An Argus Specialist Publication

AUABET 1984950

D) -what do you need? -building your own -how to use it

High performance, low price kits for today's musicians

DIGITAL DELAY LINE

Digital delay circuitry is an absolute necessity for high quality studio work, but usually comes with a four-figure price tag.

Powertran can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6 mSecs to 1.6 secs with many powerful effects including phasing, flanging, A.D.T., chorus, echo and vibrato. The basic kit is extended in 400 mSec steps up to $1: 6$ seconds simply by adding more parts to the PCB
Complete kit
(400 mS delay)
E179
Parts for extra 400 mS delay
(up to 3)..
219.50

TRANSCENDENT 2000

This professional quality 3 -octave instrument is transposable 2 octaves up or. down, giving an effective 7 -octave range.

There is portemento pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope shaper. Other features include special circuitry with precision components to ensure tuning stability.

Complete kit.
E150

CHROMATHEQUE 5000
ETI 5-channel lighting
effects system

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both functions. It controls 5 banks of lamps up to 500 W each in either analog or digital mode. And the 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4 -channel systems. Versatile light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal and construction straightforward.

Complete kit
279.50

MPA 200
100 watt mixer/amplifier

Here's a rugged, professionally finished mixer amp designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components are supplied for additional inputs), 3 tone controls, each with 15 dB boost and 15 dB cut, and a master volume control.

Complete kit
$£ 79.50$

SP2-200

2-channel, 100 -watt amplifer

The SP2-200 uses
two of the power amplifier
sections of the MPA 200 (above), each with its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100 W rms into 8 ohms. Each channel has its own volume control, and a sensitivity of 0.775 mV (OdBm) makes this amplifer suitable for virtually all pre-amps or mixers.

Complete kit \qquad $£ 99.50$

Goods subject to availability. All prices exclusive of VAT and correct at time of going to press.

POWERTRAN CYBERNETICS LTD, PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET.TEL: (0264) 64455
ALL PRICES ARE EXCLUSIVE OF VAT AND APPLY TO THE U.K. ONLY-ALLOW 21 DAYS FOR DELIVERY. OVERRSEAS CUSTOMERS - PLEASE CONTACT

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Editorial Assistant Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Lynn Collis: Copy Control Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive PUBLISHED BY:
Argus Specialist Publications Ltd., 1 Golden Square, London W1 R 3AB DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
The Garden City Press Ltd.
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison

EDITIONS
and their
EDITORS CANADA - Halvor Moorshead GERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC Member of the Audit Bureau Audit Bureau

 of CirculationElecironics Today is normally published on the first friday in the month preceding cover date. \square the contents of this publication including all articles. designs. plans. drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conterred by the Law of Copyright and other inteliectual property rights and by virtue of international copyright conventions are specinically reserved io Argus Soecialist prior written consent of the Company. © 1984 Argus Prior writen consent of the Company. © 1964 Argus Specialist Publications Ltd All reasonable care is taken in the preparation he the magazine cannot be held legaliy responsibie for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are ac cepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be heid responsible, however, for any variations affecting price or availability which may occur after the publica tion has closed for press
\square Subscription Rates. UK $£ 13.75$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE
1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST

ETI rehashes the press releases other news pages cannot reach.

TEST EQUIPMENT
18
The first of our four special features looks at the range of test equipment available and what it is used for.

CHOOSING TEST
EQUIPMENT
26
Should you buy a multimeter that's fallen off the back of a lorry?

BUILDING TEST

EQUIPMENT.39

If Hewlett Packard, Gould, Advance and Solartron can do it, why shouldn't you?

DEBUGGING AND

FAULT-FINDING.46

What to do with all that test equipment you've now bought, built or borrowed.

COMMUNICATIONS

SATELLITES

55Having got the series safely off the ground in our last issue, Roger Bond steers a course through some of the more interesting satellite transmission systems.

PROJECTS

CORTEX CENTRONICS

INTERFACE 23
Part two of our unparalleled nonserial interface design.

AUDIO DESIGN

AMPLIFIER
John Linsley Hood supplies another powerful instalment of this gripping serial.

SHARP JOYSTICK

INTERFACE42

John Graham offers some blunt words on the subject of Sharp joysticks.

EPROM EMULATOR 50

 ... and for his next trick, Mike Bedford will turn a board full of 6116 s into a pretty fair imitation of an EPROM.INFRA-RED ALARM............ 59
Frederick Howard completes his description of the design that will alarm burglars and leave you beaming.

CMOS TESTER

64Don't pin yourhopeson that CMOS IC until Roger Dooley's DIL tester has checked it.

INFORMATION

NEXT MONTH'S ETI. 6 66
ETI BOOK SERVICE............... 7 PCB FOII PATTERNS 68
ETI PCB SERVICE 54 ADVERTISERS' INDEX 74

WATFORD ELECTRONICS
 33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND MAIL ORDER, CALLERS WELCOME
 Tel. Watford (0923) 40588. Telex. 8956095

ALL DEVICES FULLY GUARANTEED SEND CHEQUE, POS, CASH, BANK DRAFT WITH ORDERS TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME
P\&PADD 75 PTOALL CASH ORDERS OVERSEAS ORDERS POSTAGE AT COST. PRICES SUBJECT TO CHANGE WITHOUT NOTICE

VAT

Export orders no VAT. Applicable to U.K. Customers only. Unless stated othewise,
all prices are exclusive of VAT. Please add 15% to the total cost including Pal. Wearest Underground/BR Station: Wattord High Streat.
Open Monday to Saturday: 9.00 mm to 6.00 pm . Ample Free Car parking space available.
 40v: 22 gp 33 12p: 330.470 32p. 100048 p. 2200 日0p, 25v, 1.5. 4.7. 10. 22.478p: 10011 p. 15012 p. 220 15p. 33022 p. 47025 p: 680,100034 p. 150042 p. 220050 p: 330078 p. 470092 p. 18V: 47. 68.100 pp. 12512 p. 330 16p. 470 20p. 680 34p. 100027 p. 1500 31p. 2200 28p 4700 72p
TAG-END CAPACITORS: 64V: 2200139 p ; 3300198 p ; 4700 245p; 50V: $2200110 \mathrm{p} ; \mathbf{3 3 0 0} \mathbf{1 8 4 \mathrm { p } ; \mathbf { 4 0 V } 4 7 0 0}$ POLYESTER CAPACITORS: AXIAI Lesd Type
4OOV: $1 \mathrm{nF}, 1 n 5.2 \mathrm{n} 2.3 \mathrm{n} 3 \mathrm{an7} 6 \mathrm{n} 811 \mathrm{p}: 10 \mathrm{n}, 1$

POLYESTER RADIAL LEAD CAPACITORS: 250 V 10n, 15n, 22n. 27n8p, 33n, 47n 68n. 100n8p; 150n. 220n 10p, 330 n 470 n $15 p ; 680 \cap 19 p$. 1 u5 40p: 2u2 48p.	FEED-THROUGH CAPACITORS 1000pF/450V	10 p

SIEMENS PCD
Type Minature TANTALUM BEAD CAPACITORS

\section*{| YOpF |
| :--- |
| SILVE |
| 2.3 .3 |
| 22.27 |
| 85.10 |
| 200.2 |
| 390 |
| 100. |}

3300. 4700pF $\quad \begin{array}{r}\text { 30p each } \\ \text { 80p }\end{array}$

2 2 pF 2 2.10pF 22 pi
$30 \mathrm{p} ; 1 \mathrm{D}-88 \mathrm{pF} 36 \mathrm{p}$.
RESISTORS Carbon Flim, minalure. H.Stab. 5\%.

	RANGE	Val	199	$100+$
$025 W$	$2 n 2-10 M$	$E 24$	$3 p$	$1 p$
$0.5 W$	$2 n 2-4 M 7$	$E 12$	$3 p$	$1 p$
$1 W$	$2 n 2-10 M$	$E 12$	$6 p$	$4 p$
200 Metal Film	$5111-1 M$	$E 24$	60	$4 p$
100 Metal Filt	$510-1 M$	$E 24$	80	$6 p$

RESISTORS NETWOR
7 COMmmod
$10 \mathrm{~K} 47 \mathrm{~K} \quad 100 \mathrm{~K} \quad 25 \mathrm{p}$

			6402	350	Ar.5.013 300	
diodes	flers	75 SERIES		cosis	1	INEAR
				550	a	
${ }_{\substack{\text { aftrac } \\ \text { Batioc }}}^{\text {Al }}$			\%	50		
${ }_{\text {Bax }}^{\text {Bax }}$				175		
15					(258	
				\%990	-	
$\stackrel{\mathrm{O}}{\mathrm{O}}$				600	536	
OA				-	(enirl	
					(tal	
				50		
				75		
				275		
,		${ }_{\text {chen }}^{\text {sta }}$		${ }^{2}$	cis	
				500		
				$5{ }^{5}$		cas
	thacs					
						${ }^{\text {Ca3659 }}$
				45		
varicaps				${ }^{\circ}$		
		14:		40		
				${ }_{\text {c25 }}^{12}$		Casy

A

EX42 KEYBOARD INTERFACE

As we said when we published the design for the EX42 printer interface, it seems a pity to have such a nice keyboard and not to make use of it. Well, now you can do, with this interface. Our next trick is to turn a ZX81 into a word processor... but don't hold your breath waiting for it!

SIREN UNIT

After doing all the feature articles in this issue (well, nearly all), Phil Walker was itching to get some dirt under his fingernails, and here's the result! The ETI banshee's wailing will scare the burglars away - it's designed to accompany the ETI Warlock, published last month, and there will be more details of how to use the two together or independently.

ACTIVE LOUDSPEAKER

Active loudspeakers have a lot to offer, especially if you can escape the' esoteric' price tag bybuilding them yourself. So it's hardly surprising that we have already published one or two designs for active speakers - and it will hardly be surprising if we carry on publishing designs, there's no such thing as the definitively 'right' loudspeaker.

DIGITAL CASSETTE DECK

Do you tire of the pain of using an audio cassette player to store your computer programs? Do you long for a cheap(ish), fast reliable method of storage yet begrudge the cost of a floppy? Well, the next issue of ETI will offer you the solution in the form of a digital cassette deck. The advantages of this design over a conventional audio deck are two-fold. Firstly, the cassette deck is solenoid controlled, and these will be operated directly from the computer, by means of a special-purpose interface. Secondly, by not having the conventional audio amplifier in the way, it can be designed to have a very much higher baud rate than the average tape system. However, this is not at the expense of compatibility with proprietary software.

ALL THIS AND MORE IN THE SEPTEMBER ISSUE OF ETI, ON SALE AUGUST 3RD. PLACE YOUR ORDER NOW, EVEN IF YOU'RE GOING ON HOLIDAY.

EElectronics			 .			
	\|can sex					
			${ }^{-2}$			
	0					
	man fivid			\%ismem		
	varaz					
					\%ammex	

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Cortex Facelift

The Cortex computer, as described in ETI in November and December 1982 and January 1983 (and also in a recently published edition of Electronics Digest, Vol 5 No 1) is to get a facelift, if that's the right phrase. Powertran Cybernetics will shortly be marketing the kit in a newstyle case, which will be a lot slimmer than the original. The unit will include a re-designed PCB, incorporating all the modifications that have accrued since the Cortex was originally published.

Powertran are also in the process of revising the Cortex manual, and hope to be able to provide a cheap disc operating system in the near future.
A users' group is being started up, and all purchasers of the Cortex should be receiving a letter about it; if you haven't already heard from him, drop Tony Lydeard a line at Powertran, as he is currently organising the group. He would particularly like to hear from people who would like to write letters or articles for the newsletter. Powertran may be found at Portway Industrial Estate, Andover, Hants SP10 3 NN.

Fast 16K
 Static RAMs

Byte-wide 16 K static RAMs operating at high speed and incorporating a low-power standby mode are now available. Organised as $2 \mathrm{~K} \times 8$ bits, the Toshiba TMM2018D features a maximum access time of 45 ns .
Maximum operating current from a single 5 V supply is 150 mA . A low power standby mode is entered when $\overline{C S}$ goes high and the device is deselected, when maximum standby current is 20 mA .

These fully static devices are suitable for use in cache memory
and other high speed storage applications. All inputs and outputs are directly TTL compatible, and inputs are protected against static charge.

Efficient operation in bus structured environments is facilitated by the provision of an output buffer control line, OE. These devices are supplied in a 24 pin cerdip package with a pin spacing of 0.3 inch width (unusual in 24 pin packages), which allows maximum utilisation of printed circuit board space.

For further details contact Impulse Electronics Limited, Croudace House, Caterham, Surrey CR3 6XQ tel 0883 40325.

High-Tech
 Students In Demand

Students from a pilot training programme in the field of opto-electronics are in such demand from industry that the Manpower Services Commission has decided to repeat the project.
The courses, at Swansea, Newcastle and Coventry, are sponsored by the MSC under a scheme that aims to identify emerging high technology skill needs and stimulate the development of training to meet them. Opto-electronics is one of those new fields, and three years ago MSC sponsored a course to train unemployed graduates in the subject at Newcastle Polytechnic.
Such was its success that a further two courses, designed to retrain and update qualified en-
gineers and technicians, began last year at West Glamorgan Institute of Higher Education, Swansea, and Lanchester Polytechnic, Coventry. "Demand for students from industry is very great, so we have decided to run all three courses again in the Autumn," said Mike Yates, Head of the MSC's Technologist and Technician Training Section.

Courses involve a period of college-based training, lasting 36 weeks, followed by about 10 weeks of industrial experience. In college, the students cover such areas as micro-electronics, optics, mathematics, electronics, data transmission, fibre optics, image processing video displays and lasers.

These courses are likely to be over-subscribed, and ads will be appearing in the press (perhaps even ETI!) in the near future, but local MSC training division offices or job centres should be able to obtain further details for you.

Silicon Factory For UK?

Monsanto, the world's largest supplier of polished silicon wafers, plans to invest more than $\$ 35$ million in a research and manufacturing facility in the United Kingdom. It is expected to create more than $\mathbf{4 0 0}$ jobs during the next five years.

This project still requires Monsanto Board approval, but is intended to provide the UK with a domestic source of Czochralski silicon polished wafers currently imported by the integrated circuit manufacturers, while the research facility should play a critical role in Monsanto's worldwide electronics research programme.

Construction of the Milton Keynes facility is scheduled to start later this year on a prime 10 acre greenfield site at Wolverton Mill. The first phase is due for completion early in 1986 and will
employ 100-130 people. The new plant will bebased on Monsanto's most recent technology and produce the advanced 100, 125 and 150 mm wafers used in the manufacture of the very latest VLSI circuits.
The research centre will focus on development of the near perfect crystal structures needed for the next generation of high speed memories and microprocessors. Many of the centre's planned furdamental and applied research programmes will involve collaboration with device manufacturers, universities and industry research centres in the UK and throughout Europe.

Monsanto will also consolidate its European electronic materials business management, marketing and applications groups at the new Milton Keynes site. Monsanto Europe SA, Avenue de Tervuren, 270-272 B-1150 Brussels, Belgium, tel (Belgium) 02-762-11-12.

electronics today international BOO
 How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETIBook Service, Argus Specialist Publications Ltd, 1, Golden Square, London W1 3 AB. Make cheques payable to ETI Book Service. Payment in
 sterling only please. All prices include P \& P. Prices may be subject to change without notice.

becinners cuide

Beginner's Guide to Basic Programming Stephenson $£ 5.35$
Beginner's Guide to Digital Electronics $£ 5.35$
Beginner's Guide to Electronics
Beginner's Guide to Integrated Circuits £5.35
Beginner's Guide to Computars
£5.35
Beginner's Guide to Microprocassors

C00K800KS

Master IC Cookbook Hallmark
£10.15
Microprocessor Cook Halmark Hordeski
Hicroprocessor Cookbook M. Hordeski $£ 7.70$
IC Op Amp Cookbook Jung
PLL Synthesiser Cookbook H. Kinley
Active Filter Cookbook Lancaster
f11.15
TV Typawriter Cookbook Lanc aster
CMOS Cookbook Lancaster
f11.85
IL Cookbook Lancaster f10.95

- £15.30
BASIC Cookbook K. Tracton
f6.00
MC6809 Cookbook C. Warren

ELECTRONICS

Principles of Transistor Circuits Amos $£ 8$
Design of Active Filters with experiments Berlin
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
How to build Electronic Kits Capel
How to Design and build electronic instrumentation Carr $\mathbf{f 9} 35$
dow to Design and buid alectro
f9.35
ntroduction to Microcomputers Daglecs
Poctronic Components and Systems Dennis
Principles of Electronic Instrumentation De Sa
Giant Handbook of Computer Software
Giant Handbook of Electronic Circuits
Giant Handbook of Electronic Projects
lectronic Logic Circuits Gios on
Analysis and Design of Analogue Integrated Circuits Gray
Basic Electronics Grob
Lasers - The Light Fantastic Hallmark
introduction to Digital Electronics \& Logic Joynson £5.25
Electronic Testing and Fault Diagnosis Loveday
lectronic Fault Diagnosis Loveday 7
ssential Electronics A-Z Guide Loveday f 6.25

VLSI System Design Muroga
Power FETs and thair application Oxner
Practical Solid State Gircuit Design Olesky
Master Handbook of IC Circuits Powers
Eloctronic Drafting and Design Raskhodoff
VOM - VTVM Handbook Risse
Video and Digital Electronic Oisplays Sherr
Understanding Electronic Components Sinclair
Electronic Fault Diagnosis Sinclar
lectronic Fault Diagosis
hysics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
Designing with TTL Integrated Circuits Texas
Transistor Circuit Oosign Texas
Digital Systems: Principles and Applications Tocc
Master Hendbook of Telephones Traister
How to build Metal/Treasure Locators Traiste
99 Fun to Make Electronic Projects Tymony
33 Electronic Music Projects you can build Winston

COMPUTERS \& MICROCOMPUTERS

ASIC Computer Games Ah

From BASIC to PASCAL Anderson

Mastering Machine Code on your ZX81 T Baker

UNIX - The Book Banaham
280 Microcomputer Handbook Barden
Microcomputer Maths Barden
Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bell
Visicalc Book. ATARI Edition Bell
Introduction to Microprocessors Brunner
Programming your APPLE II Computer Bryan Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook AD \& D/A Car
Musical Applications of Microprocessors Chamberlain
30 Computer Programs for the Home Owner in BASIC D. Chance
Microcomputers Dirkson
APPLE Personal Computer for Beginners Dunn
Microcomputers/Microcomputers - An Intro Gioone

- Troubleshooting Microprocessors and Digital Logic Goodman Getting Acquainted with your VIC 20 Hartnel
Getting Acquainted with your ZX81 Hartnell
Let your BBC Micro Teach you to program Hartnell Programming your $Z \times$ Spectrum Hartnell Programming your $\mathbf{Z X}$ Spectrum Hart
The ZX Spectrum Explored Hartnell
How to Design, Build and Program your own working Computer System HavilandBASIC Principles and Practice of Microprocessors Heffer Hints and Tips for the ZX81 Hewson
What to do when you get your hand on a Microcomputer Holtzman

Microcomputar Builders' Bible Johnson
Digital Circuits and Microcomputers Johnson
PASCAL for Students Kemp
The C - Programming Language Kernighan COBOL Jackson
The ZX81 Companion Maunder
Guide to Good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nicholas

$$
34 \text { More Tested Ready to Run Game Programs in BASIC Horn }
$$

Please send me the books indicated. I enclose cheque/postal order for f........... Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.

\square

Signed....
\qquad
\qquad

Video Encoding Goes LSI

A. new LSI integrated circuit that combines the functions of a board-full of components previously required for the implementation of a colour video encoder has been introduced by Motorola. The new monolithic encoder represents a major system simplification for a wide variety of end products including colour cameras, personal computers, colour graphics computers and terminals, and is estimated to reduce the cost of implementing this function by an order of magnitude.
The MCI377P combines the RGB video information into a composite video signal in either the NTSC or PAL format. It contains a sub-carrier oscillator, voltage controlled 90 degree phase shifter, two double-side-band
modulators, RGB input matrices and blanking level clamps. Its oscillator can be used as the master in a system, or it can be driven by an external source. The RGB inputs are AC coupled to simplify interfacing a variety of equipments. A $1.0 \vee$ P-P input level produces full saturation of colours in the output.

The only other input required is a composite sync signal, which is combined with the encoded video to produce the composite video output. The sync is also used to trigger the generation of the colour (burst) reference. Both chroma and luma signals are "looped out" of the chip to permit tailoring bandwidth and delay to the designer's needs. This permits very elegant applications as well as very simple ones. Motorola Ltd, Semiconductor Products Sector, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes, tel 0908614614 (quote release number 16).

Not-So-Weedy Reedy

H^{2}amlin Electronics has introduced a powerful new glassencapsulated reed switch designed to switch high-current loads.
The new switch, Model 5091, is rated at 15 A at 240 V AC and 30 A at $72-120 \mathrm{VAC}$. The new device is extremely compact, measuring
only 2.250 inches in length, leads included, with a diameter of 0.26 inch maximum.
The combination of small size and high switching power capability makes the model 5091 an ideal component for use in highpower relays and heavy-duty switching applications. The standard Model 5091 has single-pole, single-throw, normally open contacts. Hamlin Electroncis Europe Ltd., Park Road, Diss, Norfolk IP22 3 AY, tel 03794411.

New Power HEXFETs

Anew range of P-channel HEXFET power transistors combining high power ratings with excellent reliability specifcations is now available from International Rectifier.

The new IRF9140 and IRF9240 Series incorporate the largest chip of any P-channel device yet produced, the HEX-4 size, and have the highest current capacity, with ratings from 9A to 19A. Typical drain-source on-state resistance is 0.2Ω to 0.75Ω, and the devices are available for voltage ratings of $60 \mathrm{~V}, 100 \mathrm{~V}, 150 \mathrm{~V}$ and 200 V .
The new products are the approximate electrical complements to the industry-standard N-channel IRF130 and IRF230. International Rectifier, Hurst Green, Oxted, Surrey, RH8 9BB, tel Oxted 3215/4231.

- Middlesex Polytechnic are running a summer school at their Trent Park site in North London from the 16 th of July to the 17 th of August. Courses available cover such topics as file processing, programming principles and microelectronics as well as an introductory computing course, fees range from $£ 75$ to $£ 125$ and accomodation is available for $£ 28$ a week excluding meals. For details contact Admissions Enquiries, Middlesex Polytechnic, 114 Chase Side, London N14 5 PN, tel01-886 6599.
- International Rectifier have issued a six-page leaflet describing their range of encapsulated bridge rectifiers. The range in cludes single and three-phase bridges with ratings from one to forty amps and from 50 to 1200 volt's, and full technical information and dimensions are given. International Rectifier, Hurst Green, Oxted, Surrey RH8 9BB, tel Oxted 3215.

Powerful Friend

f the bench power supply unit in The picture looks familiar that's probably because you saw it as a project in the February issue of ETI. As we pointed out then, the unit is available from Grenson Electronics either as a kit or as a ready built unit, and not only has the price not risen since then it has actually fallen, albeit only by a few pence.

The prices quoted in the February issue have been rounded down slightly and the BPU-4 now costs $\mathbf{£ 5 9 . 0 0}$ in kit form or $\mathbf{£ 9 8 . 0 0}$ fully assembled, both prices including VAT and delivery. The unit has a single-rail supply which offers from 3 to 8 V at up to 2.5 A and a dual-rail supply which offers ± 8 to $\pm 16 \mathrm{~V}$ at up to 0.5 A . The negative half of the dual-rail sup-
ply is designed to accurately track the positive side so that the two are always balanced around $O V$, and a single potentiometer adjusts the voltage of both. The regulation is such that the output voltage varies by less than 0.1% from zero to full load, ripple is less than 0.05% peak-to-peak, and the outputs are all protected against overload, short circuit and the injection of external voltages. A pair of dual-scale moving coil meters monitor voltage and current and a single switch connects them to the plus 5 V , plus 15 V or minus 15 V supply as desired.

The BPU-4 is available from Grenson Electronics Ltd, High March, Daventry, Northamptonshire NN11 4HQ tel 0327705521. Alternatively, you can order a copy of the February ETI from our backnumber service and build your own.

Is This The World's Thinnest AM/FM Stereo Radio?

Panasonic's parent company Matsushita electric Industrial Company Limited of Osaka, Japan announces the development of the world's thinnest and lightest FM/AM stereo personal radio - the RF-07. This new radio measures 91 mm high, 55 mm wide and 3.9 mm deep - approximately the size of a credit card. The weight is a mere 38 g which includes a rechargeable internal NiCad battery, which provides approximately 5 hours of playing time under normal use.
Panasonic say that to achieve such a remarkably small size, revolutionary new circuits have been designed, resulting in radio high-density circuits (RHC) - the ultimate in miniaturization and radio design. The RHC's are used
in four sections of this radio: the FM frontend (VHF high frequency amplifer, local oscillation and frequency mixer circuits); the FM/ AM IF amplifier and AM automatic gain control circuits; and the stereo low frequency amplifier circuits.
Many new components have been developed for use in the RF07 and include a variable condenser, volume control, tantalum condenser chips, IF transformer and ultrathin AM antenna. Each of these components has been designed to be less than 2.8 mm in total thickness. The print wired board (PWB) has also been reduced in thickness from 0.5 mm to 0.3 mm and has been designed as part of the rear panel of the cabinet - a revolutionary new construction. Accessories include a battery recharger, stereo earphones and a carrying case for the unit.
The RF-07 is expected to be launched in the UK at the end of this year. How long will it be before they introduce a TV of the same size? Panasonic UK Limited, 300-318 Bath Road, Slough, Berkshire SL1 6)B, tel 0753-34522.

Ultra Low Noise Preamp

The SSM 2015 from Solid State Micro Technology is a monolithic ultra low noise audio preamplifer particularly suited to microphone use. Gains from 10 to over 2000 can be selected with wide band-width and low distortion over the full gain range.

The circuit has a wide bandwidth of 700 KHz at a gain of 100 with symmetric slew rate of $6 \mathrm{~V} / \mu \mathrm{s}$ and distortion of 0.007%. True differential inputs and a high common mode rejection of 100 dB provide easy interfacing to transducers such as balanced microphone outputs, tape heads and single ended devices.

An internal feedback loop maintains the input stage current at a value controlled by an external bias resistor. This provides a programmability function which allows noise to be optimised for a wide range of source impedances up to 4 k ohms; noise is within 1 dB of the theoretical minimum value between 500 ohms and 2.5 kohms.

The SSM 2015 is specified for commercial temperature ranges only and costs $£ 9.48$ one off price. Coole Marketing Services Ltd., 26 Pamber Heath Road, Pamber Heath, Nr. Basingstoke, Hants, tel 0734700453.

