

YOULL ENJOY THE EXPERIINCE

Powertran's educational robots and the remarkable Cortex microcomputer have been tried and tested in universities, colleges, schools and homes throughout the world.

Our own experience in the field of electronics kits has been supplemented by the Feedback Group's 25 years of supplying technical equipment to the Educational sector. Our first year as a member of the Group has seen numerous improvements to our already popular products.
All the products illustrated can be supplied either factory-built or in kit form for added economy Contact our Sales Office for details.
(Prices quoted are exclusive of VAT and apply to the UK only.)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET Tel: 026464455

Dave Bradshaw: Editor Phil Walker. Project Editor Ian Pitt: Assistant Editor Jerry Fowler: Technical Illustrator Paul Stanyer. Ad. Manager Kerry Fowler. Copy Control Jim Connell: Chairman

PUBLISHED BY:
Argus Specialist Publications Ltd., 1 Golden Square, London W1R 3AB DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A, 4JS
(British isles)
PRINTED BY:
The Garden City Press Ltd.
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY:
Alabaster Passmore.

OVERSEAS AUUSTRALIA - Roger Harrison
EDITIONS CANADA - Halvor Moorshead
and their GERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

$$
\text { ABC } \begin{aligned}
& \text { Member of the } \\
& \text { Audit Bureau } \\
& \text { of Circulation }
\end{aligned}
$$

Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright convenPublications Limited and any reoroduction requires the prior written corisent of the Company. © 1984 Argus Specialist Publications Ltd All reasonable care is Specialist Pubrications Ltd All reasonable care is the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed tor press.
\square Subscription Rates, UK $£ 15.00$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1 R 3AB. Telephone 01-437 0626.
Telex 8811896.

FEATURES

DIGEST
 . .9

Newsworthy nosh.

DESIGNING MEMORY

Phil Walker recalls designing the 64 K DRAM Card.

TECH TIPS .. 28
Another selection of crafty circuits, helpful hints and design dodges from our readers.

READ/WRITE

42Contrary to popular belief, not all of the letters we receive go straight in the waste bin.

DESIGN INTEGRATED CIRCUITS ON YOUR MICRO
 .52 Go IC on your PC.

PROJECTS

DIGITAL DELAY LINE

EXPANSION................................... 24
Keeps you waiting that little bit longer.

PARAGRAPH EQUALISER............. 31
There aren't many paragraphs to equal Barry Porter's when it comes to appalling humour.

DISTORTION METER
John Linsley Hood brings you the ungarbled truth about distortion measuring.

DATA LOGGER.
Chop your analogue signals up into little bits and then squirrel them away.

FRAMESTORE

.55
The third part of ETI's answer to Channel Four - a device that will keep showing the same old TV pictures.

My God! It's not the picture that's seized up - its Des Lynam! (With apologies to sporting media megastar)

INFORMATION

ETI BOOK SERVICE 6
READER'S SERVICES 7
PCB FOIL PATTERNS 60
ETI PCB SERVICE. 59

 63
ADVERTISERS' INDEX 66

WATFORD ELECTRONICS

33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND

MAIL ORDER, CALLERS WELCOME

Tel. Watford (0923) 37774/40588 Telex. 8956095
ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFIÇIAL ORDERS WELCOME P\&P ADD $75 p$ TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGE AT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

VAT

Export orders no VAT. Applicable to U.K. Customers only. Unless stated othewise
all prices are exclusive of VAT. Please add 15% to the total cost including P\&P Nearest Underground/BR Statlon: Watford High Street.
Open Monday to Saturday: 9.00am to 6.00pm. Ample Free Car parking space available.

ELECTROLYTIC CAPACITORS; (Values in UF) 500V, IOUF52; 47 78p; 63V 0 47, 10, 1.5.2.2, 3.3. 4.78p 1010 15, $2212 \mathrm{p} ; 3315 \mathrm{p} ; 47$ 12p; 68 20p; 100 19p; 220 26p; 1000 70p; 2200 99p; 50 V . 68 20p; $10017 \mathrm{p} ; 22024 \mathrm{p}$
 16p: 470 20p; 680 34p; 1000 27p; 1500 31p, 2200 26p; 470072 p.
TAG-END CAPACITORS: 64V: 2200 139p; 3300 198p; 4700 245p; 50V: $2200110 \mathrm{p} ; 3300$ 184p; 4OV: 4700
180p; 25V: 2200 90p; 3300 98p; 4000; 4700 98p; 10,000 320p; 15,000 345p; $16 \mathrm{~V}: 22,000$ 350p. 180p; 25V: $220090 \mathrm{p} ; 330098 \mathrm{p} ; 4000,4700$

 POLYESTER RADIAL LEAD CAPACITORS: 250V
$10 n, 15 n, 22 n, 27 n 6 p ; 33 n, 47 n, 68 n, 100 n 8 \mathrm{P} ; 150 \mathrm{n}, 220 \mathrm{n}$
FAPD-THROUGH 10 p ; 330n, 470 15p; 680 n 19p; $1 \mathrm{u5} 40 \mathrm{p}$; $2 \mathrm{u} 24 \mathrm{4p}$.

10,
SILV
$2,3,3$
22,2
85.1
200.
390
100
330
M

$22,27,33,39,47,50,56,68,75,82$ $22,1,33,39,47,50.56,68,75,82$,
$86.100,10,150,180 \mathrm{pF} 15 \mathrm{p}$ each $200.220,250,270,300,330,360$,
$390,470,800,800,820 \quad 21 \mathrm{p}$ each
$\begin{array}{|rr|}100,1200,1800,2200 & 30 p \text { each } \\ 3300,4700 \mathrm{pF} & 80 \mathrm{p}\end{array}$
$2-6 \mathrm{pF}$
2-10pF 22 p . $10-88 \mathrm{pF} 36 \mathrm{p}$.
RESISTORS Carbon Film, miniature, Hi-Stab, 5\%
0.5 W
1W
2\% Metal Film
1% Metal Film$100+$ price applies to Resistors of each type not mixed.
\qquad
10K, 47K, $100 \mathrm{~K} \quad 25 \mathrm{p}$
$10 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ 25p
Commoned. (8 pins) $150 \Omega, 180 \mathrm{n}, 270 \Omega, 330 \Omega, 7 \mathrm{~K}$,

TRANSISTORS

electronics today international sock sing ce=

How to order: Indicate the books required byticking the boxes and send this page, together with your payment, to: ETIBook Service,
Argus Specialist Publications Ltd. $1, G o l d e n$ Square, London $W 1 \mathrm{R} 3 \mathrm{AB}$. Make cheques payable to ETIBook Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson	55.35
Beginner's Guide to Digital Electronics	E5.35
Beginner's Guide to Electronics	55.35
Beginner's Guide to Intagratad Circuits	E5.35
Beginner's Guide to Computers	$\underline{55.35}$
Beginner's Guide to Microprocessors	E5.35

cooksooks

Master IC Cookbook Hallmark	£10.15
Microprocessor Cookbook M. Hordeski	¢9.50
IC Op Amp Cookbook Jung	¢15.10
PLL Synthesiser Cookbook H. Kinley	£7.70
Active Filter Cookbook Lancaster	¢14.30
TV Typewriter Cookbook Lancaster	¢12.50
CMOS Cookbook Lancaster	E13.50
TTL Cookhook Lancaster	E13.50
Micro Cookhook Vol. 1 Lancaster	£15.30
BASIC Cookbook K. Tracton	$\mathrm{f6.00}$
MC600 Cookbook C. Warren	£7.25

ELECTRONICS

COMPUTERS \& MENOCOMPUTERS
BASIC Computer Games AhI £6.35
UNIX - The Book Bananam 11.30
280 Microcomputer Handhook Barden ع15.05
Digital Computer Fundamentals Bart $\varepsilon 11.90$
Visicalc Book. APPLE Edition Bell f1555
introduction to Microprocessors Brunner £15.55
Programming your APPLE II Computer Bryan £9.25
Microcomputer Interfacing Handbook A/D \& D/A Carr ع 8.50
Nusical Applications of Nicroprocessors Chamberlain E28.85
Microcomputers Dirkson £9.30
Microcomputers/Microcomputers - An Intro Gioone $E 9.5$

Troubleshooting Microprocessors and Digital Logic Goodman	¢11.25
Getting Acquainted with your VIC 20 Hartnell	88.50
Getting Acquainted with your $\mathbf{2 X 8 1}$ Hartnell	£5.95
Let your BBC Micro Teach you to program Hartnell	£7.95
Programming your XX Spectrum Hartnell	¢8.50
The ZX Spectrum Explored Hartnell	£6.95
How to Dasign. Build and Program your own working Computer Systom Haviland	¢10.50
BASIC Principles and Practice of Microprocessors Heffer	¢8.00
Hints and Tips for the ZX81 Hewson	¢5.25
What to do when you get your hand on a Micracomputer Holtzman	$\underline{\mathrm{E} .95}$
34 More Tested Ready to Run Game Programs in BASIC Horn	¢7.70
C0B0L Jackson	¢9.25
Microcomputer Builders' Bible Johnson	£14.75
Digital Circuits and Microcomputers Johnson	£16.95
PASCAL for Students Kemp	¢6.95
The C - Programming Language Kernighan	¢19.25
The ZX81 Companion Maunder	$\underline{8.50}$
Guide to Good Programming Practice Meek	$\underline{89.50}$
Principles of Interactive Computer Graphics Newman	¢13.75
Theory and Practice of Microprocessors Nicholas	£11.45
Exploring the World of the Personal Computer Nilles	£12.95
Micraprocessor Circuits Vol. 1. Fundamentals	
and Microcontrollers Noll	£9.80
Beginner's Guide to Microprocessors Parr	¢5.35
Micracomputer Based Design Peatman	£11.45
Digital Hardware Dasign Peatman	£10.75
BBC Micro Reavealed Ruston	19.45
Handbook of Advanced Robotics Safford	£14.45
1001 Things to do with your own personal computer Sawusch	¢8.50
Easy Programming for the ZX Spectrum Stewart	¢7.45
Microprocessor Applications Handbook Stout	$£ 46.45$
Handbook of Microprocessor Design and Applications Stout	£46.45
- Pragramming the PET/CBM West	£16.40
An Introduction to Microcomputer Technology Williamson	¢8.20
Computer Paripherals that you can build Wolfe	£14.75
\square Microprocessors and Microcomputers for Engineering Students and Technicians Wooland	£7.10
REFERENCE BOOKS	
Elactronic Engineers' Handbook Fink	£66.60
Electronic Designers' Mandbook Giacolatto	¢77.75
Illustrated Dictionary of Microcomputer Technolagy Hordeski	¢8.45
Handbook for Electronic Engineering Technicians Kauffman	£40,50
Handbook of Electronic Calculators Kauffman	£35.00
Modern Electronic Circuit Reference Manual Marcus	£51.95
International Transistor Solector Towers	£14.50
International Microprocessor Selector Towers	£16.00
International MOS Power and other FET Selector	£10.95
International Digitai IC Selector Towers	¢10.95
International Op Amp Linear IC Selector Towers	¢9.50
Illustrated Dictionery of Electronics Turner	£19.75
VIDEO	
Servicing Home Video Cassette Recorders Hobbs	£14.50
Complete Handbook of Videocassette Recordars Kybett	£10.50
Theory and Servicing of Videocassette Recorders MicGinty	£13.50
Beginner's Guide to Video Matthewson	£5.35
Video Recording: Theory and Practice Robinson	£16.00
Video Handbook Van Wezel	£24.00
Videa Techniques White	¢14.45

Please send me the books indicated. I enclose cheque/postal order for f. Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.
\square
\square
Signed.
\qquad
\qquad

SERVICE SHEET

Enquiries

We receive a verylarge number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'il discover what's wrong yourself. Please do not send us any hardware (except as a gift!); - Other than through our letters page, Read/ Write, we will not reply to enquiries relating toother types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole; - We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a fulf index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as folldens:	
UK:	£15.00
Overseas:	£17.00 Surface Mail
	\$22.00 Surface Mail (USA)
	£42.00 Air Mail

Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 TBB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).
ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Lid, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire. HP1 18B. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require: the number is (0442) 48432
We would normally expect to have ample stocks of each of the last tweive issues, but obviously, we cannot guarantee this. Where a backnumber provesto be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an article appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in anuary 1982, the 1982 index in December 1982, the 1983 index in January 1984 and the 1984 index in January 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we' re interested and give you all the boring de tails. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give fulf details of the order you sent and when you sent it
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please. don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

ZX81 EPROM Programmer (May 1984)

On the overlay diagram on page 27, the resistance shown between IC9 and IC5 should be R2 not R1, the resitance shown between IC6 and IC7 should be R8 not R5. In the parts list, C1 should be listed as 220 uF not 22 uF ; the circuit diagram gives the value correctly. R3 is marked "see text" but no reference is then made to it it should be chosen to suit the LED used. LED1 is shown reversed on the circuit diagram on page 28 but the connections shown on the overlay diagram are correct The first statement in pro gram 1 on page 30 should read "SET PERSONALITY SWITCHES THEN PRESS CONT".
Spectrum Joystick Interface (June 1984)
The PCB and the circuit diagram do not agree; the circuit diagram is correct, and all PCBs sent out by the PCB service should have been amended. IC3 is 74LS241, as correctly stated in the parts list but incorrectly given in the footnote to the circuit diagram
CMOS Tester (August 1984)
C3 and C2 are reversed on the overlay: C3 is the electrolytic and C2 the polyester. R33 is 100 K , not 1 M as given in the parts list, and RV1 is a 1 M horizontal skeleton preset R1-16 are two, eightresistor SIL packages, the component labelled Cl 4 on the overlay is SK1, and the connections to D2 shown in Fig 3 are reversed. On the circuit diagram, the eight lines connecting SW9-16 to the inverters are shown in reverse sequence. Some of the inverters have been given the wrong designations; the correct sequence ${ }_{\text {a }}$ reading down from the top, is:- IC1 $\mathrm{f}, \mathrm{IC} 2 \mathrm{a}$, IC2 b , IC1 e, IC1d, IC1 c, IC1b, IC1a, IC2c, IC2d, IC2 e, IC3d, IC3a, IC3b, IC3c, IC2f. Finally, the pin numbers are missing from ICs 3 e and f ; the input of IC3e is pin 11 and its output pin 12, and the input of IC3f is pin 14 and its output is pin 15. The PCB is correct in all respects.
Sharp Joystick Interface (August 1984)
Some of the inverter pins are incorrectly labelled on the circuit diagram. Pins 11 and 10 are shown reversed on IC1b, pins 9 and 8 are shown reversed on IC1 c, and the output of IC4 d is pin 10, not pin 20. Note that a number of the inverters have been incorrectly shown as noninverting buffers.
AM/FM Radio (November 1984)
In Fig. 2, the oscillator and IF sections should be shown connected to ground; the PCB is correct. In Fig. 4, C31 should be 10 n to give the 75 us deemphasis shownin Fig. 3, but 4 n 7 has been found to give a brighter midrange. R38 in Fig. 5 should, of course, be 820 k rather than 280 k and it and the bottom end of C38, C44 etc should be shown connected to ground. In the construction section on page 25, four pieces of 8 mm plywood are mentioned but in fact only three are needed - the fourth side is the front panel. See also the note in DecemberNews Digest regarding availability of the inductors.
Digital Control Port (November 1984)
The second sentence in the "Testing" section on page 30 should include the words ' without any ICs in place.' In the second paragraph of that section, the check for +5 V should be made on pin 3 of IC101, not IC1. At the bottom of the first column on page 31 , the last sentence should finish with $\mathrm{B} 3=0$.

Video Vandal (November 1984)

In Fig. 8 on page 54, R16 and R17 should be shown connected to the base of Q4, and C12 and SW2 should be in the D output line rather than the OV line. It may also be be neficial to add a diode across R3 with its anode connected to the slider of RV1. In Fig. 10, R52 and LED2 are shown connected across the +12 V supplybut it is better to place them across the -12 V supply so as to even-up the dissipation in the ICs.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Alliance For Science

Three trade unions concerned with science and technology have got together to form the Alliance for Science, a campaign aimed at promoting expansion in the UK's research and development programmes. The Alliance was launched at a press conference in London on December the 3rd and brings together the

Association of Scientific, Technical and Managerial Staffs (ASTMS), the Association of University Teachers (AUT) and the Institution of Professional Civil Servants (IPCS).
The Alliance has published a pamphlet in which they set out their aims. They want to highlight the decline in research and development spending in this country compared with that of our competitors. They claim that $R \& D$ spending in this country has been growing at a rate of 2.8% a
year compared with 3.3% in France, 4.7% in Germany and 6.4% in Japan. They also want to bring to public attention the damage they believe is being done by spending cuts in the research councils, government research departments and higher education, the crucial role they believe R \& D plays in the regeneration of the economy, and the disastrous effects the economic climate has on investment in innovation. They plan to campaign to reverse the cuts of recent years in public sector R \& D, to ensure that long-term high risk capital is available for private sector $R \& D$ and to improve the links between public sector research bodies and industry and the spin-off of defence $R \& D$ into civil research. Other aims of the
door and it will open automatically after fifteen minutes anyway. I'm sure we're all relieved to hear that.

- Velleman have introduced a tape/slide synchroniser which allows the pulses required for automatic operation of a slide projector to be recorded onto a cassette machine. The kit costs $£ 7.95$ plus VATplus $£ 7.00$ post and packing and is available from Electronic \& Computer Workshop Ltd, 171 Broomfield Road, Chelmsford, Essex CM1 1RY, tel 0245-262149.
- Maplin have brought out the latest issue of their annual catalogue, as bulky as ever and once again with prices on the page. It costs $£ 1.35$ and is available at branches of W.H. Smiths or can be obtained direct from Maplin Electronic Supplies Ltd, P.O. Box 3, Rayleigh, Essex SS6 8LR, tel 0702-554155.

Hand-Held Capacitance Meter

G
SC have introduced a digital capacitance meter designed for hand-held battery operation. Its features include a $3^{1 / 2}$ digit resolution, accuracy to 0.2% of reading, capacitance measurements of 1 pF to $2000 \mu \mathrm{~F}$ and switch selection of capacitance range.
The Model $\mathbf{3 0 0 0}$ has a 0.5 inch high numeric liquid-crystal display with annunciators to indicate low battery and excessive compensation of stray capacitance. Designed to operate with a 9 V battery, it also has a front-panel zero adjust control to permit nulling of stray and incidental capacitance and a tilt stand for easy positioning. Suggested applications include quality control, inspection, production,
alliance include the securing of better national R \& D statistics and fuller disclosure of company data, increased trade union involvement in R \& D decision making and the development of a co-ordinated national science strategy.
The Alliance For Science will be campaigning over the coming months to achieve these aims and plans to make available campaign literature on a number of topics. Those interested should contact either Hilary Tivey at ASTMS, 79 Camden Road, London NW1 9EF, tel 01-267 4422; Paul Cottrell at AUT, United House, 1 Pembridge Road, London W11 3HJ, tel 01221 4370; or Joe Duckworth at IPCS, 75-79 York Road, London SE1 7AQ, tel 01-928 9951.

design, calibration, field service, and systems installation.
The Model 3000 comes complete with a pair of test leads, fuses, battery, and an instruction manual and costs $£ 89.50$ plus £2.50 post and packing plus VAT.
Global Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB113AQ, tel 0799-21682.

> It's Quicker By Snail

Quicker, that is, if you're trying to learn a fast-action computer game. For the snail is the symbol of Slomo, a peripheral which actually slows a micro down, even bringing it to a complete halt if desired, to provide infinitely variable skill levels for games, 'freeze-frame'for displays and slow running for development.
Slomo is available in versions to suit the Spectrum, BBC, Electron and Commodore 64 microcomputers and simply plugs into the user port. For all except the BBC a user port extender is provided; Slomo attaches to the tube output on the BBC and an adaptor is used for second processor connections. A push button selects instant freeze-frame which remains for as long as the button is held down. A second button
selects timer mode and operates in conjunction with the speed control to provide continuous adjustment from normal operation to complete stand-still. An LED indicates when the timer mode has been selected.
Slomo works by setting a Bus Request signal on the system bus. The processor acknowledges this and then does nothing further until the signal is removed. The manufacturers claim that it is compatible with any add-on that does not require the Bus Request signal and that it is totally harmless to the host micro. British and World patent applications are pending in respect of the device.
Slomo is expected to find a wide range of applications. In addition to allowing people to cheat at games it can be used as a
software development aid, enabling graphics to be viewed pixel by pixel and sound to be heard note by note. Educational programmes could be controlled using Slomo to suit particular age groups and displays could be frozen for discussion or special emphasis without program modification. Other advantages include the ability to halt a program during interruptions and the possibility of photographing screen displays using the freeze frame.
Slomo is available by mailorder and costs $£ 14.95$ inclusive of VAT and postage. Customers should remember to state which microcomputer they intend to use it with. Cambridge Computing Research Ltd, 61 Ditton Walk, Cambridge CB5 8QD, tel (trade enquiries only) 0223-214451.

OM POWER AMPLIFIER MODULES

Now enjoy a

world-wide reputation for quality, reliability and performance at a realistic price. Four models available to suit the needs of the professional and hobby market i.e, Industry. Leisure,
Instrumental and Hi -Gi. etc. When comparing prices, NOTE all models include Toroidal power supply, Integral heat sink, Glass fire P.C.B. and Drive circuits to power compatible Vo meter. Open and short circuit proof. Supplied ready built and tested.
 OMP100 Mk II Bi-Polar Output power 110 watts R.M S into 4 ohms, Frequency Responce $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T. HD. 0.01%, S.N.R - 118 dB . Sens. for Max. output 500 mV at 10 K , Size $360 \times 115 \times 72 \mathrm{~mm}$. PRICE $£ 32.99+£ 2.50$ P\&P.
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Responce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80, Slew Rate $45 \mathrm{~V} / \mathrm{uS}, \mathrm{T} . \mathrm{H} . \mathrm{D}$. Typical 0.002%, Input Sensitivity 500 mV . S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE $£ 39.99+£ 2.50$ P \& P
OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Responce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical 0.001%, Input Sensitivity 500 mV . SN.R. 130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE $f 62.99+£ 3.50$ P\&P
OMP/MF300 Mos-Fet Output power 300 watts R.M.S into 4 ohms, Frequency Resposse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical 0.0008%, Input Sensitivity 500 mV , S.N.R. -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE $£ 79.99+£ 4.50$ P\&

早Vo METER Compatible with our four amplifiers detailed above, A very accurate visual display employing 11 L. ED diodes (7 green, 4 red) plus an additional on/ off indicator. Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic
case, with tinted acrylic front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $88.50+$
50 . 50p P\&P
NOTE: Mos-Fels are supplied as standard (100 KHz bandwidth \& input Sensitivity 500 mV). If required,
PA. version (50 KHz bandwidth \& Input Sensitivity 775 mV). Order - Standard or PA. 19" RACK CASED MOS-FET STEREO AMPLIFIERS with twin power supplies and
L.E.D. Vumeters plus X.L.R. connectors. Three models (Ratings RMS into 4 ohms) $\begin{array}{ll}\text { MF200 }(100+100 w) & \mathbf{E 1 6 9 . 0 0} \\ \text { MF400 } & \text { Securicor } \\ \text { De }\end{array}$ $\begin{array}{ll}\text { MF400 }(200+200 w) £ 228.85 & \text { Delivery } \\ \text { MF 600 }(300+300 w) ~ £ 274.85 & f 10.00\end{array}$

LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS R.M.S. All speakers 8 ohm Impedance.
POWER RANGE
POWER RANGE
g" 50 WART RM.
Hi-Fi/Disco.

20 or. magnet 1, detail 6 KHz . Sens. 92 dB P PRICE 9990 Available with black grille $f 1090$. Pes. Freq 40 Hz . Freq. Resp to

50 ez magnet. 2" ally voice coil. Ground ally fixing escutcheon. Die-cast chassis white cone. Res
Free.
 ${ }^{150} 100$ WATT R.M. S. Hi-Fi/Disco
 McKENZIE
McKENZiE
12 " 85 WATT R M.S. C1285 GP Lead guitar/keyboard/Disco.
2" ally voice coil. Ally centre dome Res. Freq 45 Hz Freq. Resp to 6.5 K Hz . Sens. 98 dB . PRICE C 24.99
$+\quad \mathrm{f} 3.00$ P PR ea + 13.00 P\&P ea
12.85 WATT R.
$12 " 85$ WATT R.M.S. C12B5TC P.A./Disco 2" ally voice coil Twin cone.
Res. Freq. 45 Hz Freq. Resp, to 14 KHz , PRICE $\int 24.99+f 300$ P\&P P .
Res. Freq. 45 Hz Freq. Resp. to 14 KHz , PRICE $/ 24.99+f 3.00$ P\&P ea
15 " 150 WATT R.M.S. C 15 Bass Guitar/Disco.
3" ally voice coil. Die. Cast chassis -Res. Freq. 40 Hz .
WEN
$\mathbf{5}$ " 70 WATT R.M.S. Multiple Array Disco et
1"
1" $^{\text {" }}$ voice coil. Res. Freq. 52 Hz . Freq Resp. 105 KKz . Sens 89 dB . PRICE $£ 20.00+£ 1.50 \mathrm{P} \mathrm{\& F}$ ea. $8^{\prime \prime} 150$ WATT R.M.S. Multiple Array Disco etc

1. voice coil. Res. Freq. 48 Hz . Freq. Resp. to 5 KHz
$1 "$ voice coll. Res. Freq. 48 Hz . Freq. Resp. to 5 KHz Sens. 92 dB PRICE $£ 2700+£ 1.50 \mathrm{P} \mathrm{\& Pea}$
$10^{\prime \prime} 300$ WATT T R. S Disco Sound re-anforiement

SOUNDLAB (Full Range Twin Cone)
 $61 / 2 " 60$ WATT R.M.S. Hi Fi /Multiple Array Disco atc.
$1 /$ voice coll. Res Freq 56 Hz . Freq Resp
B" 60 WATT R. MS. Hi-Fi/Multiple Array Disco etc.

HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ ($9 \times$ volt) Price: E8. 62 + 750 PEP.
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt) Price: $£ 13.74+75 p$ P\&F
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/
RECENER 27 MHz , Range up to 500 metres. Double coded modulation.
Receiver output operates relay with 2 amp $/ 240$ volt contacts. Ideal for
many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price:
P\&P + 75p each. S.A.E. for complete list. BODIES. ETC. PRICES INCLUSIVE O
VISA/ACCESS/C.O.D. ACCEPTED.
10 VISA/ACCESS/C.O.D. ACCEPTED.

BURGLAR ALARM

Better to be 'Alarmed' then terrified
Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units. complete with
GUARAN TEED.
GUARANTEED
Control Unit -
Co 1015 metres Houses microwave radar unit, range up 1015 metres adjustable by sensitivity control.
Three position, key operated facial swich-ofil - armed. 30 second exit and entry delay.

Indoor alarm
104 dB output. output. Housed in Electronic swept freq. siren. 98 dB case
Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection during mains failure. Power requirement $200 / 260$ volt buttons etc, Complete with instructions
SAVE $£ 148.00$ Usual Price $£ 228.85$
BK's PRICE $£ 79.99+£ 4.00$ P\&P

UMP LINNET LOUDSPEAKERS

 The very best in quality and value. Made specially to suit todayneed for compactness with high sound output levels. Finished in hard wearing black vynide with protective corners. grille and carry handle. All models 8 ohms. Full Range $45 \mathrm{~Hz}-20 \mathrm{KHz}$. MP $12 / 100$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$ £ 125.00 per pair OM $10 / 200$ watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} \times 145.00$ per pair
UMP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} \mathbf{E 1 6 9 . 0 0}$ per pair
Delivery: Securicor 1800 per pair

STEREO CASSETTE DECK

STEREO CASSETTE DECK
1 K-WATT SLIDE DIMMER
 \star Control loads up
to 1 Kw deal for installing into Disco Surface mounting (HorizontaI). Supplied as one unit with all electronics including mains power supply

* Metal top panel Black finish * Piano type keys including pause
* Normal/Chrome tape switch
\star Twin Vo Meters
- 3 Digit counter
* Slider Record Level control Size $171 \times 317 \mathrm{~mm}$ Depth 110 mm PRICE $£ 35.99+£ 3.00$ P\&P

BS800

* Suitable for both resistance and inductive loads. Innumerable applications in industry, the home, and disco s, theatres etc-
PRICE $f 12.99+75 p$ P\&P

BR P256 TURNTABLE

P256 turntable chassis © S shaped tone arm

- Bet t diver 4 Aluminium
 operation (Hz) - Cut out template supplied Completely manual arm. This deck has a compietely manual arm and is designed primarily
for disco and studio use where all the advan-

Price $£ 33$ mo arm are required.
ADC 04 mag cartridge for above. Price $£ 4$.

