

The advanced design of the Neptune 2 makes it the lowest cost real-life industrial robot.
It is electro-hydraulically powered, using a revolutionary water based system (no messy hydraulic oil!) It performs 7 servo-controlled axis movements (6 on Neptune 1) - more than any other robot under $£ 10,000$.
Its program length is limited only by the memory of your computer. Think what that can do for your BASIC programming skills!

And it's British designed, British made.
Other features include:
Leakproof, frictionless rolling diaphragm seals.
Buffered and latched versatile interface for BBC VIC 20 and Spectrum computers. 12 bit control system (8 on Neptūe 1).
Special circuitry for initial compensation.
Rack and pinion cylinder couplings for wide angular movements. Automatic triple speed control on Neptune 2 for accurate 'homing in':
Easy access for servicing and viewing of working parts.
Powerful - lifts 2.5 kg . with ease.
Hand held simulator for processing (requires ADC option).
Neptune robots are sold in kit form as follows:

Neptune 1 robot kit (inc, power supply)
Neptune 1 control electronics (ready built)
Neptune 1 simulator
Neptune 2 robot kit (inc. power supply)
Neptune 2 control electronics (ready built)
Neptune 2 simulator
£1250.00
£295.00
£ 45.00
$£ 1725.00$
£475.00
£52.00

ADC option (componencr ferto -ain cortur boarc) 895.00 Hydraulic power pack raso angembled) $£ 435.00$
Gripper sengor
Optional extra thre lingervo grocer
£37.50
£75.00
Commodore vic: 20 connector lead and plug-in board $\quad=1.50$
Sinclair Zx Suermul cornector lead $\quad \$ 15.00$

All prices exclusive of VAT and valid until the end of 1984.

mentor
 desk-top robot

This compact, electricaily powered traing robot has 6 axes of movement, simultanabusk. servo-controlled. It gives smooth operation. and its rugged construction makes it itsel for use in educational establishments. Other features include long-life bronze and nyion bearings, integral control electronics and power supply, special circuitry for inertial compensation, optional on-board ADC, and hand-held simulator as the teaching pendant Like Neptune, Mentor's program length is limited only by your computer's memory. Programming is in BASIC.

```
Mentor is all-gritish in design and -anufachure and comes in kit form at an astonishingly low price:
Mentor robot ke (inc power supply) Mentor Control electronics (reacy buit)
Mentor Simulator |requires
ADC octionl
ade octon Comoonents fit to control electronics board
\(£ 19.50\)
\(£ 12.50\)
Commodore Vic 20 connector lead and plug-in boand
£14.50
Sinclar ZX spectrum connector lead
£ 15.00
\(£ 345.00\)
§135.00
£42.00
```

All prices exclusive of VAT and validuntil the end of 1984.

Dave Bradshaw: Editor Phil Walker. Project Editor Ian Pitt: Assistant Editor Jerry Fowler. Technical Illustrator Paul Stanyer. Ad. Manager Kerry Fowler: Copy Control Jim Connell: Chairman

PUBLISHED BY
Argus Special ist Publications L:d. 1 Coilden Square, London W1R $3 A B$. DISTRIBUTED BY
Argus Press Saies \& Distribution L.ed
12-18 Paul Street, London EC2, 4,5
(British Isles)
PRINTED BY
The Garden City Press Ltd.
COVERS PRINTED BY:
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison
EDITIONS CANADA - Halvor Moorshead EDITIONS CANADA - Halvor Moorshead and their CERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC $\begin{aligned} & \text { Member of the } \\ & \text { Audit Bureau } \\ & \text { af }\end{aligned}$
 Audit Bureau of Circulation

Electronics Today is normally published on the first Fri of this publication including all articles, designs, plans drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conven tions are specitically reserved to Argus roperath
Publications Limuted and anv reproduction reoures the prior written consent of the Company. ©) 1984 Argus Specialist Publications Ltd \llcorner All reasonable care is taken in the preparation of the magazine contents, but
the nublishers cannot be held legally :esponsible for the publishers cannot be held legally responsible for errgrs Where mistakes do occur, a correction will nor-
mally be published as soon as possible afterwards. All mally be published as soon as possible afterwards. All
prices and data contaned in advertisements dre acprices and data contained in advertisements dre ac-
cepted by us in good faith as correct at ume of going to cepted by us in good fath as correct at ume of going to
press Neither the advertisers nor the publishers can be press Neither tesponsible, however, for any variations affecting
held rest price or availability which may occur after the publication has closed for press
\square Subscription Rates. UK $£ 14.35$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
Telex 8811896.

FEATURES

EDITORIAL

7
Following the collapse of their trusty soap box, the ETI team have been forced to seek another outlet for their effusions.

DIGEST. 9
Neglected press releases seek sympathetic readers.

CUSTOMISED ICs. 44
Precisely tailored to our readers ${ }^{\text {d }}$ requirements - an examination of this important new technique.

PROJECTS

LOUDSPEAKER SQUEAKER ... 17

Be it a woofer or a tweeter, Phil Walker's handy little gadget will make it squeak up for itself.

AM/FM RADIO21

A radio project at last - who says ETI isn't tuned in to its readers' wishes?

DIGITAL CONTROL PORT. 29
The final part of Mike Wynne Jones' design for Spectrum computers.

ACTIVE LOUDSPEAKER 36
Enough of this theorising! With Black and Decker in hand and tongue in cheek, Barry Porter describes the construction of the Active-8 system.

DIRECT-READING CAPACITANCE
 METER . 41

For the low Cs and the high Cs .
VIDEO VANDAL 50
The constructive way to pull a TV programme to bits.

ELECTRON SPEECH BOARD... 57 John Wike describes a speech synthesiser board for the Electron computer.

TEMPERATURE CONTROLLER. . . 63
This versatile circuit is clearly a few degrees above the average design.

MAINS FAILURE ALARM........ 66 Make a fuss about power cuts with the ETI Vogonoff.

KNITE LIGHT 69

The latest novelty from the ETI armoury - no kit car should be without it!

SPECTRUM STAGE LIGHTING

INTERFACE. 72
Right on cue - a design to makeour stage lighting unit easier to control.

PERPETUAL PENDULUM . . . 77 Damon Hart-Davis describes a more attractive desk-top toy.

INFORMATION

ETI BOOK SERVICE.	NEXT MONTH'S ETI 62
ETI PCB SERVICE	ADVERTISER'S INDEX 90
PCB FOIL PATTERN	

WATFORD ELECTRONICS
 $33 / 34$ CARDIFF ROAD, WATFORD, HERTS, ENGLAND
 MAIL ORDER, CALLERS WELCOME
 Tel. Watford (0923) 40588. Telex. 8956095

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, CASH, BANK DRAFT WITH ORDERS TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED, GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME
P\&PADD 75 P TOALL CASH ORDERS OVERSEAS ORDERS POSTAGEAT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

VAT

We stock thousands more items. It pays to visit us, We are situated behInd Watford Footb. Nearest Underground/BR Station: Wattord High Street
Open Monday to Saturday: $9.00 a \mathrm{~m}$ to 6.00 pm . Ample Free Car parking space available

 16p; 470 20p; 680 34p: 1000 27 p; 150031 p; 220026 p: 470072 p
TAG-END CAPACITOAS: $64 \mathrm{~V}: 2200139 \mathrm{p} ; 3300198 \mathrm{p} ; 4700245 \mathrm{p}: 50 \mathrm{~V}: 2200110 \mathrm{p} ; 3300184 \mathrm{p} ; 40 \mathrm{~V}: 4700$
180p; 25V: 2200 90p; 3300 98p; 40004700 98p; $10000320 \mathrm{p} ; 12000345 \mathrm{p}: 16 \mathrm{~V}: 22000350 \mathrm{p}$. 180p; 25V: 2200 90p; 3300 98p; 4000,4700
 1000V: $1 \mathrm{nF} 17 \mathrm{p} ; 10 \mathrm{nF} 30 \mathrm{p} ; 15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n} 36 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{f}$. 100 n 42 p .
POLYESTER RADIAL LEAD CAPACITORS: $250 \mathrm{~V} \quad$ FEED. THROUG

 CAPACITORS | TANTALUM BEAD CAPACITOAS |
| :--- |
| 35V: O. $1 \mathrm{uF}, ~ 022$ |
| 10 | $1028 \mathrm{p} ; 16 \mathrm{~V}: 22,3 \mathrm{3} 16 \mathrm{p} ; 47,6 \mathrm{~s}: 10$

18p; 15 36p; $2245 \mathrm{p} 33,4750 \mathrm{p}: 00$
95p; 10V: $1522.26 \mathrm{p} ; 33,4750 \mathrm{p}: 100$ 95p; 10V: $15,22,26 \mathrm{p} ; 33,4750 \mathrm{p} ; 100$
80p; 6V: 10055 p . MYLA
100V:
30 n
50 V
y

100V: 1 nF. 2, 4, 4nF, 10 6p; 15 nF .22 n . 30n. $40 \mathrm{n} .47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}, 100 \mathrm{n} 200 \mathrm{n} 9 \mathrm{p}$; 50v: 470nF 12p.	$0.25 \mathrm{~W} \log$ and linear values 50 mm $5 K-500 K$ single gang Graduated Bezels for above	80p	$\begin{aligned} & 680 \mathrm{O} \\ & 1 \mathrm{UF} 34 \mathrm{p} 2 \mathrm{u} 250 \mathrm{p} \end{aligned}$
AMIC CAPACITO	PRESET POTENTIOMETERS 0.1 W Miniature Vertical or Horizontal. 100R to 4M7 025 W Larger 100R to 3M3 Horz 12p 025 W Larger 200R to 4 M 7 Vertical 12p		ACCESS Ordera Just phone your orders through We do the rest Tet 092350234
47 nF 5 p . $100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$.			
200nF/6V Bp.			

AA179	15
AA129	20
AAY30	15
BAl00	15
BAX	20
BY100	24
$8 \mathrm{BY128}$	12
BY127 ${ }_{\text {CRO33 }}$	14 250
OA9	40
OAa 7	12
OAPO	12
OAT9	15
${ }_{\text {O }}^{\text {OAB1 }}$	20
OA990	15 8
CA91	${ }^{8}$
0295	8
OA200	8
1 N914	4
+ $\mathrm{NQ}^{1} 6$	5
$\begin{aligned} & \mathrm{N} 4001 / 2 \\ & \text { N } \mathrm{N} 4003 \mathrm{l} \end{aligned}$	5
1 N4004/5	6
$1 \mathrm{~N} 4006 / 7$	7
	${ }_{1}^{4}$
1 N5404	16
1 N5406	17
1 N5408	19
1544 1 15921	9
64/100V	40
6A/400V	50
6A/800V	60

EDITORIAL

In this issue, we have two projects that are the direct result of examinations in electronics. On page 50, Giles Read's'Video Vandal' was made as the practical component for an 'A'level electronics course; and on page 77, Damon Hart-Davies' 'Perpetual Pendulum' was the result of the requirements of an 'AO' syllabus.

These two projects are quite different, in complexity and in purpose. Yet there is one factor in common: both authors have used a lot of skill and resourcefulness to get the electronics to do what they want. Both authors spenta long time developing their own circuitry finding that at first it didn't work as intended, then modifying and trying again until the darned project did what it was meant to do.

This is the fundamental process of electronics: design a circuit to do the job, build it, try it out, and when it doesn't work (how many circuits do, first time?) find out why and modify. Without learning how to diagnose faults and design around them, we don't see how anyone can fully understand electronics.

Because of this, we are deeply worried by a growing tide of technical enquiries from people who are building ETI projects as part of their' O^{\prime}, 'AO' or' A^{\prime} - level or'Tech' course. We fail to see what anyone can gain from following someone else's footsteps so closely, even if they do understand the circuit they are building. However, the person who comes to us for advice frequently does not understand the circuit sufficiently to do the debugging and to pick up the odd error that has slipped past the ETI editorial team. Even more worrying, it's quite often painfully apparent that the person teaching them doesn't understand the circuit either.

The introduction of electronics into schools and colleges is something that should have happened many years ago; better late than never, but better even later than not properly. We are most concerned at the toleration - even encouragement - of some examining boards of non-original course work. The whole objective of electronics is the designing and building of circuits and we cannot see how anyone should be allowed to pass an examination in electronics if they haven't partaken, even in the smallest way, in this central activity.

Finally, a word to our older readers: don't worry, the' editorial' spot will not be a permanent feature of the magazine. We'll only be using it when we have something we think worth saying.

ETI

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Zap Your Silicon!

The above electron micrograph is of a portion of an 8085 IC's surface after it has been zapped with a simulated static discharge. It shows just what damage static can do to ICs.
The picture was supplied by Hartley Measurements Ltd, who are marketing a new computercontrolled unit which will test for devices' sensitivites to controlled static discharges. The unit can administer varying pulses, up to a maximum of 4 kV with a rise-time of 15 ns , and then, using a built-in curve plotter, display an analysis of the characteristics of every pin before, during and after the test.
The unit in question is called the Autozap 200 RD, and Hartley say that it makes the measurement of static sensitivity faster and more accurate than ever before. Hartley Measurements Ltd, Unit 4, Bear Court, Daneshill East, Basingstoke, Hampshire RG24 0 QT, tel 025656695.

FPLAs Come To Town

Texas Instruments have announced two field-programmable logic arrays (FPLAs) providing the highest performance available - propagation delays of 20 nanoseconds maximum/10 ns typical - and supplied in compact, 24-pin, 300-mil packages. By comparison, other 20- and 28-pin FPLAs offer propagation delays of 30 ns maxi mum/20ns typical and 50ns maximum $/ 35$ ns typical, respectively, and only the 20 -pin device is supplied in a space-saving package. The TIFPLA839 (three-gate outputs) and TIFPLA840 (opencollector outputs) have 14 inputs, 32 product terms and six outputs. Output polarity is programmable.

These sorts of devices are used as high-speed, datapath logic replacements. In most applica tions, designers use field-programmable logic to fill the gap between SSI/MSI catalogue (eg TTL) logic devices and large-scale integration (LSI) and gate arrays. Like programmable array logic devices, FPLAs are used primarily as random logic replacements to "glue" together system building blocks. They are used in applications including. minicomputers and superminicomputers, peripherals, professional computers and automated office equipment.
The basic FPLA logic structure is a programmable-AND array which feeds a programmable-OR
array. This configuration provides greater programming flexibility than widely used PAL devices. The FPLAs use a titaniun-tungsten (TiW) fuse technology developed at TI in 1970 to improve programming reliability. Proven TiW construction essentially eliminates the tendency of a blown fuse to grow back by insulating it with a layer of titanium oxide.
The TIFPLA830 and TIFPLA840 are fabricated in an oxide-isolated Advanced Schottky technology to provide 20 ns maximum performance. Each device consumes 180 milliamps maximum.
The TIFPLA839 and TIFPLA840 operate from a single $5 \mathrm{~V}(+/-5 \%)$ supply. The devices will be avaiable from TI and authorised distributors towards the end of this year. Military-temperature range versions, designated with an " M^{\prime} suffix, will be available later. Texas Instruments Limited, Manton Lane, Bedford, MK41 7PA, tel 023463211.

Digital
 Cassette Deck ir resident gnome still

 managed yet another boohoo, this time leaving off the supplier for the deck of the digital cassette deck. The supplier is, in fact, Cirkit (formally Ambit), the order code is 72-03600, and the price is $£ 38.00$ plus VAT plus P\&P. Unfortunately, Cirkit inform us that they are out of stock but they will have plenty in a month or so! Cirkit Holdings PLC, Park Lane, Broxbourne, Hertfordshire, tel 0992444111.- Hah! The cheek of it! Marshall's of 85 West Regent Street, Glasgow G2 2AW (tel 041332 4133) have used an illustration from Elektor on the front cover of their new catalogue. And they dare to charge 75 p for it! Well, we shan't give them a mention, shall we?

What's This Ear?

irkit have branched out into computing with the colla borative launch of a low-cost and potentially world-beating acoustic modern; their partners in the enterprise are Protek Computing Limited, the home computer product marketing and development specialists.

When they claim low cost, these chaps really mean it - the final price in the shops will be $£ 59.95$ for the modem, which will need a standard RS232 interface to drive it. However, do not despair if your micro doesn't have RS232; Cirkit and Protek will be marketing a range of adaptors, and Spectrum, BBC B and Commodore 64 versions will be avail able with appropriate software from the launch date. Prices are $£ 24.95$ for the Spectrum version and $£ 14.95$ for the other two.

The modems will be made by Cirkit and marketed by Protek. Although the unit was designed by Cirkit in what must be record time - six months from initial design to fult-scale production and marketing - the idea was hatched by both companies together, apparently due to them by chance occupying adjacent stands at a trade fiar.

The modem is seen as one in a series of collaborative projects between the two companies, although they were keeping tightlipped about what any of the future projects might have been. However, they do seem to have perceived a need in the home computer market for products that make it possible for home computers to be used for more serious applications than games playing.

The modem will enable computer users to use the telephone network to access data bases such as Micronet, Prestel and BT Gold, to exchange software and messages with other users, to send telexes and to use electronic mail services. It can be used to transmit signals to the $1200 / 75$ baud international standard. It can also operate on $1200 / 1200$, software selected.
Cirkit say that their position as a major supplier of specialist items to trade and amateur markets put them in a very strong position for the development of this device. They were able to obtain and incorporate the very latest in ICs, well ahead of their rivals. This combined with the speed of the designing and marketing mean that if the Cirkit/ Protek partnership can continue to deliver, they should become a formidable combination. Uncle Clive look out!

-01 Pा

EE STOCK DHEGRAYD GIRCUIT8 OVER 100,000 TTEMS INCLUDING: intel D8085AH-2 $£ 25.00$ D8271 £65.00 D8202 D8257-5 8255 D3002

HOT LINE DATA EASE

DGEM (C)

THE ORIGINAL FREE OF CHARGE dial U0 ONLINE NOW- 300 o baud, iUll duvilex CCCITI tones, 8 bit word. no parity 01-6791888

STILL IN STOCK

FP1500 Heavy Duty 25 cps daisy whee Brand New at $£ 499.00$ CALL FOR MORE DETAILS

COMPUYRE 'CAB'

All in one quality computer
cabinet with integral switched
mode PSU. Mains littering, and Iwin fan cooling
Originally made for the famous DEC PDP8 computer system costing thousands ol pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive $+5 v$ DC at $17 \mathrm{amps},+15 v$ DC at 1 amp and -1
DC at 5 amps. The complete unit is fully enclosed with DC at 5 amps. The complete unit is tully enclosed with
removable top lid, filtering, trip switch, 'Power' and 'Run LEDs mounted on Alitront panel, rear cable entries, etc etc. Units are in good but used condition - supplied tor 240 v operation complete with full circuit and tech, man Give your syatem that professional finish for only E4995 + Carr Dim 19"wide $16^{\prime \prime}$ deep $105^{\prime \prime}$ high Useable area 16 "W 10. "h $^{11} 5^{\prime \prime} d$.
Also available LESS PSU, with FANS etc. Internal dim.

 Miniature 240 Ve enuipment tan complete winh
 GovLu Je 3AR Dim $3^{3} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact BUHLER 69.11 .22 .8 .16 V OC MiCTO miniature reversibe fan Uses a brushle
senuo motar tor oxtremely high air flow aimoer sient trunimo ent hiot rairtiow 10,000
 E12.05 com piote with dath.
MUFFIN-CENTTAUR SIARDer
Tan supolied tested EX EOUIPMENT 240 vat

DUAL 5" DISK DRIVES

 major computer company, comprising COMPATIBLE Single sided fuive COMPATIBLE single sided drives in a struclured case with internal switched mode PSU The PSU was intended to drive both drives and an intelligent $Z 80$ controiler emoved leaving ample space and current on the $+-5,+12$ and -12 supply tor alyour future expansion requirements Supplied tested with 90 day guarante BRAND NEW condition with cable for BBC micro Ex STock at only $£ 259.00$

GE TERMIPRINTER A massive purchase of these desk top
prinier-terminals enables us to otter y hhewe quality 30 Cps ortinters at a SUPER LOW PriCE against their original cost ol Over f 1000 Unt comprises of tuil OWERT
electronic keyboard and prniter mech with electronic keyboard and printer mech with
print face similar to correspondence quality typewriter. Variable forms tractor unit enables full width - up to $13.5^{\prime \prime} 120$ column paper, upper - lower case, standard RS23 serial interface, internal vertical and adjustable baud rates, quiet operation olus many other features Supplied complete with manual Guaranteed working E130.00 untested E IS 3.00 .
Carr \& Ins $£ 10.00$

DATA MODEMS

Jange of EX TELECOM data modems Made to
mosi stringent mosi stringent spec and designed CCITT tone spec With RS 232 IO and working condition with data Permission may be required for connection to PO lines MODEM 20^{-1} Compact unit lor use with 1200 baud recerve. Data I,O via RS2 $322^{\circ} \mathrm{D}^{\circ}$ Socket. Guaranteed working with data $£ 49.95$
MODEM $20-2$ same as 20.7 but 75 baud ecenve 1200 baud transmil $E / 30.00$ coupler RS232 i/o £95.00 brand new. C 4. NEW DSL 2123 Multi Standard modern selectable V21 $300-300$ bos, V23 75-1200
V23 1200-75 full duplex. Or $1200-1200 \mathrm{haif}$ duplax modes Full auto answer via modiam or
CPU. LED status indicators CAL or ANS modes Switchable CCITT or BELL 1038 . 202. Housed in ABS case size only $2.5^{\circ} \times 8$.

K $9^{\prime \prime}$. $2886.00+$ VAT
For further data or details on other EX STOCK
modems contact sales oflice. Carrlage on all moderns

SUPER PRINTER SCOOP

HE BRAND CENTRONICS 739-2

\%ำ19
SPECIAL 300 BAUD MODEM OFFER
Another GIGANTIC purchase of these EX BRITISH TELECOM, BRAND NEW or little used 28 data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data
Communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2 B has all the standard requirements for data base business or hobby communications. All this and more!!

- Full remote control
- CCITI tone standard - Supplied with full data Modular construction
- Direct isolated connection

- CALL, ANSWER and AUTO modes - Built in test switching 240v Mains operation - Juear full guarantee

8" 19 MB WINGHESTER DISK DRIVE

Made in the UK by a subsidiary of the Worid's largest disk drive manufacturer MASSIVE 19 mb of storage to your computer system. Superbly constructed n a heavy die cast chassis the DRE 3100 utilises 3×8 " plattens in a dust ee cavity. All drive functions are controlled by microprocessor electronics using an INTEL 8035 cpu and FTL support logic Data to the outside world is via two comprehensive 8 bit TTL level bi directional data busses with full sfatu 12 bytes per sector, $+24,-24$ and $+5 \vee \mathrm{DC}$ supply, plug in card system, and compact size of approx. $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} \mathrm{~W}$ and 42 cm D etc, etc, make this item real snip.
 hence unguaranteed. Complete with 150 page manual, circuits and applications guide.

ONLY £225.00
Carriage 110.00

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of Drand new surplus allows a great QWERTY, tull travel

 ALPHAMERIC ${ }^{\prime 204 / 80}$ full ASCII 60 key, upper, iower + control key, parallel TTL output plus strobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+5$ \&-12.DC. ese. 30 .DEC LA34 Uncoded keyboard with 67 quality, GOLD, normally open switches on
standard X Y matrix. Complete with 3 LEE indicators 8 Vo cable - ideal micro
conversions etc. pcb DIM $15^{\prime \prime} \times 45^{\prime \prime} 524.95$

66\% DISCOUNT
 LECTRONIC
 COMPONEN

bargans we bargains, we have thousands of I.C. 5. Transisiors. Relays, Cap's. PC. 9 s. Sub-assemblies,
Switches, etc etc, surplus to our requiremenis Because we don I have sufficient stocks of any
one liem to inciude in our ad's we are packing ail these items in
at least 3 . housands of components at. giveaway prices' Guara
$2.5 \mathrm{kls} £ 4.25+$ pu $£ 1.25 \quad 5 \mathrm{kls} £ 5.90+£ 1.80$
$10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25 \quad 20 \mathrm{kls} £ 17.50+£ 4.75$

VIDEO MONITORS

At a price YOU can afford, our range of EX EQUIPMENT video monitors defy competition!! All are for 240 v working with
standard composite video inout. Units are pre tested and set for up to 80 col use on BBC micro. Even where MINOR screen burns MAY

1000's SOLD TO DATE

9" HITACH ${ }_{\text {white }}^{2 \mathrm{~cm}} \times 2$
12" KGM 320-321, high bandwidth input, will display up to 132 columns $\times 25$ lines Housed in attractive fuly ynclosed
brushed alloy case b/W only $£ 32.95$ GREEN screen E39.95 24" KGM large screen black $\&$ white
monitor fully enclosed in light alloy cas
and OMYY E55.00
14" ${ }^{\text {BRAND NEW Novex COLOUR type }}$
 GREEN TEXT Key, internal speaker and matching 80.0 lis . Fully guaranteed
Carriage and in

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents
include transistors digilal. linear. IC.'s tracs, guaranteed brand new full spec. with manu facturer's markings, fully guaranteed, $50+62.93100+85.15$.
TL 74 Series A gigantic purchase of an IC.'s enables us to offer $100+$ mixed "mosily TL" grab bags at a price which two or three chips in the bag would nnormally
cost to buy Fully guaranteed all iC's full
$\operatorname{spec} 100+E 6.90200+E 12.30300+E 19.50$

DEC CORNER

\section*{BA11-MB
 $£ 385.00$
 | | £2100.00 |
| :---: | :---: |
| DLV11-J4 x EIA inlerface | E310.00 |
| DUP11 Sych Serial data i/o | E650.00 |
| DZ11-B 8 line RS232 mux board | ¢650.00 |
| LA36 Decwriter EIA or 20 ma loop | P E270.00 |
| LAXX-NW LA180 RS232 serial in | interface |
| LAX34-AL LA34 tractor feed | ¢85.00 |
| MS11-JP Unibus 32 kb Ram | ¢80.00 |
| MS11-LB Unibus 128 kb Ram | ¢450.00 |
| MS11-LD Unibus 256 kb Ram | E850.00 |
| MSC4804 Obus (Equiv MSV1 1-L) | |
| 256 | £499.00 |
| PDP11/05 Cpu, Ram, Vo, etc | £450.00 |
| PDP11/40 Cpu, 124 k MMU | £1850.00 |
| RT11 ver 3B documentation kit | £70.00 |
| RK05-d 2.5 Mb disk drives | £650.00 |
| KL8JA PDP 8 async i/o | £175.00 |
| MI8E PDP 8 Bootstrap option | £75.00 |
| VT50 VDU and Keyboard- | |
| current loop | $£ 175.00$ |

1000's of EX STOCK spares for DEC peripherals. Call for details. All types of omputer equipment and spares wanted
PROMPT CASH PAYMENT

[IEFL高
 ELELTRUAHS

Th paices plus vat

Ali prices quoted are for U.K. Mainland paid cash with order in Pounds Stirling PLUSVAT. Minimumorder value $\mathbf{1}$ 2.09. Minimum Credit
Card order $\mathbb{I} / 0.00$. Minimum BONA FIDE account orders from Government ERe e9 Where post and packing not indicated plesse ADD Governmet Wis, Schoots, Universilies and established companies We reserve the right to change prices and specifications without notice. Trade, Butk and Export enquines waicome. 10.15-5.30

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Stressless IC Clip

0K Industries' new 'ChipClip' IC test clip attaches by means of a snap action locking ring which simply slides down and snaps gently into the closed position for reliable positive contact.
OK say that the result is no stress to the IC because the clip spring is loaded in an outward, rather than inward, direction. Spacing in the open position is just enough to allow it to slide over the IC.
Clip contacts are gold plated and bodies are high dielectric nylon. The units are available in 8 , 14, 16, 24-28, 36-40 and 64 pin sizes or in a kit form with the most commonly used sizes in a handy carrying case. OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants SO5 4AA tel: 0703 619841.

Gauge Your CRT

CMCO Electronics, Britain's largest supplier of data CRTs has recently introduced a simple defects control gauge to allow engineers to measure faults on cathode ray tubes.

EMCO Electronics will be pleased to send one of these, free of charge, to engineers on request.
EMCO say that they distribute Britain's widest range of CRTs, from Fivre and VTM, as well as data display kits and monitors from Indesit. EMCO Electronics, Unit 1, 129/131 Coldharbour Lane, Camberwell, London SE5 9 NY, Tel: 01-737 3333.

- Brunel Computer Clubwill be at the Home Tech'84 Exhibition, October 26-29, Bristol Exhibition Centre, and they will be displaying several Cortex computers (ETI, Nov1982 et seq), and will be holding a Cortex surgery - all advice and help free of charge.
trative change that has already tahen place, presumably as part of the preparations for the sale of British Telecom.

The second change removes the restriction on the codes that can be used for radio teleprinter (RTTY) - up until now, amateurs have only been allowed to use International Telegraph Code No 2 with transmission speeds of 45.5 or 50 baud.

The second issue of the Anglia consumer wallchart is now available iree of charge and features many new items. These include a new range of teletext ICs, an extended audio IC range and also a competitively priced universal tripler. Anglia consumer say that they ensure that all orders received beiore $4.00 \mathrm{p} . \mathrm{m}$. are des patched the same day with Access/Visa credit cards readily accepted. For your free copy, contact Anglia Consumer, Burdett Road, Wisbech, Cambs., PE13 2 PS, tel: 094563281.

Amateur Licence Changes

When they come to re-new their licences, the $55,000-$ odd radio amateurs (many of whom read ETI, and one of whom edits ETI) will notice some changes.

In fact the main change is cosmetic: the schedule, or table of frequencies available for use, is being tidied up to make it easier to see what frequencies are avait able for what sort of transmission, and whether amateurs have primary or secondary status on the band concerned.

However, there are a couple of non-cosmetic changes tucked away in the small print. The first is the transfer of functions of the Radio Interference Service from British Telecom to the Department of Trade and Industry; this is simply a reflection of an adminis

A Case For Fingers

Ceramics
 Get Smaller

Breaking the size barrier are two new series of multilayer ceramic capacitors from G. English Electronics. Constructed using newly-developed techniques, these highly compact mul tilayer types are claimed to be ideally suited to applications in which film capacitors are conventionally used.
The X5 T and Y5 V series of multilayer ceramic capacitors, manufactured by NEC, are produced using a new, low-temperature fired technology and high dielectric-constant material. The ceramic formulation and processing techniques employed have enabled the introduction of these compact multilayer ceramic capacitors to meet application requirements normally satisfied by the more bulky film capacitor type.

Series X5T is available in preferred values from 0.001 to 1.5 uF , $\pm 10 \%$ or $\pm 20 \%$, at voltage ratings of 25,50 and 100 V DC. The series has good frequency characteristics, offers high reliability and high volumetric efficiency. The Y5 V series may be supplied in preferred values from 1000 pF to 4.7 uF , at voltage ratings of 25 V DC or $5 \mathrm{~V} D C$. The Y 5 V features an extremely high capacitance-tovolume ratio and low impedance at high frequencies, and is intended principally for bypass applications.

Both series of capacitor may be supplied taped, for automatic assembly, or individually, and both can withstand flow soldering. G. English Electronics Ltd, 34 Bowater Road, Woolwich, London SE18 5 ST, tel: 01-855 0991.

Aslim, modern design characterises the new 'Manta' keyboard case available from West Hyde.

