FIRM UP YOUR CODE

Turn your ZX81 into an EPROM programmer—copy, list or write afresh using PEEK and POKE commands.

PLUS

Automatic light switch to build—keep the burglars guessing

Go boom-bang-bip with our midi drum synth project

Microtanic profile—a computer for the electronics enthusiast?
High performance, low price kits for today's musicians

DIGITAL DELAY LINE

Digital delay circuitry is an absolute necessity for high quality studio work, but usually comes with a four-figure price tag.

Powertran can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6mSecs to 1.6 secs with many powerful effects including phasing, flanging, A.D.T., chorus, echo and vibrato. The basic kit is extended in 400mSec steps up to 1.6 seconds simply by adding more parts to the PCB.

Complete kit (400mS delay)

Complete kit... £179
Parts for extra 400mS delay (up to 3)... £19.50

'DESTINY' MIXER

This versatile mixer offers a maximum of 24 inputs, 4 outputs, and an auxiliary channel. Input channels have Mic(excite), variable gain, bass/treble, and middle frequency equaliser. Output channels have PPM displays and record/studio outputs. There are send/return jacks, auxiliary, pan and fader controls, and output and group switching. There is also a headphone jack and built-in talk-back microphone.

Input channel... £25.00
Output channel... £25.00
Aux channel... £26.00
Blank panel... £3.50
Base unit and front... £33.00
Pair of end cheeks... £25.00
Power supply and cabinet... £22.50
£150

TRANSCENDENT 2000

ETI single board synthesizer.

This professional quality 3-octave instrument is transposable 2 octaves up or down, giving an effective 7-octave range.

There is a portamento pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope shaper. Other features include special circuitry with precision components to ensure tuning stability.

£150

MPA 200

100 watt mixer/amplifier

Here's a rugged, professionally finished mixer amp designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components are supplied for additional inputs), 8 tone controls, each with 15dB boost and 15dB cut, and a master volume control.

Complete kit... £79.50

SP2-200

2-channel, 100-watt amplifier

The SP2-200 uses two of the power amplifier sections of the MPA 200 (above), each with its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100W rms into 8 ohms. Each channel has its own volume control, and a sensitivity of 0.775mV (OdBm) makes this amplifier suitable for virtually all pre-amps or mixers.

Complete kit... £99.50

CHROMATHEQUE 5000

ETI 5-channel lighting effects system

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both functions. It controls 5 banks of lamps up to 500W each in either analog or digital mode. All 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4-channel systems. Versatility light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal and construction straightforward.

Complete kit... £79.50

Allow 21 days for delivery
DIGEST.......................... 7
Another helping of titillating titbits, vitriolic vituals and fanciful fare. Who could ask for more?

THE WORLD OF THE
MICROTAN 65 22
All a-board the six-five special! Mike Bedford takes us on a guided tour of the plug-in boards available for the Microtan.

READ/WRITE...................... 33
Readers' replies to ETI articles — proof positive that some people actually read the magazine instead of just leaving it on their coffee table to draw gasps of admiration from friends.

BOOK REVIEWS 44
A book at bedtime: after another session of lying down on the job, Phil Walker brings you an insomniacs' guide to electronics books.

MACHINE CODE
PROGRAMMING 53
Bob Bennett explains how to avoid grammatical faux pas when talking to a computer.

IMPROM ERASER................. 17
Does your EPROM have its ups and downs? ETI's DEPROM will soon have it looking up, up, up all the way.

AUTOMATIC LIGHT
SWITCH 19
Would-be burglar sees the light — and gives your house a wide berth!

ZX81 EPROM
PROGRAMMER 26
Old ZX81s never die — they just get incorporated into ETI projects.

MAINS BORNE REMOTE
CONTROL 37
In this second part, we tell you how to build the transmitter unit and interface the finished system to your microcomputer.

CENTRONICS INTERFACE 47
Just the thing for a shy micro with literary ambitions — an introduction to a friendly printer.

VERTICAL SPEED
INDICATOR 57
Having left our readers in (animated!) suspense for a month, we now give you the low down on how to build this exciting project.

MIDI DRUM SYNTH 62
Not to be confused with M.I.D.I. synths, this project is so called because it's as small and simple as a mini yet has a number of features usually only found on full-sized drum synths.

INFORMATION
NEXT MONTH'S ETI 6
ETI BOOK SERVICE 16
ETI PCB SERVICE 65
PCB FOIL PATTERNS 66
READER'S SERVICES 69
ADVERTISERS' INDEX 74
'AUDIO DESIGN' AMPLIFIER
Since the end of the series 'Audio Design', we've had a steady stream of enquiries to ask when the amplifier mentioned then will be hitting the pages. Well, the answer to all you who've asked that of us is that the first part, featuring the preamp, will appear next month. It promises to be a goody, too — your very own editor is already first in the queue for the complete kit, when this becomes available.

You would think that preamp/power amp complementary units had been around for so long that no new innovations in the basic format could be found — but you'd be wrong! Whilst we cannot claim that no one had thought of the idea before, John Linsley Hood has made a modification to the basic format that seems so obvious as to make you wonder why you didn't think of it yourself — and this is not to mention all the top-class circuitry (there will be a few surprises in the power amp circuitry in the following issue).

EPROM CARD FOR THE ORIC/ATMOS
There has been a lack of projects on these pages for the Oric (and, consequently, for the new Atmos as well), but we're just about to fix all that! This EPROM card will allow you to program EPROMs and then read and verify them, and then, if desired, to actually run the software inside them on the computer. For ease of construction, only one location on the card can be used for programming but the card is reconfigurable, so EPROM (and the on-board RAM) can be placed as desired in the memory map, making this card a very flexible tool for firmware development.

NOVEL LOUDSPEAKER PROJECT
A new type of drive unit from a company based in Liverpool has been raising a certain amount of interest. The drive units actually have a 'lozenge-shaped' flat diaphragm, driven round the edges, which should, in theory, overcome the problem of different bits of the diaphragm on a conventional speaker moving out of phase with one another — apparently the Japanese have been working on the same idea for quite some time but have yet to deliver the goods. Readers of ETI will have their chance to reach the fore-front of technology with this project.

ALL IN THE JUNE ISSUE OF ETI — ON SALE FRIDAY MAY 4th.
PLACE YOUR ORDER NOW OR RISK MISSING OUT!
April fools, May be true...

Unaccustomed as we are, etc, etc, we feel it's only fair to come clean about the extent of our duplicity in the April issue — preferably whilst there are a few readers still on speaking terms with us.

What can we say about "The Saga of Silly Cow Valley"? Its appeal is ageless; the epic narrative, pierced with shafts of wry humour and pure enlightenment spoke directly to our human condition, uniting ETI readers in all reaches of society in one long-suffering groan of disbelief.

Some of our other April offerings deserve a little more comment. Hands up all those who are still hunting high and low for a dual peak filter, haven't yet sorted out the cold starting on their Duo Decimal Sub-Phrase Repetition Detector or are fast losing patience with the budgie's apparent inability to respond meaningfully to multiple glissandos. Give Up! It may be of some comfort to know that Paul Wollover's "Super Selective Music Filter" caught some very prestigious April fools. No names, no pack drill, but our first telephone call on the subject came from the producers of a certain television programme, who obviously thought tomorrow's world had arrived a day early. We did our best to explain the various conceptual technical difficulties which would prevent us lending them a prototype for use on the programme, until unnatural hilarity got the better of us and the sound of eddial sides splitting alerted them to our deception. For others, disillusion came less readily; one puzzled newspaper went through his entire stock with a toothcomb after an irate reader had complained about the non-delivery of the rest of his magazine with its elusive page 105. Complaints should be directed to Phil Walker, the literary giant who hides behind the pseudonym Paul Wollover (pull-the-wool-over: geddit!).

Finally, we have the item which grace our news page under the heading "Not an April Fool". Despite this reassuring start and the well known veracity of all ETI writers, people just didn’t believe us. This lack of trust came as a complete surprise and we would like to say that we are shocked, deeply hurt, and have never laughed so much in our lives. For the whole story is true — well, everything except the quadrifilar water-beds and so on. We trust the Acoustic Chair Company will forgive us our little jest, and hope they made the most of their opportunities by quickly selling examples of their product to all those ETI readers who rang up and said "April Fool to you too!"

Typewriter Interface

We said in the update article on the Typewriter Interface which appeared in our March issue that we would try and organise an EPROM programming service. We are pleased to be able to tell you that Magenta Electronics are now offering ready programmed EPROMs and complete kits for this project. When we contacted them just before this issue went to press they were unable to confirm prices, but said that the items should be ready by the time this issue went on sale. For details contact Magenta Electronics Ltd, 135 Hunter Street, Burton-on-Trent, Staffordshire DE14 2ST; tel. 0283-65435.

We have also had a letter from Tapesoft who have 14x42s available for £235 including carriage. Their address is 53 Morley Road, Twickenham, Middlesex TW1 2HO, tel. 01-892 1909.

Less For Your Money

Panasonic claim that their new SU series electrolytic capacitors are up to 60% smaller than conventional types. Available in both radial and axial forms, they are expected to find favour wherever high component packing density and small board size are desirable, and in industries where they will enable higher capacitance values to be handled by automatic insertion equipment.

The SU series capacitors are available with working voltages from 6.3 to 100 volts DC and in capacitance values from 0.47uF to 15,000uF (radial) and 22,000uF (axial). Panasonic say that a typical SU capacitor is about half the size of a conventional capacitor with the same electrical value. They are specified for operation over the temperature range -40°C to +85°C and have a life expectancy of 2000 hours at +85°C. DC leakage current is equal to 0.01CvU or 3uA, whichever is the greater. Radial types larger than 6.3 mm diameter and axial types larger than 10 mm diameter have specially designed safety vents in their cases, and all types are claimed to be resistant to the majority of modern solvents.

Further details of the SU electrolytic capacitor range are available from Panasonic Industrial (UK) Ltd, Electronic Components Department, 280-290 Bath Road, Slough, Berkshire SL1 6JB, tel. 0753-34922.

Coaxial Cable Stripper

OK Industries have patented a cable stripper which will quickly and cleanly prepare the ends of coaxial cables. The new device, designated the CK series cable stripper, consists of a hinged assembly which traps the cable and forces it down onto a series of blades. The blades are set at different heights according to the type and diameter of cable being stripped. The device is then rotated around the cable so that a uniform cut is produced. Two versions are available, one with two blades and one with three, allowing outside insulation, braid and dielectric to be removed in any combination simultaneously. The blade height is adjusted for different cable diameters by means of colour-coded interchangeable cassettes, making changes quick and simple. The two blade version costs £15.89 and the three blade version £18.66, and both are supplied with three cassettes. Further details are available from OK Industries Ltd, Dutton Lane, Eastleigh, Hampshire SO5 4AA, tel. 0703 619841.
Resistor LEDs

Hewlett Packard have introduced a new series of LEDs which have integral current limiting resistors. Called simply resistor-LED or RLED lamps, they are available in 5V and 12V versions in T-1 and T-1½ packages. This allows them to be soldered directly to PCBs in the normal way or used in panel mounting ESL lampholders by means of a simple adaptor. In either case, the absence of an external current limiting resistor should save space and cost. For further details contact the Literature Section, Hewlett-Packard Ltd, Eskdale Road, Winnersh, Wokingham, Berkshire RG11 5DZ, tel 0734-696622.

Electronics Shop Opens

Good news for electronics enthusiasts who live in or near Daventry, Northamptonshire — Emos Ltd have opened a new electronics shop in the Sheaf Street Shopping area. The shop is open from 9.00 a.m. to 5.00 p.m. Monday to Saturday with the exception of Thursday when it is closed all day, and intends to offer everything from a threepenny amp plug to a microcomputer. Emos already offer a mail order service and have previously operated from a warehouse on the High March Industrial Estate; they say the move is in response to an increasing interest in electronics and computers in the Daventry area. For further information contact Emos Ltd, 17 Sheaf Street, Daventry, Northamptonshire, tel 03272-5524.

Waterproof Diecast Boxes

Boss Industrial Mouldings have introduced a new range of diecast aluminium boxes which are protected against water ingress in accordance with the requirements of Industrial Standard IP65. IP65 protection is defined as hoseproof, and the boxes are thus ideally suited to use in equipment which is subject to periodic cleaning. The new boxes incorporate an oil and petrol resistant neoprene gasket seal which is recessed and runs inside the mounting holes and fixing screw holes. They are manufactured from LM6 aluminium alloy (whatever that is!) and feature non-magnetic stainless steel fixing screws which are held captive in the lid so that you can't lose them. A copper plated earthing screw is incorporated and the boxes can be supplied to special order with EM1 shielding which covers the spectrum from 14kHz to 20GHz. Four sizes of box are available, ranging from 75 x 40 x 52 mm to 220 x 120 x 80 mm, and details are available from Boss Industrial Mouldings Ltd, James Carter Road, Mildenhall, Suffolk IP28 7DE, tel 0638-716101.

DIL DC/DC Converters

Gresham Powerdyne's EL series DC/DC converters are housed in standard 24 pin DIL packages and offer a range of single and dual rail outputs from 5 and 12V inputs. Three ratings are available, 1.5 watt (EL1 series), 3 watt (EL3 series) and 4 watt (EL4 series), and typical efficiencies are as high as 75%. The EL1 series provides outputs of ±12, ±15, ±212 and ±15 volts with a line and load regulation of ±0.2% and a setting accuracy of ±5%. The EL3 series includes a 24V input version and offers fifteen output configurations with a regulation of 0.5% or 1% and a maximum of 50mV ripple and noise. The EL4 series are unregulated units available in fifteen output configurations and offering a ripple and noise figure of less than 150mV peak-to-peak. EL1 and EL4 series converters have full output short circuit protection.

The EL series converters feature full six-sided RF shielding and a wide operating temperature range. Anticipated applications include interfaces and other equipment in which op-amps and similar devices have to be driven from microcomputer derived and other single rail supplied systems. Further information contact Gresham Powerdyne Ltd, Osborne Way, Station Road, Hook, Hampshire, tel 025672-4246.

- Bulgin have introduced a new range of battery holders including panel mounting, PCB and baseboard mounting versions capable of accommodating one or more AAA, AA, C, D, or P93 size cells. The new range is described in an eight-page fully-illustrated catalogue which includes dimensional drawings and fixing details. Contact Brian Diggle, A.F. Bulgin and Co PLC, Bypass Road, Barking, Essex IG11 0AZ, tel 01-594 5388.

- Copperfoil Enterprises (well, what else could they be called?) have produced a self-adhesive copper tape which can be used to repair PCBs and to produce prototypes. The tape conforms to BS safety regulations, is rated at 5A, 24V DC, is not affected by the heat produced during soldering and comes in a range of tape widths from 4 to 8mm. Details from Copperfoil Enterprises, 141 Lyndhurst Drive, Hornchurch, Essex RM11 1JP, tel 040 24-56697.

- Motorola have published three new CMOS data books, their first new CMOS data books for four years. The High Speed CMOS Logic Data Book, ref. 8022, has 540 pages and covers 147 devices, 71 of them with full circuit descriptions. The CMOS Standard Logic Data Manual, ref. 8002A has 530 pages, contains detailed information on 119 standard CMOS devices and is complementary to the CMOS Special Functions Data Manual, ref. 8022B which has 423 pages and covers 60 special function devices. Motorola Ltd, The European Literature Centre, 88 Tanner's Dr, Blakesley, Milton Keynes, tel 0908-514614.

- Superswitch manufacture a range of electronic appliances for use around the home, including mains borne remote control systems, a rechargeable torch, security equipment, touch and dimmer controls, etc. They have just brought out a new, full colour brochure, copies of which are free from Superswitch Electric Appliances Ltd, 7 Station Trading Estate, Camberley, Surrey GU17 9AH, tel 0276 34556.

- Belden Unireel packaging is a novel alternative to the usual metal drum used for cable distribution. It consists of a simple box in which the cable is loaded that it will pull out through a single eyelet without kinking or twisting, doing away with the need for a spindle on which to mount the drum while unwinding. For details contact Aniker (UK) Ltd, 63-2, London Road, Ixworth, Middlesex TW7 4EY, tel 01-568 1681.
Standard features –

- High speed 24K byte extended basic interpreter
- Powerful TMS9995 16 bit microprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256 x 192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only by memory size
- Real time clock included in basic
- Interval timing with 10mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Interfaces for screen and cassette included.
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics

Self assembly kit
£295

All prices exclusive of VAT. Carriage paid.

Optional Extras

Floppy disc interface electronics
Hardware kit & connectors for disc drives
RS232C interface kit
Pair of 5½" disc drives (SS)
Pair of 5½" disc drives (DS)

£88.50
£49.50
£39.20
£300.00
£390.00

Full assembly instructions and 216 page users manual.

POWERTRAN cybernetics ltd.
Portway Industrial Estate, Andover SP10 3ET. Tel: 0264 64455

Please send me ___________________________

I enclose cheque for ___________________________
or charge to: ___________________________

Access/Barclaycard
A/C No. ____________________________ Allow 21 days for delivery

Name ____________________________
Address ____________________________

Tel. ____________________________
Aces Low

Not only is the Jupiter Ace home computer back on sale again, it's also available at a very low price. The Ace, which uses the FORTH programming language and for which we featured an add-on colour board in last month's ETI, can now be bought for £26.00 plus VAT or complete with a 16K RAM pack for £44.00 plus VAT.

Regular readers of these pages will be aware that Jupiter Cantab, manufacturers of the Ace, ceased production and went into liquidation late last year. A receiver was appointed to wind-up the company's affairs, and although Jupiter Cantab has not been resurrected or production restarted, a company called Boldfield Ltd, Computing, has been given the go-ahead to retain the remaining stock. Boldfield also say they intend to develop new software for the Ace and will act as selling agents for other companies who wish to produce add-ons, interfaces, etc. The stock Boldfield are selling includes existing Jupiter software.

The Ace is available by mail order only and costs £26.00 complete with power supply, 182 page manual, demonstration cassette, leads and a 12 month guarantee. The 16K RAM pack costs £20 and the various software cassettes £3.00 each. If an Ace and a RAM pack are purchased together the total cost will be just £44.00 plus VAT. VAT and £3 postage should be added to all the above prices. To place an order or for further information, contact Boldfield Limited, Computing, House, Holston Street, Cambridge, tel 0487-840740.

DMM Incorporates Frequency Meter

The model 1504 from Thurlby Electronics is a bench DMM which offers the bonus of a built-in frequency meter. Frequencies up to 3,999.9kHz can be measured directly with a resolution of 100Hz and the accuracy figure of ±0.0025% over 10-30°C is guaranteed by the 6MHz crystal timebase. Sensitivity is typically 30mV rms.

As a conventional multimeter, the 1504 has a 4½ digit liquid crystal display. 32 ranges are provided enabling measurement of AC and DC voltage, resistance, diode test, and AC and DC current up to 25 amps. All AC ranges are true RMS responding which enables accurate measurements to be made on non-sinusoidal waveforms. The meter has sensitivity figures of 10µV, 10mV and 1nA and an accuracy of 0.05%.

The 1504 is housed in a high impact ABS case which incorporates a multi-position tilt-stand handle. An ever-ready carrying case is available for portable applications. The meter operates from internal batteries or from the mains and weighs 2lbs.

The UK price is £185 plus VAT, and full details are available from Thurlby Electronics Ltd, New Road, St. Ives, Huntingdon, Cambridge PE17 4BG, tel 0480-63570.

Twin Screened Connector

A new screened connector from Eldon Group Products allows simple crimped connections to be made to shielded twin co-axial cable, making the cable a viable alternative in certain situations to the more expensive twin screened cables. The connectors, known as type OSS1, are said to provide protection against noise and radiation. They are available in cable and chassis mounting forms and the chassis mounting types can also be supplied with integral leads for direct PCB mounting. The plug and socket inserts are designed to be crimped onto the cable shield, both operations being performed by the same tool. Details from Eldon Group Products, Lovett Road, Staines, Middlesex, tel Staines 61851.

One way of spotting when your amplifier is about to overheat is to put a temperature sensitive spot on it. A new range of temperature sensitive self-adhesive labels includes continuously indicating strips, dots which indicate when a specific temperature is exceeded and dial-a-temperature indicators, all with a response time of one second or less. They are available from the Electronic and Computer Workshop, 171 Bromfield Road, Chelmsford, Essex CM1 1KY, tel 0245-262149.

The latest Electrovalue catalogue has 36 A5 pages listing a wide range of electronics components and is valid until the end of May. The catalogue is single colour but includes many illustrations and is available free of charge from Electrovalue Ltd, 28 St. Judes Road, Englefield Green, Surrey TW20 0HB, tel 0784 33603.

Ambit International's Spring 1984 mail-order components catalogue is now on sale at newsagents and available by post from the company. It costs 80p and includes three £1 discount vouchers and an order form. Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG, tel 0277-230999.

TK Electronics have issued a new yellow catalogue which replaces their earlier green one. It has 28 pages in an A5 format and includes a section on kits and modules. Copies are available free of charge from TK Electronics, 11 Boston Road, London W7 3JS, tel 01-579 9794.
COOLING FANS
Keep your hot parts cool and reliable with the range of BRAND NEW professional cooling fans.
ETR8600-9 Dim 92 x 92 x 25 mm
Miniature 240 volt fan complete with clip-on mounting clips
GOLD 115V- Dim 3 x 3 x 2 5 mm compact low noise, ideal for tight places.
BULHOF 89.12.2 16 x 16 cm micro processor fans offer a choice of fan speed for extreme low air flow applications. Choice of 95 or 140 mm diameter.

COLOUR MONITORS
NOVEX 1141 CL
FULLY RESTORED new 14" colour monitor. Many exciting features including'Richfield' monitor illuminator, internal speaker and audio amp, cable included. Ideal for home or office use. Originally £650.00. Now £199.00 + £10.00 VAT. Complete with manual etc. Limited quantity – hurry while stocks last.

DATA MODEMS
Join the communications revolution with our range of data modems. Modems are the most elegant and flexible way to communicate. Whether you are exchanging data between computers, or communicating with a remote terminal, modeems make it easy and efficient.

REMOTE TERMINALS
MODEM 204 Compact unit to use with MITS/PR-TEL or TELECOM GOLD etc. 2 way direct connect 15 baud transfer link. RS232 port supplied. Guaranteed working with data rate 4.8 k bit/second. £69.50 + £10.00 VAT. Complete with manual etc.

THE newest
Hi spec spec is the new 15 baud transfer link. RS232 port supplied. Guaranteed working with data rate 4.8 k bit/second. £69.50 + £10.00 VAT. Complete with manual etc.

SOLID STATE SWITCHES
Matchbox solid state switch type IR D2402 enables off control of 240 volt 20 amp break or 600 watts, direct from your micro etc. Fully isolated safe to touch normally open.

SUPER SEAL £250
BRAND NEW CENTRONICS 739-2
The "Do Everything Printer" at a price that will blow your mind. This powerful parallel interface is perfect for direct printing to various printer types. Includes full manual etc. Limited quantity – hurry while stocks last. Originally £495.00 + £90.00 VAT. Complete with manual etc. Limited quantity – hurry while stocks last.

SUPER DEAL? NO – STEAL WORTH £250
THE FABULOUS 256K TEC Starwriter
BRAND NEW AT ONLY £495 + VAT
Made to the highest spec the TEC Starwriter 1000/25 is the feature-packed star writer. It is a heavy duty, high quality micro processor based printer which enables you to control all aspects of the printing process. It is ideal for use in a business environment where it will provide a fast, reliable and cost-effective solution to your printing needs. It includes a built-in self test which can be activated at any time to check the printer's operation. The printer also includes a built-in self-diagnostic feature which allows you to quickly determine any problems that may occur. There are several user-selectable options available, including automatic line-feed, automatic carriage return, automatic page feed, and automatic page eject. These options can be selected from the front panel or through the printer's software interface. The printer is also compatible with a wide range of software applications, making it easy to integrate into your existing work flow. It is a highly reliable and cost-effective solution for any business or individual looking to print high-quality documents.
Crotech's Second First

In 1981, Crotech claimed a first with their 3132 dual trace oscilloscope incorporating a component tester. Since then a number of other manufacturers have followed suit. Now Crotech are launching a successor, the 3132, which they claim puts them ahead again. The 3132 is a 20 MHz dual trace design which, in addition to the component tester, incorporates a component comparator which allows an unknown component to be compared with a known one, and a triple output regulated supply on the front panel.

The 3132 has a maximum deflection coefficient of 2mV/division selected on the main attenuator switch, and a maximum timebase speed of 40ns/division. Fourteen trigger functions are available including AC and DC trigger coupling, and there are TV frame and line sync modes and an HF reject function which allows triggering on low frequency signals containing some high frequency content.

The component tester allows checking of both passive and semiconductor devices and the comparator function can be used to check complete circuits using signature techniques. Current limiting is included to remove the risk of damage to the device under test. The triple output supply provides ±12V, ±12V and ±5V, and the 12-0-12V supply is left floating so that it can be used to supply plus or minus 24V relative to ground. The 12V outputs are rated at 200mA and the 5V output is rated at 1A. All of the outputs are protected against short circuit and overload conditions.