PIEZO ELECTRIC TWEETERS MOTOROLA

improved transient response with a lower distortion level than or a piezo sweeter produces an crossover is not required these units can be added to existing speaker systems of up to 100 watts
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER TYPE 'A'(KSN2036A) 3" round with protective wire
 mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price f4.90 each +40 p P\&P.
TYPE 'B' (KSN1005A) $31 / 2$ super horn.
TYPE B (KSN1005A) $31 / 2$ super horn. For general purpose speakers, disco and P.A. systems etc. Price
$\mathbf{f 5 . 4 9}$ each +40 p P\&P. TYPE 'C' (KSN6016A) horn. For quality $\mathrm{HI}_{\mathrm{-}}$ fl systems and quality discos etc Price $£ 6.49$ each $+40 p$ P\& P
TYPE ' D ' (KSN1025A) 2 " $\times 6^{\prime \prime}$ wide dispersion TYPE 'D' (KSN1025A) 2" $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending
down to mid range $(2 \mathrm{KHz})$ Suitable tor high quality down to mid range ($2 \mathrm{KHz}_{z}$) Suitable tor high quality
Hi-fi systems and quality discos. Price $£ 8.99$ each Hi-fi systems
$+40 p \mathrm{P} \& \mathrm{P}$. $+40 p$ P\&P.
TYPE
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor Systems etc Price $£ 5.49$ each +40 p P\&P ing plate, level control and cabinet input jack sock e ing plate, level control and cabinet input jack socket.
$85 \times 85 \mathrm{~mm}$ Price $£ 3.99+40 \mathrm{p}$. outstanding features
5 Muts with individual fader controls:Power Amplifiers

STEREO DISCO MIXER

STEREO DISCO MIXER with 7 band graphic equaliser and 10 segment L.E.D. Vv Meters. Many 2 Mag. turntable. 2 Aux. plus Mic. with talk-over with Hi- Headphone monitor. Master output contr o
Size $360 \times 200 \times 120 \mathrm{~mm}$. Supply $240 \mathrm{~V} / 50 \mathrm{~Hz}$ AC

PRICE E118.00 + £3.00 P8P

B. K. ELEGTROTIOS

NIT 5, COMET WAY, SOUTHEND-ON-SEA
ESSEX. SS2 6TR TEL: 0702-527572

Otter Resurfaces

n our April '84 issue News Digest we featured two oscilloscope accessories manufactured by a British company called Otter Electronics. Since then, the company have got into a bit of hot water because another company had registered the same name, so they have now become Waugh Instruments and appear to be on dry land at last.
The re-born company have introduced two new products and have re-launched the two original products in their new livery. One of the new products is another oscilloscopeaccessory, a calibrator. Waugh claim that it provides all the facilities
necessary for checking and recalibrating oscilloscopes with bandwidths of up to 150 MHz . It has a calibrated amplitude square wave generator for checking input attenuators, a wide range of crystal-controlled timing signals with periods from 10 ns to 5 s , and a 50 Hz and 1 kHz sine wave generator for checking trigger circuits and for locking sweep circuits whilst checking amplifiers and supply rails for hum. A square wave rise time of less than 1 ns allows vertical amplifier rise times to be checked and a fully interlaced composite video generator with both positive and negative going outputs allows the checking of sync separators used for television measurements. The calibrator costs $£ 484.00$ plus VAT

which includes the cost of carriage within the UK.
The other new product is a designer's power supply which offers $\pm 5 \mathrm{~V}$ rails variable from $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ and a second pair of supply rails which can be adjusted from 0 to $\pm 20 \mathrm{~V}$. The $\pm 5 \mathrm{~V}$ rails offer up to 500 mA with both rails loaded and 700 mA with one rail only loaded and the $\pm 20 \mathrm{~V}$ rails offer up to 200 mA with both rails loaded and 250 mA with only one rail loaded. Each pair of rails has a single voltage control which affects both rails equally. All of the outputs are protected against overload and shorting to other rails and a LED above each terminal indicates the overload condition. An output switch is provided which connects all of the rails to 0 V through suitable bleed resistors when it is put in
the off position. A 5-pin DIN output socket is provided to enable quick connection to test circuits and other frequently used items and the manufacturers claim that the complete unit is small enough to fit under the tilt-stand of mostoscilloscopes, thus saving valuable bench space. The designer's power supply costs $£ 144.00$ plus VAT which again includes delivery within the UK.

The μ amplifer which we described in our April issue now costs $£ 144.00$ plus VAT and the isolation amplifier which we also featured costs $£ 157.00$ plus VAT. Both prices include delivery within the UK.

Waugh Instruments Ltd, Otter House, Weston Underwood, Olney, Buckinghamshire MK46 5JS, tel 0234-712445.

The Light That No-One's Seen

Arlen Electronics believe that one of their products is not receiving the attention it deserves. The device is a semiconductor starter for fluorescent lights which is claimed to offer double the tube life obtained with conventional starters, but in spite of this advantage the company have only had moderate success with it so far.

The Pulsestarter has been developed over a period of four years by Arlen and the UK subsidiary of Texas Instruments. Unlike conventional starter switches which apply high voltage pulses and literally kick the tube into fluorescence, the Pulsestarter preheats the tube cathodes and then applies a controlled pulse when the tube is ready. This is much closer to the way in which fluorescent tubes are intended to be used and is similar to the system employed in industrial starterless units. The result is greatly reduced cathode wear since the conventional
system strips emissive material from the cathodes every time the tube is started up. The Pulsestarter is also said to automatically compensate for adverse conditions and will allow a longer period of preheating in cold weather. When the tube reaches the end of its life, the device disconnects the circuits until the tube has been replaced, preventing the repeated attempts at starting which are such an annoying feature of conventional starters and removing the associated risk of control equipment damage and even fire.

In spite of all these advantages,
the Pulsestarter has not taken the lighting industry by storm and Arlen believe that vested interests are doing their best to prevent it being more widely used. Tube manufacturers are obviously not going to be keen on a device which makes their products last longer and thus reduces sales of replacements, and companies with maintenance contracts are also likely to be a little put out at the prospect of fewer repairs.

For details contact Arlen's distributors, C.J. Skilton Ltd, Great Gibcracks Chase, Butts Green, Sandon, Chelmsford CM2 7TR, tel 0245-400535.

List Watch

\squareasio have come up with a handy little unit which allows users to keep the names and telephone numbers they need to refer to literally at arms length. The Data Bank 500 behaves like any other digital watch but can store up to fifty sets of six letters and twelve numbers and display any of them on demand. Information is fed in and later recalled
using a couple of buttons, and Casio suggest that in addition to telephone numbers the watch can be used to store bank account codes, birthdays and anniversaries, postal codes, travel schedules and a whole range of other information. It should be available through Casio's normal retail distributors and the recommended selling price is $£ 41.95$.
Casio Electronics Company Ltd, Unit 6, 1000 North Circular Road, London NW2, tel 01-450 9131.
 D8202 D8257-5 8255 D3002 2732 EPROM SPECIAL fully guaranteed
450 ns \&3.75, 350ns \&4.00 300 ns \& 450 ns £3.75, 350ns $£ 4.00,300 \mathrm{~ns}$ £4.50

0001 BTBAB

Keep your not pertacoo and ieliable with our range of BRAND NEW profetsional Coling fonso Dim $92 \times 92 \times 25 \mathrm{~mm}$ Miniature $240 \vee$ Equipment ten complete with finger guard es.95. CoUL JE-3AR Dim $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\circ}$ compect
wery quiot running 240 operation. NEWE.
 CUHLEN Ce.11.22. © - $16 \times 0 \mathrm{OC}$ micro zarro motor for oxtremely high air flow,

Current cost $£ 32.00$ OUn
E12.05 comple

MUFFIN-CENTAUA standerd $4^{4} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ tan supplied toated EX EQUIPMENT 240 V at C6. 25 O $110 \vee$ at E4. 55 O ORAND NEW 240 at $\varepsilon 10.50 .1000$'s of other fons Ex Stoch
Cail for Details Poste Packing on atif fans

 Current, quality, professional product of amajor computer company, comprising major computer company, comprising
2×40 track
MP COMPATIBLE single sided drives in a compact, attractively styled, grey ABS structured case with internal switched mode PSU. The PSU was intended to drive both drives and an intelligent $Z 80$ controlle
with over 70 ic's. with over 70 ic's. The controller has been
removed leaving ample soace and current on the $+-5,+12$ and -12 supply tor all your future expansion requirements.
yon Supplied tested with 90 day guarantee in BRAND NEW condition with cable for BBC micro. Ex Stock at onlyE239.80

+ £10.00 carr. Imited Quantity On $+£ 10.00$ carr. LImited Quantity Only

CE TERMIPRINTER

A massive purchase of those desk top priner torminals enables us too ofler you these quality 30 cps printers a a a 8 UPE:
LOW PaICE
againat their orioinal coat o LOW PriCE Egainat their original cost of electronic keyboard and printer mech with print face similar to correspondence quality typewriter Variable forms iractor unit onables full wioth-up to 13.5 " 120 column
paper. Upper-lower case, slandard AS232 sarial interface, internal vertical and horizontal tab seltings. standard ribbon adjustable bsud rates quiel operation plus
many other features. Suplied compoete
with with manual Guarantied working fispoen or untested ε B3.0.0.0ptional floor stand $£ 12.50$
Carr 8 ins $£ 10.00$.

1! Y: 1 0 1 J!

Join the communications revolution with our
range of EX TELECOM data modems Made to most stringent spec and designed to operate for 24 hrs per day Units are made to the
CCITT Tone spec. With RS232 a 25 way D. skt. Units are sold in a lested and working condition with data Permission may be required for connection to PO lines. MODEM $20-1$ Compact Unit Tor USE with
MICRONET. PRESTEL OITELECOM GOL ete 2 wire cirect connect 75 baud transmil
 MODEM $20-2$ same as 20.1 bul 75 baud TRANSDATA 307A 300 baud acouric Trapsdata 307 a 300 baud acoustic NEW DAL2123 Munl Standerd modem relocrable V21 300 -300 boen V23 75-1200 V23 1200-75 full duplex or $1200-1200$ haif CPDiax modea Full zuto annwor vie modem or CPU. LED statue indictiors CAL OO ANS mode Swithable CCTT or EEL 103 \& $\times 9^{-} .528600+\mathrm{VAT}$ mie only $2.5 \times 8.5^{\prime \prime}$ $\times 9.228600+V A T$
For further deta or
modeme contict antee office.

- 300 baud full duplex
- Full remore control
- CCITT tone standards
- Supplied with full data
- Modular construction a real snip. applications guide. $2.5 \mathrm{kls} \mathrm{E} 4.25+\mathrm{pp} £ 1.25$

HOT LINE DATA BASE

THE ORIGINAL FREE OF CHARGE dial up data base 1000 's of stock items and one olf bargains.
ON LINE NOW - 300 baud ON LINE NOW - 300 baud, full duplex CCIT tones, 8 bit word, no parity.
01-6791888 STILL IN STOCK
FP1500 Heavy Duty 25 cps daisy wheel RS232 interface, bi directional printers, Brand New at E499.00 CALL FOR MORE DETAILS

톤ㅇ

 $\sum_{t \rightarrow \infty}-8 \mathrm{M}$onf ch 199

SUPER PRINTER SCOOP

BRND ${ }_{\text {WE }}$ W CENTRONICS $739-2$

The "Do Everything Printer" at a price that will
NEVER be repeated Standard CEMTRONICa NEEER be repeated Standard CENTROMICA opicaliol intertace for direct connection io BBC,
 MODE for WORD PAOCESBON applications. $80-132$ columne, single shost sprocket or foll paper handing plus
much more. Available OWLV from DispL ELECTMOWICS at the ridiculous price of ewryifele + VAT Complete with ull manual etc. Limited quantity -Hurry while stocks iast.
 $£ 3.50$ each BBC graphics screen dump utility propram £8.60.

SPECIAL 300 8AUD MODEM OFFER
 nother GIGANTIC purchase of these EX BRITISH TEIECOM BRAND

 NEW or little used 2B data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to he highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data base, business or hobby communications. All this and more!!WWV 2 Standard RS232 serial ito modes HOW OMLY' Built in test switching Order now - while stocks last. Carriage and Ins. $£ 10.00$

8" 19MB WINGHESTER DISK DRIVE

Made in the UK by a subsidiary of the World's largest disk drive manufacturer
This BRAND NEW "end of line" unit-offers an outstanding opportunity to add a MASSIVE 19 mb of storage to your computer system. Superbly constructed on a heavy die cast chassis the DRE 3100 utilises $3 \times 8^{\prime \prime}$ plattens in a dust ee cavity. All drive functions are controlled by microprocessor electronics using an INTEL 8035 cpu and TRL support logic. Data to the outside world is via two comprehensive 8 bit TTL level bi directional data busses with full sfatus reporting for ease of interfacing. Many features such as Av. seek time 35 ms , 512 bytes per sector, $+24,-24$ and $+5 \vee$ DC supply, plug in card system. and compact size of approx. $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm}$ W and 42 cm D etc, etc, make this item

Units are BRAND NEW and BOXED and sold at a FRACTION of original cost hence unguaranteed. Complete with 150 page manual, circuits and

ONLY £225.00 Carriage £10.00
Suitable power supply unit - sold ONLY with drive £39.95.

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows à great OWERTY. Iull travel, ALPHAMENIC S204/e0 full ASCII 60 key uppor, lower + control key, parallel TL Output plus atrobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC E.3. 50.
DEC Li34 Uncoded keytuoard with 67 quaity, GOLD, normally open switches on standard $X X$ matrix. Complete with 3 LED indicators $\&$ i/o cable - ideal micro
conversions

66\% DISCOUNT

ELECTRONIC COMPONENTS EQUIPMENT
Due to our massive bulk purchasing programme which enables us to EWing you the best possibie barganns. we have thousands of I.C s. Transistiors. Relays. Cap s. P.C. . s. Sub- sssemblies, SWiches. etc. etc surplus to our requirements Because we don t have sufficient stocks ol any
one tem to include in our ads. we are packing al these tems inio the "BARGAIN PARCEL OF A LIFETIME' Thousands of components at giveaway prices' Guaranteed to be worth $5 \mathrm{kls} \mathrm{£5.90}+£ 1.80$
10kls £ 10.25 + pp £2.25 20 kls £ $17.50+£ 4.75$

BUDGET RANGE
 T1150 1 0 MTMOSS

At a price YOU can afford, our range of EX EQumpetition! All are for 240 very competition! All are for 240 v working with
standard composite video input. Units are pre tested and set for up to 80 col use on BBC micro. Even where MINOR screen burns MAY exisl - normal data displays are unaffected. 1000 's SOLD 70 DATE 9" HITACHI very compacl fully cased. dim $21 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} \mathrm{~W} \times 22 \mathrm{~cm}$ D. Black and
white screen
ent 12 " KGM 320-321, high bandwidth input will display up to 132 columns $\times 25$ lines. Housed in attractive ylly enclosed
brushed alloy case. B / K only E 32.95 brushed alloy case. $8 /$ W5
GREEN scroen $\mathbf{3 9} .95$
24" KGM large screen black \& white monitor fully enclosed in light alloy case. dealschool ${ }^{\text {s. }}$
14" BRAND NEW Novex COLOUR type NC1414-CL. Many exacting features such as RGB TL and composite video input, GREEN TEXT key, internal speaker an matching 89 lours. Fully guaranteed. WMY El99.00
Carriage and Ins on ALL videos $£ 10.00$

8EMACOSDUCYOR ' CBiA? BR (t?
 \section*{Mixed Semis amazing value contents}

 include transistors, digital. linear. IC.'s triacs diodes, bridge recs...etc. etc. All devicesquaranteed brand new full spec. with man puaranteed brand new full spec. With lactures's markings.
$50+K 2.51015$
TTL 74 Series A gigantic purchase of an "across the boaro" range of 74 rTL series IC's enables us to offer $100+$ mixed or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C 's fult spec. $100+\kappa 6.90200+\kappa 12.30300+\kappa 19.50$

DEC CORNER

BA11-MB 3.5" Box. PSU. LTC DH11-AD 16 RS232 DMA

 DH11-ADDLV11-J $4 \times$ EIA interface DUP11-B8Ch. Serial data $1 /$ E650.00 D2111-B 8 line RS232 mux board $£ 650.00$
LA36 Decwriter EIA or 20 ma loop $£ 270.00$ LA36 Decwriter ElA or 20 ma loop $£ 270.00$
LAXX-NW LA 180 RS232 serial interface
 LAX34-AL LA34 tractor feed $\quad \mathbf{E 8 5 . 0 0}$ MS11-JP Unibus 32 kb Ram $\quad \underset{\text { M }}{\text { E80.00 }}$ $\begin{array}{ll}\text { MS11-LD Unibus } 256 \mathrm{~kb} \text { Ram } & \begin{array}{ll}\text { E450.00 } \\ \text { E850.00 }\end{array}\end{array}$ MSC4804 Qbus (Equiv MSV1 c850.00 256 kb

£499.00

 POP1 $1 / 40 \mathrm{CDU}, 124 \mathrm{k} \mathrm{MMU}$
RT11 ver. 3 B documentation kit
E 1850.00
$\mathrm{E70.00}$
 $\begin{array}{lr}\text { KLBJA PDP } 8 \text { async i/o } & \mathbf{E 1 7 5 . 0 0} \\ \text { Mi8E PDP 8 Bootstrap option } & \mathbf{8 7 5 . 0 0}\end{array}$ VT50 VDU and Keyboard current loop
£175.00
1000's of EX STOCK spares for DEC PDP8, PDPPA, PDP1 1 systems peripherals. Call for details. All types of Compuier equipment and spares wanted

Noise Exposure Meter

$T^{\text {he }}$he GA202 Noise Exposure Meter from Castle Associates is designed to simplify sound exposure measurements in industrial and other environments and includes a scale reading directly in dBA/time. It conforms to the requirements of BS5969, has a measuring range of $40-140 \mathrm{~dB}$ and its features include pushbutton range selection with LED indication and a hold facility for determining maximum RMS or peak values.
In most countries there are legal limits to the noise level industrial employees may be subjected to. The maximum

Exhibitions, Conferences, Etc

As this is the first issue of the new year, it seems appropriate to include a round-up of forthcoming exhibitions, conferences, and other electronics get-togethers.

The 1985 Which Computer? Show will take place at the National Exhibition Centre, Birmingham from the 15 th to the 18 th of January. The organisers believe it will be the largest ever display of computer hardware, software and peripherals and the 350-plus organisations taking part will be exhibiting many thousands of products including over one hundred new items. The show is aimed at everyone from those buying a first computer through to companies seeking to computerise their operations, and the free visitors information pack includes what is claimed to be a 'jargon-free' check list prepared by the National Computing Centre to help purchasers identify their needs. The show also includes beginners workshops and seminars, and further details and a copy of the free information pack can be obtained from Hugh Keeble, Show Manager, Which Computer? Show, Chatsworth House, 59-61 London Road, Twickenham TW1 3SZ, tel 01-891 5051.

A little more specialist in appeal is Lightshow' 85 which will be staged at London's Olympia Exhibition Centre from the 20th
to the 24th of January. The show is organised by the Decorative Lighting Association and is trade only. For details contact the DLA at Bryn House, Bishop's Castle, Shropshire SY9 5LE, tel 05884658.

Even more specialist, perhaps, is the Fourth Battery SeminarAnd Exhibition which will be held at the Royal Crest Hotel, London, on the 29th January. The seminar is organised by ERA Technology and will concentrate on main-tenance-free batteries for standby power applications. For details contact Miss T.L. Ecclestone, Seminar Organiser, ERA Technology Ltd, Cleeve Road, Leatherhead, Surrey KT22 7SA, tel 0372-374151.
Something completely different will be going on at the Carleton Community Centre, Pontefract, on the 10th of March from 11.00 am to 4.30 pm . The Pontefract \& District Amateur Radio Society are holding a components fair, and although the event is tied closely to the Mobile Radio Rally it will concentrateon home construction and do-ityourself. A number of traders are expected to attend and only components, surplus equipment and instruments, etc, will be on sale; there will be no new equipment. Fordetails contact N. Whittingham, G4ISU, 7 Ridgedale Mount, Pontefract WF8 1SB, tel 0977-792784.
The Electronic Production Efficiency Exposition ' 85 will be held at the National Exhibition Centre, Birmingham, from the 30 th of April to the 2 nd of May. The event is a combined exhibition and conference which is concerned with the factory of the future. Beyond that, we know nothing about it, so if you want to
allowable exposure is expressed as $\mathbf{1 0 0 \%}$ dose, and for each 3dBA increase in the sound level the working time must be halved. The GA202's dBA/time scale allows both the sound level and the maximum permitted exposure time at that level to be read directly, thus simplifying measurements.

The meter has three ranges with shift register selection and LEDS to indicate which range is in use. Switchable slow, fast and peak response times are provided and a maximum hold button allows peak or maximum RMS values to be captured and read. The meter is linearly scaled and both ' A ' and linear weightings are provided.
The instrument is housed in a diecast case which is said to be ergonomically designed and very tough, and the battery compartment is made of moulded plastic to reduce the risk of damage from leakage. The battery compart-
ment cover forms the back of the case and is also made of plastic so that the unit can be used on desktops, etc, without scratching the surface. A wrist-strap and tripod mounting thread are supplied as standard and a complete kit of accessories is available which comprises a companion GA602 calibrator, a windshield and a leather shoulder case which holds the meter and the accessories along with an A5 clipboard.

The GA202 and its accessories are the first products in a complete new range promised by Castle Associates. The meter costs $£ 195.00$ plus VAT and the kit of accessories costs $£ 162.00$ plus VAT and comes with a free noise survey pad.

Castle Associates, Salter Road, Cayton Low Road Industrial Estate, Scarborough, North Yorkshire YO11 3UZ, tel 0723584250.
know more you'll have to contact the organisers, Network Events Ltd, Printers Mews, Market Hill, Buckingham MK181JX, tel 0280815226.

Power '85 is a new exhibition organised by the Power Supply Manufacturers Association and will take place at the Metropole Hotel, Brighton, from the 21 st to the 23 rd of May. There will be about 140 stands at the exhibition and the products on display will cover both power supplies and alternative sources such as batteries and solar cells. The PMSA are currently evaluating papers for presentation and welcome further submissions from engineers who feel they have constructive comments to make about power supply technology and the application of power supplies in commercial and industrial equipment. Contact M.A. Poftawka, The Power Supply Manufacturers Association, 7-8 Saville Row, London W1X 1AF, tel 01-437 4127.

Gone are the days when telephones all looked the same and were only available from the GPO. Responding to this change, Network Events are organising Phone' 85 , an exhibition devoted solely to the users of telephone equipment and covering the range from single telephones to large, multi-user systems for international corporations. The event will take place at the Kensington Exhibition Centre, London, and will open to the trade only on June the 4th and to the general public on June 5th and 6th. For details, contact Network Events at the address given above for the Electronic Production Efficiency Exposition.

The same people are also organising another event in the
same place and at the same time. Competa ' 85 is described as a conterence and exhibition forall users of computers and peripherals and that's all we know, so for further details get in touch with Network Events.
The Leeds Electronics Show will be held at The University of Leeds from the 3 rd to the 5 th of July. The show is in its 22 nd year and hopes to have 223 stands on display. Details are available from Evan Steadman Services Ltd, The Hub, Emson Close, Saffron Walden, Essex CB10 1 HL , tel 0799-266699.

Interconnection Europe' 85 is a conference and exhibition concerned with interconnection technology, products and applications and will take place from the 10 th to the 12 th of September at the Cumberland Hotel, Marble Arch, London. It is claimed to be the only European event dedicated to interconnection technology and the new venue has been chosen to allow for an anticipated expansion of 80% compared with last year's show. Over 100 stands will be on display and a number of papers will be delivered by manufacturers, distributors and endusers. For details contact Ms Teresa Arrowsmith, Conference Secretary, Benn Electronics Publications Ltd, P.O. Box 28, Luton, Bedfordshire LU2 OED, tel 0582-417438.
Finally, the International Test And Measurement Exhibition and conference (ITAME) will be held at Olympia 2, London from the 27 th to the 29 th of November. The event covers all areas of electronic test and measurement and is organised by Network Events, whose address appears above.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Versatile Cases

N^{ev}ew from West Hyde Developments is a range of instrument cases which are said to have been designed for maximum versatility. Made from ABS and aluminium, the cases can be used with plug-in cards, in 19" racks or with a plain front panel and the accessories available include prop-up handles and chassis plates.
The Botron cases come in ten sizes which range from 264 to 414 mm wide, 249 to 508 mm deep and are either 178 or 202mm high. The front and back
bezels are moulded from brown ABS and are connected together by aluminium rails in each corner. The top and bottom panels are moulded in cream polystyrene and have a textured finish. Standard $19^{\prime \prime}$ front panels may be fitted using a special adaptor kit and a purpose-designed card frame based on the Critchley Europak system is also available. The propup handles and chassis plates are part of a range of accessories for the cases and all items are available ex-stock.
The Botron cases range in price from $£ 34.21$ to $£ 48.08$ plus VAT. West Hyde Developments Ltd, 910 Park Street Industrial Estate, Aylesbury, Buckinghamshire HP20 1ET, tel 0296-20441.

Miniature Vacuum Cleaner

The minivac is a portable, battery operated vacuum cleaner which is designed for cleaning the interiors of sensitive electronic, photographic and other equipment. Unlike the compressed air blowers which are often used for this purpose and which simply blow minute particles into the air or into other parts of the equipment, the Minivac collects the particles in a small cloth bag for later disposal.

The Minivac operates from a 9 V
battery or from the mains usingan adaptor. It has two lens-quality fine brush vacuum heads and is claimed to be very powerful inspite of its small weight and size. The cloth collection bag has a velcro flap to allow quick and easy disposal of accumulated debris and a separate attachment is available to turn the device into a blower.
The Minivac is expected to be used in industry and the home for cleaning photographic equipment, typewriters, computers, audio and video cassette recorders, precision models and much more. It costs $£ 19.60$ plus VAT and is available from $O \& S$ Photographic, South Block, The Maltings, Sawbridgeworth, Hertfordshire, tel 0279-722208.

Accurate NTC Thermistor

Siemens have introduced a negative temperature coefficient thermistor which operates over the temperature range of -40° to $+100^{\circ} \mathrm{C}$ and has an accuracy of better than $0.1^{\circ} \mathrm{C}$ over the body temperature range of 30° to $50^{\circ} \mathrm{C}$.
The M841 thermistor has silver plated 20 mm long leads and is available in 3 k or 5 k versions. Other versions with resistances of up to 100 k will shortly be available. The accuracy of the device corresponds to a resistance tolerance of $\pm 0.4 \%$, and suggested applications include high resolution electronic thermometers, heating/air conditioning controllers for use in cars and warning sensors to alert drivers to critical outside temperatures.

Siemens have also announced an extended temperature range version, the M861. This offers an accuracy of $\pm 0.1^{\circ} \mathrm{C}$ over the entire temperature range from

-40° to $+120^{\circ} \mathrm{C}$. It is epoxy coated and has 25 mm long, 0.25 mm thick nickel leads with Teflon insulation. The rated resistance is 30 k but both lower and higher values will be available later.

Siemens Ltd, Siemens House, Windmill Road, Sunbury-on Thames, Middlesex TW16 7HS, tel 09327-85691.

- The new Cricklewood catalogue covers eightsides of A4 and lists semi-conductors, resistors, capacitors, 5 witches, connectors, hardware, tools and even valves. They will accept credit card orders over the telephone as well as supplying goods to mail order and their North London shop is open all week. Copies of the catalogue are available from Cricklewood Electronics Ltd, 40 Cricklewood Broadway, London NW2 3ET, tel 01-450 0995.
- The British Amateur Electronics Club have just sent us a copy of their October Newsletter - and it's now early December. Still, they do apologise for this lateness and it does contain articles on logic gates, display driver circuitry and phase control. If you want to know more contact Mr. C. Bogod, "Dickens", 26 Forest Road, Penarth, South Glamorgan, tel 0222-707813.
- Cambridge Systems Technology have produced an IEEE488 interface for the Sinclair $Q L$
microcomputer. The $\mathrm{Q}-488$ fits the expansion slot on the QL and allows it to communicate at up to 70 k bytes/second with up to sixteen IEEE488-compatible test instruments, printers, plotters, disc drives, etc. Contact Cambridge Systems Technology, 30 Regent Street, Cambridge CB2 1OB, tel 0223-323302.
- Chartwell-Bratt are publishing a series of computer textbooks which each deal with a particular topic and will sell for around $£ 4.00$. The books have been written by and in conjunction with university lecturers in computer studies from around the country, and are intended to improve the situation for students who frequently have to buy expensive books which only contain a few passages of interest to them. The first seven titles should already be available and further titles will be issued at a rate of about three a month. Chartwell-Bratt Ltd, Old Orchard, Bickley Road, Bickley, Bromley, Kent BR1 2NE, tel 014671956.

01-208 1177 Tecinomatic Lid 01-208 1177

BBC Micro Computer System

ACORN COMPUTER 8Y8TEME
BBC Model B Spectal offer.......E320 (a) BBC
Mode B+Econer. c3e (a)
BBC Model B+DFS............................s409 (a) BBC Model B+DFS +Econet 8480 (a)

UPRRADE KIT8
A to B Upgrade Kit 87 (c)
DFS Kit.
Econet KH 54
Speech Kit ... 24 (c)
ACORN ADD-ON PRODUCTS
280 2nd Proceseor............................. 8362 (a) 6502 2nd Processor $\mathbf{\$ 1 7 5}$ (b) Teltext Adaptor 8190 (b) IEEE Interface E282 5202 (b)

RH Light pen.

SBC FIRMWARE

1.2 Operating System7.50 (d)
Basic II ROM.................................... 5250 (d)

Vlew Word Processor ROM...........E48.00 (c) Wordwlee Word Processor ROM BCPL ROM/Disc ... (b) Disc Doctor/Gremlin Debug ROM 228 (d) EXMON/TOOL KIT ROME2s ea (d) Printmaster (FX80)/Graphics ROM................ ULTRACALC spreadsheet ROM צe9 en (c)

COMNUMICATION ROM

Termi Emulator
228 (d) Communicator .. 28 (d) Commstar ...e29 (d)

TOPCH UNICON products including the IBM Comput|ble GRADUATE in stock For det-ied specticmion on any of the 88C Firmware/Pertptertit lited here or information on our complate range pleene write to ue.

PRINTERS

EPSON
RX80FT E225 (a)
FX80 £315 (a)
FX 100 £435 (a)
KAGA TAXAN
KP910 £369 (a)
KP 810 (80 col) E 255 (a)
JUKI 6100 £340 (a)

a)

HR15 £340
(a)

ACCESSORIES

EPSON

Serial interface: $8143 £ 28$ (c); 8148 with 2K 857 (c)
Paper Roll Holder $£ 17$ (d); FX80 Tractor Attachment $£ 37$ (c) Rlbbons: FX/RX/MX80 $£ 5$ (d) FX/RX/MX100 110 (d) RX/FX80 Dust Cover $\mathbf{2 4 . 5 0}$ (d) KAGA TAXAN
RS232 with 2K Buffer $\mathbf{\Sigma 8 5}$ (c) KP810/910 Ribbon $\mathbf{£ 8 . 0 0}$ (d)

JUKI 6100

RS232 with 2K Buffer $\mathbf{\Sigma 6 5}$ (c) Ribbon $\mathbf{\Sigma 2 . 5 0 \text { (d) }}$ Tractor Attachment $\mathbf{8 9 9}$ (a) Sheet Feeder $\mathbf{\varepsilon 1 9 9}$ (a) BBC Parallel Lead $£ 7$ (d) Serial Lead $£ 7$ (d) 2000 Sheets Fanfold Paper with extra fine perforation $9.5^{\prime \prime} \times 11^{\prime \prime}$ £13 (b) $14.5^{\prime \prime} \times 11^{\prime \prime} £ 18$ (b) Self Adhesive Labels $23 / 4^{\prime \prime} \times 17 / 16^{\prime \prime}$ Single Row $£ 5.25 / 1000$ (d) Triple Row $£ 5 / 1000$ (d)

MODEMS

- All modems listed below are BT approved

MIRACLE W82000:
The ultimate world standard modem coveral all common BELL and CCITT standards up to 1200 Baud. Allows communication with vif tually any computer system In the world. The optionar AUTs enhance the considerable faclallte alreedy provided on the modem. Mains powered $\mathbf{1 2}$ (b). Auto Dlal Board/Auto Answer Board EsM(C) each. Software lead Base.

