WEVECOTTTAP a digital cassette deck as a low-cost alternative to floppy discs.

The advanced design of the Neptune 2 makes it the lowest cost real-life industrial robot.
It is electro-hydraulically powered, using a revolutionary water based system (no messy hydraulic oil!)
It performs 7 servo-controlled axis movements (6 on Neptune 1) - more than any other robot under $£ 10,000$.
Its program length is limited only by the memory of your computer.
Think what that can do for your BASIC programming skills!
And it's British designed, British made.
Other features include:
Leakproof, frictionless roling diaphragm seals.
Buffered and latched versatile interface for BBC VIC 20 and
12 bit control system (8 on Nuptune 1 1.
Special circuitry for initial compensation.
Rack' and pinion cylinder couplings for wide anguiar movem
Automatic triple speed control on Neptune 2 for accurate 'h
Easy access for servicing and viewing of working parts.
Powerful - lifts 2.5 kg. with ease.
Heand held simulator for processing (requires ADC option):
Neptune robots are sold in kit form as follows:
Neptune 1 robot kit (inc, power supply)
Neptune 1 control electronics (ready built)
Neptune 1 simulator
Neptune 2 robot kit (inc. power supply)
Neptune 2 control electronics (ready built)
Neptune 2 simulator

ADC option (components fit to main control board)
£95.00
£435.00 Hyraulic power pack (ready assembled)
£37.50
£75.00 Optional extra three fingered gripper
£12.50 BBC connector lead
£14.50
£15.00

All prices exclusive of VAT and valid until the end of 1984.

desk-top robot

This compact, electrically powered training robot has 6 axes of movement, simultaneously servo-controlled. It gives smooth operation, and its rugged construction makes it ideal for use in educational establishments. Other features include long-life bronze and nylon bearings, integral control electronics and power supply, special circuitry for inertial compensation, optional on-board ADC, and hand-held simulator as the teaching pendant. Like Neptune, Mentor's program length is limited only by your computer's memory. Programming is in BASIC.

Mentor is all-British in design and manufacture and comes in kit form at an astonishingly low price:
Mentor robot kit (inc. power supply) Mentor Control electronics (ready built)
£ 345.00 ¢135.00 Mentor Simulator (requires ADC option) ADC option (Components fit to control electronics board)
$\$ 42.00$

BBC connector lead
Commodore VIC 20 connector lead and plug-in board
$\$ 19.50$
$\$ 12.50$

Sinclar ZX Spectrum connector lead $\quad \$ 15.00$
814.50

All prices exclusive of VAT and valid unti! the end of 1984.

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Assistant Editor Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Lynn Collis: Copy Control
Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive PUBLISHED BY:
Argus Specialist Publications Ltd.,
1 Golden Square, London W1R 3AB.
DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4IS
(British Isles)
PRINTED BY:
The Carden City Press Ltd.
COVERS PRINTED BY:
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS and their: GERMANY - Udo Wittig CANADA - Halvor Moorshead EDITORS HOLLAND - Anton Kriegsman

ABC
 Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. ZThe contents of this publication including all articles. designs, plans. drawings and programs and all copyright and other inSpecial ist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue ot international copyright conventions are specificically reserved to Argus Specialist Publications Limited and anv reoproduction requires the prior written consent of the Company. © 1984 Argus
Specialist Publications ted All reasonable care is Specialist pubications Lid Lh. All reasonable care is the publishers cannot be held legally responsible for the publishers cannot be held legally respons ible for mally be published as soon as possible afterwards. All orices and data contaned in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations aftecting price or availability which may occur atter the publication has closed tor press.
\square Subscription Rates UK $£ 14.35$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST

7
The good, the bad and the press releases.

COMMUNICATIONS

SATELLITES

16
Roger Bond continues his armchair travellers guide to the Universe.

GSC 1301 POWER

SUPPLY.......................... . 32
Power at a price is what this unit seems to offer. But does the performance justify the cost?

FLUKE 73 DMM

REVIEW
Dave Bradshaw gets his sticky little digits around one of the new Fluke multimeters.

READ/WRITE. One of our readers offers a little negative feedback.

THE OUTS AND INS OF BATTERIES
 56

Some you have to coax things out of while others give you everything they ve got and then ask for more. Vivian Capelon the strange habits of batteries.

BRIDAGE OSCILLOSCOPES

 REVIEW..................... 63 another scope manufacturer half-hidden behind the Scopex name? Phil Walker examines the traces.

PROJECTS

EX42 KEYBOARD

INTERFACE
Bored with rubber keys? ETI's design allows you to use a real keyboard with your micro.

DIGITAL CASSETTE

DECK
27
Bob Campbell tells us how to put the bits together to make a decent digital recording.

BANSHEEE SIREN UNIT
It's a with a....? Oh it's no good, I can't make myself heard above this racket. You'll just have to read the article and find out for yourself.

ACTIVE-8

LOUDSPEAKER
45
Barry Porter returns to our pages with a collection of dreadful puns cunninğly disguised as an active loudspeaker design.

DRY CELL CHARGER. 53
No, not a battery oprated steed, just Vivian Capel proving that he's no donkey when it comes to saving money on batteries.

AUDIO DESIGN.
59
The fourth and final part of John Linsley Hood's practical series.

INFORMATION

NEXT MONTH'S ETI 66
ETI PCB SERVICE

70

NEXT MONTHS ETI

67
ETI BOOK SERVICE. 71
68
6 ADVERTISERS' INDEX 74

WATFORD ELECTRONICS
 33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND MAIL ORDER, CALLERS WELCOME
 Tel. Watford (0923) 40588. Telex. 8956095

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE P.O.S, CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&P ADD 75p TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGEAT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE

AAT Export orders no VAT. Apolicable to U.K. Customers only. Unless atated othewise
We slock thousands more ltems. It poys to visit us. We are situated behind Watford Football Ground Open Monday to Saturday: 9.00 am to 8.00 pm . Ample Free Car parking apace available.
ELECTROLYTIC CAPACITORS: (Values in UF 500v, $10 \mathrm{uf} 52 ; 4778 \mathrm{p}$; 83 V : 0.47, 1.0. 1.5, 2.2, 3.3.4.7 8p 1010 p ;

 16 pr. 47020 pr. 680 34p. 1000 27p. 150031 p. 220026 p. 470072 p.
TAGGENDCAPACITORS: 64V: $2200130 \mathrm{p} ; 3300198 \mathrm{p} ; 4700$ 245p; $50 \mathrm{~V}: 2200110 \mathrm{p} ; 3300184 \mathrm{p} ; 40 \mathrm{~V}: 4700$
180p; 25V: $220090 \mathrm{p} ; 330098 \mathrm{p} ; 4000,470098 \mathrm{p} ; 10,000320 \mathrm{p} ; 15,000345 \mathrm{p} ; 16 \mathrm{~V} ; 22,000$ 350p. POLYESTER CAPACITORS: AxIal Lea T

2.33 a MICA (Values in PF$)$

22, 27, 33, 39, 47. 50. $56,68,75,82$, $85,100,120,150.180 \mathrm{pF} 15 \mathrm{p}$ each
$200.220 .250 .270 .300,330.360$. 250. 220. 250. 270. 300. 330.360.
$390.470,800,800,820 \quad 21 \mathrm{p} \mathrm{ea}$ $\begin{array}{cr}100,1200,1800,2200 & 30 \mathrm{D} \text { each } \\ 3300,4700 \mathrm{pF} & 80 \mathrm{p}\end{array}$ ANINIATURE TRIMMERS Capacitors
$\begin{array}{lll}2 \cdot 6 \mathrm{pF} & 2 \cdot 10 \mathrm{pF} & \text { 22D: } \\ 2-25 \mathrm{pF}: & 5.65 \mathrm{pF}\end{array}$ 30p; $10-88 \mathrm{pF} 38 \mathrm{p}$.
RESISTORS Carbon Film. miniature, H-Stad, 5%.
\qquad
\qquad RANGE $10 \mathrm{MER4}$
$2 \Omega 2-4 \mathrm{M}$ E12
$2 \Omega 2-49$ $2 \Omega 2-4 M 7$ E12
$2 \Omega 2-10 \mathrm{M}$ E12
$510-1 \mathrm{M}$ E24 $100+$ pri
mixed
\qquad
\qquad

AC1
AC14/1/2

 \begin{tabular}{l}
327

$441 / 61$

\hline

15 \& $\mathrm{BF} 336 / 7$

15 \& BF 394
\end{tabular} $\left\lvert\, \begin{aligned} & \text { BF336 } \\ & \text { BFF394 } \\ & \text { BFA54 } \\ & \text { BF494/ } \\ & \text { BF594 }\end{aligned}\right.$

RF
CHOKES
Minlature
PCB type

\qquad

$1 \mathrm{mH}, 1 \mathrm{~m}$,
$2 \mathrm{m2} .4 \mathrm{mp}$
10 mH

$22 \mathrm{~m}, 33 \mathrm{~m}, 60 \mathrm{p}$
43 m
100 m
75 p

T1274

 HNO

DIGEST

In our June issue we mentioned the range of MOS-FET power amplifier modules available from BK Electronics and reported plans to offer com-
output of 100 watts RMS per channel, the MF400 which has an output of 200 watts RMS per channel and the MF600 which has an output of 300 watts RMS per channel. All output levels are quoted with both channels driven into a 4 ohm load, and the amplifiers are protected against short and open circuit conditions. Input is by $1 / 4^{\prime \prime}$ jacks or XLR sockets and the input sensitivity is 775 mV for full output. XLR sockets are also used for the outputs, two being provided on each channel. The rotary level controls are indented and the only other front panel control is the illuminated on-off switch.
The MF200 MOS-FET amplifier costs $£ 159.00$ plus $\mathbf{£ 2 3 . 8 5}$ VAT plus $£ 10.00$ carriage; the MF400 costs $£ 199.00$ plus $£ 29.85$ VAT plus $£ 10.00$ carriage and the MF600 costs $£ 239.00$ plus $£ 35.85$ VAT plus 10.00 carriage. BK Electronics, Unit 5, Comet Way, Southend-on-Sea, Essex SS2 6TR, tel 0702 -527572.

- Microrange Electronics, manufacturers of $19^{\prime \prime}$ rack mounting cases, PCBs and small batches of general electronic equipment, have opened a retail electronics shop at their workshops in Stratford, East London. The shop sells a wide range of general components as well as the company's own products and they hope to have a full list avail able in the near future. Contact Microrange Electronics, Unit 258, Stratford Workshops, Burford Road, London E15 2SP, tel 01-536 1415.

- Publishers Bernard Babani Ltd

 have issued a 16-page leaflet which describes their range of computing books. The titles listed cover programming and computer languages, construction of peripherals and the theory of microprocessors and digital electronics, and copies are available free from Bernard Babani (Publishing) Ltd, The Grampians, Shepherds Bush Road, London W6 7NF, tel 01-603 2581.
Close
 Tolerance
 Voltage
 Regulator

Motorola has introduced a family of fixed positive voltage regulators which offer extremely tight output voltage tolerances. The three-terminal devices have a load driving capability in excess of 1.5 A and are said to offer noticeably better performance when compared with existing types.

Designated the TL780 series, the regulators are available in 5.0, 12 and 15 volt output versions and maintain an output voltage tolerance to within $\pm 1.0 \%$ at $25^{\circ} \mathrm{C}$ and $\pm 2.0 \%$ over the entire
operating junction temperature range from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Line regulation is maintained to within 5.0 mV for the 5.0 volt output devices and 15 mV for the 15 volt output version, a factor-of-two improvement over existing indus-try-popular, premium grade, 1.5 amp regulators. Ripple rejection is also improved with minimum limits of $\mathbf{6 0 , 6 5}$ and 70 dB for the 15,12 and 5.0 volt devices respectively. Load regulation is 25 mV maximum for the 5 volt device and 75 mV for the 15 volt version over a load range of $\mathbf{5 . 0}$ mA to 1.5 amps .

All of these monolithic devices employ internal current limiting, thermal shut down, and safe area compensation, and although designed as fixed voltage regulators they can be used with external components to obtain

adjustable voltages and currents.
Devices are specified over a junction temperature range of 0 C to $125^{\circ} \mathrm{C}$ and are available in the TO-220 plastic power range.

Motorola Ltd, European Literature Distribution Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP, tel 01-902 8836.

Plug-In RCCB

The Power-Breaker-20 from B \& R Electrical Products is an RCCB (Residual Current Circuit Breaker) which plugs directly into a standard 13A socket and which has a 13 A outlet into which appliances may be plugged. It thus provides a quick and convenient means of protecting against electrocution when using plug-in electrical appliances anywhere around the home, office, workshop, etc.
RCCBs (the new name for what used to be called ELCBs or Earth Leakage Circuit Breakers) work by comparing the current
through the live and neutral leads and switching off the supply when the difference exceeds a certain minimum level, as would be the case were current to be passed to earth via a human body or other conductor rather than flowing back through the neutral lead. The PowerBreaker-20 is designed to break the supply within 30 ms should the difference between the live and neutral currents exceed $\mathbf{3 0} \mathrm{mA}$. Features include a test button which deliberately introduces a small current imbalance, a reset system which is claimed to be foolproof and a safety trip which automatically breaks the supply and
illuminates a warning neon should the device be plugged into a socket which has its live and neutral connections reversed. The case is said to be durable and tamper-proof, allows easy access for fuse replacement, and is compact enough to allow two units to be used side-by-side in a double wall socket.
For details of the PowerBreaker-20 and the PowerBreaker Plug, a similar device designed for permanent attachment to an appliance lead, contact B \& R Electrical Products, Ltd, Temple Fields, Harlow, Essex CM20 2 BG, tel 0279-443351.

THE ALADDIFS' GAVE OF COMPUYER AED ELICTRONIC EQUPMEELI

HARO DISK DRIVES
Fully returbished DIABLO/DRE series
DEC RKOS, NOVA, TEXAS compatible.
Eront load. Free stand or rack mount Esse.00 $\begin{array}{ll}\text { Exchangeable type (via lid removal) } & \text { e.295.00 } \\ \text { me302g PSU unit for } 2 \text { drives } & \text { E/7S.00 }\end{array}$ DIABLO/DRE 44-4000NE 5+5 ex stock from Ee9s.00
1000's of spares tor 530 4000, 3200 , HAWK ex stock. Call tor delais or quotation.

EX STOCK DITEGBATED CTECUTS

D8085AH-2 D8086 D8257-5

D8202 D8271 AM2764-3DC 74 LS86 74 LS112 74LS373 7407 2102-6 \quad 4116-3

C0015ig FAIS
Koep your hol parts COOL and RELIABLE
with our range of GRAND NEW professione
 finger guard 89.95 . Gery quilet running $240^{\prime \prime} \times 3^{\prime \prime} \times 2.5{ }^{\prime \prime}$ compact BUHLER 69.11.22. 8-16 \times DC micro minibure reversible tan Uses a brushiess
servo motor tor extremely high air flow aimosi silont running and guraranteed io,000 hr life Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost £32.00. OUR PRICE ONLY E12.95 complete with date
MUFFIN-CENTAU Wh standard
lan supplied lested EX EOUIPMENT 240 vat £6.25 of 1 IO 1 Ef 4.95 or BRAND NEW 240 v at E10.50. 1000 's of other fans Ex Slock
Call tor Details Posi \& Packing on ail

TRANSTEL PRINTERS
EX NEWS SERVICE compact, quality built 50 column matrix printer. Standard 5 bit
serial, BAUDOT CODE face for connection to computer or radio face ior connection to computer or radio
receiver via simple fiter network to decode and print most world-wide NEWS, TELEX and RTTY services. Supplied tested and in and 50 and 75 baud xtais. OW Y Y $\$ 9.95$

TELBTYPE ASR 33

DATA I/O TERMINAIS

Industry standard combined ASCII 110 baud printer, keyboard and 8 hole paper
tape punch and reader Standard RS232 tape punch and reader. Sandard
serial interface ldeal as cheap hard copy unit or tape prep. for CNC and NC machines ${ }^{\text {TESSTED }}$ and in good condition Only $£ 235.00$ floor stand 10.00
Carr \& ins $£ 15.00$

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems Made to most stringent spec and designed to operate for 24 hrs pet day. Units are made to the
CCITT tone spec With RS 232 /o levels vial a 25 way D' skt Units are sold in a lested and working condition with data Permission MODEM 28 "Hackers Special" fuly fledged up to 300 baud full duplex. ANSWER or CAL
modes. AUTO ANS standrard RS232 25 way D socket Ju connection to comms line Ideal networks etc. Complete with data lested ready to run at a
NEW SUPER LOW PRICE of © $\mathrm{KAS} .00+$ YAT + CaIt
MODEM
MODEM 20. 1 COMpact Unit for use with
MICRONET. PRESTEL OI TELECOM GOLD etc 2 wre virect connect 75 baud Iransmit
1200 baud receive Oata $/ / 0$ via RS 232 . Socket Guaranleed working with data E49.9s
MODE M $20-2$ same as 20.9 bul 75 bey TRAMSOATA coupler RS232 i/0 995.00
NEW DSL2123 Multi Standard modem setectable V 21300 -300 bpe V23 75-1200, V23 1200-75 fulil duplex. Or $1200-1200$ haif duplex moder full auto anower via modem
CPU. LEO status indicalors. CAL modes Switchable CCITT or BELL' 103 202. Housed in ABS case size only $2.5^{\prime \prime} \times 8.5^{\prime \prime}$

> DEFLA
> ELETKIAHE

hOT LINE DATA BASE

DISTIEL ©
THE ORIGINAL FREE OF CHARGE dial up data base 100 s of slock items and one oft bargains. ONOR LINE NOW
$01-6791888$ MAINS FILTERS

SUPER PRINTER SCOOP

 BRAND CENTRONICS 739-2
COMPUTER 'CAB'

All in one quatity computer
cabinet with integral switched
mode PSU, Mains titering, and iwin fan cooling Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a
massive $+5 v D C$ at 17 amps $+15 v D C$ at 1 amp and $-15 v$ massive $+5 v D C$ at $17 \mathrm{amps},+15 v \mathrm{DC}$ at 1 amp and -15
$D C$ at 5 amps. The complete unit is fully enclosed with DC at 5 amps. The complete unit is fully enclosed with
removable too lid, filtering, trip switch, 'Power' and 'Run' removable top lid, filtering, trip switch, 'Power and 'Run' LEDs mounted on Ali front panel, rear cable entries, etc etc. Units are in good.but used condition-suppled for
240 operation complete with full circuit and tech man. 240 v operation complete with full circuit and tech man Give your system that protessional finish for only
$£ 49.95+$ Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high $£ 49.95$ + Carr. Dim. 19" wide $16^{\prime \prime}$ deep 10.5" high.
Useable area $16^{\prime \prime}$ w $10.5^{\prime \prime}$. $15^{\prime \prime}$. Useable area $16^{\prime \prime} w 10.5^{\prime \prime \prime}{ }^{11} 1.5^{\prime \prime} \mathrm{d}$
Also available LESS PSU, with FANS etc. Internal dim.

NEVER De repeated Standard CENTRONICS parallel intertace for direct connection to BBC, AIC, DRAGON etc. Supert prnt quality with full (\%) HIGH DEFIN addressable graphics and 4 type intents plus MODE for WORD PROCESSOR applications. 80-132 cotumns, single sheet sprocket or roll paper handling pus
much more Available ONLY from DISPA ELECTRONICS at the ridiculous price of owir Eipe.e日 + VAT Complete with full manual etc. Limited quantity-Hurry while stocks last. Options. Interface cable (specity) for BBC, ORIC.
DRAGON or CENTRONICS 36 way plg $£ 1250$. Spare ribbon DRAGON or CENTRONICS 36 way plg $\varepsilon .12 .50$. Spare ribbon

GE TERMIPRINTER

 A massive purchase of these desk top these quality 30 cps printers at a SUPER LOW-PAICE against their original cost of over $£ 1000$. Unit comprises of full OWERTY electronic keyboard and printer mech withprint face similar to correspondence quality typewriter. Variabie forms tractor unit enables full width - up to $13.5^{\prime \prime} 120$ colum paper. upoer - lower case, standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon
adjustable baud rates, quiet adjustable baud rates, quiet operation plus
many other features Supplied complete with manual. Guaranteed working $\mathrm{E} / 50.00$ or untested $E \$ 5.00$. optional floor stand $£ 12.50$
Carr $\&$ ins $£ 10.00$.

DUAL 5" DISK DRIVES urrent, quality. professional product of a major computer company, comprising COMPATIBLE single sided drives in a tructured case with internal switched mode PSU. The PSU was intended to orive both drives and an intelligent $Z 80$ controlle with over 70 ic's. The controller has been removed leaving ample space and current
on the $+,-5,+12$ and -12 supply for all our future expansion requirements. Supplied tested with 90 day guarantee in
BRAND NEW condition with cable for BEC BRAND NEW condition with cable
micro. Ex Stock at only $\mathbf{\Sigma 2 5 9 0}$
$+£ 10.00$ carr. Limited Quantity Only FFER
An advantageous purchase of brand new surplus allows a
chassis keyboard offer at fractions of their onginal costs.
Chassis keyboard offer at fractions of their onginal cosis. output plus strobe. Oim $12^{\prime \prime} \times 6^{\prime \prime}+5 \&-12$ OUC. ह.jy.so.
DEC LA34 Uncoded keyboard with 67 quality, GOLD. normally open switches on
standard X matrix. Complete with 3 LED indicators 8 i/o cable - ideal micro standard X Y matrix. Complete with 3 LED indicators 8 i/o cable -ideal micro
conversions etc. pct DIM $15^{\prime \prime} \times 45^{\prime \prime}$ \& 24.95 Carrione

THE BENEFITS OF INSURANCE

Almost four months ago, on the 29 th of February 1984 , we, DISPLAY
ELECTRONICS were unfortunate enough to have a serious fire at our main location, reducing a substantial part of our stock warehouse and offices to a pile of ashes and rubble. HOWEVER, we had seen the adverts about the "Benefits of Insurance" and some years ago had ta
protect against an event such as this.
The day after the fire we did not even have a single pen to write with, to say nothing of the non existant showroom and burnt out warehouse with direct access to the
stars via our now non existant roof!! stars via our now non existant
The loss of stock and damage to the premises has resulted in losses in excess of
$£ 400,000$ pounds in real money-no price can value time and effort We are still, although working under great difficulties time and effort. We are still, although working under great difficulties, VERY MUCH in business.
We owe this to supreme efforts by all our staff - perhaps knowing therr jobs could have been at stake, stock being located at several different locations, help from business colleagues and our bank
To these people, I say a very loud THANK YOU.
To both the mighty PRUDENTIAL and GENERAL ACCIDENT Insurance Companies who from the date of our fire have NOT even offered or paid A SINGLE
PENNY in compensation or have not even offered an ounce of moral support PENNY in compensation or have not even offered an ounce of moral suppo
To both the mighty PRUDENTIAL and GENERAL ACCIDENT Insurance To both the mighty PRUDENTIAL and GENERAL ACCIDENT Insurance
Companies who only answer our requests for help and information with "We are
still looking at reports..." say "STRONG STUFF THIS INSURANCE???" still looking at reports..." I say"STRONG STUFF THIS INSURANCE????"
David Fisher, Managing Director, DISPLAY ELECTRONICS.

66\% DISCOUNT
 ELECTRONIC EQUIPMENT

Due toour massive bulk purchasing programme which enables us to bring you the best possible bargains. we have thousands if I.C.s. Transistors. Relays. Cap s, PC.S.s. Sub-assembties, PARCEL OF
2.5kls £4.25 + pp £1.25

5kls
$10 \mathrm{kls} £ 10.25+\mathrm{pp} \mathrm{E} 2.25$
20 kls $£ 17.50+£ 4.75$
곡N

£4.75

BUDGET RANGE

VIDEO MONITORS

can afford, our range of EX EOUIPMENT Video monitors defy Competition! All are tor $240 v$ working with Standard composite video inpur Unis are pre tested and set tor up to 80 col use o
$B B C$ micro. Even where MiNOR screen burns MAY exist - normal data displays are

1000's SOLD TO DATE

"" HITACHI very compact fully cased dim white screen
Em $\times 22 \mathrm{~cm} \mathrm{D}$.Black
E4d. 95 12" KGM 320-321, high bandwidth input, will display up to 132 columns $\times 25$ lines. brushed alloy case $8 / \mathbf{W}$ only $\mathbf{E 3 2 . 9 5}$ GREEN screen $£ 39.95$
24 " KGM large screen black \& white dily E55.00
14" 日RAND NEW Novex COLOUR type NC 1414 CL. Many exacting features suc as RGB TL and composite video input,
GREENTEXT Key, internal speaker and audio amp. Even finished in BBC micro OMCCCHE99.90

SEMICONDUCTOR 'GRAB BACS'

Mixed Semis amazing value contents nctude transistors digital. linear, 1. '. 's triacs,

 diodes. bridge recs. etc. etc. All devicesguaranteed brand new full spec with man facturer's markings, fully guaranteed. $50+$ E2. ©5 $100+$ ES $1 / 15$.
TrL74 Series A gigantic purchase of an across the board range of 74 TTL series s enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which tw
or three chips in the bag would nnormally or three chips in the bag would nnormally
cost to buy. Fully guaranteed all I.C.'s full

DEC CORNER

BA11.ME 3.5" Bax, PSU, LTC
DH11-AD
interface $\mathrm{DLV11-J} 4 \times$ EIA interface
 DZ11 Bych DZ11-B line RS232 mux board £650.00 AXX NW LA180 RS232 ma loop £270.00 LAXX-NW LA180 RS232 serial interface
and buffer option

$£ 13000$ | and buffer option | |
| :--- | ---: |
| LAX $34-A L$ LA34 tractor feed | $\mathbf{E 1 3 0 . 0 0}$ |
| $\mathbf{8 8 . 0 0}$ | | MS11-JP Unibus 32 kb Ram $\quad 888.00$ MS11-LB Unibus 128 kb Ram $\begin{aligned} & \text { E850.00 }\end{aligned}$ MS11-LD Unibus 256 kb Ram E850.00 MSC4804 Obus (Equiv MSV1 PDP11/05 | PDP11/05 Cpu, Ram, i/o, etc. |
| :--- |
| PDP1 $1 / 40 \mathrm{C}$. | PDP1 $1 / 40$ Cpu, 124 kMMU

RT11 ver. 3 B documentation kit RT11 ver 3 B documentation $E 1850.00$ RKO5-J. 5 Mb disk trive $\quad \mathbf{8 7 0 . 0 0}$ RK05-J 2.5 Mb disk drives \quad E650.00 $\begin{array}{lr}\text { MIBE PDP } 8 \text { Bootstrap option } & \begin{array}{l}\text { E175.00 } \\ \text { E75.00 }\end{array}\end{array}$ VT50 VDU and Keyboard-

ع175.00
1000's of EX STOCK spares for DEC PDP8, PDP8A, PDP11 systems \& peripherals. Call for details. All types of
Computer equiament and spares want omputer equipment and spares
OROMPT CASH PAYMENT.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

5 MHz Function Generators

Thandar Electronics have introduced a family of function generators which, they claim, will satisfy the majority of function/sweep/pulse requirements to 5 MHz . All three models offer sine, square, triangle, ramp, pulse and haverwave outputs, while the two largest models offer either a sweep generator with marker function or a variable width and delay pulse section.
The TG501 Function Generator has free-run, triggered or gated modes, variable start/stop phase and a 19:1 symmetry range enabling ramp, pulse and haverwave outputs to be produced in addition to the usual sine, square and triangle outputs (Haverwave apparently denotes the ability to generate half cycles of sine wave only, but just what this is used for we do not know and Thandar were unable to tell us). Overall frequency range is .005 Hz to 5 MHz with a 1000-1 sweep within each range on the dial or via the external sweep input. The main 50 Ohm output is capable of 20 V peak-
to-peak and has a variable DC offset; a TTL output is also provided.

The same main generator features are also offered on the TG502, which has, in addition, an integral sweep section capable of 1000:1 linear or 10,000:1 log sweeps. Sweep limits are set by the main dial and stored digitally to eliminate drift. Both sweep rate and marker duration are variable and there is a single sweep mode, sweep reset and hold, and sweep and pen-lift outputs.
The TG503 Function/Pulse generator also offers the same features as the TG501 but in addition provides normal, double or delayed pulse modes with a 10 MHz capability in doublepulse mode. Pulse width is variable from 50 ns to 50 ms and delay from 100 ns to 50 ms . The main output can be normal or complementary and can be symmetrical, positive-going or negative-going with respect to a constant baseline adjustable by the DC offset control.
The TG501 costs $£ \mathbf{2 9 5 . 0 0}$ plus VAT and the TG502 and TG503 both cost $£ 495.00$ plus VAT. Further details and a list of suppliers are available from Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4 H], tel 0480 -64646.

Miniature Chip Inductors

RBS have introduced a range of chip inductors that are designed specifically for use on surface-mounted assemblies to minimise board space and eliminate costly hand soldering.
The Coilcraft range are manufactured using ceramic or ferrite cores. The chips are available with inductances from 30 nano henry to 1000 micro henry, in 5 and 10 percent tolerances and with a
minimum Q of 20. Three sizes are offered with a maximum stand-off height of 0.1 inch. The operating temperature range is -30 degrees to $+105{ }^{\circ}$ Cand the chips are protected against thermal shock to MIL standards. Terminations of moly manganese or nickel coated with silver loaded solder make the inductors compatible with alumina substrates and they are unaffected by ultrasonic cleaning or vapour degreasing.

RBS Ltd, Unit 4, Airport Trading Estate, Biggin Hill, Westerham, Kent TN16 3BW, tel 09594-71011.

Ecolight And After

T[he ETI staff wish it to be known that they fully realise the gravity of the situation and when they finally catch the person responsible are going to confiscate his Jelly-babies. No lesser punishment can be countenan-
ced for those who thoughtlessly withold vital information. Mearwhile, for those still trying to track down the enigmatic G.P. Electronic Services whose name appeared in such tant alisingisola tion at the end of the Ecolight article, their address is:- 87, Willowtree Avenue, Gilesgate, Durham DH1 1 DZ . Our apologies to readers and to G . P . Electronics for the omission.

- Yet another catalogue, this time from Verospeed. Its 450 pages are filled with information on over 8000 products, 500 of them new entries. The recent additions include sealed leadacid batteries, computer peripherals and drawing aids, and all items are available on a same-day despatch basis. Verospeed, Stansted Road, Boyatt Wood industrial Estate, Eastleigh, Hampshire SOS 4ZY, tel 0703-641111.
- Basildon Adult Education Centre are running a series of courses (presumably in the evenings but this is not stated) including a one year beginners course in elec-
tronics, a one year course of preparation for the Radio Amateurs Examination and a six-week course of maths for the RAE. For details contact F. Wickert at Fryerns School, Craylands, Basildon, Essex, tel 026B-20599.
- Stotron have issued a catalogue which has over 160 pages and lists a wide range of products including connectors, displays, switches, relays and alarms. They claim to hold all lines in stock and make no minimum order charge. Copies are available from Stotron Ltd, 72 Blackheath Road, Greenwich, London SE10 8DA, tel 01-691 2031.

