AN ARGUS SPECIALIST PUBLICATION

 THE 22 S ARE HERE Is this the new, industry-standard microprocessor? INT

INST. PIPE
DATA EXECUTION UNIT

PROGRAM COUNTER EXECUTION UNIT

CONTROL SECTION
nROM
μ ROM

ADDRESS
BUFFERS
CLOCK GENERATORS

PROJEGTSTO BUILD:

Spring-line echo unit

Digital control port

for the Speotrum

The advanced design of the Neptune 2 makes it the lowest cost real-life industrial robot.
It is electro-hydraulically powered, using a revolutionary water based system (no messy hydraulic oil!)
It performs 7 servo-controlled axis movements (6 on Neptune 1) - more than any other robot under $£ 10,000$.
Its program length is limited only by the memory of your computer. Think what that can do for your BASIC programming skills!

And it's British designed, British made.

Other features include:
Leakproof, frictionless rolling diaphragm seals.
Buffered and latched versatile interface for BBC VIC 20 and Spectrum computers.
12 bit control system (8 on Neptune !).
Special circuitry for initial compensation.
Rack and pinion cylinder couplings for wide angular movements.
Automatic triple speed control on Neptune 2 for accurate 'homing in'.
Easy access for servicing and viewing of working parts.
Powerful - lifts 2.5 kg . with ease.
Hand held simulator for processing (requires $A D C$ option).
Neptune robots are sold in kit form as follows:

Neptune 1 robot kit (inc, power supply)
£1250.00
Neptune 1 control electronics (ready built) £295.00
Neptune 1 simulator
Neptune 2 robot kit (inc. power supply)
Neptune 2 control electronics (ready built) £475.00
Neptune 2 simulator £52.00

ADC option (components fit to main control board)	$£ 95.00$
Hydraulic power pack (ready assembled)	$£ 435.00$
Gripper sensor	$£ 37.50$
Optional extra three fingered gripper	$£ 75.00$
BBC connector lead	$£ 12.50$
Commodore VIC 20 connector lead and plug-in board	$£ 14.50$
Sinclair ZX Spectrum connector lead	$£ 15.00$

All prices exclusive of VAT and valid until the end of 1984.

This compact, electrically powered training robot has 6 axes of movement, simultaneously servo-controlled. It gives smooth operation, and its rugged construction makes it ideal for use in educational establishments. Other features include long-life bronze and nylon bearings, integral control electronics and power supply, speciai circuitry for inertial compensation, optional on-board ADC, and hand-held simulator as the teaching pendant. Like Neptune, Mentor's program length is limited only by your computer's memory. Programming is in BASIC.

Mentor is all-British in design and manufacture and comes in kit form at an astonishingly low price:

Menter robot kit (inc. power supply)
$£ 345.00$
Mentor Control electronics
(ready built)
Mentor Simulator (requires
ADC option)
$£ 135.00$

ADC option (Components fit to control electronics board)
$\$ 42.00$

BBC connector lead
$£ 19.50$
Commodore VIC 20 connector lead and plug-in board
£12.50

Sinclar ZX Spectrum connector lead
£14.50
£15.00
All prices exclusive of VAT and valid untll the end of 1984.

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Assistant Editor Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Kerry Fowler: Copy Contro! Jim Connell: Chairman

PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Golden Square, London W1R 3 AB DISTRIBUTED BY.
Argus Press Sales \& Distribution Ltd 12-18 Paul Street. London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd
COVERS PRINTED BY:
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead and their GERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC Member of the Audit Bureau

Electronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans, tellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv revroduction reauires the prior written consent of the Company. © 1984 Argus Specialist Publications Lid LI All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors Where mistakes do occur, a correction will normaly be published as soon as possible afterwards. All cepled by us in cood faith as correct at time of poing to press. Neither the advertisers nor the publishers can be held responsible however, for any variations affecting price or avallability which may occuratter the publication has closed tor press.
\square Subscription Rates. UK £14.35 including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1R 3AB. Telephone 01=43.7 0626. Telex 8811896.

FEATURES

DIGEST

Our monthly dose of pre-digested press-releases and other masticated morsels.

TECHNICAL GUIDE TO THE
 . GUIDE TO THE

MC68020
....... 23
$32+32+32=\ldots$ the new MC68020 from Motorola. Phil Walker tells us what the features of this new chip really add up to.

THE SOUND OF VIDEO

 32Vivian Capel's VCR is alive with the sound of hi-fi stereo.

COMPLETE PROJECT INDEX
 \qquad

A full twelve-and-a-half years worth of ETI projects set out in alphabetical order.

TECH TIPS

\qquad 48
The results of our readers' endeavours during the long winter evenings.

COMMUNICATIONS

SATELLITES
Our roving correspondent Roger Bond' continues his tour of the space lanes.

PROJECTS

SIMPLE ECHO UNIT \qquad 18 Phil Walker has been repeating himself a lot lately, as this design proves.

DIGITAL CASSETTE DECK.
.28
Part two of. Bob Campbell's highspeed digital cassette design.

DIGITAL CONTROL PORT

\qquad
Mike Wynne-Jones describes a control port with enough $1 / \mathrm{O}$ lines to satisfy even the most power-hungry of Spectrums.

DISCO/PARTY STROBE

52Ian Benton returns to our pages with the sequel to his recent Finesse light chaser/sequencer.

ACTIVE-8 LOUDSPEAKER

56Barry. Porter concludes his description of the design process involved in creating his active loudspeaker design.

INFORMATION

ETI BOOK SERVICE .6
ETI PCB SERVICE.
PCB FOIL PATTERNS 66NEXT MONTHi's ETİ70

NEXT MONTi'‘ ETİ 70
ADVERTISERS INDEX 74
74

WATFORD ELECTRONICS
 33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND
 MAIL ORDER, CALLERS WELCOME

Tel. Watford (0923) 40588. Telex. 895€095
ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.s, CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&PADD 75 p TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGE AT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

AT Export orders no VAT. Appllcable to U.K. Customers only. Unless stated othewise,

 Nearent Underground/BR Ststion: Watford High Stree

 33022 p; 47025 p; 680,100034 p. 150042 p; 220050 p; 330076 p; 47 p.
18 p; 47020 p. 680 34p; 1000 27p. 150031 p. 2200 28p; 470072 p.

POLYESTER CAPACITORS: Axial Lead Type 400V: $1 \mathrm{nF}, 1 \mathrm{n} 5.2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$, 1000V: $1 \mathrm{nF} 17 \mathrm{p} ; 10 \mathrm{nF} 30 \mathrm{p} ; 15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n} 38 \mathrm{p} ; 33 \mathrm{n}$ 42p; 47n, 100n 42p.				SIEMENS pcb Type Miniature poly Capacitors 250 V 1nF. $1 \mathrm{n5}, 2 \mathrm{n} 2$ 3n3. $4 \mathrm{n7} .6 \mathrm{n} 8$, $10 n, 15 n$ $18 n, 22 n, 27 n$, 33n 39n 47n 8p $\begin{array}{ll}39 n, 56 n & \text { 12p } \\ 82 n, 100 n & 11 p\end{array}$
POLYESTER RADIAL LEAD CAPACITORS: 250V 10n. 15n, 22n, 27n 6 p; 33n, 47 n , $68 \mathrm{n}, 100 \mathrm{n} 8 \mathrm{p} ; 150 \mathrm{n}, 220 \mathrm{n}$ 10p; 330n, 470n 15p; 680n 19p; 1 u5 40p; 2 u 2 48p.		FEED-THROUGH CAPACITORS 1000pF/450V	10p	
TANTALUM BEAD CAPACITORS 35v: 01 uF, 022, 0.33 15p 047, 0.68, 1.0, 1.5 16p; 2.2, $3.318 p ; 4.7,6822 p$ 10 28p; 16V: 2.2.33 16p; 4.7, 6.8, 10 18p; 15, 36p; 22 45p; 33, 47 50p; 100 95p; 10V: 15, 22, 26p; 33,4750p; 100 80p; 6V: 100 55p.	POTENTIOM Rotary 0.25 W 470R: ! K \& 2 Single Gang $5 K-2 M$ 5K-2M 5K-2M	METERS: Carbon Track W Log 8 LIN Values, 2 K (Linear only) Single Gang Log \& Lin Single Gang DP Switch Double Gang	35p 35p 95p 99p	
MYLAR FILM CAPACITORS 100V: $1 \mathrm{nF}, 2,4,4 \mathrm{nF}, 106 \mathrm{p} ; 15 \mathrm{nF}, 22 \mathrm{n}$, 30n, 40n, 47n 7p; 56n, 100n, 200n 9p; 50V: 470 nF 12 p.	SLIDER PO $025 \mathrm{~W} \log$ and 5K - 500 K Graduated B	TENTIOMETERS and linear values 60 mm single gang Bezels for above	$\begin{aligned} & \text { 80p } \\ & \text { 45p } \end{aligned}$	$\begin{aligned} & 470 n 560 \mathrm{~m} 26 \mathrm{p} \\ & 680 \mathrm{p} \\ & 1 \mathrm{uF} 34 \mathrm{p} 2 \mathrm{u} 25 \mathrm{p} \end{aligned}$
CERAMIC CAPACITORS 50V: Range: 0.5 pF to $10 \mathrm{nF} 4 \mathrm{p} .15 \mathrm{nF}, 22 \mathrm{nF}$ $33 \mathrm{nF}, 47 \mathrm{nF}$ 5p. $100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$. $200 \mathrm{FF} / 6 \mathrm{~V} 8 \mathrm{p}$.	PRESET PO 0.1 W Miniatu Horizontal 0.25 W Large 0.25W Large	OTENTIOMETERS ture Vertical or 100R to 4 M7 ger 100R lo 3M3 Horz er200Rto4M7 Vertical	8p 12p 12p	ACCESS Orders Just phone your orders through. We do the rest Tel: 092350234

POLYESTER CAPACITORS: Axian$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n} 5.2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 81 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$, 68 n 16p; 150n 20p; 220n 30p; 330n 42; 470n 52p; 680 n 1 uF 68p; 2 u 2 82p. 1000V: 1 nF 17p; $10 \mathrm{nF} 30 \mathrm{p} ; 15 \mathrm{n} 4 \mathrm{op}$; 22n 38p; 33n 42p; 47n, 100n 42p.				SIEMENS pcb Type Miniature poly Gapaciors
POLYESTER RADIAL LEAD CAPACI 10n. 15n.22n, 27n6p; 33n, 47n, 68n, 1 10p; 330n, 470n 15p; 680n 19p;	250 V $150 n, 220 n$ u2 48p.	FEED-THROUGH CAPACITORS 1000pF/450V	10p	
TANTALUM BEAD CAPACITORS 35v: 01 uF, 022, 0.33 15p 047, 0.68, 1.0, 1.5 16p; 2.2, 3.3 18p; 4.7,68 22p 10 28p; 16V: 2.2. 3316 p; 4.7, 6.8, 10 18p; 15, 36p; 22 45p; 33, 47 50p; 100 95p; 10V: 15, 22, 26p; 33,4750p; 100 80p; 6V: 100 55p.	POTENTIOM Rotary 0.25 W 470R: ! K \& 2 Single Gang $5 K-2 M$ $5 K-2 M$ $5 K-2 M$	METERS: Carbon Track W Log 8 LIN Values, 2 K (Linear only) Single Gang Log \& Lin Single Gang DP Switch Double Gang	35p 35p 95p 99p	
MYLAR FILM CAPACITORS 100V: $1 \mathrm{nF}, 2,4,4 \mathrm{nF}, 106 \mathrm{p} ; 15 \mathrm{nF}, 22 \mathrm{n}$, 30ヶ40n, 47n 7p; 56n, 100n, 200n 9p; 50V: 470nF 12p.	SLIDER POT 025 W log and $5 \mathrm{~K}-500 \mathrm{~K}$ Graduated B	TENTIOMETERS and linear values 60 mm single gang Bezels for above	$\begin{aligned} & \text { 80p } \\ & 45 \mathrm{p} \end{aligned}$	
CERAMIC CAPACITORS 5OV: Range: 0.5 pF to 10 nF 4 p . $15 \mathrm{nF}, 22 \mathrm{nF}$ $33 \mathrm{nF}, 47 \mathrm{nF}$ 5p. $100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$. $200 \mathrm{nF} / 6 \mathrm{~V}$ 8p.	PRESET PO 0.1 W Miniatu Horizontal 1 0.25 W Large 0.25 W Large	OTENTIOMETERS ure Vertical or 100R to 4 M 7 er 100 R to 3 M 3 Horz er200R to 4M7 Vertical	8p 12p 12p	

COPF to $1 \mathrm{nF} 8 \mathrm{p} ; 1.5 \mathrm{nF}$ to 12 nF 10p.
SILVER MICA (Values in pF)
2, 3.3. 4.7, 68, 82, 10. 12. 15. 18 ,
$22,37,33,39,47,50,56,68,75,82$,
$85,100120,150,180 \mathrm{pF}, 15 \mathrm{p}$ 85, 100. 120. 150. 180pF.. 15p ea

$200,220,250,270,300.330 .360$ $\begin{array}{ll}200,220,250,270,300.330,360, \\ 390,470,800,800,820 & 21 \mathrm{p} \text { each } \\ 100,100,1800,2200 & 30 \mathrm{p} \text { each }\end{array}$ | $100,1200,1800,2200$ | 30p each |
| ---: | ---: |
| $3300,4700 \mathrm{pF}$ | 80 p | MINIATURE TRIMMERS Capacitors 2-6pF 2-10pF 22p.

30p; 10-88pF 36p.
RESISTORS Carbon Film, miniature, Hi -Stab, 5%. $\begin{array}{lllll}\text { RESISTORS } \\ & \text { RANGE } & \text { Val } & 1-99 & 100+ \\ 0.25 W & 2 \Omega 2-10 M & \text { E24 } & 3 p & 1 p \\ 0.5 W & 2 \Omega 2-4 M 7 & \text { E12 } & 3 p & 1 p \\ 1 W & 2 \Omega 2-10 M & \text { E12 } & 6 p & 4 p \\ 2 \% \text { Metal Film } & 51 \Omega-1 M & E 24 & 6 p & 4 p \\ 1 \% \text { Metal Film } & 51 \Omega-1 M & \text { E24 } & \text { Bp } & 6 p\end{array}$ 1\% Metal Film

RESISTORS NETWORK S

7 Commoned: (8 pins)
$10 \mathrm{~K}, 47 \mathrm{~K} 100 \mathrm{~K} \quad 25 \mathrm{p}$
8 Commoned (9 pins) $150 \mathrm{n}, 180 \mathrm{n}, 270 \mathrm{n}, 330 \mathrm{n}, 1 \mathrm{~K}$.

TRANSISTORS

electronios today international sook senilce

How to order：indicate the books required by ticking the boxes and send this page，together with your payment，to：ETI Book Service， Argus Specialist Publications Ltd，1，Golden Square，London W1R 3AB．Make cheques payable to ETI Book Service．Payment in
sterling only please．All prices include P \＆P．Prices may be subject to change without notice．

BECHNNERS GUIDE

Beginner＇s Guide to Basic Programming Stephenson	
Beginner＇s Guide to Digital Electronics	$£ 5.35$
Beginner＇s Guide to Electronics	$£ 5.35$
Beginner＇s Guide to Integrated Circuits	$\mathbf{£ 5} 35$
Beginner＇s Guide to Computers	$\mathbf{£ 5 . 3 5}$
Beginner＇s Guide to Microprocessors	$\mathbf{£ 5 . 3 5}$

COOKB00KS

ELECTRONICS

Principles of Transistor Circuits Amos $\quad \mathbf{£ 8 . 5 0}$

Design of Active Filters with experiments Berlin $£ 11.30$
49 Easy to Build Electronic Projects Brown
Electronic Devices \＆Circuit Theory Boylestad
How to build Electronic Kits Capel
How to Design and build electronic instrumentation Carr
£6．00
f13．20

Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
Principles of Electronic Instrumentation De Sa
Giant Handbook of Computer Soltware
Giant Handbook of Electronic Circuits
Giant Handbook of Electronic Projects
Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray
Basic Electronics Grob
Lasers－The Light Fantastic Halimark
Introduction to Digitsl Electronics \＆Logic Joynson
Electronic Testing and Fault Diagnosis Loveday
Elactronic Fault Diagnosis Loveday
10.15

Microprocessor Cookbook M．Hordeski
7.70

C Dp Amp Cookbook Jung
4.25

PLL Synthesiser Cookbook H．Kinley
13.40

TV Typewriter Cookbook Lancaster
1.15

10.95

1530
5.30

£6．25

Essential Electronics A－Z Guide Loveday
f5．35
5.35

35

£3．55

Projects ior Elecronics Experimenters Minis

Powerts and heir application
Practical Solid State Circuit Design Olesky
haster Handhook of IC Circuits Powers
Electronic Drafting and Design Raskhodoff
VOM－VTVM Handbook Risse
Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair
Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
active Filter Handhook
Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas
Digital Systems：Principles and Applications Tocci
Master Handbook of Telephones Traister
How to build Metal／Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony
33 Electronic Music Projecta you can build Winston

COMPUTERS \＆MICROCOMPUTERS

BASIC Computer Games Ahl

From BASIC to PASCAL Anderson
Mastering Machine Code on your $\mathbf{2 X 8 1}$ T．Bake
UNIX－The Book Banaham
280 Microcomputer Handbook Barden
Microcomputer Maths Barden
Digital Computer Fundamentals Barter
Visicalc Book．APPLE Edition Bel
Visicalc Book．ATARI Edition Bell
Introduction to Microprocessors Brunner
Programming your APPLE II Computer Bryan
Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A／D \＆D／A Carr
Musical Applications of Microprocessors Chamberlain
30 Computer Programs for the Home Dwner in BASIC D．Chance
Microcomputers Dirkson
APPLE Personal Computer for Beginners Dunn
Microcomputers／Microcomputers－An Intro GiooneTroubleshooting Microprocessors and Digital Logic Goodma
£9． 25
Getting Acquainted with your VIC 20 Hartneil Getting Acquainted with your ZX81 Hartnelf Let your BBC Micro Teach you to program Hartnell Programming your ZX Spectrum Hartnell
The ZX Spectrum Explored Hartnelf
How to Design，Build and Program your own working Comput Haviland
\square BASIC Principles and Practice of Microprocessors Heffe Hints and Tips for the 2X81 Hewson
What to do when you get your hand on a Microcomputer Holtzman 34 More rested Ready to Run Game Programs in BASIC Horn Microcomputer Builders＇Bible Johnson
Digital Circuits and Microcomputers Johnson
PASCAL Ior Students Kemp
The C－Programming Language Kernighan COBOL Jackson
The ZX81 Companion Maunder
Guide to Good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Theory and Practice of Micropracessars Nicholas
Beginner＇s Guide to Microprocessors Parr $E 5.35$
Microcomputer Based Design Peatman E11．30

Digital Hardware Design Peatman

£9．80

BBC Micro Reavealed Ruston
Handbook of Advanced Robotics Safford
f9．45
£14．451001 Things to do with your own personal computer Sawusch
Easy Programming for the ZX Spectrum Stewar 88.50
Microprocessor Applications Handbook Stout 34.40
£37．60
Programming the PET／CBM West £17．80f8．20
Computer Peripherals that you can build Wolfe

meference books

Electronic Engineers＇Handbook Fink

－Electronic Designers＇Handbook Giacolett 559.55

Iliustrated Dictionary of Microcomputer Technology Hordesk
Handbook for Electronic Engineering Technicians Kauffman
Handhook of Electronic Calculators Kauffman
Modern Electronic Circuit Relerence Manual Marcus
International Transistor Selector Towers
International Microprocessor Selector Towers
International Digital IC Selector Towers
International Op Amp Linear IC Selector Towerśs
illustrated Dictionary of Electronics Turner

68． 45

E87．45
£27．50
£35．00

£ 34.00
44.00

£44．00
110.70
68.50

VIDEO

\square Servicing Home Video Cassette Recorders Hobbs
Beginner's Guide to Video Matthewson

E5．35
Video Recording：Theory and Practice Robinson
Video Handbook Van Weze！
f14．40
Video Techniques White
21.50

Please send me the books indicated．I enciose cheque／postal order for
f．．．．．．．．．．．Prices include postage and packing
I wish to pay by Access／Barclaycard．Please debit my account．

49श9 LIIロロLIロロロ
\qquad
\qquad
Address．．． \qquad
\qquad
\qquad

electronics today international :OON $5=1 / 10=$

How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service, Argus Specialist Publications Ltd, 1, Golden Square, London W1R 3AB, Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson 65.35
Beginner's Guide to Digital Electronics
$£ 5.35$
Beginner's Guide to Integrated Circuits
$£ 5.35$
Beginner's Guide to Computers
Beginner's Guide to Microprocessors

COOKBOOKS

Master IC Cookhook Hallmark	
Microprocessor Cookbook M. Hordeski	$\mathbf{£ 1 0 . 1 5}$
IC Op Amp Cookbook Jung	$£ 7.70$
PLL Synthesiser Cookbook H. Kinley	$\mathbf{£ 1 4 . 2 5}$
Active Filter Cookbook Lancaster	$\mathbf{£ 1 . 7 0}$
TV Typewriter Cookbook Laricaster	$\mathbf{£ 1 1 . 4 0}$
CMOS Cookbook Lancaster	$\mathbf{£ 1 1 . 8 5}$
TLL Cookbook Lancaster	$\mathbf{£ 1 0 . 9 5}$
Micro Cookbook Vol, 1 Lancaster	$\mathbf{£ 1 5 . 3 0}$
BASIC Cookbook K. Tracton	$\mathbf{£ 6 . 0 0}$
MC6809 Cookbook C. Warren	$\mathbf{£ 7 . 2 5}$

ELECTRONICS

Principles of Transistor Circuits Amos

Design of Active Filters with experiments Berin $£ 11.30$
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
How to build Electronic Kits Capel $\quad \mathbf{~} 3.55$
How to Design and build electronic instrumentation Carr $£ 9.35$
Intraduction to Microcomputers Daglecs
Electronic Components and Systams Dennis
$\begin{array}{ll}\text { Electronic Components and Systams Dennis } & \text { £15.00 } \\ \text { Principles of Electronic Instrumentation De Sa } & \mathbf{£ 1 1 . 4 0}\end{array}$
Giant Handbook of Computer Software $\quad \mathbf{E 1 2 . 9 5}$
Giant Handhook of Elactronic Circuits $\mathbf{£ 1 7 . 3 5}$
Giant Handhook of Electronic Projects $\mathbf{£ 1 1 . 7 5}$
Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray \quad £20.25
Basic Electronics Grob
E1130
Lasers - The Light Fantastic Hallmark
Lasers The to Digital Electro
Elroctronic to Digital Electronics a Logic Joynson
Eactronic Testing and Fault Diagnosis Loveday $E 7.85$
Electronic Fault Diagnosis Loveday
Essential Electronics A-Z Guide Loveday
Microelectronics Digital 81 Analogue circuits and systems Millman $\quad \mathbf{E 1 2 . 7 0}$
103 Projects for Electronics Experimenters Minis
18.30

VLSI System Design Muroga
E 8.30
Power FETs and their application Oxner
Practical Solid State Circuit Design Olesky $\quad £ 25.00$
Master Handbook of IC Circuits Powers
Electronic Drafting and Design Raskhodoff
VOM - VTVM Handbook Risse
Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair
Elactronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas
Digital Systems: Principles and Applications Tocci
master Handbook of Telephones Traister
How to build Metal/Tressure Locators Traister
99 Fun to Make Electronic Projects Tymony
33 Fun to Make Electronic Projects Tymony
33 Electronic Music Projects you can build Winston

COMPUTERS \& MIGROCOMPUTERS

BASIC Computer Games AhFrom BASIC to PASCAL Anderson£6.359.95
UNIX - Th Boak Banaham67.25
Z8O Microcomputer Handbook Barden £10.95
Micracomputer Maths Barden£11.90
Digital Computer Fundamentals Barte £9.90
Visicalc Book. APPLE Edition Bel ± 15.5
visicalc Book. ATARI Edition Bell£15.55
Introduction to Microprocessors Brunner $£ 23.00$
Programming your APPLE II Computer Bryan $£ 9.25$
Microprocessor Interfacing Carr $£ 7.70$
Microcomputer Interfacing Handbook A/D \& D/A Carr 69.50
Musical Applications of Microprocessors Chamberlain £28.85Microcomputers DirksMicracomputers DirksonAPPLE Personal Computer for Beginners Dunn$+9.3$Microcomputers/Microcomputers - An Intro Gioone
Troubleshooting Microprocessors and Digital Logic Goodman £9.25

Getting Acquainted with your VIC 20 Hartnell
8.50
Getting Acquainted with your 2×81 Hartnellet your BBC Micro Teach you to program HartnellProgramming your $2 X$ Spectrum Hartnell

The $2 X$ Spectrum Explored HartnellThe 2X Spectrum Explored Hartnell5850How to Dasign, Build and Program your own working ComputerHints and Tips for the 2X81 HewsonWhat to do when you get your hand on a Microcomputer Holtzman34 More Tested Ready to Run Game Programs in BASIC Horn
Microcomputer Builders Bible Johnson
Digital Circuits and Microcomputers Johnson
PASCAL for Students Kemp
The C - Programming Language Kernighan
COBOL Jackson
The 7×81 Companion Maunder
Guide to Good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nicholas
Exploring the World of the Personal Computer Nilles
Microprocessor Circuits Vol. 1. Fundamentals and Microcontrollers Noll

- Beginner's Guide to Microprocessors Parr
Aicrocomputer Based Design Peatman£11.30
Digital Hardwara Design Peatman 99.80BBC Micro Reavealed Ruston
Handhook of Advanced Robotics Safford f14.45
bot Things to do with your own personal computer Sawusch £8.50 $£ 7.15$
Microprocessor Applications Spectrum Stewar
Microprocessor Applications Spectrum Stewar
Handhook of Microprocessor Design and Applications Stou 37.40
Programming the PET/CBM Wes 17.80
An Introduction to Microcomputer Technology Williamson 58.20
Computer Peripherals that you can build WolteMicroprocessors and Microcomputers for Engineering Students and Terni-
cians Wooland 67.10

REFERENCE BOOKS

- Elactronic Engineers' Handbook Fink	
Electronic Designers' Handbook Giacoletto	$\mathbf{£ 5 6 . 4 5}$
Ilustrated Distionary of Microcomputer Technology Hordeski	$\mathbf{£ 5 9 . 5 5}$
Handbook for Electronic Engineering Technicians Kauffman	$\mathbf{£ 8 . 4 5}$
Handbook of Electronic Calculators Kauffman	$\mathbf{£ 3 5 . 5 0}$
Modern Electronic Circuit Reference Manual Marcus	$\mathbf{£ 4 4 . 0 0}$
International Transistor Selector Towers	$\mathbf{£ 1 0 . 7 0}$
International Microprocessor Selector Towers	$\mathbf{£ 1 6 . 0 0}$
International Digital IC Selector Towers	$\mathbf{£ 1 0 . 9 5}$
International Op Amp Linear IC Selector Towers	$\mathbf{£ 8 . 5 0}$
Illustrated Dictionary of Electronics Turner	$\mathbf{£ 1 2 . 9 5}$

VIDEO

Servicing Home Video Cassette Recorders Hobbs

Complete Handhook of Videocassette Recorders KybettTheory and Servicing of Videocassette Recorders McGinty
£12.95
Beginner's Guide to Video Matthewson
Video Recording: Theory and Practice Robinson
Video Handhook Van Wezel
Video Techniques White
E21. 90
lease send me the books indicated. I enclose cheque/postal order for f. Prices include postage and packing I wish to pay by Accoss/Barclaycard. Please debit my account.
\square

\qquad
\qquad
Address

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Plotting Brother

Brother have introduced a plotter/printer which not only functions as a portable typewriter and printing calculator but will also draw graphs. The BP30 Graph Writer features three type sizes, four colours, a correction buffer with a fifteen-character LCD display and is expected to sell for just under $\mathbf{£ 1 8 0}$ inclusive.

The BP30 is essentially a plotter which uses miniature pens to 'draw' its characters. Four pens, red, green, blue and black, are
held in a circular carrier which rotates to select the desired colour. The carrier moves along two parallel bars to provide horizontal movement while the roller moves the paper up and down to provide vertical movement. It is because it draws in this way rather than stamping pre-formed characters as most typewriters do that the BP30 is able to produce three different type sizes, micro, normal and jumbo, and can even print vertically up and down the page as well as across it in the normal way.
Four buttons move the pen carrier and the paper roller up,
down, left and right to select the starting position and another button provides a choice of four different line spacings between text. An LCD display above the keyboard shows the user which line spacing, type size, print direction (horizontal or vertical) and mode have been selected and whether capital shift has been engaged or not, and also displays the last fifteen characters to be entered.

The BP30 has three text modes plus the graph mode. In Non Print mode no printing takes place and the machine can be used as a fourfunction calculator, the results appearing on the display. In Direct Print mode text is printed as it is entered on the keyboard. In Correction Print mode, the fifteencharacter buffer is filled before anything is transferred to the paper, and errors spotted in the display can be corrected before printing using a cursor and insert and delete keys.
When Graph is selected, the display flashes up mesages inviting you to choose a graph type and then enter the appropriate data. Eight graph options are offered including shaded and unshaded pie charts and bar charts and single or multiple variable sets on bar charts and line graphs, and up to twelve variables can be displayed on each. When the data has been entered, a test facility allows the user to check the position of the complete graph and if necessary alter it before any marks are made on the paper. The machine automatically calculates percentages and angles, etc from the data given and presents the
results in several colours.
ETI has had a BP30 on trial for the last month or so and has had enormous fun putting it through its paces. The most common complaint is that so potetnially versatile a machine should surely be equipped with an interface to allow it to be used as a computer printer. Brother were rather cagey about this at the press launch but hinted that an interfaceable version might be offered if there were sufficient demand. The machine is slower thian conventional tvoewriters as one might expect of a plotter, but nonetheless managed to keep up with the fastest of us in all except the largest of its three type sizes. Since the jumbo size is unlikely to be used much except for headings and the like, this should not cause problems. The BP30 cannot cope with paper of varying thickness and should not therefore be used on envelopes, but otherwise worked well on all that we tried it on and produced a pleasing end result. The only real shortcoming we found was that the pens did not write well on greasy surfaces - we had to handle paper with care before inserting it because the BP30 would often fail to print over areas which had been in contact with fingers. A little more development work on the pens themselves would not go amiss.

The BP30 measures 337 xs $266 \times$ 67 mm and weighs 2.7 kg including batteries. A mains adaptor is available as an extra. It will be available from a number of high street stores and the recommended price is $\mathbf{£ 1 7 9 . 9 5}$ including VAT.

Banshee Siren

n our September issue we featured a versatile alarm system which we called the 'ETI BANSHEEE ALARM".
A. P. Besson of Hove, Sussex, have pointed out that they are the owners of the registered Trade Mark "BANSHEE" which they use on their range of electronic alarm sounders.

Obviously we intended no confusion by our article and have agreed to draw to our readers' attention the rights of A. P. Besson in the registered Trade Mark "BANSHEE". The company points out to us that although their product is intended mainly for use by the Fire and Security Industry, it is perfectly suitable for use by amateurs and can be pruchased directly from themselves.

If any reader is interested they should contact Miss Jane Squires at A. P. Besson, St. Josephs Close, Hove, East Sussex BN3 7EZ, tel 0273-722651.

An Interesting Case?

f you've got a problem with moisture, petrol or some other unwelcome liquid getting at a piece of electronics, then a new range of boxes from Boss Industrial Mouldings could be the solution (sorry!). They now offer four sizes of cases, from 40 by 52 by 75 mm to 80 by 120 by 220 mm , which incorporate an oil and petrol resistant neoprene gasket seal.

Also pictured are the new cases which include internal PCB supports, but these are not waterproof. For more information and sales contact Boss Industrial Mouldings, James Carter Road, Mildenhall, Suffolk IP28 7DE, tel 0638 716101. Incidentally, Boss say that most of their products are available in small order quantities through their sister company, Bimsales; any that aren't available through Bimsales, Boss will supply themselves direct to the public.

Tolerant Buffers

Monolithic Memories have introduced four new eightbit buffers which are specifically designed for use where system noise is a problem. The buffers all have Schmitt-trigger inputs to improve their noise immunity and the manufacturers claim that no other buffers on the market have this feature.

The SN54/74DS310, SN54/ 75S340, SN54/74S341 and SN54/ 74S344 all possess tri-state outputs, low current PNP inputs to reduce
loading and are pin-compatible with the SN54/72S210/240/241/ 244 series. Operating on a five volt supply, the ' $\$ 310$ and ' $\$ 340$ have a maximum data to output delay of $15 n s$ and a worst-case current demand with outputs high of 80 $\mathrm{mA}, 50 \mathrm{~mA}$ typical, while the 'S340 and 'S344 have a maximum delay of 22 ns and a worst case demand of $130 \mathrm{~mA}, \mathbf{8 0} \mathbf{~ m A}$ typical. Power dissipation for the two groups of devices is $\mathbf{2 5 0 ~ m W}$ and $\mathbf{4 0 0} \mathbf{~ m W}$ respectively.

The new buffers are available in 20-pin skinnydip plastic and ceramic packages and are marketed by Microlog Ltd, 1st floor, Elizabeth House, Duke Street, Woking, Surrey GU21 5BA, tel 04862-66771.

Stereo TV Sound

n our March issue we reported plans by the BBC to make experimental television broadcasts using digitally-encoded stereo sound. Initial experiments using the system, which employs a digitally modulated second sound carrier, had already been made using the Wenvoe transmitter in South Wales, and the next stage was to be full transmission from the Crystal Palace transmitter to test the compatibility of the system with existing monophonic television receivers. The BBC have now told us that such a transmission took place on May 24th when a pop concert was broadcast after official closedown. The programme consisted of an analogue
video recording previously used for a simulteneous television and stereo radio transmission, and the associated digital sound recording was replayed into the stereo transmission system without being converted into analogue form. The BBC believe that this was the first 'all digital' transmission of stereo television sound and say that they are now confident that a digital system is the best way to obtain stereo from terrestrial transmitters.
Consultation with the IBA, the home office and industry aimed at establishing a standard UK specification is now well under way and an early agreement is anticipated. Meanwhile, the BBC plan to further test the sysxtem by making occasional broadcasts during normal programme hours.

BBC Engineering Information Department, Broadcasting House, London W1A 1AA, tel 01-927 5432.

Buffered Delay Lines

shcroft Components Ltd have announced the RHT series of buffered (active) delay lines. These lumped constant devices incorporate Schottky TTL logic elements (equivalent to 74SO4) in the input and output terminals.
The modules can be used as TTL elements with precisely fixed delay time. Any change of delay time due to temperature variations is minimised by using a delay line whose coefficient is complementary to that of the IC.
The seven types available cover total delay times from 20 nanoseconds to 250 nanoseconds with corresponding delay times per tap of $\mathbf{4 n s}$ to 50 ns and rise times of 3 or

4 ns. All have 5 outputs available to the user.

