An Argus Specialist Publication

Mains-borne remote control system plug in and switch on from anywhere in your house!

Adding colour to computers - learn the techniques involved

Bass for beginners - build your own loudspeakers and save ££\&s

High performance, low price kits for today's musicians

DIGITAL DELAY LINE

Digital delay circuitry is an absolute necessity for high quality studio work, but usually comes with a four-tigure price tag

Powertran can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6 mSecs to 1.6 secs with many powerful effects including phasing, flanging, A.D.T., chorus, echo and vibrato. The basic kit is extended in 400 mSec steps up to 1.6 seconds simply by adding more parts to the PCB.
Complete kit \qquad $£ 150$
Parts for extra 400 ms delay $£ 14,95$
(up to 3)..............................$~$

DESTINY' MIXER

This versatile mixer offers a maximum of 24 inputs, 4 outputs, and an auxiliary channel. Input channels have Mic/Line, variable gain, bass/treble, and middle frequency equaliser. oass/reble, and midde requen displays and record/studio outputs. There are send/return jacks, auxiliary, pan and fader controls, and output and group switching. There is also a headphone jack and built-in talk-back microphone.

Input channel.. \qquad
\qquad
Aux. channel... $£ 26.00$
Blank panel .. $£ 3.50$
Base unit and front................................ £33.00
Pair of end cheeks ... £25.00
Power supply and cabinet. \qquad £22.50

TRANSCENDENT 2000 ÉTI single board synthesizer.

This professional quality 3-octave instru ment is transposable 2 octaves up or down giving an effective 7 -octave range.

There is portemento pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope shaper. Other features include special circuitry with precision components to ensure tuning stability.

Complete kit \qquad t...... \qquad 2150

MPA 200

Here's a rugged, professionally finished mixer amp designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components offers a wide range of inputs (extra components are supplied for additional inputs), 3 tone con-
trols, each with 15 dB boost and 15 dB cut, and a trols, each with 15dB
master volume control.

Complete kit.
$£ 58.00$

SP2-200

2-channel, 100-watt amplifer
The SP2-200 uses two of the power amplifier sections of the MPA 200 (above), each with its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100W rms into 8 ohms. Each channel has its own volume control, and a sensitivity of 0.775 mV (OdBm) makes this amplifer suitable for virtually all pre-amps or mixers

Complete kit
$£ 75.00$
CHROMATHEQUE 5000 ETI 5-channel lighting

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both functions. It controls 5 banks of lamps up to 500 W each in either analog or digital mode. And the 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4 -channel systems. Versatile light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal suit the mood of the occasion. Wird
and construction straightforward.
Complete kit..................... $£ 58.00$

Allow 21 days for delivery

$\frac{\Omega}{\text { Accoss }}$

POWERTRAN CYBERNETICS LTD, PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3ET.TEL: (0264) 64455

Dave Bradshaw: Editor
Phil Walker: Project Editor Ian Pitt: Editorial Assistant Jerry Fowler: Technical Illustrator Paul'Stanyer: Ad. Manager Lynn Collis: Copy Control Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive PUBLISHED BY
Argus Specialist Publications Ltd.,
1 Golden Square, London W1R 3AB. DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd 12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY
The Garden City Press Ltd
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS and their EDITORS CANADA - Halvor Moorshead GERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC $\begin{aligned} & \text { Member of the } \\ & \text { Audit Bureau }\end{aligned}$ of Circulation

Electronics Today is normally published on the first Fri day in the month preceding cover date. \square The contents of this publication including all asticles, designs, plans, tellectual property rights therein belong other in Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv reproduction requires the prior written consent of the Company. (C) 1984 Argus Specialist Publications Ltd LU All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will nor mally be published as soon as possible afterwards. Al prices and data contained in advertisements are ac-
cepted by us in good faith as correct at time of going to press. Neither the advertisers nort the publishers going to held responsible however for any variations atfecting price or availability which may occur after the publica tion has closed for press. \square Subscription Rates, UK£14.35 including postage. For further details and Aırmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square; London W1 R 3AB. Telephone 01-437 0626.
Telex 8811896.
FEATURES

DIGEST 11 Our regular round-up of news and gossip from the world of electronics.

DESIGNER'S NOTEBOOK 27 Sample and hold techiniques can be very useful in a wide variety of situations; Joe Pritchard looks at the theoretical and practical aspects.

BASS FOR BEGINNERS
35
Design and build your own bass enclosures, and save yourself some money in the process! Barry Porter has all the equations.

MACHINE CODE PROGRAMMING

49This month's episode goes into input and output, and includes what must be the worst pun we've ever published

the SAGA OF

 SHLLY-COW VALLEY65 A special little tail-end story for our April issue, a myth from the very dawn of the electronic age, from our resident historian, Vivian Capel.
PROJECTS

VERTICAL SPEED

INDICATOR..................... . 19
Going up in the world? Or do you have that sinking feeling? This design from Lindsay Ruddock will tell you if your senses are deceiving you.

UNIVÉRSAL EPROM PROGRAMMER.

The project that just won't lie down - in the sequel to the sequel, Mike Bedford clears up a few problems.

SUPER SELECTIVE

MUSIC FILTER.
39
Fussy about the music you'll listen to? Here's a project to turn the radio on and off to your taste - automatically!

ADDING COLOUR TO

THE ACE

41Besides being very attractive to Ace owners, this project should prove an education to everyone who wants to know more about the nitty-gritty of video jn home computers.

MAINS BORNE REMOTE

 CONTROLEver fancied a sophisticated com-puter-controlled system but baulked at the prospect of wires trailing everywhere? The ETI MainsCom makes this a thing of the past.

SCHOOL TIMER.
59
A design to help school-teachers, and their pupils, stop talking bang on time - we're sure that will get a welcome from all concerned!

INFORMATION

NEXT MONTH'S ETI. 6 6 ETI PCB SERVICE 67
ETI BOOK SERVICE 25 PCB FOIL PATTERNS
68
68
READER'S SERVICES. 62 ADVERTISERS' INDEX 74

WATFORD ELECTRONICS
 MAIL ORDER CALLERS WELCOME

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&P ADD 75p TO ALLCASH ORDERS. OVERSEAS ORDERS POSTAGE ATCOST. PRICES CORRECT AT THE TIME OF GOING TO PRESS.

لAT Export orders no VAT. Applicable to U.K. Cuatomers only. Unlesa statid othewiso We stock thousanda more Items. It pays to vilit us. We are situated behind Wetford Foo
Nearest Underground/BR Station: Wattord High Streot.
Open Monday to Saturday: 9.00 am to 8.00 pm . Ample Free Cer parking space avaliable. ELECTROLYTICCAPACITORS: (Values in uF) 500v, 10 ut 52 : 47 78p; 63V: 0.47, 1.0, 1.5. 22, 3 3, 4.78p 10 10p

TAG-END CAPACITORS: 64V: $2200138 \mathrm{p} ; 3300198 \mathrm{p} ; 4700245 \mathrm{p} ; 50 \mathrm{~V}$: $2200110 \mathrm{p} ; 3300$ 184p; 40 POLYESTER CAPACITORS: AxIal Lead Type

polyester radial lead capacit 10n, 15n, 22n, 27 n 6p; 33n, $47 \mathrm{n}, 68 \mathrm{n}, 100$ 10p; 330n, 470n 15p; 680n 19p; $1 u 5$
TANTALUM BEAD CAPACITORS 35V: $0.1 \mathrm{uF}, 022,033150047,068$. 10, 15 16p; 2.2. 33 18p; 4 7. 6.8 22p 10 28p; 18V: 2.2. 3.3 18p; 4.7.6.8, 10 18p; 15.38p; 22 45p; 33. 47 50p; 100 95p; 10V: 15. 22.26p; 33.47 50p; 100 80p; 6V: 10053 p .
MYLAR FILM CAPACITORS 100V: 1nF, 2, 4, 4nF, 10 6p; 15nF, 22n, 30n, 40n. 47n 7p; 58n, 100n, 200n 9p; 50V: 470nF 12p.
CERAMIC CAPACITORS SOV: Range: OSpF to $10 \mathrm{nF} 4 \mathrm{p} .15 \mathrm{nF}, 22 \mathrm{nF}$ 33nF. 47nF 5p. $100 \mathrm{nF} / 300 \mathrm{~V} 7 \mathrm{p}$. $200 \mathrm{nF} / 6 \mathrm{~V} 8 \mathrm{p}$.

POLYSTYRENE CAPACITORS: 10pF to inF 8p; 1.5 nF to 12 nF 10p.	O2
8LVER MICA (Values in PF) 2. 3.3 4.7. 6.8, 82, 10, 12, 15, 18, 22. 27. 33, 39, 47. 50, 56, 68, 75, 82. 85, 100. 120. 150. 180pF 15p ash 200, 220. 250. 270, 300, 330, 360. 390. 470. 800. 800. 820 100. 1200. 1800. 2200 3300.4700 pF	RAMFOR BBC MICRO 4816A 100n: 300p
MINIATURE TRIMMERS Capaciort 2.6pF 2-10pF 22p; 2-25pF: 5.65pF 30p; 10-88pF 36p.	

	Range	Va	1.99	$100+$	
0.25 W	2R2-10M	E24	3 p	ip	
0.5 W	2R2-4M7	E12	3 p	1 p	
1 W	2R2- 90M	E12	6 p	4p	
2\% Metal Film	51R-1M	E24	6 p	4p	
\$\% Metal Film	51R-1M	E24	8 p	6p	
100+ price applies to Resistors of each tvpe not mixed					
AESISTORE	ETwork				

N
 8888웅

EPROM Programmer

The Universal EPROM Programmer published in August 1983 surprised us with its popularity, so we're doing it again! Well, not exactly - this project will be for the ZX81 and willallow programming and duplicating for the more common EPROMs - 2516s, 2716s, 2532s and 2732 s.

ZX81s are so cheap - especially second-hand - that it should beless expensive to build this project and buya ZX than to build a special-purpose stand-alone EPROM programmer. This cheapness opens new possibilities for the ' 81 as a component rather than a computer in its own right.

Because the Spectrum has dynamic RAM, this project can't be adapted to work on that machine. However, we have a Spectrum version on the drawing board...

The ZX81 - the shape of EPROM programmers to come.

Midi Drum Synth

Not a mini and not a full-sized drum synth, this is to whet your appetites for the full-sized synthesiser that is, as yet, a mere twinkle in the editor's eye . . . Actually, we're simple chaps here on ETI, keyboards being rather too difficult for us, which is why we're so keen on drum synths. Also, attaching them to the office walls means that we get a much more pleasant sound when a certain deputy editor on Hobby Electronics takes to'head banging' (Status Quo are alive and, er, well....).

Microtanic Profile

Regular readers will have noticed that we have published a number of projects for the Microtan-65 computer, mainly because we consider this to be the best computer for the experimenter who is really committed to building his or her own hardware. To help complete the picture, Mike Bedford will be taking a look at the hardware you can buy as kits and as ready-made boards.

Also in the May issue . . .

Part 2s of the Mains-Borne Remote Controller and the Vertical Speed Indicator, Digest, Tech Tips, Machine Code Programming, and anything else we are able to cram in!

DON'T RISK MISSING OUT ON ALL THIS PLACE YOUR ORDER NOW FOR THE MAY ISSUE, ON SALE APRIL THE 7th.

[^0]G.S.C. (UK) Limited, Dept. 9II,

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Telephone: Saffron Walden (0799) 21682
G.S.C. (UK) Limited, Dept 9II, Unit 1, Shire Hill Industrial Estate, Saffron Waiden, Essex CB11 3AQ. Prices include P\&P and 15% VAT.
 1 enclose Cheque/PO for E r. American Express card no exp date
FOR IMMEDIATE ACTION - The G.S.C. 24 hour. 5 day a week service. Telephone (0799) 21682 and give us your Barclaycard, Access, American Express number and your order will be in the post immediately \qquad catalogue

01-452 1500 Teohnonatic: Lit 01-450 6597

BBC Micro Computer System OFFICIAL DEALER
Please phone for availability

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock

BBC Model B £348
B Econet £389
B+DFS £409
B + DFS + Econet £450 Carriage $£ 7$

Model A to Model B Upgrade Kit $£ 75$ Installation £15

LANGUAGE ROMs
BCPL ROM + Disc +
Manual £87
PASCAL-T ROM £44
UTILITY ROMs

BBC Ultracalc £65 Toolkit £20 EXMON E20; DISC DOCTOR £28; FX Dump £15; Graphics ROM £28; Termi ROM £29

CASSETTE RECORDERS

SANYO DR101 Data Recorder E34 + E2.50 carriage
 Cassette Lead $£ 3+£ 1$ carriage
HOBBIT Floppy Tape $£ 135+£ 2.50$ carriage HOBBIT Zero Memory Option $\mathbf{£ 2 5 + \mathbf { ~ } 1 \text { carriage }}$ Computer Grade C12 cassette 50p each. $£ 4.50$ for $10+£ 1$ carriage

MONITORS
MICROVITEC 1431 P $14^{\prime \prime}$ RGB/PAL SId Res $£ 249$ MICROVITEC 1451 14" RGB Med Res $£ 345$ MICROVITEC $14414^{\prime \prime}$ RGB Hi Res £440
MICROVITEC 2031 20 RGB Std Res $£ 287$ MICROVITEC 203120° RGB Std Res $£ 287$
KAGA VISION $12^{\prime \prime}$ RGB Std Res $\mathbf{\varepsilon 2 3 0}$ KAGA VISION III 12" RGB Hi Res $£ 385$ KAGA 12 " GREEN HI Res $£ 10 B$ SANYO DMB $112 \mathrm{CX} 12^{-}$Green HI Res $£ 99$ All leads included. Carriage $£ 7$

FLOPPYYDISC INTERTACE $£ 84+£ 15$ installation

BBC COMPATIBLE DISC DRIVES

All drives are supplied with manual, form disc and cables.
Single Drive; 100k £150; 200k £180*; 400k £235
Single Drive with PSU: 100k £185; 200k £260; 400k E240
Dual Drive with PSU: $2 \times 100 \mathrm{~K}$ £330;
$2 \times 200 \mathrm{E}$ £ 400^{*}; $2 \times 400 \mathrm{k}$ £ 420

* These drives are switchable between 40/80 tracks. 40/80 Switch Module $1 \times 400 \mathrm{k}$ and 2 x 400k Drive £32
DISKETTES: in packs of 10 W : Wabash M: 3M 40 track SSSD W: £15 M: £17.50; 40 track DSDD M: £22;
80 track SSDD W: £24 M: £26; 80 track DSDD W: £26 M: £30;
FLOPPICL ENE Drive Head Cleaning Kit £14.50 Phone or send for our BBC leatid TORCH Z80 DISC PACK
Your BBC computer can be converted into a business machine with the addition of a TORCH Z80 disc pack. The Torch pack with twin disc drive and the 280 processor card greatly enhances the computer's data storage and processing capabing. Z8stem In addition 10 BBC wner's operating system. In addition 10 BBC owner's user guide and a systemsdisc the DATABASE. WORD PROCESSOR \& SPREADSHEET and COMANEX a inter active business management game Complete Pakcage for $£ 730$ + $£ 8$ carr.

PRINTERS \& PLOTTERS

EPSON FXBO E325
EPSON RX80 FT $£ 250$
EPSON FX- $100 £ 555$
SEIKOSHA GP 100 E170 SEIKOSHA GP $100 A$ £1 70
SEIKOSHA GP 250X £180 JUKI 6100 Daisy Wheel $£ 365$ MSP 40 Col Printer/Plotter $£ 109$ Colour Graphics Plotter A3 size $£ 27$
GRAFPAD Graphics Tablet $£ 125$ GRAFPAD Graphics Tablet $£ 125$ Carriage 27

ACCESSORIES
Parallel Printer Lead $\mathbf{£ 1 0} \mathbf{+} \mathbf{1 1}$ carriage Serial Printer Lead $\mathbf{\varepsilon 8}+\mathbf{\varepsilon 1}$ carriage Epson Serial Interface $2 K £ 40+\varepsilon 1$ carriage NEC Serıal Interface $£ 42+£ 1.50$ carriage Epson Paper Roll Holder $£ 17+£ 1.50$ Carriage
FX80 Tract
FX80 Tractor Attachment $\mathbf{\varepsilon 3 7}+\mathbf{\varepsilon 1 . 5 0}$
Carriage Paper Fanfold 2000 sheets $£ 13.50$

BOOKS (no Vat; p\&p fi)

Advanced User Guide ($£ 2$ p\&p) £12.95 Assembly Lang Prog. for BBC Assembly Lang Prog. for BBC
Assembly Lang programming Assembly Lang programming
Microby Ferguson and Shaw Micro by Ferguson
Basic Prog. for BBC. Basic Prog. for BBC...
BBC. An Expert Guide Easy Programming on BBC Further Programming on BBC Introducing BBC Micro Programming the BBC 30 Hour Basic
35 Educational Programs BBC Sound \& Graphics Creating Adventure Programs Discovering Machine Code Structured Programming The Friendly Computer Book BBC Beyond Basic B8C

Many more books in stock.

'TIME-WARP'

BBC REAL-TIME-CLOCKICALENDAR:
A low cost unit opens up the total range of Real-Time applications With its full battery backup, possibilities include an Electronic Diary, automatic document dating. precise timing \& control in scientific applica tions, recreational use in games etc - its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installation required - No ROMS. Supplied with extensive applications software. $\mathbf{£ 2 9 . 0 0}$

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays. It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $\mathbf{£ 5 9}+\mathbf{£ 2} \mathbf{p} \& \mathbf{p}$.
UV1 as above but without the timer $\mathbf{£ 4 7}$

+ £2 p\&p.
UV1 40 up to 14 Eproms $\mathbf{£ 6 1}$
UV141 as above but with timer £79
$\star \star$ ATTENTION $\star \star$
All prices in this double page spread are subject to change without notice.

CONNECTOR SYSTEMS

ACORN IEEE INTERFACE

This IEEE 488 standard interface is a general purpose system for exchanging digital data between a number of devices in a local area. The interface complies with he IEC 625 -1 slas Interface board is
ROM, interconnecting cables IEEE cable for connecron to an externaldevice and a comprehensive manual $\mathbf{\varepsilon 2 8 2 . 5 0}+\varepsilon 2.50 \mathrm{carr}$

SMARTMOUTH
 Speech Synthesiser for BBC

The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only $5-10$ bytes per word - no ROMs required - simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, $\mathbf{£ 3 7 + £ 2 p . \& p .}$
new comprehensive catalogue avail-
ABLE - PLEASE SEMD FDR PRICE LIST

Standard features -

- High speed 24K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only by memory size
- Real time clock included in basic
- Interval timing with 10 mS rosolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34 K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Intertaces for screen and cassette Included.
- Supports blt manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D- or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!

STATEMENIS	PRINT	TIME	RENUM BOOT	MAG	MWD BASE	@	()	INT LOG	POS COL
IF ELSE		$\begin{aligned} & \text { WAIT } \\ & \text { SAVE } \end{aligned}$	GRAPH						
ELSE	?	SAVE	GRAPH TEXT	DIM	COMNMDS	\#	FUNCTION	SQR	MND
ON	1 UNIT	MOTOR	PLOT	LET	RUN	,	FNA-FNZ	TIC	KEY
GOSUB	BAUD	ESCAPE	UNPLOT	DEF	CONT	?	ABS	SGN	0
POP	CALL	NOESC	COLOUR	NEW	MON	\%	R	BIT	
REM	DATA	RANDOM	CHAR	END		\$	ASC	CRB	LOR
FOR	READ	ENTER	SPRITE	BIT	TO		TN	CRF	
NEXT	RESTOR	LIST	SHAPE	CRB		,	SIN	MEM	LAND
ERROR	RETURN	PURGE	SPUT	CRF	STEP	1	S	MWD	
INPUT	STOP	NUMBER	SGET	MEM		\%	-	LEN	

Self assembly kit

$\mathfrak{f} 295$

All prices exclusive of VAT. Carriage paid.

Optional Extras

Floppy disc interface electronics Hardware kit \& connectors for disc drives RS232C interface kit
Pair of $51 / 4^{\prime \prime}$ disc drives (SS)
Pair of $51 / 4^{\prime \prime}$ disc drives (DS)

POWFETRAN cypernetics ItId.

Portway Industrial Estate, Andover SP10 3ET. Tel: 026464455

DIGEST

Not An
April Fool

0K, we know it's our April issue and that you, being perceptive, are not unnaturally sceptical about odd-sounding things which appear in ETI this month, but believe us, this one's for real. It's a chair. That's right, a fine English hand-made chair. But this is a very unusual chair; carefully concealed within its
sumptuous upholstery is a three way speaker system which can deliver sound levels in the region of 110 d 8 with an input of 8 watts. Carefully avoiding puns about electric chairs (although Barry Manilow at 110 dB should be the death of anybody), ETI has spared every effort to bring you full details. No one can accuse us of sitting down on the job!

The Acoustic Chair is, its manufacturers claim, designed specifically for the extended frequency
response and wider dynamic range of modern digital and direct cut recordings. It will reproduce bass frequencies down to 15 Hz with explosive wavefronts that you can feel as well as hear and is capable of sound levels exceeding the threshold of pain. It enables you to listen to music unaffected by the acoustics of the listening room, with excellent stereo imaging and with little disturbance from ambient noise. Low frequencies are handled by powerful bass drivers, with acoustic vents below the midrange and high frequency units and additional vents below the pelvis and around the spine where conventional sounds are picked up by bone conduction, Low mid-range, midrange and high frequency drivers are mounted in the chair wings and are

Ambit Moves

Following their takeover by Circuit Holdings PLC, a division of 8ulgin, Ambit International will shortly be moving to Broxbourne in Hertfordshire. The company say their business has expanded steadily to the point where the premises at 8 rentwood are no longer large enough for them.
aligned for phase accuracy. The complete system can handle input powers up to 300 watts and has a nominal impedance of 8 ohms.
Quite what all this costs we do not know, but with an idea like this you can expect the price to fall sharply as the inevitable competition gets under way. Hobby Electronics are reliably reported to be working on a quadrophonic water bed and it can only be a matter of time before someone comes up with the holophonic loo-seat. Before crazed readers take an axe to the Tannoys and the ParkerKnoll, we should point out that further mind-and-posteriornumbing details can be had from the Acoustic Chair Company, 35 Britannia Row, London N1, tel 01226 3377. Happy April!

Show Offs!

T- ime was when electronics exhibitions were few and far between, eagerly anticipated highspots of the enthusiasts' year. Now, anyone attempting to cover them all would need wings and the ability to be in several places at once. It's only two months since we last gave you a rundown on forthcoming events but already a large pile of new press releases has accumulated. So get out those well-thumbed diaries and make a note of some of these.
Human Factors in Manufacturing is a conference rather than an exhibition and is aimed at production managers and other industrial personnel. It takes as its starting point the proposition that, in spite of the current level of development and seeming sophistication of industrial robots, human beings are still industry's most important asset. Known as HUMAN-1 for short, the conference will take place at the Park Lane Hotel, London, from the third to the fifth of April, and details are available from The Conference Organisers (HUMAN1), IFS (Conferences) Ltd, 35-59

High Street, Kempston, Bedford MK42 78T, tel 023483605.
The second event is the ACC Micro-Robotics Conference which takes place on the 21 st of April at the Central Hall, Westminster, London. It is run alongside the Association of London Computer Clubs' Easter Fair, and features talks and demonstrations by leading manufacturers and an opportunity for novice constructors to try their mice against the old hands on a micromouse maze. No details of opening times or admission prices are given in the press release so you will either have to turn up on the day and hope for the best or get in touch with the organisers in advance. The address is 69 Uplands Court, Greenview Avenue, Shirley, Surrey CRO 7QW, tel 01-7779806.
The Electronic Production Efficiency Exposition (EPEE) will be held at the National Exhibition Centre, Birmingham, from the first to the third of May. It ismainly of interest to those working in the electronics industry and sets out to consider the factory of the future. Entrance tickets will cost E3.00 and car parking tickets E2.00 on the day but those who apply in advance will get both free. Contact Network Events Lid, Printers Mews, Market Hill,

Buckingham MK18 1JX, tel 0280 815226.

Communications ' 84 is one of several exhibitions organised by the Institution of Electrical Engineers and takes place in Birmingham on the 16 th, 17 th and 18th of May. The IEE do not give any details of the exhibition's coverage but we have had a number of press releases from companies in the microwave, satellite, cable, and military command and control communications fields saying that they will be exhibiting. For details of this and the other conferences, vacation schools and seminars organised by the IEE, contact them at their headquarters, Savoy Place; London WC2R 0BL, tel 01-240 1871.

Hard luck on those who are interested in both speech technology and machine control systems because conferences on those two topics take place at exactly the same time, the 23 rd, 24 th and 25 th of October. However, since both take place in Brighton, real knowledge vultures may be able to commute rapidly between the two. The International Conference on Speech Technology is concerned with speech synthesis and speech recognition systems and aims to make available to British industrialists the benefits of a technol-

The Broxbourne site is presently in use by Circuit Holdings, and all present Ambit staff will be given the opportunity to move to the new site.

Bill Poel, Ambit's founder and until very recently its managing director (and also some time editor of a magazine which attempled to compete with ETI - the gall of it!) has left Ambit and joined Amsoft, the software division of Amstrad Ltd.
ogy which is already widely used in Japan and the United States. The International Conference on Machine Control Systems is concerned with the intelligent control of individual production processes and the linking of such controllers to provide overall management. The organisers claim the conference will be a revelation to those who think they already know all there is to know about machine control systems. Details of both conferences can be obtained from IFS (Conferences) Ltd at the address given above for the HUMAN- 1 conference.
The International Test and Measurement Exhibition and Conference (ITAME) takes place at Olympia 2, London, from the 30th of October to the 1 st of November, and the organisers say it will cover all areas of electronic test and measurement. The same people are also organising Electronic Displays ' 84 at the Kensington Exhibition Centre, London on the $27 \mathrm{th}, 28$ th and 29th of November, an event which should not be confused with the Electronics Displays exhibition at Frankfurt which we mentioned in February News Digest. For details contact Network Events at the address given above for the EPEE event.

2 Inch Video Monitor

5V RS232C Module

N_{i}ewport components have introduced an RS232C interface module. The NM232C requires a single 5 volt supplyonly and provides one transmit and one receive channel. Both channels are fully EIA - RS232C compatible and the logic input and output are TL/CMOS compatible. The package is low profile DIL style of 9 mm total height and a pin row spacing of 0.5 inch with a pitch of 0.1 inch. The no load current is typically 10 mA representing just 50 mW of quiescent power consumption.
Applications are anticipated in all areas of micro computing and peripheral design requiring data exchange rates up to 19.2 kbaud. The NM232C will also be useful in

battery powered designs requiring RS232C capability with low power consumption. The device uses less board space than the standard integrated circuit solution and does not require $\pm 12 \mathrm{~V}$ supply rails. Indeed the internally generated positive and negative supplies are also made available for external use, although at limited current levels. Newport Components Ltd, 134 Tanners Drive, Blakelands North, Milton Keynes MK14 5BP, tel 0908615232.

The TV2S from Thandar Electronics is a lightweight, low power miniature monochrome video monitor. It operates from a standard 1 volt composite video signal via a 75 ohm BNC connector and is designed to be used in applications where space is of prime importance. Desk-mounted security surveillance or closed circuit television camera viewfinders are typical examples.
The TV2S is self-contained in an attractive aluminium case measuring $150 \times 105 \times 49 \mathrm{~mm}$, and utilises a high resolution 50 mm ($2^{\prime \prime}$) diagonal CRT giving a usable viewing area of $40 \times 30 \mathrm{~mm}$. Stable picture lock is ensured by the use of phase locked line and injection locked oscillators. Front panel
controls are provided for brightness and contrast in addition to on/off, and rear panel controls include 525/625 switch, 75 Ω bridge facility, focus and line and field control. Fitted with internal re-charge ible Nickel Cadmium batteries, the monitor can also be powered from an external regulated 5 to 7 volts DC power supply or from an unregulated 12 volt DC source through the adaptor/ charger supplied. Mains adaptor/ chargers for 117,220 and 240 volt operation are available as optional accessories. The TV2S costs £135.00 plus VAT, and further information is available from Thandar Electronics Lid, London Road, St Ives, Huntingdon, Cambs PE17 4HJ, tel 0480-64646.

