

TAKE COMPLETE CONTROL OF YOUR WWSIC with fhe

professional quality widllecontroned sampling unit

Once again, Powertran and E\&MM combine to bring you versatility and top quality from a product out of the realms of fantasy and within the reach of the active musician.

The MCS-1 will take any sound, store it and play it back from a keyboard (either MIDI or Iv/octave). Pitch bend or vibrato can be added and infinite sustain is possible thanks to a sophisticated, looping system.

All the usual delay line features (Vibrato, Phasing, Flanging, ADT, Echo) are available with delays of up to 32 secs. A special interface enables sampled sounds to be stored digitally on a filoppy disc via a BBC microcomputer.

The MCS-1 gives you many of the effects created by top professional units such as the Fairlight or Emulator. But the MCS-1 doesn't come with a 5 -figure price tag. And, if you're prepared to invest your time, il's almost cheap!

Specification

Memory Size: Variable from 8 bytes to 64 K bytes. Storage time at 32 KHz sampling rate: 2 seconds. Storage time af 8 KHz sampling rafe: 8 seconds. Longest replay time (for special effects): 32 seconds.
Converters, ADC \& DAC: 8 bit companding. Dynamic range: 72 dB .
Audio Bandwidih: Variable from 12 KHz to 300 Hz . Internal 4 pole tracking filfers for anti-aliasing and recovery.
Programmable wide range sinewave sweep generator. MIDI control range: 5 octaves.
+1 N/octave control range: 2 octaves with optional transpose of a further 5 octaves.

Digital Delayline	
	Introduced in 1982, Powertran's DDL has brought digital quality effects to thousands of musicians. Still available in kiforn at only $£ 179.00+$ VAT.

Write or phone now to place an order Powertran Cybernetics Limited,

Dave Bradshaw: Editor Phil Walker. Project Editor Ian Pitt: Assistant Editor Jerry Fowler: Technical Illustrator Paul Stanyer. Ad. Manager Kerry Fowler. Copy Control Jim Connell: Chairman

PUBLISHED BY:
Argus Specialist Publications Ltd., 1 Golden Square, London W1R 3AB DISTRIBUTED BY.
Argus Press Sales \& Distribution Ltd. 12-18 Paul Street, London EC2A 4JS (British Isles)
PRINTED BY:
The Garden City Press Ltd
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY:
Alabaster Passmore
OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead and their GERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Fri day in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Special ist
Publications Limited and anv reoroduction reauires the prior written consent of the Company. © 1984 Argus Specialist Publications Lid LIAll reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a coriection will normatly be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.
\square Subscription Rates. UK $£ 15.00$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
Telex 8811896.

FEATURES

DIGEST

.7
Food for thought.
IC RELIABILITY 23
ETI brings you a complete breakdown on what it is that makes ICs go wrong.

THE OTHER END OF THE
SCALE33

A bit of a serial.
READERS' SURVEY
Is there anybody out there?
SYSTEM FAILURE 49
There aren't many people who know more about this than Dave Bradshaw.

PROJECTS

ACTIVE BASS LOUDSPEAKER . . . 15
Jeff Macaulay's loudspeaker may not be able to touch its toes but it can certainly get down a lot lower than most of the competition.

DRAM CARD UPDATE
......... . . 28
Do you remember building a non-

functional memory card last year? Phil Walker tells you how to achieve total recall.

TV FRAMESTORE .44
The second part of Daniel Ogilvie's television serial.

DISTORTION METER
 55

In spite of our promise last month we still couldn't find space for the complete article, but you have to admit that even half of a John Linsley Hood design is well worth waiting for.

DIGITAL DELAY LINE 62
Part two of Ray Lowe's not-quite-up-to-the-second design.
to-the-second design.

INFORMATION

NEXT MONTH'S ETI 59PCB FOIL PATTERNS69
ADVERTISERS' INDEX 72

INDEX 1984
 73

ETI gets it all together.

The AEW Nimrod - failed it's trials.

WATFORD ELECTRONICS
 33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND

MAIL ORDER, CALLERS WELCOME

Tel. Watford (0923) 37774/40588 Telex. 8956095
ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, GASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&PADD $75 p$ TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGEATCOST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

VAT

Export orders no VAT. Applicable tc U.K. Customers only. Unless stated othewise
all prices are exclusive of VAT. Please add 15% to the total cost including PRE.
We stock thousands more items. It pays to visit us. We
Nearest Underground/BR Station; Watford High Street.
Open Monday to Saturday: 9.00am to 8_00pm. Ample Free Car parking space available.

 $33022 \mathrm{p}: 47025 \mathrm{p} ; 680,100034 \mathrm{p} ; 150042 \mathrm{p} ; 220050 \mathrm{p} ; 330076 \mathrm{p} ; 470092 \mathrm{p} ; 16 \mathrm{~V} ; 47,68,1009 \mathrm{p} ; 12512 \mathrm{p} ; 330$
$16 \mathrm{p} ; 47020 \mathrm{p} ; 68034 \mathrm{p} ; 100027 \mathrm{p} ; 150031 \mathrm{p}, 220026 \mathrm{p} ; 470072 \mathrm{p}$. 16p; 470 20p; 680 34p; 1000 27p; 150031 p, 2200 26p; 470072 p.
TAG-END CAPACITORS: 64V: 2200 139p; 3300 198p; 4700 245p; 50V: 220011 Op; 3300 184p; 40V: 4700
180p; 25V: 2200 90p; 3300 98p; 4000 , 4700 98p; 10,000 320p; 15,000 345p; 16V: 22,000 350p. POLYESTER CAPACITORS: Axial Lead Type
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 n 3,4 \mathrm{n7}, 6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15$

POLYESTER CAPACITORS: Axial Lead Type 400V: 1nF, 1n5, 2n2, 3n3, 4n7, 6n8 $11 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$, 68 n 16 p ; 150 n 20 p ; 220n 30pi 330n 42; 470n 52p; 680n 1uF 88p; 2u2 82p. 1000V: 1nF 17 d; 10 nF 30p; 15 ก 40p; 22n 36p; 33n 42p; 47n, 100n 42p.				SIEMENS pcb Type Minlature poly Capacitors
POLYESTER RADIAL LEAD CAPACITORS: 250V 10n, 15n, 22n, 27n Bp; 33n, 47n, 68n, 100 n 8p; 150n, 220n 10p; 330n, 470n 15p; 680n 19p; 1u5 40p; 2u2 48p.		FEED-THROUGH CAPACITORS 1000pF/450V	10p	250V inf, in5, 2n2, 3n3, 4n7, 6n8, 10n. $15 n 7$
TANTALUM BEAD CAPACITORS 35V: 0.1uF, 0.22, $0.3315 \mathrm{p} 0.47,0.68$, 1.0. 1,5 16p; 2.2, 3.3 18p; 4.7. 6.8 22p 10 28p; 18V: 2.2, 3.3 16p; 4.7, 6.8, 10 18p; 15, 36p; 22 45p; 33, 4750p; 100 95p; 10V: 15, 22, 26p; 33,4750p; 100 80p; 6V: 100 55p.	POTENTION Rotary 0.25 W 470R: $1 \mathrm{~K} \&$ Single Gang 5K-2M $5 \mathrm{~K}-2 \mathrm{M}$ $5 \mathrm{~K}-2 \mathrm{M}$	ERS: Carbon Track $9 \&$ LIN Vatues, inear only) e Gang Log \& Lin e Gang DP Switch le Gang	$\begin{aligned} & 35 p \\ & 35 p \\ & 95 p \\ & 99 p \\ & \hline \end{aligned}$	18n, 22n, 27n, $30 n 56$ 22m,100n 11p 100 V $100 \mathrm{n}, 120 \mathrm{n}$ 10p $150 n, 180 n-12 p$ 220n. 2ion 15p
MYLAR FILM CAPACITORS 100V: $1 \mathrm{nF}, 2,4,4 \mathrm{nF}, 10 \mathrm{f}_{\mathrm{p}} \mathbf{1 5 n F}, 22 \mathrm{n}$, 30n, 40n, 47n 7p; 56n, 100n, 200n 9pi 50V: 470nF 12p.	SLIDER POT $0.25 \mathrm{~W} \log$ an 5K-500K Graduated	TIOMETERS near values 60 mm gle gang s for above	$\begin{aligned} & 80 p \\ & 45 p \\ & \hline \end{aligned}$	$\begin{aligned} & 330 n_{3} 390 n 20 \mathrm{p} \\ & 470 n_{5} 580 \mathrm{n} 26 \mathrm{p} \\ & 680 \mathrm{n} \\ & \text { 1uF } 34 \mathrm{p} 2 \mathrm{p} 250 \mathrm{p} \end{aligned}$
CERAMIC CAPACITORS 50V: Range: 0.5 pF to $10 \mathrm{nF} 4 \mathrm{p} .15 \mathrm{nF}, 22 \mathrm{nF}$ 33 nF ; 47nF 5p. $100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$. $200 \mathrm{nF} / 6 \mathrm{~V}$ 8p. POLYSTYRENE CAPACITORS:	PRESET PO 0.1 W Miniatu Horizontal, 1 $0,25 \mathrm{~W}$ Large 0.25W Large	ITIOMETERS Vertical or to 4 M7 OR to 3M3 Horz R to 4M7 Vertical	$\begin{array}{r} 8 p \\ 12 p \\ 12 p \end{array}$	ACCESS Orders just phone your orders through We do the rest Tel. 092350234

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Ferguson Monitors Developments
n what they see as a response to the demands of the technological revolution, Ferguson have introduced a $14^{\prime \prime}$ colour television set which has RGB and composite video inputs as well as the usual UHF aerial input. The new set is said to be designed with home computers, video games and video recorders in mind and its features include the ability to operate from at 12 or $24 V$ DC supply.

The MCO1 14" TX monitor colour television is based on Ferguson's existing TX90 chassis which is mains-isolated and features a fast warm-up CRT. Eight light-action switches select the TV channel or the RGB or composite video input, allowing the connectors to be left permanently in place at the rear of set and all switching to be carried out from the front.

The tuning presets associated with the channel selectors are concealed behind a hinged panel at the front of the set. A 3.5 mm output socket allows the MC01 to be used with headphones and a foldaway aerial is also buittin.

The RGB input features automatic sync polarity sensing and accepts TTL and analogue input signals. The composite video input has an adjustable pre-set gain control to ensure optimum performance over a range of input signal levels and both inputs accept a sound signal for reproduction through the set loudspeaker. Special leads will be available to connect the MC01 to most popular makes of home computer and there will also be a range of leads for use with Ferguson Videostar video recorders.

The MC01 is described as compact and lightweight and is said to offer low energy consumption. An optional adaptor allows the set to run from battery or other lowvoltage DC supplies and adjusts automatically for $\mathbf{1 2}$ or $\mathbf{2 4 V}$ opera-

Professional Quads

Quad have produced a number of domestic hi-fi amplifier designs over the years, many of which have found their way into recording studios, theatres and other professional environments, but they have never produced an amplifier intended specifically for professional applications. Now, perhaps having noted the success of other companies who market Quad amplifiers in 19" rack format, Quad have introduced two rack-mounting amplifiers of their own, one single channel and one dual channel and both featuring XLR connectors for input and output.

The Quad 510 is a single channel power amplifier which can deliver at least 100 watts into any load from two to 100 ohms. A multipletapped output transformer allows
it to match a range of loads including 70 and 100 voli lines and a plugin card on the rear panel selects the appropriate taps. The input is 600 ohm bridging and both input and output are isolated so that amplifiers can be linked together to provide greater power outputs.

The 520 is a dual channel power amplifier which offers an output of 100 watts per channel into eight ohms and is available with optional balanced inputs. Both amplifiers use a refinement of the currentdumping concept which was used in the Quad 405 amplifier and for which the company received a Queen's A ward for Technological Innovation. No specifications are quoted but the performance is said to meet the demands of the most critical listener and construction and relia bility are said to be up to Quad's usual standards.
Quad Electroacoustics Ltd, St. Peters Road, Huntingdon, Cambridge PE18 7DB, tel 0480-52561.

tion. Ferguson say that the set will typically run for about eight hours from a fulty-charged standard (40A/h) car battery.
The company have also established an advisory service which they say is designed to help dealers and customers with queries relat-
ing to compatibility and upgrading on home computers. The service can be contacted on 01-807 3060. Thorn EMI Ferguson Ltd, Cambridge House; Great Cambridge Road, Enfield, Middlsex EN1 1UL, tel 01-363 5353.

Static Alarm

Dage Eurosem have introduced a bench-top alarm unit which detects the presence of high voltage levels and gives an audible and visual warning. The alarm is intended for use wherever CMOS and other static-sensitive devices are being handled and requires no physical or electrical connection to the device or the operator.
The EVA-12 triggers when in the presence of voltages above 400 V and will typically detect a hazard
of 4-13kV (equivalent to a person walking across a vinyl floor) from a distance of between sixteen and thirty inches. The warning takes the form of an audible bleep and a flashing LED and continues for five seconds before the unit zeroes itself and returns to the alert mode. It measures $76 \times 38 \times 25 \mathrm{~mm}$ ($3 \times 1.5 \times 1^{\prime \prime}$) and runs from a 9 V battery giving a typical operational life of six months.

For further information contact Dage (GB) Ltd, Eurosem Division, Rabans Lane, Aylesbury, Buckinghamshire HP19 3RG, tel 029633200.

SKYBRIDGE LIMITED

Mail Order \& Shop:
441 Princes Road
Dartford
Kent
DA1 1 RB
Tel: (O322) 91454

CABLE
PERMETRE
Wire Wrapped 6p
Red/White/Black
Solid $1 / .6$
11 Colours...
Hook-up 71.2
11 Colours.......
Heavy Duty $32 / .2$
4Colours..........
Per 402 reel
SWG 16
SWG 20
ENG COPPËR
per 202 Reel
SWG 14 .
SWG 18 .
SWG 20.
SWG 24.
SWG $26 .$.
22 pF
47 pF

LEDWP Std.3p LARGERANGEOOF PANEL LAMPHOLDERS,
DE LUXE LED's. DE LUXE LED's, FUSEWARE
20 mm Panel Holder.45p 20mmChassisHolder14p $11 / 2^{\prime \prime}$ Chassis Holder.17p Lin Holder..........14p 20 mm FUSES $100 \mathrm{~mA}, 150 \mathrm{~mA} 250 \mathrm{~mA}$. $500 \mathrm{~mA}, 1 \mathrm{~A}, 1.5 \mathrm{~A} 2 \mathrm{~A}$ $3 \mathrm{~A} ~ 5 A$. 9
20 mm Antisurge Fuses 500mA 1A 2A..... 12p $11 / 2$ " FUSES $100 \mathrm{~mA}, 150 \mathrm{~mA} 250 \mathrm{~mA}$ 500 mA 1A 2A 3 A 5A 10A, 13A 15A ...9p 1" FUSES 2,3,5,13A15
RESISTORS
$1 / 3 W 5 \%$ E24........ 2 $1 / 3 W 5 \%$ E24.......2p
4W 1\% E24........ 7 p
$1 W 5 \%$ E12....... 3W 5\% E12 $\ldots \ldots$ 10p
3W WW R22-1R... 30p 3WWW 2R2t.....30p 30p
10WWW............ 35p

High Quality......275p 10R, 25 R, $50 \mathrm{R}, 100 \mathrm{R}$,
$250 \mathrm{R}, 500 \mathrm{R}, \mathrm{KK} 5 \mathrm{~K}$, 10K, 50K K, $1 \mathrm{~K}, 5 \mathrm{~K}$ SEMICONDUCTORS
SOEXTENSIVE SO EXTENSIVE
IS THE RANGE IS THE RAN
OF LISTED
SEMICONDUCTORS
 TRANSISTOR MOUNTS TO3

NTS
$10 p$
$10 p$

TOL SOCKETS

RANGE OFHEAT
SINKS AVAILABLE
PHONE FOR QUOTATION
SPEAKERS

ORDERING INFORMATION:

P/P 50p on orders less than $£ 20$ in value otherwise post free. All components full spec \& guaranteed. Discounts available on orders over £50-phone for details. For unlisted components phone for price.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

High Density
 ' ${ }^{\prime}$
 Connectors

Souriau have introduced a range of sub-miniature ' D ' type connectors which have a closer pin-spacing than existing sub-miniature types and offer correspondingly higher numbers of contacts. Plugs and sockets with up to 78 ways are available, and in spite of their small size the connectors offer a performance which is generally comparable with that of other sub-miniature ' D ' connectors.
Designated the 8635 series, the new connectors come with either 15, $26,44,62$ or 78 contacts and are rated at 1000 volts RMS, 5A per contact maximum. No overall current rating for a connector is specified. The contacts are size 22 crimp on 0.76 mm ($0.03^{\prime \prime}$) centres and the operating temperature range is from -55° to $+150^{\circ} \mathrm{C}$. The insulation material is a self-extinguishing thermosetting plastic manufactured to UL class 94 V -O and the shell is made from cadmium plated steel.
The connectors can be supplied in both rigid and float mounting versions and are also available with interfacial and back-end sealing gaskets. 8635 crimp connectors can also be ordered against equivalent MIL C-24308A (S*MA) series part numbers. For further information contact Souriau (UK) Ltd, Knaves Beech Industrial Estate, Loudwater, Nr High Wycombe, Buckinghamshire, tel 06285-24981.

Music For The Newbrain

Would the reader who sent us the above project please get in touch with the editorial office - we've lost your name and address!

- Japanese component manufacturer Alps is setting up a new plant which will create 230 jobs when it opens in Milton Keynes next year and up to 400 jobs when it reaches full production. The plant willproduce parts for video recorders. In a separate statement, Cirkit have announced an increase in the range of Alps parts that they stock. The new lines will include microminiature Tactile switches, data entry switches, keytops and slide and rotary potentiometers. Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire EN 10 7NQ, tel 0992-444111.

New Philips DSO

Philips have introduced a portable digital storage oscilloscope capable of sampling signals with a clock rate of up to 125 MHz . The dual-channel instrument has four memories, the contents of which can be displayed simultaneous or individually, and the user is able to program the trigger level control and all other trigger functions as well as all other switch functions.
The PM 3315's input circuitry enables analysis of repetitive signals to well over $\mathbf{6 0} \mathbf{~ M H z}$. Fast 125 MHz sampling allows single-shot capture up to 30 MHz with accurate reproduction. Even higher single-shot bandwidths are possible using computer data-analysis by means of the integral IEEE488/ IEC625 bus interface. A digital delay facility makes possible optimal use of the available memory depth by triggering from

nine screen divisions before the desired position to 9999 divisions after.
Tomeet the requirements of the fast growing world of TV applications, the PM 3315 also offers stable TV frame or field triggering. Other facilities include a plotmode output for an X-Y recorder and a chart-recording mode
allowing maximum internal storage of up to 40 hours. Control capability covers all front panel settings, including timebase and attenuator.
The PM 3315 costs $£ 5195$ plus VAT and is available from Philips Test and Measuring, Pye Unicam Ltd, York Street, Cambridge CB1 2PX, tel 0223358866.

Long-Life Rechargeables

Yuasa have launched a range of lead-acid sealed rechargeable batteries which they claim have a life expectancy of ten years. The batteries have been designed with un-interruptible power supply applications firmly in mind and are said to be explosion proof and capable of retaining a high capacity under float-charge conditions.

The new range is designated the XL series and uses the same construction method as the existing NP range to make them completely leakproof. They are available in 6 and 12 volt versions with capacities of 66,88 and 110 Ah and 33, 44 and 55 A h respectively. They require constant-voltage charging and their nominal cell voltage is 2.23 V . A low specific-gravity electrolyte has been used to re-
duce float voltage and selfpoisoning, allowing the batteries to be used for long periods under float charge conditions without loss of capacity. A venting arrangement on the top of the batteries allows gases caused by overcharging to escape but will not allow flames to re-enter, thus removing the risk of explosion present with some vented cells.
The $X L$ range was designed specifically for telecommunications applications and the battery sizes meet these requirements rather than being directly compatible with similar batteries used in other sections of industry. They are expected to find applications in computers, test equipment, medical equipment and un-interruptible supply applications as well as in the telecommunications field.
Yuasa Battery Sales (UK) Ltd, Hawksworth Industrial Estate, Swindon, Wiltshire SN3 1DZ, tel 0793486818.

The Little Chill

D CA are marketing a range of equipment cooling fans which have a fixing plate size of only 80 mm ($\mathbf{3 . 1 5 5 ^ { \prime \prime } \text {) square. Features }}$ claimed include low mechanical noise, zero electrical noise, low weight and long life, and the fans are expected to find wide application in domestic products as well as in office equipment, test gear and industrial equipment, etc.

The fans are available in 6,12 and 24V DC versions and operate at a speed of 4000 RPM to achieve an air flow of $0.95 \mathrm{~m}^{3} /$ minute. The mechanical noise is less than 21 dBA and PCA claim that electrical noise has been entirely eliminated. The full weight is $\mathbf{1 7 0}$ grams and the anticipated life expectancy is $\mathbf{1 0 , 0 0 0}$ hours for most models.
For further details contact P. Caro \& Associates Ltd, 2347 Coventry Road, Sheldon, Birmingham B26 3LS, tel 021-742 1328.

QUALITY COMPONENTS FROM CRICKLEWOOD! This list contains only a FRACTION OF OUR STOCK, which is constantly being updated. Prices quoted are for one-ofs -quantity discounts by negotiation. Ofticial orders from Schools,
Colleges, Goods Deptetc welcomed. WE SPECIALISE IN CREDIT CARD PHONE ORDEAS. A A Luick call will check stock position and current prices. Add 60p p\&p
$+15 \%$ VAT to all orders All in-stockitems

:NEWS:NEWS:NEWS:NEWS:NEWS

Photo-Electric Switch With Integral Amplifier

Sigma have introduced a photo-electric sensor which has a built-in amplifier. The unit can be used to detect liquid levels, passing objects, etc, requires no special cable to prevent noise problems and will operate with cable
lengths of up to $\mathbf{5 0}$ metres.
The PM-07 is a retro-reflective sensor which will detect transparent, translucent and opaque objects at distances of up to 25 mm ($1^{\prime \prime}$) with no physical contact. It operates from a $12-24 \mathrm{~V}$ DC supply and has a response time of less than 5 ms . The case measures 7.5 mm square by 38 mm long and the operating temperature range is from minus 10° to plus 55° centigrade.
Further information is available from Sigma Ltd, Spring Road, Letchworth, Hertiordshire SG6 4AJ, tel 04626-3841.

Blue LEDS

Red, yellow and green LEDs using crystalline semiconductors such as gallium phosphorus and arsenic have been available for more than a decade, but LEDs which emit blue light have been expensive and have not been generally available. Two years ago, Siemens devised a method of manufacturing 'bluelight chips' at a considerably lower price, albeit without matching the price level of LEDs in the other colours, and having sounded out the market have decided to include the fourth colour in their 1985 product range.

The new blue LED, type SLB 5410 , operates at 480 nm and uses silicon carbide (SiC) as the source material. SiC has emerged as the optimum semiconductor for blue light only after years of research, and although it is costly to produce, it has significant advantages over ZnSe or GaN. The SLB 5410 has a forward voltage of typically 4 V at 20 mA , the corresponding figures being 10 V at 20 mA for ZnSe or GaN types. Typical outputlevels are 4 mcd at 20 mA measured in the optical central axis at a half-angle of eight degrees, and the device is mounted in a standard 5 mm plastic package.
The purity and reproductability of the blue LED's 480 nm radiation are unmatched. Further characteristics are high impulse stability,
a narrow spectral bandwidth and a very low ageing rate. These features make the LED suitable for use as a radiation source in spectroscopic, biophysical or medical applications, as a calibration source for TV camera and photographic equipment, and, later on, possibly even as a means for producing the blue luminous dots on flat screens.

The blue LED is less suitable for use as a mere on/off indicator than its red, yellow and green counterparts because, quite apart from higher costs, the angle of radiation and the intensity are lower than in conventional LEDs.

Siemens Limited, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex TW167HS, tel 09327-85691.

Safety Cap

Not being the sort of company to bottle things up, Siemens have written to tell us about their latest innovation. They have introduced a range of tantalum electrolytic capacitors which are designed to overcome the risk of fire presented by conventional electrolytics when they are fed a voltage of the wrong polarity.
If an electrolytic capacitor is operated with reverse polarity, perhaps because of a fault in a piece of equipment, it will heat up
rapidly and may even explode. This effect is even more markedin tantalum capacitors which have a much higher charge density than other electrolytics. In an extreme case it is possible for the piece of equipment in which the capacitor is installed to catch fire as the result of such a fault.
Siemens have overcome this hazard by incorporating a fuse into their new $\mathbf{B} 45185$ series of tantalum capacitors. The fuse takes the form of a solder wire link in the cathode lead, and if the capacitor is operated with reversed polarity this link will quickly heat up and melt and the capacitor will fail harmlessly. They are available in four types with capacities ranging from 100n to 330 uF and with voltage ratings from 6.3 to 50 volts. The single-ended rectangular plastic package has climatic protection which meets the requirements of category FKE of the DIN 40040 standard and has been designed with automated assembly in mind.
For further information contact Siemens Lid, Siemens House, Windmill Road, Sunbury-onThames, Middlesex TW16 7HS, tel 09327-85691.

- Semiconductor Supplies international have brought out the autumn issue of their catalogue. Its 32 A4 pages list transistors, diodes, rectifiers, microprocessors and other ICs, LEDs, capacitors and resistors. Copies are available from Semiconductor Supplies International Ltd, Dawson House, 128-130 Carshalton Road, Sutton, Surrey SM1 4RS, tel 01-643 1126.
- The new Electrovalue catalogue actually came out last month but we couldn't find room to mention it. Never mind, it's valid until the end of January 1985 so it's still worth sending off for, and its 44 A5 pages list their largest ever range of general components, computers and accessories, books and test equipment. Copies are available free of charge from Electrovalue Ltd, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 0HB, tel 0784-33603.
- Once again, the quarterly figures show an increase in the number of business failures in the electrical industry. Business information company Dun \& Bradstreet Ltd
tell us that there were 585 company liquidations in the industry in the firstnine months of 1984, a four per cent increases over the figure for the same period of 1983. Bankruptcies among firms, partnerships and individuals in the industry totalled 88 over the same period, a $\mathbf{2 2 \%}$ increase over the 1983 figure. A small glimmer of hope appears in the news that the computer manufacturing industry (micros to mainframe) has strengthened its financial position in the last five years with only $\mathbf{2 3 \%}$ of firms now considered by Dun \& Bradstreet to be financially vulnerable compared with 45\% in 1979.
- Miller-Stephenson Chemicals have produced a spray-on conductive coating which is intended to absorb RFI and EMI over a broad frequency range. The coating is sprayed from an aerosol can, dries in fifteen minutes, is effective within minutes and provides over 78 dB attenuation at $1 \mathrm{MHz}, 49 \mathrm{~dB}$ at 10 MHz and 21 dB at 100 MHz . For details contact the distributors, \mathbf{D}. Fraser \& Company, 129 Kylepark Drive, Uddingston G71 7DD, tel 0698-813476.

01-208 1177 Technomatic Lid 01-208 1177 BBC Micro Computer System

 DISC DRIVES

 DISC DRIVES
 These are fully cased and wired drives with slim line mechanisms

 of high quality, Shuggart A400 standard interface. Drives supplied with cables manuals and formatting disc suitable for the BBC computer. TEAC 80 track drives are supplied with $40 / 80$ track switching as standard. All drives can operate in single or dual density format.ACORN COMPUTER SYSTEMS
BBC Model B Special offer. $\mathbf{E 3 2 0}$ (a) BBC Model B + Econet $\mathbf{E 3 8 9}$ (a) BBC Model B + DFS........... $\mathbf{E 3 9 9}$ (a)

UPGRADE KITS

A to B Upgrade Kit
DFS Kit
Econer Kit
ACORN ADDON PRODUCTS: $Z 80$ 2nd Processor 6502 2nd Processo Teletext Adaptor.
EEE Interface.
Prestel Adaptor RH Light Pen.

BBC FIRMWARE
1.2 Operating System ROM . . . $\mathbf{£ 7 . 5 0 \text { (d) }}$ BASIC II ROM £22.50 (d) VIEW Word Processor Rom. $\mathbf{4 8 . 0 0}$ (c) WordWise Word Processor Rom
BCPL ROM̈/Disc. £888.00 (d) Utility ROMS:
DIsc Ooctor/Gremlin Debug Rom... $\mathbf{E 2 8}$ ea(d)
EXMON/TOOL KIT ROM...... £20 ea (d) Printmaster (FXBO)/Graphics ROM. VIEWSHEETZOMM. £528 (c)
 sa (C)
COMMUNICATIONS ROMs
Termi Emulator.
Communicator.
Commstar.
E 28
E
(d)
(d)

TORCH UNICOM products including the IBM Compatible GRADUATE in stock
For detailed specification on any of the BBC FIrmware/Peripherals listed here or information on our complete range please write to us.

PRINTERS

EPSON
RX3nFTE225 (a) FX80 £318(a)

FX100 £435 (a)
KP810£249 (a) JUKI $6100 £ 340$ (a) KAGA TAXAN KP910£369 (a)

ACCESSORIES EPSON

Serial Interface: $8143 \mathbf{£ 2 8}$ (c) 8148 with $2 \mathrm{~K} \mathbf{£ 5 7}$ (c)
Paper Roll Holder $£ 17$ (d) $\mathbf{F} \times 80$ Tractor Attachment $£ 37$ (b)
Ribbons: FX/RX/MX $80 £ 5$ (d) FX/RX/MX $100 £ 10$ (d) RX/FX80 Dust Cover £4.50 (d) KAGA TAXAN
R232 with 2 K Buffer $\mathbf{£ 8 5}$ (b) KP810/910 Ribbon $\mathbf{£ 6 . 0 0}$ (d)

JUKI 6100

RS232 with 2K Buffer $\mathbf{£ 6 5}$ (b) Ribbon $\mathbf{£ 2 . 5 0}$ (d)
Tractor Attachment £99 (a) Sheet Feeder £199 (a) BBC Parallel Lead $£ 7$ (d) Serial Lead $£ 7$ (d) 2000 Sheets Fanfold Paper with extra fine perforation $9.5 " \times 11^{\prime \prime} £ 13$ (b) $14.5^{\prime \prime} \times 11^{\prime \prime} £ 18$ (b)
Self Adhesive Labels $23 / /^{\prime \prime} \times 17 / 16^{\prime \prime}$
Single Row £5.25/1000 (d) Triple Row £5/1000 (d)

MODEMS

- All modems listed below are BT approved

MIRACLE WS2000:
The ultimate world standard modem coverall all common BELE and CCIT standards up to 1200 Baud Allows comsystem in the world The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable facilities already provided on the modem. Mains powered E129(b). Auto Dial Board/Auto Answer Board E3O(c) each. Software lead

TELEMOD 2:

Complies with CCITT V23 $1200 / 75$ Duplexand $1200 / 1200$ Hall Duplex star dards that allow communications with RONET etc as well as user to user communications Mains powered $\mathrm{EB4}(\mathrm{~b})$. BUZZ BOX:
This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users with main frame computers and builetin boards at a very economic cost Battery or mains operated, $\mathbf{E 5 2}$ (c). Mains adaptor $\mathrm{E} 8(\mathrm{~d})$.

BBC to Modem data lead E7.
$1 \times 100 \mathrm{~K}$ TS55A TEAC 40 Track £100(a) $1 \times 200 \mathrm{~K}$ TS55E TEAC 80/40£155(a) Sw
1×4 1×4
SW
$\times 400 \mathrm{~K}$ TS55F TEAC 80/40£175(8)

$2 \times 100 \mathrm{~K}$ TD55A 40
CS55A TEC with psu CS55E TEC with psu
CS400 Mit with psu
CS400 Mit with
$2 \times 100 \mathrm{~K}$ TD55A 40T TAEC with psu £275(a)
$2 \times 200 \mathrm{~K}$ TD55E $80 / 40$ SWTEAC with psu 350 (a) $2 \times 200 \mathrm{~K}$ TD55E 80/40 SW TEAC with psu e350 (a) $2 \times 400 \mathrm{~K}$ TD55M 80 T Mitsubishi with psu £375(a)

3 M 51/4" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each disc is individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box
Price per pack of ten:
40T SS DD £15 (c)
$40 T$ DS DD £18 (c)
80T SS DD E22(c)
$80 T$ DS DD £24(c)
DRIVE ACCESSORIES

MONITORS
MICROVITEC 14" RGB:
1431 Std Res ... 175 (a)
1451 Med Res £215 (a)
1441 Hi Res. £399 (a
1431 AP Std Res PAL/AUDIO. £210 (a
1451 AP Std Res PAL/AUDIO £310 (a)
1451 DQ3 Med Res for QL £239 (a)
Above monitors are now available in plastic or metal cases
KAGA Super Hi Res Vision III RGB Monitor £345(a)
MONOCHROME MONITORS1 2':
Kaga Green KX1201 G. £106(a)
Kaga Amber KX1201A. £116(a)
Sanyo Green DM8112CX £99 (a)
Swivel Stand for Kaga Monochrome £21 (c)
All monitors are supplied with leads suitable for the
BBC Computer. Spare leads available.

ATTENTION

ALL PRICES EXCLUDE VAT Please add carriage 50p uniess indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

SPECIAL OFFER	
2764-25.	£4.90
27128-25.	£18
27128-30.	£16
6264-15	£28
6262LP-	31
6264-	

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up toeight eproms at a time and accepts all single rail eproms up to 27256. Can reduce programming time by 80% by using manufacturer's suggested algorithms. Fixed Vpp of 21825 volts and variable Vpp factory set at 12.5 volts LCD display with alpha moving message $£ 385$ (b).