The Crotech 3132 is priced at £283.00 plus VAT. Crotech Instruments Ltd, 5 Nimrod Way, Eigar Road, Reading, Berkshire RG2 0EB, tel 0734-866945.

- Whether you seriously intend to spend your life's savings on some sophisticated test gear or just want to find a quiet corner and drool away to yourself, the 1984 Philips Test and Measurement catalogue is for you. Aside from the usual oscilloscopes, meters, analysers and the like and an extended section on bussable instruments, the catalogue comes complete with a pull-out full colour year planner. Contact Steve Taylor, Philips Test and Measurement Sales Office Manager, Pye Unicam Ltd, York Street CB1 2PX, tel 0223-358866.

- Thorn EMI Electronics Ltd, manufacturers of the Megger range of electrical insulation testers, have brought out a 90 page paperback book entitled "A Simple Guide to Insulation and Continuity Testing". The book is aimed at the user and at engineerings students and covers such topics as types of test, testing to the requirements of the IEE wiring regulations, 15th edition, and portable appliance tests. It costs £2.75 from the Sales Department, Thorn EMI Instruments Ltd, Archcliffe Road, Dover, Kent CT17 9EN, tel 0304-202620.

- Ferranti have published a series of Applications Notes which give full constructional details of projects which can be built using their Super E-line transistors and other semiconductor products. The projects are a flash gun inverter, a 120 watt flourescent tube inverter, a 12V 8 watt flourescent tube inverter and a capacitor discharge car ignition system, and the notes are available free of charge from The Sales Department, Ferranti Electronics Ltd, Fields New Road, Chaderton, Oldham, Lancashire OL9 8NP, tel 061 624-0315.

64K x 8 EPROM

Advanced Micro Devices have introduced a 512K UV-erasable and electrically programmable ROM. Designated the Am27512, the device is organised as 65,536 eight bit words and features access times as low as 25ns.

The Am27512 uses the standard 12.5V programming voltage and has an auto select mode which ensures that programming automatically takes place at this voltage. AMD's interactive programming algorithm brings programming time down to ten minutes. The Am27512 operates from a single 5V rail and dissipates 132mA in standby mode and 525mA when active. There are separate output enable and chip enable pins to simplify routing arrangements in multiple bus systems. The Am27512 comes in a 28 pin package and uses the standard JEDEC approved pin-out. 250ns and 300ns versions are available, but with a 100 off price for the 250ns version of £324 each. It going to be a while before most of us get a chance to play with one.

Advanced Micro Devices (UK) Ltd, AMD House, Goldsworth Road, Woking, Surrey GU21 1JT, tel 0486 62-22121.

Hold It

For everyone who has ever wasted countless precious minutes attempting to line up nut and bolt on opposite sides of an all-but-inaccessible panel, Toolrange have come up with an answer. Their Miniature Screw and Nut Holding Set consists of five tools, each 180 mm long with a 100 mm shank, which will securely hold small parts during fixing and soldering. There is a screw fastener, two nut fasteners, one horizontal and one vertical, and two soldering and fastening tweezers, one straight and one curved. The tools are all made of steel except for the straight tweezers which are brass, and have insulated handles. The set comes complete with a storage wallet.

Also available from Toolrange is a series of trays and PCB racks which are conductive and thus ideal for the storage of static sensitive components. The trays are made from carbon loaded polypropylene and come in five sizes ranging from 343 x 210 x 152 mm to 89 x 102 x 57 mm. Further information on these items and over 3000 other tools and production aids is to be found in the Toolrange catalogue which is available from Toolrange Ltd, Upton Road, Reading, Berkshire RG3 4JA, tel 0734 222425.
CASSETTE RECORDERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOBBIT Tape</td>
<td>£135</td>
</tr>
<tr>
<td>HOBBIT Zero Memory</td>
<td>£220</td>
</tr>
<tr>
<td>Computer Guide</td>
<td>50p each</td>
</tr>
</tbody>
</table>

MONITORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROTEC 141P</td>
<td>£210</td>
</tr>
<tr>
<td>MICROTEC 144P</td>
<td>£245</td>
</tr>
<tr>
<td>MICROTEC 2013</td>
<td>£287</td>
</tr>
<tr>
<td>KAGA VISION 12”</td>
<td>£230</td>
</tr>
<tr>
<td>KAGA VISION 12” II</td>
<td>£260</td>
</tr>
<tr>
<td>KAGA VISION 2”</td>
<td>£358</td>
</tr>
<tr>
<td>SANYO 21”</td>
<td>£358</td>
</tr>
</tbody>
</table>

UTILITY ROMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBC Upral</td>
<td>£65</td>
</tr>
<tr>
<td>EMMON 200</td>
<td>£20</td>
</tr>
<tr>
<td>DISC DOCTOR</td>
<td>£20</td>
</tr>
<tr>
<td>Graphics ROM</td>
<td>£29</td>
</tr>
</tbody>
</table>

PRINTERS & PLOTTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSON FX80</td>
<td>£325</td>
</tr>
<tr>
<td>EPSON FX 100</td>
<td>£450</td>
</tr>
<tr>
<td>EKOSHA GP 100</td>
<td>£180</td>
</tr>
<tr>
<td>UNI 6100 Epson Wheel</td>
<td>£85</td>
</tr>
<tr>
<td>MPS 40 Col Printer/Plotter</td>
<td>£100</td>
</tr>
<tr>
<td>COLOUR GRAPHICS Plotter 100x270</td>
<td>£270</td>
</tr>
<tr>
<td>GRAFFPAD Graphics Tablet</td>
<td>£125</td>
</tr>
</tbody>
</table>

EPROM ERASERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV1 T Eraser</td>
<td>£12.95</td>
</tr>
<tr>
<td>Assembly Guide</td>
<td>£8.95</td>
</tr>
<tr>
<td>Assembly Lang Programmer on BBC</td>
<td>£6.95</td>
</tr>
<tr>
<td>BBC An Expert Guide</td>
<td>£6.95</td>
</tr>
<tr>
<td>Easy Programming on BBC</td>
<td>£5.95</td>
</tr>
<tr>
<td>Interfacing BBC Micro</td>
<td>£5.95</td>
</tr>
<tr>
<td>Programming the BBC 8080</td>
<td>£6.95</td>
</tr>
<tr>
<td>30 Hour Basic</td>
<td>£5.95</td>
</tr>
<tr>
<td>35 Educational Programs</td>
<td>£6.95</td>
</tr>
<tr>
<td>Simple Band & Graphics</td>
<td>£6.95</td>
</tr>
<tr>
<td>Creating Adventure Programs</td>
<td>£4.95</td>
</tr>
<tr>
<td>Disassembling Machine Code</td>
<td>£4.95</td>
</tr>
<tr>
<td>Structuring Programmed</td>
<td>£4.95</td>
</tr>
<tr>
<td>The Friendly Computer Book BBC</td>
<td>£4.95</td>
</tr>
<tr>
<td>Beyond Basic BBC</td>
<td>£7.95</td>
</tr>
</tbody>
</table>

ACORN INTERFACE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model A to Model B</td>
<td>£95</td>
</tr>
<tr>
<td>Model B</td>
<td>£15</td>
</tr>
</tbody>
</table>

CONNECTION SYSTEMS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 41122</td>
<td>£235</td>
</tr>
<tr>
<td>DIN 41122C</td>
<td>£260</td>
</tr>
<tr>
<td>DIN 41122E</td>
<td>£275</td>
</tr>
<tr>
<td>DIN 41122F</td>
<td>£300</td>
</tr>
<tr>
<td>DIN 41122G</td>
<td>£325</td>
</tr>
<tr>
<td>DIN 41122H</td>
<td>£350</td>
</tr>
<tr>
<td>DIN 41122I</td>
<td>£375</td>
</tr>
<tr>
<td>DIN 41122J</td>
<td>£400</td>
</tr>
<tr>
<td>DIN 41122K</td>
<td>£425</td>
</tr>
<tr>
<td>DIN 41122L</td>
<td>£450</td>
</tr>
<tr>
<td>DIN 41122M</td>
<td>£475</td>
</tr>
<tr>
<td>DIN 41122N</td>
<td>£500</td>
</tr>
</tbody>
</table>

EDGE CONNECTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN 41122</td>
<td>£235</td>
</tr>
<tr>
<td>DIN 41122A</td>
<td>£260</td>
</tr>
<tr>
<td>DIN 41122B</td>
<td>£275</td>
</tr>
<tr>
<td>DIN 41122C</td>
<td>£300</td>
</tr>
<tr>
<td>DIN 41122D</td>
<td>£325</td>
</tr>
<tr>
<td>DIN 41122E</td>
<td>£350</td>
</tr>
<tr>
<td>DIN 41122F</td>
<td>£375</td>
</tr>
<tr>
<td>DIN 41122G</td>
<td>£400</td>
</tr>
<tr>
<td>DIN 41122H</td>
<td>£425</td>
</tr>
<tr>
<td>DIN 41122I</td>
<td>£450</td>
</tr>
<tr>
<td>DIN 41122J</td>
<td>£475</td>
</tr>
<tr>
<td>DIN 41122K</td>
<td>£500</td>
</tr>
</tbody>
</table>

DIL SWITCHES

- 4-way 70p
- 6-way 130p
- 10-way 150p

DIL HEADERS

- High pin
- Low pin
- High pin
- Low pin
- Male
- Female
- Special
- A-C
- D-C
- A-B
- A-C

TEST CLIPS

- 14-pin 37p
- 16-pin £3
- 20-pin £6

SMARTMOUTH

Speech Synthesiser for BBC

Software from ACORN/SOFT

PROGRAM POWER/GEMINI in stock

BBC Micro Computer System

OFFICIAL DEALER

Please phone for availability

Software from ACORN/SOFT

PROGRAM POWER/GEMINI in stock

FLOPPY DISC INTERFACE

- £84 + £15 installation

BBC COMPATIBLE DISC DRIVES

All drives are supplied with manuals, form disc and cables.

Single Drive: 100k £150; 200k £180;
400k £200
Single Drive with PSU: 100k £185; 200k £260;
400k £240
Dual Drive with PSU: 2x £100 £200;
2x £200 £400;
2x £400 £600

* These drives are switchable between 40/80 tracks, 40/80 Switch Module 1 x 400k and 2 x 400k Drive £32

DISKETTES: in packs of 10: W: Wabash £M: £15; 40 track SSD: £22; 80 track SSD £24; 80 track SSD £26; £135

FOLLPICLINT Driver Cleaning Kit £14.50

Please phone for further details

Your BBC computer can be converted into a business machine with the addition of a TORCH Z80 disc pack. The torch pack provides an additional disc drive and the disc system including a disc controller with 10 drive bays. The package is supplied with complete SYSTEM SOFTWARE. The complete package is supplied with complete SYSTEM SOFTWARE. The complete package is supplied with complete SYSTEM SOFTWARE.
<table>
<thead>
<tr>
<th>LINEAR ICs</th>
<th>COMPUTER COMPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUs</td>
<td>CPU & SUPPORT DEVICES</td>
</tr>
<tr>
<td>MEMORIES</td>
<td>IC & IC DESIGN</td>
</tr>
<tr>
<td>VOLTAGE REGULATORS</td>
<td>OPTO ELECTRONICS</td>
</tr>
<tr>
<td>BRIDGES</td>
<td>OPTICAL ELECTRONICS</td>
</tr>
<tr>
<td>TRANSISTORS</td>
<td>PLASTIC & MOUNTING</td>
</tr>
</tbody>
</table>

Technonomic Ltd

MAIL ORDERS TO: 17 BURNLEY ROAD, LONDON NW10 1ED
SHOPS AT: 17 BURNLEY ROAD, LONDON NW10

(Tel: 01-452 1500, 01-450 6597, Telex: 922800)
305 EDDGWARE ROAD, LONDON W2

PLEASE ADD 40p pkp & 15% VAT
(Export: no VAT, pkp at Cost)

Orders from Government Dept. & Colleges etc. welcome.

Detailed Price List on request.

Stock items are normally by return of post.
BEGINNERS GUIDE

- Beginner's Guide to Basic Programming Stephenson £5.35
- Beginner's Guide to Digital Electronics £5.35
- Beginner's Guide to Electronics £5.35
- Beginner's Guide to Integrated Circuits £5.35
- Beginner's Guide to Computers £5.35
- Beginner's Guide to Microprocessors £5.35

COOKBOOKS

<table>
<thead>
<tr>
<th>Cookbook Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master IC Cookbook Hallmark</td>
<td>£10.15</td>
</tr>
<tr>
<td>Microprocessor Cookbook K. Hordeski</td>
<td>£7.70</td>
</tr>
<tr>
<td>IC Op Amp Cookbook</td>
<td>£6.50</td>
</tr>
<tr>
<td>TTL Synthesiser Book H. Kinley</td>
<td>£7.70</td>
</tr>
<tr>
<td>Active Filter Cookbook</td>
<td>£11.00</td>
</tr>
<tr>
<td>TV Typewriter Cookbook</td>
<td>£11.15</td>
</tr>
<tr>
<td>CMOS Cookbook Lancaster</td>
<td>£11.85</td>
</tr>
<tr>
<td>TTL Cookbook Lancaster</td>
<td>£10.95</td>
</tr>
<tr>
<td>Micro Cookbook Vol. 1 Lancaster</td>
<td>£5.30</td>
</tr>
<tr>
<td>BASIC Cookbook K. Tracton</td>
<td>£8.00</td>
</tr>
<tr>
<td>MG5809 Cookbook C. Warren</td>
<td>£7.25</td>
</tr>
</tbody>
</table>

ELECTRONICS

Principles of Transistor Circuits Amos £8.50
Design of Active Filters with experiments Berlin £6.00
Easy to Build Electronic Projects Brown £6.00
Electronic Devices & Circuit Theory Boylestad £7.50
How to Build Electronic Kits Capel £6.50
How to Design and build electronic instrumentation Carr £3.20
Introduction to Microcomputers Clegg £11.00
Electronic Games Demos £11.50
Computer Electronic Devices De Sa £11.40
Giibert of Computer Software £7.35
** Giants of Computer Electronics £11.75**
Electronic Logic Circuits Gibson £5.55
Analysis and Design of Analogue Integrated Circuits Gray £30.25
Basic Electronics Oreb £11.30
Lasers – The Light Fantastic Hallmark £7.70
Electronic Testing and Fault Diagnosis Laidlaw £7.20
Electronic Fault Diagnosis Loveday £6.20
Essential Electronics A-Z Guide Loveday £7.50
Microelectronics Digital & Analogue Circuits and Systems Millman £34.10
100 Projects for Electronics Experimenters Morris £11.30
VLSI System Design Monro £11.30
Power FETs and their application Dunk £25.00
Practical Solid State Circuit Design Dixey £24.50
Master Handbook of IC Circuits Powers £12.85
Electronic Drafting and Design Roshfold £22.15
VGOM – VTMVM Handbook Rissie £8.85
Video and Digital Electronic Displays Sher £26.85
Understanding Electronic Components Sinclair £7.50
Electronic Fault Diagnosis Sinclair £7.50
Physics of Semiconductor Devices Sze £17.35
Digital Circuits and Microprocessors Taub £32.00
Active Filter Handbook £15.20
Designing with TTL Integrated Circuits Texas £15.20
Transistor Circuit Design Texas £15.20
Digital Systems: Princes and Applications Tocci £22.95
Master Handbook of Telephones Tracton £10.00
How to build Metal/Treasure Locators Traister £5.00
50 Fun to Make Electronic Projects Tygmony £8.50
33 Electronic Music Projects you can build Winchester £6.95

COMPUTERS & MICROCOMPUTERS

- BASIC Computer Games Am £6.35
- From BASIC to PASCAL Anderson £9.35
- Mastering Machine Code on your ZX81 T. Baker £7.25
- UNIX – The Book Banham £9.75
- 280 Microcomputer Handbook Barden £10.95
- Microcomputer Micro Maths Barden £11.30
- Digital Computer Fundamentals Barter £9.00
- VisiCalc Book APPEL Edition Bell £15.55
- VisiCalc Book ATARI Edition Bell £15.55
- Introduction to Microprocessors Brummer £23.00
- Programming your APPLE II Computer Bryan £9.25
- Microprocessor Interfacing Carr £7.20
- Musical Applications of Microprocessors Chamberlain £28.85
- 30 Computer Programs for the Home Owner in BASIC C. Chance £9.25
- Microcomputers Dinkins £9.30
- APPLE Personal Computer for Beginners Dunn £9.50
- Microcomputers/Microprocessors – An Intro Groone £11.80
- Trouble-shooting Microprocessors and Digital Logic Goodman £9.25
- Getting Acquainted with your VIC 20 Hartnell £8.25
- Getting Acquainted with your ZX81 Hartnell £5.95
- If you BSC Micro Teach you to program Hartnell £7.90
- Programming your ZX Spectrum Hartnell £9.50
- The ZX Spectrum Explored Hartnell £9.95
- How to Design, Build and Program your own working Computer System Heath £3.90
- BASIC Principles and Practice of Microprocessors Heffer £7.15
- As you like Top Tips for the ZX81 Hixson £5.25
- Programming on a Microcomputer Holtzman £3.95
- 34 More Tested Ready to Run Game Programs in BASIC Horn £7.70
- Microcomputer Builders' Bible Johnson £12.40
- Digital Circuits and Microprocessors Johnson £14.55
- PASCAL for Students Karp £7.25
- The C – Programming Language Kernighan £18.20
- COBOL Jackson £9.20
- The ZX81 Companion Maund £9.50
- Guide to Good Programming Practice Meek £5.40
- Principles of Interactive Computer Graphics Newman £13.05
- Theory and Practice of Microprocessors Nicholas £11.25
- Exploring the World of the Personal Computer Nillies £12.95
- Microcomputer Circuits Vol. 1. Fundamentals and Microcontrollers Null £9.00
- Microprocessor Logic Vol. 2. Applications and Experience £11.25
- Beginner's Guide to Microprocessors Parr £5.15
- Microcomputer Based Design Peatman £11.30
- Digital Hardware Design Peatman £9.20
- BBC Micro Reaweled Ruston £5.45
- Handbook of Advanced Robotics Sadoff £14.45
- 1001 Things to do with your own personal computer Sawusch £29.50
- Easy Programming for the ZX Spectrum Steeves £7.60
- Microprocessor Applications Handbook Stout £34.40
- Handbook of Microprocessor Design and Applications Stout £37.60
- Programming the PET/CRAY West £8.20
- An Introduction to Microcomputer Technology Williamson £8.20
- Computer Peripherals that you can build Wolfe £12.40
- Microprocessors and Microcomputers for Engineering Students and Technicians Wooland £7.10

REFERENCE BOOKS

- Electronic Engineers' Handbook Fink £59.45
- Electronic Designers' Handbook Giaceletto £59.55
- Illustrated Dictionary of Microcomputer Technology Goodrich £27.50
- Handbook for Electronic Engineering Technicians Groom £13.00
- Handbook of Electronic Calculators Guimar £35.00
- International Transistor Selector Towers £10.20
- International Microprocessor Selector Towers £16.00
- International IC Selector Towers £15.00
- International Op Amp Linear IC Selector Towers £15.00
- Illustrated Dictionary of Electronic Symbols £12.95

VIDEO

- Servicing Home Video Cassette Recorders Hobbs £12.95
- Complete Handbook of Videocassette Recorders Hyett £12.95
- Theory and Servicing of Videocassette Recorders McCarty £12.95
- Beginner's Guide to Video Matthews £5.35
- Video Recording: Theory and Practice Robinson £31.40
- Video Handbook Van Wezel £21.90
- Video Techniques White £12.95

Please send me the books indicated: I enclose cheque/postal order for £ ………. Prices include postage and packing. I wish to pay by Access/Barclaycard. Please debit my account.

[Signature]

Name

Address

ET1 MAY 1984
The DEPROM is intended as a complement to the EPROM programmer which appears elsewhere in this issue, and must surely rank as one of the simplest projects ever to appear in ETI. The prototype was built to erase just one EPROM at a time but the design can easily be altered to accommodate two EPROMs andpossibly even more. In spite of this it is more compact than most commercial units because it uses a six inch, four watt tube rather than the more usual twelve inch, eight watt tube. The complete unit is contained within a light-tight box and a safety interlock system ensures that the potentially harmful ultra-violet light is switched off whenever the lid is raised to load or remove EPROMs.

EPROM erasers use short wavelength ultra-violet light to make the tiny charges stored in the memory matrix drain away. The ultra-violet tube used in the DEPROM is designed to emit a significant amount of light at a wavelength of 2537 angstroms. When an EPROM has been exposed to such a light source for a suitable length of time, the memory locations within it will all read as logic high level. The literature supplied by the manufacturers of the EPROMs you are using should give some idea of the time required for erasure, but in general, half-an-hour or so should be about right.

Construction
The prototype DEPROM was built in a handy sized diecast box. The main requirement is that the box be light-tight, but plastic is not particularly recommended because it may be degraded by the ultra-violet light and the heat produced. If you must use a plastic box, line it with aluminium foil stuck down well and then earth it. All of the major components of the DEPROM are built into the base of the box with the ultra-violet tube on one side. How you support the tube depends upon the type of end connectors you use, but it is best to make the mounting adjustable so that the tube can be set to the optimum 1" distance from the EPROM. We used screw mounting end connectors and bolted them to two 'V' shaped metal brackets which in turn were bolted to the base of the diecast box. It was then a simple matter to adjust the tube position by bending the brackets to the desired shape.

Fig. 1 Circuit diagram of the DEPROM.

The live connection from the mains is taken via the on/off switch and the interlock micro-switch to the ballast choke. This serves to limit the current flowing in the circuit, without it, the lamp would draw all the current it could until either it or the supply failed. A resistor could be used instead but would dissipate a substantial amount of power. The choke, thanks to its inductive properties, is able to limit the AC current without dissipating lots of power.

The other side of the choke is taken to one of the filament pins at one end of the ultra-violet tube and one of the pins at the other end is taken to mains neutral. This completes the mains circuit, but no current will flow yet because the tube will not conduct when it is cold.

The remaining two filament connections, one from each end of the tube, are taken to the starter. The starter consists of two electrodes connected to a bi-metallic strip which short circuits them when it gets hot, the whole assembly sealed inside a small, gas-filled glass bulb. At switch-on, because the tube is cold and therefore presents a high resistance, all the available voltage will appear across the starter. The gas in the starter bulb ionises and gets hot, heating up the bi-metallic strip which then shorts the two electrodes. This completes the mains path, applying power via the choke to the two filaments in the tube which start to heat up. Meanwhile, because there is now no voltage across the starter, the gas cools until the bi-metallic strip removes the short circuit, thus repeating the cycle. After a few such cycles, the tube filament will be hot enough to emit electrons, whereupon the gas in the tube ionises, becoming conductive, and the tube will light. The voltage across the conducting tube will then be too low to ionise the gas in the starter which thus takes no further part.

HOW IT WORKS
PARTS LIST

LP1 6", 4 watt ultra-violet tube (257 angstroms, for EPROM erasure)
SW1 SPST mains toggle
SW2 small mains micro-switch with lever
L1 4 watt fluorescent ballast choke
4-20 watt starter and socket; pair of end connectors for tube; diecast box, 171x121x55mm; plastic box, 72x47x25mm; no lid; hinge; magnetic catch; strain relief bush; mains cable; conductive foam; nuts, bolts, solder tag, etc.

A small, light-tight plastic box is placed over the hole to carry the EPROM during erasure. The box is fixed to the lid of the main box with a hinge at one end and a magnetic catch at the other so that it can be raised and lowered. The box should be deep enough to hold an EPROM and a layer of conductive foam, and its length will depend upon the number of EPROMs you wish to hold. A small potting box or similar would be suitable, but almost any small plastic container would probably do. We used an old battery container and just trimmed off the parts we didn't need.

The small box must be mounted almost flush with one side of the main diecast box, directly above the ultra-violet tube. Placing the tube and the small box to one side allows the micro-switch which forms the safety interlock to be mounted directly to the side of the main box. The micro-switch should be just outside of the light path through the 18mm hole but well within the area covered by the small box. If necessary, you could space it away from the side of the case with washers or nuts until you get it in the right position. A small hole must then be drilled in the lid directly in line with the micro-switch actuating arm. By careful measuring, skill or just plain luck, drill another hole in the top of the small box directly in line with the first hole and the actuating arm of the micro-switch. A long bolt can then be inserted through the hole in the lid and held in place with two nuts. By adjusting the height of the bolt, you should be able to arrange things so that the micro-switch is just activated by the end of the bolt when the lid is fully closed.

With the metalwork out of the way, it only remains to mount the starter, choke and end connectors and wire the unit up. If the micro-switch you use is of the normal changeover type, make sure you use the normally open (NO) contacts or you will find the safety interlock working in reverse, switching the lamp on when the lid is raised and off when it is lowered. Finally, cut out a suitable piece of conductive foam and secure it in position in the base of the small box. Before you assemble the lid onto the main box, it's quite a good idea to mark the foam to show where it lines up with the light hole. If you close the small box down onto the main box lid, you will be able to see the conductive foam through the light hole and can mark the spot at the centre of the hole with a dab of white paint. Assemble the lid of the main box and the EPROM is ready for use.