Significant PCB area savings may be achieved with the RHT series. Their used can considerably simplify the design of digital circuitry and provide highly accurate pulse timing. For further details contact Ashcroft Components Ltd, 28 Somerford Road, Cirencester, Gloucestershire GL7 1TW, tel 0285-67756.

TurboLeds Are Here

eneral Instrument Lamps have been appointed sole UK and European agent for the new range of TurboLeds. These multichip solid state lamps are available in wire terminal form or with midget flange, miniature bayonet or miniature screw caps as plug in replacements for incandescent lamps. Red, Yellow and Green versions in $6 \mathrm{~V}, 12 \mathrm{~V}$ and 24 V ratings can
be supplied and as a bridge rectifier is included in the lamps, they can be operated from AC or DC supplies.
A major feature of TurboLeds is the metal shroud which acts both as a reflector and a heat radiator to avoid excessive chip temperatures which can cause the premature failure of high light output LEDs. Full details on the complete range of TurboLeds are available from General Instrument Lamps Ltd, Beetons Way, Bury St Edmunds, Suffolk IP32 6RA, tel 0284-62411.

When Is 32 Bits 32 Bits?

0n page 23 we take a look at Motorola's 68020 32-bit microprocessor. What is beyond dispute is that this is a true 32-bit microprocessor, with 32-bit architecture and 32-bit data and address busses. On this basis, and the fact that pre-production samples were already in wide circulation with equipment manufacturers, we have accepted Motorola's claim that it is the first true 32-bit microprocessor.

However, the story doesn't end there. A number of other manufacturers have 'true 32-bit' microprocessors, and these include Nat Semi, NCR and AT\&T. Exactly who was the first and what 'true 32 bit' means will doubtless be cause for much argument amongst semi-conductor giants. And who can blame them, with a market worth an estimated $\$ 3.3$ billion at stake?

We here at ETI will be keeping a watchful eye on this squabble, and will keep our readers informed. Meanwhile, our advice to those of you involved in this trade is to keep your heads down!

Looking for some education? Then you might do worse than contact ICS Publishing Company (UK) Ltd who organise a number of professional technical courses. ICS Publishing Company (UK) Ltd, 3 Swan Court, Leatherhead, Surrey KT22 8AD, tel 0372-379211.

- Things still aren't looking too bright for the electrical industry. Business information company Dun \& Bradstreet Ltd tell us that company liquidations in the industry during the first six months of 1984 totalled 388 , a 2.9% increase over the figure for the same period last year. Bankruptcies among firms, partnerships and
individuals totalled 62, a 58.9% inrease over the figure for the first half of 1983 but no worse than the figure for the latter half of the year.

Tele-Production Tools have introduced a solution which can be used to retrieve components from potted assemblies. Called Stironol, the solution disintegrates epoxy and polyester resins but will not attack most metals in normal use and is also non-toxic and nonflammable. For details contact Tele-Production Tools Ltd, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SSO 9NW, tel 0702352719.

FOMPUYMR TARH:OUSTH

 CHIF ALADDIT'S' CAVE OF COMPUEER AED ELECTROMIC EQUIPIIEET

 CHIF ALADDIT'S' CAVE OF COMPUEER AED ELECTROMIC EQUIPIIEET}

HARD DISK DRIVES

foult fro
 DEC RKOS, NOVA. TEXAS Compatible

Exont load. Free stand or rack moun
Exchangeabie type ivia lid removal) E550.0.
me302s PSU unit for 2 drives DIABLO/DRE 44-4000NB $5+5$ ex stock from 175.00 1000's of spares for \$30. 4000. 3200. HAWK Efts.e0 Plus in house repair, refurbishing service.

EX STOCK DITBGRAFLD CITCUTS OVER 100,000 TTEMS INCLUDING
Intel D8085AH-2 $\mathbf{~} 25.00$ D8271 $\mathbf{5 6 5 . 0 0}$
D8202 D8257-5 8255 D3002
2732 EPROM SPECIAL fully guaranteed
450ns $£ 3.75$, 350 ns §4.00, $300 \mathrm{~ns} \$ 4.50$

HOT LINE DATA BASE

DISIET ©

THE ORIGINAL FREE OF CHARGE dial up data bas 1000's of stock items and one oH bargains ON LINE NOW-300 baud, full duplex CCITT tones. 8 bit word. по раніч 01-679 1888

STILL IN STOCK

FP1500 Heavy Duty 25 cps daisy wheel

 Brand New at $£ 499.00$
COMPUTER 'CAB

All in one quality computer
mode PSU, Mains filtering, and iwin fan cooling Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fulty screened and will deliver a
massive $+5 v D C$ at 17 amps $+15 v D C$ at 1 amp and $-15 v$ massive $+5 v D C$ at $17 \mathrm{amps},+15 v D C$ at 1 amp and -1
$D C$ at 5 amps. The complete unit is fully enclosed with emovable top lid, filtering. trip switch, 'Power' and 'Run LEDs mounted on Ali front panel, rear cable entries, etc etc. Units are in good but used condition-supplied for 240 v operation complete with full circuit and tech. man Give your systom that professional finish for only
$£ 49.95+$ Carr. Dim $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high £49.95 + Carr. Dim $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high Useable area $16^{\prime \prime} w_{10}^{10.5 " h} 11.5^{\prime \prime} \alpha^{\prime}$
Also available LESS PSU, with FANS etc. Internal dim Also available LESS PSU, with FANS etc. Internal dim
$19^{\prime \prime} \mathrm{w} .16^{\prime \prime} \mathrm{d} .10 .5^{\prime} \mathrm{h}$. Ef 9.95 . Carriage 8 insurance $£ 9.50$.
C00LIG PATB
 HN NEW Wodesosona =£250 ETris soxuor Dim. $92 \times 92 \times 25 \mathrm{~mm}$. tinger fuiar ce ob very quiel Tunning 240 voperation. WEW QUHLER 60.11.22. 8.16 .15 DC micro minialure reversible fan. Uses a brushies
servo motor tor extremeth tigh aif servo motor for extremely high air flow
almost sitent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$. hr
Current cost 32.00 OUR PAICE ONLY £12.05 complete with data.
MUFFIN-CENTAUA sinde. MUFFIN-CENTAUA standarg $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ Ian supplied tested EX EQUIPMENT $240 v$ at £6.25 or 110 v at $£ 4.95$ or BRAND NEW 240 at $£ 10.50 .1000$'s of other tans Ex Stock
Call lor Details. Post \& Packing on all fans

DJAL 5" DISK DRIVES

 major computer company, comprising COMPATIBLEI or Shugart FULLY BB compact. attractivery styled grey $A B S$ structured case with internal switched mode PSU. The PSU was intended to drive both drives and an intelligent 280 controlle with over 70 ic's. The controller has been removed feaving ample space and current on the $+,-5,+12$ and -12 supply for all BRAND NEW condition with cable for BBC micro. Ex Stock at only $£ 25900$

GE TERMIPRINTER

printer terminals enables us to ofter y

 prese quality 30 cos printers at a SUPER LOW-PRICE against therr original cost ofover E 1000 . Unit comprises of over \& 1000. Unit comprises of tull QWERTY electronic keyboard and printer mech with
print tace similar to correspondence quality typewriter. Variable forms tractor unit
enables full width enables full width - up to 13.5°. 120 column paper, upper-lower case, standard RS232
serial interiace internal vertical and serial interiace, internal vertical and
horizontal tab settings, standard sibbon adjustable baud rates, quiet operation plus
many other features. Supplied complete many other features. Supplied complete
with manual Guaranteed working EI $m . \infty$ untested efs. ω. optional floor stand E 12.50
Cars \& ins E 10 ol

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to most stringent spec and designed to operat tor 24 hrs per day Units are made to the
CCirT tone spec. With RS 232 , $1 / 0$ levels via a 25 way ' D skt. Units are sold in a tested may be required tor connection to $P O$ lines MODEM 20-1 Compact unil lor use with
MICRONET, PRESTEL Or TELECOM GOL 1200 baud recerve Data i/o via AS $232{ }^{\circ} \mathrm{D}$. Socket Guaranleed working with data E49.95 receive 1200 baud :lansmit E 130.00 THANSDATA 307 A 300 baud acoustic Coupler RS232 i/o £95.00 brand new.C NEW OSL2123 Muiti Standard modem selectable V2
V 23
$1200-75$
full duplex Of
Of $1200 ~ 75-1200, ~$ duplex modes. Full auto answer via modem or CPU. LED status indicators. CALL of ANS modes Switchable CCITr or BELL 1038 202. Housed in ABS case size only $2.5^{\prime \prime} \times 8.5^{\prime \prime}$
$\times 9^{\prime}$ E286.00 + VAT $\times 9{ }^{2}$ E288.00 + VA
For further data or
Fodeme contect sales onice.

SUPER PRINTER SCOOP

 BRAND CENTRONICS 739-2NEVEA Ee reveoalea Standard a cice that will paraliet intertace for direct connection to BBC, ST pin addressable graphics and 4 type fonts puit HIGH DEFINITION internai PROPORTIONAL \&PACED

WODE for WORD PPOCESSOR columns, single shord PFOCESSOR applications 80-132 | much more. Available ONLY Srom of roll paper handing plus |
| :--- |
| ELETRONICS | at the ridiculous price of owty E/PR. W + VAT Complete with Options. Intertace cable (specity) lor BAC ORIC. ORAGON Or Ctions. Interace cabie especity 1 IO BBC. ORHC. 23.50 each BBC graphics screen dump utility program $£ 8.60$.

SPECIAL 300 BAUD MODEM OFFER
 Another GIGANTIC purchase of these EX BRITISH TELECOM, BRAND

 NEW or little used 28 data modems allows US to make the FINAL REDUCTION, and for YOU to join the exciting world of data communications at an UNHEARD OF PRICE OF ONLY E29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 28 has all the standard requirements for data base, business or hobby communications. All this and more!- 300 daud full duplex
- Colt or cimor - Supplied
*Wy CALL, ANSWER and AUTO modes now onLYE Built in test switching - Modular construction E29.95 - 1 year tuill guarantee - just 2 wires to comms. line

$$
\text { Order now - while stocks last. Carriage and Ins. } £ 10.00
$$

8" 19MB WINCHESTER DISK DRIVE

Made in the UK by a subsidiary of the World's largest disk drive manufacturer. This BRAND NEW "end of line" unit offers an outstanding opportunity to add MASSIVE 19 mb of storage to your computer system. Superbly constructed
 ree cavily. All drive functions are controlled by microprocessor electronics using an INTEL 8035 cpu and TTL support logic. Data to the outside world is via two comprehensive 8 bit TTL level bi directional data busses with full statu eporting for ease of interfacing. Many features such as Av. seek time 35 ms , 512 bytes per sector, $+24,-24$ and $+5 \vee 0 C$ supply, plug in card system, and compact size of approx. $19 \mathrm{~cm} \mathrm{H} \times 21 \mathrm{~cm} \mathrm{~W}$ and 42 cm D etc, etc, make this item real snip
Units are BRAND NEW and BOXED and sold at a FRACTION of original cost - hence unguaranteed. Complete with 150 page manual, circuits and applications guide.

ONLY £225.00 Cariage $\varepsilon 10.00$ Suitable power supply unit - sold ONLY with drive $£ 39.95$.

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows a great OWERTY, full travel.
chassis keyboard offer at fractions of therr onginal costs. ALPHAMERIC $204 / 60$ tull ASC 1160 key , upper, lower + control key. parallel TTL Output plus sirobe. Dim $12^{\prime \prime} \times 6^{\prime \prime}+58-12$ DC E39. 50 .
DEC LA34 Uncoded keyboard with 67 quality, GOLO, normaliy open switches on standard X, Y matrix. Complete with 3 LED indicators \& i/o cable - ideal micro
conversions etc. Dcb DIM $15^{\prime \prime} \times 4.5^{\prime \prime} \mathbf{E 2 4 . 9}$ Carriage on keyboards $\$ 3.00$

ELECTRONIC COMPONENTS
Due to our massive bulk purchasing programme which enables us to tring you the best possible bargains, we have thousands of I.C.s. Transistors. Relays, Cap's. P.C.S. s. Sub-3ssembties, IFETIME Thousands of compe packing all the se tems inlo the $B A R G A / N$ PARC 2.5 kls f 4.25 what you pay. Unbeatable 10kls $£ 10.25$ + pp $£ 1.25$

$$
5 \mathrm{kls} E 5.90+\mathrm{E} 1.80 \text { שC, }
$$

TT FRTGBS PRTS VAT

VIDEO MONTHORS

At a price YoU can afford our range of EX
EQUIPMENT Video monitors competition!! All are for 240 V working with standard composite video input. Units are pre tested and set for up 1080 col use on
BBC micro. Even where MiNOR screen BBC micro. Even where MINOR screen
burns MAY exist - normal data displays unaffected. 1000's SOLD TO DATE
" Hitachivery compaci ully cased dim.$21 \mathrm{~cm} \mathrm{H} \times 21$
white

12" KGM 320-321, high bandwidth input. will display up to 132 columns $\times 25$ lines. Housed in attractive fully enclosed brushed alloy case. B/W5 only $£ 32.95$
GREEN screen $£ 39.95$
24" KGM large screen black \& white monitor fully enclosed in light alloy case. deal schosis shops, clubs etc.
ONLY 55.00
14"'BRAND NEW Novex COLOUR type NC1414.CL. Many exacting features suc as RGB TL and composite video input, GREEN TEXT key, internal speaker and maiching colours. Fuliy guaranteed. WLY E199.00

SEMICONDUCTOR 'GRAB BAGS'
 \section*{Mixed Semis amazing value content}

include transistors digital, linear, I. C's triacs
diodes, bridge recs. etc. elc. All devices diodes, bridge recs, etc. etc. All devices
guaranteed brand new full spec. with manu guaranteed brand new full spec. with m
facturer's markings, fully guaranteed facturer's markings. full
$50+£ 8.93100+E S .15$.
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series "mostly TTL" grab bags at a price which or three chips in the bag would nnormatly cost to buy. Fully guaranteed all I.C.'s full spec $100+\boldsymbol{f 6 . 9 0} 200+£ 12.30300+£ 19.50$

DEC CORNER

BA11-MB 3.5" Box, PSU, LTC DH11-AD 1
interface
DLV11.J4 \times EIA interface $\quad \mathbf{£ 2 1 0 0 . 0 0}$ $\begin{array}{ll}\text { DUP11 Sych. Serial data i/o } & £ 650.00 \\ \text { DZ11-B } & \text { \& line RS232 }\end{array}$ DZ11-B 8 line RS232 mux board $£ 650.00$ LA36 Decwriter ElA or 20 ma loop $£ 270.00$
LAXX-NW LA180 RS232 serial intertace and buffer option
$£ 130.00$ LAX34-AL LA34 tractor feed MS11-JP Unibus 32 kb Ram MS11-LB Unibus 128 kb Ram MSC4804 Qbus (Equiv MSV11 PDP11/05 Cpu, Ram, i/o, etc. PDP1 1/40 Cpu, 124 k MMU
RT11 ver. 3 B documentation kit RT11 ver. 38 documentation
RKO5-J 2.5 Mb disk drives MIBE PDP 8 Bootstrap option VT50 VDU and Keyboard $£ 85.00$ $£ 80.00$
$£ 450.00$ $£ 450.00$
$\mathbf{E 8 5 0 . 0 0}$
$£ 499.00$ $£ 450.00$
1850.00 1850.00
670.00
6850.00 $£ 650.00$ $\varepsilon 175.00$
$\varepsilon 75.00$ $\varepsilon 75.00$

1000's of EX STOCK spares for DEC PDP8, PDP8A, PDP1 1 systems

GFFLA
 ELECTRAHES

Fastest 32 x 8 Bipolar TTL Prom?

M onolithic Memories have introduced what they claim to be the industry's fastest 32×8 bipolar, TTL programmable readonly memory (PROM) device, the 53/63S081A.
The PROM has a guaranteed access time of 15 ns and is $\mathbf{4 0 \%}$ faster than present 32×8 bipolar TTL PROMs. Power supply current of the 635081 A is 125 mA maximum and the output drive capability is

16 mA .

Special on-chip circuitry and TiW fuse links in the 63S081A provided for pre-programming and testing, ensuring high reliability with programming yields of greater than $\mathbf{9 8} \%$. Other features include PNP inputs for low input current, three-state outputs and full Schottky clamping. The devices are available in both plastic and ceramic 16 -pin, dual-in-line packages.

Further details on the 635018A 32×8 TTLPROM are available from Monolithic Memories Limited, Monolithic House, 1 Queens Road, Farnborough, Hants GU14 6DJ, tel: 0252-517431.

30V-out Function Generator

The new Jupiter 500 Function Generator is claimed to be a rugged, mains-operated instrument offering features unique in its price range. Both amplitude and frequency are fully programmable by an external voltage and an exceptionally high output of up to 30 V peak-to-peak is available.

The frequency range of the Jupiter 500 is 0.1 Hz to 500 kHz in 7 switched decade ranges with fine frequency control. Sine, square, triangle and TTL (30 loads) waveforms are selectable and an adjustable DC offset up to 15 V can be applied to the output.

The Jupiter 500 is supplied with a comprehensive instruction manual and a spare fuse and sells in the UK at £110.00 (+ VAT). An illustrated colour data sheet is available from: Black Star Limited, 9A Crown Street, St Ives, Huntingdon, Cambs PE17 4EB, tel 0480-62440.

Op-amp SOA Restrictions Eased?

Teledyne Philbrick say that they've alleviated the safe operating area restrictions and secondary breakdown problems suffered by virtually all power opamps with the introduction of their TP1463. The 1463 is the third in a series of high-speed FET input power op-amps, and incorporates a class A-B complementory VMOS output stage which is what is
claimed to make the difference.
The 1463 comes in an eight-pin TO3 package, can operate on supplies of +15 V to +40 V and can supply up to 1A (minimum). The slew rate is $80 \mathrm{~V} / \mathrm{us}$ despite the internal compensation for unity gain stability, and the gain-bandwidth product is 7.5 MHz .
Potential applications for the device include video yoke drivers, distribution amplifiers, CRT displays and gyro and oscillator drives for inductive and capacitive loads. A deatiled preliminary data sheet is available from MCP Electronics Ltd, 38 Rosemont Road, Alperton, Wembley, Middlesex HA0 4PE, tel 01-902 6146.

Hi-fi Mains Transformers

That every component in an audio amplifier is capable of degrading the performance is without doubt. However, it is debatable just how far one can go in the other direction - selecting 'hi-fi' components for use throughout the amplifier, not just for the few 'critical' components.
The transformer manufacturers Avel linburg Lid have entered the fray with the announcement of a new range of toroidal high-power transformers especially made for very high quality audio. The range spans power outputs of between 500VA and 2 kVA and dual outputs of 60 to 70 V RMS can be ordered. They can supply
transformers with two sets of secondaries, as a compromise between using two transformers for a stereo amplifier and using just one transformer to supply both channels.
Avel-Linburg don't say what it is about their transformers that makes them particularly suitable for hi-fi, although they do claim that they can tailor transformers to suit designers' electrical and mechanical constraints, including the lowest possible radiated noise figures.
We must point out that audioenthusiast readers will be disappointed unless they're small manufacturers - Avel Linburg make it clear that these transformers are available only as 'relatively short production runs', and not as one-offs. Avel Linburg Ltd, South Ockendon, Essex RM15 5TD, tel 0708-853444.

Do you need an expensive instrument, but only for a short time? Then you could hire rather than buy. Microlease PLC of Forbes House, Whitefriars Estate, Tudor Road, Harrow, Middlesex HA3 5SS (tel 01-427 8822) will lease for as short a period as one week, and offer many instruments including the new Keithley 175 autoranging data-logging DMM with IEEE interface.

The latest data books from Hitachi can now be purchased directly from Hitachi Electronic Components (UK) Ltd, Hitec House, 221/225 Station Road, Harrow, Middlesex HA1 2XL, tel 01-861 1414. The most recent additions to the data books available are the 1984 editions of the microprocessor and memory data books, details of which appear in the new brochure from Hitachi.

The Decorative Lighting Association have issued a warning about an imported nightlight for children which they belive to be potentially dangerous. The Glowlight takes the form of an electrical plug which fits directly into a 13A socket and then gives off light, but there have been cases where the plastic cover has become detached and exposed the live mains connections. Anyone who has such a
nightlight and has any doubts about its safety should contact the Director of the Assocation on 05884658.

Coutant Electronics Limited, Kingsley Avenue, Ilfracombe, Devon EX34 8ES (tel 0271-63781) have published a short-form catalogue of switched mode, hybrid, linear, DC-input and lab PSUs.

Handy New Iron

Anew miniature soldering iron, the Oryx M3, has been introduced by Greenwood Electronics. Developed for light production applications but equally suited to the hobbyist market, it is rated at 17 watts and has a normal operating temperature of $380^{\circ} \mathrm{C}$. It has been ergonomically designed
and is perfectly balanced to give the correct 'feel' to experienced operators.
Supplied complete with a replaceable push-on tip and stainless steel storage hook, this new Oryx iron is available in 12V, 110V and $210 / 240 \mathrm{~V}$ versions and the 12 volt iron is fitted with a cigarlighter plug for mobile work. Greenwood Electronics, Portman Road, Reading, Berks. RG3 1NE, tel 0734-595844.

New
 Oscilloscopes

evell Electronics have released details of two new dual channel oscilloscopes that they supply. The HM204-2 has a bandwidth of DC to $20 \mathrm{MHz}(-3 \mathrm{~dB})$ and the HM605 (pictured) has a bandwidth of DC to $60 \mathrm{MHz}(-3 \mathrm{~dB})$.
These multi-function oscilloscopes have sensitivities of $1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ with a signal delay line built in so that the trigger edge of a waveform can be viewed. A variable sweep delay from 100 ns to 1 is enables detailed
signal analysis by expanding any section of a waveform. The sweep range is variable from $10 \mathrm{~ns} / \mathrm{cm}$ (including $\mathbf{x 1 0}$ magnification) to $1.25 \mathrm{~s} / \mathrm{cm}$ for HM204-2 and from $\mathbf{5 n s} / \mathrm{cm}$ to $\mathbf{2 . 5 s} / \mathrm{cm}$ for HM605.

Both oscilloscopes have a built in component tester for checking electronic components individually or in circuit and a $1 \mathbf{k H z} / 1 \mathrm{MHz}$ square wave calibrator for probe compensation and system checks. A Z-modulation input is also provided.

Levell offer free delivery in the UK and discounts based on mixed total order value. Levell Electronics Ltd, Moxon Street, Barnet, Herts. EN5 5SD, tel 01-449 5028.

Hullabaloo!

Next time you go to the loo in central London, you could attract some attention! Let us assure readers that this is extremely unlikely to occur, but if one of the new-fangled automatic public conveniences goes wrong with you inside, it will automatically summon a repair man.
This is because the auto-loo has a Dynamic Logic D1230 Microlog located in its technical compartment. This item will detect any faults, and then report the fault via

Semiconductor Supplies have issued a sixteen page catalogue and price list which covers their range of cases, racks, connectors, wiring systems, hand tools, PCB accessories etc. The minimum order charge is $£ 2.00$ and copies of the catalogue are obtainable upon request from Semiconductor Supplies International Lid, Dawson House, 128-130 Carshalton Road, Sutton, Surrey SM1 4RS, tel $01-$ 6431126

Bradford and Ilkley Community College is again running a course for those wishing to take the Radio Amateurs Examination. The course begins in September, enrolment will take place on September 11th, and in addition to the basic course there are also classes for existing
the ordinary telephone network to a master station. The master station logs the call from this and other loos in the area, and presents information to operators in plain English. The master station is also capable, if required, of ringing up the service engineer directly, and, with additional equipment installed, it can describe the fault and location to the engineer.
Let us assure you that if you're sitting in an auto-loo with the door jammed and waiting for the engineer to arrive, it should take the engineer no more than four hours to reach you!
'B' licence holders and for licensees who wish to gain a more indepth knowledge of radio topics. Contact P. Nurse, Department of Electrical \& Electronic Engineering, Bradford \& IIkley Community College, Great Horton Road, Bradford, West Yorkshire BD7 1AY, tel 0274-753111.

They're probably not the first to launch a peripheral for the dratted thing, but they're the first we've heard of: Cambridge Systems Technology now make a Centronics interface for the muchmaligned Sinclair QL computer. Contact Cambridge Systems Technology, 30 Regent Street, Cambridge CB2 1DB, tel 0223323302.

Eagle Test Meter

F agle International have E launched a pocket size $31 / 2$ digit LCD multimeter, model TS 350, which is available through all leading electrical wholesalers at a trade price of $£ 21.95$ (excluding VAT). Pocket size, budget priced analogue multimeters have long been popular and Eagle now feel the time is right to offer a similarly convenient instrument which can offer digital sensitivity and
accuracy.
The TS 350 has 12 mm LCD display, auto zeroing and polarity reversal. There are 13 measuring ranges including $1,000 \mathrm{VDC}, 500 \mathrm{~V}$ AC and 200 mA DC. Mode and range selection is by means of two simple slide switches.

The meter comes complete with shrouded, finger stop type safety probe and as with all Eagle instruments, it is covered by a two year guarantee. Eagle International, Precision Centre, Heather Park Drive, Wembley, Middlesex, HAO 1SU, tel 01-902 8832.

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System OFFICIAL DEALER

ACORN COMPUTER SYSTEMS:	EBC FIRMWARE:
BBC Model B Special offer £320 (a)	1.2 Operating System Rom $£ 7.50$ (d)
BBC Model B + Econet £389 (a)	BASIC II ROM £22.50 (d)
BBC Model B + DFS £409 (a)	VIEW Word Processor Rom £48.00 (c)
BBC Model B + DFS + Econet £450 (a)	WordWise Word Processor Rom
	£34.00 (d)
A to B Upgrade Kit £75 (c)	BCPL ROM/Dise \qquad £86.00 (c)
DFS Kit .. $\mathbf{8 9 5}$ (c)	Utility ROMS:
Econet Kit £45 (c)	¢28 ea (d)
Speech Upgrade Kit $£ 47$ (c)	EXMONTTOOLKIT ROM £20 ea (d)
ACORN ADDON PRODUCTS:	Printmaster (FX80)/GraphicsROM
Z80 2nd Processor £265 (a)	£28 en (d)
6502 2nd Processor $£ 175$ (b)	ULTRACALC spreadsheet ROM $\mathbf{8 6 9}$ ea (c)
Teletext Adaptor £190 (b)	COMMUNICATION ROMS:
IEEE Interface £282 (b)	Termi Emulator £28 (d)
Prestel Adaptor $£ 99$ (b)	Communicator $£ 59$ (d)
RH Light pen $£ 39.50$ (c)	Commstar £29 (d)

For detailed specification on any of the BBC Firmware/Peripherals iisted here or information on our complete range please write to us.

DISC DRIVES

These drives, fitted with high quatity slim tine Japanese mechanisms are supplied in attractive cases with BBC matching colour and come complete with data and power leads, manual and formatting disc. The $40 / 80 \mathrm{~T}$ switching is supplied as standard on TEAC 80 t drives. Single drives are supplied with or without power supply. All dual drives are supplied with integral switch mode power supply. TEAC \& MITSUBISHI drives are compatible for both single and double density operation. These drives can also be used with any other micro with a Shuggart A400 interface.
$1 \times 100 \mathrm{~K}$ TS55A (40T) TEAC.................. $\mathbf{\Sigma 1 2 0}$ (b) C.S55A TEC with PSU $\mathbf{\Sigma 1 3 5}$ (a) $1 \times 200 \mathrm{~K}$ TS55E (40/80T) TEAC $£ 160$ (b) CS55E TEC with PSU $\mathbf{£ 1 7 5}$ (a) $1 \times 400 \mathrm{~K}$ TS55F (40/80T) TEAC............... $£ 198$ (b) CS55F MIT. with PS $2 \times 100 \mathrm{~K}$ TD55A (40T) TEAC with PSU.. £300 (a) $40 / 80 \mathrm{~T}$ Switch Module $2 \times 200 \mathrm{~K}$ TD55E (40180T) TEAC with PSU£390 (a) $3^{\prime \prime}$ Hitachi 100K Drive £30 (c) $\times 400 \mathrm{~K}$ TD55F (40/80T) TEAC with PSU£420 (a) TD55M (80T) Mitsubishi £420 (a)

DISCS \& ACCESSORIES

The 3M discs with a life time warranty provide a reliable and error free performance at economical prices. Floppiclene head cleaning kit is an ideal way to ensure optimum performance of your drives.
3M DISCS in packs of 10
3" Maxell DS Disc 84.50 as (d);
$40 T$ SSDD $£ 16$ (c); 40 T DSDD $£ 22$ (c) $80 \mathrm{TSDD} £ 24$ (c); 80 T DSDD £27 (c); 10 Disc Library Case $£ 1.95$ (c); discs) $₹ 14.50$ (c);
Orive Cables: Single $\mathbf{£ 6 . 5 0}$ Dual $\mathbf{8 8 . 5 0}$ (d); 30/40 Disc Lockable Case $£ 14.50$ (c); 30 Disc Case $\varepsilon 6$ (c);

PRINTERS

Our wide range of printers offer a choice of printer for every requirement at competitive prices. We have the qult EPSON range which sets the industry standards for reliability, flexibility and versatility. The new KAGA TAXAN quality printing we have the BROTHER and JUKI printers. To support our range of printers we also carry a wide range of printer interfaces, accessories and consumables.

EPSON: RX80FT £240 (a); FX80 £325 (a); FX 100 £480 (a) KAGA TAXAN: KP 810 £269 (a): KP910 £369 (a); KROTHER: HR15 £350 (a); EP44 £199 (a) JUKI 6100 £359 (a)
3 Col Graphics Plofter/Work Stn 3 COl
$\mathbf{8} 490$ (a)
8490 (a)
3 Col Gr
3 Col Graphics Plotter only £270 (a)
Grafpad Graphics Tablet £120 (b)

TORCH Z80 PACK

 Rackage - EB75 (a); ZEPPIOO ZBOCP PUIG4K RAMICPN FOM \&

 convert your BBC into an IBM PC. To be avallabie early

ATTENTION

ALL PRICES EXCLUDE VAT

Please add carriage 50 D unless indicated as follow
(a) $£ 8(\mathrm{~b}) £ 2.50(\mathrm{c}) ~ £ 1.50(\mathrm{~d}) £ 1.00$

TIME WARP

for the BBC
A low cost unit with built in battery back up opens uo numerous applications like electronic dairy, display of time \& date, document dating, precise timing and control in scientific experiments. Simply plugs into the user port Send for full details. £29 + £2 p\&p.

SMARTMOUTH The original speech synthesis for the BBC: still the best. Attractively packaged self contained speech synthesiser with buitt in speaker and AUX socket. Allows creation of any English word with ease and economical memory usage. Simply plug into the user port, simple software means no need for ROMs. Supplied with software instructions and demoldevelopment programs..... $£ 37+£ 2 \mathrm{p} \& \mathrm{p}$.

EPROMER II PROGRAMMER

Our current version of the highly popular Eprom pro. grammer is now being enhanced to provide more and
better facifties tor easy programming by the user. The better faceities lor easy programming by the user. The
software will maintain its superiority over all currently available similar programmers. The range of eproms handied has been widened. to include the eproms with lower programming voltage and eproms which can be has been moved to the keyboard. The screen display has been improved to give more information. The screan editing faclifites have also been modified to simplify the data entry.
The new Eprom Programmer will now program 2516, 2532, 2564, 2716. 2732, 2764, 27128 and 2712 "proms, and all but the 27256 in a single pass. supply, and interfaces with the BBC wia the TMHZ bus. it is fully buffered and complies with Acorn protocols. There is no power drain from the computer

ACCESSORIES

EPSON Serial interface: 8143 £35 (b); 8148 with 2K buffer $\ell 50$ (b).
EPSON Paper Roll Hoider $\mathbf{\varepsilon} 17$ (b); FX80 Tractor Attach £37 (b); RXIFX80 Dust Cover $£ 4.50$ (d).
EPSON Ribbons: MX/RX/FX80 £6.50; MX/RX/FX100 $£ 12.50$
(d). ${ }^{\text {JUKI: }}$ Serial Interface $\mathbf{\varepsilon 6 0}$ (a); Tractor Attach. $\mathbf{£ 9}$ (a); Sheet Feeder $£ 199$ (a); Ribbon $£ 2.50$ (a).
BROTHER HR15: Sheet Feed £199; Ribbons - Carbonor Nyion £3; Multistrike £5.50 (d); 2000 Sheets Fanfold with extra fine perf. $9.5^{\prime \prime}$; $£ 13.50 ; 15^{\prime \prime} £ 17.50$ (b).
BBC Parallel Lead $£ 8$; Serial Lead $£ 7$ (d).

PRINTER SHARER \& BUFFER

This printer sharerfbuffer provides a simple way to upgrade a multipie computer system by providing greater utilisation of avallable resources. The buffer offers a storage of 64 K . which will continue accepting data until it is full. The buffer will automatically switch from one computer to next as soon as that computer has dumped all its data. The computer then is avallable for other uses. LED bargarph indicates memory usage. Simple push button control provides supply, E245 (a).

ODEMS
BUZZ BOX Full spec pocket size
Originate \& Answer modes. BT Approved.
Contirms to CCITT V2 ($300 / 300$ Baud
Battery/Mains powered $\mathrm{E65}$ (0). ${ }^{\text {d }}$,
TELEMOD2 Full \& Half duplex operation: BT $^{\text {a }}$
V23 sld: 1200175 or 120
Baud operation, Mains powered £65 (b).
NOR MIRACLES WS 2000 One package
provides almost all intel
cation sta
03/113/108/202, (BT Appr. exp) 3001300,
600/600, 1200775 \& 75/1200 Baud. Mains
powered £ 129 (b).

