An Argus Specialist Publication
 INTR
ACCEPT AN MMTATION

EPROM emulator to speed

 software developmentCommunications Satellitesthe past, the presen and the future

DIO.... COMPUTING....MUSIC....RADIO....ROBOTICS

High performance, low price kits for today's musicians

 DIGITAL DELAY LINE

Digitall delay circuitry is an absolule necessity for high quality studio work, but usually comes with a four-figure price tag.

Powertran can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6 msecs to 1.6 secs with many powerful effects including phasing, flanging, A.D.T., chorus, echo and vibrato. The basic kit is extended in 400 mSec steps up to 1.6 seconds simply by adding more parts to the PCB.
Complete kit
(400ms delay)
E179
Parts for extra 400 mS delay F 19.50
(up to 3)

TRANSCENDENT 2000
ETI single board synthesizer.

This professional quality 3-octave instrument is transposable 2 octaves up or down, giving an effective 7 -octave range.

There is portemento pitch bending, VCO with shape and pitch modulation, VCF with hign and low pass outputs and separate dynamic sweep control, noise generator and an ADSR̂ envelope shaper. Other features include special crrcuitry with precision components to ensure tuning stability
Complete kit
\&150
$\xrightarrow{\text { Comple }}=-\ldots$

CHROMATHEQUE 5000

ETI 5-channel lighting effects system

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both functions. It controls 5 banks of lamps up to 500 W each in either analog or digital mode. And the 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4 -channel systems. Versatile light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal and construction straightforward

Complete kit
$£ 79.50$

MPA 200
100 watt mixer/amplifier

Here's a rugged, professionally finished mixer amp designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components are supplied for additional inputs), 3 tone controls, each with 15 dB boost and 15 dB cut, and a master volume control.

Complete kit.
$£ 79.50$

SP2-200

2-channel, 100-watt amplifer

> The SP2-200 uses
two of the power amplifier
sections of the MPA 200 (above), each with
its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100 W rms into 8 ohms. Each channel has its own volume control, and a sensitivity of 0.775 mV (OdBm) makes this amplifer suitable for virtually all pre-amps or mixers.

Complete kit
$£ 99.50$

Goods subject to availability. All prices exclusive of VAT and correct at time of going to press.
Encess

POWERTRAN CYBERNETICS LTD, PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET.TEL: (0264) 64455
ALL PRICES ARE EXCLUSIVE OF VAT AND APPLY TO THE UK. ONLY - ALLOW 21 DAYS FOR DELIVERY. OVERSEAS CUSTOMERS - PLEASE CONTACT OUR EXPORT DEPARTMENT FOR THE NAME AND ADDRESS OF YOUR LOCAL DEALER.

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Editorial Assistant Jerry Fowler: Technical illustrator Paul Stanyer: Ad. Manager Lynn Collis: Copy Control Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive PUBLISHED BY:
Argus Specialist Publications Ltd., 1 Golden Square, London W1 R 3AB. DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd. 12-18 Paul Street, London EC2A 4JS (British Isles)
PRINTED. BY
The Garden City Press Ltd.
COVERS PRINTED BY:
Alabaster Passmore.

OVERSEAS
EDITIONS and their and their
EDITORS

AUSTRALIA - Roger Harrison CANADA - Halvor Moorshead GERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC
 Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans, drawings and programs and all copright and other intellectual praperty rights the rein belong to Argus Specialist Publications Limited. All rights conferred by rights and, by virtue of international copyright convert ights and, by virtue of international copyright conven-
tions are specifically reserved to Argus PublicationsLimited and anv rearoduction requires the prior written consent of the Company. © 1984 Argus Specialist Publications Ltd \sqcup All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible alterwards. All prices and data contained in advertisements are atcepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however for any variations affecting . tion has closed for ares.
\square Subscription Rates, UK $£ 14.35$ including postage. For turther details and AırmaII rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
Telex 8811896.

FEATURES

ETI SPECIAL OFFER

At this price, Thandar's Doppler alarm system can only shift with increasing frequency.

DIGEST

13
Although upstaged by the special offer, our upbeat update is otherwise as up-front as usual.

COMMUNICATIONS

SATELLITES

Roger Bond launches a short series of articles dealing with satellite communications.

CAR ALARM REVIEW
40
In a desperate attempt to keep the scrap dealers at bay, lan Pitt has fitted his pride and joy with an Electronize alarm.

HOUSE ALARM REVIEW 50
Confessions of a burglar alarm installer by Jack Shaw.

PROJECTS

EPROM EMULATOR

 22 No imitation this but the real thing - a versatile emulator which doubles as a memory board.
ETI "WARLOCK"

ALARM SYSTEM 35
An ETI exclusive! The first appearance in print of Phil Walker's entry for the Cannes Metaphysical Poetry and Theft Prevention Festival.

AUDIO DESIGN AMPLIFER ... 44 John Linsley Hood maintains his output - bringing you an 'all MOSFET' power amplifier design with some unusual features.

ECOLIGHT
55
Light year's ahead of its rivals as usual, ETI brings you a design which switches on a light when people approach it at night.

INFRARED INTRUDER

ALARM

An interruptible-beam alarm system that will have intruders seeing red.

INFORMATION

6
PCB FOIL PATTERNS 64
ETI PCB SERVICE
ETI PCB SERVICE 68
ETI BOOK SERVICE 70
ADVERTISERS' INDEX 74

WATFORD ELECTRONICS
33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND MAIL ORDER. CALLERS WELCOME
Tel. Watford (0923) 40588. Telex. 8956095

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S. CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME
P\&PADD 75 TO TOALLCASH ORDERS OVERSEAS ORDERSPOSTAGEAT COST. PRICES P\&F ADD 75 p TO ALL CASH ORDERS OVERS
SUBJECT TO CHANGE WITHOUT NOTICE

VAT
Expont orders no VAT. Applicable to U.K. Customers only. Unless stated othewlese
all prices are exclusive of VAT. Please add 15% to the total cost including P\&P. Wo atock thousands more items. It pays to visit us. We
Nearest Underground/BR Station: Watford High Street.
Open Monday to Saturday: 9.00 am to 8.00 pm . Ample Free Car parking space available

 33022 p 47025 p. 680.100034 p: 150042 p. 2200 50p. 330076 p. 4700
16 p. 47020 p 68034 p. 1000 27p. 1500 31p. 2200 26p. 470072 p
TAG-END CAPACITORS: 64V: 2200 139p; 3300 198p; 4700 245p; 50V: 2200 110p; 3300 184p; 40V:
180p: 25V: 2200 90p: 3300 98p; 4000, 4700 98p; 10.000 320p; 15,000 345p; 18V: 22.000 350p.
POLYESTER CAPACITORS: AXIal Lead Type
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n5} .2 \mathrm{n} 2.3 \mathrm{n} 3.4 \mathrm{n7} 7.6 \mathrm{n} 811 \mathrm{p}: 10 \mathrm{n} .1$
 1000V: inf 17p; 10nF 30p; $15 \mathrm{n} 40 \mathrm{p}: 22 \mathrm{n} 36 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n}, 100 \mathrm{n} 42 \mathrm{p}$.
POLYESTER RADIAL LEAD CAPACITORS: 250V
10n, 15n. 22 n 27n6p; $33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 8 \mathrm{p} ; 150 \mathrm{n}, 2$ 10pi 330n 470n 15p; 680:19p; 1 u5 40p; 2u2 48p. \quad CAPACITORS

TANTALUM BEAO CAPACITORS	POTENTIOMETERS: Carbon Tra
$35 \mathrm{~V}: 0.1$ UF. O22. $0.3315 p$. 0.47 .0 .68,	وotary 0.25 W LOg \& LIN Values,

10 28p; 16V: 2.2. 3.3 16p; 4.7.6.8. 10
18p; 1S. 36p; 22 45p; 33, 47 50p; 100
 80p; 6V: 100 55p.
MYLAR FILM CAPACITORS

SOV: 470 OF 12 p . Fange: 0.5 pF to 10 nF 4 p .15 nF .22 nF
$33 \mathrm{nF}: 47 \mathrm{nF} \quad 5 \mathrm{p} .100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$.
$200 \mathrm{nF} / 6 \mathrm{~V}$.

2OONF/GV 8p.
POLYSTYRENE CAPACITORS:
10pF to 1 nF Bp: 15 nF to 12 nF 10

2, 3.3.4.7, 6.8. $8.2,10 \quad 12,15,1$
2, $3,3,4,7,6.8,8.2,10,52,15,18$.
22. $27,33,39,47,50,56,68,75$, $85,100,120.150,180 \mathrm{pF} \quad 15 \mathrm{peach}$
$200,220,250,270.300,330,360$. 200, 220.250. 270. $300,330,360$.

$390.470,800.800 .820 \quad 21 \mathrm{p}$ erch | $\begin{array}{l}100.1200,1800.2200 \\ 3300.4700 \mathrm{pF}\end{array}$ | $\begin{array}{r}21 \mathrm{peach} \\ 30 \mathrm{pech} \\ 80 \mathrm{p}\end{array}$ |
| :--- | ---: |
| MINIATURE TRIMMERS Capacitors | | MINIATURE TR $22 \mathrm{p}_{\mathrm{i}}$

2.6 pF
2-10pF
$30 \mathrm{p} ; 10-88 \mathrm{pF} 36 \mathrm{p}$. RESISTORS Carbon \qquad
${ }_{0}^{025 \mathrm{w}}$
$\begin{array}{ll}0.5 \mathrm{~W} & 2 \\ 1 \mathrm{~W} & 2 \\ 2 \phi & \text { Metal Film } \\ \text { 1\% Metal Film } & 5\end{array}$

10 K 47 K 100 K 25 p

AA1 19
AA 129
AA 30

AN ARGUS SPECIALIST PUBLICATION

AUGUST IS TEST EQUIPMENT TIME

Since we last looked at test equipment in June and July 1983, certain of our competitors have duplicated - but not matched - our surveys of DMMs and'scopes. So we're going to be looking at the other side of the coin, as it were, with a group of articles that examine the types of gear that are available, the types of gear you'll find you need, how you might go about building your own (and when it's not worth trying to build it yourself). and finally, we'll be attempting the ETI tour of de-bugging common circuits.

ALL THIS AND MORE IN THE AUGUST ISSUE OF ETI, ON SALE JULY 6th. DON'T FORGET TO GET YOUR COPY TO READ ON HOLIDAY!

ETI is carefully designed to provide sufficient shade when placed over the readers eyes so as to permit sleeping in the strongest of sunlight.

Standard features -

- High speed 24 K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only bymemory size
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- FlexIble CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Interfaces for screen and cassette included.
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!

STATEMENTS IF	PRINT	TIME	$\begin{aligned} & \text { RENUM } \\ & \text { BOOT } \end{aligned}$	MAG TOF	MWD BASE	@	(1)	LNT	POS	
ELSE	?	SAVE	GRAPH	TON	COMMANDS	\#		SaR	MOD	
ON		LOAD	TEXT	DIM	RUN	+	FUNCTIDAS	SYS	RND	
GOTO	1 UNIT	MOTOR	PLOT	LET	SIZE		FNA-FNZ	TIC	KEY	
GOSUB	BAUD	ESCAPE	UNPLOT	DEF	CONT	?	ABS	SGN	OPERATORS	
POP	CALL	NOESC	COLOUR	NEW	MON	\%	ADR	BIT	OR	<
REM	DATA	RANDOM	CHAR	END	DELMATERS	\$	ASC	CRB	LOR	
FOR	READ	ENTER	SPRITE	BIT	beluntiens	,	ATN	CRF	AND	+
NEXT	RESTOR	LIST	SHAPE	CRB	TO		SIN	MEM	AND	
ERROR	RETURN	PURGE	SPUT	CRF	TAB		COS	MWD	NOT	
INPUT	STOP	NUMBEF	SGET	MEM	STEP	\&	EXP	LEN	$\begin{aligned} & \text { NOT } \\ & \text { LNOT } \end{aligned}$	\wedge
					THEN	d	FRA	MCH	LXOR	

Self assembly kit
£295
All prices exclusive of VAT. Carriage paid.

Optional Extras

Floppy disc interface electronics
£86.50
Hardware kit \& connectors for disc drives $\mathbf{\Sigma 4 9 . 5 0}$
RS232C interface kit
Pair of $51 / 4^{\prime \prime}$ disc drives (SS) $\quad £ 300.00$
Pair of $51 / 4^{\prime \prime}$ disc drives (DS) $\quad \mathbf{5} 90.00$
All goods subject to availability.

POWFRTRAN Eybernetics stul.

Portway Industrial Estate, Andover SP10 3ET. Tel: 026464455

Cirkit.A new name

This year Ambit will stop being Ambit. And become Cirkit.

Cirkit is more than just a change of name. It means a better service for you. Faster delivery.

A bigger range of the best and latest products with well over 10,000 different items available.

Everything for the home and industrial user.
A whole new Cirkit range of constructional kits, graded for the student, expert and enthusiast.

Modules to build for everyone.
Cirkit is a go ahead company that believes in giving service to its customers.

There's a technically skilled staff to help you.
We keep in touch with the manufacturers and we know what's going on.

As soon as new products are available, Cirkit has them.

Cirkit means a bigger catalogue. A better company to deal with.

And a wider than ever range of products that's growing all the time.

For you, Cirkit means a bigger stock and better service.

For further information send for our latest catalogue or visit one of our three outlets at: 200 North Service Road, Brentwood, Essex, CM14 4SG; 53 Burrfields Road, Portsmouth, Hampshire, PO3 5EB; Park Lane, Broxbourne, Hertfordshire, EN10 7NQ.

Computer Products

A complete range from Connectors to Board Level product

C12 Computer Cassette	21.00012	0.55
BBC to Centronics Printer	03-10019	7.25
BBC to 25 way D Male	03-10021	4.50
25 way D Socket	10-25200	1.90
25 way D Plug	$10-25100$	1.30
Cover for 25 way D	$10-25322$	0.93
20 up Eprom Eraser	40-82100	31.25
Z80 A Industrial Controller	$40-82000$	49.95
6802 Industrial Controller	40-68020	49.95
6502 Industrial Controller	40-65020	49.95
Z8 Basic/Debug Controller	41-00904	50.00

Nicad Batteries \& Chargers

Minimum life $600(300 \mathrm{PP} 3$ size) full charge/discharge cycles. Batteries must be charged from a constant current source only. All batteries are supplied only with a residual charge and should be charged before used.

AA	1.2V	500 mAH	01-12004	0.80	0.74
${ }^{\circ} \mathrm{C}$	1.2 V	2.2 AH	01-12024	2.35	1.99
'D'	1.2 V	4.0AH	01-12044	3.05	2.85
PP3	8.4 V	110 mAH	0184054	3.70	3.50
CH1/22 PP3 Charger 11 mA for 16 hours					
			01-00159		4.30
CH8/RX Multi-purpose Charger					
			01.02204		9.40

Will recharge AA, C, D and PP3 size cells with automatic voltage selection. Will recharge following combination: $6 \times \mathrm{D}$, $6 \times \mathrm{AA}, 6 \times \mathrm{C}, 2 \times \mathrm{PP} 3,2 \times \mathrm{D}+2 \times \mathrm{C}$, $2 \times \mathrm{D}+2 \times \mathrm{AA}, 2 \times \mathrm{D}+1 \times \mathrm{PP} 3,2 \times \mathrm{C}+2 \times \mathrm{AA}$, $2 \times \mathrm{C}+1 \times \mathrm{PP} 3,2 \times \mathrm{AA}+1 \times$ PP 3 .
Battery Adaptor $01-12001$
Sold in pairs: one to convert AA size to C size and one to convert C to D size. Both may be used together to convert an AA to D size.

Semiconductors

Linear IC's

Linear			
LM301AN	DIL version	61.03011	0.44
LM308CN	DIL version	$61-03081$	0.65
LM311CN	Popular comparator	61.00311	0.46
LM324	Low power quad op amp	61.03240	0.67
LM3319N	Lowpower quad comparator	61.03390	0.68
LM346	Programmable quad op amp	61.00346	3.72
LF347	Quad Bi-FET op amp	61.00347	1.82
LM348	Quad 741 type op amp	61.03480	1.26
LF351	Bi-FET op amp	61.03510	0.49
LF353	Dual version of LF351	61.03530	0.76
LM380N	IW AF power amp	61.00380	1.00
NE555N	Multi-purpose low cost timer	61.05550	0.45

for a better

$61-05560 \quad 0.50$ $61-07411 \quad 0.22$ $61-07470 \quad 070$ uA74ICN DIL low cost op amp uA747CN Dual 741 op amp uA748CN 741 with external frequency $61-04780 \quad 0.40$ $\begin{array}{ll}\text { HA1388 } & \text { 18W PA from 14V } \\ \text { TDA2002 } & 8 W \text { into } 2 \text { ohms power amp }\end{array}$ ULN2283 IW max. 3-12V power amp MC3357 Low power NBFM IF system and detector
ULN3859 Low current dual conversion NBFM IF and detector
$\begin{array}{ll}\text { LM3900 } & \text { Quad norton amp } \\ \text { LM3909N } & \text { 8-pin DIL LED flasher }\end{array}$ KB4445 Radio control 4 channel encoder and RF
KB4446 Radio control 4 channel receiver and decoder
ICM7555 Low power CMOS version of timer
$\begin{array}{ll}61-04780 & 0.40 \\ 61-01388 & 2.75\end{array}$ $61-02002 \quad 1.25$ $61-12283 \quad 1.00$ $61-03357 \quad 2.85$ $61-03859 \quad 2.95$ $61-39000 \quad 0.60$ $61-39090 \quad 0.68$ $6104445 \quad 1.29$ $61-04446 \quad 2.75$ $61-75550 \quad 098$
ICL8038CC Versatile AF signal generator with sine/square/triangle OPs
TK10170 $\quad 5$ channel version of KB4445 $\quad 61-10170$
HA12002 Protection monitor system for amps. PSUx. TXs etc
HA12017 83dB S/N phono preamp 0.001% THD

61-12002 1.22
61-12017 080
MC14412 300 baud MODEM controller (Eduro/US specs)
$61-14412 \quad 6.85$

Microprocessor \& Memories

Z80A	Popular and powerful 8 -bit CPU	26-18400	3.40
Z80AP10	2 port parallel input/output	26-18420	2.95
280A CTC	4 channel counter/timer	26-18430	2.90
28671	28 Micro comp. and Basic	26-08671	17.50
6116-3	$16 \mathrm{~K}(2 \mathrm{kx} 8) \mathrm{CMOS}$ RAM 200nS	26-36116	6.68
Z6132-6	32K (4kx8) quasi RAM 350nS	$26-06132$	15.00
4116-2	$16 \mathrm{~K}(16 \mathrm{kx} 1) 150 \mathrm{mS}$	26-24116	1.59
2764	64K (8kx 8) 450 nS	26.02764	9.50

Voltage Regulators

7805	5V 1A positive	$27-78052$	0.40
7812	12V 1A positive	$27-78122$	0.40
7815	15V 1A positive	$27-78152$	0.40
7905	5V 1A negative	$27-79052$	0.49
7912	12V 1A negative	$27-79122$	0.49
7915	15V 1A negative	$27-79152$	0.49
Transitors			
BC182	General purpose	$58-00182$	0.10
BC212	General purpose	$58-00212$	0.10
BC237	Plastic BC107	$58-00237$	0.08
BC238	Plastic BC108	$58-00238$	0.08
BC239	Plastic BC109	$58-00239$	0.08
BC307	Complement to $B C 237$	$58-00307$	0.08
BC308	Complement to BC 238	$58-00308$	0.08

BC309	Complement to BC239	$58-00309$	0.08
BC327	Driver/power stage	$58-00327$	0.13
BC337	Driver/power stage	$58-00337$	0.13
MPSA13	NPN Darlington	$58-04013$	0.30
MPSA63	PNP Complement to		
	MPSA 3	$58-04063$	0.30
J310	JFET for HF-VHF	$59-02310$	0.69
J176	JFET analogue switch	$59-02176$	0.65
3SK51	Dual gateMOSFET-VHF amp	$60-04051$	0.60
3SK88	Dual gate MOSFET-Ultra lo		
	noise	$60-04088$	0.99
TIP31A	Output stage	$58-15031$	0.35
TIP32A	Complement to TIP31A	$58-15032$	0.35
VN66AF	VMOS Power FET	$60-02066$	095
ZTX3866	E-line version 2N3866	$58-03866$	0.45
IN4001	Rectifier diode	$12-40016$	0.06
IN4002	Rectifier diode	$12-40026$	0.07
IN4148	General purpose silicon	$12-41486$	005

Silicon Controlled Rectifiers

BRY55-100	100 V .8 A
Cl 106 DI	400 V 4.0 A
Cl 22 DI	400 V 8.0 A

3mm Diameter LEDs

V178P	Red
V179P	Green
V180P	Yellow

52-55100 $\quad 0.50$ $52.00106 \quad 0.70$ $52-001221.45$
$15-01780 \quad 0.15$ $15-01790 \quad 0.16$ $15-01800 \quad 018$

15-10400 0.12 15-10720 0.15 15-10740 015
CQY74L Yellow
Infra-Red LEDs
CQY99 Emitter
$15-10990 \quad 0.56$
$15-30410 \quad 1.51$

Tri Colour LED

V518 Orange-Green-Yellow $\quad 15-05180 \quad 0.60$

Capacitors

Aluminium Electrolytics Radial PCB Mounting

			Pack of 4
10u	16 V	05-10606	0.24
47u	16 V	05-47606	0.28
47u	25 V	05-47607	0.28
470u	6.3 V	05-47705	0.36
470u	16 V	05-47706	0.48
Tantalum Beads			
			Each
lut	35 V	05-10501	0.18
10uf	16 V	05-10601	0.28
47uf	63 V	05-47601	0.45
47uI	16 V	05-47602	0.92

Monolithic Capacitors

In	Pack of 3	
10n	$04-10204$	0.39
100n	$04-10304$	0.42
	$04-10404$	045
Low Voltage Disc Cermaic		
		Pack of 5
In	$04-10203$	0.20
10n	$04-10303$	0.20
Polyester (C280)		Pack of 3
		0.18
10n	$04-10305$	0.24
47n	$04-47305$	0.24
100n	$04-10405$	0.51
470n	$04-47405$	0.66

R F Components

Filters

CFU/LFB CFW/LFH SERIES
Miniature 455 kHz filters. I/P and O / P impedance 2 K

	-6dBW	-40dBW		
LFB6/CFU455H	6 kHz	18kHz	16-45512	1.95
LFB12/CFU455F	12 kHz	26 kHz	16-45515	1.95
LFH6S/ CFW455HT	6*Hz	14 kHz	16-45525	2.45
LFGI2S, CFW455FT	12 kHz	22kHz	$16-45528$	2.45
CFM2455A Mechanical IF Filters for 455 kHz			1945530	077
Crystal Filters 2 Pole Types				
10M15A	10.7 Centre	Feq.	20-10152	210
HMMOBAA	10.695 Cen	Freq.	20-11152	349

Inductors

We offer the complete Toko range of fixed and variable inductors. Over 500 coils from audio to V.H.F. See catalogue for details.

Soldering Irons (Antex)

CS240 Iron 240VAC 17 Watts $54-22300 \quad 5.20$ XS-240 Iron 25 W 240 V High heat capacity
Presentation pack of one XS 240 with ST4 stand iron complete with crocodile clips and solder $\quad 54-20004 \quad 5.60$

Please add 15% VAT to all advertised prices and 60 p post and packing. Minimum order value $\mathfrak{S} 2$ please. We reserve the right to vary prices in accordance with market fluctuation.

SPECIAL OFFER

Defend your home and property with the 'Minder' radar-Doppler alarm system!

As one would expect, this product comes very soundly and safely packaged - so we expect no problems with equipment being damaged in the post.

The equipment supplied is as follows: a main unit, with a radar sensor and key-operated switch, a small siren unit for interior mounting, which is powered from the main unit, an external siren which is normally powered from the main unit, but which has its own internal batteries capable of keeping the alarm sounding for quite some time when power is removed, connecting wireand two instruction booklets, one covering normal operation and one covering installation.

The main unit uses the Doppler effect to detect the presence of an intruder (in much the same way that the Ecolight featured elsewhere in this issue uses ultrasound). This has the great advantage that you don't have to go to the trouble of installing door switches, pressure mats, etc (although these can be added to the system if you feel it is necessary). However, you do have to obtain a licence for the unit; this is normally a formality, and the form to apply for the licence comes with the kit.

We recommend testing out the sirens with a great deal of caution - the internal siren is itself quite a lot louder than other brands of external siren, and can be positively painful to be near when it is sounding!

Ever conscious of the fact that although ETI is a technical magazine, we do have some not-soknowledgeable readers (you wouldn't believe some of the enquiries we get - or perhaps you would!), we found a grandfather in his 60 s , a proud possessor of four thumbs, incipient arthritis and plenty of spare time. His comments follow:
"Why two sets of instructions? Not being very tech-nically-minded, I found it a little off-putting to be immediately presented with three pages of technical specification. (This is, however, obviously something many ETI readers would wish to see, and a selection of the specs is reproduced opposite - Ed.) Let it suffice to say that whilst I found the instructions confusing, and think that they could have been better written, I did, in the end, manage to install the system correctly.
"I have had frequent and close contact with the police during my lifetime (no, not for the reasons you immediatelysuspect....), and forthis reason, decided to contact the local crime prevention officer before installing the alarm. This proved to be extremely useful, and besides giving me much fascinating information about the localvillains, he advised me on the positioning of the control unit and the usefulness or otherwise of adding pressure sensors, door switches, etc. One definite oversight in the instructions - whichwe can correct here - is that you should contact your CPO before you install any alarm. Bad planning can nullify the effectiveness of any system - and anyway, we all pay the CPOs' wages through our local rates!
"A power cord of 3 metres seems a bit on the short

side, especially as the best place to site the unit is 2 metres up the wall. However, if you're doing a thoroughly professional job, you may want to arrange for a special supply point right next to the unit, which besides being more elegant than having a power cord trailing about the place, might actually discourage a villain who had actually got in from thinking he can disable the alarm by removing the power.
"The other cables supplies are certainly ample, at least for my needs. However, they are grey - and all the world seems to have white coloured halls nowadays. Still, I suppose one should really be thinking about concealed wiring anyway.
"Installation of the outside siren caused me to reach for the gin bottle and then still baffled - probably more so, if the truth were told - to seek advice from the local ironmonger. The unit is not light, and the 1 " screws that came with the kit were not up to mypebble-dashed walls, especially in view of the bad weather we are prone to in my area.
"Another point on this topic - trying to hold a fairly heavy unit in one hand and mark out the drilling holes on the wall with the other, whilst teetering at the top of a ladder in a very chilly force-9 gale is not fun, even for youngsters without arthritis. It makes life a lot easier if you make a template, in cardboard, from the alarm backpanel, and use this to site the attachment holes.
"To conclude, let me say that the above are comparatively minor quibbles, as I have the alarm successfully installed and running. Perhaps it would be tempting fate to say that l am still waiting for its first, reallife test..."

TO ETI READERS

THANDAR ‘MINDER' ALARM

Please send me....'Minder' burglar alarms at the fully inclusive price of $£ 94.88$. I enclose a cheque/postalorder* made payable to Argus Specialist Publications for E., p
OR
I wish to pay by Barclaycard/Access* Please charge my account number: \square

Signature \qquad
Name \qquad
Address \qquad

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Dual Trace 100 MHz Scope

trigger hold-off to handle difficult variable mark space ratio pulse signals.

The $\operatorname{COS} 5100$ has a 6 inch rectangular ($8 \times 10 \mathrm{~cm}$) flat-face CRT with internal graticule and an accelerating potential of 18 KV . Display modes are $\mathrm{CH} 1, \mathrm{CH} 2$, dual, CH3 or trigger view, and XY and add. Used in dual mode with CH3 and add displayed the COS 5100 will, if put into dual sweep, show 8 traces simultaneously.

The COS 5100 weighs 7.3 kilograms and measures $340 \times 190 x$ 450 mm . For further details conlact Telonic Instruments Ltd, 2 Castle Hill Terrace, Maidenhead, Berkshire SL64JP, tel0628-73933.

Telonic Instruments claim that the new Kikusui oscilloscope is the lowest-priced instrument of its type on sale in the UK. The COS 5100, which was shown for the first time in this country at the All Electronics Show, is a dual beam model with a bandwidth of 100 $\mathbf{M H z}$ and will sell for $£ 975$ plus VAT.

Features of the instrument include a third auxiliary vertical input and a sensitivity of $5 \mathrm{mV} / \mathrm{div}$ at 100 MHz or $1 \mathrm{mV} / \mathrm{div}$ at 20 MHz. Also included are sweep delay and alternate sweep capability, trigger with 'autolock', automatic trigger or manual trigger level control, and variable

TV Protection

Special 'Burglar Alarm' TV sets will be available in all Radio Rentals showrooms throughout Merseyside for a limited trial period from May to July 1984. Operating on an ultrasonic basis, the alarm device transmits an extremely highpitched and piercing sound when triggered and is capable of alerting anyone and frightening off intruders.

All the householder has to do is switch off the TV and set the alarm which becomes 'armed' as soon as the room is vacated. When movement is detected the alarm is triggered. Even should the

Component Minifile

The Ship Company's Component Minifile is a plastic storage drawer which contains a continuous length of thick polythene folded to provide sixty slim pockets. Each pocket is supported by a plastic strip which spans two runners on either side of the drawer top, and a strip of paper can be inserted into each plastic support to identify the contents of the pocket. The Minifile is designed to store resistors, capacitors and other small components in conditions which allow a particular value to be located quickly and easily.

