

Powertran's educational robots and the remarkable Cortex microcomputer have been tried and tested in universities, colleges, schools and homes throughout the world.
Our own experience in the field of electronics kits has been supplemented by the Feedback Group's 25 years of supplying technical equipment to the Educational sector. Our first year as a member of the Group has seen numerous improvements to our already popular products.
All the products illustrated can be supplied either in kit form for added economy or factory-built. Contact our Sales Office for details.
(Prices quoted are exclusive of VAT and apply to the UK only.)

DIGEST

..................... 7
ETI dusts off a few more press releases.

1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
Telex 8811896.

FEATURES

7

READ/WRITE
67
ETI responds to the latest batch of data which has arrived in the input port.

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Assistant Editor Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Kerry Fowler: Copy Control Jim Connell: Chairman

PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Golden Square, London WTR 3 AB DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd
12-18 Paul Street, London EC2A 4/S
(British Isles)
PRINTED BY:
The Garden City Press Ltd.
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS	AUSTRALIA - Roger Harrison
EDITIONS	CANADA - Halvor Moorshead
and their	GERMANY - Udo Wittig

GERMANY - Udo Wittig
HOLLAND - Anton Krie

ABC Member of the of Circulation

Electronics Today is normaily published on the first Fri day in the month preceding cover date. [The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv reproduction requires the prior written consent of the Company. © 1984 Argus Specialist Publications Lid \square All reasonable care is taken in the preparation of the magazine contents, but he publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are ac press. Neither theod faith as correct at timers of going to held responsible however for any variations atfecting held responsible, however, for any variations affecting tion has closed for press. \square Subscription Rates. UK $£ 15.00$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

DIGITAL DELAY LINE.
 16

Just the thing for musicians with restless digits.

ACTIVE-8 LOUDSPEAKER 24

Barry Porter completes his description of the basicActive- 8 system and goes on to offer some encouragement for those with sensitive ears and sympathetic bank managers.

EXPERIMENTER'S DRAM

CARD
The 64 K DRAM board we described in September last year proved very popular but there were a number of problems with it. Phil Walker has designed an improved version and also come up with a modification which can be added to existing boards.

SPECTRUM CENTRONICS
 INTERFACE
 57

We seem to have produced Cen-

TECH-TIPS SPECIAL 39
Eight pages of un-alloyed ingenuity from our ever-clever readership.

MIND YOUR HEAD 49
Vivian Capel explains the ins and outs of tape transducers in terms which won't be above anybody's head.

PROJECTS

tronics interfaces for micros right across the computer spectrum, so it would be a shame not to cater for this one.

TV FRAMESTORE 61
For a mere couple of hundred pounds or so (!) we can put you in the picture about video storage techniques.

VARIO UPDATE. 71 Lindsay Ruddock takes his vertical speed indicator to even greater heights of sophistication.
Our apologies to readers who have been holding their breath since last month in anticipation of John Linsley Hood's promised distortion meter design. Due to lack of space we have decided to hold part one over until next month when we will present both parts together.

INFORMATION

NEXT MONTH'S ETI 69
ETI PCB SERVICE. 78
ETI BOOK SERVICE
ETI BOOK SERVICE 74 74
PCB FOIL PATTERNS 75
ADVERTISER'S.INDEX. 82

OMP POWER AMPLIFIER MODULES* PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIENDLY

 OMP POWER AMPLIFIER MODULES
Now enjoy a

world-wide reputation for quality, reliability and performance at a realistic price. Four models available to suit the needs of the professional and hobby market. i.e., Industry. Leisure,
Instrumental and Hi-Fi. etc. When comparing prices. NOTE all models include Toroidal power supply, Integral heat sink, Glass fibre PCB , and Drive circuits to power compatible Vu meter Open and short circuit proof. Supplied ready built and tested.
 OMP 100 Mk II Bi-Polar Output power 110 watts R.M.S. Into 4 ohms, Frequency Response $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01% S.N.R. -118 dB . Sens. for Max. output 500 mV at 10 K . Size $360 \times 115 \times 72 \mathrm{~mm}$ PRICE $£ 32.99+f 2.50$ P\&P.
OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.002%, Input Sensitivity 500 mV . S.N.R -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE f $39.99+£ 2.50$ P\&P
OMP/MF200 Mos-Fet Output power 200 watts R.M.S into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250. Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N.R. -130 dB , Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE $£ 62.99+£ 3.50$ P\&P
OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350. Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.0008%, Input Sensitivity $500 \mathrm{mV}, ~ S N . R$

BURGLAR ALARM

Better to be 'Alarmed' then terrified.
Thandar's famous 'Minder' Burglar Alarm System.
Superior microwave principle. Supplied as three Superior microwave principle. Supplied as three units. complete with
GUARANTEED.
Control Unit - Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control Three position, key operated facia switch - off - tes - armed 30 second exit and entry delay io4dB output
Outdoor Alarm - Electronic swept freq. siren. 98dB output. Housed in a tamper-proof heavy duty metal case.
Both the control unit and outdoor alarm contain re-
chargeable batteries which provide full protection chargeable batteries which provide full protection
during mains failure. Power requirement $200 / 260$ volt $\mathrm{AC} 50 / 60 \mathrm{~Hz}$. Expandable with door sensors. panic SAVE $£ 148.00$ Usual l Price $f 2288.85$
BKE's PRICE $\underset{\text { P Why buy a collection of selt- assembly boards! }}{ } \mathbf{f}$

SAVE $£ 148.00$ Usual Price
BKE's PRICE $£ 79.99$

OMP LINNET LOUDSPEAKERS
The very best in quality and value. Made specially to suit todays need for compactness with high sound output levels. Finished in hard wearing black vynide with protective corners, grille and carry handle. All models 8 ohms. Full Range $45 \mathrm{~Hz}-20 \mathrm{KHz}$. OMP $12 / 100$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime} £ 125.00$ per pair OMP 10/200 watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} \times 145.00$ per pair OMP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 169.00$ per pair

Delivery: Securicor $£ 800$ per pair
-130 d 8 , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE $£ 79.99+£ 4.50$ P\&P
 Vu METER Compatible with our four amplifiers detailed above. A very accurate visual display employing 11 L.E.D. diodes 17 green, 4 red) plus an additional on/off indicator. Sophisticated logic control circuits for very fast rise and decay times. Tough moulded plastic
case, with tinted acrylic front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $68.50+$ case, with
50p P\&P.
NOTE: Mos-Fets are supplied as standard 100 KHz bandwidth $\&$ Input Sensitivity 500 mV). If required,
PA. version 150 KHz bandwidth \& Input Sensitvity 775 mV)

19" RACK CASËO MOS-FET STEREO AMPLIFIERS with iwin power supplies an L E.D. Vumeters plus X.L. R. connectors. Three models (Ratings RMS imo 4 ohms)
MF200 (100 +100 w) f18285 Securict $\begin{array}{lr}\text { MF200(100 }+200 \mathrm{w}) £ 228.85 & \text { Decuricor } \\ \text { MF400 } 200 \\ \text { MF600 }(300+300 \text { w } & \text { D } 274.85\end{array}$

LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedence.
 $8 " 50$ WATT R.M.S. Hi-Fi/Disco. detaits.
20 oz. magnet. $1 / 2^{\prime \prime}$ ally voice coil. Ground ally fixing escutcheon. Res. Freq. 40 Hz . Freq. Resp to
 50 oz. magnet $2^{\prime \prime}$ ally vorce coll Ground ally fixing escutcheon. Die-cast chassis White cone. Res. Freq. Freq. Resp. to 4 KHz . Sens. 95 dB . PRICE $£ 26.00+£ 3.00 \mathrm{P} \mathrm{\& P}$ ea.
25 Hz .
$15^{\prime \prime} 100$ WATTR.M.S. Hi. Fi/Disco
 2. Sens. 97 dB PRICE $£ 3400+f 3.00 \mathrm{P} \& \mathrm{P}$ ea

McKENZIE R R.M.S. C1285GP Lead guitar/keyboard/Disco
12" 85 WATT R.M.S. C1285GP Lead guitar/keyboard/Disco.
$2^{\prime \prime}$ ally voice coll. Ally centre dome. Res. Freq. 45 Hz . Freq Resp. to 6.5 KHz . Sens. 98 dB . PRICE f 24.99 $2^{\prime \prime}$ ally volce coll.
$+\quad f 3.00 ~ P \& P ~ e a ~$
$12^{\prime \prime}$ 85 WATT R.M.S. C1285TC P.A. Disco $\mathbf{2}^{\prime \prime}$ ally voice coil. Twin cone
Res Freq. 45 Hz Freq Resp to 14 KHz PRICE $224.99+£ 3.00$ P\& P ea

$3^{\prime \prime}$ ally vore coll Die-cast chassis -Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . PRICE $£ 4999+£ 4.00 \mathrm{P} \& \mathrm{P}$ ea
WEM
5 " 70 WATT R.M.S. Multiple Array Disco etc
$1^{\prime \prime}$ voice coil Res. Freq. 52 Hz Frea Resp. to 5 KHz . Sens. 89 dB . PRICE $£ 20.00+£ 1.50$ P\&P ea $8^{\prime \prime} 150$ WATT R. M.S. Multiple Aray Disco etc.
$1^{\prime \prime}$ yoice coll. Res. Freq. 48 Hz . Freq. Resp to 5 KHz . Sens. 92 dB PRICE $527.00+\mathrm{f} 1.50$ P8P ea
$10^{\prime \prime} 300$ WATT A.M.S. Disco/Sound re entorcement $10 " 300$ WATTA.M.S. Disco/Sound re-enforcement etc
$11 / "$ vorce coll. Res. Frec 35 Hz Feq
$12^{\prime \prime} 300$ WATT R.M.S. Disco/ Sound re-np to 4 KHz . Sens. 92 dB . PRICE $£ 30.00+f 2.00 \mathrm{P} \& \mathrm{P}$ eaf $1 / 2^{\prime \prime}$ voice coil Res. Freq 35 Hz Freq Fesp. to 4 KHz . Sens. 94 dB . PRICE $£ 3800+£ 300 \mathrm{P} \& \mathrm{BF}$ SOUNDLAB (Full Range Twin Cone)
5" 60 WATI R.M.S. Hi-Fi/Multiple Array Disco etc
 $61 / 260$ WATT R.M.S. Hi-Fi/Multiple Array Disco etc.
1 vio voice coll. Res Freq. 56 Hz Freq. Resp. to 20 KHz Sen
volce coll. Res Freq. $56 \mathrm{H}_{2}$ Freq. Resp. to 20 KHz . Sens. 89dB. PRICE $f 999+f 1.50 \mathrm{P} \mathrm{\&}$ P ea.
60 WATT R.M.S. Hi- $\mathrm{Fi} /$ Multiple Array Disco ett.
" 60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc

HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG] $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Price: $\mathbf{£ 8 . 6 2 + 7 5 p ~ P 8 : P ~}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controleed professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ SHNGIE CHANNEI RADH SINGLE CHANNEL RADO CONTROLLED TRANSMITTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation.
Receiver output operates relay with $2 a \mathrm{mp} / 240$ volt contacts. Receiver output operates relay whi $2 \mathrm{amp} / 240$ volt contacts. Ideal tor m17.82. Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt). Price: $£ 11.27$ P\&P +75 p each. S.A.E. for complete list.

STEREO CASSETTE DECK

STEREO CASSETTE DECK Ideal for installing into Disco and Hi Fi cabinet/Consoles. Surface mountıng (Horizontal). Supplied as one unit with mains power supply.
\star Metal top panel Black finish * Metal top panel Black finish

* Piano type keys including \star Piano type keys including
pause pause
\star Normal/Chrome tape
\star Twin Vu Meters * 3 Digit counter \star Slider Record Level control Size $171 \times 317 \mathrm{~mm}$ Depth 110 mm PRICE $£ 35.99+f 3.00$ P\&P

1 K-WATT SLIDE DIMMER

BSR P256 TURNTABLE
P256 turntabie chassis \bullet shaped tone arm - 8ilitrated counter balance Alater oprecision device) © Dampec cueing lever 240 volt AC
operaiion (Hz) Cut-out template supl operation (Hz) © Cut-out template supplied ©
Completely manual arm. This deck has a com pletely manual arm and is designed primarily
for disco and studia use where all the duan isco and studio use where all the advan
tages of a manual arm are required.
Price E 33.60 each. $+13.00 \mathrm{P} \& \mathrm{P}$ ea
ADC 04 mag. cartridge for above. Price 44.99 ea. P8P
Join the Piezo revolution. The low dynamic mass (no voice coill of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinaiy dynamic weeters. As a crossover is not tequired these units can be added to existing speaker systems of up to 100 watts
(more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

$$
\text { TYPE 'A' (KSN2036A) } 3^{\prime \prime} \text { round with protective wire }
$$

 mesh, ideal for bookshelf and medium sized Hi .fi speakers. Price f4.90 each +40 p P\&P.
TYPE 'B' (KSN1005A) $31 / 2$ super horn. TYPE 'B' (KSN1005A) $31 / 2$ " super horn. For general purpose speakers, disco and P.A. systems etc. Price
$£ 5.49$ each +400 P\&F TYPE 'C' (KSN6016A horn For quality Hi-fi systems and quality discos etc Price $£ 6.49$ each +40 pP P\&P.
TYPE D^{\prime} (KSN $1025 A 12^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion TYPE 'D' (KSN1025A) 2" $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending
down to mid range (2 KHz). Suitable for high quality down to mid range $\{2 \mathrm{KHz})^{\text {. Suitable for high quality }}$ Hi-fi systems and quality discos Price $\mathbf{8 8 . 9 9}$ each $+40 p$ P\&P.
TYPE
TYPE 'E' (KSN1038A) 33_{4} " horn tweeter with
attractive silver finish trim. Suitable for Hi-fi monitor attractive silver finush trim. Suitable for Hi-fi monitor
systems etc Price $£ 5.49$ each -40 p P\&P Systems etc Price $£ 5.49$ each -i 40 p P\&P.
LEVEL CONTROL Combines on a recessed ing plate, level control and cabinet input jack socket.
$85 \times 85 \mathrm{~mm}$. Price $f 3.99+40 \mathrm{p}$ P\&P

STEREO DISCO MIXER

STEREO DISCO MIXER with 7 band graphic

 equaliser and 10 segment L.E.D. Vu Meters. Many outstanding features.5 inputs with individual fader controls:-
2 Mag. turntable, 2 Aux. plus Mic. with talk-over switch. Headphone monitor. Master output control with Hi-Low outputs. Compatible with our OMP Power Amplifiers.
Size: $340 \times 200 \times 120 \mathrm{~mm}$. Supply $240 \mathrm{~V} / 50 \mathrm{~Hz} \mathrm{AC}$.

BT Voice Mail

Is your'phone call a shot in the dark? You know the situation - you call them buit they're not there so you leave a message. They call back but you've nipped
out for a few minutes and so it goes on.

For a mere $£ 30,000$ the basic VM600 Voice Mail system could revolutionise your communica tions. The system works like an electronic pigeon hole array in which voice messages can be dictated, edited to get the sense right
and deposited in the machines memory. At some later date the intended recipient can call up the memory and will receive whatever messages have been left.
The hardware consists of a freestanding equipment rack which contains the heart of the system and a number of pocket tone generators. The system can be connected directly between an existing push-button telephone system and the PABX without the need for any extra equipment. Users of the attached telephones can then access the VM600 using a personal password to place and retrieve messages. From other telephones or when calling in over the public network, the small tone generator is used.
When access to the system has been gained, spoken messages guide the user through the process of leaving or locating messages. This removes the need for typing or other skills, allowing the whole procedure to be carried out using only a button.
The VM600 is built around a dedicated microcomputer and the basic version has a 32 M byte disc store which caters for up to 60 users and gives three hours worth of message storage. The system can be expanded to handle up to 600 users and give 30
hours of storage time. A separate console which can be sited up to 100 m away from the main unit is used to set up the passwords and the facilities available to each user, and it can also be used to obtain statistics on usage and other operational information.

In addition to the facilities outlined above, the VM600 can send stored messages to up to sixty users or can be instructed to leave a message dormant until a certain date and time. For authorised users there are useful facilities like giving one message priority over others, checking that a message has been received, repeat calling for urgent messages and security coded messages for sensitive information.

The system is expected to be of interest to companies with sales or service staff who spend a lot of time away from the office but frequently need to send back information or receive instructions. It would also be useful for companies who deal regularly with people in other time zones as there are frequently only short periods during which business hours coincide.

For more information on the Voice Mail contact the local British Telecom sales office or ring 01-725 5577.

Personal Radiation Monitor

mpulse have recently introduced a simple to use, pocketsized personal radiation monitor. Monitor 4 combines new electronic techniques with simplicity to provide an effective radiation alert which gives maximum user protection.

Monitor 4 has no external wires
or probes and is sensitive to a broad spectrum of ionizing radiation including alpha, beta, gamma and X-Rays. The level of radiation is indicated by an easy-to-read meter, a count light and a bleeper that can be switched off for silent monitoring.

The monitor reads in three ranges from $0-50 \mathrm{mr} / \mathrm{h}$ and uses an industry standard halogenquenched GM tube with a mica end window. It is easily calibrated and runs for up to $2,000 \mathrm{hrs}$ on one 9 V alkaline battery at background
radiation levels.
The unit detects alpha down to 2.5 MeV and typical detection efficiency at 3.6 MeV is more than 80%. Beta is detected at 50 keV with 35\% typical efficiency; typical efficiency of 150 keV is $\mathbf{7 5 \%}$. Gamma and X-rays are detected down to 10 keV typically through the end window and 40 keV minimum through the case.

For further information contact Impulse Sales \& Marketing, 29a Egerton Street, Chester CH1 3ND.

Don't look now, but that handsome bloke standing between Cirkit Chief Executive Christopher Sawyer (right) and Richard Bulgin, Head of Consumer Services, is your very own editor, Dave Bradshaw. The occasion was the launch of Cirkit's first catalogue which contains all the products listed by their predecessors, Ambit, as well as a number of new lines. It costs 85 p and includes three vouchers worth one pound each when presented with orders worth $£ 15$ or more. The catalogue is on sale at branches of W.H. Smith throughout the country or maybe obtained direct from Cirkit, Park Lane, Broxbourne, Hertfordshire EN10 7 NQ, tel 0992-444111.

AM/FM Radio

Upon reflection, we realise that we should have quoted the order numbers for the inductors and filters in this project as they're rather hard to find in Cirkit's catalogue! The order numbers are as follows:
YMRS 16726 (L4) 35-67260 (42p); CFU 050D (L5) 16-05006 (84p); YMCS 2 A740 (L6) 3507400 (42p); CLNS 30569 (L7) 35-05690 (66p); SFE10.7 MA (F1, 2) 16-10755 (49p); CDA 10.7MA (F3) 16-10770 (84p). Prices quoted here are taken from Ambit's most recent catalogue, but need VAT and p\&p.

The Rapid Guarantee
\star Same day despatch \star Competitive prices
\star Top quality components

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Rotary Coded Dilswitches

A
range of 10 position and 16 position ERG dual-inline switches for PCB mounting is now available from Semiconductor Supplies International. The switches are expected to find employment in a wide range of control applications, and their memorability has been further enhanced by the adoption of a punning title almost worthy of ETI - they are to be called diat-inline switches!

Three types are available, two with knob operation and one with a screwdriver slot. One type is suitable for vertical or horizontal mounting on the edge of a PCB and all are fully sealed and suit-
able for flow soldering and solvent cleaning.
Contact ratings are $125 \mathrm{~mA}, 30$ VDC with an initial contact resistance of typically $50 \mathrm{~m} \Omega$ maximum at 10 mVDC 10 mA . The insulation resistance is $100 \mathrm{M} \Omega$ minimum at 240 VDC for one minute, and the life within rated load is $\mathbf{2 0 , 0 0 0}$ rotary detent steps.

The dimensions are 10×10 $\times 6 \mathrm{~mm}$ for screwdriver operation and $10 \times 10 \times 11 \mathrm{~mm}$ for the switch with the large knob. Maximum contact resistance found when testing to five million dry circuit switching operations monitored at $10 \mathrm{mVDC} / 10 \mathrm{~mA}$ wasless than $20 \mathrm{~m} \Omega$. Semiconductor Supplies International Ltd, Dawson House, 128-130 Carshalton Road, Sutton, Surrey SM1 4RS, tel 01-643 1126.

Sound Moves

The re-organisation of A.F. Bulgin and Company PLC, one of the results of which is the recent re-appearance of Ambit under the new name of Cirkit, continues apace. Soundex Ltd, manufacturers of peak pro-
gramme meters, drive amplifiers and audio measuring sets, have been purchased from Bulgin by professional broadcast equipment suppliers Allotrope Ltd. Allotrope plan to extend the Soundex range with the addition of complementary products in the near future and have appointed Cirkit as distributors. The reorganisation allows Bulgin to
concentrate on its traditional manufacturing interests and the newly-formed Power Conversion Division while Cirkit Holdings PLC undertakes distribution.
Allotrope Ltd, 114 Wardour Street, London W1V 3 LP, tel 01434 3344. A. F. Bulgin and Company PLC, Bypass Road, Barking, Essex IG11 OA2, tel 01-594 5588.

BBC Loudspeaker Agreement

The $B B C$ has signed a licence agreement with the two British companies, Spendor Audio Systems Ltd and Swisstone Electronics Ltd, which allows them to manufacture the medium size, high quality, LS5/9 Studio Monitoring Loudspeaker. The agreement will enable these two
companies to market the loudspeaker worldwide.

The LS5/9 cabinet is only a quarter of the volume of the $B B C^{\prime} s$ principal, much larger, high quality monitor the LS5/8, but the sound reproduction is a close approximation. The dimensions are 280 mm wide, 460 mm high, and 275 mm deep, and the weight is only 14 kg . As a result it is ideal for use where portability is required or where space is limited.

The loudspeaker uses two drive units with a passive crossover,
and an equaliser which provides a flat, free-field axial response over the range 50 Hz to 16 kHz . The tweeter is a proprietary soft dome type, and the low frequency unit is a BBC design which uses a polypropylene diaphragm. The levels of coloration and harmonic distortion are very low. A 50 W amplifier is required to obtain the maximum sound level output of 105 dB relative to $20 \mu \mathrm{~Pa}$ at 1 m .
Engineering Information Department, BBC Broadcasting House, London W1A1AA, tel 019275432.

- Marco Trading have issued a 124-page catalogue which lists their range of electrical fittings, connectors, test equipment, semiconductors and general components and even valves. The catalogue comes with an order form, reply-paid envelope and special offers list and is available from Marco Trading, The Maltings, High Street, Wem, Shropshire SY4 5 EN, tel 0939-32763.
- Rockwell international have brought out the second edition of their 1984 data book. Its 1362 pages cover their entire line of solid-state devices and boardlevel micro-computer products and there are sections on 8 and 16 bit microprocessors, memory products, intelligent display controllers and integral and stand alone modems. Contact Rockwell International Ltd, Semiconductor Products Division, Heathrow House, Bath Road, Hounslow TW5 9QQ tel 01-759 2366.

Hybrid Protector Modules

Zenith have introduced a range of overvoltage protection modules (OVPs) which are designed to protect sensitive electrical and electronic circuits from supply voltage transients. The modules come in nine standard voltage trip ratings and simply connect across the output terminals of any current-limited DC supply.

The modules employ circuitry that contains hybrid thick-film integration and are potted in epoxy compound for thermal stability. There are four basic models available rated at $3,5,15$ and 25 amps , each of which can be supplied with any of the nine standard trip voltage ratings between 5 and 30 V DC. Special versions operating at other voltages are also available to order. The modules measure $\mathbf{3 0} \times \mathbf{2 0} \times \mathbf{1 5} \mathrm{mm}$ and connection is via twin Molex connector pins or 6 mm spade terminals.

Zenith Electronics, 21 Station Road Industrial Estate, Hailsham, East Sussex BN27 2EW, tel 04353-2647.

Mitsubishi MSX Micros

Mitsubishi Electric (UK) Limited, the UK manufacturing and marketing Division of the Mitsubishi Electric Corporation, has announced its version of the MSX range of home computers. Developed in conjunction with Microsoft in America, the MSX range was conceived to provide a common star-
dard in home computing and Mitsubishi is the only company so far to offer a choice of MSX computers.
The two systems-ML-FBO and ML-F 48 - are based on a 280 equivalent chip. The ML-F 80 has 64 KB RAM, the ML-F 48 32KB, and both systems have 32 KB ROM, with the ML-F 48 being expandable to its larger stablemate. The keyboards are ASCII layout and include full alphat numeric and special characters. There are also five special function keys, which, using the shift key, give the home programmer

Multipurpose Function Generator

New from Global Specialties Corporation is the Model 2005 multipurpose function generator which provides sine, triangle, square, ramp and TTL pulse waveforms with variable amplitude, symmetry and offset over $\mathbf{a 5 0 m H z}$ to 5 MHz frequency range. The output can be continuous, gated or triggered either by an external signal or by a front panel manual switch.
When the instrument is used as a sweep generator, an internal ramp with a variable duration provides a recurring linear sweep over a 1000:1 (linear) or 10,000:1
(logarithmic) frequency range. The maximum output amplitude is 20 V into an open circuit or 10 V into 50Ω and the signal can be attenuated at $20 \mathrm{~dB}, 40 \mathrm{~dB}$ or 60 dB .
Other features include an adjustable DC offset voltage of $\pm 10 \mathrm{~V}$ into open circuit or $\pm 5 \mathrm{~V}$ into 50Ω, and the ability to be frequency modulated with an external signal using V_{co} IN as the frequency modulation input. With a dial accuracy of $\pm 5 \%$ of full scale and jitter of less than 0.1%, the instrument has a 1 ms to 5 s sweep rate and a sweep output of 0 to 5 V ramp.
The Model 2005 costs $\mathbf{£ 6 3 2 . 5 0}$ inclusive of VAT and postage and is available from Global Specialties Corporation, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ tel 0799-21682

ten possible programmable functions.
The screen display is 40 characters $\times 24$ lines in text mode and 192×256 dots in graphics mode. Both systems al so provide a range of sound effects. A number of socket outlets are incorporated on the computers, including a Centronics printer interface. Others are for joystick, ROM cartridges, audio, video and cassette units and of course TV.
A range of games software is already available for MSX computers, and the fact that Mitsubishi offers two systems
provides the user with a greater choice of programs. Software packages include home budget, word processing and database programs, language courses and games. The computers also run Microsoft extended Basic

Mitsubishi's two MSX systems will be available from its existing video and hifi outlets from November, at $£ 299$ for the ML-F 80 and $£ 249$ for the ML-F 48. Mitsubishi Electric (UW) Limited, Hertford Place, Denham Way, Maple Cross, Rickmansworth, Herts WD3 2BJ, tel 0923770000.

Portable Butane Soldering Iron

Greenwood Electronics is launching a new butane powered portable soldering iron, the Oryx Portasol. Little bigger than a felt tip pen, the Portasol works on entirely different prirciples from conventional gaspowered irons. There is no flame during operation, the chemical energy of the butane gas being converted directly to heat by means of a patented catalytic converter in the solder tip. Conversion rate is adjustable to provide control over tip temperature and, at its maximum setting, the iron delivers power equivalent to a 60
watt electric soldering iron, the tip temperature being adjustable between 250 and $450^{\circ} \mathrm{C}$.
The Oryx Portasol iron will run for up to 60 minutes onits internal gas supply and refuelling, which takes seconds, is identical to filling a gas cigarette lighter. The same principles that make gas cigarette lighters safe are applied to the Portasol.
The Portasol can be carried in the pocket. It is supplied with a protective cap and is immediately ready for use, the cap including an igniter to start the catalytic conversion.

The dimensions of the Portasol are 175 mm long $\times 19 \mathrm{~mm}$ diameter, and replacement tips which include the converter - are readily available. Greenwood Electronics, Portman Road, Reading Berkshire RG3 1 NE, tel 0734 595844.

for low-cost training in real-life robotics

The advanced design of the Neptune 2 makes it the lowest cost real-life industrial robot.
It is electro-hydraulically powered, using a revolutionary water based system (no messy hydraulic oil!)
It performs 7 servo-controlled axis movements 16 on Neptune $1 /$ - more than any other robot under $£ 10,000$.
Its program length is limited only by the memory of your computer.
Think what that can do for your BASIC programming skills!

And it's British designed, British made.

Other features include:
Leakproof, frictionless rolling diaphragm seals.
Buffered and latched versatile interface for BBC VIC 20 and Spectrum computers. 12 bit control system (8 on Nuptune 1).
Special circuitry for initial compensation.
Rack and pinion cylinder couplings for wide angular movements.
Automatic triple speed control on Neptune 2 for accurate 'homing in'.
Easy access for servicing and viewing of working parts.
Powerful - lifts 2.5 kg . with ease.
Hand held simulator for processing (requires ADC option).
Neptune robots are sold in kit form as follows:

Neptune 1 robot kit (inc, power supply)
£1250.00
Neptune 1 control electronics (ready built) $£ 295.00$
Neptune 1 simulator £45.00
Neptune 2 robot kit (inc. power supply)
Neptune 2 control electronics (ready built)
Neptune 2 simulator
£1725.00
$£ 475.00$
$£ 52.00$

ADC option (components fit to main control board)	$£ 95.00$
Hydraulic power pack (ready assembled)	$£ 435.00$
Gripper sensor	$£ 37.50$
Optional extra three fingered gripper	$£ 75.00$
BBC connector lead	$£ 12.50$
Commodore VIC 20 connector lead and plug-in board	$£ 14.50$
Sinclair ZX Spectrum connector lead	$£ 15.00$

All prices exclusive of VAT and valid until the end of March 1985

desk-top robot

This compact, electrically powered training robot has 6 axes of movement, simultaneously servo-controlled. It gives smooth operation, and its rugged construction makes it ideal for use in educational establishments. Other features include long-life bronze and nylon bearings, integral control electronics and power supply, special circuitry for inertial compensation, optional on-board ADC, and hand-held simulator as the teaching pendant. Like Neptune, Mentor's program length is limited only by your computer's memory. Programming is in BASIC.

Mentor is all-British in design and manufacture and comes in kit form at an astonishingly low price:
Mentor robot kit (inc. power supply)
Mentor Control electronics
(ready built)
£ 345.00

Mentor Simulator (requires
ADC option)
$£ 135.00$

ADC option (Components fit to control electronics board)
BBC connector lead
$£ 42.00$

Commodore VIC 20 connector lead and plug-in board
sinclar ZX Spectrum connector lead
£14.50

All prices exclusive of VAT and valid until the end of March 1985

2kV Isolation DIL Relays

C.P. Clare have introduced two new duatin-line relays to complement their established DIL product families. Both versions have 2000 VAC isolation between coil and contact to cater for the growing number of applications where a high isolation is required.
The first type, designated DSS7, incorporates a standard 10 VA rated dry reed switch as
used in the established PRMN PRME series. Standard coil resistances are 500-2150 ohms.
The second, designated MSS7, incorporates a unique MMR mercury reed capsule which is completely non-position sensitive, thus allowing full PCB mounting flexibility for OEM equipment. MSS7 is rated at 30VA switching with a maximum contact resistance of 100 milliohms throughout its life of $\mathbf{2 0 0}$ million expected operations.
Both relays have single, normally open contacts and are avaiable with nominal operating voltages of 5, 12 and 24 V DC. An

optional modification, the addi tion of a transient suppression diode to the coil, is available on both types.

For further information contact Ron Bannister, C.P. Clare Division, General Instrument (UK) Ltd, tel 08956-39901.

Auto IC

M
otorola have added a high-energy ignition circuit to their range of automotive linear ICs. Originally designed to suit Delco fiveterminal ignition applications, the MC3334 is said to meet the circuit timing and current control requirements of modern advanced ignition systems and offers optimised spark energy af minimum power dissipation.
The circuit is designed to process a control signal from a reluctor (magnetic) type pick-up and generates a preciselycontrolled ignition coil drive voltage via an external Darlington transistor. Features include adjustable dwell angle for optimum stored energy with minimum waste, adjustable peak output coil current and a rugged design which has input and output transient protection to reduce the risk of damage to the IC and Darlington. Very few external support components are required and none of the resistors are critical.
The MC3334 is available in an 8 pin plastic DIP package for PCB
mounting a chip version and a 'flip' or 'bumped chip' version for inverted reflow assembly. Motorola claim that the pin-out adopted suits both thick-film and printed circuit module designs and allows layouts to be produced without crossovers.
Also new from Motorola is a series of DC-DC converter ICs which are said to offer twice the output current capability of existing 8-pin DIP DC-DC converters. The MC34063 series are intended for step-up or step-down voltage conversion over the range 2.5 to 40 volts and offer an output current of 1.5 amps . Quiescent current is a mere 2.4 mA . All functional circuitry is contained within the ICs including temperature-compensated reference, oscillator, cycle-by-cycle current limiting and feedback sense for voltage regulation.