High
 Performance 256K EPROM

High performance EPROMs with the largest capacity yet available, 256k bits, have just been announced by Hitachi.
Organised as $32 \mathrm{k} \times 8$ bits, the HN27256G is an NMOS EPROM manufactured in 2 micron technology. Versions with access times of 250 ns (part numbered -25) or $300 \mathrm{~ns}(-30)$ are available. Inputs and outputs are TIL compatible during both 'read' and 'program' modes.

Power consumption from a single 5 V supply is 240 mW (typ) when active, reducing to the low level of 80 mW (typ) on standby. For programming, $12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ is required, compatible with other high capacity EPROMs.

An interesting feature is the onchip identifier mode. This allows codes relating to manufacturer and type of device, stored in the device, to be read by programming equipment so that the appropriate programming sequence is employed.
The 28-pin outline conforms to the industry standard pir-out. Hitachi Electronic Components (UK) Limited, Hitec House, 221/ 225 Station Road, Harrow, Middx. HA1 2XL, tel 01-861 1414.

- Thorn EMI have issued a new photomultiplier accessories catalogue. Details from The Sales Department, Thorn EMI Electron Tubes Limited, Bury Street, Ruislip, Middlesex HA4 7TA, tel 08965 30771.

Two very fast 32 K PROMs are being proferred by Microlog Ltd, 1 st Floor, Elizabeth House, Duke Street, Woking Surrey GU21 5 BA, tel 0486266771 . They' re the $6353281 A$ and 6353281 from Monolithic Memories, and have access times of 40 and 50 ns respectively.

- NEC is set to launch two new CMOS microprocessors, the 8bit uPD70108C (or V20 for short) with 8-bit external bus and 16-bit internal bus, and the 16 -bit
uPD70116C (or V30) which has both internal and external busses 16 bits wide. Both products employ NEC's two-micron fine pattern technology, and NEC claim a speed improvement of 1.5 times over equivalent NMOS products. NEC Electronics (UK) Ltd, Carfin Industrial Estate, Motherwell ML1 4 UL, Scotland, tel 0698732221.
- Supercat Electronics, whose first mail order test equipment catalogue we mentioned in the Februaryissue, have now brought out a second, larger catalogue. It contains details of test and measurement instruments, connectors, kits, leads and accessories and is available free of charge from Supercat Electronics Ltd, PO Box 201, St. Albans, Hertfordshire AL14EN, tel0727-62171.

DIGISOUND Ahead in the 80'-providing a setrice to all uke are interested in electranic music

DIGISOUND 80 MODULAR SYNTHESISER - A professional quality s'yinthesiser (kit form or ready built) that can grow into a fully micro-processor controlled, 16 -voice polyphonic system. Over20 different modules already available, including solid state reverberation unit, multifunction envelope generator and our new high performance Dual VCLFO.
I.C.S FROM CURTIS ELECTROMUSIC SPECIALTIES - We are the sole UK agents for the CEM series of integrated circuits dedicated to electronic music synthesis.

OTHER PRODUCTS - These include a novel parametric equaliser with fully controllable Q and projects to convert your micro into a storage oscilloscope or envelope generator.

Write or telephone for details and our latest price list.

W. How your 160 and 48 k Spectrum get 12 K madine amot be hent-up and a himing of of fig-FORTH from a new caittidge that's routines and FORTH words are Vectored perfect for robotios.

This piece of genius is the creation of David Husband and it's the only ROM cartridge of its kind available.

It has RS232 and Parallel ports that not only facilitate remose control but are usable from FORTH or BASIC. with the parallel also allowing a Centronis printer to be driven Due to an interrupt driven 'Break' key the

DIGITAL ENGINEERS (Computer Peripherals)

As one of the largest distributors of Computer Peripherals, we have a large and expanding Engineereing Division, working at the forefront of technology with highly sophisticated digital electronics.

We are based in Esher, 14 miles from London and have room for Qualified Engineers who have flair, initiative and at least two years digital electronics experience.

We offer an interesting, well paid job with career opportunities.
For further details call Colin Thompson on 01-390-4074

Colour Screen From Mitsubishi

Visitors to the CETEX (consumer electronics trade exhibition, were treated to the sight of a new flat colour display from Mitsubishi. Called the crystal colour modular screen, it is, as the name suggests, a modular display, with the basic unit a few inches square.

As yet technical information is

The Feelies Are Here?

eft gibbering in front of the telly, after that ad for that computer, and wondering how you can make your micro's screen touch sensitive? Perdix components may have the answer for you, though it could be a while before it finds its way on to the hobby/ small user market.

The product in question is a
rather thin on the ground as the product is still very new, and apparently only at the prototype stage, but we have been told that the display is illuminated from the back using flourescent lighting, then an RGB gate operated by a crystal diode determines the transmitted light colour through to the viewer.
We hope to be able to give you more information - perhaps even a picture - in the near future. Mitsubishi, Hertford Place, Denham Way, Rickmansworth, Herts, tel 0923-770000.
transparent touch keyboard, available in custom and standard formats, and in matrix or analogue versions. Perdix say that the keypad should be suitable for LCD, LED, plasma and CRT displays, that the unit has been cycle tested over a million times with no degradation, and that it will operate between $-10^{\circ} \mathrm{C}$ and +60 C . Perdix Components Ltd, Unit 4, Airport Trading Estate, Biggin Hill, Westerham, Kent TN16 3 BW, tel 0959471011.

Switches With Integral Resistors

B\&R Electrical Products claim to have scored a world first with their series W range of DIP switches. The devices feature a thick-film resistor network, thereby saving on board space and assembly time when compared with discrete switch/resistor attenuator networks and also offering improved performance and reliability.

The series \mathbf{W} switches feature slide-actuated, knife-edge, ultrahigh pressure contact mechanisms and moulded-in resistor networks which are environmentally sealed. They are available in chip select, digital attenuator and
digital trimming potentiometer types and are rated for operation at up to $24 \mathrm{VAC} / \mathrm{DC}$ and 125 mW , with the exception of the digital attenuator types which are rated at 50 mW . The chip select switches come in $2,4,6,8$ and 10 pole versions and with resistor values of either 3.3 or 10 kohms . The digita attenuator switches come in 2,3, 4 and 5 pole versions with impedance ratings of $50,75,150,300$ and 600 ohms and offer attenuation steps of $0.5,1,2,4,8$ and 16 dB. The digital trimming potentiometer switches also come in 2, 3, 4 and 5 pole versions and in a range of resistance values from 100 ohm to 1 M ohm.

Full details of the series W switches are given in a twelvepage brochure which is now avail able. B\&R Electrical Products Ltd, Temple Fields, Harlow, Essex CM20 2 BG, tel 0279-443351.

This Is 448 K-bytes

Areliable, high-density assembly of dynamic random access memory in a single-in-line package (SIP) has been announced by Texas Instruments. It uses plastic leaded chip carriers on a low-cost printed circuit board substrate and provides four times as much memory on the same board area as conventional dual-in-line DRAMs.

The memories are built using a number of 64 K DRAMs in 18 -pin plastic chip carriers which are mounted on a printed circuit board with de-coupling capacitors and connection pins all on one side. Texas Instruments claims that the SIP offers high reliability and gives significant savings in material and test costs by reducing the need for expensive multiple-layer boards.

To date, the SIP product family enables users to utilise memory
components in the density range of up to 500 K -bits without penat ising space. Initially seven types are available: 64 K by $4,5,8$ or 9 bits; 256 K by 1 bit; 32 K by 8 bits and 16 K by 16 bits.
All present and future SIP products are density upward compatible enabling the users to design with DRAM densities well ahead of silicon availability. By the end of the year, TI plans to announce a second generation of SIP modules intensively using its family of 64 K DRAMs, and 256 K DRAMs, thus providing the first 2 meg DRAMs component on the market.

All family members will feature identical pin functions and spacing for easy upgrade. The TI SIP products are available in three versions: 120, 150 and 200 ns max access time. They operate from a single 5 -volt power supply in a 0 70 C free-air temperature range. Texas Instruments Limited, Manton Lane, Bedford MK41 7PA, tel 023467466 .

- Don't lose your memory on power-down with a new device from Newport Components Limited, 134 Tanners Drive, Milton Keynes MK14 5BP (tel 0908 615232). The NM221 storer-caller is designed to provide the correct store and recall control signals for non-volatile RAM devices, such as the X2201, X2210 and X2212, on power-down and power-up. At all other times, the NM221 is inactive.
- Holsworthy Electronics supply 0.1% and 0.5% tolerance precision metal film resistors in E96 values between 100 R and 256 K ohm. The minimum charge is $\mathbf{£ 2 0 . 0 0}$,
orders received by $3.00 \mathrm{p} . \mathrm{m}$. will be despatched on the same day, and there are plans to expand the range available in the future. For details contact Holsworthy Electronics (Sales) Ltd, Hacche Mill, South Molton, Devon EX36 3 NA, tel 07695-3151.

Ferranti have issued a new 60page technical hand-book detailing their range of high quality opto-electronics products, and a brochure on their power MOSFETs. Details from Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham, Lancs OL9 8NP, tel 061-624 0515.

ETI

01-452 1500 Trechnonatic Ltid 01-450 6597

BBC Micro Computer System OFFICIAL DEALER

 ACORN COMPUTER SYSTEMS

 ACORN COMPUTER SYSTEMS}

Please phone for availability

ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows:
(a)£8 (b)£2.50 (c) 1.50 (d) $£ 1.00$

BBC Model B BBC Model B+Econet BBC Model $\mathrm{B}+\mathrm{DFS}$ BBC Model B + DFS +Econet 6502 2nd Processor Acorn Electron BBC Teletext Rec
UPGRADE KITS A to B Upgrade K DFS KIt.. Installation Installation Installation ECONET ACCESSORIES Printer Server Rom File Server Level File Servel Level 2 Clock + 2 Terminators Econet User Guide

BBC FIRMWARE

1.2 Operating System

Basic II Rom.
View Word Processor Rom Wordwise W/P Rom BCPL ROM+Disc Disc Doctor Utility Rom Termi emulator Rom. ULTRACALC Rom (BBC) Gremlin debug Rom
Computer Concepts Graphics Rom EXMON.
TOOL KIT
Printmaster Rom
Communicator Rom
BBC COMPATIBLE 5.25" DISC DRIVES: All include cables manual +format disc) 100K (40 Track) Teac. ... 100K (40 Track) Teac $200 \mathrm{~K}(40 / 80$ Tr with psu Te 200K (80 Track) Teac $400 \mathrm{~K}(80$ Track) with psu Tec. $400 \mathrm{~K}(80$ Track DS) Mitsubushi 400K (80 TDS) with psu Mitsu $2 \times 100 \mathrm{~K}(40$ Track $)$ with psu Teac $2 \times 200 \mathrm{~K}(40 / 80$ Track $)+$ psu Teac $2 \times 400 \mathrm{~K}(80$ Track DS $)+$ psuMitsu 3" Hitachi 100K Drive £ 150.00 c

Accessories:
£750d Single Disc Cable
32 00d Double Disc Cable
52.00 c 3M DISCS with Lifetime Warranty E34.00c 40T SS/SD Pkt of 10 816.00 c 8700 b 4OT DS/DD Pkt of $10 \ldots . .$. ... 22.00 £28.00d 8OT SS/DD Pkt of $10 \ldots . . . \sum_{26.00 \mathrm{c}}$ £28.00d 8OT SS/DD Pkt of $10 \ldots . . .{ }^{2} 26.00 \mathrm{C}$
 6800 FLOPPICL ENE Drive HeadC/Kit $\quad £ 14.50 \mathrm{c}$ £28.00d FLOPPICLENE Drive HeadC/Kit £14.50c 28.00d Disc Library Case900 15.00 c 20.00d Disc Fle Case 30/4...... 151500 c

SOFTWARE:

ACORN/MERLE BUSINESS SOFTWARE Invoicing Stock Controk Accounts Payable Accounts Receivable. Order Processing
Accounts Receivable. Order Processing
Mailing System Each $£ 22.65 \mathrm{~d}$
Each E 22.65 d
£145.00a Mailing System - - Full Range
£175.00a GEMINILeisure - Full Range
£190.00a ACORN LANGUAGES including BCPL LISP £225.00a FORTH with Manuals.
£300.00a BBCSOFT - Full Range
£400.00a PROGRAM POWER - Fuil Range $£ 400.00 \mathrm{a}$ PROGRAM POWER-Fuli Ran
$£ 420.00$ a BEEBUGSOFT - Full Range..

TORCH Z80 DISC PACK

The proven upgrade for the BBC Micro. Comprising $2 \times 400 \mathrm{~K}$ discdrive. 280 processor with 64 K or memory. and ach $\mathrm{CP} / \mathrm{M} \mathrm{com}-$ patible operating system, it opens up the vast range of CP/
software, including advanced languages. scientific and business applications. The system is supplied complete with the PERFECT software range including PERFECT WRITER. PER-
FECT SPELLER. PERFECT CALC and PERFECT FILE. Full TORCHNET software is also supplied allowing sophisticated networking between other units. This will allow access to information
BBCs.

NEW TORCH 280 PACK PRICE ع699. SOFTWARE PACKAGE INCLUDES Z80 BASIC

Phone for details about the 20Mbyto Hard Disc Pack, and the 68000 Hard Disc Pack with UNIX Operating Syatem.
NOW AVAILABLE - The TORCH Z80 SECOND PROCESSOR CARD - for those who already have suitable disc drives. The card is supplied with all the free software, as detailed above, presenting a very attractive package. £299.

ACORN IEEE INTERFACE

Aull implementation of the EEE-488 standard, providing ment, at a lower price than other systems. Typical applications are in experimental work in academic and industrial laboratories. The interface can support a network of up to 14 other compatible devices, and would typically ink several items of test equipment allowing them to rum with the optimum
efficiency. The IEEE Filing System ROM is supplied. $\mathbf{E 2 8 2}$.

BUZZBOX

A full spec pocket size direct modem with both Originate and Anower modes. This BT approved modem contorms to CCITT
V21 $300 / 300$ Baud Standard Battery/Mains powered plugs directly into telephone line.Modem $\mathbf{E 8 9}$ head £3 50 Ext PSU
£8.00 directly
£8.00

BOOKS
We have a large selection of books on
Please ask for details. NO VAT on books.

BBC ‘TIME-WARP

REAL-TIME-CLOCK/CALENDAR Alow cost unit that opensup the total range o possibilities include an Electronic Diary, continuous display of 'on screen' time and date information automatic document dating, precise timing \& control in scientific applications, recreational use in games etc - its uses are endess and are simply limited by ones imagination. Simply plugs into the user port - no specialist installation required - No ROMS Supplied with extensive applications software. Please phone tor details. $£ 29.00+£ 2.50$ carrlage

ATIENTION All prices in this double page spread are subject to pagge spread are sublec change without notice

SOFTY II

This low cast intelligent prom programmer can program 2716.1516 .2532 . 2732, and with an adaptor, 2564 and 2764. Displays 512 byte page on TV- has a serial and paraliel l/O routines Can be used as an Soffy II 195 (b) Adaptor for $2764 / 2564$ £ 25.00 (C)

SMARTMOUTH

 The original 'infinite speech'. Still the best.Aready built totally selt contained speech synthesiser
unit, attractively packaged with buittin speaker. Aux unit, attractively packaged with built-in soeaker. Aux
output socket etc- no installation problems It allows
then the creation of any English word with both ease and cal in memoiy usage. You can easily add speech to most existing programs. Due to its remarkable infinite vocabulary, its uses spread throughout the whole spectrum of computer applications - these include
industrial commercial educational, scientific, recindustrial commercial educatiolation - no need to open your computer simply plugs into the user port and due to the simp:e sciftware. no ROMS are needed
SMARTMOUTH is supplied with demo and develo SMARTMOUTH is supplied with demo and development programs on cassstte, a
tions. $£ 37+\varepsilon 2.50$ carriage.

EPROM PROGRAMMER:

A fully self zontain
gram...er oused in an attractive tinished case it
able to program $2716.2732 / 32 \mathrm{~A} .27648$ ${ }_{2}^{7} 1288^{\prime}$ s in a single pass it is supplied with vastly superior software when compared to any curren
the available similarprogrammer In addition to nor mal eprom programming you are now able to load your favourito basic programs onto eprom. * Menu Driven Software provides userfiendly options for programming the eprom with
b) Baslc programs.
c) Any other program.
© Programmer can read, blank-check, pro gram \& verity at any address/addresses on the Eprom.
\star Personality selection is simplified by * Programming voltage selector switch. * Full Editor with ASCII Disassembler, allowIng direct modification of memory data in HEX or ASCH.
© Continuous display of time left for comple Con programming.
they are Coins display of current addresses as
The programmer comes complete with cables $\mathbf{E 8 9}+\mathbf{£ 2 . 5 0}$ carriage. Software on d/sc £2 extra.

UV ERASERS

UV1T Eraser with bull-in timer and mains int
dicator. dicator posure to the intermfock to av rays.
it can handie up to 5 eproms at a time with an average erasing time of about 20 mins . $\mathbf{£ 5 9}+£ 2$ p\& p.

P8p.

£47 + £2 p\& p.
For Industrial Users. we offer UV140 \& UV141 erasers with handling capacity of 14 eproms
UV141 has a bult in timer. Both offer full built in satety teatures UV140 £61, UV141 £79.
in safety
p\&p p 2.50.

EP8000. Programmer is a powerful tool for both Eprom programming and development work EP 8000 and development work EP 8000 can emulate and program all
eproms up to $8 \mathrm{~K} \times 8$ bytes, can be eproms up to $8 \mathrm{~K} \times 8$ bytes, can be
used as stand alone unit for editused as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an
eprom emulator 695 (a).

PRODUCTION PROGRAMMER

CONNECTOR SYSTEMS

P8000

P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with railversions. Simple menu driven operation ensure easy eprom selection and reliable programming in minimum program. ming times. $£ 695+$ £6

JUMPER LEADS

RS 232 JUMPERS

DIL HEADERS

$\begin{array}{llllll}\text { MALE } & & & & \\ \text { Sulder } & 80 p & \text { 805p } & \text { 160p } & \text { 250p } \\ \text { Singled } & 150 & \text { 210p } & \text { 250p } & 3650\end{array}$

TEXTOOL ZIF

DIL SWITCHES

AMPHENOL
CONNECTORS
NA! $£ 5.25$

was
PCB Mtg Skt

E
 EUR

RIBBON CABLE

rstacs

Γ

TEST EQUIPMENT

In this, the first of four special features on test equipment, Phil Walker takes a look at the types of equipment available and the uses to which they are put.

The best test equipment you will ever possess cannot be bought in any shop. We hope you keep it on your shoulders. The human brain has the ability to store vast amounts of information and to make sense of often incomplete or erroneous data, and the prime duty of test equipment is to provide clear, accurate and useful data so as to enable the user to reach valid conclusions.

Test equipment generally falls into two categories. The first provides stimuli to the circuitry under test and includes power supplies, waveform generators and other signal sources. The second group is comprised of all the measurement and display instruments, such as voltmeters, current meters, frequency and period meters, power and energy meters and many others. The division between the two categories is sometimes a little blurred by the inclusion of a measurement device in a stimulus unit. An example of this is the provision of voltage and current meters on a power supply.

Power supplies

Except in the case where the device to be tested has its own internal power supply, some form of external supply will be needed. This could be derived from dry batteries or from the mains, either direct or via an isolating transformer and probably some form of rectifier and regulator arrangement. For some purposes a variable transformer will be required but these are often quite expensive.

The most common power supply type encountered is the mains powered DC voltage supply. They come in many shapes, sizes and ratings. For logic testing of most computer type circuits a well regulated supply of +5 volts at a few amps is needed. Sometimes +12 and -5 volt supplies are needed in addition. Other types of logic may need different supply voltages: CMOS +5 to +15 volts, $\mathrm{ECL}-5$ volts. Linear circuits will often need split rail supplies of plus and minus 12 to 15 volts or single supplies of 10 volts upwards at currents which are deterimed by the application. Usually power supplies are built to withstand a certain amount of mistreatment but it is not a wise thing to prolong the agony. Power supply circuits are probably the type of test gear most commonly built by hobbyists.

Signal Sources

This is possibly the largest subject in test equipment. The basis for most signal sources is one of the many types of oscillator, and the final output may be sinewave, squarewave, triangular, sawtooth, pulse or anything else you particularly want (and can
generate). The amplitude and frequency of the output are usually variable, but in some cases other parameters need to be controlled as well. A very useful facility found in some instruments is that one parameter may be controlled by either an external voltage or an auxilliary oscillator inside the instrument. If the controlled parameter is frequency then the result is a sweep oscillator. Amplitude modulation in this manner is also useful when testing some radio circuits.

Logic pattern generators give either serial or parallel output according to application. The actual pattern may either be preset by the operator or be pseudo-random. This latter has the characteristics of noise or random data but the pattern is known even if its repetition period is very long. These pattern generators are often used in conjunction with a logic analyser to test large logic systems.

The Voltmeter

There are several basic types of voltmeter and we shall look at two of the most common. The first consists of a sensitive moving coil meter movement which has a large value resistance in series with it. The meter movement requires a certain amount of current flowing through its coil to deflect the needle or pointer. The resistance in series with the coil is calculated such that when the maximum voltage to be measured is applied to the instrument the resulting current will deflect the pointer to the end of its scale. If several ranges of voltage are required then different values of resistor can be switched into the circuit. Until recently this method of construction formed the basis of most voltmeters in use with a few exceptions such as moving iron and electrostatic.

The normal measure of merit for the moving coil voltmeter is the 'ohms per volt' (opv) figure. This is determined almost totally by the deflection sensitivity of the meter movement. The lower the current needed to deflect the pointer the more sensitive the meter, the lower the loading on the circuit under test and the higher the 'ohms per volt' figure. A typical figure for this type of instrument would be 20,000 ohms per volt, although up to 50,000 is not unknown.

It must be realised that a voltmeter of the moving coil variety will take all the power it requires to deflect the pointer from the circuit being tested. On a 10 volt range, a 20,000 OPV meter will appear as a 200 k resistor and will disturb the circuit to a greater or lesser degree accordingly.

One way of at least partially getting around the limitations of the simple moving coil voltmeter is to provide an amplifier to drive the meter movement.

The circuit under test then has to provide only enough power to drive the amplifier input. This avoids the loading problem and permits the use of a cheaper and/or more robust meter movement. However, other problems are introduced such as zero drift, gain drift and noise. These are usually reduced to a lower level by good circuit design but another disadvantage remains and that is the need for a power supply. The first instruments of this type used valve amplifiers but semiconductors were later introduced and a great saving on space and power consumption resulted. Both types are capable of excellent results.

The second type of voltmeter has only really come into its own in the past two decades. This works by converting the measured voltage into a series of digits and displaying them on some suitable device. One of the earlier attempts at this actually used a set of moving coil meter movements to display the numbers. Later versions used filament lamps, cold cathode tubes and most recently light emitting diodes and liquid crystal displays. This has led to a steady reduction in the instruments' power requirements.

At the measuement end, semiconductor technology has advanced rapidly to give ever greater accuracy and convenience in use. Hand held instruments are now available which give readings to whin 0.2% accuracy with comprehensive auto ranging facilities, 10 M ohm input resistance and whose internal batteries will last for up to a year. The penalties one pays with this type of device are that it is relatively easy to misread the display and rapid changes of input can give a confusing read out. This latter problem is alleviated to some extent by the provision of a bar-graph readout on some instruments, but the response time of the whole device is often quite slow and the momentary flicker of the moving coil with fast pulses is lost.

The Ammeter

The ammeter uses the same basic principles as the voltmeter. The difference is that most of the current is allowed to flow through a low resistance in parallel with the meter movement, leaving only a small but known fraction of the original current to flow through the moving coil. It is this which deflects the pointer and provides the reading. In the case of digital ammeters, the value of the shunt resistor is determined almost entirely by the measured current as very little is needed by the circuitry. This is not true with the older type of meter, especially when used on the lower ranges.

Better quality meters and those used in industry were sometimes designed so that 75 mV was dropped at full deflection. This allowed a range of standard shunts to be used with many different meters. The arrival of digital meters has led to the adoption in some quarters of a new standard in which the voltage drop at full deflection is set at 199 mV

Power Meters

This is an instrument which is rarely found in the hobbyist field as the movement has to be specially constructed. However, the advance of semiconduc-
tors has made it possible to construct power meters using integrated multiplier devices. There are problems when using these meters as they are prone to errors when one input is very large and the other is very small but the resulting power is in range. Approximations to true power meters can be made if the resistance of the load is known. In this case a normal voltmeter can be calibrated to read in units of power although the scale will be cramped at the low end.

A rather different type of power meter is used at microwave frequencies. This consists of a bridge circuit containing two thermistors. One of these is heated by the RF energy while the other is heated by the meter circuitry. When the bridge is balanced the RF power is equal to the DC power and since this latter is known it can be displayed.

Frequency and period

These two measurements have been lumped together as they are closely related and are usually provided in a single instrument. To measure frequency it is necessary to count the number of complete cycles of the input waveform occurring in a

standard time period. This standard time period should be as long as possible to get the greatest accuracy. Unfortunately, unless complex circuitry is used, this can mean long waits for a valid display when measuring low input frequencies.

It is possible to construct analogue frequency meters but they are not particularly accurate. The normal digital frequency meter should be able to give readings in the 100 Hz to 10 MHz range to better than 1%.

Measurement of time period is the inverse of frequency and consists of counting the number of standard time periods occurring between two input events. These events may arrive on two separate inputs or may be two similar transitions on the same input. A normal instrument should be capable of reading 100μ s to 100 s periods to at least 1% accuracy.

With either or both of these instruments it may be possible to use a pre-scaler on the input or reference signals to extend the range. Some types also allow ratio measurements where the standard input is derived externally.

The Oscilloscope

The oscilloscope is a very versatile piece of equipment which, to some extent, can replace many others. The key to its usefulness lies in the fact that it displays a picture of the signal under test and as everyone knows, "a picture is worth a thousand words".

The main disadvantages of the oscilloscope are its bulk and cost, but these are easily outweighed by its ability to do the jobs of frequency counters, timers and voltmeters where great accuracy is not the prime requirement. Even the simplest oscilloscopes can be very useful but the more complex instruments offer facilities which cannot be obtained in any other way. The very simple instrument will probably have a single beam, simple timebase with limited triggering facilities, and signal amplifiers which have a bandwidth of 5 MHz or so. More complex and expensive units will offer two or more traces with bandwidths of 50 MHz or more, timebase circuits with delayed triggering and other facilities and better trace visibility at high frequencies.