It is moulded in beige ABS and incorporates a shallow ledge at the front to provide a hand rest for the keyboard operator. The case has moulded bosses to support a PCB and cable clamps for both circular and ribbon cables. The base plate is zintec steel which aids rigidity and provides extra weight to prevent unintentional movement.
The Manta keyboard case is available in three widths from West Hyde and is supplied complete with a cable grommet, feet and screws. West Hyde Developments Ltd, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET, tel 0296 20441.

Superkit II Not The Movie

Superkit II is the second in the practical digital electronics Superkit series from Cambridge Learning It consists of a dual instruction manual, written for use with both the Eurobreadboard and the GSC EXP300 breadboard, and a set of components in a plastic wallet. The components and breadboard from the first Superkit are also required to complete all the circuits.
The components in the kit include resistors, capacitors, a sever-segment LED display, integrated circuits, and wire.

VDU LookAlike LCD Controller

Norbain Displays Limited, the UK's leading specialist distributor of visible components, has launched a single chip graphics LCD controller designed to make graphic LCDs comptible with standard VDU applications in terms of the facilities available. "What a good idea", you might say, as we did here at ETI/

Manufactured by Epson in Japan and designated the E1330, the device is capable of receiving and interpreting all control commands and data from the 8080 and 68000 family microprocessors. The E1330 controller chip has been designed specif ically to enable graphics LCD parels to directly replace VDUs in most typical applications.
The E1330 uses scrolling and layered functions to reproduce data stored in the display memory

Superkit II explains how to design and use: adders; subtractors; couters (ripple, up/down, synchronous, decade, and Gray code); registers; pattern recognisers; and seven-segment displays.

Cambridge Learning say that the practical kit is backed up by their theory course, Digital Computer Design.
Superkit II costs $£ 16.00$
Superkit costs $£ 22.00$ or both kits together are $£ 35.00$, (all prices inc. VAT and $p \& p$) and can be ordered direct from: Cambridge Learning Ltd, FREEPOST, Unit NR, Rivermill Site, St Ives, Huntingdon, Cambridgeshire PE17 4 BR. Telephone orders from credit card holders can be accepted on 048067446.
as diverse graphics on an LCD. As a complete LCD control circuit, it frees the main processing unit from all display tasks while providing features like standard text, using a built-in character gent erator, graphic text, inverse, underline, graphics, simple animation and flexible scrolling.

The device features a character display mode with 80 characters per line and 16 lines per screen, flexible scrolling by page or partial page, a two-screen layered function with reverse characters and underline and an internal and external character generation capability as well as a graphic display mode of 640×256 dots with a layered function of up to three screens.

Other features include a 64 K display memory, an 8 bit parallel interface, high speed CMOS LSI and a clock rate of 6 MHz all operating on a single 5 V power supply. Norbain Displays Ltd, Norbain House, Boulton Road, Reading, Berkshire RG2 0LT, tel 0734864411.

Life-Saving Timepiece

T he watch on this man's wrist is much more than a timepiece. It could save his life.

In an emergency, a tiny circuit inside the wrist-watch can trigger a miniature radio device which either transmits a warning signal to a matching receiver in a neighbour's house, or automatically dials up the number of a 24 -
hr monitoring service. The unit can also be housed in a decorative pendant to be worn round the neck.

This valuable security device for elderly or housebound people is manufactured by Emerald Electronics Ltd of Alnwick. The printed circuit board, no more than an inch square, is made by BTapproved contractors GSPK (Circuits) Ltd, Manse Lane, Knares borough, N. Yorks HG5 8 LF, tel; 0423865641.

New Style Z I F Sockets

N°o force is required to insert or remove ICs from Dage's new ZIF series IC socket range. The sockets have a hinged base with fingers that protrude by approximately 1.5 mm at either end. After the IC is inserted, a little pressure on these fingers cause the hinge to click over, locking the IC's legs in place.
Four versions are available, for

ICs with 24-, 28-, 40- or 48 -pins. All are low-profile style with a height of 5 mm . The contacts are made of copper-beryllium with either tin-lead or selective gold plating according to order.

The sockets are stackable, side-to-side, for high density PCB layouts. A lead-in entry point ensures easyICinsertion, with the point of contact located 0.8 mm from the top of the socket. Dage Eurosem, Rabans Lane, Aylesbury, Bucks HP19 3 RG, tel 0295 33200. Telex: 83518.

0	\%
	EuR Lar AARM
Tulw wix wiveveve	
1-2	
0	Omp LivNet Louos
emp	
19	
\%	Tremo casseri beck
	rem
	W
Sin	
	0 O $\mathrm{T}_{5}=$
	Simed
	B. K. ELEGTROTIGS

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Hurry now to re-new your subscription to the British Amateur Electronics Club, as their subscription rates rise as of 1 st January 1985 from $£ 5.50$ to $£ 7.00$ (UK and Eire; otherwise from $£ 7.00$ to $£ 8.50$ surface mail or $£ 8.50$ to $£ 12.50$ airmail). BAEC may be contacted at "Dickens", 26 Forrest Road, Penarth, South Glamorgan.

0ne of the problems of DIY loudspeaker building is that you can't tell what the results will be like. However, Wilmslow audio have solved this problemby opening a hi-fi studio at Church Street, Wilmslow, where you can hear ready-made and kit loudspeakers and amplifiers. Wilmslow Audio Ltd, 35/39 Church Street, Cheshire SK9 1AS.

Philips Test and Measuring is offering a useful, full-colour A2-size poster giving essential facts about their very latest instrumentation. The poster, free on application, would grace any laboratory or test room wall and can be obtained from Philips Test and Measuring, Pye Unicam Ltd, York Street, Cambridge CB1 2PX, tel 0223-358866, telex 817331.

Buff Up Your Computer

Developed specifically for the home computer enthusiast and the semi-professional user by Memorex's Media Retail Division, the Computer Care Kit will be available from maior retailers and independent stores. However, this is one clean-up kit that won't stop you playing those smutly computer games, reported in certain Sunday papers.

The comprehensive range of products consists of: VDU and TV Screen cleaning kit, comprising twenty foil sealed sachets of cleaning tissues and two ant:static cloths and priced at $£ 4.9 .5$; case and keyboard cleaning kit also priced at $£ 4.95$ and compris. ing aerosol spray foam, cleaning cloth and cotton buds; disc drive and head cleaning kit with ten disposable head cleaners and aerosol spray cleaner for wet and dry action, costing $£ 9.95$; and a storage case for 5.25" floppy discs, costing $£ 2.25$. Each kit comes complete with a set of instructions.

World's Fastest ROMs, Episode 192
A new line of high density 256 K CMOS ROMs with access times as fast as 75 nanoseconds is now available from Solid State Scientific, Inc, Willow Grove, PA, USA. These new devices, announced recently, are claimed to be the fastest 256 K CMOS ROMs in the world. No doubt, it will not take long for someone to come along and dispute that claim.
The ROMs have been under development for approximately one year and are now being produced on a 2 micron HCMOS II process. Price in production volumes is below \$20 each. On request, prototypes can be made available in as little as three weeks; and production volumes in seven weeks.
The new ROMs feature worstcast access times of 100 and 120 ns over the commercial temperature range (0 to +70 C). Industrial (-40 to +85 C) and military $(-55$ to +125 C) temperature range devices are avait able with 150 ns worst case access times. Under typical operating conditions, all versions operate with access times as fast as 75 ns . They also feature, under worst case conditions, operating current of 25 mA maximum, standby current of 100 uA maximum, and LSTTL-bompatible inputs and outputs. In addition, they are asynchronous and fully static; no clocks or strobes are required.
They are pin compatible with NMOS EPROMs, so the EPROMs can be used for prototyping, providing due allowance is made for the EPROMs slower speed. More complete details on these 23 C 256256 K CMOS ROMs are available upon request from Solid State Scientific, Inc., 3900 Welsh Road, Willow Grove, PA 19090, USA, tel (USA) 215 657-8400.

Approved Irons

The British Electrotechnical Approvals Board for Household Equipment have given their seal of approval to Cooper Tools for the company's Weller SI15, SI 25 , and SI 40 soldering irons, plus the WH1 and WH2 hobby kits. These are the only solderingrelated products currently on the market which are entitled to display the BEAB mark.

The BEAB mark indicates that an electric appliance meets the requirement of the British Standard BS 3456 and enables consumers to identify products which are of sound manufacture and are deemed safe to use. This is a particularly important form of assurance since the use of inferior
electrical goods can result in serious or sometimes fatal accidents.
Cooper Tools' emphasis on product quality and safety was further highlighted by the presentation of a National Safety Award from the British Safety Council. Only a small percentage of Britain's workplace qualify for this award each year which is won by achieving a lower accident incident rate than the national average. Cooper Tools Limited, Sedling Road, Wear, Washington, Tyne \& Wear, NE38 9BZ, tel: 0914166062.

SPEAKER SQUEAKER

*

For roadies who have better things to do with their vocal chords than shout 'testing' all the time, Phil Walker has designed a self contained loudspeaker tester.

Ifyou ever find yourself setting up loudspeaker systems for discos, groups or public address etc, sooner or later you will need to check various parts of the equipment. This tiny piece of test gear should make life a lot easier.

One way to test continuity is to use a mulimeter on the ohms range but this has at least two disadvantages in that you have to look at the scale (often in poor light) to see what is happening and it does not prove that a loudspeaker is working even if the resistance reads correctly. This project has the advantage that it gives an audible indication of continuity from its built in sounders and will also drive a loudspeaker connected to its terminals.

The Circuit

The heart of the project is the LM3909 IC. This was originally designed as a low power LED flasher but will function quite well as an audio oscillator under the right conditions. A notable feature of the device is that it will operate from a single 1.5 volt dry cell. This enables us to build a very simple and compact unit.

Most of the circuit is completely standard except that we have used two low impedance earpieces instead of a loudspeaker. This was done so that the complete project would fit into a small plastic box. If you can find a small loudspeaker with a coil impedance of 16 ohms or more this would do instead or alternately an eight ohm speaker in series with a coil (50 turns of 22 swg enammelled wire wound on a 2BA steel bolt) may be worth a try.

In operation the battery supply

Fig. 1 Circuit diagram of the Speaker Squeaker.

HOW IT WORKS
All the active components in this project are contained in the LM3909IC. This can be considered as a Schmitt trigger switch and a few resistors. In this case there is no polarity change between input and output. C1 provides feedback between input and output while the rest of the components help to determine the frequency of oscillation.

Fig. 2 Internal circuitry of the IC used.

is completed via the test probes and the external circuit. If the resistance of the external circuit is low enough the LM3909 will oscillate and produce a tone from the two earpieces. The frequency and loudness of this tone will depend on the resistance and reactance of the external circuit and the characteristics of E1 and E2. Our prototype was just audible at 100 ohms resistance between the probes.

Construction

This project is a little unusual in that we have not designed a PCB to go with it. Instead we used a small piece of $0.1^{\prime \prime}$ matrix Veroboard 13 by 9 holes. This accommodates the four components quite easily, and the only point to watch is that four of the tracks need to be broken as shown in the diagram. Make sure the tracks run parallel to the long edge of the board.

IC1 and IC2 must be inserted the right way round and the battery connection must also be correct.
The wires to the battery were soldered in place but a holder could be used if you wish and have room.

The earpieces E1 and E2 usually come with a length of wire and a miniature jack plug already fitted. These should be cut off leaving about 2 inches of wire on the earpiece. One wire from each earpiece should then be soldered together and insulated with tape or sleeving. The remaining wires can be connected to the cicuit board.

In our model the probe wires were knotted inside the case and went out through a small grommet

PROJECT : Speaker Squeaker

This prevents the wires from being pulled out. The earpieces were pushed through holes in the side of the case and secured with a little glue. The battery was held in a self adhesive cable clip and the circuit board was fastened down with a touble sided sticky pad.

Fig. 3 Veroboard layout for the project.
PARTS LIST

BUYLINES

No problems here at all. There's no PCB to worry about and the case, earpieces and IC are all available from a number of suppliers including Maplin, TK Electronics and Cricklewood.

RESISTOR

R1
CAPACITORS
C1 C2
$1 \mathrm{k} 01 / 4 \mathrm{~W}$ carbon film

100n ceramic disc
$10 \mu 16 \mathrm{~V}$ electrolytic
SEMICONDUCTOR
IC1
LM3909

MISCELLANEOUS

E1,2
B1
miniature 8 ohm earpieces 1.5 volt dry cell (preferably alkaline)

Verobox type 202-21025 $2.9 \times 2.0 \times 1.0$ inch; test probes; piece of Veroboard, 9 by 13 holes; grommet or strain clips relief bush; battery holder or clip.

can Cirkit.Making it bigger and better:
 Cirkit stock all the
 $1-30 \mathrm{~V} 1 \mathrm{~mA}-2 \mathrm{APSU}$
 Selected Lines

components, accessories and tools and the kits you're looking for. Designed and selected to offer the best possible standards at the best possible price.

Cirkit Kits

CIRKIT ELECTRONICS TOOL KIT Contains: 15 W Soldering Iron 2 spare bits, heat shunt, solder, pliers, cutter. screwdriver
$40-00007 \quad 15.56$
AUDIO FUNCTION GENERATOR
Versatile waveform generator with sine,
triangular and square wave outputs.
On board mains PSU
$41-01302 \quad 27.00$
STEREO 40W AMPLIFIER
Single board 40W per channel stereo
amplifier
41-01301 $\quad 38.00$
STEREOVU METER
5 LED per channel stereo VU meter for
$\begin{array}{llll}\text { use with stereo amplifiers } & 41-01401 & 11.50\end{array}$ 5W AUDIO AMP
A very compact audio output stage for use in a wide range of equipment $\quad 41-01406 \quad 4.60$ UNIVERSAL AMP
A universal audio pre-amp with gain of 10

41-01604 6.45
MONO REVERBERATION UNIT
Single channel, spring line reverb unit
to add echo effects to tape
recording etc.
$41-01602 \quad 10.00$
TONE GENERATOR AND DETECTOR
Very low distortion tone generator
and signal detector for circuit fault
finding
$41-01603 \quad 10.45$
10MHz DFM
8 Digit LED digital frequency meter
$\begin{array}{llll}\text { and period measuremient } & 41-01500 & 54.10\end{array}$
50 MHz PRESCALER
Extend the range of the 10 MHz DFM to
50 MHz
41-01501 8.55
$1-5 \mathrm{MHz}$ PRE AMP
Low frequency pre-amp and wavelorm
shaper for the 10 MHz DFM
41-01502 5.13
70 cm PRE AMP
Low noise, miniature pre-amp for the
70 cm amateur band
41-01506 4.78
70 cm CONVERTER
70 cm to 144 MHz low noise converter featuring pre-aligned helical filter, schottky diode mixer and low noise transistors

Adjustable 1-30V Power supply with pre-setable current limit from 1mA-2A $\quad 41-01600 \quad 37.46$ $5.12 \mathrm{~V} 1 \mathrm{~A} P S U$
Adjustable PSU from 5-12V with current
protection. 1 amp max output 41 -01504 6.45 1-30V 15 A PSU
$1-30$ volt adjustable PSU with protected output up to 1.5 Amps
$41.01402 \quad 10.45$
3DIGITLED DVM
DVM to read up to 99.9 volts or configured as an ammeter to read up to 9.99 amps $41-01403 \quad 17.00$ INFRA RED LINK
Single channel IR Link with relay output
$41-01300 \quad 9.60$
TEMPERATURE SENSOR
Thermistor based temperature sensor
with relay output $\quad 41.01303 \quad 6.20$ LOCOMOTIVE SOUND GENERATOR
Realistic steam sound and whistle for model railways $\quad 41.01304-920$ LAMP DIMMER
Control lamps and drill speed $\quad 41-01305 \quad 5.70$ WATER LEVEL ALARM
Alarm to indicate high water level or
flooding
$41-01601 \quad 2.70$
3 NOTE CHIME
Doorbell chime with adjustable
tones
41-01503 $\quad 7.00$
2M PRE AMP
Miniature low-noise MOSFET pre-amp
for the 2 m amateur band
41-01307 3.91 2M CONVERTER
Low noise $144 \mathrm{MHz}-28 \mathrm{MHz}$ amateur
band converter
2M POWER AMP
20W - 10dB gain - power amplifier for the 2 m
band. Automatic TX switch over, RX
pre-amp, robust construction 41-01404 32.87

CRYSTAL CALIBRATOR
Crystal reference calibrator for alignment of receivers, outputs at 4, 2, 1MHZ,
100,50 AND 10 KHz
41-00801
CB NOISE SQUELCH
Improves to mute performance of the
majority of CB rigs
41-01605 $\quad 5,40$
CENTRONICS INTERFACE
Connect your personal computer to
the outside world via the Centronics
printer output
41-01406 22.50

70 cm PA

10W Power amp to boost the output of
handheld and portable 70 cm
transceivers

BBC to Centronics Connect Cable Dragon to Centronics
Connect Cable
C 12 Computer Cassette
Interface 84 multiplexed Ram Card Z80A industrial controller EPROM Eraser $84 T$ 6502 Micro Controller 6802 Micro Controller PB2720 80dB Piezo Buzzer 10M15A 10.7 Center Freq 10M08AA 10.695 Center Freq. FC177 LCD (Freq.) CM161 LCD Clock $8 \times 0.3^{\prime \prime}$ IC socket 14×0.3 " IC socket $16 \times 03^{\prime \prime} \quad$ IC socket 6 V KUIT-A Relay 9V KUIT-A Relay 12 V KUTT-A Relay CX120P COAXRelay CX520D COAXRelay CX540D COAXRelay (BNC)

03-10019 7.25
03-10017 725 21-00012 0.55

40-84000 $\quad 59.95$ 40-82000 $\quad 54.95$ $40-82001 \quad 59.95$ 40-65020 54.95 40-68020 $\quad 54.95$ 43-27201 0.55 20-10152 2.10 20-11152 3.49 39-17700 $\quad 20.00$ 40-80161 $\quad 8.25$ 28-00800 $\quad 0.12$ $28-14000 \quad 0.13$ 28-16000 $\quad 0.13$ 46-80000 $\quad 0.48$ $46-80001 \quad 0.48$ $46-80002 \quad 0.48$ $46.90120 \quad 11.96$ $46-90520 \quad 26.98$

Name
Address

Telephone
Area of Special Interest
ETIII

HT-320
Multimeter ($20 \mathrm{k} \Omega-\mathrm{V}$) $56-83201 \quad 14.00$
Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $£ 5$ please. We reserve the right to vary prices in accordance with market Iluctuation.
Just send for our catalogue or visit one of our three outlets at:
200 North Service Road, Brentwood, Essex CM14 4\&G 53 Burffields Road, Portsmouth, Hampshire PO3 5EB;
Park Lane, Broxbourne, Hertfordshire EN10 7 NQ.

To: Cirkit Holdings PLC, Park Lane,

Broxbourne, Hertfordshire. EN10 7NQ.
1 enclose 85 p. Please send me your latest catalogue and $3 \times \& 1$ discount vouchers! If you have any enquiries please telephone us on Hoddesdon (0992) 444111.

x

Cirkit

AM/FM PORTABLE RADIO

It's quite a long time since ETI last featured a radio project, as a glance at last month's index will show. L. Boullart makes good the omission.

As everyone knows, it is not really possible to compete with the majority of commercial portable radios. However there still exists something of a gap between the very cheap, flimsy, gadgets and the expensive, sophisticated sound machines.

Apart from the fun of DIY, it is worth the effort to build a reliable receiver with good sensitivity and acceptable sound quality at a reasonable price.

The present design is not spectacularly innovative as it uses welltried techniques, but it is absolutely reliable. Practically all alignment problems have been eliminated so anyone who can hold a soldering iron should be able to achieve optimum results.

The block-diagram of figure 1 shows the different sections of the receiver. These consist of an AMFM turnhead, separate IF amplifiers for AM and FM, an audio IC and the power supply.

Tunerhead FF 317

Although this is not the latest word on tunerheads, it contains a well-made FM amplifier with MOSFET VHF amplifier and a separate transistor for the oscillator circuit. Apart from the three-section FM tuning capacitor it also contains a two-section AMgang, used as CV2. A 3:1 reduction drive is also provided, which will allow a simple dial assembly. The positive supply voltage must be connected via a 150 ohms resistor.

AM Section

The heart of the AM amplifier and detector (Fig.2) consists of an HA1197 IC by Hitachi. It contains
an HF-IF section and a detector. To improve signal-to-noise ratio, the low impedance input is preceded by an FET source-follower, Q2. The gate of the FET has a very high input impedance, so the usual practice of using taps on the MW and LW coils on the ferrite rod can be dispensed with. The

Fig. 1 Block diagram of the complete AM-FM tuner

To avoid losses and unwanted atmospherics on the connecting wires, band switching is effected directly on the printed circuit board by means of transistors Q1 and Q3. The arrangement is somewhat unusual: the antenna-coils are connected in' series for long wave reception and on medium wave the LW coil is short-circuited, by applying the positive supply voltage to the base of Q1. For the oscillator section, additional capacitors (C6 and CV3) are switched into the circuit by means of Q3. Note that the LW coil is damped by a 120 - 150 k resistor, R3, to avoid instability and improve frequency response: a long wave coil with a Q factor of 100 will result in a bandwidth of $200 \mathrm{kHz} / 100=2 \mathrm{kHz}$, which means a very poor audio response!

The tap on the oscillator coil, L4, is shunted with a 68 R resistor, R7, and the connection to the tuning capactor has a $3 \mu \mathrm{H}$ choke, L3, in series. This can be made up of a 1 MO 0.33 W resistor with 50 turns of 0.15 to 0.25 mm wire wound at random. As a result, the oscillator voltages across the tap will be reasonably constant over the entire tuning range (approximately 150 mV).

AM selectivity is mainly determined by the CFU bandfilter, L5, in the IF section. The secondary should be damped by a 5 k 6 resistor, R8.

At the detector ouput is an 810 kHz whistle filter comprisng L7 and C22. The coupling capacitor C23 has been chosen for a timeconstant of $100 \mu \mathrm{~S}$ to compensate

Fig. 3 Audio-response curve for AM (A) and FM (B)
for a moderate amount of bass-lift in the audio amplifier (of which more later on). Too much bass lift on AM would result in "boomy" sound! The AF frequency response is shown in Fig. 3, curve A.

FM Section

The IF amplifier of Fig. 4 is built around the time-honoured CA 3089 IC. It should be noted however that the phase-detector coil arrangement has been replaced by a ceramic filter type CDA 10.7 MA. Two more ceramic filters precede the CA3089, together with Q4, which compensates for the losses of the filters and offers some gain into the bargain. With the use of ceramic filters throughout the IF amplifier, no alignment procedure is required and yet the results are quite satisfactory: harmonic distortion is below 0.35% with a frequency deviation of $\pm 50 \mathrm{kHz}$.

In conjunction with the FF317 tunerhead, the useful sensitivity at the antenna input should lie in the neighbourhood of $1 \mu \mathrm{~V}$, which is rather exceptional for a portable
receiver. With this kind of sensitivity, the AGC connection on the FF317 becomes a very useful feature, because without it overload on strong stations could hardly be avoided.

The AFC output of the CA 3089 is of the wrong polarity for the FF317, so a polarity-reversing stage has been added with Q5. For simplicity's sake, the AFC is not switchable. This could easily be arranged, making use of pin 10 of the IC with a 4 k 7 resistor in series, but in the authors opinion it is quite unnecessary. Although the amount of AFC in the present design is adequate to compensate for the oscillator drift, under normal circumstances even the weakest signals should not be pulled away by strong neighbours. R37 (3 k 3) may need some adjustment in order to keep the potential at the collector of Q5 below 7 volts with a supply voltage of 12 volts. If so, just solder the appropriate parallel resistor on the copper side of the PC board.

Audio Amplifier

Once again an IC, TBA 820M has been chosen for simplicity and reliability (see Fig. 5). It requires a minimum of external components and delivers a clean 1.2 Watts audio power into an 8 ohm load with a 12 V supply. Distortion is 0.25%, quite acceptable for a portable radio. Besides, it offers the possiblity of adding an external bass-boost circuit The components have been carefully chosen to achieve optimum results with the specified loudspeaker and

Fig. 2 AM IF-amplifier circuit

Fig. 4 FM IF-amplifier circuit
enclosure. Since the response of the loudspeaker-enclosure assembly begins to fall off in the region of 200 Hz , bass-boost reaches a maximum of 5.5 dB at 90 Hz and then drops steeply to 0 dB at 30 Hz , controlled by the timeconstants of R39, C38 and C43, pin 1 at the TBA 820 M output. The overall frequency response on FM can be seen in Fig. 3, curve B.

Several combinations of small woofers and tweeters were tried out, but in the end the Phillips AD 5061 M8 full-range loudspeaker was considered the best choice for this particular application.

Although modesty priced, it gives a very good account of itself in a small enclosure: good attack, smooth and clear treble without shrillness. Of course one can't expect a full-fledged reproduction of the bass-drum (or the hammer in Mahler's 6 th Symphony!) from an enclosure of barely 5 litres...

Power Supply

It stands to reason that a portable radio has to be batterypowered; yet we must bear in mind that the apparatus will often be used in a place where a mains outlet is available. For this reason, a mains supply should be included. On the other hand, the price of the usual carbon-zinc batteries has gone up steadily. With a current drain of 24 mA on AM and 38 mA on FM and with another 10 mA added at quite a modest sound volume, the prospect becomes very gloomy...

The modern solution lies in the use of NiCad batteries. They must be about the only item' on the market that has become cheaper! Another advantage is that their potential voltage remains fairly constant over the entire discharge

Fig. 5 Audio amplifier circuit
period and they can be recharged by the built-in power supply (Fig. 6). This arrangement also makes it possible to play the set normally while the batteries are being charged. The capacity of the NiCad cells is from 10 hours on FM to 14 hours on AM, when the receiver is playing at a moderate volume. This is not a very cheap solution, of course, but we should consider that, when compared with only six replacements of the carbon-zinc batteries, the NiCads
are already less expensive.
The power supply circuit is quite straightforward, but the 7812 regulator should be mounted on a small heatsink

On position 4 of the switch SW2, the NiCad batteries are charged through a constant current source Q6. Full charge takes 16 hours at a current of 45 mA. Adjust RV1 for a voltage drop of 0.45 V over R 3 , which brings the charging current to $45 \mathrm{~mA}: 0.045 \mathrm{x}$ $10=0.45 \mathrm{~V}$.

Fig. 6 Power supply circuit

Figs. 7,8, 9 and 10 Overlay diagrams for the AM IF Board, The FM IF Board, the audio board and the power supply.

PARTS LIST - AM BOARD

PARTS LIST -
FM BOARD

RESISTORS (all $1 / 4 \mathrm{~W}, 5 \%$)	
R17	150R
R18,26,35	2k2
R19	1 k 0
R20	3 kg
R21,23,33	330R
R22	680 R
R24,25,30	10k
R27	47k
R28,32	33k
R29	15R
R31,36	4k7
R34	100k
R37	3k3

CAPACITORS (all ceramic or silver mica unless otherwise stated)

C24-29,32,34	$33 n$
C30	$100 n$
C31	$4 n 7$
C33	1 u 016 V radial
	electrolytic

C35	4u7 16V radial	Q5	BC237
	electrolytic	MISCELLANEOUS	
C36	82 p	F1,2	SFE 10,7MA
C37	10u 16V radial	F3	CDA 10, 7MA
	electrolytic	L8,9	4.7 uH RF choke
SEMICONDUCTORS	PCB; tuner head, type FF317; rod		
IC2	CA3089	antenna and/or socket for external	
Q4	BF241	antenna.	

PROJECT: AM/FM Radio

Construction

Four PC boards are needed; Figs. 7 to 10 show the lay-out. They can easily be hand-made at home by means of transfers and a bottle of ferric chloride (I did!). Of course, you can buy them from the ETI PCB service.

You could buy a proprietary brand of case to house the radio (plastic, of course, not metal), but our experience suggests that with
radios, the best results are obtained by making your own, provided you are reasonably handy with a saw and glue. What follows is a description of how to make the prototype's case.

The sides of the case were made from four pieces of 8 mm plywood and the top of the case was made up with 5 mm hardboard, but 8 mm ply might be more suitable. Counter-sunk screws were used to mount the speaker, PCBs and to bolt on the
control sub-panel. Obviously, a cut-out for the loudspeaker cone is also needed as well.

There are a total of three control panels! First, there's the subpanel onto which the control pots and switches are mounted, along with the aerial and the tuning scale and pulley for the tuning drive cord; next is the plywood panel and finally, the neat control panel itself. With plywood back and front, it should be possible to dispense with the plywood panel, as

Fig. 11 Wiring diagram for the complete set

Fig. 12 Construction of the receiver front panel!
the case should be strong enough without it.

With a 3:1 reduction drive on the variable capacitor, a cable
drum of 35 to 40 mm will give a scale length of 168 to 192 mm , which is ample for most purposes. If no scale drum is available, a
knob of suitable dimensions will do the trick

Fig. 11 shows details of the inter-wiring in the case, and Fig. 12 shows details of the control panel. However, these are as a suggestion only, you'll have to work out your own exact details depending on what you have available, the size of the cable drum, etc.

Alignment

FM: Theoretically, no adjustments have to be carried out. If you do want the last decibel or so, connect a sensitive voltmeter to pin 13 of the CA3089 (across R23) and try carefully to increase the signal level on a weak station by adjusting the trimmers on the 2 HF sections of the variable capacitor. AM: A little more work has to be done on the medium and long wave bands.

1. Switch to MW. The band has to cover from 525 to 1580 kHz
2. Connect a high impedance

PROJECT: AM/FM Radio

meter with a 0.5 V scale to pin 15 of the HA 1197 (a connection is provided on the PC board). 3. If you have an RF generator, turn it to 525 kHz and tune the rejection coil L7 for maximum signal level.
4. Adjust the oscillator coil, L4, at the lower end of the scale. Move the MW, L1, coil on the fourth ferrite rod for maximum signal level.
5. Now turn the RF generator to 1580 kHz and adjust the oscillator trimmer on the variable capacitor at the other end of the scale. Adjust the HF trimmer for maximum signal level.
6. Repeat operations 4 and 5.
7. Next, go to 650 kHz and move the MW coil to reach a maximum. 8. Finally, adjust the HF trimmer on the variable capacitor at a frequency of 1300 kHz .

Points 7 and 8 are carried out for a regretably simple reason: the difference between the incoming and the oscillator frequency should always be 470 kHz (the IF). Unfortunately, this cannot be the case over the complete band, because neither the coils nor the
capacitance variations are identical. In practice the tracking error will show an S-curve (see Fig. 13). It is then merely a question of choosing the most appropriate spot for F1 and F2.

Fig. 13 General curve of the tracking error on MW.

If no RF generator is available, the above procedure may be carried out using the signal of the broadcasting stations at or close to the indicated frequencies. If you want to make a nice job of it, you can plot the points on a piece of graph paper and draw a curve, which will show what small corrections to apply.
9. The long wave band covers from 150 to 266 kHz The same
alignment procedure is followed The LW trimmer is mounted on the bracket for the ferrite antenna. Final adjustment is carried out at 166 and 250 kHz .
10. The rejection coil $L 7$ is once more adjusted for maximum signal strength.

Conclusion

Your portable AM-FM receiver may not be the cheapest on the market (far from itt), but the sensitivity and the pleasing sound quality will come as an agreeable surprise. Lastly, if the instructions and the lay-out diagrams are followed carefully, it is virtually impossible to go wrong.