MONITORS

A choice of high quality RGB and Monochrome monitors is available. The British made MICROVITEC Std/Med/Hi Res RGB monitors which offer a consistent reliable pertornance are also provides a similar performance in 12" screen format. Japanse made SANYO and KAGA Hi Res green screen monltors provide an ideal solution for high clarity 80 column text display. Alt monitors are supplied with a lead suitable for BBC computer at no extra charge.
MICROVITEC 14" RGB
431 Std Res $£ 185$ (a) 1431AP std Res PALAudio $£ 215$ (a); 451 Med Res £295 (a); 1441 Hi Res £ 389 (a),
(a); Plinth for $14^{\prime \prime}$ Monitors $£ 8.50$. KAGA VISION II
Super Hi Res 12" RGB $£ 358$ (a):
Green Screens: KAGA 12G £106 (a); SANYO DM8112CX £89 (a); Swivel Stand for Kaga Green $\mathbf{2 2} .50$ (b);

MODEMS
 SOFTY II

BUZZ BOX Full spec pocket sized with Originate \& Answer modes. BT Approved.
Contirms to CCITT V21 $300 / 300$ Baud Battery/Mains powered 665 (b).
TELEMOD2 Full $\&$ Half duplex Approved: CCITT V23 sId: 1200175 or 1200:1200 Baud operatlon, Mains powered £65 (b).
MINOR MIRACLES WS 2000 cation standards: CGITT V $21 / 23$ BELI

OV ERASERS

UV1T Eraser with built-in timer and mains indicator.
Built-in satety interlock to avoid accidental exposure to the harmful UV rays average erasing time of about 20 mins $£ 59+$ £2p\&p.
UV1 as above but without the timer. £47 + £2 p\&p. ${ }^{\mathbf{8}}$ For Industrial Users, we offer UV140 \& UV141 erasers with handling capacity of 14 eproms built in safety features UV140 E61, UV 141 £79 b\&p $\mathbf{~} 2.50$.

PRODUCTION PROGRAMMER

P8000
P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{~K} \times 8$
bytes rail versions. Simple menu driven operation ensure easy eprom selection and reliable programming in minimum programming times. £695 + £6 carriage.

This low cost Intelligent eprom programmer car
program $2716,2516,2532$ program 2716, 2516, 2532 2732, and with an adaptor
2564 and 2764 . Displays 51i 2564 and 2764 . Displays 51 - has a
 routines. Can be used as ar emulator, cassette interface Softy II £169.00 (b Adaptor for 2764/2564. £25.0

EP8000
This CPU controlled Emulator Programmer is a powerful tool or both Eprom programming and development work. EP8000 can emulate and program all eproms up to 8 K $\times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator $\mathbf{£ 6 9 5}$ (a).

CONNECTOR SYSTEMS

I.D. CONNECTORS

D CONNECTORS

AMPHENOL CONNECTORS	
36-way plug Centronics Parallel Solder 85.25	IDC 85.25
36.way socket Centronics Paraliel	
Solder E 5.50	IDC 55.50
24-way plug IEEE Solder 85	10CE4.75
24-way socket IEEE Solder 85	10CE4.75
PCBE Mtg Skt	
Any Pin 24 way Solder 600p 36 way ZOC 650 p	

RIBBON
CABLE

S 232 JUMPERS			
			50
DIL HEADERS			
			110
		100 p	150p
		2000	225

EURO CONNECTORS DIN 41612

DIN 41612		$0.1{ }^{\prime \prime}$
2×32 way St Pin 230p 275p	2: 6-way (commodore)	
2×32 way Ang Pin 275p 320p	2. (10-way	150p
3×32 way StPin 260p 300p	2×12-way (vic 20)	
3×32 way Ang Pin 375p 400p	2×18-way	
IDC Skt A + B 275p	2×23-way (2×81) 2×25 way	${ }^{17525}$
IDC Skt A + C 350p	$\frac{2 \times 25-w a y}{2 \times 28-w a y}$ (Spectrum)	2200
For 2×32 way plesse specify spacing ($A+B, A+C$).	$2 \times 36 \text {-way }$	250p
	1×43-way	${ }^{2800}$
TEST CLIPS.	$\begin{aligned} & 2 \times 43 \text { way } \\ & 1 \times 77 \text { way } \end{aligned}$	${ }^{3950}$
pin 375p 16-pin 400p	2×50-way(S100conn)	600p

SIMPLE ECHO UNIT

Are you a bathroom baritone or a cave contralto? Bring the same life to the living room and pzazz to the parlour with this simple echo unit. Design by Phil Walker.

Do you sing in the bath? Go on, admit it! How much better music sounds when there are a lot of hard, reflecting surfaces around to provide plenty of echoes, as you will know if you if you have ever listened to music in a concert hall. But when you move from the concert hall or bathroom to a small room which has thick curtains and soft, upholstered furniture all of that rich, reverberant sound is lost. If there is an echo in such surroundings, it is unlikely to be from the opposite wall which will provide a single, strong echo rather than the multiple echoes which add so much to the sound.

The ETI EZEKO (Easy-Echo, geddit?) is designed to help you recapture some of that life and richness when singing or playing in acoustically dead surroundings. It's a simple mechanical (spring-line) echo unit which operates from a nine-volt battery and provides a variable depth effect. It is designed to be used with a suit-
able microphone and amplifier and is equipped with an output level control. To make things even simpler there is no on-off switch: the unit switches on automatically when a jack plug is inserted into the output socket.

Circuit

The basic component in this project is the spring line unit. It works as a mechanical delay line. A signal is fed into one of the drive coils which causes the springs to vibrate. A short time later the vibrations reach the other end of the springs and cause a voltage to be induced in the receive coil. In this particular unit there are two springs in parallel which naturally have slightly different delay times. This simulates the natural echo effect where sound would usually be reflected off of more than one surface. In addition, the vibrations in the springs do not traverse the springs once and stop but are

Fig. 1 Circuit diagram of the Ezeko

reflected back and forth many times, decaying slowly in amplitude.

Due to the nature of the device the spring exhibits a very uneven frequency response. This is not
altogether a bad thing but some of the major effects need sorting out. The circuitry we have developed to go with this project works in two stages. The first operates around the drive amplifier to boost

HOW IT WORKS

This is a simple circuit which can be considered in four main parts. These are: - input amplifier, spring driver, spring output amplifier and output mixer. Of these, the first and third are vitually identical in operation. Each consists of a two transistor direct coupled amplifier whose overall gain is controlled by feedback from the emitter of the output device to the base of the input device. The output from this configuration is approximately equal to the voltage generated by the input current to the stage flowing through the feedback resistor (R4 or R14) mulitiplied by the ratio of the output transistor collector and emitter resistors (R5/R6 or R15/R16). In the case of the input amplifier the input voltage is converted to an equivalent current by R1. In the case of the spring output amplifier it is virtually a current anyway since the output coil is a fairly high impedance but, being a inductance, the impedance seen by the amplifier circuit is not constant with frequency. To overcome this effect R11 is placed in series with the pick-up coil and has the effect of flattening the frequency response somewhat. It also has the effect of damping the resonant peak caused by the interaction between C12 and the pick-up coil inductance. The small value capacitors C3 and 14 are present to ensure the highfrequency stability of the arrangement.

The second part of this project is the spring driver. This is configured around an IC power amplifier device, the LM 386. This chip was specially deigned with battery operation in mind and needs few external components for normal operation. In this project we are using it to drive into a very
inductive load and a small value resistor is put in series with the spring coil to keep the load impedance from falling too low. C11 prevents the DC component at the output of the chip from appearing across the drive coil. C10 and R8 are normally included where highly reactive loads are being driven to help maintain stability.

The gain of the LM386 is set internally at $\times 20$ but by connecting suitable components across pins 1 and 8 this can be raised to about $x 200$. For the purposes of this project we require the gain to be low up to aboul 200 Hz and then rise. This is accomplished by connecting a suitable value of capacitance across these pins calculated to produce the correct response with the internal resistances on the chip.

The final part of the project is the output mixer. This is a very simple device but it was found necessary to make it active rather than passive to avoid unwanted feedback of signal from the mixer input to the spring driver input. The direct input signal is taken from the master gain control (RV1) to the mixer input via R19 and C18. The echo signal goes via a simple band pass network C15, C16, R17 to the effect control (RV2) and thence via R18 and C17 to the mixer input.

The mixer circuit is a simple common emitter amplifier. Because of the feedback from the collector to the base it has a low impedance which effectively isolates the direct and echo signal paths from each other. The total current flowing in from the two inputs is made to flow through R21 and the resulting voltage appears at the collector of Q5. From here C19 couples it to the output voltage socket.
the higher frequencies relative to the lower frequencies. A single capacitor C8 connected to IC1 does this and gives a response which starts rising at about 200 Hz and levels off again at 2 kHz . A resistor is also included in series with the drive coil to reduce the low frequency loading effect on the amplifier output caused by the falling impedance of the drive coil.

The second stage of equalisation occurs after the output signal has been amplified by the receiving amplifier and consists of a passive shaping network before the echo level control. The combination of this and the driver compensation with the spring line response can never give a flat response overall but the effect is quite audible.

The rest of the circuit consists of a pre-amplifier before the overall level control RV1 and a final mixer circuit to combine the direct and delayed signals into the output signal. An active circuit was used here to reduce the amount of signal leaking back to the input of the spring driver amplifier causing spurious feedback whistles. Fairly extensive decoupling of the power supply lines was found to be necessary for battery operation and this is provided by R7/C4, C6 and R10/C22.

Construction

The construction of this project is quite straightforward if the usual care is taken over the component polarity and placement. Do note that C13 and C14 are not mounted the same way around as the rest of the capacitors. The orientation of the transistors and IC should be followed carefully. There are spaces for an extra resistor and capacitor near C16 if you wish to alter the frequency response.

If you use the specified case there should be plenty of room for the components and a PP9 battery. In our prototype the PCB was attached to the spring unit which was then wedged and glued into the case with foam rubber backing pieces. If you have time it would be a good idea to work out an alternative which holds the battery more securely but leaves it accessible for replacement. The spring line should be mounted on something to avoid microphony and similar external noises being coupled into the spring.

The wiring to the front panel and spring unit shouild be done

PROJECT: Ezeko

PARTS LIST

RESISTORS ($1 / 4.45 \%$ carbon film)		C8	$0 \mu 68$ Tantalum bead
R1,17	10k		
R2,12	68k	C10,12	47 n
R3,13	33k	C11,20	$100 \mu 16 \mathrm{~V}$ axial
R4,14,24	100k		electrolytic
R5,15	3 k 9	C15	330n
R6,16	$1 \mathrm{k0}$	C16	2 n 2
R7,10	470 R		
R8	10R	SEMICONDUCTORS	
R9	5 R6	Q1,2,3,4,5,	BC184L
R11,18,19,20,21	47k	IC1	LM386N
R22,23	3k3		
RV1,2	47k log. pot.	MISCELLAN	
		X1	short spring line
CAPACITORS (ceramic or polyester unless stated)		SK1	unit mono $1 / 4$ inch jack
C1	470n		socket
C2,5,9,13,19	$10 \mu 16 \mathrm{~V}$ axial electrolytic	SK2	mono $1 / 4$ inch jack socket with MAKE
C3,14	10p		contact
C4,21	$1000 \mu 16 \mathrm{~V}$ axial electrolytic	Case	$281 \times 152 \times 80 \mathrm{~mm}$ see Buylines
C6	2200μ 16V axial electrolytic	PCB; battery clips; knobs, foam rubber,	
C7,17,18	100n	wire etc.	

with screened wire and if possible as shown in the diagram. This should avoid earth loops and other unwanted effects. Take care with the connections to SK2 as this is the on/off switch as well as the output socket. The 0 V from the PCB is connected via the screen of the cable to the contact on the socket which will touch the sleeve of the plug. The core of the cable from C19 connects to the tip contact The remaining core of the cable from the + ve rail on the PCB connects directly to the - ve battery clip, so make sure you leave sufficient wire for this. On the specified jack socket there is another contact which is positioned so that it is normally unconnected but which connects to the contact which touches the sleeve of the plug when a jack is inserted. To this extra contact a length of wire must be connected and taken to the -ve battery clip. Thus when the jack plug is inserted the battery is connected to the circuit. When withdrawn the power is turned off.

BUYLINES

> The spring line unit is available from Maplin Electronic Supplies. The jack socket with the make contact and the case are available from Electrovalue, jack type S2/MNS and case PI-CASE FP4 B. The PCB is available from our $P C B$ service.

Fig. 2 Overlay diagram; note the provision for an extra resistor and capacitor (see "Construction").

ELECTRONIC SECURITY

ALM22 ALARMM CONTROL UNIT

This high performance module is used in AUTROL professional alarm equipment. It will enable you to assemble a sophisticated alarm system at a very low price. It will support all types of detection devices such as magnetic contacts, pressure mats, ultrasonic or passive infra red movernent detectors. Screw terminals are fitted for easy installation.

Just lock ot the advanced features! * Immediate alarm circuit *Separate delayed access circuit * Independently adjustable entry and exit delays *Anti-false alarm circuitry * 24 hour tamper protection * Tamper protected wiring *Walk test facility * On board courtesy buzzer *Bell shutdown timer *Auto reset option *Soak test facility *On board 1 Amp fused power supply *Automatic standby battery charger * Extensive interference filtering. The unit requires 15-0-15 V. transformer, keyswitch, and LEDS (3).

READY BUILT AND TESTED E25.95 + VAT

SBM10 SELF ACTIVATING BELL MODULE

Used in conjunction with the ALM22, this module goes inside the oxternal bell unit and monitors its feed wiring. Any tampering with the unit or its wiring will cause the bells to sound.
READY BUILT AND TESTED $\mathrm{E5} .95$ + VAT $\mid 1.9$ AH.

KS2. 2 position keyswitch for use with ALM22.
$£ 3.38$ + VAT
KS4. 4 position keyswitch for use with ALM22. Allows upstairs to be switchad off at night. $\quad \mathbf{E 5 . 7 0}+$ VAT
MT1. 150.15 1 A. transformer for use with ALM22. $\quad £ 3.45+$ VAT Ws. External bell box, red or white plastic coated. $\quad \mathbf{E 8 . 0 0}+\mathrm{VAT}$
CH1. Control unit housing, 18 SWG hinged front door, size: $12^{\prime \prime} \times 9^{\prime \prime} \times 3^{\prime \prime}$ undrilled.
$\mathbf{E 8 . 0 0}+$ VAT
83. Rechargeable standby battery 12 V .
1.9 AH.

COMPREHENSIVE LITERATURE IS AVAILABLE ON ALL ITEMS
We supply a complete range of accessories and equipment from magnetic switches to complete We aupply a completernang for full intormation.
Add $70 p$ carrige to all orders. Add 15% VAT to order total. (inc. carriage). Please allow 14 days for dalivery.

AUTROL LTD (Dept C)

Ten Acres, Foundry Lane, Looslay Row, Princes Rishorough, Bucks. HP11 owy Tel. Factory: 084447805

Literature: 049433171 (Mailing Agency)

PIEZO ELECTRIC TWEETERS - MOTOROLA Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3" round with protective wire mesh, ideal for hookshelf and medium sized Hi-fi

TYPE 'B' (KSN1005A) $31 / 2$ " super horn. For general purpose speakers, disco and P.A systems etc Price e4.98 oech +40 p Pap.
TYPE 'C' (KSN6016A) $\mathbf{2}^{\prime \prime} \times \mathbf{5}^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price IT $^{\prime} .99$ each +30 p P\&P.
TYPE ' \mathbf{D}^{\prime} (KSN1025A) $\mathbf{2}^{\prime \prime} \times \mathbf{6}^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2 KHz) Suitable for high quall Hi-fi systems and quality TYPE 'EA
atractive (KSN1038A) $33 / / 2$ horn tweeter with atractive Sil ver finish trim. Suitable for Hi-fi monitor
systems etc. Price $£ 4.09$ amch +40 P P8P

LOUDSPEAKERS POWER RANGE
THREE QUALITY POWER LOUD SPEAKERS (15". 12" and $8^{* \prime}$ See 'Photo) Ideal for both Hi-Fi and Disco applications. All units have attractive cast aluminium
(ground finish) fixing escutcheons. Specifi cations and Prices.
$15^{\prime \prime} 100$ watt R.M.S. Impedance 8 ohms 50 oz. magnet. $2^{\prime \prime}$ aluminium voice coil. Res ${ }^{\text {Freq. }} 20 \mathrm{~Hz}$. Frea. Resp ${ }^{2}$ to 25 KHz Sens
 $12^{\prime \prime} 100$ watt R.M.S. Impedance 8 ohms.
50 oz magnet. 2 " aluminium voice coil. Res.

50 oz magnet. 2 . aluminium voice coil. Res Price: £26.00 ench + £3.00 P\& P. 8 " 50 watt R.M.S. Impedance 8 ohms. 20 oz. magnet. $11 /{ }^{\prime \prime}$ aluminium voice coill Res
Freq. 40 Hz . Freq Resp to 6 KHz Sens 92 dB
 Black Cone. Price: $\mathbf{f 9 . 5 0}$ each. Also available
with black protective grille. Price: $£ 10.50$ each. P\& P $£ 1.50$.
12 " 85 watts R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) $2^{2 \prime}$ aluminum voice coil, aluminium centre dome, 8 ohm ump.. Res. Freq. 45 Hz .. Freq. Resp to 6.5 kHz . Sens.
$12^{\prime} 85$
85 8 ohm. Imp.. Res. Freq. 45 HZ . Freq. Resp. tP.A., D/SCO) 2" aluminium volce coil Twin ©one $15 " 150$ watt R.M.S. McKENZIE CIT chassis. 8 ohm imp . Res. Freq 40 Hz . Freq Resp. to 4 KHz Price $f 49+f 4$ carria coil Die cas fixings in stock $S A . E$

All prices include VAT. * Sales Counter. \star

LARGE S.A.E For details of speakers, kits amp - modules buglar modules buglar alarms.
turntables, etc.

MOS-FET HIGH SPEC MODULES

MOS-FET VERSIONS AVAILABLE UP TO 300 W. R.M.S. MOS WEt $300 \mathrm{~mm} \times 123 \mathrm{~mm} \times 60 \mathrm{~mm}$ Price: $£ 39.99+£ 250$ P\& P 200 Watt $300 \mathrm{~mm} \times 150 \mathrm{~mm} \times 100 \mathrm{~mm}$ Price: $\mathrm{f62.99+f3.50} \mathrm{P} \mathrm{\& P}. \mathrm{}$. 300 Watt $330 \mathrm{~mm} \times 147 \mathrm{~mm} \times 102 \mathrm{~mm}$ Price: $\mathbf{E 7 9 . 9 9}+\mathbf{E 4 . 5 0} \mathrm{P} \mathrm{\&} \mathrm{P}$

HOBBY KITS. Proven designs including glass fibre printed circuit board and high qualit components complete with instructions. FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone Range $100 / 300$ metres $57 \times 46 \times 14 \mathrm{~mm}$ i 9 volt) 3 WATI FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled, professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 volt) Prce: $£ 13.74+75$ p P\&P.
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres. Double coded modulation Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for
 P\&P $+75 p$ each. S.A.E for complete list.
\star SAE for current lists. \star Oficial orders welcome
\square VISA

contrez:
 HARDWARE
 SOFTWARE

MDEX disc O / S + BASIC
MDEX Professional Dev. Sys. £275
CORTEX POWER-BASIC disc extensions

MDEX Languages
ASM FORTH PASCAL SPL QBAISIC META
Software to make the CORTEX gol

Disc Drives

80 track double-sided double-density $£ 190$
40 track single-sided double-density $£ 120$
E-BUS Floppy/Winchester Controller
E-BUS 64/128 K/bytes DRAM card
E-BUS 9995 Processor card
80*24 Character video card

CORTEX tape

Space Bugs, Pontoon, Small, Breakout, Micropede.
each £6
User Grouplll 'Brainstem' out NOW.
Please add VAT to all prices.

MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY SOUTHAMPTON
SO1 5AP
TEL: 0703780084

LB ELECTRONICS

SPEACH SYNTHESISER kit as in March/April Electronics \& Computing. Kit £24.95 p/p £1.50. Ready Built £34.95 p/p£1.50. Details S.A.E LOGITEC FT50001 dot matrics printer 100 cps , friction/tractor $\overline{£ 289}+\mathrm{VAT}$. Carriage $£ 10$. S.A.E. leaflet plus print-out.
PRESTEL monitors 6" green phosphor screen 12 digit keyboard printer port, cassette port, keyboard port (for full qwerty keyboard) Brand new and boxed £175 + VAT. Leaflet S.A.E.
DISC DRIVE BONANZA
TEAC FD-55F $1 / 2$ Height DSD 80 track/40 track, selectable at our new low price $£ 199$ +VAT. £8 carriage. Shinon $1 / 2$ height $51 / 4^{\prime \prime}$ drive, 40 track, brand new, single sided, double density $£ 140$ + VAT. Carriage £8. COMPETITION. We thank all our customers for purchasing our Teac drive and as a bonus we are now offering every 50 th disc drive to be sold will be sent totally FREE. The 1 st winner is: Mr A.P. White, Hertford, Huntingdon, Cambs. This offer is excluded from trade or bulk buyers).
EDGE CONNECTORS• 1 " 56×56 wire wrap keyway at $30 £ 1.80 \mathrm{p} / \mathrm{p}$ 25p. 30×30•156 Gold 80p p/p 25p •1" 80×801 12.85 p/p 25p.
Twin 5" Cabinets with power supply $£ 40.00+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere $£ 50.00$ + VAT).
LS IC's In Stock. Phone for prices.
Dual8" Drive Cabinets brand new backpanelcut outfor fan etc... $\mathbf{£ 2 5}$ Modem PCB containing uart LS XR2211CP, XR2206CP no data. £3.95 p/p 75 p.
26 way IDC Socket on short length of Ribbon Cable £1 p/p 20p. KEY BOARD BONANZA. Brand new ASCli coded single 5 volt rail. Some with numeric key pad, some without $£ 29.95 p$ p/p £1.50p. Leaflets S.A.E.
Our business is now expanded and we have computer showronms at MICRO HOUSE, 416 DERBY ROAD, GREENFORD, MIDDLESEX Tel: 01-575 2860. Many computer peripheral bargains on show. We now stock the new Sanyo MBC550 £749 + VAT (single drive) MBC555 9999 + VAT. (Twin drive) 128 K standard expandable to 256 K , with 555 model 1200 worth of software with this system (i.e. WordStar, SpellStar, Mailmerge, ReportStar, etc...). Full demonstrations available phone for S.A.E. New monitors, printers, disc drives, diskettes, paper, ribbons, etc, etc ... Supplied at realistic prices. Please note our retail component shop is still in operation at Hercies Road.

LB ELECTRONICS 11 HERCIES ROAD, HILLINGDON, MIDDLESEX UB10' LS, ENGLAND TEL: UXBRIDGE 55399

THE TECHNICA GUIDE TO TH MC68020

 One small piece of silicon - or a giant stride in technology:

 One small piece of silicon - or a giant stride in technology: new 32-bit micro from Motorola has some impressive-looking new 32-bit micro from Motorola has some impressive-looking vital statistics. Phil Walker has been looking at the data to find out vital statistics. Phil Walker has been looking at the data to find out if it lives up to expectations.

 if it lives up to expectations.}

This monolithic monster is claimed to contain about 200,000 transistors and able to operate at sustained rates of two to three MIPS (million instructions per second) and burst rates of over 8 MIPS. With address and data busses both 32 bits wide this gives it pretty awe-inspiring power.

The MC68120 is the latest addition to the 68000 family which includes the 16 bit MC6800 and the 8 bit MC68008 used in the Sinclair QL As such, it has been designed so that software written for the earliest members of the family will run on it. This is necessary these days as the investment in creating new software is a major consideration when using a new device.

Another feature of great interest to the system designer is that this device can use the currently available support devices in the 68000 family by the neat trick of varying the effective data bus width according to what type of device is being addressed. However, the designer is not limited to the existing support devices and there are at least 'two other devices in the pipeline, the MC68881 floating-point co-processor for

Fig. 1. Signal groups in and out of the MC68020.
high level maths functions and the MC68851 paged memory management unit to take care of allocation and protection of the 4 gigabyte addressing range of the MC68020.

The MC68020 is expected to find applications in computer aided design, personal and business computers, high performance colour graphics systems, telecommunications and robotics. It obviously provides another attack on the mainframe and minicomputer fields although it will probably expand the whole market rather than simply substitute for them.

The Inside Story

Inside the unusual $13 / 8$ inch square package with its 114 pins there lurks a .375 by .350 inch slab of silicon. In this are the 200,000 or so transistors which make up the microprocessor. To get them on Motorola have used a 2 micron HCMOS process

Fig. 2 Block diagram.
which basically means that everything is small.
On the chip itself things are controlled by the master clock which is specified to run at 16.67 MHz or 60 nanosecond period. The whole circuit dissipates less than 1.5 watts (pretty cool). All the registers, logic and arithmetic units, program counters, stack pointers and external address and data busses are 32 -bits wide. Because multiplexing has not been used on the external signals, it is the first true 32 bit microprocessor.

The 32 -bit address bus allows access to over $4,000,000,00032$-bit words (I wonder if anyone will ever provide this much memory?). However, the main purpose is to allow each program to access any of the 4 gigaword logical address space but, by using virtual memory techniques, only a small' fraction of the address space need exist as physical memory or other functions.

Different Levels

The effect of this sort of approach is that there are two operating levels to a machine. The supervisor level takes care of resource allocation such as memory and $1 / O$ devices to each user program. The user level is where a program will run until it tries to make use of a resource which is not allocated to it, not present (memory space or data not physically present) or even not allowed to the user program. At this stage, control reverts to the supervisor mode which either makes the resource available (transfers from mass storage, reallocates memory or allocates the required I/O device etc.) or aborts the user program. In this sort of environment it is possible (at least in theory) to prevent user programs from getting unauthorised access to the operating system. This is very important in machines where many user programs may be running quasi-simultaneously.

The MC68020 is configured in a slightly different way for supervisor and user modes. In fact the main difference is than slightly more information is available in supervisory mode from the extra registers about the processor status interrupt and error handling functions. In the user mode there are eight data registers, a user stack pointer and program counter also 32 -bits wide. There is also a condition code register of which only five bits are useful to the user.
in the supervisory mode there are two more stack

Mnemonic	Description	Mnemonic	Description
ABCD	Add Decimal with Extend	MULS	Signed Multiply
ADD	Add	MULU	Unsigned Multiply
ADDA	Add Address	NBCD	Negate Decimal with Extend
ADDI	Add Immediate	NEG	Negate
ADDO	Ada Quick	NEGX	Negate with Extend
ADDX	Add with Extend	NOP	No Operation
AND	Logical AND	NOT	Logital Complement
$\begin{aligned} & A N D I \\ & A S L, A S R \end{aligned}$	Logical AND Immediate Arthmetic Shift Left and Right	$\begin{aligned} & \mathrm{OR} \\ & \mathrm{OR}, \end{aligned}$	Logical Inclusive OR Logical OR Immediate
$\begin{array}{\|l} \mathrm{Bcc} \\ \mathrm{BCHG} \end{array}$	Branch Conditionally Test Bu ard Cnange	$\begin{aligned} & \text { PACK } \\ & \text { PEA } \end{aligned}$	Pack BCD Push Effective Address
BCLR	Test Bit and Cleat	RESET	Reset External Devices
BFCHG	Test Bit Field and Change	RDL, ROR	Rotate Left and Right
BFCLR	Test Blt_{11} Field and Clear	ROXL, ROXR	Rolate with Extend Left and Right
BFEXTS	Signed Bit Field Extract	ATO	Return and Deallocate
EFEXTU	Unsigned Bit Field Extract	RTE	Return from Exception
BFFFO	Bit $\mathrm{F}_{\text {leld }}$ Find First One	ATM	Return from Module
BFINS	$\mathrm{Bit}^{\text {ctield Insert }}$	RTR	Return and Restore Conditon Codes
BFSET	Test Bit Field and Set	RTS	Feturn from Subroutine
BFTST	Test Bit Field	SBCD	Subtract Decimal with Extend
BRET	Test Bit and Set	Scc	Set Conditionatly
BSR	Branch to Subroutine	STOP	Stop
BTST	Test Bit	SUB	Subtract
CALLM	Call Module	SUBI	Subtract immediate
CAS	Compare and Swap Operands	Subo	Subtract Quick
CAS2	Compare and Swap Dual Operands	subx	Subtract with Extend
CHK	Check Register Against Bound	SWAP	Swap Register Words
CHK2	Check Register Aganst Upder and Lower Bounds		Test Operand and Set
CLR	Clear	trapce	Trad Conditrnally
CMP	Compare	TRAPCC TRAPV	Trap on Overflow
CMPA CMP	Compare Address	TST	Test Operand
CMPM CMP2	Compare Memory to Memory Compare Register Aganst Upper and	UNLK UNPK	Unlink Unoack BCD
CMP2	Compare Register Aganst Upper and Lower Bounds	COPROCESSOR INSTRUCTIDNS	
DBce DIVS, DIVSL DIVU, OIVUL	Test Condtion. Decrement and Branch Signed Divide Unsigned Divide	cpBcc cpDBcc cpGEN cpRESTORE cpSAVE cpScc cptraper	Branch Conditionalily Test Coprocessor Condition, Decrement, and Branch Coprocessor General Instruction Restore Internal State of Coprocessor Save internal State of Coprocessor Set Conditionally Trap Conditionally
EOR	Logical Exclusive OR		
EOR	Logical Exclusive OR Immediate		
$\begin{array}{\|l\|l\|} \text { EXG } \\ \text { EXT } \end{array}$	Exchange Registers Sign Extend		
JMP	Jump		
JSR	Jump to Subroutine		
LEA	Load Effective Address		
LINK	Link and Allocate		
LSL, LSR	Logical Shift Left and Right		
MOVE	Move		
movea	Move Address		
MOVE CCR	Move Condition Code Register		
MOVE SR	Move Status Regrster		
MOVE USP	Move User Stack Pointer		
MOVEC	Move Controt Register		
MOVEM	Move Multiple Registers.		
MOVEP	Move Peripheral		
MOVEO	Move Quick		
MOVES	Move Alternate Address Space		

Fig. 3 Summary of the instruction set. As you won't be able to get your hands on one of these for a while, we haven't bothered with the machine code . . . (Illustration taken from the data sheet).
pointers, a vector base register, alternate function code registers and two registers associated with the internal instruction cache. The 16 -bit status register available in supervisory mode includes the five-bits of the user condition in addition to a three-bit interrupt priority mask, two-bit trace enable flag and bits which indicate the supervisory/user and master/interrupt conditions.

The instruction cache in the MC68020 is organised as 64 entries of 32 -bits each. It is arranged that where possible the cache will be filled with suitable information so that the next instruction to be executed can be found in it rather than from external memory. There are two reasons that this is desirable, the first is that it takes less time to access the cache memory and the second is that data transfers can occur without being slowed down by the need to fetch instructions. It is basically a way of using otherwise wasted bus time in a useful way.

Some clever programming could be used to make further use of the instruction cache. It should be possible to arrange for small loops within the program to

FEATURE : MC68020 Guide

USER PROGRAMMING MODEL

data registers

ADORESS REGISTER

USER STACK POINTER PROGRAM COUNTER

CONDITION CODE REGISTER

Fig. 5 Key to the parts of the die: Program Counter Execution Unit - calculates instruction addresses and maintains instruction stream pointers; Address Execution Unit calculates operand addresses and stores user visible address register set; μ ROM - provides sequence control for the bus controller and micromachine; nROM - controls the operation of the micromachine; A1 PLA - provides initial decode of instructions, determines legality and provides initial microaddress; A2/A3 PLA - generates successive microaddresses associated with the instruction decode; A5/A6 PLA - decodes coprocessor operations; Tag Cache - contains the instruction tag information which includes the address and validity bit; Bus Controller - manages the cache and memory accesses; Data Execution Unit - where all the data operations are performed, contains the user visible data register set, a barrel shifter and elements of the instruction pipe; Data Cache - stores instructions, not data at all; Control Section - provides overall control.

STATUS REGISTER

Fig. 4 The registers.
Fig. 6 Detail of the status register.
be entirely contained in the cache, so that the microprocessor will loop round for however many cycles are necessary without having to fetch any new instructions whilst it was in the loop.

Ins And Outs

The MC68020 claims 18 addressing modes and 7 data types. The address modes are shown in Fig. 8. They are made up of nine basic types with the option of modifying some types to provide extra flexibility. There is great flexibility in the way that the 16 address and data register may be used to access memory as base and index registers.

Data types are quite numerous as already mentioned. These vary from bits to quad words (64 bits long) and include bit fields of 1 to 32 bits, BCD digits (1 or 2 digits/byte) and integers of $8,16,32$ and 64 bits long. Also operations on certain other types such as addresses and status words is possible.

As you can see from the summary of the instruction set there are most of the instructions you would expect of any processor system as well as a variety of test and branch and some less usual ones. All the instructions from previous members of the 6800 family are present with some additions and extensions to take account of the 32-bit capability and other enhancements. A useful feature for the large system is that upper and lower bounds checking is offered as opposed to the upper bound bound only in the MC68000 family to date.

Exceptions To The Rule

There is a very powerful set of actions implemented in this device known as exceptions. These act rather like the interrupts of the normal eight-bit devices but can be generated in many more ways. Also, in many cases, the action taken when an exception is flagged is under the control of the user.

Exceptions can be generated either internally or externally. The external ones are the interrupts, bus error signal and reset request. The interrupt signals operate much as would be expected with the priority being flagged to the processor and a vector number being read in to define a particular action from the interrupting device. The bus error exception is used to prevent a failure of the data bus handshaking signals with any peripheral from locking up the processor indefinitely. To implement this, some form of timer is required on the bus control signals to detect the failure. The reset request input starts the system reset sequence.

Internal exceptions are quite numerous and have been expanded from the MC68000 set. They are generated by trace mode after each instruction, and by various conditional and unconditional trap and boundary checking operations. Also any errors in the

Fig. 7 Package mechanical details.

Fig. 8 Addressing modes (Illustration taken from the data sheet).
address range, co-processor or illegal instructions including divide by 0 will generate an exception.

Once an exception has been recognised, the processor is put into supervisor mode and after a few more operations to keep things tidy, control is passed to one of the exception handling routines. The routine is selected using a combination of the vector number associated with the exception being processed and the current contents of the vector base register.

A very useful feature of the MC68020 for system development is that hardware which is not yet developed or available can be emulated in software. When the non-existent hardware is accessed an error is flagged and the processor jumps to a section of software which stimulates the required hardware. After this is executed, the processor resumes operation as normal.

Reflections

Starting at around 'less than $\$ 500$ ' it will probably be some time before this device is available outside the industrial and military markets and even when it is it will take a lot of money and nerve to sell a unit based on it in the consumer field. It will probably follow the usual price pattern of new semiconductor devices and fall to about a tenth (or so) of its launch price in five years. The speed and processing capabilities of this device and the market built up by previous members of the family will probably help it to carve out a large slice of the professional market in the future.

Initially I was going to try and compare this device to the typical 8 -bit processors familiar to many of our readers but I did not feel that this would be too useful. The address capability of the MC68020 is vast, if each of the 65536 addresses of a typical 8-bit held 65536 bytes of data this is still only a quarter of the MC68020 capability. However, the basic capabilities of the 8 -bit device are still there but very much enhanced and operating at a much higher speed. ETI
(1) Dawne Instruments \& Electronics

4, Donkin Road, Armstrong Industrial Estate, Washington, Tyne \& Wear.