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764 . Displays 512 byte page on $T V$ - has a serial and parallel VO routines Can botty il....
Adaptor for 2764/2564. $\mathbf{\Sigma 2 5 . 0 0}$ (c)

UV ERASERS

Ali erasers with built in safety switch and mains indicator.
UV1 B erases up to 6 eproms at a time. ... $\mathbf{f 4 7}$ (c) UV1T as above but with a timer £59(c) UV140 erases up to 14 epro UV141 as above but with a timer.......... $\mathbf{E 7 9}$ (b)

CONNECTOR SYSTEMS

EDGE CONNECTORS			AMPHENOLCONNECTORSway plug Centronics				TELEPHONE CONNECTORS							
2*6-way (commodore)	${ }^{0.1} 1$	0.156.300 p					4 way plug			110 p				
							6 way tang.skt							
2×12-way (vic 20) ${ }^{\text {20 }}$														
		${ }_{2200}^{1400}$		plug		(solder)								
							6 way							
2×36-way1×43 way2×22 way2×43 way$1 \times 77-$ way2×50-way $(S$ (00conn)	$\begin{aligned} & 250 \mathrm{p} \\ & 260 \mathrm{p} \\ & 190 \mathrm{p} \\ & 395 \mathrm{p} \\ & 400 \mathrm{p} \\ & 600 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { Z } \\ & \overline{\text { Z00p }} \end{aligned}$	500 p (ibc) 500 p PCB Mtg Skt Ang Pin 24 way 700 p 36 way 750 p				RIBBON CABLE							
			GENDER CHANGERS25 way D type				$\begin{aligned} & 10 \text {-way } \\ & 16 \text {-way } \\ & 20 \text {-way } \\ & 26 \text {-way } \end{aligned}$	$\begin{gathered} 40 \mathrm{p} \\ 60 p \\ 850 \\ \hline 850 \\ \hline 120 \end{gathered}$		180p				
			Maie to Male. $\mathbf{£ 1 0}$ Male to Female Female to Female......... $\mathbf{£ 1 0}$						64.w					
EURO CONNECTORS							DIL HEADERS							
OIN 41612 ,			RS 232 JUMPERS				14 pi			100 p				
2×32 way Ang Pin 275p			24" (25 way D)				18 pin 60p .							
3×32 way St Pin 260 p			24" Single	end May		¢5.06	20 pi			150p				
3×32 way Ang Pin 375pIDC Skt A + B275p			${ }_{24}{ }^{24}$. ${ }^{\text {cemale female }}$				24 pin		100 p					
			24". Male	Male		ع10.00 ¢9,50			p					
	350p		${ }^{24}{ }^{\text {"Ma }}$	male		${ }_{\text {¢9.50 }}$	40 pi		p	225p				
For 2×32 way please specify spacing ($A+B, A+C$.			DIL SWITCHES ${ }_{\text {S0p }}$				MISC CONNS 21 pin Scart Connector.200p 8 pin Video Connector.200p							
			8 -way	120p										

74 SEAIES		773686
7400	30p	
7401	330	73393 1128
7402	${ }^{300}$	$\begin{array}{ll}74439 \\ \\ 74434 & 1409 \\ 1000\end{array}$
${ }_{7}^{7403}$	300	7443\% 1.00 p
${ }_{7405}$	${ }_{30 \mathrm{p}}^{30}$	74LS S
7405	400	
${ }_{7}^{7407}$	408	
7409	${ }_{30}$	$\begin{array}{lll}741502 & \\ 780\end{array}$
7410	30 p	
7419	${ }^{300}$	
7812	${ }^{30 \mathrm{p}}$	
7414	70.	${ }_{74 \text { LSo9 }}{ }^{\text {280 }}$
7416	38p	${ }_{74 \text { LS } 10}$ 28p
7417	40 p	${ }^{741511}{ }^{\text {28p }}$
7720	${ }_{\substack{30 \\ 30}}$	
7421 7428 8.	${ }_{\substack{\text { cigp }}}^{\text {ciop }}$	
7423	38 p	${ }_{7451515}{ }^{\text {28p }}$
7425	400	${ }^{7464520}$
7426 7427 185	${ }_{40 \mathrm{P}}^{40}$	
7488	${ }_{43 \mathrm{p}}^{4}$	
7430	30 p	
${ }_{7}^{7432}$	360	P4LIS27
7433	330	
7438	${ }_{409}$	
7439	40 p	${ }^{\text {T4LLS33 }}$
7740	${ }^{400}$	
${ }_{7442 \mathrm{~A}}^{744}$	${ }_{70 \mathrm{p}}^{900}$	
7444	${ }^{110}$	74L542 1850
	${ }_{\substack{\text { coop } \\ \text { 100p }}}$	
${ }_{7}^{74448}{ }^{746}$	1000	
${ }_{7450}$	${ }_{\substack{1209 \\ 36 \mathrm{p}}}$	
7451	35 p	74LS55 180
${ }^{7453}$	${ }^{38 p}$	
7454 7460	cis	
${ }^{7470}$	${ }_{500}$	${ }_{74 \text { L57 } 6 \text { A }}$ 43p
${ }_{7473} 7$	55p	
7473	年500	${ }^{744585}$
7474 7475		
7476	$45 \circ$	${ }^{74 L 591}$
7480	${ }^{655}$	
${ }_{7}^{7483}{ }_{7}^{74}$	1800^{1050} 1050	
${ }^{74844}$	${ }^{1250}$	${ }^{7} 7159696900$
7485 7886	${ }_{\text {120 }}^{1100^{2}}$	
7489	210p	
7499 A	${ }^{550}$	${ }_{744.5113}$
7491	${ }^{700}$	${ }^{74.51144} 45$
${ }_{7}^{74929 A}$	${ }_{\text {55p }}^{700}$	
${ }_{7}^{7944}$	${ }^{1150}$	74.5
${ }^{74954}$	¢op	
${ }_{7} 7497$	${ }^{2100}$	${ }^{74 \text { LSt } 266} \mathbf{5 0 p}$
¢ 741400	${ }^{1800}$	
${ }_{74109}$	${ }_{75 p}$	
7410	${ }^{75 p}$	74.51388
7411	55p	74.5139 60 p
${ }_{7}^{74176}$	$110{ }^{108}$	
7419 74120	${ }^{1700}$	(74LS14881400
74121	55p	${ }^{7415152} 2000{ }^{\text {20, }}$
${ }^{74122}$	${ }^{700}$	7415153 700
74123 74125	${ }_{85 \mathrm{p}}^{809}$	
74126 7128	S5p	
(741132	${ }_{75 p}$	
${ }_{74136}$	700	74151604 750
74141		${ }^{7415151614} 750$
74142 7	${ }_{2708}^{250}$	
74148	${ }^{270}{ }^{\text {p }}$	(
7145	${ }^{1108}$	74551654110 D
74147 7	1700	(7415166A ${ }^{\text {7 }}$
${ }_{7} 74.150$	1.75	
${ }_{7}^{74.51 / 4}$	${ }^{700}$	${ }^{74515179101808}$
74154	${ }^{1400}$	-
74155	${ }_{\text {Bop }}$	$7451515{ }^{750}$
$\xrightarrow{74156}$	${ }_{\text {cop }}^{1000}$	
74459	${ }^{1759}$	
${ }_{7}^{74160}$	${ }_{\text {rop }}$	
${ }^{7} \mathbf{7 1 6 2}$	${ }^{1109}$	${ }^{74515193}$
${ }_{7}^{74164}$	${ }_{\text {l120 }}^{102}$	
74465 71665 7	${ }^{110 p}$	74LA956 90
74166 74167	${ }^{14000}$	
$\xrightarrow{74170}$	${ }^{2000}$	
${ }_{7}^{74172}$	${ }^{\text {liap }}$	
(74174	${ }^{\text {105p }}$	
${ }_{74176}$	100p	
${ }_{\substack{74178 \\ 74179}}$	cisop	
${ }_{74180}$	${ }^{1000}$	
74181	3400p	
	, 1800	${ }^{7455256}$
980	${ }_{\substack{130 p \\ 180}}$	(744525A $70{ }^{7}$
${ }_{74191} 7$	${ }^{1} 1000$	
${ }^{74192}$	${ }^{115 p}$	
74194	${ }^{1100}$	${ }_{74452866} 800$
74195	cosp	${ }^{741585731250}$
${ }_{74197}$	${ }^{110}$	
${ }^{74198}$	${ }_{220}^{220}$	${ }_{74 L 5283}$ 85P
${ }_{74229}$	${ }_{110 \mathrm{p}}^{220}$	
${ }_{74251}^{74259}$	${ }_{150}^{100}$	${ }_{7415293} 900$
${ }_{7} 7426595$		
${ }_{7}^{74273}$	2009	${ }_{74,529969009}$
${ }_{7}^{74278}$	¢	
${ }^{744279}$	1009	$74 \leq 53233308$ $74 \leq 5324 / 624$
74285	${ }^{320}$	${ }^{7415324 / 624} 35$
74290	${ }^{80 p}$	74L53442000
74298	${ }^{1800}$	(1945353
${ }_{743655} 7$	${ }_{800}^{2000}$	74453562100
${ }_{743665}$	80p	(74.
743874		(4L5365

जૈ

OP POWER AMPLIFIER MODULES* OMS POWER AMPLIFIER MODULES

Now enjoy a world-wide reputation for quality, reliability and performance at a realistic price. Four models available to suit the needs of the professional and nobby market. ie., Industry, Leisure Instrumental and ri-Fi. etc When comparing prices, NOTE alt models include tortile Vo meter Open and short circuit proof. Supplied ready built and tested.
 OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Respons $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01%, S.N.R. -118 dB , Sens. for Max. output 500 mV at 10 K . Size $360 \times 115 \times 72 \mathrm{~mm}$. PRICE $£ 32.99+£ 2.50$ P\&P.

OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Resposse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}, \mathrm{T} . \mathrm{H} . \mathrm{D}$. Typical 0.002%, Input Sensitivity 500 mV , S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE £ 39.99 + $£ 2.50$ P\&P.
OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Responce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE $-130.99+$ E 3.50 P\&P

OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Responce $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$. T.H.D. Typical 0.0008%. Input Sensitivity 500 mV , S.N.R. -130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE £79.99 + £4.50 P\&P.
 Vo METER Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 L.E.D. diodes (7 green, 4 red) plus an additional on/off indicat or. Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic case, with tinted acrylic front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $68.50+$
$50 \mathrm{p} P \mathrm{P}$. 50p P\& P
NOTE: Mos. Gets are supplied as standard (10 0KHz bandwidth \& Input Sensitivity 500 mV I. If required.
P.A. version 50 KHz bandwidth \& Input Sensitivity 775 mV). Order - Standard or P.A. P.A. version $\{50 K \mathrm{~Hz}$ bandwidth \& Input Sensitivity 775 mV). Order - Standard or P.A.

19" RACK CASÉD MOS-FET STEREO AMPLIFIERS with twin power supplies and Three models (Ratings RMS into 4 ohms) Three models (Ratings RMS into 4 ohms)
MF200 (100 + 100w) 182.85 Securic $\begin{array}{lr}\text { MF200 }(100+100 w) f 182.85 & \text { Securicor } \\ \text { MF 400 }(200+200 w) £ 228.85 & \text { Delivery } \\ \text { MF 600 } 300+300 w) \& 274.85 & \& 10.00\end{array}$

LOUDSPEAKERS
5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedance.

POWER RANGE
B" 50 WATT R.M.S. Hi-Fi/Disco \qquad ing in stock
details.

20 oz. magnet. $1 / 2 / 2$ ally voice coil Ground ally fixing escutcheon. Res. Freq. 40 Hz .
6 KHz . Sens 92 dB . PRICE f 990 Available with black grille $\mathrm{f10} 90$ P\&P f 1.50 ea $12^{\prime \prime} 100$ WATT R.M.S. Hi-Fi/Disco 50 oz. magnet. 2 " ally voice coll. Ground ally fixing escutcheon. Die-cast chassis. White cone. Res Freq. Freq. Resp. $104 K \mathrm{~Hz}$ Sens. 95 dB . PRICE $\mathrm{f} 26.00+f 3.00 \mathrm{P} \& \mathrm{P}$ ea
$25 \mathrm{H}^{\prime \prime} 100$ WATT R M S

McKENZIE
12" 85 WATT R.M.S. C1285 GP Lead guita//kerboard/Disco
$2^{\prime \prime}$ ally voice coil. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp to 6.5 KHz Sens 98dB PRICE $f 2499$ $+\quad 53.00$ P\&P ea
$12^{\prime \prime} 85$ WATT R
Res. Freq 45 Hz F.S. C1285TC P.A./Diseo 2" ally voice coil. Twin con

FEM
5 FEM 70 WATT R.M.S. Multiple Array Disco etc
 8" 150 WATT R.M.S. Multiple Array Disco etc.
1" voice coll Res Freq. $48 \mathrm{H}_{2}$ Freq. Resp to 5 KHz
 10" 300 WATT R.M.S. Disco/ Sound re-enforcement etc.
$11 / 2^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq Resp. to 4 KHz Sens. 92 dB . PRICE $£ 30.00+£ 2.00$ P\&P ea 12^{2}, 300 WA TR R.M.S. Disco/ Sound re-enforcement etc
$11 / 2^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq. Resp to 4 KHz . Sens 94 dB . PRICE $£ 38.00+£ 3.00 \mathrm{P} \& \mathrm{P}$ ea SOUNDLAB (Full Range Twin Cone)

$61 / 2^{\prime \prime} 60$ WATT R.M.S. Hi-Fi/Multiple Array Disco etc.
1 voice coil. Res Freq 56 Hz Freq Resp
1/2 voice coil. Res. Freq 56 Hz . Freq Resp. to 20KHz. Sens 89 dB . PRICE $69.99+61.50 \mathrm{P} \mathrm{\& P}$ ea
$\mathbf{B}^{n} 60$ WATM R.M.S. Hi- Fi/Mutiple Array Disco etc.
" 60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc.

HOBBY KITS. Proven designs including glass fibre printed circuit board and high qua
components complete with instructions. FM MKROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 : volt rice. 20.02 + 7 PA PA
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ 12 vol) Price: $113.74+75 \mathrm{p}$ P\&P
RECEIVER 27MHY RANG RADIO CONTROLLED TRANSMITTER Receiver output operates up to 500 metres. Double coded modulation Receiver output operates relay with $2 a \mathrm{mp} / 240$ volt contacts. Ideal fo f17.82. Transmitter $80 \times 50 \times 15 \mathrm{~mm} \times(9 / 12 \mathrm{~mol})$. Price: $\mathbf{f 1 1 . 2 7}(9 / 12$ vol). Price. fRAP $+75 p$ each. $S . A . E$. for complete list.
 POSTAL CHARGES PER ORDER $£ 1.00$ minimum. OFFICIAL ORDERS WELCOME, SCHOOLS, COLLEGES, GOVERNMEN BODIES. ETC. PRICES INCLUSIVE O.
VISA/ACCESS/C.OD. ACCEPTED.

PRICES INCLUDE V.A.T * PROMPT DELIVERIES * FRIENDLY

BURGLAR ALARM

Better to be 'Alarmed' then terrified.
Thandar's famous 'Minder' Burglar Alarm System. Superior microwave principle. Supplied as three units. complete with
GUARANTEED
Control Unit - Houses microwave radar unit, range
up to 15 metres adjustable by sensitivity control up to 15 metres adjustable by sensitivity control.
Three position, key operated lucia switch - off - test - armed 30 second exit and entry delay. Indoor alarm - Electronic swept 104 dE output.
Outdoor Alarm - Electronic swept freq siren 98 di output. Housed in a tamper -proof heavy duty meta case.
Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection
during mainstalure. Power requirement $200 / 260 \mathrm{Volt}$ $\mathrm{AC} 50 / 60 \mathrm{~Hz}$ Expandable with door sensors. panic
buttons etc. Complete with instructions buttons etc. Complete with instructions
SAVE £148.00 Usual Price $£ 228.85$
EKE's PRICE $£ 79.99+£ 4.00$ P\&P

IMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to suit today need for compactness with high sound output levels. Finished in hard wearing black $8 y n i d e ~ w i t h ~ p r o l e c t i v e ~ c o r n e r s, ~ g r i m e ~$
handle All models 8 ohms . Full Range $45 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ OMS $12 / 100$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime} £ 125.00$ per pair OM $10 / 200$ watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 145.00$ per pair OM $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} \times 169.00$ per pair

Delivery Securicor $£ 8.00$ per pair

STEREO CASSETTE DECK

STEREO CASSETTE DECK deal for installing into Disco and Hi -Gi cabinet/Consoles. Surface mounting (Horizontall. Supplied as one unit with mains power supply. * Metal top panel Black finish * Piano type keys including pause

* Normal/Chrome tape switch
* Twin Vo Meters
* 3 Digit counter
* Slider Record Level control Size $171 \times 317 \mathrm{~mm}$ Depth 110 mm PRICE $f 35.99+\boldsymbol{f 3 . 0 0}$ P\&P
PR m

1 K-WATT SLIDE DIMMER

BS800

* Suitable for both resistance and inductive loads. In
numerable applications in numerable applications
industry, the home, and disco's. theatres etc. disco S. theatres etc.
PRICE $£ 12.99+75$ p P\& P (Any quantity).

BS P256 TURNTABLE

 Completely manual arm. This deck has a com plevely manual arm and is designed primarily
for disco and studio use where all the advan.
takes of a manual arm are required.
Price $£ 33.60$ each. +6300 P\&P ea. ADC 04 mag, cartridge for above, Price $£ 4.99$ ea. P\&

PIEZO ELECTRIC TWEETERS MOTOROLA

Join the Piezo revolution The low dynamic mass (no voice coil) of a piezo sweeter produces an improved transient response with a lower distortion level than ordinary dynamic teeters. As a
crossover is not required these units can be added to existing speaker systems of up to 100 watts

TYPE 'A'(KSN2036A) $3^{\prime \prime}$ round with protective wire
 mesh, ideal for bookshelf and medium sized Hi-fi
speakers. Price $£ 4.90$ each +400 P\&P. TYPE ' B ' (KSN1005A) $31 / 2$ " super horn. For general purpose speakers. disco and P.A. systems etc. Price TYPE ' C ' (KSNG016A) 2 " $\times 5$ " wide dispersion horn For quality Hi-fi systems and quality discos etc. Price 66.49 each +40 p P\& P.
TYPE 'D' (KSN1025A) 2" $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2KHz). Suitable for high quality Hi-fi systems and quality discos. Price 88.99 each
$+40 p$ P\&P.
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $£ 5.49$ each +40 p P\&P. LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket $85 \times 85 \mathrm{~mm}$. Price $\mathrm{f3.99}+40 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 7 band graphic

 equaliser and 10 segment L.E.D. Vu Meters. Many outstanding features.5 Inputs with individual fader controls:-
2 Mag. turntable. 2 Aux, plus Mic. with talk-over switch. Headphone monitor. Master output control
with Hi-Low outputs. Compatible with our OMP With Hi-Low output
Power Amplifiers.
Size: $360 \times 200 \times 120 \mathrm{~mm}$. Supply $240 \mathrm{~V} / 50 \mathrm{~Hz}$ AC
PRICE $£ 119.99+£ 3.00$ P\&P
B. K. ELEGTROTIGS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA ESSEX. SS2 6TR TEL: 0702-527572

ACTIVE BASS LOUDSPEAKER

The active loudspeaker design which appeared in the last four issues was ideal for those starting from scratch, but what about those who already have a loudspeaker system and simply want to improve it? Jeff Macaulay has been active on their behalf too.

With one or two notable (and expensive) exceptions, domestic loudspeakers are almost incapable of reproducing sounds below about 50 Hz . The reasons for this are not too difficult to find. Even with the best of today's drive units a large cabinet is required to give extended bass response, and this is just not practical for modern-day lounges very few of which could be described as palatial.

True, it is possible to squeeze a few more hertz out of a small sealed box, but only at the expense of efficiency. The result is that amplifiers rated at nearly a kilowatt are required to produce anything like 'live' sound levels. Even a modest amount of bass boost will cause the midrange to go soggy, and the result in the bass register is just a boomy mess! So what is the solution?

Instead of giving your bank manager the pleasure of collecting vast amounts of interest on a loan for a new pair of speakers why not build the Neptune? It has been designed as a small add on unit which will extend the response of your existing speakers down to below 30 Hz . That is a whole octave lower than 99% of the speakers on the market can manage, and for a modest outlay to boot.

Design Philosophy

Before delving deeply into the circuitry involved it will be as well to consider the design philosophy behind this project. As is well
known, the deepest note that a speaker system can produce is limited by the size of the cabinet into which it is mounted. This is because any driver has a fundamental resonance due to the mass of the cone and the compliance of the speaker surround.

Imagine the cone mass as a weight suspended on a spring, which represents the surround compliance, and you can easily visualise the system. Place the driver in a sealed box and the air trapped inside effectively stiffens the compliance,making the resonant frequency higher. The smaller the volume of the box the higher the resonance and the less bass you get out of it.

To get around this difficulty some radical thought is necessary. Below the resonant frequency the
response of the driver dies away at 12 dB \%octave. If we were to boost the signal at that rate below the resonant frequency we would obtain a flat response.

This is the method used here. Such a speaker would be useless above the resonant frequency of the cabinet because the response with the filter added rolls of at 12 dB /octave above resonance (see Fig 1). However, this response is exactly what is required for an add on bass unit as it will complement the falling response of the existing speakers.

As most of the money spent on a pair of speakers is invested in extending the response below 100 Hz , it would be pointless to waste what we have already paid for. The Neptune has therefore been designed as a bass augmenter.

Having decided the form our

Fig. 1 Response curves for the Neptune system.
bass speaker is to take there remains to be considered the matter of quantity and quality of output.

Unlike reflex and horn enclosures the sub-resonant principle has the advantage of not using resonant effects to obtain the desired response. In a reflex cabinet, for example, the extension in bass response is obtained at the expense of 'hangover'. That is, the cabinet is still resonating after the note has stopped. This effect can be minimised by competent design but it still gives this type of enclosure a bad name.

The quantity of bass generated by a pair of $8^{\prime \prime}(200 \mathrm{~mm})$ speakers operating in tandem is easily quantifiable, but to appreciate the problem some understanding of the principles involved is required. If you were to look at the typical power versus frequency curve of speech and music you would find that the peak output occurs at around 200 Hz , the lower midrange. Above and below this frequency the power requirement falls off rapidly, and at the lowest frequency of interest to us, 30 Hz it is some 12 dB down on the mean output at 200 Hz .

This means that, if the speakers are required to give a mean output of 96 dB SPL , the output required from the woofer would be some 84 dB SPL. This the Neptune can easily give provided it is positioned on the floor and against a wall to take advantage of sound reflection from these surfaces.

The KEF B200A was chosen for this project for two reasons. First, they are blessed with a long and linear cone excursion and second the choice of a well known and respected drive unit will satisfy those who would pick holes in anythingl

There is a tried and tested alternative, the Altai stocked PF81HR which has a similar performance in this application to the B200A's but is somewhat cheaper. For those on a budget these are recommended. Later upgrading simply means changing them for the B200's (see buylines).

In order to easily interface the speaker with existing stereo systems, a dedicated amplifier is required along with the active filter.

These are mounted within the cabinet so that interfacing is reduced to plugging the unit into the mains and one of the speaker outlets. You might think that outputs from both channels would be required but this is not so. To ensure that bass signals are not presented out of phase from normal speakers, the bass content of stereo records is mixed down to mono below 100 Hz . The signal of interest is therefore identical in both channels and can easily be obtained from one! This also has the advantage of preventing possible crosstalk between channels at higher frequencies and the woofer therefore has no deleterious effects on the stereo image.

To avoid hum loops the speaker electronics are not separately earthed. The unit is automatically earthed when

BUYLINES

A designer-approved kit of parts for this project is available from Bewbush Audio, 26 Hastings Road, Pound Hill, Crawley, Sussex RH10 4AT. The kit includes all of the electronics and two PF81HR drive units but not the woodwork. It costs $\mathbf{£ 4 9 . 9 5}$ inclusive. The electronics alone can be supplied as a kit for $£ 29.95$ but note that Bewbush will not supply individual parts. B200A drive units are available from Wilmslow Audio and the Autona UL60 amplifier module is available from Bi-Pak. None of the other components should present any problems. PCBs will be included with the kits but are also available through our PCB Service.
connected by the amplifier earth. For this particular application nothing spectacular is required of the amplifier, especially as the bandwidth ceases at 90 Hz ! All that is necessary is the appropriate output power, about 30 W , and

HOW IT WORKS

The full circuit of the woofer is shown in Fig. 2. Input signals are applied to the gain control RV1 via SK1. Q1 in conjunction with R1/2/3 and R4 forms a simple virtual earth amplifier. The gain is set by the ratio of R2 to R1 whilst C1 isolates the base of Q1 from DC ground.

The amplified signal from the collector of Q1 is DC coupled into the second stage formed around Q2. This transistor is used in the emitter follower mode and provides a low impedance drive for the amplifier module.

In order to equalise the output to the woofer a Butterworth filter is used. R5/6 and C2/3 form the second order network with a $\mathbf{- 3 d B}$ point below 20 Hz . The Q of the filter with the chosen component values is close to the optimum 0.7 . Filters of this Q give the
maximum rolloff rate consistent with low ripple in the passband.

R8 and C4 form a simple but effective decoupling network to provide the circuit with a ripple - free power line. To prevent any nasty and expensive damage to the drivers, the output is AC coupled by C5. In order to maintain a high damping factor down to low frequencies a large value electrolytic is required here.

Finally we come to the power supply proper which is thoroughly conventional. The mains voltage is both isolated and stepped down by the transformer T1. The raw secondary AC output is full wave rectified by BR1 and smoothing is provided by C6.

Notice that the drivers are wired in parallel. This means that the impedance seen by the power amplifier is some 4 ohms.

Fig. 2 The circuit of the filter/amplifier.
sufficient voltage gain. To avoid reinventing the wheel, a ready built power amp module is used.

Construction

This breaks down neatly into three parts, the electronics, the mechanics and the cabinet, and construction of the electronics should be tackled first.

The layout of the filter/amplifier PCB is shown in Fig. 3. PCB pins or veropins were used in the prototype for connections to the board, and if you plan to do likewise it is a good idea to insert them before assembling any other components. Push them well home and then solder them to ensure a good connection. If you do not wish to use pins, simply solder flying leads onto the board in the normal way, enlarging the holes if necessary to allow the wires to pass through. The rest of the PCB assembly should present no problems, the only point to watch being the polarity of the various electrolytic capacitors and semiconductors.

The next stage of the construction is to drill the heatsink and mount the PCB assembly and the amplifier module. The details are given in Fig. 4. Note that 10 mm spacers have been used between the PCB and the amplifier, but if these are not available simply use nuts instead. It is important that there is good thermal contact between the amplifier heatsink and the main heatsink, so de-burr the mounting holes and make sure that no metal filings get trapped between the two surfaces when you assemble them. Finally, attach the bridge rectifier and C5 to the heatsink with 4BA nuts and bolts.

That takes care of the easy stuff -

PARTS LIST -	
RESISTORS (all $1 / \mathbf{W}, 5 \%$)	
R1,8	18k
R2	390k
R3,5,6,	100k
R4,7	$4 \mathrm{4k7}$
RV1	4 4 7
Capacitors	
C1	10u, 16V electrolytic
$\mathrm{C}^{\text {c }}$	100n polyester
C3	47 n polyester
C4	100u 16V electrolytic
C5	2,200u 25 V electrolytic
C6	5000 u 50 V electrolytic
SEMICONDUCTORS	
Q1,2	BC184L
BR1	100PIV 2A bridge rectifier
miscellaneous	
Ls1, 2	KEF B200A drive units (or Altai
71	PF81HR - see text) 30V, 1.5 A mains
\%	transiormer
SK1	two-pole input socket to choice

PCB; veropins or similar; Autona UL60 amplifier module; $6^{\prime \prime} \times 4^{\prime \prime}$ heatsink; 10 mm spacers; ' P ' clip or strain relief bush; aluminium for control panel; capacitor clamps for C5 and C6; nuts, bolts, cable, etc.
the next stage is to assemble the cabinet itself. The cutting details are given in the cabinet parts list. You can purchase a large sheet of veneered chipboard and cut it up
yourself, but unless you have a good saw-bench and are resonably skilled in using it you will probably be better off purchasing the materials ready cut. Most DIY stores possess facilities to do this but you would do well to ask around and find somewhere with both the equipment and the skilled staff necessary to do a really good job. Even a small error will make construction much more difficult and the problems inherent in producing a neat end result and making it airtight will be multiplied considerably.

The cabinet has been designed for maximum rigidity, a fundamental requirement if rattles and buzzes are to be avoided. The rigidity is achieved by splitting the cabinet into two with an internal partition, and the panels are glued and screwed together with $11 / 4^{\prime \prime}$ self-tapping screws.

Another requirement of this design is that the cabinet should be airtight. In practise this is not a problem as long as all the joints are filled with an appropriate filler. A good seal around the drivers is also imperative but this is automatically achieved by using the gaskets provided.

Fig. 4 Mounting arrangements for the amplifier module and PCB.

Fig. 3 The overlay diagram of the filter PCB.

Assuming one has all the panels to hand construction can commence. Start by labelling each panel with the appropriate letter on its worst side, see Fig. 5. Find the partition panel (C) and drill a $1 / 4^{\prime \prime}$ (6 mm) hole in it to take the wires from the drive unit. The position of this hole is far from critical, and anywhere near the centre of the panel will be fine!

Mark out the position of the screw holes on the panels and drill $1 / 8^{\prime \prime}(3 \mathrm{~mm})$ pilot holes through these positions. Choosing the best face, countersink these to take the screw heads. If a countersink is not available a good job can be done with a $3 / 8^{\prime \prime}$ twist drill turned by hand against the hole. The control panel aperture in the rear panel should also be cut at this stage.

It is best to mount the heatsink, capacitors and transformer onto the back panel before assembling the cabinet. Attach them using $5 / \mathbf{g m}^{\prime \prime}$ long No. 6. self-tapping screws and tighten down well to avoid the risk of strange buzzes etc caused by loose fittings. The interwiring of these parts is shown in Fig. 6, and 16/0.2 or a similar fairly heavy gauge wire should be used for all except the signal leads which must be single screened cable and the power leads between the PCB and amplifier which can be ordinary hook-up wire.

The cabinet itself can now be assembled. Start with the two long sides (B) and glue and screw these into position against the rear panel (D). Similarly attach the two short sides (A) and finally the partition (C). In each case the screws should

Fig. 5 Construction of the cabinet.

Fig. 6 The positions of the principal components on the rear panel.

Fig. 7 Interwiring of the rear panel components.
be tightened into their countersunk holes until the heads are just below the surface of the wood.

Cut out a suitable piece of aluminium to form the control panel and drill holes to suit the potentiometer and input socket you plan to use. Wire these leaving $9^{\prime \prime}$ or so of free lead, drill suitable mounting holes in the rear panel of the cabinet and attach the control panel using self-tapping screws. Cut the free lead to length and solder it to the appropriate points on the PCB.

Fig. 8 Wiring of the components on the control panel.

Drill a ${ }^{1 / 4^{\prime \prime}}(6.3 \mathrm{~mm})$ hole in the rear panel, thread the mains lead through it and use a ' P ' clip or other

Fig. 9 Front panel and drive unit mounting details.
retaining device to provide strain relief. Don't just tie a knot in the cable! Seal the hole around the cable with a suitable glue or filler so that the finished cabinet will be airtight. Complete the rear panel wiring by soldering leads to C 5 -ve and ground and leave the ends of these long ready for connection to the drive units.

Attention can now be turned to the front panel. Mark out the positions for the two drive units and use the template provided with them to mark the cut-outs and the mounting holes. The drive unit apertures can be cut by hand but it is much quicker to use a jig-saw attachment on a power drill. If the B200s are used, note that they are provided with ' T ' nuts and drill the mounting holes out to $1 / 4^{\prime \prime}$ to accomodate these.

Assemble the prepared front panel into the cabinet and glue and screw it into place. Draw out the loudspeaker leads through one of the drive unit apertures, solder them onto one of the drive units and solder a second pair of leads in parallel. Return this second set of leads into the cabinet, pass them throught the hole previously drilled in the central partition and draw them out through the second drive unit aperture. Solder them onto the second drive unit, taking care to observe phasing, and the internal
wiring is complete. The unit should be left in this condition, with the drive units connected but not installed in the cabinet, while the initial testing is carried out.

Connect a lead to the input of the Neptune and fit a plug to the mains lead. Set the potentiometer on the control panel at minimum and switch on. Apart from the switch-on 'plop' no noise should be heard unless the ear is placed very close to one on the drive units. If there is no 'plop' or worse, if a loud hum appears, switch off immediately and check the wiring.

If all is well, advance the potentiometer towards maximum and touch the signal input terminal. This should produce a loud buzz. Again, if nothing happens, switch off and check the wiring carefully.

If this test, too, is successful, mount the two drive units in place. Don't forget to use the gaskets provided so as to ensure an air-tight seal. When this has been done, gently press one of the drive unit cones inwards using even pressure around the voice coil. The other cone should move outwards. If it doesn't, check carefully around the cabinet until you find the air leak responsible and plug it.

Installation

No mains switching has been
provided on the Neptune because most modern stereo amplifiers are equipped with mains outlets and it is intended that one of these should be used. Such mains outlets are usually wired through the amplifier's on-off switch, so connecting the Neptune in this way removes the need to switch it on separately every time the stereo system is used. If your amplifier has such a socket, it is merely necessary to fit the appropriate plug to the mains lead, the most usual type being a shaver plug or an American-style twin flat-pinned plug. Leave about three metres or so of mains lead on the Neptune so that you can experiment with its positioning.

If your amplifier does not have a mains outlet, you will either have to fit an on-off switch to the Neptune or settle for plugging and unplugging the mains lead each time you use your stereo system. A mains switch could be added quite simply by enlarging the control panel slightly. Whichever approach you use, if the Neptune is switched independently of the amplifier you should always switch the amplifier on first and then the Neptune, never the other way around.

Connecting the input of the speaker to the output of your amplifier should pose no problems. With any luck you will have pressterminals on the amplifier into which the extra pair of leads can easily be inserted. If not, you will either have to make up an adaptor or add an extra socket on the back of your amplifier. Remember that you only need a connection from one channel of the amplifier and that it doesn't matter which one.

To set the unit up you will need a source of some description, preferably one offering signals containing male speech. A radio tuner set to Radio Four is probably best. Adjust the potentiometer on the control panel until there is no trace of 'boomyness' on the speech, then try the unit out with a music source. The bass response should have improved dramatically.

Experiment with the position and gain of the Neptune until you are satisfied with its performance. Remember that the best position is likely to be against the wall and floor and away from corners.