BUYLINES

The tuner-head, the ferrite rod assembly and the coils and filters are all available from Cirkit (formerly Ambit who advertise in our pages. None of the other parts should cause any problems and the PCBs are avait able from us. Note that only the electronic components are given in the parts lists.

ETI

The Cortex II offers serious users speed (12 MHz CPU) and power (16-bit) at an easily affordable price.

Cortex II offers over 34 K byte memory for basic programmes. High speed 24 k byte basic interpreter. Auto-line numbering facilities and full renumbering command. Full textural error messages. Arrays and strings limited only by memory. Extended Basic (IF-THEN-ELSE). Assembler/Disassembler. Machine code monitor. Real time clock

Cortex II has excellent colour graphic capability. High resolution graphics (256×192). 16 colours
Separate 16 k video ram for graphics, does not use Basic RAM. Sprite graphics. Fast line and point plotting.

All these features as standard, with various upgrades available.
Supplied either as a self-assembly kit or fully built and tested, the Cortex II is designed to grow with the needs of the operator

Cortex II is the successor to the popular Cortex, which first appeared in November 1982. The new model incorporates a number of modifications to the original and is supplied with a 216 page users manual.

Cortex II standard kit
£299.00
(Includes RS232C, TV \& Cassette Interfaces) RGB interface kit
£28.50
Floppy disc interface kit (electronics)
$£ 86.50$
Floppy disc interface kit
224.50
(hardware \& connectors)
Disc Drive $51 / 4^{\prime \prime}$ SSSD
$\varepsilon 150.00$
Disc Drive $51 / 4^{\prime \prime}$ DSDD
£295.00
£29.95
Housing for Twin disc drives
£35.00
Centronics printer interface kit (requires E-Bus)
£17.50
Cortex II Built and Tested

- Standard Model
£399.00
Contact Sales Office for other options.
All prices are VAT exclusive and are correct at time of going to press.
Cortex II is available by mail order from:
Powertran Cybernetics Limited
Portway Industrial Estate
Andover
Hants
Hants
SP10 $3 E T$

v/34

Access/Visa card holders can order by phone on (0264) 64455

THE GROWN-UP MICROCOMPUTER

EEEGTROTALIE
 Your SPECIALIST SUPPLIERS for SOLDER TOOLS
 From a simple 15 watt model to a precision temperature controlled iron, we stock solder irons to suit all manual requirements to gether with supporting stocks of bits, de solder tools, materials etc.
 ANTEX
 C. $240.15 \mathrm{~W} / 240 \mathrm{~V}$
 CS -17W/240V
 XS - 25W/240V
 Replacement bits from3/32 $10{ }^{1 / 4} 4^{\prime \prime}$
 De-solderheads, stands, elements and handles.
 ERSA
 'Sprint' high speed iron: 80/ $150 \mathrm{~W}, 240 \mathrm{~V}$. Heats in 10 seconds!
 ORYX
 Temperature controlled solder iron TC 82 $45 \mathrm{~W} / 240$ with scale.
 Ory $50-50$ watt temp. control ed
 Oryx 30 - $30 \mathrm{~W} / 240 \mathrm{~V}$
 Viking-27W/240V
 Oryx M. $3-17$ watts 12 volts.
 A wide range of replacement tips available for ll models, also tips from 0.8 to 6.4 mm dia. and ryx
 oryx de-solder too
 MINIATURE SOLDER STATIO N SOLDER and DE:SOLDER BRAID Solder in various grades. atest free A-Z lisL

Britains leading qualiv componedt SUPPLIERS-SEND FOR FREE 40 PAGE A-Z LIST AITRACTIVE DISEOUNTS FREE POSTAGE-GUUU SERVICE \& DELIVEAY

ELEGTROVALIE ITD

8 St. Judes Rd. Englefield Green
gham, Surrey TW200HB.
(0784) 33603; Telex 264475

Interak 1

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal $19^{\prime \prime}$ rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals $£ 1$ - $£ 5$.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc No fears about this one going obsolete now in its fifth successful year! Send us your name and address with a21 pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T11E), 92 Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

SPECTRUM CONTROL PORT

In the second and concluding part of this project, Mike Wynne Jones finishes the description of the construction and goes on to describe the software needed.

Begin constructing the I / O boards by inserting all the through links (soldered top and bottom), resistors and the diode into the board, followed by the capacitors and IC sockets. Then insert a low profile wire wrap socket in SK1 and solder it flush with the PCB. If you cannot get low profile wire-wrap sockets, an alternative approach is shown in Fig. 8.

Take another low-profile wirewrap socket and break all the pins
off at the shoulder before they enter the plastic socket body. If yours has no shoulder then try bending the leads outwards to about 90° : if this is not successful you should try the alternative method. Otherwise solder the remaining strips to the copper side of a small piece of 6×4 hole veroboard (Fig, 9). If you tin the board first it helps considerably. Next solder the legs you broke off the socket into the holes at the edge of the veroboard so that you
end up with an 8 pin socket with legs on a 0.5 " spacing instead of the usual 0.3". This contraption should now fit comfortably over the SK1 you have already fitted and leave no unwanted connections. Make sure that it sits down level and in line with the existing socket and solder it into position. Clip off the leads of this part short and those of the original socket to about 2.3 mm but leave the leads of the original socket for the time being.

Fig. 7 I/O board PCB overlay.

Insert but do not solder the other three 8 pin DIL sockets. Support the PCB such that it is level and parallel to a smooth flat surface and allow all the sockets to rest so that they are the same height above the PCB (with the DIL header parts plugged in). After making sure that they are also perpendicular to the PCB, solder them into position.

Now clip off the leads on the solder side to $2-3 \mathrm{~mm}$ (5-6 mm if you use DIL sockets instead of headers as the B plug parts). Insert the 8 pin (half of a 16 pin) DIL header plugs into the control board sockets and carefully position the I/O boards over them so that they are in the correct place. Now carefully solder them into position (this is the tricky bit!) one or two pins only at this stage and then carefully remove the I/O board (now complete with plugs) from the control board and complete the soldering operation.

If you make more than one I/O card you can adjust the sockets to make sure that they all plug into each other. There should be enough lead length to allow this on all except SK1 so use this as a reference.

The reason for the elaborate construction is that the signals on SK1, the B signals, need to be processed on the I/O board before being passed onto the board above through a socket precisely above the socket through which they arrive. This construction technique is the reason for the double-height.

If you cannot get right-angled D connectors, take two ordinary D-type 15 way sockets and solder thicker than standard bare, single strand wires onto them. Bend these at 90° so that they fit into the holes on the board and let the sockets protrude a little over the edge of the board.

As many boards as are required may be made and stacked up on top of one another by means of the connectors described above, resulting in a sturdy tower. It is also a good idea to make a base for the system. Cut a piece of perspex, paxolin, SRBP or other plastic to the shape of the control board. Cut a smaller piece on the component side - dropping something conductive onto these strips could be fatal to the computer. The size of this piece is shown on the overlay diagram. Put the pieces of perspex in place and clamp them (not too tightly). Use a scriber to mark on the perspex the centre of the holes to be drilled by looking at the bolt holes in the PCB. Having done this, drill through the sandwich using a drill the size of the hole in the PCB 2.5 mm or 0.1 inch if M 2 or 8 BA bolts are to be used. Four bolts of each of two lengths will be needed - one set have the PCB and one layer of perspex to go through, the others have the PCB and two layers of perspex. It is advisable to make small spacers to go between the perspex and the board out of narrow bore plastic tube, to allow for the gap needed for the solderered connections. If no spacers are used, tightening the screws will cause unnecessary stresses in both the board and the pespex, leading to unsightly warping and possible damage to the board. Finally, glue four rubber feet onto the bottom of the lower perspex plate.

Testing

The first thing to do is to check your work until you are certain that it is perfect. Connect the control board up to the computer without the external power supply on and it should power up in the

Fig. 9 Alternative for SK1 when lowprofile wire-wrap sockets are not available.
usual way. If it does not, switch off IMMEDIATELY, and check the board until a fault is found. If this works, check that there is +5 V across pins 7 and 74 or 8 and 16 as appropriate of all IC sockets, and across the $+V$ and $0 V$ connections of SK1.

Switch off the computer and disconnect the board from it. Connect up the external power supply and +5 V should appear on pin 3 of IC1, but there should be no voltage detectable in any 1 C socket, nor on the connector back to the computer. If there is a voltage where there should not be,
STOP NOW and check - it was at this point that the author blew every chip in his computer due to a faulty IC101.

If all is well, apply a voltage of 6 V from batteries across 0 V and $+V$ on the edge connector and check that: -
a) If only the battery supply is connected, the relay remains in its original position and 6 V appears across the IC sockets.
b) If only the external power supply is connected, the relay stays in its original position and no voltage appears across any IC sockets. c) If both supplies are in place, the relay clicks over, and 5 V appears across the socket. Even if all these tests work, look for shorts all over the board with a magnifying glass, concentrating particularly on the power supply section.

If everything has gone smoothly, remove all power, plug in the computer and switch on. Now plug in the external supply, but be ready to remove it immediately at the smallest sign of anything going wrong, As it is plugged in, the relay should click. 5 V should now be present across all IC sockets whether the external supply is
 things simpler since we know now that the power supply section works perfectly. Switch off and insert IC102,103 and 104 in that order, making sure that power-up proceeds in the usual way between each one, and if anything fails, switch off the and check until a fault is found. Power should always be removed for the insertion or removal of any integrated circuit.

Now switch off and plug in an I/O board without ICs, then go through plugging in ICs 1,3,2,4,5 and 6 in that order, testing power up each time as before. When a!! is complete, it is time for the acid test: will it actually work? Wire two D-type plugs to connect the 8 inputs of the board to the corresponding output bits. Type in this program and run it, with
SW101 on the control board set to "LO".
10 FOR A=0 TO 255
20 OUT 31,A
30 PRINT A, IN 31
40 NEXT A
On any line of the screen, both numbers should be the same. If the numbers are all incorrect switch off and look for a fault If only some are incorrect, the faulty bit can be determined by comparing the binary equivalents of the printed numbers.

Now change the 31 s in lines 20 and 30 to 16415 , move SW101 to " HI^{\prime}, and check that the program runs as before. Also check that on SK1 the following signals are correct: $\mathrm{B} 0=1, \mathrm{~B} 1=0, \mathrm{~B} 2=0$.

BUYLINES

There should not be too many problems with parts for this project. All the ICs are available from Technomatic and Rapid. The right-angle D-type plugs used were purchased from Electrovalue; other types are available, but we would suggest checking that they will fit the PCB (D-types come in curious lead spacings). The PCBs will be available through our PCB service.

Check each subsequent board by replacing the first one with it and carry out the same tests. Finally, plug them all in and check that each responds to the address (0 or $16384)+31+32 \times$ (the number of boards plugged in below the one in question).

Software And Use

If we wish to read from or write to the nth board in the stack in BASIC, then the address is: $31+(n-1) \times 32$.
In machine code the instruction to use is IN A, nn or OUT nn, A provided SW101 is at "LO" and the board is the eighth in the stack or lower. If these conditions are not fulfilled, then we must resort to the instructions IN reg, (C) and OUT (C), reg. Of course, these instructions will not fail to work in the first page, but those previously described will in most circumstances be more convenient When the second type of instruction is used, register pair BC should contain this pattern:

Bit Number Contents

$0-4$	all one
$5-8$	number of the board in the stack, zero for
	the lowest.
$9-13$	all zero
14	state of SW101
15	zero

As an example, if we wish to continuously read numbers from the fourth board in the stack displaying the results on the screen, and output the one's complement of the number (all bits inverted) to the third board, this can be done as shown below (assuming SW101 is set to " $\mathrm{LO}^{\prime \prime}$).

From BASIC:
10 LETA=IN 127
20 PRINT A
30 POKE 23692, 100: REM
ENDLESS SCROLL
40 LET A $=255-A$
50 OUT 95, A
60 GOTO 10
or from machine code:
START IN A, 127
CALL PRINT
CPL
OUT 95, A
JR START
or by using the more general addressing method:

Fig. 10 Arrangements for exchanging data with another computer.

START	LD BC, 127d
	INA, (C)
	CALL PRINT
	CDL
	LD BC, 95 d
	OUT(C), A
	JR START

Note that the machine code versions are both endless loops they serve merely as examples.

Looking now at the user side of the hardware, there are several points to guard against:

1. Make sure that successive boards are plugged firmly into each other, and check that pins
have not become bent between uses. Bad connections will have unpredictable results, but are unlikely to cause permanent damage.
2. Never overload the Spectrum power supply - always use the external source when this is possible.
3. Be careful not to take so much current fre the output IC that it heats up -.t is one of the more costly integrated circuits. 4. It is unwise to connect both the + and the - connections on the input and output sockets to power rails of external hardware. If its
voltage is not quite the same as that of the Spectrum or I/O boards, damage could occur. 5. Remember to treat all hardware outside the computer with care. A second's carelessness in computer interfacing could cause havoc, even though every effort has been made to make the system virtually bomb-proof.

Data Exchange With Another Computer

Figure 10 shows the basic requirements of hardware used to pass data between the I/O computer (the one plugged into the control board) and another computer. With this hardware, it is the other computer which dictates when data transfer takes place. It reads when it wishes and sends the I/O computer an interrupt when it has placed some data to be read. The software side of utilizing Spectrum interrupts has been detailed several times recently in a variety of publications and is not of direct relevance to the I/O control system, so it is not considered here. ETI

MICRORANGE ELECTRONICS

UNIT 258, STRATFORD WORKSHOPS, BURFORD ROAD (near Stratford Centre)
LONDON E15 2SP.
LEL: 01.5361415
Recently opened component shop in the heart of Stratford, we have lots of
special offers. (You will find us on the 2 nd Floor.)
We specialize in the manufac
ture of:
Printed Circuit Boards.
No quantity is too small.
Wealso supply.
Photo Board and associated
chemicals at very keen prices. See below:
6×4^{7} Single sided $\quad 1.80$
$8 \times 5^{\prime \prime}$ Single sided $\quad 2.10$ $6 \times 4^{\prime \prime}$ Double sided $\quad 2.00$ 8×5 Double sided $\quad 2.40$ Other sizes available

ALL PRICES INCLUDE VAT Please add 50p tor P\&P

SOME SPECIAL OFFERS (Many others in stock)	
NE5534 10	1 Off 1.15 10 off 1.05
NE5532 1	1 off 1.45 10 ofl 1.15
TL071 1	1 ofl 45 p p 10 off 42p
TL072 1	1 Off 55 p 10 ott 50 p
TL074 1	1 off 85 p 10 off 78p
$78 \mathrm{PO} 55 \mathrm{5V} 10 \mathrm{~A}$ Reg	5.50 each
781212 V 1 AReg	30p each
VN67AF Power Fet	65 p each
60 W Spot Bulbs various colours	s 70peach
100 W Spot Bulbs various colours	urs 1.25 each
2 metre $\times 1$ metre SPK Cloth	2.95
${ }^{10 \times 12 " \text { F Fibreglass PC Board }}$	2.25 each
150W Power amp module	12.50
3 Way 700W Sound to Lite unit	17.50
Telephone recording unit	15.00

ATTENTION TANGERINE OWNERS

\author{

* * * 6809 * * *
 CPU BOARD
 Runs with 80/82 or Colour Video Board
 CONFIGURED FLEX
 EPROM TO RAM CARD
 SAE or Phone
 RALPH ALLEN ENGINEERING CO.
 Dept ETI
 Forncett End
 Norwich
 Tel: 095389420
}

A BRITISH MADE OSCILLOSCOPE AT AN AFFORDABLE PRICE

The new Bridage single and dual trace oscilloscopes.

Single beam $£ 195$ Dual trace $£ 225$

\star Send for details today \star
Agents and distributors required worldwide.

[^0]

Manufactured in association with Scopex Electronics Limited

hobbyboard

PROJECT DEVELOPMENT MATERIALS

ARTWORK MATERIALS

 TRACK TAPESPrecision slit black crepe tapes
(1 roll/pack). HB209
HB210
HB211
HB212
HB213
HB214
HB215
HB216

TAPE . $020^{\prime \prime}$ £1.05 TAPE .025" £1.05 TAPE .031" £1.05 TAPE .040" £1.05 TAPE .050" £1.05 TAPE .062" $£ 1.05$ TAPE .080" \quad £1.20
TAPE . 100 " $£ 1.20$

PADS

Pre-printed dense black ${ }_{100}$ on .0012 acetate film
 (500/roll)

O/D I/D
HB222 PAD .062.025 £3.05
HB223 PAD .075/.025 £3.05
HB224
PAD $100 / 031$
PAD . 125/.031 $£ 3.05$
HB225
HB226 PAD.150/.031 £3.05
HB227 PAD.180/.040 £3.05
HB228 PAD 200/.040 £3.05
HB229 PAD.220/.040 £3.05
HB230 PAD.250/.040 £3.05
IC PACK (Dual-in line)

Symbols

Pre-printed dense black on . 0012
acetate film (125 symbols/pack)
$0000000 \mathrm{HB} 280 / \mathrm{B} \quad 16$ Pin DIL $1: 1 £ 3.20$ 0000000 HB281/B 16 Pin DIL 2:1 £3.45 01001010100 HB284/C 16 Pin DIL 1:1 $£ 3.45$ 0000101010 HB285/C 16 Pin DIL $2: 1$ £4.00 0000000 HB286/D 16 Pin DIL $1: 1$ £3.20 0000000 HB287/D 16 Pin DIL 2:1 13.45

CONNECTORS

Polyester Film-Strips 420 mm Long $000000 \mathrm{HB} / 324$ Conn/D 1:1 (20) £7.10 $000000 \mathrm{HB} / 325$ Conn/D 2:1 (10) £7.10 1111| HB/326 Conn/L 1:1 (10) £7.10 HB/327 Conn/M 2:1 (10) $£ 7.10$

ARTWORK FILM \& ACCESSORIES

Double Matt High Stability Polyester HB202

Artwork Film A4 (5) $£ 1.78$ HB/CKGA3 Precision Grid A3 (1) $£ 7.00$ HB/352 Artwork Knife (1) $£ 1.44$ HB/353

Blade
\qquad (5) $£ 0.50$

EEECTRONIC PROJECT KTS

A special selection of popular electronic projects from Argus Publications is now available. A wide choice of interest is covered including \star Computing \star Music \star Hi-fit Security \star Novelty.
Allkits include PCB, components, case \& panels and instuctions, and are offered at prices to suit all pockets. SEND TODAY FOR OUR "ELECTRONIC KITS" BROCHURE.

PRINIED CIRCUIT MATERIALS

A small selection from our catalogue -

PLAIN COPPER CLAD PCB
Top Quality FR4 Fibreglass

HB019	S/Sided $3^{\prime \prime} \times 4^{\prime \prime}(3)$	$£ 1.26$
HB020	S/Sided $6^{\prime \prime} \times 4^{\prime \prime}(2)$	$£ 1.68$
HB021	S/Sided $6^{\prime \prime} \times 9^{\prime \prime}(1)$	$£ 1.89$
HB026	D/Sided $6^{\prime \prime} \times 4^{\prime \prime}(2)$	$£ 1.92$
HB027	D/Sided $6^{\prime \prime} \times 9^{\prime \prime}(1)$	$£ 2.16$

VEROBOARD

Pre-Pierced Stripboard

HB137 V. Board $63 \times 95 \mathrm{~mm}$ (1) $£ 1.10$ HB138 V Board $63 \times 127 \mathrm{~mm}$ (1) $£ 1.27$ HB140 V/Board $95 \times 431 \mathrm{~mm}$ (1) $£ 5.00$

PHOTO-RESIST PCB

MATERIALS

Top Cuality. Positive Photo-Pesist PCB HB031 Pos S. Sided 3"x4" (3) $£ 2.29$ HB032 Pos S Sided 6"x4" (2) £2.73 HB050 Pos S/Sided 6" $\mathbf{x}^{\prime \prime}$ (1) HB039 Pos DíSided $3^{\prime \prime} \times 4^{\prime \prime}$ (3) $£ 2.86$ £3.43 HB058 Pos D'Sided $9^{\prime \prime} \times 6^{\prime \prime}$ (1) £3.49 HB062 Positive Developer (1 lit) $£ 2.06$ HB012 Ferric Etchant (1 lit) £1.78 HB014 Process Tray (1) $£ 2.54$ HB017 Copper Cleaning Block (1)
$£ 1.49$

FULL PHOTO RESIST KIT

HB/2 Complete Photo Resist Kit £29.00

PHOTO-TOOL MATERIALS

PCB photo masters made to highly professional standards. UV Exposure. High intensity Image Positives or negatives for simplicity of multiimaging
HB3 Fototool Kit Complete HB102 Foto pos film 20×3 HB105 Foto neg film $15 \times 20 \mathrm{~cm}$ HB106 Foto neg film $20 \times 30 \mathrm{~cm}$ HB109 Fototool Developer HB111 Fototool Fixer

	$£ 27.00$
(6)	$£ 507$
(6)	$£ 8.77$
(6)	$£ 4.10$
(6)	$£ 6.49$
(1) lit)	$£ 2.90$
$(1$ lit)	$£ 1.89$

LABEL \& PANEL MATERIALS

Convert Fototool masters into highly professional labels and panels. Simple process - durable finish. Packs include lamination film and Double sided adhesive.
HB114/YELL. Yellow Fotolam 20×30 (3) §2.76 HB114/BLUE. Blue Fotolam 20×30 (3) £2.76

COMPUTER LEADS \& CABLES

A comprehensive range of Ribbon connectors, cables and connectors is available for most popular computing applications. SEND TODAY FOR OUR "COMPUTER LEADS \& CABLES" BROCHURE.

PRINTED CIRCUTT EQUIPMENT

 LOW COST D.I.Y. EXPOSURE UNIT Photo-resist and FOTOTOOL materials require exposure to UV light the type of light used determines the quality of reproduction- this simple-to-make D.I.Y. kit comes complete with UV lamp, holder, shade etc. and full working
 instructions to build your own glass contact frame KIT HB/UV1 D.I.Y. EXP. UNIT $£ 27.00$

PRINTED CIRCUIT DRILLING MACHINE

COMPACT 2- SPEED

 PCB DRILLING M/C MAINS POWERED. PRECISION MACHINE FOR PRECISION DRILLING.

HB 187 PCB DRILL $£ 152.00$

PCB DRILLS (CARBIDE)

 LONG LIFE SOLID CARBIDE FOR PRECISION| | CARBIDE DRILL 0.9 mm (1) | |
| :---: | :---: | :---: |
| | CARBIDE DRILL 1.0 mm (1) | |
| 91 | CARBIDE DRILL 1.1 mm (1) | £2.02 |
| 192 | CARBIDE DRILL 1.3 mm (1) | $\underline{2} .0$ |
| 193 | CARBIDE DRILL 1.6 mm (1) | 3.0 |
| 94 | CARBIDE DRILL 2.0 mm (1) | £4.09 |
| 195 | CARBIDE DRILL 3.0 mm (1) | £5. |

COMPUTER ADD-ONS

A comprehensive range of add-on Kits (or ready-built units) is offered for , ROBOTICS $\star+$ MUSIC + , SPEECH $\star \rightarrow$ Scientific Development t SEND TODAY FOR OUR "COMPLETE ADD-ONS" BROCHURE, which describes all kits. Available for most popular computers.

01-208 1177 Technomatic Litd 01-208 1177
 BBC Micro Computer System
 DISC DRIVES
 These drives, fitted with high quality slim line Japanese mechanisms are supplied in

OFFICIAL

ACORN COMPUTER SYSTEMS
BBC Model B Special offer $£ 320$ (a) BBC Model B+Econet £389 (a BBC Model B+DFS $£ 400$ (a BBC Model B + DFS +Econet _ £450 (a) UPGRADE KITS A to B Upgrade Kit DFS Kit Econet Kit

ACORN ADD-ON PRODUCTS
6502 2nd Processor.
Teltext Adaptor
EEE Interface $£ 282$ Prestel Adaptor
RH Light pen:

BBC FIRMWARE
bBC Firmware Basic II ROM $\quad £ 22.50$ (d) View Word Processor ROM... $\quad £ 48.00$ (C) Wordwise Word Processor ROM, $£ 34.00$ (d BCPL ROM/DISC $\quad £ 86.00$ (b) Disc Doctor/Gremlin Debug ROM £28 (a EXMON/TOOL KIT ROM £28 ea (d) Printmaster (FX80)/Graphics ROM

ULTRACALC spreadshee! ROM £69 eald COMMUNICATION ROM Termi Emulator Communicator
Commstar.
£28 (d) ع59 (d)

BBC Fimware/Peripherals listed here information on our complete range please write to us. attractive cases with BBC matching colour and come complete with data and power TEAC 80T drives Single drives are aupplied with or without power supply All dual drives are supplied with integral switch mode power supply. TEAC \& MITSUBISHI drives are compatible for both single and double density operation These drives can also be used with any other micro with a Shuggart A400 interface

$\times 100 \mathrm{~K}$ TS55A (407) TEAC... £100 (a)	CS55A TEC with PSU £135 (a)
$1 \times 200 \mathrm{KTS55E}(40 / 80 \mathrm{~T})$ TEAC . . S155 (a)	CS55E TEC with PSU.......... £165 (a)
$1 \times 400 \mathrm{KTS55F}(40 / 80 \mathrm{~T})$ TEAC £185 (a)	CS55F MIT. with PSU........... £195 (a)
$2 \times 100 \mathrm{~K}$ TD55A (40T) TEAC with PSU	40/80T Switch Module £30 (c)
£300 (a)	3" Hitachi 100K Drive £115 (b)
$2 \times 200 \mathrm{~K}$ TD55E (40/80T) TEAC with PSU	TD55M (80TG) Mitsubishi....... £400 (a)
£375 (b)	
$\times 400 \mathrm{~K}$ TD55F(40/80 T) TEAC with PSU	
£420 (a)	

SCOTCH 3 M DISCS

This month we are offering these high pertormance 5.25^{\prime} discs at a bumper bargain price foralimited period The prices willbe valid for orders received before 15 th October. These ndustry standard discs have been manufactured with advanced rechniques are of such tarlure the disc is replaced without question Dises in packs of 10
40 Track SSDD.............. $£ 12.50$ (c) 40 Track DSDD
2.51 ck 80 Track DSDD
$\varepsilon 17(\mathrm{cl}$
$\mathrm{E} 22(\mathrm{cl}$

DRIVE ACCESSORIES
FLOPPICLENE Disc Head Cleaning Kit with 20 disposable cleaning discs ensures con tinued optimum performacne of the drives ...
 30/40 Disc Lry Gase

MONITORS

EPSON: RX80FT£225(a); FX80£318(a); FX100£460(a):
KAGA TAXAN: KP 810 £249 (A); KP910 £369 (a):
BROTHER: HR15 £350 (a); EP44 £199 (a):
JUKI: 6100 £359 (a).

ACCESSORIES

EPSON Serial Interface: $8143 \mathbf{£ 3 5}$ (b); 8148 with 2 K buffer £50 (b).
EPSON Paper Roll Holder£17 (b); FX80 Tractor Attach£37 (b); RX/FX80 Dust Cover £4.50 (d).

EPSON Ribbons: MX/RX/FX80 £6.50; MX/RX/FX100 £12.50 (d)
JUKI: Serial Interface $\mathbf{E 6 0}$ (a); Tractor Attach. £99 (a); Sheet Feeder £199 (a); Ribbon £2. 50 (a).
BROTHER HR15: Sheet Feed £199 (a); Ribbons - Carbon or Nylon £3; Multistrike £5.50 (d); 200 Sheets Fanfold with extra fine perf. 9.5" - £13.50; $115^{\prime \prime} £ 17.50$ (b).
BBC Parallel Lead £8; Serial Lead £7 (d).

MODEMS

Our range of modems include: TELEMOD-2, a B approved V23 1200/75 and 1200/1200 moderm ideal for PRESTEL use £65 (b). BBC cable £3.50. BUZZBOX, a very compact BT approved V21 300 300 Baud, battery operated modem ideal for inter computer communication, bulietin boards etc. $£ 65$ (c) BBC lead £3.50. External PSU £8. MINOR MIRACLESWS-2000- the ultimate multi-standard modem, covering all common bELL and CCIT standards up to 1200 baud The optional 'autoanswer and 'auto-dial' boards gives this modem the greatest potential of all $£ 129$. Please phone for details of accessories and our comprehensive range of communication software

EPROM II PROGRAMMER
Our current version of the highly popular Eprom proand better tacilities for easy programming by the user The sottware will maintain its superiority over alicurren handled has been widened, to include the eproms with lower programming voltage and eproms which can be programmed using fast algorithm. Control of all operaplay has been improved to give more information The screen ediling facilities have also been modified to sim plify the data ently
The new Eprom Programer will now program 2516 ,
$2532,2564,2716,2732,2764,27128$ and $27128+5 \mathrm{v}$ 253, 2564, $2716,2732,2764,27128$ and $27128+5 v$
epromis. and all but the 27256 in a single pass. The programmer will be supplied with integral powe is fully buffered and complies wi:h Acorn protocols. There is no power drain from the con
Please telephone for further details

SOFTY II

This low cost intelligent eprom pro

 grammer can program 2716,2516 2532, 2732, and with an adaptor. 2564 and 2764 . Displays 512 byte page on TV - has a serial and parallelV/O routines, Can be used as an emulator, casserte interface Softy II169.00 (b Adaptor for $2764 / 2564 \quad$ £25.00 (C
ATTENTION
 All mithen in athis double nage advalistront aric
 ALL PRICES EXCLUDE VAT Please add carriage 50 p unless indicated as follows (a) $£ 8$ (b) $\sum 2.50$ (c) $£ 1.50$ (d) $£ 1.00$
 CONNECTOR SYSTEMS

SPECIAL OFFER

2764-25. £4.90

27128-25 1
27128-30. £17
6264-15 £28
6262LP-15£35

ACTIVE-8 LOUDSPEAKER

Having discussed the design process at some length in the first two articles in this series, Barry Porter now turns his attention to the construction.

The time has now arrived to do your Chippendale impression, having first checked that your home insurance policy covers such unlikely events as drilling holes in the dining table and spreading the latest high technology glue over the G-Plan.

Figure 1 shows the cabinet construction in sufficient detail to enable the average DIY duffer to build a pair without too many tears. The exact method of assembly is not too important, providing the final result is rigid and all joints are airtight.

Do not attempt to cut the veneered panels with a handsaw - find a supplier who is willing to cut them for you using a high speed circular saw. This will ensure that the edges are square, which is essential if you want the final result to have a professional appearance. The bare edges

Fig. 1 Cabinet construction details.

ALL JOINTS TO BE GLUED AND AND STRENGTHENED WITH 25 mm SQUARE
SOFTWOOD SOFTWOOD
(NOT SHOWN)
holes
$\mathrm{H}=\mathrm{T} 33 \mathrm{~A}$
$\mathrm{L}=\mathrm{B} 200 \mathrm{G}$
V = TUNING VENT
CAPACITY $=441$ gross APPROX. = 401 net

75 mm diameter hole in the escutcheon. They should have four fixing holes in the same positions as the T33.

The escutcheon and both drive units should be attached by M4.5 $\times 20$ machine screws with Tee nuts fixed to the inside of the baffle. Do not be tempted to fix the units with woodscress, even though you will find some enclosed with the T33; use these for hanging your holiday snaps on a wall instead.