Hand-held Transistor Tester

Anew addition to Osborne Electronics 4000 series of hand-held test units is the model 4500 transistor tester. Completely self contained, the unit simplifies and speeds the task of checking the PN junctions of discrete semi-conductors whether in or out of circuit.

The model 4500 measures just $32 \times 22 \times 100 \mathrm{~mm}$ and weighs 75 grams. It readily rests between thumb and forefinger and features an integral series of LED's which indicate the junction status.

PNP or NPN transistors, diodes and open or short circuit junctions can be instantly indentified and operation remains reliable even when parallel circuit values approach 270 ohms or 33 microfads. In operation, the two test probes are connected across the junction to be checked and the junction state is immediately displayed. The unit's integrated circuitry ensures a very long battery life.

The model 4500 costs $£ 16.00$ plus VAT and is available from Osborne Electronics, Binstead Road, Ryde, Isle of Wight, tel 0983-63622.

Flat Response?

\mathbf{N}^{0}jo, you haven't been watching too much TV, the cones in those loudspeakers really are square and flat. They're the new DX70 loudspeakers from Tamon of Japan, a two-way system using a $11 / 2^{\prime \prime}$ tweeter and a $6^{\prime \prime}$ bass driver, both with flat cones. They are rated at 45 W RMS, 90 W peak and have a frequency response which is said to extend from 50 Hz to 40 kHz . The cabinet finish is dark mahogany, and they should be on sale by the time this issue
appears at an anticipated price of £130 a pair.

Of course, flat cone loudspeakers are nothing new in themselves, and many will remember a novel piano shaped (or was it ear shaped?) design which appeared some years ago. A number of more conventionally packaged units have also appeared, but flat cone systems have yet to make any significant impact on the world's loudspeaker markets. It will be interesting, therefore, to see if Tamon have now got the formula right or if, as with their predecessors, the response from the speaker buying public is as flat as the cones themselves.

HARD DISK DRIVES

Front load. Free stand or rack mount $\mathbf{E s s 0 . 0 0}$ $\begin{array}{ll}\text { Exchangeable type (via hd removal) } & \text { E295.00 } \\ \text { me3029 PSU unit for } 2 \text { drives }\end{array}$ DIABLO/DRE 44-4000A/B $5+5$ ex stock from 5995.00
1000's of spares for $\mathrm{S} 30,4000$ 3200 HAWK Plus in house repair, refurbishing s
Call for details or quotation.
SOLID STATE SWITCHES
Matchbox size solid state switch type IR D2402
enables on off control of 240 V AC lads up to
600 watts, direct from your micro etc. Fully isolated $3-32$ v DC input with zero voltage switching. Complet

250.000 othe relays EX STOCCK call 1 or deter

hOT LINE DATA BASE

DISIEL®

THE ORIGINAL FREE OF CHARGE dial up data base 1000 's of stock items and one off bargains.
ON LINE NOW-300 baud full duplex CCITT tones, 8 bit

MAINS FILTERS

COMPUTEZ 'CAB'

All in one quality computer
mode PSU, Mains filtering, and twin fan cooling Originally made for the famous DEC PDP8 compute system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive $+5 v$ DC at $17 \mathrm{amps},+15 v D C$ at 1 amp and -15 DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch. 'Power' and 'Run EDs mounted on Ali front panel, rear cable entries, et etc. Units are in good but used condition - supplied for 240 v operation comptete with full circuit and tech. man Give your system that professional finish for only £49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $105^{\prime \prime}$ high. Aseable a Also available LESS PSU, with FANS etc. Internal dim.
$19^{\prime \prime} w .16^{\prime \prime} d .10 .5^{\prime \prime} \mathrm{h} . \pm t \% .95$. Carriage \& insurance $£ 9.50$.

8" WINCHESTERS

BASF $617223 \mathrm{mb} 8^{\prime \prime}$ winchester disk
drive. Complete unit consists of sealed cavity with $3 \times 8^{\prime \prime}$ plattens and CPU control logic on 3 pcb's. Multiplexed i/o with the BASF "DISK BUS" interface is via a single 40 way cable. Units have been carefully removed from believed working equipment - but at the staggering price o ONLYEiz5.00 are sold without guarantee Supplied complete with $200+$ page tech manual. Additional +5 V DC, -12 VDC , +24VDC 865.00
Carriage \& Ins $£ 10.00$

SOFTY 2

The amazing SOFTY2. The complete "toolkit" for the open heart sottware surgeon Copies
Displays, Emulates ROM, RAM and EPROM of the 2516,2532 variety. Many otherfeatures include keyboard, UHF modulator. Cassette interfaceetc. Functions exceed capabilities units costing 7 times the price! Only $\mathbf{£ 1 6 9 . 0 0}$ pp£1.95 Data sheel on request
DATA MODEMS
Join the communications revolution with our
range of EX TELECOM data modems. Made to for 24 his per day Units are made to the
CCITT tone spec With RS 232 i lo levels via a 25 way 'D' skt. Units are sold in a tested and working condition with data. Permission
may be required for connection to PO lines. MODEM 2B "Hackers Special" fully fiedged modes. AUTO ANSWER. Data iv vi or CAL standard RS232 25 way 'D' socket. Just 2 wire
connection to comms line. Ideal networks etc. connection to comms line. Ideal networks etc
Complete with data, tested, ready to run at a
NEW SUPER LOW PRICE of owty E6s.00 + VAT + Cart.
MICRONET, PRESTEL OT TELECOM GOLD
etc 2 wire direct connect. 75 baud transmit
1200 baud eceve. Data 10 via RS2 32 D
socket. Guaranteed working with data E49.95 socket. Guaranteed working with data
MODEM $20-2$ same as $20-1$ but 75 ba
receive 1200 baud transmit E130.00
DATE L 4800 sync service. RACAL type
MPS4800 ex TELECOM good condition MPS 4800 ex TELECOM good condition
EST5.00 + VAT. NEW DSL21 23 Multi Standard modem
selectable V21 $300-300$ ans selectable $\mathrm{V} 231200-75$ full duplex. Or $1200-1200$ half duplex modes. Full auto answer via modem or
CPU. LED status indicators CAL modes Switchable CCITT or BEL or ANS 1038
202. Housed in ABS case size 202. Ho used in ABS case size only $2.5^{\prime \prime} \times 8.5^{\prime \prime}$
$\times 9^{\prime \prime}$ f $286.00+$ VAT $\times 9$. E286.00 + VAT
For further data or details on other EX STOCK
save E250

SUPER PRINTER SCOOP RRND ${ }^{\text {ETM }}$ CENTRONICS $739-2$

The "Do Everything Printer" at a price that will
NEVER be repeated. Standard CENTRONICS
ofIC, DRAGON etc. Supert print quality with full I\#Figh DE Fin adiIressable graphics and 4 type fonts plus columns, single sheet sprocket or roll paper handling plus nuch more. Available ONLY from DISPLAF ELECTRONICS at the ridiculous price of owly $£$ ISP.00 + VAT Complete with
full manual etc. Limited quantity -Hurry while stocks last Iull manual etc. Limited quantity -Hurry while stocks last. Options. Intertace cable (specify) for BBC, ORIC,
DRAGON or CENTRONICS 36 way plg $£ 12.50$. Spare ribbon 3.00 each. BBC graphics screen dump utility program $£ 8.50$.

GE TERMIPRINTER

 A massive purchase of these desk topprinter-terminals enables us to offer you prier-terminals enables us to offer you over £1000. Unit comprises of full QWERT electronic keyboard and printer mech with print face similar to correspondence quality typewriter. Variable forms tractor unit enables full with - up to $13.5^{\prime \prime} 120$ column
paper, upper - lower case, standard RS232 paper, upper - lower case, standard
serial intertace, internal vertical and serial interace, internal vertical and adjustable baud rates, quiet operation plus many ot her features. Supplied complete with manual. Guaranteed working $£ 130.00$ Carr \& Ins $£ 10.00$.

An asvantageous purchase of brand new surplus allows a great OWERTY, iull rave ALPHAMERIC 7204/60 fuli ASCII 60 key, upper, lower + control key, parallel TTL output plus strobe. Dim $12 \times 6+5 \&-12$ DC. ESS.SO.
standard X Y matrix Complete with 3 LED indicators $\&$ normally open switches on
stanversions etc. pcb DIM $15^{\prime \prime} \times 45^{\prime \prime}$ E24.95
SUPER DEAL? NO - SUPER STEAL!!
The FABULOUS 25CPS TEC Starwriter
SRAND NEW AT ONLY£́́29. + VAT $=$

a fraction of its original cost and full control via
Many other feaures
printing. switchable
 internal butter, standard RS232 serial intertace with nandshake and dust cover. Order NOW or contact sales office for more infor dasy wheel £140.00 Spare daisy wheel £3.00 Carriage 8 ins. (UK Mainland $£ 10.00$

66\% DISCOUNT

 5 kis $£ 5.90+£ 1.80$ 20 kls $E 17.50+£ 4.75$

 5" CASED Superb little unit made by

 standing case. Very high definition will display small but readable 132 columns wide! $12 v$ DC opp. @ 800 ma, so ideal for mobile use. Supplied in AS NEW condition complete with data. Composite 75 ohm vid inp. Black \& Whit CRT E45.00 or Green CRT E55. 00 2" CASED12 . Made by the British KGM display station unit is tolally ho data attractive brushed aluminium case with O OFF, BRIGHTNESS and CONTRAST controls mounted to one side Much attention was given to construction and reliability of this unit with features such as internal transformer solated regulated DC supply, ass PCB boards - which hinge out ease of service, many internal controls for linearity etc. The monitor accepts standard socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display most high def graphics and 132×24 lines. Units are secondhand and may have screen burns. However where burns exist they are only apparent when monitor is switched of Although unguaranteed ali monitors are tested prior to despatch. Dimensions approx. 14 high $x 14$ wide by 11 detp. Supplied complete with circuit. 240 voit
operation 0w/VEAS.00 $\%$ CUS $£ 9.50$ cARR. 24" CASED. Again made by the KGM with a similar spec as the 12 monito display. Very compact unit in lightweight silicon electronics and composite video input make an ideal unit for schools, cub

ONCY E55.00 PLUS E9.50 CARR 6 IHS

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing val

 include transistors, digital, linear. I.C's triacs diodes. bridge recs., etc. etc All devices guaranteed brand new full spec with $50+£ 2.95100+E 5.15$.TrL 74 Series A gigantic purchase of an "across the board" range of 74 TL series "mostly TL" grab bags at a price which or three chips in the bag would nnormally cost to buy. Fully guaranteed atl I.C.'s full
spec. $100+£ 6.90200+£ 12.30300+£ 19.50$

DEC CORNER

MOSTEK CRT 80E Brand new dual emulator with graphics etc $\quad \mathbf{E 4 9 9 . 0 0}$ DLV11-J $4 \times$ EIA interface $\quad \mathbf{5 3 1 0 . 0 0}$ RKO5-J 2.5 Mb disk drives E 550.00 PDP1105 Cpu, Ram, i/o, etc. \quad E4s0.00 RT11 ver. 3B doc kit LA36 Decwriter EIA or 20 ma
KL8JA PDP 8 async i / o 570.00
5770.00 KL8JA PDP 8 async i/o
MIBE PDP 8 Bootstrap option E 175.00 MI8E PDP 8 Bootstrap option,

E75.00

Controller

controller LAXX-NW LA180 RS232 serial intertace E230.00 LAX34-AL LA34 tractor feed E35.00 1000's of EX STOCK spares for DEC
PDP8 PDP11 PDP1 5 \& periperhals Call for details. All types of Computer

ATH PRICES PLUS VAT

Spectrum-Compatible Colour Monitor

After a period of selling to the education market, Microvitec have launched their Sinclair Spectrum-compatible colour
monitor onto the consumer market. They claim it is the only low-complexity colour display equipped to handle the output of
the Spectrum, Britain's most popular home computer.

The 1431 /MZ comes in a metal cabinet with die-cast frame surround finished in matt black to match the appearance of the Spectrum. Inside, the picture tube and control circuitry of the RGB/TTL input models is retained while an additional card carries the Spectrum interface which effectively converts to the RGB/ TTL format the luminance (' U ') and chrominance (' V ' \& ' Y^{\prime}) signals appearing at the output port of later Spectrum models. Since the interface canbe switched in or out of the circuit, the monitor can also be driven by computers with conventional RGB/TTL outputs, such as the new Sinclair QL.

Over a million Spectrums have now been sold, many of them to first-time buyers who may now wish to up-grade to more recent machines. By designing the monitor to accept two input formats, Microvitec expect it to generate wide sales opportunities. The Microvitec 1431/MZ costs $\mathbf{£ 2 4 9 . 0 0}$ plus VAT and is available from any of the growing number of Microvitec Dealers. Further details and a list of dealers are available from Microvitec Limited, Futures Way, Bolling Road, Bradford, West Yorkshire BD4 7TV, tel 0274390011 .

Multi-Output Portable Filter

New from Roxburgh Suppressors is a multi outlet portable mains filter. Rated at 13 amps total load, the unit is fitted with four 13 amp sockets and is constructed in a steel case with neon mains indicator.
The LF134 filter module incorporates an earth line choke and a large replaceable 'Varistor', providing a high degree of protection from mains transients and interference for micro computer systems and their peripherals. It comes complete with 2 metres of mains lead and a 13 amp plug, is ready for use, and costs $£ 62.25$ plus VAT and carriage. For details contact Roxburgh Suppressors Ltd, Eagle road, Rye, Easi Sussex, tel 0797223725.

Oscilloscope Accessories

0tter Electronics is a recently formed British company whose staff includes the designer responsible for the Scopex range of analogue oscilloscopes. They intend to specialise in oscilloscope accessories and ancillary equipment and have just launched two new instruments, a μ amplifier and an isolation amplifier.

The μ amplifier enables signals as minute as $100 \mu \mathrm{~V}$ from DC to 2 MHz to be viewed and measured on most oscillosocpes. The amplifier offery sensitivities from $100 \mu \mathrm{~V} /$ division to $50 \mathrm{mV} /$ division with AC or DC input coupling and maintains a constant output of 100 mV /division. To make full use of the high sensitivity a differential input is provided so that common mode signals can be minimised, and to improve the display
a bandwidth limiting switch is provided to reduce the upper frequency limit to 20 KHz or 1 KHz .

The amplifier will find many uses in audio and video work, enabling monitoring of signals direct from playback heads and measuring ripple. Even physiological signals come within its performance. Battery operation from PP3 batteries means that the amplifier can quickly convert an oscillosocpe for very low level signal observation.

The isolation amplifier offers a safe way of making measurements on floating circuits up to $1,500 \mathrm{~V}$ from ground. the input amplifier offers sensitivities from $10 \mathrm{mV} /$ division to $5 \mathrm{~V} /$ division (50 V with probe set to X10) AC or DC coupled. Signals from the input amplifier are coupled to the output amplifier by a pair of differentially connected optocouplers, thus ensuring good linearity and high common mode
rejection. The output remains constant at $100 \mathrm{mV} /$ division giving a useful gain boost for older, less ensititive oscilloscopes. The amplifier will find great acceptance in diverse fields from power engineering, examining SCR and triac gate firing pulses, switch mode power supplies, and eliminating ground loops to medical research, where complete isolation between subject and measuring instrument is essential. Battery operation from PP3 batteries means that the amplifier
can quickly and easily extend an oscilloscope's performance at any time.
The μ amplifier costs $£ 144.00$ plus VAT and the isolation amplifier costs $£ 157.00$ plus VAT. Both prices include packing and delivery. Otter say they are developing further new instruments, some of which will be unveiled later this year. Otter Electronics Ltd, Otter House, Weston Underwood, Olney, Buckinghamshire MK46 5JS, tel 0234 - 712445.

New Chip Cuts Z80 Component Count

new high speed $\mathbf{Z 8 0}$ peripheral chip designed to replace several discrete ICs has just been introduced by Verospeed. Called the Mostek Serial Timer Interface, this powerful new chip incorporates a USART (Universal Synchronous/Asynchronous Receiver/Transmitter), two binary timers, two full function timers, and eight bi-Directional I/O lines with individually programmable interrupts.

The $\mathbf{Z 8 0} \mathbf{~ S T I ~ i s ~ d e s i g n e d ~ t o ~}$ operate at 4 MHz and is therefore compatible with the higher speed members of the Z80A Peripheral Family. Selection and control of the on-chip function is made by means of 24 internal registers which are accessed via the system bus. It is packaged in a standard 40-pin DIL, allowing peripheral functions perviously requiring the use of several components to be realised in a minimum of printed circuit board area.

For further details, or a complete 400 -page catalogue listing over 7500 components, contact Verospeed, Stansted Road, Boyatt Wood Industrial Estate, Eastleigh, Hants, tel 0703 641111.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:

GHz Frequency Counters

The Meteor Series of Frequency Counters, designed and manufactured in Britain by Black Star, is now available fitted with a Temperature Compensated Crystal Oscillator (TCXO) for extra accuracy and temperature stability.
The Meteor 1000X measures typically from 2 Hz to 1.2 GHz with $<50 \mathrm{mV}$ sensitivity at 1 GHz , features a temperature stability of $\pm 0.5 \mathrm{ppm}$ from -10 C to +40 C , and an ageing rate of $< \pm 1 \mathrm{ppm}$ per year, and setability of $< \pm 0.2 \mathrm{ppm}$. The other models in
the range, the Meteor $100 \times(2 \mathrm{~Hz}$ 100 MHz) and the Meteor 600 X ($2 \mathrm{~Hz}-600 \mathrm{MHz}$) are available with the same TCXO. All models are battery or mains powered and are fitted with a trigger level control, a low pass vilter and offer three gate times $(0.1 \mathrm{sec}, 1 \mathrm{sec}$ and 10 sec .

The Meteor 'X' series of Counters come complete with mains adaptor/charger, a comprehensive instruction manual, and a year's guarantee, and a wide range of optional accessories is available. The Meteor 100 X costs £225 plus VAT and postage and packing, and further details are available from Black Star Limited, 9A Crown Street, St Ives, Huntingdon, Cambs PE17 4EB, tel 048062440.

SHORTS

- Greenweld's 1984/85 electronic components catalogue has 84 pages and lists audio modules, books, cases, kits and test equipment as well as semiconductors and the more mundane components. VATinclusive prices are quoted on the page, credit card orders can be taken by telephone, and the catalogue complete with bargain lists costs $£ 1$ including postage from Greenweld, 443 Millbrook Road, Southampton SO1 0HX, tel 0703772501.
- Greenpar Connectors have issued a short form catalogue of their range of RF connectors. Each series is extensively illustrated and there is a useful guide to the principal differences between the various series and their respective applications. Greenpar Connectors, P.O Box 15, Harlow, Essex CM20 2ER, tel 0279-27192.
- Thorn EMI has published an 8page brochure entitled "A Comparison of the Performance of Photomultiplier Tubes and Silcon Photodiodes". The paper is intended as an aid to equipment designers and scientists engaged
in all fields of light measurement and is available free of charge from the Sales Office, Thorn EMI Electron Tubes Ltd, Bury Street, Ruislip, Middlesex HA4 7TA, tel 08956-30771.
- Following the demise of Scopex Instruments Ltd and the subsequent acquisition of their assets by Bridage Scientific Instruments, a new company has been formed called Scopex Electronics Ltd. They report that production of the Scopex 14D15 dual beam oscilloscope and the 14 D 10 video model is now in full swing again and that the first samples are ready for despatch to customers. Bridage Scientific Instruments, 63-65 High Street, Skipton, North Yorkshire BD23 1EF, tel 0756-69511.
- A new MIL Standard covering electrical, physical and environmental test methods for microelectronic devices has been published by the United States Department of Defence. MILSTD 883C, Test Methods and Procedures for Microelectroncis, supercedes MIL-STD 883 B , contains 488 pages, and costs $£ 39.05$ from London Information (Rowse Muir) Ltd, Index House, Ascot, Berkshire SL5 7EU, tel 099023377.

400V Transistor Optocouplers
 otorola has introduced a

Mnew series of optocouplers utilizing gallium arsenide infrared emitting diodes optically coupled to phototransistor detectors with 400 volt breakdown ratings. This is a significant increase over the previous industry maximum of 300 volts, and permits these devices to be used in applications such as high-voltage solid-state relays, copy machines, etc, without the need for voltage divider circuits or other compensating designs.
The MOC8204 has a current transfer ratio of 20, the MOC8205 a current transfer ratio of 10 , and the MOC8206 a current transfer ratio of 5.0 . All devices are currently available in the standard 6 -in DIP package. In addition to the high breakdown voltage, the devices feature a very high peak isolation voltage of 7500 V AC (min), and are UL recognized (file number E54915). For further information contact Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5BP, tel 0908614614.

TChe Tangerine Users Group has been in the battles a bit recently and some members may be abit worried as to what is going on. The simple answer is that the original TUG has now suspended operation, but a new users group is fast rising from the remains of the old and should be in operation within a month or two.

The new users group will be run by Colin Nowell, a member of TUG from its inception and a contributor to its newsletter. He takes over from Bob Green who has moved on to do other things. Colin was unable to tell us too much about the problems with TUG when we spoke to him, but he assured us that they are now being dealt with and that the new users group will be run by himpersonally in an effort to avoid any recurrence. He says he is in contact with the computers' manufacturers and that, as a bit of a carrot to tempt back any wavering members, he has a full $C P / M$ implementation using a Z80 control card ready to run on the Microtan. So hang in there, TUG members, and wait and see what happens.

- Marshall's 1984 electronic component catalogue has 56 pages and lists over 8000 items. They will accept orders over the telephone from credit card holders and the catalogue costs $75 p$ to callers or $£ 1$ post paid to UK addresses and comes with a price list valid until June. A. Marshall (London) Ltd, 85 West Regent Street, Glasgow G2 2AW, tel041322 4133/5.
- Sircal Instruments are introducing a 2716 and 2732 EPROM programmer for use with the ZX81. It requires four 9 V batteries, operates using simple POKE statements, and has an extension bus for further peripherals. SAE for details to Sircal Instruments (UK) Ltd, Southfields Court, Sutton Common Road, Sulton, Surrey SM1 3JE, tel 016440981.
- The Scots really are brave -- at least where high technology is concerned. A recent poll carried out by the market research company Taylor Nelson \& Associates found that only 22% of people in Scotland suffer from what they call 'technofear', an aversion to high technology products. The figure was 35% in the North of England and the midlands and 44% in the South.
- The Independent Broadcasting Authority have produced a 48page illustrated book entitled "Compatible Higher-Definition Television" which disucsses the problems associated with providing higher-definition domestic television which remains compatible with existing systems and receivers. Copies are available free to educational centres and technical libraries and to firms, engineers and students directly involved in 8 roadcasting. The IBA Engineering Information Service, Crawley Court, Winchester SO21 2QA, tel 0962-822444.
- B\&R Electrical products of Harlow, probably best known for their range of relays, have produced a nine-minute video film on electrical safety. The professionally produced film is entitled "Because it's not worth the risk" and uses commentary and animated graphics to illustrate the dangers of electricity and the value of Residual Current Circuit Breakers (RCCBs) in minimising those dangers. It is available for hire by schools, colleges, etc for $£ 3.00$ a day or can be purchased for $£ 29.95$ from The Education Department, B \& R Electrical Products Ltd, Temple Fields, Harlow, Essex CM20 2BG.

ETI

MAKE YOUR OWN PRINTED CIRCUITS

DIRECT ETCH KIT

COPY DIRECT FROM MAGAZINE or OWN DESIGN. Simple system- Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Etchant, Copper Cleaning Block, Gloves \& full instructions.
HB/1 £18.00*

PHOTO RESIST KIT
Complete kit containing artwork PCB, and all the necessary process materials. HB/2 $£ 29.00^{*}$
DIY UV EXPOSURE UNIT
Perfect results everytime. Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB, Precision Photo, Lable \& Panel manufacture. UV/1 £27.00*
FRONT PANELS \& PHOTOGRAPHY

Containing artwork, film and all the necessary process materials required for professional quality labels and panels. CAN ALSO BE USED TO PRODUCE PRECISION PCB PHOTOMASTERS. HB/3 E27.00*
UV EXPOSURE UNIT AND ARTBOX.
(Ref: UV2)
A portable ready made unit containing two 8 watt UV tubes giving a $6^{\prime \prime} \times 9^{\prime \prime}$ exposure area which may also be used as a light box with the UV filter supplied. UV/2 £64.00*
These are introductory kits and all materials are available separately. Full catalogue $£ 1.50$ refundable with 1 st order over $£ 10$.
*Prices inclusive of VAT, carriage 60p in U.K. Overseas orders please add extra carriage to published prices.
\square
dothatoracos
a division of
KELAN ENGINEERING Ltd
Hookstone Park
Harrogate, N. Yorks

LB EEECTRONICS

GOULD MMG 5-10 switched mode PSU 5 volts 10 amp 220 Volt input size approx $6^{1 / 2} 2^{\prime \prime} \times 2^{3 / 4} / 4^{\prime \prime} \times 3^{1 / 2 "}$ weight 1 kilo $£ 25 \mathrm{p} / \mathbf{p} £ 3$.
LOGITEC FT50001 dot matrics printer 100 cps , friction/tractor $£ 289$ + VAT. Carriage £10. S.A.E. leaflet plus print-out.
PRESTEL monitors 6" green phosphor screen 12 digit keyboard printer port, cassette port, keyboard port (for full qwerty keyboard) Brand new and boxed $\mathbf{£ 1 7 5}$ + VAT. Leaflet S.A.E.

DISC DRIVE BONANZA

TEAC FD-55F $1 / 2$ Height DSD 80 track/40 track, selectable at our new low price $£ 199+$ VAT. £8 carriage. Shinon $1 / 2$ height $5^{1 / 4} 9^{\prime \prime}$ drive, 40 track, brand new, single sided, double density $£ 140$ + VAT. Carriage £8. COMPETITION. We thank all our customers for purchasing our Teac drive and as a bonus we are now offering every 50 th disc drive to be sold will be sent totally FREE. The name and address of the winner will be published in this magazine.). This offer is excluded from trade or bulk buyers).
EDGE CONNECTORS ${ }^{\prime \prime}$ " 56×56 wire wrap keyway at $30 £ 1.80 \mathrm{p} / \mathrm{p}$ 25p. $30 \times 30 \cdot 156$ Gold 80 p p/p $25 p \cdot 1$ " $80 \times 801 £ 2.85$ p/p 25 p.
Twin 5" Cabinets with power supply $£ 40.00+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere £50.00 + VAT).
51/4" Disk Drive Cabinet (1/2 Height drive) without PSU £11.95 p/p£1.50. 9" Green Phosphor Monitors Brand New and Cased Composite Video Input 18 mhz band width $£ 80+$ VAT each (carriage cost)
26 WAY IDC Socket plus $1 \frac{1}{4}$ meter ribbon cable $£ 2 \mathrm{p} / \mathrm{p} 35$ p.
40 WAY IDC to 40 way IDC (Female plus 7 meters of ribbon $£ 5 p / p £ 1$.
Brand New $13^{\prime \prime}$ Colour monitor fully cased. Full warranty 540 x 236 pixel. RGB TTL Input plus apple Input $£ 160$ + VAT (carriage at cost).
CABLES
Dual $5^{1 / 4^{\prime \prime}}$ disc drive cable $£ 12.95$ p/p 65 p. Single $5^{1 / 4 " 9.95 p / p 50 p . ~}$ 20 Way IDC Socket plus 1 meter ribbon (BBC user port) £2.75 p/p30p. Centronics Printer 36" (BBC) £11.95.
Special Offer Cambion 40 Way IC sockets wire wrap $£ 1$ each, 12 for $10.51 / 4$ " Drive Power plug $£ 1$ each. BBC PSU plug $£ 1$ each.
8" Drive DC plug $£ 1.35$. AC plug $£ 1.35$ p/p 25 p. New double density
interface for BBC machine, S.A.E. Full details $£ 99.95+$ VAT $\rho / \mathrm{p} £ 1.50$.

