An Argus Specialist Publication

Low-price robots from POWERTRAN
 - hydraulically powered - microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as $£ 425$, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or 120v AC or from a 12v DC supply. Up to six independent
 axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link. machine tool interfacing. form. The latter provides not only extra economy but also valuable additional training as an assembly project.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for

All Genesis robots are available either ready-built or in kit

For under $£ 100$, Hebot II takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoidoperated pen to chartits moves. Touch sensors coupled to its shell return data about its environment to the computer enabling evasive or exploratory action to be calculated.

The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a ZX 81 or other microcomputer

HEBOT II

Weight 1.8 kg complete kit with assembly instructions £85 Interface board kit £10

A real, programmable robot for under $£ 200$! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and four of these are servo controlled giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus - the Sinclair ZX81 being particularly suitable.

MICROGRASP

Weight 8.7 kg , max. lifting capacity 100 g
Robot kit with power
supply
$\mathbf{£ 1 4 5 . 0 0}$ splitter board
Universal computer interface. board kit $E 48.50$

GENESIS S101

Weight 29kg, max. lifting capacity 1.5 kg
4-axis model (kit form)
$£ 425$

GENESIS P101

Weight 34 kg , max lifting capacity 1.8 kg 6 -axis model (kit form)
6-axis complete system (kit form)

5-axis model (kit form) £475 5-axis complete system (kit form)
$£ 737$

GENESIS P102

Weight 36 kg , max lifting
capacity 2 kg
6-axis system (kit form)

E1175.00
Powertran Cortex microcomputer self-assembly kit
£295.00

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Editorial Assistant Jerry Fowler: Technical Illustrator Paul Stanyer: Ad. Manager Lynn Collis: Copy Control Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive PUBLISHED BY:
Argus Specialist Publications Ltd 1 Golden Square, London W1R 3AB. DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd 12-18 Paul Street, London EC2A 4JS (British Isles)
PRINTED BY
The Garden City Press Ltd
COVERS PRINTED BY
Alabaster Passmore

OVERSEAS AUSTRALIA - Roger Harrison

EDITIONS and their EDITORS CANADA - Halvor Moorshead GERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC $\begin{aligned} & \text { Member of the } \\ & \text { Audit Bureau } \\ & \text { of Circulation }\end{aligned}$

Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. Alt rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and anv reproduction requires the prior written consent of the Company. (c) 1984 Argus Specialist Publications Ltd \sqcup All reasonable care is aken in the preparation of the magazine contents, but the publishers cannot be held regally responsible for mally be published as soon as possible atterwards. All prices and data contained in advertisements are ac cepted by us in good iaith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price of availability which may occur after the publicaion has closed for press.
\square Subscription Rates, UK£14.35 including postage. for turther details and Aırmaıl rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE
 1 Golden Square, London W1R 3AB. Telephone 01-437 0626.
 Telex 8811896.

FEATURES

DIGEST
A new micro from uncle Clive amongst this month's news.

CABLE TV DOWN THE

DRAIN?
19
Our special report on the state of cable television takes a look at the wide range of factors that are shaping the future of this medium.

MACHINE CODE

PROGRAMMING
Bob Bennet gets a bit exclusive with his OR binary register operations, before telling us a very (program) moving story.

TECH TIPS 40
Amongst the circuit offerings this
month is a rather ingenious data link circuit and a super-cheap envelope generator.

READ/WRITE:................. 50
Modifications to our most recent active loudspeaker design and (almost) a competition are just two of the letters we've decided should grace our pages.

AUDIO DESIGN
58
John Linsley Hood sets out to prove that although circuit calculations employing complex numbers may lead to the odd bit of hairy algebra, there is nothing beyond the ken of the average ETI reader (intelligent lot that you are).

PROJECTS

TYPEWRITER INTERFACE

UPDATE
25
A few additional pieces of information and a correction that some of you have spotted already, all to make it easier to use this project.

STEREO POWER METER . 35 Find out just what it is the neighbours keep complaining about with Walker's Watt-Watcher!

Z80 DRAM CARD 45
The other way of adding lots of extra memory to a Z80 system, other than upgrading existing memories, is to build a whole new 64 K block - Bob Campbell shows how it's done.

THE OBEDIENT DIE 54
Ever wished you could throw a six
when you wanted - well now you can with this design from lan Hickman - but don't blame us if your fellow Monopoly players send you to jail for using it!

FOIL PATTERNS
68

INFORMATION

NEXT MONTH'S ETI
8. PCB SERVICE 65
ETI BOOK SERVICE 43 ADVERTISERS' INDEX 7474

WATFORD ELECTRONICS
 Cardif Road waiford．herts encland MAIL ORDER．CALLERS WELCOME
 Tel．Watford（0923）40588．Telex． 8956095

ALL DEVICES FULLY GUARANTEED．SEND CHEQUE，P．O．S，CASH，BANK DRAFT WITH ORDERS．TELEPHONE ORDERS BY ACCESS／MASTER CHARGE ACCEPTED GOVERNMENT \＆EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\＆P ADD $75 p$ TO ALL CASH ORDERS．OVERSEAS ORDERS POSTAGE AT COST．PRICES CORRECT AT THE TIME OF GOING TO PRESS．

VAT Export orders no VAT．Applicable to U．K．Customers only．Unless stated othewise
Wo stock thousands more items．it pays to visit us．We
Open Monday to Saturday： 9.00 am to 0.00 pm ．Ample Free Car parking space avellable
 40v：229p： 33 12p； 330,470 32p． 1000 48p： 2200 90p：25v：1．5． $47.10 .22 .478 \mathrm{p} .10011 \mathrm{p} .15012 \mathrm{p}: 22015 \mathrm{p}$ ： 16p． 470 20p： 680 34p； 100027 p； 150031 p． 2200 28p： 470072 p ．
TAG－ENDCAPACITORS：64V：2200 139p；3300 198p；4700 245p：50V：2200 110p；3300 184p；40V：
180p；25V：2200 90p； 3300 98p；4000，4700 98p；10．000 320p；15，000 345p；16V：22，000 350p．
POLYESTER CAPACITORS：Axial Lead Type
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{nS}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}$ ，
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n5}, 2 \mathrm{n} 2,3 \mathrm{n}, 4 \mathrm{n7}, 6 \mathrm{n} 811 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$
$68 \mathrm{n} 16 \mathrm{p} ; 150 \mathrm{n} 20 \mathrm{p} ; 22 \mathrm{n} 30 \mathrm{p} ; 330 \mathrm{n} 42 ; 470 \mathrm{n} 52 \mathrm{p} ; 680 \mathrm{n} 1 \mathrm{fF} 68 \mathrm{p} ; 2 \mathrm{u} 282 \mathrm{p}$

TANTALUM BEAD CAPACITORS
SAV： 0.1 uF． $022.03315 p 0.47 .0 .68$,
$1.0 .1 .516 p ; 2.2 .3 .318 p ; 4.76 .822 p$
$1028 \mathrm{p} ; 16 \mathrm{~V}: 2.2 .3316 \mathrm{p} ; 4.7 .6 .8,10$
18p；15，38p；22 45p；33，4750p； 10 95p；10V：15．22．26p： $33.4750 \mathrm{pp} ; 100$ 80p：6V： 10055 p ．
MYLAR FILM CAPACITORS
100V： $1 \mathrm{nF}, 2,4,4 \mathrm{nF}, 106 \mathrm{p} ; 15 \mathrm{nF}, 22 \mathrm{n}$,
$30 \mathrm{n}, 40 \mathrm{n}, 47 \mathrm{n} 7 \mathrm{p} ; 56 \mathrm{n}, 100 \mathrm{n}, 200 \mathrm{n}$ 9p； $30 \mathrm{n}, 40 \mathrm{n}, 47 \mathrm{nn} 7 \mathrm{p}$ ；
$50 \mathrm{~V}: 470 \mathrm{nF} 12 \mathrm{p}$ ．
CERAMIC CAPACITORS 50V：
Range O 5 DF to 10 nF 4 p .15 nF ． 22 nF
33 nF ． $47 \mathrm{nF} \quad 5 \mathrm{p} .100 \mathrm{nF} / 300 \mathrm{~V}$. 33nF： 47 nF
$200 \mathrm{nF} / 6 \mathrm{~V} \mathrm{gp}$ ．

POLYSTYRENE CAPACITORS：
10pF to inf $\varepsilon_{p} ; 1.5 n \mathrm{~F}$ to $: 2 \mathrm{nF}$ 10p SILVER MICA（Values in ρ PF）
2，3．3．4．7， $6.8,82,10,12,15,18$, 2，3．3，4．7，6，8，8 $2,10,12,15,18$,
22，27，33，39，47，50，56，68， 75,82, $85,100.120 .150,180 \mathrm{pF}$ ， 15 p eac
$200,220,250,270,300,330,360$ ， $\begin{array}{ll}390,470,800,800,820 & 21 \mathrm{p} \text { each } \\ 100,1200,1800,2200 & 30 \mathrm{p}\end{array}$ $3300,4700 \mathrm{pF}$ MINIATURE TRIMMERS Capacitors
$2 \cdot 6 \mathrm{pF}$
$2 \cdot 10 \mathrm{pF}$
22p；
$2 \cdot 25 \mathrm{pF}:$
$5-65 \mathrm{pF}$ 30 p ； $10 \cdot 88 \mathrm{pF} \mathbf{3 6 p}$ ．

RESISTORS

	range	Val	1.99	$100+$
0．25W	2R2－10M	E24	$3 p$	1 p
0．5W	2R2－4M7	E12	3 p	1 p
IW	2R2－10M	E12	$6 p$	4p
2\％Metal Film	51£－1M	E24	6 p	4 p

RESISTORS NETWORK S．I．L． $1 \mathrm{~K} 2 \mathrm{k} 2.4 \mathrm{K7}$
7 Commoned i8 pins）
$10 \mathrm{~K} .47 \mathrm{~K} 100 \mathrm{~K} \quad 25 \mathrm{p}$
$\begin{array}{llll}2 \mathrm{~K} 2.4 \mathrm{~K} 7.6 \mathrm{~K} 8.10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K} \& & 100 \mathrm{~K} & 26 \mathrm{p} . \\ \text { DIODES } & \text { GRIDGE } & 75 & \text { SERIES }\end{array}$
AA1 19
AA129

SIEMENS pcb
Type Minature Type Minature
poly Capacitors

250 V

 250V1nF． 1 n5． 2 n 2,
$3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{ng}$,

 82 n .10
100 V 100 V
100 n,
 Graduated Bezels for above

ACCESS Orders Just phone your orders hrough We do the rest Tel： 092350234

 RAMFOR
BBC

 N－告

VARICAPS

 윴ㅆNल్ల

\qquad
 B
\％
क्ष

ncousungun 75
75
90
100
100
55
00
55
50
\qquad
\qquad
\qquad

NNo．动浼动动 N
 등於高

 tDator

 Nod Now
N
\qquad

01-452 1500 Technonatic Lid 01-450 6597

 BBC Micro Computer System OFFICIAL DEALER

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock

BBC Model B£348
B Econet $£ 389$
B + DFS £409
B + DFS + Econet $£ 450$
Carriage $£ 7$
Model A to Model B
Upgrade Kit $£ 75$
Installation $\mathbf{E 1 5}$
LANGUAGE ROMs
BCPL ROM + Disc +
Manual £87
PASCAL-TROM £44
UTILITY ROMs
BBC Ultracalc $E 65$
EXMON £24; DISC DOCTOR
£28; FX Dump £15; Graphics ROM £30; Termi ROM £29

SANYO DRIO1 Data Recorder £34 +
E2.50 carriage
BBC Tape Recorder $\mathbf{£ 2 8 . 5 0}+\mathbf{\varepsilon 2 . 5 0}$ carriage Cassette Lead $£ 3+£ 1$ carriage
OBbIT Floppy Tape $\mathbf{£ 1 3 5 + \mathbf { £ 2 } . 5 0 \text { carriage }}$ HOBBIT Zero Memory Option $\mathbf{£ 2 5 + £ 1 \text { carriage } . ~}$ $£ 4.50$ for $10+£ 1$ carrlage

MONITORS

MICROVITEC 1431P 14"RGB/PAL Std Res £249 MICROVITEC 1451 14" RGB Med Res $£ 345$ MICROVITEC 144114 RGB Hi Res $£ 440$ MICROVITEC 2031 20" RGB Std Res $£ 28$ KAGA VISION $12^{\prime \prime}$ RGB Std Res $\mathbf{£ 2 3 0}$
KAGA VISION III $12^{\prime \prime}$ RGB Hi Res $£ 385$ KAGA VISION III $12^{\prime \prime}$ RGB Hi Res $£ 385$ KAGA 12 " GREEN Hi Res £106 All leads included. Carriage $£ 7$

FLOPPYYDISCTINTERFACCE

 $\mathbf{£ 8 4}+\mathbf{£ 1 5}$ installation
BBC COMPATIBLE DISC DRIVES

All drives are supplied with manual, form disc and cables.
Single Drive; 100k £150; 200k £215*; 400k £235
Single Drive with PSU: 100k £185; 200k £260; 400k £275
Dual Drive with PSU: $2 \times 100 \mathrm{k} £ 330$;
$2 \times 200 \mathrm{k} £ 450^{\star}$; $2 \times 400 \mathrm{k} £ 495$

* These drives are switchable between 40/80 tracks. 40/80 Switch Module $1 \times 400 \mathrm{k}$ and 2 x 400k Drive £32
DISKETTES: Packet of 10
40 track SSSD £15; 40 track DSDD £22; 80 track SSDD £24; 80 track DSDD £26 Carr. £2/box.
FLOPPICLENE Drive HeadCleaning Kit £14.50
Phona or sent for our BBC lasilat

TORCH Z80 DISC PACK

Your BBC computer can be converted into a business machine with the addifion of a TORCH Z80 disc pack. The Torch pack with twin disc drive and the Z80 processor Card greatly enhances the computer's data storage and processing
capability. Z80 card comes complele with 64 K RAM and a CP/M compatible operating system In addition to BBC owner'suserguide and a systems discthe package is supplied with PERFECT software package comprising o DATABASE WORD PROCESSOR \& SPREADSHEET and COMANEX a inter active business management game Complete Pakcage for $£ 738+£ 8$ carr.

PRINTERS \& PLOTTERS

ACCESSORIES
Parallel Printer Lead $\mathbf{£ 1 0}+\mathbf{£ 1}$ carriage
Serial Printer Lead $\mathbf{£ 8}+\mathbf{~} 1$ carriage Serial Printer Lead $\mathbf{\varepsilon 8}+\mathbf{£ 1}$ carriage Epson Serial Interface $2 k £ 60+\mathbf{£ 1}$ carriage
Epson Serial Interface $£ 50+\mathbf{\varepsilon} 1$ carriage Epson Serial Interface $£ 50+£ 1$ carriage
NEC Serial Interface $£ 42+£ 1.50$ carriage NeC Serial
Epson Paper Roll Holder $\mathbf{£ 1 7}+\mathbf{£ 1 . 5 0}$ Epson Paper Roll Holder $£ 17+£ 1.50$
carriage
FX80 Tractor Attachment $£ 37+\mathbf{£ 1 . 5 0}$
FX Tractor Attachment $\mathbf{\varepsilon 3 7}+\mathbf{£ 1}$ carriage
Paper Fantold 2000 sheets $£ 13.50+$
£2.50 carnage

BBC EPROM PROGRAMMER

A fully self-containeत Eprom Programmer with its own power supply, able to \star Personality selection is simplified by a single rotary switch

* Programming voltage selector switch is provided with a safe position
* Warning indicator to show programming in progress
* Programmer can read, blank check, program and verify at any address/ addresses on the EPROM
* Simple menu driven software supplied on cassette (transferable to disc) * Full editor with ASCll disassembler
$\mathbf{f 7 9 . 5 0 + £ 2 p . \& p}$.

PRODUCTION PROGRAM: P8000

P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{k} \times 8$ bytes Devices supported range from 2704 to 27128 in single and three rall versupported range from 2704 to 27128 in single and three rall verselection and reliable programming in minimum programming times. $\mathbf{£ 6 9 5}+\mathbf{f 6}$ carriage

BOOKS (no Vat; p\&p £1)

Advanced User Guide ($£ 2$ p\&p) E12.95 Assembly Lang Prog. for BBC f8.95 Assembly Lang programming on BBC Micro by Ferguson and Shaw Basic Prog. for BBC BBC. An Expert Guide Easy Programming on BBC Further Programming on $B B C$ Introducing BBC Micro Programming the BBC 30 Hour Basic
35 Educational Programs BBC Sound \& Graphics Creating Adventure Programs Discovering Machine Code Structured Programming The Friendly Computer Book BBC Beyond Basic BBC

Many more books in stock.

ACORN IEEE INTERFACE

This IEEE 488 standard interface is a general purpose

 system for exchanging digital data between a number of devices in a $625-1$ standard and can be connected to upto 14 other devicesIntertace board is suplied complete with sottware in ROM, interconnecting cables IEEE cable tor connecron to an extenardevice and comprehensive manua $\mathbf{E 2 8 2 . 5 0}+\boldsymbol{£ 2 . 5 0}$ car

SMARTMOUTH

The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5-10 bytes per word no ROMs required -- simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, £37 • $\mathbf{£ 2} \mathrm{p}$ \& p

new comprehensive catalogue ayail-

 ABLE PLEASE SEND FOR PRICE LISTCONNECTOR SYSTEMS

I.D. CONNECTORS (Speedblock Type)
DCONNECTORS
$\underset{\substack{4 \\ 6 \\ 6 \text { wavi } \\ \text { wopp } \\ \text { DIOp }}}{\text { DI SWITCHES }}$

JUMPER LEADS 24 Ribbon Cable with Headers
24 Ritbon Catse will Sowk
Ritbon Catie e with 1 Coren
way Male 500p fen

AMPHENOL CONNECTORS

 36 way pluy Centuonics Parallel older $\mathbf{5 5 . 2 5}$ IDC $£ 4.95$ 36 woy sucket Centronics Paralle 24 woy plug IEEE Solder $\mathbf{E 5}$ 4 w IDC E4 75 24 way socket IEEE Solder $\mathbf{5 5}$RS 232 JUMPERS

RIBBON
CABLE

(Grey/meter)	
10 way	40p
16 way	609
20 way	${ }^{\text {85P }}$
26. way	120 p
34 way	160p
40 way	180p
50 way	200p
64 way	280p

'TIME-WARP'

REAL-TIME-CLOCK/CALENDAR:
A low cost unit opens up the total range of Real-Time applications. With its full battery backup. possibilities include an Electronic Diary, automatic document dating, precise timing \& control in scientific applications, recreational use in games etc -- Its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installation required - No ROMS Supplied with extensive applications software. $£ 29.00$

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays. It can handle up to 5 eproms at a time with an average erasing time of

UV1 as above but without the timer $\mathbf{£ 4 7}$
+e2 p\&p.
UV140 up to 14 Eproms $\mathbf{£ 6 1}$
UV141 as above but with timer $£ 79$
$\star \star$ ATTENTION $\star \star$
All prices in this double page spread are subject to change without notice.

TAKE OFF WITH ETI!

Next month will be the time to leave your cosy workshop behind and take to the air with a project from ETI. Unfortunately (or perhaps fortunately, because we'd like to keep our readers in one piece!), we shall not be giving you instructions on how to build a hang-glider. However, we shall have a design for a (g) natty little device called a vario, which indicates changes in height. This sort of instrument is particularly useful for pilots, to tell them when they've caught a 'thermal' (a column of hot air rising up from, say, a factory or hot ground). Anyway, it makes rather an interesting change from our normal run of projects.

MAINS-BORNE REMOTE CONTROL

Remember the original mains-borne remote control system we published some time back? Good though this design was, there were a few problems with it which we now think we have overcome. This design provides for the on-off control of up to 16 groups of devices from a standard microcomputer parallel port. The system will be open to enhancement, with a mains borne burglar alarm being one posssibility for a further extension.

ALL THIS AND MORE IN YOUR APRIL ISSUE OF ETI - PLACE YOUR ORDER NOW OR RISK MISSING OUT! ON SALE MARCH 2nd.

Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to fhe final contents.

DIGEST

> New Sinclair Micro

Sinclair claim their new QL microcomputer, launched on January 12th, is a 'Quantum Leap' forward in computing performance. Features include a fullsize 65 key QWERTY keyboard, 128K RAM expandable via a 0.5 Mb RAM pack to 640 K , two builtin 100 K microdrives, and high resolution colour graphics. The QL has two microprocessors, a 32-bit 68008 to do all the clever stuff and an Intel 8049 to look after the keyboard, sound, and

RS-232-C option. The complete package includes four microdrive programs covering wordprocessing, planning, information handling and graphics, and costs £399 including VAT.
The QL is made by Thorn EMI who hope to be producing 20,000 units a month by the summer. The first samples of the new machine should be available towards the end of February, and will be supplied to mail order only. We haven't had a chance to play with one ourselves yet, but we hope to bring you more information when we have. Meanwhile, people out there with itchy fingers and $£ 399$ to spend should contact Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS, tel 0276-685311.

Fast Talker

Hanimex claim their new Soundpacer cassette recorder is an exciting development in speech reproduction technology which will prove invaluable to everyone who listens to speech recordings. The soundpacer allows recorded speech to be reproduced at up to twice its original speed without any apparent increase in pitch.
Hanimex give very little information on the system, which they
call Variable Speech Control, but it presumably involves frequency shifting since both the speed of the tape and the pitch of the reproduced sound are variable over a wide range. Hanimex say that this facility allows spoken information to be accepted at up to twice the normal rate without loss of understanding and indeed, with some improvement in retention.
No general specifications are given for the Soundpacer, Hanimex being content to descibe it as 'full featured'. Going by the photograph alone, it appears to
 House, Faraday Road, Dorcan, Swindon, Wiltshire SN3 5HW, tel 0793-26211.

Second UOSAT Launch

NASA has formally confirmed that it will launch UOSAT-B, the University of Surrey's second experimental scientific and educational spacecraft, and the University's UOSAT Project Team is racing against time to get the spacecraft built and tested in time for launch on 1 March 1984. This will mean that the spacecraft has been designed, built, and prepared for launching in under five months, a task probably without precedent in space engineering.
UOSAT-B, to be known after launch as UOSAT-2, will go into space as a secondary payload with LANDSAT-5 on a Delta 3920 rocket from the Western Test Range, Vandenberg, California. The launch is at present scheduled for 1 March 1984 at 1759-1809 hrs GMT, lifting UOSAT-2 into a sunsynchronous polar orbit at a planned height of 700 km (435 miles). The spacecraft will carry scientific and engineering experi-
ments for use by professional scientists and radio amateurs, together with educational experiments primarily for schools and colleges. Working with Surrey University in building the experimental hardware are the Ruther-ford-Appleton Laboratory (SERC), the Universities of Sussex and Kent, and the UK, USA and Canada branches of the international Amateur Satellite Corporation (AMSAT).

Members of the UOSAT Project Team are working round the clock to assemble the spacecraft ready for environmental testing in January and transporting to the USA in February for integration with the launch rocket in time for the launch on 1 March. Any major hitch could still prevent the completion of part of the experimental hardware or even of the spacecraft itself, but so far all is going well. In addition to providing the free launch opportunity, NASA is doing all it can to assist the UOSAT Project Team to meet the launch deadline for what is scheduled to be the last Delta mission planned for a polar orbit. The Information Centre, Second Floor, Senate House, University of Surrey, Guildford, Surrey GU2 5XH.

Stereo TV Sound

The $B B C$ has been investigating for some time the possibility of adding stereo sound to TV broadcasts. Now, following a series of over-air tests from the Wenvoe transmitter in South Wales, they believe they have found a digital system which will make this possible.
The BBC have tried a number of different systems, including proposals from Japan and Germany, and had previously conducted a series of over-air tests from the Crystal Palace transmitter. They concluded that while a second frequency modulated carrier would prove satisfactory, a digitally modulated second sound carrier would be a more attractive proposition. A series of digital tests were then carried out, the Wenvoe transmitter being chosen because nearby mountains can produce severe multipath propagation or 'ghosting' and it was important to establish that a digital sound signal could be received
satisfactorily in such conditions. The effect of multipath was found to be very small, the digital signal provided excellent stereo quality, and the signal was found to travel successfully through the fivestation relay chain that is used to feed one of the more remote valleys.
The conclusion is that this digital system is perfectly viable, provides good quality, and remains compatible with existing mono receivers. The system has a bit rate of $700 \mathrm{kbit} / \mathrm{s}$ which is suffcient for two high quality sound signals, and uses a phase modulated carrier set at about $\mathbf{- 2 0} \mathrm{dB}$ and separated by about 6.55 MHz from the vision carrier. It now remains to make quite sure that the digital system really is compatible with the wide range of monophonic receivers in use, and a further series of tests from Crystal Palace on BBC2 is planned early this year. The BBC say they are also starting discussions with Industry, the IBA, and the Home Office in order to arrive at an agreed UK standard.
The Engineeering Information Department, BBC, Broadcasting House, London W1A 1AA, tel 01 9275432.

NEW YEAR SALE

THANSISTOAS													4021 4022 4023	$\begin{aligned} & 42 p \\ & 46 p \end{aligned}$	4504 4506	$\begin{aligned} & 98 p \\ & 70 p \end{aligned}$	100 mA 78L05	300 300																														
													4023	14 p	4508	145p		30																														
BC 1078	12p	BC	10p	BD 243A	55p	MJ2965	00	TIP 3055	00	2N4033			4024	38p	4510	50p	78L15	30																														
BC 109C	10.	BC 416 C	100	BD 243C	68p	M J 3000	10p	TIS 44	20p	N			402		4511	20	78 L																															
BC 11314	16p	BC477	25p	BD 244A	64p	MJ 3001	225	Tis 90	24p	2N4058	10p	BECLI	402	${ }^{84 p}$	4512	48	78 L	45p																														
BC 115／6	17p	BC478	23p	8D 244 C ．	78p	MJE 340	48p	TIS 92	200	2N4059	10p	wo			4513	980																																
BC 119	28p	BC479	24p	BF 180	30p	MJE 350	70p	2 N 1613	30p	2N4060	10p	W02	402	42 p	4514		7805																															
BC 139	32p	BC 546	10p	8F 181	30p	MJE 370	80p	2N1711	30	2N4061	10p	W04	403	$18 p$	4516	55p	7812	40 p																														
BC 140	28p	BC 546B	10p	8F 182	30p	MJE 371	84p	2N 1893	30p	2N4062	10p	W06	4035	56p	451	220	7815	40 p																														
BC 141	29p	BC5478	9	8 FF 183	30 p	MJE 520	${ }_{60}$	2N2218	24p	2N4400	15p	W0	4040	48 p	4520	55p	7818	40p																														
BC 142	${ }^{27 p}$	BC 5488	9 p	$8{ }^{8} 184$	309	MJE 521	${ }^{69}$	2N2218A	25p	2N4401	15	$3 \mathrm{~A} / 50 \mathrm{~V}$	4041	48p	4522	$65 p$	7824																															
BC 143	${ }^{27 p}$	${ }^{\text {BC 548C }}$	9 p	BF 185	300	MJE 2955	80p	2 N 2219	24p	2 N 4402	15p	$3 \mathrm{~A} / 100 \mathrm{~V}$	4042	42 p	4526	$64 p$	5 A TO3																															
BC 160	30p	BC 549C	90	BF 194	12 p	M JE 3055	68p	2N2219A	25p	2N4403	15p	3A／200V	4043	44 p	4528	56p	$78 \mathrm{H05}$	500																														
BC 161	32 y	BC 550 C	${ }^{10 p}$	BF 195	$12 p$	MPSA 05	200	2N2221A	20p	2N5400	18p	$3 \mathrm{~A} / 400 \mathrm{~V}$	4044	44 p	4529	72p	Negative																															
BC 169C	8 p	BC 556	100	BF 196	120	MPSA 06	20p	2N2222	${ }^{181}$	${ }^{2} \mathrm{~N} 540$	20p	6A／50V	4046	55p	4530	92 p	100 mA																															
BC 1718	9 p	BC 5568	10p	BF 197	${ }^{120}$	MPSA 12	22p	2N2222A	20p	2N5457	28 p	6A／100V	4048	30 p	4531	70 p	79L05	50p																														
BC 172C	9 p	BC 5578	9 p	BF 198	10p	MPSA 13	22p	2N2368	23p	2N5458	27 p	6A／200V	4049	250	4532	88 p	79 L 12	50p																														
8C 173C	9 p	BC 557C	9 p	BF 199	${ }^{12 \mathrm{p}}$	MPSA 42	23p	2N2369A	15p	2N5459	${ }_{38}^{25 p}$	6A／400V	4050	25p	4541	70p	79L15																															
BC 1778	$15 p$	BC 5588	9 p	BF 200	400	MPSA	23p		24 p			25A／100V	4051	52 p	4544	1200	A TO2																															
8C 178 C	$15 p$	8C 558C	9	BF 224	15p	MPSA 55	200	2N2646	48p	2 N 550	18 p	25A／200V	4052	52	4551	$88 p$	7905	45p																														
BC 179	15p	BC 559C	9 p	BF 244 C	22p	MPSA 56	200		22p		20 p	25A／400V	4053	54p	4553	180p	7906	65p																														
8C 182	9 p	BC 560C	100	BF 245	25p	MPSA 63	22p	${ }^{2 N} 2904 \mathrm{~A}$	230 230	2N6027	${ }_{\text {230 }}^{23}$	LFO＇S	406	${ }^{280}$	4554	148p	7908	${ }^{65 p}$																														
BC 1828	9 p	BC 637	20p	8F 2556	320	MPSA 64	22p	2N2905	23p		23p	3mm red	4068	150	4555）	48p	7912	55p																														
BC 1938	9 p	8C 638	${ }^{20}$	BF 256	330	MPSA 92	${ }^{24} 8$	2N2906A	22p	ItNERS		5 mm red	4069		4556	48 p	7915																															
BC 183C	$9 \mathrm{9p}$	BC 639	22 p	日F 257	32p	MPSA 93	24p	2N2907	235			3 mm gree	4070	${ }^{15 p}$	4557	160p	7924	650																														
BC 1848 日C 184C	9p	BC 640	248 180	8F 258	32 p 35 p	TIP 290	30p	$\begin{aligned} & \text { 2N2907A } \\ & \text { 2N3053 } \end{aligned}$	23p	$2 \vee 7.36 \mathrm{~V}$	6 p	5 mm gree	4071	$15 p$	4558	1100	－Variable																															
BC BC 2128	9 p	BCY 70 BCY 71	18p	BF 336	369	TIP ${ }_{\text {298 }}$	330	2N3053	230	1.3 W 4 V 7.51 V		3 mm vet	4073	＋15p	4559																																	
BC 212 B	9 p	BCY 72	17p	8F 337	39p	TIP 30A	300	2N3055	50 p	ThYRISTic	Hes		4074	${ }_{15}$	4560 4566	170 p 120 p	LM ${ }^{\text {LM }}$ S17\％																															
BC 2138	9 p	8D 115	50p	BF 338	40p	TIP 308	33p	2N3055 ${ }^{\text {H }}$	75p	－140	28 p	ection	4075	15p	4568	270 p	LM 33iT	180p																														
BC 213C	9 p	BD 131	45p	BF 457	32p	TIP 30C	${ }^{36}{ }^{\text {P }}$	2N3440	580	C 116 D	700	Red	4077	$15 p$	4569	140p	LM 350T	395p																														
${ }^{8 C} 2143$	9 p	80 332	480	BF 458	32p	TIP 314	${ }_{35} 38 \mathrm{p}$	2 N 3441	120 p	C 126 D	900	Gree	4078	$15 p$	4572	42p	LM 723CN	$N \text { 35p }$																														
BC 214C	9 p	8D 133	700	BF 459	37p	TIP 318	35p	2N3442	120p	C 126M	98	Yel	1	$15 p$	4573	198p	$78 \mathrm{H} 05$	$500 \mathrm{p}$																														
${ }^{8 C} 237$	7 p	80 135	300	8F 494	$12 p$	TIP 31C	370	${ }^{2} \mathrm{~N} 3702$	10 p	MCR 101	300			15p	4574	198	OPro																															
BC 238	9 p	8D 136	$30 p$	8F 595	18 p 20 p	TIP 32A	330	2N3703	$10 p$	MCR 102	34p	cmos	4093	${ }^{32 \mathrm{p}}$	4575	198p																																
BC 239	9 p	BD 137	30p	8F596		TIP 328	35p	2N3704	10p	T 28000 D	110 p	4000	4098	78p	4580	28	T132																															
BC 251	9p	8D 138	35p	BFX 29	$28 p$	TIP 32C	37p	2N3705	10	T 2800 M	165p	4001	401	52p	4584	38p	T1L 38																															
BC 300	36p	BD 139	35 p	BFX30	$28 p$	TIP 33A	55p	${ }^{2} \mathrm{~N} 3706$	10p	2N5060	23p	4002		52	4585	74p	TIL 100																															
BC 301 $8 C 302$	32 p	BD 140	35p	BFX84	28p	TIP 34A	60p	2N3707	10	2N5061	240 290	4006	40163	52 p	4599	178p	TIL 111																															
BC 302 BC 303	32 p	BD 203	700	8FX85	28p	TIP 41A TIP41C	$46 p$ $60 p$	2N3708	150p	2N5062	32p	4008	4501	16p	\checkmark Vill		2N5777																															
BC 304	32p	80 205	70p	8FX 88	23p	TIP 42A	46p	2N3772	170p	－tRIACS		4011	450	55 p		0	4N25	80 p																														
BC 307	10 p	B0 206	70p	BFY 50	23p	TIP 42C	60 p	2N3773	190p	C 206	55	4012	4503	34p	Positive		4N28	p																														
BC 308	100	日D 239A	${ }^{40}$	BFY51	22p	TIP 110	45 p	2N3819	20 p	C 2250	60p	4013					4N33																															
BC 309	100	BD 239C	50	BFY52	22p	TIP 115	$45 p$	2N3823	50	c 2260	70p	4014		Er			4N35																															
BC 327 BC 328	12p	BD 240A	420	BSY 95A	230	TIP 120	70 p	2N3866	95 p	C 226 M	${ }^{90 p}$	4015					${ }_{8 P \times 38}$																															
BC 328 BC 337	$\begin{aligned} & \text { 12p } \\ & \text { 12p } \end{aligned}$	BD 240 C BD 241 A	500 42 p	RU205	140p	TIP 121	700 700	2N3903	10p	C C 2366	90 120	$\begin{aligned} & 4016 \\ & 4017 \end{aligned}$		9p	24 p		8PX 43	3400																														
8 BC 338	12p	BD 241 C	54p	8U 208	140p	TIP 126	70 p	2N3905	100	C 2460	98p	4018			28 p	24p	TIL 221	20p																														
8 BC 413 C	${ }^{10 p}$	BD 242A	42p	MJ 2500	230	TIP 127	700	2N3906	10 p	${ }^{\text {c } 246 \mathrm{M}}$	140p	4019			40 pi		igh out																															
BC414C	10p	BD 242 C	54p	MJ 2501	245p	TIP 2955	70p	2N4030	30p	日R 100	30p	4020																																				
NFARICS		LM 565 100p		$\begin{array}{ll} \text { SAA5052 } & \text { E10 } \\ \text { SL490 } & 300 p \end{array}$		APACHIORS				DIODES		RES＇STORS	4×TO3 mounting kits 23 p 64 mm Loudspeakers 8 R 70 p																																			
				Electrolytic radial／axial．		antalum bead				1／4 Watt Carbon film 5\％E 24	4×TO3 mounting kits 23p 64 mm Loudspeakers 8R 70p $4 \times$ TO66 mounuing kits 23p 64R 78p each． 300 mW reting																																					
CA 3065	190p	LM 567	150p				5 p																																									
CA 3080	72p	LM 709	350					BAX 16	6 p	2 m 21 p each．	$10 \times$ TO220 bushes／washers 2 Bp $4 \times$ HP 7 battery holder 22p																																					
CA 3086	56p	LM 710	$7{ }^{70}$								OA47	9 p	$5 \times$ TO3P bushes／washers 18 p 6 \times HP7 7 battery halder 32p																																			
CA 3089	170	LM 711	60p	SN76115		0.4725		0.14 F 35	12p	OA 90	70	1／2 Watt Carbon film 5\％E 12																																				
CA 3090 A		LM 733 LM 741	$14 p$	SN76660		0.4763		$0.22 \quad 35$	12p	OA 01	8 p	series 1R－10M2 p each．	4 mm plugs 12 p ． 4 mm sockets 20 p ． 4 mm insulated ter－ minals 30 p .35 mm jack socker 15 p .35 mm jack plug 15p																																			
CA 3130 E	300p	LM 747	50 p	TBA120S		$1{ }^{1, \mu^{F}} 63^{\circ}$		$0.33 \quad 35$	12p	OA 200	7 p		Phono sockets 15 p 78peach Miniature push buttons： $1 \mathrm{~A} /$																																			
CA 3140 E	40p	LM 748	35 p	TEA5500		2.26		0.47		OA 202	8 p																																					
CA 3160 E	100p	LM 1458	36p	t T A5700	2200	$\begin{array}{lll}2.7 & 25\end{array}$		$\begin{array}{ll}1.58 & 35\end{array}$		1544 15921	${ }^{\text {9p }}$	${ }_{6} \mathrm{E}:$	250 V push to make 16p．push to break 23p Mioget rotary switches，pcb terminals 2P6W．4P3W，3P4W 39p each． Slide switch $14 / 250 V$ DPDT $(22 \times 12 \times 8 \mathrm{~mm}) 16 \mathrm{D}$ ．																																			
CA 31618	14	LM 3900	－47p	TBA625	100p	$4.7{ }^{4} 8{ }^{6}$		$2.2 \mu \mathrm{~F} 35$	18 p	1S9214 ing14	3 p	4 t each．																																				
CA 3240AE		MC 1455	16p	tBa800	70p	10 ¢F 10		$3.3 \mu \mathrm{~F} 35$	18p	ing16		250p per 100.	BRAND NEW COMPONENT PACKS																																			
	165	MC 1458	34p	TBA810A		10 ， F 15		4.7 нF 25		iN4148	3p	one value																																				
CA 3260E		MC 1496	70p	TBA810S				$6.8 \mu \mathrm{~F} 25$ $10 \mu \mathrm{~F}$ 16		1N4149	4p	280p of 100	CP 10060 IC sockets：8．14．and 16 pin 20 of each 440 p CPiO1 $20 \mathrm{BC} 182 / \mathrm{BC} 212$ trannstors， 10 of each 1300																																			
		MC 3302	12 p	TBA8200		22 $\mu \mathrm{F}$ F 16		${ }^{10} \mu \mathrm{~F} /{ }^{16}$		indeot	4p	2.5 Wixat																																				
	250	MC 3401	68p	tBa920	195	$22 \mu \mathrm{~F} 25$		$22 \mu \mathrm{~F} 16$	350	in4003	4 p	wound 0	${ }_{\text {CP }}$																																			
LF 347	1600	MC 3403	$65 p$$220 p$	TBA950 210 TCA270 1200				$33 \mu \mathrm{~F} 16$ 60p		in4004	5 p	10 ohms E12																																				
LF 351	$45 p$					$47 \mu \mathrm{~F} 10$				in4005		series 25p exch．Presets： mini.ature horizon．																																				
LF 353	800	NE 531	160p	TCA800	250p	$47 \mu \mathrm{~F} 25$ $47 \mu \mathrm{~F}$				in4006	6 p		CP105 20 BC550C／BC560C transisiors． 10 of each 160p CP 106100 iN 914 switehing diodes． $75 \cdot 100 \mathrm{~V} / 75 \mathrm{~mA} 240 \mathrm{p}$																																			
LF 355	850	NE 532	56p	TCA 940 180pTDA 102550p		$47 \mu \mathrm{~F} 63$ 100 10		$68 \mu \mathrm{~F} ~$ $60 \mu \mathrm{~F}$ 6		in400？	6 p		CP107 100 1N916 switching diodes， $75 / 100 \mathrm{~V} / 75 \mathrm{~mA}$ 280p																																			
LF 356	$88 p$	NE 544	200p					${ }_{100 \mu \mathrm{~F}} 6$		1N5401			CP108 1001 N 4148 switching diodes． 75 ． $100 \mathrm{~V} / 75 \mathrm{~mA} 1600$ CP 109500 iN4 148 switching diodes， $75 \cdot 100 \mathrm{~V} / 75 \mathrm{~mA} 680 \mathrm{p}$																																			
LF 357	110p	NE 550	${ }^{1600}$	TDA2002 180 p		$\begin{array}{ll}100 & 16 \\ 100 & 25\end{array}$		$100 \mu \mathrm{~F}$100$150 \mu \mathrm{~F}$.	38p	1N5402	12 p	¢90ach																																				
LM 301A	26p	NE 555	16p			10063			150нF6．3 90p		IN5403		13 p 13 p 1																																			
LM 307	54p	NE 556	150 1700	TDA2004 470 p		220					in5404	13p	Mulriturn cer． mes rimmers	CP112 100400 mW zeners， 40 each 2 V 7 to 33V 450 P																																		
LM 311	${ }^{60 p}$	NE 565	1400			22016	． 100				in5406	14 p	100R－500K																																			
LM318		NE 560	1500	TDA $200624.0{ }^{40 \mathrm{p}}$		$\begin{array}{lll}220 & 25^{\circ} & 14 p \\ 220 & 63 & 24 p\end{array}$		Ceramic Plate		iN5407	15p$16 p$	${ }^{\text {P }}$	CP1144 LF351 JFET op amps．Low roise ．．．．170p																																			
LM324	400	NE 567	110p			$63 / 100 \mathrm{~V}$		（																																								
LM 348	60 p	NE 570	$395 p$ 3950					33		$\begin{array}{lll} 6 A!200 V & 28 p \\ 6 A!400 V & 30 p \end{array}$		Single ga	ixed LED＇s $3 \mathrm{~mm} / 5 \mathrm{~mm} / \mathrm{rec}$／																																			
LM 358	48p	NE 571	$\begin{aligned} & \text { 395P } \\ & \text { PQA } \end{aligned}$					Polystyrene 5\％ 63 V ： 10 pF to																																								
		NE 645	${ }^{270}$					43p each Single gang with DPST swich 78p																																								
LM 381	140p	RC 4558 480		TDA2054M ${ }_{130 p}$				$\begin{array}{lll} 2200 & 10 & 32 \mathrm{p} \\ 2200 & 25^{*} & 45 \mathrm{p} \end{array}$				1 nF 9 p each 1 n 2 to 10 nF		HEATSINKS－																																		
LM 381	120 p			TL061		CP124 100 mixedelectrolytic capaciors																																										
LM 384	125p			TL062	80 p	－axials only				12p each．Polyester C 352				each	$1255 \mathrm{LM317T} 1 \mathrm{~A} /$ TO220 varable regulators ．．440p																																	
LM 3886	${ }^{\text {135p }}$			tL064	120p																																											
LM 393	709			ULN2001 $80 p$ values，radial ULN2003 80p ULN2004 80p of above．				$\begin{aligned} & 0.01,0.015 \\ & 0.022,0.033 \end{aligned}$		$6 \mathrm{~mm}\left(8 C^{\circ} \mathrm{C}, \mathrm{W}\right.$ ） 16p each		$\begin{array}{\|l\|} \hline \text { verpocagos } \\ 25 \times 125 p \end{array}$	40\％off all orders																																			
LM 555 LM 556	$16 p$ $45 p$			$\begin{aligned} & \text { 16p each } \\ & 12 \mathrm{~mm}(60 \mathrm{C} / \mathrm{w}) \\ & 28 \mathrm{p} \text { eact } \end{aligned}$																																												
ORDERING INFORMATION：Please add 50p P\＆P to all orders under £10．Cheques or postal orders made payable to Comtech Electronics．Official orders welcome，trade please enquire．All items held in stock despatched same day LARGE SAE brings full list．								$0.068 .0 .1 \quad 8 p$		40peachT0310 W		$\begin{aligned} & 25^{\prime} \times 3.75^{\prime \prime} 90 p \\ & 2.5^{\prime} \times 5^{\prime} 110 p \end{aligned}$	over 550																																			
												a $3.755^{\prime} \times 3.75 "$ $110 p$																																				
								${ }^{0} \mathbf{0 . 6 8}$ 20．	． 1μ			3．75＂x5		\％	ff	0	ers																															
													over 220																																			
								Disc Ceramic 10 N 4p		All in mali black finish		Spot Face cutter																																				
205STURDEEROAD LEICESTER t SAME DAY DESPATCH LE2 9FY																																																