Ex Stock Integrated Circuits

74LSO0	70p	2732	495p
74LS04	82p	$2764-250$	640p
74LS08	60p	$611 P 3$	675p
74LS20	45p	TC5516	750p
74LS27	40p	4164	500p
74LS32	70p	7400	$30 p$
74LS157	70p	7404	$40 p$
74LS244	225p	7416	$45 p$
74LS373	210p	7407	225p

Variety of TTL \& 74LS items in stock-please 'phone your enquiry
*Please add 50p for p\&p + 15\% VAT to all orders. Export-No VAT, p\&p at cost.
Government \& Educational Establishments' Official Orders Welcomed
NEW CATALOGUE AVAILABLE:

The Peripheral Centre of East Anglia
153-4 East Road. Cambridge CB1 1DD
Telephone (0223) 355404 Telex 817445
Prices subject to change without notice.

Bersai 变

Bonsai is a Japanese technique for miniaturising trees whilst preserving all their natural characteristics. This is exactly what we have done with our new British invented and manufactured loudspeaker.
Based on a newly developed single full range driver the diminitive "Musician Bonsai" has all the qualities of the best, large multi way systems without some of their vices. £ 140 \& vat a pair in standard enclosures.
$£ 210$ \& vat a pair in Luxury NIMS.
For details please contact:
Merseyside Acoustic Developments Ltd., Merseyside Innovation Centre,
131, Mount Pleasant, Liverpool, L3 5TF. Tel. 051-709-0427

Two Hundred Year Old Bonsai Tree By Courtesy Of: TOKONOMA NURSERY.

DIGITAL CASSETTE DECK

Why are our readers so impatient? Here is Bob Campell with the details of the project you've all been ringing, telexing, writing and generally pestering us about.

Construction is very straightforward as long as the PCB design is adhered to, but beware those of you that do not. The noise that can be induced, particularly in the read amplifier, through poor circuit lay-out must be heard to be believed. The extensive use of the earth or ground plane is a great help in alleviating this problem, but probably the most important feature is the single earth point.
Any configuration which has more than one route to mains earth

The PCB on the deck onto which you must solder SK4; the pin connections are as follows: a (left-most pin in this photo) record solenoid; b, play solenoid; \mathbf{c}, motor solenoid; \mathbf{d}, fast forward solenoid; e, rewind solenoid; \mathfrak{f}, motor; $g+12 \mathrm{~V}$; h, i, record protection contacts; \mathfrak{j}, not used.
will cause what is known as a 'hum loop'. Hi-fi enthusiasts, perhaps, are more familiar with this effect than the rest of us, but in effect the loop causes a 50 Hz
mains hum to appear at the input to the amplifier and with something like a 90 dB amplification.

Fig. 1, last month shows how to connect the system up; the

Fig. 7 Overlay diagram of the PCB
second power supply should be left floating and the screens on the signal lines should be connected at one end only, the computer end. It is also important to connect the metal frame work of the tape
deck to the control board ground by only one route.

The PCB is relatively simple to make, all the usual rules apply. Through board links are shown. After assembly, check all tracks for

PARTS LIST

shorts, etc, etc. Although sockets can be used for the amplifier chips it is not really recommended, as they can be another source of noise. Also, with the Darlington drivers, mounting them directly on the PCB will improve the heat dissipation.

Setting up the system mainly consists of adjusting the two potentiometers RV1 and RV2. RV1 is the output volume control, in effect, and should be adjusted as such, ie as one would with your normal cassette recorder. The other pot, RV2, in a roughly similar way, is equivalent to the recording level control. This should be adjusted to give an output from IC6a. Listen to the output with a small speaker or a small piezo transducer and a capacitor to $A C$ couple it to the output of IC6a. The actual recording level is controlled by the two resistors R28 and R31. These control the current through the record head. The value used in the prototype, 10k, worked well giving adequate enough tape saturation without significant distortion, and was also sufficient to obviate the need to use the erase circuit.

The setting up of the EOT circuit is adequately covered in that section. It is worthwhile spending some time setting this up properly as proper automatic control of the tape deck is impossible without it.

Fig. 8 The timing considerations that must be built into the program for the deck.

Programming Considerations

Although Table 1 last month lists all the required solenoid operations required to select any function, it is not sufficient just to switch them on or off as and when needed. Each solenoid has finite take-up and release times and these must be allowed for. Indeed, several conditions could develop excessive tension in the tape causing it to stretch or even break. The following conditions must therefore be avoided:

1) From STOP to CUE or REV : to ensure that the head is in contact with the tape before tape movement occurs, allow 500 msec between selecting pause or play and FFWD or REW (see Fig 8);
2) From STOP to REC/PLAY or REC/PAUSE to STOP : to ensure that no solenoid switching noises are recorded allow 400 msec between activating the REC and PLAY solenoids and release the PLAY solenoid at least 100 msec before the REC (see Fig. 8b);
3) From PAUSE to FF or REV: when selecting either FFWD or

BUYLINES

REV from a PAUSE allow 100 msec from deselecting PAUSE to selecting FFWD or REV or else the tape may still be trapped between the pinch wheel and the drive shaft, thus causing excessive tension in the tape;
4) From FFWD or CUE to REV or REW (or vice versa): at least 100 msec should be allowed between selecting FFWD or CUE from REW or REV, or the inertia of the free running tape may cause the tape to stretch or snap.

Two items here could cause problems, both for the same reason; IC3 and 4 and RLA1 and 2 are both RS types; IC3 and 4 are RS part number 301-606 and RLA 1 and 2 are 346-845. If you can't find someone who will obtain RS components for you locally, try Crewe Allan \& Co, 51 Scrutton Street, London EC2. In both cases, alternative types should work although the odd change to component values or PCB-hacking may be required. The PCB is, as ever, available from us.

Before buying elsewhere check out the features of CRIMSON quality:-

ALL OUR MODULES:-

- superior p.c.b., component identification, solder resist.
- non-potted so non-disposable if damaged.
- metal film resistors.
- negligible noise and distortions.

OUR BIPOLAR POWER AMP MODULES:-

- fuseless electronic shut-down with re-set facility.
- reverse polarity protection.
- high output current capability (>25 Amps on CE1704).
- 18 transistors, 7 diodes.

OUR MOSFET POWER MODULES:- (FE908, FE1704)

- reponse down to d.c.
- j-fet inputs.
- common source output for highest efficiency.

OUR CPR2 PREAMPLIFIER

- ultmate sound quality.
- 42 semiconductors and perfect symmetry topology.
- anti-thump circuitry.
- selected passive components.

Write or phone for detalls:CRIMSON ELEKTRIK STOKE, Phoenix Works, 500 King St, Longton,
8toke-on-Trent ST2 1EZ.
Tel: 0782330520
or contact our agents:-BRADLEY-MARSHALL, 325 Edgeware Raed, London and (especially for demonstrations):WILMSLOW AUDIO,
35-39 Church 8t, Wilimelow, Cheshire.

ETI OCTOBER 1984

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81 - and more!

The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why.

The $2 \times 81-F O R T H$ ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like.

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 \mathrm{k}, 32 \mathrm{k}, 64 \mathrm{k}$ RAM packs, it is fig-FORTH compatible and it supports the ZX printer.

The price, too, is almost unbelievable. As a "'fit it yourself Eprom", complete with manual, it's just f $25+$ VAT. Add $£ 2$ p\&p UK ($£ 5$ Europe, $£ 10$ outside Europe) and send your order to the address below.

Skywatre SOFTWARE

David Husband
73 Curzon Road, Bournemouth, BH 1 4PW, ENGLAND. Tel: (0202) 302385.
international $+442023023 B 5$.

THE SOUND OF VIDEO

Getting high-quality stereo sound from a video cassette recorder may seem like magic - but it's been done. Vivian Chapel tells all. . .

Hey Presto! We gasp in astonishment as the stage conjuror pulls bouquets, pot plants and nosegays without limit from a small box resting on a tiny support in the centre of the stage. There is seemingly no way in to the box, and no way it could possibly contain all the things coming out from it. Yet there is a logical explanation.

The domestic video cassette is much like the conjurour's box. It can contain several hours of video programme requiring millions of bits of information per second plus full colour, plus sound. Packing all that in requires quite a few technical tricks and some sleight-of-hand. For a start, the slant-azimuth trick allows recorded tracks to adjoin each other without gaps and with no cross-talk

The low-frequency colour signal is unaffected by slant-azimuth, so to avoid colour cross-talk, the phase of successive lines of colour signal are phase shifted by 90° during recording and corrected to the original at playback Any crosstalk that appears is thereby displaced by 180° and so is cancelled.

The main trick is that of helical scan whereby a tilted rotating head-drum lays diagonal tracks across the tape. This results in a writing speed of $4.85 \mathrm{~m} / \mathrm{s}$ for VHS and $5.85 \mathrm{~m} / \mathrm{s}$ for Beta, yet the actual tape speed through the recorder is only about one inch per second.

As the highest frequency recordable is proportional to the writing speed, such speeds permit the high video frequencies to be recorded. But there is a snag. Most of the tape width is taken up by the diagonal video tracks, which means there is little room for the 'poor relation' of television, the sound channel. Hitherto, this has been accommodated by a linear track along the top edge of the tape, and the writing speed is the same as the tape speed which is half that of the compact audio cassette, giving lo-fi sound.

This is too bad if the sound track carries only speech, but for music, the results are poor. Mind you, the sound circuits and speaker of the average TV set
do not encourage any effort to produce better sound, but nonetheless it has been a glaring deficiency in the home video recorder.

Evidence of an interest in better video sound has been seen in the marketing of video recorders and pre-recorded tapes with stereo. The existing linear sound track is split into two separate ones. To avoid cross-talk, a margin or guard-band must be left between them, reducing the track width to less than half that of the single mono track, to 0.35 mm . Comparing this with the 0.6 mm width of the stereo compact audio cassette reveals a further cause of deterioration of sound quality, because noise level and the incidence of drop-out increases as the track-width decreases.

Something obviously has to be done, so the rival technical wizards at Sony and JVC dusted off their crystal calculators and closetted themselves in their inner sanctums, from whence snatches of weird incantations such as "magnetic depth multiplex" could occasionally be heard. Finally they emerged still mumbling mysterious mystical mouthings into their ancient white beards, then with a wave of their magnetic screwdrivers, yet another very large bouquet appeared from the conjurers black box. No less than full stereo hi-fi, the like of which you have never heard from even the highest grade audio recorder, and this without taking up a single extra millimetre of tape space.

Sony was first with Beta hi-fi which they demonstrated at the Chicago Consumer Electronics Show in 1982, and again the following year at Las Vegas. After this, both machines and pre-recorded tapes were released in Japan and America.

How It's Done

Before we can understand just where they put the sound channels we must take a look at the video spectrum as it is recorded. The luminance, or black-

Nice, but not cheap: the very latest Sony Beta hi-fi, the SL-HF 100 UB retails at a cool £599.95 or thereabouts.

Fig. 1 Tracks on videotape. video tracks (shaded) on top of audio tracks (white). Azimuth differences shown by diagonal lines across the tracks. Audio (white) tracks are not actually wider than video but shown thus for clarity.
and-white signal is frequency modulated on a carrier at around 4 MHz with a deviation of 0.5 MHz either side of the centre frequency. With the VHS system, the FM signal occupies the space between 3.8 MHz and 4.8 MHz as shown in the illustration. Colour or chrominance information requires less bandwidth, so this is down-converted from the 4.43 MHz of the PAL colour carrier to 627 kHz . With the Beta format the luminance signal deviation is from 3.8 MHz to 5.2 MHz and the colour, 688 kHz .

Although the luminance deviation extends down to just 3.8 MHz in both formats, the sidebands continue on down with diminishing amplitude to the upper chrominance sidebands.

America and Japan use the NTSC (never twice same colour - Ed.) colour system which is simpler than the European PAL and SECAM systems. Also the field rate is higher, 60 per second instead of our 50, which means that the head drum must rotate faster as one frame of two fields must be recorded at each revolution. Hence the writing speed is faster. Yet there are fewer scanning lines in each frame, 525 to the European 625.

All this means that the lower luminance and upper chrominance sidebands do not meet for most of the time, on average picture content. This gap then provides the secret 'pocket' in which to conceal the sound channels. These are modulated as FM signals on a pair of carriers between 1 MHz and 2 MHz , and are fed to the rotating video heads along with the luminance and colour information.

The result is superb sound in stero with no increase in tape width or speed. However, there have been reports that very loud sound signals can affect the picture as the sound FM sidebands overlap those of the luminance signal.

Unfortunately, this system will not work with our PAL, 625 -line, 50 -field video standard. The spectrum is already tightly packed and there just isn't a gap; the luminance sidebands, although of reduced amplitude at this point, extend right down to those of the colour signal for most of the time.

So, Tommy Cooper-style, if the trick won't work one way you try another. VHS manufacturers, with their sights on Europe as well as America and Japan, produced a system that would work with any of the existing TV standards, and it was announced in July 1983. Sony also wanted to tap the European market, so in September of the same year revealed their answer at Berlin Radio Show.

It turned out that both were similar, but while the VHS method is the same for all standards anywhere in

Fig. 2 Depth Multiplex recording. Wider gapped audio head lays track deep into tape coating. Smaller gapped video head lays surface track which partially erases audio, thus producing two-layer recording.
the world, Beta is stuck with their American system there, but has another quite different one for Europe. Not that that will affect users, because the different TV standards makes tapes incompatible anyway.

The VHS System

As with the original Beta system, the two audio channels are FM modulated on to a pair of carriers in the region between the upper colour and lower luminance sidebands. The centre frequencies are 1.4 MHz and 1.8 MHz . These, especially the latter, would overlap considerably the lower luminance frequenices and create picture disturbance if fed to the video heads and recorded along with the video.

Instead, a pair of separate audio-channel heads are used on the video drum to produce what is known as a depth multilplex recording. Before we describe how that works, to avoid any possible confusion it should be noted that using a pair of heads does not mean that each head takes one audio channel. A pair are also needed for the video signal so that as one is finishing its stroke and leaving the top of the tape, the other is just commencing its track at the bottom.

The same applies to the audio channel, two heads are required to provide a continuous recording, Both carriers are fed to both heads in turn to make their stroke.

What happens now is like over-filling a suitcase and then sitting on the lid to fasten it! When a magnetic field is set up across the poles of a magnet, the distribution of the lines of force extend outward in a roughly hemi-spherical configuration. It follows that the radius of the hemisphere, hence the distance from the poles depends on the spacing between them. The farther apart they are, the greater the radius, providing all other factors are the same.

A magnetic recording head is designed so that the poles of the electromagnet appear either side of the head gap which is a vertical slit. As the gap is filled with non-magnetic material, the field extends outward across the gap, hence through the tape which is in intimate contact with it. A narrow gap therefore produces a small, though intense field, while a broad gap gives rise to a larger, less intense field.

The audio channel has a large gap, so when it passes over the tape, it magnetizes deep into the coating. It is followed by the video head which has a much smaller gap, and so records only into the surface regions. At the same time it erases the audio information just put there by the previous head. The result is a two-layer recording; the audio signal at the bottom and video on top.

To produce the required flux density over this larger area, a larger magnetizing current is needed through the head windings, but this can be easily be arranged. Some writers, when describing depth multiplex recording, attribute the difference in depth of magnetic field to frequency, asserting that the video signal is recorded on the surface solely because it is of a higher frequency. This is not the case, as the lower frequency colour signal is included with the luminance and recorded by the video heads in the upper layers of the coating. The colour signal is two octaves below the upper sound carrier, these are 627 kHz and 1.8 MHz respectively.

It is true that with audio recorders there can be a variation of the depth of magnetization with frequency, and this effect was made use of with the two-layer ferrous/chrome tapes. With these, the high frequencies were recorded mainly in the upper chrome layer, and the lower ones in the ferrous coating underneath.

The external field across a gap tends to contract when the gap width is greater than one half wavelength of the recorded sound, this being due to self-erasure. For a recording head gap of 5 microns and a recording tape speed of 1% in/s the effect begins at around 5 kHz

However, with the VHS video system, the head gap is 0.3 microns and the tape writing speed is 4.85 metres per second. This puts the half-wavelength frequency of the gap at about 8 MHz which is above the upper sidebands of the luminance signal. As all recorded frequencies are below this half-wavelength point, frequency difference plays little part in the depth multiplexing.

Fig. 3 Frequency spectrum of VHS system. Two hi-fi audio carriers occupy same space as lower luminance sidebands. Slant-azimuth recording by separate heads prevent interaction.

On Playback

Having then produced this two-layer recording, how are the signals sorted out at playback? Wouldn't there still be interaction between them? No, because by physically separating the signals on the tape, another trick mentioned earlier can be applied, that of slant azimuth.

The slit in an audio head is vertical and therefore records a series of vertical magnetic stripes along the tape. If the slit in any head replaying the tape is inclined from the vertical, then it bridges across the adjacent stripes, resulting in an effective increase in the width of the slit. For the narrowest stripes representing the short-wavelength high frequencies, the simultaneous appearance across the gap of adjacent opposite-polarity gives cancellation and zero output from the head. With wide stripes which are low recorded frequencies, the effect is minimal. So, a difference in the tilt or azimuth between recording and playback heads produces a loss of high frequencies, the greater the difference, the lower the frequency at which the cancellation commences.

While audio recorders adopt a vertical slit as a con-
venient standard, it doesn't have to be vertical. Any angle would perform just as well, providing both recording and playback heads are the same. This incidentally explains why a tape recorded on one recorder, and which sounds perfect played back on that machine, sounds lacking in treble when played back on another instrument. One has a non-vertical azimuth, but it could be either.

Coming back to the video recorder, adjacent video tracks are recorded by the two video heads which are offset in inclination from each other. Should one wander to an adjacent track during replay the azimuth difference is such as to produce very little output from it, so cross-talk is reduced to a minimum.

This same principle is used for the audio channels. Each audio head has an azimuth difference of 30° from the video head which follows it. So the audio track has a corresponding difference from the video track overlapping it. This is quite a large azimuth difference, the video heads are only 12° from each other.

Fig. 4 Principle of slant azimuth. Head records magnetic stripes at the same angle as its gap, (a). Head with opposite tilt (b), has gap which straddles recorded stripes and gives zero output when they are narrow.

When the tape is played back then, the video and audio signals do not interfere. Hey presto!, the trick is complete hi-fi stereo has been literally buried in the tape, unsuspected until drawn out on command. And what hi-fi! a frequency response from $20 \mathrm{~Hz}-20 \mathrm{kHz}$, dynamic range greater than 80 dB , harmonic distortion less than 0.3%, and wow and flutter less than 0.005%.

It should be noted though that pre-recorded tapes with hi-fi sound will also have the conventional linear sound track, so that owners of non hi-fi machines will be able to play them. This applies both to VHS and Beta.

Sound-Only Recorders

Helical scan obviously has much to offer the hi-fi enthusiasts. Musical recordings made on one of these video recorders when linked to a hi-fi amplifier and speakers sound much better than even top flight audio recorders.

The writing speed is far higher than necessary and could be reduced without loss of quality in a soundonly machine, giving extended playing times. Furthermore, digital recording which requires a much greater frequency bandwith than analogue, is possible for domestic recorders with modest tape requirements.

A hint of what may lie ahead can be gathered from a prototype helical-scan audio recorder made by Sony. It uses cassettes half the size of compact cassettes, and a linear tape speed of only one-eigth. This allows playing times of some three hours. Recordings are digital, using a 16 -bit code. The main problem is going to be finding enough space on the cassette to write the titles!

ETI

PROJECT INDEX 1972-84

AUDIO

Project

2W Power Amplifier
$50+50$ watt power amplifier module
$50 / 100 \mathrm{~W}$ amplifier modules

100W guitar amplifier
100W MOSFET power amplifier
100W stereo disco consol
150W MOSFET amplifier
200W power amplifier
200W power amplifier
300 W amplifier module
204011 Active Loudspeaker
Active crossover, two or three way
Active loudspeaker
Active loudspeaker, 2040 II
Amplifier, 2W power
Amplifier, 15 w.p.c. SQ quadrophonic
Amplifier, 50 w.p.c. stereo
Amplifier, 100 W Disco Mixer
Amplifier, 100W Guitar
Amplifer, 100W MOSFET
Amplifier, 150W MOSFET
Amplifier, 200W
Amplifier,
booster $\mathbf{1 2 V}$ DC portable radio
Amplifier, Audio Design

Amplifier, bench (Short Circuit)
Amplifier, bench
Amplifer, bench
Amplifier for record players (Using the LM380)
Amplifier for stereo testing
Amplifer, guitar effects
Amplifier, guitar practice
Amplifier module, $50+50$ watt
Amplifier module, 300 W
Amplifier modules, $50 / 100 \mathrm{~W}$
Amplifier, simple, 1.5W
Amplifier, simple stereo
Amplifier, stereo, 5 w.p.c.
Amplifer, stereo, International-25

Amplifier, stereo, 'Sweet Sixteen'

Project
Amplifier, System A
Amplifier, the Audiophile
Amplifers, phono, high quality
Attenuator, variable $0-59 \mathrm{~dB}$
Audio buffer
Audio Design Amplifier

	Month	Year	Page
part 1	Jul	1981	52
part 2	Aug	1981	40
part 3	Sep	1981	66
Errata	Oct	1981	13
	Oct	1979	55
Errata	Oct	1980	11
	Feb	1982	45
	May	1973	53
	Jan	1980	82
part 1	June	1984	24
part 2	Jul	1984	44
part 3	Aug	1984	30
part 4	Sep	1984	59
	Jul	1973	66
	Mar	1976	17
	Dec	1976	58
	Apr	1976	22
	Apr	1976	26
	Oct	1979	55
Errata	Oct	1980	11
	Jan	1981	62
	Jan	1980	29
Errata	Feb	1980	17
Errata	Apr	1980	15
	Jun	1976	29
	Mar	1979	67
	Jun	1978	27
	Nov	1980	27
	Oct	1973	46
	May	1975	55
	Sep	1982	63
	May	1983	38
	Mar	1973	44
	Jun	1977	53
	Feb	1977	52
	Aug	1979	67
	Dec	1980	74
	Feb	1973	58
	Jun	1980	44
	Feb	1976	51
	Jul	1982	85
	Oct	1978	41
	Nov	1975	30
	May	1978	57
Errata	Jul	1978	7
	Sep	1975	41
part 1	Jan	1979	73
part 2	Apr	1979	41
	Nov	1973	56
	Nov	1977	11
	May	1983	32
Errata	Jun	1983	11
part 1	Sep	1976	42
part 2	Oct	1976	51
part 3	Nov	1976	63 d
Errata	Nov	1976	87

Project		Month	Year	Page
Disco mixer	part 1	Jul	1981	39
	part 2	Aug	1981	76
	part 3	Sep	1981	42
Disco mixer, 4 into 2		Feb	1977	16
Discrete SQ decoder for quadrophonic systems		Jun	1974	60
Double Quad - ESLs in parallel		May	1975	44
Dummy load for audio testing		Jan	1982	71
Dynamic noise reducer		Sep	1979	35
Dynamic record noise filter	part 1	Feb	1976	37
	part 2	Mar	1976	62
ETI 422 stereo amplifier 50 w.p.c.	part 1	Aug	1974	23
	part 2	Sep	1974	60
ETI ER II Loudspeakers		May	1977	31
	Errata	Jun	1977	9
ETI Master Mixer	part 1	Apr	1973	66
	part 2	May	1973	30
	part 3	Jun	1973	56
	part 4	Jul	1973	63
	Errata	Oct	1973	52
Expander/compressor		May	1976	29
FET four-input mixer		Jul	1972	66
	Errata	Aug	1972	9
Five watt stereo amplifier		Jan	1977	10
	Errata	Apr	1977	7
FM mains distributor		Jun	1980	15
FM tuner, the Audiophile		Jan	1981	62
FM tuner, the International	part 1	Sep	1975	26
	part 2	Oct	1975	32
	Errata	Nov	1975	77
FM tuner with digital frequency display		Sep	1978	21
Four input mixer		Dec	1980	19
Frequency meter, audio, $50 \mathrm{~Hz}-10 \mathrm{kHz}$		Jul	1973	66
Frequency shifter		Mar	1978	40
General purpose preamplifier		Nov	1976	26
Graphic Equaliser, 1 octave filters		Jan	1975	23
	Errata	Feb	1975	71
Graphic Equaliser, 1 octave filters		Sep	1977	27
Graphic Equaliser, 1/3 octave filters	part 1	Aug	1983	18
	part 2	Sep	1983	41.
	Errata	Nov	1983	96
Guitar practice amplifier		Mar	1982	121
Headphone adaptor		Mar	1976	52
Headphone amplifier		May	1979	77
	'Errata	Nov	1979	13
High quality phono amplifiers		Feb	1982	45
Hi-lo pass filter, variable		Feb	1980	39
Hum filter (50 Hz notch filter)		Dec	1979	46
Induction loop, pgrtable		Jul	1983	52
International-25 stereo amplifier	part 1	Oct	1975	26
	part 2	Nov	1975	54
	Errata	Dec	1975	76
International FM tuner	part 1	Sep	1975	26
	part 2	Oct	1975	32
	Errata	Nov	1975	77
Improving the response of economy loudspeakers		Feb	1973	58
LED VU meter		May	1980	78
Limiter, audio		Dec	1976	58
Line amplifier for microphones		Jul	1975	24
Loud hailer (Short Circuit)		Sep	1977	56
Loudhaler, Simple		Oct	1973	70
Loudness control		Aug	1975	25
Loudspeaker, ETI ER II		May	1977	31
	Errata	June	1977	9
Loudspeaker protection module		Jui	1980	95
Loudspeaker, V3		Oct	1981	22
Mains audio link		Sep	1981	76
Mains audio link, FM		Jun	1980	15
Microamp - stereo test amplifier		Jul	1977	30
Microphone switching unit		Jul	1982	20
Millivoltmeter, audio, ' A ' weighted		Apr	1976	26
Mixer, disco, 4 into 2		Feb	1977	16
Mixer, disco	part 1	Jul	1981	39
	part 2	Aug	1981	76
	part 3	Sep	1981	42
Mixer, FET, four input		Jul	1972	66
	Errata	Aug	1972	9

Project		Month	Year	Page
Mixer, four input		Dec	1980	19
Mixer/preamplifier for	part 1	Apr	1973	66
professional PA	part 2	May	1973	30
	part 3	Jun	1973	56
	part 4	Jul	1973	63
	Errata	Oct	1973	52
Mixer/preamplifier, four input		Dec	1973	55
Mixer, stage, 16 into 8	part 1	Jul	1975	26
	part 2	Sep	1975	33
Modular preamplifier	part 1	Dec	1983	55
	part 2	Jan	1984	55
	part 3	Feb	1984	51
Moving coil head amplifier		Nov	1983	31
Moving coil preamplifer, Audiophile		Jan	1980	29
	Errata	Feb	1980	17
	Errata	Apr	1980	15
NDFL 60W power amplifier		May	1983	24
	Errata	Sep	1983	46
Noise filter, dynamic, for records	part 1	Feb	1976	37
	part 2	Mar	1976	62
Noise generator, audio		Apr	1976	22
Noise limiter for tape		Feb	1979	41
Noise reducer, dynamic		Sep	1979	35
Novel loudspeaker		Jun	1984	57
Over-LED amplifier clipping indicator		Nov	1973	56
Phaser, CCD		May	1978	57
	Errata	Jul	1978	7
Playmate guitar effects amplifier	part 1	Aug	1982	28
	part 2	Sep	1982	16
Plus-Two add-on decoder/amplifier		Nov	1974	54
Power bulge - inverter for bridging amplifiers		Oct	1978	41
Power meter, audio		Mar	1979	67
Power meter, audio, LED		June	1976	29
Power meter, stereo		Mar	1984	35
Preamplifier, balanced input		May	1983	38
Preamplifier, general purpose		Nov	1976	26
Preamplifier, modular	part 1	Dec	1983	55
	part 2	Jan	1984	55
	part 3	Feb	1984	51
Preamplifier, RIAA		Sep	1980	73
Preamplifier, RIAA		Nov	1980	39
Project 80 stereo power amplifier		Oct	1980	79
Record player amplifier		Dec	1974	34
(Using the LM380)	Errata	Jan	1975	70
Reverberation unit, spring line		Dec	1974	46
Rumble filter, stereo		Jan	1975	52
Scratch and rumble filter, variable		Feb	1980	39
Series 5000 bridging adaptor		Jul	1982	85
Series 5000 MOSFET amplifier		Jun	1982	48
Signal line tester		Dec	1982	97
Simple amplifier, 1.5 W		Sep	1974	32
Simple bass-reflex cabinet		Apr	1972	57
Simple loudhailer		Oct	1973	70
Simple loudness control		Aug	1975	25
Simple stereo amplifier		Mar	1975	26
Sound bender (ring modulator)		Oct	1981	88
Sound pressure level meter		Feb	1981	74
Spectrum analyser, audio		Jun	1978	27
Spring line reverberation unit		Dec	1974	46
SQ decoder for quadrophonic systems		June	1974	60
Stabilised PSU for hi-fi systems		May	1983	18
Stage mixer, 16 into 8	part 1	Jul	1975	26
	part 2	Sep	1975	33
Stereo Image Co-ordinator		Jun	1980	68
	Errata	Aug	1980	13
Stereo image width enhancer		Sep	1972	38
	Errata	Oct	1972	43
Stereo power meter		Mar	1984	35
Stereo rumble filter		Jan	1975	52
Stereo Simulator (Short Circuit)		Sep	1977	16
Stereo to quadrophonic up-grade		Nov	1974	54
Super Stereo - effective width		Sep	1972	38
enhancer	Errata	Oct	1972	43
Sweet Sixteen stereo amplifier		Jul	1976	38
System 8000 tuner/amplifier	part 1	Jun	1979	30
	part 2	jul	1979	79
	Errata	Sep	1979	8
		ETI	OBER	

Project
System A amplifier

Tape noise limiter
Tape recorder bias optimiser
Three channel tone control
(Short Circuit)
Tone burst generator
Tuner/amplifier, System 8000

TV Sound Tuner
TV Sound Tuner
Upgrading Amplifier PSUs
V3 Loudspeaker
Visual Complex Sound Analyser
Voice-over unit
VU meter, LED
Wattmeter, direct reading, 0-50W
White noise generator, digital

CLOCKS AND TIMERS

1-2 Hour Timer
Comparator Module for the Digital
Stopwatch
Stopwatch
Digital alarm clock/calendar
Digital Clock
Digital Stopwatch
Digital Stopwatch
Egg Timer
Humane alarm - alarm clock add-on
Long Period Timer, 1 min - 20 hrs
Meter Beater
Micropower Pendulum
Modifying the ETI Digital Alarm Clock
Multi-Option Clock
Musical Alarm Clock
Process controller/timer
Rugby Clock

School Timer
Speaking Clock
STAC Timer
STD Timer
Stopwatch/calculator
Universal Timer
Universal Timer
COMPUTING
16 channel A to D board 64 K DRAM Board
6502 sound/DAC card
Ace keyboard/joystick interface
ADC, ZX81/Spectrum, 8 ch., 8 bit
ASCII keyboard, System 68
A to D board, 16 channel
Atom keypad
Cassette interface
Centronics interface for the Cortex
Centronics interface for the Sharp MZ8aK
Colour board for the Ace
Computer Output Driver
ETI OCTOBER 1984

	Month	Year	Page
part 1	Jul	1981	52
part 2	Aug	1981	40
part 3	Sep	1981	66
Errata	Oct	1981	13
	Feb	1979	41
	Jun	1980	44
	Oct	1977	34
part 1	Feb	1976	25
part 2	Mar	1976	57
part 1	Jun	1979	30
part 2	Jul	1979	79
Errata	Sep	1979	8
	Sep	1980	73
	Dec	1981	37
	Feb	1982	26
	Oct	1981	22
	Apr	1981	21
	Nov	1981	26
	May	1980	78
	Oct	1973	46
	Dec	1979	67

Project
Control port for the Spectrum
Cortex 16 -bit computer
DAC/ADC filter amplifier
Digital Cassette Deck
DRAM board, 64 K
DRAM Board,Z80
EPROM Emulator
EPROM Eraser
EPROM board for the Oric/Atmos
EPROM Programmer for the Triton
EPROM Programmer, Universal
EX42 Keyboard Interface
Fast light Pen
Joystick controller for 6502 micro-
computers (Reader's Design)
Low-cost VDU, ETI 560

28
41
16
65
40
20

	Sep	1976	37
part 1	Nov	1977	23
part 2	Dec	1977	19
	Dec	1980	32
	Jan	1980	71
part 1	Aug	1982	60
part 2	Sep	1982	39
Erata	Nov	1982	75
	Apr	1984	59
	Sep	1981	30
	Sep	1978	71
Errata	Oct	1978	13
	Nov	1976	10
	Apr	1976	10
Errata	May	1976	8
	Aug	1976	18
	Jan	1981	36

Mini-Mynah Speech Synthesiser Board

Multiple Output Port
Music board, ZX81

Numeric keypad for the Atom
Pseudorom
Real time clock/calendar for 6502
systems
Sharp joystick interface
Sound board, ZX (Design
Competition)
Sound/DAC card, 6502
Spectrum control port
Spectrum Joystick Interface
19
64
48
20
61
70
25
19
78
63
13
65
23
47

41
69
28
19
64
48
20
61
70
25
19
78
63
13
65
23
47

41
69
28
Speech Synthesis Board
Supply line status check with DVM
Supply protector for $Z \times 81 \mathrm{~s}$
System 68 ASCIl keyboard
System 68 CPU board
System 68 CUTS card
System 68 PSU

System 68 Software
System 68 TTY Interface
System 68 VDU
System 68 VDU interface \& Bus Structure

	Month	Year	Page
	Oct	1984	44
part 1	Nov	1982	24
part 2	Dec	1982	55
part 3	Jan	1983	42
Errata	Dec	1982	83
	Nov	1983	59
part 1	Sep	1984	27
part 2	Oct	1984	28
	Sep	1983	64
	Mar	1984	45
part 1	Jul	1984	22
part 2	Aug	1984	50
	May	1984	17
	Jun	1984	36
	Jan	1980	42
part 1	Aug	1983	45
part 2	Sep	1983	37
Errata	Jan	1984	61
Errata	Apr	1984	33
	Sep	1984	23
	Nov	1983	81
	Jun	1981	36
part 1	Aug	1976	56
part 2	Sep	1976	10
part 3	Oct	1976	30
Errata	Nov	1976	8
part 1	Aug	1983	65
part 2	Sep	1983	59
part 3	Oct	1983	56
E.rrata	Nov	1983	96
	Oct	1982	53
	Nov	1982	68
part 1	Dec	1981	22
part 2	Jan	1982	58
part 3	Feb	1982	76
part 4	Apr	1982	26
part 1	Aug	1982	50
part 2	Sep	1982	72
part 3	Oct	1982	46
Errata	Apr	1983	11
	Feb	1984	20
Errata	May	1984	69
	Nov	1983	52
part 1	Apr	1983	16
Errata	May	1983	54
	Jun	1983	15
	Jun	1983	78
	Jun	1983	52
	Apr	1983	31
Errata	Aug	1983	70
	Aug	1984	42
Errata	Sep	1984	68
	Feb	1983	73
	Mar	1983	48
	Oct	1984	44
	Jun	1984	49
Errata	Aug	1984	66
	Feb	1984	20
Errata	May	1984	69
	Feb	1983	85
	Oct	1983	39
	Apr	1977	25
part 1	Sep	1977	22
part 2	Oct	1977	63
part 1	Jan	1978	61
part 2	Feb	1978	45
	May	1977	55
Errata	Jun	1977	9
Errata	Jul	1977	6
	Mar	1978	59
part 1	Nov	1977	45
part 2	Dec	1977	59
part 1	Jun	1977	33
part 2	Jul	1977	54
	Aug	1977	45

