An Argus Specialist Publication

CHAT WITH YOUR COMPUTER!

Versatile allophone speech synthesis board with: - four levels of inflection

- 2K of on-board RAM storing $100+$ words - speech reproduced as words, phrases or sentences - simple interface requirements - low software overhead

Low-price robots from POWERTRAN

- hydraulically powered - microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as $£ 425$, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or $120 v$ AC or from a $12 v$ DC supply. Up to six independent
 axes are capable of simultaneous operation and all except the grip axis have sensing devices fitted to provide positional control by a closed loop system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.
 ed or

Dave Bradshaw: Editor Phil Walker: Project Editor Ian Pitt: Editorial Assistant Jerry Fowler: Technical illustrator Paul Stanyer: Ad. Manager Lynn Collis: Copy Control Ron Harris B.Sc: Managing Editor T.J. Connell: Chief Executive PUBLISHED BY
Argus Specialist Publications Ltd.
1 Golden Square, London W1R 3AB.
DISTRIBUTED'BY:
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY
The Garden City Press Ltd
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead and their and their CERMANY - Halvor Moorsh EDITORS HOLLAND - Anton Kriegsman

ABC

Member of the
Audit Bureau
of Circulation
Electronics Today is normally published on the first Fr day in the month preceding cover date. The contents of this publication including all articles, designs, plans, tellectual property rights therein belong ot Aer inSpecialist Publications limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of internationall copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. © 1983 Argus Specialist Publications Ltd \square All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to held responsible however for any variations affecting price or availability which may occur after the publica tion has closed for press.
\square Subscription Rates. UK $£ 13.75$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST11
our montly round-up of all the press releases we couldn't quite fit in the waste bin,

SOLDERING IRON REVIEW . . . 36 Unable to afford a smart new Litesold EC50 temperature controlled soldering iron of his own, our editor has been driven to request a

PROJECTS

MINI-MYNAH20

Be it a verbose Vic or a loquacious Lynx, ETI's speech synthesis board will make your micro speak up for itself.

Z80 DRAM

29
By popular demand, the first of two articles by Bob Campbell explaining how to use the 64 K DRAM board

MODULAR PREAMP 51 Barry Porterties up the loose ends of his made-to-measure preamplifier.

AUDIO DESIGN
56
John Linsley Hood's latest release on cassette and open reel.

MACHINE CODE

PROGRAMMING

Held over from last month and well worth waiting for - Bob Bennett goes beyond the index registers.

INFORMATION

NEXT MONTH'S ETI 8
READER'S SERVICES 76
ETI BOOK SERVICE ADVERTISERS' INDEX 82
with Z80 based systems.

BENCH POWER SUPPLY41

Power you don't have to be corrupt to afford! This unit offers single and dual rail variable supplies and is even available as kit.

ETI PCB SERVICE 75

WATFORD ELECTRONICS
 33:34 CARDIFF ROAD. WATFORD. HERTS. ENGLAND MAIL ORDER. CALLERS WELCOME
 Tel Watford (0923) 40588. Telex. 8956095

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, CASH, BANK DRAFT WITH ORDERS. TELEPHONE ORDERS BY ACCESS/MASTER CHARGE ACCEPTED GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&PADD 60p TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGE AT COST. PRICES CORRECT AT THE TIME OF GOING TO PRESS.

AT Export ordere no VAT. Applicable to U.K. Customers only. Unless stated ot hewise We stock thousands more Items. It pays to visit ue. We are sltuated behind Watford Football Ground. Nearest Underground/BR Station: Watiord High Sireet.

\qquad

180p; 25V: $220090 \mathrm{p} ; 3300$ 98p; 4000.4700 98p; 10.000 320p; 15,000 345p; 16 V : 22.000 350p.				

48p; 1u5 55p; 2u2 58p; 4u7 66p.
1000v: $1 \mathrm{nF} 17 \mathrm{p} ; 1 \mathrm{OFF} 30 \mathrm{p} ; 15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n}$ 36p; $33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n}, 100 \mathrm{n} 42 \mathrm{p}$.

