An Argus Specialist Publication

High performance, low price kits for today's musicians

 ually comes with a four-figure price tagPowertian can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6 mSecs to 1.6 secs with many powerful effects including phasing, flanging A.D.T., chorus, echo and vibrato. The basic kit is extended in 400 msec steps up to 1.6 seconds simply by adding, more parts to the PCB.

'DESTINY' MIXER

This versatile mixer offers a maximum of 24 inputs, 4 outputs, and an auxiliary channel. Input channels have Mic/Line, variable gain, bass/treble, and middle frequency equaliser. oass/trebie, and middle trequency equaliser. Output channels have PPM displays and
record/studio outputs. There are send/return record/studio outputs. There are-send/return
jacks, auxiliary, pan and fader controls, and outjacks, auxiliary, pan and fader controls, and out-
put and group switching. There is also a headphone jack and built-in talk-back microphone.

usichannel	E23.00
Outpu channel	£23.00
Aux ${ }_{\text {chan }}$ channel	£26.00
Blank panel	E3.50
Base unit and	£33.00
Pair of end cheek	E25.00
Powers	£22.50

TRANSCENDENT 2000

ETI single board synthesizer

This professional quality 3 -octave instrument is transposable 2 octaves up or down, giving an effective 7 -octave range.

There is portemento pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope shaper. Other features include special circuitry with precision components to ensure circuitry with pr
tuning stability.

Complete kit. \qquad

Here's a rugged, professionally finished mixer amp-designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components are supplied for additional inputs), 3 tone controls, each with 15 dB boost and 15 dB cut, and a master volume control.

Complete kit
$£ 79.50$
SP2-200
2-channel, 100 -watt amplifer

\qquad
two of the power amplifier
sections of the MPA 200 (above), each with its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100 W rms into 8 ohms. Each channel has its own volume control, and a sensitivity of $0.775 \mathrm{mV}(\mathrm{OdBm})$ makes this amplifer suitable for virtually all pre-amps or mixers

Complete kit \qquad £99.50

CHROMATHEQUE 5000

ETI 5-channel lighting
effects system

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both functions. It controls 5 banks of lamps up to 500 W each in either analog or digital mode. And the 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4 -channel systems. Versatile light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal and construction straightforward.

Complete kit.
$£ 79.50$

POWERTRAN CYBERNETICS LTD, PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET.TEL: (0264) 64455
ALL PRICES ARE EXCLUSIVE OF VAT AND APPL Y TO THE UK. ONLY - ALLOW 21 DAYS FOR DELIVERY. OVERSEAS CUSTOMERS - PLEASE CONTACT

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Editorial Assistant Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Lynn Collis: Copy Control Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive published by:
Argus Specialist Publications Ltd. 1 'Golden Square, London W7 R 3AB. DISTRIBUTED BY
Argus Press Sales. \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS (British Isles)
PRINTED BY:
The Garden City Press Ltd
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS EDITIONS and their EDITORS

AUS TRALIA - Roger Harrison CANADA - Halvor Moorshead CERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC
 Member of the

 of CirculationElectronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other in-
tellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv rebroduction requires the prior written consent of the Company. © 1984 Argus Specialist Publications Ltd All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for ertors. Where mistakes do occur, a correction will nor mally be published as soon as possible afterwards. All cepted by us in good faith as correct at time of aoing to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.
\square Subscription Rates, UK£14.35 including postage. for turther details and Armail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST

..... 7 vitriolic viping of titilating titbits, vitriolic victuals and fanciful fare. Who could ask for more?

THE WORLD OF THE

MICROTAN 65
22
All a-board the six-five special! Mike Bedford takes us on a guided tour of the plug-in boards available for the Microtan.

READ/ $\overline{\text { WRITE }}$ 33
Readers' replies to ETI articles proof positive that some people actually read the magazine instead of just leaving it on their coffee table to draw gasps of admiration from friends.

BOOK REVIEWS

A book at bedtime: after another session oflying down on the job, Phil Walker brings, you an insomniacs' guide to electronics books.

MACHINE CODE

PROGRAMMING
Bob Bènnett explains how to avoid grammatical faux pas when talking to a computer.

PROJECTS

EPROM ERASER

17
Does your EPROM have its ups and downs? ETI's DEPROM will soon have it looking up, up, up all the way.

AUTOMATIC LIGHT

SWITCH

19Would-be burglar sees the light and gives your house a wide berth!

ZX81 EPROM

PROGRAMMER

26Old ZX81s never die - they just get incorporated into ETI projects.

MAINS BORNE REMOTE

CONTROL

37In this second part, we tell you how to build the transmitter unit and interface the finished system to your microcomputer.

CENTRONICS INTERFACE 47

Just the thing for a shy micro with literaryambitions - an introduction to a friendly printer.

VERTICAL SPEED

INDICATOR.
57
Having teft our readers in (animated?) suspense for a month, we now give you the low down on how to build this exciting project.

MIDI DRUM SYNTH
Not to be confused with M.I.D.I. synths, this project is so called because it's as small and simple as a mini yet has a number of features usually only found on full-sized drum synths.

INFORMATION

NEXT MONTH'S ETI. 6	PCB FOIL PATTERNS. 66
ETI BOOK SERVICE. 16	READER'S SERVICES. 66
ETI PCB SERVICE 65	ADVERTISERS' INDEX 74

WATFORD ELECTRONICS
33／34 CARDIFF ROAD．WATFORD．HERTS．ENGLAND MAIL ORDER．CALLERS WELCOME
Tel．Watford（0923）40588．Telex． 8956095

VAT

ALL DEVICES FULLY GUARANTEED，SEND CHEQUE，P．O．S，CASH，BANK DRAFT WIT ORDERS．TELEPHONE ORDERS BY ACCESS／MASTER CHARGE ACCEPTED． GOVERNMENT \＆EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\＆P ADD $75 p$ TO ALL CASH ORDERS．OVERSEAS ORDERS POSTAGE AT COST，PRICES SUBJECT TO CHANGE WITHOUT NOTICE，

Export orders no VAT．Applicable to U．K．Customers only．Unless stated othewise
all prices are exclusive of VAT．Please add 15% to the total cost including P\＆P
Nearest Underground／BR Station：Watford High Street．
Open Monday to Saturday： 9.00 am to 6.00 pm．Ample Free Car parking space availabte．

 16p： 470 20p： 680 34p； 1000 27p， $1500,31 \mathrm{p}, 2200$ 26p， 470072 p
 180p；25V： 2200 90p； $330098 \mathrm{p} ; 4000,4700$
 1000V： 1 nF 17 p ； 10 nF 30p： 15 n 40 p ； 22 n 36 p ；
 TANTALUM BEAD CAPACITORS
35V： 0.1 UF, O．22． 03315 p
 $1028 \mathrm{p} ; 16 \mathrm{~V}: 2.2 .331 \mathrm{Bp} ; 4.7,6.8,10$
$18 \mathrm{p} ; 15.36 \mathrm{p} ; 2245 \mathrm{p} ; 33,4750 \mathrm{p} ; 100$ 95p； $10 \mathrm{~V}: 15,22,26 \mathrm{p}$
80p； $8 \mathrm{~V}: 100 \mathrm{s5p}$ ．
MYLAR FILM CAPACITORS
100v： $1 \mathrm{nF}, 2,44 \mathrm{nF}, 10 \mathrm{Bp} ; 15 \mathrm{nf}, 22 \mathrm{n}$,
$30 \mathrm{n}, 40 \mathrm{nn} 47 \mathrm{n} 7 \mathrm{p}: 56 \mathrm{n}, 100 \mathrm{n}, 200 \mathrm{n} 9 \mathrm{p}$ ；
5 CERAMIC CAPACITORS 50V：

CERAMIC CAPACITORS 5OV： Range： 0.5 pF to 10 nF 4 p ． $15 \mathrm{nF}, 22 \mathrm{nF}$	PRESET POTENTIOMETERS 01 W Miniature Verical or		ACCESS Orders Just phone your
33nF： 47 nF 5p． $100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$ ．	Horizontal，1008 to 4M7	p	
200nF／6V8p．	0．25W Larger 100R to 3M3 Horz	p	orders through．
Ory	$0.25 W$ Larger 200 R to 4M7 Vertical	12p	Tel： 092350234

POLYSTYRENE CAPACITORS： 10pF to $1 \mathrm{nF} 8 \mathrm{p} ; 1.5 \mathrm{nF}$ to 12 nF 10 p	
SILVER MICA（Values II PF 2，3．3．4．7，6．8．8．2，10．12．15．18，	
22，27，33，39，47，50，56，68，75，82．	
$85,100,120,150,180 \mathrm{pF}$	15p each
200，220，250，270，300，330，360	
$390,470,800,800,820$	$21 p$ each
100，1200，1800， 2200	30p each
3300.4700 pF	80p

	$1000 \mathrm{pF} / 450 \mathrm{~V}$	
POTENTIOMETERS：Carbon Track Rotary 0.25 W Log 8 LIN Values． $470 \mathrm{Fi} 1 \mathrm{~K} \& 2 \mathrm{~K}$（Linear only）		
470R： $1 \mathrm{~K} \& 2 \mathrm{~K}$（Linear only） Single Gang		
$5 \mathrm{~K}-2 \mathrm{M}$	Single Gang Log 8 Lin	34p ${ }^{\text {c }}$
5K－2M	Single Gang DP Switch	80p
$5 \mathrm{~K}-2 \mathrm{M}$	Double Gang	90p
SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear values 60 mm		
5 K － 500 K	single gang	70p
Graduated	Bezels for above	45p
PRESET POTENTIOMETER		
01 W Miniature Verical or		
Horizontal	100R to 4M7	8p
0．25W La	ger 100R 103 M 3 Hor 2	
0．25WLar	er 200 R to 4 M 7 Vertic	

SIEMENS PCD SiEmENS PCD
Type Miniature
Doly Capactors 250 V $1 n \mathrm{~F}, 1 n 5,2 n 2$,
$3 n 3,4 n 7,6 n 8$,

$4 \mathbf{p}$	$82 n$
$4 \mathbf{p}$	100 V
100	

100
150
RAM
FOR
BBC
MICR
$4816 A$
100 n
300

 $\frac{8}{4}$ TMS4500
TMS4500
I TMS4500
TMS4532
TMS 100

TSS011品品8 | TMS9929 |
| :--- |
| TMS9980 |

 280 CTC
28002 CP
280 CTC
280 BCP

 NNNNNNNNNNNNNNNNNNNNNNNNNNNNXNNXNNNNNNNNNNNNNNNNNNNNNNN

「55ヶ「

AN ARGUS SPECIALIST PUBLICATION

 AUDIO SPECIAL TIME!

 AUDIO SPECIAL TIME!}
'AUDIO DESIGN' AMPLIFIER

Since the end of the series 'Audio Design', we've had a steady stream of enquiries to ask when the amplifier mentioned then will be hitting the pages. Well, the answer to all you who' ve asked that of us is that the first part, featuring the preamp, will appear next month. It promises to be a goody, too - your very own editor is already first in the queue for the complete kit, when this becomes available.

You would think that preamp/power amp complementary units had been around for so long that no new innovations in the basic format could be found - but you'd be wrong! Whilst we cannot claim that no one had thought of the idea before, John Linsley Hood has made a modification to the basic format that seems so obvious as to make you wonder why you didn't think of it yourself and this is not to mention all the top-class circuitry (there will be a few surprises in the power amp circuitry in the following issue).

EPROM CARD FOR THE ORIC/ATMOS

There has been a lack of projects on these pages for the Oric (and, consequently, for the new Atmos as well), but we're just about to fix all that! This EPROM card will allow you to program EPROMs and then read and verify them, and then, if desired, to actually run the software inside them on the computer. For ease of construction, only one location on the card can be used for programming, but the card is reconfigurable, so EPROM (and the on-board RAM) can be placed as desired in the memory map, making this card a very flexible tool for firmware development.

NOVEL LOUDSPEAKER PROJECT

A new type of drive unit from a company based in Liverpool has been raising a certain amount of interest. The drive units actually have a lozenge-shaped flat diaphragm, driven round the edges, which should, in theory, overcome the problem of different bits of the diaphragm on a conventional speaker moving out of phase with one another - apparently the Japanese have been working on the same idea for quite some time but have yet to deliver the goods. Readers of ETI will have their chance to reach the fore-front of technology with this project.

ALL IN THE JUNE ISSUE OF ETI ON SALE FRIDAY MAY 4th. PLACE YOUR ORDER NOW OR RISK MISSING OUT!

DIGEST

April fools,
May be
true. . .

Unaccustomed as we are, etc, etc, we feel it's only fair to come clean about the extent of our duplicity in the April issue preferably whilst there are a few readers still on speaking terms with us.

What can we say about "The Saga of Silly Cow Valley'? Its appeal is ageless; the epic narra-
tive, pierced with shafts of wry humour and pure enlightenment spoke directly to our human condition, uniting ETI readers in all reaches of society in one longsuffering groan of disbelief.

Some of our other April offerings deserve a little more comment. Hands up all those who are still hunting high and low for a dual peak filter, haven't yet sorted out the cold starting on their Duo Decimal Sub-Phrase Repetition Detector or are fast losing patience with the budgie's apparent inability to respond meaningfully to multiple glissandos. Give

Up? It may be of some comfort to know that Paul Wollover's"Super Selective Music Filter' caught some very prestigious April fools. No names, no pack drill, but our first telephone call on the subject came from the producers of a certain television programme, who obviously though tomorrow's world had árrived a day early. We did our best to explain the various complex technical difficulties which would prevent us lending them a prototype for use on the programme, until unnatural hilarity got the better of us and the sound of editorial sides splitting alerted them to our deception. For others, disillusion came less readily; one puzzled newsagent went through his entire stock with a toothcomb after an irate reader had complained about the nondelivery of the rest of his magazine with its elusive page 109. Complaints should be directed to

Phil Walker, the literary giant who hides behind the pseudonym Paul Wollover (pull-the-wool-over: geddit?).

Finally, we have the item which graced our news page under the heading "Not An April Fool". Despite this reassuring start and the well known veracity of all ETI writers, people just didn't believe us. This lack of trust came as a complete surprise and we would like to say that we are shocked, deeply hurt, and have never laughed so much in our lives. For the whol story is true - well, everything except the quadraphonic water-beds and so-on. We trust the Acoustic Chair Company will forgive us our little jest, and hope they made the most of their opportunities by quickly selling examples of their product to all those ETI readers who rang up and said 'And April fool to you too!'.

Typewriter Interface

We said in the update article on the Typewriter Interface which appeared in our March issue that we would try and organise an EPROM programming service. We are pleased to be able to tell you that Magenta Electronics are now offering ready programmed EPROMs and complete kits for this project. When we contacted them just before this issue went to press they were unable to confirm prices, but said that the items should be ready by the time this issue went on sale. For details contact Magenta Electronics Ltd, 135 Hunter Street, Burton-onTrent, Staffordshire DE14 2ST, tel 0283-65435.
We have also had a letter from Tapesoft who have Ex42s available for $£ 235$ including carriage. Their address is 55 Morley Road, Twickenham, Middlesex TW1 2HO, tel 01-892 1909.

Less For Your Money

Panasonic claim that their new SU series electrolytic capacitors are up to $\mathbf{6 0 \%}$ smaller than conventional types. Available in both radial and axial forms, they are expected to find favour wherever high component packing density and small board size are desirable, and in industry where they will enable higher capacitance values to be handled by
automatic insertion equipment.
The SU series capacitors are available with working voltages from 6.3 to 100 volts DC and in capacitance values from 0.47 u to $15,000 \mathrm{u}$ (radial) and $22,000 \mathrm{u}$ (axial). Panasonic say that a typical SU capacitor is about half the size of a conventional capacitor with the same electrical value. They are specified for operation over the temperature range -40 C to +85 C and have a life expectancy of 2000 hours at +85 C . DC leakage current is equal to 0.01 CVuA or $3 u A$, whichever is the greater. Radial types larger than 6.3 mm diameter and axial types larger than 10 mm diameter have specially designed safety vents in their cases, and all types are claimed to be resistant to the majority of modern solvents. .

Further details of the SU electrolytic capacitor range are available from Panasonic Industrial (UK) Ltd, Electronic Components Department, 280-290 Bath Road, Slough, Berkshire SL1 6JB, tel 0753-34522.

- Market research company Mintel Publications Ltd say that only 32% of people in this country now spend an hour or more a week listening to records and tapes, a drop $\mathbf{~ b f} 6 \%$ over last year's figure. The percentage listening to radio on the same basis fell from 62 to 49 over the same period. The same research also found that 19% of those who have hi-fi and stereo equipment do not know how to use it properly and a further 6% think it too complicated.
- We had hoped to have something positive to tell you about events within the Tangerine Users Group, the more so since we are running a feature on Microtan peripherals in this issue. However, despite making repeated 'phone calls right up until we went to press, we can only report that things are still moving but that no final decisions have yet been reached. We hope to be able to tell you rather more in next month's issue.

Coaxial Cable Stripper

OK Industries have patented a cable stripper which will quickly and cleanly prepare the ends of coaxial cables. The new device, designated the CX series cable stripper, consists of a hinged assembly which traps the cable and forces it down onto a series of blades. The blades are sel al different heights according to the type and diameter of cable being stripped. The device is then rotated around the cable so that a
uniform cut is produced. Two versions are available, one with two blades and one with three, allowing outside insulation, braid and dielectric to be removed in any combination simultaneously. The blade height is adjusted for different cable diameters by means of colour-coded interchangeable cassettes, making changes quick and simple. The two blade version costs $£ 15.89$ and the three blade version $£ 18.66$, and both are supplied with threecassettes. Further details are available from OK Industries Ltd, Dutton Lane, Eastleigh, Hampshire SO5 4AA, tel 0703619841.

Resistor LEDs

Hewlett Packard have introduced a new series of LEDs which have integral current limiting resistors. Called simply resis-tor-LED or RLED lamps, they are available in 5 V and 12 V versions in $\mathrm{T}-1$ and $\mathrm{T}-1^{3 / 4}$ packages. This
allows them to be soldered directly to PCBs in the normal way or used in panel mounting LES lampholders by means of a simple adaptor. In either case, the absence of an external current limiting resistor should save space and cost. For further details contact the Literature Section, HewlettPackard Ltd, Eskdale Road, Winnersh, Wokingham, Berkshire RG11 5DZ, tel 0734-696622.

Electronics Shop Opens

Cood news for electronics enthusiasts who live in or near Daventry, Northamptonshire - Emos Ltd have opened a new electronics shop in the Sheaf Street Shopping area. The shop is open from $9.00 \mathrm{a} . \mathrm{m}$. to $5.00 \mathrm{p} . \mathrm{m}$. Monday to Saturday with the exception of Thursday when it is
closed all day, and intends to offer everything from a thirteen amp plug to a microcomputer. Emos already offer a mail order service and have previously operated from a warehouse on the High March Industrial Estate; they say the move is in response to an increasing interest in electronics and computers in the Daventry area. For further information contact Emos LId, 17 Sheaf Street, Daventry, Northamptonshire, tel 03272-5524.

Waterproof Diecast Boxes

Boss Industrial Mouldings have introduced a new range of diecast aluminium boxes which are protected against water ingress in accordance with the requirements of Industrial Standard IP65. IP65 protection is defined as hoseproof, and the boxes are thus ideally suited to use in equipment which is subject to periodic cleaning.
The new boxes incorporate an oil and petrol resistant neoprene gasket seal which is recessed and
runs inside the mounting holes and fixing screw holes. They are manufactured from LM6 aluminium alloy (whatever that is!) and feature non-magnetic stainless steel fixing screws which are held captive in the lid so that you can't lose them. A copper plated earthing screw is incorporated and the boxes can be supplied to special order with EMI shielding which covers the spectrum from 14 kHz to 20 GHz . Four sizes of box are available, ranging from 75 $\times 40 \times 52 \mathrm{~mm}$ to $220 \times 120 \times 80 \mathrm{~mm}$, and further details are available from Boss Industrial Mouldings Ltd, James Carter Road, Mildenhail, Suffolk IP28 7DE, tel 0638716101.

DIL DC/DC Converters

G
resham Powerdyne's EL series $D C / D C$ converters are housed in standard 24 pin DIL packages and offer a range of
single and dual rail outputs from 5 and 12 V inputs. Three ratings are available, 1.5 watt (EL1 series), 3 watt (EL3 series) and 4 watt (EL4 series), and typical efficiencies are as high as 75%. The EL1 series provides outputs of5, 12, 15, ± 12 and ± 15 volts with a line and load regulation of $\pm 0.2 \%$ and a setting accuracy of $\pm 5 \%$. The EL3 series includes a 24 V input version and offers fifteen output configurations with a regulation of 0.5% or 1% and a maximum of 50 mV ripple and noise. The el4 series are unregulated units available in fifteen output configurations and offering a ripple and noise figure of less than 150 mV peak-to-peak EL1 and EL4 series converters have full output short circuit protection.
The EL series converters feature full six-sided RFI shielding and a wide operating temperature range. Anticipated applications include interfaces and other equipment in which op-amps and similar devices have to be driven from microcomputer derived and other single rail supplies. For further information contact Gresham Powerdyne Ltd, Osborne Way, Station Road, Hook, Hampshire, tel 025672 4246.

- Bulgin have introduced a new range of battery holdersincluding panel mounting, PCB and baseboard mounting versions capable of accommodating one or more AAA, AA, C, D, or PP3 size cells. The new range is described in an eight-page fully-illustrated catalogue which includes dimensional drawings and fixing details. Contact Brian Diggle, A.F. Bulgin and Co PLC, Bypass Road, Barking, Essex IG11 0AZ, tel 01-594 5588.
- Copperfoil Enterprises (well what else could they be called?) have produced a self-adhesive copper tape which can be used to repair PCBs and to produce prototypes. The tape conforms to BS safety regulations, is rated at 5 A 24 VDC , is not affected by the heat produced during soldering and comes in a range of tape widths from 4 to 8 mm . Details from CopperfoilEnterprises, 141 Lyndhurst Drive, Hornchurch, Essex RM11 1JP, tel 040 24-56697.
- Motorola have published three new CMOS data books, their first new CMOS books for four years. The High Speed CMOS Logic Data Book, ref. B002C, has 540 pages and covers 147 devices, 71 of them with full circuit descriptions. The CMOS Standard Logic Data Manual, ref.

8002A has 530 pages, contains detailed information on 119 standard CMOS devices and is complementary to the CMOS Special Functions Data Manual, ref. B002B which has 423 pages and covers 60 special function devices. Motorola Litd, The European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes, tel 0908-514614.

Superswitch manufacture a range of electronic appliances for use around the home, including a mains borne remote control system, a rechargeble torch, security equipment, touch and dimmer controls, etc. They have just brought out a new, full colour brochure, copies of which are free from Superswitch Electric Appliances Ltd, 7 Station Trading Estate, Camberley, Surrey GU17 9AH, tel 027634556.

- Belden Unreel packaging is a novel alternative to the usual metal drum used for cable distribution. It consists of a simple boxin which the cable is so loaded that it will pull out through a single eyelet without kinking or twisting, doing away with the need for a spindle on which to mount the drum while unwinding. For Details contact Anixter (UK) Ltd, 632-652 London Road, Isleworth, Middlesex TW7 4EY, tel 01-568 1681.

BUILD YOUR OWN certey 16 bii.,64kRAM colour computer

With this powerful machine (featured in Electronics Today

Standard features -

- High speed 24 K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only by memory size
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Interfaces for screen and cassette included.
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics

International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!

STATEMENTS	PRINT	TIME	RENUM	MAG	MWD		()	INT	POS	= $=$
IF		WAIT	BOOT	TOF	BASE	@	I)	LOG	COL	
ELSE	?	SAVE	GRAPH	TON	COMMANDS	\#		SQR	MOD	$>$
ON		LOAD	TEXT	DIM	RUN		FUNCTIONS	SYS	RND	$>=$
GOTO	1 UNIT	MOTOR	PLOT	LET	SIZE		FNA-FNZ	TIC	KEY	<
GOSUB	BAUD	ESCAPE	UNPLOT	DEF	CONT	?	ABS	SGN	OPERATORS	<
POP	CALL	NOESC	COLOUR	NEW	MON	\%	ADR	BIT	OP	<>
REM	DATA	RANDOM	CHAR	END	DELIMITERS	\$	ASC	CRB	OR	-
FOR	READ	ENTER	SPRITE	BIT	DELIMIEES		ATN	CRF	AND	+
NEXT	RESTOR	LIST	SHAPE	CRB	TO		SIN	MEM	AND	1
ERROR	RETURN	PURGE	SPUT	CRF	TAB		COS	MWD	LAND	*
INPUT	STOP	NUMBER	SGET	MEM	STEP	8	EXP	MEN	NOT	\wedge
					THEN	\&	FRA	MCH	LNOT	

Self assembly kit

$£ 295$
Anplussedcliseor VAT. Carriage paid.

Optional Extras

Floppy disc interlace electronics Hardware kit \& connectors for disc drives
RS232C interface kit
Pair of $51 / 4^{\prime \prime}$ disc drives (SS)
Pair of $51 / 4^{\prime \prime}$ disc drives (DS)

POWEPTRAN gybernetics ith.

Portway Industrial Estate, Andover SP10 3ET. Tel: 026464455

Aces Low

Not only is the Jupiter Ace home computer back on sale again, it's also available at a very low price. The Ace, which uses the FORTH programming language and for which we featured an addon colour board in last month's ETI, can now be bought for $£ 26.00$ plus VAT or complete with a 16 K RAM pack for $£ 44.00$ plus VAT.
Regular readers of these pages will be aware that Jupiter Cantab, manufacturers of the Ace, ceased production and went into liquidation late last year. A receiver was appointed to wind-up the company's affairs, and although Jupiter Cantab has not been resurrected or production restarted, a company called Boldfield Ltd, Computing, has been given the go-ahead to retail the remain-
ing stock. Boldfield also say they intend to develop new software for the Ace and will act as selling agents for other companies who wish to produce add-ons, interfaces, etc. The stock Boldfield are selling includes existing Jupiter software.
The Ace is available by mail order only and costs $£ 26.00$ complete with power supply, 182 page manual, demonstration cassette, leads and a 12 month guarantee. The 16 K RAM pack costs $£ 20$ and the various software cassettes $£ 3.00$ each. If an Ace and a RAM pack are purchased together the total cost will be just $£ 44.00$ plus VAT. VAT and $£ 3$ postage should be added to all the above prices. To place an order or for further information, contact Boldfield Limited, Computing, Sussex House, Hobson Street, Cambridge, tel 0487-840740.

DMM

Incorporates Frequency Meter

The model 1504 from Thurlby Electronics is a bench DMM which offers the bonus of a builtin frequency meter. Frequencies up to $3,999.9 \mathrm{kHz}$ can be measured directly with a resolution of 100 Hz and the accuracy figure of $\pm 0.0025 \%$ over $10-30 \mathrm{C}$ is guaranteed by the 6 MHz crystal timebase. Sensitivity is typically 30 mV rms.

As a conventional multimeter, the 1504 has a $43 / 4$ digit liquid crystal display. 32 ranges are provided enabling measurement of AC and DC voltage, resistance, diode test, and AC and DC current up to 25 amps. All AC ranges are True RMS responding which enables

accurate measurements to be made on non-sinusoidal waveforms. The meter has sensitivity figures of $10 \mu \mathrm{~V}, 10 \mathrm{~m} \Omega$ and 1 nA and an accuracy of 0.05%.

The 1504 is housed in a high impact ABS case which incorporates a multi-position tiltstand/handle. An ever-ready carrying case is available for port-
able applications. The meter operates from internal batteries or from the mains and weighs 21/4lbs.

The UK price is $£ 185$ plus VAT, and full details are available from Thurlby Electronics Ltd, New Road, St. Ives, Huntingdon, Cambridgeshire PE17 4 BG, tel 048063570.

Twin Screened Connector

Anew screened connector from Eldon Group Products allows simple crimped connections to be made to shielded twin co-axial cable, making the cable a viable alternative in certain situations to the more expensive twin screened cables. The connectors, known as type OSSI, are said to provide protection against noise and radiation. They are available in cable and chassis mounting forms and the chassis mounting types can also be supplied with integral leads for direct PCB mounting. The plug and socket inserts are designed to be crimped onto the cable shield, both operations being performed by the same tool. Details from Eldon Group Products, Lovett Road, Staines, Middlesex, tel Staines 61851.

One way of spotting when your amplifier is about to overheat is to put a temperature sensitive spot on it. A new range of temperature sensitive self-adhesive labels includes continuously indicating strips, dots which indicate when a specific temperature is exceeded and dial-a-temperature indicators, all with a response time of one second or less. They are available from the Electronic and Computer Workshop, 171 Broomfield Road, Chelmsford, Essex CM1 1RY, tel 0245-262149.

- The latest Electrovalue catalogue has 36 A5 pages listing a wide range of electronics components and is valid until the end of May. The catalogue is single colour but includes many illustrations and is available free of charge from Electrovalue Ltd, 28 St. Judes Road, Englefield Green, Surrey TW20 0HB, tel 0784 33603.
- Ambit International's Spring 1984 mail-order components catalogue is now on sale at newsagents and available by post from the company. It costs 80p and includes three $£ 1$ discount vouchers and an order form. Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG, tel 0277-230909.
- TK Electronics have issued a new yellow catalogue which replaces their earlier green one. It has 28 pages in an A5 format and includes a section on kits and modules. Copies are available free of charge from TK Electronics, 11 Boston Road, London W7 3SI, tel 01-579 9794.

ocmpurar Wargioush wis

THE 'ALADDINS' GAVE OF COMPUTER AND ELECTRONIC EQUIPMESI

HARD DISK DRIVES
 Fully refrbisheo DABLODRE series
 Front ioad. Free stand or rack mount $\mathbf{E S 3 0 . 0 0}$ Exchangeable type (via lid removal) $\begin{aligned} & \text { E295.00 } \\ & \text { me3029 PSU unit for } 2 \text { drives }\end{aligned}$ E125.00
 DIABLO/DRE 44-4000A/B $5+5$ ex stock from \quad E995.00 1000 's of spares for S 30.4000 .3200, HAWK ex stock Plus in house repair, refurbishing service.

SOLIO STATE SWITCHES

 Matchbox size solid state switch type IR D2402

 Matchbox size solid state switch type IR D2402} enables on off control of 240 V AC loads up to $3-32 \mathrm{vDC}$ input with zero voltage switching. Complete with data $\mathbf{E 6 . 9 9}+\mathrm{pp}$
\author{ 250,000 wih data $2.99+p p$

 COOLTIG PAR8
 Keep you hot pant cool and RELABL Cuoling fans} Miniature $240 v$ equipment tan complete with GOULBJB-3AA Dim. $3^{\circ} \times 3^{\prime \prime} \times 25^{\prime \prime}$ Compact QUULER B9.11.22. 8.10 .16 VCO micro servo motor for extremely high air flow, al most silent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.Current cost 32.00 OUR PRICE ONLY $\varepsilon 12.95$ complete with data.
MUFFIN-CENTAUR standard
 $£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240 v
at $£ 10.50 .1000$'s of other fans Ex Stock at $£ 10.50 .1000$'s of other fans Ex Stock
Call for Details. Post $\&$ Packing on all fans

HPRROM COPIERS

The amazing SOFTY 2 . The Complete Too
for writing, copying, modifying, and listing EPROMS of the $2516,2716,2532,2732$ range. Many other functions include integral
keyboard cassette interface, serial and parallel data i / o UHF modulator.
ONLY $£ 169.00+P P £ 2.50$
NEW 'GANG OF EIGHT intelligent 280 controlled gang bang programmer tor AL
single $5 V$ rail ERROMS Copies up to 8,2 single $5 V$ rail EPROMS. Copies up to 8,2
in typ. ONLY 2 MINUTES! Internal LCD display and checking routines for IDIOT
PROOF operation. ONLY $£ 395.00+$ PP $£ 3.00$ Data sheets on request

COLOUR MONTTORS NOVEX NC-1414.CL Fully cased brand new 14^{4} colour monitor. Many exacting features
such as RGB TTL and PAL comoosite video inputs, Internal speaker and audio amp, applications and matching BBC colour scheme make this monitor ideal for the most exalting user. Brand new and
only $£ 199.00+£ 10.00$ earr.