Fig. 2 Internal layout of the DEPROM.

Fig. 3 Construction of the EPROM holder.

Fig. 4 The EPROM holder mounted on the lid of the main case.

A hole must be punched in the lid of the box to allow light to reach the EPROM. We used a single 18mm hole which is sufficient for one EPROM, but there is no reason why you should not punch more than one hole if you wish to be able to erase several EPROMs simultaneously. Take care when measuring up prior to drilling to ensure that you place the hole or holes directly above the lamp.

The six inch tube used in the prototype came from I.B. Electronics, 11 Herculaneum Road, Hillingdon, Middlesex UB10 9LS. The starter, choke and end connectors are available locally but in case of real difficulty, a kit of starter, choke, lamp and end connectors is available from the Service Trading Company, 57 Bridgman Road, London W4 SBB. Unfortunately, the tube in this kit is 12" rather than 6", so you would have to use a larger case. A suitable diecast box for the 6" tube version described is available from Greenwell, who also stock potting boxes and ABS boxes suitable for use as the hinged cover (eg., Vero 21024).

BUYLINES

ETI MAY 1984
AUTOMATIC LIGHT SWITCH

It may not be the most sophisticated security system imaginable but for fit-it-and-forget-it simplicity it's hard to beat. Design by Phil Walker.

When you are out for the evening, or have gone away for the weekend and forgotten to cancel the milk and papers, this little project can deter the would-be thief.

When you go out for a short period the most noticeable sign of your absence is the lack of lights as dusk approaches. If you could arrange for one or two lights to come on as darkness fell and turn off again some time later, it would appear as if there were someone at home. This, of course, would not be any protection against someone knocking at the door to see if you are in fact at home but may well put them off trying your particular door in the first place.

This project is designed to do just that. It senses the ambient light level and switches on any lights attached to it when the level falls to its set point. It incorporates delays to prevent false triggering by birds, low flying aircraft or other shadow producers. After a period of some four hours, the unit switches off the attached lights and resets itself.

The circuit is reasonably straightforward and uses only two ICs. The light sensitive photo-transistor feeds one section of a quad Schmitt trigger NAND gate. The output from this passes via a couple of gating stages to the input of a precision timer IC. When triggered, the output from this device turns on a triac and applies power to the load. After a time determined by components attached to the timer, the triac is turned off again. This is to conserve power and credibility. (How often do you leave lights on all night?)

Power for the logic circuits is derived directly from the mains input via dropping resistors and regulated by circuitry inside the timer chip. This does entail dis-
PROJECT: Automatic Light Switch

HOW IT WORKS

The mains neutral wire is directly connected to the reference 0 volt rail as far as the components are concerned. The live wire is connected via F51, D4, and R16 to ZD1 and C8. This forms a current limited, half-wave rectified supply which charges C8 and supplies current via R14 to an on-chip regulator in IC2. ZD1 is only present to prevent the voltage across C8 becoming too great in the event of IC2 being faulty or removed.

The light sensitive device used in this project is a 2N5777 photo-transistor. This is quite sensitive when used in this circuit and may well require reduction of the amount of light falling on it to set the switch on point. The collector of the transistor is connected directly to the input of one section of IC1, a 4093 quad NAND Schmitt trigger, and R1 provides a high impedance load. As the light level falls, Q1 conducts less current until the voltage at its collector rises to a level over half the supply voltage. At this point the output of IC1a will go low quite rapidly. C2 will discharge quite slowly via R3 and if the light level remains low for long enough the output of IC1c will go high. If the light level rises significantly before C2 has discharged, the output of IC1a will go high and charge C2 via R4 and D1 very rapidly. This reduces the sensitivity to shadows, etc.

If and when the output of IC1b goes high, this transition is coupled via C4 to IC1c input. Provided that SW2 is open, the output of IC1c will go low for a period determined by C4 and R6, pulling pin 1 of IC2 low and thus triggering it. SW2, C3 and R5 are provided to permit manual triggering.

IC2 is a ZN1034 precision timer, a device well-suited to applications requiring long time delays because it incorporates a 12-stage binary counter, the output changing state only after 4095 oscillator cycles. The frequency of the internal oscillator, and hence the timing period, is set by R12, R13 and C6. The ZN1034 has complementary outputs, and the output which is high while timing is in progress is used here to drive the triac via R15, thus controlling the mains load.

The circuitry around IC1d forms a low frequency oscillator with a high asymmetrical duty cycle. The output from this drives Q2 which is a low power VMOS device to switch power to the LED. The circuit is arranged such that the LED is on for only a short time in the cycle. The power for the flashing LED is taken directly from C6 in order to reduce the dissipation in R4 and provide all the mA that is required by the LED but only in short pulses. This current would have to be taken by IC2's regulator rail. By connecting it to C6, the voltage across the capacitor can be allowed to drop a little during the "on" period without affecting the regulated supply.

The mains neutral conductor is connected to the reference 0 volt rail as far as the components are concerned. The live wire is connected via F51, D4, and R16 to ZD1 and C8. This forms a current limited, half-wave rectified supply which charges C8 and supplies current via R14 to an on-chip regulator in IC2. ZD1 is only present to prevent the voltage across C8 becoming too great in the event of IC2 being faulty or removed.

The light sensitive device used in this project is a 2N5777 photo-transistor. This is quite sensitive when used in this circuit and may well require reduction of the amount of light falling on it to set the switch on point. The collector of the transistor is connected directly to the input of one section of IC1, a 4093 quad NAND Schmitt trigger, and R1 provides a high impedance load. As the light level falls, Q1 conducts less current until the voltage at its collector rises to a level over half the supply voltage. At this point the output of IC1a will go low quite rapidly. C2 will discharge quite slowly via R3 and if the light level remains low for long enough the output of IC1c will go high. If the light level rises significantly before C2 has discharged, the output of IC1a will go high and charge C2 via R4 and D1 very rapidly. This reduces the sensitivity to shadows, etc.

If and when the output of IC1b goes high, this transition is coupled via C4 to IC1c input. Provided that SW2 is open, the output of IC1c will go low for a period determined by C4 and R6, pulling pin 1 of IC2 low and thus triggering it. SW2, C3 and R5 are provided to permit manual triggering.

IC2 is a ZN1034 precision timer, a device well-suited to applications requiring long time delays because it incorporates a 12-stage binary counter, the output changing state only after 4095 oscillator cycles. The frequency of the internal oscillator, and hence the timing period, is set by R12, R13 and C6. The ZN1034 has complementary outputs, and the output which is high while timing is in progress is used here to drive the triac via R15, thus controlling the mains load.

The circuitry around IC1d forms a low frequency oscillator with a high asymmetrical duty cycle. The output from this drives Q2 which is a low power VMOS device to switch power to the LED. The circuit is arranged such that the LED is on for only a short time in the cycle. The power for the flashing LED is taken directly from C6 in order to reduce the dissipation in R4 and provide all the mA that is required by the LED but only in short pulses. This current would have to be taken by IC2's regulator rail. By connecting it to C6, the voltage across the capacitor can be allowed to drop a little during the "on" period without affecting the regulated supply.

Mains wiring to the unit should be well secured inside the case, preferably using cable glands or, if unavailable, grommets and cable ties. We recommend that the PCB should be bolted to the box with nylon or similar non-metallic screws; do not use metal bolts. The output cable would be terminated in a free socket for greatest convenience. Make sure that the earth conductor is connected through.

When everything is ready, plug in the ICs (if not soldered), close the box and plug in. If everything is working the LED should flash when SW2 is open, and covering the phototransistor for a minute or so should turn on a lamp connected to the output for about four hours. If the input is too sensitive (ie, it has to be pitch dark before it comes on), partially cover the phototransistor aperture with black tape or paint and make sure that the box is lightproof. If you cannot get it to work this way, check that SW1 triggers the times. If this does not work then you will have to check the circuit again, but use an isolated low voltage (24 volt) supply fed in at C9 +ve instead of the mains and connect an LED in place of SCR1.

In use the unit would normally be placed so that it received light from the outside of the building and not from the lamp it controls. This is so that it is not re-triggered when its time period ends and the lamp goes out. Note that the device will usually turn on for its time period when first connected to the mains. This might prove to be a slight nuisance if you only use it on odd occasions, but there is no reason why the unit cannot be left connected all the time, automatically switching on the hall lights, for example, whether you are there or not.
Component Filing

MINIFILE

For
Electronic and
other small parts.
A large variety of
components can easily
be kept well organized.
60 storage pockets per
unit.

Unit size:
L400 W125 H77mm.
Material: Injection-moulded in
impact resistant polystyrene.
4 and 6 Drawer Steel cabinet
available.
The 6 Drawer cabinet, practical for
field service, has lock and carrying handle.

Recommended prices (excluding V.A.T.):
4 drawer cabinet with lock and handle
£92.00
6 drawer cabinet with lock and handle
£59.00
4 drawer cabinet with lock and handle
£11.00
Single drawer:

Typical Minifile applications:
R & D Departments, Prototype Kits,
Production Test & Rework, Service Departments,
Field Service Engineers, The Electronic Hobbyist,
Repair kits for computers, CNC machines.

Stocked by:
Bradley Marshall, 325 Edgware Road, London W2 1HN. Tel: 01-723 424
Enfield Electronics, 208 Baker Street, Enfield, Middlesex EN1 3JY. Tel: 01-366 1873
Henry’s, 404-406 Edgware Road, London W2. Tel: 01-724 0353
TK Electronics, 11-13 Boston Road, London W7 3SJ. Tel: 01-579 9794
Watford Electronics, 33/34 Cardif Road, Watford. Herts. Tel: (0923) 40588.
THE WORLD OF

ETI is not the only place that you can find add-ons for the

In 1980, a new type of home computer using the popular 6502 processor made an appearance in the market place. It is essentially a board-based system rather than the more common type of computer packaged within a keyboard enclosure and this product soon gained popularity amongst those wishing to get to grips with computer hardware. The computer in question is the Microtan-65 which has recently been re-released by Microtan Computer Systems Ltd.

The major feature of the Microtan system which sets it apart from most other home computers is that it is modular. Circuit boards are of a 8" x 4 1/2" format with a 64-way indirect edge connector and they connect together by use of a system mother board. Although the most basic system possibly does not have many of the features available as standard on some other home computers, the modular approach means that someone can make a start in home computing for a very modest outlay and then have the opportunity to expand the system.

This magazine has supported the system by publishing designs for a number of Tanbus compatible modules; in addition the fact that Microtan is generally accepted as the 'hardware man's machine' makes it appropriate at this time to carry out a review of the Microtan-65 system in ETI. In the 3 or so years since the launch of Microtan-65 a number of other companies have developed and marketed boards for the system and the intention of this article is to include hardware from all such sources.

MICROTANIC COMPUTER SYSTEMS LTD.

The Microtan-65 was first launched by Tangerine Computer Systems Ltd. who marketed the product until their involvement with the Oric computer forced the Microtan into the back seat. Microtanic Software, a company who had sold software and some hardware add-ons for Microtan, recognising the vacuum being created by the phasing out of Microtan, and negotiated with Tangerine for the licence and rights to the system. The company, which by this time had changed its name to Microtanic Computer Systems Ltd., re-released the Microtan early in 1983. Since then, a number of new products have been announced and ambitious plans exist to guarantee a future for the system.

Before going on to describe the individual products, some comments can be made which refer to all Microtanic boards. When the system was first launched by Tangerine, the first two boards in the system were available either ready built or in kitform, whilst the remainder were sold only as complete boards. Microtanic have now extended the philosophy of providing kits and as a result, most boards are now available in three forms: 1. ready built; 2. as a kit including all parts and documentation; 3. as simply a bare board plus documentation at a cost of £22.00 each (unless stated to the contrary).

The latter two options will be of particular interest to those with a hardware bias as the investment of a little time in building up a board and, perhaps, obtaining components can result in a worthwhile saving in cost. With regard to the kits, anyone with a minimum of constructional experience should have no difficulty at all as the standard of documentation is very good. In some cases boards are also available as either a minimum configuration or fully populated, all options being fitted, although in some cases it is probably less expensive to buy a minimum board and obtain the additional components separately. The mail order address of Microtan Computer Systems Ltd. is 235, Friern Road, Dulwich, London SE22.

Microtan-65

This is the first board in the system. In addition to being the starting point for a larger system, Microtan-65 can be used as a stand-alone board to give a very basic computer allowing machine code programming under the control of the TANBUG monitor. This initial board includes a 6502 processor, a 2716 EPROM containing the monitor, 1K RAM, VDU circuitry giving a 32x16 line monochrome display with lower case characters and chunky graphics as options and a UHF modulator. The Microtan-65 board requires connection to a power supply (various options being available from MCS), either a hex keypad or an ASCII encoded keyboard (both available from MCS) and a TV receiver. The low price of this board (especially if purchased in kit form or as a bare board) must place it as virtually the lowest price entry point into real computing.

References:
1. Kit Survey, ETI, May 1980, p59 (p74 in particular);

Prices: assembled — £69.96; kit — £59.95.

Tanex

The Tanex board in effect gives the Microtan-65 those facilities which it lacks but which people would expect from a home computer. In other words it provides the minimum upgrade required by those wishing to develop more than small machine code programs. These extra facilities include sockets to take 12K of EPROM memory, sockets for an extra 7K of RAM memory (of 1K is standard), sockets for two 6522 VIAs (of which one is standard), a 300 baud or 2400 baud cassette interface and optionally an RS232, 20mA current loop or TTL serial port. Firmware optionally available for this board includes a 10K Microsoft BASIC and X-Bug, an extension to the TANBUG monitor giving cassette file handling routines and a mnemonic assembler and disassembler. A two slot mini-mother board is available to provide an inexpensive means of connecting together Microtan-65 and Tanex, but for those intending to extend the system further, the full 12 slot mother board would be required.

References:

Prices: assembled — £60.95 (minimum configuration), £79.95 (expanded); £99.95 (min. config.), £89.95 (expanded).

Tanram

For users wishing to expand beyond the 8K of RAM memory provided by the combination of Microtan-65
and Tanex, the Tanram offers 39K of random access memory. This memory is a combination of 7K static and 32K dynamic RAM and expands the system to the maximum amount of RAM memory possible within the memory map of Microran without going to a paged system. Of this 39K, 16K dynamic RAM is available on the minimum configuration system. If 47K of RAM is not sufficient, however, multiple Tanram cards may be used in conjunction with the system mother board to give apaged memory configuration with up to 328K of RAM which should be more then adequate for the vast majority of users.

Prices:
- assembled — £59.95 (min. config.), £109.95 (expanded);
- kit — £49.95 (min. config.), £99.95 (expanded).

Disc Controller Card
This card allows up to four floppy disk drives to be connected to the Microran system. These drives may be either 5¼" or 8", single sided or double sided and either single or double density, making the controller very versatile. These facilities are provided using the 793 controller chip. Also included on board is an EPROM socket which is included to provide a patch for the EPROM based basic to give it disc handling routines. This patch works in conjunction with TANDOS, the Microran disc operating system which is purchased separately from the hardware. One other facility provided on the board is a GPIB interface — this makes use of the 9914 IC and is completely independent from the disc interfacing.

Prices:
- assembled board — £109.95; TANDOS — £39.95.

Hi-res Graphics Board
For serious graphics applications, the 64 x 64 chunky graphics given by the Microran-65 is quite inadequate and a resolution of at least 256 x 256 pixel display given by the high resolution graphics board is a must. The board has an on-board high-bandwidth UHF modulator and also a video output connector so that it may be connected to either a TV receiver or a dedicated monitor. Alternatively, the video signal from the Microran-65 board may be patched through to the modulator on the hi-res graphics board to give a combined text and graphics display. The board provides monochrome graphics but it is quite feasible to use three cards, connecting the outputs to the red, green and blue inputs of a colour monitor and hence obtaining a full colour display. The display is memory mapped, occupying 8K in the memory map of the Microran system and may therefore be used as an expansion RAM card when not in use as a graphics card. On some systems this could be a problem in that using a high resolution display effectively reduces the amount of memory available for program storage. In a Microran system, however, this is not the case as it is page selectable and could therefore be placed in a different page to the main RAM memory.

Prices:
- assembled — £79.95; kit — £69.95.

Real Time Clock
This board provides a battery backed-up real time clock and calendar which may be read under program control. Using the 146818 IC it provides read out of second, minute, hour, day or week, day of month, month and year. Additionally there is a 50 byte area of uncommitted CMOS static RAM which is also preserved on power down by the on-board battery supply. There is also a comprehensive interrupt facility which includes the ability to generate a time of day alarm.

Prices:
- assembled — £39.95; kit — £32.95.

Sound Board
Using two AY-3-8912 programmable sound generation chips, this board provides six independent sound channels. Each of these channels can be controlled in frequency, amplitude and envelope shape and variable pitch white noise source can be mixed in. This effectively gives the ability to produce an almost infinite variety of complex sounds under program control and may find application in the areas of music and games programs as well as for more serious purposes.

Price: £19.95

Universal Eprom Programmer
As this board is supplied as part of a complete package which includes the necessary operating system software, this description of the product will assume that software is used. The devices which are supported are the 2516, 2716, 2532, 2732, 2732A and 2764 and the utilities provided are program, read, test for erasure and compare. All functions are controlled by software so that no personality modules are required, nor are there any switches which need setting in order to change from one EPROM type to another. The programmer requires no special power supplies to operate at the +5V or +12V programming voltage is generated by use of a DC-DC convertor. From an ergonomics point of view, the programmer includes a separate socket module onto which a zero insertion force socket is fitted, the module being connected to the main board by a length of ribbon cable.

Prices:
- assembled — £55.95; kit — £45.95.

Interface Boards
For a system to be truly flexible, it not only requires a powerful data processing capability but also facilities which allow it to control the real world. This is where the serial I/O board and the parallel I/O boards play their part. The parallel board has sockets for eight 6522 VIAs of which one is fitted as standard. These VIAs give a total of 16 bi-directional 8-bit data ports (a total of 160 bits of I/O), sixteen 8-bit programmable counter/timers and eight serial TTL data ports. The serial I/O board, on the other hand, gives 8 serial ports using the 6551 UART, of which two are fitted as standard on the minimum configuration board. These eight ports may be configured to TTL, 20mA current loop or RS232 with full modem control.

Prices:
- serial — £59.95; parallel — £49.95.

System Controller
This particular product represents the most fundamental addition to the system since it was first
launched over three years ago. The system controller is a processor card which is intended to replace the combination of Microtan-65 and Tanex. The following facilities are provided on board: a 6502, 6802, 6808 or 6809 processor running at a clock frequency of 750 KHz, 1 MHz, 1.5 MHz, 2 MHz or 3 MHz; nine 28-pin JEDEC sockets which may contain any combination of 2K, 4K or 8K RAMs or EPROMs as selected by the programming of a bipolar PROM; two 6522 VIA's one of which provides a cassette interface; and a 6551 giving RS232, 20mA current loop or TTL serial interface.

The card does not have any video circuitry, however, which means that in order to communicate with it, either an external VDU should be connected to the RS232 interface or alternatively one of the Tanbus compatible VDU cards should be included in the system. At the moment the only JEDEC RAMs which are available at a reasonable price are the 2K x 8 types which means that likely memory configurations for this card would be 8K RAM and 16K EPROM or 16K RAM and 4K EPROM, bipolar PROMs for both these options being available from Microtanic. In the near future, however, the prices of 8K x 8 static RAMs should start to fall which means, of course, that a 56K RAM, 8K EPROM system utilising the full memory map of an 8 bit processor could be achieved on one card.

These considerations of space compression alone, however, would not induce an existing user to change to using the system controller — the attraction here would be the availability of different processors running at higher frequencies. A 6809 running at 2MHz, for example, by far outperforms a 6520 running at even the same frequency, let alone the 750KHz of Microtan-65. As regards software, combined version of TANBUG and XBUG called CBUG is available in EPROM for 6520 users whilst a 4K monitor has recently been released for the 6809. It was considered that many users of this card with the 6809 processor would be interested in a disc system and as a result the FLEX and OS-9 disc operating system should be available shortly.

Prices: 6502A (assembled) min — £99.00, expanded — £125.00; 6809 (assembled) min — £109.00, expanded — £135.00.

MOUSEPACKET DESIGNS

Mousepacket is a small-scale operation, you might call it a cottage industry. They produce both hardware, as detailed below, and two items of software: a three-pass assembler and a word processor; for details of these, contact Mousepacket at 7, Cedar Close, Grahams, Huntingdon PE18 0DZ.

Colour VDU Board

This card represents yet another different approach to overcoming the limitations imposed by the Microtan-65 display. The philosophy here is to provide colour on a single card and to improve the text display by giving 25 lines of 64 characters. Graphical have not been neglected since a resolution of 128 x 75 is certainly an improvement on 64 x 64 but in all truth must still be described as chunky graphics rather than high resolution. These features are achieved by use of a teletext character generator which so provides the following features: foreground and background may be specified from a colour set of eight, characters may be flashing or reverse video and the chunky graphics may be contiguous or separated.

The board has both a video output and a UHF modulator hence allowing connection to either a monitor or a TV receiver, but the manufacturers point out that, as with all computer video displays, a TV may give disappointing results. A monochrome monitor or TV may also be used, in which case the colours appear as different shades of grey. Mousepacket provide, as part of the package, two EPROMs which replace TANBUG and one of the BASIC EPROMs, hence allowing the system to handle the new display in a way which will be transparent to the user.

Reference:

Prices: £74.95 (monitor version); £84.95 (including PAL encoder and UHF modulator).

EPROM Switching Board

This board is a solution to the problem of the very limited EPROM space available in the Microtan system. The Tanex card has sockets for two 2K EPROMs and two 4K EPROMs, a total of 12K which is mapped into the system from £000 to EFFF. The EPROM switching board occupies this same portion of the memory map but has room for four EPROMs for each of the sockets on Tanex, one EPROM out of each set being selectable at any one time by the circuitry on board. This gives a total EPROM storage space of 48K.

The method of using this card is to remove all the EPROMs from Tanex, replacing them on this card together with whatever other firmware is required to be switched into the memory map on occasions. By writing a value to a single byte location on the card, either from the keyboard or under program control, it is then possible to select whichever EPROM is required in each of the four slots.

Price: £19.95 (board only); £49.95 (assembled).

ELECTRONICS TODAY INTERNATIONAL

(Who? — Ed)

ETI have published designs for a number of Microtan add-on boards. Although it is not the intention here to reprint descriptions of these boards it was considered that references should be given for the benefit of those missing the original projects.

Analogue and Audio Output Board: March 1983, p.48

Real Time Clock: April 1983, p.31

Universal EPROM Programmer: Aug83 p45, Sep83 p37, Jan 84 p61, and p00 this issue.

64K Dynamic RAM Card: September 1983, p64.

16—Channel A to D Board: December 1983, p19.

Prices

Please note that the prices printed here were correct to the best of our knowledge at the time of going to print; however, the world shortage of TTL may have forced some prices up since then, so we urge readers to check prices before ordering any items.

This survey will be concluded next month.
Are you as fast as a bullet?

WOULD YOU HAVE MADE A FIGHTER PILOT?
NOW YOU CAN FIND OUT WITH THE NEW
REACTION TESTER
A FREE PROJECT FROM GSC

Split second timing is essential for this, the latest and fastest game from GSC. Find out how long you could have stayed "upstairs" before you "bought it". Press start switch, after a random time period, a moving light appears. The quicker you press the button, the longer you "stay alive". You can't fool this game though — a "cheat" light will tell everyone that you guessed when the lights would come on. Speed and concentration are the names of this game — build our kit and "beat the bullet".

HOW DO YOU MAKE IT?
Our FREE project sheet gives you a large, clear diagram of the components laid out on an EXP 300 breadboard. Each component is labelled, and the values given in a component listing. Even the 'row and column' lettering of our EXP 300 is shown to make the location of the correct holes, in which to push the components, easy to find. There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet.

"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. 9J8
Unit 1, Shire Hill Industrial Estate
Saffron Walden. Essex CB11 3AQ
Telephone: Saffron Walden (0799) 21682
ZX81 EPROM PROGRAMMER

Take out your ZX81, dust it off, and turn it into a useful piece of electronic gear. Design and development by John Barker.

The ETI ZEPROM add-on was designed to provide the ZX81 user with a simple way of storing often-used machine code subroutines so that they would be available on power-up. However, of interest to many more people will be the facility of copying or programming single-rail 2K and 4K EPROMs.

Although copying takes approximately twice as long as the theoretical minimum time of 205 seconds for a full 4K, this should pose no great inconvenience for the average amateur user, but rather give him or her time for a leisurely cup of tea, or whatever, in between frenzied sessions of keyboard bashing. Ease of use was considered one of the main points of design, and anybody who can PEEK, POKE and USR with the best of them should find the ZEPROM helpful in their everyday relationship with their computer.