We have had a minifile on trial for a few months and have used it to store a variety of different items. It is not well suited to any
mains electricity be disconnected, either deliberately or by power cut, the alarm will continue to sound. The TV incorporates a system for overcoming false alarms which also allows the user to re-enter the room to switch off the device, but they don't seem to want to tell us how it works!

On the basis of the market trial in Merseyside, Radio Rentals will decide whether to launch the sets nationally. The $22^{\prime \prime}$ screen size burglar alarm remote control Teletext television can be rented for $£ 16.00$ per month or there is a 26" screen size version at $£ 17.00$ per month. The rental costs are only a little more than the monthly rental for equivalent sets without this facility.
but very small components, but otherwise provides an ideal storage medium. It looks as though it ought to be possible for small items to slip out of the sides of the pockets but in practice this was not a problem. Phil Walker took the Minifile home for a while and let his son use it for his stamp collection, for which it proved ideal except that static sometimes made it difficult to remove the stamps. This would, of course, make it unsuitable for many semiconductors, although it is unlikely to be used for this purpose anyway on grounds of size.

The Minifile costs $£ 11.00$ plus VAT and is also available as a multi-drawer unit in a locking, portable cabinet suitable for field use. Stockists include Watford, TK Electronics and Bradley Marshall.
The Ship Company LId, Macroom County Cork, Ireland.

- ElectroMusic Research have produced a MIDI (Musical Instrument Digital Interface) unit which allows any MIDI compatible instrument to be used with a BBC microcomputer. When used with their MIDltrack program it allows composition on up to six tracks with a memory assignment of 7500 notes storing details of pitch, dynamics, note length and style. Full on-screen editing features are provided and completed compositions can be saved on casselte or disk. The interface box, connection cable and MIDItrack on cassette or disk costs £109.95 from Electromusic Research, 14 Mount Close, Wickford, Essex SS11 8HG, tel 03744 67221.
- Densitron Corporation have produced a short form catalogue which covers their range of LED, LCD, DC Plasma and electromechanical indicators and display modules. The catalogue also describes their range of light pens and bar code readers and is avait able from Mr M. J. Monday, Densitron Europe Ltd, 50 London Road, Sevenoaks, Kent TN13 1AS, tel 0732-455 522.
- Lloyds Bowmaker Finance Group have launched an Industrial Achievement Award which offers a first prize of $\mathbf{£ 1 5 , 0 0 0}$ to the UK small business judged to be most profitably exploiting a new idea and best placed to continue making a profit. The competition is open to all UK owned companies and unincorporated businesses with an annual tur-
nover between $£ 100,000$ and $\mathbf{£ 1 0 , 0 0 0 , 0 0 0}$, and entrepreneurial readers should contact The Secretary, Industrial Achievement Award, Lloyds Bowmaker Finance Group, Finance House, Christchurch Road, Bournemouth BH1 3LG, tel 020222077.
- An error appeared in the short item in last month's News Digest concerning South Warwickshire College's electronics summer school. The residential course, entitled Hobby Electronics, will run from the 23 rd to the 27 th July, not April as stated. The details are otherwise correct as given, and further information can be obtained from Graham Winton, South Warwickshire College of Further Education, The Willows North, Alcester Road, Stratford-upon-Avon CV37 9QR, tel 078966245.
- Serious Software have introduced an interpreter which allows the artificial intelligence language LISP to be run on a 48 K Spectrum. It features colour 'turtle' graphics, LOAD, SAVE and VERIFY functions, user definable functions with a variable number of parameters and the ability to support machine code subroutines. The cassette containing the interpreter and a demonstration program comes with a programmer's manual and costs £15.50 including postage and packing or $\mathbf{£ 2 0 . 0 0}$ if ordered from overseas. Serious Software, 7 Woodside Road, Bickley, Bromley, Kent BR1 2 ES.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Heat Sensing Light

Semiconductor Supplies International Ltd have introduced a 40 watt security-courtesy light which switches on automatically when it detects infra-red radiation from a heat source such as the human body. The sensing range is 12 metres, the spread 90 de-

Preset Threshold Shock Sensor

new shock sensor based on high-reliability reed-switch technology has been developed by Hamlin. The Model 5818 sensor produces a signal when a preset threshold shock force of given magnitude and direction is exceeded, and its potential applications include shock sensing and safety-device actuation in the automotive, farm-machinery, materials-handling and construction industries.

The sensor consists of a magnetic reed switch surrounded by a
compression-type coil spring linked to a toroidal ferrite magnet. The mass of the magnet and the spring constant are selected so that the reed switchis actuated when a given acceleration force is applied. The switch assembly is enclosed in a rugged housing which protects the components and is also used for mounting the electrical connections. The standard Model 5818 has a threshold sensitivity of 5 G , but other sensitivities are avait able to customer requirements.

Maximum switching voltage is 200 V DC, and maximum switching current is 0.5 A . The contac rating is 10 W . Operating time is typically 8 ms after the threshold sensitivity is exceeded, and the duration of contact closure is typically $16-22 \mathrm{~ms}$. The sensor measures $38 \mathrm{~mm} \times 13 \mathrm{~mm} \times 10 \mathrm{~mm}$, and its operating temperature range is -35 C to +85 C .

Hamlin Electronics Europe Ltd, Diss, Norfolk, IP22 3AY, tel 0379 . 4411.
grees, and the unit has an output which can be used to switch other lights or electrical equipment.

The unit is adjustable to stay on for between $21 / 2$ to $51 / 2$ minutes after it ceases to detect infra-red radiation. The output can be used to control other electrical equipment consuming up to 400 watts, for example, other lights round a building a burglar alarm or halogen security floodlights. These may be selectively switch-
ed when the building is left unoccupied or when the occupiers go to bed. The unit is Design Centre approved and measures $9 \times 41 / 2 \times$ $33 / 4$ inches (approx).

In domestic situations the unit offers the convenience of an outdoor or indoor light to automatically welcome guests in a parking area or at a front entrance or to deter intruders. There are also safety and economy applications, for example, the lighting of
landings and staircases where there are elderly people or where lights would otherwise be left on all night for security or to cater for intermittent traffic.

The security-courtesy light costs $£ 86.00$ including VAT, postage and packing and can be ordered from Semiconductor Supplies International Ltd, Dawson House, 128-130 Carshalton Road, Sutton, Surrey SM1 4 RS, tel 01-643 1126.

Exhibitions, Conferences, Etc

ft's all of three months since we last presented a round-up of forthcoming conferences, exhibitions and other meetings of interest to the electronic fraternity, and the pile of press releases once more looms large before me. Here, then, in something like chronological order, are the pick of the bunch.

Electronics for Peace are holding a series of regional conferences this summer in order to allow electronic and computer engineers to meet and discuss the wider social and military implications of their work. The first conference is in Sheffield on Saturday June 2 nd (the dayafter thisissue is scheduled to appear, but we know some people manage to get hold of their copy early), the second conference is in Bristol on Saturday June 9th and the final one is in London on Saturday June 16th. Details are available from EfP, 151 Courthouse Road, Maidenhead, Berkshire SL6 6HY, tel 0892-46354 or 0628-20225 (both numbers evenings only).

The Computer Fair is described
as Europe's biggest personal and small business computer exhibition and takes place at Earl's Court in London from the 14th to the 17th June. The Exhibition is arranged in two distinct areas, one devoted to home computers and one to business systems, and the first day has been designated a business/trade only day. Opening hours are from 10.00 am to 6.00 pm on the $14 \mathrm{th}, 15 \mathrm{th}$ and 16th June and 10.00 am to 5.00 pm on the 17 th , and further details can be obtained from the Exhibition Manager, The Computer Fair, Reed Exhibitions, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ, tel 01-643 8040.

The Electronic Organ Constructors Society are holding a TMS 3617 workshop (whatever that is) in tondon on the 23 rd June. Other meetings in London this year include a session on amplifiers and speakers on September the 8 th and one on PCB manufacture and UV box construction on the 17 th November. The EOCS is a non-profit making organisation which exists to promote the design and construction of organs and other electronic musical instruments by amateur enthusiasts. It holds five meetings a year in the London area and others in the provinces and also publishes a magazine five times a year. Details of both the meetings
and the society generally are available from Percy Vickery, the Publicity Secretary, 5 Cringle Avenue, Southbourne, Bournemouth, Dorset BH6 4HX, tel 0202-423863.

The Leeds Electronics Show is in its 21 st year and takes place at Leeds University from the 3 rd to the 5th July. The show includes a full programme of seminars and the organisers claim that the exhibitors will range from large, established, market leaders in the industry to small up-and-coming companies. For details contact the Leeds Electronics Show, Evan Steadman Services Ltd, The Hubb, Emson Close, Saffron Walden, Essex CB10 1 HL , tel 0799-26699.

The What Peripherals? exhibition will be held at the Barbican in London from the 13 th to the 16th September and promises to offer visitors the opportunity to compare a wide range of peripherals for their systems. The full-colour magazine and stand guide which will be issued free to all those attending contains comprehensive details of all peripherals whether the manufacturer is exhibiting or not. Tickets cost $£ 2.00$ each for adults and $£ 1.00$ for under sixteens and can be purchased in advance from Computer Marketplace (Exhibitions) Ltd, 66 Wymering Road, London W9.

The International Symposium on Electrostatics takes place in Southampton from the 26th to the 28th September, and aims to provide an understanding of the fundamentals of this subject and to discuss the applications and hazards. The symposium is organised jointly by Southampton University and Oyez Scientific and Technical Services Ltd and is aimed at a wide range of specialists including those in the microelectronics, avionic and other industries. For details contact Miss Helen Raquet, Oyez Scientific and Technical Services Ltd, Third Floor, Bath House, 56 Holborn Viaduct, London EC1, tel 01-236 4080.

The World Computer Ergonomics Conference will be held at the Whitbread Conference Centre in London on the 4 th and 5 th of October and aims to bring managers, users, designers and programmers together to discuss input languages, interactive procedures, VDU health hazards, input devices and work-station ergonomics. The conference is sponsored by Ericsson Information Systems and will be touring to three of the American States and to Amsterdam, Dusseldorf and Helsinki as well as London. For details contact Karen Lee, Connexion, 72 Fielding Road, Chiswick, London W4, tel 01-995 8536.

Piezo Resonators

RBS have introduced into the UK the UN-Quartz range of piezoelectric ceramic resonators which, they claim, offer excellent stability for a wide variety of tuning applications at a fraction of the cost of quartz devices.

Using a circular piezoelectric element supported at its central nodal points and operating in the radial resonant node, the resonant frequency is inversely proportional to the diameter. To accommodate a range of resonant frequencies from 185 kHz to 500 kHz five package sizes are available from 0.430 inches to 0.740 inches. Frequency tolerances of $\pm 1 \mathrm{kHz}$ are standard and the resonator will not drift more than
$\pm 0.2 \%$ from the 25 C frequency over the range -20 to $+65^{\circ} \mathrm{C}$. The resistance at resonant frequency is less than 10 Ohms.

The UN-Quartz resonators are said to be ideally suited for tuning high frequency, square wave oscillators in clock and baud rate generators for computers, calculators and digital instruments. In telecommunication dial tone synthesiser and digital pulse dialling they provide an inexpensive sine and square wave control and are cost-effective for frequency control in TV receivers, CRT display terminals and carriercurrent systems for remote controls and alarms.

A comprehensive manual describing standard types, specifications and circuit applications is available from RBS Ltd, Unit 4, Airport Trading Estate, Biggin Hill, Westerham, Kent TN16 3BW, Tel Biggin Hill 71011.

Alarm Yourself

The Blade DIY electronic alarm kit comes as a basic kit which can be extended almost indefinitely by means of a wide range of add-on modules. The system can be extended to provide fire as well as theft alarm facilities and the manufacturers claim that it can be installed in your house in a single weekend.

The basic kit includes the control unit, an outside bell, an inside siren, a rechargeable battery, a personal attack button, a standard pressure mat, a stair-type pressure mat, a patio door switch, five magnetic door switches, 50 m of four-core cable and 100 cable clips. Accessories which can be purchased to extend the system include window foil and connector blocks, a breaking-glass sound detector, an infrared intruder detector and an external strobe light. Further door switches, pressure mats, etc can also be added to the system and all the
accessory packs come complete with instructions. The system uses a key rather than a combination lock for setting and uses the usual entry and exit delay arrangements. The protected area can be divided into two zones so that you can move freely around in one part of the house while unoccupied areas are protected, the circuit is so arranged that cutting any of the wires will sound the alarm, and the bell is timed to sound for 20-30 minutes once triggered before resetting, thus complying with the noise pollution laws. The four-core cable supplied is colour coded and the main wiring diagram in the instruction is similarly coloured so as to make installation as simple as possible.
The Blade alarm system basic kit costs $£ 143.75$ inclusive of VAT and the various accessories range in price from a matter of pence for anti-tamper switches up to $£ 54.90$ for the infrared intruder detector. Blade Electronic Security, 217 Warbreck Moor, Aintree, Liverpool 190 HU , tel 051-523 8440.

- B\&R Electrical Products of Harlow have launched a mail order component catalogue backed by a same-day despatch service and a telephone 'hotline' for technical advice. The catalogue is extensively illustrated, covers connectors, switches, relays, circuit breakers, meters, etc, and includes such hard-to-find items as DIL attenuators and rotary coded switches. Copies are available free-of-charge from B \& R Electri-
cal Products, Ltd, Temple Fields, Harlow, Essex CM20 2YD.

Acorn Computers have won the Queen's Award for Technological Achievement for their BBC microcomputer. The Award pays special tribute to the advanced design of the machine and commends Acorn "for the development of a microcomputer system with many innovative features" ${ }^{\prime \prime}$.

Courses

Alot ofliterature has landed on our news desk in the last month concerning technical courses, mostly computing aimed at everyone from the well-heeled holiday-maker to the unemployed youngster seeking a career.

The London Computer and Electronics School opened recently in Hammersmith, West London, and offers six and twelve month courses to anyone aged 19 or over who is unemployed and has not been in full-time education in the past two years. The school is funded by the Manpower Services Commission, The Deparment of Trade and industry, the London Borough of Hammersmith and Fulham and the BOC group of companies, and will pay its students a wage of around $£ 40$ per week according
to personal circumstances. The courses on offer are computer programming and computer operation, both of which last six months, and an electronics technician course which lasts twelve months. For details contact Tony Fielden, Director, London Computer and Electronics School, Glenthorne House, Hammersmith Grove, London W6, tel 01-741 9345.
M.A.P.S. Ltd are running three consecutive one week computing holidays for the handicapped, beginning on July 23 rd. Four hundred applications were received for the twenty-five places on a one-week course run last year, so the number of places on each of the courses this year has been increased to sixty. The Holidays will be held at Valence School in Westerham, Kent, a boarding school which caters for 110 handicapped pupils during term time and is thus well equipped for the purpose, and the total cost will be $£ 145$, although there is a possi-
bility of the Department of Industry providing a grant to offset part of this as they did last year. The organisers say they would also be interested to hear from anyone who has or knows of any soft ware or hardware aimed particularly at the handicapped as they are compiling a catalogue of such material. They also run a series of other computer holiday courses aimed at business and professional users and including such diverse items as a course for doctors on using computers in general practice and one for architects, designers and so forth on computer graphics. Contact M.A.P.S. Ltd, 37 University Road, Highfield, Southampton SO2 1TL, tel 0703558621.

The University of Salford are again running a series of one, two and three day computer courses, this time covering the Apple II, IBM PC, the BBC and the CBM microcomputers. The various courses cover a wide range, from introductory courses aimed at the beginner through to more special-
ised courses dealing with such matters as graphics and sound and the use of the various machines in measurement and control applications. The courses are at various dates from now until well into July so those interested should hurry up and contact the Conference Office, Maxwell Building, University of Sal ford, Salford M5 4WT, tel 061-736 5843 extension 449.

ICS are running four, four-day courses covering hands-on skills on microprocessors, taking full advantage of 16 -bit micros, microprocessor troubleshooting techniques and VLSI design. The courses all cost $£ 545.00$ plus VAT with the exception of the microprocessor troubleshooting course which costs $£ 595.00$ plus VAT, and all take place in London in June and are repeated in either September or October. For full details contact ICS Publishing Co. (UK) Ltd., 3 Swan Court, Leatherhead, Surrey KT22 8AD, tel 0372379211.

TI-66 Programmable Calculator

Texas Instruments have announced a new, full specification programmable calculator, the TI-66, which comes in a horizontal computer-like case and provides the college student, engineer and science professional with more than 170 scientific functions, large memory area and user-friendly programming features.
The calculator has arithmetic, logarithmic, trigonometric, statistical, and polar to rectangular conversion features. It can
accommodate a maximum of 512 program steps or 64 data memories with each memory convertible to 8 program steps. With 9 levels of parenthesis and 6 levels of subroutines it can handle almost any problem. When entering or reviewing a program the TI66 displays readable alphanumeric abbreviations of the instructions. It uses the same set of instructions as the $\mathrm{T}-58 \mathrm{C} / 59$ family of calculators, and the constant memory feature retains data and program information even when the calculator is turned off. It also connects to TI's PC-200 thermal printer, giving it printing and listing capabilities.
The TI-66 should already be available in the shops and its recommended retail price is £44.99 including VAT.

Low-Voltage Audio Amplifier ICs

Sprague Electric has launched a dual, low-voltage, audio amplifier IC for use as a stereo headphone driver in portable radios, tape players and other battery-operated equipment. The ULN-3783M comes in an 8 pin plastic mini-DIP case and requires few external components, significantly reducing sys-
tem size, weight and production cost.
Rated for operation up to 12 V , it has a voltage gain of 42 dB , low noise and excellent channel separation. Operating in class $A B$, it features a very low quiescent current and will operate with a supply voltage as low as 2.4 V at reduced volume without any significant increase in distortion. Other features include an ability to operate over the temperature range +20 C to +85 C , and builtin protection against $A C$ short circuits. The package has a copper alloy leadframe which maximises heat dissipation without the need for an external heat sink.

Also new from Sprague is the ULN-3784B 4-watt audio power amplifier, a 14 -pin duat-in-line device designed for consumer, automotive and communications applications. It operates from a single supply voltage between 9 and 32 VDC , and when oerating from a 24 V supply will deliver 4 watts of low-distortion audio into an 8 ohm load. Output power with a 28 V supply is typically 4.8 watts into a 16 ohm load. The plastic package has tabs for attaching an inexpensive heat sink to increase power dissipation, and can be used with a standard integrated circuit socket or printed circuit layout.

The ULN-3784B is a direct re-
placement for the LM380N and the LM384 N and, in addition to providing a significantly improved performance, offers a widermargin of protection against supply transients. Performance characteristics include a high input impedance, a fixed internal gain of 34 dB , and an ability to operate over the temperature range -20 C to +85 C Other features include built-in protection against thermal overloads and AC short-circuits, and internal bandwidth limiting which provides a significant degree of immunity to radio frequency interference.
Sprague Electronic (UK) Ltd, Salbrook Road, Salfords, Surrey RH1 5 DZ, tel 02934-5666.

- Applications are invited for the 1984 Karl Heinrich Gyr and Heinrich Landis Commemorative Prize, awarded annually for practical contributions to the advancement of electrical or electronic science or engineering. Last year's $£ 500$ prize was awarded to the team who developed an instrument to automatically characterise optical fibres. The closing date for entries is 2nd July, and applications forms can be obtained from The Secretary, The Institution of Electrical Engineers, Savoy Place, London WC2R 0BL, tel 01-240 1871.
- At long, long last it seems that things are stirring in the land of the Cortex. Even as I write, a Users Group is slowly raising its not-particularly-ugly head above the platitude and broken-promise strewn ground, eyes alert, hands ready to grab your cash in exchange for regular is sues of a user magazine, a helpline service and a disc software base. For up-to-the-
minute details of the beast's movements and information on where you can contact it, see ETI next month.
- Semiconductor Supplies International have issued a new 30 page stock list covering their range of semiconductors, resistors and capacitors. They offer a computer-based service to mail order customers and can be contacted at Dawson House, 128130 Carshalton Road, Sutton, Surrey SM1 4RS, tel 01-643 1126.
- Cambridge connectors have produced a catalogue detailing their range of flat-cable IDS headers and sockets, all of which are designed to meet the requirements of British Standards, DIN standards and MIL Specifications. Contact Cambridge Connectors Ltd, Denny End Industrial Estate, Waterbeach, Cambridge CB5 9P8, tel 0223-860 041.

PCB Grid Film

Universal Grids are a range of PCB layout films which have. a pale, blue grid printed on them. PCB designers can thus tape directly onto the film without using graph paper or a grid sheet as backing, and because the grid is blue it will not show up when the artwork is photographed.
I he grid sheets are made trom a highly stable, polyester matt film and are available with either metric or imperial rulings and in sizes from A1 to A 4 . The manufacturers claim that a significant improvement in accuracy can be achieved by working directly onto a gridprinted film, and suggest that the sheets will also find wide application in other areas of draughting and design.

A pack of eight A4 Universal Grid sheets costs $£ 5.17$, a pack of five A3 sheets costs $£ 6.21, \mathrm{~A} 2$ sheets cost $£ 2.04$ each and A1 sheets cost $£ 4.00$ each. Further

details and a list of stockists are available from Universal (Electronics) Grids Ltd, P.O. 8ox 3, Liskeard, Cornwall, tel 0579-20878.

01－452 1500 Technonatic Lit）01－450 6597

BBC Micro Computer System OFFICIAL DEALER

Please phone for availability

ACORN COMPUTER SYSTEMS BBC Model B BC Model B＋Econe BBC Model B＋DFS＋Econet Acorn Electron． BBC Teletext Receiver

UPGRADE KITS

A to B Upgrade Kit
Installation
DFS Kit
Installation

ALL PRICES EXCLUDE VAT
Please add carriage 50p unless indicated as follows：

（a）$£ 7$（b）$£ 2.50$（c）$£ 1.50$

（d）$£ 1.00$

ACORN IEEE INTERFACE

A fulf implementation of the ，EEE－488 standard．providing computer control of compatible scientific \＆lechnical equip－ ment，at a lower price than other systems．Typical applications
are in experimental work in academic and industrial laboratories The interface can support a network of up to 14 other compatible devices，and would typically link several items of test equipment allowing them to run with the optimum of efficiency．The IEEE Filing System ROM is supplied． $\mathbf{£ 2 8 2}$ ．

BOOKS

We have a large selection of books on the $\lrcorner \mathrm{BC}$ and other titles．
Please ask for details．No VAT on books．
$\star \star$ ATTENTION $\star \star$
All prices in this
without notice
nstallation
Speech Kit．
Installation
BBC FIRMWARE
2 Operating System Basic II Rom．． View Word Processor Rom Wordwise W／P Rom
Beebpen W／P Rom BCPL ROM＋Disc Disc Doctor Utility Rom Termi Emulator Rom ULTRACALC Rom（BBC） Gremlin debug Rom Computer Concepts Graphics Rom EXMON
£34800a £389．00 a ع429．00a £470．00a £17500a \＆19500a
．$£ 25.00$ $2 \times 200 \mathrm{~K}(40 / 80$ Track）with psu 47.00 d
$£ 1000$ ．Hitachi 100 K Drive
£400．00a

Accessories：
40／80 Track Switching Module．
16000 c
c750d Single Disc Cable
£30．00c

E8．50d
52.00 C DISCS／PkI of 10 WABASH 3 M £34．00c 40T SS／SD ．．．．£14．00．．．£1600c £38．00c 4OT DS／DD ．．．．．．．－$-\ldots . . . \begin{gathered} \\ \text { 22．00 }\end{gathered}$ 87．00b 80T SS／DD ．．．．．．．$£ 24.00 £ 2600 \mathrm{c}$ £2800c 8OT DS／DD ．．．．．£26．00 $\begin{array}{ll}£ 2800 \mathrm{c} & \text { Life Time Warranty on 3M Discs } \\ \Sigma 65.00 \mathrm{c} & 3^{\prime} \text { Double Sided Disc．．．．．．Each } £ 4.50 \mathrm{c}\end{array}$ £65．00c 3＂Double Sided Disc．．．．．．．．．Each $£ 4.50 \mathrm{c}^{\text {E28．00c }}$ FLOPPICLENE Drive HeadC／Kıt ．．．$£ 1450 \mathrm{c}$ $£ 28.00 \mathrm{c}$
FLOPPICLENE Drive HeadC／KIt ．．．$£ 1450 \mathrm{c}$
$£ 28.00 \mathrm{c}$
Disc Library Case £20．00d Disc File Case $30 / 40 \ldots . . .1 . .18 .00 \mathrm{c}$ 220．00d Disc Lockable Case 30／40．．．．．$£ 15.00 \mathrm{c}$ £3000c Disc Lockable Case 60／70．．．．．．．．$\{27$ 00b £5900c

SOFTWARE：

ACORN／MERLE BUSINESS SOFTWARE GEMINI Leisure－Full Range 100K（40 Track）E140．00a ACORNSOFT－Full Range 575．00d 200K（40／80 Track） ᄃ15．00 200K（80 Track）with psu．〔95．00d 400K（80 Track DS） £ $15.00400 \mathrm{~K}(80 \mathrm{TDS})$ with psu． 55500d $2 \times 100 \mathrm{~K}$（40 Track）with psu．

100 K （40 Track）with psu ．．．$£ 165.00$ a ACORN LANGUAGES including BCPL，LISP
£165．00a ACORN LANGUAGES including BCPL LISP
£175．00a FORTH $\begin{array}{ll}\text { £175．00a } & \text { FORTH } \\ \text { £ } 210.00 \mathrm{a} & \text { BBCSOFT } \\ \text {－Full Range }\end{array}$ £210．00a BBCSOFT－Full Range
£195．00a PROGRAM POWER－Fullì Range £225．00a ACORNSOFT（Electron）－Full Range £32000a BEEBUGSOFT－Full Range

TORCH Z8O DISC PACK

The proven upgrade for the BBC Micro Comprising $2 \times 400 \mathrm{~K}$
disc drive，$Z 80$ processor with 64 K or memory．and a $\mathrm{P} / \mathrm{Mcom}$－ patible operating system．it opens up the vast range of CP／M software，including advanced languages．scientific and busi－ ness applications the system is suppled complete with the FECT SPELLER．PERFECT CALC and PERFECT FILE．Full
ORCHNET sottware is also supplied allowing sophisticated networking between other units This will allow access to infor－ mation．and communication，between up to 254 upgraded BBCs．

NEW TORCH Z8O PACK PRICE E899．
SOFTWARE PACKAGE INCLUDES Z80 BASIC
Phone for detalls about the 20Mbyte Hard Dlac Pack，and the 88000 Hard Disc Pack with UNIX Operating System． NOW AVAILABLE－The TORCH Z80 SECOND PROCESSOR CARD－for those who already have suitable disc drives．The card is supplied with allthe free software．
senting a very attractive package．£299．

＇TIME－WARP＇ REAL－TIME－CLOCK／CALENDAR

A low cost unit that opens up the total range of Real－Time applications．With its full battery backup，possibilities include an Electronic Diary，continuous display of＇on－screen＇time and date information automatic document dating，pre－ cise timing \＆control in scientific applications，
recreational use in games etc－its uses are
endless and are simply limited by one＇s magination．Simply plugs into the user port－no specialist installation required－No ROMS．Sup－ plied with extensive applications software．
Please phone for details． $\mathbf{£ 2 9 . 0 0 + £ 2 . 5 0}$ carriage．

PRINTERS	
On fx－80	¢350
EPSON RX880 FT	¢25000
EPSON FX－100．	£450．00a
EPSON DX． 100.	
Printer Sharer＋Cable Set	．$£ 88$
SEIKOSHA GP 100A	
JUK16 100 Daisy wheel	

CASSETTE RECORDERS
SANYO DR101 Data Recorder £34．00b Datex Slim Line BBC Tape Record Cassette Lead． HOBBIT Floppy Tape． hOBBIT Zero Memory Option． Computer Grade C－ 12 cassette Computer Grade Cassette 10 of Phillips Minl－data cassette

ACCESSORIES

Paraliel Printer Lead．．．．．．．．$£ 1000$

 Serial Printer Lead ．．．．．．．．．．．．．．．£8．00d Epson Serialintertace 2 K 8148 £60．00c Epson Seriallaterface $8143 \quad$ §50．00 Epson Serial herlace 143 ．． 550.00 c NEC Serial Interface．．．．．．．．．$£ 17.00 \mathrm{c}$Epson Paper Roll Holder ．．．．$£ 17.00 \mathrm{c}$ | Epson Paper Roll Holder．．．．．． 17.00 C | |
| :--- | :--- |
| FX－80 Tractor Attachment | £ 3700 C | PAPERFanfold 2000 sheets $\quad £ 13.500$ Ribbon MX80／HX80／FX80 ．．．．． 6550 c

MONITORS

Microvitec $14311^{-1} 4^{-R G B S I d}$ Res．
£195．00a £225．00a Microvitec $1451^{14} 4^{*}$ RGB Med Res $£ 299.00$ a Microvitec 1441 14＂RGB Hi Res．．．．．．．．．．£42000a Microvitec $20310^{\prime \prime}$ RGB Std Res kaga vision $112 "$ RGB Med Res． KAGA Vision II Hi Res． £287．00a 230.00 a £26000a KAGA Vision III 12＇RGB Super Hi Res KAGA 12＂Green Hi Res． SANYODM8112CX 12 Green Hi Res KAGA RGB Lead
BNC Green Screen Monitor Lead
£358．00a
106．00a
． 599.00 a
$〔 6.50 \mathrm{~d}$
$£ 350 \mathrm{~d}$

EPROM PROGRAMMER： friendly options for programming the eprom with：

a）Basic programs．
b）Ram resident programs．
c）Any other program．
－Programmer can read，blank－check， on the Eprom．
Personality． single rotary switch．

> A fuily self-contained mains-powered eprom programmer housed in an attractive finished case It is able to program $2116.2732 / 324$. $2764 \& 271288$ sin a single pass. It is supplied with vastly superior soltware when com pared to any currently available similar pro grammer. In addition to normal eprom programming, you are now able to load your favourite basic programs onto eprom.
＊Full Editor with ASCII Disassembler allowing direct modification of memory data in HEX or ASCI
© Continuous display of time left for com letion of programming．
ses as they are beinay of current addres亚
The programmer comes complete with cables，software \＆operating manual， extra．

The original＇Intinte speech＇．Still the

 A ready buill totally self contained speech synthesiserunit，attractively packaged with built－in speaker，AUX output socket etc－no installation problems＇ltallows the creation of any English word，with both ease and cal in memory usage．You can easily add speech to most existing programs．Due to its remarkable intinite vocabulary，its uses spread througnout the whole spectrum of computer applications－these include industrial．commercial．educational scientific，rec－
reational etc No specialist installation－no need to open your computer，simply plugs into the user port－ and due to the simple software．no ROMS are needed SMARTMOUTH is supplied with demo and develop－ ment programs on cassette，and
tions $£ 37+£ \mathbf{2} .50$ carriage．

EPROM ERASERS

dicator
Built－in satety interlock to avold accidental ex
posure to the harmiul UV rays
It can handie up to 5 eproms at a time with an p\＆p．
UV1 as above but without the timer
£47＋$£ 2$ p 8 p．

CONNECTOR SYSTEMS

CONNECTOR SYSTEMS		
I．D．CONNECTORS （Speedblock TYpe $\begin{array}{cccc}\text { Noot } & \text { Header } & \text { tacle } & \text { Conn．} \\ \text { ways } & \text { Plug } & \text { tap } & \text { 85p } \\ 10 & 90 p & 120 p \\ 20 & 145 p & 125 p & 195 p \\ 26 & 175 p & 150 p & 240 p \\ 34 & 200 p & 160 p & 320 p \\ 40 & 220 p & 190 p & 340 p \\ 50 & 235 p & 200 p & 390 p\end{array}$	JUMPER LEADS 24 Ribbon Cable with Headers $\begin{array}{lllll}1 \text { end } & \text { 145p } & 165 p & 240 p & 35 \\ 2 \text { ends } & 210 p & 230 p & 345 p & 54\end{array}$ 24 Ribbon Catit．with Sockets $\begin{array}{lllll}1 \text { end } & 160 p & 200 p & 280 p & 30 \\ 2 \text { ends } & 290 p & 370 p & 480 p & 525\end{array}$	AMPHENO CONNECTO 36 －way plug Centronics Par Solder E5． 25 36 －way Socke Solder 55.50 24－way plug IEEE Solder $£ 5$ 24－way socket｜EEE Solder 5
D CONNECTORS	25 way Mate $500 \mathrm{p} \quad 4$ trinalle 550	50p $\quad 36$ way
	RS 232 JUMPERS	
	IL HEADERS	For $2^{A+C} 32$ way please specify spacing（ $A+B, A+C$ ）
DIL SWITCHES $\substack{\text { 4－way } 70 \mathrm{p} \\ \text { 6－way } 100 \mathrm{p}}$ 10 way 150 p		

D CONNECTORS

RS 232 JUMPERS

AMPHENOL
CONNECTORS

RS	CABLE	
36－way plug Centronics Parallel	（Grey／meter）	
Solder $\mathbf{E 5 . 2 5}$ IDC £5．25		
36－way sockef Centronics Parallel	10 way	40p
Solder £5．50 IDC £5．50	16 way	60 p
24－way plug IEEE Solder £5 IDC £4．75	20 way	855
24－way socket IEEE Solder £5 IDC £4．75	26 way	120p
PCB Mtg Skt	34 way	160 p 180 p
Any Pin 24 way Solder 600p	40 way	${ }_{200 \mathrm{p}}$
36 way ZOC 650p	64 way	280p

VERSATILE EPROM EMULATOR

If imitation is the sincerest form of flattery, your EPROMs are going to have a lot to blush about. Design by Mike Bedford.