Single-
 Handed
 Driving

Facom Tools have introduced a range of screwdrivers which allow the user to insert screws and tighten them using one hand only. A moulded guide on the end of a sliding sheath holds the screw in place during assembly and a convenientlyplaced button enables the screw to to be gripped or released in the same operation.
The seven screwdrivers in the range all feature clear yellow handles and are made to Ger-
man VDE standards. The sliding sheath is made from red PVC and is extended and retracted along the blade by means of a moulded thumb-guide. A spring in the handle of the screwdriver holds the screwhead firmly against the end of the blade so that there is no need for the user to maintain pressure on the thumb-guide while tightening. Once the screw has been tightened sufficiently to hold it in place, the supporting sheath can be released and the screwdriver then used in the usual way to drive it fully home.
There are four flat-bladed screwdrivers in the range, a 2.5 mm (blade width) $\times 75 \mathrm{~mm}$ (blade length) at $£ 3.93$, a $3.0 \times$ 100 mm at $£ 4.10$, a 4.0×125
mm at $£ 5.05$ and a 5.0×150 mm at $£ 5.87$. The remaining three screwdrivers in the range have cross-point blades in standard sizes, a no. O with a 125 mm long blade at $\boldsymbol{£ 5 . 0 8}$, a no. 1 with a 150 mm blade at $£ 5.96$ and a no. 2 with a 175 mm blade at $£ 6.92$. A five screwdriver set is also available which comprises the $3.0 \times 100,4.0 \times 125$ and $5.0 \times 150 \mathrm{~mm}$ flat bladed screwdrivers, the no. 1 and no. 2 cross-point screwdrivers, and an enamelled sheet steel walt mounting holder. The set costs £30.43 and all prices exclude VAT.
Facom Tools Ltd, Bridge Wharf, Bridge Road, Chertsey, Surrey KT16 8LJ, tel 09328 66099.

Conferences, Exhibitions, Etc

The Fourth International Conference on Dielectric Materials, Measurements and Applications is being organised by the IEE and will take place at the University of Lancaster from the 10 th to the 13 th of September. The conference is aimed at those concerned with dielectrics and insulators and their applications in power engineering electronic systems, electronic devices and integrated circuits and will cover test techniques from DC to high
frequency and materials from the traditional through to modern polymers. The papers to be presented include contributions from many parts of the world, and those interested should contact Conference Services, The Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel 012401871 extension 222.
The IEE are also organising a conference entitled Advanced Signal Processing in Radar, Sonar and Communications which will take place at the University of Warwick, Coventry, from the evening of Monday 17 th September to the afternoon of Friday 21 st. The conference will concentrate on components and will consider the applications of micro-
processors and other devices in a variety of signal processing systems. For details contact the IEE at the address above.
If those two events sound highly specialised and tikely to appeal only to a limited circle of people, the Leisuretronics exhibition goes almost to the other extreme. Leisuretronics will take place at the Royal Horticultural Hall near Victoria, London from November the 8th to the 11th and aims to cater for all those with tech-nology-related hobbies. Radio controlled models, electronic music making ham radio, hi-fi and audio, robotics, photography, electronic games and disco lighting are just some of the areas covered by the equipment on dis-
play and the organisers promise a number of special features which they say will bring visitors right up to date on their hobbys. For details contact Trident International Exhibitions Ltd, 21 Plymouth Road, Tavistock, Devon PL19 8AU, tel 0822-4671.
Finally, and briefly, Electronic Displays ' 84 will take place at Kensington Exhibition Centre, London, from the 28th to the 30th of November. It's a combined conference and exhibition which covers all aspects of electronic displays and that's all we know about it, so if you think it sounds interesting, contact the organisers, Network Events Ltd, Printers Mews, Market Hill, Buckingham, MK18 1JX, tel 0280-815226.

Square-Screen Television

$1 T$ recently previewed a new colour television which has a flat-faced, square cornered screen. They claim that 'flat square' television is widely considered to be the next step forward in colour television and have marked the change by adopting a metric measure for screen size rather than the existing imperial measure.
The new tube provides a largely flat screen area which does not protrude from the front of the television and which eliminates the familiar black border around the picture. The new measurement takes account of this and, instead of measuring the overall diagonal size of the tube face, refers only to the visible picture. The new tube provides a picture which measures 51 cm across the diagonal and thus falls in between existing 20" and $22^{\prime \prime}$ mod-

els which provide pictures measuring 48 cm and 53 cm respectively.

Other features of the new television include remote control and optional Teletext, thirty preset programmes with channel thirty VCR-ready, tone control, headphone socket and an
audio output socket. The set will come complete with a purposedesigned stand which includes a VCR shelf and the first examples should be in the shops by October. ITT have not quoted a price but they say it should cost roughly the same as an equivalent $22^{\prime \prime}$ model.

- Quality Control International, an independent testing laboratory which inspects over 3000 domestic appliances, toys and electrical goods each year, reports that one third of foreign goods intended for import into this coutry fail to meet basic safety standards. Such goods, often manufactured in the FarEast, usually fail because they are either electrically unsound or because they have unacceptably high levels of toxicity.
- The Oric Owners' Users Group has now completed its reorganisation and has produced another issue of its magazine, "Oric Computing". OUG have a number of utility and educational software packages for the ORIC1 and ATMOS computers and planned hardware projects include a ROM cartridge, a sixslot expansion motherboard and a serial interface adaptor. Contact OUG, 1 Marlborough Drive, Worle, Avon BS22 ODQ tel 0934-516680.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAYS together with ashort lead time on quantity orders which can be programmed to your requirements with no price penalty.

	ulation 19
	Comoary
\%	$\stackrel{6.6}{9,9}$
	(2atic
\%	
	${ }_{\text {coser }}$
	odin ins plastic)
	12: ${ }_{1}$
	cosis

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Logic Level FETs

Power Technology have launched a range of FETs which provide on-off control of loads and yet can be driven directly by low level logic circuitry. Designated Logic Level FETs or L^{2} FETs, they are manufactured by RCA and are said to be the first power MOSFETs capable of operating directly from TTL and NMOS circuitry.

The L^{2} FETs are manufactured using a thin oxide process and require only 5 V of gate drive to produce full output current. Un-
like other power MOSFETs which require higher gate drive voltages, they can be driven directly by the logic and thus remove the need for an interface circuit and a separate interface supply. In spite of this, Power Technology say they will cost only a fraction more than conventional 10 V power MOSFETs. They are available in T03, T039, 10220 and other industry standard packages and are expected to find applications in motor and solenoid drive circuits, linear and switching regulators, automotive assemblies, DC/DC converters and laser drivers.

Power Technology Ltd, Boulton Road, Reading Berkshire RG2 0LT, tel 0734-866766.

Many Hands.

Gripmate is the answer to a hobbyist's prayer - a device which can hold several component parts in the correct relation to one another during soldering and other operations whilst leaving the user's hands completely free. It consists of a base block which can be clamped to a bench or table and four semi- rigid wire arms, each terminated in a crocodile clip. The wires can be bent into any position and the crocodile clips will then hold the item being worked upon. A magnifiying glass and a magnet, each similarly attached to a semi-rigid wire, are also avait able and they can be used in place of any of the existing wires.

The four-handed Gripmate costs $£ 4.85$, a basic two-handed version costs $£ 3.85$, and the magnifying glass and the magnet cost $£ 2.50$ and $£ 1.50$ respectively. All prices include VAT and postage, etc.

Kemplant Ltd, Durfold Wood, Plaistow, Billingshurst, West Sussex RH14 OPN, tel 048649 -344 .

Texas Instruments have produced a 'pinwheel' selection guide covering their range of CMOS op-amps. The LinCMOS part-finder consists of several concentric plastic discs which are so arranged that, by lining up all of the desired parameters on one side, the part number of the opamp fulfilling those requirements appears in a little cut-out. The part finder is available free from TI or any of their distributors. Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA, tel 0236-67466.

- The Amateur Computing Club have sent us a copy of the June issue of their newsletter, ACCumulator. Its contents include an article on Basicode, a look at the internal organisation of the BBC microcomputer and a simple speech processsor design which can be connected to any Centronics port or directly to the bus of ZX Spectrum and ACE microcomputers. For details contact Andy Leeder who looks after membership - his address is Church Farm, Stratton St. Michael, Norwich NR15 2QB.

Growing Smaller

Merseyside Acoustic Developments, whose "Musician" loudspeaker design was featured as a constructional article in our June issue, have now introduced a smaller loudspeaker which they call the Musician Bonsai. Named after the Japanese technique of miniaturising trees while retaining all of their natural characteristics, the new loudspeakers are said to offer a performance similar to that of their larger stable mates, albeit with a slightly lower power handling.

The Musician Bonsai measures approximately $9^{\prime \prime} \times 7^{\prime \prime} \times$ $6^{\prime \prime}$ and is intended as a bookshelf system. It employs a single, full-range, flat diaphragm drive unit which is a scaled down version of the one used in the original Musician loudspeaker and described in our article. For the benefit of those who didn't see that article, the flat diaphragm used is ellipse or 'lozenge' shaped and is attached to a similarly shaped coil so that the drive is evenly distributed. The manufacturers claim that this reduces problems with diaphragm break-up, etc, and that, by being narrower than the distance between human ears when stood on end, the ellipse-shape improves stereo
imaging. Other novel features include a cabinet construction which uses cork filleting between the panels to damp down cabinet resonances and, in the more expensive models, the use of a newly-developed inorganic plastic called NIMS-127 which futher reduces resonance problems.
The Musician Bonsai loudspeakers are available in either standard wooden enclosures at $£ 140.00$ a pair plus VAT or in enclosures made from NIMS-127 at $£ 210.00$ a pair plus VAT. For details contact Merseyside Acoustic Developments Ltd, Merseyside Innovation Centre, 131, Mount Pleasant, Liverpool 135 TF , tel 051-709 0427.

for a
NE556N Dual version of the 555 uA741CN DIL low cost op amp uA747CN Dual 741 op amp uA748CN 741 with external frequency comp
HA1388 18W PA from 14V
TDA2002 8 W into 2 ohms power amp
ULN2283 IW max. 3-12V power amp
MC3357 Low power NBFM IF system and detector
ULN3859 Low current dual conversion NBFM IF and detector
LM3900 Quad norton amp
LM3909N 8-pin DIL LED flasher
KB4445 Radio control 4 channel encoder and RF
KB4446 Radio control 4 channel receiver and decoder
ICM7555 Low power CMOS version of timer
ICL8038CC Versatile AF signal generator with sine/square/triangle OPs
$\begin{array}{lllll}\text { TK10170 } & 5 \text { channel version of KB4445 } & 61-10170 & 187\end{array}$
HA12002 Protection monitor system for amps, PSUx, TXs etc
HA12017 83dB S/N phono preamp 0.001% THD
MC14412 300 baud MODEM controller (Eduro/US specs)

61-14412 6.85

Microprocessor \& Memories

280A	Popular and powerful 8-bit CPU	26-18400	3.40
Z80AP10	2 port parallel input/output	26-18420	2.95
Z80A CTC	4 channel counter/timer	26-18430	2.90
28671	$\mathbf{Z 8}$ Micro comp. and Basic	2608671	7.50
6116-3	16 K (2kx8) CMOS RAM 200 nS	26-36116	6.68
26132.6	$32 \mathrm{~K}(4 \mathrm{kx} 8)$ quasi RAM 350nS	26.06132	15.00
4116-2	$16 \mathrm{~K}(16 \mathrm{kx} 1) 150 \mathrm{nS}$	26-24116	1.59
2764	$64 \mathrm{~K}(8 \mathrm{kx} 8) 450 \mathrm{nS}$	26.02764	950
2732	32K (4kx8) 450nS	26-02732	5.70

Voltage Regulators

7805	5V 1A positive	27.78052	040
7812	12V 1A positive	27-78122	0.40
7815	15V 1A posituve	27.78152	0.40
7905	5V 1A negative	27-79052	0.49
7912	12 V 1 A negative	27-79122	049
7915	15 V IA negative	27.79152	0.49
Transitors			
BC182	General purpose	5800182	11.10
BC212	General purpose	$58+1212$	010
8C237	Plastic BC107	58 -10237	0.08
8C238	Plastic BC108	58-102238	0.08
BC239	Plastic BC109	58010239	0.08
BC307	Complement to BC237	58,013015	0.10
BC308	Complement to BC 238	5800)(1)30	018

BC309	Complement to BC239	$58-00309$	0.08
BC327	Driver/power stage	$58-00327$	0.13
BC337	Driver/power stage	$58-00337$	0.13
MPSA13	NPN Darlington	$58-04013$	0.30
MPSA63	PNP Complement to		
	MPSA13	$58-04063$	0.30
J310	JFET for HF-VHF	$59-02310$	0.69
J176	JFET analogue switch	$59-02176$	065
3SK51	Dual gate MOSFET-VHF amp	$60-04051$	0.60
3SK88	Dual gate MOSFET-Ultra lo		
	noise	$60-04088$	0.99
TIP31A	Output stage	$58-15031$	035
TIP32A	Complement to TIP31A	$58-15032$	0.35
VN66AF	VMOS Power FET	$60-02066$	0.95
IN4001	Rectifier diode	$12-40016$	0.06
IN4002	Rectifier diode	$12-40026$	0.07
IN4148	General purpose silicon	$12-41486$	005

Silicon Controlled Rectifiers
BRY55-100 100V.8A
$52-55100 \quad 0.50$
Cl06DI 400 V 4.0 A
Cl22DI $\quad 400 \mathrm{~V} 8.0 \mathrm{~A}$
3 mm Diameter LEDs
$\begin{array}{ll}\text { V178P } & \text { Red } \\ \text { V179P } & \text { Green }\end{array}$
V180P Yellow
5mm Diameter LEDs
CQY40L Red
CQY72L Green
CQY74L Yellow
Infra-Red LEDs
CQY99 Emitter
BPW41 Detector
Tri Colour LED
v518 Orange-Green-Yellow $\begin{array}{ll}52.00106 & 0.70 \\ 52.00122 & 1.45\end{array}$
$15-01780 \quad 0.15$ $15-01790 \quad 0.16$ $15-01800 \quad 0.18$

15-10400 0.12 15-10720 015 15-10740 0.15

15-10990 0.56 15-30410 1.51
$15-05180 \quad 0.60$

Capacitors

Aluminium Electrolytics Radial PCB Mounting

10u	16 V	$05-10606$	0.24
47 u	16 V	$05-47606$	0.28
47 u	25 V	$05-47607$	0.28
470 u	63 V	$05-47705$	0.36
470 u	16 V	$05-47706$	0.48
Tantalum Beads			
luf	35 V		
louf	16 V	$05-10501$	0.18
47uf	6.3 V	$05-10601$	0.28
47uf	16 V	$05-47601$	0.45
		$05-47602$	0.92

Monolithic Capacitors

	Pack of 3	
In	$04-10204$	0.39
$10 n$	$04-10304$	042
100 n	$04-10404$	0.45

Low Voltage Disc Cermaic

		Pack of 5
ln	$04-10203$	0.20
$10 n$	$04-10303$	0.20
Polyester (C28O)		
		Pack of 3
10n	$04-10305$	0.18
47 n	$04-47305$	0.24
100n	0410405	0.24
470 n	$04-47405$	0.51
luF	$04-10505$	0.66

R F Components

Filters

CFU/LFB CFW/LFH SERIES
Miniature 455 kHz filters. I/P and O / P impedance 2 K .

-6dBW -40dBW				
1FB6/CFU455H	6 kkz	18 kHz	16-45512	1.95
LFB12/CFU455F	12 kHz	26 kHz	1645515	1.95
LFH6S/ CFW455HT	6kHz	14 kHz	16-45525	2.45
LFGI2S/ CFW455FT	12kHz	22 kHz	$16-45528$	2.45
CFM2455A Mech 455 kHz	nical IF Fil		1945530	0.77
Crystal Filters 2 Pole Types				
10M15A	10.7 Centr		20-10152	2.10
10MO8AA	10.695 Ce	Freq.	20-11152	3.49

Inductors

We offer the complete Toko range of fixed and variable inductors. Over 500 coils from audio to V.H.F. See catalogue for details.
Soldering Irons (Antex)
CS240 Iron 240VAC 17 Watts $5422300 \quad 5.20$
XS-240 Iron 25W 240V High heat capacity
Presentation pack of one
XS-240 with ST4 stand
Handy 12V 15W soldering
ron complete with
crocodile clips and sold
54200045.60

Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $\$ 2$ please. We reserve the right to vary prices in accordance with market fluctuation.

COMMUNICATIONS SATELLTES ((aRRT)

Roger Bond takes a historical look at earth-based antennas in the UK and at Intelsat V.

Until very recently, all the UK's earth station aerials were sited at or near Goonhilly in Cornwall. Recently, however, BT has started to build up a site in the London Dockland for European satellite communications, and Mercury will almost certainly be seeking to develop their own earth station. However, the vast bulk of the UK's satellite traffic will pass through Goonhilly for the next few years.

The aerials at Goonhilly have achieved many firsts in the field of satellite communications. Apart from being the first to participate in transmisssion of voice channels, Goonhilly was also the first European station to transmit colour television signals by satellite. Goonhilly's aerial one has now retired from service but is used as a standby.

After the first crop of aerials at Goonhilly, there was a need for a second site in order to provide a secure service and in 1970 a 140 acre farm was found at Madley near Hereford. This lies in a slight dip which shields it from terrestrial microwave radio.

Table 2 gives a comparison of Goonhily and Madley aerials. In general the main reflectors are constructed from stainless steel with a central dish surrounded by petals and adjustment of the aerial shape is by means of jacks positioned at the petal joints.

Most modern aerials are only $300-4000$ tons in weight and require $10-20 \mathrm{hp}$ DC motors to move

The one that started it all-Goonhilly's Aerial No. 1.

Goonhilly 1	$\begin{gathered} \text { Year } \\ \text { Completed } \\ 1962 \end{gathered}$	Frequencies Used GHz 6/4	Diameter in feet 85	Subreflector Diameter \qquad	Motors HP 100	Route Spare
2	1968	6/4	90	-	15	AOR-MP1
3	1972	6/4	97	10	20\&2	AOR-P
4	1978	14/11	62	7	10	AOR-P
5	1982	6/4	54	6	10	INMARSAT
Madley 1	1978	14/11	105	9.5	5.5	IOR-P
2	1980	14/11	105	9.5	5.5	AOR-MP2
3	1981	14/11	105	9.5	5.5	IOR-MP
4	Under	14/11	62	7.	10	ECS
5	Construction	14/11	62	7	10	AOR-MP1

The new generation - Aerials 1 and 2 (undergoing installation) in the London Docklands.
them but Aerial 1 at Goonhilly weighed 1100 tons and required 100 hp motors. Quite apart from moving this weight, the motors were tracking an orbiting satellite! The motors move the aerial both in azimuth (sideways) and elevation (up and down).

The construction of each aerial tower is different but there are two basic patterns: the beam axis kind and the railway bogie kind. Fig. 1 is an example of the beam axis type where the dish is mounted on a beam which is itself supported on a kingpost. The kingpost rotates in a 60 foot high concrete tower.

Fig. 2 shows the gyrating joints of the railway bogie type where railway tracks some 50 feet in diameter give it a sweep of about 270 degrees. This is aerial 5 at Goonhilly and it can withstand wind speeds of $28 \mathrm{~m} / \mathrm{s}$. During gales it is stored vertically and is capable of resisting windy puffs of $57 \mathrm{~m} / \mathrm{s}$. Since this aerial works to INMARSAT it serves a few single channel users requiring high power unlike the high capacity INTELSAT users. It is aided and abetted in this task by low noise amplifiers housed at the back of the dish.

Madley's aerial 1 has a subreflector whose legs are elliptical in cross section to reduce beam blocking. Aerial 4 is still under construction and will work to the European Communications Satellite (ECS) carrying speech and television. It will carry digital signals employing time division multiple access(TDMA) and also digital speech interpolation (DSI), ie. when a talker is silent, the time slot will be used by another talker. The assignments of the slots will be computer controlled.

In general aerials have become smaller and lighter. The mechanical design has changed from beam axis to the railway bogie type. Electrically they have become more complex with the introduction of dual polarisation.

At 4 GHz there is about 200 dB attenuation of

Fig. 1 (left) Beam axis type aerial.
Fig. 2 (right) Railway bogie type antenna.
signal between satellite and earth. This means that the signal reaching earth is only 10^{-16} watts per square metre. With an aerial of 500 square metres area, the received power is about 10^{-13} watts. This is less than the thermal noise from a resistor at room temperature. Hence the need to have a cooled amplifier that will be sensitive to low signals and give them an immediate boost.

Ever Increasing

Every new range of satellites has an increased capacity. INTELSAT IV had a capacity of 7000 chan-
nels, INTELSAT IVA could carry 11,000 channels and two television links. The new INTELSAT V has double the capacity of INTELSAT IVA. However it must be remembered that capacity in terms of voice channels is only an approximate guide to a satellite's capacity.

For instance if we put data links over a satellite, such continuous demands on satellite power will limit the total number of channels it can carry, as would DSI (digital speech interpolation). Speech has silent periods which helps to conserve satellite power so if DSI is used to put continuous streams of speech on a satellite channel then there is a need to increase the satellite's power or reduce the number of channels it will carry. Similarly, methods of transmission which require a continuous signal to be transmitted, such as tone-on-idle, have to be avoided.

Of the solutions available above, clearly we are not in a position to reduce the number of channels. There is such a heavy demand for international traffic that the number of channels must be increased. There are five hundred million telephones in the world and two thirds of the traffic including data transmission is by satellite.

Satellites are always in hot competition with transoceanic cables and for every new satellite system, there is a new cable. By far the hottest route is the Atlantic which is covered by three satellites working to nearly seventy earth stations. The Primary path works to all the earth stations but those busy countries that need to work to the Major paths as well, require additional aerials.

In competition with satellites are several submarine cables across the Atlantic to Canada and the USA. CANTAT2 has twenty-three supergroups (one supergroup $=60$ channels). CANTAT stands for Canadian transatlantic. TAT7 has fifty-three supergroups and TAT8 due for completion in 1988 will carry 8,000 channels capable of being increased to forty thousand using digital speech interpolation.

So what's the attraction of satellites? They can be launched and operational in a few months. They are

Satellite	Flight No	Launched
INTELSAT I INTELSAT II	-	1965
	F1	1966
	F2	1967
	F3	1967
	F4	1967
INTELSAT III	F1	1968
	F2	1968
	F3	1969
	F4	1969
	F5	1969
	F6	1970
	F7	1970
	F8	1970
INTELSAT IV	F1	1975
	F2	1971
	F3	1972
	F4	1972
	F5	1972
	F6	1975
	F7	1973
	F8	1974
INTELSATIVA	F1	1976
	F2	1976
	F4	1977
	F5	1977

Table 2 A summary of INTE LSAT launches.
also versatile since the aerials on the INTELSAT IV onwards are steerable from the ground. It takes just a few elementary commands from the ground to concentrate the beams on a different area of the earth.

A brief history of INTELSAT launches is given in Table 2. Note the failures. The apogee motor is the one that puts the satellite in stationary orbit after the launch rocket lifts it away from the gravitational field of the earth. Insurance premiums are based on a statistical average of failures and Lloyd's of London are always glad to quote if you have a satellite to launch. For the past twenty years NASA has been the sole launcher of satellites in the Western World. Others have sprung up in recent years and The European Space agency went through an anxious period with launch failures recently.

INTELSAT V

INTELSAT V first went into orbit in 1980, when the first satellite of this series was successfully positioned over the Atlantic. There are now 6 of these satellites in service.

Fig. 3 shows the interesting parts of INTELSAT V; the most immediately obvious difference between V and its predecessors is the use of paddle solar-panels. These make it possible to have a much higher power generation, and on V, they provide 1.54 kW immediately after launch, degrading to 1.16 kW towards the end of the satellites's life. The solar cells charge up two batteries each consisting of 28 NiCad cells capable of supplying 34 Ah ; the transponders on board require nearly 800 W of power - still rather less than a single-bar electric fire!

All this gives the V a much higher weight than its predecessors; it is approximately 170 kg heavier (if one can use that term for a satellite!) than IV-A.

Most of the previous satellites have been built by the Hughes Aircraft Company and launched, by NASA, using an Atlas Centaur rocket. INTELSAT V can be launched by the European Space Agency's ARIANE rocket, or by the space shuttle, as well as by Centaur. As with all other geostationary satellites, launch from Cape Canaveral requires the use of an apogee motor to transfer the satellite to its final, equitorial aerial.

Aerials

There are a total of six aerials on the satellite. Firstly, there are two global horns operating on $6 / 4 \mathrm{GHz}$; these are fully steerable

Secondly, there are two independant, $14 / 11$ spot beam dishes, both operating on transmit and receive. These have limited steering, and can be directed towards areas of very high traffic; one dish is designated 'east', and the other 'west', and, on the Atlantic circuit, they can be steered so as to take in

Fig. 3 Parts of INTELSAT V.

INTELSAT 5 undergoing testing.

different areas of Europe or the American mainland respectively.

Finally, there are two dishes operating on $6 / 4 \mathrm{GHz}$; one is for receive (6 GHz), the other for transmit (4 GHz). These have a very large battery of feeds -88 in all - which makes precise beam-shaping possibe. This is used to get good beam symmetry and to cancel out side lobes, but beyond this, to radiate two different beam shapes, designated 'zone' (the smaller area coverage) and 'hemisphere' (the larger). These use opposite circular polarisations.

Figure 4 shows the coverage of all the beams except the global and Table 3 gives the polarising arrangements. An idea of the size of the 4 GHz transmit aerial may be gained from the photograph - it is, in fact, 2.4 m approx in diameter.

Fig. 4 Beam coverages.

	Frequency GHz	Receive Polarisation	Transmit Polarisation
Beam	$6 / 4$	RHC	LHC
West Zone	$6 / 4$	RHC	LHC
East Zone	$6 / 4$	LHC	RHC
West Hemispheric	$6 / 4$	LHC	RHC
East Hemispheric	$14 / 11$	linear	linear
West Spot	$14 / 11$	linear	linear
East Spot	$6 / 4$	LHC	RHC
Global			
RHC = Right Hand Circular			
LHC= Left Hand Circular			

Table 3 Beam frequencies and polarisations on INTELSAT V.
The gain for each beam is quoted as the gain at the edge of the beam and is 17 DBI for the global (। stands for an isotropic radiating source ie relative to a light source radiating in all directions). The beam edge gain for hemispheric and zone beams is about 23 dBi and for spot beams about 35 dBi .

The aerial dishes are made from graphite-fibre reinforced plastic (GFRP) which is stronger than other alloys used in the aerospace business. There are steep temperature gradients in space and GFRP also has a low co-efficient of thermal expansion which is useful in such a hostile environment. The aerial reflectors are folded inside the launch rocket and deployed once the satellite is in position and the aerial feeds are mounted on the aerial tower which is also made of GFRP.

Stabilisation

Previous communications satellites have used the revolving drum body to stabilise the satellites orientation; with the design of INTELSAT V this isn't possible, and a momentum wheel weighing 15 kg and revolving at 3500 RPM is used instead (there is also a back-up wheel).

The satellite needs to be controlled in three directions, Fig. 5, and the spinning wheel holds it fairly steady in the roll and yaw directions. Fine control in roll and yaw axes is by gas jets. Nearly 12 Kg of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{H}\right)$ is carried and expected to last seven years if fired at two month intervals. The hydrazine is prevented from freezing by electric heating and the gas jets are activated by passing the hydrazine over a catalyst which breaks the hydrazine down into nitrogen, hydrogen and ammonia. The jets achieve a pointing accuracy of $\pm 0.1 \%^{\circ}$

Control in the pitch is achieved by electric motors which react on the momentum wheel. Regular corrections are necessary since the sun and the moon combine their gravity variations in space. The satellite is equipped with infra-red sensors which sense the edge of the earth against the background of cold space and a sun sensor.

Fig. 5 Yaw, pitch and roll axes.

Fig. 6 Positions of satellites; the outer band of satellites operate on $\mathbf{4 / 6}$ GHz , the inner on $10-30 \mathrm{GHz}$. In reality, they are all actually exactly the same distance away from earth!

Receiver Section

All incoming signals at 6 GHz or 14 GHz are converted to 4 GHz This permits ease of processing. Transponders have a bandwidth of 72 MHz , twice the bandwidth of earlier transponders. These are switchable from the ground and the state of each switch is telemetred. At 4 GHz a coaxial switch is used and at 11 GHz a waveguide switch is used.

There are four receivers for the 14 GHz signals, one for each spot beam and two standby. The germanium tunnel diode feeds directly into a Schottkydiode mixer and the down conversion is assisted by a crystal oscillator. After the mixer there is a five-stage preamplifier and a five-stage driver amplifier.

There are eleven receivers altogether for the 6/4 GHz transmissions. Once again each receiver is a low noise amplifier, mixer, preamplifier and driver amplifier. Six of these receivers are standby and one each for the global beam, east and west zones, east and west hemispheric beams. As can be seen in Table 4 the same aerial is used to transmit and receive in the $14 / 11 \mathrm{GHz}$ band but separate aerials in the $6 / 4$ GHz band. The 6 GHz aerial is a scaled version of the

Satellite	Height (Span) \mathbf{m}	Diameter	Weight $\mathbf{k g}$	Frequency GHz
INTELSAT I				
(Early Bird)	0.59	0.72	38	$6 / 4$
INTELSAT II	0.67	0.14	86	$6 / 4$
INTELSAT III	1.04	1.42	151	$6 / 4$
INTELSAT IV	5.27	2.37	730	$6 / 4$
INTELSAT IVA	6.77	2.37	750	$6 / 4$
INTELSAT V	(15.8)	-	1012	$6 / 4,14 / 11$
INTELSAT VI	9	2.37	3675	$6 / 4,14 / 11$
OTS	(9.3)	-	440	$14 / 11$
ECS F1	(13.8)	-	610	$14 / 11$
ECS F2	(13.8)	-	680	$14 / 11,14 / 12$

Table 4 Comparison of different generations of satellites.

4 GHz one.
On reception the 6 GHz signal is amplified through four stages of silicon bipolar transistor amplifiers which have response flat to within 0.25 dB over a 500 MHz bandwidth. The mixer converts the 6 GHz to 4 GHz and feeds it through a four stage preamplifier giving a gain of 27 dB , then through a five stage driver amplifier with a gain of 24 dB . There is a single-step gain adjustment of 7.5 dB which can be switched from the ground.

The signal is then fed through GFRP filters with a Q of approximately 10,000 . There are sixty such filters and GFRP is lighter than invar, which is normally used on earth.

Transmit Direction

Global and spot transponders use TWAs (travelling wave amplifiers) with full back up ie one standby for every TWA in use. The other signal paths have two standby TWAs for every three in use. For the 11 GHz path there is a single-path 5 dB gain adjustment switchable from the ground.

At 11 GHz , the TWA has a saturated power of 10 W and at $4 \mathrm{GHz}, 4.5 \mathrm{~W}$ for the zone beam and 8.5 W for the hemispheric beam. Spot beam transponders will have up convertors to convert from 4 GHz to 11 GHz and the other transponders will supply amplification only, since the signal is at the correct frequency for transmission.

