generates a field pulse, and using this to reset the vertical line counter. This method produces a quite effective external lock but it will never be as stable as the original method. The trimmer should be adjusted until a stable lock is obtained; be careful to avoid twice line frequency. The switch over between internal and external oscillator is performed automatically and the sync source is indicated by detecing the voltage level on pin 1 and lighting an LED ($+6 \mathrm{~V}=$ external sync).

The front end of the circuit is a

sync separator which strips the syncs from the composite video input. The composite video is amplified and clamped by diode D1. This is fed to a comparator formed by the op-amp. The other terminal of the op-amp is fed with a proportion of the signal from the
peak detector formed by diode D2 and the capacitor. The comparator threshold is therefore set just up from the sync tips, preventing false triggering due to noise.

* * NI-CAD BARGAINS * *

Also available - PCB's flom wrich these
batiteries have been removed which these
 each inc. VaI (p\&op 150). Compiete board $\&$ batteries 55 ($\mathrm{D} \& \mathrm{D}$ £ 11).

* * STEPPER MOTORS $* *$

 tions sup Weghi liot

\star * STEPPER MOTORS * *

OPTICAL ISOLATOAS
SPERRY UNIVAC MaODO aplo--1solatot unis providing $2 K V$ of insula-
 handoook...

* - BECKMAN TURNS
 each inc VAI \&
* CROSS-HATCH GENERATORS *
labgat cololamatch cmacoapg

labgear colouamatch cmsolong galed Rainbow colour panterl generators. Cross-hotch cot \& galed hainnow colowr collout bar panterns.
chen

Mail Order custemers please add $£ 2.50$ postaqe each item

RALFE ELECTRONICS 10 CHAPELSTREET, LONDON, NW1 TEL: 01-723 8753

HEWLETT-PACKARD 141A Storage Oscilloscope.
HEWLETT-PACKARD 1707A dual rrace $75 M \mathrm{M} 2 \mathrm{~F} 750$ HEWLETT-PACKARD 1707A dual trace 75MH2 f750
TEKTRONIX $454 A$ dual trade 150 MHzz sweep delay 5050 TELEQUIPMENT D75 dual uace 50 MHz sweep delay 445 SONY/TEKTRONXX 335 dual trade 35 MHZ portable. TEKTRONIX 704 frame and plug in units.
GOULD OS 1000 dual-trace 20 MiHz .

* 125W MAINS INVERTERS *

12 V OC Battery Input to 230 VAC . Output ti. 125 warts crystal-controlled 50 Hz blue base oscillator, fully enclosed in
binel cases with integral 13A socket. Dimensions approx. $4 \times 6 \times 1 \sigma^{\prime}$ - BRAND NEW EEB + VAT ($\mathrm{p} \& \mathrm{p} \mathrm{E} 2$).

* MAINS STABILISERS *

Smal quantity avalable of brand-new Gould
ECVN250A constant woltage transtormers. 190 -

TELONIC 2003 SYSTEm. $800-1500 \mathrm{MHz}$ E320 TELONUC SM2000 with 500-900 MHz Plug in E 175
 months guarantee. for our mal order customers we have money-back scheme. Repains and servicing io oil
equipment at very reasonable rates. PIEASE ADD 15% VAI TO AIL. PRICES. EOUIPMENT WANIED.
\star * STEPPER MOTORS $\star \star$ Type 20PM-A055 stepper motors 28 V DC. 24 steps per rev. 15 oz -in torque (ii) 100PPS. Body length $21 / 2^{\prime \prime}$, diameter $2^{\prime \prime}$, shaft $1 / 4^{\prime \prime}$ diam \times 4/4 Spirally threaded. Weight Connections supplied INC VAT

4051 Grophic System compatible, GP1 (IEEE 49 1975) compaible.
 \star TEKTRONIX $~+$ FILE MANAGER STSIEM MODEL 49070 Otion 31 SThird disc drive)

* COMMPUTER PERIPHERALS *

1.6MB 8" FLOPPY DISC DRIVES New Stock
After our recent sell-out of the DRE7100 FDDs, we are pleased to offer another bargain package as follow. BRAND NEW American MFE Corp' model M-700 DOUBLE SIDED 8" Disc Drives. Massive storage capability up to 1.6MBytes. Full IBM compatability, Exernal power requirements are $\pm 5 \mathrm{~V}$ at 1.2 A and +24 V at 1.1 A Full sparesiback-up available U.K. EEcomatic s. Current list is over E3/5.

Now available again, UNITED PERIPHERALS 3100 Now available again, UNITED PERIPHERALS 3100
Minidisc Drives (3×8 sealed plattens) capable of over 19MB. Sold in un-tested, un-guaranteed condition for just E 125 inc VAT, carriage and copy of
handbook. handbook

* MULTI-RAIL LINEAR PSU'S \star Power Supplies at surplus prices. Mod ESM-Series giving regulated, stabilised DC outputs 5 V f1 15 A 24 V (a 2 A . 240 V AC input. Measures $5 \times 8 \times 11^{\prime \prime}$. Fully enclosed. In original cartons with handbooks. £45
* SWITCH-MODE POWER SUPPLIES Fuliy tested and guaranteed PSU's now at LOWEST EVER PRICES. Manutactured by FARNELL, GOULD ADVANCE.
 All prices now include VAT packing and posting

. * CENTRIFUGAL BLOWERS *

'TORIN' Type U62B1. 230V Cap'Start (supplied), vent powerful (200W, 3,000 rpm) centrifugal fans for large rack cooling or enclosure extraction applications.
Overall dimensions $20 \times 12 \mathrm{cms}$, outlet $6 \times 4 \mathrm{cms}$. BRAND NEW Surplus stock. $\mathbf{f} 15$ each inc. VAT, p\&p E1.50.