TELEMOD 2:
Complies with CCITT V233 1200/75 Duplex and $1200 / 1200$ Halt Duplex standards that
aliow communications with VIEWDATA services likePRESTEL, MICRONET etc. as well as user to user communications. Mains powered รe4(b).
Buzz Box:
This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main trame computers and bulletin boards at a very economic cost. Battery or mains opersted, £52(c). Mains adaptor £e(d).

BBC to Modem data lead 87 .

DISC DRIVES

These are fully cases and wired drives with slim line mechanisms of high quality, Shuggart A400 standard interface. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. TEAC 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.

	$2 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS: TD55F TEAC with
$1 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS:TS55Aع100(b)	psu...ess0(a)
$1 \times 200 \mathrm{~K}$ 40/80TSS:TS55E....................c140(b)	$2 \times 400 \mathrm{~K} 40 / 80 \mathrm{TDS}$:TD55M Mitsubishi with
$1 \times 400 \mathrm{~K}$ 40/80TDS:TS55F..................s156(a)	psu..3800(a)
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS:TD55A wlth psu.....E250(a)	CS55A with psuc125(b)
$2 \times 200 \mathrm{~K} 40 / 80 \mathrm{~T}$ SS:TD55E TEAC with	
PSU...E328(a)	CS55F with psu...............................f10e(b)

3M 51/4" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each disc is individually tested and guaranteed for life. Ten discs aresupplied in a sturdy cardboard box.
40T SS DD $£ 15$ (c)
$40 T$ DS DD 18 (c)
80T SS DD £22 (c)
$80 T$ DS DD $£ 24$ (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures continued optimum performance of the drives ...E14.50 (c) Single Disc Cable $\mathbf{5 6}$ (d) 10 Disc Library Dual Disc Cable $\mathbf{\varepsilon 0 . 5 0}$ (d)

MONITORS

MICROVITEC 14" RGB:

1431 Standard Resolution 165 (a)
1451 Medium Resolution..................................... 249 (a)
1441 Hi Resolution .. 2399 (a)
1431 AP Std Res PAL/AUDIO............................... 210 (a)
1451 AP Std Res PAL/AUDIO.................................. 2310 (a)
1451 DQ3 Med Res for QL 239 (a)
Above monitors are now available in plastic or metal cases, please specify your requirement.
KAGA Super Hi Res Vision III RGBe345 (a)
Hi Res Vision II.. 245 (a)
MONOCHROME MONITORS 12":
Kaga Green KX1201 G Hi Res. \qquad . 899 (a)
Kaga Amber KX1201 A Hi Res. \qquad . 105 (a)
Sanyo Green DM8112CX Hi Res . 890 (a)
Swivel Stand for Kaga Monochrome \qquad . 21 (c) All monitors are supplied with leads suitable for the BBC Computer. Spare leads available.

ATTENTION

ALL PRICES EXCLUDE VAT
Please add carriage 50 p unless indicated as follows:
(a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

SPECIAL OFFER

2764-25..........................£4.90
27128-2518
27128-30ع16
6264-15ع28
6262LP-15 $£ 31$
6264-12.

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up to eight eproms at a time and accepts all single rail eproms up to 27256 . Can reduce pro gramming time by 80\% by using manufacturer's suggested algorithms Fixed Vpp of 21 \& 25 volts and variable Vpp factory set at 12.5 volts LCD display with alpha moving message $£ 395$ (b).

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516,2532,2732, and with an adaptor, 2564 and 2764 . Displays 512 byte page be used as an emulator, cassette interface.
 Adaptor for $2764 / 2564.825 .00(c)$

UV ERASERS

All erasers with built in safety switch and mains indicator.
UV1B erases up to 6 eproms at a time. ... £47 (c) UV1T as above but with a timer \&59(c) UV140 erases up to 14 eproms at a times81(b)
UV141 as above but with a timer......... 玉78(b)

CONNECTOR SYSTEMS

DESIGNING MEMORY

Just what is involved in obtaining a working design? Phil Walker uses the example of the 64K DRAM card and the DRAM fix (ETI Dec ' 84 and Jan ' 85 respectively) as an example to show how it's done.

The design of electronic projects can, like most human undertakings, be long or shortterm, easy or difficult, with all shades of grey in between. In both the hobby world and professional life, it is unusual to go straight from original concept to final hardware with no deviations or modifications along the way. So in the long winter evenings as you sit by the fire working out the details of your next piece of electronic wizardry, don't be in too much of a hurry to commit pen to chequebook or solder to iron.

The first step is to design what you want: write it down in as much detail as possible. Now try to come up with as many different ways of getting there as possible. Choose two or three of these to consider in detail, and examine their good and bad points.
At this stage you will need information on the various devices and components you may want to use. The catalogues of the larger distributors can be very helpful, but obviously, they do not have the detail that you will find in manufacturers' data books. (One point though, those readers who have access to RS Components will probably already have found that they do produce some very useful data sheets for the semiconductors they distribute.)

When you have all the information, choose a design approach that satisfies your requirements easily, in other words, an approach which does not require you to operate close to the limits of the devices. In particular, be careful that power dissipation, gain and bandwidth at the lower end of the specified (on the device data) range will not lead to trouble in analogue circuits; on digital circuits, look out for propagation delays and over-critical timing, at either the fast or slow limits (or a combination of both).

After this, you should be in a position to draw circuit diagrams and even outline physical dimensions to your project if they are important. Make sure that, at least on paper, your design will do what you want every time and has no hidden modes of operation, especially at poweron and power-off. Examine what you have and check that it is what you want. Look back to your original requirements and see if it fulfils them (it probably won't).

Now is the time to build something. If it is a large project, then it is wise to build the essential part or parts of the circuitry and test them on some sort of breadboard system. Make sure that these bits do what your theory predicts. If not, find out why! If you don't do this you will have really wasted your time. You will learn more from understanding why thing's don't work (first time) than from a series of first-time successes. Naturally it is very frustrating to have your brain-child fail miserably at the first hurdle, but with perseverence your success rate will
improve or the complexity of project will increase. With any luck both will occur.

Having chased all the gremlins out of the wirework so far it is time to take the plunge and make the whole thing. Two things are likely to trip you up now, apart from the sillies such as wrong wiring or PCB error. The first is that your original idea had a flaw which has been overlooked or was not apparent until the whole thing came together. The second is that some external equipment or system does not interact with it as planned. In either case some careful thought will be needed to find the appropriate action. This part is often the most frustrating and expensive and leads to red faces, lost tempers and much burning of midnight oil in industry.

A good designer is one who by experience, imagination or both can avoid most of the likely problems in a project by the most suitable choice of method and com-

ponents. Often he or she will use well-tried circuit elements and configurations as building blocks for the new design. New concepts or components will be tested both in theory and practice before being relied upon. In this way it is made likely that problems arising at the prototype stage will be trivial for the most part (wiring error, etc.) or relatively easy to isolate. The unfortunate thing is that most designers operate undera"wanted yesterday" regime and cannot take all the time needed for such deliberation. This is true possibly to an extreme degree amongst hobbyists.

The alternative to designing projects yourself is, of course, to let someone else do it. In this case you must either pay someone to design what you want (or think you want) or get it from a book or magazine (ETI of course!). In this latter case you are restricted to what is published but must still make the effort to understand fully the circuitry you are making. If you do not understand what you have made, you are going to be in big trouble if anything goes wrong. You may get a little help by writing in but publishers usually have neither the time nor money to employ clairvoyant faultfinders.

To illustrate the design process I have included a section on the recent GNOS-EX memory expansion card. Not that this is necessarily a shining example of perfection but it serves to illustrate some of the foregoing comments.

GNOS-EX Development

This started in earnest about six months ago. For some time we had been aware that all was not well with our original 64 K DRAM card for the Microtan system, especially in the control logic area. Since this was mostly invested in the 74LS608 memory control device there was not a great deal we could do about it.

In the meanwhile, we had published a DRAM card for Z80-based systems using the TM4500 memory controller. It would have been relatively simple to adapt this to 6502 use, but we did not think this the most useful or illuminating approach. Alternatively, we decided to design the project using the simplest standard TTL devices possible for the control section, along with the lesserknown 4416 DRAMs. The 4416 is a $16 \mathrm{~K} \times 4$ variant on the $64 \mathrm{~K} \times 1$ devices used in the earlier designs. Although it's slightly more expensive than the latter, it offers the considerable advantage that the user need not populate the memory fully to obtain a workable system, as memory devices need be used in just pairs so 16,32 or 48 Kbyte options are available, besides the full 64 K .

The requirements for this project can be summarised as:

1. To provide up to 64 K of dynamic memory; 2 To operate from the signals from a 6502 microprocessor;
2. To use standard TTL devices, preferably SSI and MSI types.
Other factors were considered but were deemed subsidiary to these for this purpose.

Design Approaches

\#1 The first ideas on the possible control logic design tended to follow the original circuitry. Both φ_{1} and φ_{2} were used to obtain the requisite timing signals. In the 6502 data sheet these two signals are supposed to be non-overlapping, ie one falls to zero before the other rises. Looking at these on an oscilloscope showed that if this was the case, and it certainly did not appear so, it was of little practical use as a little stray capacitance or variation in gate propagation delay would nullify any benefits it gave.

For: \quad Timing for $\overline{\text { RAS }}$ provided by edges of φ_{1} and $\varphi 2$. Common control of $\overline{\text { RAS }}$ in processor and refresh periods.
Address buffers switched at end of RAS cycle, not near φ_{1} or φ_{2}.
Against: \quad Timing dependent on temperature - made worse by Schmitt thresholds being near $0 V$ rail.
No provision for start-up reset sequence.
Quite a lot of passive timing components.
Did not work due to differentiator capacitors being too small to trigger NAND Schmitt. Increasing capacitors did not help as they could not discharge sufficiently in the time available to be ready for the next cycle.

The first paper design used the φ_{1} and φ_{2} signals to generate the RAS, CAS and MUX signals with the aid of RC delay networks and Schmitt input gates and inverters. This in fact used only three IC packages - one less than the final design. However it was felt that the number of passive components was excessive and that the timing they would give would be rather critical and temperature dependent.
\#2 The next serious attempt used a D-type latch connected as a monostable to generate the RAS pulse triggered by two differentiator networks from the $\varphi 1$ and φ_{2} inputs. The other half of the latch package was used to control the processor and refresh address buffer outputs. This was clocked on the rising edge of the RAS signal and sampled the state of the φ_{1} input to determine whether the next operation would be a refresh or processor operation. This was felt to have great merit as it ensured that the address presented to the memories was stable well before and after the active RAS falling edge. The idea persisted into the final design.

The MUX and CAS signals were still generated by R-C delays. In spite of this the circuit was felt to have some merit and was breadboarded. Unfortunately the differentiator networks did not function as planned and the monostable was not triggered reliably. The fault was found to be that the capacitors were too small to overcome the capacitance at the inputs to the gate, and increasing them did not help since then they were too large to recharge before the next cycle.
\#3 A deliberate attempt was made in this design to eliminate as many of the R-C delays as possible. This led to the use of the 74 LS 122 monostable, as it is claimed to operate quite reliably at these time periods. Also with the multiplicity of trigger inputs, it was found possible to make the' 122 trigger on both the rising and falling edges of the same input signal. This made it possible to dispense with the φ_{1} signal and refer all timing to the φ_{2} input. This also suited the designer quite nicely, as the φ_{1} signal is not available on the system expansion bus connector.

With the critical timing taken care of by the monostable, the only other timing delays needed were between RAS and CAS and non-critical delay to make the monostable trigger on both edges. The former was very simply accomplished by an R-C network and, although vital, this was found to be stable enough for this project.

The data sheet on the 4416 states that the column addresses must be stable by the time the $\overline{\mathrm{CAS}}$ signal goes low. In this design there is one extra device propagation delay in the CAS signal path more than in the address multiplexer path. In practice, this was found to give about 20 ns separation in the right direction. In going from the D-type latch monostable circuit to the 74LS122 and retaining the buffer control part there was a spare Dtype latch available. This was quickly put to use to sample the select signal at an appropriate time and provide a $\overline{\mathrm{CAS}}$ signal which could remain low until the end of

\#3 (prototyped)
For:
RAS timing set by one control and not temperature dependent.
RAS-CAS delay set by one network. Only two main timing networks.
Address buffers switched half-way through cycle.
Once CAS triggered stays low to end of cycle - makes data remain on outputs.

Against:
Stopped working when processor warmed up
Refer to data sheets for 6502 and 4416 to get probable reason that 6502 guarantees data out valid for 200 ns after φ_{2} goes high. 4416 requires data valid whenever the later of $\bar{W} E$ or CAS goes low for a write cycle.
a processor access cycle. This configuration not only removed a lot of constraints on the select decoding logic but also keeps data available at the memory devices until the 6502 has captured it. It also makes sure that there are no short or erroneous CAS outputs which would lead to mis-operation of the memory chips.

The essential control logic as designed together with the various address multiplexers, refresh counter and 16 K of memory were constructed on a small PCB. This was connected via a simple interface to the designer's Ohio Superboard. This is a ratherold 6502 system, which has been much modified, and now runs at a clock speed of 1.25 MHz . After sorting out all the usual bugs and making the necessary adjustments, the project seemed to work well . . for 10 minutes. No reason for the latch-up was apparent, so freezer spray was applied to various parts to see if there was a thermal problem. Lo and behold, it was the 6502 processor! However, since this had been working satisfactorily for some years, and still did so when not connected to the new memory, it was felt that the fault must be a little more obscure.

The next thing was to dig out all the data on the 6502 and the 4416. A combined timing diagram was drawn to illustrate the interaction between the two devices and the effect of the control logic. It had been noticed that although the data read from a location was not the same as that written to it each read operation was consistent with the last. This pointed to the possibility that there was a problem in the write operation. In fact the specification of the 6502 states that data in a write cycle is only guaranteed stable 200 ns after the φ_{2} rising edge. The 4416, however, requires that the data be stable whenever the later of $\overline{C A S}$ or $\overline{W E}$ goes low. In the design at this time it was the CAS which was critical. It was easy to adjust the delay to get round this problem, but this immediately raised another in the read cycle.

Here, the 6502 requires that data from the memories be stable 100 ns before the φ_{2} falling edge. The 4416 is guaranteed to supply this data 120ns after the CAS signal goes low. Being really pessimistic this would require a minimim φ_{2} high time of 420 ns , which looks a little adrift from the observed 360 ns . To get around this, at least partly, the WE signal was gated with the CAS and φ_{2} signals such that it occurred after the $\overline{C A S}$ signal. This meant that there was a little more leeway in the timing and the CAS signal could occur earlier. This was even better in the final design where there was an extra delay through the 'LS139 decoder.
\#4 Having got the prototype working satisfactorily, the time arrived to iay out a PCB for the final design. This took about four days for the double-sided artwork and a further three days to have it photographically reduced and a board etched, drilled and populated. A new interface to the Superboard was constructed and the design tested. This brought to light one or two things like the $\overline{R A S}$ and $\overline{W E}$ being swapped on the memories and the desirability of more test points on essential signal paths. These items were corrected on the PCB artwork to yield the final PCB pattern.

Once the RAS and $\overline{W E}$ problem had been solved the project worked as required although it was not possible to check operation with the slower 4416-20 devices as only 4416-15 were available from the suppliers.

One extra feature had been added to the design between the \#3 and \#4 versions and that was the C signal derived by an inverter from the R / \bar{W} line. This is necessary because during an active processor access cycle, all the memory devices will perform a read operation except for a pair selected to have data written if the processor wants a write cycle. The \bar{G} signal is routed by

109 Wayne Kert Autobmisnoe Component Brdage 8421 ..2ese 114 Wayne Kerr Component Bridge B52 (CT375) L 100uH. 500 kH : C1pF-5F: R1 millohm-
 Sourco 8161 A D/Fector Fi16....................... 8400 119 MARCDNI AM/FM Mod-Meter TF2300S
2-100MHZ
.. 123 101RMEC MOD METER AM/FM TyP0 210 3-300MHZ
124 MARCONI RF MILLIVOLTMETER TF 2603 $50 \mathrm{KHZ}-1500 \mathrm{MHZ} 1 \mathrm{mV}$-3VSD TF260420HZ-1500MHZAC/DC/Ohms ACD $300 \mathrm{mV}-300 \mathrm{~V}$ FSD: DC 200 mmV -IKV FSD
 146 AVO MULTIMETER Model 8 PAP $£ 7$......... 24
152 MULTIMETER U4324 33 switched ranges 20 K Ohm per volt. Complete with loads a battery. Brand New. One year quarantoe PaP \&4..................10
161 FARNELLSTAB PSU TSV30/2 0 -30V 2A Currem 161 FARNELL STAB PSU TSV $30 / 20-30 \mathrm{~V} 2 \mathrm{Cu}$ Curem limiting metered...
163 ROBAND VARECO PSU 169 KINGSHILL STAB PSU Model 5000 -60V 0.5 A . 169 KiNGSHiLL STAB PSU Moodel $5000-60 \mathrm{~V} 0.5 \mathrm{~A}$.
Current IImitlng Metered PsP 7 .
 $10-2100 \mathrm{~V} 5 \mathrm{~mA}$ Mevered........................200 190 VOL TEX PSU Model $82-635+1-5 \mathrm{~V} ;+12 \mathrm{~V}_{i}-24 \mathrm{~V}$ High current un-used....
 206 BAK LEVEL RECORDER 2305
209 BAK MEASURING AMPLIFIER 28082 HZ -200KHZ 281 H.P LOGISTATIC ANALYSER 1602 A............. 2400 286 AVO VALUE CHARACTERISTIC METER VCM 103 293 MARCON AF POWER METER TF693A.......................... 297 MARCONI DIFFERENTIAL DC VOLTMETER 300RRSS POLYSKOP SWOB1 BN 4244/2/50..........2se Abo in dock NEW OSCILLOSPEE, MULTMMETER THI
THIS Is A VEAY sMAL
or Telephone for List
Plocee chreck ovellesinty before ordering. S10 VAT to be added to roted of coode a carrige

8TEPPINQ MOTORE

 Type 1. 200 vispe 4 Phage (5 wiry) 12/24V25 oi inch. 2% dia.................... 15 of Type 2. $8 / 12$ Sleps 3 phate $12 / 24 \mathrm{~V}$

OF READING 110 WYKENHAM ROAD, READING, B

Callers wetcome 9 a.m. to $5.30 \mathrm{p} . \mathrm{m}$. Monday to Saturday incluatve

${ }^{\circ}$ GRIPMATE ${ }^{\circ}$ IEN: ELECTRONIC ENGINEERS NEED 'EXTRA HANDS' FOR SOLDERING GLUEING AND ASSEMBLING
 This essential compact tool comes complete with 4 croc-clip Flexi-arms to hold components positively and rapidly with infinite positioning..... ONLY
 USEFUL ACCESSORIES.... 48mm 2.5x MAGNIFIER FLEXI-A ALL PRICES INCLUDE VAT- POST- PKG SEND NOW! CHQ/PO OR SAE DETAILS DIRECT FROM THE MAKERS:
 KEMPLANT LTD (DEPT. 1) DURFOLD WOOD, PLAISTOW, BILLINGSHURST, WEST SUSSEX RH14 OPN

All advantages of previous design. Uses quad NOR package instead of buffers one less resistor.
$\overline{\text { WE }}$ signal slightly after $\overline{\text { CAS }}$ instead of before it.
\mathbf{C} signal available to disable memory data output in WRITE mode.
Works on a 1.25 MHz 6502 system. All edge triggered from $\varphi 2$ - samples $\overline{\text { SEL }}$ signal, CAS cannot be aborted once started. Requires adjustment to be made for best operation.
Relies on short time delays around inputs of monostables.
Memories must not be accessed for eight cycles after power-up.
As it stands, is not usable for $\mathbf{4 1 6 4}$ devices with data in and data out pins commoned.
the 'LS139 to the pair of memories to be accessed only during a read operation. At all other times the \bar{G} pins of the memories will be high thus preventing their data bus drivers fighting for control of the bus. This does not affect the internal operation of the memories.

As a bonus and a service to readers who had built the 1983 DRAM design the control logic was re-configured to fit a small PCB such that it could be used to replace the control logic of the earlier design. Some small changes were necessary because of the select logic polarity difference and the use of 4164 memory devices. This was built onto the original project and tested under the same conditions and worked perfectly, as far as could be ascertained.

This concludes the description of how this project was designed. Although it cannot cover all the thought processes, prejudices, scribblings on odd bits of paper and strange flights of fancy which make up the design process, it serves as an illustration of how one starts with one set of ideas and progresses to the final solution discarding most or all of the original concepts on theway. This is probably quite common in designing electronic or other hardware (and software?) and is probably more useful than doggedly trying to get the first idea to work.

ETI
TERMS OF BUSINESS

* All prices exclude V.A.T and carriage. Please add carriage to order total before adding V.A.T
* Carriage charges extra on all orders as follows: Components
Books/Data/Software Printers, Monitors, Disc drives, etc.
* Strictly cash with order or credit card (Access or VISA) only.
* Delivery is normally from stock but please allow up to 28 days.
* Any query or compiaint regarding an order should be made in writing within 7 days of receipt of the order. No telephone queries will be entertained.

Goods incorrectly ordered cannot be accepted for replacement without our prior agreement. Due to high processing costs, a minimum of 15% handling charge may be levied on any returns or cancelled orders.

* We will issue a full immediate refund, if requested, for out of stock items.
* All items carry full manufacturers warranty
* A V.A.T receipt will be supplied with all orders.
* Prices quoted are correct at the time of going to press but we reserve the right to effect changes without prior notice

components
 GILRAY ROAD, DISS, NORFOLK. TEL:0379 4131

PART NO.	DESCRIPTION	MAIL. ORDER
BBC MICROS AND ACCESSORIES		PRICE
ANB01	BBC Model B Micro	¢ 325.00
ANBO2	BBC Model B Mirro with Econet I/F	£385.00
ANB03	BBC Model B Micro with Disc I/F	£406.00
ANB04	BBC Model B Micro with Disc \& Econet	£445.00
ANB21	DNFS ROM	£17.91
ANB23	Disc Interface Kit (Excl DNF5 ROM)	£84.00
ANB14	Speech Interface	£40.00
ANK01	IEEE488 Interface Adaptor	$¢ 283.00$
ANB22	Econet I/F Kits	£35.00
BBC 45	2 BBC Joysticks	£8.00
STAND	Monitor Stand	¢7.50
SRE1	Sideways ROM Expansion Board for BBC Miero	£25.95
BBC DISC DRIVES		
HC1	Single 100k 40 track single sided	£75.00
HC15	Single 100k (expandable to dual) 40 track	$£ 90.00$
HC1D	Dual ($2 \times 100 \mathrm{k}$) 40 track single sided	¢160.00
BBC44	Single 400 k 80 track double sided	£156.50
BBC44S	Single 400k (expandable to dual) 40/80 track switchable double sided	£180.00
BBC44SW	Single 400k 40/80 track switchable double sided	£159.00
BBC44D	Dual ($2 \times 400 \mathrm{k}$) 40/80 track switchable double sided	£310.00
MECHANISMS		
	100 k single sided Alps 400k double sided Epson	$\begin{aligned} & £ 70.00 \\ & £ 140.00 \end{aligned}$
FLOPPY DISCS		
MD-1C/B	Nashua single sided, single density 40 track (10 discs)	£12.00
MD-1DC/B	Nashua single sided, double density 40 track (10 discs)	£13.00
MD-2DC/B	Nashua double sided, double density 40 track (10 discs)	$£ 15.50$
MD-2FC/B	Nashua double sided, quad density 80 track (10 discs)	£17.85
SPECIAL OFFER		
BBC40TD	BASF double sided, double density 40 track (10 discs)	£14.00
DISC STORAGE BOXES		
MDT25/3	$3{ }^{1 .}$. Flip ' N ' file Micro disc box (cap. 25)	¢7.75
DT25/5	54.* Flip ' N ' file lockable disc box (cap. 25)	£18.77
DT60/5	54." Standard lockable disc box (cap 60)	£10.65
MONITORS		
9MON	9 inch green screen high resolution NEC high quality montor	£125.00
12 MON	12 inch green screen high resolution NEC high quality monitor	£135.00
1431	Microvitec 14* RGB colour monitor	£175.00
1441	Microvitec 14. RGB colour monitor high resolution	¢410.00
1451	Microvitec 14^{*} RGB colour monitor medium resolution	£295.00
1431/AP/M5	Microvitec 1431 PAL \& RGB inputs and sound facility	£225.00

Connecting cables for personal computers
A comprehensive range of high quality interconnecting cables for popular micro computers. All cables Part number

Description
Computer

Video cables

CON100
Phono piug to phono plug (2M)
CON10:
CON 107
CON108
CON19
CON160

Cassette recorder cables

CON109	7 pin DIN to open end	BBC	1.25
CON110	7 pin DIN to $2 \times 3.5 \mathrm{~mm}+1 \times 25 \mathrm{~mm} \mathrm{~J} / \mathrm{plug}$	BBC	2.50
CON111	7 pin DIN to 5 pin $\mathrm{DIN}+25 \mathrm{~mm} \mathrm{I} /$ plug	BBC	2.50
CON118	$5 \mathrm{pin} \mathrm{DIN} \mathrm{to} 2 \times 3.5 \mathrm{~mm}$ J/plugs	Spectrum/ZX	2.50
CON117	客pin DIN to $2 \times 35 \mathrm{~mm}+1 \times 25 \mathrm{~mm}$ J/plug	Dragon	2.50
Parallel printer cables			
CON130	36 way plug to 36 way plug (2M)	Sirius/Apricot	18.00
CON131	36 way plug to 36 way plug (5M)	Sirius/Apricot	26.50
CON132	36 way plug to 36 way socket (2M)		18.00
CON133	36 way plug to 36 way socket (5M)		26.50
CON144	36 way plug to 25 way male D type (2M)	IBM/TIPC	19.00
CON145	36 way plug to 25 way male D type (5 M)	IBM/TIPC	2750
CON134	36 way plug to 25 way male D type (2 M)	RML/Apple	19.00
CON135	36 way plug to 25 way Male D type (5M);	RML/Apple	27.50
CON142	36 way plug to 20 way IDC socket (2M).	Dragon	13.95
CON139	36 way plug to 26 way IDC socket (2M)	BBC	9.95
CON140	36 way plug to 26 way IDC socket (SM)	BBC	22.95
CON141	36 way plug to 34 way card edge (2M)	TRS80 Lev 1	1850
CON143	36 way plug to 34 way IDC socket (2M)	TR580 Lev 21	
		Menotech	1095
RS232 Cables			
CON106	25 way male D type to 5 pin DIN	BBC	5.85
CON128	Universal' RS232 cable (pins 1-8, 20 connested and 20 jumpered as required) 2 M		75.95
CON164	'Universal' RS232 cable as above but 5.9		20.95
CON120	25 way mate to male 1-25 connected (2M)		16.95
CON121	25 way male to male 1.25 cormected (5M)		22.50
CON122	25 way male to male 1.25 connected (10 M)		32.50
CON123	25 way male to male 1.25 connected (30M)		68.00
CON124	25 way male to female 1.25 connected (2M)		15.45
CON125	25 way male to female ; 25 connected (5M)		21.00
CON126	25 way male to female 1.25 connected (10M)		31.00
CON127	25 way male to female 1.25 connected (30M)		66.50
CON129	25 way male to 9 way male	Spectrum	15.95
CON162	25 way male to 9 way mate	Mackintosh	15.95
CON163	25 way male to 5 pin DIN	RML 4802	14.95

DIGITAL DELAY LINE

Greedy for more, eh? Well here's the expansion card, together with some notes and hints on how to use the unit. Design and development by Ray Lowe.

The memory expansion circuit is shown in Fig. 1. Comparing this with the 'motherboard' memory section (Fig. 3, p19, ETI Dec. '84) shows that the two are identical lumps of circuitry. So, to understand how it works - as if you didn't know - you'll have to find a back issue. Selection between the two memory sections is made by inhibiting them alternately via the inverter preceeding the 'EXP' control line. Installation of the extra
memory is straightforward, but requires careful soldering to the logic PCB (motherboard). The best - and easiest - way to accomplish this is shown in Fig. 2. Remember to follow construction tips given in the earlier articles.

The expansion PCB layout diagram shows connections labelled with the pin no. to which they should be connected. These numbers refer to the pins of ICs in the usual fashion, ie looking downwards on the component
side of the PCB and starting with no. 1 at top left hand corner, adjacent to the notch, and numbering anticlockwise.

Possible Adaptions

Drum machine: if you know a little about digital electronics, you can try adding a simple circuit which will page between memory or expansion card(s), via the INHibit pins, to give a drum machine-like programmability.

Fig. 1 Circuit diagram of the expansion card. On IC1-9, the data is on pins 9 to 1 and 13 to 17, and the address on pins 1 to 8 and 19, 22, 23; it does not matter one jot in which order these pins are used in this circuit, and, as you'll see on the PCB, the order is changed between some ICs merely to help the track lay-out.

Fig. 2 Overlay diagram of the expansion card, which is connected to the main memory card using a short length of ribbon cable with header sockets at both ends. On the main memory card, one of the memory ICs will have to be removed to allow the header plug to be inserted, and this IC should be transferred to the position marked ICX on the expansion card. Be sure to get the orientation of the header sockets right! Note also that some additional links to the expansion card come in via SK2, and these are all labelled on the expansion card and on the main memory card overlay.

This can be used in the percussion mode, with a trigger input from a sequencer or drum contacts, for example. The amount of memory required to store percussive sounds would be quite small so that only two or three chips need be present per expansion card.

External delay modulation: you can apply, via a 100 k resistor, an externally-generated control voltage to the inverting input of IC14a - from a foot pedal, for example, to allow external' delay (pitch) modulation when playing live.