Bench Power Supplies

Afamily of four bench power supplies, the GPL series, has been introduced by Gresham Powerdyne LId. The series offers a choice of single, dual and triple output models featuring excellent voltage and current regulation, low ripple and noise and compact mechanical construction.

The smallest model, the GPL 20, offers a variable $0-30$ volts, 1 amp max output plus a fixed $5 \mathrm{~V}, 1 \mathrm{amp}$ max output. Ripple and noise is less than 0.5 mV rms on both rails, while the variation in output voltage for a 10% mains variation is also less than 0.5 mV . Output resistance is less than 5 milliohms and output impedance less than 100 ohms at 100 kHz . The GPL 20 has variable current limiting, a moving coil meter, measures 91 x $300 \times 200 \mathrm{~mm}$, and weighs 4 kg .
The GPL 23a unit features two independent $0-30 \mathrm{~V}, 2 \mathrm{amp}$ max
outputs with a choice of constant current or constant voltage modes, and a fixed $5 \mathrm{~V}, 3 \mathrm{amp}$ output. Load regulation for the variable rails is better than 3 mV (zero to full load), with ripple and noise better than 1 mV in constant voltage mode and line regulation better than 0.5 mV for a $\pm \mathbf{1 0} \%$ mains change. For the fixed 5 V rail, load regulation is better than 50 mV (zero to full load), and ripple and noise less than 5 mV rms. The unit measures $190 \times 355 \times 230 \mathrm{~mm}$ weights 7.6 kg , and has a high resolution 10-turn potentiometer which provides setting resolutions better than 5 mV . The two large moving coil instruments are read in conjunction with a range change switch and are accurate to approximately 1% of full scale deflection.
Model GPL 25 has a single 0 $40 \mathrm{v}, 1 \mathrm{amp}$ output and features variable current limiting and two meters for simultaneous indication of voltage and current. It measures $91 \times 300 \times 200 \mathrm{~mm}$, offers a 0.5 mV max output regu-

Portable Frequency Counters

1 ew from Aspen Electronics is the Digimax 500 series of frequency counters which feature large 8 -digit displays and an accuracy of one part-per-million. The two models available have ranges of 10 Hz to 512 MHz and 50 Hz to 1 GHz , with resolutions of 1 Hz and 10 Hz respectively. The counters have 50 ohm inputs
and an input sensitivity of from 15 to 50 mV . They can be operated from a rechargeable battery pack or by means of a mains adaptor, and measure just $5 \frac{1}{4} \times 5 \times 1 \frac{112^{\prime \prime}}{}$. Aspen envisage their use in base stations for checking transmitter and receiver frequency and in boats, motor vehicles and other locations where a mains supply is not available. The Digimax 5000 series counters cost $£ 159.00$ including post and packing but exclusive of VAT. Aspen Electronics Ltd, 2-3 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR, tel 01.868118.

International Optical Fibre Cable

Brifish Telecom have announced plans for an undersea optical fibre cable which will carry telephone calls and computer data between the UK and Belgium. The 122 kilo-
metre cable will be made in Britain and should be ready for use in about two years time.
There are already four cable systems linking the UK and Belgium but this will be the first international undersea link anywhere in the world to use optical fibres. The $\mathbf{E} 7.25$ million contract has been awarded to the submarine systems division of Standard Telephones and Cables and the investment will be shared between four countries, British Telecom holding half and the

lation for a $\pm \mathbf{1 0} \%$ mains change, ripple and noise of less than 0.5 mV rms and has an output resistance of less than 5 milliohms. Weight is less than 4 kg .

The largest unit in the series is the GPL 28, which offers a single $0-60 \mathrm{~V}, 2 \mathrm{Amp}$ output with dual tracking (0-30V, 2 A) facilities as standard. Weighing 7 kg and measuring $122 \times 300 \times 243 \mathrm{~mm}$, the GPL 28 offers the same standard of regulation found on the other units in the series.

The GPL series power supplies are made entirely in Europe and Gresham say they are holding large stocks in readiness in their warehouse at Hook, Hampshire. The GPL20 costs E99.47, the GPL23a costs $£ 245.00$, the GPL25 costs E117.89, and the GPL28 costs $£ 222.89$. All prices include VAT but not postage and packing. Gresham Powerdyne Ltd, Osborne Way, Station Road, Hook, Hampshire, tel 025627 4346.

U.K.'s First Electronics Supermarket

Marco Trading have just opened a new self-service supermarket-style electronics components shop with apprroximately 1000 square feet of floor space. This is believed to be the

Back-to-Back Adaptor

E urotech Electronics have introduced a male to male adaptor, which allows two female terminated ribbon cables to be connected to one another. The two sets of pins in the adaptor are connected in a 'mirror image' fashion so that two cables normally travelling in the same direction will not have their pin sense reversed by being connec-
first shop of its type in the UK.
The shop is next door to the warehouse, so there are lots of items on sale that don't often find their way onto advertising lists, and of course, there should be minimal delay in obtaining fresh stock items.
The shop is at The Maltings, High Street, Wem, Shropshire, which is just outside Shrewsbury. Marco Trading say there is ample parking, useful if you intend buying some heavy transformers!

Abstract

ted back-to-back. The adaptor is available with from 10 to 60 contacts arranged on a $0.1^{\prime \prime}$ pitch and in a variety of latching lengths. It can also be supplied as a solder header for reversing the ribbon cable exit on a printed circuit board. Eurotech offer a wide range of other products, and details of both these and the adaptor can be obtained from the Passive Components Division, Eurotech Electronics Lid, Dunns House, St. Pauls Road, Salisbury SP2 7BE, tel 0722744242.

remainder being divided between Deutsche Bundepost, the Belgian RTT and the Netherlands PTT.

The cable will contain three pairs of fibres each working at $280 \mathrm{mbit} / \mathrm{s}$ and carrying 3,840 $64 \mathrm{Kbit} / \mathrm{s}$ circuits, giving the complete cable the capacity to carry 11,520 simultaneous telephone calls. The system will use longwavelength singlemode transmission and there will be three submerged repeaters in the cable, each of which will contain
three bidirectional optical regenerators. Single mode transmission of laser light along optical fibre cables requires less than one sixth of the number of repeaters which would be required by an equivalent co-axial cable.

British Telecom say the cable will be laid by their cableship Alert in the spring of 1985, and will be buried to protect it from trawlers and other shipping. Digital communications via the cable should become available in the second half of 1985.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

New Micro From Oric

Atmos, a new 48 K microcomputer from Oric Products International, waslaunched at the Which Computer? show at the National Exhibition Centre in January. The new micro supercedes the Oric 1 and contains a number of new features and refinements compared with the earlier machine, most notably a professional full-pitch typewriter keyboard and a case which has been restyled in black and red.

The Atmos has a new ROM operating system from which, Oric claim, all the quirks of the original Oric 1 operating system have been removed. Several new commands have been incorporated including print (il) and user controlled repeats, and there are a number of new cassette facilities designed to improve tape loading. There is also a GRAB command which allows the program to use memory normally reserved for graphics. Oric claim that there is at least 44 K of memory available even when a colour printer and disc drives are attached in text mode. In spite of these changes, the operating system remains fully compatible with Oric 1 software written in

BASIC.

The new keyboard is in standard computer style and has 58 keys each with tactile feedback and 4 mm travel. Function keys include ESC, CTRL, RETURN, and additional cursor controls, and there is also a user-programmable function key which is not implemented in the ROM but may be used by programmers.

Also new is the Oric micro disc drive which, along with the existing oric four colour printer, has been styled to match the new Atmos. The system is based on the Hitachi $3^{\prime \prime}$ disc drives and has a double sided, double density, formatted capacity of 320 K bytes. They will be available in 40 and 80 track versions with a transfer rate of 250 K bits/sec.

Completing the all-new look of the Atmos is a 300 page user manual which, unusually, has been compiled and written by an independent team of writers and published by an outside company. The manual was written by a team led by lan Adamson and is published by Pan Books. The Atmos comes complete with the manual, a new beginners guide, connecting leads and power supply and is priced at $£ 170$. Oric Products International Ltd, Coworth Park, London Road, Ascot, Berkshire SL5 7SE, tel 0990-27641.

Low Cost Dual Trace 'Scope

Bridage Scientific Instruments, who recently took over the ailing Scopex Instruments, have introduced a general purpose oscilloscope which is available in single and dual trace versions, is British built, and costs less than £200.
The single trace SB 121 and the dual trace DB 242 are described as small and highly portable. Bridage do not give the bandwidth figure in their press release
but they do say that the 'scopes are suitable for television servicing work. Sweep speeds can be varied from $1 \mathrm{us} / \mathrm{cm}$ to $0.2 \mathrm{~s} / \mathrm{cm}$ and the maximum sensitivity is $50 \mathrm{mV} / \mathrm{cm}$. A medium persistence phosphor is used and the
 Features include a trace locate button which returns overscanned traces to the screen regardless of other control settings.

The DB 242 is expected to sell at a little under $£ 200$ excluding VAT, but no price is given for the SB 121. Bridage Scientific Instruments Lid, 63-65 High Street, Skipton, North Yorkshire BD23 1EF, tel 0756-69511.

Radio Teleswitching

adio Teleswitching is the name given to d new system recently agreed between the $B B C$ and the Electricity Council. The system involves the use of $B B C$ transmitters to provide remote control of suitably adapted tariff controlled appliances in consumers' premises, allowing the Electricity Supply Industry to smooth peak demand and hence avoid the need for excess generating capacity.

Using the BBC Radio 4 (UK)

Small Rack Enclosure

New from STC Electronic Services is a unique modular enclosure, the BICC Vero KMT, suitable for housing small electronic products and circuits. The KMT comprises two blue plastic side panels and 2 mm -thick anodised aluminium front covers which are available in $42,35,21$, 18, 12, 7 and 6 HP widths. Accommodating plug-in cards and units up to $42 \mathrm{HP}(1 \mathrm{HP}=5.08 \mathrm{~mm}$ or $1 / 5^{\prime \prime}$), the front section features moulded fixing flanges for 21-
way plug connectors specified to DIN41617. The rear section is a purpose-designed aluminium extrusion for mounting the power supply, providing both electrical and thermal screening, and is designed to clip easily onto the enclosure to ensure optimum cooling. Optional accessories include front panel sets, plug-in card sets, circuit board kits, connectors and card guides (packs of 10). Prices are $£ 8.93$ for the KMT Module Set and between $£ 0.90$ and $£ 4.98$ for the accessories. For further information, contact STC Electronic Services, Edinburgh Way, Harlow, Essex, tel 027926777.
low frequency (200 kHz) Iransmitters at Droitwich, Burghead and Westerglen, which have nearly nationwide coverage, the system superimposes an inaudible data signal by phase-modulating the main carrier of the transmitters. The data signals come from a message assembler in Broadcasting House, London. Information from the Central Electricity Generating Board is used to key information onto the message assembler and the resultant waveform is sent to the transmitters. The data waveform is a $\mathbf{5 0}$ baud bi-phase signal giving an effective 18 bit/second useful
data rate that modulates the carrier by $\pm 22 \%$. Because of the narrow band nature of the datasignals, the signal can be received in areas such as basements or steel framed buildings where the field strength from the Iransmitters is too low for normal reception.
The signals are received and decoded by Radio Teleswitching receivers installed in consumers' premises, where they are used to control appliances operated on 'off-peak' or other tariff systems such as water or storage heaters. It is understood that consumers' will have complete freedom of
choice as to whether their appliances operate on the new system or on time switches as at present. Provided storage heaters and the like receive their full 'on' period, the actual times at which they are switched on and off are not critical, and with the ability to directly control a large number of appliances throughout the country, the CEGB will be able to even out demand and thus reduce the overall generating capacity needed.

The Engineering Information Department, BBC, Broadcasting House, London W1A 1AA, tel 015804468.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

High-Speed, Low-Power
 Infra-Red Pre-Amplifier

 Op-AmpBurr-Brown has announced a high-speed low-power operational amplifier that draws only $230 \mu \mathrm{~A}$ maximum quiescent current at $\pm 15 \mathrm{~V}$ supply voltage. Known as the OPA21, it is a monolithic device employing advanced laser trimming techniques and intended for use in low-power instrumentation amplifiers, isolation amplifiers, portable equipment and battery operated equipment.

At $\pm 15 \mathrm{~V}$ supply voltage, the OPA21's power consumption is only 6.9 mW while at $\pm 2.5 \mathrm{~V}$, power consumption is as little as 1.1 mW . Other advantages include an input bias current of 50 nA maximum and an offset current of 4 nA . This is particularly important in low-power applications where the high resistor values used can create large voltage errors due to bias current. Other specifications include a slew rate of $0.2 \mathrm{~V} / \mu \mathrm{Sec}$ (typical) allowing it to be employed in highspeed applications, and a low offset voltage of 100 uV drifting with temperature at $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum. In addition, the OPA21 offers 110 dB typical common mode rejection ratio and an open loop gain of 120 dB minimum. Burr-Brown International Limited, Cassiobury House, 11-19 Station Road, Watford, Herts WD1 1EA, tel 0923-33837.

Plessey Semiconductors have added an infra-red preamplifier to their family of remote control circuits. The SL486 is a high gain pre-amplifier with AGC which is designed to form an interface between infra-red transmitting diodes and the digital inputs of a remote control receiver circuit.

The device has a signal handling range of 120 dB which gives a range of 6-9 metres (20-30') in very bright sunlight and between 18-24 metres ($60-80^{\prime}$) in dull sunless conditions. An on chip gyrator circuit allows operation in environments with high background light levels and fast acting AGC improves operation in noisy environments. Other features include differential inputs to reduce noise and improve stability aided by an on-chip stabiliser which allows operation with a wide range of supply voltages, a pulse stretching circuit for direct interface with microprocessor decoders, and a minimal component count to achieve low system costs. The SL486 is available in a 16-pin plastic DIL and is specified over the temperature range 0° to $+70^{\circ}$ C. Full details are available from Plessey Semiconductors Limited, Cheney Manor, Swindon, Wiltshire SN2 2QW, tel 0793-36251.

Dual
 Op-Amp

The Siemens TCA 2365 offers two power op-amps on a single chip. Each amplifier has an output of 2.5 A , and the use of an
additional inhibit circuit enables three output states to be selected. Siemens claim that combining two amplifiers in a single package costs significantly less than two equivalent single devices and that, at the same time, assembly costs are cut.

The double op-amp comes in à

DRAM Controllers

The SN74S408 and SN74S409 are single chip multimode dynamic RAM controller/drivers fabricated in bipolar technology, driving up to eighty-eight 64 K or 256K multiplexed-address dynamic random-access memories. Designed to meet the growing demand for automatic access and automatic refreshing of DRAMs, they offer eight control modes to provide flexibility and simplicity to the system designer, who would otherwise need to use up to 15 chips.

The SN74S408 has eight address outputs and can drive 16 K and 64K DRAMs; the SN74S409 has nine address outputs and drives $16 \mathrm{~K}, 64 \mathrm{~K}$, and 256 K DRAMs. Both feature address lines rated at 500 pF and are available in various speed options down to 100 nanoseconds maximum memory access time. In 48pin dual-in-line packages, the SN74S408 and the SN74S409 are pin compatible with each other for convenient system upgrading and to allow four-fold increases in memory size.

Further details are available from Microlog Limited, 1 st Floor, Elizabeth House; Duke Street, Woking, Surrey GU21 5BA, tel 04862-66771.

Stackable Optocouplers

Anew series of end-stackable LED/Phototransistor optocouplers has been launched by Norbain Electro-Optics Limited of Reading. The new components have been specifically designed for use in circuits where space is limited.
The SFH610 and SFH611 series are contained in 4 pin dual-in-line plastic packages measuring 5.08 mm by 6.4 mm wide with a pin spacing of 2.54 mm by 7.62 mm . Except in the polarity of the LED and phototransistor pinout, the two devices are identical in specification providing an isolation voltage of 2800 V . The
souplers are banded in four groups with minimum and maximum current transfer ratios of $\mathbf{4 0 \%}$ to $\mathbf{8 0 \%}, \mathbf{6 3} \%$ to $\mathbf{1 2 5 \%}, 100 \%$ to $\mathbf{2 0 0 \%}$ and $\mathbf{1 6 0 \%}$ to $\mathbf{3 2 0} \%$ respectively.
These devices provide circuit designers with the choice of using exactly the number of optically coupled channels needed whilst keeping the space occupied to a minimum. Applications include the direct replacement of quad packaged couplers such as the ILQ74 and dual couplers such as the ICLT6 with the added advantage of needing to replace only one channel in the event of device failure. Norbain ElectroOptics Ltd, Norbain House, Boulton Road, Reading, Berkshire RG2 0LT, tel 0734864411.

9-pin single-in-line package. Integrated protection circuits make the outputs DC short-circuit-proof with respect to negative and positive supply voltages and also prevent thermal overloading of the internal amplification circuits. The output voltage rise time is $4 V / \mu \mathrm{s}$, and

Siemens believe the new device will find application in fields such as climatology, instrumentation and control, machine controls, and monitoring and alarm systems. Siemens Limited, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex TW16 7HS, tel 09327-85691.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Hand-held Insulation
 Tester

0sborne Electronics have introduced a new type of 500 volt insulation tester which they believe offers radical improvements over existing test units. Designated the model 4100, it is a completely selfcontained hand held unit which
offers the same order of accuracy as units currently selling for three times its price.
The complete unit, comprising the electronics, battery, display and probe, is contained in a slimline case measuring $32 \times 22 \times 100$ mm overall. Weighing just 75
grams, the unit nestles comfortably between thumb and forefinger and can be operated with one hand. The bright red bargraph display has a total of ten steps ranging from 1 to 100

Mohm, and is almost impossible to misread. In order to ensure total operator safety the model 4100 has been fitted with a current limiting circuit as standard. The unit's power consumption is 110 mA at 9 volts, but for continuous use applications, it can be fitted with a rechargeable battery or powered by Osborne's optional mains adaptor.

Further information is available from Osborne Electronics, Binstead Road, Ryde, Isle of Wight, tel 0983-63622.

SHORTS

Following their decision to establish a new research and development centre in Bristol (reported in January News Digest), Hewlett Packard have donated equipment worth around $£ 40,000$ to the Engineering Department of Bristol Polytechnic. The equipment is intended for use in advanced silicon chip design and development, and marks the start of a number of joint ventures between the Polytechnic and Hewlett Packard.

- Lucas Electrical have issued a brochure giving extensive details of methods for suppressing transients in telecommunications and data transmission systems. The brochure illustrates the use of Lucas' latest surge suppressors using silicon pn diffused junction construction, and is available from the Sales Engineering Department, Lucas Electrical Electronics \& Systems Ltd, Mere Green Road, Four Oaks, Sutton Coldfield, West Midlands B75 5 BN .
- Esselte Dymo, manufacturers of anti-static cleaning agents, have published a booklet entitled "Caring for your Computer or Word Processor'. The booklet describes the problems caused by static in data handling systems and how to overcome them, and is dvailable free from Esselte stockists. Esselte Dymo Ltd, Spur Road, Feltham, Middlesex TW14 OSL.
- The twenty-second International Electronics Exhibition, Electrex '84, will be held at the National Exhibition Centre, Birmingham from February 27th to March 2nd. More than 1200 companies will be represented and the number of visitors could well exceed last year's 43,000 . Details from Electrex LId, Wix Hill House, West Horsley, Surrey KT24 6DZ, tel 0483222888.
- Bounding into the marketplace comes Supercat, a new electronics mail order catalogue featuring test equipment, leads, connectors, etc. New editions will appear at four monthly intervals and a greatly expanded range is promised for the summer issue. Meanwhile, the present issue is available free from Supercat Electronics Ltd, PO Box 201, St. Albans, Hertfordshire AL1 4 EN, tel 072762171.
- Wilmslow Audio have been appointed as distributors of Crimson Elektrik hi-fi products. The range includes amplifier kits and modules and two and three way active crossovers in a choice of fourteen standard frequencies. Crossover adjusted for nonstandard frequencies can be supplied to order within seven days. For leaflets, reviews and a price list send a large SAE to Wilmslow Audio Ltd, 35-39 Church Street, Wilmslow, Cheshre SK9 1AS.
- Superswitch have introduced a simple timer control which, unlike most programmable timers, can be set forward or backward at any time to adjust the 'on' period. Intended for use with immersion heaters and rated to suit, it is similar to many kitchen timers and has a single dial control which is set to the desired time and then counts down to zero. The 1512 immersion heater controller costs around $£ 20$ and is available from electrical and hardware shops.
- Texas Instruments have published a 114 page master selection guide which gives outline data and packaging information on their semiconductor ranges. Devices listed include memories, logic arrays, digital products, linear products, opto-electronics and power and small signal devices, and copies of the guide are available free of charge from any II distributor or by 'phoning 0234-223000.
- The Computing Services Association is organising a residential conference at the Royal Bath Hotel, Bournemouth, from the 29th February to the 2nd march 1984. They aim to bring together companies from every sector of the industry to discuss issues affecting the business and to consider joint ventures. Details from the Conference organiser, Computing Services Association, Hanover House, 73-74 High Holborn, London WC1 V 6LE, tel 01-405 2171.
- The latest addition to the range of Swiss-made Elesta relays imported by Britec Ltd is a fullysealed PCB mounting unit which is designed to withstand ultrasonic cleaning. The sealed versions of their SGR series relays come in a full range of coil voltage ratings from 6 to 110 V and with contact ratings up to 16A. Britec Ltd, Bermondsey Industrial Estate, Rotherhithe New Road, London SE16 3LL, tel 01-237 8081.

Hamlin Electronics have issued a 10 page colour catalogue featuring their range of proximity sensors. The catalogue covers standard proximity sensors and actuators using reed switches as well as special devices for use in applications such as machine control and shock sensing. Hamlin Electronics Europe Ltd, Diss, Noriolk IP22 3AY, tel 03794411.

- INTELEC '84, the sixth International Telecommunications Energy Conference, will take place in New Orleans from the 4th to the 7 th of November. The conference is concerned with the provision of power for telecommunications and the organisers welcome papers on appropriate topics for presentation at the conference. Details from M.E. Jacobs, AT \& T Bell Laboratories, Room 8C-161, Whippany Road, Whippany, New Jersey 07981, tel 201-386 3362.

Eons ago (well, last November, actually) we featured an IEEE interface for the BBC micro in Digest. The Procyon Interface has sold so well that the manufacturers, Cambridge Systems Technology, have abandoned plans to market it directly and are seeking dealers in both the home computer and the educational/ scientific markets. Full support, training, and generous dealer discounts are offered, and those interested should contact CST, 30 Regent Street, Cambridge CB2 1DB, tel 0223323302.
R.S. Electromatics offer a repair and calibration service for multimeters and other test equipment. They use the Royal Mailparcel service, will quote on repairs before carrying them out, and can be contacted on 073371958 . R. S. Electromatics, 511 Fulbridge Road, Werrington, Peterborough PE4 6SB.

- Solartron have issued a new shortform catalogue of their range of test and measurement equipment. The catalogue includes illustrations and performance details on a wide range of 'scopes, signal generators, counters, etc and is in full colour. Solartron Instrumentation Group, Victoria Road, Farnborough, Hampshire GU14 7PW, tel 0252 544433.
- The latest plug for ITT Cannon products takes the form of a glossy calendar. Presumably noting Pirelli's success with pictures of unat-tyred women, Cannon's calendar will show"... stunningly beautiful models, wearing only a smile and a precise array of the latest Cannon connectors . . .". This 'corporate and subtle product promotion' will be limited to 2500 copies and Cannon envisage it becoming a collectors' item. But what has it all got to do with plugs and sockets, dare we ask? devaloped by MULLARD'S specialist team in Belgium. Kits comprise Mullard woofer 18^{*} or Mullard 3° high power domed tweeter. B.K.E. built and tested crossover based on Mullard circuit, combining low loss components, glass fibre board and recossed loudspeaker terminals. SUPERB SOUNDS AT LOW COST. Kits supplied in polystyrene packs complete with instructions $8^{\circ} 40 \mathrm{~W}$ system -

" 30 W system - recommended cabinet size $60 \times 175 \times 295$ rice $\mathbf{f 1 3 . 9 0}$ each $+\mathbf{f 1 . 5 0} \mathbf{P} 8$ P
Deslgner approved flat pack cabinet kits, including grill fabric Can be finished with von on veneer or self adhesive vinvl etc.

-

STEREO CASSETTE TAPE DECK MODULE
a record play back panel and tape mechanism couplad to a record/play back printed board assembly. Supplied as one complete unit for horizontal instalation into cabinter or
console ol own choice These unts are brand new, ready built and rested.
Foatures: Three digit tape counter Autostop. Six piano
type keys, record, rewind, fast forward, play eject Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Input secondary inputs for stereo microphones. ${ }^{\text {mput }}$
Sonaltivity: 100 mV to 2 V . Input Impedance: 68 K .
Output leval: 400 mV to Output leval: 400 mV to both left and right hand
channels. Output Impadence: 10 K . Signal to noize channels. Output mpedance: 10 K . Signal to noite
ratio: 45 dB . Wow and flutter: 0.1%. Power Supply requirements: 18 V DC at 300 mA . Connections: The left and right hand stereo inputs and outputs are via individual screened leads, al terminated with phono plugs $\times 11$ tin Clearance required under top panel 2 i in. Supplied complete with circuit diagram and connecting diagramm Attractive black and silver finish.
Price $£ 28.70+\mathbf{2} .50$ postage and packing Supplementary parts for 18 V D.C. power supply Stransformer. bridge rectifier and smoothing capacitor)
tane

LOUDSPEAKERS POWER RANGE THREE QUALITY POWER LOUD SPEAKERS (15 ". 12 " and 8 "Sea 'Photo deal for both hi-F and Disco applica minum (ground finish) tixing escutcheons Specification and Prices.
$15 " 100$ watt R.M.S. Impedance 8 ohms 50 oz magnet. 2 aluminium voicecoil Res Freq. 20 Hz . Freq. Resp. to 2.5 KHz . Sens
97 dB . Price: $£ 34.00$ each $+\Sigma 3.00 \mathrm{Pg}$ 12' 100 watt R.M.S. Impedance 8 ohmis 50 oz. magnet. 2 "aluminium voice coil. Res Freq. 25 Hz . Freq Resp. to 4 KHz . Sens 95 dB . Price $£ 26.00$ each $+£ 3.00$ P\&P. B" 50 watt R.M.S. mpedance 8 ohms. 20 oz. magnet. $1 /{ }^{1 / 2}$ aluminium voice coil. Res
Frea 40 Hz . Frea Resp to 6 KHz . Sens. 92 dB Black Cone. Price: C 90 each Also available with black protective grille Price

12' 65 watt R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) $\mathbf{2}^{\prime \prime}$ luminium voice coil , iuminime Resp. to 6.5 kHz ., Sens, 98 dB Price $£ 24.00+£ 3$ carriage
12' 8 , whtt R.M.S. McKENZIE C1285TC (P.A., DISCO) 2'' aluminum voice coil. Twin cone. 8 ohm. imp., Res. Freq. 45 Hz ., Freq. Resp. to 14 KHz . Price £24.00 $+£ 3$ carriage $15^{\prime \prime} 150$ watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) $3^{\prime \prime}$ aluminium voice coil Die cast chassis 8 ohm imp. Res Frea. $\mathbf{4 O H z}$. Frea Pesp to 4 KHz Price $£ 49+\varepsilon 4$

PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coili of a Piezo tweeter produces an improved transient response with a lowe distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

TVPE A (KSN2036A) 3 round win protective wire mesh, ideal for bookshelf and medium TYPE 'B' IKSN1005AI $3 \frac{1}{\prime}$ ' super horn For general purpose speakers, disco and P.A systems etc. Price $£ 4.99$ each.
TYPE 'C' (KSN6016A) 2 " - $5^{\prime \prime}$ wide dispersion horn. For quality Hi.fi systems and quality discos etc. Price $£ 5.99$ each
TYPE ' D^{\prime} (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn Upper frequency response retained
extending down to mid range $(2 \mathrm{KH} 2)$ Suitable extending down to mid range 2 KHz l Suitable discos. Price $£ 7.99$ each.
TYPE 'E' (KSN1038A) 33_{4} " horn tweeter with attractive silver finish trim. Suitable for Hi-fi monitor systems etc. Price $£ 4.90$ each. TYPE 'F' (KSN1057A) Cased verston of type ' E '. Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker P8P 30 p
P\& P 30p ea. (or SAE for Piezo leaflets).