For information on these devices contact Motorola, quoting release number 30/84 for the ignition IC and 32/84 for the DCDC converters. Motorola Ltd, European Literature Distribution Centre, 88 Tanners Drive Blakelands, Milton Keynes MK14 5 BP, tel 01-902 8836.

Carrying Bags for Apples, Apricots and Acorns

For people who really can't put their micros down, Inmac now stock a series of specially designed carrying bags for the Apple II, Apple II Plus, Apple lle, Apricot and BBC Micro Computers.
Made from strong tear-proof Cordura nylon and thick, high density foam padding, these bags are tailored to provide a safe means of transportation. The wide-grip handies and the adjustable shoulder strap are made of seat-belt strength webbing for safety, and the zips are heavy duty industrial grade that will not rust
and open completely for easy loading.

A matching bag is available for the Apple II disk drive which can carry two drives and has a foam lined "wallet" that protects cables and provides padding between the drives. There is also a matching bag for an Apricot Monitor. All bags are lined with antrstatic material and prices range from $£ 17.00$ to $£ 27.50$ each.

Delivery is ex-stock and can be same day for the London, Greater Manchester and Merseyside areas or next day for the rest of the country. The bags are available on a thirly day, risk-free trial period and are guaranteed for a year.
Further details can be found in Inmac's fult-colour catalogue of over 1000 accessories for miniand micro-computers which is available free from Inmac UK Limited, Davy Road, Astmoor, Runcorn, Cheshire WA7 1PZ, tel 09285-67551.

BBC Micro Computer System

01-208 1177 Tecinomatic Liid 01-208 1177

 BBC Model $\mathrm{B}+$ Econet	BBC FIRMWARE: 1.2 Operating System ROM ...e 87.50 (d) BASIC 11 ROM 82.80 (d) VIEW Word Processor Rom.e48.00 (c) WordWise Word Processor Rom. 834.00 c
	BCPL ROM/Disc. Utlity ROMS:
Jpgrade Kit.a... $\varepsilon 7$	DiscDoctor/Gremiln Debug Rom. . . £28
	EXMON/TOOL KIT ROM..... Printmaster (FX80)/Graphics
ACORN ADDON PRODUCT8:	VEWSHEE
E2	ULTRACALC spreadsheet ROM. , , , \&e
A	
xt Adaptor. $£ 190$	COMMUNICATIONS ROME
ace,	Termi Emulato
aptor	Communi
TORCH UNICOM products including the IF3M Computible GRADUATE in stock For detalled specification on any of the 8BC Firmwara/Peripherala llated here Information on our complete range please write to us.	

PRINTERS EPSON
FX80 £315 (a) KAGA TAXAN

FX100 $£ 450$ (a)
KP910 £389 (a)
KP810 £249 (a)
JUKI $6100 £ 345$ (a)

disc drives

These are fully cased and wired drives with slim line mechanisms of high quality, Shuggart A400 standard Interface. Drives supplied with cables manuals and formatting disc for the BBC computer suitable. TEAC 80 track drives are supplied with 40/80 track switching as standard. All drives can operate in single or dual density format.

$1 \times 100 \mathrm{~K}$ TS55A TEAC 40 Track £100(a)	CS55A TEC with psu	2138(a)
$1 \times 200 \mathrm{~K}:$ TS55E TEAC 80/402153(a)	CS55E TEC with psu	E138(a)
$1 \times 400 \mathrm{~K}:$ TS55F TEAC 80/40¢178(a)	CS400 Milt with psu	E188(a)

$2 \times 100 \mathrm{KTD55A} 40$ T TAEC with psu 8278 (4)
$2 \times 200 \mathrm{~K}$ TD55E 80/40 SW TEAC with peu E380 a
$2 \times 400 \mathrm{~K}$ TD55F $80 / 40$ SW TEAC with psu 8400 (a)
$2 \times 400 \mathrm{~K}$ TD55M $80 T$ Mitsubishl with psu E37B(a)

3M 51/4" FLOPPY DISCS

High quality discs that offer a reliable error free performance for life. Each disc is individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box
Price per pack of ten:
$40 T$ SS DDE15(c)
40T DS DD £21(c)
$80 T$ SS DD E24(c)
80T DS DD E28(c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cieaning KIt with 20 disposable cleaning discs ensures con tinued optimum pertormanje of the drives.
$814.50(\mathrm{c}$

MONITORS

MICROVITEC 14" RGB:

1431 Std Res $195($ a)
1451 Med Res E260 a
1441 Hi Res. E420(a)
1431 AP Std Res PAL/AUDIO. £215(a)
1451 AP Std Res PAL/AUDIO. £325(a
1451 DQ3 Med Res E239(a)
Above monitors are now available in plastic or metal cases
KAGA Super Hi Res Vision III RGB Monitor £345(a)
MONOCHROME MONITORS1 ${ }^{\prime \prime}$ ':
Kaga Green KX1201G E106(a)
Kaga Amber KX1201A E116a
Santo Green DM8112CX £99 a
Swivel Stand for Kaga Monochrome 222.50 (b) All monitors are supplied with leads suitable for the BBC Computer. Spare leads available.

GANG OF EIGHT INTELLIGENT FAST EPROM COPIER

Copies up to eight eproms at a time and accepts all single rall eproms up to 27256 . Can reduce programming time by 80% by using manufacturer's suggested algorlthms. Fixed Vpp of $21 \& 25$ volts and variable Vpp factory set at 12.5 volts. LCD display with alpha moving message. $\mathbf{E 3 9 5}$ (b).

SOFTY II

This low cost intelligent eprom programmer can adaptor, 2564 and 2764 Displays $512{ }^{\prime}$ bute page on $T V$ - has a serial and parallell/O routines. Can
 Softy 11.
Adaptor for $2764 / 2564$. $\mathbf{2} 25.00$ (c)

UV ERASERS

All erasers with built in safety switch and mains indicator.
UV1 8 erases up to 6 eproms at a time. .. ©47(c)
UV1 T as above but with a timer
UV140 erases up to 14 eproms at a time.f61 (b) JV141 as above but with a timer.

879(b)

TELEMOD 2:
Complies with CCITT V23 $1200 / 75$ dards that allow commult Duplex stanVIEWDATA services llke PRESTEL MIC RONET etc as well as user to user com unications. Mains powered. £64(b).

This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main frame computers and Batery boards at a very economic cost adaptor $\mathrm{EB}(\mathrm{d})$.

ATTENTION ALL PRICES EXCLUDE VAT Please add carriaqe 50 unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ CONNECTOR SYSTEMS
 ATTENTION ALL PRICES EXCLUDE VAT Please add carriace 50 m unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ CONNECTOR SYSTEMS
 ATTENTION ALL PRICES EXCLUDE VAT Please add carriace 500 unless indicated as followw: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ CONNECTOR SYSTEMS
 ATTENTION ALL PRICES EXCLUDE VAT Please add carriace 50 m unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ CONNECTOR SYSTEMS
 ATTENTION ALL PRCES EXCLUDE VAT Please add carriace 50D unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ CONNECTOR SYSTEMS
 ATTENTION ALL PRICES EXCLUDE VAT Please add carriace 50 unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$ CONNECTOR SYSTEMS

SPECIAL OFFER

2764-25..........E4.90 27128-25...........£18 27128-30............ £16 6264-15.............. £28 6262LP-15 £ $\mathbf{£ 3 1}$ 6264-12............... $\mathbf{£ 3 5}$

I.D. CONNECTORS	EDGE CONNECTORS	AMPHENOL 36 CONNECTORS way piug Centronics	TELEPHONE CONNECTORS
		$\text { (solder) } 500 \text { pioc } 475 \mathrm{p}$	$\begin{array}{ll}4 \text { way plug } & 110 p \\ 6 \text { way plug } & 180 p \\ & 1800\end{array}$
		(${ }^{\text {36 way }}$ skt Centronics	6 way plug 6 way ttang.skt 1800 $160 p$
			Flexible cable
			$\begin{array}{ll}4 \text { way } & \\ 6 \text { way } & 50 \mathrm{p} / \mathrm{m} \\ & 72 \mathrm{~m}\end{array}$
DCONNECTORS No of Ways		PC	RIBBON CABLE
		GENDER CHANGERS	
gins 120	EURO CONNECTORS		2. way 650
der $175 \quad 875125$		Male to Male........... $£ 10$ Male to Female....... $£ 10$ Female to Female...... $£ 10$	OIL HEADERS
EMALE:			Sotder IDC
St Pin 100140210380	OIN 41612 \% ${ }^{\text {a }}$	RS 232 JUMPERS	
Ang.pins 160210275440 Solder 90 130 195	2×32 way St Pin 230 p 275p	RS 232 JUMPERS	16 pin 50p
		$24^{\text {" S Single end Male }}$ (25 way	18 pin 60 p
$\begin{array}{llllllllll}\text { St Hood } & 90 & 95 & 100 & 120\end{array}$			$\begin{array}{lll}20 \mathrm{pin} & 75 \mathrm{p} & \\ 20 \mathrm{pin} & 100 \mathrm{p} & 150\end{array}$
Screw 130150175			24 pin 28 pin 2000
Lock	IDC Ski $A+C \quad 350 \mathrm{p}$		40 pin 200p 225p
TEXTOOL ZIF	For 2×32 way please specify spacing $(A+B, A+C)$.	DIL SWITCHES way 90p $6-$ way way 1205 p way 10 way 150 p	MISC CONNS 21 pin Scart Connector.200p 8 pin Video Connector.200p
SOCKETS ${ }^{\text {24-pin }}$			
28-pin $88.00 \quad 40$-pin 59.75			

EDGE CONNECTORS

EURO CONNECTORS

DIN 41612
2×32 way St Pin 230p 275p
2×32 way Anp
2×32 way Ang Pin 275p 320p
$\times 32$ way St Pin 260 p 300 p
3×32 way Ang Pin 375p 400p IDC SkIA $+C \quad 350 \mathrm{p}$
For 2×32 way please specify spacing ($A+B, A+C$)

DIGITAL DELAY

Delay things a little - or anything up to a few seconds - by building this versatile, quality delay unit. Design and development by Ray Lowe.

This delay line has been designed and developed with value for money as the pre-requisite, and the unit presented must be the best value around for the ambitious music maker or sound recordist It is a high quality unit and contains some novel circuitry in the digital/analogue conversion stages which could be useful elsewhere.

The unit offers some features not found on many lower-end commercial products such as percussion, freeze and full control over bandwidth versus maximum delay time.

Words

The input signal is represented as nine bit data words. This has been found to give good dynamic performance without resorting to compansion and its undesirable 'pumping' or'breathing' type side effects. The minimum memory requirement is 4 K , ie the number of memory chips that have to be present for the unit to operate is two, which helps keep minimum construction cost low.

This minimum configuration gives a maximum useful delay of a couple of hundred milliseconds, plus associated effects such as chorus, flanging, etc. However, the basic PCB can accept a further 13 K bytes, enough for 350 milliseconds at a full bandwidth of about 16.5 kHz through to (continuously variable) 1.3 seconds at 5 kHz bandwidth.

An optional memory expansion board may be easily added, giving a total of 36 K bytes capacity which will double the above delay figures.

Effects

Many interesting and useful effects can easily be obtained including chorus, flanging, vibrato, reverb (pseudo), slapback and long echoes, single or multiple echoes decaying over many seconds, scrambling, double tracking, etc. In addition, a sound from any source may be sampled and frozen in memory, much like a continuous tape loop, to be recalled or triggered either internally or externally (by a sequencer or drum contact for example) at any time; also there are various ways that the same can be modified. On a different tack, if you have a scope then, by using the freeze facility, you could give it audio frequency storage capability!

Inputs

Since it has a high input impedance, the unit will accept inputs from most sources, including electric guitar, synthesiser, microphone, hi-fi tape output, and many others. Input signals in the range 200 mV to $2.5 \mathrm{~V} \mathrm{P}-\mathrm{P}$ are suitable.

The frequency characteristics of the pre-emphasis used have been tailored for electric guitar as well as normal signals so as to keep quantisation distortion at bay on low strings (see later for more details) whilst a hi-fi tape signal will be virtually indistinguishable from the original when using the maximum bandwidth setting.

A switch is also available which doubles the nominal sampling rate; this can be used for special effects or for enhanced fidelity when using only short delay.

Emphasising Pre-emphasis

The average music signal, or voice, is bass-heavy as far as amplitude is concerned, although most information is carried by mid-range frequencies. This is in general terms, and a fair spread exists in the power spectrums of everyday audio signals.

In the case of electric guitar, the process of converting mechanical to electrical energy strongly favours the thicker, lower strings. A strong twang on a low string may well overload an input stage, whereas the same twang power on a top string will generate a much smaller voltage. However, the signal amplitude produced will decay very rapidly (exponentially) with time so that, unless a sustain/ compression unit is used, the guitar signal has a large dynamic range.

This problem is especially relevant if the circuitry following the input has a limited dynamic range that it can handle, which is the case when using relatively short data words to represent musical signals in an analogue to digital conversion. Compact disc players use 16 bits per sample word to achieve their dynamic range but the design presented here uses nine. Why not use more? Because the cost of AD converters escalates rapidly above eight bits.

In order to give both high and low frequencies a better chance of simultaneously being within dynamic range, high frequencies are boosted, with special consideration given to the mid-range; in other words, the signal is preemphasised before the analogue to digital conversion stage. The

Fig. 1 The generation of quantisation noise during A-D conversion.

Fig. 2 How the use of too low a sampling rate leads to the reconstruction of a different 'alias' frequency.
pre-emphasis characteristic used has been determined by experiment over a wide range of signal sources.

Quantisation

Use of pre-emphasis has another benefit, namely that of killing off most of the quantisation noise.

Quantisation noise arises as a result of the finite number (2^{n}, where n is the word length) of analogue levels available with which to represent real (continuous) signals using pulse code modulation. Real signals are thus rounded up in the conversion process to the nearest discrete value mapped by a digital code. When the digital code is converted back to analogue, the resultant errors are ramp-like excursions away from the original waveform - see Fig 1.

These error excursions sound like noise, called quantisation noise, accompanying the signal proper. Since these error excursions have fast leading edges, the resultant noise has a wide frequency spectrum (from elementary Fourrier analysis) and it is
particularly objectionable when superimposed upon low frequency sinusoidal type waveforms, emerging as an annoying buzz in the background.

Buzz Off!

Use of pre-emphasis before A D conversion obviously requires that de-emphasis be used after D/ A conversion. Fortunately this'treble cut operates on the quantisation noise as well, thus reducing its high frequency content and therefore its overall unpleasantness.

Sampling Complications

There is a well-known theorem, called the Nyquist sampling theorem, which says that to get an accurate representation of a signal as a stream of sample values, the samples must be taken at a rate that is at least twice the maximum frequency present in the signal. Failure to meet the requirement of the theorem will result in a phenomenon known as aliasing, which is demonstrated in Fig. 2. Although this diagram misses out many of the technical niceties (for instance, the reconstructed signal
would not be a nice, clean sine wave), it does show what happens - that if a frequency higher than half the sampling frequency is input, it will actually appear at the output as a different, 'alias' frequency, which is lower than half the sample frequency. In audio terms, the sound becomes noticeably'gurgled'; obviously, we must limit the bandwidth of the signal before it is sampled.

In this design, the sampling rate and the bandwidth limit are coupled by the choice of a switched-capacitor filter to do the low-pass filtering The same master clock is used to drive both the filter and the sampling, so that as one changes, the other changes to keep pace; the particular filter used is configured as a sixth-order low-pass filter.

In the real world, infinite cutoff filters are not available, so some aliasing always exists; however, with the filter used here, the level of the aliasing is such that it is masked by other imperfections such as quantisation distortion.

The Unit Together

The block diagram of the whole unit is shown in Fig. 5. The preemphasis and anti-aliasing filters have already been explained. To make signal-handling easier, the signal is made uni-polar (ie, rectified) and a polarity bit, bit 9 (or D8), is generated by the polarity remover. It may seem rather a waste of effort to do this here, but the equivalent would be to use a nine-bit A-to- D rather than an eight-bit device (obviously the D-to-A would also have to be ninebit too), and this would add quite a lot to the cost

The final analogue stage before conversion is the sample and hold and the purpose of this unit is to ensure that the A-to- D sees a steady voltage while it is doing a conversion; this will help to prevent errors occuring.

The next stage in the signal path is the A-to-D itself; this is a continuous approximation device, which means that it works by testing to see which bits should be on or off, starting with the most significant bit (MSB) and working to the least significant (LSB). It takes about $10 \mu \mathrm{~s}$ to do a conversion. The converted signal is passed to the static memory.

The address counter points to the memory location in use at any one time, and while the unit is working normally it will con-

 ои ч!м

 counter, and is used to produce most of

 -no

 ${ }_{r} \mathrm{a}$

 כS ay zoot aut jo skipipp uigesid

 pulse for on ply the first half of a CK cycle. $0_{\text {git }}$ isthe ehigh output O_{B} is gated vial 29 C
with CK to produce a negative going try

 to- D conversion into memory location n. will be high and IC29 pin 10 will pulse
WR low, writing the result of the last A -

 an
0 8
0 ачі

иоиддпиоэ ерер sp!oле sпч

 LLMS чй э! 'pout uoissnixid ul

 2.3
0.
0
0

 08
0
0
0
0
0
0
0

 uия glow. Note that this peak indicatior is
 asay I! pup !ut ol saddures pantusod

Fig. 5 Block diagram of the complete digital delay unit.
tinuously increment up to the maximum amount of memory selected by the switches in the block marked 'compare'; obviously, you shouldn't select more memory than you have installed! In the percussion mode, the address counter will cycle once through the memory then stop until it receives a trigger signal. This makes the unit able to capture a signal and then play it out on demand.

Obviously closely involved in the playing out of captured signals is the D-to-A unit, after which there is a simple single-capacitor filter to remove the worst of the artificially generated HF components and a buffer stage. The polarity restorer uses bit 9 to
restore the signal's negative-going section.

The clock filter removes the clock pulses from the audio. A switched-capacitor filter is used here because this can be automatically locked to the A-to-D conversion rate in the same way as the anti-aliasing filter; the antialiasing filter will have removed any audio signals above this breakpoint, so anything above this frequency at the input to the clock filter will be an artefact of the system, and should be removed.

The final elements in the audio chain are the de-emphasis and buffer stages; however, there are a few controls that might bear examination. Firstly, the repeat control allows a portion of the
delayed signal to be fed back to the start of the system. The mix control allows you to mix the delayed signal with the undelayed signal. And the remote effect on-off input allows the output from the delay section to be muted entirely.

The control of the unit is performed by the timing and control generation section, and the speed at which this operates is set by the frequency of the variable frequency oscillator (VFO). This is controlled by the bandwidth/ delay control, but this can be modulated by the low-frequency oscillator (LFO) to give various effects.

To be completed next month.

Fig 7 Circuit diagram of the power supply.

HOW IT WORKS

LOW FREQUENCY OSCILLATOR

IC14a is a slow running astable, the hysteresis in the switching point being determined by the ratio R44/R45. This ratio is kept small so that the waveform appearing at the inverting input is a relatively linear triangle wave since C19, C20 are allowed to charge or discharge only a small way along the exponential capacitor charging curve before IC14a's output changes state.
The rate of charging of the capacitors and hence the astable running frequency is determined by RV5 and R46 and is adjustable between about 0.15 and 8 Hz C19, C20 are back-to-back to provide effectively. a non-polarised capacitor. RV4 insignificantly loads the capacitors and attenuates the triangular waveform before passing it to the high input impedance non-inverting input of IC14b. A potential divider is formed by R47, RV6 and R48, the potential of RV6's slider being variable over a limited range This negative voltage is applied to IC14b and is unity gain imerted IC14b's output is a steady positive voltage level which may be modualted by the signal on its non-inverting input ie, the size of which is
set by set by adjustment of RV4.

Cirkit.Making it

Cirkit stock all the components, accessories and tools and the kits you're looking for.

Designed and selected to offer the best possible standards at the best possible price. Cirkit's always well stocked.

As soon as new products are available, Cirkit has them.

When it comes to kits, Cirkit's got the lot. At the price you want to pay. Just send for our catalogue or visit one of our three outlets at:

200 North Service Road, Brentwood,Essex. CM14 4SG; 53 Burrfields Road,
Portsmouth, Hampshire. PO3 5EB; Park Lane, Broxbourne, Hertfordshire. EN10 7NQ.

Please add 15\% VAT to all advertised prices and 60 p post and packing.
Minimum order value $\$ 5$ please. We reserve the right to vary prices in accordance with market fluctuation.

Cirkit Kits

CIRKIT ELECTRONICS TOOL KIT
Contains: 15W Soldering Iron 2 spare
bits, heat shunt, solder, pliers, cutters,
and screwdriver
$40-00007 \quad 15.56$
AUDIOFUNCTION GENERATOR
Versatile waveform generator with
sine, triangular and square wave outputs.
On board mains PSU 41-01302 27.00
STEREO 40W AMPLIFIER
Single board 40W per channel stereo
amplifier
41-01301 38.00
STEREOVUMETER
5LED per channel stereo VUmeter for
$\begin{array}{lll}\text { use with stereo amplifiers } & 41-01401 & 11.50\end{array}$
5W AUDIO AMP
A very compact audio output stage for use
$\begin{array}{llll}\text { in a wide range of equipment } & 41-01406 & 4.60\end{array}$ UNIVERSAL AMP
A universal audio pre-amp with a
gain of 10
41-01604 6.45
MONOREVERBERATIONUNIT
Single channel, spring line reverb unit to add echo
effects to tape recording etc. $\quad 41-01602 \quad 10.00$
TONE GENERATORAND DETECTOR
Very low distortion tone generator and signal
detector for circuit fault finding
10 MHz DFM
41-01603 10.45
8DigitLED digital frequency meter
and period measurement
41-01500 $\quad 54.10$
50 MHz PRESCALER
Extend the range of the 10 MHz DFM
to 50 MHz
$41-01501 \quad 8.55$
$1-5 \mathrm{MHz}$ PRE AMP
Low frequency pre-amp and waveform
shaper for the 10 MHz DFM $\quad 41-01502 \quad 5.13$
$1-30 \mathrm{~V} 1 \mathrm{~mA}-2 \mathrm{APSU}$
Adjustable 1-30V Power supply with pre-setable
$\begin{array}{lll}\text { current limit from } 1 \mathrm{~mA}-2 \mathrm{~A} & 41-01600 & 37.46\end{array}$

To: Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire. EN10 7NQ. I enclose 85 p. Please send me your latest catalogue and $3 x £ 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.
Name

Address

5-12V 1APSU
Adjustable PSU from 5-12V with current
protection, 1 amp max output 41-01504 6.45
1-30V1.5A PSU
$1-30$ volt adjustable PSU with protected
output up to 1.5 Amps
41-01402 10.45
3DIGIT LED DVM
DVM to read up to 99.9 volts or configured as an
ammeter to read up to $9.99 \mathrm{amps} \quad 41-01403 \quad 17.00$

INFRA REDLINK
Single channel IRLink
with relay output
TEMPERATURE SENSOR
Thermistor based temperature sensor
$\begin{array}{lll}\text { with relay output } & \text { 41-01303 } & 6.20\end{array}$
LOCOMOTIVE SOUND GENERATOR
Realistic steam sound and whistle for
$\begin{array}{lll}\text { model railways } & \text { 41-01304 } & 9.20\end{array}$
LAMP DIMMER
Control lamps and drill speed $\quad 41-01305 \quad 5.70$
WATERLEVELALARM
Alärm to indicate high water level or
flooding
$41-01601 \quad 2.70$
3 NOTE CHIME
Doorbell chime with adjustable
tones
41-01503 7.00
2M PRE AMP
Miniature low-noise MOSFET pre-amp
for the 2 m amateur band $\quad 41-01307 \quad 3.91$
2M CONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur
$\begin{array}{lll}\text { band converter 41-01306 } & 17.35\end{array}$
2M POWER AMP
20W - 10dB gain - power amplifier for the
2 m band. Automatic TX switch over. RX
$\begin{array}{llll}\text { pre-amp, robust construction } & 41.01404 & 32.87\end{array}$
70 cm PREAMP
Low noise, miniature pre-amp for the
70 cm amateur band
$41-01506 \quad 4.78$
70 cm CONVERTER
70 cm to 144 MHz low noise converter
featuring pre-aligned helical fitter.
schottky diode mixer and low noise
transistors
$41-01405 \quad 21.50$
70 cm PA
10W Power amp to boost the output of
handheld and portable 70 cm
transceivers
41-01505 33.82
CRYSTALCALIBRATOR
Crystal reference calibrator for alignment
of receivers, outputs at $4,2,1 \mathrm{MHZ}$,
100,50 AND 10 KHz
41-00801 4.32
CB NOISE SQUELCH
Improves to mute performance of the
majority of CB rigs
$41-01605 \quad 5.40$
CENTRONICS INTERFACE
Connect your personal computer to
the outside world via the Centronics
printer output
41-01406 22.50

bigger and
 better.

 RF Generator LSG17

 RF Generator LSG17
 Selected Lines

Nicad Batteries \& Chargers

High quality nickel cadmium rechargeable batteries. Equivalent in size with popular Dry Cell sizes e.g. HP7 (AA), HP1 1 (C), and HP2 (D) Minimum life 600 (300 PP3 size) full
charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

DATA \& PRICES
Type V(nom) Capacity StockNo. $1-9 \quad 10-49$ $\begin{array}{llllll}\mathrm{AA} & 1.2 \mathrm{~V} & 500 \mathrm{mAH} & 01-12004 & 0.80 & 0.74\end{array}$ $\begin{array}{llllll}\mathrm{C} & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12024 & 2.35 & 1.99 \\ \text { D } & 1.2 \mathrm{~V} & 1.2 \mathrm{AH} & 01-12044 & 2.00 & 2.00\end{array}$ $\begin{array}{llllll}\text { PP3 } & 8.4 \mathrm{~V} & 110 \mathrm{mAH} & 01-84054 & 3.70 & 3.50\end{array}$

CH/4/50

To recharge up to 4 AA size NiCads.
Size; $112 \times 71 \times 37 \mathrm{~mm}$
01-00409 4.95

CH1/22
To charge PP3 type NiCads.
Size; $70 \times 50 \times 32 \mathrm{~mm}$
$01-00159 \quad 4.30$

CH8/RX

Will recharge AA, C, D and PP3 size cells with auto matic voltage selection. Will recharge following combinations: $4 \times \mathrm{x}, 4 \times \mathrm{AA}, 4 \mathrm{xC}, 2 \mathrm{xPP} 3,2 \mathrm{xD}+2 \mathrm{xC}$ $2 x D+2 x A A .2 x D+1 x P P 3,2 x C+2 x A A, 2 x C+$ 1xPP3, 2xAA + 1xPP3. Charge rate: 11 mA for PP3 45 mA for $A A$ size, 120 mA for C and D size, for 16° hrs. Power: 240 V 50 Hz . Output Voltage: 2.9 V for AA, C and D size, 11.0 V for PP 3 size. Weight: 0.475 kg Size: $199 \times 109 \times 55 \mathrm{~mm}$.

HT320

High quality, high specification meter at a reasonable price. In addition to the usual ranges facilities are provided for measuring transistor parameters such as Iceo and Hfe.
Meter movement fully protected against overloads. 3 -colour mirrored scale in robust case. Supplied complete with comprehensive instructions, test leads, transistor test leads and batteries ($2 \times \mathrm{HP}-7$, $1 \times$ PP3).
DCVolts: $0.1 \mathrm{~V}, 0.5 \mathrm{~V}, 2.5 \mathrm{~V}, 10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}$ $(20 \mathrm{k} \Omega N)$. AC Volts: $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}, 1 \mathrm{kV}(18 \mathrm{k} \Omega N)$. DC current: $50 \mu \mathrm{~A}, 2.5 \mathrm{~mA}, 25 \mathrm{~mA}, 250 \mathrm{~mA}$
Resistance: $2 \mathrm{k}, 20 \mathrm{k}, 2 \mathrm{M}, 20 \mathrm{Mz}$. AF Output: -10 dB to +22 dB for $10 \mathrm{VAC}(0 \mathrm{~dB} / 0.775 \mathrm{~V}, 600 \Omega)$. Leakage (Iceo) $15 \mu \mathrm{~A}, 15 \mathrm{~mA}, 150 \mathrm{~mA}$. Hfe: $0-1000$ (Le/Tb). Weight: 410 gms .

A stable wide-range generator for the hobbyist, service technician, schools, colleges, etc Frequency range: $\mathrm{A} / 100 \mathrm{kHz}-300 \mathrm{kHz}, \mathrm{B} / 300 \mathrm{kHz}$ to 1 MHz (Harmonics $96-450 \mathrm{MHz}$) C $1 \mathrm{MHz}-3.5 \mathrm{MHz}$ D/3.0MHz-11MHz,E/10MHz-35MHz
F/32MHz-150MHz. Accuracy:k1.5\%.Output greater than 100 mV (no load). Ext. xtal osc for 1 to 15 MHz crytal. Power required: $\mathrm{AC} 100,115$ or 230 V 3 VA . Size \& Weight: $150(\mathrm{H}) \times 238$ (W) $\times 130(\mathrm{D}) \mathrm{mm}, 2.5 \mathrm{Kg}$ approx.
$56-90017 \quad 115.00$

Linear ICs

LF351 Bi-FET opam LF353 Dual version of LF351 LM380N [W AF power amp LM381 Stereopre-ampIC NE544 14 pin DIL servo driver IC
NE555N Multi-purposelow cost timer
uA741CN DIL low cost op-amp
TDA1062 RFocillator and mixer system for $1-200 \mathrm{MHz}$
TDA1083 Portable radio AMFM audio in one IC
HA1388 18W PA from 14V
MC1496P Double balanced mixer/ modulator
TDA2002 8 Winto 2 ohms power amp

Stock No. Price 61-03510 0.49 $61-03530 \quad 0.81$ $61-00380 \quad 1.45$ 61-00381 3.27 61-00544 1.80

61-05550 0.21 61-07411 0.42 61-01062 1.95

61-01083 1.95 61-01388 2.75

61-01496 1.25
61-02002 1.25
61-02283 1.00
61-03089 2.84 $61-31300 \quad 0.80$ $61-31400 \quad 0.46$
$61-03859 \quad 2.95$ $61-39000 \quad 1.20$ $61-39090 \quad 0.68$ M3909N 8-pinDIL LED flasher
KB4412 Two balanced mixers IF amp with AGC for AMSSB

61-04412 1.95
ICM7555 Low power CMOS version of 55 timer
HAll225 Low noise FMIF
HA12017 83dBS/N phono preamp 0.001% THD
0.98
$61-11225 \quad 1.45$

MC14412 300 baud MODEM controller
(Euro/USspecs)

PB2720	80 dB Piezo Buzzer	43-27201	0.55
10M15A	10.7 Filter	20-10152	2.10
10M08AA	10.695Filter	20-11152	3.49
FC177	LCDFreq. Meter	39-17700	20.00
CM161	MinLCDClock	40-80161	8.25
BBC to Cen	ronics Cable	03-10019	7.25
Dragon to C	entronics Connect Cable	03-10017	7.25
C12 Compu	ter Cassette Tape	21-00012	0.55
8×0.3 "	IC socket	28-00800	0.12
$14 \times 03^{\prime \prime}$	IC socket	28-14000	0.13
16×0.3 "	IC socket	28-16000	0.13
6 V	KUIT-A Relay	46-80000	0.48
9 V	KUIT-ARelay	46-80001	0.48
12V	KUIT-A Relay	46-80002	0.48
CXI20P	COAX Relay	46-90120	11.96
CX520D	COAXRelay	46-90520	26.98
CX540D	COAXRelay (BNC)	46-90540	26.98

Books

 Semiconductor Data Book 11th EditionBeginners Guide to Amateur Radio Beginners Guide to Electronics Active Filter Cookbook
CMOSCookbook
TTLCookbook
Design of Active Filters
Design of Op-amp Circuits with
experiments
Effectively Using the Oscilloscope The ZXSpectrum
Practical Design of Digital Circuits
Electronic Projects for Home Security
Electronic Telephone Projects 55 Timer Applications Sourcebook Television Engineers Pocket Book 7thEd
Electronics Pocket Book
99 Practical Electronic Projects More Electronic Projects in the Home
The Radio Amateurs Question and
Answer Reference Manual
Basic Programming on the BBC
Microcomputer
Using Microprocessors and
Microcomputers
The 6800 Family
Z-80 Microcomputer Design
Projects
Z8000 Microprocessor:
ADesign Handbook

68000: Principles and
Programming 02-21853 12.70 8085A Cookbook Handbook of Electronic Tables Formulas Popular Circuits: Ready Reference $02-04585 \quad 1395$
02-11262 4.50 $02-04134 \quad 450$ 02-21168 12.70 02-21398 11.85 2-10358 11.00 $02-21539 \quad 10.15$
02-21537 930 02-21794 9.30 02-00100 5.95 02-11831 10.45

02-05351 3.80 02-21538
$02-21313 \quad 8.50$ $02-21309 \quad 7.50$ 02-21635 5.90

02-21307 3.80
02-02157 595
02-06640 5.95

02-98728 11.05
02-21682 $\quad 12.70$
02-37345 16.10 02-21697 13.55 02-21532 1100
|

ACTIVE-8 LOUDSPEAKER

Warning! This introduction contains a pun which may be harmful to readers of a sensitive disposition! Barry Porter sets his active imagination to work once more and brings this series of articles to a tri-amp-hant close (Ouch! - Ed.)