Audio storage scope facility: not very musical, I admit, but the unit will do this job with no modification (although you do need to have a'scope already to connect to it!). Probably only 4 K of memory would be needed for this use.

Finally, pseudo-stereo could be achieved simply, by taking the 'straight' and delayed channels to separate inputs on the stereo amplifier.

Using The Unit

There now follow some notes on using the unit, with or without the expansion card. One general point which should be noted is that the setting of the input gain control should be done carefully to obtain best results. The gains of other units before and after the unit should be adjusted to compensate. The objective is to use the maximum signal leve! you can, to avoid quantisation noise, etc, whilst maintaining just enough headroom to prevent transients, etc, grossly overloading the A-toD.

If the unit is used in conjunction with other effects, then the best position for it will have to be determined by experiment. Obviously you'il obtain different effects from different orders of the effects units. However, if a compression type of effect, such as sustain, is used, then placing the delay line after this effect will take advantage of the reduced dynamic range.

Similarly, a noise gate will probably give better results if used before the delay line.

A footswitch can be connected, via the front panel socket, to switch the delay channel in or out, by shorting the 'EXT' pin to analogue ground. Similary, externally generated trigger pulses in the range 5 to 20 volts can be

Fig. 3 An alternative method of connecting the expansion card to the main memory, and which avoids having to move one of the memory ICs. However, you must be careful to get the orientation of the header socket right.
applied to the logic board via the trigger input. The delay channel is reset by the leading edge of the pulse and remains reset until the trailing edge. So far, these inputs have proved to be idiot-proof, but don't try to prove us wrong...

Using 'Freeze' And 'Percussion'

To store a sound, press freeze in at any time, or have the freeze switch out and the percussion switch in. Set the input signal level, then, by either momentarily
releasing the percussion switch or by applying a trigger pulse, start the record cycle and the signal is now recorded. Note that a trigger source can sometimes be derived from a signal source, eg drum contact. With percussion already in, push in freeze to write protect the sound. Applying trigger pulses, etc, will regenerate the sound upon request (percussive mode) or the sound can be continually cycled with the percussion switch out.

The stored sound can be manipulated by means of the

BUYLINES

Nothing here should cause any problems. The PCB is, as ever, available through our PCB service.
delay time buttons, the bandwidth control, and the low frequency oscillator. The repeat control affects the decay rate once freeze has been released.

Effects

Chorus and flanging type effects are obtained by using short delays and mixing the original and delayed channels equally. The time delay constitutes a phase difference and results in comb filtering. By modulating the delay time, the filter frequency is modulated and a sweeping type effect is generated. Multi-repeats also enhance some effects. Pitch change is accomplished by using longer delays and varying the delay time. Vibrato and double tracking can be achieved in this way. Varying the delay time can make the sound appear to come from a Coca-Cola tin to a huge cavern, depending upon setting.

These are just a few effects that can be produced - the only limitation is that of imagination!

"IM SHUNTING THE SLOW SAWTOOTH INTO THE SIDING WLILE THE
EXPRESS SINEBURST IS CLOCKED THROUGH ON THE MAIN LINE"

ELECTRONIC SIREN KIT

Produces an extremely Poud piercing swept
trequency tone from a 9-15V supply. Enable input tor easy conne to alarm circuits.
Includes Sin. Horn Speak

Mini Siren

of horn speaker) for internal us
Complete with box

SECURITY PRODUCTS

Protect your home
and property and
save by building
your own burglar
alarm system

Stair Mat 23×7 in (950120) Floor Mat 29×16 in (950 125) Tamper-proof connecting block 1950 110)
Door/Window Contacts. Flush mounting, 4 wire Magnet/swit Per Pair. (950 140) Window Tape $0.5^{\prime \prime}$ wide 50 m . (950 145
Window Tape Terminations
Per pair 1950150
Key-operated Switch. 1.5A/250V
SHS I Heavy chrome metal
(350 128)
Passive Infra-Red Detector
Detects intruder's body heat Rang 10 metres. $12 \mathrm{~V} D C$, n/o \& nic contact (950 135) \quad 40.00 Alarm Control Unit. 4 input circuits, 2 insiant and 2 delayed. Adjustable entry. exit and alarm times. Built and tested. Full instructions supplied. Size: $180 \times 130 \times$ 30 mm . Supply: 12 V DC. (950 160) f26.00 Ultrasonic Burglar Alarm. Selt-contained mains or battery powered unit complete with horn and AC adaptor. Imputs for pressure mats and other sensors together with exit/entry delays enable this unit to be used $8 W$ Horn Speaker, 5.5 ins 8 ohm , Idea for sirens, etc. 2.5 m lead and 3.5 mm jack
plug (403 148)
$\mathbf{f 6} 15$

IR GARAGE DOOR CONTROLLER KIT

and controling motorised garage doors

 and switchinggarage and drive
lights on of up
a range of 40 ft
Lots of appll

cations like
controlling lights

and TV

etc. in the home Ideal for aged or dis abled persons. this coded kit comprises of a mains powered intra red receiver with a latched transistor outputs. battery powered transmitter and opto isolated solid state mains switch

XK 103
$£ 25.00$

PANTEC KITS

PN2	FM Micro Transmitter	c7.50
PN3	Stabilised Power Supply	f13.70
PN5	$2 \times 10 \mathrm{w}$ Stereo Amplitier	¢14.50
PN6	2*40w Stereo Amplitier	f24.95
PN7	Pushbution Stereo Preamp	f12.80
PN8	Tone \& Volume Controt	f13.60
PN11	3w FM Transmitter	f11.95
PN13	Single Channel FM	
	Transmitter	c9.80
PN14	Receiver for above	f15 50

TOP QUALITY ... TOP SERVICE BOTTOM PRICES!

For FREE CATALOGUE send $9^{\prime \prime} \times 6^{\prime \prime}$ SAE - contains full list of stock range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add $75 p$ p\&p $+15 \%$ VAT to all UK orders. Overseas customers add $£ 2.75$ p\&p Europe, $£ 6.50$ elsewhere. Giro No. 529314002 . Goods by return subject to availability. Shop open 9am -5pm (Mon-Fri). 1Oam-4pm Sat). ALL PRICES EXCLUDE VAT
(조
INFRA-RED REMOTE CONTROL KITS

These kits are designed to enable infra red remote control to be incorporated into virtually any application from switching car locks or alarms to controlling Hi - Fi or TV. The application will determine the interface circuitry between the receive and the controlled device General in structions and applications are supplied The kits are coded and provide a high deoree of security and noise immunity MK 18 Transmitter Kit -- for use with MK 1 1/MK 12 receivers. Requires PP3 bat tery Size $8 \times 2 \times 13 \mathrm{cms}$ Range approx. 60 ft
Keyboerds for MK 18
MK9 4 way for use with MK $12 \quad$ £190 MK 10 16-way for use with MK $12 \quad \mathbf{f 5} 40$ MK 131 -way for use with MK 11 ©4 35 MK 11 Receiver Kit mans powered Provides 10 latched plus 3 analogue ou puts ideal for controlling audro amplifers TV or lighting where control of light
brightness is required.
$£ 13.50$ MK 14 AC Power Controller Kit (phase) controlling AC loads from MK analogue outputs eg lamp diriming

COMPONENT PACKS

PACK 1650 Resistors 47R 10M

f4.00
 itors $0011 \mu \mathrm{~F} 250 \mathrm{~V}$
f3 25

5 values
 PACK 445 Presprts 100 R 1 M PACK 530.

f5 55
f300 $\mathbf{f} 2.40$
f 1.75
\square - वतO-
=

- व1

MK19 Stereo Amplifier Controller Kit for remote control of bass, treble and volue for balance) by MKII. Includes a one May be connected between the pre-amp and power amp of almost any audio system $\underset{f 10.70}{ }$

MK12 Receiver Kit mains powered with 16 latched or momentary outputs Latched version is for applications re quiring one output on at a time. eg TV channel selection. Momentary type gives may be latched as required. may be latched as required
$512 \mathrm{e} 9 \times 4 \times 2 \mathrm{cms}$
f13 50
MK 15 Dual Latched Solid State Relay for switching mains loads such as lamps TVs, etc. from the outputs of the MK 12 momentarv. 5 items may be switched ndependentiv using 8 Mkiss. Tracs Ino interference $f 450$

BT STYLE PHONE CONNECTORS

	Line Jack Units Master Unit ifirst line umut has betl capacator and surge arsester
Flush or surface mountmag Screw con	
nectors	
Master itlusta	$19601101 \mathbf{6 3 0 0}$
Masiter murtacel	1960112153.00
Master (mmol sutatee)	1960113) $£ 3.50$
Secondiry thush:	9601141 £2.65
Secondary cuntacel	$960116: 12.65$
Secondary ummi sufl	19601171 ¢ 3.00
Dual oullet adaptor	960 1181£4.20
4 way line cord munals	in plug to spade ter $19601201 \mathbf{E} 2.00$
4 way line cord	130) f0. 20 per

LOW COST: 10 M ohm, $31 / 2$ digit 0.4 m display. Auto zero and polarity, low batt. indication, overload protection Includes
tesi leads. battery. spare fuse, manual. tesi leads. ba
carrving case
AC Volts: O. 200. 500
DC Volts: 0.2.20-200.1000
Re Current: 0.20 k .20 k .200 k .2 M
Resistance: $0-2 \mathrm{k} \cdot 20 \mathrm{k} \cdot 200 \mathrm{k} \cdot 2 \mathrm{M}$
Size: $138 \times 86 \times 36 \mathrm{~mm}$
(405 202)
Professional - $10 \mathrm{M}, 0.5 \mathrm{in} \quad \mathbf{~} \mathbf{1 / 2 5 . 9 5}$ Overrange and low battery indication. Overload protection. includes leads. spare fuse, battery, manual and case. Spare use, battery, manual and case.
Transistor Checker Size: $175 \times 93 \times$ 42 mm
AC Volts: $0.200-750$
DC Volts: $0.200 \mathrm{~m} \cdot 2$ 20-200-1000.
DC Current: $0-20 \mathrm{u} \cdot 2 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot 200 \mathrm{~mA}$. O-10A.
Ohms: 0.200 2k-20k 200k 2M. 0.20 M (405 204)

Auto Ranging 3% digit 10 mm display. Continuity buzzer, and battery, overload and range indication. 10 A internal shunt
for ACDD current measurement Carry ing case supplied
AC Volts 0-2-20.200-600.
DC Volts: $0.0 .2 \cdot 2.20-200-1000$ DC Current: $0.200 \mathrm{~mA} / 0.10 \mathrm{~A}$ Resistance: 0 200 $2 \mathrm{k} \cdot 20 \mathrm{k} \cdot 200 \mathrm{k}$. O 2M Size: $160 \times 85 \times 29 \mathrm{~mm}$
$(405$ 206)
High Sensitiviry $£ 44.85$ For use with Temperature Probe. For use with a multimeter to measure temperatures from $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$ Accuracy: $1.5^{\circ} \mathrm{C} @ 25^{\circ} \mathrm{C}, ~ 2{ }^{\circ} \mathrm{C} @ 100^{\circ} \mathrm{C}$ Response time lin water). 5 seconds Includes case, calibrated scale and in-
structions. $(\mathbf{4 0 5} 220)$
$\mathbf{~} 8.50$

MICROPROCESSOR TIMER KIT

Designed to con. trol 4 outpu

 independently switching on and off at preset times over a ${ }^{7}$ daycycle. LED dis
play of time and day, eastly programmed via 20 -way keyboard. Ideal for central heating control lincluding different witching times for weekends). Battery back-up circuit. Includes box 18 time settings

Ст6000K

$£ 39.00$
XK114. Relay Kit for CT 6000 includes PCB. connectors and one relay. Will accepl up to 4 relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o contacts c3 90
701115 Additional Relays f 1.65

ELECTRONIC LOCK KIT

With hundreds of uses indoors. garages, car antt-theft devices, electronic equip ment. etc. Only the correct easily changed four digit code will open it. Re 750 mA Fits into standard electricat wall box box.
Complete kit (except front panel)
XK 101 E11.50 Electric Lock Mechanism for use with (Requires relay.) 12 V AC/DC coil (701 150) $\mathbf{f 1 4 . 9 5}$

HOME LIGHTING KITS

These kits are
designed to
replace a stan
dard wall switch
300 w of lighting

TDR300K Remote Controlled Light Dimmer
£ 14.95

MK6

TD300K Touch Dimmet $\quad \mathbf{8 7 . 7 5}$
TS300K Touch Switch f7.75
TDE/K 2 way extension
for abovekits
f2.50

D300K Rotary controlled

f 3.95

DISCO LIGHTING KITS

DL 1000k This value for money 4 way chaser features bi directional sequence $\begin{array}{ll}\text { and dimming. } 1 \mathrm{~kW} \text { per channel, f } 15.95 \\ \text { DLZ } 1000 \mathrm{~K} & \text { A lower cost uni directional }\end{array}$ DLZ1000K A lower cost unt-directional
version of the above. Zero switching to reduce interference. $\quad \mathbf{f 8 . 9 5}$ Optional opto input allowing audio beat' features zero voltage switching, auto matic level control and built in micro
phone. 1 kW per chamnel.
$\mathbf{f 1 2} 95$

DVMIULTRA SENSITIVE THERMOMETER KIT

Based on the ICL 7126 and a $31 / 2$ digit liquid crystal display, this kit will form the basis of a digital multimeter conly a few additional resistors and switches are re quired detals suppliedl. or a sensitive
digital thermometer $\left(50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading $0.1^{\circ} \mathrm{C}$. The kit has a sensitivity of 200 mV for a full-scale leading automatic polarity and overload indication Typical battery life of 2 years (PP3) \quad ¢ 15.50

ELECTRONICS
 11-13 Boston Road
 London W7 3SJ
 ORDERS
 01-5678910
 ENQUIRIES
 $01-5799794$

$01-5792842$ TECHNICAL AFTER 3pm

TECH TIPS

Auto-Repeat for the Cortex

V.F. Gray
Purley

For less than 30 pence, a useful auto-repeat function can be added to the Cortex computer keyboard. There are so few components in the circuit that they can easily be soldered directly onto the back of the keyboard PCB.

When the keyboard encoder strobe signal goes high (key pressed) the 22 u capacitor starts to charge via the 100 k resistor. Eventually, if the key is still pressed, the BC182 will conduct sufficiently to sim ulate pressing the

Repeat key. When the key is released, the strobe goes low and the capacitor discharges via the 1 N4148 diode and the BC182 stops conducting.

With the component values shown, any character key which is held down for more than about half a second will start to automatically repeat.

Crescendo Alarm

A.N. Collinson

Doncaster

This circuit is designed for the benefit of those who find the start of the day a little too alarming. It can be coupled to an alarm clock or almost anyothertimingmechanism and produces an output which builds up from nothing to full volume. The sleeper is thus aroused by the very minimum volume necessary.

The input can be an oscillator or almost any other audio source (eg.,
music from a radio-alarm). R1 and R2 provide attentuation and the signal is then fed to IC1, a transconductance amplifier whose gain is controlled by the current entering pin 5. Q1, D1, D2 and R11 providea constant current of around 1uA which is used to charge capacitor C5. The constant current ensures that the voltage across C5 rises linearly, full charge being reached after about 3 or 4 minutes. This voltage is passed to IC1 via IC2 and R5, R3 being included to compensate for IC2's offset. The output of IC1 is coupled via R10 and C4 to the audio amplifier IC3 and then to the loudspeaker.

Expanding Ex-OR Gates

L. Robertson Aberdeen

Exclusive-OR gates are only obtainable in 2 -input packages, and simply cascading two gates does not give the correct truth table. Any application, therefore, which requires an Ex-OR gate with three or more inputs is going to involve some tricky logic combinations.

In the first circuit, inputs A and B are fed into gate 1 and the output of the gate is combined with input C at gate 2 . This arrangement satisfies every part of the truth table except $A=B=C=1$, where the output from gate 2 will be 1 instead of 0 . To overcome this problem, inputs A and B are also fed to gate 3 so that, when both are high, the consequent high output from that gate will disable gate 4 and so produce a final output of 0 .

If a four-input arrangement is required, the expansion can be achieved by treating inputs C and D in the same way as inputs A and B in the first circuit. Thus, in the second circuit, gate 5 performs a similar function to gate 1 and gate 6 behaves in the same way as gate 3.

The final permutation is a sixinput gate, shown in simplified form in the third circuit diagram. The three-input Ex-OR gate shown as gate 4 is made up as shown in the first diagram above and the pairs of inputs AB, CD, EF are combined in three NAND gates and fed to three of the inputs of the final AND gate.

Automatic Car Aerial

T. Williams
 Shoreham-by-Sea

This circuit, which is for use with negative earth cars, will automatically extend a motorised aerial when the radio is switched on and retract it when the radio is switched off.

The circuit requires two +12 V connections, one from the car's electrical system via a suitable fuse and the other from the radio on/off switch. The ground connection can be made to the car body and the only other connections are those to the aerial motor.

Q1 is normally turned on. When the input from the radio on/off switch is applied, Q1 is turned off and current flows through C1, R3, RV1 and into the base of Q2. Q2 then turns on, energising relay RLA1 and thus extending the aerial. The period of time for which power is applied to the aerial motor can be

adjusted by RV1.
When the radio is switched off, Q1 is turned on again and current flows through C2, R5, RV2 and into
the base of Q3. Q3 then turns on, energising RLA2 and retracting the aerial. RV2 adjusts the period for which power is applied.

DAMWIT REF', DONT ANU OF YOU KNOW ANYTHING? RED IS TWO, BLACK IS NOUCHT, YELLOW IS FOUR--!

SKYBRIDGE LIMITED

Mail Order \& Shop:
 441 Princes Road
 Dartford
 Kent
 DA1 1 RB
 Tel: (O322) 91454

cable

PER METRE
Wiro Wrapped 6p
Red WhiteBlack Red Whit $1 / .6$
Solid
11 Coiours.
Hook-up $7 / .2$
11 Colours. 11 Colours...... 4 Coavy Duty $32 / .2$ TINNED CÖPPËR per 4 oz reel SWG $16 .$. SWG 18
SWG 20
SWG 22
SWG 24
EN COPPER
Der 2oz Reel
per $20 z$ Reel SWG 14. SWG 18.
SWG 20.
SWG 22. SWG $22 .$. SWG 26. SWG $30 .$.
SWG 32.
SW SWG 32
SWG 34
SWG 36 SWG 38
SWG 40 FIGURE 8
Per metre $7 / 25$

470pF.:...........18p
470 pF
1000 pF
2200 pF

WIDERANGEOF CABLE MARKERS
SLEEVING TIES, SLEEVING TIES FIXINGS IN
STOCK- PHONE FOR DETAILS.

CAPACITORS
1.8pF-22n5.........8p

DISC
10 pF
47 pF
100 pF

ORDERING INFORMATION:

P/P 50p on orders less than $£ 20$ in value otherwise post free. All components full spec \& guaranteed. Discounts available on orders over $£ 50$ - phone for details. For unlisted components phone for price.

PARAGRAPH

Barry Porter describes a project guaranteed to raise the blood pressure of members of the anti tone-control brigade - a ten band equaliser with parametric control of frequency and \mathbf{Q}.

Graphic equalisers are to be found in almost every audio environment, particularly in the sound reinforcement and public address arenas. Recording studios use them in a vain attempt to make their monitors sound like loudspeakers, and they may be seen lurking amongst the megawatt amplification systems that many pop groups use as an alternative to talent, where they enable the last drop of output level to be extracted before acoustic feedback gets the upper hand and sends twenty tons of hardware and half a dozen superstars into lunar orbit.

Most graphic equalisers consist of a number of small, slider potentiometers arranged so that the positions of their control knobs give an indication of the frequency response setting of the unit. Another type of equaliser, often found as part of the input channels of large studio mixing consoles, is the Parametric. This is an equaliser in which the three main parameters, amplitude, frequency and Q, are continuously variable.

The Paragraph is a combination of both equaliser types. Although it resembles a graphic equaliser, each slider is accompanied by two rotary
controls that allow the frequency and Q of the particular band to be adjusted. As a consequence, an almost infinite number of frequency response variations can be obtained, making the unit far more versatile than other types of equaliser. The circuitry of the ParaGraph is quite elaborate, yet its performance is well up to professional studio standards which means that it is vastly superior to a fair percentage of the esoteric megabuck hi-fi equipment that gets drooled over in certain circles.

A block diagram of the ParaGraph is shown in Fig. 1, and it will be seen that the input and output stages are electronically balanced to simplify connection to professional equipment. As the unit may be used in the tape loop of a hi-fi pre-amplifier, provision is made for a tape output and return, the output capable of being selected to pre or post the equalisation stage so that either a flat or an equalised signal can be recorded. The input level control is arranged so that in its central position the unit is operating at unity gain, with 10 dB of gain or attenuation available at the limits of the control.

Principle Of Operation

The usual method of obtaining band pass and stop characteristics is shown in Fig. 2, where an LC filter is used to shunt the input or feedback signal of a differential amplifier. This arrangement works extremely well but does not allow the centre frequency or Q to be easily adjusted, an essential requirement if you want total freedom over the response variations that can be achieved.

In the ParaGraph, active circuitry is used as the response shaping element in the form of State Variable filters. One of these is shown in Fig. 3, and consists of two matched integrators and a summing stage. The output of IC2 has a bandpass characteristic with unity gain at the resonant frequency (f_{o}), which is decided by the input resistors and integration capacitors of IC2 and IC3 by

$$
f_{o}=\frac{1}{2 R_{f} C}
$$

The bandpass Q may be independently adjusted by the input and feedback resistors RQ1 and RQ2, the value being

Fig. 2 An example of the type of filter element used in many graphic equalisers.

Fig. 1 Block Diagram of the complete ParaGraph equaliser.

Fig. 3 A state variable filter of the type used in the ParaGraph.

Fig. 4 The amplitude control system used in the ParaGraph.

$$
Q=\frac{R Q}{R}
$$

The range of each Q control is from 0.5 to 5.5 , which in practice has been found to be ideal.

The method of obtaining lift and cut is shown in Fig. 4. The main signal path is through the two inverting stages, IC1 and IC2. The output of IC1 drives the state variable filters, and it can be seen that in the cut position of any of the control potentiometers, the associated filter is placed in the negative feedback loop of IC1. In the lift position R3, the input resistor of IC2, is bypassed by the output of the bandpass filter. This control system is extremely symmetrical so that the lift and cut response curves are virtually identical, and as the outputs of the filters are added to the main signal path at summing points there is no interaction between individual controls when several filter stages are used.

The ParaGraph contains ten stages with octave spacing between them, the nominal operating frequencies being $31.5 \mathrm{~Hz}, 63 \mathrm{~Hz}$, $125 \mathrm{~Hz}, 250 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}, 2 \mathrm{kHz}$, $4 \mathrm{kHz}, 8 \mathrm{kHz}$ and 16 kHz . The frequency adjustment range of each
band was rather difficult to decide. It would have been nice to have given each band a range of two octaves, making for example, the 1 kHz control sweep from 500 Hz to 2 kHz . Although this is possible, it results in a situation where the 1 kHz position of the control is not central, which could cause operational problems. The potentiometer law necessary to give a completely linear frequency sweep is so obscure (a kind of reverse semi-logarithmic) that a compromise was arrived at. This uses
linear controls, and the circuit values are arranged so that the central position gives the required frequency and the range is from approximately three-quarters of an octave below that frequency to one octave above.

The Circuit

The ParaGraph input stage circuitry is shown in Fig. 5. The RF rejection filter formed by R1, R2, and C 1 and C 2 has its -3 dB point at 88.4 kHz , and the network around IC1a gives a balanced input with unity gain. Under normal circumstances, the input may be DC coupled as it will usually be driven by a balancing transformer or an AC coupled output stage, but if there is any danger of $D C$ voltages reaching the input a 10 u capacitor should be placed in series with both R1 and R2. If the unit is to be used exclusively with unbalanced equipment, the input stage may be modified by omitting R1, R3 and C1 and changing R4 to $1 \mathrm{k0}$, R5 to 100K and R6 to 10R.

Following the balanced input is a gain adjustment stage, IC1b, which allows the overall gain of the system to be changed from unity by plus or minus 10 dB . This should be sufficient to cope with most requirements, but the swing can be increased to 20 dB by reducing the value of $R 7$ and $R 8$ to 1 k 1 . It will be noted that the track and wiper of RV1 are not isolated from the DC conditions of IC1, and noise may be generated every time the control is adjusted. In practice this is unlikely to cause problems because, once the system gain has been set, it will normally remain untouched while the ParaGraph is in use.
The output of IC1b is AC coupled by C3 and C4 so that clicks are not

Fig. 5 Circuit diagram of the ParaGraph input stage.

PROJECT : Equaliser

generated by the switches that follow. If you are wondering why the two capacitors are connected in parallel, you are obviously out of touch with current thinking and manufacturing practice. It has been shown that the use of normal electrolytic capacitors in the signal path of high quality audio equipment can cause significant degradation of the signal, sufficient to be quite audible in most cases. The use of special non-polarized electrolytics cures most of the problems but they can cause the high frequency end of the audio spectrum to sound slightly rough. This effect is cured by the addition of a small value bypass capacitor which employs polycarbonate or polypropylene in its construction.

As there may be the odd soul who is brave enough to insert the ParaGraph into his or her hi-fi system (sing three choruses of "The emotion went up the chimney when my response got equalised" to the tune of Beethovens' 9th) provision has been made for the connection of a tape recorder and the monitoring of its output.

With SW1 in the Pre EQ position as shown in Fig. 1, the tape output will be unequalised whereas the main signal and the tape return (when selected by SW2) will pass through the equalisation stage. When SW1 is switched to Post EQ, the tape output originates after the equaliser (except when the Bypass switch, SW3, is operated) so that any response corrections may be applied to the recorded signal. In this situation, the main signal will also be equalised but the tape return will not, so a valid comparison between the recorder input and output can be made by operating SW2.

Both tape input and output signals are buffered from the main signal path so that the operation and performance of the ParaGraph cannot be affected by external equipment. These buffer stages are shown in Figure 6.

The main signal path summing stages are shown in Fig. 7 and hardly need an explanation, other than to note that as the overall signal phase is non-inverting, the section may be bypassed by a simple, single pole switch as shown in Fig. 1.

The ten state variable filters are identical except for the values of the integration capacitors. The filter circuit is shown in Fig. 8, and Table 1 lists the capacitor values and frequency control calibration points.

Fig. 6 Circuit diagram of the tape buffers.

Fig. 7 Circuit diagram of the main signal path.

Fig. 8 Circuit diagram of the state variable filters.

CAPACITOR VALUES

$220 n / / 10 n / / 390 p$
$100 n / / 15 n / / 220 p$
47n//10n//330p//220p
22n//6n8
$10 \mathrm{n} / / 2 \mathrm{n} 2 / / 2 \mathrm{n} 2$
3n6//3n6
$3 n 6$
1 n 8
$600 p / / 220 p$
$220 \mathrm{p} / / 220 \mathrm{p} / / 10 \mathrm{p}$

RESULTANT FREQUENCY (Hz) AT:			
B	C	D	E
25	31.5	42	63
50	63	84	125
100	125	170	250
200	250	335	500
400	500	670	1k
800	1k	1k3	2k
1 k 6	2k	2k7	4k
3k2	4k	5 k 4	8k
6k4	8k	10k7	16k
12k8	16k	21k4	32k

Table 1. Values for C32 and C36, the frequency-determining capacitors on the filter board. Close-tolerance polystyrene or polycarbonate types should be used throughout.

Fig. 9 Circuit diagram of the balanced output stage.

Both the frequency and Q adjustments may be re-calculated to give different ranges to those suggested. It is not recommended that Q values above 10 are used, but the number of bands may be increased or decreased to suit individual requirements. However, the suggested configuration would seem to offer the best compromise between over simplification and operational and constructional over-complexity.

The amount of available lift and cut is controlled by R36 (Fig. 8), the value shown giving a maximum of 10.4 dB . A different value may be substituted, the resulting amplitude extremes being given by

$$
A(d B)=20 \log \left[\frac{1}{R 7}(10+R 7)\right]
$$

The ParaGraph uses the balanced output stage shown in Figure 9. Rather than repeat the operating principles of this circuit and of balanced connections in general, interested readers who are still awake are referred to the brief description that was given on Page 57 of the January ' 84 issue of ETI.

ETI
To be completed.

BUYLINES

Radial non-polarised electrolytics are not readily available to the amateur but axial 50 v types are sold by Maplin, Circuit and Electrovalue and should fit into the space if stood on end. The polystyrene or polycarbonate capacitors used for C32 and C36 should ideally be $\mathbf{1 \%}$ tolerance types, but if you use 5% types instead you should omit some of the smallest capacitors from the parallel combinations listed in Table 1: there is little point in using either the 330p or the 220 p in parallel with 5% tolerance 47n and $10 n$ capacitors, for example, because the tolerance on the larger capacitors considerably exceeds the value of the smaller ones. Maplin stock a range of 1% tolerance polystyrene capacitors which covers some of the values needed, and it is perfectly permissible to use 5% small value capacitors in parallel with 1% tolerance large values. Watford, Rapid, Cricklewood and Technomatic are among those who stock both the NE5532 and the NE5534 and 4-pole double-throw switches suitable for use in the SW1 position are available from most of the above companies and a large number of other advertisers. 1% tolerance metal film resistors are also widely available and Newrad or West Hyde Developments ought to be able to help you with $19^{\prime \prime}$ rack-mounting cases. The PC mounting potentiometers are sold by Cirkit and the PCBs are available from our PCB service.

T.V. SOUND TUNER

SERIESII BUILT AND TESTED Complete with case. $£ 26.50+£ 2.00$ p\&p.
TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your $\mathrm{Hi}-\mathrm{Fi}$ is a must for quality reproduction. The unit is mains* Operated. This TV SOUND TUNER offers full UHF coverage
with 5 proselected tuning controls.

Also available with built-in hasdphone
 It can also be used in conjunction with your video recorder. Dimensions: $101 /{ }^{\prime \prime} \times 71 / 2 " \times 2 \%$
E.T.I. kit version of above without chassis, case and hardware $£ 16.20$ plus $\mathrm{f} 1.50 \mathrm{p} \& \mathrm{p}$.