ON80 LOUDSPEAKER
he very best in quality and value.
Ported tuned cabinet in hard wearing black vynide with protec tive corners and carry handle. Buil and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms, $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Size- 20 in $\times 15$ in $\times 12 \mathrm{in}$; Weight 30 pounds

Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar and Leader

PANTIC

HOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensilive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Prico: £7.99p
DIGITAL THERMOMETER $-99^{\prime \prime} \mathrm{C}$ to $+99.9^{\circ} \mathrm{C}$. LED display. Complete with sensor. $70 \times 70 \mathrm{~mm}$ (9 volt) Price: $\mathbf{\varepsilon 2 7 . 6 0 p}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled professional performance Range up to 3 miles $35 \times 84 \times 12$ mm (12 volt) Price: $£ 12.49 \mathrm{p}$
Single Channel radio controlled transmitter/ RECEIVER 27 MHZ Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm} 9$ / 12 voll) Price: $\mathbf{£ 1 8 . 4 9}$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ volt) Price $£ 10.29$ P\&P All Kits +75 p each. S.A.E for complete list.

BSR P256 TURNTABLE

P256 turnable chassis © S shaped tone arm

- Belt drivent Aluminium platter \bullet Precision calibrated counter batance - Antiskate (bias device) - Dampent cueing lever - 240 volt $A C$ operation $\mid \mathrm{Hz}) \bullet$ Cut-out This deck has a completely nnanual armand is designed primarily for disco and sludio use where ail the advantages of a manual arm are required.

Price £ 32.35 each. $£ 2.50 \mathrm{PBP}$

0

POWER AMPLIFIER

MODULE

New model.
Improved specification

NEW OMP100 MK.II POWER AMPLIFIER
MODULE Power Amplifier Modut complete MODULE Power Amplifier Module complete with integral heat sink, toroidal transtormer
power supply and glass fibre p.c.b assembly. incorporates drive circuit to power a compatible LED Vu meter. New improved specification makes this amplifier ideal for P.A.. instrumental and Hi-Fi application
SPECIFICATION
Output Power:- 110 watts R.M S Output Power:- 110 watts R.M.S.
Loads:- Open and short circult proof $\mathbf{4 / 1 6}$ ohms. Frequency Response: $-15 \mathrm{~Hz} \cdot 30 \mathrm{KHz} \cdot 3 \mathrm{~dB}$. T.H.D.:- 0.01%. S.N.R. (Unweighted); $-118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$. Sensitivlty for Max Output:- $\mathbf{5 0 0 m V}$ @ 10K.
Size:- $\mathbf{3 6 0} \times 115 \times 72 \mathrm{~mm}$. £2 50 P\&P Vu Meter Price - $£ 850+50 \mathrm{p}$ P\&P. MOSFET versions available up to 300 W . R.M.S.

HOME PROTECTION SYSTEM

Better to be 'Alarmed' then terrified.
Thandar's famous 'Minder' Burglar Alarm System. READY

Superior microwave principle. Supplied as three units.
complete with interconnection cable. FULLY complete with
GUARANTEED.
Control Unit - Houses microwave radar unit, range
up to 15 metres adjustable by sensitivity control.
Three position. key operated facia switch - off -- tes

- armed 30 second exit and entry delay - armed 30 second exit and entry delay Indoor alarm - Electronic swept treq. Siren
104dB output.
Outdoor Alarm - Electronic swept frea siren $98 d \mathrm{~d}$ Outdoor Alarm - Electronic swept freq. siren 98de
output Housed in a tamper-proof heavy duty meta
case. Both control unit and outdoor alarm contain rechargeable batteries which provide full protection
during mains failure, Power requirement $200 / 260 \mathrm{Volt}$ $\mathrm{AC} 50 / 60 \mathrm{H}$ z. Expandable with door sensors, panic
buttons etc. Complete with instructions
SAVE 128 Usual price 122885 BKE's PRICE $\mathcal{L} 99 . p \& p \mathrm{f} 4$

BUILT

```
                                #%
```7 thendar


STEREO DISCO MIXER

STEREO DISCO MIXER with 7 band graphic equaliser and 10 segment L.E.D. Vu Meters. Man outstanding features
vidual fader controls:-
2 Mag. turntable, 2 Aux. plus Mic. with talk-over switch. Headphone monitor. Master output contro Power Amplifiers.
Power Amplifiers.
Size: \(360 \times 200 \times 120 \mathrm{~mm}\). Supply \(240 \mathrm{~V} / 50 \mathrm{~Hz}\) AC

\title{
CABLE TELEVISION DOWN THE DRAIN?

}

\title{
If you live in Aberdeen or Ealing, Glasgow or Belfast, or one of the other 11 initial areas for cable television, you could well be offered cable television in the next year or so. But what of the rest of us, and what might it be like if we do get it?
}

Amonth or so ago, the government announced the granting of 11 initial franchises to companies to allow them to set up cable TV services in selected areas, none of them encompassing more than 100,000 homes, There were a total of 37 applications for the franchises, and the government had initially intended to licence 12 franchises.

These initial franchises are not trial franchises: they are seen as the first of many; however, all concerned, including the Government, are feeling their way carefully, and it is expected to be a year or two at least before any further franchises are approved. Table 1 shows the first batch, with a rough outline of their plans.

There are two major paradoxes at the heart of the debate over cable television - the first is well known though rarely admitted to: there are lots of people who want it but nobody is prepared to pay for it. The second is that the cable is intended to to be 'entertainment led' investment in information technology; that is, what is being bought is the facility to have extra television channels; however, what comes with it, riding piggy-back almost as an after-thought, is the wiring of UK homes ready to take the full force of the information revolution.

When commercial television first came to the UK it was described as a 'licence to print money'. There certainly haven't been any bankruptcies amongst TV companies, and there is certainly a fair amount of competition for broadcast TV franchises when they come up for renewal, so this must still be the prevailing attitude. There must be plenty of investors around who'd like to get an 'in' on television - or are there?

There are, however, very significant differences between the cable and the broadcast TV. In broadcast TV, you build (or lease space on) a handful of transmitters and aerials; in cable TV, you have to provide a network of cables to physically connect each home that you intend to serve (and you have to provide this network not knowing how many of the homes you are passing with the cable will take the service); in broadcast TV, you provide one channel; in cable TV, you have to provide several channels (a dozen or more) or you won't attract people to take the service. You also have to provide facilities to
receive all the broad cast channels as well.
These factors combine to make the amount of money required to set up a cable service to a medium-sized conurbation - such as the 100,000home in the initial block of franchises - around \(£ 25\) million.

Some cable TV companies are taking a slightly different option, in that they are finding someone else, often British Telecom, to lay the cable which will then be leased; however, the cable-providing companies will not be charitable bodies, and will want to charge a fair rent for their investment, which has led most cable companies to decide to install their own cable. In any case, someone somewhere has to shell out for the laying of the cable.

In fact, it has been predicted that the quantity of money required will severely limit the growth of cable TV. A back-of-the-envelope calculation suggest that cable TV will require an investment of around \(£ 10\) billion to reach half the population. As a result, there will be a lot of cable TV companies chasing a very limited amount of moeny, should the government ever give the go-ahead to all-out cabling.

\section*{Who Will Buy?}

To reach profitability, a cable network will need to attract a fairly high proportion of the potential customers to actually take up the service that passes their front door. Estimates of how many people actually will take up the service vary a great deal, as do estimates of the exact percentage needed to make the service financially viable. For the former, estimates span 12 to \(36 \%\) by the mid 1990s; however, for the latter, one estimate is that even a \(50 \%\) take-up would be marginal as far as investers in cable are concerned. (Contrast both these sets of figures with the findings of a recent survey in Which? magazine that indicated that only \(15 \%\), of households might be prepared to pay to receive extra TV channels.)

Another factor is that at the moment we have a government that is relatively welcoming to the prospect of cable TV - what would happen if another government came along that was horrified at the prospect of \(£ 10\) billion being dragged out of the economy
to pay for cable TV? I must interject, ironically, that it was the economist Keynes who said that the economy would be stimulated simply by employing people to dig holes in the road and fill then in again. This sounds remarkably like the laying of cables to me. Unfortunately, Keynes' ideas have been supplanted by the moneterist policies of Mrs Thatcher's government.)

Even though the present government is, as already mentioned, fairly 'pro' cable, there are a couple of fairly tough conditions applied to the franchised companies. Firstly, the franchise is for a fixed term; in the case of the initial franchises the term is either 12 or 20 years, depending on the type of system installed (12 for tree and branch systems, 20 for switched star - see later for explanation of terms).

The second condition is that the company must complete the wiring of the network once it has begun, no matter how poor the up-take to the system is. This may seem a rather odd requirement - what is the point of laying cable if you cannot then afford to run the service? - but it is as a consequence of the government's view that one of the objectives is the wiring of Britain for other purposes, not just TV, all using the same service. Also related to this is that the actual cable network itself has zero value - what bank, for instance, would wish to risk having to foreclose a company whose major asset was several hundred miles of copper buried in the ground?

\section*{What's On Offer?}

What the cable TV companies are offering in the trial areas are all fairly similar. For a basic monthly fee of around \(£ 5\) to \(£ 9\) per month, you will get the basic service, consisting of a number of channels: up to 16 may be provided in some areas; although exactly what the companies will be offering is still being decided, channels proposed include local news, children's pro-
grammes, sports, music, teletext, national news, general entertainment, classified ads, general interest, business news, educational (possibly including Open University programmes), and community access.

Some of the companies plan to offer a second tier of channels for which an additional fee will be payable (usually of around \(£ 5\) per month); this will 'cream off' the most popular items from the above list. However, all the companies will have 'premium' channels, which will cost an additional \(£ 6\) to \(£ 8\) each per month and will mainly be feature-film channels, carrying newer films than the broadcast channels can afford to buy.

The film channels are, to the customer, one of the most attractive features of the cable TV service; unfortunately, there are a number of problems with this very aspect of the service. They are:
- expense: by the time customers have paid the basic fee plus one or two premium fees, they will be shelling out around \(£ 11\) to \(£ 17\) per month; many prospective customers will already have videos, and at a cost of as little as \(£ 1\) per night, the hiring of films looks very competitive;
- convenience: unlike a video, you will still have to watch the film when it is broadcast, not when convenient; however, it isn't necessary to visit a shop to get the film;
supply: on average, approximately three full-length English-language feature films are completed each week; obviously, some of these will be dire or unsuitable for use on cable for other reasons, so at the somewhat restricted rate of showing one film per night (actually, two would seem a more realistic figure) demand will still outstrip supply, and prices of films to the cable companies will rise;
- resources: although the investment sums involved in cable TV are relatively high, it is unlikely that it will have the resources to be able to generate much in the

\section*{Town}
\begin{tabular}{ll}
Aberdeen & Aberdeen Cable Services \\
Coventry & Coventry Cable \\
Belfast & Ulster Cablevision \\
Croydon & Croydon Cable \\
Ealing & CableTel Communications \\
Clasgow & \begin{tabular}{l}
Clyde Cable Vision \\
Guildford
\end{tabular} \\
Liverpool & \begin{tabular}{l}
Electronics \\
Merseyside Cablevision
\end{tabular} \\
Swindon & \begin{tabular}{l}
Swindon Cable Services \\
Westminster
\end{tabular} \\
Westminster Cable
\end{tabular}

\section*{Services}

Basic 11-16 channels for \(£ 8\); classic first-run film channcls \(£ 7\) each
Basic up to 10 channels for \(£ 6\); premium movie channel \(£ 7\) per month; other channels possible
Basic 12 channels for \(£ 7\); premium film channels (3) \(£ 8\) each; also sport channel
Basic: \(£ 5\) per month; extended: \(£ 4\); premium channels \(£ 2\) to \(£ 8\) per channel
Basic: 8 or 9 for \(£ 10\) or less; two premium movies \(£ 8\) each

Basic: \(£ 8\) per month; premium film channels \(£ 6\) each
Basic: \(£ 6\) per month; premium movie \(£ 8\); also many interactive channels planned
Basic: \(£ 8\) to \(£ 9\); second tier \(£ 4\) to \(£ 5\); two movie channels \(£ 6\) to \(£ 8\) each; interactive services
Basic: 8 for \(£ 5\); two premium movies \(£ 7\) each
Basic: 14 channels for \(£ 6\) to \(£ 7\); super-basic: 5 for \(£ 2\) to \(£ 3\); premium: 3 for \(£ 7\) each
Basic: 11 channels for \(£ 6.90\); premium channels \(£ 8\) each (several planned)

Table 1 The initial batch of franchises; note the details and prices are very preliminary, and that some companies may also decide to charge connection fees as well.
way of its own premium material, in the way that Channel 4 has been able to finance the making of films. For example, \(£ 1 \mathrm{~m}\) for a \(11 / 2\) hour feature film now seems to be regarded as "low-budget"; even television documentaries cost around \(£ 30,000\) for every hour that the viewer sees, and this is probably well outside the reach of the cable companies.

\section*{What Will Pay Its Way}

Actually, the cable TV companies will probably not be that closely involved in the purchase of material for transmission over their particular networks; they will probably 'buy in' pre-programmed material trom programme providers. As it happens, London Weekend Televsion seriously considered entering this business, and did some research into what people would be prepared to pay for; having decided that they were not, at least at this stage interested, they made their findings public at a recent Seminar*.

LWT found that there would definitely be a market for three types of channel:
- the movie channel, provided the difficulties mentioned above do not confound it, would definitely be very popular;
- an "adult" or "club 18" channel, with sexually not-too-explcit material and slightly nasty films would also be successful (note that the Government has made it plain that it will not permit the 'excesses' that cable TV in the USA has sunk to);
- finally, what they dub "wall-to-wall, heart-to-heart" would also be popular (this would consist of continuous soap opera - imagine it - 12 hours a day of Dallas!). This last possibility is the most horrifying, but also the most interesting. For a start, there is no problem in obtaining enough material for this sort of channel. LWT found that they could easily buy in enough material to fill three 12 -hours-a-day channels! Also the audience for this sort of "undemanding" TV is quite high ("Why do you think people watch snooker?'").

However, people would not be prepared to pay any extra for "wall-to-wall, heart-to-heart", and to make the channel viable it would have to carry advertising. For advertising to be viable, this channel would have to reach \(50 \%\) of households in the catchment area.

There is one other sort of channel that LWT discovered might must make a living, and that is a pop music channel, provided that the material was given free to the cable companies.

Note that these possibilities do not include a sports channel. The government has ruled out the possibility of the cable companies being allowed to buy sole rights to national events, such as the FA cup final for instance, and has also ruled out pay-per-view. There is a debate going on as to who has who over a barrel over the future of the regulation of the channel. Cable companies think that they're the ones who hold the upper hand, because without them being able to make a healthy profit, the government will not get the cableing of Britain that it wants, so they think they will be able to force concessions in the future. On the other hand, the government obviously will hola the upper hand once the companies have installed their networks.

And, almost as a postscript to this section, another factor over the actual programme content that hardly needs pointing out is that if cable TV were to become successful, the broadcast channels, and in particular the commercial channels, would be obliged to try and
compete with the cable channels, and on their own terms; there are a number of commentators who believe tht this would lead to the destruction of the diversity that goes to make British television the best in the world. Programs that are not specifically aimed at the lowest common denominator would disappear from our screens to be replaced with continuous second-rate soap opera.

\section*{Advertising}

At the heart of much of the uncertainty of the future of cable TV is how well the advertising will sell. Really, it is a chicken-and-egg situation - if advertising sells well, then prices to the viewer are likely to be lower, so more people will take the cable, so more advertisers will want to use it, etc. However, advertisers are very reluctant to use cable TV due to its very low up-take: even a relatively optimistic estimate of a \(35 \%\) up-take amongst households offered the cable is likely to be much too low to interest any of the 'Mainstream' advertisers.

All the same, when most of the 11 franchisees were asked about advertising, they made quite optimistic noises, largely on the basis that they felt that they could get many smaller, local advertisers to use them. As far as television advertising goes, these are uncharted waters.

It is perhaps instructive to look at the situation in the USA to see how well cable TV advertising sells over there. In 1982, approximately \(\$ 180\) to 200 million was spent on cable TV advertising, compared with the figure of around \(\$ 12.7\) billion on just three major broadcast companies (NBC, CBS and AB) over a similar period. So while the money spent on advertising is not be be ignored, compared to the other sums of money involved (and compared to the investment required to lay the cable), it isn't a great deal.

\section*{The Technology}

Existing cable systems are in many cases pretty antiquated; for example, the Rediffusion network uses a twisted pair to distribute a HF signal (not even VHF, never mind UHF), so major changes in technology will have to take place.

There are two areas that can be examined here: firstly, there is the overall shape of the system. It could either be tree and branch (as in Fig. 1) where all the

Fig. 1 The tree and branch distribution system.
subscribers have all the channels supplied to their house by a single cable. A conventional coaxial cable will have ample bandwidth for up to thirty or more channels of television; however, the channels that require an extra subscription would have to be scrambled in some way, so that they can be received only by the use of a special unscrambler which you would get upon payment of the extra fee.

The other system, shown in Fig. 2, is the switched star arrangement. Here all the available channels are supplied to a local 'switch'. Individual subscribers are then supplied with the channel they select by the 'switch'. Obviously, the method here involves an interaction between the users and the switch, and this is the reason why the government is encouraging this system. The switched star system is seen as the system of the future, as the interactive nature of the service can be extended easily to include interactive banking, shopping, and many more options as viable ideas come forward.

Thorn EMI disagree over the dismissal of the tree and branch system as the less adaptable of the two. They have their own system - teletext addressability and control for cable systems (TACCS) that they think could offer all the advantages of switched star at a much lower cost. According to them, by extending the teletext system, they can offer 30 TV channels plus 35 radio programmes, a down (to the subscriber) data capacity per channel in excess of 200 Kbs on locally generated TV channels and 12 Kbs on broadcast channels, with a potential up capacity of 750 Kbs (presumably not from each individual subscriber but from the system as a whole!), and using various interrogation techniques and data storage at the users' receivers, they say that they would be able to supply virtually all the interactive facilities that a switched star system could support.

However, Thorn EMI seem to be fighting a losing battle and most of the initial franchisees have opted for switched star.

\section*{The Cable}

The other aspect of the technology that is cause for concern is the actual carrying medium being used. All the companies will, for the forseeable future, be using coaxial cable for the transmission of the signals to our homes. Now it is obvious that optical fibres are the medium of the future - they are cheap to produce in themselves, have much higher bandwidths with coaxial cable, and would therefore have ample room for future developments. They should also be less susceptible to the ingress of moisture - a continual problem with underground coaxial cables which causes a major maintenance burden.

However, the technology of optical fibres is very young, and although the fibres themselves are cheap, the rest of the system is pretty expensive when compared to that associated with coaxial cable: prices of approximately ten to twenty times more for a fibre system overall have been mentioned. It is predicted that optical fibres will not be price competitive until the mid-nineties at the earliest, but after that the price will continue to become more favourable in comparison to coaxial cable (and what happens if world copper prices rocket?).

The mid-nineties is rather an interesting time for cable TV: not only is it the time that some of the tree and branch system trial franchises will run out, it is also the time that cable systems should be coming on stream in a big way. So, it is most worrying that the
technology used should become obsolete just as the whole system is getting on to its feet.

\section*{Beyond Television}

As yet, exactly what will go into the interactive services is still at a relatively early stage of planning, with no one able or willing to comit themselves to exactly what will be available or when. Rediffusion who have the Guildford franchise say that they will be using this to develop their expertise in interractive services. They claim that their plans are probably the most advanced, but even so they are unable to give any definite details.

The services proposed include public data lines, and private. Public services will, they hope, include home banking (the banks, facing increasing competition from the building societies, are said to be receptive to the idea), teleshopping (at least one major mail-order firm is interested), telebetting, meter reading, home security (ie monitoring of a burglar alarm while you are out and possibly a 'panic button' facility for the elderly), video games and formal learning.

The private data lines would be leased to large organisations such as hospitals or the police to enable them to pass around information such as records or electronic mail,

\section*{Conclusion}

In this brief article, it hasn't been possible to delve very far into all the details of what looks like becoming a multi-million pound industry. However, it is hoped that a flavour of the situation has been conveyed, along with the controversies involved. As a personal note, I find myself agreeing with one commentator at the seminar mentioned earlier: that cable TV is the right thing to do, but now is the wrong time for it.

Fig. 2 The switched star distribution system. ETI

\section*{THE 1984 GREENWELD CATALOGUE}

Now in the course of production, the 1984 GREENWELD catalogue will be published in January (sorry about delay). Its Bigger, Brighter, Better more components than ever before With each copy there's discoun vouchers, Bargain List, Wholesale Dis count List. Bulk Buyers List, Order Form and Reply Paid Envelope. All for just \(£ 1.00\) Order now for early delivery!

MOTORIZED GEARBOX
These units are as used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro-mechanical parts required in building remote controlled vehicles. The unit has \(2 \times 3 \mathrm{~V}\) motors, linked by a magnetic clutch, thus enabling lurning of he vicle, and a gearbox conlained within the black ABS housing. appox sorm tal is supplied with to approx 50 rpm. Data is supplied with the init showing various opthons on driving an mailable. \(3^{\prime \prime}\) Dia. Dastic with black also ailabe. 3 Dia plastic wh black E1 30 (limited push .fit on spinde. 2 tor disc 1 m thy. 3 dia alum 2 ium disc 3 mm thck , push-fit on spindie. 2 for 68p

2N3055 SCOOP!
Made in Texas - full spec devices 60p each; 10 tor \(£ 4\); 25 for \(£ 9 ; 100\) for \(£ 34\); 250 for £75; 1000 for \(£ 265\).

\section*{5 mm RED LED SCOOP} Full spec brand new devices at a low, low price!! 25 £1.95; 100 £6; 250 13.50; 1000 £39.50

1 N5400 3A 50V RECTS Bulk purchase enables us to offer these special low prices: 25 £1.50; 100 £4.50; 250 £ 12 ; 1000 £43; 5000 ع200.
50V \(11 / 2 A\) BRIDGE RECTIFIER W005 at a bargain price-10 £1.75; 25
 This ready built mains adaptor supplies \(4.5 \mathrm{~V} @ 150 \mathrm{~mA}\) DC, so can easily be modified to a stabilized 5 V supply. Built in continental plug for standard mains supply. Only E1.95; 10 £16; 25 £32; HEATSINK
Z905 Finned black ally heatsink \(125 x\) \(98 \times 23 \mathrm{~mm}\) with \(4 \times 2 \mathrm{~N} 3055\) and \(4 x\) R25 5W R's Only £2.50

\section*{NICAD CHARGER}

Versatile unit for charging AA, C, D and PP3 batteries. Charge/test switch, LED indicators at each of the 5 charging points. Mains powered. \(210 \times 100 \times 50\) me 9.95
STABILIZED PSU PANEL
A199 A versatile stabilized power sup ply with both voltage (2.30 V) and current (20mA-2A) fully variable. Many uses inc bench PSU, Nicad charger gen. purpose testing Panel ready built. tested and calibrated. \(£ 7.75\). Suitable transtormer
supplied.

\section*{TTL PANELS}

Panels with assorted TTL inc LS types Big variety. 20 chips \(\mathbf{~ 1 . 0 0 ; ~} 100\) chips £4.00; 1000 chips \(£ 3.00\)

\section*{RIBBON CABLE}

Special purchase of multicoloured 14 way ribbon cable - 40p/metre; 50 m £18; \(100 \mathrm{~m} \mathrm{32.00;} 250 \mathrm{~m}\) £65.00.

TREAT YOURSELF TO A NICE NEW DIGITAL MULTIMETER!! KD555C A DVM for the professional his \(31 / 2\) digit multitester has overload protection, low battery and overrange ndication. Full auto-polarity operation AC Volts: 0.2-700
DC Volts: 0.2-1000
AC Current: 2004A-10A RC Current: 200uA-10A Total 28 ranges tor just \(\mathbf{£ 4 4 . 9 5}\) PUSH BUTTON BANKS W4700 An assortment of latching and independent switches on banks from 2 107 way, CPCO to 6PCO. A total of at east 40 switches for \(£ 2.95\); 100 £6.50; 250 £ 14.00 ; \(1000 £ 45.00\)

\section*{"THE SENSIBLE 64"} David Highmores new book on the

TELESCOPE AERIALS As used in Sinclair microvision. 9 sec tion 100-610mm. Only 95p

\section*{FERRIC CHLORIDE}

New supplies just arrived - 500 mg bags of granules, easily dissolved in 500 ml of water. Only \(£ 1.15\). Also abrasive polishing block 95p

\section*{CMOS PANEL}

Z904 Panel \(240 \times 165 \mathrm{~mm}\) with \(6 \times\) 4099,723 all in sockets. \(14 \times 8\) A 200 V riacs, 45 small signal transistors, 14 R / \(C\) networks, \(30 \times 1\) N4001, sub-min relay, R's, C's, etc. 1£4.95

SEAT BELT ALARM Originally for sale at \(£ 8.95\), these well made units \(70 \times 50 \times 25 \mathrm{~mm}\) provide both audible and visual alarms. Uses 2 IC's Peg2720 transducer, etc. . . Available ready built, with circuit and instructions for just £4.95. Also available as a kit, CB + all components box, wire, etc, logether with instructions ONLY £3.95.

BULK BUYERS LIST Send for our liest wholesale list - IC's trom 5p, R's \(\mathrm{E} 2 / 1000\), transistors \(21 / 20\),
C's 0.80 etc. . BARGAINS GALOREI

VEROBLOC \(E 1\) off Our biggest selling breadboard on offer at a special price of \(£ 4.10\) NUT SCREWS WASHERS \& BOLTS Over 2 million in stock metric, BA, selflappers etc. SAE for list:

\section*{COMPUTER GAMES}

2901 Can you follow the flashing light/ pulsating tone sequence of this famous game? Supplied as a fully working PCB with speaker (no case) plus full instructions. Only \(£ 4.95\)
2902 Probably the most popular electronic game on the market - based on the old fashioned pencil and paper battleship game, this computerized version has brought it bang up to date! We supply a ready built PCB containig 76477 sound effect chip. TMS 1000 micro-processor chip. F 's, \(\mathrm{C's}\) etc.
Offered for its component value only Offered for its component value only (board may be cracked or chipped), it's only £1.95. Instructions and circuit 30p.

Install your own system and save using built and tested modules

EASILY ASSEMBLED ULTRASONIC UNIT CK 5063
Fequires no installation. Easily assembled using
Adjustable range up to 25 ft
Built-11 tima ex exit dela
- Key operated switcl

Off. Jest ar
- Fully seli-contanned
- Uses US 5063. PSL 1865. Key Swith 390 I

E37.00

Now you can assemble a really effective intiuder alarm at this low price using tred and tested Riscomp modules. Supplied with full instructions. the kit contains evervthing necessary to provide an effective warning system tor your house or flat. With a built-m LED indicator and test position the unt is easily setwill then cause the builton siren to produce a penetuatig 90 dis of sound or encn 110 dit wh anthitional speaker. All parts included anct supplied with full instructions for easp of assembly.
Size \(200 \times 180 \times 70 \mathrm{~mm}\) Orger as CK 5063

DIGITAL ULTRASONIC DETECTOR US 5063

3 levels of discriminaion aganst false
- Clarms
- Crysial control for greater stability
- Built 1 in delays
- 12 V operation
This advanced

This advanced new module uses digital signal sensitivity whilst discrminating against potentia false alarm conditions. The module has a builtin exit delay and timed alarm period. together with a
seiectable entrance delay, plus many more selectable entrance delay, plus many mor
uItrasonic module
US 4012

Adjustable range from 5.25 ft .
This popular low cosi ultrasonic detector aiready used in a wider range of applications from intruder detectors to automatic light switches and.
door opening equipment. leaturing 2 LED door opening equipment feat
ndicators for ease of setting up.

INFRA-RED SYSTEM
IR 1470 only \(£ 25.61+\) V.A.T.

Consisting of separate transmitter and receiver ooth of which are housed in attractive moulded cases, the svstemi provides an invisible
modulated bepam over distances of up to 50 ft operating a relay when the beam is broken. ntended for use in security systems, but also deal for photographig and measur
applications Size 80 by 50 by 35 mm .

POWER SUPPLY \& RELAY UNIT
PS 4012
Provides stabilised 12 V output at 85 mA and
contans a relay with 3 amp contacts The unit is contans a relay with \(3 \mathrm{~V} p\) p nacts The unit is designed to operate with up to 2 ultrasonic unit
or 1 infra-red unit IR 1470 . Price \(\mathrm{E4} 25+\mathrm{VaI}\).
SIREN MODULE SL 157
Produces a loud penetrating stiding tone which

51/2" HORN SPEAKER HS 588
This weather-prool horn speaker provides at 2 metres) when used with the CA 1250 . PS
1865 of SL 157 . Price f4 \(95+\) YA

Single pole. 3-pos. key switch intended
with the CA 1250 Price \(£ 3.43+\) YAT

ALARM CONTROL UNIT

Price \(£ 19.95\) + V.A.T.
The heart of any alarm svsten is the control unt. The CA 1250 offers every posstble feature that is likely to be required when constructing a systern whether a nighly sophisicated
installation or simply contiolling single installation or simply controlling a single
magnetic switch on the front foor - Built-in eiectronic stren drives 2 loud speakers - Provides exit and entrance delays together - Battery back-up time
- Battery back-up with trickle charging facility perales with magnelic switches, oressure - Anti-tamper and danic tacility
- Stabilised output voltage
and panic faclity
- Screw connections for ease of instaltation - Separate relay contacts for external loads

SIKEN \& POWER SUPPLY MODULE

Acomplete siren and power supply module which is capable of providing sound levels of 110 dbs addition, the unit provides a stabillsed 12 V output up to 100 mA A switeting relay is also included the US 5063 to formi a complete alarm.

HARDWARE KIT HW 1250

\section*{only}

E9.50
\(+\quad\) V.A.T. This attractive case is designed to house the
control unit CA 1250 , together with the appropriate LED indicators and key switch punched front panet. the unit is pillars and professional appearance by an adhesive silik
screaned label. Size 200 by 180 ty 70 mm

\section*{ULTRASONIC MODULE}

Sutable metal enclosure tor housing an individual
ultrasonic module ryoe US 5063 or US 4012 . Suppled with the necessary mounting pillars and screws etc. For US 5063 order SC 5063; for
US 4012 order SC 4012

\section*{T.V. SOUND TUNER} SERIESII
In the cut-throat world of consumer electronics, one of the questions designers apparently ponder over 3 Will anyone notice if save money by chopp ng this out?' In the comestic TV set, one of the first casualties seems to be the sound quality. Small speakers nd all this is really quite sad, as th

COMPLETE WITH CASE
\(£ 26.50+£ 2.00\) p\&p. TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV tuner that connects direct to your \(\mathrm{Hi}-\mathrm{Fi}\) is a must for quality eproduction. The unit is mains-operated This TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can also be used in confunction with your video recorder. Dimensions: \(1012^{\prime \prime} \times 71 / 3^{\prime \prime} \times 21 / 2^{\prime \prime}\)

\section*{PRACTICAL ELECTRONICS} STEREO CASSETTE RECORDER KIT

ONLY £31.00 plus £2.75 p\&p.
- NOISE REDUCTION SYSTEM. * AUTO STOP. - TAPE COUNTER. SWITCHABLE E.Q. : INDEPENDENT LEVEL CONTROLS .1\% RECORD/PLAYBACK IC WITH ELECTRONIC SWITCHING. FUIIY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES.
Kit includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts. ie. semiconductors,
onistors, capacitors, hardware, top cover, printed scale and mains transformer.
You only supply solder \& hook-up wire. Featured in April P.E. reprint 50p. Free with kit

\section*{STEREO TUNER KIT \\ SPECIAL OF This easy to
build 3 band build 3 band
stereo AM/ \\ FM tuner kit \\ is designed \\ in conjunction \\ 81). For ease of construction and alignment t incorporates three Mullard modules and an C. IF System. \\ FEATURES: VHF, MW, LW Bands, interstation muting and AFC on VHF. Tuning meter. wo back printed PC8's. Ready made chassis and scale. Aerial: AM.ferrite rod, FM. 75 or ore mains transformer. All components supp lied are to P E strict specification. Front scal size \(101^{\prime \prime} \times 21^{\prime \prime}\) " gram and instructions. \\ 125W HIGH POWER AMP MODULES}

\section*{BSR RECORD DECKS}

3 speed, manual, auto, setdown; with auto return.
ated with viscous damped cue, tubular aluminium counter-weighted arm, fitted home or disco use:
\(£ 17.50+£ 1.75 p \& p\).
Auto Changer model with manual override. Also supplied with stereo ceramic cartridg

£12.95 +£1 75 p\&p.
PLINTH to suit BSR Racord Player Dack (with cover). Size \(161^{\prime} /^{\prime \prime} \times 14^{3 / 4^{\prime}} \times 2^{1 / /^{\prime \prime}}\). Cove nature, Buyer collect only. Price: \(\mathbf{£ 8 . 9 5}\).
power applications aisco units, ouitar amplation iers, public address systems and even high power domestic systems. The unit is protecte against short circuiting of the load and is safe margin exists by use of generously rated com ponents, result, a high powered rugged unit. The PC board is back printed, etched and ready to dritl for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions
ACCESSORIES: Stereo/mono mains power sup kit with transformer: \(£ 10.50\) plus \(£ 2.00\) p\&p.

HI-FI SPEAKER BARGAINS
AUDAX 8" SPEAKER £5.95 + £2.20 p\&D. High quality 40 wetts RMS bass/mid. Ideal for either HiFi or Disco use this speaker coil and a aluminum voice magne a heavy 7 mm dia, to 7 kHz Imp. 8 . 20 sms

AUDAX \(40 W\) FERRO-FLUID HI-FI TWEETER Freq. res.: 60 mm sq. \(£ 5.50+60 \mathrm{p}\) p\& p . GOODMANS TWEETERS 8 ohm soft dome radiator tweeter \((3 \% / 4\) "s 63.05

\section*{All mail to: 21E HIGH ST, ACTON W3 6NG. Callers welco from \(1.30^{-5} 530\) Half dav.} Wednesday.
Note: Goods despatched to U.K. postal addresses only All items subject to availablity. Prices correct bt
\(30 / 11 / 83\) mad rubiect to change without notice.
Plesese Blow 14 working days from recelpt of of riter for despatch. RTVC Limited reserve the right to up. date their producis without notice. All enquiries send
S.A.E. Telephone or mail orders by ACCESS welcome

SPECIFICATIONS:
Max. output power (RMS): 125 W . Operating requency response measured @ 100 watts: \(25 \mathrm{~Hz}-20 \mathrm{KHz}\). Sensitivity for \(100 \mathrm{w}: 400 \mathrm{mV}\) @ 47K. Typical T.H.D. @ 50 watts, 4 ohms: \(0.1 \%\). Dimensions: \(205 \times 90\) and \(190 \times 36 \mathrm{~mm}\).
\(+£ 1.15\) p\&p.
BUILT \(£ 14.25\)

\section*{MONO MIXER AMP}

Ideal for
halls and
halls an
clubs.
£45.00
o Watt pickups (Cer. or mag), 2 moving coil microohones and 2 auxiliary for tape tuner, organ etc. Eight stider controls - 6 for level and 2 or master bass and treble. 4 extra treble controls for mic. and aux. inputs. Size' \(131 /{ }^{\prime \prime} \times 61_{2}{ }^{\prime \prime} \times 3\) 3/2" app. Power output 50 W speakers. Attractive black vinyl case with matching fascia and knobs. Ready to use.