Before fitting the drive units, half fill the cabinet with BAF wadding or medium density polyurethene foam blocks, taking care not to pack the area behind the vent too tightly and leaving a six inch clearance around the base unit.

A suitably sized hole for the lead-out wires should be drilled through the cabinet bottom and made airtight by a liberal application of glue from the inside. The cable should be firmly attached to the inside of the enclosure with ' P ' clips so that, if it is accidently pulled, the connecting tags on the drive units will not be damaged.

If you know that the amplifier you will be using has a common output earth terminal a 3 core connecting lead is sufficient, but if the speakers are ever likely to be used with unknown amplifiers, separate connections to each drive unit should be made available. Four core mains cable is quite suitable for this purpose, as only short lengths are used.

The prototype cabinets were fitted with 50 mm dual wheel Kenrick castors, which certainly eased the job of moving them around during construction. If you are a believer in the theory that loudspeakers should be mounted on reinforced concrete pillars that
descend half a mile into the bedrock (when surely seismic disturbances will influence the sound quality?) the castors can be replaced with carpet piercing spikes. In practice, no advantage has been found by doing this, which pro-

PARTS LIST MOTHER BOARD \& PSU

RESISTORS (all $1 / 4 \mathrm{~W}$ 1\% metal film unless otherwise stated)	
R1,2	$1 \mathrm{k8}$
R3,4	8 k 2
R5,6	10k
R7	47 k (see text)
R8,9	22R
R71	4 k 7
R72	2 k 2
R73	56R ${ }^{1 / 2} \mathrm{~W}$
R74,75	1 k 5
CAPACITORS	
C1,2	$1 \mathrm{n0}$ polystyrene
C3	22p polystyrene
C4	100 n polycarbonate
C5,62	$22 \mu 16 \mathrm{v}$ nonpolarised electrolytic
C6,7,64,65	$100 \mu 25 \mathrm{~V}$ radial electrolytic
C8,9,66-69	100n polyester
C61	$10 \mu 25$ V radial electrolytic
C63	$1000 \mu 25 \mathrm{~V}$ radial electrolytic
C70,71	$4,700 \mu 40 \mathrm{~V}$ electrolytic (see text)

SEMICONDUCTORS

IC1	NE5534
IC9	7815
IC10	7915
Q6	BC143 or any PNP
	1A T05 transistor
BR1	50V2A bridge
	rectifier
BR2	209V5A bridge
	rectifier
D2-5	1N4148
LED1	anypanel-mounting
	LED

MISCELLANEOUS
FS1
200 mA anti-surge fuse and PCmounting holder
FS2 1A anti-surge fuse and panet mounting holder
RL1 DPCO relay, 12 V coil
RL2 DPCO relay, 12 V coil, mains contacts
SW1 SPCO PC mounting SW2 SPDT slide, toggle, etc.
T1 6-0-6V 3VA PCmounting
transformer
12-0-12 V, 500 mA transformer
PCB; 5 off 10 way PCB plugs; relay holders as desired; mains outlet; audio connectors; cable, cable clips, etc.

Fig. 2 Overlay of the mother board.
ω_{∞}^{∞} bably says something about the author's hearing or the quality of his living room carpet.

Should the final appearance require the drive units to be hidden from small sticky fingers or an inquisitive budgerigar, suitable grilles can be made from 12.5 mm plywood covered with open weave material. Cut away the centre of the plywood to the point where the remaining frame is well clear of the units, while retaining sufficient strength to stay flat about 50 mm should cause no problems. Give the frame a coat of matt black paint before glueing or stapling the covering material into place. Attachment to the speaker

PARTS LIST - LF EQUALISATION
 CIRCUIT

RESISTORS (all $1 / 4 \mathrm{~W}$ metal film)	
R48,49	4 k 7
R50,53	110 k
R51,52	15 k 4
R54,55	200 k
R56	47 k
R57,58	22 R

Construction

To make the filter unit as flexible as possible (not in the bendy sense), the mother board method of construction is employed. Although this is more costly in terms of the number of individual circuit boards, it does mean that changes can be introduced quite easily, and fault correction usually means replacing a plug-in board with a spare one.

The suggested mother board layout is shown in Fig. 2, and its overall size allows considerable freedom of choice when selecting a suitable enclosure.

Some circuitry has been placed on the mother board, namely the

PARTS LIST -

 PROTECTION UNIT

\square| $100 \mu 25 \mathrm{~V}$ radia |
| :--- |
| electrolytic |

C55,56 100n polyester
SEMICONDUCTOR
IC8
NE5532

MISCELLANEOUS
PCB; 10-way PCB socket.
SEMICONDUCTORS

Q1,3,4	BC184
Q2	BC214
Q5	BC143 or any 1A
	PNP T05 transistor
D1	IN4148
RD1	6V2 300

miscellaneous

Components not mounted on the circuit boards include the connectors, power supply transformer rectifier bridge and smoothing capaciters. Ideally a toroidal mains transformer should be used, but as the circuitry is fairly tolerant of radiated hum fields a suitably specified frame type should not cause problems. The main smoothing capacitors should be at 4700 uf 40 V , but if space is not at a premium 10,000 uf components can be used to advantage. These should be firmly clamped to the cabinet, and the rectifier bridge mounted directly to the supply rail terminals.

The type of signal connector used will probably be decided by the constructors financial status, but the input signals should be connected via multi way sockets with at least four pins. Good quality DIN connectors are acceptable, but professional XLR connectors are preferable. The accepted standard is that signal inputs use chassis mounted sockets, the type required for the 'Active-8' inputs being terms XLR-$4-31$. These should be wired to the following convention:
unbalanced, using an insulated phone socket. If you want to stick with professional connectors, the outputs should employ XLR-3-32 chassis mounting plus with signal on Pin 2 and Pins 1 and 3 joined to earth.

Whether used balanced or unbalanced, the input amplifier is DC coupled to the signal source, working on the assumption that pre-amplifier output stages are normally AC coupled. If you use one that isn't, it is quite permissible to place 10 or $22 \mu \mathrm{f}$ non polarized capacitors between the input socket and circuit board (not forgetting to place a $0.1 \mu \mathrm{f}$ polycarbonate in parallel).

The internal wiring is shown in Fig. 4, and should present no problems. (On reflection, if you have progressed this far without being removed by men in white coats, you will probably build the filter unit blindfolded!)

Next month we will conclude the construction details with the delay section overlay, and give Buylines (so don't phone us!). We'll also give some suggestions for extensions.
 PCB; 10 way PCB socket. on the plug-in cards shown in Fig. 3 (except for the delay unit, which will be given next month due to lack of space). Note that two locations are shown for R7; it should normally be placed at the output of the buffer, but if, for any reason, the buffer is not to be used, it should be placed at the input of the crossover filters instead.

Pin 1 - Signal earth
Pin 2 - Signal +
Pin 3 - Signal -
Pin 4 - Remote switching

If you use an unbalanced feed from your pre-amplifier, this should be taken to Pin 2, with Pins 1 and 3 joined together in the XLR cable plug

The filter unit output is at low impedance, and the connection to the power amplifier should be

Fig. 3 Overlay of the protection, LF equalisation, crossover filters and equaliser sections.

PARTS LIST CROSSOVER FILTERS

RESISTORS (all $1 / 4 \mathrm{~W} 1 \%$ metal film) R7 $\quad 47 \mathrm{k}$ (see text)
R10,12,14,15,16,1711k
R11,13 $22 R$
R18,19
CAPACITORS
C10-19
C20,21
C22,23
3 n 3 polystyrene 2.5\% 100n polyester $100 \mu 25 \mathrm{~V}$ radial electrolytic

SEMICONDUCTORS
1C2,3 NE5532
miscellaneous
PCB; 10-way PCB socket.

PARTS LIST -

EQUALISER

RESISTORS (all $1 / 4$ W 1% metal film)	
R20,27,28	10k
R21,26	100 R
R22	$6 \mathrm{k8}$
R23	3 kg
R24,29	47k
R25	20k
R30,31	22R
CAPACITO	
C24,28	22p polystyrene 2.5%
C25	10 n polystyrene 2.5%
C26,30	100n polycarbonate
C27,31	$22 \mu 16 \mathrm{~V}$ nonpolarised electrolytic
C29	33n polystyrene 2.5%
C32,33	$100 \mu 25 \mathrm{~V}$ radial electrolytic
C34,35	100 n polyester
SEMICONDUCTORS	
IC4,5	NE5534
MISCELLANEOUS	
PCB; 10 way	ocket.

T.M. SOUND TUNER

SERIES II BUILT AND TESTED Complete with cass. $£ 26.50+£ 2.00$ p\&p.

In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over we save money by chopp. ing this out?"' In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers (DRMa and no tone controls are common amp. ONLY $£ 32.50+£ 2.00$ p\& and all this is really quite sad, as the . ONLY $£ 32.50+£ 2.00 \mathrm{p}$ TV companies do their best to transmit the highest quality sound. Gi-Fi is a must for aund compact and independent TV tuner that c
reproduction. The unit is mains-operated.
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls it can
 E.T.I. kit version of above without chassis, case and hardware $£ 16.20$ plus $£ 150$ p\&p

HI-FI SPEAKER BARGAINS

TOKUDEN - 8". 8 ohm full range 71/2W twin cone speak
£3.50

125W HIGH POWER AMP MODULES

The power amp kit is a module for high
power applications - disco units, guitar amp power applications - disco unirs, guitar ampl
iers, public address systems and even high iers, public address systems and even high
power domestic systems. The unit is protected against shart circuiting of the load and is sate
in an open circuit condition A large safery margin exists by use of generously rated com ponents, result, a high powered rugged un The PC board is back printed, e1ched an
ready to drill for ease of construction and the aluminium chassis is preformed and ready to use, Supplied with all parts, circuit dagratms and instructions.
Accessories:
$50+£ 2 p \& p$ Mono: $£ 750+£ 2 p \& p$
NICAD CHARGERS/BATTERIES

SAFT/MAZDA BATTERIES
RX6 (HP7/AA size) $£ 1.10$ ea or 4 for $£ 3.50$. RX14 (HP11/C size) $£ 2.45$ ea or $£ 4.10$ a pair RX22 (PP3 size) 9 volt, $£ 4.95$ ea., $£ 9.00$ a pai 50p p\&p per order on batteries.
SAFT/MAZDA RX22 Charger (takes 2 PP3's E2. $75+80 \mathrm{p}$ p\&p.
$4 \mathrm{C}^{\prime} \mathrm{s}$ or D's + 1 PP3. $£ 5.50+£ 1.40$ p\&p.

BSR RECORD DECKS

Auto-Changer model - takes up to 6 records ceramic cartridge. $£ 12.95$ plus $£ 1.75$ p\&p
3 speed, auto, set-down; with
auto return, Fitted with viscous damped cue, tubular aluminium counter-weighted arm, fitted with
ADC magnetic head Ideally suited for home or disco use $£ 25.95$ Manual single play recong with auto return and cueing
mic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco
$13^{\prime \prime} \times 11^{\prime \prime}$ approx. $£ 14.95$ plus $£ 1.75$ p \&
All mail to: 21E HIGH ST, ACTON W3 6NG.
Callers: Mon-Sat $9.30-5$. Half day Wed. Access phone orders on 01.9928430. Note: Goods despatched to U.K postal addresses onl
All iterms subiect to availabilty Prices correct at All items subiect to availability. Prices correct
$31 / 9 / 84$ and subject to change without notice. Please allow 14 working days trom receipt of order for despatch. RTVC Limited reserve the right to update their products without notice All enquiries send
SA E. Telephone or mail orders by ACCESS welcome

GOODMANS
$12^{\prime}, 65 \mathrm{~W}$, impedance 4 ohms. Freq. res.: 35 $6,500 \mathrm{~Hz}$ Magnet: $1 /$ " $\times 4 \frac{1 / 2}{}$ " dia. Foam surround vinyl laminated cone. For use in Hi.Fi systems up to 65 watts. Bass'Mid $£ 15.95-£ 20$ p\&p $7^{\prime \prime}$ 60W Bass/Mid speaker 8 ohm impedance. Frea. res: $40-6.000 \mathrm{~Hz} 4 / 4^{4} \times \mathrm{i}^{\prime \prime}$ magnet £14.95-£1.75p\&p
 Tweeters 8 onm soft dame radiator type 3\%e sq. For use in systems up to 40 watts EAGLE rolled surround. $£ 6.95+£ 2.20$ p\&p. Full range $6 \frac{1 / 2 " 1}{} 15 \mathrm{~W}, 8$ ohm, Twin cone with Full range 4 " $8 \mathrm{~W}, 8 \mathrm{ohm}$. With rolled $£ 4.95+£ 1.50 \mathrm{p} \& \mathrm{p}$.

SPECIFICATIONS
Max. output power (RMS) 125 W. Operating vortage (DC) 50-80 max Loads 4-16 onm
Frequency response measured (al 100 watts: $25 \mathrm{~Hz}, 20 \mathrm{KHz}$ Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ © 47 K Typical THD 1150 warts, 4 ohms: 1^{11} Dimensions 205×90 and $190 \times 36 \mathrm{~mm}$. KIT £12.00

BUILT $£ 17.50$

STEREO TUNER KIT SPECIAL OFFER:
£13.95 $+£ 2.50$ p\&p
This easy to build 3 band stereo AM/FM tune kit is designed in conjunction with PE (July 8 For ease of construction and alignment it
incorporates three Mullard modules and a I.C. IF System. Front scale size $10 \frac{1}{2}{ }^{\prime \prime} \times 2 \frac{1 / 2}{}$ approx. With diagram and instructions.

MONO MIXER AMP

Ideal for
halls and
halls an
clubs.
£45.00

+ $£ 2$ p\&p.
50 Watt, six individually mixed inputs for 2 pickups (Cer, or mag), 2 moving coil microphones and 2 auxiliary for tape tuner, organs etc. Eight slider controls -6 for level and 2 cor master bass and treble, 4 extra treble $13^{1 / 6^{\prime \prime}} \times 6^{1 / y^{\circ "}} \times 3^{3 / \%^{\prime \prime}}$ app. Power output 50 W RMS (cont.) for use with 4 to 8 ohm speakers. Attractive black vinyl case matching fascia and knobs. Ready to use

FIND YOUR WAY THROUGH THE DIGITAL ELECTRONICS MAZE

This practical self-instruction kit has been developed to extend the original beginners' SUPERKIT. SUPERKIT II includes an instruction manual and many more components, enabling you to design and use adders, subtractors, counters (ripple, up/down, synchronous, decade and Gray code), registers, pattern recognisers and 7 -segment displays. You need the board and components from SUPERKIT to enable you to build the circuits in SUPERKIT II. Together the two kits provide, an excellent introduction to digital electronics - what really goes on inside a computer.
SUPERKIT. (SUP) £22.00 SUPERKIT II (SUP II) £16.00 Special price £36.00 for both (SUP + II) (inc. VAT and p 8 p) The SUPERKIT series is backed by our theory courses, DIGITAL COMPUTER LOGIC (beginners' course), which zovers the design of logical circuits, and DIGITAL COMPUTER DESIGN (more advanced), which covers the design of digital computers. MICROPROCESSORS AND MICROELECTRONICS teaches you what a microprocessor is and what it can do.

DIGITAL COMPUTER LOGIC (DCL) £7.00

DIGITAL COMPUTER DESIGN (DCD) E9.60
MICROPROCESSORS AND MICROELECTRONICS (MIC) E0.60
Please send for full information on these and our other courses.
GUARANTEE If you are not completely satisfied, return the item to us within 28 days for a full refund All prices include worldwide surface postage (ask for prepayment invoice tor armall). Allow 28 days for delivery in UK Overseas payment by international credit card or by ban draf

CAMBRIDGE LEARNING LTD, Unit 14, Rivermill Site, FREEPOST, St Ives, Cambs PE17 4BR, England. Tel: 0480-67446

VAT No 313026022 Transcash No 2789159 Reg No 1328762

I enclose a cheque/PO payable to Cambridge Learning Ltd for $£$
Please charge my
credit card,
No
Expiry date

Telephone orders from credit card holders accepted on 048067446 (24 hrs)

Name
Address

Signature

CAMBRIDGE

DIRECT-READING CAPACITANCE METER
 Returning almost immediately to our pages after his recent Audio Design series, John Linsley Hood presents a simple, low-cost capacitance meter design.

Most electronics enthusiasts will have some means of measuring voltages and resistance values at their disposal. Indeed, the humble bench multimeter will do an adequate job in this respect, at a modest cost. However, knowing if the capacitor one has fished out of the junk box, or even out of the parcel of new components freshly delivered from Bloggs Electronics, is indeed what it's markings say it is will be a different mater.

A small gadget to measure capacitance values therefore makes a useful addition to the test bench, and can be invaluable if one is building an audio filter stage, a sine-wave oscillator, or anything else which requires accurate, or at least well matched values of capacitance.

One of the simplest ways of measuring capacitance is to connect the component under test to a suitable (low voltage) source of AC, and then measure the current which flows through it. For small values of capacitance, this is obviously not going to be very big, so some kind of electronic amplifier will be needed.

A suitable arrangement is shown in outline form in Fig. 1. The only

Fig. 1 A simple method of measuring capacitance.
specific requirement is that Rx must by very small in value in comparison with the impedance of the capacitor under test.

The Circuit

The actual circuit used in the instrument is shown in Fig. 2, and is simply a high input impedance milli-voltmeter having a FSD input sensitivity of about 27 mV and built around a TL071 op-amp.

The range switch is chosen to give full scale capacitance value indications of 10 pF to 100 uF . The capacitance ranges increment in steps of 1:10:100, etc., using the given values for R1-R9, but there is no reason why the constructor should not adopt a 1:3:10:30 series by making the resistor bank have values in the $3 \mathrm{M} 3,1 \mathrm{M} 0,330 \mathrm{~K}, 100 \mathrm{~K}$. . . sequence.

For testing electrolytics, it is desirable that there is a small
polarising voltage on the capacitor under test. This is done by switching the lower end of the resistor. bank of SW1 to the -5 V line. This effectively puts the DC supply smoothing capacitor of this line in series with the capacitor under test, so it is advisable to make these large with respect to the 100 uF maximum instrument range.

Construction

Virtually all of the low-voltage circuitry is mounted on the PCB, including the meter and the rangesetting switch with its associated resistors. However, neither the transformer nor the mains fuse are mounted on the board because of the risk of AC pick-up from them.

Assembling the PCB should present no problems provided the overlay is followed carefully. Begin by soldering SW1 into place and then move on to the resistors and

Fig. 2 Circuit diagram of the direct-reading capacitance meter.

PROJECT : Capacitance Meter

Fig. 3 Component overlay of the PCB.

PARTS LIST

capacitors, taking care with C2, 3 and 4 which are electrolytic and must be inserted the right way around. Finally install the diodes and the op-amp, again taking note of polarity. The op-amp is a bi-FET device and requires no special handling precautions; some constructors may prefer to use a socket for it but this is not essential.

Because of the susceptibility of the high impedance input to $A C$ pick-up, it is recommended that the instrument be housed in a diecast box. No particular type is specified, but you should choose one which is large enough to accommodate the PCB plus the offboard controls and which has sufficient depth to allow the transformer to be placed well away from sensitive parts of the circuit.

The test terminals should be positioned close to the appropriate pads on the PCB and then connected up using very short lengths of wire. These two leads should not, of course, be twisted together since this would introduce a certain amount of capacitance and thus affect the accuracy of the unit. SW2
presents no such problems and can be wired up in the normal way.

The transformer and the mains switch and fuse should all be positioned well away from the opamp and the test terminals, particularly the terminal which connects to the wiper of SW1 since this point is at high impedance and therefore very sensitive to AC pickup. The leads from the secondary of the transformer to the PCB should be tightly twisted together since this will reduce the magnetic field around them and hence the risk of pick-up. It may also be necessary to screen the op-amp and the high impedance terminal completely if the meter is to operate correctly on its two most sensitive ranges.

Setting up the instrument, on completion, requires the availability of a few good quality capacitors of which the capacitance is known to an adequate degree of accuracy. The value of RV1 can then be adjusted to give the best fit over several ranges. -

It is possible to attach a pair of leads to the test terminals and use them to test capacitors in situ, but

AC pick-up on the high impedance lead will introduce errors and this method can therefore only be used with large values of capacitance. In all other circumstances it is advisable to place the capacitor under test directly across the test terminals. If the size or construction of a capacitor prevents its being connected in this way, attach a flying lead to the low impedance test terminal (the one from the secondary of the transformer) and use this to connect to one side of the capacitor while the other side is inserted directly into the high impedance terminal.

BUYLINES

> All of the specified components are readily available and suitable diecast boxes are sold by a number of suppliers. The PCB is available from us.

LB ELECTRONICS

SPEACH SYNTHESISER kit as in March/April Electronics \& Computing. Kit £24.95 p/p£1.50. Ready Built £34.95 p/D£1.50. Details S.A.E. LOGITEC FT50001 dot matrics printer 100 cps , friction/tractor £289 + VAT. Carriage £10. S.A.E. leaflet plus print-out
PRESTEL monitors 6" green phosphor screen 12 digit keyboard printer port, cassette port, keyboard port (for full qwerty keyboard) Brand new and boxed £175 + VAT. Leaflet S.AE

DISC DRIVE BONANZA

TEAC FD-55F $1 / 2$ Height DSD 80 track/40 track, selectable at our new low price $£ 199+$ VAT. £8 carriage Shinon ${ }^{\prime} 2$ height $5^{114 "}$ drive, 40 track, brand new, single sided, double density $£ 140$ + VAT. Carriage E8, COMPETITION. We thank all our customers for purchasing our Teac drive and as a bonus we are now offering every 50th disc drive to be sold will be sent totally FREE. The 1 st winner is: Mr A.P. White, Hertford, Huntingdon, Cambs. This offer is excluded from trade or bulk buyers).
EDGE CONNECTORS 1 " 56×56 wire wrap keyway at 30 £ $1.80 \mathrm{p} / \mathrm{p}$ 25p. $30 \times 30^{1} 156$ Gold $80 p$ p/p 25 p-1" 80×801 1 2.85 p/p 25 p
Twin 5" Cabinets with power supply $£ 4000+$ VAT (providing a disc drive is purchased from us, if drives ourchased elsewhere $E 50.00$ + VAT).
LS IC's in Stock. Phone for prices.
Monitors 12 inch Green Phosphor(Motorolia chasis) fully cased 240 volts ac seperate vertical horizontal sync, circuits supplied fór composite video (5 transistors) £35.00 (used) ideal for BBC, Micro etc. Sorry callers only.
KEY BOARD BONANZA. Brand new ASCil coded single 5 volt rail. Some with numeric key pad, some without £29.95p p/p $£ 1.50$ p. Leaflets S.A.E.
Our business is now expanded and we have computer showronms at MICRO HOUSE, 416 DERBY ROAD. GREENFORD, MIDDLESEX Tel: 01-575 2860. Many computer peripherai bargains on show. We now stock the new Sanyo MBC550 $£ 749$ + VAT (single drive) MBC555 $£ 999$ + VAT. (Twin drive) 128 K standard expandable to 256 K , with 555 model£ 1200 worn of software with this system (i.e. WordStar, SpellStar, Mailmerge ReportStar, etc...). Full demonstrations available phone for S.A.E New monitors, printers, disc drives, diskettes, paper, rbbons, etc, etc... Supplied at realistic prices. Please note our retal component shop is still in operation at Hercies Road

THEATRE \& BAND LIGHTING!

MJL are one of the UK's leading suppliers of stage lighting equipment, with a range of products to suit theatre, band, disco and club installation. And our prices are the most competitive you will find. So whether its just 3000 Watts or a 300,000 Watt rig you need, our advice comes free by contacting the following:
The Sales Manager MJL SYSTEMS LTD 45 Wortley Road
W. Croydon

Surrey CR0 3WEB
Tel: 01-689 4138 Mon-Fri 9-5

IF YOU WANT TO

SEE THE LATEST

 INLEISURE ELECTRON/CS.

See the latest equipment for your kind of electronics. Logic probes, breadboards, including our new low cost prototyping board. Special offers for the period of the Show and much more!

It's worth a trip to LEISURETRONICS just to meet the specialists!

GLOBAL SPECIALTIES
An Interplex Electronics Company
Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: (0799) 21682 Telex: 817477 GSC LTD.

CUSTOMISED ICs

Customised ICs are catching on as fast as customised number plates. S.M. Smith explains how PLAs and ULAs have brought down the price.

Idn the past ten years or so the complexity and density of circuits integrated onto one chip has increased dramatically. This trend is continuing for the following reasons:
Size: usually, one chip is smaller than twenty. Smaller circuits fit into smaller boxes, which are cheaper to manufacture and transport than large heavy ones. If several PCBs can become one, inter-PCB connections are saved.
Power consumption: in general a single device consumes less power than several. The consequent drop in heat dissipation may allow natural instead of fanassisted cooling, or reduction of heatsink sizes, or both. Also a less bulky power supply is needed. The whole equipment may then reduce in size and weight by far more than the initial amount caused directly by integration.
Speed: devices on large scale ICstend to be smaller than those in medium or small-scale ICs. The switching speed of small devices is usually taster than that of large devices, so the single chip is faster than several.

Reliability: one chip is more reliable than several. Reducing the chip count in equipment reduces the number of interconnections and hence the probability of a faulty connection. More reliable equipment means cheaper equipment, as less money has to be allocated for fixing faults arising during and after production.
Security: a board full of TTL ICs is easily copied by unscrupulous competitors. An anonymous black plastic block can only be copied with a lot of effort.

There are several ways of putting a logic system on a chip, ranging from the full custom IC down to the familiar PROM. A fully custom integrated circuit is a complicated device that takes months to design and develop, and requires massive investment in plant to manufacture. To recoup the cost of this requires sales of either a huge number of devices at reasonable prices, or a few sales at ridiculous prices, the latter being luxury indulged in only by the aerospace and defence industries. To understand necessary first of all to have an idea of the manufacturing process.

Fig. 2 Metal tracks laid out on a ULA as seen on a VDU during design. The filled-in white area are metal track s, the thin white lines outline transistors and diffused cross-unders, while the faint grey lines mark allowed track placements.

Integrated circuits are fabricated on thin sheets of silicon, $2^{\prime \prime}$ to $5^{\prime \prime}$ in diameter, called wafers. The silicon used for IC fabrication has to be extremely pure 99.99999% pure. It must also be mono-crystalline, with the atoms laid out in a regular three-dimensional pattern and no defects. Since the wafer is polycrystalline silicon, a near-perfect layer of single-crystal silicon must be grown on the wafer surface, using a process called epitaxy.

Making Transistors

Transistors and resistors are made by doping the silicon with minute quantities of other elements, such as boron, gold, phosphor and indium. Obviously, a single transistor $3^{\prime \prime}$ in diameter is of little use, so the doping is introduced only to selected areas of the silicon surface. Areas to be doped are defined by holes in a layer of silicon dioxide on the wafer, the oxide prevents dopant reaching the silicon.

The shape and location of the holes in the oxide layer are ultimately determined by a pattern held in a computer. This pattern is converted into a $400 \times$ full size master print which is photographically reduced in two or three stages onto a chrome-coated glass plate, the 'mask. Several hundred patterns are repeated across the mask in a precise regular array, so one wafer will yield several hundred chips (see Fig. 1).

The wafer is coated with a photo-resistive polymer, which reacts to ultra-violet light (a similar process is used in PCB production). The mask is then placed over the wafer, in precise alignment with previous processing steps, and then the wafer is exposed to UV. The mask is removed and the unexposed resist is rinsed off with a solvent - the exposed resist, hardened under the ultraviolet, does not rinse away. Now the un-covered section of the oxide can be etched away with acid, leaving silicon exposed for doping.

The final mask defines the metallisation layer, which is a thin network of aluminium tracks interconnecting devices on the chip. There may be several metal layers, separated by insulating oxide layers.

There are around seven processing stages for each mask, and an IC design may require 5 to 12 masks. This makes the process long, expensive and error-prone.

The Expertise Gap

There are few engineers capable of designing an
integrated circuit at this level of complexity, with control over doping levels, transistor sizes and so on. Fortunately, many applications do not require minute control over the electrical characteristics of the devices on the chip. Semi-custom logic design allows an ordinary logic designer to design an integrated circuit

The most complex semi-custom approach is the standard cell. Here the designer has access to a computer database containing mask layouts for often-used devices and functions up to the complexity of, perhaps, a full adder. The designer extracts from the database the devices and functions needed; he or she may have some control over electrical performance if layouts are held for different versions of the same device.

This is still an expensive method; although design data has been previously calculated for each function required, new masks have to be made for each IC. To be cost effective, large returns on sales must be certain. The advantage over full custom is the lower expertise required of the designer and faster design time, with only a small loss in performance.

Uncommitted Logic

The next level down in terms of cost/time is the gate array, or uncommitted logic array (ULA), to which the bulk of this article is devoted. In the ULA the devices and some inbuilt interconnection are ready-fabricated. The devices are laid out in a regular array with channels between groups of devices for interconnection routing (Fig. 2). The designer's job is to complete the interconnection by specifying a metallisation mask layout.

Although the designer has no control over electrical performance of the devices, and some waste of silicon area is inevitable due to the fixed form of the array, the ULA is attractive because of its fast design time (5 to 12 weeks) and lower production costs (onlyone or possibly three new masks have to be produced). It is therefore suitable for projects expecting relatively low sales volume.

Fuse Programming

Next comes the fuse-programmable logic array (FPLA; some versions are called PAL or PLA). These come in a number of different versions, but basically consist of a set of AND gates feeding a set of OR gates. Fusible links control which of the chip inputs go to which AND input, and which AND output to which OR input. Some FPLA's incorporate D-types, registers and optional feedback loops to allow sequential circuits to be burnt in.

FPLAs have the advantage of very fast design time (a few minutes from specification of the logic function to production of the program for blowing the array). They tend to lack versatility compared with a ULA and make inefficient use of silicon. They have the advantage of inhouse programming (no need to send them away to the manufacturer, with the attendant delays) and can be very cost-effective in some applications.

And PROMs Too!

The final option is to use the PROM (Programmable Read Only Memory). This has the advantage again of on-the-spot programming and may implement more complex logic functions than the FPLA. The required truth-table is programmed into the PROM; the address lines are used as the logical inputs, and the data lines are the required outputs. However, the PROM is a comparatively slow device, and its use may often be a waste of silicon; as an extreme example, an octal inverter (16 transistors in CMOS) implemented on a PROM requires 256 words by 8 bits - a 2 K memory!

Because of the reasons above, the ULA is the most important of the routes to a semi-custom logic IC at present. It is likely to become more so in the future as the pace of technology quickens, demanding new designs in shorter timescales, and as the software tools for ULA design improve, allowing more fully automated design and design of larger chips.

CMOS is the fastest-growing gate array technology at the moment, due to it's combination of speed, power consumption, packing density and ease of design.

Designing A ULA

It would be almost impossible to design a ULA without the help of a computer. People are slow, they find checking boring and they make mistakes. Fortunately, computers are not yet intelligent enough to get bored.

The design starts, usually, with a'breadboard' model of the circuit, in TLL or CMOS or whatever is most suitable. This stage is used to check if the ideas are correct; it may be considered unnecessary if a well-known design is being implemented. The design is then translated into a form suitable for putting on a ULA. There will be some differences between the breadboard and ULA versions of the circuit because in CMOS arrays some logic structure are more easily implemented than in bipolar technology or 4000 -series CMOS.