Anybody thinking of shelling out for an EPROM programmer may find it financially viable to buy a ZX81 and build the ZEPROM instead of buying a stand-alone programmer with a similar specification. The unit, which plugs into the expansion port of a ZX81 or the expansion port of a suitable mother board, can be used with 2516, 2716, 2532 and 2732 type EPROMs, and offers the following facilities:

1. all the address and data lines are fully buffered, and the EPROM address space is fully decoded;
2. programs EPROMS directly from the keyboard;
3. copy any of the above EPROMS to any other, and check against each other;
4. copy from anywhere in ROM or static RAM;
5. reads and lists EPROMS;
6. enables the user to run up to 8K of machine code held in EPROMs, with simple USR calls;
7. the unit is totally transparent from a user point of view, using POKE commands to program EPROMS, and PEEK commands to read them.

When programming or copying EPROMS it is recommended that any dynamic RAM extension pack is removed because the unit makes use of the Z80 WAIT line and does not provide REFRESH for dynamic memory whilst programming. This does not apply to static RAM packs and no such restrictions apply when running machine code from the unit, or reading EPROMs.

The unit has two 24-pin ZIF sockets, labelled "slave" and "master", and two associated rotary switches. It uses the spare memory space between addresses 8192 and 16383 within the ZX81. The slave EPROM occupies the 4K of memory between 8192 and 122287, and can be written to and read from. The master occupies the 4K from 122288 to 16383 and can only be read from.

Construction

First of all, the copper tracks on the top side of the PCB must be connected through the board. This is done with PCB pins, or, where a component passes through the hole, with a component lead. Check which holes require PCB pins and which do not from the component overlay diagram.

Next connect the ZX81 edge connector to the board, using insulated sleeving on the connector, and breaking off any unused pins. Fit resistors, diodes, transistors capacitors (note orientation of C1), bridge rectifier and regulator. Fit the IC sockets; the wire-wrap sockets for the two EPROMS should not be cut down, but should be mounted about 1" proud of the board. From one rotary switch remove the pins for the wiper and three poles for one complete section (this is for SW1). From both rotary switches, cut off the looped ends, leaving as much of the pins as possible, and fit both switches to the board. This takes some time and gentle persuasion! Note that SW1 and 2 must be break before make types, or you will end up destroying some of the ICs in the project when the switches are operated.

This project may use only a little mains transformer, but big
Fig. 2 Component overlay of the PCB.

PARTS LIST

RESISTORS (all 1/4W 5% unless stated)	Q3	BFY51
R1	2k7	
R2,8	2k2	
R3	see text	
R4	8k2	
R6,5	1k0	
R7,9	2k7 1W	
CAPACITORS		
C1	22 µF 40V electrolytic	
C2-6	100 nF ceramic or polyester	
SEMICONDUCTORS		
IC1,2,3	74LS245	
IC4	7805	
IC5	74LS138	
IC6	74LS132	
IC7	74LS08	
IC8	CD4017	
IC9	74LS02	
Q1,2	BC108	

MISCELLANEOUS		
SW1,2	4p 3W rotary switches, break before make	
SW3	mains switch, double pole	
SK1	Z81 connector	
SK2,3	24-pin wire-wrap sockets + 24 pin	
T1	24V 100mA mains transformer	
PCB, case to suit, mains fuse (100 mA) and holder; wire, solder, etc.		

Precautions are necessary with regard to safety. We strongly recommend earthing the transformer body as well as the screen connection if it has one. If the case is metal or has a metal front panel, this should be earthed as well. A 24 V type transformer is specified; obviously a 12-0-12 type can be used, or a 0-12, 0-12 with the secondaries in series. Unused flying leads, if there are any, should be trimmed well back to keep them out of trouble.

The unit can be mounted in virtually any case, provided that it is large enough to accommodate the PCB and transformer. In the prototype, the PCB is mounted so that SK2 and 3 project through the lid of the box; the PCB is actually supported by SW1 and 2, which are bolted to the panel, and a cork block underneath glued to the bottom of the case. The ZIF sockets should be pushed carefully home into the wire-wrap sockets after the board is attached to the panel.
Fig. 3 (above) Circuit diagram of the ZEPROM.
Fig. 4 (right) Timing diagram for the Z80
The unit is treated as an 8K block of memory, the spare 8K between 8192 and 16383, which is an image of the Sinclair ROM, and it is the job of DS to de-select the ROM when the unit is in use. IC1 and IC2 buffer the 16 address lines and are continuously enabled. IC3 buffers the eight data lines, and is normally disabled. IC4 uses the four highest address lines to decode and enable the unit, and depends on the fact that in Z80 timing for a WRITE command the WR line goes low one ‘T’ state after the MREQ line. In the quiescent condition the control lines are as follows:

SU, W and IC9 output are low;
SL, SU, WRs, RDs, DR, E, W and 32 are high;
IC6d is pulsing at a frequency of 100 Hz.

Q1 is turned off, Q3 is on, Q2 emitter is at 0V, and the counter IC8 is reset with its “O” output high. The LED is lit giving a visual indication that the unit is correct and ready to use. Figure 2 shows the required conditions for correct operation; it is the job of IC5, 6, 7, 8 and 9 to provide these, as follows.

When a READ command is made to an address between 8192 and 12287, RDs, 32, E and DR all go low. RDs or 32, depending on the setting of SW2, will enable the slave EPROM. E will enable IC3 and sets the direction of data transfer from the EPROM to the CPU. When a READ command is made to an address between 12288 and 16383, RDs, E and DR go low. RDs enables the master EPROM, whilst the functioning of E and DR is identical to the above.

When a WRITE command is made to the slave EPROM, SL goes low for approximately 300ns, setting the latch IC6a/b followed by WRs and E going low. The latch turns Q1 on, which pulls the WAIT line low, forcing the CPU to hold its address and data lines stable, and also enables IC8 to count.

This also turns Q1 off via IC7d, providing a Vpp voltage of 25 V to the slave EPROM. IC8 now starts to count from “0” and in incremented every 10ns by IC6d. On the count of “2”, the latch IC6a/b is set. This latch gives a precisely defined pulse of 30ns, being reset by IC7 at a count of “7”. When it reaches a count of “9”, IC6c resets the latch IC6a/b, removing the Vpp voltage, resetting the counter to “0” and releasing the CPU from its WAIT condition. The cycle is completed and one location of the EPROM has now been programmed with the unit ready for another cycle to commence.

Making The Connection
Before connecting the unit to the ZX81, a thorough check of construction should be undertaken, looking for dry joints, solder-blob shorts, correct orientation of components and correct connection from the boards to the edge connector. Mistakes in construction may damage the ZX81, as well as the EPROM.

With no EPROMs fitted, connect the unit to the ZX81 and apply power to both (the unit should never be connected or disconnected with power applied to either). If the unit is normal, the LED should be lit, and the unit “K” should be visible on the screen. If the LED is not lit, the unit can be initialized by using the direct command POKE 8888,255.

A PEEK command to any location between 8192 and 16383 should return a value of 255. A POKE command to any location between 8192 and 122287 should flash the screen and the LED. A POKE command to any location between 122288 and 16383 should have no effect.

After connecting power, always initialize the unit (i.e., light the LED) with the direct command POKE 8888,255. If at any time whilst the unit is being used (i.e., when inserting or removing EPROMs) the LED goes out, the unit must be initialized. The unit cannot be properly used unless reset.

To copy and check EPROMs, proceed as follows:
1. set personality switches to type of EPROM in each socket, where:
 A = 2516 or 2716
 B = 2532
 C = 2732
2. insert master EPROM
3. enter program 1. On line 10, 2047 is for a 2716 or 2516 type
 EPROM, and should be changed to 4095 for 2732 or 2532 types, or
 changed to the number of bytes to

BUYLINES

Try as we may, we can't find anything in this project that you should not be able to buy from advertisers in this magazine. The ZX81 edge connector is available widely, from people like Technomatic, Watford, Rapid, and the PCB is available through our PCB service.
be copied. On line 12, 8192 is the first address of the slave EPROM and on line 14, 122286 is the first address of the master EPROM; 4. do not use this program.

When copying EPROMs, the above software is best run in FAST mode. When the program is run, the screen should go blank and the LED should pulse. When the program has finished, the screen should reappear and there should be no discrepancies listed. To load EPROMS from the keyboard, do the following:

1. Insert the EPROM into the slave socket, set the personality switch, and initialize the unit as necessary;
2. Load program 2. This program is best run in slow mode. When running, you should enter the data in hexadecimal (with no spaces between characters) in response to the string input prompt, about 10 bytes at a time; then press new-line, and then continue entering data. In line 10, 8192 is the first location of the EPROM, and can be changed to any value in the range 8192 to 12287.

If at any time the LED goes out, the unit can be initialized by inserting a null string (i.e. press NEWLINE). To escape from the program, input S.

Machine code subroutines can be called anywhere between 8192 and 16383 by the simple command:

```
RAN D USR H
```

where H is the start address of the particular subroutine being called. As an example, load program 2 and run it. Input the five bytes: 3E07D718FB in response to the input prompt, press NEWLINE, then input S to escape, and return to BASIC. Input the direct command RAND USR 8192, and the screen should fill with character "6".

INTERFEEE E - ONLY £55.00

Simply plug in and it's ready to use. All operating commands are held in an EPROM so L List, LPRINT and COPY can be used at any time without using up valuable user RAM. COPY will allow the reproduction of high resolution graphics with Epson (or derivatives) and Seiko 50, 100 and 250 Series printers. Print width selection from 32 characters to full width depending on printer used.

INTERFACE S - ONLY £39.99

Visually identical to Interface E but without the EPROM. Interface S also recognises the L List & LPRINT commands and will allow print width selection from 32 characters to full width. However, software routines will need to be loaded before use. Full screen dump to reproduce high resolution graphics is also possible and supporting software is supplied to operate this facility with Epson and Seiko printers. The software routines that are necessary to initialise the interface are held in the printer buffer so valuable user RAM will not be used up. There is a growing range of Business/Utility software that includes these routines. Details available on request.

Either Interface simply plugs into the ZX Spectrum expansion port or interface and is supplied fully cased with a one metre ribbon cable which connects to the printer of your choice. Full instructions are included and driving software is supplied with Interface S.

We recommend Epsons, NEC, TCF, Seikosha, OKI Microline, Tandy GPII 15, Star DP 510, Shinwa, Brother HR 15, etc.

At last you can have real print performance from your ZX Spectrum with the Kempton Centronics Interfaces.

THE INDUSTRY STANDARD INTERFACE

For ZX Spectrum

All products direct from KEMPSTON MICRO ELECTRONICS LTD

Unit 30 Singer Way, Woburn Road Industrial Estate, Kempston, Bedford MK42 7AF Tel: (0334) 856633

Tel: 826078 KEMPSTON 1

10 LET X=8192
20 INPUT A$
25 POKE 8888,255
30 IF A$=" " THEN GOTO 20
40 POKE X,16+CDE A$+CODE A$(2)-476
50 LET X=X+1
60 LET A$=A$(3 TO J)
70 GOTO 30

PROGRAM 1.

Interface S available from W H Smith and Spectrum Computer Centres

All products direct from KEMPSTON MICRO ELECTRONICS LTD

Unit 30 Singer Way, Woburn Road Industrial Estate, Kempston, Bedford MK42 7AF Tel: (0334) 856633

Tel: 826078 KEMPSTON 1

All prices include VAT and P & P. Overseas orders please add £4.00 P & P. Please allow 21 days for delivery of equipment and software. Orders available within 48 hours.

INTERFACE COMPATIBLE

FULLY MICRODRIVE COMPATIBLE

KEMPSTON CENTRONICS INTERFACE COMPATIBLE SOFTWARE UTILITIES. FOR THE 48K SPECTRUM

FINANCE MANAGER (OCP) - Menu driven program all domestic and business accounting applications £19.95

ADDRESS MANAGER (OCP) - Simple index listing system ideal for names, addresses, etc. Various search facilities £19.95

FULL SCREEN EDITOR/ASSEMBLER (OCP) - Allows you to write 260 assembly code using standard mnemonics on full screen. £19.95

WORD PROCESSOR (TASWORD TWO)

(TASMAN) Professional word processor allowing 54 characters per line and incorporating all usual editing facilities. £13.90

OMINICALC (MICROSPHERE) - The only spreadsheet written entirely in machine code. The easy and fast way of solving any numerical problem. Ideal for cash flow forecasting or concrete stress analysis. £8.95

MASTERFILE (CAMPBELL SYSTEMS) - Filing and retrieval system for domestic or business use. Files can be loaded and saved independently. Microdrive compatible. £9.95

NOW WE CAN ALSO SUPPLY YOUR PRINTER.

We've looked at the printers currently available and have selected what we feel is best value for money in dot matrix and daisy wheel printers.

EPSON RX-80 FT - A dot matrix printer allowing full graphics dumping and a choice of printing styles. Speed: 100 C P S. Price £335 Inc. VAT and Delivery

BROTHER HR 15 - A daisy wheel printer ideal for letters, mail shots, documents, etc. Many typefaces available by changing daisywheel. Duplication facility but no graphics. Speed: Up to 18 C P S. Price £425 Inc. VAT and Del.

PROJECT: EPROM Programmer

ENQUIRIES WELCOME

ETI MAY 1984
Digital Ultrasonic Detector

US 5063

- Only £3.95 + V.A.T.
- **Features**
 1. 3 levels of discrimination against false alarms
 2. Adjustable range from 5-25m
 3. Infra Red and Ultrasonic detection

Alarm Control Unit

CA 1250

- Only £3.95 + V.A.T.
- **Features**
 1. Ultrasonic or magnetic switch
 2. Exit delay and timed alarm period
 3. Provides exit warning

Security System

A Complete Intruder Alarm

Easily assembled ultrasonic unit CK 5063

- Requires no installation. Easy assembly using our professionally built and tested modules.
- **Features**
 1. Adjustable range up to 25m
 2. Built-in entrance alarm delay
 3. Built-in time delay
 4. Key operated switch - Off, Test and Operate
 5. Provides for an extension alarm to an audible alarm
 6. Uses US 5063, PSL 1865, Key Switch 3901, Speaker 512/5.

Digital Ultrasonic Detector

US 4012

- £19.95 + V.A.T.
- **Features**
 1. Adjustable range from 5-25m
 2. Infra Red and Ultrasonic detection

Infra Red System IR 1470

- Only £25.61 + V.A.T.
- **Features**
 1. Consisting of separate transmitter and receiver units which are housed in attractive moulded cases, the system provides an invisible barrier to break when the beam is broken. The receiver can be used in security systems, but also, for example, for photographic use. It is ideal for protection high value security equipment, business premises and any valuable areas.

Power Supply & Relay Unit PS 4012

- Provides stabilised 12V output at 85mA and operates with our Siren Modules. It is designed to operate with up to 20 ultrasonic units.

Siren Module SL 157

- Produces a loud blowing signal (110dB at 2m) when triggered by a magnetic switch or ultrasonic detector. It is housed in a metal box and is suitable for emergency services, schools, hospitals, etc.

Horn Speaker HS 888

- 5½". This weather-proof horn speaker is used with our Sirens to provide a loud, piercing sound.

3-Pos. Key Switch 3901

- Suitable for use with the CA 1250 and PS 4012. Provides 3 positions: Off, Test, and Operate.

Ultrasone Module Enclosure

- Suitable for use with the sl 157, as well as with our Siren Modules.

Hardware Kit

HW 1250

- Only £2.50 + V.A.T.

Sirens & Power Supply Module

PSL 1865

- Only £9.95 + V.A.T.

Complete Kit

- Includes all necessary components to complete your own system.

Instructions

- Detailed instructions are supplied with each unit.

Contact

- **COMPEX (UK) LTD**
 - 66 John F. Kennedy Est., Washington, NE38 7AJ
 - Tel: 091-4167814 Tx 537681

Security System

Install your own system and save using built and tested modules

- Easy installation. Easy assembly using our professionally built and tested modules.
We were slightly disappointed by the poor response to Alan Todd's request for help in the March issue of ETI. For the benefit of those who didn't see the March issue, Alan is an ex-professional bass guitarist who suffered a stroke and now has only limited movement in his right hand. He wrote asking if anyone could suggest a means by which he might play his guitar using only his left hand and the little remaining movement in his right. We set a time limit on replies, partly because we intended to organise things along the lines of a competition, but in view of the meagre response we have decided to invite further suggestions. So get thinking, send in your ideas, and if anyone comes up with a worthwhile solution we will publish it in the normal way and pay the author accordingly.

Cable Television

Dear Sir,

Having read your 'Special Report' in the March 84 issue of ETI, I would like to offer a few constructive comments about its content, particularly with respect to the references to Thorn EMI.

There has been much publicity surrounding Cable TV activities when the ITAP and Hunt Reports and the Governments White Paper were published, and many this publication has focused around the 30 channels of television programmes that Cable TV can bring to the home. The viability or otherwise of cable has been viewed in the light of how much a subscriber can afford to pay for premium movies, and little consideration has been given to the other services that cable can offer.

New cable systems which will be constructed as a result of the granting of franchises will generally have a usable bandwidth of about 420 MHz for a single coaxial cable, and of this only about 260 MHz will be taken up by 30 TV channels and FM radio, leaving almost 40% of the spectrum available for other services. Unused bandwidth is an asset which no cable operator can afford to lose, and there can be no doubt that all operators will be looking for new services that can be carried on cable in a cost effective way.

I agree that immediately spring to mind are high speed data for business users transported at competitive prices, and interactive services for the home. Interactive services include shopping, security, banking, betting and access to pre-stel and similar databases using only the subscribers’ TV set and a keypad. Such services are expected to be largely financed by the service providers so the subscriber to cable will be able to obtain a comprehensive range of services and television programmes at a relatively modest cost.

Regarding the content of the television programmes, it is not intended that cable should compete with the excellent BBC and IBA programmes — it is mainly a question of giving viewers a much wider choice, and particularly for minority groups, a number of alternative programmes which complement the off air channels. Some of these programmes will cover local events and news that would not be carried by the national broadcasts anyway. If viewers want "wall to wall Dallas" then the cable operator will provide it, but there is no reason to believe that this will cause the broadcasters to lower their standards to compete — Top of the Pops on TV has not emptied the concert halls!

Off air programmes including satellite broadcasts must be carried in a cable network under the Government’s must carry rule, and cable can save the subscriber the cost of a satellite receiving dish and down-converter. If Government legislation permits DBS will also be converted at the cable head end into PAL-I so that these broadcasts can be received on the subscribers’ existing TV set.

Turning now to technical aspects, the Thorn EMI position you describe was that which obtained about a year ago. It is true that we had developed our TACCS system for tree structured systems. It was an advanced teletext based system capable of providing all the interactive services outlined in the White Paper, and it was more comprehensive than any of its contemporaries. We have since changed our plans to a switch oriented design, mainly because the DBS standards had not (and still have not) been determined, and because the DOTI restricted to 12 years the franchise for tree systems, but will extend the period for those cable networks laid with the final distribution in star format, and which are switchable.

Enlarging on those points respectively; equipment that has to carry DBS on a tree structured cable cannot be designed until the standards are known; 12 years is too short a period to depreciate the costs of cable equipment; and the increased costs of cable for star layout eroded the tree-switched cost differential.

Our current switched design is equally advanced and retains all the virtues of TACCS, ie. high speed teletext data transport, within the TV channel where appropriate, albeit with data now routed through the switch rather than direct to the subscriber.

On the question of fibre optics, much has been written about this inexpensive transmission medium with its very high bandwidth. This is true where monomode fibre is used for long haul links — typically for inter-city use. But this is no use to the cable operator who wants to carry many services and programmes over relatively short distances, the opto-electronic couplers at each end of the short lengths of fibre are too expensive at present.

What is required is a wide bodied air bus — not Concord! Where a point to point link is required across a city to feed a remote head end, then fibre will possibly be the best medium, but for short distances broadband copper wins hands down.

I hope this may have cleared up any misconceptions regarding the Thorn EMI role in Cable TV.

Your faithfully,
Peter Barnes,Technical Development Manager,Radio Rentals Cable TV Limited

Of Microtans And Men

Dear Dave,

Firstly may I say how delighted we are in the North West now that Mike Bedford has ironed out the software snags to produce an effective and versatile Erom Programmer for the correspondingly versatile 6502 based development system known as the Microtan. We now look forward eagerly to the intelligent programming version of
the software. To date we have successfully programmed 2716's, 2732's, 2732A's and 2764's.

Secondly, may I say how flattering it is to be mentioned in despatches. Frankly however, praise should really go to my North West friends Andy Michael and Graham Fishwick who did much of the work. Actually, this is a good example of how the informal association of North West Microtan users help each other over both hardware and software difficulties.

Thirdly, having followed recent TUG events from close up and having shared the concern at first hand with friends country wide, I would like to extend our encouragement to Colin Nowells in his difficult task of raising a new group from the ashes. We really do need the resurrection of the 'TUG' newsletter as it complements so well the other thriving journal produced by David Northway and Deryck Sutton of Microtanic Computer Systems.

Finally, I would like to extend an invitation to North West users to communicate with our informal 'self help' group and enjoy the sense of comfort and security offered by the proximity of like and experienced minds. Please phone me on Bolton 654143 or write to 15 Newland Drive, Over Hulton, Bolton, Lancs.

Yours etc.
Graham Davies,
Department of Mechanical Engineering,
Bolton Institute of Higher Education

April Issues
Dear ETI,
On building your Super Selective Music Filter, certain problems arose. The first was that supplies of the modulo 12 counter from Watford Electronics had dried up, and it was necessary to use an inverted reciprocal modulo n counter in its place, this being pin compatible. Secondly, the ZX80 real time auto correlator program on page 109 had a syntax error in line 1484, causing a loss of tracking at the equivalence detector. Thirdly, the dual peak filters frequently swept the band and did not lock at the start of a glissando; this was later found to be due to the drawing on page 109 of the software. To date we have successfully programmed 2716's, 2732's, 2732A's and 2764's.

Secondly, may I say how flattering it is to be mentioned in despatches. Frankly however, praise should really go to my North West friends Andy Michael and Graham Fishwick who did much of the work. Actually, this is a good example of how the informal association of North West Microtan users help each other over both hardware and software difficulties.

Thirdly, having followed recent TUG events from close up and having shared the concern at first hand with friends country wide, I would like to extend our encouragement to Colin Nowells in his difficult task of raising a new group from the ashes. We really do need the resurrection of the 'TUG' newsletter as it complements so well the other thriving journal produced by David Northway and Deryck Sutton of Microtanic Computer Systems.

Finally, I would like to extend an invitation to North West users to communicate with our informal 'self help' group and enjoy the sense of comfort and security offered by the proximity of like and experienced minds. Please phone me on Bolton 654143 or write to 15 Newland Drive, Over Hulton, Bolton, Lancs.

Yours etc.
Graham Davies,
Department of Mechanical Engineering,
Bolton Institute of Higher Education

April Issues
Dear ETI,
On building your Super Selective Music Filter, certain problems arose. The first was that supplies of the modulo 12 counter from Watford Electronics had dried up, and it was necessary to use an inverted reciprocal modulo n counter in its place, this being pin compatible. Secondly, the ZX80 real time auto correlator program on page 109 had a syntax error in line 1484, causing a loss of tracking at the equivalence detector. Thirdly, the dual peak filters frequently swept the band and did not lock at the start of a glissando; this was later found to be due to the drawing on page 109 of the software. To date we have successfully programmed 2716's, 2732's, 2732A's and 2764's.

Secondly, may I say how flattering it is to be mentioned in despatches. Frankly however, praise should really go to my North West friends Andy Michael and Graham Fishwick who did much of the work. Actually, this is a good example of how the informal association of North West Microtan users help each other over both hardware and software difficulties.

Thirdly, having followed recent TUG events from close up and having shared the concern at first hand with friends country wide, I would like to extend our encouragement to Colin Nowells in his difficult task of raising a new group from the ashes. We really do need the resurrection of the 'TUG' newsletter as it complements so well the other thriving journal produced by David Northway and Deryck Sutton of Microtanic Computer Systems.

Finally, I would like to extend an invitation to North West users to communicate with our informal 'self help' group and enjoy the sense of comfort and security offered by the proximity of like and experienced minds. Please phone me on Bolton 654143 or write to 15 Newland Drive, Over Hulton, Bolton, Lancs.

Yours etc.
Graham Davies,
Department of Mechanical Engineering,
Bolton Institute of Higher Education

April Issues
Dear ETI,
On building your Super Selective Music Filter, certain problems arose. The first was that supplies of the modulo 12 counter from Watford Electronics had dried up, and it was necessary to use an inverted reciprocal modulo n counter in its place, this being pin compatible. Secondly, the ZX80 real time auto correlator program on page 109 had a syntax error in line 1484, causing a loss of tracking at the equivalence detector. Thirdly, the dual peak filters frequently swept the band and did not lock at the start of a glissando; this was later found to be due to the drawing on page 109
MAKE YOUR OWN PRINTED CIRCUITS

DIRECT ETCH KIT
COPY DIRECT FROM MAGAZINE or OWN DESIGN.
Simple system: Complete kit containing PCB, Pattern Transfer &
Etch Resist Sheets, Tray & Enchant, Copper Cleaning Block,
Gloves & full instructions.
HB/1 £18.00*

PHOTO RESIST KIT
Complete kit containing artwork PCB, and all the necessary
process materials.
DIY UV EXPOSURE UNIT
Perfect results everytime. Kit contains: Lamp, Holder & Shade
together with full instructions for DIY Unit which offers PCB,
Precision Photo, Lable & Panel manufacture. UV1 £27.00*

FRONT PANELS & PHOTOGRAPHY

FOTOTool KIT
Containing artwork, film and all the necessary process materials
required for professional quality labels and panels.
CANN ALSO BE USED TO PRODUCE PRECISON PCB PHOTOMASTERS.
HB/3 £27.00*

UV EXPOSURE UNIT AND ARTBOX.
(Ref: UV2)
A portable ready made unit containing two B watt UV tubes giving a
6" x 9" exposure area which may also be used as a light box with
the UV filter supplied. UV2 £54.00*
These are introductory kits and all materials are available
separately. Full catalogue £1.50 refundable with 1st order over £10.