Microprocessor systems may be divided into two main categories. The first group, which will be familiar to all home computer enthusiasts, is usually referred to as a personal computer and is comparatively highly priced. Such systems contain a large amount of memory, mostly RAM and a wide variety of I/O connected to devices such as keyboards, VDUs etc, making them very versatile pieces of equipment which may be programmed to carry out an almost infinite variety of different tasks. The second group may be described as minimal microprocessor systems and are used for control applications. Even domestic appliances now include such systems as their cost compares favourably with that of dedicated digital electronics. Such a system is designed to do one specific task and for this reason has less memory than systems in the first group, most of this memory being ROM or EPROM, and the I / O is not designed to interface with normal computer peripherals.

This brings us to the question of how software is developed for such dedicated control systems. To put it simply, this may be carried out on the system itself or on a separate development system. If the control computer itself is to be used it will have to be given some facilities additional to those required to carry out its final task. This is obviously out of the question in the commercial world where the extra cost would be prohibitive. In the amateur world, however, this approach has generally been used, the board having a monitor EPROM and interface to a keypad and LED display.
if software could be developed on a separate computer the availability of editors, assemblers, compilers and hardware such as displays and mass storage devices would simplify the process very
much. However, unless special hardware is available, the development cycle will then consist of:modify software - program EPROM - test on target system modify software etc. etc. The fact that this process involves programming EPROMs slows it down very much.

This article describes the construction of a piece of hardware which allows software to be developed on a separate computer without having to program EPROMs until the program is perfected. An EPROM emulator is basically a dual port memory card, ie, a RAM board which may be accessed from either computer. The method of operation is to produce software on the development system and download the object code to the emulator, after which the control computer may access the card as if it were its own memory. To ease interfacing to the target system the emulator is fitted with a length of ribbon cable and a DIL header which may be plugged directly into an EPROM socket.

System Philosophy

The most convenient way to add an EPROM emulator to a home computer is to interface it directly onto the bus so that it may be accessed as memory. However, this is also the most system dependent way of adding the hardware, which means that it will only be usable with one type of computer or, at best, only with computers using one family of processors.

This emulator has been designed so that it may be interfaced in quite a number of different ways and the user may pick the method which is most suited to his particular computer.
a) The board has been artworked to the Microtan standard so that users of this computer may plug it directly into the mother board and access it directly as system memory.
b) Since the TANBUS signals are fairly standard among 6502,6800 and 6809 systems, owners of other computers using these processors may interface the emulator card onto the bus so long as they sort out the physical aspects of this (ie, making sure the edge connectors match).
c) For those users with computers utilising different processors (including the large number of Z 80 systems) or those with a memory map, which is already full, the emulator may be interfaced via a parallel port. Although this is a very versatile method there are certain disadvantages: a small amount of downloading/uploading software is required on the computer, and 23 bits of parallel I/O are needed for the interface. d) The most versatile method of all is also the most complicated, and for this reason will be dealt with in a separate article. This is to add some local intelligence in the form of a simple processor board with an RS232 interface to the emulator. The system would then be able to communicate with any computer having a standard RS232 serial interface using standard system routines on that computer. In fact, the universal EPROM programmer card described in the August and September' 83 and January ' 84 issues of ETI may also be added to the system, giving a three card intelligent EPROM programmer/emulator which may be interfaced to virtually any computer and which would provide very comprehensive firmware development facilities.

The card described in this article is even more versatile than the foregoing paragraph would suggest. So far we have only considered the card as an EPROM emulator. The board is, of course ${ }_{t}$ essentially an 8 k RAM card and thus may be used as a memory extension without any reference
to emulation. In these days of 16 k and 48 k computers an extra 8 k may not seem a very big leap forward, but the basic Microtan has only 1 k of RAM and even if the TANEX card is being used this board would double the amount of available RAM. In addition the emulator contains low power CMOS me mory and battery backup facilities, enabling data to be retained on power down. Even in a system with a full memory map it may be used as external nonvolatile memory, accessing it via a PIA.

Design Process

This article not only describes the construction of a piece of equipment which readers may assemble for their home computers, it also describes the various options which have been used in the design and how the circuit as it now appears was arrived at.
Choice Of Ram: We have already noted that an EPROM emulator is essentially a random access memory (RAM) card. The most fundamental design consideration therefore is what type of RAM ICs to use. Since it was felt that the memory on the card whould be non-volatile, being backed up by a battery when the computer is switched off, the choice is limited to CMOS static RAMS, all other devices having too high a current consumption to be powered from a battery for very long.

The next question is the total size of the memory to be used and how this total should be made up in terms of individual chips. The choice is essentially between 2 K byte devices and 8 K byte devices. The 8 K devices have only recently been introduced and as a result are still very expensive. For this reason alone, rather then any technical consideration, these memories were rejected in favour of 2 K RAMs. So how many devices should be used on the emulator? Four can easily fit onto an $8^{\prime \prime} \times 41 / 2^{\prime \prime}$ card without making it double sided. At least 8 chips could be put on a double sided card, but it was thought that on grounds of economy the board should be made single sided if at all possible. Four ICs will in fact give 8 K bytes of memory in total which means that all EPROMs up to and including the 2764 (or 3564) may be emulated. At the moment most amateur computer equipment uses $2716 \mathrm{~s}, 2732 \mathrm{~s}$ or occasionally 2764 s, so this seems quite an ade-

Fig. 1 The RAM interface arrangements, showing how A11 and A12 are used to select between memory chips by means of a 2 -to-4 line decoder.
quate solution. If, at a later date, a need arises to emulate larger EPROMs, two such boards could be used together with a small amount of additional logic.

The final question, then, is exactly which 2 K byte CMOS static RAMs to use. Not all CMOS static RAMs have a low enough standby current for battery backed-up applications, and the choice eventually narrowed to the 6116 L or the 5516 . The 5516 has a number of advantages over the 6116 L , having a standby current of $1.0 \mu \mathrm{~A}$ (depending on temperature) compared to $4.0 \mu \mathrm{~A}$ typically for the 6116L, and two CE inputs, one specifically intended for a power-down signal, hence simplifying battery backed-up operation. Further, standby mode is only guaranteed on the 6116 L if all the inputs are held to within 0.2 V of 0 V or VCC (except for CE which must be high) which means that 21 pull-up or pull-down resistors are required.

In spite of these considerations, the 6116 L was eventually chosen on the grounds of its lower cost. Assuming a 100 mAh capacity battery is used, a data retention time of quite a few thousand hours will still be achieved. The circuit will be slightly more complicated but it was felt that a cost reduction in the region of $£ 10$ was of prime importance. It was also realised that, since 6116 Ls have a standard JEDEC pin out, designing the circuit around these devices would mean that users not wanting battery back-up can choose a number of other, less expensive, $2 \mathrm{~K} \times 8$ RAMs.
Intefacing The Ram: In order to address 8 K bytes of memory, 13 address bits (A0-A12) are required $\left(8196(8 \mathrm{~K})=2^{13}\right)$. Of these 13 bits it is evident that 11 will connect directly to the 6116 L devices whilst the remaining two will be required to select which of the
four RAM chips to address. This implies an arrangement like that shown in Fig. 1, where the $1 / 2$ 74 LS139 is a 2 to 4 -line decoder, a device which inputs a 2 bit binary value and gives a logic zero at one of the outputs depending on the input value. The eight data bits obviously connect directly to all the RAM chips.

If this were a standard 8 K memory card for an 8 bit microprocessor system, the board select signal would take a logic low value for one combination of the remaining address bits (A13-A15) hence locating the board in one of the $8,8 \mathrm{~K}$ blocks available within the 64 K addressing space. This would ideally require a 3 to 8 line decoder, but since there is already a 74LS139 in the circuit only half of which is used, it seems more appropriate to use the other half and then use A15 or an inverted A15 to select it.

Since this is not a simple 8 K RAM card but an EPROM emulator, there is an alternative board select condition, namely, when the EPROM socket is being read. To generate the final board select signal therefore, the two active low signals are ORed. This is shown in Fig. 2. It should be neted that, in the final version, the link arrangement associated with A15 has been slightly changed to avoid the possibility of 2 TTL loads being

Fig. 2 Generation of the board select and host select signals.

Fig. 3 The use of buffers to prevent the host and target systems being simultaneously connected to the RAM chips.
applied to this signal. Note also that an external board enable signal from the edge connector is link selectable. This was added to reduce by 2 the number of PIA lines required when interfacing the card in his way.

So far we have discussed how the 8 data bits and 11 of the address bits connect to the 6116Ls without considering whether these are the EPROM address and data busses or the corresponding host computer signals. Both sets of signals must be connected to the RAMs, but if this is done directly it would short the bus of the host computer to the bus of the target system, a condition which would prevent either system functioning.

The answer is to use buffers, only one of which may be enabled at any one time. It was decided that the buffers to the target system should normally be enabled but whenever the development computer required access to the memory it would take priority, enabling its buffers and disabling those to the target system. Address buses are always unidirectional, and as such a 74LS244 buffer may be used. Data buses can be either uni-directional or bidirectional depending on whether there is write access to the memory. The data bus to the host must be bi-directional so a 74 LS2 25 is used, whereas the data bus to the EPROM socket only requires read access and a 74 LS244 is sufficient.

During initial testing it was discovered that the target system port occasionally suffered from read errors. This was caused by false $\overline{C E}$ signals generated in the host during the first half of the processor cycle in which addresses are not valid. Since the duration of such signals is very short, the addition of a capacitor effectively over-
comes this problem. Figure 3 illustrates this aspect of the circuit.

One final point on the interfacing of the RAMs to the address and data buses. You might expect A0 on the host and target systems to be connected to $A 0$ on the RAMs, A1 to A1, etc. This is not the case in this circuit. From an electronic point of view there is no reason why it should not have been interfaced this way, and if it were not for the fact that the author also produced the PCB artwork this is the way the circuit would have been designed.

It was designed in the manner presented so as to simplify the artwork and keep the number of wire links down to a minimum. This might seem a strange decision to make but as far as the outside world is concerned, the address pin labelling on the RAM chips is quite arbitrary. It makes no difference what order they are connected in - each address bit combination still addresses a unique location within the IC. A similar argument may be applied to the data pins on the ICs. It should be noted that this method should not be used when interfacing EPROMs as these will have been programmed assuming the correct signal order and hence compatibility must be maintained.

Fig. $4 \mathrm{a} \& \mathrm{~b}$ Generation of the $\overline{\mathrm{OE}}$ and R/W signals.
RAM Control Signals: We have already dealt with A0-A10, D0-D7 and CE on the 6116 Ls ; this leaves the OE and R/W still to be connected. These signals are equivalent to the Intel NRDS and NWDS respectively and Fig. 4a shows the standard method of generating them from 6502 signals. Since the EPROM port of this card has no write access to the RAM, the generated NWDS does not require ORing with a similar signal associated with the EPROM port. However, when the RAM is enabled by a read from the EPROM port but a R/W is generated by a write to some other memory on the host system, the signal must be gated with HOST SELECT in order to prevent a false write. The $\overline{\mathrm{OE}}$, on the other hand, does require ORing with a corresponding signal on the target system.

The additional two gates required are shown in Fig. 4b which extends Fig. 4 a . It should be noted that $\overline{O E}$ and $\mathrm{R} / \overline{\mathrm{W}}$ can both be active when a write to the card is being carried out from the host system and the target system is attempting a read. This is not a problem since the data sheet for the 6116 L makes it clear that, under these circumstances, the write takes priority over the read. This is perfectly acceptable since the host is to have priority over the target port.

Supply And Power-Down Circuitry:

To ensure that there is data retention when the main computer supply is switched off a battery supply is required. Since the 6116L only requires 2.0 V in its standby mode,

Fig. 5 a \& b The battery trickle charger and the power-down circuitry.
the readily available PCB mounting 3.6 V 100 mAh battery is a perfect choice. Figure 5 a shows a circuit in which the battery is trickle charged via the current limiting resistor when the main supply is present, supplies current to the RAMs via the diode when the main supply is not present, and is prevented from discharging through the power supply under these conditions by the transistor which will be turned off. The resistor value is selected to give a charging current of 1.0 mA (the current stated for this battery in the data sheet). From Ohm's Law, this will be V / I where I is this charging current and V is the potential difference between the battery and the main supply (5 V 3.6 V) or in other words 1.5 k ohms. Although there will be a potential drop of typically 0.7 V across the diode, there will still be 3.6 V $0.7 \mathrm{~V}=2.9 \mathrm{~V}$ available to the RAMs , which is within the specification for these devices.

It now remains to decide how to generate the power available signal. For the purpuses of supply isolation the requirements are not too stringent - all that is required is for it to go sufficiently high to turn on the transistor when the supply voltage is higher than the battery voltage. There is another use for this signal however, to write protect the memory on power down. Since the major part of any computer system is made up of TTL devices and these are only guaranteed to function correctly at supply voltages of 4.5 V and above, it is quite feasible that random signals on the bus will cause un-intentional writes to takes place on power-down, hence corrupting the data in the RAM.

Considerable time was spent to find some way of accurately detecting a voltage level of about 4.75 V to generate the supply available signal, but any such method would involve the constructor in some quite precise setting up which would obviously be undesirable. The method eventually used does not require any setting up, and although it does not succeed in accurately detecting 4.75 V experiment shows that it works. The level detector is simply a potential divider and transistor so arranged that, when the supply voltage is greater than about 4.2 V , a potential of greater than 0.7 V is present at the transistor base which turns it on and hence gives

a logic low signal. This arrangement is shown in Fig. 5b. If an attempt is made to detect something much closer to 4.75 V , the resistor tolerances might cause the transistor not to turn fully on at 5.0 V .

The need for write protection of the RAMs has already been mentioned. This is done by gating the four chip enable (CE) signals in Fig. 1 with the supply available signal in such a way that they can't go low when the power isn't present. Obviously, the gates used need to be active even when the main supply is not present, so they must consume little power and work on a low supply voltage. This demands a CMOS device. Figure 6 shows this gating arrangement which is used to modify the circuit given in Fig. 2.

If the circuit portions illustrated in Figs 1-6 are connected together the result will be the complete circuit diagram shown in Fig 7. There will be a few changes from the circuits already given due to the following: -

1) A few extra gates have been added as buffers to ensure that no more than 1 TTL load is presented to any bussed signal.
2) To minimise the number of IC packages required, two gates have sometimes been used to replace a single gate of a different type. For example, an AND gate followed by an inverter has been used as a
NAND gate in two places.
3) Gates have sometimes been drawn in negative logic notation to

Fig. 6 A modification to the circuit shown in Fig. 2 which provides write protection for the RAMs on power-down.
clarify their function. In the final circuit diagram, however, these have been translated to their more conventional forms.
4) The 6116L RAMs are only in their low power standby mode when all their inputs are within 0.2 V of either 0 V or VCC. The resistors in the SIL packages, ie RP1, RP2 and RP3, have been added to ensure this.
5) In accordance with normal digital practice, a number of decoupling and reservoir capacitors have been connected across the supplies.
6) Since a number of less expensive but higher power RAMs are pin compatible with the 6116L devices, and since not all users would require all four RAMs to be non-volatile, links have been added to allow the user to select either the main supply or the battery supply to each of the RAMs. Next month: Construction and use

HOW IT WORKS

[^0]

You win every time! When you get this NEW \& FREE project from GSC

NEW: an exciting range of projects to build on the EXP300 breadboards. NOW anybody can build electronics projects; it's as easy as A.B.C. with G.S.C.!

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each nole is identified by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE. Any Experimentor breadboard can be 'snap-locked' with others to build a breadboard of any size.

1. EXP $325 £ 2.25$ The rdeal breadboard for 1 cnip circuits Accepts 8 , 14 . 16 and up to 22 pin ICs. Has 130
contact points including two to point bus-bars.
2. EXP $350 £ 3.80$ Specially designed for working with up to 40 pin ICs perfect for $3 \& 14$ pin ICs. Has 270 contact points including two 20 point bus-bars.
3. EXP $300 £ 6.5 \mathrm{C}$ The mos: widely Dought breadooard in the UK. With 550 contact points. two 40 point bus.bars.
the EXP 300 will accept any 52 I IC and up 106×14 pin OIPS Use this breadboard with Adventures in Microelectronics.
4 EXP $600 £ 7.95$ MOST MICROPROCESSOR prosects in ${ }_{600}$ magazines and educational books are bult on the EXF
4. EXP $650 £ 4.75$ Has 6 centre spacing so is pertect to 5. EXP $650 £ 4.75$ Has 6 centre
MICROPROCESSOR applications.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kils.
7. PROTO-BOARD 6 KIT£ 12.00630 contacts, four 5 way binding posts accepts up to six 14 -pin Dips

8. PROTO- BOARD 100

KIT Complete with 760 contacts accepts up to te 4-pin Dips, with two base Large capacity with kıt economy.
f14.25

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd. Dept. 9B

Unit 1. Shire Hill Industrial Estate. Saffron Walden. Essex CB1 1 3AQ Telephone: Saffron Walden (0799) 21682

FREE project:

AUTO-DICE

Liven up your board games with this sophisticated electronic dice circuit! When the 'throw' switch is pressed, a numerical display flashes up rapidly changing numbers. After a few seconds the 'rolling' stops, and the final result is displayed; any number, randomly selected, from 1 to 6 . A few seconds later the display turns off to conserve your battery, letting the games go on uninterrupted for weeks!

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each component is labelled. and the values are given in a component listing. Even the 'row and column lettering of our EXP 300 is shown to make the location of the correct holes, in which to push the components, easy to find There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet.
"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

GOODS DESPATCHED WITHIN 24 HRS FROM RECEIPT OF ORDER
G.S.C. (UK) Limited Dept.9B, Unit 1 , Shire Hill Industrial Estate, Saffron Estate, Walden, Essex CB11 $\overline{\text { GAQ }}$ I Prices include P \& P and 15% VAT

1 Name
Address
I enclose Cheque/PO. for $£$ \qquad or debit my Barclaycard/Access/ American Express card no. \qquad expiry date
FOR IMMEDIATE ACTION - The GS.C 24 hour. 5 day a week service
Telephone (0799) 21682 and give us your Barclaycard. Access. American
For FREE
Express number and your order will be in the post immediately
catalogue lick box \square

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the 2×81-- and more!

The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and It's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modificatıon switch between FORTH and BASIC whenever you like

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 \mathrm{k}, 32 \mathrm{k}, 64 \mathrm{k}$ RAM packs, it is fig-FORTH compatible and it supports the ZX printer.

The price, too, is almost unbelievable. As a "'fit it yourself Eprom", complete with manual, it's just $£ 25+$ VAT.
Add $£ 2$ p\&p UK ($£ 5$ Europe, $£ 10$ outside Europe) and send your order to the address below.

Slaymane SOFTWARE
 David Husband

73 Curzon Road, Bournemouth: BH 1 4PW, ENGLAND Tel: (0202) 302385
international +44202302385

Musician 2B Loudspeaker

At last the ideal of all the sound coming from one piston-like diaphragm, unspoiled by crossover units and resonant enclosures.
These radically novel loudspeakers set new standards both in sonic realism and spatial presentation -
"The best stereo you are likely to hear... Quad class nuff said". . . Paul Messenger Hi-Fi News Nov'83. Drive units for building into enclosures as described in this magazine are $£ 140$ per pair plus VAT and postage. Complete loudspeakers in Luxury \& Basic enclosures are available. Details and prices from:

Merseyside Acoustic Developments
131 Mount Pleasant
Liverpool L3 5TF
Tel: 051-709 0427

COMMUNICATIONS SATELLITES(PART 1)
 Just by picking up the 'phone and dialling a number, you could put yourself in the space age. In this short series of articles, Roger Bond will be looking at the real world of satellite communications.

Any space enthusiast will tell you about Telstar and any school boy will tell you of the killer breed of satellites pranging each other on the big screen. In between these two extremes is the reality of modern satellite communications.

In 1962, Telstar was the first, in circular orbit around the earth and at a height of about 250 miles. So it was visible for only about half an hour from any given earth station, and Goonhilly's first aerial weighing 1100 tons had to be quite a smooth operator in order to track this fastmoving busybody.

In June 1965 Early Bird (INTELSAT 1) went into geostationary orbit over the Atlantic. INTELSAT stands for INternational TELecommunications SATellite and a geostationary orbit is an orbit stationary with respect to a point on the earth, ie. the satellite is moving with the earth's rotation and so staying in the same position with respect to the earth's surface.

Two other satellites took up station over the Pacific and Indian Oceans in 1967 and 1969 respectively and earthlings were fully covered by eyes in the sky. These three satellites formed the INTELSAT I network working to Andover (USA), Raisting (Germany), Goonhilly (UK) and Pleumeur Bodou (France). These satellites provided 240 circuits but could work to only one ground station at a time. INTELSAT II removed this limitation. The signal strength from these satellites was so low that receiving equipment had to be cooled in liquid helium (4.2 K , -268.8 C) to suppress background noise. Receiving signals from these satellites was like trying to pick up heat from a one killowatt electric heater stationed as far away as the moon.

In 1968 Aerial 1 at Goonhilly was joined by a second and in 1972 by a third aerial. Aerials are located in the south of England because the further south the antenna is, the less ground-generated interference it will 'see';
the further north the aerial, the closer to the horizon the satellite gets, until it vanishes from sight!

INTELSAT III was launched in 1968 and could provide 1500 circuits or 4 television channels or a combination of the two. Compare this with INTELSAT II which had to suppress its 240 circuits in order to transmit television. The design life was also increased from three years to five years. Today's satellites are designed for a life of seven years and an estimate of seven out of eight successful launches. A commercial satellite cost about $£ 10$ million to build and about $£ 13$ million to launch in 1977 so the insurance premiums are quite high. By comparison, aerial three at Goonhilly cost $£ 2$ million. Today a satellite costs about $£ 50$ million to build and launch.

In 1977 INTELSAT IV was launched with a life of seven years but in this short space of time the demand had increased so much and technology had advanced so rapidly that the IVA was launched in 1978 followed by today's INTELSAT V in 1980. The main difference between the IV and IVA apart from an increase of circuit capacity (4000 to 6000), was assignment by demand, SPADE, on the IVA - but more about that later.

Modern Satellites

To understand the trend and thinking towards modern satellite communications we need to start with INTELSAT IV. Figures 1 to 4 show the profiles of INTELSATS I to IV. Intelsat IV like all modern satellites is positioned $36,000 \mathrm{~km}$ above the earth and produces a 0.5 sec delay in atwo way conversation. That is the time it takes for radio waves travelling at the speed of light to 'bounce' off the satellite. These signals are transmittod upwards at a frequency of 6 GHz and down at 4 uHz , so inside the satellite is a transponder which is a receiver, a frequency changer and a transmitter.

In fact there are twelve transponders each with a

Figs 1-4 The changing face of satellites: (from I to r) INTELSATSI, II, III, IV. Shown at the top of the page is Telstar (photo by courtesy British Telecom).
bandwidth of 36 MHz and a guard band of 4 MHz between transponders. Therefore the total satellite bandwidth is about 500 MHz . There are two types of aerials:-
a) The global beam, which is a horn type and radiates a beam of 17° width;
b) The spot beam, which is a parabaloid dish radiates a much narrower beam, only 4.5 in width, which covers a smaller area on the earth. The effective power is 35 dBw (that is, to the receiver on earth, the signal is 35 dB up on what would be radiated by a dipole aerial radiating 1 watt of RF power); by comparison, the effective power of the global beam is 23 dBw .

The spot beams, with their focussing, are used for high-density traffic, from one point and another, eg USA to UK. The global beams, being unfocussed, carry signals of interest to many countries; so one small user-country can communicate with another by extracting at the earth station the carrier that is of particular interest to it and rejecting all the other carriers; this facility is used mainly for television.

Compared to INTELSAT III, INTELSAT IV has a smaller bandwidth for the same channel capacity and this is achieved by reducing the frequency deviation of the FM (Frequency Modulated) carriers. The guard band is 10% to 20% of the occupied bandwidth for IV compared to 60% to 90% for III . The FM carriers can cope with 24 channels up to 960 channels depending on the carrier chosen. These channels are 4 kHzaudio channels which may be used to carry data or speech.

INTELSAT IV Earth Segment

Engineers use the jargon 'space segment' for the earth station. Usually restrictions on the launch rocket payload limit the size of aerials that the satellite can carry and the power available to feed those aerials. Hence the burden of picking up weak signals from satellites and radiating strong signals back becomes the responsibility of the earth segment

To keep the earth station costs down, the number of different sizes of carrier frequency is restricted to nine. The carrier to noise ratio is about 10 dB so expensive threshold demodulators, also used in INTELSAT III, are still needed.

Fig. 5 The insides of INTELSAT IV.

Fig. 6 A travelling wave tube.
One kind of threshold demodulator is the frequency modulated feedback type, in which a fraction of the output signal from the demodulator is fed back to a voltage controlled oscillator which is controlled by a phase comparator. This helps to reduce the deviation of the centre frequency to zero, and the accurate centring of the signal gives an improvement of the carrier-to-noise ratio.

We shall look at the transmit and receive directions of the earth segment separately but they do have certain aspects in common. For instance, they both use travelling wave amplifiers.

One kind of travelling wave tube (TWT) is the helix type (Fig. 6), in which a spiral coil of wire is used to propagate the signal. The pitch of the spiral turns determines the speed of signal propagation. A magnetic field parallel to the axis of the tube prevents spreading of the electron beam. Reflection at the output could cause oscillations and an absorber is used to prevent this.

The other thing that they have in common is that they both use an IF of 70 MHz , although transmit and receive frequencies are different, these being 6 GHz and 4 GHz respectively.