(the praesence of CONTROL IS ASSUMED

GIRCUIT
Fig. 3 The transmission gate.
One basic unit, fundamental to CMOS gate array design, is the transmission gate, a pair of P and N channel transistors with their sources and drains tied together, with complementary gate signals, Fig. 3. When CONTROL is high the N -channel transistor is turned on, and since CONTROL is low, the P -channel transistor is turned on too. Thus a signal can pass from A to B.

Fig. 4 D-type flip-flop (positive edge triggered) using 16 transistors (two per transmission gate, two per inverter - circuit not shown for inverter, but assumed very simple).

[^1]X during CK lows. When CK goes high the signal propogates to Q. Of course, the gate capacitance at X will leak, so a minimum clock frequency of a few kHz must be guaranteed.

Because transistors in the ULA are individually accessible, composite gates can be built up using less silicon area than if a gate array really were an array of gates, rather than transistors, Fig. 6.

Fig. 6 Composite gate, where the gate function has been implemented directly rather than been broken down into individual elements.

Onceinitial design is completed, some verification of the design will be required. At around $£ 10,000$ per fabrication run, the 'suck-it-and-see' approach is not popular. This is where CAD (Computer Aided Design) is used.

Verification Procedure

Initially electrical characteristics, usually just propogation delay in logic design, are checked. Most common elements, inverters, AND gates, adders and so on will already have been simulated by the manufacturer, but a few special functions may require investigation.

To simulate a circuit at this level (device level) requires a program with device models incorporated, and a knowledge of the model parameters to use, things like channel length, oxide thickness and doping levels for very thorough simulations, or turn-on voltage and channel dimensions for more approximate simulations. The program takes its information from a file containing the circuit description, and a set of instructions on what to do to the circuit

For propogation delay analysis, the circuit is stimulated with a know input waveform, and the program instructed to give the input and output voltages at, say, 1 ns intervals. The output can be plotted by another part of the program and delays read off, Fig, 7.

To simulate a whole circuit at device level is possible, but rather pointless; the detail is unnecessary and the program execution time too large. Other, circuit level, simulators are employed, for which the parameters used are simply gate delays. The output from this simulation is used to detect hazards and glitches which may not have been present in the breadboard model due to its different layout, logic family or size.

A hazard exists when different delay paths in a circuit cause the output to change state when it is not expected

FEATURE: Customised ICs

Fig. 7 Output from propagation delay analysis program.
to. The output of Fig. 8 should be low only when $A B C=011$. A transition of $A B C$ from 001 to 111 should therefore have no effect on X - it will remain high. However it can be seen from the timing diagram that if the AND and NAND gates have different propogation delays (as they often do in practice) there is an output change.

Fig. 8 An example of a timing hazard.
The presence of problems like this may mean the difference between success and failure of a design. Hazards can be eliminated by careful design, or made irrelevent by using fully synchronous (clocked) logic, essentially allowing the circuit plenty of time to settle between input changes.

Another important factor a designer must consider is testability. An IC may contain the equivalent of 2000 gates and yet have only 40 pins. It is not possible to put test probes inside an IC, as it is too small. Every test node mustsomehow be brought out to a pin, orat leasta bonding pad.

Getting Stuck

The two most usual fault conditions in an IC are a gate input stuck at ' 1 ', and a gate input stuck at ' 0 '. Consider the circuit of Fig. 9 . If this circuit operated correctly, then input $A B C=0$ would produce the output $X=0$. However, if B is stuck at 1 the output will be 1. The pattern $A B C=100$ is a test for the fault B S-A-1 (B stuck at 1).

The problem in an integrated circuit is that the circuit of Fig. 9 maybe'buried' deep in the IC, and it is difficult to

Fig. 9 Fault testing: suppose the input B is stuck at 1.
get the required test patterns to it - perhaps other circuits have to go through several states before the values on $A B C$ reach 100. One rather elegant solution to this problem is called scan design.

Most logic circuits have flip-flops and registers on them. By designing a few more and adding some extra steering gates, the on-chip registers can be connected as a long shift register, and the latches used to hold test patterns.

Three extra pins are needed: 'TEST, 'TEST DATA IN' and'TEST DATA OUT. When TEST is high, the circuit is in test mode, and test data is serially fed in to the flip-flop chain. After a number of clock pulses the required test pattern is in the circuit under test TEST is taken low and the circuit operated normally. Test outputs are sent to the registers. Then TEST goes high again and the output values are clocked out along the shift register to TEST DATA OUT.

There are algorithms for finding test patterns for the possible faults in a circuit. Given the logic diagram, correct software and some time, the computer can generate test patterns for most faults. It can also detail those faults which are undetectable with the circuit as it stands; such faults often indicate some redundancy in the circuit

The gate level simulator can be used to simulate a faulty circuit This may seem unnecessary, but it is useful to test the efficiency of test patterns.

The Layout

The next stage is the circuit layout The designer will probably start with a paper sketch showing roughly where each functional block will go, and proceed from there. He or she will try to interconnect the blocks along certain allowed lines (there will be a set of design rules, governed by the accuracy of the manufacturing process, which determine track minimum widths and spacings, etc). There are automatic connection routing programs, but they are usually for two or more metallisation layers, while most ULA's have only one. People produce more compact layouts than computers, especially when constricted to fixed channels allowing only a certain amount of interconnection tracks.

Finally, automatically, semi-automatically, or manually, a layout is produced. The likelihood of an error, especially with a manual layout, is high.

A piece of software called a design rule checker will look for tracks too close together, incomplete tracks and so on, reporting back to the designer, who can edit mistakes at an interactive graphicsterminal. There is also the question of whether the circuit drawn actually performs the intended function, even if it complies with the rules for physical layout. A circuit extractor program can work out the function of the layout, simulate it, and compare the results against those expected from the circuit. This is a difficult and time-consuming task, even for a powerful computer. The need for this stage can be reduced by careful design, or eliminated completely by the use of automatic layout and interconnection.

Finally the data describing the complete, checked
layout are fed to another program which generates instructions for a machine which produces the metallisation masks. Masks traditionally are made by photographic reduction of a $400 \times$ full size master, cut by a computer-controlled knife. Nowadays electron-beam lithography is common; an electron beam scans the actual size mask, exposing electron-sensitive resist. This latter method is more accurate than the first, allowing higher circuit densities, and, because each chip pattern is individually written, it costs little extra to change the program halfway and write two, three or four different metallisation layouts onto one mask. This allows smaller than usual quantities to be economically committed.

The Future

What of future developments? Most predictions are based on company forecasts, and they obviously predict a rosier future for whatever semi-custom method or technology they are marketing that their competitors do not have. However it is possible to say some things with reasonable certainty.

Silicon-gate CMOS arrays are likely to dominate the market in most applications, due to their combination of speed, density and low power. Low power density is important with high levels of integration - chips which dissipate more than a watt or so require special packaging to keep them cool and the package may cost more than the chip it houses.

Software is still chasing hardware in sophistication 20000 gate arrays are announced but no CAD system can adequately handle them yet 30000 gate arrays have been predicted for 1985. Array manufacturers are becoming aware of these difficulties, and are employing software writers to produce product-specific CAD tools at the same time as hardware designers work on the physical design of the array.

Most ULA sales are in the 300-1000 gate range, the very large arrays tending to be purchased by the computer industry. A recent FPLA chip (the AmPAL22 V10 from Advanced Micro Devices) claims to offer the versatility of a 500 to 1000 gate array be celver design and the provision of over 5800 fuses. Perhaps we shall see FPLAs making headway into markets previously the domain of the gate array.

By the end of this decade CAD software may have advanced to the level where the standard cell will exceed the gate array in popularity. This is because most systems are not composed only of logic circuits - they contain RAM, ROM, EPROM and linear devices like opamps, analogue to digital converters and voltage references. There are arrays which have linear functions and memory areas on them (an ordinary array wired as a RAM is very wasteful of silicon) but the problem is always how much space to allocate to each function. If too many choices are offered none will sell in large numbers and the advantages of mass production are lost With a standard cell IC there are no such problems - as much ROM, etc, as is needed is fabricated.

Increasing levels of integration bring problems of pinout too - 64 pins is the usual maximum in a DIL pack age. However a semi-custom IC may be replacing a whole PCB with over 80 connections. We are likely to see more and more exotic packages such as flatpacks and pin-grid arrays (which look like a bed of nails from the pin side).

In conclusion, then, it seems likely that more and more products will employ semi-custom ICs of one sort or another. These ICs will be designed by ordinary circuit designers, using powerful software tools running on mini-computers or special-purpose micro-computers.

UK'S NO. 1 FOR ELECTRONICS	ALL PRICES INCLUDE VAT

STEREO RADIO TUNER

MECHANISMS
Fitted counter Mator. Slereo
record and erase heads.
Solenoid etc. Brand new

available 6V DC of 12V DC
£5.95 (Uк $\mathrm{C} / \mathrm{P} 65 \mathrm{p}$)

THERMAL

 PRINTERCOMPLETE WITH FULL HANDBODK
3 ROLLS PAPER

£49.95 UUK С/Р £1.05

SUITABLE FOR TANOY BBC ORIC HASCOM GEMINI ACOAB DRAGOM ETC EIC Litarlace nnil with laads £ 15 - sble modell |your enquiries inviled).
NICADS/DEACS
Rechargeable packs
EVERREADY B \& VOH HEAVY OGTY MICAD approx 3: Diamx 3

DEACS [UK post 50p]	
24 Voll 225 mâh	£3.95
¢. 6 Voll 90 maH	£1.25
3.6 Voll 225 mAH	£1.50

COMPUTER POWER SUPPLIES
RECHARGEABLEBATTERIES

\& CHARGER

Charger takes any 4 AA C' or 'O' colls plus PP3 type. With tres mains plug $£ 5.50$
 [UK C/P \& ins 65pl
$4 \times$ 'AA' [HP7 \& IUK C/P 30 DI | Other slzes in slock

COMPUTER FANS
IUK C/P 60p each. £I. 00 per palrI
4)/ 220/230V AC Brand new $374.113 / 4 / 115 \mathrm{~V}$ AC Brand new 43/: 220/240V AC Ex-units £7.50 each ع8. 75 gach £5.50 each $\$ 5.00$ each

MARRIOTT TAPE HEADS

 IUK post 50 p per I to 4]y TRack XTRACK
XRPS36 Low imp.
XRPS18 Med imp.
XESII Erase lor above
YTRAGKK
BXRP63 R/P EX RP63
Erase for above
CASSETTE HEAOS
Smiat: 2.95 Mono $£ 1.95$
Stareo orase $\mathbf{8 1 . 0 0}$
$£ 3.50$
$£ 2.50$
$£ 1.25$
$£ 2.25$
$£ 1.25$

TOROIDAL TRANSFORMER
100 watis lsolation $230 / 240 \mathrm{~V}$ AC
plus $8-0-8 \mathrm{BV} 4 \mathrm{~A} 15-0-15 \mathrm{~V} 0.645 \mathrm{~A}$ plus 8-0.8V 4A 15-0.-15V 9.645A [UK C/P 75 pl
$£ 7.95$
UHF MODULATORS (UKC/P 40p Video Input RF outputs casad lor computers ell.

Astec Un 1233

 ITT version

VIDEO VANDAL

Does Wogan leave you feeling green, or the news make you blue? Get your own back with ETI's video effects unit.

The Video Vandal is a colour video effects generator which can change a normal video image in many different ways. The effects available include:
(1) Posterisation, where the picture is resolved into a variable number of brightness levels in a way similar to, but more controllable than, photographic solarisation, as used in many pop videos;
(2) pseudo-Mosaic, where the picture is cut into vertical 'ribbons', an effect similar to that used in certain cigarette adverts in magazines;
(3) use with a computer as a frame grabber or for image analysis, and
(4) 'false colour', in conjunction with a suitable monitor or PAL encoder, where colours are used to represent different brightnesses in a manner similar to that of the well-known electronic Infra Red imaging systems. This last effect is extremely eerie - it is very like the effect used in the title sequence of the BBC's Day Of The Triffids.

The circuit is shown in block diagram form in Fig. 1. The video signal is switched either 'straight through' or processed. If processing is selected, the signal is amplified, has the sync pulses stripped from it and has its maximum level limited, while a portion of the colour information is filtered off by a capacitor acting as a high pass filter. The syncless signal is presented to the analogue to digital converter chip whose clock is locked to the sync pulses. The digitised signal is next put through six'bit switches' before being fed into a buffer and the digital to analogue converter and thence to the output section. Here, the sync and luminance are re-combined into a composite video signal which finally feeds, with the colour signal added, the output socket and, if selected, a UHF modulator.

Fig. 1 Block diagram of the Video Vandal.

CONSTRUCTION

There is nothing particularly critical about the construction of the Vandal, provided the high frequencies are taken into account.

The boards should be assembled in the usual sequence of links, IC sockets, passive components, semiconductors. Do not insert the ICs (except the regulators) until you start set up. Be very careful when you handle the ADC chip, as it is static sensitive, and on a chip of that price all precautions such as an earthed metal working surface should be used a stainless steel draining board is ideal (but don't drop anything down the plughole!). Once in situ, however, the ADC chip is fairly robust, as its input is protected by R19.

There are a lot of large-ish screened cables to connect, so care is recommended while working. The wiring diagram is intended to guide you as far as what goes where, and the use of cable ties when wiring is complete is a must. Audio quality screened cable may be used where screened cable is specified, providing the core is at least $7 / 0.2$.

The bit switches should be connected to the DIL header plug via a length of ribbon cable, which is also used to connect the DATA socket If there is interference on the video signal, then wrapping the ribbon cable with aluminium foil (and earthing it) is beneficial.

The connections to SW9 should preferably be made with

Fig. 2 Connecting up SK5, SK6 and the bit switches.

Fig. 3 Component overlay for the input board.
PARTS LIST - INPUT BOARD

RESISTORS (all $1 / 4$ W 5\%)		R11	1 k 5	
R1	68R	R15	560 R	
R2,3,6,9	10k	R16	220k	
R4,5,13,14	$1 \mathrm{k0}$	R17	100k	
R7	100 R	R18	1k2	
R8,12	270 R	RV1	10k	horizontal
R10	120k		preset	

Fig. 4 Component overlay for the ADC board.

PARTS LIST - ADC BOARD

RESISTORS (all $1 / 4$ W5 $\%$ unless otherwise stated)	
R19	
R20	$1 \mathrm{M0}$
R21-28,43,44	220 R
	1 k 0

R29,34,35,38,40	1k0 2\% or better
R30	3k9 2% or better
R31	6k8 2\% or better
R32	15k 2% or better
R33	$22 \mathrm{k} 2 \%$ or better

R36	100R 2\% or better
R37	1 k 2 2 \% or better
R39	10k 2\% or better
R41,42	5 k 6
CAPACITORS	
C13,14,15	100n
C16	82p
C17	3p3
C18	120p
SEMICONDUCTORS	
IC2	RS 3300 ADC
IC3	7417
IC4	7404
Q5	BC108
D2,3	OA91
LED1	panel-mounting red LED
ZD2	BZY88C 3 V9
MISCELLANEOUS	
SK5	16 pin DIL socket and 16 pin header to suit
SW3-9	SPDT miniature toggles
PCB; 16-way rib	cable.

low-capacitance wire, or simply use self-supporting solid wire. In the prototype, two torn off lines of ribbon cable were used. Remember to sleeve all the mains connections for safety.

SETTING UP

These instructions assume that a dual-trace oscilloscope with TV
line triggering, a multimeter, a colour video source and a TV or colour monitor are available. Assemble the Vandal, leaving all the ICs except the voltage regulators out. Set all presets to mid-travel. Switch on the mains and check that the supply voltages coming from the PSU are correct. If so, switch off and install ICI ,

BUYLINES

[^2]

Fig. 5 Component overlay for the PSU board.

PARTS LIST - PSU \& CASE

| RESISTORS | | |
| :--- | :--- | :--- | :--- |
| R45,46 | 100 k | |
| R47,52 | $1 \mathrm{k0}$ | |
| R48 | 100 R | |
| R49 | 220k | |
| R50,51 | 150 R | |
| RV4,5 | 47k | horizontal |
| | preset | |

connect a colour video source (such as a video recorder) to the input, switch the Through/Process switch to Process and power up again. Connect channel 1 of the scope to the input, and adjust it until a steady display of one line (NOT a field) like Fig. 7 a is obtained, with the timebase at about 100 us. All further instructions concerning the scope will refer to channel 2. Next, connect the scope to the point marked A on the circuit diagram (the video output from the Input Board to the ADC/DAC) and adjust RV1 until the observed signal looks like that of Fig. 7 b . Next, check that points B and C (the sync outputs) on the input board both have sync pulses which look like Fig. 7 c present. Now connect the scope to point D (the colour detector output) with SW2 open. Check that there is a colour burst and some noise present, as shown in Fig. 7 d . This completes the basic adjustment of the input board.

There are no adjustments to make to the ADC-DAC board. Turn off the power again, wait at least a minute for the capacitors to discharge and insert the remaining ICs carefully. Turn on again.

Check that the clock is oscillating by testing pin 7 of the ADC. This should show several megahertz (as shown in Fig. 7 e) with SW9 open, less with it closed, but in both cases keying off with every sync pulse. Switch all the bit switches (SW3-8) on, connect the scope to point F (DAC output) and check that the signal looks roughly like that of Fig. 7 b . Connect a 68 R (or 75 R) dummy load resistor and the scope to the output socket, and adjust RV4 and RV5 until the signal is as shown in Fig. 7a, ie with the ratio of luminance to sync at about 70:30. Adjust RV6 until the output is about $1-1.5 \mathrm{~V}$ peak-topeak. Connect the monitor and with a colour video source adjust RV3 until the colours are at about the correct saturation level. The colour will go unstable and then
disappear when RV3 is set too low: this is caused by the colour burst going below the detection level of the monitor. Note that the simple colour filter arrangement distorts the colour slightly and that the colour burst on the output is not to the CCIR specification, but in most cases it will be sufficient.

IN USE

The Video Vandal is designed to be strung into line between two video recorders during editing, or between a camera and monitor or recorder. It is possible to switch it in or out of circuit (except the modulator) so that it doesn't affect the signal if not required.

To set up the Vandal for use, switch the Through/Process switch to Process to put it in line and apply a video signal. Adjust the

PROJECT: Video Vandal

Fig. 6 Wiring diagram. Note that the connections to SK5, SK6 and the bit switches have been omitted for clarity.

Fig. 7 Waveforms to be expected at various points in the circuit.

Gain control until the Distortion LED just doesn't light. Should you be working in monochrome, the colour switch SW2 should be switched to Off. If monitoring of the effects is required, then a TV (or whatever) should be connected to the UHF output. Now, taking the effects listed in the introduction in order.

1. Posterisation is achieved by switching the Bit Switches on and off. For example, eight levels of brightness (the setting most used by the Author) are achieved by switching on only bits 1,2 and 3 , the most significant bits. Another variation on this theme is to make any people on the screen look as though they have some kind of plague, by switching all bits except 1 on, and adjusting the gain control until their faces appear to have black patches on them.
2. The Ribbon (pseudo-Mosaic) effect is created by slowing the clock down with SW9. (Incidentally, if a 470 K pot is connected in series with SW9 and C18 is increased to 220 p, the stripe width becomes variable.)

HOW IT WORKS

Fig. 8 Circuit diagram of the input amplifier, sync detector and colour filter.

The incoming composite video signal is first terminated by R1 to make it an approximate match for the standard (nominal 75R) video line impedance. The coupling capacitor C 1 next isolates the input so that a DC bias (for DC restoration) provided by RV1 can be added before the signal is amplified by IC1, whose gain is adjusted by RV2 between about 1 and 10 to allow for variations in input levels and special 'white out' type effects. The ADC chip cannot tolerate negative voltages on its input, so diode D1 performs the dual function of limiting the maximum negative voltage to some -0.2 V and removing the negative going sync pulses - see Fig. 7b. The y (luminance) signal is not affected much by this providing that the bias from RV1 is adjusted so the black level is rought 0 V or so as explained under the Setting Up section. D2 is included so that any spikes above 5 V cannot get into the ADC. R7 limits the current which can flow into the diodes, protecting both them and the op-amp.

Sync detection is performed by the circuitry around Q1-Q2-Q3. Q1 is biassed so that it is normally turned hard off. When a sync pulse comes along, it drags the base low via the differentiator C5 so that the transistor conducts during the pulse. This signal has not got very sharp edges, however, so R12/C7/Q2 and C8/R14/Q3 perform pulse shaping to improve the square wave edges. Q3 is the sync output device which drives the output circuit and synchronises the ADC's clock.

The chroma signal and some of the high frequency luminance is passed through C10 acting as a high-pass filter. This chroma signal is highly attenuated
however, so it is amplified by Q4. Matching the colour output level to the rest of the video signal is fairly important to avoid under- or over-saturation of hues on the final display and to ensure reliable colour burst detection. The colour level is adjusted by RV3, AC coupled to the output by C12 and may be switched on and off by SW2. There is no reason why the saturation level shouldn't be made variable from the front panel with a pot, but note that the leads to such a pot would have to be screened, as do the
leads to the colour killer switch SW2
The ADC chip is the heart of the Video Vandal, so it is worth taking time over a description. The chip is of the 'Flash Converter' type which can manage some 19 million conversions per second. A slightly simplified description of how the chip works follows. The reference voltage on pin 9 is divided into 63 identical segments by a resistor ladder. Each 'rung' of the ladder is connected internally to one input of a window comparator (op-amp), with the other inputs commoned and brought out via a sample-and-hold (S\&H) on pin11. When a voltage is applied to pin 11 and the S\&H lets it through, one of the 63 comparators will find its two inputs at the same potential and its output will change state. The 63 outputs are fed into a 1 -of 63 to 6-bit converter - probably an array of diodes - and then into an output latch which is clocked at the same rate as the $\mathbf{S \& H}$. An extra comparator is included as an over-range indicator, with its input brought out on pin 2. To allow high accuracy, the resistors have to be laser trimmed during manufacture, and this is one reason why the chips are so expensive.

The amplified video signal coming from the input board is fed directly into the input of the ADC, but note R19 which protects the chip from damage by static discharge during assembly and testing. The high value is chosen so that it has no effect upon the input voltage. Pin 9 is the reference input, held at 3.9 V by D 3 and decoupled by C13. Q5 drives the'Distortion' LED; although D2 protects the ADC against overvoltage, if the quantitising range is exceeded, distortion in the form of bright whites 'peaking out' will occur. This effect is sometimes useful, though, so the ability to do it by setting the Gain

Fig. 9 Circuit diagram of the clock, ADC and DAC board.

Fig. 10 Circuit diagram of the output amplifier and PSU.
control too high has been left.
The ADC chip is clocked at some 48 MHz by the oscillator built around two gates of IC4. It does not run at anything like the highest speed that IC2 can work at because of the need to adjust the frequency of clocking to provide the 'Ribbon' effect (which is nothing more or less than a digital $\mathbf{S \& H}$). If this effect is not required then C 16 could be reduced to about 10 pf, and C 17 could be replaced by a crystal to reduce in-band quantisation noise (16 MHz was used in the MK. prototype) and C18/SW9 left in situ: this would make most sense as the ADC would work at the highest possible frequency unless specifically required to go slowly. The advantage of using a capacitor rather than a crystal is that it is much cheaper.

If the oscillator was allowed to run free, the 'Ribbon' effect would be completely unstable, so during sync pulses the clock is interrupted by D4 grounding an input. The otherwise unused gates in IC4 are used to provide a TTL syncoutput to the DATA socket.
'Bit Switches' SW3-8 switch on and off the output bits from IC2 to the Digital to Analogue Converter (DAC), R34-40. The switches provide the variable resolur tion feature of the Vandal. If all six switches are closed the output is practically the same as the input; with just S1 (most significant bit or MSB) set, the output is literally black and white with no grey between the extremes. If compared with photographic film, this is the electronic equivalent of lith' film. Putting different switches on and off creates different effects.

The DAC is of the simplest parallel type known to man - the R-2 R ladder. This works by having resistances proportional to the significance of a bit switched in and out, pulling a line up or
down proportionally. For example, the MSB is connected via the lowest value of resistor (1 K), the next most significant bit via twice that (remember we're working in binary) and the third four times etc The overall effect is that the output voltage at point F is proportional to the binary number presented to the buffer gate array's inputs. Note that much of the linearity of the circuit is dependent on the DAC; for best results 2% or preferably 0.5% tolerance metal film resistors should be used.

The pull-down resistors R23-28 are included because a floating TTL input apart from being a bad thing - considers itself to be 'high' (logic 1), and hence is in the wrong state as far as the DAC is concerned where a bit which is 'off' is considered to be grounded.

The output board's function is to recombine the y and sync signals into a composite signal, current amplify them, change from high impedance to 75 ohms, and finally pipe the colour back in again. The y and sync signals are simply added together in a passive mixer ($\mathrm{R} V 4,5$) and fed into an op-amp. Q6, which boosts the output current capability, is included in the op-amp's negative feedback loop so that the circuit will theoretically remain linear under all circumstances. R50 and R51 match the output to 75 R impedance, with C22 AC coupling the circuit. The colour signal is the last thing which is added to the output because its frequency is higher than can be put through the op-amps without risk of instability. The NFB loop of R48 and RV6 sets the output level.

The power supply which shares the same board is quite straightforward: 12-$0-12 \mathrm{VAC}$ from the secondary of T 1 is bridge rectified by D6-9 and regulated to +5 V and $\pm 12 \mathrm{~V}$ by ICs 6, 7 and 8.
3. This function requires the use of a computer with suitable software driving it - which is way beyond the scope of this article but the connections between the computer's port and the DATA socket are of the 6 data bits and the sync pulse. 4. False colour (which should not be confused with the ordinary colour) is created by connecting an RGB monitor (the sort used with Oric, Electron and BBC computers is suitable) to the DATA socket, with the RCB inputs connected to bits 2, 1 and 3 respectively. This creates colours representing brightness, which may be filmed or displayed 'live'. Alternatively, the bits may be connected to a PAL encoder and then recorded or displayed.

THE DATA SOCKET AND BEYOND

The DATA socket is a very important part of the Video Vandal concept. Through this, it is possible to expand the system, as it carries the important 6 data lines along with the sync line, all at TTL levels. Through this socket is is possible to connect computers (for frame grabbing) or with an encoder or RCB monitor it is easy to produce 'false colour' pictures, where the RCB inputs of a monitor (or RGB to PAL encoder) are connected to the three most significant bit outputs so that differing colours represent the brightnesses. For example, green footballers playing on magenta grass with a red ball is a typical output. If there is sufficient interest, an RGB to PAL encoder card will be designed. Other than this, the Vandal could be used as a fast analogue to digital converter for other purposes, which is one reason why it is built on separate boards - if just the ADC/DAC board is built then a stand-alone high speed analogue to digital converter is at your fingertips.

The cheap' n ' cheerful Video Vandal should cost around $£ 100$ \&130 to build: the nearest professional (studio quality) device that the Author has yet found albeit also a Time Base Corrector - doesn't leave much change out of $£ 17,000$!

The author wishes to thank G8BVI for help with various prototype colour pass filters, and Mr. M. Boote of Beaminster School for help and the loan of test gear.

Anglia Industrial Auctions

NEXT SALE OF OVER 700 LOTS WILL BE HELD ON OCT. 17th 1984 THE LOTS BELOW WILL BE OFFERED FOR SALE UNLESS PREVIOUSLY SOLD

5 STATION ROAD, LITTLEPORT, CAMBS. CB6 IQE. Phone ELY (0353) 860185

ELECTRON SPEAKER

Turn your Electron into a chatterbox with this project from John Wike.

As the title suggests this is a project to add a speech unit to the Acorn Electron. It plugs into the rear edge connector, is easy to use and does not interfere with any other devices that are connected.

The system is based on the ubiquitous General Instruments speech processor, type SPO256AL2. This chip contains all the components necessary to produce 64 speech sounds (or allophones).

Associated with it are six other chips for interfacing and audio output

The board is driven by a short Basic PROCEDURE and 73 bytes of machine code; the latter is easily assembled using the built-in assembler on the Electron. The speech codes are stored in a queue and once the process has

HOW IT WORKS - HARDWARE

started a non maskable interrupt (NMI) routine is used to get data from the queue. This means that the computer can carry on with the rest of the program while the circuit is speaking.

The Hardware

The circuit consists of the speech processor, oscillator, address latch, decoding, and NMI generator. The oscillator circuit is

Gates ICla, ICIb and IC2a decode the address and control lines so that a write operation in the range \& C000 to \& DFFF will cause the eight least significant bits of the address bus to be latched in IC3. Also address line A12 will be latched in IC6a and a clear pulse will be applied to latch IC6b.

When the circuit is reset the standby (SBY) output of the speech processor (IC5) goes high and latch IC6a, pin 8 goes low, disabling gates IC2b and IC1 c. When the computer writes to latch IC3 at address \& C001, line A12 will be low so

IC6 a 8 will go high and IC2b,6 will apply a low level to the address load (ALD) input of IG. Less than a microsecond later SBY will go low again and IC2b,6 will go high, clocking latch IC6b.

As the outputs of both IC6 a and IC6b will now be high, IC1 c, 3 will go low causing a non maskable interrupt (NMI). In response to this the computer will write to IC3 at address \& C0xx and latch IC6b will be cleared, cancelling the NMI via IC1 c. Some tens of milliseconds later, SBY will go high again, causing IC $2 \mathrm{~b}, 6$ and ALD to go low. IC5 will load data

ETI NOVEMBER 1984
from IC3, SBY will golow, there will be an NMI and the computer will write to IC3 at a new address \& C0yy. When there is no more speech data the computer prevents further interrupts by writing to address \& D000. This sets IC6 a, 8 low and disables IC1c.

Note that because new data is loaded into IC3 as soon as the old data has been loaded into IC5, the speech inflection bits are one step ahead of the actual speech data.

The inflection circuit is based around a voltage controlled oscillator chip, IC4. The control voltage for this is derived via a crude analog to digital converter formed by R3, R4, RV1, RV2 from the latch outputs IC3,9 and IC3,12. The output of IC5 is a pulse width modulated square wave which is passed through filter R5, R6, C4, C5 and volume control RV3 to the audio amplifier IC7.

Fig. 1
Circuit diagram of the project.

Fig. 3 (above) Overlay diagram.
Fig. 4 (left) Connector details.
in fact voltage controlled. The control voltage is produced by a rough digital to analog converter from the two most significant bits of the speech data. This allows a certain amount of inflection in the output voice. To allow the speech processor to load fresh data as quickly as possible it is necessary to latch each allophone while the previous one is being spoken. This means that the inflection bits will affect the preceding allophone.

BUYLINES

There should be no problems here. The SPO256-AL2 and the box are available from Rapid Electronics, and the PCB is available from the author at 9, Lon-yGarwa, Caerphilly, Mid-Glamorgan for £6 inc p\&p.

PARTS LIST

RESISTORS (all 0.25 watt 5%)	
R1	1 k
R2	10 k
R3	15 k
R4,5,6	33 k
R7	10 R
RV1,3	10 k
RV2	22 k
CAPACITORS	
C1,6,7,8	10 uF Tantalum
C2	33 pF
C3,4,5	22 nF
C9,10,13-17	100 nF
C11,12	100 uF electrolytic

SEMICONDUCTORS

IC1	74LS03
IC2	74 LS20
IC3	74 LS237
IC4	74 LS624
IC5	SPO256-AL2
IC6	74 LS74
IC7	LM386

MISCELLANEOUS

Double sided 25 way edge connector; ribbon cable; IC sockets; printed circuit board; 8 ohm 0.1 watt loudspeaker; BICC/VERO plastic box $3^{\prime \prime} \times 4.5^{\prime \prime} \times 1.5^{\prime \prime}$.