CALLERS TO 323 EDGWARE ROAD, LONDON W2. Telephone: 01-723 8432 . Now open 6 days a week \(9-530\) Ptices include VAT

. TH c

\section*{Europa electrooncs \\ Mall Order to 160 High Road. Willesden. London NW10 2PE TEL: 01-907 1659 \\ SEND FOR A FREE LIST OF OUR LARGE RANGE OF ITEMS ALL DEVICES ARE NEW, FULL SPEC AND GUARANTEED}

Post \& Packing: Add 30 p to all orders under \(£ 5\).
VAT: All UK orders add \(15 \%\) to total cost including \(p \& p\).
Post \& Packing: Add 30 p to all orders under \(£ 5\).
VAT: All UK orders add \(15 \%\) to total cost including \(p \& p\)

\title{
TYPEWRITER INTERFACE UPDATE
}

\section*{As expected, this has proved to be a very popular project; there were, however, one or two problems that we hope this will resolve. \\ -}

There were a few errors in the typewriter interface project, one of which was major, while the majority were fairly minor and would probably have been found during construction.

The major error is that the software listings (both the EPROM listing and the data for the alternative BASIC program) were for a different generation of prototype from that for which the circuit diagram was given. There are two ways of ammending this; you can EITHER:
- modify the circuit, by exchanging the connections to \(1 C 1\) pins 9 , 10,11 with pins \(13,14,15\) in that order
OR
- change the data in your computer program or EPROM (depending on which method of driving the board you have chosen); revised data is given in Tables 1 and 2.

The minor errors are as follows: 1. The ribbon cable connector is, in fact, the wrong way round on the PCB (although this only becomes apparent if a right-angled
 Fig. 1. As long as the correct connections are made, it does not matter that the PCB layout is incorrect it is simply a matter of convention. 2. The interface is powered entirely from the typewriter. The
16.

note 'Microcomputer VCC' should not have appeared on the circuit diagram. Pin 1 of SK2 is connected to VCC - there was some problem in reproducing the drawing here. The ground of both the microcomputer and the typewriter should be connected to the interface.
3. It was not mentioned that timing can be done by printing, for example, 50 characters continuously from the microcomputer and using the second hand of a watch.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LOC COITI & \multirow[t]{2}{*}{CH} & \multicolumn{2}{|l|}{loc CONT} & CH & \multicolumn{2}{|l|}{LOC CONT} & CH & \multicolumn{2}{|l|}{LOC CONT} \\
\hline 000016 & & 032 & 001 & ® & 064 & \(\cdot 010\) & ' & 096 & 068 \\
\hline 001016 & \(!\) & 033 & 071 & A & 065 & 087 & à & 097 & 023 \\
\hline 002016 & \({ }^{\prime \prime}\) & 034 & 103 & B & 066 & 093 & b & 098 & 029 \\
\hline 003016 & \# & 035 & 090 & 0 & 067 & 094 & \% & 099 & 030 \\
\hline 004016 & £ & 036 & 070 & D & 068 & 086 & d & 100 & 022 \\
\hline 005016 & \(\%\) & 037 & 069 & E & 069 & 078 & e & 101 & 014 \\
\hline 006016 & Q & 036 & 101 & F & 070 & 118 & f & 102 & 054 \\
\hline 007016 & 1 & 039 & 068 & E & 071 & 085 & g & 103 & 021 \\
\hline 008016 & 1 & 040 & 100 & H & 072 & 117 & h & 104 & 053 \\
\hline 009016 &) & 041 & 067 & I & 073 & 108 & i & 105 & 044 \\
\hline \(010 \quad 009\) & * & 042 & 082 & d & 074 & 084 & j & 106 & 020 \\
\hline 011016 & 4 & 043 & 115 & K & 075 & 116 & k & 107 & 052 \\
\hline 012016 & \% & 044 & 060 & L & 076 & 083 & 1 & 108 & 019 \\
\hline 013033 & - & 045 & 002 & M & 077 & 092 & m & 109 & 028 \\
\hline 014 010́ & . & 046 & 027 & \(N\) & 078 & 125 & n & 110 & 061 \\
\hline 015016 & 1 & 047 & 059 & 0 & 079 & 075 & \(\bigcirc\) & 111 & 011 \\
\hline 016016 & 0 & 043 & 035 & P & 080 & 107 & p & 112 & 043 \\
\hline 017016 & 1 & 049 & 007 & Q & 081 & 079 & 4 & 113 & 015 \\
\hline 018016 & 2 & 050 & 039 & R & 082 & 110 & r & 114 & 046 \\
\hline 019016 & 3 & 051 & 006 & 3 & 083 & 119 & \(s\) & 115 & 055 \\
\hline 020016 & 4 & 052 & 038 & T & 084 & 077 & t & 116 & 013 \\
\hline 021016 & 5 & 053 & 005 & U & 085 & 076 & u & 117 & 012 \\
\hline 022016 & 6 & 054 & 037 & V & 086 & 126 & v & 118 & 062 \\
\hline 023016 & 7 & 055 & 004 & W & 087 & 111 & w & 119 & 047 \\
\hline 024016 & 8 & 056 & 036 & X & 088 & 127 & x & 120 & 063 \\
\hline 025016 & 9 & 057 & 003 & V & 089 & 109 & y & 121 & 045 \\
\hline 026016 & * & 058 & 018 & 2 & 090 & 095 & \(z\) & 122 & 031 \\
\hline 027016 & , & 059 & 051 & B & 091 & 202 & & 123 & 001 \\
\hline 028016 & \(\checkmark\) & 060 & 196 & & 092 & 001 & 1 & 124 & 187 \\
\hline 029016 & = & 061 & 099 & i & 093 & 138 & & 1.25 & 001 \\
\hline 030016 & > & 062 & 194 & & 094 & & & 126 & 001 \\
\hline 031010 & ? & 063 & 123 & - & 095 & 066 & & 127 & 016 \\
\hline
\end{tabular}

Table 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LOC CONT & CH & LOC & CONT & CH & LOC & CONT & CH & LOC CONT \\
\hline 0010 & & & 01 & e & 40 & OA & , & \(60 \quad 44\) \\
\hline 0110 & \(!\) & & 47 & A & 41 & 57 & a & \(61 \quad 17\) \\
\hline 0210 & \% & & 67 & 3 & 42 & 5D & b & 62 10 \\
\hline 0310 & \# & & 5A & C & 43 & \(5 E\) & c. & 63 1E \\
\hline 04810 & E & & 46 & D & 44 & 56 & d & \(64 \quad 16\) \\
\hline 0510 & \% & & 45 & E & 45 & 4E & e & 65 OE \\
\hline 0610 & * & & 65 & E & & 76 & f & 6636 \\
\hline \(07 \quad 10\) & & & 44 & O & 47 & 55 & 8 & 6715 \\
\hline 0810 & \% & & 64 & H & & 75 & h & 6835 \\
\hline 0910 & k & & 43 & I & 49 & 6C & 1 & 69 2C \\
\hline OA 09 & * & & 52 & J & 4 A & 54 & j & \(6 \mathrm{~A} \quad 14\) \\
\hline OB 10 & 4 & & 73 & K & 4 B & 74 & \({ }^{2}\) & 6134 \\
\hline \(0 \mathrm{C} \quad 10\) & , & & 3C & L & & 53 & 1 & \(6 \mathrm{C} \quad 13\) \\
\hline OD 21 & - & & 02 & M & 4D & 50 & m & 6 D 1 C \\
\hline OE 10 & & & 1B & N & 4E & 7D & n & 6 E 3 D \\
\hline OF 10 & \% & 2 F & 3B & 0 & 4 F & 4B & \(\bigcirc\) & \(6 \mathrm{~F} \quad 0 \mathrm{~B}\) \\
\hline 1010 & 0 & & 23 & P & 50 & \(6 B\) & \(p\) & \(70 \quad 2 \mathrm{~B}\) \\
\hline 1110 & 1 & & 07 & Q & & 4E & q & 71 OF \\
\hline 1210 & 2 & & 27 & R & & 6 E & \(r\) & 72 2E \\
\hline 1310 & 3 & & 06 & S & 53 & 77 & s & \(73 \quad 37\) \\
\hline 1410 & 4 & 34 & & T & 54 & 4D & t & 74 OD \\
\hline 1510 & 5 & & 05 & U & & 4C & u & 75 OC \\
\hline \(16 \quad 10\) & 6 & & 25 & \(\checkmark\) & 56 & 7E & v & 76 3E \\
\hline 1710 & 7 & & 04 & W & & 6F & w & 77 2F \\
\hline \(18 \quad 10\) & \% & 38 & 24 & X & 58 & 7F & x & 78 3F \\
\hline 1910 & 9 & 39 & 03 & Y & 59 & 6D & y & 79 2D \\
\hline 1A 10 & & 3 A & & Z & 5A & 5F & z & 7A 1F \\
\hline 1 B 10 & & & 33 & ! & 5B & ca & & \(7 \mathrm{~B} \quad 01\) \\
\hline 1C 10 & & 3 C & & & 5 C & 01 & 1 & 7 C BB \\
\hline 1D 10 & & 3 D & 63 & 3 & 5 L & 8A & & 7 D 01 \\
\hline 1E 10 & & 3E & 62 & & 5E & 01 & & \(7 \mathrm{E} \quad 01\) \\
\hline 1F 10 & & 3 F & 7 B & - & 5 F & 42 & & 7E 10 \\
\hline
\end{tabular}

Table 2

\section*{Other Points}

Readers have raised a number of other points, and we can answer some of them here, as follows:
1. The interface could have been placed in the typewriter casing, but this was not done to avoid possibly invalidating any guarantee.
2. The interface should work with an EX44 model, but it must be connected in the way described for the EX42, not via the edge connector.
3. The best price we know of for the EX42 at the moment (though if anyone can tell us of a better one, we'll pass it on) is \(£ 199+\) VAT from Discount Typewriters of Meadow House, Fair Oak, Lane, Oxshot, Surrey, who advertise in Exchange and Mart (but not ETI yet!). Alternatively, it is widely available from many high-street office suppliers (eg Ryman's) for around \(£ 245\) including VAT. These prices are correct at the time of going to press (early January
1984) but please check them yourselves.
4. The interface should, in principle, work on any microcomputer. Obviously, though, the BASIC program will be different in each case, and we are unable to account for every computer out there! The program given was written in Micropolic BASIC and some of the statements used may be unfamiliar to some readers. These are:

Line 70: open file number 1 , the file name being the string variable \(B \$\); if the end of the file is reaced, then go to line 340 ;
Line 80: read one line from the input file number 1 ;
Line 210: output to the port number \(7 E\) (hexadecimal radix) the contents of variable \(X\);
Line 220: output to port 7F all zeros; this port is used as the strobe signal to initiate printing; Line 230: Output to port 7F a 1 on bit 0 . The strobe is connected to bit 0 of the port;

Line 240: input from port 7 F ; bit zero is the busy signal and is true when high.
5. The interface can probably be used with other electronic typewriters provided they have their keys arranged on an \(8 \times 8\) matrix. However, the connections to other typewriters would be different and so would the EPROM contents or program data. Unfortunately, rather a lot of work would be involved in generating this data, so we cannot give advice in this respect; however, if someone out there has already done it with a popular model of typewriter, and wants to earn a penny or two by writing an article, we shall give it full consideration for publication. 6. There is already an RS232 interface available from Silver Reed, although we are prepared to consider publishing a design if someone offers us one.
7. We hope to organise an EPROM programming service, but details are not yet available.

\title{
elecrowise AUTO-ELECTRONIC PRODUCTS
}

\section*{KIIS OR READY BUITT}

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS
YOUR CAR

\section*{AS GOOD AS IT COULD BE ?}
\(\star\) is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is margin, Total Energy Discharge gives a more powerful spark from it thongines maximum (even with 8 cylinders).
* is the PERFORM2 YCE YMO T, The more powerful spark of Total Energy Disch ge iminates the "row misfires" whilst an electronic filter smoomes out the eftime ntact bounce etc.
 engine back to itshat fal ineigy, ch wige eliminates contact arcing and erosio, ove nd ingth electrical forme the timing stays "spot on" nd e, nutact condition loe fit ifect the performance eithe , orger plug gageth ewed wot or badly fouled plugs can be fires witu tix yste
 powerful on we
 systems. These \& tions fatis

50 pF lown \(50 \mathrm{kV}, \quad 50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}\) We challenge manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal
- All ELECTRONIZE electranic ignitions feature: EASY FITTING, STANDARDIELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guaranteo).
* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have electronic ignition Update YOUR CAR

ELECTRONIZE ELECTRONIC CAR ALARM

\section*{HOW SAFE IS YOUR CAR ?}

More and more cars are stolen each week and even a steering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm system well there are plenty of other cars to choose from.

\section*{LOOK AT THE PROTECTION AN ELECTRONIZE ALARM CAN GIVE}
- MINIATURE KEY PLUG A miniature jack plug attaches, - - mir key ring and is coded to your particular alarm.
\(\star 2025\) INDIVIDUAL COMBINATIONS. A. plug cor ins two \(1 \%\) tolerance resistors, both my sth cyed valu and wogether give 2025 different comb s.
- ATTRACTS M KH 1 AT FN ON We alarm system not only intermit nity , but also flashes, headlight and prevent * a e b ag started.
\(\star 60\) SECO D ALARM PERIOD \(\quad\) t gge id etal m will sound for 60 seconds, unlese ca of by bey lu berore resetting ready to be triggered a
t 30 SECOND EXIT DELA The whetm is armed bworessing a small button on a dashboard mounted control pa t. Wis starts a 30 second delay period during whin her er en and close doors without triggering the al h
* 10 SECOND ENTRY DELAY hen or opened a 10 second delay operates to allow the ow fisarm the system with the coded key plug. Latching circuits are used and once triggered the alarm can only be cancelled by the key plug.
\(\star\) L.E.D. FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED indicates that the alarm has been triggered and is in the entry delay condition
\(\star\) ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
* SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
\(\star\) LOW SUPPLY CURRENT CMOS IC's and low power operational amplifiers achieve a normal operating current of only 2.5 mA .
* IN KIT FORM It provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions. Please send more information
ELECTRONIEE DESIGN Dept D Magnus Rd Wilnecote • Tamworth B77 5BY - tel 0827281000

\section*{CAR ALARM (12 volt negative earth)}
\(\square\) Assembled ready to fit (All wires and \(£ 27.55 £ 29.95\) D.I.Y. parts kit connectors incl.) £24.95 £19.95

I enclose cheque/postal order OR debit my Access/Visa card

Name
Address

\section*{COMPUTER 'CAB'}

All in one quality computer
mode PSU, Mains fillering, and iwin tan cooling. Originally made for the famous DEC PDPB computer
system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver massive \(+5 v D C\) at \(17 \mathrm{amps},+15 v D C\) at 1 amp and \(-15 v\) DC at 5 amps The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power' and 'Run'
LEDs mounted on Ali front panel, rear cable entries, etc. LEDs mounted on Ali front panel, rear cable entries. etc.
etc. Units are in good but used condition-supplied for etc. Units are in good but used condition - supplied for
240 v operation complete with full circuit and tech. man. Give your system that professional finish tor only Give your system that proressional 19.95 + Carr. Dim. \(19^{\prime \prime}\) wide \(16^{\prime \prime}\) deep \(10.5^{\prime \prime}\) high. Eseable area \(16^{\prime \prime} w^{10.5^{\prime \prime}} \mathrm{h}^{11} .5^{\prime \prime} \mathrm{d}\).
UsAN etc. Internal dim.
Also available LESS PSU, with FAA

\author{
HARD DISK DRIVES \\ Fully refurbished DIA \\ Front load. Free stand or rack mount Exchangeable type (via lid removal) \({ }_{\text {E295.00 }}\) DIABLO/DRE 44.4000 1000's of spares for S 30.4000 . 3200 , HAWK ex stock 6995.00
}

\section*{SOLID STATE SWITCHES}

\section*{Matchbox size solid state switch type IR 02402} enables on off control of 240 VAC loads up to
600 watts, direct from your micro etc. Fully isolated \(3-32 \vee \mathrm{DC}\) input with zero voltage switching.
Complete with data \(\mathrm{Ek} .99+\mathrm{pp}\)

\section*{COOTHMG RTMS}

\section*{with our renge of BRAND NEW professional}

Miniature 240 vequ
finger guard 89.95 .
GOULB JB-3AR Dim GOULB JB-3AR Dim. \(3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}\) compact BuHER unning \(240 \vee\) operation. NEW E6. BUHLER \(89.11,22.8-16\) v DC micro
miniature reversible fan. Uses a brushles servo motor for extremely high arr tlow servo moter for extremely high air tow,
almost silent running and guaranteed 10,000 hr life. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\) Current cost \(£ 32.00\) OUR PRICE ONLY E12.95 complete with data. MUFFIN-CENTAUR standard \(4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\text {in }}\)
fan supplied tested EX EQUIPMENT Yan supplied iested Ex EQUIPMENT 240 v at
£6.25 or 110 v at \(£ 4.95\) or BRAND NEW 240 V at \(£ 10.50\). \(1000^{\circ}\) s of other tans Ex Stock
Call for Details. Post \& Packing on all tans

\section*{8" WINCHESTERS}

\section*{BASF 617223 mb 8 " winchester disk} drive. Complete unit consists of sealed cavity with \(3 \times 8\) " plattens and CPU base control logic on 3 pcb's. Multiplexed i/o with the BASF "DISK BUS" interface is \(v\) a single 40 way cable. Units have been carefully removed from believed working equipment-but at the staggering price of Supplied complete with \(200+\) page tech manual. Additional \(+5 \mathrm{VDC},-12 \mathrm{VDC}\), \(+24 \mathrm{VDC} E \& 5.00\)
Carriage \& Ins \(£ 10.00\)

\section*{SOFTY 2}

The amazing SOFTY 2 . The complete "toolkit" for the open heart sottware surgeon. Copies,
Displays, Emulates ROM. RAM and EPROMS of the 2516.2532 variety. Many otherfeatures include keyboard, UHF modulator. Cassette interface etc. Functions exceedcapabilities of units costing 7 times the price! Only
\& 169.00 ppe 195

\section*{DATA MODEMS}

Join the communications revolution with our
range of EXTELECOM data modems. Made to range of EX TELECOM data modems Made
most stringent spec and designed to operate most stringent spec and designed to operate
for 24 hrs per day. Units are made to the CCITT tone spec. With RS232 i/o levels via
a 25 way ' D ' skt. Units are sold in a tested and working condition with data Permission
may be required for connection to PO lines MODEM 28 -Hackers Special- fully fledged
up to 300 baud full duplex. ANSWER or CALL modes. AUTO ANSWER. Data i/o via standard RS232 25 way 'D socket Just 2 wire
connection to comms line. Ideal networks etc. Complete with data, tested, ready to run at a
NE SW SUPER LOW PRICE of OWI ESS.00 + VAT + Cart
MODEM 20-1 Compact unit for use with
MICRONET. PRESTEL orTELECOM GOLD

 5
selectable V21 300-300 bos, V23 75-120 V23 \(1200-75\) full duplex. Or \(1200-1200\) half duplex modes. Full auto answer via modem CPU. LED Status indicators. CALL or ANS
modes Switchable CCITT or BELL 103 \& modes Switchable CCITT or BELL 1038
202. Housed in ABS case size only 2.5 " \(\times 8\) x \(9^{-}\). \(£ 286.00\) + VAT
For fiurtrer doata VAT details on other EX STOCK
modems contact sales oftice

\section*{HOT LINE DATA BASE}

THE ORIGINAL FREE OF CHARGE dial up data base 1OOO's of stock items and one off bargains. ON LINE NOW
word, no parity

\section*{SUPER PRINTER SCOOP BRAND HEW CENTRONICS 739-2}

The "Do Everything Printer" at a price that will parallel interface for direct connection to BBC parallel interface for direct connection to BBC,
ORIC, DRAGON etc. Superb print quality with full HIGH DEFINITION internal PROPORTIONAL SPACED MODE for WORD PROCESSOR applications SOCD columns, single shest, sprocket or roil paper handing plus
much more. Available ONLY from DISPLAY ELECTRONICS at the ridiculous price of 9 fil \(£ 199.00\) + VAT Complete with full manual etc. Limited quantity -Hurry while stocks last.

Options. Interface cable (specify) for BBC. ORIC, DRAGON or CENTRONICS 36 way plg £ 12.50 . Spare ribbon 3.00 each. BBC graphics screen dump utility program \(£ 8.50\).

\section*{GE TERMIPRINTER}

\section*{A massive purchase of these desk top} printer terminals enables us to otter you
these quality 30 cps printers at a SUPER LOW PRICE against their original cost of over \(£ 1000\). Unit comprises of full QWERTY
electronic keyboard and printer mech with electronic keyboard and printer mech with
print face similar to correspondence quality typewriter. Variable forms tractor unit enables full width - up to \(13.5^{\prime \prime} 120\) column paper, upper - lower case, standard AS232 serial interface, internal vertical and adjustable baud rates, quiet operation plus adjustable baud rates, quiet operation plus
many other features. Supplied complete with manual. Guaranteed working \(£ 130.00\) o

RHWTITI ASBBBI I/O TERMMTATS
\(\qquad\) PRO
ROFESSIONAL KEJCOARD OFFER
chassis keyboord offer at fractions of the surplus allows onginal costs.
ALPHAMERIC 7204/60 full ASCII 60 key, upper, lower + control key, parallel TT DEC LA36 Uncoded кeyboard with 67 quality GOID
standard \(X\). \(Y\) matrix Complete with 3 LED indicators, 8 i/mally open switches on conversions etc. pcb DIM \(15^{\prime \prime} \times 45^{\prime \prime} £ 84.9^{\circ}\) Carriage on keyboards \(£ 300\).

\section*{SUPER DEAL? NO - SUPER STEAL!! \\ The FABULOUS 25CPS TEC Starwriter}

\section*{RAND NEW AT ONLYE \(£ \overline{99}+\) VAT \(=\)}
 heavod-25 features heayy duty die cast
chassis and
RiABEO type print mechanism giving
prin
ro
fer full D|ABLO/QUME

\section*{Save over 4400}
and full control via CPM wordstar etc action of its original cost. printing. switchable 10 or 12 pitch, fuil width 389 mm paper handling with upto intrnal buffer, standard RS232 serial intertace with handshake,
Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy wheel and const cover. Order Now or contact sales onice or more intormation. £140.00. Spare daisy wheel £3.00. Carriage \& Ins (JK Mainland) £10.00.

\section*{66\% DISCOUNT}

\author{
 \\ \(10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25 \quad 20 \mathrm{kls} £ 17.50+£ 4.75\)
}

VDEO MOMITOBS
5" CASED Superb little unit made by
HITACHI in ergonimcally designed free
standing case. Very hhigh definition will display
small but readable 132 columns wide 12 V DC opp. @ 800 ma , so ideal for mobile use. Supplied in AS NEW condition complete with
data. Composite 75 ohm vid inp. Black \(\&\) White data. Composite 75 ohm vid inp.
CRT \(£ 4.00\) or Green CRT \(E 55.00\) CRT \(£ 45.00\) or Gre
Carr \& Ins \(£ 5.00\)
\(2 י\)
12 "' CASED. Made by the British KGM Co Designed for continuous use as a data attractive brushed alumınium case with ON OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much eliability of this unit with features such as internal transformer isolated regulated DC
supply, all components mounted on two supply, all components mounted on two
fibre glass PCB boards - which hinge out for ease of service, many internal controls for linearity etc. The monitor accepts standard 75 ohm composite video signal via SO239
socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display
 Units are secondhand and may have screen burns. However where burns exist they are Althouphent when montor is switched o tested prior to despatch. Dimensions approx \(14^{\prime \prime}\) high \(\times 14^{\prime \prime}\) wide by \(11^{\prime \prime}\) deep Supplied complete with circuit 240 velt operation. ONLY EA5.00 PLUS 59.50 CARR. 24" CASED. Again made by the KGM Co with a similar spec as the 12 monit display. very compact unit in lightweight silicon electronics and composite video input make an ideal unit for schools. clubs, ONIY ES5.00 PLUS E9.50 GARR \& INS.
SEMICONDUCTOR 'GRAB BAGS' Mixed Semis amazing value transistors. digital, linear, I C.'s triacs diodes. bridge recs., etc. etc. All devices guaranteed brand new full spec. with man \(50+E 2.95100+\) Es. 15 .
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series mostly TL" grab bags at a price which two cost to buy. Fully guaranteed all IC.'s full
spec \(100+£ 6.90200+\varepsilon 12.30300+\varepsilon 19.50\)

\section*{DEC CORNER}

\section*{MOSTEK CRT BOE Brand new dual} eurocard, \(Z 80\) based VII 00 PLUS emulator with graphics etc \(\mathbf{E 4 9 9 . 0 0}\) BA11-MB 3.5" Box, PSU, LTC E385.00 DLV1 \(1-J 4 \times\) EIA interface
RK05-J 2.5 Mb disk drives PDP1105 Cpu Ram i/o etc RT11 ver 3 B doc kit LA36 Decwriter EIA or 20 ma KL8JA PDP 8 async i/o DILOG DQ100 RK05 \(E\) E75.00 LAXX-NW LA180 RS232 and buffer aption 232 serial intertace AX34-AL LA34 tractor feed E\$5.00 1000's of EX STOCK spares for DEC Call for details. All types of Computer equipment and spares wanted for pro

\section*{ATH PRICHS PLUS VAT}

DEFLA
All prices quoted are for UK Mainland, paid cash with order in Pounds Stirling PLUSVAT. Minimumorder valuef2.00. MinimumCredit \(\mathbf{E 2 0 . 0 0}\) Wher.00. Minimum BONAFIDE account orders from Government depts. Schools. Universities and established companies We reserve the right to change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.

32 Biggin Way, Upper Norwood, London SE19 3XF Telephone 01-679 4414 Telex 27924
ELELTRUNHES

\section*{VALUE PACKS}

\section*{Pak
Mo. aty Description
VP2} VP28 10 Aectronguler \({ }^{2 \prime}\) Green LED'S VP29 30 Assi Zener Diodas 250 mW vp3o 10 Ass. Mixad VIts Coded 10 Zenner Diodes VP31 105 Mixad VIts Coded SCR's T0-66 \(50-400 \mathrm{~V}\) VF32 203 Amp Sci's Yotso Up To VP33 200 Sil Diodes

 VF3S 501 Amp IN4000 Saries sil VP35 8 Bridge Recta \(4 \times 1\) amp 4 \(\begin{array}{ll}\text { VFso } & 8 \text { Bndge Recta. } 4 \times 1 \text { amp } 4 \times \\ 2 \text { Amp Mixed Vis. Cooded }\end{array}\) VP37 8 Buck Inotrument Iype Knobs
 TO-220 Reasdy Dribled
VP43 4 Powar Fin Heassinks
VP44 1 Large Power Heatsink
\(80 \times 35 \mathrm{~mm}\) Drilled for UPT TO
\({ }_{4}^{4} \mathrm{TO} 3.3\) Devices
VP45 50 BC107/8 Type NPN Transis tors Good Gen. Purpose Un
 tors Good Gen. Purpose Un-
coded

\section*{IC BAPGANS}
 + type number requirad.

RATCHET SCREWDRNER KIT
 handee. 5 -in-1 Kit \(\mathrm{E1} .45\) gach. UNo 329 B .

\section*{VALUE PACKS}

Palk
No
Vig
Ot Description
VPig 50 Wriewound. Res. gw (avg) VP17 50 Atatres PVCC Covered Singie VP18 30 Metres PVC Covered Mult vpla 40 Srand Wire Mixed Colours VP19 40 Matras PVC Singla/ Multi
 VF21 20 Pct 1.28 Amm Plugs 8 Sock.

Send your oriders to DeprETI3 B1.PAK PO BOX 6 WARE HERIS

8НРAK'S OPTO SPECLAL
A seelction of large and small sized LEO's in various shapes, sizes \& colours, together with 7 Segment Displays both anode \& cathode plus photo transistors emitters and detectors. Cadmium Cell ORP12 and Germ. photo transistor OCP71 included. In all a total of 25 Opto Pieces valued over \(£ 12\) Normal Price.

\section*{Order No. VP57}
\(\checkmark \quad\) Our Super
Value Price
Just \(£ 5.00\)
SLICON BRIDGE RECTIFIERS
Comprising \(4 \times \frac{\mu}{1}\) Amp mounted on PCB rectifiers.
VRM - 150 vils
IFM - 1.5 Amps
Size: 1 inch square
10 off \(£ 1.00\)
50 off \(\mathbf{£ 4 . 5 0}\)
100 off \(\mathbf{£ 7 . 5 0}\)
ORDER NO: 4R1 B Rect.
VP38 100 Silicon NPN Transistors - All Perfect Coded Mixed. Types With Data And Equt. Sheat. No Rejects Fantustic Value E3.00 VP39 100 Silicon PNP Transistors - All Perfect. Coded Mixed. Types With Data And Eqvt Sheet No Rejects Real Value

\section*{HYBRID LED COLOUR DISPLAYS}

Red, Green, Yellow - 3/.5/. 6 inch Mixed Types and colours NUMERIC \& GaAsP/GP. Brad New, Full Deta ind 10 pieces (our mix) \(\mathbf{f 4 . 0 0}\) Normal Retril Value Over \(\mathbf{f 1 0 . 0 0}\) Order No. VP58

\section*{VALUE PACKS}

No. Ony Description
VP23 20 Assoned Sider Pots. Mixad
Va24 Values
UP24 10 Sider Pots 40 m 2K \(5 \times 1.00\)
\({ }^{2} \log 5 \times \operatorname{Lin} \ldots \ldots \ldots \ldots \quad 51.00\)
VP25 10 Slider Pots, 40mm 47K 5 VP26 20 Smeil \(125^{\circ}\) Red LED's VP27 20 Large \(2^{\prime \prime}\) Red LED's.

\section*{\(100 \begin{gathered}\text { TRANSISTOR } \\ \text { CLEARANCE }\end{gathered} 100\)} All Sorts Transistors. A mixad Bag NPN-PNP Silicon \& Germ Mainly Uncoded You To Sort Pack includes Instructions For Making Simple Trensistor Tests. Super Value.

Order No. VPGO
f1.00
Use vour credit card. Ring us out Ware 3182 Now and get your order even faster fonts nurmally sent 2nd Class Mai Remember you must add VAT al 1F\% to your order intal Postage add 75 p per Tutal order

\section*{Electronic Brokers Test Equipment DISTRIEUTORS For detailed specifications a our Complete range send for ou
new catalogu". \\ \\ - Philips PM 2517X Handheld DMM E172 Multi-function, 4 digit autoranging with manual override. True RMS to 10Amp. Battery operation Optional accessories extend measurement capabilities. \\ Philips PM 3207 15MHz Dscilloscope E325Tough light-weight portable for field se
work with big screen. Dual trace, TV triggering, \(X-Y\) operation, add and invert \\ \\ 4 Philips PM 5107 Function Generator £295 Designed for audio and educational applications. Low distortion LF generator 10 Hz to 100 kHz , sine and square waveforms. TL output. \\ Philips PM5503 Pattern Genarator \\ \(E 138\) Small, light-weight for TV servicing. Five different test patterns for colour and \\ monochrome. Tone for audio checking. Video output. \\ }

Electronic Brokers Ltd, \(61 / 65\) Kings Cross Road, LondonWC1X 9LN.Te::01-8331166. Telex 298694

\title{
MACHINE CODE PROGRAMMING
}

\title{
Bob Bennett completes his look at the operation of the three main logical instructions and goes on to consider ways of moving programs around in memory.
}

\(L\)ast month I told you that there are usually three logical instructions that can be used and looked at the first of these, the AND instruction. We begin this month by looking at the two remaining instructions.

The second binary operation that we can use is OR, which will have the same register format as for AND. Loading Register A with COh, and register B with AA; Fig. 20 shows the result of the instruction OR,B. Note that, as with AND, only the A register is altered. Let's have a look at a practical use for the OR operation.
\[
\begin{aligned}
11000000 & =\text { Register A before the instruction } \\
10101010 & =\text { Register B before, and after, the instruction } \\
1101010 & \Rightarrow \text { Register A before the instruction }
\end{aligned}
\]

Fig. 20 The operation of the instruction OR,B.

\footnotetext{
Because machine code is so very fast it is prudent to have delay loops at certain points in the program. A delay loop just wastes time for a while in a manner similar to, but smoother than, the PAUSE instruction in BASIC. The simplest way of obtaining a loop would be to load a register with a count and then decrement the count to zero, using the zero flag to indicate that condition. However, counting down even FFh is incredibly fast, so it seems that a register pair is required to hold a larger number. Alas, although a register pair can be decremented, there is no flag indication to let us know when zero has been reached. Study carefully the delay loop in Fig. 21 which has instructions from the Z80 set. The instruction 20 h - JR NZ, e means jump back (on this occasion) by e, until register A reaches zero. This loop can be finely 'tuned' by adjusting the low (in C), or high (in B), count,
}

Fig. 21 A delay loop.
Even longer delays, and more precise 'tuning' can be achieved by the use of a single register to hold a count which represents the number of times we go through the loop. For example, suppose we wish to run through the loop 4 times; just before the loop in figure 21, load a register with 4 d then PUSH that register. After going through the loop, POP the register, decrement it, and if not zero jump back to PUSH again. Any register pair could be used for the loop, except of course AF, provided you use the instructions pertaining to the register pair. You could use register A to hold the count outside the loop if you wanted, because even though register \(A\) is used inside the loop, the count would be preserved by the PUSH instruction.

Using Fig. 20 to sum up; the use of OR will ensure that the corresponding bit in the A register is set if that bit in either A or B is set. To remind you, set is 1 , and reset is 0 .

\section*{The Exclusive Set . . .}

The last binary logic operation we can use is Exclusive OR, which is shown as XOR. Put into words, and using registers \(A\) and \(B\) as examples, it goes like this; the corresponding bit in register \(A\) will be set if either, but not both, bits in each register are set. Loading register \(B\) with COh, and register \(A\) with DAh,

Fig. 22 shows the result of the instruction XOR,B. \(X O R, A\) will clear register \(A\), and reset the carry flag for you. By studying the binary pattern of the data that you are manipulating, and the binary pattern of the expected answer, a knowledge of the logical operations may help you decide what to do. If they don't help, what about the next lot?
\[
\begin{aligned}
& 11000000=\text { Register A before the instruction } \\
& 11011010=\text { Register B before, and after, the instruction } \\
& 00011010=\text { Register A after the instruction }
\end{aligned}
\]

Fig. 22 The operation of the instruction XOR,B.

\section*{Move To The Left, Then To The Right, Take Your Partners . .}

Movement of data within a register is quite feasible, and the Z80 set has a number of instructions that will do just that. These are the rotate, and shift instructions, which will allow movement of data, either to the right or to the left. Because there are so many instructions, doing similar things, I have 'lumped' all the drawings together, but explanations

Fig. 23 The operation of the Rotate and Shift instructions.
are in order. Those instructions which involve register A, such as RLA - Rotate Left A, will only affect the carry flag, with two exceptions which I'll explain below. Rotate or Shift instructions involving registers other than A will affect all of the flags. To find out what happens after a Rotate or Shift instruction, write down the binary code before, and after, the operation, and convert both to decimal, but watch out for the carry flag if it is involved.

Fig. 24 The half-byte (or nibble) movement.