Transmit Direction

The intermediate frequency is 70 MHz which is converted to 6 GHz . There are two stages of power amplification using travelling wave tubes. The first TWT gives 39 dB gain over its 500 MHz bandwidth and the second TWT gives about 30 dB gain. For a single carrier the power of the transponder can be concentrated; for several carriers the power must be distributed. If multiple carriers are used with, say, an out put of 1 kW each, the minimum gain will be 30 dB and, because of the manner in which TWTs operate, this will be at the top of the spectrum. The maximum permissible variation is 10 dB over the 500 MHz satellite band.

Supergroups, which are blocks of twelve channels each 4 kHz wide, are reassembled at the earth station depending on their destinations. The supergroups occupy the bandwidth 60 kHz to 108 kHz . Groups on landlines occupy the bandwidth $60-108 \mathrm{kHz}=48 \mathrm{kHz}$ and it is possible to fit another group in the spectrum space below 60 kHz , starting at 12 kHz ie $60-12=$ 48 kHz .

A 60 kHz pilot is inserted at the earth station and failure of this pilot will cause changeover to standby equipment at the earth station. The sub-baseband 4 to 12 kHz is used in 4 kHz lots for engineering services. Each 4 kHz has a speech channel in the range 300-2600 Hz and the rest of the 4 kHz slot is used by five telegraph channels.

The portion below 4 kHz is used for energy disposal. A symmetrical triangular waveform is applied to the modulator during light traffic periods to spread the energy across the spectrum and prevent peaks of high energy.

Low capacity equipment will have less standby than

Fig. 7 (top) Signal path through a satellite.
Fig 8. (middle) A double down converter.
Fig. 9 (bottom) Full receive path of an earth station.
high capacity equipment. For instance, for 24-channel telephony, there is one lot of standby equipment for every five in use. For high capacity carriers, say 900 channels between the UK and USA, the RF equipment that is usually duplicated is demodulators, baseband equipment ie equipment which assembles groups of channels, and double down converters which are explained in the next section.

Receive Path

Figure 8 shows the receive path of earth station equipment illustrating double down conversion. The first IF is at 770 MHz and the second at 70 MHz . But before it gets to this stage it passes through three stages of parametric amplifiers, cooled to a temperature of 16 K . These amplify a weak signal of typically -120 dBW by 30 dB. The signal then passes through a travelling wave amplifier which supplies another 40 dB amplification over the whole 500 MHz bandwidth. We can now develop the picture in Fig. 8 to that in Fig. 9.

There is a choice of power amplifiers. Travelling wave tubes are more flexible but the multi-cavity klystron is more efficient. The TWT needs to work about 10 dB below full power to avoid intermodulation distortion. On the other hand the klystron needs time for tuning up and there can be long breaks if a frequency change is required.

Threshold extension demodulators lower the threshold of the impulsive noise. This threshold is the point at which the signal-to-noise ratio becomes unacceptable and too much information is lost. The semiconductors used have specially doped junctions with reach-through effects which enables low power signals to be recovered.

With the present state of art of transistor technology, a total noise figure of $10,000 \mathrm{pW}$ has been chosen as a design limit for a satellite link. Any signal greater than this can be detected, any signal below this figure is lost. All the time designers are developing new methods of reducing noise in equipment enabling the detection of weaker signals.

Most of the noise comes from the aerial itself and the first stage of amplification and if we take Gas the gain of the aerial and T as the temperature in degrees absolute then G / T gives a rough rule of thumb relating aerial gain to temperature in order to detect a signal in the presence of noise. We can see that increasing the value of G gives an improved figure hence the large diameter aerials at
earth stations. We can also improve this figure of merit by reducing T which is why the equipment is cooled reducing thermal agitation and hence reducing the noise contribution from thermal noise.

Earlier we mentioned the need to limit the number of different carriers to nine. However by 1975 these had increased to twenty and the early frequency splitters used circulators but now stripline couplers giving two outlets each are available. A circulator is a waveguide with a ferrite rod at the axis of the waveguide and if an external magnetic field is applied to rotate the wave then a wave perpendicular to port one will exit at port three, a wave perpendicular to port 2 will exit at port 4 and so on.

A stripline is a metal conductor embedded in dielectric. It's all part of the move away from the bulkiness of waveguide 'plumbing' and towards the compactness of semiconductor-like devices and integrated circuits if possible. Because of the large power outputs already available, the manufacturers of microwave devices have been slow to take advantage of developments in integrated circuits.

SPADE

Time is big money on a satellite link so what better way to use it than to assign speech slots only when demanded? This of course makes it expensive for the earth station which needs to have computer controlled equipment. SPADE stands for Single channel per carrier, Pulse code modulation, multiple Access, Demand assignment Equipment.

The 12 transponders of Intelsat IV each had a bandwidth of 36 MHz and carriers (when modulated) with bandwidths of $2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 7.5 \mathrm{MHz}, 10 \mathrm{MHz}$, $15 \mathrm{MHz}, 20 \mathrm{MHz}, 25 \mathrm{MHz}$ and 35 MHz . These could carry speech channels from 24 up to 960 . For instance, if a carrier with a 35 MHz bandwidth is chosen, the transponder's 36 MHz is taken up. Alternately for fewer channels a combination of the smaller bandwidths can be chosen. This can be wasteful if a country wants say 35 channels. The carrier giving 2.5 MHz bandwidth and carrying 24 channels is not sufficient so a carrier with a 5 MHz bandwidth with a 60 channel capacity is allocated. But with only 35 channels used, the rest is wasted. In any case these channels are active for only a few hours each day because of for instance time differences between the two countries involved.

In addition, only one half of a circuit is working at any given time since usually one party speaks while the other listens. Taking all this into account there is only 40% activity during a conversation and a channel unit on the SPADE system transmits a carrier only when speech is present (ie, the power is turned off when not needed). This must not be confused with TASI (time assigned speed interpolation) which is used mainly on submarine cables (in TASI, the channel is re-allocated to another talker when the user ceases speaking). A transponder can support the power requirement of 400 channels but with 40% activity this can be doubled to 800 channels since the channel unit conserves satellite power. SPADE was used to a more limited extent on Intelsat IV, but fully implemented on Intelsat IV A, whose profile is shown in Fig. 10 and in 1974 twenty earth stations started SPADE operations.

One 36 MHz transponder is divided into 800 channels each 45 KHz wide, ie. a 4 KHz audio channel when frequency modulated, occupies 45 KHz . Eight hundred channels equals 400 circuits since two channels are required for two-way conversation.

The king-pin of SPADE is the demand assignment

FEATURE : Communications Satellites

Fig. 10 INTELSAT IVA.

signalling and switching unit (DASS) which controls the setting up of calls with up to 49 terminals at other earth stations. Communication between earth stations is over common signalling channels (CSC). These are shared by all stations on a time basis as follows.

As signalling information is extracted at the terrestrial interface unit (TIU) Fig. 11, converted to digital form and transmitted over the $128 \mathrm{kbit} / \mathrm{s}$ CSC link. One earth station must act as control and transmit a reference burst with its own data burst and the burst of all other stations synchronised to this on a TDMA (time division multiplex assignment) basis ie. in a given time frame, every station transmits a little information in its given time window. In the receive path, the TIU converts digital signalling back to analogue since the terrestrial networks use analogue signalling mainly.

When a request is made for a call, the DASS unit selects a pair of frequencies from its bank and informs the distant station via the CSC of the chosen frequencies. Then all DASS units immediately update their channel records.

When the call is finished the DASS unit releases the circuit and returns the carriers to its bank. DASS units can be programmed to record the duration of calls for charging purposes and any failures for engineering purposes. It is quite remarkable, the amount of work that computers could handle as long ago as ten years!

The 4 kHz analogue channels are converted to digital torm and transmitted at $64 \mathrm{Kbit} / \mathrm{s}$. This can easily handle data at $1200 \mathrm{bit} / \mathrm{s}, 2400 \mathrm{bit} / \mathrm{s}$ and $4800 \mathrm{bit} / \mathrm{s}$ which are the normal data rates over a 4 kHz audio channel when used for data transmission.

Fig. 11 A SPADE terminal.

Calling All Shipping

Around 1974, when SPADE stated operations, the need was felt for a satellite service to ships, mainly because the MF and HF radio service was starting to get congested. Moveover, radio is subject to fading for hours, even days.

Transmission started in the L band at 1.5 GHz from satellite to ship and at 1.6 GHz from ship to satellite. A bandwidth of 7.5 MHz was allocated and in the Atlantic
region 80 channels would be required by 1990. At 50 kHz bandwidth per channel, 4 MHz out of the allocated 7.5 MHz would be used and 7000 ships were expected to use this service.

In 1978 the USA launched MARISAT (MARItime SATellite) and Europe MAROTS (MARitime Orbial Test Satellite). MARISAT operated at $6 / 4 \mathrm{GHz}$ (C band) between satellite and coast station and MAROTS at 14/ 11 GHz . These were experimental satellites. MARISAT changed to INMARSAT in 1982 and this stands for INternational MARitime SATellites. MAROTS is now MARECS, MARitime European Communications Satellite. All very confusing!

Initially satellites will be power limited rather than bandwidth limited but future satellites will have high speed data at $9.6 \mathrm{Kbit} / \mathrm{s}$ for facsimile (transmission of still pictures like weather maps, newspapers etc), ship operating information, navigation, rescue and fleet messages.

Operation is by means of SCPC (Single Channel Per Carrier) simlar to SPADE. Two methods of modulation are available, narrowband FM or phase-shift keying. The former gives a better carrier-to-noise-ratio.

So messages are passed in two stages, from coast station to satellite and then from satellite to ship at a different frequency. Because of the call-charging limitations of countries, shore to ship calls are semiautomatic but fully automatic for ship to shore.

We've seen earlier how it was the responsibility of the earth segment to provide signals of sufficient strength for transmission as well as detect weak signals in the receive path. However a ship's aerial is limited by space so it is up to the satellite to provide sufficient power. A gain/noise temperature (C / T) of $4 \mathrm{~dB} / \mathrm{K}$ at the ship's aerial is typical.

The otherthing that is typical of a ship is a roll of up to 30 and pitching up to 10 so the aerial must be stabilised with a gyroscope to provide an aerial pointing of $\pm 1^{\circ}$.

To find the satellite, step tracking is used. The aerial is moved slightly, then the voltage fed back from the demodulator is used to decide whether the received signal from the satellite has increased or decreased. If the signal has decreased, the aerial is turned in the opposite direction but if the signal has increased, the aerial is turned another small step in the same direction. The aerial locates the satellite accurately by acting in azimuth and elevation in turn.

The UK is the third largest shareholder in INMARSAT and there is a pair of satellites over each of the Atlantic, Pacific and Indian Oceans. One satellite of each pair is in service and the other is a spare. Actually, "Satellite" is not quite accurate, INMARSAT does not have its own satellites but leases transponders off Intelsat.

Because of power limitations, only 40 of the 286 carriers can be transmitted simultaneously. In future INMARSAT may launch its own satellites capable of transmitting 125 carriers simultaneously and the possibility of aeronautical communication is being explored.

Aerial 5 at Goonhilly serves the maritime community with a 14 m diametre aerial and 3 KW transmitter. It transmits in the C band, $(6 / 4 \mathrm{GHz})$ to a satellite in the Atlantic Ocean Region.

Since there is more than one coast earth station (CES) in each ocean region there is a need for a network coordination centre for each region. These are at Southbury (USA) for the Atlantic Region, Iberaki (Japan) for the Pacific Ocean and Yamaguchi (Japan) for the Indian Ocean. INMARSAT headquarters are in London.

Happy Memories

Part type	1 off	25.99	100 up
4116200 ns	1.25	1.15	1.10
4164 200ns	4.95	4.40	4.20
2016150 ns	4.75	4.25	4.05
6116150 ns Low power	Call	Call	Call
6264 150ns	35.95	Call	Call
2716450 ns 5 volt	3.15	2.85	2.70
2732 450ns Intel type	4.20	3.75	3.60
2732A 350ns	5.25	4.69	4.50
2532450 ns Texas type	3.85	3.45	3.30
2764 300ns	Call	Call	Call
27128300 ns	Call	Call	Call
6522 PIA £3.70 7805 reg	£0.50	7812 reg	¢0.50

Low profile IC sockets:

Pins	8	14	16	18	20	22	24	28	40
Pence	12	13	14	16	18	22	24	27	38

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00. 5 inch SSDD £19.25. 5 inch DSDD £21.00. 5 inch SSQD £23.95. 5 inch DSQD £26.35.

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50 p post \& packing to orders under $£ 15$ and VAT to total, Access \& Visa welcome. 24 hr 'phone service on (054 422) 618 Government \& Educational orders welcome, £15 minimum. Trade accounts operated, 'phone or write for details.

Happy Memories (ETI)
Gladestry, Kington, Herefordshire HR5 3NY
Tel: (054422) 618 or 628

B. BAMBER ELECTRONICS
 Tektrontx Oecllloscc pe Type 502
 Tektronix Plug in Power Unit Type 133 with

Marconl Modulation Meter Type TF 2301 A Marconl RMS AC/DC Vottmeter Type TF 260 Marconl UHF Attenuator Type TF2168 Wavetek LF Generator Type 155
Solartron DVM Type 1420.2
Howlett Packard Power Supply 0-40v@30amp Type 6268B

Schomandl Modulator Type MAF BN B41962
Schomandl Bynthesizer Type NO 100 M Rohde \& Schwarz Decede Signal Generator 0.3 - 500 Mhz Type SMOV BN 41104

Rohde \& Schwarz Sweep SIgnal Generator 50Khz - 12 Mhz Type BN4242/2 Generator Hohde \& Schwarz Power Sig 0.1-30Mhz Type BN4 1001 ohde \& Schwerz Freque Type BN4705t
Rohde \& Schwarz Group Delay Measuring Equipment Merconi

Branal Generator $10-500 \mathrm{Mhz}$ Type TF 801 B
Marconi AM Signal Generator $10-310 \mathrm{Mhz}$ Type TF 801 A/ 1
Marconi 8 tandard Signal Generator $15 \mathrm{Khz}-440 \mathrm{Mhz}$ ع85
Type TF867
clllator $20 \mathrm{~Hz} \cdot 200 \mathrm{Khz}$ Type TF 1101 Marconl AM/FM signal Generator Type TF 995A/5 E 230 Marconi VHF Signal Generator Type TF 1064B/5M £125 Marconi Tx \& Rx Output Tost sot Type TF 1065 Pye Modulation MEter $68-510 \mathrm{Mhz}$ Type MM1
Alrmec 8 weep 81 gnal Generator $20 \mathrm{~Hz} \cdot 200 \mathrm{Khz}$
Type 352
niversal Bridge Type TF 868 Marconi Univereal Bridge Type TF 1313 Tektronix Oscilloscope Type 647
$\begin{array}{ll}\text { Typ } & \text { £110 } \\ & \text { £220 }\end{array}$ Tektronix OsciHoscope Type R647A Less Plug ins $£ 195$ EMA Wide Band Amplifer Plug-in Type 7/1 dvance Oellloseope Type OS25A Twin Beam 3 Mhz E

Ye Base Station Type F30 AM High Band \& Low Band from Low Band $\mathbf{£ 2 0 0}$ yo Base Station Type F401 AM High Band $\mathbf{\varepsilon 2 5 0}$ Ye Base station Type F17 FM High Band $\quad \mathbf{E 2 5 0}$ ye Reporter Type MF6 AM High Band\& Low Band Pye Europa Type MF5U FM High Band Pye Olympic Type M201 AM High Band
Pyo Motofone Type MF5 AM HIgh Band \& Low Band Pye WostmInter Type W30 Low Band
Pye Pockotphone Type PF UHF Complete with Batte

wanted Second Hand Radiotelephone Equipment

Pyo Bantam Battery Chargers
Rank Tolecoms Battery Chargers
Pye Pocketphone PF1 Battery Chargers 12 Way ITT Starphone Battery Chargers Tektronlx Hard Copy Unlt Type 4601 Advance Pulae Generator Type PG 5002 - 2 Gaumont - Kalee Flutter Meter
Siement Traneletor Power Unit 0.30 v 2 mmp . Avo Valve Characteristic Moter Type 3 Alrmec Wave Analyaer Type $85330 \mathrm{Khz}-20 \mathrm{Mhz}$ Sulilvan RC Oaclilator $40 \mathrm{~Hz} \cdot 125 \mathrm{Khz}$ MESL Sweep Oscillator Type M1000 B - 12Gnz Axtec $20^{\prime \prime}$ Video Monitor melal case $17 T 20^{\prime \prime}$ \& $24^{\prime \prime}$ VIdeo Monitors wooden case General Radio Microwave Oscillator Type 1360B $1.7-4.1 \mathrm{Ghz}$
WayneKer Co
Wayne Ker Component Bridge Type B521 Marconl oeclistor Type TF 124640 Khz - 50 Mhz $10 \mathrm{Khz}-14 \mathrm{Mhz}$
Servomex AC Voltage Stabliser Type AC2 240 vac 9 amp
Servomex AC Voltage Stablliser Type AC7 240 vac
40 amp
Howlot Pack
$1.8-4.2 \mathrm{Ghz}$

Type O Plug in extronix Storsge Display Unit Tyoe 611 Tektronix Oscilloscope Type 515A Tektronix Plug in Type CA
$\begin{array}{lr} & 120 \\ & \text { E85 } \\ & \text { C25 }\end{array}$ 8chomandi Frequency Moter Type FD1 $30 \cdot 900 \mathrm{Mhz}$ E50 Rohde \& Schwarz AF Wove Analyzer Type BN48302 E50 Alrmec Modulation Metrer Type $2103 \cdot 300 \mathrm{Mhz} \quad \mathrm{E95}$ 4. 1024 Mhz Devitition Motor $£ 125$ Marconi FM 8ignai Genarator Type if rio6e8/1 £280 Marconi AM SIgnal Generator Type TF $144 \mathrm{H} / 4 \mathrm{~S}$ $0 \mathrm{Khz} \cdot 72 \mathrm{Mhz}$
Marconi Out or Limits Indicator Type TF 2404 UCC Micro- FIIm Reader Cassette Type £35 Marconi Tranamiaeton Line Test Sot Type IF 1267 E40 Marconl Variable Attenuator 750hm Type TF 1073 A 2 S £20 00 mp Alternator \mathbf{t} Generator Noise Filter E 1.00 each nstrument Fans $41 / 2^{\prime \prime} \times 4 \frac{1}{2}$ " 240 vac

Garrard Car Cameatte Player Mechanlame Stereo Head
ektronix Oecllioscope Probes E2.50
 Mullard Vartcap TV Tunera Type ELC 2003 Ex. Band $\begin{array}{cc}\text { New Sets. } \\ \text { Pye Cambridge/Vanguard } 18 \text { Way Control Leads } & \begin{array}{l}£ 3.50 \\ £ 4.00\end{array}\end{array}$ Sony $1 / 2^{\prime \prime}$ Video Tape $5^{\prime \prime}$ Reels AnC Pluge 75 ohm IC Tast Clips 28 pin 840 pin Clrculators $590-720 \mathrm{Mhz} \cdot \mathrm{N}$ ' sockèts E2.00 each Tranalatora Type 2N3055 Transistormers 30 voll @ 1 amp
Tranaformers 36 volt @ 1.5 amp

PYE POCKETFONE PF1

 UHF RECEIVER$440-470 \mathrm{MHz}$. Single Channel, int. speaker and aerial. Supplied complete with re£6 each plus E 1 p .p. plus V.A.T.

BREAKING TEK 545A SCOPES FOR SPARES
CRT type T543 P2 $£ 12$ each. Mains Transformers T601 £15. High Votume Transfor Knobs, Fans, Capaciters and Metalwork

RADIOSONDE RS21 METEOROLOGICAL BALLOON TRANSMITTER

With Water Activated Battery, contains allweather sensors, fully soiid state, \&5 each plus $£ 1$ p. p. plus V V.
P. \& P. or Carriage and V.AT. at 15% on total must be added to all orders. Callers very welcome, strictly between 9 am and 1 p.m. and 2 and 5 p.m. Monday to Friday inc

Barclaycard and Access taken Offical orders welcome

FOR HI-FI \& ELECTRONICS ENTHUSIASTS

CONCEPT ELECTRONICS LTD

 51 Tollington Road, London N7 6PB Mail order onlyWe are the specialist of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of ampliflers, equalizers, reverberation amplifiers (with cases), alarm clocks, appliance timers, CB amplifiers, test equipment control modules, music generator, battery flourescent light and high quality rack mounting cabinets etc. with illustrative pictures now available at the cost of 35p + 25p p\& p.
Prolessional rack mounting cabinet

Panel Size	Rear Box	Price	
WH (inch)	WHD	AL	STEEL
19×5	$17 \times 4.5 \times 10$	27.54	23.54
19×4	$17 \times 3.5 \times 10$	25.24	21.24
19×3.5	$17 \times 3 \times 10$	24.09	20.09
19×3	$17 \times 2.5 \times 10$	24.09	-
19×2.5	$17 \times 2 \times 10$	22.94	18.94
19×6	$17 \times 5.5 \times 12$	28.69	24.69
19×5	$17 \times 4.5 \times 12$	27.54	23.54
19×4	$17 \times 3.5 \times 12$	25.24	21.24
19×3.5	$17 \times 3 \times 12$	24.09	20.09
17×3.5	$15.5 \times 3 \times 9$	21.79	17.79
17×2.5	$15.5 \times 2 \times 9$	20.64	16.64
17×4	$15.5 \times 3.5 \times 12$	25.24	21.24
17×3	$15.5 \times 2.5 \times 1224.09$	2009	

* Wholly made of black anodised aluminium sheets * Suitable for high quality amplifers and many other purposes \star Top, side and rear cover removable for access * Separate front mounting plate * Heavy gauge front panel is of brushed aluminium teet. teet.
The low cost steel version is also available. The size and features as well as the front panel is the same as the aluminium cabinets except the rear box is manufactured from panel painted in black.
steel

CONTROL MODULES

TV-7 Electronic touch switch
TV-11 Light activated switch
TY-18 Sound $£ 2.20$ KIt $£ 3.50$ Ass. Fr-18 Sound activated switch
 (voice-switch) $\mathbf{E 5 . 5 0} \mathrm{KIt} \mathbf{~} 7.50$ Ass TY-41 Infra-red remote control (Receiver and transmitter) £17.20 Kit E21.95 Ass.

50 Marlbrough Road, Derby, DE2 8DT

Tel: Derby 0332/382433

MAIL ORDER ONLY

RVM RANGE OF POWER MOSFET AMPLIFIERMODULES. These Power Mosfet Modules are very reliable, driving difficult loads is no problem. Application from hi power systems to studio to domestic hi-fi.
All of our modules are built and tested and carry a 2 year guarantee.
We also supply a range of heat sinks, specially recommended for RVM modules.

Modules	Power RMS	Load	Volt Max	Size (mm)	Price
RVM150S	70-150W	$4 \Omega 8 \Omega$	± 60	131×80×100	23.50
RVM300S	120-300W	$4 \cdot 8$ n	± 65	\| $31 \times 102 \times 136$	32.87
RVM400S	170-400W	4-8 Ω	± 65	47×89×136	40.92
RVM700S	300-700 W	2-8n	± 70	$47 \times 90 \times 197$	60.96
RVM700S Mounted on Heat Sink					70.40
	Size of Heat Sink Range				
HS110	$52 \times 91 \times 110 \mathrm{~mm}$				5.90
HS150	$52 \times 91 \times 150 \mathrm{~mm}$				7.20
HS2 10	$52 \times 91 \times 210 \mathrm{~mm}$				9.44

All prices include post \& packing. (Quantity discount available)

To order send cash with order, or cheque/postal order. Delivery on our Modules and Heat Sink or same day dispatch when order is received with cash, allow 7 days with cheque or postal order.

TA-323A 30W + 30W stereo amplifie TA.820 $50 \mathrm{E} 18.95 \mathrm{KIt} \mathrm{E23.95}$ Aes. TA-820 60W +60W stero amplifier 20W TA-920 70W +70W stereo £35.50 Kit £42.50 Ass.

MICRORANGE ELECTRONICS
UNIT 258, STRATFORD WORKSHOPS, 8URFORD ROAD (near Strattord Centre) LONDONE15 2SP. L. 01-536 1415

Recently opened component shop in the heart of Stratford, we have lots of special offers until the end of June. (You will find us on the 2nd Floor)

Ne specialize in the manutac ture of.
Printed Circuit Boards. No quantity is too small We also supply. Photo Board and associated chemic als at very keen prices See below.
5×4 " Single sided 8×5 " Single sided $\quad 1.80$ $6 \times 4^{\prime \prime}$ Doubie sided $\quad 2.00$ 8×5 Double sided $\quad 2.40$ Other sizes avallable
all PRICES INCLUDE VAT Please add 50 p for P\&P

SOME SPECIAL OFFERS (Many others in stock?	
7812 12V IA Reg	

Please call or write:
SME Limited, Steyning, Sussex, BN4 3GY
Telephone: 0903814321 Telex: 877808 G

Designed and manufactured in Britain

FUNCTION GENERATOR $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$

* Sine, Square, Triangle, TTL output
* Typically $0.02 \mathrm{~Hz}-700 \mathrm{kHz}$
* 7 switched ranges with coarse and fine frequency controls
* $\pm 30 \mathrm{~V}$ output capability
* Accuracy typically 1% of range
* Variable DC offset
* External A.M. facility
* External sweep facility
* Short circuit protection all outputs

JUPITER 500 (inc. P \& P and VAT) £128.80
Colour leaflet with specifications and prices available from:
BLACK STAR LTD, (Dept.) 9A Crown Street, St.Ives, Huntingdon, Cambs. PE1 7 4EB, England. Tel: (0480) 62440 Telex: 32339

THE WARLOCK BURGLAR ALARM

"Save a joule - Lose a jewel - What a fool; Spend a joule Save a jewel - That's cool!" Phil Walker, of whose poetry, John Betjeman is reputed to have said "It's enough to make a banana blush', can at least design a good burglar alarm.

This project has been designed to give considerable flexibility while keeping the cost down. It can be used with either two-wire or four-wire systems and will give anti-tamper protection to the wiring if required. The unit also provides suitable connections for use with a selfprotecting audible alarm which we hope to publish soon.

The unit as described caters for up to four pairs of alarm loop circuits containing normally closed switches or can simultaneously deal with normally open switches if necessary. Each pair of alarm loops consists of one loop at ground potential and one loop at about +12 V . Breaking either loop or shorting one to the other will trigger the alarin. One pair of loops is designed to be used as the anti-tamper circuit and can be left operative while the rest of the system is disabled. Another loop pair is fitted with a circuit which allows restricted exit and entry and a time delay (from 8 to 90 secs) so that an authorised person can leave and re-enter the premises without setting off the main alarm.

It should be possible to use this project with most types of active and passive alarm sensors although some of the active ones will need external power.

The Circuit

This project is designed to monitor up to eight alarm loop circuits. These loops are connected in pairs with one circuit at ground potential and the other at supply potential. Two pairs are simple loop sensors which respond immediately if either loop is disconnected or one is shorted to the other. The third pair is connected
to the exit/entry delay system and allows a timed exit period and timed entry period before setting off the alarm. The last pair are very similar to the simple loop sensors with the exception that they can remain active when the rest of the circuit is inhibited.

The loop sensing circuitry for all the loop pairs is identical and very simple in operation. The same current flows through both loops of a pair and is determined by a single resistor. If either loop is broken then the current will divert into one of the input transistors which will then cause an alarm condition to be flagged. Shorting the two loops together causes a similar condition at the output as it robs the sensor circuit of its power supply.

The alarm latch and condition indicating circuitry is also virtually identical for each loop pair. It has been designed so that while the
pair is inhibited by its own switch the LED is off. When a loop pair is enabled but the alarm module is disabled by the key the LED will be on and steady while the loops are in a safe condition and will flash if the loops are in an unsafe condition. At this stage no alarm will be sounded and the cause should be rectified before enabling the alarm. Once the unit has been enabled if an alarm signal arrives at one of the three nondelay loop pairs the latch will be set and an alarm condition will be sent to the output circuit to activate the audible warning device(s). Also the LED for that pair will flash. Note that the state of the loops will have no further effect on the alarm latch.

The operation of the delay loop pair is a little different. The alarm condition from the loop sensor circuit sets a latch which in turn starts a counter which counts 8192 pul-

HOW IT WORKS

This project can be considered in five parts. These are:-
a) the input loop sensors
b) entry and exit delay circuit
c) alarm latch and condition indicators d) alarm trigger, local sounder and remote relay switch
e) power supply

Ihe tirst section consists of tour identical circuits each of which provides two loops. One loop operates at $0 V$ potential while the other operates at close to the supply rail. The current flowing through each loop is determined by R1 in the first circuit and similarly in the others. If both loops are complete, this current will flow through the external via D1 and D2 and both Q1 and Q2 will be in the off state. Thus the collector of Q2 will be in the high state.

If the upper loop is broken, the current through R1 will now flow through D9 and the base of Q1. Q1 will now conduct and allow current to flow down R5 into the base of Q2. This transistor will now conduct and pull its collector low to signal an alarm condition.

If, on the other hand, the lower loop is broken, the current through R1 will now flow via D10 into the base of Q2 and thus turn it on giving the same alarm condition.
Finally, if the two loops are shorted together by some agency the supply voltage will be dropped across R13 while the collector of Q2 will again go low to signal an alarm.

This should provide a good measure of protection against most tampering with the wiring.