DATA MODEMS

Join the communications revolution with our
range of EXTELECOM data modems. Made most stringent spec and designed to operate for 24 hrs per day. Units are made 10 the
CCITT tone spec. With RS $232 \mathrm{i} / \mathrm{l}$ levels via and way D ski. Units are sold in a tested may be required for connection to PO lines. MODEM 28 "Hackers Special" fully fledged
up to 300 baud full duplex. ANSWER or CAL modes. AUTO ANSWER. Data i/o via standard RS232 25 way 'D' socket. Just 2 wire Complete with data tested, ready to run at a
NEW SUPER LOW PRICE of VAT + Carr.
MODEM 20
MODEM 20-1 Compact unit to use with
MICRONET. PRESTEL or TELECOM GOLD 1200 baud receive. Data t/o via RS232 0
socket. Guaranteed whrking with data E49.95 MODEM $20-2$ same as $20-1$ but 75 baud
receive 1200 baud transmt E/30.00 DATEL 4800 sync service. RACAL type
HPS4800 ex TELECOM good condition ENE.00 + VAT.
NEW DSL2 23 Multi Standard modem NEW DSL21 23 Multi Standard modem
selectable V2 300 - 300 gos, V23 75120 duplex modes. Full zuto answer via mod hal CPU. LED status indicators. CALL or ANS
modes Switchable CCITT or BELL 103 \& 202. Housed in ABS case size only $2.5^{\prime \prime} \times 8$. $\times 9.18286 .00+$ VAT

or modems contact sales office

CEFLAM

HOT LINE DATA BASE

DISTELC

THE ORIGINAL FREE OF CHARGE dial up data base. ON LINE NOW-300 baud fuli duplexCCII 01-679 1888 MAINS FILTERS

by maris SDSA As recommended by 2×81 news letter, matehbox $\mathbf{E 5 . 9 5}$

COMPUTER 'GAB'

All in one quality computer with integral switched

mode PSU, Mains filtering, and twin fan cooling. Originally made for the famous DEC PDPA computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive $+5 v D C$ at $17 \mathrm{amps},+15 v D C$ at 1 amp and -1 DC at 5 amps. The complete unit is fully enclosed with emovable top lid, filtering, trip switch, Power and Ru LEDs mounted on Ali front panel, rear cable entries, et etc. Units are in good but used condition - supplied for
240 v operation complete with full circuit and tech. man Give your system that professional finish for only 49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high seab Also available LESS PSU, with FANS etc. Internal dim
19"w. 16 "d. $10.5 " \mathrm{~h} . \mathrm{E19.95}$. Carriage 8 insurance $£ 9.50$.

SUPER PRINTER SCOOP

 BRAND NEW CENTRONICS 739-2The "Do Everything Printer" at a price that will paralle interface for direct connection to BBC ORIC, DRAGON etc. Superb print quality with full F'. pin addressable graphics and 4 ype fonts plus columns, single sheet sprocket or roll paper handling plus much more. Available ONLY from DISPLAY ELECTRONICS at the ridiculous price of owly 1 199.00 + VAT Complete with ORAGON or CENTRONICS Interface cable (specity) for BBC, ORIC, 3.00 each BBC graphics screen dump utility program $£ 8.50$.

CE TERMIPRINTER
 A massive purchase of these desk top printer terminats enables us to offer you these quality 30 cps printers at a SUPER over $£ 1000$. Unit comprises of full COWERT electronic keyboard and printer mech with print face similar to correspondence quality typewriter. Variable forms tractor unit enables full width - up to $13.5^{\prime \prime} 120 \mathrm{c}$ enables full width - up to $13.5^{\prime \prime} 120$ column paper, upper - lower case, standard RS232 serial interface, internal vertical and horizontal tab settings, standard ribbon adjustable baud rates, quiet operation plus many other features. Supolied many other features. Supplied complete, with manual. Guaranteed working EI30 untested Eas.00 optional floor stand $£ 12$
 fromeiss + CAR + VA ully fledged industry standard ASR33 data keyboard and printer for data $1 / O$ auto data detect circuitry RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in Options: Floor stand $£ 12.50$ + VAT
 Options: Floor stand E/2.50 + VAT
 KSR33 with 20 ma loopinterface E125.00 +
 PROFESSIONAL KEYBOARD OFFER
 An advantageous purchase of brand new surplus allows chassis keyboard offer at fractions of their original
 ALPHAMERIC 7204/BO full ASC 120 key upper costs. output plus strobe. Dim 12" $\times 6^{\prime \prime}+5 \&-12$ DC. \&39.s.
 DEC LA34 Uncoded keyboard with 67 quality, GOLD, normally open switches on standard X, Y matrix. Complete with 3 LED indicators \& i/o cable - ideal micro

SUPER DEAL? NO - SUPER STEAL!!
The FABULOUS 25CPS TEC Starwriter RAND NEW AT ONLYE499+ VAT
 heavy duty deate cast
Cas
healy duty
chassis and cabis
Pry
print mectanist isivg
Superb reqistration
smpert regaistration and
sorint quality Micro-
porcessor electronics
ofter tull
com
omand

Save over ca, 0^{0}

VIDEO MONITORS
 5" CASED Superb little unit made by

 standing case. Very high definition will displaystand but eadable 132 columns wide! 12 v D opp. @ 800 ma , so ideal for mobile use. Supplied in AS NEW condition complete with data. Composite 75 ohm vid inp. Black \& Whit Carr $\&$ Ins $£ 5.00$.
12" CASED. Made by the British KGM Co Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case with ON OFF, BRIGHTNESS and CONTRAS controls mounted to one side. Much attention was given to construction and internal transformer isolated regulated DC supply all components mounted on two ibre glass PCB boards - which hinge out for ease of service, many internal controls for nearity etc. The monitor accepts standar 5 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the uni is estimated around 20 Mhz and will display Units are secondhand and may have screen burns. However where burns exist they are only apparent when monitor is switched off Although unguaranteed al monitors are ested prior to despatch. Dimensions approx. 14 high $\times 14$ wide by 11 de \in. supplied complete wis circut. 240 vel 24" CASED Again made by the KGM Co With a similar spec as the 12 monito ighnaly used or large screen data alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime}$ W. Al silicon electronics and composite video nput make an ideal unit for schools, clubs
shops etc. Supplied in a used but working OHLYE55.00 PLUS £9.50 CARR E INS. SEMICONDUCTOR 'GBAB BAGS' Mixed Semls amazing value contents
include transistors, digital, linear, I.C.'s triacs diodes. bridge recs., etc. etc. All devices guaranteed brand new full spec. With $50+E 2.95100+$ E5. 15. TL 74 Serles A gigantic purchase of an C's enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which or three chips in the bag would nnormally cost to buy. Fully guaranteed all t.C.'s full
spec. $100+\varepsilon 6.90200+\varepsilon 12.30300+\boldsymbol{E} 19.30$

DEC CORNER

MOSTEK CRT 80E Brand new dual

 eurocard, 280 based VT 100 PLUS BA11-MB 3.5"Box, PSU, LTC BA11-MB 3.5" Box, PSU, LDLV1 1-J $4 \times$ EIA intertace RO5-J 2.5 Mb disk drives RT11 ver. 3B doc kit KL8JA PDP 8 async i/o MIBE PDP 8 Bootstrap option DILOG DQ100 RK05 LSI $4 \times$ RKOS Controler

Crotech's Second First

n 1981, Crotech claimed a first with their 3131 dual trace
oscilloscope incorporating a component tester. Since then a number of other manufacturers have followed suit. Now Crotech are launching a successor, the 3132, which they claim puts them ahead again. The 3132 is a 20 MHz

64 Kx 8
 EPROM

Advanced Micro Devices have introduced a 512 K UV-light eraseable and electrically programmable ROM. Designated the Am27512, the device is organised as 65,536 eight bit words and features access times as low as 25 nS .
The Am27512 uses the standard 12.5 V programming voltage and has an auto select mode which ensures that programming automatically takes place at this voltage. AMD's interactive programming algorithm brings programming time down to ten minutes. The Am27512 operates from a single 5 V rail and dissipates 132 mW in standby mode and 525 mW when active. There are separate output enable and chip enable pins to simplify routing arrangements in multiple bus systems. The Am27512 comes in a 28 pin package and uses the standard JEDEC approved pin-out. 250 ns and 300 ns versions are available, but with a 100 off price for the 250 ns version of $£ 324$ each its going to be a while before most of us get a chance to play with one.
Advanced Micro Devices (UK) Ltd, AMD House, Goldsworth Road, Woking, Surrey GU21 1JT, tel 048 62-22121.

Hold It

For everyone who has ever wasted countless precious minutes attempting to line up nut and bolt on opposite sides of an all-but-inaccessible panel, Toot range have come up with an answer. Their Miniature Screw and Nut Holding Set consists of five tools, each 180 mm long with a 100 mm shank, which will securely hold small parts during fixing and soldering. There is a screw fastener, two nut fasteners, one horizontal and one vertical and two soldering and fastening tweezers, one straight and one curved. The tools are all made of steel except for the straight tweezers which are brass, and have insulated handles. The set comes complete with a storage wallet.

Also available from Toolrange is a series of trays and PCB racks which are conductive and thus ideal for the storage of static sensitive components. The trays are made from carbon loaded polypropylene and come in five sizes ranging from $343 \times 210 \times 152 \mathrm{~mm}$ to $89 \times 102 \times 57 \mathrm{~mm}$. Further information on these items and over 3000 other tools and production aids is to be found in the Toolrange catalogue which is available from Toolrange Ltd, Upton Road, Reading, Berkshire RG3 4JA, tel 073422245.
dual trace design which, in addition to the component tester, incorporates a component comparator which allows an unknown component to be compared with a known one, and a triple output regulated supply on the front panel.
The 3132 has a maximum deflection coefficient of $2 \mathrm{mV} /$ division selected on the main attenuator switch, and a maximum timebase speed of $40 \mathrm{~ns} /$ division. Fourteen trigger functions are available including $A C$ and DC trigger coupling, and there are TV frame and line sync modes and an HF reject function which allows triggering on low frequency signals containing some high frequency content.
The component tester allows

Whether you seriously intend

 to spend your life's savings on some sophisticated test gear or just want to find a quiet corner and drool away to yourself, the 1984 Philips Test and Measurement cataiogue is for you. Aside from the usual oscilloscopes, meters, analysers and the like and an extended section on bussable instruments, the catalogue comes complete with a pull-out full colour year planner. Contact Steve Taylor, Philips Test and Measurement Sales Office Manager, Pye Unicam Ltd, York Street CB1 2 PX, tel 0223-358866.- Thorn EMI Electronics Ltd, manufacturers of the Megger range of electrical insulation testers, have brought out a 90 page paperback book entitled "A Simple Guide to Insulation and Continuity Testing". The book is aimed at the user and at engineer-
checking of both passive and semiconductor devices and the comparator function can be used to check complete circuits using signature techniques. Current limiting is included to remove the risk of damage to the device under test. The triple output supply provides $-12 \mathrm{~V},+12 \mathrm{~V}$ and +5 V , and the $12-0-12 \mathrm{~V}$ supply is left floating so that it can be used to supply plus or minus 24 V relative to ground. The 12 V outputs are rated at 200 mA and the 5 V output is rated at 1 A. All of the outputs are protected against short circuit and overload conditions.
The Crotech 3132 is priced at £283.00 plus VAT. Crotech Instruments Ltd, 5 Nimrod Way, Elgar Road, Reading, Berkshire RG2 0EB, tel 0734-866945.
ing students and covers such topics as types of test, testing to the requirements of the IEE wiring regulations, 15 th edition, and portable appliance tests. It costs $£ 2.75$ from the Sales Department, Thorn EMI Instruments Ltd, Archcliffe Road, Dover, Kent CT17 9EN, tel 0304-202620.
- Ferrantihave published a series of Applications Notes which give full constructional details of projects which can be built using their Super E-line transistors and other semiconductor products. The projects are a flash gun inverter, a 120 watt flourescent tube inverter, a 12 V 8 watt flourescent tube inverter and a capacitor discharge car ignition system, and the notes are available free of charge from The Sales Department, Ferranti Electronics Ltd, Fields New Road, Chadderton, Oldham, Lancashire OL9 8NP, tel 061 624-0515.

01-452 1500 Technonatic Ltid 01-450 6597
 BBC Micro Computer System OFFICIAL DEALER

 FLOPPY DISCTINTERKACE

 FLOPPY DISCTINTERKACE £84 + £15 installation £84 + £15 installation BBC COMPATIBLE DISC DRIVES

 BBC COMPATIBLE DISC DRIVES}

Please phone for availability
BBC Model B £348
B + Econet £389
B+DFS $£ 429$
B + DFS + Econet £470
Carriage $£ 7$

All drives are supplied with manual, form disc and cables.
Single Drive; 100k £150; 200k £180* 400k £195
Single Drive with PSU: 100k £185; 200k £260; 400k E240
Dual Drive with PSU: $2 \times 100 \mathrm{~K} £ 330$;
$2 \times 200 \mathrm{k}$ £ 400^{*}; $2 \times 400 \mathrm{k}$ £420

* These drives are switchable between 40/80 tracks. 40/80 Switch Module $1 \times 400 \mathrm{k}$ and 2 x 400k Drive E 32
DISKETTES: in packs of 10 W : Wabash M: 3M 40 track SSSD W: £15 M: £17.50; 40 track DSDD M: E22;
80 track SSDD W: £24 M: £26; 80 track DSDD W: £26 M: £30:
FLOPPICLENE Drive Head Cleaning Kit £14.50
Phona or sand for our :B: lation
TORCH Z80 DISC PACK
Your BBC computer can be converted into a bustness machine with the addtion of a TORCH 280 disc pack. The Torch pack with iwin disc drive and the $Z 80$ proces sor card greatly enhances the computer's data storage and processing operating system In addition to BBC owner'suserguide and asystems disc the package is supplied with PERFECT sottware package comprising of DATABASE, WORD PROCESSOR \& SPREADSHEET and COMANEX a inter active business management game. Complete Pakcage for $\mathbf{£ 7 3 0}+\Sigma 8$ carr.

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock

PRINTERS \& PLOTTERS

EPSON FX80 £325 EPSON RX80 FT $£ 250$
EPSON FX- 100 £ 450 SEIKOSHA GP 1OOA £160 JUKI 6100 Dasy Wheel $£ 365$ Colour Gral Printer/Plotter $£ 109$ GRAFPAD Graphics Tablet $£ 125$ Carriage $£ 7$

SANYO DR101 Data Recorder $\mathbf{8 3 4}$ + £2.50 carriage
BBC Tape Recorder $\mathbf{£ 2 8 . 5 0}+\mathbf{\varepsilon 2} .50$ carriage Cassette Lead $£ 3+£ 1$ carriage
HOBBIT Floppy Tape $£ \mathfrak{i} 35+\boldsymbol{\varepsilon 2} .50$ carriage HOBBIT Zero Memory Option $£ \mathbf{2 5}+\boldsymbol{\varepsilon} 1$ carriage Computer Grade C12 cassette 50p each. E4. 50 for $10+$ E 1 carriage

Model A to Model B
Upgrade Kit £95
Installation £15
LANGUAGE ROMs
BCPL ROM + Disc + Manual $\mathbf{£ 8 7}$

UTILITY ROMs
BBC Ulitracalc £65 Toolkit £20 EXMON £2O; DISC DOCTOR £28; FX Dump £15; Graphics ROM £28; Termi ROM £29

CASSETTE RECORDERS

MONITORS

MICROVITEC 1431 1P 14"RGB/PAL Std Res $\boldsymbol{2} 10$

 MICROVITEC 1451 14' RGB Med Res E345 MICROVITEC 1441 14 RGB Hi Res $£ 440$ MICROVITEC $203120^{\prime \prime}$ RGB Std Res $£ 287$ KAGA VISION 12" RGB Std Res $£ 230$ KAGA VISION III 12" RGB Super Hi Res £358 KAGA VISION III 12 " RGB Super KAGA 12" GREEN Hi Res $£ 106$ SANYO DB112CX $12^{\prime \prime}$ Green Hi Res E 99
ACCESSORIES

$+\hat{y}^{4}$
Parailel Printer Lead $\mathbf{\varepsilon 1 0}+\boldsymbol{\varepsilon 1}$ carriage Serial Printer Lead $\mathbf{\varepsilon 8}+\varepsilon 1$ carriage Epson Serial Interface $2 \mathrm{~K} \mathbf{\varepsilon 4 0}+\boldsymbol{E 1}$ carrage Epson Serial Interface $\mathbf{£ 2 5}+\mathbf{£ 1}$ carrage NEC Serial Interface £42 $+\mathbf{£ 1 . 5 0}$ carriage Epson Paper Roll Holder $£ 17+£ 1.50$ carriage
FX80 Tractor Attachment $\varepsilon 37+\varepsilon 1.50$ carriage
X Tractor Attachment $£ 37+$ £ 1 carriage aper Fanfold 2000 sheets $£ 13.50+$

BOOKS (no VAT; p\&p f1)

BBC EPROM PROGRAMMER

A fully self-contained Eprom Programmer with its own power supply, able to program 2516, 2716/32/32A/64/128 single rail Eproms

- Personality selection is simplified by a single rotary switch
- Programming valtage selector switch is provided with a safe position - Warning indicator to show programming in progress.
* Programmer can read, blank check, program and verify at any address/ addresses on the EPROM.
- Simple menu driven software supplied on cassette (transferable to disc) * Full editor with ASC $\|$ disassembler

Programmer cump
$\mathbf{8 8 9} \mathbf{0 0} \mathbf{~} \mathbf{1}$ \&

PRODUCTION PROGRAM: P8000

P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{k} \times 8$ bytes. Devices supported range from 2704 to 27128 in single and three rail versions. Simple menu driven operation ensure easy eprom selection and reliable programming in minimum programming

'TIME-WARP'

BBC REAL-TIME-CLOCK/CALENDAR: A low cost unit opens up the total range of Real-Time applications. With its full battery backup, possibilities include an Electronic Diary, automatic document dating. precise timing 8^{*} control in scientific applications, recreational use in games etc - its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installation required - No ROMS. Supplied with extensive applications software $\mathbf{E 2 9 . 0 0}$

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock o avoid accidental exposure to the harmful UV rays. It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. £59 + £2 p\&p.
UV1 as above but without the timer £47 + E2 p\&p.
UV140 up to 14 Eproms $\mathbf{E} 61$
UV141 as above but with timer £79

$\star \star$ ATTENTION $\star \star$

All prices in this double page spread are subject to change without notice.

ACORN IEEE INTERFACE

This IEEE 488 standard interface is a general purpose system for exchanging digital data berween a number the IEC 625-1 stand area. The interface complies with 14 other devices
Interiace board is suplied complete with sotware in ROM, interconnecting cables EEE cable for connec $\mathbf{£ 2 8 2 . 5 0}+£ 2.50 \mathrm{carr}$

SMARTMOUTH

Speech Synthesiser for BBC
The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5-10 bytes per word - no ROMs required - simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software in structions, $£ \mathbf{3 7}+\mathbf{£ 2}$ p. \& p.

NEW COMPREHENSIVE CATALOGUE AVAII
 AbLE - PLEASE SEND FOR PRICE LIST

Gsotronics today international $: 00$ G $9=1 / 0=$

How to order: indicate the books required by ticking the boxes and send this page, toge ther with your payment, to: ETI Book Service, Argus Specialist Publications Ltd, 1, Golden Square, London W1 R 3AB. Make cheques payable to ETI Book Service. Payment in
sterling only please. All prices include P \& P. Prices may be subject to change without notice.

BEGINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson
Beginner's Guide to Digital Elactronics f5 35

Beginner's Guide to Electronics
Beginner's Guide to Integrated Circuits
f5.35

Beginner's Guide to Computers
Beginner's Guide to Microprocessors

coon:000K

Master IC Cookbook Hallmark	£10
Microprocessor Cookbook M. Hordeskı	¢14
IC Op Amp Cookbook Jung	f14
PLL Synthesiser Cookbook H. Kinley	17.
Active Filter Cookbook Lancaster	$f 11$
TV Typewriter Cookhook Lancaster	E11
CMOS Cookbook Lancaster	f11
TTL Cookbook Lancaster	£10
Micro Cookbook Vol. 1 Lancaster	£15
BASIC Cookbook K. Tracton	£6
MC6809 Cookbook C. Warren	£7

electronics

Principles of Transistor Circuits Amos
Design of Active Filters with experiments Berlin $£ 11.30$
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
£6.00
How to build Electronic Kits Capel
How to Design and build electronic instrumentation Carr
Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
Principlos of Electronic Instrumentation De
Priant Handbook of Computer Software
Microprocessor Cookbook M. Hordeskı
IC Op Amp Cookbook Jung
Activ Filt Cok £13.40
Typewriter Cookbook Lancaster
caster
$\mathbf{f} 11.85$
$\mathbf{f} 10.95$
Mico Cook Lan 1 lancaster
BASIC Cookhook X Tracton
15.30

$\mathbf{f 6 . 0 0}$

Giant Handbook of Electronic Circuits
Giant Handbook of Electronic Pro
Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray Basic Electronics Grob
asers - The Light Fantastic Halimark
ntroduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault Diagnosis Loveday
Iectronic Fault Diagnosis Loveday
Esential Electronics A-Z Guide Loveday
Microelectronics Digital \& Analogue circuits and systems Millman
103 Projects for Electronics Experimenters Minis
LSI System Design Muroga
Power FETs and their application Oxner
Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
Electronic Drafting and Design Raskhodoff
VOM - VIVm Handbook Risse
Ideo and Digital Electronic Displays Sherr
Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas
Digital Systems: Principles and Applications Tocc \ddagger
Master Handbook of Telephones Traister
How to build Metal/Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony

COMPUTERE $:$ MICROCOMPUTER

BASIC Computer Games Ah

6.95rom BASIC to PASCAL AndersonMastering Machine Code on your ZX81 T. BakerUNIX - The Book Banahamf8. 75

Z80 Microcomputer Handbook Barden

Digital Computer Fundamentals Barter $£ 11.90$

Visicalc Book APPLE Edition Bell
Visicalc Book ATABI Edition Bell
Introduction to Microprocessors Brunner Introduction to Microprocessors Bruter Bryan Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A/D \& D/A Carr
Microcomputer interfacing of Microprocessors Chamberlain 30 Computer Programs for the Home Owner in BASIC D. Chance Micracomputers Dirkson
APPLE Personal Computer for Beginners Dunn
Troubleshooting Microprocessors and Digital Lagic GoodmanGetting Acquainted with your VIC 20 HartnellGetting Acquainted with your $\mathbf{2 \times 8 1}$ HartnellLet your BBC Micro Teach you to program HartneProgramming your ZX Spectrum HartnellThe ZX Spectrum Explored Hartnell
How to Design, Build and Program your own working ComputerHaviland
and Practice ofHints and Tips for the ZX81 Hewson
What to do when you get your hand on a Microcomputer Holtzman
What to do when you get your hand on a Microcomputer Holt
34 More Tested Ready to Run Game Programs in BASIC Horn
Microcomputer Builders' Bible Johnson
Digital Circuits and Microcomputers Johnson
PASCAL for Students Kemp
The C - Programming Language Kernighan
COBOL Jackson
The ZX81 Companion Maunder
Guide to Good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Principles of Interactive Computer Graphics Newm
Theory and Practice of Microprocessors Nicholas
Microprocessor Circuits Vol. 1. Fundamentals and Microcontrollers Noll
Beginner's Guide to Microprocessors Parr
$\mathbf{£} 9.80$
$\mathbf{E 5} .35$
Microcomputer Based Design Peatman
Digital Hardware Design Peatman $\quad \mathbf{E 9 . 8 0}$
BBC Micro Reavealed Ruston $£ 9.4$
Handbook of Advanced Robotics Safford $£ 14.45$
1001 Things to do with your own personal computer Sawusch $\mathbf{f 8 . 5 0}$
Easy Programming for the $\mathbf{Z X}$ Spectrum Stewart
Microprocessor Applications Handbook Stout
$£ 17.80$
An Intraduction to Microcomputer Technology Williamson
Computer Peripherals that you can build Wolfe
Microprocessors and Microcomputers for Engineering Students and Techni
clans Wooland

REFERENCE BOOKS

. Electronic Engineers' Handbook FinkElactronic Designers' Handhook Giacoletto$£ 59.55$
Ilustrated Dictionary of Microcomputer Technology HordeskıHandbook for Electronic Engineoring Technicians KauffmanHandbook of Electronic Calculators Kauffman
Modern Electronic Circuit Reference Manual MarcusInternational Transistor Selector TowersInternational Microprocessor Selector Towersinternational Digital IC Selector TowersInternational Op Amp Linear IC Selector TowersIllustrated Dictionary of Electronics Turner

YIDEO

Servicing Home Video Cassette Recorders Hobbs
Complete Handbook of Videocassette Recorders Kybett
Theory and Servicing of Videocassette Recorders McGinty

Theory and Servicing of Videocassette Recorders McGinty	
Beginner's Guide to Video Matthewson	$\mathbf{£ 1 2 . 9 5}$
1.35	

Beginner's Guide to
Video Recording: Theory and Practice Robinson
Video Handbook Van Wezel
Video Techniques White
£14.40
21.90

Piease send me the books indicated. I enclose cheque/postal order for . . Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.
\square
\square

\qquad

EPROM ERASER

'Wipe that PROM and what do you get? Lots more space and the bits all set!' Phil Walker, ETI's Ode-er in chief, proves yet again that he knows a lot more about electronics than he does about poetry.

The DEPROM is intended as a complement to the EPROM programmer which appears elsewhere in this issue, and must surely rank as one of the simplest projects ever to appear in ETI. The prototype was built to erase just one EPROM at a time but the design can easily be altered to accommodate two EPROMs and possibly even more. In spite of this it is more compact than most commercial units because it uses a six inch, four watt tube rather than the more usual twelve inch, eight watt tube. The complete unit is contained within a light-tight box and a safety interlock system ensures that the potentially harmful ultra-violet light is switched off whenever the lid is raised to load or remove EPROMs.

EPROM erasers use short wavelength ultra-violet light to make the tiny charges stored in the memory matrix drain away. The ultra-violet tube used in the DEPROM is designed to emit a significant amount of light at a wavelength of 2537 angstroms. When an EPROM has been exposed to such a light source for a suitable length of time, the memory locations within it will all read as logic high level. The literature supplied by the manufacturers of the EPROMs you are using should give some idea of the time required for erasure, but in general, half-an-hour or so should be about right.

Construction

The prototype DEPROM was built in a handy sized diecast box. The main requirement is that the box be light-tight, but plastic is not

Fig. 1 Circuit digram of the DEPROM.

HOW IT WORKS

Abstract

The live connection from the mains is taken via the on/off switch and the interlock micro-switch to the ballast choke. This serves to limit the current flowing in the circuit; without it, the lamp would draw ail the current it could until either it or the supply failed. A resistor could be used instead but would dissipate a substantial amount of power. The choke, Ihanks to its inductive properties, is able to limit the AC current without dissipating lots of power.

The other side of the choke is taken to one of the filament pins at one end of the ultra-violet tube, and one of the pins at the other end is taken to mains neutral. This completes the mains circuit, but no current will flow yet because the tube will not conduct when it is cold.

The remaining two filament connections, one from each end of the tube, are taken to the starter. The starter consists of two electrodes connected to a bimetallic strip which short circuits them when it gets hot, the whole assembly sealed inside a small, gas-filied glass bulb. At switch-on, because the tube is cold and therefore presents a high resistance, all the available voltage will appear across the starter. The gas in the starter bulb ionises and gets hot, heating up the bi-metallic strip which then short circuits the two electrodes. This completes the mains path, applying power via the choke to the two filaments in the tube which start to heat up. Meanwhile, because there is now no voltage across the starter, the gas cools until the bimetallic strip removes the short circuit, thus repeating the cycle. After a few such cycles, the tube filaments will be hot enough to emit electrons, whereupon the gas in the tube will ionise, becoming conductive, and the tube will light. The voltage across the conducting tube will then be too low to ionise the gas in the starter which thus takes no further part.

particularly recommended because it may be degraded by the ultra-violet light and the heat produced. If you must use a plastic box, line it with aluminium foil stuck down well and then earth it.

All of the major components of the DEPROM are built into the base of the box with the ultraviolet tube on one side. How you support the tube depends upon the type of end connectors you
use, but it is best to make the mounting adjustable so that the tube can be set to the optimum 1 " distance from the EPROM. We used screw mounting end connectors and bolted them to two ' V ' shaped metal brackets which in turn were bolted to the base of the diecast box. It was then a simple matter to adjust the tube position by bending the brackets to the desired shape.

Fig. 2 Internal layout of the DEPROM.
Fig. 4 The EPROM holder mounted on the lid of the main case.

PARTS LIST

A hole must be punched in the lid of the box to allow light to reach the EPROM. We used a single 18 mm hole which is sufficient for one EPROM, but there is no reason why you should not punch more than one hole if you wish to be able to erase several EPROMs simultaneously. Take care when measuring up prior to drilling to ensure that you place the hole or holes directly above the lamp.

Fig. 3 Construction of the EPROM holder.

A small, light-tight plastic box is placed over the hole to carry the EPROM during erasure. The box is fixed to the lid of the main box with a hinge at one end and a magnetic catch at the other so that it can be raised and lowered. The box should be deep enough to hold an EPROM and a layer of conductive foam, and its length will depend upon the number of EPROMs you wish it to hold. A small potting box or similar would be suitable, but almost any small plastic container would probably do. We used an old battery container and just trimmed off the parts we didn't need.

The small box must be mounted almost flush with one side of the main diecast box, directly above the ultra-violet tube. Placing the tube and the small box to one side allows the micro-switch which forms the safety interlock to be mounted directly to the side of the main box. The micro-switch should be just outside of the light path through the 18 mm hole but well within the area covered by the small box. If necessary, you could space it away from the side of the case with washers or nuts until you get it in the right position. A small hole must then be drilled in the lid directly in line with the microswitch actuating arm. By careful measuring, skill or just plain luck, drill another hole in the top of the small box directly in line with the first hole and the actuating arm of the micro-switch. A long bolt can then be inserted through the hole in the lid and held in place with two nuts. By adjusting the height of the bolt, you should be able to arrange things so that the micro-
switch is just activated by the end of the bolt when the lid is fully closed.