HARD DISK DRIVES

Fully refurpished DIABLO/DRE series
DEC RKOS, NOVA, TEXAS compatible $\begin{array}{lll}\text { Exchangable type (via lid removal) } & \text { EXS3.00 }\end{array}$
 Plus in house repar, refurbishing se
Call for details or quotation

EX 8YOOX DHEGBATED ORGUIB OVER 100,000 ITEMS INCLUDING:
Intel D8085AH-2 $£ 25.00$ D8271 £65.00 D8202 D8257-5 8255 D3002

\author{

450ns $£ 3.75,350 \mathrm{~ns} £ 4.00,300 \mathrm{~ns} £ 4.50$

}
 Koep your not parra COOL and RELLABLE with our range

ETinfertion Dim. $92 \times 92 \times 25 \mathrm{~mm}$. finger quard 89.95 .
con quidt $-3 A R$ Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 25^{n}$ compact
very quing 240 operation NEWE6 UHLER 69.11.22. 8-16 v DC micro miniture reversible fan uses a brushiess eervo motor for oxtremely high air flow. hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$

> Curent cost E32.00. OUR Ph 12.95 complofo whth deth. MUFFIN-CENTAUR standira

$$
\begin{aligned}
& \text { ع12.95 complefo with deta. } \\
& \text { MUFFIN-CENTAUR standerd } 4^{4 \prime} \times 4^{\prime \prime} \times 1.2 \\
& \text { Ian supplied tested EX EOUIPMENT } 240 \mathrm{v}
\end{aligned}
$$

 £6.25 or 110 v at $£ 4.95$ or BRAND NEW 240 v Call tor Details. Pot's Packing on Stock
DUAL 5" DISK DAVES Current, quality, protessional product of a
major computer company, comprising 2×40 track MPI or Shugart FULLY BBC COMPATIBLE single sided drives in a compact, attractively styled. grey ABS structured case with internal switched
mode PSU. The PSU was intended to drive both drives and an intelligent $\mathbf{Z 8 0}$ controller with over 70 ic's. The controller has been wemoved leaving a mple space and current on the $+,-5,+12$ and -12 supply for all your future expansion requirements. Supplied tested with 90 day guarantee in
BRAND NEW condition with cable for BBC BRAND NEW condition with cable for BBC
mitcro. Ex Stock at only $\$ 259.00$ micro. Ex Stock at only 259.00

+ £10.00 carr. Limited Quantity Onily

GE TERMIPRINTER

 A maserve purchase of these desk top printer terminals enables us to ofter youthese quality 30 cps printers at a 8 UPER these quality 30 cps printers at a 8 UPER
LOW PRICE against their orignal cost of over £ 1000 Unil comprises of full OWERT electronic keyboard and printer mech with print face similar to correspondence quality typowriter. Vanable forms tractor unit
enables full wioth - up to 13.5 " 120 co enabies full wioth - up to s. serbel interface, internal vertical and horizontal tab settings, standard ribbon adjustable baud rates quiet operation plus many other features. Supplied complete
with manual. Guaranteed working si with manual. Guaranteed working u intested Ess.en, optional floor stand $\Sigma 1250$ untested EES.e. OD
Carr 8 Ins $£ 10.00$.

DATA MODEMS

Join the communications revolution with our range of EX TELECOM data modems. Made tor 24 hrs per day Unils are made to the CCITT tone spec With RS232 i/o leveis via and working condition with data Permission
may be required for connection to PO lines. may be required for connection to PO lines. MODEM 2O-1 Compact unt tor use with eti 2 wire cirect connect 75 baud transmit
1200 baud receive. Data i/o via AS 32 D. socket Guaranteed working with data tifogs
MODEM1 $20-2$ same as 20 I bul 75 baud receive 1200 baud transmit E1se.00
TRANSDATA 307 A 300 baud acoustic
coupler RS232 $1 / 0$ E 95.00 brand new.C coupler RS232 i/o £95.00 brand new.C؟4.5 NEW D8L2123 Multi Standard modem selectable
$\mathrm{V} 231200-75$ tull duplex Or $1200-1200$ haif V23 $1200-75$ full duplex Or $1200-1200$ haif Cuplex modea. Full auto answer vis modem modes Swltchable CCITT or BELL 1038 202
20 . Mouted in ABS cape size only $2.5^{\prime \prime} \times 8$. $x \theta^{\prime \prime} . £ 286.00+V A T$
For further

HOT LINE DATA BASE distelo
THE ORIGINAL FREE OF CHARGE dial up data base 1000 's of stock items and one off bargains. ON LINE NOW - 300 baud, full duplex CCITT tones, 8 bit
 STILL IN STOCK
FP1 500 Heavy Duty 25 cps daisy wheel RS232 interface, bi direc
Brand New at $\mathbf{£} 499.00$ CALL FOR MORE DETAILS

COIPUTER 'CAB'

All in one quality computer
cabinet with integral switched
mode PSU, Mains filtering. and twin fan cooling
Originally made for the famous DEC PDP8 computer system costing thousands of pounds Made to run 24 hours per day the PSU is fully screened and will deliver a massive $+5 v$ OC at 17 amps. $+15 v D C$ at 1 amp and -15 DC at 5 amps. The complete unit is futly enclosed with removable top lid, filtering, trip switch, 'Power' and 'Run'
LEDs mounted on Alifront panel, rear cable entries, etc LEDs mounted on Ali front panel, rear cable entries, etc etc. Units are in good but used condition-supplied for $40 v$ operation complete with full circuit and tech. Give your system that professionat finish for only
C $49.95+$ Carr. $\operatorname{Dim} .19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime} \mathrm{high}$. Useable area $16^{\prime \prime} w 10.5^{\prime \prime} h 115^{\prime \prime} d$
Also available LESS ${ }^{\text {S SU, with FANS etc }}$ Internal dim.

SUPER PRINTER SCOOP BRAND CENTRONICS 739-2

The "Do Everything Printer" at a price that will NEVER be repeated. Standard CENTRONICS parallel interface for direct connection to BBC,

SPECIAL 300 BAUD MODEM OFFER

Another GIGANTIC purchase of these EX BRITISH TELECOM, BRAND NEW or liftle used $2 B$ data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data
communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2 B has all the standard requirements for data base, business or hobby communications. All this and more!?

- 300 baud full duplex
- Full remote control
- CCITT tone standards - Modular construction

5
ratuc now only 229.95

- CALL, ANSWER and AUTO modes - Built in test switching - $240 v$ Mains operation - Direct isolated connection - Just 2 wires to comms. tine

Order now - while stocks last. Carriage and Ins. $£ 10.00$

8" 19M8 WINCHESTER DISK DRIVE

Made in the UK by a subsidiary of the World's largest disk drive manufacturer This BRAND NEW "end of line" unit offers an outstanding opportunity to add MASSIVE 19 mb of storage to your computer system. Superbly constructed on a heavy die cast chassis the DRE 3100 utilises 3×8 " plattens in a dust free cavity. All drive functions are controlled by microprocessor electronics
using an INTEL 8035 cpu and TTL support logic. Data to the outside world via two comprehensive 8 bit TTL level bi directional data busses with full sfatu reporting for ease of interfacing. Many features such as Av. seek time 35 ms , 12 bytes per sector, $+24,-24$ and $+5 \vee$ DC supply, plug in card system, and compact size of approx. $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} W$ and 42 cm D etc, etc, make this item a real snip.
Units are BRAND NEW and BOXED and sold at a FRACTION of original cost - hence unguaranteed. Complete with 150 page manual, circuits and applications guide.

ONLY £225.00 Cariage $\varepsilon 10.00$

 Suitable power supply unit - sold ONLY with drive $£ 39.95$.
PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand now surplus allows a great OWERTY, full travel Chasgis keyboard offer at fractions of their onginal costs. ALPHANERIC, 204/60 full ASCII 60 key, upper, low
output plus strobe Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC EP). St. output plus strobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+5 \$^{8}-12$ DC ESt
DEC LA34 Uncoded keyboard with 67 quality GOLD, normally open switches on standard X Y matrix. Complete with 3 LED indicators 8 i/o cable - ideal micro
conversions etc. pcb DIM $15^{\prime \prime} \times 45^{\prime \prime}$ K74 $\$^{\prime}$ Carnage on keyboards $£ 3.00$

66\% DISCOUNT

EOECTRONIC
COMPONENT
EQUIPMENT

BUDGET BAITGE VIDEO MONITORS At a price YOU can afford, our range
EQUIPMENT video monitors dety competition!! All are for 240 v working with standard composite video input. Units are pre tested and set for up to 80 col use on
BBC micro. Even where MINOR BBC micro. Even where MINOR screen
burns MAY exist - normal data displays are unatfected. 1000's SOLD 70 DATE

 12" KGM 320-321, high bandwidth input, will display up to 132 columns $\times 25$ lines. Housed in attractive fully enclosed
brushed alloy case. B/W only $\mathbf{£ 3 2 . 9 5}$ GREEN screen E39.95
24" KGM large screen black \& white Ideal schools shops, clubs etc.
14" BRAND NEW Novex COLOUR type NC1414-CL. Many exacting features such as RGB TTL and composite video input, audio amp Even finished in BBC micro matching colours.

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

include transistors. digital, linear. IC's triacs diodes, bridge recs. elc. elc All devices guaranteed brand new full spec with ma racturer's markings, fuly
$50+E 2.53100+E 5.15$.
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series I.C.s enables us to offer $100+$ mixed "mosty TTL" grab bags at a price which tw
or three chips in the bag would nnormally cost to buy. Fully guaranteed all IC.'s full spec. $100+66.90200+E 12.30300+619.50$

DEC CORNER

BA11-MB 3.5" Box, PSU. LTC
$£ 385.00$
interface
DLVI1-J $4 \times$ EIA interface
DLVII-J $4 \times$ EIA interface DUP11 Sych Serial data i/o $\quad \mathbf{£ 6 5 0 . 0 0}$ DZ11-B 8 line RS232 mux board $£ 850.00$ LA36 Decwriter EIA or 20 ma loop $£ 270.00$ LAXX-NW LAt 80 RS232 serial interface
and buffer option
£130.00 $\begin{array}{lr}\text { Land buffer option } & \mathbf{£ 1 3 0 . 0 0} \\ \text { LAX34.AL LA34 tractor feed } & \mathbf{£ 8 5 . 0 0}\end{array}$ MS11-JP Unibus 32 kb Ram $£ 80.00$ MS11-LB Unibus 128 kb Ram $\quad \mathbf{£ 4 5 0 . 0 0}$ MSC4804 Qbus (Equiv MSV1 1-L)
PDP11/05 Cpu Ram ivo etc $\begin{array}{lr}\text { POP1 } / 05 \mathrm{Cpu}, \text { Ram, i/O. etc. } & \mathbf{£ 4 5 0 . 0 0} \\ \text { PDP1 } 1 / 40 \mathrm{Cpu}, 124 \mathrm{k} \text { MMU } & \mathbf{£ 1 8 5 0 . 0 0}\end{array}$ RT11 ver. 3 B documentation kit $\begin{aligned} & \text { £70.00 } \\ & \text { RKO5-J }\end{aligned}$ $\begin{array}{ll}\text { RKO5-J } 2.5 \mathrm{Mb} \text { disk drives } & £ 650.00 \\ \text { KL8.JA PDP } 8 \text { async } & £ 175.00\end{array}$ $\begin{array}{lr}\text { KLBJA PDP } 8 \text { async i/o } & £ 175.00 \\ \text { MIBE PDP } 8 \text { Bootstrap option } & £ 75.00\end{array}$ VT50 VDU and Keyboard -
$\mathbf{£ 1 7 5 . 0 0}$
1000's of EX STOCK spares for DEC PDP8, PDP8A, PDP1 1 systems \& peripherals. Call for details. All types of
Computer equipment and spares wanted Computer equipment and spares wanted
PROMPT CASH PAYMENT.

bigger and better.

Nicad Batteries \& Chargers
High quality nickel cadmium rechargeable batteries. Equivalent in size with popular Dry Cell sizes e.g. HP7 (AA), HP1 (C), and HP2 (D) Minimum life 600 (300 PP3 size) full
charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

DATA \& PRICES
$\begin{array}{llll}\text { Type } V(\text { nom }) ~ C a p a c i t y ~ S t o c k ~ N o . ~ & 1-9 & 10-49\end{array}$ $\begin{array}{llllll}\mathrm{AA} & 1.2 \mathrm{~V} & 500 \mathrm{mAH} & 01-12004 & 0.80 & 0.74\end{array}$ $\begin{array}{llllll}\mathrm{C} & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12024 & 2.35 & 1.99 \\ \mathrm{D} & 12 \mathrm{~V} & 12 \mathrm{AH} & 0112044 & 200 & 2.00\end{array}$ $\begin{array}{llllll}\mathrm{DP} 3 & 8.4 \mathrm{~V} & 110 \mathrm{mAH} & 01-84054 & 3.70 & 3.50\end{array}$

CH/4/50

To recharge up to 4 AA size NiCads.
Size; $112 \times 71 \times 37 \mathrm{~mm}$
$01-00409 \quad 4.95$

CH1/22

To charge PP3 type NiCads.
Size; $70 \times 50 \times 32 \mathrm{~mm}$
$01-00159 \quad 4.30$

CH8/RX

Will recharge AA,C,D and PP3 size cells with automatic voltage selection. Will recharge following combinations: $4 \mathrm{xD}, 4 \mathrm{xAA}, 4 \mathrm{xC}, 2 \mathrm{xPP} 3,2 \mathrm{xD}+2 \mathrm{xC}$ $2 \mathrm{xD}+2 \mathrm{xAA} .2 \mathrm{xD}+1 \mathrm{xPP} 3,2 \mathrm{xC}+2 \mathrm{xAA}, 2 \mathrm{xC}+$ $1 \times P P 3,2 x A A+1 \times P P 3$. Charge rate: 11 mA for PP3, 45 mA for $A A$ size, 120 mA for C and D size, for 16 hrs. Power: 240 V 50 Hz . Output Voltage: 2.9 V for AA, C and D size, 11.0 V for PP 3 size. Weight: 0.475 kg Size: $199 \times 109 \times 55 \mathrm{~mm}$.

HT320
High quality, high specification meter at a reasonable price In addition to the usual ranges, facilities are provided for measuring transistor parameters such as Iceo and Hfe. Meter movement fully protected against overloads. 3 -colour mirrored scale in robust case.Supplied complete with comprehensive instructions, test leads, transistor test leads and batteries ($2 \times \mathrm{HP}-7$, $1 \times P P 3$).
DC Volts: $0.1 \mathrm{~V}, 0.5 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}$ ($20 \mathrm{k} \Omega / \mathrm{N}$).AC Volts: $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}(18 \mathrm{k} \Omega \mathrm{N})$. DCcurrent: $50 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}$. Resistance: $2 \mathrm{k}, 20 \mathrm{k}, 2 \mathrm{M}, 20 \mathrm{Mz}$. AF Output: -10 dB to +22 dB for $10 \mathrm{VAC}(0 \mathrm{~dB} / 0.775 \mathrm{~V}, 600 \Omega$). Leakage (Iceo) $15 \mu \mathrm{~A}, 15 \mathrm{~mA}, 150 \mathrm{~mA}$. He: $0 \cdot 1000(\mathrm{Lc} / \mathrm{Tb})$. Weight: 410 gms .

RF Generator LSG17

A stable wide-range generator for the hobbyist, service technician, schools, colleges, etc. Frequency range: $\mathrm{A}^{\prime} 100 \mathrm{kHz}-300 \mathrm{kHz}, \mathrm{B} / 300 \mathrm{kHz}$ to 1 MHz (Harmonics $96-450 \mathrm{MHz}$) C $1 \mathrm{MHz}-3.5 \mathrm{MHz}$, $\mathrm{D} / 3.0 \mathrm{MHz}-11 \mathrm{MHz}, \mathrm{E} / 10 \mathrm{MHz}-35 \mathrm{MHz}$, $\mathrm{F} / 32 \mathrm{MHz}-150 \mathrm{MHz}$.Accuracy:k1.5\%.Output greater than 100 mV (no load). Ext xtal osc for 1 to 15 MHz crytal. Power required: AC100, 115 or 230 V 3 VA . Size \& Weight: $150(\mathrm{H}) \times 238$ (W) $\times 130(\mathrm{D}) \mathrm{mm}, 2.5 \mathrm{Kg}$ approx.

56-90017 115.00

Linear ICs

LF351 Bi-FET op amp
LF353 Dual version of LF351 LM380N IWAFpoweramp LM381 Stereopre-amp IC NE544 14 pin DILservo driver IC
NE555N Multi-purpose low cost timer
uA741CN DIL low cost op-amp
TDA1062 RFocillator and mixer system for $1-200 \mathrm{MHz}$
TDA1083 Portable radio AM/FM audio in one IC HA1388 18W PA from 14V MC1496P Double balanced mixer/ modulator
TDA2002 8W into 2 ohms power amp
ULN2283 IW max 3-12V
poweramp
CA3089 FM IF amp, detector, mute, AFC, AGC system
CA3130E BIMOS opamp CA3140E BIMOS version of 741 MC3359 Low current dual conversion NBFM IF and det
LM3900 Quad norton amp
LM3909N 8-pinDILLED flasher
KB4412 Two balanced mixers IF amp with $A G C$ for $A M / S S B$
ICM7555 Low power CMOS version of 55 timer
HAl1225 Low noise FMIF
HAl2017 83dBS $/$ phono preamp
Stock No. Price 61-03510 0.49 61-03530 $\quad 0.81$ $61-00380 \quad 1.45$ $61-00381 \quad 3.27$ $61-00544 \quad 1.80$
$61-05550 \quad 0.21$ $61-07411 \quad 0.42$ 61-01062 1.95
$61-01083 \quad 1.95$ $61-01388 \quad 2.75$ 61-01496 $\quad 1.25$ 61-02002 1.25 $61-02283 \quad 1.00$

61-03089 2.84 $61-31300 \quad 0.80$ $61-31400 \quad 0.46$
$61-03859 \quad 2.95$ $61-39000 \quad 1.20$ $61-39090 \quad 0.68$

61-04412 $\quad 1.95$ $61-75550 \quad 0.98$ $61-112251.45$
0.001% THD MC14412 300 baud MODEM controller (Euro/US specs)

61-12017 0.80
$56-8320114.00$

Selected Lines

PB2720	80dB PiezoBuzzer	43-27201	0.55
10M15A	10.7 Filter	20-10152	2.10
$10 \mathrm{M08AA}$	10.695 Filter	20-11152	3.49
FC177	LCDFreq. Meter	39-17700	20.00
CM161	Min LCDClock	40-80161	8.25
BBC to Cen	ronics Cable	03-10019	7.25
Dragonto	entronics Connect Cable	03-10017	7.25
C12 Compu	ter Cassette Tape	21-00012	0.55
8×0.3	IC socket	28-00800	0.12
14×0.3 "	IC socket	28-14000	0.13
16×0.3 "	iC socket	28-16000	0.13
6 V	KUIT-A Relay	46-80000	0.48
9 V	KUT-A Relay	46-80001	0.48
12V	KUIT-A Relay	46-80002	0.48
CX120P	COAXRelay	46-90120	11.96
CX5200	COAXRelay	46-90520	26.98
CX540D	COAXRelay (BNC)	46-90540	26.98

Books

Beginners Guide to Amateur Radio Beginners Guide to Electronics Active Filter Cookbook CMOS Cookbook TTL Cookbook
Design of Active Filters Design of Op-amp Circuits with experiments
Effectively Using the Oscilloscope The ZX Spectrum
Practical Design of Digital Circuits Electronic Projects for Home Security
Electronic Telephone Projects 55 Timer Applications Sourcebook Television Engineers Pocket Book 7th Ed
Electronics Pocket Book 99 Practical Electronic Projects More Electronic Projects in the Home
The Radio Amateurs Question and Answer Reference Manual
Basic Programming on the BBC
Microcomputer
Using Microprocessors and Microcomputers:
The 6800 Family
Z-80 Microcomputer Design Projects
Z8000 Microprocessor
ADesign Handbook

68000:Principles and
Programming

8085A Cookbook

Handbook of Electronic Tables Formulas
Popular Circuits: Ready
Reference
Semiconductor Data Book
11th Edition

02-21853 12.70 02-21697 13.55

02-21532 11.00
02-04585 13.95
02-04797 9.00

Cirkit. Making it

Cirkit stock all the

 components, accessories and tools and the kits you're looking for. Designed and selected to offer the best possible standards at the best possible price.Cirkit's always well stocked.

As soon as new products are available, Cirkit has them.

When it comes to kits, Cirkit's got the lot. At the price you want to pay.

Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood,Essex.CM14 4SG; 53 Burrfields Road, Portsmouth, Hampshire.PO3 5EB; Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.

Please add 15\% VAT to all advertised prices and 60p post and packing. Mínimum order value $\$ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.

Cirkit Kits

CIRKIT ELECTRONICS TOOL KIT
Contains: 15 W Soldering Iron 2 spare
bits, heat shunt, solder, pliers, cutters,
and screwdriver
$40-00007 \quad 15.56$
AUDIO FUNCTION GENERATOR
Versatile waveform generator with
sine, triangular and square wave outputs. On board mains PSU

41-01302 27.00
STEREO 40W AMPLIFIER
Single board 40 W per channel stereo
amplifier
41-01301 $\quad 38.00$
STEREO VUMETER
5 LED per channel stereo VU meter for
$\begin{array}{lll}\text { use with stereo amplifiers } & 41-01401 & 11.50\end{array}$
5W AUDIO AMP
A very compact audio output stage for use
$\begin{array}{llll}\text { in a wide range of equipment } & 41-01406 & 4.60\end{array}$ UNIVERSAL AMP
A universal audio pre-amp with à
gain of 10
41-01604 6.45
MONOREVERBERATIONUNIT
Single channel, spring line reverb unit to add echo effects to tape recording etc. 41-01602 10.00
TONE GENERATOR AND DETECTOR
Very low distortion tone generator and signal detector for circuit fault finding
10 MHz DFM
41-01603 $\quad 10.45$
8 Digit LED digital frequency meter
$\begin{array}{lll}\text { and period measurement } & 41-01500 & 54.10\end{array}$
50 MHz PRESCALER
Extend the range of the 10 MHz DFM
to 50 MHz
41-01501 8.55
$1-5 \mathrm{MHz}$ PRE AMP
Low frequency pre-amp and waveform
shaper for the 10 MHz DFM
41-01502 5.13
$1-30 \mathrm{~V} 1 \mathrm{~mA}-2 \mathrm{APSU}$
Adjustable 1-30V Power supply with pre-setable
current limit from $1 \mathrm{~mA}-2 \mathrm{~A}$
41-01600 $\quad 37.46$

To:Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.
l enclose 85 p. Please send me your latest catalogue and $3 \times \& 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.

5-12V 1APSU
Adjustable PSU from $5-12 \mathrm{~V}$ with current protection, 1 amp max output 41-01504 6.45 1-30V 1.5A PSU
$1-30$ volt adjustable PSU with protected output up to 1.5 Amps

41-01402 10.45 3DIGIT LED DVM
DVM to read up to 99.9 volts or configured as an
ammeter to read up to $9.99 \mathrm{amps} \quad 41-01403 \quad 17.00$

INFRA RED LINK
Single channel IRLink
with relay output
$41-01300 \quad 9.60$
TEMPERATURE SENSOR
Themistor based temperature sensor
with relay output 41 -
LOCOMOTIVE SOUND GENERATOR
Realistic steam sound and whistle for
model railways
$\begin{array}{ll}41-01304 & 9.20\end{array}$
LAMP DIMMER
Control lamps and drill speed $\quad 41-01305 \quad 5.70$ WATER LEVELALARM
Alarm to indicate high water level or
flooding
$41-01601 \quad 2.70$
3 NOTE CHIME
Doorbell chime with adjustable
tones
41-01503 7.00
2MPREAMP
Miniature low-noise MOSFET pre-amp
for the 2 m amateur band
$41-01307 \quad 3.91$ 2M CONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur
band converter
$41-01306 \quad 17.35$
2M POWER AMP
20 W - 10 dB gain - power amplifier for the
2 mb band. Automatic TX switch over, RX
$\begin{array}{llll}\text { pre-amp, robust construction } & 41-01404 & 32.87\end{array}$ 70 cm PRE AMP
Low noise, miniature pre-amp for the
70 cm amateur band
41-01506 4.78
70 cm CONVERTER
70 cm to 144 MHz low noise converter
featuring pre-aligned helical filter,
schottky diode mixer and low noise transistors
$41-01405 \quad 21.50$

70 cm PA

10W Power amp to boost the output of
handheld and portable 70 cm
transceivers
41-01505 33.82
CRYSTAL CALIBRATOR
Crystal reference calibrator for alignment
of receivers, outputs at $4,2,1 \mathrm{MHZ}$,
100,50 AND 10 KHz
41-00801 4.32
CB NOISE SOUELCH
Improves to mute performance of the
majority of CB rigs
41-01605 $\quad 5.40$
CENTRONICSINTERFACE
Connect your personal computer to
the outside worid via the Centronics
printer output
41-01406 22.50

IC RELIABILITY

How reliable are standard ICs? What makes them not work properly?

Conventional wisdom has it that, after early failure, ICs are by and large pretty damn reliable. However, that doesn't mean that there aren't rogue or 'problem' devices - for example, see the telex reproduced here, about a device which was successfully used by a contributor to 'Electronics Monthly', but which has subsequently been withdrawn by the manufacturer.

```
84-10-30 14:2:1
8E11896ASFG
2372 GIMOSTG
3O OCT S4 ATTN: H ARMSTRONG TLX LON 3505
REF: AY-3-1270
REGRET TO INFOKM U that I AM UNABLE If fROVIDE U WITH A SOURCE FOR
above froduct due to reasons of device reliablitr.
ggos I mccall
JW
NNNN+
8811296ASF G
23272 EIMOST G
```

Elsewhere in this issue, we carry details of a 'fix' for our original 64k DRAM card. This 'fix' was made necesary because we had a number of readers telling us that they couldn't get the dratted thing to work, and we couldn't get one that we had recently built ourselves to go - even after ammending the PCB in a couple of places!

Added to this we also had informal indications (ie, nothing you could quote anyone on) that the DRAM controller IC, 74 LS608, was a 'problem device'. So what makes a 'problem device'? We talked to Texas Instruments, the manufacturers of the device in question, to find out their side of the story.

Firstly, no one was aware of a specific problem with the '608, and we wouldn't identify the person who had told us that it was a 'problem device'. Although they could not locate any documentation to confirm it, there was the suggestion that there might have been some revisions to the die at a relatively early stage in the production run.

Looking at the DRAM card circuit, TI's engineers were not that happy about the delay sections formed by R1, C1, D1 and R2, C2, D2. The problem is that IC17a and b, the devices that immediately follow the delay circuits, are not Schottky devices, so the rise times from them would not be particularly fast, and this could cause problems with edge-triggered inputs. However, this was unlikely to be the cause of the problem here.

We then discussed the problems associated with the power-up of this and any other MSI device. This discussion was prompted by the section in the original article which suggested that some earlier production devices may have had problems with the power-on reset circuitry (which ties up with the suggestion that there may have been some revision of the die).

One of the problems with this and other computer add-on projects is that it is not possible to predict how power will be applied to the circuit - for instance, it may come on very quickly, there may be transients associated with ringing (although we hope that this sort of problem would be dealt with by most monolithic regulators), or the power might come on very slowly. The last of these is one possible cause of the problems with the DRAM card.

Different sections of a large or medium scale integrated device will start to function at different supply voltages. So if the supply voltage builds up very slowly after switch-on, it is possible, even likely in some cases, that fault conditions will develop that lead to a latch-up which will persist even when full power is applied to all sections.

Another problem is associated with ringing on input (or even output) lines. Readers will know how easy it is for a square-wave to acquire ringing - all it takes is a little unwanted inductance here, a little stray capacitance there, and bingo!, the square wave is ringing like Big Ben!

In a TTL (or CMOS) circuit, this can cause havoc. The problem is that the ringing excursions can take the input (or output) voltage above or below the positive or negative supply lines, respectively. This is a more manageable problem in discrete component circuits, because you always know what the real circuit is; however, with integrated circuits, there are always parasitic devices; eg transistors or thyristors, that have

The TI Scare

Readers will remember that a little while back, it was alleged that possibly faulty chips had been sold on defence contracts. Quite a stir was created, with the story making the evening TV news and front pages of several papers.

The truth is a little more mundane, but in its own way equally alarming. According to a letter in the trade press (Electronics Times, 25 Oct) from Peter Van Cuylenburg, TI's MD, the ICs were properly tested. However, the tests did not conform to those laid down in the specifications for the devices, but, according to Mr Cuylenburg and to the Pentagon, the tests carried were actually more appropriate to the way the devices were to be used than the tests laid down in the specification.

However, no-one has yet explained how the wrong tests came to carried out and how it came to be that this was not picked up at a much earlier stage. This failure is, if anything, considerably more worrying than a few rogue devices finding their way into the system.
been produced inadvertently while making the wanted devices. This is as a direct consequence of all the devices on an IC being made on the same piece of silicon, and much of the design effort in laying out an IC is devoted to avoiding problems from parasitic devices.

The objective will be to ensure that, under normal operating conditions, the parasitic devices will all be biassed off. However, input and output conditions which exceed the supply lines - such as occur with ringing - can cause a parasitic device to come on, leading to the generation of a false logic state, or even to complete latch-up.

For example, some MOS DRAMs are very sensitive to over-shoot and under-shoot, and will latch up completely due to the presence of parasitic thyristors. However, so long as the signal lines do not exceed the supply lines, these devices will be perfectly reliable.

Whilst we're on the topic of supply lines, another problem is that they tend to be rather noisy, particularly in TTL circuits where fairly high currents are being switched. For this reason it is not good practice to tie any IC inputs to the positive supply line - although we
all do it. The safest option is to design around this in the first place, where this is possible, but otherwise tie inputs to the output of a spare gate, or use a pull-up resistor. Again, this is a particular problem with edgetriggered inputs, where noise on the supply line can lead to false triggering.

So do problem devices exist after all? TI are confident that all their devices meet the published specifications. That said, there will inevitably be some devices that will be rather more sensitive to circumstances of their use than one would like. Obviously, when introducing a new device, a semiconductor manufacturer cannot imagine - let alone test - all possible applications or circuit lay-outs. Basically, it is all too easy to inadvertently exceed the specification of an IC without realising it, and it will be only after extensive testing that you will find out what is going wrong. Fortunately, most devices are reasonably tolerant of minor violations on most of the specs.

Meanwhile, TI and ourselves will be investigating the 64 k DRAM card further, to see what has been causing the problem. We'll let you know of the outcome when we have something to report.
IC Testing

The testing that a standard IC goes through lasts all the way through its production process, and begins even before the wafer on which it is made is fabricated. The selection of materials, the growing of the crystal, the slicing of the crystal up into wafers and the growing of an epitaxial layer on the wafer are all closely monitored.

At every stage of the diffusion of dopants into the wafer checks are carried out on the resistivity of the silicon - obviously, this is influenced by the amount of impurity which has been absorbed.

Next, checks are performed on the test geometries that are placed on each wafer for no other reason. If you see a wafer before it is sliced up, you will notice that four or so dies are actually different from the rest - these are the test geometries, and simple go/no-go measurements can be carried out on these to detect gross faults.

The finished wafer then passes to a test bed where each die is tested as follows:

1. Basic electrical test;
2. Truth table check (does it do what it is supposed to do?);

Fig. 1 Typical IC failure rate against time - the actual timescale will vary, though.
3. Functional test (does it work in a circuit?)
4. Parametric test (does it live up to the fine print in the data sheet?).
Any dies that fail this test get a red dot of ink, and are discarded at the next stage, where the wafer is sliced up into dies and packaged. After packaging, every single IC goes through the same test programme again. Only after this do the ICs get 'symbolised' (ie, labelled).

The next stage is only carried out on military equipment or on larger dies, eg microprocessors; this is testing at an elevated temperature, and temperature cycling. This tests for two things: firstly, it will check to see that the die is properly mounted, otherwise the expansion and contraction will detach it; and it also accelerates early failures.

In fact operating at an elevated termperature greatly decreases the life of all devices, and one of the quality control tests that a competent manufacturer will be doing is testing samples of all devices at an elevated temperature to see how long they last. This can then be extrapolated back to devices used at normal temperatures to see if there is any sort of longevity problem with them.

Fig. 2. Long-term failure rate - electronic components should not wear out unless there are problems.

ELECTRONIC SIREN KIT

Produces an exiremely loud piercing swep: frequency tone from a 9 -15V supply. Enable input for easy connection to alarm circuits. includes 5in. Horn Speaker,

Mini Siran
As above, but with a small speaker (instead of horn speaker) for internal use. $\quad \mathbf{£ 4 . 3 0}$

SECURITY PRODUCTS

Protect your hom and property and save by building your own burgla alarm system

Stair Mat 23×7 in (950 120) Floor Mat 29×16 in 1950125$)$ (950 110)
Door/Window Contacts. Flush mounting, 4 wire. Magnet/switc
Per Pair. 1950140
Window Tape $0.5^{\prime \prime}$ wide 50 m (950 145)
Window Tape Terminations
Per pair. 1950150)
h. $1.5 \mathrm{~A} / 250 \mathrm{~V}$
$£ 1.05$
£2.50

Kev-Operated Switch. 1.5
SPST Heavy chrome meta
(350 128)
f0. 36

Passive Infra-Red Detector
Detects intruder's body heat. Range 10 metres. 12 VDC , n/o \& n/c contact. Size: $\mathbf{4 \times 2 \times 2}$ ins. $(950135) \quad £ 45.00$ Alarm Control Unit. 4 input circuits. 2 instant and 2 -delayed. Adjustable entry, exit and alarm times. Built and tested. Full instructions supplied. Size: $180 \times 130 \times$ 30 mm . Supply: 12 V DC. 950 160) $\mathbf{E 2 6 . 0 0}$ Ultrasonic Burglar Alarm. Self-contained mains or battery powered unit complete
with horn and $A C$ adaptor.
f45.00 + pffp $£ 2.20$
8W Horn Speaker. 5.5 ins 8 ohm. |dea for sirens, etc. 2.5 m lead and 3.5 mm jack plug. (403 148)

IR GARAGE DOOR
 CONTROLLER KIT

For controlling motorised garage doors and switching
garage and drive
a range of 40 ft

Lots of appli
cations like
controlling lights
and TVs.
etc, in the home Ideal for aged or dis abled persons, this coded kit comprises of a mains-powered infra-red receiver with a latched transistor outputs, plus two powered transmitter and opto-isolated solid state mains switch opto-isolated

XK103
625.00.
$\mathbf{f 1 0 . 5 0}$

PANTECK/TS		
PN2	FM Micro Transmitter	67.50
PN3	Stabllised Power Supply	f13.70
PN5	$2 \times 10 \mathrm{w}$ Stereo Amplifier	¢14.50
PN6	$2 \times 40 \mathrm{w}$ Stereo Amplifier	¢24.95
PN7	Pushbution Stereo Preamp	£12.80
PN8	Tone \& Volume Control	¢13.60
PN11	3w FM Transmitter	£11.95
PN13	Single Channel FM	
	Transmitter	c9.80
PN14	Receiver for above	¢15.50

TOP QUALITY . . . TOP SERVICE BOTTOM PRICES!