The second section of the project is the entry and exit delay. This is fairy complex as it performs several functions. The input from the line sensor circuit first enters IC1a where it is gated with the reset signal from IC2a and a time-out signal from IC3.
If the reset signal is active (output of IC2a high) then no further action occurs. Also the outputs of IC1a and C are forced low causing IC1b output to go high. This causes IC3 to be reset. The high output from IC2a also resets and holds IC4 a and b
If, however, the reset signal is inactive, the alarm input going low causes the output of IC1a to go high. This forces the latch formed by IC1b and c to change state with IC1b output going low. This removes the high on the resel line to IC3 which will start to count the pulses coming from the oscillator IC2b. IC3 is a 14 -stage divider which increments with each input pulse. The output from the 6th stage controls the audio frequency oscillator IC2c which generates a bleep sound from the piezo-electric sounder, X1. The output from the 14 th stage clocks IC4a and b when it goes high and simultaneously resets IC3 via the sections of IC1 When IC4a is clocked its Q output goes high and its Q output will go low. If during the counting period of IC3 the alarm input has gone high gain, then the output of IC5a at the time of clocking IC4b will be low otherwise it will be high. The current state if IC5 a is clocked into IC4b at the end of the counting period and if this is low no alarm is given. If it is high then the alarm is sounded.

After the first such sequence in which the alarm is not activated, if the alarm input signal goes active again, a similar sequence is followed with the exception that the output of IC5a is held high by the \mathbf{Q} output of IC4a being low. At the end of the count period the alarm will be sounded whatever the state of the sensor signal.

The circuitry around IC5b, c and d are present to cause either LED5 or LED6 to flash at the bleep rate to indicate that exit or entry time delay is active.

ALARM LATCH,

 ETCThe circuit around IC6 forms a status indicator for the alarm sensor signal. In the first timing period, the latch formed by IC6a and bis disabled by the low on IC4a Q output. If an alarm condition is detected by the loop sensor circuit then the output of IC6a will go high but will not latch. This will allow a low fre quency flash signal from IC2d to drive IC6d and hence LED1. In the second timing period the latch will be enabled and if an al arm condition occurs, it will stay with the flash signal en abled.
The alarm signal from this part of the circuit is taken from the \bar{Q} outpul of IC4b and goes low to signal an alarm con-dition. The circuit around SW1 and D17 allows the whole channel to be disabled if needed. This causes the LED1 to be turned off whereas a normal low on the reset line via 225 will cause the rest of the circuit to be reset and LED1 will be on if the alarm sensor is not active and flashing if it is.
The circuits for the other latch and condition indicators are virtually identical with the exception that the input to the NAND latch goes directly to the reset line via its resistor; in the se channels the alarm signal is taken from the NAND latch as an immediate result is required. The reset circuit for channel 4 is slightly modified such that it can remain active when the other channels are turned off

ALARM TRIGGER ETC
The outputs from all the latches are collected into a NAND gate IC10a so that any one which goes low will cause the output to go high. This is then gated with the reset signal such that both must be high before the alarm is sounded. The output of this gate, IC10b, is normally high and keeps Q9 conducting. If it goes low, RLA1 is deenergised and the main alarm sounds. This mode of operation ensures that cutting off the power supply will sound the alarm.

Also, if either IC10b output goes low or channel 4 (IC9b) alarm output goes low, Q10 is switched on and the buzzer X 2 sounds. This is to allow tamper-

ing to be detected without setting off the main alarm.

POWER SUPPLY

This part of the circuit uses a standard bridge rectifier and capacitor arrangement but the regulator system is a little unusual. The circuit uses an LM317 regulator with its reference terminal connected to a 12 V battery. This means that the output voltage will be about 1.2 volts above the battery voltage. While $A C$ power is applied the battery is charged via R46 and the main circuit is supplied via D27 at about 12.5 V . If the power fails the circuitry will be powered from the battery via D28 ensuring that the alarm circuit is always powered.
ses from an oscillator, whose frequency (and hence the delay time) is controlled by the variable resistor RV1.

When the count is complete, the state of the loop sensor is tested. If it is still in the alarm condition the output from the circuit activates the output stage immediately. If, however, the loop sensor circuit is non-active - ie the door is shut - the alarm is not given and the circuit goes into its second stage.

During the first stage (normally

Fig. 1 Circuit diagram

while you are leaving the property) the green LED will flash while the timer is operating and the red LED will flash while the door is open. If, once the first stage of operation is complete, the loop sensor circuit becomes active again, the counter circuit will start again but this time the alarm will sound at the end of the time period whatever the state of the loop sensor unless the alarm is disabled with the proper key. During this stage the orange LED and the red LED will flash. During both timing stages a bleep will

PARTS LIST

RESISTORS ($1 / 4 \mathrm{~W}$ 5\% carbon film)		LED1,2,3,4	0.2 inch red LED
R1-20,25,45-48	47 K	LED5	0.2 inch yellow LED
R2 1-24,35,36,53	1 KO	LED6	0.2 inch green LED
R26,49-52	10 K		
R27,28	$1 \mathrm{M0}$		
R29,30,41-44	820 R	MISCELLANEOUS	
R31-34, 37-40	100K	SW1,2 SW3,4	2-way DIL switch
R54	560R	SW5	3-position key-
RV1	100K		switch piezo
CAPACITORS (100 volt PCB mounting polyester unless stated)		X1	Prounder piezo
		X2	12 V PCB mounting
C1,3	$1 \mathrm{n0}$		buzzer
C2,6,11,12,13	100 n	RLA1	12 V relay 2 pole
C4	$1 \mu 0$		changeover 5A
C5	$2200 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic		(Maplin YX98G or similar)
C7,8,9	$10 \mu \mathrm{~F}$ Tant. bead or min. A1. 25 V	SK1,2,3,4,5,67	4 way PCB mount screw terminals
SEMICONDUCTORS		FS1	2A 20 mm fuse +
IC1	4025		PCB holder
IC2	4093	FS2	1A 20 mm fuse +
IC3	4020	B1	$12 \mathrm{~V} 280 \mathrm{~mA}-\mathrm{hr}$
IC4	4013	B1	$\mathrm{Ni}-\mathrm{Cd}$ battery (or
IC5,6,7,8,9	4011		$2 \times 6 \mathrm{~V}$)
IC10	4012 K	T1	12V 20VA transfor-
${ }^{\text {IC11 }}$, ${ }^{\text {a }}$	LM317 K		mer in box with
Q2, ${ }^{\text {Q }}$, $, \mathbf{6}, 8,10$	BC182L		suitable fuse
Q9 ${ }^{\text {a }}$	TIP121	PCB; large die-cast box; small micro-	
D1-23 inc.	1N4148 or similar	switch with NO contact (ie contact	
D24,25,26	1 N4002	closes when switch operated); heatsink	
D27,28	1 N5402	for IC11 (see Fig. 3); TO3 mounting kit	
BR1	200V 2A potted bridge rectifier	and thermal grease; spring clips for batteries; solder tag wire, solder, etc.	

sound so that you are aware that something will happen soon if you take no action.

The reset circuitry is arranged around a three-way keyswitch. In one position all the unit is switched off. This is to allow you to do maintenance or add extra sensors. In the second position most of the unit is disabled with the exception of the loop pair used for the antitamper circuits. This is the normal "off" position which allows full access to the premises but sounds an internal alarm if the wiring or alarm unit is molested; for this facility we have assumed that there will be someone nearby who can investigate. In the last position the unit is fully active and ready to go. Any alarm conditions will be dealt with as appropriate.

All the alarm outputs from the sensor and latch circuits are gathered into a gate circuit which also uses the state of the reset line as an inhibit. The output from this drives a power relay via a transistor such that the relay is de-energised when an alarm occurs. This prevents someone just cutting the

PROJECT : Burglar Alarm

wires to stop the alarm. The output from the gate circuit also drives an internal buzzer which also serves as the alarm for the anti-tamper loops.

Power for the whole unit is normally supplied from a 12 VAC external supply which is rectified and smoothed. This is then roughly regulated by a monolithic regulator IC which also charges the internal battery. If the external AC supply is cut off then the internal battery will supply the circuit for at least a couple of hours. This should be long enough to cover a mains failure but a larger battery may be needed in some cases.

If a three-position keyswitch is not available or extra security is reqired then two two-position switches could be used. One of these would control the main unit while the other would control the anti-tamper circuit. By connecting the latter to the main reset line instead of directly to ground both keys would be needed to totally disable the unit.

Construction

The majority of the components for this project are fitted on to the PCB. This should reduce the scope for errors but, as usual, care must be taken to insert all the diodes, transistors, ICs and polarised capacitors correctly. There are quite a few links on the board and all of these must be inserted correctly. It would probably be best to insert IC holders into the PCB first followed by resistors, diodes, capacitors and terminal blocks. The links could be inserted immediately after the IC sockets. The last things to fit are the large com-

Internal layout of the prototype.
ponents such as fuseholders, relay, buzzer, the LM317 and heatsink and C 5 . When fitting the regulator IC note that it should be insulated from the heatsink.

The LEDs should not be fitted yet as they could be positioned on the foil side of the PCB to poke through the box when assembled. At this stage it would be prudent to test the circuit. Use a 12 V supply into the battery terminals and check that each part of the circuit from the loop sensors onward is

Fig. 3 A suitable heatsink for IC11
operational. It will help to wire the keyswitch at least temporarily.

When the board is working correctly the LEDs can be fitted in place and permanent wiring installed to the keyswitch and piezo sounder. All other wiring is done via the screw connectors for the eight loop-sensor circuits, the relay contacts and power supply. The PCB is designed to fit into a large die-cast box with its Ni-Cd battery but not the transformer. This should be housed in its own box or could possibly be a suitably rated bell transformer. The box used for the unit should have a micro-switch fitted into it such that the removal of the lid will activate it. This switch and a pair of wires in the power cable should form one of the anti-tamper loops. The other is available for general use.
We shall be dealing with the use of the alarm unit, including the wiring up to the siren unit, in the near future, when we describe the siren unit itself.

ETI

BUYLINES

[^1]
ELECTRONIZE CAR ALARM

The repertoire of alarming noises generated by lan Pitt's car has just been increased by one - courtesy of Electronize Design.

The Electronize car alarm consists of a simple control panel which mounts below the dashboard and a bulkhead-mounting box containing the main circuitry which can be hidden away in the engine compartment. The existing courtesy light door switches are used to detect anyone entering the vehicle and the horn and the headlights are used to attract attention. The only otheradditions are a switch to detect when the bonnet is opened and a similar arrangement for the boot if one is not already fitted.

The circuit is armed by pressing a button on the dashboard control panel, after which a delay circuit allows thirty seconds for leaving the vehicle and closing all the doors. Opening any of the doors after that triggers the circuit into entry delay mode, allowing ten seconds to get inside the car and switch off the alarm. Opening the bonnet or the boot will trigger the alarm immediately, as will attempting to remove a radio or any other accessories attached to the sensing loop. Turning the ignition on will also trigger the alarm immediately and, provided the car has a conventional or standard CD electronic ignition system, will prevent the engine firing. If a contactless CD system is fitted the engine will start, but the alarm will still be triggered. A safety interlock prevents the circuit being armed when the engine is running, thus removing the possibility of a driver accidentally knocking the alarm switch while the vehicle is in motion and thus causing the engine to cut out.

A key is used to turn the alarm off, making it impossible for an intruder to disarm the system during the ten second delay after a door has beenopened. The key consists of a miniature stereo jack plug containing two 1% tolerance resistors. Two further resistors are contained in the alarm circuitry, and only if the two pairs match will the alarm switch off. The 1% resistors are supplied with the kit and Electronize claim that they are chosen from a range of 45 values, giving a total of 2025 possible combinations for a pair.

The alarm circuit employs a low power quad op-amp and four CMOS ICs to give a very low drain current. A thyristor is used to inhibit the ignition circuit and a multipole relay switches the horn and headlights. This allows the switching to be entirely independent of the supply rails, enabling the horn switching circuit to be connected directly across the horn push regardless of whether the horn is switched on the positive or earth side. The relay is driven by an oscillator so that the horn and the headlights pulse on and off when the alarm is triggered. A further feature of the circuit is that, once armed, the main
unit will continue to operate even if the leads between it and the control panel are cut.

Construction

The kit arrives packed in a number of small, polythene bags each with a packing slip carrying the packer's initials, and includes just about everything you could need including the solder. No errors or shortages were found in the kit as supplied and everything was easy to find and identify.

The first stage in the construction is the assembly of the PCB. The instructions include an overlay diagram and a full component listing and each item is identified by its colour code or physical appearance as appropriate. The PCB has all the component positions marked on it in white in a very helpful fashion - the thyristor, for example, which could easily be mounted either way around, is accompanied by a note on the PCB which shows on which side the type number should appear. The instructions are also very clear and include a section on general soldering principles, although I am not sure that a circuit of this complexity would be attractive to a beginner. The only error I could find anywhere in the notes was a reference to the earth lead which should be attached to the PCB but which is not shown on the overlay diagram. However, since there is only one hole it could possibly go into and since it is shown on the installation wiring diagram further on in the instructions, this didn't pose much of a problem.

The complete kit as it arrived, except that the PCB is shown here already assembled.

A couple of perspective drawings show how the little control panel should be wired and the accompanying instructions are again fairly comprehensive. The jack plug is quite simple to assemble because it only contains two resistors, but a drawing is used to make it clear which resistance goes where since it is important that the two exactly match the pair in the main alarm box. Two jack plugs and two sets of resistances are provided so that a spare key can be assembled.

At this stage, with the control panel, the jack key and the main unit all complete, I decided to set the system up on the bench and try it out before installing it in my car. With a couple of 12 V lamps to simulate the presence of the horn and headlights, it was a simple task to check the unit through almost all aspects of its operation and establish that it was working quite correctly. I also took the opportunity to try it out at various supply voltages and found that it would work satisfactorily over a far wider voltage range than it is likely to encounter in normal use.

Electronize give reasonably detailed instructions for installing the alarm but obviously cannot take account of all the many makes and models of car the system might be fitted to. A little bit of care and thought is thus required here, and the installation is likely to take rather longer than the initial assembly. It took me a full morning to get everything installed and connected up and a few odd hours later on to test the system, tidy up the wiring and put everything back as it should be. The amount of time the process takes could vary enormously according to the make of car and your familiarity with its wiring.

The main box was readily attached to a blank section of the bulkhead using the self-tapping screws provided. The small control panel proved just as easy to fit underneath the dashboard and again is attached using selftapping screws. The bonnet switch, however, was not so easy to fit. Electronize intend that it be installed from above into a cross-member or other horizontal surface onto which the bonnet closes, but I found that the switch would not then compress sufficiently to allow the bonnet to be closed. Accordingly, I attached the switch to the underside of a panel, spaced it away with washers and secured it with pop-rivets, allowing just sufficient of the plunger to protrude to ensure efficient switching. The difficulty encountered in fitting this item is going to vary enormously from car to car, but I see that plungertype door switches with various stem lengths are available quite cheaply from car accessory shops, so if the example provided really does prove impossible to fit it

The tiny alarm control panel is almost lost beneath the dashboard - you can just see it directly below the speedometer.

The plunger-type bonnet switch in position. The main alarm box is lurking in the shadows of the vent recess.
should not be difficult to find a more suitable replacement. You may also need to purchase such a switch if you wish to extend protection to the boot but do not have an automatically switched boot light already fitted.

When the main box, the control panel and the bonnet switch are in place, the final task is to connect them all up. I had no trouble finding an existing cable access hole through the bulkhead into the engine compartment, and soon had the main box and the control panel connected together using the four-core cable supplied. The remaining cables from the main box I bundled together and secured with cable ties (not provided), branching each one out as necessary so as to keep the wiring fairly neat. Sleeved $1 / 4^{\prime \prime}$ connectors are provided with the kit so I started with the leads using them and connected up the bonnet switch and the ignition lead via the negative side of the ignition coil. A tag and self-tapping screw are provided for the earth lead which I attached to the bulkhead fairly close to the main alarm box. The positive lead is simply taken back to the fuse box and attached using another of the $14^{\prime \prime}$ connectors. An accessory lead input is provided on the alarm, allowing a wire to be threaded through a number of devices such as radio/cassettes, fog lamps, etc, before finally being attached to earth and so arranged that breaking the lead will immediately trigger the alarm. How this is attached will depend upon the accessories to be protected, but a $1 / 4^{\prime \prime}$ connector is included in the kit for this purpose.

The remaining wires all have to be tapped into existing cables to make connection with the horn, headlights and the courtesy light door switches. I found it necessary to remove the dashboard and the parcel shelf from my car in order to locate all of the wiring I needed access to, and a circuit diagram of the car's electrical system with wiring colours marked on it proved very useful here.

The actual connections are made using' tap-in' connectors. For the benefit of those unfamiliar with these handy devices, they consist of a plastic case which is grooved to carry one cable straight through and one cable end, and have a small, serrated metal blade which is pushed through the case when the wires are in place and which cuts the insulation on the two wires so as to make the connection. I have used them before on several occasions, but I found the type supplied by Electronize very fiddly to use. In the most extreme case, I found it difficult to line up the heavy-gauge horn feed wire present in my car alongside the much thinner horn leads provided with the alarm, hold the plastic case closed over the two, fold the blade flap into place and then squeeze the whole together with a pair of pliers, all

REVIEW : Electronize Car Alarm

One of the 'tap-in' connectors supplied by Electronize. Similar connectors of much simpler construction are widely available.
whilst working in a cramped and uncomfortable position under the dashboard. After some minutes of repeatedly failing to line everything up I gave in and purchased a small pack of 'tap-in' connectors of much simpler construction from a high-street car accessory shop. These, as I had expected, were much easier to use and I had no further difficulty in making the connection to the horn circuit

With the installation complete I tentatively applied power to the system, having first removed one connection from each of the car's horns. A full test procedure is given in the instructions and I followed this through without encountering a single problem. The alarm worked perfectly in all respects, the headlights flashing vigorously to indicate the alarm state and the LED on the control panel correctly indicating the dormant, armed and active states by being off, on or flashing as appropriate. When I had thoroughly checked the system, I reconnected the horns and once more armed and
triggered the alarm. A few strident blasts synchronised with the flashing headlights confirmed that here, too, all was working correctly, and I'm sure the neighbours are grateful for my testing the system in this way rather than leaving the horns connected throughout the test sequence.

I must confess to having ben slightly intimidated by the alarm at first, almost afraid to leave the car with the alarm switched on in case it suddenly went berserk and started flashing its headlights and sounding its horn for no apparent reason. Happily that has not happened, and I am steadily gaining confidence in the system's ability to protect the car without generating false alarms. Window stickers warning that an alarm system is fitted are provided with the kit and this visible deterrent inspires a further degree of confidence. I am not quite sure why anyone should want to steal my rust-streaked, twelve-year-old saloon, but I received a timely warning a few weeks before the alarm was installed when a vehicle of a similar age and condition belonging to a friend was 'borrowed' for a joy ride and severely damaged. It's nice to think that they would now have considerable difficulty trying to do the same thing with my car. They might even choose to attack another car instead, one without an alarm system. Your's, perhaps?

The Electronize Electronic Car Alarm costs $£ 19.95$ in kit form or $£ 29.95$ built and ready for installation. Both prices include VAT but exclude postage and packing for which $£ 1.00$ extra should be added. Electronize Design, Tame Valley Industrial Estate, Magnus Road, Wilnecote, Tamworth B775BY, tel 0827-281 000.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DAVS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

electromise
 AUTO-ELECTRONIC PRODUCTS

KITS OR READY BUIT

TOTAL ENERGY DISCHAROE ELECTRONIC IGNITION

is

YOUR CAR

AS GOOD AS IT COULD BE ?

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
t Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from ide to the engines maximum (even with 8 cylinders)
\star Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the "near misfires" whilst an electronic filter smoothes out the effects of contact bounce etc.
* Do the PLUGS and POINTS always need changing to bring the engine back to its best? Total Energy Discharge eliminates font arcing and erosion by removing the heavy electrical loz. tin stays "spot on" and the cont
performance either. Larger
badly fouled pluges
 systemy A Cfacts
Perform át only 6 volts (max. supply 16 volts) SPARK POWER \qquad 40W, SPARK ENERGY \qquad
 LOADED OUTPUT VOLT NELE

50 pF load
We challenge any man figures. Before you buy \$1\% prace, or for the facts, its what you really want, we'll still give you a good deal.

* All ELECTRONIZE electronic ignitions feature:

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have electronic ignition Update YOUR CAR

ELECTRONIZE

 ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR ?

More and more cars are stolen each week and even a steering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm system well there are plenty of other cars to choose from.

LOOK AT THE PROTECTION AN ELECTRONIZE ALARM CAN GIVE
\star MINIATURE KEY PLUG A miniature jack plug attaches to your key ring and is coded to your particular alarm.
\star

- 30 SECOND EXIT DELAY The system is armed by pressing a small button on a dashboard mol control panel. This starts a 30 second dekusper ge the owner can open and close Squy opp ooded b Latenng circuits are used and once triggered the canthiy be cancelled by the key plug
- L.E.D. FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED indicates that the alarm has been triggered and is in the entry delay condition.
* ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
* SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
\star LOW SUPPLY CURRENT CMOS IC's and low power operational amplifiers achieve a normal operating current of only 25 mA .
- IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions.

fill in the coupon and send to-

ELECTRONIZE DESIGN Dept D . Magnus Rd Wilnecote • Tamworth B77 5BY. tel 0827281000

Plèase Supply Send More Information TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)
\qquad D.I.Y. parts kit £15.90 f14.95

Assembled ready to fit
£ 28.70 € 19.95 \square (positive earth unit f22.95)

TWIN OUTPUT for cars and motor cycles with dual ignition
\square Twin, D.I.Y. parts kit £24.55 £22.95Twin, Assembled ready to fit
£ $36.45 \mathbf{£ 2 9 . 9 5}$

CAR ALARM (12 volt negative earth)

D.I.Y. parts kit

Assembled ready to fit
£24.55 £19.95
£ 37.55 £29.95

SPECIAL OFFER. Buy one electronic ignition kit plus one alarm kit for $£ 30.85$ or assembled units for $£ 44.65$. Goods must be purchased at the same time.

I enclose cheque/postal order OR debit my Access/Visa card

Name
Address

> Code

Please Add $£ 1.00$ P\&P(UK) Per Unit
Prices Include VAT

AUDIO DESIGN

In this second part of the practical realisation of audio theory, John Linsley Hood describes the design of a very high quality audio amplifier, using MOSFETs.

In the previous article, describing the accompanying preamplifier, the basic design requirements of this power amplifier were outlined. These were: that it should offer an audio quality which was as good as the best commercial unit on the market, if only because there isn't any point in aiming lower than this; that is should have an input sensitivity and impedance which were both sufficiently high that signals from auxiliary sources could be routed directly to it, without manipulation by the preamplifier; and that it should be direct-coupled to the LS units.

Several other things followed on from this basic general specification: for example, if it is intended to be possible to route signals from auxiliary inputs directly to the power amplifier, to avoid any possible degradation in quality by preceding stages, then the power amplifier needs to have gain and balance controls on its input, rather than situated in the preamp. Another feature which is implied in this design spec is that the output stage should be based on the use of power MOSFETS, because they can offer a sound quality which is at least as good as that of bipolar transistors operated in class-A without the enormous penalty of the thermal dissipation of such designs.

I have a great liking for valves, myself, because they can be pretty to look at, they don't mind getting hot (in class-A use), and, with a good design, they are pretty well burst-proof. However, they need output transformers, and these are invariably so destructive of the potential performance of the circuit, especially in transient response, that I feel, sadly, that valve amplifiers are about in the same league as an oil tanker with sails and masts, a romantic idea overtaken by events.

Some other things which I hadn't dwelt upon, but which are necessary to consider if one is after the ultimate quality league,
are stabilised power supplies, direct coupling, and the maximum practicable symmetry of the drive circuitry.

Stabilised PSU?

Looking at these in turn, the advantage of a stabilised PSU is that it will give a somewhat more solid bass response (mid range and treble response are more influenced by the circuit design of the amp and its feedback loop characteristics), and that the power output is identical under steady-state and transient conditions. In some ways this is an advantage, in that it will make power output specs less dependent on measuring conditions, and can help deliver more power into lower impedance loads. In some ways, though, it is less beneficial, because the simple power supply with output capacitor can, for a brief time, which is all that is needed on some transients, provide a higher peak power. (I looked at these pros and cons in an earlier article in ETI Jan. 1983). Many of these advantages can be gained, at lesser expense, by feeding the relatively low current, class-A, gain stage of the audio amp from its own PSU, separate from the power supply which feeds the output devices. However, there is yet another possibility in a stabilised PSU system which has finally swung my preference that way, and that is that it
can be made to perform a LS protection system.

With any direct coupled amp, in which the output stage midpoint is taken directly to the LS units, there is a danger that an output device failure will damage the LS drivers, so a fuse, or a relay to disconnect the LS line, is a necessary precaution. Unfortunately, fuses and relay contacts tend to impair the electrical integrity of the circuit, which is made more apparent by the relatively high currents which are flowing in these paths. Gold-plated relay contacts do not impair the performance too much, provided that the thickness of the plate layer is adequate to survive the duty, but it would be better still to do without them.

Therefore, in this circuit I have chosen to provide the LS protection function by monitoring the DC offset at the LS terminals, and using any excess voltage deteced at this point to electronically disconnect both of the output stage power supply lines, with a suitable warning that this has happened.

Drive Symmetry

A further design aspect in the power amp which I have not yet discussed is that of drive symmetry. Ideally, any power amp should be capable of operating with equal facility in either polarity direction. This becomes of importance where large voltage swings are likely, which is in the final

Fig. 1 Simplified structure of audio amp circuit.
class-A driver stage of the power amp, and in the output transistor pairs, Q3 and Q4 and 5, respectively, in my schematic circuit of Fig. 1, which is, itself a simplified version of my Fig. 5, in the fifth part of my Audio Design series (ETI, Jan 1984).

It isn't too difficult to make the output stages themselves quite symmetrical - within the limitations imposed by the transistors, which, in the case of the devices chosen, don't take effect until we get up to very high frequencies but this is not true of the driver stage, Q3, and its constant-current source load. This is the point at which a conflict of requirements becomes apparent. If the biassing of the output stage is to remain constant, the load for Q3 must have constant current source characteristics, but it also must behave as an effective dynamic load for the amplifier stage Q3.

If the load on Q3 were purely resistive, there would be no great difficulty in satisfying this requirement, but there is, inevitably, some capacitance at this point, due to the output stage loading, and it then becomes essential that the current flow through the constant current source shall be able to charge this capacitance, as the voltage at Q3 collector falls, at a rate which is greater than the fastest negtative-going rate of change called for by the incoming audio signal.

An apparently neat answer to this problem is given by the kind of circuit shown in Fig. 2, in which the input long-tailed pair drives a further symmetrical push-pull stage of amplification, Q3 and Q4, and the current mirror driven by Q3 provides a dynamic load for Q4. This was first introduced by National Semiconductors in the mid-1970's, in their LH0001 opamp design, and adopted by Hitachi as the recommended driver stage for MOSFET power amplifiers using their devices.

However, there are snags. The first of these is that the current mirror load isn't any kind of constant current source, which leads to further consequential problems in maintaining output stage bias stability. The second is, surprisingly, that on close examination and comparison of the two systems, that of Fig. 1 is both more linear and also has a superior reactive load transient response - other things being equal - to that of Fig. 2. This is possibly the reason why such an obviously elegant solution

Fig. 2 Älternative audio amp circuit

to this problem has not found much favour in the minds of the 1 C designers, whose products overwhelmingly favour the Fig. 1 scheme, which is the layout I have ultimately returned to, with the implicit requirement that Q3 current must be adequate.

MOSFETisation

There are, however, some further improvements which can be made to this circuit, and of these, the major one is the replacement of the small signal transistors by low power versions of the power MOSFETs, which are now available. These are both faster and more linear than the equivalent bipolar junction transistors, and, in principle, all of the bipolar transistors shown in the original circuit (Fig. 5, ETI, Jan 1984, p45) could be so replaced, with suitable adjustments to the ciruitry, as shown in Fig. 3.

The current mirrors and constant current sources perform functions that do not benefit from
'MOSFETisation', and the higher mutual conductance of the input bipolar devices is definitely useful in maintaining a high circuit gain. However, N -channel MOSFETs are faster than P -channel equivalents, because electrons travel faster than holes, so to make it possible to use an N -channel device for Q3, the input stage must be recast to use PNP transistors for Q1 and Q2, rather than NPN types. Another possible improvement would be to use small-power MOSFETs to make Q4 and Q5 into compound output pairs.

In this form, the circuit gives an excellent performance. However, I am all in favour of simplicity, and with the small-power MOSFET final class-A stage, a sufficiently high stage gain is available for the output MOSFETs to be used as simple source-followers. Moreover, careful tailoring of the output and driver circuitry allows the removal of the output inductors normally essential in this style of circuitry. The final circuit layout is shown in Fig. 4.

Fig. 4 Circuit diagram of

Conflicting Requirements

In every audio power amplifier circuit design there is a conflict between the requirements of low harmonic distortion, smooth transient response, and reactive load stability. This arises because low harmonic distortion demands both that the basic structure of the circuit, and its component elements, shall be such that it has high intrinisic linearity, and that the negative feedback loop will provide an effective measure of linearity enhancement. However, a smooth transient response, and good reactive load stability both require that there is a good phase margin in the feedback loop at the point at which the amplifier gain has reached unity. This comparison is, shown in Fig. 5.

The loop gain characteristics shown in curve (a), in which the gain is maintained at a high level to as high a frequency as possible, and then rolled off rapidly so that it is less than unity at the 180° phase shift point (if it is unity at this frequency the amplifier will oscillate uncontrollably), will give better THD (because the amount of feedback applied at higher frequencies is greater) than the type of characteristic shown in curve (b). On the other hand, the kind of amplifier response shown in 5(b) will have much better reactive load stability on 'awkward' loudspeaker loads, and will generally
be more predictable, and 'smooth' sounding, in spite of rather worse THD.