With the metalwork out of the way, it only remains to mount the choke, starter and other components and wire the unit up. If the micro-switch you use is of the normal changeover type, make sure you use the normally open (NO) contacts or you will find the safety interlock working in reverse, switching the lamp on when the lid is raised and off when it is lowered. Finally, cut out a suitable piece of conductive foam and secure it in position in the base of the small box. Before you assemble the lid onto the main box, it's quite a good idea to mark the foam to show where it lines up with the light hole. If you close the small box down onto the main box lid, you will be able to see the conductive foam through the light hole and can mark the spot at the centre of the hole with a dab of white paint. Assemble the lid of the main box and the DEPROM is ready for use.

BUYLINES

The six inch tube used in the prototype came from L.B. Electronics, 11 Hercies Road, Hillingdon, Middlesex UB10 9LS. The starter, choke and end connectors should be available locally but in case of real difficulty, a kit of starter, choke, lamp and end connectors is available from the Service Trading Company, 57 Bridgman Road, London W4 5 BB. Unfortunately, the tube in this kit is $12^{\prime \prime}$ rather than $6^{\prime \prime}$ so you would have to use a larger case. A suitable diecast box for the $6^{\prime \prime}$ tube version described is available from Greenweld, who also stock potting boxes and ABS boxes suitable for use as the hinged cover (eg., Vero 21024).

AUTOMATIC LIGHT SWITCH

It may not be the most sophisticated security system imaginable but for fit-it-and-forget-it simplicity it's hard to beat. Design by Phil Walker.

When you are out for the evening, or have gone away for the weekend and forgotten to cancel the milk and papers, this little project can deter the would-be thief.

When you go out for a short period the most noticeable sign of your absence is the lack of lights as dusk approaches. If you could arrange for one or two lights to come on as darkness fell and turn off again some time later, it would appear as if there were someone at home. This, of course, would not be any protection against someone knocking at the door to see if you are in fact at home but may well put them off trying your particular door in the first place.

This project is designed to do just that. It senses the ambient light level and switches on any lights attached to it when the level falls to its set point. It incorporates

of some four hours, the unit switches off the attached lights and resets itself.

The circuit is reasonably straightforward and uses only two ICs. The light sensitive phototransitor feeds one section of a quad Schmitt trigger NAND gate. The output from this passes via a couple of gating stages to the input of a precision timer IC. When triggered, the output from this device turns on a triac and applies power to the load. After a time determined by components attached to the timer, the triac is turned off again. This is to conserve power and credibility. (How often do you leave lights on all night?)

Power for the logic circuits is derived directly from the mains input via dropping resistors and regulated by circuitry inside the timer chip. This does entail dis-

Abstract

^[]

[^1]$$
\overbrace{\overbrace{3}^{n}}^{\underline{n}}
$$

BUYLINES

Everthinghere iswidilyavailale eexcept
the PCCB, and that is availabile exclusively the PCB, and that is available exclusively from us! See page 65.

PARTS LIST	
RESISTORS	
(1/4W 5\% carbon fi stated)	Im unless otherwise
R1,5,6,7	100k
R2,11	$1 \mathrm{k0}$
R3	10M
R4,9	10k
R8	3 M 3
R10	22k
R12	150k
R13	1M5
R14	1k2 1 W
R15	470 R
R16	10k 5 W ww
CAPACITORS	
(PCB mounting layer polyester unless otherwise stated)	
	$10 \mu 16 \mathrm{~V}$ Tantalum
C2,5,6	1μ
C3,4	10n
C7	$100 \mu \quad 16 \mathrm{~V}$ axial electrolytic
C8	100μ 63V axial electrolytic
SEMICONDUCTORS	
IC1	4093
IC2	ZN1034
Q1	2N5777
Q2	VN10KM
SCR1	TIC206D
D1,2,3	1N4148
D4	1N4007
ZD1	BZX61C30 30V
	1 W 3 Zener
LED1	Red 5 mm LED (Preferably insulated panel mounting)
MISCELLANEOUS	
SW1	single pole push button
SW2	single pole toggle
SW3	switch two pole mains
	switch
FS1	1 A 20 mm mains
	fuse and PCB holder
PCB; plastic box; fr	ree mains socket (if

PCB; plastic box; free mains socket (if required); grommets/cable glands; wire, nylon bolts, nuts etc.
sipating a couple of watts as heat but saves the cost of a transformer. As an extra, a light emitting diode flashes to show that the device is operating and ready for service.

Construction

Construction should be quite straightforward as all the main components are on the PCB. Start with the resistors, IC sockets (if used), other semiconductors and capacitors, and finish with the fuseholder and wiring to switches and mains input and output. Care should be taken to get all semiconductors the right way round and great care should be taken in the area around the mains input. The phototransistor should be mounted such that its active face is directed towards a cut out in the box, and can be covered with a piece of transparent plastic to keep fingers out. The switches must be rated for mains operation and the LED mounting must be insulated so that it is not possible to gain access to the wiring.

Mains wiring to the unit should be well secured inside the case, preferably using cable glands or, if unavailable, grommetts and cable ties. We recommend that the PCB should be bolted to the box with nylon or similar non-metallic screws; do not use metal bolts. The output cable would be terminated in a free socket for greatest convenience. Make sure that the earth conductor is connected through.

When everything is ready, plug in the ICs (if not soldered), close the box and plug in. If everything is working the LED should flash when

HOW IT WORKS

Abstract

The mains neutral wire is directly connected to the circuitry and is the 0 volt rail as far as the components are concerned. The live wire is connected via FS1, D4 and R16 to ZD1 and C8. This forms a current limited, half-wave rectified supply which charges C8 and supplies current via R14 to an on-chip regulator in IC2. ZD1 is only present to prevent the voltage across C 8 becoming too great in the event of IC2 being faulty or removed.

The light sensitive device used in this project is a 2 N5777 photo-transistor This is quite sensitive when used in this circuit and may well require reduction of the amount of light falling on it to set the switch-on point. The collector of the trarsistor is connected directly to the input of one section of IC1, a 4093 quad NAND Schmitt trigger, and R1 provides a high impedence load. As the light leve! falls, Q1 conducts less current until the voltage at its collector rises to a little over half the supply voltage. At this point the output of IC1a will go low quite rapidly. C2 will discharge quite slowly via R3 and if the light level remains low for long enough the output of IC1b will go high. If the light level rises significantly before C2 has discharged, the output of IC1a will go high and recharge C2 via R4 and D1 very rapidly. This reduces the sensitivity to shadows, etc. If and when the output of IC1b goes high, this transition is coupled via C4 to IC1c input. Provided that SW2 is open,

the output of IC1 c will go low for a period determined by C4 and R6, pulling pin 1 of IC2 low and thus triggering it. SW2, C3 and R5 are provided to permit manual triggering.

IC2 is a ZN1034 precision timer, a device well-suited to applications requiring long time delays because it incorporates a 12 -stage binary counter, the output changing state only after 4095 oscillator cycles. The frequency of the internal oscillator, and hence the timing period, is set by R12, R13 and C6. The ZN1034 has complementary outputs, and the output which is high while timing is in progress is used here to drive the triac via R15, thus controlling the mains load.

The circuitry around IC1d forms a low frequency oscillator with a highly assymetric duty cycle. The output from this drives Q2 which is a low power VMOS device to switch power to the LED. The circuit is arranged such that the LED is on for only a short time in the cycle. The power for the flashing LED is taken directly from C8 in order to reduce the dissipation in R14 and IC2 as some 25 mA are required by the LED but only in short pulses. This current would have to be taken by IC2's regulator rail. By connecting it to C8, the voltage across the capacitor can be allowed to drop a little during the "on" period without affecting the regulated supply.

SW2 is open, and covering the phototransistor for a minute or so should turn on a lamp connected to the output for about four hours. If the input is too sensitive (ie, it has to be pitch dark before it comes on), partially cover the phototransistor aperture with black tape or paint and make sure that the box is lightproof. If you cannot get it to work this way, check that SW1 triggers the timer. If this does not work then you will have to check the circuit again, but use an isolated low voltage (24 volt) sup-
ply fed in at C9 +ve instead of the mains and connect an LED in place of SCR1.

In use the unit would normally be placed so that it received light from the outside of the building and not from the lamp it controls. This is so that it is not re-triggered when its time period ends and the lamp goes out. Note that the device will usually turn on for its time period when first connected to the mains. This might prove to be a slight nuisance if you only use it on odd occasions, but there is no reason why the unit cannot be left connected all the time, automatically switching on the hall lights, for example, whether you are there or not.

THE WORLD OF

ETI is not the only place that you can find add-ons for the

In 1980, a new type of home computer using the popular 6502 processor made an appearance in the market place. It is essentially a board-based system rather than the more common type of computer packaged within a keyboard enclosure and this product soon gained popularity amongst those wishing go get to grips with computer hardware. The computer in question is the Microtan-65 which has recently been rereleased by Microtan Computer Systems Ltd.

The major feature of the Microtan system which sets it apart from most other home computers is that it is modular. Circuit boards are of a $8^{\prime \prime} \times 4 \frac{1}{2 \prime \prime}$ format with a 64 -way indirect edge connector and they connect together by use of a system mother board. Although the most basic system possible does not have many of the features available as standard on some other home computers, the modular approach means that someone can make a start in home computing for a very modest outlay and yet have the opportunity to expand the system.

This magazine has supported the system by publishing designs for a number of Tanbus compatible modules; in addition the fact that Microtan is generally accepted as the 'hardware man's machine' makes it appropriate at this time to carry out a review of the Microtan-65 system in ETI. In the 3 or so years since the launch of Microtan65 a number of other companies have developed and marketed boards for the system and the intention of this article is to include hardware from all such sources.

MICROTANIC COMPUTER SYSTEMS LTD.

The Microtan-65 was first launched by Tangerine Computer Systems Ltd. who marketed the product until their involvement with the Oric computer forced the Microtan into the back seat. MicrotanicSoftware, a company who had sold software and some hardware addons for Microtan, recognising the vacuum being created by the phasing out of Microtan, and negotaited with Tangerine for the licence and rights to the system. The company, which by this time had changed its name to Microtanic Computer Systems Ltd., re-released the Microtan early in 1983. Since then, a number of new products have been announced and ambitious plans exist to guarantee a future for the system.

Before going on to describe the individual products, some comments can be made which refer to all Microtanic boards. When the system was first launched by Tangerine, the first two boards in the system were available either ready built or in kit form, whilst the remainder were sold only as complete boards. Microtanic have now extended the philosophy of providing kits and as a result, most boards are now available in three forms: 1. ready built; 2. as a kit including all parts and documentation; 3. as simply a bare board plus documentation at a cost of $£ 22.00$ each (unless stated to the contrary).

The latter two options will be of particular interest to those with a hardware bias as the investment of a little time in building up a board and, perhaps, obtaining components can result in a worthwhile saving in cost. With regard to the kits, anyone with a minimum of constructional experience should have no difficulty at all as the standard of documentation is very good. In some cases boards are also available as either a minimum configuration or fully populated, all options being fitted, although
in some cases it is probably less expensive to buy a minimum board and obtain the additional components separately. The mail order address of Microtan Computer Systems Ltd. is 235, Friern Road, Dulwich, London SE22.

Microtan-65

This is the first board in the system. In addition to being the starting point for a larger system, Microtan-65 can be used as a stand-alone board to give a very basic computer allowing machine code programming under the control of the TANBUG monitor. This intitial board includes a 6502 processor, a 2716 EPROM containing the monitor, 1 KRAM, VDÚ circuitry giving a 32×16 line monochrome display with lower case characters and chunky graphics as options and a UHF modulator. The Microtan-65 board requries connection to a power supply (various options being available from MCS), either a hex keypad or an ASCII encoded keyboard (both available from MCS) and a TV receiver. The low price of this board (especially if purchased in kit form or as a bare board) must place it as virtually the lowest price entry point into real computing.

References:

1. Kit Survey, ETI, May 1980, p59 (p74 in particular);
2. Microtan-65 review, Computing Today, June 1980, p28;
3. Micron Review, Computing Today, October 1980, p12;
4. Microtan-65, Electronics \& Computing Monthly, Dec 1983, p94.
Prices: assembled - $£ 69.96$; kit $-£ 59.95$.

Tanex

The Tanex board in effect gives the Microtan-65 those facilities which it lacks but which people would expect from a home computer. In other words it provides the minimum upgrade required by those wishing to develop more than small machine code programs. These extra facilities include sockets to take 12 K of EPROM memory, sockets for an extra 7 K of RAM memory (of 1 K is standard), sockets for two 6522 VIAs (of which one is standard), a 300 baud or 2400 baud cassette interface and optionally an RS232,20mA current loop or TTL serial port. Firmware optionally available for this board includes a 10 K Microsoft BASIC and X-Bug, an extension to the TANBUG monitor giving cassette file handling routines and a mnemonic assembler and dissasembler. A two slot mini-mother board is available to provide an inexpensive means of connecting together Microtan-65 and Tanex, but for those intending to extend the system further, the full 12 slot mother board would be required. References:

1. Micron review, Computing Today, October 1980, p12.
Prices: assembled - $£ 60.95$ (minimum configuration), $£ 99.95$ (expanded); kit - $£ 49.95$ (min. config.), £89.95 (expanded).

Tanram

For users wishing to expand beyond the 8 K of RAM memory provided by the combination of Microtan-65

MICROTAN-65

 Microtan-65. Mike Bedford reveals other sources.and Tanex, the Tanram offers 39 K of random access memory. This memory is a combination of 7 K static and 32 K dynamic RAM and expands the system to the maximum amount of RAM memory possible within the memory map of Microtan without going to a paged system. Of this $39 \mathrm{~K}, 16 \mathrm{~K}$ dynamic RAM is available on the minimum configuration system. If 47 K of RAM is not sufficient, however, multiple Tanram cards may be used in conjunction with the system mother board to give a paged memory configuration with up to 328 K of RAM which should be more then adequate for the vast majority of users.

Prices:

assembled - $£ 59.95$ (min. config.), $£ 109.95$ (expanded); kit - £49.95 (min. config.), £99.95 (expanded).

Disc Controller Card

This card allows up to four floppy disc drives to be connected to the Microtan system. These drives may be either $514^{\prime \prime}$ or $8^{\prime \prime}$, single sided or double sided and either single or double density, making the controller very versatile. These facilities are provided using the 1793 controller chip. Also included on board is an EPROM socket which is included to provide a patch for the EPROM based BASIC to give it disc handling routines. This patch works in conjunction with TANDOS, the Microtan disc operating system which is purchased separately from the hardware. One other facility provided on the board is a GPIB interface - this makes use of the 9914 IC and is completely independent from the disc interfacing.
Prices: assembled board - £109.95; TANDOS £39.95.

Hires Graphics Board

For serious graphics applications, the 64×64 chunky graphics given by the Microtan- 65 board is quite inadequate and a resolution of at least 256×256 pixel display given by the high resolution graphics board is a must. The board has an on-board high-bandwidth UHF modulator and also a video output connector so that it may be connected to either a TV receiver or a dedicated monitor. Alternatively, the video signal from the Microtan-65 board may be patched through to the modulator on the hi-res graphics board to give a combined text and graphics display. The board provides monochrome graphics but it is quite feasible to use three cards, connecting the outputs to the red, green and blue inputs of a colour monitor and hence obtaining a full colour display. The display is memory mapped, occupying 8 K in the memory map of the Microtan system and may therefore be used as an expansion RAM card when not in use as a graphics card. On some systems this could be a problem in that using a high resolution display effectively reduces the amount of memory available for program storage. In a Microtan sytem, however, this is not the case as it is page selectable and could therefore be placed in a different page to the main RAM memory.
Prices: assembled -£79.95; kit $-£ 69.95$.

Real Time Clock

This board provides a battery backed-up real time clock and calender which may be read under program
control. Using the 146818 IC it provides read out of second, minute, hour, day or week, day of month, month and year. Additionally there is a 50 byte area of uncommitted CMOS static RAM which is also preserved on power down by the on-board battery supply. There is also a comprehensive interrupt facility which includes the ability to generate a time of day alarm.
Prices: assembled - $£ 39.95$; kit - $£ 32.95$.

Sound Board

Using two AY-3-8912 programmable sound generation chips, this board provides six independent sound channels. Each of these chanels can be controlled in frequency, amplitude and envelope shape and variable pitch white noise source can be mixed in. This effectively gives the ability to produce an almost infinite variety of complex sounds under program control and may find application in the areas of music and games programs as well as for more serious purposes.
Price: $£ 19.95$

Universal Eprom Programmer

As this board is supplied as part of a complete package which includes the necessary operating system software, this description of the product will assume that this software is used. The devices which are supported are the 2516, 2716, 2532, 2732, 2732A and 2764 and the utilities provided are program, read, test for erasure and compare. All functions are controlled by software so that no personality modules are required, nor are there any switches which need setting in order to change from one EPROM type to another. The programmer requires no special power supplies to operate as the +25 V or +21 V programming voltage is generated by use of a DC-DC convertor. From an ergonomics point of view, the programmer includes a separate socket module onto which a zero insersion force socket is fitted, the module being connected to the main board by a length of ribbon cable.
Prices: assembled $-£ 55.95$; kit $-£ 45.95$.

Interface Boards

For a system to be truly flexible, it not only requires a powerful data processing capability but also facilities which allow it to control the real world. This is where the serial I/O board and the parallel I/O boards play their part. The parallel board has sockets for eight 6522 VIAs of which one is fitted as standard. These VIAs give a total of 16 bi-directional 8 -bit data ports (a total of 160 bits of I/O), sixteen 16-bit programmable counter/timers and eight serial TTL data ports. The serial I/O board, on the other hand, gives 8 serial ports using the 6551 UART, of which two are fitted as standard on the minimum configuration board. These eight ports may be configured to TTL, 20 mA current loop or RS232 with full modem control.
Prices: serial assembled $-£ 59.95$; parallel assembled - £49.95.

System Controller

This particular product represents the most fundamental addition to the system since it was first

FEATURE : Microtan-65

launched over three years ago. The system controller is a processor card which is intended to replace the combination of Microtan-65 and Tanex. The following facilities are provided on board: a $6502,6802,6808$ or 6809 processor running at a clock frequency of 750 $\mathrm{KHz}, 1 \mathrm{MHz}, 1.5 \mathrm{MHz}, 2 \mathrm{MHz}$ or 3 MHz ; nine 28 -pin JEDEC sockets which may contain any combination of $2 \mathrm{~K}, 4 \mathrm{~K}$ or 8 K RAMs or EPROMs as selected by the programming of a bipolar PROM; two 6522 VIAs one of which provides a cassette interface; and a 6551 giving RS232, 20 mA current loop or TTL serial interface.

The card does not have any video circuitry, however, which means that in order to communicate with it, either an external VDU should be connected to the RS232 interface or alternatively one of the Tanbus compatible VDU cards should be included in the system. At the moment the only JEDEC RAMs which are available at a resonable price are the $2 \mathrm{~K} \times 8$ types which means that likely memory configurations for this card would be 8 K RAM and 16 K EPROM or 16 K RAM and 4 K EPROM, bipolar PROMs for both these options being available from Microtanic. In the near future, however, the prices of $8 \mathrm{~K} \times 8$ static RAMs should start to fall which means, of course, that a 56 K RAM, 8 K EPROM system utilising the full memorymap of an 8 bit processor could be achieved on one card.

These considerations of space compression alone, however, would not induce an existing user to change to using the system controller - the attraction here would be the availability of different processors running at higher frequencies. A 6809 running at 2 MHz , for example, by far out performs a 6502 running at even the same frequency, let alone the 750 KHz of Microtan- 65 . As regards software, combined version of TANBUG and XBUG called CBUG is available in EPROM for 6502 users whiles a 4 K monitor has recently been released for the 6809. It was considered that many users of this card with the 6809 processor would be interested in a disc system and as a result the FLEX and OS-9 disc op erating system should be available shortly.
Prices: 6502A (assembled) min - $£ 99.00$, expanded $£ 125.00 ; 68$ B09 (assembled) min - $£ 109.00$, expanded - $£ 135.00$

MOUSEPACKET DESIGNS

Mousepacket is a small-scale operation, you might callita cottage industry. They produce both hardware, as detailed below, and two items of software: a three-pass assembler and a word processor; for details of these, contact Mousepacket at 7, Cedar Close, Grafham, Huntingdon PE1 80 DZ .

Colour VDU Board

This card represents yet another different approach to overcoming the limitations imposed by the Microtan65 display. The philosophy here is to provide colour on a single card and to improve the text display by giving 25 lines of 64 characters. Graphics have not been neglected since a resolution of 128×75 is certainly an improvement on 64×64 but in all truth must still be described as chunky graphics rather than high resolution. These features are achived by use of a teletext charactergenerator which also provides the following features: foreground and background may be specified from a colour set of eight, characters may be flashing or reverse video and the chunky graphics may be contiguous or separated.

The board has both a video output and a UHF modulator hence allowing connection to eithera monitorora TV receiver, but the manufacturers point out that, as with all computervideo displays, a TV maygive disappointing

results. Amonochrome monitor or TV may also be used, in which case the colours appear as different shades of grey. Mousepacket provide, as part of the package, two EPROMs which replace TAN BUG and one of the BASIC EPROMs, hence allowing the system to handle the new display in a way which will be transparent to the user.

Reference:

1. Add-on video board. Computing Today, October 1982. p58.

Prices: $£ 74.95$ (monitor version): $£ 84.95$ (including PAL encoder and UHF modulator).

EPROM Switching Board

This board is a solution to the problem of the very limited EPROM space available in the Microtan system. The Tanex card has sockets for two 2 K EPROMs and two 4 K EPROMs, a total of 12 K which is mapped into the system from C 000 to EFFF. The EPROM switching board occupies this same portion of the memory map but has room for four EPROMs for each of the sockets on Tanex, one EPROM out of each set being selectable at any one time by the circuitry on board. This gives a total EPROM storage space of 48 K .

The method of using this card is to remove all the EPROMs from Tanex, replacing them on this card together with whatever other firmware is required to be switched into the memory map on occasions. By writing a value to a single byte location on the card, either from the keyboard or under program control, it is then possible to select whichever EPROM is required in each of the four slots.
Price; $£ 19.95$ (board only); $£ 49.95$ (assembled),

ELECTRONICS TODAY INTERNATIONAL (Who? - Ed)

ETI have published designs for a number of Microtan add-on boards. Although it is not the intention here to reprint descriptions of these boards it was considered that references should be given for the benefit of those missing the original projects.
Analogue and Audio Output Board: March 1983, p. 48 Real Time Clock: April 1983, p31.
Universal EPROM Programmer: Aug 83 p 45 , Sep 83 p37, Jan 84 p61, and p00 this issue.
64 K Dynamic RAM Card: September 1983, p64.
16-Channel A to D Board: December 1983, p19.

Prices

Please note that the prices printed here were correct to the best of our knowledge at the time of going to print; however, the world shortage of TTL may have forced some prices up since then, so we urge readers to check prices before ordering any items.

This survey will be concluded next month.

Are you as fast as a bullet?

WOULD YOU HAVE MADE A FIGHTER PILOT? NOW YOU CAN FIND OUT WITH THE NEW

 REACTION TESTER
A FREE PROJECT FROM GSC

Split second timing is essential for this, the latest and fastest game from GSC Find out how long you could have stayed "upstairs" before you "bought it". Press start switch, after a random time period, a moving light appears. The quicker you press the button, the longer you "stay alive". You can't fool this game though - a "cheat" light will tell everyone that you guessed when the lights would come on. Speed and concentration are the names of this game - build our kit and "beat the bullet'

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each component is labelled, and the values are given in a component listing. Even the 'row and column' lettering of our EXP 300 is shown to make the location of the correct holes, in which to push the components, easy to find. There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet.
"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each hole is identified by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE. Any Experimentor breadboard can be 'snap-locked' with others to build a breadboard of any size.

1. EXP $325 £ 2.00$ The ideal breadboard for 1 chip circutts. Accepts 8. 14, 16 and up to 22 pin iCs Has 130
contact points including two 10 point bus-bars. . x theonts including wo 10 point bus-bars
2. EXP 350 £ 3.45 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs Has 270 contact points including two 20 point bus-bars
3. EXP 300 E6.00 The most widely bought breadboard in the UK. With 550 contact points, two 40 point bus-bars.
the EXP 300 will accept any size IC and up 106×14 pin the EXP 300 will accept any size IC and up 106×14 pi
DiPS. Use this breadboard with Adventures in Microelectronics.
4. EXP 600 £7. 25 MOst MICROPROCESSOR projects si 600 . ${ }_{60}$ magazes and educational books are built on the EXP
5. EXP 650 E4. 25 Has 6. centre spacing so is perfect for MICROPROCESSOR applications.
6. EXP 4B E2.50 Four more bus-bars in "snap-on" unit

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits
7. PROTO-BOARD 6 KIT E11. 00630 contacts. four 5 way binding posts accepts up to six 14-pin Dips
8. PROTO-BOARD 100 KIT Complete with 760 contacts accepts up to ten pinding posts and stu base. Large capacity with kit economy.

"Clip the coupon'" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

[^2][^3]
ZX81 EPROM PROGRAMMER

Take out your ZX81, dust it off, and turn it into a useful piece of electronic gear. Design and development by John Barker.

The ETI ZEPROM computer add-on was designed to provide the ZX81 user with a simple way of storing often-used machine code subroutines so that they would be available on powerup. However, of interest to many more people will be the facility of copying or programming single-rail 2 K and 4 K EPROMS.

Although copying takes approximately twice as long as the theoretical minimum time of 205 seconds for a full 4 K , this should pose no great inconvenience for the average amateur user, but rather give him or her time for a leisurely cup of tea, or whatever, in between frenzied sessions of keyboard bashing. Ease of use was considered one of the main points of design, and anybody who can PEEK, POKE and USR with the best of them should find the ZEPROM helpful in their everyday relationship with their computer.

Anybody thinking of shelling out for an EPROM programmer may find it financially viable to buy a ZX81 and build the ZEPROM instead of buying a stand-alone programmer with a similar specification. The unit, which plugs into the expansion port of a ZX81 or the expansion port of a suitable mother board, can be used with 2516, 2716, 2532 and 2732 type EPROMs, and offers the following facilities:-

1. all the address and data lines are fully buffered, and the EPROM address space is fully decoded; 2. programs EPROMS directly from the keyboard;
2. copy any of the above EPROMS to any other, and check against
each other;
3. copy from anywhere in ROM or static RAM;
4. reads and lists EPROMs;
5. enables the user to run up to 8 K of machine code held in EPROMs, with simple USR calls;
6. the unit is totally transparent from a user point of view, using POKE commands to program EPROMs, and PEEK commands to read them.

When programming or copying EPROMs it is recommended that any dynamic RAM extension pack is removed because the unit makes use of the Z80 WAIT line and does not provide REFRESH for dynamic memory whilst programming. This does not apply to static RAM packs and no such restrictions apply when running machine code from the unit, or reading EPROMs.

The unit has two 24-pin ZIF sockets, labelled "slave" and "master", and two associated rotary switches. It uses the spare memory space between addresses 8192 and 16383 with in the ZX81. The slave EPROM occupies the 4 K of memory between 8192 and 122287, and can be written to and read from. The master occupes the 4 K from 122288 to 16383 and can only be read from.

Construction

First of all, the copper tracks on the top side of the PCB must be connected through the board. This is done with PCB pins, or, where a component passes through the hole, with a component lead. Check which holes require PCB pins and which do not from the component overlay diagram.

Next connect the ZX81 edge connector to the board, using insulated sleeving on the connector, and breaking off any unused pins. Fit resistors, diodes, transistors capacitors (note orientation of C1), bridge rectifier and regulator. Fit the IC sockets; the wire-wrap sockets for the two EPROMs should not be cut down, but should be mounted about 1" proud of the board. From one rotary switch remove the pins for the wiper and three poles for one complete section (this is for SW1). From both rotary switches, cut off the looped ends, leaving as much of the pins as possible, and fit both switches to the board. This takes some time and gentle persuasion! Note that SW1 and 2 must be break before make types, or you will end up destroying some of the ICs in the project when the switches are operated.

This project may use only a little mains transformer, but big

COMPONENT SIDE

Fig. 1 ZX81 Edge connections, rear view.

Fig. 2 Component overlay of the PCB.

PARTS LIST

RESISTORS (all $1 / 4$ W 5\% unless stated)		Q3	BFY51
R1	2k7	D1-5	1 N4148
R2,8	2k2	D6	1N4001
R3	see text	BR1	1 A 100 V bridge
R4	8k2		rectifier
R6,5	1 ko	ZD1,2	13 V zener diodes,
R7,9	2k7 1 W		400 mW
		LED1	any red LED
CAPACITORS		MISCELLANEOUS	
C1	$22 \mu \mathrm{~F} 40 \mathrm{~V}$ electrolytic	SW1,2	4p 3w rotary switches, break
C2-6	100 nF ceramic or		before make
	polyester	SW3	mains switch, double pole
SEMICONDUCTORS		SK1	ZX81 edge
IC1,2,3	74LS245		connector
IC4	7805	SK2,3	24-pin wire-wrap
IC5	74LS138		sockets+24 pin
IC6	74LS132		ZIF sockets
IC7	74LS08	T1	24 V 100 mA mains
IC8	CD4017		transformer
IC9	74 LS02	PCB, case to suit, mains fuse (100 mA)	
Q1,2	BC108	and ho	older, etc.

precautions are necessary with regard to safety. We strongly recommend earthing the transformer body as well as the screen connection if it has one. If the case is metal or has a metal front panel, this should be earthed as well. A 24 V type transformer is specified; obviously a 12-0-12 type can be used, or a $0-12,0-12$ with the secondaries in series. Unused flying leads, if there are any, should be trimmed well back to keep them out of trouble.

The unit can be mounted in virtually any case, provided that it is large enough to accommodate the PCB and transformer. In the prototype, the PCB is mounted so that SK2 and 3 project through the lid of the box; the PCB is actually supported by SW1 and 2, which are bolted to the panel, and a cork block underneath glued to the bottom of the case. The ZIF sockets should be pushed carefully home into the wire-wrap sockets after the board is attached to the panel.

PROJECT: EPROM Programmer

depending on the setting of SW2, will enable the slave EPROM, Ë will enable IC3 and sets the direction of data transfer from the EPROM to the CPU. When a
READ command is made to an address READ command is made to an addiress
between 12288 and $16383, \overline{R D M}, \bar{E}$ and between 12288 and 16383, RDM, E and
DR go low. RDM enables the master EPR go low. RDM enables the master
, whe functioning of \bar{E} and DR is identical to the above

When a WRITE command is made to the slave EPROM, SL goes low for approximately 300 ns , setting the latch IC6a/b followed by WRS and E going low. The
latch turns Q1 on, which pulls the WAIT line low, forcing the CPU to hold its address and data lines stable, and also
enables IC8 to count.

This also turns Q1 off via IC7d, providing a ${ }^{\text {Vpp }}$ voltage of $25 V$ to the slave
EPROM. IC8 now starts to count from " 0 " and in incremented every 10 ms by IC9a/b is set. This latch gives a precisely defined pulse of 50 ins , being reset by IC 8 at a count of " 7 ". When it reaches a count of "9", IC6c resets the latch IC6a/b, removing the Vpp voltage, reset-
ting the counter to " 0 " and releasing the CPU from its WAIT condition. The cycle is completed and one location of the
EPROM has now been programmed with the unit ready for another cycle to commence.