For FREE CATALOGUE send $9^{\prime \prime} \times 6^{\prime \prime}$ SAE - contains full list of stock range all at very competitive prices. Cash with order (except account customers). Access or Barclaycard telephone orders welcome. Add $65 p$ p $\& p+15 \%$ VAT to all UK orders. Overseas customers add $£ 2.50$ p\&p Europe, f6.00 eisewhere. Giro No. 529314002 . Goods by return subject to availability. Shop open 9 am -5 pm (Mon-Fri). 10am-4pm Sat). ALL PRICES EXCLUDE VAT a vesi

CHRISTMAS PRESENTS GALORE

STOCKING FILLERS All full spec. branded devices.

PACK (1) 650 Resistors 47 ohm to 10Mchirn - 10 per value $£ 4.00$ PACK (2) $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors $10 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F} \mathrm{f} 3.25$ PACK (3) 60 Polyester Capacitors 0.01 to $1 \mu \mathrm{~F} / 250 \mathrm{~V}-5$ per value $£ 5.55$ PACK (4) 45 Sub-miniature Presets 100 ohm to 1 Mohm -5 per value $£ 2.9$ PACK (5) 30 Low Profile IC Sockets 8, 14, and 16 pin - 10 of each $£ 2.40$ PACK (6) 25 Red LEDs (5 mm dia.) $\mathbf{£ 1 . 5 0}$

INFRA-RED REMOTE CONTROL KITS

These kits are designed to enable infra red remote control to be incorporated into virtually any application from switching car locks or alarms to controlling Hi-Fi or TV. The application will determine the interface circuitry between the receive and the controlled device. General in structions and applications are supplied. dearee of security and noise immunity. dearee of security and noise immunity MK 1 1/MK 12 receivers. Requires PP3 bat tery. Size: $8 \times 2 \times 13 \mathrm{cms}$. Range approx 60 ft .
Keyboards for MK 18
MK9 4-way for use with MK 12 f1.90 MK 1016 way for use with MK $12 \quad £ 5.40$ MK13 11 -way for use with MK $11 \quad £ 4.35$ MK11 Recsiver Kit - mains powered Provides 10 latched plus 3 analogue out puts ideal for controlling audio amplifiers TV or lighting where control of light MK14 AC' Power Controller Kit for (phase) controlling AC loads from MK 11 analogue outputs, eg lamp dimming.

ELECTRONICS

11-13 Boston Road
London W7 3SJ
ENQUIRIES
01-5799794

MICROPROCESSOR
TIMER KIT
Designed to conindependently switching on and off at preset times off at preset times
over a 7-dzy
play of time and day, easily programmed via 20 way keyboard. Ideal for centrai heating control (including different switching times for weekendsl. Battery back-up circuit. Includes box.
18 time settings
CT6000K
£39.00
XK 114. Relay Kit for CT6000 includes PCB, connectors and one relay. Will accept up to 4
relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o contacts elays. $3 \mathrm{~A} / 240 \mathrm{~V}$ c/o contacts
701115 Additional Relays
£1.65

ELECTRONIC LOCK KIT

With hundreds of uses indoors, garages car anti-theft devices, electronic equipment, etc. Only the correct easily changed four-digit code will open it! Requires a $5-15 \mathrm{~V}$ DC supply. Output 750 mA . Fits into standard electrical wall box.
Complete kit (except front panel)
Electric Lock Mechanism for $£ 11$
Electric Lock Mechanism for use with xisting door locks and the abo

(Requires relay.) 12 V AC/DC coil | (Requires relay.) $12 \mathrm{~V} \mathrm{AC/DC} \mathrm{coil}$. |
| :--- |
| (701150) |
| 14.95 |

HOME LIGHTING KITS

These kits are
designed to
replace a standard wall switch $300 w$ of lighting

DR300K Remote Controlled Light Dimmer

MK6 Transmitter for
f14.95

TD300K TouchDimmer
TS300K Touch Switch £7.75
$\begin{array}{ll}\text { TDE/K } & \begin{array}{l}\text { 2 way extension } \\ \text { for above kits }\end{array} \\ & \mathbf{f 2 . 5 0}\end{array}$
LD300K Rotary controlled
Light Dimmer
13.95

DISCO LIGHTINGKITS

K 19 Stereo Amplifier Controlier Ki or remote control of bass, treble and 10 decoder remote channel or input selection May be connected between the pre amp and power amp of almost any audio system,
$\mathbf{E 1 0 . 7 \theta}$

MK 12 Receiver Kit - mains powered with 16 latched or momentary outputs. Latched version is for applications reguiring one output on at a lime, eg TV an output only during transmission, Lines may be latched as required: Size: $9 \times 4 \times 2 \mathrm{cms}$.
£13.50
MK 15 Dual Latched Solid State Relay or switching mains loads such as lamos TVs, etc, from the outputs of the MK 12 momentary). 15 items may be switched ndependently using 8 MK 15 s . Triacs (not supplied switch at mains zero to reduce interference. $\quad \mathbf{~ 4 . 5 0}$

Dl 1000K - This value-for-money 4 -way chaser features bi-directional sequence LLZ 1000 K - A lower cost uni-directional ersion of the above. Zero switching to educe interference. $\quad \mathbf{E 8 . 9 5}$ Optional opto input allowing audio 'beat' light response (DLA/1) 70p L3000K - 3-channel sound to light kit features zero voltage switching, auto matic level control and built-in micro
phone. 1 kW per channel.
$\mathbf{f 1 2 . 9 5}$

OTHER KITS

C	Clock/Timer	¢14.90
CT1000KB	Clock/Timer + Box	£17.40
XK126	DVM/Thermameter	f15.50
MK1	Thermostat	¢4.60
MK2	Solid State Relay	C2.60
MK4	Temperature Control	c6.50
MK5	Mains Timer	C6.50
MK6	Infra Red Transmitter	C4.50
MK7	Infra Red Receiver	¢10.50

assembly instructions.

LOOK！ unbeatabievalue
 SINOLE THIN LINE FLOPPY DISK DAIV SINGLE SIDED DOUBLE OENSITY 100 GRANONEW
 DON＇TDELAY－ ORDER TODAY！

3518 display

OSCHLOSCOPES

IEK 454 Oual Trace 150 MHz Dealay Semeen － 6 TEL EOUPMENT D83 Dual Tace 50uHz Deay Sween ．．． 870 TEK 453 Dual Trece 50 M HZ Delay Sweep COSSOR 4100 Dual Trace 75 MHZ Oelay Sweep © SOLARTRON CO1740 Oual Tace 50 MHz Oual tB 14 TEK $585 A$ Dual Trace B5MHZ Oual TR Delay Swee 15 COSSOR CDU 150 Oual Trace 35 NHZ Delay 78 17 SELABS SM111 Oual Trace 2OMH2 23 SOLARTRON CO1400 Dual Beam 15MHZ STORLEE OSCHLLOSCOPES
35 TELEQUIPMENT OM64 Dual Trace 1OMMZ

t06 MARCONI UNIVERSAL BRIDGE TF13130．25\％	
108 MARCON INSITU UNIVERSAL BRIDGE TF7701．Bat	
Operated	
109 Wayne Keri Autobalance Component Bridg	
114 Wayne Kerr Component Eridge 8521（CT375）L 100 H	
17 Wayne Kerr VHF Admittance Bridge 8801 with Source S	
8 De	5400
marco	5375
123 AtRMEC MOD METER AM／FM Type $2103 \cdot 300 \mathrm{M}$	
124 MARCONI RF MILIVOLTMETER TF2603 50KHZ－1500MHZ	
125 MAACONI ELECIRONIC VDITMETER TF260420	
1500 MHz AC／OC／0hms AC300mv－300V FSD：OC 2	
1 KV FSO	
144 AVO MULTIM	
152 MULTIMETER U4324 33 swiched ranges 20 K Ohm per volt Comple with heads \＆balleny．Arand New．One year guarantee	
P\＆P ¢ 4	
160 farmell st	
Matere	
161 FARNELL STAB PSU TSV30／20－30V 2 Current limiting	
163 ROBANO VARECO PSU type 33－2 0－33V 2 A Current limiting metered \｛in turrent production） $\$ 100$	
169 KINGSHILL STAB PSU Model 5000 －60V $0.5 A$ Current IImiting Melerad P\＆P £7	
180 granden burgh photomultiplier PSU 47R 10－2100V	
5 ma M	
191 AC／DC ELECTRONICS PSU MODULE $2515 \mathrm{5V} 2 \mathrm{~A}+1-12 \mathrm{~V} 0.4 \mathrm{~A}$	
Un－used P8P ¢ 3	$\underline{15}$
206 BSK LEVEL RECOROER 2305	
209 Bik measuring Amplifier 26062 Hz －200KHz	
210 bsk band Pass FILTER SET Detave 4 3rd Octave	
Weighing Networks ABCD．	555
211 BSK DIGGTAL EVENT RECORDER 7502	81.500
225 DAWE OCTAVE GANO SOUNO LEVEL METER type 6419 C ¢150	
281 H．P．LOGICSTATIC ANALYSER 1602A	
286 avo value characteristic meter vcm 16	c275
293 MARCONI AF POWER MEIER IFB93a	
297 MARCONI DIFFERENTIAL DC VDLTMETER TF2606	
0.1100 V	
300 RAS POLYSKOP SWOB1 BN 4244／2／50 Also if stock MEW OScilloscopes．Multumeters atc．	
THIS IS A very small sample of stock，saf or Telephone for Lists Please chect wallablity bolore ordering．Carriage all units s10 wit to be added to Total ot Gonds a Carriage．	

£10 wit to le added to Total of Gonds a Cayriage．
1500 MHZ ACCOC 10 hms AC $300 \mathrm{mV}-300 \mathrm{VFSD}$ ：OC 200 mV ．
1 kV FSD． 44 AVO MULTIMETER MOdeI 7 PBP E 7 520 152 MULTIMETER U4324 33 switched ranges 20 K Ohm per volt
Comple with leads $\&$ ballery．Brand New．One year guarantee
50 FARHELL STAB PSU TSV3015 $0-30 \mathrm{~V} 5$ A．Curreni limiting
FARNELL STAB PSU TSV30／2 0－30V $2 A$ Curient liming 550
metered Fing
metsred（in turient production）， 5100
IImiting Melered Psp £ 7 ．．．．．．．．．．．．．．．．．．．．．．
80 GRANDENBURGH PHOTOMULTIPLER PSU 47R 10－2100N
STA Metered．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2200 current un－used

E15
0.4 A

1 AC／OC ELECTRONICS PSU MODULE $2515 \mathrm{~V} 2 \mathrm{~A}+i-12 \mathrm{~V} 0.4 \mathrm{~A}$ Un－used PSP $£ 3$
09 日BK MEASURING AMPLIFIER 26062 HZ －200KHZ 210 BSK BAND PASS FILTER SET Detave \＆3rd Dctave Weighing Nelworks ABCD． 1 HP IOGICSTATIC A NaLYSER 1602 A 93 MARCONI AF POWER METER TFB93A MARCONI OIFFERENTIAL DC VDLTMETER TF2606 $£ 225$
$£ 350$
 52 HARCONI AM／FM Sig Gen TF $10668 / 610.470 \mathrm{MHZ}$ ．．．$£ 325$ 59 MARCON AM／FM Sig Gen TF995A $21.5-220 \mathrm{MHZ}$ ． 62 MARCON VHF Siq Gen IF10648／5M 68－108：118－185：450－ 470MH2．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 63 MARCON OUTPUT TEST SET TF 1065 tor use with TF1064 8 TF995 ranget Sig Gens．
66 AOVANCE AM Sig Gen E2 100KH2－100MHz． 72 TEK Constant Amplitude Sig Gen 1908 350KHZ150MH2．s100 74 MARCONI WIDE RANGE OSC TF－ 13704 1OHZ to 10MHZ elne and square 80 WAYNE KERR AF Sig Gen S 12110 Hz 2 － 120 KH K ．．．．． 849 $87 \mathrm{H} . \mathrm{P}$ ．Pulse Gen $214 \mathrm{~A} 10 \mathrm{HZ} \cdot 1 \mathrm{MHZ}$ 89 EH PULSE GEN 1391 1KHZ－20MH2 Single／0ouble Pulse $£ 200$ g9 TK Mme mank Ge 1 Bo
102 BONTOON O MFIER 260A 50KHZ－50MMZ

STEWART OF READING ［EMP 110 WYKEHAM ROAD，READIMG，BERKS RGE 1PL Telephone： 073488041

FOR QUALITY COMPONENTS BY MAIL ORDER

ELECTROVALUE LTD 28 St．Jude＂s Road，Englefield Green，Egham， Surrey TW20 OHB Phone Egham（0784）33603．Telex 264475 North Branch， 680 Burnage Lane，Manchester M19 1NA Phone 0614324945 Please mention this publication when replying

Callers welcome 9 a．m．to 5.30 p．m．Monday to Saturday inclusive

TOROIDALS

The toroidal transformer is now accepted as the standard in industry， overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size，weight，lower radiated field and，thanks to I．L．P．，PRICE．
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with ashort lead time on quantity orders which can be programmed to your requirements with no price penalty．

$\begin{aligned} & 15 \mathrm{VA} \\ & 62 \times 34 \mathrm{~mm} \\ & \text { Regulation } 19 \% \end{aligned}$		
SEAMES SECOMDARYVots		$\begin{aligned} & \text { RUAS } \\ & \text { Current } \end{aligned}$
0×010	$6+6$ $9+9$	125 083
0×011	9＋9	083
0×012	12＋12	063
$0 x 013$	15＋15	050
0×14	18＋18	042
0x015	$22+22$	034
0×016	$25+25$	030
0×017	$30+30$	025
（encased in ABS plastic）		
30 VA		
$70 \times \underset{\text { Regulation } 18 \%}{30 \mathrm{~mm}}$		
1×010	$6+6$	250
1×011	$9+9$	166
1×012	12＋12	125
1×013	15＋15	100
1×014	18＋18	083
1×015	$22+22$	068
1×016	$25+25$	060
1×017	30 +30	050

Mail Order－Please make your crossed cheques or postal orders payable to ILP Electronics Ltd．
Trade－We will open your credit accoun immediately upon receipt of your first order．

Post to：ILP Electronics Ltd．，Dept． 2 Graham Bell House，Roper Close Canterbury，Kent．CT2 7EP Tel：（0227） 454778 Telex： 965780
ELECTRONICS LTD．

T.V. SOUND TUNER

SERIES II BUILT AND TESTED Complete with case, $£ 26.50+£ 2.00$ p\&o. TV companies do their best 10 transmit the high
est quality sound. Given est quality sound. Given pact and independent TV tuner that connects direct to your $\mathrm{Hi}-\mathrm{Fi}$ is a must for quality reproduction. The unit is main operated. This TV SOUND
TUNER offers full UHF coverage
 with 5 pre-selected tuning controls. Also available with built-in headphone E.T HIFI SPEAKER BARGAINS

TOKUDEN - $8^{\prime \prime} .8 \mathrm{ohm}$ full range $71 / 2 \mathrm{~W}$ twin cone speaker. $£ 3.50+£ 1.10$ p\&p GOODMANS - 7" 60 W Bass/Mid. speaker. 8 ohm impedance. Freq. res.: $40-6.000 \mathrm{~Hz}$. $41 /{ }^{\prime} \times 1 / 2$ magnet. $£ 14.95+£ 1.75 \mathrm{p} \& \mathrm{p}$. With rolled surround. $£ 4.95+£ 150$ 组
 Tweeters: 8 ohm soft dome radiator ivpe. £3.95 *a. + £ 1 p\&p or $\mathbf{6 6 . 9 5}$ pr. $+\mathbb{1} 50$ p\& EAGLE - Full range $8^{\prime \prime}$ 20W, 8ohm Twin cone with rolled surround. $56.95+£ 220 \mathrm{p} \% \mathrm{p}$. Full range $61 / 2^{\prime \prime} 15 \mathrm{~W}, 8 \mathrm{ohm}$. Twin cone with rolled surround. $£ 5.95+£ 2.20$ p\&p. Full range $4^{\circ} 8 \mathrm{BW}$, 8 ohm With rolled surround. $£ 4.95+£ 1.50$ p\&

125W HIGH POWER AMP MODULES

The power amp kit is a moduie for high power applications - disco units, guitar amplt iers. public address systemis and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety ponents, result ase of generously rated com The PC board is back printed etched and ready to drill tor ease of construction and it aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
Accessories: Stereo mans power supply kirw wh . $£ 10.50+$ £2p\&n. Mono: $£ 7.50+£ 2 p \& p$

STOCK CLEARANCE

(Trade enquiries welcome) IC regulated P.S.U. utilising (Motorola MC 7818 CT)
All components inc. mains transformer are mounted on a 4 "x 23 " P.C.B. Input 2201 240 AC , output 18 V DC @ 350 mA . Ver low ripple \& short-eircuit protected.
Ready built $£ 2.750+500$ P\&P. Ready built $£ 2.75 p+.50 p$ P\&P. sec: $6-0-6 \vee @ 4 \vee A$ PRI: 220/240V 4 for $£ 2.50 \mathrm{p}+.50 \mathrm{p}$ P\& P . 6 V mains adaptor
13 amp plug-in type Flving lead output with 2.1 mm female plug. Max output 150 mA D.C.
E2.000 +500 P\&P $\mathbf{E 2 . 0 0 0}+.50 \mathrm{p}$ P\&P.
Stabilised 9V mains adaptor
Fully encapsulated with flying mains \& out put leads. Max. output: 200 mA D.C

P.C.B. copper laminate: Single sided $16^{\prime \prime} \times 14^{\prime \prime}-1 / 16^{\prime \prime}$ thick. E1.30p + 50p P\&P LP 1183 Stereo preamp module suital LP 1183 Stereo preamp module suitable fo ceramic p.u., radiolaux. inputs. Direct tag-
out connections to bass, treble \& level con. trols. Supply $18-24 \vee$ D.C. P.C.B. size $31 /{ }^{*} \times 3 \%$ ". $\mathbf{E 1 . 0 0 p}+.50 \mathrm{p}$ P\&P. LP 1184 as above, but with magnetic p.L input. Size $43 / 1 \times 4$ " approx. £1.50p + 50 p P\&P.
LP 1173 10W into 4 ohm Discrete powet amp module. Supply 24 V D.C. Size $41^{\prime \prime} \times 2$ " $^{\prime \prime} \times 1$ " $£ 2.95 \mathrm{p}+.50 \mathrm{p}$ P\&P 2N3055 FERRANTI Power Transisiors 4 for f1.25p +. 50 p P\&P.
TBA 800 SGS/ATES 7 watt audio IC 2 for E1.00p + .20p P\&P
ONITAC
All mail to: 21E HIGH ST, ACTON W3 6NG Callers: Mon - Sat 9.30-5.30. Half day Wed. ACCESS phone orders on 01-992 8430. Note: Goords despatched to U.K. postal adtresses only. All items subject 10 availablity. Prices correct a
$31 / 9 / 84$ and subject to ch ange without notice Please altow 14 working days from recelpt of order for despatch. RTVC Limitad reserve the right to up date their products whithout notice. All engalines send
$S A$. E . Telephone or mall orders by ACCESS welcame.

PE STEREO CASSETTE RECORDER KIT

SPECIFICATIONS
Max. output power (RMS): 125 W . Operating voltage (DC) 50-80 max Loads: 4-16 ohm Freguency response measured
$25 \mathrm{~Hz}, 20 \mathrm{KH}$ Sensilivity for 100 w .400 m 25Hz 47 K . Typical THID © 50 watts, 4 orms 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

KIT £12.00
BUILT $£ 17.50$
+10

PAIR 10W SPEAKERS Incorporates 4"' 10 watt speaker. Finished in teak venee simulate. Built, ready to use
Ideal extension spkrs $12 \% x$ $7 \% \times 4 \%$ ins. $£ 14.95+£ 1.75$ p\&p.
STEREO TUNER KIT SPECIAL
 $+£ 2.50 \rho \& p$
This easy to build 3 band stereo AM/FM tune kit is designed in conjunction with PE (July 81) For ease of construction and alignment it incorporates three Mullard modules and an I.C. (F System. Front scale size $1011^{\prime \prime} \times 21 / 2$
approx. With diagram and instructions approx. With diagram and instructions.

MONO MIXER AMP

50 Watt, six individually mixed inputs tor 2 pickups (Cer. or mag). 2 moving coil microphones and 2 auxiliary for tape tuner, organ etc. Eight slider controls - 6 for level and 2 controls for mic. and aux. inputs. Size: $131^{\prime} \times 61_{2}^{\prime \prime} \times 3 \%$ app. Power outpu! 50 W RMS (cont.) for use with 4 to 8 ohm speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use CALLERS TO: 323 EDGWARE ROAD. LONDON W2.

Now osen 6 days engware Road Tube Slatom.

This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction manual and many more components, enabling you to design and use adders. subtractors, counters (ripple. up/down, synchronous, decade and Gray codel, registers, pattern recognisers and 7 -segment displays. You need the board and components from SUPERKIT to e nable you to build the circuits in SUPERKIT II. Together the two kits provide an excellent introduction to digital electronics - what really goes on inside a computer.
SUPERKIT. (SUP) £22.00 SUPERKIT II (SUP II) £16.00 Special price £35.00 for both (SUP + II) (inc. VAT and $p 8$ p) The SUPERKIT series is backed by our theory courses, DIGITAL COMPUTER LOGIC (beginners course), which covers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced), which covers the design of digital computers. MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.
DIGITAL COMPUTER LOGIC (DCL £7.00
DIGITAL COMPUTER DESIGN (DCD) E9.E0
MICROPROCESSORS AND MICROELECTRONICS (MIC) E6.EO
Please send for full information on these and our other courses.
GUARANTEE " you are not completely satisfied, return the tem to us within 28 days for a full refund. All prices include woridwide suface postage lask for prepayment invoice tor airmaill. Allow 28 days for delivery in UK Overseass payment by interinational credit card or by bank drat

CAMBRIDGE LEARNING LTD, Unit 16, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England. Tel: 0480-67446
vat No 313026022 Transcash No 2789159 Reg No 1328762
Please send me ${ }^{\text {© }}$ (initial letters used

I enclose a cheque/PO payable to Cambridge Learning Ltd for $£ ., \ldots, \ldots$ Please charge my
credit card.
No Expiry date
Telephone orders from credit card holders accepted on 048067446 (24 hrs)

DRAM BOARD

UPDATE

Ahh! Doesn't it take you back to the balmy days of September 1983 when ETI first published its 64K DRAM board? The sheer technical excellence of the design, the excitement as you completed your very own memory card, the horror when you found it didn't work. Never mind, says Phil Walker, memories are re-made like this....

In September 1983 we ran a design for a 64 K DRAM board to connect to the Microtan 65 system or indeed any 6502 processor system. Although the original worked satisfactorily we received a number of letters from readers who could not get theirs to work. At first it looked as though there was a faulty batch of the 74LS608 controller chip around which the design was based but after a while it became apparent that it was "a problem device":

To overcome the shortcomings of the original design and to simultaneously incorporate some new features, last month's Experimenter's DRAM Card was designed. This removed the need for special ICs by using standard components. The only u nusual items were the $441616 \mathrm{~K} \times 4$ bit dynamic RAMs which were used because they allowed the PCB to be only partially populated when a significant proportion of the address space was not required.

Once this board was working on the author's 6502 system - which runs at 1.25 MHz , a little faster than the tangerine - it seemed reasonable that we should go back and do something for all those people who had built the 1983 project. To this end we have designed a small PCB which contains all the necessary control logic to replace both the 74LS608 and two other devices on the original board.

This PCB is mounted 'piggyback' fashion on the PCB once all the original control ICs and timing components have been removed.

All the original features relating to address space allocation are retained and the same PROM can be used. One thing which may be of interest to non-Tangerine users is that there is no longer any need for the $\varphi 1$ signal to be provided as all timing is taken from the edges of the $\varphi 2$ signal.

The Circuit

This is identical in most respects to the control logic in last month's project. One significant difference is that the incoming select signal from the PROM is high to enable rather than low. However, since

HOW IT WORKS

This is very much the same as for last month's Experimenter's DRAM Card project but we shall go through it briefly in relation to the original design.

All timing is performed relative to the rising and falling edges of the φ_{2} signal from the 6502 processor. $\varphi 2$ is buffered by IC22a and by means of the delays in IC22b, C21 and 22. IC23 is triggered on both edges of 02 to produce the RAS pulse. The width of this pulse is controlled by RV21 in conjunction with C23 and R23.

A delayed version of the RAS signal is used as the MUX signal to operate the row/column address multiplexers. Shortly after this IC24a is clocked, and if $\varphi 2$ is currently high and the inverted SEL. line is low, the CAS output will go low and stay low until $\varphi 2$ goes low at the end of the processor access period. This keeps the data at the outputs available for longer when a read cycle is required. If $\varphi 2$ was low then the CAS output will stay high and a refresh operation will occur.

If all other conditions for a processor access cycle have been satisfied, to write data to memory the R / W line will be low. This condition is gated with the state of the inverted $\varphi 2$ signal in IC22c and with the MUX signal in 1C22d. This ensures that the WE low condition is only asserted at the
requisite time.
At the end of each RAS pulse IC24b is clocked to sample the state of the $\varphi 2$ signal. The outputs of IC24b are used to enable and disable the address buffers and allow the processor or refresh addresses onto the memory chip address pins at the appropriate times. Doing it this way rather than with the $\varphi 1$ and $\varphi 2$ clock signals allows more settling time for the buffers and the refresh address counter before the RAS strobe occurs to start the next operation.

The last piece of circuitry to describe is the power-on-reset. This is produced by IC1b and c together with C25 and R21. D21 allows C25 to discharge rapidly when the power is turned off. By means of this circuit, IC23 and 24b are held in a defined state for a short while after power is applied. This allows the internal circuitry of the memories to become operational. This operation is required when power is applied, not when the processor is reset. Note also that eight RAS only cycles shouid by performed after the power-on-reset before the memories are fully operational. However this will usually be taken up by the system initialisation routines reading from ROM.

Fig. 1 Circuit diagram of the new control logic.
there is no G pin on the 4164 devices, the inverter which previously provided this signal can now be used to invert the SEL line and enable the data buffer at the appropriate time.

The other difference is in the $\overline{\text { WE }}$ circuitry. The lack of the G pin on the 4164 means that, if we want to connect the data - in and data out pins of the memory chips to the same data bus as in the original

Fig. 2 Timing diagram for the control logic showing how all of the signals are derived from $\varphi 2$.
design, the write cycle must be the so-called 'early write' detailed in the data sheet. This requires that the WE signal go low before the $\overline{C A S}$ signal goes low. If this is not done the data outputs of the memory chips will become active and may try to drive the data bus into a state opposite to that of the bus buffer.

Construction

Construction of the PCB itself is quite straightforward. Remember that there are four wire links to be inserted as this is a single sided board. If height is likely to be a problem then solder the ICs directly into the PCB but otherwise use sockets. The other components are simple to install but the usual care should be taken to get polarities correct.

Assembly onto the main board should be postponed until the addon board has been tested. You will need access to a signal generator giving a 1 MHz TTL compatible square wave signal and an oscilloscope with which to see the results.

Connect a suitable +5 V supply to the board and check that the current drawn is not more than

Fig. 3 Component overlay of the PCB.

100 mA or so. Connect the SEL testpoint to 0 V and a 1 MHz square wave TTL compatible signal to the $\varphi 2$ test point and monitor the signals on the RAS, CAS and WE test points. Only RAS should show any activity at this stage and its low time should be set to about 300ns by means of RV21 (one half to three-quarters clockwise rotation). Both the CAS and WE signals should be high. A worthwhile check at this stage is to see that SKB pins 6 and 9 are switching at the same rate as the $\varphi 2$ signal but phase shifted from it. Also check that the MUX signal at SKA pin 11 is similar to the RAS signal but slightly delayed from it (RV22 should be set to approximately one quarter of its clockwise rotation). Note that the RAS and MUX signals are at twice the φ_{2} frequency.

So far we have checked that IC21e, 22a \& b, 23 and 24b are working. Now set the SEL test point to +5 V , or just open circuit the link you previously inserted, and check that the CAS test point shows low pulses but only while $\varphi 2$ is high. The RAS to CAS delay time can be adjusted by means of RV22 if required but will only be critical if you have a slow processor.

There are only two other sections to check. Monitor the WE output and check that, with the R/W
input open circuit or logic high, this output is also permanently high. Applying a logic low or OV signal to the input should cause the WE output to produce a series of low pulses, at the same rate as $\varphi 2$ but with the same width as the MUX low signal. The WE pulses should only occur when $\varphi 2$ is high.

The last thing to check is the power-on-reset. If possible, monitor the RES test point and the voltage across C25. Temporarily short circuit C25 and check that the test point stays high for a few milliseconds after the short is removed.

By now you should have a fully tested board and will be ready to connect it to the original DRAM. First disconnect all the wires you used in the testing phase and connect 22 SWG tinned copper wires to the SKA and B positions. Cut these off flush with the top side of the board but leave them about 25 mm (1 inch) long on the wiring side.

Next remove IC16, 17 and 18 from the original PCB together with their sockets and R1 to 6, C1 to 6 and D1 to 3. If you have not corrected the original PCBs you should now connect IC1 pins 2 and 12 to 0 V , IC3 pin 9 to IC4 pin 9 and the tracks going to EC2a and 2 b to EC3a and 3b respectively instead.

Please mention E.T.I. when replying to all adverts

If an advertisement is wrong wére here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below. The Advertising Standards Authority.

Siflidy Assemble and install your own system and save pounds

A COMPLETE SECURITY

 SYSTEM FOR ONLY $£ 39.95$
Control Unit

Enclosure
Koy Switch $\& 2$ keys
K.E.D.'s
L. 5/2" Horn Speaker 4 quality
Switches

With only a few hours of your time it is possible to assemble and install an effective security system to plotect your family and property, at the amazingly
low cost of low cost on cut. The outstanding value results fiom volume production and direct supply. Assembly is straight lorward with the detailed instructions provided. When installed you can enjoy the peace of mind that results from a serure home. Should you wish to increase the evelof secuny, Don't wait until it's too late-urder today Order code CS 1370 HW 1250 Enclosure \& Hardware Kit for above LED 1 - Set of 4 I.e.d.'s in chrome bezels + Push

 HS $588-5 / /^{\prime \prime}$ Morn Speaker, ouput of 110 dbs with

CA 1250 or SL 157 US 5083 - advanced Digital Ultrasonic Detector, high sensitivity, with false alarm suppression \begin{tabular}{ll}
SC 5063 -Enclosure for US 5063 \& E13.55 + V.A.T.

E2.95 + VA.T.

\hline

 IR 1470 - Infra-red system to provide 50. invisible beam, includes both transmitter and receiver

SL 157 - Siren Module 12V \& £25.61 + V.A.T.

f2.95 + V.A.I.

\hline
\end{tabular}

Wide range of modules and accessories, etc. Send S.A.E. for details.

SELF-CONTAINED ULTRASONIC UNIT CK 5063
Requires no installation. Easily assembled using our professionally bullt and tested modules. Adjustable range up to 25 tt . Buit-in entrance and exit dela Key operated switch - Off, Test and Operata only Provision for an extension speaker
Fully self-cont Fully self-contained
Uses US 5063 , PSL 1865 K ey Switch
$\mathbf{£ 3 7 , 0 0}$ 3901.3^{3} Speaker 3515 +V.A.T.
Now you can assembie a realiy effective intruder afarm at this low price using
tried and tested Riscomp modules. Supplied with full instructions, the kit contains everything necessary to provide an effective warning system for your house or tiat. With a built-in LED indicator and test position the unit is easily setup requiring no installation. it may simply be placed on a cupboard or desk.
Movement within iss range will then cause the builh-in siren to produce a Movement within is range will then cause the builh-in siren to produce a
penetrating 900dbs of sound, or even Itodbs with an additional speaker. All parts included and supplied with tull instructions for ease of assembiy.
Size $200 \times 180 \times 70 \mathrm{~mm}$ Order os CK 5063
MDEX disc O/S + BASIC £95
MDEX Professional Dev. Sys.
MDEX Professional Dev. Sys.
£275
CORTEX POWER-BASIC disc extensions £43
MDEX ExtensionsEditor
$£ 35$
Relocating Assembler/linker
£35
£35
FORTH - screen editor, assembler ع55
PASCAL - by Pre Brinch Hansen £35
QBASIC - fast BASIC compiler£150
UCSD Pascal, SPL, META, WINDOW, SPELL
CORTEX tape software
Pengo - fast machine code action ${ }^{〔} 6$
Golt - excellent animation
Golt - excellent animation
£6
Space Bugs, Pontoon, Breakout each £6Cassette/CDOS word processorAdd $£ 2$ for software on CDOS disc
Disc Drives
80 track double-sided double-density ع19040 track single-sided double densityE-BUS Floppy/Winchester ControllerE-BUS 64/128 Kbytes DRAM cardE-BUS 9995 Processor card
!!Brainstem Issue 2 out soon!!