LB ELECTRONICS
11 HERCIES ROAD, HILLINGDON, MIDDLESEX UB1O 9 LS, ENGLAND TEL: UXBRIDGE 55399

VERTICAL SPEED INDICATOR

Abstract

Of special interest to hang gliding enthusiasts but unusual enough to inspire flights of fantasy in even the most vertigo ridden of armchair adventurers; Lindsay Ruddock describes a vertical speed indicator using a silicon piezo-resistive pressure sensor.

The vario and the altimeter, in that order, are the hang glider pilot's first and most important instruments. The altimeter measures height, but it is the vario which helps the pilot get high.

Vario is short for variometer, which means a VSI or vertical speed indicator to the gliding fraternity. In order to stay airborne, the glider pilot seeks out areas of rising air, the most important of which are called thermals - bubbles of warm air rising from the ground on sunny days (visualise a pan of water boiling on a stove). Using a vario to read the rate of climb or sink, the pilot flies to centre on the core of the rising air.

Essential as the vario readout may be, hang glider pilots do not want to spend their flying time staring at a panel meter. Also, flying sites can get very crowded. A light NNW wind on Devils Dyke in Sussex will see as many as fifty hang gliders airborne at one time. Accordingly, as well as a visual readout usually on a panel meter, hang gliding varios must have an audio tone which sounds when the glider is climbing. What is being measured, of course, is the net effect of the glider's sink rate and the lifting air. However the audio must do much more than simply distinguish between lift and sink, so the pitch of the tone is made to vary according to the strength of the lift.

The circuit described generates interrupted tone audio, the type recognised as being the easiest to follow. It sounds as a series of
friendly encouraging beeps, the pitch rising steadily through an octave from zero lift to full scale. The rate of interruption is optimally chosen to begin at 2 Hz at zero lift and progresses steadily to 4 Hz at full scale. The visual readout is still necessary as the audio only gives relative information.

There are two viable types of vario for hang gliding, the flask type and the pressure derivative type. Both work by detecting the change in atmospheric pressure with height, but do it in different ways.

The flask uses a reservoir flask vented to the atmosphere via a narrow passageway or constriction.

As atmospheric pressure changes, air flows into or out of the flask. and it is this airflow which is measured to indicate vertical speed. A pair of closely matched resistance wires are placed one in front of the other in the constriction in the flask vent. The wires are connected as two arms of a Wheatstone bridge, and are directly heated by passing a current through them. The one in front gets cooled more than the other by air flowing into the flask and vice versa. This temperature difference causes the bridge to unbalance and the resulting signal is amplified to drive a display and an audio tone generator.

The vario described in this article is of the pressure derivative type. The difference between this type and the flask type is that here the absolute value of atmospheric pressure is measured directly using a silicon chip pressure transducer. The resulting signal, which represents altitude, is then differentiated to obtain a rate of climb signal, hence the name 'pressure derivative vario'. Figure 1 is a block diagram of the instrument.

A very big advantage can immediately be seen; since we are only concerned with rates of change, the instrument is inherently self-zeroing. Much of the very high gain required can be placed before the differentiator, and in this way, long term drift in the transducer and first amplifier is ignored by the differentiator circuit and does not show in the output.

Although the idea is simple, a
successful vario of this type needs very careful design. The overall circuit amplification is very high and the circuit impedance in the differentiator stage is very high. The problems are those of noise, drift and stability.

Noise and drift are dealt with by choosing suitable low noise, low drift components and, most importantly, by the elimination of PCB surface conduction. In the bandwidth we are concerned with
(0 to 1 Hz), surface conduction (surface leakage) is an extremely noisy process, easily swamping noise originating elsewhere in the circuit and also showing up as output drift. Fortunately, guard tracks around the sensitive circuit points prevent PCB surface leakage and consequently elminate the accompanying noise.

Figure 2 is a graph of atmospheric pressure against altitude plotted for the International Standard Atmosphere. Clearly the gradient or derivative of such a curve is not a constant. Plotting the gradient of the pressure curve in fact gives us Fig. 3. For our purposes we would like Fig. 3 to be a horizontal straight line, ie, uniform rate of change of atmospheric pressure with altitude. However, Fig. 3 shows that atmospheric pressure falls off more slowly the higher one goes, with the result that an uncompensated pressure derivative vario will under-read by a factor which can be read off from Fig. 3.

Although an awareness of the under-reading characteristic is useful, the extra complexity of compensation has not been included in the circuit presented here. We said earlier that a vario is primarily an indicator in gliding and providing the zero is stable, the absolute accuracy at all altitudes is of lesser importance. With a cloudbase at a typical 4000 feet on the better days of an English summer, the error can be completely ignored, and in other parts of the world, where hang gliders are regularly flown to 18,000 feet, it is sufficient that the pilot remembers the general trend of Fig. 3.

The design requirements for a vario are:

1. Reasonably small weight and size.
2. Long battery life and dual batteries.
3. Scale ± 1000 feet per minute (or ± 10 Knots).
4. Accuracy 10% at sea level, with a known calibration error with height.
5. Resolution 20 fpm ($=4^{\prime \prime}$ per second).
6. Nicely responsive (fairly light damping).

7. Stable zero.

The first requirement goes without saying. The second, dual batteries, means a reserve is always available. A battery, no matter how long it lasts, must go flat sometime. Low battery indicators are now reliable enough especially with Ni -Cads but are too easily ignored.

A scale of $\pm 1000 \mathrm{fpm}$ was chosen as it caters for the vast majority of flying conditions. An alternative could be $\pm 1500 \mathrm{fpm}$ but this makes the scale a little cramped. Other possibilities are switched scales (± 1000 and 2000 fpm) or compression of the upper part of the scale, both of which introduce greater complexity.

Absolute accuracy is not an important feature. For gliding pur-
poses, the vario is used in a relative mode as an indicator - hence the name VSI. Calibration to 10% at SL is more than adequate, and provided the zero position is stable, the absolute accuracy at all altitudes is of lesser importance.

The limit to resolution is set by circuit noise. Full scale deflection ($\pm 1000 \mathrm{fpm}$) at the output is $\pm 1.25 \mathrm{~V}$, which corresponds to $\pm 18 \mu \mathrm{~V}$ at the transducer output.

Fig. 1 Block diagram of the vario.

Fig. 2 International Standard Atmosphere (ISA) curve.

Fig. 3 Gradient of ISA pressure curve.

Fig. 4 Circuit diagram of the vario.

The LX0503A is a semiconductor piezoresistive strain gauge manufactured using integrated circuit technology. A hollow is etched in a single crystalline (and therefore perfectly elastic) silicon chip about 2 mm square, forming a diaphragm. This chip is then bonded to another chip acting as a backing plate, the pair forming a closed vacuum cell. Four strain gauge resistors making up a Wheatstone bridge are diffused into the diaphragm, two in areas of compression and two in areas of tension. Since the resistors are diffused in, the bonding to the diaphragm is perfect. The semiconductor material of which the bridge resistors are made has an enormous temperature coefficient. The gauge factor (sensitivity to stress) also changes with temperature. To compensate for this the $1 \times 0503 \mathrm{~A}$ has an internal $\mathrm{V}_{\text {be }}$ multiplier.

In this application, the bridge and the compensation network are wired in series and connected across 5 V . Wired this way, pins 5 and 6 of the transducer sit at about a volt above the negative supply and the swing between sea level (SL) and 20,000 feet (14.7 psi to 6.75 psi) is typically 16 to 20 mV .

The first op-amp (IC2), converts the transducer differential outpul to a single ended output, with a gain of $680 / 16$. The resistor marked SOT (Select On Test) is adjusted to bring the op-amp outpul to 0.25 V below the +2.5 V signal ground rail (assuming the altitude of your workshop is $S \mathrm{~L} \pm 1000^{\circ}$). Not only does this procedure make sure that the opamp does not saturate at the positive end at altitudes up to 20,000 feet, it also makes certain that the voltage across the 10uF capacitor, C1, is never more than $\pm 0.25 \mathrm{~V}$ at switch on. Too large a voltage across this capacitor at switch on would cause too much dielectric absorbtion and hence too long a warm up time. The resistors in this stage are all best quality metal film in keeping with the low flicker noise requirement.

A crude guard track is used around the input pins of the op-amp. The principle of a guard track is that sensitive high impedance points or tracks in a circuit can be surrounded by a low impedance guard track at the same potential. Because there is no potential difference across the PCB surface, noleakage takes place and hence noise caused by leakage is reduced. Here, the potential on
the guard track is set by the divider chain R5, R6 at about 1 V , approximately the same potential as that on the inputs.

IC3 is configured as a differentiator. The effective gain of the stage is set by the product of C1 and R10, which is why both are as large as practicable. Both C1 and C2 must have polyester dielectric or better. A guard track is run around IC3 inputs and also around R9, and since the voltage at the inputs never exceeds a few millivolts, a track connected to signal ground is very effective. The 75 k resistor $\mathrm{R9}$ and the 0.22 uF integrating capacitor C 2 fix the response time of the vario. This is also referred to as damping. Using the values given the response is quite fast.

The final amplifier, IC4, is an inverting amplifier providing a gain of typically X200 to bring the climb signal up to the $\pm 1.25 \mathrm{~V}$ output. RV2 adjusts the gain between X100 and X330 to enable scale calibration to be set. RV1 sets the zero, nulling the offsets from both IC3 and IC4, and also has sufficient adjustment range to swing the output plus or minus full scale when testing the audio section. A guard track connected to the signal

WORKS

ground is run around IC4 inputs. C3 quietens any noise picked up after the differentiator which would otherwise cause a ragged turn on of the audio.
The output of IC4 drives a $\pm 50 \mathrm{uA}$ panel meter as well as the audio. The 1 k resistance in parallel with the meter coil (which also has a resistance of 1 k) is necessary to add damping to the meter movement itself. A gain of X 2 is provided by the first half of IC7, an Intersil 7621 CMOS op-amp whose output will swing all the way between its supply rails. The other half of IC7 is wired as a non inverting Schmitt trigger switching at a threshold equivalent to 33 feet per minute, which is set by R18 and R19. R20 and R21 provide positive feedback to implement the Schmitt trigger action with a small amount of hysteresis. The output, again switching fully between the supply rails, is routed via D1 to inhibit the tone oscillator unless the climb signal is above the threshold.

Two CMOS 555 s configured as VCOs are used, one for the interrupt running at 2 to 4 Hz and the other for the tone running at 330 to 660 Hz . Both are voltage controlled over an octave. C5 charges through R24 and R26 and C8 through

R25 and R27 until pins 2 and 6 reach two thirds of the 555 supply voltage (2.5 V). Pin 7 then discharges C5 through R26 and C8 through R27 until pins 2 and 6 drop to one third of the 555 supply, when the IC removes the discharge through pin 7 and alllows the capacitor voltages to rise again, continuing the cycle. The VCO action arises because the higher the voltage to which R24 and R25 are returned, the faster will be the charging rate on the long cycle.

The output of the interrupt oscillator IC8 drives into the RESET pin of the tone oscillator IC9. More tone than interrupt is allowed through by making the interrupt oscillator mark/space ratio uneven. Provision has been made for padding the interrupt oscillator VCO capacitor C5 with C6 and C7. This is important as the interrupt frequency must be 2 Hz or a little less to sound right to the ear.

Q1 acts as a level changer to bring the signal level up to 9 V . Because the base drive resistance is high, a small capacitor (C9) helps Q1 turn off more quickly by dumping a charge into the base when the drive switches from a high to a low state. Reasonably fast rise and fall times remove the risk of oscillation in the

CMOS 4049 buffer. The risk is further reduced by specifying a suffix UB part. Volume control is provided by supplying both the buffer IC10 and Q1 from a $4 k 7 \log$ pot across the 9 V supply.

The very efficient piezoceramic sounder used gives maximum volume at around a few kHz . To get the loudest sound, IC9, the tone oscillator, generates a very uneven mark/space ratio signal running at a fairly low frequency, but which is very rich in harmonics. Although the oscillator runs from 330 to 660 Hz , its output consists of pulses only 250 uS wide. The sounder is connected between the input and the output of the second inverter in IC10. It is thus driven in a complement ary mode which effectively doubles the battery supply voltage and significantly increases the sound power.

Alkaline PP3 sized 9 V batteries are used in the Vario giving about 40 hours of life. The 9 V is regulated to 5 V with a 78L05A regulator IC6, while IC5 provides a split rail to act as signal ground. A 100 uF capacitor ($C 4$) decouples the 9 V input lead if necessary.

We want to resolve to $\pm 20 \mathrm{tpm}$ or $\pm 2 \%$ of FSD. In other words, the random flicker observable on the pointer due to noise should be hardly noticeable. Bearing in mind the bandwidth of $D C$ to 1 Hz , total noise referred to the transducer output must be kept to a fraction of a microvolt. If the working frequency band was in the audio or RF spectrum, this would be quite easy. There we would only have thermal and shot noise to deal with and over a 1 Hz bandwidth these would be insignificant. However, down at the bottom end of the spectrum, below a few Hz , the lesser known phenomenon of flicker or $1 / \mathrm{f}$ noise dominates. $1 / \mathrm{f}$ noise' is so called because its amplitude is inversely proportional to frequency; it seems to be caused by discrete jumps in conductivity but very little information is available. Experiments showed that PCB surface leakage contributed very large pulses of this noise but at intervals of one or two minutes.

Noise in the vario originates from the regulator, the transducer, the first op-amp, the resistors in the first amplifier, and from PCB surface leakage around the differentiator. Attention must be paid to all of these as noise from any one can be sufficient to swamp the others. A number of different parts from various manufacturers have been tried in the circuit and the regulator, transducer and opamps specified in the parts list have been found to give the best noise performance. Similarly, several different types of resistor
were tried but metal film proved the most appropriate, offering less noise in this band than the supposedly less noisy thick film types, for example. Finally, the problem of noise caused by PCB leakage has been tackled by placing guard tracks around sensitive points on the PCB.

Damping (or what is often mistakenly called 'sensitivity') is a damping down of the speed of response by limiting the circuit bandwidth. Sailplane pilots seem content with quite heavy damping and consequent sluggish response. Hang glider pilots like a fairly light damping, but again, too little damping can be very annoying. Every little bump of lift and bit of turbulence in the air causes the vario response to be all over the place and the reading is very difficult to interpret. Accordingly, the damping used in this design has been set at a value as light as is consistent with a reasonably satisfactory integration of the irrelevant bumps and turbulence. Or, to put it another way, damping is added until the point just before a lag becomes noticeable in the vario response. As it happens, this coincides quite neatly with the bandwidth constraint imposed by circuit noise.

The last requirement, for a stable zero, is probably the most important. It does not matter so much if one is climbing at an indicated 400 fpm when the real climb rate is 600 fpm . The 200 fpm difference could be due to a calibration scaling error of 30%, a

Device	Manufacturer	Comments LX0503A
	Sensym	Cheapest 0-15 psitransducer available. Used to be manufactured by National Semiconductor
MPX100A	Honeywell	Very variable quality
134 P(15A1	Foxboro	
1800-01-33-00B-0	Kulite	
PTQ-H-360 A	H.W. Keller-Druck	Top quality, very expensive.
PAA-2-1		

Table 1 Basic 0-15 psi pressure transducers available in this country.

zero shift of plus 200 fpm . If the former, then a true 100 fpm sink will show as 60 fpm sink on the vario. Again, not too bad. But if the error is due to a shift in the zero, then a true 100 fpm sink will show as 100 fpm lift on the vario for the same 200 fpm difference - a totally different and unacceptable situation. Drift of the zero can be considered in two parts - drift originating before the differentiator and drift originating after the differentiator. Clearly drift originating before the differentiator only shows through to the output while the drifting is actually taking place. Therefore an advantage is gained by placing as much gain as possible before the differentiator, the limit being set by the allowable swing at the transducer buffer opamp output. Further, since the differentiator op-amp gain is X1 so far as offset drift is concerned, regardless of the effective gain in the differentiator circuit, a further advantage is gained by making the differentiator gain as large as is practicable. The limit is set by the maximum physical size of polyester dielectric capacitor which can be accommodated and the maximum differentiator feedback resistor which is considered acceptable. The gain of the last stage is then the figure by which the offset drifts in both the differentiator and final amplifier opamps should be multiplied. In this circuit, the final stage gain is 250 . The sources of drift before the differentiator are the op-amp and the transducer. The op-amps used have been chosen for their low offset drift as well as their low noise performance, and the transducer specified has an internal $V_{b e}$ multiplier which provides at least coarse nullification of the temperature drift in the measuring bridge. This still leaves some nonlinear drift in the transducer, but correcting this would require far more complex circuitry and a lengthy setting-up procedure, and in practice the level of drift remaining is quite acceptable.

Next month's concluding article will contain full constructional details and an extended Buylines giving advice on where to purchase the components.

Fig. 5 Internal construction of the transducer element.

Please send me the books indicated. I enclose cheque/postal order for f.......... Prices include postage and packing

I wish to pay by Access/Barclaycard. Please debit my account.

\square

\qquad
\qquadMicrocomputer Interfacing Handbook A/D \& D/A Carr
\qquad
30 Computer Programs for the

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES

GSC SUPERKIT $£ 19.90$

Learn the wonders of digital electronics!

This practical kit for beginners comes complete with an instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The course needs no soldering iron; the only extra you need to buy is a $4 \frac{1}{2} \mathrm{~V}$ battery.
Using the same board you can construct literally millions of different circuits.
The course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders.

It is supported by our theory courses
 DIGITAL COMPUTER LOGIC £7.00

which covers: basic computer logic; logical circuit elements; the design of circuits to carry out logical functions; flipflops and registers; and

DIGITAL COMPUTER DESIGN
 $£ 9.50$

Our latest, most up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Other courses available include:
MICṘOPROCESSORS \& MICROELECTRONICS @ £6.50 COMPUTER PROGRAMMING IN BASIC @ £11.50
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt. CAMBRIDGE LEARNING LIMITED, UNIT 17 RIVERMILL SITE, FREEPOST, ST IVES, CAMBS, PE17 4BR, ENGLAND. TELEPHONE: ST IVES (0480) 67446. VAT No 313026022 All prices include worldwide postage ('airmall is extra please ask for prepayment invoice). Giro A/c No 2789159. Please allow 28 days for delivery in UK.
...... SUPERKIT(S) e £19.90
......SUPERKIT(S) £ £19.90
...... DIGITAL COMPUTER DESIGN(S) © $£ 9.50$
......DIGITAL COMPUTER LOGIC @ £7.00
I enclose a *cheque/PO payable to Cambridge Learning Ltd for $£$. (*delete where applicable)
Please charge my
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trustcard
Exprry Date.............. Credit Card No
Signature..
Telephone of ders from card holders accepted on 048067446 Overseas customers (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number

Address...

[^1]T.V. SOUND TUNER SERIES II BUILT AND TESTED Complote with cose. £26.50 + £2.00 p\&p.
In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over
is "Will anyone notice if
we save monev by chopp
ing this out?" In the domestic TV ser, one of the first casualties seems to be the sound quality. Small speakers and no tone controls are common and all this is really quite sad, as the
 TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your Hi-Fi is a must for quality
reproduction. The unit is mains-operated. This TV SOUND TUNER offers full UHF
This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in conjunction with your video recorder. Dimensions $101 / 2^{\prime \prime} \times 712^{\prime \prime} \times 212^{\prime \prime}$.
$E T$. 1 kit version of above without chassis, case and hardware $£ 16.20$ olus $£ 1.50$ p

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT

 ONLY £ $\mathbf{3 4} \mathbf{5 0} 5$ plus $£ 2.75 \mathrm{p} \& \mathrm{p}$. - NOISE REDUCTION SYSTEM. * AUTO STOP. TAPE COUNTER. SWITCHABLE E. Q. INDEPENDENT LEVEL CONTROLS - TWIN V.U. METER. - WOW \& FLUTTER 0.1\%. RECORD/PLAYBACK I.C. WITH VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPESKit includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts.ie. semiconductors.
ransformer.

Auto-Changer model - takes up
to 6 records with manual ov
ride. Supplied with stereo ride. Supplied with
 3 speed, auto, set-down. with
auto return. Fitted with vis. cous damped cue, tubular aluminium counter-weighted arm fitted with ceramic head. Ideally suited for home or discouse. $£ 17.50$ plus $£ 175$ p\&p
Manual single play record deck
with auto return and cueing
ever. Fitted with stereo cera-
mic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco
$13^{\prime \prime} \times 11^{\prime \prime}$ approx f14 95 f

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with P.E. July '81). For ease of construction and
alignment it incorporates three Mullard modalignment it incorporates three Mullard mod ules and an I.C. IF System. Front scale size $101 /$ ' $^{\prime} \times 21 /{ }^{\prime \prime}$ approx. Complete with diagram
and instructions and instructions

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, guitar amp power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition A targe safety margin exists by use of generously rated components, result, a high powered rugged unit The PC board is back printed, etched and ready to drinum chassis is preformed and ready the use Supplied with all parts, circuit diagrams and instructions.
Accessories: Stereo mains power supply kit with trans. $£ 10.50+£ 2 p \& p$. Mono: $£ 7.50+£ 2 p \& p$.

HI-FI SPEAKER BARGAINS

AUDAX 8" $^{\prime \prime}$ SPEAKER $\mathbf{f 5 . 9 5 + £ 2 . 2 0 p \& p . ~}$ High quality 40 watts RMS
bass/mid. Ideal for either bass/mid. Ideal for either features an aluminium voice coil and a heawy 70 mm dia magnet. Freq. Res.: 20Hz to 7 kHz . Imp.: 8 ohms.

AUDAX 4OW FERRO.FLUID HI-FI TWEETER Freq res.:
$5 \mathrm{KHz} \cdot 22 \mathrm{KHz}$ Imp. 8 ohms 50 mm sq. $£ 5.50+60 \mathrm{p} p \& \mathrm{p}$.

GOODMANS TWEETERS 8 ohm

soft dome radiator tweeter (3 use in systems up to 40 W .
for £3.95 ea $+£ 1$ p\&p. £6.95 pr $+£ 1.50$.
All mail to: 21 E HIGH ST, ACTON W3 6NG Callers: Mon-Sat 9.30-5.30. Half day Wed. Access phone orders on 01.9928430 . Note. Goods despatched to U.K. postal addresses oniv.
All items subiect to avaisbility. Pricas All items subiect to avalsoility. Pricas carrect a Please sllow 14 working days from recelpt of orde tor despateh. RTVC Limited rasarve the right to up.
date their products without notice. All enquiries send date their products without notice. All mquiries send
SA.E. Tefeph one or mail orders by ACCESS welcome

SPECIFICATIONS:
Max. output power (RMS): 125 W . Operating vol tage (DC): 50-80 max. Loads: 4. 16 ohm . Frequency response measured@ 100 watts (2) 47 K . Typical T.HD@ 50 watts 4 ohms. 0.1% Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

KIT $£ 10.50$ BUILT $£ 14.25$

+ f 1.15 p\&p.
+£ 1.15 p\&
MONO MIXER AMP
Ideal for
halis and

50 Watt
pickups (Cer. or maal) 2 mixed inputs for 2 phones and 2 auxag), 2 moving coil microetc. Eight slider convols - 6 ror level and 2 for master bass and treble 4 extra treble controls for mic and aux inputs. Size: $131 /{ }^{\prime \prime} \times 6 \%_{2}^{\prime \prime} \times 3 \gamma_{4}^{\prime \prime}$ app. Power output 50 W RMS (cont.) for use with 4 to 8 ohm speakers. Attractive black vinyl case with marching fascia and knobs. Ready to use.

CALLERS TO 323 EDGWARE ROAD,
LONDON W2. Telephone: 01-723 8432
$(5$ minutes walk from Edgware Road Tube Station)
Now open 6 days a week $9-530$.
Now open 6 days a week $9-530$. Prices include VAT.

DESIGNER'S NOTEBOOK

Signals come and go, but sometimes you want to hang on to them for a while. Joe Pritchard shows how it can be done.

Let us start this article with a definition: a sample and hold circuit is used to obtain a discrete value that represents an analogue signal at a particular instant in time. It samples the signal, and then, on a given command, holds the value that the signal posessed at the instant of interest. These circuits have found use in many different areas of electronics where it is necessary to take a "snapshot" of a signal at a particular instant.

We'll first look at these circuits from a theoretical point of view, examining an ideal circuit. At its simplest, a sample and hold circuit consists of some means of holding the voltage, and some means of connecting this storage element to the signal of interest when we want to sample the signal. Figure 1 shows us an ideal sample and hold circuit, in which we have an electronicallycontrolled switch to connect the capacitor, our storage element, to the input signal when we wish to sample the input. On opening the switch, the capacitor holds the voltage that was present at the input the instant the switched was opened. We shall call the input voltage $V_{i n}$ and the impedance of the souce $R_{\text {sur }}$. The sample period is the length of time for which the switch is closed and the hold period is the length of time the switch is open.

Fig. 1 Ideal sample and hold.
When we initiate a sampling period by closing the switch, the following happens. After the switch is closed, ignoring the on resistance of the switch, the circuit approximates to that in Fig. 2. As you can see, we now have a simple RC circuit in which the capacitor is charged up via the source impedance $R_{\text {tint }}$. The output voltage, V_{0}, will rise as an exponential with a time constant of $R_{\text {c, }} C_{\text {; }}$; mathematically, this is:

$$
V_{a}=V_{m i}\left(1-\exp \left(-t / R_{c u t} C\right)\right) \ldots \ldots . . \text { Eq. } 1
$$

where t is the time between the start of sampling and the instant at which we are measuring V_{t}. The practical significance of this is that we allow the sampling period to get longer and longer, then V_{n} becomes closer and closer in value to the input voltage.

If we allow the sampling period to carry on for five time constants, V_{0}, attains a value that is within 1% of the

Fig. 2 The effect of the source impedance.
value of $\mathrm{V}_{\text {in }}$: this is shown in Fig. 3. Obviously, extending the sampling period leads to the value of V_{0}, becoming even closer to V_{in}, and after nine time constants the output voltage is within 0.01% of the input voltage.

Fig. 3 The effect of the source impedance.
The time required for the output to approximate to the input to within a given percentage accuracy is called the acquisition time for that particular accuracy and that particular sample and hold circuit. In the above example, the acquisition time for 1% accuracy is five time constants, and nine time constants for 0.01% accuracy.

So, to recap on the sampling state. While the switch is closed and sampling is occurring, V_{0}, will follow $\mathrm{V}_{\text {in }}$ to a certain degree of accuracy after the acquisition time has expired: this state of affairs is shown in Fig. 4. We'll now go on to examine what happens when the switch is opened and the circuit performs the hold function.

Fig. 4 The acquisition time.

Fig. 5 Aperture time.

Holding On

The first thing to note is that the input voltage, and its impedance, in theory no longer have any effect on the capacitor, due to the switch being open. In reality there is a slight delay in between the hold condition being initiated and the switch actually opening. This time is called the aperture time and during the output voltage will still follow the input: this is shown in Fig. 5. The aperture time is a function of the circuitry used to perform the switching and we'll look at it in greater detail when we go on to look at the practical implementations of these circuits.

In addition to the aperture time there is the settling time, which is the time taken for the output to attain a value approximating the input voltage at the instant that the hold was initiated. The settling time also depends upon the the degree of accuracy needed.

Once the hold state has been set up, with the capacitor isolated from the input voltage, then in the ideal situation with a perfect capacitor, the capacitor would retain the charge indefinitely. However, as nothing is truly perfect, the charge stored on the capacitor gradually leaks away and the held voltage falls. This decay is prosaically known as the droop rate and depends upon the capacitor value and the current that leaks through it. Mathematically,

$$
\begin{equation*}
\frac{d V_{0}}{d t}=\frac{\mathrm{l}}{\mathrm{C}} \tag{Eq. 2}
\end{equation*}
$$

where I is the leakage current, C is the capacitor value and $d V_{1} / d t$ is the rate of change of the output voltage.

The leakage current in the circuit under consideration would be purely due to the leakage through the capacitor itself. However, in practical circuits, this current can leak away through othercircuit elements. So, the output voltage will be constantly falling, at the droop rate, during the hold period.