0nce completed, the units should be tested. Initially, remove the plug-in boards, switch on and ensure that the correct voltages appear where they should. Having established that the mother board is operating correctly, in particular that the 15-015 V supply rails are present, the plug-in boards should be inserted one at a time. It should be possible to connect a signal generator to the input and verify that each board is working by checking its output. If any problems appear,
make sure that the IC voltages are correct - namely that +15 V and -15 V are on the supply pins and that both inputs and the output are within a few mV of 0 V . Nonworking stages should be carefully inspected for faulty soldering and component insertion, and if no obvious error can be seen, the IC should be changed.

Once everything is working, the response of the two outputs should be plotted and compared to similar measurements taken from the second unit. If these
agree to within about 0.25 dBm , it is safe to assume that no major errors are present, and proceed with the final connection to the speakers.

The high and low frequency outputs of the filter unit are connected to the two channels of a stereo power amplifier. A number of factors will probably decide the choice of amplifiers, not the least being cost. It is important that the four power stages of a stereo pair of Active-8 units are as identical as

PARTS LIST -

DELAY UNIT	
RESISTORS (all $1 / 4 \mathrm{~W} 1 \%$ metal film) R32, 34, 35, 37, 38, 33k	
R33, 36, 39, 42	
	430 R
R45	1 k
R46, 47	22 R
CAPACItors	
C36-39	1n5 polystyrene 100n polycarbonate
C41	$22 \mu 16 \mathrm{~V}$ non-
	dearised
C42, 43	$100 \mu 25 \mathrm{~V}$ radial
C44, 45	electroytic
miscellaneous PCB; 10-way PCB socket.	

Fig. 1 The missing link - the PCB overlay we didn't have room for last month.
possible. Regarding amplifier power, the speakers will operate at their best when driven by good quality units in the 100-150 watts region; anything below 50 watts per channel should be avoided, as transient clipping is likely to happen too often for comfort. At the top end, providing they are used with caution, there is no reason why 200 or 250 watts should cause any problems.

Before making the final connections the protection relay RL1, should be fitted - preferably inside the cabinet where, if an octal based version is used, the base can be screwed to the cabinet with 20 mm chipboard screws passing through 10 mm tubular spacers.

Once everything is connected up, the complete unit should be tested, making sure that both relays operate correctly so that a delay of about 6 seconds occurs at switch-on, and RL1 is released before RL2 when the units are switched off.

If everything is working, connect the speakers to your preamplifier using good quality screened cable. When fed from a balanced output, the connecting cable should contain a twisted pair of conductors within an outer screen. The conductors carry the signal to the inverting and noninverting inputs, the screen being connected to the 0 V contact. For unbalanced operation, the signal should be applied to the noninverting (+) input, and the inverting (-) contact of the connecting plug should be connected to the cable screen. If you are using a pre-amplifier with a high output capability it may be advantageous if there is less gain in the system, and this can be achieved by leaving the inverting input unconnected. Some amplifiers (such as the Quad 303 and 405) invert the signal phase, so if you are using such a power stage the overall phase integrity may be maintained by connecting the pre-amplifier output to the inverting input of the buffer amplifier, with the noninverting and N contacts joined to the screen of the connecting cable. Of course, if your preamplifier is also of the inverting type, this will cancel the power amplifier inversion, in which case the non-inverting input of the buffer should be used.

All that now remains is to put stylus to groove, sit back, and discover the joys of being 'Active-8-ed'!

Fig. 2 Basic circuit diagram for a three-way cross-over. You'll have to work out the details (and the PCB) yourself.

Three Ways To Improve The System

The Active-8 was designed to be used with a stereo power amplifier providing power for each channel, which limited the number of drive units that could be used to two. Experimentation is the essence of speaker building (it is one form of building that doesn't require planning permission, except of the matrimonial kind) and most speaker builders go through a phase of Bigger is Better thinking. If, for reasons of sound output level or to impress the next door neighbours, you decide to use a larger than 200 mm bass driver - say a 250 or 300 mm unit - you will have to start thinking in terms of tri-amplifcation and mid range units. Although a few manufacturers claim to have produced 300 mm units that will
operate up to 2 or 3 kHz , in practice they leave much to be desired, so the additional complexity of adding a mid range driver is certainly worthwhile.

There are several good units available, but the author has always favoured the KEF B110 in its high power handling form (KEF part no. SP1057).

Depending upon the parameters of the chosen bass unit, you are likely to be using a cabinet of 60 to 120 litres. The basic rules are to keep the cabinet as narrow as possible with drive units close together and vertically in line. If your cabinet building ability is above average, you may like to consider putting the mid and high frequency units in a small enclosure separated from the main cabinet, which allows the acoustic

Fig. 3 Suggested set-up for a tri-amped system.
centres of all three units to be inline and removes the need for signal delay. So what if it looks like a B\&W 801 or KEF105 - you're not planning to go into competition with them, are you?

Using a 300 mm bass driver such as the KEF B300.B or SEAS 33 F-ZBX/DD (about the only unit to have the same transient attack as a JBL 15" monitor, but at about a quarter of the price), a B110 mid range and T33A high frequency unit, the network filters should be 24 db per octave using the series Butterworth arrangement previously explained. A basic circuit diagram of the filters is shown in Fig. 2. Equalisation should not be required for the B110, but the bass unit and T33A will require treatment similar to that provided in the Active-8.

As the name suggests, you will require three stereo amplifiers for a tri-amplified set-up. These should all be of the same type to avoid system gain differences, and should be connected as shown in Fig. 3. Note that we have given no constructional details or PCB layout for this modification - it is intended purely as a starting point for those wishing to experiment further.

Sixth Order Bass Alignment

One of the drawbacks of the equalised closed box form of the Active- 8 is the rather excessive cone excursion caused by subsonic signals - and there are plenty of those to be found on the average analogue record. Most record playing systems have some degree of subsonic filtering, but often this is too gentle to be effective, or begins to roll-off at a frequency well into the audio band. If you want to obtain very low bass output without subsonic excursion problems, you may like to experiment with a sixth order alignment. The basic requirement for this is that the reflex cabinet resonance $\left(f_{B}\right)$ is lowered by half an octave, and that an active two-pole filter is introduced into the signal path, this having a Q value of 2 and a cut off frequency the same as the revised cabinet frequency. The Active 8 therefore has its f_{B} reduced from 34.7 to a new value given by:

$$
\begin{aligned}
f_{B}(\text { new }) & =\sqrt{\frac{f_{B}^{2}}{2}} \\
& =24.5 \mathrm{~Hz}
\end{aligned}
$$

This requires that the tuning vent length becomes almost 500 mm which is likely to be a problem. A quick calculation shows that a vent with 50 mm internal diameter should be 207 mm long, which is a bit more manageable. You will find that if you select the appropriate grade of plastic pipe, one with a 50 mm internal diameter will slide comfortably into a 75 mm one. It also has sufficient wall thickness of glue the outer end to a new escutcheon, so it is quite possible to have interchangeable 4 th and 6 th order alignments.

Fig. 4 Circuit for a second-order filter.
The 2 nd order filter shown in Fig 4 should be inserted in the low frequency path in place of the closed box equalisation circuit. It is tuned to $24.5 \mathrm{~Hz}(f=1 / 2 \pi R C)$ with a Q of 2 being set by the gain of 2.5 from the relationship:

$$
\text { Gain }=3-(1 / Q)
$$

The main problem with a 6 th order system is the amount of phase shift that it introduces. Although this can cause some types of bass sound to become less solid, there is no sign of this with low organ notes, so perhaps this alignment is best recommended to those who are turned on by that sort of thing.

ETI

References

Linkwitz S. H., Loudspeaker System Design. Wireless World May, June \& December 1978.
Linkwitz S. H., Active Crossover Networks for Noncoincident Drivers. JAES January 1976 Margows G. \& Small R. H., Loudspeaker System Design. JAES, June 1981
Marshall-Leach Jr. W., Active Equalisation of Closed Box Loudspeaker Systems. JAES, June 1981 Snyder P. F., Design of Vented Loudspeaker Systems. JAES reprint 1307 Thiele A.N., Loudspeakers in Vented Boxes, JAES, May \& June 1971

BUYLINES

1% metal film resistors are available from a number of suppliers in almost all of the values required, the only difficult item being the 15 k 4 specified for R51 and R52. We don't know of a supplier for this so we can only suggest you use two resistors in series and stand them on end on the PCB. A 13 k and a $2 \mathrm{k4}$, both available from Maplin, should do the trick; ordinary mortals may well find that a 15 k 1% is perfectly adequate on its own. The NE5532 and NE5534 are available from Watford, Technomatic, Rapid, etc, and the PCB-mounting transformer and most of the capacitors are also widely available. Non-polarised electrolytics in radial form are not readily available to the amateur, but Maplin and Cirkit both stock 50 V axial components which could be mounted end-on. These two companies are also among those which stock the PCB plugs and sockets used, but note that there are some interesting discrepancies in stocking habits here and that you may need to order from more than one supplier to get the matching plug and socket halves you need. RL2 is also a Maplin type, and any relay with the correct contact arrangement and coil voltage can be used for RL1. The XLR type audio connectors recommended in the text are available from numerous suppliers including Electrovalue, Cricklewood, Maplin and Cirkit, and the PCBs are all available from our PCB Service.

Turn to page 71 for details of how to update your Vario!

'THE USUAL PROBLEMS OF MAN MEETS WOMAN'

Michael Wheeler is an articulate, good-looking businessman in his mid-thirties. Born and bred in London, his work has taken him all over the world. Despite his busy life-style he found time to marry, but unfortunately his marriage failed and he found himself back in London, trying to rebuild his social life.

'My cousin, who lives in London, suggested that I should join Dateline. I must admit, I found the idea appealing because I was aware of Dateline. In fact, I had been a member way back in the sixties. I found no great romantic successes at that time but many, shall we say, nice encounters, so when my cousin suggested the idea again I thought 'Why not,
I'm only going to live once, why not make the best of it?

Michael didn't join Dateline to find "the woman of my dreams'. 'I joined because after a long absence from a city like London you tend to find that your friends and acquaintances have married or moved away. Although I obviously missed female company, I also found that I had no circle of friends left at all.,
'When my first list of names from Dateline arrived and I began to receive calls from women with whom I had been matched on the computer, my social life improved out of all recognition almost overnight! My only problem was time, because all of the women I spoke to were so pleasant that I felt I had to meet them. In the event, I met four from my first list of names. Two I felt I could quite happily be friends with; the other two meant rather more.,

Michael doesn't mind people knowing he is a member of Dateline. 'There's not the adverse reaction from family and friends that I think some people may expect,' he said. 'I did perhaps feel, as many people probably do, that there's some sort of stigma about admitting to feeling lonely. But that's rubbish as loneliness affects every person at some stage of their life, no matter what their circumstances. It's something that has to be
overcome by any means available to us. Dateline may sound cold-blooded to some people, but I have found it certainly isn't. It may perhaps be more socially acceptable to meet people of the opposite sex in pubs or clubs, but really Dateline wins above those places. I don't like competing with smoke and noise, and it's far nicer to know that the woman you're telephoning has the interests and desires you're looking for. It provides a basic understanding before you even say hello. Obviously, all the usual problems of man meets woman are still there, but you have conquered quite a few of the barriers that so often make a relationship fail before its really started.

He stopped to consider for a moment. 'I don't know what you need from life. All I really want is happiness, and a large part of the happiness I seek is the happiness that can be gained from the

If you would like to be one of the many thousands of people nationwide who have been enjoying a new social life, and finding love and happiness through Dateline, complete the simple questionnaire below, We will send you confidentially and completely free, full details about Dateline and how it works, and details of just one of the Dateline members who are compatible with you. Send to:

Dateline Computer Dating, 23 Abingdon Rd., London W8. Tel: 01-938 1011.

TERMS OF BUSINESS

* All prices exclude V.A.T. and carriage. Please add carriage to order total before adding V.A T
\star Carriage charges extra on all orders as follows. Components
Books/Data/Software
Printers, Monitors, Dise drives, etc.
* Strictly cash with order or credit card (Access or VISA) only.
* Delivery is normally from stock but please allow up to 28 days.
* Any query or complaint regarding an order should be made in writing within 7 days of receipt of the order No telephone queries will be entertained

COME AND JOIN US!

Due to Phil Walker's impending move to a senior position in industry, we are seeking a Project Editor to take over his role on ETI. The job involves designing, prototyping and writing-up projects for publication in ETI, checking submissions from other authors, answering queries, and generally being our resident know-it-all and technical genius. For a particularly experienced apointee, there could be scope for a role as technical referee on the group of ASP electronics magazines.

We have an open mind over the sort of person who might do this job. However, the person appointed will definitely have a good, practical knowledge of electronics, and would be competent to design in digital, including computer, electronics as well as analogue.

Please write to Dave Bradshaw, Editor, Electronics Today International, 1 Golden Square, London W1 R 3AB, enclosing your CV and, where possible, brief details of one or two items that you have designed yourself. Closing date for applications will be 30th November 1984.

ATTENTION ALL WRITERS ... or just those of you who sometimes think "I could do better than that!" We want to hear from you!

Abstract

The magazine you hold in your hand is part of ASP's electronics group of titles. These include ETI, Ham Radio Today, Digital and Micro Electronics, and our new magazine, Electronics. All these magazines are looking for new authors, so if you've designed something for yourself that you think may be of interest to others, or if you've a subject you'd like to write a feature article on, then drop us a line with an outline of what you have in mind.

We particularly need:

- Projects for the Commodore Vic 20 and 64, the Amstrad, the BBC A and B, and the Electron computers;
- Simple projects that do something useful, perhaps in a novel or instructive way;
- Radio projects (not necessarily for radio amateurs);
- Features on amateur satellite radio.

If you're interested in writing for us, send an outline of your proposed article to: Dave Bradshaw, Group Editor (Electronics), Argus Specialist Publications, 1 Golden Square, London W1R 3AB.

EXPERIMENTERS' 64 K DRAM CARD Gnosis: knowledge of spiritual mysteries (Concise Oxford Dictionary); Gnos-ex: expandable memory system (ETI Dictionary). Phil Walker tries again for the obscure pun of the year award.

The ETI GNOS-EX is the expandable, flexible dynamic memory system for the keen experimenter. Using the 4416 16K X4 dynamic memory devices, the system can be populated and configured for from 16 K to 64 K blocks with the capability of deleting or including memory in 1 K blocks.

Last time we published a DRAM card for the 6502, we used the 74 LS608 memory controller. Since then, we' ve discovered there are problems with this device (don't worry if you're trying to get that board going - we' re working on a fix!). So this system was designed to do without any very special control devices and rely, so far as possible, on absolutely standard ICs which will be (we hope!) readily available for some time to come and cheap. In the final design the most unusual devices are the 4416 memories and the PROM. This latter device is not actually absolutely essential for the operation of the project and could be replaced by suitable logic.

The layout of the PCB is intended to be such that it will plug into a Microtan system bus, although at the time of writing this it has not been tested. The original development work was carried out on the author's Ohio Superboard, somewhat modified with the processor running at 1.25 MHz

The Circuit

The basic ideas behind this project are much the same as any other which makes use of dynamic memories. There are two distinct phases of operation; the first, and most important as far as the user is concerned, is the reading or writing data, ie actually using the memory. The second is the periodical refreshing of the stored data to make sure that it is remem-
bered correctly. Ideally, the refresh operation should not be apparant to the user, and so it must take place when the processor is not using the memory.

In the case of the 6502 microprocessor, for which this project is designed, the processor is concerned with accessing the memory for only half the time. The remaining time can be used for refreshing the memory with no effect on the processor. With the 6502 running at 1 MHz there is about 500 ns in which the processor will read or write data as necessary, followed by 500 ns or so in which the processor is doing internal operations and not interested in the outside world; this is the time we use to do a refresh operation.

The 4416 specification requires that the whole memory be refreshed at least every 4 ms . To do this, 256 different addresses must be put on the address lines and the RAS input pulsed low for a cer-
tain time for each one. All this must be done within the 4 ms allowed. In this design it will be done every 256μ s with a 1 MHz processor clock

The circuit consists of several elements. First, there is an address multiplexer which takes the 16 address lines from the processor and switches them to the eight address lines of the memories during the processor access cycle. Only 14 of the address lines are used, eight are latched into the memory ICs by the $\overline{R A S}$ signal and six by the $\overline{C A S}$ signal.

Second, and allied to the above, there is the refresh address counter and buffer. The eight-bit counter is incremented at the end of each refresh cycle and provides the 256 addresses necessary for the complete operation. The tristate bus buffer puts the output from the counter on the memory address pins starting mid-way through the previous processor

Fig. 1 Block diagram of the card

PROJECT: Memory Card

two most significant address lines. The 9
$=0$
0
0
0 output its data To write data into the memories, the苞㐌 plish this, the Rignifnal is gaied and the CAS signal Trisisis done to ensure that it cannot occur at the wrong time. The out-
puts rom IC15 cand thenenable IC19b which routes it to the WE inputs of the
pair of memories determined by the pair of memories determined by the
states of A14 and A15 of the address bus. This arrangement also delays the write command a iittle and allows a little extra
time for the data to arrive from the processor. a mention are the resistor pack and R9, 10 and C. These are provided to ter-
minate the address lines and suppress reflections of the signals travelling back along them. On this size of board, they
may well not be necessary.

| The final point to note is that the top |
| :--- | address lines A15 and A14 are mut

tiplexed
onto the memory address imputs during the cAS cycle, but the memor ICcsignore them. This smayprove
useful if 64 K by 4 bit devices become available (with eitht muteiplexed
address pins) in the near future. address pins) in the near future.
 IC16 finishes its pulse. The delay net
work $R 22, \mathrm{R}$ and $\overline{\mathrm{S}}$ is reset quicklvivid
 output or RAS signal goes high it also
clocks IC18a This transiers the state of the φ signal to its outputs which in turn controi the outputs of the refresh bufier
and processor multiplexers.

If φ is sish the next RASCycle will be a low the next RAS cycle will be a ppocessor access ifrequired and the outputs
of IC2 and 3 will be enabled.

Note that the power-on-reset circuit
 multitipexers enabled It must be
arranged that the software allows at least eight RAS only cycles of the memory before it is accessed This wouid nor-
mally occur while the processor regis

 memories are accessed during each cycle. However, to read data from one
pair of them, its G input must below. This pair or is derived by simply inverting the
signal sing
R / W signal from the processor and
 one ot four demultiplexer and its output
driven is determined by the states of the
soocesco accrs

ofIC14 are steady while the refresh cycle is in progress, IC4 is locked as the out-
puts of IC13 are disabled thus the transitions of IC14 will be over long before the
next refresh address is gated onto the memory inputs. The next part of the circuit is where the
main work is done. The main timing signal φ from the processor goes to IC15a where it is buffered; from IC15 a Outpotinedassitle and through R3 and C^{2}
is delay
where it is delayed a little more. When where it is delayed a little more. When causes IC16 to generate a pulse at its output. IC16 is a monostable whose
period is set by RV1, R5 and C4. Note period is set by RV1, R5 and C4. Note
that due to the delays in IC15b and R3/ C2, pins 2,3 and 4 will still be at a high trigger conditions for the device in this
 pins 3 and 4 and then pin 2. The combination of pin 2 low and pins 3 and 4 going
high is another valid triggering combinat
 arrangement gives a puse at both the
rising and falling edges of the φ_{2} input signal. The low going output from the Q out-
put of $1 C 16$ is used as the RAS row address strobe signal for the memories.
Its falling edge causes the first eight bits of the address to to latched internally.

The high-going signal from the Q out-
 signal causes the address multiplexers IC and 3 to apply the other eight
address bits to the memory inputs ready address bits to the memory inputs reaty 0
0
0
0
0
0
0
0
to the clock input of ICRB. IC18b is set
 50
0
0
 output will go low, otherwise it will

The output from IC18b is used as the CAS or column address strobe signal for the RAMs Its falling edge causes six
more addresses to be latched into the memories, making the total up to the 14
necessary to access one of the 16384

In this section we shall dispose of the In this secrion we fhat ICP is an eight
simpler functions first. tion of transmission is determined by
 prignal from the address decoding PROM when the processor requires access. The address decoder PROM is about the easiest way of providing fuil decodblocks As supplied by the manufacturers the TBP24s10 has all its memory
cells at a logic high level in this project this corresponds so the board on ot beinin
selected In order that the memory will selected in order that the memory win
respond to any block of addresses, he corresponding locations in the PROM must be blown to the ow state Since the
PROM has four bits per location, three PROM has forr bits ser location, three
more memory maps san be loon into the device to cater for future modificat to use the appropriate bit Also, since to use the appropiate bit Also, since
only six of the eight address lines are used for the decode, SW1 and 2 are pro-
vided so that you can have up to four vided so that you can have up to tour
address maps for each link position
Ifthe blowingofaPRM is difficult for If the blowing of a PROM is difficult for
You then a 74415151 nene of eight selector IC can be used to simulate some of its operation
In order to ensure that the circuit starts up correctly when power is and b form a power-on-reset circuit which gives a logic low for 25 ms or so after the poweris Cr istappsiarged rapidly when power is removed and also pro-
tects the input circuitry of 1 C17a IC and 3 are quadruple two to- one multiplexers which are used to switch
the 16 processor address lines onto the eight memory address lines at the right
time. 15257 s are used here instead of
 have outputs which can be made high
impedence by the state of a single input impedince By using this siacility the processor
piddress bus is applied to the memory
ade address bus is applied to the memory at
the start of the processor access cycle. At the end of the processor cycle he out
puts of IC 2 and 3 are turned off and IC13 Outputs are turned on allewing the state
ofthe refresh counter IC14 to be a pplied of the refresh counter IC14 to be applied
to the memory address inputs in readiness for a refresh cycle
IC13
is an eight eit bus buffer while IC14 is a dual four-bit binary counter resh address. To ensure that the outputs

$$
\begin{aligned}
& \text { require programming skip } \\
& \text { steps } 5 \text { through } 11 \text {. } \\
& \text { 5. Increase } v_{C C} \text { to } v_{c C(\text { pri })} \text { with }
\end{aligned}
$$

when it is taken low provided that the RAS and CAS signals have been properly set up. The WE signal is allowed to be generated only if a CAS signal is present, and cycle when the select logic output is low and the R / W is also low. In order to keep the loading on
the processor data bus low and to avoid handling problems due to static on the memory data pin, a tion of transmission is determined by the state of the R / W line and it is enabled when required by the SEL signal from the select logic The select logic on the board is
intended to be a TBP24S10256 $x 4$ bit PROM. Only the six MSBs of the address bus are connected
to the PROM and thus only 64 of

G inputs to $V_{\text {It }}$. 11. Decrease V_{cc} to 0 volts.	
12. Return to step 4 until all outputs in the word have been programmed.	
13.	
Verify progr word after programme of 4.5 and 5 registered P clocked to condition.	d using $V_{C C}$ values 5 volts. Note that ROMs must be verify the output
$\mathrm{V}_{\text {cctor }}=6 \pm 0.25 \mathrm{~V}$	
$\mathrm{V}_{\text {s(p) }}=9.75-11 \mathrm{~V}$	
$\mathrm{V}_{11}=0$ to 0.5 V	[$\square_{\text {- }}^{\text {a }}$
(${ }_{\text {a }}$	
	2 國 02
6 PROM pin-out	

blocks, one of which determines
 cycle If, during a processor cycle, the CAS output does go low it will cycle when φ_{2} going low will force it high again. This allows data to remain available at the output of processor cycle without the use of a separate latch.

The last major section of the circuit consists of the read/write
 memory chips is accessed. Each memory device has a write enable (WE) input and an output control (G). The latter has the effect of the device only when this line is low. The former causes data to be written into the memory matrix

$$
\begin{aligned}
& V_{11} \text { Only one bit is to be pro- } \\
& \text { grammed at a time. }
\end{aligned}
$$ pulse for 20 microseconds.

Minimum current capability of
the programming supply
should be 250 milliamper
9. After terminating the output
pulse, disconnect all outputs
from V_{11} conditions.
10. Reduce the voltage at S, E, or

$$
\begin{aligned}
& \text { require programming skip } \\
& \text { steos } 5 \text { through } 11 \text {. }
\end{aligned}
$$

cycle until mid-way through the

state of the select logic is sampled falling edge; if it is low then the草
 refresh cycle. During this time, the are made high impedence to avoid conflict.

The next section, and possibly
 generator. This is basically a monostable but with extra logic to make it trigger from both the rising The φ signal is the main timing output from the 6502 processor. The dual triggering capability enables the circuit to generate the row
address strobe (RAS) signal for both refresh and processor access both refresh and processor access
with one device and one
adjustment
Following on from the $\overline{\text { RAS }}$
generator, there are two functional next cycle from the current state of the φ signal. The other provides
 are held steady before switching over to the next six bits in readiness for the CAS signal. generator which, if all its input 0
0
0
0
0
0
0
0
0
0
0
0
0
0 the cycle. Note that this signal will only occur if φ_{2} is high and the select logic output is low. The
\qquad

Fig. 7 Use of 74 LS151
the locations are available. SW1 and SW2 can be used to gain access to three others sets of 64 locations. Also, only one of the four output bits of the PROM is used - selected by LK1 - so a total of 16 different memory maps can be held by each PROM. Note that unlike a previous design for a memory board using this device, the output of the PROM must be programmed LOW to enable the appropriate part of the memory map. Note also that the address lines are not used in order.

If desired it should be easy to wire one or two chips to a 16 pin DIL plug for use in place of the PROM.

Construction

This stage of the project is not difficult but just seems exceedingly tedious. Step one is to check that all the components will fit their holes. Note that the DIN 41612 connector usually needs 1 mm holes for its leads as does C7. All the other components, except RV1 and 2 which need 1.2 to 1.5 mm holes, will fit into 0.8 mm holes.

Step two is to take all the components off the PCB (you didn't solder them on - did you?) and make all the through-board links. The easiest way we know of doing this cheaply is to take a length of 22 swg tinned copper wire, stretch it a little to make it straight and stiff, squeeze the very end with pliers to flatten it out so that it will not fall through the holes in the PCB and then cut off about $1 / 4$ inch $(6 \mathrm{~mm})$. Repeat this process until you have enough pieces to go through all the link holes.

Support the PCB clear of the table top with the component side uppermost Working from one end of the board, put about a dozen of the links in the proper holes and solder them in place. Turn the board over and put it flat on the table with a piece of kitchen tissue for protection, and solder all the links on this side as well. Clip off
all excess wire and repeat until all the links are made.

Step three is to fit all the IC sockets. Note that IC5 to 12 are the opposite way round to the others. Then fit the DIN 41612 edge connector and the other passive components except R9. Make sure that the diodes and electrolytic capacitors are the right way round.

At this stage it is advisable to check that there is not short circuit on the power supply lines. If this test is OK then R9 can be fitted. Check also that 0 V and +5 V supplies are connected to each IC socket Examine the PCB tracks carefully, especially around the edge-connector socket, for breaks or solder bridges, as these will be very difficult and possibly expensive to find later.

Step four is to insert IC15, 16, 17 and 18. Apply power to the board and check that it does not draw more than 100 mA or so. Now connect a 1 MHz TTL compatible square wave signal to the φ_{2} test point With an oscilloscope (or otherwise, as equipment allows) monitor the $\overline{R A S}$ test point and adjust RV1 such that the high time is about 150 ns . If this cannot be done, check your PCB again and verify the component values of RV1, R5 and C4. Also check that there are two pulses per $1 \mu \mathrm{~s}-$ check C1, 2 and R3 if not $\overline{C A S}$ testpoint should be continuously high.

If you have got this far successfully, remove power from the PCB and link X to E. Reapply power and check RAS signal again. Now check that the CAS testpoint has a low pulse while the φ_{2} signal is high. Adjust RV2 if necessary to see this. If this signal does not appear check RV2, R7, D2 and C5 and the signals at IC17c and d.

If all is correct, adjust RV2 such that the CAS signal goes low about 100 ns after the $\overline{R A S}$ signal goes low. This should set the main timing to about the right area for normal operation.

Switch off the power again and insert IC2, 3, 13, 14 and 19. Switch on again and check that all eight outputs of IC14 are counting. Check that the outputs of IC18a are switching on the rising edge of the $\overline{R A S}$ signal. Check also that IC19 pin 4 is permanently low and all other outputs from IC19 are high. Now connect the R/W input to the board to 0 V and check that all outputs from IC19 except pin 9 are permanently high. Pin 9 should
be pulsing low with approximately the same signal as that on the CAS testpoint. Pulling A14 or A15 inputs low should alter the pin numbers but not the signal.

If you have got this far successfully there is only one more thing to do before inserting the memory devices. This is to check the power-on-reset circuit Incidentally if this does not work correctly it could have given you problems earlier. Temporarily short-circuit C3 and monitor the output of IC17b. This should be low. Remove the short from C3 and check that the output of IC17b stays low for at least 200 ms (probably nearer 500 ms). During this time the $\overline{R A S}$ and $\overline{C A S}$ signals will be high. Note that φ_{2} signal should be present as early as possible to ensure that the $\overline{C A S}$ signal is forced high, although the φ_{2} line being low will also accomplish this.

The last thing to do now is to insert the 4416 memory devices and IC1. The memory ICs are accessed in pairs, so if you are not using the full complement you must insert IC8/9, 7/10,6/11 and $5 / 12$ in pairs. This is also the order in which they appear in the memory space. Remove the X-E link and insert a TBP24 S10 suitably programmed into the IC4 socket and link X to A, B, C or D as appropriate. Alternatively, plug a 16-pin header into IC4 socket with, for example, a 74 LS151 connected up to select the memory in 8 K blocks. However you do it, the $\overline{\mathrm{SEL}}$ signal at X must be low to read or write to or from the board.

A feature of this design is that the $\overline{S E L}$ signal needs to be low only a short time before the CAS signal is generated in order to activate the memory control but must be held until the end of the φ_{2} cycle for a read operation or the e^{2} d of the RAS sigral for a write cycle in order for valid data to be read or written by a 6502 processor. This should not be a problem for any normal address decoder logic.