NEW THIS MONTH

IEC FILTEA PLUG

Made by Rendar, integrated chassis mounted plug with mains filter rated 2A. Like RS 238-514. Only £3.00.
7-SEG LEDS
MAN8910 0.8" red seven segment LED's common node. £1.25 10 for $£ 10$

OIL SOCKETS
Gold plated low protile at unbeatable prices
14DIL E7/100
6DLL $88 / 100$
24DLL C12/100
40DAL $ع 70 / 100$
40 DHL E70/10

VOLTAGE REG SCOOP

7924UC 1A 24V 40p
UA317UC MA variable 50p
78MGUIC Variable 85p
12v SOLENOID, 10 mm travel Overall length $46 x$ $13 \times 15 \mathrm{~mm}$. Coil 75R Only E1.
2924 Super Modempanel $260 \times 175 \mathrm{~mm}$ with a host of top quallty parts -2×4 way DIL switches. 2 BCD switches. 31 LS chips, TR 16028 UART, 2211/2206 FSK Rx and Tx chips, $\mathbf{E 6} .00$.

LEADS AT SILLY PRICES
PLs1.
POL528 2 pin DIN line skt to phono plug 0.2 m logn
$20 p$.
PLSot 5 pin Din to 3 pin DIN audic lead 12 m long $40 p$.
 plug. 6 m tong 40p.
PL70e video lead. PL259 plug to F type plug. 3 m low loss coax 15p.
FM TUNING MODULE. This neat unit $75 \times 40 \times 19 \mathrm{~mm}$ as used in car radios etc. Standard 10.7 MHz IF output. 9.12V DC supply. Full connexion date supplied $\mathbf{8 2 . 4 0}$.
stereo cassette head. Only $£ 1.00$

Theoe digitide mutheneter ceses wow moulded in high mipuct blipck peptic and are ofterod at mi extromely atrective price to cleer stocks.
DP2010 $110 \times 80 \times 120 \mathrm{~mm}$. this has cut-outs for range switches and terminals, with a smart aluminium fascia marked with ranges otc. Battery accessible by removeable cover on back 75p. op100 Same size as above, but thsi was for use as a digital thermometer so theres only a single $9 \mathrm{~mm} \varnothing$ hole in the front panel 75p.

SHOP SALE

23rd FEB - 9th MAR

MANY BARGAINS -
WORTH A VISIT! PANELS
2008 Panel $147 \times 38 \mathrm{~mm}$ with $2 \times$ TDA 1004 GW aucio amp IC's nor socered in so they can easity be ernaver. Also 1000/16. 1000/10 $\times 2,470 / 16$ etecs Stereo Amp? Onty 5300 (1C's woth ce) tereo Amp? Only $\varepsilon 3.00$ (IC's worth ce).
2ves Another board which escaped the clutches of he flow selder machine - $103 \times 39 \mathrm{~mm}$, this is an RF canceller + R's \& C's inc tants . Chips cost around ct together. Price tor paner $\mathbf{£ 2 . 5 0}$.
$2810139 \times 39 \mathrm{~mm}$. this panel has soldered in com ponents - TCA4500A and TBA651R, AM radio with IF amp. Probably complete RF section of radio as IF's and trimmers are on board, + R's C's etc E2.50. 2911 L snaped board $125 \times 35 \mathrm{~mm}$. Looks like RF sec tion of radio - BF 194-5 etc + trimmers \& IF's, bu tuner is absert. $\varepsilon 1.00$
2912 Same as 29009 , only components have been
soldered $£ 2.50$.
sold Another L shaped panel $135 \times 40 \mathrm{~mm}$ with non. soldered components including: BC549C $\times 2 . \mathrm{BC} 208$
$\times 3 . \mathrm{BF} 241 \times 2$. BF 194 , coils, trimmers. R's. C's etc. E1.00.
2017 PSUPanel $320 \times 190 \mathrm{~mm}$ with M. $3802\{30 \mathrm{~A} 100 \mathrm{~V}$ 200W) onlarge heatsink, 7 smaller heatsinks contain $2 \times 7805 ; 7812 ; 7905 ; 2 \times M J E 2955 ; 2 S A 473$. Also 555, $3 \times 4 \mathrm{~A}$ bridge rects, large smoothing caps, multiway plugs and sockets etc. Ex-equip working order Only £8.50.

DIP BOARD
Fibregiass DIP board $158 \times 165 \mathrm{~mm}$ double sided with 58 w 0.1 edge connector gold plated. Vero. $\mathbf{\Sigma 3 . 5 0}$

20 WAY RIBBON CABLE
Twisted and riat computer grace tor tower crosstaik. Reformed intoflat sections every 21 or IDCconnec lors. Only 70p/21" or $\$ 25$ per 100t1 ree

31/2 DIGIT LCD DPM

Type 900 setf powered. Input range $4-20 \mathrm{~mA}$, Con
tained in std DIN enciosure $96 \times 48 \times 100 \mathrm{~mm} \mathrm{E} 15$.
tained in std DIN enciosure $96 \times 48 \times 100 \mathrm{~mm}$ \&15:

1984/85 CATALOGUE

84 page A4 size - Bigger. Brighter. Bener. - more components than ever before! With each copy Discount List. Bulk Buyers L ist Order For mand Reply Pard Envelope. All tor juas $\mathbf{C 1} .00 \mathrm{n}$ (FREE to Schools etc). Winter Supplement out now - Send large SAE for your tree copy

TREKKER
Computer-controlled Robot built around the gearbox described below. Complete kit of parts inc PCB, program listings for BBC of parts inc PCB, program listings for BBC
(Other micros soon). £44.85 20W ribbon cable (min 3 m recommended - 5 m better) $81.30 / \mathrm{m}$ SAE for illustrated leaflet

MOTORIZED GEARBOX
These units are as used in a computerized tank, and otfier the experimenter in robotics the opponlunity to buy the electro-mechanical parss required in building remote controlied vericles. The unit has $2 \times 3 \mathrm{~V}$ molors. the black ABS nousim gearbox contained within soeed to approx 50 rpm . Data supplied with the unit showing various options on driving the motors etc Two new types of wheels can be supplied the aluminium discs and s maller plastic wheels arenow sold out). Type A has 7 spokes with a round black tyre and is 100 mm dia. Type B is a solid heawy duty wheel 107 mm dia with a fiat rigid tyre 17 mm wide. PRICES: Gearbox with data sheets: C 5.95 ea; Wheel type A: $\mathbf{8 0 . 7 0 ~ e s ; ~ w h e e l ~ t y p e ~ B : ~} \mathbf{8 0 . 9 0} \mathrm{ea}$

NI-CAD CHARGER PANEL
$177 \times 114 \mathrm{~mm}$ PCB withone massive Varta Deac $57 \times$ 0 mac 325 mm rated 3.6 V 600 mA . Dease Ni- adstacks newisover ryo Abooninepane is a mains input charger transtormer with two separis a mains input charger transtormer with two separing capacitors and a relay to the output tags. The panel weighs 1 kgm . All this for just $\mathbf{5 6 . 0 0}$.