The unit is treated as an 8 K block of
memory, the spare 8 K between 8192 and memory, the spare 8 K between 8192 and
 the ROM when the unit is in use. IC1 and continuously enabled. IC3 buffers the eight datalines, and isnormally disabled.
 pue tụ әч! aןqeua pue apoэəр W WRITE command the WR line goes low
 quiescent condition the control lines are as follows:

SU,W and IC9 output are low;
$\overline{S L}, \overline{S U}, \overline{\mathbf{W R S}}, \overline{\mathbf{R D S}}, \overline{\mathbf{R D M}}, \mathrm{DR}, \overline{\mathrm{E}}, \overline{\mathbf{W}}$ and $\overline{\mathbf{3 2}}$
are high;
IC6d is pulsing at a frequency of 100
Hz .
Q1 is turned off, Q3 is on, Q2 emitter is at 0 V , and the counter IC8 is reset with its " O^{\prime} " output high. The LED is lit giving a visual indication that the unit is correct required conditions for correct operation; it is the job of IC5, 6, 7, 8 and 9 to provide these, as follows.

When a READ command is made to an
address between 8192 and 12287 ,
$\overline{R D S}, \overline{32}, \bar{E}$ and $D R$ all go low. $\overline{R D S}$ or 32,

input			O/P PIN
A12:	RD	WR	
0	0	0	15
1	0	C	
0	1	0	13 WES
1	1	0	
0	0	1	11 प̄डs
1	0	1	10 RDM
0	1	1	$9 \overline{\text { SL }}$
1	1	1	7

[^4]ig. 5 (above) IC5 operation. Fig. 6 (right) EPROM

```
1 PRINT 'SET PERSONALITY SWITCHES"
2 STOP
3 POKE 8888,255
10 FOR N=0 TO 2047
12 LET A=N+8192
14 LET B=N+12288
20 POKE A, PEEK B
30 IF PEEK A<<>PEEK B THEN PRINT N; TAB 7; PEEK A, PEEK B
4 0 ~ N E X T ~ N ~
```

1 PRINT "SET PERSONALITY SWITCHES"
2 STOP
3 POKE 8888,255
10 FOR $\mathrm{N}=0$ TO 2047
12 LET $A=N+8192$
14 LET $B=N+12288$
20 POKE A, PEEK B
30 IF PEEK A < >PEEK B THEN PRINT N; TAB 7; PEEK A, PEEK B
40 NEXT N

10 LET X=8192

20 INPUT A\$
25 POKE 8888,255
30 IF A\$=" " THEN GOTO 20
40 POKE $X, 16 * \operatorname{CODE} A \$+\operatorname{CODE} A \$(2)-476$
50 LET $X=X+1$
60 LET AS=AS(3 TO)
70 GOTO 30

Program 1.
be copied. On line 12,8192 is the first address of the slave EPROM and on line 14,122288 is the first address of the master EPROM; 4. run the program.

When copying EPROMs, the above software is best run in FAST mode. When the program is run, the screen should go blank and the LED should pulse. When the program has finished, the screen should reappear and there should be no discrepancies listed. To load EPROMs from the keyboard, do the following:

1. insert the EPROM into the slave socket, set the personality switch,
and initialize the unit as necessary; 2. load program 2. This program is best run in slow mode. When running, you should enter the data in hexadecimal (with no spaces between characters) in response to the string input prompt, about 10 bytes at a time; then press newline, and then continue entering data. In line 10, 8192 is the first location of the EPROM, and can be changed to any value in the range 8192 to 12287.

If at any time the LED goes out, the unit can be initialized by inputting a null string (i.e. press NEWLINE). To escape from the

Program 2.
program, input S.
Machine code subroutines can be called anywhere between 8192 and 16383 by the simple command:-
RAND USR H
where H is the start address of the particular subroutine being called. As an example, load program 2 and run it. Input the five bytes:3 E07D718FB in response to the input prompt, press NEWLINE, then input S to escape, and return to BASIC. Input the direct command RAND USR 8192, and the screen should fill with character " 6 " 5 .

INTERFACE E - ONLY $£ 5500$ Simply plug in and it's ready to

 KEMPSTON CENTRONICS INTERFACE COMPATIBLE SOFTWARE UTILITIES. are held in an EPROM so LLIST. LPRINT and COPY can be used at any time without using up valuable user RAM. COPY will allow the reproduction of high resolution graphics with Epson (or derivatives) and Seikosha 80 . 100 and 250 Series printers. Print width selection trom 32 characters to full width depending on printer used.INTERFACE S - ONLY $£ 39.99$ Visually identical to Intertace E but without the EPROM. Interface S also recognises the LLIST \& LPRINT commands and will allow print width selection from 32 characters to full width.

However, software routines will need to be loaded betore use. Full screen dump toreproduce high resolution graphics is also possible and supporting software is supplied to operate this facility with Epson and Seikosha printers. The software routines thatare necessary to initialise the interface are held in the printer butier so valuable user RAM will not be used up. There is a growing range of Business/Utility software that includes these routines Details available on request

Either interface simply plugs into the ZX Spectrum expansion port or interface and is supplied fully cased with cr one metre ribbon cable which connects to the printer of your choice. Full instructions are included and driving soltware is supplied with Intertace S

We recommend Epsons, NEC. TFC. Seikosha, OKI Microline, Tandy GPl 15, Star DP 510 . Shinwa Brother HR 15 etc.

At last you can have real print perrormance from your $2 \times$ Spectrum with the Kempston Centronics Intertaces.

STANDARD INTERFACE

FOR THE 48 K SPECTRUM.

FINANCE MANAGER (OCP) - Menu driven program for all domestic and business accounting applications
$£ 19.95$
ADDRESS MANAGER (OCP) - Simple index fiting system ideal for names, addresses. etc. Various search tacilities. $\quad \mathbf{1 9 . 9 5}$

FULL SCREEN EDITOR/ASSEMBLER (OCP) - Allows you to write 280 assembly code using standard mnemonics on tull screen. $\mathbf{\Sigma 1 9 . 9 5}$

WORD PROCESSOR (TASWORD TWO)-
(TASMAN) A protessional word processor allowing 64 characters per line and incorporating all usual editing tacilities, £13.90 OMNICALC (MICROSPHERE) - The Only spreadsheet written entirely in machine code. The easy and fast way of solving any numerical problem. ideal for cash flow forecasting tolconcrete stress analysis.
£9.95
MASTERFILE (CAMPBELL SYSTEMS)-
Filing and retrieval system for
domestic or business use. Files can be loaded and saved independently. Microdrive compatible. $\mathbf{£ 9 . 9 5}$
Interface \mathbf{S} avalable from W H Sinith and Spectrum Computer Centres All products direct from:

PE MICRO ELECTRONICS LTD

Unit 30 Singer Way. Woburn Road Industrial Estate, Kempston. Bediord. MK42 7AF. Tel: (0234) 8566.33 Telex: 826078 KEMPMIG All prices include Vat and P \& P. Overseas orders please cidd 54.00 P \& P. Please crilow 21 days for aelivery of interiaces and sotlware Frinters available within 48 hours TRADE ENQUIRIES WELCOME

NOW WE CAN ALSO SUPPLY YOUR

PRINTER.

We've looked at the printers currently available and have selected what we feel is best value for money in dot matrix and dalsy wheel printers:
EPSON RX-80 F/T - A dot matrix printer allowing full graphics dumping and a choice of printing styles. Speed: 100 C.P.S. Price £325 Inc. VAT and Dellvery GROTHER HR 15 - A daisywheel printer ideal for letters. mai! shots. documents, etc. Many typelaces available by changing dais wheel. Duplication lacility but no graphics. Speed: Up to 18 C.PS. Price $\mathbf{\varepsilon 4 2 5}$ Inc. Vat and Del.

Bitl

IIII Install your own system and save using built and tested modules

Now you can assemble a really effective int. uder alarm at this low price using tried and tested Riscomp modules Supplied with full instructions, the kit contains everything necessary to provide an effective warning system for your house or flat With a built-in LED indicator and test position the unit is easily setup requiring no installation. It may simpliv be placed on a cupboard or desk. Move ment within its range wilf then cause the built-in siren to produce a penetrating 90 dbs of sound, or even 110 db 's with an additional speaker All parts included and supp
Size $200 \times 180 \times 70 \mathrm{~mm}$ Order as CK 5063°

DIGITAL ULTRASONIC DETECTOR

- 3 levels of discrimination agarnst false
alarms
- Crystal control for greater stability
Adjustable range up to 25 ft .
- Adjustable range up to 25 ft .
- Buill-in delays

This advanced new module uses digital signal processing to provide the highest level of sensitivity whilst discriminating against potential
false alarm conditions. The module has a built-in false alarm conditions. The module has a built-1n
exit delay and timed alarm period, together with a exit delay and timed alarm period, together with a
selectabie entrance delay, plus many more outstanding features

ULTRASONIC MODULE
US 4012

Adjustable range from 5-25ft.
already used in a wider range of applicationstrom
and intruder detectors to automatic light switc hes and door opening equipment. featuring 2 LEO INFRA-RED SYSTEM
IR 1470 only £25.61 +V.A.T.

Consstung of separate transmitter and receiver cases. the system provides an invisible nodulated beam over distances of up to 50ft,
operating a relay when the beam is broken. operating a relay when the beam is broken.
Intended for use in security systems, but also ideal tor photographic and measurement applications Size 80 by 50 by 35 mm

POWER SUPPLY \& RELAY UNIT PS 4012

Provides stabilised 12 V output at 85 mA and contans a relay with 3 amp contacts. The unit is designed to operate with up to 2 ultrasonic units
SIREN MODULE SL 157
Produces a loud penetrating sliding tone which,
when coupled to a suitable horn speaker, when coupled to a suitable horn speaker, Prica $\mathbf{f 2 . 9 5}+$ V.AT
51/2" HORN SPEAKER HS 588
This weather proof horn, speaker provides a: 2 mettes) when used with the CA 1250 PS Prica $54.95+$ V.A
3-POS. KEY SWITCH 3901
Single polf, 3 -pos. key switch intended for use

Add 1.5% VAT 10 all ${ }^{\prime \prime}$ prices
Add 50 post $\&$ packing to all orders
Units on demonstalion
Shop hours 900 tos 50 pm
Closed Wémenstay
Sáturday 9.00 1 $1,100 \mathrm{pm}$
SAE with all erwhines
SAE with all empuries
Order by lelephone or post

ALARM CONTROL UNIT

Price £19.95 + V.A.T.
The hearn of any alarm system is the control unit. The CA 1250 offers every possible feature that system whether a highly sophisticated installation or simply controlling a single magnetic switch on the front door - Bultrin electronic siren drives 2 loud speakers - Provides exit and entrance delays together With fixed alarm time - Operates with magnetic switches. pressure - pads, ultrasonic or I.R. units

- Antritamper and panic facility - Stabilised output voitage
- 2 operating modes.
alarm/ant-tamper - Screw connections for ease of installation - Separate relay contacts for external loads

SIREN \& POWER SUPPLY MODULE PSL 1865

A complete siren and power supply module which is capable of providing sound leveis of 110 dbs
at 2 metres when used with a horn speaker. In addition. the unit provides a stabilised $12 \vee$ output up to 100 mA A switching relay is also included the US 5063 to form a complete alarm

HARDWARE KIT HW 1250
only
£ 9.50

+ V.AT.

This atractive case is designed to house the control unit CA 1250, together with the appropriate LED indicators and key switch punched front panel, the unit is given a prolessional appearance by an adhesive silk
screened label. Size 200 by 180 by 70 mm ULTRASONIC MODULE ENCLOSURE

Suitable matal enclos ure for housing an individual ultrasonic module type US 5063 or US 4012 screws etc. for US 5063 ordeI SC 5063 ; for RESCOMP LIMITED Dept. ETI 11
21° Duke Street
Princes Risborough
Bucks. HP1 7 OAT
pritices Histurninh (084 44) 6326

FREE CAREER BOOKLET Train for success, for a better job, better pay

Enjoy all the advantages of an ICS Diploma Course, training you ready for a

 new, higher paid, more exciting career.Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

TICK THE FREE BOOKLET YOU WANT

 AND POST TODAY

Interak

A METAL Z80A COMPUTER

Colleges, Universities, Individuals: Build your own modular Z80A-based metal $19^{\prime \prime}$ rack and card Interak computer. Uses commonly available chips - not a single ULA in sight (and proud of it). If you canget your own parts (but we can supply if you can't) all you need from us are the bare p.c.b.s and the manuals.

(P.c.b.s range in price from $£ 10.95$ to $£ 17.75$ + VAT; manuals $\mathbf{\Sigma 1}-\mathbf{£ 5}$.)
The Interaktion User Group has 14 K BASIC, Assembler, Fig Forth, Disassembler, Debug, Chess and a Book Library, Newsletters etc. No fears about this one going obsolete now in its fifth successful year! Send us your name andaddress with a21 pstampand we'll send you 40 pages of details (forget the stamp if you can't afford it!) You've already got a plastic computer for playing games, now build a metal one to do some real work: interak, Interak Interak!

Greenbank

Greenbank Electronics (Dept T5E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-6453391

READ/WRITE

cause the DOTI restricted to 12 years the franchise for tree systems, but will extend the period for those cable networks laid with the final distribution in star format, and which are switchable.

Enlarging on those points respectively: equipment that has to carry DBS on a tree structured cable cannot be designed until the standards are known; 12 years is too short a period to depreciate the costs of cable equipment; and the increased costs of cable for star layout eroded the tree/switched cost differential.

Our current switched design is equally advanced and retains all the virtues of TACCS, ie. high speed teletext data transport, within the TV channel where appropriate, albeit with data now routed through the switch rather than direct to the subscriber.

On the question of fibre optics, much has been written about this inexpensive transmission medium with its very high bandwidth. This is true where monomode fibre is used for long haul links - typically for inter-city use. But this is no use to the cable operator who wants to carry many services and programmes over relatively short distances, the opto-electronic couplers at each end of the short lengths of fibre are far too expensive at present.

What is required is a wide bodied air bus - not Concord! Where a point to point link is required across a city to feed a remote head end, then fibre will possibly be the best medium, but for short distances broadband copper wins hands down.

I hope this may have cleared up any misconceptions regarding the Thorn EMI role in Cable TV.

Yours faithfully,
Peter Barnes,
Technical Development Manager,
Radio Rentals Cable TV Limited

Of Microtans And Men

Dear Dave,
Firstly may I say how delighted we are in the North West now that Mike Bedford has ironed out the software snags to produce an effective and versatile Eprom Programmer for the correspondingly versatile 6502 based development system known as the Microtan. We now look forward eagerly to the intelligent.programming version of

READ/WRITE

the software. To date we have successfully programmed 2716's, $2732^{\prime} \mathrm{s}, 2732 A^{\prime}$'s and 2764 's.

Secondly, may I say how flattering it is to be mentioned in despatches. Frankly however, praise should really go to my North West friends Andy Michael and Graham Fishwick who did much of the work. Actually, this is a good example of how the informal association of North West Microtan users help each other over both hardware and software difficulties.

Thirdly, having followed recent TUG events from close up and having shared the concern at first hand with friends country wide, I would like to extend our encouragement to Colin Nowells in his difficult task of raising a new group from the ashes. We really do need the resurrection of the 'TUG' newsletter as it complements so well the other thriving journal produced by David Northway and Deryck Sutton of Microtanic Computer Systems.

Finally, I would like to extend an invitation to North West users to communicate with our informal 'self help' group and enjoy the sense of comfort and security
offered by the proximity of like and experienced minds. Please phone me on Bolton 654145 or write to 15 Newland Drive, Over Hulton, Bolton, Lancs.

Yours etc.
Graham Davies,
Department of Mechanical Engineering,
Bolton Insitutute of Higher Education

April Issues

Dear ETI,
On building your Super
Selective Music Filter, certain problems arose. The first was that supplies of the modulo 12 counter from Watford Electronics had dried up, and it was necessary to use an inverted reciprocal modulo n counter in its place, this being pin compatible. Secondly, the ZX80 real time auto correlator program on page 109 had a syntax error in line 1484, causing a loss of tracking at the equivalence detector. Thirdly, the dual peak filters frequently swept the band and did not lock at the start of a glissando; this was later found to be due to the drawing on page 109
being upside down, thus producing dual notches.

On test the unit worked well, but had the annoying habit of suddenly shifting channel when recording concerts. After much experimentation I discovered that, due to my proximity to the railway, the phase shift of the multipath from passing trains was producing multiple glissandos (a type of 'chuff chuff' that, being partially tone deaf, I was unable to detect by ear).

I have since extended the project to include an ultrasonic space detector with precision rate of change convertor. This automatically detects the presence in the room of reggae dancers and shifts to the appropriate channel, thus avoiding the otherwise unavoidable damage to furniture. My thanks to Mr. W. Pullover for an excellent article.

Yours faithfully,
P. Staker

We are grateful to the above reader for pointing out the errors in this article, and have published a full list of corrections in News Digest.

THE CIVILISED ART OF CONTEST OPERATION
AI Slater, G3FXB, distils over 20 years of experience into this blow-by-blow guide to the philosophy and practical requirements of successful HF contesting.

PLUS
COMPILING A PRACTICAL E-M-E STATION
CONVERT YOUR FT101 TO 'NEW BANDS', WITH HARRY LEEMING, G3LLL

> SWL PROJECT - NO ROOM FOR WIRE ANTENNAS?
> Build a simple active aerial.

thobbyboard

MAKE YOUR OWN

 PRINTED CIRCUITS

DIRECT ETCH KIT

COPY DIRECT FROM MAGAZINE or OWN DESIGN Simple system- Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Etchant, Copper Cleaning Block, Gloves \& full instructions. HB/1 £18.00*

PHOTO RESIST KIT
Complete kit containing artwork PCB, and all the necessary process materiais. $\mathrm{HB} / 2 £ 29.00^{*}$

DIY UV EXPOSURE UNIT

Perfect results everytime. Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB, Precision Photo, Lable \& Panel manufacture. UV/1 £27.00*
FRONT PANELS \& PHOTOGRAPHY

FOTOTOOL KIT

Containing artwork, film and all the necessary process materials required for professional quality labels and panels.CAN ALSO BE USED TO PRODUCE PRECISION PCB PHOTOMASTERS.
HB/3 £27.00*
UV EXPOSURE UNIT AND ARTBOX. (Ref: UV2)
A portable ready made unit containing two 8 watt UV tubes giving a $6^{\prime \prime} \times 9^{\prime \prime}$ exposure area which may also be used as a light box with the UV filter supplied. UV/2 £64.00*
These are introductory kits and all materials are available separately. Full catalogue $£ 1.50$ refundable with 1 st order over $£ 10$
*Prices inctusive of VAT, carriage 60 p in U.K. Overseas orders please add extra carriage to published prices
a division of
KELAN ENGINEERING Ltd
Hookstone Park
Harrogate, N. Yorks

RICKINGHALL HOUSE, HINDERCLAY ROAD, RICKINGHALL, SUFFOLK IPR2 IHH. TEL.DISS (O379)

TOROIDALS

The toroidal transformer is now accepted as the standard in industry overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

15 VA		
$62 \times 34 \mathrm{~mm}$		$\begin{aligned} & 0.35 \mathrm{Kg} \\ & 19 \% \end{aligned}$
$\begin{aligned} & \text { SERIES } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { SECONDARY } \\ & \text { Volts } \end{aligned}$	Rms Curfent
0×010	6+6	125
0×011	$9+9$	083
0×012	12+12	063
0×013	$15+15$	0.50
0×014	$18+18$	042
0x015	22,22	034
0×016	$25+25$	030
0×017	30+30	025
(encased in ABS plastic)		
30 VA		
$70 \times 30 \mathrm{~mm}$		
1×010	$6+$	
1×011	9+9	66
1×012	$12+12$; 25
1×013	$15+15$	100
1×014	18.18	083
${ }_{1 \times 015}$	22+22	068
1x0:6	$25+25$	060
1×017	$30+30$	050

50 VA		
$80 \times 35 \mathrm{~mm}$		$\begin{gathered} 0.9 \mathrm{Kg} \\ 3 \% \end{gathered}$
2×010	$6+6$	416
2×011	$9+9$	277
2×012	$12+12$	2.08
2×013	$15+15$	166
2×014	$18+18$	138
2×015	$22+22$	113
2*016	$25+25$	1.00
2×017	30+30	083
2×028	110	045
2×029	220	022
2×030	240	020
	80 Va	
$\begin{array}{r} 90 \times 2 \\ \mathrm{Re} \end{array}$	mation	1 Kg
3×010	$6+6$	664
3×011	$9+9$	444
3×012	$12+12$	3.33
3×013	$15+15$	266
3×014	18+18	222
3x015	22+22	181
3 x 016	$25+25$	160
3×01 ?	$30+30$	133
3×028	110	072
3×029	220	036
3×030	240	033

120 VA		
$90 \times 40 \mathrm{~mm}$		$1.2 \mathrm{Kg}$
4×010	$6+6$	1000
4×011	9+9	666
4×012	12+12	5.00
4×013	$15+15$	4.00
4×0.4	$18+18$	333
4×015	22+22	272
4×016	$25+25$	2.40
4×017	30+30	200
4×018	35+35	171
4×028	110	109
4×029	220	054
4×030	240	050
	60 VA	
110×2	mmation	$1.8 \mathrm{Kg}$
5×011	9+9	8.89
5×012	12+12	666
5×013	15+1.5	5.33
5×014	$18+18$	444
5×015	$22+22$	3.63
5×016	25+25	320
5×017	$30+30$	266
5×018	$35+35$	228
5×026	$40+40$	2.00
5×028	110	1.45
5×029	220	072
5×030	240	0.66

$\underset{\substack{225 \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ \text { Regulation } 7 \%}}{2.2 \mathrm{k}}$		
6×012	$12+12$	9
6×013	$15+15$	
6×014	$18+18$	6.
6×015	22+22	5
6×016	25+25	
6×017	30+30	
6x018	35 35	
6×026	$40+40$	
6×025	$45+45$	
6×033	$50+50$	2
6×028	110	
6×029	220	
6×030	240	\bigcirc
$410 \times$	$\begin{aligned} & 300 \mathrm{VA} \\ & \mathrm{mmm} \end{aligned}$	

Why a Toroid?
Smaller size \& weight to meet modern 'slimline' requirements. Low electricaliy induced noise demanded by compact equipment
High efficiency enabing conservative rating whilst main taining size advantages.
Lower operating temperature.
Why ILP?
Ex-stock delivery for small quantities.
Gold service available. 21 days manufacture for urgent deliveries.

- 5 year no quibble guarantee.
Realistic delivery for volume orders.
* No price penalty for call off orders.

Post to: ILP Electronics Ltd., Dept, 2 Graham Bell House, Roper Close, Canterbury, Kent. CT2 7EP Tel: (0227) 54778 Telex: 965780

Prices including P\&P and VAT					
VA	Size	£	VA	Size	モ
15	0	7.43	160	5	12.90
30	1	8.08	225	5	16.30
50	2	10.10	200	7	18.55
80	3	1081	500	8	25.73
120	4	11.73	625	9	31.63

For 710 V prmary insert " 0 "' in place of " x " in type number.
For 220 V primary (Europe) insort " 1 " in place of " X " in type numbe For 240V primary (UK) insert " 2 " in place of " X " in type number. IMPORTANT: Requlation. All voltages quoted are FULL LOAD.
Phease add regulation figure to secondery voltage to obta in off load voltaga.

Mail Order -- Please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Trade - We will open your credit account immediately upon receipt of your first order.

XK113 MW RADIO KIT

Based on ZN414 IC. kit includes PCB, wound o make crystal earpiece and all components $2.7 \times 2 \mathrm{cms}$. Requires PP3 9V battery. IDEAL FOR BEGINNERS. $£ 5.50$

HOME LIGHTING KITS

nisirucione contin all Leccousicy compononis and fur switch end control up to 30 ow of tighting. TDR300K Remote Control $£ 14.95$ | MK6 | $\begin{array}{l}\text { Dimmener } \\ \text { Tremsmingor tor above } £ 4.50 \\ \text { TD300K } \\ \text { Touchdimmer } £ 7.75\end{array}$ |
| :--- | :--- | Ts300k Touchswitch $£ 7.75$

 LD300K Rotery Co

DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on the
ICLIT125 is lowar powar version of

Price $£ 15.50$
 lisuice crastal display. This kit with
form the bosis of a digital mulliform the besis of a digital multi-
metar lonly d few additional re.
 or asensitive digitit thermometer (-50, aits supplisd). reading to 0 ret. The basic kit has os sonsitivity of
$200 \mathrm{~m}, ~ t o r ~ a ~ f u l l ~ s c a l e ~ r e d i n ~$

Now orem COMPUTER SHOWROOM

Hours:Mon-Fri 9am-5pm SAT 10am-4pm

We also stock peripherals and 2 accessories disc drives, printers. joy sticks etc. rogether with a wide range of books and the latest software for all the above omputers including 2×81. SEND S A.E. FOR LIST TODAY' J DOORCHIME Jo
Based on the SAB0600 IC the kit is supplied with all components, including loudsoeaker. printed circuit board. a pre-drilled box $195 \times$
$71 \times 35 \mathrm{~mm}$ l and full instructions. Requires only a PP3 9 VV battery and push-switch 10 complete. AN IDEAL PROJECT FOR BEGIN. NERS Order as XK 102
£5.50

FREE Have yougot our

HREE ELLOW CATALOGUE yet?

 ALL AI VEAY COMPR HITIVE PAICES
ORDEANG EVEEASEP JUST RING 5-6.7日GE FOR THE PRICES YOUCAN TAESIST 5-6-7 8-9-10
 Answering service ewigh and wnds
Ans ds Add $65 b$ postage $\overline{\text { en }}$ act
Oving
 Send A E lar ivithe STOCK DETAESS

TEACH-IN 84

Complete kit of top quality components as specified by EE including two EBBC starter packs.
f 15.80

PRICES
EXCLUDE VAT

LCD $31 / 2$ DIGIT MULTTMETER 16 ranges including DC voltage (200 mv-1000 v) and AC voltege, DC current (200 mA-10 A) and resistance (0-2 Mil + NPN \& PNP transisto gin and diode check Input impodance 10 M
$\mathrm{s}_{\mathrm{ize}} \mathrm{i} 55 \times 88 \times 31 \mathrm{~mm}$. Requires Pp 3 gv battery. Test leads included ONLY E29.00

ELECTRONIC LOCK KIT XK101

This KIT contains a purpose designed lock IC, 10 -way keyboard. PCBs and all components to construct a Digital ock, requiring a 4 -key sequence to open and providing over 5000 differen combinations. The open sequence may wired plug Size. $7 \times 6 \times 3 \mathrm{cms}$. Supply 5 V to 15 V d C a 40 cms . Outpu: 750 mA max. Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Wil tions supplied. ONLY E11.50

Electric lock mechanisms for use with latch locks and above kit $£ 14.95$

DL 1000 K
This va
teatures
sequence, spedidirectional sequence, speand of sequence
and frequency of diretion
hange. being variable by
means of potentiometers and
incorporates a master dimming cont
DLZ100K E15.95
A lower cost version of the above. leaturing variable by means of a presest wot Outouts switehed only at mans zero crossing points to reduce ranio interference io a minimum.
Odtional ogto input OLAI
£8.95 -inght response

60 p

LL3000K

his 3 chanmel sound to lightikit features rain voltage switching, autornatic level control a built $\mathbf{2 n}$ mic. No connections to speaker or amp o mains supply \& lamps. (1Kw'Channel)
£12.95

MAINS BORNE REMOTE CONTROL

> Last month we described the operation of the system and the construction of the receiver unit. This month's concluding article describes the construction of the transmitter, alignment of the two units and the method of interfacing the completed system to your microcomputer. Design by John Bawden.

T- he entire transmitter is contained on one $147 \times 71 \mathrm{~mm}$ PCB. This includes the various mains isolation components which are grouped at one end of the board and covered with a small plastic box. The prototype was originally built on a eurocard using wire wrapping techniques, but the final PCB layout is smaller than a eurocard and readers who require a plug-in card construction should have no difficulty adapting it.

The bulk of the construction is perfectly straightforward. We recommend the use of IC sockets since most of the ICs are CMOS, and it is a good idea to solder the sockets into place before moving onto the other components. Install the three wire links and then the resistors and the capacitors, taking care with the tantalum types which must be inserted the correct way around. Similar care should be taken with the diodes and transistors. Do not solder R13, C14 and FS1 into place until the alignment procedure has been completed. The ICs can be inserted into their sockets when everything else is in place.

The only component on the PCB which requires any preparation is T1. This can easily be hand wound, but great care should be taken in the construction. T1 provides isolation between the
transmitter circuitry and the mains supply via C14, FS1 and R13, and if these fail or the mains connections are reversed it will have to withstand the full supply voltage between primary and secondary.

The primary should be wound first. This consists of $20+20$ turns of 26 SWG enamelled copper wire, bifiliar wound. This means that the two 20 -turn halves are wound simultaneously using a

Fig. 1 Block diagram of the transmitter.
length of wire doubled up. Estimate the length of wire you will need to produce 20 turns (no, of course we're not going to tell you! Use your calculator and a little imagination), add a little for the leadouts, then bend the wire back and pull-out another, equal length. Do not separate the two lengths but wind them onto the former as they are; the loop will help you to sort out the ends later. Cover the primary winding with two layers of

Fig. 2 Overlay diagram of the PCB.

PARTS LIST - THE TRANSMITTER

insulation tape and then add one and a half turns of PVC covered 20 SWG wire to form the secondary. Arrange the primary and secondary connections so that they appear on opposite sides of the transformer and then seal the whole assembly with a further layer of insulating tape.

Assemble the ferrite core onto the former, insert the tuning slug and mount the assembly on the PCB. How you attach it depends upon which type of core you purchase, but we simply used two holes drilled on either side of the
core and a piece of insulated wire passed through them, over the core, and secured on the underside of the PCB. Make sure you mount the transformer with the primary connections adjacent to Q2, Q3 and C12.

If you followed the winding instructions correctly, your primary lead-outs should consist of a loop and two free ends. Temporarily mark the two free ends in some way and then cut the loop. Using a multimeter, identify which of the free ends is connected to each of the two new ends you have
created by cutting the loop, then take one of the new ends and connect it to the other free end. By this means you will connect the start of one winding to the finish of the other and so form a centre tap. Solder this centre tap into the middle hole provided and the other two ends into the remaining holes. Solder the two secondary connections into the two holes provided on the opposite side of the transformer.

To complete the construction, solder the mains lead into place and secure it with a cable clamp.

Fig. 3 Constructional details of the transformer.

Cut a suitable hole into the small plastic box and feed the mains lead through it. The box can then be assembled over the mains circuitry using its own securing screws through the holes provided, the box on the component side and its lid on the copper side.

Alignment

Both the transmitter and the receiver in this system are normally connected to the mains, but you should not attempt to work on them while they are so connected. The procedure described allows you to align the units without taking unnecessary risks.

The only special equipment required for the setting-up procedure is a test meter, an oscilloscope and some form of power supply so that the two units can be operated without a mains input. The transmitter is set up first so that it can be used as a signal generator when you come to set up the receiver. Begin setting-up by connecting the transmitter to the power supply or the +5 and -12 volt rails of a computer.

The initial stage in setting up the transmitter is the adjustment of the rate of the PPM data generated by the SL490. The critical timing element of the PPM data stream is the period of the logic ' 0 ' interpulse space. This parameter can easily be measured and set up using an oscilliscope, provided the data stream consists of PPM words which contain all logic ' 0 's. A data stream containing a mixture of ' 7 's and ' 0 's is difficult to trigger and to interpret when displayed on an oscilloscope.