BUYLINES

[^0]
hoblyybocerd

PRINTED CIRCUIT MATERIALS
A small selection from our catalogue -

TRACK TAPES
 Precision slit black crepe tapes (1 roll/pack). HB209
 HB210
 HB211
 HB212
 HB213
 HB214
 HB215
 HB216
 TAPE .020" $£ 1.05$ TAPE .025" TAPE .031" TAPE $040^{\prime \prime}$ TAPE .050" TAPE .062" TAPE .080"
 TAPE . $100^{\prime \prime}$
 £1.05
 £1.05
 £1.05
 £1.05
 £1.05
 £1.20
 £1.20

PADS

Pre-printed dense black oo on .0012 acetate film
(500/roll)

HB222
HB223
HB224
HB225
HB226
HB227
HB228
HB229
HB230

O/D I/D
PAD .062/.025 £3.05 PAD .075/.025 £3.05 PAD . 100/.031
£3.05 PAD . 125/.031
£3.05 PAD . 150/.031 £3.05 PAD . 180/.040
£3.05 PAD .200/.040 £3.05 PAD 220 $0040 \quad £ 3.05$ PAD .250/.040
£3.05
IC PACK (Dual•in•line)
Pre-printed dense black on .0012
acetate film (125 symbols/pack)
09080日 HB280/B 16Pin DIL 1:1 £3.20
00080日 HB281/B 16 PinDIL 2:1£3.45
010010010 HB284/C 16 Pin DIL 1:1 £3.45
010010010 HB285/C 16 Pin DIL 2:1 $£ 4.00$
-00000 HB286/D 16 Pin DIL 1:1 £3.20
-00000 HB287/D 16 PinDIL 2:1 £3.45

CONNECTORS

Polyester Film-Strips 420mm Long -0.0.0. HB/324 Conn/D 1:1 (20) £7. 10 $000000 \mathrm{HB} / 325$ Conn/D 2:1(10) $£ 7.10$ HB/326 Conn/L 1:1 (10) £7.10 HB/327 Conn/M 2:1 (10) £7.10

ARTWORK ACCESSORIES HB202 Artwork Film A4 (5) £1.78

 HB/CKGA3 Precision Grid A3 (1) $£ 7.00$| HB/352 | Artwork Knife | (1) $£ 1$ |
| :---: | :---: | :---: |
| HB/353 | Blade | (5) £0.40 |
| HB/354 | Blade | (5) £0.50 |

HB/354
\square
(5) $£ 0.40$

PLAIN COPPER CLAD PCB

Top Quality FR4 Fibreglass
HB019 S/Sided $3^{\prime \prime} \times 4^{\prime \prime}(3) \quad £ 1.26$
HB020
S/Sided $6^{\prime \prime} \times 4^{\prime \prime}(2)$
£1.68
HB021 S/Sided 6"x9" (1) £1.89
HB026 D/Sided $6^{\prime \prime} \times 4^{\prime \prime}(2) \quad £ 1.92$
HB027 D/Sided 6"x9" (1) £2. 16

VEROBOARD

Pre-Pierced
Stripboard
HB137 V/ Board 63x 95mm (1) $£ 1.10$ HB138 V/ Board $63 \times 127 \mathrm{~mm}$ (1) $£ 1.27$ HB140 V/ Board $95 \times 431 \mathrm{~mm}$ (1) $£ 5.00$

UV EXPOSURE UNIT

PHOTO-RESIST \& FOTOTOOL materials require exposure to UV light the type of light used determines the quality of reproduction

- this simple-to-make
D.I.Y. kit comes complete with UV lamp, holder, shade etc. and full working instructions to build your own glass contact frame KIT HB/UV1 D.I.Y. EXP. UNIT £27.00

PHOTO-RESIST PCB MATERIALS

Top Quality, Positive Photo-Resist PCB HB031 Pos S/Sided 3"x4" (3) £2.29 HB032 Pos S/Sided $6^{\prime \prime} \times 4^{\prime \prime}$ (2) £2.73 HB050 Pos S/Sided 6"x9" (1) £2.79 HB039 Pos D/Sided 3"x4" (3) £2.86 HB040 Pos D/Sided 6 " $\times 4^{\prime \prime}$ $£ 3.43$ HB058 Pos D/Sided 9 " $\times 6^{\prime \prime}$ (1) £3.49 HB062 Positive Developer (1 lit) $£ 2.06$ HB012 Ferric Etchant (1 lit) $£ 1.78$ HB014 Process Tray (1) $£ 1.78$
$£ 2.54$ HB017 Copper Cleaner (1)
£1.49

FULL PHOTO RESIST KIT

HB/2 Complete Photo Resist Kit £29.00

PHOTO-TOOL MATERIALS

PCB photo masters made to highly professional standards. UV Exposure. High intensity Image. Pos or neg for simplicity of multi-imaging
HB3 Fototool Kit Complete

	$£ 27.00$
(6)	$£ 5.07$
(6)	$£ 8.77$
(6)	$£ 4.10$
(6)	$£ 6.49$
(1 lit)	$£ 2.90$
(1 lit)	$£ 1.89$

LABEL \& PANEL MATERIALS
Convert Fototool masters into highly professional labels and panels. Simple process-durable finish. Packs include lamination film and Double sided adhesive.
HB114/YELL. Yellow Fotolam 20×30 (3) $£ 2.76$ HB114/BLUE. Blue Fotolam 20×30 (3) $£ 2.76$ HB114/BAL.Brshed Aluminium 20×30 (3) $£ 5.17$

EISGROMLCPROUEGTKIS

A special selection of popular electronic projects from Argus Publications is now available. A wide choice of interest is covered including \star Computing \star Music \star Hi-fit \star Security \star Novelty.
All kits include PCB , components, case \& panels and instructions, and are offered at prices to suit all pockets. SEND TODAY FOR OUR "ELECTRONIC KITS" BROCHURE. HB101 Foto pos ilm 15×2

HB 187 PCB DRILL $£ 152.00$
PCB DRILLS (CARBIDE) LONG LIFE SOLID CARBIDE FOR PRECISION HB189 CARBIDE DRILL 0.9 mm (1) $£ 2.02$ HB190 CARBIDE DRILL 1.0 mm (1) $£ 2.02$ HB191 CARBIDE DRILL 1.1 mm (1) £2.02 HB192 CARBIDE DRILL 1.3 mm (1) £2.02 HB193 CARBIDE DRILL 1.6 mm (1) £3.05 HB194 CARBIDE DRILL 2.0 mm (1) $£ 409$ HB195 CARBIDE DRILL 3.0 mm (1) $£ 5.22$

COMPUIER ADD-ONS

A comprehensive range of add-on Kits \star ROBOTICS \star MUSIC \star SPEECH \star and many other interesting projects.

COMPUTER LEADS \& CABLES

A comprehensive range of Ribbon connectors, cabies and connectors is available for most popular computing applications.

Easy add-ons for $Z X$ Spectrum

Explicitly detailed book to build address decoder and 17 electronic add-on projects.
HB/2000 BOOK + DECODER KIT $£ 24.00$

\square Computer Add-ons \square Computer Cables

Twir HY TEK TV VIDEO
 HY-TEKelectronics IN-CAR CB

Discomixer Phonic 6050 $\star 2$ mag deck i/p $\star 2$ line i/p * $1 \mathrm{mic} \mathrm{i} / \mathrm{p}$ $\star 7$ band graphic \star twin vu meter \star headphone monitor \star mic over ride \star mains operated	Discomixer Phonic MX7700	Discomixer Phonic SM 501 * Full headphone monitor * $2 \times$ line i / p $\star 2 \times \mathrm{mag}$ decki/p $\star 1 \times \mathrm{mic} \mathrm{i} / \mathrm{p}$ \star twin vu meters \star mains operated
		Phonic EQ1005 Stereo Graphic Equaliser $\star 5+5$ equaliser bands * led vu meters * tape monitor * meter level controls \star connections by phono plugs
DEI Analog Echo Machine \star BBD echo system * mici/p * line i / p \star foot switch skt \star output attenuator * peak led * mains operated	Stereo 2 \& 3 way Electronic Crossovers	Echo Microphone
27 Band Mono Graphic Equaliser		1,000 Watt Stereo Slave Amp.
250W Power Amp $\star 125 w$ per channelinto 4 ohms $\star 20$ 20 khz frequency re sponse \star open \& Short circuit proof \star cannon i/p \& o/p \star level control for each channelxtwin vu metres $\star 19$ " rack mount		700W Power Amp
FOR MAIL 48 Dalston Lane, London, E8 Tel 01-249 4814 Open 10 am to 6 pm Mon-Fri 9.30 am to 5.30 pm Sat	RDER ALL OFFERS ARE SUBJECT TO AVAILABILITY E MUSIC MAK	TRADE ENQUIRIES WELCOME TAKE ADVANTAGE OF THE HY-TEK PRICE POLICY

Tape Noise Reducer

W. Wirth
 Sri Lanka

Amateur-made multitrack recordings often suffer from tape noise caused by the accumulated noise floors of individual tracks and multiple generations of tape to tape
transfers. Encode/ decode units like Dolby and dbxare effective but are costly and critical in alignment and use. Playback only noise reducers are also sensitive to alignmenterrors and have side effects such as "breathing".

This simple circuit uses the principle of pre and de-emphasis to obtain its noise reduction. The treble frequencies are boosted during recording and given a complementary cut on playback so that the
signal remains flat but high frequency noise is reduced by 810 dB .

IC1 is a high impedance buffer which prevents loading of the input and interaction with the reactive components R2, 3, 4 and C1, 2 which are configured around IC2. Switch SW1a, b selects either the boost or cut mode. SW2 chooses a turnover frequency of 800 or 1600 Hz

Fixed frequency/amplitude units such as this work best on signals with restricted high frequency content like bass, acoustic guitar and vocal tracks. The greatest noise reduction (10 dB @ 10 kHz) can be obtained with these signals using a turnover of 800 Hz Drum, synth, and similar high frequency content signals can be processed but it would be best to use the 1600 Hz turnover and set the recording level conservatively.

C3 reduces gain at very high frequencies to help avoid saturation. Its presence in both boost and cut modes causes a tracking error resulting in a 3 dB loss at 20 kHz This was felt to be insignificant. Although any op-amp can be used, best results are obtained from low noise devices; an RC4136 is a good choice for a two channel unit.

Quiz Machine

G. J. Phillips Durham

The circuit shown has been designed for use in a quiz where each contestant has a button and the first person to press causes his light to illuminate, thereby cueing the question master. The circuit can be used for any number of buttons from two to ten. The design features automatic reset after a preset time delay so that no intervention is required by the question master.

IC1 (pins 1 to 6) is connected as an astable multivibrator which feeds the clock input of a decade counter IC2. As the counter cycles, each of its outputs Q0, Q1, etc goes to logic 1 in turn.

When a contestant presses his button, the bistable formed by IC1 (pins 8-13) is reset thereby inhibiting the clock of IC2 and effectively freezing the counterat the Q output associated with the button pressed. For example if button PB1 is pressed, the counter freezes at Q0 causing Q2 to turn on. Q1 is turned on also irrespective of which button is pressed. Lamp LP1 is therefore lit

indicating that PB1 has been pressed. LP1 remains lit for a time period set by C1, R4 (approx 3 seconds) after which the bistable is set via pin 8. Lamp LP1 is then extinguished and the circuit is ready for another round.

The cyclic nature of IC2 ensures that two or more lamps can never be lit simultaneously. It may be argued that the circuit is unfair in that if the counter has just cycled past Q0 and

PB1 is pressed before say PB3, then PB3 will win even though it was pressed later. In practice, however, the counter is cycling very fast and the " who pressed 1 st" judgement is made in a fraction of a millisecond, many times faster than human judgement can be made.

A buzzer is connected between the collector of Q1 and the +15 V rail to give audible indication that a
button has been pressed.

Shunt Regulated Spectrum Power Supply

A. S. Hughes
 Holywell

The Sinclair Spectrum power supply unit has an unregulated output which is capable of operating both the computer and the Sinclair printer. Consequently, when it is used to power the computer alone, the supply voltage can rise to well above 9 volts. A friend of mine has 12 volts supplied to his 16 K model.

Since the computer takes about 0.8 A , the internal 5 V regulator has to dissipate $(12-5) \times 0.8=5.6$ watts. This, together with high ambient temperatures causes the computer to become very warm. This shunt regulator circuit, when interposed between supply and computer, will reduce the Spectrum working temperature.

As we all know, the 5 volt regulator is perfectly happy with an input voltage of 8 volts. I have also learnt that the printer does not object to 8 volts either. It therefore makes sense to supply the spectrum with 8 volts to achieve the lowest possible operating temperature.

The advantage of shunt regulation, as opposed to the more usual series regulation, is that there is no significant voltage drop across the supply circuit in series with the computer. Therefore, on full load, when there is no voltage to spare, this circuit can cope.

Q1 emitter is clamped at 5.6 volts below the positive supply rail. The base of Q1 goes to the potential divider formed by R5 and RV1. If the supply voltage should rise, the bias to Q1 increases, causing Q2 collector current to rise, which in turn increases Q3 collector current. The large current taken by Q3 tends to keep the supply voltage down. If the load current should increase, Q3
reduces its collector current to compensate.

D1 drops 0.8 volts thereby ensuring that the Sinclair supply unit is not overloaded. R4 reduces the dissipation in Q3 to less than 3 watts. If the unit is left switched on with no load connected the power dissipated in R4 will be about 8 watts.

I took the opportunity to include a few luxuries in this circuit, such as the power on indicator (LED1) and extra smoothing capacitor C2.

To set up the circuit, connect the output to an 8 ohm 10 watt power resistor (4R7 and 3R3 in series) and adjust RV1 for an output of 8.2 volts.

Loudness Control

R. Leach
 Reading

Most audio amplifiers equipped with a loudness control employ a tapped volume control to allow bass
and treble boost at low volume settings. This is intented to account for the non-linearity of the ear at these levels.

The circuit shown allows the same effect to be obtained using only an ordinary 50 K dual-gang potentiometer. A four-gang potentiometer would be required for
stereo operation (Cirkit supply one) or alternatively two dual-gang ones could be used, one for each channel.

The IC could be a 741 or any similar device but for best results a high quality op-amp such as the TL071 is preferable. The gain of the circuit is effectively unity at 1 kHz but approximately 10 dB bass boost is provided at 100 Hz and high frequency attenuation in the feedback loop gives approximately 5 dB gain at 10 kHz As the setting of volume control RV1 b is increased, so also is that of RV1a which reduces the effects of the frequency selective networks around the op-amp. At maximum volume the amplifier frequency response is flat over the audio spectrum.

The unit could be arranged so that it might be switched in and out, either by re-routing the signal path or by inserting a switch at point A. This would isolate the frequency selective networks from ground and leave the IC functioning as a unitygain amplifier with a flat frequency response.

Memory Map Simplification

P.M. Buckley
Leeds

Although very simple, this idea speeds up I/O processing and shortens machine code programs considerably.

In microsystems using the 6821, selection of the internal registers in the PIA is usually achieved by attaching A0 \& A1 of the address bus to RSO \& RS1 on the 6821. This gives the memory map shown in Table 1.

A1	A0	REGISTER SELECTED
0	0	DDRA AND I/O REGISTER A
0	1	CONTROL REGISTER A
1	0	DDRB AND I/O REGISTER B
1	1	CONTROL REGISTER B

Table 1

This is awkward as the I/O registers are two bytes apart, which means 16 bit registers such as the index register in the 6800 cannot be used to read and write to the I/O ports. Instead two eight bit operations have to be used.

By simply swapping over the connections to RSO and RS1 the memory map changes to that shown in Table 2.

A1	AO	REGISTER SELECTED
0	0	DDRA AND I/O REGISTER A
0	1	DDRB AND I/O REGISTER B
1	0	CONTROL REGISTER A
1	1	CONTROL REGISTER B

Table 2

Square/Triangle Generator with Variable Mark/ Space Ratio

P. J. Thompson Lancashire

The problem with most methods of obtaining a variable mark/space ratio from normal astable circuits is the tendency of the ratio to alter with frequency and vice-versa. With this circuit both adjustments can be made independently of the other. It also produces constant amplitude outputs.

C1a, IC1 b and associated components form a fast (non-saturating) Schmitt trigger. Trigger voltage is set by the current, to virtual earth, through R2 multiplied by the input resistance RV2a and R8.

The potentiometer RV1, IC1 c, C1 and associated components control the mark-space ration. The rate at which C 1 charges is controlled by the resistance between the output of the Schmitt (IC1 b) and the virtual earth of IC1c. Hence over one cycle the average value of resistance equals (RV1/2) + R7 eliminating the effect of this control on the frequency.

When the output of IC 1 c rises to the positive trigger voltage IC1 ${ }^{\prime}$'s output switches to a positive value determined by R3 and R4, thus the output of IC1c starts to fall as it discharges C1. Upon reaching the negative trigger voltage IC1b switches to its negative value (R5 and R6) so IC1'c's output starts to rise, and the cycle is repeated.

The frequency is controlled by

RV2 a, which determines the trigger voltages and hence the time taken to charge (discharge) C1. (Large RV1a $=$ Large trigger voltages $=$ Long times = Low frequency).

The triangle (ramp) waveform is derived from the output of IC1c. However, as the amplitude at this point is determined by the trigger voltages, use is made of a duarganged potentiometer. The first side ($R V 2$ a) controls the frequency, and the second (RV2b) corrects the triangle amplitude; the peak input
current to the Schmitt trigger equals the current through R2, (a constant) and as RV2a should equal RV2b the peak current into IC1 d's virtual earth is constant, and therefore so is the output amplitude. As R2 $=$ R10 the square and triangle amplitudes are the same.

It is recommended that FET input op-amps are used because of their superior slew-rate; a poorslewrate would degrade the high frequency performance and cause the mark-space to alter the frequency.

Simple ZX80/81 Tape Mod.

S. Beet
 West Kirby

The recently published ZX80/81 tape mods are both simple and cheap, but I have used an even simpler, and completely free, modification for several months without any problems.

Most of the problems associated with saving programs on cassette, are due to mains-induced hum in the connecting leads. The ETI mods overcome this by increasing the signal level so that the mains hum becomes less significant However, by transferring the $1 \mathrm{k} \Omega$ resistor from across the output of the $\mathrm{ZX80/81}$ to the input of the tape recorder, the hum is still attenuated by a similar amount but, since the mains hum is

ORIGINAL SINCLAIR CONFIGURATION

REVISED ARRANGEMENT TO AVOID HUM PICKUP

much smaller than the 5 V logic level, the input signal-to-hum ratio becomes very large and reliable data transfer is much more likely.

Ideally the 47 n capacitor should also be removed, but its impedance
at 50 Hz is negligible so this is not usually necessary.

The resistor can either be placed inside the cassette recorder or in the plug at the cassette end of the lead.

Signal/ Peak Indicator

R.M. Bland Rugby

This circuit was designed as a cheaper version of the normal LED bargraph type VU meters and uses only two LEDs. The green one is a "signal present" indicator which starts to glow with an input signal of about -30 dBm and glows progressively brighter with increasing input signal. At around 0 dBm the red "peak" indicator switches on.

The input is AC coupled into 220 k ohms to avoid loading the signal source. The op-amp is any standard 741 type (non-latching),

and functionsasa half-wave rectifier with a gain of about 7 . The signal is then smoothed by C2. Q1 functions as a voltage controlled current sink
and controls the brightness of LED1. Q2 operates in the switching mode and switches on LED2 when its base reaches about 2 V .

CMOS
 Monostables

P. Harding
 Exeter

The circuits presented here are a further variation on the basic CMOS monostable design; the NOR type is reset by a positive pulse and, the NAND type by a negative pulse. Hence the reset pulse polarity matches that of the trigger pulse.

Circuit operation is simple. Taking the reset input of the NOR version high forces IC1 b^{\prime} 's output low, removing the feedback to IC1 a The original trigger signal must have

heen removed before the monostable can be reset. Operation of the NAND version is similar to that of the NOR type, but with reversed logic polarity.

With the values shown, the circuit has a period of about 6 s , although component tolerances (in

C1) will have a large effect on the actual period. Care must be taken when using high values of $R 2$ with an electrolytic for C 1 ; leakage currents may prevent the capacitor charging to the CMOS high threshold so that the monostable never times out.

Micropower 5 Volt Regulator

B. Hunter
 Dundee

The voltage regulator shown here was designed to supply a CMOS microprocessor data logger which had to run for several days from Ni Cad cells without recharging An ordinary low power voltage regulator such as a 78L05 consumes several milliamps and in a circuit with a very low quiescent current would contribute quite significantly to the battery drain. The regulator shown here requires a little over $100 \mu \mathrm{~A}$, giving a considerable saving in battery current. The common or garden low power regulator also requires an input voltage about 2 volts above the output voltage; the design given here will work with an input only 0.5 volts higher than the output voltage so fewer cells can be used to power the circuit

The 9491 is a bandgap voltage

reference which gives a very stable 1.22 V and can operate from a current as low as $50 \mu \mathrm{~A}$. This reference voltage is fed to the inverting input of a CMOS op-amp where it is compared with a fraction of the output voltage. The output of the op-amp drives the base of the BC477 and this transistor increases the output current of the amplifier.

If the output voltage starts to decrease due to increased load, then the fraction of $\mathrm{V}_{\text {out }}$ on the noninverting input of the op-amp decreases. This causes the output voltage of the op-amp to fall and
thus turn the PNP transistor on more to compensate for the increased load.

Pin 8 of the op-amp sets the quiescent current of the device to one of three values. If it is connected to $\mathrm{v}+$ then the quiescent current is $10 \mu \mathrm{~A}$, if connected to v - the quiescent current is 1 mA , and if connected to a voltage between $\mathrm{v}-+0.8 \mathrm{~V}$ and $\mathrm{v}+-0.8 \mathrm{~V}$, then the quiescent current is $100 \mu \mathrm{~A}$. Thus connecting pin 8 to the reference voltage gives a quiescent current of $100 \mu \mathrm{~A}$. The capacitor across the output prevents any oscillation of the circuit.

Using the component values given, the circuit performs as follows.

For Vout $=5.06$ volts:-
Vin minimum $=5.27$ volts with 10 mA load

Vin minimum $=5.57$ volts with 40 mA load

No load current $=112 \mu \mathrm{~A}$

Desoldering Tool Improvement

S.S. Norman
Sunbury-on-Thames

The following idea is a method of making de-soldering tool nozzles last forever.

If a neoprene sleeve (RS Components Part No. 399-729) is fitted over the nozzle as shown, with the sleeve protruding about an eighth of an inch over the end, it can be seen that the nozzle will never get hot enough to melt and eventually wear out. The sleeve also improves the efficiency of the tool by forming a
seal over the iron and joint to be desoldered, which results in more solder being removed in one operation.

When the end of the sleeve gets worn it can either be turned around or cut back, so a single sleeve can be used at least two or three times.

The price for one sleeve is about one hundredth of the cost of a new PTFE nozzle, thus the use of the sleeves can produce quite a saving where these tools are used frequently and in large numbers.

If it proves difficult getting the sleeve on, a tiny amount of sleeving lubricant (RS Part No. 544-077) can be used to ease it on.

Note: RS Components will only supply trade and professional customers. If you are unable to use them because of this and can find no other source of neoprene sleeving, Crewe-Allan \& Company of 51, Scrutton Street, London EC2 will order the RS parts you need for a small extra handling charge.

Reducing Relay
 Power Consumption

S.T. Jones
 Solihull

Most relays need much more current to 'pull-in' than to stay closed. For example, a six-volt relay may need 80 mA to pull-in but only 20 mA to stay closed, so the extra

60 mA is wasted current. In the circuit shown, current consumption is
reduced by limiting the current drawn to 20 mA with a suitable resistor. Normallythis would prevent the relay closing at switch-on, but capacitor $\mathrm{C1}$ charges to the supply voltage when the relay is off and discharges to provide a high current at switch-on. When the switching transistor turns on, this current pulse is sufficient to close the relay. D1 provides the usual back-EMF protection and can be almost any generat-purpose type. C1 is electrolytic and should be of 200 u or
more.

ADSR For Electronic Organ

C.A. Van Latum
Rotterdam

While constructing an organ based on the SGS-Ates M108 organ chip, I found the normally used ADSR circuits far too expensive to construct.

The ADSR-unit described below incorporates all the normal ADSR functions and is very cheap and simple. The whole circuit is based on one op-amp wired as a comparator.

The trigger outputs of the M108 are first inverted and buffered (not included in the circuit diagram as one inverter-buffer circuit can be used to trigger all ADSR-blocks). As a key is pressed TDS will become high for about 9 ms . The output of the comparator IC1 will turn high and capacitor C 1 will be charged ata rate determined by R4/RV2 (attack). When C1 has reached a voltage

$$
V=V \text { supply. } R 1 /(R 1+R 3)
$$

the comparator output will turn low. C1 will then be discharged via R5/ RV4 (decay) to a level determined by RV3 (sustain level).

All this assumes that the key is still pressed, so KPS is high. As the key is released KPS will turn low and C1 will discharge via R2/RV1 (release). As C1 must not be given the chance to discharge via the output op-amp a high input resistance device must be used, for example a TL081. Note that IC1 must not be an open-drain output op-amp.

As quad op-ampICscan be used, four independent ADSR units can be constructed with just two ICs. The connections to the control panel can be made very easily as only four wires are required per unit!

The necessary equations to calculate the component values are:

$$
\begin{aligned}
V_{\text {max out }} & =V_{\text {supply }} R 1 /(R 1+R 3) \\
& =x . V_{\text {supply }}
\end{aligned}
$$

Attack time $t_{a}=$ R.C. $\operatorname{Ln}(x)$
Sustain level $V_{S}=P . V_{\text {suppl }} / 20$
where $P=$ fraction of RV3
(0-10)
Decay time $t_{d}=2,3$. R.C. where R
is $R 5+R V 4+R_{p}$ (volt. divider res.)
Release time $t_{r}=2,3$. R.C
Voltage divider resistance R_{p} $=100$. P. $(20-\mathrm{P}) / 20$

The timing component values chosen give the following periods:-
$\mathrm{t}_{\mathrm{a}}=0,01$ to 2 Sec .
$\mathrm{t}_{\mathrm{d}}=0,01$ to 5 Sec .
$\mathrm{t}_{\mathrm{r}}=0,01$ to 7 Sec.
Note that the decay time varies with the sustain level but this was found to be quite acceptable.

Remote Noise
 Alarm

S. Huckstepp Colchester

This alarm allows a microphone to be placed at a great distance from the alarm and power supply circuitry yet includes a preamp at the microphone end to reduce noise pickup along the line and uses only two wires.

Q1 amplifies the voltage induced in the microphone while D1 provides a reference voltage 0.6 V less than the supply to overcome the transistor's base-emitter voltage drop. When the level of the amplified signal tapped off by RV1 exceeds the thyristor gate threshold, CSR1 conducts and increases the current consumed by this part of the circuit. C1 and R1 provide a

delay to prevent CSR1 triggering at switch-on.

The voltage at the bottom end of $R 6 / R V 2$ is usually less than 0.6 V
below the supply voltage, but when CSR1 conducts this is pulled down and Q2 conducts. RV2 is adjusted to ensure that Q2 saturates.

TTL Clock Delay

Phil Walker

Some circuits require non-overlapping clocks for their operation, notably the 6500 series microprocessors and certain audio delay lines. It is not always easy to obtain this type of waveform without special chips so this circuit was devised using TTL gates as delay devices. The original circuit was intended to reconstruct the φ_{1} and φ_{2} from a 6502 based micro when onlythe φ_{2} signal was available at the connectoŕ interface.

As shown the circuit will give a period of about 50 to 80 ns from the time one output goes to $0 V$ until the other goes to the high level. Omitting IC1 b and c will shorten the time while inserting the spare section of IC2 between IC1b and c will lengthen it The operation of the circuit is not dependent on the input clock frequency but the rise and fall times should be better than 10 ns if possible. If this is a problem, use the spare section of IC1 to sharpen the input signal (74LS14 preferred) and swap the designations of the outputs. This will add a gate delay to the reconstructed signals.

Automatic Car Alarm

G. Landry
Natal, S.A.

The problem with most car-burglar alarms is that one tends to forget to activate them. This little circuit does so automatically.

Upon switching the ignition off, Q1 turns off and C1 starts discharging through R2. This maintains the output level of the OR gate (D2, D3, R4) high. During this discharge period (set at two minutes by the values of R2 and C1) the driver can leave his car without setting the alarm off. However, after this period, the voltage across C2 is lower than the Schmitt NAND gate IC1a threshold. If an intruder opens a door, the OR gate goes low and the monostable around IC1a, IC1b is turned on. This in turn switches on Q2 which operates the relay for a period dependingon C 2 and $\mathrm{R6}$ (set for 1 minute).

Theonly waytodisablethe alarm is to operate the external switch (a

magnetic switch was used in the prototype). This causes the NAND latch around IC1 c and IC1 d to set, putting an earth on D4 which will reset the monostable. The car can now be entered without fear of sett-
ing the alarm off as the NAND latch will only reset when the ignition is turned on again. The circuit is protected against transients by D7, C3 and ZD1 and consumes about $20 \mu \mathrm{~A}$
when on standby.

' A ' Weighting Filter

B. Porter Kings Lynn

The ' A ' weighting is used to compensate for the unevenness in the average human hearing Human beings are, for the most part, much more sensitive to middle range frequencies than to either extremely low or extremely high frequencies.

This circuit will match the official ' A '-weighting curve very closely indeed and can be used in conjunction with an audio millivoltmeter to give an indication of the apparent loudness of a signal.

The resistor values given are for 1% types but if accuracy is not too

important you can use 5% types and select the nearest available value. If you do use 1% types you may find it necessary to do a little substitution. A 15 k and an 820 R in series will prove an acceptable substitute for the 15 k 8 , an 82 k and a 1 M 2 in
parallel can be used instead of the 76 k 8 , and a 330 k and a 4 M 7 in parallel can be substituted for the 309 k A 47 p capacitor and a 4 p7 in parallel will prove a sufficiently close approximation to the $51 p$ specified.

Ultra Low Cost Light-Pen

G. Parker London

This light-pen is intended for use with a ZX Spectrum and is the cheapest, simplest design you're ever likely to find: it does not even need an edge connector.

The unit (which can easily be housed inside an opaque biro case) is connected to the EAR socket and the +9 V line. The latter can be obtained by either soldering a wire to the 9 V socket inside the computer or adding an extra socket and plug to the power supply line.

The advantage of using the EAR socket is, aside from cutting out the expense of an edge-connector, that no address decoding or data isolating is needed. You can put pulses on the Ear socket and unless the computer is performing that particular IN command it will ignore them with no damage to the circuitry.

To see what state the pen is in, an IN84 command should be used.

Photo-transistor Q1 is a BC109, the top of which has been cut off with a pair of stout scissors. It has a high darkimpedance and in the dark transistor switch Q2 will be off and when PB1 is pushed no current will flow. In the light, the transistor Q2 will switch on, allowing a positive voltage to flow through PB1. The

amount of light required for switchon can be adjusted by RV1 to suit different colours on the screen.

Casio fx-180P Resistor Decoder

R. Hutchison West Kilbride

This program is designed to convert resistor colour codes to their correct numerical value. It works with both four and five band resistors, and, although designed for use with the $\mathrm{fx}-180 \mathrm{P}$, should be easily adaptable to suit most other programmable calculators.

The program listing is as shown in Table 1. In order to make the best use of this system, part of the keyboard has to be colour coded. The easiest way to do this is to make a colour template to fit around the $0-9, \sqrt{ }$, and $+/-$ keys. This is really quite straightforward if drawn out on 1 mm squared paper. Once you have got the template to fit correc-
tly, it is a good idea to sandwich it between two layers of clear Fablon. The colour coding for the template is given in table 2. A 2 mm wide coloured band around each key is very effective.

Use of the system is as follows. Firstly load the program into the machine, then fit the template. Enter the colours of the first two (or three) bands; press RUN: enter the colours of the third (or fourth) band; press RUN. The calculator will now display the value of the resistor in engineering notation, i.e. $10^{3}(\mathrm{k} \Omega)$; $10^{6}(\mathrm{M} \Omega)$; etc.
Examples: green-blue red-yellow: display shows 5.62^{06}, i.e. $5.62 \mathrm{M} \Omega$.
yellow-violet-gold: display shows 4.7^{00}, i.e. 4.7Ω.
Note that it is necessary to press both gold or silver coloured keys when a gold or silver band is encountered.

Table 1. Program Listing

Key	Colour
0	Black
1	Brown/Gold
2	Red/Silver
3	Orange
4	Yellow
5	Green
6	Blue
7	Violet
8	Grey
9	White
$+/-$	Gold/Silver
Note that the $\sqrt{ }$ key is included in the	
template even though it is not used in	
this program.	

Table 2. Template Colouring

AMPLIFICATION

Before buying elsewhere check out the features of CRIMSON quality:-

ALL OUR MODULES:-

- superior p.c.b., component identification, solder resist.
- non-potted so non-disposable if damaged.
- metal film resistors.
- negligible noise and distortions.

OUR BIPOLAR POWER AMP MODULES:-

- fuseless electronic shut-down with re-set facility.
- reverse polarity protection.
- high output current capability (>25 Amps on CE1704).
- 18 transistors, 7 diodes.

OUR MOSFET POWER MODULES:- (FE908, FE1704)

- reponse down to d.c.
- j-fet inputs.
- common source output for highest efficiency.