POLYESTER RADIAL LEAD CAPACITORS: 250V 10n, 15n, 22n, 27n6p; 33n, 47n, 68n. 100 Bmp ; $150 \mathrm{n}, 220 \mathrm{n}$ 10p; 330n. 470n $15 p$; 680n 19p; 1u5 40p; 2u2 48p.	fEED-THROUGH CAPACITORS 1000pF/450V	10p

SIEmENS pcb
Tyoe Miniatur 10p; 330n, 470n 15p; 680n 19p; 1u
TANTALUMM 日EAD CAPACITORS
35V: 0.1uF, $0.22,0.3315 p$ 15 $47,0$.
 18p; t15, 36p; 22 36p; 33,4750p; 100
95p; 10V: 15, 22.26p; 33.4750p; 100
95p; 10V: 15.22 .2.
80p; $6 \mathrm{~V}: 100$ 55p.

Range: 0.5 pF to $10 \mathrm{nF} 4 \mathrm{p} .15 \mathrm{nF}, 22 \mathrm{nF}$

POLYSTYRENE CAPACITOAS:
10pF to 1 nF 8p: 1.5 nF to 12 nF 10

SILVER MICA (Values in PF$)$
$2.3 .3,47,68,82,10,12.15 .18$, $22,27.33,39,47,50.56 .68 .75 .82$,
$85,100,120,150.180 \mathrm{pF}$
$200,15 \mathrm{pes}$ $85,100,120.150,180 \mathrm{pF} \quad 15 \mathrm{p}$

$200,220.250,270,300,330,360$, $\begin{array}{ll}\text { 390. } 470.800 .800,820 & \text { 21p each } \\ 100.1200,1800.2200 & \text { 30p each }\end{array}$ | $100.1200,1800$. |
| :--- |
| $3300,4700 \mathrm{pF}$ |

MINIATURE TRIMMERS Capacitors
$\begin{aligned} & \text { 2-6pF } \\ & 2-10 \mathrm{pF} \\ & \mathbf{2 2 p} ;\end{aligned} \quad 2-25 \mathrm{pF}, 5-65 \mathrm{pF}$ 30p; 10.88 pF 36p.

RESISTORS

 025W0.5 W 2\% Metal Film
RESISTORS NETWORK S.I.L.
7 Commoned (8 pins) $100,680,1 \mathrm{~K} 2 \mathrm{k} 2,4 \mathrm{~K} 7$
10 K 47 K 100 K 25 p

DIODE

你NN

 \& ©

 míning

CRICKLEWOOD ELECTRONICS LTD

TELEPHONE 01-452 0'61 01-450 0995 TELEX 914977

ALL PRODUCT FIRST GRADE FRANCHISED SOURCE

All advertised items are guaranteed to conform with, or surpass manufacturer's current data sheets. This list represents a fraction of our stock. New items are constantly being brought into stock Cricklewood Electronics keep up with the times. Please phone about all your electronic needs.

HOW TO ORDER: 1 Mail order with cheque, P.O., Bank Draft, Regis tered Cash, or write Credit Card* number on order with signature Please add 60 p post, packing and insurance, more for heavy goods.

Securicor available. ZPhone your order quoting Credit Card * number. 3Call in. You will be more than welcome. 4Official orders accepted from Govt. Depts., Schools, Colleges, Armed Service Establishments, P.L.C.s and approved accounts. 5 Overseas orders by Bank Draft in Sterling end $\mathbf{£ 2 . 0 0}$ minimum post and packing. DHL plus $£ 65.00$ no V.A.T.
V.A.T. applicable to U.K. only. Please add 15% after adding P\&P to order. No V.A.T. on books and datasheets
DELIVERY all in stock items despatched same day (95\% of all advertised items are in stock), items out of stock in a few days - any problems and you will be informed immediately

ETI FEBRUARY 1984

CABLE TELEVISION ALL IT'S SUPPOSED TO BE?