400
MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY SOUTHAMPTON

SO1 5AP

TEL: 0703780084

MARCO TRADING (DEPT ETI)

 The Maltings High Street
Wem, Shropshire SY4 5EN

Tel: 093932763 Telex: 35565

THE OTHER END OF THE SCALE

Single-bit microcomputers are alive and well - and will soon be living in your washing machine or TV. James McGuigan, System Engineer at Motorola Semiconductor Products Sector, East Kilbride, introduces the MC6804P2 single - chip microcomputer.

Single-chip microcomputers are set to invade our homes! Like Greek warriors, they'll be hiding inside Trojan horses, although these horses will look more like washing machines and TV sets.

Actually, it's all very logical and nothing to worry about. Mechanical controls are unreliable and expensive to make, and for some time electronic controls have been replacing them in a large range of applications. What could be more logical than using a single-chip microprocessor to replace a board-full of $\Pi \mathrm{L}$ or CMOS, and, at the same time, upgrading the 'intelligence' of the control unit.

This invasion will be self-reinforcing: the more devices use the single-chip microcomputers, the cheaper and better known they will become, and so more devices will use them. Prime targets will be TVs and videos, games, toys, cameras, motor vehicles, power tools and domestic appliances. For example, the device here could be used to control a TV set, tuning in the channel selected via a phaselocked loop, controlling the sound level by a voltagecontrolled potentiometer, and accepting instructions from a remote control unit.

Motorola's involvement in single-chip microcomputers started with them second-sourcing MOSTEK's MC3870. Motorola's first 'home-grown' single-chip device was the MC6801, which was on the market in 1978.

As you might expect, the MC6801 had quite a lot of the same circuitry the MC6800 microprocessor - why re-invent the wheel when you can use something that you know works? Additional circuitry included program memory (ROM) and data memory (RAM), besides input/output ports, a serial communications interface and a multifunction timer.

In 1979, the availability of improved chip fabrication techniques allowed the size of the chip die - the actual piece of silicon on which all the clever stuff is mounted - to be reduced. The technology used is refferred to as HMOS (High density n-MOS) and involved the use of interconnections on the silicon of 3.9 um width (by comparison, Motorola are presently preparing themselves to use tracks of 1 um or smaller). The size of the die makes quite a difference to the price of the final IC, so this change allowed the price to fall.

Also in 1979, Motorola introduced the MC6805P2. This was essentially a development from the 6801; it had been found that most applications did not require as sophisticated a register set as the 6801 provided, and so these were reduced. The RAM and ROM were reduced in size, and the timer was simplified, and the serial interface was dropped.

Fig. 1 Eight-bit parallel adder with ripple-through carry.
There are now a series of devices in the 6805 family, all with different bells and whistles added to make them more appropriate to particular control or other applications.

All Change

The MC6804P2 represents a major change in direction for Motorola's single-chip computers. Not only has any resemblance to the 6800 been abandoned, but the whole basis for the architecture has been changed. The major difference is that the 6804 uses serial rather than parallel architecture. However, Motorola have managed to work the trick of making the 6804 appear to be an eight-bit device to the user. The whole purpose of this is to reduce thediesize, which, as we've already observed, reduces the cost of the finished IC. Let's take a closer look at what having serial architecture actually means.

Conventional microprocessors manipulate data in lots of eight bits, ie bytes. For example, the central processing unit (CPU) and data bus are eight bits wide. An address bus and program counter (PC) of 12 bits wide can access up to

4096 bytes (4K) of data.
With the 6804 family all the hardware is actually only one bit wide. All data transfers, arithmetic and address operations are carried out serially one bit at a time. This means that the CPU, data bus, address bus, program counter, timer and prescaler are all only one bit wide.

Consider, for example, an eight-bit arithmetic and logic unit (ALU). Within this ALU we have an eight-bit adder to add two eight-bit numbers A and B (and possibly a carry-in bit as well). The adder will have eight sum bits and a carry-out bit as its output.

The eight-bit adder will be made up of eight separate single-bit full adders as shown in Fig. 1, which shows a 'ripple-through' adder configuration. First of all the least significant bits AO and BO are added to Cin. The sum appears at SO and any carry 'ripples' through to be added to the sum of A1 and B1. This carries on until the eight-bit sum of A and B is calculated.

The eight-bit adder described above uses eight singlebit full adders plus three registers to hold A, B and their sum - this is a lot of hardware and consequently expensive. However, it is possible to make do with just one single-bit full adder as shown in Fig. 2. This serial adder is made up of one single-bit full adder, three shift registers and a D-type flip-flop.

When two eight-bit numbers are to be added, they are loaded into shift registers A and B. The least significant bit is to the right and the most significant bit is to the left. On each clock pulse, registers A and B are shifted one bit to the right. The bits which 'fall out' of the registers provide the inputs to the adder along with Cin. The adder's sum output is shifted into the SUM shift register. Any carry from this single-bit addition is latched by the D-type flipflop.

Fig. 2 Eight-bit serial adder using only one full adder.
Obviously, the serial method is somewhat slower but there is an enormous saving in hardware and, consequently, space. Consider now the above principles applied to microprocessors. If we can reduce the amount of on-chip hardware then considerable savings can be made in chip size. A smaller chip size means that more can be fabricated on to a silicon wafer. In turn, this means increased productivity and cheaper processors.

Of course, the serial approach is always going to be slower than parallel design but there are many applications in which speed is not critical. In any case, with the 6804 provision has been made to permit the use of very high clock speeds: the maximum external oscillator frequency for the 6804 P 2 is 11 MHz .

The following description applies mainly to the MC6804P2 version with mask-programmed program ROM; however, the soon to be released MC68705P3 EPROM version is similar to the point of pin-compatibility. Also, a wide range CMOS (as opposed to NMOS) devices are planned and these will also be very similar.

In More Detail

Figure 3 shows the MC6804P2 block diagram. The CPU contains the ALU, control, stack and registers. Memory consists of three areas: program ROM (1K), data memory (64 bytes ROM and 32 bytesRAM) and the stack. The timer circuitry is made up of prescaler, counter and control

Fig. 3 MC6804P2 block diagram.

registers and oscillator circuitry. The 6804P2 also has 20 versatile 1/O lines.

The CPU is similar to that of the 68705P3. However, there are some differences. The eight-bit accumulator is memory-mapped at address \$FF and has indirect registers which replace the index register on the 68705P3. The indirect registers are memory-mapped at locations $\$ 80$ and $\$ 81$.

There are only two condition code flags on the 6804P2, C and Z, and there is no condition code register. The flags used for normal processing and interrupts are different. With interrupts, the processor automatically uses the interrupt-mode flags and, on return from interrupt, the normal-mode flags are used. Previous flag states will be used when switching from one set to another.

The stack is used to store subroutine and interrupt return addresses. It is a hardware stack, 12 bits wide and four levels deep (ie equivalent to a 48-bit shift register). Its last-in, first-out (LIFO) configuration eliminates the need for a stack pointer.

A crystal, R-C network or external signal can be used to generate the system clock. A mask option selects either the crystal or R-C network oscillator circuit.

The oscillator frequency is divided (internally) by four to produce the internal clock. This in turn is divided by twelve to produce a machine cycle. A machine cycle is the smallest unit needed to execute any operation and an instruction may need two, four or five machine cycles to execute.

To facilitate testing, a signature analysis circuit has been included on the chip. The circuit consists of two eight-bit shift registers (memory-mapped at addresses \$OA and \$OB) configured to perform a Cyclic Redundancy Check on the ROM. The CRC registers can also be utilised as a pseudo random number generator as a result of continuous CRC calculations being performed.

Memory

The 6804P2 has 1 K of program memory which contains all instructions to be executed, immediate data and interrupt vectors. Figure 4 shows the 6804P2 memory map. Data space comprises 64 bytes of ROM for constants and tables, all 32 bytes of RAM and the I/O, timer and CRC registers. This configuration is different from the 68705P3 where program and data memory are combined in a von Neuman architecture (ie there is no distinction between program and data storage except that some areas - the EPROM sections - cannot normally be written to).

Note that only the PC is stored on the stack. Any other registers have to be saved in RAM by means of software and reloaded at the end of the subroutine or interrupt routine. On a stack push the bottom register always 'falls out' of the bottom of the stack. The stack should not be pulled more than four times in succession without any pushes.

Fig. 4 MC6804P2 address map.

Timer

Timer circuitry for the MC6804P2 is shown in Fig. 5. The timer comprises an eight-bit timer counter register (TCR) with a seven-bit prescaler and a timer status control register (TSCR). These registers are all memory-mapped and are readable and writeable.

The TCR is clocked towards zero by the prescaler output. The prescaler is used to provide longer or shorter timer intervals by dividing the input clock. The prescaler tap is selected by bits 0-2 of the TSCR - giving a range of divide-by-1 to divide-by-128.

PSI, bit 3 of the TSCR, is used to initialise the prescaler (to \$FF) and inhibit counting when logic zero. The TCR is also inhibited but its contents are unchanged. When $\mathrm{PSI}=$ 1 the prescaler begins to count.

Unlike the 68705P3, the 6804P2's timer can operate in both input and output modes. Bit 5 of the TSCR, TOUT, selects output when high and input when low.

As an input, the TIMER pin is connected directly to the prescaler input. Therefore the prescaler is clocked by the signal on the TIMER pin. The prescaler then clocks the TCR which sets bit 7 of the TSCR (TMZ) when it reaches zero. TMZ can be tested by software to perform a timer function whenever it goes high.

Operation in the output mode is somewhat similar to that for input mode. With TOUT = 1, the TIMER pin is connected to the DOUT latch and the prescaler is clocked by the internal sync pulse. The positive-going TMZ transition latches the DOUT bit and provides it as an output for the TIMER pin. Note that TMZ can be set by writing zero to the TCR or by setting TMZ directly.

Interrupt And Reset

Processing can be interrupted by applying a logic low signal to the IRQpin. Whether the negative-going edge or the actual low level is sensed is determined by a mask option. With the 68705P3, however, we have a choice of three interrupts, external, timer and software. The flowchart in Fig. 6 gives a detailed description of 6804P2 interrupt handling.

On power-up the interrupt mask is set. This blocks any

Fig. 6 Reset and interrupt processing flowchart.
'ghost' interrupts from occurring. To clear the interrupt mask the programmer should jump-to-subroutine (JSR) to an initialisation routine as the first instruction in a program. This initialisation routine should be terminated with an RTI instruction instead of TRS since RTI will not only restore the PC, but will also clear the interrupt mask.

During power-up a short delay - to allow the internal oscillator to stabilise - is needed before allowing the RESET line to go high. The configuration in Fig. 7 provides sufficient delay.

Interrupt and reset vectors on the 6804P2 are actually JMP instructions to the interrupt or reset routine which are placed at fixed addresses in the Program ROM. With the 6804P2, a vector fetch forces an address value into the PC, whereas with the 68705P3 a vector fetch forces an address value directly onto the address bus. Figure8shows the manner in which resets should be programmed.

Input / Output Ports

All 201 /O lines are programmable as inputs or outputs by setting the corresponding bit in the appropriate data direction register (DDR) low or high respectively. On reset the port data registers are not initialised but all ports are configured as inputs. To avoid undefined levels it is a

Fig. 5 Timer block diag

FEATURE : Single Chip Computer

Fig. 8 Program flow after reset vector fetch.
good idea to write to the data registers before writing to the DDRs.

When programmed as outputs, the latched output data is readable as input data regardless of the logic levels at the output pin due to output loading. Figure 9 shows typical port circuitry.

Fig. 9 Typical I/O port circuitry.
All ports are LSTTL compatible as inputs and outputs. Port B outputs can also drive LEDs, with suitable current limiting resistors. The user can select one of two mask options (for all ports) as either pullup resistors for CMOS output compatibility or open-drain output; see Fig. 10 for typical port connections.

Fig. 10 Typical port connections.

Software And Instruction Set

The MC6804P2 has a rather unique, byte-efficient, instruction set. There are 41 instructions with opcode and 17 assembler-recognised instructions. Figure 11 shows the 6804 P 2 opcode map. The instruction set is similar to the 68705P3 including true bit manipulation plus a 'move immediate data' instruction.

BSET/BCLR can set or clear any register or RAM bit. BRSET/BRCLR can be used to test any bit in data space (including ROM) and branch or not as a result of the bit's state. The C-flag is set to the value of the bit referenced by BRSET/BRCLR. Bit manipulation allows the user to have individual flags and to handle the I/O bits individually with ease.

Fig. 11 6804P2 op-code.

The 'move immediate data' instruction transfers immediate data into data RAM and has the format 'MVI ADDRESS DATA'. Previously, on the 68705P3, data had to be loaded and stored through the accumulator. This takes up 4 bytes of ROM but only 3 on the 6804P2 when the MVI instruction is used.

The implied instructions shown in Fig. 12, exist because the accumulator and indirect registers are in RAM. For example, bit manipulation of bit 7 of the accumulator and indirect registers can give pseudo-ops such as BRSET $7, \$ 80$ for 'branch if X minus' (BXMI), BCLR $7, \$$ FF for 'ensure accumulator positive' and ADD \$FF for ASLA.

The 6804P2 has nine addressing modes. In summary these are immediate, direct, short-direct, extended, relative, bit set/clear, bit test and branch, register-indirect and inherent. Most of these modes are similar to those used on the 68705P3. However, short-direct, relative (-short), register-indirect and inherent addressing modes use only one byte.

There is no indexed addressing as on the 68705P3 but register-indirect addressing is the same except that an offset cannot be used. This addressing mode works on ASSEMBLER RECOGNISED INSTAUCTIONS (OERAVED)
NO OPCOOES FOR THESE INSTRUCTIONS

Fig. 12 Implied instruction set.

RAM location $\$ 80$ and $\$ 83$, ie the X and Y indirect registers and two others. A typical register-indirect instruction is CMP (X) which compares the contents of the accumulator with the contents of the address pointed to by the indirect X-register.

Summary

The Mc6804P2 is the first of a new family of Motorola single-chip microcomputers. Its unique architecture means that it can offer eight-bit power at a four-bit price.

As mentioned earlier, EPROM versions will soon be available and are ideally suited for use by hobbyists for a wide range of applications. Anyone used to working with Motorola's M6805 family will find the new 6804 range surprisingly simple to use.
(For further details of other single-chip microcomputers, we suggest 'Single Chip Microcomputers', Edited by Paul F. Lister, published by Granada publishing Ltd, ISBN O-246-12106-8).

ETI

THE ETI READERS' SURVEY

Survey time is here again, and this time there's the chance to win ten free subscriptions for one year. The draw will take place on the 1st of February, so don't delay getting your form to us.

Here is the ETI survey! We'd be most grateful if you could answer our questions as best you can.

We'll be using the information in two ways. Firstly, to see what you think of the magazine and the ways you think that it could be improved. Secondly, we want to persuade more advertisers that ETI is the place to sell their goods.

On this second point, we have had to ask some personal questions. Please be reassured that any personal information you give us will be treated as confidential, and not stored in any data retreival system or communicated in any way.

All that we need are some (suitably impressive!) statistics on our readers.

That said, we know that some people like to keep the details of their salary private between them and their employer, so we've included a 'mind your own business option' on this question. If any other questions offend, please don't feel obliged to answer them - we'd prefer that you returned the survey form with some bits left out rather than not at all. However, all the information you can give us will be of use.

Finally, one piece of information we will need is your name and
address, because otherwise we won't know where to send the free subscription if you win one. If you do leave off your name and address, we'll just draw another name out of the hat.

Name \qquad Address. \qquad

1. Sex: are you?
male
female
2. What age range are you in?

Under 15
15-19
20-24
25-29
30-39
40-49
50-64
65+
3. Marital Status: are you?

Married
Single
4. Do you own:
(a) Your home
(b) A car
5. In which independent TV station area do you live? (This information is used to code the area.)

LWT/Thames
TVS
TSW
Scottish
Granada
Yorkshire
Central
Harlech/HTV
Anglia
Tyne Tees
UTV
Channel
6. Occupation - please bear with us, this is a little complicated!
(a) Are you studying full-time?

Yes

If ' $N o$ ', please go to part (b)
Are you at:
School
FE College University/Poly/TT/CHE/ etc

Are you sponsored in your studies? Yes

Please go to part (d)
(b) Are you employed, either full or part-time?

If ' No ', please go to part (c).
Is your work:
Teaching
Electronics industry
Other electronics
Other
Are you self employed?

Please go to part (d).
(c) Are you not employed?

Yes, I am not employed
Are you:
Unemployed
Retired
Invalid
Housewife/Husband
(d) What is your approximate income, per year?

Under 3000
£ 3000 to $£ 5000$
$£ 5000$ to $£ 7000$
$£ 7000$ to $£ 9000$
£9000 to $£ 12000$
More than $£ 12000$
No income - just pocket money
Mind your own business!
What level of education have you reached?

No formal qualifications
CSE
' ${ }^{\prime}$ ' Level/SCE
'A' Level/Scottish Higher
ONC
HNC
Degree or above

Are you still studying, full or part time? Yes \square

Did or does your course of study involve electronics?

Yes \square
Was or is your main subject electronics? Yes \square
7. How did you obtain your copy of 'Electronics Today International'? Was it:

Subscription

Through a regular order at \square a newsagent
Bought from newsagent's shelves

From an electronics shop From a friend
8. Do you have any difficulty in finding 'Electronics Today International'?

Yes, some difficulty
9. How many people read your copy? Just you
You and one or two others
You and three or more others
10. How many projects do you build a year?

None - only just got
interested
1 to 3
4 to 12
13 or more
11. Do you have problems in finding the components for your projects?

Yes, some problems
12. Do your projects work first time (or nearly first time)?

Yes
No, but can usually get
them going quickly
No, rarely work at all
13. (a) Do you usually build projects?:

Exactly as printed
With a few mods
With a large number of
mods
Designed from scratch
(with a few sections
'borrowed')
(b) Do you usually use?

PCBs
Veroboard or similar
Other form of
construction
(c) Do you make your own PCBs?

Yes \square
If 'No', would you like to eventually make your own?

Yes \square
(d) Is your audio system home-made?

No
Yes, some bits
Yes, nearly everything
14. How much do you spend on your hobbies per year?
£20 or less

```
£20 to £50
£50 to £100
£100 to £200
£200 to £500
More than £500
```

15. Do you own a home computer? Yes

If ${ }^{\prime} \mathrm{No}^{\prime}$, please go to part (b).
(a) Please tick the computer(s) you own:

Spectrum/ZX81
Vic 20/Com 64
BBC/Electron
Oric/Atmos
TRS 80
Other
(b) Do you intend to buy a home computer in the near future?

Yes

16. What sort of subjects would you particularly like to see articles on in future issues of 'Electronics Today International'? Please tick all those that apply (but don't tick every box, we haven't got room for everything!)
Electronics theory
Constructional tips
Household projects
Computer hardware
Computer programming
Interfacing
Robots

Electronics theory
Constructional tips
Household projects
Computer hardware
Computer programming Robots

Audio
Music projects
Car electronics
Experimentation
Security
News and views from the world of electronics
17. Please tick any of the following you intend to buy in the next year or so:

Electronic components
Component storage
PCBs
Cases
Other electronic
hardware
Soldering iron
Pliers/wire cutters
Other electronic tools
Multimeter
Power supply
Oscilloscope
Other test gear
Computer hardware
Computer peripherals (eg
printer, etc)
Computer software
Books on electronics
18. (a) Do you read the advertisements in ETI?

Yes \square
(b) Do you buy items mail order from ETI advertisers?
(c) Do you buy items mail order through advertisements in other electronics magazines?

Yes
(d) Do you buy items from the same supplier(s)?

No, but I shop around for the best prices
Yes, I use the same few suppliers most of the time
Yes, I use the same
suppliers all the time
when I can
19. (a) Are you involved în electronics professionally?

Yes \square
(b) If ' No^{\prime} ', please go to the next question.
Are you involved in the buying of electronic equipment or components?
No
Yes - equipment only
Yes - components only
Yes - both components
and equipment
(c) Approximately what total value of components or equipment have you been involved in the purchasing of during the last year?
$£ 1,000$ or less
£1,000 to $£ 10,000$
$£ 10,000$ to $£ 100,000$
More than $£ 100,000$
20. Which other magazines do you read, how often, and what do you think of them?

	How o	do you			Your ratin	
	Every issue	Some issues	Rarely never	Good	Average	Poor
Electronics Monthly	\square	\square	\square	\square	\square	\square
Elektor	\square	\square	\square	\square	\square	\square
Practical Electronics	\square	\square	\square	\square	\square	\square
Everyday Electronics	\square	\square	\square	\square	\square	\square
Digital \& Micro Electronics	\square	\square	\square	\square	\square	\square
Electronics Digest	\square	\square	\square	\square	\square	\square
Electronics And Computing	\square	\square	\square	\square	\square	\square
Electronics - The Maplin Magazine	\square	\square	\square	\square	\square	\square
Wireless World	\square	\square	\square	\square	\square	\square
How do you think 'Electronics Today International, rates on these scales?				\square	\square	\square

21.

Finally, please use the space here to write in any comments you may have, eg, suggestions for articles you'd like to see, etc.

NEW THIS MONTH

FIBRE OPTICS

Scoop purchase of single and twin cable. For use with visible light or infra-red Core 1 mm dia, overall 2.25 mm dia Single 50 p / $\mathrm{m} ; 20 \mathrm{~m}$ co
coil E 11.00 .

PCB MOUNTING NI.CADS Much sought after 4.8 V 150 mA batts with PCB mntg tags on 25 mm pitch. Balt size
$25 \times 16 \mathrm{~m}$ deal for paralleling 99 p ea $10+$ $85 p ; 25+70 p ; 100+60 p$.
STEPPING RELAY

Schrack 2 pole 10 way 24 VDC (works down to 15 V) only $39 \times 20 \times 24 \mathrm{~mm}$. Connexions by 0.1^{11} pitch edge plug. Special low price £1.95.

Miniature relays
PCB mounting. DPCO size $20 \times 15 \times 15 \mathrm{~mm}$ Available in 3.9 or 12 V . 11 each

$$
1 \text { W AMPLIFIER }
$$

2914 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip Gives 1 W output with 9 V supply. Switch and vol control Justconnect Only $£ 1.50$ lo for $£ 12 ; 25$ for $\mathbf{£ 2 5 ; 1 0 0}$ for $\mathbf{£ 7 5}$. 2915 Stereo version of above $115 \times 65 \mathrm{~mm}$ teaturing $2 \times$ TBA820M and dual vol con
trol $£ 3.50 ; 10$ for $£ 30 ; 25$ for $£ 65 ; 100$ trol. £3.
£200.

AM TUNER PANEL
2916 For use with mono amp above. Nea panel $60 \times 45 \mathrm{~mm}$ Only £1.50; 10 for £12.00.

NI-CAD CHARGER SCOOPI! Ever-Ready model CH 4 , this charger will take up to 4 AA C or D cells plus 2 PP3 if $212 \times 97 \times 60 \mathrm{~mm}$. Only $\mathbf{E 7 . 9 5}$.

1984/5 CATALOGUE

84 page A4 size - Bigger. Brighter. Belte each copy there's discount vouchers Bargain List Wholesale Discount List. Bulk Buyers List Order Form and Reply Paid Envelope All for just £1.001! (FREE to Schools etc). Winter Supplement due ou November
free copy

'TREKKER'

Computer-controlled Robot built around
the gearbox described below Complete kit of parts inc PCB program listings for $B B C$ (other micros soon). £44.85 20 W ribbon cable (min 3 m recommended - 5 m better) $£ 1.30 / \mathrm{m}$ SAE tor illustrated leaflet.

MOTORIZED GEARBOX

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro mechanical parts required in building
remote controlled vehicles The unit has $2 \times 3 \mathrm{~V}$ motors. linked to a magnetic clutch thus enabling turning of the vehicle. and a
gearbox contained within the black $A B S$ gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rpm. Data supplied with the unit
showing various options on driving the showing various options on driving the
motors etc. $\mathbf{E 5 . 9 5}$. Suitable wheels also available 79 mm . Dia plastic with blue tyre. drilled to push-fit on spindle. 2 for $£ 1.30$ (limited aty). $3^{\prime \prime}$ dia aluminium disc 3 mm thick, drilled to push-fit on spindle. 2 for 88p.

NI-CAD CHARGER PANEL
$177 \times 114 \mathrm{~mm}$ PCB with one massive Varta Deac $57 \times 50 \mathrm{~mm}$ rated 7.2 v 1000 mAH ard another smaller Deac $32 \times 35 \mathrm{~mm}$, stacks new is over £20. Also on panel is a mains input charger transformer with two separate secondaries wired via bridge recthe oulput thing capacitors and a 1 kgm All this for just £8.00.

VEROBOARD \& RIBBON CABLE
Discontinued lines some at less than $1 / 2$ price!! e.g. Dipboard $158 \times 165 \mathrm{~mm} £ 3.50$; 26 W Grey ribbon $£ 4 / 3 \mathrm{~m}$; Red wirewrap wire 24AWG £2.50/100m. Full details on wire 24 A
List 18.

GREENWELD

Our shop has enormous stocks of components and is open from 9-5.30 Mon-Sat. Come \& see us!

443A Millbrook Road
Southampton SO1 OHX Tel (0703) 772501/783740 ALL PRICES INCLUDE VAT JUST ADD 60p P\&P

Minimum Access
order $£ 5.00$

CREENWELD

- The Pack People! -

More packs - more in them - more valuel All our packs contain brand new, marked full spec components at a rrac tion of the normal price and offer conlowest cost! How do we do ir By athe manufacturers end-of-run and surplus components. Because we purchase form many sources, we have an extremely wide range of top quality parts - too costly to sort hence the packs described below. Our larger packs are ideal for schools, groups or

NEW PACKS
K524 OPTO PACK - a variety of single point and seven segment LEDS (incl dual ypes) or vanous colours and sizes, opto isolators, numicators, multi digit gas discharge displays photo transistors infra red
100 £14.95; 250 £35.
K525 PRESET PACK - Big. Big variety of ypes and sizes - submin, min and std. MP. ncluded Wide range of values from 20 R to 5 M 100 assorted £6.75; 250 £12.95; $1000 \mathrm{E48}$.
K526 HEATSINK PACK - Lots of diferent sizes and shapes of heatsink for most diode and transistor case styles A pack of 25 assorted including severallarge 100£19.50.
K527 HARDWAPE PACK - This has a arge variety of pk and self tapper screws some BA metric and Whit screws plus other iniscellaneous brackets captive nuts and bits and pieces 1 kg (up to 1000 pieces)
K528 ELECTROLYTIC PACK - All ready cropped for PCB mounting this pack offers excellent value for money. Good range of $6 v$ to 100 v .100 £3.95; $250 \mathrm{E8.95;} 1000$ $6 v$ to
E32.
K531 PRECISION RESISTOR PACK High quality, close tolerance R s with an exiremely varied selection of values mostly 4 and $/ 2 w$ torances from 0.1% to $2 \%-20$
deal for meters test gearetc. $250 \mathbf{2 3} ; 1000$ 10.

532 RELAYS - wide selection of siyles oltages and contacts 4 ve240v, AC/DC, SP

ESTABIISHED FAVOU
ESTABLISHED FAVOURITES K517 TRANSISTOR PACK - 50 assorted fult spec marked plastic devices PNP NPN 172182183198239251214255320 BF 1982553942 N 3904 etcetc. Retail cost \&7+; Special low price 275 p.
K523 RESISTOR PACK - 1000 - - yes $10001 / 4$ and $1 / 2$ watt 5% histab carbon film resisitis with preformed leads for PCB
mounting. Enormous range of preferred values from a few onms to a several megohms Only 250p; 5000 £10; 20,000 E
K520 SWITCH PACK - 20 different assor tod switches - rocker, slide, push, rotary, toggle.
522 COPPER CLAD BOARD - All pieces 00 small for our etching kits. Mostly sq ins) For 100 p . q ins). For 100 p
K541 VERO OFFCUTS - It's back!! Our most poputar pack ever. This has bee built up a ror some time, but we have now again offer 100 sa ins. of vero copper clad offcuts average size $4 \times 3^{\prime \prime}$. Offered at around $1 / 2$ the price of new board 320p. K530 100 ASSORTED POLYESTER CAPS - All new modern components radial and axial leads Allvalues from 0.01 to $\mu \mathrm{F}$ at voltages from 63 to 1000 ! Super
value at $£ 3.95$. value at 2.95
K518 200 DISC CERAMIC CAPS - Big variety of values and voltag
to $2.2 \mu \mathrm{~F}$. $3 v$ to $3 \mathrm{kv} \mathrm{\varepsilon} 1.00$
K514 100 SILVER MICA CAPS - From 5 pF to a few thousand pF . Tolerances from 1\% to 10 㙏 $£ 2.00$.
K203 100 WIREWOUND RESISTORS Fromi w to 12 w , with a good range of values
£2.00. K505 20 ASSORTED POTEN TIOMETERS - Ali types including single, ganged. rotary and stider $£ 1.70$. W4700 PUSH BUTTON BANKS - An assortment of latching and independent Switches on banks from 2 to 7 way DPCCto 6PCO A total of at least 40 switches for
$£ 2.95 ; 100 £ 6.50 ; 250 £ 14.00$.

FRIE CAREER BOOKLET

Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today - no cos! or obligation at all.
$\square \begin{aligned} & \text { Over } 40^{\prime} O^{\prime} \text { and ' } A \text { ' Level subjects from which to } \\ & \text { choose. Your vital passport to career success. }\end{aligned}$

COMPUTER		
PROGRAMMING	\square	RADIO AMATEUR'S LICENCE
ELECTRONICS	\square	INTERIOR DESIGN
COMMERCIAL	\square	WRITING FOR PROFIT
ART		

RUNNING YOUR OWN BUSINESS

 thoblayboard
 Printed Circuit Hardware \& Component Catalogue

+ COPPER CLAD LAMINATES
 PHOTO-RESIST LAMINATE \& CHEMICALS PRINTED CIRCUIT DRAUGHTING AIDS VERO BOARD \& PROTOTYPING SYSTEMS CONNECTORS/CASES/GENERAL HARDWARE SELECTION OF COMPONENT'S EDUCATIONAL COMPUTING ELECTRONICS KITS

Send for your free catalogue to

components GILRAY ROAD, DISS, NORFOLK. TEL:0379 4131

PART NO.	DESCRIPTION	MAIL ORDER
BBC MICROS AND ACCESSORIES		PRICE
ANBO1	BBC Model B Micro	£325.00
ANB02	BBC Model B Micro with Econet 1/F	£385.00
ANB03	BBC Model B Micro with Disc l/F	¢406.00
ANB04	BBC Modei B Misro with Disc \& Econet	£445.00
ALA01	Acorn Electron	£139.00
ANB21	ONFS ROM	£17.91
ANB23	Diss Interface Kit	¢71.65
ANB14	Speech interface	£40.00
ANK01	${ }^{\text {IEEE488 }}$ Interface Adaptor	£277.75
ANB22	Econet 1/F Kits	¢35.00
BBC 45	Joysticks	¢8.00
STAND	Monitor 5tand	¢7.50
SRE1	Sideways ROM Expansion Board	£25.95
DISC DRIVES WITHOUT POWER SUPPLY		
BBC30	Single 100k TEC 40 track single sided	E99.95
BBC315	Single 100k TEC (expandable to dua) 40 track	£115.00
BBC31D	Dual ($2 \times 100 \mathrm{k}$) TEC 40 track single sided	£225.00
BBC 34	Single 400k TEC 80 track double sided	¢174.00
BBC 345	Single 400 k TEC (expandable to dual) $40 / 80$ track swith double sided	
BBC 345w	doube sided Single $400 \mathrm{kEC} 40 / 80$ track switchable double sided	¢194.00 ¢184.00
BBC 34D	Dual ($2 \times 400 \mathrm{k}$) TEC 40/80 track switchable double sided	£310.00
BBC $345 / 80$	Single 400 k TEC (expandable to dual) 80 track double sided	¢184.00
8BC34D/80	Duai $(2 \times 400 \mathrm{k})$ TEC 80 track double sided	£ 300.00
DISC DRIVES WITH POWER SUPPLY		
BBC30P	Single 100k TEC 40 track single sided with P. SU	¢130.00
BBC315P	Single 100k TEC (expandable to dual) 40 track with P S U	£150.00
BBC31DP	Dual $(2 \times 100 \mathrm{k})$ TEC 40 track single side with P. S.U	¢250.00
BBC34P	Single 400k TEC 80 track double sided with P.5.U	£209.00
BBC345P	Single 400k TEC (expandable to dual) 80 track with P S.U	£229.00
BBC 34DP	Dual ($2 \times 400 \mathrm{k}$) TEC 40/80 track switchable with P. 5 U	£345.00

HEADER
HEA

10 way
14 way
16 way
20 way
26 way
34 way
40 way
50 way
60 way
SOC
10 way
14 way
16 way
20 way
26 way
34
40 way
50 way
60 way
CARL
EDGE
10 way
20 way
26 way way
60 way

ETS	DIP PL	JGS	D-TYPE	
0.88	14 way	0.92	PLUGS	
1.06	16 way	1.06	9 way	138
1.16	24 way	1.60	15 way	1.85
1.38	40 way	2.40	25 way	2.52
1.66 1.94	TRANS		37 way	3.34
2.08	CONN		RIBB	迷

2.08	CONNS.		RIBBON CA
278	10 way	0.86	
3.34	16 way	1.17	
	20 way	1.37	10
	26 way	1.67	14
	34 way 40 way	187 2.23	15
1.84	D-TYPE		20
3.14	SOCKE		25
3.80 4.90	9 way	1.47	34
5.52	15 way	2.02	40
6.68	25 way	2.90	50
806	37 way	3.97	

INSULATION DISPLACEMENT

CABLE ASSEMBLIES
IDC JUMPERS
SINGLE ENDED

HROU

DIP JUMPERS		
Single Ended		
$-24_{173}{ }^{\text {c }}$ cable		
16 pin	1.90	
24 pin	273	
40 pin	3.96	
Double Ended		
6^{*} ca	le 12 "cable	$18{ }^{\text {cabable }}$
142.74	2.84	2.94
163.03	3.14	3.25
244.18	4.36	455
405.89	6.18	6.47

DISC DRIVE CONNECTING CABLES

MECHANISMS
34 way card edge to 2×34 way card edge 1.5
34 way card edge to 34 way IDC SKT (BBC) 1 M
34 way card edge to 2×34 way IDC KT (BBC) 1.5 M
BBC Power Cable - 5ingle Drive
BBC Power Cable - Dual Drive
BBC MICRO
CONNECTORS CONNECTOR
DIN PLUG 7 PIN
DIN PLUG 6 PIN $\begin{array}{ll}\text { GREY } \\ 0.16 & \text { RAINBOW } \\ 0\end{array}$