Building Blocks

Let's now look at some of the basic building blocks that we'll use to build a sample and hold circuit out of discrete components. The first circuit element that we'll consider is fundamental to the whole operation - the electronically controlled switch.
FET Switches: field effect transistors are obvious candidates for the job of an electronic switch due to their high resistance when they are not turned on, and their low on resistance of between 30 and 200 ohms . MOSFET's are also used in this role (Fig. 6). However, these devices have drawbacks at high frequencies due to the capacitance that is inherent in them due to their construction. This stray capacitance, which is often between 20 and 50 pF , reacts with the on resistance of the switch to give a low pass filter, thus limiting the input frequency

Fig. 7 (right) Diode switch.
that the switch can handle. If we do the sums, it turns out that the top limit of these FET switches is around 20 MHz . This is ample for most cases, however. The aperture time of these switches is about 100 ns .
Diode array switches: diode arrays can be employed to give fast switching combined with short aperture times. The capacitance of these arrangements tends to be lower than that for the FET switches. Atypical diode array switch is shown in Fig. 7. A voltage applied across the $V_{s w}$ terminals will lead to the diode array switching.
CMOS switches: these use the sort of switches found in the 4016 package. They have a low on resistance of between 30 and 50Ω and have the advantage that they can be driven directly from CMOS chips used to implement the control logic of the sample and hold circuit. Other switching devices, such as relays, have been used in this role, but their obvious limitation is their low speed and high aperture time. Both of these parameters are due to the fact that these devices are mechanical.

We'll now go on to look at how we might implement sample and hold functions, firstly by using 'standard' devices, such as operational amplifiers, and then by using integrated circuit packages designed specifically for the purpose. Figure 8 shows what is almost a classical design for a sample and hold circuit utilising op-amps. This circuit still has the essential components of the ideal system but we now introduce the additional components to do some signal conditioning on the input voltage and some isolation of the capacitor from the circuitry connected to the output.

The amplifier IC1 is connected as a unity gain amplifier, and it serves to take the input signal and provide a copy at the input to the switch that is identical but with a lower impedance. This impedance is the parameter $R_{\text {out }}$ in the first system we considered and we saw there how it is desirable to minimise this value. The switch in this circuit could be one of those found in a 4016 package.

The capacitor used here is a compromise value, as there are conflicting design factors. From the equation describing the droop rate, Eq. 2 , a large value capacitor will minimise droop. However, if the capacitor is too large, it will reduce the maximum frequency at which the sample and hold circuit can operate, by acting as a low-

Fig. 8 A basic sample and hold circuit.
pass filter in conjunction with $R_{o u t}$ and the on resistance of the switch, and a large capacitor here will increase the acquisition time for a given percentage accuracy by increasing the value of the time constant of $R_{\text {out }} C$. Thus for the circuit to be able to follow high frequency signals it is necessary that the capacitor should be fairly small.

An alternative to a large value of capacitance to minimise droop is to use some means of reducing the leakage current, I. It is best to stay clear of using aluminium electrolytic units in this role, as they have a very poor performance due to their relatively high leakage. Polyester, polypropylene and tantalum units can be employed here, depending upon the value of capacitance chosen.

Another source of leakage across the capacitor comes from whatever circuit element the capacitor 'looks into' when the switch is open. In this case, it is the input of an operational amplifier in a configuration that offers a high input impedance and so a low leakage. By putting this amplifier in the circuit, we give the capacitor a standard output to which any circuitry may be connected without increasing the droop rate. The op-amp used for IC2 should thus have a low input bias current, and this parameter is always given in the data sheets for such a device. The input bias current is the minimum required by the operational amplifier for correct operation. If the figure quoted is large, then the droop rate will increase. Thus we must have a good quality amplifier at this point in the circuit and operational amplifiers with JFET inputs are often used here due to their low input bias currents. This makes it possible to chose the value of the capacitor to suit the frequency requirements of the circuit rather than the droop rate requirements.

A final consideration that we must make is the amplifier IC1. It must be able to follow the input signal that is applied to it, and supply a copy of this input to the switch. The frequency characteristics of the circuit are thus dependant upon the characteristics of IC1 as well as the capacitor. The first parameter of the operational amplifier that we must look at here is the slew rate of the amplifier, a value that determines the frequency response of the device. This is best described in Fig. 9 , which shows what happens when an input of sufficient magnitude to drive the output of the amplifier in to saturation is applied very suddenly. Note how the output takes a finite time to assume the final output voltage level. The slew rate is rate at which the output rises, usually quoted in volts per microsecond.

Obviously, if this parameter is fairly small, the output voltage will take a longer time to stabilise than if it were quite large. High speed amplifiers have high slew rates, such as $100 \mathrm{~V} / \mu \mathrm{s}$. The unit we choose for IC1 should have a slew rate that is appropriate for the signals under consideration.

Another parameter of IC1 that is important for satisfactory operation of the circuit is the ability of the output to provide current. In charging the capacitor during the sampling period, the amplifier will have to provide a charging current of

$$
\begin{equation*}
J=C \frac{d V}{d t} \tag{Eq. 3}
\end{equation*}
$$

Fig. 9 Op-amp slew rate.

If the rate of change of voltage is quite large, a state of affairs that is not rare when we have a rapid sampling rate or a rapidly changing input signal, the current required can be considerable. Amplifiers used in this position in the circuit can suffer a rise in temperature.

It is often the current sourcing ability that limits the slew rate of the system as a whole. Consider an amplifier driving a signal changing a $10 \mathrm{~V} / \mu \mathrm{s}$ into a $100 \mathrm{nF} /$ capacitor; the current it must supply is 10 mA .

It is the lower of the two slew rate parameters (op-amp slew rate and current supply capability) that limits the frequency operation of the circuit. The maximum current that an operational amplifier can source can be found in data sheets for the device in question.

Fig. 10 Alternative sample and hold circuit.
Figure 10 shows an alternative connection of the operational amplifiers, but the principles outlined above still hold; however, this altemative connection minimises the effects of the op-amp's offset voltages.

Before we go on to see some general rules of thumb about op-amp based sample and hold circuits, a few words about the rate of and length of sampling. The first point to make is that the sampling period should be longer than the acquisition time of the system, so that when sampling takes place, for most of the sampling period the output voltage into the capacitor follows the input voltage with reasonable accuracy. If the sample period is shorter than the acquisition time then the output at hold will not be an accurate representation of the input. With regard to the rate of sampling, if the aperture time is longer than the time interval between separate samples being taken, then again inaccurate results will be obtained. To be quite safe, you should allow a good deal longer than the aperture time between samples.

Choosing Devices

First of all, which amplifiers should we use? For IC1 in the circuit we have considered, the main requirements, as we' ve seen, are high slew rate and good current sourcing ability. The LM318 and the LF351 are both possible choices here. The ubiquitous 741 is not usually useful in this role as it has a low slew rate. The equally popular LM324 suffers from the same problem, but both of these devices can be used in low frequency applications as they have good current sourcing ability.

With regard to the switch used, this really depends on the speed of sampling that is to be used. For many applications, CMOS switches are quite adequate. The rate of sampling and the sample period can both be controlled by suitable astable and bistable circuits, or via signals from a microprocessor.

The value of the capacitor used should be chosen for the acquisition time required, as we can minimise droop effects by careful choice of the final op-amp. If a small acquisition time is needed, which would be the case if we were sampling a rapidly changing signal, then the capacitor should be small.

The main requirement of the final op-amp is that it should have a low input bias current. Devices that come
into this category are the LF356 and the LM308. The more common op-amps such as the 741 could be disappointing due to their relatively high bias current.

Some Practicalities

Figures 11 and 12 show practical versions of Figs. 8 and 10 due to Texas Instruments which is why they both use TI devices. Figure 11 uses two P-channel enhancement FETs to produce a very high degree of isolation between the capacitor and the input buffer IC1. Obviously, PCB lay-out can enhance the isolation still further, and conversely poor lay-out can degrade it. If the value of C1 is chosen to be $1 \mu 0$, then the maximum drift should be around 0.2 mV per second.

Fig. 11 (above) Practical sample and hold circuit.
Fig. 12 (below) Low offset sample and hold circuit.

Fig. 12 is a high-accuracy sample and hold; since IC2 is within a closed loop, the effect of its offset voltage is negligible. IC1 is chosen to be a type with a very low offset voltage, maximum 0.5 mV at 25 degrees centigrade. Components C1 and R3 are to improve loop gain in the sampling mode. The one problem with this circuit is that during hold, DC feedback to IC1 is removed and it will saturate. It is therefore important to chose Q1 to withstand this possibility. Alternatively, a second FET could be put in parallel with C1 so as to provide feedback when $Q 1$ is ott.

The LM398 is a ready-made unit and its internal circuitry is very similar to the configuration that we have looked at in this article, with the difference that the capacitor is an external component to the chip. This device makes the construction of a simple sample and hold circuit much more straight forward. A typical configuration is shown in Fig. 13. The signal that is being sampled is put in to pin 3 of the device, and the output is taken from pin 5. C_{1}, is the capacitor that stores the voltage at hold, and the value of this capacitor is best

Fig. 13 A ready-made unit, the LM398.

Fig. 14 Choosing the capacitor value for Fig. 13. estimated from the graph in Fig. 14. Taking pin 8 to a logic 1 , say 5 volts, will cause sampling to take place, and restoring it to a logic 0 will cause a hold state to ensue.

A capacitor of a value of 1 n 0 will give a settling time of around $5 \mu \mathrm{~S}$, indicating that after this time after sampling has starte da voltage will be available at the output. Thus after this time you can hold and get an accurate result. This device has found use in analogue to digital conversion systems where it is used to hold a typical value of a rapidly varying analogue signal long enough for digitisation to occur to the desired degree of accuracy.

Uses

With regards to applications, the field of computer interfacing is the most obvious. In an analogue to digital conversion system, the circuit would sample the input and then hold it until conversion had occurred. Obviously, the device used would need to be fast enough to follow the input, but would also require a droop rate which was low enough to allow the conversion to occur before the voltage held on the capacitor had decayed substantially. In this type of application we would be using the sample and hold circuit to make it possible for a relatively slow analogue to digital converter provide values of a fast moving waveform at regular intervals. Without the sample and hold circuit, the input waveform would have changed before conversion was complete, thus giving an inaccurate reading.

Digital instrumentation is a similar field of application. Electronic synthesisers also utilise them, enabling complex electrical signals to be used to control voltage controlled amplifiers, filters and oscillators.

Slightly modified sample and hold circuits are also used in circuits known as "peak pickers". These circuits continuously sample the input signal but have as their output a value representing the highest signal that they've experienced within a given time. The output voltage shows droop, but these circuits find use in estimating rapid transients that have occurred in circuits. Figure 15 shows one peak picker, due to TI.

NOTE
IC1 IS TLOB2C
D1 IS $1 N 4148$
R1 C1TO
R1. C1 TO SUIT APPLICATION
Fig. 15 A simple ${ }^{i}$ peak picker' circuit.
I hope that this article has given you some insight into the sample and hold circuit - a circuit that is finding new applications in the field of data conversion.

XK113 MW RADIO KIT
Based on ZN414 CI, kit includes PCB, wound
Betial and crystal earpiece and all components to make a sensitive miniature radio. Size: $5.5 \times$ 10 make a sensitive miniature radio. Size: $5.5 \times$
$2.7 \times 2 \mathrm{cms}$. Requires PP 3 V battery IDEAL

FOR BEGINNERS $£ 5.50$
HOME LIGHTING KITS Theos his contein ell neciestay componsmis ond fu

 $\begin{array}{ll}\text { MK6 } & \begin{array}{l}\text { Oimmer } \\ \text { Transminer for above } £ 4.50 \\ \text { TO300K } \\ \text { Touchdimmer } £ 7.75\end{array} \\ & \end{array}$ TS300k Touenswich $\mathbf{f} 7.75$
TDEK $\begin{gathered}\text { Extension kit for } 2 \text {. Way } \\ \text { switching tor } T D 300 \mathrm{~K}\end{gathered} \mathfrak{£ 2 . 5 0}$ LD300k Fotary Conteolled $£ \mathbf{~} 3.95$ Rotary
Dimme

DVM/ULTRA SENSITIVE THERMOMETER KIT

metar conly a few adoritional to-
 $20 a d i n g$ to $01: C$. The pasic kit has a senstivity of 200m, dication and an ultra iow iow iower reauirement a 2 year ryical batiory life from a standard gV PPF when used 8 hours a day. 7 days a week

Price $£ 15.50$

Now oren COMPUTER SHOWROOM

LCD 31⁄2 DIGIT MULTIMETER
 and rasistance $(0-2 \mathrm{M})+$ NPN \& PNP trentizto gine and diode check. Input impeoance 10 M . Testiests included
ONLY $£ 29.00$

ELECTRONIC LOCK KIT XK 101 This KIT contains a purpose designed lock IC. 10 -way keyboard, PCBs and all components to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 750 mA max Hundreds of uses for domi max. Hundreds or uses for device electronic equipment etc will drive most relays direct Full instruc tions supplied. ONLY £11.50
Electric lock mechanisms for use with latch locks and above kit $£ 14.95$

DL 1000k
This value-for:money
featuras
value.for.money
bidirectional
kit sequence, speed of sequence and frequency of direction change. being variable by means or poleniliometers and
incorporates a master dimming

DLZ100K
£15.95
A lower cost vers sion of the above, taaturing undirectional channel sequence with speed variable by means of a pre-set pot. Outputs switched only at mains zero crossing points Optional opto input DLA1 $£ 8.95$ Allowing autio ("beat")

- light response. $\quad 60 \mathbf{p}$

DL3000K

This 3 channel sound to light kit features zero volloge switching. automatic level control \& builh in mic No Connections to speeger or amp
aquirec No knobs to adjust - simply connect to mains supp'y A lamps. f1295

RSG 13 National
 Qonvention

 National Exhibition Saturday 28th April 10am to 6pm Sunday 29th April 10am to 5pm FEATURING

Lectures on Propagation,
VHF and Microwaves.
Introduction to Amateur
Radio for Beginners
Annual RSGB HF
Convention
Major Exhibition of
Amateur Equipment \& Components.

Forum for VHF and Repeater Enthusiasts. RSGB stand with book sales and representation by many of the Society's committees.
Bigger Flea market as a result of last year's success.

Entrance Fee $£ 2$ (Children $1 / 2$ price) Car Parking Free

UNIVERSAL EPROM PROGRAMMER THE SEQUELTO THE SEQUEL

Some projects just won't lie down - and the EPROM programmer published last year was one of them!

0ne inevitable fact about projects published in electronics magazines is that although they are believed to be 100% functional at the time they are printed, it is obviously not possible to test them as extensively as if they were developed in a true commercial environment. This fact explains how a particular device may often be built as an ETI project for a faction of the cost of a similar commerciał product. For this reason, we very much appreciate feedback from readers about any difficulties they are experiencing with published
projects.
In particular we would like to express our gratitude to Graham Davies for the helpful comments he has made with regard to some problems he was having with the EPROM programmer. As a result of this correspondance we are now able to publish the following amendment to the assembler routine which appeared in January 84.

The 50 mS programming pulse required to program EPROMs is initiated by lines 138 to 142 of the assembler routine and the code on lines 122 to 130 is relied upon to

Abstract

1000 1 ClO IC20 ic30 1 C 40 icso 1 CoO C70 C70 $1 \mathrm{C80}$ 1690 icao icbo icco CDO ICDO ICEO icFo 1D00 IDIO D20 D20 1D30 ID40 iD50 1060 1070 1080 D80 ID90 IDAO iDBO

4C 4C IC 00 OO $00000000000000003 C 3 C \quad 3 C$ $060500010101010100011001120 \quad 96$ ID AD OB IC C9 O2 DO 03 4C BC IC A9 30 8D 25 BC A9 00 $\begin{array}{llllllllllllllll}B C & A 9 & O 0 & 8 D & 20 & B C & A 9 & 3 C & 8 D & 25 & B C & B D & 16 & 1 C & 8 D & 26 \\ B C & 20 & A B & 1 D & 20 & 71 & 1 D & D O & 03 & 4 C & 22 & 1 D & 20 & 26 & 1 D & A D\end{array}$ 5 D 31 IC 9920 BC AO 1 D A2 FF CA DO FD 88 UO FA 09 AD $06 \quad 1 \mathrm{C} \quad 8 \mathrm{D} \quad 20 \mathrm{BC} 4 \mathrm{C} \quad 61 \quad 1 \mathrm{D} A D \quad 20 \quad 3 C \quad O D \quad 09 \quad 1 C$ $8 \mathrm{D} \quad 20 \mathrm{BC} \quad \mathrm{AD} 061 \mathrm{C} \quad 29 \quad 10$ Fo 08 AD 20 BC 0908 8D $\begin{array}{lllllllllllllll}20 & B C & A D & 06 & 1 C & 29 & 08 & F O & 08 & A D & 26 & B C & 09 & 01 & 80\end{array} 26$ 60 E6 35 DO 02 E6 36 EE 051 C DO 03 EE O5 1 C AD 06 IC 29 E7 8009 IC AD 05 IC CD 07 IC DO O6 AD 06 IC $C D$

Fig. 1 The modified hex dump.

turn it off by re-setting up the initial conditions after executing the delay loops and jumping back to LOOPP.

The problem with this method is that part of the initialisation code resets IC1PIA to zero on lines 125,126 . Since this register contains some high order address bits as well as control lines and on some EPROM types this zeroing takes place before turning off the pulse there is a short time when the programming condition still exists and yet the address has been modified to a value in the range 00 to FFH . Although the duration of this condition is nowhere near the 50 mS required to program a location it has been found that the cumulative effect of this happening a number of times can be to overwrite the first 255 bytes of the device.

Although this could probably be cured by changing the order of some of the instructions in lines 122-130, it was considered that a 'play it safe' approach of ensuring that the programming pulse is turned off before jumping back to LOOPP should be adopted. This is done by duplicating lines 138-142 between lines 148 and 149. The modified section of assembler program is shown below together with a new hex dump.

A different problem has been mentioned in connection with using the programmer on machines other than the Microtan. The BBC machine and some others, especially those with disc operating systems, generate

UPDATE : EPROM Programmer

regular interrupts in which zero page locations may be overwritten. Since the software presented for use with the programmer uses two zero page locations, 35 H and 36 H , if either of these were to be accessed in an interrupt routine, then things will obviously go wrong.

The solution here is to re-write portions of the assembler routine to access the data RAM area by some addressing mode which does not require zero page locations. One possible method is to use self-modifying code, or in

138	1 CF 7	AEOCIC		LDX
139	1 CFA	BC3AIC		LDY
140	1 CPD	B920BC		LDA
141	1 DOO	5D311C		EOR
142	1003	$99208 C$		STA
143	1 DOo	AO1U		LDY
144	1 D08	A 2 FF		LDX
143	1 DOA	CA	UEL:	DEX
146	1 DOB	DOFD		bNE
147	1 DOD	8 B		UEY
148	1 DOE	DOFA		BNE
149	1010	a Eucle		LDX
150	1D13	BC3AIC		LDY
151	1 D10	B920BC		LDA
152	1 119	5D311C		EOR
153	1 DIC	$9920 B C$		STA
154	1D1F	4 CCBIC		JMr

other words, arrange for the reads and writes to the data RAM area to be made by absolute addressing, altering the op-codes of the instructions to access the next location each time the INCADD routine is executed.

In practice this would involve the following:

1. Remove all references to ZPLOAD, ZPHIAD and the ZPSWAP routine.
2. Change line 108 to $V V$: CPM VV 111 to RR: STA RR 136 to PP: LDA PP
3. Insert the following code at the start of the routine i.e. line 66.

LDA	LOADR
STA	VV +1
STA	RR+1
STA	PP+1
LDA	HIADR
STA	VV+22
STA	RR+22
STA	PP+22

4. Change the start of the

INCADD routine to the following:
INCADD: INC $V V+1$

INC	$R R+1$
INC	$P P+1$
INC	$R R+1$
BNE	INCROM
INC	$V V+2$
INC	$R R+2$
INC	$P P+2$

INCROM: (as before...)
As a final point, although this doesn't affect the operation of the program, two comments are incorrect in the assembler listing published in January 1984. The following are the correct versions of the comments:
line 44 : $; 0-\mathrm{R}, 80 \mathrm{H}-\mathrm{V}, 1-\mathrm{T}, 2-\mathrm{P}$
line 105 : ;MUST BE TEST - FF?
Fig. 2 The modified section of the assembler program.

FREOUENCY COUNTERS
 LOW COST

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$
* Low Pass Filter
* Battery or Mains
* Setability 0.5 ppm
* Factory Calibrated
* High Accuracy
* 1-Year Guarantee
* 0.5" easy to read L.E.D. Display

3 Gate Times
PRICES (Inc, adaptor/charger, P \& P and VAT)

METEOR 100	$(100 \mathrm{MHz})$	$£ 104.36$	Illustrated colour brochure
METEOR 600	$(600 \mathrm{MHz})$	$£ 134.26$	with technical specification
METEOR 1000	$(1 G H z)$	$£ 184.86$	and prices available on request.

8LACK STAR LTD (Dept. ETI). 9 A Crown Street. St. Ives. Huntingdon. Cambs. PE 17 4EB, England Tel: (0480) 62440 Telex 32339

BASS FOR BEGINNERS

Looking for a way to save money on hi-fi? One way that is still open to the home constructor is to build your own loudspeakers. But what if you haven't seen a design you like? Simple, design it yourself! Barry Porter tells us how to get the bass right.

When it comes to bass loading, most loudspeakers fall into one or two categories - reflex or closed box (often referred to as 'infinite baffle' by optimists, and 'acoustic suspension' by Americans). Although these configurations have been in use for many years, the design processes involved have become clouded with an air of mystery and black magic (no, not the fattening type!) so that many DIY speaker builders believe that they cannot compete with commercial designs unless they have a $10,000 \mathrm{ft}^{3}$ anechoic chamber at their disposal, and, B\&K equipment sprouting from every cupboard.

This need not be the case, and by devoting a modest amount of brain power to the following procedures, anyone with access to a scientific calculator will be able to produce speakers of all shapes and sizes which, as far as bass response goes, will equal similar, manufactured items. Whereas it is not possible to design a complete speaker system without taking frequency response measurements, the intelligent application of manufacturers' information can often lead to a perfectly acceptable result, especially if due allowance is made for it being all your own work (which is good for at least a 6 dB error to go unheard!). As this article is purely about bass loading, the whole subject of crossover networks will be left until another time, and preferably another author.

Reflex Or Closed Box?

You will probably have noticed that some loudspeakers have a hole in their front panels while others do not. One theory says that reflex speakers are produced by those who know how to work out how big the hole should be, whereas those who don't know use closed boxes. While this may have been true a few years ago, some of the most capable, present-day manufacturers base their designs on closed boxes, and some of the most awful speakers available are wrongly aligned reflex systems. So, what are the advantages of one method over the other?

In simple terms, for a given cabinet size and drive unit, reflex loading will give extended bass response with a roll-off slope that is steeper than that obtained with a closed box. Figure 1 shows superimposed lowfrequency response curves for reflex and closed box loading of the same bass driver. At first sight, the reflex response appears to be the more attractive, and this would be the case if the normal listening environment were an anechoic chamber or a ten acre field - arguably not the ideal places for soft lights, sweet music and
whatever else is appropriate to the occasion.
Average sized living rooms tend to be ideally proportioned to reflect a considerable percentage of the low frequency output of a loudspeaker, which interacts in a rather haphazard way with the direct output of the bass unit. As most of this interaction is additive, the effect is to increase the perceived low frequency level, often leading to complaints about larger speakers having LF colouration when used in rooms that are too small for them. In practise, the rather unattractive response of a closed box system may well be modified by the listening room to have a very flat effective output, which is part of the reason that such diminutive speakers as the Celestion SL6 can appear to have a bass output that is out of all proportion to their size.

An important factor in low frequency reproduction is phase shift, which needs to be minimized in order to maintain a good, tight bass sound. The response plots show that a reflex speaker rolls off at 24 dB per octave twice the rate of a closed box. This higher order of attenuation is accompanied by increased phase shift and its associated transient overshoot and ringing.

A combination of these factors often means that a relatively small closed box unit will exhibit a much better

Fig. 1 Comparison of reflex and closed box responses for similar sized speakers.
bass sound than a much larger reflex design. Of course, this does not mean that reflex speakers should be condemned out of hand, as many superb examples do exist, but those that have proved successful under normal, domestic conditions, have usually been of moderate size - the Spendor BC1 being a classic specimen.

So, it really is a case of"suck it and see", but as a'do-ityourselfer', you have the advantage that you can tailor your speakers to meet your individual requirements, even to the point of introducing a reflex vent to a closed box, or of filling one in, with no infringement of anyone's guarantee. As a guide, the best sized units for a typical 1500-2000 ft^{3} living room appear to be based on a 200 mm bass driver in a 20-40 litre closed box. Larger rooms or a liking for music with plenty of bass content is when 300 mm drivers in 100 litre reflex cabinets come into their own.

There are several directions from which speaker design can be approached. A manufacturer can decide upon a cabinet size then design a bass unit to meet the system requirements. This is obviously out for the home constructor unless he has taken up unit construction so the design process has been based on the drive unit parameters being fixed while the enclosure dimensions are variable.

Choosing A Drive Unit

Having decided upon a bass driver size, the main factors governing the actual units to use are likely to be:
1 price;
2 availability;
3 continuity of supply (in case you damage a unit in 1987);

4 availability of technical information;
5 electrical \& mechanical parameters, cone material, etc;
6 manufacturer's reputation;
7 maximum power handling;
8 appearance;
9 performance of available systems using the unit.
Most of these points are self-explanatory, and most drive units supplied by reputable manufacturers should be worthy of consideration. Whether you settle on a particular unit or decide to produce theoretical designs for a number of contenders, the following parameters must be obtained from the manufacturer:
$\mathrm{f}_{\mathrm{s}} \quad$: Free air resonance of driver (Hz)
$\mathrm{Q}_{\mathrm{Ts}} \quad \vdots$ Total Q of driver at f_{S}
$V_{\text {AS }} \quad \therefore$ Suspension compliance of driver (litres)
With this information at hand, you can claim your rightful ownership of the ZX81 (remind your offspring who paid for it) and design either a reflex or closed box enclosure, calculating the frequency response to an accuracy of about 1 dB , by following the simple procedures detailed here. In order to help you check your calculations, examples based on a typical 200 mm bass unit will be given at each stage. This unit will be assumed to have the following specification:
$\begin{aligned} \mathrm{f}_{\mathrm{S}} & =27 \mathrm{~Hz} \\ \mathrm{Q}_{\mathrm{TS}} & =0.37 \\ \mathrm{~V}_{\mathrm{AS}} & =90 \text { litres }\end{aligned}$

Reflex Design

Each drive unit has an optimum reflex cabinet internal volume given by:

$$
V_{B}=20 \mathrm{~V}_{\mathrm{AS}} \mathrm{Q}_{15}{ }^{13}=67.66 \text { litres. }
$$

Just to make life more interesting, we will assume that threat of the introduction of speakers of this size into
your love nest leads to the instant purchase of a one-way ticket back to mother, to you compromise on something smaller - say 40 litres. This will have a -3 dB point of:

$$
f_{3}=f_{S}\left(\frac{V_{A S}}{V_{B}}\right)^{0.44}=38.6 \mathrm{~Hz}
$$

which will be obtained by tuning the box to:

$$
\mathrm{f}_{\mathrm{S}}\left(\frac{V_{\mathrm{AS}}}{V_{\mathrm{B}}}\right)^{0.31}=34.7 \mathrm{~Hz}
$$

It is now possible to plot the frequency response of this unit-box combination. First of all, calculate the following parameters:

$A=$	$\left(\frac{f_{B}}{f_{S}}\right)^{2}$	$=1.6517$
$B=$	$\frac{A}{Q_{T S}}+\frac{f_{B}}{7 f_{S}}$	$=4.6477$
$C=$	$1+A+\frac{V_{A S}}{V_{B}}+\frac{f_{B}}{7 f_{S} Q_{T S}}$	$=5.3979$
$D=$	$\frac{1}{Q_{T S}}+\frac{f_{B}}{7 f_{S}}$	$=2.8863$

For each frequency of interest, define "normalised" frequency, f_{N} as $\frac{f}{f_{s}}$ (in our example at $20 \mathrm{~Hz} f_{N}=0.7407$ and at $50 \mathrm{~Hz} \mathrm{f}_{\mathrm{s}}=1.8519$). The relative response may now be calculated from:
$\left.R(d B)=20 \log \left(\sqrt{f_{N}{ }^{4}}\left(f_{N}{ }^{4}-C f_{N}{ }^{2}+A\right)^{2}+f_{N}{ }^{2}\left(D f_{N}{ }^{2}-B\right)^{2}\right) ~\right)$
Our example gives the following response:

$H z$	$d B$	$H z$	$d B$
20	-18.33	60	+1.15
25	-12.25	70	+1.13
30	-7.68	100	+0.70
40	-1.81	200	+0.19
50	+0.60	300	+0.09

With a programmable calculator or home computer, the above steps may be repeated for different combinations of drive unit and cabinet volume until one is found that has the required response.