Equipment	Uses	Approximate range of specifications	Comments
Analogue multimeter	measuring $\mathrm{AC} / \mathrm{DC}$ voltages, currents, resistance	100 mV to 1000 V 10 mA to 10 A 1Ω to $10 \mathrm{M} \Omega$	
Digital multimeter	measuring AC/DC voltages currents, resistance	10 mV to 1000 V 1 mA to 2 A 1Ω to $10 \mathrm{M} \Omega$	$\begin{aligned} & 31 / 2,41 / 2,51 / 2,61 / 2 \\ & \text { digit } \end{aligned}$
AC voltmeter	measuring small signal and other $A C$ voltages	$5 \mu \mathrm{~V}$ to 500 V	wideband (up to 100 kHz), input DC blocking
Function generators	providing input signals of known waveshape, amplitude, etc.	0.01 Hz to 20 MHz	various output waveforms
Pulse generators	specifically for use with logic, etc	1 Hz to 50 MHz 10 ns to 1 s pulse width	fast rise times, variable width pulse
Sweep generators	RF test equipment	1 MHz to 20 GHz	
RF generators	RF test equipment	500 kHz to 1 CHz	AM, FM, PM
AF generators	audio testing	10 Hz to 100 kHz	low distortion sinewave
Oscilloscopes (non-storage)	examining and measuring repetitive waveforms	$10 \mathrm{mV} \text { to } 10 \mathrm{~V}$ 0.5 us to is	one, two or sometimes four-trace
Oscilloscopes (storage)	examining and measuring non-repetitive (one-off) events	similar to above	digital or non-digital, dual-trace, some have floppy disc storage
Counter/timers	counting input pulses, times between input pulses, frequency display	over 100 MHz 100ns to 1 s	digital display
Frequency counters Spectrum analysers	general RF display measuring signal power against frequency	$\begin{aligned} & \text { up to } \approx 20 \mathrm{GHz} \\ & 50 \mathrm{~Hz} \text { to } 20 \mathrm{GHz} \end{aligned}$	general AF or RF
Modulation meter	measuring percentage modulation of carrier	AM, FM 1 MHz to 1 GHz	
Distortion meter	measuring AF distortion, in applied signal	20 Hz to 100 kHz	
Audio analyser	measuring distortion, S / N ratio, frequency	20 Hz to 100 kHz	
Power supplies	providing DC and sometimes $A C$ power to equipment under test	$0 \vee$ to 15 V or more, up to $\approx 50 \mathrm{~A}$	DC suplies regulated, current limiting sometimes dual rail
Chart recorders	plot a number of voltage inputs	1 mV to 500 V FSD up to ≈ 12 channels	useful for hard copy
Tape recorders	recording processes for later analysis	DC to 300 kHz up to $12 \approx 12$ channels	
Logic analyser	analysing microprocessor bus signals, timing, state, software analysis	16 to 32 channels up to $\approx 100 \mathrm{MHz}$ clock	

oscilloscope
PARTS MARKED * ARE ONLY IN DUAL TRACE TYPE

In some oscilloscopes the waveforms measured may be digitally stored for display later. These are known as Digital Storage Oscilloscopes (DSO) and they can usually record a number of waveforms taken at the same or at different times and display them later with altered x and y axis scales if desired. Whereas ordinary oscilloscopes can only be used to examine repetitive waveforms, DSOs can be used to examine pulse phenomena and other one-off events.

As with all test equipment the effect of the test
probe on the circuitry being tested must be taken into account. In the case of the oscilloscope the effect will not be significant until high frequencies and high impedances are involved.

Logic Pattern Detectors

These range from the simple logic gate circuit through to very sophisticated logic analysers. Their purpose is to enable the user to understand what is happening on the various signal lines of a logic system. This is usually more difficult than in an analogue system simply because of the number of signals which change at the same time. The difficulty is further compounded by the fact that everything happens in a fraction of a microsecond.

Logic analysers allow many different voltages, say 8 or 16 , to be displayed and compared over selected time intervals. The mode of operation is to select one signal and use it as a reference against which all the others are measured. In the very simplest device a latch will be set when the state of the signal lines being monitored matches a preset condition and the reference signal is also valid. In more complex units the states of other signal lines may be stored at the same time for display on a suitable readout device. In the most complex units the states of many signal lines are stored before and after the trigger point and will usually be displayed on a CRT. In some units the available information can be processed by a microprocessor to give a display which is most suited to the user's requirements. This makes it much easier to understand.

ETI

The Cortex II offers serious users speed (12 MHz CPU) and power (16 -bit) at an easily affordable price.

Cortex II offers over 34K byte memory for basic programmes. High speed 24 k byte basic interpreter. Auto-line numbering facilities and full renumbering command. Full textural error messages. Arrays and strings limited only by memory. Extended Basic (IF-THEN-ELSE). Assembler/Disassembler. Machine code monitor. Real time clock

Cortex II has excellent colour graphic capability. High resolution graphics (256×192). 16 colours.
Separate 16 k video ram for graphics, does not use Basic RAM. Sprite graphics. Fast line and point plotting.

All these features as standard, with various upgrades available.
Supplied either as a self-assembly kit or fully built and tested, the Cortex II is designed to grow with the needs of the operator.

Cortex II is the successor to the popular Cortex, which first appeared in November 1982. The new model incorporates a number of modifications to the original and is supplied with a 216 page users manual.

Cortex II standard kit
£299.00
(Includes RS232C, TV \& Cassette Interfaces)
RGB interface kit
$£ 28.50$
Floppy disc interface kit (electronics) $£ 86.50$
Floppy disc interface kit
(hardware \& connectors)
E49.50
Disc Drive 51/4" SSSD
£150.00
Disc Drive 5 $1 / 4$ " DSDD
Housing for Twin disc drives
Centronics printer interface kit
£295.00
£29.95

E-bus kit
Contact Sales

Cortex II Built and Tested

- Standard Model
$£ 399.00$
Contact Sales Office for other options.
All prices are VAT excusive and are correct at time of going to presse,
Cortex II is available by mail order from:
Powertran Cybernetics Limited Portway Industrial Estate
Andover
Hants
SP103ET

Access/Visa card holders can order by phone on (0264) 64455

CORTEX CENTRONICS interface

In the slightly delayed second part of this article, we present the construction and use details.

The overlay of the PCB is shown in Fig. 4. There have been three modifications between this and the original circuit given in the June ETI. Firstly, the address lines A4 and A8 were the wrong way round in the original circuit diagram and this has been corrected.

Secondly, an extra package, IC6, has been added, of which only one inverter gate is used. This is to provide a complement of STROBE as well as STROBE itself on the Centronics output; this is to increase flexibility, as some printers will require the complement rather than the original.

Finally, and also to increase flexibility, the W and Y outputs of IC4 are link-selectable; using the Y output, the BUSY IN line is

PARTS LIST

CAPACITORS	
C1	100 n ceramic
C2	$\begin{aligned} & 10 \mu \text { PCB } \\ & \quad \text { electrolytic } \end{aligned}$
SEMICONDUCTORS	
IC1	74LS32
IC2	741S138
IC3,5	74LS259
IC4	74LS241
IC6	74LS04
MISCELLANEOUS	
15-way D-typ plug; PCB; co ribbon cable,	onnector socket \& ctor to suit printer;

Fig. 4 Overlay diagram for the PCB. The points marked D0, D2, D3 etc and Q1, Q2, etc on the PCB (not the connector) are for the unused locations that readers may wish to make use of. Note that there are two additional decoupling capacitor location points, in the unlikely event of any supply line problems arising.
inverted to become the CRUIN signal; using the W output, it is not; one or other of these will be appropriate to your printer. Needless to say, you should not use both links at the same time!

Using the special PCB, assembly of the circuit should be quite straightforward, but do make sure you get the links in the right places and be careful with IC orientation. Some clearances are a

BUYLINES

A full kit of parts for this project will be available through Powertran Cybernetics Ltd, Portway Industrial Estate, Andover, Hants SP10 3ET. Powertran hold the copyright on the PCB so it will be available only from them.

PROJECT: Cortex Centronics

Fig. 5 Test program for the interface, to print a row of ' A 's.
bit tight, so do check carefully for any solder bridges after you have finished.

In Use

Once the interface is connected between the computer and the printer, then typing in the command UNIT 4 will enable printing, while the command UNIT-4 will disable printing. If the printer fails to print or a paperout condition arises, then pressing both the GRAPH and RUBOUT
keys together will cause all output to be reset to UNIT 1 only.

The BASIC program shown in Fig. 5 can be used; this should print a stream of letter ' A 's.

Having built the printer interface you will have noticed that there are seven spare I/O bits and if the printer is not in use then seven other parallel data ports with separate strobes and status bits can be used with a common data port. Also six other I/O address slots are decoded by IC2 as shown:-
! I/O BASE ADDRESS
: RESET STROBE
: $0 / P$ ASCII $' A$ '
$4 \varnothing$ IF CRB (9) = 1 THHN GOTO $4 \varnothing$: WAIT FOR FREE
$5 \varnothing \operatorname{CRB}(8)=1: \operatorname{CRB}(8)=\varnothing \quad:$ PULSE STROBE
$6 \varnothing$ Gото 3ø
! LOOP

This exciting new range of designs covers all domestic Hifi applications. There are 20,30 and 40 litre designs using the famous Peerless
Polypropylene bass units (newly
released to the DIY market), a 7 ifire mini speaker and two designs

Wilmslow Audio Total
kits include all cabinet components, accurately machined from MDF board; drive units, crossover kits, wadding, grille fabric, terminals, nuts, bolts, etc. Full details are in the Peerless Manual for Loudspeaker Constructors which is available F.O.C. (send $12^{\prime \prime} \times 9^{\prime \prime}$ SAE)

Total kit Prices per pair inc. VAT

[^0]

WHARFEDALE SPEAKERCRAFT NEW Range

150	¢49.95	carr.ins. 4450
1908	657.95	carr.ins. 55.00
1940	E06 50	carr.ans. 55.00
E50	£140.00	carr fins. 65.50
E70	£172.00	carr fins 6600
E90	¢28500	carr íns 9800

that you'll be proud of
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units. crossovers, wadding. grille fgbric, terminals, nuts, bolts, erc.
or self adhesive woodgrain vinyl.
Easy toolproof assembly instructions supplied Set of constructor leatlets sent free on receipt of large SA.E.
Pricesper pair
Prices per pair
CS1 (As 1011)
 CS3 las 103.2) f131 pr. ine. VAT. plus carrfins. f10.00 CS7 (as Cantata) $\mathbf{1 5 5}$ pr, inc. VAT. Dlus carrfins. $f 1500$ Kef Constructor Series basic kits (drive units and crossovers only)
CSI

 | E193.05 carr |
| :--- | :--- |

 Wi. 0,25523s5

the most competitive prices

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended range that repre sents the best value for money available anywhere.
V-212 20 MH / Dual Trace \quad V-209 $20 \mathrm{MH} /$ Mini-Portable (illuutrated) V-509 $50 \mathrm{MH} \neq$ Mini-Portable V-222 20N1Hz Dual Trace \quad V-l050) $100 \mathrm{MH} /$ Quad Trace V 203F $20 \mathrm{MH} /$ Sweep Delay $\quad V-134 \quad 10 \mathrm{MH} 7$ Tube Storage V-353F $35 \mathrm{MH} /$ Sween Dela! $\quad \mathrm{V}-1100100 \mathrm{MH} / \mathrm{DMM} /$ counte V-422 $40 \mathrm{MH} /$ Dual Trace VC. 601510 MHz Digital Storage V-6501. 60 MH \% Dual Timebase VC- $6 \times 4140 \mathrm{MHz}$ Digital Storage Prices start at $£ 299$ plus sat (model illustrated) including a 2 year warranty. We hold the range in stock for immediate delivery

For colour brochure giving specifications and prices ring (0480) $\mathbf{6 3 5 7 0}$ Thurlby-Reltech, 46 High Street, Solihull, W. Midlands, B91 3TB

TESTISSTRUMENTS

A wide range of high performance instruments that put professional test capability on your bench

COUNTERS - TF200 10 Hz to 200 MHz , TF040 10 Hz to 40 MHz , PFM200A 20 Hz to 200 MHz (hand held model); TP 600 prescales to 600 MHz, TP1000 prescales to 1000 MHz .

MULTIMETERS -- TM351 $0.1 \% 31 / 2$ digit LCD. TM356 0.25\% $31 / 2$ digit LCD: TM $3550.25 \% 31 / 2$ digit LED; TM354 $0.75 \% 31 / 2$ digit LCD (hand-heid model) TM451 0030\% 41/2 LCD digit with autoranging and sample hold

OSCILLOSCOPE - SC110A $10 \mathrm{MHz}, 10 \mathrm{mV}$ sensitivity. 40 mm CRT with 6 mm graticule divisions.

THERMOMETERS TH301 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}$. 1° resolution; TH302 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}, 01^{\circ}$ and t° resolution. Both accept any type K thermocouple
GENERATORS - TG101 02 Hz to 200kHz Function Generator Sine, Square, Triangle Wavetorms; TG1020.2Hz to 2 MHz Function Generator, Sine, Square, Triangle Waveforms, TG105 5Hz to 5 MHz Pulse Generator, Free-Run, Gated or Triggered Modes

LOGIC ANALYSERS - TA2080 8 channel 20MHz: TA2160 16 channel 20 MHz
ACCESSORIES - Bench rack, test leads, carrying cases, mains adaptors, probes, thermocouple probes. microprocessor disassembly options.

For further information contact
Thandar Electronics Ltd, London Road, St Ives,
Huntingdon, Cambridgeshire PE17 4HJ
Telephone' (0480) 64646 Telex: 32250

Designed and
manufactured in Britain
Black*Star

FUNCTION GENERATOR $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$

* Sine, Square, Triangle, TTL output
* Typically $0.02 \mathrm{~Hz}-700 \mathrm{kHz}$
* 7 switched ranges with coarse and fine frequency controls
* $\pm 30 \mathrm{~V}$ output capability
* Accuracy typically 1% of range
* Variable DC offset
* External A.M. facility
* External sweep facility
* Short circuit protection all outputs
JUPITER 500 (inc. P \& P and VAT) $£ 128.80$
Colour leaflet with specifications and prices available from: BLACK STAR LTD, (Dept. ETI) 9A Crown Streat, St. Ives, Huntingdon, Cambs. PE17 4EB, England. Tel: (0480) 62440 Telex: 32339

CHOOSING TEST EQUIPMENT

The second of our special features looks at the items of test gear likely to be of value to the home constructor and offers some advice on choosing the right equipment for your needs.

Buying test equipment can be a pain. Low volume production test equipment tends to be expensive compared with mass-produced, consumer-orientated equipment of similar complexity and even a basic multimeter can easily set you back thirty pounds or more. If you want anything special out of your meter you can wave goodbye to hundreds of pounds, and from there on in the price of test equipment seems to rise according to a square law. Large electronics manufacturing companies do not appear to think twice when spending hundreds of thousands of pounds on test equipment, but whatever your budget, it is obviously essential to see that your money isn't wasted and that you make the right choices.

But what is the right test equipment? The answer is not simple. The difficulty lies in choosing equipment that you really need rather than equipment that you happen to like. There is little point in buying a $£ 10,000$ digital storage oscilloscope (even if you can afford it) just because you like the colour of its knobs when what you really need is a $£ 1,000$ non-storage oscilloscope with less attractive knobs.

You cannot hope to make a sensible choice until you have some idea of what each type of equipment can do for you. There are many different kinds of test equipment and each kind has, in turn, an enormous variety of specifications, depending on manufacturer and intended function. At first sight, the task appears huge. By considering how the test equipment is to be used, however, it becomes less daunting.

We can broadly classify all varieties of test equipment into three main areas of use:

- In the first area is test equipment used to aid research, design, and development of new products.
- In the second area is test equipment used to help in the manufacture and quality testing stages of production.
- In the third area is test equipment used to service and repair other equipment which has become faulty after initial commissioning.
Inevitably, there is a considerable overlap between these areas with some equipment being used in two or even all three areas, but, on the whole, distinct divisions do exist.

A good place to start our look at test equipment is with the varieties which overlap onto all three areas.

In this way we may build up a picture of a 'minimum list' of general purpose items needed in any electronics environment.

Meters

The first thing that most people will consider buying is a multimeter. This is one of the most important pieces of test gear you will possess so spend as much as you can reasonably afford and shop around for one that suits you. Try out as many as you can before committing yourself.

Two main types of meters exist, analogue and digital, and many different varieties of each type are common. A meter's task is to measure a given electrical parameter, such as voltage or current in a circuit, and display it either by pointing a needle at a number in the case of an analogue meter or by activating the appropriate digits or segments of digits in a digital meter.

If a meter is capable of measuring voltage, current and resistance, it is generally classed as a multimeter. Ranges of multimeter measurements vary between fractions of volts, amps and ohms through to thousands of each, and the cost of a meter depends largely on the size of the range required, together with the desired accuracy.

Some meters feature extra facilities such as automatic ranging or a high humber of display digits. Also available are meters which can measure other quantities, such as capacitance, electrical power, temperature, frequency and distortion.

A good choice for a first time buy would be a moving coil type with at least 20,000 ohms-per-volt sensitivity on the DC voltage ranges. It should have a clear scale from which any range can be read accurately without feats of mental arithmetic or resort to a magnifying glass.

For general use your selected meter should be able to read AC and $D C$ voltage up to 1000 V with at least 4 ranges for each. DC current should be available up to $1000 \mathrm{~mA}(1 \mathrm{~A})$ and resistance from 1 ohm to 1 Mohm in two or more ranges. Note that the sensitivty on the $A C$ voltage range will be much lower than that on the DC range.

If you decide to select a digital type of instrument in many cases the input resistance will be fixed and

should be at least 1 Mohm. Some meters of this type can offer autoranging on $A C$ and $D C$ ranges and this can be very useful.

Power Supply Units

When developing, building, or testing a circuit a power source of some type is needed. A general purpose power supply, providing a range of voltages and currents, is therefore an essential item.

Initially you may well use dry cells for small projects but this can soon get a little expensive. One alternative is to use $\mathrm{Ni}-\mathrm{Cd}$ rechargeable batteries. The initial outlay on the cells and charger is quite high but soon repays itself if used frequently. The more common way, and certainly the best for the 'serious' hobbyist, is the buy or construct your own mains powered DC supply. For a complete beginner buy one of the small battery eliminators which are sold to power transistor radios. When some constructional experience has been accumulated you can attempt to construct your own. A useful avenue to try may well be to construct a kit from one of the many advertisers in this magazine.

Generally, power supplies are of two main types, either single or twin. The first type will provide a two rail output $(0,+V)$, and the second a three-rail output ($-\mathrm{V}, 0,+V$. A useful feature found on some power supplies is a current limiting circuit which allows you to set the maximum current available. If, for example, a short circuit exists in a connected circuit (which would otherwise draw too much current) the power supply will only provide the set amount of current, thus preventing damage.

The cost of a power supply will dpend largely on the current it is able to supply rather than on the voltage. This is because the power the supply is capable of delivering defines the cost of each component

within the supply. A power supply providing, say, 40 V at only 100 mA is supplying only 4 watts of power whereas one providing only 10 V but at 5 A is supplying 50 watts.

The precise power supply you require depends greatly on what you want to play around with. For computer circuits the main requirement is for +5 V at 1 to 3 amps or so. Other voltages are occasionally needed but need not be a priority. On the other hand, for analogue circuits you will need a variety of voltages and these can best be met by a dual supply whose output can be varied from 0 V to 20 V at currents up to 500 mA . Audio amplifier circuits often need higher voltages and currents but these are better considered when the occasion arises.

Function Generators

It is useful when testing the majority of circuits to have some means of providing an input signal of known quantity. The circuit may then be studied as this input signal is applied. Items of test equipment which allows us to generate such known input signals are loosely classified as function generators, and are generally oscillators of some description.

Sinewave, squarewave and triangular wave oscillators generating frequencies in the range 1 Hz to 1 MHz are often used to test audio circuits. Radio and TV circuits require radio frequency oscillators and many are available which generate signals in the range from a few kHz up to and over 100 GHz . Digital circuits are often tested with pulses, and generators exist in which pulse duration, amplitude, and position can easily be controlled.

Function generators are available ready made or in kit form from many sources. You can, of course, make one yourself from one of the many excellent designs which have appeared in these pages. This latter course will probably be the cheapest but for ease of use the former course is to be preferred unless you are prepared and able to engineer it properly.

Oscilloscopes

The last item of test equipment forming the minimum list of essentials is the oscilloscope. This is probably the single most versatile piece of test gear available. It's fundamental job is to measure and display a voltage over a period of time. Thus a waveform is displayed on a cathode ray tube screen which represents the measured voltage.

From this basic idea of an oscilloscope, many different forms have originated. The simplest is the single-trace oscilloscope which measures only a single voltage, but by far the most popular is the dual-trace oscilloscope which allows two voltages to be displayed on the screen simultaneously.

The scale of the axes of the displayed waveform

FEATURE : Choosing Test Equipment

(ie, volts on the y-axis, time on the x-axis) may be varied by controls on the oscilloscope. Generally, the scales are between, say, 5 mV to 10 V per vertical division, and 0.5 us to I s per horizontal division. By setting the controls to suit a large variety of waveforms may be displayed, from only a few millivolts in amplitude to hundreds of volts, and with frequencies from a fraction of a hertz to many megahertz Cost varies largely according to the range of scale settings, and the maximum usable frequency of the y-amplifier.

For the hobbyist, a general requirement for an oscilloscope might look something like this:

Dual trace, 15 MHz bandwidth, 5 MV to 50 V per division, AC or DC coupling $1 \mu \mathrm{sec}$ to 100 msec per division with variable and $\times 5$ or $\times 10$ magnification. Triggering from either channel or external socket with AC, DC variable level and slope selection.

There should also be a probe calibration output and a pair of probes either $\times 10$ or switchable $\times 1 / \times 10$. For TV work, $\times 100$ probes may be useful for higher voltages.

The instrument should be one which will give a readable trace at fast timebase speeds and give stable triggering to a frequency higher than the Y bandwidth. Other facilites such as delayed timebase can be very useful for digital work but should not be sacrificed for basic performance.

Unfortunately, such machines are expensive, but if at all possible it is well worth purchasing one in the

$£ 350$ to $£ 500$ range. Don't neglect to consider the second hand market, especially if a suitable unit is available with a warranty after reconditioning

One thing you should obtain with your oscilloscope, whether new or second hand, is a complete handbook telling you how to calibrate it. Even if you do not intend to do it yourself it may be useful to whoever does.

Of course, once you have a good oscilloscope you will be able to make and set up all the signal generators and such that you want. In fact with a scope, signal/pulse generator and reasonably versatile power supply added to your basic multimeter you should be able to tackle almost anything

ETI

A BRITISH MADE OSCILLOSCOPE AT AN AFFORDABLE PRICE

The new Bridage single and dual trace oscilloscopes.

Single beam $\mathbf{f 1 9 5}$ Dual trace $\mathbf{£ 2 2 5}$

* Send for details today \star

Agents and distributors required worldwide.

Bridage Scientific Instruments
63-65 High Street, Skipton, North Yorkshire BD23 1EF.
Tel: (0756) 69511 (10 lines)

Manufactured in association with Scopex Electronics Limited

AUDIO DESIGN

Power amplifiers need a source of power, and the usual place to get it from is the AC mains. In this third part of the description, John Linsley Hood describes the PSU and a power meter.

In the previous part of this article, referring to the power amplifier, I outlined the advantages which arose from the use of a stabilised power supply unit, which had persuaded me that this kind of arrangement was essential if I was aiming for the highest standard.

I was, indeed, responsible for a bit of propaganda in this cause in an earlier article (ETI May, 1983) describing such a stabilised PSU unit, and the basic elements of its design were analysed at the time. Inevitably, therefore, my thoughts returned to this as a useful working design, though, in this case, I wanted to add somewhat to the faciities offered by the earlier design.

These additions are a pair of stabilised, lower current, power supplies to drive the earlier, classA (voltage gain) stages of the power amplifier, and a DC offset monitoring facility which could be used to detect any abnormal DC voltage present on the LS output terminals - as might arise, for example, in the event of a catastrophic failure of one of the output devices - and switch off the high current sections (+ve and -ve) of the PSU, before any damage could occur to LS units or the like.

Since the power supply described previously has a re-entrant output characteristic (which means that the DC output current will decrease as the output voltage falls to very nearly zero output current into a short circuit), it will also perform the function of overload protection for the PA in the event of an abnormally low impedance output load. I happen to know that this works, since during bench testing, to see just how much power I could get out of a single channel driven just short of clipping (117 watts, as it turned out) and how well the PSU would hold the line voltage under these conditions (-1 volt) the soldered

Fig. 1 Low-current stabilised PSU.
connections holding my load resistor melted off, the resistor dropped onto the floor, and the two liberated lengths of wire connected to the output terminals promptly soldered themselves together! After I had restored the load, everything was still perfectly functional, and apparently unruffled by the event.

Experimental work, and inward deliberation, has convinced me that it is very advantageous to separate out the power supply lines feeding the output and the class-A stages of a power amplifier - indeed I think it is a false economy not to do this - and if one is using a stabilised PSU, it makes sense to put in a few more components to generate a pair of independently stablilised lines for the early stages.

Since the current requirement at this stage is quite small, typically about 12 mA per channel, no problems of 'secondary breakdown' will arise in the series control transistors, so a simple constantcurrent overload characteristic will suffice, at $35-40 \mathrm{~mA}$ total output. This will prevent anything inconvenient happening in the event of an accidental output short-circuit across these DC supply lines, as can so easily happen during setting up or testing.

I have shown the circuit I have adopted in Fig. 1. Once again the
input and output voltage requirements prevent the use of an IC voltage stabiliser, though I guess that $60-80 \mathrm{~V}$ input voltage IC stabilisers will be on the market (at a price) within the next few years. As in the higher current supply previously described, the pass transistor, Q1, is turned round so that the output current is drawn from its collector. This allows the forward base bias current to be derived from the 0 V line, rather than from the forward voltage drop across this transistor. This makes for more efficient working and allows a much lower minimum voltage differential between input and output.

This last factor is important, because although the output voltage is very smooth, the input voltage across the power supply reservoir capacitors will show a fairly large $100 \mathrm{~Hz}^{\prime}$ 'sawtooth' waveform, of 5 to 10 V P-P amplitude, when a significant amount of current is drawn from it. The stabiliser circuit must work as well at the minimum input voltage represented by the bottoms of these input voltage waveforms (see Fig 2) as at their peak.

Circuit Operation

This method of operation of the circuit is quite straightforward: a 10 volt reference voltage is generated across ZD1 and C2 by

Fig. 2 The effect of ripple on stabiliser input - output voltage.
current flowing through R8. This is applied to one of the long-tailed pair of transistors Q2/Q3, and turns Q3 on. This passes current through R3, Q3 and R4 into the base of Q1, which causes Q1 to conduct and feed current to the output. A proportion of the output voltage, developed across R1, RV1 and R2 is applied to Q2, and if this exceeds the 10 volt reference fed to Q3, the current flowing through the 'tail' resistor, R3, will be progressively diverted away from Q3 and Q1, and will, instead, pass through Q2 and R6.