HIFI SPEAKER BARGAINS

TOKUDEN - 8", 8 ohm full range $71 / 2 \mathrm{~W}$ twin cone speaker. $£ 3.50+£ 1.10$ p\&p GOODMANS - 7" 60W Bass/Mid. speaker. 8 ohm impedance. Freq. res.: $40-6,000 \mathrm{~Hz}$ $41 / 4 \times 1$ " magnet. $£ 14.95+£ 1.75 \mathrm{p} \& \mathrm{p}$ With rolled surround. $£ 4.95+£ 1.50$ p\&p Tweeters: 8 ohm soft dome radiator type. (33 '" 'sq.) For use in systems up to 40 watts. £ 3.95 ea. $+£ 1$ p\&p or $£ 6.95 \mathrm{pr} .+£ 1.50 \mathrm{p} \& \mathrm{p}$ EAGLE - Full range $8^{\prime \prime} 20 \mathrm{~W}$, 8ohm. Twin cone with rolled surround. $56.95+£ 2.20 \mathrm{p} \& \mathrm{p}$ Full range $6 \%^{\prime \prime} 15 \mathrm{~W}$, 80 hm . Twin cone with rolled surround. $£ 5.95+£ 2.20$ p\&p.

125W HIGH POWER AMP MODULES

power applications - disco units, guitar ampliter iers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large sately ponents result a high powered rugged unit The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use, Supplied with all parts, circuit diagrams and instructions.
trans. $£ 1050+£ 720$ mains power supply kit with

STOCK CLEARANCE

(Trade enquiries welcome)
IC ragulated P.S.U. utilising (Motorola MC 7818 CT)
All components inc. mains transformer are mounted on a 4"x2\%"' P.C.B. Input $220 /$
240 AC , output 18 V DC @ 350 mA . Very low ripple \& short-circuit protected. Ready built £2.75p +.50p P\&P.
Miniature maintransformers.
sec: 6-0-6V@4VAPR1: 220/240V 4 for $£ 2.50 p+.50 p$ P\&P.
$6 V$ mains adaptor
13 amp plug-in type Flying lead outpur with 2.1 mm female plug. Max. outpur 150 mA D.C.
$\mathrm{£} 2.00 \mathrm{p}+.50 \mathrm{p}$ P\&P.
Stabilized 9 V mains adaptor
Fully encapsulated with flying mains \& output leads. Max. output: 200mA D.C. Size $21^{\prime \prime} \times 21^{\prime \prime} \times 2^{\prime \prime}$ approx.
£2.40p + 50p P\&P
P.C.B. copper laminate: Single sided $16^{\circ} \times 14^{\prime \prime}-1 / 16^{\prime \prime}$ thick. $\mathrm{f1} 1.30 \mathrm{p}+50 \mathrm{p}$ P\&P
Ready built Audio modules by MULLARD LP 1183 Stereo preamp module suitable for ceramic p.u., radio/aux. inputs. Direct tagout connections to bass. treble \& level controls. Supply 18.24 V D.C. P.C.B. size $31 /{ }^{\prime} \times 3 \%{ }^{\prime}$ " $£ 1.00 p+.50 \mathrm{p}$ P\&P. LP 1184 as above, but with magnetic p.u. input. Size 43 '" $\times 4$ " approx
$1.500+50 \mathrm{p}$ P\&
mp mod suro 4 ohm Discrete power mp module. Supply 24 V D.C. Size
$44^{\circ} \times 2 \%^{\prime \prime} \times 1^{\prime \prime} £ 2.95 p+.500$ P\&P. 2N3055 FERRANTI Power Transistors 4 for $£ 1.25 \mathrm{p}+.50 \mathrm{p}$ P\&P.
TBA 800 SGS/ATES 7 watt audio IC 2 for £1.00p + .20p P\&P.
SONOTONE KS40a/3509 Stereo Ceramic
Cartridge, E2.95p $^{2} .50$ P P\&P
All mail to: $21 E$ HIGH ST, ACTON W3 GNG Callers: Mon-Sat 9.30-5.30. Half day Wed. ACCESS phone orders on 01-992 8430 . Note: Goods desparched to 0 , postal adaresses only All items sublect to availablity. Prices correct ot
$31 / 9 / 84$ and subjicct to change without notice. Ptease allow 14 working days from receipt of order for despatch. RTVC Limited reserve the right to up.
date their products without notice. All enquries send date their products without notice. All enquiries send
S. A.E. Teephone or mal orders by ACCESS welcome.

PE STEREO CASSETTE RECORDER KIT

SPECIFICATIONS
Max. output power \{RMS 125 W Operating voltage (DC): 50.80 max Loads: $4 \cdot 10 \mathrm{ohm}$ Frequency response measured (al 100 watls 25 Hz .20 KMz . Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ 47K Typical T.H D. 50 watts, 40 hms 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

$\begin{aligned} & \text { KIT } f \\ & +f 1 \end{aligned}$	12.00 p\&p.	BUILT $£ 17.50$ $+£ 1.15 p \& \beta$
PAIR 10W SPEAKERS Incorporates $412^{\prime \prime} 10$ watt speaker. Finished in teak veneer simulate. Built, ready to use. Ideal extension spkrs. $12 \% \times$ $71 / 2 \times 4 \%$ ins. $£ 14.95+£ 1.75 \mathrm{pR} \mathrm{p}$.		

STEREO TUNER KIT

This easy to build 3 band stereo AM/FM rune kit is designed in conjunction with PE \July 81/ For ease of construction and alignment it
incorporates three Multard modules and incorporates three Muliard modules and an
I.C. IF System. Front scate size $101^{\prime \prime} \times 2 \%^{\prime \prime}$ approx. With diagram and instructions.

MONO MIXER AMP

ideal to

50 Watt, six individually mixed inputs for 2
pickups (Cer or mag) 2 moving coit micro pickups (Cer. or mag). 2 moving coll microphones and 2 auxiliary for tape tuner, organ etc. Eight slider controls - 6 for lever and 2 controls for mic. and aux, inputs. Size $13 K^{\prime \prime} \times 6 \frac{1}{2} \times 3 \times$ ' app. Power output 50 W RMS (cont.) for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use.
CALLERS TO: 323 EDGWARE ROAD. LONDON W2.
(5 minutes wark open 6 days a week 9 ware Road Tube Station)

ANNOUNCING

THE DIGISOUND VOICE CARD

SOON TO BE FEATURED IN

ELECTRONICS AND MUSIC MAKER

The Digisound Voice Card is based on the popular range of custom-designed integrated circuits from Curtis Electromusic Specialitles which are currently used as the basis of many of today's most popular synthesisers.
On-board design includes two VCOs, a four poie low pass VCF, two ADSR enveiope generators and five VCAs which together compromise an elaborate synthesiser voice.
The Voice Card can be used very effectively as a stand-alone unit and with the addition of a keyboard and related circuitry a "complete" monophonic synthesiser is avallable. The use of several Volce Cards together could form the basis of an exceptlonal polyphonic system with the possibility of each voice under independent control if desired. The Voice Card is also fully compatible with the extensive range of modules which make up the Digisound 80 Modular Synthesiser.
The Volce Card is available in kit form or rady built.
The fully inclusive kit prices are:-
A) PCB and all board components
874.40
B) Set of 18 control pots and 16 control swltches $\quad £ 21.05$ C) 9×9 inch front panel and PCB mounting kit $£ 17.20$

The PCB is double-sided and very compact. For people who would prefer not to bulid their own, the Volce Card may be purchased ready built and fuliy tested. The fuliy inclusive price is:-
D) Ready-bullt Voice Card (Kits A, B\& C pius 18 K8 knobs and 20 3.5 mm Jack sockets)
£178.25
To order or for further details and our latest price list, contact us at 14/16 QUEEN 8T, BLACKPOOL, LANC8, FY1 1 PQ. Tel: (0253) 28900

exc. VAT)
We stock a full range of 74LS series, and memory and microprocessors. Ring for our FREE catalogue and special quotation.

Cambridge Microcomputer Centre
153-4 East Road, Cambridge CBI IDD
153-4 East Road, Cambridge CBI
Telephone (0223) 355404 Telex 817445

thabbybooard
 Printed Circuit Hardware \& Component Catalogue

* COPPER CLAD LAMINATES
* PHOTO-RESIST LAMINATE \& CHEMICALS
\star PRINTED CIRCUIT DRAUGHTING AIDS
\star VEROBOARD \& PROTOTYPING SYSTEMS
\star CONNECTORS/CASES/GENERAL HARDWARE
\star SELECTION OF COMPONENTS

\star EDUCATIONAL COMPUTING

\star ELECTRONICSKITS

Send for your free catalogue to:

WE MANUFACTURER BEAUTIFUL ENCLOSURES
At prices you will find difficult to beat.
Alloy boxes from 80p to rack mounted units from $\mathbf{£ 1 5}$ and a host of ranges and sizes in between. Well made - well finished - and all British.

Send large SAE for catalogue which includes $£ 5$ in vouchers.

DISTORTION METER

Having discussed the basic principles and the design criteria in last month's article, John Linsley Hood goes on to describe the circuitry of this versatile test instrument.

T- he basic layout of the THD meter is shown in Fig. 6 and the final circuit is shown in Fig. 7. RV1 acts as a gain control in the input circuit of IC1a, a buffer stage which ensures that the Wien network is always driven from a low AC impedance. From the output of this the signal is divided into three paths, the upper RC parallel network, the inverter stage, and a feed to the mode switch, SW2, which allows the network to be effectively bypassed so that the full scale meter setting can be determined.

In the other positions of SW2, the two halves of the network are connected to produce the notch characteristic required. It will be understood that for a perfect balance to be obtained, the input from the inverter to the lower limb needs to be exactly twice as large as the input to the upper limb. To arrange this, a 2 k 2 10turn pot, RV4, is connected in series with the op-amp feedback resistor so that its gain can be adjusted. This is the Trim control on the instrument front panel.

Ideally, the tuning of this instrument would be done by two twin gang pots (shown as Ra and Rb in Fig. 6). However, I want to keep the circuit noise level as low as possible, and this depends in part on the circuit resistance values, as does the proneness of the circuit to pick up hum. I don't want to make Ra (RV2 in Fig. 7) much higher thian 10k, and sadly, in this country, dual gang pots with a resistance lower than 4 k 7 ohms are very difficult to come by. The one source of 1 k dual
gangs I know of has a rather stiff and rubbery feel, which makes them unsuitable for the fine tuning position.

I have, therefore, with regret since this makes the instrument a little more awkward to use opted for a single fine-tune pot, the 100 ohm RV3. This reluctant compromise means that the final notching out of the signal input requires interacting adjustments of both RV3 and RV4. If a decent quality low resistance dual-gang pot can be obtained by the constructor, the other half should be inserted in series with R6, whose value can then be reduced to 470 R .

As mentioned before, it is necessary to sharpen up the notch of the system a bit to prevent unwanted attenuation of the lower harmonics. This is done by negative feedback to IC1 from IC2 through R9, R2 and R8.

There are two signal filtration stages. IC3a is a high-pass hum filter with a turn-over frequency of 250 Hz and an attenuation of 20 dB /octave to give thorough 50/

100 Hz removal: A low-pass filter built around IC3b has a similar slope and a turn-over frequency of 4700 Hz . These two options are selected by SW3 and SW4. The low-pass HF-noise filter allows an instrumental identification of the type of harmonics associated with crossover distortion, which would be at $7,9,11$, and 13 kHz on a 1 kHz signal.

So, if the minimum signal is noted on a test at 1 kHz and the low-pass filter is then switched in and the new minimum noted, the amount of high-order harmonics present can be determined by an RMS subtraction of these two values. To distinguish between high-order harmonics and general noise, the extent to which the difference between the filtered and unfiltered signal levels changes when the signal input is removed can be noted.

The final stage of the distortion meter part of the circuit is the buffer amplifier, which precedes the meter attenuator, and from which an oscilloscope monitor signal can be obtained if needed.

Fig. 6 The basic arrangement used in the THD meter circuit.

Fig. 7 The final circuit diagram of the THD meter.

An option which is also available is to build a further HF filter into the input circuit of the unity-gain buffer amplifier, IC 2 b . This should have a-12dB/octave slope and a turn-over frequency of 50 kHz , which serves as a useful bandwidth limit. If this is not required, SW4 output can be taken to the non-inverting input of IC2b and C17, C18, R16 and R17 deleted.

The Millivoltmeter Circuit

Since any distortion meter requires an AC millivoltmeter to display the result, and a millivoltmeter on its own makes quite a useful bench instrument, I have decided to make the input to the measuring circuit available separately by way of an independent switched attenuator (see Fig. 8).

The circuit itself is straightforward enough, with a $100 \mu \mathrm{~A}$ meter in a diode bridge in the feedback network of an opamp. Since the millivoltmeter is intended to be usable as a general purpose instrument, I have used a
two stage circuit built around a dual FET-input op-amp (TL072 or LF353), in which the first half acts just as a gain stage. This permits both a high input impedance, and

a $20 \mathrm{~Hz}-100 \mathrm{kHz}(-3 \mathrm{~dB})$ bandwidth.

Although the input attenuator suggested has a total chain resistance of 100 k , this choice was.

Fig. 8 The circuit diagram of the millivoltmeter.

PROJECT : Distortion Meter

mainly in the interests of preventing the input from being too sensitive to inadvertent signal pick-up from other parts of the circuit within the same box. If the constructor is happy to screen this part of the circuit well, there is no reason why the quoted attenuator chain resistors should not be scaled up to give an input impedance of 1 M ohm or even higher, although this might affect the frequency response flatness.

Calculating the actual resistor values in the chain is a bit awkward if one does not know the method. For simple minded people like me, a lot of confusion is removed if one thinks about the current flow down the chain. So, if we choose a 100 k total, 100 V RMS will give a current flow of 1 mA (RMS). This will develop 10 mV across 10 ohms, hence the value of R32. The next full-scale reading required is 30 V . This will cause a current flow of 30/100k $=$ $300 \mu \mathrm{~A} .10 \mathrm{mV}$ drop will then require $10 \mathrm{mV} / 300 \mu \mathrm{~A}=33.333$ ohms, which gives the value of R31+ R32, from which R31 = $23.3 R$, and so on.

These can be made up, depending on the accuracy required (which, in turn, will depend on the quality and tolerances of the resistors available, and upon the quality of the meter movement) by placing standard value resistors in parallel. A 6 k 66 ohm resistor can be approximated by putting a 330 k and a 6 k 8 in parallel $(=6.662 \mathrm{k})$, a 23.33 k resistor by putting a 33 k , a 100 k and a 390 k in parallel $(=23.33 \mathrm{k})$ or by a 22 k and a 1 k in series (23.0k), and so on.

The proper operation of this type of measurement circuit requires that the return path from the inverting input of the op-amp to the $0 V$ line has a low AC impedance at the highest operating frequencies likely to be used, so it is prudent to bypass the tantalum bead capacitors in the feedback path with small, non-polarised types. The + and supply lines for the instrument are also bypassed to the 0 V lines on the main PCB by $0.47 \mu \mathrm{~F}$ nonpolarised capacitors.

When the meter is used just as a millivoltmeter the input attenuator presents a more or less constant input impedance regardless of the Range switch position, although, as mentioned earlier, it can be increased if desired.

The Spot-Frequency Oscillator

It is a great convenience to have a good quality sine-wave signal source actually on the instrument, and from my experience of making measurements of this kind I find that one does not carry out these tests over a continuous spread of frequencies but rather at certain spot points.

The reason for this is not just laziness but because, if one knows how a system behaves at, say, 1 kHz and at 3 kHz , it is extremely unlikely that its behaviour at 1500 Hz or 2300 Hz will be anything other than intermediate between the known points.

There are, it is true, certain audio amplifiers which can display very odd behaviour over certain parts of their frequency range due to the feedback loop(s) getting into a state known as conditional stability. However, such amplifiers will almost certainly have a very bad square-wave response and their general behaviour and sound will be so horrid that one shouldn't need a distortion meter to discover that they are sick!

However, to return to the oscillator. The basic circuit I have used is a two op-amp variation of the Wien bridge system shown in Fig. 9. In this, an inverting (virtual earth input) amplifier is fed with two feedback signals through the limbs of the Wien network. A positive feedback signal is obtained from the two inverting amplifiers connected in series through the RC series element, and a negative feedback signal is fed to the same point from the output of the first inverting amplifier.

The gain of the second amplifier is controlled by a thermistor in its feedback path. When the thermistor is cold, its resistance is high and ICb has a high gain. This makes the positive feedback part of the signal fed to

Fig. 9 The basic arrangement used in the spot frequency oscillator.
the input of ICa larger than the NFB part, and the system oscillates. This feeds an AC signal to the thermistor which heats it up, and causes its resistance to decrease.

When the gain of ICb has dropped to a level at which the signal output is just enough to keep the thermistor warm, the output stabilises. This then automatically provides just enough positive feedback input to ICa to keep the system oscillating, and no more.

Because op-amps have a lower intrinsic distortion when used in the inverting mode (a fact which is surprising though true) and because there is no 'common mode' signal (ie, a signal fed equally to both inputs, which the op-amp must then cancel), the distortion produced by this circuit is extremely low. In fact, now that this arrangement is known, I cannot see any good reason why anyone wanting a Wien bridge oscillator should use the old conventional system, which has a considerably inferior performance, especially when one bears in mind the relatively low cost of even a high quality dual op-amp such as the TL072 or the LF3 53.

I have shown the measured performance of the oscillator in Table 1. Above 300 Hz the THD is of the order of 0.003% or lower. The worse distortion, at 100 Hz and to a slight extent at 300 Hz , is third harmonic and is due to the thermistor bead actually heating up during the sine-wave cycle, reducing the gain of the system as the peak of the waveform is approached. This is the type of problem which will always occur with any amplitude-sensitive output stabilisation system. It can only be diminished by increasing the measurement time constant, which in turn makes the oscillator take a bit longer to settle down following a change in its operating frequency.

The output from ICb is about $600-700 \mathrm{~m} V$ with an RA53, and

FREQUENCY (Hz)	THD (\%)
100	0.02
300	0.005
1 k	less than 0.003
3 k	less than 0.003
10 k	less than 0.003
20 k	less than 0.003

Table 1 Measured performance of the spot frequency oscillator.

PROJECT : Distortion Meter

Fig. 10 The final circuit diagram of the spot frequency oscillator.
the signal level at the output of ICa, which is a feasible alternative oscillator output point, is almost exactly half this. I mention this because ICa is an active integrator with a response which decreases with frequency. Because of this, the third harmonic distortion introduced by the thermistor is reduced to about one third at ICa output which gives a very low
THD oscillator indeed. However,

Fig. 11 The circuit diagram of the stabilised mains power supply.
for a THD meter whose minimum scale reading (the prototype, uses a 4 inch scale meter) is 0.005%, the circuit arrangement shown in Fig. 9 seemed adequate.

I have shown the final circuit of the oscillator in Fig. 10. I have opted to keep the value of C constant, and vary R to change the oscillator frequency. This was partly because resistors can be obtained to a higher value of accuracy than big capacitors, and partly because, with the circuit values chosen, it would allow close tolerance, low loss polystyrene capacitors to be used.

A three stage output switched attenuator is used in combination with the 2 k 5 output
potentiometer, giving signal level ranges of $0-6 \mathrm{mV}, 0-60 \mathrm{mV}$ and $0-600 \mathrm{mV}$. If the user wishes to increase the output somewhat, say to 1 V , it can be done by putting a resistor of between 500 R and 1 k 5 in series with the RA53. This will lessen the thermistor introduced distortion but will lengthen the setting time. On the prototype this is about 2000 cycles, which is 20 seconds

電 and b) the changes which must be made in the circuitry around SW2b to accommodate this arrangement.

Fig. 12 a) The arrangement used to obtain a dual-rail supply from a single battery
at 100 Hz and 0.1 second at 20 kHz , but could vary a bit from one thermistor to another.

Power supply

The total current consumption of the instrument is 18 mA at $+/-15 \mathrm{~V}$, which is obtained from a small stabilised power supply unit shown in Fig. 11.

As mentioned earlier, it is possible to make the instrument operate from batteries. Two options exist here. The first is to use a pair of 6 V or 9 V transistor radio batteries such as the PP1 or PP9 and to switch both + and lines. The second method is to operate the unit from a single 9 V battery using the adapter circuit of Fig. 12 a to give $\mathrm{a}+/-4.5 \mathrm{~V}$ line pair.

In both cases it is worthwhile substituting TL062s for IC1, IC2, IC3 and IC5, and a TL061 for IC4. This will reduce the battery current demand to some $1.5-2 \mathrm{~mA}$, with little performance penalty.

However, if the supply voltage option chosen is the $+/-4.5 \mathrm{~V}$ one, a problem would arise because the notch amplifier circuit would overload at the 3 V RMS output required from ICs 2 and 3 for FSD on the measuring instrument. It is therefore necessary to down-grade this a bit by cutting out R19 (2 k 33) so that SW2 b becomes as shown in Fig. 12 b , giving a minimum FSD sensitivity of 1%. This will only require a 1 V RMS swing from the notch amplifier (Fig. 7) which will be comfortably within its capability.
In spite of last month's promise we still couldn't find room for the rest of the article in this issue. We hope (!) to conclude it next month.

SCOPES

IUK C／P 66.00 or 18.00 Securicor
MITAGMI 2 year warrenty
ALL MODELS WITH V212 Dual $20 \mathrm{MHZ} 6^{\prime \prime} \mathrm{C}$ Probes see below． Ye22 As 212 plus OC aftset．etc $£ 343.85$ $V 222$ As 212 plus DC atiset．etc $£ 454.25$
hameg 2 years wrinnty HM 103 Single track 10MHZ $6 \times 7 \mathrm{~cm}$
display component ssior \＆182．05
 HM 203／5 Dual 20MHZ \＆x 10 cm HM204－2 Dual ZOMHZ sweep
 £303．60
 £592．25 OPTIONAL
SCOPE PROBES XI－X10 swith hed．
E11．50 tor 111 scopos．
CROTECH 3030 Single trace 15NH2 component tester
3035
$91 / 2 \mathrm{~cm}$ display
 3035 Slingle trace 15 MHZ 13 cm
$£ 205.85$
（5＂）display component tesser
$£ 227.70$
3132 Dual 20 WHZ trig $1040 \mathrm{WHZ} 2 \mathrm{mV} / \mathrm{div} 130 \mathrm{~mm}$（5＂） display，alpebralcal add／aub Rep OC $0 / \mathrm{Pi}$－ 5 V and \pm 12V．Built In componant comparator E341．50

SCOPEX

14D15 Dual 15 MH2 5° tube
IV SYNCH 2 MOO £373．75
Fr As above plus litad
0.2 HZ to 200 KHZ Function Generator $£ 488.75$

THANDAR 든

2 par warrony
 portuble $32 \times 26 \mathrm{~mm}$ disalay with bateries $£ 189.75$

> IUK pont. Ic. £1. 50,

OPTIONS Carrycase $\mathbf{£ 6 . 8 4}$
AC adaptor／charger $£ 7.99$ Nicad pack $£ 12.65$

TRANSISTOR
 TESTER
 Olnct PMP／MPN and dlodes
 Hita，leakepo，etc．General purpose TC1 ［UK C／P 65 F ］
 $E 27.95$

STEREO TUNER／AMPLIFIER

1000＇s sold

SW stereo Fm radio
$10+10$ walli sterso
ampliflur．Inouts tor PU
tupp in／out．Suppli ad as two
as illustrited 21.95
（UK C／PE1．50］

NICADS

EvERREADY 8.4 Valt heavy duty NICAD approx． $3 / 4$＂Diam $\times 31 /{ }^{2}$
with magnelic $\begin{gathered}\text { swith } \\ \mathbf{E 5 . 9 5} \\ \text { post } 550 \text { ．}\end{gathered}$

DIGITAL MULTIMETERS

Controls
$s=$ Sllde $A=$ Motary
$\mathrm{PB}=$ Push button
All lagturs AC／DC volts．
ac amps（many w
amps）others．otc
（UK C／P 650］草 WITH CARHY CASE
＊KD25C 12 range 0．2A DC 2 Meg ohmis） －KD305 14 ringe 10 ADC 2 Meg ohm $|\mathrm{S}|$
 －METEX 350030 range 104 AC／DC 20 Meg $£ 35.80$ othem（ A ］
＊METEX 3510.30 range 10A AC IDC 20 E42．26
plus Hie tester plus cont tester（R） 20 meg ohm
GO1D28 range IOA AC／DC 20 Meg ohm IPBI $\mathbf{E 4 3 . 5 0}$ －KDE55C 26 range IDA AC／DC 20 Meg ohm $\stackrel{\text {［月］}}{\bullet}$ tester［ifl
lestrir［h］ 7030 As 6010 but 01% basic（PB） HC 501031 range 10A AC／DC Cant buzzer 20 m Chm（ A ） $\mathrm{E49.95}$ tester la range 10 A Den2350 Mini autorange plus cont．tester 19 range 10A AC／OC｜20A Max｜2 Mag ohm｜PB｜E69． 95 3100 Pen type auto ranging AC／OC V 20 Meg ohm ＋Bu2zer £47．77 SOAR ME540 Manual／Autoranging plus cont buzzer 19 range 10A AC／DC 20 Meg ohm（ R ）$\quad \mathbf{~ 4 7 . 7 7 ~}$

ANALOGUE

MULTIMETERS

［＊mirror scale］［UK C／P 65p） HC1015 15 range pocket l0K／Volt 1 Mep ohm

 plus cont buzzer 10 Meg ahm $£ 14.50$ ETU3000 20 range 30K／V 12A DC NH56R： 22 range $10 \mathrm{~K} /$ Voll 6 Meg ohm 830A－ 26 range $30 \mathrm{~K} /$ Voll $10 \mathrm{AC} / \mathrm{OC} 10 \mathrm{Meg}$（ $\mathbf{~} 12.95$ ohm $360 T \mathrm{R} * 23$ range bench． $100 \mathrm{~K} /$ Volt large scale
$10 \mathrm{AC} / 0 \mathrm{C}$ ptus Hie tester 10 Meg ohm
$\mathbf{\$ 4 5 . 0 0}$ 10A AC／0C plus ife tester 10 Meg ohm $\quad \mathbf{4 5 . 0 0}$
AT2100＇31 range de luxe $100 \mathrm{~K} /$ Volt $10 \mathrm{AC} / \mathrm{OC}$ AT2100＊ 31 range de luxe 100K／Volt 10A AC／OC 100 Mag ohm

 IN Mag ohm
I 9 range $20 \mathrm{~K} /$ Voit plus hie tesier
E15． 95 1 Mag onm． Volt 10A DC 20 Neg doubler 35 range total $50 \mathrm{~K} /{ }^{2}$ ．
 DC 1 Mag ohm
$\mathbf{£} 1.00$
THERMAL
 PRINTER
COMPLETE WITH
FULL HANDBOOK
3 ROLLS PAPER
849.95 （UK C／P £1．05）

SUIT ABLE FOR TANDY BBC DRIC NASCOM GE MINI ACORN DAAGDM ETC．ETC．｜Imarlace unlt with leads © 15 －stite modal）［your anquiries Invited．

CB／HAM RADIO

Large range in stock

ask for leaftels
VARIABLE POWER
SUPPLES
（UK C／P £1．00］
200／240V AC Input
PP241 singla mater

PP243 3 amp version 259.95 ． $2=1$
2302 Dui 0／30v．0／2A Twin meter plus 5 V 1A and pulse generator．

Size $255 \times 150 \times 50 \mathrm{~mm}$ ．Complete with batteries．
Dptional：Carry casa £6．84 AC adaptor £7．99
TFO40 IOHZ to 40 MHZ ．IHZ Res 49 mV sensitivity．£ 138.00 TF200 IOHz to 200MHZ．Ippm res． 10 mV sensitivity． many teatures．A\＆ 8 inputs．efc．
TP600 600MH2 prescaler IPowered by computeri $\mathbf{5} \mathbf{5 1 . 7 5}$
TP1000 IOOONHZ IICHZI Prescaler with power suppiy $\mathbf{£ 7 4 . 7 5}$
PFM200A Pockel $20 H Z 10200 \mathrm{MHZ}$ LED counter DI HZ res．
10 mv sensitivity
279.73

NEW TF600 LED 600 MHZ counter
£152．38

GENERATORS

Function and Pulse［UK C／P 65p］
THANDAR bench mains portable．Size $255 \times 150 \times 50$ ，

TG101 0．02HZ to 200KHZ function．sine，square．triangle．
Variable OC oflsel．TTL O／P Ext．sweap mode．Variable 600
ohm IDV DD $£ 120.75$
TG1020．2HZ to 2 MHZ tunction．Sine．squars．triangte．
Variable OC offset TTL 0／P．Ext．sweep mode variable 600
ohm D／P． $10 \mathrm{NPP} \quad \mathbf{£ 1 7 8 . 2 5}$
TG 1055 HZ to 5 MHZ pulse．TTL and Sync D / P Variable
50 ohm 0／P Free run gated or trig．modes．$\quad \mathbf{£ 1 2 0 . 7 5}$

LCD \＆LED MULTIMETERS NTA

［UKC／P 65 p ）
 THANOAR BENCH PORTABLES SIze $255 \times 150 \times$

50 mm Option：Carry case $\mathbf{\Sigma 6 . 8 4}$
TM355 $31 / 2$ digit LED． 29 ranges．D 25\％basic．
100my res．10A AC／OC．20m ohm
$£ 97.75$
（AC adaptor option E6．95］
TM356 31／2digit LCO 29 ranges as I M355． 3000 hour battery
lifa（supplied）£109．25
TM351 31／2 digit LCD． 29 ranges． 0.1% basic．Ranges as above．
2000 hour battery lite．
£132．25

LED COUNTERS
 \section*{（UK C／P 65p）}

METEOR mains or battery portable 8 digit LED counlers． Size $219 \times 240 \times 98 \mathrm{~mm} .5 \mathrm{mV}$ sensitivity 0 ． 1 HZ resolution 1005 HZ to 100 MHZ E 109.25
6005 HZ to 600 MHZ A8Binputs $\mathbf{~} 139.15$
10005 HZ to $1000 \mathrm{MHZ}|1 G H Z|$ As 8 inputs $\mathrm{£189.75}$
Options：
6 NICAOS 212.19
BF plckup Aerial 88.91 （AC adaptor included）

FUNGTIDN BENERATOR AL
 IUK C／P 650｜ JUPITER 500 Function generator 0.1 HZ to 500 KHZ or better．
 JUPITER 500 Function generator 0.1 HZ to 500 KHZ or better Sine．square．triangle $0 / \mathrm{P}$ to ± 30 volts．TTL $0 / \mathrm{P}$ QC oHiset \pm
 Sine variable．Ext AM and sweep faclitites 220／240V AC
 operated．
 E126．50

CASSETTE MECHANISMS
 Fitted counter．Mator．Sterea record and arase heads．

 GEMERATORS
 220／240V AC
 IUK C／P，atc £1．20］
 AUDIOILEADER LAG27

 Autostop，solenoid．Brand new avallable 6V OC or 12V DC ｜atate which $\mathbf{5 5 . 9 5}$ IUK C／P 65p｜ ALSO miniature stereo cassette replay mechanlsm 12v． $105 \times 100 \times 40 \mathrm{~mm}$ ． $\mathbf{E 5 . 5 0}$（UK C／P 65 p ）

ITT 2020

CABINET
Protassional computer case
with keyboard cuthout．18＂x
i5．5＂$\times 4.5$＂［front alopes）．Ideal
for singte board computars like the
 plastic with metal orach．Atractive silver grey finish． IFAFLETS AVAILABLE FOR MOST ITEMS SENO LARGE SAE（UK 25p）for istost catsogue．

ALWAYS BARGAINS

 FOR CALLERS
$0 / \mathrm{PO}$／5V／RMS Disi 0
271 •• 0／P O／5V／RMS Dlal 005\％10HZ to 1 MHz TE22D 4 range sine／zquare $0 / P$ LV RHZIE 106.8 TE220 4 range $8 \mathrm{ne} / \mathrm{square} 0 / \mathrm{P}$ SV Rms 05%
Disi 20 HZ to 200 KHZ
£82．95 TR10 AG202A 4 band 20 Hz to 200KMZ． 10 V AMS
O／P $05 \% \mathrm{~d}$ It CR 0 SC $0 / \mathrm{P} 0.5 \%$ dist CR OSC
朝
Th10 \＄6402 6 range 100KHZ to 30 MHZ AF 0.1 IV RM8 int／ex mod 56 and l00KHZ to I50MHZ 196 to LEADER LSG 176 band 100KHZ to I 50 MHZ （ 96 to
450 MHZ on Harmonica）RF 0.1 V RMS．Int／／ax Mod．
 TE200 6 nage low cosi verion ol above up to 110 WHZ （300MMZ Harmonics）$\quad £ 74.95$
DIGITAL CAPACITANCE Ex：
 LCD 8 ringer DACO13 269.50

COMPONENTS／TOOLS，etc．Large range in stock． Tel： 01.7231008 ．

ORDEA BY POST OR PHONE

Up to $£ 1000$ instant credit
Available Itrougn Lombard Tricity Finance

301 Edgware Road．London．W2
Test Equipment．Audio．Communications 01.7243564
404 Edgware Road．London．W2
Computers $01-4026822$ • Equipment 01.7240323 • Components 01－723 1008

READ/WRITE

Please send your comments to the Editor, ETI, 1 Golden Square, London W1R 3AB.