*Miscellaneous include VAT, carriage 60p in U.K. Overseas orders
please add extra carriage to published prices.

ETI MAY 1984

MIDWICH COMPUTER COMPANY LIMITED
RICKINGHAM HOUSE, HINDENCLAY ROAD, RICKINGHAM, BULLET P.B.44 (01679) 898751

BBC Microcomputers
Model BCDD 340.95
Model BS+Disc 432.21
VAT is chargeable on all products. VAT code: D4

BBC Micro Econet
Full range of products available, detailed price list available.

BBC Compatible Disc Drives
Cased drive, finished to match the BBC Micro. It is supplied complete with connecting cable, manual
and utilities disc.

All single sided drives may be expected to fail over a period of time due to wear.

Disk capacity Single Disc Unboxed
UBD 400 £20.85 D8 £18.35 273.10
UBD 200 £18.50 D8 £17.35 205.60
UBD 100 £16.50 D8 £16.35 178.10
UBD 50 £15.30 D8 £14.35 150.10

Frontal image of complete P.C.B. workshop

MADE IN ENGLAND

SPECIAL TELEPHONE NUMBER FOR FAX, CATALOGUE & ORDER S.T.
ORDER TO: DISS (0379) 898751
TOROIDS

The toroidal transformer is now accepted as the standard in industry, overcoming the obsolescence of other types. Industry has been quick to recognise the advantages toroidal offer in size, weight, lower radiated field and, thanks to I.L.P. PRICE,

Our large standard range is complemented by our SPECIAL DESIGN service for a prototype service within 7 DAYS together with a short lead time on prototype orders which can be programmed to your requirements with no penalty price.

<table>
<thead>
<tr>
<th>VA</th>
<th>15</th>
<th>50</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>3.4mH</td>
<td>0.325kΩ</td>
<td>Regulation 13%</td>
</tr>
<tr>
<td>90</td>
<td>6.0mH</td>
<td>0.625kΩ</td>
<td>Regulation 11%</td>
</tr>
<tr>
<td>120</td>
<td>9.0mH</td>
<td>1.25kΩ</td>
<td>Regulation 7%</td>
</tr>
<tr>
<td>150</td>
<td>15.0mH</td>
<td>2.00kΩ</td>
<td>Regulation 4%</td>
</tr>
</tbody>
</table>

Why a Toroid?
- Smaller size & weight to meet modern 'slimline' requirements.
- Low electricity induced noise, reduced by compact equipment.
- High efficiency enabling components to maintain size advantages.
- Lower operating temperature.

Why I.L.P.?
- Ex-stock delivery for small quantities.
- High specification, 21 days manufacture for urgent deliveries.
- 5 years no quibbling guarantee.
- Realistic delivery for volume consignments.
- No penalty for call off orders.

Please refer to your nearest branch for price details.

Prices including P&P and VAT

<table>
<thead>
<tr>
<th>VA</th>
<th>Size</th>
<th>VA</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>7.24</td>
<td>30</td>
<td>6.88</td>
</tr>
<tr>
<td>20</td>
<td>6.30</td>
<td>40</td>
<td>5.80</td>
</tr>
<tr>
<td>30</td>
<td>7.20</td>
<td>50</td>
<td>5.30</td>
</tr>
<tr>
<td>40</td>
<td>6.80</td>
<td>60</td>
<td>4.80</td>
</tr>
</tbody>
</table>

Showroom Sub-Order Form

Every order is processed in 7 working days together with a short lead time on prototype orders which can be programmed to your requirements with no penalty price.

ALL PRICES EXCLUDE VAT

Fast Service - Top Quality - Low Low Prices

No circuit is complete without a call to

ETI MAY 1984
Last month we described the operation of the system and the construction of the receiver unit. This month’s concluding article describes the construction of the transmitter, alignment of the two units and the method of interfacing the completed system to your microcomputer. Design by John Bawden.

The entire transmitter is contained on one 147 x 71 mm PCB. This includes the various mains isolation components which are grouped at one end of the board and covered with a small plastic box. The prototype was originally built on a eurocard using wire wrapping techniques, but the final PCB layout is smaller than a eurocard and readers who require a plug-in card construction should have no difficulty adapting it.

The bulk of the construction is perfectly straightforward. We recommend the use of IC sockets since most of the ICs are CMOS, and it is a good idea to solder the sockets into place before moving onto the other components. Install the three wire links and then the resistors and the capacitors, taking care with the tantalum types which must be inserted the correct way around. Similar care should be taken with the diodes and transistors. Do not solder R13, C14 and FS1 into place until the alignment procedure has been completed. The ICs can be inserted into their sockets when everything else is in place.

The only component on the PCB which requires any preparation is T1. This can easily be hand wound, but great care should be taken in the construction. T1 provides isolation between the transmitter circuitry and the mains supply via C14, FS1 and R13, and if these fail or the mains connections are reversed it will have to withstand the full supply voltage between primary and secondary.

The primary should be wound first. This consists of 20 + 20 turns of 26 SWG enamelled copper wire, bifilar wound. This means that the two 20-turn halves are wound simultaneously using a length of wire doubled up. Estimate the length of wire you will need to produce 20 turns (no, of course we’re not going to tell you! Use your calculator and a little imagination), add a little for the lead-outs, then bend the wire back and pull-out another, equal length. Do not separate the two lengths but wind them onto the former as they are; the loop will help you to sort out the ends later. Cover the primary winding with two layers of

Fig. 1 Block diagram of the transmitter.
Fig. 2 Overlay diagram of the PCB.

PARTS LIST — THE TRANSMITTER

<table>
<thead>
<tr>
<th>RESISTORS (all ±W, 5% unless otherwise stated)</th>
<th>SEMICONDUCTORS</th>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 4, 7 1k</td>
<td>CL1 4052</td>
<td>T1</td>
</tr>
<tr>
<td>R2, 6, 14 2k</td>
<td>CL2 4051</td>
<td>Core RM10</td>
</tr>
<tr>
<td>R3, 9, 10 22k</td>
<td>CL3 51390</td>
<td>Core Al=400</td>
</tr>
<tr>
<td>R5 39k</td>
<td>CL4 8V2</td>
<td>(see text for winding details)</td>
</tr>
<tr>
<td>R6 150k</td>
<td>CL5 100W</td>
<td>FS1 500mA fuse and PC</td>
</tr>
<tr>
<td>R11, 12 820R</td>
<td>CL6 4001</td>
<td>PCB: small plastic box, Vero type 202-21024B, 20 SWG PVC covered wire and 26 SWG enamelled copper wire; IC sockets; cable clamp for mains wiring; connecting cable, etc.</td>
</tr>
<tr>
<td>R13 100R 1W wire-wound</td>
<td>CL7 40106</td>
<td></td>
</tr>
<tr>
<td>RV1, 2 100k</td>
<td>Q1 BC172</td>
<td></td>
</tr>
<tr>
<td>RV3, 4 4k7</td>
<td>Q2, 3 VN10KM</td>
<td></td>
</tr>
<tr>
<td>CAPACITORS</td>
<td>Q1 1N4148</td>
<td></td>
</tr>
<tr>
<td>C1, 4 22u 16V tantalum</td>
<td>Q2, 3</td>
<td></td>
</tr>
<tr>
<td>C2 4n7</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>C3, 5, 13, 15</td>
<td>IC2 4051</td>
<td></td>
</tr>
<tr>
<td>C6, 8, 9</td>
<td>IC3 51390</td>
<td></td>
</tr>
<tr>
<td>10u 16V tantalum</td>
<td>IC4 8V2</td>
<td></td>
</tr>
<tr>
<td>470p 2% silver mica</td>
<td>IC7 40106</td>
<td></td>
</tr>
<tr>
<td>1n 100V ceramic</td>
<td>Q1, 3 VN10KM</td>
<td></td>
</tr>
<tr>
<td>390p 2% silver mica</td>
<td>Q1, 3</td>
<td></td>
</tr>
<tr>
<td>or polystyrene</td>
<td>Q2, 3</td>
<td></td>
</tr>
<tr>
<td>or polystyrene</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>2n2 2% silver mica</td>
<td>Q2, 3</td>
<td></td>
</tr>
<tr>
<td>or polystyrene</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>100n 1000V polystyrene</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>100V ceramic</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>470p 2% silver mica</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>or polystyrene</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>2k2</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>390p 2% silver mica</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>or polystyrene</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>100n 1000V polystyrene</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
<tr>
<td>100V ceramic</td>
<td>Q3 1N4148</td>
<td></td>
</tr>
</tbody>
</table>

Insulation tape and then add one and a half turns of PVC covered 20 SWG wire to form the secondary. Arrange the primary and secondary connections so that they appear on opposite sides of the transformer and then seal the whole assembly with a further layer of insulating tape.

Assemble the ferrite core onto the former, insert the tuning slug and mount the assembly on the PCB. How you attach it depends upon which type of core you purchase, but we simply used two holes drilled on either side of the core and a piece of insulated wire passed through them, over the core, and secured on the underside of the PCB. Make sure you mount the transformer with the primary connections adjacent to Q2, Q3 and C12.

If you followed the winding instructions correctly, your primary lead-outs should consist of a loop and two free ends. Temporarily mark the two free ends in some way and then cut the loop. Using a multimeter, identify which of the free ends is connected to each of the two new ends you have created by cutting the loop, then take one of the new ends and connect it to the other free end. By this means you will connect the start of one winding to the finish of the other and so form a centre tap. Solder this centre tap into the middle hole provided and one of the two ends into the remaining holes. Solder the two secondary connections into the two holes provided on the opposite side of the transformer.

To complete the construction, solder the mains lead into place and secure it with a cable clamp.
PROJECT: Remote Control

Fig. 3 Constructional details of the transformer.

Cut a suitable hole into the small plastic box and feed the mains lead through it. The box can then be assembled over the mains circuitry using its own securing screws through the holes provided, the box on the component side and its lid on the copper side.

Alignment

Both the transmitter and the receiver in this system are normally connected to the mains, but you should not attempt to work on them while they are so connected. The described allows you to align the units without taking unnecessary risks.

The only special equipment required for the setting-up procedure is a test meter, an oscilloscope and some form of power supply so that the two units can be operated without a mains input. The transmitter is set up first so that it can be used as a signal generator when you come to set up the receiver. Begin setting-up by connecting the transmitter to the power supply and the +5 and -12 volt rails of a computer.

The initial stage in setting up the transmitter is the adjustment of the rate of the PPM data generated by the SL490. The critical timing element of the PPM data stream is the period of the logic '0' inter-pulse space. This parameter can easily be measured and set up using an oscilloscope, provided the data stream consists of PPM words which contain all logic '0's. A data stream containing a mixture of '1's and '0's is difficult to trigger and to interpret when displayed on an oscilloscope.

The SL490 can be persuaded to generate a data stream suitable for this adjustment by connecting to ground the five transmitter data inputs, D0-D4. This will ensure that a series of words containing all '0's is generated. The data stream can be checked by monitoring pin 2 of the SL490 on an oscilloscope whilst the TRANSMIT input is also held low. Under these conditions, RV1 can be adjusted to set the required inter-pulse period. This is 5ms for the standard MainsCom system.

The carrier frequency and the frequency shift deviation can be set up using a similar test arrangement. In addition to the five data lines and the TRANSMIT signal line, the CARRIER ENABLE input must also be grounded. This should result in the modulated carrier appearing at the output of the transmitter. The output of T1 should be temporarily loaded with a 10 Ohm resistor and the oscilloscope connected across it. The oscilloscope timebase must now be adjusted to display a few cycles of the approximately sinusoidal signal appearing there.

The display should actually be of two sinewaves of differing frequency, one of which should be brighter than the other. If only a single sinewave is present, this could indicate a fault in the frequency shift modulator, or, more likely, that RV1 is at one end of its track. Try adjusting this control to the halfway position. The brighter trace is produced by the frequency used to transmit the inter-pulse period, and the dimmer trace results from the frequency used to transmit the PPM pulses. It should now be possible to set the period of the brighter waveform to 7.5 microseconds by adjusting RV3. This will have set the carrier to the required frequency of 133 kHz. The deviation control, RV2, is similarly used to set the period of the dimmer trace to 7.0 microseconds. This corresponds to a deviation of 10 kHz, with the shifted frequency at 143 kHz. Check the carrier frequency and if necessary readjust RV1 and RV2 to correct for the effects of any interaction between them.

The core of T1 should be adjusted for the best approximation to a sine wave at both the carrier and the 'pulse' frequencies. This transformer forms part of a very low Q tuned circuit, so little change in signal amplitude will occur. This adjustment should be repeated with the unit in its operational form because of the reactive impedance presented by R13, C14 and F1.

The receiver cannot be worked on whilst connected to the mains supply for obvious safety reasons. The recommended procedure for this unit is to run it from a 12 Volt power supply connected directly to its internal supply rail, and to provide a signal feed from the transmitter which looks as if it has come over the mains wiring. This can be produced by placing the test fixture shown in Fig. 4 between the previously aligned transmitter and the receiver unit. The attenuated signal from the transmitter is applied across the 'Mains In' terminals of the receiver.

The conditions used in aligning the transmitter can be used again to generate the test signal for receiver alignment. This logic requires '0's on the transmitter data inputs and both TRANSMIT and CARRIER ENABLE pulled low into their active states.

L1 is adjusted whilst monitoring the filtered and amplified FSK signal at the junction of R14 and R15. The resonant circuit consisting of L1 and C1, when incorrectly

Fig. 4 Circuit for use in receiver test and alignment.
Fig. 5 Circuit diagram of the transmitter.

HOW IT WORKS — THE TRANSMITTER

The transmitter is based on the Plessey SL490 remote control encoder IC. The SL490 is intended primarily for use in hand-held remote control transmitters and is therefore designed to operate from a 9V battery supply and to scan a keypad consisting of an 8 x 4 matrix of push button switches. In the MainsCom transmitter, the SL490 has to be driven from a microcomputer parallel port. IC1 and IC2, which are two CMOS analogue switches, are used to simulate the action of a matrix of push button switches. IC1 is a two pole four way switch, of which only half is used, whilst IC2 is a single pole eight way switch. These are connected to IC3 in such a way that it is possible to simulate the closure of any one of the 32 switch positions scanned by the SL490. The switch closure simulated, and hence the PPM word generated by the SL490, is controlled by the 5 bit parallel input which is split between IC1 and IC2. The generation of the PPM data is controlled by the INHIBIT inputs of IC1 and IC2. When these INHIBIT inputs are pulled low, the switch positions selected by the binary input to IC1 and IC2 are closed. This will be seen by the SL490 which will then generate a steady stream of PPM words. The INHIBIT inputs to IC1 and IC2 are driven by the active low TRANSMIT signal.

The rather unconventional power supply arrangements for IC1, IC2, and IC3 are necessary in order to accommodate the following factors. First, the power supply required by IC3 must be 9 volts or just under. IC3 is driven from IC1 and IC2 and these devices have to operate with inputs at the normal 5 Volt logic levels coming from a microcomputer parallel port. IC1 and IC2 must therefore operate from dual polarity supplies and the actual voltages of +5 volts and -12 volts were chosen as being readily available from most microcomputer systems.

The timing of the PPM data generated by IC3 is set by the time constant of C2 with R3 and R1. This data stream, which appears at pin 3 of IC3, is clipped by D1 and D2 to ensure a constant amplitude. It is then used to drive the frequency shift keyer, comprising the voltage controlled oscillator part of IC4. IC4, a 565, is usually used as a phase locked loop, particularly in FM demodulator applications. It is used as a frequency modulator in this case as it is inexpensive and easy to obtain. Q1 is used to drive what would normally be the 'demod' output with the PPM signal. C7, with R8 and RV3, set the carrier frequency and RV2 is used to set the level of PPM signal and therefore the frequency deviation.

IC5 and its associated components interface the squarewave output of IC4 to the CMOS levels required by the power amplifier stage. It is also used as a gate in order to disable the transmission of carrier when there is no control signal being sent. This is done through the 'Carrier Enable' input to the unit and serves to save a little power and minimise the possibility of interference being caused by the system.

IC6 is used as a buffer and as a pulse shaper, to drive the power amplifier stage. This employs a pair of VMOS transistors in push-pull and operates in a low duty-cycle switching mode, similar to a class C valve amplifier. IC6 generates the short pulses with the required timing to ensure correct operation. T1 acts as a low Q tuned transformer and matches the output of this stage to the low impedance presented by the mains at this frequency. C12 resonates with the inductance of T1 to produce a nearly sinusoidal output waveform. The output impedance is of the order of 0.5 ohm and can easily put a signal across the few ohms presented by the mains wiring.
tuned, will generate amplitude modulation on the FSK signal which will correspond to the frequency of the tone transmission on that signal. The sense of the amplitude modulation will depend on the adjustment error. When L1 and C1 resonate at too high a frequency, modulation peaks appear on the carrier corresponding to PPM pulses. If mistuned in the opposite direction, dips appear on the envelope of the signal. The correct adjustment of L1 is the setting which minimises the amplitude modulation of the FSK signal at this test point (Fig. 6).

RV2 adjusts the natural frequency of the oscillator in the phase locked loop FM demodulator, IC3. This control is used both to set this frequency close to that of the FSK carrier, so that the loop can lock up, and to cancel any imbalance in the comparator circuit built around IC1d.

Adjustment of RV2 is used to produce the ‘cleanest’ PPM signal at the output of IC1d. Offsetting this control away from the correct point will cause either the logic low or the logic high part of the PPM signal to become noisy. RV2 is therefore adjusted until a PPM data stream appears on pin 1 of IC1d, and then set to halfway between the points where noise begins to appear on the logic high and logic low parts of that data stream.

The oscillator in the ML924 PPM decoder, IC1, is set by RV1. This is most easily adjusted with the FSK signal disconnected from the receiver, so that the incoming data stream does not disturb the oscillator frequency. For safety’s sake, the temporary 12 volt supply should be retained.

When correctly adjusted, the oscillator period should be 1/40th of the logic ‘0’ period in the received data. The latter is set at 5 milliseconds at the transmitter, so RV1 should be used to set the period of the sawtooth waveform at pin 1 of IC1 to 125 microseconds.

This completes the setting up of the transmitter and the receiver. It should now be possible to check their operation by reconnecting them via the test circuit. Suitable sequences of ‘on’ and ‘off’ codes loaded into the transmitter should result in the receiver switching on and off. The operation of the receiver will be indicated, even in the absence of a mains supply and load, by the indicator LED.

Interfacing

The MainsCom receiver can easily be interfaced with most types of parallel port device. It was designed specifically for use with the Intel family of parallel port devices, the 8155 and the 8255. The interfacing of the transmitter with this type of port is described below, together with some suggestions for interfacing with other types of parallel port device. The D0 to D4 inputs to the transmitter are driven by the lower five bits of any parallel output port which has TTL compatible outputs.

As with any type of output port, some form of “handshake” arrangement is necessary, in this case to ensure that the 8 bit word on the inputs of IC1 and IC2 in the transmitter is not replaced by another until the first has been transmitted. The SL490 IC gives no indication that a message has been sent, so the handshake logic must use a simple timing circuit to indicate when the transmitter is ready for another message.

This timing logic can conveniently act as a source of the TRANSMIT and CARRIER ENABLE signals which activate the generation of PPM signals and enable the FSK carrier. The timing of these two signals is critical to the transmission of an intelligible message. Each message consists of two PPM words, the minimum required by the error checking logic in the receiver. If more than two PPM words were to be transmitted, this would greatly increase the time taken to transmit updates to a group of receivers.

TRANSMIT must be active for a long enough period for the SL490 to generate the two PPM words. CARRIER ENABLE must remain active long enough for those two words to be transmitted. The timing of these signals is not identical because of the way in which the SL490 operates. If TRANSMIT becomes false after the SL490 has started to generate a PPM word, it will complete that word. CARRIER ENABLE must then be held true until after the completion of the word, so the whole of the last word is sent. The timing of TRANSMIT and CARRIER ENABLE necessary for the correct transmission of PPM messages is shown in Fig. 7 and Fig. 8.

These two control signals could be generated by timing loops in the controlling program, but the use of this technique would be wasteful of CPU time, a precious commodity in microcomputer based control systems. The alternative is the use of a simple hard-ware timer as suggested above.

If the parallel port is an 8155 or an 8255 it should be programmed to operate in the strobed output mode. The circuit shown will take care of the handshake signals and generate the TRANSMIT and CARRIER ENABLE signals.

The controller program initiates the transmission of the message by writing the word to be transmitted to the output port. This will set BF (“Buffer Full”) or IBF on an 8255, to the high state and INTR (“Interrupt”) to the low state. After a period determined by the timing circuit, STB will go low. The internal logic of the port will use this transaction to restore BF to the low state. A further delay period later, STB will return to the high state, signalling the end of the message transmission. INTR will remain low until this occurs. The timing of BF, in inverted form, and of INTR allow these two signals to be used as the source of TRANSMIT and CARRIER ENABLE respectively. See Fig. 7 for the timing of these signals.
The program operating the MainsCom transmitter can detect when a new message may be sent either by polling the status register in the port to see when the INTR bit becomes true or by using the INTR signal as a "Transmitter Empty" interrupt.

If your microcomputer system does not use one of the Intel parallel ports mentioned above, some simple logic is needed to mimic the action of the 8155 or 8255 and generate TRANSMIT, CARRIER ENABLE, and handshake signals suitable for most types of parallel port, such as the 6821 and the Z80-PIO.

This logic is provided in the circuit given by removing the links from the positions indicated and replacing them in the alternative positions listed. The data representing the PPM message to be transmitted should be written to the parallel output port and the handshake line pulsed high for a few microseconds to initiate the send process. This pulse will set the latch formed by IC5a and IC5b. The latch will be reset after an appropriate period of time by the circuit consisting of R14, RV4, C15 and IC7d. IC5c generates a signal which is used as CARRIER ENABLE and TRANSMIT is produced by IC7e which inverts the output of the latch. CARRIER ENABLE may be connected to an input handshake line on the parallel output port and the device programmed to generate an interrupt on the positive going edge. Alternatively, this signal can be polled to see if the transmitter is still busy. If this polarity of signal is inconvenient for use with a particular port configuration, IC7a may be used to invert the signal. The timing of signals associated with this circuit are shown in Fig. 8.

The timing of the handshake logic is set by RV4, and this is most easily adjusted whilst a fixed message is being repeatedly transmitted. This can be checked by using an oscilloscope to examine the (inverted) PPM data stream on pin 2 of IC3, and the CARRIER ENABLE signal. RV4 should be adjusted so that two PPM words occur in each period of CARRIER ENABLE being low. The actual message used in setting the transmit timing is important because the period of a PPM word varies with its data content. A word consisting of all 0s is the longest and this should be used in setting up the timing as described above.

From the software point of view, the receivers used in this system can be controlled by writing suitable data to the parallel port used to drive the transmitter. The port used will probably be eight bits wide, but only the five least significant bits are used by the transmitter. The controlling program should generate these output bit patterns according to the following format:

To switch a receiver, or a group of receivers ON, this two word sequence must be used:

```
X X X 0 A3 A2 A1 A0
```

To switch the receivers OFF, this sequence must be transmitted:

```
X X X 0 A3 A2 A1 A0
```

A3, A2, A1 and A0 form the bit pattern corresponding to the binary address assigned to each receiver and set up on the C0 to C3 inputs of the ML924 PPM decoder. The three most significant bits of each byte, shown as the three Xs, are not used and can conveniently be left at logic '0's.

BUYLINES

Dealing with the receiver first, both Watford and T.K. Electronics stock the ML924. Cricklewood can supply the TIC225D and Ambit the Toko coil. The only other component likely to cause any problems is a hexagonal rotary switch. As explained in the text, you can use links to the address bus if you want to make it adjustable you could try and find a local retailer who is prepared to order the part from RS for you. Alternatively, Ambit do stock a hexadecimakal switch but it is larger than the RS item and has a different pin-out, so you would have to alter the PCB tracking slightly. Note that the components required for the two modifications do not appear in the parts list.

Turning to the transmitter, all of the semiconductors are readily available as are most of the other components. The RM10 pot core assembly is available from Ambit and the kbox is available from Maplin. Ambit also supply enamelled copper wire.