By this means, the voltage permitted at the output of Q1 is controlled so that the current flowing through R2 (which is, in turn, controlled by the values of R1 and RV1) produces a 10 volt drop across it (remember, $V=I \times R$).

Overload (over-current) protection is obtained by putting a resistor R7 in the emitter circuit of Q1, and three small diodes (D1, D2 and D3) between the DC input and its base. Q1 will require about 0.6 V forward bias to conduct, while the diodes will conduct at about 0.55 V each. This limits the voltage which can develop across R7 to $1.65-0.6 \mathrm{~V}=1.05 \mathrm{~V}$. If the voltage tends to exceed this value, Q1 will run out of forward bias, and will progressively turn off. With a value of 33 R for R7, the circuit will limit at about 35 mA , under output short-circuit conditions, which makes it effectively disaster proof.

To calculate the circuit component values, we first select a passtransistor, Q1, as a device which will withstand 70 volts input, and carry the necessary current: a BD538 will serve. This has a minimum $\mathrm{H}_{\text {fe }}$ of 40 at 100 mA , so it will need, say, a 1 mA base current. Therefore let us make Q2 and Q3 both pass 1 mA normally. This requires a'tail' resistor of 4 k 7 (R3). The output voltage divider chain is chosen to pass about 1 mA and give +10 V at Q2 base when the
output voltage is +50 V . R4 and R6 are just protection resistors to prevent damage if a faulty transistor should be inadvertently installed in construction. RV1 is adjusted to set the output voltage to +50 V . A mirror-image of this circuit is used to provide the -50 V supply.

LS DC offset protection

I have made use of the two transistor 'thyristor' circuit shown in Fig. 3 to provide the offset protection function. (Note that component numbers here refer to Fig. 3) In this arrangement, Q1 and Q2 are both normally non-conducting. However, if an input voltage is applied to Q2, even briefly, it will conduct and feed current into the base of Q1. This will make Q1 conduct, which, in turn, will feed current into Q2, which holds the circuit on, or 'latched'.

In order to make the circuit respond only to long-term averaged DC offsets, a 1 Mo and $2 \mu 2 \mathrm{~F}$ input integrating circuit is connected to the LS outputs, with an emitterfollower transistor Q3 interposed as an impedance conversion system. A similar circuit, with Q4, R4 and $C 2$, can then monitor any offset occurring on the other channel. To avoid quadrupling C1 and

C2, the offset voltages averaged across these are taken to a mirror image circuit controlling the other half of the PSU. The circuit I have shown is for the positive half of this.

When Q1 and Q2 are latched, the voltage drop across them falls to about 0.65 V , and they will stay in the latched condition until the power supply to them is removed by switching of the equipment. it is possible to provide a momentary reset by S1, R5 and C3. If the fault persists the circuit will cutout again almost at once. I prefer to switch off in the event of failure, so I haven't provided this facility on my prototype. The output of this 'thyristor' is taken to a point on the main PSU where a 0.65 V clamp on the circuit voltage will cause the system to cut off.

A simple resistor and zener diode network, shown in Fig. 4., monitors the relative voltages on the + ve and -ve supply lines. If these differ by more than 20 V , as will happen if one of the supplies is cut off, it will then turn the other line off as well. Since the tripping of one of the DC offset monitor circuits will automatically trip the other, the power supply failure warning can be given by a LED, in seies with a zener, and a suitable limit resistor, between the reservoir and the output on either DC line, so that the LED will light if the difference between input and output voltage exceeds 30 V . This will happen briefly on switch-on, because the power supply has a slower rate of voltage rise (deliberately) than the voltage rise across the reservoirs. However, the LED will extinguish, in the absence of any fault condition, in a few seconds, when the supply lines have reached their proper operating voltage.

Fig. 3 Amplifier output DC detection and trip circuit.

The Full Circuit

The complete circuit diagram, apart from the transformer and rectifiers, of the power supply is shown in Fig. 5. The low current supplies, built around Q1, Q2 and Q3, with their mirror-images (Q4, Q5 and Q6), are as have been described above. The protection circuitry (Q9, Q10, Q11, Q12, Q13, Q14, Q15 and Q16) in its two mirror-image forms, is also as described above. The rest of the circuitry, comprising the twin highpower stabilised units, is largely as described in May 1983, but I will run through its operation to explain the method of the cut-out trip function, and to avoid difficulties for those who missed the May' 83 issue (Shame! - Ed.).

Taking the positive-line supply section, a power Darlington transistor, a Motorola MJ2501, is used as the series control or 'pass' device. This is a moderately beefy component, with a maximum current of 10 amperes, an $80 \mathrm{~V}_{\text {ceo }}$ rating, and a maximum dissipation

Fig. 4 Method of making both power supplies cut out simultaneously.
of 150 watts. The 'safe operating area curve' is shown in Fig. 6, and the actual output currents, with voltages, given by the PSU are as shown, for two different values of R15/R16.
To check on my calculations with these I have run the PSU into a low resistance (0.1 ohm) ammeter, which gives an effective output short-circuit, with the transformer fed from a'variac. I have also, inadvertently, made screw-
driver-type shorts from supply lines to chassis, without any disasters. This is not a practice I recommend, but it does happen, especially if one is developing or debugging a new circuit and one forgets to switch off.

The pass transistor Q17/Q20, is normally turned on by current flow from the 0 V line through a control transistor, Q18/Q19, and a current limit resistor, R29/30. The control transistor is itself made conducting

Fig. 5 Complete power supply circuit.

Fig. 6 Safe operating area curve for MJ2501/3001 and output current/voltage limits for PSU.
by a current flow from the input line through the protection transistor, Q7/Q8. A further transistor, Q21/Q22, sits between the 0V' line and the base of the control transistor. This monitors the potential developed at its base from the voltage dropper chain, R35, RV4, R33/R34, RV3 and R36, connected between the output voltage line and the internal zener reference potential. If the output voltage should increase, this transistor is turned on more, and 'steals' more current from the control transistors base supply. This in turn reduces the current flow through the pass transistor, to oppose the detected increase.

Because there is a very high loop gain in this three transistor amplifier loop (Q17,Q19,Q21) much higher than that of the low power supply which has a much less onerous job to do - some HF loop stabilisation is needed and this is provided by the small capacitors C 7 and C 8 .

The current limit transistor, which sits astride the supply to the control transistor, is normally turned on by a forward voltage developed across the diodes, D7D8/D9D10, in the path to the zener supply. However, if too much current flows through the circuit this foward bias will be diminished by the voltage drop occurring across R15/R16, and will ultimately switch this transistor off again. A similar function is carried out, in respect of the voltage across the pass transistor, by the two resistors R32 and R17/R33 and R18. Acting together, these current flow and voltage sensing networks generate the limiting characteristics shown in Fig. 6.

In order to help the operation of the cut-out circuit, a pair of diodes, D13,D14/D15, D16, have
been added in comparison with the original circuit. This means that the base potential of the control transistor normally sits at about 1.65 V with respect to the 0 V line. When the trip circuits operate, this is clamped at 0.65 V , and the control transistor and the pass transistor are both cut off. The LED is then illuminated, to indicate a fault condition.

As mentioned above, the power supply can be momentarily reset by applying a discharged condenser between the $0 V$ line and the bases of the trip transistors, Q14/Q15.

During tests on the prototype,
the output voltage of the PSUs, under quiescent conditions, were constant for mains input voltages varing between 170 V and 260 V RMS, and the output AC ripple was less than 3 mV . The measured voltage drop, from minimum to maximum measured load (one channel driven at 117 watts) was less than 1 V .

Setting Up The Amplifier

Normally my amplifiers start more or less as a plain sheet of aluminium, of a bit larger than the expected necessary size to allow for oversights, on which the bits and pieces are fixed in a way which looks sensible when all of them are eventually to hand, and working as I hope. The result inevitably looks a bit less polished than the commercial equivalent. In this instance, through the good offices of Electronics Today International, I was provided with some nicely made metalwork from Newrad Instrument Cases, into which I fitted the various PCBs which I had previously made, along with the other essential major components, in the best practicable arrangement in relation to the plugs, sockets and controls installed by Newrad.

The result, shown in the photograph is perhaps a little less neat, on the inside, than I would

The interior of the prototype: along the top (L to R): meter driver PCB (mounted over on/off and mute switch), reservoir caps, switch-on muting PCB; bottom: transformer, PSU, $2 \times$ power amps
expect the final kit version to be. Externally I am very pleased.

I have mounted all the ten power transistors (eight from the amplifier, and two from the power supply) on a length of substantial gauge angle aluminium which, is clamped to the back plate of the amplifier. On the outside of this back plate, four Redpoint heat sink blocks are mounted, side by side, to give a heat sink 32 cm long by 5 cm deep with total fin length of 3 cm . This heat sink has a calculated capacity of $0.4^{\circ} \mathrm{C} /$ watt, and gets only mildly warm in use. This arrangement, in which the transistors are mounted horizontally inside the box, is one which I prefer, since it protects the exposed cases of the transistors from inadvertent electrical contact, and makes their connections easy to join. The white silicone/zinc oxide heatsinking paste should be applied to all the joins through which heat is to pass.

I have used 4 mm insulated terminal binding posts (10 amp rating) mounted on the rear panel, for the LS output connections, and these are joined to the output pins on the PA PCB by twisted pairs of $24 \times 0.2 \mathrm{~mm}$ PVC insulated cable (4.5 A rating). The 0 V pins at the output of the PA boards are taken, using the same type of wire, to a conveniently positioned chassis earth point, which should not be too far away from the reservoir capacitors.

I have shown the mains input, transformer, and reservoir capacitor circuit and suggested layout in Figs 7 and 8, and I have indicated, by heavy lines, which of the connections it is preferred should be short, and of the thickest gauge of stranded wire which it is practicable to solder. The important thing to remember is that the wires from the capacitor tags to the earthing post are carrying heavy currents and will have significant voltage drops along them. They should therefore go directly to the earthing post, and nothing else should be joined to the lug on the capacitor case.

The output 0 Vs from the PAs, and the input and output 0 V lines from the power supply unit, are similarly taken directly to this post, with as substantial a gauge of wire as reasonable. The input earths for the amps. are commoned both at the input phono sockets and at the gain control, and joined to the earth post with a single wire. By this means, the heavy pulsating

Fig. 7 Mains input circuit for power supplies.
currents in the output DC supply and return lines are kept out of the input signal path, where they can introduce significant amounts of distortion, and impair the performance of an otherwise impeccable amplifier.
(It is a very useful thing to have some form of distortion meter to check that all is well, if one is building such a unit from scratch, rather than following a previously researched plan, and if the Editor of ETI will approve, I will show how a simple, but sensitive unit can be built without too much difficulty.)

Since the input sockets are also mounted on the back panel of the amplifier, it is necessary to screen these so that they do not pick up capacitatively coupled signals from the cases (which are connected to the output) and wiring associated with the output MOSFETs. It is also necessary to isolate these input sockets from the chassis earth, to avoid earth path signals which could contain both hum and distortion inducing voltages. I solved this problem on the prototype by making up a little tin box, with soldered corners, on
which the input phono sockets were mounted, and which itself was held to, but insulated from, the back plate.

Signal Muting

This is a facility for which there is provision on the PA PCBs, but which I did not describe in the last part of the series. This employs the circuit layout shown in Fig. 10. In this a normally closed push switch (two-gang) is inserted in place of the link shown on the PCB. This is bypassed by a 1 nF capacitor and a 470 k resistor, so that when the switch is opened, the gain of the amplifier is reduced from 122 to 1.3, at all frequencies below about 100 kHz - which are safely supersonic.

The 1 nF capacitor is there to avoid jeopardising the feedback safety margins at HF which are a lot less at unity gain than at 122.

By the use of this control, the amplifier can be effectively 'muted' during switch-on, to minimise plops, or during other operations where it may be desired to avoid unwanted noises. I have suggested this technique, as an option, since my decision not

Fig. 8 Suggested lay-out of earth (0 V) wiring for power amplifier and power supplies.

Fig. 9 Overlay diagram for the PSU.

PARTS LIST - PSU

to use a relay has removed the otherwise attractive option which this offers to disconnect the LS lines until the amplifier has had a chance to settle. The 470 k resistor across the mute switch gives C7, in the feedback line, a chance to charge, over a few seconds, to its normal operating DC level.

Fig. 10 Circuit arrangement for amplifier muting.

Fig. 11 FET input clamp circuit.

Additional facility to which I had referred in an earlier article, as a possible option, is the use of an FET as a normally open switch across the amplifier inputs, as shown in Fig. 11. Normally, at the moment of switch-on C20 will be uncharged, and the FET, Q16 (a 2 N5459), will act as a lowimpedance resistive path across the inputs, which will effectively zero the volume control and prevent the amp from producing distorted signals for the few seconds during which the DC supply lines from the power supply rise up to their final operating voltage. The FET bias is derived from the -50 V line, and lags behind this in its rate of voltage rise, as C 20 charges through R30, towards its final operating voltage of -10 V , at which the FET is fully cut-off, and is effectively removed from the signal circuit.

Power Amplifier Quiescent Current

I had omitted to discuss this, inadvertently, from the description in the previous part of this article. The optimum value, if twinned MOSFETs are used in the outputs, is 250 mA channel. The amplifier can be operated, at a lower maximum output power but without any other penalties, with a single N -P-MOSFET pair. This will give about 65 W . In this case a quiescent current, per channel, of $120-$ 150 mA is required. With the circuit shown, the 250 mA quiescent current allows 0.5 watts of output in pure class-A, and it is surprising just how much of ones programme, in almost everything except heavy rock or reggae, falls below this level. (To organise the circuit with
single MOSFETs, just delete one pair of N - and P -channel devices from each output four.)

On this score, on tidying up the wiring to the output power MOSFETs, it became clear to me that its actual layout was a bit over-critical. I therefore propose that the gate resistors, mounted close to the MOSFET gate pins, should be increased from 150R (16/17) and $220 \mathrm{R}(18,19 / 21,22)$ to $1 \mathrm{k0}$ each. This solves the awkwardness. When single MOSFET pairs are used, this problem doesn't arise.

As can be seen from the photograph of the prototype power amplifier internal layout, I have laced quite a few of the input cables together, in the interests of neatness and in keeping them together in a safe position. Please do not do this with the output wiring or the wiring to the MOSFET pins, which should be spaced out, but not more parallel than inevitable. MOSFET pairs are likely to see parallel wiring to their pins as an invitation to oscillate (this problem is even worse with the recent very fast T-MOS devices, and I decided that these were not sensible for use by DIY amplifier builders, in spite of their otherwise superb technical possibilities).

Output Power Meter

It is certainly a useful feature to have a pair of channel power output meters mounted on the front of a power amplifier. However, that is where agreement ends. If the meters, which should be peak reading, with a fairly slow decay rate, have a scale which is linear in voltage it will result in the necessary calibration for power output being very cramped at the top end, since $P=V^{2} R$ (load). It will

Fig. 12 Overlay for circuit of Fig 11.

PARTS LIST POWER AMPLIFIER

There are additional parts to implement the switch-on mute.

R29	10 k
R30	39 k
C20	470μ 10V PCB
	electrolytic
Q16,116	2N5459

also require the meters to be hand calibrated, which isn't an easy thing to do oneself if the result is to be neat-looking. On the other hand, the circuit is simple to organise.

If the purpose of the meters is to make the user aware of his proximity to the amplifier overload margins, so that he can use it within its limits, it is much more satisfactory to have a measuring circuit which is linear in terms of power output. This also solves the problem of a neat scale calibration. I have therefore adopted this approach based on a 100 uA meter movement, scaled 0-100 as watts. This makes it very easy to see where one is operating in relation to the overload threshold, but it does mean that the meters will be sitting near the zero mark for most of the time (unless one likes ones music very loud!)

The circuit I have adopted is shown in Fig 13. In this I have used a junction FET as the 'square law' element, in the input limb to an inverting mode IC amplifier. The gain of the amplifier depends on the ratio of the impedance of Q1 to the resistance of R5 and RV1. When the FET has zero bias, its AC impedance is low, and the amplifier gain is (relatively) high.

PROJECT : Audio Design

BUYLINES
Kits are available for the pre and power amplifiers from Newrad Instrument Cases Ltd, Unit 19, Wick Industrial Estate, Gore Road, New Milton, Hants BH25 5SJ (telephone 0425 615774). Prices are as follows: pre-amp, including the yet-to-be published modification, £98; power amp (including meters, mute and switch-on mute circuitry) $\mathbf{£ 1 2 0}$. Newrad will supply the PCB salone as follows: preamp $£ 15$; power amp $£ 11$. Here prices are for a full set of PCBs. Newrad can also supply the components required for the pre and power amps, but we suggest you contact them directly for details. All the prices given here include UK postage but no VAT, so please add 15\% for this.

Fig. 13 Peak-reading linear scale power meter (8 ohms load).

PARTS LIST -	
AET	
RESISTORS (all	W 5\% unless stated)
R1,11	33k
R2,12	1 k2
R3,4,13,14	3 M 3
R5,15	330 R
R6,7	$6 \mathrm{ks} 1 / 2 \mathrm{~W}$
RV1,11	470R horizontal preset
RV2,12	4k7 horizontal preset
CAPACITORS	
C1,2,3,11,12,13	$1 \mu 0$ polyester
C4,5,14,15	100n polyester
C6,7	$100 \mu 16 \mathrm{~V}$ PCB electrolytic
SEMICONDUCTORS	
IC1	TL072
Q1,11	2N4557
D1-4, 11-14	1 N914 or similar (8 off)
ZD1,2	10 V 400 mW zener
LED1	single LED to choice
MISCELLANEOUS	
M1,11	$100 \mu \mathrm{~A}$ FSD moving coil meter to choice
PCB, wire, etc.	

When an AC signal is applied to the input, via R1, R2 and C1, the amplifier output is rectified and applied as a positive-going voltage to the non-inverting input of the op-amp (which makes its output, and consequently its inverting input voltage also move + ve), and as a negative-going voltage to the gate of the FET, in relation to its positive-going source and drain, This biases the FET to a higher impedance and reduces the gain of the amplifier. The large the input signal, the lower the gain of

Fig. 14 Overlay diagram for the power meter.
the amp, and the higher the bias voltage.

Although FETs vary a bit from one to another, every one of about a dozen Motorola 2 N5457s could be adjusted to give a reasonable square-law characteristic. The technique is to apply a measured input voltage $(\operatorname{Vin}(\mathrm{RMS})=$ $\sqrt{ }$ P.Rload) - for example 12.65 V RMS for 20 watts into 8 ohms, and 26.8 V for 90 watts - use the 'linearity pot, RV1, to set the power reading at say 20 watts, and use the'scale' pot, RV2, to set the meter reading at the high end. This will need to be done iteratively, going from one to the other and back again, since they influence each others readings. However, one wins in the end. I have shown in Table 1, below, the results on my prototype using 20 W and 90 W as the adjustment points.

$V(\mathrm{rms})$	P. (8 ohms)	Meter reading
4.0 V	2 W	2 W
6.32 V	5 W	5 W
8.94 V	10 W	10 W
10.95 V	15 W	14 W
12.65 V	20 W	20 W
15.5 V	30 W	31 W
17.9 V	40 W	41 W
20 V	50 W	52 W
22 V	60 W	63 W
23.7 V	70 W	72 W
25.3 V	80 W	82 W
26.8 V	90 W	90 W
28.3 V	100 W	95 W

Table 1 Calibration of the prototype power meter.

Unfortunately, a number of oversights and ommisions have crept into the design - of which the most serious which has come to light is the need for a buffer after the RIAA stage. I will do my best to clear up all these in a short post-script next month.

ETI

$\sqrt{\text { ewrad }}$
 NEWRAD INSTRUMENT CASES LTD

Unit 19, Wick Industrial Estate, Gore Road New Milton, Hants BH25 6SJ Tel: New Milton 615774/621195

Pre-amp Kit (complete) $\mathbf{£ 9 8}+$ VAT
Power-amp Kit (complete) $\mathbf{£ 1 2 0}+$ VAT

Send S.AE for details and Part Kit prices.

To be announced:- Price details of Conversion hardware for fitting both units intoa HI -FI tower system and also 19" Rack mounting options.

Musician 2B Loudspeaker

At last the ideal of all the sound coming from one piston-like diaphragm, unspoiled by crossover units and resonant enclosures.
These radically novel loudspeakers set new standards both in sonic realism and spatial presentation-
"The best stereo you are likely to hear... Quad class nuff said" . . . Paul Messenger Hi-Fi News Nov '83.
Drive units for building into enclosuresas described in this magazine are $£ 140$ per pair plus VAT and postage. Complete loudspeakers in Luxury \& Basic enclosures are available. Details and prices from:

Merseyside Acoustic Developments 131 Mount Pleasant
Liverpool L3 5TF
Tel: 051-709 0427

BUILDING TEST EQUIPMENT

You know what's available and you have decided what you need; all that remains is to acquire it by some means. Phil Walker offers a little encouragement to the impecunious.

AIl test gear can be built (well, someone has done it) but you must consider whether it is worth your while and weigh up the cost of components and the time you spend against the price of ready made equipment. You must also consider such problems as how to calibrate it - test equipment is of little use if you cannot trust the readings you get from it.

There is little advantage to be gained from constructing multimeters or oscilloscopes unless they are for a special purpose. The cost of a home brew is likely to be similar to a comparable commercial unit and unless you are very good and have workshop facilities the result will be bulkier and less convenient to use. Even where a specialised measurement is needed it is probablybetter to add a conversion box or modify an existing unit.

For most other types of test equipment needed by the enthusiast it is quite useful to consider home construction. Signal sources of many sorts have appeared in this and other magazines and will no doubt continue to do so. The real challenge here is not only to understand the operation of one circuit before building it but to take the most useful parts of several circuits and combine them to get just what you require. Note that this is a long term goal and will not be attained overnight.

Other types of equipment which can be constructed by the amateur will include frequency counters and timers. Years ago this type of instrument required great masses of components, took lots of power to operate and cost a small fortune. Sometimes suitable ready built surplus gear could be bought and modified or repaired to get the desired result but this is not so common these days. However, the tremendous surge in semiconductor technology has brought with it new devices which can replace most of the circuitry with a single chip. This means that a very sophisticated instrument can be constructed with a few components and at quite a reasonable cost.

Having decided that you are actually going to build a piece of test equipment the first step is to decide exactly what you want. This does not mean, for example, a "voltmeter" it means: "A DC voltmeter, moving coil readout, ranges $1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{v}$. Input resistance 10 M constant on all ranges, overload protection to 1000 V on all ranges, manual range switching, automatic polarity switching with indicator, automatic power-down after 20 mins . with warning buzzer. Meter to be approx. 2 in . scale in same case as circuitry, single 9 V battery and switch. Case to be suitable for holding in hand. Accuracy of instrument to be better than 1% on all ranges."

Having written down all the requirements you can think of for your new unit you can start thinking about how to make it. At this stage you will probably find that changes have to be made in the specification, sometimes to improve it but more often to make construction possible. Your constraints will usually be determined by your knowledge, what you can find in books and magazines and what components are available at the price you can afford.

Having decided that the construction of your dream testgear is possible you must consider how to put it together so that it is usable. Bear in mind that you will probably use it often so a little thought will be to your advantage. Look at or measure the components you are to use, make models if you do not have them yet and try to fit them together in different ways until you find one which allows easyaccess to all the controls you need and easy sight of any readout devices. Make sure that switches can be operated without undue pressure or scraping your knuckles. Make the layout logical and neat from the front while making sure that you have enough room behind to wire it up where necessary. Always leave room for batteries, power supplies, fuses and power cables and provide a way of securing them.

As a matter of common sense, always use top quality components for your test equipment projects as any shortcoming here will often cost more in replacements and unsatisfactory performance later on.

When you have all the components and know where everything is going, the case should be prepared by drilling all the necessary holes and painting and lettering the front panel. A subsequent coat of clear varnish will keep things looking good. When this is dry you can assemble and test out the whole thing. If possible make sure it is working before you put it into the case as access is more difficult afterwards.

If you do all this it will take quite a long time but you should end up with a unit which is useful, usable, good to look at and reliable. This is more than you can say about some commercial products. In addition you will have gained a wider understanding of electronics than just the circuit principles involved.

[^1]| ITEM | MONTH | YEAR | PAGE No. | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| MULTIMETER | | | | |
| Digital Test Meter | September | 1980 | 79 | $31 / 2$ digit LCD; $100 \mathrm{mV}-1 \mathrm{kV}$ FSD AC \& DC in 5 ranges,
 100uA - 1A FSD AC \& DC in 5 ranges;
 100R-10M FSD in 6 ranges; $1 \mathrm{kHz}-1 \mathrm{MHz}$ FSD in 4 ranges |
| RESISTANCE METERS | | | | |
| Linear Ohmmeter | June | 1980 | 34 | 1K.1M FSD in four rànges; linear analogue display |
| Low-ohm Meter | April | 1981 | 40 | $100 \mathrm{mR}-100 \mathrm{R}$ in four ranges ($\mathrm{mR}=$ milli-ohms) |
| CAPACITANCE METERS | | | | |
| Capacitance Meter | August | 1980 | 93 | low-cost meter with linear analogue display; 10pF-10uF |
| Autoranging Capacitance Meter | March April | $\begin{aligned} & 1982 \\ & 1982 \end{aligned}$ | $\begin{array}{r} 48 \\ 108 \end{array}$ | $100 \mathrm{pF}-1000 \mathrm{uF}$ in eight automatically selected ranges; $31 / 2$-digit LCD display |
| FREQUENCY METERS | | | | |
| Digital Frequency Meter | January | 1980 | 56 | 0-150 MHz; crystal timebase; 8 digit LED display; frequency, period, unit counter and stopwatch functions |
| Linear Frequency Meter | July | 1980 | 99 | low-cost analogue unit; $10 \mathrm{~Hz}-100 \mathrm{kHz}$ |
| FUNCTION GENERATORS | | | | |
| Function Generator | December | 1979 | 20 | Sine, square and triangular waveforms; $1 \mathrm{~Hz} * 100 \mathrm{kHz}$; integral analogue frequency meter |
| Audio Oscillator | November | 1980 | 27 | low-cost sine and square wave generator; $30 \mathrm{Hz-60} \mathrm{kHz}$ |
| Pulse Generator | February | 1981 | 46 | Dual pulse generator, width and delay variable from 100 ns to 150 ms ; internal $0.5 \mathrm{~Hz}-500 \mathrm{kHz}$ clock |
| Precision Pulse Generator | November | 1982 | 39 | lus-99.9s pulse width; 1:999-999:1 mark/space ratio |
| POWER SUPPLIES | | | | |
| Laboratory PSU | September | 1981 | 87 | 0-30V@1.2A; 20mA-1.2A constant current limiting |
| Programmable Power Supply | January | 1983 | 83 | 0-25.5V@1.6A; local manual or remote digital control of voltage and/or current |
| Bench Power Supply | February | 1984 | 41 | 3-8V @ 2.5A and ± 8-16V@0.5A; over-current protection on all outputs |
| OSCILLOSCOPES | | | | |
| 10 MHz Oscilloscope | May | 1982 | 53 | Single beam 10 MHz miniature oscilloscope; |
| | June | 1982 | 30 | 12 V DC or 240 V AC operation |
| | July February | $\begin{aligned} & 1982 \\ & 1983 \end{aligned}$ | $\begin{aligned} & 63 \\ & 41 \end{aligned}$ | |
| Telescope | July August | $\begin{aligned} & 1983 \\ & 1983 \end{aligned}$ | $\begin{aligned} & 21 \\ & 30 \end{aligned}$ | Plug-in unit converts television into $1 \mathrm{MHz}_{\text {, }}$ single beam, storage oscilloscope |
| LOGIC PROBES | | | | |
| Dual Logic Probe | September | 1982 | 68 | CMOS and söme TTL; high, low and pulse indication; puise detection to above 2 MHz ; integral logic pulser; pulse memory |
| Logic Probe | March | 1983 | 73 | CMOS and some TTL; indicates high, low, pulsed, positive going, negative going, or open circuit stages |
| Logic Clip | November | 1983 | 91 | TTL and CMOS; simultaneous indication of state of all 14 or 16 pins of DIL device; high, low, pulse and undefined state indication |
| AUDIO TEST EQUIPMENT | | | | |
| Audio Power Meter | March | 1979 | 67 | True audio power reading; current handling up to 10A, voltage up to 300 V |
| Bench Amplifier | August | 1979 | 67 | Integral loudspeaker; four inputs offering flat and RIAA equalisation and various sensitivities |
| Noise Generator | December | 1979 | 67 | digital white noise generator |
| Bench Amplifier | December | 1980 | 74 | 4 watts output into 8 R external loudspeaker, single 10 M ohm input; response flat to 200 kHz |
| Sound Pressure Level Meter | February | 1981 | 74 | 30-120dB; switchable ' A ' weighted or flat response |
| Audio Power Meter | March | 1984 | 3.5 | Dual channel (stereo); true audio power reading; 10-200W FSD in 3 ranges |

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals £1-£5.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name andaddress with 21 pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: Interak, Interak, Interak!