LIST
11）PROCINIT：ONERRORGOTO40
20 UIM Q1\％（100），Q2\％（100）
30 CLS：PRINT：PRINT：PRINT
40 PRUCSPEAK（796）
50 REPEAT：PROCSPEAK（799）
60 HKINT＂PLEASE ENTER A NUMBER＂；
70 INPUTI\％
80 PROCSPEAK（ $1 \%+800$ ）
90 UN＇TILFALSE
95：

796 DATA $4,155,135,173,15,117,132,4,216,70,131,26,154,80,67,18,143,79$
797 DATA67，19，196，13，19，132，24，134，67，7，45，7，105，77，167，152，139，131，55，183
798 DATA137，147，136，116，67，0
799 DATA $9,45,19,43,3,7,11,2,13,51,3,20,3,11,15,16,1,28,51,0$

800 DATA43，60，53，0
801 DATA46，15，15，11，0
802 1）ATA13，31，0
803 DATA29，14，19，0
804 DATA40，40，58，0
805 DATA $40,40,6,35,0$
806 DATA $5,55,12,12,2,41,55,0$
807 DATA55，55，7，7，35，12，11， 3
808 DATA20，2，13，0
809 DATAl1，24，6，11，0
810 DATA13，7，7，11，0
811 DATA12，45，7，7，35，12，1i，
812 Datal $3,48,7,7,45,35,0$
813 DATA29，51，1，2，13，19，11，0
820 DATA13，48，7，7，11，1，2，13，19，0
900 DATA57，15，15，11，1，2，33，39，12，12，1，21， 3 950

1000 DEFPROCSPEAK（X\％）
1010 RトSSOREX\％：A\％＝0
1020 IFQ\％＝Q 2% Q\％＝O 1 \％ELSE Q\％＝Q2\％
1030 REPEAT：READB\％：？$(Q \%+A \%)=B \%$
$1040 \mathrm{~A} \%=\mathrm{A} \%+1$ ：UNTILB $\%=0$
1050 CALLstart，Q\％：ENUPRUC
1055 ：
The address decoding was designed with two factors in mind． The first factor was that the circuit should not interfere with any add－ ons that might use the official extension addressing area （\＆FC00 to \＆FCFF）．The second factor was a desire to keep the chip count down．It was decided to make the circuit write－only and to address it in parallel with the operating system ROM．The addresses chosen（ \＆C000 to \＆DFFF）mean that only 3 address lines need decoding and as the computer normally only reads from this area there will be no faulty triggering．The one snag with this is that Acorn have not dis－ abled the ROM during write operations，so any data output by the speech routines would conflict with data from the ROM．This pro－ blem was overcome by using indexed addressing to output the data on the address bus．A read followed by a write will latch the lower eight bits of the address bus whilst ensuring that the data bus does not conflict with the contents of the ROM．

When the speech processor is ready to receive more data，an NMI is generated，to be cleared when the new data is latched．

Fig． 5 The software needed to use the unit．

2000 DEFFROCINIT
2010 point $=\& 8 \mathrm{D}$ ：lasto $=\delta 8 \mathrm{~F}$ ：block $=\delta 601$
2020 spon $=\& C 000$ ：spoff $=\delta_{1} D 000$
$20300 \%=\AA$ DOO
2040 FORI＝0TO2STEP2
$2050 \mathrm{P} \%=0 \%$
2060 ［ OPT I
2065 ：
2070 ．inter PHA
2080 LDAlasto
2090 BNEinter2
2100 LDAspoff
2110 STAspofe
2120 PLA
2130 RTI
2135 ：
2140 ．inter2 TYA
2150 PHA
2160 LDY非 0
2170 LDA（point），Y
2180 JSRstart2
2185 ：
2190 INCpoint
2200 BNEinter4
2210 INCpoint＋1
2215 ：
2220 ．inter 4 PLA
2230 TAY
2240 PLA
2250 RTI
2255 ：
2260 ．init LDA非0
2270 BEQstart2
2275 ：
2280 ．start LDAlasto
2290 BNEstart
2295 ：
2300 LDAblack
2310 STApoint
2320 LDAblock＋1
2330 STApoint＋1
2335 ：
2340 LDY： 0
2350 LDA（point），Y
2360 TAX
2370 IYY
2380 LD．（point），Y
2390 STApoint＋1
2400 STXpoint
2405
2410 TYA
2415
2420 ．start2 STAlasto
2430 TAY
2440 LDAspon，Y
2450 STAspon，Y
2460 RTS
2465
2470 ］：NEXT
2480 CALLinit：ENDPROC
$>$

Writing to addresses in the range \＆C000 to \＆CFFF enables inter－ rupts，and the range \＆D000 to \＆DFFF disables them．

The audio output is amplified by an IC power amplifier and applied to a small 100 mW loudspeaker． The board has been designed to fit with the loudspeaker inside a BICC／VERO $3^{\prime \prime} \times 4.5^{\prime \prime} \times 1.5^{\prime \prime}$ plas－ tic box using the box lid screws for mounting

The Software

The program listed here to test the circuit contains Basic routines， machine code，and sample data strings．Two sound queues are pro－ vided so that one can be loaded
while the other is being output. These queues obviously have to be long enough to accommodate the longest data string used. When the data has been loaded into a queue a machine code routine is called to set up a pointer into the queue for use by the interrupt routine and to start the speech processor by writing to address \& COO1.

In Electron Basic, a call to a machine code routine can be followed by several parameters. The locations where the values of these parameters are stored are
put into a block of memory starting at $\& 600$, and the location of the first parameter is in \&601\&602. This facility is used here: the start address of the queue is held in a variable which is given as a parameter to the machine code call. The contents of \&601-2 are then used to find the value of the variable which is stored as a pointer.

Each data string must end with a zero, which is used as an end marker. If this would affect the inflection of the last spoken data a pause with the correct inflection

Sound Type Silences	Symbol /PA1/ /PA2/ /PA3/ /PA4/ /PA5/	Code 00 01 02 03 04	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Duration 10 ms 30 ms 50 ms 100 ms 200 ms	Example	Notes
Short vowels	$\begin{aligned} & \text { /IH/ } \\ & / \mathrm{EH} / \\ & / \mathrm{AE/} \\ & / \mathrm{UH} / \\ & / \mathrm{AO} / \\ & / \mathrm{AX/} \\ & \text { /AA/ } \end{aligned}$	0 C 07 1 A 1 E 17 0 F 18	$\begin{array}{r} 12 \\ 7 \\ 26 \\ 30 \\ 23 \\ 15 \\ 24 \end{array}$	$\begin{array}{r} 70 \mathrm{~ms} \\ 70 \mathrm{~ms} \\ 120 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 70 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{array}$	slt End hAt bOOK AUght sUcceed hOt	These vowel sounds can be doubled to lengthen them.
Long Vowels	/IY/ /EY/ \|AY/ /OY/ /UW1/ /UW2/ /OWI \|AW/	13 14 06 05 16 1 $1 F$ 35 20 5 20	$\begin{array}{r} 19 \\ 20 \\ 6 \\ 5 \\ 22 \\ 31 \\ 53 \\ 32 \end{array}$	250 ms 280 ms 250 ms 420 ms 100 ms 260 ms 240 ms 370 ms	sEE trAy klte vOlce to fOOd zOne dOWn	
R -coloured vowels	$\begin{aligned} & \text { /ER1/ } \\ & \text { /ER2/ } \\ & \text { /OR// } \\ & \text { /AR/ } \\ & \text { /YR/ } \\ & \text { IXR/ } \end{aligned}$	$\begin{aligned} & 33 \\ & 34 \\ & 3 A \\ & 3 B \\ & 3 C \\ & 2 F \end{aligned}$	$\begin{aligned} & 51 \\ & 52 \\ & 58 \\ & 59 \\ & 60 \\ & 47 \end{aligned}$	160 ms 300 ms 330 ms 290 ms 350 ms 360 ms	letter fERn fORtune alARm hEAr stARe	
Resonants		$\begin{aligned} & 2 E \\ & 03 \\ & 27 \\ & 2 D \\ & 3 E \\ & 31 \\ & 19 \end{aligned}$	$\begin{aligned} & 46 \\ & 14 \\ & 39 \\ & 45 \\ & 62 \\ & 49 \\ & 25 \end{aligned}$		We Read cRane Like angLE, cUte, Yes	(See also /WH/) squirrE] compUter (Y-sound)
Voiced Fricatives	$\begin{aligned} & \text { /VV/ } \\ & \text { /DH1/ } \\ & \text { /DH2/ } \\ & \text { /ZZ/ } \\ & \text { /ZH/ } \end{aligned}$	$\begin{aligned} & 23 \\ & 12 \\ & 36 \\ & 2 B \\ & 26 \end{aligned}$	$\begin{aligned} & 35 \\ & 18 \\ & 54 \\ & 43 \\ & 38 \end{aligned}$	$\begin{aligned} & 190 \mathrm{~ms} \\ & 290 \mathrm{~ms} \\ & 240 \mathrm{~ms} \\ & 210 \mathrm{~ms} \\ & 190 \mathrm{~ms} \end{aligned}$	Vest THis baTHe Zoo pleaSure,	aZure
Voiceless Fricatives		$\begin{aligned} & 28 \\ & 10 \\ & 37 \\ & 25 \\ & 1 B \\ & 39 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 29 \\ & 55 \\ & 37 \\ & 27 \\ & 57 \\ & 48 \end{aligned}$		Food THin veST SHip He Hoe WHig	These allophones may be used doubly for initial or singly for final positions. (see also/WW/)
Voiced stops	$\begin{aligned} & \text { /BB1/ } \\ & \text { /BB2/ } \\ & \text { /DD1/ } \\ & \text { /DD2/ } \\ & \text { /CG1/ } \\ & \text { /GG2/ } \\ & \text { /GG3/ } \end{aligned}$	$\begin{aligned} & 1 C \\ & 3 \mathrm{~F} \\ & 15 \\ & 21 \\ & 24 \\ & 3 \mathrm{D} \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \\ & 63 \\ & 21 \\ & 33 \\ & 36 \\ & 61 \\ & 34 \end{aligned}$		$\left.\begin{array}{l}\text { riB } \\ \text { Beast } \\ \text { enD } \\ \text { Down } \\ \text { Guest } \\ \text { Got } \\ \text { peG }\end{array}\right\}$	Usually need $10-30 \mathrm{~ms}$ silence preceding these.
Voiceless Stops	$\begin{aligned} & \text { /PP/ } \\ & \text { /TT1/ } \\ & \text { /TT2/ } \\ & \text { /KK1/ } \\ & \text { /KK2/ } \\ & \text { /KK3/ } \end{aligned}$	$\begin{aligned} & 09 \\ & 11 \\ & 0 \mathrm{D} \\ & 2 \mathrm{~A} \\ & 29 \\ & 08 \end{aligned}$	$\begin{array}{r} 9 \\ 17 \\ 13 \\ 42 \\ 41 \\ 8 \end{array}$	210 ms 100 ms 140 ms 160 ms 190 ms 120 ms	$\left.\begin{array}{l}\text { Pow } \\ \text { parTs } \\ \text { To } \\ \text { Can't } \\ \text { speak } \\ \text { Crane }\end{array}\right\}$	Usually need $50-80 \mathrm{~ms}$ silence preceding these.
Affricatives	$\begin{aligned} & / \mathrm{CH} / \\ & / \mathrm{H} / \end{aligned}$	$\begin{aligned} & 32 \\ & 0 A \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{aligned} & 190 \mathrm{~ms} \\ & 140 \mathrm{~ms} \end{aligned}$	CHurCH JudGe	
Nasal	/MM/ /NN1/ /NN2/ /NG/	$\begin{aligned} & 10 \\ & 0 B \\ & 38 \\ & 2 \mathrm{C} \end{aligned}$	$\begin{aligned} & 16 \\ & 11 \\ & 56 \\ & 44 \end{aligned}$	180 ms 140 ms 190 ms 220 ms	Milk thiN No aNGer	

Table 1 The allophones that the unit can generate.
bits can be inserted. As each byte is written to the speech board it is also stored in a memory location. When the interrupt routine detects a zero in that location it disables further interrupts by writing to address \& D000.

As the NMI routine in the Electron must start at \& D00 that is where the machine code is assembled. The assembly is included in the initialisation PROCEDURE because pressing BREAK resets the byte at \& D00 to a return from interrupt instruction.

Construction

Construction of this project should present no difficulty. The board is single sided and there are only thirteen links to fit. The use of IC sockets is recommended - do not forget the link underneath IC5. Once all the components have been soldered in, the edge connector can be attached via approximately three inches of 19 -way ribbon cable and the loudspeaker can be connected with about four inches of wire. If the board is going to be mounted in a box, a slot must now be made in the side of the box at the point where the ribbon cable will come out

Setting Up

Having checked very carefully for shorted tracks etc, insert all the ICs and connect the board to the Electron. Type in ? \& \& C013= ?\&C013 and you should hear a repetitive noise. It is actually an 'ee' sound but do not worry if it is not immediately recognisable. Adjust RV3 to give a suitable volume level out of the speaker. Now type ?\&C000=?\&C000 and the noise should stop.

If you have access to an oscilloscope, program function key 1 to do?\&C000=?\&C000 and function key 2 to do? $\& \mathrm{COC}=$?\& COCO, using the *KEY commands. Monitor the waveform on pin 8 of IC4 and you should see the frequency changing when you press the two function keys. Adjust RV1 and RV2 so that the frequency produced by key 1 is as close as possible to 2.5 MHz and that from key 2 is as close as possible to 3.5 MHz .

If you cannot get to an oscilloscope, program the keys to ?\&C013=?\&C013 and ?\&C0D3= ?\&C0D3 and adjust RV1 and RV2 to give the best sounding voice and variation. Now try the test program and make any final adjustments.

ETI

Sparlhilite
 Buy Sparkrite Brand Leading Auto Electronics

 in self-assembly kit form - And save pounds!!- Electronic Ignition systems - contact triggered and contactless - Electronic Car Security Systems - including a new ultrasonic unit - Car Drive Computer - with 12 functions

SEND FOR FREE LITERATURE PACK - TODAY! 8 SOPHISTICATED KITS TO CHOOSE
FROM.

SPARKRITE (A Division of Stadium Lid) Queensway, Enfield, EN3 4SD.
Telephone: 01-804 4343

NAME

ADDRESS

Master

Pectronics-Microprocessors-Now! The PracticalWay!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'
- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/ computer/industrial equipment.

TV FRAMESTORE

Would you like to be able to capture a TV picture, then manipulate it with your home computer? We' re going to tell you how its done. This project for experimenteers will use a flash-converter ADC with state-of-the-art circuitry to make it possible to use relatively slow DRAMs for the actual storage.

DIGITAL DELAY LINE

Of course, the other sort of analogue signal you might be interested in storing in a digital form is music. So that's just what we' re going to show you how to do in the description of this project Developed with value for money in mind, this is a high-quality unit with some novel circuitry. It offers percussion and freeze, and a maximum delay time of 1.3 seconds (with 5 kHz bandwidth). The unit can be used to generate a large number of effects, including chorus, flanging, vibrato, pseudo-reverb, slapback (What? - Ed.), long echoes, single and multiple echoes, etc, etc.

VARIO UPDATE

Following on the success of the original article, Lindsay Ruddock has had a look t some of the points we've been asked about by readers, including improved temperature compensation and some suggestions for 'total energy.

EXPERIMENTER'S DRAM CARD

Phil Walker's been looking for some extra memory of late, and here's the result, a 64 K DRAM card. We originally designed the card because of difficulties with reliability and supply of the DRAM controller IC in our original design, but we found that we could do the same job more cheaply than the original anyway!

PLUS - SPECIAL SUPPLEMENT: EIGHT PAGES OF TECH TIPS!

Here's our answer to all those readers who have been contacting us to find out what's happened to the Tech Tip they sent in five years ago. Seriously, we will be presenting eight pages of readers' up-to-the-moment ideas, in an extra eight pages of the magazine. All the more reason for buying the one and only ETI!

ALL THIS AND MORE IN THE NEXT ISSUE, ON SALE NOVEMBER 9th. BE NICE TO YOUR NEWSAGENT AND HE'LL KEEP YOUR COPY FOR YOU.

TEMPERATURE CONTROLLER

The ever popular Phil Walker no longer has any problems keeping his fans under control - not now that he's built himself an ETI Seecon.

This project is intended to be a simple but effective tempera ture controller. It brings together two readily available devices to make a unit which can act either in a iinear mode or as an ondoff switching controller. A single small PCB accommodates the complete circuit including a temperature setting potentiometer, the temperature sensor and and, for applications where only small amounts of heat are required, two large resistors which act as heating elements. It is also possible to mount the sensor away from the PCB and to use the output to drive a fan, an external heating element or any other device which draws a current of a few amps or less from a $10-30 \mathrm{~V}$ supply.

The Circuit

The temperature sensing element in this project is the LM $334 Z$ current source IC. This is programmed by means of a resistor to pass a current of about 1 mA . Due to the nature of the device the current is not greatly affected by the voltage across it but is affected by the temperature In fact the current increases linearly as the temperature rises and this is used to generate a voltage proportional to the absolute temperature. In order to make use of this effect we have employed a well-known voltage regulator IC, the 723 . This gives us several functions in one device which would otherwise have to be provided separately. First it contains a tempera ture stable voltage reference which is used to supply the temperature sensor and the reference adjusting potentiometer. Second it contains an operational amplifier with a moderately high gain and lastly it has an output transistor capable of passing up to 150 mA

HOW IT WORKS

ICI is an LM334Z adjustable current source. It has a voltage sensitivity of about $0.02 \% /$ volt and a temperature coefficient of about $0.33 \% / \mathrm{C}$. The effects of voltage sensitivity are largely eliminated by using a regulated reference to feed it and the temperature setting potentiometer. This reference voltage is obtained from the 723 voltage regulator IC

The LM334Z is set to pass about 1 mA through R5 which thus develops a voltage of about 3.9 V with respect to 0 V . This is applied to the inverting input of the opamp inside the 723,IC2. Connected to the reference supply from IC2 pin 6 there is a potential divider network consisting of R1, R2 and RV1. The values in this network are chosen such that the bottom end of RVI is at about 3.0 V while the top end is at 4.5 V . These are equivalent to a temperature range of about $\pm 50^{\circ} \mathrm{C}$. With suitable changes to R1 and R2 this can be modified at will The output from RV1 slider is applied to the nor-inverting input of the op-amp where it is compared with the output of the sensor circuit. If the temperatue of the sensor is too high the voltage at the inverting input of the op-amp will be higher than that set by RV1 and the ouput of the op-amp will go low tending to turn off the output transistor. This in its turn will turn off Q1 and reduce the power in the load (R9).

To make the regulating effect operate over a defined range, R6 feeds back some of the ouput voltage into the sensor circuit to give an amplifier gain of about
80. The result is that the output at pin 10 of IC2 should change at a rate of about 1 V / ${ }^{\circ} \mathrm{C}$ This will give a regulating range of $6^{\circ} \mathrm{C}$ when using a 12 V supply. (A 1 k resistor across the Link A may be needed.) For use as an on/off switching controller R6 should be used instead A value of 470 k should give $\pm 1^{\circ} \mathrm{C}$ switching window.
The output from the op-amp in the 723 is connected directly to a power transistor capable of handling up to 150 mA . For some applications this may be enough and R8 and link A can be shorted. For higher power applications Q1 is used to boost the power handling of the circuit This device could be as power transistor such as TIP32 with R8 470R and R7 1 ks or, as we have specified, a TIP126 power darlington. These can handle currents up to 5 A , but it is not a good idea to run them too close to this limit because of the effects of switch-on surges and the like It should also be boume in mind that no heatsinking has been provided on the PCB and this will further limit the maximum safe current the device can handle.
R9 is the actual heating element if mounted on the PCB (two positions for this are provided - either or both can be used) or the load can be remote If the load is not resistive, D1 should be fitted to absorb switching transients. If the load is remote it may be desirable to mount the sensor near it and pads on the PCB are provided for this. If long leads are used RA should be mounted dose to ICI and not on the PCB.

PROJECT : Temp Controller

The circuit is configured such that increasing temperature tends to reduce the power in the load. To use this in a linear mode feedback can be provided from the output to the inverting input to the op-amp section. The resistor value chosen for this gives about 1 volt per degree Centigrade. For switching mode operation the necessary feed back is provided to the non-inverting input of the op-amp which gives a sharp on-off action. The rate of switching will depend on external factors such as thermal inertia and sensor position, etc.

For low power operation it may be possible to omit the output transistor from the circuit and use the 723 output device only. This is made possible by shorting IC2 pin 10 to R9 using LK1 and replacing R8 with another link.

For wide range operation you may find it necessary to put a resistor of 1 k or so across link LK1. The diode D1 is only necessary when inductive loads such as relays or fans are used instead of resistors.

Construction

This is quite simple so long as the components are correctly placed. RV1 should be a PCB mounting type and can be secured with a loop of 16 SWG wire soldered into the holes provided. The remaining threaded boss on the potentiometer spindle can be used to secure the whole unit to a panel with an extra nut.

BUYLINES

Nothing here to cause any problems - all the devices here are quite widely available. The PCB is, as ever, available through our PCB service

If the unit is to be used for low power then R9 can be mounted on the PCB. Note that R3 or R6 may be fitted but not both Also, link A may be fitted if Q1 is not used and a 1 k resistor used for linear operation or an open circuit for switch mode opera tion R8 should be linked across if Q1 is omitted.

PARTS LIST

RESISTORS $(1 / 4 \mathrm{~W}$	5%
stated)	
R1	
R2	1 k 2
R3	2 k 2
R4	470 k (see text)
R5	68 R
R6	3 kg
R7	330 k (see text)
R8	5 k 6
R9	1 k (see text)
RV1	see text
	$1 \mathrm{k0}$ linear
CAPACITOR	potentiometer
C1	100 p
SEMICONDUCTORS	
IC1	LM334Z
IC2	723
Q1	TIP126 (see text)
D1	IN4007

MISCELLANEOUS
PCB; short length of 16 SWG solid wire; 14-pin DIL socket; nut and bolt to secure Q1.

If IC1 is to be mounted remotely then R4 should be mounted with it and two wires only connected back to the PCB.

ETI

NEW from

This exciting new range of designs covers all domestic HiFi applications. There are 20,30 and 40 litre designs using the famous Peerless
Polypropylene bass units (newl
released to the DIY market), a 7 litre
mini speaker and two designs
 specifically intended for use with digital systems. The Wilmslow Audio Total kits include all cabinet components accurately machined from MDF Doard drive units, crossover kits, wadding, grille fabric, terminals, nuts, Doits, etc Full details are in the Peerless Manual for Loudspeaker Constructors which is available F.O.C. (send $12^{*} \times 9^{-}$SAE)
Total kit Prices per pair inc. VAT
Design 50/2R 17 wre
 Design 65/2R (20 litre, reflex, Polypr) Design 825/2A (30 litre, refiex, Poly Design CDA25/2A (25 litre, reflex) Design CD825/3R (30 litre, reflex) for digita asickits (drive units and digna
 £11500

 vers on yl cerpa Basickits idrive units and cross Design 50/2R
Design 825/2R
Design 100/3
Design CDB25/2R
Design CDB25/2R
Design CDR25/3A

 ces as plan car/ios EF 0 C s14.00 plon carthos E5.50 Fonan mab

pertless

SEAS • TANNOY • VOLT WHARFEDALE etc. COMPREHENSIVE CATALOGUE!
Pages \& pages of drive units, kits, crossovers, cabinet components, designs for PA cabinets crossover calculations etc. E1.50 Post Free (Export $\mathrm{E3} .50$ or $\$ 6$)

Visit our new HIFI STUDIO
for a great deal on Ariston, A\&R, B\&W, Dual, Kef, M-Short, Mission, Monitor Nad, Rotel, Trio, Walker etc.

ach kit contains all cabinet components, accurately machined for asy assembly, speaker drive units, crossovers, wadding, grille fabric The cabinets ca or self adhesive woodgrain viny on reptions supp Prices per pal
CS1 (As 101)

 CS5 (as Cartion II) £195 pr inc VAT, plus carríins $\mathbf{£ 1 5 . 0 0}$ Kef Constructor Series basic kits (drive units and crossovers only)

CS1	E88. 50 carríns	Es 00
C51A	¢84,00 carrins	E500
C53	£10050 carr/ins	f5 00
C55	£13995 carríns	¢550
C57		¢550

Wilmslow Audio Catalogue posi free $£ 1.50$ $\begin{array}{ll}\text { Celestion Cabinet Handbook } & \text { posi free } \mathbf{£ 1 . 0 0} \\ \text { Fane loudspeaker enclosure design } & \text { post free } \mathbf{£ 2} 95\end{array}$ Peerless Manual for
 Loudspeaker Constructors
 ALL the above 55 posi free

CRIMSON ELECTRIK amplifier kits, modules active crossovers. YAMAHA Professional and Producer series products. 3rd Generation mixers, amplifiers. McGregor PA amplifiers combos etc.

All at very competitive prices!
Lightning service on telephoned credit card orders EFFICIENTEXPORT SERVICE

FREE CAREER BOOKLET Train for success, for a better job, better pay

Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.

Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

TICK THE FREE BOOKLET YOU WANT AND POST TODAY

MAINS FAILURE
 ALARM

Help! Help! I'm powerless! There are some items around the house or lab that you'd like to say that to you when necessary. The ETI Vogonoff gives them a voice. Design and development by Phil Walker.

This very simple project will continuously monitor the mains supply to any pieces of equipment and let you know if someone pulls the plug or the power goes off for any other reason.

The circuit is very simple and consists mainly of a LM3909 connected up as an oscillator and driving a small loudspeaker. In normal operation it is prevented from oscillating by a small current into C2 from the rectified mains. If this current fails due to the absence of mains input the LM3909 will oscillate and cause a sound to be emitted from the loudspeaker. The power to drive the speaker is obtained from the $1 \frac{1 / 2}{2}$ volt dry cell which under the normally very low

HOW IT WORKS

The mains supply to be monitored is rectified by D1 and regulated by R1 and ZD1 such that about 10 V appears on C1. This produces a current via D2 and R2 into C2 and the input to IC1 such that the input of IC1 is held above its upper switching threshold. Under these circumstances, the output of IC1 is also high so no current flows through LS1.

If the mains input fails, the charge on C1 will leak away until the voltage at the input to IC1 reaches its lower threshold. IC1's output will then switch and go low drawing current through LS1. Due to the internal circuit operation of IC1 and the characteristics of LS1 and C2, the output of IC1 will switch back to the high state after a short time and start continuous ocilla tion which is heard as a tone from the loudspeaker
Since the non-operationa! state o the project draws very little curren from the cell it should last a long time before needing replacement

power drain when the circuit is not oscillating will last a verv long time.

Possible applications for this device may include monitoring mains supplies to darkroom or other laboratory equipment tape recorders and record players where prolonged stationary contact would cause fiats to develop on pinch rollers, etc, and even as an anti-theft device (although the noise it makes is not very loud).

PARTS LIST

RESISTORS	
R1	220k1W
R2	15k0.25 W
R3	560R0.25W
CAPACITORS	
	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
C2	470 nF 100 V
	polytester
SEMICONDUCTORS	
IC1	LM3909
D1	1 N4007
D2	0 A91
ZD1	BZY88C10V
MISCELLANEOUS	
LS1	2.5 in. 64 R
	loudspeaker
	1.5 V dry cell prefer
PCB: see buylines; box: plastic box $4^{1 / 2}$	
$\times 3 \times 11 / 2$ inches approx; wire; grommetts or glands; (nylon) nuts and bolts; 8 pin DIL socket if required.	

Construction

The main thing to bear in mind when making this product is that all the circuitry is at mains potential and this must not be accessible from outside of the case. To this end we recommend that you use
nylon bolts to secure the circuit board, loudspeaker and battery. Wiring to the outside world should be made with well insulated mains cable through a grommett or cable gland and the cable should be well secured inside the case.

The construction of the PCB should pose no problems so long as the IC and polarised diodes and capacitor are correctly positioned. The dry cell can be permanently wired in place as it should last a very long time. Use an adhesive cable clip to hold it in place.

The loudspeaker could well be glued to the inside of the box with a few small holes to let the sound out. We recommend that these holes be covered by some additional insulation if the finished unit is accessible.

BUYLINES

Nothing that we can see in this project should cause any problems here. The PCB is available from your usual friendly source - our own PCB service.

CENTURION ${ }^{\circ}$

VIDEO TERMINAL BOARD

Requires ASCII encoded keyboard and monitors to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare boards with 2 EPROMS and program listing - £48 plus VAT. Assembled and tested - £118 Send for details or CWO to:

A M Electronics
Wood Farm, Leiston, Suffolk IP16 4HT Tel: 0728831131

ALARAMS

Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the
 Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the
 Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the
 Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the
 Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the
 Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the
 Manufacturers of Professional Alarm Equipment, for DIY \& the TRADE. Send now for our New 16- page Brochure, Full of Information \& the Lowest prices.

Just Look !