From TWAs the signal passes to the aerial via GFRP filters and on INTELSAT IV, the odd and even channels were fed to separate aerials to ease filter design. On INTELSAT V, this separation does not take place so the GFRP filters have to be sharp in cut-off and immune to pick up from adjacent filters.
Next month - a look at the future.
We would like to thank British Telecom Photo Library for the use of their photographs in this article.

QUALITY COMPONENTS FROM CRICKLEWOOD！This list contains only a fraction of our stock，which is constantly being updated．Prices quoted are for ＂one－offs＂－quantity discounts by negotiation．Official orders from Schools， colleges，Goods Dept etc weicomed．WE SPECIALISE IN CREDIT CARD PHONE ORDERS．A quick call will check stock position and current prices．Prices subject to change．Add 60p p\＆p＋15\％VAT to all orders．Catalogue $40 p+$ A4 SAE envelope．All in－stock items despatched same day unless notified．								01	－45	520161	／01－45	500995	5 T｜x：9	14977	
Sistor														WIRE	
CARBONFILM		边	d	（eas	退		年品		$\begin{aligned} & 220 \\ & 220 \\ & 4020 \end{aligned}$		S				
							90				DIAC				
		74786 7480	${ }_{\text {3 }}^{39}$	${ }_{4052}^{4051}$	zN42888 ${ }^{\text {2．55p }}$		75		¢9p				47p		
		$7881{ }^{7489}{ }^{299}$	390	${ }^{4053}$			${ }^{3} .999$		$9{ }^{\text {¢ }}$						
EE24	v				Regs		1．7．75					（ $\begin{gathered}\text { G58 } \\ \text { VSR }\end{gathered}$		1 Am	
E12	63 100									2p			550		
$\underset{\text { METAL FIM }}{\text { 2WE12 }}$	350 53	999	¢，	4060 4063			${ }^{3} 1.9999$		90		B C C 300V				
ULTra stable	${ }_{100}$	7489 1990	74 L153 5159	4066	${ }^{29 p}$		1.999		89 p	TIP31A 390		EINIC			
OAW ExTAA COWNOISE	500	7490 45p	350	$4067 \quad 2790$							M． 6000	binic	50		
Lown		49		4069	${ }_{29 p}^{29 p}$				115	${ }_{49 p}^{46 p}$			，		
	22 100			4070 4071							，		H ${ }_{\text {2，75p }}^{2.75}$		
Gi	$\begin{array}{lll}22 & 350 \\ 33 & 25\end{array}$	49 p	55	${ }^{31 p}$	458		（390，		研	1．198		CA3098 2.15 p	， 1.95	20	
	$\begin{array}{lll}40 \\ 63 & 110 \\ 68\end{array}$		85	${ }_{310}^{310}$		${ }_{\text {act }}^{\text {act }}$	$7{ }_{7}$					［a3059			
wound	15	139 p	5	${ }^{4076}$	${ }_{7824}{ }^{\text {829 }}$ 45P		硣		${ }_{2}^{2584}$	－139p					
ONCER	9	59	1．39p	31 p			$\begin{gathered} 87 p \\ 390 \end{gathered}$		$\underset{\substack{2.75 \mathrm{p} \\ 175 \mathrm{p}}}{1}$			CA3140E 540	（2N114		
	$\begin{array}{llll}47 & 63 & 120\end{array}$			31 p			499		${ }^{1959}$		$\begin{gathered} 75 p \\ 78 p \end{gathered}$	$\left\lvert\, \begin{array}{ll}\text { cabiact } \\ \text { HA1366N }\end{array}\right.$			
410	$\begin{array}{ll}47 \\ 10 & 100 \\ 10\end{array}$		$7415174{ }^{65 p}$	Sp			${ }^{39 p}$			T1P42A 62p					
	20	${ }^{74116}{ }^{125 p}$		250	$7915 \quad 490$		${ }^{49 p}$								
	$\begin{array}{r}63 \\ 100 \\ \hline 1\end{array}$	（2al18									509				
	${ }^{350}$	1258	位	${ }^{\text {89p }}$	57		17 p			硡	9				
$\begin{aligned} & \text { PO } \\ & \text { PR } \end{aligned}$	$\begin{array}{llll}22 & \\ 22 & & \\ 40 & 11 \\ 40\end{array}$			4098	${ }_{\text {7915 }}^{7915}$						T1126m 99p	$1 \mathrm{CM7556}$ 1．990			
												${ }^{208}$			
	$\begin{array}{ll}22 & 100 \\ 47\end{array}$	74266 490										${ }^{959}$			
	4	59	${ }_{6}^{655}$							90	59p		Split Aobbin		
3 SERIES	100	9	${ }_{744 \leq 221} \quad 1.150$	450j	ISTORS		21 p			${ }^{\text {T1P127 }}$	（226180） 929	${ }^{1+5353}$			
	100						昭				T¢ 235 D （12a）	（tas35			
	${ }^{100}$	［8142			${ }_{2 \text { 2N219 }}^{2 \mathrm{~N} 219 \mathrm{~A}} \mathrm{3}$										
As above with DP Aains Switch	100 $\begin{array}{r}100 \\ 100 \\ 100\end{array}$			1．25p	${ }^{330}$					$\begin{aligned} & 190 \\ & 0.90 \\ & 0 \end{aligned}$		Sop	${ }^{\text {a }}$ as above ${ }^{3.750}$		
		7714147					270		吅						
As abovesteree	220 i6				${ }^{331}$		${ }^{15 p}$		P0			${ }^{1.989}$			
	220	741	（7als	${ }_{75 \mathrm{p}}$	${ }^{5} 5.85$		${ }_{19 \mathrm{p}}^{17 \mathrm{p}}$			${ }_{99}$		5.500			
		74	（7als251	1．05p											
		77155			$2 \mathrm{~N} 2369 \mathrm{~A}-35 \mathrm{p}$		（190			$1{ }^{\text {cos }}$					
	$1{ }^{4} 0$			${ }_{89}{ }^{\text {p }}$			${ }_{\substack{\text { 26p } \\ 3 \mathrm{pp}}}$			90，					
	$470 \quad 63$	${ }^{174159} 101290$	$7445278{ }^{\text {7290 }}$				，			2					
Standard Ho：＇ris	（100		ast	$\left\lvert\, \begin{array}{ll}4529 \\ 4532\end{array}\right.$											
	$1000{ }^{25}$			${ }^{3} .950$								1．200			
	$\begin{array}{ll}1000 \\ 1000 & 40 \\ 103\end{array}$	［ $\begin{array}{ll}70163 \\ 74164\end{array}$		2298			45					${ }_{2}^{2.45 \mathrm{~Pb}}$			
	1000 2000 208 16	［ \mid	75										－3．75 ${ }_{5}^{\text {95p }}$		
	25		74	9p	659										
1050		［	（1atse		1．89p ${ }^{1.80}$		${ }_{\substack{\text { 55p } \\ 590}}$				2.4104 V	（M7225CH	（ex		
	63														
CAPS	$\begin{array}{llll}4700 & 25 & 890\end{array}$		74							2－	124 Serees		行		
	RADIALS								${ }_{\text {cosp }}^{59}$		14p		$\left\|\begin{array}{lll} 4.19 & 5.49 p \\ \text { vo Boart } & 2.10 p \\ \text { Dip Board } & 395 p \end{array}\right\|$		
	Matsesstita ondy			$64 p$											
			${ }_{74}^{14}$								BRIDGE		Track Cutter 1．63p		
				Locic								3．25p		（ex	
	R											${ }^{4} 4.395$	$\left\|\begin{array}{cc} & 2.21 p \\ \text { 1oopins } & 61 p \\ \text { Veroblor } & 4.66 p \end{array}\right\|$		
	187 ${ }^{22} \quad 10$									15p	${ }^{2}$	95p			
	（100 $\begin{array}{ll}47 \\ 100 \\ 10\end{array}$		${ }^{744.5352}$							¢		${ }^{3} 377$	Pen 8 S		
	1 1200											． 260			
			74	68	2098						WO88001 50p				
	${ }^{220} 480$														
	${ }^{\text {aro }} 16$		74.5374 14.5378									（1）			
	1000 16								2320，			LM3975 ${ }^{\text {a }}$ 355			
	2200										So4，400！ S08880） 555 650	， 15			
	$\begin{array}{lll}3300 & 10 & 509 \\ 3300 & 16 & 65 p\end{array}$	74LS TTL		MEMORIES								1360			
			1.2											（Stale ficon）	
							180								
	74TLL			［108					19			NE55885	1 Thin lines 2 Thick lines		
				899								NEE560			
				－4116－15 35k	238							${ }^{49 p}$	2 Thin nends No6（Microl 85p 4 Thick bends XS240 $\times 25$ Bits		
										${ }_{40} 2 \mathrm{p}$		37p	stor pads		
				195			${ }_{18 p}{ }^{\text {p }}$		${ }_{1659}$		к011001 2.62 p	3.99			
Onf 100				misc logicic＇s	${ }^{342}$		219		${ }^{3.566}$		K04440				
（	${ }^{7405}$	［174513	${ }^{4000}$		${ }_{3}^{3580}$		$\xrightarrow{17 p}$				K06t（50）				
										$2{ }^{\circ}$					
${ }^{15} 5$	17409 35		$4006{ }^{698}$	ADCOB17 Dl	2N5190 $\quad 750$		${ }^{24}$	3310	，		354.40	${ }^{7.359}$			
Sovv 35	${ }_{7412}{ }^{\text {35 }}$	24	${ }_{4009}^{4008}$	Ro			19 p	m 9	${ }^{3.399}$				SINGLE SIDED	W＇Connectors	
	7413 35p		$4010 \quad 29 \mathrm{p}$	4050	2n	BC2	${ }^{238}$		2760						
			0	${ }_{781}^{7.81}$	2 N		${ }_{2}^{180}$								
		${ }_{7415}^{7215}$	${ }_{4013}^{4012}$	SAA5012			27 p		${ }^{3} 3991$	${ }_{20}$					
			$4015{ }^{65}$	SRA5030									5p		
	$\begin{array}{ll}7422 \\ 7422 & 35 \\ 35\end{array}$						${ }_{26 \mathrm{p}}^{210}$		000	dsp					
	3423 3	741537	$4018 \quad 6$	SaAsc50 8950	13		99，		2.63				－spararib 1．23p		
			${ }^{4019}$	Steasior										（ex	
${ }_{\text {l }}$	${ }_{7427}^{7428}$		${ }_{4021}^{4022}$			8	\％	MJE		$9{ }^{9}$	，		SENTITVE PCB		
	$2428 \quad 350$		4022 79p	${ }_{8 \text { r99 }}$					${ }^{995}$	290	G50 50 50				
		24	${ }_{402}^{402}$	277				M ME		，					
33	7433 35\％	741576	4026	227					¢990		${ }_{\text {F30 }}^{\text {Smal ditused }}$				
473	\％${ }^{7437}$	${ }^{741578}$	${ }_{4027}^{4027}$	811597			\％				${ }^{63 D} \quad 13 \mathrm{D}$				
													2100	ZIF SOCKET	

LBELECTRONICS

SPEACH SYNTHESISER kit as in March/April Electronics \& Computing. Kit £24.95 p/p £1.50. Ready Built £34.95 p/p £1.50. DetailsS.A.E. LOGITEC FT50001 dot matrics printer 100 cps , friction/tractor $\overline{\mathbf{\Sigma 2 8 9}+\mathrm{VAT}}$. Carriage £10. S.A.E. leaflet plus print-out.
PRESTEL monitors 6" green phosphor screen 12 digit keyboard printer port, cassette port, keyboard port (for full qwerty keyboard) Brand new and boxed $\mathbf{£ 1 7 5}+$ VAT. Leaflet S.A.E.

DISC DRIVE BONANZA

TEAC FD-55F $1 / 2$ Height DSD 80 track/40 track, selectable at our new low price $£ 199$ + VAT. $£ 8$ carriage. Shinon $1 / 2$ height $51 / 4$ " drive, 40 track, brand new, single sided, double density $£ 140$ + VAT. Carriage £8. COMPETITION. We thank all our customers for purchasing our Teac drive and as a bonus we are now offering every 50 th disc drive to be sold will be sent totally FREE. The 1 st winner is: Mr A.P. White, Hertford, Huntingdon, Cambs. This offer is excluded from trade or bulk buyers).
EDGE CONNECTORS•1" 56×56 wire wrap keyway at $30 £ 1.80 \mathrm{p} / \mathrm{p}$ 25 p. $30 \times 30 \cdot 156$ Gold 80p p/p 25 p $\cdot 1180 \times 801$ 12.85 p/p 25 p.
Twin 5" Cabinets with power supply $£ 40.00+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere $£ 50.00$ + VAT).
LS IC's In Stock. Phone for prices
Dual8" Drlve Cabinets brand newback panelcut out for fanetc... $\mathbf{E 2 5}$ Modem PCB containing uart LS XR2211CP, XR2206CP no data. $£ 3.95 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$
26 way IDC Socket on short length of Ribbon Cable $£ 1$ p/p 20p KEY BOARD BONANZA. Brand new ASCli coded single 5 volt rail. Some with numeric key pad, some without £29.95p p/p $£ 1.50$ p. Leaflets S.A.E.
Our business is now expanded and we have computer showronms at MICRO HOUSE, 416 DERBY ROAD, GREENFORD, MIDDLESEX Tel: 01-575 2860. Many computer peripheral bargains on show. We now stock the new Sanyo MBC550 £749 + VAT (single drive) MBC555 £999 + VAT. (Twin driver (128K standard expandable to 256 K with 555 model £ 1200 worth of software with this system (i.e. WordStar, SpellStar, Mailmerge, ReportStar, etc...). Full demonstrations available phone for S.A.E. New monitors, printers, disc drives, diskettes, paper, ribbons, etc, etc. . . Supplied at realistic prices. Please note our retail component shop is still in operation at Hercies Road.

LB ELECTRONICS
11HERIERRAD, HILLNGDN
MDRLESEX YBAD LS. ENGLANO
Antican
TEL: UXBRIDGE 55399

KEYBOARD INTERFACE

Following on from our typewriter interface, here's a project that allows you to make use of the (rather nice) keyboard of the EX42 typewriter for input into your micro! Design and development by Jon Tyler.

Following my article describing the typewriter interface for the Silver Reed EX42 (ETI October 1983) I have had a number of requests to design a similar interface to allow the keyboard of the typewriter to be used as an input peripheral for a microcomputer. Certainly, for the 'home brew' micro builder, the terminal is about the most expensive component. If it is built using a domestic TV and a video modulator, you still need a keyboard and the total cost is still fairly high. A solution to part of this problem is described here and a typical system is shown in Fig. 1.

Using the keyboard as an additional input peripheral may also appeal to the owners of commercial micros such as the Spectrum which do not have a conventional typewriter keyboard layout. In this case, the interface connection details depend very much on the individual micro so a

Fig. 1 How the keyboard interface can be used in your system.
general purpose serial or parallel interface is described here. You will need to provide a suitable input port to the micro being used.

The keyboard layout of the Silver Reed EX42 is a fairly standard typewriter layout but with some additional keys. This means that it will not conform exactly to any particular keyboard interface chip. The manufacturers use an Intel 8049 microcontroller with proprietary software. This article describes the use of a readily available keyboard encoder chip, the KR2376, together with a decoder to convert the output codes into standard ASCII codes for the micro. The decoder may be implemented in hardware or software and both will be described.

The connections to the keyboard are in the form of one 10way and one 15 -way ribbon cable connector and these give access to the 8×8 array of keyswitches as shown in Fig. 2.

Construction

The prototype was constructed in a plastic box measuring about
 taken from the interface to the typewriter in the form of a 26 -way ribbon cable. The typewriter keyboard is connected to the typewriter electronics by means of single-in-line ribbon cable connectors. To make connection into the sockets a home made connector constructed from a strip of Vero board and some wire wrap pins was used. Fig. 3 shows how these are connected to the keyboard. Note that the 26 th way of the ribbon cable is connected to ground via a solder tag. A suitable point exists on the typewriter PCB

Fig. 2 The keyboard matrix layout.

Fig. 3 Construction of the adaptors and fitting to keyboard connectors in place of $\mathbf{J 7}$ and $\mathbf{J 8}$.

Fig. 4 Circuit diagram for the keyboard interface.

HOW IT WORKS

The keyboard encoder IC (IC1) is designed to interface with a 11×8 array of keyswitches conforming to a particular layout. The device translates the key closure, together with the levels from the shift and control inputs, into an 8-bit ASCII code. When connected as suggested (Fig. 4.) a different set of codes are produced as the key intersections do not conform to the ones assumed by the IC manufacturers. The IC comprises two counter-decoder sections, a comparator, timing circuits and ROM encoder.

When a switch is closed, a single path is created between one of the counter outputs and one of the comparator inputs. After a time the two inputs to the comparator will match, one coming from the keyboard and the other from the second counter. A key bounce delay network is then enabled which checks to see if the key is still depressed at the end of the delay time. If it is, then the corresponding position code is used as the input to the ROM which outputs a specific code.

This code will not be correct for the reasons already mentioned, and therefore it has to be converted to ASCII. This can be done in hardware or software. If the hardware option is chosen, the output from the keyboard interface IC is passed to a 2716 EPROM (IC2) which is programmed according to the data in Table 1. The device translates the codes into ASCII codes which appear on the
eight output lines.
If the software option is chosen, then the conversion is done after the information is accepted by the microcomputer. It is likely that this will be a machine code program and thus dependent on the micro used. However, to assist in the writing of the program, a BASIC test program is given in Fig. 5. This was written for a Z80 based micro in Micropolis BASIC but it should be easy to modify to suit other dialects of BASIC. The port numbers will of course have to be modified to suit the particular input port decoding used.
The fact that a key has been pressed is noted by IC1 and the STROBE output (pin 16) becomes active. This remains active during the time the key is pressed. In the case of a parallel interface, this may be used to strobe the data into a suitable port on the micro. If the serial interface is required, then this signal is used to strobe data into the input buffer of the UART (IC3). The UART converts the eight-bit parallel data into an asynchronous data stream, which is then converted from TTL levels to RS232/V24 levels by means of the line driver IC (IC4). Theparticular baud rate tobe used is generated by the baud rate generator, IC5. The inputs to pins $13,14,15$ and 16 determine the baud rate and the relationship is shown in Table 2. The baud rate used must correspond to the baud rate of the microcomputer serial interface.
marked 'GND'.
The typewriter cover is removed by unscrewing the two grub screws at either end of the platten (roller) using an Allen key.

Then the platten is removed by pulling the two platten knobs out at either end and lifting out the platten and the paper pan below it. Unscrewing the four screws
underneath the typewriter body then allows the top cover to be removed. The keyboard may then be released from its clips and turned upside down to gain access to the ribbon cable connectors. These are then unplugged and connected to the interface cable. Note that the interface must not be connected in parallel with the typewriter electronics, although the interface to the printer mechanism (October 1983 ETI) can be used with the keyboard interface described here âlso.

There are various options available in the circuit, and you can select software code conversion, EPROM code conversion, and serial or parallel code output. The most basic option is that of software code conversion, and for this only IC1 and associated passive components are needed: in this case, it is probably not worth using the special PCB. However, if you do use the PCB, and you would like to retain the possibility of going over to EPROM conversion in future, then we suggest that you install an IC socket and header plug for IC2, and link the following pins on the header socket: pins 1 and 17; 2 and 16;3 and 15;4 and 14; 5 and $13 ; 6$ and $11 ; 7$ and 10 ;and 8 and 9.

To use EPROM code conversion, you will need to program a suitable EPROM according to

	(a)		(b)	
ch	10c	cont	10 c	cont
/	00	2 F	000	047
	01	00	001	000
	02	00	002	000
	03	00	003	000
	04	00	004	000
	05	2C	005	044
3	06	33	006	051
K	07	4B	007	075
4	08	34	008	052
8	09	38	009	056
	OA	00	010	000
E	OB	45	011	069
6	OC	36	012	054
D	OD	44	013	068
R	OE	52	014	082
	OF	00	015	000
	10	00	016	000
4	11	4A	017	074
U	12	55	018	085
	13	00	019	000
	14	00	020	000
	15	00	021	000
	16	00	022	000
5	17	35	023	053
T	18	54	024	084
G	19	47	025	071
C	1 A	43	026	067
B	1B	42	027	066
I	1C	49	028	073
M	1D	4D	029	077
Y	1E	59	030	089
	1F	00	031	000
	20	39	032	057
S	21	53	033	083
0	22	30	034	048
X	23	58	035	088
	24	2E	036	046
	25	00	037	000
	26	00	038	000
	27	00	039	000
	28	00	040	000
	29	00	041	000
	2A	00	042	000
	2B	00	043	000
	2C	00	044	000
	2D	00	045	000
	2E	00	046	000
	2F	00	047	000
	30	00	048	000
	31	20	049	032
	32	OA	050	010
	33	00	051	000
	34	00	052	000
	35	00	053	000
	36	00	054	000
	37	00	055	000
	38	00	056	000
	39	00	057	000
	3 A	00	058	000
	3B	00	059	000
	3 C	00	060	000
	3 D	00	061	000
	3E	00	062	000
0	3 F	4 F	063	079

ch	(a))		
	10 c	cont	100	cont
	40	00	064	000
		00	065	000
		00	066	000
*	43	3 A	067	058
		00	068	000
	45	00	069	000
		00	070	000
	47	00	071	000
	48	00	072	000
1	49	31	073	049
Q	4A	51	074	081
A	4 B	41	075	065
Z	4C	5A	076	090
W	4D	32	077	050
	4E	57	078	087
W	4F	00	079	000
	50	00	080	000
	51	00	081	000
	52	00	082	000
7	53	37	083	055
	54	00	084	000
	55	00	085	000
	56	00	086	000
	57	00	087	000
	58	00	088	000
	59	00	089	000
	5 A	00	090	000
	5 B	00	091	000
	5C	00	092	000
	5 D	00	093	000
	5 E	00	094	000
	5 F	00	095	000
a	60	40	096	064
-	61	2D	097	045
	62	00	098	000
	63	00	099	000
N	64	4E	100	078
	65	00	101	000
	66	7F	102	127
	67	00	103	000
	68	OD	104	013
	69	00	105	000
	6 A	00	106	000
	6 B	00	107	000
	6 C	00	108	000
	6D	00	109	000
	6E	00	110	000
	6 F	00	111	000
	70	00	112	000
	71	00	113	000
P	72	50	114	080
H	73	48	115	072
V	74	56	116	086
F	75	3B	117	059
	76	46	118	070
L	77	4C	119	076
	78	00	120	000
	79	00	121	000
	7A	00	122	000
	7 B	00	123	000
	7 C	00	124	000
	7 D	00	125	000
	7E	00	126	000
	7F	00	127	000

ch$?$	(a)	(b)
	loc cont	loc cont
	80 3F	128063
	8100	129000
	8200	130000
	8300	131000
	8400	132000
,	85 2C	133044
E	8624	134036
k	87 6B	135107
$\underline{1}$	8824	136036
(8928	137040
	8A 00	138000
e	8B 65	139101
\&	$8 \mathrm{C} \quad 26$	$140 \quad 038$
d	8D 64	141100
r	$8 \mathrm{E} \quad 72$	142114
	8F 00	143000
	9000	144000
j	91 6A	145106
u	9275	146117
	9300	147000
	9400	148000
	95 OU	149000
	9600	150000
\%	$97 \quad 25$	151037
t	9874	152116
g	9967	153103
c	9 A 63	154099
b	9 B 62	155098
i	9 C 69	156105
m	9 D 6D	157109
y	$9 \mathrm{E} \quad 79$	$158 \quad 121$
	9 F 00	159000
)	A0 29	160041
S	Al 73	161115
$=$	A2 3D	162061
X	A3 78	163120
	A4 2E	164046
	A5 00	165000
	A6 00	166000
	A7 00	167000
	A8 00	168000
	A9 00	169000
	AA 00	170000
	AB 00	171000
	AC 00	172000
	AD 00	173000
	AE 00	174000
	AF 00	175000
	B0 00	176000
	B1 20	177032
	B2 OA	178010
	B3 00	179000
	B4 00	180000
	B5 00	181000
	B6 00	182000
	B7 00	183000
	B8 00	184000
	B9 00	185000
	BA 00	186000
	BB 00	187000
	BC 00	188000
	BD 00	189000
	BE 00	190000
0	BF 6F	191111

ch	(a)		(b)	
	10 c	cont	10 c	cont
		00	192	000
\#	Cl	23	193	035
	C2	00	194	000
*	C3	2A	195	042
	C4	00	196	000
	C5	00	197	000
	C6	00	198	000
	C7	00	199	000
	C8	00	200	000
!	C9	21	201	033
q	CA	71	202	113
a	CB	61	203	097
Z	CC	7A	204	122
\because	CD	22	205	034
W	CE	77	206	119
	CF	00	207	000
	D0	00	208	000
	D1	00	209	000
	D2	00	210	000
+	D3	27	211	039
	D4	00	212	000
	D5	00	213	000
	D6	00	214	000
	D7	00	215	000
	D8	00	216	000
	D9	00	217	000
	DA	00	218	000
	DB	00	219	000
	DC	00	220	000
	DD	00	221	000
	DE	00	222	000
	DF	00	223	000
	EO	00	224	000
	El	5F	225	095
-	E2	00	226	000
	E3	00	227	000
n	E4	6E	228	110
	E5	00	229	000
	E6	7F	230	127
	E7	00	231	000
	E8	OD	232	013
	E9	00	233	000
	EA	00	234	000
	EB	00	235	000
	EC	00	236	000
	ED	00	237	000
	EE	00	238	000
	EF	00	239	000
	FO	00	240	000
	Fl	00	241	000
p	F2	70	242	112
	F3	68	243	104
V	F4	76	244	118
$+$	F5	2B	245	043
f	F6	66	246	102
1.	F7	6C	247	108
	F8	00	248	000
	F9	00	249	000
	FA	00	250	000
	FB	00	251	000
	FC	00	252	000
	FD	00	253	000
	FE	00	254	000
	FF'	00	255	000

Table 1 EPROM contents in hexadecimal (a) and decimal (b)

Table 1 and insert it into the IC2 position. Owners of the EX44 may wish to include the characters <and> and to do this you must alter the contents of locations 133 and 164 to 194 and 196 respectively (addresses and data in decimal). The STROBE line is low while any key is pressed.

To use the serial interface option, IC3, 4 and 5 must be in-
stalled, along with the associated passive components. The four DIL switches, SW1-4, are used to set the transmission speed, and could be replaced with links if the interface will be required to operate at only one speed. Table 2 shows the appropriate switch (or link) settings.

It is assumed that the power supplies $(+12 \mathrm{~V}-12 \mathrm{~V}$ and +5 V)

SW1	SW2	SW3	SW4	Baud rate
0	1	0	0	110
1	0	1	0	300
0	1	1	0	600
1	1	1	0	1200
0	1	0	1	2400
0	0	1	1	4800
0	1	1	1	9600
Note $\mathbf{1}=$ open.				

Table 2 Baud rate switch settings.

Fig. 5 Overlay diagram for the PCB.
may be obtained from the microcomputer. The keyboard encoder requires about 12 mA at -12 V and 12 mA at 5 V , the EPROM requires about 60 mA at 5 V and the UART typically 10 mA at 5 V . The baud rate generator takes up to about 50 mA .

PARTS LIST

RESISTORS (all $1 / 4$ W 5\%)	
R1	100k
R2,4,5-8	4k7 (6 off)
R3	680k
CAPACITORS	
C1	50p (or 47p)
C2	1n0
C3-6	100n (4 off)
SEMICONDUCTORS	
	$\begin{aligned} & \text { KR2376-ST (or AY- } \\ & \mathbf{5 - 2 3 7 6} \text {) } \end{aligned}$
	2716 EPROM, programmed
IC3	AY-3-1015D
IC4	SN75188 MC1488
IC5	AY-5-8116
MISCELLANEOUS	
X1	5.0688 MHz crystal
SW1-2	DIL switches or links as required.
Connectors (see text); IC sockets as	
pin, 1 off 18 pin); 24 pin header plug if	
required (see text); wire-wrap pins and veroboard for input connectors (see	
text); PCB, ribbon cable, box to suit, wire, etc.	

[^0]
BUYLINES

IC1 (KR2376-ST), IC3 (AY-3-1015D), IC4 (SN75188) and IC5 (AY-5-8116) are all available from Technomatic, and some of these are also available from other sources as well; Crystal X1 (5.0688 MHz) is available from Cricklewood Electronics for $£ 2.95+60 p$ p\&p + VAT. The PCB is available from the ETI PCB service.

DIGITAL CASSETTE DECK

The desire to have something more convenient than the ubiquitous START CASSETTE IN RECORD MODE type of message buried in programs was one reason for designing this project; the other was to speed up storage and retrieval without having to pay out for a floppy. Design and devepopment by Bob Campbell.

This article describes the design of a high-quality fast tape deck, which, with the right software, is capable of recording and reading data at speeds in excess of 4800 baud.

The reason for the reliability and speed of the recorder lies in the way the data is recorded onto the tape. Instead of the normal
record/replay amplifiers, which tend to be optimised for low audio distortion and which therefore do not respond well to large amplitude square waves, a highpower read/write amplifier is used so that the head can, on record, be driven into saturation. Because of this, single bits can be recorded on to the tape as negative (or posi-
tive) flux with such reliability that the more usual FSK technique need not be used.

The cassette deck used, the Tanashin Electric TN-3600, is really a cassette mechanism as it has no record or replay amplifiers supplied. It does, however, come with a high-quality stereo sendust tape head, an erase head and five

Fig. 1 Block diagram of the complete digital cassette deck.

Fig. 2 Circuit diagram of the drive control interface with the rest of the circuit shown in block form.
solenoids. These miniature solenoids are hidden away within the mechanism and are used to select the normal functions of any cassette deck (see Table 1 for details). The solenoids do not directly substitute for the normal key mechanisms, as the size and power required to do that would be prohibitive; instead they are used as gear-changers, the motive power to move the tape heads coming from the drive motor through a complex gearbox In this way they have been kept very small and they each consume less than 100 mA from a 12 V supply.

Although this is not a vast amount of power it is still too much tor the average computer to control directly, so some sort of interface is required. This interface is one of the four functional parts of this design, they are:

1. Drive control interface;
2. Opto switch circuit EOT - rev counter,
3. Write amplifier,
4. Read amplifier.

Drive Control Interface

The computer interface consists of two ICs, IC1 and 2. These are high-current Darlington transistor arrays with TTL compatible inputs. Although seven outputs are required and IC1 has eight available, a second chip, IC2, has been used to spread the power con-
sumption over two chips. Since the power consumption of the motor can rise to 3.6 W under stall conditions (ie, at the end of a rewind operation) IC2 has been used to drive the motor alone and IC1 is used to control the five solenoids on the tape deck and the two relays on the control board.