Greenbank

Greenbank Electronics (Dept T8E), 92 New Chester Road,
New Ferry, Wirral, Merseyside L62 5AG
Telephone: 051-645 3391

SHARP JOYSTICK INTERFACE

Bring some joy to your Sharp with this design by John Garnham.

With the current influx of new computers onto the British market, the Sharp looks a little lost, when most come with joystick sockets as standard, e.g. Commodore 64, Vic 20, Lynx, Dragon 32, BBC Micro, Sord M5, etc. This unit is both inexpensive and simple to use.

The joystick required is of the microswitch type. The one I purchased came from Cambridge Computing, although there are many available. This joystick has two fire buttons which is useful as

I have used one of these for 'hyperspace'. An added advantage of the joystick over the Sharp keyboard is that it is easy to detect when two switches are being held down together. When the Sharp scans the keyboard, certain keys have preference over others and trying to move a space ship and fire at the same time can cause problems for the programmer. With the joystick interface unit the joystick's switches correspond to different bits of the data bus and can be easily detected, especially

Fig. 1 circuit diagram of the interface
in machine code using the 'bit' Z80 opcode. Table 1 shows the codes possible to the corresponding switch closures.

HOW IT WORKS

This interface works in a similar way to the Spectrum Joystick interface described in ETI in June '84. A particular memorylocation is decoded by ICs1 and 2, and the interface places its data on the data bus when a read to this location occurs. However, only eight 'address' lines can be used, of which two must be positive true (ie high for a read to take place; A15 and A14 are shown as these), and a further one of which must be used to sense the RD control line, which must be negative true (and this must be set so using the links). The remaining five lines can be either positive or negative true, and this can be selected by setting links as shown in the inset to the circuit diagram, so that the inverter on the line is either in or out of circuit. It is suggested that either A10 or A9 should be inverted, giving the interface address 64000 d or 65000d.
If two interfaces are required, so that two joysticks may be used simultaneously, then they should have different addresses, and 64000 d and 65000 d are suggested. However, the use of links on the PCB should make it possible to set up virtually any desired location; however, because only part of the address bus can be used, the interiace will always respond to a number of addresses. If a computer other than the Sharp is used with the interface, more than one control line may have to be used to prevent data bus contention, so that the number of addresses to which the interface will respond will be even larger!

When all the inputs to IC2 are high, its output will go low, driving the EN and OC inputs to IC3 low; the former latches the current state of the inputs into the internal flip-flops and the latter makes the IC output stages go from the high impedance state into the output driving state. So the inputs to IC3 are latched and put onto the data bus.
The joystick outputs are wired active low, with pull-up resistors R1-6; IC4 a to f clean up and invert the output from the switches, and feed them to IC3 inputs.

Fig. 2 Overlay diagram for the PCB; the bracketed labels refer to the Sharp connector (a full connection list for the Sharp connector was given in the Sharp Centronics Interface article in ETI May'84)

PARTS LIST

Table 1 (below) The codes generated by the different switkh closures.

The interface described here may be used either singly or in pairs, with the two boards connected in parallel but with different addresses set using wire links. Actually, the PCB is laid out so as to make the interface fairly widely applicable, ie, you can set up different address locations and control line conditions using the wire links to select in or out the inverter gates - however, you'll have to work out the particular details for your computer yourself!

Construction

The Sharp does not provide +5 V on its external bus, so you can either build a separate power supply for the unit (or use one you have to hand) or'steal' +5 V from inside the computer as detailed in ETI May'84 ('Centronics Interface', P49); before you take this latter option, you might like to speculate that there could be a good reason why the designers didn't want you to take any current from the Sharp's PSU, but we'll leave the decision to you. The circuit shown here will consume around 50 mA .

There should be few problems with construction of the PCB, although it is necessary to take some care over the wire links close to IC1. The pads here are necessarily fairly small, and exces heat will lead to them parting company with the board. If you intend to

	CODE	WITH	WITH	WITH
FIRE	HYPERSPACE	BOTH		
SIATIONARY	0	16	32	48
UP	1	17	33	49
DOWN	2	18	34	50
RIGHT	4	20	36	52
UP-RIGHT	5	21	37	53
DOWN-RIGHT	6	22	38	54
LEFT	8	24	40	56
UP-LEFT	9	25	41	57
DOWN-LEFT	10	26	42	58

relocate the interface at all within the Sharp's or other computer's address space, then it is advisable to use PCB pins for the links any-
way. Also, be sure never to use all three links on any of the inverters or you will end up with a very cross little gate! Table 2 shows the

LOCATION
6400
6500

LINKS
A9, RD inverted (use dotted links) A15-10 non-inverted (use solid links)
A10, RD inverted (use dotted links) A15-11, 9 non-inverted (use solid links)

Table 2 Suggested links for the memory positioning.

Fig. 3 Suggested method of assembling a dual interface
suggested links for the recommended locations for the Sharp.

If you're using two interfaces together, then a method of interconnecting them is shown in Fig. 3. There are two sets of holes on
org 5000 H
LOAD 5000H
LD HL, 64000
LABEL:LD A, (HL)
JR LABEL
END

Fig. 4 Assembler program to generate a series of pulses
each board for the address and data bus connections, and it will probably be easier to use the outer set for the paralleling connections, and the inner set of one board for the connections to the computer.

The PCBs can be mounted in a suitable box, and a small cut-out can be filed in the lid so that it traps the 50-way cable and acts as a strain-reliever. What sort of connector you use for the Joystick depends on the type of Joystick you use; most use D-type connectors, and a common format for these was given in ETI June' 84 ('Spectrum Joystick Interface', p50), although this did not allow for the use of two 'fire' buttons, so you'll have to investigate the connections yourself.

Once the interface is constructed, it's time to plug it into the computer. First, however, if you've built a special PSU, check this out with a suitable dummy load (47R1W). If you've used IC sockets, first of all, plug in the board without any ICs and check that the computer doesn't crash. Then insert IC1 and 2 (with the power off, of course) and check that IC2 pin 8 goes low when the appropriate address is PEEKed (either 64000 or 65000 if you've used the suggested locations). Fig. 4 shows a method available to those with a Zen assembler, and this will produce a string of pulses.

Fit the remaining ICs (or start here if you soldered them straight in) and, after re-connecting the supplies, read the value at location 64000; if this is zero, try typing in the program in Fig. 5. If the location does not read zero, try to see what the effect of pressing the buttons or moving the stick is; if this changes the value read, then check the connections to the joystick from the board. If nothing changes, or if the processor crashes, check the wiring of the ribbon cable, the construction of the PCB, etc.

Use

The program in Fig. 5 can be used to check the correct functioning of the interface unit. Converting programs you have already written can be along the lines shown in Fig. 6, where the program lines on the left are for

1 REM**TEST PROGRAM**
2 S=20000:LIMIT S
3 FOR X=1TO11
4 READ D:POKE X+S,D
6 DATA $33,0,250,126,198,48$
7 DATA $205,18,0,24,248$
Fig. 5 Test program for the interface
Fig. 6 Converting programs to use the interface

10 GET A\$
20 IF AS $={ }^{*}$ THEN 10
30 IF AS="Z" THEN 100
40 IF AS='C" THEN 200
50 etc
$10 \mathrm{X}=\operatorname{PEEK}(64000)$
20 IF X=0 THEN 10
30 IF $X=8$ THEN 100
40 IF X=4 THEN 200
50 etc

the computer without the interface, and those on the right are for use with the interface.

Happy zapping!
BUYLINES

[^2]XK113 MW RADIO KIT
Based on ZN414 IC, kit includes PCB. wound aerial and crystal earpiece and all comoonents 0 make a sensitive minature radio Size $5.5 \times$
$27 \times 2 \mathrm{cms}$ Requires PP3 $9 V$ battery FOR BEGINNERS. $£ 5.50$

HOME LIGHTING KITS
 TOR300K Rempote Control £14.95 MK6 D:mmer Tranmitter for above $£ 4.50$ TD300K Touchdimmer $£ 7.75$
Ts 300k
Touchswiten $£ 7.75$
TDEK $\begin{aligned} & \text { Extension kit for 2. Way } \\ & \text { switching for TD300 }\end{aligned} \mathbf{£ 2 . 5 0}$ LD300KK $\begin{aligned} & \text { Rotary Controlled } \\ & \text { Dimmer }\end{aligned} \mathbf{£ 3 . 9 5}$

DVM/ULTRA SENSITIVE THERMOMETER KIT

 liquid crystal display This kit will
form the basis of a digitel multimeter fonly a few additional re.
sistors and switches are requirea-delails supplied).
 200 m V for a full scale reading, automatic polarity indication and sn ultre iow power requirement-giving
a 2 year tyical batiery life from a standard 9 PP3 when useo o hours a cay. 7 days a week

Price $£ 15.50$

 J OOORCHIME Jo
Based on the SAB0600 ic the kit is supplied With all components. including loudspeake printed cucult board, a dre-druled box (95
$71 \times 35 \mathrm{~mm}$ and full instructions. Require only a PP3 9 V battery and push-switch to complete. AN IDEAL PROJECT FOR BEGIN NERS. Order as XK 102.

£5.50

FREE YELLOW GATALOGUE YET?
It s packed with reteins of all ur KITS Plus latge range of
SEMICONDUCTOAS including CMOS IS TI line
microprocessors and memories, fult ange of LEDs s. capactions.
resistors, hardware, ielays, switches etc. We also stock VERO resistors, hardware, relays, swithes etc. We also stock VERO
and Anten products as well as hooks from Texas InsleUments Barbani and Elekiat VERY COMPE TITIVE PAICES
AL. AT VERING IS EVEN EASIER

JUST RING' THE NUMEER YOUCAN T FORGE JUST RING THE NUMBER YOU CAN'T FORGET
FOR THE PAICES YOU CAN'T AESIST01 5-6-7.8-9-10 and give us your Access or Barclaycard No or write
enclosing cheque or postal order. Official orders accepted from sthouls, etc
Answering service evngs and wids

TEACH-IN 84
Complete kit of top quality components as specified by EE including two EBBO starter packs.
f 15.80

ALL PRICES EXCLUDE VAT

No circuit is complete without a call to ELECTRONICS OPEN

LCD $31 / 2$ DIGIT MULTIMETER 19 ranges inclưing $D C$ voltage (200 mv 1000 v) resistence to
2 M ., NPN E P PNP transistor gaur and diode check infut mpenence 10 M Size $180 \cdot 140 \cdot 50 \mathrm{~mm}$ Complete with battery.
test leads and carrving case ONLY $£ 32.00$

ELECTRONIC LOCK KIT XK101

 This KIT contains a purpose designed lock IC. 10 -way keyboard. PCBs and all components to construct a Digital ock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a pre wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply to 15 V de at 40 uA . Output 750 mA max. Hundreds of uses for doors and garages, car anti-thef device. electronic equipment. etc Will dive most relays direct. Full instruc. ONLY £11.50Electric lock mechanisms for use with latch locks and above kit $\quad £ 14.95$

DISCO LIGHTING KITS DL 1000K
This value-for-money kit
features a bi-directional sequence. speed of sequence and frequency of direction
change, oeing change oeing variable by
means of potentiometers and
incorporates a master dimming contral
Du, 100K
A lower cost version of the above, featuring undirectional crannel sequence with speed variable by means of a pre-set pot. Outputs switched only at mains zero crossing points
to reduce radio interference to a minimum Optionat opto input DLA1 $\mathbf{£ 8 . 9}$ Allowing audio !"beat") -light respanse.
DL3000K
This 3 channel sound to light kit features $2 e r o$ voltage switching, automatic level control \& built in mic. No connections to speaker or amp required No kiabs to adj
to mains supply \& lamps (1Kw Channel)

Over the past few years, MJL have helped to change the face of stage lighting in the UK With a steady growth of new products, at competitive prices, many hundreds of theatres and bands have afforded systems that have previously been out of their reach. We are now pleased to announce over a dozen new products featuring $0-10$ volt technology. We are now placed as the Countries leading supplier of lighting electronics, sowhetherits just 6000 watts you need of 600,000 watts, MJL DELIVERS IT BEST.

Contact our sales with your requirements.

MJL LTD
 45 Wortley Road

West Croydon, Surrey, U.K
Phone: Mon-Fri 9-5 01-6894138

DEBUGGING AND FAULT-FINDING

Having looked at the types of test gear available and considered ways of acquiring it, our fourth special feature offers some suggestions on how to use it.

As we have pointed out elsewhere in this issue, test equipment is likely to find employment in three main areas - design and development, production, and fault-finding on completed and previously functional equipment. Production testing is only employed in industry where large numbers of identical units are being assembled, and is therefore of little relevance to the hobbyist. Similarly, anyone capable of producing their own designs is unlikely to need us to tell them how to use their test equipment. For this reason, we will concentrate here on the test procedures involved in debugging new equipment and locating faults in finished equipment.

Debugging

This is the process of getting a new design or installation working correctly. The first necessity is to get a firm idea of what the equipment should do and what it should not.

Figs 1 (above) and 2 (below) A couple of design traps here, both due to not allowing for leakage current.

It is advisable to check power supply lines for short circuits, correct routing and make sure they go nowhere that they shouldn't. Other wiring should also be checked but wait a day or so if you are the one who wired it in the first place. This will reduce the risk of your making the same mistake twice. Similar comments apply to the construction of PCBs but mistakes here will tend to be components in the wrong place, the wrong way round or even the wrong value.

When all appears to be correct, the moment of truth arrives. Switch it on. Three things are now possible: it appears to work, it does not work or it emits a cloud of smoke. These have been listed in order of increasing cost.

If the first possibility occurs then you can proceed with your tests to make sure that all the parts of the circuitry work as designed. Be very wary of circuits which work but you cannot explain why. In the second instance, if the unit just sits there not working, you must find out why. For logic circuits try turning off and on a few times. If it then starts to work your problem is undefined logic states at power up, see Fig. 3. This can usually be avoided by a power-on-reset circuit at strategic points. If this is not possible then you must re-design the logic so that it has no hang-up states.

Analogue circuits can also exhibit this type of problem if the power supplies turn on in the wrong sequence. This is usually due to parasitic thyristor action in some ICs and can only be avoided by changing the type of device or including circuitry to prevent it. A more common problem in analogue circuits is that they often

Fig. 3 A problem with oscillator start-up due to undefined logic states at switch-on.
contain capacitors for signal path coupling, decoupling and response shaping. At switch-on these must charge up via their associated circuitry to their operating voltage. This can put potentially damaging strains on other parts of the circuit or output devices. This is especially true in some types of audio amplifier.

If you are unfortunate and your circuit produces clouds of smoke when you turn it on... turn it off. Before everything cools make a note of which components were involved. Then you can test all the active devices connected to these components to make sure they are still functional. If, not replace them, checking carefully that they are correctly connected. Now study the circuit and see what could cause excess power, not forgetting that high frequency oscillation has killed many a homebrew amplifier with incorrect compensation.

Digital circuits can suffer from a particularly awkward type of problem as they operate very quickly but not instantaneously. The problem occurs when signals change state, especially where the outputs from a multibit counter are being decoded. What happens is that after a clock pulse the outputs start to change state. Unfortunately not all of them change state at the same time and the signal paths through the decoding logic can take different times. This means that the decoding logic "sees" a series of logic combinations which, although they are of very short duration, can give rise to spurious outputs. This does not matter too much where the output drives a slow, level sensitive device. These spurious outputs are called" glitches". The usual method of avoiding them is to prevent any action being taken until the decoding logic has had time to settle down. Then the result is stored in a latch and held while the next change occurs. Glitches and timing errors are among the most common causes of faulty operation of logic circuitry. Most of the remaining faults are caused by the designer not fully understanding the full purpose of the circuit in the first place.

When designing logic circuits, bear in mind that individual devices may respond to pulses much narrower than those specified for reliable operation in the manufacturers data sheet, see Fig. 4. In most logic families, the delay caused by one gate can produce a pulse which will clock a latch or counter.

Once you have got to the state where nothing is

Unless a multimeter has 'true RMS' or words to that effect written on it, like this Thurlby instrument, it will find the value it displays for its 'RMS' voltage and current readings by finding either the average or the peak value and dividing by a fixed correction factor. This is acceptable for a pure sinusoidal wave, but can be very misleading for any other wave-shape.

Fig. 4 A design problem with glitches; this particular problem took about 6 hours of frustration to find; when eventually located, the glitch pulses were only a few nanoseconds wide and very difficult to see. The basic problem here is using a device designed for synchronous logic in a non-synchronous application.
actually destroying itself you can start to find out where the signal stops. The process from now on is very similar to fault-finding.

Fault-finding

This is the process of finding out what has gone wrong with a piece of equipment which has previously worked satisfactorily but for some reason has failed.

The first operation is to remove any obvious faults such as short circuits on input or output. Next check all wires for breaks or poor joints. Look at connectors for damage or misuse. If this reveals nothing then examine the circuitry for mechanical damage and foreign bodies (including coffee, fruit juice, beer, jewelry, dead insects etc.). Repair any damage and remove unwanted contamination with a suitable solvent and allow to dry thoroughly.

If the circuit has suffered a catastrophic failure, ie things burnt or fused, check all components associated with the cause of the fault very carefully. When this is complete, switch on and observe. If the original cause of the fault was not found it is wise to include some sort of protection such as reduced supply voltage and current limiting with a suitable resistor. When all appears to be safe you can remove the protection and proceed to eliminate any remaining problems.

There are three main approaches to finding noncatastrophic faults. The first and least reliable is to poke around with a multimeter and guess. In the hands of an expert with years of experience this can sometimes be very quick But not always. The other methods are somewhat slower but more reliable.

The second method is to start from the input and check that the correct signals appear at the input and output of each stage. For this type of testingyou will need a signal source and probably an oscilloscope or possibly a bench amplifier with AM and FM detectors for radio work In this way it should be relatively easy to pinpoint where the signal stops and thus find the fault.

The final method is to work from the output backwards. This requires that the loudspeaker or other output device is connected and working. Your signal generator must be controllable so that you can inject suitable stimuli into the various stages. Once again when you find the stage where the signal is lost that is usually where the fault is.

Either of the two latter methods will give valid results and the one you choose will be a question of personal preference tempered with consideration of the nature of the fault and the equipment available to you.

Bugbears

The worst fault to find is one which is intermittent. In most cases it will disappear totally for the period you are testing the equipment and you will need to coax it out of hiding. Three things can be used here, the first is the 'engineering thump' to get it rattled, then there is heat treatment with a hairdryer or table lamp and finally the cold shoulder using one of the freezer aerosols now on the market. Beware of the latter near valve equipment.

With a bit of luck one of these methods will lead you to the culprit. This will usually be either a crack in the PCB, dry joint, bad contact or broken component.

Faults which only manifest themselves after a period of operation are often due to heat. In old valve equipment the effect can be to make capacitors leaky (insulation resistance decreases) or to dry them up if electrolytic (capacitance reduces drastically). Resistor values also change with time and valve cathodes become less efficient. All these effects lead to incorrect operation. Semiconductor equipment does not usually suffer quite so much from this problem but is more vulnerable to damage from misuse.

Test Traps

However you go about testing a piece of apparatus and whatever equipment you use to do it there are a few basic things which must be borne in mind. The first is that all practical test equipment has some effect on the circuitry being tested. In many cases the effect will be negligible but sometimes it will not. Times to take care are when measuring low voltages in high impedance circuits or low currents in low impedance circuits, as in Figs 5 and 6. In either case using a moving coil type of multimeter is likely to result in a reading which is far removed from the normal value and may also seriously affect the circuit operation. In bad cases damage may also occur, usually to the circuit under test.

Fig. 5 (left and 6 (right) Classic problems with meters' finite impedance.

Another instance where erroneous readings may occur is when trying to read $D C$ values in the presence of large AC signals. An example of this is measuring DC current between a bridge rectifier and reservoir capacitor in a power supply. The result will probably be a large drop in capacitor voltage and a somewhat strange reading on the ammeter. The reason for this is that the current only flows for a small proportion of the mains cycle and will therefore have a peak value many times that of the DC output current. Putting in your ammeter adds an ohm or so to the circuit and also some inductance. The effect of this is to restrict the peak current and therefore the amount by which the capacitor is charged.

Another example to bear in mind is to be found when connecting an oscilloscope probe to a high impedance, high frequency circuit. As shown in the diagram (Fig 7)
this can severely distort the amplitude response of a simple high pass filter and could cause malfunction where none previously existed.

Fig. 7 Don't forget that oscilloscopes apply a load to the circuit which is not always negligible. Frequency counters, too (below) can also give significant circuit loading.

A final example is where a meter is connected between the wrong points. This can cause the circuit to fail when the meter passes enough current to the base circuit of a simple charge pump pulse detector, Fig. 8. In rare instances it has been known for measuring devices such as frequency counters, oscilloscopes and others with internal oscillators to inject spurious signals into the circuit being tested causing great puzzlement.

Fig. 8 An example of a test instrument stopping a circuit from working at all.

The final problem worth mentioning is earth loops. You may have heard that they are not desirable in amplifiers, well, nor are they in test gear. Unfortunately they are all too easy to create. Whether you buy or make your equipment you will probably find that, if it is mains powered, one terminal or test lead will be connected to earth via the mains. This is not a big problem while all your tests are ground referenced as you can bond everything together with a nice thick wire. The problem comes when floating measurements are needed. The choice is either to use battery powered equipment or instruments with dfferential inputs. There is actually another way but it is prone to errors and potentially lethal so don't do it!

CLEF Electronic MUSIC

 MICROSYNTH , Mor ind PERCUSSION MICROSYNTHviriable angle LFO phaser, internal COMPONENT KIT E89

IIIITा!

 THREE PIECE BACKING BAND Generates the sounds of three instrumentailist
DRUMS +
DRUMS + BASS + KEYBOARDS Over 3,000 chord changes (60 scores) on 132 dif-
ferent chords-extendable to 20 c scores. Master Rhythm also required FULL KIT £265 EXTENSION £125

88/72 NOTE PIANOS SPECIALISTS SINCE 1972

COMPONENT KITS 88 NOTluding Keyboard $£ 268$ 72 NOTE
The above may also be purchased in four parts.

DOMESTIC KITS

STAGE MODEL
72 NOTE Cabinet \& Stand

MASTER RHYTHM PROGRAMMABLE DRUMS Twenty-Four Rhythm programm-
able Grum Machine with twelve instruments. Eight sections are ex tended to 24/32 measures for two bar programming. Sequence opera tion and instrument tone adjust.
COMPLETE KIT STRING ENBEMBLE E198.50 ROTOR-CHORUS $£ 98.00$ SOUARE FRONT KEYBOARDS
 KINSWITCH ITEMS ALSO AVAILABLE

TELEPHONES AND ACCESSORIES LATEST B.T. TELEPHONES AVAILABLE FOR EXTENSION USE

SLIMTEL - New one piece pushbutton 'phone from Telecom, includes last number redial and silence feature in ivory colour only £20.87. wall mounting kit for above $£ 2 . € 1$.
STATESMAN - Pushbutton inphone. Colours available: maroon, stone, brown and grey $£ 26.09$, wall mounting kit for above $£ 2.61$. AMBASEADOR - Pushbutton inphone. Colours available, brown, grey and stone $£ 43.44$, wall mounting lit for above $£ 4.30$.
B. T. HAWK - Cordless inphone, pushbutton, last number redial, paging device, grey only $£ 146.96$.
Allabove telephones are approved for connection to B. T. systems and are fitted with the new Jack Plug.

B. T. TYPE TELEPHONES

Type 8746 - Dial, new system, factory refurbished colour grey, other colours as available £17.39.
Type 746 - Dial, reconditioned, colours as available $£ 13.48$
Type 741 - Wall mounting, dial phone, reconditioned colours as available £18.26.
Type Trimphone - Dial, recondition, colours as available £20.00.
ACCESSORIES
Cable - 4 wire 0.13 p per meter up to 100 m orner sizes available. Sockets - New type LJU master 2/4A £3.91, New type LJU secondary $2 / 6 \mathrm{~A} £ 2.74$, IDC disposable wire insertor 0.35 p .
Line Cord - New type plug and spade terminals $£ 1.44$. Line cord New type plug - coiled lead and spade terminals $£ 1.44$.
Block Terminals - Type 52A 4 way, various colours as available 0.78 p .