The SL490 can be persuaded to generate a data stream suitable for this adjustment by connecting to ground the five transmitter data inputs, DO-D4. This will ensure that a series of words containing all ' 0 's is generated. The data stream can be checked by monitoring pin 2 of the SL490 on an oscilloscope whilst the TRANSMIT input is also
held low. Under these conditions, RV1 can be adjusted to set the required interpulse period. This is 5 ms for the standard MainsCom system.

The carrier frequency and the frequency shift deviation can be set up using a similar test arrangement. In addition to the five data lines and the TRANSMIT signal line the CARRIER ENABLE input must also be grounded. This should result in the modulated carrier appearing at the output of the transmitter. The output of T1 should be temporarily loaded with a 10 Ohm resistor and the oscilloscope connected across it. The oscilloscope timebase must now be adjusted to display a few cycles of the approximately sinusoidal signal appearing there.

The display should actually be of two sinewaves of differing frequency, one of which should be brighter than the other. If only a single sinewave is present, this could indicate a fault in the frequency shift modulator, or, more likely, that RV1 is at one end of its track. Try adjusting this control to the halfway position. The brighter trace is produced by the frequency used to transmit the interpulse period, and the dimmer trace results from the frequency used to transmit the PPM pulses. It should now be possible to set the period of the brighter waveform to 7.5 microseconds by adjusting

RV3. This will have set the carrier to the required frequency of 133 kHz . The deviation control, RV2, is similarly used to set the period of the dimmer trace to 7.0 microseconds. This corresponds to a deviation of 10 kHz , with the shifted frequency at 143 kHz . Check the carrier frequency and if necessary readjust RV1 and RV2 to correct for the effects of any interaction between them.

The core of T1 should be adjusted for the best approximation to a sine wave at both the carrier and the 'pulse' frequencies. This transformer forms part of a very low Q tuned circuit, so little change in signal amplitude will occur. This adjustment should be repeated with the unit in its operational form because of the reactive impedance presented by R13, C14 and FS1.

The receiver cannot be worked on whilst connected to the mains supply for obvious safety reasons. The recommended procedure for this unit is to run it from a 12 Volt power supply connected directly to its internal supply rail, and to provide a signal feed from the transmitter which looks as if it has come over the mains wiring. This can be produced by placing the test fixture shown in Fig. 4 between the previously aligned transmitter and the receiver unit. The attenuated signal from the transmitter is applied across the 'Mains In'terminals of the receiver.

The conditions used in aligning the transmitter can be used again to generate the test signal for receiver alignment. This logic requires ' 0 's on the transmitter data inputs and both TRANSMIT and CARRIER ENABLE pulled low into their active states.

L1 is adjusted whilst monitoring the filtered and amplified FSK signal at the junction of R14 and R15. The resonant circuit consisting of L1 and C1, when incorrectly

Fig. 5 Circuit diagram of the transmitter.

HOW IT WORKS - THE TRANSMITTER

The transmitter is based on the Plessey SL490 remote control encoder IC. The SL490 is intended primarily for use in hand-held remote control iransmitters and is therefore designed to operate from a 9 V battery supply and to scan a keypad consisting of an 8×4 matrix of push button switches. In the MainsCom transmitter, the SL490 has to be driven from a microcomputer parallel port. IC1 and IC2, which are two CMOS analogue switches, are used to simulate the action of a matrix of push button switches. IC1 is a two pole four way switch, of which only half is used, whilst IC2 is a single pole eight way switch. These are connected to IC3 in such a way that it is possible to simulate the closure of any one of the 32 switch positions scanned by the SL490. The switch closure simulated, and hence the PPM word generated by the SL490, is controlled by the 5 bit paraliel input which is split between IC1 and IC2. The generation of the PPM data is controlled by the INHIBIT inputs of IC1 and IC2. When these INHIBIT inputs are pulled low, the switch positions selected by the binary input to IC1 and IC2 are closed. This will be seen by the SL490 which will then generate a steady stream of PPM words. The INHIBIT inputs to IC1 and IC2 are driven
by the active low TRANSMIT signal.
The rather unconventional power supply arrangements for IC1, IC2, and IC3 are necessary in order to accommodate the following factors. First, the power supply required by IC3 must be 9 volts or just under. IC3 is driven from IC1 and IC2 and these devices have to operate with inputs at the normal 5 Volt logic levels coming from a microcomputer parallel port. IC1 and IC2 must therefore operate from dual polarity supplies and the actual voltages of +5 volts and -12 volts were chosen as being readily available from most microcomputer systems

The timing of the PPM data generated by IC3 is set by the time constant of C2 with R3 and RV1. This data stream which appears at pin 3 of IC3, is clipped by D1 and D2 to ensure a constant amplitude. It is then used to drive the frequency shift keyer, comprising the voltage controlled oscillator part of IC4. This IC, a 565, is usually used as a phase locked loop, particularly in FM demodulator applications. It is used as a frequency modulator in this case as it is inexpensive and easy to obtain. Q1 is used to drive what would normally be the demod' output with the PPM signal. C7, with R8 and RV3, set the carrier fre-
quency and RV2 is used to set the level of PPM signal and therefore the frequency deviation.
IC5d and its associated components interface the squarewave output of IC4 to the CMOS levels required by the power amplifier stage. It is also used as a gate in order to disable the transmission of carrier when there is no control signa being sent. This is done through the'Carrier Enable' input to the unit and serves to save a little power and minimise the possibility of interference being caused by the system.
IC6 is used as a buffer and as a pulse shaper to drive the power amplifier stage. This employs a pair of VMOS transistors in push-pull and operates in a low duty-cycle switching mode, similar to a class C valve amplifier. IC6 generates the short pulses with the required timing to ensure correct operation. T1 acts as a low Q tuned transformer and matches the output of this stage to the low impedance presented by the mains at this frequency. C12 resonates with the inductance of T 1 to produce a nearly sinusoidal output waveform. The output impedance is of the order of 0.5 ohm and can easily put a signal across the few ohms presented by the mains wiring.

PROJECT : Remote Control

tuned, will generate amplitude modulation on the FSK signal which will correspond to the frequency modulation on that signal. The sense of the amplitude modulation will depend on the adjustment error. When L1 and C1 resonate at too high a frequency, modulation peaks appear on the carrier corresponding to PPM pulses. If mistuned in the opposite direction, dips appear in the envelope of the signal. The correct adjustment of L1 is the setting which minimises the amplitude modulation of the FSK signal at this test point (Fig.6).

RV2 adjusts the natural frequency of the oscillator in the phase locked loop FM demodulator, IC3. This control is used both to set this frequency close to that of the FSK carrier, so that the loop can lock up, and to cancel any imbalance in the comparator circuit built around IC1d.

Adjustment of RV2 is used to produce the 'cleanest' PPM signal at the output of IC1d. Offsetting this control away from the correct point will cause either the logic low or the logic high part of the PPM signal to become noisy. RV2 is therefore adjusted until a PPM data stream appears on pin 1 of IC1 d, and then set to halfway between the points where noise begins to appear on the logic high and logic low parts of that data stream.

The oscillator in the ML924 PPM decoder, IC1, is set by RV1. This is most easily adjusted with the FSK signal disconnected from the receiver, so that the incoming data stream does not disturb the oscillator frequency. For safety's sake, the temporary 12 volt supply should be retained.

When correctly adjusted, the oscillator period should be $1 / 40$ th of the logic ' 0 ' period in the received data. The latter is set at 5 milliseconds at the transmitter, so RV1 should be used to set the period of the sawtooth waveform at pin 1 of IC1 to 125 microseconds.

This completes the setting up of the transmitter and the receiver. It should now be possible to check their operation by reconnecting them via the test circuit. Suitable sequences of 'on' and 'off' codes loaded into the transmitter should result in the receiver switching on and off. The operation of the receiver will be indicated, even in the absence of a mains supply and load, by the indicator LED.

Fig. 6 Tuning 11.

Interfacing

The MainsCom receiver can easily be interfaced with most types of parallel port device. It was designed specifically for use with the Intel family of parallel port devices, the 8155 and the 8255. The interfacing of the transmitter with this type of port is described below, together with some suggestions for interfacing with other types of parallel port device. The D0 to D4 inputs to the transmitter are driven by the lower five bits of any parallel output port which has TTL compatible outputs.

As with any type of output port, some form of "handshake" arrangement is necessary, in this case to ensure that the 5 bit word on the inputs of IC1 and IC2 in the transmitter is not replaced by another until the first has been transmitted. The SL490 IC gives no indication that a message has been sent, so the handshake logic must use a simple timing circuit to indicate when the transmitter is ready for another message.

This timing logic can conveniently act as a source of the TRANSMIT and CARRIER ENABLE signals which activate the generation of PPM signals and enable the FSK carrier. The timing of these two signals is critical to the transmission of an intelligible message. Each message consists of two PPM words, the minimum required by the error checking logic in the receiver. If more than two PPM words were to be transmitted, this would greatly increase the time taken to transmit updates to a group of receivers.

TRANSMIT must be active for a long enough period for the SL490 to generate the two PPM words. CARRIER ENABLE must remain active long enough for those two words to be transmitted. The tim-
ing of these signals is not identical because of the way in which the SL490 operates. If TRANSMIT becomes false after the SL490 has started to generate a PPM word, it will complete that word. CARRIER ENABLE must then be held true until after the completion of the word, so the whole of the last word is sent. The timing of TRANSMIT and CARRIER ENABLE necessary for the correct transmission of PPM messages is shown in Fig. 7 and Fig. 8.

These two control signals could be generated by timing loops in the controlling program, but the use of this technique would be wasteful of CPU time, a precious commodity in microcomputer based control systems. The alternative is the use of a simple hardware timer as suggested above.

If the parallel port is an 8155 or an 8255 it should be programmed to operate in the strobed output mode. The circuit logic shown will take care of the handshake signals and generate the TRANSMIT and CARRIER ENABLE signals.

The controller program initiates the transmission of the message by writing the word to be transmitted to the output port. This will set BF ("Buffer Full"), or IBF on an 8255, to the high state and INTR ("Interrupt') to the low state. After a period determined by the timing circuit, STB will go low. The internal logic of the port will use this transaction to restore $B F$ to the low state. A further delay period later, STB will return to the high state, signalling the end of the message trai mission. INTR will remain low until this occurs. The timing of BF , in inverted form, and of INTR allow these two signals to be used as the source of TRANSMIT and CARRIER ENABLE respectively. See Fig. 7 for the timing of these signals.

Fig. 7 Timing diagram for the logic used with 8155 and 8255 ports.

Fig. 8 Timing diagram for the logic used with other ports.

The program operating the MainsCom transmitter can detect when a new message may be sent either by polling the status register in the port to see when the INTR bit becomes true or by using the INTR signal as a"Transmitter Empty" interrupt.

If your microcomputer system does not use one of the Intel parallel ports mentioned above, some simple logic is needed to mimic the action of the 8155 or 8255 and generate TRANSMIT, CARRIER ENABLE, and handshake signals suitable for most types of parallel port, such as the 6821 and the Z80-PIO.

This logic is provided in the circuit given by removing the links from the positions indicated and replacing them in the alternative positions listed. The data representing the PPM message to be transmitted should be written to the parallel output port and the handshake line pulsed high for a few microseconds to initiate the send process. This pulse will set
the latch formed by IC5 a and IC5b. The latch will be reset after an appropriate period of time by the circuit consisting of R14, RV4, C15 and IC7d. IC5c generates a signal which is used as CARRIER ENABLE and TRANSMIT is produced by $1 C 7$ e which inverts the output of the latch. CARRIER ENABLE may be connected to an input handshake line on the parallel output port and the device programmed to generate an interrupt on the positive going edge. Alternatively, this signal can be polled to see if the transmitter is, still busy. If this polarity of signal is inconvenient for use with a particular port configuration, IC7a may be used to invert the signal. The timing of signals associated with this circuit are shown in Fig. 8.

The timing of the hand shake logic is set by RV4, and this is most easily adjusted whilst a fixed message is being repeatedly transmitted. This can be checked by using an oscilloscope to examine the (inverted) PPM data stream on
pin 2 of IC3, and the CARRIER ENABLE signal. RV4 should be adjusted so that two PPM words occur in each period of CARRIER ENABLE being low. The actual message used in setting the transmit timing is important because the period of a PPM word varies with its data content. A word consisting of all 0 s is the longest and this should be used in setting up the timing as described above.

From the software point of view, the receivers used in this system can be controlled by writing suitable data to the parallel port used to drive the transmitter. The port used will probably be eight bits wide, but only the five least significant bits are used by the transmitter. The controlling program should generate these output bit patterns according to the following format:-

To switch a receiver, or a group of receivers ON , this two word sequence must be used:-

X	X	X	0	A 3	A 2	A 1	A 0
X	X	X	1	0	0	0	0

To switch the receivers OFF, this sequence must be trans-mitted:-

X	X	X	0	A 3	A 2	A 1	A 0
X	X	X	1	0	0	0	1

$A 3, A 2, A 1$ and $A 0$ form the bit pattern corresponding to the binary address assigned to each receiver and set up on the C0 to C3 inputs of the ML924 PPM decoder. The three most significant bits of each byte, shown as the three Xs , are not used and can conveniently be left as logic ' 0 's.

BUYLINES

Dealing with the receiver first, both Watford and T.K. Electronics stock the ML924, Cricklewood can supply the TIC225'D and Ambit the Toko coil. The only other component likely to cause any problems is the hexadecimal rotary switch. As explained in the text, you can use links to set the address but if you want to make it adjustable you could try and find a local retailer who is prepared to order the part from RS for you. Alternatively, Ambit do stock a hexadecimal rotary switch but it is larger than the RS item and has a different pin-out, so you would have to alter the PCB tracking slightly. Note that the extra components required for the two modifications do not appear in the parts list.

Turning to the transmitter, all of the semiconductors are readily available as are most of the other components. The RM10 pot core assembly is available from Ambit and the Verobox is available from Maplin. Ambit also supply enamelled copper wire.
The PCBs for both the transmitter and the receiver are available from our PCB service, see page 65 .

BOOK PAGE

Phil Walker has been burning the midnight oil lately - here are his thoughts on some of the latest offerings for the workshop shelf.

Operational Amplifier
 Experimental Manual G. B. Clayton BSc. FInst.P. Butterworths
 130 pages/ $£ 13.95$ (hardback)
 £6.95 (paperback)

This is a nice friendly book with clear diagrams and text to guide the student through the basics (and further) of operational amplifiers.

The book shows, by means of practical experiments, most of the common (and sometimes forgotten) configurations of op-amp circuits. It sets out to show how they work and why in some circumstances they don't. This process is reinforced by excercises at the end of each chapter.

In the main I would think that the book will be of most use in schools or training colleges where oscilloscopes, power supplies and signal sources are easily obtainable as these are assumed throughout the text. However the book will serve as a useful reference long after its initial purpose is served.

Towers' International MOSPOWER And Other FET
 Selector

T.D. Towers, MBE, MA,BSc, C.Eng, MIERE and N.S. Towers, BA(Cantab) W. Foulsham \& Co. Ltd.

104 pages/£9.95
In the past few years there has been a great surge forward in the technology of field effect devices. This has been very noticeable in the digital field but has been just as great in the analogue and power switching areas. Reliability and power handling capability have enabled amplifiers and especially switch mode power supplies to be made better and cheaper.

This book sets out the major characteristics of some 6000 assorted types of FET in a clear tabular form as well as basic information on package, lead out, manufacturer and typical applications. The Selector claims to cover all MOSPOWER

FET types known to be commercially available at the time of writing.
A very useful feature of the book is that where practicable it offers commercially available substitutes for the MOSPOWER and other devices listed.

At less than 10p per page (just!) it should find a place on many engineer's or technician's book shelf.

PJW

16 Bit Microprocessors

Ian R. Whitworth

Granada

381 pages/ $£ 18.00$
Starting with a brief run down on the ancestry of the current 16-bit micros, the book deals with the development of the 8-bit and 8/16 bit devices before considering the older and newer 16 -bit units. This turns out to be quite interesting in it's own right giving useful comparisons in hardware and software.

Moving on to the early 16 -bit devices shows how simple in concept some of them were (and still are). Also, it demonstrates how some manufacturers attacked similar problems in very different ways.

In the remaining three-quarters of the book the author first considers the current generation of 16bit micros including the 8086, Z8000 and 68000 devices. He takes us through the register and bus structures, memory management and operating system support including interrupt handling and multi-user operation.

After this he moves on to give typical interface structures and requirements. Also we meet the concept of co-processors or special purpose devices which extend or speed up the capabilities of the main processor.

Next to be examined are instruction sets, development systems, system software and, high level languages taking a chapter for each. A chapter on multiple processor sys-
tems is followed by one on applications before the final one which considers future developments in the field.

I found the book quite readable, interesting and informative. Its many illustrations were usually relevant to the immediate text and certainly help with grasping the concepts involved. I think the book would be very useful to someone who has some 8 -bit hardware knowledge and some experience of larger systems from a users point of view.

Microprocessor Instruction Sets And Software Principles
 D.L. Heiseman
 Prentice Hall
 440 pages/circa $£ 27$ hardback

This is a very interesting and seemingly useful book, covering in some detail the various instructions available to four of the most popular eight-bit microprocessors available, the 8080 (and 8085), Z80, 6502 and 6800 .

Each chapter of the book is devoted to a particular instruction type and explores the similarities and differences of the various processors. It also shows how particular simple tasks may be performed by each processor and where differences in the instruction sets may force alternative approaches.

The exercises at the end of each chapter are useful for reinforcing what is learned in the main text throughout the book, there are also many examples of short sections of machine code routines for all the processors, with explanations of how they work.

One or two apparent errors have crept into the text but I would still think that this book is good value for money especially for someone wanting comparative information on the four processor types mentioned. This book is entirely concerned with software and contains no hardware information. ETI

75 p to callers, $£ 1.00$ post paid - Europe, $£ 1.50$ rest of the world.
THE NEW MARSHALL'S 1984 CATALOGUE is now available - one of the biggest and best catalogues ever produced by MARSHALL'S.
56 pages crammed from cover to cover with components, accessories and testgear.
New products include I.D.C. Plugs \& Sockets, 'D' Plugs \& Sockets, DIL
Headers, Ribbon Cable, Kits, Toroidal Transformers, I.C,'s, Capacitors, Test Probes, and lots more - something for everyone.

TRADE, EXPORT, RETAIL AND MAIL ORDER SUPPLIED.

1984 CATALOGUE NOW OUT!

 tgear.| WHERE TO FIND US | CALL IN AND SEE US | MAIL ORDER | TELEPHONE |
| :---: | :---: | :---: | :---: |
| | $\begin{aligned} & \text { 9-5.30 MON TO FRI } \\ & \text { 9-5.00 SAT } \\ & \text { EXPRESS MAIL ORDERS } \\ & \text { ACCESS/BARCLAYCARDS } \\ & \text { WELCOME } \\ & \text { SAME DAY manne } \\ & \text { SERVICE } \end{aligned}$ | WE REGRET WE CANNOT ANSWER MAIL ORDER/ STOCK ENQUIRIES WITHOUT AN S.A.E. SAME DAY SERVICE TRADE AND EXPORT ENQUIRIES WELCOME | MAIL ORDER 041-332-4133 SHOP AND STOCK ENQUIRIES 041-332-4133 TELEX 261507 REF. 2194 |

WHERE TO FIND US

MICROTANIC COMPUTER SYSTEMS LTD.

 MICROTAN 65 NO OTHER COMPUTER IS AS PERSONALFor less than $£ 60$ you can start bullding your own Computer that truly suits your needs and, of course, eventually far more superior to any Computer avaliable off-the-shelf.
MICROTAN 65 comes in kit form, complete with manual, full instructions, board with components, (kit form or fully built)
our full back-up service, and your own Microtan Worid Magazine available on subscription.

MICROTANIC CO
DULWICH, LONDON SE22
TEL: 01-693-1137

MAIL ORDER:
235 FRIERN RD. DULWICH LONDON SE22

FLEXIBLE \& EXPANDABLE SYSTEM - 1 K to 256K! Just look at the options:
1 DISK CONTROLLER
2 REAL TIME CLOCK
3 EPROM PROG. CARD
4 SOUND BOARD
5 SERIAL $1 / 0$ BOARD
6 PARALLEL $1 / 0$ BOARD

7 MASS EPROM STORAGE BOARD 8 INDUSTRIAL CONTROLLER BOARD 9 4OK RAM BOARD
10 HIGH RES. GRAPHICS 256×256
11 PRINTER FACE BOARD
12 ASC11 KEYBOARD
${ }^{2}$ Board with components Board with comp
(built or kit form)
 889 Lee Bridge Rd. Nr Whipps Cross, Walthamstow E7 Tel: 01-520 7747 Assembly, Basic, Forth, and Pilot
HOW TO ORDER:

BUILD AS FAST OR SLOW AS YOU
LIKEI
LIKE!
Post to Tel No 01-693 1137 Please rush me my starter kit: (Please tick)

Fully Built

Name
Company
Address

Microtan World Magazine

Enter details in the coupon below, enclosing your cheque made payable to: Microtanic Computer Systems Ltd. Prices include VAT add $£ 1.50$
p\&p. Please allow 14 days for delivery.
MICROTANIC COMPUTER SYSTEMS LTD 16 UPLAND RD LONDON SE22
\square kit form - I will build myself $£ 59.95$
Complete system wall chart lenclose my cheque/P.O. for E

THE 1984 GREENWELD CATALOGUE

NOW AVAILABLE
Its Bigger, Brighter, Better, more components than ever before With each copy there's discount vouchers, Bargain List, Wholesale Discount List. Bulk Buyers List. Order Form and Reply Paid Envelope. All for just $£ 1.00$ I Order now for early delivery!

MOTORIZED GEARBOX

These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro-mechanical parts required in building remote controlled vehicles. The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vhicle, and a gearboxcontained within the black ABS housing, reducing the final drives speed to approx 50 rpm . Data is supplied with the unit showing various options on driving the motors etc. £5.95. Suitable wheels also available: 79 mm Dia plastic with blue tyre, drilled to push-fit on spindle 2 for $£ 1.30$ (limited aty). $3^{\prime \prime}$ dia aluminium disc 3 mm thick, drilled to push-fit on spindle. 2 for 68p.

2 N3055 SCOOP!

Made by Texas - full spec devices 60p each; 10 for $£ 4 ; 25$ for $£ 9 ; 100$ for $\mathbf{£ 3 4 ;}$ 250 for $\mathbf{£ 7 5 ; 1 0 0 0}$ for $£ 265$.

5 mm RED LED SCOOP! Full spec brand new devices at a low low price!! 25 £1.95; $100 \mathrm{E6}$; 250 £13.50; 1000 £45.50.

1 N5400 3A 50V RECTS Bulk purchase enables us to ofter these special low prices: 25 £1.50; 100 £4.50; 250 £12; 1000 £43; 5000 £200.

STABILIZED PSU PANEL

A199 A versatie stabilized power sup ply with both voltage ($2-30 \mathrm{~V}$) and current ($20 \mathrm{~mA}-2 \mathrm{~A}$) fully variable. Many uses inc bench PSU, Nicad charger, gen. purpose testing. Panel ready built, tested and calibrated. £7.75. Suitable transformer and pots $\mathbf{£ 6 . 0 0}$. Full data supplied.

TTLPANELS

Panels with assorted TKL inc LS types. Big variety. 20 chips $£ 1.00 ; 100 \mathrm{chips}$ £4.00; 1000 chips $£ 30.00$

RIBBON CABLE

Special purchase of multiccloured 14 way ribbon cable - 40p/metre; 50 m £18; $100 \mathrm{~m} \mathrm{32.00;} 250 \mathrm{~m}$ £65.00.

NICAD CHARGER

Versatile unit for charging $A A, C, D$ and PP3 batteries. Charge/test switch, LED indicators at each of the 5 charging points Mains powered. $210 \times 100 \times 50$ mme7.95. Also Model A124. Unit plugs directly into 13 mpp sockets and will charge up to 4 AA celis at a time £4.80.

NICAD BATTERIES

AA Size 99 p. C size 199p. D size 220p. PP3 size 395 p. SPECIAL 6×0 size for only $£ 11.00$!!

FERRIC CHLORIDE New supplies just arrived - 250 gm bags or granules, easily dissolved in 500 ml of water. Only $£ 1.15$.
Also abrasive polishing block 95 p.

TREAT YOURSELF TO A NICE NEW DIGITAL MULTIMETER!! K0555C A DVM for the professional this $31 / 2$ digit multitester has overload protection, low battery and overrange indication. Full auto polarity operation. AC Volts: 0.2-700
DC Volts: 0.2-1000
AC Current: 200uA-10A
DC Current: 200uA-10A Resistance: 200R-200M
Total 28 ranges for just £44.95

> PUSH BUTTON BANKS W4700 An assortment of latching and independent switches on banks from 2 to 7 way, DPCO to GPCO. A total of at least 40 switches for $£ 2.95 ; 100$ £6.50; 250 £ $14.00 ; 1000 £ 45.00$

"THE SENSIBLE 64"

David Hignmores new book on the
数 4 now available $\mathbf{5}$ Originally for sale at £8.95, these well made units $70 \times 50 \times 25 \mathrm{~mm}$ provide both audible and visual alarms. Uses 2 IC's PB2720 transducer, etc. .. Available ready built, with circuit and instructions for just £3.95. Also available as a kit, PCB + all components box, wire, etc together with instructions ONLY £2.95.

BULK BUYERS LIST

Send for our ltest wholesale list - IC's C's 0.8 p etc. . BARGAINS GALORE!

VEROBLOC E1 off Our biggest selling breadboard on offer at a special price of £4.10
NUT SCREWS WASHERS \& BOLTS Over 2 milion in stock, metric, BA selffappers etc. SAE for list

COMPUTER GAMES

2901 Can you follow the flashing light/ pulsating tone sequence of this famous game? Supplied as a fully working PCB with speaker (no case) plus full instructions. Only £4.95
2902 Probably the most popular electronic game on the market - based on the old fashioned pencil and paper battleship game, this computerized version has brought it bang up to date! We supply a ready built PCB containig 76477 sound effect Chip. TMS 1000 Offered for its component value only (board may be cracked or chipped), it's only £1.95. Instructions and circuit 30 p.

STORE CLEARANCE!
We've bought so much surplus recently our stores are bulging at the seams! In again offering "Bargain Parcelse once have proved very popular in the past They contain resistors capacitors, switches panels with transistors and IC's, screws and various hardware + all the odd bits and pieces which have accumulated over the years Each par cel weighs 10 ibs and costs just $\mathbf{£ 8} 00$.

ALL PRICES INCLUDE VAT: JUST ADD 60p P\&P
GREENWELD

Our shop has enormous stocks of components and is open from 9-5.30 Mon-Sat. Come \& see us!!

443A Millbrook Road Southampton S01 OHX Tel: (0703) 772501/783740

CLEF ELectronic MUSIC
MICROSYNTH
2', Octave Music Synthesizer with iwo Oscil
lators two Sub-Octs. Switched Routing and
Thumbwheel A comprethenswe instrument after. ing ine full range of synth. Music $\&$ ettecis
ind
PERCUSSION MICROSYNTH
wochanreltouch Sensative unit plus
and external triggering
COMPONENT KIT 880

THREE PIECE BACKING BAND

 Genergtes the sounds of three instrumentalists to back SoloistsDRUMS + BASS + KEYBOARDS Over 3,000 chord changes (60 scores) on 132 dif ferent chords - extendable to 200 scores. Master Rhythm also required.
FULL KIT £235 EXTENSION £B2

88/72 NOTE PIANOS SPECIALISTS SINCE 1972

COMPONENT KITS including Keyboard
88 NOTE 72 NOTE E234 chased in four parts.

DOMESTIC KITS
inc. Cabinet, P.A., \& Sokr.

STAGE MODEL 72 Inc. Cabinet \& Stand

ALL PRICES INC. VAT. CARR. TIELEPHONE ADVICE American Express.

MASTER RHYTHM PROGRAMMABLE DRUMS Twenty-Four Rhythm programm instruments. Eignt sections are extended to $24 / 32$ measures tor two bar programming. Sequence operation and instrument tone adjust. COMPLETE KIT
STRING ENSEMBLE E198.50 $\begin{array}{lr}\text { ROTOR-CHORUS } & \mathbf{8 1 9 8 . 5 0} \\ & 898.00\end{array}$ SOUARE FRONT KEYBOARDS 88 NOTE 880 49 NOTE $£ 29$ 73 NOTE 850 30 NOTE $£ 19$ ABLE

${ }_{\text {Memories }}^{\text {Happy }}$

Part type
4116200 ns
4164 200ns
2016 150ns
6116 t50ns Low power 6264150 ns 2716450 ns 5 voit 2732 450ns Intel type 2532 450ns Texas type 2764 250ns 27128300 ns

Z80A-CPU £2.99 Z80A-PlO £2.99 Z80A-CTC £2.99 6522 PIA $\quad £ 3.70 \quad 7805 \mathrm{reg}$ £O.50 7812 reg £O.50

Low profile IC sockets:
$\begin{array}{llllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$ $\begin{array}{llllllllll}\text { Pence } & 12 & 13 & 14 & 16 & 18 & 22 & 24 & 27 & 38\end{array}$

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00. 5 inch SSDD £19.25. 5 inch DSDD £21.00. 5 inch SSQD £23.95. 5 inch DSQD £26.35

74LS series TTL, large stocks at low prices with DIY discounts start ${ }^{\text {² }}$ ing at a mix of just 25 pieces. Write or 'phone for list.

Piease add 50p post \& packing to orders under $\& 15$ and VAT to total. Access \& Visa welcome. 24 hr 'phone service on (054 422) 618 Government \& Educational orders welcome, $£ 15$ minimum. Trade accounts operated, 'phone or write for details.

Happy Memories (ETI)
Gladestry, Kington, Herefordshire HR5 3NY
Tel: (054 422) 618 or 628

CENTRONICS INTERFACE

Designed for use with the Sharp MZ-80K but readily adapted to work with other machines, this interface provides a simple, low-cost method of connecting a printer to your micro. Design by Matthew Dunn.

The problem with trying to connect your micro to a printer is that the printer you like (or can afford!) is almost certain not to interface directly with your micro. You can get round this by purchasing a suitable interface, assuming one to be available for your particular purposes, but that will add to the cost considerably and may even end up costing more than an expensive printer purpose built for use with your micro.

The interface described in this article is designed to match the I/O port of the Sharp MZ-80K microcomputer to the Centronics port found on many printers. With minimal hardware modifications

Pin	A	B
	A15	Gnd
2	A14	INT
3	A13	Gnd
4	A12	MRRQ
5	Al1	Gnd
6	A10	IORQ
7	A9	Gnd
8	A8	RD
9	A7	Gnd
10	A6	WR
11	A5	Gnd
12	A4	M1
13	A3	Gnd
14	A2	HALT
15	A1	Gnd
16	A0	RESET
17	GND	Gnd
18	D7	Gnd
19	D6	Gnd
20	D5	Gnd
21	D4	Gnd
22	D3	Gnd
23	D2	Gnd
24	(1)	Cind
25	D0	Gnd
Table 1 Locations of signal connections on the Sharp 50-way bus.		

and appropriate software, the interface should work with any other $Z 80$-based system, including the ZX81 and Spectrum. It is not within the scope of this article to consider all the changes necessary to make the interface operate with other machines, but a few brief notes have been included to help those who wish to try.