Having settled on a final design, the vent size required to tune the cabinet to f_{s} may be worked out. In case you haven't yet discovered it, plastic rainwater, or 'down' pipe is an ideal material for making tuning vents, as it is available in several sizes, and is easily cut and glued into place. It should be obtainable from your friendly local hardware store, but don't arrive on your bicycle and expect to buy a foot of it, as it is normally sold in 6 or 8 foot lengths. (A colleague discovered this, and the accident that ensued when the string holding a length to his crossbar decided to part company with itself was a fair imitation of the morning after at Pearl Harbour.) Tubing with an internal diameter of 75 mm is usually the most useful.

For a given internal diameter $\left(D_{V}=75 \mathrm{~mm}\right)$ the length $\left(L_{v}\right)$ is given by:

$$
L_{v}=\frac{2340}{f_{b}{ }^{2} V_{b}} \cdot D_{v}{ }^{2}-0.731 D_{v}=218.5 \mathrm{~mm}
$$

FEATURE : Bass for Beginners

This is a realistic length, but if the result calls for a vent that is less than 50 mm or longer than, say, 250 mm , it will be necessary to change the tube diameter to obtain a more convenient length. For example, if D_{V} had been 100 mm , L_{v} would be 412.7 mm , which could just cause embarrassment at the cabinet back panel.

This is not the place to go into the details of cabinet construction, but as a general rule, choose three dimensions that differ by at least 20%, keep the width as narrow as possible to minimise diffraction problems and mount the drive units in line vertically and as close together as is reasonably possible. Our 40 litre example could have internal dimensions of: 250 mm wide, 550 mm high and 320 mm deep, giving a total volume of 44 litres. This will be reduced to approximately 40 litres by the internal filling, bracing pieces, etc.

Closed Box Design

For any bass unit, the closed box volume primarily controls the Q of the system, one of 0.707 giving the flattest response without a peak prior to the low frequency roll-off. Some designers tend to aim for a system $\mathrm{Q}\left(\mathrm{Q}_{\mathrm{T}}\right)$ of about 0.5 , as this gives improved transient response and a better phase characteristic. For our example, a $Q_{\text {II }}$ of 0.55 will be the objective.

The total enclosure volume is given by:

We now hit a slight problem. The resonant frequency (f_{5}) of the drive unit is considerably altered by the existence of a cabinet, so until you have built a unit and carried out some measurements, it is not possible to predict its performance. Luckily, speaker design is not a particularly precise art, so a certain amount of guesswork is likely to pass unnoticed. As a starting point, assume that a cabinet giving a Q_{71} of 0.5 to 0.7 will double the free air resonance $\left(f_{5}\right)$ of your drive unit ($f_{S B}=2 f_{S}$). The unit used as an example had an $f_{S H}$ of 48 Hz in a 46 litre enclosure, which is close enough to the assumed 54 Hz for the purpose.

Using this approximation, it is possible to calculate a provisional response curve which will have sufficient accuracy to indicate whether or not the unit-box combination meets your requirements. Once the cabinets are built, it is possible to measure $f_{\varsigma 队}$ and $Q_{I l}$, which will enable more accurate results to be plotted.

The necessary test set-up is shown in Fig. 2. The drive unit impedance is calculated from:

$$
Z=\frac{R}{\left(\frac{V_{i}}{V_{L}}\right)-1}
$$

Fig. 2 Test set up for $f_{S B}$ and $Q_{T C}$ measurements.
and should be plotted over a range of frequencies to produce a curve similar to the one shown in Fig. 3, which was obtained from the driver being used as an example mounted in a 40 litre enclosure. One point to note is that the surround material of many units is very temperature sensitive, so make sure that your unit is at 20 degrees centigrade or slightly above before making any measurements. The resonant frequency may be read directly from the graph, or more accurately calculated as:

$$
\mathrm{f}_{5 \mathrm{~B}}=\sqrt{\mathrm{f}_{1} \mathrm{f}_{2}}=47.6 \mathrm{~Hz}
$$

(f_{1} and f_{2} are shown in Fig. 3). The system Q is given by:

$$
Q_{T C}=\sqrt{\frac{R_{D C}}{R_{M A X}} \cdot \frac{f_{S B}}{f_{2}-f}}=0.505
$$

which is quite close to the original calculated value, but was probably influenced by the measurements being made at 25 degrees centigrade.
It is now possible to estimate the -3 dB frequency from:

$$
\begin{gathered}
\mathrm{f}_{5}=\mathrm{f}_{\mathrm{SB}} \quad\left(\frac{1}{\frac{1}{Q_{\mathrm{T}}}-0.2}\right) \cdot \frac{1}{\mathrm{Q}_{\mathrm{TS}}} \sqrt{\frac{K+\sqrt{K^{2}+4}}{2}} \\
=110.7 \mathrm{~Hz} . \\
\text { where } \mathrm{K}=\frac{1}{\mathrm{Q}_{\mathrm{TC}}{ }^{2}}-2=1.9212
\end{gathered}
$$

Now for the frequency response plot, calculated by:

$$
R=10 \log \left(\frac{f_{N}{ }^{4}}{f_{N}{ }^{4}+K f_{N}{ }^{2}+1}\right)
$$

where f_{N} is defined as:
(see over page)

Fig. 3 Impedance curve used to measure $f_{S B}$ and $Q_{T C}$.

$$
\frac{f Q_{T S}}{f_{S B} Q_{T C}}\left(1-0.2 Q_{T C}\right)
$$

e.g. $20 \mathrm{~Hz}-0.277$
$50 \mathrm{~Hz}-0.692$
our example gives the following response, which should be compared to the reflex response calculated earlier.

Hz	dB	Hz	dB
20	-22.9	60	-7.7
25	-19.4	70	-6.2
30	-16.6	100	-3.6
40	-12.5	200	-1.0
50	-9.7	300	-0.5

Similar rules apply to closed box construction as to reflex enclosures. Needless to say, all joints must be made airtight by a copious application of glue, and internal standing waves should be reduced by loosely packing the cabinet with suitable wadding or foam. Bracing shelves or battens should be fitted to limit panel resonances, which may also be reduced by sticking bitumenous pads to all the inside surfaces.

Finally, for those who are still wondering which drive unit has been used as the example, your suspense is over - it was the KEF B200G, a fine 200 mm unit with high power handling and a smooth response characteristic that makes it useable up to 3 kHz in a two unit design -

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for any one advertiser, so affected. and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties

This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, received as a result of answering such advertisements):
CLASSIFIED ADVERTISEMENTS ARE EXCLUDED. but that's another story that will unfold shortly... ETI

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the adventages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service with in 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

Prices including P\&P and VAT						
VA	Size	$£$				
15	0	7.43	160	Size	5	
30	1	8.08	225	6	12.90	
50	2	10.10	200	7	18.30	
80	3	10.81	500	8	25.55	
120	4	11.73	625	9	31.63	

$\underset{\substack{120 \mathrm{VA} \\ 90 \times 40 \mathrm{~mm} \\ \text { Regulation } 11 \%}}{1.2 \mathrm{~K} 8}$		
$\begin{aligned} & 4 \times 010 \\ & 4 \times 011 \end{aligned}$	$\begin{array}{r} 6+6 \\ 9+9 \end{array}$	10.00 666
4×012	$12+12$	500
4×013	15+15	4.00
4×014	18+18	333
4×015	22+22	272
${ }^{4 \times 016}$	25425	2.40
4×017	$30+30$	200
4×018	35+35	1.71
4×028	110	1.09
4×029	220	0.54
4×030	240	0.50
160 VA		
5×011	9+9	8.89
${ }_{5 \times 012}$	$12+12$	6.66
5×013	15+15	533
5×14	18.18	4.44
5×015	22+32	3.63
5×016	$25+25$	3.20
5×017	30+30	2.66
5×18	$35+35$	228
5×026	$40+40$	2.00
5×028	110	145
5x029	220	0.72
5×030	240	066

Mail Order -- Please make vour crossed cheques ar postal orders payable to ILP Electronics Litd.
Trade - We will open your credit account immediately upon receipt of your first

Post to: ILP Electronics Ltd., Dept. 2
Graham Bell House, Roper Close,
Canterbury, Kent. CT2 7EP
Tel: (0227) 54778 Telex: 965780
For 110 V primary insert " O " in place of " X " in rype number.
For 220 V primary (E .
For 240 V primary (Europa) insert "1" in place of " x " in type numbe
IMPORTANT: A Aequlation. All vol tapes quoted are FULL LOAD.

SUPER-SELECTIVE MUSIC FIITER

Paul Wollover explains how it is possible to electronically preselect what you listen to on the radio.

Most people have distinct preferences as to what sort of music they wish to listen to and probably more so about what they wish to avoid. With this in mind the designer of this project has set out to assist us to be much more selective about our auditory intake with little or no extra effort. In this first part we shall cover the principles of operation and their application to the task in hand.

The main task of this unit is to detect, by some means, when the input signal contains a certain class of sound, in this case a certain type of music. If and when this is found and verified, the module must then take appropriate action, ie, switch over to the alternate source if the input is not desirable

Fig. 1 Block diagram of the system
or switch from the alternate source to the main channel if it is desired. How quickly this should happen is a matter for personal chice but the timing inherent in this design should be suited to most needs. The circuit as shown in the block diagram Fig. 1 illustrates the dual detection units available and how they intereact to get the desired results. The first detection path examines the input signal for multiple glissandos which occur at regular intervals in certain types of 'popular' music. The circuit basically examines the input and triggers when an instrument slides from note to note over an extended period. When triggered, this initiates two gated timed pulse generators and some logic to switch the audio pathways. At the
same time this signal also starts a starts a time out circuit which eventually activates the permanent muting trigger circuit solenoid.

The second detection path examines the input signal for repeated sequences of sub-phrases in which minimal information changes occur. This is performed by a phase-locked loop, to extract the duo-decimal frame reference, and a synchronised digital pitch extractor. The resulting data is stored in a small memory and is compared is obtained, indicating the minimal information syndrome of this type of programme material, then the following coincidence timer will activate the programme switch via the mode switch and gate.

Look into the World of Electronics with the Tele-Scope. 10 MHz storage for less than £100.
Capture those elusive waveforms on your own T.V. Screen. The Tele-Scope converts analogue data to a digital format forstorage in its memory, displaying continuously until refreshed with new data. Build it yourself for $£ 109$ (exclusive of VAT and package and posting), or buy it built and tested for $£ 129$ (excluding VAT and package and posting). Package and posting for either unit is $£ 2.95$.
The manual is available for $£ 2.00$ which is refunded on subsequent unit purchase.
Also available from Hawk are Apple expansion 1/O Cards with 32 channels of controlability, or convert your Apple to an IEEE Controller with GPIB Controller card (interfaces directly in Applesoft!) £59.95 and £189 respectively (excluding VAT)
For more data contact:-
HAWK ELECTRONIC TEST EQUIPMENT

Bircholt Road,
Park Wood Industrial Estate, Maidstone, Kent ME15 9XT. Telephone 0622686811

FREE CAREER BOOKLET Train for success, for a better job, better pay

Enjoy all the advantages of an ICS

 Diploma Course, training you ready for a new, higher paid, more exciting career.Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

Dept EB144
ICS School of Electronic 160 Stowarts Road
London SWB 4UJ
Diwsion of National

0

ADDING COLOUR TO THE ACE

Black and white is boring, so add a little colour (or a lot, if you want) to your computer's life with this project from John Wike. Additional material by Phil Walker.

The two facilities that really enhance the output of a microcomputer are sound and colour. The Jupiter Ace already has sound of sorts and this project provides a means of adding colour to its monochrome display. Eight colours including white and black are available, any of

EDITORIAL COMMENT

It may seem a little strange to publish a project for the Jupiter Ace several months after the manufacturer has gone into liquidation. However, there will be a number of readers around who have Aces, and, moreover, we think that there is a lot to be learned from the techniques and systems described here. We think you will agree with us once you've read this article.
which may be selected as foreground (ink) or background (paper). The circuit is active from switch-on and requires no special software for monochrome operation. Thus programs may be listed, edited and run without the need to keep swapping over aerial leads or operating systems. The board uses the smaller edge connector and contains a RAM (addressed in parallel with the Ace video RAM) to hold the colour information for each of the 768 locations on the screen.

Attributes

Each character written on the screen will have associated with it the current attribute describing its ink and paper colours. To print anything with different colours the current attribute must first be updated. This is easy to implement and software for doing so is given later. The default colours at switch-on are green ink and black
paper. The attribute number is obtained by adding the ink value to the paper value and adding 128 (80h).

Colour	Ink	Paper
Black	0	0
Blue	1	$16(10 \mathrm{~h})$
Red	2	$32(20 \mathrm{~h})$
Purple	3	$48(30 \mathrm{~h})$
Green	4	$64(40 \mathrm{~h})$
Cyan	5	$80(50 \mathrm{~h})$
Yellow	6	$96(60 \mathrm{~h})$
White	7	$112(70 \mathrm{~h})$

About The Ace

The Jupiter Ace video display consists of 24 rows of 32 characters, each of which is selected by storing the required code at the appropriate location in the video RAM. There are 128 character shapes (plus their inverses) available and these are re-definable by the user.

At the rear of the computer

Painting In Colours

To produce on a suitable TV set while still being able to get a good black and white picture from the same input signal, the broadcast authorities have adopted the PAL system for use in the UK. This system operates by retaining a simple amplitude modulated brightness (or luminance) signal which can be used by both colour and monochrome receivers. The colour information is added on to this in a rather complex manner such that it produces a minimum amount of interaction on the screen.

As far as our eyes are concerned, the colour information can be represented by the sum of three 'primary' colours - red, green and blue - in various mixtures. The total brightness effect of the combination is the luminance signal and this is transmitted as such.

The colour information is coded differently. The luminance signal is the weighted sum of all the colour signals and the colour information can be sent in two further difference signals obtained by subtracting the luminance signal from the red and the blue
colour signals. In order to combine these signals with the luminance signal, hey are modulated onto sub-carrier signals. The frequency of the two sub-carriers is the same and has a carefully chosen relationship to the line frequency. The difference between the subcarriers is that they are 90 out of phase with each other. This phase difference is +90 on one line and -90 on the next to reduce the visible effects of phase distortion during transmission. These modulated sub-carriers are then combined with the luminance signal to form the composite video signal. This, together with a separate frequency-modulated sound subcarrier, is then used to modulate the UHF transmitter.

This, then, is what the colour board project is doing (with the exception of the sound part). Incidentally, there are a few other such as synchronising and blanking signals which have not been mentioned but are necessary and are provided by the circuitry on the PCB.

A Typical Video System

For those of our readers not yet thoroughly steeped in the inner
workings of micros from the hardware side, we present a short description of a typical black and white TV style video display.

As far as we can tell from a surreptitious peek inside the case of a Jupiter Ace borrowed for the occasion, there is nothing unusual about the video system used. Fig. 3 shows in block diagram form the main components of such a system.

The first major part to consider is the 1 K of RAM which stores one 8 -bit byte for each character location on the screen. This memory can be written into and read by the processor. By this means information can be updated as necessary.

The next part to consider is the video address generator. This normally consists of a crystal controlled clock oscillator driving a counter chain. The frequency of the oscillator and the division ratio of the counter chain are matched together such that they also provide information at the correct time for line and frame synchronising pulses and for the blanking signals necessary to prevent us seeing the line and frame fly-back traces.

For operation in the UK and several European countries, the line period is $64 \mu \mathrm{~s}(15.625 \mathrm{kHz})$ while the frame period is 20 ms (50 Hz). The line blanking period is nominally $12 \mu \mathrm{~s}$ while the frame blanking lasts about 4 ms .

The video address generator in the Ace provides 5 address lines in the horizontal direction and 5 more for the vertical direction. This gives a possible 32×32 screen of which only 32×24 are actually used. In addition to these 10 address lines there are three more (sometimes four in other machines) which go directly to the character generator - of which more later.

When the video system is displaying the data in the video RAM at any time the address generator supplies 10 address bits to the RAM which then supplies its eight data bits on its output pins. These are taken to the character generator device. The character generator can be either ROM or RAM and in the case of the Ace it is RAM.

In the Ace, seven of the data bits from the video RAM are used as address bits for the character generator and point to a group of eight locations in it. These locations store the dot pattern for each horizontal line of the character specified by the seven bits from the video RAM. The actual line to be displayed is selected by the three extra address lines coming from the video address generator.

The dot pattern for the line of the character to be displayed passes from the output of the character generator to a parallel input shift register. At a suitable time the data is loaded into this device and then shifted out one bit at a time to give the raw video signal. In the Ace there is an extra bit available from the video RAM which is used to invert the polarity of the raw video when it is set.

The raw video signal from the shift register is combined with the blanking signals and then the sync. signals to form the composite video signal which drives the UHF modulator.

If, as in the Ace, the character generator is not a ROM, then there must be a way for the processor to load it with the correct dot patterns when the machine is first switched on. Note that this is not shown on the block diagram.

Fig. 3 Edge connector details that aren't in the manual!
there are two edge connectors, the larger of which is documented in the manual and brings out the processor busses for memory and peripheral expansion. The smaller connector is not documented, but it is intended for expansion of the video circuits and carries the video RAM address, data and $\bar{W} E$ lines as well as the composite video signal from the input to the UHF modulator.

The 1 K video RAM appears twice in the Ace memory map, at $2000 \mathrm{~h}-23 \mathrm{FFh}$ and at $2400 \mathrm{~h}-$ 27 FFh. When addressed in the lower range the processor has priority over the video circuits and accesses can occur during the display period. In the higher range the video circuits have priority and processor accesses are confined to the blanking periods. The latter is the preferred situation so only the range $2400 \mathrm{~h}-27 \mathrm{FFh}$ will be considered here.

Of this space the 768 bytes at $2400 \mathrm{~h}-26 \mathrm{FFh}$ hold the screen data and the 255 bytes at $2701 \mathrm{~h}-27$ FFh are used as a scratchpad by the system. According to the ACE manual, the one remaining byte at 2700 h should always be zero, but this is in fact used only by the input command interpreter to mark the end of the input buffer on the screen. Therefore when a program is running, the byte can be any value provided it returns to zero before the next operation of the command interpreter. Thus the current colour attribute is held in a latch at 2700 h . As a zero written to this address must not affect the contents of the latch, the most significant data bit D7 is set to 1 (by adding 128) to indicate that an attribute is to be stored.

The Circuit

The circuit consists of a six-bit current attribute latch, a 1 K by 6 screen attributable RAM, a blanking section, ink/paper selector, colour encoder and UHF modulator. Both the latch and RAM are write only so it will be necessary to maintain separate variables or arrays to keep a check on their contents. In most situations, however, the value required in a particular RAM location can be derived from either its address or
the contents of the video RAM at that location.

As there is no blanking signal from the edge connector, it must be re-constituted from the RAM address counters. This can be done provided processor accesses are confined to the blanking periods by using addresses $2400 \mathrm{~h}-$ 27 FFh as described earlier.

The selection of ink or paper is determined by the Ace video signal. Areas of the display that are normally white are taken to be ink and black areas to be paper.

The colour encoder is based on a National Semiconductor LM1889 colour modulator chip. Although designed to work at the American colour subcarrier frequency of 3.58 MHz , it will work at the UK's 4.4336 MHz with suitable changes of component values. Th is IC requires a supply voltage of 10 to 15 volts, for which the author used a spare computer power pack which actually came with a Sinclair printer. Obviously any alternative voltage source could be used. The 5 volt supply for the UHF modulator was derived from the 12 volt line to avoid problems with noise on the logic supply.

Construction

Construction of this project is straightforward but we recommend that you do it in the following order using a fine tipped soldering iron.

Firstly, since this is a double sided PCB and is not plated through, some links must be inserted and soldered on both sides of the board; note especially the ten underneath IC8. Also, some component leads must be soldered on both sides.

Next fit the recommended IC sockets for IC8 and IC4. Now fit the other ICs and remember to solder the leads on the top, bottom or both sides of the board as necessary. Check this part carefully as mistakes here will be very difficult to locate. Make very sure you put ICs in the right way round as well.

Now fit the resistors, capacitors, variable resistors, variable capacitor, diodes, transistors, crystal, edge connector and UHF modulator in this order. Don't forget

The address inputs of RAM IC8, the colour attribute store, are connected to the address inputs of the Ace video RAM, H 0 to H 4 and V0 to V4. These lines normally carry the display horizontal and vertical character position counters, but during a processor access to the video RAM ($2400 \mathrm{~h}-27 \mathrm{FFh}$) they are equal to the processor address lines A0 to A9.

If the access is a write operation then the decoded write enable signal $\overline{W E}$ will go low and data from latch IC4 (via tristate buffer IC1) will be written into IC8. The WE signal is further decoded by gates IC2 and IC3 so that data written to address 2700 h will be latched in IC4 if the most significant bit D7 is high. At switch on, IC4 is cleared by R3/C5, but as this would give a colour attribute of black on black, gate IC6a (controlled by latch IC5b) inverts the green ink signal to give the default condition of green on black. Latch IC5b will be cleared when IC4 is written to, and the green ink signal will then be passed normally by IC6a.

During the display period, gates IC6b
and c in conjunction with outpul Q2 of latch IC11 produce a short clock pulse for IC11 every time address line H0 changes. As the RAM outputs change very quickly, timings here are critical so H 0 is buffered by IC1b and H 1 is delayed slightly by C2.
The outputs of IC11 consist of three ink bits and three paper bits for the character currently being displayed by the Ace character generator. Selection of ink or paper bits in data selector IC12 is controlled by Schmidt trigger Q2/3 from the Ace composite video signal. White areas select ink colours and black areas select paper colours. The outputs of IC12 are the red, green and blue video signals.

The most significant horizontal address line H 4 clocks bistable IC10a on and off to provide line blanking. To ensure that any processor accesses of the video RAM during the blanking period do not lead to incorrect trigger-
ing of IC10a, monostable IC7 and differentiator R11/C9 give a short window for triggering to occur. Latch IC5d and outpul Q1 of IC11 serve to delay the blanking signal for the same period that the data from the RAM is delayed.
Sync. separator Q1/IC1 d provides the line sync for the board from the Ace composite video signal. The sync is integraled by R12/C11 to give a field sync input to set latch IC5c, the field blanking generator. The latch is reset by a short pulse produced by differentiator C9/R9/R10 at the end of one cycle of address line V2. This allows the field display period, which ends when address lines V3 and V4 (combined in IC5 a wired as a NAND gate) are both high and sets IC5c again. Integrating networks R13/ C10 and R2/C4 prevent their respective signals responding to changes caused by processor accesses, as these last only about $1 \mu \mathrm{~s}$.

The line sync pulse is applied via R1d to differentiator C13/R15/R16. The recharging period of the trailing edge of the output of this network gives a colour burst gate pulse from ICif. Broadcast specifications require a gap of approx.

WORKS

800 ns between line sync and burst. This is provided by delay network R14/ C12.

Bistable IC10b is clocked by the line sync to give the PAL alternating phase control. This was found to require phase locking to the field period in order to work with the author's IV so the short differentiated V2 signal at C6/R15/R10 was available to clear the bistable.

The red, green, blue and sync signals are combined in $221,30,31,36,37,38$, 39 and D1 to give the composite greyscale luminance signal. This is applied

via output stage Q6 and Q7 to the UHF modulator. A relatively clean 5 volt supply for the output stages is derived from the 12 volt supply by R41/ZD1.

The colour subcarrier is generated by colour modulator IC13 at a frequency determined by the feedback network around pins 18 and 17 , set by crystal X1 at 4.433 MHz . The phase shifting networks R33/C17 and C16/R17 ensure that the inputs at pins 1 and 18 have a phase difference of 90 to form the quadrature components of the subcarrier. These are modulated respectively by the R-Y and B-Y colour difference signals at pins 2 and 4 . For the

the flying leads for the 12 volt supply.

Lastly, insert IC8 and IC14 in their sockets and all should be ready.

At this stage, check again carefully for shorted tracks, etc, before setting up.

If you do not get a polarising key with your piece of edge connector, either bend the contacts at the slot position in towards each other or alternatively, break the pins off very close to the rear of the connector at the correct position and pull the contact part out of the front.

Cut a small piece of PCB material or similar board and having made sure that it fits the slot in the Ace connector, glue it, preferably with a fast-acting cyanoacrylate adhesive, into the front of the edge connector. This will allow positive location of the connector into the Ace.

Setting Up

After checking the board (again!) very carefutly for shorted tracks, etc plug it into the Ace, connect it to a 12 volt supply (that is switched off!), connect the TV aerial to the board and switch on all supplies. Tune in the television and a blank flickering raster should be present.

Now proceed as follows: Turn RV1 fully clockwise.
Adjust RV3 so that the blank raster is locked.
Adjust RV2 until the whole display area brights up and set it at the mid point of its bright-up range. It may be necessary to adjust RV3 to keep the display steady. The central area of the screen should now be green. If not try re-tuning the
TV.
Adjust RV1 until the cursor is visible at the bottom left.
Enter VLIST and adjust RV1 to give the boldest lettering with no streaking. Any colour dot crawl can be tuned out with CV1.
Produce colour bars by entering and running the following:

```
16 base c!
: colourbars
    27002400
    do
        i4/8 mod
        10 * 80 or
        2700 c! 20 i c!
    loop
    872700 c!
    02700c!
```

Adjust RV3 to give the best range of colours.

PARTS LIST

Software

In order to use the colour facilities within FORTH programs, it is necessary to define the following words:
decimal 16 base c!
2700 constant attriblatch
0 constant black
1 constant blue
2 constant red
3 constant purple
4 constant green
5 constant cyan
6 constant yellow
7 constant white
87 variable attrib
: combine
attrib c $(1$ and or dup
attrib c! attriblatch c!
0 attriblatch c!
’ ink
$£ 0$ combine
: paper
10 * 87 combine
By way of explanation, INK and PAPER both expect a colour number on the stack. They pass this and a mask value to COMBINE which masks out the old colour and adds the new one. This is stored in the variable ATTRIB and also in the latch. Zero is then written to the latch for the reasons given earlier.

These words can now be used directly by entering for example white paper blue ink, or they can be liberally sprinkled at the required points in applications programs.

If when you first turn on the screen is full of random colour blocks, do a CLS. This will write the current attribute (green on black) over the whole screen. Beware when you cause or allow a scroll operation to take place as this will also cause the current attribute to be written over the whole screen, wiping out all the pretty colours and giving a uniform foreground and background.

PROJECT : Adding Colour

EXECUTIVE TELEPHONE-PUSH BUT. TON. Functions include 10 number memory; Speaker and separate handset etc. Will onnect direct to Brish Telecom System.

Minimum Order of Goods Es Minimum P\&P E1.60. VAT at 15\% a PACKING
Many more componente and test telephone for lists.
x

BRITAINS LEADING QUALITY GOMPONENT
SUPPLIERS-SEND FOR FRE 36 PAGE A-Z LIST
ATtBactive DISGONTS-FREE POSTAGE-GOOD SERUIGE \& DELVERY

An in-depth series in understanding todays' world of electronics.

FromTexasInstruments.

The Understanding Electronics Scries was specially developed and written to give you an in-depth knowledge of this world.

Each hook is comprehensive, yer easy to understand. As informative for the electromics buff as for someone who's simply interested in what 5 going on today.

Together the library will give you the most complete range of nutes availahie. Take alvantage of our special offet and choose the book, or books you want trom the tities beiow. You'll find whole new worlds of advanced technolong unfolding betore you.