We have many other types of accessories available, including: Dials, Switches and Buttons, Jack Plugs and Sockets, Jack Adaptors, Cables, Block Terminals, Telephone Cord, Mic, inserts and Bells.
NOTE: It is illegal for the consumer to install his own sockets or to alter existing B. T. installations in any way
For full details of Telephones, Cordless Phones, Speaker Phones, Auto Dialers, Answering Machines and Novelty Phones available as well as the full range of accessories please send a large S.A.E.
All prices exclude V.A.T. add $£ 2.17$ p\&p per telephone, $£ 2.85$ p\&p per drum cable and $£ 1.50$ p $\&$ for accessories. Add V.AT. at 15% to your order total. Send cheques or postal orders only to:
Capriol Systems, Units 19-26 Sanders Lodge Ind. Est., Rushden, Northants. Allow 21 days for dellvery.

VERSATILE EPROM EMULATOR

Following on from last month's article in which the design process was examined in some detail, Mike Bedford describes the construction of the board and offers some advice on interfacing it to your microcomputer.

Construction is quite straightforward and, with the exception of link selection, the board requires no setting up. The circuit has been artworked as a single sided board to keep its cost to a minimum. The inevitable result of this, in a circuit of even moderate complexity, is that there are a number of wire links on the board. It is suggested that these are fitted first.

Sockets for the ICs are not absolutely essential, but since their omission would not greatly reduce the component cost it is suggested that they are used, especially for the 6116 L devices. The proper precautions (ie, not touching the pins) should be taken when handling the CMOS devices. These are the 6116Ls and the 4071.

No assumption should be made regarding the state of charge of the PCB battery as supplied. It should not be placed pins-down on a conducting surface, but neither should the board be expected to function correctly in battery back-up mode until it has been powered up for a number of hours, hence allowing the battery to charge.

Fig. 8 Overlay diagram of the PCB.

For users not wishing to fully populate the board, IC11 should be fitted to give a 2 K board whereas IC11 and IC10 should be fitted to give a 4 K configuration. When emulating EPROMs smaller than 2764 s , unless tied low by use of pull down resistors, the unused address lines (A11 and A12 on the 2716 and A12 on the 2732) will float high, causing the emulated RAM to occur at the top of the 8 K space on the host system. So long as this is realised it presents no problems unless, of course, the board is only partially populated, in which case non existent memory will be accessed. To avoid this problem any such unused address lines should be connected to 0 V .

Links LK3 - LK6 should be fitted to select whether or not battery backed up operation is required on each of the RAMs. LK3 affects IC9, LK4 - IC10, LK5 IC11 and LK6 - IC12. In each case, if the board is held component side upmost with the TANBUS edge connector at the right of the board, connecting the centre to the left pin of the link will select battery backed-up operation whereas connecting the centre to the right pin will select the system 5 V supply. If the non-battery backed up option is selected for a particular position, a less expensive 6116 or 2016 device may be substituted for the 6116 L .

Links LK1 and LK2 are fitted onto a 14 pin DIL header which then plugs into a DIL socket on the board. Figure 9 may be used to

IDC connector pin no	EPROM signal	$\begin{gathered} 2716 \\ 2732 \\ \text { pin no } \end{gathered}$	2764 pin no
1	A12 (Only 2764)	-	2
2	A0	8	10
3	A11 (Not 2716)	21	23
4	A1	7	9
5	OE	20	22
6	OV	-	-
7	CE	18	20
8	0 V	-	-
9	A3	5	7
10	A2	6	8
11	A5	3	5
12	A4	4	6
13	A7	1	3
14	A6	2	4
15	A9	22	24
16	A8	23	25
17	D0	11	
18	A10	19	21
19	D2	11	13
20	D1	10	12
21	D4	14	16
22	D3	13	15
23	D6	16	18
24	D5	15	17
25	0 V	12	14
26	D?	17	19

Table 1 Details of the connections required between the emulator and the EPROM socket.

Fig. 9 Link arrangements to give various positions of the board within the host system address space.
select these links to give the required positioning of the board within the host address space. After building up the board, the final aspect of construction is the

PARTS LIST

RESISTORS (All $1 / 4$ W 5\%)		Q1	BC184
R1, R 5	$1 \mathrm{k5}$	Q2	BC214L
R2	330 R	D1	1 N4001 or similar
R3, R4	10k		
R6	68 R	MISCELLANEOUS	
RP1-RP3	$47 \mathrm{k}, \mathrm{SIL}, 8$		
	commoned	SK1	2x32 way, A+B DIN Euro Connector,
CAPACITORS ${ }^{\text {C1-8 }}$ 10n Ceramic		SK2	male angled pins 26 way low profile
${ }_{C 9}$	$\begin{aligned} & \text { 10n Ceramic } \\ & 47 \mathrm{u} \text { 16V axial } \end{aligned}$	SK2	male PCB mount-
	electrolytic		ing connector
C10	470p ceramic	LK1 \& LK2	14 pin DIL headerin 14 pin DIL socket
SEMICONDUCTORS		LK3,4,5,6	0.1 "' pitch, 3 way
IC1	74LS04		Molex connectors
IC2	74LS32		with 2 way link
IC3	74LS08	B1	$3.6 \mathrm{~V} 100 \mathrm{mAh}, \mathrm{PCB}$
IC4	7415139		mounting nicad
IC5	74LS245		battery
IC6,12,13,14,15	74LS244		
IC7	4071 (OR		
1C8,9,10,11	$\begin{aligned} & \text { 6116LP-3 (OR } \\ & \text { 6116P, 6116P, } 2016 \\ & - \text { see text) } \end{aligned}$	PCB; sockets for ICs; female IDC connector to fit SK2; ribbon cable; 24 and/or	

making up of a cable to connect the emulator to the EPROM socket on the target system. This will consist of a 26 -way female IDC connector, a length of ribbon cable and either a 24 pin or 28 pin DIL header. Separate leads will be required for $2716 / 2732$ and for 2764 devices unless there is room on the target board to enable only the lower 24 pins of a 28 pin DIL header to be plugged into the EPROM socket, in which case the same lead may be used for all these EPROMs. Table 1 shows the details required to make up the cables.

A length of ribbon cable can cause read errors from the target system due to noise pick-up resulting from the capacitance between adjacent conductors. This is a particular problem since the signals present on EPROM sockets are not usually intended to drive lengths of ribbon cable. The problem is reduced by keeping the cable length to a minimum, and $12^{\prime \prime}$ should be considered an absolute maximum. Initial experimenis also showed that a good

PROJECT : EPROM Emulator

Fig. 10 Flow diagram showing how data should be written to the emulator from the host system via a parallel port.
earth connection is essential between the emulator and the target system; the single ribbon cable conductor could well be inadequate and a separate, thicker wire might be required. It was also found that the emulator can be sensitive to the path taken by the cable. In particular, care should be taken to ensure that it is not stretched tightly across the target board or interference may result.

Using The Emulator

Before making use of the emulator, the user must first check that it is compatible with the

Fig. 11 Flow diagram showing how data should be read from the emulator by the host system via a parallel port.
target system. This is determined by viewing the access times required by the target system in view of the fact that, if 150 nS RAMs are used on the emulator card, the OE or CE to data valid time (whichever is later) will be about 210 ns . This means that the emulator will generally work with target systems having processor frequencies up to about 2.0 MHz In fact, the prototype has been used consistently at 1.7 MHz and with faster RANs at 2.2 MHz

Another thing to remember about the emulator is that only one of the ports may have access
to the memory at any one time. This card has been designed so that the port to the target system is the one which is normally enabled, but whenever the development system requires access it takes priority, hence denying access to the target system. The host computer will thus always be able to read or write to the RAM. The fact that the target port will sometimes be denied access to the emulator is not a big problem because whenever the development computer writes to the emulator it will generally be to change the program and, accordingly, it will usually be required to do a target system reset.

The method of driving the emulator depends very much on which method of interfacing is used. If the board is interfaced directly onto the system bus of a 6502 or 6809 based computer, there is really nothing to be said. It is simply a matter of writing the data to the emulator in just the same way as to any other memory on the computer. On the other hand, the hardware for implementing a stand alone emulator with an RS232 interface has not yet been described, so the method of using the emulator in this configuration will be left to a future article. The only interfacing method which therefore requires any amount of instructions is via a parallel port. Since a variety of different machines employing various PIAs, PIOs \& VIAs could be used it seems pointless to give a BASIC or assembler program for one particular hardware. One flow diagram is for transferring data from the computer to the emulator and another for carrying out the reverse process. In either case the following signals require connecting to PIA pins: A0-A12, D0D7, F/W and SEL In addition, $\varphi 2$ should be connected to +5 V and link 2 should be selected to the ' d ' position.

BUYLINES

> All of the semiconductors (including the various memory options), the passive components, the SIL resistors, etc, are available from our regular advertisers. The only item likely to cause any problems is the PCB mounting nicad; we obtained ours from a trade source, but if you are unable to find an identical item there is a Maplin equivalent which has slightly different pin spacing. The PCB is available from our PCB service, see page 54.

REQUIREMENT: AMPLIFICATION SOLUTION: CRIMSON!

More than ever, Engineers, Enthusiasts, \& Professionals require a reliable source of quality amplification, crimson continue to meet this demand with a comprehensive range to suit virtually every application and support this with friendly advice and back-up. Our prices have remained stable for 18 months and with two regional distributors and our own mail order system, there has never been a better time to
choose the best.
Mrooulss

Power amplifiers bipolar type. Incorporating full electronic protection
Power amplifiers bipolar type. Incorporating full electronic protection,
integral heatsink bracket, high slew/low distortion circuitry (<0.01\% THD TYPICAL)
TYPE MAXO/P SUPPLY (DC) PRICE
CE608 GOW/8R $\quad+/-35 \mathrm{~V} \quad$ f21.50

$\begin{array}{llll}\text { CE1008 } & 120 \mathrm{~W} / 8 \mathrm{R} & +1-45 \mathrm{~V} & \mathbf{~} 28.00 \\ \text { CE1704 } & 200 \mathrm{~W} / 4 \mathrm{R} & +1=45 \mathrm{~V} & \mathbf{5 3 5 . 5 0} \\ \text { CE1708 } & 180 \mathrm{~W} / 8 \mathrm{R} & +1-60 \mathrm{~V} & \mathbf{5 3 5 . 5 0}\end{array}$

Power amplifiers Mosfet type. Ideal for heavy duty use - i.e. disco's or
driving line transformers, itegral heatsink bracket, $(<0.02 \%$ THD TYPICA
driving line transformers, itegral heatsink bracket, $\{<0.02 \%$ THD TYPICAL $\}$

FE908	90W/8R	$+/-45 \mathrm{~V}$	$\mathbf{f 3 0 . 0 0}$
FE1704	$170 \mathrm{~W} / 4 \mathrm{R}$	$+/-45 \mathrm{~V}$	$\mathbf{£ 3 9 . 0 0}$

Pre-amplifiers stereo modules with R.I.A.A. eq. M.M. $\&$ line input, needs vol and bal pots and input switching. Can be used with MC2 module to allow use of low O/P MC cartridges.
$\begin{array}{llll}\text { CPR1X } & \text { STEREO } & +/-12 \mathrm{~V} / 20 \mathrm{~mA} & \mathbf{f 3 3 . 9 0} \\ \text { MC2 } & \text { STEREO } & \mathrm{t} /-12 \mathrm{~V} & \mathbf{f 2 3 . 0 0}\end{array}$
Win: UREicai
CPR2 STEREO $+/-12 \mathrm{~V} / 20 \quad \mathbf{~} 47.95$

Full details of our complete range including heatsins, toroida
ull details of our complete range including heatsins, toro

P.S.K.	M/Ckit	Pre-amp power supply
$\mathbf{E 2 5 . 0 0}$		
	$\mathbf{£ 2 0 . 0 0}$	

PROPOMEB

A new range of 19° rack mounting power amplifiers are undergoing field trials for launch later this year. Please contact us if you have a particular requirement for this type of amplifier as the final design will depend on your needs!

TOLTBIT
Send cash with order or quote Acces/Mastercharge card no. All prices
include VAT. P\&P. include VAT, P\&P.

$\begin{array}{ll}\text { London: } & \text { Bradiey Marshall } \\ \text { North. } & 325 \text { Edgware Road. }\end{array}$
North: $\quad \begin{aligned} & \text { Wilmslow Audio. } \\ & \\ & \\ & \\ & 35 / 39 \text { Church Str }\end{aligned}$
35/39 Church Street Wilmslow.

ExPCil

No problem, but as postage varies so much please write for a proforma
No probl
invoice.

ETI PCB SERVICE
In order to ensure that you get the correct board，you must quote the reference code when ordering． The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third is the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until we receive payment．

1979	
口	E／794－1 Guitar Effects Unit ．．．．．． 3.04
ㅁ	E／794－2 Click Eliminator．．．．．．．．． 7.64
\square	
1980	
口	E／808－3 UI
ロ	E／8010－1 Cassette In
口	E／8010－2 Fuzz／Sustain Box
\square	E／8012－3 Four Input Mixe
1981	
\square	E／811－1 LED Tacho ．．．．．．．．．．．． 4.75
\square	E／811－2 Multi－Option Siren．．．．．． 3.68
ם	E／812－2 IR Alarm（4 boards）．．．．． 7.64
\square	E／812－5 Pulse Generator ．．．．．．．．．． 4.1
\square	E／814－2 Drum Machine（2 boards）
\square	E／814－4 Guitar Note Expander ．．．．． 3.6
\square	E／816－8 Waz－Phase
	E／816－9 Alien Attack
\square	E／817－1 System A－Input
	（MM or MO．．．．．．．．．．．．．．．．．．．． 3.05
\square	E／817－2 System A－Preamp．．．．．． 5.95
口	E／817－3 Smart Battery Charger．．．．． 2.27
口	E／818－3 Hand Clap Synth．．．．．．．．． 4.57
\square	E／818－5 Watchdog Home Security（2 boards）．．．．．．．．．．．．．．． 6.1
\square	E／819－1 Mains Audio Link （3 boards） \qquad 8.4
	E／819－4 Laboratory PSU．．．．．．．．．．．． 5.21
－	E／8110－1 Enlarger Timer．．．．．．．．．．． 3.91
\square	E／8110－2 Sound Bender．．．．．．．．．．．3．05
\square	E／8111－1 Voice Over Unit ．．．．．． 4.4 .57
\square	E／8111－2 Car Alarm．．．．．．．．．．．．．． 3.23
口	E／8111－3 Phone Bell
	E／8112－4 Com
1982	
口	E／821－3 Guitar Tuner（2 boards）．．．6．38
ㅁ	E／822－1 Ripple Monitor ．．．．．．．．．．． 2.21
ㅁ	E／822－2 Allez Cat Pest Repeller ．．． 1.93
\square	E／822－5 Moving Magnet Stage ．．．． 4.01
口	E／822－6 Moving Coil Stage ．．．．．．． 4.01
\square	E／823－4 Capacitance Meter （2 boards） \qquad 11.66
\square	E／825－1 DV Meg．
\square	E／826－1 Ion Generator （ 3 boards） \qquad
\square	E／826－4 MOSFET Amp Module．．．． 7.80
\square	E／826－5 Logic Lock ．．．．．．．．．．．．． 3 ． 3
\square	E／826－6 Digital PWM ．．．．．．．．．．． 3.83
	E／826－7 Optical Sensor

ㅁ	E／826－9 Oscilloscope （4 boards）．．．．．．．．．．．．．．．．．． 13.34
\square	E／827－7 TV Bargraph Main．．．．．．． 5.24
口	E／827－3 TV Bargraph Channel．．．．． 2.62
口	E／827－4 Hotwire．．．．．．．．．．．．． 3.02
口	E／827－5 Bridging Adapter ．．．．．．．．． 2.74
\square	E／828－1 Playmate（3 boards）．．．．．． 8.28
ㅁ	E／828－4 Kitchen
口	E／829－1 Auto Volum
\square	E／829－2 Dual Logic Prob
\square	E／8211－4 Pulse Generator ．．．．．．．． 6.08
ㅁ	E／8212－1 ELCB ．．．．．．．．．．．．．．．．．．． 2.77
口	E／8212－2 Servo Interiace （ 2 boards） \qquad 6.75
\square	E／8212－4 Spectracolumn ．．．．．．．．． 5.54
口	E／831－1 Fuel Gaug
\square	E／831－2 ZX ADC
\square	E／831－3 Programmable PSU
－	E／833－1 SoundBoard．．．．．．．．．． 12
口	E／833－2 Alarm Module ．．．．．．．．．．． 3.62
口	E／833－3 ZX81 User Graphics ．．．．．．1．07
ㅁ	E／833－4 Logic Probe ．．．．．．．．．．．．．． 2.50
口	E／834－1 Real Time Clock ．．．．．．．．．． 8.74
ㅁ	E／834－2 Thermemeter （2 boards）．．．．．．．．．．．．．．．．．．．．．．．．． 9.74
	E／834－4 Stage Lighting－
	E／834－5 Stage Lighting－Display 3.4
	E／835－1 Compressor／Limiter ．．．．．．6．19
$\bar{\square}$	E／835－2 Single PSU ．．．．．．．．．．．． 3.16
\square	E／835－3 Dual PSU
口	E／835－4．2 NDFL Amp ．．．．．．．．．． 7.88
\square	E／835－5 Balance Input Preamp．．．．． 3.23
	E／835－6 Stage Lighting Autofade．
\square	E／B35－7 Stage Lighting－ Triac Board．
口	E／836－1 to 3 PseudoROM （3 boards）
ㅁ	E／836／4 Immersible Heate
\square	E／836－5 Atom Keypa
	E／837－1 Flash Sequencer ．．．．．．．． 2.67
ㅁ	E／837－2 Trigger Unit Main Board．．． 2.67
D	E／837－3 Trigger Unit Transmitter．． 1.66
ㅁ	E／837－4 Switched Mode PSU ．．．． 16.10
－	E／838－1 Graphic Equalis
口	E／838－2 Servo Fail－Safe （four－off）．
	E／838－3 Univer

How to order：indicate the boards required by ticking the boxes and send this page，together with your payment，to：ETI PCB Service，Argus Specialist Publications Ltd， 1 Golden Square， London W1 R 3AB．Make cheques payable to ETI PCB Service．Payment in sterling only please． Signed Prices subject to change without notice．

Name
Address

Total for boards
Add 45p p\＆p
Total enclosed

COMMUNICATIONS SATELLITES (PART 2)

Roger Bond continues his look at communications satellites with a look at the Single Channel Per Carrier transmission system, beam polarisations and the different satellite circuits we connect up to.

Single channel per carrier (SCPC) is similar to SPADE except that SPADE is on a demand assignment basis, SCPC is preassigned. As before a 36 MHz transponder is divided into 800 channels but to avoid interference with the system pilot the two channels at mid band are not used. This leaves 789 usable channels.

As in the SPADE system, a 14 kHz audio channel is converted to a digital rate of $56 \mathrm{Kbit} / \mathrm{s}$. Add to this synchronisation pulses and the bit rate increases to 64 Kbit/s. About four years after SPADE, SCPC was introduced. Since there was a good demand for data transmission at a higher rate than could be used on SPADE, a preassigned link had to be established and there are several $48 \mathrm{Kbit} / \mathrm{s}$ and $50 \mathrm{Kbit} / \mathrm{s}$ data links over SCPC.

A transponder uses so many carriers that the frequency deviation of each must be limited to 250 Hz compared with 80 kHz permissible deviation when operating in a frequency division multiplex mode(FDM) using, say, a dozen carriers.

The low speeds of data are $1.2 \mathrm{Kbit} / \mathrm{s}, 2.4 \mathrm{Kbit} / \mathrm{s}$ and $4.8 \mathrm{Kbit} / \mathrm{s}$. Medium speeds are $9.6 \mathrm{Kbit} / \mathrm{s}, 19.2 \mathrm{Kbit} / \mathrm{s}, 48$ $\mathrm{Kbit} / \mathrm{s}, 50 \mathrm{Kbit} / \mathrm{s}$ and $56 \mathrm{Kbit} / \mathrm{s}$. So a TDM (time division multiplex) terminal could interleave several low speed data streams into say a $48 \mathrm{Kbit} / \mathrm{s}$ stream. This is an example of how flexibility of ground equipment can cope with traffic demands. One other point of interest: a 4 kHz speech channel is converted to $64 \mathrm{Kbit} / \mathrm{s}$ of digital information; therefore, with data speeds of $56 \mathrm{Kbit} / \mathrm{s}$ we are approaching this limit. However, lower speeds can be combined to give this maximum.

Such demands must of course be met in the air and to cope with heavy traffic. four of the transponders on both Intelsat IV and Intelsat IVA can be switched from global beam to spot beam by remote telemetry from the ground.

A frame is a cycle of bursts from all stations. Each burst starts with a preamble of station identification, signalling and so on. There are also start of message words which aid synchronisation. Only one station transmits a reference pilot which is used by all the other stations for automatic frequency control (AFC) and automatic gain control (ACC).

If speech is being transmitted, a voice detector switches on the carriers, switching them off again during silent periods to conserve both satellite and earth station power. However a speech detector would cause clipping and sound quite annoying to a listener but if a
delay line is used in the speech path to delay the speech by a few milliseconds while the detector switches on the carriers, then nospeech would be lost. For data transmission, the voice detector is disabled and the channel is in continuous use.

The error rate for SCPC is 1 in 10^{4} which is good enough for speech but poor for data. This can be improved to 1 in 10^{7} by the rate $3 / 4$ encoder or the rate $7 / 8$ encoder. To produce an error correction code, the rate $3 / 4$ encoder converts the incoming data stream into three parallel streams i, j, k and arithematic operation produces a fourth stream p from a parity generator.

These four streams are combined and fed into a fourphase, phase shift keying (PSK) modulator as two parallel $32 \mathrm{Kbit} / \mathrm{s}$ streams, Fig. 1. To get four phases we simply divide a circle into four to give angles of $0,90,180$ and 270 degrees. These correspond to the digital states 00 , 01, 11, 10.

So if we clock each of the two phase modulators of Fig. 1 with quadrature components of a 46 MHZ carrier, the output from the adder will give one of the four states above. Then depending on the channel being transmitted, the 46 MHz PSK carrier is mixed with a frequency to give an IF for that channel which will be within the range $70 \pm 18 \mathrm{MHz}$.

In the receive direction, there are two down converters which translate the 4 GHz first into an IF centred on 70 MHz then to a band centred on 46 MHz . The automatic gain control has a range of 14 dB and uses the power of the system pilot as reference. The range of the automatic frequency control is $\pm 40 \mathrm{kHz}$ and once again centres on the system pilot.

Fig. 1 PSK modulator block diagram.

With the increasing demand for international data links, SCPC is here to stay and whereas a Standard A type earth station with a 30 m diameter aerial is required for FDM, a standard B earth station with a dish of only 12 m diameter is needed for SCPC/PSK.

Dual Polarisation

The radio spectrum is very crowded, particularly in the L and C bands; for example, the $6 / 4 \mathrm{GHz}$ satellite frequencies are also used for terrestrial radio. Any method of making better use of the available frequencies is worth trying. One such method is the use of opposite polarisations of the same carrier to carry different information.

Circular polarisation is used, rather than plane, because this is far less affected by attitude changes in the satellite or earth station, for obvious reasons. It is fairly easy to interconvert between plane and circular polarisations, and Fig 2 shows one such device. There are devices for converting from circular to plane, and for splitting off different polarisations from each other. As a working minimum, a cross-talk of -30 dB between different polarisations is acceptable.

Fig. 2 Circular polariser in a waveguide.
There are several different aerial configurations in use. Figure 3 a shows a front fed symmetrical reflector. This is a simple arrangement but the feed horn blocks the aperture so we can use the offset reflector of Fig. 3 b . But in Fig. 3 b the signal path length to one end of the reflector is not the same as the path length to the other end.

Aerials with two reflectors are called Cassegrain. Fig. 3c shows an open Cassegrain and Fig. 3d an offset

[^3]

Fig. 4 Symmetrical beam.
Cassegrain. The main reflector is a parabola and the sub reflector a hyperbola which is thought to give a waveshape that is superior to that from a single reflector since distortions would cancel. The edges are also shaped to reduce spill over radiation and compensate for path length differences.

The object of a good aerial is to produce a symmetrical beam with low sidelobes (Fig. 4). In addition, if it is radiating waves of different polarisations, the cross polarisation (interference) must be low. There are two methods which will satisfy these requirements. One is to introduce a step in the aerial horn (Fig. 5). This has the effect of exciting a higher order mode of wave propagation in the wave guide which cancels the fundamental mode and gives good beam symmetry. The disadvantage is that this method limits the usable bandwidth of the antenna, which can be improved by further step discontinuities.

Fig. 5 (left) A step discontinuity in the feed horn.

Fig. 6 (right) A corrugated feed horn.

Another method sometimes used is to line the walls of the aerial with dielectric or install corrugations (Fig. 6). The exact nature of the field distributions is beyond the scope of this article but briefly, the electric field parallel to the aerial axis enters the grooves but the circumferential field does not. The electric field is a combination of TE and TM modes which cannot propogate down smooth walls but need walls lined with dielectric or corrugations. The propagated frequency will depend on the depth and radius of the slots which in turn will control the field pattern. The penalty of course is that these aerials cost more and are heavier than conventional flat-walled dishes.

A development in recent years is to situate the feed horn on the ground and then convey the beam up to the main reflector by means of a wave guide which consists of four reflectors, Fig. 7. All this makes for a fairly complex tracking mechanism.

Fig. 7 Beam guided to main reflector.

Satellite Circuits

The UK's aerials have to serve satellites over the Atlantic and Indian ocean. The traffic paths are as follows: a primary and two secondary paths over the Atlantic Ocean Region (AOR) and a primary and one major path over the Indian Ocean Region (IOR). This means three satellites over the Atlantic Ocean and two over the Indian Ocean Region plus spares for each region.

On the AOR major paths, Britain works to the USA and Canada and on the primary path to Africa and the Middle East. Over the IOR major path we can communicate with Australia, Japan and Hong Kong and over the primary path with some of the industrially smaller countries.

The Pacific ocean has only one satellite, the Pacific Ocean satellite, but we are not geographically placed to do any business via that satellite.

| Band | HF | VHF | UHF | L | S |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency GHz | $0.003-0.03$ | $0.03-0.3$ | $0.3-1$ | $1-2$ | $2-4$ |
| Wavelength | $10-100 \mathrm{~m}$ | $1-10 \mathrm{~m}$ | $0.3-1 \mathrm{~m}$ | $150-300 \mathrm{~mm}$ | $75-150 \mathrm{~mm}$ |
| Band | X | Ku | K | $37-75 \mathrm{~mm}$ | |
| Frequency GHz | $8-12$ | $12-18$ | $18-27$ | $27-40$ | Millimetre |
| Wavelength | $25-37 \mathrm{~mm}$ | $17-25 \mathrm{~mm}$ | $11-17 \mathrm{~mm}$ | $7-11 \mathrm{~mm}$ | $40-300$ |

Table 1 Frequency Spectrum
ETI

Fig. 8 The three satellite regions.