FIERE OPTICS
Scoop purchase of singie and twincable. For use with visible light or intra-red, Core 1 mm dia, overall $90 \mathrm{p} / \mathrm{m}$; 20 m coil $\mathrm{E11.00}$.

PCB MOUNTING NI-CADS
Much sought atter $4.8 \mathrm{~V} \quad 150 \mathrm{~mA}$ batts with PCB mntg tags on 25 mm pitch. Batt size 25×16.ldeal for paralleting 99 p ea: $10+85 p_{;} 25+70 p ; 100+60 \mathrm{p}$. STEPPING RELAY
Schrack 2 pole 10 way 24 V DC (works down to 15 V) aly $39 \times 20 \times 24 \mathrm{~mm}$. Connexions by 0.1 " pitch edge plug. Speciai low price f1.95.
MINIATURE RELAYS

CB mourting DPCO size $20 \times 15 \times 15 \mathrm{~mm}$ Available in 3,9 or 12V. E1 each.

1W AMPLIFIER

2914 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820chip Gives 1 W output with 9 V supply. Switch and vol condiel. just connect batt. and speaker. Full details sup875.

2915 Stereo version of above $115 \times 6.5 \mathrm{~mm}$ fealuring 2 \times TBA820M and dual volcontrol. $\mathbf{£ 3 . 5 0} \mathbf{5}$; 10 ior $£ 30 ; 25$ (or $£ 65 ; 100 £ 200$.

AM TUNER PANEL
2916 For use with mono amp above. Neat panel $60 \times 45 \mathrm{~mm}$. Onty $£ 1.50 ; 10$ for $£ 12.00$.

NI-CAD CHARGER SCOOPI
Ever-Ready model CH4, this charger will take up to 4 grey case $212 \times 97 \times 60 \mathrm{~mm}$. Only $£ 7.95$

POWER/VU METER
eat unit $40 \times 40 \mathrm{~mm}$ scaled $0-25$ 200uA movement. Only £1.00; 10 for EB :' 25 £ 17; 100 £58.

Min Access order value $£ 5$ No min CWO value. Official orders charge £10

FOR QUALITY COMPONENTS BY MAIL ORDER

CABEESE EBEB

Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more oxciting career.
Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you. Whatever your interest or akill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

COMPUTER I PROGRAMMING

| PLECTRONICS |
| :--- | :--- |
| COMMERCIAL |
| ART | LICENCE INTERIOR DESIGN WRITING FOR PROFIT

ITV, RADIO \&
AUUDIO SERVICING
CAR MECHANICS
BOOK-KEEPING \& ACCOUNTANCY

electronics today international 300K SFR1/1CE
 Howto order:indicate the books required byticking the boxes and send this page, together withyour payment to: ETI Book Service, Argus Specialist Publications Argus Specialist Publications Ltd, 1, Golden Square, London W1R3AB. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P\&P. Prices may be subject to change without notice.

BEEINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson	$\underline{55.35}$
Beginner's Guide to Digital Electronics	£5.35
Beginner's Guide to Electronics	¢5.35
Beginner's Guide to Integrated Circuits	E5.35
Beginner's Guide to Computars	E5.35
Beginner's Guide to Microprocessors	£5.35

c00kB00Ks

Master IC Cookhook Hallmark	£10.15
Microprocessar Cookbook M. Herdeski	E9.50
IC Op Amp Cookhook Jung	¢15.10
PLI Synthesiser Cookbook H. Kinley	¢7.70
Active Filter Cookbook Lancaster	£14.30
TV Typewriter Cookbook Lancaster	£12.50
CMOS Cookbook Lancaster	£13.50
TTL Cookbook Lancaster	¢13.50
Micro Cookbook Vol. 1 Lancaster	£15.30
BASIC Cookbook K. Tracton	E6.00
MC6809 Cookbook C. Warren	E7.25

ELEGTRONICS

Principles at Transistor Circuits Amos
Design of Active Filters with experiments Berlin 814.45
49 Easy to Build Elactronic Projacts Brown £6.00
How to Desion and build elactronic instrumentation Car E 9.35 introduction to Microcomputars Daglecs E7.20
Electronic Components and Systems Dennis 11.45
Principles of Electronic Instrumentation De Sa 812.95
Giant Handhook of Electronic Circuits $\mathbf{E} 21.00$
Giant Handhook of Electronic Projects f6.45
Analysis and Design of Analogue 42.50
Basic Electronics Grob $\varepsilon 11.30$
asers - The Light Fantastic Hallmark $\mathbf{E} 7.70$
ntroduction to Digital Electronics \& Logic Joynson E 7.85
Electronic Fault Diagnosis Loveday $\mathbf{6} 6.25$
$\mathbf{E 7 . 5 0}$
Essential Electronics A. 2 Guide Loveday 12.25 103 Projects for Electronics Experimenters Minis VLSI System Design Muroga £8.30
Practical Solid State Circuit Design Olesky 28.50
Power FETs and thair application Oxner f 10.80
Master Handhook of IC Circuits Powers $\mathbf{c} 26.65$
VOM - VTYM Handhook Risse $£ 8.50$
$\mathbf{£ 2 8 . 8 5}$
Understanding Electronic Components Sinclair £7.50
Electronic Fault Diagnosis Sinclair E 16.90
Digital Circuits and Microprocessors Taub E11.25
Desinning with TTI Integrated Circuits Texa ع15.20
Transistor Circuit Design Texas f 15.20
Digital Systems: Principles and Applications Tocc E 12.50
How to build Metal/Trasure Locators Traister $£ 6.00$
33 Electronic Music Projects you can build Winston 6.95