A Centronics port requires 8 bits of parallel data and a Strobe signal to be sent to it, after which an acknowledge pulse is returned to the microcomputer. Sharp's BASIC sends character data to the printer using the I/O port FF hex. This is strobed by toggling bit 7 of port FE hex, after which the processor waits for bit 1 to go high to indicate that the data has been received. The interface uses an 8 bit latch which holds the information on the data lines when the address lines indicate port FF (all high). When the computer sets bit 7 high and indicates port FE (A0 low), data line D7 is inverted and sent to the printer's strobe input. This should result in the printer sending an acknowledge pulse which is then held in a bistable latch until the computer sets bit 7 on port FE and thus resets it. A tri-state buffer sets D0 to indicate the state of the latch and also sets D1, 2 and 3 low when the address lines indicate port FE. By monitoring bit 0 of port FE, the microcomputer can tell when the acknowledge pulse has been sent and the latch makes sure it isn't missed. Bits 1, 2 and 3 are held low because Sharp use them to indicate the condition of their own printer, and if this is not done the computer will assume a printer failure.

Construction

The prototype was constructed in a Verobox type 21390, although any box about $75 \times 110 \mathrm{~mm}$ should do. Construction of the PCB is fairly straight forward; there are 9 wire links, two resistors and three capacitors to fit. All the IC's face the same way and we recommend the use of IC sockets. Care must be taken when fitting the two diodes to ensure correct polarity.

If the board is then fixed solder side up in the box, the connections to the Sharp 50 -way bus can be made. A length of 40 -way ribbon cable should be placed such that the first wire connects to A25 and the last wire connects to B6 of the IDC connector. Holding the cable against the IDC spikes, place the clamp in position and put the whole lot in a vice. Tighten the jaws of the vice so that the clamp forces the cable over the spikes.

At the other end, all the connections are in order along the width of the cable with the exception of the RESET signal. If you are not using an MZ-80 K and

Fig. 1 Pin designation of the Amphenol connector.

Fig. 2 Circuit diagram of the interface.
your computer doesn't supply a RESET signal, a manual interface reset can be made by omitting D2 and connecting a push switch as shown on the overlay.

Next connect the 36-way Amphenol connector to the interface using a multiway cable. Again, it is probably easier to make the connections to the solder side
of the board. The relevant connections to the Amphenol plug are shown in Fig 1. Pins 19-30 can be shorted together, but pin 30 must be connected to the ground/ 0 V of the interface.

With assembly complete, all components in place and the board thoroughly checked, it is time to connect the interface to

Fig. 3 Pin designation of the Sharp 50-way bus.

HOW IT WORKS

IC1 is an 8 input NAND gate which mon-

 itors addresslines A1 to A 7 and the inverted IORQ line. Its output goes low whenever the computer requests an input/output and defines either port FE or port FF on the address lines. The output is inverted by IC7c and used to enable the three, 3 input AND gates IC4a, b and c.IC4b combines the inverted output of IC1 with the inverted WR line and address line A0, which will be high when port FF is defined and low when port FE is defined. IC4b thus detects when port FF is being written to and enables the latches, IC2 and IC3 so that data is transferred to the latch outputs.
A0 is inverted by IC7e before being combined with the output of IC1 and the inverted WR line by IC4a. IC4a thus detects when port FE is being written to and resets the bistable latch IC5 c, d via IC5 a. D1 and D2 prevent the outputs of IC5a and IC7a driving each other low. The output of IC4 a is also combined with data line 07 by IC5b; bit 7 is toggled by the microcomputer when port FE is indicated, and the output of IC5 b can thus be used to strobe the printer. The printer should respond to the strobe by sending an acknowledge pulse, which is caught by the latch IC5c, d .
When port FE is read from, the inverted signals from IC1, $\overline{\mathrm{RD}}$ and A 0 are combined in IC4 c which enables the tri-state buffer, IC6, placing the output of the latch onto data line D0. The other three sections of the buffer have their inputs held low so that, when enabled, they pull data lines D1 to D3 low. This satisties a particular requirement of Sharp BASIC which uses the three lines to monitor printer condition.
the printer and computer. Having done this, turn the printer on and then turn the computer on. If either device fails to operate as expected then turn it off and recheck the wiring for shorts.

If both computer and printer function as expected it only remains to connect the interface to a 5 volt supply. Since, in their wisdom, Sharp don't supply 5 volts on the 50 -way bus, it must be obtained from somewhere else. Some printers supply 5 volts through the Amphenol connector, or you could use an external 5 volt supply, but it is fairly easy to get a supply from the MZ-80K. To do this, connect a wire to the top of R47,R48 at the front right of the MZ80K's main PCB (see Fig. 4). The wire can be brought out through the hole around the 50-way connector. If a crocodile clip is used to connect the wire, the interface unit can be completely disconnected from the MZ-80K without having to desolder wires.

Now power up the printer and the computer in that order (to ensure the bistable is reset by the computer). If a manual rest switch is fitted this should be pressed before the first print.

In Use

To use the interface, load in Sharp BASIC, or enter a program similar to listing 1. Before Sharp BASIC will print properly the routine that interrogates the Sharp printer for its status needs to be disabled. This is done simply by POKEing 15542,201 (Note that this routine usually only exists in Sharp's software). Having POKEd this location type PRINT/P"TEST MESSAGE"; this should result in the printer outputting the message. If you are using program 1, call it a couple of times with different ASCII codes in the accumulator and then call it with the RETURN character code (usually 13) in the accumulator. Alternatively, program 2 will send the message indefinitely. Finally, to use Sharp Edito-Assembler, three alterations need to be made. Change 2B89 to C9, change 2B2F to B7 and 2B30 to C9.

As we pointed out earlier, it is not possible in this article to describe all the modifications necessary to make this interface work with other machines. The following notes, however, should

010000 D3FF	PRINT:	OUT	(255), A
0200023 E80		LD	$\mathrm{A}, 80 \mathrm{H}$
030004 D3FE		OUT	(254), A
040006 DBFE	PRINT1:	IN	A,(254)
050008 E 60 F		AND	OFH
06000 A 28 FA		JR	Z,PRINT1
07000 CAF	PRINT2:	XOR	A
08000 D D 3 FE		OUT	(254), A
09000 F DBFE		IN	A, (254)
100011 E60F		AND	0 FH
11001320 F 7		JR	NZ,PRINT2
120015 C9		RET	
130016			

Table 3 Program 1

$010000210 F 00$	START:	LD	HL,MESSAGE
0200037 E	LOOP:	LD	A, (HL)
030004 CD1C00		CALL	PRINT
040007 7E		LD	A, (HL)
050008 FE0D		CP	13
06000 A 28 F4		JR	Z,START
07000 C 23		INC	HL
08000 D 18 F 4		JR	LOOP
09000 F			
10000 F 54455354	MESSAGE:	DEFM	"TEST MESSACE"
110013204 D4553			
12001753414745			
$13001 \mathrm{B0D}$		DEFB	13
14001 C			
15001 C D3FF	PRINT:	OUT	(255), A
16001 E 3 E 80		LD	A,80H
170020 D3FE		OUT	(254), A
180022 DBFE	PRINT1:	IN	A,(254)
190024 E60F		AND	0 FH
20002628 FA		JR	Z,PRINT1
210028 AF	PRINT2:	XOR	A
220029 D3FE		OUT	(254) A A
23002 B DBFE		IN	A,(254)
$24002 \mathrm{D} \mathrm{E60F}$		AND	0 FH
$25002 \mathrm{~F} 20 \mathrm{F7}$		JR	NZ,PRINT2
260031 C9		RET	
	e 4 Program		

be of some help to those with other Z80 based machines, particularly the ZX81 and the Spectrum, who wish to try and adapt this circuit.

The first thing to note is that the Sinclair machines use a simplified port addressing system in which A0, $1,2,3$, or 4 are taken low to indicate specific peripherals. Because of this, A0 cannot be used to detect the difference between port addresses and one of the unused lines, A5, 6 or 7 , must be used instead with the appropriate address written in the software. Assuming the use of A5, the new addresses of the data and control ports should be 65504 and 65535 respectively on the Spectrum and 233 and 255 on the ZX81. The other important point to note is that you will, of course, have to rewrite the software to ensure that ASCII values of characters are sent to the printer. Note that, while the Spectrum uses BASIC on its I/O port, the ZX81 uses machine code.

Fig. 4 Location of a suitable 5 V tapping point on the MZ-80K PCB.

PROJECT: Centronics Interface

PARTS LIST	
RESISTORS	
R1, R2	3k3
CAPACITORS	
C1, 2, 3	10n ceramic
SEMICONDUCTORS	
IC1	74LS30
IC2, 3	74LS75
IC4	74LS11
IC5	741500
IC6	74LS126
IC7	74LS14
D1, D2	IN4148
miscellaneous	
PCB: Verobox type 202-21390 or similar;	
50-way 10C connector; 36-way	
Amphenol plug; IC sockets, nuts, bolts, spacers, ribbon cable, etc.	

BUYLINES

Absoutely nothing to cause any problems here, and the PCB is, as ever, available through our PCB Service. See page 65.

Fig. 5 Overlay diagram of the PCB.
TT LIVES AGAMN!

From the past it came, growing dally, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics - It's Easy. Originally a long-running series in Electronics Today International, Electronics - It's Easy was printed as a set of three books. They sold out. It was reprinted as a single volume it sold out. Now this phenominally successful publication is avallable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written gulde which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mail order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barclaycard.

MDEX disc operating system - from £95
MDEX. Language power
FORTH PASCAL SPL QBASIC META Software to make the CORTEX go!

CORTEX 1 Mb Disc Drives
80 track double-sided double-density £235

TMS9909 disc controller I.C. £24.50
CORTEX game tapes
Space Bugs, Nibblers, Pontoon each £6
Please add VAT to all prices

An in-depth series in understanding today's world of electronics.

FromTexasInstruments.

The Understanding Electronics Series was specially developed and written to gre you an in-depth knowledge of this world.
Each book is compriphensive, yet easy to understand. As informative for the edectronics huff as for someone who's simply interested in whar's paing on todiav.
Togecher the library will pive you the mont con matere range of teles availahle. Take advantage of our spectal ofter and choose the book, or houks you want from the titles helow: Youtl find whole new worlds of advanced rechnollogy unfolding beforc you.

1. Understanding Electronic Control of Energy Systems st editun Ref. LCB G642. Covers mompor, generittor, powcr dismibution, heatng, air conditiuning, intermal combustum crepine, solar and nuclear
systerns. Sof hanaritid 2
2. Understanding Electroinic Security Systems.
 ured, phutrosen isitive infrared, illrasunic and niicrawave systems and their Understanding Sulid State Et
3. Understanding Solid State Electronics
3rd edriten. Ref. LCC 336 L The principtes of sol lid state theory. It explains electrical movement. with intemmediate tuition on the applications of solid state devices. Sufthund 282 pages. 14.50
4. Understanding Digital Electronics. Is edinom. Ref. LCB 3 3n. Describes digital electronics in cay-totedlow stages. It covers the main farmlies of digtal inceqrited circ cuts and data proxessing systemb Softbound 260 pares. $£ 4.50$.
5. Understanding Microprocessors, וeduum. Ref. LCB 4023. An in-derth lewk as the majic of the sedid state chap. Whar chey are what chey du. Applications of 8 -hit mad 16 -his nitroprocessors, and design from idea ro hardu:ree Softhuand 288 pages $\mathbf{E 4 . 5 0}$.
6. Understanding Computer Science int ediron. Ref. LCB 547 L This bouk tells wou in eweyday English how rodar's cinnputer has Softhound 278 puges 54.50 .
7. Understanding Communications Systems. Is edinon Ref. LCB 452 L An uvervicw sf all types of electronic communi lreanon Ref. LCB B42L An wvervew, 1al ty
8. Understanding Calculator Maths, list edrion. Ref. LCB 3321 Brings weyether the hasic ufformation-tormulite facrs, and marhematical touls- you need to "unleck" the real power of the hand-held calculator. Softhound 230 pages $\mathbf{\Sigma 4 . 5 0}$.
9. Understandiny Optronics. Ist edrom Ref. LCB 5472. Optronics is the application of light and electroniss to perform a wide ranpe of useful casks From car headlights to missile guidance systenns. Softiound 270 pages. $£ .750$.
10. Understanding Automotive Electronics. 1st wition: Ref. LCB 577 L Larrn huw elecrrorics is being applied to automobiles How he basic mex hanical, electrical and electronic finctions and the new microproxessors and mierowonpurers are being applied m
mnovative ways tor vehicle

11. Understanding Telephone Electronics.
he editinine Ref. LCB 714. The powerful, positive thrist of clectronics is muking the telenhomic an even move inmportiant communication link Convenrional edephone hurdanementals, analog and digital electronis, principles, newer dizntal reclniques and hardware mplementation are wvered in this baok Sofftbund 288 pages. 14.50 .
12. Understanding Electronic Control of Automation Systems. 1st ceinor Ref. LCB 664L This bowk is about aytomationexplains in simple lanquyse the subject st electrunic confrol of autornation systemss, ind tohelp the reader understand the terms, principles, techruques and efforr used to atulonate prox cesses. Sofitbund 280 pages. $£ 4.50$.

How to order

Fill in the courxm het ow ur if smimence dse has already used it, simply: 1. Lide reference munthers ind yuiantitics required.
2. Cidculare toval order value. Add FI .50 tor postage and packing.
 Allow 30 days for Harhurepugh, Leicestershre
 TEXAS
InsTRUMENTS

MARCO TRADING

Resistor Kits - Each Value
Individually Packed
1/4W pack 10 each value E12-10R to 1 M 610 pcs 84.80 .
$1 / 2 \mathrm{~W}$ pack 10 each value E12-2R2 to 2 m 2 1w 1 P. 25.
0.1 W Pre-Sets

7p ea: 65 p/ 10 : 85.50 per 100
Rotary Potentiometers
1 K to 2 M 2 Log and $\operatorname{lin} 32 \mathrm{pea}, \mathrm{£} 3 / 10$

Resistors
Resistors $1 / 4 \mathrm{~W}$ 1R 10 M 2pea: $15 \mathrm{p} / 1075 \mathrm{p} / 100$ £4.80/1000 1/2W 1R to 10M 2p ea: $15 p / 1095 p / 100 £ 6.00 / 1000$ Zener Diodes
Zener Diodes $400 \mathrm{~m} / \mathrm{w} 2 \mathrm{~V} 7$ to 75 V , 8p ea: 75p/10: $\mathbf{£ 3 . 5 0 / 5 0 : ~ \mathbf { ~ } 6 / 1 0 0}$ 1.3W $2 V 7$ to 200 V 15 p ea: $£ 1.40 / 10: £ 12.50100$ L.E.D.s Available in 3 mm and 5 mm

RED 10p ea: 85p/10 £6/100
 Supplied complete with clips. Diodes $\quad 5 \mathrm{Voltage}$ Regulators Adaptor
This two pin adap
tor ideal for driving tor ideal for driving $\begin{array}{lll}\text { Diodes } & & \text { Voltage Reguiators } \\ \text { 1N4001 } & \mathbf{5 p} & 78 \mathrm{~L} / 05 / 08 / 12 / 1530 \mathrm{p}\end{array}$ IN4007 7p 78M/05/08/12/1550p

 $\begin{array}{lllll}\text { iN5408 } & \text { 20p } & 79 / 12 / 15 / 18 / 24 & \text { 65p } & \text { E8. } \\ \text { 亿8. }\end{array}$
Transformers (* p / p see below)
240v. 6-0-6/100mA 58p: $£ 5.20$ for 10 : $£ 43$ for 100 240v: $\mathbf{6 - 0 - 6 / 5 0 0 \mathrm { mA }} \mathbf{6 5 p}$: $\mathbf{\varepsilon} 6.00$ for 10 . $£ 48$ for 100 Transistors

50							
AC128	30p	BC147	8p	BC213	9p	BY238	¢80
AC169	45p	BC157	10p	BC214	9 p	BY238	68 p
AD149	96p	BC160	30p	BC238	12p	TIP3055	60p
AF239	68p	BC170	14p	BC300	$30 p$	2N3055	45p
BA148	16p	BC182	9p	BC337	12p	2SC1306	93p
BC107	10p	BC183	9p	BD131/2	34 p	2SC1909	£1.20
BC108	10p	BC184	9p	BFY51	21 p	2SC1969	£2.88
BC109	10p	BC212	9 p	BFY90	90 p	3SK88K	66 p
Integrated Circuits 84.60 UPC1181H3 \&1.60							
741		5/81	TDA2020	£4.60		181 H 3	¢1.60
555	25p	5/E1	TDA2030	£2.78		182	£2.80
LM324N		55p	TLO72	98p		185 H 2	¢3.75
LM346N		90 p	UPC575C2	¢3. 20		212 C	£1.30
LM380		80p	UPC1025H	£2.90		1230 H	E3.90
NE556		80p	UPC1 158H	76p		373 H	c1.01
ML231B		2.10					
This adver Hllustrated etc etc. (*T Please ad	only a atalog slorm 5\% VA	fraction (Incls rs $p / p 4$ and $45 p$	of our range 35p cred $5 p$ each $£ 1.6$ P/P to the a	send 65 p f +). Comple /10. £4.50/ ove prices.	our	test 109 special	ge fully lists

50							
AC128	30p	BC147	8p	BC213	9p	BY238	¢80
AC169	45p	BC157	10p	BC214	9 p	BY238	68 p
AD149	96p	BC160	30p	BC238	12p	TIP3055	60p
AF239	68p	BC170	14p	BC300	$30 p$	2N3055	45p
BA148	16p	BC182	9p	BC337	12p	2SC1306	93p
BC107	10p	BC183	9p	BD131/2	34 p	2SC1909	£1.20
BC108	10p	BC184	9p	BFY51	21 p	2SC1969	£2.88
BC109	10p	BC212	9 p	BFY90	90 p	3SK88K	66 p
Integrated Circuits 84.60 UPC1181H3 \&1.60							
741		5/81	TDA2020	£4.60		181 H 3	¢1.60
555	25p	5/E1	TDA2030	£2.78		182	£2.80
LM324N		55p	TLO72	98p		185 H 2	¢3.75
LM346N		90 p	UPC575C2	¢3. 20		212 C	£1.30
LM380		80p	UPC1025H	£2.90		1230 H	E3.90
NE556		80p	UPC1 158H	76p		373 H	c1.01
ML231B		2.10					
This adver Hllustrated etc etc. (*T Please ad	only a atalog slorm 5\% VA	fraction (Incls rs $p / p 4$ and $45 p$	of our range 35p cred $5 p$ each $£ 1.6$ P/P to the a	send 65 p f +). Comple /10. £4.50/ ove prices.	our	test 109 special	ge fully lists

ML231B E2.10 This advert only a fraction of our range, send 65 p for our latest 109 page fully illustrated catalogue (Incls 35p credit+). Complete etc etc. **Translormers p/p 45 p each $£ 1.60 / 10$. $£ 4.50$
Please add 15% VAT and 45 p P/P to the above prices.

MULTIMETER SPECIAL (Complete with rechargeable batteries)
Russian type U4324 d.c. Voltage: $0.6,1.2,2,12,30,60$, $120,600,1200$. ac. Voltage: $3.6,15,60,150,300,600$
900 dc intensity $\mathrm{m} / \mathrm{a}: 0.006$ $0.6,6,60,600,3000$ a.c. intensity m/a: $0.3,3,30,300$, 3000 . d.c. resistance: $0.25,5$ $30,500.500 \mathrm{kOhm}$ ae. leve
50 dB: 10 to +12 . 20,000 OP $\mathrm{f} 12^{\text {inc } p / p+V A T}$
Soldering Section Antex 15 W Iron Antex $18 W$ Iron Antex Elements Antex Bits Antex Stands De-solderpumps

I:C: Sockets 8 pin: 8p 70p/10 14 pin: 10p 95p/10 $16 \mathrm{pin}: 11 \mathrm{p} \mathrm{c1/10}$ 18 pin: 14 p £1.30/10 40 pin: $\mathbf{3 4 p}$ p $\mathbf{2 . 1 0 / 1 0}$ $\begin{array}{rlr}\text { 9p } & \text { BT106 } & \mathbf{\varepsilon 1 . 5 0} \\ \text { 9p } & \text { BY238 } & 68 p \\ \mathbf{1 2 p} & \text { TIP3055 } & 60 p \\ \mathbf{3 0 p} & \text { 2N3055 } & \mathbf{4 5 p} \\ \text { 12p } & \text { 2SC1306 } & \mathbf{9 3 p} \\ \text { 34p } & \text { 2SC1909 } & \mathbf{£ 1 . 2 0} \\ \text { 21p } & \text { 2SC1969 } & \mathbf{\varepsilon 2 . 8 8} \\ \text { 90p } & \text { 3SK88K } & \mathbf{6 6 p}\end{array}$ $\$ 5.00$
$£ 5.00$ E5.20 2.200
$\mathbf{8} 20.95$ ع0.95 $£ 1.90$ $£ 3.50$
\qquad 0

.50

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

ARE YOU MAKING THE MOST OF YOURSELF? HAVE YOU CONSIDERED FURTHER TRAINING IN ELECTRONICS?

We offer

CNAA BSc in ELECTRONIC ENGINEERING

A four year part-time degree course for mature students in industry, involving attendance for one full day each week of the academic year. The course is based upon modern electronic engineering with a strong computing theme.
Entry qualifications: HTC or equivalent in Electrical and Electronic Engineering or Applied Physics.

BTEC HND in ELECTRICAL AND ELECTRONIC ENGINEERING

A two year full-time course which combines an up-to-date technological education with a considerable 'hands on' experience of a wide range of modern equipment and techniques.
Entry qualificiations: One pass at ' A ' level in an appropriate subject, or a BTEC Certificate or Diploma or equivalent.
For further details contact:
The Department of Engineering
Cambridgeshire College of Arts and Technology Cambridge CB1 1 PT
Telephone (0223) 352973 or 352979

"Run more than tentasksona ZX81-FORIHROM?"

Sure! More than 10 tasks simultaneously and, in some cases, up to 300 times faster! That's what replacing the basic ROM with the new FORTH does for the ZX81 - and more! The brains behind the breakthrough belong to David Husband, and he's building Skywave Software on the strength of it. Already orders are flooding in and it's easy to see why.

The ZX81-FORTH ROM gives you a totally new system. In addition to multi-tasking and split screen window capability, you can also edit a program while three or four others are executing, schedule tasks to run from 50 times a second to once a year, and with a further modification switch between FORTH and BASIC whenever you like.

ETI/5

The ZX81-FORTH ROM gives you a normal keyboard with a 64 character buffer and repeat, it supports the $16 \mathrm{k}, 32 \mathrm{k}, 64 \mathrm{k}$ RAM packs, it is fig FORTH compatible and it supports the $Z \times$ printer.

The price, too, is almost unbelievable. As a "fit it yourself Eprom", complete with manual, It's just $£ 25+V A T$.
Add $£ 2$ p\&p UK ($£ 5$ Europe, $£ 10$ outside Europe) and send your order to the address below.

Skywave SOFTWARE

David Husband
73 Curzon Road, Bournemouth, BH 1 4PW, ENGLAND. Tel (0202) 302385.
International +44202302385.

MACHINE CODE PROGRAMMING

Bob Bennett offers some general advice on de-bugging machine code programs before taking us step-by-step through the development of a program to convert decimal to hex.

Throughout this series I have tried to show that there is no mystery attached to machine code, no more so than when you first encountered BASIC as a computer language. And, just as you learned to use BASIC, the only way to learn machine code programming is to have a go, or, as it is sometimes put, to gain 'hands on' experience.

At times I have shown machine code instructions as though they were part of a program, in order to demonstrate the effect of the instruction. To remind you: if you were to place the Z 80 instruction C9h-Ret in an address and then call that address from BASIC, the computer would execute the instruction and return you immediately to the BASIC program. Nothing very spectacular about that, you might say, but that single instruction constituted a program. Obviously you will want to write programs which are longer than one byte, but somewhere in that program will be at least one RETurn instruction.

This brings me to two very important things you must always keep at the back of your mind . . . crashes and infinite loops, which are not the same thing. The simplest crash will produce an error report, while more complex ones give rise to some very exotic displays. With infinite loops, the most usual form leaves you staring at a blank screen, but the solution is always the same, just pull the
plug out. This should not really be so since there should always be some form of escape route, but of course, you wrote the program in the first place, didn't you? To help you avoid problems of the kind I've just mentioned here are a few tips and pointer, which, although I have covered them in this series, you may not recognise.

It might be stating the obvious, but you should always make sure the program starts at the correct entry point, which may not be the first address of the program. I made it clear earlier that a byte could be either an instruction or a data byte, so consider the following example. The $Z 80$ instruction to load register A with the ASCII code (of which more later) for the capital letter A would be $3 \mathrm{E}, 41$, with the comma representing the division between two adjacent addresses. If by chance (or accident!) the program started at the byte 41, the computer would now read this as Load B,C. The program following would then be interpreted in a completely different manner to that intended.

The main cause of this type of error is the miscalculation of offset bytes and addresses for JUMPing or CALLing. It is always worth doing the calculation in two different ways, for example, counting from each end of the jump in turn. Failure to include a RET in a program can cause some interesting effects, the results depending upon what the computer meets after zooming past the

Character	ASCII	Character	ASCII	Character	ASCII	Character	ASCII
NUL	00	SPACE	20	@	40		60
SOH	01	!	21	A	41	a	61
STX	02	"	22	B	42	b	62
ETX	03	\#	23	C	43	c	63
EOT	04	\$	24	D	44	d	64
ENQ	05	\%	25	E	45	e	65
ACK	06	\&	26	F	46	f	66
BEL	07	,	27	G	47	g	67
BS(-)	08	(28	H	48	h	68
HT(\rightarrow)	09)	29	1	49	i	69
LF(1)	0 A	*	2 A	J	4A	j	6A
$\mathrm{VT}(\mathrm{j})$	OB	$+$	2B	K	4B	k	6B
FF(home)	OC	,	2 C	L	4 C	,	6 C
CR (return)	OD	-	2 D	M	4D	m	6D
SO	OE		2 E	N	4 E	n	6 E
SI	0 F	/	2 F	O	4 F	o	6 F
DLE	10	0	30	P	50	p	70
X-ON	11	1	31	Q	51	q	71
TAPE	12	2	32	R	52	,	72
X-OFF	13	3	33	S	53	s	73
TAPE	14	4	34	T	54	t	74
NAK	15	5	35	U	55	u	75
SYN	16	6	36	V	56	v	76
ETB	17	7	37	W	57	w	77
CAN	18	8	38	X	58	x	78
EM	19	9	39	Y	59	y	79
SUB	1 A	?	3A	Z	5A	z	7 A
ESC	1 B	;	3B	I	5 B	,	7 B
FS	1 C	$<$	3C	1	5 C	-	7 C
GS	1 D	$=$	3 D]	5D	\}	7 D
RS	1 E	>	3E		5 E		7 F
US	1 F	?	3 F	$\stackrel{\wedge}{\sim}$	5 F	DEL	7 F

Fig. 1 Machine code program.
place where the RET should have been. Calling routines based in ROM is another potential disaster area. Quite often these routines use the full register set to work on, so before calling, preserve any register contents by PUSHing.

Even if you have got all your calculations right and your RET in, failure to match all your POPS with the PUSHES will almost certainly end in disaster. During a program, unless done deliberately, POPping in a different order to PUSHing can raise the old blood pres-
sure. Follow the rules for nested loops and you can't go wrong (cue maniac laughter). One final point on this subject, don't blithely decrement a register pair and expect the zero flag to inform you when zero has been reached, because it won't. By way of consolation, expert programmers will have made most, if not all, of the mistakes l've mentioned, and still do! Just remember, a computeronly follows orders. . yours.

But now for something completely different: I would like to show you how to develop a useful program. The one I have in mind is a decimal to hex conversion routine which I wrote for my own Spectrum machine code loader tape. I don't use a printer on my Spectrum sosmall routines, like the one I am going to show you, I put into the printer buffer. The program could be written entirely in machine code, but, at least for now, l'll keep the techniques simple and just give you a few lines of BASIC.

Because I will need to refer to it, and because some of you may not be familiar with it, the full ASCII code is shown in Table 1. The American Standard Code for Information Interchange (ASCII) uses the first 7 data bits (bits 0 to 6) to generate printable character or data communication codes. An example of each code would be 41 h to print the capital letter A , and 0 Dh to act on a printer attached to the computer to cause a carriage return. Most computers, including the Spectrum, use either all or some of the ASCII codes. In fact, on the Spectrum, we could use those same codes in a machine code program to print A to the screen and cause the next print position to start at the beginning of the next line, in which case 0 Dh is referred to as a control code.

Now, getting back to that decimal in/hex out problem, what range of decimal numbers will I need to convert? Well, there's no need to spoil the ship for a ha-porth of bytes, so to speak, so lets go the whole hog; any positive whole number up to 65536 it is. This will mean two addresses to hold the number as shown in Fig. 2, withline 30 storing the low byte (LSB) first, and line 40 the high byte (MSB) as is usual; the hex conversion representation will cover the range 0000 to FFFF.

So far I haven't put pencil to paper, but now the time has come to do so, and if you intend to follow my reasoning I suggest you do the same. What I am looking for is a possible connection between any decimal number within the range and the ASCII code for the hex conversion. This is because I want to print these characters to the screen in the machine code part of the program. Having once done the conversion the hard way, I remember that decimal 30,000 is 7530 h , so I decide to use that as my starting point. Licking my pencil, I dutifully write at the top of the page $30,000-7530 \mathrm{~h}$; so far, so good. After admiring my handiwork for fully ten minutes, I suddenly realise what I am supposed to be doing. Well, I think, the MSB of the hex would be first on the screen, so l'll work on that first. Using my (t) rusty calculator I divide 30,000 by 256 , and the answer is 117.18 . Because I only want the INTeger, the decimal for the MSB is 117 . My Spectrum manual tells me this is 75 hex, sol write down $117-$ 75 h . Aha, that's just what I want, but a quick look at the ASCII codes shows that the required numbers are 37 h and 35 h . Well, at least I'm getting nearer. So now the problem is to make the MSB - 75 h into two bytes of ASCII

[^5]Fig. 2 BASIC program.

FEATURE : Machine Code Programming

code ready for printing. This means that both the MSB and the LSB will have to be worked on twice. You can see that the difference between the ASCII code and the MSB is 30 h , so it's a question of isolating the 7 and the 5 and then adding 30 h . That's it then, a little more work and I'm home and dry. Hang on though, what's this?, another look at the ASCII set shows that some clown has added extra characters between 39 h and letter A , which is 41 h . That makes a right mess of the 30 h difference.

So far, I have presented the problem as a beginner to machine code programming might see it, and, so far, the reasoning looks fairly sound. But let's re-think the problem using slightly different reasoning. I have found that problems of this nature are best approached with two things in mind. The first is to look at the best and worst cases, in this instance the upper and lower limits which have already been defined. Secondly, examine what you already have and can be sure of, and our example of that is decimal 117 which we know is 75 hex. The position of the hex character determines the equivalent decimal value, for example, 0F is less in value than Fo. However, no matter which position the hex character occupies, the one constant is that 0 to F represents decimal 0 to 15, and therebylies a clue. Bearing in mind that there are two hex characters per byte I can write down $00-0 F=0$ to 15 , and then the binary representation of each byte. The pattern looks like this - 00000000 and 00001111 , and immediately I see the answer to the problem.