Ord. No.	Descripfion	Price
210	Flush Contact	0.65
240	Pressure Mat Large	1.50
140	Single Zone Panel	39.50
320	Racal Passive 772	29.90
355	Eclipse Ext/PIR.	74.00
370	Two-Tone Siren 12 v	7.00
390	Quality Bell Box	6.95
545	Rech. Battery 12v	6.95
725	Questions \& Ans Bk	3.50

and lots more in our FREE list. all prices plus 15\% VAT, P\&P £2

SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

ELECTRONICS

electronics today international How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service, Argus Specialist Publications Ltd, Golden Square, London W1R $3 A B$. Make cheques payable to ETI Book Service. Payment in Argus Specialist Publications Ltd, 1, Golden Square, London W1 R 3AB. Make cheques payable to ETI Book Ser sterling only please. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson	$£ 5.35$
Beginner's Guide to Digital Electronics	$£ 5.35$
Beginner's Guide to Electronics	$£ 5.35$
Beginner's Guide to Integrated Circuits	$£ 5.35$
Beginner's Guide to Computers	$£ 5.35$
Beginner's Guide to Microprocessors	$£ 5.35$

COOKBOOKS

Master IC Cookbook Hallmark $\mathbf{£ 1 0 . 1 5}$
Microprocessor Cookbook M. Hordeski 67.70
IC Op Amp Cookbook Jung $\begin{array}{r} \\ \\ \\ \\ \hline 7.70\end{array}$
PLL Synthesiser Cookbook H. Kinley f13.40
Active Filter Cookbook Lancaster f13.40
f11.15
V Typewriter Cookbook Lancaster fll 5
MOS Cookbook Lancast810.55
Micro Cookbook Vol. 1 Lancaster f15.00
ASIC Cookbook K. Tracton E725
ELECTRONICS
Principles of Transistor Circuits Amos $E 8.50$
Design of Active Filters with experiments B
49 Easy to Build Electronic Projects Brown £11.30 66.00
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
$£ 3.55$
How to buid Electronic Kits Capel £9.35
How to Design and build electronic instrumentation Car
How to Design and build electronic instrumentation Car 17.20
Iectronic Components and Systems Dennis £15.00
rinciples of Electronic Instrumentation De Sa £11.40
£12.95
Giant Handbook of Computer Software£17.35
Giant Handhook of Electronic Projects $\mathbf{1 1 . 7 5}$
Electronic Logic Circuits Gibsonf 3025
Analysis and Design of Analogue Integrated Circuits Gray £11.30
Basic Electronics Grob $\begin{array}{r}11.30 \\ \hline\end{array}$
asers - The Light Fantastic Hallmark $\mathbf{5} .25$
Introduction to Digital Electronics \& Logic Joyns£7. 25
Electronic Testing and Fault Diagnosis Loveday E6. 75
Electronic Fault Diagnosis Loveday67.25
Essential Electronics A-Z Guide Loveday 17.50
Microelectronics Digital \& Analogue circuits and systems Millman 88.30
103 Projects for Electronics Experimenters Minis E 34.10
LSI System Dasign Muroga$£ 9.40$$£ 25.00$
Practical So
Master Handbook of IC Circuits PowersE12.65
Electronic Drafting and Design
Video and Digital Electronic Displays Sherr29.05
Indeo and Din Electronic Components Sinclair 975
Understanding Electronic Compone± 4.50
Physics of Semicanductor Devices Sze$£ 17.35$Digital Circuits and Mic
Active Filter Handbook$£ 32.00$
Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas$£ 7.60$1520
Digital Systems: Principles and Applications Tocc 12.95
Master Handbook of Telephones Traister 10.00
How to build Metal/Treasure Locators Traiste 66.00
33 Electronic Music Projects you can build Winston 66.95
COMPUTERS 8 MICROCOMPUTERS
BASIC Computer Games AhE6. 35
From BASIC to PASCAL Anderson 59.95
Mastering Machine Code on your ZX81 T. Baker
UNIX - The Book Banaham $E 8.75$280 Microcomputer Handbook BardenMicrocomputer Maths Barder
Digital Computer Fundamentals Barter £9.9011.90
Visicalc Book. APPLE Edition Bell
Visicalc Book. ATARI Edition Bell£15.55
Introduction to Microprocessors BrunnerE23.00
Programming your APPIE II Computer Bryan 69.25
Microprocessor Interfacing Carr$£ 7.70$
Microcomputer Interfacing Handbook A/D \& D/A Carr£9.50
Musical Applications of Microprocessors Chamberlain 28.85
Microcomputers Dirks £9.30
APPLE Persunal Compiter for Beginners Dunn29.50
$£ 11.80$

Troubleshooting Microprocessors and Digital Logic Goodman Getting Acquainted with your VIC 20 Hartne

 Getting Acquainted with your ZX81 Hartnell Let your BBC Micro Teach you to program Hartnell Programming your ZX Spectrum Hartnell The ZX Spectrum Explored Hartnell How to Design, Build and Program your own working Computer Haviland
BASIC Principles and Practice of Microprocessors Heffer

 Hints and Tips for the ZX81 HewsonWhat to do when you get your hand on a Microcomputer Holtzman 34 More Tested Ready to Run Game Programs in BASIC Horn Microcomputer Builders' Bible Johnson Digital Circuits and Microcomputers Johnson PASCAL for Students Kemp The C - Programming Language Kernighan COBOL Jackson

```
The 2X81 Companion Maunder
```

- Guide to Good Programming Practice Meek
Principies of Interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nicholas
Exploring the World of the Personal Computer NillesMicroprocessor Circuits Vol. 1. Fundamentals and Microcontrollers Noll
- Beginner's Guide to Microprocessors Parr
- $\quad \underset{51130}{ }$
- icrocomputer Basad Design Peatma
$\begin{array}{r} \\ \mathbf{~} 11.30 \\ \hline 9.80\end{array}$
Digital Hardware Desiga Peatman
Handbook of Advanced Robotics Safford
1001 Things to do with your own personal computer Sawusch Easy Programming for the ZX Spectrum Stewart
Microprocessor Applications Handhook Stout
Handbook of Microprocessor Design and Applications Stout Programming the PET/CBM West
An Introduction to Microcomputer Technology Williamson
Computer Peripherals that you can build Wolfe
Microprocessors and Microcomputers for Engineering Student cians Wooland

hefrence books

Electronic Enginears' Handbook Fink	£56.45
Electronic Designers' Handbook Giacoletto	£59.55
Illustrated Dictionary of Microcomputer Technology Hordeski	¢8.45
Handbook for Electronic Engineering Technicians Kauffman	£27.50
Handbook of Electronic Calculators Kauffman	£35.00
Modern Electronic Circuit Reference Manual Marcus	£44.00
International Transistor Selector Towers	£10.70
International Microprocessor Selector Towers	£16.00
- International Digital IC Selector Towers	¢10.95
International Op Amp Linear IC Selector Towers	$¢ 8.50$
Illustrated Dictionary of Electronics Turner	¢12.95
VIDEO	
Servicing Home Video Cassette Recorders Hobbs	£12.95
Complete Handbook of Videocassette Recorders Kybett	£9.25
Theory and Servicing of Videocassette Recorders McGinty	¢12.95
Beginner's Guide to Video Matthewson	E5.35
Video Recording: Theory and Practice Robinson	£14.40
Video Handbook Van Wezel	$\underline{721.90}$
Video Techniques White	£12.95

Please send me the books indicated. I enclose cheque/postal order for E. Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.

\qquad
\qquad
\qquad
\qquad
\qquad

ETI KNITE-LTE

A figment of flippant foollery for functional fantasy fans, fully fabricated by Phil Walker.

For some reason there seems to be a requirement for computer-controlled cars and alien robots to be endowed with roving red eyes. Well, this offering from the cybernetic cavern of the ETI workshop will enable all and sundry to share in the excitement. Now you too can upgrade your latest creation with the roving redeye look from the ETI stable.

The Circuit

In principle this is very simple. The display consists of ten red LEDs driven by an LM3914 linear bar-graph IC. This IC also contains a voltage reference source and all the necessary comparators to control the display.

In order to produce the smooth to-and-fro sweep two sections of a quad operational amplifier have been configured as a triangle wave generator. The ouput from this is applied to the lower end of the voltage reference and comparator chain while the other end of the comparator chain is connected to the upper end of the voltage reference.

This means that the reference voltage is sitting on top of the triangle wave generator and is being swept up and down past a reference applied to what is normally the signal input pin. This produces the basic back and forth sweep on the display.

As it stands so far the display would be jerkey so some method

BUYLINES

[^3]

PARTS LIST

RESISTORS		SEMICONDUCTORS	
R1	82k	IC1	TL084
R2,4,10	15k	IC2	LM3914
R3,6,8	100k	LED1-10	Rectangular
R5,11	1 ko		red LED
R7	18k		
R9	$3 \mathrm{Al3}$		
CAPACITORS (ceramic or polycarbonate)		MISCELLANEOUS	
		PCB (see buylines); battery: PP3 size 9V; battery clips; SPST swirch if required;	
C2	$1 \mu 0$	box: optional $41 / 2 \times 3 \times 1 \frac{1}{2}$ or larger if to	
C3	68 n	contain ba	well.

of smoothing out the transition between adjacent LEDs is necessary. This is done by connecting up the remaining two sections of the quad op-amp to form another triangle wave generator operating at a much higher frequency. The ouput from this is mixed with the reference voltage
to smear the display over two or three LEDs at a time. This makes the display much smoother and more realistic.

Construction

The construction of this project is quite simple as all the com-

HOW IT WORKS
ponents are mounted on the PCB. Make sure, however, that you get both the ICs the right way round and do not confuse anode and cathode connections on the LEDs. If you want to mount them off the board it should make no difference to the circuit operation.

The type of box used for the project is entirely up to you, but we suggest one large enough to hold a PP6 or PP9 size battery to power the circuit for a day or so (continuous operation). Although the circuit does not draw a large current (about 20 mA) it is a good idea to fit a switch in the battery lead.

The circuit should operate with supply voltages from 6 volts to 20 volts but some adjustments will have to be made to several resistor values if you want to vary the supply voltage from the intended 9 V . This is caused by the fact that the amplitude and frequency of the two oscillator circuits is dependent on the supply voltage. Frequency effects can be countered by changing the capacitor values but amplitude changes especially in the sweep oscillator are much more difficult to remove.

The principles of operation governing this project are quite straightforward but unfortunately the practice is a little more obscure

The main work in the project is done by the LM3914 IC. This is a bar-graph display driver which contains a voltage reference, graded comparator string and current-limited output drivers. There is also some internal logic which enables the user to have either a dot or bar mode display. In this application we use only the dot mode so pin 9 which selects the mode is left open circuit.

The on-chip voltage reference source is not referenced to 0 V and can be floated within the supply rail boundaries (with some restrictions). We must note however that the current drawn from the reference supply also determines the LED driver output current. In this cicuit R11 sets the LED current to about 12 or 13 mA .

The circuit is configured such that the 1.25 V reference of the LM3914 sits on top of the sweep ramp generated by IC1c and IC1d. The resistor ratios and capacitor value used in this circuit are selected to provided a triangular wave sweep of about 2 seconds with a peak-to-peak value of about 1.2 volts. The amplitude is set by $R 7 / R 8$ while the frequency is determined by R 9 and C 2 .

The configuration of IC1 c and IC1d
is that of the integrator and Schmitt trigger. IC1 c and C2 form the integrator. If the ouput of IC1d is high then current will flow through R9 into C2 (the input current to IC1c can be ignored). As this happens, the input side of C2 is kept at the reference voltage supplied by the R1,2,3 divider chain by the action of IC1c. This causes the output of IC1c to go linearly in a negative direction.
At some stage the output voltage from IC1c via R7 will pull the input of IC1d slightly negative overcoming the effect of the positive output of IC1d via R8. This will cause the output of IC1d to go to the negative rail very rapidly. Now current will be drawn out of C2 via R9 and the output of IC1c will ramp in the positive direction. This will continue until the output of IC1c can pull the input of IC1d positive and switch its output positive also. The whole cycle will repeat indefinitely.

As the output of 1 C 1 c ramps up and down the lower end of the voltage comparator chain in the LM3914 to which it is connected is also driven. In addition the upper end of the chain also goes up and down but 1.25 volts more positive. This is set by the floating voltage reference.
As the whole comparator chain is ramped up and down, it passes the fixed voltage from R1,2,3 divider chain.

This causes the dot display to sweep to and fro along the LEDs. This is equivalent to holding the bottom end of the comparator chain fixed and sweeping the input terminal instead, but it overcomes the need for a low impedance R1,2,3 divider chain. The signal input needs less than 50 nA bias current while the comparator input impedance is only about 10 k and would take $120 \mu \mathrm{~A}$; some other means of setting the LED current would be necessary.

The voltage actually present at pin 5 of the LM3914 is about 0.6 volts more than the reference to the oscillators. This means that the input seen by the LM3914 is alway in the comparator range and gives the correct display.

The display given by the circuitry described so far is not as smooth as it might be as the transition between one LED and the next is quite abrupt. To overcome this another oscillator similar to the first is configured around IC1 a and b. This operates in exactly the same way as the other but at a much higher frequency. Its output "wobbles" the reference voltage seen by the LM3914 via R10/C3 such that the dot mode display is "smeared" across two or three LEDs and the transitions are much smoother. There is some interaction between the two oscillators but this is not visually obvious.

金 1 II 1 Audotonc
Abbots Hill Chambers 1 st Floor, Gower Street, Derby DE1 1SD

Tel: Derby 0332/382433

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIER MODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks specially recommen. ded for RVM modules.

> All prices include post \& packing
> (Quantity discount available)

To order send cash with order, or cheque/postal order.
Delivery on our Modules and Heat Sink or same day dilspatch when order is received with cash, allow 7 days with cheque or postal order.

$\sqrt{\text { ewrad }}$

NEWRAD INSTRUMENT CASES LTD

Manufacturers for the Electronics Industry
 UNIT 19 - WICK INDUSTRIAL ESTATE - GORE ROAD NEW MILTON • HANTS - BH25 6SJ

Telephone: NEW MILTON 615774/621195

WE MANUFACTURER BEAUTIFUL ENCLOSURES At prices you will find difficult to beat.
Aioy boxes irom 80 p to rack mounted units from $£ 15$ and a host of ranges and sizes in between. Well made - well finished - and all British

Send large SAE for catalogue which includes 55 in vouchers

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated recognise the advantages toroidals
field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with $a_{\text {s }}$ short lead lime on quantity orders which can be programmed to your requirements with no price penalty.

SPECTRUM STAGE LIGHTING INTERFACE

Would you like to computerize your scene changes, or light your living room? Richard Neep could have the project for you.

The stage lighting unit, published in January, February, April and May of 1983 is still giving cause for interest, if readers' letters are anything to go by (perhaps it's just that we forgot to tell you the specs of some of the transformers at the time...). The design presented here will interface a Sinclair Spectrum home-computer to the unit.

This project replaces the keyboard and memory of the original project and is directly compatible with the autofade units. Using the computer has several advantages over the original control system. The data can be stored on tape instead of relying on battery backed-up RAM, the lighting changes can be more sophisticated; and the whole system can be made more user friendly. This last point is perhaps the most important; data can be entered in plain, ordinary decimal and displayed on the TV monitor rather than in octal on the LED display on the original.

First, we shall look at the hardware, then we shall give some notes on the necessary software; finally, we shall look at other uses.

Ins And Outs

The Spectrum has a very large capacity for control applications, there being potentially 65,535 input or ouput locations. Some of these are reserved by the machine for the keyboard, tape interface, printer, etc. There are further limitations in that the Spectrum is happier if only one of the lower five address lines goes low at any one time, which, as we've seen before (Spectrum Control Port, p44, ETI October) means that projects are best designed to use output addresses which are one less than multiples of 32 .

If these numbers are written out in binary, it can be seen that
the lower five address bits are all high. The next four address bits, A5 to A8, are used to decode the 16 outputs of the interface. Extrapolating, this method can provide up to 2048 such outputs.

The actual circuit of the decoder is quite straightforward. When an OUT command is processed by the Spectrum, the $\overline{I O R Q}$ and $\overline{W R}$ lines are taken low. The circuit is designed so that when the lowest five address lines go low, the next four address lines (A5 to A8) will be used to point to one of the autofade units. This autofade unit will then latch in the buffered and slightly rearranged data on the Spectrum's data bus.

The re-arrangement of the data was found to be less hassle than writing software to do the rearranging The autofade units use bits D0 to D2 to determine the final light-level from the controlled lamp, while bits D3 to D7 are used to determine the fade speed (how quickly the light changes from the old level to the new one). The authors of the original had decided to reverse the significance of the bits, ie D3 is the most significant of the speed bits, whereas D2 is the most significant of the final level bits.

Software Options

The software to accompany this project is largely a matter of personal taste and is best tailored to individual requirements. On the Spectrum, the format of the OUT command is: OUT (address), (value), where the value is a number between 0 and 255, ie a single byte written in decimal.

In the stage lighting unit, the eight bits of the byte are split into two sections; as already mentioned, the top five bits (D7 to D3) are used to control the fade speed, but with D7 as the LSB and D3 the

MSB. However, the connections to these bits are reversed on the interface PCB, making D7 the MSB and D3 the LSB so far as the software is concerned. The lower three bits, D0 to D2, control the final brightness, with D2 the MSB.

The light level and fade speeds would obviously be most conveniently entered into the computer as decimal numbers, and stored in an array. Therefore a routine is needed to combine the two decimal numbers and produce a single number between 0 and 255.

The use of the five bits for the fade speed means that there are a total of 2^{5} or 32 different fade speeds, from 0 to 31 decimal. Three bits for the final light level means 2^{3} different level settings, from 0 to 7. If required, it would be a simple enough matter to write a routine which allows these to be entered as percentages and then scales the percentages to the nearest equivalent whole number in the range 0 to 31 or 0 to 7 , as appropriate.

The next step is to combine the two numbers into one; this can be achieved by multiplying the fade speed by 8 and adding the light level. A worked example would perhaps make this clearer.

Suppose we wish to fade to a light level of 45% at a speed of 85%. First, convert to the scaled 3bit (level) and 5-bit (speed) components:
speed: $85 \% \times 31 / 100=$ 26.35; truncated to 26 ; binary 11010
level: $45 \% \times 7 / 100=3.15$; truncated to 3 ; binary 011

Next multiply speed by 8 : speed: $26 \times 8=208$; binary 1101000
(Note: it is vital that the truncation is carried out before the muttiplication, otherwise the fractional

HOW IT WORKS

The data lines are buffered by IC1a-h, then crossed to change the order. This is made necessary by the auto-fade units in the orginal stage-lighting units have the data for the fade speed (D3 to D7) back-to-front, ie D3 is the most significant bit and D7 the least. It is, of course, generally easier ot cross a few tracks than it is to write complicated software. The buffered data is then fed to all the autofade units in the main stage lighting unit; D0 to D2 control the final brigtness of the controlled light.

IC4 is a 4 -to-16 line decoder; when the two gate inputs G1 and G2 are low, the output line pointed to by address inputs A, B, C, D will go low (all outputs are normally high). This is used to select which of the auto-fade units is to latch in the data on the data lines.

Gating of the decoder is performed by IC2a and IC3; the WR line is taken directly to one gate input of IC4, as this is the narrowest of the signals from the $Z 80$. IORQ is inverted then NANDed with the address lines A0 tp A4; this is then used to provide the input to the other gate input on IC4.

The power for the circuit is derived from the unregulated 9 V supply available on the Spectrum edge connector; a 7805 regulates the 9 V to the required 5 V .

Fig. 1 Circuit diagram; note that IC30 and 31 are on the fader boards of the main unit.
part of the speed will throw uo non-zero digits in the lower three bits after multiplication.

Next, add the two numbers:

| speed: | 208 binary: 11010000 |
| :--- | :--- | ---: |
| level: | +3 binary: $\quad 011$ |
| | |

combined: 211 binary: 11010011
This is the final result; looking at the first five bits, 11010, this is 26 decimal or 84% of 31 . (31 is the maximum speed). The final three bits are 011 which is 3 decimal or 43% of 7 (7 is the maximum brightness).

The rest of the software depends on the individuai preferences of the user and the speed of operation required. Two programs have been written by the author, one of which is fast but gives limited information suitable for rock band or disco applications; the other program is slower for traditional theatre use, and gives
pretty coloured bar-graphs of the light levels for each scene.

Other Uses

Dare we say it, but this port could fairly simply be converted to an output-only control port All that would be necessary would be to have a number of pairs of fourbit latches, like ICs 31 and 32 in Fig 1, all wired in parallel to the data lines, but with their individual latch lines going to different latch enable outputs from the interface.

Individual bits on the data bus can be controlled quite easily. The general rule is that if you wish to control the nth bit on the data bus, you multiply 0 or 1 (as appropriate) by 2^{n}. The numbers generated in this way can just be added together to take the number to be OUTput. So, to put 1 on the bit 0,1 on bit 2 and 1 on bit 3 , the sum is
$1 \times 2^{0}+1 \times 2^{10} \times 2^{3}+1 \times 2^{3}$
$=1 \times 1+1 \times 2+0 \times 4+1 \times 8$
$=1+2+0+8$
$=11$
11 in binary is 1011, which is what is required.

Up to sixteen latch pairs can be driven this way, giving a grand total of 128 on/off switches!

Construction

Construction of this project should be quite straightforward. We have designed the PCB so that the Spectrum edge connector can sit directly on the PCB.

We suggest commencing construction of the PCB by inserting and soldering all the IC sockets. It will then be fairly easy to locate all the wire links, of which there are 20, all in the supply lines. After soldering the wire links, insert and solder the capacitors and SK1.

PROJECT : Lighting Interface

Fig. 2 Overlay diagram of the PCB.
We suggest the next stage as a check against shorts on the PCB. Plug in the board and check that your Spectrum works correctly with the board in position; if it does not, switch off immediately and look for the fault. If it does, insert and solder IC7, and repeat, this time checking for 5 V across all the supply line decoupling capaci-
tors and the appropriate IC socket pins.

Finally, insert the remaining ICs and test again; try outputting data in the relevant address range, to check that this does not cause any faults.

When linking up to the stage lighting unit, you can use ribbon cable and just parallel all the data

PARTS LIST
CAPACITORS

and latch enable lines, if you used the PCBs as printed with the original articles, as all the latch selection was done with links on the PCB. Alternatively, you could use ribbon cable for just the data bus, and single wires to the relevent latch enables.

Before using the light unit in anger, we would suggest performing OUTs to the latches and checking that the correct data arrives at them (don't forget that the data bus is twisted).

Price Inc. Post n VAT

REMEMBER, ALL PRICES INCLUDE VAT AND CARRIAGE. TRADE ENQUIRES WELCOME QUANTITY ITEMS.

DIONICS

UNIT 50, WHITEMOOR ROAD, KENILWORTH, WARWICKS CV8 2 BP

SBM10 SELF ACTIVATING BELL MODULE

Used in conjunction with the ALM22, this module goes inside the external bell unit and monitors its feed wiring. Any tampering with the unit or its wiring will cause the bells to sound cause the belis to sound.

KS2. 2 position keyswitch for use with
KS4. 4 position keyswitch for use with ALM22. Allows upstairs to be switched off at night $\quad \mathbf{5 . 7 0}+$ VAT

MT1. 15-0-15 1 A. transformer for use with ALM22. $\quad £ 3.45$ + VAT W8. External bell box, red or white plastic coated. fB .00 + VAT CH1. Control unit housing, 18 SWG hinged front door, size: $12^{\prime \prime} \times 9^{\prime \prime} \times 3^{\prime \prime}$ undrilled. B3. Rechargeable standby battery 12 V .
1.9 AH.
$\mathrm{I} 9.45+$ VAT
COMPREHENSIVE LITERATURE IS AVAILABLE ON ALL ITENS We supply a complere range of accessories and equipment from magnetic switches to complate
ready built systems Send for full information
Add 70 carriage to all orders. Add 15% VAT to order total (inc. carriage). Please allow 14 days for detivery.

AUTROL LTD (Dept C)

Ten Acres, Foundry Lane, Loosley Row, Princes Rishorough, Bucks. HP17 aNY Tel. Factory: 084447805

Literature: 049433171 (Mailing Agency)

certery HARDWARE SOFTWARE

MDEX disc O/S + BASIC $£ 95$
MDEX Professional Dev. Sys. £275

CORTEX POWER-BASIC disc extensions £45

MDEX Languages
ASM FORTH PASCAL SPL QBA'SIC META
Software to make the CORTEX go!
Disc Drives
80 track double-sided double-density $£ 190$
40 track single-sided double-density
E-BUS Floppy/Winchester Controller
E-BUS 64/128 K/bytes DRAM card
E-BUS 9995 Processor card
80*24 Character video card
CORTEX tape
Space Bugs, Pontoon, Smalt Breakout Micropede, Pengo
each $£ 6$
User Grouplll 'Brainstem' out NOW.
Please add VAT to all prices.

MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY SOUTHAMPTON
SO1 5AP
TEL: 0703780084

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! -That's what replacing the basic :ROM with the new FORTH does ! for the ZX81 - and more! The brains behind the breakthrough belong to David iHusband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schecule tasks to run from 50 times a second to once a year, and with $\begin{aligned} & \text { further modification switch }\end{aligned}$ between FORTH and BASIC whenever you like

ETI/22

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 \mathrm{k}, 32 \mathrm{k}, 64 \mathrm{k}$ RAM packs, it is fig-FORTH compatible and it supports the $Z X$ printer.

The price, too, is almost unbelievable. As a "fit it yourself Eprom", complete with manual, it'sjust $£ 25+$ VAT. Add $£ 2$ p \& p UK ($£ 5$ Europe, $£ 10$ outside Europe) and send your order to the address below.

Skymave SOFTWARE

David Husband
73 Curzon Road, Bournemouth, BH1 4PW, ENGLAND.
Tel: (0202) 302385.
International +44202302385

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) leaming courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit Intemational Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.
(For shop addresses see back cover.)

How to enter:

Just identify the twelve objects pictured opposite.
HINT-the Argus Specialist Magazines listed below might give you a clue:

Eiectronics Today International Personal Computing Today Movie Maker
Your Model Railway Clocks
Home Computing Weekiy Beatbox
Ham Radio Today
Electronics
35 mm Photography
Model Cars
Woodworker
 Photoplay Movies and Video ZX Computing Military Modelling Hi-Fi Now!
Winemaker Citizens' Band Model Boats Video Today Popular Crafts
Which Video? Your Commodore
and write your (one-word) answers in the spaces provided on the coupon. For instance, if you think that number 9 is a record, write 'record' in the space next to 9 on the coupon and so on. Then tell us in up to 20 words why MAGAZINES MAKE IDEAL HOLIDAY READING. Complete the coupon in BLOCK LETTERS, and send it to: DREAM HOLIDAY COMPETITION, Argus Specialist Publications Ltd., No 1 Golden Square, London W1R 3AB, to reach us no later than 31st December 1984.

Competition rules

1 The competition is open, to all UK and Eire readers except employees of Argus Specialist Publications Lid their printers and distributors
2 As long as an original coupon from the magazine(s) ol your choice is used for each entry there is no limit to the number of entries per person Photocopied coupons will nol be accepted 3 All entries must be postmarked betore 31st December 1984
4 The prizes will be awarded to the first four entrants who identify the twelve objects correctly and whose completed sentence is judged the most apt and onginal
5 No correspondence will be entered into about the competition results; the judges decision is tinal 6 Winners will be notified by post and the results will be published in a tuture issue of this magazine

The 12 objects are

1.	2.	3.
4.	5.	6.
7.	8.	9.
10	11	12

Magazines make ideal holiday reading because (up to 20 words)

PERPETUAL PENDULUM

 $\rightarrow 4$
More attractive than magnetic sculptures, more swinging than a Newton's cradle, Damon Hart-Davis describes the latest thing in executive toys.

There is no such thing as perpetual motion. However, this project attempts to mimic it with the help of a little electronics and a magnet or two. It was constructed as the 'project' element of an A / O examination in electronics, and it was hoped that the swinging motion might hypnotise the examiners into giving the designer a high mark

The basic principle behind the project is quite simple: a magnet swings on the end of a piece of cord. At the centre of the swing is a coil with some electronics. The magnet causes a small voltage to appear across the coil, and this is detected by the electronics. The electronics then causes a pulse of current to flow through another coil on the same bobbin, which administers a 'kick' to the pendulum and keeps it going.

To make the motion of the pendulum more interesting, other permanent magnets can be placed around the PCB containing the electronics and coil; this will deflect the pendulum swing from being regular, making it random, and to some minds, more interesting.

The Circuit

The circuit is quite straightforward; ICT forms the input detector, and Q1 switches on with a sufficiently large output from 1 C 1. IC2 a and b form a monostable, IC2 c inverts the output from the monostable and Q2 drives the 'kick' coil.

The main problem with this circuit will be its tendency to oscillate. The two coils on the same core constitute a transformer, and although the coupling between the coils isn't very good

HOW IT WORKS

When the pendulum moves away from the coil, a voltage is induced in L1 such that the R1 end goes negative with respect to OV. The amplitude of the induced voltage varies according to the speed of swing of the pendulum and the distance between it and the iron core of the coil, but will be of the order of 10 mV .

Because the output coil 12 is wound on the same core as the sensor coil there is a risk of the higher amplitude output pulses being coupled back into the input and causing oscillation. To reduce this risk, the circuit has been arranged so that such induced voltages will be positive with respect to OV. Diode D1 will then conduct and prevent the voltage rising above its forward conduction value. R1 is included to limit the current which flows under these conditions; without it, L1 and 12 would appear as a transformer with a shorted output, and this would cause the transistor driving L2 to get very hot.

R2, R3, C1 and IC1 form an inverting amplifier witha gain of 100 . C1 limits the bandwidth of the amplifier and therefore helps to prevent instability and oscillation. The output of the stage is fed to the circuit formed by R4, R5 and Q1, a switch
whose action is largely independent of the supply voltage. This converts the analogue output of the op-amp, which varies in level according to the stimulus, into a logic signal switching quickly and cleanly between logic high and low states.

The output of Q1 is then fed to a monostable multivibrator formed by IC2 a IC2c, C2 and R6. The monostable is triggered when Q1 collector goes low whereupon the output will go low for 0.2 seconds and then return to the high state. This delay further reduces the risk of the circuit as a whole oscillating and also ensures that the output pulse is of long enough duration to drive the pendulum well away from the coil. Without it, the pendulum might well move around the coil in a small circle rather than swinging across it.

IC2b is used to invert the output of the monostable before feeding it to the coil driver transistor, Q2. R8 is included to limit the current flowing through the coil and the collector circuit of Q2 should the coil have a resistance of less than about 400 R. D2 protects the transistor against high back-EMFs generated when the current through the coil is removed.

Fig. 1 Circuit diagram of the perpetual pendulum.

Fig. 2 Component overlay diagram for the PCB.

BUYLINES

The only item here which might present any problems is the relay used for L1/L2. Ours was rescued from a fruit machine and had a $48 \mathrm{~V}, 10 \mathrm{k}$ ohm coil, but we have not been able to locate a supplier for these. Most constructors should be able to find something in the junk box which would work reasonably well, but if you really are stuck then try one of the 24 V open relays available from Maplin and other suppliers.
(it isn't meant to be) it will probably be enough to cause problems. The gain of the detector is 100, which is tapered off at higher frequencies by C1. The remainder of the circuit is nominally digital, but digital circuits have a nasty habit of behaving like analogue ones just when you don't want them to.

Construction

Assembling the PCB should present no problems and the only points to watch here are the usual ones, such as getting the ICs and the transistors the right way around and not inserting these components until after the resistors and capacitors have been soldered.

The coil used in the prototype for L1 consisted of an 'open' type relay rated at $48 \mathrm{~V}, 10 \mathrm{k}$. The relay was stripped of its contacts and swinging arm to leave just the coil, plastic bobbin and iron core. Two hundred turns of 36 SWG enamelled copper wire were then wound on top of the existing coil to form L2. The rating of the relay coil is not too critical and it is probable that most coils with a large number of turns and a resistance of a few k ohm or more would do. Room has been left on the PCB for resistors in series with both L1 and L2, and it may be necessary to experiment with different values of resistance to get the circuit to work correctly.

As explained in the How It Works section, it is important for correct operation that the two coils are wired in the correct sense relative to one another. The voltage induced in L1 must be positive with respect to OV when $L 2$ is pulsed and negative with respect to OV when the pendulum is moved away from it. It should be possible to find the correct arrangement by experiment, and no damage can be done by getting it wrong at a first attempt. If you have access to an oscilloscope or a reasonably high impedance millivoltmeter, you can determine the correct arrangement by connecting up L2 and determining the polarity of the voltage across L1 when Q1 collector is temporarily shorted to ground.

Choice of case for the project is left very much up to the constructor. The prototype was installed in a clear plastic box with the supply leads taken out to an external PSU, but it could just as easily be built as a self-contained unit with its own 9 V battery. The current consumption varies with the supply voltage but is of the order of a few milliamps with peaks of $10-16 \mathrm{~mA}$ when a pulse is delivered to L2. This is a little high for sustained operation from a PP3 and if you intend to leave the device on continuously you should use either a PP9 or a mains power supply offering between 5 and 15 V .