COMPUTERS \& MICROCOMPUTERS

BASIC Computer Games Ahl

Troubleshooting Microprocessors and Digital Logic Goodman	811.25
Getting Acquainted with your VIC 20 Hartnell	¢8.50
Getting Acquainted with your 2X81 Hartnell	¢5.95
Let your BBC Micro Teach you to program Hartnell	¢7.95
Programming your ZX Spectrum Hartnell	¢8.50
The ZX Spectrum Explored Hartnell	¢6.95
How to Design. Build and Program your own working Computar System Haviland	
	¢ $\mathbf{8 8 . 5 0}$
BASIC Principlas and Practice of Microprocessors Heffer	¢8.00
Hints and Tips for the 2×81 Hewson	¢5.25
What to do when you get your hand on a Microcomputer Hoitzman	69.95
34 More Tested Ready to Run Game Programs in BASIC Horn	¢7.70
COBOL Jackson	¢9.25
Microcomputer Builders Bible Johns on	¢14.75
Digital Circuits and Microcomputers Johnson	£16.95
PASCAL for Students Kemp	¢6.95
The C - Programming Language Kernighan	¢19.25
The 2x81 Companion Maunder	$\underline{¢ 9.50}$
Guide to Good Programming Practice Meek	¢9.50
Principles of Interactive Computer Graphics Newman	E13.75
Theory and Practice of Microprocessors Nicholas	E11.45
Exploring the World of the Personal Computer Nilles	£12.95
Microprocessor Circuits Vol. 1. Fundamentals	
and Microcontrollers Noll	¢9.80
Beginner's Guide to Microprocessors Parr	¢5.35
Microcomputer Bas ed Design Peatman	£11.45
Digital Hardware Design Peatman	£10.75
BBC Micro Reavealed Ruston	¢9.45
Handhook of Advanced Robotics Safford	£14.45
1001 Things to do with your own personal computer Sawusch	88.50
Easy Programming for the ZX Spectrum Stewart	¢7.45
Microprocessor Applications Handbook Stout	£46.45
Handbook ol Microprocessor Design and Applications Stout	£46.45
Programming the PET/CBM West	¢16.40
An Introduction to Microcomputer Technology Williamson	¢8.20
Computer Peripherals that you can build Woifo	¢14.75
Microprocessors and Micracomputers for Enginearing Students and Technicians Wooland	£7.10
REFERENCE B00KS	
Electronic Enginears' Handbook Fink	£66.60
Electronic Designers' Handbook Giacoletto	£77.75
Illustrated Oictionary ol Microcomputer Technology Hordeski	¢8.45
Handhook for Electronic Engineering Technicians Kauffman	¢40.50
Handbook of Elactronic Calculators Kauftman	£35.00
Modern Electronic Circuit Reference Manual Marcus	£51.95
International Transistor Selector Towers	£14.50
International Microprocessor Selector Towers	£16.00
International MOS Power and other FET Selector	£10.95
International Digitalic sefector Towers	£10.95
International Op Amp Linear IC Selector Towers	¢9.50
Illustrated Dictionary of Electronics Turner	$\underline{19.75}$
VIDEO	
Sorvicing Home Video Cassette Recorders Hobbs	¢14.50
Complate Hendbook of Videocassette Recordars Kybett	£10.50
Theory and Servicing of Videocassette Recorders McGinty	£13.50
Beginner's Guide to Video Matthewson	¢5.35
Video Recording: Theory and Practice Robinson	¢16.00
Video Handbook Van Wezel	£24.00
Video Techniques White	£14.45

Getting Acquainted with your VIC 20 Hartnell Getting Acquainted with your 2X81 Hartnell

Let your BBC Micro Teach you to program Hartnell

The ZX Spectrum Explored Hartnell

How to Design. Build and Program your own working omputar Systom haviana
40.50

BASIC Principles and Practice of Microprocessors Heffer Hints and Tips for the $\mathbf{2 X 8 1}$ Hewson
What to do when you get your hand on a Microcomputer Holtzman 34 More Tested Ready to Run Game Programs in BASIC Horn COBOL Jackson
le Johnson PASCAL for Students Kemp
The C - Programming Language Kernighan The $2 x 81$ Companion Maunder
Guide to Good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Thery and Practice of Microprocessors Nicholas Microprocessor Circuits Vol. 1. Fundamentals
and microcontroilers Noll
69.80

E5.35
£10.75
ع9.45
$\$ 14.45$

AEFERENCE B00KS

- Electronic Engin eirs' Handbook Fin
\qquad Handbook for Electronic Engineering Technicians Kauffman Handbook of Elactronic Calculators Kauffman Modern Electronic Circuit Reference Manual Marcus International Transistor Selector Towers International MOS Power and other FET Selector international Digitalic Selactor Towers tomational op arap Linear iC Selector Towers Hustrated Dictionary of Electronics Turner

Video Techniques White

Please send me the books indicated. I enclose cheque/postal order for f. Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.
\square

Signed.
\qquad
Address

PCB FOIL PATTERNS

Two of the foil patterns held over from last month, the Data Logger board (left) and the Digital Framestore ADC/ DAC board (below).

The top and bottom foils of the Digital Delay Line Expansion board, held over from last month.

The ParaGraph Equaliser input stage and main signal path board.

The ParaGraph Equaliser filter board.

The ParaGraph Equaliser balanced output, tape buffers and regulated supply board.

The THD and millivoltmeter board for the Distortion Meter.

The Distortion Meter mains power supply board.

The Distortion Meter single battery supply board.

The Distortion Meter spot frequency oscillator board.

FOIL PATTERNS

The Voltage Controlled Digital Oscillator board.

The preamplifier and regulator board for the combo.

FOIL PATTERNS

©

The top and bottom foils for the Digital Framestore memory card.