Figure 24 shows the two exceptions that 1 mentioned above from the Z80 set; these are half a byte (or nibble) manipulations. RLD or Rotate Left Decimal (don't confuse this with RL D, which is Rotate Left, D register), is the first of the nibble manipulations. In this operation bits 0 to 3 of (HL) are moved over to occupy the most significant nibble position, that is they become bits 4 to 7 of (HL). The first four bits, 0 to 3, of register A are now moved to occupy bits 0 to 3 of \((\mathrm{HL})\). The previous bits, 7 to 4 , of (HL) now occupy bits 0 to 3 of register A. How it is done, and in what order, doesn't matter, but the result will be as described. RRD or Rotate Right Decimal, as you can see from Fig. 24, does a slightly different 'shuffle'. RRD and RLD operations affect all flags except carry. Notice also the use of brackets, (HL); this means that it is the data in the address pointed to by HL that is manipulated.

Because of the lack of registers in the 6502 CPU, most data manipulation is done with the accumulator (register A), via the index registers and/or memory locations. However, sometimes the index registers themselves can be used, as in this example. The instruction EOh - CPX will compare the byte in index register \(X\) with a memory location, in fact the address after the byte EO. The result would effect the sign, carry, and zero flags. I shouldn't have to tell you that the example was in the immediate addressing mode.

\section*{A Bit At A Time . . .}

Bit instructions fall into two categories; one will actually alter the bit, either set it or reset it, while the other will just test whether the particular bit is set or not. The result of testing will be either zero or not zero, which can be the indicator for the next instruction. If you can't think of a use for testing a bit, how about this example: suppose that you wanted to print, to the screen, a certain number of squares, alternating between, for example, black and white. Load a register with the total number of squares that you
wish to print. Point a register pair, or if using zero page, the appropriate index register, to the first colour that you wish to print. Print that, using the form (); for example, if you were using the HL pair, \((\mathrm{HL})\), then decrement the counter, test bit 0 , then either decrement, or increment the pointer to point at the other colour. Test the counter for zero and jump back if not yet zero. As you can see, the codes for the coloured squares only need occupy two locations. To test how it works, assume that the count was 16 d , write down the binary 16, then underneath that the binary for 15 , then 14, and so on until zero, then examine the pattern of bit zero, the rightmost bit. If you then write down, for example, black, opposite the 0 s, together with the address of black, then do the same for white opposite the 1 s , you need only do this for 3 or 4 squares before the 'pattern' of the program becomes apparent.

\section*{A Moving Story . . .}

Often, when developing a machine code program, I can never be sure how many bytes the program will ultimately occupy. One method I use is to put the control program approximately where it should go and write the bulk of the program well out of the way. If I leave room either side of this bulk of program then I can extend in either direction. When I am satisfied that the program works I move the bulk down towards the control program. This usually means altering a few addresses, but that's far better than having to re-write the program because I didn't leave enough room in the first place. So how is a program moved about in memory? Study carefully the program in Fig. 25, which uses instructions from the \(Z 80\) set. The HL pair is pointing to the address from which we wish to start moving the program. The DE pair point to the address to which we are going to move the program, and the number in the \(B C\) pair represents the number of bytes we wish to move. Register A is now loaded with the byte held in the address pointed to by HL , in other words, let A equal PEEK (HL). This byte is then loaded into the address pointed to by DE, in other words POKE (DE) with the contents of register A. Both HL and DE are then incremented, and BC decremented, and this goes on until BC reaches zero.

Although that little program works quite well, take a look at the program in Fig. 25, which illustrates the

Fig. 25 Moving a block of memory.
use of an automatic instruction to load (DE), (HL), increment those two registers, decrement \(B C\) and repeat until \(B C\) reaches zero, which is exactly what happened in my program. As you would expect, because the automatic program is slightly shorter it will work a little faster. I have provided two examples for two reasons: First, if your CPU does not have any automatic instructions the first example should give you an idea how to make up a program of your own. Second, to introduce the automatic and semiautomatic instructions from the Z 80 set. There are two very important things to note regarding the automatic instruction in Fig. 26. The first is that the transfer of bytes is from (HL) to (DE) only, so make sure which way round you are working. The second point is that when \(B C\) has reached zero the zero flag will not be affected, so the only flag you can use is the Parity/ Overflow flag which will be reset on BC reaching zero.

Fig. 26 Moving a block of memory using an automatic instruction.

Another automatic instruction is ED88h - LDDR which still loads from (HL) to (DE) but this time HL and DE are both decremented along with \(B C\), and again, only the P/O flag is affected. A very useful instruction in this group is EDB1 h - CPIR which can be used to search a block of memory for a particular byte. It works like this; load HL with the starting address of the memory to be searched, load BC with the number of bytes you wish to search through, and load register A with the byte that you are looking for. If you remember, a compare instruction will only compare something with what is held in the A register. This time the comparison will be made with the byte in the address that is pointed to by HL, in other words, compare A with (HL). The program will stop either if a match has been found, in which case the zero flag will be set, or when \(B C\) has reached zero, in which case the P/O flag will be reset. Until either condition has been met HL will be incremented, and BC decremented. The other automatic instruction for comparing is EDB9H - CPDR which works in the same way but HL is decremented instead of incremented.

The four instructions that I have just described each have a non-automatic instruction format. The two byte moving instructions are EDAOh - LDI and EDA8h - LDD which only perform the operation once. You will have guessed by now that the 1 in the instruction stands for Increment, the \(D\) stands for Decrement, and the \(R\) for Repeat. The non-automatic comparison instructions are EDA1 h - CPI and EDA9h - CPD. One very useful instruction in the Z80 set which is automatic in operation is \(10 \mathrm{~h}-\mathrm{DJNZ}, \mathrm{e}\), this stands for Decrement, Jump if Non Zero, by the amount of the offset byte e. This instruction only works on the \(B\) register but as I said, it is very useful indeed.

\title{
Anin-depth series inunderstanding today's world of electronics.
}

\section*{FromTexasInstruments.}

\begin{abstract}
The Understanding Electronics Series was spectally developed and written to give you an in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our special offer and choose the book, or books you want from the titles below: You'll find whole new worlds of advanced technology unfolding before you.
L. Understanding Electronic Control of Energy Systems,
Ist edition Ref. LCB 6642. Covers motor, generator, power distribution, heating, air conditioning, internal combustion engine, solat and nuclear systems. Softbound 272 puges. \(£ 4.50\).
2. Understanding Electronic Security Systems.

Ist edinon. Ref. LCB 720L A complete guide covering the basics of hard Ist ednon. Re. LCB 720 L A complete guide covering the basics of hard
wred, photosensitive, infrared, ultrasomic and microwave systems and their use in different applications. Softbound 128 pages. \(£ 295\).
3. Understanding Solid State Electronics.

3nd edingor. Rev. LCC 336 . The principles of wolid state theory. It explaitns
dectical movement, wrth intermedate tunion on the applications of solid state devices. Softbound 282 pages. \(£ 4.50\).
4. Understanding Digital Electronics. Ist edtron. Ref. LCB 3311.
Dexribes digital detronics in easy-tu-follow stayes. It cover the Desnbes digital edectronics in easy-to-follow stages. It covers the
main families of dugial integrated circuits and data processing systems. Softbound 260 pages. \(£ 4.50\).
5. Understanding Microprocessors. Ist editon Ref. LCB 4023. An in-depth look at the magic of the solid state chip. What they are, what they do. Applicatons of 8 -bit and 16 -hit microproconsors and desig from idea to hardware Softbound 288 pages. \(£ 4.50\).
6. Understanding Computer Science ist edinon. Ref. LCB 5471 This book tells you in everyday English how roday's computer has been developed, what goes on inside it, and how you tell it what to do. Softbound 278 pages. \(£ 4.50\)
\end{abstract}
7. Understanding Communications Systems. ist edituon. Ref. LCB 4521 An overview of all types of electronic communcanons systems. Suffthuund 282 puges. \(\mathbf{£ 4 . 5 0}\).
8. Understanding Calculator Maths. 1st edition. Ref. LCB 332 L Brings topether the basic information-formulae, facts, and mathematical Softbound 230 pages \(£ 4.50\).
9. Understanding Optronics. Ist editum. Ref. LCB 5472.

Optronics is the application of light and clectronics to perfortio a wide range of useful rasks. From car headights to nussle guidarke systems. Softhound 270 pages. \(\mathbf{8 4 . 5 0}\).
10. Understanding Automotive Electronics. ist editon. Ref. LCB 577. Learn how electroncs is being applied to autonobyles. How the basic mexhanical. electrical and electronic functions and the new microprocessors and microcomputers are being applied in innovanve ways for vehicle drive train control. motion control and instrumentation. Softround 288 pages. \(£ 4.50\).
11. Understanding Telephone Electronics.
ist edition. Ref. LCB 7141 The powerful, positive thrust of electronics is making the edephone an even more important communucation link. Conventional edephone fundamentals, analog and digital electronics. principles, newer digital rechniques and hardware implementation are covered in this book. Softhound 2 R8 pages. \$4. 50 .
12. Understanding Electronic Control of Automation Systems !s edrion Ref. LCB 664L. This buok is about sutmantion explains in simple language the subject of eletronic control of autumation systems, and to help the reader understand the terms, principles, techniques and effor used rouaromare prosesses. Sofithund 280 pages \(£ 4.50\).

\section*{How to order}

Fill in the coupon below or if somenne else hat already used it, simply: 1. List reference numbers and quantities required
2. Calculate rotal order value Add \(£ 1.50\) for pastage and packing. 3. Send the list. plus your cheque payable to Texas Insmuments Litd POBox 50 ,
Allow 30 days for delvery

\section*{TEXAS
InSTRUMENTS}

\section*{1984 CATALOGUE NOW OUT!}

THE NEW MARSHALL'S 1984 CATALOGUE is now available - one of the biggest and best catalogues ever produced by MARSHALL'S.
56 pages crammed from cover to cover with components, accessories and testgear.
New products include I.D.C. Plugs \& Sockets, 'D' Plugs \& Sockets, DIL Headers, Ribbon Cable, Kits, Toroidal Transformers, I.C.'s, Capacitors, Test Probes, and lots more - something for everyone.