OUR CPR2 PREAMPLIFIER

- ultmate sound quality.
- 42 semiconductors and perfect symmetry topology.
- anti-thump circuitry.
- selected passive components.

Write or phone for details:CRIMBON ELEKTRIK STOKE, Phoenix Works, 500 King St., Longton,
stoke-on-Trent ST2 1 EZ.
Tel: 0782330520
or contact our agents:-
BRADLEY-MARSHALL, 325 Edgeware Road, London and (especially for demonstrations):-
WILMSLOW AUDIO,
35-39 Church St, Wilmstow, Cheshire.

NEW PRODUCT: FET3 POWER MODULE UP TO 450W. 900W BRIDGED MODE. 100V R.M.S. BRIDGE. $£ 74.50$

Examples from our range of built, tested and guaranteed modules.

Module	Power/Load	Price Inc. VAT \& Delivery
CE608	60W/8R	$£ 21.00$
CE1004	$100 W / 4 R$	$£ 24.50$
CE1008	$100 W / 8 R$	$£ 27.50$
CE1704	$170 W / 4 R$	$£ 35.00$
CE1708	$170 W / 8 R$	$£ 35.00$
FE908	$120 W / 8 R$	$£ 29.50$
FE1704	$240 W / 4 R$	$£ 52.00$
CE3004	300W/4R	$£ 49.00$
BO1	BRIDGER	$£ 8.20$
CPR2	PREAMP	$£ 47.95$

Interak 1

A METAL

 Z80A COMPUTERColleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals $£ 1-£ 5$.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your nameandaddress witha21pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T12E), 92 Chester Road, New Ferry, Wirral, Merseyside L62 5AG

Telephone: 051-645 3391

FREE CAREER BOOKLET
 Train for success, for a better job, better pay

Enjoy all the advantages of an ICS

 Diploma Course, training you ready for a new, higher paid, more exciting career.Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

TICK THE FREE BOOKLET YOU WANT AND POST TODAY

ELECTRONIC SIREN KIT

Produces an extremely loud piercing swept frequency tone from a $9-15 \mathrm{~V}$ supply．Enable put for easy connection to alarm Circuits． Includes 5 in ．Horn Speaker．

Mini Siren
As above，but with a small speaker（instead of horn speaker）for internal use．$\quad \mathbf{~} 4.30$

SECURITY PRODUCTS

Protect your home and property and save by building alarm system

Stair Mat 23×7 in（ 950120 ） Floor Mat 29×16 in（950 125） Tamper－proof connecting block （950 110）
Door／Window Contacts．Flush mounting， 4 Wire，Magnet／switch Per Pair．（950 140）
Nindow Tape $0.5^{\prime \prime}$ wide． 50 m
950 1451
Window Tape Terminations
er pair．（950 150 ）
ch． $1.5 \mathrm{~A} / 250 \mathrm{~V}$

式图㘳

Key－operated Switch．1．5A
SPST Heavy chrome metal SPST Hea
（350 128）
Passive Infra－Red Detector
Detects intruder＇s body heat．Range 10 metres $12 \mathrm{~V} D C$, n／o $\& \mathrm{n} / \mathrm{c}$ contact Size： $4 \times 2 \times 2$ ins．(950135) Alarm Control Unit． 4 input circuits． 2 － instant and 2 －delayed Adjustable entry． exit and alarm times．Built and tested．Full
instructions supplied．Size． $180 \times 130 \times$ instructions supplied．Size． $180 \times 130 \times$ 30 mm ．
（ 950 160）
£26．00 Ultrasonic Burglar Alarm．Self－contained mains or battery powered unit complete
with horn and $A C$ adaptor．
BW Horn Spear 55
8W Horn Speaker． 55 ins 8 ohm．Ideal for sirens，etc 25 m lead and 3 mm jack
plug．（403 148）
$\mathbf{f 6 . 1 5}$

IR GARAGE DOOR
 CONTROLLER KIT

For controlling motorised garage doors nd switching
garage and drive
lights on／off up to
a tange of 40 ft

Lots of appli

ontroling ligh
and TVs
etc，in the home．Ideal for aged or dis－ abled persons，this coded kit comprises of a mains－powered intra－red receiver with a normally open relay output plus two
latched transistor outputs，battery． powered transmitter and opto－isolated solid state mains switch

XK 103
XK105 Extra transmitters ¢25．00．

PANTEC KITS

TOP QUALITY BOTTOM PRICES！

For FREE CATALOGUE send $9^{\prime \prime} \times 6^{*}$ SAE－contains full list of stock range all at very competitive prices．Cash with order lexcept account customers）．Access or Barclaycard telephone orders welcome．Add $65 p$ p\＆p $+15 \%$ VAT to all UK orders．Overseas customers add $£ 2.50$ p\＆p Europe，£6．00 elsewhere．Giro No．529314002．Goods by return subject to availability．Shop open 9am－5pm（Mon－Fri）．10am－4pm Sat）．ALL PRICES EXCLUDE VAT

D vat

CHRISTMAS PRESENTS GALORE

 PACK（2）＊ $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors $10 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F} £ 3.25$ PACK（3） 60 Polyester Capacitors 0.01 to $1 \mu F / 250 V-5$ per value $£ 5.55$ PACK（4） 45 Sub－miniature Presets 100 ohm to 1 Mohm－ 5 per value $£ 2.90$ PACK（5） 30 Low Profile IC Sockets 8，14，and 16 pin－ 10 of each $£ 2.40$ ． PACK（6） 25 Red LEDs（ 5 mm dia．）£1．50

INFRA－RED REMOTE CONTROL KITS

MK 19 Stereo Amplifier Controller Kit or remote control of bass，treble and 10 decoder remote channel or input selection． May be connected between the pre－amp and power amp of almost any audio system．$\underset{£ 10.70}{ }$

These kits are designed to enable infra－ red remote control to be incorporated into virtually any application from switching Car locks or alarms to controlling Hi －Fi or TV．The application will determine the Interface circuitry between the receiver and the controlled device．General in－ The kits are coded and provide a high The kits are coded and provide a hig
dearee of security and noise immunity dearee of security and noise immunity， MK 1 1／MK 12 receivers．Requires PP3 bat－ tery．Size： $8 \times 2 \times 13 \mathrm{cms}$ ．Range approx 60 ft
Keyboards for MK 18
MK9 4－way for use with MK $12 \quad \mathrm{£} 1.90$ MK 10 16－way for use with MK $12 \quad \begin{aligned} & \mathbf{£ 5 . 4 0}\end{aligned}$ MK 1311 －way for use with MK $11 \quad \mathbf{£ 4 . 3 5}$ MK11 Receiver Kit－mains powered． Provides 10 latched plus 3 analogue out puts ideal for contralling audio amplifiers． TV or lighting where control of light brightness is required．$\quad \mathbf{1 1 3 . 5 0}$ MK 14 AC Power Controller Kit－fo
（phase）controlling AC loads from MK 1 analogue outputs，eg lamp dimming． $\mathbf{f 5 . 2 0}$

MICROPROCESSOR TIMER KIT

Designed to con－
trol 4 outputs trol 4 outputs independently switching on and off at preset times over a 7－day
cycle．LED dis－
play of time and day，easily programmed via 20 way kevboard．Ideal for central heating control including different witching times for weekends）Battery back－up circuit．Includes box
8 time settings．
CT6000K
XK114．Relay Kit for CT6000 includes PCB，connectors and relays． $3 \mathrm{~A} / 240 \mathrm{~V}$ clo contacts $\mathbf{£ 3 . 9 0}$
701115 Additional Relays
f1． 65

ELECTRONIC LOCK KIT

With hundreds of uses indoors，garages， car ant｜－theft devices，electronic equip ment．etc．Only the correct easily guires a $5-15 \mathrm{~V}$ DC supply．Output 50 mA ．Fits into standard electrical wall box．
Complete kit（except front panel）
$\mathbf{f 1 1 . 5 0}$
Electric Lock Mechanism for use with existing door locks and the above kit． 701150 relay．） 12 V AC／DC coil

HOME LIGHTING KITS
These kits are designed to replace a stan－ o control up to $300 w$ of lighting

TDR300K Remote Controlled Light Dimmer MK6 Transmitter for TD300K Touch Dimmer $£ 7.75$ TS300K Touch Switch $\quad \mathbf{~ 7 . 7 5}$ TDE／K 2 －way extension for above kits
Rotary controlled Light Dimmer
£3．95

DISCO LIGHTING KITS

DL1000K－This value－for－money 4－way haser features bi－directional sequence and dimming 1 kW per channel E15．95 version of the above Zost uni－directional reduce interference．$\quad \mathbf{8 8 . 9 5}$ optional opto input allowing audio＇beat＇ ght response（DLA／1）70p DL3000K－3－channel sound to light kit eatures zero voltage switching，auto matic level control and built－In micro ohone． 1 kW per channel． $\mathrm{f12.95}$

OTHER KITS

ELECTRONICS
 11－13 Boston Road
 London W7 3SJ

ENQUIRIES
01－5678910
01－579 9794
01－579 2842 TECHNICAL AFTER 3pm

MIND YOUR HEAD!

How many heads do you have? Are they laminated or solid? And how wide are the slits in them? Vivian Capel reveals all that you need to know about your tape heads (what else?)

While it is easy to understand the mechanical aspects of tape recording, and the electronic ones are quite straightforward, the operation of the heads and the various factors affecting them are generally less readily understood. In this article, we do not intend to go deeply into magnetic theory, but rather to explore some of the practical whys and wherefores, so that the recorder user will have at least a nodding acquaintance with the head and what it does.

Fig. 1 Magnetic recording head showing core, gap and coils.

Construction

The construction of a tape head is really quite simple, see Fig. 1. In essence it consists of a squared-off ring of magnetic material on which is wound one or two coils. One end of the ring is rounded and in the centre of this is a fine vertical slit or gap which is filled with a shim of nonmagnetic material.

In the case of a stereo head there are two ring-cores and sets of coils, one stacked above the other, separated by a magnetic shield to reduce cross-talk between them.

When a current is passed through the coils a magnetic field is set up through the core and across the gap; the two sides of the gap form the poles of an electromagnet, one north and the other south, depending on the direction of the current through the coils.

Most of the magnetic field passes through the gap via the shortest path, that is from one gap face to the other, but not all. There is also an external field which forms a roughly hemi-cylindrical pattern around the outside of the gap. It is through this external field that the tape passes.

As the tape travels across the gap it is magnetized in sympathy with the signal currents through the coils, and thus a series of magnetic zones are created along the tape track. The height of these (which is the width of the track) is the same as the height of the gap and so is fixed, but the width along the tape depends on the frequency
recorded: high frequencies produce narrow zones while low frequencies give rise to wide ones.

During playback, the magnetized zones passing back over the gap induce varying fluxes in the core which in turn generate corresponding EMFs in the coil windings; the recording process is the reverse, approximately.

Two Heads?

Obviously, the same head that made the recording can serve to play it back, and in the majority of recorders this is the practice. It would in fact seem that this was an ideal arrangement, as there thus can be no alignment or azimuth differences with the same head gap doing both jobs. Yet we find that in the more expensive machines two heads are provided (in addition to the erase head) one for record and the other for playback. Where space is limited as it is in the audio cassette recorder, the two heads may be mounted side-by-side in the same casing. If one head seems to do the job well enough in most machines, why go to the trouble of having two? Suspicious-minded individuals may wonder if this is just a ploy to hike the price and sell the goods, rather like those early" 10 -transistor" radios that had three of them soldered to the printboard doing nothing

In this case, there are several advantages in having separate record and playback heads. Firstly it makes AB monitoring possible, whereby you can switch from the source to the playback head whilst actually recording, and compare; any deficiencies in the recording can be immediately detected. However, some machines have separate heads but do not give the $A B$ monitoring facility, so there must be other reasons.

To appreciate the playback head, we need to take a closer look at it, and in particular, its gap. We have already mentioned that high recorded frequencies are represented by narrow magnetic zones. To read them accurately, we need a narrow gap that is less than half-awavelength of the highest recorded frequency wide.

To see why this is so, imagine a complete cycle of a high frequency recorded on the tape; it has two sections, the positive half cycle and the negative, which are represented by corresponding north and south pole regions along the tape. If the playback gap is a whole wavelength wide, as in Fig. $2 a$, both sections appear across the gap at the same time and the flux cancels, giving no output. The gap width then, is one of the main limiting factors to the highest frenquencies that can be replayed.

When the gap width equals halfa wavelength, output is at maximum, Fig. 2b. We can then calculate the theoretical upper limit for a particular gap width, or alternatively specify a maximum width to obtain a given

Fig. 2 When the playback gap is equal to a whole recorded wavelength, the fields of opposite half-cycles cancel and produce zerooutput (a). When the gap is equal to half a wavelength (b), output is at maximum.
upper limit The standard compact cassette tape speed is 1% inches per second, or 47,500 microns per second. Dividing that by any particular frequency will give its recorded wavelength in microns. So for 20 kHz , the wavelength on tape is 2.4 microns. Half of this is 1.2 microns which is therefore the maximum width for a gap which would be required to record up to 20 kHz .

Actually there are various losses which take place that affect the high frequencies more than the low. These cause a falt-off from around 4 kHz , but electronic equalization can boost the signal above that point so that a resonably level response is achieved toward the theoretical maximum. Boosting beyond the limit set by the gap width is useless because cancellation occurs and boosting nothing produces nothing - except noise.

A Wide Gap

One might, therefore, assume that a narrow gap in the region of 1.2 microns is necessary to obtain a good HF response from the record head too. Some surprise may be caused by the discovery that dedicated recordhead gaps are much wider, up to 10 microns in many cases. According to our above calculations, for a $10 \mathrm{mic}-$ ron gap the half-wavelength frequency is a mere 2.4 kHz . How does it manage to record wavelengths many times shorter than its width, and why is the gap made so wide?

Fig. 3 a shows the goings on at the head, but an anal ogy might help us to see how it is done. Supposing a long strip of material is required to be painted in alternate inch-wide black-and-white stripes. It is moved past a machine which has two spray guns filled respectively with quick-dry black and white paint, at a speed of one inch in two seconds. The machine fires the spray guns through a mask with an inch-wide slot alternativelyevery two seconds. Thus one stripe is just beyond the mask as the next one is sprayed.

Could half-inch stripes be obtained? Yes, by simply operating the guns every second. The first stripe is an inch wide, but it has only travelled halfway across the mask before the next one is sprayed. So it overlaps the first, and in the same way the third overlaps the second. The result is a series of half-inch stripes. Even narrower ones could be obtained by firing the guns more frequent!y, yet with the same 1 -inch mask.

In the recording head, for frequencies having a shorter wavelength than the gap, the flux partially erases what has gone before, leaving only that which has passed beyond the range of the gap; the trailing edge of the gap effectively' writes' the recording.

Actually, the audio signal is superimposed on a steady high-frequency bias signal which carries it over the nonlinear low-level portions of the magnetizing curve. The bias signal magnetizes the tape but is almost completely self-erased by succeeding half-cycles, leaving the superimposed audio. The bias frequency ideally should be has high as possible to avoid intermodulation distor-
tion with the high audio frequencies, but this raises problems in the head as we shall see later.

Why A Larger Gap?

As we have seen earlier, the external field from the record head gap extends in an approximately hemicylindrical configuration around it. The presence of the tape, being a magnetic material, modifies this somewhat. However, the distance that the field extends from the gap is proportional to the width of the gap, being roughly half that of the gap width.

With a narrow gap, there is only a small external field, hence a shallow penetration of the magnetic coating on the tape, Fig. 3b. On the other hand, a wide gap, Fig 3 c , produces a more extensive field and deeper penetration. Deeper penetration in turn means more of the coating is utilized and gives a better signal-to-noise ratio and a higher magnetic saturation point. Hence, by employing two heads, the optimum gap can be used for each, a narrow one in the playback head to obtain maximum HF response, and a wider one for the record head to achieve deep penetration and utilization of the tape coating,

This, incidentally, explains a phenomenon which has puzzled some recorder users. Dirty heads prevent intimate contact between head-face and tape, and have a similar effect to widening the gap. Tapes replayed suffer from a loss of high frequencies, and with really dirty heads, sound badly muffled. If a recording has been inadvertently made with a dirty head and subsequently played back it might be thought to have been hopelessly ruined. Not necessarily so: after cleaning the head and re-playing it is often found to be not as bad as feared. While the signal level is lower and noise higher than normal, the HF response is reasonable, and the recording may be passable.

If then you have gone to a lot of trouble to record a computer programme and then find it turns out more SIC than BASIC because of a dirty head, try cleaning and reloading before giving up! Better still, make sure the head is clean beforeheand!

Fig. 3 A wide gap in a recording head can record short wavelength signals by overlapping and partially erasing the previous half-cycles. External gap from the field is roughly hemicylindrical (semi-circular when viewed from the top) and the depth of the field in the tape is roughly half the gap width (the gap is the diameter of the circle and the depth the radius) A narrower gap (b) leads to a smaller depth than a wider gap (c).

Perpendicular Or Horizontal?

When recording medium to low frequencies, the recorded wavelength is long in comparison with the field depth and the resulting internal field produced in the tape-coating is mainly longitudinal, that is, it lies along

Fig. 4 Conventional recording heads produce longitudinal magnetic zones in the tape coating, with NS, SN, NS polarity, (a). Perpendicular recording in which the tape passes between the recording poles gives a greater packing density, and $\mathrm{N}, \mathrm{S}, \mathrm{N}, \mathrm{S}$ adjacent pole polarity.
the tape in the direction of travel, Fig. 4 a. Only at theends of each zone does the flux have a vertical component and become perpendicular to the tape surface.

To achieve a strong field in the longitudinal direction, the active magnetic particles in the coating are not of random shape like gravel chips, but acicular (needleshaped). When the coating is applied during manufacture, it is passed through a powerful magnetic field before it dries to align all or most of the needles along the length of the tape.

At present, much research is being conducted in various fields to pack as much information as possible in the smallest space. Video and digital audio systems demand high information packing densities so stimulating the search. Attention has turned to making the recording field principally perpendicular, Fig 4 b. Just as you can get more people in a high-rise block of flats than in bungalows of the same ground area, more information could be stored by perpendicular fields.

This would mean orientating the needle particles so that they would all be standing on end. Though not impossible it would pose problems for the tape makers. The recording field would be applied by passing it through rather than across the tape, which would mean the tape travelling through the gap. One way of doing this would be to construct a head having a very fine magnetic pole-piece surrounded by non-magnetic material, with a permalloy plate behind the tape to complete the magnetic circuit.

The magnetic zones thus created would alternate NSNS and resemble a collection of bar magnets arrayed side by side with opposite poles adjacent. This is much less prone to self de-magnetization than the present system whereby the zones NSSNNS are equivalent to bar magnets assembled end-to-end with similar poles adjacent.

Information packing densities closer than the wavelength of visible light are possible, which makes feasible many applications that could not be seriously considered with the present technology. Linear video recordings may be possible, thus eliminating the mechanical complexity of rotating head-drums and helical scan.

Bias

So we maysee radical changes in tape-head design in the future. Butnowback to the present, and in particular, tape bias. We have already alluded to HF bias, but why is it necessary and what exactly is its effect?

When any magnetizable material is magnetized, the process does not proceed at first in a linear manner; in fact the plot of magnetism against magnetizing force is quite curved. After this initial non-linearity though, the plot straightens and the characteristic becomes linear. The effect is similar to the operating curves of valves and transistors but with one exception, the magnetic curve has a negative component. The material can just as well
be magnetized in the opposite direction, whereas of course you cannot reverse the current through a transistor.

A typical curve is shown as part of Fig 5 a; the negative section is identical but opposite to the positive section. One point to note is that this is the curve for an (initially) unmagnetized piece of tape; if the tape were magnetized, the magnetic field would, obviously, not be zero when the magnetizing force was zero, and we'd have a completely different curve; this sort of situation is dealt with in detail by text-books on electricity and magnetism.

If we applied a signal to the recording head in the form of sine wave, the resulting magnetization (and hence the resulting signal on replay) would be grossly distorted, due to the non-linear central portion of the characteristic, Fig 5 a . The simplest solution is to appplya DC bias current to the record head in addition to the AC signal, so that the AC signal sits entirely with the relatively linear section of the curve, as shown in Fig. 5b.

This works well enough in practice, but it is wasteful of the tape's recording potential. With the negative portion unused, the maximum recordable signal is less than

$\xrightarrow[\text { COERCIVE FORCE }]{ }$

Fig. 5 Initial magnetizing characteristic of recording tape. (a) A sine wave signal recording over the curved lower portions of negative and positive characteristic, resulting in distortion and low volume. (b) DC bias lifts the operating point to the middle of upper striaght portion giving linear output but limited amplitude. (c) AC high-frequency bias bridges the curved nonlinear portions so presenting the superimposed audio to both straight sections. The result is a linear, large amplitude recorded signal.
half what it could be if both portions were used and the signal-to-noise ratio is also less than half what it would be. For this reason, DC bias is used only on cheap cassette recorders.

AC bias is used in all the better and hi-fi recorders, and it does make use of the whole magnetisation curve. The audio signal is added to a high-frequency (several times the maximum audio frequency, and typically $30-$ 100 kHz) sine wave, to give the effect shown in Fig 5 c (note that this is not amplitude modulation, and Fig. 6 shows the difference!)

When this composite signal is applied to the tape, distortion occurs where the composite signal traverses the non-linear parts of the curve. But the distortion is only of the lower portions of the HF bias; the audio which is riding on the crest of the bias waves is unaffected. The upper and lower portions of the composite wave affect the positive and negative parts of the characteristic, producing complementary audio signals. These add to produce the final recorded audio signal of large amplitude.

What happens to the bias signal? It has been said that it is not recorded because the frequency is too high. Well, it is recorded on the tape, otherwise it could have no effect on the tape's magnetization curve; the bias frequency is recorded by the ' paint stripe' effect already described for high-frequency audio.

However, it does not remain on the tape for more than a few microseconds. This is due to self-erasure. A magnetic field does not have hard and fast boundaries; it diminishes rapidly beyond the main field, but it does exist outside it. Hence the field from the gap extends along the tape for a very short distance; so even though the tape has passed it, it is still within a quickly diminishing field.

Now this has little or no effect on long wavelengths because most of the recorded half-cycle has passed well beyond the reach of the field before the next and opposite half cycle starts to build up. With very short wavelength is not so; the field from the gap at one half-cycles extends sufficiently to erase the preceding one, and as the tape proceeds away, the diminishing field zeros out, until there is nothing left.

We end up with nothing on the tape except the audio signal. This effect accounts for another phenomenon. Self erasure can also occur with high audio frequencies, although to a lesser extent than with the bias. At the high signal levels, the stray field is stronger and so erases furtheralong the tape, affecting longer wavelengths than with low signals. Hence the high frequency response taken at 0 VU on the recording level meter is always poorer than when taken at a lower level.

Fig 6 The difference between a superimposed signal (a) and a modulated one (b). With the superimposed signal, the amplitude of the high-frequency component remains unaffected, hence it is not modulated.

Fig. 7 Relationship between distortion and frequency response with a change of bias level. Optimumpoint for minimum distortion also produces a drop of 3 dB in the 10 kHz signal level (for one brand of C120; tapes vary in amount of distortion and HF loss).

Another associated effect is that too high a bias level curtails the audio high-frequency response. This is a rather unfortunate effect because there is an optimum bias level at which the distortion is at a minimum, and going either higher or lower will increase distortion. Unfortunately this optimum level for distortion is too high for maximum HF response, as self-erasure by the bias signal will have begun to make inroads into the higher audio frequencies.

Śo, bias can be set for either maximum HF response or minimum distortion, but the two settings do not coincide, see Fig 7. Usually a compromise setting is chosen someway between the two. Each make of tape has its own bias requirements so a tape that performs well on one machine may not give of its best on another which has a different bias setting Understandably, makers tend to set the bias for best results on their own make of tapes, if they also manufacture tape. If desired, bias can be re-set using suitable test equipment, to optimise for a particular brand of tape.

Head Materials

Various head materials are currently being used by the manufacturers and are often specified in their brochures. What are the characteristics of these materials and which, if any, is the best?

The standard material used in the majority of ordinary cassette recorders and many hi-fi decks is Permalloy which is an alloy of about 78% nickel and iron with a small proportion of molybdenum. It accepts a high flux density without saturating which means that it will take high recording levels without distortion. It also has a high permeability, which gives a good flux at the tape.

Unfortunately, the permeability drops as frequency increases so that at 10 kHz it is between a fifth and a tenth of its value at 1 kHz Hence, the head response falls with increasing frequency, with poor results at the upper end of the range. As self-erasure and other losses affect the high frequencies too, this characteristic is particularly unwelcome.

Another problem is caused by eddy currents. When an electrical conductor is situated in a changing
magnetic field, currents are induced in it. So the flux produced by the signal currents in the coil when recording, or by the tape during playback, produce currents within the core itself, because Permalloy is a good conductor. These eddy currents give rise to heat and therefore losses; furthermore, they increase as the frequency rises. So here is another factorthat impairs the high-frequency response. In particular, such losses set a limit on the highest frequency that can be used for the bias. A high bias frequency reduces the possibility of intermodulation distortion, but this advantage cannot be realised with Permalloy heads.

To reduce eddy currents, Permalloy cores are assembled as a stack of laminates, similar to an ironcored transformer. Unfortunately this brings another snag it is almost impossible to assemble a stack of laminates so that the sides are perfectly in line; they may appear so to the naked eye, but through a microscope, they can be seen to be staggered to varying degrees. This matters little around the periphery of the core, but it does at the gap, where, owing to the small size of the gap itself, any staggering can increase the effective gap width (Fig. 8) which is especially detrimental in the case of the playback head where a narrow gap is essential.

A further drawback with Permalloy is its softness. It rates 130-140 on the Vickers hardness scale and wears rapidly compared to other materials, in the order of 120 microns per thousand hours, and 1,000-2,000 hours is about the average life before performance deterioration dictates a replacement. The non-magnetic shim which fills the head gap and thus prevents it becoming clogged with magnetic material shed from the tape, is chosen to have similar rate of wear as the core material. For Permalloy it usually is beryllium copper foil.

Fig. 8 Laminated stack with imperfect alignment. Effective gap width is increased. With widths of little more than one micron, small irregularities matter.

So as to avoid the various disadvantages of Permalloy, sintered-ferrite was developed as a head material. This is a combination of various oxides, mainly iron oxide, zinc oxide, manganese oxide, and nickel oxide, in fine grain form with a ceramic filler and binder.

At first glance the material seems inferior to Permalloy, it permits about half the maximum flux density, and has only around a tenth of its permeability. However, the permeability is less dependent on frequency, being three-quarters at 10 kHz of its 1 kHz value. It has a comparatively high electrical resistance which means minimal eddy currents, so the HF response is well maintained and the bias frequency can be high, reducing distortion levels. Absence of eddy currents means that the core can be solid instead of laminated, making it easier to make an accurate gap. Finally, a major advantage is the hardness, which at 400 on the Vickers scale, is three times harder than Permalloy.

There are, however, a number of disadvantages. As already noted, the permeability is much lower as is the
maximum flux density. Also, the material is brittle and liable to chip. Tiny air bubbles can sometimes be found in it, which could result in cavities in the face when it is machined into shape. Residual magnetism tends to be higher, requiring a larger coercive force to overcome it which can result in a higher noise level.

These and other disadvantages have led to the search for a method of improving the characteristics of ferrite, and the development of HPF (hot-pressed ferrite). As its name implies, this is produced by compressing ferrite at high temperature during manufacture, pressures of $7,000 \mathrm{lb}$ per square inch at $1,400^{\circ} \mathrm{C}$ being typical.

The permeability of HPF is not only better than ferrite but greater even than Permalloy, while the permeability consistency with frequency is as good as sintered-ferrite. Residual magnetism too is far better, being less than ferrite and Permalloy. Maximum flux density though is the same as ordinary ferrite which is less than Permalloy.

As regards hardness, HPF scores again being even harder than ferrite at 650-700 on the Vickers scale, making it five times harder than Permalloy. To give comparable hardness, the gap filler is usually made of hard glass. One manufacturer claims a wear factor of 0.4 micron per 1,000 hours which is very good indeed. HPF heads are also used in video recorders, but they have a much shorter life there because of the high head-to-tape speed. A life of $1,000-2,000$ hours is the normal expectation.

No bubbles can remain in HPF heads so the possibility of unexpected cavities is eliminated. Like ordinary ferrite it can take a high polish and so ensure intimate tape/head contact with minimum drag.

It might seem that HPF has nearly everything going for it but there is a major problem - metal tape. This needs a much higher flux density both to record and erase, and as we have seen ferrites are inferior to Permalloy in this one respect.

So the search continues for the ideal tape-head material and various substances have been tried. One of these is Sendust, which has the sensitivity of Permalloy and the hardness of ferrite. The snag is low electrical resistance though, leading to eddy currents. This has been overcome by making it in ribbon form by blasting it through rollers when hot, then rapidly cooling Laminates are made from the ribbon, so we are back to laminated stacks and their problems of staggered gaps.

However, as the high permeability is most needed during recording on metal tape, and as recording-head gaps are wider than playback ones, gap accuracy is less of a problem. Laminated Sendust can be used for the record-head while a solid HPF head can be used for playback

Constituents	Permalloy Ni	Ferrite MnO	HPF MnO
		$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3} \\ & \mathrm{ZnO}^{3} \end{aligned}$	$\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3} \\ & \mathrm{ZnO}^{3} \end{aligned}$
		NiO	NiO
Permeability: 1 kHz			
10 kHz	18000	1200	20000
Max Flux Density	1500	900	10000
(gauss)	7000	4000	4000
Coercive Force (oersteds)	0.02	0.5	0.015
Specific Resistance (ohm.cm)	$5^{\text {n/ }} 10^{-5}$	>100	>100
Vickers Hardness	135	400°	700

Azimuth

Correct positioning of the head or heads is essential. Firstly, the height must be such that the tape is in a perfectly straight line across the head assembly. If one head is out of line, the tape-guide on the side of the head will pull the tape up or down at that point, resulting in damage to the tape edge or a weaving motion producing regular variations of signal level and HF response.

Next, the head must be vertical from front-to-back. A backward lean, for example, results in imperfect contact between the top half of the tape and the head, increasing the likelihood of drop-outs.

Finally, the azimuth or side-to-side angle must also be vertical. Theoretically, the azimuth doesn't matter as long as the playback setting is the same as the recording. This is obviously the case with single-head machines when tapes recorded on the same machine are played back. However, problems occur when tapes recorded on other machines are played back on the faulty machine (or tapes recorded on the faulty machine are played on others) and also with pre recorded tapes.

The reason is that a slanted record head produces corresponding slanted magnetic zones on the tape. A vertical playback azimuth will bridge across the narrow slanted zones, as a slanted head will bridge across vertical zones (see Fig. 9 a). In both cases, the effect is that of increasing the head gap width. As it is only the narrow zones that are so affected, the result is a loss of shortwavelength high frequencies, the loss increasing with increasing angle difference.

This effect is quite well known, but there is another which is less commonly appreciated. When a stereo head is incorrectly set the two playback gaps are not exactly one above the other. The top one will be slightly in advance or behind the bottom as the tape runs past, hence one channel is delayed.

The delay is too small to be noticeable as such, but it will result in phase-differences in the high and higher mid frequencies, which will lead to poor stereo image. Also, switching to 'mono' and combining the two stereo channels into one can lead to a severly curtailed highfrequency response - this can happen even when the stereo doesn't sound too bad! So, if a recorder gives poor stereo image from pre-recorded tapes but a good image with tapes recorded on it, then the likely cause is the playback head azimuth setting.

Fig. 9 When azimuth is not vertical, gap bridges across short wavelength zones, increasing its effective width and thus losing the high frequencies, (a). With a stereo head, (b), incorrect azimuth produces a delay between channels which can impare stereo image by upsetting the phase relationships. Azimuth errors shown here are exaggerated for the purpose of illustration.

To conclude, although the heads in your recorder are quite simple devices, there is rather more involved than you may think We will undoubtedly see further developments as times goes on.