The PCBs for both the transmitter and the receiver are available from our PCB service, see page 65.
Phil Walker has been burning the midnight oil lately — here are his thoughts on some of the latest offerings for the workshop shelf.

Operational Amplifier Experimental Manual
G. B. Clayton BSc. Finst.P. Butterworths
130 pages/£13.95 (hardback)
£6.95 (paperback)
This is a nice friendly book with clear diagrams and text to guide the student through the basics (and further) of operational amplifiers.

The book shows, by means of practical experiments, most of the common (and sometimes forgotten) configurations of op-amp circuits. It sets out to show how they work and why in some circumstances they don't. This process is reinforced by exercises at the end of each chapter.

In the main I would think that the book will be of most use in schools or training colleges where oscilloscopes, power supplies and signal sources are easily obtainable as these are assumed throughout the text. However the book will serve as a useful reference long after its initial purpose is served.

Towers' International MOSPOWER And Other FET Selector
T.D. Towers, MBE, MA, BSc, C.Eng, MIET and N.S. Towers, BA (Cantab)
W. Foulsham & Co. Ltd.
104 pages/£9.95
In the past few years there has been a great surge forward in the technology of field effect devices. This has been very noticeable in the digital field but has been just as great in the analogue and power switching areas. Reliability and power handling capability have enabled amplifiers and especially switch mode power supplies to be made better and cheaper.

This book sets out the major characteristics of some 6000 assorted types of FET in a clear tabular form as well as basic information on package, lead out, manufacturer and typical applications. The Selector claims to cover all MOSPOWER FET types known to be commercially available at the time of writing.

A very useful feature of the book is that where practicable it offers commercially available substitutes for the MOSPOWER and other devices listed.

At less than 10p per page (just) it should find a place on many engineer's or technician's book shelf.

16 Bit Microprocessors
Ian R. Whitworth
Granada
381 pages/£18.00
Starting with a brief run down on the ancestry of the current 16-bit micros, the book deals with the development of the 8-bit and 8/16 bit devices before considering the older and newer 16-bit units. This turns out to be quite interesting in its own right giving useful comparisons in hardware and software.

Moving on to the early 16-bit devices shows how simple in concept some of them were (and still are). Also, it demonstrates how some manufacturers attacked similar problems in very different ways.

In the remaining three-quarters of the book the author first considers the current generation of 16-bit micros including the 8086, Z8000 and 68000 devices. He takes us through the register and bus structures, memory management and operating system support including interrupt handling and multi-user operation.

After this he moves on to give typical interface structures and requirements. Also we meet the concept of co-processors or special purpose devices which extend or speed up the capabilities of the main processor.

Next to be examined are instruction sets, development systems, system software and high level languages taking a chapter for each. A chapter on multiple processor systems is followed by one on applications before the final one which considers future developments in the field.

I found the book quite readable, interesting and informative. Its many illustrations were usually relevant to the immediate text and certainly help with grasping the concepts involved. I think the book would be very useful to someone who has some 8-bit hardware knowledge and some experience of larger systems from a users point of view.

Microprocessor Instruction Sets And Software Principles
D.L. Heiseman
Prentice Hall
440 pages/circa £27 hardback
This is a very interesting and seemingly useful book, covering in some detail the various instructions available to four of the most popular eight-bit microprocessors available, the 8080 (and 8085), 280, 6502 and 6800.

Each chapter of the book is devoted to a particular instruction type and explores the similarities and differences of the various processors. It also shows how particular simple tasks may be performed by each processor and where differences in the instruction sets may force alternative approaches.

The exercises at the end of each chapter are useful for reinforcing what is learned in the main text throughout the book, there are also many examples of short sections of machine code routines for all the processors, with explanations of how they work.

One or two apparent errors have crept into the text but I would still think that this book is good value for money especially for someone wanting comparative information on the four processor types mentioned. This book is entirely concerned with software and contains no hardware information.
1984 CATALOGUE NOW OUT!

THE NEW MARSHALL’S 1984 CATALOGUE is now available — one of the biggest and best catalogues ever produced by MARSHALL’S.
56 pages crammed from cover to cover with components, accessories and testgear.

New products include I.D.C. Plugs & Sockets, ‘D’ Plugs & Sockets, DIL Headers, Ribbon Cable, Kits, Toroidal Transformers, I.C.’s, Capacitors, Test Probes, and lots more — something for everyone.

TRADE, EXPORT, RETAIL AND MAIL ORDER SUPPLIED.

75p to callers, £1.00 post paid — Europe, £1.50 rest of the world.

WHERE TO FIND US

CALL IN AND SEE US

 MAIL ORDER

 WE REGRET WE CANNOT
 ANSWER MAIL ORDERS/
 STOCK ENQUIRIES
 WITHOUT AN S.A.E.
 SAME DAY SERVICE
 TRADE AND EXPORT
 ENQUIRIES WELCOME

TELEPHONE

 MAIL ORDER

 041-332-4133

 SHOP AND STOCK
 ENQUIRIES
 041-332-4133

 TELEX

 281507 REF. 2194

MICROTANIC COMPUTER SYSTEMS LTD.

MICROTANIC 65 NO OTHER COMPUTER IS AS PERSONAL!

For less than £60 you can start building your own Computer that truly suits your needs and, of course, eventually far more superior to any Computer available off-the-shelf.

MICROTANIC 65 comes in kit form, complete with manual, full instructions, board with components, (kit form or fully built) but full back-up service, and your own Microtanic World Magazine available on subscription.

FLEXIBLE & EXPANDABLE SYSTEM — 1K to 256K!

Just look at the options:
1 DISK CONTROLLER
2 REAL TIME CLOCK
3 EPROM PROGRAM
4 SOUND BOARD
5 SERIAL 1/0 BOARD
6 PARALLEL 1/0 BOARD
7 MASS EPROM STORAGE BOARD
8 INDUSTRIAL CONTROLLER BOARD
9 40K RAM BOARD
10 HIGH RES GRAPHICS 256x256
11 PRINTER FACE BOARD
12 ASCII KEYBOARD

FULL RANGE OF SOFTWARE
Languages available: Machine Code, Assembly, Basic, Forth, and Pilot

HOW TO ORDER:
Enter details in the coupon below, enclosing your cheque made payable to Microtanic Computer Systems Ltd. Prices include VAT add £1.50 plus P&P allow 14 days for delivery.

MICROTANIC COMPUTER SYSTEMS LTD
SHOWROOM: 16 UPLAND RD
DULWICH, LONDON SE22
TEL: 01-603-1137

MAIL ORDER:
236 PRIERN Rd, DULWICH
LONDON SE22

ORDER

7 MASS EPROM STORAGE BOARD
8 INDUSTRIAL CONTROLLER BOARD
9 40K RAM BOARD
10 HIGH RES GRAPHICS 256X256
11 PRINTER FACE BOARD
12 ASCII KEYBOARD

FULL RANGE OF SOFTWARE
Languages available: Machine Code, Assembly, Basic, Forth, and Pilot

BUILD AS FAST OR SLOW AS YOU LIKE!

BUILD AS FAST OR SLOW AS YOU LIKE!

Your Binder

MICROTANIC COMPUTER SYSTEMS LTD

Also available from:
Waltham Forest Computer Centre
889 Lee Bridge Rd
E7 Whips Cross, Walthamstow E7
Tel: 01-520 7747

A. Marshall (London) Ltd.
Electronic Component Distributors
85 West Regent Street
Glasgow G2 2AW
Telephone: 041 332 4133
TREAT YOURSELF TO A NICE NEW DIGITAL MULTIMETER! KD655C A DVM for the professional. 8 digit multimeter has overload protection, low battery and overvoltage indication. Full-auto polarity operation. AC/DC Volts: 0-700 DC Volts: 0-1000 AC Current: 200µA-10A DC Current: 20µA-10A Resistance: 20Ω-200MΩ Total 26 ranges for just £44.95.

PUSH BUTTON BANKS
W5900 An assortment of latching and independent switches on banks from 2 to 7 way, DCC to 6PCG. A total of at least 40 switches for £5.95 100 £25.40 1000 £45.00.

THE SENSIBLE 64!
David Highsmith goes for the Commodore 64 now available £5.95.

SEAT BELT ALARM
Originating at sale for £2.50, complete well made units 7850x50mm provide both audible and visual alarms. Ideal for Cars etc. £5.70 (40p/metre).

BULK BUYERS LIST
Send for our latest wholesale list - IC's from S0, Big multimeter has overload protection, low battery and overvoltage indication. Full-auto polarity operation. AC/DC Volts: 0-700 DC Volts: 0-1000 AC Current: 200µA-10A DC Current: 20µA-10A Resistance: 20Ω-200MΩ Total 26 ranges for just £44.95.

VEROBLOC £1 off
Our biggest selling breadboard on offer at a special price of £6.10.

NUT SCREW WASHERS & BOLTS
Over 2 million in stock in metric, SAE, etc. SAE for list.

COMPUTER GAMES
Z901 Can you follow the flashlight pursuit line sequence of this game of car racing? Supplied as a fully working kit with speaker (no case) plus full instructions. Only £4.95.

Z902 Probably the most popular electronic game on the market, based on the old fashioned pencil and paper battleship game, this computerised version has brought it bang up to date! We supply a ready built PCB containing 7647 sound effect chip, TM1000 microprocessor chip, etc. etc. Offered for its component value only (board may be cracked or chipped), it's only £1.95. Instructions and circuit 30p.

STORE CLEARANCE!!
We've bought so much surplus recently our stores are bulging at the seams! In order to clear some stock, we're once again offering 'Bargain Parcels' which have proved very popular in the past. They contain: resistors, capacitors, switches, panels with transistors and IC's, screws and various hardware plus all the odd bits and pieces which have accumulated over the years. Each parcel costs just 10lbs and costs £3.95.

ALL PRICES INCLUDE VAT: JUST ADD 60p P&P
CENTRONICS INTERFACE

Designed for use with the Sharp MZ-80K but readily adapted to work with other machines, this interface provides a simple, low-cost method of connecting a printer to your micro. Design by Matthew Dunn.

The problem with trying to connect your micro to a printer is that the printer you like (or can afford!) is almost certain not to interface directly with your micro. You can get round this by purchasing a suitable interface, assuming one to be available for your particular purposes, but that will add to the cost considerably and may even end up costing more than an expensive printer purpose built for use with your micro.

The interface described in this article is designed to match the I/O port of the Sharp MZ-80K microcomputer to the Centronics port found on many printers. With minimal hardware modifications and appropriate software, the interface should work with any other Z80-based system, including the ZX81 and Spectrum. It is not within the scope of this article to consider all the changes necessary to make the interface operate with other machines, but a few brief notes have been included to help those who wish to try.

A Centronics port requires 8 bits of parallel data and a Strobe signal to be sent to it, after which an acknowledge pulse is returned to the microcomputer. Sharp's BASIC sends character data to the printer using the I/O port FF hex. This is strobed by toggling bit 7 of port FE hex, after which the processor waits for bit 1 to go high to indicate that the data has been received. The interface uses an 8 bit latch which holds the information on the data lines when the address lines indicate port FF (all high). When the computer sets bit 7 high and indicates port FE (A0 low), data line D7 is inverted and sent to the printer's strobe input. This should result in the printer sending an acknowledge pulse which is then held in a bistable latch until the computer resets it. A tri-state buffer sets D0 to indicate the state of the latch and also sets D1, 2 and 3 low when the address lines indicate port FE. By monitoring bit 0 of port FE, the microcomputer can tell when the acknowledge pulse has been sent and the latch makes sure it isn't missed. Bits 1, 2 and 3 are held low because Sharp use them to indicate the condition of their own printer, and if this is not done the computer will assume a printer failure.

Construction

The prototype was constructed in a Verobox type 21390, although any box about 75 x 110 mm should do. Construction of the PCB is fairly straightforward; there are 9 wire links, two resistors and three capacitors to fit. All the IC's face the same way and we recommend the use of IC sockets. Care must be taken when fitting the two diodes to ensure correct polarity.

If the board is then fixed solder side up in the box, the connections to the Sharp 50-way bus can be made. A length of 40-way ribbon cable should be placed such that the first wire connects to A25 and the last wire connects to B6 of the IDC connector. Holding the cable against the IDC spikes, place the clamp in position and put the whole lot in a vice. Tighten the jaws of the vice so that the clamp forces the cable over the spikes.

At the other end, all the connections are in order along the width of the cable with the exception of the RESET signal. If you are not using an MZ-80K and

![Fig. 1 Pin designation of the Amphenol connector.](image_url)
your computer doesn't supply a
RESET signal, a manual interface
reset can be made by omitting D2
and connecting a push switch as
shown on the overlay.

Next connect the 36-way Amphenol connector to the
interface using a multiway cable. Again, it is probably easier to make
the connections to the solder side
of the board. The relevant
connections to the Amphenol plug
are shown in Fig. 1. Pins 19-30 can
be shorted together, but pin 30
must be connected to the ground/0V of the interface.

With assembly complete, all
components in place and the
board thoroughly checked, it is
time to connect the interface to

Table 2 Locations of signal connections on the Centronics/Amphenol plug.

<table>
<thead>
<tr>
<th>Pin Description</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strobe</td>
<td>19</td>
<td>Pin 1 ground</td>
<td>20</td>
<td>Pin 2 ground</td>
<td>21</td>
<td>Pin 3 ground</td>
<td>22</td>
<td>Pin 4 ground</td>
<td>23</td>
</tr>
<tr>
<td>Data 1</td>
<td>24</td>
<td>Pin 6 ground</td>
<td>25</td>
<td>Pin 7 ground</td>
<td>26</td>
<td>Pin 8 ground</td>
<td>27</td>
<td>Pin 9 ground</td>
<td>28</td>
</tr>
<tr>
<td>Data 2</td>
<td>29</td>
<td>Pin 11 ground</td>
<td>30</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOW IT WORKS

IC1 is an 8 input NAND gate which
monitors address lines A1 to A7 and the inver-
ted IORQ line. Its output goes low
whenever the computer requests an
input/output and defines either port FE
or port FF on the address lines. The out-
put is inverted by IC7c and used to en-
able the three, 3 input AND gates IC4a, b
and c.

IC4b combines the inverted output of
IC1 with the inverted WR line and
address line A0, which will be high when
port FF is defined and low when port FE is
defined. IC4b thus detects when port FF
is being written to and enables the
latches, IC2 and IC3, so that data is
transferred to the latch outputs.

A0 is inverted by IC7e before being
combined with the output of IC1 and
the inverted WR line by IC4a. IC4a thus
detects when port FE is being written to
and resets the bistable latch IC5a,d via
IC5a. D1 and D2 prevent the outputs of
IC5a and IC7a from being driven high.
The output of IC4a is also combined with
data line D7 by IC5b; bit 7 is toggled by
the microcomputer when port FE is indi-
cated, and the output of IC5b can thus be
used to strobe the printer. The printer
should respond to the strobe by sending
an acknowledge pulse, which is caught
by the latch IC5c,d.

When port FE is read from the inver-
ted signals from IC1, RD and A0 are com-
bined in IC4c which enables the tri-state
buffer, IC6, placing the output of the
latch onto data line D0. The other three
sections of the buffer have their inputs
held low so that, when enabled, they pull
data lines D1 to D3 low. This satisfies a
particular requirement of Sharp BASIC
which uses the three lines to monitor
printer condition.

Fig. 2 Circuit diagram of the interface.

Fig. 3 Pin designation of the Sharp 50-way bus.
the printer and computer. Having done this, turn the printer on and then turn the computer on. If either device fails to operate as expected then turn it off and re-check the wiring for shorts.

If both computer and printer function as expected it only remains to connect the interface to a 5 volt supply. Since, in their wisdom, Sharp don't supply 5 volts on the 50-way bus, it must be obtained from somewhere else. Some printers supply 5 volts through the Amphenol connector, or you could use an external 5 volt supply, but it is fairly easy to get a supply from the MZ-80K. To do this, connect a wire to the top of R47, R48 at the front right of the MZ80K's main PCB (see Fig. 4). The wire can be brought out through the hole around the 50-way connector. If a crocodile clip is used to connect the wire, the interface unit can be completely disconnected from the MZ-80K without having to desolder wires.

Now power up the printer and the computer in that order (to ensure the bistable is reset by the computer). If a manual reset switch is fitted this should be pressed before the first print.

In Use

To use the interface, load in Sharp BASIC, or enter a program similar to listing 1. Before Sharp BASIC will print properly the routine that interrogates the Sharp printer for its status needs to be disabled. This is done simply by POKEing 15542.201 (Note that this routine usually only exists in Sharp's software). Having POKEed this location type PRINT/P "TEST MESSAGE"; this should result in the printer outputting the message. If you are using program 1, call it a couple of times with different ASCII codes in the accumulator and then call it with the RETURN character code (usually 13) in the accumulator. Alternatively, program 2 will send the message indefinitely. Finally, to use Sharp Edico-Assembler, three alterations need to be made. Change 2BB9 to C9, change 2BB2 to B7 and 2B30 to C9.

As we pointed out earlier, it is not possible in this article to describe all the modifications necessary to make this interface work with other machines. The following notes, however, should be of some help to those with other Z80 based machines, particularly the ZX81 and the Spectrum, who wish to try and adapt this circuit.

The first thing to note is that the Sinclair machines use a simplified port addressing system in which A0, 1, 2, 3, or 4 are taken low to indicate specific peripherals. Because of this, A0 cannot be used to detect the difference between port addresses and one of the unused lines, A5, 6 or 7, must be used instead with the appropriate address written in the software. Assuming the use of A5, the new addresses of the data and control ports should be 65504 and 65535 respectively on the Spectrum and 255 and 255 on the ZX81. The other important point to note is that you will, of course, have to rewrite the software to ensure that ASCII values of characters are sent to the printer. Note that, while the Spectrum uses BASIC on its I/O port, the ZX81 uses machine code.
PROJECT: Centronics Interface

PUSH BUTTON IF REQUIRED

R1, R2 3k3
C1, 2, 3 10n ceramic
IC1 74LS30
IC2, 3 74LS75
IC4 74LS11
IC5 74LS00
IC6 74LS126
IC7 74LS14
D1, D2 IN4148

PCB: Verobox type 202-21390 or similar; 50-way IDC connector; 36-way Amphenol plug; IC sockets, nuts, bolts, spacers, ribbon cable, etc.

Fig. 5 Overlay diagram of the PCB.

IT LIVES AGAIN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind.

Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics — It's Easy. Originally a long-running series in Electronics Today International, Electronics — It's Easy was printed as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenomenally successful publication is available again, in its third reprint. Electronics — It's Easy is a comprehensive and simply-written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology.

You can obtain your copy of Electronics — It's Easy by mail order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barclaycard.

Send to: Sales Office (Specials), Infonet, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.

Please send me…… copies of Electronics — It's Easy. I have enclosed £…… (£4.95 each including p&p).

NAME
ADDRESS

Please debit my account
My Access/Barclaycard No. is
Signature

ETI MAY 1984
An in-depth series in understanding today's world of electronics.

From Texas Instruments.

The Understanding Electronics Series was specially developed to provide you with a full in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics enthusiast as for the sophisticated technician, each book is written in a simple language allowing you to get to grips with the subject in easy stages.

1. Understanding Electronic Control of Energy Systems

2. Understanding Electronic Security Systems

3. Understanding Solid State Electronics

4. Understanding Digital Electronics

5. Understanding Microprocessors

6. Understanding Computer Science

7. Understanding Communications Systems

8. Understanding Calculator Math

9. Understanding Optimoptronic Systems

10. Understanding Automotive Electronics

11. Understanding Telephonic Electronics

12. Understanding Electronic Control of Automation Systems

How to order

1. Fill in the coupon below and send it to:

Texas Instruments Limited, PO Box 52, Market Harborough, Leics. LE16 9AB

2. Send the coupon and a cheque payable in £ sterling to:

Texas Instruments Limited, PO Box 52, Market Harborough, Leics. LE16 9AB

Allow 10 days for delivery.

MDEX disc operating system — from £95

MDEX. Language power

FORTH PASCAL SPL QBASIC META

Software to make the CORTEX go!

CORTEX 1Mb Disc Drives

80 track double-sided double-density £235

TMS9909 disc controller i.e. £24.50

CORTEX game tapes

Space Bugs, Nibblers, Pontoons each £6

Please add VAT to all prices
MULTIMETER SPECIAL
(Completely recharged batteries)
Russian type U324 d. volt
age: 1.5, 0.6, 0.3, 0.0, 90 mV, 0.006,
0.006, 0.06, 0.6, 6.0, 60, 600,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
3000, 3000, 3000, 3000, 3000,
MACHINE CODE PROGRAMMING

Bob Bennett offers some general advice on de-bugging machine code programs before taking us step-by-step through the development of a program to convert decimal to hex.

Throughout this series I have tried to show that there is no mystery attached to machine code, no more so than when you first encountered BASIC as a computer language. And, just as you learned to use BASIC, the only way to learn machine code programming is to have a go, or, as it is sometimes put, to gain 'hands on' experience.

At times I have shown machine code instructions as though they were part of a program, in order to demonstrate the effect of the instruction. To remind you: if you were to place the Z80 instruction C9h — Ret in an address and then call that address from BASIC, the computer would execute the instruction and return you immediately to the BASIC program. Nothing very spectacular about that, you might say, but that single instruction constituted a program. Obviously you will want to write programs which are longer than one byte, but somewhere in that program will be at least one RETurn instruction.

This brings me to two very important things you must always keep at the back of your mind: crashes and infinite loops, which are not the same thing. The simplest crash will produce an error report, while more complex ones give rise to some very exotic displays. With infinite loops, the most usual form leaves you staring at a blank screen, but the solution is always the same, just pull the plug out. This should not really be so since there should always be some form of escape route, but of course, you wrote the program in the first place, didn't you? To help you avoid problems of the kind I've just mentioned here are a few tips and pointer, which, although I have covered them in this series, you may not recognise.

It might be stating the obvious, but you should always make sure the program starts at the correct entry point, which may not be the first address of the program. I made it clear earlier that a byte could be either an instruction or a data byte, so consider the following example. The Z80 instruction to load register A with the ASCII code (of which more later) for the capital letter A would be 3E41, with the comma representing the division between two adjacent addresses. If by chance (or accident!) the program started at the byte 41, the computer would now read this as Load B,C. The program following would then be interpreted in a completely different manner to that intended.

The main cause of this type of error is the miscalculation of offset bytes and addresses for JUMPing or CALLing. It is always worth doing the calculation in two different ways, for example, counting from each end of the jump in turn. Failure to include a RET in a program can cause some interesting effects, the results depending upon what the computer meets after zooming past the

<table>
<thead>
<tr>
<th>Character</th>
<th>ASCII</th>
<th>Character</th>
<th>ASCII</th>
<th>Character</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUL</td>
<td>00</td>
<td>SPACE</td>
<td>20</td>
<td>@</td>
<td>40</td>
</tr>
<tr>
<td>SOH</td>
<td>01</td>
<td>`</td>
<td>21</td>
<td>A</td>
<td>41</td>
</tr>
<tr>
<td>STX</td>
<td>02</td>
<td>"</td>
<td>22</td>
<td>B</td>
<td>42</td>
</tr>
<tr>
<td>ETX</td>
<td>03</td>
<td>#</td>
<td>23</td>
<td>C</td>
<td>43</td>
</tr>
<tr>
<td>EOT</td>
<td>04</td>
<td>$</td>
<td>24</td>
<td>D</td>
<td>44</td>
</tr>
<tr>
<td>ENQ</td>
<td>05</td>
<td>%</td>
<td>25</td>
<td>E</td>
<td>45</td>
</tr>
<tr>
<td>ACK</td>
<td>06</td>
<td>&</td>
<td>26</td>
<td>F</td>
<td>46</td>
</tr>
<tr>
<td>BEL</td>
<td>07</td>
<td>(</td>
<td>27</td>
<td>G</td>
<td>47</td>
</tr>
<tr>
<td>BS(-)</td>
<td>08</td>
<td>)</td>
<td>28</td>
<td>H</td>
<td>48</td>
</tr>
<tr>
<td>HT(—)</td>
<td>09</td>
<td>—</td>
<td>29</td>
<td>I</td>
<td>49</td>
</tr>
<tr>
<td>LF()</td>
<td>0A</td>
<td>+</td>
<td>2A</td>
<td>J</td>
<td>4A</td>
</tr>
<tr>
<td>VT()</td>
<td>0B</td>
<td>,</td>
<td>2B</td>
<td>K</td>
<td>4B</td>
</tr>
<tr>
<td>FF(home)</td>
<td>0C</td>
<td>-</td>
<td>2C</td>
<td>L</td>
<td>4C</td>
</tr>
<tr>
<td>CR (return)</td>
<td>0D</td>
<td>0</td>
<td>2D</td>
<td>M</td>
<td>4D</td>
</tr>
<tr>
<td>SO</td>
<td>0E</td>
<td>1</td>
<td>2E</td>
<td>N</td>
<td>4E</td>
</tr>
<tr>
<td>SI</td>
<td>0F</td>
<td>?</td>
<td>2F</td>
<td>O</td>
<td>4F</td>
</tr>
<tr>
<td>DLE</td>
<td>10</td>
<td>0</td>
<td>30</td>
<td>P</td>
<td>50</td>
</tr>
<tr>
<td>X-ON</td>
<td>11</td>
<td>1</td>
<td>31</td>
<td>Q</td>
<td>51</td>
</tr>
<tr>
<td>TAPE</td>
<td>12</td>
<td>2</td>
<td>32</td>
<td>R</td>
<td>52</td>
</tr>
<tr>
<td>X-OFF</td>
<td>13</td>
<td>3</td>
<td>33</td>
<td>S</td>
<td>53</td>
</tr>
<tr>
<td>TAPE</td>
<td>14</td>
<td>4</td>
<td>34</td>
<td>T</td>
<td>54</td>
</tr>
<tr>
<td>NAK</td>
<td>15</td>
<td>5</td>
<td>35</td>
<td>U</td>
<td>55</td>
</tr>
<tr>
<td>SYN</td>
<td>16</td>
<td>6</td>
<td>36</td>
<td>V</td>
<td>56</td>
</tr>
<tr>
<td>ETB</td>
<td>17</td>
<td>7</td>
<td>37</td>
<td>W</td>
<td>57</td>
</tr>
<tr>
<td>CAN</td>
<td>18</td>
<td>8</td>
<td>38</td>
<td>X</td>
<td>58</td>
</tr>
<tr>
<td>EM</td>
<td>19</td>
<td>9</td>
<td>39</td>
<td>Y</td>
<td>59</td>
</tr>
<tr>
<td>SUB</td>
<td>2A</td>
<td>:</td>
<td>3A</td>
<td>Z</td>
<td>5A</td>
</tr>
<tr>
<td>ESC</td>
<td>2B</td>
<td><</td>
<td>3B</td>
<td>\</td>
<td>5B</td>
</tr>
<tr>
<td>FS</td>
<td>2C</td>
<td>=</td>
<td>3C</td>
<td>/</td>
<td>5C</td>
</tr>
<tr>
<td>GS</td>
<td>2D</td>
<td>></td>
<td>3D</td>
<td>~</td>
<td>5D</td>
</tr>
<tr>
<td>RS</td>
<td>2E</td>
<td>?</td>
<td>3E</td>
<td>A</td>
<td>5E</td>
</tr>
<tr>
<td>US</td>
<td>2F</td>
<td>?</td>
<td>3F</td>
<td>DEL</td>
<td>7F</td>
</tr>
</tbody>
</table>

Table 1 The ASCII code.
place where the RET should have been. Calling routines based in ROM is another potential disaster area. Quite often these routines use the full register set to work on, so before calling, preserve any register contents by PUSHing.