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering - now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success
Personal Tuition and 80 Years of Success
The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace tha: suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

EIEGRovilam

B 32560
B 32560
Out
atwes
lies
tolerance "or 0008
tolerance "om 2008.
$068 \mathrm{af} .400-50$.
CER

B. $374496.3 v a r=m$ PCN 03.1 OEENF CERAMIC DISC 1AFF, UnF 3OOVAC
ELECTROLYTIC
 Cans in several values 1

Reversible trom ic : wur Low Leak. Ammim 01 \therefore HuF, values n hovod Radial 15 values up to ni 3 vor TANTALUM BEADS in's valuestron.0! 100uF POLYSTYRENE (Seimens) $\because 9$ values 5 pF to 18 nk 'Y value
60 var

The abo

The above ranges should meet the maiority of current 'equireinenis Mention ET A. Z nen sending toi our lates more types

BRITANU'S LEADING QUALITY COMPONEETT Suppliens-send for free 32 page íz LIST

\qquad Engletield Gireer
Eunam Surrer TW20 OHB Phone 33603 Telex $2544^{-5} 5$

 Blectronically controlled Mains IronS 26.19
Features an advanced Z ncvatipe circuit in the handle, with zero-voltage switching to prevent spiking. and proportional band control for spot-on temperature withou! swing Eliminates problems of mechanical thermostats and cost of low-voltage supply operates 240 va.c. 50 watt element gives fast heating and recovery Temperature adjustable from 280 to $400^{\circ} \mathrm{C}$. Made in our own works. and offered with burn-proof mains lead and long-life bit, at a special mail-order price of $£ 2619$. including postage and VAT. Send cheque/PO to LITESOLD ring for Access/Barclaycard sales. or send for leaflet and order form

Spencer Place 97.99 Gloucester Road Croydon CRO 20N Surrey Tel: 01.6890574

INFRARED ALARM

In part two of this project, Frederick Howard gives details of the setting up and use.

The transmitter should be set up first so that it can be used to set-up the receiver. If you have an oscilloscope, connect it to the junction of IC2, pin 3 and R8 and then switch on the transmitter. A symmetrical square wave of 5 volts amplitude should be observed. If the circuit is not oscillating, try adjusting RV1. If you have a frequency counter, connect it in place of the oscilloscope and adjust RV1 until you get a reading of 50 kHz . If you do not have an oscilloscope or a frequency counter, set RV1 to its mid point. You will not be able to check that the circuit is oscillating, but if you have problems in setting up the receiver and suspect the transmitter to be at fault, you could either borrow the necessary test gear or devise a diode pump or frequency divider arrangement to make sure.

Before starting work on the receiver, set coils L1 and L2 so that their adjustable slugs are about one turn away from full insertion and, for reasons of personal comfort, temporarily disconnect the sounder. Point the oscillating transmitter directly at the receiver from a distance of one or two feet. The lens assembly can be left off of the receiver until after the setting-up operation if this is most convenient. Connect a high resistance voltmeter across C10, taking the positive lead to ground, and
adjust L1 and L2 for maximum voltage reading. For fine adjustment, move the transmitter further away from the receiver.
Switch off the units, disconnect R5 on the transmitter from the positive rail and solder it into its correct position. Switch on again with the two units positioned as before and monitor the emitter of Q8 with an oscilloscope. A pulsed signal should be observed at an amplitude of about 3 volts. The sounder can now be re-connected
and the system tested. If you do not have an oscilloscope you will not be able to test for a pulsed waveform at the emitter of Q8 so you will simply have to connect up the sounder and try out the system, hoping for the best.

In Use

The IR emitter diodes are very directional and must be pointed directly at the receiver in order to hold off the alarm. If more than one emitting diode is used the

Fig. 5. Overlay of the receiver PCB.

beam will inevitably be slightly more divergent, if only because it is almost impossible to line up several diodes with sufficient accuracy to make it otherwise. A little experimenting may be in order here, particularly if you are
planning to use the alarm over large distances. For short distances, up to about six feet, the two units may be placed side by side and the beam reflected from the opposite wall. For longer distances, up to a maximum of about 35

ALL DIMENSIONS IN mm

ALL DIMENSIONS IN mm

Figs. 6 \& 7. Drilling details of the receiver (left) and transmitter cases.
feet, the two units should be placed opposite one another and lined up carefully. Note that, for the reasons explained earlier, the receiver has a built-in delay of about twenty seconds after switch on during which time it will not detect any interruption of the beam.

ETI

BUYLINES

The SFH100 and BP104 infrared diodes are available from Avionic Systems (Heathrow) Ltd, Viscount Way, Heathrow Airport, Hounslow, Middlesex TW6 2JW, as also are the VN10LK Iransistors. None of the other semiconductors should cause any problems, but note Ihat BC178s can be used instead of BC478s - both are complementary to the BC108s used elsewhere in the circuit. Polycarbonate capacitors suitable for use as C2 and C12 in the receiver are available from Maplin (type WW25C), who can also supply suitable cases. Ambit stock a silver mica capacitor suitable for use as $\mathbf{C 3}$ in the transmitter (stock no. 04-22108) and can also supply the Toko coils (stock no. 35-03500). Almost any sounder which can operate from a 9 V supply will be suitable, and various types are available from Cricklewood, Electrovalue, TK Electronics, Watford and others. The PCBs are available from us, see page 54.

Total Test and Measurement Capability

House of Instruments Ltd.
Clifton Chambers, 62 High Street Saffron Walden, Essex CB 10 1EE Tel: (0799) 24922 Telex: 818750

READ/WRITE

Dear Sir,
The rather critical tone of your editorial note at the head of READ/WRITE in your May issue of Electronics Today, is, I suspect somewhat unjustified.

You imply that your readers do not care about Alan Todd's problem, because we have not come up with a solution to it.

I would suggest that his difficulty is in fact incapable of practical solution. A reasonably obvious solution viz. the use of solenoids, is, as Alan himself tells us, impractical.

The trouble is that the human body is an immensely complicated mechanism. Many people, deceived by 'The Six Million Dollar Man' believe that it is possible to duplicate its function as compactly as the original. But those of us who saw a television programme broadcast two or three years ago which went behind the myth (and which actually featured the man who survived the horrific crash sequence which was shown at the start of each $\$ 6,000,000$ Man episode) will know how far away from the truth the series was.

This sort of problem is the subject of an immense amount of research effort, for the handicapped and disabled, but such machines as exist e.g. the Possum are limited and cumbersome.

Do you really expect one of your readers to come up with a solution for you to publish - at usual rates? It would make millions!

As I say, I doubt whether there is a way to let Alan play his guitar again. But maybe all is not lost. Given enough electronic knowledge, I expect one could build a synthesizer into a guitar body, with rows of micro switches between the frets to operate chords. Further switches would complete the circuits to 'pluck' the strongs. Depending on how much control Alan has over his right hand, one could perhaps add extra rows for vibrato or echo effects or what ever else might be required. One could also use foot controls if necessary for volume.

But I am no electronics expert, and I know nothing about guitars either. Maybe this whole idea is either (a) unworkable or (b) unac-
ceptable in terms of the sound output possible. But I would like to think that with clever use of components you could build a subsititute for a stringed guitar that would be undetectable at normal audience distances. You could even paint strings on the neck of the machine!

As I said at the beginning, it's not that we don't care about Alan's problem, it's that we don't have the technical knowledge to provide any useful contribution. Probably many of your readers are like me - just about able to follow a circuit diagram to wire it up, but utterly lost if whatever it is doesn't work at the end. Never mind, burning your fingers and spilling hot solder on the cat is a better way than many of spending wet winter afternoons and just occasionally something does work.

Yours sincerely,
Henry Arnold
Huntingdon,
Cambridgeshire

Dear Sir,

Congratulations on your April issue, the subtleties of which escaped me'till I read your May editorial.

Which shows I fell hook, line and sinker. It is a good thing to be made to laugh at oneself.

Yours sincerely,
Roger Hannis
Reading
Mr Hannis may be the only reader to have owned-up but we can assure him he wasn't the only one to be fooled.

Dear Sir,
Mr Porter's letter in the March 1984 issue introduces some useful features for the improvement of a loudspeaker and I wish to raise one point. By the introduction of an amplitude correction circuit, does this not at the same time result in a phase difference in the upper range of the bass signal, and I estimate this to be equivalent to a 2μ difference at the dividing frequency. This may be small in comparison with the main time delay but should it not be taken into
account? A small change in the value of the capacitor will cope with this.

Yours sincerely
W. F. Harms
Bexhill,
East Sussex

Dear Sir,

In your April 1984 issue you published an article called Bass for Beginners. May I point out that some of the published calcuated values, particularly that for parameter C, were not entirely correct. Another problem arose in the calculation of R since, for the lower values f_{n} the terms under the square root function give a negative value and hence it follows that the absolute value must be taken before the square root is taken.

Yours sincerely,
Joel Morgan
Edinburgh
Barry Porter writes: Thanks for the opportunity to reply to the two letters - here goes . . . With regard to the point raised by W.F. Harms, as a general rule, any system that has a non-linear frequency response also suffers from phase shift. In simple terms, any network that is intended to correct the response inaccuracies will also counteract the phase shift. This appears to hold good for drive units, certainly to the limits of any measurements I have been able to make, so the acoustic output of the B200 does not contain any significant phase shift due to the equalisation network. What is present, and easily measurable, is phase shift caused by the natural HF rolloff of the bass unit, and by the LF roll-off and nearby resonance of the HF unit. Correction for these inaccuracies is possible, but quite difficult, and as no detectable improvement has been found, the extra complexity is not really justfied.

Mr Morgan raises a couple of points - he says that there is an inaccuracy for the ' C ' value but fails to say what it is! There have been several sets of formulae for speaker response calculations in use for several years - they all differ slightly, yet the results are likely)
to be more accurate at low fre-
quencies than any anechoic or free-field measurement, so there is no absolute way of showing who is right. The formulae given in the article will allow calculated response curves that are accurate to about 1 dB to be plotted, which is a lot better than I can measure at frequencies below 100 Hz . Mr Morgan is correct with his second point the bottom term should be bracketed.

Dear Sir,
As a sail plane, as opposed to hang glider, pilot I am very interested in your Vertical Speed Indicator design (variometer is a much neater name), and I shall be building at least one when time permits, but could the designer be prevailed upon to add a refinement known as Total Energy Compensation considered to be essential by sailplane pilots?

For non-gliding types, let me explain that to increase speed a sailplane (or hang glider) pilot has to lower the nose of the aircraft and dive; conversely, raising the nose slows the aircraft as it climbs. A variometer, being a very sensitive device, responds to very small control inputs even when the pilot thinks he is flying at constant speed. These climbs and descents involve only an interchange of potential and kinetic energy and any loss of height can be regained, within the constraints of the second law of thermodynamics, by reducing speed. The total energy of the glider remains essentially constant. The pilot therefore does not want these height changes to be indicated on his variometer, they confuse the important information whcih is the direction and speed of height variation caused by the air through which the glider is flying.

A total energy compensation system cancels out the unwanted signal, commonly by changing the volume of the capacity bottle in a flow measuring system by means of a diaphragm deflected by varying pilot pressure when speed changes occur. The pressure sensing system of the ETI design seems admirably suited to electronic compensation by means of a second pressure transducer in the pilot tube to provide an offset signal.

The design has caused considerable interest among sailplane pilots and a practical modification would be well received. Can you fix it?

A final word. I am not sure about open frame-work hang gliders, but if the variometer is to be fitted to a closed cockpit sailplane, the pressure sensor should be plumbed into the static vent pipework to prevent response to small pressure changes in the cockpit.

Yours faithfully,
Terence Jenvey,
Knole,
Somerset
Your points have been noted and passed to the author, who was last seen heading for his workshop: whether this was to get down to some serious prototyping or simply to hide from us, we do not know...

Dear Sir,
I have just finished filing the contents of ETI January 1983 to April 1984 inclusive and thought that you might be interested in the following observations.

It would greatly assist filing if the project/feature pages could be arranged so that they are i) totally separate, ie, not back-to-back with other articles and ii) not back-toback with advert pages.

An analysis of projects over the above period breaks down as:-

Computing

Music 5
Audio
9
Test
7
Miscellaneous 19 (including everything not in the previous four categories).

Whilst I am fully aware that this is the age of the computer, there are magazines dedicated to this subject and I, for one, would welcome more high quality audio projects. I was particularly impressed with John Linsley Hood's Audio Design Series and would welcome more of the same.

Finally, a suggestion for a future feature article - how about an article on the design of PCBs, laying down the ground rules for component placement and input/ output runs to minimise pickup, unwanted feedback, etc, etc?

I hope that you find the above of some interest; keep up the good work with one of the best electronics magazines around.

Yours faithfully,
A. G. Crane

Kings Lynn,
Norfolk
We are not sure that counting the number of projects is the best way
of indicating what emphasis we are placing on particular fields. For instance, some of the longest projects we have published have been audio ones - for example, Barry Porter's Modular Preamplifier, and John Linsley Hood's 'Audio Design' amplifier (which may have to run to four parts rather than the three originally planned, due to the amount of material). Perhaps if the number of pages were counted, a quite different apparent balance would be arrived at.

That said, there is undoubtedly a very strong interest in using computers amongst our readers, and this shows in the numbers of contributions we get on the different subject areas. Whenever we are offered a project of sufficient merit, we do our best to use it, whatever its field.

Finally, the laying out of ETI pages is difficult enough as it is without trying to impose extra restrictions on us! Let it suffice to say that we do our best to produce a magazine that is, visually, easy to follow and attractive.

Dear Sir,

Thanks for a great mag; my only complaint is where are the followup articles/projects for the Cortex 16-bit computer? Your last article entitled "Cortex BASIC Part 1" (Feb. 1983) - what about part 2? And while I'm at it, how about a few circuits to add-on. A parallel in/out would do nicely for starters!

Yours faithfully
A Gibson
Edinburgh
It's been a long time coming, but the follow up on the Cortex does seem to be arriving! Firstly, we dropped the article on Cortex BASIC after the first part because we found that Powertran were sending out a manual to kit purchasers with exactly the same information as we were intending to print. Perhaps we could have explained our decision better at the time, though.

Hardware follow-ups depend on you, the readers. We are just completing one hardware add-on (the Centronics interface, the second part of which was delayed so that we could sort out a few problems with the PCB), and others are in the offing. However, what we print depends on what we get sent by you lot out there, so if you've built something for your Cortex, and you think it would be up to our standard, let us know about it!

OACILLOSCOPES
TELEQUIPMENT D75 Dual Trace 50 MHZ
SE LABS SM1 11 Dual Trace 20 MHZ $£ 350$
$£ 200$ TELETYPE ASF33 - DATA DYNAMIC (Printer, Keyboard Punch \& Reader) RS232, 9"MONITORCasedNon-Standard Withinto $£ 75$ 12" MO NITORCased Non-Standard With info 20" Bleck WhitMONITORVIdeoin 550 ea TV Style 20" MONITOR Black\& White Video in £30 en

MULTIMETER U4324

33 SWITCHED RANGES 20 KOnms per VOLT. I YEAR GUARANTEE E $\ddagger 6$ each PgP 13
POWER SUPPLIES - Unused
VOLTEX Madel 82-635. Input 23OV: Outputs $+/ \sim 5 \mathrm{~V}$ +12V: +24V. High Current
ACDC ELECTRONICS Model 251 Uncase ea Carr. \& 7 Outputs 5V 2A $+1-12$ V 04 A … 115 each P\&P \& ACDC ELECTRONICS Model $5 \mathrm{~N} 3 \cdot 1$ Uncased Input 240 V ; Output 5V 3A......... £ 10 each P\&P§ 8TEPPING MOTORS
 Type 2. 6/12 Steps 3 Phase $12 / 24 \mathrm{~V} 11_{4}$ dia $£ 2$ ea Type 324 Steps 4 wire $5 \mathrm{~V} 3.3 A 0-250$ rom 0200 200. $2 *$ dia Type 42

моTORs

SYNCHRONOUS 2 Phase 9V AC. 375 rom Ca
Will DC step - 8 steps per rev............ \&1 ei MOTOR $12 V D C 3^{\prime \prime}$ dia $2^{4 / 4}$ dia $£ 350$ ea Psp $£$ TRANSFORMERS
ORODIAL 13.5-0.-
TOROIDIAL $0.12 \mathrm{~V} ; 0.12 \mathrm{~V} 10 \mathrm{VA}$ per winding. $\ldots \mathrm{E}$... $£ 12$ 10 off $£ 35$ Ps P\&2
AUTO 240 V Input $115 \mathrm{~V} 1 \mathrm{~A} . \ldots$. Sub-Min 12.0.12V4VA 75pea 10 off $£ 6$. P\&P $£ 2$ 15 V 0.4 A twice $£ 1.50$ e Chassis Mounting $120 / 240 \mathrm{~V}$.
QVO 33Atwice- $£ 150$ es: 20 VO 15A twice- $£ 1.50$ ee; 7.5V 3 34A twice - £3 ea

Sub-Min PULSE TRANSFORMER CenIre tapped Suitable Thyristor trigeering - 20 p өa 10 of $\varepsilon 180$.
Many other transtormers avallable - please enquire. capacitors
15,000 mid 25 V
$15,000 \mathrm{~m} / \mathrm{d} 16 \mathrm{~V}$
Terminals
1000 mta 100 V
0.68 mta 250 V
20pea 10 oft Cl 80
Compler Grade Screw
.6emar OF 10 of $£ 1$
BAMPLE OF BTOCK - SAE or TELEPHONE for LIET8 Please check avallability before ordering Min orde

WRCACAMO	STEWART of READING 110 WYKEMAM ROAD, READING, BERKB RGO 1 PL Tel: 0734 68041 Callers welcome 9am-5.30pm Monday to Saturday Inclusive

5 MHZ DX 585 a with 82 Plug-in Dual Trac EKTR Dual TB Dolay Sweep. Exal MIniatry CT436 Dual Beam 6 MiHz e Labs Strobe smb
ETROHM BAITERY MEGGER 500 V 1A twice. Metered
VO TRANSISTOR IESTER Ti................ 159
CARRIA
range of new scopes available -
Please enquire
Tantalum Bead 0.1 mfd 35 V . 10 off $£ 1.100$ off $£ 7.50$

8WITCHES
LUMINATED ROCKER 2 pole 250VBA
OOCKER 2 polec............... 50p an 10 otf 54 OGGLE Centre off DPDT each $\quad10$ off 1.80 LOTTED OPTO SWITCH....20p each 10 off $\varepsilon 1$ go Min MICROSWITCH $V 3$-Butto data 50 D each 10 off E 4 C. SOCKETS
pir-10p 22 pir15p: 14 pirsp 100 off $\varepsilon 6$
pibinisp 40 pin-25p, 16 pin- 8 p 100 oft $\mathrm{E6}$
RIBBON CABLE
10 way 50 D per m
14 war 75 D per metre 10 metres $\varepsilon 4$
PCB KEYBOARD PAD 19 PushContacts 0-9; A-F plus 3 ODtional - $£ 1.50$ ea 10 off $£ 12$
-9*; \& Blank FERRANTIPHOTOCELL type MS15 50 off 515 Pas 10 OH 14
 EPROMS 2732A $£ 5$ each miniature NEON Wire ended 10 off 50p Dual Concentic POT/SWITCH 500 K Log/250V 2A. Size $70 \times 70 \mathrm{~mm}$. New. Scaledo-10. Clear Front

LOUD SPEAKING EXECUTIVE TELEPHONES -

 PUBH BUTTONMany functiona including 10 number mamory, repea lisling etc Will connect to GPO syetem. Brand New

2 1

FOR HI-FI \& ELECTRONICS ENTHUSIASTS

CONCEPT ELECTRONICS LTD

 51 Tollington Road, London N7 6PB Mall order onlyWe are the specialist of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-a mp modules, power amp modules pre and Dower amollfier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with cases), alarm clocks, appllance timers, CB ampliflers, test equipment, control modules, music generator, battery flourescent light and high quality rack mounting cabinets etc with illustrative pictures now available at the cost of $35 p+$ 25pp\&p.

Protessional rack mounting cabinet

Pancisize	Rear Box	Price	
W H (inch)	W H	AL	
18×5	$17 \times 4.5 \times 10$	27.54	23.54
18×4	$17 \times 3.5 \times 10$	25.24	21.24
19×3.5	$17 \times 3 \times 10$	24.09	20.09
18×3	$17 \times 2.5 \times 10$	24.09	
19×2.5	$17 \times 2 \times 10$	22.94	18.94
19×6	$17 \times 5.5 \times 12$	28.69	24.68
18×5	$17 \times 4.5 \times 12$	27.54	23.54
19×4	$17 \times 3.5 \times 12$	25.24	21.24
19×3.5	$17 \times 3 \times 12$	24.09	20.09
17×3.5	$15.5 \times 3 \times 9$	21.78	17.78
17×2.5	$15.5 \times 2 \times 9$	20.64	16.64
17×4	$15.5 \times 3.5 \times 1$	25.24	21.24
17×3	$15.5 \times 2.5 \times 12$	24.09	20.08
Pl	$50 \mathrm{p} / \mathrm{p}$		

- Made of black anodised aluminium sheets or steel sheets \& Suitable for high quality amplifiers and many other purposes \$Top, side and rear cover removable for access \star Separate front mounting plate \star Heavy gauge front panel is of brushed aluminium finish enhanced with two professional handles \star With ventilation slits and plastic feet

SPECIAL OFFER

> on all aluminlum cabinets £2.00 oft orianal price offer ends 31 st

CONTROL MODULES

TY-7 Electronic touch switch
TY-11 Liaht e2.00 KIt £4.50 Aes TY-11 Light activated switch
£2.20 Kit $\mathbf{£ 3} .80$ Ass
TY-18 Sound activated switch
(Clap switch) $£ 4.50 \mathrm{Klt} \mathrm{E6} .95 \mathrm{~A}$ As. $T Y-38$ Sound activated switch
(voice-switch) £8.50 KIt £7.80 Aes.
(Recelver and transmitter)
(Recelver and transmitter)
\&17.20 Klt
\&21.05 Ase
-
TA-323A 30W +30 W stereo emplifler TA-820 $60 \mathrm{~W}+60 \mathrm{~W}$ KIt $£ 23.98$ Ace. TA-820 60W + 60W stero amplifier TA-920 70W +70 W stereo A-920 70W +70 W stereo a mplifie £35.80 KHE42.50 Ase.

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

\square

> Please mention E.T.I. when replying to all adverts

OK, so your system is perfect. Cartridge and loudspeakers are perfectly integrated with the room acoustics. Tone controls are an irrelevancy, and anyway just having them worsens the noise and distortion of the system.
But. ., what if after tiring of your direct cut audiophile discs you choose to listen to one of those less than ideal recordings where the middle positively snarls at you. Or. .., you're having a party and all those extra bodies just soak up the top and the speakers, pushed back against the wall, boom away.
What if there were tone controls that were essentially quiet and imperceptible in operation and could be switched, individually out of circuit when not required. What if they were part of a stereo preamp board that has the lowest noise and distortion figures you could buy, superb overload capability due to its active/passive gain control, tape monitor facilities and on board PSU.
The PAN30 with the new topology tone control circuit could change the facias of hifi.
PAN3O Stereo preamp board - $\mathbf{£ 4 3 . 2 5}$
PFA 250 Assembly
Mono power amp and 10,000 uF storage capacitors prewired and mounted on a gold chromate heatsink ($67 \mathrm{~mm} \times$ 250 mm). 200 Watts into 8 ohms, 300 Watts into 4 ohms, plus headroom. Powerful and very, very clean. - $£ 58.75$
Full info. on receipt of a large SAE. OEM enquiries, contact Phil Rimmer on 01-361 8716.

THE POWERFET SPECIALISTS か? 1 \&eß
 Dept ETI/5. 132 High Roatd. New Southgate-
 London N11 1PG

SIMPLE CMOS

 TESTER

 TESTER}

Here's a natty project to test the simpler CMOS ICs in up to 16-pin packages. Design and development by Peter Dooley.

When fault-finding on equipment which uses CMOS devices, it is not always easy to isolate the fault to one IC. One method of elimination is to substitute the suspect device with a new one, but this has the disadvantage of possible damage or destruction of the replacement part, should the fault be elsewhere. A more positive method would be to have some device for testing a suspect IC. The unit to be described will test most CMOS ICs (up to 16 pins), and can also be used for evaluation of unfamiliar devices.

Construction And Testing

Fit and solder all links, followed by test pins, IC sockets, resistors, capacitors, diodes (except D2),

PARTS LIST

LEDs, DIL switches and the power socket. This last item is mounted on the foil side of the PCB, and is held in position by two screws. Note carefully the orientation of the DIL switches, this is such that they are closed when the sliders on them are towards the test socket.

D2 is soldered between the + ve terminal on the power socket and the appropriate track on the PCB ; the 0 V connection should be made using a short length of wire. Two flying leads are required, and for this we suggest using the specially flexible wire that you can sometimes get for test leads, otherwise you'll have to replace
these fairly regularly. Note that the sockets on the flying leads should match the test pins.

Six stand-off pillars are used to support the PCB, two of them being mounted close to the test socket to add strength where it's needed.

After checking the PCB and wiring for obvious faults, insert the three ICs. With the power still off and both flying leads disconnected, all switch positions on SW1-16 should be set to off. Apply power and observe LED1 7 flashing Adjusting RV1 should alter the speed. Apply the pulse probe to each of the 16 test points in turn and check that the corresponding

Fig. 1 Overlay diagram of PCB.

HOW IT WORKS

IC1, 2, 3 are 4049 CMOS hex inverting buffers, one buffer being connected to each pin of a 16-pin test socket. An LED monitors the output of each buffer. With all poles in DIL switches SW1-16 open, the pins and test points on the test socket are held low by resistors R1-16 and the LEDs, which are displayed in DIL formation, are off. If one or more switches are closed, applying the positive supply to the IC pins, or an output on the test IC goes high level, then the corresponding LED lights to indicate a high level. The 0 V connection to the test IC is made using a flying lead which is connected directly to 0 V .

IC3e and f together with C1, form a variable speed oscillator, with a frequency of approximately 1 Hz to 20 Hz . The output can be connected to any of the test points TP1-16, using a flying lead. Diode D1 is used to protect the oscillator components, should the output be inadvertently connected to a high level point. The output is monitored by LED 17, which can be seen flashing at low speeds. The 9 volt DC supply can be obtained from a standard mains adaptor, or a 9 V battery could be used. Diode D2 serves as a reverse polarity protector.

LED flashes. Operate SW1-16 in turn and check that the corresponding LEDs come on, and remain on until the switches are turned off. This concludes the test procedure.