DIN PLUG 5 PIN 180° | | 0.4 |
| :--- | :--- |
| DIN PLUG 5 PIN DOMINOE | 0.40 |
| POWER P | | POWER PLUG (36° CABLE) ANALOGUE INPUT PL

5 WAY DIN $5 K T 180^{\circ}$ 5 WAY DIN SKT DOMINOE 6 WAY DIN 5KT 7 WAY DIN SKT
15 WAY DIN SKT

11.30| F |
| :--- |
| F |
| F |

FLOPPY DISCS

MD-1C/B	Nashua single sided, single density 40 track (10 discs)	$£ 12.00$
MD-1DC/B	Nashua single sided, double density 40 track (10 discs)	$£ 13.00$
MD-2DC/B	Nashua double sided, double density 40 track(10 dises)	$£ 15.50$
MD-2FC/B	Nashua double sided, quad density 80 track (10 discs)	$\mathbf{£ 1 7 . 8 5}$
SPECIAL OFFER		

BBC40ID BA5F double sided, double density 40 track (10 discs)MDT25/3 $\quad 3_{2}^{1 .}$ Filp ' N ' file Miero disc box (cap. 25)18.77

54- Standard lockable disc box (cap. 60)MONITORS$\begin{array}{ll}9 M O N & 9 \text { inch green screen high resolution NEC high quality monitor } \\ 12 \mathrm{MON} & 12 \text { inch green screen high resolution NEC high quality monitor }\end{array}$12 inch green screen high resolution| $£ 125.00$ |
| :--- |
| $£ 135.00$ |14E135.00

1431	Microvitec 14^{*} RGB colour monitor
$\$ 441$	Microvitec 14^{*} RGB colour monitor high resolution

Microvitec 14* RGB colour monitor high resolution $\begin{array}{ll}1441 & \text { Microvitec } 14^{*} \text { RGB colour monitor high resolution } \\ 1451 & \text { Misrovitec } 14^{*} \text { RGB colour monitor medium resolution }\end{array}$ 410.00
295.00
BBC COMPATIBLE SOFTWARE

SBB03	View Rom	£45.00
SBB()4	View Printer Driver	$¢ 7.50$
AES20	Fileserver Level $1-40$ track	¢80.50
AE521	Fileserver Level $2-80$ track	£202.00
5NB08	Acornsoft Invoicing program	£16.00
5NB09	Acornsoft Mailing 5ystem program	£16.00
SNB10	Acornsoft Accounts Receivable program	¢16.00
5N811	Acornsoft Stark Control program	£16.00
SNB12	Acornsoft Order Processing program	£16.00
SNB 13	Acornsaft Acounts $P_{\text {ayable program }}$	¢16.00
SNB14	Acornsott Purchasing program	£16.00
5NLO1	Forth - 40 track	£15.00
5NLOZ	Lisp - 40 track	£15.00
SNLO4	Microtext - 40 track	£47.50
MATRIX PRINTERS		
R×80	Epson $\mathrm{R} \times 80$ 100<ps matrix printer	£204.00
R×80F秝	Epson RX80F/T 100 cps matrix printer friction or tractor feed	£231.00
FX80	Epson FX80 150cps matrix printer	£328.50
MT805P	Mannesmann Tally MT80 matrix printer friction or tractor feed with film ribbon and tear off facility	£209.00
LETTER QUALITY PRINTERS		
HR5	Brother HRS Thermal printer A/C manns or battery	£115.00
HR15	Brother HR1 5 Daisy wheel printer (13cps)	$\underline{526.00}$
HR25	Brother HR25 Dassy wheel printer (23 cps)	£550.00
UCHIDA	Ushida DWX305 Daisy wheel printer (20cps)	£227.00
PRINTER SUPPLIES		
11241P160	$11 \times 9{ }^{1} 1$ part plain listing paper $(2,000)$	£11.25
11247 P 2 Cl	$11 \times 9,2$ part (0tc) plain isting paper (1.000)	¢14.00
$11241 \mathrm{P36}$	11×9; 3 part (otc) plain listing paper (700)	E16.25
11370R160	$11 \times 14^{1}, 1$ part ruled listing paper (2,000)	E13.50
11370 2NC	$11 \times 14,2$ part (ncr) ruled listing paper (1,000)	E22.50
11370 R 2 Cl	$11 \times 14^{1} 22$ part (ots) ruled listing paper (1,000)	¢15.00
1223591605	12×9 ' 1 part plain listing paper with side perts (2.000)	¢12.00
HR1R	Brother HR1 ribbon	¢2.20
RIB119	Diablo Hytype II Multistrike film ribbon	£1.75
GP205	Oiablo Hyype li fabric ribbon	¢2.50
MX80	Epson MX80, RX80, $\mathrm{FX80}$, tabric ribbon	¢ 3.00
MT80	Mannesmann Tally MT80 film ribbon	$\underline{6.50}$
R1B117	Ushida DWX 305 multistrike film ribbon	£2.75
HR5R	Brother HR5 ribbon	¢2.20
HR15R	Brother HR 15 multistrike ribbon	¢ 4.00
HR25R	Brother P\|R25 multistrike ribbon	£4.00
	Brather daisy wheels	[14.00
	Uchida/Oume daisywheets	¢4.00
1 ABO893616	31×17116 Labels - 1 wide (12,000)	¢20 00
1 AB0893615	$33_{2}^{1} 1.7 / 16$ Labels - 1 wide (2,000)	E13.00
IABO70363F	2:1/16 Labels - 3 wide (1/10") (2,000)	£800

DIGITAL FRAMESTORE

Now we come to the two nitty-gritty bits of the circuitry - the conversion to and from digits, and the storage and retrieval of the digits in a hurry. Daniel Ogilvie shows how its done.

with a clock rate of 13 MHz we have $1 / 13 \mathrm{MHz}=78 \mathrm{~ns}$ to convert the data and store it in memory. Of the readily available ADCs, the National Semiconductor ADC0800 takes 10 μ s; obviously, we will have to look for something rather more exotic for the ADC here.

Most common ADCs work by the successive approximation technique, which requires a number of clock cycles to obtain a digital representation of the incoming analogue signal. Even at high frequencies, the number of clock cycles would take an unacceptable length of time; for instance, if we were able to clock the ADCO800 at 10 MHz , it would still require 40 clock cycles to complete a conversion, which would mean that we would have to allow $4 \mu \mathrm{~s}$ for each conversion - still far too slow.

Successive approximation ADCs contain just one comparator, see Fig. 4, and what they do is to try the different bits in the latch, starting with the most significant and working down to the least significant, to see which should be on in the final result.

An alternative technique is used by flash (or parallel) converters; here, there are lots of comparators all tied to the input and to different points in the resistance ladder. The encoder logic has to decide which is the highest comparator which is on. The time taken for conversion is just the propagation delay of the comparators and the encoder. However, the big disadvantage of these ADCs is the complexity, as there has to be a comparator for every possible output word. So, for an n-bit converter, there have to be 2^{n} comparators, and this also means
that there have to be more resistors in the chain, and that the encoding logic has, necessarily, to be that much larger.

There are a number of flash converters on the market, the Ferranti ZN440 and the RCA CA3300 for example. The type we are going to use is the TRW TDC1014, which is a six-bit converter. Both eight-bit and four-bit versions are available and could be used instead; however, the four-bit version will not offer sufficient resolution for any serious application and the eight-bit version is very expensive, in effect containing four times the logic and comparators of the six-bit version. The six-bit version is a compromise.

The ADC is the single most expensive item in the framestore. It does contain a lot of very fast logic, including 64 latched comparators, for example. Its cost is about $£ 100$, and as we have seen there is no way round this. The framestore can, of course, be built without the ADC and used only to display images loaded by computer - not exactly a framestore then though is it?

The Dynamic Ram

The DRAM is a significantly cheaper memory cell per byte than static RAM. It would be possible to design the framestore using fast (better than 70ns) access time static RAM, which would consume over $10016 \mathrm{~K} \times 1$, for example. These would require a second mortgage to acquire ($\{10 /$ chip). So if only for financial reasons the DRAM would appear to be the right choice and the $64 \mathrm{~K} \times 1$ variant is the cheapest and most convenient available for us. However they do require more thought and circuitry to drive them. The problem of their slow access
time is discussed below. We will consider briefly here how to get data in and out of them.

You have probably noticed that the $64 \mathrm{~K} \times 1$ DRAM comes in a 16 -

Fig. 4 Two ways of converting analogue to digital: (a) sucessive approximation ADC; (b) 'flash' converter ADC.

Fig. 5 Circuit diagram of the converter section.
HOW IT WORKS - ADC/DAC

R1 terminates the video signal at the appropriate 75 ohms. Q1 buffers the video, and the signal is then AC coupled to driver transistor Q3 via C2 and R5. Q3 is needed because the input to IC1, the ADC, is quite capacitive (100 p).

The DC level of the signal is determined by the clamping action of Q2, as follows. IC3 is a dual monostable, and it generates a $2 \mu \mathrm{~s}$ pube 3 / $\mu \mathrm{s}$ after the LNE signal goes low, which is every $64 \mu \mathrm{~s}$. This pulse is fed via Q4 to the gate of Q2, which turns this transistor on, shorting the negative end of $\mathbf{C 2}$ to the voltage set up by R6 and RV1.

The portion of the video waveform when this is happening is known as the 'back porch', and, by definition, it is reference black. So R6 and RV1 set the reference black level for the video signal. Clamping the waveform every $64 \mu \mathrm{~s}$ ensures that the tone of the image remains consistent across the screen.

The ADC is IC1, a IDC1014), which converts continuously at 13 MHz . 10 ns after the rising edge of the clock input, the video input is latched into its comparators and compared with the voltage fed to the reference input. This latching operation means that the input does not have to be held steady while the conversion is taking place.

On the falling edge of the clock signal, the comparator outputs are fed to a 63 -to-6 decoder. The outputs from the comparators essentially form a bargraph representing the video signal size: for example, if the video input is half the reference voltage, then half the comparators will be on and half will be off. The conversion logic takes the bargraph output and converts it into a sixbit binary word.

The binary word is latched into the ADC output on the next rising edge of the clock and the data becomes available 30 ns later. There is what is known as a one pipeline delay in the output, and the ADC takes in new data whilst converting the previous data.

The reference voltage is provided by ZD1 and this is buffered by IC2. RV2 allows the reference voltage to be changed which gives some control over the gain of the ADC; the lower the reference voltage, the lower the threshold between adjacent comparators in the ADC, so the smaller the change in the input signal that is required to change from one output binary word to the next.

IC5 is the DAC, TDC1016. It acquires data from the memory on the rising edge of the clock input provided that the data has been set up 20ns beforehand. The reference input,
provided by ZD2 and buffered by IC4, is used, with the digital data, to decide the size of the output voltage. The output of the DAC can be forced to $0 V$ (black) by the NDIS input and this is done outside the stored picture area to prevent rubbish being displayed.

The output of the DAC can drive the standard 75R line, but will provide only 500 mV output swing, which will give disappointing contrast on a monitor, which would be improved by amplifying the output. On the other hand, without termination, the output voltage swing can be 1 V but fast edges of the video could cause some slight overshoot, although it is unlikely that such edges would be generated by anything other than a computergenerated image.

In the circuit shown, we leave the choice of whether or not to terminate the output from the DAC with 75R up to you; the resistor required to do this is shown dotted. The black level of the output is set by the ratio of R20 to R21 and when a MIXED SYNC pulse is present, this point is shorted to OV by Q6 to provide a composite output.

Q5 provides a 75R drive capability for the video. No low-pass filtering has been used to reconstitute the video output, as this will almost certainly be performed by the monitor.
is performed by strobing RAS low and providing a sequential address address bus. However when DRAM is read it destroys the data in the cell which must be automatically

 picture and therefore by ensuring the RAS addresses are the loworder address lines, refresh is Speedy Shifting
To store a picture to

To store a picture to our
 bit word to be converted by the 78ns. We have (I hope) justified our WVYG isplsef ayt ing WVy गlpels that we can procure is 100 ns and
 -nof ssajor of sn molie jeyi sw yyd

 humble shift register. We can use

generate a write pulse; the data is pin package and yet would require
become valid. These are synchronously
loaded into the eight-bit data shift

The address inputs to the RAM have 33R resistors in series with them to damp possible destructive negative
voltage excursions on the address lines votage excursions on hae aldress ines
due to the high capacitance of the DRAM inputs and the PCB tracks.
Should we wish to load data into the
RAM we need to pull down the write
 time; this is handiled by the control card. Data from the ADC is clocked into
the shift registers. When eight bits have been loaded, the Q outputs of the shift register are loaded into an eight-bit latch on the iosing edge of the transier

or the nex write cycle oo the board is
Any additional $/ \mathrm{O}$ for MPU access and will be discussed in

The type of RAM shown is Motorola counter which can make interfacing to an MPU a little easier. However any 64 K
 timings. The memory chips used cannot possibly work at the speed at which the frame-
store converts analogue to digital or vice versa; so the design here uses shift registers to convert eight serial bits parallel data word, which is then stored

 working at; however, this does have the disadvantage that effectively six
memory cards are required. for just one storage card; all the connections to this are paralleled with the other memory cards, except SI, the serial data input bit
from the ADC, SO, the serial data out to the same bit on the DAC, and MPUD, which is connected to one bit

The dynamic RAM is usually being ead. RAS is strobed
lower address bits ($A 0$ - A I) have settled. After the RAS hold time of the dynamic RAM the upper address lines are enabied and CAS is strobed low. The
16 -bit address bus is multiplexed to eight bits by the two 'LS257 two-to-one multiplexers. The select line is the to output of the control card. After the

 for low-cost training in
 real-life robotics

industrial rooot

The advanced design of the Neptune 2 makes it the lowest cost real-life
using a revolutionary water base it pertorms 77 servo-contionled axis movements 10 on Neptune 1 - -more than any other robot under $£ 10,000$. Its program length is ilmited only by the memory of your compute And It's British deslgned Britsh made.
Other featurest Include.
Leakpprool, finctioniess rolling diaphragm seals
Butrered mon latched versadile interfixce lo BBC VIC 20 and S.ectrum comoulers 12 bi control system 18 on Neprùne 11
spectia cruutry tor Intial compenation
Raxk anco prroon y yinder couphngs lor vnoe anguiar movemens Automatic tripe speec conticl on Neplune 2 tor accurate 'noming in Easy access for serncing mat newing of woking pants.
Powetid lite $25 k 0$ with ease Powectur - litu 25 kg with ease
\qquad

Neplune roocts are sald in kit locm as follows Neotume 1 root kit finc, power supply| Nepture I smulator Nepture 2 tobot kit thx power suan
 Neotune 2 smulator

[1250.00	ADC option icomponenis fit to man control board)	£95.00
£295.00	Hydraum power pack (ifeaca assembled)	\$435.00
£45.00	Gripper sensor	${ }^{\text {[7].50 }}$
	Optional extra three fingered griper	
\$1725.00	Bac commector tead	¢12.50
\$47500	Commodore VIC 20 connector lead and pug -in oorad	£14.50
E52.00	Sinclar ZX Spectrum connectior iead	¢15.00

desk-top robot
Trus compaxt. etec lif cily powered dutinimg servo controled II guts umoal apetarion. min is rugged canstruction makestin aeal tor leatures inchade long-tite bronse and nyion oranings integra conrol electronics and

 unnted ondy by yout computer's memory annted onyy by yout con Mentor is at - Bnist in destan and maxulacture
anc comes in kil lorm at an astonishingly iow
 Mentor Controt electronics

Mmitor simukator Irequiles

ADC option:
eliectrones boivd)
Bic
and

BiBC connectiot leet
Commodo VK

Commodore vk 20 cormector teado
Sinciar $2 \times$ spectrum connector lead
All prices excluatve of V.
the end of Match iges.

A POOVER HANTS SPIO 3ET
TEL 10264150093 Telex: 477019

"Run more than

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81 - and more!

The brains behind the breakthrough belong to David Husband, and he's building Skywave' Software on the strength of it. Already orders are flooding in and it's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like.

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 \mathrm{k}, 32 \mathrm{k}, 64 \mathrm{k}$ RAM packs, it is fig-FORTH compatible and it supports the ZX printer.

The price, too, is almost unbelievable. As a " fit it yourself Eprom', complete with manual. it'sjust $f 25+$ VAT. Add $£ 3.45$ p\&p UK ($£ 6.00$ Europe, £12.00 outside Europe) and send your order to the address below.

Slaymane SOFTWARE

David Husband
73 Curzon Road, Bournemouth, BH 1 4PW, ENGLAND. Tel: (0202) 302385.
International +44202302385.

MASIMR
 ㅍlectronics-Microprocessors-Now! The PRACIICAL War!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

SYSTEM FAILURE

The UK's defence industry isn't delivering - either in terms of reliability, which is this report's main concern, or in commercial and export terms. Dave Bradshaw has been talking to a very experienced engineer, working in defence, to find out why.

Like it or not, each adult in the UK contributes several hundred pounds a year to the defence industry (the exact figure is not easy to calculate). A large proportion of our electronics engineers are employed in this industry, either directly or indirectly, and much the largest share of all research is conducted for military purposes.

With all this effort going on, it is important to ask whether we are getting value for money, because it would represent a huge waste of resources if we were not. To give value for money, a military system must work, ie it must be reliable. But there are are very serious question marks against the reliability of some systems. For example, when the Belgrano was sunk during the South Atlantic conflict, conventional torpedoes were used even though the submarine which did the sinking was believed to have 'Stingray' torpedoes aboard. Why? Could it be that the sub's captain didn't trust the high-tech torpedoes to do the job?

The problem with torpedoes is that if the first one misses, it gives the enemy warning that an attack is being mounted, which in turn gives time for preventative action to be taken. So a very high degree of reliability is necessary for torpedoes. On the other hand, another high-tech weapon, the Exocet, was used with devastating effect. Here, the circumstances are different, because if the weapon fails, it might not alert the enemy, but just crash into the sea. Even if the attacker is unlucky enough to alert the attacked, there is still ample time to launch another missile, because the target is slow-moving and the attacker is much faster.

So 'reliable' can mean different things in different circumstances. When there was a scare over some chips manufactured by TI not having been correctly tested, BAe publically stated that they had used the chips in question in the Rapier missile, and that the missile had an 80% success rate which was considered to be very good. In weapons terms, Rapier is a low-complexity, high-reliability weapon.

An example of about the most complex weapons system in service at the moment is the Tornado multirole combat aircraft. Each major 'service' on a Tornado takes about three months, and that will involve the stripping down of all the systems and sub-systems, and the thorough testing of them all, both individually and in an assembled state. However, by the time the Tornado has landed after its first flight, it has several systems that are not fully functional, and it has to go for further repairs. The F1-11 has similar problems.

It requires a major maintenance effort to keep aircraft like this functional. By contrast, the Harrier is very robust and simple, despite having a particularly highly stressed engine. And we've given Harrier technology away to the USA, because we preferred to concentrate on Tornado.

The remainder of this report will look at the factors that affect the reliability of military hardware. One of
the problems we have encountered, though, is that while there are countless examples of blunders committed in defence contracts, the actual examples we might be able to give are all covered by the Official Secrets act. In the vast majority of these cases, the details of the mistakes have very few if any defence implications. They do have very large implications for the companies involved in defence. It would be in the long term public interest if details were known - but they cannot be released. Perhaps this is one of the reasons why the British defence industry is losing ground in competing for orders against the Israeli and French industries?

Specification

The specification is basically the document in which the customer says what is required. It is one of the most critical stages in the procurement of a piece of military equipment, and mistakes made here can be difficult if not impossible to rectify. There are a number of 'golden rules' - many of them little more than common sense - which should be followed, but which are all breached to a greater or lesser extent for much of the time. Let us take a look at the rules. They are:

1. The specification must say exactly what the customer wants. There is no room for vagueness, as this will inevitably by exploited in one way or another by one or more parties to the deal.
2. The buyer must understand the specification and all the implications of what is being asked for. This may seem obvious, but contracts are usually drawn up by non-technical staff, at least in part.
3. The contractor, designer, developer and producer must all understand the specification; again, there is a problem of the contract being negotiated by nontechnical staff, with the result that it may be inconsistent or open to several different interperetations in key areas.
4. The specification must be complete and must not leave anything out. Here there is the problem of the wrong priorities being emphasised in the drawing up of the spec, but there are additional problems. Military contracts generally run for around ten years from start to completion, but in 1984 it is impossible to predict what circumstances equipment will find on the (hopefully theoretical) battlefields of 1994. Also the sheer complexity of military items can make it virtually impossible to describe them fully - imagine trying to write a full description of a multi-role combat aircraft. 5. Another problem associated with the contracts running for so long is that you cannot be sure that the device will be used as it is designed to be used. If the design work is done ten years before deployment, the actual way it will be used cannot be predicted.
5. The device must be testable, and this must be built into it from the start. Inevitably, there will be aspects that cannot be tested, and it must be understood how

Fig. 1 Reliability declines with servicing.
much cannot be tested and how important that is to the system.
7. It must be possible to test the device without degrading it too much. One of the ironies with large-scale systems is that testing them actually makes them less reliable in the long run, see Fig. 1.

Let us pursue this question of testing a bit further. Large-scale weapons systems have some sort of self-test capability (ie BITE, built-in test equipment). Others, like missiles, will have an associated test box, so that you can plug the missile into a box of tricks that will then put the missile through its paces, testing the main routines that the missile's equipment will have to perform in actual use. This test might be a daily, weekly or monthly ritual, depending on the device in question.

Such a test can only give a partial check on the system, so periodically the whole missile will be taken apart, all the sub-systems in it tested, then it will be reassembled and given a full system test which will, so far as is possible without actually firing the missile off at a target, test the full system under simulated systems conditions.

There are several problems here. Firstly, without firing the missile, you can't fully test it - and there are major aspects of the operating environment you just cannot simulate. For example, you cannot simulate the launch satisfactorily. There are so many combinations of conditions that the missile may encounter that you cannot test them all.

There is a whole range of one-shot devices in any system that cannot be tested; these range from the warhead itself to explosive bolts. Testing these destroys them and they can only be replaced with similar items which, again, you can't test without destroying.

A further problem with mechanical parts of the system is that even after testing you cannot be sure that they will work. An example would be the wings and engine air-intake on a cruise missile. There are so many variables involved here that can prevent these from working, for example dirt or debris that entered the mechanisms during testing, or small mechanical deformations accidentally introduced in re-mounting the missile. All that you can say is that the mechanical bits worked when tested, but you cannot be sure that they will work the next time they're called upon.

There are particular problems with integrated circuits. After each step of building an IC - and this includes the different diffusion stages of the wafer - the IC is tested and inspected, to see that everything has been done properly. Once the IC is capped (encapsulated) you cannot go back to check on earlier stages, so you're confined to just checking to see that it
behaves, so far as you can test, in line with its specifications.

Burnt Out?

One of the principles behind the reliability verification of systems is that of burn-in. The idea is to make sure that the large numbers of early-life failures that occur with any device - be this individual ICs or a largescale system - occur on the test bench rather than the battle-field. Failure early in the lifespan is somewhat tastelessly referred to as 'infant mortality'. These are usually caused by gross failure mechanisms due to manufacturing shortcomings (eg, dry joints, unsecured components, poor insulation, etc).

The idea is to create the worst possible operating conditions in which the device must operate, and subject it to these conditions for a period of time- typically 168 hours (one week) for high reliability ICs - and see if it fails. Individual devices, eg ICs, are burnt in, then they're assembled into boards and burn-in repeated, then the boards are assembled in sub-systems and the burn-in repeated, and finally the whole system is assembled and burnt in.

If the burn-in procedures are not adhered to fully, faults will get through and end up appearing in the finished items of equipment. Combined with the effects of long-term degradation, such infant mortality faults can appear to be random failures - except that these 'random' failures would be occuring rather more often than would be expected. However, it is difficult to distinguish between random failures and a quality control problem due to inadequate burn-in.

Manufacturers are under quite a lot of commercial pressure to curtail burn-in where possible. It costs a great deal of money and ties down resources. For example, assembling even the smallest system could take four weeks and tie up environmental testing facilities for that length of time as one week will be required for each stage - burning-in the components, the boards, the sub-systems and the system as a whole, albeit in different sections of the factory, or in different factories.

Even with an apparently adequate 'burn-in' programmme, we still come back to the problem that you cannot adequately reproduce the full operating conditions. For example, the way components are mounted can count for a lot. If they are mounted in such a way that they can vibrate, it is not unknown for them to go into a very destructive mechanical resonance during, say, the launch of a missile.

Contracting

The commercial arrangements surrounding military contracts have strong repercussions on the reliabilities of the eventual products. Until recently, all contracts used to be on a cost-plus basis - the contractor would be paid as much as was spent on a particular project plus an agreed profit margin. As you might imagine, this was a licence to print money for the contractor, but it also encouraged very bad habits on the part of the customer.

The main problem was that the military would continue to change the specification of the equipment required right the way through the contract's life. These changes would be called 'enhancements', although they would frequently be incompatible with the
original specification. These 'enhancements' might be trivial - for example, the moving of a bracket - but they might also be quite large. An accumulation of apparently trivial changes can amount to a major design change.

During the typical contract life of ten years, the military would be going back to the contractor with 'enhancements' for virtually the full life of the contract, almost as a matter of course. Over ten years there will be a considerable change in the technology available, and the military wants to see the latest in technology incorporated into their toys. 'Enhancements' have the result that the system at the end of the project could be completely different from the concept at the start. Obviously, it has considerable repercussions for the reliability' of the system if there are a number of 'bolton' extras added at different stages of the design and development.

Fixed Cost?

To overcome some of these problems, the present minister of defence, Michael Heseltine, has introduced what at first seems like a step in the right direction (no pun intended). The fixed - price contract is, in theory, exactly what it says - the contractor will get a fixed amount of money for doing a fixed job. This was introduced mainly to prevent the sort of price escalation that has been so common in defence contracts, but as a side-effect it should have got rid of the continuously varying spec. It hasn't.

The problem is that the eventual users of the equipment are still treating these contracts as cost-plus, and are demanding 'enhancements' from the contractors. Contractors are all too pleased to provide the enhancements requested - and even to make a few suggestions of their own -because, not unexpectedly, it will mean an increased price for the work. The customer can hardly object to this, and in any case, there could be no question of taking away the contract from one company and moving it to another, because that would extend the wait before the equipment comes into service.

Even if the military do not want 'enhancements', the contractor can easily find ways to increase the price because the specification and contractual terms are generally very loose, as is the monitoring of contracts. Just how loosely military contracts are monitored here can be judged in comparison to the way that NASA and ESA monitor their contractors' behaviour.

For example, if you are a sub-contractor to NASA, periodically you will recieve a visit at very short notice from a technical expert. The warning you get could be 24 hours or less. The expert will want to see all the work you are doing, how it is progressing, and will want to know the reasoning behind all the procedures you have adopted. Engineers who have been through this process describe it as 'very testing'. However, it would be unthinkable for the MoD to adopt a similar process here.

Splitting It Up

Fixed price contracts are not the end of the changes the Government are introducing. The next stage is the putting out of every major stage of the contract to tender. So different companies would have the opportunity to bid at each of the stages; in a typical case,
these are: feasibility study; project definition; development; initial production; and quantity production.

The new system has only just been introduced, so it is not yet possible to see how it will work out in practice. The idea is to make contractors competitive in price at every stage of the process, but the major fear is that it might result in significantly less reliable endproducts.

The problem is that if different contractors do different stages in the process, there is a lack of the engineering continuity which is essential for high reliability through feasibility, definition, development and production. As has already been mentioned, contracts are not normally drawn up by technical staff, although there is technical involvement. The more separate contracts are placed, the more contracts have to be written and the more the problems associated with this come to matter. However, on top of this there are always many things that even competent engineers do not write down - these range from apparently insignificant details to underlying assumptions; indeed, it is more likely to be the latter, rather than the former, that don't get written down.

Even if everything of importance does get written down, the experience and enthusiasm of the engineers involved in the project cannot be transferred from one contractor to another. In particular, if an engineer gets involved in a job which is then taken away, it is unlikely that the next engineer will, at least initially, have the same experience and motivation.

One effect that may not be all that bad is that the switch to part-contracts may lead companies to develop - or buy-in - ranges of off-the-shelf components instead of developing new ones. For example, to produce a generator, the fastest solution is to use off-the-shelf components of engine, dynamo and voltage regulator, whereas at the moment a contractor would automatically design a special-purpose unit from scratch. The reason for this change is that contractors will have to bid for a large number of jobs at any one time - all of them of shorter duration than at present - and it will not be known what the next contract will require. So the flexibility of off-the-shelf units will be necessary.

Finally, an inevitable consequence of part-contracts will be that contractors will spend more on making proposals. Each proposal costs time and money, and the customer will end up paying for this in the long run. At present, it is not uncommon for the cost of making a proposal to be buried in the costs of existing contracts the system is so slack that contractors can allocate engineers' time to virtually anything they like. Whether fixed price contracts will eventually make it more difficult for costs to be hidden remains to be seen, but it is thought unlikely that it will make much difference.

Design Discipline

A good example of the importance of design discipline has been documented for the cruise missile programme. The sub-contractor doing the software ran into problems, but instead of properly analysing the trouble, the approach adopted was to throw more money at it by bringing in more software engineers. This just compounded the problems. Prof. C. Brooks of the University of N. Carolina's computing department describes the nature of working on software with the following analogy: "The bearing of a child takes nine months, no matter how many women are assigned.

Many software tasks have this characteristic because of the sequential nature of debugging." In other words, you can't rush writing software, but that doesn't stop defence contractors trying.

In general, contractors start their FMECA study far too late in the life of contracts. FMECA stands for Failure Mode, Effects and Criticality Analysis, and it is concerned with looking at the likely shortcomings of the design in a very critical and analytical way. Starting this process any later than the early stages of design and development can greatly reduce its effectiveness. However, contractors will often not start this procedure until they've already realised that there is a problem ie, they're already in trouble and they're clutching at remedial straws. They throw money at the problem as a substitute for proper planning in the early stages.

Ideally, it should be written into any contract that the FMECA programme should start at some short interval - say 30 days - after the development contract has been awarded. This would then have to be very closely monitored to make sure that it really did happen. Very often an inquiry as to the progress on FMECA will result in the contractor hurriedly starting it up - but at too late a stage to have any real impact. The contractor will then pretend to the customer that the FMECA programme had been in hand all the time and they can get away with it because the MOD(PE) does not monitor effectively.

Short Term Contracts

It should be possible to carry through most military contracts in a much shorter time than they presently occupy. We would suggest that a target of two years not ten - should be aimed for. A number of advantages would be incurred by going for much shorter time scales.

Firstly, the contractor and the customer would have to stick to the original specification. This would have the effect of 'freezing' the technology used at the time of design - but with only a two-year time lapse, this technology would still be in-date and not nearly obsolete, as would be the case with a ten-year contract.

Secondly, there would be a general reduction in price. Besides fixed price actually meaning that, the massive overheads incurred by having a job going on for so long would be reduced, as would the expenses involved in meetings. The main losers would be hoteliers, restaurants, travel agents and air-lines.

Finally, there would be the real opportunity to learn by mistakes. You can actually have an item of equipment out and in use at the time that you are looking at either the Mk. 2 version, or at the next generation of equipment.

As far as we can see, it is sheer inertia that is stopping this sort of development, not technical complexity. If compact disc players can be designed and developed, using entirely new technology, in the space of a couple of years or so, then why not a new command, control, communication system for the army? Yet the Ptarmigan system has been under development by Plessey for the last 12 years and is still not fully deployed.

Conclusion

The way that the defence industry is organised at the moment, the products work despite the system, and mainly because of the dedication of individuals. A major reorganisation would result in a much less costly more effective industry, which would, in the long term, be better for all concerned.

ETI

Vivilit Audotronic
Abbots Hill Chambers 1 st Floor, Gower Street, Derby DE1 1SD

Tel: Derby 0332/382433

Modules	Power RMS	Load	Volt Max	Size (mm)	Price
RVM150S 70-150W	4.8	± 60	$31 \times 80 \times 100$	$1+27.00$	
				$10+22.97$	
				$20+22.77$	
RVM300S 120-300W	$4-8$.	± 65	$31 \times 102 \times 136$	$1+37.80$	
				$10+32.13$	
				$20+30.24$	
RVM400S 170-400W	$4-8$.	± 65	$47 \times 89 \times 136$	47.05	
RVM700S 300-700W	$2-8$.	± 70	$47 \times 90 \times 197$	$\mathbf{7 0 . 1 0}$	
RVM700S Mounted on Heat Sink					

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIERMODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

All prices include post \& packing.
(Quantity discount available)

To order send cash with order, or cheque/postal order.
Delivery on our Modules and Heat Sink or same day dispatch when order is received with cash, allow7 days with cheque or postal order.

MACENTA
 ETI KITS

Full kits include pcbs, hardware, cases (unless stated otherwise), IC sockets, wire, nuts \& bolts. Article reprints extra 50p each.

BBC TRACKBALL CONTROLLER. 2 " ball. 2 fire buttons. Analogue input port connector. $\mathbf{\Sigma 1 7}$.e9 BeC OIGITAL JOYstick. 2 fire buttons. Dplus
connects to analogue input. COMPUTER CASSETTE PLAYEA. Maina/battery. Auto stop. Tapecounter. Audibie monitoring facility. each kht, our books, \& illustrations of our range of CATALOGUEAPPICELIST-send $£ 1$ in stamps etc or add EI to your order. Price list -9×4 sae.
Cataiogue FREE TO SCHOOL S/COLLEGE
REQUESTED ON OFFICIAL LETTERHEAD REQU ESTED ON OFFICIAL LETTERHEAD. BEC TO IDSS STEPPER MOTOR INTERFACE PCB, drver IC. componenta. connectors \& leads inctuded. Demonstration software listings, clicum diagram, peb layout \& onsituction detals give WHTEAFACE KIT (ref ETI) OPTIONAL POWER EUPPLY PART: E4.87

MAOENTA ELECTRONICS LTD. ET 85, 35 thunter St. Eurton-on-Treni Stafts. DE142ST. Man Order Ondy (0202) 65435 . S. A.E. enquires. incluce VAT. Access \& visa phone/post.