UK'S NO. 1 FOR ELECTRONICS ALL PRICES INCLUDE VAT

STEREO RADIO TUNER
Ready buitit Mw-Lw Stereo FM By well known
Hi-Fi manulacture Hi-Fi manulaturer
Approx. $6 / 2 \times 3 / 2$ With Oata $£ 4.95$ posi 65 p

CASSETTE

 MECHANISMSFitted counter. Mator. Ster record and brase heads
Solenoid. eic. Brand new avalable 6V DC or 12 V DC |state which $\mathbf{5 5 5 . 9 5}$ (UK C/P 65

THERMAL

 PRINTERCOMPLETE WITH FULL HANOBOOK
3 ROLLS PAPER
$\mathbf{£ 4 9 . 9 5}{ }_{\text {UKK } \mathrm{C} / \mathrm{P} £ 1.05}$
SUITABLE FOR TANDY BBC ORIC NASCOM GEMHI ACORN DRAGON ETC. ETC. linterlace unit with leads f15-state mantell lvour enauiries invitedl.
NICADS/DEACS
Rechargeable packs
EVERREADY B. 4 Volt HEAVY DUTY NICAD approx. 3/4 Diam $\times 3^{1 / 4}$ with magnetic
switch
$\mathbf{5 5 . 9 5}$
post 55 p

OEACS [UK DOAS 50pl

24 Volt 225 mAH	$£ 3.95$
~ 6 Volt 90 mAH	$£ 1.25$
3.6 Volt 225 mAH	$£ 1.50$

COMPUTER POWER SUPPLIES
Large range in stock - many at very low prices.
RECHARGEABLE BATTERIES \& CHARGER Charger takes any 4 'AA 'C' or 'I' ceils plus PP3 type. With Iree malns plug $\mathbf{£ 6 . 5 0}$ (UK C/P 8 ins 65 p)
$4 \times \cdot$ AA' (HP7 size) rechargeatise ceils $\mathbf{£ 3 . 5 0}$ (UK C/P 30p)

COMPUTER FANS
IUK C/P 60p each. £1.00 per palrl

43/4"220/230V AC Brand new
$3 / 4 / 41 \% / 4115 \mathrm{VAC}$ Brand new 43/4/220/24DV AC Ex-unlts

MARRIOTT TAPE HEADS
|UK post 50 p per 1 to $4 \mid$ XRP836 Low imp.
$\times R P 818$ Mad imp XhPs 18 Mod imp.
XES 11 Erase for above XES11 Erase
$1 / 2$ TRACK BX RP03 R/P Erata lor above
CASsETTE HEADS
Stareo: 2 2.:3 Mono 21
TOROIDAL TRANSFORMER 100 writs lsolatlon $230 / 240$ V AC plus 8-0.8V 4A 15-0.-15V 9.845A (UK C/P 75p) $\mathbf{5 7 . 9 5}$

UHF MODULATORS UUKC/P40|

 Video input RF outputa casad lor computers atc. Astec UN1 1233 ITT veration 23.50ORDER BY POST OR TELEPHONE OPEN 6 DAYS A WEEK

HARD DISK DRIVES

Fult iot

DEC AKOS, NOVA, TEXAS compatible

front load, TEXAS compatible. 25 Mb disk drives Exchangeable sland or rack mount esse.e. Exchangeabe type (via lid eremoval) E8is.e
me302 PSU unit for 2 drives
DIABLO/DRE 44-4000NB $5+5$ ex stock from
1000's of spares for $\$ 30,4000,3200$, HAWK ex stock. Canser reparaits or quotationg senvice.
 OVER 100,000 TTEMS INCLUDING: Intel D8085AH-2 $\mathbf{£ 2 5 . 0 0}$ D8271 $\mathbf{£ 6 5 . 0 0}$ D8202 D8257-5 825503002
2732 EPROM SPECIAL fully guaranteed

HOT CINE DATA BASE

THE ORIGINAL FREE OF CHARGE dial up data bas 1000's of stock items and one oft bargains. word, no parity. 01 -6791888

STILL IN STOCK

FP1 500 Heavy Duty 25 cps daisy whee RS232 interface, bi directional printers Brand New at E499.00

COMPUKER 'CAB'

All in one quality computer
cabinet with integral switched
mode PSU. Mains tiltering, and iwin fan cooling. Originally made for the famous DEC PDPe computer system costing thousands of pounds. Made to run 24 hours per day the PSU is tully screened and will deliver massive $+5 v D C$ at 17 amps, $+15 v D C$ at 1 amp and -15 OC at 5 amps. The complete unit is fully enclosed with EDs mounted on Ali front panel, rear cable entries, etc etc. Units are in good but used concition - supplied for $40 v$ operation complete with full circuit and tech. man Give your system that professional finish for onty £4995 + Carr Dim 19" wide 16" deep $105^{\prime \prime}$ high. Useable area $16 " w 10.5 " h 11.5 " d$.
Also available LESS Also available LESS PSU, with FANS etc. Internal dim

cooling fans

 Miniature 240 y equfinger puard 50.05. finger quard E9. 85. very quiet running 240 v operation. NEW E6 EUHLER 69.11.22. 8-16 VOC micro miniature reversible fan Uses a brushles servo motor for extremely high air flow.
almost silent running and guaramteed 10,00 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$. Curr ant cosi $£ 32.00$. OUN PN
E12.95 complete with dete. MUFFIN-CENTAUR standeri $4^{\prime \prime} \times 4^{\prime \prime} \times 15^{\prime \prime}$ tan supplied tested EX EQUIPMENT $240 \vee$ at
C6.25 or 110 v at E 4.95 or BRANO NEW $240 \vee$ E6.25 or 110 v at E 4.95 or BRAND NEW 2
(I 110.50 .1000 of other fans Ex Stock
Call for Details. Post 8 Packing on all fans DUAL 8" DISK DRIVES Current, quality, professional product of a major computer company, comprising
2×40 track MPI or Shugart FULLYBBC COMPATIBLE single sided drives in a compact. attractively styled, grey ABS structured case with internal switched
mode PSU. The PSU was intended to both drives and an intelligent $Z 80$ controlle with over 70 ic's. The controller has been removed leaving ample space and current on the $+,-5,+12$ and -12 supply for all your future expansion requirements. Supplied tested with 90 day guarantee in
BRAND NEW condition with BRAND NEW condition with cable for 8B micro. Ex Stock at only 259.00

+ £10.00 carr. Limited Quantity

GE TERMIPRINTER

A massive purchase of these desk top printer terminais enables us to offer yo

 These quality 30 cps printers at a 8 UPERLOW PRICE agatnst their LOW PRICE against their original cost of over £ 1000 . Unit comprises ol full OWERTY
electronic keyboard and printer mech with electronic keyioard and printer mech with
print face similar to correspondence quality typewriter. Variable forms tractor unit enables full width - up to 13.5 " 120 column peper, upper - lower case, standard RS232 serial interface, internal vertical and adjustable baud rates, quiet operation plus many other features. Supplied complete with manual. Guaranteed working EISO. 0 or untested Ess.en, optional floor stand E12.50
Carr 8 ins $\Sigma 1000$ Cartains eio.o.
DATA MODEMS
Join the communications revolution with our
range of EX TELECOM data modems. Made to range of EX TELECOM data modems. Made to
most stringent spec and designed to operate most siringent spec and designed to the
tor 24 hrs per day Units are made to a 25 way 0 . skl mits are sold in evels via and working condition with data Permission may be required for connection to PO lines MODEM 20-1 Compact unt to MICRONET, PRESTEL OI TELECOM GOLD ete 2 wire uirect connect 75 baud transmit
1200 baud receive Data w/o via RS2 32 ' ${ }^{\prime \prime}$ Socket Guaranteed working with data $£ 99.95$
MODEM $20-2$ same as $20-1$ but 75 baud receive 1200 baud :ransmit \&/30.00 TRANSDATA 307A 300 baud acoustic coupler RS232 \% O £95.00 brand new.CE NEW DSL2123 Multi Standard modem selectable V21 300-300 bps, V2375-1200, V23 $1200-75$ full duplex or $1200-1200$ half duplex modes Full auto answer via modem or
CPU . LED status indicatora CA CPO. LED status indicators. CALL OR ANS 202. Housed in ABS case tize only $25^{n} \times 8$ $\times 9$. $£ 286.00+$ VAT
For further der
For further date or details on other EX STOCK $)^{\text {modeme contact sales office. }}$

- 300 baud full duplex
- Full remote control
- CCITT tone standards - Modular construction - Direct isolated connection real snip. applications guide. $10 \mathrm{kls} \mathrm{E} 10.25+\mathrm{pp} £ 2.25$

SUPER PRINTER SCOOP BRANEW CENTRONICS 739-2

The "Do Everything Printer" at a price that witl
NEVER be repeated. Standard CENTRONICs NEVER be repeated. Standard CENTRONICS
perallol interface for direct connection to EPC Onic, DRAGONACe for direct connection to Bupert print quality with fuil Cक
HIGH DEFINITION internal PROPORTIO MODE tor WORD PROCESAOR applications. 80-132 columns, single shee! sprocket or roll paper handling plus
much more. Available ONLY from DISPL AY ELECTROMiCS
 full manual etc. Limited quantity-Humy while stocks lapt. Options Interface cable (specity tor BBC, ORTG, DRAGON or CENTRONICS 36 way plo $£ .12 .50$. Spare, OABG,
E3.50 each BBC graphics screen dump utily

SPECIAL 300 BAUD MODEM OFFER Another GIGANTIC purchase of these EX BRITISH TELECOM, BRAND NEW or little used 28 data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data
communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data base, business or hobby communications. All this and more!!

INALe CALL, ANSWER and AUTO modes Ww ame Standard RS232 serial intentac WOW OMLY \leq Built in test switching $\underbrace{E 29.95}$ - 240 v Mains operation - Just 2 wires to comms. line

Order now - while stocks last. Carriage and Ins. £10.00

8" I9MB WINCHESTER DISK DRIVE

Made in the UK by a subsidiary of the World's largest disk drive manufacturer. This BRAND NEW "end of line" unit offers an outstanding opportunity to add MASSIVE 19 mb of storage to your computer system. Superbly constructed on a heavy die cast chassis the DRE 3100 utilises $3 \times 8^{\prime \prime}$ plattens in a dust ree cavity. All drive functions are controlled by microprocessor electronics using an INTEL 8035 cpu and TTL support logic. Data to the outside world is ia two comprehensive 8 bit TTL level bi directional data busses with full sfatu eporting for ease of interfacing. Many features such as Av. seek time 35 ms , 512 bytes per sector, $+24,-24$ and $+5 v$ DC supply, plug in card system, and compact size of approx. $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} W$ and 42 cm D etc, etc, make this item

Units are BRAND NEW and BOXED and sold at a FRACTION of original cost - hence unguaranteed. Complete with 150 page manual, circuits and

ONLY £225.00 Carriage f 10.00 Suitable power supoply yit - sold oNLr with divive 839.95 .

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase al brand new surplus allows a great OWERTY, fult travel ALPHAMERIC ofier at fractions of their onginal cosis. control key parallel TTL output ptus strobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC \&JEs. 90 .
DEC LA34 Uncoded keyboard with 67 quality, GOLD, normally open switches on

66\% DISCOUNT
 ELECTRONIC EQUIPMENT

Due to our massive buik purchasing progam min enabes us tot tring vou the best possible bargans, we have thousands un i. s , Transistors. Relays. Cap S. P. C 3. s . Subb-assembles. one tem to nclucte in our ads. we are packing all these inems into the BARCAIN PACKEL OF at least 3 , theusanas or componentis at giveaway prices'
2.5 kls $£ 4.25+p p £ 1.25 \quad 5 \mathrm{kls} £ 5.90+£ 1.80$ שC$20 \mathrm{kls} \mathrm{E} 17.50+£ 4.75$

BUDGET RANGE

VIDEO MONIITORS

At a price YOU can afford, our rang EOUIPMENT video monitors defy

 competition!! All are for 240 v working with standard composite video input. Units are pre tested and set for up to 80 col use onBBC micro. Even where MINOR screen burns MAY exist - normal data displays a unaffected.
9" HITACHI
1000's sOLD TO DATE $21 \mathrm{cmH} \times 21$ very compact fully ca
$\mathrm{cm} W \times 22 \mathrm{~cm}$ D. Black white screen

Eand 95 12" KGM 320-321, high bandwidth input, Housed in attractive fully enclosed brushed alloy case, B/W only $\mathbf{8 3 2 . 9 5}$ GREEN screen E39.95
24" KGM large screen black \& white monitor fully enclosed in light alloy case Ideal schools ${ }^{\text {sh }}$
oney
S5.0
14" BRAND NEW Novex COLOUR type NC1414-CL. Many exacting features suc as RGB TLL and composite video input, audio amp. Even finished in BBC micro matching colours. Fully guaranteed (n) x \%

Carriage and ins on ALL videos $£ 10.00$

SEAICONDUCTOR
 Mixed Semis

include transistors, digital, linear, IC's triacs diodes. bridge recs., etc. etc. All devices facturer's markings, fully guaranteed $50+$ EI. ©s $100+85.15$.
TLL 74 Series A gigantic purchase of an across the board" range of 74 TL series cs enables us to offer $100+$ mixed mostly TL" grab bags at a price which two or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C's full

4x meors
 dEC CORNER

BA11-MB 3.5" Box, PSU, LTC DH11-AD 1 DLVITace $4 \times$ EIA intertace DUP11 $\quad £ 310.00$ DUP11 Sych. Serial data i/O $\quad \mathbf{E 6 5 0 . 0 0}$ DZ11-8 8 line RS232 mux board $£ 850.00$ LA36 Decwriter EIA or 20 ma toop £270.00 and buffer option
$\mathbf{~} 130.00$ LAX34-AL LA34 tractor feed $\quad \mathbf{8 5 5 . 0 0}$ MS11-JP Unibus 32 kb Ram $\quad \mathbf{8 0 0 . 0 0}$ $\begin{array}{lr}\text { MS11-LB Unibus } 128 \mathrm{~kb} \text { Ram } & \mathbf{E 8 5 0 . 0 0} \\ \text { E850.00 }\end{array}$ $\begin{array}{ll}\text { MS11-LD Unibus } 256 \mathrm{~kb} \text { Ram } & \text { E850.00 } \\ \text { M850.00 }\end{array}$ MSC4804 Qbus (Equiv MSVI1-L) 256 kb
$£ 499.00$
PDP1 1/05 Cpu, Ram, i/o, etc. $\quad \mathbf{E 4 5 0 . 0 0}$ PDP11/40 Cpu, 124 k MMU E1850.00 RT11 ver. 38 documentation kit $\quad £ 70.00$ RKO5-J 2.5 Mb disk drives $\quad \mathbf{E 6 5 0 . 0 0}$ KL8JA PDP 8 async i/o MT50 VDP 8 Bootstrap option current loop Keyboard$£ 175.00$
$£ 75.00$
current loop $£ 175.00$
1000's of EX STOCK spares for DEC PDP8, PDPBA, PDP1 1 systems \& peripherals. Call for details. All types of Compuler equipment and spares wanted

SPECTRUM CENTRONICS interface

It may seem boring to keep publishing Centronics Interfaces (although we assume that the users of the relevant computers will be quite interested!); however, they all use different methods - this one uses a PIO. Design by Mark Purcell.

0ne of the main reasons for buying a printer is to complete a word-processing system so that decent hard copies of files or letters may be made. Printers are available with two types of interface: RS232 (serial) and Centronics (parallel), each of which have their advantages and disadvantages. For the hobbyist, it doesn't really matter which interface is used as long as the price is low. RS232 printers tend to be anything from $£ 20$ to $£ 40$ more expensive, and less available, than their Centronics equivalents, because of the added circuitry needed for serial communication, and it would therefore seem logical to go for a Centronics printer when on a low budget

One of the most popular word processing packages available for the Spectrum is the excellent Tasword Two from Tasman Software. This package has Centronics printer-driving software writtenin . The rest of this article describes the design and construction of a simple, cheap, Tasword Two compatible Centronics interface for the 48 K Spectrum.

Using this interface with your home spun software should not be difficult, although the exact details will be left up to you. The data to the Centronics printer is straight ASCII, although sometimes with the top one, two, or even three bits lopped off (particularly with daisy-wheel printers that are not capable of graphics). As the Spectrum uses ASCII to represent characters, this makes life very easy. Also the handshaking with Centronics interface is very simple: the STROBE line is taken low when data to be printed

Table 1 Selecting an operating mode; only Port A may be used for mode 2 operation.

Most of the work of the interface is done by the PIO, so, without going into the intricacies of the workings of the PIO itself, and how it ties into the Z80 CPU, there is not a great deal we can say! There are plenty of books around on the Z80, and one we'd suggest if only on the grounds of price is called 'A Z-B0 Workshop Manual', by E A Parr, published by Bernard Babani (publishing) Ltd, at $£ 2.75$ (ISBN 085934087 2).

Fig 1 a (above) Main circuit diagram; b (below) clock reshaping circuit.

(b)

PROJECT: Spectrum Centronics

is stable, and the printer takes the BUSY line high when it has read the data.

Design Details

The final design is based on the Z80A parallel input/output chip. Only two other chips, ICI and 2, are used in the interface, making it cheap and easy to construct.

The PIO has two data ports, A and B, and two control registers (one for each port). Each port can be set to either input or output (or a combination of $1 / \mathrm{O}$) by programming its control register (see Table 1). It was decided to make port A input, so that the BUSY signal from the printer could be monitored (bit PAO), and port B output so data could be sent to the printer. The PIO generates its own data valid, or STROBE, signal.

Address Decoding

Table 2 gives the port addresses used by Tasword Two, and if you are designing your own software, you will have to use these addresses in your software. It can be seen that there are three outputs and one input. Since we are using a Z80A PIO, the STROBE signal is automatically generated so the data output to port 59 can be ignored. Similarly, the control words for a Z80A PIO will be different from any other interface so the data output to port 127 should also be ignored.

The DATA should obviously be directed to port B on the PIO and the BUSY input from port A. The only bits of the address that vary between port addresses are A2 and $A 6$; hence by directing all unwanted output data to port A (which is configured in input mode) the data will be ignored. This is achieved with IC2b and IC2c. We also wish to be able to program the PIO initially, so A7 is used as a control/data select. Note that A2 is used by Tasword Two so the ZX printer should be disconnected when using the interface.

Figure 1(a) gives the full circuit diagram of the interface. With Interface 1 connected, the clock output from the Spectrum is inadequate to drive the PIO directly and requires some reshaping. Figure 1(b) gives a simple waveform-shaping circuit that can be used with Interface 1.

Construction

A PCB has been designed to accommodate the interface, and this is shown in Fig. 2. This has been designed so as to be fairly small, so some care will be

Fig. 2 PCB overlay and Spectrum edge connector details for masochists who want to design their own circuit. We haven't given full details of the printer connector, as these seem to vary; however, we hope that just about any socket will fit the board!
required when soldering Another point to watch is that many of the links pass beneath IC1, and whether you use a socket or not, you will have to remember to insert these links before anything is soldered in the IC1 position. Components R1,2 and Q2 may be used, or the link used instead, as required.

Using the Interface

Before the interface can be used it is necessary to program the port control registers of the PIO. Port A^{\prime} s control register is selected when all eight address lines are high - this corresponds to port 255. From Table 1 the 'input' mode word is 4 Fh or 79 decimal, hence OUT 255,79 will put port A into input mode. Similarly port B's control resister is selected when all address lines except A2 are high, or port 251. From Table 1 the 'output' mode word is 0Fh or 15 decimal, hence OUT 251,15 will put port B into output mode.

The easiest way to make sure that the ports are initialised before attempting to dump a file is to incorporate the control register programming into the Tasword Two BASIC; that way it will auto-

PARTS LIST

SEMICONDUCTORS	
IC1	74 LS30
IC2	IC3

MISCELLANEOUS
PCB; Spectrum edge connector; connectors for Centronics printer.
ADDITIONAL PARTS FOR USE WITH INTERFACE 1

R1	2k2 $1 / 4 \mathrm{~W} 5 \%$
R2	470R $1 / 14 \mathrm{~W} 5 \%$
Q1	8C108C or BC182

run on loading and perform the necessary initialisation: first load Tasword Two and enter BASIC by pressing STOP, b and ENTER, EDIT line 10 and add OUT 255,79; OUT 251,15: to the beginning of the line, then RUN, STOP, t and ENTER to save the modified program. Any text file can now be printed out by loading the file into Tasword (if it is not already there) and using the 'print text file' option in the menu.

ETI
BUYLINES
There shouldn't be much to cause you any problems here; the PCB is available through our PCB service, and everything else is fairly easy to get hold of.

		A7	A6	A5	A4	A3	A2	A1	A0	PORT NO
STROBE	OUTPUT	0	0	1	1	1	0	1	1	59
DATA	OUTPUT	0	1	1	1	1	0	1	1	123
BUSY	INPUT	0	0	1	1	1	1	1	1	63
CONTROL	OUTPUT	0	1	1	1	1	1	1	1	127

Table 2 Ports used by Tasword Two software.

GREENWELD
 - The Pack People!!

More packs - more in them - more value Allour packs contaln brand new, marked full spec components at a fraction of the norma price and offer constructors the wides range of parts at the lowest costl How do we do it? By buylng manufacturers end-of-run and surplus components. Because we have an extremely wide range of top quality parts - too costly to sort hence the packs are ideal for schools, groups or clubs.

NEW PACKS:

K524 OPTO PACK - a variety of single point and seven segment LEDS (incl. dual types) of various colours and sizes, opto isolators, numicators, multi diglt gas discharge displays, photo transistors, Infra red emitters and receivers. 25 assorted £3.95; $100 £ 14.05 ; 250 £ 35$.
K525 PRESET PACK - Big, Blg variety of types and sizes - submin, min and std, MP, sider, multitum and cermets are all included. Wide range of values from 20R to 5 M . 100 assorted £8.75; 1250 £12.95; $1000 £ 48$. K32\% HEAT SNNK PACK - Lots of different sizes and shapes of heatsink for most diode and transistor case styles. A pack of 25 assorted including several large finned types - total weight over 1 kg . £5.50 100 £19.50.
KE27 HARDWARE PACK—This has a large varlety of pk and self tapper screwstrom $2 x$ $1 / k^{11}$ up to $8 \times 11 / 4^{11}$ also washers, some BA, metric and Whit. screws plus other miscellaneous brackets, captive nuts and bits and pieces. 1 kg (up to 1000 pieces) $\mathrm{\Sigma 4} 3 \mathrm{kgf}$ s\% 10 kg es.
K528 ELECTROLYTIC PACK - All ready cropped for PCB mounting, this pack offers excellent value for money. Good range of values and voltages from 0.47 uF to 1000 uF , 6 V to 100 V . $100 \mathrm{E3.05} ; 250$ £8.P5; 1000 532.

KES1 PRECISION RESISTOR PACK High quality, close tolerance R's with an extremely varied selection of values mostly $1 / 4$ and $1 / \mathrm{ww}$ tolerances from 0.1% to $2 \%-$ ideal for meters, test gear etc. 250 £3 1000 ideal
y 10.
KS32 RELAYS - wide selectlon of styles voltages and contacts. $4 \mathrm{~V}-240 \mathrm{~V}$. 20 for $\mathrm{E8}$; 100 E 25.

ESTABLISHED FAVOURITE8

517 TRANBIsTOR PACK - 50 assorted ful spec marked plastic devices PNP NPN RF AF. Type numbers include BC114 117172 182183198239251214255320 BF198 255 394 2N3904 etc etc. Retail cost $\mathbf{8 7}+$ Special low price E278p.
K523 RESI8TOR PACK - 1000-yes 1000 $1 / 4$ and $1 / 2$ watt 5% hi-stab carbon film reststors with pre-formed leads for PCB mounting. Enormous range of preferred values from a fow ohms to a several megaohms. Only 250p, 5000 \&10 20,000 Ess.
K520 8WTTCH PACK - 20 different assor ted switches - rocker, sllde, push, rotary, toggle, micro etc. Amazing value at only 200p.
KE22 COPPER CLAD BOARD - All pleces too small for our etching kits. Mostly doublesided flbreglass, 250 g (approx. 110 sq . ins) for 100p.
K341 VERO OFFCUT8 - It's backII Our most popular pack ever. This has been res tricuted for some time, but we have now bull up a reasonable stock and can once again offer 100 sq . Ins. of verocopper clad offcuts, average size 4×3 ". Offered at around $1 / 2$ the price of new board 320p.
KBSO 100 A8SORTED POLYESTEA CAPS - All new modern components, radial and axlal leads. All values from 0.01 to luf at voltages from 63 to 1000|
K518 200 DISC CERAMIC CAPS - big variety to values and voltages from fow PF to 2.2uF; 3 V to 3 KV £1.00.

K 514100 SILVER MICA CAPS - from 5pF to a few thousand pF. Tolerances from 1\% to $10 \% ~ ⿷ .00$.
K503 100 WIREWOUND RESIBTORS from 1 W to 12 W , with a good range of values $\boldsymbol{e}^{2} .00$
KSO5 20 ASSORTED POTENTIOMETERS - all types including single, ganged, rotary and silder $£ 1.70$.
w 4700 PUSH BUTTON BANK8 - an assortment of latching and independent switches on banks from 2 to 7 way, DPCO to 6PCO. A total of at least 40 switches for E..95, 100 £8.50, 250 £14.00.

NI-CAD PANEL

$177 \times 114 \mathrm{~mm}$ PCB with one massive Vara Deac $57 \times 50 \mathrm{~mm} 0$ rated 7.2 V 1000 mAH and another 8 maller Deac $32 \times 35 \mathrm{~mm} 0$ rated 3.6 V 800 mA . The price of these N -cad stacks new is over £20. Also on the panel is a mains input charger transformer with two separate secondaries wired via bridge rectiffers, smoothing capacitors and a relay to the output tags The panel weighs 1 kgm . A this for just 56.00.
"TORU8"
An introduction to computer controlled Robots. This kit is easily assembled and utilizes the motorized gearbox described below. Further details on request.

MOTORIZED GEARBOX

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro-mechanical parts required in building remote controlled vehicles. The unit has $2 \times 3 \mathrm{~V}$ motors, linked to a magnetic cluth, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rpm . Data supplied with the unit showing various options oh driving the motors etc. E5.05, Sultable wheels also avallable 79 mm . Dia plastlc whth blue tyre, drilled to push-fit on spindle. 2 for $\mathbf{\Sigma 1 . 3 0}$ (llimited qty). 3" dia aluminium disc 3 mm thick, drliled to pushfit on spindie. 2 for 6ep.

1984/5 CATALOQUE

84 page A4 size - Bigger, Brighter, Better, - more components than ever beforel With each copy there's dlscount vouchers, Bargain List, Wholesale Discount List, Bulk Buyers List, Order Form and Reply Paid Envelope. All for huset £1.00n (FREE to Schoots etc). Winter Supplement due out November - Send large SAE for your free copy.

PANELS

Panels with assorted TTL Inc LS types. Big varlety 20 chlps $81.00 ; 100$ chips E4.00 1000 chips $£ 30.00$

2904 Panel $240 \times 165 \mathrm{~mm}$ with $6 \times 4099,723$ all in sockets, $14 \times 8 A 200 \mathrm{~V}$ triacs, 45 small signal transistors, 14 R/C networks, $30 \times$ in4001, sub-min relay, R's, C's, etc. E4s.

Z908 Panel $247 \times 38 \mathrm{~mm}$ with $2 \times$ TDA 1004 6 W audio amp IC's not soldered inl so they can easily be removed. Also 1000/16, 1000 / $10 \times 2,470 / 16$ elecs, ceramico discs, R's, also choke. (All easily removed) Stereo Amp? Only 83.00 (IC's cost £4 ea).

K529 fEsistors - only for bulk buyers, these parcels have all new boxed and bandollered resistors. This means between 1 and 5000 of one value, 80 to get reasonable selection you'll need to buy 25000 or more. Most are $1 / 31 / 4$ and $1 / 2 w$ at various tolerances. Carbon, film and oxide trypes 25000 ع23, 100,000 cono, 250,000 £200 + CARR 1 million ce00 + CARR
Ring for appointment to view, samples on request.

GREENWELD

Our shop has enormous stocks of components and is open from 9-5.30 Mon-Sat. Come \& see us!! Minimum Access
Order $£ 5.00$

443A Millbrook Roàd Southampton SO1 OHX Tel (0703)772501/783740 ALL. PRICES INCLUDE VAT JUST ADD 60p P\&P

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81 - and more!

The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like.

ET1/22

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 k, 32 k, 64 k$ RAM packs, it is fig-FORTH compatible and it supports the $Z X$ printer

The price, too, is almost unbelievable. As a " f fit it yourself Eprom", complete with manual, it's just $£ 25+$ VAT. Add £3.45 p\&p UK ($£ 6.00$ Europe, £12.00 outside Europe) and send your order to the address below.

Skywand SOFTWARE

David Husband
73 Curzon Road, Bournemouth, BH1 4PW, ENGLAND.
Tel: (0202) 302385.
International +44202302385

TV. SOUND TUNER

SERIES II BUILTAND TESTED Complete with case. $£ 26.50+£ 2.00$ p\&\&p.
In the cut throat world of consumer electronics, one of the questions designers apparently ponder over is Will anyone notice if we save money by chop ng thistic V ve the first casualties seems of the the sound quality. Small and no tone controls are common and all this is really quite sad, as the
保 reproduction. The unit is mains-operated
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can

125W HIGH POWER AMP MODULES

power apolications - disco umits, guitar amplif ers, public addiess systems and even high power domestic sysiems. The unit is protecged against short circuiting of the load and is sate in an open circuit condition. A large safety margin exists by use of generousty rated com The PC board is back pointed agged uni ready to drill for ease of construction and the aiuminium chassis is preformed and ready 10 use. Supplied with all parts circuit diagrams and instructions
Accessories: Stereo mans powel supply kit wi
trans. $£ 10.50+£ 2 \rho \& p$. Mono: $£ 750+£ 2 p \& p$
NICAD CHARGERS/BATTERIES

SAFT/MAZDA BATTERIES: $R \times 6$ (HP7/AA size) $£ 1.10$ ea. or 4 for $£ 3.50$ R $\times 22$ (PP3 size) 9 volt 4495 er f 4.10 a pair. 500 pep per order on batteries., 60.00 a pair 50 p pip per order on bat teries
SAFT/MAZDA RX22 Charger itakes 2 PP3'st E2.75 + 80p p\&p
4 C's or D's + 1 PP3
BSR RECORD DECKS
Auto-Changer model - takes up to 6 records
with manual override. Supplied with stereo with manual override. Suph ceramic cartridge $£ 12.95$ plus $£ 1.75 \mathrm{p} \& \mathrm{p}$ 3 speed, auto, set-down; with

9 damped cue, tubular alumineum counter.weighted arm, firted with ADC magnetic head tdeally suited or home or disco use $£ 25.95$ Manual single play record deck with auto return and cueing ever. Fitted with stereo cera pm spindle adaptor ideally suited for home or disco. 3"x11"approx f14 95 All mail to: 21E HIGH ST, ACTON W3 GNG Calters: Mon - Sat 9.30-5.30 Half day Wed Access phone orders on 01.9928430 vore: Goods despatched to U.K. postai addresses only. All items subiect to availabilhy. Prices correct at $31 / 9 / 84$ and subject to change without notice. tease allow 14 working days from rece:pt of order
or despatch. ATVC Limited reserve the right to up date their produc 15 without notice All enquiries send S. A. E. Telephone or mail orers ACCESS welcome

PAIR $10 W$ SPEAKERS

 incorporates $4 \frac{1}{2} 2^{\prime \prime} 10$ watt speaker. Finished in teak vene simulate. Built, ready to use Ideal extension spkrs. $121 / 2 \times$$71 / 2 \times 41 / 4$ ins. $£ 14.95+f 175$

STEREO TUNER KIT

SPECIAL
OFFER!
£13.95
 $+E 2.50$ p \&p.
This easy to build 3 band stereo AM/FM turier kit is designed in conjunction with PE (July 81) For ease of construction and alignment it incorporates three Mullard modules and an I.C. IF System. Front scale size $1011^{\prime \prime} \times 2 \%^{\prime}$

MONO MIXER AMP

ideal for
halls and
clubs.
£45.00

+ $£ 2 \mathrm{p} \& \mathrm{p}$
50 Watt , six individually mix
pickups (Cer dividually mixed inputs for 2 phones and. or magi. 2 moving coil microetc. Eight slider controls - 6 for ieve, and 2 for master bass and treble 4 extrel and controls formic and aux, inputs Size $131 /{ }^{\prime \prime} \times 61 / 2^{\prime \prime} \times 33 / /^{\prime \prime}$ app. Power output 50 W speakers. Attractive with 4 to 8 ohm matching fascia and knobs. Ready to

CALLERS TO: 323 EDGWARE ROAD LONDON W2. Teiephone: 01-723 8432 5 minutes walk from Edgware Road Tube Station

DIGITAL FRAMESTORE

This project definitely rates the tag 'experimental'; and with the necessary ADC at around $£ 100$, and 4864 K DRAMs included, it isn't going to be cheap either! However, we think that our readers will be interested in the techniques involved. Design by Daniel Ogilvie.