Bug In the Middle

Dear Sir,
I appreciated your listing of the three main approaches to fault finding in the article De-bugging and Fault Finding (ETI August 1984), but may I suggest an even quicker approach than working from one end or other of a piece of equipment?

It is to start in the middle, immediately eliminating one half of the circuitry, and then to go to a point roughly half-way into the half which contains the fault and so on until the problem is isolated. Taking a simple $A M$ radio as an example, the audio detector is an obvious starting point, followed by the mixer output or the mid-point voltage of a Class B output stage, and so on. But first, and from bitter experience, always check the input and output of the power supply.

To change the subject slightly, I have decided to build John Linsley Hood's amplifier, all I have to do now is to find $£ 250$ for the kit as component supply here is not all it might be. So, to stop confusing me, can we have a moratorium on amplifier designs for the next six months?

Yours sincerely,
Chris Cosgrove
West Lothian
We take your point about the fault-finding procedure. As for the other matter, whilst we cannot say that there will be another amplifier design in ETI in the next six months, we are certainly not going to promise that there won't be one! After all, why buy ETI if you don't want a magazine that's fast-moving, innovative, up-to-the-minute, (continued on p.109).

Ripples On The Supply Line

Dear Sir,
As a regular reader of your excellent magazine I feel I must point out my experience of one of your advertisers. I wanted to purchase three MPSU56 transistors and checked with some of your advertisers lists. I found that Watford sold them for 60 p but that they would not accept a telephoned order using a Visa card. I tried Rapid who listed
the transistors at 55 p each but on telephoning them discovered that there was a minimum order charge of $£ 5.00$ and my three transistors plus some fuses did not come anywhere near that total. So, gritting my teeth, I decided to use Cricklewood Electronics, even though their price was a staggering $£ 1.22$ each plus the usual incidentals such as postage, etc.

True to their word the compoments arrived next day, but the price of the transistors had risen overnight to $£ 1.95$ each. I immediately queried this and was told there had been a price increase and that there was nothing they could do. Had I been informed before passing on my Barclaycard number that the price had risen so much I would not have placed the order. I feel I have been conned and wonder how many others have experienced this problem as small customers trying to obtain components and paying the penalty.

Yours faithfully,
R. Isbourne

Bracklesham Bay
We are sure that Mr. Isbourne is not the first person to run into this sort of problem. The situation arises partly because advertisers have to prepare their price lists well in advance in order to allow for typesetting, printing and distribution of the magazine. By the time the reader sees an ETI advertisement nearly a month will have elapsed since the advertiser submitted the original copy with its prices, and in a world where such important economic factors as exchange rates change with frightening rapidity, that is a long time. It is for this reason that most advertisers (including Cricklewood) publish a note saying that prices are subject to change.

Cricklewood tell us that anyone placing a telephone order would normally be informed of the current price of the goods but they admit that it is possible that this was forgotten in Mr. Ishbourne's case. The moral, perhaps, is that readers should always make a point of asking what price will be charged when placing telephone orders. The problem should not arise with written orders since the normal
practice here is for the supplier to write back to the customer and ask for more money when a price rise occurs, leaving the customer the option of paying the extra or cancelling the order as he or she wishes.

Some Lines on Delay

Dear Sir,
Mayl suggest an alternative method of achieving the delay required for the Active-8 loudspeaker (ETI September to December 1984). Please excuse my longwinded arithmetic.
$c=343 \mathrm{~m} / \mathrm{sec} \quad f c=4 \times 10^{3} \mathrm{~Hz}$
$\lambda=\frac{c}{f_{L}}=\frac{343 \times 10^{3}}{4 \times 10^{3}}=85.75 \mathrm{~mm}$
$\frac{360^{\circ}}{85.75}=4.2^{\circ} / \mathrm{mm} \times 38 \mathrm{~mm}=159.6^{\circ}$
($38 \mathrm{~mm}=$ separation in D_{2}
If the voice coil leads on one loudspeaker are reversed, the phase difference becomes
$180^{\circ}-159.6^{\circ}=20.4^{\circ}$
$t=\frac{1}{f}=\frac{10^{6}}{4 \times 10^{3}}=250 \mathrm{us}$
$\frac{250}{360}=0.694 \mathrm{us} /{ }^{\circ} \times 20.4^{\circ}=14.2 \mathrm{us}$
Therefore a delay of 14.2 us could be applied to the LF loudspeaker, saving several stages of delay. Alternatively, since
$\frac{\lambda}{z}$ at $f_{c}=\frac{85.75}{2}=42.875 \mathrm{~mm}$
and $42.875-(D)=4.875 \mathrm{~mm}$
if the mechanical construction will allow, the HF loudspeaker could be brought forward by 5 mm or the LF loudspeaker moved back and no delay circuit would be required at all.

Or, let
$\lambda=38\left(D_{2}\right) \times 2=76 \mathrm{~mm}$
and, as $f=\frac{\mathrm{C}}{\lambda}=\frac{343 \times 10^{3}}{76}=4.5 \mathrm{kHz}$

By raising the crossover frequency to 4.5 kHz we can again dispense with the delay stages.

Yours sincerely,
L. R. Burns

Wokingham
Barry Porter, author of the Active-8 series writes:-

The main error in Mr. Burns' reasoning is his assumption that by reversing the connections to a drive unit a time delay is introduced. Imagine that the HF unit is fed a short, positive-going pulse; with reversed connections the output from the unit will be a negativegoing pulse when what is required is a delayed positive-going pulse.

The effects of various filters are shown in Fig. 4 of the first part of the series (reproduced here), and this illustrates that the connection of the HF unit is decided by the filter slope. Upon reflection, the illustration may be difficult to understand and it might have been clearer had the waveforms been drawn as sinewaves (but a certain 2 $1 / 2$ year-old ex-mafia hit-man called Timothy prevented this by

The original figure, intended to show the effect of $6,12,18$ and 24 dB per octave filters on signal levels and phase.
hiding my sinewave stencil in the washing machine!).

If Mr. Burns does not like the idea of using the delay stages, he may prefer to mount the HF unit on top of the cabinet using a small bracket assembly. However, as the
unit has to be placed about 38 mm back, the top edge of the cabinet must be chamfered or rounded and preferably covered with 3 mm felt material. The position of the LF unit must then be changed to bring it as near to the HF unit as possible.

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

MUSICIAN FULL RANGE SPEAKER DRIVE UNITS

$£ 70$ a pair + postage. For details and enclosure construction write or phone:

MERSEYSIDE ACOUSTIC DEVELOPMENTS 131 Mount Pleasant, Liverpool L3 5TF. 0517090427.

MDEX disc O/S + BASIC
MDEX Pr

+ Basy Sys.
CORTEX POWER-BASIC disc extensions
MDEX Extensions
Editor
Relocating Assembler/linker $£ 35$
FORTH - screen editor, assembler - graphics - better than BASIC
PASCAL - by Pre Brinch Hansen 5 35
QBASIC - fast BASIC compiler 2150
UCSD Pascal, SPL, META, WINDOW, SPELL

CORTEX tape software

Pengo - fast machine code action £6
Golf - excellent animation
Micropede - rampant caterpillar Space Bugs, Pontoon, Breakout Cassette/CDOS word processor Add $£ 2$ for software on CDOS disc

Disc Drives

80 track double-sided double-density
40 track single-sided double density
E-BUS Floppy/Winchester Controller E-BUS 64/128 Kbytes DRAM card E-BUS 9995 Processor card 80*24 Character video card

IIBrainstem Issue 2 out soon!!

ANTEX
C. $240.15 \mathrm{~W} / 240 \mathrm{~V}$:

CS-17W/240V
XS-25W/240V
Replacement bits from $3 / 32^{\prime \prime}$ to $1 / 4$ "
De-solder heads, stands, ele ments and handles.

ERSA
'Sprint' high speed iron: $80 /$
$150 \mathrm{~W}, 240 \mathrm{~V}$. Heats in 10 seconds!

EEEGTROVALIE Your SPEGIALIST SUPPLIERS for (1) 1 Hi 111 TS

From a simple 15 watt model to a precision temperature controlled iron, we stock solder irons to suit all manual requirements to gether with supporting stocks of bits, degether with supporting stc
solder tools, materials etc.

BRITALIS'S LEADING quALITY GOMPONENT SUPPLIERS-SEND FOR FREE 44PAGE A-Z LST attractive discounts-faee postage-good service \& delivery

ELEGTROVALUE LTD
 28 St. Judes Rd.
 Englefleld Green, Egham, Surrey
 (0784) 33603; Telex 264475

O784) 33603; Telex 284475 ,
North-680 Eurnage Lane, Manchester. 061.4324945.
EnC
EVComputing Shop
EV Computing Shop-
700 Burnage Lane, Manchester. 081-431 4866.

ORYX

Temperature controlled solder iron TC. 82 $45 W / 240$ with scale.
ryx 50-50 watt temp. controlled
Standard lypes
Oryx $30-30 \mathrm{~W} / 240 \mathrm{~V}$
Viking. $27 \mathrm{~W} / 240 \mathrm{~V}$
Oryx M. 3-17 watts, 12 volts. wide range of replacement tips available for Aldorels, also tips from 0.8 to 6.4 mm dia. and lat tips.
Oryx safety stand
MINIATURE SOLDER STATION
SOLDER and DE-SOLDER BRAID
Solder in various grades. ase mention this iournal when sending for atest free lllusiraled A-Z Hist now 44 pages

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to overtaking the obsolete laminated type. Industry has been quick to
recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with ashort lead time on quantity orders which can be programmed to your requirements with no price penalty.

 SERIES SECONDARY Mams
Nots Current

	,	Curs.
0×010	6+6	125
0x011	9+9	083
0x012	12+12	063
0x013	$15+15$	050
0x014	18+18	042
0×015	22+22	034
0×016	25+25	030
0x017	30+30	025
(encased in ABS plastic)		
30 VA		
$70 \times 30 \mathrm{~mm}, \underset{\text { Regulation }}{ } 18 \%$		
1×010	$6+6$	250
1×011	$9+9$	166
1×012	12+12	125
1×013	1s+15	100
1×014	$18+18$	083
1x015	22+22	068
1×016	25+25	060

90×4	120 VA	$1.2 \mathrm{Kg}$
4×010	$6+6$	1000
4×011	9+9	666
4×012	12+12	5.00
4×013	$15+15$	400
4×014	18+18	333
4×015	22+22	272
4×016	$25+25$	240
4×017	$30+30$	200
4×018	35+35	171
4×028	110	109
4×029	220	054
4×030	240	050
160 VA		
$110 \times$	mm ulation	$1.8 \mathrm{Kg}$
5×011	9+9	889
5×012	12+12	666
5×073	$15+15$	533
5×014	18+18	444
5×015	22-22	363
5×016	$25+25$	320
5×017	$30+30$	266
5×018	$35+35$	228
5×026	$40+40$	200
5×028	110	145
5×029	220	072
5×030	240	066

$410 \times 45 \mathrm{~mm}$			$\begin{aligned} & \quad 500 \mathrm{VA} \\ & 140 \times 60 \mathrm{~mm} \\ & \text { Regulation } 4 \% \end{aligned}$		
6×012	$12+12$	938	8×016	$25+25$	1000
6×013	$15+15$	750	8×017	$30+30$	833
6×014	$18+18$	625	8×018	35+35	714
6×15	22+22	511	8×026	$40+40$	625
6×016	$25+25$	450	8×025	45,45	555
6×017	$30+36$	375	8×033	50+50	500
6×018	$35+35$	321	8×042	$55+53$	454
6x026	$40+40$	281	8×028	110	454
6x 325	$45+45$	250	8×029	220	227
6×033	$50+50$	225	8×030	240	208
6×028	110	204		625 VA	
6×029	220	102	$\underset{\text { Regulation } 4 \%}{140 \times 75 \mathrm{Kg}}$		
6×030	240	0.93			
300 VA					
$\begin{gathered} 110 \times 50 \mathrm{~mm} \\ \text { Regulation } 6 \% \end{gathered}$			9×017 9×018	$30+30$ $35+35$	1041 892 789
7×013	$15+15$	1000	9×026 9×025	$40+40$ $45+45$	781 694
$7 \times 0 \times 4$	$18+18$	833	9×033	$50+50$	625
7×015	22+22	682	9×042	$55+55$	568
7×016	$25+25$	600	${ }_{9 \times 028}$	110	568
7×017	30+30	500	9×029	220	284
7×018	35+35	428	9×030	240	260
7×026	$40+40$	375			
7×025	$45+45$	333			
7×033	$50+50$	300			
7×028	110	272			
7×029	220	- 36			
7×030	240	+ 25			

21 HANLEY ROAD SHIRLEY SOUTHAMPTON

SO1 5AP

TEL: 0703780084

THE ETI LOGGIT DATA LOGGER

Don't get caught lying down on the job - let the ETI LOGGIT take the data while you're off having fun. Design, development and words by Phil Walker.

The ETI LOGGIT is a single PCB unit which can automatically measure and store analogue data over a period of minutes, days or weeks. A single LOGGIT card can store over 2000 separate
readings to an accuracy of better than 1% (when suitably calibrated).

The device can be operated in four main modes. These are:measure and store until memory

Fig. 1 Block diagram of the ETI LOGGIT.
full; measure and store until trigger signal is detected; measure and store until 1024 measurements after trigger signal; start measuring at the trigger signal and stop when full. All these modes have their uses and others may occur to the user. The most useful as far as the author is concerned is the third:measure and store until 1024 measurements after the trigger signal. In this mode you gather and keep data for an equal time before and after the trigger event, allowing both possible causes and consequences to be observed.

The circuit

Two devices form the basis of this project. The first is the 8703 A to D converter made by Teledyne. This converts the incoming analogue signal to an 8 bit digital code. This is then stored in the second main device, the 6116 CMOS $2 \mathrm{~K} \times 8$ memory. The rest of the devices are present to control the operation of the unit and provide the addresses to the RAM and the necessary power supplies for all the devices.

The control logic section of the unit starts with a programmable timer device which produces trigger pulses at a rate of from 10 every second to 1 every 25.5 seconds with the component values specified. These pulses start the ADC conversion cycle which, when it finishes, triggers another pulse which writes the data into the memory. Once this is

PROJECT ：Data Logger

 do
den
0
0皆忽

这

筑 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 0
0
0
0
0 E．
$=$
0 3.0
0
0 20
20
0 을
0
0
0

 0
0
0

 6
0
0
0
0
 0．

 Qrder to be ready for the next low part
of the cork
 E
 transition．

The operation of this section must
now be considered in the light of the
modes of operation selected on the

 10
0
0己
0
0

 5
$\frac{5}{3}$
0
0
0
0.0
0送
 3
0
0
0
0

率

Mode 3 －link A－D，C－E，X－Y

 0
0
0
0
0
0
 Co
0
0
0
0

 5
0
0
0

outputs simply by overdriving the exist－
ing logic state．Only 11 addresses are
needed to control the memory so the

的

 pattern set．SW2 is on the least signifi－

The pulses generated by IC5 then 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

等

 10
3
3
0
0
0
0
0
0

The mode of operation of the unit is
 simple set－resset latch whose state is
determined by the signals selected on

The first thing to consider is probably
the most important device in the pro－
ject．This is the 8730 analogue to digi－

 maintain the．The number of reference
near zero
current pulses necessary during a con－ current pulses necessary during a con－
version period is counted and latched

 data output to be forced into a high

为
 10 ms at the fastest operation rate its
average consumption will be only about $5 \mu \mathrm{~A}$ worst case．

 this device does，however，limit the
input voltage to $\mathbf{1 0 . 5 V}$ absolute

 address counter．This consists of a 12－
bit CMOS counter which by means of bit CMOS counter which，by means of
Q1，is incremented after each data

Fig. 3 The PCB overlay for the project.
complete the address counter is incremented ready for the next cycle.

In the control logic there is also a group of devices whose function is to stop and start the whole process according to the particular operational mode required. These act by preventing the trigger pulses reaching the ADC once the memory is full or the trigger condition has occurred. By means of links, four separate modes of operation can be realised. These will be described in greater detail later in this article.

Fig. 4 If the links are a nuisance, you can use a 4P 4W switch instead (yes, we know it's not standard . . .).

The last part of the unit is the power supply, which is fairly conventional except that a voltage converter is used to get the negative supply for the ADC. This allows us to use a single 9 volt battery; in fact, the battery may be necessary only while transporting the unit, as power can normally be supplied via one of the connectors and anything from about 8 to 10 volts is suitable.

Read-out of data from the unit can be achieved in several ways, the simplest of which is to connect the data bus to the D to A converter and, with $\overline{\mathrm{OE}}$ low and $\overline{\text { WE }}$ high, apply a series of narrow positive-going pulses to the $\overline{C S}$ input. This will result in the output from the D to A converter reproducing the original sampled input. This can then be displayed on an oscilloscope for visual examination. A synchronisation signal is available separately to indicate the trigger point on the original data.

Alternatively, a microcomputer with the capability of at least 24 1/O lines could be used to read all the data and even erase old data if required. Other methods could be used if less than 24 1/O lines are available but with reduced flexibility.

Construction

You should find that this project is reasonably easy to put together. All the components with the exception of the battery mount on the PCB.

The order of construction is not particularly critical, but we would recommend that you start with the resistors and the six wire links. The wire links should be made with insulated single strand wire to prevent accidental shorts. Next would come the diodes, making sure they are the right way round followed by IC sockets, IC9 and 10, Q1, capacitors, variable resistors, switches and connector sockets.

When this stage is reached, check the power supply for continuity to the IC sockets and freedom from shorts to other places. Plug in IC8 and apply 8 to 9 volts to the battery terminals. You should be able to detect +5 V across C13 and -5 V across C 4 . If you do not, disconnect the battery and check D8, 9, IC8, 9,10 for correct placement, etc.

Once the power supply section is operational, plug in IC5 and check, if you have access to a scope or logic probe, that pulses appear on pin 10. To do this, close SW2 and open SW3 to 9. This

PARTS LIST

RESISTORS (5% carbon film $1 / 4$ watt unless stated)	
R1,2,9,36	1k0
R3, 24, 27,31-	
35,37	10k
R4,7,10-12,28-	
30	100k
R5,26,Rx	$1 \mathrm{M0}$
R6	100R
R8	220k
R13-23	4k7
R25	5k6
RP1	$\begin{aligned} & 8 \times 100 \mathrm{kSIL} \\ & \text { resistor pack } \end{aligned}$
RV1	22k min. horiz. preset
RV2	100k min. horiz. preset
CAPACITORS (min ceramic unlessstated)	
C1	270p
C2	68p
C3,4,5	100n
C5	330p
C6	100 n - or as required
C7,8	100p
C9,11,12	$10 \mu 16 V$ electrolytic radial lead
C10	$100 \mu 16 \mathrm{~V}$ electrolytic radial lead
SEMICONDUCTORS	
IC1	4001
IC2	8703 ADC (Teledyne)
IC3,4	4040
IC5	ICM7240
IC6	4528
IC7	6116 or 5516 see notes
IC8	ICL7660
IC9	78L05
IC10	79105
Q1	VN10KM
D1-7,9	1 N4148
D8	1 N4001
MISCELLANEOUS	
SK1	10 way 0.1 in pitch PCB connector
SK2	26 way P.O. style IDC connector, rt.
SW1	min. PCB mounting keyboard switch
SW2-9	8 way single pole DII switch

IC sockets: $8,14,4 \times 16,2 \times 24$ way; 10 off 1 mm terminal pins; PP3 size 8.4 volt $110 \mathrm{~mA}-\mathrm{h} \mathrm{Ni-Cd}$ if req'd; PCB (see Buylines).
gives the fastest clock time - note that at least one switch must be closed for proper operation. Next insert IC1, 3, 4 and 6. Link A to D and Z to X. Temporarily connect SK1 pin 8 to pin 7 and with a thin piece of wire bridge pins 21 and 23 on IC2's socket. Power up the unit with the battery, etc., and press the reset button for a moment. It should now be possible to detect a count sequence on the address

Fig. 5 Setting up circuit.
pins of SK2. Pulling SK2 pin 25 low should stop it, as should removing the link between SK1 pins 7 and 8 .

With SK2 pin 25 low and the link removed from SK1, feed in a clock signal to SK2 pin 24: about 1 kHz 3 to 5 volt TTL compatible will do. A count sequence should again be observed on the address pins of SK2.

Once this stage is reached successfully, remove the power source and plug in IC2 and 7. Be careful with these as they are sensitive to static damage and are also expensive. Note that if you use the 5516 CMOS RAM instead of the 6116 then R34 should be omitted and a link inserted between IC7 pins 18 and 20. By the way, you should also remove the thin wire between IC2 socket pins 21 and 23 before inserting iC2. You can now repeat the tests and you should get the same results. Check also that the power supply current is not more than 20 mA (our prototype weighed in at 13 mA). Your LOGGIT should now be ready for action.

Setting Up And Use

The easiest way to set the unit up for use is with the circuit shown in Fig. 4. The DAC is connected to take the output from the ADC on the PCB without latching it. This works because the ADC holds the data from the last conversion until 5μ s or so before presenting the new data. With this arrangement it is possible to monitor the ADC operation while making adjustments.

To make things easy while setting up, link $A-D$ and $X-Z$ only and press the reset button briefly. Make sure that $R x$ is present if you want to monitor a bipolar input.

With R5 and Rx each at 1 M 0 and the other components as shown it should be possible to monitor a $\pm 5 \mathrm{~V}$ input, while omitting Rx will set the range at 0 to +10 V . Increasing R5 (and Rx) will increase the full scale input voltage and vice-versa.

It is probably easier to set the circuit up initially if $R x$ is omitted. Short the analogue input to ground and adjust RV1 to the point just below where the output digital data changes from 0000 0000 to 00000001 . Next apply the full scale input voltage and adjust RV2 to the point where the digital output has just changed from 11111110 to 1111 1111. Go back and check the first adjustment, and repeat both adjustments until they are correct. Next, ramp the input voltage slowly through its range and check that the DAC follows it with no sudden jumps, apart from those caused by the slow sample rate.

When you have got this far, you can insert Rx if you wish and adjust RV1 to the point where the digital output just changes from 01111111 to 10000000 when the analogue input is grounded.

To use the unit for data collection, set up the mode on the links as described and the sample rate on the switches (and C6/R26 if necessary). The PCB can then be plugged into a suitable connector on which pins 7 and 8 are connected. A supply of 8 to 10 volts should be made available on pin 10 , or the unit's battery used. The analogue signal should be applied to pin 2 and the trigger signal, if used, to pin 9. Press the reset button and the unit should start working.

Once the data has been collected, the unit must not be
disconnected from its power source or the data will be lost. The simplest way to ensure this is to keep a PP3 sized Ni-Cd battery connected to the terminals on the PCB permanently. If this is the case, the unit can be disconnected from the monitoring point and taken away to the readout unit. So long as the PP3 Ni-Cd is reasonably charged, the unit should be able to retain data for a few hours. Note that power can also be supplied via SK2 while reading the data out.

In order to get sensible output pictures on an oscilloscope it is desirable to ensure that several samples are taken in the period of the fastest fluctuation of the monitored voltage.

BUYLINES

Nothing we have used here should cause any problems for our UK readers. All the components are readily available from advertisers in this magazine, such as Watford, Technomatic, Rapid, and others. The PCB is, as ever, available through the ETI PCB service.

Fig. 6 Using a DAC to produce an oscilloscope display. Another alternative would be to use switches (fully de-bounced) to make the LOGGIT step through data points one at a time, and use this to drive an analogue or digital meter (via a DAC) or suitably buffered LEDs (but you've got to really love hex for that . . .).

"OK YOU LOT - WEVE COME TO CET THIS DIGITAL LOCGER PROJECT STOPPED!

Eleak mainalls
 SEMICONDUCTORS FROM AROUND THE WORLD
 VALUE PACKS
 PakNo. Uty Description
 VALUE PACKS
 Pak No.aty Description
 VP16 50 Wirewound Res. 9W (avg) Pric
 Pak No.aty Description
 VP23 20 Assorted Slider Pots

100 a collection of Transistors.

 Diodes, Rectifiers \& Bridges SCR's Triacs ic s \& Opro's all ofwhich are current every-day useabie devices
Guaranteed Value Over flo Normal Retad Price

Data etc in every pack Order No VP56 Our Price $£ 4.00$

BI-PAK'S OPTO SPECIAL
A selection of large and small sized LED's in various shapes, sizes \& colours, together with 7 Segment Displays both anode \& cathode plus photo transistors emitters and detectors. Cadmium Cell ORP12 and Germ photo transistor 0CP71 included In all a total of 25 Opto pieces valued over £12 Normal Price

HYBRID
LED COLOUR
DISPLAYS
Red, Green, Yellow 3/.5/.6 inch Mixed tvDes and colours NUMERIC \& OVER FLOW Common Anode/Cathode. aAsP/GaP. Brand New, Full Data incl.