24 hr answerphone for cradit card orders. OVERSEAS: Payment must be sterling. IRISH REPUBLIC + BFPO-UK PRICES ELSEWHERE WRITE FOR QUOTE.

NEW from

This exciting new range of designs covers all domestic Hifi applications There are 20,30 and 40 litre designs using the famous Peerless
Polypropylene bass units (newly released to the DIY market), a 7 litre
mini speaker and wo desions mini speaker and two designs specifically intended for use with digital systems. The Wilmslow Audio Total kits include all cabinet components. accurately. machined from MDF board,
drive units, crossover drive units. crossover kits; wadding. grille fabric, terminals, nuts, bolts, etc. Full details are in the Peerless Manual for Loudspeaker Constructors which is available F.O.C. (send $12^{\prime \prime} \times 9^{\text {² }}$ SAE)
Total kit Prices per pair inc. VAT

Design 50/2R (7 litre, reflex)
Design 65/2R (20 litre, refiex, Polype.)
Derign 825/2R (30 litre, rathox, Poly
Dosign COA252R (25 litre, reflex) Design CDe25/3A (30 litro, reflex) for digital Basic kits (drive units and cros
Design EOMR
Desion es/2品
Design 825/2A
Design 100/3
Demign CO826/2R
Design COW25/3R
COl25/3

E112.50 plus carrfins 8600 E111.00 plus carr fins 58.50
 E172.00 plus carr. $/$ ns f 10.00
E 12 in .50 plus carr $/$ ins $\mathrm{fl0.00}$ \&106.00 plus carr.fins f 10.00 vers only) per pair e87.50 plua carr.fins $£ 4.50$ 67.00 plue carr.fin 64.50 E77.00 plue carr.fina $£ 4.50$ tize.00 plus carr.Ans 85.50 Ees.en plue carrfins 55.00 8144.00 plus carr./ins 65.50 signs are available

peerless

VERY COMPETITIVE PRICES
on speaker drive units: AUDAX - CELESTION DECCA ELAC \because FANE GAUSS• GOODMANS KEF• McKENZIE PEERLESS•SCANSPEAK SEAS - TANNOY • VOLT WHARFEDALE etc. COMPREHENSIVE CATALOGUEI Pages \& pages of drive units, kits, crossovers, cabinet components; designs for PA cabinets crossover calculations etc. E1.50 Post Free (Export E3.50 or \$8)

Visit our new

HIFI STUDIO

for a great deal on Ariston, A\&R, B\&W, Dual, Kef, M-Short, Mission, Monitor,
Nad, Rotel, Trio, Walker etc.

Wilmsiow Audio Catalogue	post free $\mathbf{E 1 . 5 0}$
Celestion Cabinet Handbook	post freo $\mathbf{E 1 . 0 0}$
Fane loudspeaker enclosure design	post free $\mathbf{£ 2 . 9 5}$
Peeriess Menual for	
Loudspeaker Constructors	noc
AlL the above E5post	

y
una

CRIMSON ELECTRIK amplifier kits, modules, active crosssovers. YAMAHA Professional and Producer series products. 3rd Generation mixers. amplifiers. McGregor PA amplifiês, combos etc.

Allat very competitive prices!
Lightning senvice on télaphoned credit card ordérs EFFICIENT EXPORT SERVICE

DISTORTION METER

Writing in his Audio Design article in the August issue of ETI, John Linsley Hood offered to describe a simple yet sensitive distortion meter, assuming, that is, the editor didn't mind! Needless to say, the editor didn't mind at all.

The ideal audio power amplifier, along with other pieces of audio signal handling gear which are not intended to modify the frequency response of a system, is well described by the old adage'a straight piece of wire with gain'. This implies that such equipment does not modify or impair the nature of the signal being handled, except to amplify or add muscle power.

However, if this is the specification, how do we check to see how well or badly this requirement is being met? This is, alas, something on which there is very little agreement between audio engineers or circuit designers. So, before we consider the hardware, we need to examine the job we want it to do.

In simple terms, what we want is that the output from an amplifier should be identical to the input, except that it might be bigger or smaller or perhaps with one part of the frequency spectrum enlarged or diminished with regard to another. This is an awkward bit, so let us leave that on one side for the moment and look just at the simple flat-frequency-response area.

When people first considered this problem, their thoughts turned to the examination of a continuous, fixed frequency sine waveform somewhere in the middle of the audible band, say at 1000 Hz . The logic of this was that any distortion of this waveform would lead, as could be shown by
mathematical analysis, to the generation of harmonics of the input signal, and these could be isolated and measured.

The problem with this approach is that it is highly artificial. We simply do not listen for instruction or enjoyment to steady single tones. Nevertheless, the technique is a useful one, especially if the output from the distortion meter can be examined on an oscilloscope. Quite a lot of information about its defects - yes, there are always some, if one looks hard enough - can then be gained, which allows the effects of changes to be assessed.

The most common of this kind of distortion meter is the simple 'notch filter', which will remove the incoming sine-wave signal and leave only the waveform impurities which have been added by the hardware we are testing.

The sort of result we would get

from this kind of test on an amplifier with cross-over distortion, or one driven into clipping, is shown in Fig. 1, a and b. What the distortion meter is showing us, in both cases, is what kind of a waveform would have to be added to the distorted output in order to get back to the waveform with which we started. Clearly, there is a difference between these, which can point the experienced worker in the right direction to remedy the defect, especially if the input signal and distortion meter output waveforms can be displayed at the same time on a double-beam oscilloscope.

The most conspicuous audible effect of the presence of large amounts of 'low order' harmonic distortion, (ie. mainly 2 nd and 3 rd) is that, as its name suggests, harmonic tones are added, which make the system sound rather shrill. Those of us with long

Fig. 1 Examples of the waveforms obtained by using a notch filter on distorted sine-waves.
memories will recall the sound of output pentode valves, which generated generous quantities of 3rd harmonic distortion, and for which the palliative was to stick a 10n capacitor across the primary of the output transformer. Triodes were much preferred, since they mainly generated only 2 nd harmonic distortion, and this was lower down in the frequency spectrum and therefore much less squawky.

Also, as one might guess, these 'low order' harmonics generate spurious waveforms which do, in fact, harmonise with the input signal; once one gets beyond the 3 rd harmonic in the 'odd' series, or beyond the 6th in the 'even' one, the tones become increasingly dissonant and objectionable to the listener.

This was one of the reasons why the first transistor amplifiers (whose residual crossover distortion produced 7 th, 9 th, 11 th, and other audibly dissonant odd harmonics) were so much worse, even at a 0.1% distortion figure, than the valve units they replaced.

However, back to valves. When, in the early post-war years designers began to consider seriously the requirements for high quality audio systems - at that time largely based on triode valve output stages, operated in pushpull to cancel as much of the even order harmonics as possible attention was drawn to the other defect, shown in Fig. 2. This was associated with non-linearity in the handling of the signal, and was the so-called intermodulation distortion, which led to a muddling of the tonal quality.

- If we take two separate and distinct audio signals as shown in Fig. 2a, and add them together as shown in Fig. 2b, and if we pass them through an amplifying stage having the sort of non-linear inputoutput characteristic shown in Fig. 2c, the result will be similar to that shown in Fig. 2 d , in which the gain of the amplifier is reduced as it swings into its upper voltage region.

The worse the non-linearity, the more the intermodulation effects between initially separate and distinct input signals. Also, as you can see from Figs. 2 e and 2 f , a different kind of non-linearity will produce a different kind of intermodulated output. Once again, the effects due to high order defects such as crossover distortion are worse, audibly, than those due to smooth bends in the trans-

Fig. 2 The introduction of intermodulation distortion as a result of passing two signals through a stage having non-linear characteristics.
fer characteristics of the system which provides yet one more reason why designers try to minimise the generation of the higher order harmonics.

The way in which intermodulation distortion is measured is by passing a pair of signals through the system, and then measuring the sum and difference products caused by the non-linearity of the system. For example, if two sinewave input signals are introduced, one, say, at 70 Hz and one at 3000 Hz , the result of the non-linearity in the amplifier would be to generate additional spurious signals at 2930 Hz and 3070 Hz . If these are filtered out and measured, the amount of distortion in the amplifier can be assessed.

Looking at this in practical terms, if the transfer curve of the amplifier is as shown in Fig. 2c where the gain of the system decreases as it swings more positive, and if we assume that the 3000 Hz signal is a small one riding piggyback on the much larger 70 Hz one, then, as the 70 Hz signal moves the operating point of the system from lower left to upper right, so the 3000 Hz signal will get bigger or smaller as shown in Fig. 2 d .

This is helpful as a yardstick in assessing amplifier quality in that it simulates the effect of typical audio signals which are composed of many different parts, all happening at once, and, in a poor
amplifier, with lots of intermodulation distortion, all getting jumbled up together into a kind of audio porridge.

The snags are two. The first of these is that it takes quite good audio filtering in the test instrument to separate out the 2930 Hz and 3070 Hz signals from the 3000 Hz one, which makes such meters expensive. The second snag is that, having got the answer in terms of the amount of intermodulation distortion, the designer isn't given much assistance in finding just where the problem lies. The simple THD meter, with a display on an oscilloscope, is much better in this respect.

A more recent technique, adopted by the French CCIR committee, employs two high frequency signals, such as $19,950 \mathrm{~Hz}$ and $20,050 \mathrm{~Hz}$. These give a frequency product appearing at 100 Hz , and it is easy to filter this out from the 20 kHz equal-amplitude carriers.

The argument offered in favour of this approach is that amplifiers, even nowadays, are much less good at 20 kHz in terms of their linearity than they are at, say, 1000 Hz . The counter argument is, of course, that we don't have ears like bats, so we are more interested in how the system behaves at 1000 Hz than what it does at 20 kHz .

Another very up-market technique is to put in a high-purity sine-
wave signal, or indeed as many of these as one feels inclined to use, and then display the output of the amplifier as a sweep of the frequency spectrum on a spectrum analyser. This is a development of the earlier 'Frequency Analyser' technique, in which the magnitudes of the outputs at various harmonic frequencies related to the input sinewave frequency could be displayed on a meter for individual analysis.

While spectrum analysis gives a very effective display of the amplifier output - 50 Hz warts and all - and the better modern ones are usable down to a noise threshold of -90 or -100 dB ($0.003-$ 0.001%), in all fairness, it is a bit difficult to see what one has got on the display or print-out if it is much below $-80 \mathrm{~dB}(0.01 \%)$.

All this kind of kit is very nice, and mouth-watering to contemplate if one is setting up a 'cost no object' test laboratory, but it is a bit remote from the more frugally financed DIY enthusiast. So what can one do for oneself?.

The THD Meter

The most useful piece of gear which one can organise simply, and which will give amplifiers a clean bill of health - or otherwise as the case may be - is a simple Total Harmonic Distortion measuring instrument or THD meter for short.

This operates by 'notching out' the fundamental frequency of the input sinewave and leaving the distortion products, together with any hum and noise there may be in the amplifier output, to be measured on a millivoltmeter. The main snags with this approach are that it will show these hum and noise components as harmonic distortion in the final output to the meter, yet they are nothing to do with the linearity of the system as a whole and are likely to be completely innocuous, audibly, if one can't hear them from the normal sitting position when listening to the system.

Fortunately, it is a simple enough matter to identify which is which, even without access to the oscilloscope, by merely disconnecting the signal source from the amplifier, looking at what remains in numerical terms, and subtracting this from the original result. In order to get a result which is not over-generous to the unit on test, this must be done as an RMS subtraction - I will come to that later.

Fig. $3 \mathbf{a}$ and \mathbf{b} - Two possible arrangements of the Wien network.

Fig. 4 The notch produced using the arrangement of Fig. 3b.

It is not a difficult matter to generate quite a good notch in a frequency response and tune it precisely to coincide with the frequency of one's test waveform, and there are several circuit choices available for doing this. Of these, the two most convenient and therefore the most commonly used are the RC 'parallel T' and the various arrangements of the Wien network, which I have shown in Fig. 3.

The interesting thing about the Wien network, C1, C2, R3 and R4 in Fig. 3a, is that it has zero phase shift and an attenuation of just 3 times at one specific frequency. If one makes R3 and R4 adjustable, this frequency can be altered. If C 1 and C 2 are not quite the same - in theory $\mathrm{C} 1=\mathrm{C} 2$ and $\mathrm{R} 3=\mathrm{R} 4$ the attenuation will not be exactly $3 x$, but this could be compensated
for by an adjustment to R1 or R2. The differential amplifier I have shown as IC1 would need to be a very good one for this kind of circuit to work well, so the alternative arrangement I have shown in Fig. 3b is preferable.

In this, the amplifier IC1 is used simply to invert the phase of the signal and amplify it by $2 x$. This utilises the feature of the Wien network that the impedance of $\mathrm{C} 1, \mathrm{R} 3$ is twice that of $\mathrm{C} 2, \mathrm{R} 4$ at the frequency where the phase shift produced by each part of the network is equal. So, if IC1 applies a signal to the upper half of the network which is exactly twice the size of that applied to the lower and of opposite phase, the output will come to a null at some frequency dependent on the values of C and R chosen, as I have shown in Fig. 4.

PROJECT : Distortion Meter

If we want just to remove the input signal frequency, without attenuating the harmonics, the skirts of the notch must be steeper than those produced by the simple arrangement shown in Fig. 3. However, we can do this by applying a bit of negative feedback around the loop, as I have shown in schematic form in Fig. 5.

To tune the notch frequency so that it exactly coincides with the input signal frequency, we need to be able to adjust the value of either the Cs or the Rs in the network. Since the operating frequency is given by the equation
$F_{0}=\frac{1}{2 \pi} \sqrt{\text { C1 C2 R3 R4 }}$
the values of C are too large, unless a very high impedance circuit is employed, to allow the use of a twin gang variable capacitor. In fact, if we want the value of $R 3$ and R4 to be $10 \mathrm{k}, \mathrm{C} 1$ and C2 will need to be 16 n for a notch frequency of 1 kHz . Lower frequencies would require proportionally larger values of capacitors.

It is possible to make such a system with an air-spaced twingang capacitor, but the necessarily high values of R make the whole unit very sensitive to 'hum' pickup. Overall, I think it is easier to use variable resistors, which are easier to get and a lot more compact.

The necessary slow-motion adjustment can be obtained by the use of two resistors in series, one ten times the value of the other, when the high value resistors (as ganged pairs adjusted together) can be used as the coarse frequency adjustment, and the lower ones for fine trimming. This principal could be extended, of course, to employ three such twin gangs in series, to allow a very fine adjustment indeed.

Since the resistor which adjusts the gain of IC1 in Fig. 3, (R2), is a single potentiometer, a ten-turn variable resistor can be used in this position to adjust the gain of this limb so that a complete notch is obtained, with no residues of the input frequency remaining.

The final part of the system is a wide bandwidth millivoltmeter, to display the value of the distortion and noise residues remaining when the input sine-wave is removed.

Since we live in the real world, and there will inevitably be some hum pick-up somewhere in the

Fig. 5 Wien network with negative feedback to produce a sharper notch.
system we are testing, it is useful to incorporate a 50 Hz filter which can be switched in. Also, while we are doing that, we may as well include some HF filtering options, so that we don't measure the THD over too wide a frequency 'window', with its associated noise components.

Finally, it is very helpful, in tests where one is taking the measuring instrument to the gear being tested, to have a built-in signal source of adequate quality.

I am going to describe a relatively simple and low cost THD meter which incorporates the general ideas described above, and I propose to show this circuit in two forms, one a laboratory standard quality instrument operated from a mains input supply, and one a somewhat simpler unit operated from a single 9 V battery, which will be rather easier to make if the demands made upon it are less stringent.

I like battery operated instru-
ments myself because they are highly portable and don't cause problems with earth loops. However, if one wants high performance, it is impractical to demand very lower power consumption at the same time. If one then accepts a higher battery drain - say $\mathbf{1 0}^{-}$ 25 mA - it is expensive if one forgets to switch the instrument off after use, while any 'auto off' function may well switch it off right in the middle of a measurement, which is infuriating.

Hence the two versions of the unit. I have deliberately tried to make the battery operated system as economical in current consumption as possible without resorting to exotic ICs, and in both cases I have organised things so that the millivoltmeter is available as a separate input, so that it and the oscillator can be used on their own as a means, for example, of measuring frequency response.

To be completed next month.

The prototype, looking much the way most prototypes do at this stage in their development!

Digital Delay Line Expansion

There are those of our readers who like to put things off to the last possible minute, and this should help them a little! Adding an extra few K or so the memory of the Digital Delay Line will make it able to delay that little bit more.

Paragraphic Equaliser

Confused by parametric equalisers? Baffled by graphics? Get an even sorer head with our mixture of the two, the paragraphic equaliser, from ETI's punner extra-ordinary,

Barry Porter (the only person we know who comes up with worse - or better - puns than the Assistant Editor).

Cut Through The Jungle

If you can't see the data for the trees, you need an ETI datalogger. This handy unit will allow you to record one-off events, with intervals between logging points of 1 second to $31 / 2$ minutes (or down to 10 ms and up as high as you like, with modifications), and then replay the 2000 data points using a home computer or an oscilloscope, or, if you're patient enough, through a multimeter. Another winner from Phil Walker!

ALL THIS AND MORE IN THE FEBRUARY ISSUE. PLACE YOUR ORDER NOW!

The articles described above are at an advanced stage of fermentation in the Editor's waste bin, but as he'slikely to be carted off to jail by the MoD police - Peter Preston, where are you? - our ability to bring them to you may be limited.

REMEMBER, ALL PRICES INCLUDE VAT AND CARRIAGE. TRADE ENQUIRES WELCOME QUANTITY ITEMS.

DIONICS
UNIT 50, WHITEMOOR ROAD. KENILWORTH,
WARWICKS CV8 2BP
TEL: 092659658
TELEX: 312440 PBSSPA G

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals $£ 1-£ 5$.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name and address with a 21 pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T1E), 92 Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

electronics today international - O O S E B M
 How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service, Argus Specialist Publications Ltd, 1. Golden Square. London W1 R 3AB. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS GUIDE	
	C5.35
Begi	C5
	c5.
Beginner's Guide to Integrated Circuits	c5.
	¢5
B	¢5.
COOKB00KS	
Mic	£9.50
IC Op Amp Cookbook Jun	$¢ 15.10$
PLL Synthesiser Cookbook H. Kinley	£7.70
Active Filter Cookbook Lancaster	£14.30
TV Typewriter Cookbook Lancaster	¢12.50
CMOS Cookbook Lancaster	¢13.50
ITL Cookbook Lancaster	£13.50
Micro Cookbook Vol. 1 Lancaste	£15.30
BASIC Cookbook K. Tracton	£6.00
MC6809 Cookbook C. Warre	£7.25
ELECTRONICS	

COMPUTERS \& MICROCOMPUTERS

BASIC Computer Games Ahl From BASIC to PASCAL Anderson	$\begin{array}{r} £ 6.3! \\ £ 11.3 \end{array}$
UNIX - The Book Banaham	¢19.00
200 Microcomputer Handbook Barden	¢15.05
Microcomputer Maths Barden	¢11.90
Digital Computer Fundamentals Barter	¢11.75
Visicalc Book. APPLE Edition Bell	¢15.55
Visicalc Book. ATARI Edition Bell	£15.55
Intraduction to Microprocessors Brunner	E23.00
Programming your APPLE II Computer Bryan	$\underline{89.25}$
Microprocessor Interfacing Cart	¢8.50
Microcomputer Interfacing Handbook A/D 8 D/A Carr	£10.50
Musical Applications of Microprocessors Chamberlain	£28.85
30 Computer Programs for the Home Owner in BASIC D. Chance	£9.25
Microcomputers Dirkson	19.30
APPLE Personal Computer for Beginners Dunn	¢9.50
Microcomputers/Microcomputers - An Intro Gioone	£36.50

Troubleshooting Microprocessors and Digital Logic Goodman	¢11.25
Getting Acquainted with your VIC 20 Hartnell	¢8.50
Getting Acquainted with your $\mathbf{Z X 8 1}$ Hartnel\|	¢5.95
Let your BBC Micro Teach you to program Hartnell	$£ 7.95$
Programming your ZX Spectrum Hartnell	¢8.50
The ZX Spectrum Explored Hartnell	£6.95
How to Design. Build and Program your own working Computer System,Havilana	£10.50
BASIC Principlas and Practice of Microprocessors Heffer	¢8.00
Hints and Tips for the ZX81 Hewson	¢5.25
What to do whan you get your hand on a Nicrocomputer Hoitzman	$£ 9.95$
34 More Tested Ready to Run Game Programs in BASIC Horn	¢7.70
COBOL Jackson	¢9.25
Microcomputer Builders' Bible Johnson	£14.75
Oigital Circuits and Microcomputers Johnson	¢16.95
PASCAL for Students Kemp	¢6.95
The C - Programming Language Kernighan	£19.25
The ZX81 Companion Maunder	¢9.50
Guide to Good Programming Practice Meek	¢9.50
Principles of Interactive Computer Graphics Newman	¢13.75
Theory and Practice of Microprocessors Nicholas	£11.45
Exploring the World of the Personal Computer Nilles	£12.95
Microprocessor Circuits Vol. 1. Fundamentals	
and Microcontrollers Noll	$£ 9.80$
Beginner's Guide to Microprocessors Parr	¢5.35
Micracomputer Based Oesign Peatman	£11.45
Digital Hardware Design Peatman	£10.75
BBC Micro Reavealed Ruston	¢9.45
Handhook of Advanced Robotics Safford	£14.45
1001 Things to do with your own parsonal computer Sawusch	£8.50
Easy Programming for the ZX Spectrum Stewart	¢7.45
Microprocessor Applications Handhook Stout	¢46.45
Handbook of Microprocessor Design and Applications Stout	£46.45
Programming the PET/CBM West	£16.40
An Introduction to Microcomputer Technology Williamson	¢8.20
Computer Peripherals that you can build Woife.	£14.75
Microprocessors and Microcomputers for Engineering Students and Technicians Wooland	£7.10
GEFERENCE BOOKS	
Electronic Engineers' Handhook Fink	£66.60
Electronic Designers' Handbook Giacoletto	£77.75
Illustrated Dictionary of Microcomputer Technolagy Hordeski	¢8.45
Handbook for Electronic Engineering Technicians Kauffman	£40.50
Handbook of Electronic Calculators Kauffman	£35.00
Modern Electronic Circuit Reference Manual Marcus	£51.95
International Transistor Selector Towers	£14.50
International Microprocessor Selector Towers	£16.00
International MOS Power and other FET Selector	£10.95
Intemational Digital IC Selector Towers	¢10.95
international Op Amp Linear IC Selector Towers	¢9.50
Illustrated Dictionary of Electronics Turner	¢19.75
VIDEO	
Servicing Home Video Cassette Recorders Hobbs	¢14.50
Complete Handbook of Videocassette fecorders Kybett	¢10.50
Theory and Servicing of Videocassette Recorders McGinty	£13.50
Beginner's Guide to Video Matthewson	$£ 5.35$
Video Recording: Theory and Practice Robinson	$\underline{16.00}$
Video Handbook Van Wezel	£24.00
\square Video Techniques White	£14.45

Please send me the books indicated. I enclose cheque/postal order for f.......... Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.
\square
\square

\qquad
\qquad

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a l6-bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kirts For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911. (For shop addresses see back cover.)You'll be proud to say, "I built it myself?"

$\sqrt{\text { ewrad }}$

NEWRAD INSTRUMENT CASES LTD

WE MANUFACTURER BEAUTIFUL ENCLOSURES At prices you will find difficult to beat.
Alloy boxes from 80p to rack mounted units from $£ 15$ and a host of ranges and sizes in between. Well made - well finished - and all British.

Musician 2B Loudspeaker

At last the ideal of all the sound coming from one piston-like diaphragm, unspoiled by crossover units and resonant enclosures.
These radically novel loudspeakers set new standards both in sonic realism and spatial presentation -
"The best stereo you are likely to hear... Quad class nuff said". .. Paul Messenger Hi-Fi News Nov '83.
Drive units for building into enclosures as described in this magazine are $£ 70$ per pair plus VAT and postage. Complete loudspeakers in Luxury \& Basic enclosures are available. Details and prices from:

Merseyside Acoustic Developments
131 Mount Pleasant
Liverpool L3 5TF
Tel: 051-709 0427

DIGITAL DELAY
 LNE

Without further ado, we pass into the constructional stage of the project. Design and development by Ray Lowe.

First of all, before commencing construction, read all the article (including last month's part) thoroughly and don't rush at the construction when you do begin!

To keep costs down, we haven't used through-plated holes on the PCBs (these would add around 50% to the price of the PCBs); however, this does mean that rather a large
number of through-links have to be made. We would suggest spending an hour or so inserting and soldering all the linking pins, then all those components which have their leads used for throughconnections, afterwards carefully checking that you've got all the connections right.

A tip here is to support the board above the work surface and -
insert lengths of tinned wire through the hole positions before soldering them in a batch. Check very carefully for solder bridges very carefully for solder bridges
between tracks at every opportunity - a fine-tipped iron and fine tunity - a fine-tipped ion and fine
solder are strongly recommended as parts of the boards are a bit crowded! Making your own PCBs is not recommended for this reason, unless you have access to

OOPS!

We suffered a loss of sync between the component numbering on the circuit diagram and the 'How it Works' text for the digital section, published last month. In the text:
IC24 becomes IC26
IC26 becomes IC25
IC27 becomes IC36
IC29a becomes IC33a
IC29b becomes IC33d
IC29c becomes IC33c
IC29d becomes IC33b
IC30 becomes IC24c
IC30d becomes IC24a
IC32, 33 becomes IC28, 29
IC35 becomes IC32
IC37 becomes IC30
SW11-SW8 should read SW1-SW8
SW9 becomes SW11
SW11 becomes SW9
D7 becomes ZD1
D8 becomes D6
R65 becomes R61
R69 becomes R62
On the circuit diagram, the junctions of R51-54 and R55-58 should be tied to +5 V , not 0 V , the line from the 0_{0} output of IC31 should be labelled CK, and this line also has a spurious unlabelled junction with IC32 that shouldn't be there. We are sorry for any confusion this may have caused!

Fig. 8 Circuit diagram of the analogue section.

HOW IT WORKS - ANALOGUE SECTION

C1, C2 provide non-polarised ACcoupling to emitter follower Q1's base, which is biased by R1, R2. C3 provides HF filtering; Q1 is a low noise device. IC1a is connected as an inverting amplifier. Since the emitter follower has low output impedance, the stage gain is set by RV1 as R5/RV1 approx. DC blocking is provided by C4 so that IC1a's output swings about OV plus offset voltage. C5 limits the HF response: strict bandwidth limiting is desirable to minimise aliasing and overal system noise.

The amplified original signal is passed to RV3 and to the inverting preemphasis stage around IC1b. R6, R7, C6 provide roll-on starting at about 400 Hz whilst R10, C8 start roll-off at around 3.2 $\mathbf{k H z}$, thus mid range lift is produced.
The pre-emphasised signal is (low pass) anti-alias filtered by three MF10 second-order switched capacitor filter stages connected in series, giving $-36 \mathrm{~dB} /$ Octave cut off in total. The corner frequency of the filter is $1 / 50$ th of the square wave clock frequency applied to pins 10,11 . In this way, the Nyquist sampling criteria is always satisfied since the sampling frequency is synchronised to the cut off frequency via the system clock.
Some clock breakthrough occurs in the filters and this is removed by R19 and C9; subsonics are removed by

R20 and C10. The fully filtered signal is buffered by IC4 such that it swings about 0V. IC4 and IC5 are chosen to have a low input offset voltage of about 1 mV for a reason which will become apparent when you read on!
The buffered signal is fed to a 'signal polarity' comparator with hysteresis to elminate noise-induced switching in the absence of a signal. IC9 is the comparator, comprising, a highperformance op-amp with a high slew rate - so high that its output can swing between power rails within a microsecond, and respond very quickly indeed to the polarity of the signal on its inverting input. No frequency compensation is required in this application. R37 and R38 give approx 6.5 mV of hysteresis, which is sufficient if you consider that the polarity assigned to a 0 V signal is irrelevant.
D3 and R39 stop IC10b's data input from going - ve; IC10 is a dual positiveedge triggered D-type flip-flop. IC10b latches the comparator output state on receipt of every SC (start conversion) pulse. Q and \bar{Q} control CMOS switches IC6 a, b such that either the inverted or uninverted signal, respectively, is selected at any sample time, so that the signal reaching IC6c is wholly positive (rectified).
The Q values of IC10b form bit nine of the data word for a sample A/D con-

version. The bit nine 'bus' direction is controlled by the OE control line. ICGC and C11 form a sample-and-hold, updated on every SC pulse, and in conjunction they also perform low-pass filtering.

IC7 is a FET input op-amp with low offset voltage and low offset vs. temperature coefficient (FET inputs generally have higher offsets than bipolar). It also has very high input impedance so as not to load C11; however when switch IC6c is open this means that the non-inverting input/C11 node is at a very high impedance with respect to ground and is therefore susceptible to electromagnetic interference. Including R23 reduces this impedance from something like 100 Mohm to 680 kohm and interference is much reduced. R23 shorts the switch instead of going straight to ground in order that the discharge of C11 is minimised. IC7 acts as a voltage follower with gain of three, and the offset is nulled by adjustment of PR1. This output is A/D converted into data bits ' 1 ' to ' 8 '.
The delayed signal from the D / A is low pass filtered by C18 in conjunction with the D/A's $\mathbf{4 k}$ output impedance, to remove $H F$ breakthrough, and the signal is then buffered by IC11. It is then accurately inverted by IC13, R42, R43. Analogue switches IC12 a,b select either the erect or inverted signal dependant upon the sign of 'bit nine' latched into IC10a by the D/A latch pulse. The sign of 'bit nine' is used in a way such that any signal, irrespective of original polarity, is only inverted once throughout the entire A/D \& D/A conversion process, thus minimising signal degradation.
The signal entering the second-order low pass filter stage of IC4b at pin 16 has been reconstructed to be bipolar about OV with 5V P-P amplitude. IC3b 'rounds off' the step-like waveform. The delayed but still pre-emphasised signal appears together with clock breakthrough at pin 20. Breakthrough is removed by R 26 and C14.

A fraction of the signal is fed back to be delayed again by applying it to the summing point of IC1b. The feedback fraction, which determines the echo decay rate, is governed by RV2. R8, R9 and $C 7$ counter the effect of roll-off on each extra traversal through this stage, however a slight treble cut remains, but this is useful because it tends to mask the quantisation distortion which builds up with each conversion process. R8 also prevents IC1b from going into HF oscillation, as might happen if C 7 were slightly inductive (it would be across the inputs when RV7 is fully off).

The delayed signal is also fed to the output mix control RV3 via deemphasis amplifier/buffer IC8a. Normally, Q2 has a -ve gate potential which holds its channel resistance very high. When -ve bias is removed, by shorting EXT to $O V$, the resistance falls to several hundred ohms which in conjunction with R27, severely attenuates the signal ie, shuts off the echo channel.

The desired blend between original and delayed signals is set by RV3 and the output is buffered by IC8b. Nonpolarised DC blocking for the output is done by C16 and C17. The output can drive low impedance headphones directly.

Fig. 9 Overlay for the analogue PCB.
PARTS LIST

PROJECT : Delay Line

Fig. 10 Overlay for the digital section.
photo-etching gear.
Construct the PSU section first. What we would suggest doing is mounting the mains switch, the mains fuse and the transformer all in the case to start off with. As you'll be fiddling round with the boards, doing the assembly and setting up, it will probably be best not to mount the boards in the case until you have got the unit going properly, so initially link the transformer secondaries to the analogue board using longish lengths of wire. In any case, whatever you do, you must exercise suitable precautions for the mains side of the circuit. Clamp the mains cable firmly, so that it cannot pull free even with a strong pull. Use a suitable mains fuse, in a substantial panel-mounting fuse holder. Use the mains earth to earth the case and all other metalwork (except the regulator heatsinks, if you haven't used an insulating kit on them). There must be adequate clearances and/or insulation around the mains sections and associated components. On this last point, you will almost certainly find yourself
operating the unit without the lid on at some stage, so use heathshrink wrap, etc, to make sure that you can't accidentally touch live parts.

After the PSU section is constructed, connect it up to the mains and check that it does deliver + and -5 V . Then commence construction of the other sections of the circuits by inserting all the IC sockets (after, of course, disconnecting the unit from the mains!). Then re-connect the mains and check that + or -5 V appears across the correct pins. Insert resistors, capacitors, transistors and switches, checking all the time for secure joints and for solder-bridges. With the mains re-connected, check that the current drain is negligible and that the supply rails are at the correct voltage.

With the supply off, plug in the chips one at a time, starting with the least expensive, then reconnect the supply and check that the current drain is sensible and nothing gets too hot (although, with all the ICs inserted, the positive regulator will run warm).

Unplug the unit between tests, and remember to discharge your fingertips before handling the CMOS you can do this by touching an earthed metal case in your work area.

The last items to insert are the A-to-D, the D-to-A, the switched capacitor filters and the memory chips. To check operation of the unit, only two memory ICs are needed, IC15 and IC23, and as SRAMs are not cheap, it might be prudent to check that the unit is fully functional before you insert any more memory.

The final job before testing is to do all the inter-wiring between the PCBs and any controls, etc, not mounted directly on the PCBs, and to secure the boards firmly in the case.

Setting Up

If all goes well, the unit should be operational as soon as it is switched on, however there is no harm in looking over one final time to see if there's anything you've missed. Do make certain that all is safe on the mains side - not just
for your own sake, but for the sake of the equipment you'll be connecting the unit to.

Circuit operation is quite easily checked using an oscilloscope see the timing diagram, Fig, 4 (given last month). However, the following is a suggested procedure for those constructors without access to a scope.

Connect the output from the unit to an amplifier and speaker, and apply an input signal. The first check is to see if the peak indicator glows with the gain and bandwidth set to maximum (although, this does depend on your input signal being above 200 mV or so) - if this doesn't work, the first point to check is the LED polarity. Next, check that with the mix control fully anti-clockwise, the original signal is heard; this will show whether or not there is signal continuity through the analogue board. If no signal is heard, go back and check your construction.