Aframestore is a device that can capture an entire image from a TV screen and freeze it electronically. The captured image can then be manipulated or combined with or compared to others.

Using a framestore, one TV camera could be used to fade between two images; one would be captured on the framestore, then the TV camera pointed at the second. A video mixer would be used to fade from one image to the other. More complex effects could be achieved by using the same image for both, with minor changes or manipulations between the two images.

Storage of the image can be synchronised with one-off events;
for example, it could be synchronised with a flash gun going off; the flash is synchronised to occur during the field blanking (flyback) time and the resultant image is read into the store on the next frame scan.

A technique known as target integration can be used; here the electron beam in the camera is shut off and a feint image is built up over a period of time on the target, then the beam is turned back on again to read it into the framestore. This is similar to long exposure photography - and uses of this include astronomy.

In the design described here, the image is stored in digitial form, which makes it possible to analyse or manipulate the picture using a

home computer; this will be discussed at length in a future article.

Camera tubes are available which can see into the infra red or the ultra violet, which enables us to extend our view of the world beyond conventional visible optics. For example, finger prints can be viewed under UV light, stored in the framestore, enhanced by computer and then compared with a library of finger prints for a match. Also, inks can be made to be luminous in the infrared making it possible to check for cheque or passport forgeries.

Some Television Fundamentals

Most readers will be familiar with the conventional television system used in this country which is raster scanned. The information on the brightness of the camera lense's field of view is encoded in a serial form and superimposed on synchronizing pulses which enable it to be easily recovered. Looking at your television screen, the trace starts at the top left hand corner and moves across horizontally until it reaches top right where it resets back to the left, a little bit down, and scans across again.

The time taken for the horizontal line scan is 64us and this is known as the line period. The line scan is performed $3121 / 2$ times, until the trace reaches the bottom of the screen when it returns to the middle top of the screen. The trace performs a further $3121 / 2$ line scans, filling in the gaps between the first $3121 / 2$ line scans, see Fig. 1.

Each set of $3121 / 2$ line scans is called a field and requires $3121 / 2 x$

MHz (nominal 13 MHz). The $\mathbf{2 5 . 6 2 5}$ MHz clock is also fed to the clock input of the octal flip-flop, IC3; either five or eight latches may be strung in series, and, with the inverter, this produces a division of either ten (640 pixels) or sixteen (for 1024 pixels and 41.0 MHz clock). The divided-down clock frequency is fed to IC5, (a special-purpose device) which generates the MIXED BLANK, MIXED SYNC, LINE and FIELD outputs; the latter two are inverted and buffered by $\mathrm{Q} 6 / 7$ and $\mathrm{Q} 4 / \mathrm{Q} 5$ respectively, to give 75 ohm FIELD and LINE signals for the video camera. IC5 also generates the even field, EF , signal.

The (CLK) line is used to drive a divide-by-eight counter, IC6, and the bottom three binary outputs from this are used to select which one of decoder IC7's outputs is to be pulled low. IC6 is synchronously reset by

PROJECT : Framestore

CONTROL CARD

The top and bottom margins are generated by ICS 20 and 21 , which count the LiNE pulses; when 32 line pulses have occurred, the flip-flop IC17b is cleared va IC18c; this takes its Q output high, allowing IC18a output to go low, so that TO pulses can pass through IC16b and be counted; so the address counters can only increment while IC17b remains cleared.Decoders IC 26 and 27 monitor the top four address lines to provide a line counter. When the counters reach $4 \times 4906 \times 8 / 640$ counts $=256$ lines the Y4 output of IC26 clocks IC17b via IC8d which sets this latch and halts the count until the 32 lines of the second field have elapsed when IC27 performs similarly ($9 \times 4096 \times 8 / 640$ counts $=512$ lines). The counters are reset by the EF (even field) pulse which indicates the start of the new frame.
$64 \mathrm{us}=20 \mathrm{~ms}$ to be completed. The two fields are related in that the information in the second field augments the information in the first. The two fields together are called a frame and this requires $2 \times 20 \mathrm{~ms}=40 \mathrm{~ms}$ to be completed.

The two fields are said to be interlaced. The reason for this interlace is to provide a fast enough screen refresh rate without just resorting to sending the information faster which would result in the need for a higher bandwidth.

The Video Waveforms

As I have already mentioned, the information broadcast is superimposed on synchronizing pulses, which indicate where the top and left of the screen are. A typical video waveform is shown in fig. 2, which shows line synchronizing pulses. Each pulse initiates a flyback of the trace across the screen from right to left ready for the next line of information. The field pulses caused the trace to reset to the top left of the screen and initiated the slower vertical scan downwards which ensures each line appears below the previous one.

The video waveform superimosed on the sync pulse represents the brightness of the scene. The higher the voltage at any particular point in the waveform, the whiter the corresponding point on the screen. The set-up voltage is defined as black and is about 45 mv above the 'back porch' of the line wave-form (see fig. 2.). The sync pulses are, therefore notionally, darker than black and this ensures that the flyback is not visible on the screen. We derive a pulse during the period of the back porch to clamp the incoming video to black to ensure we obtain a stable grey scale to our stored picture.

There are a number of other features regarding the video wafeform that will concern us, but we will deal with these as we need to.

We are concerned with the storage of one frame of this information. The method we shall use is to convert the TV screen into little packets of information and store them into a digital memory as values representing the brightness of the scene.

Memory Needs

With 625 lines to store, if we stored only one byte representing the average brightness across each line, we would require 625 bytes of

memory. Obviously this is not very representative of the scene we may be looking at.

Well, let's store 625 values across the line and see what that requires, assuming that each value stored will be in the form of an eight-bit byte. We now need enough memory to store 625 lines of 625 elements (the elements are called pixels); this requires 625^{2} bytes, ie 390,625 bytes: rather a lot!

There is an additional consideration. The line duration is 64us, and we want to break this up into 625 pixels which means we have only 64us $/ 625=120$ ns to convert the video into a digital word and store it.

Looking at the sync waveforms again we can see that there is a left and right, top and bottom margin to the screen. Storing the video waveform from these parts of the screen is a waste because there is very little useful information there. It is at the extremes of linearity of the camera scans, the lense and the television screen. We would lose little by storing only the 512 central lines.

Similarly the line scans contain little of use at the edges, so we need only store the central section of the lines. The screen is wider than it is deep (it has a $4: 3$ aspect ratio), so to maintain a similar horizontal resolution to the vertical resolution, we will need to store more than the 512, say around the 625 pixels first envisaged. Actually, the generation of the clock signals is eased considerably by prudent choice of numbers (you'll have probably already noticed the 512 lines!), and in practice it was found
that 640 pixels stored across a nominal total line length of 820 pixels (much of the residue being taken up with sync and fly-back) worked out reasonably neatly. Putting these numbrs together, we arrive at a memory store requirement of $640 \times 512=327,680$ bytes.

The memory requirement has been reduced to some extent, but we have increased the speed requirement of the A-to-D converter and of the memory. This is unfortunate because speed is costly in both these areas. It also makes the design of the timing and control logic more critical. The conversion and storage of each pixel will have to take place in $64 u s / 820=78 \mathrm{~ns}$.

It's Been Framed!

A block diagram of the whole system is shown in Fig. 3. The crystal clock generates the pixel clock rate - which is our highest frequency. We require 820 pixels across a line which gives us a crystal frequency of $1 / 64$ us $x 820$ or 12.81225 MHz . We generate twice this, $(25.625 \mathrm{MHz})$ to ensure an even square wave master clock waveform. This is sent through the lower address counters which divide the 12.8125 MHz by 820 and generate a binary address for the memory. The output from this counter will be at line frequency; the left and right margins are also generated by these counters.

The line frequency is fed to the upper address counters which divide the line frequency by 625 to provide the upper address lines to the memory, and also generate the top and bottom margins. At the

end of a frame the address counters are reset by the sync pulse generator and the process continues again.

Most of the time, we will be using the framestore to read out of memory; while this is happening, data is being sent from the memory to the DAC for conversion back to
analogue and, after mixing with synchronising pulses, display on the monitor.

To store video, from, for example, a video camera, the write line on the memory is held down for the duration of one frame, while the input signal is converted by the ADC. As already mentioned,
the ADC will be converting at a rate of 12.8125 MHz .

To be completed next month.

AMPLIFIERS

WHY ILP? Years of experience in audio, unique designs, world wide sales and outlets, reliable delivery and friendly service.

PREAMPLIFIER MODULES

All modules are supplied with in line connectors but require potentiometers, switches etc. If used with our power amps they are powered from the appropriate Power Supply.

Type Application	Functions	ce
HY6 Mono Pre Amp.	Full Hi Fi facilities	£7.95
HY66... Stereo Pre-Amp	Full Hi Fi facilites	.f14.95
HY73... Guitar Pre-Amp	Two Guitars plus	. 115.95
HY78.... Stereo Pre-Amp.	As HY66 less to	f14.45
MOUNTING BOARDS: For HY6 $\mathbf{£ 0 . 9 5}$ B66 for HY66-78	Astruction we re	

BIPOLAR MODULES
Ideal for Hi Fi, Full load line protection integral Heatsink, slew rate $15 \mathrm{v} / \mu \mathrm{s}$

Distortion less than 0.01\%			
Type	Output	Load	Price
	Power	Impedance	
HY30.	15.......	4-8...	£8.45
HY60.	30.	4-8.	f9.95
HY6060	$30+30$	4-8.	£19.45
HY124..	60	4 .	£20.95
HY128..	60.	8.	£20.95

Type	Output Power Watts (ms)	Load Impedance Ω	
HY244	120.	4.	£26.95
HY248	120.	8	£26.95
HY364	180	4	£39.95
HY368	180.		£39.95

MOSFET MODULES

Ideal for Disco's, public address and applications with complex loads (line transformers etc.). Integral Heatsink slew rate $20 \mathrm{v} / \mu \mathrm{s}$ distortion less than 0.01%

| Type | Output Load Price
 Power Impedance | TypeOutput Load
 Wower Impedance |
| :---: | :---: | :---: | :---: |
| Watts (ms) | | |
| Pow | | |

MOS128. 60.........4-8.......£30.45
MOS364.180........4.......... £45.95 MOS248. 120.........4-8......... $\mathbf{£ 3 9 . 9 5}$

POWER SUPPLY UNTTS

FOR FREE DATA PACK PLEASE WRITE TO OUR SALES DEPT.
Post to: ILP Electronics Ltd., Dept. 6
Graham Bell House, Roper Close,
Canterbury, Kent. CT2 7EP
Tel: (0227) 54778 Telex: 965780

Abbots Hill Chambers 1 st Floor, Gower Street, Derby DE1 1SD

Tel: Derby 0332/382433

RVM700S Mounted on Heat Sink

	KIT PRICE		
RVM150S	$1+19.50$	$10+15.98$	$20+15.80$
RVM300S	$1+28.87$	$10+23.94$	$10+22.30$

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFETAMPLIFIER MODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

> All prices include post \& packing. (Quantity discount available)

To order send cash with order, or cheque/postal order. Delivery onour Modules and Heat Sink or same day dispatch when order is received with cash, allow 7 days with cheque or postal order.

MICRORANGE ELECTRONICS

UNIT 258, STRATFORD WORKSHOPS, BURFORD ROAD (near Stratford Centre) LONDONE1525P

TEL: 01 -538 1415
Recently opened component shop in the heart of Stratford, we have lots of special offers. (You will find us on the 2nd Floor.)

SOME SPECIAL OFFERS (Many others in stock)	
NE5534 10	1 off 1.1510 off 1.05
NE5532 1	1 off 1.4510 off 1.15
TLO71 1	1 off 45p 10 off 42p
TLO72 1	1 off 55p 10 off 50p
TL074 1	1 off 85p 10 ofl 78p
78PO5 5V 10A Reg	5.50 each
7812 12V1A Reg	30p each
VN67AF Power Fet	85p each
60W Spot Bulbs various colours	urs 70p each
100W Spot Bulbs various colours	ours 1.25 each
2 metre $\times 1$ metre SPK Cioth	2.95
10×12"Fibreglass PC Board	2.25 each
150W Power amp module	12.50
3 Way 700W Sound to Lite unit	nit 17.50
Telephone recording unit	15.00
Please come and see our range	

Please mention E.T.I. when replying to all adverts

READ/WRITE

that you reviewed in the July 1984 issue of ETI. The article was entitled 'Housewatch 2000 Burglar Alarm' (page 50) and featured the Coloroll Ltd/Munford \& White

Standing Physics On Its Head

 DearsirIt is a well-known mathematical paradox that a perfect low-pass filter must begin to react to a pulse on its input before that pulse is applied. However, this piece of mathematics has eluded physical realisation - until now. Look at the oscillogram you display in your review of the Bridage scopes in the September ETI. The bottom trace clearly shows the SB121 overshooting before every edge of the square wave input.

There would be many applications for a circuit which detects pulses before they happen. Clicks could be removed from audio recordings without using a delayline buffer. Delicate equipment could be protected from mains surges. Digital circuit designers need no longer worry about clock skew - just insert a few endochronous filters into the longer signal paths. But the most obvious use is in oscilloscopes themselves: a predictive trigger to capture those intermittent events which conventional trigger circuits cannot handle. The absence of such a documented feature from the scopes under review suggests that it is an accidental phenomenon which has gone unnoticed by the manufacturers. Perhaps one of their component suppliers is making his capacitors out of resublimated thiotimolines?

Yours faithfully,
Richard Kennaway
Norwich
Fascinating as the possibilities outlined by Mr. Kennaway are, we have succeeded in tracking down the source of this phenomenon and found the problem to be a surprisingly simple one - our photographer was holding his camera upside down!

The One That Got Away Dear Sirs,

I refer to your article in ETI of June 1984 in the Digest section, concerning a new battery developed by Matsushita and marketed by Panasonic UK Limited. This is the $B R 211$ Lithium battery.

As an angler, not an electronics follower, this item interested me very much from the point of view of illuminating fish-rod tips, with
vhich I have been experimenting for several years now. Also, as press offficer of the Bournemouth based BAC Angling Club, my experiments are of interest to a good number of local anglers.

With this in mind, I wrote to Panasonic UK Ltd enclosing details, drawings and observations, regarding my strugglings with batteries and LEDs etc, and enquiring where I may track down a supplier of their advertised battery. This letter was sent at the end of May this year.

Since we are now well into August, I feel it is fair to assume that I am not likely to receive a reply or even acknowledgement from Panasonic UK Ltd. I wonder if you could help. I am no longer concerned whether they are interested in my dabblings or not, but I would like to know where to buy 'The World's Smallest Battery' as it was described. Perhaps it is so small that nobody can find it? Yours faithfully,
Martin Hursthouse
Bournemouth

We telephoned Panasonic UK

 but no-one there seemed to know much about the BR211. They passed us on to Panasonic Industrial, who told us that the information we published must have come directly from the Japanese arm of the company. There are plans to distribute the BR211 in this country but no agents have yet been appointed and it is unlikely to be available before the beginning of next year at the earliest. In addition, because they are concerned only with industrial electronics, Panasonic Industrial were unable to assure us that the agents appointed would include a company prepared to sell directly to the public in small quantities. We can only suggest that you drum up as much support in the angling world (and elsewhere) as you can and keep lobbying Panasonic - if it becomes clear to them that there really is a demand for the BR211 in the domestic market they may feel encouraged to appoint a suitable distributor as quickly as possible.
Beating The Common Code Dear Sir,

I have recently purchased and installed a home security system

Control Panel.

I have therefore been in a position to practice button pushing on the control panel and have found a serious fault in the ULA that comprises the system security. It is possible, with the panel in the Day condition where it can be operated by any person or villain, to find out the 4 digit control code within 2 minutes and without tampering with the unit in any way. The average time to crack the code is only 1 minute.

I have written the method on a separate sheet which is in a form that I present to visitors to play at code-cracking when they visit the house.

Yours sincerely,
M. Brandligt

Oxford
Whilst we agree that it is quite easy to find the code of the alarm when it is in the 'day' state, this doesn't actually affect the security of the alarm. Let's look at the arithmetic.

With the alarm in the 'day' state, there are nine possible first digits in the code and eight possible second digits making a total of $9 \times 8=72$ combinations, only one of which will put the alarm into its test state.

To get the alarm out of the test state there are seven possible first digits (the third digit of the full code) and six possible second digits, making a total of $7 \times 6=42$ possible combinations.

It is relatively easy to find this code provided:

1) you know how the alarm operates in the first place - a clever, professional thief will have done his or her homework, but aren't the majority of domestic break-ins the work of opportunist amateurs?
2) you are allowed to play with the alarm in the 'day' state.

It is on this second point that your argument falls down. If the alarm is armed, the thief will have to find the full four-digit code in one go. There are $9 \times 8 \times 7 \times 6=3024$ possible combinations, far more than a thief could hope to try in the twenty-five seconds allowed after arriving through the entry-zone, and if a thief gets in by some other route the alarm will go off immediately anyway. We think your home
invited visitors return later, uninvited!

Of course, if you do suffer a break-in at a time when the alarm is un-armed, it would be sensible to change the code as well as changing all the locks. However, changing the code is very straightforward.

Disc-usted

Dear Sir,
I have been reading Linsley Hood's articles on audio amplifiers for many years and good as his latest design is I don't think I will be making it. He seems not to have heard of the Compact Disc.

Yours Truly,
B. A. Thacker

Crewe
Although this was not brought out in the series of articles, the design was produced with Compact Disc very much in mind. This is one of the reasons why the volume and balance controls have been placed in the power amplifier rather than the pre-amplifier and why that unit has been provided with an unusually sensitive and high-impedance input. Signals from Compact Disc units can thus be fed directly into the power amplifier without having to pass through unnecessary connectors, switching and signal handling stages in the pre-amplifier. This being so, the Audio Design amplifier is probably better suited for use with Compact Disc players than almost any other amplifier around.

Tip Of The Iceberg

Dear Sir,
I hope you have a few minutes to spare, because I am about to relate the Saga of the Missing Tech-Tip.

Once upon a time (14/1/84) an intrepid ETI reader (me) sent what he thought was a rather elegant piece of software to the Mighty ETI Tech-Tips Feature. His idea was a program to read resistor colour codes using the Casio $\mathrm{fx}-180 \mathrm{P}$ calculator. The reader waited, with bated breath (he had run out of Polo mints) for a reply from ETI. He waited for three months, and then wrote to ETI again, along the lines of "Oi, mush, wot's happened to me software?" or words to that effect.

Still no reply having plopped on his doormat (it wasn't housetrained) by the middle of June '84, he was prompted to write again. Which is why he is now writing to Heap Big Boss Man of ETI.

I think it's safe to assume that my design has gone astray, encountered a time warp or been half-inched by the Vogons (remember them?). If you could write and reassure me that twoway communication via letter is still possible, I would be much obliged. I would also be pleased to re-submit the design, assuming that it doesn't turn up in the ETI offices.

I look forward to hearing from you (please).

Yours Faithfully,
Ronald Hutchison
(State Registered ETI Reader)
West Kilbride
Sadly, Mr. Hutchison is not the only reader to have experienced this upsetting phenomenon of Tech Tips apparently vanishing into the fourth dimension (otherwise known as the ETI filing system). We hope that he and the others affected will accept our apologies and the following explanation.

The problems with the Tech Tips feature arose partly because of its success. We have had so many sent to us that we now have two bulging files full and contributions are still arriving at the rate of a dozen or so a month. This flood of items has coincided with a period during which we have frequently not had enough space to put all the things we wanted to
in the magazine, and Tech Tips has often been left out to make room for other articles. Not having the staff to cope with the filing necessary to keep such a large number of contributions in order, the whole system has become rather disorganised and letters querying the whereabouts of particular Tech Tips have all too often vanished themselves!

Rather belatedly we have got around to doing something about all this. The Tech Tips special in this issue marks our first assault on the ever-growing file and we intend to include the feature on a far more regular basis from now on. Mr. Hutchison may also like to note that his program is amongst the items featured.

We will also be looking closely at the conditions under which Tech Tips are accepted to see if they can be tightened-up slightly. It would obviously be better to reject a few more items in the first place than to have them on-file for months, being considered and then rejected. In the meantime, why not consider if your Tech Tip could actually be a project. We do quite often ask readers to re-vamp their ideas because they are substantial enough to be full-blown projects, and we and our sister magazines, Electronics Monthly and Digital and Micro Electronics, are always looking for good projects.

The MC6804 P2

Remember our article on Motorola's MC68020, the world's first true 32-bit micro (depending on what definition of a 'true' 32 -bit micro you adopt)? Well, Motorola have been busyat the other end of the scale, with a four-bit micro too. A sequel to the story of its bigger brother, we'll be taking a little look at the world of the Micro-microprocessor - and its one device that could well find itself used quite heavily by hobbyists in the none-too-distant future.

Active Bass Speaker

Just in case you might have got the impression that all the next issue will be features, here's a project for you. Mind you, your neighbours may well sink to bribing your newspaper deliverer to hang onto your copy of ETI, because this sub-resonant speaker should certainly rattle a few walls and floor-boards!

Readers' Survey

The time to seek your opinions has rolled around once again, with the added bonus of the possibility of winning a year's subscription.

Distortion Meter

Well, this item got squeezed out of this issue, for which we apologise, there just wasn't room to get in everything we wanted to get in. However, we promise, cross our pulse generators and hope to die, that it will be in the next issue.

IS ELECTRONICS RELIABLE?

There are a number of question marks over the performance and reliability of electronics, not afew of which have turned up in ETI projects! The space shuttle fails to get off the ground. An IC will not work within its specifications, and duplicates also fail to work The Nimrod' eye in the sky radar system won't work as it was designed to do and is sent nearly all the way back to the drawing board. A leading semiconductor company admits that many of its ICs have not been properly tested, and initiates a hastily assembled crash testing programme. Anyone who reads the electronics trade press will have seen these stories; next month's ETI will attempt to get them in perspective.

ALL THIS AND MORE IN THE NEXT ISSUE OF ETI. RESERVE YOUR COPY OF THE JANUARY ISSUE NOW!

[^1]| | \qquad vos 304
 ${ }^{1 / 2005}$ Potifor

 KSM Electronlcs Pute Generator Iype Ti B / O
 OMmenco

 \qquad | | | | | Price
 8450
 840
 8450 $£ 200$
 860 8120
 960 960
 940
 E450
 850 8400
 4100 C90
 880 865
 8480 880
 $\mathbf{8 5 0}$ $\mathbf{5} 95$ $\mathbf{5 8 . 5}$
 $\mathbf{5 3 5}$ $\mathbf{5 3 5}$ 560
 860 860 860
 8420 8150
 850 8450
 E50
 \& 30
 8100 576
 $\$ 100$ $\$ 40$
 $\$ 80$ $\$ 45$ $\$ 10$
 $\$ 10$ $\$ 40$ $\$ 50$ $\$ 400$
 S80 E 300
 8150 880 8250
 a | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B. BAMBER ELECTRONICS GOVERNMENT AND MANUFACTURERS SURPLUS
 ELECTRONIC COMPONENTS
 TELECOMMUNICATION EQUIPMENT
 Phone Ely (0353) 860185
 TEST GEAR | | | | | | | | | | |

Great news has arrived for theatre, band, club and disco. The new high tec series 2 means it is now cheaper than ever to own your owsn lighting system. With complete packages from just $£ 190$ it makes a sound investment. Compared to the cost of hire, your money is recovered in a matter of months. At MJL we have an extensive range of desks, power packs and control equipment, at the most competitive prices in the UK. And for those with really limited funds, a range of DIY modules. So if its just 5 KW , or 500 KW , give us a call.

MJL SYSTEMS LTD
45 Wortley Road
W. Croydon
Surrey CR0 3EB
Tel: 01-689 4138

VARIO UPDATE

Lindsay Ruddock's vertical speed indicator project in our April and May issues aroused considerable interest. Here the author replies to some of the suggestions made by readers regarding the design.

0ne modification which has been suggested is the addition of 'total energy' compensation (see Read/Write, August ' 84 ETI, page 62). It is the author's intention to develop such a system at some stage, but it would require such extensive modifications that it might be better to think in terms of designing a new vario from scratch. There seems to be little demand for total energy compensation from hang glider pilots, probably because of the extra complication introduced by the need to plumb in a source of pitot pressure and because hang glider pilots are more aware of their airspeed than are sailplane pilots. There is, in any case, at least one variometer on the market with total energy compensation, and interested readers might like to contact the manufacturers at the address given at the end of this article.

That having ben said, there may still be a few readers who really are interested in total energy compensation and who are prepared to do a little experimenting in order to achieve it. The following notes may be of some help to them.

The ETI design senses only static pressure, which it feeds directly to the differentiator. To provide total energy compensation, the input to the differentiator should be modified to:-

```
\(\mathrm{P}-1 / 2 \mathrm{pv}^{2}\)
where \(p=\) static pressure
    \(\mathrm{P}=\) air density
    \(\mathrm{v}=\) velocity of glider
```

The quantities " p " and " v " are not directly available so more manipulation is necessary:

$$
\begin{align*}
& p-1 / 2=2 p-p-1 / 2 p v^{2} \tag{2}\\
&=2 p-(p+1 / 2 p) \ldots(2) \tag{3}\\
&= 2 \times(S T A T P \text { (}) \\
& \text { PRESSURE }
\end{align*}
$$

This expression is realizable, since the quantity $\left(p+1 / 2 p v^{2}\right)$ is, in fact, the pitot pressure which can be sensed by a second pressure transducer plumbed into a pitot source.

Pitot pressure is the extra pressure that arises in a tube when the mouth of the tube faces into a stream of air. It appears in books on aerodynamics and fluid flow, and is well-known to amateur fliers and aerodynamicists - but not to ETI's assistant editor, who carefully ammended 'pitot' to 'pilot', all the way through the original script, then wondered why the author had so consistently made the same rather curious typing error - t and I being well-removed from each other on a conventional QWERTY keyboard. We're ashamed to add that the editor, despite his back-

Fig. 1 Suggested modification to the original vario circuit to give total energy compensation.
ground in physics, had little more idea as to what pitot pressure was!

What is required, therefore, is to modify the input to the differentiator by subtracting the right amount of pitot pressure in accordance with expression (3). One possiblity is to place a summing amplifier between the static pressure transducer buffer and the differentiator, as shown in Fig. 1.

It should be emphasised that this is only a suggestion aimed at those willing and able to develop their own circuitry. The author has not tried the system and cannot offer any further practical information. Readers who are particularly interested in total energy compensation should obtain a copy of the September 1975 issue of "'Soaring" magazine in which the subject is airly well covered.

Temperature Compensation

In an effort to present as straightforward a circuit as possible in the ETI vario design, temperature compensation of the transducer was kept simple.

Better temperature compensation of the Sensym LX0503A can be easily achieved by 'tuning' the regulated voltage to the device. Since the vario circuit is not sensitive to supply voltage, it is convenient to make the regulated voltage to the complete circuit adjustable. This is implemented by replacing the 78L05A regulator chip with an adjustable op-amp regulator based on the LM10.

The original PCB was designed so as to leave space for a satellite board carrying the LM10 regulator circuit just above the transducer and to the left of the existing 78L05A regulator. There is also some space available on the underside of the transducer PCB and this can be used if there is insufficient space above, as might be the case if one of the larger transducer types has been used.

A suitable veroboard layout for the new regulator circuit is shown

Fig. 2 Adjustable regulator arrangements to replace the 78L05A.
in Fig. 3. It was not considered worthwhile producing a PCB layout for such a small board and so simple a circuit. Note, when you come to assemble the board, that one of the links is underneath the IC and don't forget to break the tracks in the positions indicated. Do not use an IC socket as this would make the board too deep to fit easily in the available space. It is quite a good idea to solder short leads in place of R_{x} to begin with as this will save you having to remove the board to try different values of resistance and will also reduce the risk of damage to the tracks caused by repeated solering and desoldering.

When complete, the new board is wired directly in place of the original 78L05A regulator. A little tape or a sticky pad should be sufficient to hold it in place and prevent it from touching any other part of

O-breaks in vero traaks
Fig. 3 Veroboard layout for the regulator circuit. The component values are given in Fig. 2.
the circuitry. Note that the previously optional 100uF decoupling capacitor, C 4 , should now be fitted.

The resistor R_{x} sets the regulated voltage. eg $\mathrm{R}_{\mathrm{x}}=1 \mathrm{k}, \mathrm{V}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{x}}=$ $13 \mathrm{k}, \mathrm{V}=6.25 \mathrm{~V}$
$V=4.9 \times\left(\frac{R_{x}+47 k}{47 k}\right) v$ V

A good starting voltage is 5.5 V , $\mathrm{R}_{\mathrm{x}}=5.6 \mathrm{~K}$.
R_{x} is adjusted downwards if the vario reads sink as it cools (use the fridge to find out) and vice versa. A large percentage of LX0503A devices end up with satisfactory temperature compensation with supply voltages of between 5 and 5.5 volts, which explains why the LX0503A is shown wired across 5 V in the original design.

Further benefits of using the LM10 are that battery life is tripled to a hundred hours from an alkaline battery and ordinary zinc carbon types may also now be used, giving about 50 hours. This is because not only is battery drain halved (the 78L05A draws 3mA standing current), but the battery endpoint voltage is lowered - the LM10 regulator requires only 0.2 volts input to output differential compared to 2.5 V for the 78LO5A. Other adjustable regulators can be used, but have not been checked out.

Note that while tuning the supply voltage is recommended as a method of temperature compensa-

tion for the LX0503A, the alternative transducer, the MPX100A, can only be compensated by the single series resistor/constant supply excitation voltage method as outlined in the original article.

Some people have acquired Foxboro transducers. For these, and Druck-Keller types, constant current excitation is best. The precise current affects sensitivity but for compensation purposes the absolute value does not matter. A suitable circuit is shown in Fig. 4.

All the compensation methods mentioned compensate explicitly only for span. Since the operating pressure range is not too great, it is not worth considering offset errors separately.

A word of explanation for all these compensation methods is probably in order. The major temperature dependent parameters of a piezoresistive pressure transducer are:

1. temperature coefficient of bridge resistance (approx. $+2000 \mathrm{ppm} / \mathrm{C}$.).
2. temperature coefficient of gauge factor or pressure sensitivity (approx. $-2000 \mathrm{ppm} / \mathrm{C}$.). Note the opposite signs of these coefficients.

In the best transducers, eg Foxboro, Druck-Keller, these coefficients are equal as well as opposite, which explains why constant current excitation provides automatic compensation.

In the case of the MPX100A, constant current excitation causes over compensation as the magnitude of the temperature coefficient of bridge resistance is greater than the temperature coefficient of gauge factor. Something in between has to be used, which is why a compensating resistor in series with a constant voltage is recommended. Adjustment is easy and the method gives very satisfactory compensation, even for use as an altimeter.

In the case of the LX0503A, the least consistent of all the low-cost transducers on the market, the gauge factor temperature coefficient is much greater than the bridge resistance temperature coefficient. Compensation must be by some other method such as using the internal Vbe multiplier.

ETI
The total energy compensated variometer mentioned in this article is manufactured by Thunderbird Electronics Ltd, 20 Buttgarden Street, Bideford, Devon, tel 023725133.

Ifan advertisement is wrong wére here to put it right.

 If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.The Advertising Standards Authority.
ASA Ltd, Dept 3 Brook House, Torrington Place, London WC1E 7HN

LOOK! unbeatabilvalue
 TANDON 5L-THINLINE FLDPPY DISKDRIVES

 SINGLE SIOED DOUBLE DENSITY £100 DOUBLE SIDED DDUBLE DENSITY 1130
brand new
 DONTDELAYORDERTODAY!