TRADE, EXPORT, RETAIL AND MAIL ORDER SUPPLIED.
75 p to callers, \(£ 1.00\) post paid - Europe, \(£ 1.50\) rest of the world.
\begin{tabular}{|c|c|c|c|}
\hline WHERE TO FIND US & CALL IN AND SEE US & MAIL ORDER & TELEPHONE \\
\hline & ```
9-5.30 MON TO FRI
9-5.00 SAT
EXPRESS MAIL ORDERS
ACCESS/BARCLAYCARDS
WELCOME
SAME DAY
SERVICE
``` & WE REGRET WE CANNOT ANSWER MAIL ORDER/ STOCK ENQUIRIES WITHOUT AN S.A.E. SAME DAY SERVICE TRADE AND EXPORT ENQUIRIES WELCOME & \begin{tabular}{l}
MAIL ORDER \\
041-332-4133 \\
SHOP AND STOCK \\
ENOUIRIES \\
041-332-4133 \\
TELEX \\
261507 REF. 2194
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\section*{TOROIDALS}

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I. L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS rogether with a short lead time on quantity orders which can be programmed to vour requirements with no price penalty
}

\title{
AUDIO POWER METER
}

\title{
This stereo unit gives true audio power readings up to 200 watts and is not dependent upon load impedance. Design by Phil Walker.
}

At some time or another, many people who use public address or even domestic hi-fi amplifiers wonder just how much power is actually being sent to the loudspeaker. Simple measurements with AC voltmeters or ammeters followed by mind-numbing calculations involving nominal load impedances just do not tell the whole story. The problem arises because most amplifier loads are seldom at their nominal value and are almost never a pure resistance; this means that your calculated power level can be very different from the actual figure.

This is where the ETI power meter comes into the picture. It consists of two indentical circuits which sense the voltage across the load and the current flowing through it at any instant and multiplies them together to get the instantaneous power. This is then averaged by the mechanical damping of the meter to give a reading of the actual power in the load. By this means we avoid having to measure load impedence or make any assumptions about its reactive components. We still need an impedance selector switch, however, to set the voltage and current sensing ranges. If this switch were not fitted, or if it is set to an inappropriate range in use, either the voltage or the current will exceed the sensing range at a comparitively low power level and hence prevent us from using the unit's full power measurement range.

\section*{The Circuit}

The circuit consists of two indentical power measuring chan-
nels and a fairly standard power supply. The power supply provides +15 V and -15 V regulated supply rails offering up to 100 mA each. The regulators are necessary as the rest of the circuit uses them as a reference.

Each of the power measurement channels consists of a current measurement circuit, a voltage measurement circuit, an overload indicator, an analogue multiplier and a meter circuit. The voltage measurement circuit is very simple and consists of a switched attenuator feeding a buffer. The current measurement circuit detects the voltage developed across a low value resistor in series with the load, amplifies it and passes it on to a buffer. The voltage across the current sense resistor is also passed via a switched attenuator similar to that in the voltage circuit.

The buffers in both current and voltage circuits have switchable gains of 2, 2.8 and 4. this provides compensation for the variation voltage and current levels with different load impedences at the same power level. Note that when the gain of one buffer is at 2 the gain of the other is at 4 and viceversa. This maintains the meter response at the current level.

The next part of the circuit is the overload detector. This uses an op-amp with some resistors and diodes to detect when either the voltage or current detectors are giving too much output and are therefore likely to overload the analogue multiplier. This condition will light up an LED on the front panel which tells the operator to change the power range switch or the impedence selector or both.

The analogue multiplier used in this project consists of one half of a transconductance amplifier. This has the property of producing an output current which is the product of two of its input currents divided by a third one. The rather complex circuitry around this section is merely to balance out all the offsets and other unwanted effects.

Following the multiplier circuit is a high impedence buffer whose gain can be varied over a wide range. This drives a moving coil meter which averages the output to give a reading. The series resistor and diodes are present to protect the meter from damage.

\section*{Construction}

This should pose no great problem provided all the normal precautions with regard to PCB assembly are taken. Start with the wire links then move on to the other components, making sure that the ICs are inserted correctly and that things like capacitors, diodes and transistors are the right way round. The PCB is actually designed in two distinct parts and could be separated into power supply and meter circuit quite easily if desired (note that the overlays for these two sections are shown separately anyway). The PCB mounted fuse can be either an open type like the one we used or a PCB mounting enclosed type for extra safety.

The main problem will probably arise when you come to wire the switches on the front panel, and great care must be taken here to get things in the right order. Two four pole, three way switches were used in the prototype and


In Use to use as it is just connected in the signal path. Bear in mind that there will be a small power loss due to the current measuring resistor and
that the load side earth line is not connected directly to that on the input side. Also note that the input side earth lines are commoned
internally. The reading on the meter should be independent of the load impedence, but beware caused by extremes of voltage or current when the wrong impedence range is selected. The
LEDs on the front panel should warn of this condition.


Fig. 3 Front panel wiring diagram.

Power is provided by a very simple \(\quad \begin{aligned} & \text { also sampled. Two sections of SW1 tap } \\ & \text { off portions of the voltage and current }\end{aligned}\)
dual rail supply derived from a centre \(\begin{array}{ll}\text { dual rail supply derived from a centre } & \begin{array}{l}\text { off portions of the voltage and curren } \\ \text { signals and pass them to IC2a and }\end{array}\end{array}\) tifier. The output from this is smoothed IC1a respectively. The resistors R2 to 8 by C5,6 and regulated to + and -15 V are chosen to give the ranges indicated by IC5,6. \(C 7,8\) remove any residual on the panel. IC1a amplifies the noise and improve transient current signal by a factor of just under
performance. 60 while \(R 11\) and 12 enable a signal on the earth lines to be eliminated if desired. From IC1a the current signal passes to IC1 \(b\) which is a buffer whose gain can be set to approximately \(2,2.8\),
or 4. IC2 a performs a similar job on the voltage signal except that when the gain of IC1b is 2 that of IC2a is 4 and vice versa. The diode network (D1 to 4
and ZD1,2) together with IC2b detect
current and inversely proportional to
the current through the linearising diodes on the device. R34, D6 and Q11 form a simple virtual earth sum-
ming point for producing the bias ming point for producing the bias
current which is a constant (via R33) plus a signal component (via R31). The other input to the device is via R29
which converts the voltage signal into a suitable current. The output from IC3a is developed as a voltage across R32. but this has one of the input voltages applied to its other end and a
subtraction occurs which is essential subtraction occurs which is essential
to the correct operation of the circuit. The resulting output voltage is buffered and amplified by IC4a before
driving the meter circuit.

\section*{HOW IT WORKS}
overload conditions. If the peak signal exceeds the zener voltage then either or the - input pulled high. Either of these conditions will cause the output of IC2b to switch from the positive supply rail to the negative supply rail and illuminated LED1. R26 and D5 voltage on the LED.
The next section
The next section is the multiplier
and this is constructed around one half of an LM14600 transconductance amplifier. The part we use for this project has the property that its output current is proportional to the product
of the input current and the bias

\title{
The Complete Printed Circuit Workshop COMPUTING AND ELECTRONICS Project development materials
}

\section*{ULTRA VIOLET SENSITIVE COPPER CLAD LAMINATE}

Top quality glass fibre with 1 oz Cufoil. Will reproduce tracks down to .01 inch Positive \& Negative Resist Systems for high quality PCB production. - Economic packs at
 competitive prices direct from the innovators \& manufacturers. Full range of complementary chemicals and process equipment available.
PHOTO RESIST KIT
Complete kit containing artwork PCB, and all necessary process materials. Order ref \(\mathbf{H B} / 2 \mathbf{£ 2 4 . 5 0}\)

\section*{ARTWORK LIGHT TABLES \& UV EXPOSURE UNITS}

Low cost, purpose designed units enabling high standards of design and reproduction to be achieved.
UV EXPOSURE UNIT AND

\section*{ARTBOX (illus)}


A portable ready made unit containing two 8 watt UV tubes giving a \(6^{\prime \prime} \times 9\) " exposure area which may also be used as a light box with the UV filter supplied. Order ref UV2 \(\mathbf{£ 6 4 . 5 0}\)

\section*{DIY UV EXPOSURE UNIT}

Perfect results everytime. Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB, Precision Photo, Label \& Panel manufacture. Order ref UV1 £27.50

\section*{FOTOTOOL - DAYLIGHT PHOTOGRAPHIC PCB LABEL \& PANEL MAKING SYSTEM \\ Daylight handling - UV exposable. \\ Fototool provides highly professional photographic masters - either positive or negative - for high quality PCB reproduction - Fototool films exhibit superb resolution, stability and high image densities normally only found in protessional darkroom films. \\ }

Fotopanel complements Fotofilm with a range of 10 highly attractive backing colours ( including brushed aluminium ), and enables professional labels \& panels to be made simply and cheaply.

\section*{FOTOTOOL KIT}

Containing artwork, film and all the necessary process materials required for professional quality labels and panels. CAN ALSO BE USED TO PRODUCE PRECISION PCB PHOTOMASTERS. Order ref HB3 £23.00

\section*{PRINTED CIRCUIT ARTWORK AIDS}

Three comprehensive stock ranges to suit all preferences including dry transfers, printed acetate and crepe. Precision track tapes, pads, DILMICROLOGIC PATTERNS ETC Includes etch resistant symbols \& tapes.

\section*{DIRECT ETCH KIT}

COPY DIRECT FROM MAGAZINE or OWN DESIGN. Simple system - Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Etchant, Copper Cleaning Block, Gloves \& full instructions Order ref HB/1 £15.50

\section*{PCB HARDWARE}
\(\star\) CASES \& BOXES


\section*{COMPUTER ADD-ON INTERFACE PROTOTYPING SYSTEM \\ }

This system, designed and manufactured by Kelan, provides an attractively styled moulded case, pre-patterned PCB, 28 way connector, user port extender, and 9 way PCB mountıng ' D ' connector to add-ons. Custom designed circuits may be easily built from this kit with a highly professional finish. Order ref HB/2090 £9.50

\section*{Easy Add-ons for ZX Spectrum \& ACE}

17 exciting electronic projects to build and run your own micro. - LIGHT PEN O WEATHER STATION PICTURE DIGITISER + OTHER EXCITING 8 - KEY PAD + OTHER EXCITING 8 MODEL CONTROLLER

REALISE THE REAL WORLD POTENTIAL OF YOUR MICRO A newly released book written by well known author Owen Bishop and published by Bernard Babani gives full descriptive details on how to build all 17 projects - all are fairly simple and inexpensive to construct The most complex component (the DECODER) is supplied in kit form ready to 3 ssemble with all components and plated through PCB. Components for the projects are readily available locally or found in your workshop drawers.
Simple programmes are included to get you started but of course the more experienced programmer can have hours of fun writing complex programmes. Please state computer when ordering.
\begin{tabular}{lr}
\begin{tabular}{l} 
Order ref HB/2000 "EASY ADD-ONS" BOOK \\
+ DECODER KIT
\end{tabular} & \(\mathbf{£ 2 4 . 0 0}\) \\
\hline Order ref HB/2001 "EASY ADD-ONS" BOOK ONLY & \(\mathbf{£ 3 . 0 0}\) \\
\hline Order ref HB/2002 DECODER KIT ONLY & \(\mathbf{£ 2 2 . 0 0}\) \\
\hline Order ref HB/2003 DECODER PCB ONLY & \(\mathbf{£ 8 . 0 0}\)
\end{tabular}

AVAILABLE FEBRUARY Easy Add-on Projects for
BBC, Electron, Commodore 64, VIC 20

\section*{HOBBYBOARD CATALOGUE}

Newly Published Full Catalogue price \(£ 1.50\) (refundable with
1st order over \(£ 10\) )

Please send by return:-
\begin{tabular}{l|l|l|l|l} 
QTY & REF & DESCRIPTION & PRICE & TOTAL \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline Full Catalogue (see above) & & \\
\hline \begin{tabular}{l} 
Price inclusive of VAT \& carriage (U.K.). Please allow \\
21 days for deliver. Cheques. PO'sor signed Access orders welcomed. \\
Overseas customers please add extra post \(\&\) packaging.
\end{tabular} \\
\begin{tabular}{l} 
NAME
\end{tabular}
\end{tabular}

ADDRESS

ETI/3/84
a division of
KELAN ENGINEERING LId
Hookstone Park
Harrogate, M. Yorks

\section*{TECH TIPS}

\section*{Cheap Data Link}

Jake Thomas,
Sheffield.
This circuit was designed to provide a data link between a pedalboard consisting of eight switches, and an effects box situated some distance away. This would normally require expensive 9 -way cable, terminated by expensive multiway connectors. This circuit allows these to be replaced by el cheapo 5-pin DIN plugs (!) and standard 4-way audio cable.

IC1a,b,c comprises the system clock. IC2 scans the switches in sequence. This gives a series of logic highs and lows on the DATA line, depending upon the state of the switches. IC \(3,4,5\) pass these signals to the appropriate sample and hold circuit (IC6,7 and associated components) in the decoder.

Q1 is used to reset IC3. The voltage on the DATA line is normally maintained at around 2 V by R2 and R3 (which may need adjustment if a much lower supply voltage is used).

This keeps Q1 hard on. When IC2 '0' output and the clock both go to high, IC1d output goes low, taking the DATA line to 0 V . This turns Q1 off, resetting IC 3 to ' 0 '. Thus the two 4017 s are kept in synchronism. R4, 5 protect the decoder inputs from static when the encoder is unplugged.
With the exception of the sample \& hold time constants, which are uncritical, the system is totally independent of clock frequency unlike conventional 2 -wire data links which also have more complicated circuitry. This makes the system more reliable. It can also be easily extended, either by using the spare conductor as a second data line (if you used 4 -core and screen cable) or by chaining the 4017 s .

You may wish to have an LED indicator for each switch. If using a 15 V supply, it is rather wasteful to connect each diode to the supplyby its own series resistor. At 20 mA each, 8 LEDs would use 160 mA when on simultaneously. Fig. 2 shows a way round this, by driving

the LEDs in series, with a constant current. This consumes around 20 mA however many LEDs are on (those not required are shorted out, using the other half of the appropriate switch). The circuit should just about light 8 red LEDs simultaneously, with a 15 V supply. With more LEDs or a lower supply voltage, the required voltage drop across the diodes becomes too great.

NOTE.
Q2 IS BC441, BD135 etc D17,18 ARE 1 N4 148 et LED1 8 ARE RED LED




> NOTE:
> IC1 IS SP8629 (PLESSEY)
> IC2 IS 74 LS14
> IC3 IS ICM7216D
> IC4 IS 7805
> D1 IS 1 N4001 OR SIMILAR

\section*{CB Frequency Meter}

\section*{R. Stevenson, Leyton E10.}

This circuit is unusual in that there is no electrical connection to the CB rig - it picks up the signal to be measured from a wire adjacent to the aerial coax. It consists of just four chips, including a regulator.

IC1 receives the signal, amplifies it, and divides it by 100 . IC2 converts the output of IC1 to TTL standard for IC3. IC3 is the frequency counter - it contains a high frequency oscillator, timebase counter, data counter and latches, a seven segment decoder, digit multiplexers and display drivers. IC4 provides a 5 volt supply rail which is derived from the power source that supplies the rig.

The displays are driven directly from IC3 and are the commoncathode multiplexed type. The single core unscreened pick-up wire is run alongside the aerial coax for a few yards. If the signal is found to be insufficient, lengthen the wire or move the meter closer to the aerial. Greater resolution and accuracy can be achieved with extra digits connected to the unused digit drivers, but remember that the decimal point and range connections will have to be changed. Extra digits, however, result in longer display settling times.

PS: The SP8629 prescaler chip can be obtained from Watford electronics.

\section*{Cheap Envelope Generator}

Jeff Macanley,
Crawley.
Although the ADSR envelope generator has become standard there are occasions when a simpler and cheaper alternative is desirable.

The accompanying circuit shows such a device. The basis is the humble flip flop, IC2, half a 4013B. When a positive going pulse is applied to the set input the Q output goes high allowing C1 to charge via the attack pot, RV1, and D1. Notice, though, that the reset pin is connected back across C 1 : in consequence, as soon as the voltage across this component exceeds
about \(50 \%\) of the supply voltage, the flop flop resets, reverse-biasing D1.

C1 now discharges through the decay pot and D2. With the values shown both attack and decay are variable from a few milliseconds to several seconds. The two current limiting resistors should not be left out because the maximum current that can be drawn from the Qoutput is only about 10 mA peak.

If negative triggering is required the inverter circuit shown can be employed. This has the advantage of allowing the device to be triggered from open collector devices. IC1 can be any inverting CMOS gate, NAND or NOR, with unused inputs wired to +ve (NAND) or OV (NOR); it can even be an inverter gate! Note that supply connections to IC1 and 2 will need to be added.


\section*{Simple Cassette Motor Control}

David Allen,
Bolton.
In this circuit, motor control is achieved using a single STOP pulse. The position of the stop button is sensed using a dual opto-isolator. The cassette motor is normally allowed to be on. At the end of the READ or WRITE cycle a + ve going pulse must be applied to the input to stop the motor. The motor therefore stops with the play button pressed. The opto-diodes are connected back-to-back so the polarity of the motor voltage is irrelevant.

The stable condition of the circuit is with the motor relay energised and sensing circuit inactive (optoisolator). The cassette player is started manually by pressing the play button. At the end of reading or writing a + ve pulse is applied to the input. Flip-flop IC1 changes state, the motor relay turns off and the motor stops. The REMcte input to the cassette then has the motor voltage across its contacts and the opto-
isolator circuit senses this voltage. One of the opto-transistors will turn on and after a delay of 80 msecs a low is applied to one input of IC2.

The reset input to IC1 is maintained high and so the motor relay remains off. Meanwhile, the Q output of IC1 is high, and after a delay of 300 msecs the other input of IC3
goes high. The circuit will remain in this condition until the stop button is pressed. When this happens the motor voltage disappears and the opto-transistor turns off. After 120 msecs the output of IC3 goes low and resets IC1. This closes the relay contacts and the circuit returns to the initial condition.


ETI

XK113 MW RADIO KIT
Based on ZN414 IC, kit includes PCB, wound to make a senstitive miniature radio. Size: \(5.5 \times\) \(2.7 \times 2 \mathrm{cms}\). Requires PP3 9 V battery. IDEAL FOR BEGINNERS. \(£ 5.00\)

HOME LIGHTING KITS

 TDR300K Aomorecontrol \(£ 14.30\) \(\begin{array}{ll}\text { MK8 } \\ \text { TD300K } & \begin{array}{l}\text { Dimmer } \\ \text { Tranamitterfor above } \\ \text { Touchdimmer } £ 7.00\end{array}\end{array}\) Ts 300K Touchswich \(£ 7.00\)
 LD300K \(\begin{gathered}\text { Rotary Controllad } \\ \text { Dimmor }\end{gathered} \in \mathbf{£ 3 . 5 0}\)


DVM/ULTRA SENSITIVE THERMOMETER KIT

 torm the basis ot ofy. digital multi-
mater fonly
sistors ond swith additional res are required-details supplied
 reading to 0 it The rassic kit has a sensitivity of
 dication and en ultro low power requirement-giving
82 year typical batter life from a standard 9 Pl PP3 when used 8 hours aday, 7 deys a week

Price \(£ 15.50\)
\(\qquad\)


We aiso stock peripherals and accessories disc drives, printer wide range of books and the lates software for all the above computers including ZX81 SENO SAE FOR LIST TODAY

\section*{3-NOTE} DOOR CHIME
Based on the SABO600 IC the kit is supplied With all components. including loudspeake printed circuit board, a pre-drilled box \(195 \times\) To \(\times 35 \mathrm{~mm})\) and
onlv a
PP3
VV
battery complete AN IDEAL PROJECT FOR BEGIN NERS. Order as XK 102
\(£ 5.00\)

\section*{FREE GREEN catalocus wi}

NO? Send S.A.E 6" - 9"TODAY
It's packed with detads of all our KITS plus large range of SEMICONDUCTORS Including CMOS. LS TTL, linear, microprocessors and memories; full range of LEDs, capacitors, resistors, hardware, relays, switches etc We also stock VERO and Antex products as well as books from Texas instruments,
ALL AT VERY COMPETITIVE PRICES.
ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST. Answering 5-6-7 8-9-10
service evngs and give us your Access or Barclaycard No or write enclosıng Service evngs
cheque or postal order Official orders accepted from schools, etc. \& weekends

ALL PRICES EXCLUDE VAT
oreass HE


Send S A E for furthn STOCK DE TALLS
Goods ay return subject to availability


LCD \(31 / 2\) DIGIT MULTIMETER \({ }^{16 \text { rangess }}\) niliding DC voltage ( \(2000 \mathrm{mv}-1000\)
 \(g^{\text {sin }}\) and diode check. Input impedance 10M \(\mathrm{S}_{\text {ize }} 155 \times 88 \times 31 \mathrm{~mm}\). Requires Pp3 9 v battery.
Tent leads included ONLY \(\mathbf{E 2 9 . 0 0}\)

ONLY E29.00

\section*{ELECTRONIC LOCK KIT XK101} This KIT contains a purpose designe lock IC, 10 way keyboard. PCBs and al components to construct a Digita open and providing over 5000 differen combinations. The open sequence may be easily changec by means of a prewired plug. Size: \(7 \times 6 \times 3 \mathrm{cms}\). Supply 5 V to 15 V d.c. at 40 uA . Output 750 mA max. Hundreds of uses to doors and garages. car anti-thet device, electronic equipment, etc. Will
drive most relays direct Full instructions supplied ONLY £10.50
Electric lock mechanisms for use with latch locks and above kit \(\quad \mathbf{~} 13.50\)

DISCO LIGHTING KITS

\section*{DL 1000 K}

This value-for-money teatures a bi-directional sequence. speed of sequence and frequency of direction change, being variable by
means of potentiometers an incorporates a master dimm and

\section*{DLZ100K}

E 14.60
E 14.60
A lower cost version of the above, featuring undirectional channel sequence with speed
variable by means of a pre set pot Outputs switched only at mains zero crossing point to reduce radio interterence to a minimum.
Optional opto input DLA1
Allowing audio "beat")
Allowing audio ("beat")
-light fesponse \(\mathbf{6 0 p}\)

\section*{DL3000K}

This 3 channel sound to light kit features zero voltage switching, automatic level-control \& built in mic. No connections to speaker or amp
required. No knobs to adust - simply connet required. No knobs to adjust - simply connect (1Kw Channel)

Only £11.95

\section*{electronios today international Book seivics}

How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to ETI Book Service. Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice.
BEGINNERS GUIDE
Beginner's Guide to Basic Programming Stephenson ..... E5.35
Beginner's Guide to Digital Electronics ..... £5.35
5.35Beginner's Guide to Electronics
Beginner's Guide to Integrated Circuits ..... E5.35
Beginner's Guide to Computers ..... £5.35
COOKBOOKS
Master IC Cookbook Hallmark ..... £10.15
Microprocessor Cookbook M. Hordeski ..... £14. 25
PLL Synthesiser Cookbook H Kinle ..... £7.70
Active Filter Cookbook Lancaster ..... f13.40
CMOS Cookbook Lancaste ..... £11.85
TL Cookbook Lancaster ..... £10. 95
Micra Cookbook Vol 1 Lancaster ..... £15.30
MC6809 Cookbook C. Warren ..... £7. 25
ELEctRONICS
\(\square\) Principles of Transistor Circuits Amos ..... \(£ 8.50\)
Design of Active Filters with experiments Berlin ..... £11.30
Electron Buid Electronic Projects Brown ..... £13.20How to build Elect3.
Design and build electronic£9.35
Introduction to Microcomputers Daglecs ..... \(£ 7.20\)
Electronic Components and Systems Dennis£15.00
Princinles of Electronic Instrumentation£11.40
Giant Handbook of Computer Software£12.95
Giant Handbook of Electronic Circuits
f11.75
Giant Handbook of Electronic Projects
Analysis and Design of Analogu ..... £30.25
Basic Electronics Grob ..... \(£ 11.30\)
Lasers - The Light Fantastic Hallmark\(£ 7.70\)
Introduction to Digital Electronics \& Logic Joynson ..... £7.85
Electronic Testing and Fault Diagnosis LovedayE6.25
Electronic Fault Diagnosis Loveday
- Essential Electronics A-2 Guida Loveday ..... 17.50
103 Projects for Electronics Experimenters Minis ..... E8.30
VLSI Systam Design Muroga£34.10
Power FETs and their application Oxner
Practical Solid State Circuit DesinoterE9.40
Master Hand Sook of CiC Circuils Powers ..... £25.00Masier Handbook of IC Circuils PowersVOM - VTVM Handbook Risse£22.15
VOM - VTVM Hanabook Risse
Video and Digital Electronic Displays Sherr ..... \(£ 28.85\)f8.50E7.50
Understanding Electronic Componen
Electronic Fault Diagnosis Sinclair Electronic Fautt Diagnosis Sinclair ..... \(\{17.35\)
Digital Circuits and MicE32.00
Active Filter Handbook57.60
Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas ..... £15.20
Digital Systems: Principles and Applications Tocci ..... £12.95
Master Handbook of Telephones Traister ..... \(£ 10.00\)
\(f 6.00\)
How to build Metal'Treasure Locators Traiste ..... £6.00
\(\mathbf{8 8 . 5 0}\)
33 Electronic Music Projects you can build Winston ..... E6.95
COMPUTERS \& MICROCOMPUTERS
BASIC Computer Games Ah ..... E6. 35
From BASIC to PASCAL Anderson ..... 9.95
Mastering Machine Code on your 2X81 T: Baker ..... \(£ 7.25\)
68.75
UNIX -- The Book Banaham ..... £8.75
\(\mathbf{£ 1 0 . 9 5}\)
Microcomputer Maths Barden ..... \(£ 11.90\)
Digital Computer Fundamentals Barter ..... \(£ 9.90\)
Visicalc Book. APPLE Edition Bell ..... £15.55
Visicalc Book. ATARI Edition Bel| ..... \({ }^{1} 52.55\)
Introduction to Microprocessors Brunner ..... \(£ 9.25\)
Microprocessor Interlacing Carr ..... \({ }^{\ddagger} 7.70\)
Microcomputer Interiacing Handbook AD \& D/A Carr ..... \(£ 9.50\)
\(£ 28.85\)
Musical Applications of Microprocessors Chamberlain
Musical Applications of Microprocessors Chamberlain ..... £9. 25 30 Computer Programs for ..... \begin{tabular}{l}
\(£ 9.25\) \\
\\
\hline 9.30
\end{tabular}APPLE Personal Computer for Beginners DumnE11 80Let your BBC Micro Teach you to program HartnellProgramming your ZX Spectrum Hartneltectrum ExploredHow to Design, Build and Program your own working Computer
BASIC Principles and Practice of Mi
Hints and Tips for the ZX81 Hewson
What to do 34 More Tested Ready to Run Game Programs in BASIC HornMicrocomputer Builders' Bible JohnsonDigital Circuits and Microcomputers Johnson
            PASCAL for Students Kemp
The C - Programming Language Kernıghan
COBOL Jackson
The ZX81 Companion Maunder
Guide to Good Programming Practice Meek
    Principles of Interactive Computer Graphics Newman
    Principies of interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nicholas
Theory and Practice of Microprocessors Nicholas
Exploring the World of the Personal Computer Nilles
Exploring the World of the Personal Computer Nilles
    Exploring the World of the Personal Computer Nilles \(\mathbf{£ 1 1}\)
Exploring the World of the Personal Computer Nilles Microcontrollers Noll
Microprocessor Circuits Vol. 1. Fundamentals and Micrent
\(\quad \mathrm{E9.80}\)
    Beginner's Guide to Microprocessors Parr \(\quad\)\begin{tabular}{ll}
\(£ 9.80\) \\
\hline 5.35
\end{tabular}
    Microcomputer Based Design Peatman \(\quad £ 11.30\)
    BBC Micro Reavealed Ruston
    Easy Programming for the ZX Spectrum Stewart
    Microprocessor Applications Handbook Stout
    Handbook of Microprocessor Design and Applications Stout E37.60
    Programming the PET/CBM West
Troubleshooting Microprocessors and Digital Logic Goodman
Troubleshooting Microprocessors and Digital Logic Goodman Getting Acquainted with your VIC 20 Hartnel Getting Acquainted with your ZX81 Hartnell
 Getting Acquainted with your VIC 20 Hartnel
 Getting Acquainted with your \(2 \times 81\) Hartnell
L. Let your BBC Micro Teach you to program Hartne
The ZX Spectrum Explored Hartnell
        suter Technology Williamson Digital Circuits and Microcomputers Johnson

Beginner's Guide to Microprocessors Parr
Microcomputer Based Design Peatman

    Digital Hardware Design Peatman
n Peatman69.80
69.45

    Handbook of Advanced Robotics Safford
Handbook of Advanced Robotics Safford514.45

    tool Things to do with your own personal computer Sawusch ..... \(\mathbf{E 8 . 5 0}\)
\(\mathbf{~} 7.15\)
Programming the PET/CBM West ..... E37.60
An Introduction to Microcomputer Technology Williamson ..... 17.80

        Computer Peripherals that you can build Wolfe
Computer Peripherals that you can build Wolfe ..... £12.40
cians Wooland ..... echni-
\(\mathbf{E 7 . 1 0}\)
REFERENCE BOOKS
\(\square\) Electronic Engineers' Handbook Fink ..... \(£ 56.45\)
Electronic Designers' Handbook Giacolettio\(£ 59.55\)
Illustrated Dictionary of Microcomputer Technology HordeskiHandbook for Electronic Engineering Technicians Kauffman
    Handbook of Electronic Calculators KauffmanE27.50
    E35.00
    - 54.00
    Modern Electronic Circrat
    4.00
    international Transistor Salector Towers
    International Microprocessor Solector Towers
    International Digital IC Selector Towers
    10.70
    International Op Amp Linear IC Selector Towers
    Illustrated Dictionary of Electronics Turner
    E16.70
VIDED
Servicing Home Vidoo Cassette Recorders Hobbs
    Complete Handbook of Videacassette Recorders Kybett

Please sand me the books indicated. I enclose cheque/postal order for

I wish to pay by Access/Barclaycard. Please debit my account.
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)






 CINCH CONNECTOR STAIP 12 way 4BA Screw connection on boin sicos- 35 P 40 ch . 10 ott \(\xi 3\). INFRA AEDGUAFP FERRANTI PHOTOCELI TYPE MS: 5 - SOP enen. 10 oft








 MOSPOWER FET IYDO VMP1 (TO 31 E1 SO men.

 BRIDGE RECTIFIER - CSC tyDe BOSS - 200 ouch. 10 oft E1.NO. CAPACITORB-0.047 25V: 0.005 100V:0.47 12v, 0001 200V.

 HONETWEL H/DUTI

EXECUTIVE TELEPHONE-PUSH BUT TON. Functions include 10 number memory; repeal etc. Will connect direct to eritish Te 'ecom System. BRAND NEW. ONLY 228 en. plpe:

Minimum Order of Goode £3. Mintmum PLP 1.60. VAT at \(15 \%\) MUST be added to TOTAL OF Many more components and teat available. S.A.E. or tolephoen for liate.


Look into the World of Electronics with the Tele-Scope. 10 MHz storage for less than £100.
Capture those elusive waveforms on your own T.V. Screen. The Tele-Scope converts analogue data to a digital format for storage in its memory, displaying continuously until refreshed with new data. Build it yourself for£89 (exclusive of VAT and package and posting), or buy it built and tested for \(£ 109\) (excluding VAT and package and posting). Package and posting for either unit is \(£ 2.95\).
The manual is available for \(£ 2.00\) which is refunded on subsequent unit purchase.
Also available from Hawk are Apple expansion I/O Cards with 32 channels of controlability, or convert your Apple to an IEEE Controller with GPIB Controller card (interfaces directly in Applesoft!) \(£ 49.50\) and \(£ 189\) respectively (excluding VAT).
For more data contact:-

\section*{HAWK ELECTRONIC TEST EQUIPMENT}

Bircholt Road,
Park Wood Industrial Estate, Maidstone, Kent ME15 9XT.
Telephone 0622686811

\title{
Z80 DRAM BOARD
}

\title{
Here it is, the project you've all been asking for. Bob Campbell describes a 64 K DRAM board for use with \(\mathbf{Z 8 0}\) based systems.
}

Last month we examined two possible methods of increasing the available dynamic memory in Z80 based systems, either by modifying the original 6502 based 64 K DRAM board (published in ETI September'83) or by extending an existing 4116 based system using 64 K chips. This article describes the third option, a 64 K DRAM board designed specifically for use with \(\mathrm{Z80}\) based systems.

Although the 74LS608 memory cycle controller used in the original 64 K DRAM design proved most successful, it did require a considerable effort to develop the actual hardware from the theoretical design layout. In addition, the chip performs only one of the three functions that the more modern dynamic RAM controllers can achieve. There are two other chips within the series that can cope with the multiplexing and refresh control but because this three chip system never became very popular the price has remained relatively high.

The newer RAM controllers are single chip systems, adaptable to almost any configuration and capable of several functions in addition to the main requirements, address multiplexing, RAS CAS MUX generation, refresh row address and RAS control.

The most readily available and cost effective controller on the market at the moment is the Texas 4500 (although the Author admits that this is a somewhat subjective statement, and there are probably many people ready to disagree). In addition it is well suited for use with the type of processor which we have in mind, the Z80. Figures 1 and 3 show details of the controller, and further information can
be found in either the Cortex project article in the November 1982 issue of ETI or in TI's'TMS 4500A Dynamic Ram Controller Users' Manual', available from wherever you usually get your data or from TI in Bradford.

Fig. 1 shows the main functional blocks within the controller. These are:-
1) row address latches
2) column address latches
3) address multiplexer
4) refresh row address counter
5) chip select latch
6) timing and control block
7) refresh/memory access cycle arbiter
8) programmable refresh rate generator
The features of this chip include:-- asynchronous or synchronous control with the MPU clock - internal or external refresh

\section*{initiation}
- programmable refresh rate no crystals, delay lines, or RC networks required.
- burst, transparent, or cycle steal refresh modes
- programmable WAIT state generation for slow memories - drives up to 256 k bytes without external drivers.

I don't intend to present all the details of the design here as a great deal of information is given in the manual, and the design philosophy of the PROM decoder was adequately covered in the DRAM project article in September 1983.

There is, however, one criterion which must be met. The system requires an 8 MHz clock, or at least a clock that runs at exactly twice the frequency of the CPU clock. If the intended system runs


Fig. 1 Internal block diagram of the TMS 4500A dynamic RAM controller.


Fig. 2 Circuit diagram of the \(\mathbf{Z 8 0}\) DRAM.

\section*{PROJECT: Z80 DRAM Board}
HOW IT WORKS
aiccess during refresh. The 4500 itself ubiquitous LS245 octal tranceiver which is also controlled by the same tion determined by the \(\overline{W R}\) line. Note the difference between this asynchronous approach used in the CORTEX, where there was a \(10 \%\) ref-
resh overhead. Here the refresh is resh overhead. Here the refresh
totally transparent, i.e. \(0 \%\) overhead handles all the refresh and memory cycle control, and all of the cycles are
performed synchronously with the performed clock (during T3 and T4). This
CPU excludes the need for any refresh arbitration via the RDY signal, and the
need for any wait states during access. need for any wait states during access. additional refresh cycles during extended periods of WAIT or DMA cycles The data bus is buffered using the



\begin{tabular}{|c|c|c|}
\hline RAO-RA7 & Input & Row Address - These address inputs are used to generate the row address for the multiplexer. \\
\hline CAO-CAT & Input & Column Address - These address inputs are used to generate the column address for the multiplexer. \\
\hline MAO-MA7 & Output & Memory Address - These three-state outputs are designed to drive the addresses of the dynamic RAM array. \\
\hline ALE & tnput & Address Latch Enable - This input is used to latch the 16 address inputs, CS and REN1. This also initaiates an access cycle if chip select is valid. The rising edge (low level to high level) of ALE returns \(\overline{\text { RAS to the high level. }}\) \\
\hline \(\stackrel{\rightharpoonup}{\text { CS }}\) & Input & Chip Select - A low on this input enables an access cycle. The trailing edge of ALE latches the chip select input. \\
\hline REN1 & Input & RAS Enable 1 - This input is used to select one of two banks of RAM via the \(\overline{\text { RAS }} 0\) and \(\overline{\text { RAS }} 1\) outputs when chip select is present. \\
\hline \(\overline{A C R}, \overline{A C W}\) & Input & Access Control, Read; Access Control, Write - A low on either of these inputs causes the column address to appear on MA0-MA7 and the column address strobe. The rising edge of \(\overline{A C R}\) or \(\overline{A C W}\) terminates the cycle by ending \(\overline{\mathrm{RAS}}\) and \(\overline{\mathrm{CAS}}\) strobes. When \(\overline{\mathrm{ACR}}\) and \(\overline{\mathrm{ACW}}\) are both low, MAO-MA7, RASO, RAS1, and CAS go into a high-impedance (floating) state. \\
\hline CLK & Input & System Clock - This input provides the master timing to generate refresh cycle timings and refresh rate. Refresh rate is determined by the TWST, FS1, FS0 inputs. \\
\hline REFREQ & Input/Output & Refresh Request - (This input should be driven by an open-collector output.) On input, a low-going edge initiates a refresh cycle and will cause the internal refresh timer to be reset on the next falling edge of the CLK. As an output, a low-going edge signals an internal refresh request and that the refresh timer will be reset on the next low-going edge of CLK. \(\overline{\text { REFREQ }}\) will remain low until the refresh cycle is in progress and the current refresh address is present on MA0-MA7. \\
\hline \(\overline{\text { RAS } 0, ~} \overline{\text { RAS } 1}\) & Output & Row Address Strobe - These three-state outputs are used to latch the row address into the bank of DRAMs selected by REN1. On refresh both signals are driven. \\
\hline \(\overline{\text { CAS }}\) & Output & Column Address Strobe - This three-state output is used to latch the column address into the DRAM array. \\
\hline RDY & Output & Ready - This totem-pole output synchronizes memories that are too slow to guarantee microprocessor access time requirements. This output is also used to inhibit access cycles during refresh when in cycle-steal mode. \\
\hline TWST & Input & Timing/Wait Strap - A high on this input indicates a wait state should be added to each memory cycle. In addition it is used in conjunction with FS0 and FS1 to determine refresh rate and timing. \\
\hline FSS0, FS1 & Inputs & Frequency Select 0 ; Frequency Select 1 - These are strap inputs to select Mode and Frequency of operation as shown in Table 1. \\
\hline
\end{tabular}


Fig. 4 Component overlay of the PCB.
at 4 MHz with only a 4 MHz clock source, a new 8 MHz clock generator will have to be provided and its output divided by two to give the 4 MHzCPU clock rate.

\section*{Construction}

The Z80 DRAM is constructed on a \(100 \times 160 \mathrm{~mm}\) ( 3 U eurocard size) double sided PCB. Printed circuit boards supplied by our PCB service will be double sided but the holes will not be plated through. This means that you will have to solder a link through each of the holes, but it does make the PCB a lot cheaper than it would otherwise be. Note also that some of the links are underneath ICs 4, 5 to 12 , and 13, and crop the ends of these links off very close to the surface of the board. Note also that component leads have been used as links in some cases, and take care to solder such leads on both sides of the board. All links have been shown on the overlay diagram (Figure 4) regardless of whether they are individual wire links or component leads. Alternatively, you could produce your own single sided PCB using just the underside pattern and then use wire links on the component side, in which case you should solder the links in place first and use IC sockets which clear the board sufficiently to allow the wires out at the ends.

When the board is ready, and the links are in place, assemble the other components making sure that the diode, the elctrolytic capacitors, and the ICs are the right way round, and taking care not to overheat the crystal. We recommend that you use IC sockets and insert the ICs themselves last of all. We have labelled all the connections on the board itself but obviously, what happens at the other end depends upon which micro you are using, so you will have to sort that out for yourself. Don't forget to remove or disable the original CPU clock if you are now using the DRAM board clock.

Finally, you will have to programme the PROM. The programming procedure for the TBP 24 S10 is given in the book "Bipolar Microcomputer Components and Memories" which is published by Texas Instruments and should be readily available. A detailed description of the required memory contents lies outside the scope of this article, but some general guidelines were given in the original 64 K DRAM project in the September 1983 ETI , and readers are referred to that article. Once programmed, the board should be ready for use because the TMS 4500A does not require any alignment.

\section*{PARTS LIST}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RESISTORS (all \(1 / 4 \mathrm{~W}, \mathbf{5 \%}\) )} \\
\hline R1, 2, 3, 5 & 1k0 \\
\hline R4 & 330 R \\
\hline \multicolumn{2}{|l|}{CAPACITORS} \\
\hline C1 & 10n ceramic \\
\hline C2, 3, 4, 5, 6, 7, 8 & 100n ceramic \\
\hline \[
\begin{gathered}
C 9,10,11,12,13 \\
14,15,16
\end{gathered}
\] & 1utantalum \\
\hline \multicolumn{2}{|l|}{SEMICONDUCTORS} \\
\hline IC1 & 74LS04 \\
\hline IC2 & 74LS14 \\
\hline IC3 & 741S74 \\
\hline IC4 & TMS4500A \\
\hline \multicolumn{2}{|l|}{IC5, 6, 7, 8, 9, 10,} \\
\hline IC13 & TPB 24S10 \\
\hline IC14 & 74LS02 \\
\hline IC15 & 74LS00 \\
\hline IC16 & 74 LS245 \\
\hline D1 & 1N4148 \\
\hline \multicolumn{2}{|l|}{MISCELLANEOUS} \\
\hline PCB; \(32 \times 2\) way nector (plug and connector, cable microcomputer. & IN 41612 A + C conocket); 8 MHz crystal; etc to link with \\
\hline
\end{tabular}

BUYLINES

All of the semiconductors are widely available, with the possible exception of the TBP 24 S10 which you can get from Midwich. None of the other components should present any problems and the PCB is available from our PCB Service, details on page 65.

\section*{pantechnic \\ THE POWERFET SPECIALISTS}

\section*{OEM USERS}

Pantechnic present the most adaptable high powered amplifier ever. FETSYSTEM AMp
Features:
- HIGH POWER. 1.2KW (single ended).
- LOW VOLUME. 1/15 Cubic foot inc. Heat Sink
- VERSATILE. Delivers more than 1 KW into \(1 / 2\) to 8 ohms.

OR \(2 \times 600 \mathrm{~W}\) into 2 to \(8 \Omega\)
OR \(4 \times 300 \mathrm{~W}\) into 2 to \(4 \Omega\) ( 200 W into \(8 \Omega\) )

OR \(\left\{\begin{array}{l}1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.\)
Etc. Etc.
Having been closely involved in a wide variety of OEM applications of their amp boards, Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatskink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 KW of power in a space of \(180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}\), excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heat sinks, heat transfer to the environment is greatly enhanced
The flexibility of the 1.2 KW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150 W .) Thesecan be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented.
Pantechnic offer a full range of customising options including DC coupling, ultra high slew etc. Contact Phil Rimmer on 01-800 6667 with your particular application problem.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{OTHER POWERFET AMPLIFIER MODULES} \\
\hline Model & Priot & Range (RMS) & & Dyn-loads & Notes \\
\hline *PFA100 & 21.96 & 50-150W & 4 & , 8 : & Physically small ( \(32 \times 78 \times\) 108 mm ) \\
\hline * PFA250S & 29.52 & 100-300W & & '2, 8 ! & High watts/E ratio \\
\hline PFA/HV & 36.04 & 200-300W & 4 & , 8!2,16 & 5dB dynamic headroom Drives 70 V line direct. \\
\hline *PFA500 & \[
\begin{aligned}
& 45.22 \\
& 55.33
\end{aligned}
\] & \begin{tabular}{l}
\[
250-600 \mathrm{~W}
\] \\
mounted on
\end{tabular} & & a, 4 H, 8 U & 25 A cont. output current. er (see below). \\
\hline
\end{tabular}
*The power output of these amplifiers can be increased by approx \(15 \%\) with no diminution in quality by adding PSU102 ( \(£ 7.61\) ) to your existing power supply. (PFA250S is an improved version of PFA200).

Some Other Products \& Components
Type 74 Heat Exchanger. Dissipates 300W (1.2KW blown) £7.50. 25A 400PIV Bridge Rect. £2. 17
10,000uF Electrolytics with clips:-
80 V £4.75; 100 V £6.15; 100 V Cptr.GR. £9.75.
PAN20 Pre-amplifier module. Very low noise and distortion \(\mathbf{£ 8 . 4 8}\) PAX2/24 2 Way active crossover (specify frequency) \(£ 10.10\) PAX3/24 3 Way active crossover (-do-) £19.50
PSU103 Powers \(2 \times\) PAN20 +2 Xovers \(\mathbf{£ 6 . 9 1}\)
PAN1397 20W power amp, br-polar i/e (LOW THD) \(£ 5.39\)
PSU101 Powers \(2 \times\) PAN1397 £3.43
Transformer tor PSU101 £4.30 (inc. postage)

\section*{TOROIDAL TRANSFORMERS}
with special low flux windings
\(\begin{array}{lcccccc}\text { Nom. VAC } & \text { 160VA } & 225 \mathrm{VA} & 300 \mathrm{VA} & 500 \mathrm{VA} & 625 \mathrm{VA} & 750 \mathrm{VA} \\ 40.0 .40 & 11.30 & 14.35 & 16.30 & - & - & - \\ 45-0.45 & - & 14.35 & 16.30 & 22.57 & - & - \\ 50-0.50 & - & - & - & 22.57 & 27.70 & 30.43\end{array}\) 70.0.70
(for PFA/HV)


Transformer prices include postage. Ask for leaflet "Choosing a Transformui.
Carriage 75p. Add VAT at \(15 \%\) to all prices.

\section*{THE POWERFET SPECIALISTS pantechnic}

Dept ETI/ 148 Quarry Street. Liverpool L25 6HO rele,pumine 051 4288485
Technical empurres

Midwioh
EAST ANGLIA'S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS.


\title{
READ/WRITE
}

\section*{Active Speakers}

Dear Sir
As one who has been involved in the design of active speakers for many years, may I make a suggestion or two that will improve the performance of the design in your November issue?

Accepting the typographical error that reversed the values of R8 and R9, the filter stages are, as stated, standard \(12 d B\) per octave Butterworth networks, which are not really suitable for use in an active cross-over. The filters described in your article have a \(-3 d B\) frequency at 2.885 kHz (the crossover frequency), and when the outputs are summed, will give a \(3 d B\) peak in the overall frequency response. The ideal filters should be 12 dB per octave (or 24 dB per octave, but not 6 or 18 dB per octave for reasons that are too complex to go into here) but should each be \(6 d B\) down at the cross-over frequency, so that the summed response is flat. Suitable filters mav easilv be configured as shown in Fig. 1.

The modified filters do not add to the cost or complexity of the project, but by increasing the parts count by a small amount, further very worthwhile improvements may be included.

Although the KEF B200 is a good choice of bass unit, its res-
ponse is not flat enough to avoid using a limited amount of equalisation, a suggested circuit being given in Fig. 2.

The response of this stage gives unity gain at very low frequencies, then introduces a falling response that is -1 dB at \(300 \mathrm{~Hz},-3 \mathrm{~dB}\) at 650 Hz and -6 dB at 3 kHz , thereby removing a hump in the \(B 200\) response that can introduce considerable colouration if left untreated. As this stage is inverting, the connections to one of the drive units should be reversed so that both units are connected in the same phase.

Additional colouration may be caused by the downward-tilting radiation pattern at the cross-over frequency. This is caused by the non-alignment of the acoustical planes of the drivers, and may be corrected by the application of a suitable delay in the highfrequency signal. As the B200 radiates at a point about 38 mm behind the plaine of the HD100/ 25 , the required delay is \(38 \times 10^{-3}\) / \(343=110.8 \mu \mathrm{~s}\). A suitable all-pass filter, giving \(28.2 \mu s\) delay per stage may be formed from four op-amps as shown in Fig. 3.
\[
\begin{aligned}
& \text { Delay }=\frac{2 R C}{1+(2 \pi f R)^{2}} \\
& =28.2 \mu \mathrm{~s} \text { at } 2.68 \mathrm{kHz} \text { per stage } \\
& =112.8 \mu \mathrm{~s} \text { total (equiv. to } 38.7 \mathrm{~mm} \text { ) }
\end{aligned}
\]


Various other 'improvements' could be incorporated, but would increase the cost out of proportion to the gain in performance; however, the suggested modifications will bring a number of benefits over the very basic published circuitry without increasing the cost by more than about £10.00.

> Yours faithfully
> Barry E Porter
> Kings Lynn

We thank Barry Porter for his suggested enhancements to the simple active loudspeaker design, and we suggest that interested readers should 'suck them and see'.

\section*{Fuses}

Dear Sirs,
I recently built your Dec '82 Spectracolumn, and was very pleased with it, until, that is, one of the bulbs blew. This in itself was of course not a major calamity. It did, however, take its controlling triac with it. Please tell me whether / can expect a triac casualty every time a bulb blows (it was a 'normal' domestic 100 W type). If not please offer an explanation and remedy to prevent further sympathetic suicides.

Yours faithfully
Paul Gallagher
Edinburgh
PS can 100 W spots be used with the Spectracolumn?

\section*{The reason for the 'sympathetic} suicide' is that sometimes when a bulb blows, a piece of filament will short across the conductor supports, so momentarily reducing the bulb's resistance to a very low value and causing a high current to flow. This transient is usually much too small to damage conventional electrical switchgear, or even blow the house fuse (and most domestic bulbs have an integral fuse, or


Fig. 3



The ETI Spectracolumn expensive on triacs
rather a thinned section of conductor to prevent this) but unfortunately the transient is usually ample to take plastic-packaged triacs with it.

For this reason, many manufacturers of domestic light din,mers have started to fit special, very fast blowing fuses in their units. However, these fuses are not that easy to obtain (if you go into most suppliers and ask for them you'll probably be given a blank look or a standard 20 mm fuse), and a project such as the Spectracolumn would necessitate several, along with associated fuse holders. In any case, they're quite expensive more expensive, often, than a cheap, plastic-packaged triac. So, for gear you build yourself, you might as well reconcile yourself to having to replace the odd triac now and then.

An alternative solution is to use considerably over-rated triacs, in T03 packages. The editor has fitted one of these (of somewhat dubious origin - it just turned up somehow in the junk box) to a domestic dimmer with success. It has proved capable of surving quite extended shorts - on one occasion, a bulb in a multi-bulb fitting blew and shorted the supply long enough to dip all the other lights in the fitting for a faction of a second (admittedly the wiring wasn't too great in that particular flat) but the triac survived! However it would be necessary to check that there is sufficient driving current for the devices used.

In any case, frequency of shorts will probably be a function of bulb design - so change make if the bulbs take the triac with them more than, say, \(50 \%\) of the time (no, we don't know which brands are best, sorry).

Finally, given our last comment above, there is no reason why you shouldn't use spot bulbs with the spectracolumn - but they may, because of their design, be more likely to short out on blowing.

\section*{Holophony}

Dear Sir,
I have read with some interest what you have had to say about the so-called "holophonic" sound. I think I am in a position to throw some light on the subject, so here goes.

Last Easter I was visiting a colleague, a Dr Peter Damaske, in Goslar (Windsor's twin town in Germany) who did his doctorate at Gottinghen University on just this
subject, and who is still active in the field, although he now teaches physics at the "Gymnasium" in Goslar. What follows is what he told me, as near as I can remember; your German edition could always get in touch with him direct.

When a recording is made by putting microphones into the ears of an artificial head, the exact effect can be re-created by playing the recording through stereo headphones. This isn't surprising, of course, but doesn't answer the question of how the brain locates sound. In fact, the direction is perceived by the brain measuring the time difference between the sound reaching the two ears. Although this seems incredible - the times are of the order of tens of microseconds - it is quite a well established fact, and it explains why you can tell where the keys are even with one ear partly blocked. Someone deaf in one ear, though, cannot tell which phone in an office is ringing - I know someone in Windsor who suffers from this problem.