Project		Month	Year	Page
System reset generator for homebuilt computers		Feb	1983	83
Tape save modification, ZX80		Oct	1983	63
Tape save modification, ZX81		Feb	1983	61
Temperature sensor \& alarm for computers		Feb	1983	86
Time-out generator/system failure alarm		Feb	1983	84
Triton personal computer		Nov	1978	16
Triton 8 K EPROM Card		Jun	1979	73
Typewriter Interface		Oct	1983	21
	Errata	Mar	1984	25
Universal EPROM Programmer	part 1	Aug	1983	45
	part 2	Sep	1983	37
	Errata	Jan	1984	61
	Errata	Apr	1984	33
User-defined graphics, ZX81		Mar	1983	23
Vector graphic display for home computers		Jan	1984	19
Z80 Control Computer	part 1	Aug	1983	65
	part 2	Sep	1983	59
	part 3	Oct	1983	56
	Errata	Nov	1983	96
Z80 DRAM board		Mar	1984	45
ZX80 DRAM upgrade		Feb	1984	29
ZX80 save modification		Oct	1983	63
ZX81 EPROM Programmer		May	1984	26
	Errata	Sep	1984	68
ZX81 music board	part 1	Apr	1983	16
	part 2	May	1983	54
	Errata	Jun	1983	15
ZX81 save modification		Feb	1983	61
ZX81 user-defined graphics		Mar	1983	23
ZX ADC, $8 \mathrm{ch}, .8$ bit		Jan	1983	61
	Errata	Aug	1983	70
ZX-based burglar alarm		Dec	1983	31
GAMES				
Alcohometer (reaction fimer)		Dec	1981	79
Alien Attack		Jun	1981	61
Ambush	part 1	Apr	1979	61
	part 2	May	1979	48
Cannibals and Missionaries		Mar	1976	24
Coin Toss		Feb	1980	51
Dice		Dec	1979	32
Double Die		May	1979	26
	Errata	Jun	1979	9
Drunken Sailor Puzzle		Jan	1978	46
Dual Electronic Dice		Oct	1976	16
Electronic Decision Maker		Mar	1973	62
Electronic Dice		Jan	1976	58
Electronic One-Arm Bandit	part 1	Aug	1975	38
	part 2	Sep	1975	48
Electronic Win-dicator		May	1975	47
Family Ferry		Dec	1974	56
Hammer Throw Game		Jan	1978	29
Heads or Tails (Short Circuit)		fan	1977	34
1 Ching Computer		Feb	1982	60
Infinite Improbability Detector		Mar	1982	35
LED Dice (Short Circuit)		Feb	1977	49
LINC		Aug	1975	26
Mastermind		Jun	1977	41
Obedient Die		Mar	1984	54
Pinball Wizard		Nov	1979	24
Race Track Game		Jan	1978	36
Reaction Tester		Jan	1977	20
Reaction Timer		Oct	1979	75
	Errata	Jan	1980	11
Reflex Action		May	1976	62
Rifle for the TV Games Unit		Jul	1977	20
Roulette Game		Feb	1981	22
Skeet Game		Nov	1977	34
Sound Track game		Aug	1982	72
Space Invasion Game	part 1	Nov	1980	65
	part 2	Dec	1980	44
	Errata	Dec	1980	13

Project
Space Invasion Game--
\quad Modifications
Spirit Level (reaction timer) (Short
\quad Circuit)
Stars and Dots Cames
Superdice
Survival Game
Tank Battle TV Game
Touch Buzzer
TV Chess Game
TV Games Unit
Wheel Of Fortune
LIGHTING

	Month	Year	Page
	Jul	1981	94
	Oct	1977	28
Errata	1978	17	
	Jul	1978	7
	Jul	1981	71
	Sep	1980	87
	May	1978	50
Errata	Jun	1978	13
	Nov	1980	48
part 1	Oct	1978	48
part 2	Nov	1978	44
	May	1977	12
	Sep	1978	61

Audio light display using LEDs		Aug	1979	87
Automatic Porch Light		Jul	1980	77
Colour Organ sound/light unit		Feb	1975	11
Dimmer, 500 W		Jun	1975	30
Dimmer, 500W		Mar	1978	55
Dimmer for fluorescent lights		Nov	1972	42
Dimmer, Programmable Touch		Apr	1980	71
	Errata	Aug	1980	11
Dimmer, push-button		Feb	1975	30
Dimmer, stage		Mar	1979	50
	Errata	Apr	1979	13
Dimmer, touch		May	1981	79
Disco Lightshow Controller		Dec	1978	44
	Errata	Apr	1979	13
Disco/party Strobe (Finesse)		Oct	1984	52
Ecolight		Jul	1984	55
Emergency Lighting Unit		Oct	1972	41
Finesse light chaser		Dec	1983	44
Fluorescent Light Dimmer		Nov	1972	42
Fluorescent light inverter		Mar	1973	58
High Power Beacon		Aug	1976	30
Hi-power Strobe		Jun	1972	62
Inverter For Fluorescent Lighting		Mar	1973	58
Lampsaver		Dec	1983	69
Light chaser (Finesse)		Dec	1983	44
Light Wand		Mar	1982	73
Multiswitch - multi-point light switching		Nov	1983	47
Porch Light		Feb	1978	28
Push Button Dimmer		Feb	1975	30
Sound/light unit (ETI Colour Organ)		Feb	1975	11
Sound-To Light unit (free PCB project)		Oct	1982	31
Spactracolumn		Dec	1982	65
Stage Dimmer		Mar	1979	50
Stage lighting unit	Errata	Apr	1979	13
	part 1	Jan	1983	22
	part 2	Feb	1983	34
	part 3	Apr	1983	42
	part 4	May	1983	79
	Errata	Aug	1983	70
Strobe, high power		Jun	1972	62
Visual Complex Sound Analyser		Apr	1981	21

MISCELLANEOUS
Allez Cat pest scarer
Autocompass
Auto-lume light operated switch
Automatic Plant Waterer
Battery eliminators, two
Bike Speedometer
CCTV Camera
Coin Collector (metal locator)
Compass, auto
Desoldering Made Simple
Digital Display

	Feb	1982	89
	Jun	1983	20
	Nov	1974	28
	Aug	1978	61
	May	1972	30
	Jun	1975	23
	Dec	1977	46
Errata	Feb	1978	12
	Jul	1973	20
	Jun	1983	20
	Aug	1972	61
	Oct	1975	15
Errata	Nov	1975	77

Project		Month	Year	Page
Digital display module		Jan	1979	35
Drill Speed Controller		Feb	1975	46
Drill Speed Controller		Mar	1977	56
Drill Speed Controller		Sep	1980	69
Dry Cell Charger		Sep	1984	53
Earth Leakage Circuit Breaker		Dec	1982	25
Earth Resistivity Meter		Jul	1973	30
Easy Way To Make PC Boards		Oct	1973	66
Electromyogram		Mar	1980	56
Electronic Doorbell (free PCB project)		Oct	1982	29
Engineer's Stethoscope		Mar	1981	63
FM Mains Remote Control		Oct	1981	56
Garden Watering Systems		Jun	1976	26
Gas Monitor		Apr	1978	33
GSR Monitor		Jul	1977	11
Hear-And-Tell Unit		Oct	1974	24
Heartbeat Monitor		Aug	1981	31
Heart Rate Monitor		Dec	1976	19
Helping Hand (RNID competition winner)		May	1978	16
Homes For Ohms (Resistor storage system)		Jan	1973	47
Induction Balance Metal Locator		Feb	1977	33
Induction Balance Metal Locator		Feb	1978	32
Induction loop, portable		Jul	1983	52
Infra-red Remote Control		May	1981	51
Infra-red Remote Control, ETI IR60	part 1	May	1980	33
	part 2	Jun	1980	73
Intercom (Using The LM380)		Dec	1974	32
Kitchen Scales, digital	Errata	Jan	1975	70
	part 1	Jul	1982	30
	part 2	Aug	1982	39
	Errata	Sep	1982	9
Laser, low-cost		Mar	1974	34
LCD Panel Meter		Mar	1978	26
LED Jewellery		Jun	1981	45
LED Pendant		Nov	1977	41
Light Activated Switch		Nov	1980	81
Light Activated Switch Module		Mar	1981	52
Low Battery Warning		May	1975	48
Mains-Borne Remote Control	part 1	Apr	1984	53
	part 2	May	1984	37
Mains Seeker		Jun	1979	46
Message Panel		Oct	1982	53
Message Panel Interface		Nov	1982	68
Metal Locator		Jul	1973	20
Metal Locator		Mar	1980	78
	Errata	Apr	1980	9
	Errata	Jun	1980	11
Metal locator, induction balance		Feb	1977	33
Metal locator, induction balance		Feb	1978	32
Microwave Oven Leakage Detector		Nov	1979	85
	Errata	Dec	1979	13
Mini-Drill Speed Controller		Jun	1981	89
Motor Speed Controller		Jul	1979	47
	Errata	Nov	1979	13
	Errata	Dec	1979	13
Muscle Meter (Electromyogram)		Mar	1980	56
Musical Doorbell		Dec	1980	60
Negative lon Generator		Jun	1982	19
NiCad Battery Charger		May	1974	52
NiCad Charger		Aug	1979	29
NiCad Charger/regenerator		Sep	1983	27
Noiseless Power Switch		Mar	1981	13
Optical Communications Circuits		Jun	1976	68
Pest Control - Allez Cat		Feb	1982	89
Polystyrene Cutter		Jul	1982	73
Portable induction loop		Jul	1983	52
Power supply, switched mode	part 1	June	1983	35
	part 2	Jul	1983	83
Proximity Switch		Oct	1978	75
Rain Alarm		Apr	1978	62
Rain Alarm		Dec	1979	35
Remote-Controlled Power Switching		May	1981	90
Soil Moisture Indicator		Aug	1977	19
	Errata	Sep	1977	8
Soil Moisture Indicator		Jul	1979	67
Soldering Iron Controller		May	1981	24

Project
Super Selective Music Filter
Switched mode power supply
Tape/Slide Synchroniser
Tape/Slide Synchroniser
Telephone Bell Extender
Telephone Bell Shifter/Extender
Teletext System

Torch Finder
Touch Switch
Touch Switch
Touch Switch (free PCB project)
Two Battery Savers
Twonky - MPU Musical Box
Two-Tone Door Bell (Short Circuit)
Typewriter Interface
UFO Detector
UHF Aerial Preamplifier
Ultrasonic Switch
Utiliboard Breadboarding System
Vertical Speed Indicator
Videograph - TV audio display
Watchdog Power Saver
Wind Speed Indicator

	Month	Year	Page
	Apr	1984	39
part 1	Jun	1983	35
part 2	Jul	1983	83
	Jun	1972	48
	Feb	1979	27
	Oct	1978	65
	Nov	1981	78
part 1	Jul	1979	20
part 2	Aug	1979	41
	Jul	1978	31
	May	1976	14
	Dec	1979	93
Errata	Jan	1980	11
	Oct	1982	30
	May	1972	30
	Feb	1979	79
	Feb	1977	50
	Oct	1983	21
Errata	Mar	1984	25
	Jul	1978	63
	Aug	1973	34
	Feb	1978	62
	Nov	1975	58
part 1	Apr	1984	19
part 2	May	1984	57
	Apr	1979	27
	Oct	1977	10
	Apr	1979	85

MODEL CONTROL

FM Radio Control		Oct	1980	15
	Errata	Dec	1980	13
Model Train Controller		Nov	1976	16
Motor Speed Controller		Jul	1979	47
	Errata	Nov	1979	13
	Errata	Dec	1979	13
Radio Control Servo Failsafe		Apr	1980	29
Radio Control Servo Failsafe		Aug	1983	61
Radio Control System	part 1	May	1979	61
	part 2	Jun	1979	87
	Errata	Aug	1979	13
Servo Tester		May	1980	52
Slot Car Controller		May	1982	79
The Beast Model Train Controller	part 1	Nov	1979	42
	part 2	Dec	1979	86
	Errata	Feb	1980	17
White Line Follower		Apr	1978	23

MOTORING

Accurate Voltage Monitor
Alarm alarm
Alcohometer
Antenna Extender
Anti-theft auto alarm
Auto amp - car audio booster
Automatic Battery Charger
Automatic car theft alarm
Battery charger
Battery Indicator
Bodywork Checker
Brake light warning
Breadown beacon
Car alarm
Car alarm
Car Alarm
Car Alarm
Caravan Lights Checker (Reader's
Design)
Car Immobiliser
Car Security Device
Courtesy light extender

April	1982	23
July	1977	29
Dec	1981	79
Jun	1981	78
Jan	1974	16
May	1975	55
Apr	1980	39
Aug	1972	50
Nov	1973	64
Jul	1979	92
Dec	1981	54
Oct	1972	44
Sep	1976	52
Mar	1975	24
Jul	1975	68
Dec	1978	16
Nov	1981	94
Oct	1983	66
Nov	1983	96
Apr	1981	100
May	1979	89
Apr	1980	50
Feb	1975	51
April	1975	71

Project

$\left.\begin{array}{lllr}\text { Project } & \text { Month } & \text { Year } & \text { Page } \\ \text { Digital Tachometer } & & \text { Jan } & 1979\end{array}\right) 36$

MUSIC AND EFFECTS

Accentuated Metronome		Feb	1978	17
Audio phaser		Dec	1976	29
Audio visual metronome		Nov	1972	47
Autochord rhythm generator	part 1	Nov	1978	56
	part 2	Dec	1978	80
Black Hole Choraliser		May	1980	90
	Errata	Sep	1980	11
Bomb drop sound effect CCD Phaser		Apr	1982	50
		May	1978	57
	Errata	Jul	1978	7
Chorus/Flanger		Jan	1984	33
Complex Sound Generator (Minisynth)		Oct	1978	17
Drum Machine		Apr	1981	75
Drum Synthesiser, ETI Staccato		Jun	1980	84
	Errata	Aug	1980	13
Drum Synthesiser, Midi		May	1984	62
	Errata	Aug	1984	66
Drum Synthesiser, Mini		Nov	1983	36
	Errata	Apr	1984	62
EZEKO spring-line reverberation unit		Oct	1984	18
Electronic Bongos (Short Circuit)		Aug	1977	24
Fuzz box (Short Circuit		Apr	1977	48
Fuzz/Sustain Box		Oct	1980	53
	Errata	Sep	7982	57
Guitar Effects Unit		Apr	1979	97
	Errata	Jun	1979	9
Guitar Note Expander		Apr	1981	95
Guitar Tuner		Jan	1982	41
	Errata	Mar	1982	9
	Errata	May	1982	11
Gunshot sound effect		May	1982	89
Hand-Clamp Synthesiser		Aug	1981	68
Metronome		Nov	1980	56
Metronome, Accentuated		Feb	1978	17
Metronome, Accentuated		Jun	1979	21
Metronome, audio visual		Nov	1972	47
Metronome (Short Circuit)		May	1977	39
Midi Drum Synth		May	1984	62
	Errata	Aug	1984	66

Project		Month	Year	Page
Mini Drum Synthesiser		Nov	1983	36
	Errata	Apr	1984	62
Minisynth (Complex Sound Generator)		Oct	1978	17
Multi-Option Sirent		Jan	1981	22
Musical Box		Nov	1981	50
Music Processor		Nov	1981	38
	Errata	May	1982	11
New Sound For Your Guitar-		Jun	1973	30
Organ, ETI Victory	part 1	Feb	1983	19
	part 2	Mar	1983	36
	part 3	Apr	1983	56
	part 4	May	1983	67
Phaser/explosion sound effect		May	1982	63
Playmate guitar effects amplifier	part 1	Aug	1982	28
	part 2	Sep	1982	16
Polyphonic Keyboard Controller		Jul	1979	36
Reverberation unit, solid state		Apr	1982	101
Reverberation unit, spring line		Dec	1974	46
Reverberation unit, spring-line		Oct	1984	18
Sound Bender (ring modulator)		Oct	1981	88
Sound Effects 1: Bomb Drop		Apr	1982	50
Sound Effects 2: Steam Train \& Whistle		Apr	1982	118
Sound Effects 3: phaser/explosion		May	1982	63
Sound Effects 4: gunshot		May	1982	89
String Thing (Transcendent DPX)	part 1	Aug	1979	18
	part 2	Sep	1979	62
	part 3	Oct	1979	35
	part 4	Nov	1979	64
Synthesiser, ETI 3600	part 1	May	1975	42
	part 2	Jun	1975	32
	part 3	Jul	1975	54
	part 4	Oct	1975	41
	Errata	Jan	1976	84
Synthesiser, ETI 4600	part 1	Jan	1974	20
	part 2	Feb	1974	24
	part 3	Mar	1974	40
	part 4	Apr	1974	44
	part 5	May	1974	54
	part 6	Jun	1974	24
	part 7	Jul	1974	52
	part 8	Aug	1974	58
	part 9	Sep	1974	48
Synthesiser, Hand Clap		Aug	1981	68
Synthesiser, Polyphonic	part 1	Dec	1980	87
	part 2	Jan	1981	77
	part 3	Feb	1981	32
	part 4	Mar	1981	27
Synthesiser, Project $80-$ Dual VCA		Aug	1980	78
Synthesiser, Project 80 - Monitor Amplifier		Oct	1980	79
Synthesiser, Project 80 - Noise Generator		Apr	1981	59
Synthesiser, Project 80 - PSU, VCO \& VCLFO		Feb	1980	62
	Errata	Mar	1980	15
Synthesiser, Project $80-V C$ envelope shaper		Sep	1980	93
Synthesiser, Project 80 - VC envelope shaper		1ui	1980	88
Synthesiser, Project $80-\mathrm{VCF}$		May	1980	20
Synthesiser, Project 80 - VCM		Mar	1980	87
Synthesiser, Project $80-$ VC State Variable Filter		Jul	1980	84
Synthesiser Sequencer		May	1981	36
Synthesiser, Transcendent 2000	part 1	Jul	1978	38
	part 2	Aug	1978	45
Temperature Stabilised Log. Convertor		Jan	1979	62
Touch Organ		Dec	1976	41
Transcendent DPX string synthesiser	part 1	Aug	1979	18
	part 2	Sep	1979	62
	part 3	Oct	1979	35
	part 4	Nov	1979	64
Transcendent Polysynth	part 1	Dec	1980	87
	part 2	Jan	1981	77
	part 3	Feb	1981	32

Project
Tuning Fork
Vocoder
Waa-Phase Unit
Waa-waa unit
Waveform multiplier (chorus)

PHOTOGRAPHIC
Automatic Contrast Meter
Electronic flash trigger
Enlarger Timer
Exposure meter
Flash Sequencer
Flash sequencer
Flash Trigger
Flash Trigger
Flash Trigger
Photographic process timer
Photo timer
Printimer - 11/2-3 minute timer
Shutter Timer
Slave flash
Sound/light flash trigger
Sound-operated flash
RADIO
Aerial Matcher for SW Receivers
Air Band Converter
Chipmonk FM/AM Radio
Crystal Calibrator
Digital Radio Dial
Headphone Radio, AM
Marker Generator
One-Chip Radio
RF Attenuator
RF Power Meter
Speech Compressor
Star Trek Radio
Tic-tac Radio
Two Metre Power Amplifier
Two Metre VMOS Power Amplifier

ROBOTICS
Digital PWM Interface for the

Rigital				
Robot Motor Controller		Jun	1982	66
ETI Mobile 2 Robot	part 1	Aug	1982	82
	part 2	Sep	1982	25
Motor Speed Control for Robots		Jul	1982	59
Proximity Detector		Jun	1982	69
Robot Arm	part 1	Sep	1981	50
	part 2	Oct	1981	43
Robot Motor Controller	part 1	Mar	1982	61
	part 2	Apr	1992	94
	part 3	May	1982	34
Servo Arm Interface	part 1	Oct	1982	69
	part 2	Dec	1982	77

SECURITY
Alarm alarm
Alarm extender
Alarm Module
Alarm, ZX-based
Anti-Theft Auto Alarm
Automatic Car-Theft Alarm
Automatic Light Switch
Automatic Porch Light
Bansheee Siren Unit

part 4	Month	Year	Page	Project		Month	Year	Page
	Mar	1981	27	Burglar alarm system		Apr	1977	57
	Feb	1980	79		Errata	Jun	1977	9
part 1	Sep	1980	58	Burglar Proof Your Home		Jul	1974	30
part 2	Oct	1980	40	Car Alarm		Mar	1975	24
Errata	Apr	1981	8		Errata	Jul	1975	68
	Jun	1981	24	Car Alarm		Dec	1978	16
	Jun	1976	16	Car alarm		Oct	1983	66
	Jan	1983	71		Errata	Nov	1983	96
				Car Security Device		Apr	1980	50
				CMOS Burglar Alarm		Apr	1975	51
				CMOS House Alarm		Jan	1978	16
	Apr	1982	39	Combination Lock		Mar	1981	74
Errata	Jul	1982	35	Ecolight		Jul	1984	55
	Jun	1975	42	Electronic combination lock		Mar	1975	46
	Oct	1981	78	Home security system		Aug	1981	18
	Feb	1976	46	Infant Guard		Jan	1982	80
	Aug	1981	57	Infra-red intruder alarm		Jul	1972	54
	Jul	1983	63	Infra-red intruder alarm		Feb	1981	62
Errata	Aug	1983	70	Infra-red intruder Alarm	part 1	Jul	1984	61
	Dec	1979	97		part 2	Aug	1984	59
	Oct	1980	30	Logic Lock	part 1	Jun	1982	79
	Jul	1983	70		part 2	Jul	1982	39
	Aug	1972	38		Errata	Nov	1982	75
	Sep	1975	11	Porch Light		Feb	1978	28
	Nov	1974	44	Proximity Switch		Oct	1978	75
Errata	Dec	1974	71	Radar intruder alarm		Aug	1975	21
	Feb	1978	57	Ultrasonic Burglar Alarm		Aug	1980	86
	May	1972	48	Warlock alarm system		Jul	1984	35
	Aug	1976	46	Watchdog home security svstem		Aug	1981	18
	May	1972	44	ZX-based alarm		Dec	1983	31
				TEMPERATURE MEASUREMENT AND				
	Apr	1974	31	CONTROL				
	Dec	1979	76					
	Jun	1978	79	Differential Temperature Switch				
Errata	Jul	1978	7	Module		Mar	1981	49
	Mar	1981	39	Digital Thermometer		Oct	1977	20
	Jan	1979	49	Economical Heater Controller		May	1982	22
	Aug	1976	34		Errata	Jul	1982	35
	May	1976	25	Freezer Alarm		Dec	1977	30
	Jan	1973	16	Heater Controller		Mar	1980	67
	Sep	1976	62	Heat/Light Controller				
	Oct	1978	30	(free PCB project)		Oct	1982	25
	Oct	1979	47	Immersible Heater		Jun	1983	65
	May	1978	62	Micropower Thermal Alarm		Oct	1981	68
	Nov	1975	35	Seven-input Thermocouple Meter		Dec	1973	23
	Sep	1976	19	Temperature Alarm		Nov	1974	25
	Feb	1980	27	Temperature Alarm		Mar	1977	53
				Temperature Controllers, three		Mar	1975	18
				Temperature Meter		Aug	1974	30
				Temperature Meter		Jul	1978	21
	Jun	1982	66	Temperature Meter Add-on for Voltmeters		May	1976	49
part 1	Aug	1982	82	Thermemeter - Max/Min Memory				70
part 2	Sep	1982	25 59	Thermometer	Errata	Apr Jul	1983	70 20
	Jul	1982	59 69	Under Temperature Switch Module	Errata	Mar	1981	51
part 1	Sep	1981	50	Wine Temperature Meter		Dec	1978	31
part 2	Oct	1981	43					
part 1	Mar	1982	61					
part 2	Apr	1982	94	TEST EQUIPMENT				
part 3	May	1982	34 69	1 kHz Function Generator		Mar	1977	55
part 2	Dec	1982	77	All Purpose Power Supply, 30V, 1A		Aug	1978	75
				Amplifier, bench		Dec	1980	74
				Amplifier, bench (Short Circuit)		Feb	1977	52
				Amplifier, bench		Aug	1979	67
	Jul	1977	29	Attenuator, audio		May	1973	53
	Nov	1983	39	Attenuator, RF		Sep	1976	62
	Mar	1983	63	Audio Frequency Meter		Jul	1973	66
Errata	Aug	1983	70	Audio Millivoltmeter		Apr	1976	26
	Dec	1983	31	Audio Noise Generator		Apr	1976	22
	Jan	1974	16	Audio Oscillator with LCD DFM		Nov	1978	71
	Aug	1972	50	Audio Power Meter		Jun	1976	29
	May	1984	19	Audio Power meter		Mar	1979	67
	Jul	1980	77	Audio Spectrum Analyser		Mar	1978	27 46
	Sep	1984	35	Audio Wattmeter		Oct	1973	

Project		Month	Year	Page
Autoranging Capacitance Meter	part 1	Mar	1982	48
	part 2	Apr	1982	108
	Errata	Jul	1982	35
Basic Power Supply, 4.5A-12V, 0.4A		Oct	1974	53
	Errata	Nov	1974	71
Bench Amplifier		Aug	1979	67
Bench Amplifier		Dec	1980	74
Bench Amplifier (Short Circuit)		Feb	1977	52
Bench PSU, $20 \mathrm{~V} / 2.5 \mathrm{~A}$ or $40 \mathrm{~V} / 1.25 \mathrm{~A}$		Jul	1976	18
$\begin{gathered} \text { Bench PSU, } 3-8 V / 2.5 \mathrm{~A} \& \\ \pm 8-16 / 0.5 \mathrm{~A} \end{gathered}$		Feb	1984	41
Bench PSU, $25 \mathrm{~V} / 1.5 \mathrm{~A}$ (Short Circuit)		Apr	1977	47
Cable Tester		Oct	1979	23
Capacitance meter, autoranging	part 1	Mar	1982	48
	part 2	Apr	1982	108
	Errata	Jul	1982	35
Capacitance Meter, $10 \mathrm{pF}-10 \mathrm{uF}$ CMOS IC Tester		Aug	1980	93
		Aug	1984	64
	Errata	Sep	1984	68
CMOS IC tester, simple		Feb	1976	19
Component Tester (for semiconductors)		Dec	1981	69
Continuity Tester (Short Circuit)		Sep	1977	38
Cross Hatch Generator		Sep	1978	33
Crystal Calibrator		Mar	1981	39
Curve Tracer		Dec	1978	73
Decade Resistance Box		Dec	1972	38
Digital Frequency Meter, 0-150 MHz		jan	1980	56
Digital Frequency Meter (Short		Jun	1977	19
Circuit)	Errata	Aug	1977	8
Digital Multimeter		Oct	1976	42
	Errata	Nov	1976	8
Digital Oscilloscope Trigger		Aug	1983	51
Digital Test Meter (DMM/DFM)		Sep	1980	79
Digital Voltmeter		Mar	1977	35
	Errata	Jun	1977	9
Digital Voitmeter Module		Oct	1975	18
Dual Logic Probe		Sep	1982	68
Dual Power Supply		Apr	1972	50
Dual Trace Adaptor		Oct	1974	18
Dual trace adaptor (Design Competition)		Feb	1983	72
Dual Trace Adaptor (Readers's Designs)		Jul	1981	27
Dummy Load for audio testing		Jan	1982	71
FET DC Voltmeter		Dec	1972	36
Frequency Counter Module, 1 MHz		Nov	1975	11
Frequency meter, audio		Jul	1973	66
Frequency meter, digital, $0-150 \mathrm{MHz}$		Jan	1980	56
Frequency meter, digital, (Short		Jun	1977	19
Circuit)	Errata	Aug	1977	
Frequency meter, linear, $100 \mathrm{~Hz}-100 \mathrm{kHz}$		Jul	1980	99
Function Generator, 1 kHz		Mar	1977	55
Function Cenerator, $1 \mathrm{Hz-100kHz}$		Dec	1979	20
Grid dip oscillator		Aug	1975	34
High Impedance Instrument Probe		Apr	1982	57
IC Power Supply		jan	1973	34
IF Strip Tester (free PCB project)		Oct	1982	26
Impedance Meter, direct reading		Jun	1975	17
Insulation Tester, 500 V		May	1982	73
Laboratory PSU, 0-30V, 1.2A		Sep	1981	87
LCD Digital Multimeter		Aug	1978	23
	Errata	Oct	1978	13
Linear Frequency Meter, $100 \mathrm{~Hz}-100 \mathrm{kHz}$		Jul	1980	99
Linear IC Tester		Nov	1974	30
Linear Ohmeter, $1 \mathrm{k}-1 \mathrm{M}$ FSD		Jun	1980	34
Logic Clip, 16 point, TTLCMOS		Nov	1983	91
Logic IC Tester, TTUCMOS		Jan	1976	19
Logic Probe		Sep	1972	32
Logic Probe		Dec	1975	32
Logic Probe, CMOS, single point		Mar	1983	73
Logic Probe, Dual		Sep	1982	68
Logic Probe, TTL/CMOS		Dec	1979	101
Logic Pulser		Dec	1975	37
Logic Tester, CMOS		Aug	1980	73

Project		Month	Year	Page
Logic Trigger for oscilloscopes		Mar	1979	39
Low-Ohm Meter, 0.1-100R FSD		Apr	1981	40
Marker Cenerator		May	1976	25
Meter Mount (multimeter stand)		Jan	1973	43
Multimeter (DMM/DFM)		Sep	1980	79
	Errata	Apr	1981	8
Multimeter, digital		Oct	1976	42
	Errata	Nov	1976	8
Multimeter, LCD Digital		Aug	1978	23
	Errata	Oct	1978	13
Oscillator, Audio, with LCD DFM		Nov	1978	71
Oscillator, wide range		Jun	1978	90
Oscilloscope, 10 MHz	part 1	May	1982	53
	part 2	Jun	1982	30
	part 3	Jul	1982	63
	Errata	Feb	1983	41
Oscilloscope Calibrator		Apr	1972	12
Oscilloscope, television	part 1	Jui	1983	21
	part 2	Aug	1983	30
	Errata	Sep	1983	46
Power meter, audio		Jun	1976	29
Power Meter, Audio		Mar	1979	67
Power Meter, RF		Oct	1978	30
Power Meter, Stereo		Mar	1984	35
Power Supply, $0-30 \mathrm{~V} / 1.2 \mathrm{~A}$		Sep	1981	87
Power Supply, 4.5-12 V/0.4 A		Oct	1974	53
	Errata	Nov	1974	71
Power Supply, 3-8V/2.5A $\& \pm 8-16 \mathrm{~V} / 0.5 \mathrm{~A}$		Feb	1984	41
Power Supply, $10 \mathrm{~V} / 1 \mathrm{~A}$ or $15 \mathrm{~V} / 0.5 \mathrm{~A}$		Jan	1973	34
Power supply, $25 \mathrm{~V} / 1.5 \mathrm{~A}$ (Short Circuit)		Apr	1977	47
Power Supply, $30 \mathrm{~V} / 1 \mathrm{~A}$		Aug	1978	75
Power Supply, $20 \mathrm{~V} / 2.5 \mathrm{~A}$ or $40 \mathrm{~V} / 1.25 \mathrm{~A}$		Jul	1976	18
Power supply, dual		Apr	1972	50
Power supply, programmable		Jan	1983	83
	Errata	Jan	1984	72
Power supply, switching regulator, $5 \mathrm{~V} / 10 \mathrm{~A}$		Apr	1976	54
Pulse generator, precision		Nov	1982	39
Pulse Generator, single/delayed		Feb	1981	46
RF attenuator		Sep	1976	62
RF Power Meter		Oct	1978	30
SCR Tester (Short Circuit)		Jan	1977	36
Signal injector/tracer		May	1977	37
Signal Tracer		Mar	1980	26
Sound Pressure Level Meter		Feb	1981	74
Spectrum Analyser, Audio		Jun	1978	27
Spectrum Analyst		Nov	1982	52
	Errata	Dec	1982	83
Stereo Power Meter		Mar	1984	35
Stereo test amplifier (Short Circuit)		Jul	1977	30
Sweep oscillator		Aug	1977	10
Telescope (television oscilloscope)		Jul	1983	21
	part 2	Aug	1983	30
	Errata	Sep	1983	46
Tone burst generator	part 1	Feb	1976	25
	part 2	Mar	1976	57
Transistor Tester		Jul	1974	63
True RMS Voltmeter		Mar	1978	13
TLL Supertester		May	1975	30
TV Baragraph		Jul	1982	50
TV pattern generator		Nov	1976	31
Versatile Grid Dip Oscillator		Aug	1975	34
Voltmeter, digital		Mar	1977	35
	Errata	Jun	1977	9
Voltmeter, FET DC		Dec	1972	36
Voltmeter, module, digital		Oct	1975	18
Voltmeter, True RMS		Mar	1978	13
Voltmeter, wide range		Apr	1972	36
	Errata	Feb	1973	58
Wattmeter, audio		Oct	1973	46
Wide range Oscillator		Jun	1978	90

A BRITISH MADE OSCILLOSCOPE AT AN AFFORDABLE PRICE

The new Bridage single and dual trace oscilloscopes.

Single beam $\mathbf{£ 1 9 5}$ Dual trace $£ \mathbf{2 2 5}$

\star Send for details today \star
Agents and distributors required worldwide.