Even if you have got all your calculations right and your RET in, failure to match all your POOPS with the PUSHES will almost certainly end in disaster. During a program, unless done deliberately, POPping in a different order to PUSHing can raise the old blood pres-

![Fig. 1 Machine code program.]

![Fig. 2 BASIC program.]

10 INPUT "Enter decimal number": n
20 IF n<1 OR n>65536 THEN GOTO 10
30 POKE 23332, n-256* INT(n/256)
40 POKE 23333, INT(n/256)
50 CLS:PRINT n; "": RANDOMIZE USR 23334
60 GOTO menu
code ready for printing. This means that both the MSB and the LSB will have to be worked on twice. You can see that the difference between the ASCII code and the MSB is 30h, so it’s a question of isolating the 7 and the 5 and then adding 30h. That’s it then, a little more work and I’m home and dry. Hang on though, what’s this? another look at the ASCII set show that some clowns have added extra characters between 39h and letter A, which is 41h. That makes a right mess of the 30h difference.

So far, I have presented the problem as a beginner to machine code programming might see it, and, so far, the reasoning looks fairly sound. But let's re-think the problem using slightly different reasoning. I have found that problems of this nature are best approached with two things in mind. The first is to look at the best and worst cases, in this instance the upper and lower limits which have already been defined. Secondly, examine what you already have and can be sure of, and our example of that is decimal 117 which we know is 75 hex. The position of the hex character determines the equivalent decimal value, for example, 0F is less in value than F0. However, no matter which position the hex character occupies, the one constant is that 0F represents decimal 0 to 15, and thereby lies a clue. Bearing in mind that there are two hex characters per byte I can write down 00-0F = 0 to 15, and then the binary representation of each byte. The pattern looks like this — 0000 0000 and 0000 1111, and immediately I see the answer to the problem.

Now you must remember that a computer doesn't know the first thing about decimal or hex; the only things it 'sees' are the bit patterns. Next I write down the binary for the MSB of decimal 117 — 75h — 0111 0101. Earlier I said that all that was needed was to isolate the 7 and the 5 and add 30h, which is only half right because the 30h is useless. In this series I have covered a method for isolating or masking off numbers, and this is the logical AND operation. If we AND with F0 — 1111 0000, this will isolate the 7, and similarly AND 0F for the 5. This, then, is a method of obtaining two separate bytes from one byte (think about it).

At this point I had better reveal the answer to the problem, which is a table of ASCII codes representing the characters 0 to F. The principle of using the table is very simple indeed. By pointing a register pair to the start of the table, any number added to that register will index into the table by the amount of the number. To make things easier, once indexed, the register pair would be pointing to the ASCII code for the number that was added. To make things clearer, the register pair is pointing to the start of the ASCII table which is 30h — 0; nothing added would cause the character 0 to be printed for the hex character, which is correct. The only problem lies with that first AND operation; AND F0 — 1111 0000 left us with 0111 0000 — 70h. Moving that bit pattern over to the right four times would solve our problem, so that’s exactly what we do. The Z80 instruction we use is 1F — RRA which means Rotate Right Accumulator (register A). The full machine code listing is in Fig. 3, but please remember that the addresses given are for the printer buffer. If you want to re-locate the program, the addresses in HL and BC plus the ones in BASIC will have to be altered. Regarding the BASIC, I have given just enough lines to run it; my own version is a bit more user friendly. One last parting shot — if you want to write a hex to decimal program the clue lies in the difference of 30h and 40h!

panotechnic

THE ULTIMATE PREAMP HAS TONE CONTROLS

OK, so your system is perfect. Cartridge and loudspeakers are perfectly integrated with the room acoustics. Tone controls are an irrelevancy, and anyway just having them worsens the noise and distortion of the system.

But... what if after tiring of your direct cut audiophile discs you choose to listen to one of those less than ideal recordings where the middle positively snarls at you. Or... you’re having a party and all those extra bodies just soak up the top and the speakers, pushed back against the wall, boom away.

What if there were tone controls that were essentially quiet and imperceptible in operation and could be switched, individually out of circuit when not required. What if they were part of a stereo preamp board that has the lowest noise and distortion figures you could buy, superb overload capability due to its active/passive gain control, tape monitor facilities and on board PSU.

The PAN30 with the new topology tone control circuit could change the facias of hi-fi.

PAN30 Stereo preamp board — £43.25

PFA 250 Assembly
Mono power amp and 100,000 uF storage capacitors pre-wired and mounted on a gold chromat heat sink (67mm x 250mm); 200 Watts into 8 ohms, 300 Watts into 4 ohms, plus headroom. Power supply — £59.75

Full info on receipt of a large SAE. OEM enquiries, contact Phil Rimmer on 01-361 8716.

THE POWERETF SPECIALISTS

pantechnic

Dept ETI/5, 132 High Road, New Southgate, London N11 1PG. Tel: 01-361 8715/6

ETI MAY 1984
VERTICAL SPEED INDICATOR

Coming down to earth a bit after last month's high-floated introduction, this concluding article describes the construction and setting-up.

The gain in this circuit is very high (over 100,000) so the actual layout is quite critical. The PCB layout given has been well tested so no stability problems should be encountered if it is used. If, for any reason, you decide to produce your own PCB layout, do make sure you include the guard tracks around the input pins of ICs 2, 3 and 4. Without guard tracks the circuit may appear to be drift free in dry weather, but a little moisture will soon show up the drift. Note that if a double sided board is used, guard tracks should be run on both sides. The other point to remember if you produce your own layout is that all the unused inputs of IC10 should be connected to a defined level.

The transducer board should be built first, starting with the resistors and other passive components and moving on to the active components. Note that capacitors C1 and C3 are mounted on the underside of the board but do not solder C1 into place yet. The SOT (select on test) resistor, R7, should also be left off until you come to the setting up. Make sure you insert the diodes, the transistor and the ICs the right way around. Before soldering ICs 2, 3 and 4 into place, refer to the circuit and overlay diagrams and cut all the unused pins off short so that they do not reach the PCB. Bend pin 4 on each of these ICs away from the PCB and extend it with a piece of wire to reach the pads on the far side of the guard tracks. The layout given can accommodate either the LX0503A transducer or the alternative MPX-100A, and Fig. 7 shows the amended overlay arrangement and the links needed if you are using the latter device. If you are using the LX0503A, note that the IC is

Fig. 5 Layout of the principal components in the case.
mounted on its side so as to save space on the PCB. Cut off pins 1, 2, 4 and 7 and then solder it into place, making sure that it is the right way up.

All semiconductor piezoresistive transducers must be shielded from light. The action of light on a semiconductor releases extra charge carriers and affects the conductivity which is what we are measuring in the strain gauge pressure transducer. In the case of the LX0503A, the input pipe should be plugged with a nonabsorbent porous foam material, but one third of the filter from a tipped cigarette works well and has saved at least one transducer during a brief immersion in the sea. The design of the LX0503A package includes a barrier across the bottom of the pipe which prevents you pushing the filter down to the delicate IC itself, but check this in case the package design varies from manufacturer to manufacturer. If you are using the alternative MPX100A transducer, you will have to make up a little hood for it from some non-absorbent foam material and some tape.

For lightness and ease of assembly, the vario is built into a plastic box. For the majority of hang glider pilots this is the most convenient packaging, but a few pilots have begun to use CB for retrieval. It is illegal to transmit CB from an aircraft, but nevertheless some people will want to do it. The problem is that the signal levels are of the order of a microvolt in the early stages of the vario, and a strong RF field from a CB transmitter only a few feet away will easily radiate into an unscreened circuit.

When the transmit PTT switch is pressed, the vario output kicks and continues to read wrongly while the pilot is talking. It is not too much of a problem as talking can be kept to moments when nothing much is happening, but the complete solution is to build the vario in a diecast alloy box. This completely eliminates problems with RFI without further measures. The alloy box construction is useful, too, when flying within 500 feet of powerful radar.

Fig. 7 Overlay diagram of the audio PCB.
to select, it might be better to determine the value required when it is known. It is suggested that you start out with a value of around 22k.

Moving on to the audio card, turn the gain pot RV2 to max. Set the audio input voltage to about 100mV using the zero pot RV1, and check the interrupt oscillator frequency by counting the number of beeps in 10 seconds. Solder C6 and C7 into the circuit if necessary to bring the interrupt frequency down to 2Hz or just under. Check that the audio switches on and off at a threshold of about 50mV with a very small amount of hysteresis. Finally, check that the audio pitch is progressive to +1.25V and that the volume control functions.

Next set the zero. Turn the gain pot RV2 fully counter-clockwise and check that the output goes to zero. Then turn it fully clockwise again and zero the output using RV1.

and TV transmitters.

The piezoceramic sounder should be glued down with a dab of clear Bostik on each fixing lug. Do not glue the central part of the sounder down or you will spoil the sound volume and quality. The fixing lugs have holes for screws but the sounder resonates better when glued down as described.

To prevent rain getting in at the meter barrel, the joint with the box should be sealed with silicone rubber. Do not seal the entire box unless the instrument is only to be used at very low altitudes. A small quantity of air must be able to get in and out somewhere — the intention is that this will happen at the imperfect joint between the box and its lid.

Setting Up

Test the transducer card first. Apply the 9V supply and check the +5V line and the +2.5V signal ground. Remember that alkaline 9V PP3 size batteries are recommended. The SOT resistor R7 can now be selected. Monitor the output of IC2 and select R7 such that the output of IC2 is at 0.25V ±0.05V below signal ground. R7 should, of course, be a 1% metal film type like the other resistors on the transducer board. Since it would be very expensive to buy in a whole range of these from which
Solder in the 10μF capacitor C1. Turn the gain (calibration) pot RV2 to mid position and check that the instrument is functional by putting it in a large plastic bag and squeezing gently. Squeezing the bag should cause the vario to read sink, while releasing the pressure should cause a strong lift reading.

If you have used an MPX100A transducer, you can adjust the temperature compensation by altering the value of the series resistor R33. Expose the transducer to a mild temperature rise (not too hot, please!) and note the

The LX0503A transducer is available from Hitek, Trafalgar way, Bar Hill, Cambridge CB8 8SG, tel 0528 81996. Alternatively, you can use the MPX100A transducer which offers better temperature compensation and is available from Macro Marketing, Burnham Lane, Slough SL1 6LN, tel 0622 4422. The drawbacks with the MPX100A are that it costs a little more and that it draws more current, about 5mA compared with 1mA for the LX0503A, thus shortening battery life to about 25 hours.

The OP204OP op-amp is available from Hitek at the address above. Cheaper op-amps might be used in the IC3, 4 and 5 positions but they should be chosen with care if the drift is not to become excessive. The principal requirements for all four op-amps (IC2,3,4 and 5) is that they be micropower, will work off a 2.5V supply, have excellent offset drift specifications and very low noise.

As explained in the text, the regulator is a potential source of noise and a poor component here will impair the resolution of the vario. 7805s made by Texas Instruments proved to be the best in this respect and these are also available from Hitek.

An Interis 7621 has been specified in the IC7 position since its operation is quite happily as a Schmitt trigger with ±2.5V across its inputs. Other op-amps may not but the solution is to connect a pair of protection diodes across the input pins 2 and 3. The 7621 is available from RS Components, who do not accept cash orders so you would have to find a friendly dealer, and from LRL Electronics whose address is given at the end of Buylines.

The 7555 is a CMOS version of the standard 555 timer and ICs described simply as CMOS 555 are available from a number of our regular advertisers. IC10, the 4049, has to be chosen carefully to reduce the risk of oscillation or the op-amp, and suffix UB (Unbuffered, 'B' spec.) devices were found to be best in this respect. 4049s supplied by RS are of this type (order no. 306-667, pack of 5), assuming you can find someone who will order for you. Most of our regular advertisers do not specify which type their CMOS devices are so you should check first if ordering from one of them.

The 1% 0.4W metal film resistors are available from both Maplin and Electrovalue. The 2% types are not so easy to come by but you can always use 1% types here as well (if your wallet will stand it)! The 20-turn preset, RV1, is an RS part (162-259) but a 15-turn preset which is otherwise identical is available from Maplin and Electrovalue. RV2 is also an RS part (162-959) but a miniature vertical skeleton preset could be used here at a pinch. The spacing will then be quite tight and you will have to choose a preset which can be adjusted from either side since it will be mounted with its back outwards.

RV3 is again an RS part (162-120) and was chosen because it is the smallest potentiometer with integral switch that could be found. Ambit sell some miniature potentiometers with push-pull rather than rotary switch action and one of these might fit, but we should point out that we have not tried this. The value used in the prototype (4.7k) was chosen because it is the only value offered by RS, but if you do manage to find another source of miniature switched pots you might wish to choose a higher value and then buffer it with a transistor so as to gain 1mA or so reduction in battery current. Alternatively, you could use an unswitched miniature potentiometer and achieve on-off switching by some other means, perhaps by making SW1 a centre-off toggle.

The meter used in the prototype was a Siam 'Presenter' model 29M. This uses a taut band coil suspension system which is much more robust than the conventional pivot and hair spring suspension system. Other 50-0.50mA meters could be used provided their scale area fits on the vario's case, the barrel is 25mm diameter or less, and the depth behind the scale is not more than 35mm including pins (bent-over pins!)

The only capacitor likely to cause any problems is the 10μF polyester. C1. This is an RS part (113-623) but an equivalent is available from Electrovalue. The PB2720 piezo-sounder is available from Ambit, 5-way PCB connectors from Maplin, and the 1" diameter plastic spring clips from most boating shops. The case is widely available, and if you're not too worried about the size of the finished unit you could use a slightly larger one. This would ease a number of the component supply problems since a lot of the difficulty stems from the need to use miniature components.

Finally, all this chasing around for parts sounds a bit too much like hard work, the author's own company, LRL Electronics, can supply all the parts. Their address is Fairhaven Cottage, Rosemead Road, Englefield Green, Surrey TW20 0YC, tel 0784 34740, and an SAE will bring you full details and prices. The PCB will be available through our PCB service, see page 00.
change in reading, if any, on the meter. The optimum value of the resistor is found experimentally by increasing the resistance if the temperature rise causes a lift to be indicated on the meter and vice versa.

The final setting up operation is the calibration, using RV2. Fairly good results can be had by timing a lift through a number of floors, but if you can borrow a calibrated vario you can match the calibrations using the plastic bag method. Place both varios in a large clear plastic bag and squeeze gently but with increasing pressure while adjusting the gain pot between squeezes. If you are really stuck, Mr. M. Hutchinson (Reading 696491) will calibrate your vario professionally.

The MP100A used with a 470R series resistor will generally be more sensitive than the LX5053A. If it is found that the calibration pot has to be set less than a third of the way up, reduce the resistors R3 and R4 by an amount sufficient to bring the calibration pot up to about mid position. This will prevent the first amplifier saturating below 20,000 feet.

The settling time of the vario after switch on should be less than a minute. The delay is largely a result of dielectric absorption in the 10uF capacitor in the differentiator, C1, an effect whereby a dielectric takes time to acquire a charge when voltage is applied and subsequently releases charge when the voltage is removed. The effect is related to the voltage applied across the capacitor and should not be confused with leakage current. With 1V across C1 the output could take as long as five minutes to settle, but this has been reduced by restricting the voltage swing at the output of the transducer buffer op-amp to within 0.25V of the signal ground at switch on, assuming a take off height between sea level and 8000 feet.

When the circuit is working correctly, a light ticking sound should still get through from the interrupt oscillator driving the tone oscillator reset. The ticking serves as a handy means of knowing the instrument is switched on, but if it is not liked, it can be gated out by killing the interrupt oscillator at the same time as the tone oscillator. Wire another diode from IC7 pin 1 to the junction of R24 and R26.

No decoupling was found necessary in the prototype but a position has been left on the PCB for a 100uF capacitor (C4) to decouple the 9V input lead if necessary. The response time of the circuit is fixed by R9 and C2 and with the values given (75k and 220n) is quite fast, but if heavier damping is preferred the value of C2 can be increased to 470n.

When the circuit is working correctly and any necessary component changes have been made, the transducer PCB should be well cleaned. Solder flux residues as well as other deposits can present problems so use a good flux solvent for this. The clean board should then be given two coats of lacquer to prevent further moisture ingress. The transducer input port and all connectors, etc. should be sealed with tape during the lacquering operation to remove the risk of damage.
MIDI DRUMSYNTH

Are you still hiding your creativity behind that all-encompassing maxi? Or is that skimp mini revealing the inadequacies of your rhythm section? ETI unveils its Midi, the drum synth to be seen with!

We have published a number of drum synthesizers in the past, both full-featured, multi-voiced monsters (eg, June 80, April 81) and simple, single-voiced modules (eg, November 83), but so far, we have never featured anything which falls between these two extremes. As its name implies, the Midi Drum Synth is an attempt to put that right.

The Midi is a single-voiced unit which also has a sequencer input, allowing several to be used together. It has a variable decay rate, variable pitch, and a variable sweep facility which causes the pitch to fall sharply from its starting point. When not required, this can be switched out so that only a single tone is produced. Further variety of sound is provided by an active filter whose centre frequency and pass band are adjustable. The input device is a small transducer which triggers a drum beat when hit; the harder you hit it, the louder the sound produced. A level control is also provided, and the completed unit runs from an external battery or other 9-16 volt supply. The range of facilities allows the Midi to imitate everything from a bass drum to a triangle, as well as some less obviously percussive instruments, for example, a strummed guitar.

Construction

The complete unit is housed in an aluminium diecast box, and the drilling details for this are shown in Fig. 3. The only hole likely to cause any problems is the 23 mm diameter hole for the piezo transducer. The size is not too critical, but if you don't have a metal punch around that size you will either have to drill a smaller hole or else drill a series of small holes in a circle and then link them up with a small file. It does not matter if the finished hole has a rough edge since it will be hidden by the pad of the transducer. The case should then be painted, the legends added using dry transfer lettering, and a coat of varnish applied to protect the lettering.

Start assembling the PCB by inserting the three wire links. Note that one of these is under IC2 and either use an insulated link on the underside of the board or choose an IC socket which allows room for the link to pass under it. IC sockets are recommended for all the ICs since three of them are MOS devices and the fourth is fairly expensive. Do not insert the ICs into their sockets yet but carry on soldering the resistors and capacitors into place, taking care to mount C1, 8 and 9 the right way around. Take care also with the two diodes.

It is best to tackle the wiring up in a methodical manner, perhaps working from one end of the PCB to the other. Using many different colours of wire will help, and it is a good idea to allocate each potentiometer its own colour so as to make sorting out the leads at the front panel easier. Cut the potentiometer shafts to their

Fig. 1 Circuit diagram of the Midi drum synth. ETI MAY 1984
LED1 CATHODE
LED2 CATHODE

ETI MAY

HOW IT WORKS

When X1 is hit, a short, negative-going pulse is generated whose amplitude is proportional to the force of the hit. IC1 inverts and buffers this pulse and charges C1. D1 ensures that the only discharge path for C1 is via R4 and the decay control potentiometer. RV1. IC2 is a 4046 phase-locked loop which consists of a voltage controlled oscillator (VCO), a source follower, a zener diode and two phase comparators. The decaying voltage across C1 is taken to the input of the VCO and the source follower. IC3 sets the VCO frequency in combination with the resistance networks connected between pins 11 and 12 and the negative supply rail. Pin 12 sets the frequency offset; placing a voltage on this pin compresses the frequency range of the VCO towards its maximum value, thus setting the minimum value. Pin 11 sets the frequency range; with SW1 open, IC3 presents what is effectively an open circuit, with the result that no frequency range is set and the VCO produces a single tone at its centre frequency regardless of the varying input voltage. With SW1 closed, IC3 connects RV3 and R6 into circuit and thus sets a frequency range, causing the VCO frequency to fall as the voltage on its input falls.

The outputs from the VCO and the source follower are combined by IC3a and R8 as shown in Fig. 5 (overpage). The resulting waveform is fed to the buffer, IC4a, which incorporates the level control, RV4, and then to a second order Sallen and Key active filter configured around IC4b. The buffer ensures that the filter is driven by a low impedance source and by integrating the level control with it, an output potentiometer is not needed and the output impedance can also be kept low.

The power supply is perfectly straightforward; R16 and 17 set the earth rail halfway between the positive and negative supply rails, C9 decouples this rail from 8V and C8 provides decoupling for the two main supply rails.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W, 5%)</th>
<th>CAPACITORS</th>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, 3, 9 1MΩ</td>
<td>C1 100.25V radial electrolytic</td>
<td>IC1 CA3140E</td>
</tr>
<tr>
<td>R2 470k</td>
<td>C2 47n</td>
<td>IC2 4046B</td>
</tr>
<tr>
<td>R4 10k</td>
<td>C3 100n</td>
<td>IC3 4016B</td>
</tr>
<tr>
<td>R5 18k</td>
<td>C4 100µF poly styrene</td>
<td>IC4 TL072</td>
</tr>
<tr>
<td>R6 22k</td>
<td>C5, 6 3n3 mylar</td>
<td>D1, 2 1N4148</td>
</tr>
<tr>
<td>R7, 15 600k</td>
<td>C7, 9 10µF 25V radial electrolytic</td>
<td></td>
</tr>
<tr>
<td>R8, 10 100k</td>
<td>C8 47µF 25V radial electrolytic</td>
<td></td>
</tr>
<tr>
<td>R11, 12 5k6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13 68k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R14 36k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R16, 17 33k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV1, 2 1MΩ*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV2 470k*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV4 100k*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV5 1MΩ* dual gang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV6 47k*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) All potentiometers are miniature types with 7mm bushes)

LEDS

LED1 TIL212 yellow 3mm
LED2 TIL209 red 3mm

MICROELECTRONIC

SK1, 2, 3 3.5mm open jack socket
X1 PBN2710 piezo transducer and pad
SW1, 2 SPST toggle switch
PCB; knobs, 6 off; case, BIM5045 or similar; 2 off 8 pin DIL sockets, 1 off 4 pin and 1 off 16 pin; thin plastic or card to line box; screened and un-screened wire, etc.

Fig. 2 Overlay diagram of the PCB.

Fig. 3 Case drilling details.

ETI MAY 1984

correct lengths before wiring them up. Take care with LED1 and 2 which must be mounted the right way around, and note the wiring of C7 on SK2. Screened lead should be used to connect up the piezo transducer, and remember to thread the lead through the hole in the case before soldering.