With the shortest delay setting, the mix control fully clockwise, repeat control fully anti-clockwise, freeze and percussion switches out, and the LFO depth control off, check that a delayed signal is heard. It may be distorted, but at the moment this is nothing to worry about.

Remove the input signal and adjust PR1 so that the unit's output is now silent for all bandwidth settings; check that distortion is at a minimum on low-level signals.
The unit should now be ready for mounting in the case. Any case should do, more or less, provided it is big enough to take the boards; however, you might wish to have details of the expansion board before choosing the case, and these will be given next month.

The insides of the prototype: a general-purpose PSU PCB was originally used, with a few mods here and there, so please don't look too closely! Also not recommended is duplicating the author's mains cable relief arrangements!

The one critical area is the cutout to take the PCB-mouted components; a suggested panel layout-out is shown in the photograph.

Once completed, and with the full memory complement that you've decided to use, the unit should be ready for use. So don't delay further...

Fig. 11 A suggested modification to make sure that a PSU over-voltage doesn't do too much damage.

BUYLINES

Rather surprisingly with the esoteric devices used in this project, the one semiconductor which might cause a few problems is a humble op-amp the LF411 (IC7), which was eventually traced to Maplin. A substitute type could be used here, but at the risk of increased cross over type distortion (a very low offset device is required). All the other semiconductors are available from Watford, Cricklewood, Technomatic and Rapid to name but a few, as well as Maplin.

The switches SW1-9 must have the correct lead spacing ($0.15^{\prime \prime}$ between pins, $0.2^{\prime \prime}$ between rows) to fit on the PCB, but this should not create too many problems (for once, RS types are not suitable, as these fit a $0.1^{\prime \prime}$ matrix). The ones in the prototype were from Cirkit.

The finished unit - all ready to go.

A small selection of our stock:

74LS Series		74LS74 741576 74.592	48p 31 p 63 p	$\begin{aligned} & \text { 74LS37 } \\ & \text { 74LS39 } \end{aligned}$	$\begin{array}{r} 120 \mathrm{p} \\ 90 \mathrm{p} \end{array}$	$\begin{aligned} & 7400 \\ & 7406 \\ & 7407 \end{aligned}$	$\begin{array}{r} 40 \mathrm{p} \\ 50 \mathrm{p} \\ 125 \mathrm{p} \end{array}$
74L500	30p	74L5109	43p	CMOS		7412 7432	30 p 50 p
74LSOI	23p	74LSII2	48p			7432 7486	50p
74L502	28p	74LS113	48p	4001	25p		
74L503	22p	7415123	120p	4013	48p	74121	55p
74L504	38p	74LSI 26	57p	4016	24p		
74L505	27p	74LSI32	67 p	4017	67p	Memories	
74LS08	34p	74LSI38	76p	4019	54p		
74LS 10	33p	74LSI51	78p	4020	87p	2114L-2	350p
74LSII	28p	74L5157	58p	4024	50p	2112	300p
74LS13	36p	74L5163	$8^{33} \mathrm{p}$	4027	20p	2532	397p
741514	59p	74LS164	98p	4029	75p	2764	575p
74LSI5	33p	74L5165	127p	4042	50p	4827128	
74L520	33p	74L5181	128p	4047	40p		1900p
74L521	31 p	74L5192	97p	4049	43p	4164	445p
74L522	31 p	74LS193	98p	4060	68p		
74L527	33p	745240	108p	4069	29p		
74.530	${ }^{27 p}$	74L5241	108p	4070	29p		
74.532	84p	74L5244	108p	4078	30p	223	
74.538 74.542	48p	74LS257	75p	4093	${ }^{55}$		
$74 L 542$ 74.548	63 p 108 p	74LL5273 7415367	150 p 58 p		${ }^{90} \mathrm{P}$	CATA	Gue

We stock a full range of 74LS series, and memory and microprocessors. Ring for our FREE catalogue and special quotation.

```
F#
Prices correct at time of going to press
```


ETI PCB SERVICE

In order to ensure that you get the correct board，you must quote the reference code when ordering The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．

```
1981
[. E/8106-8 Waz-Phase. .............. . . 1.76
    E/8106-9 Alien Attack4.00
    E/8107-1.System A-Input
    (MM or MO.3.05
    E/8107-2 System A - Preamp . . . . 5.95
    E/8107-3 Smart Battery Charger ... 2.27
    E/8108-3 Hand Clap Synth. . . . . . . . 4.57
    E/8108-5 Watchdog Home
        Security (2 boards)6.11
```

E／8109－1 Mains Audio Link （ 3 boards） 8.45
\square E／8109－4 Laboratory PSU 5.21
\square E／8110－1 Enlarger Timer． 3.91
E／8110－2 Sound Bender． 3.05
E／8111－1 Voice Over Unit 4.57
E／8111－2 Car Alarm． 3.23
－E／8111－3 Phone Bell Shifter． 3.40
\square E／8112－4 Component Tester 1.71
1982

```－E／8201－3 Guitar Tuner（2 boards）6．38
```

E／8202－2 Allez Cat Pest Repeller ．． 1.93
E／8202－5 Moving Magnet Stage．． 4.01
\square E／8202－6 Moving Coil Stage 4.01
／8203－4 Capacitance Meter

```（2 boards）11.66
```

－E／8205－1 DV Meg 3.13
（ E／8206－1 Ion Generator （3 boards） 9.20
－E／8206－4 MOSFET Amp Module 7.80
E／8206－5 Logic Lock 3.52
E／8206－6 Digital PWM 3.84
－E／8206－7 Optical Sensor 2.00
E／8206－9 Oscilloscope

```（4 boards）13.34
```

－E／8212－2 Servo Interface

```（2 boards）6.75
```

ㅁ E／8212－4 Spectracolumn． 5.54
1983
E／8301－1 Fuel Gauge 3.45
E／8301－2 ZX ADC 2.59
E／8301－3 Programmable PSU 3.45
E／8303－1 Sound8oard 12.83
E／8303－2 Alarm Module ． 3.62
E／8303－3 ZX81 User Graphics 1.07
E／8303－4 Logic Probe 2.50
E／8304－1 Real Time Clock． 8.74

```E／8304－4 Stage Lighting－Main ．．．13．73
```

E／8305－1 Compressor／Limiter 6.19
E／8305－2 Single PSU 3.16
E／8305－3 Dual PSU ． 4.01
E／8305－4．2 NDFL Amp 7.88
E／8305－5 Balance Input Preamp． 3.23
E／8305－6 Stage LightingAutofade6.19
E／8305－7 Stage Lighting－ Triac Board． 4.74
E／8306－1 to 3 PseudoROM（3 boards）3.62
E／8306－5 Atom Keypad． 5.18
E／8307－1 Flash Sequencer 2.67
E／8307－2 Trigger UnitMainBoard． ． 2.67
E／8307－3 Trigger Unit Transmitter 1.66
E／8307－4 Switched Mode PSU．．．． 16.10E／8308－1 Graphic Equalisr．．．．．．．．．．．． 9.10E／8308－2 Servo FaitSafe
（four－off） 2.93
E／8308－3 Universal EPROM prog 9.64
E／8309－1 NiCad Charger／Regen 3.77
E／8309－2 Digger． 3.40
E／8309－3 64K DRAM 14.08
E／8310－1 Supply Protector 2.19
E／8310－2 Car Alarm． 3.98
E／8310－3 Typewriter Interface 4.17
E／8311－1 Mini Drum Synth 3.07
E／8311－2 Alarm Extender． 3.21
E／8311－3 Multiswitch 3.59
E／8311－4 Multiple Port． 4.34
E／8311－5 DAC／ADC Filter 3.22
E／8311－6 Light Pen 4.60
E／8311－7 Logic Clip 2.51
E／8311－8 MC Head（JLLH） 3.17
E／8312－1 Lightsaver． 1.85
E／8312－2 A－to－D Board 12.83
E／8312－3 Light Chaser（2 bds） 7.54
E／8312．4 ZX Alarm 6.041984E／8401－1 Vector Graphics ．．．．．．．．．．． 8.27E／8402－1 Speech Board
（Mini－Mynah）MODULAR PREAMP：
－E／8402－2 Disc input（mono） 3.73
－E／8402－3 Output stage（stereo） 3.73
E／8402－4 Relay／PSU． 3.73
E／8402－5 Tone，main（mono） 3.73
E／8402－6 Tone，filter（stereo） 3.73
E／8402－7 Balanced output（st） 3.73

\square	E／8402－8 Headphone amp（st）．．．． 3.73
\square	E／8402－9 Mother board ．．．．．．．．．． 9.01
\square	E／8403－1 Power Meter ．．．．．．．．．．． 5.81
\square	E／8403－2 280 DRAM．．．．．．．．．．．． 9.79
口	E／8403－3 Obedient Die ．．．．．．．．． 3.76
\square	E／8404－1 School Timer．．．．．．．．．． 4.07
－	E／8405－1 Auto Light Switch．．．．．．． 4.01
\square	E／8405－2 ZX81 EPROM Prog．．．．． 10.53
口	E／8405－3 Mains Borne RC ．．．．．．． 5.07
\square	E／8405－4 Centronics Interface ．．．．． 4.09
\square	E／8405－5 Vario ．．．．．．．．．．．．．．．．． 6.62
\square	E／8405－6 Midi Drum Synth ．．．．．．． 3.59
\square	E／8406－1 Oric EPROM Bd．．．．．．． 19.58
－	E／8406－2 Spectrum Joystick ．．．．．． 3.30
\square	E／8407－1 Warlock Alarm ．．．．．．．．． 8.19
－	E／8408－1 Joystick Interface．．．．．．． 3.07
\square	E／8408－2 EPROM Emulator．．．．．．． 9.11
\square	E／8408－3 Infrared Transmitter ．．．． 3.70
\square	E／8408－4 Infrared Receiver ．．．．．．． 3.98
\square	E／8408－5 CMOS Tester．．．．．．．．．．． 4.60
\square	E／8409－1 EX42 Kybd．Interface ．．．． 3.82
\square	E／8409－2 Bansheee Siren．．．．．．．．． 3.19
\square	E／8409－3 Dry Cell Charger．．．．．．．． 2.80
\square	E／8410－1 Echo U nit．．．．．．．．．．．．． 3.92
\square	E／8410－2 Digital Cassette ．．．．．．． 9.80
\square	E／8410－3 Disco／Party Strobe ．．．．． 4.80
\square	E／8411－1 AM／FM Radio（4 bds）．． 13.02
\square	E／8411－2 Control Port－control bd 12.15
－	E／8411－3 Control Port I／O bd ．．．． 6.33
\square	E／8411－4 Capacitance Meter．，．．．．． 3.55
\square	E／8411－5 Video Vandal（3 bds）．． 12.10
\square	E／8411－6 Temperature Controller．．． 2.88
口	E／8411－7 Mains Failure Alarm．．．．． 2.54
－	E／8411－8 Knite Light．．．．．．．．．．．． 3.25
\square	E／8411－9 Stage Lighting Interface．． 3.73
\square	E／8411－10 Perpetual Pendulum ．．． 3.14
\square	E／8412－1 Spectrum Centronics ．．． 3.51
\square	E／8412－2 Experimenter＇s DRAM．． 14.08
\square	E／8412－3 Active－8：Motherboard．． 9.37
\square	E／8412－4 Active－8：Protection Unit 3.67
\square	E／8412－5 Active－8：Crossover ．．．．． 3.67
\square	E／8412－6 Active－8：LF EQ ．．．．．．．．． 3.67
\square	E／8412－7 Active－8：Equaliser．．．．．． 3.67
\square	E／8412－8 Active－8：Delay Unit．．．．． 3.67
1985	
\square	E／8501－1 Active 8ass Speaker ．．．．． 2.79
\square	E／8501－2 DRAM Card Update ．．．． 3.66
\square	E／8501－3 Digital Delay（2 bds）．．P．O．A．

E／8402－8 Headphone amp（st） 3.73
5.81E／8403－1 Power
E／8403－2 ZBO DRAM．
3764.07
8405－1 Auto Light Switch． 4.01
8405－3 Mains Borne RC 5.07E／8405－5 Vari6.62
E／8405－6 Midi Drum Synth 3.59
／8406－2 Spectrum Joystick 3.30
E／B407－1 Warlock Alarn3.07
E／8408－2 EPROM Emulator3.70
E／8408－4 Infrared Receiver ．98
 3.82
E／8409－3 Dry Cell Charger． 2.809.80
．80E／8411－3 Control Port control bd 12.15E／8411－4 Capacitance Meter．．．．．．．． 3.55E／8411－6 Temperature Controller．．． 2.88E／8411－7 Mains Failure Alarm．．．．．． 2.54E／8411－9 Stage Lighting Interface．．． 3.73E／8412－1 Spectrum Centronics ．．．． 3.51E／8412－2 Experimenter＇s DRAM．．． 14.08E／8412－3 Active－8：Motherboard．．． 9.37E／8412－4 Active－8：Protection Unit 3.67E／8412－5 Active－8：Crossover ．．．．．． 3.67E／8412－6 Active－8：LF EQ．．．．．．．．．． 3.67E／8412－7 Active－8：Equaliser．．．．．．． 3.67E／8412－8 Active－8：Delay Unit．．．．． 3.67／8501－1 Active 8ass Speaker ．．．． 2.79E／8501－3 Digital Delay（2 bds）．PO．A

How to order：indicate the boards required by ticking the boxes and send this page，together with your payment，to： ETI PCB Service，ArgusSpecialist Publications Ltd， 1 Golden Square，London W1R 3AB．Make cheques payable to ETI PCB Service．Payment in sterling only please．Prices subject to change without notice．

[^0]
PLEASE ALLOW 28 DAYS FOR DELIVERY

Signed

Name
Address

PCB FOILPATTERNS

The Active Bass Loudspeaker PCB.

Please note that due to lack of space we have been unable to reproduce the Digital Delay Line foil patterns here. We hope to include them next month.

COME AND JOIN US!

As a result of Phil Walker's impending move to a senior position in industry and Dave Bradshaw's promotion to a senior position in the company, ETI is seeking an Editor and a Project Editor.

The Editor will need to be an organisational genius with a strong technical background and the ability to deal simultaneously with irate printers, confused typesetters, frustrated contributors and impatient readers, all whilst producing perfect copy to deadlines and delivering blistering puns to order. If you think your qualifications and experience are appropriate and believe that your nerves and social life can stand the strain, contact us for a detailed job description and an application form.

The Project Editor will need a good practical knowledge of electronics and should be a competent designer of both analogue and digital circuitry. The job involves designing, prototyping and writing-up projects for publication in ETI, checking articles submitted by other authors, answering enquiries and generally being our resident know-it-all and technical genius. A particularly experienced candidate might be considered for a role as technical referee on the complete group of ASP electronics magazines.

Applicants for the above positions should write to Dave Bradshaw, Editor, Electronics Today International, 1 Golden Square, London W1R 3AB, enclosing a CV and, for the Project Editor post, details of one or two of their own designs.

ELECTRONICS TODAY INTERNATIONAL

CLASSIFIED

Lineage:

40p per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements to: Jason Inskip ASP Ltd., 1 Golden Square, London W1.

ALARMS

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers

Latest D.I.Y. \& Wholesale Published Catalogue Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13
Tel: 0512283483 or 051-2200590

FOR SALE

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

STEREOAMPS 120 Watt $(60+60)$...Case-D.I.N. Sockets and controls... 9-40v/Smoothing ... protected outputs $3 / 15$ O.H.M. tested and diagrams $£ 10 / \mathrm{inc} .$. . KIA-8 Cunlifie Rd., likley.
CLEAROUT. Cased keyboard numeric pad $£ 45$. Softy Eprom programmer. Almost new $£ 110$. Petitvid VDU 16×48, cased 175 . Accoustic coupler £25. Logabay printers, LX180 £95. LX80 £75. All in excellent condition. Phone 073477-5438.

CORTEX MK 1 with RS232, disc interface, Ebus $3^{\prime \prime}$ monitor. $£ 250$.n.o. Aylesbury 33885 (evenings).

TEKTRONIXOSCILLOSCOPES. 546 dual-trace 50 MHz delay sweep £195, 545A dual-trace 24 MHz delay sweep $£ 125,564$ storage, dual-trace 10 MHz £275. Plugrins. 7B50A £300. Manuals. Texas printer £35. H.P. DVM £20 Advance J1A Audio Oscillator £25. Tel: (01) 8684221.

CORTEX WITH RS232. Nearly a fully fledged system, with only TMS 9909, LS297 and 3. LS07's to complete disc interface and LS612, LS2001, LS245 to complete E-Bus. IDC connector, fan disc cables fitted. £350 o.n.o Chorley (02572) 69172 evenings/ weekends.

100W AMPLIFIER

- E9.95 built

Or use the same board for 50 W $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U.SAE for full details to:

ESS AMPLIFICATION Innovation House
Guildhall Road, Hull
KEYBOARDS 81 key hall effec with IC's £40, 65 key N/o £40, 96 key reed £20. Tel: 0279-442305.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

HOME GUARD SYSTEMS

If you want professional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our free illustrated catalogue.

Tel: 01-651 2449
Freepost, South Croydon Surrey CR2 9PU
(no stamp required)

SOFTWARE

APPLICATIONS

CORTEX SOFTWARE

For the Powertran Cortex computer. FORTH - Supplied in two 2564 eproms. Totall standalone suppons cassente, $5.25^{\prime \prime} 88^{\prime \prime}$ discs. Price £35.00 inclusive
DIsCs - Forth utillites, use with above eproms, contains editor, assembler, and utilties. Price

AUTO-8OOT EISCS
FORTH - Use the Basic 'BOOT' command to downtoad the Forth system. Ine Forth eproms are not required. Price E 55.00 inclusive. COOS - Adds lite support to Cortex Besic, named program and data files. Includes lormal and comgure use tate $55^{\prime \prime}$ or 8 " s a 0 with a Disc ordars.
enquifies to:-

LOMBARD SYSTEMS Bettord MK 43 ORP

KITS

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 9$12 v$ operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. $£ 6.95$ inc; or ready built 18.95 : Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate, Hailsham, E.Sussex BN27 2EW.

KITS

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick £2.00 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

LINSLEY HOOD DESIGNS LOW DISTORTION AUDIO SIGNAL GENERATORS

AO 113 Kit $\quad £ 28$ (p.p.£1) AO 149 Kit E39 (p.p. £2)
Super Hi-Fi Amplifer (ETI) P.C. Boards from $£ 4$

Send S.A.E. for further details:
TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01-807 3719

VHF TRANSMITTERS

$140 \mathrm{~mm} \times 370 \mathrm{~mm}$. Extremely sensitive, powerful. Operates from 1.5 V battery ready built tested only $\mathbf{£ 9 . 9 5}$ (in kit form $\mathbf{8 7 . 5 0}$).

Also available Automatic Telephone Recorder built tested $\mathbf{\varepsilon 1 1 . 9 5}$ (in kit form $\mathbf{\varepsilon 8 . 5 0}$).

All fully guaranteed. Send cash, cheque or P.O. to:

SHAH ELECTRONICS
 11 Livingstone Road
 Southall, Middelesex UB1 1TH

ECOLIGHT (ETI July 84) deters burglars from even attempting a break in. Fullkit of parts as per article £21.05. p.c. Only £4.50. Reprint of article 75p. G.P. Electronics, 87 Willowtree Ave., Durham DH1 1DZ.

TIME WRONG??

MSF CLOCK IS ALWAYS CORRECT never gains or loses, SELF SETTING at switch-on, \& digits show Date. Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel $B C D$ for computer, receives Rugby 60 KHz atomictime signals, built-in antenna, 1000Km range, 879-70, get the TIME RIGHT.
Fun-to-build kit (ready made to order) includes ALL parts, printed circult, case elc, by-ralum postage, lisf of other kits. CAMBPIDCE KITS
45 (TM) Okd School Lane, Militon, Cambe.

PLANS 'N DESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

EQUIPMENT

EPROM COPIER - STAND ALONE 2716-27128............ £175.00 TELEPHONE CONVERSATION
RECORDER $£ 75.00$
2 LINES INTO 1 ANSWERING
MACHINE
Switching Unit
$£ 30.00$
From LK.F. Syatems Lid
St. Albans. Tel: 55084

BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH

Have you got technical books you no ionger need? OR Do you need to read up on a new topic? Then EXCHANGE BOOK CLUB can help YOU!
We buy and sell previously read books on electronics and computing For list of currently available titles and detalls of our quaranteed buy back plan SAE pleaso to.

Rothwell, Leeds LS28 O. Box

SERVICES

PRINTED CIRCUIT BOARDS manufactured to your specification. Quality, Quick service. Competitive Prices. COPPER-CLAD fibreglass boards cut to size. 1 mm thick $£ 1.80 \mathrm{sq}$. ft. $1.6 \mathrm{~mm} £ 2.20 \mathrm{sq}$. ft . Postage 75p. Mondo Circuits Ltd, 35 Grosvenor Road, Twickenham, Middx. Tel: 01-8915412.

SCOPES

Repaired \& recalibrated, all makes, all models.
Scopex Safgan, Older TEK TQ
MENDASCOPE LTD Otter House
Western Underwood, Olney Bucks MK46 5JS Tel: Bedford (0234) 712445

JBA
 ELECTRONICS

Manufactures to design or specifications. One offs, small batch prototypes. Analogue digital electronic equipment. Complete electronic service - no job to small.
ist Floor 4 a Lion Yara
Brecon, Powys, South Wales Tel: $(0874) 611177$

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

SERVICES

COMPONENTS
P.C.B. DESIGN \& LAYOUT, manually taped artwork professionally produced at competitive prices. James Gledhill. Tel: 01-674-8511.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

TEST EQUIPMENT

TOP PRICES PAID for surplus electronic test equipment.
ALWAY8 a good selection of ISIG-GENS, METERS, and SCOPES for sale. Phone 0920-8714301

EDUCATIONAL

DIGITAL

ELECTRONICS

Are you up to

BTEC Standard?
Follow this OPEN LEARNING course for $\mathbf{£ 3 0}$ only and be sure.
Written by a technical college head ituses all the best methods of learning, by booklet audio tape, and a planned sequence of digital experiments.
Booklet \quad £3.75 $\mathrm{p} / \mathrm{p} 40 \mathrm{p}$ Audio tape ${ }^{r} \quad \mathrm{E} 1.50 \mathrm{p} / \mathrm{p} 40 \mathrm{p}$ Circuitboard Component kit ع1.50 p/p 40 p £20.00 p/p £2 ع6.95 p/p 50 p £ $30.00 \mathrm{p} / \mathrm{p}$ inc.
Two postage-only tutorials for full course purchasers.
Cash with order to:
apt Open Learning, Porters Pk
Boreham, Chelmsford, CM3 3BH
IMPROVE YOUR PROSPECTS

WIRES 'N CABLES

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17				
ENAMELLED COPPER WIRE				
	116			
$35-39$		2.30	1.2	
-4,				
	15.96	9.58	6.38	
SILVER-PLATED COPPER WIRE				
TINNED COPPPER WITRE				
$\begin{aligned} & 14.30 \text { 3.97 } 2.41 \\ & \text { Prices include P\&P and VaT. Orders under } \end{aligned}$				
Prices include P\&P and VAT. Orders unde				

Betatran Electronics

 SuppliesToroidel transformers primary 250 V seconderiee $0-40,0-40 \mathrm{~V}, 0-50,0-50 \mathrm{~V}$, $0.55,0-55 \mathrm{~V}, 0-70,0-70 \mathrm{~V}$ at $300 \mathrm{VA} \mathrm{Et7} .55$, 500VA $824.70,625 \mathrm{VA}$ £30.50. Con Electolytics 63V, 6800uF 8A 2\&4.35. 10,000uF 7A E5.45. 100 V 6800uF 8 A 25.23, 4700uF 8A £5.50. 3300uF 7A 84.20. 2200uF 7A 83.00. Computer Grade 10,000uF 15A E14.69. MOS-FETs 2SJ 50/2SK 135 ce.50. 2SJ83/2SK 227 c. 8.20 price per pair. 35A 200 V bridge rectifiers $\mathrm{£3.25}$. VAT inclusive $£ 1.00 \mathrm{p} \& \mathrm{p}$ under $£ 7.00$. Full spec. many more. Resistors, capacitors, trasnistors, heat sinks, amplifiers, speakers, transformers etc Send 4×9 self addressed envelope for large list
Laver 8t, Cavendieh, Suffolk C0108AP. Tel: 0787280839.

BUMPER BOX
 OF BITS

WOW! We've got so many components in stock, we can't possibly list them all-So buya box. In it you'll find resistors, capaci tors, displays. switches, panels with tran sistors, diodes, IC's etc, coils, pots and so on All modern parts - guaranteed a ONL Y 88.50 inc. 48 page catalogue 50p.

ELECTRONICS WORLD

1 e Dews Road, Salisbury, Wilts SP2 7 SN

CHEAP CASES

Absolute bargains, rack mounting \& free standing. NEW, but manufacturers seconds. N damage.
C. Phmupn, 'The Leurels' Tiptoe Road

Wooton, New Muton, Hanta BH25 sS।
MAIL ORDER ONLY

SOFTWARE

CROSS ASSEMBLER for 6803/ 6303 or 65C02 processors on BBC or PET. Fast. S.A.E. details. CWO £16. M.J. Tyler, 2 Parkview, Cashgreen, Stroud, Glos. 045-3677257.

DON'T LEAVEIT TO

CHANCE, BOOST YOUR BUSINESS NOW BY
ALVERTISING IN ET
PHONE 01-437 0699
FOR DETAILS

FREEI Parcei of components worth $£ 10$. Send only 80 p postatge. D. Horsley, 113 Clare Rd. Braintree, Essex.

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-of-post service
Write or phone for free price list
WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin B. Phone(01) 0001 if England 987507 Mail order only please

BARGAIN OF THE YEAR, manufacturers unused surplus electronic components. Send $£ 3.50$ for a bumper two kilo assorted parcel by return of post. Universal Aids Ltd., 8-14 Wellington Road, South Stockport SK4 1AA.

Z80A MICROPROCESSOR and two 74LS ICs on circuit board. £2.45. J.J. Pearson, 23 Douglas Terrace, Broughty Ferry, Dundee 1JD.

MICROCOMPUTER REPAIRS

ZX SPECTRUM.Vic 20, C64, BBC,

 QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.
MISCELLANEOUS

AGENTS

Wanted to Sell Computer Software for most computers. Wenow have the Dialog Electronics Partl in stock, Pools Winner \& Course Winner. We can supply business software, games anmd computer ad ons. Phone (0288) 4179 up to 9pm most nights for your free list and details about our agents.

THE ELFCTRONICS SPECIALLSTS'
Open: Tuas-Sat 9.30-5:30

FILM SOUND HOLIDAY RELIEF

On a temporary basis for varying periods from early March 1985.
To undertake the operation of tape, disc and 16 mm reproduction and recording equipment in Sound Transfer areas and Dubbing Theatre Record Rooms. Candidates for these posts should have a knowledge and experience of film sound transfer and dubbing methods, coupled with an understanding of the use of sound in television film production. Some basic training will be given. Normal hearing is essential.
Salary $£ 8,094-£ 9,791$ p.a. Applicants will be expected to work on a shift basis when a shift allowance rate will be paid. Based at Ealing or Shepherds Bush. Contact us immediately for application form (quote ref. 5041/ETI and enclose s.a.e.): BBC Appointments, London W1A 1AA. Tel. 01-927 5799.
We are an equal opportunities employer

BBGtv

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the dey you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for one edvertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not for example, payments made in response to catalogues, etc,
received as a result of answering such edvertisements)
CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.

ETI ADVERTISERS INDEX JANUARY 1985

Audio Electronics 52/53
B. Bamber 67
BK Electronics 14
B.N.R.E.S. 48
Cambridge Learning 27
Cambridge Micro Computers 67
Cirkit. 20/21
Cricklewood 10
Cybernetic Applications 48
Dionics 59
Display Electronics 2272
Etatech 32
Greenbank. 59
Greenweld 41
ICS 41
ILP 26
Kelan 31
Kemplant 67
Magenta 54
Maplin OBC/61
Marco 32
Merseyside Acoustic Developments 67
Microprocessor. 32
Midwich Computers 42/43
Newrad 61
Powertran IFC/IBC
Rapid Electronics 6
Riscomp 31
RTVC 27
RVM 54
Ship Co. 31
Skybridge
Skywave 48
S.M.E. 67
Stewarts of Reading 26
Systems Electronique 74
Technomatic 12/13
TK Electronics 25
Watford Electronics 4/5
Wilmslow Audio 54

INDEX 1984

Only a few months have passed since the publication of our complete project index and already it's time for our annual features and projects index. Listed below are all the projects we have published in the last twelve months and all the features other than Digest and Read/Write. Note that, where a series of articles has been carried over from the previous year or continues into this year, we have listed only those parts which actually appeared in 1984. We have also, following the practice adopted in the project index, listed corrections to projects.

If you wish to acquire copies of any of the items listed here, you can order backnumbers from Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herfordshire HP1 1BB, telephone 0442-48432, or, if the backnumber you require is no longer available, you can order photocopies from us at the address given on the contents page. The cost in either case is $£ 1.50$ (but note that where an article appeared in several parts each part will be charged separately), and cheques, postal orders, etc should be made payable to ASP Ltd.

FEATURES

Article	Part	Month	Page
Cassette Deck, Digital	part 1	Sep	27
	part 2	Oct	28
Centronics Interface, Cortex	part 1	Jun	65
	part 2	Aug	23
Centronics Interface, Sharp MZ80K		May	47
Centronics Interface, Spectrum		Dec	57
Chorus/Flanger		Jan	33
CMOS Tester		Aug	64
	Errata	Sep	68
Digital Cassette Deck	part 1	Sep	27
	part 2	Oct	28
Digital Control Port	part 1	Oct	44
	part 2	Nov	29
Digital Delay Line	part 1	Dec	16
Direct-Reading Capacitance Meter		Nov	41
Disco/Party Strobe		Oct	52
DRAM board modification for Z80s		Feb	29
DRAM Card, Z80		Mar	45
DRAM Card, Experimenter's		Dec	31
Drum Synthesiser, Midi		May	62
	Errata	Aug	66
Dry Cell Charger		Sep	53
Echo Unit, Simple		Oct	18
Ecolight		Jul	55
	Errata	Sep	09
Electron Speech Board		Nov	57
EPROM Board for the Oric/Atmos		Jun	36
EPROM Emulator	part 1	Jul	22
	part 2	Aug	50
EPROM Eraser		May	17
EPROM Programmer, Universal, Revisited		Jan	61
EPROM Programmer, Universal, the sequel to the sequel		Apr	33
EPROM Programmer, ZX81		May	26
	Errata	Sep	68
EX42 Keyboard Interface		Sep	23
EX42 Typewriter Interface Update		Mar	25
Experimenter's DRAM Card		Dec	31
Finesse Disco/Party Strobe		Oct	52
Framestore, TV	part 1	Dec	61
Infra-red Intruder Alarm	part 1	Jul	61
	part 2	Aug	59
Joystick Interface, Sharp MZ80K		Aug	42
	Errata	Sep	68
Joystick Interface, Spectrum		Jun	49
	Errata	Aug	66
Keyboard Interface, EX42		Sep	23
Knite Light		Nov	69
Loudspeaker, Active-8	part 1	Sep	45
	part 2	Oct	56
	part 3	Nov	36
	part 4	Dec	24
Loudspeaker Design, Novel		Jun	57

Article	Part	Month	Page
Loudspeaker Squeaker		Nov	17
Mains-Borne Remote Control	part 1	Apr	53
	part 2	May	37
Mains Failure Alarm		Nov	66
Midi Drum Synthesiser		May	62
	Errata	Aug	66
Mini-Mynah Speech Synthesiser		Feb	20
	Errata	May	69
Modular Preamplifier	part 2	Jan	55
	part 3	Feb	51
Novel Loudspeaker Design		Jun	57
Obedient Die		Mar	54
Perpetual Pendulum		Nov	77
Power Meter, Stereo		Mar	35
Power Supply, Bench		Feb	41
Preamplifier, Modular	part 2	Jan	55
	part 3	Feb	51
Programmable Speech Board		Feb	20
	Errata	May	69
Radio, AM/FM Portable		Nov	21
	Errata	Dec	07
School Timer		Apr	59
Sharp Centronics Interface		May	47
Sharp Joystick Interface		Aug	42
	Errata	Sep	68
Simple Echo Unit		Oct	18
Spectrum Centronics Interface		Dec	57
Spectrum Control Port	part 1	Oct	44
	part 2	Nov	29
Spectrum Joystick Interface		Jun	49
	Errata	Aug	66
Spectrum Stage Lighting Interface		Nov	72
Speech Board for the Electron		Nov	57
Stereo Power Meter		Mar	35
Strobe, Disco/Party		Oct	52
Super-Selective Music Filter		Apr	39
Temperature Controller		Nov	63
TV Framestore	part 1	Dec	61
Typewriter Interface Update		Mar	25
Universal EPROM Programmer Revisited	Universal EPROM Programmer		61
Universal EPROM Programmer the sequel to the sequel		Apr	33
Vario (Vertical Speed Indicator)	part 1	Apr	19
	part 2	May	57
Vario Update		Dec	71
Vector Graphic Display		Jan	19
Video Vandal		Nov	50
Warlock Alarm System		Jul	35
Z80 DRAM modification		Feb	29
Z80 DRAM Card		Mar	45
ZX81 EPROM Programmer		May	26
	Errata	Sep	68

YOU'L ENJOY THE EXPERIENCE

Powertran's educational robots and the remarkable Cortex microcomputer have been tried and tested in universities, colleges, schools and homes throughout the world.
Our own experience in the field of electronics kits has been supplemented by the Feedback Group's 25 years of supplying technical equipment to the Educational sector. Our first year as a member of the Group has seen numerous improvements to our already popular products.
All the products illustrated can be supplied either factory-built or in kit form for added economy. Contact our Sales Office for details.
(Prices quoted are exclusive of VAT and apply to the UK only.)

POWHATMAN gllemantics th.

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET Tel: 026464455

[^0]: Total for boards
 £．．．．．．．．．．．．．．．．．．．．．．．
 0.45

 Add 45p p\＆p
 Total enclosed
 £．