Bridage Scientific Instruments
63-65 High Street, Skipton, North Yorkshire BD23 1EF.
Tel: (0756) 69511 (10 lines)

Manufactured in association with Scopex Electronics Limited

Affordable Accuracy • Low Cost Multimeters from Armon

8PECIFICATION MODELS
HC-6010 \& HC-7030 DIGITAL

* 10 amp $\mathrm{AC} / \mathrm{DC}$
* Battery Single 9 V drycell. Life: 200 hrs .
- Dimenslons: $170 \times 89 \times 38 \mathrm{~mm}$
* Moignt Select Push Button
* $A C D C$ Current: $200 \mu \mathrm{~A}$ to 10 A
- AC Voltage: 200 mV to 750 V
\star DC Voltage: 200 mV to 1000 V \star Restance: 200 n to $20 \mathrm{M} \Omega$
* Input impedance: 10Mn
\star Display. $31 / 2$ Diglt 13 mm LCD
* O/load Protection: All ranges

Dept. E, Heron House, 109 Wembley Hill Road, Wembley, Middlesex HA9 8AG
Telephone 01-902 4321 (3 lines). Telex 923985

SPECTRUM CONTRC

 Give your Spectrum the power to control virtually anything withthis versatile expandable I/O port. Design by Mike Wynne Jones.

Fig. 1 Overlay diagram of the control/PSU board

AIthough designed with no specific control application in mind, this digital I/O system has found a variety of uses including the control of a robot. It is extremely versatile and flexible in its configuration, being expandable from a single 8 -line-in and 8 -line-out board to a huge system with 128 input lines and 128 outputs - enough to control Sir Clive's notorious power stations several times over.

It's flexibility lies in its construction format: if more $1 / O$ lines are required than currently available, one merely builds another I/O board and plugs it into those already present, forming a tower of up to $16 \mathrm{I} / \mathrm{O}$ boards on top of the control board. Connections are made between them via four 8-pin DIL wire-wrap sockets.

The control board (for want of a better name) is the one which plugs into the Spectrum. It provides an edge-connector like the Spectrum's for connecting up other peripherals, an external back-up power supply and a certain amount of address-decoding logic and signal-buffering Each 1/O board has pins to plug into the board beneath, sockets to accept another board above, the I/O logic and two 15 -way D-type input and output connectors.

For flexibility in the Spectrum system, there are two ranges of 1/O map positions with a hardware switch which indicates which position is taken. In order to comply with constraints imposed by the Spectrum hardware, each board must be mapped to an address (31 + a multiple of 32). This can be done just at face value, taking up most or all of the space in the first page; this space, however, is required for other peripherals such as joystick interfaces (for manoeuvring your robot's arm) and analogue interfaces. By adjusting SW101, a switch whose position sets the valid state of A14, the address can be changed to $(168384+31+$ a multiple of
32). It is the number on lines BOB3 which indicates what that number is to be for a particular I/O

If the computer's supply is connected and the external one is not, the boards should still be allowed to function, drawing power from the computer. But if the external supply is connected and the computer's is not, they must not receive power this would allow ICs on the I/O boards to apply voltages to chips in the computer which otherwise have no power connected, possibly resulting in considerable damage. The I/O boards must only receive power from the external source when both sources are operational - at all other times they can be connected to the computer's +5 V rail. This action is achieved by the components associated with RLA 101 on the control board.

Construction

It is strongly recommended that our double sided circuit boards should be used as it is extremely difficult to make the boards, especially where an edge connector is involved, and the four DIL socket connectors must be positioned precisely the correct distance apart.

Begin assembling the control board by cutting the pins of the edge connector to about half an inch and then bend them towards each other in pairs across the connector (Fig. 2). Insert the small edge connector mounting board between them and solder it in place at each pin. Now make the connections between this and the main board using thin flexible wire. The purpose of this arrangement is to prevent vibrations from disturbing the connections, and to allow flexibility so that the mis-
match in height between the computer and the external circuit boad does not matter.

DC unregulated source, capable of supplying 1.2A maximum. It is terminated with a 3.5 mm jack plug, wired so that the tip is positive.

Fig. 2 (left) Making a flexible connector.
Fig. 3 (above) Mounting details of alternative relays.

RESISTORS	
R101-104	1 k0 1/4W 5\%
CAPACITORS	
C101	10u16V electrolytic
C102-105	100n ceramic disc
SEMICONDUCTORS	
IC101	7805
IC102	74LS367
IC103	74LS27
IC104	74LS133
Q101	BC182L
D101	1N4001
MISCELLANEOUS	
SW101 RLA101	SP C/O DIL switch 6 V two-pole C/O
	miniature relay (see text and Buylines)
SK101-104	8 pin standard or low profile DIL socket
SK105	3.5 mm jack socket
SK106	28 way doublesided edge connector, keyway at position 5, to suit Spectrum
PCB; M3 nut and bolt for IC101; 2×16 pin, 1×14 pin and 1×20 pin DIL sockets for ICs and RLA101; four off rubber feet; perspex sheet; nuts and bolts to secure perspex; 28 way Veroboard strip for edge connector.	

PARTS LIST CONTROL/PSU BOARD

The external power source is connected via jack socket SK105, and is regulated to +5 V by IC101, a 7805 voltage regulator. C101 and C102 form part of the regut lator's stabilising cicuitry.

The switching action between sources is done by RLA101. When it is in its normally closed state (ie the coil is not energised), the +5 V rail is connected to that of the computer. This occurs when the computer's supplyis absent (Q101 is switched off), or when the external supply is absent (relay coil receives no power), or both. However, if both sources are connected properly, Q1 switches on and the relay coil is energised. This allows the $1 / O$ equipment to take its power from the external source.

When RLA101 is switched off, the magnetic field in the coildecays, causing a large back-EMF. D101 shorts this potential, preventing damage to Q101.

Signals RD, WR and A5-8 are not required by the control logic. However, they are monitored by several gates on the I/O boards. As the fanout of the gates driving these lines in the computer may not be adequate, they are buffered by IC2. B0-3 are all tied to 0 V on the control board, as this is the number passed to the first I/O board.

The general enable line from the control board to the the $1 / O$ boards is SEL(ECTED); general because it indicates that one of them is addressed, but not which one. It is produced by IC4, whose inputs must all be high to produce a low (active) output. Thus, A0-A4 must all be high (necessary to avoid interference with other hardware already in the Spectrum system), and so must the outputs of IC103 a, b and c . These are three-input NOR gates, and their inputs must all be low to produce high signals at the corresponding inputs of IC104: A9-13 and A15 must all be low as set out in the addressing requirements, and IORQ (standing for $\ln /$ Out Request (bar)) to indicate that the operation taking place is a valid //O operation rather than a memory operation. The valid state of A14 is set by the switch, SW101. It is set depending on whether we wish the system to be mapped from 31 onwards or from $16384+31$ (ie 16415) onwards. If the switch is set to " HI ", IC104 detects a high signal, and the input of IC103a is pulled low by resistor R102. If it is set to "LO", R104 pulls the input of IC4 high, and the input of IC103a, pin 9, detects a low signal on A14.

Thus when the correct general address is present on the bus (ie not including A5 - AB), and IORQ is low, SEL goes low, signalling to the 1/O boards that if A5-AB are correct for a particular board, that board should then activate.

The data bus signals are not required by the control board, so they pass over it to the stack of $1 / O$ boards.

Capacitors C103-105, are physically close to the logic ICs to increase stability in the circuitry, as recommen-

Fig. 4 Circuit diagtram of the control/PSU section.
ded by the manufacturers.
Turning to the I/O boards, IC1 is a quad exclusive NOR package. These have outputs which are low when the inputs are different ($\mathrm{L}-\mathrm{H}$ or $\mathrm{H}-\mathrm{D}$) and high when the inputs are the same (H Hor L-L
Each of the gates in IC1 has an open collector output. This means that it can only drive the output low if required the high level is being established by R1. If any of the address inputs BA5 -7 do not match their corresponding Bo - 3 inputs then the output of that section of IC1 will go low. This will drive all the other outputs low as well and thus the input to IC3b will be low. This is known as a "Wired AND" connection since it acts just like a 4 input AND gate without an actual device being used.

B0,1,2,3 (the B is merely an arbitrary letter) indicate what number should be present on A5-AB for a particular 1/O board to activate. A5 is compared with B0, A6 with B1 and so on, by IC1a-d. For a particular board to be
activated SEL must be low, and so must the output of IC3b on that board. These two lines are monitored by IC2a, giving a high output and thus a low output on IC3a when conditions for that board to function are fulfilled.

The number passed to board one on the B-bus is 0000,0001 to board two etc., so to make the order in which the boards are plugged in irrelevant, each board must add one to the number passed to it from below before passing it on to the board above. This is implemented by IC4 - a four-bit adder with 0000 as one input and the carry input high.

The low output from IC3a is pro cessed with RD by IC2b, giving a high output to activate the input chip. It is, however, activated by a low signal, so inverter IC2C is included in the signal path to cause the necessary inversion when the input chip is activated, applying the input data to the data bus. Its internal latches are disabled through D1 to prevent the data from changing during read should external hardware

PROJECT: Spectrum Control

Fig. 5 The I/O board circuit.
attempt to cause this to happen. The data on the data bus is thus read by the microprocessor. The latches in IC5 can be disabled by external cicuitry: inputs are ignored, and only the previous data read. This action is very useful if the inputs are connected directly to the data bus of another computer, and is caused by pulling the EXTERNAL LATCH DISABLE connection low.
For ouput (a write instruction) the ouput of IC2d goes high, clocking the D-type flip-flops in IC6, and thus mow ing the data from the data bus onto the output lines. The output can be made high-impedance (again useful if they are to be connected to the data bus of another computer), by pulling OUTPUT DISABLE high.

Next make connections, using single strand insulated wire, between the row of holes and the strips between the edge connectors again as shown in the overlay diagram. The rows of holes for connections are staggered to prevent the introduction of weakness into the board. Edge connector strips on the underside of the board are shown in red in the overlay diagram, and those on the component side in black

When all this interwiring has been completed and thoroughly checked, solder all the throughboard links top and bottom into
place and the resistors and the diode. All components should be soldered on the underside of the board. Now insert and solder the IC sockets, SW101, IC101, and the capacitors. The four sockets in the corners of the board for connection to the I/O boards are standard 8 pin DIL IC sockets.

Fig. 6 Mounting details of SK105.
Next insert the relay and jack socket. The orginal relay is a very compact device from Maplin, and it is a good idea to fit it in a 14 pin low profile DIL socket with pins $2-$ 4 and 11-13 removed or to use a suitably modified 16 or 20 pin socket if the alternative type is used The best type of jack socket is a chassis-mounting sort with a plastic housing, as these sockets have a flat side to them which rests on the surface of the PCB. Printed circuit mounting jack sockets are only widely available in the quarter inch standard size. The socket is held steady by a piece of 16 or 18 SWG wire passing over the threaded section on the front and through the two holes in the board, with the ends soldered firmly.

Hint - when inserting the through links, use the old resistor lead or 22 SWG tinned wire. Flatten the end with pliers or bend a small angle to retain it.

Next month, we shall conclude the description of the port with construction details of the I/O boards and notes on testing, use and connection between computers.

TECH TIPS

Hiss Reducer

S. P. Giles London

The circuit goes some way towards offering a cheap reduction in the annoying hiss present on bad VHF reception signals and hissy tape recordings. It is based on the principle that two signals equal in all respects other than phase will cancel out when mixed together. If we create an out-of-phase version of
the hiss and mixit with the original, it will cancel out.

The signal to be cleaned up is DC blocked by C 1 and then fed intotwo separate paths, to mixer IC1b's inverting input via R5 and into IC1a The latter is a unity gain inverting amp which inverts the high frequency content of the input signal passed through by C2, C3 or C4. The IC1a output is then passed to mixer IC1 b via R4 and PR1, which for best results should be a multiturn preset.

To set up, connect a temporary link between R1 and IC1 a's inverting input, which will allow IC1a to pass all of the input. Hook up the input to a radio tuned to a hissy VHF station and the output to an

A440 Tuning Reference

C. Robertson Edinburgh

This circuit was developed as a result of a demand by several friends for a cheap and reliable A440 tuning reference which could be connected to an existing amplifier/studio talkback system. The frequency reference used was a 4.433 MHz crystal, this having the advantage of being cheap, accurate and readily available.

If 4.433 Hz is divided by 10075 or 10011101011011_{2} the resultant frequency is exactly 440 Hz . However, in orderto simplify the circuit, this is rounded to 10076 or 10011101011100_{2}. This gives a
resolution of 0.5% which is quite sufficient for all but the most critical of applications, bearing in mind that a pitch difference of about 6% is equivalent to one semitone.

The crystal oscillator based round T1 has its output divided by two by IC1a, a D-type flip-flop which subsequently feeds the clock input of the 12 stage ripple counter, IC2. The appropriate outputs of the counter are ANDed via IC3 and Q2 and fed back to the reset inputs of both IC2 and IC1a, (Q2 is an NPN type in order to reduce power consumption). This produces a narrow negative-going pulse train of 880 Hz which is presented to IC1b, a second D-type divide by two circuit. This produces the 440 Hz reference with a precise $50 / 50$ mark space ratio. Q3 and its associated components reduce the signal to approximately line level and perform

wave shaping

The power supply is a single 9 V PP3 battery connected via a simple SPST switch with decoupling performed by C7 and C8. Current drain is typically 4 mA .

The prototype was constructed on a small printed circuit board in an ABS box measuring $120 \times 80 \times 30$ mm . It should be noted that although the inputs to IC3 are arbitrary, the pin connections shown give the simplest PC layout if the chips are positioned side by side with the 4040 on the left, pin 1 top right.

Finally, although the unit was designed to run from a PP3 battery, it will run equally well on supplys of up to 18 V such as those found in many mixers and pre-amps, although it is advisable to increase R2 and R7 accordingly.

Slide Advance Unit

Ian Lamb
Harare, Zimbabwe

amplifier. Adjust PR1 for minimum output - headphones would help here. Now remove the temporary link and make sure S1 is switched to position (a); you should hear the original signal with its hiss. Moving S1 to positions (b), (c) and (d) will result in the hiss gradually becoming less audible with position (d) giving the most dramatic reduction at the expense of losing a little high frequency response.

The values of C2, C3 and C4 can be altered to suit the inidividuallC1, a dual op-amp, should of course be a low noise type such as NE5532 or TL072 and C2-4 should of course be polyester types.

This unit either encodes to or decodes from one channel of a stereo tape deck a 1 kHz tone to activate the remote advance of a slide projector. The other channel is utilised for commentary of the slide series.

When pin 2 is pulled low, either by closing switch SW1 or by applying an audio signal, the normally low output on pin 3 goes high, charging the capacitor on pin 6 . This eventually causes pin 4 to switch low, which pulls pin 1 low for a period of 3 seconds and pin 13 low for a period controlled by the setting of
the 100 k potentiometer. The output of this gate (pin 11) pulsing high activates the 1 kHz oscillator for the recorder and provides base drive to the Darlington pair connected across the remote jack of the slide projector. The 100 k potentiometer is adjusted for the correct length of pulse to advance the slide tray.

At the end of the 3 second period, pin 1 is again high and if pin2 has also returned high then the outputs on pin 3 going low discharges the capacitor on pin 6 which in turn switches the output on pin 4 to the a high, leaving the unit ready for the next negative going input signal.

ETI

ETI PCB SERVICE

In order to ensure that you get the correct board，you must quote the reference code when ordering． The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third is the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until we receive payment．

1979	
\square	E／794－1 Guitar Effects Unit
\square	E／794－2 Click Eliminator．．．．．．．．． 7.64
\square	
1980	
\square	E／808－3 Ultrasound Burg
口	E／8010－1 Cassette Interface ．．．．．．．3．37
\square	E／8010－2 Fuzz／Sustain Box ．．．．．． 3.76
1981	
口	E／811－1 LED T
\square	E／811－2 Multi－Option S
口	E／814－2 Drum Machine（2 boards）
\square	E／814－4 Guitar Note Expander ．．．．． 3.
口	E／816－8 Waa－Phase．．．．．．．．．．．．．．． 1.76
\square	E／816－9 Alien Attack
\square	E／817－1 System A－Input （MM or MO． \qquad
\square	E／817－2 System A－Preamp．．．．． 5.95
\square	E／817－3 Smart Battery Charger．．．．． 2.27
ㅁ	E／818－3 Hand Clap Synth．．．．．．．．．． 4.57
\square	E／818－5 Watchdog Home Security（2 boards）．．．．．．．．．．．．．． 6.
\square	E／819－1 Mains Audio Link （ 3 boards） ．．．．．．．．．．．．．．．．．．．．．．．．． 8.45
\square	E／819－4 Laboratory PSU．．．．．．．．．．． 5.21
\square	E／8110－1 Enlarger Timer．．．．．．．．．．． 3.91
ㅁ	E／8110－2 Sound Bender ．．．．．．．．．．． 3.05
7	E／8111－1 Voice Over Unit ．．．．．．．． 4.57
\square	E／8111－2 Car Alarm
\square	E／8111－3 Phone Bell
－	E／8112－4 Com
1982	
	E／821－3 Guitar Tuner（2 boards）．．． 6.38
ㅁ	E／822－1 Ripple Monitor ．．．．．．．． 2.21
\square	E／822－2 Allez Cat Pest Repeller ．．．． 1.93
	E／822－5 Moving Magnet Stage ．．．．． 4.01
－	E／822－6 Moving Coil Stage ．．．．．．．． 4.0
－	E／823－4 Capacitance Meter （2 boards）．．．．．．．．．．．．．．．．．．． 11.66
\square	E／825－1 DV Meg．．．．．．．．．．．．．．．．．． 3.1
\square	E／826－1 Ion Generator （ 3 boards）．．．．．．．．．．．．．．．．．．． 9.20
\square	E／826－4 MOSFET Amp M
\square	E／826－5 Logic Lock
－	E／826－6 Digital PWM ．．．．．．．．．．．．． 3.84
\square	E／826－7 Optical Sensor ．．．．．．．．．．． 2.00
口	E／826－9 Oscilloscope （4 boards） ．．．．．．．．．．．．．．．．．．．．． 13.34
\square	E／827－4 Hotw
	E／827－5 Bridg

1979
E／794－1 Guitar Effects Unit ．．．．．．．． 3.04
E／794－2 Click Eliminator．
.7 .64
1980
E／808－3 Ultrasound Burglar Alarm 3.30 E／8010－2 Fuzu／Sula
3.76 1981

E／811－2 Multi－Option Siren．．．．．．．．． 3.68
E／814－2 Drum Machine（2 boards） 6.44
E／814－4 Guitar Note Expander ．．．．． 3.68
E／816－9 Alien Attack ．．．．．．．．．．．．．． 4.00
E／817－1 System A－Input
（817 $\mathbf{1}$ Syst．．．．．．．．．．．．．．．．．．． 5.95
E／817－3 Smart Battery Charger．．．．． 2.27
E／818－3 Hand Clap Synth．．．．．．．．．． 4.57
／818－5 Watchdog Home
819－1 Mains Audio Link
（ 3 boards）
8.45
－E／819－4 Laboratory PSU．．．．．．．．．．． 5.21
－E／8110－2 Sound Bender ．．．．．．．．．．．．．．．．．．．．．05
E／8111－1 Voice Over Unit ．．．．．．．．． 4.57
E／8111－2 Car Alarm．．．．．．．．．．．．．．． 3.23
E／11－3 Phone Bell Shifter．．．．．．．．．． 3.40
E／8112－4 Component Tester．．．．．．． 1.71 982
6.38

E／822－2 Allez Cat Pest Repeller ．．．． 1.93
E／822－5 Moving Magnet Stage ．．．．． 4.01
E／822－6 Moving Coil Stage ．．．．．．．． 4.01
823－4 Capacitance Meter
E／825－1 DV Meg．．．．．．．．．．．．．．．．．． 3.13
／826－1 lon Generator
826－4 MOSFET Amp Module．．．．． 7.80
E／826－5 Logic Lock ．．．．．．．．．．．．．．． 3.52
E／826－6 Digital PWM ．．．．．．．．．．．．． 3.84
826－7 Optical Sensor
．
－E／827－5 Bridging Adapter ．．\ldots ．．．．．． 2.74
How to order：indicate the boards required by
ticking the boxes and send this page，together

E／828－1 Playmate（3 boards）．．．．．．． 8.28		
8212－2 Servo Interfa		
E／8212－4 Spectracolumn．．．．．．．．．． 5.54		
E／831－1 Fuel Gauge．．．．．．．．．．．．． 3.45		
331		
E／833－1 SoundBoard．．．．．．．．．．．． 12.83		
E／833－3 ZX81 User Graphics ．．．．． 1.07		
833－4 Logic Probe ．．．．．．．．．．．．． 2.50		
834－1 Real Time Clock ．．．．．．．．． 8.74		
834－2 Thermemete		
834－4 Stage Lighting－Main ．． 13.73		
E／834－5 Stage Lighting－Display 3.45 E／835－1 Compressor／Limiter ．．．．．． 6.19		
E／835－2 Single PSU ．．．．．．．．．．．．．． 3.16		
E／835－3 Dual PSU ．．．．．．．．．．．．．．． 4.01		
E／835－4．2 NDFL．Amp ．．．．．．．．．．． 7.88		
E／835－5 Balance Input Preamp．．．．． 3.23		
835－6 Stage Lighting		
835－7 Stage Lighting－		
Triac Board．．．．．．．．．		
E／836－1 to 3 PseudorO		
（3 boards）．．．．．．．．．．．．．．．． 3.62		
E／836－5 Atom Keypad．．．．．．．．．．．． 5.18		
E／837－1 Flash Sequencer ．．．．．．．． 2.67		
E／837－2 Trigger Unit Main Board．． 2.67		
837－3 Trigger Unit Transmitter．． 1.66		
837－4 Switched Mode PSU ．．．． 16.10		
838－1 Graphic Equalisr ．．．．．．．．． 9.10		
E／838－2 Servo Fai－Safe		
E／838－3 Universal EPROM prog．．． 9.64		
E／839－1 NiCad Charger／Regen．．．． 3.77		
839－2 Digger．．．．．．．．．．．．．．．．． 3.40		
E／839－3 64 K DRAM．．．．．．．．．．．． 14.08		
8310－1 Supply Protector ．．．．．．． 2.19		
E／8310－2 Car Alarm．．．．．．．．．．．．． 3.98		
E／8310－3 Typewriter Interface ．．．．．4．17		
E／8311－1 Mini Drum Synth ．．．．．．．． 3.07E／8311－2 Alarm Extender．．．．．．． 3.21		

E／828－1 Playmate（ $\mathbf{3}$ boards）．．．．．．． 8.28 E／828－4 Kitchen Scales．．．．．．．．．．．．． 2.12 E／829－1 Auto Volume Control．．．．．．． 2.12
E／829－2 Dual Logic Probe ．．．．．．．．． 2.22
E／8211－4 Puise Generator ．．．．．．．．．． 6.08
E／8212－1 ELCB ．．．．．．．．．．．．．．．．．．． 2.77
2－2 Servo Interface
（2 boards）．．．．．．．．．．．．．．．．．．．．．．．．．． 6.75 3
E／831－1 Fuel Gauge．．．．．．．．．．．．．．．．．．．． 3.45
E／831－2 ZX ADC．．．．．．．．．．．．．．．．． 2.59
E／831－3 Programmable PSU ．．．．．．． 3.45
E／833－1 SoundBoard．．．．．．．．．．．．． 12.83
E／833－2 Alarm Module ．．．．．．．．．．．． 3.62
E／833－3 ZX81 User Graphics ．．．．．． 1.07
2.50

E／834－2 Thermemeter
（2 boards）．．．．．．．．．．．．．．．．．．．．．．．． 9.74
E／834－4 Stage Lighting－Main ．． 13.73
E／834－5 Stage Lighting－Display 3.45
E／835－1 Compressor／Limiter ．．．．．．． 6.19
E／835－2 Single PSU ．．．．．．．．．．．．．．．． 3.16
E／835－3 Dual PSU ．．．．．．．．．．．．．．．．．． 4.01
E／835－4．2 NDFL．Amp ．．．．．．．．．．．．． 7.88
E／835－5 Balance Input Preamp．．．．． 3.23
Auta Stage Li．．．．．．．．．．．．．
E／835－7 Stage Lighting－
Triac Board．．．．．．．．．．．．．．
E／836－1 to 3 PseudoROM
（3 boards）．．．．．．．．．．．．．．．．．．．．．．．．． 3.62
E／836－5 Atom Keypad．．．．．．．．．．．．． 5.18
E／837－2 Trigger Unit Main Board 2.67
E／837－3 Trigger Unit Transmitter．． 1.66 E／837－4 Switched Mode PSU ．．．．．． 16.10
E／838－1 Graphic Equalisr ．．．．．．．．．． 9.10
E／838－2 Servo Fait－Safe
（four－of）．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 2.93
E／839－1 NiCad Charger／Regen．．．．． 3.77
E／839－2 Digger．．．．．．．．．．．．．．．．．． 3.40
E／839－3 64 K DRAM．．．．．．．．．．．．．． 14.08
E／8310－1 Supply Protector ．．．．．．．． 2.19
E／8310－2 Car Alarm．．．．．．．．．．．．．． 3.98
E／8310－3 Typewriter Interface ．．．．． 4.17
E／8311－2 Alarm Extender．．．．．．．．．．．． 3.21

\square	E／8311－3 Multiswitch ．．．．．．．．．．． 3.59
\square	E／8311－4 Multiple Port．．．．．．．．．．． 4.34
口	E／8311－5 DAC／ADC Filter ．．．．．．．． 3.22
\square	E／8311－6 Light Pen ．．．．．．．．．．．．． 4.60
口	E／8311－7 Logic Clip ．．．．．．．．．．．．． 2.51
口	E／8311－8 MC Head（JLLH）．．．．．．．． 3.17
\square	E／8312－1 Lightsaver．．．．．．．．．．．．． 1.85
－	E／8312－2 A－to－D Board．．．．．．．．．． 12.83
口	E／8312－3 Light Chaser（2 bds）．．．．． 7.54
\square	E／8312－4 ZX Alarm ．．．．．．．．．．．． 6.04
1984	
口	E／841－1 Vector Graphics ．．．．．．．．． 8.27
\square	E／842－1 Speech Board （Mini－Mynah）．．．．．．．．．．．．．．．．．．．． 10.97
	MODULAR PREAMP：
\square	E／842－2 Disc input（mono）．．．．．． 3.73
－	E／842－3 Output stage（stereo）．．．． 3.73
\square	E／842－4 Relay／PSU ．．．．．．．．．．．．． 3.73
\square	E／842－5 Tone，main（mono）．．．．．．． 3.73
\square	E／842－6 Tone，filter（stereo）．．．．．． 3.73
\square	E／842－7 8alanced output（st）．．．．．3．73
\square	E／842－8 Headphone amp（st）．．．．． 3.73
口	E／842－9 Mother board ．．．．．．．．．．． 9.01
口	E／843－1 Power Meter ．．．．．．．．．．．．．5．81
口	E／843－2 Z80 DRAM．．．．．．．．．．．．． 9.79
口	E／843－3 Obedient Die．．．．．．．．．．． 3.76
口	E／844－1 School Timer ．．．．．．．．．．．． 4.07
口	E／84 4－2 Mains Borne RC（Rcvr）．．． 3.70
口	E／845－1 Auto Light Switch ．．．．．．．． 4.01
－	E／845－2 $\mathrm{ZX81} 1 \mathrm{EPROM}^{\text {Prog．．．．．} 10.53}$
口	E／845－2 Mains Born RC（Trans）．．．． 5.07
口	E／845－4 Centronics Interface ．．．．． 4.09
口	E／845－5 Vario ．．．．．．．．．．．．．．．．．． 6.62
\square	E／845－6 Midi Drum Synth ．．．．．．．． 3.59
\square	E／846－1 Oric EPROM Bd ．．．．．． 19.58
口	E／846－2 Spectrum Joystick．．．．．．． 3.30
口	E／847－1 Warlock Alarm ．．．．．．．．． 8.19
口	E／848－1 Joystick Interface．．．．．．． 3.07
\square	E／848－2 EPROM Emulator ．．．．．． 9.11
口	E／848－3 Infrared Transmitter ．．．． 3.70
口	E／848－4 Infrared Receiver．．．．．．．． 3.98
\square	E／848－5 CMOS Tester ．．．．．．．．．． 4.60
\square	E／849－1 EX42 Kybd．Interíace．．．．． 3.82
\square	E／849－2 Bansheee Siren ．．．．．．．．．．． 3.19
\square	E／849－3 Dry Cell Charger ．．．．．．．．． 2.80
\square	E／8410－1 Echo Unit ．．．．．．．．．．． 3.92
ㅁ	E／8410－2 Digital Cassette．．．．．．．．． 9.80
\square	E／8410－1 Echo Unit ．．．．．．．．．．．． 4.80

E／8311－3 Multiswitch 59E／8311－5 DAC3.22
E／8311－6 Light Pen．2.51
E／8311－8 MC Head（JLLH） 3.17E／8312－21283
E／8312－3 Ligh Chaser（2 bds）6.04
1984
842－1 Speech BoardMODULAR PREAMP：
ut（mono） 3.73E／842－4 Relay／PSU3.73E／842－6 Tone，filter（stereo）3.73E／842－8 Headphone amp（st）3.73
9.01E／843－1 Power Meter
／843－2 280 DRAM． 9.79
E／843－3 Obedi4.07E／845－1 Mains Bone RC（Rcv）．．． 01E／845－2 Mains Born RC（Trans）．．． 5.07
4.09E／845－5 Vario
845－6 Midi Drum Synth 3.59E／846－2 Spectrum loystick3.30E／848－1 Warlick Alat．8.19E／848－2 EPROM Emulator11
E／848－5 CMOS Tester． 3.98
E／849－1 EX42 Kybd．Interíace． 3.82E／849－3 Dry Cell Charger． 18E／8410－2 Digital Cassette．． 804.80
with your payment，to：ETI PCB Service，Argus Specialist Publications Ltd， 1 Golden Square， London W1 R 3 AB．Make cheques payable to ETI PCB Service．Payment in sterling only please．
Prices subject to change without notice．

Total for boards
Add 45p p\＆p
Total enclosed

Heathkit - IT'SA PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hards-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.(For shop addresses see back cover.)

FINESSE DISCO/

PARTY STROBE

Ian Benton, whose Finesse Light Chaser/Sequencer design appeared in our December 1983 issue, here sets out to dazzle us with another example of his design skills

An essential component in any disco's repertoire of lighting effects is the Xenon strobe light. The versions available at present range from the quite sophisticated (and horrendously expensive) to the rather boring constant speed variety which are still none too cheap.

The FINESSE strobe light can add an impressive strobe light display to the disco set-up at a reasonably small capital outlay, so it is ideally suited to the newcomer whose lighting equipment budget must take second place to the audio side of things. It might equally well be used to create atmosphere and stimulate dancing at any party, in the home or elsewhere.

The unit automatically flashes in time to the beat of the music so no speed control is required; a
level control is however, provided to compensate for music with less emphasised beat. The unit connects directly to the output of an audio amplitier or to the sound-tolight output which is provided on most disco consoles.

The operation of the circuit is best divided into two sections which will be dealt with separately: the audio amplifer and processor and its DC power supply; and the high voltage strobe and triggering circuitry.

Direct connection to the audio source is preferred for this circuit because with ALC (automatic level control) and a microphone, when the level of the sound drops, the strobe unit will be triggered by background noises. It may also be triggered by the sound made by the sudden expansion of the Xenon tube as the strobe flashes,
causing it to flash continuously at high speed under conditions of low ambient sound. This is a distinct advantage for a light chaser as it does not appear as though it has 'got stuck' when the volume is lowered but for a strobe light, the effect is, to say the least, annoying

Direct connection means than the audio circuitry must be completely isolated from the mains, and this is done by using a small transformer and an optoisolator. The output of the transformer is conventionally rectified and smoothed to provide a split rail power supply of approximately $\pm 12 \mathrm{~V} D C$ and earth and the optoisolator (IC2) is used to transfer the triggering pulse from the audio circuitry to the triggering circuit.

PARTS LIST

RESISTORS ($1 / 4 \mathrm{~W} \mathbf{~ 5 \%}$ unless otherwise stated)	
R1,2	470K
R3	3M9
R4,7,10	22k
R5	100k
R6	270k
R8	680R
R9	100k 1 W
R11	1 ko
R12	330k $1 / 2 \mathrm{~W}$
R13	220 R 10W
RV1	47k
CAPACITORS	
C1	10 u 16 V tantalum
C2	470 n 16 V tantalum
C3	10 n 400 V polyester
C4	22 u 400 V
C5,6	1000u 16V
SEMICONDUCTORS	
IC1	TL074
IC2	1174
Q1	BC184L
SCR1	C106D
D1,2	1 N4148
D3	1 N5401
D4,5,6,7	1 N4001
ZD1	22 V 400 mW zener
LED1	any LED
MISCELLANEOUS	
T1	strobe trigger transformer
	9-0-9V, 6VA PCB mounting
	PCB mounting 20 mm fuse holder and 1 A fuse
LP1	Xenon tube
PCB; case; reflector and lens assembly; DIN or other socket for audio input; mains cable and strain relief bush; wiring, PCB mounting pillars, etc.	

Construction

The components of both the audio circuitry and the power supply and trigger circuitry are all mounted on one PCB. Solder in the resistors first followed by the diodes and the ICs last (IC1 is a JFET/biplolar device and does not
require handling precuations). As usual, make sure that none of the tracks are bridged by small pieces of solder, especially where the high-voltage and power supply components are concerned.

The strobe tube mounts on top of C4 as this reduces the length of the current wires to a minimum. It

HOW IT WORKS

The left and right audio channels are summed by IC1a which is configured as an inverting summing amplifier with a gain of 18 dB to produce an audio signal of approximately $4 \vee$ RMS.

IC1b, D1, C1 and R5 form a peak level detector with a time constant of 1 second. This is smoothed by R6, C2 and fed to the inverting of the comparator, IC1 d . The peak level signal is buffered by IC1c and connected through D2 and R7 to $V_{\text {peak }}$ and $V_{\text {peak }}$ -0.65 V . This signal is compared to the smoothed sound level by IC1 d.

Thus the output of IC1d goes high, turning on LED1 and the emitterfollower Q1 which is used as a buffer. A pulse is transmitted to the optoisolator IC2, whenever the peak sound level exceeds the average (smoothed) sound level by an amount determined by the setting of RV1.

The effect of using a diode rather than a voltage divider is that when the music fades, the peak voltage is reduced by a greater amount than the smoothed voltage. This effects a reduction in sensitivity and cuts off the strobe towards the end of a record, keeping it turned off until the next record is faded in.

The mains is half-wave rectified by D3 and charges C4 up through R13 to approximately 340 V DC. With SCR1 non-conducting $C 3$ charges up over approximately 10 ms through R12 and T1 primary. This leaves one plate at 0 V and one plate at 340 V .

When the phototransistor in IC2 conducts, SCR1 is triggered forcing the + ve side of C3 to 0 V . The other plate goes to -340 V and discharges through T1 producing a pulse of about 5 kV on the secondary. This is passed to a metallised strip along the outside of the Xenon tube and ionises the gas inside. This then conducts strongly discharging C 4 in about 1 ms with a peak current of more than 50 Amperes and a peak power in excess of 1 kW depend ing on the tube used.