Now you must remember that a computer doesn't know the first thing about decimal or hex; the only things it'sees' are the bit patterns. Next I write down the binary for the MSB of decimal 117-75h-0111 0101. Earlier I said that all that was needed was to isolate the 7 and the 5
and add 30 h , which is only half right because the 30 h is useless. In this series I have covered a method for isolating or masking off numbers, and this is the logical AND operation. If we AND with FO-11110000, this will isolate the 7 , and similarly AND 0 F for the 5 . This, then, is a method of obtaining two separate bytes from one byte (think about it).

At this point I had better reveal the answer to the problem, which is a table of ASCII codes representing the characters 0 to F. The principle of using the table is very simple indeed. By pointing a register pair to the start of the table, any number added to that register will index into the table by the amount of the number. To make things easier, once indexed, the register pair would be pointing to the ASCII code for the number that was added. To make things clearer, the register pair is pointing to the start of the ASCII table which is $30 \mathrm{~h}-0$; nothing added would cause the character 0 to be printed for the hex character, which is correct. The only problem lies with that first AND operation; AND FO - 11110000 left us with $01110000-70 \mathrm{~h}$. Moving that bit pattern over to the right four times would solve our problem, so that's exactly what we do. The Z80 instruction we use is 1 F RRA which means Rotate Right Accumulator (register A). The full machine code listing is in Fig. 3, but please remember that the addresses given are for the printer buffer. If you want to re-locate the program, the addresses in HL and BC plus the ones in BASIC will have to be altered. Regarding the BASIC, I have given just enough lines to run it; my own version is a bit more user friendly. One last parting shot - if you want to write a hex to decimal program the clue lies in the difference of 30 h and 40 h !

ETI

pantechnic

THE ULTIMATE PREAMP HAS TONE CONTROLS

OK, so your system is perfect. Cartridge and loudspeakers are perfectly integrated with the room acoustics. Tone controls are an irrelevancy, and anyway just having them worsens the noise and distortion of the system.
But. ., what if after tiring of your direct cut audiophile discs you choose to listen to one of those less than ideal recordings where the middle positively snarls at you. Or. . ., you're having a party and all those extra bodies just soak up the top and the speakers, pushed back against the wall, boom away.
What if there were tone controls that were essentially quiet and imperceptible in operation and could be switched, individually out of circuit when not required. What if they were part of a stereo preamp board that has the lowest noise and distortion figures you could buy, superb overload capability due to its active/passive gain control, tape monitor facilities and on board PSU.
The PAN30 with the new topology tone control circuit could change the facias of hifi.
PAN30 Stereo preamp board - £43.25

PFA 250 Assembly

Mono power amp and 100,000 uF storage capacitors prewired and mounted on a gold chromate heatsink ($67 \mathrm{~mm} x$ $250 \mathrm{~mm}) .200$ Watts into 8 ohms, 300 Watts into 4 ohms, plus headroom. Powerful and very, very clean. - £58.75
Full info. on receipt of a large SAE. OEM enquiries, contact Phil Rimmer on 01-3618716.

KITS FROM $£ 7$ TO £60
 Sparkiite
 Buy Sparkrite Brand Leading Auto Electronics

 in self-assembly kit form - And save pounds!- Electronic Ignition systems - contact triggered and contactless - Electronic Car Security Systems - including a new ultrasonic unit - Car Drive Computer - with 12 functions

SPARKRITE (A Division of Stadium Ltd.), Queensway, Enfield, EN3 4SD. Telephone: 01-804 4343
1
NAME ..
ADDRESS.

LB ELECTROMICS

SPEACH SYNTHESISER kit as in March/April Electronics \& Computing. Kit £24.95 p/p $£ 1.50$. Ready Built $£ 34.95 \mathrm{p} / \mathrm{p} £ 1.50$. Details S.A.E LOGITEC FT50001 dot matrics printer 100 cps , friction/tractor £289 + VAT. Carriage £10. S.A.E. leaflet plus print-out.
PRESTEL monitors 6 " green phosphor screen 12 digit keyboard printer port, cassette port, keyboard port (for full qwerty keyboard) Brand new and boxed £175 + VAT. Leaflet S.A.E.

DISC DRIVE BONANZA

TEAC FD-55F $1 / 2$ Height DSD 80 track/40 track, selectable at our new low price $£ 199$ +VAT. $£ 8$ carriage. Shinon $1 / 2$ height $51 / 4 "$ drive 40 track, brand new, single sided, double density $£ 140$ + VAT. Carriage $£ 8$. COMPETITION. We thank all our customers for purchasing our Teac drive and as a bonus we are now offering every 50 th disc drive to be sold will be sent totally FREE. The name and address of the winner will be published in this magazine.). This offer is excluded from trade or bulk buyers).
EDGE CONNECTORS 1 " 56×56 wire wrap keyway at $30 £ 1.80 \mathrm{p} / \mathrm{p}$ 25p. $30 \times 30 \cdot 156$ Gold 80p p/p 25p 1" $80 \times 801 £ 2.85 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$.
Twin 5" Cabinets with power supply $£ 40.00+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere E50.00 + VAT).
51/4" Disk Drive Cabinet $(1 / 2$ Height drive) without PSU $11.95 p / p £ 1.50$. Dual8"' DriveCabinets brand new back panelcut out forfanetc...£25 Modem PCB containing uart LS XR2211CP, XR2206CP no data. £3.95 p/p 75p.
26 way IDC Socket on short length of Ribbon Cable £1 p/p 20p.
KEY BOARD BONANZA. Brand new ASCII coded single 5 volt rail. Some with numeric key pad, some without £29.95p p/p $£ 1.50$ p. Leaflets S.A.E.
Mini Mother Board 18 slot 44 way• 1 " (X equipment $£ 9 \mathrm{p} / \mathrm{p} £ 1.50$ p. PCB $91 / 2^{\prime \prime} \times 10^{1 / 2^{\prime \prime}}$ approximately $97 \times 4116-25 £ 25 \mathrm{p} / \mathrm{p} £ 1.50 \mathrm{p}$. Jermyn Thermaflow Compound 140 Grams £1.50p p/p 40p. CABLES
Dual $51 / 4^{\prime \prime}$ disc drive cable $£ 12.95 \mathrm{p} / \mathrm{p} 65$ p. Single $51 / 4^{\prime \prime} 9.95 \mathrm{p} / \mathrm{p} 50 \mathrm{p}$. 20 Way IDC Socket plus 1 meter ribbon (BBC user port) 2275 p/p30p. Centronics Printer $36^{\prime \prime}$ (BBC) £11.95.
Special Offer Cambion 40 Way iC sockets wire wrap $£ 1$ each, 12 for $10.51 / 4$ " Drive Power plug $£ 1$ each. BBC PSU plug $£ 1$ each. 8" Drive DC plug £ 1.35. AC plug $£ 1.35$ p/p 25 p. New double density interface for $B B C$ machine. S.A.E. Full details $£ 99.95+V A T p / p £ 1.50$. TEL: UXBRIDGE 55399

American Express
 $4 \times x^{2}$

Please
mention
E.T.I. when replying to all adverts

VERTICAL SPEED INDICATOR

Coming down to earth a bit after last month's high-flown introduction, this concluding article describes the construction and setting-up.

The gain in this circuit is very high (over 100,000) so the actual layout is quite critical. The PCB layout given has been well tested so no stability problems should be encountered if it is used. If, for any reason, you decide to produce your own PCB layout, do make sure you include the guard tracks around the input pins of ICs 2,3 and 4. Without guard tracks the circuit may appear to be drift free in dry weather, but a little moisture will soon show up the drift. Note that if a double sided board is used, guard tracks should be run on both sides. The other point to remember if you produce your own layout is that all the unused inputs of IC10 should be connected to a defined level.

The transducer board should be built first, starting with the resistors and other passive components and moving on to the active components. Note that capacitors C1 and C3 are mounted on the underside of the board but do not solder C1 into place yet. The SOT (select on test) resistor, R7, should also be left off until you come to the setting up. Make sure you insert the diodes, the transistor and the ICs the right way around. Before soldering ICs 2,3 and 4 into place, refer to the circuit and overlay diagrams and cut all the unused pins off short so that they do not reach the PCB. Bend pin 4 on each of these ICs away from the PCB and extend it with a piece of wire to reach the pads on the far side of the guard tracks. The layout given can accommodate either the LX0503A transducer or the alternative MPX100 A , and Fig. 7 shows the amended overlay arrangement and the links needed if you are using the latter device. If you are using the LX0503A, note that the IC is

Fig. 6 Overlay diagram of the transducer PCB.
mounted on its side so as to save space on the PCB. Cut off pins 1 , 2,4 and 7 and then solder it into place, making sure that it is the right way up.

All semiconductor piezoresistive transducers must be shielded from light. The action of light on a semiconductor releases extra charge carriers and affects the conductivity which is what we are measuring in the strain gauge pressure transducer. In the case of the LX0503A, the input pipe should be plugged with a nonabsorbent porous foam material, but one third of the filter from a tipped cigarette works well and has saved at least one transducer during a brief immersion in the sea. The design of the LX0503A package includes a barrier across the bottom of the pipe which prevents you pushing the filter down on to the delicate IC itself, but check this in case the package design varies from manufacturer to manufacturer. If you are using the alternative MPX100A transducer, you will have to make up a little hood for it from some non absorbent
foam material and some tape.
For lightness and ease of assembly, the vario is built into a plastic box. For the majority of hang glider pilots this is the most convenient packaging, but a few pilots have begun to use CB for retrieval. It is illegal to transmit CB from an aircraft, but nevertheless some people will want to do it. The problem is that the signal levels are of the order of a microvolt in the early stages of the vario, and a strong RF field from a CB transmitter only a few feet away will easily radiate into an unscreened circuit.

When the transmit PTT switch is pressed, the vario output kicks and continues to read wrongly while the pilot is talking. It is not too much of a problem as talking. can be kept to moments when nothing much is happening, but the complete solution is to build the vario in a diecast alloy box. This completely eliminates problems with RFI without further measures. The alloy box construction is useful, too, when flying within 500 feet of powerful radar

Fig. 7 Overlay diagram of the audio PCB.

PARTS LIST

RESISTORS	
R1,2	16k 1\% 0.4 W metal film
R3,4	680k 1\% 0.4 W
	metal film
R5,10,11,14	1M 1\% 0.4W metal
R6	220k 1\% 0.4W
	metal film
R7	see !ext
R8	$4 \mathrm{k} 71 \% 0.4 \mathrm{~W}$
	metal film
R9,15,16	75k 1\% 0.4W metal film
R12,13	1k5 1\% 0.4 W
	metal film
$\mathrm{R} 17,26,28$	1M 2%
	2M7 2\%
R19,20	47k 2\%
R21	10M5\%
R22,23,29	100k 2\%
R24	6M8 5\%
R25	390k 2\%
R27	18k 2\%
R30	1k 2\%
R31	12k 2%
R32	2k2 2\%
R33	470 R (see text)
RV1	50k ${ }^{3 / 4} 4^{\prime \prime}$ 20-turn cermet preset
RV2	500k sub-
	miniature enclosed vertical preset
RV3	4k7 sub-miniature
	logarithmic poten-
	tiometer with
	switch
CAPACITORS	
C1	10 u polyester
C2	220 n polyester
C3,6,7,8	10n polyester
C4 ${ }^{\text {a }}$	100 u radial electrolytic (see text)
C5	100 n polyester
C9	100p
SEMICONDUCTORS	
IC1	LX0503A or
	MPX100A*
IC2,3,4,5	OP2OHP*
IC6	78L05 ${ }^{*}$
IC7	7621**
IC8,9	7555*
IC10	$4049 \mathrm{UB}^{*}$
Q1	BC182L
D1	1 N916
* see text and Buylines	
MISCELLANEOUS	
SK1,2,4	5 way PCB plug
SK3,5,6	5 way PCB socket
LS1	piezo-sounder type PB2720
SW1	SPDT miniature
	toggle switch
	50-0-50uA panel meter, $60 \times 75 \mathrm{~mm}$
PCBs; plastic or ABS box, $100 \times 75 \times$	
40 mm ; PP3 size battery connectors, 2 off; knob to suit RV3; 1" diameter plastic spring clips; realeasable cable	

Fig. 8 Overlay diagram of the transducer PCB showing the modified arrangement to accommodate the MPX100A.

Fig. 9 The LX0503A and MPX100A packages.
to select, it might be better to determine the value required when it is known. It is suggested that you start out with a value of around 22 k .

Moving on to the audio card, turn the gain pot RV2 to max, set the audio input voltage to about 100 mV using the zero pot RV1, and check the interrupt oscillator frequency by counting the number of beeps in 10 seconds. Solder C6 and $C 7$ into the circuit if necessary to bring the interrupt frequency down to 2 Hz or just under. Check that the audio switches on and off at a threshold of about 50 mV with a very small amount of hysteresis. Finally, check that the audio pitch is progressive to +1.25 V and that the volume control functions.

Next set the zero. Turn the gain pot RV2 fully counter-clockwise and check that the output goes to zero. Then turn it fully clockwise again and zero the output using RV1.
and TV transmitters.
The piezoceramic sounder should be glued down with a dab of clear Bostik on each fixing lug. Do not glue the central part of the sounder down or you will spoil the sound volume and quality. The fixing lugs have holes for screws but the sounder resonates better when glued down as described.

To prevent rain getting in at the meter barrel, the joint with the box should be sealed with silicone rubber. Do not seal the entire box unless the instrument is only to be used at very low altitudes. A small quantity of air must be able to get in and out somewhere - the intention is that this will happen at the imperfect joint between the box and its lid.

Setting Up

Test the transducer card first. Apply the 9 V supply and check the +5 V line and the +2.5 V signal ground. Remember that alkaline 9 V PP3 size batteries are recommended. The SOT resistor R7 can now be selected. Monitor the output of IC2 and select R7 such that the output of IC2 is at 0.25 V $\pm 0.05 \mathrm{~V}$ below signal ground. R7 should, of course, be a 1% metal film type like the other resistors on the transducer board. Since it would be very expensive to buy in a whole range of these from which

Fig. 10 Interwiring of the circuit boards and external components.

Fig. 11 Case drilling details.

Solder in the 10uF capacitor

C1. Turn the gain (calibration) pot RV2 to mid position and check that the instrument is functional by putting it in a large plastic bag and squeezing gently. Squeezing the bag should cause the vario to read sink, while releasing the pressure should cause a strong lift
reading.
If you have used an MPX100A transducer, you can adjust the temperature compensation by
altering the value of the series resistor, R33. Expose the transducer to a mild temperature rise (not too hot, please!) and note the

BUYLINES

The LX0503A transducer is available from Hitek, Trafalgar way, Bar Hill, Cambridge CB3 8SG, tel 0954 81996. Alternatively, you can use the MPX100A transducer which offers better temperature compensation and is available from Macro Marketing, Burnham Lane, Slough SL1 6LN, tel 062864422 . The drawbacks with the MPX100A are that it costs a little more and that it draws more current, about 5 mA compared with 1 mA for the LX0503A, thus shortening battery life to about 25 hours.

The OP20HP op-amp is available from Hitek at the address above. Cheaper op-amps might be used in the IC3, 4 and 5 positions but they should be chosen with care if the drift is not to become excessive. The principal requirements for all four op-amps (IC2,3,4 and 5) is that they be micropower, will work off a 2.5 V supply, have excellent offset drift specifications and very low noise.

As explained in the text, the regulator is a potential source of noise and a poor component here will impair the resolution of the vario. $78 \mathrm{L05s}$ made by Texas Instruments proved to be the best in this respect and these are also available from Hitek.

An Intersil 7621 has been specified in the IC7 position since it will work quite happily as a Schmitt trigger with $\pm 2.5 \mathrm{~V}$ across its inputs. Other op-amps may not but the solution is to connect a pair of protection diodes across the input pins 2 and 3. The 7621 is available from RS Components, who do not accept cash orders so you would have to find a friendly dealer, and from LRL Electronics whose address is given at the end of Buylines.

The 7555 is a CMOS version of the
standard 555 timer and ICs described simply as CMOS 555 are available from a number of our regular advertisers. IC10, the 4049, has to be chosen carefully to reduce the risk of oscillation in the buffer stage, and suffix UB (Unbuffered, ' B ' spec.) devices were found to be best in this respect. 4049s supplied by RS are of this type (order no. 306-667, pack of 5), assuming you can find someone who will order for you. Most of our regular advertisers do not specify which type their CMOS devices are so you should check first if ordering from one of them.
The $1 \% 0.4 \mathrm{~W}$ metal film resistors are available from both Maplin and Electrovalue. The 2% types are not so easy to come by but you can always use 1% types here as well (if your wallet will stand it!) The $\mathbf{2 0}$-turn preset, RV1, is an RS part (162-259) but a 15 -turn preset which is otherwise identical is available from Maplin and Electrovalue. RV2 is also an RS part (185-959), but a miniature vertical skeleton preset could be used here at a pinch. The spacing will then be quite tight and you will have to choose a preset which can be adjusted from either side since it will be mounted with its back outwards.
RV3 is again an RS part (162-120) and was chosen because it is the smallest potentiometer with integral switch that could be found. Ambit sell some miniature potentiometers with push-pull rather than rotary switch action and one of these might fit, but we should point out that we have not tried this. The value used in the prototype (4 k 7) was chosen because it is the only value offered by RS, but if you do manage to find another source of subminiature switched pots you might wish to choose a higher value
and then buffer it with a transistor so as to gain 1 mA or so reduction in battery current. Alternatively, you could use an unswitched miniature potentiometer and achieve on-off switching by some other means, perhaps by making SW1 a centre-off toggle.

The meter used in the prototype was a Sifam'Presentor' model $\mathbf{2 9 M}$. This uses a taut band coil suspension system which is much more robust than the conventional pivot and hair spring suspension system. Other 50-0-50uA meters could be used provided their scale area fits on the vario's case, the barrel is 25 mm diameter or less, and the depth behind the scale is not more than 35 mm including pins (bent-over pins?)
The only capacitor likely to cause any problems is the 10 u polyester, C1. This is an RS part (113-623) but an equivalent is available from Electrovalue. The PB2720 piezo-sounder is available from Ambit, 5-way PCB connectors from Maplin, and the $1^{\prime \prime}$ diameter plastic spring clips from most boating shops. The case is widely available, and if you're not too worried about the size of the finished unit you could use a slightly larger one. This would ease a number of the component supply problems since a lot of the difficulty stems from the need to use minial ure components.

Finally, if all this chasing around for parts sounds a bit too much like hard work, the author's own company, LRL Electronics, can supply all the parts. Their address is Fairhaven Cottage, Ridgemead Road, Englefield Green, Surrey TW 200 YG, tel 078434740 , and an SAE will bring you full details and prices. The PCB will be available through our PCB service, see page 00 .

PROJECT : Vertical Speed Indicator

change in reading, if any, on the meter. The optimum value of the resistor is found experimentally by increasing the resistance if the temperature rise causes a lift to be indicated on the meter and vice versa.

The final setting up operation is the calibration, using RV2. Fairly good results can be had by timing a lift through a number of floors, but if you can borrow a calibrated vario you can match the calibrations using the plastic bag method. Place both varios in a large clear plastic bag and squeeze gently but with increasing pressure while adjusting the gain pot between squeezes. If you are really stuck, Mr. M. Hutchinson (Reading 696491) will calibrate your vario professionally.

The MPX100A used with a 470 R series resistor will generally be more sensitive than the LX0503A. If it is found that the calibration pot has to be set less than a third of the way up, reduce the resistors R3 and R4 by an amount sufficient to bring the calibration pot up to about mid position. This will prevent the first
amplifier saturating below 20,000 feet.

The settling time of the vario after switch on should be less than a minute. The delay is largely a result of dielectric absorption in the 10 uF capacitor in the differentiator, C1, an effect whereby a dielectric takes time to acquire a charge when voltage is applied and subsequently releases charge when the voltage is removed. The effect is related to the voltage applied across the capacitor and should not be confused with leakage current. With 1 V across C1 the output could take as long as five minutes to settle, but this has been reduced by restricting the voltage swing at the output of the transducer buffer op-amp to within 0.25 V of the signal ground at switch on, assuming a take off height between sea level and 8000 feet.

When the circuit is working correctly, a light ticking sound should still get through from the interrupt oscillator driving the tone oscillator reset. The ticking serves as a handy means of knowing the instrument is switched on, but if it
is not liked, it can be gated out by killing the interrupt oscillator at the same time as the tone oscillator. Wire another diode from IC7 pin 1 to the junction of R24 and R26.

No decoupling was found necessary in the prototype but a position has been left on the PCB for a 100 uF capacitor (C4) to decouple the 9 V in put lead if necessary. The response time of the circuit is fixed by R9 and C2 and with the values given (75 k and 220 n) is quite fast, but if heavier damping is preferred the value of C2 can be increased to 470 n .

When the circuit is working correctly and any necessary component changes have been made, the transducer PCB should be well cleaned. Solder flux residues as well as other deposits can present problems so use a good flux solvent for this. The clean board should then be given two coats of lacquer to prevent further moisture ingress. The transducer input port and all connectors, etc, should be sealed with tape during the lacquering operation to remove the risk of damage.

ETI

The Paraymo/rin wey!

YOUR CAREER..YOUR FUTURE..YOUR OWN BUSINESS..YOUR HOBEY THIS IS THE AGE OFELECTRONICS!

 the world's fastest growth industry.Our new style course will enable anyone to have a real understanding of efectronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further
a career in electronics or as a self-emploved servicing a career in electronics or as a self-employed servicing engineer. All the training can be carried out
of your own home and at your own pace.
of your own home and at your own pace.
A tutor is available to whom you can

13: H
COLOUR
BROCHURE
Post now to:
British National Radio\&Flectronics School Reading,Berks.RG1 1BR
NAME ADDRESS
write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern
equipment using the oscilloscope
- Build and use digital electronic circuits and current solides state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V $\mathrm{Hi} . \mathrm{Fi}$, VCR and microprocessor/computer equipment.

CACC British Netional Padio R PHectronics School Reading; Berks.RGI 1 BR

COURSE IN ELECTRONICS as described above
RADIO AMATEUR LICENCE MICROPROCESSORS OTHER SUBJECTS please state below

MIDIDRUMSYNTH

Are you still hiding your creativity behind that all-encompassing maxi? Or is that skimpy mini revealing the inadequacies of your rhythm section? ETI unveils its Midi, the drum synth to be seen with!

We have published a number of drum synthesisers in the past, both full-featured, multi-voiced monsters (eg, June 80, April 1981) and simple, single-voiced modules (eg, November 1983), but so far, we have never featured anything which falls between these two extremes. As its name implies, the Midi Drum Synth is an attempt to put that right.

The Midi is a single-voiced unit which also has a sequencer input, allowing several to be used together. It has a variable decay rate, variable pitch, and a variable sweep facility which causes the pitch to fall sharply from its starting point. When not required, this can be switched out so that only a single tone is produced. Further variety of sound is provided by an active filter whose centre frequency and pass band are adjustable. The input device is a small transducer which triggers a drum beat when hit; the harder you hit it, the louder the sound produced. A level control is also
provided, and the completed unit runs from an external battery or other 9-16 volt supply. The range of facilities allows the Midi to imitate everything from a bass drum to a triangle, as well as some less obviously percussive instruments, for example, a strummed guitar.

Construction

The complete unit is housed in an aluminium diecast box, and the drilling details for this are shown in Fig. 3. The only hole likely to cause any problems is the 23 mm diameter hole for the piezo transducer. The size is not too critical, but if you don't have a metal punch around that size you will either have to burr out a smaller hole or else drill a series of small holes in a circle and then link them up with a small file. It does not matter if the finished hole has a rough edge since it will be hidden by the pad of the transducer. The case should then be painted, the legends added
using dry transfer lettering, and a coat of varnish applied to protect the lettering.

Start assembling the PCB by inserting the three wire links. Note that one of these is under IC2 and either use an insulated link on the underside of the board or choose an IC socket which allows room for the link to pass under it. IC sockets are recommended for all the ICs since three of them are MOS devices and the fourth is fairly expensive. Do not insert the ICs into their sockets yet but carry on soldering the resistors and capacitors into place, taking care to mount C1, 8 and 9 the right way around. Take care also with the two diodes.

It is best to tackle the wiring up in a methodical manner, perhaps working from one end of the PCB to the other. Using many different colours of wire will help, and it is a good idea to allocate each potentiometer its own colour so as to make sorting out the leads at the front panel easier. Cut the potentiometer shafts to their

Fig. 1 Circuit diagram of the Midi drum synth.

Fig. 2 Overlay diagram of the PCB.

Fig. 3 Case drilling details.

PARTS LIST

(* All potentiometers are miniature types with 7 mm bushes)
CAPACITORS
C1
C2
C3
C4
C5, 6
C7, 9
C8

SEMICONDU
IC1
IC2
IC3
IC4
D1, 2

LED1
$1 \mu 025 \mathrm{~V}$ radial electrolytic
$47 n$
100n
100p polystyrene
3n3 mylar
$10 \mu 25 \mathrm{~V}$ radial MISCELLANEOUS
electrolytic
$47 \mu 25 \mathrm{~V}$ radial electrolytic

HOW IT WORKS

When X 1 is hit, a short, negative-going pulse is generated whose amplitude is proportional to the force of the hit. IC1 inverts and buffers this pulse and charges C1. D1 ensures that the only discharge path for C1 is via R4 and the decay control potentiometer, RV1, IC2 is a 4046 phase-locked loop which consists of a voltage controlled oscillator (VCO), a source follower, a zener diode and two phase comparators. The decaying voltage across C 1 is taken to the input of the VCO and the source follower. C2 sets the VCO frequency in combination with the resistance networks connected between pins 11 and 12 and the negative supply rail. Pin 12 sets the frequency
offset; placing a voltage on this pin compresses the frequency range of the VCO towards its maximum value, thus setting the minimum value. Pin 11 sets the frequency range; with SW1 open, IC3cpresents what is effectively an open circuit, with the result that no frequency range is set and the VCO produces a single tone at its centre frequency regardless of the varying input voltage. With SW1 closed, IC3c connects RV3 and R6 into circuit and thus sets a frequency range, causing the VCO frequency to fall as the voltage on its input falls.

The outputs from the VCO and the source follower are combined by IC3a and R8 as shown in Fig. 5 (overpage). The
resulting waveform is fed to the buffer, IC4a, which incorporates the level control, RV4, and then to a second order Sallen and Key active filter configured around IC4b. The buffer ensures that the filter is driven by a low impedance source and by integrating the level control with it, an output potentiometer is not needed and the output impedance can also be kept low.

The power supply is perfectly straightforward; R16 and 17 set the earth rail halfway between the positive and negative supply rails, C 9 decouples this rail from 0 V and C 8 provides decoupling for the two main supply rails.

PROJECT: Midi Drum Synth

Fig. 4 The wiring around RV5.
correct lengths before wiring them up. Take care with LED1 and 2 which must be mounted the right way around, and note the wiring of C7 on SK2. Screened lead should be used to connect up the piezo transducer, and remember to thread the lead through the hole in the case before soldering.

With all the wiring done, bolt the potentiometers, sockets and switches into place and insert the ICs into the PCB. Stick the rubber pad onto the transducer and mount it over the large hole using a contact adhesive. It was not found necessary to secure the PCB inside the box. Instead, a sheet of

Fig. 5 Modulation of the VCO output by the decay voltage.
thin plastic was folded and wrapped around the PCB to prevent it shorting to the case at any point.

After checking everything carefully, apply between 9 and 16 volts to SK3 and check that none of the ICs get hot. If all seems well, connect the output to the line input of an amplifier and try a few practice hits. If nothing happens (or worse, the wrong thing happens), an oscilloscope will be very useful, and the correct waveforms at various parts of the circuit are shown in Fig. 5. Finally, check the sequencer input by applying a positive-going pulse at the supply potential to SK1.

ETI

BUYLINES

\qquad
The transducer and its rubber pad are available from Maplin, as is the case. The potentiometers are available from Ambit, and if you obtain them from any other source you should check the size carefully or you may have difficulty fitting them into the case. We used monolithic type capacitors for C2 and 3 but any other type will do provided they have a pitch of 5 mm and are non-polarised. The PCB is available from our PCB service, for which see page 65.

FREOUENCY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.
\star Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ * Low Pass Filter

* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* High Accuracy
* 3 Gate Times

PRICES (Inc. adaptor/charger, P \& P and VAT)

METEOR 100	$(100 \mathrm{MHz})$	$£ 104.36$
METEOR 600	$(600 \mathrm{MHz})$	$£ 134.26$
METEOR 1000	$(1 \mathrm{GHz})$	$£ 184.86$

Illustrated colour brochure with technical specification and prices available on reques

BIMTOOLS
$12 v$ Mini Bımdrilt ine collets 8.05

Mini Bımdrill Kıt inc 20 tools 14.45 Mains Bimdrill in collets $\quad 9.55$ Mains Bimdrili Kitinc 20 tools Bimiron 27 W | | Sloping-Front | Simiron | BimW | 6.75 |
| :--- | :---: | :--- | :--- | :--- |
| BIMCASES | Aluminlum recessed lid. | Bimiron 27W | 5.75 | |
| BIM 1005 | $161 \times 39 / 57 \times 96 \quad 178$ Grey or | Bimpump. Desoldering Tool | 6.25 | | All prices inc VAT. Add 60p per order p\&p SAE for full list. Mail Order only

BIMSALES
Dept eTl/, 48a Station Road, Cheadle Hulme,
Cheadle, Cheshire, SK8 7AB. Tel: 061-485 6667

HIGH PERFORMANCE HIGH RELIABILITY LOW COST

ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering. The code can also be used to identify the year and month in which a particular project appeared: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.