10 pieces (our mix) . $\mathbf{£ 4 . 0 0}$ Normal Retail Value Over f 10.00 Order No. VP58

OPTO 7-Segment Displays LITRONIX DL 707R 14-pin

Red 0.3" Common Anode Display 0-9 with right hand decimal point Th

	5 preces $\mathbf{£ 3}$	(60p each
IN	10 pieces $\mathbf{f 5}$	150 p each
PACKS	50 pieces $\mathbf{f 2 0}$	140 p each
OF	100 pieces $\mathbf{£ 3 5}$	$135 p$ each
	1000 pieces $\mathbf{f 3 0 0}$	130 p each

THE MORE YOU BUY-- THE LESS YOU PAY

BI-PAK

SOLDER -
DESOLDER KIT
Kit comprises: O/No VP 80 High Quality 25 Watt Genera urpose Lightweight Soldering Ir Quality Desol. $3 / 16^{\prime \prime}(4.7 \mathrm{~mm})$ bit. Qualiny Desoldering Pump High ith automatic ejection Knurled ant-corrosive casing and Kelon nozzle 1.5 metres of dispenser

| yds $(183 \mathrm{~m})$ |
| :--- | Solder on Card

1 Heat Shunt tool tweezer Type Total Retail Value over fl2.00

VP1 300 Assorted Resistors Mixed Types Price VP2 300 Carbon Resistors Mixed Types $\mathbf{f 1 . 0 0}$ Farmed Resistors 1/4-1/2 Watt Pre ormed Mixed Min Carbon Resistors Mixed $\mathbf{f 1 . 0 0}$ Mixed $\mathbf{£ 1 . 0 0}$ M Watt Assorted Capacitors All Types $\quad \mathbf{f 1 . 0 0}$ $\begin{array}{ll}200 & \text { Assorted Capacitors All Types } \\ 200 & \text { Ceramic Caps Miniature - Mixed } \\ \mathbf{f 1 . 0 0}\end{array}$ 200 Ceramic Caps Miniature - Mixed f1.00 100 Mixed Ceramics Disc. Ipf - 56 pf $\mathbf{f 1 . 0 0}$ 100 Assorted Polyester/Polystyrene Caps $\mathbf{f 1 . 0 0}$ Electrolytics - All Sorts $\begin{array}{llll}\text { VP11 } & 50 & \text { Electrolytics - All Sorts } & \\ \text { VP12 } & 60 & \text { Bead Type Polystyrene Min Caps } & \mathbf{f 1 . 0 0}\end{array}$ $\begin{array}{lll}\text { VP12 } & 60 & \text { Bead Type Polystyrene Min Caps } £ 1.00 \\ \text { VP13 } & 50 & \text { Silver Mica Caps Ass } 5.6 \mathrm{p} 1-150 \mathrm{p} 1 \mathrm{f} 1.00\end{array}$
 $\begin{array}{lll}\text { VP15 } & 25 & \text { Silver Mica Caps Ass } \\ & .01 \mathrm{uF} & 250 \mathrm{v} \text { Min. layer metallised }\end{array}$ Polyester Capacitors

50-way $\times 2.1$ pitch Edge Connector (Gold) 10/No. AMP 163279-2) f1.20 each f50 per 50 of VALUE PACKS

PakNo. Oty Description
PakNo. Oty Description
VP28 10 Rectangular 2" REO LEO'S Price $\begin{array}{llll}\text { VP28 } & 10 & \text { Rectangular 2" REO LEO'S } \\ \text { VP29 } & 30 & \text { Ass. Zener Diodes 250 } \\ \text { ¹.00 }\end{array}$ Ass. Zener Diodes 250 mW - 2 W
Mixed Vits. Coded Ass. IoW Zener Diod Coded
$\begin{array}{lll}\text { VP3 } & & \text { Ass. } \\ \text { Voded } \\ \text { VP31 } & 10 & 5 \text { Amp SCR's T0-66 50-400v Coded } \mathbf{f 1 . 0 0}\end{array}$ VP32 $20 \quad 3$ Amp SCR's TO 66 Up To 400 V Uncoded Sil. Diodes Switching Like IN4148
DO-35 Sil Diodes Gen, Purpose Like OA200/BAX13/16 f1.00 Amp IN4000 Series Sil. Diodes Uncoded All Good $\quad \mathbf{f 1 . 0 0}$ Biack Instrument Type Knobs With
Pointer $1 / 4$ " Std Pointer $/ \mathbf{/ s}^{\prime \prime}$ Std
Black Heatsinks To Fit T0-3, T0-220 Ready Drilled
$\mathbf{f 1 . 0 0}$ Ready Drilled TO - 66 Size Fin Heatsinks $2 \times 10-32 \times$ $10-66$ Size BC107/8 Type NPN Transistors
Good Gen. Purpose Uncoded BC177/8 Type PNP Transistors Go Gen. Purpose Uncoded Silicon Power Trans. Similar 2N3055 Uncoded

VP17 50 Ass. 1 ohm-12K $\mathbf{~ M 1 . 0 0}$ Metres PVC Covered Sin-
gle Strand Wire Mixed Colours
VP18 30 Metres PVC Covered Multi Strand Wire Mixed Colours $\mathbf{E 1 . 0 0}$
VP19 40 Metres PVC Single/Multi Strand Hook-Up Wire
VP20 $6 \quad \begin{aligned} & \text { Rocker Switches } 2 \text { Amp } \\ & 240 \mathrm{w}\end{aligned}$
VP21 $15 \quad$. ${ }^{\prime \prime}$ High Bright RED LEDs in plastic encapsulation -
targe area light source
VP22 200 Sq Inches Total, Copper Clad Board Mixed Sizes $\mathbf{f 1 . 0 0}$

ELECT \& PIEZO BUZZERS

Min:ature round $\begin{aligned} & \text { Plezo } \\ & \text { buzzer. } \\ & \text { Whate } \\ & \text { consumption. }\end{aligned}$ plastic. Lowic consumption.
Frequency: 4 kHz approx. Dutpu: 70dB (A) fit 1. typ. Power: $[2 V \mathrm{Va} . \mathrm{c} .4 \mathrm{~mA}$.
Dims. 22 idia.) $\times 115 \mathrm{~mm}$ Fixing Centres- 265 mm

Piezo buzzer Whate plezo
Piezo buzzer White plastuc. 9

- Frequency: 35 kHz approx Output: BSdB (A) a 1 Im typ Powbr: 24 DVa . 5 mA
Dims: 32 idia $\times 14 \mathrm{~mm}$ Dims: 32 L dia, $\times 14 \mathrm{~mm}$ £1.25

Minature Electronic
ers Solid state Ivory plas
IIc. 500 Hz approx. Frequency:
inc.
Olms: $22 \times 16 \times 15 \mathrm{~mm}$
Outpur 8208 (A) 1 is 1 m typ
$3 V 25 \mathrm{~mA}$: O / NO. VP 82 .
6V 25mA VP 83
$12 \mathrm{~V} 25 \mathrm{~mA}: \mathrm{VP} 86$
$95 p$ each

IC BARGAINS

40 Assorted TIL CMOS INTEGRATEO CIR CUITS 74 Series \& CD4000 Series - All new Gates, Flip-Flops - MSI etc. GREAT VALUE Data Book \& Sheet included 40 Pleces (Our Mix) $£ 4.00$
$0 /$ No UP40

VP24 $10 \quad \begin{aligned} & \text { Mixed Values } \\ & \text { Slider Pots } 40 \text { mm 22K } 5\end{aligned}$
VP25 $10 \quad \begin{aligned} & \text { Log. } 5 \times \text { Lin } \\ & \text { Slider Pots. } 40 \mathrm{~mm} \\ & 47 \mathrm{~K} 5\end{aligned}$
VP26 15 Small. 125" Red LED'S PP27 15 Large. 2' Red LED'S $£ 1.00$

TRANSISTOR CLEARANCE
All Surts Transistors. A mixed bag
00 NPN-PNP Silic on \& Germ. Mainly 100
cludes Instructions For making Simple Transistor Tester Super

Order No. VP60
f 1.00

HIGH QUALITY MODULES FOR STEREO, MONO \& OTHER AUDIO EQUIPMENT

Audio Amplifiers

	POWER 0/P	MAX SUP.	
O/No.	R.M.S.	VOLTAGE	PRICE
AL 30A	10 Watts	30 V	¢4.95
AL 60	25 Watts	$30-50 \mathrm{~V}$	¢5.92
AL 80	35 Watts	40-60V	£8.75
AL 120	50 Watts	$50-70 \mathrm{~V}$	f15.22
AL 250	125 Watts	$50-80 \mathrm{~V}$	¢ 20.60

Stabilised Power Supplies -
Output current 25 Amps
$\begin{array}{ll}\text { O/No. } & \text { AC Input Price }\end{array}$
$\begin{array}{lll}\text { SPM } & 120 / 45 & \mathbf{4 0 - 4 8 V} \\ \text { SPM } & 120 / 55 & 50-55 \mathrm{~V} \\ \mathbf{f 8} .05\end{array}$

SPM	$120 / 55$	$50-55 \mathrm{~V}$
SPM	120.65	$\mathbf{6 0 - 6 5 V}$
8.05		

Mono Pre-Amplifiers - Operating Vtg. $40-65 \mathrm{~V}$ O/No
$\begin{array}{ll}\text { MM } 100 \text { Suitable for Disco Mixer } & \text { Price } \\ \text { £14.75 }\end{array}$ MM 100 G Suitable for Guitar Pre-Amp Mixer
Magnetic Cartridge Pre-Amplifier O/No. MPA30 Sup Vig. 20-30V Price $f 4.29$

Monographic Equaliser
GE 100 MKII 10 Channe
OUR PRICE ONLY $£ 20.00$

Full Specifications and Data available on request

Please

RATCHET SCREWDRIVER KIT

Comprises 2 standard screwdriver blades 5 \&
7 mm size. 2 cross point size $4 \& 6$. 1 Ratchet
handle. $5-\mathrm{in}-1 \mathrm{Kit}$. $\mathbf{f 1 . 4 5}$ each. $\mathrm{O} / \mathrm{No} 329 \mathrm{~B}$

VP38 100 Silicon NPN Transistors All Perfect. Coded. Mixed Types Wuth Data And Equt. Sheet No Rejects. Fantas-
VP39 $100 \begin{aligned} & \text { Sic } \\ & \text { Silicon PNP Transistors } \\ & \text { Ail Perfect. Coded Mixed }\end{aligned}$ $£ 3.00$ All Perfect Coded Mixed.
Types With Data and Eqvt. Types With Data and Eqvt.
Sheet No Rejects Real Sheet No Rejects Real $£ 3.00$
Value 2N3055 The best known Power Transmitter in the world - 2 N3055 NPN 115 W .
Dur Bi-Pak Spacial Offer Price

BD312 COMPLIMENTARY PNP POWER TRAN SISTORS TO $2 N 3055$ Equivalent MJ2955

- BD312 - T03 Special price 60.70 each. 10 off

SILICON BRIDGE RECTIFIERS

Comprising $4 \times$

1. Amp rectifers
mounted on PCB
VRM - 150 vits
IFM - 1.5 Amps
10 off f 1.00
50 ott f4.50
100 otf $£ 7.50$
ORDER NO: 4RI B
Rect.

DESIGN ICS ON your micro!

It will come - but don't hold your breath waiting for a package to run on your trusty ZX81! TI has recently announced a design-ityourself facility for professional computers.

By TI's reckoning, the semi-custom IC market will expand from the $\$ 100$ million share it has now to around $\$ 990$ million in 1990 (a growth from 10% to 30% of a total market that is itself growing). That, in anyone's terms, is big money, but there is a very low penetration of semi-custom ICs to the smaller companies in Europe that, whilst making up 80% of the total in number of all European electronics companies, hold only 40% of the manufactured equipment market.

These companies have a turn-over of $\$ 1 \mathrm{~m}$ per year, or less, so cannot afford their own in-house semicustom design team, nor can they afford to have a semiconductor manufacturer design special purpose devices for them. In fact, with such a small turn-over, a large company like $T I$ is kept too busy by its big customers to be particularly worried.

None the less, 40% of the electronic equipment market is not to be sneezed at, especially when this could translate into an extra $\$ 660 \mathrm{~m}$ of semi-custom ICs! Something had to be done, but it would not have to cost the small companies too much, and it also would have to be relatively cheap on TI's design time.

The solution has been to adapt an existing software package, TI's Transportable Design Utility (TDU) which has been used with success on a number of different main-frame computers. After adaptation, this suite of programs can now run on a fairly heavy-weight micro, such as an IBM XT/PC or TI's own Professional Computer, with 512 K of RAM, and 10 M Winchester disk (this isn't a complete list of requirements - contact TI for more details if you're seriously interested).

The package allows you to describe the hardware you want to integrate using TI's hardware description language (HDL) and the test patterns you want it to fulfil using test description language (TDL). With some software packages available from other suppliers, but which do not come with the basic package from TI, you can get the facility to actually draw circuit diagrams on the screen. However, TI say that once you are used to it, it is as easy to use HDL to describe a circuit lay-out as it is to draw a circuit diagram.

The software will then check that you have followed the appropriate electrical rules - in particular, it will check fan-in, fan-out and output contention in the design. It also checks to see if the circuit you have designed is easily testable. Finally, it simulates the action
of the circuit, and checks to see that the results you get are the same as your expectations.

The major stage that the software does not do for you is to lay out the IC. To do this, you will have to send a disk containing the circuitry description to TI , who will then use their main-frame to finish the job. However, what you have got at this stage is a finished circuit that, when integrated on silicon, will work.

There are several different ranges of semi-custom logic sold by TI, and the software will support the full range, from SN54/74 HCMOS standard cell family, which is second-sourced by Signetics, to the recently introduced TAHCXX HCMOS gate arrays. Further, TI say that any future semi-custom products will be supported.

This all sounds very expensive, you may think. But it isn't - the basic software will cost $\$ 500$ for the software itself and all current product information. 'Active' customers, ie those who are actively engaged in designing with semi-custom logic, will receive support and latest releases free of charge.

The basic idea of the system is to transfer the most costly and time-consuming part of the design process getting a circuit that will work using the standard cells of a semi-custom logic family - to the customer's own personal computer. The final stage, the laying out of the mask, has to be done on a main-frame at the moment, so can only be done by TI themselves. However, there should still be a very significant saving for the small customer for whom semi-custom logic may be presently far too expensive.

The software package described here, the PC TDU, will be available from Ti as of the 1st December 1984. TI are at Manton Lane, Bedford, MK41 7PA.

Making A New IC

The design of new ICs is done with a great deal of help from computer-aided design packages. In fact, the PC TDU package from TI is a cut-down version of the software TI themselves use to design their own devices. Obviously, their in-house packages must be able to deal with non-standard logic cells, whereas PC TDU deals only with standard cells.

All the circuit design and checking is done with the help of the computer, up to and including the die lay
out. However, it has been found that no computer algorithm can substitute for a design engineer's experience in this last stage, particularly when trying to avoid parasitic devices - only certain levels of checking can be performed by computer, so there is a substantial human involvement in the exact details of the final layout, in contrast to semi-custom layout, which can be almost entirely automated.

The end of the design effort is the programme tape, which is used to produce the masks for the different diffusion and metalisation stages of the IC's production. After photo-reduction, these are used to make a batch
of prototype wafers.
Before the wafers are sliced up, the individual dies are 'probed' to see if they can perform certain tests. If this is satisfactory, the wafer is then sliced and the individual ICs packaged.

The next phase is to determine whether the prototype ICs do what they should. They are checked against the provisional data sheet, to see if either or both require ammendment - only in 1% of cases does the actual IC have to be changed.

Production now begins, and there's a new IC on the market!

Colleges, Universities, Individuals: Build your own modular Z8OA-based metal 19 " rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $\mathbf{£ 1 0 . 9 5}$ to $£ 17.75$ + VAT; manuals £1-£5.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your nameandaddress with a 21 pstampandwe'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T2E), 92 Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

		WCII	atroni		
Abbots 1 st Floo Derby	Hill Cham or, Gower DE1 1SD	ers treet,		Derby 0	382433
Modules	Power RMS	Load	Volt Max	Size (mm)	Price
RVM150S	70-150W	4.8.	± 60	31×80×100	$\begin{array}{r} 1+27.00 \\ 10+22.97 \end{array}$
RVM300S	120-300W	4-8.	± 65	31×102×136	$\begin{array}{r} 20+22.77 \\ 1+37.80 \\ 10+32.13 \\ 20+30.24 \end{array}$
RVM400S	170-400W	4-8,	± 65	47×89×136	47.05
RVM700S	300-700W	2-8.	± 70	$47 \times 90 \times 197$	70.10
RVM700S Mounted on Heat Sink					70.40

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIERMODULES.
These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi powersystems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

All prices include post \& packing.
(Quantity discount available)

To order send cash with order, or cheque/postal order. Delivery on our Modules andHeat Sink or same day dispatch when order is received with cash, allow7 days with cheque or postal order.

neptune
 for low-cost training in real-life robotics

 The advanced des industuial robotIt is electro-hyd
tis electro-hydraulically powered. using a revolutionary water pased system no messy hydraulic oifl than any other robot under $\mathrm{E} 10,000$ its progiram length is under E10.000. Is proxyam length is ilmited only by the memory of your computer And it's British designed, British made:

Othe features inciucte

Buttered and latches reing aiaurragm seals 12 bit controd system i8 onin inepunce ell
Rach and pinion iy yindert couplings tor more angular movements
Automatk :rple speed contiol on Neplune 2 tor ticcurate homming in
Easy freess tor serncing and we wing of worknig parts
Powerter- litite 25 kg with ease

une robot are sold in kti form as tollows
Neprunce I froot kit inc, power supply) E 1250.00 Neptune i control lelectronks iready Dull) $\quad \$ 295.00$

Neplume 2 robo: kit Inc power supply) $\$ 45.00$ $\$ 1725.00$
$\$ 475.00$ Hydrauic power Grpper sensor B8E connector lead
 Neplune 2 control eie
Neppune 2 simuator E52.00

NEW THIS MONTH

2917 PSU Panel $320 \times 190 \mathrm{~mm}$ wth MJ802 30 A 100 V 200 W) on large heataink, 7 smaller heatainke contain $2 \times 7805 ; 7812 ; 7905 ; 2 \times$ MJE2955;2SA473. Also 555 plugs and sockets large smoothing caps, multiwa Only عe.so.

DIP BOARD

Fibreglass DIP board $158 \times 165 \mathrm{~mm}$ double sided with 58w 0.1 "edge connector gold sided with 58w 0.1

20 WAY RIBBON CABLE
Twisted and flat computer grade for ower crosstalk. Reformed intoflat sections every 21 " for IDC connec tors. Onty 70p/21" or £25 per 100tt reel.

3 $1 / 2$ DIGIT LCD DPM
Type 900 s seff powered. Input range $4-20 \mathrm{~mA}$. Contained in std DIN enclosure $96 \times 48 \times 100 \mathrm{~mm}$ \&15.

GREENWELD
 - The Pack People!!

More pecks - more in them - more valuel All our ponente at a frection of the normal price and ofter conatructors the wideet range of pertit at the loweet coat How do we do MT By buging manubacturere end-od-run and eurphew componenta. Becmeve perchae from many tources, we have an axtrennoly wide range of top quality parts - too coltly to sort hence the packs deecribed below. Our lergor packe are ideal for achoote, groupe or clube.

NEW PACKS:

K524 OPTO PACK - a variety of single point and seven segmemt LEDS (incl. dual types) of various colours and sizes, opto isolators, numicators. mult dłgit gas discharge displays, photo transistors, infra red emitters and receivers. 25 assorted E3.05; 100 814.95; 250 £35.

K525 PRE BET PACK - Big, Big variety of types and sizes - submin, min and std. MP, siider, multhurn and cermets are all Included. Wide range of value cas.

K529 ELECTROLYTIC PACK - All reedy cropped Tor PCB mounting, this pack ofters excellent valuato 0.47 uF to 1000 uF . 6 V to 100 V . 100 \&3.95; 250 عe. 9 s 1000 E 32.

K531 PRECISION RE8IBTOR PACK - High quality closetolerance R 's whth an extremely varled selection of values mosty $1 / 4$ and $1 / 2 w$ tolerances from 0.1% to 2%-ideal for meters, test gear etc. 250 es 1000 s10.

K532 RELAYS - wide selection of styles voltages and contacts. $4 \mathrm{~V}-240 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}, \mathrm{SP}$ to 4 PCO .20 fo E8; 100 £25.

ESTABLISHED FAVOURITES

K517 TRANSIBTOR PACK - $\mathbf{5 0}$ assorted fill spec marked plastc devices PNP NPN RF AF. Type num
bers include BC 114117172182183199238251214 255320 BF 198255394 2N3904 etc etc. Retail cost E7+ Special low price $\mathbf{£ 2 . 7 5 p}$.
K523 RE BI8TOA PACK - 1000 -yes $1000 ~ \%$ and $/ / 2$ watt 5% hi-stab carbon film resistors with pre-formed leads for PCB mounting. Enormous range of preOnty 250 p, $5000 £ 1020,000 £ 38$.
K520 8wITCH PACK - 20 different assorted switches - rocker, stide, push, rotary, toggle, micro
etc. Amazing value at only 200 p .

K522 COPPER CLAD BOARD - All pieces toosmal for our etching kits. Mosily double-sided fibreglass 250 g (approx 110 sq . ins) for 100 p .
K530 100 ASSORTED POLYEATER CAPS - All new modern components, radial and axial leads. All values from 0.01 to luf at voltages from 63 to 1000 Super value at £s $\mathbf{3} .05$.

K51 200 DISC CERAMIC CAP8 - big variety fo values and voltapes from low pF to 2.2 FF ; 3 V to 3K E 1.00
K20s 100 WIREWOUND RESITORs -From $1 w$ to 12w, with a good renge of values $£ 2.00$
K505 20 A8SORTED POTENTIOMETEPS - A types including single, ganged, rotary and slider £1.70.
W4700 PUSH EUTTOW BANKS - An assortment of latching and independent switches on banks from 2 to 7 way. DPCC to 6PCO. Atotal of at least 40 switches for £2.95; 100 £8.50; 250 £14.00.
20, 100 R.50, 250 .

Min Access order value E 5 No min CWO value. Officlal orders from schools etc. welcome - min invoice charge £10.

open from 9-5.30 Mon-Sat. Come \& 300 usil

84 pege A4 blze - Bigger, Brighter, Better, - more components than ever belorel With each copy there's diecount wouchers. Bargain Llat, Wholesale Oiscount List, Bulk Buyers List Order Form and Reply Pald Envelope. All tor jut $£ 1.00 \mathrm{H}$ (FREE to Schools etc). Wimter Supplement due out November - Send lerge SAE for your tree copy.

TREKKER'
Computer-controlled Robot built around the gearbox described below. Complete klt of parts inc PCB, program listings for BBC (other micros soon). £44.85 20 W rlbbon cable (min 3 m recommended - 5 m better) - $\mathbf{~} 1.30 / \mathrm{m}$ SAE for illustrated leaflet. MOTORIZED GEARBOX
These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro-mechanical parts required in bullding remofe controlled vehicles. The unth has $2 \times 3 \mathrm{~V}$ motors, linked to a magnetic clutch, thue enabiing turning of the vehicto, and a geartox contalined within the black ABS housing, reducing the finst drive speed to approx 50 rpm . Data supplied with the unt showing various optlons on driving the motors etc. Two new types of wheets can be supplied (the alu minlum disca and smaller plastlc wheels are now sold out). Type A has 7 spokes whth a round black tyre and 107 mm dia whis a filat rigid tyre 17 mm wide. Photo shows gearbox with ore of each type of wheet on it PRICES: Gearbox whi dota sheest: E5. 58 en; Wheel type A: $\mathbf{8 0 . 7 0}$ ers, Wheel type B: R0.80 en.

NI-CAD CHARGER PANEL
$177 \times 114 \mathrm{~mm}$ PCB with one masalve Varta Deac $57 \times$ 50 mm 0 rated 7.2 V 1000 mAH and another amalle Deac $32 \times 35 \mathrm{~mm} 0$ rated 3.6 VV 600 mA . The price of is a mathe input charger trens £20. Aleoon the pane is a malms inpul chargor fransiormor with iwo separ ate secondaries wred via brige reckiors, wnoth panel welghe 1 kgm . All this for just $\mathbf{t h} .00$.

VEROBOARD \& RIBEON CABLE
Discontinued lines, some at less than $1 / 2$ pricell e.e. Dpboard $158 \times 185 \mathrm{~mm}$ c3.50; 28 W Groy ribbon $84 /$ 3 m ; Red wirewrap wire 24AWG ez.so/100m. Full
details in supplement

> FIBRE OPTICS

Scoop purchase of single and twin cable. For use with visibie light or infra-red. Core 1 mm dia, owerall 2.25 mm dia. Single $50 \mathrm{p} / \mathrm{m}$; 210 m coll $\mathrm{EB.50}$. Twin
$90 \mathrm{p} / \mathrm{m} ; 20 \mathrm{~m}$ coll E 11.00 .

PCB MOUNTING NI-CAD8 Much sought after 4.8 V 150 mA batts with PCB mntg tags on 25 mm pltch. Batt edze 25×16. Ideal to paralleing 90p ea; $10+35 p ; 25+70$ p; $100+80 p$ STEPPING RELAY
Schrack 2 pole 10 way 24 V DC (works down to 15 V) only $39 \times 20 \times 24 \mathrm{~mm}$. Connexions by 0.1 p phth edpe plug. Spectal low price E1.\%. miniature relays
PCB mounting. DPCO in 3,9 or 12V. $£ 1$ each.

1w AMPLIFIER
2914 Audio amp panel $85 \times 65 \mathrm{~mm}$ with TBA $220 \mathrm{ch} / \mathrm{p}$. Gives IW output whth 9 V supply. Swith and vol control. Just connect batt. and speaker. Full details supplied.

2015 Stereo version of above $115 \times 65 \mathrm{~mm}$ featuring2 \times TBAB20M and dual vol control. $\mathbf{\varepsilon 3 . 5 0}$; 10 for $£ 30 ; 25$ for E65; 100 E200.

AM TUNER PANEL 2016 for use with mono amp above. Neat pane $\mathbf{6 0 \times 4 5 m m}$. Only $£ 1.50$; 10 for $\$ 12.00$.

NJ-CAD CHARQER \&COOPI Ever-Ready moder CH4, this charger will take up to 4 AA, cor Dcalls plus 2 PPS if required. Smari two tone grey case $212 \times 87 \times 60 \mathrm{~mm}$. Only 87.05

443A Millbrook Road
Southampton SO1 OHX Tel (0703) 772501/783740 ALL PRICES INCLUDE VAT JUST ADD 60p P\&P

DIGITAL FRAMESTORE

Have you been framed? If not, you'd better get building! Leading off with construction details, Daniel Ogilvie then proceeds to give details of how the framestore can be used.

Boards with plated through holes are available for the framestore or you may construct your own by means of the layouts provided.

The normal care should be taken to ensure the correct orientation of all ICs and transistors especially for the more expensive ones. Note that the dynamic RAMs have their positive and negative supply pins swapped compared with convention.

For the power supplies, the -5 V and +6 V should have linear, not switching, regulators to ensure that
switching noise does not adversely affect the high bandwidth video stages. The higher-current 5 V can be provided by a switching supply, to ensure a low heat dissipation: the framestore can draw up to 4A.

Construction should begin with the control board. There is no need to socket any of the ICs, and indeed it is preferable not to, as the high capacitance of poor sockets can affect the timing of fast pulses. The ZNA134 is resilient but may be socketed if your nerves are not up to soldering it.

LI is one turn of 18 swg wire
wound on a HB pencil (you should obtain similar performance from a B pencil but this has not been tried).

You should ensure that the links in the board are set to the 640 position (there are five of these) and then the board may be powered up; you may cross all your fingers and toes if you wish while doing this.

If you have access to a scope check that the output waveforms appear correct. Of particular importance are the relative timings of 0, RAS, CAS, W, TP and S/L (see

PARTS LIST - ADC/DAC BOARD

RESISTORS (all $1 / 1 \mathrm{~W}$ 5\%)	CAPACITORS		IC6	74.504
R1,22 75R	C1,2,5,12	10u 16V axial	Q1,3	2N2369A
R2 ${ }^{\text {220R }}$		electrolytic	Q2	2N4393
R3,7 22R	C3	$4 n 7$ ceramic	Q4	2N3946
R4,13,20 120	C4,6,7,8,11		2D1,2	ZN423
R5,19 100R	C9,10	1 no polystyrene	D1	1N914
R6,11,15 R 8,18	C13	$1 \mathbf{1 0 0}$ polyester film	D2	1N4001
	SEMICONDUC			
R10,16 1k5	IC1	TDC1014		
R12 56k	IC2,4		MISCE	
$\begin{array}{ll}\text { R14 } \\ \text { R21 } & \text { 68k } \\ \end{array}$	$\begin{aligned} & \text { IC3 } \\ & \text { IC5 } \end{aligned}$	74LS221 TDC1016	PCB; IC	ADC and

Fig. 9 The component overlay of the ADC/DAC board.
timing diagram, p63, ETI Dec '84). Remember the write output will appear only when the load switch is operated or one of the auxiliary load inputs is held low.

Construction should continue with memory boards. Each board will store one bit and six are required for the complete framestore.

The RAM's specified are Motorola MCM6664L20. These are cheap and contain an auto-refresh function which can be useful for the processor interface but is not necessary under normal use as a framestore. There should be no problem in using any other 200 ns $64 \mathrm{~K} \times 1$ DRAMs, but this is suggested only if you have some DRAMs to hand. If buying specially, the Motorola parts should be ordered unless a significant price difference is apparent, and we would suggest that eight of the alternatives should be tried first. They may be installed one bit at a time to help space the cost. All of the address and control inputs are paralleled up via the IDC connector. ICs 13 and 15 need not be inserted if the processor interface is not to be constructed.

The dynamic RAMs should be soldered in and not socketed: the capacitance of the sockets can cause excessive overshoot on the driving waveforms resulting in false writes to the RAMs. If the processor interface is to be installed, the link of the MPU line to 0 V should be put in to enable the address multiplexers. This line would normally be driven by the interface board.

When one of the memory boards has been constructed and checked, connect it to the control card via the IDC connector and power both of them up. If possible, connect a 'scope to the serial output of the board. On switch on, this will be random, but the A0 address line may be connected to the serial input to the DRAM board and the load switch operated. The DRAM should now provide a regularly spaced waveform across one line. Other boards may now be paralleled up and checked similarly.

Finally the ADC/DAC card can be constructed. The ADC and DAC may be socketed if you wish. Before inserting the DAC set RV4 to achieve -1 V at its reference input (pin 4). After turning off the power, the DAC may be inserted and the board connected and powered up. Load the A0 address line again and connect the serial output of the memory board to the MSB of the DAC.

The video output can now be
connected to a video monitor. Other test inputs can be applied if you wish - remember they must be synchronized to the framestore to prevent tearing or rolling.

Finally the ADC can be inserted and the test input can be applied to the video input or a camera connected. The camera must be synchronized to the framestore to ensure a stable picture using the 75 ohm line and field drive outputs. The gain of the video input may be varied by means of RV1 which alters the reference to the ADC. An offset may be applied to the input by means of RV2. The framestore should now be up and running.

Due to the complexity of the project it is difficult to give any guidelines on fault finding should the worst occur. However to encourage contruction the author is willing to offer a trouble-shooting service and will undertake the repair of any one board for $£ 20$ plus any parts necessary. This will not apply to any construction that does not use the PTH boards.

And Now, A Few Tricks

Normally the data from the framestores memory is passed to the DAC and on to the video monitor. Suppose instead we insert a fast RAM between the memory and the DAC, and use the data from the memory to address a location in the high speed RAM, the resultant data read being passed to the DAC. We
have six bytes coming from the framestore's memory which can address one of 64 locations and we require a six-bit byte to come out. This 64×6 memory must also be fast - ideally faster than one of our clock cycles (78ns). We also need access to the RAM from outside so we can modify its contents; this can be provided by two, two-input multiplexors on the address inputs. This circuit is, in fact, a humble look-up table, and the circuit of the complete lookup table is shown in Fig. 10.

The RAM chosen is configured in a 256×9 bit format and has an access time of 45 ns . Adding the delay through the multiplexors (about $5 n s$) means that the data coming to the DAC will be latched in one clock cycle later. This is not important, although we must delay the inhibit signal to the DAC (NDIS) similarly or we will lose the right hand column of the screen and will display rubbish in the left hand column. The required delay is created by IC2. Access to the RAM by our processor is quite conventional. The CS input from the MPU is the decoded 64-bit address location for the lookup table. When CS is low, the multiplexors switch the address lines to the lookup table over to the MPU address lines. The CS signal is rated with our R/W line to provide a write input to the lookup table, and it also disables the output drivers of the lookup

Fig. 10 The not-so-humble
lookup table.

table which enables us to load data in via the tri-state buffer, IC1.