1 Understanding Electronic Control of Energy Systems. Ist edrinon. Ref. LCB 6642 . Civen metor, penerator. pewer distribution. heating, air conditioning, itternal combusnon engne, solar and nuclear systems. Softhounid 272 papes. E4.50
2. Understanding Electronic Security Systems.

Ist edroon. Ref. LCB 720L A complete guide covering the basiss of hard mred, phorosensitive, infrared, ultrasoni andimc owave systems und their use in different appliranuns. Softhound 128 puges. $£ 295$.
3. Understanding Solid State Electronics.

3rd edition. Ref. LCC 336L. The principles of solid state theory It explans electrical movement, wrth intermediate tuition on the applications of solid state devices. Suftbound 2 S 2 purges. 1450
4. Understanding Digital Electronics. bs edtion. Ref. LCB 331 L Describes digtal electronits in easy-to-tollow stages. It covers the Softhound 260 pages. $£ 4.50$.
5. Understanding Microprocessors. 1st edition. Ref. LCB 4023. An in-depth lock at the magic of the solid state chip What they are, what they do. Applicatons of 8 -hit and 16 -bit nucropro
6. Understanding Computer Science. $1 \cdot x$ dinon. Ref. LCB 5471 This book rells you in everyday Enelish how tuday's cumpurer has Softbound 278 puges 54.50 invide it, and how you tell ir what to do
7. Understanding Communications Systems. st edranon. Ref. LCB 452L An overview of all rypes of electronic communiations systems Sothound 282 pages 14.50 .
8. Understanding Calculator Maths. hiredition. Ref. LCB 332 L Brings together the basic information-formulae, facts, and mathernatical Softbound 230 pages. $\mathbf{i} 4.50$.
9. Understanding Optronics. Ist edtuon. Ref. LCB 5472.

Optrones is the application of light and electronics to perforn a wide cange of useful tasks From car headlights to missile guidance systems. Softround 270 pages $£ 4,50$.
10. Understanding Automotive Electronics.
st editiun. Ref. LCB 577L Leam how electronics is being applied to automotiles Huw the basic mechanical, elet trical and electronic functions and the new niscoprocessors and microcotnputers are being applied in mnovative ways for vehicle drive train contru), mionon control and instrumentanur Softhound 288 pues. 1450

11. Understanding Telephone Electronics.

lut edinon Ref. LCB 714L. The pretul. purnve thrust of electunics is
making the telephone an even ms: iruporant conamunication link. making the telephone an even nses iruportant conamuntiotion link prisiples, newer digatal rechniques and hardwarי implementation are covered in this bxok Softhemend 288 pages 54.50 .
12. Understanding Electronic Control of Automation Systems. Ist edirion. Ref. LCB 66+1. This book is abour autaniation explains in simple language the subject of elet tronic control of autonation explains in simple anguage the subject of ele tronic controh of autonation and effor used to automare processes. Softhound 280 pages $£ 4.50$.

How to order

Fill in the coupon helow or if someone else has alteady used it, simply.

1. List reference numbers and quantities required

2 Calculare tocal order value Add E .50 tor postage and parking. 3 Send the list. plus your cheque payable to Texas Instruments Led. Allow 30 , Mas tor delivery

Texas InSTRUMENTS

MACHINE CODE PROGRAMMING

So you've bought this wonderful, marvelous heap of computer electronics: now how do you talk to it? I/O, I/O, it's off to work Bob Bennett goes . . . (The staff of the magazine wish to dissociate themselves from that pun.)

Eevery computer, no matter what its predigree, is just a handful of electronic components connected together. This constitutes the world of that particular computer and anything else belongs to the outside world. And every computer, to justify its existence, has to be able to communicate with the outside world - how else would you get information to a screen, or some other display, or to a printer, or from a keyboard?, not to mention the program going out to, or coming in from your tape recorder.

Although the method of this two-way communication may differ according to which CPU the computer has, the principle is essentially the same for every computer. An I/O port is just another name for an I/O address, and the principle is to use a register as an intermediary between the computer and the peripheral via an address. In some computer systems the method is to reserve a few addresses for I/O ports and, by using load or move instructions, transfer either the contents of the register to the port or vice versa.

In both cases the contents of the register is known as a data byte, and the above method is usually called memory-mapped I/O.

Because the Z80 set has quite a number of I/O instructions, and because the method used is slightly different, I will give examples from the $Z 80$ set, and for the Spectrum in particular. To illustrate input port usage, let's pretend that we have just written a machine code game which places a graphics character on the screen. Whatever the object of this game is doesn't matter, but we do require to move the character about the screen using the keyboard to control the movements up, down, left and right. Page 160 of the Spectrum BASIC handbook gives a list of the eight addresses which are concerned with the keyboard input. These addresses range from 65278 to 32766 , which is not surprising, because, in theory, 65,536 addresses could be used as $1 / \mathrm{O}$ ports in the Z80 system.

The ideal keys to use for movement of our character would be the cursor control keys, but reference to page 160 shows that keys 6,7 , and 8 are input at address 61438 and key 5 is at address 63486 . It would make for easier programming if all four keys were accessed at the same address so I'm going to plump for keys $\mathrm{Y}, \mathrm{U}, \mathrm{I}$ and O forup, down, left and right respectively, as these are all at address 57342. There is a misprint in the handbook which gives this address as keys P to 7 , but should read P to Y. Figure 1 gives a listing in hex for the program to read the keys from input port address 57342 but I will explain what is happening. I would urge those of you who are fairly new to machine code programming to write the instructions down the side of a large ruled note pad (A4
size), with the addresses, and use appendix A of the Spectrum handbook to convert the hex to the Z80 assembler mnemonic.

The program I have given is only a small portion of our mythical program; it can be at any address, even in the printer buffer, and is called from the first address as RANDOMISE USR address. The object of this small routine is to 'capture' one of four keypresses and move the character on the screen in the direction that the key represents. However, all this program will do at present is print onto the screen the character of the key pressed.

CODE	Effect
3 E	Load A
02	with 2
CD	Call address in ROM
01	to open stream to
16	upper 22 lines of screen
3 E	Load A with high byte
DF	of port address
DB	IN A, (nn)
FE	$\mathrm{nn}=$ low byte of port address
CB	use instruction after $C B$
67	Bit 4 A , if reset then Y has been pressed
28	if Y pressed zero flag set so jump
${ }_{C B}^{18} \quad$ forwards to print Y	
5 F	Bit 3,A then if Y not pressed
28	If U pressed then jump
10	to print U
CB	
57	Bit 2,A then if \cup not pressed
28	if I pressed then jump
08	to print I
CB	
4 F	Bit 1, A then if I not pressed
20	0 has not been pressed so jump
EC	backwards to load A with high byte again
3 E	Load A with code for letter 0
4 F	because 0 must have been pressed to get here
D7	Print 0 O
C9	Return
93 E	Load A with code for letter I
49	because I must have pressed to get here
D7	Print it
C9	return
3 E	Load A with code for
55	letter U
D7	Print it
C9	Return
3 E	Load A with code for
59	letter Y
C9 ${ }^{\text {end }}$ program	

Earlier I said that the data coming in, or going out, was a data byte, and we are going to test certain bits of the data. There are five keys at this particular port and bits D0 to D4 represent five keys with bit D0 for key P and working inwards on the keyboard to bit D4 forkeyY (the D stands for data), so the bits we want are D4 to D1

The first five bytes of the program open the stream to print to the first 22 line of the screen; if you want to print to the bottom two lines then load A with 1 instead of 2 . Next the high byte of the port address is loaded into register A, then the instruction $D B F E-I N A,(n n)$ where nn is the low byte of the port address, which in this case is FEh. Now the computer has the information - the port address is 57342 (keys P to Y) - and the data byte has to come into register A .

The next two bytes are CB67 - BIT 4,A. These together mean that we are going to test the current status of bit 4 in the A register and put the result into the zero flag bit of the status register. (Z flag $=1$ if bit 4 of A register $=0$). The following instruction $2818-J R Z, e$, will cause ajump forward by the displacement 18 h if the Z flag is set (ie. if bit 4 of the A registerwas 0 indicating that the ' Y ' key was pressed) and print the letter ' Y '. If, however, the ' Y ' keywas not pressed, the jump will not take place and the next instruction executed wll be CB5F-BIT 3, A and so on until BIT 1,A.

Note well the last conditional jump instruction, 20h - JR NZ, e, which jumps back to 3E DF to start again; this means that if none of the 4 keys are pressed the computer will wait until one is.

This program is not the most elegant of programs, and is certainly not the only way to 'read' the keyboard. The instruction DBh nn - $\mathbb{N A}$ A, (nn) is the first of 8 simple IN instructions, but the other seven have a slightly different form, and there are also eight simple OUT instructions which follow the same pattern of the IN instructions.

Covering the rest of the IN instructions first, they take the form IN register,(register). This means that the first register will receive the data byte, and the port address is formed from the low byte in the register in brackets, and the high byte in the other register of the register pair. To explain that, the instruction ED 78 - IN A, (C) could have been used in my program, with C loaded with $F E$, and B register loaded with DF, and the A register still tested for bits D4 to D1.

The first of the simple OUT instructions is D3 nn OUT (nn), A; the other seven are of the form OUT (register), register with the register in brackets again holding the low byte, and the other one of the pair holding the high byte, the other register in the instruction being used for the data byte.

There are four fully automatic $1 / \mathrm{O}$ instructions, two 1 N and two OUT, and all four are of similar pattern. The instruction ED B2 h - INIR means IN (C) from address (HL) with register B holding the number of times the instruction is repeated; the address is then incremented, and B decremented, and repeated until B reaches zero. The second IN automatic instruction ED BAh - INDR which uses the same register format but with (HL) being decremented, which is what the D stands for.

Automatic OUT instructions are the same except that register C holds the data to go out to address (HL). There are two non automatic IN instructions, and two non automatic OUT instructions which follow the same pattern as the automatic instructions but the increment, or decrement (HL) is only done once, that is, the R, for Repeat, is left off, as in ED A2h - INI.

By the way, for those of you who have never met the instruction D7h - RST 10h used in the example program, it is an instruction to print the contents of the A register to the next PRINT position on the screen. ETI

RICKINGHALL HOUSE, HINDERCLAY ROAD, RICIINGHALL, SUFFOLE IPA 1HH. TEL.DISS (OST) EEIGL.

Prices: all prices

Telephone

Simply plug in and it's ready to use. All operating commands are held in an EPROM so LLIST, LPRINT and COPY can be used at any time without using up valuable user RAM. COPY will allow the reproduction of high resolution graphics with Epson (or derivatives) and Seikosha 80, 100 and 250 Series printers. Print width selection from 32 characters to full width depending on printer used
INTERFACE S - ONLY £39.99
Visually identical to Interface E but without the EPROM Interface S also recognises the LLIST \& LPRINT commands and will allow print width selection from 32 characters to full width.

However, software routines will need to be loaded before use. Full screen dump toreproduce high resolution graphics is alsopossible and supporting software is supplied to operate this facility with Epson and Seikosha printers. The software routines thatare necessary to initialise the intertace are held in the printer buffer so valuable user RAM will not be used up. There is a growing range of Business/Utility sottware that includes these routines. Details available on request.

Either interface simply plugs into the ZX Spectrum expansion port or interiace and is supplied fully cased with a one metre ribbon cable which connects to the printer of your choice. Full instructions are included and driving software is supplied with Interiace 5 .

We recommend Epsons, NEC, TEC. Seikosha, OKI Microline. Tandy GPI 15. Star DP 510, Shinwa. Brother HR15. etc.

At last you can have real print performance from your $2 X$ Spectrum with the Kempston Centronics Interfaces.

KEMPSTON CENTRONICS INTERFACE COMPATIBLE SOFTWARE UTILITIES. STANDARD INTERFACE

FOR THE 48K SPECTRUM.
finance manager (OCP) - Menu driven program for all domestic and business accounting applications
$\varepsilon 19.95$
ADDRESS MANAGER (OCP) - Simple index filing system ideal tor names, addresses. etc. Varıous search facilities. $£ 19.95$

FULL SCREEN EDITOR/ASSEMBLER (OCP) - Allows you 10 write Z80 assembly code using standard mnemonics on full screen. \quad E19.95

WORD PROCESSOR (TASWORD TWO)-
(TASMAN) A protessional word processor allowing 64 characters per line and incorporating all usual editing facilities. £13.90

OMNICALC (MICROSPHERE) - The only spreadsheet written entirely in machine code. The easy and fast way of solving any numerical problem. Ideal for cash flow forecasting tolconcrete stress analysis.
$\varepsilon 9.95$
MASTERFILE (CAMPBELL SYSTEMS)
Filing and retrieval system for domestic or business use. Files can be loaded and saved independently. Microdrive compatible.
89.95

Interiace S available from W H Smith and Spectrum Computer Centres All products direct from:
MICRO ELECTRONICS LTD
Unit 30 Singer Way. Woburn Road Industrial Estate. Kempston. Bedford. MK42 7AF. Tel: (0234) 856633 Telex: 826078 KEMPMI G
all prices include Vat and P. \& P Overseas orders please add £4.00 P. \& P.
Please allow 21 days tor delivery of internaces and sottware. Printers available within 48 hours. TRADE ENQUIRIES WELCOME ves

NOW WE CAN ALSO SUPPLY YOUR

PRINTER.

We've looked at the printers currently available and have selected what we feel is best value for money in dot matrix and daisy wheel printers:
EPSON RX-80 F/T - A dot matrix printer allowing full graphics dumping and a choice of printing styles Speed: 100 C.P.S. Price 5325 Inc. VAT and Dellvery
BROTRER HR15 - A dasywheel printer ideal for letters, mail shots, documents, etc. Many typefaces available by changing daisywheel. Duplication facility but no graphics. Speed: Up to 18 C.P.S Price E425 Inc. VAT and Del.

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00. 5 inch SSDD £19.25. 5 inch DSDD £21.00. 5 inch SSQD £23.95. 5 inch DSQD £26.35.

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50 p post $\&$ packing to orders under $£ 15$ and VAT to total. Access \& Visa welcome. 24 hr 'phone service on (054 422) 618 Government \& Educational orders welcome. \& 15 minimum. Trade accounts operated, 'phone or write for details.

Happy Memories (ETI)
Gladestry, Kington, Herefordshire HR5 3NY Tel: (054 422) 618 or 628

THEATRE \& BAND LIGHTING

12×1 K LESS THAN £200!

The days of hiring your electronics are over. Youknow we manufacture a range of power packs, desks, lanterns, stands, etc. NOW WE ARE PLEASED TO INTRODUCE THE APD SERIES OF MODULAR DIMMERS. Incorporating technology that allows the control of Inductive as well as resistive loads, you build a system exact to your requirements, and save a fortune in process. So where is the sense in hiring????

Contact our sales for free infor:
The Sales Manager
MJL SYSTEMS LTD 45 Wortley Road
W. Croydon CRO 3EB Surrey, U.K.
Tel: 01-689 4138
(Mon-Fri 9-5pm)

BUILD A BETTER AMPLIFIER!

How can you own a top class HIFi amplifier, of comparable standard to Nalms, Meridians, Quads etc., for an outlay of less than £250? - Simple! Build it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "pot ted" as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will give years of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your system. E.T.l. said in their review of the CK1010/1100; "I can say no more than that for $£ 250$ it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?
PRICES
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes power from any CK power amp or separate p.s.u. type PS.K
$£ 92.00$
CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
£121.00
CK1080 - STEREO POWER-AMPLIFIER 80 watts R.M.S./Chanel
£134.00
CK1100 - STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
£151.00
MC2K - Moving coil add on kit for CK1010
225.00

CRIMSON also supply power amp pre amp and electronic crossover modules, power supplies and hardware - too much to list here - but on CRIMSON also supply power amp, pre amp and electronic
receipt of an S.A.E. we will be happy to supply full details.

TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd, 325 Edgeware Road, London.

det

This advert only a fraction of our range send $65 p$ for our latest 109 page fully illustrated catalogue (Incls 35p creditt). Complete with special offer lists

Please add 15% VAT and 45ρ P/P to the above prices:
Send orders to.
MARCO TRADING
Dept ET4, The Maltings, High Street, Wem, Shropshire SY4 5EN Tel: 093932783
Visit our new 1000 sq if retaill shop at the above address

C.E.L. D.I.Y. CAR ALARMS

Complete Voltage Sensitive/
Contact Car Security Systems
Assembled and tested: ST. £32.50
or
IR£39.00 + 23\% V.A.T. (incl. P\&P.)
Housed in Attractive Aluminium Box

- Voltage Drop Sensor
- Contact Sensor
- Immobilizes ignition
- Optional 10 second delay
- Pulse horn or siren
- Resets automatically for next intruder
- Complete with all wires and fittings
- Simple installation instructions for D.I.Y. enthusiasts

Write or phone:-

Connaught Electronics Ltd
Unit 5, Industrial Estate
Dunmore Road, Tuam Co. Galway, Ireland
Tel: (093) 28529 or (093) 28569

MAINS BORNE REMOTE CONTROL

Sit back and let your micro take the strain. ETI's MainsCom gives your micro remote control of any number of mains-powered devices in sixteen independent groups, and what's more, needs no extra wiring. Design by John Bawden.

Microcomputers offer some fascinating possibilities to the experimenter when used as intelligent controllers, for example, the careful control of heating, lighting, and other services in a house, which can result in enormous savings in energy and labour. The use of this type of controller is increasing both in the home and in the factory, but a major source of expense and inconvenience is the apparent need for wiring between the controller and the various devices scattered throughout a
building. It has been realised for some time, that nearly every home, office and factory has a ready installed 'data bus' in the form of the mains wiring. To prove that nothing is new, the first patent suggesting this possibility was taken out in 1897. However, it is only in the last few years that the electronic devices needed to reliably and economically send and receive control signals over the mains wiring have become available.

The ETI MainsCom offers an inexpensive but reliable remote

Fig. 1 Block diagram of the receiver unit.
control facility, allowing a central microcomputer controller to switch mains-powered equipment on and off using only the mains wiring itself as a communications medium. The system comprises two distinct units, the transmitter and the receiver. The transmitter is interfaced to the controlling microcomputer, from which it also draws its power, and the output plugs directly into a 13A mains socket. The receiver also plugs into a 13 A socket, is mains-powered, and has a 13 A output socket which can be switched on and off by appropriate commands from the controlling microcomputer.

This first article discusses the operation of the system and describes the construction of the receiver unit only. Next month's concluding article will describe the transmitter, the procedure for interfacing with a microcomputer, and the alignment and operation of the completed system.

As with cordless intercoms, which also rely on the mains wiring for their interconnections, the MainsCom uses a frequency modulated carrier to convey the controlling data stream. The well known tolerance of FM signalling to noise and to signal levei variation comes in useful in this application. The control data is generated and decoded by standard remote control ICs, manufactured by Plessey, which incorporate error detection logic to minimise the possibility of spurious switching occuring as a result of noise.

Fig. 2 Circuit diagram of the receiver.

The System

The only desirable features of mains wiring as a transmission channel are that it already exists and that it will serve most areas of a home, office or factory. Electronically it is a low impedance transmission line with unpredictable and varying loss, and which is subject to high levels of broadband noise. Frequency Shift Keying (the digital equivalent of FM) is used in the MainsCom system because of its resiliance under these conditions of varying signal level and impulsive noise.

A carrier frequency of approximately 130 KHz is employed as this is outside the range of most souces of interference, such as harmonics of the mains frequency below and the LF and MF radio transmissions above. The upper range of frequencies must also be avoided so that MainsCom does not cause interference to these services. The chosen frequency is also within the band ($125-140 \mathrm{KHz}$) proposed by the Control Equipment Manufacturers Association for use in this type of application. A deviation of about 10 KHz is used, which is relatively wide compared with the bandwidth of the
data signal. However, this does provide the high level of noise protection associated with broadband FM.

The system design is simplified by the use of a pair of ICs specifically designed for remote control applications, the Plessey SL490 PPM (Pulse Position Modulation) transmitter and the ML924 receiver. The transmitter uses the SL490 device as a PPM encoder. This device, which employs $1^{2} \mathrm{~L}$ bipolar logic, is designed to be connected directly to a cross point matrix keyboard. Interface logic is therefore required to enable the use of a parallel binary signal from a microcomputer port, and the devices used to perform this function are two CMOS analogue switches. These accept logic level inputs and appear to the SL490 as a switch closure. The apparent position of the switch in the matrix is determined by the binary number fed into thie inputs of the CMOS switches. The PPM output of the SL490 drives the frequency shift modulator. This is an NE565, more commonly encountered as a Phase Locked Loop decoder, but which can also be persuaded to act as a frequency modulator.

The frequency keyed carrier need only be of a relatively low power to be effective. About 1 watt is sufficient and a higher level would risk interference to other services, such as MF and HF radio broadcasts. A power amplifier stage is needed to amplify the output of the frequency shift keyer and to match this to the low impedance of the mains wiring. At the frequency used, this is in the region of 10 ohms. The power amplifier uses a pair of VMOS transistors, operating in class C pushpull, and matched to the mains wiring by a tuned output transformer. This is an efficient and rugged output configuration which can withstand the large transients sometimes coupled into this stage from the mains wiring. The output state is interfaced with the frequency shift keyer by some CMOS gates. These provide carrier on/off switching and correctly timed pulses to drive the output transistors.

The MainsCom receiver uses four ICs to provide the functions of input amplifier, FSK demodulator, PPM decoder and on/off latch. The latched on/off signal within the receiver is used to drive

HOW IT WORKS - THE RECEIVER

The MainsCom receiver is powered by a 'wattless' dropper arrangement, comprising C16, R31 and ZD1. The reactive current flowing through C16 results in 13 volts appearing across ZD1 during every other half cycle of current flow. This pulse train is converted into a steady supply voltage of about 12 Volts by D6 and C15. The advantage of this type of power supply is that it is an efficient way of obtaining a small amount of low voltage power, without the expense and bulk of a mains transformer, and is probably more efficient than the latter. Efficiency and low power consumption are important considerations in a piece of equipment which is likely to be running continuously over long periods. R31 serves as a surge suppression resistor and also as a fuse in case of the failure of C 16 . It is important that only the stated wattage of resistor is used in this position. R32 discharges C16 when the unit is disconnected from the mains supply and prevents the possibility of minor, but unpleasant, shocks from the mains plug. The power supply in this unit also serves two less obvious functions. It acts firstly as a snubber network to reduce mains borne transients, which could damage the triac. Its other role is as a high-pass filter to extract the FM carrier from the incoming mains.

The filtered high frequency signals, which appear across line and neutral, contain the FM control signal as well as a lot of noise. These are fed to the input of IC1a via a series tuned LC filter, L1 and C1. This filter is tuned to the centre frequency of the FM signal and separates this signal from HF noise. IC1 a amplifies this signal before passing it on to IC3, a standard phase locked loop FM demodulator. The centre frequency of the demodulator is sel by C8 and R19 with RV2. The differential output of IC3 is fed through a low pass filter network to the input of IC1 d . This section of IC1 acts as a comparator, and converts the low level differential output of IC3 into a 12 volt
digital signal, which is the transmitted data stream.
This PPM data stream forms the input to IC2, the PPM decoder. The ' C 4 ' and 'C5' inputs of this IC are strapped tologic high in order to select the desired operating mode and the 4 bit address of the receiver is set up on the ' CO^{\prime}, $\mathrm{C1}$ ', ' C 2 ', and ' C 3 ' inputs by means of SW 1 , or by hard-wired links. When it has received a valid sequence of address and data messages, IC2 willpulse the DATA READY output high and place the bit pattern from the data message onto the outputs A to D. The internal clock frequency used to time the reception of the PPM data is set by C4 and R10/RV1.
The DATA READY pulse from IC2 is inverted by IC1b to produce a low going clock pulse. The output of IC1b is combined with the B,C, and D outputs of IC2 by wired-OR logic, via D3. This ensures that the clock pulse to IC4 will not occur unless these data outputs are all simultaneously logic 0 . This clock pulse is used to latch the logic level appearing on the A output of IC2 into IC4, IC4 is a dual D-type latch with both halves connected in parallel.
The output of IC1b will also reset IC2, a short interval after the receipt of the DATA READY signal, by pulling the CLEAR input low. This ensures that the receiver will require another address message before responding to other data messages. D1, D2, and C6 form a circuit that resets IC2 at power up. A similar function is carried out by C12 and R13 which clear IC4 on power up. This ensures that the MainsCom receiver always comes on in the'off' state.

The NOT Q outputs of IC4 provide the input to IC1c, which is used as an inverter and driver. The output of IC1b has sufficient current source capability in the high state to light the indicator LED and to switch on the high sensitivity triac, SCR1. The triac, in turn, controls the flow of power to the load attached to the MainsCom system.
a triac which can be used to control an external mains load. Alternatively, the on/off signal can be used directly as a logic level for remote control purposes. The receiver employs a reactive power supply, resulting in a lightweight unit with low power consumptions that can be built into a small diecast box.

Each receiver can be allocated a four bit address code that allows up to 16 'addresses' to be selectively switched on or off. The address code in each receiver can be set permanently by wire links, or can be reset if hexadecimally coded switches are fitted. Several receivers can share an address code, to form a group that can be switched simultaneously.

Pulse Position Modulation

In a PPM transmission, a 1 or 0 is transmitted not by the presence of absence of a pulse as would be the case with more conventional digital coding, but by the use of two different lengths of interpulse time to indicate the binary states. The ICs used in this system employ codes based on 5 bit words,s o that each word requires the transmission of 6 pulses to generate the 5 interpulse periods
(Fig. 3). A short interpulse gap signals a logic 1, and a longer gap á logic 0 . To enable a receiver to correctly 'frame' the incoming stream of bits into 5 bit words, an even longer gap is used to signal the gap between words.

The ICs used to receive the PPM data stream use an internal oscillator and a counter to time the periods between pulses. Inside the receiving IC, the leading edge of each PPM pulse resets the counter. The state of the counter, when the leading edge of the next pulse comes along, is used to set the timing windows which determine the difference between 1 s , $0 s$ and interword markers. Any pulse appearing before the counter has reached 20 is ignored as this is likely to be the result of external noise or multipath reception with some types of remote control. A pulse appearing whilst the count is between 20 and 32 is taken to represent a logic 1, and if it is between 32 and 60 , it represents a logic 0 . An interpulse period of over 60 clock periods is seen as an interword gap and the receiver logic resets the counter and internal error detection logic if the count reaches 1220 without the appearance of a pulse.

The frequency of the receive IC's internal oscillator is set by an external RC network which should be adjusted so that 40 cycles of its output occur in the period used to represent a logic 0 . A logic 1 interpulse period will then equal 26.6 cycles. This setting will place the incoming pulses generally in the receiver's timing window and provide an allowance for frequency drift in the PPM transmitter and receiver devices.

The receiver ICs in this family of devices use a simple and effective method of error checking. The last PPM word received is stored and compared with the one currently being decoded. If the words are the same, only then is the word accepted as a valid message. This does mean that any message must consist of a PPM word transmitted at least twice, so that two consecutive and identical words can be seen by the receiver.

The ML924, which is used in the MainsCom receivers, can be used

Fig. 3 Data format used in Pulse Position Modulation (PPM).
in several modes, one of which is this simple mode where the receipt of a valid message consisting of two indentical words will result in the 5 bit data pattern apperaring on its A, B, C, and D outputs and the Data Ready output being pulse high. In the MainsCom receiver, a more complex mode of operation is used, in which the IC must be activated by the receipt of an 'address' message before it can accept one or more'data' messages. As with the simpler mode of operation, each of these messages must be at least two consecutive, identical PPM words. An address message is distinguished by having a most significant bit of 0 , and data messages by having a most significant bit of 1 .

The addressable mode gives additional security against unwanted messages being generated by noise, since two valid messages in the correct order are necessary The second advantage of using this mode is that individual receivers or groups of receivers can be selected to receive the message code. The address messages must have a 0 for their most significant bit, but the remaining four bits form an address code which must match the four bits set up on the C 0 to C 3 inputs of the ML924. An ML924, in the addressed state, will be deactivated if it receives an address message with the wrong address code.

In the MainsCom receiver, additional logic external to the ML924 resets this devices a short while after the receipt of any data message. This is done so that the receiver is not left in an active addressed state where there would be a remote possibility that it could respond to random noise or garbled message and spuriously switch on or off.