In Use

Ensure that power is off before inserting the IC to be tested. Connect the 0 V lead to the test point corresponding to the 0 V pin on the IC and select the $+V$ on the appropriate switch of SW1-16. Apply power and observe the output status of the IC on the display.

Select the input using the appropriate sections of SW1-16; care must be taken not to apply a high to any of the outputs of the IC, which will damage the IC under test, or to apply a high tơ the $0 V$ power connection, which will risk damaging the PSU and D2. It should now be possible to work your way through the truth table of the IC under test, checking to see if all sections work.

Fig. 2 Circuit Diagram of the CMOS tester.

SERVICE SHEET

Enquiries

We receive a very large numberof enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer en quiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications; - Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/ Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK:
114.35

Overseas:
118.15 Surface Mail
2.37.15 Air Mail

Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire. HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions. sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the curren cover price of ETI plus 50 p , and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1 BB. Cheques, postal orders, etc should be made payable to ASP Ltd.

We would normally expect to have ample stocks of each of the last tweive issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of individual articles can be ordered instead. These also cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an arti-
cle appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. If you do not have a copy of the appropriate index in which to look up these details, a set of photocopies of index sheets going back to 7972 is also available for $£ 1.50$. Otherwise. you will find the index for 1980 and 1981 in the January 1982 issue, the index for 1982 in the December 1982 issue, and the index for 1983 in the January 1984 issue. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1 R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).
We don't bother with the bureaucracy for Tech Tips - all you do is to send in your idea, stating clearly if you want an acknowledgement or receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works. on a separate sheet from the circuit diagram; hath sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incom plete fulfilment of an order) and give full details of the order you sent and when you sent it.

2. Keep a copy of all correspondence.

3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say two weeks. write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can some times help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible foryou to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Programmable Speech Board - Mini Mynah (February 1984)
The PCB for this project is double sided but only the underside pattern appears on the overlay drawing on page 26 and on the Foil Patterns page. The component side pattern appears on the PCB Foil Patterns page in the March' 84 issue. The error does not affect PCBs supplied by our PCB service. There are also a number of errors in the circuit diagram on page 22. Pin 10 on IC11 should be connected to 0 V along with pins 1 and 11 , not pin 12 as shown; pin 12 should be left unconnected. On the sameIC, pin 25 rather than pin 23 should be connected to pin 2 and R12/C4: pin 23 is Vcc and should be connected to the +5 V supply. R 5 has been missed off of the circuit diagram; it should be shown connecting IC4a pin 8 and IC5 pin 21 to the +5 V supply. In each of the above cases the PCB and the overlay diagram are correct.

Adding Colour to the Ace (April 1984
We renumbered the components in this article to make things easier for you (!) and ended up with utter confusion. In the third paragraph of the construction section on page 43, IC4 should readIC14. In the first column of the How It Works section on page 44 , lines 3-4 should read"... via tri-state buffer IC9...". In the third column of the same section, the capacitor in the differentiatornetwork (lines 13-14) is 6 , not $C 9$ and the line sync pulse mentioned at the start of the next paragraph is applied via IC1e, not R1d. In the first column of How it Works on page 45, C6/R15/R10 on line 9 should read C6/R9/R10, and the list of resistors given three lines further down should start with R29 not R21. In the second column on page 45 , the colour modulator is IC14 not IC13 and the second phase shift network mentioned a few lines further down should be C16/R32, not C16/R17. On the circuit diagram on page 44, there are two C 7 s , the lowerone of which should be $C 8$ and have a value of $4 n 7$, not $47 n$ as stated in the parts list; C 9 is listed as being 100 n both on the circuit diagram and in the parts list but should actually be 1 n . In the other half of the circuit diagram on page $45, \mathrm{C} 17$ should be 33 p not 10 p and again the parts list is also wrong, and pin 16 of IC14 should be shown connected to pins 15 and 12 , not to the +5 V supply; the PCB overlay is correct. In the timing diagram at top left on page 45 , read IC1 for IC13 IC5 for IC12, IC10 for IC.9, IC11 for IC5, R14/C12 for R29/C19, and C9/R11 for C5/R6. In the timing diagram at top right on page 45 , read IC5 for IC12 throughout, and in the regenerate clock signal diagram below it, read IC6b for IC2 a, IC11 for IC5 and IC6c for IC2d. The same three ICs are mentioned inthe delaytiming diagram on the same page and should be similarly amended. In the setting up section on page 46 , read RV1 for RV2 and vice versa; and in the software section read fo for $£ 0$.

Midi Drum Synth (May 1984)

Two small links on the PCB went missing: between RV5 (1) and upper (on PCB) RV4 connection, and between RV1-3 +VE and LED2 CATHODF take-off points. Also, the circuit diagram shows R13 going to $-V E$; it should go to earth (the PCB is OK).

Spectrum Joystick Interface (June 1984)
The PCB and the circuit diagram do not agree; the circuit diagram is correct, and all PCBs sent out by the PCB service should have been amended. IC3 is 74LS241, as correctly stated in the parts list but incorrectly given in the footnote to the circuit diagram.

READERS' SERVICES

Subscription Order Form

To: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1 BB.
Please commence my subscription to Electronics Today International. I enclose a cheque*/Postal Order*/International Money Order* for the appropriate fee, made out to ASP Ltd.
Please debit my Access*/Barclaycard* account number

Signature
(* delete as appropriate)
Please indicate subscription required and fee enclosed
UK \& Rep of Ireland:
Overseas surface mail?
Overseas air mail:

PLEASE COMPLETE YOUR NAME AND ADDRESS
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Name
Address \qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE Date of order

THIS COUPON IS VALID UNTIL 30th SEPTEMBER 1984 Backnumber Order Form
To: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.
Please supply me with the following backnumber(s) of ETI
Month
Year.
Month Year
Month \qquad Year
I enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.45$ per magazine ordered, made out to ASP Ltd (* delete as appropriate).

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name
Address
\qquad
!
d

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order.
Note that the cost is the same for orders from overseas as for UK orders; overseas orders will be sent by surface mail. PLEASE NOTE THAT BACKNUMBERSARE HELD FOR ONE YEAR ONLY.

THIS COUPON IS VALID UNTIL 30th SEPTEMBER 1984

Binder Order Form

To: ETI Binders Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.

Please send me.
binder(s) for ETI.
I enclose a cheque*/Postal Order*/International Money Order* to the value of $£ 5.00$ per binder ordered, made
out to ASP Ltd (* please delete as appropriate).

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name.
Address
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order.
Note that binders cost the same for UK and overseas;
overseas orders will be send by surface mail.

THIS COUPON IS VALID UNTIL 30th SEPTEMBER 1984

 Photocopy Order FormTo: ETI Photocopies Department, 1 Golden Square, London W1R 3AB.
Please supply me with the following photocopies:
Monthera......, Year. .., , Article .
Page No
Month. Year. Article
Page No
Tick box if you require INDEX (cost $£ 1.50$)
I enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.50$ per photocopyordered, made out to ASP Ltd (* delete as appropriate).

Total money enclosed £.. PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
\qquad
Address \qquad
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order.
Note that the cost is the same for overseas orders as for UK orders; overseas orders will be sent by surface mail.
PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING.

THIS COUPON IS VALID UNTIL 30th SEPTEMBER 1984

PCB FOIL PATTERNS

The EPROM Emulator board.

The CMOS Tester board.

The Audio Design PSU board.

The Sharp Joystick Interface board.

The Infrared Alarm receiver board.

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.50$. Developer 35p. Ferric Chloride 60 p . Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

BITS, KITS \& P/CS. For CB, Audio, Music, Lighting, Studio etc. E.g., Quality MOSFET $50 /$ 100W amp board kit $£ 26.00$ inc., Superkrunch CB noise reduction board kit $£ 7.75$ inc. Manufacturers surplus stock test gear, tools etc. Send large SAE for lists to: Airedale Components, Black Edge Farm, Black Edge Lane, Denholme Gate, West Yorkshire BD13 4ET.

ALARMEQUIPMENT

Residential 2 Zone Panel with entry
route 4 cut-off route 4 cut-off
2 Zone B.S. Pan Zone B.S. Pane 839.95 Single Zone B.S. Panel E32.50
£23.50 (prices + VAT \& carriage) Send for full list

Victor Security Centres Ltd Handielonian Yard, West Row Stockton on Tees
leveland TS181 BB Tel: 0642608500

MINIATURE FM TRANSMIT-
TERS. Frequency $60-145 \mathrm{MHz}$ range $1 / 2 m$ mile S.G.F.-P.C.B. All components. Full instructions. $9-12 \mathrm{~V}$. Operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. £6.95 inc. - Zenith Electronics, 21 Station Road, Industrial Estate, Hailsham, E. Sussex BN27 2 EW .

WANTED

WANTED Electronictest equipment, large computers, large quantities of Printed Circuit Boards, anything considered, good prices paid: 29 Lawford Crescent, Yateley, Camberley, Surrey Tel 0252871048.

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

VHFTRANSMITTERMODULE

Kit, size 2 inches by $1 / 2$ inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. $70-150 \mathrm{MHz}$, range dependent on voltage(618V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to £6.95, post paid, send cash/ cheque/PO to Modulex, P.O. Box 102, Dartford, Kent DA1 2PW.

COMPONENTS

IRISH READERS

MAIL ORDER COMPONENTS

Top quality components Great prices
Return-ot-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6. Phone(01) 0001 if England 987507 Mail order only please

COMPONENTS

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, Lond on E17 01-531.1588				
ENAMELLED COPPER WIRE				
SWG	1 lb	802	402	202
$8 \cdot 34$	3.63	2.09	1.10	88p
35-39	3.82	2.30	1.26	93p
42.43	5.20	2.91	2.25	1.60
44-47	8.56	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SILVER-PLATED COPPER WIRE				
14.30	9.09	5.20	2.93	1.97
TINNED COPPER WIRE				
$\begin{array}{lllll}14-30 & 397 & 2.41 & 1.39 & 0.94\end{array}$ Prices include P\&P and VAT. Orders under £2 add 20p. Dealer inquiries weicome.				

CRYSTALS. Very large stocks. $100 \mathrm{KHz}-50 \mathrm{MHz}$. Priced from 55p-£7.50. S.A.E. for full lists. TELERADIO, 325 Fore Street, London N9 OPE.

AERIAL AMPLIFIERS improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire, BLO 9AGH.

SEND SAE for VAT inclusive price list. Eg. 7805 voltage regulator 38p. Hunt Electronics, PO Box 57, Derby DE6 6SN.

ELECTRONICS TODAY INTERNATIONAL

CLASSIFIED

Lineage:
40p per word (minimum 15 words) Semi Display: (minimum 2 cms) $£ 11.00$ per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-4370699
Send your requirements to: Debbie Miller ASP Ltd., 1 Golden Square. London W1.

ALARMS

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers

Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13 Tel: 0512283483 or 051-220 0590

LOWEST PRICED top quality. intruder alarm equipment etc. SAE for catalogue. Security Services, 162 High Street, Hythe, Kent CT215JR.

LARGE STOCK OF BURGLAR

 ALARM EQUIPMENT. As used in the trade. JN Security Centre, 176 Sydenham Rd., London SE26 5J2. 01-778 1111. Showrooms open 6 days.
SURVEILLANCE

EQUIPMENT

MICRO-MINI

TRANSMITTERS

- all supplied ex-stock return post delivery. no special equipment required. built. tested, with instructions.
CT1OH, 4 mile range. broadcast quality
speech pick-up E13.98. speech pick-up E13.98.
CT1OM, prof grade, extra high power,
tunable frea 70.120 MHz variable mo rophone sensitivity, £19.48.
CT10ME, as above + unique dual microphones to elminate echoes, norse etc £21.40.
All specialised requirements catered for. EVEN RAOIO STATIONS - + telephone

Please enquire:
lease enquire: 061.9051040
S.A.T. ELECTRONICS
164 Washway Rd, Sale, Cheshire M33 1 RH

PROFESSIONAL MICRO

TRANSMITTERS
90-110 MHz VHF. £6.25 inclusive D.E.G.A.S. (ETI). 15 Windmill Gardens, Whixall, Whitchurch, Shropshire.

QUALITY ALARMS
 SYSTEMS TO MEET ALL REQUIREMENTS HIGH QUALITY BRITISH STANDARDS EQUIPMENT LOW PRICES
 COMPREHENSIVE D.I.Y. PLANNING GUIDE FULL FITTING INSTRUCTIONS BACK-UPINFORMATION SERVICE
 For Full Details Write or Phone: GUALITY ALARMS
 48 Cheltenham Road
 Tel: 045220184

TRADE MANUFACTURER of Alarm Controls, power supplies (G.P.O. approved), Bell cut-offs, + full range of ancillaries (cable, passives, sirens etc). Write or phone for catalogue - Castle Alarms-88 Harvest Rd, Englefield Green, Surrey. 0784 31467.

BURGLAR Alarm Equipment Please visit our $2,000 \mathrm{sq}$. ft showrooms or write or phone for your free catalogue. C.W.A.S Ltd., 100 Rooley Avenue, Brad ford BD6 1DB. Telephone 0274731532

FOR SALE

100W AMPLIFIER - £9.95 built

Or use the same board for 50W, 150W, 200W into 4 or 8 ohms etc., by using alternative output transistors and P.S.U. SAE for full details to:

ESS AMPLIFICATION
Innovation House
Guildhall Road, Hull

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical instruments, 40A Dalston Lane, London E8. 01-986 8455.

MICROTAN 65 + Tanex, ASCII keyboard, hex keypad, XBUG, 10 k Microsoft Basic, extensive software, £150. Watford 38387 .

TANGERINE MICROTAN 65 complete 8 K Systems in 19 inch $3 U$ Case. Ideal for Elec tronics enthusiasts \& reviewed in ETI May84 £375 o.n.o. Phone 01-803 0400.

MICROTAN 65, fully expanded Tanex, motherboard, MPS2, IN1 9" rack ASCII keyboard £200. Tel: 01-743 3055.

FOR SALE. Powertran Destiny mixer modules. Three input, four output PSU and base unit Phone (0782) 612770 after 8pm.

SURPLUS - Ex equipment $120(60+60)$ power-amplifiers case, controls + sockets, smoothing, glass/P.C.B. + heat sinking. Boxed + data £10. KIA8 Cunliffe Rd., Ilkley.

6116 CMOS RAM 150 nS . Full spec devices available now at £6.50 each whilst stocks last Tel: 0734760109.

SHEET METAL FOLDERS $18^{\prime \prime} \times 18 \mathrm{G}$ bench or vice held £38. Leaflet 01-8907838 (anytime). 90 Granveille Av, Feltham, Middx TW13 4JN.

Flanger/Chorus parts

 re E.T.I. Jan 84Reverb Springs, Pedal Cases, Dummy Keyboards, Microphones, Audioleads and adaptors, clearance bass effects pedal and many more items

Send S.A E. for free price list to
SOLAR SOUND LTD
18 Barton Way
Croxley Green
Rickmansworth
Herts WD3 3QA

EQUIPMENT

BROADCAST QUALITY FOR YOUR NEXT MIXER PROJECT
 - Over 100 Audio Sub-Units - Kit or Ready Built
 Our new Mic \& Mag Disc Pre-amps incorporate the super low noise Muliard/Signetic NE5534 IC. All items listed are identical to those used in our professional consoles
 PARTRIDGE ELECTRONICS
 56 Fleet Road, Benfleet Essex SSJ 5JN, England (LARGE SAE. PLEASE) THE MIXER PEOPLE

BRITISH TELECOM plug sockets \& leads etc. Tel C.W.A.S. (0274) 731532. Or visit our showroom opposite Odsal Stadium, Bradford.

VIDEO TERMINAL BOARD
 $\star 80$ characters x 24 lines \star

Requires ASCII encoded keyboard andmonitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716 EPROMS. Full scrolling at 9600 baud with 8 witch selectable rates. RS 232 interface.
Bare board with 2 EPROMS and program listing - $\mathbf{E} 48$ plus VAT.

Send for details or CWO to:
A M ELECTRONICS(T)
Wood Farm, Leiston, Suffolk IP164HT Tel: 0728831131

PLANS 'N DESIGN

AMAZING ELECTRONIC

plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more proects, catalogue. S.A.E Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

CONVERT any TV into large screen oscilloscope. External unit plugs into aerial socket of TV. Circuit \& plans $£ 3.00$ or S.A.E details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

EPROM COPIER - STAND ALONE
2716-27128 £175.00
TELEPHONE CONVERSATION RECORDER $\mathbf{8 7 5 . 0 0}$
2 LINES INTO 1 ANSWERING
MACHINE
Switching Unit
£30.00
From LK.S. Systems Ltd St. Albans. Tel: 55084

WEST HYDE
THE UK' LEADING STOCKIST OF CASES, PANEL WARE AND ACCESSORIES

Large Stocks - Fast Deliveries
SEND £2 FOR COMPREHENSIVE,
LLUSTRATED CATALOGUE
includes $£ 2$ Worth of Vouchers
UNIT 9, PARK ST. IND. ESTATE AYLESBURY BUCKS HP20 1ET Telephone: (0296) 20441

ADD-ONS

TANGERINE OWNERS at last $a \star \star 6809 \star *$ C.P.U. board with expandable monitor in Colour. FLEX compatable. Also 14 K RAM card to free EPROM space on TANEX S.A.E. for details: Ralph Allen Eng., details: Ralph Allen Eng.,
Forncett-End, Norwich. Tel: (095389) 420.

B00KS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

Audio Visual Technician Windsor

Madame Tussaud's are seeking to appoint an experienced Audio Visual Technican to work at their Royalty and Empire exhibition in Windsor. Applicants must have knowledge of electronics and computer programming. Experience of theatre lighting systems and sound recording studios would be an advantage. A driving licence and a certain amount of mobility are required.
The successful applicant will be a member of a small team responsible for the design, fabrication and installation of complex control systems and the maintenance of existing exhbitions.
The position carries a competitive salary and four weeks annual holiday. Please telephone for application form to:-

Mrs P. Anders, Staff Manager, 01-935 6861

SERVICES

JBA
 ELECTRONICS

Manufactures to designorspecifications. One offs small batch prototypes. Analogue digital electronic equipment Complete electronic service - no job to small

> | 1st Floor, 4a Lion Yard |
| :---: |
| Brecon, Powys South Wales |
| Tel: $(0874) 611177$ |

P.C.B. Design \& layout to your specifications competitive rate: Trax Ltd, 497 Hitchin Rd, Luton.

EPROM PROGRAMMING SERVICE from master or HEX Listing. Low rates. Most types. Ring 0438720671 . Evenings.
P.C.B. DESIGN \& LAYOUT, manually taped artwork professionally produced at competitive prices. J. Gledhill. Tel 01-674 8511

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets, Commodore computers, printers ard floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

ROBOTICS

Dick Becker, founder of Powertran, requires Electronic Engineers for his new company, Cybernetic Applications
Mechanical/computing ability is required to assist with current projects (to be featured in Practical Electronics, September issue) and future generations of robots and robotic equipment.

Please send CV to Dick Becker, Hollow Down Farm, Lopcombe, Salisbury, Wilts SP5 1BP

${ }^{\text {Hembarnatic }} \begin{gathered}\text { Ren } \\ \text { Rplicatians }\end{gathered}$

BOOKS EXCHANGE

 SERVICEBOOKS WANTED FOR CASH
Have you got technical books you no longer neeof? OR Do you need to read up on a new topic? Then EXCHANGE BOOK CLUB can help YOU! We buy and sell previously read books on electronics and computing. For list of currently available titles and details of our guaranteed buy back JAMES ELECTRO Rothwell, Leeds IS P.O. Box

S. WALES

STEVE'S ELECTRONIC

 SUPPLY CO. LTD.45 Castle Arcade, Cardiff TEL: 022241905
Open: Mon-Sat 9-5.30 For components to computers

ADVERTISERS' INDEX

Armon. 28
Audio Electronics 22
BK Electronics 38
Black Star 25
BNR \& ES 57
Boldfield 21
Bridage 28
Concept Electronics 63
Cricklewood Electronics 12
Crimson Electric 53
Digisound 14
Electrovalue 58
GSC 29
Greeenbank 41
House of Instruments 60
Happy Memories 57
ICS 58
Len's Electronics. 41
Litesold 58
Maplin OBC
Marco Trading 53
Merseyside Acoustic Developments 38
MJL. 45
Micro Processor Engineering 53
Northamber. 14
Newrad Instrument Cases 38
Powertran IFC,22,IBC
Rapid Electronics 8
RVM Audiotronics 74
Ship Co 41
SME 63
Skywave Software 14
Sparkrite 45
Stewart of Reading 63
Technomatic 16,17
Thurlby 25
Thandar 25
TK Electronics 45
Watford Electronics 4,5
Wilmslow Audio 24

Abbots Hill Chambers 1 st Floor, Gower Street, Derby DE1 1SD

Tel: Derby 0332/382433

RVM700S Mounted on Heat Sink
70.40

	KIT PRICE			
RVM150S	$1+19.50$	$10+15.98$	$20+15.80$	
RVM 300S	$1+28.87$	$10+23.94$	$20+22.30$	

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIERMODULES.
These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

> All prices include post \& packing.
> (Quantity discount available)

To order send cash with order, or cheque/postal order. Delivery on our Modules and Heat Sink or same day dispatch when order is received with cash, allow 7 days with cheque or postal order.

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for one advertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not for example, payments made in response to catalogues, etc,
received as a result of answering such advertisements)
CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.

Low-price robots from

 POWERTRAN
- hydraulically powered - microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry.

Each robot in the Genesis range has a self-contained hydraulic power source

GENESIS P101 operated from single phase 240 or 120v AC or from a 12 v DC supply. Up to six independent axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dediçated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.

For a little over $£ 100$, Herbot II takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoid-operated pen to chart its moves. Touch sensors, coupled to its shelf return data about its environment to the computer enabling evasive or exploratory action to be calculated.

The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a ZX 81 or other microcomputer

HEBOT II

Weight 18 kg
complete kit with assembly instructions £95 interface board kıt £11

MICROGRAS

A real programmable robot for under $£ 300$! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus the Sinclair ZX81 being particularly suitable.

MICROGRASP

Weight 8.7 kg , max. lifting capacity 100 g
Robot kit with power supply
£215.00
Universal computer interface board kit $\quad \mathbf{5 7 . 0 0}$ 23 way edge connector £3.00 ZX81 peripheral/RAM pack splitter board £3.50

GENESIS P101

Weight 34 kg , max lifting capacity 1.8 kg
6-axis model (kit form) $£ 750$
6-axis complete system (kıt form)

Cortex 16 bit microcomputer

GENESIS P102
Weight 36 kg , max lifting capacity 2 kg
6-axis system
(kit form)
£1476
Powertran Cortex
microcomputer
self-assembly kit $\quad £ 295.00$

Goods subject to availability. All prices exclusive of VAT and correct at time of going to press.

nimplin hassive range of eomponents for your hobby....insist on Heplin qualliy?

- MAPLIN'S FASCINATING PROJECTS BOOKS

Full details in Our Project Books
Price 70p each.
In Book 1 (XA01B) 120W rms Mosfet Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge - 6 Vero Projects. In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W Mosfet Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XAO4E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm Remote Control for 25W Stereo Amp. in Book 5 (XA05F) 300 Baud Duplex Modem to European Standard - 100W 240VAC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects Timer for External Alarm

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our Mosfet Amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter - Damp Meter Four Simple Projects
In Book 7 (XA07H) Modem (RS232) Interface for ZX81/VIC20/Commodore 64 - Digital Entarger Timer/Controller - DXers Audio Processor - Sweep Oscillator - CMOS Crystal Calibrator. In Book 8 (XA08J) Modem (RS232) Interface for Dragon 32 \& Spectrum Synchime - I/O Ports for Dragon 32 Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.
In Book 9 (XA09K) Keyboard with Electronics for ZX Spectrum - InfraRed Intruder Detector - Multimeter to Frequency Meter Converter - FM Radio neads no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric 1 - VIC20 Extendiboard - ZX81 ExtendiRAM - Dynamic Noise Limiter for Personal Cassette Players - TLL Levels to RS232 Converter Logic Pulser - Pseudo-Stereo AM Radio - Ni-Cad Charger Timer -

Adder-Subtracter Syndrum's Interface - Microphone Pre-Amp Limiter. In Book 10 (XA10L) Cassette Easyload for ZX Spectrum - 80 m Amateur Receiver - Auto Waa-Waa Effects Unit - Oric 1 Modem Interface - 28 kW Mains Power Controller Extendiport for Dragon 32 - 12V Fluorescent Tube Driver - 32-Line Extension for Digi-Tel.

1984 CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send $£ 1.65$ (including $p \& p)$ to our mail-order address.

In Book 11 (XA71M) Mapmix Six Channel Audio Mixer - Mk II Noise Reduction Unit - Xenon Tube Driver • Enlarger Exposure Meter - Motherboard for the BBC Micro - Cautious NiCad Charger - Servo \& Driver Module - 8 Channel Fluid Detector - Door Alarm - THD Filter - Cassette Processor - Volume Expander Parametric Equaliser.

GREAT PROJECTS FROM E\&MM

Our book "Best of E\&MM Projects Vol. 1" brings together 21 lascinating and novel projects from E\&MM's first Year.
Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster MOS-FET Amp and other musical, hi-fi and car projects Order As XH61R. Price $£ 1$.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 135+30$ p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons.' I enclose $£ 1.65$

Name
Address

ETI 8/84

D) $\sqrt{B} 4 \square$
 ELECTRONIC
 SLPPLIES LTD

Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061 236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000 . 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday
All prices include VAT and carriage. Please add 50p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]: Design 50/2R (7 lite, refliex)
 Design 65/2R 120 litre, refiex, Polyor $)$
 Design 10033 is0 litre, iB, Polypr.)
 Design CDR25/2R (25 litre, reflex) for digital
 E83.50 plus carr fins 6600
 (E 12 t .50 Dlus cari j jins $£ 10.00$ Basickits (drive units and crossovers olus carr fins f 10.00
 Design 65/2R Design B25/2R
 Design 100/3
 Dosign CD825/2R
 Design CD25/3R $\mathbf{6 8 7 . 5 0}$ plus cartins $\mathbf{5 4 . 5 0}$

 f 144.00 plus carr
 igns are availabla Design CD825/3R Active versions of the tifiree 825 designs are available

[^1]: A list of recent ETI test equipment projects is given in the table overleaf. Photocopies of the original articles are available from the ETI Photocopy Service, 1 Golden Square, London W1R 3AB, and cost $£ 1.50$ each. You should give all relevant information including page number when ordering, and cheques, postalorders, etc should be made payable to ASP Ltd.

[^2]: No problems here - everything should be available from advertisers in this magazine. The PCB is available from our PCB service.

[^3]: (a) front-fed symetrical; (b) off-set reflector; (c) open cassegrain;
 (d) off-set cassegrain.