With all the wiring done, bolt the potentiometers, sockets and switches into place and insert the ICs into the PCB. Stick the rubber pad onto the transducer and mount it over the large hole using a contact adhesive. It was not found necessary to secure the PCB inside the box. Instead, a sheet of thin plastic was folded and wrapped around the PCB to prevent it shorting to the case at any point.

After checking everything carefully, apply between 9 and 16 volts to SK3 and check that none of the ICs get hot. If all seems well, connect the output to the line input of an amplifier and try a few practice hits. If nothing happens (or worse, the wrong thing happens), an oscilloscope will be very useful, and the correct waveforms at various parts of the circuit are shown in Fig. 5. Finally, check the sequencer input by applying a positive-going pulse at the supply potential to SK1.

BUYLINES

The transducer and its rubber pad are available from Maplin, as is the case. The potentiometers are available from Ambit, and if you obtained from any other source you should check the size carefully or you may have difficulty fitting them into the case. We used monolithic type capacitors for C2 and 3 but any other type will do provided they have a pitch of 5mm and are non-polarised. The PCB is available from our PCB service, for which see page 65.

FREQUENCY COUNTERS

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

- Measuring typically 2Hz - 1.2GHz
- Sensitivity <50mV at 1GHz
- Setability 0.5ppm
- High Accuracy
- 3 Gate Times
- Low Pass Filter
- Battery or Mains
- Factory Calibrated
- 1-Year Guarantee
- 0.5" easy to read L.E.D. Display

PRICES (inc. adaptor/charger, P & P and VAT)

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>METEOR 100</td>
<td>100MHz</td>
<td>104.36</td>
</tr>
<tr>
<td>METEOR 600</td>
<td>600MHz</td>
<td>134.26</td>
</tr>
<tr>
<td>METEOR 1000</td>
<td>1GHz</td>
<td>184.86</td>
</tr>
</tbody>
</table>

Illustrated colour brochure with technical specification and prices available on request.

PARDON ELECTRONICS LTD.

Dpt. 23, 44 Paddock Mead, Herlow, Ixenham, CM18 7RR. Tel: 0279-32770

RESISTORS: 1/4 Watt Carbon Film ±2% tolerance. Bandwired and colour coded. Full Range 1W-10W.

RESISTORS: £1.00 per thousand per value (±5% per value)

RECTIFIERS

<table>
<thead>
<tr>
<th>Value</th>
<th>50V</th>
<th>100V</th>
<th>200V</th>
<th>400V</th>
<th>600V</th>
<th>1000V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amp 3A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>60V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>100V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>200V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>400V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>600V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>1000V</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

DIODES: £1.60 per hundred

BIMSALES

Dept ETI/5, 48a Station Road, Chaddle Hulme, Chaddle, Cheshire, SK8 7AB. Tel: 061-485 0607

BIMTOOLS

2000 Series ABS. Guides for vertically mounting PCB's in blindholders for horizontal mounting.

BIMCASES

Aluminium recessed lid.

BIMBOARDS

1000 Series ABS base.

PROJECT: Midi Drum Synth

Fig. 4 The wiring around RV5.

Fig. 5 Modulation of the VCO output by the decay voltage.
ETI PCB SERVICE

In order to ensure that you get the correct board, you must quote the reference code when ordering. The code can also be used to identify the year and month in which a particular project appeared; the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available — if it isn’t listed, we don’t have it. Our terms are strictly cash with order — we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Year</th>
<th>Month</th>
<th>Reference Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/794-1</td>
<td>Guitar Effects Unit</td>
<td>1979</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>E/794-2</td>
<td>Click Eliminator</td>
<td>1979</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>E/796-1</td>
<td>Accented Beat Metronome</td>
<td>1979</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>E/800-3</td>
<td>Ultrasonic Burglar Alarm</td>
<td>1980</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>E/8010-1</td>
<td>Cassette Interface</td>
<td>1980</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>E/8010-2</td>
<td>Fuzz/Sustain Box</td>
<td>1980</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>E/8011-5</td>
<td>RIAA Preamp</td>
<td>1980</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>E/8012-3</td>
<td>Four Input Mixer</td>
<td>1980</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E/811-1</td>
<td>LED Tacho</td>
<td>1981</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E/811-2</td>
<td>Multi-Option Siren</td>
<td>1981</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E/812-1</td>
<td>Hand Clap Synth</td>
<td>1981</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E/812-5</td>
<td>Pulse Generator</td>
<td>1981</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>E/814-2</td>
<td>Drum Machine (2 boards)</td>
<td>1981</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>E/814-4</td>
<td>Guitar Note Expander</td>
<td>1981</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>E/816-6</td>
<td>Waa-Phase</td>
<td>1981</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>E/816-9</td>
<td>Alien Attack</td>
<td>1981</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>E/817-1</td>
<td>System A-Input (MM or MC)</td>
<td>1981</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>E/817-2</td>
<td>System A-Preamp</td>
<td>1981</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>E/817-3</td>
<td>Smart Battery Charger</td>
<td>1981</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E/817-5</td>
<td>Hand Clap Synth (3 boards)</td>
<td>1981</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>E/818-5</td>
<td>Watchdog Home Security (2 boards)</td>
<td>1981</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>E/819-1</td>
<td>Mains Audio Link (3 boards)</td>
<td>1981</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>E/819-4</td>
<td>Laboratory PSU</td>
<td>1981</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>E/8110-1</td>
<td>Enlarger Timer</td>
<td>1981</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>E/8110-2</td>
<td>Sound Bender</td>
<td>1981</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>E/8111-1</td>
<td>Voice Over Unit</td>
<td>1981</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>E/8111-2</td>
<td>Car Alarm</td>
<td>1981</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E/8111-3</td>
<td>Phone Bell Shifter</td>
<td>1981</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E/8112-4</td>
<td>Component Tester (1.71)</td>
<td>1981</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

How to order:
Indicate the boards required by ticking the boxes and send this page, together with your payment, to ETI PCB Service, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.

<table>
<thead>
<tr>
<th>Total for boards</th>
<th>£</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add 45p p&p</td>
<td>£0.45</td>
</tr>
<tr>
<td>Total enclosed</td>
<td>£</td>
</tr>
</tbody>
</table>
The Automatic Light Switch.

The Midi Drum Synth.

The Mains Borne Remote Control board.

ETI MAY 1984
The Centronics Interface.

The Vario transducer board.

The Vario audio board.
The top and bottom foils for the EPROM Programmer board.
Enquiries
We receive a very large number of enquiries. Would prospective enquirers please note the following:

- We undertake to do our best to answer en- quiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications.

- Where a project has apparently been construc- ted correctly but does not work, we will need a de- scription of the problem and we'll try to spot any test readings and drawings of oscilloscopes if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as an example).

- Other than through our letters page, Read/ Write, we will not reply to enquirers relating to other types of equipment. We may make quite a few assumptions where the enquiry is very straightforward or where it is important to electronics as a whole.

- The ETI House, 579 Barking Road, Harold Wood, Hornchurch, Essex RM11 1QF, is the address we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of projects. To help both you and us, we have made a full index of past ETI projects and features available (we could not do this before, and we trust that, wherever possible, readers will refer to this before getting in touch with us.

- Questions that are not accompanied by an SAE (or international reply coupon).

We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.

- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on the state of the electronics industry, and so on, it doesn't help us if you overload us with information.

Subscriptions
The prices of ETI subscriptions are as follows:

- UK £14.35
- Overseas £18.15

Send your order and money to ETI Subscriptions Department, Informet Ltd, Times House, 179 The Marlow, Hemel Hempstead, Hertfordshire: HP1 1BB (Cheques or postal orders - sterling only). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry). ETI should be available through newsagents, and if you have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers
Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50p, and orders should be sent to ETI Backnumbers Department, Informet Ltd, Times House, 179 The Marlow, Hemel Hempstead, Hertfordshire: HP1 1BB. Cheques, postal orders, etc should be made payable to ASPI Ltd.

We would normally expect to have ample stocks of backnumbers, and as the last two issues, but obviously, we cannot guarantee this. Where a backnumber pro- vides to be unavailable, or on where the issues you require appeared more than a year ago, photostats of individual articles can be ordered instead.

- OOPS! Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending an SAE.

- Active Loudspeakers (November 1983)

- Cremlins attacked the parts list on page 72 leaving a trail of 00s in their wake. The ceramic tiles should be 150mm (6") square and you need six of them. The parts list on page 72 should list these individually. If you do not have a copy of the appropriate text in which to look up these details, please contact us at the address above.

- SERVICE

- Subscriptions

- Please note that where the types of article referred to in the above cases the PCB and the overlay diagram are correct.

- Addendum to the Ace (April 1984)

We renumbered the components in this article to make things easier for you (and ended up with a superb puzzle). We have therefore included a con- struction section on page 41, IC4 should read IC14 in the first column of the How It Works section on page 44, IC4-3 should read IC4-1, etc. In the third column of the section, the capacitor in the differentiator network lines 13-14 should be C9, not C8. On the last two lines of the paragraph on the circuit diagram on pages 49-50 and 51-52 there is a basic error, the time shims on IC10, IC11 and IC12 should be 10ns rather than 1ms. If you do not have a copy of the appropriate text in which to look up these details, please contact us at the address above.

- Active Loudspeakers (November 1983)

- Cremlins attacked the parts list on page 72 leaving a trail of 00s in their wake. The ceramic tiles should be 150mm (6") square and you need six of them. The parts list on page 72 should list these individually. If you do not have a copy of the appropriate text in which to look up these details, please contact us at the address above.

- SERVICE

- Subscriptions

- Please note that where the types of article referred to in the above cases the PCB and the overlay diagram are correct.
Subscription Order Form
To: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.
Please commence my subscription to Electronics Today International. I enclose a cheque*/Postal Order*/International Money Order* for the appropriate fee, made out to ASP Ltd.
Please debit my Access*/Barclaycard* account number

Signature ...
(* delete as appropriate)
Please indicate subscription required and fee enclosed
UK & Rep of Ireland: £14.35 □
Overseas surface mail: £18.15 □
Overseas air mail: £37.15 □

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Name...
Address...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order..

THIS COUPON IS VALID UNTIL 30th JUNE 1984

Backnumber Order Form
To: ETI Backnumbers Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.
Please supply me with the following backnumber(s) of ETI
Month Year
Month Year
Month Year
I enclose cheque*/Postal Order*/International Money Order* to the value of £1.45 per magazine ordered, made out to ASP Ltd (* delete as appropriate).
Total money enclosed £...

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Name...
Address...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order..
Note that the cost is the same for orders from overseas as for UK orders; overseas orders will be sent by surface mail.

THIS COUPON IS VALID UNTIL 30th JUNE 1984

Binder Order Form
To: ETI Binders Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Herts HP1 1BB.
Please send me ..
I enclose a cheque*/Postal Order*/International Money Order* to the value of £5.00 per binder ordered, made out to ASP Ltd (* please delete as appropriate).

Total money enclosed £...

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Name...
Address...

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order..
Note that binders cost the same for UK and overseas; overseas orders will be send by surface mail.

THIS COUPON IS VALID UNTIL 30th JUNE 1984

Photocopy Order Form
To: ETI Photocopies Department, 1 Golden Square, London W1R 3AB.
Please supply me with the following photocopies:
Month Year Article .. Page No
Month Year Article .. Page No
Tick box if you require INDEX (cost £1.50) □
I enclose cheque*/Postal Order*/International Money Order* to the value of £1.50 per photocopy ordered, made out to ASP Ltd (* delete as appropriate).
Total money enclosed £...

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
Name...
Address...
ETI MAY

10. 11. 12.
164 Washway line
EVEN RADIO
All
CT10M,
CT10H,

7.
1.

Open
rophones
rophone sensitivity,
built, tested, with
delivery,
-£7.50.
AA(HP7), C(HP11), D(HP2),
(HP8),
25+25W
8W
w137
Rear
button, auto-stop,
13.2V
into4
Car

334 Dickenson Rd,
Longsight
Manchester M13 ONG
(Mail Order Only)

SURVEILLANCE
EQUIPMENT

MICRO-MINI
TRANSMITTERS
- all supplied ex-stock, return post delivery, no special equipment required, suit, tested, with instructions.
CTIOM, 4 mile range, broadcast quality speech pick-up £13.36.
CTIOM, prof grade, extra high power, tunable freq 70-120MHz variable mic

cophone sensitivity, £19.48.
CTIOMB, as above + unique dual microphone to eliminate echoes, noise etc.
£21.40.
All special requirements catered for:
EVEN RADIO STATIONS + telephone
Please enquire: 061-955 1040.
5.B.T.

35 Grosvenor Road
Twickenham Middlesex
TEL: 01-891 1923/1513 Telex: 295095

QUICK DELIVERY - COMPETITIVE PRICES

Printed Circuit Boards
to your specification from artwork through to
finished board.

BULK COMPONENTS
Resistors—ideal for making your stock package
just to increase stocks at a very low price.
When selecting new, full lead length resistors in original boxes/baskets/roots.
Because most are packed in thousands
(some are 100 only), you'll need to buy a large quantity to get a reasonable mix.
You'll
get carbon film/mixed fixed tolerances
1% 1/4W 0.10 to 20,000 ±
50,000 ±6.0, ±1%, ±10%.
Virtually £250. 1 million £500. All cores inclusive.
S.A.E for samples.
We also stock capacitors, semiconductors, resistors, cardboards etc in bulk, S.A.E for
listed list.
PC ELECTRONICS 1, THORNHILL, RUMBY RD, WHIPPERISH, SALISBURY, WILTS SP5 2SD

IRISH READERS
MAIL ORDER COMPONENTS
Top quality components
Great prices
Return on post service
Write or phone for free price list
WAVEFORM ELECTRONICS
12 Eiffs Rd, Rathmines, Dublin 6.
Phone: 001-0001 if England 687507
Mail order only please.

BRITISH TELECOM plug soc-

cets & leads etc. Tel. C.W.A.S.
(0274) 731532. Or visit our
showroom opposite Odsal
Stadium, Bradford.

AERIAL AMPLIFIERS improve

telephone television reception.
Price £67.60. S.A.E. for leaflets.
Electronic Mailorder, Rams-
bottom, Lancashire, BL0 9AGH.

ELECTROMART

CHESHIRE

41 Winwick St, Warrington
Tel: 54174
15 Electronics
Components, aerials & burglar alarm specialists

MERSEYSIDE

PROGRESSIVE RADIO
33 Dale Street, Tel 061 236 0882
47 Whitechapel, Tel 061 236 5489
Liverpool 2
THE ELECTRONICS SPECIALISTS
Open: Tues-Sat 9.30-5.30

STEVE'S ELECTRONIC
SUPPLY CO. LTD.
45 Castle Arcade, Cardiff
TEL: 0222 41905
Open: Mon-Sat 9.30-5.30
For components to computers

LANCASHIRE

ETESON ELECTRONICS
105 Lower Green,
St. Helens, Tel: 50127
Components, aerials & burglar alarm specialists

MERSEYSIDE

WYMCA Building, College St,
St. Helens, Tel: 50127
Components, aerials & burglar alarm specialists

S. WALES

ASP Ltd
1 Golden Square
London W.1.

CLASSIFIED ADVERTISEMENT — ORDER FORM

Advertise nationally in these columns to over 100,000 readers for only
40p per word (minimum charge 5 words). Simply print your message in
the coupon and send with your cheque or postal order made payable to
Argus Saleslet Publications Ltd.
CLASSIFIED DEPT., ELECTRONICS TODAY INTERNATIONAL
1 Golden Square, London W1 3AB.
TEL: 01-437 0499
Please indicate classification required.
Name.
Address
Tel No.(Day)

WE TAKE ACCESS AND BARCLAYCARD
Please place my advert in E.T.I. for months. Please indicate number of insertions required.

ETI MAY 1984 71
FILM RECORDING STAFF

On a temporary basis for a period of three or six months.

Holiday Relief Assistant Dubbing Mixers

To undertake the operation of disc and tape machines, to select and introduce sound effects and music required during the dubbing process and to act as an Assistant to the Dubbing Mixer, as and when required. Salary £8,322 – £10,326 p.a. (Ref. 1171/ETI)

Holiday Relief Assistant Film Recordists

To undertake the operation of disc, and 16mm reproduction and recording equipment in Sound Transfer areas and Dubbing Theatre Record Rooms. Salary £7,758 – £9,374 p.a. (Ref. 1172/ETI)

Applicants for both these posts should have a knowledge and experience of film sound transfer and dubbing methods, coupled with an understanding of the use of sound in television film production. Normal hearing is essential.

Applicants will be expected to work on a shift basis when a shift allowance rate will be paid. Based at Ealing or Shepherds Bush.

Salaries currently under review.

Contact us immediately for application form (quote ref. and enclose s.a.e.): BBC Appointments, London W1A 1AA.

Tel. 01-927 5799.

We are an Equal Opportunities employer

BBC tv
Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-by-step instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a 16-bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure long-term retention of the material covered.

You’ll find Heathkits available for Amateur Radio Gear • Car Test Equipment • Kits For The Home • Self-Instruction Courses • Computer Kits • Test Instrument Kits • Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

Maplin Electronic Supplies Ltd.
P.O. Box 3, Rayleigh, Essex, SS6 8LR.
Tel: (0702) 552911.
(For shop addresses see back cover.)

E.T.I. MAY 1984

ADVERTISERS INDEX

Audio Electronics 56
Bimsales 64
B.K. Electronics 32
Black Star 64
B.N.R.&.E.S 61
Cambridge College of Arts 52
Clef Products 46
Compex (UK) Ltd 31
Cricklewood 8
Display Electronics 12
Electrovalue 51
Greenbank 32
Greenweld 46
G.S.C. 46
Happy Memories 46
ICS 46
ILP 36
Kelan Engineering 35
Kempston 30
L.B. Electronics 56
Maplin 74, OBC
Marco Trading 52
Marshalls 45
Micro Processor
Engineering 51
Microtanic 45
Midwich 35
Pantechnic 55
Parndon Electronics 64
Powertran IFC, 10, IBC
Low-price robots from POWERTRAN

- hydraulically powered
- microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as £470, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or 120v AC or from a 12v DC supply. Up to six independent axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.

HEBOT II

Turtle-type robot

For a little over £100, Herbot II takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoid-operated pen to chart its moves. Touch sensors, coupled to its shell return data about its environment to the computer enabling evasive or exploratory action to be calculated.

The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a ZX81 or other microcomputer.

HEBOT II

Weight 1.8kg
complete kit with assembly
instructions £95
Interface board kit £11

MICROGRASP

A real programmable robot for under £300! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus - the Sinclair ZX81 being particularly suitable.

MICROGRASP

Weight 8.7kg, max. lifting
capacity 100g
Robot kit with power
supply £215.00
Universal computer interface
board kit £57.00
23 way edge connector £3.00
ZX81 peripheral/RAM pack
splitter board £3.50

GENESIS S101

Weight 20kg, max. lifting
capacity 1.5kg
5-axis model (kit form) £525
4-axis model (kit form) £470
5-axis complete system
(kit form) £817

GENESIS P102

Weight 36kg, max. lifting
capacity 2kg
6-axis system (kit form) £1476
6-axis complete system
(kit form) £1050

GENESIS P102

Powertran Cortex
microcomputer
self-assembly kit £295.00

Cortex 16 bit microcomputer

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET. TEL (0264) 64455

ALL PRICES ARE EXCLUSIVE OF VAT AND APPLY TO THE U.K. ONLY - ALLOW 21 DAYS FOR DELIVERY. OVERSEAS CUSTOMERS: PLEASE CONTACT OUR EXPORT DEPARTMENT FOR THE NAME AND ADDRESS OF YOUR LOCAL DEALER.
MAPLIN’S TOP TWENTY KITS

Full details in our Project Books

Price 70p each

In Book 1 (XAO1B) 120w rms Mosfet Combo-Amplifier • Universal Timer with 18 program times and 4 outputs • Temperature Gauges • TV Scratch Filter

In Book 2 (XAO2C) Home Security System • Train Controller for 14 trains on one circuit • Stopwatch with multiple modes • Mils-per-Gallon Meter

In Book 3 (XAO3D) ZX81 Keyboard with electronics • Stereo 25W Mosfet Amplifier • Doppler Radar Intruder Detector • Remote Control for Train Controller.

In Book 4 (XAO4E) Telephone Exchange for 16 extensions • Frequency Counter 10Hz to 600MHz • Ultrasonic Intruder Detector • I/O Port for ZX81 • Car Burglar Alarm • Remote Control for 25W Stereo Amp.

In Book 5 (XAO5F) 300 Baud Duplex Modem to European Standard • 120W 240VAC Inverter • Sounds Generator for ZX81 • Central Heating Controller • Panic Button for Home Security System • Model Train Projects • Timer for External Alarm.

In Book 6 (XAO6G) Synth Generator for ZX81 & VIC20 • Module to Bridge two of our Mosfet Amps to make a 350W Amp • ZX81 Sound on your TV • Scratch Filter • Damp Meter • Four Simple Projects.

In Book 7 (XAO7H) Modem (RS232) Interface for ZX81/VIC20/Commodore 64 • Digital Enlarger Timer/Controller • DXers Audio Processor • Sweep Oscillator • CMOS Crystal Calibrator

In Book 8 (XAO8J) Modem (RS232) Interface for Dragon 32 & Spectrum • Synthesizer • I/O Ports for Dragon 32 • Electronic Lock • MiniLab Power Supply • Logic Probe • Doorbell for the Dead

In Book 9 (XAO9K) Keyboard with Electronics for ZX Spectrum • Infra-Red Intruder Detector • Multimeter to Frequency Meter Converter • FM Radio needs no alignment • Hi-Res Graphics for ZX81 • Speech Synthesizer for Orc • VIC20 Extendiboard • ZX81 ExtendIRAM • Dynamic Noise Limiter for Personal Cassette Players • TTL Levels to RS232 Converter • Logic Pulse • Pseudo-Stereo AM Radio • Ni-Cad Charger Timer

Redactor: Adder-Subtractor • Syntrend’s Interface • Microphone Pre-Amp Limiter

In Book 10 (XAO1L) Cassette Easyload for ZX Spectrum • 80m Amateur Receiver • Auto Waa-Waa Effects Unit • Orc 1 Modern Interface • 2.8Khz Mains Power Controller • Extension Lead for Dragon 32 • 12V Fluorescent Tube Driver • 32-Line Extension for Digi-Tel.

This Last Month

ORDER	CODE	PRICE
1. (1) | 75W Mosfet Amp Module | £21.95 |
2. (3) | Modem | £27.95 |
3. (5) | ZX81 I/O Port | £27.95 |
4. (4) | Car Burglar Alarm | £29.95 |
5. (8) | Partyline | £32.95 |
6. (2) | Keyboard for ZX81 | £32.95 |
7. (10) | 8W Amp Module | £34.95 |
8. (14) | VIC20/64 RS232 Interface | £34.95 |
9. (7) | Synth Drum Synthesizer | £36.95 |
10. (12) | Harmony Generator | £38.95 |
11. (17) | Spectrum RS232 Interface | £38.95 |
12. (6) | VC20 Speech Synthesizer | £38.95 |
13. (10) | ZX81 Speech Generator | £38.95 |
14. (11) | Ultrasonic Intruder Detectors | £38.95 |
15. (15) | Logic Probe | £38.95 |
16. (19) | Battery Monitor | £38.95 |
17. (18) | Hexadrum | £38.95 |
18. (21) | Synwave Sounds Synth | £38.95 |
19. (25) | Spectrum Keyboard | £38.95 |

Also required: XG35Q £4.95; LK29G £28.50

Project Books

Also available: XK177 £4.95. Complete ready-built: XK22Y £32.50

MAPLIN’S FASCINATING PROJECTS BOOKS

1984 CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price £1.35 — it’s incredible value for money. Or send £1.65 (including p & p) to our mail-order address: Adder-Subtractor • Syntrend’s Interface • Microphone Pre-Amp Limiter.

In Book 10 (XAO1L) Cassette Easylad for ZX Spectrum • 80m Amateur Receiver • Auto Waa-Waa Effects Unit • Orc 1 Modern Interface • 2.8Khz Mains Power Controller • Extension Lead for Dragon 32 • 12V Fluorescent Tube Driver • 32-Line Extension for Digi-Tel.

In Book 10 (XAO1L) Cassette Easylad for ZX Spectrum • 80m Amateur Receiver • Auto Waa-Waa Effects Unit • Orc 1 Modern Interface • 2.8Khz Mains Power Controller • Extension Lead for Dragon 32 • 12V Fluorescent Tube Driver • 32-Line Extension for Digi-Tel.

In Book 10 (XAO1L) Cassette Easylad for ZX Spectrum • 80m Amateur Receiver • Auto Waa-Waa Effects Unit • Orc 1 Modern Interface • 2.8Khz Mains Power Controller • Extension Lead for Dragon 32 • 12V Fluorescent Tube Driver • 32-Line Extension for Digi-Tel.

In Book 10 (XAO1L) Cassette Easylad for ZX Spectrum • 80m Amateur Receiver • Auto Waa-Waa Effects Unit • Orc 1 Modern Interface • 2.8Khz Mains Power Controller • Extension Lead for Dragon 32 • 12V Fluorescent Tube Driver • 32-Line Extension for Digi-Tel.