In order to ensure that you get the correct board，you must quote the reference code when ordering． The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．

ㅁ	E／8106－8 Waa－Phase．．．．．．．．．．． 1.76
ㅁ	E／8106－9 Alien Attack．．．．．．．．．．．． 4.00
\square	E／8107－1 System A－Input （MM or MO．．．．．．．．．．．．．．．．．．．．．． 3.05
\square	E／8107－2 System A－Preamp ．．．． 5.95
－	E／8107－3 Smart Battery Charger ．．． 2.27
\square	E／8108－5 Watchdog Home
	Security（2 boards）．．．．．．．．．．．．．6．11
\square	E／8109－1 Mains Audio Link（3 bds）．．． 8.45
＇	E／8109－4 Laboratory PSU ．．．．．．．．． 5.21
ㅁ	E／8110－1 Enlarger Timer．．．．．．．．．． 3.91
\square	E／8110－2 Sound Bender．．．．．．．．． 3.05
\square	E／8111－1 Voice Over Unit ．．．．．．．． 4.57
－	E／8111－3 Phone Bell Shifter．．．．．． 3.4
ロ	E／8112－4 Component Tester．．．．．．．1．71
1982	
	E／8202－2 Allez Cat Pest Repeller．． 1.93
\square	E／8202－5 Moving Magnet Stage ．．． 4.01
\square	E／8202－6 Moving Coil Stage ．．．．．． 4.01
\square	E／8203－4 Capacitance Meter
	（2 boards）．．．．．．．．．．．．．．．．．．．． 11.66
\square	E／8205－1 DV Meg ．．．．．．．．．．．．． 3.13
\square	E／8206－1 lon Generator（3 bds）．．．． 9.20
	E／8206－4 MOSFET Amp Module ．， 7.80
\square	E／8206－5 Logic Lock．．．．．．．．．．． 3.52
\square	E／8206－6 Digital PWM ．．．．．．．．． 3.84
\square	E／8206－7 Optical Sensor ．．．．．．．． 2.00
	E／8206－9 Oscilloscope（4 bds）．．．． 13.34
\square	E／a212－2 Serve Interface（2 bds）．．．6．75
	E／8212－4 Spectracolumn ．．．．．．．． 5.54
1983	
ㅁ	E／8301－1 Fuel Gauge．．．．．．．．．．． 3.45
\square	E／8301－2 ZX ADC．．．．．．．．．．．． 2.5 .59
\square	E／8301－3 Programmable PSU．．．． 3.45
\square	E／8303－1 SoundBoard ．．．．．．．．． 12.83
\square	E／8303－2 Alarm Module．．．．．．．．． 3.62
\square	E／8303－3 ZX81 User Graphics ．．．．1．07
\square	E／8303－4 Logic Probe．．．．．．．．．． 2.50
\square	E／8304－1 Real Time Clock ．．．．．．． 8.74
\square	E／8304－4 Stage Lighting－Main ．． 13.73
\square	E／8304－5 Stage Lighting－Display 3.45
－	E／8305－1 Compressor／Limiter ．．．．6．19
\square	E／3305－2 Single PSU．．．．．．．．．．． 3.16
\square	E／B305－3 Dual PSU ．．．．．．．．．．．．．． 4.01
\square	E／8305－4．2 WDFL Amp ．．．．．．．．． 7.88
\square	E／8305－5 Balance Input Preamp．．． 3.23
－	E／8305－6 Stage Lighting
	ade．．．．．．．．．．．．．．．．．．．．．．．．． 6.19

1984
E/8401-1 Vector Graphics......... . 8.27
E/8402-1 Speech Board
(Mini-Mynah)
10.97
E/8402-2 MP (Modular Preamp) Disc
input (mono) 3.73
E/8402-3 MP Output stage (stereo) 3.73
E/8402-4 MP Relay/PSU............ 3.73
E/8402-5 MP Tone, main (mono) ... 3.73
E/8402-6 MP Tone, filter (stereo) . . . 3.73
E/8402-7 MP Balanced output (st) .. . 3.73
E/8402-8 MP Headphone amp (st) ... 3.73
E/8402-9 MP Mother board 9.01
E/8403-1 Power Meter 5.81
E/8403-2 Z80 DRAM. 9.79
E/8403-3 Obedient Die 3.76
E/8404-1 School Timer 4.07
E/8405-1 Auto Light Switch......... 4.01
E/8405-2 ZX81 EPROM Prog. 10.53

	Centronics Interface ．．．． 4.09
\square	E／8405－5 Vario ．．．．．．．．．．．．．． 6.62
\square	E／8405－6 Midi Drum Synth ．．．．．．．． 3.59
\square	E／8406－1 Oric EPROM Bd．．．．．．． 19.58
\square	E／8406－2 Spectrum Joystick ．．．．． 3.30
口	E／8407－1 Warlock Alarm ．．．．．．．． 8.19
	E／8408－1 Joystick Interface．．．．．．． 3.07
口	E／8408－2 EPROM Emulator．．．．．． 9.11
\square	E／8408－3 Infrared Transmitter ．．．．． 3.70
\square	E／8408－4 Infrared Receiver ．．．．．．． 3.98
	E／8408－5 CMOS Tester．．．．．．．．．． 4.60
\square	E／8409－1 EX42 Kybd．interface ．．．． 3.82
－	E／8409－2 Bansheee Siren．．．．．．．．． 3.19
\square	E／8409－3 Dry Cell Charger．．．．．．．． 2.80
	E／8410－1 Echo Unit．．．．．．．．．．．． 3.92
	E／8410－2 Digital Cassette ．．．．．．． 9.80
	E／8410－3 Disco／Party Strobe ．．．．． 4.80
	E／8411－1 AM／FM Radio（4 bds）．． 13.02
	E／8411－2 Control Port－control bd 12.15
	E／8411－3 Control Port－1／O bd ．．．．． 6.33
	E／8411－4 Capacitance Meter．．．．．． 3.55
	E／8411－5 Video Vandal（3 bds）．． 12.10
	E／8411－6 Temperature Controller．．． 2.88
	E／8411－7 Mains Failure Alarm．．．．． 2.54
	E／8411－8 Knite Light ．．．．．．．．．．． 3.25
	E／8411－9 Stage Lighting Interface．．． 3.73
	E／8411－10 Perpetual Pendulum ．．． 3.14
	E／8412－1 Spectrum Centronics ．．．． 3.51
	E／8412－2 Experimenter＇s DRAM．．． 14.08
	E／8412－3 Active－8：Motherboard．．． 9.3
	E／8412－4 Active－8：Protection Unit 3
	E／8412－5 Active－8：Crossover
\square	E／8412－6 Active－8：LF EQ ．．．．．．．． 3.67
－	E／8412－7 Active－8：Equaliser．．．．．． 3.67
	E／8412－8 Active－8：Delay Unit．．．．． 3.67
1985	
－	E／8501－1 Active Bass Speaker
－	E／8501－2 DRAM Card Update．．．．． 3.66
\square	E／8501－3 Digital Delay（2 bds）．．． 26.00
\square	E／8502－1 Digital Delay Expander．． 10.79
\square	E／8502－2 Data Logger ．．．．．．．．． 5.17
\square	E／8503－1 Combo preamplifier．．．．． 4.49
［	E／8503－2 THD meter mV \＆osc．bds 7.02
	E／8503－3 THD meter mains PSU ．． 3.49
ㅁ	E／8503－4 THD meter battery PSU ．． 1.36
\square	E／8503－5 ParaGraph Equaliser
	IP／MSP \＆OP／PSU bds．．．．．．．．．．．． 9.30
\square	E／8503－6 ParaGraph Equaliser