The writing to the lookup table should usually be performed during the blanking (inhibited) period of the display to prevent interference on it.

Normally the lookup table is loaded up such that a normal picture is obtained. All address locations are loaded up with a byte
corresponding to the address bus value, i.e. address 0 is loaded with 0 , address 1 is loaded with 1, etc, and address 63 is loaded with 63. The incoming data from the framestore memory just addresses a similar valued byte which is converted by the DAC. This gives us complete control of the grey-level structure of the image. If we want to highlight a pixel value or a range

Fig. 13 Enhanced histogram.

Fig. 11 Picture before enhancement.

Fig. 12 Histogram of grey levels.

Fig. 15 Psuedo-colour look-up table.

Fig. 14 Enhanced picture.
of pixels we can load the corresponding address value with peak white; for example to highlight grey level 24 we load up the lookup table address 24 with the byte 63 to turn it white.

Have a look at Fig. 11. Fig. 12, shown underneath, is a histogram of that picture which has been obtained by counting the numbers of pixels in that image for any particular grey level. As you can see, relatively few different levels are used. In the image there is little in
the dark grey or black tones and little approaching peak white. Because the picture contains few grey levels, it appears flat and little detailed information can be obtained from it. We could improve this by stretching the histogram over our full 63 grey level range. The increments between the pixels are greater, of course, but more detail is apparent. The resultant histogram is shown in Fig. 13 and by loading the lookup table with the new values we obtain the

photo shown in Fig. 14. The lookup-table has only manipulated the output of the framestore and is therefore non destructive - we can restore the lookup table to its original values at any time to obtain our original image. On top of that we have only to write to 64 locations which can be done during the field blanking period and allows us to perform virtually real time image processing. One further use of the lookup table is to provide a pseudo-colour output. For example
our highlighted pixel (value 24) could have been turned a different colour which might have highlighted features or differences more efficiently. The six bit output of the framestore can be used to address a video DAC with colour capability. An example of this is shown in Fig. 15, using the National Semiconductor LM1889. This IC will accept a nine-byte binary input and provide a r-y and b-y output to drive a modulator or monitor directly. Readers are referred to the

National Semiconductor linear book for detailed information on the device.

A more effective (and expensive) colour display can be obtained by the use of three look-up tables and three DACs, and this is illustrated in Fig. 16. Each look-up table is dedicated to driving either the red, green or blue output. If we load each look-up table with our initial values (1 to 1,2 to 2 etc) we will obtain our grey scale output. However we can turn the image into a green, red or blue display by writing zeros into the corresponding lookup tables (e.g. to obtain a blue image we should write zeros to the red and green lookup tables and leave the blue as it is).

In fact it can be shown that we can turn any grey level into any one of $\left(2^{2}\right)^{3}=262,000$ colours. We can only display any 64 of them at one time, of course.

Due to circumstances beyond our control, we cannot give the other two overlays this month, so we'll give them next month, when we'll also describe methods of interfacing the frame store to a
computer.

Fig. 16 Full pseudocolour unit.

MTASTER
 Electronics-Microprocessors-Now! The PRACHICAL Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

ETI PCB SERVICE

In order to ensure that you get the correct board，you must quote the reference code when ordering The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders：However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．

198	
口	E／8106－8 Waz－Phase．．．．．．．．．．．． 1.76
प	E／8106－9 Alien Attack．．．．．．．．．．． 4.00
\square	E／8107－1 System A－Input （MM or MO．．．．．．．．．．．．．．．．．．． 3.05
\square	E／8107－2 System A－Preamp ．．．． 5.95
\square	E／8107－3 Smart Battery Charger ．．． 2.27
\square	E／8108－3 Hand Clap Synth．．．．．．．． 4.57
\square	E／8108－5 Watchdog Home Security（2 boards）．．．．．．．．．．．．．．．． 6.11
ㅁ	E／8109－1 Mains Audio Link （ 3 boards）．．．．．．．．．．．．．．．．．．．．．．．．． 8.45
\square	E／8109－4 Laboratory PSU ．．．．．．．．． 5.21
\square	E／8110－1 Enlarger Timer．．．．．．．．．． 3.91
\square	E／8110－2 Sound Bender ．．．．．．．．．． 3.05
\square	E／8111－1 Voice Over Unit ．．．．．．．． 4.57
\square	E／8111－2 Car Alarm．．．．．．．．．．．．． 3.23
\square	E／8111－3 Phone Bell Shifter．．．．．．． 3.40
\square	E／8112－4 Component Tester．．．．．．． 1.71
1982	
－	E／8201－3 Guitar Tuner（2 boards） 6.38
\square	E／8202－2 Allez Cat Pest Repeller ．． 1.93
\square	E／8202－5 Moving Magnet Stage．．．．4．01
\square	E／8202－6 Moving Coil Stage ．．．．．． 4.01
\square	$\begin{aligned} & \text { E/8203-4 Capacitance Meter } \\ & \text { (2 boards) } 11.66 \end{aligned}$
\square	E／8205－1 DV Meg ．．．．．．．．．．．．．． 3.13
口	E／8206－1 Ion Generator （ 3 boards）．．．．．．．．．．．．．．．．．．．． 9.20
\square	E／8206－4 MOSFET Amp Module ．． 7.80
\square	E／8206－5 Logic Lock ．．．．．．．．．．．． 3.52
口	E／8206－6 Digital PWM ．．．．．．．．．． 3.84
ㅁ	E／8206－7 Optical Sensor ．．．．．．．．． 2.00
－	E／8206－9 Oscilloscope （4 boards）．．．．．．．．．．．．．．．．．．．．．．．．．．13．34
ㅁ	E／8212－2 Servo Interface （2 boards） \qquad 6.75
－	E／8212－4 Spectracolumn ．．．．．．．．． 5.54
1983	
\square	E／8301－1 Fuel Gauge．．．．．．．．．．．．． 3.45
ㅁ	E／8301－2 ZX ADC．．．．．．．．．．．．．． 2.59
\square	E／8301－3 Programmable PSU．．．．． 3.45
\square	E／8303－1 Sound Board ．．．．．．．．．． 12.83
민	E／8303－2 Alarm Module ．．．．．．．．．． 3.62
ㅁ	E／8303－3 ZX81 User Graphics ．．．． 1.07
口	E／8303－4 Logic Probe ．．．．．．．．．．． 2.50
口	E／8304－1 Real Time Clock ．．．．．．．． 8.74
口	E／8304－4 Stage Lighting－Main ．． 13.73
\square	E／8304－5 Stage Lighting－Display 3.45

1981

- E/8106-8 Waz-Phase1.76ㅁ．E／8106－9 Alien Attack．E／8107－1 System A－InputE／8107－3 Smart Battery Charger2.27E／8100－5 Watchdog HomSecurity（2 boards）． 11
（ 3 boards） 8.45
E／8109－4 Laboratory PSU3.91
me3.05
E／6111－1 Voice Over Unit．
E／8111－3 Phone Bell Shifter． 3.40E／8112－4 Component Tester．．．．．．． 1.71
1982
E/8201-3 Guitar Tuner (2 boards) 6.38
E/8202-2 Allez Cat Pest Repeller . . . 1.93
E/8202-5 Moving Magnet Stage. . . . 4.01
E/8202-6 Moving Coil Stage
/8203-4 Capacitance Meter（2 boards）11.66
－E／8205－1 DV Meg9.20
ㅁ E／8206－4 MOSFET Amp Module3.52
－E／8206－6 Digital PWM 3.84E／8206－9 Oscilloscope（4 boards）vo Interface
（2 boards） 6.751983
3.45
E／8301－2 ZX ADC3.45
E／8303－1 SoundBoard3.62
E／8303－3 ZX81 User Graphics ． 1.07
．． 8.74
E／8304－5 Stage Lighting－Display 3.45
6.19E／8305－2 Single PSU．
E／8305－3 Dual PSU 4.01
E／8305－4．2 NDFL Amp 7.88
E／8305－5 Balance Input Preamp． 3.23
E／8305－6 Stage Lighting
Autofade． 6.19
\square 4.74－
E／8306－1 to 3 Pseudorom（3 boards）
E／8306－5 Atom Keypad．3.62
E／8307－1 Flash Sequencer 2.67
E／8307－2 Trigger Unit Main Board．．． 2.67
E／8307－3 Trigger Unit Transmitter 1.66E／8307－4 Switched Mode PSU．．．． 16.10
E／8308－1 Graphic Equalisr．6.10
E／8308－2 Servo FaitSafe
（four－off）． 2.93
E／8308－3 Universal EPROM prog 9.64
E／8309－1 NiCad Charger／Regen 3.77
E／8309－2 Digger． 3.40
E／8309－3 64K DRAM 14.08
E／8310－1 Supply Protector 2.19
E／8310－2 Car Alarm 3.98
E／8310－3 Typewriter Interface 4.17
E／8311－1 Mini Drum Synth 3.07
E／8311－2 Alarm Extender 3.21
E／8311－3 Multiswitch 3.59
E／8311－4 Multiple Port 4.34
E／8311－5 DAC／ADC Filter． 3 .22
E／8311－6 Light Pen 4 .60
E／8311－7 Logic Clip 2.51
E／8311－8 MC Head（JLLH） 3.17
E／8312－1 Lightsaver． 1.85
E／8312－2 A－to－D Board． 12.83
E／8312－3 Light Chaser（2 bds） 7 .54
E／8312－4 ZX Alarm ． 6.041984
E／8401－1 Vector Graphics． ．8．27E／8402－1 Speech Board
（Mini－Mynah）MODULAR PREAMP：
－E／8402－2 Disc input（mono） 3.73
E／8402－3 Output stage（stereo）． ． 3.73
E／8402－4 Relay／PSU 3.73
E／8402－5 Tone，main（mono） ． 3.73
E／8402－6 Tone，filter（stereo） ．3．73
E／8402－7 Balanced output（st） 3.73
E／8402－8 Headphone amp（st） 3.73
E／8402－9 Mother board 9.01
E／8403－1 Power Meter 5.81
E／8403－2 Z80 DRAM． 9.79
E／8403－3 Obedient Die 3.76
E／8404－1 School Timer． 4.07
E／8405－1 Auto Light Switch． 4.01
E／8405－2 ZX81 EPROM Prog． 10.53
E／8405－3 Mains Borne RC 5.07
E／8405－4 Centronics Interface 4.09
E／8405－5 Vario 6.62
E／8405－6 Midi Drum Synth 3.59
E／8406－1 Oric EPROM Bd． 19.58
E／8406－2 Spectrum Joystick 3.30
E／8407－1 Warlock Alarm 8.19
E／8408－1 Joystick Interface 3.07
E／8408－2 EPROM Emulator 9.11
E／8408－3 Infrared Transmitter 3.70
E／8408－4 Infrared Receiver． 3.98
E／8408－5 CMOS Tester． 4.60
E／8409－1 EX42 Kybd Interface 3.82
E／8409－2 Bansheee Siren 3.19
E／8409－3 Dry Cell Charger 2.80
E／8410－1 Echo Unit 3.92
E／8410－2 Digital Cassette 9.80
E／8410－3 Disco／Party Strobe 4.80
E／8411－1 AM／FM Radio（4 bds）． 13.02
E／8411－2 Control Port－control bd 12.15E／8411－3 Control Port－I／O bd ．．．．．． 6.33E／8411－4 Capacitance Meter．．．．．．． 3.55E／8411－5 Video Vandal（3 bds）．．． 12.10E／8411－6 Temperature Controller．．． 2.88E／8411－7 Mains Failure Alarm．．．．．． 2.54E／8411－8 Knite Light ．．．．．．．．．．．．．． 3.25E／8411－9 Stage Lighting Interface．．． 3.73E／8411－10 Perpetual Pendulum ．．．． 3.14E／8412－1 Spectrum Centronics ．．．． 3.51E／8412－2 Experimenter＇s DRAM．．． 14.08E／8412－3 Active－8：Motherboard ．．． 9.37E／8412－4 Active－8：Protection Unit 3.67E／8412－5 Active－8：Crossover ．．．．．． 3.67E／8412－6 Active－8：LF EQ ．．．．．．．．．． 3.67E／8412－7 Active－8：Equaliser．．．．．．． 3.67E／8412－8 Active－8：Delay Unit．．．．．． 3.67
1985
E/8501-1 Active Bass Speaker 2.79
E/8501-2 DRAM Card Update. 3.66
E/8501-3 Digital Delay (2 bds) ... 17.67
E/8502-1 Digital Delay Expander. . 10.79
E/8502-2 Data Logger 5.175.17

How to order indicate the boards required by ticking the boxes and send this page，together with your payment，to： ETI PCB Service，ArgusSpecialist Publications Ltd， 1 Golden Square，London W1 R 3AB．Make cheques payable to ETI PCB Service．Payment in sterling only please．Prices subject to change without notice．
Total for boards
£．．．．．．．．．．．．．．．．．．．．．． Add 45p p\＆p
0.45

Signed

Name
PLEASE ALLOW 28 DAYS FOR DELIVERY
\qquad

PCB FOIL PATTERNS

Unfortunately, we don't have space to publish both this month's foil patterns and the ones held over from last month. The patterns shown here and overleaf are for the Digital Delay Line from last month, and we will try and publish this month's patterns next month.

COMBO UNIT

If you're an aspiring instrumentalist, this project could well be for you. It's an adaptable unit, with the option of different sizes of power amplifiers and different loudspeakers. There is also an optional CCD delay line board which can produce chorus and flanging effects. All in all, we think this will be a most attractive project, whether your taste be lead, bass or keyboards.

THE 'REAL' COMPONENTS

Capacitors have capacitance. Fine, everyone knows that. But they can also have inductance; and resistance; and a temperature coefficient; and variation with voltage; and variation with age; and they can give

VCDO

How can a digital oscillator be voltage controlled? Ah well, the digital bit is an EPROM in which a variety of wave-forms are 'stored', and the voltage controlled bit is the master oscillator which controls how fast the EPROM steps through the different waveforms. Clever, innit? You'll find out just how clever in the next issue of ETI.
engineers nightmares! In this new series, John Linsley Hood will be bringing his experience to bear on all the nasties that you can find in electronic components, with some recommendations on how to anticipate and avoid problems.

THE REAL MARCH ETI WILL BE ON SALE FEBRUARY 4th - BEWARE OF IMITATIONS!

Lineage:
40p per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

$01-4370699$

Send your requirements to: Jason Inskip
ASP Ltd., 1 Golden Square, London W1.

FOR SALE

100W AMPLIFIER

- £9.95 built

Or use the same board for 50 W , $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U.SAEforfull details to:

ESS AMPLIFICATION Innovation House Guildhall Road, Hull

TEKTRONIX OSCILLOSCOPES. 546 dual-trace 50 MHz delay sweep £195, 545A dual-trace 24 MHz delay sweep $£ 125,564$ storage, dual-trace $10 \mathrm{MHz} £ 275$. Plug-ins. 7B50A E300. Manuals. Texas printer £35. H.P. DVM £20. Advance J1A Audio Oscillator E25. Tel: (01) 8684221.

POWERTRANCORTEX + RS232C + simple E-Bus + All other IC sockets. Switch selectable BASIC and FORTH. $£ 500+$ value. $£ 300$. Lincoln (0522) 754643.

EPROMS - All types available, sample price: 27128,.$£ 12.50 ; 8$ " Floppy disc drives available. E12.50. Ring for details: Camberley (0276) 28208.

KIA RETURN AN AD NO. 17

Music-centre stereoamps + magnetic pickup preamps + controls, data \& 240 V power supply.... Post ad + $£ 9.50-8$ Cunliffe Rd., Ilkley, LS29 90Z . . A Happy New Year from K.I.A.

KITS

PRINTED CIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.50$. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 912v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radlo. $£ 6.95$ inc; or ready built £8.95: Same day despatch - Zenith Electronlcs, 21 Station Rd., Industrial Estat Hallsham, E. Sussex BN27 2E'
ECOLIGHT (ETI July 84) deter. burglars from even attempting a break in. Full kit of parts as per article £21.05. p.c. Only $£ 4.50$. Reprint of article 75p. G.P. Electronics, 87 Willowtree Ave., Durham DH1 1DZ.

LINSLEY HOOD DESIGNS

LOW DISTORTION AUDIO
SIGNAL GENERATORS
A0113 Kit (.02\% distortion) $\mathbf{2} 28$! P.P. A0149 Kit (.0015\% distortion) $\Sigma 38$ \%2.00 Super Hi-Fi Amplifer (ETI) P.C. Boards from $\mathbf{E 4}$

Send S.A.E for further details:
TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01-807 3719

HOME GUARD SYSTEMS

If you want professional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our free illustrated catalogue.

Tel: 01-651 2449
Freepost, South Croydon Surrey CR2 9PU
(no stamp required)

KITS

MICROBUG (VHF Transmitter) $140 \mathrm{~mm} \times 370 \mathrm{~mm}$. Extremely sensitive, powerful. Operates from 1.5V battery ready builttested only £16.50, (in kit form £11.50). Also available Automatic Telephone recorder built tested $£ 18.50$, (in kit form $£ 13.50$). All fully guaranteed. Send cash, cheque, or P.O. to: Shah Electronics, 11 Livingstone Rd., Southall, Middlesex, UB1 1TH.

AMTRON ELECTRONIC kits and instrument cabinets. Over 70 kits in our range plus special offer on obsolete kits. Send S.A.E. for catalogue. Amtron U.K. Ltd., 7 Hughenden Road, Hastings, East Sussex TN34 3TG.

ELECTRON,C ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.01-986 8455.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

PLANS 'N DESIGN

AMAZING ELECTRONIC

 plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.
BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH

Have you got technical books you no onger need? OR Do you need to read BOOK CLUB can help YOU
Wo k and sell previously
We buy and sell previously read books on electronics and computing details of our guaranteed buy back plan SAE please to:-
JAMES ELECTRONICS, P. O. Box 2 Rothwell, Leeds LS26 OUY

SERVICES

PRINTED CIRCUIT BOARDS manufactured to your specification. Quality, Quick service. Competitive Prices. COPPER-CLAD fibreglass boards cut to size. 1 mm thick $£ 1.80 \mathrm{sq}$. ft . $1.6 \mathrm{~mm} £ 2.20 \mathrm{sq}$. ft . Postage 75p. Mondo Circuits Ltd, 35 Grosvenor Road, Twickenham, Middx. Tel: 01-8915412.

JBA
 ELECTRONICS

Manufactures to designor specifications. One offs. small batch prototypes. Complete electronic service - no job to small.

1st Floor, 4a Lion Yard
Brecon, Powys. South Wales Tel. (0874) 611177

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

HEATHKIT. U.K. spares and service centre. Cedar Electronics, Unit 12, Station Drive, Bredon, Tewkesbury, Glos. Tel (0684) 73127.

SERVICES

TEST EQUIPMENT
freelance
ELECTRONICS ENGINEER

- QUALIFICATION8
- H.N.C.; M.O.D. training anything considered
- 8PECIALITY * Drafting and P.C.B. artwork, board productions and assembly.
FAULT FINDING AND TESTING UNDERTAKEN HICHEST QUALITY WORK * FULL COOPERATION.
Greg Heath, 'Pickwick'. No 6 Hillbarn, Sanderstead, Surrey, CR2 ORU

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

EDUCATIONAL

IMPROVE YOUR PROSPECTS
with skills that employers want - learn the easy way with modern home study courses from tdeal Schools.

MODERN ELECTRONICS
Train for success in the tastest ever growing industrial sector.
COMPUTER PROGRAMMING The demand for Programmers is increassing constantly - con't miss out! For tree bookiet withe today to

IDEAL

 IDEAL SCHOOLS (Re1. ETD2) 60 St. Enoch Sq Glasgow G1 UK. Tel: 041-248 5200PUTER REPAIRS
ZX 8PECTRUM. Vic $20, \mathrm{C} 64$, BBC, QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Send faulty machine to: Trident
Enterprises Lid., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.

miscellaneous

AGENTS

Wanted to Sell Computer Soltware for most computers. We now have the Dialog Electronics Part I in stock, Pools Winner \& Course Winner. We can supply business software, games anmd computer ad ons. Phone (0288) 4179 up to 9 pm most nights for your free list and details about our agents

TIMESAVING. Television, audio, circuit diagrams. S.A.E., Model Number; then 75p if available. H.M. Earle, 173 Northbrooks, Harlow.

ADD-ONS

TANGERINE OWNERS at last 2 **6809** C.P.U. board with expandable monitor in colour. FLEX compatible. Also 14K RAM card to free EPROM space on TANEX S.A.E. For details . . . Ralph Allen Engineering; Forncett-End, Norwich. Tel: (095 389) 420.

TOP PRICES PAID for surplue electronic test equipment.
ALWAY8 a good selection of SIG-GENS, METERS, and 8COPES for sale. Phone 0920-8714301

COMPONENTS

FREEI Parcel of components worth $£ 10$. Send only 80p postatge. D. Horsley, 113 Clare Rd. Bralntree, Essex.

Betatran Electronics Supplies

Toroidd tranaformers primary 250 V secondariee $0-40,0-40 \mathrm{~V}, 0-50,0-50 \mathrm{~V}$, $0.55,0-55 V, 0-70,0-70 Y$ at 300 VA E 17.55 , 500VA £24.70, 625VA £30.50. Can Eectolytice $63 \mathrm{~V}, 6800 \mathrm{uF}$ SA $284.35 .10, \mathrm{MOO} \mathrm{uF}$ 7A 55.45 . 100 V 6800uF 8 A £8.23, 4700 uF 8A E5.50. 3300uF 7A E4.20. 2200uF 7A £3.00. Computer Grade $10,000 \mathrm{uF}$ 15A E14.09. MOS-FETs 2 SJ 50/2SK 135 £8. 50. 2SJ83/2SK $227 \mathrm{E} \$.20$ price per pair. 35A 200V bridge rectifiers £3.25. VAT inclusive $£ 1.00$ p $\$$ p under $£ 7.00$. Full spec. many more. Resistors, capacitors, trasnistors, heat sinks, amplitiers, speakers, transformers, etc. Send 4×9 self addressed envelope for large list.
Laver St, Cavendish, Suftoln C010 AAP. Tel: 0787280639.

IRISH

READERS

MAIL ORDER COMPONENTS

Top quality components Great prices
Return-of-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6. Phone(01)0001 If England 987507

Mail order only please

CHEAP CA8ES

Absolute bargains, rack mounting \& free standing. NEW, but manufacturers seconds. No damage.
> wootcon, New mmon, Hente BH25 58 MAIL ORDER ONLY

VAT inclusive price list. LSTTL, from 28p, CMOS from 23p, Transistors, Resistors, Capacitors and more. Phone or write (0283) 703071. Hunt Electronics, P.O. Box 57, Derby, DE6 6SN.

```
    WEBA ELECTRONIC8
    41 Winwlek stroct, Wartapton WAS 2AE
        Tm: 54174
Diodes: IN4001/2/3 21/hp. IN4004/5/6 3p. IN5400
7p. IN5404 &p.IN5408 12p. IN4 148 1%p. BZY127
7p. BZY88C Zeners 44pp. BZX88C 7%pp.
Resistors: 1/4 watt 5% metal film %hp.
            Allabove itams min 100 oft.
    LM380 (NN STOCK!) E1.05; SN76013 E1.47
    BI Plugs 30p. BT Master Sockets £2.76.
            BT Slave Sockets E2.07p
            Add 15% V.A.T. & 500 D&
```


COMPUTERS

CORTEX SOFTWARE: Capman and Spacebugs - Arcade action games and shapes 'n' sprites Graphics toolkit. Tapes $£ 5$ each Available soon joystick and sound genrator module E25-SAE for details. Markrosoft, 53 Broughton Road, Croft, Leicester, LE9 6EB.

Aerial Mast Space to Let by Tender

1. Kensington (Kensington Heights) 72 m asl (ref. 38/1/2)
2. Shooters Hill (Shooters Hill Water Tower) 150 m asl (ref. 687/B/3)
3. Croydon (Shirley Hills Water Tower) 163m as! (ref. 1/L)

Copies of tender document may be obtained from:
Area Surveyor, Thames Water Authority, 20 Blyth Road, Bromiey, Kent. BR1 3UB (Ref. MAS)
THAMES WATER

EQUIPMENT

BROADCAST QUALITY FOR YOUR NEXT MIXER PROJECT

- Over 100 Audio Sub-Units
- Kit or Ready Built

Our now Mic \& Mag Disc Pro-ampe incorporate the super low noise Mullard/8ignetic NE5534 IC.
All items listed are identical to those used in professional consoles.

PARTRIDGE ELECTRONICS

58 Fleet Road, Benfieet, Esceex 88J 5JN, England
(LARGE S.A.E. PLEASE)
THE MIXER PEOPLE

FOR SALE

100 WATT FET POWERAMPS £10. Automatic relay protection mirror input \& delayed switch-on . . . glass/pcb bult. . . KIA-8 Cunliffe Road, Ilkley . . . Free slider/V.C.

EPROM COPIER - STAND ALONE 2716-27128............ £175.00 TELEPHONE CONVERSATION RECORDER $£ 75.00$ 2 LINES INTO 1 ANSWERING
MACHINE
Switching Unit
. $\mathbf{£ 3 0 . 0 0}$
From LK.F. 8ystems Lid
St. Albans. Tel: 55084

ETI ADVERTISERS INDEX FEBRUARY 1985

Armon 66
Audio Electronics 41
Bi-Pak 51
B.K. Electronics 10
B.N.R.E.S. 58
Cambridge Microcomputers. 35
Cricklewood 14
Cybernetic Applications 54
Digisound 35
Display Electronics 12
Electrovalue 44
Greenbank 53
Greenweld 54
I.C.S. 54
ILP 44
Kelan 36
Kemplant 21
Magenta 43
Maplin 68
Merseyside Acoustics 43
Microprocessor 44
Midwich 22/23
Newrad 36
Powertran IFC/IEC
Rapid Electronics 8
RTVC 35
RVM 53
Ship Co. 36
Skybridge 30
S.M.E. 43
Stewarts of Reading 21
Systems Electronique 66
Technomatic 16/17
TK Electronics 27
Watford Electronics 4/5

 \section*{TAKE COMPLEETE CONTROL
 \section*{TAKE COMPLEETE CONTROL OF YOUR NUSIC OF YOUR NUSIC with the with the

 professional qualliy wall-comfrolled sampling unit}

Once again, Powertran and E\&MM combine to bring you versatility and top quality from a product out of the realms of fantasy and within the reach of the active musician.

The MCS-1 will take any sound, store it and play it back from a keyboard (either MIDI or Iv/octave). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing, Flanging, ADT, Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digitally on a floppy disc via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS-1 doesn't come with a 5 -figure price tag. And, if you're prepared to invest your time, it's almost cheap!

Specification

Memory Size: Variable from 8 bytes to 64 K bytes.
Storage time at 32 KHz sampling raie: 2 seconds.
Storage fime at 8 KHz sampling rate: 8 seconds. Longest replay time (for special effects): 32 seconds.
Converters, ADC \& DAC: 8 bit companding. Dynamic range: 72 dB .
Audio Bandwidith: Variable from 12 KHz to 300 Hz .
Internal 4 pole tracking filfers for anti-aliasing and recovery.
Programmable wide range sinewave sweep generator. MIDI control range: 5 octaves.
+1 N/octave control range: 2 octaves with optional transpose of a further 5 octaves.

Write or phone now to place an order Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hants SP10 3ET. Telephone: 026464455

From a gentle purr to a mighty roar, the tightly controlled power of the beast is yours to command!

PROESSSONAL OUALITY HIGH POWER LOUISPEAKERS

A new range of superb quality loudspeakers.

* Virtually indestructible high temperature voice-coil reinforced with glass-fibre
$\star 100 \%$ heat overload tolerance
* Advanced technology magnet system
* Rigid cast alloy chassis
\star Linen or Plastiflex elastomer surrounds
* 5 -year guarantee (in addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50 W to 300 W e.g.
5in. 50W 95dB 8 : XG39N / 16ת: XG40T£17.95§
8in. 100W 98dB 8Ω : XG43W $£ 29.95 \S$
10in. 100W 100dB 8!2: XG46A £29.95§
12in. 100W 101dB 8 Ω : XG49D $£ 29.95 \S$
12in. Twin Cone 100W 100dB 88: XG50E / 1692: XG51F £31.95§
Note - the output power doubles for each $3 d B$ increase (ref 1 W (a 1 m).

PREGSON GOLD MULTIMETEIS

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, 2000s/V DC/AC $£ 6.95 \S$ (YJ06G)
M -102BZ with Continuity buzzer, battery tester and 10ADC range, 23 ranges, 20,000 2 N DC $£ 14.95 \S$ (YJ07H)
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges 20,000 2N DC £19.95§ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak $A C$, centre-zero and 12A ACIDC ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20s and $20 \mu \mathrm{ADCIAC}$ FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S$ (YJ10L)
N.B. All our prices include VAT and Carriage. A 500 handling charge must be added if your total order is less than $£ 5$ on mail order (except catalogue).

MAPLIN ELECTRONIC SUPPLIES LTD.

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith. W6. Tel: 01-748 0926.
- MANCHESTER 8 Oxford Road. Tel: 061-2360281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831
- SOUTHEND 282-284 London Rd. Westciff-on-Sea, Essex. Tel: 0702-554000 Shops closed all day Monday.

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue.

(The items below are NOT kits).

* Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14p (gold from 70p)
\star Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only £58.95 (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from $£ 77.95$

* Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only $£ 195.00$ (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
\star Detailed descriptions of the exciting new 74 HC range of IC's which combine the advantages of CMOS and TTL. From 46p
\star Keyboards: sloping keys, two-tone grey. mounted in steel frame, very smart cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N)

79 keys, only $£ 37.95$ (YJ13P)
$\star 1 \%$ Resistors now $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only 2 p each!
\star Auto transformers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, £ 1075 \S$ (YJ56L). 100VA £14.95§
(YJ57M). 150VA £16.95§ (YJ58N). 250VA £21.95§ (YJ59P).
\star Digital Clinical Thermometer. Only $£ 13.95$ (FK51F)

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C)

Post this coupon now for your copy of the 1985 catalogue. Price $£ 1.35+40$ p post and packing. If you live outside the U.K send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$
Name

Address
\qquad
\qquad