Ex Stock Integrated Circuits

74LS00	70p	2732	$495 p$
74LS04	$82 p$	$2764-250$	$640 p$
74LS08	$60 p$	$611 P 3$	$675 p$
74LS20	$45 p$	TC5516	$750 p$
74LS27	$40 p$	4164	$500 p$
74LS32	$70 p$	7400	$30 p$
74LS157	$70 p$	7404	$40 p$
74LS244	$225 p$	7416	$45 p$
74LS373	210p	7407	$225 p$

Variety of TTL \& 74LS items in stock-please 'phone your enquiry.
*Please add 50 p for $p \& p+15 \%$ VAT to all orders.
Export-No VAT. p\&p at cost.
Government \& Educationa! Estabilishments' Official Orders
Weicomed
NEW CATALOGUE AVAILABLE: PLEASE SEND S.A.E.

Cambridge Microcomputer Centre

The Peripheral Centre of East Anglia 153-4 East Road Cambridge CB1 1DD
Telephone (0223) 355404 Telex 817445
Prices subject to change without notice

Bonsai is a Japanese technique for miniaturising trees whilst preserving all their natural characteristics. This is exactly what we have done with our new British invented and manufactured loudspeaker
Based on a newly developed single full range driver the diminitive "Musician Bonsai" has all the qualities of the best, large multi way systems without some of their vices

For details please contact.
Merseyside Acoustic Developments Ltd., Merseyside Innovation Centre, 131, Mount Pleasant, Liverpool, L3 5 TF. Tel. 051-709-0427

Two Hundred Year Old Bonsai Tree By Courtesy Of: TOKONOMA NURSERY

FOIL PATTERNS

The top and bottom foils of the control port $1 / 0$ board.

These four boards are for the AM/FM radio.

The capacitance meter board.

The mother board and four of the plug-in module boards for the active loudspeaker.
The foil pattern for the Electron speech board.

The temperature controller foil pattern.

The Perpetual Pendulum foil pattern.

The foil pattern for the Stage Lighting Interface.

The Knite Light foil pattern.

These three boards are for the Video Vandal.

ATTENTION ALL

WRITERS

or just those of you who sometimes think "I could do better than that!"

We want to hear from you!

The magazine you hold in your hand is part of ASP's electronics group of titles. These include ETI, Ham Radio Today, Digital and Micro Electronics, and our new magazine, Electronics. All these magazines are looking for new authors, so if you've designed something for yourself that you think may be of interest to others, or if you've a subject you'd like to write a feature article on, then drop us a line with an outline of what you have in mind.

We particularly need:

- Projects for the Commodore Vic 20 and 64 , the Amstrad, the BBC A and B, and the Electron computers;
- Simple projects that do something useful, perhaps in a novel or instructive way;
- Radio projects (not necessarily ior radio amateurs);
- Features on amateur satellite radio.

If you're interested in writing for us, send an outline of your proposed article to: Dave Bradshaw, Group Editor (Electronics), Argus Specialist Publications, 1 Golden Square, London W1R 3AB.

Please note that while we take ever care an cannot be held responsible for the loss of unsolicited manuscripts. We advise all authors to keep a photocopy or carbon copy of any article they send us.

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the edvertiser should become insolvent or bankrupt, provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insotvent to a limit of $£ 1,800$ per annum for one advertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this megazine (not for example, payments made in response to catalogues, etc, received as a result of answering such advertisements)

CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.

TELEPHONES AND ACCESSORIES LATEST B. T. TELEPHONES AVAILABLE FOR EXTENSION USE

SLIMTEL - New one plece pushbutton 'phone from Telecom, includes last number redial and silence feature (In lvory colour only) £26.04, wall mounting kit for above ³.43.
We have many other types of accessories available, including: Dlals, Switches and Buttons, Jeck Plugs and Sockets, Jack Adaptors, Cables, Block Terminals, Telephone Cord, Mic. inserts, and Bells.
For detalls of Telephones, Cordless Phones Speaker Phones, Auto Dialers, AnswerIng Machines and Novelty Phones available as well asa the full range of accessories please send a large S.A.E.
NOTE: It is illegal for the consumer to install his own sockets or to alter existing B.T. installations in any way.
All prices exclude V.A.T. Please add V.A.T. at 15% to your order total. Add $£ 2.17$ p\&p per telephone. Send cheques or postal orders only to:

CAPRIOL SYSTEMS
Units 19-26 Sanders Lodge Ind. Eat, Rushden, Northonte.
Allows 21 days for delivery.

If an advertisement is wrong were here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority
ASA Ltd, Dept 3 Brook House, Torrington Place, London WC1E 7HN

ETI PCB SERVICE

In order to ensure that you get the correct board，you must quote the reference code when ordering． The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third is the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until we receive payment．

1981	
口	E／8
口	E／811－2 Multi－Option
\square	E／814－2 Drum Machin
\square	E／814－4 Guitar No
\square	E／816－8 Waz－Phas
\square	E／816－9 Alien Attack
\square	E／817－1 System A－Input （MM or MO．
\square	E／817－2 System A－Pr
\square	E／817－3 Smart B
\square	E／818－3 Hand Clap Synth
\square	E／818－5 Watchdog Home Security（2 boards）．．．．
\square	E／819－1 Mains Audio Link （3 boards） \qquad
\square	E／819－4 Laboratory P
ㅁ	E／8110－1 Enlarger Time
\square	E／8110－2 Sound Bender
－	E／8111－1 Voice Over
\square	E／8111－2 Car Ala
\square	E／8111－3 Phone
	E／8112－4 Comp
982	
\square	E／821－3 Guitar Tuner（2 bo
\square	E／822－1 Ripple Monito
\square	E／822－2 Allez Cat Pest Rep
\square	E／822－5 Moving Magnet S
口	E／822－6 Moving Coil Stage
口	E／823－4 Capacitance Meter （2 boards） ．．．．．．．．．．．．．．．．．．．．．． 11.66
	E／825－1 DV Meg．
\square	E／826－1 lon Generator （3 boards）．．．．．．．．．．
	E／826－4 MOSFET Amp Module．．．． 7.
\square	E／826－5 Logic Lock
口	E／826－6 Digital PWM
	E／826－7 Optical Sensor
－	E／826－9 Oscilloscope \quad（4 boards）．．．．．．．．．．．．．．．．．．．．． 13.34
\square	E／827－4 Hotwir
－	E／827－5 Bridging Adapt
\square	E／828－1 Playmate（3 boa
\square	E／828－4 Kitchen Scales ．．．．．．．．． 2.12
\square	E／829－1 Auto Volume Cont
\square	E／829－2 Dual Logic Probe ．．．．．．． 2.22
	E／8211－4 Pulse Ge
	E／8212－1 ELCB
\square	E／8
	（2 boards）

\square	E／831－1 Fuel Gauge ．．．．．．．．．．．．． 3.45
\square	E／831－2 ZX ADC．．．．．．．．．．．．．． 2.59
\square	E／831－3 Programmable PSU ．．．．．． 3.45
－	E／833－1 SoundBoard．．．．．．．．．．．． 12.83
\square	E／833－2 Alarm Module ．．．．．．．．．．． 3.62
\square	E／833－3 ZX81 User Graphics ．．．．． 1.07
－	E／833－4 Logic Probe ．．．．．．．．．．．．． 2.50
\square	E／834－1 Real Time Clock ．．．．．．．．．8．74
\square	E／834－2 Thermemeter （2 boards） \qquad
\square	E／834－4 Stage Lighting－Main ．．． 13.73
－	E／834－5 Stage Lighting－Display 3.45
\square	E／835－1 Compressor／Limiter ．．．．． 6.19
－	E／835－2 Single PSU ．．．．．．．．．．．．． 3.16
－	E／835－3 Dual PSU ．．．．．．．．．．．．．． 4.01
口	E／835－4．2 NDFL Amp ．．．．．．．．．．． 7.88
\square	E／835－5 Balance Input Preamp．．．． 3.23
－	E／835－6 Stage Lighting Autofade．
口	E／835－7 Stage Lighting－ Triac Board．
\square	```E/836-1 to 3 PseudoROM (3 boards) }6```
\square	E／836－5 Atom Keypad．．．．．．．．．．．． 5.1 ．${ }^{\text {¢ }}$
－	E／837－1 Flash Sequencer ．．．．．．．．． 2.67
［	E／837－2 Trigger Unit Main Board．． 2.67
\square	E／837－3 Trigger Unit Transmitter．． 1.66
口	E／837－4 Switched Mode PSU ．．．．． 16.10
口	E／838－1 Graphic Equalisr ．．．．．．．．．9．10
－	E／838－2 Servo Fail－Safe （four－off）．．．．．．．．．．．．．．．．．．．．．． 2.93
\square	E／838－3 Universal EPROM prog．．． 9.64
\square	E／839－1 NiCad Charger／Regen．．．．．3．77
\square	E／839－2 Digger．．．．．．．．．．．．．．．．．．． 3.40
\square	E／839－3 64 K DRAM．．．．．．．．．．．． 14.08
－	E／8310－1 Supply Protector ．．．．．．． 2.19
－	E／8310－2 Car Alarm ．．．．．．．．．．．．． 3.98
－	E／8310－3 Typewriter Interface ．．．．．4．17
－	E／8311－1 Mini Drum Synth ．．．．．．． 3.07
口	E／8311－2 Alarm Extender．．．．．．．． 3.21
\square	E／8311－3 Multiswitch ．．．．．．．．．．． 3.59
\square	E／8311－4 Multiple Port ．．．．．．．．．．． 4.34
－	E／8311－5 DAC／ADC Filter ．．．．．．．． 3.22
\square	E／8311－6 Light Pen ．．．．．．．．．．．．． 4.60
口	E／8311－7 Logic Clip ．．．．．．．．．．．．． 2.51
－	E／8311－8 MC Head（JLLH）．．．．．．．． 3.17
\square	E／8312－1 Lightsaver．．．．．．．．．．．．．． 1.85
\square	E／8312－2 A－to－D Board．．．．．．．．．． 12.83
\square	E／8312－3 Light Chaser（2 bds）．．．．． 7.54
\square	E／8312－4 ZX Alarm ．．．．．．．．．．．．． 6.04

1984
E／841－1 Vector Graphics ．．．．．．．．．． 8.27 E／842－1 Speech Board （Mini－Mynah） 0.97 MODULAR PREAMP：
－E／842－2 Disc input（mono）． 3.73
E／842－3 Output stage（stereo）．．．．．3．73
E／842－4 Relay／PSU ． 3.73
E／842－5 Tone，main（mono）． 3 .73
E／842－6 Tone，filter（stereo） 3.73
E／842－7 Balanced output（st） 3.73
E／842－8 Headphone amp（st）．． ． 3.73
E／842－9 Mother board 9.01
E／843－1 Power Meter 5.81
E／843－2 280 DRAM． 9.79
E／844－1 School Timer 4.07
E／844－2 Mains Borne RC（Rcvr） ． 10
E／845－1 Auto Light Switch 4.01
E／845－2 Mains Born RC（Trans）． 5.07
E／845－4 Centronics Interface 4.09
E／845－5 Vario 6.62
E／845－6 Midi Drum Synth ． 3.59
E／846－1 Oric EPROM Bd 19.58
E／846－2 Spectrum Joystick． 3.30
E／847－1 Warlock Alarm 8.19
E／848－1 Joystick Interface 3.07
E／848－2 EPROM Emulator 9.11
E／848－3 Infrared Transmitter 3.70
E／848－4 Infrared Receiver． 3.98
E／848－5 CMOS Tester 4.60
E／849－1 EX42 Kybd．Interface 3.82
E／849－2 Bansheee Siren 3.19
E／849－3 Dry Cell Charger． 2.80
E／8410－1 Echo Unit 3.92
E／8410－2 Digital Cassette 9.80
E／8410－3 Disco／Party Strobe 4.80
E／8411－1 AM／FM Radio（4 bds） 13.02
E／8411－2 Control Port－control bd ．E／B411－3 Control Port－1／O bd．12.15
6.33
E／8411－4 Capacitance Meter． 3.55
E／8411－5 Video Vandal（3 bds）． 2.10
E／8411－6 Temperature Controller 2.88
E／8411－7 Mains Failure Alarm．E／8411－8 Knite Light3.25
E／8411－8 Stage Lighting InterfaceE／8411－10 Perpetual Pendulum3.14
E／8212－4 Spectracolumn 5.54
How to order：indicate the boards required byticking the boxes and send this page，togetherwith your payment，to：ETI PCB Service，ArgusSignedSpecialist Publications Ltd， 1 Golden Square，London W1R 3AB．Make cheques payable toETI PCB Service．Payment in sterling only please．Name
Prices subject to change without notice．

ELECTRONICS TODAY INTERNATIONAL

Lineage:

40p per word (minimum 15 words) Semi Display: (minimum 2 cms) $£ 11.00$ per single column centimetre
Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

CLASSIFIED

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers
Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13 Tel: 0512283483 or 051-220 0590

SOFTWARE APPLICATIONS

CORTEX SOFTWARE

For the Powertran Cortex compurer FORTH - Supplied in wo 2568 eproms Tetal: standalone supports cassetle $525^{\circ} \%$ \& ossis Price $£ 3500$ inctus ine DISCS - Forth utlities use with above egroms contains editor, assembler. and utilties price

AUTO-BOOT DISCS
FORTH - Use the Basic BOOT command 10 download the Forth system, the Forth eproms are not required Price $£ 5500$ inclusive CDOS - Adds file support to Cortex Basic named program and data tiles includes formal and contigure utilities Price $£ 50,00$ inclusive Disc orders, please slate 525 "or $8^{\prime \prime} 5$ a e with al enquiries to:-

LOMBARD SYSTEMS
18 Lombard Street, Lidlington Lombard Street, Lidlington
Bedtord MK43 ORP

HOME GUARD SYSTEMS

If you want professional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our free illustrated catalogue.

$$
\begin{aligned}
& \text { Tel: 01-651 } 2449 \\
& \text { Freepost, South Croydon } \\
& \text { Surrey CR2 9PU }
\end{aligned}
$$

(no stamp required)

USE ETI CLASSIFIED SECTION TO SELL YOUR PRODUCT/SERVICE

Either fill in the coupon or phone
$01-4370699$

ALARM EQUIPMENT

Complete door entry phone kit $\mathbf{\Sigma 3 9 . 5 0}$

 2 Zone B S panel. \qquad trom E 38.50$\mathbf{~} 333.50$ Somplete CCTV kit Prices + VAT \& Carriage) Send for tull list of fire and security equipment VCTOR SECURITY CENTRES LTD Hambitionlan Yard, Went how stoction-on-Tees, Clevelend TS18 18B Tet: 0642508500

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274731532.

KNIGHT ALARM SUPPLIES

Whoisalers of intruder and fire alarms, C.C.TV., door entry, emergency lighting, nursing call equipment.

- External PIR/controllers
- Digital key pads
from $\mathbf{8 6 0 . 0 0}+$ VAT
from $£ 19.00$ + VAT
CATALOGUE AVAILABLE
349 Kirkstall Road, Leeds LS4 2HD Tel: (0532) 795-079

FOR SALE

100W AMPLIFIER - £9.95 built or use the same board for 50 W . 150W, 200W into 4 or 8 ohms etc.., by using alternative output transistors \& P.S.U. S.A.E. for full details to ESS Amplification, Unit 11, Argyle St., Hull.

BARGAIN PACKS our speciality. Send S.A.E. for details plus free samples. Projek Electronics, 44 Mathie Crescent, Gourock PA19 IYX.
ELECTRONIC ORGAN KEY. BOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

POWERTRAN CORTEX Com puter. Basic unit. Most IC bases fitted for optional extras (RS232, discs). £220 o.n.o. Bed ford (0234) 766111 evenings) weekends except Friday.

POWER AMPLIFIERS 200 watts £12.95 . . . case plus controls and sockets... tested. Glass/PCB ... 4 \times MJ3001/TO3 output. $100+100 \mathrm{~W}$
(MRP £38.40 plus data... KIA8 Cunliffe Road, Ilkley LS29 9DZ.

FOR SALE

EPROMS - Texas TMS 2716 JL/45 Triple Rail 100 new, offers. Telephone: Basingstoke 68465.

KITS

TIME WRONG?

WSF CLOCK is ALWAYS CORRECT never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, switch-on,
Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD for computer, receives Rugby 60 KHz atomic time sigtnals, built-in antenna, 1000 Km range, 879.70, get the TIME RIGHT.

Fun-to-build kit (ready made to order) includes ALL parts, printed circuit, case etc, by-relurn postage, list of other kits. CAMBRIDGE KITS
45 (TL) Old School Lane, Milton, Cambs.

MICRO BUG

$140 \mathrm{~mm} \times 370 \mathrm{~mm}$. Extremely sensitive, powerful. Operates from 1.5 V battery ready built tested only $£ 9.95$ (in kit form 87.50).

Also available Automatic Telephone Recorder built tested £11.95 (in kit form $\mathbf{8 8 . 5 0}$).

All fully guaranteed. Send cash, cheque or P.O. to:

SHAH ELECTRONICS
 11 Livingstone Road
 Southall, Middlesex UB1 1TH

METRONOME KIT. Easy to assemble complete with box. You need only a soldering iron and wire cutters. £6.50 including p\&p and VAT. Hunt Electronics, PO Box 57, Derby DE6 6SN.

ECOLIGHT(ETI July 84) full kit as per article. £21.05. P.C.B. only $£ 4.50$. GP Electronics, 87 Willow Tree Ave., Durham DH1 1DZ.

LINSLEY HOOD DESIGNS LOW DISTORTION AUDIO SIGNAL GENERATORS
£25 (p p \& 1) AO 149 Kit $£ 32$ (pp £2)

Super HI-Fi Amplifer (ET) PC Boards from £4

Send S A.E. for further details: TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01-807 3719

COMPONENTS

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60 p . Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.
MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F.-P.C.B. All componentsd. Full instructions.912 V operation, broadcast reception. Super sensitive microphone. Pick-upo on FM radio. £6.95 inc; or ready built £8.95: Same day despatch - Zednith Electronics, 21 Station Road Industrial Estate, Hailsham, E. Sussex BN27 2EW.

WANT RESULTS?
 THEN USE ETI CLASSIFIED

SITUATIONS VACANT
AUDIO ENGINEER REQUIRED. Experienced in servicing all types of hi-fi, radio cassettes and in-car entertainment. Phone lan on 012494814.

COMPONENTS

UNAVAILABLE COM-
PONENTS? If we can't get them nobody can. Quote without obligation or charge. Quote or order period approx 2 weeks. No order is too small. Rickman Components, South Ronaldsay, Orkney KW17 2TW. Phone 085683-430.

PHONE OR WRITE for VAT inclusive price list. eg 7805 voltage regulator 38p. HUNT ELECTRONICS, PO Box 57, Derby DE6 6SN (0283) 703071.

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices Return-of-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra'Road, Rathmines, Dublin 6. Phone (01) 0001 if England 987507 Mail order only please

AERIAL AMPLIFIERS improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire, BL'O 9AGH.

BUMPER BOX OF BITS

WoW! We've got so many components in stock, we can't possibly list them all-So buy a box. In it you'll find resistors, capaci-
tors, displays switches, panels with trantors, displays, switches, panels with tran-
sistors, diodes, IC's etc., coils, pots... and so on, All modern parts - guaranteed at least 1000 items, minimum weight 10 lbs . ONLY $£ 8.50$ inc. 48 page catalogue 50 p .

ELECTRONICS WORLD

1 e Dews Road, Salisbury, Wilts SP2 7 SN

> Betatran Electronics Supplies
> Toroidal transformers primary 250 V secondaries $0-40,0-40 \mathrm{~V}, 0-50,0-50 \mathrm{~V}$, $0.55,0-55 \mathrm{~V}, 0-70,0-70 \mathrm{~V}$ at 300 VA £17.55, 500VA £24.70, 625VA £30.50. Can Electolytics $63 \mathrm{~V}, 6600 \mathrm{uF}$ SA 284.35. $10,000 \mathrm{uF}$ 7A £5.45. 100 V 6800uF 8 A £6.23, 4700uF 8A E5.50. 3300uF 7A $£ 4.20$. 2200uF 7A E3.00. Computer Grade $10,000 \mathrm{uF}$ 15A £14.69. MOS-FETS 2S J 50/2SK 135 E\& 50 . 2SJ83/2SK 227 £8.20 price per pair. 35A 200 V bridge rectifiers $£ 3.25$. VAT inctusive $£ 1.00 \mathrm{p} \mathrm{\& p}$ under $£ 7.00$. Full spec. many more. Resistors, capacitors, trasnistors. heat sinks, amplifiers, speakers, transtormers, etc. Send 4×9 self addressec envelope for large list.
> Laver St, Cavendish, Sumolk CO108AP. Tel: 0787280639.

2764's! (350ns) Thousands must goonly $£ 7.50$ each (+ V. A. T.) Ideal for BBC etc. Also bulk eprom copying service (any type/quantity considered). DG Sharp (Computer Services), 49 Main St., Bothwell, Glasgow, G71 8 ER .

TRANSISTOR/I.C. SALE

2716 EPROM 11.25

2116 16K RAM $\varepsilon 2.00$
MJE 305510 for $£ 1.75$
TIP 29/30/31/32A
10 ANY MIX $£ 1.80$
ED 135/137/139 20p
100 mixed, coded transistors. All types SS/Tower 12.
SAE for List 50p carriage all orders. J. WRIGHT

27 Broomhill Drive
Glasgow G11 7AB

PLANS 'N DESIGN

AMAZING ELECTRONIC

 plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.
REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets Commodore computers, printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday:

WANTED Electronictest equipment, large computers, large quantities of Printed Circuit Boards, anything considered, good prices paid: "C" House. Stanhope Rd., York Town Ind. Est., Camberiey, Surrey. 027628208.

SERVICES

JBA

ELECTRONICS

Manufactures to design orspecifications. One offs, small batch prototypes Analogue digital electronic equipment. smalL

1st Floor, 4a Lion Yard Brecon, Powys, South Wales el: (0874) 611177

PRINTED CIRCUIT BOARDS manufactured to your specification. Quality, Quick service. Competitive Prices. COPPER-CLAD fibreglass boards cut to size. 1 mm thick $£ 1.80 \mathrm{sq}$. ft. $1.6 \mathrm{~mm} £ 2.20 \mathrm{sq}$. ft . Postage 75 p . Mondo Circuits Ltd, 35 Grosvenor Road, Twickenham. Middx. Tel: 01-891 5412. P.C.B. DESIGN \& LAYOUT, manually taped artwork professionally produced at competitive prices James Gledhill. Tel: 01-674-8511.
FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

WIRES 'N CABLES

$\begin{aligned} & \text { THE SCIENTIFIC } \\ & \text { WIRE COMPANY } \\ & 811 \text { Forest Road, London E17 } \\ & 01.531 .1588 \end{aligned}$				
ENAMELLED COPPER WIRE				
$\begin{array}{llll}\text { SWG } & 11 \mathrm{~b} & 807 & \\ 8-34 & 3.63 & 2.09 & 1.10\end{array}$				
$\begin{array}{llll}44-47 & 5.56 & 5.80 & 3.49\end{array}$				
$\begin{array}{llllll}14-30 & 9.09 & 5.20 & 2.93 & 1.97\end{array}$				
$\begin{array}{llllll}14-30 & 3.97 & 2.41 & 1.39 & 0.94\end{array}$ Prices include P\&P and VAT. Orders under £2 add 20p. Deater inquiries welcome.				

EQUIPMENT

EPROM COPIER - STAND ALONE 2716-27128............. £175.00
TELEPHONE CONVERSATION
RECORDER £75.00
2 LINES INTO 1 ANSWERING
MACHINE
Switching Unit £30.00
From L.K.F. Systems Lid St. Albans. Tel: 55084

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

SCOPES

Repaired \& recalibrated, all makes, all models.
Scopex Safgan, Older TEK, TQ MENDASCOPE LTD

Otter House
Western Underwood, Olney
Bucks MK46 5JS
Tel: Bedford (0234) 712445

BOOKS EXCHANGE

SERVICE

BOOKS WANTED FOR CASH

Have you got technical books you no longer need? OR Do you need to read up on a new topic? Then EXCHANGE BOOK CLUB can help YOU!
We buy and sell previously read books on electronics and computing.
For list of currently availabie titles and details of our guaranteed buy back plan SAE please to:* Rothwell, Leeds LS26 OUY

MISCELLANEOUS

AGENTS

Wanted to Sell Computer Software for most computers. We now have the Diaiog Electronics Partl in stock, Pools Winner \& Course Winner. We can supply business software, games anmd computer ad ons Phone (0288) 4179 up to 9 pm mosi nights for your free list and details about our agents.

ESSEX

R JONES ELECTRONICS
267 Rectory Rd., Grays, Essex
Tel: 10375) $33158-24$ hranswer phone Eecenenic repairs - Industrial \& Domestic Coen 9-5 30pm 6 days a week.

MERSEYSIDE

PROGRESSIVE RADIO
93 Dale Street. Tel 0512360982
47 Whitechapel. Tel 0512365489
Liverpool 2
THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5:30

LANCASHIRE

ETESON ELECTRONICS

 - 15 Lowar Green-Fylde, Blackpool Tel: (0253) 885107 Open: 9.30arn-12 30 1.30 .530 closed Wed \& Sun Electronic Component Specialists.

S. WALES

STEVE'S ELECTRONIC

 SUPPLY CO. LTD. 45 Castle Arcade, Cardiff TEL: 022241905Open: Mon-Sat 9-5.30 For components to computers

YOU CAN BE SURE OF THE SHOPS IN ELECTROMART Phone ASP on 01-437 0699 for details

ADVERTISERS INDEX

Ralph Allen Engineering 32
AM Electronics 67
Antex 20
Audio Electronics Ltd. 90
Autrol 74
B. Bamber 56
B. N.R. \& E.S 61
BK Electronics 14
Bridage Scientific Instruments 32
Cambridge Learning 40
Cambridge Micro Computer Centre 79
Capriol Systems. 85
Centurion Alarms 67
Cirkit 19
Cricklewood Electronics 8
Cybernetic Applications IFC
Dionics 74
Display Electronics 10
Electrovalue 28
Etatech 61
Global Specialties Corp 43
Greenbank 28
Henry's Audio Electronics 48/49
Hi-Tek Electronics 12
ICS 65
ILP 71
Kelan Engineering. 33
Kemplant 90
LB Electronics 43
Maplin. 75/OBC
Marco Trading 16
Merseyside Acoustic Developments 79
Micro Processor Engineering. 75
Micro Range Electronics 32
MJL 43
Newrad Instrument Cases 71
Norbain 18
Powertran. 28/IBC
Rapid Electronics 6
RTVC 40
RVM Audiotronics 71
Riscomp 27
Ship Co 79
Skywave Software 75
SME 67
Sparkrite 61
Stewart of Reading 65
Systems Electronique 90
Technomatic. 34 \& 35
TK 56
Watford Electronics 4 \& 5
Wilmslow Audio 65

LOOK - IT'S HIS FIRST WINTER SPECIAL

Please add \&1. 45 P \& P Other kits available. details.

Call in and see our new counter now open $\quad 9.00$ - 5.00 Mon-Fri 9.00-12.00 Sat Too far to call? Don't worry, export/mali order is our speciality. Why not write and find out more

SYSTEMS EECTRONIQUE

(U.K.) LTD.

26 Engineer Park, Sandycroft Deeside, Clwyd CH5 2QD.

Tel: (0244) 536700

TOP QUALITY KITS AT LOW-BUDGET PRICES

We now have an arrangement with Music Maker Publications and will provide kits of projects that appear in Electronics \& Music Maker and its sister publications, Home Studio Recording and Guitarist. Watch out for ads in all three mags.

SP2 200
An ingenio 2-channel 100watt Amplitier hously designed power amp The SP? can deliver over 100 w rms into 8 ohms on each channel Separate volume control and a sensitivity of $0.775 \mathrm{mV}(0 \mathrm{dBm})$ make this unit suitable for virtually ali pre amps or mixers Construction is very simple, with minimal wiring and the steel cabinet is suitable for $19^{\prime \prime}$ rack
mounting Complete K .
$£ 99.50$ + VAT

 stability and easy Esi=~: =- Not 200 na four inputs isensitiv: is can be eas , changed 3 separate tone controls ans a haster volume control Sieel carinel Msutit rack s.stems Complete Ki: £79 50 - VATChromatheque 5000
5 Channel Lighting Effects System Versatility is the key aspect of the Chroma heque. Musical input can perform switching or modulation of the light output. 5 banks of lamps of up to 500 w each can be controlled in either analogue or digital mode Variable light level controls provide scope for "mood" lighting The kit's single-board concept makes for straightforward assembly Complete Kit
$£ 79.50$ + VAT

Hebot II Robot Turtle
At a price that makes even a TVIook At a price that makes even a TV look expensive Hebot provides an exciting introduction to computer control. Independent drive of the two wheels, flashing "eyes", two-tone horn and a retractable pen are directed by your microcomputer while four collision detectors relay information about the robot's environment. Complete Kit $\quad £ 95.00+$ VAT Universal computer interface board kit
$£ 11.00$ + VAT

Digital Delay Line
Digital quality at an Analogue price' With this unit you can have Phasing Flanging. ADT Chorus. Echo and Vibrato at the touch of a button In a steel cabinet suitable for 19 " rack mounting.
Complete kit (400 ms delay) $£ 179.00$ +VAT Parts for Extra 400 ms delay (up to 3 can be added)
$£ 19.50$ + VAT

Transcendent 2000
This professional c.a synth is transposiale 2 ocraves uo or sow giving an effective 7-octare range Trere is portemento pich aend 9 v.00 wh shaseanc pitch modulation VICF wh " 3^{n} ant low pass outputs and seaErer dura- swes sontrol noise generato $\equiv \rightarrow$ - \equiv ADSR etielope generator Complete Kit £15000-VAT

MicroGrasp A real programmable robot Electric robot arm price Five motors - four with servo contro are mounted directly on the axes they drive (no fiddly strings and pulleys ${ }^{1}$). The robot can be controlled by any microcomputer with an expansion bus.
Fobot kit with power supply $£ 215.00$ VAT Universal computer interface board kit
$£ 57.00+$ VAT

Genesis P102

POWERTRAN cybernetics Itd.

Portway Industrial Estate,
Vamciancam Andover, Hants, SP10 3ET

The amazing Maplin Catalogue is here again! The new edition is packed with hundreds and hundreds of new electronic components to bring you right up to date with all the latest developments. As all home constructors agree (and a good many professionals too) the Maplin Catằlogue is the one essential piece of equipment they really need. And now with all our prices on the page the Maplin Catalogue is better value than ever.

On Sale From 10th November 1984.

Pick up a copy as soon as it's published at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue. Price $£ 1.35+40$ p post and packing. If you live outside the U.K. send $£ 2.40$ or 11 International Reply Coupons.
I enclose $£ 1.75$.

Name

Address

[^0]: Bridage Scientific Instruments
 63-65 High Street, Skipton, North Yorkshire BD23 1EF. Tel: (0756) 69511 (10 lines)

[^1]: Using this construct, a D-type flip-flop, for instance, can be made with just 16 transistors, Fig. 4. An even more economical D-type can be implemented using only eight transistors, Fig. 5. This relies on the charge stored at

 Fig. 5 Faster, more economical D-type using the gate capacitance at point X as a storage element.

[^2]: Most of the components are available from any number of our advertisers, the UHF modulators are available for Cirkit and the PCBs from us. The ADC is an RS part (order code 302-069) and can be ordered through Crewe-Allan \& Co, 51 Scrutton Street, London EC2.

[^3]: Nothing here to cause any problems; the square LEDs used in the prototype were obtained from Rapid Electronics, but lots of other suppliers sell them. The two ICs are quite widely available, too, and the PCB is available from our $P C B$ service.