The two relays are used to select between READ and WRITE modes RE2, and also to select either TRACK 0 , or TRACK 1 of the stereo tape head. The inputs to the seven control functions are terminated in a 14 -pin DIL socket which can be connected to any eight bit I/O port. The last bit, bit

8, is used as an input to the computer. It is connected to the micro-switch on the tape deck which is activated by the lever which detects the presence of the record protect tab on the top edge of the cassette. As the circuit, is configured, this input is LOW when the tab is removed and by convention the casssette is protected. However it has been left to the user to make use of this feature in his or her own application software.

The final part of the circuit is just the connector assignments, which are tabulated in Table 1, and the protection diodes D1-D8. These diodes are used to clamp

Table 1 Selection of solenoids to achieve cassette operating functions.

Fig. 3 Circuit diagram of the beginning and end of tape sensor.
the back EMF generated when switching off inductive loads such as relay and solenoid coils and must be fitted if you wish your computer to survive.

Opto Switch Circuits

Two identical circuits, Fig. 3, are used to drive two opto reflective switches, IC3,4. One of these two switches senses the end or beginning of the tape so that the computer can automatically turn off the tape drive after, for example, rewinding the tape.

Each of the circuits consists of half of an LM319 dual fast comparator IC5, and a miniature opto-

\section*{HOW IT WORKS WRITE AMPLIFIER} | WRITE AMPLIFIER |
| :--- |
| The input voltage, which can be an |
| analogue voltage or TIL output, is first |
| AC coupled and clamped to + or - |
| 0.6V by the two diodes D9, D10. This is |
| then AC coupled to the input of the |
| first amplifier IC7 a, which is biased by |
| the DC offset of R21 and R22. This first |
| amplifier is configured purely as a |
| buffer-compressor as its output is |
| limited or clipped to 0.6V by the two |
| diodes D11 and D12. This clipping also |
| has some effect on the hysteresis of |
| the output waveform, see Fig. 5. |
| The buffered signal is then split and |
| fed into two further amplifying stages, |
| one configured as an inverting amp |
| and the other as a non inverting amp. |
| The output of these two amps are 180 |
| out of phase and approximately $\pm 6 \mathrm{~V}$ |
| about the 6 V DC offset. These signals |
| are fed to both the read write head ter- |
| minals tnote that it is not earthed |
| separately). The actual recording |
| current is controlled by R28 and R31. |
| The values for R28 and R31 should be |
| selected to give maximum recording |
| current for the head and the type of |
| tape used. |

reflective switch. The other identical circuit using the other half of the 319, can be used either for a revolution counter or some other sensor, e.g. a cassette-inplace (CIP) circuit.

The position of the end-of-tape (EOT) and the sensitivity of the circuit is largely dependent upon the bias current through R5 (R13), and the object separation. Exact details of the mounting of the optoreflective switch (ORS) depends on the type used. The reflective switch must be placed facing the open slot in the face of the cassette not occupied by either erase or R/W head or the pinch wheel, so that it is approximately 1 mm from the cassette body. Adjustment of R5 can then be made, if necessary, so that the output from IC5 is triggered when the tape is over the ORS but not when the tape leader is covering it. The outputs from the comparator is used to turn on a transistor with an open collector which provides a TTL-compatible output; this will

Fig. 5 Processing of the input signal by the write amplifier.
present a rising edge when the tape leader is encountered. The outputs from the two circuits are taken to SK 4, pins 12 and 13; they correspond to the CA1, CA2, CB1, CB2, inputs to the VIA chip on the TANEX extension board on the Microtan computer, but could be used with any similar device, capable of recognising a positive or negative edge.

Write Amplifier

The heart of this system is the

Fig. 4 Circuit diagram of the write amplifier.

Fig. 6 Circuit diagram of the read amplifier.
write amplifier. The secondary but no less important objective I had in mind when I designed this system was to provide a reliable recording system capable of much higher baud rates than the average tape system. In addition it should also be able to record TTL signals directly without the need of the FSK modulation techniques normally employed in the standard CUTS type systems, while it should still be able to read/record such FSK tapes.

The basic design philosophy is that something should be recorded on the tape at all times when data is present at the input and that a logic high is recorded as the complete opposite magnetic flux to a logic low. This is achieved by forcing one terminal of the R/W head to +12 V and the other to OV during one state and then reversing the connections to $0 V$ and +12 V respectively during the opposite input state. Note it does not matter which is which.

Thus during the read mode when one terminal of the R/W head is connected to GND and the other terminal swings between 0 V and almost 12 V , the maximum output can be achieved from the R/W head.

To achieve this voltage swing the signal is actually superimposed on a 6 V DC offset, created by two potential dividers, R21 - R22 and R24 - R25; Fig. 5 shows the various waveforms around the circuit. The high level of recording current removes the need to use the erase head under most circumstances. Thus both tracks of the stereo head can be used independently, something impossible if the standard erase head were used. This second track can be used for normal data or, as will be demonstrated in a later article, for a clock track to be used for both a tape position sensor and
the data record-replay clock
Although a DC erase circuit consisting of C1 and resistor R3 has been incorporated on the PCB it is not normally required and link 1 should be left out (not installed).

Read Amplifier

This is a very simple three-stage amplifier, formed by Q3, IC7 a and IC7b. The novel feature of the design is that it incorporates the facility to have either an analogue output, to suit most home computers, or a digital output (or inverted digital). In the majority of cases where the existing tape interface is to be used the analogue output will be required and the link LINK ANAG should be installed. To use the digital output only LINK DIG and one of either LINKDN or LINKD INV should be installed.

HOW IT WORKS - READ AMPLIFIER

The primary stage is a very high impedance single FET amplifier, which is then in turn AC coupled to the first of two low noise op-amp amplifiers TL07 s. The first op-amp, IC7 a, is set up as a standard non-inverting amp with a DC offset achieved by the potential divider R34-R35. Further amplification is achieved by using a second op-amp stage, IC7b, DC coupled to the A1, and which is actually driven into saturation. So the output will swing between the supply rails as in Fig. 5. The output of this final stage is AC coupled directly to give an analogue output, a proportion of which is taken via RV2 the volume control. This output is normally suitable for most home computers which expect an ear or aux output from a normal cassette recorder. However, in a more specific application where TTL output is required, this analogue signal is clipped to 4.7 V by ZD1 and this in turn is cleaned up by Schmitt trigger inverters to give an inverted or non-inverted output.

This project will be concluded in next month's ETI with a description of the construction and setting up of the circuit and some advice on programming.

ETI

Fig. 7 Supply wiring arrangements to avoid earth loops.

DIGISOUND Ahead in the 80'-providing
 a seruice to all ukn are inderested in electravic music

DIGISOUND80 MODULAR SYNTHESISER-A professional quality synthesiser (kit form or ready built) that can grow into a fully micro-processor controlled, 16 -voice polyphonic system. Over20 different modules already available, including solidstate reverberation unit, multifunction envelope generator and our new high performance Dual VCLFO.
I.C.s FROM CURTIS ELECTROMUSIC SPECIALTIES - We are the sole UK agents for the CEM series of integrated circuits dedicated to electronic music synthesis.

OTHER PRODUCTS - These include a novel parametric equal iser with fully controllable Q and projects to convert your micro into a storage oscilloscope or envelope generator.

Write or telephone for details and our latest price list.

DIGISOUND LIMITED,
14/16 QUEEN STREET BLACKPOOL, LANCS. FY1 1PQ Tel: BLACKPOOL (0253) 28900

MDEX disc O/S + BASIC
MDEX Professional Dev. Sys. £275
CORTEX BASIC disc extensions
MDEX Languages
ASM FORTH PASCAL SPL QBASIC META Software to make the CORTEX go!

1 Mbyte Disc Drives
80 track double-sided double-density
each £235, pair £450
E-BUS Floppy/Winchester Controlier
E-BUS 64//128 Kbytes DRAM card 80*24 Character video card

CORTEX tapes
Space Bugs, Nibblers, Pontoon, Small, Breakout, Micropede
each £6
User Group!!! ‘Brainstorm’ out NOW

Please add VAT to all prices

MICRO PROCESSOR ENG LTD 21 HANLEY ROAD SHIRLEY SOUTHAMPTON
SO1 5AP
TEL: 0703780084

REVIEW: GSC 1301 POWER SUPPLY

Looking for more power to your elbow? The ETI team has been looking over a new unit from Global Specialties Corporation that could be what you're looking for.

In electronics, power has little to do with megalomania; it is, as well we all know, a necessary prerequisite for our profession or hobby to exist. So one of the most critical items of test gear one can possess is a good PSU. Not having a good reliable PSU can make life well nigh impossible.

The unit reviewed here is made by Global Specialties Corporation in the USA, and costs $£ 159$ plus VAT. For this you get three supply channels: one fixed at 5 V with a maximum rated current of 1 A ; and two independently variable channels (V1 and V2 capable of supplying +5 to +18 V at 0.5 A . All three channels are fully independent, in as much as they come from separate secondaries on the mains transformer and they have separate regulating circuits.

Un the front panel there are two meters: a moving coil meter which measures current and, unusually, a moving iron meter to measure the voltage. As one would expect, the meters can be switched between the three channels.

We checked the accuracy of the meters against our lab Avo, and the Fluke DMM reported on elsewhere in this issue. We found that the current meter was accurate enough, any disrepancy between it and our test instruments being negligible. However, the voltage meter was unsatisfactory, being well over a volt out at the top end of its range, although rather better than this is at the lower end of its range, below 12 V , where the maximum error found was under 0.2 volts.

Just How Meaty?

One of the ideal requirments of a PSU is that it should be able to deliver the maximurn output current over the full range. So it was a little disappointing to find that the variable supplies are power dissipation limited. In other words, if there is excessive heat dissipation inside the PSU, it will shut down. Obviously, the lower the output voltage, the higher the voltage being dropped across the regulating IC, so the lower the current that can be drawn before the dissipation limit is reached.

A graph in the handbook suggests, for instance, that the maximum current that can be drawn at 10 V output on the variable channels is 0.3 A ; however, on a 'soak' test, we were able to draw 0.5 A from the V1 supply and 0.45 A from the V 2 supply without any sign of either of them shutting down. Going a little beyond these would cause the current limiting to take effect (at least, it seems likely that it was current limiting because the supply would limit the output voltage to reduce the current, and when the voltage setting was reduced, the supply would resume normal operation).

It was noticed that the supply is capable of a couple of nasties associated with limiting Firstly, and perhaps not entirely unexpectedly, the ripple on the limited output climbs steeply the further into limiting the supply is driven. Secondly, and potentially more seriously, the supply is capable of oscillating at high frequency.

This oscillation can occur on the channel that is limiting, but more seriously, it can break through to other channels. For instance, whilst driving the V1 and V2 channels both into 20 R loads, the V1 supply voltage supply was kept at 10 V and out of limiting. Turning V2 up until it limited led to bursts of oscillation from the V1 channel (which could also be just detected on the 5 V channel). This oscillation was at above 10 MHz and of amplitude around 30 mV P-P (lower on the 5 V channel). Obviously, it could easily be taken out with a suitable bypass capacitor in the circuit being supplied, but it's not really the sort of thing you'd expect to find in the first place.

A Heavy Load

We tried drawing maximum power from the different channels independently and together. Starting with the 5 V supply, this seemed just about acceptably well regulated, though slightly on the low side. However, the ripple performance was very good up to overload. One slightly surprising aspect was the current limiting, which, while the supply was feeding directly into the lab Avo on its 10 A range, permitted just over 1 A to flow; we would have expected a much lower figure. What this

implies is that with increasing load, the channel volts will drop even furtherbeyond the 1.5A that we tested to, and then start to fold in relatively slowly.

On the two variable channels, it is possible to make the regulator try to give out too many volts for the availablehead room. Any regulator will need a certain voltage headroom between the minimum volts that appear across the reservoir capacitor and the ouptut from the regulator. Once this headroom is breached, the regulator cannot function correctly, and that seems to be what is going on here.

With just one variable channel feeding 17.9 volts into approximately 37 ohms (ie current just under 0.5 A), the ripple voltage observed on the oscilloscope was around 20 mV P-P. However, increasing the voltage to 18.0 volts makes the ripple climb to 50 mV . However, more significant than this, the ripple develops a noticeable downward peak at the bottom of its cycle. Exceeding

18 V output (not recommended by the manufacturer) makes the ripple increase very steeply, most of it from the downward peak mentioned above growing, until at the maximum output of 18.4 volts, the ripple is 0.5 V P-P.

With both variable channels, V1 and V2, supplying loads of 27 ohms, and both kept at the same voltage, the point at which the ripple begins to alter shape is lower, around 17.2 volts. The PSU can't actually supply 18 V on both channels under these conditions, the maximum output was found to be 17.8 V but with 0.8 V P-Pripple. At 17.0 volts, the ripple is an acceptable 20 mV or so P-P.

It may seem like splitting hairs to find faults in the performance of the PSU at a setting that is likely to be used only very occasionally. However, the supply does say" 5 TO 18 V " and " 0.5 A MAX" on its front panel, and it's annoying to find that this has to have qualifications, especially on a unit of this price, where one would expect a top-quality transformer.

Conclusions

Were it not for the price, we would be able to give this unit our qualified recommendation, in that it is at least fairly well protected and will do for many jobs. However, it must have suffered from the high rate of the dollar, and is undercut quite seriously by UK-produced units.
The 1301 supply is available from Clobal Specialties CSC (UK) Ltd, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ tel: 0799 21682. The cost is £159.00 plus VAT.

RALFE ELECTRONICS

10 CHAPELSTREET, LONDON NW1 5DN

 Tel: 01-723 8753
$\star \star$ OSCILLOSCOPES $\star \star$ TELEQUIPMENT model S61. Single channel DC-5MHZ
Sensitivity $5 \mathrm{mV} / \mathrm{div}$. Sweep $500 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{sis} .8 \times 10 \mathrm{~cm} \mathrm{CRT}$ External X. in Z. Mod etc. Fully guaranteed External Moo etc. Fulty guarantee
TEEEOUIPMENT D75 Dual trace 50 MHz
TELEOUIPMENT D67 Dual-trace 25 MHz TEKTRONIX 453 Dual-trace 50 M Hz HEWLET-PACKARD 1707 A Dual-trace 75 MHZ
 TELEQUIPMENT D65 Dual-trace 15 MHz .
HAMEG HM207 Bandwidth approx 1 MHz HAMEG HM207 Bandwidth approx 1 MHz ... 550 rarrying Num these instruments are sold in full working condiction and carrying our 90 -Day warranty Please addVAT to these prices and carriage
(Securicor) £10

LABGEARCM6004-PG'Colourmatch' monochrome 625 UHF PATTERN

 GENERATORS. Grey scale, variable level cross-hatch \& dot patternsLABGEAR CM6016/SM UHF SIGNAL STRENGTH METERS. VarIable tunign channels $25-65$. Cahbrated 4 -range moving-coil meter $3 u V-3 \mathrm{mV}$. LABGEAR 'COLOURMATCH' CM-6010-RG Gated Rainbow Colour pat tern generators. Cross-hatch, dot and gated rainbow colour-bars.
KORTING 82512 PAL/NTSCC Colour-bar \& pattern Gen. 275 + VAT UNAOHM EP684 PAL Colour-bar \& pattern gen
$£ 275$ + VAT
$£ 275$ +VAT All items fully tested and guaranteed. Carriage $+£ 2.50$ WE ALWAYS HAVE A REQUIREMENT TO PRUCHASE GOOD
OUALITY TEST EQUIPMENT QUALITY TEST EQUIPMENT
SURPLUS STOCK ETC REPAIRS SURPLUSSTOCK ETC REPAIRS TAKEN AT VERY COMPETITIVE RATES, FREE QUOTATIONS RATES,
GIVEN.

* COMPUTER DISC DRIVES
1.6MB 8" FLOPPY DISC DRIVES - Brandnew doublesided double density drives now at under $1 / 2$ MRP. 'MFE
CORP' model M.700 Massive storage capability to CORP model M. 700 Massive storage capability to
$16 M B y t e s$ SHUGART COMPATIBLE. Power require1.6MBytes SHUGART COMPATIBL ments $\pm 5 \mathrm{~V}=1.2 \mathrm{~A}$ and $24 \mathrm{~V}=1.1 \mathrm{~A}$. Just EIGO INCLUDNG GAT. POSTAGE. AND COPY OF HANDBOOK. Express delivery (48 hrs) extra £10).

* DRE 4000-SERIES DRIVES *

 Data Recording Equipment mdoel 4000 A 5 S 5 MB TOP Loading disc drives in stock, brand new atprices - $\mathbf{E 2 5 0}$. -inc Full technical manual.

* DISC CARTRIDGES *

Small quantity BASF 12 -Sector RKO5 front-loading car-
tridges available from stock only $\mathrm{E15}$ each + VAT. cartriages av
riage E 2

* 8" SHUGART FLOPPY DRIVES *

Model SA800.2 (Soft Sectored) Single-sided. double density floppy-disc drives, up to 800 KB Storage. Power
requirements $5 \mathrm{~V}=1.3 \mathrm{~A}$ Litlle used condition, guaranrequirements $5 \mathrm{~V}=1.3 \mathrm{~A}$. Litlle used condition, guaran-
teed workıng. Price $\mathbf{E 9 0}$. - each including VAT, carteed working. Price $\mathbf{E 9 0}$. - each including VAT, car-
rage and handbook copy. These drives are selling out riage and handbook copy. These drives are se
fast. please 'phone for current stock position.

TOROIDAL TRANSFORMERS

7 DAYS DELIVERY FOR SMALL QUANTITIES

V/A	Secondary Volts (Dual)	Primary Voits (Dual)	PRICE			
			Unit Price	P/P	VAT	Total
15	$3 \mathrm{~V} \cdot 30 \mathrm{~N}$	0-120	5.60	0.75	0.95	7.30
30	$3 \mathrm{v} \cdot 30 \mathrm{v}$	0. 120	6.00	0.91	1.03	7.95
50	$3 \mathrm{v}-30 \mathrm{v}$	0.120	6.65	2.00	1.30	9.95
80	$3 \mathrm{v}-30 \mathrm{v}$	0-120	7.25	2.00	1.38	10.63
120	$3 \mathrm{v}-30 \mathrm{v}$	0. 120	8.00	2.00	1.50	11.50
160	$3 v-30 v$	0-120	9.00	2.00	1.65	12.65
225	$3 \mathrm{v}-30 \mathrm{v}$	0.120	11.50	2.50	2.90	16.90
300	$3 \mathrm{v}-30 \mathrm{v}$	0-120	13.50	2.50	2.40	18.40
500	$3 v-30 v$	0-120	19.00	2.80	3.27	25.07
625	$3 \mathrm{v}-30 \mathrm{v}$	0-120	24.00	3.00	4.05	31.05

1. Prototype Sample Service Available For Special Requirements With Short Lead Time For Production.
2. Quantity Prices Available On Application.
3. Mail Order: CHEQUES TO: W.YE WINDING CO. - ACCESS CARD WELCOME.

We also manufacture to customer requirements Laminated Transformers, R.F. Chokes, I.F. Inductors, and current transformers.

WYE WINDING Co. 27 STATION ROAD, BRIMINGTON, CHESTERFIELD S43 1JJ, ENGLAND.
Telephone: Chesterfield (0246) 70297/8/9 Telex: 54284

ETI BANSHEEE ALARM

 The ETI Bansheee follows (fairly) closely (and noisily) on the heels of the Warlock alarm, published in July. Together, the two should provide the essential components of a versatile alarm system - and they can be used separately as well. Design and development by Phil Walker.The ETI BANSHEEE is essentially a self-powered alarm sounder. The actual noise is made by any bell, buzzer or siren which will operate from a 12 V supply without taking too much current. The unit as described was designed with a solid-state driven siren in mind which took about 20 mA at 12 V . This gives a self powered operating time of 14 hours with the battery fully charged (at least in theory). Other sounder devices and battery capacities could be used for your own requirements probably with minor modifications. The battery charging current is nominally 2 mA max but could be altered by changing one resistor (R3)

The BANSHEEE is controlled from the main unit by switching the polarity of the supply and this facility was designed into the WARLOCK main unit described in July. Cutting or shorting the supply wires between the main unit and the BANSHEEE results in the alarm sounding from the internal battery.

The components forming the BANSHEEE project are quite small and could easily be mounted inside the base of a large siren or bell.

The Circuit

The circuit of this project is very simple in principle. In normal use the alarm control unit supplies 12 V DC to the BANSHEEE such that SK1a is positive in this case the relay is energised but no significant voltage appears at the sounding device terminals. In this condition the internal battery is charged from the supply to keep it ready for action.

Fig. 1 Circuit diagram of the Bansheee.

HOW IT WORKS

This circuit has three modes of operation. The first we shall consider is when no voltage is applied to SK1 a and d. In this case the relay will not be energised and its contacts will connect the siren or bell directly across the battery B1. This will sound to raise the alarm and indicate that the wires to the unit have been cut or shorted.

The second case to consider is where about 12 volts is applied to SK1a and d with SK1 a negative. This will cause the relay to pull in and connect the alarm sounder across one diode of the bridge rectifier. In the particular condition we are considering almost all the input voltage will be applied to the sounder to raise the alarm. Note that in this case, the power to do this will come from the alarm main unit and not from the internal battery.

The third case to consider is where 12 volts is applied to the unit but this time with SK1a positive. This will again cause the relay to pull in and connect the alarm sounder across a diode in the bridge rectifier but this time the diode will be conducting and only about 0.7 volts will be applied to the sounder and even this in the wrong polarity. Thus the alarm will not sound.

Additionally in this third mode D1 will conduct and supply power to IC1
and its associated circuit. IC1 is connected as a free-running astable mul tivibrator driving a voltage doubler circuit. It should operate at somewhere in the region of 10 kHz but this is not critical. The configuration of this oscillator is not the usual 555 connection but saves a resistor at the expense of accuracy. When it is low, the output of IC1 charges C4 via D2 and R2 to nearly the supply voltage. When the output goes high, some of the charge on C4 will be transferred to C3 via D3 and R2. R2 acts as a current limiting device only.

The voltage on C3 is added to the supply voltage and is used to charge the battery B1. The current into the battery is limited by IC2 to about 2 mA . This is necessary in case the supply voltage is much in excess of 12 V due to some fault or other cause. This rather complicated charging circuit is needed so that B1 will be charged even when the input voltage is equal to or somewhat below the terminal voltage of B1.

D1 is present to prevent reverse supply polarity damage to IC1, etc. and Cl is there to smooth out switching spikes and short term supply variations.

If the alarm is to sound then the control unit changes the polarity of the supply. The relay remains energised but now almost the full supply voltage is applied to the sounder which will now operate. If for any reason the power from the main unit fails the relay will no longer be energised and its contacts will apply the internal battery to the sounder and cause it to operate. This ensures that the alarm will be given if the wires are cut or shorted. In normal operation the unit should take about 60 mA . This is mostly taken by the relay coil. In active mode this will increase by the amount taken by the sounder

The length of time the alarm will sound when in self-powered mode is determined by the battery capacity and the current drain of the sounder as the rest of the circuit is then inactive. Some protection from over-voltage is given by ZDI and FS1. If a high voltage is present on the line ZD1 should conduct and cause the fuse to blow. Note that this is not a normal occurrence and the input voltage should not normally exceed 16 V maximum.

Construction

There are many possibilities in the construction of this project especially if there is room inside your alarm sounder device. In our case we used a small siren unit which was too small to permit this approach so we put the PCB and the battery into a small plastic box made by Bicc-Vero. As you can see this makes a very compact unit. Construction of the PCB should not present many problems provided that the normal care is taken to make sure that polarised components are inserted correctly.

If you are using the 6 V batteries then they should be taped together before linking across. Make the connection as neatly as possible as there is not a great deal of head-room.

The PCB is fitted into the box by first putting $M 3 \times 25 \mathrm{~mm}$ screws through from the component side and securing them with nuts under the board. These bolts then pass through holes drilled in the bottom of the box and can be fastened with more nuts on the outside. The remaining length can be used to fix the unit to a bracket or back panel.

In our prototype we put two small brackets between the first

Fig. 2 Overlay diagram of the PCB.

PARTS LIST

PROJECT: Bansheee Alarm

Fig. 4 Two wire circuits.

Fig. 5 Wiring alarm sensors with anti-tamper loop. A1 and A2 are main circuit wires preferably at supply rail potential. B1 and B2 are ant-tamper circuit wires preferably at 0 V potential. If necessary the potentials may be reversed but they should be complementary on each cable run. If no anti-tamper protection is needed, B1 and B2 can be replaced by the other sense circuit of the main loop.
nuts and the inside of the box. When covered with sleeving these serve to prevent the batteries colliding with the PCB.

Access to the PCB mounted terminals is made through grommets in the side of the box. Alternatively, the box may be mounted on the side or back of the sounder device and wires taken in directly.

Use

The ETI BANSHEEE should be fitted so that it is out of easy reach and the wires between the circuit and the sounder are as inaccessible as possible. If possible use a housing for both the sounder and Bansheee which has a security microswitch to detect unauthorised interference. Wiring between the BANSHEEE and the main unit (Warlock if used) could be 2 core if necessary but 4 core would allow the use of the antitamper facility of the Warlock system.

The diagram shows how the units may be interconnected with the usual alarm sensors to give a security system for small premises. It is possible to use the system with two-wire sensor circuitry but this may then be subject to false triggering. If a loop is run right round a large area you will lose the anti-tamper facility.

Below: some of the hardware you might need for a complete alarm system, including door contacts, tamper-proof connectors, windowtape and a pressure mat.

01-208 1177 Technonatic Ltid 01-208 1177

BBC Micro Computer System

 OFFICIAL DEALERPlease phone for availability

ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) $£ 1.00$

ACORN COMPUTER SYSTEMS

 BBC Model B BBC Model B+DF BBC Model B+DFS +Econet 6502 2nd Processor Acorn Electron BBC Teletext Receiver UPGRADE KITS A to B Upgrade Kit DFS KitInstallation
Econet Kit.
Installation
Speech Kit
ECONET ACCESSORIES
Printer Server Rom
File Server Level 1
File Server Level 2
Clock + 2 Terminators.
Econet User Guide

BBC FIRMWARE
1.2 Operating System Basic II Rom.
lew Word Processor Rom Wordwise W/P Rom DCPL ROM+DIsc
$\Sigma 75.000$

£15.00

โ55.00d

c25.00

-47.000
£47.00d
£41.00b
£86.00b
$\begin{array}{r}\text { £ } 216.00 \mathrm{~b} \\ \hline 216.00 \mathrm{~b}\end{array}$
. 192.00 b

TORCH Z80 DISC PACK

 Designed with a tital expansion capabllityThe Torch upgrade will give you a sophisticated business/ professional system why not contact us for your require ments?

TORCH Z80 DISC PACK

The proven upgrade for the BBC Micro Comprising $2 \times 400 \mathrm{~K}$
discdrive 280 processor with 64 K or memory and a $\mathrm{CP} / \mathrm{Mcom}$ patible operating system The system is supplied complete with the PERFECT software range including PERFECT WRITER, PERFECT SPELLER. PERFECT CALC and PERFECT FILE. FUl TORCHNET software is also supplied allowing sophisticated networking between other units.

The TORCH 280 SECOND PROCESSOR CARD - for those who aiready have suitable disc drives. The card is supplied with all the free software, as detailed above, presenting a very attrac

ACORN IEEE INTERFACE

A full implementation of the IEEE-488 standard. providing computer control of compatible scientific \& technical equipment, at a lower price than other sysiems. Typical applications are in experimental work in academic and industrial other compatible devices and would typically link several items of test equipment allowing them to run with the optimum
efficiency. The IEEE Filing System ROM is supplied. $\mathbf{\Sigma 2 8 2}$.

BUZZBOX

A full spec pocket size direct modem with both Originate and Anower modes This BT approved modem conforms to CCITT V2t 300/300 Baud Standard. Battery/Mains powered plugs
directly into telephone line.Modem $\mathbf{£ 6 9}$ head $\mathbf{~} 3.50$ Ext PSU directly
£8.00

BOOKS
We have a large selection
Please ask for details. No VAT on books.
.187 .50 d £32.00d Single Disc Cable Double Disc Cable. $£ 8.50 \mathrm{~d}$ $\begin{array}{ll}\text { ع34.00 } & \text { 3M DISCS with Lifetime Warranty } \\ \text { E8700b } & \text { 40T SS/SD }\end{array}$

 £65.00d 8OT DS/DD Pkt of $10 \ldots \ldots . . .230 .00 \mathrm{C}$ £28.00d $3^{\prime \prime}$ Double Sided Disc. Each $£ 4.50 \mathrm{c}$ ع28.00d FLOPPICLENE Drive HeadC/Kit ... $£ 14.50 \mathrm{c}$ ع20.00d Disc Library Case £1.90d 20.00d Disc File Case 30/40..................... 8.00 C $£ 28.00 \mathrm{~d}$
D Disc Lockable Case $30 / 40 \ldots . .$. 15.00 c
Disc Lockable Case $60 / 70$. . 27.00 b

SOFTWARE:

ACORN/MERLE BUSINESS SOFTWARE
Invoicing. Stock Controk, Accounts Payable, Accounls Receivable, Order Processing, Mailing System.............. Each £22.65d GEMINI Leisure - Full Range. ACORNSOFT - Full Range . ACORN LANGUAGES including BCPL LISP FORTH with Manuals .
BBCSOFT - Full Range PROGRAM POWER - Full Range. BEEBUGSOFT - Full Range.