How to order：indicate the boards required by ticking the boxes and send this page，together with your payment，to： ETI PCB Service，ArgusSpecialist Publications Ltd， 1 Golden Square，London W1R 3AB．Make cheques payable to ETI PCB Service．Payment in sterling only
please．Prices subject to change
without notice．
Total for boards
£．．．．．．．．．．．．．．．．．．．．．．
Add 45p p\＆p

Signed
Name

Address

ELECTRONICS TODAY INTERNATIONAL

CLASSIFIED

Lineage:

40p per word (minimum 15 words) Semi Display: (minimum 2 cms)

£11.00 per single column centimetre
Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements to: Jason Inskip
ASP Ltd.,
1 Golden Square,
London W1.
$01-4370699$

ALARMS

FOR SALE

100W AMPLIFIER - E9.95 built Or use the same board for 50 W , $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U.SAE for full details to:

ESS AMPLIFICATION Innovation House Guildhall Road, Hull

BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH
Have you got technical books you no longer need OR.Do you need to read th on aw topic? Then EXCHANGE BOOK CLUB can helo YOU
We buy and call previously
we buy and sell previously read books on electronics and computing details of our guaranteed buy anc plan SAE please to:-
JAMES ELECTRONICS, P.O. Box 2 Rothwall, Leeds LS28 OUY

KIA RETURN AN AD NO.18.
new quality Japanese Poweramps + DATA. 100 watt/£6.95 $200 \mathrm{~W} / \mathrm{\Sigma} 11.95$ + This advert - KIA 8, Cunliffe Rd., Ilkley, LS29 9DZ... FREE . . V/C - AH-SO!!!

POWERTRAN CORTEX COMPUTER Built and tested nine months old including disc controller and RS232 \& I.C. Bases for Exbus £295 o.n.o. Bookham 037258748 evenings \& weekends.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music telekinetics. Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

TEST EQUIPMENT

TOP PRICES PAID
for surplus electronic test equipment.
ALWAYS a good selection of SIG-GENS, METERS, and 8COPES for sale. Phone 0920-8714301

MISCELLANEOUS

AGENTS

Wanted to Sell Computer Software for most computers. We now have the Dialog Electronics Part lin stock, Pools Winner \& Course Winner. We can supply business sottware, games anmd computer ad ons. Phone \{0288) 4179 up lo 9 pm most nights for your free list and details about our agents.

TO FILL
THIS SPACE
PHONE JASON
ON 01-437 0699

CORTEX COMPUTERS (E.T.I.)
Powertran), cased, with RS232C. Fast, powerful. £195. Delivered. Andrews 0963-70587, evenings, weekends.

SㅋNNTT
 Alarm Systems
 FREE COMPREHENSIVE CATALOGUEI
 LOWEST DISCOUNT PRICES - HIGHEST QUALITY EOUIPMENT
 - FREE DIY DESIGN GUIDE
 - FULLY ILLUSTRATED - MCROCHIP CIRCUITRY - QUKCK DESPATCH SERVICE - FULL NSTRUCTIONS
 SEND SAE OR PHONE
 CTEC SECURITY. Dept E 60 Markel Sl. Wigan WN1 Telephone (0942) 42444

HOME GUARD SYSTEMS

If you want professional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our free illustrated catalogue.

Tel: 01-651 2449

Freepost, South Croydon Surrey CR2 9PU
(no stamp required)

KITS

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft . Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 9$12 v$ operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. $£ 6.95$ inc; or ready built £8.95: Same day despatch - Zenith Electronics, 21 patch - Zenith Electronics, 21
Station Rd., Industrial Estate, Hailsham, E. Sussex BN27 2EW.

MICROBUG $140 \mathrm{~mm} \times 370 \mathrm{~mm}$. Extremely sensitive, powerful. Operates from 1.5 V battery ready built tested only $£ 16.50$, (in kit form £11.50). Also available Automatic Telephone recorder built tested £18.50, (in kitform £13.50). Allfully guaranteed. Send cash, cheque, or P.O. to: Shah Electronics, 11 Livingstone Rd., Southall, Middlesex, UB1 1PH.

PLANS 'N DESIGN

LINSLEY HOOD DESIGNS LOW DISTORTION AUDIO SIGNAL GENERATORS

A0113 Kit (.02\% distortion) e2s : P.P. A0149 Kit (.0015\% distortion) E3s $\mathbf{E 2 . 0 0}$ Super Hi-Fi Ampliter (ETI) P.C. Boards from $\mathbf{E 4}$

Send S.A.E for further details:
TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01 -807 3719

ECOLIGHT (ETI July 84) deters burglars from even attempting a break in. Full kit of parts as per article £21.05. p.c. Only £4.50. Reprint of article 75p. G.P. Electronics, 87 Willowtree Ave., Durham DH1 1DZ.