Obviously this is one of the occasions where one wants to have the cake and eat it, and if one is a commercial manufacturer, one is more or less forced to adopt the 'low THD' choice, because this will be measured and quoted in the test reports, with the - to my mind - very important reactive load transient response taking pot luck; after all, this isn't a quotable parameter.

Since I am in the happy(?) position that I design amplifiers for my own use and pleasure, and not for sale, I am more concerned with how they will sound than how they will measure. Nevertheless, I am an engineer, and I have a normal engineers pride in doing things competently - which means, in practice, that I cannot call the job done until I have at least equalled, if not improved upon, the best performance I have so far come upon, in my own or in commercial designs. (Yes, I do look at, and test, whatever commercial units come my way, and I study their circuits to see if I can learn anything from these, in the way of clever engineering or crafty pieces of circuitry. Sadly, my feeling is often that elaborate and expensive paths have been adopted to achieve a result which could have been done as well or better
with more simple and economical means.) For the record, the performance of this circuit, in respect of the THD levels obtained, without sacrifice to transient response, is the best I have achieved so far. I do not, at this moment, want to try to better it!

The THD figures are quoted in Table 1, and the way in which the THD varies with power and frequency, at max. output, is shown in Fig. 6a and 6b. I show the THD vs. power output at 10 kHz , because, on the prototypes, the THD at 1 kHz is, at all power levels below clipping, below the residual circuit and measurement apparatus background noise level. Such distortion products which can be extracted from this noise floor can be shown to originate in the signal source, and are around the 0.002% level (-94 dB).

Circuit Analysis

As mentioned earlier, the design decision in the concept of this amplifier was that its input impedance and sensitivity should be such that it could be driven directly from the sort of input signal, in magnitude and impedance, which could be expected from typical auxiliary units - tuners, cassette recorders and the like. In practical terms this implies an input sensitivity of about 150 mV and an input impedance greater than 100k.

Fig. 5 Feedback amplifier gain and phase characteristics.

This determines the input impedance requirements of the input transistor stage, which can be met, adequately, by an input longtaled pair of reasonably high gain transistors operating at a collector current of 250 uA . At this collector current, the typical current gain of the devices chosen is 250 , giving a base current of 1 uA , and a $\mathrm{Z}_{\text {in }}$ of about 330 k .

To ensure that the input stage has a good DC balance, so that the output offset voltage of the amplifier is close to zero, the base circuit DC resistances for the input long-tailed pair (Q1 and Q6) are made similar, at 150 k , and a $1 \mathrm{k0}$ DC-offset adjust pot, RV2, (1 k0 cermet) is connected in between the two emitters. This is adjusted so that the output voltage of the power amp is within about 50 mV of 0 V .

The input signal to the power amp is derived from the 100 k gain control, RV1, via C1 and R2 which acts with the 330 pF input capacitor to lessen the sensitivity of the circuit to impulse noise or

HARMONIC

2nd
3 rd
4 th
5 th

DISTORTION
(\%)
0.021
0.003
0.0015
0.0007

Table 1 Harmonic analysis at 10 kHz ($80 \mathrm{~W} / 8$ ohms).
gate-source capacitance. The phase-correcting network, C3 and R3, together with the small emitter resistor bypass capacitor C5, adjust the HF phase-angle of the feedback in the 1 MHz region, which is where the amplifier would otherwise approach a critical stability threshold. It will be appreciated that, with circuits operating in these frequencies, the layout of the components and interconnecting wiring has a great influence on the gain/phase characteristics of the system, which are optimised only for the PCB layouts employed. So, if you use a different layout, C3, C5 and R4 may need to be different!

Driver Stage

The second, class-A amplifier stage, using the MOSFET Q10, is quite straightforward in operation. The operating current is held at 10 mA by the constant current source Q9 and Q11. If the current exceeds this value, the voltage drop across the 56R resistor R12 exceeds the 0.56 V turn-on voltage for Q11, and it steals more of the base current fed to Q9 through R15. If the output current from Q9 falls, the converse occurs, and Q9 is turned on more fully. This constant current source protects the operation of this stage from an inadvertent output short-circuit, during a positive-going voltage excursion. A similar protective function is performed, in respect of an output short-circuit during a negative-going voltage excursion, by Q7 and R13. If the current through Q10 and R13 exceeds 14 mA , Q7 will turn on and clamp the gate voltage of Q10. The actual class-A standing current through Q9 and Q10 is set at 10 mA , as the largest practicable current flow compatible with the 625 mW dissipation of Q9 (Q10 can dissipate 1 W). Note that the collector/drain tracks on the PCB are broadened to assist in heat removal from these devices.

The choice of the class-A stage DC operating voltage $(\pm 50 \mathrm{~V})$ is determined only by the need to provide an adequate voltage swing to the output stage MOSFET gates.

For an output power of 80 watts into an 8 ohm load, an RMS voltage swing of 25.3 V RMS is needed. This is equivalent to peak-to-peak voltage swing of 71.55 V . However, it must be remembered that, at the peak output currents demanded (4.47 amps), the MOSFETs will require a 6 V source-togate voltage. Also the circuit of Q9 and Q10 will only swing to within 2 V of the positive or negative supply rails. Finally, at 4.47 A , the voltage drops through R23, R24 and $R 27$ will amount to 1.78 V on each half cycle. Adding these together, we get $71.55+2+2+$ $1.78+2 \times 6 \mathrm{~V}=89.33$, so $\pm 50 \mathrm{~V}$ will be quite adequate.

The necessary forward bias for the output MOSFETs is generated by the 'amplified diode' circuit of Q8, which is bypassed by a small, non-polar, capacitor in the interests of HF symmetry, as is the zero DC offset adjust pot RV2.

Although the circuit will operate satisfactorily with a single pair of output MOSFETs, more power from the same HT supply voltage, an improved THD performance, and better low signal level, pure class-A, performance can be obtained, at a relatively modest extra cost, by doubling-up the output MOSFETs. These can be paralleled quite easily, provide that they have separate source and gate resistors. Since it is preferable for the gate resistors to be mounted close to the MOSFET gate pin connections, these are not included on the PCB.

Earthing

In order to avoid unwanted earth-loop effects, between the low-current input signal earth lines, and the high-current output earth lines, the ' 0 V ' lines at the inputs and outputs of the amplifier boards are separated, but joined on the PCB by a low-power 10 ohm resistor, R28. Each supply rail is decoupled, on the board, to its appropriate ' 0 V ' line by a 220 uF / 470 nF electrolytic/non-polar combination.

Output transistor input overvoltage protection is given by the ZD1/D1 and ZD2/D2 networks connected between the outputs of the driver stage and the output of the amplifier, which limits the maximum forward gate drive voltage to 8.5 V . The output 'buffer' resistor R27 serves two functions. These are to assist in rejecting externally generated signal voltages on the LS line, due for example to dynamic delayed echo effects
within the LS units, from the amplifier internal NFB line, and also in allowing the amplifier, unusually in the case of a power MOSFET unit, to operate without an output LS line inductor.

The reactive load transient performance of this circuit is extremely good, in spite of the low level of HF THD. This is in part due to the 'tuning' of the amplifier phase characteristics in the $100 \mathrm{KHz}-300 \mathrm{KHz}$ region by the R10/C8 network. By altering R10 one can tune the output to give a virtually impeccable square wave response (i.e., identical with or without added load capacitance) over the range $8 \mathrm{R} / / 100 \mathrm{u}$ to $8 \mathrm{R} / /$ 2.2 uF - for R10 values from 220 k to 600 k . The mid-range value I have chosen is about optimum for $1 \mathrm{uF} / / 8 \mathrm{R}$, though the actual differences in performance on either side of this value are very small.

Channel Balance Adjustment

I have chosen in this design to adjust the relative gain of the two channels by alteration of part of the low-signal level NFB resistor arm using R9 and RV3. With a two gang $1 \mathrm{k0}$ pot., one half of which is connected in each channel in a reciprocal fashion, $a \pm 6 \mathrm{~dB}$ gain adjustment of each channel with reference to the other, is provided. A two gang pot. is essential to prevent inter-channel breathrough.

However, I am aware that this is a point of some controversy among users, some of whom very much prefer that each channel should be capable of reduction to zero output. For those who prefer this style of operation, I would recommend that a twin-spindle, concentric, input volume control is employed, RV3 be deleted, and $R 9$ replaced by a 390 R resistor.

Construction

A suitable PCB layout is shown in Fig. 7. As mentioned above, the layout employed will affect the performance at HF , and the consequent phase shifts within the feedback loop. Therefore, I strongly. urge that the suggested layout is retained.

General Considerations

It has been demonstrated to me, in relation to an earlier design of mine, that the component types employed can have a significant effect on audible quality. In particular, the capacitor employed in the NFB loop (C7) is a very sensitive component, where a consider-

PARTS LIST

RESISTORS (metal film 0.3 W , unless stated)	
R1	150k
R2	4k7
R3	1k2
R4,5,6	1 k 0
R7	47k
R8	820 R
R9	2k2
R10	470k
R11	470R
R12	56R
R13	39R
R14	150k
R15	22k
R16-21	220 R
R22	8R2 2.5 W WW
R23-26	OR22 2.5 W WW
R27	OR22 2.5 W WW
RV1*	100k log stereo
	pot.
RV2	1 k0 lin cermet preset, open
	horizontal
RV3*	1 k 0 lin stereo pot.
RV4	2 k 2 lin cermet
	preset, open
	horizontal

CAPACITORS (radial lead, stacked film polyester unless stated)

C1,6	470n
C2	330 p polystyrene foil
C3	100p polystyrene foil
C4	100n
C5	1n0 polystyrene foil
C7a,b	$\begin{aligned} & 9 \mu 4(2 \times 4 \mu 7 \\ & \text { parallel) or } 10 \mu \\ & \text { (single) } \\ & \text { polycarbonate } \end{aligned}$
C8a,b	5 p 0 ($2 \times 10 \mathrm{p}$ series) polystyrene foil
C9,11	220μ electrolytic
C10,12	470n
C13	220n
C14,16	470n
C15	100n
C17,18	220μ

SEMICONDUCTORS

QE1,2,6	BC448
Q3,5,7,8	BC184
Q4,11	BC214
Q9	MPSA-93
Q10	VN1210M
Q12,14	2SK134
Q13,15	2SJ49
ZD1,2	8V0 Zener
	diodes
D1,2	1N914

miscellaneous
PCB, heatsinks to suit (see next month's article), connecting wire, etc.

* Note: items marked with an asterisk are common to both channels, so only one is required; two of all other components will be required for stereo.

PROJECT : Audio Design

able improvement in sound quality - not readily measured instrumentally - can be gained by the use of non-polar rather than, for example, a polar (tantalum bead or aluminium electrolytic) type. Polypropylene capacitors are probably the best

Fig. 7 The recommended PCB layout. choice, but these are bulky and difficult to obtain in large values, sol have designed this unit around the second best choice in this position, polycarbonate, and C7 is built up from two 4 u 7 polycarbonate capacitors connected in parallel. (10u polycarbonate capacitors are fairly rare, but if you can obtain them, one of these can be used instead.)

With the values chosen for R8 and R9, this gives a low frequency
-3 dB gain point of 14 Hz , which is adequately low. The resistor types should be metal film 0.3 watt, or wirewound, as appropriate, and C8 is two 10 pF polystyrene foil capacitors connected in series.

The other larger value capacitors, apart from the supply line
decoupling electrolytics, are radial lead, stacked film, polyester types. I will describe the setting up of the amplifier, the general component layout of the prototype, and the power supply and DC offset protection circuitry in the next article.

ETI
 percless
This exciting new range of designs covers all domestic HiFi applications. covers all domestic hirl applications.
There are 20,30 and 40 litre designs using the famous Peerless
Polypropylene bass units (newl
released to the DIY market), a 7 litre mini speaker and two designs specifically intended for use with digital systems. The
 Wilmslow Audio Total kits include all cabinet components, accurately machined from MDF board. drive units, crossover kits, wadding, grille fabric, terminals, nuts, bolts, etc. Full details are in the Peerless Manual for Loudspeaker Constructors which is available F.O.C. (send $12^{\prime \prime} \times 9^{\prime \prime}$ SAE)
Total kit Prices per pair inc. VAT
Das'gn 50/2R (7 litre, reflux)
E92.50 plus carr./ins $\mathbf{6 6 . 0 0}$

 E111.00 plus carr fins $\mathbf{f 6 . 5 0}$ Design 100/3;40 itre, 18, Polypr) E 15.00 plus carr ins E 10.00
E 172.00 plus cors./ins $£ 10.00$
 Basıc kits (drive units and cross Design 50/2R
Design $65 / 29$ Design 65/2R Design $825 / 2 \mathrm{~F}$ Design 100/3 Oesign CDB25/2R E 123.00 plus carr /ins E 10.00

E 18.00 plus carr.fins E 10.00 vers only) per pair $\mathbf{8 6 7 . 5 0}$ plus carr.fins $\mathbf{5 4 . 5 0}$ 877.00 plus carr.fins $\mathbf{5 4 . 5 0}$ $\mathbf{8 7 1 . 0 0}$ plus carr íns $\mathrm{E4} 50$ Design C0825/3R $\begin{array}{lll}\text { E128.00 plus cart.ins } & \text { E5.50 } \\ \text { c83.05 plus carr/ ins } & \mathbf{5 5 . 0 0}\end{array}$ | E83.06 plus carr $/$ ins |
| :--- |
| $\mathbf{E 1 4 . 0 0}$ plus cart $/ \mathbf{i n s}$. 5500 | Active versions of the three 825 designs are available

WHARFEDALE SPEAKERCRAFT

150	¢49.95	carr.fins $£ 4.50$
1908	657.95	carr.fins 65.00
1140	E66.50	carr.fins. 5500
E50	¢140.00	carr.fins $\mathbf{E 5 . 5 0}$
E70	E172.00	cart.fins. 66.00
E90	E285.00	carr/ins 88.00

NEW Range

Basickus idrive units and crossovers) per pair inc VAT

Wilmstow Audio Catalogue	post free $\mathbf{E 1 5 0}$
Celestion Cabrnet Handrook	post tree E100
Fane loudspeaker enclosure design	post free $\mathbf{E 2} 95$
Peerless Manual for	
Loudspeaker Constructors	FOC

that vou'll be proud of.
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts; bolts, etc.
The cabinets can be painted or stained or finished with iron-on venee
or seff adhesive or seff adhesive woodgrain vinyl.

leaflets sent free on receipt of large S A.E

Pricoss per pair CS 1 (As 101)

CS1A (simplifiod (S3/5A) CS3 (as 103.2) CS5 (as Cariton lif)
CS7 (as Cantata)

5111 pr. inc VAT. plus carr/ins $\mathbf{6 6 0 0}$ £100 pr. inc. VAT. plus carr.fins. $£ 6.00$
f131 pr, inc. VAT, plus carr ins. $£ 1000$ E195 pr. inc. VAT, plus carr fins. $\mathbf{E 1 5 0 0}$
$\mathbf{E 2 6 3}$ pr. inc. VAT, plus carr fins. E 1800
Kef Constructor Series basic kits (drive units and crossovers only)
CS 1
CS1
CS1A
CS3
CS5
CS7

E88.50 carr./ins.
E85.00
8.000

 entive eiongevers. YMuy nhitrodudirearte procter thy comber ora.

Encemtindirtiph

HOUSEWATCH 2000 BURGLAR ALARM

Coloroll Ltd, a company more usually associated with wallpaper, has decided to enter the DIY burglar alarm market. So what's it got to do with ETI? Jack Shaw finds himself crawling beneath the floorboards to find out.

Fit a burglar alarm to my flat in the name of investigative journalism? Could this be a way of exchanging worrying about someone breaking into my flat for worrying about whether or not the alarm is going to trigger spuriously?

However, perhaps worse than this was the thought that I might be expected to give the system a practical test. How could I do that - break into my own flat? Ask the local, friendly burglar to give the system the onceover? Or wait until someone tries it out in earnest?

Luckily the people at ETI are very reasonable - they didn't expect me to do any of this, just install the device in question and say what i thought about it.

High-Tech

Some readers might be asking themselves, "Why is ETI interested in this sort of alarm anyway?". The answer to this question is that it is the first (at least, so far as we are aware) DIY alarm to use a combination of LSI technology and modern computer-like styling. It could be the shape of alarms to come - at least, the manufacturers think it will be.

The LSI technology is in the shape of a ULA (uncommitted logic array) developed specially for professionally installed security systems by Munford and White PLC, one of the UK's leading designers and manufacturers of electronic security equipment. (Although the alarm bears the name 'Coloroll', and is being marketed by this company, it is in fact manufactured by Munford and White.)

The use of LSI makes it possible for the main control unit to be quite small - $9^{\prime \prime}$ by $51 / 2^{\prime \prime}$ by $11 / 4^{\prime \prime}$ deep, which, coincidentally, is almost exactly the same size as a Sinclair Spectrum. Like the Spectrum, the Housewatch 2000 has a separate mains supply (which is, in fact, a plug-mounted transformer, the rectifier, etc, being mounted inside the control unit). However, the unit does contain all the connectors for the alarm circuits, (housed under a removable panel protected by an antitamper switch), a numeric touch-panel, used to enter the code number to enable and disable the system (rather than fumbling around with a key), and a sounder.

Siren Song

The other main unit supplied in the kit is the siren unit, which is also positively dinky, being little larger than the control unit (although manufactured from metal as opposed to what looks like high-impact polystyrene for the controlunit). The siren contains a smallish PCB with a bit of its own circuitry and the back-up NiCad battery, which supplies the whole system in the event of mains

power being removed for whatever reason. The circuitry sets off the alarm unit in the event of the wires to it being cut.

The siren transducer is a small (about $5^{\prime \prime}$) speaker with a clear plastic cone - and, despite a small size, believe me, the noise it is capable of making is earsplitting.

The remaining com* nents supplied are the PSU (as already mentioned),' e flush-mounting door switches (with operating magr ets), one surface-mounting door switch with magnet, a pressure mat, a personal attack button, a large amount of interconnecting wire ($15 \mathrm{met}-$ res of tour-core cable for the control unit to siren link and 50 metres of twin-core for the wiring of the sensors to the control unit), screws, rawlplugs and cable clips, and an instruction manual. Coloroll claim that they supply all you need to install a complete alarm system, and, with a couple of reservations, I found this to be the case.

Getting Hooked

The first thing that the manual recommends you to do is to hook up the PSU, control unit and siren on a table-top, to familiarise yourself with the system. Although the manual doesn't say so, this also gives you the opportunity to discover if any of these units are faulty before you've got them well-installed. In my case, all was OK.

At this stage, you can set the code; this is a four-digit number (but with no repeated digits and no zero) which you use for setting and disabling the alarm (by my reckoning, this gives a total of 3024 possible codes). You set the code by plugging wires with bare ends into sockets see photo if this explanation sounds a bit garbled! In my mind, this method must raise the question of long-term reliability. If a contact becomes' dicky', you can't disable (or for that matter, enable) the alarm, and you will probably end up setting off the alarm via the control-unit anti-tamper switch before you can identify and remake the contact. I think that screw connectors would have been preferable for this job, and there certainly seems to be room for this to be done on future generations of the alarm.

Planning Ahead

The next stage is to plan the system carefully, so as to achieve maximum security with minimum effort. The alarm allows for a number of circuits to be used. There
are two designated areas, zone 1 and zone 2 , and these are where most of the door switches would normally be wired. The difference between the two circuits is that when the alarm is set in the 'part' mode, only contacts in zone 1 (plus other ciruits described later) are monitored - so zone 2 can be the sleeping area, enabling you to set the alarm in 'part' mode and still go to the loo at night without waking the neighbourhood!

The other zone available is that for the exit/entry area; contacts here don't set off the alarm immediately, but give you time to disable the alarm. There are also two other circuits - the anti-tamper circuit, which you can use to implement a four-wire system (ie running four wires rather than just two to all the contacts, making it far harder to bridge the circuits), and the personal attack circuit, which will set off the siren whether or not the alarm is disabled.

I found that the planning of the zones given in the manual was not necessarily the logical way forme to lay out my own system. This is probably because I live in a flat rather than a house. I used the circuits as follows: zone 1 is for the back door and to defend the door to the cellar where the PSU and much of the wiring are; zone 2 is used for all the interior door contacts; and the exit/ entry circuit was used for the flat front door (although. 1

All is revealed (well, not quite, there's a label to say that any attempt to open the case invalidates the guarantee, so I hid the editor's jemmy). The connectors along the bottom are (1 to r) code setting, alarm circuits, (lid microswitch), siren unit, and external PSU.
intend to add the pressure mat to this circuit once I have decided on the most suitable position near the front windows). Sol would suggest using the lay-out in the manual as a good guide, but not necessarily the only way it is possible to design the system.

However, the main problem I had was in deciding where to put the external siren, and how to get the cable to it. As I live in a ground-floor flat, and I didn't think my upstairs neighbours would relish my drilling holes in their floorboards and wall, the height at which I could mount the siren was a bit limited, although you do need a fair-sized ladder to get to it none-the less. However, I found when attempting to drill the wall to take the cable, that the wall was somewhat thicker than I had anticipated: the drill bit, bought specially for the job, and some $15^{\prime \prime}$ long just wasn't long enough to go through the 1900 s-built solid wall, and I (almost literally) had to dig around to find a thinner section of wall, eventually finding a spot above the front bay windows. Actually, the otherwise very thorough manual is rather lacking in advice on loacating and wiring to the external siren.

Because access to the und er-floor area is fairly easy, I decided to run most of the wiring here. For this reason, I decided that it was unnecessary to adopt a four-wire system. However, it was contemplated to the extent that I checked to see if there was any means of identifying one of the leads in the two-core wire supplied for the door switches. Unfortunately, there isn't - which would mean quite a lot of fiddling if you did try to implement the four-wire system. Wouldn't it be better to have supplied wire with a ridge down one side, as with some loudspeaker cables? I can't see that such identification would be of any use to an unwelcome tamperer, because it doesn't reveal how the wires have been used.

The recommended method of taking the wire from door switches, mounted in the bottom of the door was, at least for my ham-fisted self, impractical. What I resorted to was taking the cable down the front of the frame below the switch (see drawings) and thence under the carpet or straight down under the floorboards. The cable was set in a chiselled channel, which I then covered over with a suitable filler.

Another practical point is that unless the switch and its magnet are parallel to one another, the contact will not close no matter how close the magnet gets to it! This is rather obvious really, but I still made the mistake at least once of trying to twist one with respect to the other. The manual suggests a maximum gap of 6 mm between the contact and the magnet, and I found this had a goodly safety allowance built into it.

Finally on the door contacts, I found it quite feasible to mount them on the hinge-side of the door, thus putting them more out of the way. Whilst this made it possible to open the door slightly without setting off the alarm, it was impossible to go through the door.

Some Complaints

All the complaints I have about this kit are relatively minor, and didn't prevent me from getting the system installed and working in one day (although there are some bits I will be adding when I have time). However, there are some aspects that could be better thought out.

Firstly, I very quickly ran out of the cable clips supplied; but I will readily admit that it was pretty good to be supplied with these in the first place. The rawlplugs supplied were for solid walls, not cavity walls, and whilst this is OK for the external alarm, if possible you want to be able to take the wiring to the back of the control unit, and this means, almost certainly, mounting this unit on a hollow (plasterboard) wall - so how about providing some cavity fixings?

There are two methods of wiring more than one switch on the same circuit, as suggested in the manual, one is to run the lead from the first switch to the next (the switches are all closed in the un-alarmed state, but there are three spare screw terminals on the switches themselves, so wiring them like this causes no problem). However, if you have door switches at opposite ends of your dwelling and the control unit in the middle, it's earier to take the wires to the control unit and join them there. The other method the manual suggests is twisting together the leads to be joined at the central unit, then wrapping with insulating tape - this is far from the most reliable method of joining the leads, and for the electronics-minded installer, the best method would seem to be soldering the leads then covering the joint with heat-shrink (keeping the iron well away from the main unit when you do this). However, I cut a section of terminal block and used this to make the join - but it would have been better if there had been two or three spare terminals in the control unit for this task.

Finally, and I think most seriously, the lead from the PSU is a bit on the short side, being only two metres long. Unless you're very lucky, you're unlikely to have a spare mains socket close enough to the control unit. You can extend the lead from the PSU to the control unit, but this seems to spoil the neat idea of having a plug-mounting PSU. I think that it would have been better to have supplied a wall-fixing transformer unit, with good long input and output leads. I doubt whether anyone who couldn't correctly wire a mains plug should be allowed to attempt to install this unit. In my own case, I solved the problem by installing an extra socket on the ring-main, which just happened to pass close enough to the control unit to reach.

In Operation

At the time of writing I have had the unit in use for less than a week (such are contributors's deadlines - Ed) so it is difficult to comment on the long-term reliability. However, the system is extremely straightforward to

Plug PSU: neat, but
use. As you come through the front door, a bleeping sound reminds you to disable the alarm fairly smartly, or the neighbours will get a nasty shock. So, all you have to do is to remember to set the alarm as you leave - and the system does tell you if any of the door switches are not closed when you try to set it, so you shouldn't be able to go wrong, should you?

Fortunately, I have yet to have a real test of the system. But, at the same time, the little box with 'Housewatch 2000 ' written on it that sits above my bay window is probably the most effective deterrent one could ask for-although I must say that I am not convinced that it is a good thing for it to be quite a bit smaller than all the other sirens in my street (although it doesn't ruin the appearance of the house, either)!

The control unit is neat and practical

Conclusion

I can recommend the Housewatch 2000 to ETI readers; there are a few minor niggles about it and a few things that could have been better thought out, but the important aspects are all spot on. Let it suffice to say that I have now stopped worrying about anyone breaking into my flat, and I am contemplating installing one of these systems at my mother's house.

The Coloroll Housewatch 2000 should be widely available through DIY outlets for around $£ 170$. If you have any difficulty, please contact Coloroll Ltd, Riverside Mills, Crawford Street, Nelson, Lancashire BBV9 7QT, telephone 0282-67777.

A1INTRUDERALARMS LTD WHOLESALE ALARM SUPPLIERS If you install or supply Burglar Alarm Equipment and want a very cheap supplier (one of the cheapest in the UK).

Contact us NOW! (Trade only)
$021-2283483$
$051-2200590$
021-228 3483
COMPARE OUR PRICES WITH YOUR PRESENT SUPPLIER

5/16 FLUSH CONTACTS 39p	PASSIVE INFRA RED DETECTORS 23.95	PANELS M.B. Batt Only Timed/E/E 19.00
$1 / 2$ INCH FLANGE $^{35 p}$ 3 $35 p$	CABLE	A+G Batt/Mains
6 WAY	4 core $\quad 5.15$	Timed/E/E
JUNCTION	6 core $\quad 7.65$	
BOXES WITH	8 core 10.50	26.50
ANITAMPER 9p each	$\begin{gathered} \text { HORN SIREN } \\ \mathbf{5 . 2 0} \end{gathered}$	British Standar
MINIMITE SIREN 3.28	$\begin{gathered} \text { STROBES } \\ 6.50 \end{gathered}$	1 Zone Panel Timed/E/E
6" BELLS	BATTEREYS	Auto Reset
Mobell 4.95	12V Dry 1.75	
Tan 5.95	Rech 5.45	31.00
Friedland 8.85		

All prices exclusive of VAT. Add $£ 2.00 \mathrm{p} \& \mathrm{p}$ with every order.

86 Derby Lane, Old Swan
Liverpool 13

Newrae
NEWRAD INSTRUMENT CASES LTD
Unit 19, Wick Industrial Estate, Gore Road New Milton, Hants BH25 6SJ
Tel: New Milton 615774/621195
John Linsley Hood is famous for his high quality amplifier designs. We have collaborated with him to produce two kits based on the current ET| pre-amp and power amp projects. We have a reputation for designing high quality enclosures and complete electronic systems. These kits employ the best engineering techniques we know. The enclosures were specially designed with a pleasing blend of Satin Anodising and hard wood finish.

Cost of Pre-amp Kit (complete) £98 inc p/p please add 15% VAT

Part kits are also available plus PCB's.
To be announced:- Price details of Power Amplifier Kit, Conversion hardware for fitting both units into a $\mathrm{HI}-\mathrm{Fl}$ tower system and also 19" Rack mounting options.

FREE CAREER BOOKLET Train for success, for a better job, better pay

Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.

Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.
tICK THE FREE BOOKLET YOU WANT

THE ECOLIGHT

> Make a burglar go "Eek - a light" with the Ecolight! No, that's not how it got it's name (it stands for ECOnomy LIGHT), but we hope it could have that effect. Design and development credits go to Geoff Philips; the author of the pun wishes to remain anonymous for obvious reasons.

The ETI Ecolight (economy light) looks more or less like a conventional weatherproof bulkhead light fitting. Inside the fitting, however, is an electronic circuit which turns the light on only when it is required. A light sensor makes sure the Ecolight is off during the day and at night the light is turned on only when movement is detected by an ultrasonic beam. The light will remain on as
and little used lobbies where it is essential for there to be adequate illumination but cost savings can be made by the light being on only when it is required.

Operation

The Ecolight emits its own ultrasonic sound signal, at a frequency of around 40 kHz . This signal will be reflected off all the
sized object moving in the vicinity of the light, some of the reflected ultrasound will be frequencyshifted, by the Doppler effect. The Doppler effect is what causes the sound of a train or car horn to apparently change in frequency as the train or car pass you. The difference here is that the sound which is having its frequency changed is being 'bounced' off a moving object rather than emitted by it.