'TIME-WARP'

REAL-TIME-CLOCK/CALENDAR

 FOR THE BBCAlow cost unit that opens up the total range of 6 Real-Time applications. With its full battery backup, possibilities include an Electronic Diary, conimuous cisplay of ondating time and date information automatic documens dating, precise timing \& control its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installation required - No Please phone for details. $\mathbf{£ 2 9 . 0 0}+\mathbf{£ 2 . 5 0}$ carrlage.
$t \rightarrow A T T E N T I O N+t$
All prices in this double page spread are subject to change without notice

CASSETTE RECORDERS	SOFTY II This low cast intelligent eprom programmer can program 2716. 1516, 2532.
SANYO DR:01 Data Recorder...... £30000	2732, and with an adaptor.
Datex Slim Line E20.00c	2564 and 2764. Displays
B8C Tape Recorder $£ 28.500$	512 byte page on TV - has
Cassette Lead.	a serial and parallel $1 / 0$
Compuler Grade C.12 casseltec. $\mathbf{C 0 . 4 5 d}$ Computer Grade Casserte 10 off.... 5400 c	routines Can be usedas an
Phillips Mini-data cassette £3.00d	emulator, cassette interface.
	Softylle195(b) Adaptor for 2764/2564 £25.00 (c)

PRINTERS

Epson $\mathrm{Fx} \times 100$
EPSON $\mathrm{Ox}-100$

JUKI 6100 Daisy wheel....
MCP40 Cal Printer Plotter.
MCP40 Co. Pinlea/ Potte

ACCESSORIES \begin{tabular}{c}
1235.00 a

E 250.00 a

\hline

 E250.008

$\mathrm{E48000a}$

E 375.00 a

\hline
\end{tabular} E835.00a

E850.00
2350.00 E350.00a
$\mathbf{C 1 1 0 . 0 0 a}$
$\mathbf{c} 12500 \mathrm{c}$.$\quad 110.00 \mathrm{c}$
. E 125.00 c

Parallel Printer Lead. Serial Printer Lead 58.00 d Epson Seriallnterface $2 \mathrm{~KB} 148 \quad$ £50.00 Epson Serial Interface 8143... FX80 Dust Cover. Epson Paper Roll Holder. PAPER Fanfold 2000 sheets Ribbon M $\times 80 / \mathrm{HX80/F} \times 80$. Ribbon MX/RX/FX100

MONITORS

Microvitec 1431 14" RGB Std Res.
Microvitec $143114^{\prime \prime}$ RGB/PAL +Sound Microvitec $14511^{\prime \prime}$ RGE Med Res. Microvitec 1441 14" RGB Hi Res.. Microvitec $203120^{\prime \prime}$ RGB Sta Res. £4.00d $\begin{aligned} & \text { Microvitec } 2031 \\ & \text { KAGA Vision EX 12" RGB Med Res. }\end{aligned}$ 17.00 c KAGA Vision II Hi Res

〔37.00c KAGA Vision III 12^{\prime} RGB Super Hi Res £13.50b KAGA 12"Green Hi Res...
ع6.50c KAGA RGB Lead 12 Green HIRes
£12.50c ${ }^{\text {KAGC Green Screen Monitor Lead }}$

SMARTMOUTH FOR THE BBC

The original 'Infinite speech'. Stili the best.
A ready built totally self contalned speech synthesiser unit. attractively packaged with built-in speaker. AUX output socket etc - noinstallation problems! It allows
the creation of any English word, with both ease and simplicity, while, at the same time being very economicat in memory usage You can easily add speech to most existing programs Due to its remarkable infinite vocabulary, its uses spread throughout the whole
spectrum of computer applications - these include spectrum of computer applications - these include reational etc. No specialist installation - no need to open your computer, simply plugs into the user portand due to the simple software, no ROMS are needed.
SMARTMOUTH is supplied with demo and developSMARTMOUTH is supplied with demo and develop-
ment programs on cassette, and full software instrucment programs on cassette, a
tiọns. $£ 37+£ 2.50$ carriage.

EPROM II

Our current version of the highly popular Eprom programmer is now being enhanced to provide more and better facilities for easy programming by
the user. The software will maintain its superiority over all currently availabel similar programmers. The range of eproms handled has widened, to include the eproms with lower programming voltage and eproms which can be programmed using algorithm. Control of all operations has been
moved to the keyboard. The screen display has been improved to give more information. The screen editing tacilities have also been modified to simplify the data entry.
The now Eprom Programmer will not pro-
aram $2516,2532,3564,2716,2732,2764$, gram $2518,2532,3564,2716,2732,2764$,
27128 and $27256+15 v e p r o m s, ~ a n d ~ a l i b u t t h e ~$ 27256 in a single pass.
the programmer will be eupplied with inBBC via the 1 MHz bus. It ls fully buffered and BBC vis the 1 MHz bus. it is fully buffered and power drain from the computer.
Please telephone for further details.

UV ERASERS

UV1T Eraser with built-in timer and mains in-
Built-in satety interlock to avoid accidental exposure to the harmful UV rays.
It can handle up to 5 eproms at a time with an average erasing tıme of about 20 mins $\mathbf{£ 5 9 + £ 2}$ p\&p.
UV1 as above but without the timer
£47 + £2 p\& p.
For Industrial Users. we offer UV140 \& UV141 erasers with handling capacity of 14 eproms
UV141 has a built in timer. Both offer full built in safety features UV140 E61, UV141 E79,

PRODUCTION PROGRAMMER

P8000
P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{~K} \times 8$ bytes rail versions. Simple menu driven operation ensure easy eprom selection and reliable programming in minimum programming times. $\mathbf{~} 695+$ E6 carriage.

EP8000.
Programmer controlled Emulator for both Eprom programming and development work. EP8000 can emulate and program all eproms up to $8 \mathrm{~K} \times 8$ bytes, canbe used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator $£ 695$ (a).

CONNECTOR SYSTEMS

嵒					

4010 4011 4012 4013 40 4

FLUKE 73 DMM

Fluke have introduced a range of meters which combine the advantages of digital and analogue instruments at a price which puts them (just) within reach of the hobbyist. Dave Bradshaw puts one through its paces.

Ever since digital meters first appeared there has been dispute about their advantages when compared with analogue meters. Digital meters are easier to read than their analogue counterparts, both because they allow figures to be read directly rather than requiring the position of a pointer to be gauged against a graduated scale and also because they remove the confusion introduced by the presence of several different scales. They are also, in general, more accurate than moving-coil meters because it is easier to produce good quality voltage reference and conversion circuitry at low cost than it is to control the vagaries of the moving-coil mechanism and the accuracy of the printed scale.

Against this is the fact that digital meters have to sample the input quantity and then process it to produce a display, all of which takes a finite time. It is possible to make the sampling rate very high, but because of the difficulty involved in reading a quickly-changing display the rate is usually kept very low, a few samples a second being typical. Movingcoil instruments by comparison respond continuously to changes in the input quantity and therefore give a more useful representation of slowly changing input quantities. Their mechanical damping also helps to even out ripple or other regular fluctuations present on DC voltages. A digital meter under the same circumstances will merely display a sequence of different figures, and since the samples will have been taken at virtually random points on the fluctuation cycle there is no guarantee that these figures will accurately reflect either the limits or the centre value of the changing input.

One way of combining the advantages of both types of display in one instrument is to add a bargraph to a digital meter. An LED or LCD bar-graph does not have the mechanical damping of a moving coil display but by dispensing with the need to read figures the bar-graph allows higher sampling rates to be used and hence gives a higher degree of fidelity to a changing input quantity. Such displays have been available on more expensive meters for some time but not on instruments likely to be within financial reach of the hobbyist.

A new series of meters from Fluke may well change that. The three meters in the 70 series, the 73, 75 and 77 all feature an LCD display which includes a bargraph and the most expensive of them still manages to scrape in at under one-hundred pounds excluding VAT. These hand-held DMMs measure volts, amps, ohms and continuity, are autoranging, and instead of the 1999 full-scale reading usually offered by meters in this class they have a full-scale reading of 3200 which gives much better resolution. Suitably

impressed by all of this, 1 decided to have a look at the cheapest meter in the series to see if it actually lives up to its promise.

Construction

The case of the new Fluke 73 is quite small, and would fit comtortably into all but the tiniest of adult hands. The main colour is gun-metal grey, with white and salmon pink annotation on the range knob. This is not the best choice for legibility in low-light levels, and the range knob annotation becomes illegible long before it becomes impossible to read the display. However, this is perhaps splitting hairs since the annotation is legible in any light level one would contemplate using a test meter in.

I particularly liked the connections to the test leads; these are fully shrouded so you're unlikey ever to get a shock from the connections between the lead and the meter. This is an improvement upon the arrangement adopted in some cheaper meters, where it's all too easy to touch potentially live parts even with the plug fully inserted.

I was less happy with the other end of the leads, the test probes. These have approximately 15 mm of bare metal spike protruding which seems rather more than necessary. In use, this type of probe is rather inconvenient as there is no way to attach one lead to, for example, the earth point of a piece of gear while
probing around with the other.
A special test-probe set is available, which has insulated alligator clips and one spring-loaded hooktip probe, as well as spade terminals and more leads. Whilst this is all very well, what puzzles me is that the standard probes appear to have been designed so that special croc clips can be attached to them, yet there is no mention of these in the literature.

My personal preference is for the type of probes supplied as standard with the (admittedly, much more expensive) Avo 8, where insulated clip probes can be exchanged for rather fearsome croc clips. In fact, I find that the insulated clips will do for just about every job, and they have only about 1 mm of bare metal exposed when used for probing.

Inside the case is a single PCB onto which all the components are mounted, and this includes the 9 volt battery. On the reverse of the PCB are two ICs, both in flat-pack form, with lead-outs at $0.03^{\prime \prime}$ spacing very little room for error there!

One interesting point to emerge from a cursory glance is that current measurement is made by a true four-terminal method. That is, the resistance inserted into the current path is actually a fourterminal device with two leads at either end, one for current in (or out) and one for voltage sensing.

In Use

The meter is turned on by moving the single function switch to the desired range. The first function is V AC followed by V DC, 300 mV DC, ohms, diode test, A $A C$ and A DC. For the first few seconds all the segments of the display, including the 'analogue' section, are on while the meter carries out a 'self test' routine (though what this involves isn't made clear in the literature).

The $V A C, V D C$ and ohms functions are all fully autoranging, the only exception being the 300 mV DC range which is only accessible using the switch (there is no 300 mV AC range). One thing worth repeating is that the maximum displayed number is 3200 ; this contrasts with the 1999 display common on $3 \frac{1}{2}$ digit meters, so perhaps the Fluke should be designated a 33/4 type.

The V AC range has a habit of giving an apparently random, fluctuating reading of anything up to 400 mV when the circuit is open. This would appear to result from static pick up since the effect varies with temperature and humidity. The V DC range showed no equivalent effect.

A more serious problem was encountered on the ohms and diode test range. On the ohms range, the count would start out high and simply carry on counting up regardless of what was attached to the test probes. A close inspection of the PCB revealed that there was a tag from the function switch that was not attached to its hole on the PCB. It had failed to get inserted or soldered, and once it had been bent into a suitable position and soldered the meter worked perfectly. It had presumably passed its quality control test because the fault was intermittent. (We 'phoned Electronic Brokers who lent us the test sample and told them of the fault, and their reply was that if we could see what was wrong with the meter we should go ahead and repair it.)

There is only one AC and one DC current range, both nominally 10A (although in the literature it is stated that they can be used at up to 20A for a maximum of 30 seconds). These are obtained by selecting the required function and also moving the test probe

connector to the ' $10 \mathrm{~A}^{\prime}$ position. It is always a nuisance to have to fiddle about with plugs and sockets to change ranges, and it's inevitable that, even when you are familiar with the meter, you are bound to spend some time wondering why the meter isn't registering when you've actually forgotten to move the plug. However, it does mean that the impedance of the current range switch contact resistances aren't added to the meter impedance, resulting in a maximum voltage burden at FSD of 0.5 V .

The maximum resolution of both current ranges is only 10 mA so the meter is not of much use for measuring small currents. Most small moving-coil meters will happily measure down to a few microamps DC, but it is not unusual for digital meters to offer only higher ranges. If you regularly need to make lowlevel AC and DC current measurements you would be better off with one of the other, more expensive meters in the series, both of which have 300 mA AC and DC current ranges (300 mA gives a resolution of $100 \mu \mathrm{~A}$).

Accuracy

Unfortunately, our editorial budget does not run to the standard of instrument it would require to test the accuracy of this particular meter! What I was able to do was to test the meter against itself for consistency in its own readings, on a limited number of ranges.

First, the DC volts. I took a couple of nine volt batteries and measured their terminal voltages, then checked to see what the meter read as the sum of their terminal voltages when connected in series. This was then repeated with the test probes reversed, using the negative range of the test meter. As you can see from the results in Table 1, there was no detectable error, any discrepancies in the results being well within rounding errors.

	Measured Battery 1 Voltage	Measured Battery 2 Voltage	Measured Series Voltage
Meter + to battery + Meter - to battery +	9.47	9.39	18.88

Table 1 Self-consistency on volts.

MEASURED	MEASURED	MEASURED
RESISTANCE 1	RESISTANCE 2	SUM OF 1 AND 2
1.1	1.2	2.3
9.8	9.8	19.7
9.98 k	9.99 k	19.98 k
10.03 M		20.09 M

Table 2 Self-consistency on ohms.

A similar excercise on the resistance range led to the results in Table 2. Here it was noted that the least significant digit took a second or so to stabilise, and frequently continued after this to fluctuate from one figure to the adjacent one. Also, I must point out that 0.1 ohm is the limit of the meter's resolution; figures quoted in the table are exactly as displayed, but with leading zeros ignored.

The maximum voltage that the ohms range can apply is, according to the specifications, 3 V to an open-circuit. This is sufficient voltage to make a PN junction conduct. But will this happen in practice?

My experiments with the meter indicate that below about 300 k measurement, the voltage put on the test terminals remains below 0.4 volts, which is insufficient to turn on a silicon junction but sufficient for a germanium one. Above 300 k , the voltage rises to the maximum 3 V , as the constant current generator tries to push its current through the resistor under test. Thus, below about 300 k , resistance measurements on in-circuit resistors will be reasonably accurate (given that the junction will be turning on slightly and lowering the figure by a few per cent) for silicon circuits, but no such assumption can be made for germanium circuits.

Finally, to round off this section, I was complaining about our inability to do full accuracy tests to an engineer involved in testing and calibration. His response was that if the instrument was made by Fluke, testing its calibration would be a waste of time.

The 'Analogue' Display

The digital display is updated quite slowly, at $21 / 2$ times per second, which should give ample time to take in the numbers. The bar-graph is updated 10 times faster at 25 times a second.

We compared the impression of the input waveform given by a conventional meter (the trusty office Avo) and the Fluke 73. With the Fluke, it was possible to distinguish between a sine wave and a square wave from the way the bar-graph display behaved at frequencies up to around 2 to 3 Hz . The Avo, on the other hand, couldn't give any useful indication of this at frequencies over a few tenths of a hertz. (Actually, we were shifting the zero point of the wave-forms, so that both went only slightly negative; the Avo otherwise spent much of its time with the needle hard against the end-stop.)

One problem that became apparent concerned the autoranging function. There is no way of stopping the autoranging on the 73 , although the other two models in the series have manual range-hold. Thus the bar-graph would rise to a maximum as a voltage rose, then go rapidly to a point close to zero when a rangechange occured. However, it was obvious when a range-change occured because the main display would flash ' OL^{\prime} (on a change up) or blank (on a change down). Because of this, the meter cannot be accused of giving a misleading impression but it does mean that in some circumstances it gives no useful impression at all. It's a great pity that the 73 does not have the manual range-hold facility found on the other two meters in the series as without it, the bargraph display is far less useful than it might otherwise be.

Conclusion

The Fluke 73 digital multimeter is an instrument that inspires confidence, is very nice to use, and, despite a few short-comings and a relatively high price, is worth considering. The 'analogue' display is not as

Accuracies are \pm (\% of reading + no. of digits). Specified for one year.

ACCURACIES (\% + digits)	73	75	77
320mV-320VDC	$0.7+1$	$0.5+1$	$0.3+1$
1000VDC	$0.8+1$	$0.6+1$	$0.4+1$
VAC (note 1)	$3.0+2$	$2.0+2$	$2.0+2$
$\mathbf{3 2 0 ~ R}$	$1.0+2$	$0.7+2$	$0.5+2$
$\mathbf{3 2 0 0 R}-3 M 2$	$1.0+1$	$0.7+1$	$0.5+2$
$\mathbf{3 2 M}$	$3.0+1$	$2.5+1$	$2.0+1$
Diode test V	$1.0+1$	$1.0+1$	$1.0+1$
A AC (note 1)	$3.0+2$	$3.0+2$	$3.0+2$
A DC (note 2)	$2.0+2$	$1.5+2$	$1.5+2$

Notes: (1) VAC accuracy is for frequency range 45 Hz to 1 kHz (45 Hz to 500 Hz on 3.2 V range).
(2) For the 75 and 77 , accuracy is $2.0 \%+2$ digits on the 320 mA range.

BASIC SPECIFICATIONS OF SERIES

VOLTAGE	Sensitivity, DC	0.1 mV (320 mV range)
	Overload protection	1000 V DC $(500 \mathrm{~V} 320 \mathrm{mV}$ range) 750 V RMS AC
	Sensitivity, AC	1 mV
	Input impedance	$10 \mathrm{M} / 50 \mathrm{p}$
RESISTANCE	Sensitivity	0 R 1

Notes: (3) FSD terminal voltage is 1.4 V on the 32 M range.
(4) 73 has 10A range only.

Table 3 The manufacturer's specifications, guaranteed for the first year.
useful as it might be but is certainly more than just a gimmick.

The Fluke 70 series meters are all available from Electronic Erokers Ltd, 61-65 Kings Cross Road, London WC1X 9LN, tel $01-278$ 3461. The model 73 costs $£ 65.00$ plus VAT, the model 75 costs $£ 79.00$ plus VAT, and the model 77 costs $£ 99.00$ plus VAT. Postage and packing is $£ 3.00$ on all items.

Please mention E.T.I. when replying to all adverts

Precision Bass mid range units for many applications manufactured in our own workshop.

Audio Electronics Ltd
Elm Place, Station Road, Rustington, West Sussex, UK Telephone: Rustington (09062) 6483

ME
Designed and
manufactured in Britain

FUNCTION GENERATOR $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$

* Sine, Square, Triangle, TTL output
* Typically $0.02 \mathrm{~Hz}-700 \mathrm{kHz}$
* 7 switched ranges with coarse and fine frecuency controls
* $\pm 30 \mathrm{~V}$ output capability
* Accuracy typically 1% of range
* Variable DC offset
* External A.M. facility
* External sweep facility
* Short circuit protection all outputs
JUPITER 500 (inc. P \& P and VAT) £128.80
Colour leaflet with specifications and prices available from:
BLACK STAR LTD, (Dept. ETI) 9A Crown Street, St.Ives, Huntingdon, Cambs. PE17 4EB, England. Tel: (0480) 62440 Telex: 32339

The Cortex II offers serious users speed (12 MHz CPU) and power (16 -bit) at an easily affordable price.

Cortex II offers over 34K byte memory for basic programmes. High speed 24 k byte basic interpreter. Auto-line numbering facilities and full renumbering command Full textural error messages Arrays and strings limited only by memory. Extended Basic (IF-THEN-ELSE). Assembler/Disassembler. Machine code monitor. Real time clock

Cortex II has excellent colour graphic capability. High resolution graphics (256×192). 16 colours.
Separate 16 k video ram for graphics, does not use Basic RAM Sprite graphics. Fast line and point plotting.

All these features as standard, with various upgrades available.
Supplied either as a self-assembly kit or fully built and tested, the Cortex II is designed to grow with the needs of the operator.

Cortex II is the successor to the popular Cortex, which first appeared in November 1982. The new model incorporates a number of modifications to the original and is supplied with a 216 page users manual.

Cortex II standard kit
£299.00
(Includes RS232C, TV \& Cassette Interfaces)
RGB interface kit
£28.50
Floppy disc interface kit (electronics)
£86.50
Floppy disc interface kit
$\mathbf{£ 4 9 . 5 0}$
(hardware \& connectors)
Disc Drive 51/4" SSSD
£150.00
Disc Drive 51/4" DSDD
Housing for Twin disc drives
Centronics printer Interface kit
$£ 29.95$
Contact Sales
E-bus kit

Cortex II Built and Tested

- Standard Mode
£399.00
Contact Sales Office for other options.
All prices are VAT exclusive and are correct at time of going to press.
Cortex II is available by mail order from:
Powertran Cybernetics Limited Portway Industrial Estate
Andover
Hants
SP10 $3 E T$

SP10 3ET
Access/Visa card holders can order by phone on (0264) 64455

THE GROWN-UP MICROCOMPUTER
pantechnic
THE POWERFET SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ever.

FET SYSTEM AMP

Features:

- HIGH POWER up to 1.2 kW (single ended)
- LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink

VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms
OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc., etc.
Having been closely involved in a wide variety of OEM applications of their amp boards. Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically o size and thermal efficiency became particularly aggravated at high powers and considerably lengthened
reduce the size of the electronics, totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatsink thermal circuit. The combined effect of this has been to dramatically Amp offers 1.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$. The SYSTEM and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heatsinks, heat transfer to the environment is greatly enhanced.
The flexibility of the 1.2 kW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150 W). These can be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented
As ever Pantechnic offer a full range of customising options including DC coupling, ultra-high slew, etc. Contact Phil Rimmer on 01-361 8715 with your particular application problem.
P.S. Specs, as ever, are exemplary.

A wide range of other amplifiers and other modules available.

PANTECHNIC (Dent. WW7) 132IIGUROD HEMSOHHEAE LONDONNI11PG
 Technical Enquirias chit Rimet
 Phil Aimmer
 01-361 8715

TELEPHONES AND ACCESSORIES LATEST B.T. TELEPHONES AVAILABLE FOR EXTENSION USE

SLIMTEL - New one piece pushbutton 'phone from Telecom, includes last number redial and silence feature in ivory colour only £20.87, wall mounting kit for above £2.61.
STATESMAN - P Pushbutton inphone. Colours available: maroon, stone, brown and grey £26.09, wall mounting kit for above £2.61
AMBASSADOR - Pushbutton inphone. Colours available, brown, grey and stone $£ 43.44$, wall mounting kit for above $£ 4.30$. B. T. HAWK - Cordless inphone, pushbutton, last number redial, paging device, grey only £146.96.
All above telephones areapproved for connection to B.T. systems and are fitted with the new Jack Plug,

B. T. TYPE TELEPHONES

Type 8746 - Dial, new system, factory refurbished colour grey, other colours as available $£ 17.39$.
Type 746 - Dial, reconditioned, colours as available £13.48.
Type 741 - Wall mounting, dial phone, reconditioned colours as available £18.26.
Type Trimphone - Dial, recondition, colours as available £20.00

ACCESSORIES

Cable -4 wire 0.13 p per meter up to 100 m other sizes available. Sockets - New type LJU master 2/4A £3.91, New type LJU secondary 2/6A £2.74, IDC disposable wire insertor 0.35p.
Line Cord - New type plug and spade terminals $£ 1.44$. Line cordNew type plug - coiled lead and spade terminals $£ 1.44$.
Block Terminals - Type 52A 4 way, various colours as available 0.78 p.

We have many other types of accessories available, including: Dials, Switches and Buttons, Jack Plugs and Sockets, Jack Adaptors, Cables, Block Terminals, Telephone Cord, Mic. inserts and Bells.
NOTE: It is illegal for the consumer to install his own sockets or to alter existing B. T. installations in any way
For full details of Telephones, Cordless Phones, Speaker Phones, Auto Dialers, Answering Machines and Novelty Phones available as well as the full range of accessories please send a large S.A.E
All prices exclude V.AT. add £2.17 p\&p per telephone, $£ 2.85$ p\&p per drum cable and $£ 1.50$ p\&P for accessories. Add V.A.T. at 15\% to your order total. Send cheques or postal orders only to:
Capriol Systems, Units 19-26 Sanders Lodge Ind. Est., Rushden, Northants. Allow 21 days for delivery.

ACTIVE-8 LOUDSPEAKER

Following on from his modular pre-amplifier project and his article on loudspeaker design, Barry Porter takes us step-by-step through the design and construction of a two or three unit active loudspeaker.

Designing and constructing your own high quality audio equipment can be a very rewarding pastime, with some items in the reproduction chain representing a greater challenge than others. Loudspeaker building may appear to be quite simple and straightforward, but in practice this is not the case. The biggest problem confronting the Do-ItYourself speaker builder is the need to take frequency response measurements. Audio manufacturers invest many thousands of pounds (or at least, claim they do!) in sophisticated measuring equipments, calibrated microphones, anechoic chambers and computer controlled analysers, and those that do not have their own test facility will spend many long hours in a hired laboratory during the design of a new speaker.

Obviously, the home constructor cannot hope to compete on equal terms with this, so what can be done when you are overcome with enthusiasm and the desire to create something that will justify your impulsive purchase of a complete Black and Decker outfit in 1976? If you are sane, you will take up fishing, so this is dedicated to non-angling, audiophile lunatics everwhere.....

The Active-8 has been designed as an active system, and no consideration has been given to producing a passive version. Throughout the following, sufficient details are given to allow the suggested dimensions to be modified or different drive units to be used. The less energetic may apply the principles to activating some existing speakers, but don't complain if the resulting guarantee invalidation brings on temporary
insomnia or hot flushes. The design uses two drive units so that each speaker can be driven by a stereo power amplifier, but details of a tri-amplified version are also given.

It has long been accepted that active loudspeakers have many advantages over their passive brethren, some of which are listed here:
(a) electronic crossover filters may be constructed with much greater accuracy than passive networks, and may be configured to produce amplitude and phase characteristics that are often impossible to implement with passive filters; (b) high level distortion is likely to be lower, as there are no inductors to drive into saturation;
(c) the direct coupling of amplifier outputs to drive units maintains maximum damping, therehy reducing unwanted resonance to a minimum;
(d) amplifier overload effects are greatly reduced because low frequency clipping is only reproduced by the bass unit, and often passes unnoticed;
(e) differences in drive unit sensitivities can be allowed for without introducing attenuation between the amplifier and driver simply by adjusting the gain in the signal path;
(f) low frequency equalisation can be introduced to extend the response, giving bass output equivalent to that of a larger speaker,
(g) time delay can be used to compensate for the positioning of the acoustic centres of the drive units in different vertical planes, thus preventing a directivity shift in the crossover region. There are other advantages that
are less easily defined, but subjectively, a good active system appears to handle wide dynamic range material with an ease that is not apparent with a similar, passive unit. Transient response is much better and stereo imaging more precise, possibly due to the lack of crosstalk

Bearing in mind their potential superiority, it is perhaps surprising that so few good examples of active speakers are available. One possible reason for this is that loudspeaker and electronics designers are, almost without exception, totally separate breeds of animal. Few speaker designers are at home with present day filter and amplifier technology, whereas to most electronics designers, a loudspeaker is the result of a fair amount of mumbo-jumbo and an intravenous injection of BAF wadding At a commercial level, loudspeaker manufacturers tend to be wary of anything that plugs into the mains as they are convinced that this is likely to bring about the instant destruction of their handiwork, and amplifier manufacturers, who are often "Cottage Industry" based, dare not think about the additional real estate required for the storage of lots of wooden boxes or the price of installing an anechoic chamber.

The few active speakers on the market that are both electronically and acoustically well engineered are invariably expensive, although there are examples around that would be better utilised by removing the drive units and turning the cabinets into condominiums for gerbils.

Before deciding to "Go Active", you may wonder if it is going to be worth the expenditure of energy,
grazed knuckles and sawdust on the Axminster. The answer, from one who has been active for the past ten years or so, is a resounding YES, so brush up your ' O ' level woodwork, comandeer the dining room table for a couple of weeks, and prepare yourself for the forthcoming revelation....

The Active-8

The design procedure of any loudspeaker may be divided into a number of distinct stages. In brief these are:
(a) decide cabinet size, drive units, bass loading etc;
(b) build prototype cabinet and take frequency response measurements of drive units mounted in place (No crossover network is involved at this stage); (c) plot desired response of each unit, and by deducting this from the previous measurement, establish the required crossover network response;
(d) design the crossover filters and unit equalisation to be as near as possible to the target response established at (c);
(e) measure the complete system and correct any equalisation errors to achieve an output that is as flat as possible over the audio band;
(f) listen to lots of music - if subjective performance is below par, return to (a) (bit like snakes and ladders, isn't it?);
(g) when satisfied, invite all your friends along for a quick listen before your enthusiasm brings on acute turning of the volume knob, leading to terminal overdrive of one or more of the units.

Obviously, the steps that require response measurements are the most difficult for the home constructor, so for the Active-8 these have been done for you. If you decide to use drive units other than those recommended you have a problem, although some unit manufacturers are quite helpful at supplying anechoic response curves of their products in different sizes of enclosure. These can be reasonably accurate for bass units, but high frequency units should really be measured while fitted to a baffle of the right size as diffraction caused by the cabinet extremities can have a marked effect on the response. If you are activating an existing speaker, a good indication of the crossover response can be obtained by applying a $20 \mathrm{~Hz}-20$ kHz sine wave to the speaker input and plotting the drive unit
terminal voltages. This assumes that the overall response is acceptable in the passive mode, as any shortcomings will be repeated in the active network unless accurate acoustic measurements can be made.

Drive Unit Choice

Being a two unit design limits the bass driver diameter to 200 mm , as anything larger would be distinctly unhappy operating up to the $2.5-3 \mathrm{kHz}$ region which is necessary to avoid overloading the high frequency unit.

Several low frequency units were considered, and four were selected for detailed examination and testing, these being from Peerless, Kef, Seas and Volt. The Peerless and Volt units were rejected for various technical reasons, leaving the Kef B 200 C and the polypropylene coned Seas PZ1 REX as main contenders for the job, with very little to choose between them.

Various high frequency units were tried, with the Kef T33A and Skanspeak D2008 coming out on top. The Kef T52 was not far behind, being preferred for its performance in the $2.5-5 \mathrm{kHz}$ region, but falling down at higher frequencies. In order to make the final choice cost and availability were entered into the equation, and the final design is based on the Kef B200G and T33A.

This all sounds quite simple, but of course the various combinations of bass and high frequency drivers all had to be mounted into cabinets, crossovers had to be designed and built and measurements made. To avoid littering up the love-next with dozens of cabinets, a single pair were used, and the front baffles were duplicated with the necessary mounting holes for each pair of drivers. This meant that A-B comparisons could only be carried out between single combinations of units, but after a great deal of midnight oil had been burned, it was clear that the Kef units offered the best overall performance, although the Seas - Skanspeak combination handled transients with somewhat greater clarity. If you decided to use drive units of your own choice, make sure that you can obtain the necessary technical data for them. For the bass unit you will require the following parameters: free air resonance (f_{5}), driver $\mathrm{Q}\left(\mathrm{Q}_{\mathrm{TS}}\right)$ and suspension compliance $\left(\mathrm{V}_{\mathrm{A}}\right)$. For both units, you will require frequency res-
ponse curves derived from anechoic or free-field measurements.

Bass Loading

A great deal of consideration was given to the type of bass alignment employed, resulting in what we in the trade call a "sonic breakthrough" which is what the rest of humanity recognises as a compromise that avoids having to make a difficult decision. The Active 8 has been designed as a reflex system, but with provision to blank off the tuning vent, plug in a circuit board and turn it into a closed box with active correction of the low frequency response.

The information necessary to carry out the bass alignment calculations was given in Bass for Beginners in the April issue of ETI (You have, of course, got a copy!) So it will not be repeated here.

As a guide, the Active-8 in its reflex guise is happiest when used in a room of $60-100 \mathrm{~m}^{3}$. In a room smaller than $60 \mathrm{~m}^{3}$, the vent should be blanked off so that the extended bass is not over-emphasised by the additive effect of room reflections. If you are fortunate enough to have a living room of more than $100 \mathrm{~m}^{3}$, the equalised closed box will probably be preferable, but the final decision should be made after extended listening periods.

Cabinet Size

The B200G data sheet reveals the following information:
$\mathrm{f}_{\mathrm{s}}=27 \mathrm{~Hz}$
$\mathrm{Q}_{\text {TS }}=0.37$
$V_{A S}=90$ litres.
Referring again to the aforementioned article, it can be calculated that the B 200 G requires a reflex cabinet volume of
$V_{8}($ enclosure volume $)$
$=67.66$ litres
but for closed box operation, with a system $\mathrm{Q}\left(\mathrm{Q}_{\mathrm{T}}\right)$ of 0.707 to give the flattest low frequency response:

$$
V_{B}=\frac{V_{\mathrm{as}}}{\left[\left(\frac{1}{\frac{1}{\mathrm{Q}_{\mathrm{TC}}}-0.2}\right) \cdot \frac{1}{\mathrm{Q}_{\mathrm{TS}}}\right]^{2}}
$$

$=22.77$ litres
Unless you intend to pioneer a new type of expanding speaker

Fig. 1 LF response of the Kef $B 200 \mathrm{G}$ in optimum sized enclosures and in the Active-8 cabinet.