Construction

The receiver is built on a small printed circuit board, and this is mounted in a suitably sized diecast box. The diecast box forms a robust enclosure for this unit, an important factor in an item of equipment which could end up in odd corners of the home or office and suffer indignities such as being trodden on. The box acts also as an electrical shield for the unit within, which is connected directly to the mains supply. For this reason the box should always be earthed.

The printed circuit board is held in place at each end by a pair
of plastic clip-type support pillars.
These provide ample spacing between the printed circuit board assembly and the bottom of the box. The clearance between the edges of the PCB and the sides of the box is very small and to prevent the possibility of short circuits between them, two suitably

Fig. 4 Component overlay of the receiver PCB.

PARTS LIST - THE RECEIVER

RESISTORS		C12	10u 10 V tantalum
(All resistors $1 / 4 \mathrm{~W}, 5 \%$ unless otherwisestated)		C15	470u 16V radial electrolytic
R1-4,10,20,21	$7 \times 47 \mathrm{k}$ SIL resistor pack	C16	1 u 0400 V DC polyester or paper
R5	150R		
R6	33k	SEMICONDUCTORS	
R7,9	$1 \mathrm{k8}$	IC1	LM3900
R8,14-17	12k	IC2	M1924
R11,26,28	100 k	IC3	NE565
R13	56k	IC4	4013
R18	18k	D1-4	1 N 4148
R19	2k2	D5	1 N4001
R22-24,27	10k	ZD1	BZY88-C13
R12,25	220k	LED1	$0.2^{\prime \prime}$ red LED
R29	130k	SCR1	TIC-225D (for
R30	1k		alternatives, see
R31	27R 0.5 watt metal film		text)
R32	1M0	MISCELLANEOUS	
RV1	100k vertical preset	SW1	Vertical hexadecimal
RV2	4k7 vertical preset		coded rotary switch (RS
CAPACITORS C1	560pF 20 silver		$\begin{aligned} & \text { Components } \\ & 334-959 \text {) } \end{aligned}$
	mica or polystyrene	11	2 mH variable inductor TOKO
C2,3,9	100 n 100 V ceramic		P/ No.
C4,5	10 n 100 V ceramic		YXNS30450NK
C6	4.7 u 10 V tantaium	IC sockets (high quality turned pin	
C7	47 n 100 V ceramic	type); diecast box, Bimbox 5004/14 or	
C8	470pF 2% silver mica or polystyrene	Verospeed P/No. 86-20102B; 13A free socket; 13 A mains plug; 3 core mains cable; strain relief bushes; PCB clips; mylar film; triac mounting kit, nut, bolt, etc.	
C10	$1 \mathrm{n0} 100 \mathrm{~V}$ ceramic		
C11,13,14	330 pF 2% silver mica or polystyrene	etc.	

 using a small aluminium plate.
shaped strips of mylar film are slipped between the PCB and the box. This type of film has a high dielectric strength and is easily obtainable in the form of PCB draughting material.

The triac, SCR1, is situated at the edge of the PCB and uses the diecast box as a convenient heat sink. The type of box recommended has a ridged internal surface to facilitate the vertical mounting of printed circuit boards. This is a nuisance in this instance as it prevents close contact between the triac and the box and will not permit efficient heat transfer, a small rectangle of aluminium sheet, drilled to take the triac mounting bolt and placed between the triac mounting tab and the box, will overcome the problem of heat transfer. The usual mica washer and insulating bush must also be used in mounting the triac to provide electrical isolation (see Fig. 5).

Assembly of components on the PCB should pose few problems if the points listed below are noted. The ICs can be soldered directly to the board, but test and maintenance of the unit is much easier if sockets are employed. If these sockets are of a high quality type, their use will have little

effect on the reliability of the unit. Note that IC1 is mounted in the opposite direction to the other three ICs.

Two components have critical lead lengths. LED 1 must have its leads dressed so that it protrudes through the hole in the lid of the box; the top part of a plastic LED mounting clip, secured to the lid with a drop of instant adhesive, will hold the LED tidily in place when the lid is fitted. The leads of SCR1 should be carefully dressed so that the hole in the triac's mounting tab coincides with the hole drilled in the side of the box. The leads should be bent in an S-shape in order to cushion the triac from any vibration of the PCB.

Veropins, or something similar, are used to provide the live and neutral terminals on the PCB for the incoming and outgoing mains connections. The mains cable connections should be soldered to these pins prior to fitting the PCB into le box. If not done in this ord. i, access to the pins is difficult. For the same reason, test and adjustment of the receiver unit should be completed prior to the fitting of the PCB.

The earth connections of the input and output mains cables are soldered to a tag. This tag is secured under the nut used to mount the triac tab and the electrical connection via the bolt serves to earth the box. The two mains cables coming to the receiver unit are led into the box through cable clamps held in U-shaped cut-outs in the side of the box. The clamps are compressed onto the cable and are themselves held in place by the lid of the box being screwed down.

If a hexadecimal switch has been fitted to set the receiver address, then a small hole, just large enough to take a screwdriver, can be drilled in the end of the box to allow the address to be changed without opening the box.

The current available from the capacitive dropper power supply used in this unit cannot produce sufficient gate current to guarantee triggering of all TIC225D triacs. A small proportion of this type of device will not trigger reliably. The usual symptom of this will be that the triac conducts on alternate half cycles only. The fitting of another triac of the same type will, unless you are unlucky, remove this problem. If the load to be controlled draws less than 4 Amps RMS, a TIC206D triac can be substituted as SCR1. This has a lower gate current threshold than the

Fig. 7 A modification which will reduce the risk of spurious switching.
TIC225D and all devices of this type should operate satisfactorily in this circuit.

If the receiver is required to control loads drawing more than the 8 amps RMS, which is the maximum that a TIC225D can control, then a variation on the basic receiver circuit may be used. This is shown in Fig. 6. The limitation or the size of power triac that can be used is the gate current required to switch it on. This should be less than 300 milliamps. Therefore, a second low power triac, SCR2, is added to trigger a high power triac, such as a TIC246D which can control up to 16 amps RMS. The additional triac can be a very low power device in a small package, such as a TAG 93D, or a TR1 4000.35 .

If a direct digital output is required from the receiver, rather than the switching of a mains supply, SCR1 can be omitted and an opto-isolator connected between R30 and common. The output of the opto-isolator can then be used as a remotely controlled digital signal. The type of opto-isolator employed should be a high sensitivity type, as the current available to drive it is only of the order of 10 milliamps.

A problem arose in the prototypes of this unit when certain brands of LM3900 were used for IC1. The problem was that the receiver would spuriously switch off the load when large surges occurred in the connected mains wiring. In one instance, this resulted in a television receiver being switched on by the MainsCom receiver, and then a fraction of a second later being switched off again. The most reliable cure for this was found to be the addition of the components shown in Fig. 7. The capacitor is a 100 n , 100 V ceramic and the diodes are 1N4148. These can easily be soldered onto the track side of the PCB, but must be kept well clear of the bottom of the box. Next month, transmitter details and Buylines.

Greenbank Electronics (Dept T4E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

SCHOOL TIMER

What? you cry! Not another timer circuit using a 555! Well, yes, but the actual timing here is carried out by a less well known and much more interesting IC. Vivian Capel takes care of the introductions.

Timer circuits and projects are not particularly unusual, but this one was designed in response to a request and for a specific purpose.

It was required for a training school to time the speaking assignments of the students, and also those of the instructors. In the case of the students, an audible signal was required at the end of the assigned time which would sound for about two seconds and then stop. For the instructors, the timing signal had to be less obvious, and took the form of a light which could be seen from the rostrum but was not generally visible to the class. The light would remain on until cancelld by the operator. In addition, a warning light was required. This would come on 2 minutes from the end of the set time and remain on until the time had expired, whereupon it would go out and the 'time up' light come on.

At first, the cheap, plentiful and reliable 555 timer was considered for the basic timing circuit, but rejected due to the long interval required to be timed. Instead, the ZN1034E precision timer was used. This IC is well suited to applications requiring long time delays because it incorporates a

12 stage binary divider. The divider output changes state only after 4095 oscillator cycles, allowing a higher oscillator frequency and hence smaller timing components to be used than would be the case were a 555 used to provide a similar delay. The ZN1034E also has an internal shunt regulator which removes the need for external supply regulation, a further regulator giving a 2.5 V output to feed the RC timing network, and TTL compatible complementary outputs.

In order to obtain the two minute warning facility required in this application, two separate timing circuits are employed each based on a ZN 1034 E . The first circuit has a delay which can be varied from five minutes to fortyfour minutes in steps of 1 minute. The delay is selected on two rotary switches, one having increments of 1 minute and the other having increments of 10 minutes. In fact, the switching is so arranged that the delay is always two minutes less than that selected. At the end of the timing period, a warning light is switched on and the second timing circuit triggered. The second circuit is similar but has a fixed delay of two minutes. At the end of this time, the warn-

Fig. 1 Internal block diagram of the ZN1034E.
ing light is extinguished and a 'time up' light comes on. Alternatively, the lights can be switched out of circuit and an audible alarm substituted. In this case there is no two minute warning, the first timing circuit merely triggering the second.

Construction

Everything assembles onto the PCB except the loudspeaker, the range setting resistors, the indicator lamps, the LEDs, the transformer and the switches. Nothing on the PCB should cause any problems, but take the usual care with ICs, the electrolytic capacitors, the transistors and the diodes, all of which must be inserted the right way around. We recommend that you use sockets for the ICs, but this is not essential. No case has been described since the original was built as a module only and was mounted in the PA desk.

The timing range resistors should be soldered directly to the two rotary switches. We have specified ordinary carbon resistors in the parts list but if a high level of timing accuracy is required you would do better to use 1% types, preferably metal film since these have a low temperature coefficient. The design exceeds the original requirements slightly in providing for delays of up to fortyfour minutes rather than thirty, but it is quite easy to extend the timing range further should you wish to. Further resistance can be introduced between pins 13 and 14 of IC1, but note that the total should not exceed 5 Mohm or the circuit operation may become unreliable. As the circuit stands, the total is a little over 1.6 Mohm. If even longer timing periods are required, you could try increasing the value of C1. The formula for calculating the required values is $\mathrm{RC}=$ 21.94 T, where R is resistance in k ohms, C is capacitance in uF , and T is time in minutes. This formula

Fig. 2 Circuit diagram of the School Timer.
only applies when the calibration resistance, ie, the resistance between pins 11 and 12 or RV1 and R18 in the circuit, is approximately 47 k .

The lamps used in the prototype were a combination indicator/stop/tail lamp set intended for use on caravans and purchased from a motor accessory shop. The amber indicator lamp was used for the two-minute warning and the red combined stop and tail lamp was used for the 'time up' indication. The unit came ready fitted with bulbs, a 21 watt bulb in the indicator section and a $21+5$ watt bulb in the stop and tail section. The 5 watt section was simply left unconnected.

The loudspeaker should ideally have an impedance of 70 ohms, but an 80 ohm type will work quite satisfactorily. A lower impedance speaker could be used provided a series resistance was added to raise the overall impedance to about 70 ohm, but this would result in less power being available for the loudspeaker. Provision has been made on the PCB for such a resistance to be used (R26) and if it is not needed you should insert a link in this position.

Setting Up

When the construction is complete and the board has been tested and found to work approximately to time, the two presets can be adjusted to set the timing accurately. Start with RV1 and set
the five minute range, timing three minutes until the warning lamp comes on. Then set SW2 to fourteen minutes and time the delay for twelve minutes until the warning light comes on. Readjust RV1 if necessary and then check the five minute range again. Some compromise may be required depending upon the accuracy of the range-setting resistors used. The preset affects the fourteen minute setting more than the five minute setting, so make the last adjust-
ment on this range.
The required 47 k calibration resistance is split into two parts for this IC, RV1 itself which is 22 k and a fixed $22 k$ resistor, R18. If it is found that the required setting is too near one end of the preset or is not on the preset at all, the preset and the fixed resistance can be exchanged for other values.

Having got the five to fourteen minute range working correctly, set SW2 back to five minutes and set SW1 to ten minutes. Start the

PARTS LIST

RESISTORS (all $1 / 4$ W 5\% unless other-		SEMICONDUCTORS	
		IC1, 2	ZN1034E
R1, 2, 3	390k (see text)	IC3	555
R4, 5, 6, 7, 8,		Q1, 2	BC108
9, 10, 11,		D 1, 2, 4, 5, 6, 7, 8	1N4001
12, 13, 14, 15	39k (see text)	D3	0491
R16, 21	390R	D 9, 10	1 N5401
R17, 22	15k	LED1	$0.2^{\prime \prime}$ red LED
R18	22k	LED2	$0.2^{\prime \prime}$ green LED
R19, 20	180 k (see text)	MISCElLANEOUS	
R23	470 R	SW1	1 pole, 4 way rotary
R24	12k		switch
R25	100k	SW2	1 pole, 10 way
R26	see text		rotary switch
R27	68k	SW3	DPDT switch, any
RV1	22k horizontal		type
RV1	skeleton preset	SW4	SPST switch, any
	47k horizontal		type
	skeleton preset	T1	9-0-9V, 2A mains transformer
CAPACITORS C1		LS1	Eagle type TP26G
	470n polycarbonate		or any speaker of $30-80$ ohms
C2,5,7	100n	RLA1, 2	miniature PC
C3	2200u 25v radial		mounting relay,
	electrolytic	PCB; combination	indicator/stop/tail
C8, 10	2 u 016 V radial	lamp assembly, Sed	dan Car Accessories
C8, 10	electrolytic	type CL845-S00 or	similar; 2 off 14 pin
C9	100u16v radial electrolytic	and one off 8 pin D for SW1, 2.	IL sockets; knobs

HOW IT WORKS

The output from the secondary of T1 is full-wave rectified by D9 and D10 to give a pulsed DC supply of about $12-13 \mathrm{~V}$ peak. This is then passed via D1 to the reservoir capacitor, C 3 , to give a smoothed supply of about 12 V . The pulsed DC is used to power the two 21 W indicator lamps while the smoothed supply feeds the ICs, the use of two separate rails ensuring that the heavy surge currents drawn by the lamps do not upset the timing circuits. ICs 1 and 2 contain internal $5 V$ shunt regulators, and the supply to these is dropped by R16 and R21 and decoupled by C2 and C5.

IC1 is a ZN1034E precision timer. Pin 4 is the switch-on reset and this coupled to pin 5, the regulator input, so that it is held high while timing is in progress. A second internal regulator provides 2.5 V via pin 14 to feed the RC network, comprising C1 and resistors R1 to R15. The RC network sets the frequency of the internal oscillator, and 39 k and 390 k values used here correspond to 1 minute and 10 minutes respectively with the given value of $\mathrm{C} 1,470 \mathrm{nF}$. R4, 5 and 6 are always in circuit, giving a period of three minutes when SW2 is at its lowest setting, 5 minutes. SW1 and SW2 are so arranged that the timing period is always two minutes less than the period selected. The oscillator frequency is also controlled by an internal resistor so as to ensure temperature stability, but this is trimmed by RV1 to provide fine adjustment.

The oscillator output is fed to a 12 stage binary counter, also on the chip,

which triggers the output stage via con-

 trol logic after 4095 counts. Both active low and active high outputs are provided; pin 2 goes high at the end of the timing period and drives Q1 via R17, thus activating relay RLA1 which connects LP1 to the pulsed DC supply rail. Pin 3 goes low at the end of the timing period, triggering IC2 via D3. D4 prevents back EMF damaging the transistor.IC2 is also a ZN103E and functions in exactly the same manner as IC1, except that here the timing period is fixed at two minutes by R19, R20 and C4. RV2 allows for fine adjustment of the oscillator frequency and hence the timing period. Pin 2 of 1C2 goes high at the end of the timing period and drives Q2 via R22, activating RLA2. RLA2 switches over, breaking the connection to LP1 and connecting the pulsed DC supply to LP2 and circuit comprising D5, LED1 and R23. LP2 and LED1 light up to show that the timing period is over and LP1, the warning light, goes out. LED2 is fed from the pulsed DC supply via D7 and D8 and is therefore illuminated throughout the timing process, but when the time is up and LED1 lights up, LED2 goes out. This happens because red LEDs have a lower forward voltage than green LEDs, so that, since both LEDs share the same series resistor, when LED1 is conducting there is not enough voltage across LED2 for it to conduct. D6 is included to prevent reverse voltage appearing on LED1 via LP2 when the supply to these two is not connected. Since D6 contributes a further voltage drop in series with LED1, it is necessary
to include a diode in series with LED2 also if the LED switching described above is to take place. However, the inclusion of one diode in series with each LED makes the extinguishing of the green LED less certain, and so two diodes have been inserted in series with the green LED, D7 and D8, which makes the switching action quite positive.
SW3 selects either the visual indication of timing as described or an audible alarm which sounds only at the end of the complete timing sequence. If SW3 is switched to the Tone position, the circuit operates as before except that the output from IC1 at the end of its timing period is used only to trigger IC2; there is no two minute warning. When IC2 reaches the end of its timing period it activates RLA2 as before, supplying pulsed DC to the circuitry around IC3. The pulsed supply is passed via D5 to the smoothing capacitor, $\mathrm{C6}$, and then applied to C and the V_{CC} connection of IC3, a 555 timer. The 555 oscillates at a frequency determined by R24, R25 and C7, and its output is fed via C9 to the loudspeaker, LS1. the voltage supplied to C8 will at first appear mostly across R27, but as C8 charges the voltage on R27 will fall to zero. Thus the voltage on IC3's reset pin will fall, causing it to cease oscillating after several seconds. C10 is fitted to give a sharper cut-off; without it the tone will tail off, dropping in volume and frequency rather than just stopping.
timing and check that the warning light comes on after thirteen minutes. If the warning light is early or late, try substituting another 390 k resistance. If you have a sufficiently accurate ohmmeter you could try selecting a suitable resistance with that, remembering that a higher resis-
tance will be needed to increase the time delay and vice versa. The other possibility is to add further small resistances at the rate of 650 ohms per second of error or to substitute a 330 k resistance with some smaller values in series if the initial resistance is too high.

When the ten minute range is

working correctly, repeat the procedure for the twenty and thirty minute ranges. Bear in mind that the period you are looking for in each case is the period of the range selected plus the five minutes set up on SW2 and less the two minute warning period, ie, twenty-three minutes on the twenty minute range and thirtythree minutes on the thirty minute range. Finally, adjust the two minute period of IC2 using RV2. To avoid waiting while IC1 times its delay period, trigger IC2 by momentarily shorting pin 1 to earth. When RV2 has been set, the Ls1 completed unit is ready for use.

BUYLINES

The ZN1034E is available from several suppliers, as are all the other semiconductors and the general components. The relay is available from Maplin, type no. YX96E. Suitable transformers are available from a number of suppliers but it pays to shop around here as prices vary enormously; a glance through the smaller ads for surplus and end-of-line items would not go amiss. $1 \% 0.4 \mathrm{~W}$ metal film resistors, should you wish to use these for the range-setting network, are available from Maplin. The PCB is available from our PCB service, see page 67.

Fig. 3 Overlay diagram of the PCB.

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers fother than for publication), nor can we predict the outcome if our projects are used beyond their specifications:
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gitt!):
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very stranghtiorward or where it is important to electronics as a whole;
- We will not reply to queries that are not accompanied by an SAE cor international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we recelve so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world atfairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK: ± 14.35
$£ 18.15$ Surface Mail

Overseds: $\quad £ 37.15$ Arr Mail

Send your order and money to: ETI Subscriptions Department, P.O. Box 35 , Wolsey House, Wolsey Road, Hemel Hempstead, Herts, HP2 4SS (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be avalable through newsagents, and it readers have diticulty in obtaming issues, we'd like to hear rabout it.

Backnumbers

Below we list the backnumbers that are avalable from our backnumbers department. Please note that this list will be out of date if you use an old copy of the magazine Backnumbers cost EI 50 (UK or overseas by surface mali and are available trom. ETI Backnumbers Department, P.O. Box 35. Wolsey House, Wolsey Road, Hemel Hempstead, Herts, HP2 4SS (cheques should be made payable to ASP Ltd).

Even it the copy of ETI you need is not listed, all may not be lost, because we run a photocopying service. For $£ 1.50$ (UK and overseas) we will photecony an entire article inote that parts of a series of articles count as separate articless). Your request should clearly state what article you require and the month and year in which it appeared (the index for 1980 and 1981 Wat published in January 1982, the index for

1982 appeared in December 1982, and the index for 1983 in January 1984). Send your request to ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB (cheques should be made out to ASP Ltd).

June 77
February 78
July 78
September 78
October 78
November 78
December 78
March 79
April 79
May 79
June 79
August 79
September 79
November 79
April 80
May 80
July 80
August 80
September 80
October 80
Novembe; 80
December 80
January 81
February 81
March 81
April 81
May 81
June 81
September 81
October 81
November 81
December 81
January 82
February 82
March 82
May 82
June 82
July 82
August 82
September 82
October 82
November 82
December 82
March 83
April 83
May 83
June 83
July 83
August 83
September 83

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring detals. (Don't torget to give us your telehone number).
We don't bother with the bureaucracy for Tech Tips - all you do is to send in your idea, stating clearly if you want an acknowledgement of receipt. If possible, please type your explanation of why the circuit is different. what it does and how it works, on a separate sheet from the circuit diagram; both sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur and in this event you should:

1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complant
If you exhaust the above procedure and still do not obtain a satisiactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a
fetter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.
OOPS!
We have in the past published small corrections to projects on the letters page, and major corrections separately. From now on corrections will appear on this page, and will be repeated for several months (just to increase our embarrassment). If a correction is too large to fit on here, we will publish it just once, but will note the fact that a correction does exist, and that copies of it can be obtained from us provided you send in an SAE. But please - request copies only if you really do need them; if this service is abused, we may be forced to withdraw it:
Universal EPROM Programmer (August 1983) Corrections to this project are listed in the article "Universal EPROM Programmer Revisited" which appeared in the January '84 issue.
Z80 Controller Computer (August 1983)
On the overlay, SWI is the rectangle beside ICs 5 and 6, C6 should be shown between ICs 3 and 7, and a link through has been missed - to the right of pin 18, IC11.

Typewriter Interface (October 1983)

An update article on this project appears on page 25 of this issue.

Car Alarm (October 1983)

In the semiconductors section of the parts list, Q1, 2, 5, and 7 should be BC212L, Q3 should be BC182L, and $Q 4,6$ should be TIP31 or BD131. There was also another (inconsequential) silly but we bet you've already spotted that one!
Tech Tips (October 1983)
Ramped Pulse Generator For Stepper Motors - pin 1 of IC2 should be grounded, the Ramp Up and Ramp Down inputs accept negative, not positive, going pulses, and IC7 should be a 4011 rather than a 4001.
Active Loudspeaker (November 1983)
Gremlins attacked the parts list on page 72 leaving a trail of 00 's in their wake. The ceramic tiles should be $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ square and you need six of them. The BAF wadding needs to be about as wide as the enclosure's internal height, i.e., about $21^{\prime \prime}$, and long enough to loosely fill the space when rolled up with a bit left over to cover the back of the bass unit. The thinner the wadding you use, the greater the length you will require. Mini Drum Synth (November 1983)
On the overlay diagram on page 37, RV2 has beenshown as RV3 and vice-versa; the circuit diagram is correct.
Programmable Speech Board - Mini Mynah (February 1984)
The PCB for this project is double sided but only the underside pattern appears on the overlay drawing on page 26 and on the Foil Patterns page. The component side pattern appears on the PCB Foil Patterns page in this issue. The errordoes not affect PCBssupplied by our PCB service.

Binder Order Form

To: ETI Binders, P.O. Box 35, Wolsey House, Wolsey Road, Hemel Hempstead, Herts HP2 4SS.

Please send me. binder(s) for ETI. I enclose a cheque*/Postal Order*/International Money Order* to the value of $£ 4.25$ per binder required, made out to ASP Ltd (* please delete as appropriate).

Total money enclosed $£$.
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name
Address
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order.
Note that binders cost the same for UK and overseas; overseas orders will be send by surface mail.

THIS COUPON IS VALID UNTIL 31st MAY 1984

Photocopy Order Form

To: ETI Photocopies Department, 1 Golden Square, London W1R 3AB.
Please supply me with the following photocopies:

Total money enclosed $£ \ldots \ldots$.................................
PLEASE COMPLETE YOUR NAME BLOCK CAPITALS

Name
Address
\qquad
\qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order.
Note that the cost is the same for overseas orders as for UK orders; overseas orders will be sent by surface mail. PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING.
THIS COUPON IS VALID UNTIL 31st MAY 1984

THE SAGA OF sILIY-COW VALLEY

Vivian Capel tells a tale from the dawn of the electronic age.

In the days when buffalo roamed freely over the American Praries an Indian village nestled in the hollow known as Silly-Cow Valley. No-one knew how it had acquired the name, whether it was due to a rampaging female buffalo or half-witted Indian squaw, the origin was lost in antiquity.

The white man was rarely seen in those parts, so, unspoiled by 'civilisation', the Indians lived in comparative peace except for occasional skirmishes with nearby tribes. All this was soon to change, for one day a stranger appeared in their valley. His visage and attire was like no other white man they had ever seen. His strange blue straight-sided wigwam perched on a rock overlooking the encampment; but no-one had seen it arrive, it had just appeared as though from nothing.

Being more inquisitive than hostile, the Indians made him welcome to their-village, especially as he brought a seemingly inexhaustable supply of gifts. There were large numbers of multi-coloured baubles, insect-like beads with long springy legs that delighted the children, and much more.

For the wives of the chief there were special gifts, fine buffalo hides dyed in bright colours, and for the favourite wife, a real rarity for those parts, a hippopotamus skin. In return all he asked was to be allowed to come and go as he pleased, and to observe and talk to the people.

Chief Sitting-Bull readily agreed, so for many moons the stranger became a familiar visitor to the camp. Often he would be invited to a camp-fire pow-wow and entertainment with the Chief, and they became firm friends. Always though he carried a notebook, and wrote down carefully anything he heard which seemed to interest him.

One evening while they were relaxing after a particularly good meal at the camp fire, the Chief asked him about his book. "What are these marks you keep making in this thing?" he said. "White man's writing," came the reply, "I put down here anything I wish to remember, then later I can read it and recall all I have seen and heard."

The Chief took the book, turned it this way and that, but could make nothing of it. "Why you do this?" he asked.

The stranger paused, looking intently into the burning embers. "I am a traveller," he said at length, "I have travelled far in search of the Eternal Truth, the Great Principle, and I must continue on until it is found."
"Then why you come here?" grunted the Chief.
"I am drawn to this place, I have been here before and seen so many miracles that you could never understand that I know it is here I will find what I seek."
"We've not seen you before, when you come?" demanded the Chief.

A faint smile crossed the strangers visage," Not of this time," he said, "but far into the future, beyond the days of your sons' sons."
"I nounderstand what you talkabout," growled Chief Sitting-Bull as he handed the notebook back, "pale-face brother speak with forked tongued like snake-in-thegrass." He had a faint suspicion that the stranger was making a fool of him. However, those nearby who heard, seized on the description, and because he had given no other, he was henceforth called by the name Pythonograss, 'snake' seeming somewhat disrespectful.
"This writing though," the Chief added," it interests me, could paleface brother teach Chiefto read?' Having little alternative, Pythonograss agreed.

The Chief proved a quick and adept pupil, and as his ability improved, an avid reader. Poor Pythonograss was kept busy fetching books, papers and periodicals from his wigwam on the rock. Not wishing to keep the benefits of literacy to himself, Chief Sitting-bull taught first his family, then his braves the art of reading, and commanded that they in turn should teach their squaws and young ones.

Next he decided to produce his own newspaper, the Daily Squawk which he dedicated to a group of braves who wrote and copied. Soon, specialist periodicals began to appear such as Scalp-Collectors Weekly, and Practical Witch-Doctor.

One day, when Pythonograss entered the village he sensed a difference. The squaws were not wearing their coloured ornaments nor were the children playing with their 'insects'. On approaching the Chief's wigwam he saw tables piled high with them, while at others braves sat working, trying to piece different items together.