SERVICES

P.C.B. DESIGN \& LAYOUT, manually taped artwork professionally produced at competitive prices. James Gledhill. Tel: 01-674-8511.
PRINTED CIRCUIT BOARDS manufactured to your specification. Quality, Quick service. Competitive Prices. COPPER-CLAD fibreglass boards cut to size. 1 mm thick $£ 1.80 \mathrm{sq}$. ft. $1.6 \mathrm{~mm} £ 2.20 \mathrm{sq}$. ft. Postage 75 p. Mondo Circuits Lid, 35 Grosvenor Road, Twickenham, Middx. Tel: 01-8915412.

JBA
 ELECTRONICS

Manufactures todesign or specifications. One offs. small batch prototypes. Analogue digital electronic equipment. Complete electronic service - no job to smali.

1st Floor, 4a Lion Yard
Brecon. Powys, South Wales
Tel: (0874) 611177
FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

SCOPES

Repaired \& recalibrated, alr makes, all models.
Scopex Safgan, Older TEK, TQ
MENDASCOPE LTD
Otter House
Western Underwood, Olney Bucks MK46 5JS
Tei: Bedford (0234) 712445
HEATHKIT. U.K. spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Gios. Tel (0684) 73127.

FREELANCE
ELECTRONICS ENGINEER

* QUALIFICATIONS
* H.N.C.; M.O.D. training

ANYTHING CONSIDERED

* SPECIALITY * Drafting and P.C.B. artwork, board productions and assembly.
FAULT FINDINE AND TESTING UNDEATAKEN HIGHEST QUALITY WORK * FULL COOPERATION. Greg Heath, ‘Pickwick’. No 6 Hillbarn, Sanderstead, Surrey, CR2 ORU

COMPONENTS

Betatran Electronics Supplies

Toroidal transformers primary 250 V secondaries $0-40,0-40 \mathrm{~V}, 0-50,0-50 \mathrm{~V}$, $0.55,0-55 \mathrm{~V}, 0-70,0-70 \mathrm{~V}$ at 300 VA £17.55, $500 \mathrm{VA} £ 24.70,625 \mathrm{VA}$ £ 30.50 . Can Eectolytics $63 \mathrm{~V}, 8600 \mathrm{uF}$ SA $284.35 .10,000 \mathrm{uF}$ 7A £5.45. 100 V 6800uF 8 A £6.23, 4700uF 8A £5.50. 3300uF 7A £4.20. 2200uF 7A 83.00. Computer Grade 10,000uF 15A £14.69. MOS-FETs 2SJ $50 / 25 \mathrm{~K} 135$ £Q.50. 2SJ83/2SK 227 £8.20 price per pair. 35A 2S.J83/2SK 227 £8.20 price per pair. $35 A$
200 V bridge rectifiers $£ 3.25$. VAT inclusive $£ 1.00$ p\&p under $£ 7.00$. Full spec. many $£ 1.00$ p\&p under $£ 7.00$. Full spec. many
more. Resistors, capacitors, trasnistors, more. Resistors, capacitors, trasnistors,
heatsinks, amplifiers, speakers, transforheatsinks, amplifiers, speakers, transformers, etc. Send 4×9 self addressed envelope for large list.
Laver SL, Cavendiesh, Suffolk CO108AP. Tet: 0787280639.

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-of-post service

Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6. Phone(01)0001 if England 987507 Mail order only please

CHEAP CASES

Absolute bargains, rack mounting \& tree standing. NEW, but manufacturers seconds. No damage.

Send s.a.e. for list.
C. Phitlps, 'The Leurels' Tiptoe Road

Wooton, New Millon, Hants BH25 5S. MAIL ORDER ONLY

VAT inclusive price list. LSTTL, from 28p, CMOS from 23p, Transistors, Resistors, Capacitors and more. Phone or write (0283) 703071. Hunt Electronics, P.O. Box 57, Derby, DE6 6SN.

TO FILL

THIS SPACE,
PHONE JASON
ON 01-437 0699

RESISTORS CAPACITORS 1,000 mixed carbon film $1 / 3 \mathrm{~W}$, $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 2 \%, 5 \%, 10 \%$ resistors £2.95. 50 mixed ceramic tube capacitors £1.00. P\&P 50p. D.J. Hooker, Romney Marsh Electronics, Pennywood, Clark Road, Greatstone, Romney Marsh, Kent TN28 8PB.

WIRES 'N CABLES THE SCIENTIFIC
WIRE COMPANY 811 Forest Road, London E17 ENAMELLED COPPER WIRE

LLEDCOPPER					
8-34	3.6	2.09	1		
-	5.				
44-47	15	9			
48	15.96	9.5			
SILVER-PLATED COPPER WIRE					
ER					

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

EDUCATIONAL
 IMPROVE YOUR PROSPECTS
 with skills that employers want - learn the easy way with modern home shudy courses from ideal Schools.
 MODERN ELECTRONICS Train for success in the fastest ever growing industrial sector.
 COMPUTER PROGRAMMING
 The demand for Programmers is increasing constantiy - don't miss out! For free booklet witte today to
 IDEAL SCHOOLS (Rel. ETD2) 60 St. Enoch Sq Glasgow G1 UK.
 MICROCOMPUTER REPAIRS

ZX SPECTRUM. Vic20,C64, BBC, QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785 .

PLANS 'N DESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

TODONS

TANGERINE OWNERS at last 2 **6809** C.P.U. board with expandable monitor in colour. FLEX compatible. Also 14K RAM card to free EPROM space on TANEX S.A.E. For details . . . Ralph Allen Engineering; Forncett-End, Norwich. Tei: $(095389) 420$.

WHOLESALE. Electronics components price list now ready. No min. Order quantity. Send SAE or call JPG Electronics, 276 Chatsworth Road, Chesterfield S40 2BH.

```
EPROM COPIER - STAND ALONE
    2716-27128_.......... E175.00
TELEPHONE CONVERSATION
    RECORDER ............. £75.00
2 LINES INTO 1 ANSWERING
    MACHINE
    Switching Unit .......... £30.00
        From L.K.F. Systems Ltd
        St. Albans. Tel: 55084
```


CLASSIFIED ADVERTISEMENT ORDER FORM

Rate 40 p per word (min 15 words)
Post to: ETI, 1 Golden Square, London W1

Please use BLOCK CAPITALS and include post codes. Classification

Name (Mr/Mrs/Mias/Ms)
(datate accoranigyl)
Address.......................