Fig. 2 Block diagram of the signal-handling stages of the Active-8 system.

Fig. 3 Circuit diagram of the balanced input buffer.
cabinet, it is obvious that the Active-8 enclosure volume will have to be somewhere between these two extremes. The effect will be a hump in the response just
above the low frequency roll-off point, whereas a larger than optimum closed box will have a $Q_{T C}$ of less than 0.707 , and will consequently exhibit an early roll-
off with a gentle, rounded response shoulder.

After much calculating and plotting, the Active-8 enclosure volume was fixed at 40 litres. This gives a reflex response with a hump of:

$=1.5 \mathrm{~dB}$
which is not likely to be objectionable. With closed box operation the system Q becomes:

$=0.557$
Figure 1 shows a comparison between the Active- 8 low frequency response and the same bass driver in optimum sized enclosure. It will be seen that the 40 litre curves are not far away from the optimum ones, so the choice is obviously about right.

The tuning vent should be a length of plastic rainwater pipe with a 75 mm internal diameter (Dv). The cabinet is tuned to a frequency given by:

$$
\begin{aligned}
f_{B} & =f_{S}\left(\frac{V_{A S}}{V_{B}}\right) 0.31 \\
& =34.7 \mathrm{~Hz}
\end{aligned}
$$

which requires that the vent length is:

$$
\begin{aligned}
L_{V} & =\frac{2340}{F_{B}^{2} V_{B}} \cdot D_{V}^{2}-0.731 D_{V} \\
& =218.5 \mathrm{~mm}
\end{aligned}
$$

The Crossover Filters

A block diagram of the complete 'Active-8' system is shown in Fig. 2. It will be seen that each section of the crossover unit consists of a filter and an equaliser.
Additionally, the high frequency path contains delay ciruitry to compensate for the acoustic centre of the T33A being about 38 mm in front of that of the B200G, and the low frequency path has the facility to add bass equalisation for closed box use.

At the input of the crossover

Fig. 4 The effect of 6, 12, 18 and $\mathbf{2 4 d B}$ per octave filters on signal level and phase.
unit is a balanced unity gain buffer stage, shown in Fig. 3. Until recently, only professional equipment had balanced interconnections but as operational amplifiers have become acceptable in top quality domestic equipment, some manufacturers have begun to appreciate the benefits of balancing and are making provision for balanced lines between pre and power amplifier or pre-amplifier and active speakers. (For more about balanced operation plus the circuit of a balanced output stage, see ETI January 1984)

The input of the balanced buffer amplifier contains a degree of protection against radio-pick up by the connecting leads. Resistors R1 and R2 and capacitors C1 and C2 form a filter with its -3 dB point at $88,4 \mathrm{kHz}$ - providing the signal source has a low output impedance. If used with a pre-
amplifier with a high output
 24dB PER OCTAVE

Fig. 5 Circuit diagrams of 12 and 24 dB per octave high and low pass filters.
impedance - say 10 k ohms - this high frequency roll-off will move down into the audio range, so the value of the capacitors will have to be reduced to 150 pF to avoid this.

The buffer amplifier output is AC coupled to the high and low pass crossover filters by C4 and C5. The non-polarised electrolytic is by-passed at high frequencies by C4 which should be a polycarbonate or polypropylene type. Carefully controlled listening tests have shown that polarised aluminium electrolytics, which are often used for inter-stage coupling, can cause effects which, although virtually impossible to measure, can be heard when an impeccable music source is used. During these tests, a bypassed non-polarised capacitor could not be detected, and for this reason, is used in the Active-8 whenever a large value component is necessary.

The traditional crossover filter is
a 12 or 18 dB per octave Butterworth stage, which has a number of shortcomings that have been eliminated in the Active-8 network.

The problem is this: the crossover should ensure that the combined output of both drive units remains constant at all frequencies. The effect of using $6,12,18$ and 24 dB per octave filters is illustrated in Fig. 4. It is important that both drivers are in phase through the crossover region, as any phase difference between them will cause their combined radiation pattern to tilt downwards, leading to colouration from increased floor reflections. This rules out the 6 and 18 dB per octave slopes; the 12 dB per octave filter with reversed connection of one drive unit or the 24 dB per octave version both have the desired phase relationship between their outputs, but suffer from a 3 dB jump in their combined response. In order to add two in-phase signals and arrive at a unity output, each signal must be 6 dB down at the crossover frequency. This is easily accomplished with both 12 and 24 dB per octave stages by placing two 6 or 12 dB per octave filters in series. Both types are illustrated in Figure 5.

This discussion of the design process will be completed next month, after which we will move on to describe the construction of the Active-8.

EleGTROLILTE
 Your
 GREEHAhsysupphinas for SWITGHES SWITCHES

Out of a very wide range of types, we show somed of the more popularly demanded ones. The full range currently stocked will be found in our latest A-Z pro-
ducts price list. Now 40 paces and it's FREE Please mention this iournal when contacting Electrovalue. PUSH BUTTON
miniature toggles, 7000 Series, 250 V/2 A. $120 \mathrm{~V} / 5 \mathrm{~A}$. Single, double. three and four pole configurations inc. Centre Off/On and biassed
CK WAVECHANGE with adjustable stops. 1 P/12 way. 2 P/6 W, 3 P/4 W. 4 P/3 W. 6 P/2 W.

Switch Kits
RA Shaft Assemblies up to 6 wafers. OP Mains switch. Screens; Spacers.

Miniature
Single and Double Pole Changeover Standard
Latching and momentary SLIDERS
Miniature \& Standard. SP and DP in one, 2 or 3 positions. Many cther types such as for timing and other special applications.

Bensaí
 感 +1 +1

Bonsai is a Japanese technique for miniaturising trees whilst preserving all their natural characteristics. This is exactly what we have done with our new British invented and manufactured loudspeaker.
Based on a newly developed single full range driver the diminitive "Musician Bonsai" has all the qualities of the best, large multi way systems without some of their vices. £140 \& vat a pair in standard enclosures.
£210 \& vat a pair in Luxury NIMS.
For details please contact:
Merseyside Acoustic Developments Ltd.,
Merseyside Innovation Centre,
131, Mount Pleasant, Liverpool, L3 5TF. Tel. 051-709-0427
Two Hundred Year Old Bonsai Tree By Courtesy Of TOKONOMA NURSERY

WHARFEDALE SPEAKERCRAFT NEW Range
Basick kits drive units anderossovers) per pairinc VAT

150	649.95	carr.ins. $\mathbf{4 4 5 0}$
L908	E57.95	carr.íns 65.00
L140	$\mathbf{6 6 6 . 5 0}$	carr.fins. $\mathbf{6 5 . 0 0}$
E50	E140.00	carr/ins. E5.50
E70	£172.00	carr.fins. 66.00
E90	E285.00	carrfans 88.00

Max emen
Wilmslow Audio Catalogue post free E 150 $\begin{array}{ll}\text { Celestion Cabinet Handbook } & \text { post free } £ 1.50 \\ \text { post free } £ 1.00\end{array}$ Fane loudspeaker enclosure design post free $£ 2.95$ Peerless Manual for
Loudspeaker Constructors
ALL the above es post free

 active erossovers: VAM HA Protichlapal: and Froducer series prodyct Ind Genverato it mixers, mpltiers. Medregtr PA embthers combor etc.

All at very competitive pricicia
Lightning samice onterephorideradicardoty EFHCIENTEXPOMTSERVICE

READ/WRITE

Letters intended for publication should be sent to: The Editor, ETI, 1 Golden Square, London W1R 3AB. Please note - any letter not marked "Not for publication" is liable to end up on this page!

Some "Friendly"
 Criticism

Dear ETI,
Don't read on if you can't take some friendly criticism. OK, so you think you can, or you're just too curious to stop or your garbage can has not been emptied. Anyway, you certainly have been warned!

Well, for some time I have been looking for a simple and inexpensive Z80-based controller-type microcomputer, and even if Marvin (August to October 1983 issues of ETI) didn't appeal too much to me, I decided to give it a try. My mixed feelings about Marvin arose not really from the system itself but from the lack of information about the system in the ETI articles. For example, the O.S. EPROM listing was not given, and although a sample program for generating an output sequence to a stepper motor was listed, you left your faithful readers out in the cold on such matters as data/program transfer protocol between Marvin and another computer (for prototyping), and how to use O.S. routines for keypad scanning, sevensegment display, and specifications for keypad and display, etc, etc. However, we were told that full details would be supplied together with the O.S. EPROM from Ark Electronics.

This, it seems to me, is bad practice. The obvious thing to do when you publish a project is to give all the details necessary for a competent reader to build it on his own if he wishes to. Very few of your readers, I guess, enjoy being dependent upon one sole distributor. For your readers overseas this is even more important as the supplier will be located in the U.K.

OK, then, I had to turn to Ark Electronics, and so I did, asking for details on all of the Marvin system, ie., also on the boards mentioned but not described in the October 1983 issue of ETI like the speech board, $\mathcal{A D}$ \& D / A boards, light dimmer, a possible keypad and display board and other boards.

One week later, at the beginning of lune this year, I received a rather disappointing answer telling me to forget the whole thing! No information about the system
could be given and no parts could be sold to me; why, I was not told.

You will probably say something about being sorry for the incovenience, and that things like that do happen. I already know, since almost exactly the same thing happened to me last time I tried to build an ETI microprocessor project (the Microtutor from Tangerine). That project also was far from completely described in ETI, and quite a few weeks went by from the day I placed the order until the day I received a letter telling me that the product had been discontinued. And, as this time, no information was published in ETI about parts/kits not being obtainable anymore.

The conlusion is obvious: give complete information on all projects published and be more critical and demanding of kit/crucial part suppliers! Besides subscribing to ETI I also subscribe to Wireless World and Elektor. Will you ever forgive me if I tell you that you have a lot to learn from the Elektor projects? So you won't. . well then, let me tell you that my impression of a lot of the bigger projects that have appeared in ETI in the last few years is that they have suffered from a lack of information, and, to tell you the truth, some of them seem to have been just free advertisements for kits from manufacturers such as Powertran and Tangerine/Microtanic. So why do I still subscribe to ETI after all these years? Well, my subscription has to be renewed this summer, but I'm not going to do anything about it until you've answered this. In the past, I have enjoyed your smaller, simpler more innovative projects and this, really, is where you appeal to me. So I guess that in a year or two I will still be one of your faithfu! readers but, let me tell you this, don't push me!

You also have a refreshing style and a sense of humour which I appreciate, and having read all of this you might perhaps still allow me one wish: I am very interested in ZX81 add-ons (you remember the ZX81 - there are thousands
and thousands of them around). I really need a kind of motherboard which plugs into the rear of the ZX81 on a cable and which is fitted with bus drivers, 16 K of RAM and will accept the usual ZX81 add-ons as plug-ins. This will allow me to use several add-ons (ZEPROM, I/O board, interface board, speech board, music board, hi-res graphics, etc) simultaneously, addons that otherwise would have to be plugged into the rear of the ZX81 one at a time.
All the best from your faithful (oh yes!) reader,

Rolf Ingebrigsten,
Oslo,
Norway

We have spoken to Ark and they

 have agreed to continue to supply the PCBs for the various sections of Marvin, along with both versions of the EPROM. Prices have been forced up due to circumstances beyond their control, and the prices are now:
4MHz EPROM $£ 8.00$

$\mathbf{3 M H z}$ EPROM $£ 5.00$
Main PCB $£ 7.00$
l/O PCB £2.00
Interrupt PCB $£ 2.00$
P\&P on the above $£ 0.50$ p (UK).

Due to rises in the prices of

 semiconductors, it is no longer economic for Ark to supply full kits.Ark also tell us that they did initially supply the other boards mentioned in the article, but the demand for them was so low that they found it uneconomic to continue.

The EPROM listing was not given because it would have been so long. For example, on page 25 is the EPROM listing for the keyboard Interface, which uses 256 locations. The Marvin listing would need 2048 locations, and so would occupy at least 5 pages, all of solid code!

Turning to the Microtutor, again the EPROM listing would be much too long for us to print, and it would be almost impossible for constructors to distinguish between
hardware faults and wrongly entered code. However, we were quite unhappy with the way our readers were treated by Tangerine, who simply lost interest in the Microtutor and the Microtan 65; we were relieved when Microtanic took over both products. And we did print notes to say that the supply of the Microtutor had been discontinued and to say that it was once more available but through Microtanic.

However, there is one underlying problem that we - and all the other electronics magazines have to face, and that is that the fees we pay to authors cannot meet the 'commercial' cost of developing designs. So, either we rely on enthusiasts who do the design and development for their own enjoyment and are glad to get some return, albeit not the $£ 20$ per hour that a 'professional' would charge (not that some of our contributors are anything less than professional in their approach!). Or we find a kit supplier who is willing to finance the development - and quite often a kit supplier will be a small business like Ark.

We try to persuade the kit suppliers to let us publish full detail of projects, including EPROM listings and PCB foil patterns, which, by and large, we are allowed to do. However, as with the two cases above, it is sometimes impractical for us to publish full details.

Finally, your suggestion for a ZX81 mother board has been noted!

Electronic Piano . . .

Dear Sirs,
l appreciate your magazine very much and have been reading it for ten years. I especially like your music projects. What I would very much like to see is a project on a really good electronic piano, touch sensitive and preferably with 'Fender sound'. Please tell me if such a project is planned, and also if you have ever done a review of the Clef piano.

Sincerely,
Peter Annmo
Vastra Frolunda,
Sweden
No electronic piano project is planned at present but we will cer-
tainly keep it in mind. Of course, if anyone out there has designed such an instrument we would be interested to hear from them. We have never reviewed a Clef piano but we would be happy to do so if there were sufficient interest among our readership. Perhaps other readers would like to send us their comments on the suggestion?

... Or Printer Buffer

Dear Sir,

I would like to suggest that you produce a design for a Printer Buffer as a future project. This would have the advantage of being suitable for use with any computer that has a Centronics or Serial output to a Printer.

Commercial Printer Buffers are available but they appear to be inordinately expensive.

Yours faithfully
Michael Lowe,
Loughton,
Essex

Shhh! Don't tell any of the other electronics mags, but there may just be one on its way from us!

(Letsimp
 Eldertiminits

Lascar Electronics Limited,
Module House, Whiteparish, Salisbury, Wiltshire SP5 2SJ
Tel: Whiteparish (07948) 567 Telex: 477876
DOT MATRIX DISPLAYS The Full Service

An evaluation system allows use of Dot Matrix System without specialised microprocessor knowledge. Only a +5 V DC supply is needed to have a system up and running in minutes. Evaluation system Eval-1 contains a 16 character 1 line display, a controller module, interconnecting cable and a full instruction manual.

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and $\mathbf{8 0}$ Years of Success

The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

DRY CELL CHARGER

Bored with batteries running down? Too skint for NiCads? Here's a project from Vivian Capel that's worth a try!

Recharging dry cells isn't supposed to be possible. Using a conventional charger may apparently rejuvenate a cell, but as soon as a load is connected, the cell voltage will drop away quite quickly.

The usual solution is to use NiCad's, but these, and the charger needed for them, are expensive, and may be uneconomic in applications where only occasional, small currents are drawn. The circuit has been rejuvenating dry cells for some years with a high rate of success.

Fig. 1 Two circuit diagrams: (a) (top) the'standard' version; (b) (bottom) the de-luxe version.

The AC Component

The secret of this charging unit, if such it may be called, is to apply a small amount of AC along with the normal DC (actually, rectified AC) charging current. What this does is not clear, but it does make the charging work (at least, most of the time). A possible explanation is that in recharging, metallic zinc which has been removed from the negative electrode during discharging by electro-chemical action, is re-formed onto it; in some types of electro-plating processing, it has been found that applying an AC current along with the DC produces smoother plating.

A mechanical analogy for this process is that the charging proceeds in a series of jerks, the jerks forward being much stronger than the jerks backward.

A Drop In The. . .?

To keep costs down, the charger unit here uses a dropper resistor rather than the more usual mains transformer. The current drawn is low, and the heat generation in the resistor is probably no more than the losses in a small transformer supplying a similar current.

Furthermore, the use of a dropper resistor bestows the unit with greater flexibility than a transformer unit would have, in that it will supply a constant charging current which is virtually independent of the battery terminal voltage, and of the number of cells connected in series.

Two possible circuit options are available: the 'basic' and the 'de-luxe'. The latter incorporates a meter to monitor the battery's progress. The 20 V meter suggested will be suitable for batteries of $6,9,12$ or 18 volts; however, when
used with several batteries in series (as opposed to a number of cells in one battery), the meter does not give a particularly useful indication, as it simply gives the total of the terminal voltages.

Construction

Because this project uses the mains, and none of the circuitry is isolated from the mains, a good deal of care must be exercised in the construction and housing. Furthermore, in use but with an open circuit, the + battery terminal will be at full mains potential, so the switching of the unit must be arranged so that it cannot be operated while any

HOW IT WORKS

The circuit itself is simple enough: a dropper resistor, R1, reduces the voltage of the mains down to the battery voltage. Actually, using a large value resistor is a way of providing a (virtually) constant current source, because the voltage of the battery will be small in comparison to the mains voltage: any change in battery voltage will only make a very small change to the voltage across the resistor.

The normal charging path is through D1 and LED1 (in Fig. 1) or just D1 (Fig. 2). R2 provides a reverse current for the section of the mains supply for which the L line is negative.

LED1 in Fig. 1 indicates that the charging current is flowing - this is quite useful when charging a number of cells in series, because it is quite easy to get a bad contact.

In Fig. 2, a meter has been added so that battery voltage may be monitored. It is necessary to protect the meter from over-voltage, as potentially harmful currents could flow through it in the event of an open circuit at the battery; ZD1 does this, and LED1 may now be placed in series with ZD1 to indicate a fault condition.

Fig. 2 The component overlay; for the standard version, omit ZD1 and connections to meter; for the de-luxe version, link across the lower LED1 position and use the upper position (shown dotted) for the LED itself.

PARTS LIST

RESISTORS

R1	$4 k 7,5 W$
R2	47 k,

SEMICONDUCTORS

D1	1N4004
LED1	LED to choice
ZD1	BZX61 20V
	zener $(1.3 \mathrm{~W})$

MISCELLANEOUS

20V FSD
meter (or to choice)
FS1 200 mA fuse
(20 mm) and holder
Plastic case to suit (eg BICC-Vero 82621391A); battery holders and/or clips, to choice; PCB; mains cable and gland.
sections of the circuit or the batteries are exposed.

The suggested method is shown in Fig. 3, with the charger mounted in a plastic box. Two microswitches are used to switch the mains lines off as soon as the lid is opened. A single, doublepole microswitch could have been used, but the only type we could find was hideously expensive.

All the screws used to connect through the box walls must be plastic, including those holding the hinges, but especially those securing the PCB. If for any reason you decide to use a metal case, it must be earthed and all live parts including the batteries themselves,

Fig. 3 The suggested method of assembly into the case. Note that we have added another switch in series with the neutral line for additional safety.
must be well insulated from it. Finally, don't skimp on the cable gland - this would be false economy.

It may seem a bit over the top to use a PCB for a circuit so simple (see Fig. 2) but conventional circuit boards, with narrow spacings between tracks, are not suitable for mains applications. Of course, you can construct the circuit using good quality tag-strip or some other similar method that will give adequate insulation between the live and the rest of the circuit.

In Use

It cannot be claimed that the capacity of a recharged battery is equal to a new one or that every battery responds well. Nor will a battery last through an indefinite number of charging cycles: we cannot turn a primary cell into a secondary one. However, the normal life of a battery can be considerably extended. Depending on the type of battery, the discharge, and rest periods between use, around half a dozen cycles can be expected before the capacity drops to a point that makes further charging a waste of time.

Large batteries such as lantern batteries, PP9s, and D cells are the most successful, while small ones such as AA cells and PP3s have limited success. Perhaps the loss of capacity is more noticeable with the smaller cells, and the large ones are usually discharged well within their current capability. A further series resistor has been tried, to reduce the current when charging small batteries, but it has not helped much. So try by all
means, but do not expect too much from them.

If the cell voltage has dropped to below 1.1 V , a successful recharge is far less likely. Do not therefore, discharge your batteries too far before recharging. Make 1.25 the lower limit but preferably charge even before that point. A good practice is to keep them topped up, giving a short charge after a period of use to bring the voltage up to new. Another tip is to charge as soon as possible after discharging, even if a period is to elapse before using again; cells keep better when fully charged than partly discharged.

Do not though allow too long a period to elapse between discharges. If fitted to infrequently used equipment, switch it on for a few minutes at least once a month.

During charging, cell voltage will rise to about 1.6 V or a little over. Stop the charge then. In some cases the voltage will climb to around 1.8 V or even more if charging is continued, but overcharging can affect the cell's capacity adversely.

To forestall any questions, experience in charging alkaline cells has been very limited. One set of AA cells that were accidentally run down in a cassette recorder responded well, but others have not been so successful. Really, it is cheaper to buy zinc carbons and keep them charged!

ETI
BUYLINES
We defy you to find anything that you can't buy here! The PCB is, as ever, available through our PCB service.

B. BAMBER ELECTRONICS

A BRITISH MADE OSCILLOSCOPE AT AN AFFORDABLE PRICE

The new Bridage single and dual trace oscilloscopes.

Single beam £195 Dual trace £225

\star Send for details today \star
Agents and distributors required worldwide.

Bridage Sclentific Instruments
63-65 High Street, Skipton, North Yorkshire BD23 1EF.
Tel: (0756) 69511 (10 lines)

Manufactured in association with Scopex Electronics Limited

Affordable Accuracy • Low Cost Multimeters from Armon

8PECIFICATION MODELS
HC. 8010 \& HC. 7030 DIGITAL
+10 amp AC/DC

* Battery. SIngle 9V drycell. Life: 200 hrs
- Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$
* Weight: 400g inc. battery
* Mode Select: Push Button
* AC DC Current: 200μ A to 10A
- AC Voltage: 200 mV to 750 V
* Restance: 200 n to 20 Mn
* Input Impedance: 10 Ma
* Display. 31/2 Dlglt 13 mm LCD
\star O/load Protection: All ranges

SPECIFICATION HM 102 R ANALOQUE

- DC Voltage: $\quad 0-25,1,2.5,10,25100,250$ 20,000 ohms/volt.
* AC Voltage: $\quad 0-10,25 ; 100,250,1000$ volts
\star Declbels: $\quad-20$ to +22 dB
* DC Current: $\quad 0-50,500$ n A $, 0-5,50,500 \mathrm{~mA}$
* Ohmmeter $0-6$ Megaohms in 4 ranges.
* Power Supply: One 1.5 V Slze ' A ' batter

Slze \& Weight: $135 \times 91 \times 39 \mathrm{~mm}, 280 \mathrm{gr}$.
HC 102 BZ WITH BUZZER HC 102 日Z WITH BUZZER
BATTERY 8CALE, 10A DC RANGE

THE OUTS AND INS OF BATTERIES

Choosing the correct type of battery can be a confusing business; Vivian Capel shines a (torch?) light to make it clearer.

When faced with the task of powering a piece of portable equipment, a choice must be made from the bewildering range of batteries that are now available. The wrong choice can be needlessly expensive and be possibly unsuitable. With most commercial equipment, the makers specify a battery that will, in most cases, be the best for the job. In the case of home-constructed items the user must make the choice, and, with commercial instruments, a change of use may make a different powering arrangement desirable.

The first basic decision is whether to use nonrechargeable battery for electronic equipment, but are batteries (secondary cells). Frequency of use, discharge rates and cost all have a bearing.

For example, NiCads are the most common type of rechargeable battery for electronic equipment, but are some three to four times the cost of alkaline cells, which in turn are about three times the price of ordinary zinc/carbon cells. Hence you could buy up to twelve ordinary zinc carbon cells for the equivalent NiCad. So if the drain and frequency of use is such that a zinc battery lasts for six months or more, it would take six years to recover the cost of a rechargeable, ignoring the cost of the charger.

Another consideration is that zinc/carbon batteries are not entirely unrechargeable, but can be given a useful life extension equivalent to several times that of the original capacity. However, more of this elsewhere in this magazine.

Zinc/Carbon Cells

The zinc/carbon cell is based on the Leclanche cell which in its simplest form employs a zinc negative and carbon positive electrode with an electrolyte of ammonium chloride solution. Zinc is eroded during the cell action liberating hydrogen gas. Bubbles of the gas form around the carbon electrode, effectively insulating it and thereby stopping the action until they have cleared. In this condition the cell is said to be polarised. After resting and dissipation of the bubbles, the cell is depolarised and ready for use again.

Manganese dioxide will alleviate the effects of polarisation. This chemical has a strong affinity for hydrogen, and a chemical reaction occurs during which oxygen combines with hydrogen to form water, which slightly dilutes the electrolyte.

Occasional small discharges will result in a surprisingly long life from zinc/carbon batteries, far longer than the normal shelf life, which explains why batteries used in door-bells and multimeters, for instance, tend to last so well.

Even so, the depolariser takes time to absorb hydrogen and the cell can still become polarised with heavy continuous currents. Hence, this type of cell is
not well suited for such applications.
There are high power versions of the standard cell which use thin paper separators in the construction, and more depolariser which is especially pure and fast in its reaction. These are, naturally, dearer and do not offer any increase in life or capacity, but will sustain high currents without polarising. For example, a D cell of standard construction will sustain 0.5A for about 18 minutes before polarising whereas a highpower version will run on for over 3 hours.

In the case of small cells such as the AA, discharges are likely to be high in proportion to the cell's capacity, so the standard construction has now been superseded by the high-power type.

Alkaline Cells

For many applications the alkaline battery is worth considering. This is also a primary type, being nonrechargeable, but it has many advantages over the zinc/carbon unit. It provides the same voltage of 1.5 V per cell, but uses compressed manganese dioxide as the positive electrode which serves as its own depolariser. Potassium hydroxide is the electrolyte.

Cell capacity is from four to five times that of an equivalent zinc/carbon cell and the cost is around three times that of the carbon. Thus there is a cost/ capacity advantage, and less frequent replacement means less inconvenience and possibility of being let down. Shelf life is longer, and long heavy discharges can be sustained; the cell has a low internal resistance and is not affected by extremes of temperature to the extent of the zinc/carbon unit. For smaller batteries, the alkaline type will prove to be better than the standard type in almost every case, but where a large number of D cells are used, the cost can give one second thoughts! (Also, the larger zinc/carbon ones are the most successful candidates for recharging.)

In comparison with zinc/carbon cells, alkaline cells have a much smaller difference between their effective capacities for heavy continuous discharge and for light occasional discharge, the latter yielding a 10 to 20% higher effective capacity than the former. Thus it is possible to give approximate cell capacities for the alkaline battery. These are: D cell - $10,000 \mathrm{mAH}$; C cell - $5,000 \mathrm{mAH}$ and AA cell - $1,500 \mathrm{mAH}$. Recently, the Ever Ready Gold Seal range was introduced which, it is claimed, has more active ingredients than other makes and so achieves a capacity increase of between 4 and 23%. (However, Duracell also claim to have recently improved on the figures above by around 20% - Ed.)

Cost is not proportional to capacity, the large D
cell being less than twice the cost of the C. So, if space and weight are not major considerations, it pays to use the largest battery that can be accommodated, unless the current is very low.

Layer-Type Batteries

Unit cells can be inconvenient for equipment use, especially when more than 6 volts are required, as a suitable holder must be employed and mounted. A more practical solution is the layer-type in which the cylindrical cells are replaced by stacked rectangular versions. Most common of these is the large PP9, then the intermediate PP6 and the tiny PP3. These are all 9 V , as is the much larger and not often encountered PP10, but there is a 6 V one too, the PP1.

Designed for the intermittent and fluctuating current required by transistor radios, layer batteries are less suited for continuous currents. Experience has shown that to obtain a reasonable life the following are the maximum continuous currents that should be drawn: PP3, 10 mA ; PP6, 25 mA ; PP7, 35 mA ; PP9, 65 mA ; and PP10, 150 mA . As with the torch cells, the cost/capacity ratio improves as the size increases, so it always pays to use the largest that can be accommodated unless the discharge current is very low.

An alkaline version of the PP3 is available and this is very useful, as it combines reasonable capacity and current capability with small size. In most cases it will be more satisfactory than the normal type. It is a pity that one of the larger sizes, say the PP6 is not made in alkaline.

For larger currents there is a 6 V hand-lamp battery with screw terminals, and a lantern battery with spiral contacts. The latter has a capacity of about $3,200 \mathrm{mAH}$ and is one of the most cost effective of the zinc/carbon batteries. Connections can be made by unwinding part of the spiral and fitting electrical screw terminal connectors to the straightened ends. For 12 -volt applications there is the high power HP1.

Lithium Cells

A more recent development in current use is the lithium cell. It has a very long shelf life, over 6 years, which makes it eminently suitable for volatile memory back-up power as no trickle charging is necessary. It also has a remarkable power-to-weight ratio, typically 148 and watt-hrs $/ \mathrm{kg}$, and can be wired directly to printed circuit boards. Nominal voltage is 2.95 V per cell. One cylindrical unit somewhat smaller than a C cell has a capacity of $1,000 \mathrm{mAH}$ and a weight of $20 \mathrm{~g}(0.7 \mathrm{oz})$.

Small Fry

Where small size with low power is required, the button cell is frequently used. As its name implies, the appearance is of a silver button. The most common type is mercury, in which the negative electrode is zinc and the positive is compressed graphite and mercury oxide; potassium hydroxide is the electrolyte.

The off-load terminal voltage is 1.35 , dropping to 1.2 V at the rated current. Unlike most other types of cell, the voltage remains steady to the end of its life, when it drops rapidly to below 1 volt. This is a useful characteristic where a constant voltage is required, although it means that the state of the cell cannot be determined from the voltage.

Common applications of the button cell are electronic watches, deaf-aids and lapel microphones. However, mercury cells appear in a wide range of formats and sizes including an AA version, with cell combinations to give voltages up to 5.6 V . The low internal
resistance and absence of polarisation are desirable for many applications including photographic equipment.

Button cells are also made in an alkaline version which has about the same capacity for the size as mercury, but a 1.5 V terminal voltage; there are also silver oxide rechargeable button cells.

Rechargeable Cells

Usually described as secondary cells, these can be charged and discharged many times, but not indefinitely. Each type has a life of a certain number of discharge cycles beyond which the cell suffers an increasing loss of capacity.

The oldest and best-known is the lead/acid battery which consists of interleaved plates of lead peroxide (positive) and spongy lead (negative) immersed in the electrolyte, dilute sulphuric acid. Its principal feature is the ability to deliver high currents for sustained periods; it also has a high capacity. Drawbacks are weight and size, and also the danger of acid spillage.