The plot thickens when we consider how to tell the difference between sounds coming from the front and from the back. A sound at \(45^{\circ}\) left front will have exactly the same time lag as one from \(45^{\circ}\) left back, and in practice it is not that easy to tell one from another. If you move your head slightly, of course, it is easy, since the two sounds behave differently. Moving the head to the left moves the front source rightwards and the back source leftwards. However, you can't do this with a recording, yet the distinction is still there. It appears that the sound from the rear has a different quality, since its spectral composition is modified by the hair and ear lobes. We learn quite early in life to recognise these differences, and this is how the trick is worked. It is possible to think sounds coming from in front come from behind - especially footsteps - and this may be due to the surface walked on modifying the sound in a similar way to the ears. Footsteps on soft ground in front may sound like footsteps on hard ground behind, for instance.

When loudspeakers are used and not headphones, the left ear hears some of the sound intended for the right ear, and vice-versa. It is possible to compensate for this by adding some left ear signals in antiphase to the right channel to cancel this out, with the appropriate time dealy, but the sound must be filtered first to imitate the
etfect of the nose, face and earlobes. In an anechoic chamber this apparently works very well, and two speakers physically in front of the listener can make sounds seem to come from all round. However, the echoes in a real room mess all this up, and the effect is lost. The next thing to try is highly directional speakers to beam the sound to the ears and not the walls - Dr Damaske uses arrays of small speakers. The effect of these in a well draped room is pretty good, but the front-back effect is not easy to achieve at the same time as high quality sound. Work continues. I have heard recordings on this system, and the front-back distinction was not very good - Dr Damaske tells me it was better when his speakers were not so good!

I have not mentioned up-down cues. Humans are not good at locating the elevation of a sound, as one might expect. Mostly we know where to expect sounds to come from, but everyone knows how easy it is to be fooled by a voice from up a tree. Owls need to be good at measuring elevation if they are to find their prey, and they do so by
having the right and left ears at different angles to the horizontal. The time delay then gives the direction, and the relative volume in the two ears the elevation. It follows that an owl with earache in one ear will
have problems!
Yours sincerely,
Gerald Bettridge
Physics Dept, Eton College.

\section*{Nearly A Competition Dear Sir,}

I hope you do not mind me writing to you but I have a problem you and subscribers to your magazine may be able to help me with.

I was a professional bass guitarist for ten years until three years ago when I suffered a stroke in my right side (l was 29). Although I got back some movement and feeling, my right side remains largely useless, since then I have been trying to come up with a practical idea to enable me to play again. The City University in London modified a bass guitar utilising the limited movement in my right arm to trigger off solenoids to stike whichever string
was selected by my left hand but for various reasons (mainly the expense of replacing the solenoids should they very likely go wrong, about \(£ 70\) each) the idea was impractical.

So could I appeal to you and your readers to come up with a practical, reliable idea for modifying a bass guitar so it can be played using \(11 / 2\) hands. We could perhaps appeal using a competition formula with me donating a prize of some sort (but not too expensive!!).

Yours sincerely
Alan Todd
Birmingham

\section*{Certainly! If anyone out there has an idea, please contact the Editor} before the end of February 1984. We will channel suggestions to Alan, and help to get the one or two most practical built and tried out. The solution that Alan prefers will, eventually, appear in the pages of the magazine, and we'll pay the designer(s) our standard page rate - which isn't a fortune, we'll admit, but they'll also have Alan's gratitude as well.

\section*{MARCO TRADING}
0.1 W Pre-Sets
7p ea: 65p/10. \(\mathbf{8 5 . 5 0}\) per 100
Rotary Potentiometers
1 K to 2 M 2 Log and \(\operatorname{lin}\) 32pes, E3/10
Reslators
1/4W 1R \(10 M\) 2p ea: 15p/10 75p/ 100 £4.80/1000
1/2W 1R tc 10M 2pea: 15p/1095p/100 £e.00/1000
Zener Diodes
400m/w 2V7 to 75V, 8p ea: 75p/10: E3.50/50- £6/100
\(13 W 2 V 7\) to 200V 15p ea: £1.40/10: £12.50100
L.E. D. 8 Available in 3 mm and 5 m
RED 10p ea: \(85 p / 10\) £6/100
YELLOW 13p ea: \(£ 1.20 / 10 £ 10 / 100\)
Supplied complete with clips.
\begin{tabular}{|c|c|c|}
\hline des & & Voltage Regulat \\
\hline 1 N4001 & 5p & 78L/05/08/12/1530p \\
\hline 1N4007 & 7p & 78M/05/08/12/15 50p \\
\hline 1N4148 & 4p & 78/05/08/12/15/18/ \\
\hline 1 N5401 & 15p & 24 55p \\
\hline 1N5408 & 20p & 79/12/15/18/24 \\
\hline
\end{tabular}
Tranaformers (*p/p see below)
\(240 \mathrm{v}, 6-0 \cdot 6 \mathrm{E} 100 \mathrm{~mA} 58 \mathrm{p}: \mathbf{£ 5 . 2 0}\) for \(10: \mathbf{£ 4 3}\) for 100
20, \(60.6 / 500 \mathrm{~mA}\) 85p: \(\mathbf{~} 6.00\) for 10 : \(\mathbf{£ 4 8}\) for 100
\begin{tabular}{lllrl} 
Transistors & & & & \\
AC128 & \(\mathbf{3 0 p}\) & BC147 & 8p & BC213 \\
AC169 & \(\mathbf{4 5 p}\) & BC157 & 10p & BC214 \\
AD149 & \(\mathbf{9 8 p}\) & BC160 & 30p & BC238 \\
AF239 & \(\mathbf{8 8 p}\) & BC170 & 14p & BC300 \\
BA148 & \(\mathbf{1 8 p}\) & BC182 & 9p & BC337 \\
BC107 & 10p & BC183 & 9p & BD131/2 \\
BC108 & 10p & BC184 & 9p & BFY51 \\
BC109 & 10p & BC212 & \(\mathbf{9 p}\) & BFY90
\end{tabular}
Integrated Circuit
\begin{tabular}{|c|c|c|c|c|c|}
\hline Integrated & uits & & & & \\
\hline 741 & 25 5/£1 & TDA2020 & £4.60 & UPC1181H3 & £1.60 \\
\hline 555 & 25p 5/£1 & TDA2030 & £2.78 & UPC1182 & E2.80 \\
\hline LM324N & \(55 p\) & TL072 & 98p & UPC1185 \({ }^{\text {d }}\) & £3.75 \\
\hline LM346N & 90p & UPC575C2 & £3.20 & UPC1212C & E1.30 \\
\hline LM380 & 80p & UPC1025H & E2.90 & UPC1230H & E3.90 \\
\hline NE556 & 80p & UPC1 158 H & 76p & UPC1373H & E1.01 \\
\hline ML231B & ¢2.10 & & & & \\
\hline
\end{tabular}
This advert only a fraction of our range, send 65 p for our thest 109 page fully illustrated catalogue (Incis 35p credit+). Complete with special offer lists etc etc (*Transtormers p/p 45 p each e1.60/10, £4.50/100
Send orders to:
MARCO TRADING
Dept ET3, The Maltings, H!gh Street, Wem, Shropshire SY4 5 EN visit our new 1000 sq it retail shop at the above address.

MULTIMETER
Russian type SPECIAL Russian type U4324 dc
Voltage: \(0.6,1.2,2.12 .30\) Voltage: 0.6, 1.2, 2.12. 30,
\(60,120,600,1200\). a.c. Voltage: \(3.6,15,60.150\), \(300,600.900 . \mathrm{dc}\). intensity \(\mathrm{m} / \mathrm{a}: 0006,0.6,6,60,600\) 3000. a.c. intensity m/a: 0.3 , \(3,30,300,3000\) d. resis\(500 . \mathrm{kOhm}\) a.e. level dB: 10 to \(+12.20,000 \mathrm{OPV}\)
I:C: Sockets
8 pin: 8p 70p/10
14 pin: 10p 95p/10
16 pin: \(11 \mathrm{pEs} / 10\) 18 pin: 14p E1.30/10
40 pin: \(\mathbf{3 4 p}\) E3.10/10

\section*{\(9 p\)
\(9 p\)
9p
30p
12p
34p
21p
\(90 p\)}
BT106 E150 BY238
TIP3055 TIP3055 2N3055
2SC 1306 2SC1909 2SC1969
3 SK 88 K 88p
80p \(93 p\)
93p
1.20 £1.20 82.88
\(86 p\) 1.60

 for \(10.51 / 4 "\) Drive Power plug \(£ 1\) each. BEC PSU plug \(£ 1\) each. 8"' Drive DC plug \(£ 1.35\). AC plug \(£ 1.35\) p/p 25p. New double density
interface for BBC machine, S.A.E. Full details \(£ 99.95+\) VAT \(p / p £ 1.50\).

American TEL: UXBRIDGE 55399


\section*{Standard} features -
- High speed 24 K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution ( \(256 \times 192\) ) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting. basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only bymemory size
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility

Full renumber command
- Simple but powerful line editor
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Interfaces for screen and cassette included.

Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16 K video RAM for graphics

International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R\& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline STATEMENTS & PRINT & TIME & RENUM & MAG & MWD & & () & INT & POS & \(=\) \\
\hline IF & & WAIT & BOOT & TOF & BASE & @ & [1] & LOG & \[
\mathrm{COL}
\] & \\
\hline ELSE & ? & SAVE & GRAPH & TON & COMMANDS & \# & & SQR & MOD & \(>\) \\
\hline ON & & LOAD & TEXT & DIM & RUN & \# & FU,NCTIONS & SYS & RND & > \\
\hline GOTO & 1 UNIT & MOTOR & PLOT & LET & SIZE & & FNA-FNZ & TIC & KEY & \(<\) \\
\hline GOSUB & BAUD & ESCAPE & UNPLOT & DEF & CONT & ? & ABS & SGN & OPERATORS & < \\
\hline POP & CALL & NOESC & COLOUR & NEW & MON & \% & ADR & BIT & OR & <> \\
\hline REM & DATA & RANDOM & CHAR & END & DELIMITERS & \$ & ASC & CRB & LOR & \\
\hline FOR & READ & ENTER & SPRITE & BIT & DELMITESS & " & ATN & CRF & AND & + \\
\hline NEXT & RESTOR & LIST & SHAPE & CRB & TO & , & SIN & MEM & AND & + \\
\hline ERROR & RETURN & PURGE & SPUT & CRF & TAB & & COS & MWD & LAND & * \\
\hline INPUT & STOP & NUMBER & SGET & MEM. & STEP & 8 & EXP & LEN & \begin{tabular}{l}
NOT \\
NOT
\end{tabular} & \(\wedge\) \\
\hline
\end{tabular}

Self assembly kit 5295

All prices exclusive of VAT. Carriage paid.

\section*{Optional Extras}

Floppy disc interface electronics
E86.50
Hardware kit \& connectors for disc drives \(£ 49.50\)
RS232C interlace kit \(£ 9.20\)
Pair of \(51 / 4^{\prime \prime}\) disc drives (SS) \(\quad \mathbf{3 0 0 . 0 0}\)
Pair of \(51 / 4^{\prime \prime}\) disc drives (DS) \(£ 590.00\)
Full assembly instructions and 216 page users manual.

\section*{POWFETRAN eypberneticics tht.}

Portway Industrial Estate, Andover SP10 3ET. Tel: 026464455


\title{
THE OBEDIENT DIE
}

\section*{Here is a project for the man or woman who has everything except a conviction for fraud - a cheating die. Fun for party games, but definitely not for serious use. Design and development by Ian Hickman.}

Dice have been used for centuries, both for gambling and as the element of chance in the more innocent games such as Ludo or Snakes and Ladders. Unscrupulous persons have from the earliest times employed "loaded" dice. A loaded die has a piece of lead embedded within it, slightly off-centre, so that a certain number, for example a six, occurs more often than it should. (Normally, of course, the chance of a die throwing a six is just one in six and a pair of dice throwing a double six is 1 in 36.) The degree of loading is naturally kept small, as otherwise suspicions would
soon be aroused. A loaded die is more likely (by a small margin) to throw the "loaded" number than the other numbers, regardless of who throws it. Thus the unscrupulous gamester would arrange either that the "banker" (himself) always threw the dice, or that the rules of the game were so framed that sixes favoured the bank, whoever threw them. The idea of a die that could be commanded to throw a six whenever desired would have seemed like magic!

This article describes an electronically loaded die, which can provide a lot of innocent amuse-
ment at parties, but which should obviously not be used for gaming. Its ability to throw a six whenever commanded can also liven up an otherwise tedious board game such as Ludo.

\section*{Construction And Testing}

The prototype die was constructed in a hollow perspex cube bought in the fancy goods department of a well known chain store. The bottomless plastic cube came with a block of soft plastic foam inside, which was meant to retain five photographs, one behind each of the five visible faces of the cube. The printed circuit board


Fig. 1. Circuit diagram of the die.


NOTE
IC6 IS
IC6 IS CD4069

Fig. 2 Circuit diagram of the transmitter; note that it doesn't matter which particular gate is used for what - all the gates within IC6 are equivalent; no PCB has been shown for this unit, as it would be uneconomic to produce such a small board. Better to use a spare piece of circuitboard.

\section*{HOW IT WORKS}

The full circuit is shown in Fig. 1, where the components forming the remote control circuit are grouped at the bottom while the basic electronic die components are at the top. ICa \& b form a free-running clock oscillator, which can be inhibited by a +9 V at the anode of either D1 or D2. The clock is fed to a three-stage binary ripple counter IC2a, IC3a and IC3b. This is constrained by gated feedback to count from 1 to 6 rather than from 0 to 7 as it would normally do. Whenever three 1 s are simultaneously presented at the \(\mathbf{Q}\) outputs of the three stage counter (i.e. a count of \(4+2+1\) or 111 in binary), the output of the AND gate IC4b goes true or high, i.e. +9 V . This instantly resets IC3a and \(b\) to 0 and sets IC2a to 1 , thus states 7 and zero are skipped over.

The output of the ones counter drives LED1 via the buffer IC1c. The output of the 2 s counter IC3a drives the diagonally-placed LEDS, LED2 and 3, which are also lit via D4, along with LED4 and 5 , by the output of the 4 s counter IC3b. IC4c detects the presence of a 6 by ANDing the 4 s and 2 s outputs, and lights LEDs 6 and 7. The result of this simple bit of decoding is a traditional dice display with 2 and 3 displayed along a diagonal. (By lighting the four corners LEDs from the 4 s counter and LED6 and 7 from the 2 s counter, one can save a few components, but it hardly seems worthwhile putting up with a non-standard display for such a marginal economy.)
The LEDs will only light if microswitch S1 is in the operated position, \(C\) (common) to NO (normally open), which occurs when the die is set down on a flat surface. The LEDs then light and as there is +9 V at the anode of D2, the clock oscillator is inhibited. The LEDs therefore display whatever
number the counter had reached when the die was set down. On picking up the die, the LEDs extinguish and the counter clocks at around 1 kHz until it is set down again. Thus the number 'thrown' (please don't actually throw the die!) is effectively random. This was proved by a series of nearly 400 consecutive throws, in which 1 occured 67 times, \(2-64\) times, 3-61 times, 4 - 67 times, 5 70 times and 6-62 times.

Each time the die is picked up, S1 returns to the normally closed condition and a short +9 V pulse is applied to the reset input of IC2b via C8. Thus both the \(Q\) output of IC2b and the output of AND gate IC4a normally remain indefinitely at 0 V , but now we come to the devious bit. Connected to the input of the amplifier IC5a is an ultrasonic receiver Rx. This is sensitive to a narrow band of frequencies in the region of 40 kHz , and its output is amplified by IC5a and IC5b. When a 40 kHz sound wave impinges on \(R x\), the output of IC5b via C5 is DC restored negative-going with respect to +9 V by D5 and applied to Q1. This conducts on the negative going half cycles, charging C 6 to +9 V , and if the supersonic 40 kHz signal persists for more than 20 ms or so, the voltage across \(C 7\) will rise to a level where IC2b will be set. If this occurs while the die is lifted, ie, while the clock oscillator is running, the clock will be stopped at a count of six. The 1 at the \(Q\) output of IC2b enables IC4a, and the next 'six' output from IC4c will result in a 1 at IC4a's output, disabling the clock oscillator via D1. If a 40 kHz signal is received after the die is set down, it will set IC2b, but this will have no effect as the clock has already been inhibited via D2: IC2b will be reset as normal when the die is next picked up.

With so much gain in a confined space, following a high impedance transducer, the dual op-amp circuit has been designed carefully. Supply line decoupling R11, C3 prevents supply line ripple due to clock edges getting into the amplifier, whilst hum pick-up problems (always a headache with high impedance transducers) are avoided by rolling off the LF gain of the op-amps, e.g. with R10 and C2 at IC5a. However if the same circuit were used around IC5b, instability could result due to the coincident breakpoints. This is avoided by using a different time constant and limiting the LF roll-off of IC5b with R12.
The receiver \(R x\) will not respond to shouting, singing, whistling or other audible sounds, but impulsive sounds (such as clapping, or tapping the die) contain supersonic components up to 40 kHz and beyond. To prevent these from operating the 'force a six' function, the detector circuit includes filtering. The time constant R14/C6 is just sufficient to prevent the collector voltage of Q 1 falling appreciably below 9 V between one half-cycle of the 40 kHZ signal and the next, but it falls rapidly as soon as the sound disappears. On the other hand, the filter R15/C7 requires that the 40 kHz tone remain present for at least 20 ms before IC2B will be set, forcing a six. Thus brief impulsive noises such as clapping are discriminated against. If you hiss loudly at the die it will throw a six, so it is not recommended for use in a boiler room where steam is escaping!
Reverse polarity protection diode D6 protects the circuit - but not the battery - in the event of the latter being connected the wrong way round. Fig. 2 shows the circuit of the 40 kHz ultrasonic transmitter.
shown is a snug fit inside the cube and is mounted on a carrier-cum-battery-box fabricated out of an old tin can. This is retained by a couple of countersunk screws picking up on opposite faces of the cube. For the control transmitter any small plastic box, with room for a PP3 battery and the few components mounted on a piece of Veroboard, can be used. The
transmit transducer should be mounted behind a hole in the front panel and the on-off switch should be a push-to-make pushbutton.

It is easier to fault-find on a small amount of circuitry, especially if you do not have an oscilloscope, so it is a good idea to construct the die in parts. Start off by mounting IC1, 2 and 3 and


Fig. 3 Overlay diagram for the main PCB.

\section*{PROJECT : Obedient Die}
number at random.
Now fit the remaining components of the die and make up the control transmitter of Fig. 2. Monitor the voltage at the collector of Q1 with respect to 0 V , using a \(20,000 \Omega\) per volt multimeter. With both die and transmitter powered up, point the transmitter at the receiver transducer at a distance of a few feet. Adjust the transmitter frequency, by means of RV1, for maximum response at the receiver. Use an insulated trimmer tool to avoid stray capacitance, otherwise the transmitter frequency may change when the screwdriver is removed. When carefully set for best response, the transmitter should cause Q1 collector to go to +9 V from anywhere in the room. Check that raising and setting down the die causes a random number to be displayed unless the transmitter is on, in which case a 6 should appear. The system is now operational.

With the component values shown in Fig. 1 the circuit consumes 4 mA from the PP3 battery when picked up and only 8 mA
when set down and displaying a 6. However for a brighter display, especially if you are not using high-efficiency LEDs, R4 can be reduced to 2 k 2 and \(\mathrm{R} 5-7\) to 7 k 8 each.

\section*{Using The Obedient Die}

When correctly set up, the control transmitter will operate the die even when it is concealed. It may be hidden in a trouser or jacket pocket, provided the intervening distance is not more than a few feet, the material of the garment is not excessively heavy and the transmit transducer is pointing in the general direction of the die. The die is used to best effect when the operate is apparently not involved. For instance, at an office party invite the boss's secretary to have a go, when she throws more sixes than you do persuade her to take on the boss. Now melt into the bystanders and take it from there. For example, when the secretary seems to have all the luck, get an accomplice to suggest to the boss that there is a gravity switch inside the die and perhaps he ought to tilt it sideways before
putting it down. When he tries this, lo and behold (you switch sides) it works, and suddenly he is winning.

Many other scenarious are possible, with or without an accomplice, and will doubtless occur to you. For example, Ludo gets distinctly boring when one player is miles ahead of the others. But a non-playing controller of the die can turn a game into a neck and neck contest by judicious use of occasional extra sixes. Remember not to force too many sixes or suspicions will soon be aroused. After all, you can only add extra sixes, not inhibit them.

\section*{BUYLINES}

Absolutely nothing here to cause any problems. The 40 kHz transducers are available from Maplin and Watford among others, the perspex case is discussed in the test, and everything else is perfectly standard. The PCB is available from our PCB service, for which see page 65.


\section*{PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY \\ Audio Range: \(10 \mathrm{~Hz}-100 \mathrm{KHz}\); in four switched ranges. \\ Distortion \\ Extremely low. \\ (.0015\% typical, @ 1 KHz). Output \\ 1 v into 600 , with \\ Fixed and Variable Atten. \\ Sine and Square Wave. \\ Based on a Linsley Hood design. Battery or Mains. \\  \\ \(£ 36.00\) (batty.) Tax extra \(£ 5.40\) P\&P £2.00}

\section*{TELERADIO ELECTRONICS}

325 FORE STREET, EDMONTON, LONDON N9 OPE \(01-8073719\) Closed Thursdays SAE for lists

\section*{FOR HI-FI \& ELECTRONICS ENTHUSIASTS} CONCEPT ELECTRONICS LTD

51 Tollington Road, London N7 8PB
Mall order only
We are the specialist of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with cases), alarm clocks, appliance timers, CB amplifiers, test equipment, control modules, music generator, battery flourescent light and high quality rack at the cost of 35p 25p psip.

- Wholly made of black anodised aluminlum sheets Sultable for high quality amplifers and many other purposes \(\downarrow\) Top, side and rear cover removable for access - Separate front mounting plate \# Heavy gauge front panel is of brushed aluminium finish enhanced with two professional handles \(\downarrow\) With ventilation slits and plastic feet.
The low cost steel version is also available. The size and features as well as the front panel is the same as the aluminium cabinets except the rear box is manufactured from steel painted in black

CONTROL MODULES


TY-7 Electronic touch switch
E2.90 Kit \(\mathbf{E 4 . 5 0 ~ A B}\) TY-18 Sound activa.20 Kit £3.50 Ass. Clap switch) \(£ 4.50\) kit TY-38 Sound activated switch (voice-switch) \(£ 5.50 \mathrm{KIt} £ 7.50\) Ass. TY-41 Infra-red remote control
(Receiver and transmitter)
E17.20 Ktt \(\mathbf{E 2 1 . 8 5}\) Aes.
 £18.05 KIt £23.05 Ass. TA-820 60W \(+\begin{gathered}\text { £ } 18.95 \\ \text { stero amplifier }\end{gathered}\) TA-920 70W +70W stereo amplifier £35.50 Kit \(\mathbf{\varepsilon 4 2 . 5 0}\) Abe.

\title{
AUDIO DESIGN
}

\title{
A lot of unnecessary mystique surrounds the subject of imaginary numbers, so in this coda to his series, John Linsley Hood sets out to clear a path through the muddle and to demonstrate the value of the technique in audio design work.
}

0ne of the features of audio circuitry, with the partial exception of audio power amplifiers which are largely flat frequency response devices, is that some modification of the gain/ frequency characteristic is needed to correct for uneven recording or replay frequency responses, or to emphasise or exclude desirable or unwanted parts of the frequency spectrum. This is done by inserting a combination of resistors and capacitors (or inductors) in the signal path, or, possibly, in the feedback path around an amplifier. This is a very powerful technique, and with sufficient ingenuity in the circuit design, all sorts of shapes of frequency response can be achieved. However, it requires the ability to do reasonably accurate calculations of systems using capacitors or inductors in combination with resistors, and this immediately runs into the problem of the phase shifts which occur within such networks. I will explain.

If one passes an alternating current through a series combination of a resistor and a capacitor or a resistor and an inductor, the voltages developed across the two components will be \(90^{\circ}\) out of phase with each other. I have shown this graphically in Fig. 1 a and 1 b . Also, while the voltage developed across a capacitor will 'lag' in phase in relation to the current flowing through it, (because the voltage across a capacitor depends on the charge within it and it takes time for the capacitor to charge up or discharge), the opposite is true of an inductor, in which the voltage will 'lead' in phase with reference to the current (due to the instantaneous generation of a 'back EMF' in an inductor which seeks to oppose any change in

\(E_{t}\)

\section*{current).}

We have seen earlier in this series that the impedance of a capacitor \((\mathrm{Zc})\) is related to its capacitance and the operating frequency by the equation \(Z_{c}=1 / 2 \pi f C\). Similarly, the impedance of an inductor \(Z_{L}=2 \pi \mathrm{LL}\), where \(f\) is the frequency and \(C\) and \(L\) are in Farads and Henries respectively. Because of the effects of phase shifts, any calculation we made, say, of the attenuation of an RC or LC network based on these formulae for impedance would probably give incorrect answers. We therefore need a better method.

\section*{The j Symbol}

There is, conveniently, a mathematical trick which enables us to do calculations which take into account the phase shifts produced by inductors and capacitors, and this is the operator i or j , which is numerically \(\sqrt{ }-1\). Pure mathematicians call this i to denote the fact that it is an imaginary number, since all real numbers give positive values when they are squared. However, since electrical engineers have already adopted the symbol i to denote electrical current, we refer to \(\sqrt{ }-1\) as \(j\) instead. The use of this \(j\) operator is not as barmy as it might seem, as a way of describing a \(90^{\circ}\) phase shift, for the following reason.

In DC systems, the opposite of a positive voltage \(+V\) is a negative voltage \(-V\). In an \(A C\) system, the opposite of an instantaneous positive potential (and it is convenient to refer to such AC potentials as \(E\) to distinguish them from \(D C\) voltages \(\pm \mathrm{V}\) ) is the same potential half a cycle ( \(180^{\circ}\) ) later when it has swung from positive to negative. A \(180^{\circ}\) phase shift in an AC signal therefore has the effect of multiplying the potential by -1 , provided always that the signal we are talking about is sinusoidal.

Now, if we have two RC (or LC) networks in series, both of which produce a \(90^{\circ}\) phase shift (and two such networks in series will have a multiplying effect on the signal, just as \(1 / 2 \times 1 / 2=1 / 4\) ), the final effect is a \(180^{\circ}\) phase shift \((=x-1)\). If we want to represent these phase shifts mathematically, we mut find something which, when multiplied by itself gives the result \(-1 . \sqrt{-1}\) is just such a thing. It can therefore be used in our sums as a way of denoting \(90^{\circ}\) phase shift.

The other bit of shorthand which circuit engineers normally use in these calculations is the symbol \(\omega\) (Omega in Greek) to denote \(2 \pi \mathrm{f}\), since these terms nearly always occur together. The true impedance of a capacitor or inductor is, therefore, not \(Z_{c}=1 / 2 \pi f C\) or \(Z_{L}=2 \pi f L\), but \(Z_{c}=1 / j 2 \pi f C\) and \(Z_{L}=j 2 \pi f L\). In shorthand form this becomes \(Z_{c}=1 / j \omega C\) and \(Z_{L}=j \omega L\).

Since the phase shift produced by L or C elements in RC or LC networks is \(90^{\circ}\), we can represent the behaviour of this circuitry in a graphical form, as shown in Fig. 1, as a right angled triangle, where the ' j '


Fig. 2 Impedance diagram for an RC nework.
term denotes the right angled limb, and this allows us to derive some further bits of information. Taking the case of a simple RC series network, as in Fig. 1a, the circuit impedances can be represented as in Fig. 2 a , in which the vertical and horizontal limbs represent the resistive and capacitative impedances \(R\) and \(1 / j \omega C\) respectively. It is unnecessary to write the ' \(j\) ' symbol in the capacitance impedance limb of the drawing; that is implicit in its position at right angles to the \(R\) limb. From the theorem of Pythagoras, the length of the hypotenuse, \(h\) in Fig \(2 b\), is \(\sqrt{a^{2}}-b^{2}\), and from fairly simple trigonometry, the angle \(\theta\) is such that \(\operatorname{Tan} \theta=\) \(\mathrm{b} / \mathrm{a}\). More conveniently, \(\theta=\operatorname{Tan}^{-1} \mathrm{~b} / \mathrm{a}\), a calculation which a lot of pocket calculators will do very quickly.

Returning to our impedance diagram of Fig 2 a , the resultant impedance of our network is therefore
\[
\sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{C}^{1}\right)^{2}}
\]

We can also determine the phase angle, \(\theta\), between the voltage developed across this network and the current flowing through it which will lag by \(\theta\), which is \(\mathrm{Tan}^{-1} 1 / \omega C R\). (If \(C\) were very large indeed, or \(R\) were very large, the phase shift would be nearly zero.)

To recapitulate, we can identify the phase shifting characteristics of Cs and Ls by coupling the symbol \(j\) to their impedance equations, and we can derive the resultant impedance and phase angle of these 'complex' networks by sorting out the terms with and without the j symbols, and using them in simple geometric or trigonometric calculations. This process holds good no matter how many Rs, Cs and Ls we have in our network, it just becomes more complicated if there are more phase shifting elements.

The thing, however, which we must watch, is that we keep the real and the imaginary ( \(j\) containing) parts separate in the final equation at which we arrive. Now let us look at some real life examples.

\section*{Impedance Of RC Parallel Network}

If the components were \(a\) and \(b\) as in Fig 3a, their impedance, when in parallel, would be
\[
\frac{a b}{a+b}
\]

Therefore, if they are \(R\) and \(1 / j \omega C\), as in Fig. \(3 b\), their parallel impedance will be
\[
Z=\frac{(1 / j \omega C) \cdot R}{1 / j \omega C+R}
\]

If we multiply the top and bottom of this equation by \(j \omega C\), we can get it into the much more manageable form
\[
Z=\frac{R}{1+j \omega C R}
\]


Fig. 3 Impedance of an RC parallel network.
The next mathematical dodge is to get rid of the js in the bottom line of this equation, so that we can divide it up into two separate parts, one without js and one with them, representing the in-phase and the 90 'quadrature' components.

This can be done by using the relationship
\[
(a+b)(b-b)=a^{2}-b^{2}
\]

If it was \((a+j b)(a-j b)\) the result would be \(a^{2}+b^{2}\), bearing in mind that \(\mathrm{j}^{2}=+1\). The important thing is that \(j\) terms have disappeared. We can, therefore, multiply the top and the bottom of an equation contining \(\mathrm{a} j\) term in the bottom line by \(a-j b\) and eliminate these terms from the denominator leaving two separate fractions, which meets our original requirement for a usable equation. Treating the
\[
Z=\frac{R}{1+j \omega C R}
\]
equation like this, we end up with
\[
Z=\frac{R}{1+(\omega C R)^{2}}-\frac{j \omega C R^{2}}{1+(\omega C R)^{2}}
\]
which allows us to calculate both the impedance and the phase angle between current flow and voltage, in our CR parallel network.

\section*{Attenuation Of An RC Network.}

The circuit shown in Fig. \(4 b\) is a very versatile one in that, as it stands, it is a useful 'step' attenuator network, while if \(\mathrm{R} 2=0\) it is a simple HF attenuator circuit. Looking at the resistor network of Fig 4a, the attenuation of this would be
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{R b+R c}{R a+R b+R c}
\]

By analogy, therefore, the performance of Fig. \(4 b\) will be
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{1 / j \omega C+R 2}{R 1+1 / j \omega C+R 2}
\]
and this can be simplified to
\[
\frac{\text { Eout }}{\operatorname{Ein}}=\frac{1+j \omega C R 2}{1+j \omega C(R 1+R 2)}
\]
by multiplying top and bottom of jwC. Doing the necessary mathematical manipulation extracts the in-


Fig. 4 Attenuation of an RRC network.

\[
\begin{array}{lc}
\text { Gain }=-M & R 2 \\
R 2+M R 1(1+j \omega C R 2)
\end{array}
\]
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{1-\omega R 1 R 2 C 1 C 2+\omega(R 1 C 1+R 2 C 1+R 2 C 2}{1+j \omega R 2(C 1+C 2)}
\]

Fig. 5 Characteristics of some common RC networks.
phase and quadrature components as
\(\frac{\text { Ein }}{\text { Eout }}=\frac{1+\omega^{2} C^{2} R 2(R 1+R 2)}{1+\omega^{2} C^{2}(R 1+R 2)^{2}}-\frac{j \omega C R 1}{1+\omega^{2} C^{2}(R 1+R 2)^{2}}\)
and if we make \(R 2=0\), the right hand side of this
equation simplifies to
\[
\frac{1}{1+\omega^{2} C^{2} R 1^{2}}-\frac{j \omega C R 1}{1+\omega^{2} C^{2} R^{2} 1}
\]

In this case also we have separated out the inphase and quadrature components, so that the transmission factor is obtained by doing a square-root of the sum of the squares of these, and the phase angle of the output is given by
\[
\text { Tan-1 }\left(\frac{\text { quadrature }}{\text { in-phase }}\right)
\]

It is always useful, when one comes to the end of an algebraic manipulation like this, to check that one hasn't done anything wildly silly by putting in some limit values. For example, in the equations above, consider the effects of \(C=0\). This causes the equation to become
\[
\frac{\text { Eout }}{\text { Ein }}=1
\]
which is what we would expect, (assuming the load is infinitely high in resistance). On the other hand, if \(C\) is extremely large, the first example gives
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{R 2}{R 1+R 2}
\]
and the second gives
\[
\frac{\text { Eout }}{\text { Ein }}=0
\]

Modern programmable pocket calculators make the task of calculating the characteristics of such RC networks relatively easy, once the labour of working out the maths has been done, and although I haven't shown any yet, the process of calculation in RL networks is very similar. One can then, for example, write a suitable programme with the component values held in the calculator memory, and let the calculator go through the process for any frequency value which one enters before pressing the run button.

To remove some of the labour in calculation I am showing in the composite Fig. 5 a selection of RC networks with their impedance and transmission equations.

\section*{Resistor-Inductor Networks}

The method of calculating the performance of these is identical to that for RC networks, except that one uses \(j \omega \mathrm{~L}\) instead of \(1 / j \omega \mathrm{C}\) in the equations. For example, the circuits of Fig. \(6 a\) and \(6 b\) have transmissions
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{j \omega L}{R+j \omega L} \text { and } \frac{R}{R+j \omega L}
\]
respectively, which can be broken down into the in-

\((\mathrm{af}\)

(b)

Fig. 6 RL networks.
phase and quadrature components as
\[
\frac{(\omega L)^{2}}{R^{2}+(\omega L)^{2}}+\frac{j \omega L R}{R^{2}+(\omega L)^{2}}
\]
and
\[
\frac{R^{2}}{R^{2}+(\omega L)^{2}}-\frac{j \omega L R}{R^{2}+(\omega L)^{2}}
\]

In all of the equations shown, it is possible (as 1 am sure you will have spotted) to change one kind of network into a simpler one by putting values of \(R\) or \(C\) or \(L\) equal to 0 . As an example, if we make network (7) of Fig 5 have values of 0 for \(C 1\) and C2,
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{R 2}{(R 1+R 2)}
\]
which is what we would expect. Or, by just deleting \(\mathrm{C} 1(\mathrm{C} 1=0)\) we will end up with the equation of a type 3 network, when there is a resistor across the output.

\section*{Some Practical Examples}

A lot of the above may have been a bit dull reading for the non-mathematically inclined (which, I suspect, is \(99 \%\) of us) and may tempt the reader to ask 'Well, that's all very nice, but what real use is it'. So I propose to show a few examples where there are some slightly surprising outcomes from the sums.

\section*{(1) The LC series circuit.}

Let us take first the LC series circuit of Fig. 7. Now, it's impedance is just the sum of the two bits, \(Z=1 /\) \(j \omega C+j \omega L\). If we multiply through by \(1(=j \omega C / j \omega C)\), we get
\[
Z=\frac{1-\omega^{2} L C}{j \omega C}
\]

This has an interesting characteristic, that if \(\omega^{2} L C=1\), \(Z=0\). This condition is met if \(\omega^{2}=1 / L C\) or \(\omega=2 \pi\) LC. So, at resonance, this series LC network looks like a short circuit. Away from resonance, there is a quadrature component due to the \(j \omega C\) term in the bottom line, which causes the phase of the transmitted signal to swing from + to - as the input passes through resonance.

\[
\text { at } f_{0}=\frac{1}{2 \pi \sqrt{ } L C}
\]
\[
Z=0
\]

Fig. 7 LC series resonant circuit.

\section*{(2) The Wien network.}

This interesting and useful circuit, shown in Fig. 8, and the basis for a lot of oscillator designs is basically a network of the type shown in Fig. 5 (1) in series with one of the 5(2) type, with both Cs and both Rs being of the same value. Since we have already worked out the impedance characteristics of \(5(1)\) and \(5(2)\), we can write down the output, as a proportion of the input, using the familiar \(a /(a+b)\) form, where \(5(2)\) is \(a\),

at \(f_{0}=\frac{1}{2 \pi \sqrt{C R}}\)
Eout \(=1 / 3 \mathrm{Ein}\)
with no phase shift.

Fig. 8 The Wien network.
and 5(1) is b.
This gives the rather unwieldy looking equations
\[
\begin{aligned}
\frac{\text { Eout }}{\text { Ein }} & =\frac{\frac{R}{1+j \omega C R}}{\frac{R}{1+j \omega C R}+\frac{1+j \omega C R}{j \omega C}} \\
& =\frac{\frac{j \omega C R}{j+j \omega C R}}{1+j \omega C R}+1+j \omega C R
\end{aligned}
\]
fortunately, this simplifies to:-
\[
\frac{\text { Eout }}{\text { Ein }}=\frac{j \omega C R}{1-(\omega C R)^{2}+3 j \omega C R}
\]
when \((\omega C R)^{2}=1\) 'or \(\omega C R=1\), since \(\left(v^{\prime} 1=1\right)^{\prime}\) this becomes,
\[
\begin{equation*}
\frac{\text { Eout }}{\text { Ein }}=\frac{j \omega C R}{3 j \omega C R}=\frac{1}{3} \tag{1}
\end{equation*}
\]
with no ' j ' terms left. Now \(\omega \mathrm{CR}(=2 \pi \mathrm{fCR})=1\) when \(f=1 /(2 \pi C R)\), which gives the frequency at which the Wien network output is in phase with the input, and has a magnitude of \(1 / 3\) that of Ein.
(3) The Sallen and Key active filter.

This is one of the archetypes of the class of circuit known as active filters, and is valuable because it can be built with a single op-amp in the form shown in Fig. 9 a or 9 b . These are high-pass and low-pass versions of the filter. The behaviour of this circuit is such that the gain is substantially level (and x 1 ) at frequencies above, or below, some critical turnover frequency depending upon whether we are using a high-pass or low-pass arrangement - but beyond this frequency the gain falls at -12 dB /octave, as shown in 9 c and 9 d . If we substitute impedance 'blocks' for the Rs and Cs, as shown in 9e, we can work out a model for the analysis of this circuit using the ' j ' techniques described above. However, to simplify your calculations we will assume that our amplifier is an ideal one with unity gain, and has an infinitely high input impedance and a negligibly low output impedance. We can derive the following relationships.

Ein \(=\) Eout \(+\left(i_{1}+, 2\right) Z 1+i_{2} Z 2\).
and Eout \(=i_{2} Z 4\) therefore \(i_{2}=\) Eout \(/ Z 4\)
also \(i=(E x-E\) Out \() / Z 3\) and \((E x+\) Eout \()=i_{2} Z 2\)
Therefore \(\mathrm{il}=\mathrm{i}_{2} \mathrm{Z} 2 / \mathrm{Z} 3\).
From (1) and (3)
Fig. 9 Sallen and Key type active filters.



\(f_{4}=\frac{1}{2 \pi, ~ C 1 C 2 R 1 R 2}\)
for values shown
\(=29 \mathrm{~Hz}\) for \((\mathrm{a})\)
\(=10.2 \mathrm{KHz}\) for \((\mathrm{b})\)
\[
\begin{aligned}
& \mathrm{Q}=\frac{1 \mathrm{xy}}{1+\mathrm{x}}=0.707 \\
& \text { when R1 }=\mathrm{R} 2 \\
& \text { and C1 } \mathrm{C} 2=\mathrm{y}
\end{aligned}
\]

GAIN


\section*{FEATURE : Audio Design}

Ein \(=\) Eout \(+i_{2} Z 1 Z 2 / Z 3+i_{2} Z 1+i_{2} Z 2\)
and from (4) and (2)
Ein \(=\) Eout ( \(1+Z 1\) Z2/Z3Z42 \(+Z 1 / Z 4+Z 2 / Z 4\) )
Therefore \(\frac{\text { Ein }}{\text { Eout }}=\frac{1}{1+\frac{Z 1}{Z 4}+\frac{Z 2}{Z 4}+\frac{Z 1 Z 2}{Z 3 Z 4}}\)
\[
=\frac{\mathrm{Z} 3 \mathrm{Z4} 4}{}
\]
-
\[
Z 3 Z 4+Z 1 Z 3+Z 2 Z 3+Z 1 Z 2
\]

We can now fit in the Rs and \(1 / j \omega C s\) in place of the Zs , and get the formulae for the real circuits. In the case of the low-pass filter, ( 9 b and 9 d ), where \(\mathrm{Z1}=\mathrm{R} 1\), \(Z 2=R 2\) and \(Z 3=1 / j \omega C 1\) and \(Z 4=1 / j \omega C 2\),
\[
\begin{equation*}
\frac{\text { Eout }}{\text { Ein }}=\frac{1}{1+j \omega C 2(R 1+R 2)-\omega^{2}(C 1 C 2 R 1 R 2)} \ldots \tag{7}
\end{equation*}
\]

Several things can be deduced from this: where \(f=0(\omega=0)\) the output is \(1 / 1\) (unity gain at VLF), where \(\omega^{2}(\) C1C2R1R2 \()=1\) the denominator is at its smallest, and the output is therefore at a maximum. This is the turn-over frequency where \(f=/ 2 \pi \sqrt{ }\) R1R2C1C2, and at this point the output of the circuit is \(1 / j \omega C 2(R 1+R 2)\), which we can call the ' Q ' of the circuit.

There is one further small trick which can be done with this calcuation. Suppose we say that \(x=R 1 / R 2\) and \(y=C 1 / C 2\), then \(R 1=x R 2\) and \(C 1=y C 2\), and suppose that we call the frequency at which \(\omega^{2}(\mathrm{C} 1 \mathrm{C} 2 \mathrm{R} 1 \mathrm{R} 2)=1, \quad \omega_{0}, \quad\) then \(\quad \omega_{0}{ }^{2}=1 / x y(C 2 R 2)^{2}\) and \(\omega_{0}=1 / C 2 R 2 \pi x y\). Also, our middle term \(j \omega C 2(R 1+R 2)\) becomes j \(\omega C 2 R 2(1+x)\).

Let us now express our equation for frequency as a fraction of \(\omega_{0}\), the turn-over frequency, we then find that...(7) becomes,

Eout \(=\)
\[
=\frac{1}{1+j \frac{\omega}{\omega 0} \frac{(1+x)}{\sqrt{x y}}-\left(\frac{\omega}{\omega 0}\right)^{2}}
\]
and the ' \(Q\) ', or gain at \(f_{0}\), (when \(\omega=\omega_{0}\) ) is \(\frac{\sqrt{x y}}{1+x}\)
This gives us a means of calculating the performance of this filter circuit over a range of frequencies, of determining what its turn-over frequency will be, and of predicting the circuit Q at that frequency (for an optimally flat response from a 2 element filter of this type, Q should be \(1 / \sqrt{ } 2\) or 0.707 ).

I have only gone through the sums for a low-pass filter in this instance, but the high pass version will follow if appropriate R2 and Cs are put in place of the Zs.

\section*{Conclusions}

The use of the ' \(j\) operator, to simulate mathematically the effect of the phase shift in an inductor or capacitor allows useful and instructive calculations to be made on networks which contain Ls and Cs as well as resistances. With a programmable calculator, to take the labour out of the repetitive sums, it becomes practical to calculate a frequency response - and phase shift - for any network which one has the patience to work out. This then, should allow us to explore the performance of our circuitry, while it is still at the 'drawing on paper' stage, and thus avoid surprises!

ETI


It's true. Our new, diminutive frequency counter, the *Max 50 costs a mere \(£ 67.50\). Which, when you consider its totally automatic performance, is quite outstanding.

Well, what would you normally expect to pay for a guaranteed frequency range of 100 Hz to \(50 \mathrm{MHz} ; 6\)-digit LED display; auto-ranging, polarity, slope trigger and input level; and builtin overvoltage protection?

And there's even more. The high reliability of LSI circuitry; sensitivity of 30MV trigger threshold; 3ppm accuracy; choice of battery or a.c. mains operation, and optional antenna.

True value, and yours for the asking.
Just call us on Saffron Walden (0799) 21682 right away. Your own *Max 50 could be hand-held tomorrow!
Dealer enquiries also welcomed. *For a while, supplies will be labelled 'Mini-max'.
global specialties corporation

G.S.C. (UK) Ltd., Dept 975

Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Telephone: Saffron Walden (0799) 21682 Telex: 817477

\section*{SPRING HAS SPRUNG!}


Ambit's Spring '84 catalogue brings all the parts you need for electronics, radio, audio and computing to your front door.

There's details about an exciting new range of kits and modules being launched into the UK in conjunction with the leading German hobby supplier; full information on our two new regional sales counters in Portsmouth and Broxbourne; new low cost instruments from Black Star -plus all your old favourites:

NiCads, chargers, TOKO coils, filters, and communications ICs, crystal filters, Audio and RF semiconductors - including the biggest range of low cost varicap diodes for all types of electronic tuning.
More than ever, Ambit's concise 'price on the page' Spring catalogue is the one that you cannot afford to be without. It's fully indexed, precise and up to the minute -get a copy now!


We operate a fully on-line telesales service between 9 am and 5.30 pm
(Visa, Access, Amex)

\title{
ETI PCB SERVICE
}

The best way to get a really professional finish to your project is to use a professionally made PCB look no further, here they are!

In order to ensure that you get the correct board, you must quote the reference number when ordering - if you don't, you may get sent the wrong board. The code can also be used to identify the year and month that a particular project was outlined in: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{1979} \\
\hline - & E/794-1 Guitar Effects Unit . . . . . . . 3.04 \\
\hline \(\square\) & E/794-2 Click Eliminator. . . . . . . . . 7.64 \\
\hline \(\square\) & E/796-1 Accented Beat Metronome 4.14 \\
\hline \multicolumn{2}{|l|}{1980} \\
\hline 口 & E/808-3 Ultrasound Burglar Alarm 3.30 \\
\hline \(\square\) & E/8010-1 Cassette Interface . . . . . . 3.37 \\
\hline \(\square\) & E/8010-2 Fuzz/Sustain Box . . . . . . . 3.76 \\
\hline \(\square\) & E/8011-5 RIAA Preamp. . . . . . . . . . . 2.22 \\
\hline \(\square\) & E/8012-3 Four Input Mixer. . . . . . . 3.04 \\
\hline \multicolumn{2}{|l|}{1981} \\
\hline \(\square\) & E/811-1 LED Tacho . . . . . . . . . . . . . 4.75 \\
\hline \(\square\) & E/811-2 Multi-Option Siren. . . . . . . 3.68 \\
\hline \(\square\) & E/812-2 IR Alarm (4 boards) . . . . . . 7.64 \\
\hline \(\square\) & E/812-5 Pulse Generator . . . . . . . . . 4.11 \\
\hline \(\square\) & E/814-2 Drum Machine (2 boards) 6.44 \\
\hline \(\square\) & E/814-4 Guitar Note Expander . . . . 3.68 \\
\hline \(\square\) & E/816-8 Waa-Phase . . . . . . . . . . . . . . 1.76 \\
\hline \(\square\) & E/816-9 Alien Atack . . . . . . . . . . . . . 4.00 \\
\hline \(\square\) & \begin{tabular}{l}
E/817-1 System A-Input \\
(MM or MC)....................... . . 3.05
\end{tabular} \\
\hline \(\square\) & E/817-2 System A - Preamp. . . . . . . 5.95 \\
\hline \(\square\) & E/817-3 Smart Battery Charger. . . . . 2.27 \\
\hline \(\square\) & E/818-3 Hand Clap Synth. . . . . . . . . 4.57 \\
\hline \(\square\) & \begin{tabular}{l}
E/818-5 Watchdog Home \\
Security (2 boards) \(\qquad\)
\end{tabular} \\
\hline \(\square\) & \begin{tabular}{l}
E/819-1 Mains Audio Link \\
(3 boards) ........................ . 8.45
\end{tabular} \\
\hline \(\square\) & E/819-4 Laboratory PSU. . . . . . . . . . 5.21 \\
\hline \(\square\) & E/8110-1 Enlarger Timer. . . . . . . . . . 3.91 \\
\hline \(\square\) & E/8110-2 Sound Bender . . . . . . . . . . 3.05 \\
\hline \(\square\) & E/8111-1 Voice Over Unit . . . . . . . . . 4.5 . 3.23 \\
\hline \(\square\) & E/8111-2 Car Alarm. . . . . . . . . . . . 3.23 \\
\hline \(\square\) & E/8111-3 Phone Bell Shifter. . . . . . . 3.40 \\
\hline \(\square\) & E/8112-4 Component Tester. ...... 1.71 \\
\hline \multicolumn{2}{|l|}{1982} \\
\hline \(\square\) & E/821-3 Guitar Tuner (2 boards) ...6.38 \\
\hline \(\square\) & E/822-1 Ripple Monitor . . . . . . . . . 2.21 \\
\hline \(\square\) & E/822-2 Allez Cat Pest Repeller . . . 1.93 \\
\hline \(\square\) & E/822-5 Moving Magnet Stage . . . . . 4.01 \\
\hline \(\square\) & E/822-6 Moving Coil Stage . . . . . . . 4.01 \\
\hline \(\square\) & ```
E/823-4 Capacitance Meter
    (2 boards) . . .................... . }11.6
``` \\
\hline \(\square\) & E/824-5 Voltage Monitor 2.14 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{- E/825-1 DV Meg.} \\
\hline 口 & \begin{tabular}{l}
E/826-1 Ion Generator \\
(3 boards) 9.20
\end{tabular} \\
\hline \(\square\) & E/826-4 MOSFET Amp Module . . . 7.80 \\
\hline \(\square\) & E/826-5 Logic Lock 3.52 \\
\hline \(\square\) & E/826-6 Digital PWM 3.84 \\
\hline \(\square\) & E/826-7 Optical Sensor 2.00 \\
\hline \(\square\) & \begin{tabular}{l}
E/826-9 Oscilloscope \\
(4 boards) 13.34
\end{tabular} \\
\hline \(\square\) & E/827-7 TV Bargraph Main. 5.24 \\
\hline \(\square\) & E/827-3 TV Bargraph Channel. 2.62 \\
\hline \(\square\) & E/827-4 Hotwire 3.02 \\
\hline \(\square\) & E/827-5 Bridging Adapter 2.74 \\
\hline \(\square\) & E/828-1 Playmate (3 boards). 8.28 \\
\hline \(\square\) & E/828-4 Kitchen Scales. 2.12 \\
\hline \(\square\) & E/828-5 Sound Track. 4.8 \\
\hline \(\square\) & E/829-1 Auto Volume Control. , . . . 2.12 \\
\hline \(\square\) & E/829-2 Dual Logic Probe 2.22 \\
\hline \(\square\) & E/8211-4 Pulse Generator 6.08 \\
\hline \(\square\) & E/8212-1 ELCB 2.77 \\
\hline \(\square\) & E/8212-2 Servo Int \\
\hline & (2 boards) 6.75 \\
\hline \(\square\) & E/8212-4 Spectracolumn 5.54 \\
\hline \multicolumn{2}{|l|}{1983} \\
\hline \(\square\) & E/831-1 Fuel Gauge.z............. 3.45 \\
\hline \(\square\) & E/831-2 ZX ADC. 2.2 .59 \\
\hline \(\square\) & E/831-3 Programmable PSU 3.45 \\
\hline \(\square\) & E/B33-1 SoundBoard. 12.83 \\
\hline \(\square\) & E/833-2 Alarm Module 3.62 \\
\hline \(\square\) & E/833-3 Zx81 User Graphics 1.07 \\
\hline \(\square\) & E/833-4 Logic Probe 2.50 \\
\hline \(\square\) & E/834-1 Real Time Clock 8.74 \\
\hline \(\square\) & \(\mathrm{E} / 834-2\) Thermemeter
(2 boards) \\
\hline \(\square\) & E/834-4 Stage Lighting - Main ... 13.73 \\
\hline - & E/834-5 Stage Lighting - Display 3.45 \\
\hline \(\square\) & E/835-1 Compressor/Limiter6.19 \\
\hline \(\square\) & E/835-2 Single PSU 3.16 \\
\hline \(\square\) & E/835-3 Dual PSU 4.01 \\
\hline \(\square\) & E/835-4.2 NDFL Amp 7.88 \\
\hline \(\square\) & E/835-5 Balance Input Preamp . .8. . 3.23 \\
\hline \(\square\) & E/835-6 Stage Lighting Autofade............................. . 6.19 \\
\hline [& E/835-7 Stage Lighting - \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{E/836-1 to 3 PseudoROM} \\
\hline \multicolumn{3}{|c|}{E/836/4 Immersible H} \\
\hline & E/836-5 Atom Keypad & \\
\hline & E/837-1 Flash Sequen & \\
\hline & \multicolumn{2}{|l|}{E/837-2 Trigger Unit Main Board. . . 2.67} \\
\hline & \multicolumn{2}{|l|}{E/837-3 Trigger Unit Transmitter. . 1.66} \\
\hline & \multicolumn{2}{|l|}{E/837-4 Switched Mode PSU 16.10} \\
\hline & \multicolumn{2}{|l|}{E/838-1 Graphic Equalis} \\
\hline & \multicolumn{2}{|l|}{E/838-2 Servo Fail-Sate (four-off).} \\
\hline & \multicolumn{2}{|l|}{E/838-3 Universal EPROM prog. . . 9.64} \\
\hline & \multicolumn{2}{|l|}{E/839-1 NiCad Charger/Regen. 3,77} \\
\hline & \multicolumn{2}{|l|}{E/839-2 Digger} \\
\hline & \multicolumn{2}{|l|}{E/839-3 64K DR} \\
\hline & \multicolumn{2}{|l|}{E/8310-1 Supply Protector} \\
\hline & \multicolumn{2}{|l|}{E/8310-2 Car Alarm...............} \\
\hline \multicolumn{3}{|r|}{E/8310-3 Typewriter Interface 4.17} \\
\hline & \multicolumn{2}{|l|}{E/8311-1 Mini Drum Synth} \\
\hline & \multicolumn{2}{|l|}{E/8311-2 Alarm Extender} \\
\hline & \multicolumn{2}{|l|}{E/8311-3 Multiswitch} \\
\hline & \multicolumn{2}{|l|}{E/8311-4 Multiple Port. 4.34} \\
\hline & \multicolumn{2}{|l|}{E/8311-5 DAC/ADC Filter 3.22} \\
\hline & \multicolumn{2}{|l|}{E/8311-6 Light Pen E/8311-7 Logic Clip} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{E/8311-8 MC Head (JLLH) 3.17} \\
\hline \multicolumn{3}{|c|}{E/8312-1 Lightsaver.} \\
\hline \multicolumn{3}{|c|}{E/8312-2 A-to-D Board} \\
\hline \multicolumn{3}{|r|}{E/8312-3 Light Chaser (2 bds) 7.54} \\
\hline & \multicolumn{2}{|l|}{E/8312-4 ZX Alarm 6.04} \\
\hline \multicolumn{3}{|l|}{} \\
\hline & \multicolumn{2}{|l|}{E/841-1 Vector Graphicsen . . 8.27} \\
\hline \multicolumn{3}{|l|}{\(\square \quad\) E/842-1 Speech Board} \\
\hline & \multicolumn{2}{|l|}{(Mini-Mynah)} \\
\hline \multicolumn{3}{|l|}{MODULAR PREAMP:} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{E/842-2 Disc input (mono) 3.73}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{E/842-4 Relay/PSU3.73} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { E/842-5 Tone, main (mono) } 3.73 \\
& \text { E/842-6 Tone, filter (stereo) } 3.73
\end{aligned}
\]}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{E/842-7 Balanced output (stereo). \(\qquad\)} \\
\hline \multirow[t]{5}{*}{} & \multicolumn{2}{|l|}{E/842-8 Headphone amp} \\
\hline & \multicolumn{2}{|l|}{E/842-9 Mother board} \\
\hline & \multicolumn{2}{|l|}{E/843-1 Power Meter 5.81} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{E/843-2 280 DRAM 9.79}} \\
\hline & & \\
\hline
\end{tabular}