H.P. SPECTRUM AMALYSER 2551A 10MHZ-12.4GH2 with P.O.A. bis display
 OSCIL LOSCOPES
2TEK 454 Dual Trace 150 MHz Delay Sweep. 6 TEL EQUIPMENT D83 Dual Trace 50MHz Delay Sweep Tel 5 g a O SOLARTRON CD 1740 Dua Tace 50 MHz Dua SOLARTRON COIT40 Duar frace somhz Dual TB 5 cossor CDU 150 Dual Trace 35 NH D Delay IB 17 SELABS SM111 Dual Jrace 20MH2 23 SOLARTRON CD 1400 Dual Bram 15 MHZ storage dschlloscopes
35 TELEQUIPMENT DME4 Dual Trace 10MH 36 TEK 564 Dual Trace YOMHZ Delay Swee 5700 TEK Spectrum Analyser 50 HZ . 1 MHZ 547 Maniram 40 TELEQUIPMENT GT71 CURVE TRAGEA 42 H.P. SHF SIG GEN 620B 7-11GHZ. 6 H P. UHF SIG GEN 612A 450 - 1230 MHZ 50 MARCONI AM/FM Sig Gen TF2008 10KH-510MHZ 52 MARCONI AM/FM Sig Gen TF $10668 / 610-470 \mathrm{MHZ}$ 52 MARCON I AM/FM Sig Gen ff 10668/6 10-470 MHZ
59 MARCON AM/FM Sig Gen TF995A/21.5-220MHZ. 62 MARCONI VHF Sig Gen If10648/5M 66-108; 118-185.450MOMHZ TF995 range Sig Gens . $\quad 175$ 66 AOVANCE AM Sig Gen E2 100 KHZ -100MHZ. 72 TEK Constant Amplitude Sig Gen 1908 350kHZISOMHZ $£ 100$ 74 MARCON WIDE RANGE OSC TF1370A §/MHZ (Square wave to 100 KHZ)
80 WAYME KERR AF Sig Gen Si21 10HZ-120KHZ
.595
 99 TEK IIME MARK 102 BONTOON Q MEIER 260A 50 KHZ -5OMHZ

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RGG 1PL Telephone: 073488041
Callers welcome 9 a.m. to 5.30 p.m. Monday to Saturday inclusive

109 Waye

109 Wayae Ker/ Autobatance Component Brope 8421...c300 114 Wayne Kerr Component Bridge B521 (CT375) L 100uH500kH: C1pF-5F: R1 milliohm-1000Mohmess
117 Wayne Kerr VHF Admittance Bridge 8801 with Source $\$ 161$
119 MARCONI AM/FM Mod Meler IF2300S 2 -100MH2 . . $£ 335$ 123 AIRMEC MOD METER AM/FM Iype 2103 3-300MH2 . . . $£ 95$ 124 MARCONI AF MILLIVOLTMETER TF2603 50KH2-1500MhZ
ImV-3VFSD $£ 375$
125 MARCON ELECTRONIC VOLTMETER TF26042OHZ-
1500 MHZ AC/DC/Ohms AC300mV-300V FSO: OC 200 mV . ikurso.
144 AVO MULTIMEEER MOdel 7 PSP \& 7.
146 aVO MULTIMEIER Mode' B PSP ©7. $£ 45$
152 MULTIMETER U4324 33 swithed ranges 20 K 0 hm per volt
Comple with eads \& battery. Brana New. One year guarantee
P89 E4
160 FARNELL STAB PSU TSV30/5 0 -30V 5A. Current limiting
Metared.
161 FARNELL STAB PSU TSV30/2 0 -30V 2A Current limiting
63 ROBAND VARECO PSU tyoe $33.20-33 \mathrm{~V} 24 \mathrm{C}$
63 ROBAND VARECO PSU type 33-20-33V 2 A Current limiting

169 KINGSHILL STAB PSU MOdel 500 0-60V 0.5A. Gurrent
180 BYANOENEURGH PHOTOMUSTIPLLER PSU $47 \mathrm{R} 10-2100 \mathrm{~V}$
5 mA Metered.............. I 20 B
190 VOLTEX PSU Model $82 \cdot 635+5.5 \mathrm{~V}+12 \mathrm{~V} ; 24 \mathrm{~V}$ High
current un-Used \quad. 15
191 ACIOC FLLETRONICS PSU MODULE 251 SV $2 \mathrm{~A}+1-12 \mathrm{C} 0.4 \mathrm{~A}$ Un-used P\&P §3......
206 BLK EVEL RECORDER 2305
206 Bak Level recorder 3005
209 BAK MEASURING AMPLIFIER 2606 2HZ-200KHZ
10 B8K BAND PASS FLITER SET Octave \& 3rd Octave
Weighing Networks ABCD.
11 B\&K DIGITAL EVENT RECORDER $7502 \ldots \ldots$
225 DAWE OCTLVE BANO SOUD IEVI …... 51.500 281 Pe octave bano sound LEVEL ME 281 H. P LOG ICSTAICC ANALYSER 1602A . . .
286 AVO VALUE CHARACIERISTIC METER VCM 163 286 AVO VALUE CHARACYEAISTIC MEIER VCM 163 293 MARCO AF PFFERENTH. DC WOLM
97 MARCONI DIFFERENTIAL. DC VOLTMETER TF2606
$0-1100 \mathrm{~V}$.
300 R8S POL
Aho in stolisop SWOBI BN $424412 / 50$

THIS IS a very small sample of stock, Saf or Telephone
Please chech availability borlore orlering. Carriage all units
£10 Uff to be addes to Tota of Goors of Carriage.
$£ 175$
\qquad

MASTIR Blectronics-Microprocessors-Now! The PRAcirchl Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.
- Carry out full programme of experimental work on electronic \& computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagrams.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computcr/industrial equipment.

NewJob? New Career? New Hobby?
SEND THIS COUPON NOW.

Please send your brochure without any obligation to :
I am interested in: NAME
ADDRESS
[\quad RADIO AMATEUR LICENCE
\square CITY \& GUILDS EXAMS

Other Subjects

ETI 12 BLOCK CAPS PLEASE

OR TELEPHONE US 073451515 OR
TELEX 22758
(24 HR SERVICE)

electronics today international Book serivce

How to order: indicate the books required by ficking the boxes and send this page, together with your payment. to: El 1 Book Service: Argus Specialist Publications I.Id, 1, Golden Square. London W1R 3AB. Make cheques payable to ETI Borik Service. Payment in sterling only please. Ali prices include P \& P. Prices may be subject to change without motisas.
BEGNNERS GUIDE
Beghner's Qulde to lasic Progremming Stephenson 55
Beginner's Guide to Digital Electronics E5.35
dognnars guldo to Elactronics${ }^{25} 35$
Boginner Quide to integrated Circuitu ${ }^{25} .35$
aginers Guida to computer $\mathbf{£ 5 . 3 5}$
COOKBOOKS
Master IC Cookbook Hallimark 10.15
Nicroprocessor Cookboak M. Hordeski 67.70
C Op Amp Cookbook Jung £14.25
Pu Synthesiser Cookbook H. Kinley 67.70
Active Filter Cookbonk Lancaster 11.15
Typewrier Caokboon Lancaster E 11.15
CMOS Cookbook LancasterE11.85
ITL Cookhook Lancaster110.95
Micro Cookbook Vol. 1 Lancaste 5800
BASIC Cookbook K. Tracton£7.25
ELECTRONICS
Principles of Transistor Circults Amos 68.50
Design of Activa Filters with oxpariments Berlin 11.30
Easy to Buid Electronic Projects Brown E6.00
Electronic Devices \& Clicuit Theory Boylestad 13.20
How to build Electronic Kits Capel E3.55
How to Design and huild electronic instrumentation Carr 69.35
introduction to Microcomputars Daglaca £7.20
Electronic Components and 8ystems Dennis 15.00
Principles of Electronic instrumentation $\mathrm{De} \mathrm{Sa}_{8}$ 11.40
Glant Handhook of Computer Software 12.95
Glant Handhook of Electranic Circuite f17.35
Glant Hanthook of Eloctranic Proiect f11.75
Electronic Logic Circuits Gibson $£ 5.55$
Analysis and Design of Analogue Intagrated Circuits Gray E30.25
£11.30Easic Electronics Grob
Lasers - The Light Fantastic Halimark £7.70
Introduction to Digitel Electronics \& Logic Joynson E5.25
Electronic Testing and Fault Diennosis Loveday 65.Electronic Fault Dlagnosis Loveday26.25
Esesential Electronics A-Z Guido Loveday 67.50
Microelectronics Digital \& Analogue circuits and systoms Millman $\$ 12.70$
103 Projects for Electronics Experimenters Minis E34. 10
LSI System Dasign Muroga23.40
Powar FETs and their application Oxner 525.00
Practical Solid State Circuit Dasign Dlesky §12.85
Mastar Handhook of IC Circuits PowersE22. 15
Elactronic Drafting and Design Raskhodoff
VOM - VTYM Handhook Risso68.50
Video and Digital Electronic Displays Sherr 220.85Understanding Electronic Components SinclairElectronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sz$\$ 17.35$
Digltal Circuita and Microprocessors Taub$E 2.00$
Activa Fifter Handbook f7. 60 E7.6
Designing with TTL integrated Circults Toxas
Transistor Circuit Dasign Texas E15.2
Digltal Systems: Principles and Applications Tocci £12.95
Master Handbook of Telephonas Traister£10.0
How to build Metal/Treasure Locators Traister c6.00
59 Fun to Make Electronic Projects Tymony 6.9
COMPUTERS \& MICROCOMPUTERS
BASTC Computer Gamas Ah 56.35
From BASIC to PASCAL Anderson 2.95
Mastering Machine Code on your ZX81 T. Baker 87.25
UNIX - The Book Banaham C8.75
280 Microcomputer Handbook Barden
E11.9
E11.9
Microcomputer Maths Barden 69.9
Digital Computer Fundamentals Barter £15.55
Visicalc Book. APPLE Edition Bell £15.55
Visicalc Book. ATARI Edition Bell £23.0
Programming your APPL c9. 2Microprocessor Intarfacing Carr£7.70
Microcomputer Interfacing Handhook A/D \& D/A Carr f9.50
Musical Applications of Microprocessors Chamberlain E22.85
30 Computer Programs for the Home Owner in BASIC D. Chance £9.25
Microcomputers Dirkson 69.30
APPLE Parsonal Computer for Beginners Dunn£9.50
Mlcrocomputers/Microcomputers - An Intro Gioone£11.80

Plase send me the books indicated. I enclose cheque/postal order for f. Prices include postage and packing I wish to pay by Access/Barciaycard. Pleass debit my account.
\square
\square
\qquad
\qquad
\qquad

FOIL PATTERNS

The Active-8 delay unit board.

The board for the Spectrum Centronics Interface.

The top and bottom foils for the experimenters' DRAM.

FOIL PATTERNS

ETI

In order to ensure that you get the correct board，you must quote the reference code when ordering． The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．
1981
\square E／8106－8 Waa－Phase． 1.76
E／8106－9 Alien Attack 4 .00
（MM or MO． ．．．．．． ．．．． 3.05
■ E／8107－2 System A－Preamp ．．．．． 5.95
\square E／8107－3 Smart Battery Charger ．．． 2.27
E／8108－3 Hand Clap Synth． 4 .57
E／8108－5 Watchdog Home
Security（2 boards） 6.11－E／8109－1 Mains Audio Link（3 boards）8.45
－E／8109－4 Laboratory PSU 5.21
E／8110－1 Enlarger Timer． 3.91
E／8110－2 Sound Bender． 3.05
E／8111－1 Voice Over Unit ． 4.57
E／8111－2 Car Alarm． 3 .23
E／8111－3 Phone Bell Shifter． 3.40
E／8112－4 Component Tester． ． 1.71
1982
E／8201－3 Guitar Tuner（2 boards） 6.38
E／8202－1 Ripple Monitor 2.21
E／8202－2 Allez Cat Pest Repeller． 1.93
E／8202－6 Moving Coil Stage 4.01
E／8203－4 Ca11.66
■ E／8205－1 DV Meg 3.13
E／8206－1 Ion Generator9.20
－E／8206－4 MOSFET Amp Module 7.80
E／8206－5 Logic Lock 3.52
［］E／8206－6 Digital PWM 3.84
E／8206－7 Optical Sensor 2.00
－E／8206－9 Oscilloscope （4 boards） 13.34
－E／8207－7 TV Bargraph Main 5.24
E／8207－3 TV Bargraph Channel 2.62
E／8207－4 Hotwire． 3.02
E／8207－5 Bridging Adapter 2.74
E／8208－1 Playmate（ 3 boards） 8.28
E／8208－4 Kitchen Scales． 2.12
E／8209－2 Dual Logic Probe 2.22
E／8211－4 Pulse Generator ． 6.08
E／8212－1 ELCB 2.77E／8212－2 Servo Interface（ 2 boards）6.75
ㅁ E／8212－4 Spectracolumn 5.54

1983
［－E／8301－1 Fuel Gauge． 3.45
－E／8301－2 ZX ADC 2.59
－E／8301－3 Programmable PSU． 3.45
E／8303－1 SoundBoard 12.83 1.07
E／8303－4 Logic Probe 2.50
E／8304－1 Real Time Clock 8.74
（ 2 boards） 9.74
口E／8304－5 Stage Lighting－Display 3.45
E／8305－1 Compressor／Limiter ．．．．．． 6.19
E／8305－2 Single PSU 3.16
E／8305－3 Dual PSU ． 4.01
E／8305－4．2 NDFL Amp 7.88
E／8305－5 Balance Input Preamp．． ． 3.23
／8305－6 Stage Lighting 6.19
ㅁ E／8305－7 Stage Lighting－ Triac Board． 4.74
（ 3 boards） 3.62
8306－4 Immersible Heater． 2.30
E／8306－5 Atom Keypad． 5.18
\square E／8307－1 Flash Sequencer． 2.67
E／8307－2 Trigger Unit Main Board． 2.67
E／8307－3 Trigger Unit Transmitter 1.66
E／8307－4 Switched Mode PSU．．．． 16.10
E／8308－1 Graphic Equalisr 9.10
E／8308－2 Servo Fait Safe 2.93
ㅁ E／8308－3 Universal EPROM prog ．．． 9.64
E／8309－1 NiCad Charger／Regen 3.77
E／8309－2 Digger． 3.40
E／8309－3 64 K DRAM ．．．．．．．．．．．． 14.08
E／8310－1 Supply Protector 2.19
E／8310－2 Car Alarm 3.98
E／8310－3 Typewriter Interface 4.17
E／8311－1 Mini Drum Synth 3.07
E／8311－2 Alarm Extender． 3.21
E／8311－3 Multiswitch ． 3.59
E／8311－4 Multiple Port 4.34
E／8311－5 DAC／ADC Filter 3.22
E／8311－6 Light Pen 4.60
E／8311－7 Logic Clip 2.51
E／8311－8 MC Head（JLLH） 3.17
E／8312－1 Lightsaver． 1.85
E／8312－2 A－to－D Board． 12.83
E／8312－3 Light Chaser（2 bds） 7.54

1984
－E／8401－1 Vector Graphics． 8.27
（1）E／8402－1 Speech Board
（Mini－Mynah） 10.97
MODULAR PREAMP：
E／8402－2 Disc input（mono） 3.73
E／8402－3 Output stage（stereo）． 3.73
E／8402－4 Relay／PSU 3.73
E／8402－5 Tone，main（mono） 3.73
E／8402－6 Tone，filter（stereo） 3.73
E／8402－7 Balanced output（st） 3.73
E／8402－8 Headphone amp（st） 3.73
E／8402－9 Mother board 9.01
E／8403－1 Power Meter 5.81
E／8403－2 Z80 DRAM． 9.79
E／8403－3 Obedient Die 3.76
E／8404－1 School Timer． 4.07
E／8405－1 Auto Light Switch 4.01
E／8405－2 ZX81 EPROM Prog． 10.53
E／8405－3 Mains Borne RC 5.07
E／8405－4 Centronics Interface 4.09
E／8405－5 Vario 6.62
E／8405－6 Midi Drum Synth 3.59
E／8406－1 Oric EPROM Bd． 19.58
E／8406－2 Spectrum Joystick 3.30
E／8407－1 Warlock Alarm 8.19
E／8408－1 Joystick Interface． 3.07
E／8408－2 EPROM Emulator． 9.11
E／8408－3 Infrared Transmitter 3.70
E／8408－4 Infrared Receiver 3.98
E／8408－5 CMOS Tester 4.60
E／8409－1 EX42 Kybd．Interface 3.82
E／8409－2 Bansheee Siren． 3.19
E／8409－3 Dry Cell Charger． 2.80
E／8410－1 Echo Unit 3.92
E／8410－2 Digital Cassette 9.80
E／8410－3 Disco／Party Strobe 4.80
E／8411－1 AM／FM Radio（4 bds）．．． 13.02
E／8411－2 Control Port－control bd 12.15
E／8411－3 Control Port－$/$ O bd 6.33
E／8411－4 Capacitance Meter．．．．．．． 3.55E／8411－5 Video Vandal（3 bds）．．． 12.10E／8411－6 Temperature Controller．．． 2.88E／8411－7 Mains Failure Alarm．．．．．． 2.54E／8411－8 Knite Light3.25
E／8411－9 Stage Lighting Interface．． 3.73
E／8411－10 Perpetual Pendulum ．．．． 3.14E／8412－1 Spectrum Centronics ．．．． 3.51E／8412－2 Experimenter＇s DRAM．．． 14.08E／8412－3 Active－8：Motherboard ．．． 9.37E／8412－4 Active－8：Protection Unit 3.67E／8412－5 Active－8：Crossover ．．．．．． 3.67E／8412－6 Active－8：LF EQ．．．．．．．．．．．． 3.67

CLASSIFIED

Lineage:

40p per word (minimum 15 words)
Semi Display: (minimum 2 cms) $£ 11.00$ per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-4370699
Send your requirements to: Jason Inskip
ASP Ltd.,
1 Golden Square, London W1.

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers
Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy 86 Derby Lane, Old Swan, Liverpool 13 Tel: 0512283483 or 051-220 0590

IT'S ALARMING!

HOW MANY PEOPLE DON'T PROTECT THEIR VALUABLE EQUIPMENT. TO ADVERTISE HERE AND INFLUENCE THEIR DECISION RING JASON INSKIP.
TEL: 4370699×331

FOR SALE

AUDIO SIGNAL GENERATORS 10 Hz to 100 KHz sine, square, toneburst. Sine distortion 0.01%. Accurate callbration. 3 V variable plus switched attnuator. Mains powered, £47.50. 100W Mosfet audio amplifier boards with offset protection and thermal cutout. Now only $£ 19.50$ including postage. SAE for full details. Renardson Electronics, 119 Lomond Rd., Hull, HU5 5BS.

POWERTRAN CORTEX MICRO-

 COMPUTER; ready-built, 10 months old, hardly used: £350 o.n.o. (marriage forces sale!) C Pye 051-521 5762.VAT INCLUSIVE PRICES. 7805 1A 5v voltage regulator 33p. Resistors, 1/4W carbon film 5\% tol. E12 10ohms - 1M (61 resistors) 40p/pack or 0.75 p each. dil sockets 8 pin 6 p up-to 40 pin 18p. Also capacitors transistors and more. $50 \mathrm{pp}+\mathrm{p}$. Phone (0283) 703071 for price list. Hunt Electronics, P.O. Box 57, Derby, DE6 6SN.

EPROMS. Brand new $2716 £ 3.00$ each; 2732 A-4 £4.00 each; 2764$30 £ 5.00$ each; $27128 £ 18.00$ each; 2114 £1.00 each; 4116 £ 1.20 each; veroracks 19 " wide $3 v$ size £15.00 each. VAT. Postage extra. Camberley (0276) 2820 B .

BURGLAR Alarm Equipment. Please visit our $2,000 \mathrm{sq}$. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Ávenue, Bradford BD6 1DB. Telephone 0274731532.

HOME GUARD SYSTEMS

If you want protessional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our free illustrated catalogue.

Tel: 01-651 2449
Freepost, South Croydon
Surrey CR2 9PU
(no stamp required)

FOR SALE

STEREOAMPS 120 Watt $(60+60)$
.. Case -D.I.N. sockets and controls ... 9-40v/Smoothing ... protected outputs $3 / 15$-O.H.M. tested and diagrams £10/inc... KIA-8 Cunliffe Rd., likley.

BARGAIN PACKS our speciality. Send S.A.E. for details plus free samples. Projek Electronics, 44 Mathie Crescent, Gourock PA19 IYX.
100 WATT FET POWERAMPS £10. Automatic relay protection mirror input \& delayed switch-on.. glass/pcb built ... KIA-8 Cunliffe Road, llkley . . . Free slider/V.C.
POWERTRAN CORTEX Computer. Basic unit. Most IC bases fitted for optional extras (RS232, discs). £220 o.n.o. Bedford (0234) 766111 evenings) weekends except Friday
100W AMPLIFIER - $£ 9.95$ built or use the same board for 50 W , 150W, 200 W into 4 or 8 ohms etc., by using alternative output transistors \& P.S.U. S.A.E. for full details to ESS Amplification, Unit 11, Argyle St., Hull.

KITS

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aeroso cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60 p . Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance. Cornwall.

WRONG TIME?

M8F CLOCK is ALWAYS CORRECT never gains or loses, SEL.F SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also paraliel BCD for computer, receives Rugby 60 KHz atomic time signais, builh-in antenna, 1000 Km range, 879-70, get the right TIME.
Fun-to-build kit (ready made to order) includes ALL parts, printed circuit, case etc, by-return postage, list of other kits. CAMBRIDGE KITS
45 (TM) Oid School Lane, Milton, Cambe.

VHF TRANSMITTERS
$140 \mathrm{~mm} \times 370 \mathrm{~mm}$. Extremely sensitive, powerful. Operates from 1.5 V battery ready built tested only $\mathbf{\Sigma 9 . 9 5}$ (in kit form £7.50).

Also available Automatic Telephone Recorder buift tested $\mathbf{£ 1 1 . 0 5}$ (in kit form $\mathbf{8 8 . 5 0}$).

All fully guaranteed. Send cash, cheque or P.O. to:

SHAH ELECTRONICS

11 Livingatone Road
Southall, Middrlesex
UB1 1TH
ECOLIGHT(ETI July 84) full kit as per article. £21.05. P.C.B. only E4.50. GP Electronics, 87 Willow Tree Ave., Durham DH1 1DZ.

LINSLEY HOOD DESIGNS
 LOW DISTORTION AUDIO SIGNAL GENERATORS

AO 113 Kit	$£ 28$ (p.p. £1)
AO 149 Kit	£.39 (p.p. £2)

Super Hr-Fi Amplifer (ETI) P.C. Boards from $\mathbf{E 4}$

Send S.A.E. for further details:
TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01-807 3719

FOR SALE

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

MINIATURE FM TRANSMITTER8. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 912v operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. $£ 6.95$ inc; or ready built £8.95: Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate, Hailsham, E. Sussex BN27 2EW.

PLANS 'N DESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC20, C64 Pets, Commodore computers, printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

MISCELLANEOUS
IMPROVE YOUR PROSPECTS
with skills that all employers want. Train the easy way with modern home study courses from Ideal Schools. MODERN ELECTRONICS Takes you from the beginning, right up to C \& G 224 course, and BTEC national Level. COMPUTER PROGRAMMING Learn BASIC with a Spectrum included if you wish

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekiretics. Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

FREE! Parcel of components worth $£ 10$. Send only 80 p postatge. D. Horsley, 113 Clare Rd., Braintree, Essex.
UNAVAILABLE COMPONENTS? If we can't get them nobody can. Quote without obligation or charge. Quote or order period approx 2 weeks. No order is too small. Rickman Components, South Ronaldsay, Orkney KW17 2TW. Phone 085683-430.

$\begin{array}{lll}\text { D1ODES IN4001 } & 21 / 2 p \text { p. UB4005 3p. IN5400 } \\ \text { 7p.IN5404 } & 9 p . & \text { IN5408 } \\ 1 / 2 p . \text { BZY88C }\end{array}$ Zeners 4 ${ }^{1 / 2 / 2 p \text { p. }}$

Minimum 100 off each item add 15% VAT + 50p carriage.

Wobb Electronics
41 Whowick Street, Warringtion WA8 2AS Tet: 54174

DON'T LEAVE IT TO CHANCE, BOOST YOUR BUSINESS NOW BY ADVERTISING IN THE CLASSIFIED PAGES OFETI PHONE 01-437 0699 FOR DETAILS. BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH

have you got technical books you no longer need? OR Do you need to read up on a new topic? Then EXCHANGE We buy and sell previously We buy and sell previously read books on electronics and computing for list of currently available titles and details of our guaranteed buy back JAMES EIECTR

TRONICS, P.O. Box 2
Rothwell, Leeds LS26 OUY

DO YOU WISH TO LEGALLY TRANSMIT AUDIO SIGNALS OVER BRITISH TELECOM CIRCUITS?

We manufacture approved Interface Equipment for NARROW or WIDE BAND PRIVATE WIRE and PUBLIC SWITCHED TELEPHONE NETWORK circuits.
Also TELECOM LINE CIRCUIT SAFETY BARRIERS.

PARTRIDGE

 ELECTRONICSThe Mixer People
56 Fleet Road, Benfleet, Essex, SS7 5JN, England. (Telephone 03745 3256)

BUMPER BOX OF BITS

WOW! We've got so many components in stock, we can't possibly list them all - So buy a box. In it you'll find resistors, capacitors, displays, switches, panels with tran sistors, diodes, IC's etc., coils, pots... and so on. All modern parts - guaranteed a ONLY £8.50 inc. 48 page catalogue 50 p

ELECTRONICS WORLD

$t \in$ Dews Road, Salisbury, Wilts SP2 7 SN

SERVICES

PRINTED CIRCUIT BOARDS manufactured to your specification. Quality, Quick service. Competitive Prices. COPPER-CLAD fibreglass boards cut to size. 1 mm thick $£ 1.80$ sq. ft. $1.6 \mathrm{~mm} £ 2.20 \mathrm{sq}$. ft . Postage 75 p . Mondo Circuits Ltd, 35 Grosvenor Road, Twickenham, Middx. Tel: 01-891 5412.

SCOPES

Repaired \& recalibrated, all makes, all models.
Scopex Safgan, Older TEK TQ MENDASCOPE LTD

Otter House

Western Underwood, OIney
Bucks MK46 5JS
Tel: Bedford (0234) 712445

JBA
 ELECTRONICS

Manufactures to design or specifications. One offs, small batch prototypes. Analogue digital electronic equipment. Complete electronic service - no job to small.

1st Floor, 4a Lion Yard Brecon, Powys, South Wales Tel: (0874) 611177

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-of-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6 Phone (01) 0001 If England 987507 Mail order only please

MISCELLANEOUS

Abstract

\section*{AGENTS}

Wanted to Sell Computer Software for most computers. We now have the Dialog Electronics Part lin stock, Pools Winner \& Course Winner. We can supply business software, games anmd computer ad ons. Phone (0288) 417,9 up to 9 pm most nights for your free list and details about our agents.

SOFTWARE

APPLICATIONS

CORTEX SOFTWARE

For the Powertran Cortex computer FORTH - Supplied in two 2564 eproms. Totally standaione supports cassette, $5.25^{\prime \prime} \& 8^{\prime \prime}$ discs Price $£ 35.00$ inclusive DISCs - Forth utilities, use with above eproms, contains editor, assembler, and utilities. Price

AUTO-BOOT DISCS
FORTH - Use the Basic BOOT' command to downioad the Forth system, the fort eproms are not required. Price $£ 55.00$ inclusive. Coos - Adds tile support to Cortex Basic named program and data files. Includes forma Disc orders, please state 5.25 " or $8^{\prime \prime}$ s.a.e. with all enquiries to:-

```
LOMBARD SY8TEMS
18 Lombard Street, Lidllington
Bectord MK43 ORP
```


SEND FOR FREE

CATALOGUES \& PRICE LISTS Project cases for wah-phase, chorus/flanger \& graphic eq.

Computer leads, video \& audio leads
Plus many more items. SOLA SOUND
18 Barton Way Croxley Green Rickmansworth, Herts

WIRES 'N CABLES

EQUIPMENT

EPROM COPIER - STAND ALONE 2716-27128............ £175.00 TELEPHONE CONVERSATION RECORDER £ 75.00
2 LINES INTO 1 ANSWERING
MACHINE
Switching Unit
. $\mathbf{£ 3 0 . 0 0}$
From L.K.F. Systems Lid St. Albans. Tel: 55084

IF YOU WISH TO ADVERTISE THEN'PHONE DEBBIE ON 01-437 0699 AND BOOK THIS SPACE

Please place my advert in Electronics Today International for issues commencing as soon as possible.

1 am enclosing my Cheque/Postal Order/International Money Order for (delete as necessary) E.... (Made payable to A.S.P. Ltd)

All classified advertisements must be paid for in advance.

Please use BLOCK CAPITALS and include post codes.
Classiflcation
Name (Mr/Mrs/Miss/Ms)
Addrese (debto scoorangly)

Signature

Daytime Tel. No.

ADVERTISERS INDEX

B. Bamber 70
B.K. Electronics 6
B.N.R. \& E.S. 73
Cirkit. 22/23
Cricklewood Electronics 10
Crimson Elektrik 47
Cybernetic Applications. 12
Dateline 27
Display Electronics 56
Electrovalue 60
Greenbank. 47
Greenweld 59
Henry's Audio Electronics. 54/55
House of Instruments. 70
Hy-Tek Electronics 38
ICS 47
ILP Electronics 65
Kelan Engineering 37
Kemplant 82
Maplin OBC
Microprocessor Engineering 60
Microrange Electronics 66
Midwich. 28/29
MJL Systems Ltd 70
Newrad 59
Powertran IFC/IBC
Rapid Electronics. 8
Riscomp 21
RT.V.C. 60
R.V.M. Audiotronics 66
Ship Co. Ltd. 66
Skywave Software 59
SME. 82
Steward of Reading. 73
Systems Electronique 82
Technomatic. 14/15
TK Electronics 48
Watford Electronics 4/5

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

TAKKE COMPLEETE CONTROU Oronemse watith fhe

Mes M Milcoviroiled sampler

Onceagain, Powetran analezMMcombineto bingyou versatily๔ndtopauality fromapoductoutofthe realms @ffantasyand withinthereachofthe active musician

TheMcs 7 willake onysound, storeitandilayitback fromakeyboard (eitherMMIDlorlwoctave), Pitch bendor vibratocan beaddedandinfinite sustain is possitele thanksto@sophisticatear looping system

Allthe usualdelay linefeatures Qibrato, Phasing, Flanging ADT, Echo) are availéble with delays afupto32 secs.Aspecial interfaceenablessamplealsoundsto be

The MCS-1 glvesyoumany oftheeffects created by top profestional unitssuchas the Failightor lmulator But the
 you're: preparedito investyourtime, tis almost cheap!

Specification
MemoySize:Vandeleftom8 bytesto64klbytes,
Storage fime at32KHzsamplingrate:2seconds,
Storagetime at8kHzsamplingrates 8seconds,
Løngestreplaytime (forspecialeffects): 32seconds,
Converters,ADC\&DAC:810icompanding Dynamic Panger 72 बB.
AudloBandwiath Varidbleftom l2kHzto300Hz Intemal 4@oletrackingfitersforanti-aliasingand recovery,
Programmable widerangesinewavesweepgenerator MIDlconfrolranges 5 octaves,
+1 V octavecontolrange:2octaveswithoplional transpose@fafuither50ctaves,

Digitan|Delay line

Introduced in 1982, Poweitcin's DDLhas broughtaigital quallity effects to theusands of musicians. Still available in kit:omatonly Eile:00 + VATo

professional quality MIDI-controiled sampling unit

Write or phone now to place an order. Powertran Cybernetics Limited, Portway Industrial Estate, Andover, Hants, SP1 0 3EM. Telephone: 026464455

The amazing Maplin Catalogue is here again! The new edition is packed with hundreds and hundreds of new electronic components to bring you right up to date with all the latest developments. As all home constructors agree (and a good many professionals too) the Maplin Catalogue is the one essential piece of equipment they really need. And now with all our prices on the page the Maplin Catalogue is better value than ever.

On Sale From 10th November 1984.
Pick up a copy as soon as it's published at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue.
Price $£ 1.35+40$ p post and packing. If you live outside the U.K. send $£ 2.40$ or 11 International Reply Coupons.
I enclose $£ 1.75$
Name
Address

[^0]: Everything you need is readily available. Technomatic, Watford, Cricklewood and others suppy all of the semiconductors (but note that the TBP24S10 is usually listed simply as a 24 S 10) and the PCB is available from our PCB Service.

[^1]: All the articles listed above are at a late stage of decay in the Editor's in tray. However, the availability of space and other factors beyond our control (like the Assistant Editor being strangled by an innocent passer-by after one of his appalling puns) may limit our ability to bring them to you,