The latter danger can be overcome by using a jelly electrolyte or porous separators between the plates that absorb all the acid. In one method of construction, the plates and separators are compressed together to achieve a better capacity/volume ratio and also retention of the active material on the plates.

With the conventional construction, material flakes off the plates causing loss of capacity, and also forming a conductive sediment at the cell bottom. This grows until it bridges the bottom of the plates causing selfdischarge. With some models a sump is formed to accommodate this and delay the bridging, but this reduces the capacity/volume ratio. The porous separators, by retaining plate material, prevent sediment forming. However, the power/volume ratio and power/weight ratio is not quite as good.

NiCads

Although these were patented back in 1901, it took 50 years before successful sealed versions were developed sufficiently for them to become a popular power source. They are made in D, C, AA, PP3 and PP9 sizes, in addition to various rectangular configurations. They can be used as a direct replacement fordry primary cells but the terminal voltage is 1.25 V per cell, less than is available from the equivalent zinc/ carbon or alkaline cell, which can, occasionally, cause problems.

NiCads are also available in button cells which in

Fig. 1 Discharge characteristic of different types of rechargeable battery of similar weight and discharge rate: (a) lead/acid; (b) silver/zinc; (c) NiCad.

CELL TYPE	TERMINAL voltage (V)	CAPACITY RANGE (mAH)	MAX CURRENT (A)	CHARGING CYCLES	ENERGY/ WEIGHT RATIO (WH/Kg)	ENERGY/ VOLUME RATIO (WH/litre)
ZINC/CARBON D CELL	1.5	2000	0.5	-	35	48
ALKALINE:						
D CELL	1.5	10000		-	115	242
C CELL	1.5	5000		-	115	185
AACELL	1.5	1500		-	88	100
PP3	9	300		-	53	120
LITHIUM	2.95	1000		-	148	98
MERCURY OXIDE:						
BUTTON CELLS	1.35	$35-1000$		-		$88-175$
AA CELL	1.35	2400		-		157
LEAD/ACID:						
JELLY	$2.0-12.0$ $2.0-12.0$	$1-110 \mathrm{AH}$ $4-90 \mathrm{AH}$	$\begin{aligned} & 80-700 \\ & 20-200 \end{aligned}$	500 500	$\begin{aligned} & 30-36 \\ & 22-35 \end{aligned}$	$\begin{aligned} & 75-84 \\ & 42-70 \end{aligned}$
NICAD:						
D CELL	1.2	4000	8	2000	28	77
CCELL	1.2	200	4	2000	30	60
AA CELL	1.2	500	1	2000	24	27
PP3	8.4	110	0.5	2000	24	44
PP9	8.4	1200	1.6	2000	28	36
BUTTON CELL	2.4	110-600	0.2-1.2	-	23	42-47
SILVER ZINC	1.5	1000-10000	40-400	50-150	40-70	65-125

Table 1 Chart of cell characteristics. Selection of the most suitable type for any particular job is a case of listing the required characteristics in order of importance and then using this table to find the type that most closely fits.
However, note that these figures are for guidance only, as many factors can affect cell performance.
some cases consist of two very thin sections in series to give a double voltage of 2.4 V . Diameter is rather larger so they are not directly interchangeable.

The cost is high: the batteries themselves cost around 12 times the equivalent zinc/carbon types, but on top of that is the cost of a constant-current charger (a constant current source is needed because of the low internal resistance of the cells). So NiCads are probably economic only for equipment which needs frequent replacement of batteries due to high current drain or continual use.

A characteristic which must be considered is the 'memory effect' in the charge/discharge cycle. If the cell is only partly discharged before recharging, the capacity will drop to a value dependent on the previous discharge. The cause of this is crystals which form in the electrolyte. Complete discharge before recharging is therefore essential to preserve full capacity. Some battery makers claim freedom from this effect.

The power-to-weight and power-to-volume ratios are about three-quarters of an equivalent capacity lead/ acid cell. Compared to their torch cell counterparts, Ni cads have about $11 / 2$ times power-to-weight and power-to-volume ratios of zinc/carbon cells, but only a third of those of the alkaline cell.

Other features which make them attractive for particularapplications are: the voltage remains within $1.3-$ 1.2 V from fully charged to discharged; they can be stored indefinitely in any state of charge without damage; they can be charged quickly, and have a wide temperature tolerance; and they have the longest life expectancyamongst rechargeables of up to 2,000 charging cycles.

Safety vents are provided to liberate any gas produced by abuse, but the oxygen produced by the posi-
tive electrode is absorbed at the negative so ventilation is not normally required.

Silver/Zinc Cells

This cell has a zinc negative and silver oxide positive set of plates with potassium hydroxide as the electrolyte, which can be free or contained in porous separators. The construction is similar to the lead/acid cell.

It has the highest power to volume and weight ratios of any currently available secondary cell, having around a third of the weight and'volume of a comparable lead/ acid battery. The output voltage is constant at 1.5 V over almost the whole discharge cycle and very high currents can be taken for the size of the cell: a cell can in fact be discharged in a few minutes without damage.

Rapid charging can be employed, although care must be taken not to overcharge. As the voltage rises quickly to over 2 V when charging is complete, it is comparatively easy to arrange a voltage-sensitive cut-out on the charger.

The principal disadvantage, apart from cost, is the limited number of discharge cycles which can be expected. Up to 50 is quoted for high discharges, but up to 150 for more moderate use. This is much lower than the anticipated 500 of lead/acid cells, and 2,000 for nickel cadmium. The volume and weight ratios would be the prime considerations for using this type of cell.

The types of cell we have considered are those that are currently available. There are other more exotic types being developed, some of which are under the cloak of secrecy, and which undoubtedly will surface in due course.

ETI

AUDIO DESIGN

John Linsley Hood finishes up his description of the amplifier and preamplifier with some tidying up.

The Editor of ETI had decided, and this was a decision I gratefully accepted, that if this amp and preamp was to be a contender for the top, then it also must look the part. Since any DIY metalwork would obviously not meet this requirement, a professional case-maker had to be brought in, and through the good offices of ETI, Newrad Instrument Cases Ltd, were called to my help.

This has resulted in a very elegant looking amp, in satin finished metalwork with wooden side panels, but led to the sort of complications which can arise when the circuit designer and manager of the body shop live in offices a hundred miles apart. Fortunately, in the case of the preamp (no pun intended) the circuit boards and metalwork settled down together very happily, as shown in the photograph.

To avoid possible earth loops, I have linked all the earthy sides of the rear phono sockets together, and tied these to the main chassis plate by a very short length of wire at a point adjacent to the pick-up inputs. The earthy side of the phono inputs is also taken directly to the pin on the RIAA Input board, which I have mounted as close as practicable to the pick-up phono sockets.

The power supply board, mounted at the RH rear of the chassis is positioned close to the mains inputs, and as far removed from the inputs as sensible. I have used the + and -15 volt and 0 V points on the PSU PCB as distribution points to take wires to each of the active modules (ie, the active boards are wired for supply purposes to the PSU, not to each other).

Because the PSU and the headphone amp both require to dissipate a small amount of heat, I have tied the case clips of the transistors and voltage regulators, through appropriate insulating hardware, to a ' Z ' shaped strip of metal, clamped, in turn, to the main chassis plane. This has proved in practice to be quite adequate to
ensure that all devices keep cool.
The small input buffer stage (my apologetic afterthought) is mounted immediately behind the input selector switch, and I have adopted the option of taking all signals through it, so that the whole internal signal wiring is at a low impedance, and therefore largely immune to unwanted pick up.

The LEDs which serve as function reminders are all connected through the appropriate selector switches from 0 V to +15 V , via a 3 k 3 resistor in series with each. If one is sitting on the opposite side of the room, it is useful to be able to check that one hasn't inadvertantly left the tone control or rumble filters in circuit after the need has passed.

Because ETI and Newrad have gone to some trouble to ensure that the completed unit is a pleasing assembly, I have tried to keep the wiring neat and have laced it together in bundles, with appropriate colour coding for functions, where there would not be any possiblity of unwanted cross coupling Do not, for example, lace up inputs and outputs, unless these are carried in screened cables.

I have not done this in the case of the prototype, but the output of
the headphone amp could be taken to the rear of the unit to provide a higher signal level output to a more normal power amp unit.

The headphone amp has its own + and -15 V supply, which is separate from that of the rest of the preamp, and it also has a separate connection on the 0 V line to the $0 V$ output point on the PSU.

The Proof Of The Pudding

This lies, it is said, in the eating. So, after all this effort, how does this amp and preamp combination sound? Unfortunately, doing all the important things right and getting a good technical specification is not in itself a cast iron guarantee that the sound will be well, if only because no-one can be quite sure that they know all the important things or what is necessary to specify. For these reasons, all power amplifiers and preamplifiers sound very slightly different from one design to another though there does, in my experience, tend to be a family likeness between the designs of one particular designer in terms of sound quality,

To be sure, these differences are small, and tend to make them-

Fig. 1 The pin-outs of some of the offboard transistors.
selves more apparent after a few hours or a few days acquaintance with a new system. This coming to terms is greatly helped if the environment, the music in question, and the ancillaries are familiar. I do not know whether I am speaking for other designers when I say that I am always a little apprehensive on the first trial, to be sure that all is as I hope. In this particular instance I am very well pleased. I have heard a lot of amplifiers. I think that this is the best I have heard yet. Moreover, this opinion is shared by some of my friends whose judgement I value, and I have used as guinea pigs in listening trials. The particular, and unexpected, quality which this design has shown, apart from a surprisingly solid bass (which could be simply the benefit derived from the fully stabilised power supplies - this is the first time I have used one in my domestic amps) is an extraordinary degree of sound detail and 'transparency', of a kind which I have only ever found in the past with headphone amps.

The effect of this is to disclose a wealth of previously unremarked minor aspects and incidental noises from instruments, all of which tend to add to the vividness of the fantasy world created in

BUYLINES

Kits are available for the pre and power amplifiers from Newrad Instrument Cases Ltd, Unit 19, Wick Industrial Estate, Gore Road, New Milton, Hants BH25 5SI (telephone 0425 615774). Prices are as follows: pre-amp, including the modification $£ 98$; power amp (including meters, mute and switchon mute circuitry) $£ 120$. Newrad will supply the PCBs alone as follows: preamp £15; power amp $£ 11$. Here prices are for a full set of PCBs. Newrad canalso supply the components required for the pre and power amps, but we suggest you contact them directly for details. All the prices given here include UK postage but no VAT, so please add 15% for this.
ones living room by the artistry of the programme or record producer.

Obviously, no author will want to report that his efforts have been unsuccessful, and I am very pleased therefore that I can be both truthful and complimentary. I hope that in time this verdict will be shared by others.

Odds And Ends

A question which inevitably arises with any design is the extent to which active components can be interchanged. In general, within limits, devices should be interchangeable without much overall effect on the performance. These limits are:

1. Working Voltage - don't use a 20 V max. transistor where the line voltage is 50 V , but the converse is OK
2. Current Gain - if a chosen device has a current gain in the range of 250-400, one with a gain of 40 may give disappointing results; one with a gain of 120 would probably be satisfactory. 3. Noise Figure - some devices are specifically chosen for low noise (these usually have a high current gain too, but this will not, by itself indicate low noise); this is usually important only at the front ends of preamps.
3. Gain Linearity - this is usually important in output devices, and may influence the choice of particular types.
Also in output devices, the HF characteristics will have determined the type of feedback compensation employed. It is usually as well to stick to the author's recommendations here.

In my own case, and I suppose I am typical, I have certain device types which I keep in the boxes in my workshop, and which I buy in 100 -off quantities when the stocks need replenishing (because this is cheaper). Therefore, I tend to use these devices in my designs, simply because they are to hand - not necessarily because they are any better. Whether substitutes will work as well I cannot say, and cannot easily test - but l'd guess that they will. Often in the evolution of a design I will have swapped types around a bit, to make sure that my first choice was the best. I do not recall that I have ever found much difference.

Ferrite beads are sometimes advocated as a simple way of cutting out unwanted RF
breakthrough. Treat these with care. If no significant current is flowing in the wires around which they are threaded, they will do no harm, but in output stages they can be disastrous. For example, a single ferrite bead around one LS lead will worsen distortion at 10

In the power amplifier p.46, July 84, the label of Q3 has been left off the diagram. Also, in the text, the values of C3, C5 and R4 are listed as being the HF stability compensating components. This should have read C3, C5 and R3. In referring to the load stability, the range should have read $8 \mathrm{R} / /$ 100 nano-F (0.1 uF) to $8 \mathrm{R} / / 2.2 \mathrm{uF}$.

Preamp.

I must start my list of errors, here, with a red face! A reader has, very properly, pointed out that my RIAA stage, Fig. 3 (and 2) ETI June 1984, will only work as claimed, (and as I ruefully admit, as calculated and measured) into a load which has effectively an infinite impedance. With the actual load resistances implied by the circuit layout shown in Fig. 1, this condition is not met, and the 75 us second integration characteristic of the RIAA spec is impaired. The best answer to this problem is to feed the RIAA stage into a buffer circuit which does look like an infinitely high impedance. Two possibilities exist for this: 1 . to use a pair of FET input ICs as unity gain voltage followers, (a TL072 or a LF353 would do this nicely) or 2. since I prefer at this point to avoid ICs, to make a discrete component buffer stage. These two options are shown in Fig. 2a and b. The small bipolar-FET symmetrical compound source follower circuit works extremely well, with negligible steady-state or transient distortion and I am tempted to suggest that this should follow the input selector switch as shown in Fig. 3, as a universal input buffer, which would allow all the subsequent signal wiring to be at a low impedance.

On the RIAA stage R6 should be 100 R (not 100 k). I am sorry also that on the description of the headphone amp., the component numbers on the drawing had become out of step with the circuit description. (It is, however, not too difficult a detective job to discover that R11 should read R8, C5
watts and 20 KHz from 0.015% to 0.4% ! Just like that!

Finally although I had no idea that the outcome of my series on Audio Design would be that I would end up with the nicest, and best-looking amplifier I have yet owned, I hope
that the explanations and calculations I have attempted will have dispelled any beliefs that good results arise from some kind of magic. They are the outcome, all being well, of sensible layout structures and the right answers to the sums which can be made to
relate to them. Nothing in this field is sacred, and no-one is ever absolutely right in the choices made. If you know the reasons for the choice and the sums that have been done, you can do the same sums, and maybe improve on the results.

ETI

CORRECTIONS

should read C6, and that R9, R10 and R 12 should have read R9, RV2 and R13. Also C1/C2, C3/C4 should read C2/C3, C4/C5.)

PCBs And Overlays

Some small errors have crept into the PCB designs and the overlays for them. If you have already made your own boards, then the corrections should be quite easy to carry out. The boards sold through Newrad should have all the corrections made to them. The corrections are as follows: RIAA Stage, P27, June: R2 and R102 have all been left off the overlay; they should be between and parallel to D1 and R5, and D101 and R105 respectively. R6 is 100 R , not 100 k (this is correct in the parts list but not on the circuit diagram).
Buffer/Filter, P28, June: on the overlay diagram (the LH section) a connection from ICI pin 4 to the -15 V supply track down the middle of the ICI has been missed; an

Fig. 2 RIAA stage output buffer options (one channel only shown): (a) using an op-amp, $Z_{i n}$ in excess of 1000 Megohms; (b) using discrete components, Z_{n} in excess of 100 Megohms.
extra piece of track has appeared, linking the top ends of C2 and C3, and this should be removed; both these errors appear on the foil pattern on page 69.
Tone Stage, P28, June: The tracks linking R9, 10 and 8, and R11, 12 and 13 should themselves be linked similarly, the tracks linking R109, 110 and 108, and R111, 112 and 113 should be linked (note that the tone stage is the right-
hand section of the overlay diagram); these errors appear on the foil pattern on page 69. Power Amplifier, P49, July: the emitter and labels on the connections on Q9 are reversed, although the body is drawn the correct way round. A piece of PCB track is missing, and it should link ZD1 anode to R16, RV4 wiper, etc; this fault is repeated on the PCB foil pattern on page 67 .

Fig. 3 Alternative lay-out of preamp using discrete component buffer stage.

Fig. 4 The overlay diagram of the discrete component buffer.

PARTS LIST

RESISTORS

RESISTORS	
R1,11	330R
R2,3,12,13	4k7
RV1, 11	1k0 lin ho
	preset
CAPACITOR	
C1	
SEMICONDUCTORS	
Q1	2N54 pol
Q2	2N5467
Q3	BC212
Q4	BC184

MISCELLANEOUS PCB

$\sqrt{8 M r e c}$

NEWRAD INSTRUMENT CASES LTD
Unit 19, Wick Industrial Estate, Gore Road New Milton, Hants BH25 6SJ
Tel: New Milton 615774/621195

Pre-amp Kit (complete) $£ 98+$ VAT Power-amp Kit (complete) $£ 120+$ VAT

Send S.A.E. for details and prices of part kits. Conversion hardware for fitting both units into a HI-FI tower system and also $19^{\prime \prime}$ Rack mounting options.

WE MANUFACTURE BEAUTIFUL ENCLOSURES Ask for catalogue

19" rack mounted and Free Standing using our own high quality extrusions.
Prices from:
$\mathbf{£ 1 5 . 0 0 + V A T}$

High quality
pack-flat
enclosures with
separate chassis
Prices from:
$\mathbf{E 9 . 6 0}+$ VAT
part enclosures
plus chassis.
Hammer biue
finish.
Prices from:
E 3.04 +VAT.

A№. Electronically controlled Mains Iron

£ $£ 26.19$
Features an advanced
㑤
and electronic temperature control circuit in the handle, with zero-voltage switching to prevent spiking, and proportional band control for spot-on temperature, without swing. Eliminates problems of mechanical thermostats and cost of low-voltage supply operates $240 \mathrm{va.c} .50$ watt element gives fast heating and recovery. Temperature adjustable from 280 to $400^{\circ} \mathrm{C}$. Made in our own works, and offered with burn-proof mains lead and long-life bit, at a special mail-order price of $£ 26.19$, including postage and VAT. Send cheque/PO to 'LITESOLD', ring for Access/ Barclaycard sales, or send for leatlet and order form

Spencer Place, 97-99 Gloucester Road, Croydon CRO 2DN. Surrey. Tel: 01-689 057

ETI SEPTEMBER 1984

REVIEW: BRIDAGE OSCILLOSCOPES

The name behind the well-known Scopex range of oscilloscopes is Bridage, and Bridage have a range of their own scopes. Phil Walker takes a look at the single beam SB121 and its dual version, the DB242.

The two units arrived at our offices well protected in cardboard box, polystyrene foam and polystyrene bag. Once we ripped our way into the packages we found two rather nice looking pieces of equipment. This of course did not satisfy the more enquiring minds of the ETI staff and the judicious application of a screw driver soon revealed the inside story. Surprise, surprise - we found them neat and tidy inside as well.

Most of the electronics is on a single PCB in the single trace model with only the mains transformer, tube, front panel controls and a few associated components mounted off the board. In the dual beam version, an extra PCB is added piggy-back to the main one. This board carries out the functions of input amplifier and trace switching to give the dual trace capability.

The CRT is almost invisible inside its magnetic screening and is as far away from the mains transformer as practicable. The main PCB is mounted between the CRT and transformer and, on the whole, there is quite a lot of space inside the cabinet.

The case of the instrument is made in two parts. Each is ' U ' shaped and has a pair of brackets welded on which carry the fixings to bolt it to the other. The lower part is enamelled in a fawn colour and contains the whole instrument. The front panel, which is part of the lower section, is screen printed with all the necessary legends in black. This colour combination is quite easy to read and also shows up the connector sockets well.

The top part of the case is treated with black enamel and also carries the strap handle. Underneath the case there are four plastic feet and a fold-down bracket which can be used to tilt the whole instrument up for easy viewing.

Y-AMPLIFIERS
Sensitivity
Bandwidth (-3dB)

Rise time

Accuracy
Input impedance
Maximum input voltage
OPERATING MODES (DB242) (selected by mode switch)
Single beam
Dual trace
$50 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ in 1-2-5 sequence
DC coupled: DC to 5 MHz
AC coupled: 2 Hz to 5 MHz
100 ns
$\pm 5 \%$
100k
350 V DC
Channel A

1. Alternate sweep
(selected by sweep speed swita)
Normal
X-Y
timebase
Sweep speeds
Accuracy
EXTERNAL X-AMPLIFIER
Sensitivity
Bandwidth
Input impedance
2. Chopped (170 kHz approx)

Timebase
Ext position on switch; input through external X socket
$1 \mu \mathrm{~s} / \mathrm{cm}$ to $0.2 \mathrm{~s} / \mathrm{cm}$ in 5 steps plus variable control $\pm 5 \%$ at 'cal' position on variable control

Fixed at approx $0.5 \mathrm{~V} / \mathrm{cm}$
1 Hz to 0.2 MHz 100k

Table 1 The manufacturer's specifications.
Also included in the packing we found a mains cable with moulded connector and one or two X1, probes as appropriate. The probes seem to be fairly standard types manufactured by Scopex, a company now owned by Bridage. These probes terminate at the oscilloscopeend in banana plugs which have rather novel sprung shrouds
Left: the interior of the SB121.

which prevent accidental shocks when not plugged into the unit.

Testing Time

Afterwe had admired the two units for some time and taken some pictures of the inside and outside, we thought that it would be a good idea to see what they did. So we switched on the Lab. function generator and connected it up to a 56 ohm resistor. This was done to swamp out any loading effects in latertests. The resulting signal across the resistor was monitored by both traces on our Lab. Hameg HM203 oscilloscope, one channel with a X 1 probe and the other a X 10 with suitable sensitivity settings on the Y amplifiers. With this set-up we could make sure that the test signal was of a reasonable quality before we started.

Having got this all set up, we connected the Bridage units and proceeded to look at the response to sine and square waves over the full range up to the 5 MHz limit. Up to about 1 MHz they performed as expected on sine waves but between 1 MHz and 5 MHz there appeared to be a peak in response at about 3 MHz . It was not easy to estimate the magnitude of this but it was of the order of 20%. On square waves this showed up as overshoot and damped ringing on the rising and falling edges of frequencies above 500 kHz (see oscillograms).

Having investigated the Y deflection system we turned our attention to the X direction. Here we found that the automatic triggering was good if rudimentary at lower frequencies but suffered from an annoying amount of jitter above 1 MHz . This tended to make the trace blurred and dimmerthan it might be. Anotherthing we found here is that the trace normally occupied 1 division at one end of the trace but onlyabout 0.8 at the other. This effect was found at the fastest timebase setting initially but subsequent tests revealed it in lower speeds as well, and on both oscilloscopes.

The last thing of note we found while testing was that the brightness control had to be at or near the maximum when used in our workshop.

We found the controls on the single trace model easy to see and accessible but the display mode switch and A channel AC/DC/GND switch on the dual trace unit was partly obscured by the B channel input leads. The Y channel attenuator steps are the normal 1-2-5 sequence and cover 50 mV to 50 V per division. No variable gain control is provided but there is a shift control. In the X direction there is a stepped control covering $1 \mu \mathrm{~s}$ to 10 ms per division in decade steps. This seemed a little coarse but is partly offset by the wide range variable control and the use of the shift control, bearing in mind that the trace is twice the screen width. Facilities are also provided for external X input. Triggering is from the A channel only for internal working and can be either positive or negative going. External triggering is also possible but only on negative edges.

Conclusion

These units will probably find a home with the hobbyist or in schools where a cheap instrument is required for mainly low frequency applications. The screen is not large enough or sufficiently calibrated for great accuracy but will give a wealth of qualitative information. Where ease of use and simplicity is of importance these instruments are worthy of consideration and their limitations can be offset against their price.

These scopes are available from Bridage Scientific Instruments, 63-65 High Street, Skipton, North Yorkshire BD23 1EF, tel: 075669511 . The SB121 costs $£ 195$ and the DB242 $£ 225$; both these prices exclude VAT and p\&p (approx $£ 7$ per instrument).

Above: oscillograms taken during testing, all from the same 500 kHz source; the top two traces are from the lab. Hameg (top, $\mathbf{x 1 0}$ on probe, $50 \mathrm{mV} / \mathrm{div}$ on scope; lower, $\mathbf{x} 1$ on probe, $500 \mathrm{mV} / \mathrm{div}$ on scope); bottom trace is from the Bridage SB121 on $500 \mathrm{mV} /$ div.

Above, the BD242 on test.
Below, the interior of the ' 242 .

7-08

House of Instruments Ltd.
Clifton Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex: 818750

YOUR CAREER..YOUR, FUTURE.YOUR OWN BUSINESS..YOUR HOBBY THIS IS THE AGE OF ELECTRONCS! the world's fastest growth industry.
Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowiedge is required,
no maths, and an absolute minimum of theory.
You learn by the practical way in easy steps, mastering ail the essentials of your hobby or to start, or further, engineer. All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is avalable to whom you can write personally at any time, for advice is given at the end of every course.

- Build a modern oscilloscope
- Recognise and handle current electronic - Remponents
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern
- Build and use digital electronic circuits and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce today Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}, \mathrm{VCR}$ and microprocessor/computer
equipment.

CACC BritishNational Radio\&\&Hectronios School Reading, Berks. RGI $1 B R$

	Please send you	1 am interested in	COURSE IN ELECTRONICS as described above
	NAME		RADIO AMATEUR LICENCE
OLOUR	ADDRESS		MICROPROCESSORS
BROCHURE			R SUBJECTS state below
Post now to:	ETI/9/842	BLOCK CAPS PLEASE	OR TELEPHONE US

FACE THE FUTURE

Microchip manufacturers are forever trying to cram more and more into less and less: more gates and more computing power onto smaller dies using thinner tracks. The photograph shows the latest device to be dubbed the 'miracle microchip'. It's a full 32-bit microprocessor from Motorola, with a specification that would put many of the main frames of not so long ago in the shade. It will bealittle while before you will be able to buy a home micro using this device - but it will be making an impact on the professional scene in the none too distant future. So we':"; be taking a close look at the device and telling you what's so different about it.

SPRING LINE REVERBERATION UNIT

Now it may seem a little odd that the most up-to-date electronics mag should be using an out-dated technique of producing a musical effect, but, as they say, what the heck. To produce the same effect with ICs would probably cost several times as much. And anyway, ICs don't sound so nice when you kick the box!

ZX SPECTRUM CONTROL PORT

Turn your Spectrum into a versatile control computeruse it for process control, or robotics or, indeed, any other application of 'intelligent' machine muscle! The system can be built as a basic controller, or can be expanded up to 256 outputs - even further with some redesigning.

ALL THIS AND MORE IN THE OCTOBER ISSUE OF ETI, ON SALE SEPTEMBER 7TH. PLACE YOUR ORDER NOW OR RISK MISSING OUT

electronics today international sook seivice How to order: indicate the oks required by icking e boxes and send this page. together with your yment, to: E IBook Service. Argus Specialist Publications Ltd, 1 , Golden Square. London W1R 3AB. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS GUIDE

```
Beginner's Guide to Easic Programming Stephenson \({ }^{65} .35\)
Beginner's Guide to Digital Electronics Beginmer's Guide to Electronics £5. 3
Beginner's Guide to Integrated Circuits f5 3
Beginner's Guide to Computers
Beginner's Guide to Microprocessors

\section*{cooksooks}
```

Mastar IC Cookhook Hallmark
Microprocessor Cookbook M. Hordeski
IC Op Amp Cookbook Jung
PLL Synthesiser Cookbook H. Kinley

ELECTRONICS

Principles of Transistor Circuits Amos
Design of Active Fitters with experiments Berlín $\mathbf{£ 1 1 . 3 0}$
49 Easy to Build Electronic Projects Brown

How to busign and build alectronic instrumentation Car
Introduction to Microcomputers Daglecs
Introduction to Wicrocomputers Daglecs
Principles of Electronic Instrumentation De Sa
Giant Handbook of Computer Software
Giant Handbook of Electronic Circuits
Giant Handbook of Electronic Projact
Electronic Logic Circuits Gibson
Analysis and Design of Analogut Integrated Circuits Gray
Basic Electronics Grob
Lasers - The Light Fantastic Hallmark $£ 7.70$
Introduction to Digital Elactronics \& Logic Joynson
Electronic Tosting and Fault Diagnosis Loveday
actronic Testing and Fault Diagnosis Loveday
Elactronic Fault Diagnosis Loveday
Essential Electronics A-Z Guide Loveday
Microelectronics Digital \& Analogue circuits and systems Millman
103 Projects for Electronics Experimenters Minis
VLSI Systam Design Muroga
ower FETs and their application Oxner
Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
Electronic Drafting and Design Raskhodoff
VOM - VTVM Handbook Risse
Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair
Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuit an Microprocessors Ta
Active Filter Handhook
Designing with TTL Integrated Circuits Texas
ransistor Circuit Design Texas
Digital Systems: Principles and Applications Tocc
Master Mandhook of Telephones 7 raister
How to build Metal/Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony
33 Electronic Music Projects you can build Winston
MPUTERS \& MICROCOMPUTERS
BASIC Computer Games Ah

From BASIC to PASCAL Anderson

Mastering Machine Code on your ZX81 T. Baker
280 Microcomputer Mand book Barden
Microcomputer Maths Barden
Dicrocomputer matns Barden Computer Fundamentals Barter 11.50

Digital Computer Fundamentals Barter $\mathbf{E} 9.90$
isicalc Book. APPLE Edition Bett c15.55
Visicalc Book. ATARI Edition Bell f15.55
Introduction to Microprocessors Brunner
Programming your APPLE il Computer Bryan
Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A/D \& D/A Carr E23.00 30 Computer Programs for the Home Owner in BASIC D. Chance $£ 9.25$ Microcomputers Dirkson
APPLE Personal Computer for Beginners Dunn Microcomputers/Microcomputers - An intro Gioone

VIDEO

Servicing Mome Video Cassette Recordars Hobbs
Troubleshooting Microprocessors and Digital Logic Goodman $\begin{array}{ll}\text { Getting Acquainted with your VIC } 20 \text { Hartnell } & \mathbf{£ 8 . 5 0} \\ \text { Getting Acquainted with your } \mathbf{Z X 8 1} \text { Hartnell } & \mathbf{5 5 . 9 5}\end{array}$ et your BBC Miero Tesch you to program Martnell Programming your $\mathbf{Z X}$ Spectrum Hartnell your own warking Computer System Haviland
BASIC Priples and Practice ol What to do when you get your hand on a Microcomputer Holtzman in BASIC Horn Digital Circuits and Microcomputers Johnson
The C - Programming Language Kernighan Jackson
The 2×81 Companion Maunder
Guide to Good Programming Practice Meek
Priples of Theractivo Gomputor Graphics Nownan
of Mi Processors Nicholas
Hicrocomputer Besed Design Peatman
Digital Hardware Desion Peatman
BBC Micro Reavealed Ruston
Handbook of Advanced Robotics Safford
E 9.45
1001 Things to do with your own personal computer Sawusch $£ 8.50$
f 7.15
Handbook of Microprocessor Design and Applications Stout
Programming the PET/CBM West
An mioduclon to Nicrocomputor Technology Wiliamson
f12.40
(s) Enineering Students and Tschni
REFERENCE BOOKS
Electronic Engineers' Handhook Fink
Electronic Designers' Handbook Giacoletto
E59.55
Handbook ol Electronic Calculators Kaufman
international Transistor Selector Towers
or Towers
International Digitailc selector Towers
Video Techniques White

Please send me the books indicated. I enclose cheque/postal order for wish to pay by Access/Barclaycard. Please dehit my accoum
\qquad
\qquad
\qquad
\qquad

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the out come if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/ Write, we will not replyto enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: EK. £14.35
 £18.15 Surface Mail
 £37.15 Air Mail

Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).
ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Lid, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd.