1979	
\square	E/794-1 Guitar Effects Unit.
\square	E/794-2 Click Eliminator.
\square	E/796-1 Accented Beat Metronome 4.14
1980	
\square	E/808-3 Ultrasound Burglar Alarm
\square	E/8010-1 Cassette Interface .
\square	E/8010-2 Fuzz/Sustain Box
\square	E/8011-5 RIAA Preamp. 2.22
\square	E/8012-3 Four Input Mixer. 3.04
1981	
\square	E/811-1 LED Tacho 4.75
\square	E/811-2 Multi-Option Siren. 3 .
\square	E/812-2 IR Alarm (4 boards) 7.64
\square	E/812-5 Pulse Generator 4.11
\square	E/814-2 Drum Machine (2 boards) 6.44
\square	E/814-4 Guitar Note Expander 3.68
\square	E/816-8 Waa-Phase 1.76
\square	E/816-9 Alien Attack 4.00
\square	E/817-1 System A-input (MM or MC)........................ . . 3.05
\square	E/817-2 System A - Preamp. 5.95
\square	E/817-3 Smart Battery Charger. . . . 2.27
\square	E/818-3 Hand Clap Synth. 4.57
- \square	E/818-5 Watchdog Home Security (2 boards)
\square	E/819-1 Mains Audio Link (3 boards) \qquad
\square	E/819-4 Laboratory PSU. 5.21
\square	E/8110-1 Enlarger Timer. 3.91
\square	E/81 10-2 Sound Bender 3.05
\square	E/8111-1 Voice Over Unit 4.57
\square	E/8111-2 Car Alarm. 3.23
\square	E/8111-3 Phone Bell Shifter. 3.40
\square	E/8112-4 Component Tester. 1.71
1982	
\square	E/821-3 Guitar Tuner (2 boards) ... 6.38
\square	E/822-1 Ripple Monitor 2.21
\square	E/822-2 Allez Cat Pest Repeller . . . 1.93
\square	E/822-5 Moving Magnet Stage 4.01
\square	E/822-6 Moving Coil Stage 4.01
\square	E/823-4 Capacitance Meter (2 boards) 11.66
\square	E/824-5 Voltage Monitor 2.14
\square	E/825-1 DV Meg. 3.13
\square	E/826-1 Ion Generator (3 boards) \qquad 9.2

\square	E/826-4 MOSFET Amp Module. . . . 7.80
\square	E/826-5 Logic Lock 3.52
\square	E/826-6 Digital PWM 3.84
\square	E/826-7 Optical Sensor 2.00
\square	E/826-9 Oscilloscope (4 boards) 13.34
\square	E/827-7 TV Bargraph Main. 5.24
\square	E/827-3 TV Bargraph Channel. 2.62
\square	E/827-4 Hotwire. ; 3.02
\square	E/827-5 Bridging Adapter 2.74
\square	E/828-1 Playmate (3 boards) 8.28
\square	E/828-4 Kitchen Scales. 2.12
\square	E/828-5 Sound Track. 4.89
\square	E/829-1 Auto Volume Control. 2.12
\square	E/829-2 Dual Logic Probe 2.22
\square	E/8211-4 Pulse Generator 6.08
\square	E/8212-1 ELCB 2.77
\square	E/8212-2 Servo Interface (2 boards) \qquad
\square	E/8212-4 Spectracolumn 5.54
198	
-	E/831-1 Fuel Gauge 3.45
\square	E/831-2 ZX ADC.................. 2.59
\square	E/831-3 Programmable PSU 3.45
\square	E/833-1 SoundBoard. 12.83
\square	E/833-2 Alarm Module 3.62
\square	E/833-3 ZX81 User Graphics 1.07
\square	E/833-4 Logic Probe 2.50
\square	E/834-1 Real Time Clock 8.74
\square	E/834-2 Thermemeter (2 boards) 9.74
\square	E/834-4 Stage Lighting - Main... 13.73
\square	E/834-5 Stage Lighting - Display 3.45
\square	E/835-1 Compressor/Limiter6.19
\square	E/835-2 Single PSU 3.16
\square	E/835-3 Dual PSU 4.01
\square	E/835-4.2 NDFL Amp 7.88
\square	E/835-5 Balance Input Preamp. ... 3.23
\square	E/835-6 Stage Lighting Autofade. 6.19
\square	E/835-7 Stage Lighting Triac Board. 4.74
\square	```E/836-1 to 3 PseudorOM (3 boards) 3.62```
\square	E/836/4 Immersible Heater 2.30
\square	E/836-5 Atom Keypad. 5.18
\square	E/837-1 Flash Sequencer 2.67

E/837-2 Trigger Unit Main Board. . . 2.67 E/837-3 Trigger Unit Transmitter. . . 1.66
E/837-4 Switched Mode PSU 16.10
E/838-1 Graphic Equalisr 9.10
E/838-2 Servo Fail-Safe
(four-off).
2.93

E/838-3 Universal EPROM prog. ... 9.64
E/839-1 NiCad Charger/Regen..... 3.77
E/839-2 Digger. 3.40
E/839-3 64K DRAM. 14.08
E/8310-1 Supply Protector 2.19
E/8310-2 Car Alarm. 3.98
E/8310-3 Typewriter Interface 4.17
E/8311-1 Mini Drum Synth 3.07
E/8311-2 Alarm Extender. 3.21
E/8311-3 Multiswitch 3.59
E/8311-4 Multiple Port 4:34
E/8311-5 DAC/ADC Filter .:
E/8311-6 Light Pen 4.60
E/8311-7 Logic Clip.................. 2.51
E/8311-8 MC Head (JLLH) 3.17
E/8312-1 Lightsaver. 1.85
E/8312-2 A-to-D Board. 12.83
E/8312-3 Light Chaser (2 bds) 7.54
E/8312-4 ZX Alarm 6.04
1984
[E/841-1 Vector Graphics 8.27
E/842-1 Speech Board (Mini-Mynah)
10.97

MODULAR PREAMP:
E/842-2 Discimput (mono)3.73

E/842-3 Output stage (stereo) 3.73
E/842-4 Relay/PSU 3.73
E/842-5 Tone, main (mono) 3.73
E/842-6 Tone, filter (stereo) 3.73
E/842-7 Balanced output (st)3.73
E/842-8 Headphone amp (st)3.73
E/842-9 Mother board 9.01
E/843-1 Power Meter 5.81
E/843-2 Z80 DRAM.........................9.79
E/843-3 Obedient Die. 3.76
E/844-1 School Timer 4.07
E/845-1 Auto Light Switch.......... 4.01
E/845-2 ZX81 EPROM Prog. 10.53
E/845-3 Mains Borne RC 5.07
E/845-4 Centronics Interiace 4.09
/845-5 Vario
(2 boards) 6.62
$\square \quad$ E/845-6 Midi Drum Synth59.59

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 1 Golden Square,

Signed London W1R 3AB. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.

Name
\qquad

Total for boards
Add 45p p\&p
Total enclosed

$$
\begin{array}{cc}
\text { PLEASE ALLOW } \\
\text { 28 DAYS FOR } \\
\text { DELIVERY }
\end{array}
$$

PCB FOIL PATTERNS

The Midi Drum Synth.

The Automatic Light Switch.

The Centronics Interface.

The Vario transducer board.

The Vario audio board.

The top and bottom foils for the EPROM Programmer board.

SERVICE SHEET

Enquiries

We receive a verylarge number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/ Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows UK: ± 14.35
 $£ 18.15$ Surface Mail
 £37.15 Air Mail

Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes. Henel Hempstead. Hertfordshire HP1 18B. Cheques, postal orders, etc should be made payable to ASP Ltd.
We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the is sue you require appeared more than a year ago, photocopies of individual arlicles can be ordered instead. These also cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an arti-
cle appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. If you do not have a copy of the appropriate index in which to look up these details, a set of photocopies of index sheets going back to 1972 is also available for $£ 1.50$. Otherwise, you will find the index for 1980 and 1981 in the January 1982 issue, the index for 1982 in the December 1982 issue, and the index for 1983 in the January 1984 issue. Photocopies should be ordered from: ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London WT R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).
We don't bother with the bureaucracy for Tech Tips - all you do is to send in your idea, stating clearly if vou want an acknowledgement or receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works, on a separate sheet from the circuit diagram; both sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to sce if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is belween you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.
We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you toobtain compensation. From time to time, we publish, details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

Active Loudspeaker (November 1983)
Cremlins attacked the parts list on page 72 leaving a trailof 00 s in their wake. The ceramic tiles should be $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ square and you need six of them. The BAF wadding should be $21^{\prime \prime}$ wide and long enough to loosely fill the space inside the enclosure when rolled up, with a bit left over to cover the back of the bass unit; the thinner the wadding you use, the greater the length you will need. There were also some errors on the circuit diagram, etc. C13 should be shown connected to pin 4 of IC2, not ground C13 is correctly shown below IC2 on the overlay diagram but a second C13 has been shown to the right of $I C 2$; the second C13 should be omitted. The parts list and the PCB pattern are correct. Finally, a number of readers have reported difficulty in obtaining the 3040 op-amps specified for 1 C 2 and IC3. Any op-amp with the same pin-out should work in the circuit but we cannot guarantee the performance with othertypes. We have, however, tried the popular 3140 and found its performance quite satisfactory.
Programmable Speech Board - Mini Mynah (February 1984)
The PCB for this project is double sided but only the underside pattern appears on the overlay drawing on page 26 and on the Foil Patterns page. The component side pattern appears on the PCB Foil Patterns page in the March'84 issue. The error does not affect PCBs supplied by our PCB service. There are also a number of errors in the circuit diagram on page 22 . Pin 10 on IC 11 should be connected to 0 V along with pins 1 and 11 , not pin 12 as shown; pin 12 should be left unconnected. On the same IC, pin 25 rather than pin 23 should be connected topin 2 and R12/C.4; pin 23 is Vec and should be connected to the +5 V supply. R5 has been missed off of the circuit diagram; it should be shown connecting IC4a pin 8 and IC5 pin 21 to the +5 V supply. In each of the above cases the PCB and the overlay diagram are correct.

Adding Colour to the Ace (April 1984)

We renumbered the components in this article to make things easier for you (!) and ended up with utter confusion. In the third paragraph of the construction section on page 4 3. IC.4 should readiC14 In the first column of the How It Works section on page 44 , lines $3-4$ should read"... via tri-state buffer IC9...". In the third column of the same section, the capacitor in the differentiatornetwork (lines 13-14) is C6, not C9. and the line sync pulse mentioned at the start of the next paragraph is applied via IC1e, not R1d. In the first column of How it Works on page 45, C6/R15/R10 on line 9 should read C6/R9/R10, and the list of resistors given three lines further down should start with R29 not R21. In the second column on page 45 . the colour modulator is IC14 not IC13 and the second phase shift network mentioned a few lines fur ther down should be C16/R32, not C16/R17. On the circuit diagram on page 44 there afe two C 7 s , the lower one of which should be C 8 and have a value of $4 n 7$, not 47 n as stated in the parts list; C9 is listed as being 100 n both on the circuit diagram and in the parts list but should actually be 1 n . In the other half of the circuit diagram on page $45, \mathrm{C} 17$ should be 33 p not $10 p$ and again the parts list is also wrong, and pin 16 of IC14 should be shown connected to pins 15 and 12 , not to the +5 V supply; the PCB overlay is correct. In the timing diagram at top left on page 45 , read IC. for IC13, IC5 for IC 12, IC10 for IC9, IC11 for IC5, R14/C12 for R29/C19, and C9/R11 for C5/R6. In the timing diagram at top right on page 45 , read IC5 for IC12 throughout, and in the regenerate clock signal diagram below it, read IC6b for IC $2 a$. IC11 for IC5 and ICbc for IC 2 d . The same three ICs are mentioned in the delay timing diagramon the same page and should be similarly amended. In the setting up section on page 46 , read $R V 1$ for $R V 2$ and vice versa, and in the software section read fo for 10 .

Subscription Order Form

To: ETI Subscriptions Department, Infonet Ltd,
Times House, 179 The Marlowes, Hemel Hempstead,
Herts HP1 $\mathbf{1 B B}$.
Please commence my subscription to Electronics Today
International. I enclose a cheque*/Postal Order*//Interna-
tional Money Order* for the appropriate fee, made out to
ASP Ltd.
Please debit my Access*/Barclaycard* account number

प171111171711

Signature
(* delete as appropriate)
Please indicate subscription required and fee enclosed
UK \& Rep of Ireland:
Overseas surface mail:
Overseas air mail:
$£ 14.35 \square$
$£ 18.15 \square$
$£ 37.15 \square$

PLEASE COMPLETE YOUR NAME AND ADDRESS in block capitals
Name
Address. \qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order
THIS COUPON IS VALID UNTIL 30th JUNE 1984
Backnumber Order Form
To: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.
Please supply me with the following backnumber(s) of ETI
Month Year.

Month Years.e............e.........
Month \qquad Year
I enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.45$ per magazine ordered, made out to ASP Ltd (* delete as appropriate).

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS IN block capitals

Name
Address \qquad
\qquad
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order.
Note that the cost is the same for orders from overseas as for UK orders; overseas orders will be sent by surface mail.
PLEASENOTETHATBACKNUMBERSAREHELD FOR ONE YEAR ONLY.
THIS COUPON IS VALID UNTIL 30th JUNE 1984

Binder Order Form

To: ETI Binders Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1 BB.

Please send me. \qquad .binder(s) for ETI. I enclose a cheque*/Postal Order*/International Money Order* to the value of $£ 5.00$ per binder ordered, made out to ASP Ltd (* please delete as appropriate).

Total money enclosed $£$...
PLEASE COMPLETE YOUR NAME AND ADDRESS IN............................... BLOCK CAPITALS

Name

Address

Photocopy Order Form

To: ETI Photocopies Department, 1 Golden Square, London W1R 3AB.

Please supply me with the following photocopies:
Month. Year. Article
Page No
Month. Year. Article
I
out to ASP Ltd (* delete as appropriate).
Total money enclosed $£$.
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name.
Address

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE

Date of order.
Note that the cost is the same for overseas orders as for UK orders; overseas orders will be sent by surface mail. PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING.
THIS COUPON IS VALID UNTIL 30th IUNE 1984

EQUIPMENT

Car stereo cassette player, 4W.p.c into 4 ohm, slidervol. controls, f.f. ejec button, auto-stop, 13.2 V DC, -ve. ground. Colour. black size: 141 X w137 Xd145mm (Japanese) 51250 Rear window, surface mounting car speakers, 5 W 4 onme f . 99 pair 3W 4 ohm. 2-way f21.55
$25+25 W$ r.m.s. (4 ohm) 5 -band equaliser booster for car stereo (X-80) £22
Unviversal battery charger for AA(HP7), C(HP11), D(HP2), and PP3 E7.50.
rices include postage
Cash with order to:-
.E.S. LTD Dickenson Road, Longsight
(Mail Order Only)

SURVEILLANCE EQUIPMENT

MICRO-MINI

 TRANSMITTERSall supplied ex-stock return post delivery, no special equipment required, built, tested, with instructions
Cr10H, 4 mile range, broadcast quality
Speech pick-up $£ 13.98$
tunable, frea $70-120 \mathrm{MHz}$ variable microphone sensitivity, £19.48. CT10MB, as above + unique dual microphones to etminate echoes, noise etc E21.40.
All specialised requirements catered for. EVEN RADIO STATIONS - + telephone line recorded device
S.A.T. ELECTRON

164 Washway Rd, Sale, Cheshire M331 RH

Printed Circuit Boards to your specification from artwork through to finished board.

QUICK DELIVERY COMPETITIVE PRICES

35 Grosvenor Road
Twickenham, Middlesex
TEL:01.891 1923/1513 Telex 295093

BRITISH TELECOM plug sockets \& leads etc. Tel C.W.A.S (0274) 731532. Or visit our showroom opposite Odsal Stadium, Bradford.

BULK COMPONENTS

 Resistors - idealformaking into packs or ust to increase stocks at a very low price. Ne're selling new, full lead length resis ors in original boxes/packets/reels, some are 100 's) you'll need to buy a lar quentity to get a reasonable mix. You'll get carbon/film/oxide mixed tolerances \% to 20\% in $1 / 8 \mathrm{WW}, 1 / 4 \mathrm{~W} \& 1 / 2 \mathrm{~W} .20,000$ ع26; 0,000 £60; $100,000 £ 110 ; 1 / 4$ million AE ior samples. We also stock caors, veroboards etc in bulk SAE for atest list.
PC ELECTRONICS 1 THORNHILL SALISBURY, WILTS SP5 2SD

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-of-post service
Write or phone for free price list
WAVEFORM ELECTRONICS
12 Effra Road, Rathmines, Dublin 6 Phone(01) 0001 if England 987507

Mail order Only please

AERIAL AMPLIFIERS improve weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire, BLO 9AGH.

RESISTORS			
C.F. S\% M.F. 4 w			
HI-STAB HI-STAB			
1/4w E241pea 1\% 4pea E24			
1/2wE24 2peaCAPACITORS			
TANTALUM BEAD			
35v0.1, 0.22, 0.33, 0.47, 0.68, 1.0.14p ea			
25v6.8 20p ea			
16 v 4.7 .10 mf 16 pea			
16v2.2 12pea			
16v4.7 14pea			
$16 \mathrm{v} 10 \mathrm{mf} \mathrm{20p} \mathrm{ea}$			
Terms C.W.O	$£ 5.00$	Min	Order
P.Paid + VAT @ 15\%.			
E.C.P.S.			
7, Harehill Cres., Wingerworth Chesterfield, Derbyshire			
Chesterfield, Derbyshire			

CRYSTALS. Very large stocks. $100 \mathrm{KHz}-50 \mathrm{MHz}$. Priced from 55p-£7.50. S.A.E. for full lists. TELERADIO, 325 Fore Street, London N9 OPE.

SOFTWARE APPLICATIONS

CORTEX-FORTH

Fullfig-forth with extensions for powe tran cortex computer. Supports disc 8 cassette, 40 page manual. 16 K supplied in two 2564 Eproms Replaces 1st two Basic Eproms.
£35 inclusive
LOMBARD SYSTEMS
18 Lombard Street, Lidilington Bedford MK43 ORP

ELECTROMART

CHESHIRE

LANCASHIRE
ETESON ELECTRONICS
158 Lower Green. -Fylde, Blackpool Tel: (0253) 886107 Open: 9.30 arn- 12.30 1.30.5.30 Closed Wed E

MERSEYSIDE
PROGRESSIVE RADIO
93 Dale Street. Tel 0512360982
47 Whitechapel,| Tel 0512365489 Liverpool 2 'THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30
MERSEYSIDE

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD.
45 Castle Arcade, Cardiff
TEL: 022241905
Open: Mon-Sat 9-5.30
For components to computers

ASP Ltd
 1 Golden Square London W.1.

CLASSIFIED ADVERTISEMENT - ORDER FORM

1.	2.	3.
4.	5.	6.
7.	8.	9.
10.	11.	12.
13.	14.	15.

CLASSIFIEDDEPT ELECT
NICS TODAY INTERNATIONAL Tel: 01-437 0699
Please indicate classification required.
Name
\qquad

WE TAKE ACCESS AND BARCLAYCARD
Please place my advert in E.T.I. for months. Please Indicate number of insertions required.

ELECTRONICS TODAY INTERNATIONAL

Lineage:

40p per word (minimum 15 words)
Semi Display: (minimum 2 cms)

01-437 0699
Send your requirements to: Debbie Miller ASP Ltd., 1 Golden Square, London W1.

APPOINTMENTS

FILM RECORDING STAFF

On a temporary basis for a period of three or six months.

Holiday Relief Assistant Dubbing Mixers

To undertake the operation of disc and tape machines, to select and introduce sound effects and music required during the dubbing process and to act as an Assistant to the Dubbing Mixer, as and when required. Salary $£ 8,522-£ 10,326$ p.a.
(Ref. 1171/ETI)

Holiday Relief Assistant Film Recordists

To undertake the operation of tape, disc and 16 mm reproduction and recording equipment in Sound Transfer areas and Dubbing Theatre Record Rooms. Salary $£ 7,758-£ 9,374$ p.a.
(Ref. 1172/ETI)
Applicants for both these posts should have a knowledge and experience of film sound transfer and dubbing methods, coupled with an understanding of the use of sound in television film production. Normal hearing is essential.
Applicants will be expected to work on a shift basis when a shift allowance rate will be paid. Based at Ealing or Shepherds Bush. Salaries currently under review.
Contact us immediately for application form (quote ref. and enclose s.a.e.): BBC Appointments, London W1A 1AA.
Tel. 01-9275799.
We are an Equal Opportunities employer
BBGtv

PLANS 'N DESIGN

AMAZING
ELECTRONIC
plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

GERMANIUM TRANSISTORS
WANTED. Large quantity. Send samples and asking price to: Alley, Squirrel Leap, Hagley Rd, Fleet, Hants.

REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64Pets, Commodore computers, printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

COMPUTERS FOR SALE

CORTEX COMPUTER built

 and working, with RS232. £295. Telephone: 0206251658 Evening/week-ends.> USE ETI CLASSIFIED SECTION TO SELL YOUR PRODUCT/SERVICE EITHER FILL IN THE COUPON OR PHONE DEBBIE ON $01-4370699$

FOR SALE

POWERTRAN Digital Delay Line. Up to 1.6 mS delay. Kit cost over£170. Fullybuilt and tested to a high standard. Give away at £100. Also Clef Electronic Band-Box and Master Rhythm unit. Kit cost over £300. Built and tested as above. $£ 180$ o.n.o. Phone Medway 64900 after 7.15 evenings only.

VERORACKS and cabinets. 19 inch $3 u$ and $5 u$. Larger ones available. New and unused. Yateley (0252) 871048.

FREE parcel of L.E.D.'s, decoders, components worth E10! Send only 80 p postage! D. Horsley, 113 Clare Rd., Braintree, Essex.

ELECTRONIC ORGAN KEY-

 BOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.01-986 8455.100W AMPLIFIER - £9.95 built. Or use the same board for $50 \mathrm{~W}, 150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc by using alternative output transistors \& P.S.U S.A.E. for full details to: ESS Amplification, Innovation House, Guildhall Rd, Hull.

POWERAMPLIFIERS
200 Watt $12.95 \ldots$ case + controls \& sockets...Tested. Glass/PCB .. $4 \times \mathrm{MJ3001/T03}$ output 100 +100W...(M.R.P. £38.40). KIA8 Cunliffe Road, likley LS29 9DZ.

SHEET METAL FOLDERS $18^{\prime \prime} \times 18 \mathrm{G}$ bench or vice held £38. Leaflet 01-890 7838 (anytime). 90 Granveille Av, Feltham, Middx TW13 4JN.

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers
Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13
Tel: 0512283483 or 051-220 0590

LARGESTOCK OF BURGLAR ALARM EQUIPMENT. As used in the trade. JN Security Centre, 176 Sydenham Rd., London SE26 5J2. 01.778 1111. Showrooms open 6 days.

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

BOOKS \& PUBLICATIONS

Be your own boss with our new published business manuals.
Both with full fault guides and business know how.
repair for profit
2 volumes only $\boldsymbol{\varepsilon 1 2 . 5 0}$ post free
A guide to professional sewing machine repairs for profit.
2 volumes oniy
Leaflets
Mr. Marchant. Dept (ETI)
30 Chester Road East, Shotton, Clwyd, N. Wales

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4 x 9 ", Paralab, Downton, Wiltshire.

COMPUTER ADD-ONS

Microtan 65 Eprom Switching Board
Perm any 4 frnm 16 . Software controlled. Bareboard + instructions $£ 19.95$ postfree Also available 64×25 colour VDU card, 3 pass assembler, word processor etc. Large SAE for details.

M.P.D., 7 Cedar Close,

 Grafham, Huntingdon PE18 ODZ.Build your own high pertormance AUDIO SIGNAL GENERATOR £25.00 incl. case (p.p. 1)
Spec
Very low distortion (only . 02%) Output Iv into 600 Ohms. (Attenuated)
$10 \mathrm{~Hz}-100 \mathrm{Khz}$. Sine-Square (A Linsley-Hood design) TELERADIO ELECTRONICS 325 Fore Street, Edmonton London N9 OPE Ready made $\mathbf{£ 3 0 . 0 0}$

VHFTRANSMITTERMODULE
Kit, size 2 inches by $1 / 2$ inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. $70-150 \mathrm{MHz}$, range dependent on voltage (618 V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to £6.95, post paid, send cash/ cheque/PO to Modulex, P.O. Box 102, Dartford, Kent DA1 2 PW .

MINIATURE FM TRANSMITTERS. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F.-P.C.B. All components. Full instructions. 9-12V. Operation, broadcast reception. Super sensitive microphone. Pick-up on FM radio. £6.95 inc. - Zenith Electronics, 21 Station Road, Industrial Estate, Hailsham, E. Sussex BN27 2EW.

KITS and PCB's for quality home recording effects. Send S.A.E. for cataloque: Tantek Services, Dept ETI, P.O. Box 54, Stevenage SG2 9DQ.

TELEPHONE MONITOR KIT, connects between telephone line and your cassette recorder and automatically records all phone usage. Complete kit including case and PCB only £9.95. Dept. ETX, Unitech (Midlands), FREEPOST, Erdington. Birmingham B24 8BR.

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.50$. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00 \mathrm{sq}$. ft. Post/packing 50 p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

FM MICROTRANSMITTER

KIT. $80-110 \mathrm{MHz}$. High quality components with very sensitive mic. Easy to build; instructions included. Only $£ 5.00$. Send cheque/PO etc. to M Wyman, Sorby Hall, Endcliffe Vale Road, Sheffield, S10 3ES.

POWER AMPLIFIERS.

25 watts $12-20$ volts $4-80$ ohms S.G.F.-P.C.B. All components. Full instructions inc. $\mathrm{h} /$ sink 18 20 KHz Hi -Fiquality. Adjustable sensitivity. Home-incar use. Mono - £9.00 inc. Stereo £17.00 inc. Zenith Electronics, 21 Station Road, Industrial Estate, Hailsham, E. Sussex BN27 2 EW .

DISCO LIGHTING UNIT. Variable speed chase functions, complete 3-channel kit $£ 10.60$: 4 -channel kit $£ 12.20$: S. Turner 4 Parkside South, Sunderland SR3 3RA.

THIS
SPACE COULD BE WORKING FOR YOU! JUST SIMPLY DIAL 01-437 0699

SERVICES

SCOPES

Repaired \& recalibrated, all makes, all models.
Scopex, Safgan, Older TEK, TQ MENDASCOPE LTD Otter House
Weston Underwood, Olney
Bucks MK46 5JS
Tel: Bedford (0234) 712445
P.C.B. DESIGN \& LAYOUT manually taped artwork professionally produced at competitive prices. J. Gledhill. Tel: $01-6748511$

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408

TANGERINE OWNERS. We have available an independant switch selectable RAM card to free the Eprom space on Tanex P.C.B. on built S.AE. for details. Ralph Allen Eng., Forncett-End, Norwhich. Tel (0.95389) 420.

Heathkit - IT'SA PLEASURE TO BUILD

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16 -bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear - Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50 p for the Heathkit Intemational Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.

 P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.(For shop addresses see back cover.)
E.T.I. MAY 1984ADVERTISERSINDEX
Audio Electronics 56
Bimsales 64
B.K. Electronics 32
Black Star 64
B.N.R.\&.E.S 61
Cambridge College of Arts 52
Clef Products 46
Compex (UK) Ltd 31
Cricklewood 8
Display Electronics 12
Electrovalue 51
Greenbank 32
Greenweld 46
G.S.C. 46
Happy Memories 46
ICS 46
ILP 36
Kelan Engineering 35
Kempston 30
L.B. Electronics 56
Maplin 74, OBC
Marco Trading 52
Marshalls 45
Micro Processor Engineering 51
Microtanic 45
Midwich 35
Pantechnic 55
Parndon Electronics 64
Powertran IFC, 10, IBC

Low-price robots from

 POWERTRAN - hydraulically powered - microprocessor controlledThe UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as $£ 470$, even the home enthusiast can aspire to his or her own robot.

4
Each robot in the Genesis range has a self-contained hydraulic power source
 or 120v AC or from a 12v DC supply. Up to six independent axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link. on and

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.

For a little over $£ 100$, Herbot II takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoid-operated pen to chart its moves. Touch sensors, coupled to its shell return data about its environment to the computer enabling evasive or exploratory action to be calculated

The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a 2×81 or other microcomputer

HEBOT II

Weight 1.8 kg complete kit with assembly instructions £95 Interface board kit $\mathbf{E 1 1}$ 11

A real programmable robot for under $£ 300$! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus the Sinclair ZX81 being particularly suitable.

MICROGRASP

Weight 8.7 kg , max. lifting
capacity 100 g
Robot kit with power
supply

GENESIS S101

Weight 29 kg , max. lifting
capacity 1.5 kg
4-axis model (kit form) $\quad \mathbf{E 4 7 0}$

GENESIS P101

Weight 34 kg , max lifting capacity 1.8 kg
6-axis model (kit form) $£ 750$
6-axis complete system (kit form)

Universal computer interface board kit E57.00 23 way edge connector $£ 3.00$ ZX81 peripheral/RAM pack ZX81 periphera//RAM pack
splitter board
$£ 3.50$

5-axis model (kit form) $\mathbf{5 5 2 5}$ 5-axis complete system (kit form)

GENESIS P. 102

Weight 36 kg , max lifting capacity 2 kg 6-axis system
(kit form)
Powertran Cortex microcomputer self-assembly kit

E295.00

กiniplin luassive range of components for your hobhy ...resist on Maplin qualliy:

IMAPLIN'S FASCINATING PROJECTS BOOKS

Full details in our Project Books Price 70p each.
In Book 1 (XA01B) 120W rms Mosfet Combo-Amplifier - Universal Timer with 18 program times and 4 outputs Temperature Gauge - 6 Vero Projects In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W Mosfet Amplifier - Doppler Radar intruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm Remote Control for 25W Stereo Amp. In Book 5 (XA05F) 300 Baud Duplex Modem to European Standard - 100 W 240VAC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects Timer for External Alarm.

In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our Mosfet Amps to make a 350W Amp - ZX81 Sound on your TV • Scratch Filter - Damp Meter Four Simple Projects.
In Book 7 (XA07H) Modem (RS232) Interface for ZX81 $\mathrm{VIC} 20 / \mathrm{Commodore}$ 64 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator - CMOS Crystal Calibrator. In Book 8 (XA08J) Modem (RS232) Interface for Dragon 32 \& Spectrum Synchime - I/O Ports for Dragon 32 Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.
In Book 9 (XA09K) Keyboard with Electronics for ZX Spectrum - Infra-

Red intruder Detector - Multimeter to Frequency Meter Converter - FM Radio needs no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric 1 - VIC20 Extendiboard - ZX81 ExtendiRAM - Dynamic Noise Limiter for Personal Cassette Players - TL Levels to RS232 Converter Logic Pulser - Pseudo-Stereo AM Radio - Ni-Cad Charger Timer -

1984 CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send $£ 1.65$ (including $p \& p$) to our mail-order address.

Adder-Subtracter - Syndrum's Interface - Microphone Pre-Amp Limiter. In Book 10 (XA10L) Cassette Easyload for ZX Spectrum - 80 m Amateur Receiver - Auto Waa-Waa Effects Unit - Oric 1 Modem Interface - 2.8 kW Mains Power Controller Extendiport for Dragon 32 - 12V Fluorescent Tube Driver - 32-Line Extension for Digi-Tel.

GREAT PROJECTS FROM E\&MM

Our book "Best of E\&MM Projects Vol. $1^{\prime \prime}$ brings together 21 fascinating and novel projects from E\&MM's first Year.
Projects include Harmon Generator, Guitar Tuner, Hexa drum, Syntom, Auto Swell, Partylite, Car Aerial Booster MOS-FET Amp and othe musical, hi-fi and car projects Order As XH61R. Price £1.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose $£ 1.65$

Name.
Address

ELECTRONIC SUPPLIES LTD

Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday
All prices include VAT and carriage. Please add 50 p handling charge to orders under $£ 5$ total value (except catalogue)

[^1]: \qquad

[^2]: G.S.C. (UK) Ltd. Dept. $9 \mathbf{1 8}$

 Unit 1. Shire Hill Industrial Estate.
 Saffron Walden. Essex CB1 1 3AQ
 Telephone: Saffron Walden (0799) 21682

[^3]: G.S.C. (UK) Limited Dept 9 J 8 Unit 1. Shıre Hill Industrial Estate, Saffron Walden. Essex CB1 1 3AQ Price include P \& P and 15% VAT

 Name \qquad Address \qquad

 ## I enclose Cheque/P.O. for $£$ American Express card no

 \qquad or debit my Barclaycard/Access/
 \qquad expiry date
 FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service
 For FREE Telephone (0799) 21682 and give us your Barclaycard, Access, American catalogue Express number and your order will be in the post immediately tick box

[^4]: NOTE:
 IC5 IS ENABLED WHEN A13 IS HIGH

[^5]: 10 INPUT"Enter decimal number";n
 20 IF $n<1$ OR $n>65536$ THEN COTO 10
 30 POKE 23332, $\mathrm{n}-256^{*}$ INT ($\mathrm{n} / 256$)
 40 POKE 2333, INT ($n / 256$)
 50 CLS:PRINT n; "=": RANDOMIZE USR 23334
 60 GOTO menu