R9 and ZD1 limit the collector voltage of the phototransistor to 22 V since most opto-isolators have a 30 V $V_{\text {ceo }}$ limit.
The ringing of the tuned circuit formed by T1 and C3 turns off SCR1 on the first transistion through $0 V$ provided that the current flowing through R12 is less than the holding current.
is probably better if you can find a tag ended or radial leaded version for this component. The Xenon tube most be totally enclosed for reasons of safety as 340 V is present on its + ve terminal and 5 kV on the metallised strip along its length. Mounting is left up to the constructor, but one method is to use the lens unit from a RING halogen driving light, remove the bulb-holder and fix C4 to the back of the unit with the Xenon tube soldered onto its terminals.

It may also be possible to use the storage capacitor and tube from an existing simpler strobe the value of C 4 is non-critical - in which case the housing will not cause any problems. If a metal case is used it should obviously be earthed; if a plastic case is used do no let it come into contact with R13 which gets extremely hot

Before switching on check that the tube, C4 and D5 are all correctly connected as well as making the usual check for dry joints, etc. Electrolytics have a nasty pyrotechnic suicidal tendency when connected wrongly, big elec-
trolytics especially, so be particularly careful here. If spurious triggering occurs in use the input voltage is too high; R3 should be reduced until no distortion can be heard using a crystal earpiece on IC1a output.

Modification

The design can be modified in a number of ways to suit individual requirements. If link LK1 is removed from the strobe live line and a switch inserted instead, the unit can be adjusted to flash correctly using D3 as an indicator without the Xenon tube itself flashing. The output of IC1 c provides a buffered peak level signal and this could be used to drive a VU meter if desired.

It is also possible to modify the circuit to drive two tubes simultaneously. To do this, duplicate the strobe circuitry from the optoisolator onwards, reduce R8 to 560 R and connect the additional optoisolator diode in series with the existing one. Bear in mind that the additional strobe
circuitry will carry high voltages and assemble and insulate it accordingly. If you can afford it, the best solution would be to use a second PCB, either a full board from our PCB service or a homemade one whch reproduces just the relevant part of the layout. If the full PCB is used, it is a simple matter to connect up the optoisolator diode using one of the earth pads and the LED cathode pad, and to wire this into the board carrying the power supply and audio supply and audio circuitry in series with the LED.

BUYLINES

All components are standard except the Xenon tube and transformer (and possilbly the optoisolator; Type IL74 is specified but other types should work providing their $V_{\text {ceo }}$ is 25 V or more and the pinout is the same). Xenon tubes are available with trigger transformers from Tandy in two sizes and are surprisingly cheap. Maplin also supply a tube, but this has axial leads which may cause mounting problems. The PCB is designed for the Tandy transformer which should still work with the Maplin tube. The PCB is, of course, available from our PCB service.

B. BAMBER ELECTRONICS GOVERNMENT AND MANUFACTURERS SURPLUS

5 STATION ROAD, LITTLEPORT, CAMBS. CB6 1QE

ELECTRONIC COMPONENTS TELECOMMUNICATION EQUIPMENT test gear

TELEPHONES AND ACCESSORIES LATEST B. T. TELEPHONES AVAILABLE FOR EXTENSION USE

SLIMTEL - New one plece pushbutton 'phone from Telecom, Includes last number redial and allence feature (in wory colour only) E26.04, wall mounting klt for above ©.43.
We have many other types of sccessories avaliable, Including: Diais, Switches and Buttone, Jack Plugs and Sockets. Jack Adaptors, Cabies, Block Terminals. Telephone Cord, Mic. Inserts, and Belis.
For detalis of Telephones, Cordless Phones Speaker Phones, Auto Dislers, AnswarIng Machines and Novelty Phones available as well asa the full range of accessories pleace eend a large S.A.E.

NOTE: if is illegal for the consumer to install his own sockets or to alter existing B.T. installations in any way
All prices exctude V.A.T. Please add V.A.T. af $\mathbf{1 5 \%}$ to your order total. Add $\boldsymbol{£ 2 . 1 7}$ pap per telephone. Send cheques or poetal orders only to:

CAPRIOL SYSTEMS
Unite 10-28 senders Lodge ind. Eet, Ruenden, Northentes.
Allows 21 daye for detlvery.

MICRORANGE ELECTRONICS

UNIT 258, STRATFORD WORKSHOPS, BURFORD ROAD (near Stratiord Centro) LONDON E15 28P. TEL: 01 -536 1415

Recently opened component shop in the heart of Stratford, we have lots of special offers untll the end of November. (You will find us on the 2nd Floor.)

We specialize in the manufacture of:	SOME SPECIAL OFFERS (Many others in stock)	
Printed Circuit Boards No quantity is too small.	NE5533	
	NeSS32 1	Off 1.4510 off 1.15
We also supply:	TLO72	10 off 42p
Photo Board and associated chemicals at verykeen prices.	TLO74	(off 55p 10 off $780 p$
See below:	$78 \mathrm{PO5} 5 \mathrm{SV} 10 \mathrm{~A}$ Reg	5.50 each
6x4" Single sided $\quad 1.80$	781212 V 1 A Reg	30p each
8x5" Single sided 2.10	VN67AF Power Fet	65p each
6×4 " Doubie sided 2.00	60 W Spot Bulbs various colour	70p each
8×5 Double sided $\quad 2.40$	100W Spot Bulbs various colours	rs 1.25 gach
Other sizes available	2 metre $\times 1$ metre SPK Cloth	2.252 .95
	150W Power amp module	2.2512 .50
ALL PRICES INCLUDE VAT Please add 50 ofor P\&P	3 Way 700 W Sound to Lite unit	17.50
	Teleohone recording unit	15.00
	Fisase come and exe our range	

要
Abbots HIII Chambers 1 st Floor, Gower Street
Derby DE1 1 SD
Tel: Derby 0332/382433

\begin{tabular}{|c|c|c|c|c|c|}
\hline Modulee \& Power AMs \& Land \& Volt \& $8120(\mathrm{~mm})$ \& Price

\hline RVM 1505 \& \multirow[t]{2}{*}{70.150 W

120.300 W} \& \multirow[t]{2}{*}{4.8.} \& \multirow[t]{2}{*}{± 60} \& \multirow[t]{2}{*}{$31 \times 80 \times 100$} \& $1+23.50$

\hline \& \& \& \& \& $$
\begin{aligned}
& 10+19.98 \\
& 20+19.80
\end{aligned}
$$

\hline RVM300S \& 120.300W \& 4.8 \& ± 65 \& $31 \times 102 \times 136$ \& $1+32.87$

\hline \& \& \& \& \& $$
\begin{aligned}
& 10+27.94 \\
& 20+26.30
\end{aligned}
$$

\hline RVM 400 S \& 170-400W \& 4-8. \& ± 65 \& $47 \times 89 \times 136$ \& 40.92

\hline RVM700S \& 300-700W \& 2.8 \& ± 70 \& $47 \times 90 \times 197$ \& 60.98

\hline
\end{tabular}

RVM700S Mounted on Heat Sink

KiT PRICE			
RVM150S	$1+19.50$	$10+15.98$	$20+18.80$
RVM 300s	$1+28.87$	$10+23.94$	$20+22.30$

MAIL ORDER ONLY

RVM RANGEOF POWER MOSFET AMPLIFIERMODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

All prices include post \& packing.
(Quantity discount available)
To order send cash with order, or cheque/postal order.
Delivery on our Modules and Heat Sink or same day dispatch when order is received with cash, allow 7 days with cheque or postal order.

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

ACTIVE-8 LOUDSPEAKER

This month, Barry Porter completes the design work on the latest ETI active loudspeaker.

The Active- 8 was evaluated with both 12 and 24 dB per octave filters and no difference could be heard between them, so the 4 pole version was chosen as this gives slightly more protection to the high frequency unit by virtue of its steeper slope. It also has the additional advantage of reducing the level at the resonant frequency of the T33 - about 950 hz - by about 40 dB , where its effects may be safely ignored. The response of both high and low pass sections is shown in Fig. 6 and the circuit of this part of the network in Fig. 7.

Drive Unit Equalisation

If each drive unit had a flat frequency response over its range of operation, life would be much more enjoyable for all concerned. Unfortunately this is not the case, so additional circuitry has to be used to correct the major inaccuracies. The Active- 8 units were measured in free field conditions (free local playing field would be more accurate!) resulting in the plots of Fig. 8

Looking at the B200G response first, this shows a 6 dB rise between 300 Hz and 3 kHz which the equalisation circuit shown in Fig. 9 cancels with reasonable accuracy, as the corrected plot shows.

The T33A also exhibits a response that rises with frequency, so a similar circuit is used to counteract this.

It will be seen from Fig. 8 that the $T 33 \mathrm{~A}$ is slightly more sensitive than the B200C - about 3 dB if the low frequency output at 1 kHz is compared to the 10 kHz output from the high frequency unit. This difference will be corrected at a later stage by placing a 3 dB attenuator in the high frequency signal path.

Fig. 6 Crossover filter response.

Fig. 7 Crossover filter circuitry.

Fig. 8 Free-field response of the drive units.

Fig. 9 Equaliser section circuitry.

Fig. 10 The effect of the displacement of the speaker coils.

Time Delay

Ideally, the two drive units should have their acoustic centres on a plane that is perpendicular to the speaker axis. This is not the case however, as the T 33 a radiates from a point approximately 38 mm in front of the 3200 G . Referring to Fig. 10, it can be seen that the radiation pattern will be tilted downwards at the crossover frequency by:

$$
B=\operatorname{Atan}\left(\frac{D_{2}}{D_{1}}\right)=11.9^{\circ}
$$

This could be compensated for by mounting the T33A on a different plane to the B200G, but this would introduce a number of mechanical difficulties in avoiding diffraction effects from the cabinet edges. The alternative solution applied to the Active- 8 is to delay the high frequency signal by the amount of time it takes sound to travel 38 mm , which is:

$$
\mathrm{t}_{\mathrm{d}}=\frac{\mathrm{D}_{2}}{\mathrm{~V}}=\frac{38 \times 10^{3}}{343}
$$

A suitable delay circuit formed from cascaded all-pass filters, is shown in Fig. 11. Each stage gives a delay at the crossover frequency of:

$$
t=\frac{2 R C}{1+(2 \pi f R C)^{2}}
$$

The use of this delay ensures that both units are in phase along the cabinet axis, so no vertical directivity shift occurs over the crossover region. Colouration in the critical mid-range is therefore minimised, and the improved dispersion characteristics assist in the production of a very stable stereo image with a considerable presence of depth information.

The previously mentioned 3 dB attenuator in the high frequency signal path is formed at the output of the delay circuit by R44 and R45.

Closed Box Operation

Although the 'Active-8' may prove quite acceptable with reflex loading, there are certain advantages to be gained from replacing the vent escutcheon with a blanking plate and reverting to closed box operation.

Although curve A in Fig. 1 may not look too promising especially if your musical taste runs to
material with more than its share of bass emphasis, remember that this is the anechoic response. Under normal listening conditions, room boundary reflections will give a perceived increase in low frequency output.

Closed box response rolls off at 12 dB per octave, and therefore exhibits less transient overshoot and ringing than the 24 dB per octave reflex response. Although the Active- 8 will give good performance when used as a closed box in a small listening room, it will not have sufficient bass output for use in larger rooms. The technique employed to resolve this problem works like this:- as we have seen, the closed box response rolls off at 12 dB per octave, so if circuitry is placed in the low frequency signal path that introduces a counteracting 12 dB per octave lift, the acoustic output of the speaker will remain flat at lower frequencies. Obviously, the equalisation cannot continue to rise in level, so at the point where it flattens the speaker roll-off will start, still retaining a 12 dB per octave sope and with a Q value that is decided by the electronics. A suitable low frequency equalisation circuit is shown in Fig. 12. The Active-8 values are based upon the following parameters.

$$
\begin{aligned}
f_{\mathrm{O}} & =48 \mathrm{~Hz} \\
Q_{\mathrm{P}} & =0.505 \\
\mathrm{f}_{\mathrm{p}} & =13.2 \mathrm{~Hz} \\
Q_{\mathrm{P}} & =0.5 \\
\mathrm{~A}_{\mathrm{DC}} & =22.4 \mathrm{~dB}
\end{aligned}
$$

This gives a considerable increase in bass output without too much danger of either the circuitry or bass unit running out of headroom. As an experiment, the author applied the same low frequency equalisation technique to a pair of large domestic speakers with 300 mm bass drivers, but kept the response flat to about 5 Hz . The bass was certainly impressive, although analogue records could not be played due to turn table and cutting lathe rumble causing excessive cone movement. Both analogue and digital master tapes caused no problems, and it was clear that, although there was no musical information at very low frequencies, the extremely good phase characteristics of the speakers gave weight and solidity to the lower register that is lacking in all but the largest studio monitors.

The bass equalisation circuit is

Fig. 11 Delay circuit.

Fig. 12 Low-frequency equaliser for closed-box operation.

Fig. 13 Protection unit.

Fig. 14 Remote switching unit and PSU circuitry.
only used when the speakers are operated in the closed box mode, and therefore provision must be made to bypass it when necessary. As the circuit of IC 8 b (Fig. 12) is inverting, a further inverting stage - IC8a - has been added to maintain phase integrity. The choice of Q_{p} at 0.5 was made to minimise the low frequency phase shift, with f_{p} being set at a frequency that allowed the use of standard capacitor values. The resistor values are shown as calculated, but the nearest E24 values may be used with no noticeable change in performance. Similarly, the 75 nF capacitor is approximated by the paralleled combination of 68 nF and 6.8 nF (C48, 49).

Switch-On Delay

One problem encountered with the prototype Active-8 speakers was that switching them on or off required the adoption of a procedure not far removed from doing a pre-flight check on the family 747. It was all too easy, for example, to switch off the preamplifier while power was still applied to the filter units and power amplifiers, the reward being a superb example of transient handling as the drive units attempted instant selt-destruction. To avoid this, the power amplifiers had to be switched on last And switched off first In spite of several feet of advisory Dymo tape, this sequence was not always adhered to, so to avoid wear and tear on drive units and nerves, the circuits of Fig. 13 and 14 were incorporated.

Together, these units provide ETI OCTOBER 1984
remotely controlled mains switching, delayed connection of amplifier to drive units, disconnection of drive units before mains switch-off and continuous protection against excessive DC voltages at the power amplifier outputs.

Operation of these functions is best understood by considering a switch-on - switch-off cycle. The small transformer, T1 (Fig. 14) is permanently connected to the incoming mains so about 17 V DC sits on smoothing capacitor C63. Q6 is held off by R72, so the mains switching relay, RL2, is deenergised. The unit may be switched on locally, or by earthing the remote connection at the preamplifier; either action turning on Q6 by the pull-down of D4 and R71. RL2 is therefore energised, and contacts RL2A and RL2B apply mains voltage to the crossover unit power supply transformer, T2, and to the power amplifier via a mains outlet socket.

When the protection unit (Fig. 13) initially receives power, Q4 and Q5 are turned off, and the speaker drive units are disconnected due to RL1 being deenergised. As C58 charges up through R63, the bass voltage of Q4 rises until it reaches 6.8 V , at which point the transistor turns on. The current which then flows through R67 and R68 turns Q5 on and RL1 is activated, connecting the drive units to the amplifier. This take about 6 seconds, which allows all voltages to settle and switching transients to disappear.

In operation, any excessive DC voltage appearing at the power amplifier output will be detected
by Q1 or Q2. A positive voltage will turn Q1 on, pulling the base of Q4 down, so that both Q4 and Q5 are turned off, as a result of which RL1 will disconnect the drive units. If the offset voltage is negative, Q2 will be turned on. Current flowing through R65 will turn on Q3 which will pull down the base of Q4. Again, Q5 will also turn off, deenergising RL1 and disconnecting drive units.

At switch-off, the remote connection is removed from earth, immediately causing RL1 to revert to its relaxed state as its OV path via D4 (Fig 14) is broken. The drive units are therefore disconnected before the mains is switched. Q6 is held on for a short time by C62, so RL2 cannot switch the mains until the amplifier outputs are well and truly broken by RL1.

All this means that the Active-8 units can be switched on and off without fear of the clicks, bangs and thumps that are so often the hallmark of home produced equipment. The remote connections of each speaker can be joined together and taken by a single wire to the pre-amplifier where a single pole switch can be used to operate the speakers. The recent modular pre-amplifier article (ETI December, January and February) gave details for wiring the remote connections so that the speakers are automatically switched off whenever headphones are used, this being one of the several possible ways the system can be arranged.
Next Month: Construction.

MICROPROCESSOR
 TIMER KIT

Designed to con trol 4 output independently switching on and off at preset times over a 7-day cycle. LED dis
play of time and day, easily programmed via 20 way keyboard Ideal for central heating control (including different switching times for weekends). Battery back-up circuit. Includes box
18 time settings.
CT6000K
£ $\mathbf{3 9 . 0 0}$
XK114. Relay Kit for CT6000 includes PCB. connectors and relays. $3 \mathrm{~A} / 240 \mathrm{~V}$ clo contacts 701115 Additional Relays
BT STYLE PHONE CONNECTORS
 Line Jack Units Master Unit (first capacitor and surge arrester. Flush or surface mounting. Screw connectors
Master (flush)
Master (surface) Master (mini surface) Secondary (flush) Secondary (surface) Secondary (minı surf) Dual outlet adaptor 4 way line cord - with minals
4 way line cord
(960 110) $£ 3.00$
(960 112) £3.00 (960 113) $\mathbf{£ 3 . 0 0}$ (960114) £2.65 (960 116) $£ 2.65$ (960 117) $£ 3.00$ $(960118) \mathbf{£ 4 . 2 0}$ plug to spade ter-
$1960120)$ f 200 (960 120) $£ 2.00$ (960 130) $\mathbf{f} 0.20$ per m

SECURITY PRODUCTS
Protect your home and property and save by building your own burglar alarm system

Stair Mat 23×7 in (950 120) Floor Mat 29×16 in $(950 \quad 125)$ Temper-proof connecting block (950110)
Door/Window Contacts. Flush mounting. 4 wire, Magnet/switch Per Pair. (950 140) Window Tape $0.5^{\prime \prime}$ wide 50 m (950 145)
Window Tape Terminations
Per pair. 1950 150)
Key-operated Switch. 1.5A/250V

LCD DIGITAL MULTIMETERS

LOW COST! 10M ohm. $3^{1 / 2}$ digit 0.4 in display. Auto zero and polarity. low batt.

 indication. overload protection. includes carrying case. $A C$ Volts: $0-200-500$. DC Volis: 0 2-20-200-1000 DC Current: $0-20 \mathrm{~m}-200 \mathrm{~mA}$ Resistance: $0.2 \mathrm{k}-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M}$. Size: $138 \times 86 \times 36 \mathrm{~mm}$(405 202) Professional - $10 \mathrm{M}, 0.5 \mathrm{in}, 31 / 2$ digit. Overrange and low battery indication Overload protection. Includes leads, Spare fuse, battery, manual and case ransistor Checker. Size. $175 \times 93 \times$ 42 mm
DC Volts: $0.200 \mathrm{~m}-2-20-200 \cdot 1000$
DC Current: $0.20 \mathrm{u}-2 \mathrm{~m}-20 \mathrm{~m}-200 \mathrm{~mA}$
0.10 A .
Ohms $0.200-2 \mathrm{k}-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M} \quad 0.20 \mathrm{M}$
(405 204)
est leads, battery, spare fuse manual,
f23.95

measurement Carr
$A C$ Volts: $0-20200.600$
DC Volts: 0-0.2-2.20-200-1000
AC Current: 0.200 mA . $0-10 \mathrm{~A}$.
Resistance: $0-200-2 \mathrm{k}-20 \mathrm{k}-200 \mathrm{~K} \quad 0-2 \mathrm{M}$ Size: $160 \times 85 \times 29 \mathrm{~mm}$

(405 206)

High Sensitivity Temperature $£ 44.85$ High Sensitivity Temperature Probe.
For use with a multimeter to measure For use with a multimeter to measure
temperatures from $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$ temperatures from $-50^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$
Accuracy: $1.5^{\circ} \mathrm{C} @ 25^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C} @ 100^{\circ} \mathrm{C}$ Response time (in water). 5 seconds. Includes case, calibrated scale and in-

Auro Ranging. $31 / 2$ digit 10 mm display. Continuity buzzer, low battery. overload 10A internal shunt for AC/DC current
£32.00

CT1000K Clock/Timer CT 1000KB*Clock/Timer + Box XK 101 Electronic Lock XK102* 3-Note Door Chime XK113 MW Radio XK126 DVM/Thermometer | E 5.50 |
| :--- | DL 1000K 4-Channel Light Chaser with Dimmer $£ 15.95$ DLZ1000K 4-Channel Chaser $\quad \mathbf{~} 8.95$ DL3000K 3-Channel Sound-to-Light $f 12.95$ TD300K + 300W Touchdimmer $£ 775$ TS300K + 300W Touchswitch $\mathbf{£ 7 . 7 5}$ LD300K +300 W Lightdimmer $\mathbf{£ 3 . 9 5}$ TDR300K + IR Remote Controlled $\begin{array}{ll}\text { Lightdimmer } & £ 14.95\end{array}$

MK6* | IR Transmitter for |
| :--- |
| TDR300K |
| TD |
| $\mathbf{E 4 . 5 0}$ |

TDE/K + Touchdimmer $\mathbf{f 2 . 5 0}$
TSA300K + Time Delay Touch MK1 Switch (300W) MK4 Solid State Relay MK4 Proportional Tempera Mains Timer ${ }^{\text {I }}$ $f 5.00$
$f 4.60$ MK5 Mains Timer llkW) $\mathbf{f 6 . 5 0}$ * includes box. + includes front $\mathbf{£ 4 . 5 0}$ All kits include PCBs, components and assembly instructions. For further details send S.A.E.

COMPONENT PACKS

PACK 1 650 Resistors 47R-10M 10 per value		¢4.00
PACK 2	$40 \times 16 \mathrm{~V}$ Electrolytics	
	10-1000 FF. 5 per	
	value	£3. 25
PACK 3	$60 \times$ Polyester Capacitors. 0.01-1 $\mu \mathrm{F} / 250 \mathrm{~V}$	
	5 values	£5.55
PACK	45 Presets 100R-1M.	f2.90
PACK 5	$30 \times$ Low Protile IC	
	Sockets. 8, 14 \& 16 pin	£2.40
PACK 6	25 Red LEDs (5mm)	£1.50

ELECTRONICS
11.13 Boston Road

London W7 3SJ
ORDERS
$01-5678910$
01.5792942 TECH 01.5799794
01.5792842 TECHNICAL AFTER 3pm

TOP QUALITY . . . TOP SERVICE BOTTOM̈ PRICES!

 sof tware. peripherals. accessories and much. MUCH MORE '

COMMUNICATIONS SATELLITES Part 4

Drawing this short series to a close, Roger Bond takes a look at who's who and what all those long abbreviations mean.

No UFOs here, just level headed scientists and businessmen who put their skills to work. The USA, being a much bigger country than the UK, has many satellite carriers and some are listed below.

American Telephone and Telegraph (AT\&T): Part of the Bell Company. It also has a long lines division who look after international cables.

General Telephone and Electronics (GTE)

RCA American: The famous recording company also builds satellites and is now also a satellite operator.
Hughes Aircraft: Has been in the satellite building business a long time and now plans to become an operator.
Southern Pacific Communications: Well known for its railways, and now in the satellite business.
Western Union: This is a telephone company (remember the old western?).
American Satellite: A combined business venture of Continental Telephone and Fairchild Industries.
Satellite Business Systems: This is a partnership including IBM.

These are the established carriers but no doubt there will be others in this profitable field particularly with the US Government's liberalisation of the telephone industry.

INTELSAT is an operating body whose governor is COMSAT (Communications Satellite Corporation). INTELSAT is made up of member governments and telecommunications representatives. A board of governors then works through a director general who has deputies for finance, administration, development, etc.

INTELSAT was formed in 1964 by eleven member countries, but the ranks have grown to a hundred. The USA has a 25% voting share and the UK plus Eire 11%, which reflects the usage of the satellites.

EUTELSAT was formed in 1977 by seventeen countries to operate the European Communications Satellite (ECS). The two biggest shareholders are France and the United Kingdom with 16% each, then West Cermany and Italy with 11% each.

The first ECS was the Orbital Test Satellite (OTS) which was destroyed when the American THOR DELTA launcher exploded in 1977. The next OTS was launched the following year with a three year lifetime. After that came the ECS flights lanched by the European Space Agency (ESA) by their Ariane rocket from Korou in French Guiana, South America.

Since French Guiana is on the equator, the positioning of satellites is easier. Launches from Cape Caneveral have to be placed in a elliptical transfer orbit first. The lowest point of the ellipse (perigee) is about 170 km above the earth. The highest point (apogee) is at the correct altitude for a geostationary orbit and when the apogee motor is fired, the satellite is drifted into its final position.

Table 1 shows the ownership of some of the satellites and the frequency bands in which they operate. The name 'PALAPA' of the Indonesian satellite, means 'goodwill to all men'.

UNISAT is United Satellites Ltd, a company formed by marconi Space and Defence, British Telecom and British Aerospace. The day of television pictures direct from satellites should be upon us in 1986 when two UNISAT satellites each using six transponders for transmission should start beaming pictures. Most local councils says they have no objection to people installing one metre dishes in their gardens for receiving these signals.

ECS

ECS flight 1 (F1) has launched in June 1983 and has twelve transponders operating at $14 / 11 \mathrm{GHz}$. Each of the 20 W transponders has a 72 MHz bandwidth and at present television is being broadcast to the Continent. The programme called Skychannel reaches an audience of half a million in seven European countries. Such is the power of television aided by satellites.

ECS flight 2 (F2) is due for launch in 1984 and will work TDMA via Madley 4. Quite apart from TDMA, this satellite is due to provide a revolutionary new facility called multi-services which included voice, data and videoconferencing. The whole idea is to provide businessmen with international access at bit rates from $64 \mathrm{Kbit} / \mathrm{s}$ up to $2 \mathrm{Mbit} / \mathrm{s}$.

In this way a newspaper company can, for instance, print its foreign editors in the relevant countries making distribution thirty times faster. Other multinational companies like banks and oil companies will also welcome this facility.

ECS F2 to F5 will carry two extra transponders each for this service and later versions of ARIANE can carry this extra payload. These satellites will weigh about 650 kg compared to 440 kg for the OTS. The solar panels spanning 14 m altogether will deliver 1.3 KW compared to 750 W for OTS.

In addition to point-to-point services there will be point-to-multipoint facilities similar to a control tower
broadcasting to radio cars. The satellite will have aerials for a Eurobeam, three spot beams (east, west and Atlantic) and, of course, the multi-services global beam aerial. The satellite's shape is similar to that of INTELSAT V and the user should need a 5 m dish, which could be mounted next to the office or factory.

INTELSAT VI

By the end of 1985, the combined capacity of the INTELSAT V and VA satellites on the primary AOR and IOR routes will be saturated; the first of INTELSATVI will take up position in 1986.

INTELSAT VI will be similar in shape to IV, with a spinning drum-shaped body carrying the solar cells and a de-spun platform carrying the aerials. However, the cylindrical body will be extended after launch, ie, it will be telescopic, making the total satellite length 12 m , of which 3.8 m is the outer cylinder length and 2.2 m is the inner cylinder. When folded down for launch, the satellite will be 5 m in height. The weight of the satellite will be about 2000 Kg .

The solar cells produce enough power for the satellite, which requires 2 kW , and to keep the stand-by 44 AH batteries topped-up. The solar cells should last for the 10 years of life that the satellite is designed to have, rather longer than the life of the cells on INTELSAT VI which face the sun all the time.

The satellite is designed so that it could be launched either by the Shuttle or by AIRANE 4. With a Shuttle launch, it will need a perigee kick motor to get it into a high, equitorial orbit, and this will be carried in a cradle in the Shuttle's cargo bay.

The aerial array on VI is similar to that on V , except that where V has 88 feeds, VI has 146 . This gives VI greater flexibility in the beam patterns that it can generate. VI will use satellite switched time division multiplex assignment, a technique presently used on the experimental L-SAT satellite, which means that the zone and hemi beams can be interconncected up to 64 times within each TDMA frame of 2 ms , making it exchange of information between users very flexible.

As with INTELSAT V, there are two steerable 14/11 GHz spot beams operating with linear polarisation. The receiver uses low-noise GaAs-FET preamplifiers and a frequency-changing oscillator whose frequency if controlled from the ground station. Transmit power is normally provided by travelling wave tubes, but the smaller zone beams require only about 3 W which can be supplied by semiconductors.

Other Applications

We have looked at the narrow field of telecommunications, so far, but let us now take a look at some of the other uses of satellites that are related.
TV Broadcast: Satellites are already used quite extensively for the passing of TV pictures and programmes from one broadcasting station to another, and lately to cable TV companies relay stations (in community antenna television, or CATV. However, the next phase of this process is to be the direct broadcast of television to peoples' homes (direct broadcast by satellite, DBS, as already featured in ETI in March 1983.

DBS has already started in the USA by United Satellite Communications (USC) who are hoping to reach a total of 10 million homes. A US company, the Orion Satellite Corporation, has applied to the US authorities to launch two satellites to beam television to Europe in the Ku band. Costing $£ 230 \mathrm{~m}$, and receiving backing from banks in New York and London, could this be the start of a new era of pirate broadcasting?

SATELIITE	FREQUENCY	COUNTRY
WESTAR-2	4-6	USA
USASAT-6A	11-14	USA
US SATCOM-2	4-6	USA
SATCOL-2	11-14	CANADA
ATCOL-2	4-6	COLUMBIA
GOES WEST	1-3	USA
LOUTCH P1	11-14	USSR
STATSIONAR-8	4-6	USSR
VOLNA-1	1-3	USSR
SIRIO	1-17	ITALY
SYMPHONIE-2	1-4-6	(FRANCE (W GERMANY
TELECOM-1A	4-6-7-8-12-14	FRANCE
COMSTAR D1	4-6	USA
GEOS-2	1-3	FRANCE
METEOSAT	1-3	FRANCE
ARABSAT 1	3-4-6	ARAB STATES
ZOHREH-2	17-14	IRAN
INSAT-1A	1-3-4-6	INDIA
PALAPA-2	4-6	INDONESIA
CSE	3-14	JAPAN

Table 1: Satellite owners and frequencies
However, economic worries continue to dog DBS. In the US, the prices being charged by USC compare badly with a competing CATV system provided by a cable company ($\$ 40$ per month for five channels plus the cost of the antenna, around $\$ 300$, for USC, as opposed to $\$ 25$ per month for 54 channels for CATV).

The economic worries have reduced the plans of the BBC and the IBA steadily until, although neither will admit it publically, it appears in doubt that either will get in on the act; at the very most, the BBC will be opening two satellite channels, for which it will pay $£ 12$ million per channel for the use of the satellite Added to this will be the cost of producing the programmes.

Meterology: At present data is received directly by many Countries through the Automatic Picture Transmission System (APT). During the 1980s several geostationary systems will be introduced, including Meteostat 2 and SIRIO2 by ESA. The USA will put up GOES east, west and central and the USSR, GOMS. Japan will have GMS2 and India INSAT 1.

Safety at Sea: Although the maritime satellites operate panic frequencies for ships in distress, more ambitious
systems are operated by some countries. SARSAT, search and rescue satellite is operated by the UK, USA, Canada, Norway, Sweden and France. The USSR operates COSPASS, space system searching for aircraft and vessels in distress.

Radionavigation is an associate field of application and the World Administrative Radio Conference (WARC) has allocated specific bands in the range 1.5 GHz to 265 GHz . The US Navy will replace their Navigation Satellite System with the Global Positioning System (GPS), a much more ambitious project The USSR uses their Tsikada satellites both for their navy as well as oil rigs.

Remote Sensing: This is used to study geology, land use, the environment and natural resources. About seventy-five countries participated in the USA's LANDSAT programme which studied crops, evaporation and soil temperature.

More than a hundred countries including the USSR and India have remote sensing The frequencies used vary across the electromagnetic spectrum including infra red, microwave and the visible portion. Both active and passive sensors have been used and the advantage of microwave is that it is less prone to weather conditions.

Standard frequency and time signal: There is already a big demand for this from the general public, communications engineers, space scientists, navigators, instrument calibrators, astronomers, surveyors, TV and radio broadcast stations etc. At present a standard is derived from caesium by the National Physical Laboratory. A frequency standard is also broadcast by Rugby Radio Station.

The Future

The future is here, rolling down on us faster than we realise. Technologically, satellites are headed for continuous improvement. Space-to-space links mean that signals can reach their final destination without being beamed to earth at intermediate points. The USA's Tracking and Data Relay Satellite (TDRS) enables data to be collected by several geosynchronous satellites and delivered to a common earth station.

SS-TDMA is also a technology for the future, the great advantage of TDMA links being that noise on the satellite up link can be separated from the noise on the down link hence reducing the overalll system noise. However TDMA equipment is expensive for small countries and CFM may be preferable.

The USSR has pioneered the use of highly elliptic

APT	Automatic Picture Transmission	INMARSAT	International Maritime Satellite
AOR	Atlantic Ocean Region	INTELSAT	International Telecommunications Satellite
ARIANE	ESA's launch rocket	MARISAT	Maritime Satellite
CCITT	Consultative Committee for International Telephone and Telegraph	MAROTS	Maritime Orbital Test Satellite
		MARECS	Maritime European Communications Satellite
CATV	Community Antenna Television	NASA	National Aeronautics and Space Agency
CFM	Companded Frequency Modulation	OTS	Orbital Test Satellite
COMSAT	Communications Satellite Corporation		
		PKM	Perigee Kick Motor
CES	Coast Earth Station	PSK	Phase Shift Keying
DBS	Direct Broadcast by Satellite	SCPC	Single channel Per carrier
DSI	Digital Speech Interpolation	SPADE	Single channel Per carrier, Puise code
ESA	European Space Agency		modulation, Assignment by Demand Equipment
eutelsat	European Telecommunications Satellite.	SSOG	Satellite System Operations Cuide
ecs	European Communications Satellite	SSOP	Satellite System Operations Plan
FDMA	Frequency Division Multiplex Assignment	Ss-tDMA	Switched Satellite - TDMA
		TASI	Time Assigned Speech Interpolation
GEOS		TDMA	Time Division Multiplex Assignment
GOES	Environmental Satellite Geostationary Operational	TWT	Travelling Wave Tube
GPS	Global Positioning System	TWA	Travelling Wave Amplifier
		TDRS	Tracking and Data Relay Satellite
GFRP	Craphite Fibre Reinforced Plastic	UNISAT	United Satellite Corporation
IOR	Indian Ocean Region	WARC	World Administrative Radio Conference

Table 2: The jargon every communications engineer will have to have at his or her finger-tips.