Signature. \qquad
Daytime Tel. No.

ADVERTISERS INDEX ETI, MARCH 1985

B.K. Electronics 27
Bi Pak 12
BNR\&ES 53
Cambridge Learning 34
Cambridge Microcomputer Centre 41
Cricklewood Electronics 10
Crimson Elektrik Stoke 58
Cybernetic Applications 34
Display Electronics 28
Electrovalue 63
Greenbank 34
Greenweld 63
Henrys Audio Electronics 47
I.C.S. 63
ILP 52
Kelan Engineering 48
Kemplant 58
Magenta Electronics 33
Maplin 53, OBC
Micro Processor Engineering 58
Midwich 20-21
Newrad Instrument Cases 41
Powertran IFC, IBC
P.F. Ralfe 62
Rapid Electronics 6
Riscomp 33
RTVC 48
RVM Audiotronics 48
Ship Co. 42
Skybridge 41
SME 58
Sparkrite 42
Stewart of Reading 33
System Electronique. 74
TK Electronics 8
Technomatic Ltd 14-15
Watford Electronics 4-5
If an advertisement is wrong wére here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below. The Advertising Standards Authority. V ASA Ltd, Dept 3 Brook House, Torrington Place, London WCIE 7HN

Please mention E.T.I. when replying to all adverts

YOU'LL ENJOY THE EXPERIIENCE

GENESIS P102
MK 2 Irom Hydraulic Robot System from £1625

GENESIS

CORTEX II 16 bit microcomputer Ready-Built

HEBOT II Robot Turtle From $£ 95.00$

MICROGRASP
Electric
Robot
from £215

Powertran's educational robots and the remarkable Cortex microcomputer have been tried and tested in universities, colleges, schools and homes throughout the world.
Our own experience in the field of electronics kits has been supplemented by the Feedback Group's 25 years of supplying technical equipment to the Educational sector. Our first year as a member of the Group has seen numerous improvements to our already popular products.
All the products illustrated can be supplied either factory-built or in kit form for added economy Contact our Sales Office for details.
(Prices quoted are exclusive of VAT and apply to the UK only.)

From a gentle purr to a mighty roar, the tightly controlled power of the beast is yours to command!

PROFESESONAL OUALITY HGH POWERLOUISPEAKERS

A new range of superb quality loudspeakers.

* Virtually indestructible high temperature voice-coil reinforced with glass-fibre
* 100\% heat overload tolerance
* Advanced technology magnet system
* Rigid cast alloy chassis
\star Linen or Plastiflex elastomer surrounds
* 5 -year guarantee (in addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16 Ω impedances and with input powers ranging from 50 W to 300 W e.g.
5 in. $50 \mathrm{~W} 95 \mathrm{~dB} 8 \Omega$: XG39N/16s: XG40T £17.95§
$8 \mathrm{in} .100 \mathrm{~W} 98 \mathrm{~dB} 8 \Omega$: XG43W $£ 29.95 \S$
10 in . $100 \mathrm{~W} 100 \mathrm{~dB} 8 \Omega$: XG46A £29.95§
12in. 100W 101dB 8 Ω : XG49D £29.95§
12 in . Twin Cone 100W 100dB 8 2 : XG50E / 16л : XG51F £31.95§
Note - the output power doubles for each $3 d B$ increase (ref $1 W(a 1 m)$,

PREGESON GOLD MULTIMETERS

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, $2000 \Omega /$ VDC/AC $£ 6.95 \S$ (YJ06G)
$\mathrm{M}-102 \mathrm{BZ}$ with Continuity buzzer, battery tester and 10ADC range, 23 ranges, $20,000 \Omega$ N DC $£ 14.95 \S$ (YJ07H)
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges 20,000 $2 / \mathrm{N}$ DC $£ 19.95 \S$ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak AC, centre-zero and 12A AC $D C$ ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20s and $20 \mu \mathrm{ADC}$ AC FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S(\mathrm{YJ10L})$
N.B. All our prices include VAT and Carriage. A 50 p handing charge must be
added if yourtotal order is less than $£ 5$ on mail order (except catalogue). added if yourtotal order is less than $£ 5$ on mail order (except catalogue).

MAPLIN ELECTRONIC SUPPLES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith. W6 Tel: 01-7480926
- MANCHESTER 8 Oxford Road, Tel: 061-236 0281.
- SOUTHAMPTON 46-48 Bevois Valley Road. Tel: 070325831
- SOUTHEND 282-284 London Rd. Westcliff-on-Sea, Essex, Tel: 0702-554000 Shops closed all day Monday,

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue.
(The items below are NOT kits).
\star Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14 (gold from 70p)
\star Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only $£ 58.95$ (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from $£ 77.95$

* Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only $£ 195.00$ (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
\star Detailed descriptions of the exciting new 74 HC range of IC's which combine the advantages of CMOS and TTL. From 46p
\star Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N)

79 keys, only £37.95 (YJ13P)
$\star 1 \%$ Resistors now $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only 2 p each!

* Auto transformers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, £ 10.75 \S$ (YJ56L). 100VA £14.95§ (YJ57M). 150VA £16.95§ (YJ58N). 250VA £21.95§ (YJ59P).
\star Digital Clinical Thermometer. Only $£ 13.95$ (FK51F)

© Phone before 2pm for same day despatch.

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue.
Price $£ 1.35+40$ p post and packing. If you live outside the U.K. send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$.

Name
Address ${ }^{\circ}$

[^0]: A complete kit for the Voltage Controlled Digital Oscillator including all components noted in the parts list and a suitably programmed EPROM is available from Digisound Limited, 14/16 Queen Street, Blackpool, Lancs. FY1 1PQ for $£ 47.75$ inclusive of $P \& P$ and VAT. A front panel as featured is available for $\boldsymbol{£ 3 . 8 0}$ fully inclusive.

[^1]: enclose Postal Order/Cheque/Access/Barciaycard No
 for E \qquad Kit Ref
 Prices inlcude VAT, Postage and Packing.
 SPARKRITE, Charles Street, Walsall, West Midlands W/S2 9XIW.
 Telephone: 10922) 614791. Allow 28 days for delivery