We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of individual articles can be ordered instead. These also cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an arti-
cle appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and yearin which it appeared. Where an article appeared in several parts you should list these individually. If you do not have a copy of the appropriate index in which to look up these details, a set of photocopies of index sheets going back to 1972 is also available for $£ 1.50$. Otherwise, you will find the index for 1980 and 1981 in the January 1982 issue, the index for 1982 in the December 1982 issue, and the index for 1983 in the January 1984 issue. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).
We don't bother with the bureaucracy for Tech Tips - all you do is to send in your idea, stating clearly if you want an acknowledgement or receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works, on a separate sheet from the circuit diagram; both sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference numberyou may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier withín, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.

If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Programmable Speech Board - Mini Mynah (February 1984)
The PCB for this project is double sided but only the underside pattern appears on the overlay drawing on page 26 and on the Foil Patterns page. the component side pattern appears on the PCB Foil Patterns page in the March ' 84 issue. The errordoes notaffect PCBs supplied by our PCB service. There are also a number of errors in the circuit diagram on page 22. Pin 10 and IC11 should be connected to 0 V along with pins 1 and 11 , not pin 12 as shown; pin 12 should be left unconnected. On the same IC, pin 25 rather than pin 23 should be connected to pin 2 and R12/C4; pin 23 is VCC and should be cornected to the +5 V supply. R5 has been missed off of the circuit diagram; it should be shown connecting IC4 a pin 8 and IC5 pin21 tothe +5 V supply, in each of the above cases the PCB and the overlay diagram are correct
Adding Colour to the Ace (April 1984)
A full list of corrections to this project appeared on the "Service Sheet" page in the May " 84 issue.
ZX81 EPROM Programmer (May 1984)
On the overlay diagram on page 27, the resistance shown between IC9 and IC5 should be R2 not R1, the resitance shown between IC6 and IC7 should be R8 not R5. In the parts list, C1 should be listed as 220 uf not 22 uF ; the circuit diagram gives the value correctly. R'3 is marked "see text" but no reference is then made to it it should be chosen to suit the LED used. LED1 is shown reversed on the circuit diagram on page 28 but the connections shown on the overiay diagram are correct The first statement in program 1 on page 30 should read "SET PERSONALITY SWITCHES THEN PRESS CONT".

Midi Drum Synth (May 1984)

Two small links on the PCB went missing: between RV5 (1) and upper (on PCB) RV4 connection, and between RV1-3 +VE and LED2 CATHODE take-off points. Also, the circuit diagram shows R13 going to $-V E$; it should go to earth (the PCB is OK).
Spectrum Joystick Interface (June 1984)
The PCB and the circuit diagram do not agree; the circuit diagram is correct, and all PCBs sent out by the PCB service should have been amended. IC3 is 74 LS241, as correctly stated in the parts iist but incorrectly given in the footnote to the circuit diagram.

CMOS Tester (August 1984)

C 3 and C 2 are reversed on the overlay: C 3 is the electrolytic and C2 the polyester. R33 is 100 K , not 1 M as given in the parts list, and $R V 1$ is a 1 M horizontal skeleton preset R1-16 are two, eightresistor SIL packages, the component labelled CI4 on the overlay is SK1, and the connections to D2 shown in Fig. 3 are reversed. On the circuit diagram, the eight lines connecting SW9-16 to the inverters are shown in reverse sequence. Some of the inverters have been given the wrong designations; the correct sequence, reading down from the top, is:- $I C 1 \mathrm{f}, I \mathrm{C} 2 \mathrm{a}, I \mathrm{C} 2 \mathrm{~b}$, IC1 e, IC1d, IC1c, IC1b, IC1a, IC2c, IC2d, IC2e, IC3d, IC3a, IC3b, IC3c, IC2f, Finally, the pin numbers are missing from ICs 3 e and f; the input of $I C 3 \mathrm{e}$ is pin 11 and its output pin 12, and the input of IC3f is pin 14 and its output is pin 15. The PCB is correct in all respects.

Sharp Joystick Interface (August 1984)

Some of the inverter pins are incorrectly labelled on the circuit diagram. Pins 11 and 10 are shown reversed on 1 C 1 b , pins 9 and 8 are shown reversed on IC1 c , and the output of C 4 d is pin 10 , not pin 20 . Note that a number of the inverters have been incorrectly shown as noninverting buffers.

I Subscription Order Form

To: ETI Subscriptions Department, Infonet Ltd,

 Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.Please commence my subscription to Electronics Today International. I enclose a cheque*/Postal Order*/International Money Order* for the appropriate fee, made out to ASP Ltd.
Please debit my Access*/Barclaycard* account number

Signature
(* delete as appropriate)
Please indicate subscription required and fee enclosed
UK \& Rep of Ireland:
Overseas surface mail:
Overseas air mail:
$£ 14.35 \square$
$£ 18.15 \square$
$£ 37.15 \square$

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Name
Address \qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE Date of order.

IHIS COUPON IS VALID UNTIL 31st OCTOBER 1984 Backnumber Order Form
To: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1 BB.
Please supply me with the following backnumber(s) of ETI Month Year

Month Year
Month
Year
I enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.45$ per magazine ordered, made out to ASP Ltd (* delete as appropriate).

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADD...................................... BLOCK CAPITALS

Name.
Address

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order
Note that the cost is the same for orders from overseas as for UK orders; overseas orders will be sent by surface mail. PLEASENOTETHATBACKNUMBERSARE HELD FORONE YEAR ONLY.

Binder Order Form

To: ETI Binders Department, Infonet Lid, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1 BB.

Please send me \qquad I enclose a cheque*/Postal Order*/International Money Order* to the value of $£ 5.00$ per binder ordered, made out to ASP Ltd (* please delete as appropriate).

Total money enclosed $£$.
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name

Address

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order
Note that binders cost the same for UK and overseas; overseas orders will be send by surface mail.

THIS COUPON IS VALID UNTIL 31st OCTOBER 1984 Photocopy Order Form
 To: ETI Photocopies Department, 1 Golden Square,

 London W1R 3AB.Please supply me with the following photocopies;
Month. Year. Article
. Page No
Month. Year. Article
Page No
Tick box if you require INDEX (cost $£ 1.50$)
I enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.50$ perphotocopyordered, made out to ASP Ltd (* delete as appropriate).

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS IN
BLOCK CAPITALS
Name
Address

PLEASE INCLUDE POSTAL CODE AS APPROPRRIATE
Date of order
Note that the cost is the same for overseas orders as for UK orders; overseas orders will be sent by surface mail.
PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING.

THIS COUPON IS VALID UNTIL 31st OCTOBER 1984

ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering. The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.

\square	E/826-9 Oscilloscope (4 boards) 13.34
\square	E/827-7 TV Bargraph Main. 5.24
\square	E/827-3 TV Bargraph Channel. 2.62
\square	E/827-4 Hotwire. 3.02
\square	E/827-5 Bridging Adapter 2.74
\square	E/828-1 Playmate (3 boards). 8.28
\square	E/828-4 Kitchen Scales. 2.12
\square	E/829-1 Auto Volume Control. 2.12
\square	E/829-2 Dual Logic Probe 2.22
\square	E/8211-4 Pulse Generator 6.08
\square	E/8212-1 ELCB 2.77
\square	E/8212-2 Servo Interface (2 boards) \qquad 6.75
\square	E/8212-4 Spectracolumn 5.54
19	
\square	E/831-1 Fuel Gauge 3.45
\square	E/831-2 ZX ADC. 2.59
\square	E/831-3 Programmable PSU. 3.45
\square	E/833-1 SoundBoard. 12.83
\square	E/833-2 Alarm Module 3.62
\square	E/833-3 ZX81 User Graphics 1.07
\square	E/833-4 Logic Probe 2.50
\square	E/834-1 Real Time Clock 8.74
\square	E/834-2 Thermemeter (2 boards) \qquad
\square	E/834-4 Stage Lighting - Main ... 13.73
\square	E/834-5 Stage Lighting - Display 3.45
\square	E/835-1 Compressor/Limiter 6.19
\square	E/835-2 Single PSU 3.16
-	E/835-3 Dual PSU 4.01
\square	E/835-4.2 NDFL Amp 7.88
\square	E/835-5 Balance Input Preamp. . . . 3.23
口	E/835-6 Stage Lighting Autofade. \qquad
\square	E/835-7 Stage Lighting Triac Board.
\square	E/836-1 to 3 PseudoROM (3 boards)
\square	E/836/4 Immersible Heater 2.30
\square	E/836-5 Atom Keypad. 5.18
\square	E/837-1 Flash Sequencer 2.67
\square	E/837-2 Trigger Unit Main Board. . . 2.67
\square	E/837-3 Trigger Unit Transmitter. . 1.66
\square	E/837-4 Switched Mode PSU 16.10
\square	E/838-1 Graphic Equalisr. 9.10
\square	E/838-2 Servo Fail-Safe (four-off) \qquad
\square	E/838-3 Universal EPROM prog. ... 9.64

	E/839-1 NiCad Charger/Regen. . . . 3.77
	E/839-2 Digger. 3.40
	E/839-3 64 K DR
	E/8310-1 Supply Protector 2.19
	E/8310-2 Car Alarm. 3.98
	E/8310-3 Typewriter Interface 4.17
\square	E/8311-1 Mini Drum Synth 3.07
	E/B311-2 Alarm Extender. 3.21
-	E/8311-3 Multisw
\square	E/8311-4 Multiple Port 4.34
	E/8311-5 DAC/ADC Filter 3.22
-	E/8311-6 Light Pen 4.60
	E/8311-7 Logic Clip. 2.51
	E/8311-8 MC Head (JLLH) 3.17
	E/8312-1 Lightsaver. 1.85
	E/8312-2 A-to-D Board. 12.83
	E/8312-3 Light Chaser (2 bds) 7.54
\square	E/8312-4 ZX Alarm 6.04
1984	
\square	E/841-1 Vector Graphics 8.27
\square	E/842-1 Speech Board (Mini-Mynah) \qquad
	MODULAR PREA
\square	E/842-2 Disc input (mono) 3.73
	E/842-3 Output stage (stereo) 3.73
	E/842-4 Relay/PSU 3.73
\square	E/842-5 Tone, main (
	E/842-6 Tone, filter (stereo) 3.73
\square	E/842-7 Balanced output (st) 3.73
\square	E/842-8 Headphone amp
	E/842-9 Mother board 9.01
	E/843-1 Pow
	E/843-2 Z80 DRAM. 9.79
	E/843-3 Obedient Die. 3.7
	E/844-1 Scho
	E8844-2 Mains Borne RC (Rcvr) . . . 3.70
	E/845-1 Auto Light Switch 4.01
-	E/845-2 ZX81 EPROM Prog. 10.53
	E/845-2 Mains Born RC (Trans) 5.07
	E/845-4 Centronics
	E/845-5 Vario 6.62
	E/845-6 Midi Drum Synth 3.59
	E/846-1 Oric EPROM Bd £19.58
	E/846-2 Spectrum Joystick
	E/847-1 Warlock Alarm E8.19
	E/848-1 Joystick Inte
	E/848-2 EPROM Emulator E9.11
	E/848-3 Infrared Transmitter £3.70
	E/848-4 Infrared Receiver. E3.98
	E/848-5 CMOS Tester £4.60
	E/849-1 EX42 Kybd. Interface 3.82
	E/849-2 Bansheee S
	E/849-3 Dry Cell Charger 2.8

Signed

Name
Address

PCB FOIL PATTERNS

The EX42 Keyboard Interface board.

These two boards
are for the FET input clamp circuit and
the power meter,
held over from last month's Audio Design.

The Audio Design buffer board.

ELECTRONICS TODAY INTERNATIONAL CLASSIFIED

Lineage:

40p per word (minimum 15 words) Semi Display: (minimum 2 cms) £11.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements to: Debbie Miller ASP Ltd., 1 Golden Square, London W1.

FOR SALE

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers

Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13
Tel: 0512283483 or 051-220 0590

BURGLAR Alarm Equipment. Please visit our $2,000 \mathrm{sq}$. ft. showrooms or write or.phone for your free catalogue. C.W:A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274731532.

QUALITY ALARMS
SYSTEMS TO MEET ALL REQUIREMENTS
HIGH QUALITY BRITISH
STANDARDS EQUIPMENT LOW PRICES
COMPREHENSIVE D.I.Y. PLANNING GUIDE
FULL FITTING INSTRUCTIONS BACK-UP INFORMATION SERVICE
For Full Details Write or Phone:Q UALITYALARMS
Glouctonham Road
Tel: 045220184

LOWEST PRICED top quality intruder \& fire alarm equipment etc. SAE for catalogue: Security Services (ETI), 162 High St, Hythe, Kent CT215JR.
EPROM COPIER - STAND ALONE
EPROM COPIER - STAND ALONE
2716-27128........... £175.00
2716-27128........... £175.00
TELEPHONE CONVERSATION
TELEPHONE CONVERSATION
RECORDER £75
RECORDER £75
2 LINES INTO 1 ANSWERING
2 LINES INTO 1 ANSWERING
MACHINE
MACHINE
Switching Unit £30.00
Switching Unit £30.00
From LK.S. Systems Ltd
From LK.S. Systems Ltd
St. Albane. Tol: 55084
St. Albane. Tol: 55084

PLANS 'N DESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

CONVERT any TV into large screen oscilloscope. External unit plugs into aerial socket of TV. Circuit \& plans $£ 3.00$ orS.A.E details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

EQUIPMENT

BRITISH TELECOM plug sockets \& leads etc. Tel C.W.A.S (0274) 731532. Or visit our showroom opposite Odsal Stadium, Bradford.

SERVICES

JBA
 ELECTRONICS

Manufacturesto designorspecifications. One offs, small batch prototypes. Analogue digital electronic equipment. Complete electronic service - no job to small

1 st Floor, 4 a Lion Yard
Brecon, Powys, South Wales
econ, Powys, South Wales
Tel: (0874)611177
P.C.B. Design \& layout to your specifications, competitive rate: Trax Ltd, 497 Hitchin Rd, Luton.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tet: halstead (0787) 477408.

100W MOSFET AUDIO AMP. LIFIERS. Relay included giving offset protection, delayed switch-on and thermal cutout £27.50 including postage. SAE fordetailed specification. Ronald Electronics, 119, Lomond Road, Hull HU5 5BS.

SHEET METAL FOLDERS 18 " $\times 18 \mathrm{G}$ bench or vice held £38. Leaflet 01-890 7838 (anytime). 90 Granveille Av, Feltham, Middx TW13 4JN.

ELECTRONIC ORGAN KEY-

 BOARDS and otherparts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston L-7e, London E8. 01-986 8455.
Flanger/Chorus parts

 re E.T.I. Jan 84Reverb Springs, PedalCases, Dummy Keyboards, Microphones, Audio leads and adaptors, clearance bass effects pedal and many more items.

Send S.AE for free price list to:-

SOLAR SOUND LTD

 18 Barton Way Croxley Green Rickmansworth Herts WD3 3QA
100W AMPLIFIER

- £9.95 built

Or use the same board for 50W, $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U. SAE forfull details to:

ESS AMPLIFICATION
Innovation House
Guildhall Road, Hull

KITS

PRINTED CIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.50$. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

ECOLIGHT(ETI July 84) full kit as per article. £21.05. P.C.B. only £4.50. GP Electronics, 87 Willow Tree Ave., Durham DH1 1DZ.

```
WIRES 'N CABLES
```

THE SCIENTIFIC WIRE COMPANY 811 Forast Rond, London E17			
ENAMELLED COPPER WIRE			
$8-34 \quad 3.63$	2.09	1.10	88
35-39 - 3.82	2.30	1.26	93
42-43 5.20	2.91	2.25	1.60
44-47 8.56	5.80	3.49	2.75
$48 \quad 15.96$	9.58	6.38	3.69
SILVER-PLATED COPPER WIRE			
14-30 9.09			1.9
TINNED COPPER WIRE			
$\begin{array}{lllll}14-30 & 3.97 & 2.41 & 1.39 & 0.94\end{array}$ Prices include P\& P and VAT. Orders under			

VHFTRANSMITTERMODULE Kit, size 2 inches by $1 / 2$ inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. $70-150 \mathrm{MHz}$, range dependent on voltage (618V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to £6.95, post paid, send cash/ cheque/PO to Modulex, P.O. Box 102, Dartford, Kent DA1 2PW.

LINSLEY HOOD DESIGNS
 LOW DISTORTION AUDIO SIGNAL GENERATORS

AO 113 Kit
E 25 (p.p. £1) AO 149 Kit £ 32 (p.p. £2)
Super Hi-Fi Amplifer (ETI)
P.C. Boards from $\mathbf{E} 4$

Send S.A.E for further details.
TELERADIO ELECTRONICS 325 Fore Street, London N9 OPE Tel: 01-807 3719

REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets Commodore computers, printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-of-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6. Phone(01) 0001 If England 987507

Mail order only please
CRYSTALS. Very large stocks. $100 \mathrm{KHz}-50 \mathrm{MHz}$. Priced from 55 p-£7.50. S.AE. for full lists. TELERADIO, 325 Fore Street, London N9 OPE

BOOKS EXCHANGE SERVICE

BOOKS WANTED FOR CASH
Have you got technical books you no longer neear ORDO you need to read BOOK CLLUB can heip YOUt
We buy and sell previously read
We buy and sell previously read books on electronics and computing details of our guaranteed buy back plan SAE please to:-

AMES ELECTRONICS, P.O. Box 2 Rothwell, Leods LS28 OUY

BUMPER BOX OF BITS

wow! We've got so many components in stock, we can't possibly list them ali - So buy a box. In ityou'llf find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's etc., coils, pots... and so on. All modern parts - guaranteed at least 1000 items, minimum weight 10 lbs. ONLY £8.50 inc. 48 page catalogue 50 p.

ELECTRONICS

 WORLDte Dews Road, Salishury Wilts SP2 7SN

BARGAIN PACKSour speciality. Send S.A.E. for details plus free samples. Projek Electronics, 44 Mathie Crescent, Gourock, PA19 1YX

ADD-ONS

TANGERINE OWNERS at last $a \star \star 6809 \star \star$ C.P.U. board with expandable monitor in Colour. FLEX compatable. Also 14K RAM card to free EPROM space on TANEX S.A.E. for details: Ralph Allen Eng. Forncett-End, Norwich. Tel: (095389) 420.

COMPONENT BARGAINS

g.: ZN3819 FET-10p; ZK×8 RAM's-
£2; 10 w Audio Amps - 50 p ; LED's-3p SAE for full II
27 Broomhill Drive, Glasgow G11 7AB

AERIAL AMPLIFIERS improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Rams bottom, Lancashire, BLO 9AGH

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

WANTEDElectronictest equip ment, large computers, large quantities of Printed Circuit Boards, anything considered, good prices paid: "C" House Stanhope Rd., York Town Ind Est., Camberley, Surrey. 027628208.

SUPPLIES OF I.C.'s

 FOR SALESurplus to requirements All new stock Large and small orders welcome. Please ring for prices and delivery.

ELECTROSIGNS (est. 1949)
114 Wood street, Walthamstow
London E17
Tel: $01-5214748 / 5218066$

SEND SAE for VAT inclusive price list Eg. 7805 voltage reguator 38p. Hunt Electronics, PO Box 57, Derby DE6 6SN.

BOOKS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. $4 \times 9 "$ Paralab, Downton, Wiltshire.

COMPUTERS ,

CORTEX SOFTWARE. Graphics designing program. Very useful for games, character definitions etc. Also Mighty Muncher, great game. £4.95 each. G. Alexander, 6 Goolden Street, Bristol BS4 3BB.

ESSEX

R JONES ELECTRONICS
267 Rectory Rd., Grays, Essex
Tel: 10375$) \mathbf{3 3 1 5 8}$ - 24 24r answer phone
Electronic repairs - Industrial \& Domestic Open 9-5.30pm 6 days a week.

ALARMS

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD.
45 Castle Arcade, Cardiff TEL: 022241905
Open: Mon-Sat 9-5.30
For components to computers

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than $\mathbf{2 8}$ days from the day you sent your order and not later then 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what ovidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for one advertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not for example, payments made in response to catalogues, etc, received as a result of answering such advertisementa)

CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.

ETI ADVERTISERS INDEX SEPTEMBER 1984

AD Electronics 34
Armon Electronics Ltd 55
Audio Electronics Ltd. 43
B. Bamber Electronics 55
B. K. Electronics 43
B. N. R. \& E.S. 65
Black Star 43
Bridage Scientific Instruments. 55
Capriol Systems. 44
Cirkit. 14-15
Cricklewood Electronics Ltd. 21
Cybernetic Applications. IFC
Digisound 31
Display Electronics 8
Electrovalue 49
Henry's Audio Electronics. 52
House of Instruments 65
I.C.S. 52
ILP. 12
LB Electronics. 22
Lascar Electronics Ltd 51
Litesold 62
Maplin OBC
Marco Trading 6
Merseyside Acoustic Developments 49
Micro Processor Engineering 31
Microrange Electronics 74
Newrad Instrument Cases Ltd 62
Pantechnic 44
Powertran. 44, IBC
P.F. Ralfe 33
Rapid Electronics 10
R. V.M. Audiotronics 12
Ship Co 31
SME 74
Sparkrite 62
Stewart of Reading 22
Skywave Software 12
Technomatic Ltd 38-39
TK Electronics 22
Watford Electronics 4-5
Wilmslow Audio 49
Wye Winding Co. 34

TOP QUALITY KITS AT LOW-BUDGET PRICES

Chromatheque 5000

SP2 200
An inge 2-channel 100watt Amplifier geniously designed power amp. The SP2 deliver over 100 w rms into 8 ohms on each channel. Separate volume control and a sensitivity of $0.775 \mathrm{mV}(0 \mathrm{dBm})$ make this unit suitable for virtually all pre amps or mixers. Construction is very simple, with minimal wiring and the steel cabınet is suitable for 19" rack mounting. Complete Kit
£99.50 + VAT

5 Channel Lighting Effects System
Versatility is the key aspect of the Chroma theque. Musical input can perform switching or modulation of the light output. 5 banks of lamps of up to 500 w each can be controlled of lamps of up to 500 w each can be controlled in either analogue or digita mode. Variable light leve Controls provide a scope for "mood" lighting The kit's single-board concept makes for straight forward assembly
Complete Kit
£79.50 + VAT

Digital quality at an Analogue price! With this unit you can have Phasing. Flanging, ADT Chorus, Echo and Vibrato at the touch of a button. In a steel cabinet suitable for 19" rack mounting
Complete kit (400 ms delay) $£ 179.00+$ VAT Parts for Extra 400 ms delay (up to 3 can be added)
£19.50 + VAT

Transcendent 2000
This professional quality, single board 3-octave synth is transposable 2 octaves up or down giving an effective 7 -octave range. There is portemento, pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control; noise generator and an ADSR envelope generator. Complete Kit

Hydraulic robot arm With its own dedicated microprocessor or under the controi of an external computer, the Genesis P101 simulates the operation of industrial robots at a mere fraction of their cost. With this robot, practical robotics experience is available without tying up valuable capital.
6 -axis robot system kit
$£ 1050.00+$ VAT

Hebot II

 At a price that Robot Turtle Hebot provides an ing introduction to wheels, flashing. "Independent drive of the two wheels, flashing "eyes", two-tone horn and a retractable pen are directed by your microcomputer while four collision detectors relay information about the robot's environment. $\begin{array}{ll}\text { Complete Kit } & £ 95.00+\text { VAT } \\ \text { Universal computer interface }\end{array}$ Universal computer interface board kit$£ 11.00$ +VAT arm at an affordable ur with servo control fiddly strings and puly on the axes they drive (no fiddly strings and pulleys'). The robot can be controlled by any microcomputer with an expansion bus.
Robot kit with power supply $\quad \mathbf{£ 2 1 5 . 0 0}+$ VAT Universal computer interface board kit
857.00 + VAT

Genesis P102

Hydraulic robot arm A sophisticated robot system with microprocessor control, two speed, double acting hydraulic operation and the option of external computer control
The P102 offers "hands-on" experience for robotics training, at a fraction of the cost of an industrial robot
6 -axis robot system kit
£ 1476.00 + VAT

See October's Practical Electronics

POWERTRAN Ecybernetics itd:=

All kits are complete down to the last nut and bolt and are supplied with an easy-to-follow assembly handbook
Write or phone for further details, stating which product(s) interest you Access/Visa cardholders may order by telephone to avoid delays.
Prices apply to UK only. Overseas customers-please contactour Export Department for the name
and address of your local dealer Allow 21 davs for delivery
and address of your local dealer Allow 21 davs for deliverv. Offers subject to avallability

Portway Industrial Estate, Andover, Hants, SP10 3ET

SOLDER

Recommended for general purpose, fine work and pcb's, a top quality fluxcored 60% tin, 40% lead solder. 22 swg .
ONLY 82p for 10 metres (FR21X)

RELAYS
Sub-minature 12 V relays will switch up to 10 A at 240 V AC.
Coil Coil Contact ratings voltage resistance DC current AC Current (resistive) (mm)
Single-pole changeover 8.4 to 15.6 V 400Ω up to 10 A ai 30 V up to 10 A at $240 \mathrm{~V} 21 \times 16 \times 14$ Double-pole changeover. 8.4 to $13.2 \mathrm{~V} \quad 270 \Omega$ up to 5 A at 30 V up to 5 A at $240 \mathrm{~V} 29 \times 20 \times 13$ Relays are fully enclosed and direct pcb mounting.
INCREDIBLY LOW PRICE $£ 1.65$ each (SINGLE-POLE YX9'F) (DOUBLE-POLE YX98G)

DATA CASSETTES \&

 FLOPPY DISKS Pack of 5 good quality C12 cassettes. ONLY £1.95 (BK95D)Pack of 10 top quality $51 / 4 i n$ floppy disks single-sided, single or dual density. ONLY £17.95 (YJOOA)
Coil Coil Contact rating

VIDEO COPYING KIT

Copy video tapes to and from virtually any VHS or Beta machine. Kit makes six different video.and six different audio lear ONLY E9.95(RK7IN) MTHIT PRIC WIGHIT

RESISTORS

Far superior to carbon film, these superb quality, very high stability, exceptionally low noise resistors have a $\pm 1 \%$ tolerance and are rated 0.4 W at $70^{\circ} \mathrm{C}$ yet are only 6.5 mm long and 2.5 mm diameter nominal. E24 range 10Ω to 1 M . EXCEPTIONALLY LOW PRICE $2 p$ each (M+VALUE)

COMPTRE OUR PRICES.... then choose MAPLIN for Quality and Service as well!

Well over $£ 11 / 2$ million worth of top quality electronic components always in stock

D-CONNEGTORS

Gold over nickel plated contacts and solder termirations. Thermoplastic cover allows side or top entry and includes cable çlamp.

SUPERB QUALITY AND AMAZINGLY LOW PRICES

9-way	$\begin{gathered} \text { Plug } \\ \boldsymbol{\sigma} \mathbf{8 p}_{\mathrm{p}}(\text { RK } 60 \mathrm{Q}) \end{gathered}$	Socket 9sp (RK61R)	Cover ء1.14 (RK62S)
15-way	98p (BK58N)	81.43 (BK59P)	99p (BK60Q)
25-way	$\mathbf{2 1 . 3 9}$ (YQ48C)	ع2.19 (YQ49D)	29.14 (YQ50E)

COMPARING OUR PRICES

When you compare our prices, remember that many of our competitors quote VAT exclusive prices. This hidden extra makes a big difference to their seemingly low prices.
On an order as little as $£ 6.67$, the VAT is a whole $£ 1$ extra!

TELEPHONE CONNECTORS

Three examples from our range of telephone fittings. All are BT approved and sockets are shuttered.
Flush fitting jack socket for main telephone. ONLY £3.99 (FJ27E) Flush fitting jack socket for extension telephones.
ONLY £2.65 (FT34N)
Line cord, 3 m long, spade terminals to phone plug.

N.B. All our prices INCLUDE VAT and Carriage. A 50p handling charge must be added if your total order is less than $£ 5$ on mail-order.
MAPLIN ELECTRONIC SUPPLIES LTD.
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911. SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356-7292.
- LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748-0926
- MANCHESTER 8 Oxford Road, Tel: 061-236-0281.
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831.
- SOUTHEND 282-284 London Road, Westcliff-on-sea, Essex. Tel: 0702554000

Shops closed all day Monday.

[^0]: rem keyboard decoder test program
 rem uses port 8A(hex) bit 3 as a status port
 rem and port 89 (hex) as data port (both input)
 rem alter these to suit microcomputer used.
 $\operatorname{dim} \mathrm{d}(256) \quad:$ rem initialise decoder array
 for $n=0$ to 255
 read $d(n)$
 next n
 $90 \mathrm{x}=\mathrm{inp}(138) \quad$: rem input status bit
 $100 \mathrm{x}=\operatorname{int}(\mathrm{x} / 8) \bmod 2$: rem isolate bit 3
 110 if $x=0$ goto 90
 $120 \mathrm{y}=\operatorname{inp}(137) \quad$: rem input data byte
 130 print char£(d(y));
 140 goto 90
 150 data $47,0,0,0,0,44,51,75,52,56,0,69,54,68,82,0,0,74,85,0,0,0$
 160 data $0,53,84,71,67,66,73,77,89,0,57,83,48,88,46,0,0,0,0,0,0$
 170 data $0,0,0,0,0,0,32,10,0,0,0,0,0,0,0,0,0,0,0,0,79$
 180 data $0,0,0,58,0,0,0,0,0,49,81,65,90,50,87,0,0,0,0,55,0,0$
 190 data $0,0,0,0,0,0,0,0,0,0,64,45,0,0,78,0,127,0,13,0,0$
 200 data $0,0,0,0,0,0,0,80,72,86,59,70,76,0,0,0,0,0,0,0,0$
 210 data $63,0,0,0,0,44,36,107,36,40,0,101,38,100,114,0,0,106,117,0,0,0$
 220 data $0,37,116,103,99,98,105,109,121,0,41,115,61,120,46,0,0,0,0,0,0$
 230 data $0,0,0,0,0,0,32,10,0,0,0,0,0,0,0,0,0,0,0,0,111$
 240 data $0,35,0,42,0,0,0,0,0,33,113,97,122,34,119,0,0,0,0,39,0,0$
 250 data $0,0,0,0,0,0,0,0,0,0,0,95,0,0,110,0,127,0,13,0,0$
 260 data $0,0,0,0,0,0,0,112,104,118,43,102,108,0,0,0,0,0,0,0,0$
 270 end