At the Ecolight receiver, both the unshifted and shifted ultrasound components arrive. However, in terms of amplitude of signal, the receiver doesn't 'see' two separate signals but one combined signal. This combined signal is not a steady high-frequency signal, but one which is modulated, as the original unshifted and the shifted frequencies move in and
long as there is movement in the beam. When movement ceases, the light remains on for a preset time. The quiesent current drain of the Ecolight makes the running cost approximately $1 / 3$ p per day so the Ecolight can be permanently wired to the mains supply (via a 3 A fuse).

The obvious application for outside use is as a courtesy porch light: no more fumbling for keys in the dark! The unit also acts as a burglar deterrent as the prowler thinks someone inside the house has turned on the light. The Ecolight is ideal for use in corridors
objects around the Ecolight and returned to the ultrasonic receiver in the light.

When there is any reasonable-
out of phase, alternately reinforcing and cancelling (at least partially) each other.

The modulation is at a fre-

quency which is very much lower than the ultrasound frequency (it will depend on the speed of the movement of the objects reflecting sound back to the light). What the control electronics does is to detect this signal, which is only present when there is a moving object close by, and turn on the light in response.

Construction And Testing

Fig. 2 shows the component layout for the control PCB for the Ecolight. Take the usual precautions when handling and soldering the CMOS IC (IC4) otherwise construction of the PCB should pose no problems.

It is a good idea to test the PCB by itself before wiring it into the

HOW IT WORKS

IC1 is connected as medium high frequency oscillator which drives the ultrasonic transmitter transducer, TX. The frequency can be adjusted by RV1.

The received ultrasonic signal from the receiver transducer, RX, is amplifid by Q1 and Q2, which are connected as a high-gain doublet. Bias for Q1 is provided via R3 and R5, and because of the presence of C3, the AC gain of this pair is quite high. The received signal is peak rectified by D1.

If part of the signal is Doppler shifted due to reflection from a moving object, then a beat will occur betwen the unshifted and shifted components of the received signal, resulting in the ultrasonic signal being modulated by the much lower frequency beat signal. D1, C4 and R6 form a detector with a relatively long time constant (about 3 ms), and these detect the modulation signal. This is buffered by Q3 and passed to IC2 via C5.
IC2 forms a threshold detector whose level is set by the values of R8,9 and 10 at about 60 mV ; when the peak value of the detected signal exceeds this value, IC2 will trigger negatively. This starts to discharge capacitor C6 via D2 and R13 (the capacitor is initially charged via R12 and R13, the output of IC2 being high in the
presence of no modulation). If the signal exceeds the threshold by a sufficiently large amount for a sufficiently long period, C6 will be discharged enough to trigger the monostable IC3. After this, any disturbance which exceeds the basic threshold level will re-set the monostable capacitor, C9, via D3 and Q4. The period of the monostable is decided by C9, R14 and RV2. The monostable supplies current to relay RLA1 which switches the mains supply to the lamp.

At the onset of daylight, the resistance of LDR1 reduces to the point at which pin 12 of IC4b is reduced below this gate's threshold, IC4b output goes high, and, provided IC4a output is also high, which will be the case when the monostable is not triggered, IC4c output will go low, holding the reset pin of IC3 low and preventing the monostable from triggering. Hence the light will come on only when there is no daylight, but the light will not attempt to inhibit itself from operating. Additionally, R15 and C10 cause pin 13 of IC4b to be held low for a short period after the lamp has extinguished, similarly preventing the monostable from triggering; this is to prevent false re-triggering of the unit due to relay armalure movement, supply rail disturbances, etc.
light fitting. If you don't, you can guarantee that the unit won't work, especially if you've made a neat job of the soldered connections, and you'll end up proving sod's law once again.

Temporarily connect the ultrasonic transducers to the PCB taking care to observe polarity (case is 0 V) and also to distinguish between transmitter and receiver (receiver is marked 40R and transmitter 40T). Set RV1 to mid position. Set the on time to minimum (RV2 fully anticlockwise) and the dusk level to max (RV3 fully clockwise). Mask off the daylight sensor (LDR1) with plasticene to fool the Ecolight into thinking it's nighttime. Finally connect 240 V mains to X1. Take extra care here. Work on a well-insulated bench and remember that some of the PCB tracks will be live. If an oscilloscope is available, look at the col lector of Q2 with respect to 0 V . The received ultrasonic frequency of approx 40 kHz should be seen which should be steady amplitude if there is no moving object in the path of the ultrasonic sensors. RV1 adjusts the frequency of the transmitter oscillator IC1 and gives a degree of sensitivity adjustment to the unit. At the extreme ends of RV1 there are unstable regions of the oscillator which will be seen as fast amplitude variations in the received signal. These regions should be avoided.

Fig. 2 Overlay diagram of the PCB.

If you do not have access to an oscilloscope do not despair, with RV1 set to mid position switch on and listen for the relay armature to click in. Chase the kids out of the workroom put the cat out and then keep perfectly still. After a few seconds IC 3 should time out and the relay will click back to its de-energised state. Move your hand in front of the sensors whereupon the relay should energise. If it doesn't check that no light is leaking onto LDR1 (this device is very sensitive). If the relay is permanently energised and will not drop out, try moving the position of RV1 slightly, as you may be in an unstable region of the oscillator. The output of IC2 is high for no movement and goes low to trigger IC3 and hence energise the relay. Thus, if there is no negative going disturbance at the output of 1 C 2 the fault is in the receiver section, Q3, IC2. If the output of IC2 is seen to switch negatively when there is movement then check the voltage at pin 4 of IC3. If this is at 0 V then the timer is being inhibited. Suspect the daylight sensor circuitry. Pin 11 of IC4 should be at logic 0 for the unit to function.

Assuming that you have been successful so far, remove the mask from the daylight sensor and confirm that the unit ceases to function. The PCB is now ready to be fitted into the light fitting.

Assembly Of Unit

The PCB has been designed to fit a Coughtree SP10 light fitting although it should be suitable for any fitting with enough internal space away from the direct heat of the lamp. if the SP10 fitting is to be used then cut two of the corners
off the PCB as indicated by the copper strips. Lay the PCB inside the SP10 at the opposite end to the lamp. Drill two M4 clear holes in the SP10 casing using the holes in the PCB next to the relay as a guide for the drill. Fit two M4 screws from the rear of the SP10.

PARTS LIST

Fig. 3 Alternative method of mounting the transducers.
case and secure the screws so that the PCB can be secured to the SP10 some 10 mm away.

The ultrasonic transducers have to be mounted in a suitable manner to allow them to be pointed in the desired direction. For the original prototype, they were mounted in two plumber's copper elbow joints brased together, as can be seen from the photographs. However, the original transducers do not seem to be available any more, having been replaced by larger transducers that won't quite fit in a common size of pipe fitting. Fig. 3 shows the new mounting method, and the transducers supplied in the kit (see'Buylines') will need to be mounted like this. However, if you choose different transducers, you may be able to use the original method. Whatever you do, note that the transducers must be reasonably well protected, since most types are not waterproof.

BUYLINES

We do not anticipate many problems in locating components for this project, with the possible exception of the transducers. However, we see no reason why the design should not work with the many alternative types of 40 kHz transducers there are on the market.
For the lazy, a full kit of the electronics (including the PCB and the 'Acorn' inserts for the transducers but excluding the light fitting, copper elbow ioints and heat shield) is available from G.P. Electronic Services for $£ 21.05$ including VAT and p\&p. For the slightly more adventurous, G.P. can supply the PCB on its own for the inclusive price of $£ 4.50$.

Use screened cable to wire up the transducers to the PCB. Pass the cable through the copper elbows or the back of the 'Acorn' inserts, then through the side of the case of the SP10 via a rubber grommet. Wire up the sensors and the SP10 lamp to the PCB. Fit the PCB in the SP10 via the two M4 screws. Note that the PCB is earthed via these screws making contact with the $0 V$ track; if you use some other fixing method, these two points on the circuit must be connected, and, if the case used is metal, this must be earthed either from this point or directly.

The final job is to wire up 240 V mains to the connector X 1 ; note that the live must be fused, so if you are wiring directly to the mains, either use a fused connection unit or find space to fit a panel-mounting fuse. Alternatively, you could always use a fused plug (a 3A fuse should be used).

Fitting And Final Testing

The Ecolight should be securely fixed to a wall away from bushes and plants, which would cause false triggering, and sheltered from high winds. In order to test the unit in daylight it is necessary to mask off the ORP1 2 device again with plasticene. Angle the ultrasonic sensors in the desired direction and determine the best setting of RV1 for the sensitivity required. Do not set the sensitivity too high, however, as you may be
troubled by false triggering in high wind conditions. Once you are happy with the setting of RV1, the on time can be set up by RV2. RV2 should be advanced clockwise to give the required time delay for the light to switch itself off after movement in the ultrasonic beam has ceased.

The dusk level pot may now be set up. Remove the plasticene from the ORP1 2 and, at dusk, turn RV3 fully anti-clockwise. The Ecolight should now be inhibited. Turn RV3 clockwise whilst moving your hand in front of the beam until the Ecolight just starts to function.

It is recommended that an aluminium heat shield be fitted over the PCB to prevent overheating of the electronic components. A hole will be required in the shield however to allow the ORP12 device to function. Bear this in mind when adjusting the dusk level. Turn RV3 further clockwise if you want the Ecolight to come on earlier in the evening.

ETI

pantechnic
 THE ULTIMATE PREAMP HAS TONE CONTROLS

OK, so your system is perfect. Cartridge and loudspeakers are perfectly integrated with the room acoustics. Tone controls are an irrelevancy, and anyway just having them worsens the noise and distortion of the system.
But. . ., what if after tiring of your direct cut audiophile discs you choose to listen to one of those less than ideal recordings where the middle positively snarls at you. Or. ., you're having a party and all those extra bodies just soak up the top and the speakers, pushed back against the wall, boom away.
What if there were tone controls that were essentially quiet and imperceptible in operation and could be switched, individually out of circuit when not required. What if they were part of a stereo preamp board that has the lowest noise and distortion figures you could buy, superb overload capability due to its active/passive gain control, tape monitor facilities and on board PSU.
The PAN30 with the new topology tone control circuit could change the facias of hifi.
PAN30 Stereo preamp board - £43.25
PFA 250 Assembly
Mono power amp and 10,000 uF storage capacitors prewired and mounted on a gold chromate heatsink ($67 \mathrm{~mm} \times$ $250 \mathrm{~mm}) .200$ Watts into 8 ohms, 300 Watts into 4 ohms, plus headroom. Powerful and very, very clean. - £58.75
Full info. on receipt of a large SAE. OEM enquiries, contact Phil Rimmer on 01-361 8716.

THE POWERFET SPECIALISTS pantechnic
Dept ETI/5, 132 High Road. New Southgate London N11 1 PG need for a "third hand' ' for those tricky soldering jobs. At the squeeze of the trigger, it feeds a controlled length of solder to exactly the right spot for a perfect joint every time.
Solder may be fed from standard reels mounted on the bench, or the optional spool holder can be loaded with solder and mounted on the gun itself. Takes solder wire 0.8 to 2.3 mm dia Two sizes 40 w and $60 \mathrm{w}, 220 / 240 \mathrm{~V}$.
40 watt Model 583 tip dia 4 mm - $£ 19.84$ 60 watt Model 585 tip dia 6 mm - $£ 20.29$ Spool Holder (fits either model) - $£ 3.13$
 Prices include P\&P and 15\% VAT. Send order with cheque/ PO. Ring for Access/Visa sales, or ask for order forms.

LIGHT SOLDERING DEVELOPMENTS LTD DeptET, Spencer Place, 97-99 Gloucester Road, Croydon CRO 2DN. 01-689 0574

Heathkit - IT'S A PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses.
The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retertion of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits • Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or
for the full list of Heathkit products send 50 p for the Heathkit International Catalogue complete with a UK price list of all items.

INTERFACE E - ONLY £55.00 Simply plug in and it's ready to use All operating commands are held in an EPROM so LLIST, LPRINT and COPY can be used at any time without using up valuable user RAM. COPY will allow the reproducticn of high resolution graphics with Epson (or derivatives) and Seikosha 80. 100 and 250 Series printers. Print width selection from 32 characters to full width depending on printer used.
INTERFACE S - ONLY £39.99
Visually identical to Interiace E but without the EPROM. Intertace S also recognises the LLIST \& LPRINT commands and will allow print width selection from 32 characters to full width.

However, sofiware routines will need to be loaded Detore use Full screen dump to reproduce high resolution graphics is also possible and supporting software is supplied to operate this faclility with Epson and Seikosha printers. The sottware routines thatare necessary to initialise the intertace are held in the printer butter so valuable user RAM will not be used up There is a growing range of Business/Utility software that includes these routines. Details available on request.

Either intertace simply plugs into the zX Spectrum expansion port or interiace and is supplied fully cased with a one metre ribbon cable which connects to the printer of your choice Full instructions are included and driving sottware is supplied with Intertace S

We recommend Epsons. NEC. TEC Seikostra. OKI Microline Tandy GP1 15. Star DP 510 . Shinwa. Brother HR 15 etc

At last you can have real print pertormance trom your $2 X$ Spectrum with the Kempston Centronics Interfaces

THE INDUSTRY
KEMPSTON CENTRONICS INTERFACE COMPATIBLE SOFTWARE UTILITIES. STANDARD INTERFACE

For ZX Spectrum

FOR THE 48K SPECTRUM.
FINANCE MANAGER (OCP) - Menu driven program tor all domestic and business accounting applications

ADDRESS MANAGER (OCP) - Simple index tiling system ideal for names. addresses. etc Various search facilities.
£19.95
FULL SCREEN EDITOR/ASSEMBLER (OCP) - Ailows you to write 280 assembly code using standard mnemonics on tull screen $\quad \mathbf{E 1 9 . 9 5}$

WORD PROCESSOR (TASWORD TWO) (TASMAN) A protessional word processor allowing 64 characlers per line and corporating all usual editing facilities $\mathbf{£ 1 3 . 9 0}$ OMNICALC (MICROSPHERE) - The only spreadsneet written entirely in machine code The easy and tast way ot solving any numerical problem Ideal tor cash flow torecasing tolconcrete stress analysis $\varepsilon 9.95$

MASTERFILE (CAMPBELL SYSTEMS)

Filing and retrieval system for domestic or business use Files can be loaded arid saved independently Microdrive compatible $\mathbf{8 9 . 9 5}$
Interface \mathbf{S} available from W H Smith and Spectrum Computer Centres

All products direct from
 RE MICRO ELECTRONICS LTD

Innt 30 singer Way. Woburn Road Industrial F.state Kempston. Bediora MK42 7AF Tel (0234) 856633 Telex. 825078 KEMPMIG
All prices include VAT and P \& P Overseas orders please add $£ 400 \mathrm{P}$ \& P Pease an'sw 2 !axis thr -uvery ot werlaces TRADE ENQUIRIES WELCOME

NOW WE CAN ALSO SUPPLY YOUR

 PRINTER.We've iooked at the printers currently available and have selected what we feel is best value tor money in dot matrix and daisy whee! printers
EPSON RX-80 E/T - A dot matrix printer allowing full graphics dumping and a choice ol printing styles Speed 100 CPS Price 2325 Inc. Vat and Dellvery BROTHER HR15 - A dasywheel printer ideal for letters mail
shots ciocuments etc Mary typetaces avalabie by changing dasywheel. Duplication tacility but no graphics Speed Up to 18 CPS Price £425 Inc. VAT and Del.

MASTMR FTHGTRONICS

NOW!
 The PRAGHTCAT way!

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state

Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of Radio, T.V. Hi - Fi and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?

 GetintoElectronics Now!Please send your brochure without any obligation to NAME
ADDRESS
ĖモII/7822
POST NOW TO:

BritishNational

|Radio\& Electronics School Reading,Berks. RGl 1BR

1 am interested in.
COURSE IN ELECTRONICS
as described above radio amateur licence microprocessors LOGIC COURSE
OTHER SUBJECTS

EEEGTROVALITE
Your SPEGIALIST SUPPLIERS for SOLDER TOOLS
From a simple 15 watt model to a precision temperature controlled iron, we stock solder irons to suit all manual requirements together with supporting stocks of bits, desolder tools, materials etc.

ANTEX
C. $240.15 \mathrm{~W} / 240 \mathrm{~V}$

CS. 17 W/240V
CS. $17 \mathrm{~W} / 240 \mathrm{~V}$
$\times \mathrm{S} .25 \mathrm{~W} / 240 \mathrm{~V}$
Replacement bits from $3 / 32$ to $1 / 4{ }^{\prime \prime}$
De-solderheads, stands, elements and handles.
ERSA
'Sprint' high speed iron: 80/ $150 \mathrm{~W}, 240 \mathrm{~V}$. Heats in 10 seconds!

ORYX
Temperature controlled solder mon TC 82 $45 W / 240$ with scale.
Oryx $50-50$ watt temp controlled. Standard fypes
Oryx 30-30W/240V
Oryx M.3. 17 watts. 12 volts
A wide range of replace ment tips avatable for all models, also tips from 0.8 to 6.4 mm dia and
flat tips flat tips
Oryx satety stand
Oryx de-solder too
MINIATURE SOLDER STATION SOLDER and DE SOLDEA BRAID
Solder in Solder in various grades.
Please mention this journa Please mention this journal when sending for
latest free A-Z list

BRITAINS LEADING QUALITY GOMPONENT SUPPLIERS-SEND FOR FREE 36 PAGE A-Z LIST

ELECTROVALUE LTD
 28 St. Judes Rd., Englefield Green, Egham, Surr TW2O OHB.
 (0784) 33603; Telex 264475.

INFRARED INTRUDER ALARM

This interruptible-beam intruder alarm offers all the advantages of infrared operation and yet is simple enough for almost anyone to build. Design by Frederick Howard.

Infrared intruder alarms offer a number of advantages over alternative electronic alarm systems. Unlike ultrasonic systems, they are not generally sensitive to movement outside of the area covered by the beam. This prevents their being triggered by the movement of, for example, curtains stirred by a draught, and with careful positioning they can be arranged so as not to detect the legitimate movements of domestic pets. The invisible infrared beam is not as easily spotted by an intruder as a visible light beam, and the use of a pulsed rather than a continuous source prevents the alarm operation being upset by any steady infrared component present in the ambient light. At the same time infrared alarms retain the advantages of other energy beam systems, being battery operated and portable and thus able to be installed quickly without wiring and to be moved rapidly to monitor a new location when occasion demands.

The block diagram of the ETI

Infrared Intruder Alarm is shown in Fig. 1. A multivibrator produces a one millisecond pulse ten times a second and this switches a 50 kHz oscillator which in turn drives the IR (infrared) diodes. The diodes are fitted with an integral lens which focuses their output into a narrow beam. Provision has been made on the PCB for up to four diodes in series to be used, giving a high energy output and a reasonably wide beam, but if the alarm is to be used only over short distances it is possible to use fewer diodes just by inserting links in the vacant positions.

In the receiver, a lens focuses the incoming beam onto an infrared detector diode placed in series with a tuned circuit. The signal from the diode is fed to an amplifier which is also tuned to 50 kHz and the output is then fed to the detector. If the beam is interrupted so that no signal arrives at the detector, an audible warning device is energised to sound the alarm. A timing circuit holds the alarm on for one-to-two minutes

Fig. 1 Block diagram of the complete system
and then resets it ready to be retriggered if the beam is disturbed again. Since the circuit requires a little time to stabilise, a further timing circuit holds the alarm off for a short period after switch on.

In normal operation the transmitter and receiver will be placed opposite one another and in direct line, but for short distances the two can be stood side by side and the beam reflected from an opposite wall or other surface. This might be convenient in a narrow hallway or other location where one wall is relatively featureless and where it would otherwise be difficult to conceal one of the units.

Construction

The transmitter and the receiver are both assembled on PCBs and then installed in identical plastic boxes. It does not matter in which order you assemble them since both will have to be substantially complete before you can move on to the setting-up. Begin by soldering the IC sockets and the passive components into place on each PCB, then add the diodes and finally the transistors. The ICs can be installed in their sockets when all the soldering is complete. The IR diodes should be left off of the transmitter PCB until it has been installed in its box. It will save time later on if you solder into place the end of R5 on the transmitter nearest to D3 and Q1, but temporarily connect the other end to the positive supply rather than soldering it into the hole adjacent to R4 as shown.

Fig. 2 Circuit diagram of the infrared transmitter.
The drilling details for the transmitter are shown in Fig. 6. Note that only three bolts are used to hold the PCB to the front panel, the fourth corner being occupied by the IR diodes. You may find that you don't need all four IR diodes for your particular application, so it is a good idea to install only one to begin with and to link

across the remaining holes on the PCB. If you do this, you will only need to drill a single hole for the diode rather than the slot shown,

Fig. 3 Overlay diagram of the transmitter PCB.

HOW IT WORKS TRANSMITTER

Integrated Circuit IC1 consists of four electronic switches, two of which are connected as an assymetric multivibrator. The ratio of charge to discharge time for C1 is controlled by R2 and R3. This ratio results in a narrow positive going pulse of about 1 millisecond, which is fed to the base of Q1 through R5 at a rate of 10 times per second. The base voltage is limited to 5.6 volts by the zener diode ZD1.
IC2 is coupled as a multivibrator producing symmetrical square waves at the output. The frequency of 50 kHz is set by C3 in conjunction with resistors R6, R7, and RV1. IC2 is only switched on when transistor Q1 conducts. The 50 kHz oscillator is thus pulsed on for one millisecond ten times per second. The pulse voltage is limited to 5 volts to ensure frequency stability independent of battery voltage.

The oscillator output is applied to transistor Q2 which controls the current through the infrared emitter diodes, LED1-LED4. The pulse current through the diodes is controlled by D3 and D4 in conjunction with R9. The peak pulse current is about 120 mA , but because they are pulsed at 50 kHz for only 1 millisecond in 100 the total battery drain is about $600 \mu \mathrm{~A}$.
and of course, you can easily drill further holes and file out the slot should you later decide that you want to use more diodes. You should install the diode or diodes onto the PCB without soldering and then assemble the board onto the drilled front panel and the blots. Each diode can then be dropped accurately into its hole, the leads bent over on the component side of the board to mark the correct length, and the board then removed from the front panel so the diode can be soldered finally into place.

The drilling details for the receiver case are shown in Fig. 7. Two largish holes are required, one for the audible warning device and one for the lens. If you do not have any other means of making holes of suitable size in plastic, you can always drill a series of small holes and then link them up with a small, round file. If the appearance of the finished unit is important to you, the circle of holes could be made a little smaller than the desired diameter and then enlarged smoothly with a piece of rolled-up sandpaper. Some audible warning devices have a fixing ring which covers the mounting the hole. However, it is perfectly possible to use any audible warning device which will operate from 9 V and does not draw too much current, so you may wish to bear this point in mind when choosing.

PROJECT : Infrared Alarm

The lens used in the prototype was obtained from RS and is sold as an inspection lens. This means that the plastic collar in which it is supported is equal in height to its focal length. Almost any other lens could be used provided its focal length can be accommodated within the receiver case - about 30 to 40 mm would be best. If you have a lens lying around but don't know its focal length, simply use it to focus the sun's rays onto a flat surface and then measure the distance of the lens from that surface. (Note that this will only work with the sun and not with artificial lighting; this is because the sun is so far away that its rays are very nearly parallel when they reach us.) If your chosen lens does not have a collar which extends for its full focal length, you will have to add a length of tube of suitable diameter and paint it black inside. Remember also that the top of the detector diode is a millimeter or two above the surface of the PCB and allow for this before gluing the lens assembly to the PCB. Make sure you centre the lens over the diode itself.

The final stage in the assembly of both units is to wire up the battery connectors via the jack sockets. The jack sockets serve as on-off switches, and are so arranged that inserting the plugs disconnects the supplies. This makes
it difficult for an intruder to silence the alarm once it has been triggered. The audible warning unit in the receiver also has to be wired up and the units are then ready for testing.

Due to lack of space in this issue we're afraid that you will have to wait until next month for the overlay for the $P C B$ receiver $P C B$, the case drilling details, how to set up the alarm, and Buylines.

HOW IT WORKS - RECEIVER

The infrared transmission is directed or reflected onto the IR detector diode LD1, which is mounted at the focus of a simple lens. A 50 kHz resonant circuit, $\mathrm{L1}$ and C 1 , forms the load for the detector. Only infra-red energy from a 50 kHz source will give a voltage across the load, thus eliminating unwanted signals from lights or heaters. The detector is followed by a 5 stage amplifier, one stage of which has a 50 kHz tuned circuit as the collector load. This possess only the wanted 50 kHz signal and rejects other interfering signals. Transistors are used in preference to integrated circuit amplifiers as they can give a reasonable gain at 50 kHz for only a few microamps of collector current.
A constant signal level for any given input is maintained at the output of the amplifier by rectifying the signal through D1, in conjunction with D2. A negative DC voltage is generated across C10 which is proportional to the signal level. This negative potential is applied to the gate of the field effect transistor Q3 to control the effective resistance between the drain and source of this transistor. This determines the current negative feedback and hence gain of amplifier stage built around Q2. The time constant of the automatic gain control circuit is about $\mathbf{5 0}$ seconds.
The signal level at the emitter follower, Q7, is detected by D3 and Q8. For a constant signal level there will be a constant DC voltage on C16. This
voltage will decrease when the beam is broken and increase when the beam is restored - the gain of the amplifier being slow to respond compared with the signal level detector time of response, which is of the order of one second for signal decay but almost immediate for signal increase. The sharp increase of DC level at C16 after the beam is restored will be transferred through to the base of Q 9 , switching on Q 9 which in turn switches on Q10 and hence Q11 which energises the alarm. When Q10 goes positive it will hold Q9 on by supplying current through D9 and R26 latching on the whole alarm circuit.
C19, will now commence to discharge through R25. When the potential at pin 5 of IC1 reaches about 5 volts, pin 4 of IC1 will be connected to the zero supply and hence transistors Q9, Q10 and Q11 are all switched off. C19 will now charge via D6, R29 and R31, releasing the switch on pin 4 of IC1 and leaving the circuit in readiness for any further disturbance of the beam.

The circuit needs time to settle to a stable gain and signal level. On initial switch-on, pin 5 of IC1 is held positive by the absence of charge on C19. This holds the base of Q 9 to the zero supply line maintaining Q9, Q10 and Q11 in their cut-off state.
When C18 has charged through D6, R29 and R31, the switch on IC1 will open and the circuit will be ready to detect a disturbance of the beam.

PCB FOIL PATTERNS

These two foil patterns are for the double-sided Oric/Atmos EPROM board, held over from last month.

The Warlock alarm board,

The Audio Design power amplifier board.

The Ecolite board.

ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering. The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.