Molniya orbits. These have a high point of the orbit $38,00 \mathrm{~km}$ above the earth, and from the earth below this point, the satellite will be visible for around 8 hours per day. Moreover, for much of the time, it will be high above the horizon, and therefore much less likely to be obscured by hills or buildings. For this reason, the use of satellites with such orbits for radiomobile communication in the UK is being investigated.

Administration: With the vast number of satellites in use and the number of beams transmitted by each satellite because of frequency re-use, there is a real need for efficient spectrum management. However there is little to stop a wayward country from breaking a gentleman's agreement.

The strong demand for orbital positions has prompted INTELSAT to suggest a reduction in satellite spacing from 3° to 1°. This will require a thinner bearm which can be generated by Georgian aerials Fig. 8. This simple but clever idea prevents the tripod of the subreflector interfering with the main beam.

Politics: For twenty years INTELSAT has administered satellites for the Western World but the choice of both manufacturers and launchers has grown steadily.

Britain has a thriving portion of the satellite business but Japan intends to enter it in a big way. They intend not only to sell the world satellites but also launch them with a vehicle costing $\$ 1.3$ bn and launching more than seventy satellites between 1984 and 2000 . Their first launch, the CS-a with 4000 circuits, weighed 350 kg and cost $\$ 800 \mathrm{~m}$ to launch, three times the cost of a US launch using Shuttle.

Fig. 1 The Gregorian antenna; the difference between this and an off-set Cassegrain is that in the former the sub-reflector is concave, whereas in the latter it is convex.

Conclusions

A mere thirty years has seen the first faltering steps in space become sure footed and accurate. Techniques and materials have progressed rapidly and up to now space has been used for peaceful purposes. But the super-powers are racing each other to put beam weapons in space so those harmless jelly beans squeaking across our video screens could well become reality. Meanwhile there is a real need for a space-age Steptoe and Son to go and collect all the jettisoned scrap iron floating about in space.

ETI

UK'S NO.I FOR ELECTRONICS \quad ALL PRICES INCLUDE VAT

SUITABLE FOR TAMOY BBC ORIC NASCOM GE MINI ACORN DAAGON ETC. ETC. (Interfica unlt with leads £ 15 - state madel) (your enquirles Invited).

Hechargeabis packs

EICAD Poprox ay niam x
 with magnetic
switch
$\mathbf{5 F 5} .95$
post 55 p.

DEACS [UK post 50p) $\begin{array}{lr}24 \text { Volt } 225 \mathrm{mAH} & \mathbf{8 3 . 9 5} \\ 3.6 \text { Volt } 90 \mathrm{mAH} & \mathbf{5 1 . 2 5} \\ 3.6 \text { Volt } 225 \mathrm{mAH} & \mathbf{8 1 . 5 0}\end{array}$
RECHAREEABLE BATTERUS 8 CHARHER
Charger takes any 4 ' $A A^{\prime}$. 'C' or 'D' ceils plus PP3 typs. With Ires malns plug $£ 5.50$ (UK C/P 8 ins 85p)

43/4" 220/230V AC Brand new $33 \mu^{\prime \prime} 113_{4}, " / 115 V$ AC Brand new

MARRIOTT TAPE HEADS (UK posi 50 p par 1 to 4)
1/TMAGK XRP\$36 Low Imp. XRPS18 Mod imp.
 1/2 THAGX BX RP63 R/P
Erace for abav

Stinno erase $\& 1.00$
TORDIDAL TRANSFDRMER 100 watts isolation $230 / 240 \mathrm{~V}$ AC
plus $8-0.8 \mathrm{y} 4 \mathrm{~A} 15-0.1549 .845 \mathrm{C}$ plus $8.0 .8 \mathrm{~V} 4 \mathrm{~A} 15-0-15 \mathrm{~V} 9.845 \mathrm{~A}$

UHF MODULATORS UKC//P 4001 Video input ifF outputs cased for computars ate.

Astre In 1233

ITT version

ITT 2020

CABNET
Protessional computer case
with keyboard cutout. $18^{\prime \prime} \times$
15.5×4.5 " from slopes).
Ideal for single board
computirs like the Nascom or Gemint Multboord (3) cards. atc). Very heavy gauge (.25"] plastic with metal base. Attraclive silver grey finish. £22.95 (UK posi £2.05)

ASC 11

KEYBDARD

688.

+ 5 hunction keys. Hall siliect keyboard with reproprammable (2716) ASCII output decoder EPRDM. Stael kay Irame tor good rigidity. Mogative
golng sirobe. Aequires +5 valt +12 volt supplies. golng|strobe. Requires +5 volt +12 volt supplies. 124.85

COMPACT 58 KEY ASCII

KEYBOARD

Contactlass capacitive high rellability keys. Full 128 ASCII codes. Steal key irame lar poalitve rigidity. ImS sirobe, single +5 valt supply. Repoat key. control and caps. lock. $\mathbf{£ 3 2 . 5 0}$ (UK C/P $£ 1.00$ alither modell

TVAMPS/		
DSTRIBUTION		
(UK C/P 65 p any model) $\mathrm{z}^{\text {a }}$ (1)		
UMF SETBAC		¢ ${ }^{\text {¢ }}$
Ku7007dE		
KuHE	510	
KuE507d日 for	$2 \times$ TV8 68.	
UMF MAST TA	AB3008	\&12.95
DISTRIBUTIO	- VHF/UHF 40	860MH2
4 wny e:28.85	8 way 837.95	8 way $\mathbf{2 4 2 . 9 5}$

POCKET RADIATION DETECTORS

86.95 Tcricern

STEREO TUNER/AMPLIFIER $1000^{\circ} 8$ sold 4 wava-band stareo by GEC MW/LW/ $10+10$ watt sier 80 amplifier. Inputs for PU tape in/out, Supplied as iw assomblad unlts. at iliuatratad 221.95

- ansy to connect. (UK C/P £1.50|

MODEM CARDS/COUPLER
Brand now. Tessid, answer and orlginate 300 BAUD
 manulacturer. AS232 Input/output, power supply $+1-12 v$ at 180 mA . Requires 2 magnefic sarpleces. 2 switches. 2 LEDs ind conneciors to complati. Data zulpollad.
 Card and remal inder ol small components 233.45 Telephona Dlract Line coupler type LTU 11 MKIL.
sulthble for dira caupling PAESTEL adaptors and Sultabie for dirset coupling PRESTEL Idaptors and
the abova acoustic modems. IntagralLIns select and sutodial ralays roquiring TTL inputs data supply.
1200 BAUD recelve 75 bAUD sand direct coupled modem for PRESTEL. Requir se +5 V supply with TTL inputs for data. Line select and autodial. LTU 11 diract coupiar requirad. Sen sbove. Data suppilied. PRESTEL modem card

CB/HAM RADIO
Large range in stock ask for stil of 4 lesilats

> ALL
> NClUDE
> vat
> ORDER BY POST OR TELEPHONE
> OPEN 6 DAYS A WEEK

VISIT OR PHONE
 OPEN 6 DAYS
 A WEEK ALL STOCKS ON DISPLAY

 HEnRY＇S

 HEnRY＇S AUDIO ELECTROOICS

 AUDIO ELECTROOICS}
EQUIPMENT•COMMUNICATIONS•COMPUTERS•COMPONENTS

DIGITAL MULTIMETERS

HIGH VOLTAGE

METER

Oincel meter readion

AC CLAMPMETER

0／3000 0／600V ACO $/ \mathrm{K}$ Ohm

COMPONENTS ：TOOLS
 ACCESSORIES
 LARGE RAMGE IN STOCK

Tel：01－723 1008 lor smali or large quantities．

TRANSISTOR

TESTER
Drract PNP／NPN and diades Hfe，leakage．atc．General purpose TCI （UK C／P 65p）

Controis s＝Slide 月 $=$ Fiotary $\mathrm{PB}=\mathrm{Pu}$ in button All teature AC／OC volts．©C amps｜many with AC amps）others．etc．IUK C／P 65pi
－KD25C 12 range 0．2A DC 2 Meg ohfor（s）£23．43

－METEX 300030 range 10A AC／DC 20 Mag
ohm (A)
and
2
 －KD55C 26 range 10A AC／OC 20 Meg ohm 239.95

K0615 18 range 10A OC 2 Meg ohm plus Hfe （e39．95

－MC 501031 range IOA AC／DC Cont buzzer 20 M －KC 5010 31 range ion ac／ac Cont buzzor $\mathbf{5 4 8 . 9 5}$ －DM335

AC／DC 2 Meg ohm（A）
Dis cont．tester 18 range 10 A
E49．95

－DM2350 Mini autorange plus cont．tester 19 range $10 \mathrm{AC} / 0 \mathrm{C}$ ．$(20 \mathrm{~A}$ Max） 2 Meg ohm（PB］ $\mathbf{2 6 2 . 9 5}$
－ 3100 Pen type auta ranging AE／OC V 20 Meg onm
－WIM CARAY CASE

analogue multimeters

（＊mirror scale）jUK C／P 65p／
HCGO15 15 range pocket lok Nolt
1 Meg ohm $E 8.50$
 SPECJAL PURCHASE $\quad \$ 7.95$ HELALPURCHASE 27.95 plus cont．buzzer 10 Men on $£ 13.50$ plus cont．buzzer 10 Meg ohm $£ 13.50$－ TMK500＇ 23 range 20K／Volt 12A OC plus cont．

$360 \mathrm{TR} \cdot 23$ range bench． $100 \mathrm{~K} / \mathrm{Volt}$ large scale 10A AC／DC plus Hie testbr 10 Mag ahm $£ 39.95$ AT2100＊ 31 range de luxe 100K／Volt 10 A AC／0C 100 Meg ohm $\quad \mathbf{~} \mathbf{3 3} 3.50$ AT 1 020＊ 18 range de luxe 20K／Vall plus Hle

£ 21.00 tester 5 Meg ohm YM3601R＇ 19 ranga 20K／Voll plus Hife testir 1 Mep ohm $\mathrm{E13.95}$ K月15001＊Aange doublar 35 range fotal 50K／ Valt 10A OC 20 Meg ohm $E 19.95$	OC 1 Meg ohm
17.95	

ELECTRONIC INSULATION TESTER
 $500 \mathrm{~V} / 0-100 \mathrm{Meg}$ ohm with
 carty case．leads，etc
 YF501 $£ 67.00$
 ［UK C／P 65p）

LOGIC PROBES
TIL OTL．ELC．
LP2 I．5MHZ \quad £24．15
DP70 30MHZ
［UK C／P 55p each］

VARIABLE POWER

SUPPLIES
IUK C／P \＆I，OOI
PP24it single meler A／V
$0 / 30 \mathrm{~V} 1$ zmp £．35．00
PP243 3 amp verston E 59.95

LCD COUNTERS

UKC／P \＆INS 65．p
THANDAR battery portabie 8 digit LCD caunters．
Size $255 \times 150 \times 50 \mathrm{~mm}$ ．Complete with batteries．
Optional：Carry case £6．84
 TF200 10 HZ to 200 MHZ ．Iopm res．IOmV sensitivity． many leatures．A\＆\＆inputs．etc． TP600 600M \quad £ 189.75 TP 10001000 MHZ ｜IGH2｜Prascaler with power supply $£ 74.75$

SUPPLIERS OF ELECTRONICS FOR EVERY PURPOSE｜Officini irdirs wilcome．
OROER BY POST OR PHONE

Available through Lambard Tricity Finance

301 Edgware foad．Londion．W2
 Test Equipment．Audio．Communications 01.7243564

404 Edigware Road．London．W2

Computers 014026822 • Equipment 01－724 0323• Components 01－723 1008

In wallets with adapiors，etc．BNC fittings for scopes／counters／penetrators eic $\begin{array}{llll}\mathrm{X} 1 & £ 7.95 & \mathrm{X} 10 & £ 9.50\end{array}$ $\times 100 \quad £ 18.40 \times 1 / \times 10$ Switchable $£ 11.50$ Oemodulator E （ 8.50

LEAFLETS available for moat iteme send SAE LLarge 22p for latast catalogue）

DIGITAL

CAPACITANCE
METER IUK C／P65pl 0.1 pt to 2000 mid LCO 8 ranges 0 M6013 £59．95 fUK C／P Iree with other items or 65p per 1 to 3 kits）

13225

LED COUNTERS
 者

（UK C／P 65

METE OR mains or battery portable 8 digit LED caunters．
 6005 HZ ta 600 MHZ A\＆B inpuls $£ 139.15$ 10005 HZ to $1000 \mathrm{MHZ}|\mathrm{IGHZ}|$ A\＆B inputs E 189.75 Options：
GNICADS £12．19
RF pickup Aaris！ $\mathbf{E 8 . 9 1}$

FUNCTION GENERATOR
 ［UK C／P 650］

JUPITER 500 Function generator 0.1 HZ to 500 KHZ or better
Sine square triangle $0 / P$ to ± 30 vaits．TTL $0 / P$ ．DC offset operated．
£126．50

Gificiai ordars welcom
（Subject to conilirmation）

CALLIN AND SEE FOR YOURSELF All mail to Cubegate Ltd．Ist Floor． 406 Edgware Road，London W2 1ED

FOIL PATTERNS

The foil pattern for the Finesse Disco/Party Strobe.

The pattern for the simple echo unit.

The top and bottom foils of the Digital Cassette Deck.

The patterns for the top and bottom of the control card of the Spectrum Control Port (this board will not be available from the PCB service until next month).

AN ARGUS SPECIALIST PUBLICATION

IMIERMAIIONALL

PROJECTS SPECIAL ISSUE

Hard to belive that the summer was so short; here we are, we've only just begun September, and we're already thinking about our November issue. But November is projects time for ETI, and there will be ten of them in our November issue. Not half-baked untried circuits, but ten working projects, complete with PCBs (as appropriate) and constructional details.

Also, this issue will be a little bit thicker than usual, with sixteen extra editorial pages - putting us even further ahead of the competition.

Projects planned for the November issue are as follows:

- Continuity Tester
- Electron Speech Card
- Mains Failure Alarm
- Temperature Controller
- Spectrum Stage-Lighting Controller
- Knite Light Display
- AM/FM Portable Radio
- Perpetual Pendulum
- Video Effects Unit
- Direct-Reading Capacitance Meter

ETI reaches the puns other magazines dare not touch!
ETINOVEMBER —ONSALE FRIDAY OCTOBER6TH. MAKE YOUR NEWSAGENT AN OFFER HE DARE NOT REFUSE, AS COPIES WILL SELL FAST!

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT - ORDER FORM
If you have something to sell now's your chance! Don't turn the page - turn to us! Rates of charge: 35p per word per issue (minimum of 15 words).
and post to Electronics Today International, C!assified Dept., 1 Golden Square, London W1.

Please place my advert in Electronics Today International for issues commencing as soon as possible.

I am enclosing my Cheque/Postal Order/International Money Order for: (delete as necessary) £. (Made payable to A.S.P. Ltd)

All classified advertisements must be paid for in advance.

Please use BLOCK CAPITALS and include post codes.
Classification ...
Name (Mr/Mrs/Miss/Ms) (devoti sccoralingly)
Addreas. \qquad
\qquad
Signature. \qquad Date \qquad
Daytime Tel. No.

ELECTRONICS TODAY INTERNATIONAL

Lineage:

40p per word (minimum 15 words)
Semi Display: (minimum 2 cms)
£11.00 per single column centimetre
Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 0699
Send your requirements to: Will Fox
ASP Ltd.,
1 Golden Square, London W1.

ALARMS

FOR SALE

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers

Latest D.I.Y. \& Wholesale Published Catalogue: Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13 Tel: 0512283483 or 051-2200590

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft . showrooms or write or phone for your free catalogue. C.W:A.S Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274731532.

ALARM EQUIPMENT

Residential 2 Zone Panel with entry route 4 cut-off..

HOME GUARD SYSTEMS

If you want professional alarm/ C.C.TV/Door entry/security lighting equipment or DIY kits at genuine trade prices don't delay phone today for our free lllustrated catalogue.

Tel: 01-651 2449
Freepost, South Croydon Surrey CR2 9PU
(no stamp required)
LOWEST PRICED top quality intruder \& fire alarm equipment etc. SAE for catalogue: Security Services (ETI), 162 High St., Hythe, Kent CT215JR.

WIRES 'N CABLES

SEND FOR FREE

CATALOGUES \& PRICE LISTS
Project cases for wah-phase, chorus/flanger $\&$ graphic eq.

Computer leads, video \& audio leads
Plus many more items. SOLA SOUND
18 Barton Way Croxley Green Rickmansworth, Herts

ELECTRONIC ORGAN KEY. BOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.01-986 8455.
SHEET METAL FOLDERS 18" $\times 18 \mathrm{G}$ bench or vice held £38. Leaflet 01-890 7838 (anytime). 90 Granveille Av, Feltham, Middx TW13 4JN.
CORTEX mark one with RS232 interface, TV and cassette leads, manual, Ten C12 cassettes and securicor delivery. £250. J. Howie, Langness, Tromode Road, Douglas, isle of Man.

SOLARTRON CD513 OSCILLO-

SCOPE. £75 o.n.o. Data Dynamics Teletype $£ 75$ o.n.o.
Both working, Buyer collects 0635 33917 (eves).

100W MOSFET AUDIO AMP. LIFIERS. Relay included giving offset protection, delayed switch-on and thermal cutout. $£ 27.50$ including postage. SAE for detailed specification. Ronald Electronics, 119, Lomond Road, Hull HU5 5BS.

MICROTAN SYSTEM. Full tanex, colour board, RTC, EPC, 64 K Dram Card ASR33. Teletype, Basic, toolkit. Forth, TPA, Columbia. Must sell, 01-597 3185.

SURPLUS Exequipment poweramps... 100watt/E7-200W/£12. Glass/PCB \& TO3/output heatsinking . . . built, tested \& instruc tions... KIA-8 Cunliffe Road, Ilkley Free Slider/vc!!

POWERTRAN CORTEX computer. Basic unit. Most IC Bases fitted for optional extras (RS 232, Discs). £220 o.n.o. Bedford (0234) 76611 evenings/weekends except Friday.

100W AMPLIFIER - $£ 9.95$ built or use the same board for 50 W , 150W 200 W into 4 or 8 ohms etc., by using alternative output transistors \& P.S.U. S.A.E. for full details to ESS Amplification, Unit 11, Argyle St., Hull.

KITS

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

LINSLEY HOOD DESIGNS
 LOW DISTORTION AUDIO SIGNAL GENERATORS

AO 113 Kit

£25(p.p £1) A0 149 kit £32 (p.p. £2)
Super HIFI Amplifer(ETI) PC. Boards from $£ 4$
Send SAE for further details. TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01-807 3719

VHF TRANSMITTERMODULE Kit, size 2 inches by $1 / 2$ inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. $70-150 \mathrm{MHz}$, range dependent on voltage (618 V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to £6.95, post paid, send cash/ cheque/PO to Modulex, P.O. Box 102, Dartford, Kent DA1 2PW.
ECOLIGHT (ETI July 84) full kit as per article. £21.05. P.C.B. only £4.50. GP Electronics, 87 Willow Tree Ave., Durham DH1 1DZ.

MINIATURE FM TRANSMIT-

 TERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F.-P.C.B. All componentsd. Fullinstructions. 9 12 V operation, broadcast reception. Super sensitive microphone. Pick-upo on FM radio. $£ 6.95$ inc; or ready built £8.95: Same day despatch - Zednith Electronics, 21 Station Road Industrial Estate, Hailsham, E. Sussex BN27 2EW.
EQUIPMENT

CONSTRUCTING AN AUDIO MIXER?

To achieve a high quality finish you need commercially produced printed panels

- sub-frames - main frames etc designed and manufactured specifically for this purpose.

PARTRIDGE

 ELECTRONICS56 Fleet Road, Benfleet, Essex, SS7 5JN, England
THE MIXER PEOPLE (Large S.A.E. please)

```
EPROM COPIER - STAND ALONE
2716-27128\ldots....... £175.00
TELEPHONE C.ONVERSATION
    RECORDER £75.00
2 LINES INTO 1 ANSWERING
    MACHINE
    Switching Unit
        £30.00
        From L.K.F. Systems Lid
        St. Albans. Tel: 55084
```


SOFTWARE APPLICATIONS

CORTEX SOFTWARE

For the Powentran Conex computer. FORTH - Supplied in two 2564 eproms. Totally standalone supports cassette. 5.25 \& 8 disas. Price e35.00 ínclusive.
DISCS - Fonh Ulititus, use with above eproms, contains editor assembler and utlifies. Price
AUTO-BOOTDISCS
FORTH - Use the Basic BOOT command to downioad the forth system. The forth enroms are CDOS - Adots tile supporit to Cortex Easic named program and data tiles includes tormat and contrgure uthities Price E 50.00 inclusive Disc orders, please slate 55° or $8^{\prime \prime} 5$ a.e with all enquiries to:

LOMBARD SYSTEMS
18 Lombard Street, Lidfington Bedtord MK 43 ORP

MISCELLANEOUS

AGENTS

Wanted to Sell Computer Soltware for mosi computers. We now have the Dialog Electronics Part lin stock. Pools Winner \& Course Winner. We can supply business sottware, games anmd computer ad ons. Phone (0288) 4179 up to 9 pm most nights for your tree list and details about our agents.

REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets, Commodore computers, printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

SERVICES

P.C.B. DESIGN \& LAYOUT, manually taped artwork professionally produced at competitive prices. J. Gledhill. Tel: 01-6748511.

SERVICES

JBA
 ELECTRONICS

Manufactures todesign orspecifications One ot's. smali batch prototypes Analogue digital electronic equipment Complete electronic service - no job to smail.
ist Floor. 4a Lion Yard
Brecon. Powys, South Wales Tel: :0874) 611177
P.C.B. Design \& layout to your specifications, competitive rate: Trax Ltd, 497 Hitchin Rd., Luton.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Limited. Tel: halstead (0787) 477408.

PRINTED CIRCUIT BOARDS manufactured to your specification. Quality, Quick service. Competitive Prices. COPPER-CLAD fibreglass boards cut to size. 1 mm thick $£ 1.80$ sq. $\mathrm{ft} .1 .6 \mathrm{~mm} £ 2.20 \mathrm{sq}$ ft . Postage 75 p . Mondo Circuits Ltd, 35 Grosvenor Road, Twickenham, Middx. Tel: 01-891 5412.

FREE P.T.H. Prototype of the finest quality with every PCB artwork designed by us. Competitive hourly rates, and high standard of work. Halstead Designs Ltd, 34 High St., Halstead, Essex. Tel (0787) 477408/474554.

COMPONENTS

Betatran Electronics

 SuppliesToroidal transtormers primary 250 V secondaries $0-40,0-40 \mathrm{~V}, 0-50,0-50 \mathrm{~V}$, $0.55,0-55 \mathrm{~V}, 0-70,0-70 \mathrm{~V}$ at $300 \mathrm{VA} £ 17.55$; 500 VA £24.70, 625 VA £30.50. Can Elec tolytics 63V, 8800uF SA 2玉4.35. 10,000uF 7A £5.45. 100 V 6800 uF 8A $£ 6.23$, 4700uF 8A £5.50. 3300uF 7A E4.20. 2200uF 7A ع3.00. Computer Grade $10,000 \mathrm{OF}$ 15A E14.69. MOS-FETS 2SJ 50/2SK 135 £8.50 2S.J83/2SK 227 £8.20 price per pair. 35A 200 V bridge rectifiers $£ 3.25$. VAT inclusive $£ 1.00$ p\&p under $£ 7.00$. Full spec. many more Resistors, capacitors, trasnistors, neatsinks, amplifiers, speakers, transtormers. etc. Send 4×9 self addressed envelope tor large list.
Laver 5t., Cavendish, Suffolk CO10 8AP. Tet: 0787280639.

IRISH

 READERS
MAIL ORDER COMPONENTS

Top quality components Great prices
Return-of-post service
Write or phone for free price list
WAVEFORM ELECTRONICS
12 Effra Road, Rathmines, Dublin6. Phone(01)0001 if England 987507

Mall order only please
CRYSTALS. Very large stocks. $100 \mathrm{KHz-50MHz}$. Priced from $55 p-£ 7.50$. S.A.E. for full lists. TELERADIO, 325 Fore Street, London N9 ÓPE.

SUPPLIES OF I.C.'s
FOR SALE
Surplus to requirements
All new stocik Large and small orders
welcome. Please ring tor prices and
delivery.
ELECTROSIGNS (est. 1949)
114 Wood street, Walthamstow
London E17
Tel: 01-521 4784/521 8066

SEND SAE for VAT inclusive price list Eg. 7805 voltage regulator 38 p. Hunt Electronics, PO Box 57, Derby DE6 6SN.
TRANSFORMERS. 50 V 500 mA 8V 2A 13.5-0-13.5 3A 13V @ 8A £8.25 incl. 50V @ 2.6A 8V @ 4.5A 14-0-14V @ 6A £8.00 incl. Marlin Electronics, The Old Convent, Beeches Green, Stroud, Gloucestershire. Tel: 0453671715 Evenings.
2764's! (350ns) Thousands must goonly £7.50 each (+V.A.T.). Ideal for BBC etc. Also bulk eprom copying service (any type/quantity considered). DG Sharp (Computer Services), 49 Main St., Bothwell, Glasgow, G71 8ER.

BUMPER BOX OF BITS

WOW! We've got so many components in stock, we can't possibly list them all - So buy a box. In it you'llfind resistors. capaci tors. displays. switches, panels with tran sistors, diodes, IC's etc., coils, pots... and so on. All modern parts - guaranteed a ONLY \&8.50 inc. 48 page catalogue 50 p .

ELECTRONICS WORLD
 1e Dews Road, Salisbury, Wilts SP2 7 SN

BARGAIN PACKSour speciality. Send S.A.E. for details plus free samples. Projek Electronics, 44 Mathie Crescent, Gourock, PA19 1 YX.

COMPONENT BARGAINS

og. ZN:3819FET 10p; ZKx8RAM's-
E2; 10w Audio Amps - 50p; LED's - 3p SAE tor tull lis
27 Broomhill Drive Glasgow G11 7 AB

AERIAL AMPLIFIERS improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire, BL0 9AGH.

TRANSISTOR SALE

MJE 305510 for $£ 1.75$
TIP 29/30/31/32A
10 any mix $£ 1.80$
BD 135/137/139... 20p
100 mixed, coded transistors. All types SS/Tower $£ 2$.

SAE for list.
50 p carriage all orders.
J Wright, 27 Broomhill Drive,
Glasgow G117AB.

ATTENTION COMPONENT DISTRIBUTORS

RESCO ELECTRONICS of W. Germany are to open a U.K. operation 1st September 1984. If you distribute capacitors, resistors, IC's etc, etc; then it is to your advantage to contact the company at the address below. Our prices are unbeatable.

Send company details to ensure you are included on our mailing list:

Resco Marketing (UK) Ltd
Unit No.11, Warwick St. Trading Estate Storforth Lane, Chesterfield, Derbyshire
Tel: (0246) 74003

BOOKS EXCHANGE
 SERVICE

ADD-ONS

BOOKS WANTED FOR CASH

Have you got technical books you no onger need? OR Do you need to read up on a new topic? Then EXCHANGE We buy and sell previoust on electronics and computing.
For list of currently available titles and details of our guaranteed buy back plan SAE please to.-
JAMES ELECTRONICS, P.O. Box 2
Rothwell, Leeds LS26 OUY

TANGERINE OWNERS at last a $\star \star 6809 \star \star$ C.P.U. boaru with expandable monitor in Colour. FLEX compatable. Also 14K RAM card to free EPROM space on TANEX S.A.E. for details: Ralph Allen Eng. Forncett-End, Norwich. Tel: (095389) 420.

ENGINEERS FOR CYBERNETIC APPLICATIONS

We were one of the first companies in the U.K. to design and produce robots for educational and training purposes. Our productscannowbe seen in universities, colleges and other establishments, throughout the world.
We need Electronic Engineers (Digital) for the design and development of new products in the cybernetics field. A familiarity with computers and a knowledge of mechanical principles are essential.
As well as the job itself, we areoffering an excellent salary and the security and benefits of working for a publicly owned group. So, if you want to be involved in the development of brand new products and are prepared to roll up your sleeves and get the job done
Ring for Application form or send C.V. to Managing Director.

```
Powertran Cybernelics Limited
    Portway Industrial Estate Andover, Hampshire
Tel: Andover (0264) 62902
```

AUDIO ENGINEER REQUIRED.
Experienced in servicing all types of hi-fi, radio cassettes and in-car entertainment. Phone lan on 012494814.

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

CONVERT any TV into large screen oscilloscope. External unit plugs into aerial socket of TV. Circuit \& plans $£ 3.00$ orS.A.E details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

WANTEDElectronictest equipment, large computers, large quantities of Printed Circuit Boards, anything considered, good prices paid: "C" House. Stanhope Rd., York Town Ind. Est., Camberley, Surrey. 0276 28208.

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4 x 9", Paralab, Downton, Wiltshire.

WANT
TO
BUY SELL SWOP? JUST FILL IN THE COUPON OVERLEAF OR PHONE 01-437-0699

IMPROVE YOUR

 PROSPECTSwith skills that all employers want. Train the easy way with modern home study courses from ldeal Schools.

MODERN ELECTRONICS

Takes you from the beginning, right up to C \& G 224 course, and BTEC national Level.

COMPUTER PROGRAMMING

 Learn BASIC with a SpectrumFor a tree booklet,
write today, o:
IDEAL SCHOOLS
(Fet ETD 1)
Freeposit, Giasgow
G1 4BR

MICRO BUG

$140 \mathrm{~mm} \times 370 \mathrm{~mm}$. Extremely sensitive, powerful. Operates from 1.5 V battery ready built tested only $\mathbf{£ 9 . 9 5}$ (in kit form £7.50).
Also available Automatic Telephone Recorder built tested $\mathbf{£ 1 1 . 9 5}$ (in kit form $\mathbf{£ 8 . 5 0}$).
All fully guaranteed. Send cash, cheque or P.O. to:

SHAH ELECTRONICS

11 Livingstone Road
Southall, Middlesex
UB1 1TH

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD.
45 Castle Arcade, Cardiff TEL: 022241905 Open: Mon-Sat 9-5.30 For components to computers

YOU CAN BE SURE OF THE SHOPS IN ELECTROMART Phone ASP on 01-437 0699 for details

ADVERTISERS' INDEX

Armon Electronics Ltd 34 Maplin 61/OBC
Audio Electronics Ltd. .74 Marco Trading 10
Autrol. 21 Merseyside Acoustic Developments 27
B. Bamber Electronics . 54 Micro Processor Engineering 22
B.K. Electronics 21 Microrange Electronics 55
B.N.R. \& E.S. 22 M.J.L. 50
Bridage Scientific Instruments .43 Powertran 69/IBC
Cambridge Microcomputer Centre 27 Rapid Electronics 7
Capriol System 55 Riscomp 49
Cricklewood Electronics Ltd 8 R.V.M. Audiotronics 55
Crimson Elektrik 31 Ship Co. 43
Cybernetic Applications IFC Skywave Software 31
Dawne Instruments 27 SME 74
Display Electronics 12 Sparkrite 31
Electrovalue 69 Stewart of Reading. 50
Etatech 21 Systems Electronique 74
Greenbank 69 Technomatic 16/17
Henry's Audio Electronics .64/65 T.K. Electronics 50
Hytek Electronics 14 Watford Electronics 4/5
L.B. Electronics 22

Please call or write:

SOLDER

Recommended for general purpose, fine work and pcb's, a top quality fluxcored 60% tin, 40% lead solder. 22 swg.
ONLY 82p for 10 metres (FR21x)

RELAYS

 FLOPPY DISKSPack of 5 good quality C12 cassettes. ONLY £1.95 (BK95D)
Pack of 10 top quality $51 / 4$ in floppy disks single-sided, single or dual density. ONLY £17.95 (YJOOA)

Sub-minature 12 V relays will switch up to 10 A at 240 V AC.
Coil Coil Contact ratings Size voltage resistance DC current AC Current (resistive) (mm)
Single-pole changeover Double-pole chongeover 8.4 to $13.2 \mathrm{~V} \quad 270 \Omega$ up to 5 A at 30 V up to 5 A at $240 \mathrm{~V} 29 \times 20 \times 13$ Relays are fully enclosed and direct pcb mounting. INCREDIBLYLOW PRICE E1.65 each (SINGLE-POLE YX97F) (DOUBLE-POLE YX98G)

VIDEO COPYING KIT

Copy video tapes to and from virtually any VHS or Beta machine. Kit makes six different video and six different audio leads.

RESISTORS

Far superior to carbon film, these superb quality, very high stability, exceptionally low noise resistors have a $\pm 1 \%$ tolerance and are rated 0.4 W at $70^{\circ} \mathrm{C}$ yet are only 6.5 mm long and 2.5 mm diameter nominal. E24 range 10Ω to 1 M . EXCEPTIONALLY LOW PRICE 2p each (M+VaLuE)

$$
\begin{aligned}
& \text { CONipitRE OURPRICES.... } \\
& \text { then choose MITITIN } \\
& \text { for qualty and Service as weit! }
\end{aligned}
$$

Well over $£ 1 / 1 / 2$ million worth of top quality electronic components always in stock

D-CONNECTORS

Gold over nickel plated contacts and solder termiriations. Thermoplastic cover allows side or top entry and includes cable clamp.

SUPERB QUALITY AND AMAZINGLY LOW PRICES

	Plug	Socket	Cover
9-way	68p (RK60Q)	95p (RK61R)	51.14 (RK62S)
15-way	98p (BK58N)	$\mathbf{8 1 . 4 3}$ (BK59P)	99p (BK60Q)
25 -way	£1.39 (YQ48C)	¢2.19 (YQ49D)	81.14 (YQ50E)

COMPARING OUR PRICES

When you compare our prices, remember that many of our competitors quote VAT exclusive prices. This hidden extra makes a big difference to their seemingly low prices. On an order as little as $£ 6.67$, the VAT is a whole $£ 1$ extra!

TRLEPMONE CONNEGTORS

Three examples from our range of telephone fittings. All are BT approved and sockets are shuttered.
Flush fitting jack socket for main telephone. ONLY £3.99 (FJ27E)
Flush fitting jack socket for extension telephones.
ONLY £2.65 (FT34N)
Line cord, 3 m long, spade terminals to phone plug.

N.B. All our prices INCLUDE VAT and Carriage. A 50p handling charge must be added if your total order is less than $£ 5$ on mail-order.
MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911.
SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356-7292.
- LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748-0926.
- MANCHESTER 8 Oxford Road, Tel: 061-236-0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831
- SOUTHEND 282-284 London Road, Westeliff-on-sea, Essex. Tel: 0702554000

Shops closed all day Monday.