The Chief stood nearby with a periodical in his hand taken from the last pile Pythonograss had brought; it was ETI.
"How;" he greeted, "these things you give the squaws, they 'lectronics - we know, we read." He tapped the magazine.
"Well, ves," admitted Pythonograss, "they're bits from my old guidance computer and time displacement unit. I though the squaws would like the colours. But what are you doing with them?"'
"We makeum circuit, like it says here," the Chief replied tapping the magazine again, "only we design our own."
"So what exactly are you trying to make?"
"Sound generator to give us the mating call of the buffalo, then they come to us instead of we hunting them," returned the Chief with a look of satisfaction in his face. "You think good idea, yes?"
"We-ell," responded Pythonograss dubiously, "it sounds alright but it could wipe out the buffalo, make them extinct."
"No!" declared the Chief emphatically, "plenty buffalo on the plains, we huntem plenty, but always more."

Pythonograss left them to it and thoughtfully returned to his rock. So, the future of Silly-Cow Valley was already taking shape, but he was as far off as ever in completing
his quest. Surrounding tribes soon got to hear of the village with the Pale-face learning and came to investigate. Sitting-Bull shrewdly encouraged their interest, then sold them as many components and back issues of ETI that he could get out of Pythonograss, at an inflated barter rate. Yes, capitalism had come to Silly-Cow Valley too.

The Chief even set up a special row of wigwams to conduct the trade. At one end he erected a pole with the inscription Totenum Pole Road. Experiments and project building now was the regular pastime at most of the encampments in the area. This could be seen from the frequent puffs of smoke that appeared over them. A small one meant: "should have used a wire-wound for the surge limiter," while a large one declared: "oops, connected the reservoir round the wrong way."

These would be viewed with trepidation by travellers in distant caravan trains with mutterings that "those doggone injuns on the warpath again." Which often was true, as some of the more warlike tribes would ride out and take it out on whoever happened to be around, whenever a project didn't work - which was more often than not.

Meanwhile the village squaws were growing more discontented. Their ornaments had gone, and they hardly ever saw their men who spent theirtime using arrows for screwdrivers and spears for soldering irons (well everything is big in America).

So they just sat around the camp fire on their own talking squaw talk and looking enviously at the three who still had their gifts, the hides on which they sat. But two of these were even more jealous of the favourite
who flaunted her rare hippopotamus skin at every opportunity.

Finally, being able to stand it no longer, they plotted to steal the hide. Each had a son, and these they persuaded to do the deed, disguised as the braves of another tribe. So as she returned to her wigwam one night, the favourite was set upon by these two who tried to wrest the skin from hergrasp. Now it so happened she had just read a book on karate, so in minutes her assailants were laid out cold.

The next day, Pythonograss wandered wearily into the village. Things had not gone as he hoped, he had broken the first law about interfering with local cultures and he was no nearer the great Truth that he sought. Casually, he glanced at the copy of the Daily Squawk pinned to the totem pole; it consisted mostly of an account of the previous night's fracas.

Suddenly, his eyes widened and clicked back to the headline. "This is it!, this is it!" he shouted throwing his hat in the air and cavorting around the pole. "l've found It, l've found it!" Then he made off as fast as he could back to his wigwam which after a few moments, melted into nothing with a soft whirring noise.

Chief Sitting-Bull who had observed all this from the entrance of his wigwam, pushed back his head-dress and scratched his head in amazement. Then he went over to the paper to discover just what had produced such an astonishing reaction. He could see nothing unusual at all, the headline just read:
"THE SQUAW ON THE HIPPOPOTAMUS IS EQUAL TO THE SON OF THE SQUAWS ON THE OTHER TWO HIDES.'

ETI

TT LIVES AGAIN!

From the past it came, growing daly, striking terror into the hearts of lesser publications, and spreading its mfluence, unoss the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you neea the help, of Electronics - It's Easy Originally a long running series in Electronics Today International, Electronics - It's Easy we's punted as a set of three books They sold out It was reprinted as a single volume It sold out Now this phenmemally sucessthal putbication is avalable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply writter guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of todav's technology
You can obtam your copy of Electronics - It's Easy by mall order using the coupon below Make cheques or postal orders wiyat)le io ASP Lid, alternatively you may pay by Access or Barciaycard

ETI PCB SERVICE

The best way to get a really professional finish to your project is to use a professionally made PCB look no further, here they are!

In order to ensure that you get the correct board, you must quote the reference number when ordering - if you don't, you may get sent the wrong board. The code can also be used to identify the year and month that a particular project was outlined in: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.
1979

- E/794-1 Guitar Effects Unit 3.04
E/794-2 Click Eliminator. 7.64
- E/796-1 Accented Beat Metronome 4.14

1981
$\square \quad E / 811-1$ LED Tacho 4.75
$\begin{array}{ll}\text { [1) } & \text { E/811-1 LED Tacho } 4.75 \\ \square & \text { E/811-2 Multi-Option Siren. } 3.68\end{array}$
E/812-2 IR Alarm (4 boards) 7.64
E/812-5 Pulse Generator 4.11
E/814-2 Drum Machine (2 boards) 6.44
E/814-4 Guitar Note Expander 3.68
E/816-8 Waa-Phase 1.76
E/816-9 Alien Attack 4.00
E/817-1 System A-Input
(MM or MC).3.05
E/817-2 System A - Preamp. 5.95
E/817-3 Smart Battery Charger. 2.27
E/818-3 Hand Clíp Synth........... . 4.57
E/818-5 Watchdog Home
Security (2 boards) ...
E/819-1 Mains Audio Link
(3 boards) 8.45
\square E/819-4 Laboratory PSU. 5.21
- E/8110-1 Enlarger Timer. 3.91
\square E/8110-2 Sound Bender............... . . 3.05
- E/8111-1 Voice Over Unit 4.57
E/8111-2 Car Alarm 3.23
E/8111-3 Phone Bell Shifter. 3.40
\square E/8112-4 Component Tester. 1.71
1982
E/821-3 Guitar Tuner (2 boards) ... 6.38
E/822-1 Ripple Monitor 2.21
E/822-2 Allez Cat Pest Repeller 1.93
E/822-5 Moving Magnet Stage 4.01
E/822-6 Moving Coil Stage 4.01
ㅁ E/823-4 Capacitance Meter
(2 boards)
11.66
I- E/824-5 Voltage Monitor.............. 2.14

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB. Make cheques payable to ETI PCB Service. Payment in sterling only please. signed Name Prices subject to change without notice.

Total for boards			PLEASE ALLOW
			28 DAYS FOR
Add 45p p\&p		0.45	DELIVERY

1984

ㅁ E/841-1 Vector Graphics 8.27
$\square \quad$ E/842-1 Speech Board
(Mini-Mynah) 10.97 MODULAR PREAMP:
ㅁ. E/842-2 Disc input (mono) 3.73
\square E/842-3 Output stage (stereo) 3.73
E/842-4 Relay/PSU 3.73
E/842-5 Tone, main (mono) 3.73
E/842-6 Tone, filter (stereo) 3.73
E/842-7 Balanced output (st) 3.73
E/842-8 Headphone amp (st) 3.73
E/842-9 Mother board 9.01
E/843-1 Power Meter 5.81
E/843-2 Z80 DRAM. 9.79
E/843-3 Obedient Die. 3.76
E/844-1 School Timer 4.07

Total for boards
Total enclosed

PCB FOILPATTERNS

The Remote Controller PCB.

The School Timer.

The Ace Colour Board.

Discover a full colour monitor for less than $£ 200$ which is compatible with the majority of small Micros

£19995 + VAT \& CARRIAGE'
-SUPERB GRAPHIC RESOLUTION
 UNIOUE GREEN TEXT OR
-SPECIFICALLY DESIGNED TO DISPLAY THE 「FO. furmer detais and stocksss of the NOVEX MONITOR] OUTPUT FROM MICRO COMPUTERS
-SOUND WITH BULLT IN SPEAKER AND VOLUME CONTROL
 Nam:

BEIGE ANTVELY DESIGNE

- FULL 12 MONTH GUARANTEE

The full range of NOVEX MONITORS are
available through dealers rationwide.
Dealer enquiries welcome.

FOR HI-FI \& ELECTRONICS ENTHUSIASTS

CONCEPT ELECTRONICS LTD

51 Tollington Road, London N7 6PB
Mall order only
We are the specialist of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of ampiniers, equalizers, reverberation control modules music generator, battery tlourescent light and high qually reck mounting cabinets atc. with illustrative pictures now avaliable at the cost of 35p + mounting 25p p\&p
Professional rack mounting cabinet

Panal 81ze	Rear Box	Price	
W H (inch)	W	AL	STEEL
19×5	$17 \times 4.5 \times 10$	27.54	23.54
19×4	$17 \times 3.5 \times 10$	25.24	21.24
19×3.5	$17 \times 3 \times 10$	24.09	20.09
19×3	$17 \times 2.5 \times 10$	24.09	
19×2.5	$17 \times 2 \times 10$	22.94	18.94
19×6	$17 \times 5.5 \times 12$	28.69	24.69
19×5	$17 \times 4.5 \times 12$	27.54	23.54
19×4	$17 \times 3.5 \times 12$	25.24	21.24
19×3.5	$17 \times 3 \times 12$	24.09	20.09
17×3.5	$15.5 \times 3 \times 9$	21.78	17.79
17×2.5	$15.5 \times 2 \times 9$	20.64	18.64
17×4	$15.5 \times 3.5 \times 12$	25.24	21.24
17×3	$15.5 \times 2.5 \times 12$	24.09	20.09
Please add	$2.50 \mathrm{p} / \mathrm{p}$ per		

Please add $£ 2.50 \mathrm{p} / \mathrm{p}$ per item

* Wholly made of black anodised aluminlum sheets Suitable for high quality amplifers and many other purposes Top, side and rear cover removable for access - Separate front mounting plate * Heavy gauge froni panel is of brushed aluminium finish enhanced with two professional handies $\boldsymbol{*}$ With ventilation silta and plastic feet.
The low cost steel version is also avallable. The size and features as well as the front panel is the same as the aluminium cabinets except the rear box is manufactured from steel painted in black

CONTROL MODULE8

TY-7 Electronic touch switch TY-11 Light activated switch ed swith 24. 80 Ans. E2.20 KIt E3.50 Ass. TY-18 Sound activated switch
(Clap switch) £4.60 Kit £5.95 Ass.
(voice-switch) $\mathbf{~ E 5 . 5 0 ~ K i t ~} £ 7.80 \mathrm{Ase}$. $\mathrm{T} \mathrm{r}-41$ Infra-red remote control
(Recelver and transmitte)
£17.20 KH £21.95 Ant

TA-323A 30W + 30W stereo amplifler TA-620 80W + 80W stero amplfter Abs. + 80W stero amplffer £27.50 Kit R33.50 A8s. TA-920 70W +70W stere0 amplifier £35.50 Kht $\mathbf{\varepsilon 4 2 . 8 0 ~ A s s . ~}$

MASHMR FTHCHRONTOS NOW! The Pracowichl way!

YOUR CAREER..YOUR FUTURE.YOUR OWN BUSINESS..YOUR HOBBY THIS IS THE AGE OF ELECTRONICS! the warles icstest growin industry.

Our new style course will enable anyone to hate a reat understanding of electronics by a modern, practical
and visual method. No previous knowiedge is required,
no maths, and an absolute minimum of theory.
You learn by the piactical way in easy steps, mastering all the essentials of your hobby or to start, of further
a career in electronics or as a self.employad servicing engineer All the training can be carried out in the comfort of youl own home and at your own pace

A tutor is avalable to whom you can write personaliy at any time, for advice or help during vour work. A Certificate is given at the end of every course

- Build a moderin oscilloscope
- Recognise and handle current atectionic Components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic
racturanc circuits used in moderim
equipminent using the osciltoscope
Buald aurd use digital etectronic circuit
- and current solid sate "chips'
- Learn how to test and service every type of electionic device used in industiv and commerce today. Servicing of radio. T V
H, FI, VCR and micropiocessor comput H_{1} FI, VCR and microprocessor 'compute:'
equament

British National RadiodeHlechonics School Reading Berks. RGI IBR

COLOUR bROCHURE

Please send your brochure without any obligation tc
NAME
ADDRESS
ADDRES
ETI/4/842
Post now to:

Post now to: British National Radio\& Hectromics School Reading, Berks.RGl 1BR CACC

I am interested in.

BLOCK CAPS PLEASE COURSE IN ELECTRONICS as described above RADIO AMATEUR LICENCE MICROPROCESSORS OTHER SUBJECTS please state below

ELECTRONICS TODAY INTERNATIONAL

Lineage:
35p per word (minimum 15 words) Semi Display: (minimum $2 \mathbf{c m s}$) £10.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

Send your requirements to: Debbie Miller ASP Ltd.,
1 Golden Square, London W1.

TRAINEE ASSISTANT FILM RECORDISTS

Would you like to specialise in sound with the BBC TV's Film Department in West London?
Trainee Assistant Film Recordists work in Sound Transfer and Dubbing areas. Prospects exist for moving on to location recording work after several years.
Applicants, who should be at least 18 years of age, must possess a minimum of ' 0 ' level standard of education or equivalent, including Physics and Mathematics, together with a knowledge of electronics. They must be able to demonstrate a practical interest in sound.
Normal hearing and colour vision are essential and applicants must hold a current driving licence or be prepared to obtain one within a reasonable period.
Successful applicants will start their three year training period in September 1984 at a salary of $£ 5,809$ (currently under review). An additional allowance is paid for shift work. Relocation expenses considered.
Contact us immediately for application form (quote ref. 1143/ETI and enclose s.a.e.): BBC Appointments, London W1A 1AA. Tel. 01-927 5799.
Preliminary interviews are expected to be held in June.
We are an Equal Opportunities employer

VIDEO ENGINEER

for repair company wanted. Experienced on J.V.C. Sony, Akai and all other video machines essentia Three years experience necessary. Salary negotiable, in W1 Area Phone 01-636 2520

TO FIND

 THE RIGHT PERSON USE ETIWIRES 'N CABLES

PLANS 'N DESIGN

AMAZING ELECTRONIC

plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

SOFTWARE APPLICATIONS

CORTEX-FORTH

Full fig-forth withextensionsfor power tran cortex computer. Supports disc \& cassette, 40 page manual. 16K supplied in two 2564 Eproms. Replaces 1 st two Basic Eproms. E35 Inclusive
LOMBARD SYSTEMS
18 Lombard Street, Lidlington Bedford MK43 ORP

REPAIRS

MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets, Commodore computers; printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday.

FOR SALE

100W AMPLIFIER

 - $£ 9.95$ built Or use the same board for 50 W $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U.SAE forfult details to:ESS AMPLIFICATION Innovation House Guildhall Road, Hull

ELECTRONIC ORGAN KEY

 BOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.01-986 8455.POWERTRAN Digital Delay Line. Up to 1.6 mS delay. Kit cost over£170. Fullybuilt and tested to a high standard. Give away at £100. Also Clef Electronic Band-Box and Master Rhythm unit. Kit cost over £300. Built and tested as above.£180 o.n.o. Phone Medway 64900 after 7.15 evenings only.

VERORACKS and cabinets. 19 inch $3 u$ and $5 u$. Larger ones available. New and unused. Yateley (0252) 871048.
FREE parcel of L.E.D.'s, decoders, components worth £10! Send only 80p postage! D. Horsley, 113 Clare Rd., Braintree, Essex.

A1 INTRUDER ALARMS

Wholesale Alarm Suppliers
Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13
Tel: 0512283483 or 051-220 0590

LARGE STOCK OF BURGLAR ALARM EQUIPMENT. AS used in the trade. JN Security Centre, 176 Sydenham Rd. London SE26 5J2. 01-778 1111. Showrooms open 6 days.

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

ULTRASONIC BURGLAR ALARM housed in attractive teak finish loudspeaker cabinet. Keyswitch operated, gives full room coverage on mains battery with piercing auto-resetting alarma and timed exit and entry delays. Full kit only $£ 29.95$ or $£ 38.50$ ready built. Safewise Instaliations, 6 Southern Street, Manchester M3 4NN. 061-835 1015. Access and Barclaycard.

TO FILL
 THIS SPACE
 PHONE
 DEBBIE
 01-437 0699

COMPUTER ADD-ONS

Microtan 65 Eprom Switching

 BoardPermany 4 from 16 . Sotware controlled. Bareboard + instructions $£ 18.85$ postfree. Also available 64×25 colour VDU card, 3 pass assembler. word processor etc. Large SAE for details
M.P.D., 7 Cedar Close, Grafham, Huntingdon PE18ODZ.

CONSTRUCTING AN AUDIO MIXER?

To achieve a high quality finish you need commercially produced printed panels

- sub-frames - main frames etc designed and manufactured specifically for this purpose.

PARTRIDGE ELECTRONICS

THE MIXER PEOPLE
56 Fleet Road, Benfleet, Essex, SS7 5JN, England. (Large S.A.E. please)

TANGERINE OWNERS. We have available an independant switch selectable RAM card to free the Eprom space on Tanex. P.C.B. on built. S.A.E. for details. Ralph Allen Eng., Forncett-End, Norwhich. Tel (095389) 420.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

RACAL UNIVERSAL Counter Timer. Eight digit IIM112 perfect. Cost $£ 860$. Bargain $£ 160$. Cooke, Shillingford, Oxford. Phone Warborough 8491.

AERIAL AMPLIFIERS improve weak television reception. Price $£ 6.70$. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire, BLO 9AGH.

PRINTED CIRCUIT BOARDS

made to your drawings. Artwork carried out. One ofts and small quantities acceptable. Ask for quote. Fennel Industrual Electronics (0203) 382296.35 Fife Street, Nuneaton, Warwickshire.

EQUIPMENT TO SELL? PHONE DEBBIE ON 01-437 0699

SERVICES

MENDASCOPE LTD

Repair \& recalibrate Oscilloscopes All makes, all models Scopex. Safgan, older TEK \& TQ Otter House, Weston Underwood Olney, Bucks MK46 5JS
Beford (0234) 712445
For the complete service

35 Grosvenor Road,
Twickenham, Middlesex
TEL: 01. 891 1923/1513 Telex:29509

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×9 ", Paralab, Downton Wiltshire.

COMPUTERS

MICROTAN 65. Fully expanded tanex. 12 Slot M/Board, PSU, mounted in vero case, full keyboard with case, complete manuals, all in mint condition, £200. Tel: Wimslow (Cheshire) 530054.

KITS

TELEPHONE MONITOR KIT, connects between telephone line and your cassette recorder and automatically records all phone usage. Complete kit including case and PCB only £9.95. Dept. ETX, Unitech (Midlands), FREEPOST, Erdington. Birmingham B24 8BR.

TIME WRONG?

MSF CLOCK IS ALWAYS CORRECT - never gains or loses SELF SET TING at switch-on, 8 digits show Date, Hours, Minutes and Seconds auto GMT/BST and leap year also parallel BCD for computer, receives Rugby 60 KHZ atomic time signals, built-in antenna 1000 Km range OSCILLATOR,
$10 \mathrm{~Hz}-200 \mathrm{KHZ}$, £21.80.
Each fur-to-build kit includes all parts, printed circuit, case by-return postage etc, list of other kits.
45 (TD) OldSchool Lane, Milton, Cambs

VHFTRANSMITTERMODULE

Kit, size 2 inches by $1 / 2$ inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. $70-150 \mathrm{MHz}$, range dependent on voltage(618V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to £6.95, post paid, send cash/ cheque/PO to Modulex, P.O Box 102, Dartford, Kent DA1 2PW.

Build your own high performance AUDIO SIGNAL GENERATOR £25.00 incl. case (p.p.f1)
Spec:
Very low distortion (only .02\%)
Output 1 vinto 600 Ohms. (Attenuated)
$10 \mathrm{~Hz}-100 \mathrm{Khz}$. Sine-Square (A Linsley-Hood design) TELERADIO ELECTRONICS 325 Fore Street, Edmonton London N9 OPE
Ready made $£ 30.00$

PRINTED CIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Pen zance, Cornwall.

BULK COMPONENTS

Resistors - Idealifor making intopacks or
iustlo increase stocks at a very low price just to increase stocks at a very low price. We're selling new, full lead length resis-
tors in original boxes/packets/reels. tors in original boxes/packets/reels. Because most are packed in thousands (some are 100's) you'll need to buy a large
quentity to ott a reasonable mix. You'll quentity 10 get a reasonable mix. Youll
get carbon/film/oxide mixed tolerances $\$ \% 10200$ in $1 / 2 W, 1 / 4 W \& 1 / 2 W .20,000 \sum 26$: $50,000 £ 60 ; 100,000 £ 110 ; 1 /$ million £250; 1 million £950. All prices inclusive. SAE for samples.
We also stock capacitors, semiconductors, veroboards etc in bulk SAE for latest list.
PC ELECTRONICS 1, THORNHILL ROMSEYRD,' WHITEPARISH,
SALISBURY, WILTS SP5 2SD

IRISH
 READERS

MAIL ORDER COMPONENTS
Top quality components Great prices Return-of-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6 Phone (01) 987507 Mail order only please

BUMPER BOX OF BITS WOWI We've got somany components in stock, we can't possibly list them all - So buyabox. Init you displays, switches, panels with tran sistors, diodes, IC's etc.. coils, pots... and so on. All modern parts - guaranteed at least 1000 items minimum weight 10 lbs. ONLY £8.50 inc. 48 page catalogue 50p.

ELECTRONICS WORLD
le Dews Road, Sallabury, Wilts SP2 7SN

EQUIPMENT

WEST HYDE\qquad AYLESBURY BUCKSTelephone: (0296) 2044

AYLESBURY BUCKS HP20 1ET
Telephone: (0296) 20441

Please include my business details in the next available issue of ELECTRONICS TODAY INTERNATIONAL:

BUSINESS NAME:
ADDRESS:

OPENING HOURS:
RETAIL \square
WHOLESALEMAIL ORDER
\square
(Please tick)
CONTACT: (FOR OFFICE USE ONLY)

$\frac{1005 i n}{10}$

We require an organised, literate and technically competent radio enthusiast for duties as Editorial Assistant. These duties will include all aspects of magazine production. subbing, writing and communicating with design and print departments. It would help if you have previous experience, but if you haven't, don't let that stop you applying!

Applicants should be cheerful in the face of adversity, enjoy writing and be able to handle a typewriter. A willingness to learn is essential. A current amateur radio licence is highly desirable. We are willing to consider applications for both full-time and part-time employment.

If you are interested, please apply with full CV to Ron Harris, Managing Editor, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB.

ADVERTISER'S INDEX

Audio Electronic 31
Bimsales 34
Bi-pak 40
B.K.Electronics 16
Black Star 34
B.N.R\&E.S. 70
Cambridge Learning 26
Clef products 58
Concept Electronics 70
Connaught Electronics 52
Cricklewood Electronics 12
Crimson Elektrik 52
Crofton Electronics 70
Delta Tech 18
Display Electronics 14
Electrovalue 48
Greenbank Electronics 58
Greenweld Electronics 58
G.S.C. 7
Happy Memories 51
Hawk Electronics 40
ICS 40
ILP 38
Kelan Engineering 18
Kempston 50
L B Electronics 18
Maplin. OBC
Marco Trading. 52
Midwich Computers 51
MJL Systems 51
Parndon Electronics 34
Powertran FC,10,IBC
Radio Society Great Britain 32
Rapid Electronics 64
Riscomp 31
R.T.V.C. 26
Stewarts of Reading 48
Technomatic 8,9
Texas Instruments 48
T K Electronics 32
Watford Electronics. 45

Low-price robots from

 POWERTRAN - hydraulically powered - microprocessor controlledThe UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as $£ 470$, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or 120 v AC or from a 12 v DC supply. Up to six independent axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard
 RS232C link.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project

complete kit with assembly
instructions £95 Interface board kit £11

A real, programmable robot for a little over £200! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus the Sinclair ZX81 being particularly suitable.

GENESIS S101

Weight 29kg, max. lifting
capacity 1.5 kg
4-axis model (kit form) £470

GENESIS P101

Weight 34 kg , max lifting capacity 1.8 kg
6 -axis model (kit form) $£ 750$ 6-axis complete system (kit form)

HEBOT II Turtle-type robot

For a little over $£ 100$, Herbot 11 takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoid-operated pen to chart its moves. Touch sensors, coupled to its shell return data about its environment to the computer
enabling evasive or exploratory action to be calculated
The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a $\mathrm{ZX81}$ or other microcomputer
HEBOT sitions. The entire arm rotates about its base and there is

MICROGRASP

Weight 8.7 kg , max. lifting capacity 100 g
Robot kit with power
supply
£160.00
Universal computer interface board kit
23 way edge connector $\mathbf{£ 3 . 0 0}$ AX81 peripheral/RAM pack splitter board
£3.50

5-axis model (kit form) $\mathbf{£ 5 2 5}$ 5-axis complete system (kit form)
$£ 817$
GENESIS P102
Weight 36 kg , max lifting capacity 2 kg 6-axis system (kit form) $\varepsilon 1350$

Powertran Cortex microcomputer self-assembly kit £295.00

Full-travel, full size

Kicoin

Simply plugs into expansion port on your

SPECTRUM
\star Single-key selection of all major multi-key functions.

* Plugs directly into Spectrum expansion port and extends port for other peripherals.
\star Can accept Atari-type joysticks (optional extra).
* Absolutely no soldering or dismantling of Spectrum.
\star Available in kit-form or ready-built.
The kit is sold in three parts - the Keyboard Main Kit which allows you to make your own arrangements for connection to the Spectrum - the Adaptor Kit which contains the extension board and socket for the expansion port and the cable between the

LK30H (Adaptor Kit) XG35Q (Case)
Full construction details in Projects Book 9.
Also available ready-built for direct connection and including case Order As XG36P (Spectrum Keyboard)

Price £44.95

Maplin's Fantastic Projects

Full details in our project books. Price 70p each.
in Book 1 (XA01B) 120W rms MOSFET Combo-Amplifier Universal Timer with 18 program times and 4 outputs - Temperature Gauge • Six Vero Projects.
In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25 W MOSFET Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz • Ultrasonic Intruder Detector •1/O Port for ZX81 - Car Burglar Alarm Remote Contol for 25W Stereo Amp.
In Book 5 (XA05F) Modem to European standard • 100 W 240 V AC

1984

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On. sale in all branches of W.H. Smith. Price £1.35 - It's incredible value for money. Or send $£ 1.65$ (including $p \& p$) to our mail-order address.

Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 Module to Bridge two of our MOSFET amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter Damp Meter - Four Simple Projects
In Book 7 (XA07H) Modem (RS232) Interface for ZX81/VIC20 - Digital Enlarger Timer/Controller - DXers Audio Processor - Sweep Oscillator CMOS Crystal Calibrator.

Great Projects From E\&MM

Our book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first Year. Projects include Harmony Generator, Guitar. Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price £1.

In Book 8 (XA08J) Modem (RS232) Interface for Dragon and Spectrum • Synchime - I/O Ports for Dragon Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.

In Book 9 (XA09K) Keyboard with electronics for ZX Spectrum - IntraRed Intruder Detector - Multimeter to Frequency Meter Converter - FM

Radio with no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric - VIC Extendiboard - ZX81 ExtendiRAM • Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to Modem/RS232 Converter - Logic Pulser - Psuedo-Stereo AM Radio Ni -Cad Charger Timer - AdderSubtractor - Syndrums' Interface Microphone Pre-Amp Limiter.

THE MAPLIN MODEM KIT

Exchange programs

 with friends, leave or read messages from the various Biliboard services, talk to computer bureaux, or place orders and check stock levels on Maplin's Cashtel service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential.
Now you can exchange data with any other computer using a 300 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.
Some computers need an interface and we have kits for the ZX81, VIC20/Commodore 64, Dragon and Spectrum and shortly Atari, whilst the BBC needs only a short program which is listed in Projects Book 8.
A Maplin Modem will add a new dimension to your hobby.
Order As LW99H (Modem Kit) excluding case. Price $£ 44.95$
YK62S (Modem Case) Price £9.95.
Full construction details in Projects Book 5.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging. If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose £1.65

Name
Address

ETI/4/84

Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50 p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]:

[^1]: Cambridge Learning Limited, Unit 17 Rivermill Site, FREEPOST, St lves, Huntingdon, Cambs', PE17 4BR, England, (Registered in England No 1328762).