1979	
\square	E/794-1 Guitar Effects Unit 3.04
\square	E/794-2 Click Eliminator. 7.64
1980	
\square	E/808-3 Ultrasound Burglar Alarm 3.30
\square	E/8010-1 Cassette Interface 3.37
\square	E/8010-2 Fuzz/Sustain Box 3.76
\square	E/8012-3 Four Input Mixer. 3.04
1981	
\square	E/811-1 LED Tacho 4.75
\square	E/811-2 Multi-Option Siren.. 3.68
\square	E/812-2 IR Alarm (4 boards) 7.64
\square	E/812-5 Puise Generator 4.11
\square	E/814-2 Drum Machine (2 boards) 6.44
\square	E/814-4 Guitar Note Expander 3.68
\square	E/816-8 Waa-Phase 1.76
\square	E/816-9 Alien Attack 4.00
\square	E/817-1 System A-Input (MM or MC) . 3.05
\square	E/817-2 System A - Preamp. 5.95
\square	E/817-3 Smart Battery Charger. . . . 2.27
\square	E/818-3 Hand Clap Synth. 4.57
\square	E/818-5 Watchdog Home Security (2 boards) 6.11
\square	E/819-1 Mains Audio Link (3 boards) 8.45
\square	E/819-4 Laboratory PSU. 5.21
\square	E/8110-1 Enlarger Timer. 3.91
\square	E/8110-2 Sound Bender 3.05
\square	E/8111-1 Voice Over Unit 4.57
\square	E/8111-2 Car Alarm. 3.23
\square	E/8111-3 Phone Bell Shifter........ 3.40
\square	E/8112-4 Component Tester 1.71
1982	
\square	E/821-3 Guitar Tuner (2 boards) ... 6.38
\square	E/822-1 Ripple Monitor 2.21
\square	E/822-2 Allez Cat Pest Repeller . . . 1.93
\square	E/822-5 Moving Magnet Stage 4.01
\square	E/822-6 Moving Coil Stage 4.01
\square	E/823-4 Capacitance Meter (2 boards) 11.66
\square	E/825-1 DV Meg. 3.13
\square	$\begin{aligned} & \text { E/826-1 Ion Generator } \\ & \text { (3 boards) } 9.20 \end{aligned}$
\square	E/826-4 MOSFET Amp Module. . . . 7.80
\square	E/826-5 Logic Lock 3.52

\square	E/826-6 Digital PWM 3.34
\square	E/826-7 Optical Sensor 2.00
\square	E/826-9 Oscilloscope (4 boards) 13.34
\square	E/827-7 TV Bargraph Main, 5.24
-	E/827-3 TV Bargraph Channel. 2.62
\square	E/827-4 Hotwire. 3.02
\square	E/827-5 Bridging Adapler 2.74
\square	E/828-1 Playmate (3 boards) 8.28
\square	E/828-4 Kitchen Scales. 2.12
\square	E/829-1 Auto Volume Control. 2.12
\square	E/829-2 Dual Logic Probe 2.22
\square	E/8211-4 Pulse Generator 6.08
\square	E/8212-1 ELCB 2.77
\square	E/8212-2 Servo Interface (2 boards) 6.75
\square	E/8212-4 Spectracolumn 5.54
1983	
\square	E/831-1 Fuel Gauge. 3.45
\square	E/831-2 ZX ADC. 2.59
\square	E/831-3 Programmable PSU 3.45
\square	E/833-1 SoundBoard. 12.83
\square	E/833-2 Alarm Module 3.62
\square	E/833-3 ZX81 User Graphics 1.07
\square	E/833-4 Logic Probe 2.50
\square	E/834-1 Real Time Clock 8.74
\square	E/834-2 Thermemeter (2 boards) 9.74
\square	E/834-4 Stage Lighting - Main . . 13.73
\square	E/834-5 Stage Lighting - Display 3.45
\square	E/835-1 Compressor/Limiter 6.19
\square	E/835-2 Single PSU 3.16
\square	E/835-3 Dual PSU 4.01
\square	E/835-4.2 NDFL Amp 7.88
\square	E/835-5 Balance Input Preamp 3.23
\square	E/835-6 Stage Lighting Autofade. 6.19
\square	E/835-7 Stage Lighting - Triac Board. 4.74
\square	E/836-1 to 3 PseudoROM (3 boards)
\square	E/836/4 Immersible Heater 2.30
\square	E/836-5 Atom Keypad. 5.18
\square	E/837-1 Flash Sequencer 2.67
\square	E/837-2 Trigger Unit Main Board. . . 2.67
\square	E/837-3 Trigger Unit Transmitter. . . 1.66
\square	E/837-4 Switched Mode PSU 16.10
\square	E/838-1 Graphic Equalisr. 9.10

E/838-2 Servo FaitSafe(four-off).2.93
E/838-3 Universal EPROM prog. 9.64
E/839-1 NiCad Charger/Regen 3.77
E/839-2 Digger. 3.40
E/839-3 64 K DRAM 14.08
E/8310-1 Supply Protector 2.19
E/8310-2 Car Alarm 3.98
E/8310-3 Typewriter Interface 4.17
E/8311-1 Mini Drum Synth 3.07
E/8311-2 Alarm Extender. 3.21
E/8311-3 Multiswitch 3.59
E/8311-4 Multiple Port 4.34
E/8311-5 DAC/ADC Filter 3.22
E/8311-6 Light Pen 4.60
E/8311-7 Logic Clip 2.51
E/8311-8 MC Head (JLLH) 3.17
E/8312-1 Lightsaver. 1.85
E/8312-2 A-to-D Board. 12.83
E/8312-3 Light Chaser (2 bds) 7.54
E/8312-4 ZX Alarm 6.04
\square 8.27E/842-1 Speech Board
(Mini-Mynah) 10.97
PREAMP MODULAR PREAMP:
E/842-2 Disc input (mono) 3.73
E/842-3 Output stage (stereo) 3.73
E/842-4 Relay/PSU 3.73
E/842-5 Tone, main (mono) 3.73
E/842-6 Tone, filter (stereo) 3.73
E/842-7 Balanced output (st) 3.73
E/842-8 Headphone amp (st)
01
01
E/842-9 Mother board 5.81
E/843-2 280 DRAM 9.79
E/843-3 Obedient Die. 3.76
E/844-1 School Timer. 4.07
E/845-1 Auto Light Switch. 4.01
E/845-2 ZX81 EPROM Prog. 10.53
E/845-3 Mains Borne RC
4.09
E/845-4 Centronics Interface 4.09
E/845-5 Vario 3.59
E E/846-1 Oric EPROM Bd $E 19.58$
$\square \quad E / 846-2$ Spectrum loystick $£ 3.30$
1984

Signed

Name
Address

OSCILLOSCOPES
TELEOUIPMENT D75 Duál Trace 50MHZ Delay Sweep.
SE. LABS SM 111 Dual Trace 20 MHZ TEKTRONIX 585 A with 82 Plug-1n. Dual Trace 85MHZ Dual TB Delay Sweed
TEKTRONIX 545 B with CA Plug

Dual TB

E x-Ministry CT436 Dual Beam 6MHZ
SE LABS STROBE SMB
METROHM BATEAY MEGGER 500
ADVANCE DUITEAY MEGGER 500 V
O-I a twice Metered
AVO TRANSISTOR TESTER T169 With leads E 20
PSPR2.
CARRIAGE ALL UNITSCT.
RANGE OF NEW SCOPES AVAILABLE
Please enquire
Tantalum Bead $0.1 \mathrm{mfd} 35 \mathrm{~V} \quad 10$ off $£ 1.100$ off $\varepsilon 750$ De Coupling- 0.4725 V .0005 100V: 0.4712 V $0.001200 \mathrm{VI} 33 \mathrm{pf} \quad 10041300100$ off C^{2}

SWITCHES

ILLUMINATED ROCKER 2 pole 250 V 日
Orange. ROGGLE Centre ofl DPDT.ach. 200 each 10 off 10 © 8.80 SLOTEEO OPTO SWITCH with data 50peach 10 off $£ 4$ MinMICROSWITCHV3.Button .. 30pea 10 ot E2.50 C. SOCKETS
to pin-10p. 22 pin-15p 14 pin-8p 100 off 66

10 way- 50 p per metre 10 metres $£ 4$
14 way- 750 per metre 10 metres $£ 6$
PCBKEYBOARO PAD 19 PushContacts $0-9$, A-F plus 3 optional- $\varepsilon 1.50$ a a 10 ot $£ 12$
0.9^{*} \& B Brank......... 44 ea 5 .
 $50 / 60 \mathrm{HZ}$ With fixing bracket 250 VAC 15 A BLACK मtBBONS for Teletypes
Teleprinters
Teleorinters $\quad 750$ ea 6 ott $£ 4$
0.2 W75pea 10 off $£ 650$ FERRANTIPHOTOCELLIYPE MS 15 SOpea 10 OffE4

 CINCH CONNECTOR SIRIP 12 way Screw con-

EXECUTIVE TELEPHONES - PUSH BUTTON Many turctions including 10 number memory, repeat
diating etc. Will connect to GPO system. Brand New. E25 mach P\&PC4.

correm

MDEX disc operating system - from £95
MDEX Languages
FORTH PASCAL SPL QBASIC META
Software to make the CORTEX go!
1 Mbyte Disc Drives
80 Track double-sided double-density
each £235, pair £450
E-BUS Floppy/Winchester Controller
E-BUS 128 Kbytes DRAM card 80*24 Character video card

CORTEX game tapes
Space bugs, Nibblers, Pontoon each £6

User Group!!!

Please add VAT to all prices

 the biggest and best catalogues ever produced by MARSHALL'S.
56 pages crammed from cover to cover with components, accessories and testgear.
New products include I.D.C. Plugs \& Sockets, 'D' Plugs \& Sockets, DIL Headers, Ribbon Cable, Kits, Toroidal Transformers, I.C.'s, Capacitors, Test Probes, and lots more - something for everyone.

TRADE, EXPORT, RETAIL AND MAIL ORDER SUPPLIED.
75 p to callers, $£ 1.00$ post paid - Europe, $£ 1.50$ rest of the world.

WHERE TO FIND US	CALL IN AND SEE US	MAIL ORDER	TELEPHONE
	```9.5.30 MON TO FRI 9-5.00 SAT E XPRESS MAIL ORDERS ACCESS/BARCLAYCARDS WELCOME SAME DAY SERVICE```	WE REGRET WE CANNOT ANSWER MAIL ORDER/ STOCK ENQUIRIES WITHOUT AN S.A.E. SAME DAY SERVICE TRADE AND EXPORT ENQUIRIES WELCOME	MAIL ORDER   041-332-4133   SHOP AND STOCK   ENQUIRIES   041-332-4133   TELEX   261507 REF. 2194

## electronics today international $300 \wedge E=1 / C=$

## BecINNERS GUIDE

Boginner's Guide to Basic Programming Stephenson £5.35<br>Beginner's Guide to Digital Electronics<br>f5. 35<br>Beginner's Guide to Electronics<br>£5.35<br>Beginner's Guide to Integrated Circuits<br>£5.35<br>Boginner's Guide to Computers ${ }^{f} 55.35$

## cookrooks

```
Master IC Cookbook Hallmark
Microprocessor Cookbook M. Hordeski &7.70
IC Op Amp Cookbook Jung
Micro Cookbook Vol. 1 Lancaster

\author{
MCs:09 Cookbook C Warren \\ £7.25
}

\section*{electronics}

Principles of Transistor Circuits Amos \(\mathbf{£ 8 . 5 0}\)
Design ol Active Filters with experiments Berlin \(\quad £ 11.30\)
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
£13.20
How to build Electronic Kits Capel
How to Design and build electronic instrumentation Carr
£3.55
Introduction to Microcomputers Daglecs
Electronic Components and Systoms Dennis
Principles of Electronic Instrumentation De Sa
\(£ 7.20\)
15.00

Giant Handbook of Computer Software
f11.40
Giant Handhook of Electronic Circuits
f 12.95
Giant Handbook of Electronic Projects
Electronic Logic Circuits Gibson
f17.35

Analysis and Design of Analogue Integrated Circuits Gray \(£ \mathbf{£ 3 0 . 2 5}\)
Basic Electronics Grob
f11.30
Lasers - The Light Fantastic Hallmark
ntroduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault Diagnosis Loveday
Electronic Fault Diagnosis Loveday
f6. 25
Essential Electronics A-Z Guida Loveday
£7.50
Microelectronics Digital \& Analogue circuits and systems Millman
103 Projects for Electronics Experimenters Minıs
VLSI System Design Muroga
on Oxner
Practical Sold Circuit Design Olesky
aster Han book of iC Circuits Powers
ectronic Drating and Design Raskhodoff
Now Vihal Eloctonicse
Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair
Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
Designing with TLL Integrated Circuits Texas
Transistor Circuit Design Texas
Digital Systems: Principles and Applications Tocci
Master Handbook ol Telephones Traister
How to build Metal/Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony
33 Electronic Music Projects you can build Winstort
MPUTERS \& MCROCOMPUTERS

\section*{BASIC Computer Games AhI}

Fom BASIC to PASCAL Anderson \(7 \times 81\) T Bake
Mastering Machine Code on your \(2 \times 81\) T. Baker
UNIX - The Book Bananam
280 Microcomputer Handbook Barden
10.95

Microcomputer Maths Barden
Troubleshooting Microprocessors and Digital Logic Goodman £9.25
Getting Acquainted with your VIC 20 Hartnell f8.50
Getting Acquainted with your ZX81 Hartnell \(£ 7.90\)
et your BBC Micro Teach you to program rogramming your \(Z X\) Spectrum Hartnel 68.50
The \(2 \times\) Spectrum Explored Hartnelf6.95
How to

BASIC Principles and Practice of Microprocessors Heffer lints and Tips for the ZX81 Hewson
What to do when you get your hand on a Microcomputer Holtzman 34 More Tested Ready to Run Game Programs in BASIC Horn Microcomputer Builders' Bible Johnson
Digital Circuits and Microcomputers Johnson
Digital Circuits and Microco
PASCAL for Students Kemp
PASCAL for Students Kemp
The C - Programming Language Kernighan
COBOL Jackson
The ZX81 Companion Maunder
Guide to Good Programming Practice Meek
Pinciples of Interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nicholas
Exploring the World of the Personal Computer Nille
Microprocessar Circuits Vol 1 Fundamentals and Microcentrallers

Beginner's Guide to Microprocessors Parr
Microcomputer Based Design Peatman
Digital Hardware Design Peatman
BBC Micro Reavealed Ruston
Handbook of Advanced Robotics Safford
1001 Things to do with your own personal computer Sawusch asy Programming for the \(\mathbf{Z X}\) Spectrum Stewart
icroprocessor Applications Handbook Stout
Handbook of Microprocessor Design and Applications Stout Programming the PET/CBM West
An Introduction to Microcomputer Technology Williamson Computer Peripherals that you can build Wolfe

\section*{REFERENCE BOOKS}

Electronic Engineers' Handbook Fin

\section*{VIDEO}

Servicing Home Video Cassette Recorders Hobbs

Please send me the books indicated. I enclose cheque/postal order for f. Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{ELECTRONICS TODAY INTERNATIONAL}

\section*{Lineage:}

40p per word (minimum 15 words)
Semi Display: (minimum 2 cms)
\(£ 11.00\) per single column centimetre
Ring for information on series bookings/discounts All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

\section*{CLASSIFIED}

\section*{\(01-4370699\)}

Send your requirements to: Debbie Miller ASP Ltd.,
1 Golden Square, London W1.

\section*{COMPUTING}

TEMPERATURE SENSORS for ZX81/Spectrum. Single channel \(£ 17.50\). 4 ch £49.50. \(8 \mathrm{ch} £ 75.50\). Free leaflet. Cheshire Micro Design, 66 Close Lane, Alsager, Stoke-onTrent.

\section*{VIDEO TERMINAL BOARD}
* 80 characters \(\times 24\) lines *

Requires ASCII encoded keyboard and monitor to make fullycontigurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (\(7 \times 9\) matrix with descenders) in two 2716 EPROMS. Full scrolling at 9600 baud with 8 switch selectable rates. RS 232 interface
Bare board with 2 EPROMS and prö gram listıng - 玉48 plus VAT.

Send for detarls or CWO to
A M ELECTRONICS (T)
Wood Farm, Leiston, Suffolk IP164HT Tel: 0728831131

EPROM COPIER - STAND ALONE 2716-27128 ... £1.75 TELEPHONE CONVERSATION RECORDER \(\qquad\) £0. 75 2 LINES INTO 1 ANSWERING MACHINE, Switching unit
£0. 30
From L.K.F. SYSTEMS St. Albans. Tel: 55084

TANGERINE OWNERS at last a \(\star \star 6809 \star\) C.P.U. board with expandable monitor in Colour. FLEX compatable. Also 14K RAM card to free EPROM space on TANEX S.A.E. for details: Ralph Allen Eng., Forncett-End, Norwich. Tel: (095389) 420.

\section*{REPAIRS}

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets, Commodore computers, printers arid floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

\section*{PLANS 'N DESIGN}

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

AUDIO SIGNAL GENERATORS. 10 Hz to 100 kHz sine and square. Also toneburst for IHF 'dynamic headroom' tests etc. Sine distortion \(0.01 \%\) at 20 Hz and 20 kHz . Mains powered. \(£ 67.50\) including postage. SAE for details. Renardson Electronics, 119 Lomond Road. Hull, HU5 5BS.

\section*{FOR SALE}

Car stereo cassette player, 4 W.p.c. into 4 ohm, slidervol. controls, f.f. eject button, auto-stop, 13.2 V DC, -ve. ground Colour black size: h41Xw137Xd145mm. (Japanese) E12.50. Rear window, surface mounting car speakers, 5 W 4 ohm \(£ 3.99\) pair. 8W 4 ohm. 2-way £21.55.
\(25+25 \mathrm{~W}\) r.m.s. (4 ohm) 5 -band equaliser booster for car stereo (\(\mathrm{X}-80\)) \(\mathbf{E 2 2}\).
Unviversal battery charger for AA(HP7) C(HP11). D(HP2), and PP3 £7.50.

Prices include postage
Gash with order to::
L.E.G.S. LTD

334 Dickenson Road, Longsight
Manchester M130NG (Mail Order Only)

SURPLUS EQUIPMENT poweramps . . . 100 watt/£7200W/£12 . . . Glass/PCB \& TO3/output heatsinking...built, tested + instructions . . IKIA-8, Cunliffe Road, Ilkley . . . Free Slider/VC!!

\section*{TRANSISTORS}

BC183,
BC214L New \& Marked, 70p per 10. 50 p P\&P + V.AT. CWO, Watson, Addison \& Partners, 81 Hersham Rd., Walton-onThames, Surrey.
CORTEX COMPUTER built \& working £250 ono. Tel(02572) 69172 evenings or weekends.

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

\section*{KITS}

\section*{VHF TRANSMITTERMODULE}

Kit size 2 inches by \(1 / 2\) inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. \(70-150 \mathrm{MHz}\), range dependent on voltage (618 V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to E6.95, post paid, send cash/ cheque/PO to Modulex, P.O. Box 102, Dartford, Kent DA1 2PW.

MINIATURE FM TRANSMITTERS. Frequency \(60-145 \mathrm{MHz}\), range \(1 / 2\) mile S.G.F.-P.C.B. All components. Full instructions. 9-12V. Operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. £6.95 inc. - Zenith Electronics, 21 Station Road, Industrial Estate, Hailsham, E. Sussex BN27 2 EW.

Bulld your own high pertormance AUDIO SIGNAL GENERATOR £25.00 incl. case (pprif
Suec
Very low distortion ionly. \(020^{\circ}\), Output ty into 600 Ohms . Attenuated
: OHz -- 100 Khz Sine-Square (A Linsley-Hood design) TELERADIO ELECTRONICS 325 Fore Street. Edmonton London NG OPE
Ready made \(£ 30.00\)

PRINTED CIRCUITS Make your own simply. cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, \(£ 2.50\). Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15 p . Copper-clad fibreglass board, approx. 1 mm thick \(£ 2.00\) sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

\section*{SURVEILLANCE}

EQUIPMENT

\section*{MICRO-MINI TRANSMITTERS}
- all supplied ex-stock, return post delivery, no special equipment required, built, tested, with instructions CT10H, 4 mile range, broadcast quality speech pick-up E13.98.
CT10M, prof grade, extra high power, tunable frea \(70-120 \mathrm{MHz}\) vanable microphone sen sitivity. E19.48. CT10MB, as above + unique dual microphones to eiminate echoes, noise etc E21.40.
All soecialised requirements catered for EVEN RADIO STATIONS - + telephone line recording device
ease enquire: 061.9051040 S.A.T. ELECTRONICS

164 Washway Rd Sale, Cheshire M33 1 RH

\section*{BOOKS}

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. \(4 \times 9\) ", Paralab, Downton, Wiltshire

\section*{WANTED}

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

WANTEDElectronictest equipment, large computers, large quantities of Printed Circuit Boards, anything considered, good prices paid: 29 Lawford Crescent, Yateley, Camberley, Surrey Tel 0252871048.

\section*{WIRES ' C CABLES}

TELEPHONE MONITOR KIT, connects between telephone line and your cassette recorder and automatically records all phone usage. Complete kit including case and PCB only £9.95. Dept. ETX, Unitech (Midlands), FFEEEPOST, Erdington. Birmingham B24 8BR.

\section*{QUALITY ALARMS}

SYSTEMS TO MEET ALL
REOUIREMENTS
HIGH QUALITY BRITISH
STANDARDS EOUIPMENT LOW PRICES
COMPREHENSIVE D.IY PLANNING GUIDE FULL FITTING INSTRUCTIONS BACK-UP INFORMATION SERVICE For Full Details Write or Phone:QUALITY ALARMS 48 Cheltenham Road Gloucester GL2 Tel: 045220184

LARGE STOCK OF BURGLAR ALARM EQUIPMENT. AS used in the trade. JN Security Centre, 176 Sydenham Rd., London SE26 5J2. 01-778 1111. Showrooms open 6 days.
TRADE MANUFACTURER of Alarm Controls, power supplies (G.P.O. approved), Bell cut-offs, +full range of ancillaries (cable, passives, sirens etc). Write or phone for catalogue - Castle Alarms - 88 Harvest Rd, Englefield Green, Surrey. 0784 31467.

\section*{COMPONENTS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{RESISTORS} \\
\hline C.F. \(5 \%\) & \multicolumn{3}{|l|}{} \\
\hline HISSTAB & \multicolumn{3}{|l|}{HI-STAB} \\
\hline 1.sw E24 1pea & \multicolumn{3}{|l|}{\(19_{0}\) 4p ea E24} \\
\hline \%/w E24 2pea & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(20^{\circ} 3 \mathrm{p}\) ea E24}} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CAPACITORS \\
TANTALUM BEAD
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{35v0.1,0.22, 033,047.068, \(10,14 \mathrm{pea}\)} \\
\hline \multicolumn{4}{|l|}{25v6.8 20pea} \\
\hline \multicolumn{4}{|l|}{16v 4.7. \(10 \mathrm{mt} \mathrm{16p} \mathrm{ea}\)} \\
\hline \multicolumn{4}{|l|}{16v \(2.212 \mathrm{pe日}\)} \\
\hline \multicolumn{4}{|l|}{16v4.7 14pea} \\
\hline \multicolumn{4}{|l|}{16v \(10 \mathrm{mt} \mathrm{20pea}\)} \\
\hline Terms CWO & £500 & Min & Order \\
\hline \multicolumn{4}{|l|}{\[
\begin{array}{r}
\text { P.Paid + VAT } \Leftrightarrow 15 \% \\
\text { E.C.P.S. }
\end{array}
\]} \\
\hline \multicolumn{4}{|l|}{7. Harehill Cres. Wingerworth} \\
\hline \multicolumn{4}{|l|}{Chesterfield, Derbyshire} \\
\hline \multicolumn{4}{|c|}{Tel: 024674003} \\
\hline
\end{tabular}

\section*{IRISH READERS}

MAIL ORDER COMPONENTS Top quality components Great prices Return-ot-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6 Phone(01)0001 if England 987507 Mail order only please

\section*{S. WALES}

\section*{STEVE'S ELECTRONIC} SUPPLY CO. LTD.

\section*{45 Castle Arcade. Cardiff} TEL: 022241905 Open: Mon-Sat 9-5.30 For components to computers

\section*{ELECTRONICS TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT - ORDER FORM}

If you have something to sell now's your chance! Don't turn the page - turn to us! Rates of charge: 35 p per word per issue (minimum of 15 words). and post to Electronics Today International, Classified Dept., 1 Golden Square, London W1.
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & & \\
\hline
\end{tabular}

Please place my advert in Electronics Today International for issues commencing as soon as possible.

I am enclosing my Cheque/Postal Order/International Money Please use BLOCK CAPITALS and include post codes.
Order for (delete as necessary) E. . (Made payable to A S.P. Ltd)
\begin{tabular}{|c|c|c|}
\hline VISA & OR Debit my Access/Barclaycard (Delete as necessary) & \\
\hline & & wo ment \\
\hline
\end{tabular}

All classified advertisements must be paid for in advance

Classification
Name (Mr/Mrs/Miss/Ms)
(detete accordingly)
Address......................

Signature \(\qquad\)
Daytime Tel. No.
ADVERTISERS INDEX
A.I.Alarms 53
Audio Electronics 54
B.Bamber 33
B.K.Electronics 6
Black Star 34
B.N.R. \& E.S. 60
Cirkit. 8,9
Clef Products. 33
Concept Electronics 34
Cricklewood Electronics 16
Display Electronics 14
Electrovalue 60
Electronize Design. 43
G.S.C. 27
Greenbank 74
Happy Memories 33
ICS 54
ILP 42
Kempston 60
Len's Electronics 53
Litesold 59
Maplin 59, OBC
Marco Trading 18
Marshalls 69
Merseyside Acoustic Developments 28
Micro Processor Engineering 69
Microrange Electronics 34
Newrad Instrument Cases 54
Pantechnic. 59
Parndon. 74
Powertran BC
Rapid Electronics 12
R.V.M. Audiotronics 34
Ship Co. Ltd 28
Skywave Software 28
S.M.E. Ltd 34
Sparkrite 74
Stewart of Reading 69
Technomatic 20, 21
Watford Electronics 4, 5
Wilmslow Audio 49
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{RESISTORS: \(1 / 4\) Watt Carbon Film E24 range \(\pm 5 \%\) tolerance Bandoliered and colour coded. Full Range 1RO-10M.
\(\mathbf{£ 1 . 0 0}\) per hundred m'xed (Min 10 pervalue) \(\mathbf{f 8 . 5 0}\) per thousand mixed (Min 50 per value)} \\
\hline & \\
\hline \multicolumn{2}{|l|}{DIt} \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\section*{A METAL Z8OA COMPUTER}

Colleges, Universities, Individuals: Build your own modular Z80A-based metal 19" rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you can get your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from \(£ 10.95\) to \(£ 17.75\) + VAT; manuals \(£ 1-£ 5\).)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name and address with a 21 pstamp and we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a mefal one to do some real work: Interak, Interak, Interak!

\section*{Greenbank}

Greenbank Electronics (Dept T7E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

\section*{Low-price robots from POWERTRAN}

\section*{- hydraulically powered - microprocessor controlled}

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry.

Each robot in the Genesis
GENESIS range has a self-contained hydraulic power source operated from single phase 240 or 120 v AC or from a 12 v DC supply. Up to six independent axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project:-

\section*{GENESIS P102}

For a little over \(£ 100\). Herbot II takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoid-operated pen to chart its moves. Touch sensors, coupled to its shell return data about its environment to the computer enabling evasive or exploratory action to be calculated.

The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a \(\mathrm{ZX81}\) or other microcomputer

\section*{HEBOT II}

Weight 1.8 kg
complete kit with assembly instructions \(\mathbf{£ 9 5}\) Interface board kit £11

A real programmable robot for under \(£ 300\) ! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus the Sinclair ZX81 being particularly suitable

\section*{MICROGRASP}

Weight 8.7 kg , max. lifting capacity 100 g
Robot kit with power supply

\section*{GENESIS P101}

Weight 34 kg , max lifting capacity 1.8 kg
6-axis model (kıt form) £750
6-axis complete system (kit form)

\section*{GENESIS P102}

Weight 36 kg , max liftıng
capacity 2 kg
6-axis system
(kit form)
Powertran Cortex
microcomputer
self-assemblykit
£295.00

Goods subject to availability. All prices exclusive of VAT and correct at time of going to press.

\title{
nimplin Thassive range of eomponents for your hobby....insist on Haplin quality:
}

\section*{MAPLIN'S FASCINATING PROJECTS BOOKS}

Full details in our Project Books Price 70p each
In Book 1 (XA01B) 120W rms Mosfet Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge \(\bullet 6\) Vero Projects. In Book 2 (XA02C) Home Security System - Train Controiler for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keybおard with electronics - Stereo 25W Mosfet Amplifier - Doppler Radar Infruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions * Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector • I/O Port for ZX81 - Car Burglar Alarm Remote Control for 25W Stereo Amp. In Book 5 (XA05F) 300 Baud Duplex Modem to European Standard - 100W 240VAC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects Timer for External Alarm.
my

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our Mosfet Amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter - Damp Meter Four Simple Projects.
In Book 7 (XA07H) Modem (RS232) Interface for ZX81/VIC20/Commodore 64 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator - CMOS Crystal Calibrator. In Book 9 (XA08J) Modem (RS232) Interface for Dragon 32 \& Spectrum Synchime - I/O Ports for Dragon 32 Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.
In Book 9 (XA09K) Keyboard with Electronics for ZX Spectrum - Infra-

Red Intruder Detector - Multimeter to Frequency Meter Converter - FM Radio needs no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric 1 - VIC20 Extendiboard - ZX81 ExtendiRAM - Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to RS232 Converter Logic Pulser • Pseudo-Stereo AM Radio - Ni-Cad Charger Timer -

\section*{1984 CATALOCUE}

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send \(£ 1.65\) (including \(p \& p\)) to our mail-order address.

Adder-Subtracter - Syndrum's Interface - Microphone Pre-Amp Limiter. In Book 10 (XA10L) Cassette Easyload for ZX Spectrum - 80m Amateur Receiver - Auto Waa-Waa Effects Unit - Oric 1 Modem Interface - 2.8 kW Mains Power Controller Extendiport for Dragon \(32 \cdot 12 \mathrm{~V}\) Fluorscent Tube Driver - 32-Line Extension for Digi-Tel.

\section*{GREAT PROJECTS FROM E\&MM}

Our book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first Year.

Projects include Harmony Generator, Guitar Tuner Hexadrum, Syntom, Auto Swell Partylite, Car Aerial Booster MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price \(£ 1\).

Post this coupon now for your copy of the 1984 catalogue. Price \(£ 135+30\) p post and packaging If you live outside the U.K. send \(£ 2.20\) or 11 International Reply Coupons I enclose \(£ 165\)

Name
Address

\section*{D) R D \(N D\) \\ ELECTRONIC \\ SLUPPLIES LTD}

Mail Order: P.O. Box 3, Rayleigh. Essex SS6 8LR. Tel: Southend (0702) 552911 . Shops at: 159-161 King Street, Hammersmith. London W6. Tel: 01-748-0926. • 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50 p handling charge \(t o\) orders under \(£ 5\) total value (except catalogue).```

[^0]: Since a lengthy description of the design process has already been given, this section really serves only to give an overall picture of the circuit, outlining which components are associated with each particular task.
 The memory is made up of four $2 \mathrm{~K} \times 8$ RAMs, these being IC8, IC9, IC10 and IC11. The RAMs are connected to internal data and address busses which are isolated from the host and target system busses by various tri-state buffers. IC5 buffers the host data bus, IC12 ad IC14 the host address bvus, IC6 the target data bus and IC13 and IC15 the target address bus. The circuitry comprising IC1c and IC2d controls the buffer enabF ing and ensures that both sets cannot be enabled at the same time and that the host takes priority. IC3 and most of the remainder of IC1 and IC2 are associated with generating the RAM CE, OE and R/ W signals by a combination of control signals from both ports. The RAM CE is split into four separate signals for the four RAMs by IC5b, and IC7 ensures that these signals can't be active under power-down conditions. This circuitry requires a signal indicating that the appropriate portion of the host memory map has been addressed, and this signal is generated by IC5a, IC1d, LK1 and LK2. The remainder of the circuit is associated with the battery supply and powerdown circuitry.

[^1]: We suggest you make do with whatever buzzer you can find for X 2 , all the better if it actually fits the PCB! With the keyswitch, if you can't find a single threeway device, two two-way ones can be used as already described. Nothing else should cause any problems.