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Signed Road, London WC2H OEE. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.

Total for boards
Add 45p p\&p
Total enclosed

\section*{PLEASE ALLOW 28 DAYS FOR DELIVERY}

\title{
Heathkit - IT'SA PIEASURE TO BUILD
}

Bring the enjoyment back into your hobby with a kit from Heathkit. The beautifully illustrated documentation and step-bystep instructions make building a Heathkit a relaxing, absorbing pleasure! Choose from their huge range of fascinating kits and self-instruction electronics and computing courses. The Heathkit range includes the ultimate in amateur radio kits, computerised weather stations, a highly sophisticated robot, a l6-bit computer kit and a range of home (or classroom) learning courses. These state-of-the-art courses have easy-to-understand texts and illustrations, divided into sections so that you can progress at your own pace, whilst the hands-on experiments ensure longterm retention of the material covered.

You'll find Heathkits available for Amateur Radio Gear • Car Test Equipment - Kits For The Home - Self-Instruction Courses - Computer Kits - Test Instrument Kits - Kits For Weather Measurements.

All the most popular kits and educational products are fully detailed in the 1984 Maplin catalogue (see outside back cover of this magazine for details) or for the full list of Heathkit products send 50p for the Heathkit International Catalogue complete with a UK price list of all items.

All Heathkit products available in the UK from:

\section*{Maplin Electronic} Supplies Ltd.
P.O. Box 3, Rayleigh, Essex, SS6 8LR. Tel: (0702) 552911.
(For shop addresses see back cover.)

\(\star \star \star \star \star\) NEW \(\star \star \star \star \star\)
Digital Frequency Meter/Timer Kit Type FC38A Time Measurement 10 ms (1 uS steps) \(-10^{5} \operatorname{secs}(10 \mathrm{sec}\) steps) in 8 ranges.
Crystal Oscillator Output \(1 \mathrm{MHZ}-0.1 \mathrm{HZ}\) in 8 decade steps. Electronic Range Selection - Mode selection switched. Max. sensitivity 25 MV - Max input voltage 200 V - mains operated.
A general purpose instrument for measurement and calibration.

Both kits include comprehensive design details and complete assembly instructions. Uses quality components. Case is punched, stove-enamelled and printed to give a professional finish.
Built \& Tested
\(E 85.50\) inc P\&P and VAT
SEND CHEQUE ORP.O. ALLOW21 DAYS FOR DELIVERY BRANIME MARKETING LTD ETT/3
BALTHANE IND. EST., BALLASALLA, ISLE OF MAN

\title{
EHFGHRONICS Now! The PRACHICAT wey!
}

\section*{YOURCAREER..YOUR FUTURE..YOUR OWN BUSINESS..YOUR HOBBY THIS IS THE AGE-OF ELECTRONICS! the world's fastest growth industry...}

There is a world wide demand for designers/engineers and for men to service and mantain all the electronic equitment on the market today - industrial - commercial and domestic. No unemployment in this walk of life!
Also -. the most exciting of all hobbies - expecially if you know the basic essentials of the subject.
A few hours a week for less than a year - and the knowledge will be yours.
We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute rinnumum of theory.

You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a self employed servicing engineer

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any, time, for advice or help during your work \(A\) Certificate is given at the end of every course.

You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuilts and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V \(\mathrm{Hi}-\mathrm{FI}\), VCR and microprocessor/computer equipment.

CACC Buitish NationalBadiod Hicctronics School Reading,Berks.RGl IBR

\title{
PCB FOIL PATTERNS
}

The Audio Power Meter

The Z80 DRAM

The Obedient die

The Mini-Mynah. This is the component side pattern which should have accompanied last month's Speech Processor project.

\section*{THEATRE \& BAND LIGHTING}

\author{
\(12 \times 1 \mathrm{~K}\) LESS THAN £200!
}

The days of hiring your electronics are over. Youknow we manufacture a range of power packs, desks, lanterns, stands, etc. NOW WE ARE PLEASED TO INTRODUCE THE APD SERIES OF MODULAR DIMMERS. Incorporating technology that allows the control of Inductive as well as resistive loads, you build a system exact to your requirements, and save a fortune in process. So where is the sense in hiring????

\section*{Contact our sales for free infor:}

The Sales Manager MJL SYSTEMS LTD 45 Wortley Road W. Croydon CRO 3EB Surrey, U.K.
Tel: 01-689 4138
(Mon-Fri 9-5pm)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
PARNDON ELECTRONICS LTD. \\
Dept 23, 44 Paddock Mead, Harlow, Essex. CM18 7RR. Tel 027932700
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
RESISTORS: \(1 / 4\) Watt Carbon Film E24 range \(\pm 5 \%\) tolerance \\
Bandoliered and colour coded. Full Range 1RO-10M. \\
\(\mathbf{£ 1 . 0 0}\) per hundred mixed (Min 10 per value) \(\mathbf{6 8 . 5 0}\) per thousand mixed (Min 50 per value) \\
Special stock pack 60 values. 10 of each \(\mathbf{£ 5 . 5 0}\)
\end{tabular}} \\
\hline \begin{tabular}{ccc}
\multicolumn{4}{c}{ RECTIFIERS } \\
\multicolumn{3}{c}{} \\
1 Amp & 3 Amp \\
100 V & 3 p & 14 p \\
200 V & 5 p & 14 p \\
400 V & 6 p & 14 p \\
\hline
\end{tabular} & \begin{tabular}{l}
31⁄2 Digit LCD Display: 1 colon, 3 decimal ponts plus/minus sign and lo bat indicator Complete with low power 7106 A/D converter display driver Driver set \(\mathbf{8 8 . 9 5}\) \\
Display £3.50 \\
Driver \(\mathbf{£ 6 . 5 0}\)
\end{tabular} \\
\hline \(\begin{array}{rcc}600 \mathrm{~V} & 8 \mathrm{p} & 20 \mathrm{p} \\ 1000 \mathrm{~V} & 9 \mathrm{p} & 25 \mathrm{p}\end{array}\) & DIODES: IN4148 \(\mathbf{£ 1 . 6 0}\) per hundred \\
\hline \multicolumn{2}{|l|}{\(\begin{array}{ll}\text { DIL } & 8 \text { pin-10p. } 14 \text { pin-11p. 16p pin-12p. } 18 \text { p pin-19p. 20p pin-21p } \\ \text { SOCKETS } & 22 \text { pin-23p. } 24 \text { pin-25p. } 28 \text { pin-27p } 40 \text { pin-42p. }\end{array}\)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Full List Available - Send SAE \\
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK \(£ 1.00\) OVERSEAS \(£ 5\) CASH WITH ORDER PLEASE Same Day Despatch
\end{tabular}} \\
\hline
\end{tabular}

\title{
Please mention E.T.I. when replying to all adverts
}

BRITAINS LEADING qUALITY COMPONENT SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST attractive oiscounts-free postage gooo senyice a deliveay

28 St Jude's Road Englefield Green, Egham, Surrey TW20 OHB. Tel. \((0785) 33603\) Telex 264475 . North-680 Burnage LAne, Manchesler (061 -432 4945). EV Computing Shop. 700 Birnage Lane, Manchester (061-4314866).

\section*{FREE CAREER BOOKLET Train for success, for a better job, better pay}

Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career.

Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already!

Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.

Send for your FREE CAREER BOOKLET today-at no cost or obligation at all.

\section*{ELECTRONICS TODAY INTERNATIONAL}

\section*{CLASSIFIED}

\section*{Lineage:}

35p per word (minimum 15 words) Semi Display: (minimum 2 cms) \(£ 10.00\) per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01.4370699

Send your requirements to Debbie Miller
ASP Ltd.,
1 Golden Square, London W1.

\section*{ALARMS}

\section*{A1 INTRUDER ALARMS}

Wholesaie Alarm Suppliers
Latest D.I.Y. \& Wholesale Published Catalogue. Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13
Tel: 0512283483 or 051-220 0590

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

BURGLAR ALARM EQUIP. MENT: As used in the trade. JN Security Centre, 176 Sydenham Road, London SE26 5JZ. 01-778-1111. Showrooms open six days

\section*{PLANS 'N DESIGN}

\section*{AMAZING ELECTRONIC} plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

\section*{BOOKS \& PUBLICATIONS}

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heli phonic music, telekinetics Computer software. S.A.E. \(4 \times 9^{\prime \prime}\), Paralab, Downton Wiltshire

\section*{EQUIPMENT}

Printed Circuit Boards to your specification from artwork through to finished board

35 Grosvenor Road Twickenham, Middlesex
TEL:01.891 1923/1513 Telex 295093

AERIAL AMPLIFIERS improve weak television reception. Price £6.70. S.A.E. for leaflets Electronic Mailorder, Ramsbottom, Lancashire, BLO 9AGH.

NEW 8-bit A-D converter for ZX81 and Spectrum - 8 channels. 50,000 readings per second, with sample - and programmable gain levels digital I/O - low cost £55.00 ready to plug in and run orders, enquiries to STP Electronics, 15 Derwent Yard, Derwent Road, London W5 4TN Tel: 01-579 1022.

GOOD WORKING transis torised test equipment and breakdown units, S.A.E. to S.H.E., 5 St Joseph's Dark, Ballycruttle, BT30 7EN.

\author{
EQUIPMENT TO SELL? PHONE DEBBIE ON 01-437 0699
}

\section*{BUMPER BOX OF BITS} WOW! We've got so many components in stock. we can't possibly list them all-So buy a box. In it you'll find resistors, capacitors, displays, switches. panels with tran sistors, diodes, IC's etc., coils, pots... and so on. All modern parts - guaranteed a least 1000 items, minimum weight 10 lbs ONLY £8.50 inc. 48 page catalogue

ELECTRONICS WORLD
Wows Road,
WIIt SP2 7 SN

\section*{TO BOOK THIS SPACE PHONE ASP CLASSIFIED 01-4370699}

LOW COST, high quality components, e.g. 2SC710-34p, 2SC945 - 17 p 2SC1226 95p, 2SC1307 - £1.72, 2SC1957-38p, 2SC2078£1.03, KIA7205 - £1.55, LA1230 - £2.64, LA4422 £1.55, LC7137 - £3.28, MB3712- £1.72, MC3357£5.17, PLLO2A - £7.68, TA7205 - 78p, TA7222 £1.55 TA7310 - £1.29, UPC1182 - £1.47. Others available. Orders over \(£ 3\) post free. Others add 50p. 201 Freeman St., Grimsby, S . Humberside 0472360037.

\section*{BULK COMPONENTS} Resistors-Idealformaking intopacks or iust to increase stocks at a very low price. tors in original boxes/packets/reels. Because most are packed in thousands (some are 100'sl you'll need to buy a large quentity to get a reasonable mix. You'l get carbon/film/oxide mixed tolerances 50.000 £60. 100.000 £ 110 ; \(1 / 4\) million £250; 1 million \(£ 950\). All prices inclusive. SAE for samples
We also stock capacitors, semiconduc tors, veroboards etc in bulk SAE for PCELECTRONICS 1 THORNHILL, SALISBURY' WHITS SPS

\section*{IRISH}

READERS
MAIL ORDER COMPONENTS

\section*{Top quality components Great prices}

Return-of-post service
Write or phone for free price list WAVEFORM ELECTRONICS 12 Effra Road, Rathmines, Dublin 6.

Phone (01) 987507
Mail order only please

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with fullinstructions, £2.50. Developer 35p. Ferric Chloride 60 p . Clear acetate sheet for master 15 p . Copper-clad fibreglass board, approx. 1 mm thick £2.00 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

\section*{VHFTRANSMITTERMODULE}
\(K i t\), size 2 inches by \(1 / 2\) inch. Hyper-sensitive pickup. Hi-fi quality reception on domestic VHF/FM Radio. Sub-min components for exceptional transmission stability. \(70-150 \mathrm{MHz}\), range dependent on voltage (6 18 V). Includes ultra-sensitive microphone, illustrated plans etc. NB new price reduced to \(£ 6.95\), post paid, send cash/ cheque/PO to Modulex, P.O. Box 102, Dartford, Kent DA1 2PW.

Build your own high performance AUDIO SIGNAL GENERATOR £25.00 incl, case (p.p.£1) Spec
Very low distortion (only \(02 \%\)) Output 1 v into 600 Ohms. (Attenuated) \(10 \mathrm{~Hz}-100 \mathrm{Khz}\). Sine-Square (A Linsley-Hood design)
TELERADIO ELECTRONICS 325 Fore Street, Edmonton London N9 OPE Ready made \(\mathbf{£ 3 0 . 0 0}\)

\section*{FOR SALE}

EVERYDAY ELECTRONICS magazines Dec 77 - August 78 and Oct 78 -June 79 for sale. Highest offer secures. Tel: Cam (0223) 350072.

IS ACCURATE TIMING ESSENTIAL TO YOU?
PRECISION DIGITAL TIMER KIT.

All solid state. No relays. Will switch 240VAC@8Afor time perlods for 1 sec
to 42 minutes in 1 or 10 sec steps. to 42 minutes in 1 or 10 sec steps.
Accurate to better than \(1 / 100 \mathrm{sec}\). for all time periods. No RC time constants involved.
deal for darkroom, UV lamp, egg timingetc. Smart case, D.S. PCB, allcomponents, screws, minature 3 pin plug tead. Full circult assembly instructions. Can ber wired for 240 V or 120 V . State if to be used on 50 or 60 cycles. PRICE \(£ 37.50+£ 2.00\) P8P.
Ready built; £12 extra.
ANTEXSOLDERING IRONS \(£ 4.65\) SPARE BITSALL SIZES 65p ea. VIC-20 starter pack E130.42 COMMODORE \(64 £ 175\) VIC games cartridges including Sargon Chess all reduced to
\(£ 8.65\) each \(+\mathrm{P} \& \mathrm{P}\)
FLOPPY DISCKETS BY VERBATIM
\(51 / 4^{\prime \prime}\) S S dual density box of 10 E22 + £ 1.10 p\&p 5 yr warranty usual price \(£ 30+\)
Add \(15 \%\) VAT. + p 8 p to all UK Orders GPT ELECTRONICS
63 Cambridge Seré, \(\mathrm{Cambridgeshire} \mathrm{PE18} \mathrm{8AY}\). Ph. Geoff Miller 048056382

\section*{FOR SALE}

MILLENIUM micro system designer 1000 with 8086 personality module - -1600 : Powertran PSI80 Micro computer with VDU - E120. Tel: 041-644 3455. Or write: Clark, 54 Woodbank Crescent, Clarkston, Giasgow G76 TDR.

\section*{3 SUPERB POWERSLAVES. .}

12 watt case \& sliders/ £10.85. . 100 watt modules/ \(£ 7.60+60 \mathrm{w}\) cased 240 volt, selektor \& controls/£20. KIA-8, Cunliffe Rd., Ilkley.
FREE parcel of L.E.D.'s, decoders, components worth £ 10 ! Send only 80 p postage! Braintree, Éssex.

\section*{100W AMPLIFIER}
- £9.95 built

Or use the same board for 50 W , \(150 \mathrm{~W}, 200 \mathrm{~W}\) into 4 or 8 ohms etc., by using alternative output transistors and P.S.U. SAE for full details to:

ESS AMPLIFICATION Innovation House Guildhall Road, Hull

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

\section*{COMPUTER ADD-ONS}

Microtan 65 Eprom Switching Board
Perm any 4 from 16 . Software controlled. Bareboard + instructions \(£ 19.95\) postcard, 3 pass assembler, word processor etc. Large SAE for details.
M.P.D., 7 Cedar Close, Grafham, Huntingdon PE18 ODZ.

\section*{COMPUTER FOR SALE}

\section*{NEW SAGE II}

Twin discs plus RAM disk.
Surplus to requirements
Retail at \(£ 3995\). to clear \(£ 3495\) (+VAT)
WHEATHAMPSTEAD
(058-283) 3003-4

\section*{WHATEVER YOUR SELLING, GET THE BEST RESPONSE FROM ETI 01-4370699}

REPAIRS, electrical, electronic measuring equipment. A complete service at a highly competitive price. Postage, estimates free. 14 day Turns Round. British Tele-Comm approved. Ledon Instruments Ltd, Gladstone Road, Folkstone, Kent. (0303) 57555.

\section*{MENDASCOPE LTD}

Repair \& recalibrate Oscilloscopes All makes, all models
Scopex, Safgan, older TEK \& TQ Otter House, Weston Underwood Olney, Bucks MK46 5JS
Beford (0234) 712445
For the complete service

KITS (e.g. Maplin Power Tran). Built, tested to professional spec. Charges; to \(£ 200=£ 15\); to \(£ 300, £ 30 ; £ 300+, £ 50\). Telephone 01-888 0892.

\section*{WANTED}

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

\section*{BUSINESS PREMISES}

LOCK-UP, Double-fronted Shop, (Electronic components \& equipment), main bus route, Hayes, Middx. Official parking area outside shop, free public car park 200 yards. 400 square feet, five year lease at \(£ 3,500\) P.A. 10 years very goodwill. £10,000. Stock \& fittings optional at valuation: contact Linway Electronics, 843 Uxbridge Rd, Hayes end, Middlesex UB4 8HZ.

CHESHIRE

41 Winwick St., Warrington Tel. 54174
Open: Mon-Fri 9.30-6
(closed Tues) Sat 9.30-5 Components, aerials \& burglar alarm specialists

LANCASHIRE
ETESON ELECTRONICS 158 Lower Green, - Fylde, Blackpool Tel: (0253) 886107 TOPPoulton Tel: (0253) 886107
Open: \({ }^{9} 30 a \mathrm{arn} 1230 \quad 1.30 .530\) Closed Wed 8

MERSEYSIDE
PROGRESSIVE RADIO
93 Dale Street. Tel 0512360982 47 Whitechapel, Tel 0512365489 Liverpool 2 THE ELECTRONICS SPECIALISTS' Open: Tues-Sat 9.30-5.30 MERSEYSIDE
\(\qquad\) WYMCA Building, College St:, St. Helens Tol. 50787 Open: Mon-Fri \(9.30-5.30\) (cloeed Thurs) Sat \(9.30 \cdot 5\) specialists

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD. 45 Castle Arcade, Cardiff

TEL: 022241905
Open: Mon-Sat 9-5.30
For components to computers

\section*{ASP Ltd 1 Golden Square London W.1.}

\title{
It's easy \\ to complain about advertisements. \\ The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right.
}
A.S.A. Ltd., Brook House,Torrington Place, London WCIE 7HN.

\section*{High performance, low price kits for today's musicians}

\section*{DIGITAL DELAY LINE}

Digital delay circuitry is an absolute necessity for high quality studio work, but usually comes with a four-figure price tag.

Powertran can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6 mSecs to 1.6 secs with many powerful effects including phasing, flanging, A.D.T., chorus, echo and vibrato. The basic kit is extended in 400 msec steps up to 1.6 seconds simply by adding more parts to the PCB.
Complete kit
(400 ms delay)
\(£ 130\)
Parts for extra 400 mS delay
(up to 3).
\(£ 9.50\)

\section*{‘DESTINY' MIXER}

This versatile mixer offers a maximum of 24 inputs, 4 outputs, and an auxiliary channel Input channels have Mic/Line, variable gain bass/treble, and middle frequency equaliser Output channels have PPM displays and record/studio outputs. There are send/return jacks, auxiliary, pan and fader controls, and out put and group switching. There is also a headphone jack and built-in talk-back microphone.

input channel... \(£ 19.50\)
Output channel.. 18.50
Aux. channel .. 222.50
Blank panel.. 20
Base unit and front....................................... \(£ 27.50\)
Pair of end cheeks 12.50
Power supply and cabinetE19.50

\section*{TRANSCENDENT 2000}

ETI single board synthesizer.

This professional quality 3 -octave instrument is transposable 2 octaves up or down, giving an effective 7 -octave range.

There is portemento pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope shaper. Other features include special circuitry with precision components to ensure tuning stability.

Complete kit

MPA 200
100 watt mixer/amplifier

Here's a rugged, professionally finished mixer amp designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components are supplied for additional inputs), 3 tone controls, each with 15 dB boost and 15 dB cut, and a master volume control.

Complete kit. \(\qquad\) \(£ 49.90\)

\section*{SP2-200}

2-channel, 100 -watt amplifer
The SP2-200 uses
two of the power amplifier two of the power amplifier sections of the MPA 200 (above), each with its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100 W ms into 8 ohms. Each channel has its own volume control, and a sensitivity of \(0.775 \mathrm{mV}(\mathrm{OdBm})\) makes this amplifer suitable for virtually all pre-amps or mixers.

Complete kit
\(£ 64.90\)
CHROMATHEQUE 5000 ETI 5-channel lighting

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both functions. It controls 5 banks of lamps up to 500 W each in either analog or digital mode. And the 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4 -channel systems. Versatile light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal and construction straightforward.

Complete kit.
\(£ 49.50\)

All prices are exclusive of VAT. Free carriage in UK - export at cost. \\ \title{
Full-travel, full size \\ \title{
Full-travel, full size \\ Mayode \\ Simply plugs into expansion port on your \\
}

* Single-key selection of all major multi-key functions.
* Plugs directly into Spectrum expansion port and extends port for other peripherals.
\(\star\) Can accept Atari-type joysticks (optional extra).
* Absolutely no soldering or dismantling of Spectrum.
* Available in kit-form or ready-built.

The kit is sold in three parts - the Keyboard Main Kit which allows you to make your own arrangements for connection to the Spectrum - the Adaptor Kit which contains the extension board and socket for the expansion port and the cable between the

extension board and the keyboard and the Case Kit which includes all the necessary mounting hardware.
\begin{tabular}{cll}
Order As & LK29G (Keyboard Main Kit) & Price \(£ 28.50\) \\
& LK30H (Adaptor Kit) & Price \(£ 6.50\) \\
& XG35Q (Case) & Price \(£ 4.95\)
\end{tabular}

Full construction details in Projects Book 9.
Also available ready-built for direct connection and including case. Order As XG36P (Spectrum Keyboard) Price \(£ 44.95\)

\section*{Maplin's Fantastic Projects}

Full details in our project books. Price 70p each.
In Book 1 (XA01B) 120W rms MOSFET Combo-Amplifier. Universal Timer with 18 program times and 4 outputs - Temperature Gauge Six Vero Projects.

In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.

In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25 W MOSFET Amplifier - Doppler Radar Intruder Detector • Remote Control for Train Controller.

In Book 4 (XAO4E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz * Ultrasonic Intruder Detector • I/O Port for ZX81 - Car Burglar Alarm Remote Contol for 25W Stereo Amp.
In Book 5 (XA05F) Modem to European standard - 100 W 240 V AC

\section*{1984}

A massive 480 big pages of description; pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price \(£ 1.35\) - It's incredible value for money. Or send \(£ 1.65\) (including p \& p) to our mail-order address.

Inverter - Sourids Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 • Module to Bridge two of our MOSFET amps to make a 350W Amp - ZX81 Sound on your TV • Scratch Filter • Damp Meter - Four Simple Projects In Book 7 (XA07H) Modem (RS232) Interface for ZX81/VIC20 - Digital Enlarger Timer/Controller - DXers Audio Processor • Sweep Oscillator CMOS Crystal Calibrator.

\section*{Great Projects From E\&MM}

Our book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first Year.

Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price £1.

In Book 8 (XA08J) Modem (RS232) Interface for Dragon and Spectrum Synchime - I/O Ports for Dragon Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.

In Book 9 (XA09K) Keyboard with electronics for ZX Spectrum - InfraRed Intruder Detector - Multimeter to Frequency Meter Converter - FM

Radio with no alignment - Hi-Res Graphics for ZX81 - Speech Synthesiser for Oric - VIC Extendiboard •ZX81 ExtendiRAM Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to Modem/RS232 Converter - Logic Pulser - Psuedó-Stereo AM Radio • Ni -Cad Charger Timer - AdderSubtractor - Syndrums' Interface Microphone Pre-Amp Limiter.

\section*{THE MAPLIN MODEM. KIT}

Exchange programs with friends, leave or read messages from the various Billboard services, talk to computer bureaux, or place orders and check stock levels on Maplin's Cashtel
 service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential.
Now you can exchange data with any other computer using a 300 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.
Some computers need an interface and we have kits for the ZX81, VIC20/Commodore 64, Dragon and Spectrum and shortly Atari, whilst the BBC needs only a short program which is listed in Projects Book 8.
A Maplin Modem will add a new dimension to your hobby.
Order As LW99H (Modem Kit) excluding case. Price £39.95.
YK62S (Modem Case) Price \(£ 9.95\).
Full construction details in Projects Book 5.

Post this coupon now for your copy of the 1984 catalogue. Price \(£ 1,35+30\) p post and packaging. If you live outside the U.K. send \(£ 2.20\) or 11 International Reply Coupons. I enclose \(£ 1.65\)

\section*{Name.}

Address
\(E T I / 3 / 84\)

\section*{ELECTRONIC}

SUPPLIES LTD
Mail Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 - Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926, - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed all day Monday.
All prices include VAT and carriage. Please add 50 p handling charge to orders under \(£ 5\) total value (except catalogue).```