A couple of years ago, cable television was described as a 'licence to print money' - exactly the same description that was applied to commercial television. Now the picture doesn't look nearly so bright. ETI will have a special report on cable television, taking the technical and financial issues that are deciding the future of our entertainment.

STEREO POWER METER

This device will give you a true indication of power, as it measures the current going to the load and multiplies it by the voltage to obtain the power none of these cheats where you measure just the voltage and hope the impedance is what it says on the case! And once you know the power, and you've measured the voltage, you could work out the
impedance. If you can also measure the current, you can then work out the phase angle as well...

Z80 DRAM CARD

Following on from this month's article on how to replace one set of DRAMs with a larger capacity set still within an existing system, here is a whole board full of memory, all for your Z80 system.

COMPLEX NUMBERS

Complex numbers are not as complicated as you think - in fact, once you get over your initial trepidation, you'll find that they make circuit calculations very much easier than they ever are by other means!

ALL THIS AND MUCH MORE IN THE MARCH ISSUE OF ETI ON SALE FEBRUARY 3rd - PLACE YOUR ORDER NOW OR RISK MISSING OUT!

Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.

THENEW

 THEMPFIPLUS

 THEMPFIPLUS
 Just look at the specification:-

 MPFIPLUS.
Technical Specification

CPU: Z80A - 158 instructions
Software:

- Z80/8080/8085 machine code
- 280 Assembler, line and 2 pass.
- 8K BASIC interpreter (Extra)
- 8K FORTH (Extra)

ROM: 8K Monitor (full listing and comments)
RAM: $4 K$ CMOS (2 $\times 6116$)
Input/Ouput: 48 system I/O lines
Speaker: 2.25" coned linear
Display: 20 character 14 segment green phosphorescent

Expansion:

- Socket for 8 K ROM
- Cassette interface

Connectors 40 way, complete CPU bus Keyboard: 49 key. Full "QWERTY" real movement good tactile feedback
Batteries: $4 \times U 11$ for memory back-up (batteries not included)
Serial Interface: 165 baud for read/write via audio cassette

Manuals

1. User's Manual. 8 chapters.
2. Over view and Installation.
3. Specification (hardware and software). 3. Description of
Operation. 4. Operating the MPF-1
Plus. 5. 44 Useful Sub-Routines.
4. The Text Editor.
5. Assembler and Disassembler
6. System Hardware Configuration.
7. Experiment Manual. 16 experiments.
8. Monitor Program Source Listing with full commenting.
9. Also available the MPF-1 Plus Student Work Book (self-learning text).

Accessories

- PRT-MPF-1P: 20 character printer. Ready to plug in. Memory dump.
- EPB-MPF-1P: Copy/list/verify $1 \mathrm{~K} / 2 \mathrm{~K} / 4 \mathrm{~K} / 8 \mathrm{~K}$ ROMS. Ready to plug in.
- SSB-MPF-1P: Speech Synthesizer. inc. 20 words and clock program. 1200 words available.
- SGB-MPF-1P: Sound Synthesizer Board.
- I/O-MPF-1P: input/output board
Yes! I now realise that I need an MPF1
PLUS and that it is the lowest cost Z80
SBC available with all these features.
I I enclose $£ 165.00$ ($£ 140.00+£ 21$ VAT I
plus £4 carriage). Overseas P.O.A.

Cheques payable to

I FLIGHT ELECTRONICS LTD.
Please debit my
1 Account No.
An invoice will automatically be sent.
I Name
Address \qquad
\qquad
Signature
available accessories it can also be used as a low-cost development fool or simply for , it OEMs.

Teaching you in a step p by mcorporates the 280 - the most step me tho of the MPEI PLUS, widely used 8 -bitmicrogrocesson, hetps the user fully understand in the world, to form a Single or the Sofware and Hatdware ofs Beard Computef (SBC).
Packed in a plastic \$ookcase logether with three. comprehensive mantials and powersteply to ES3651. standard , hae MPFi PLUSisa
microprocessor leatming tool for every application.

Electronics Lido
 FIGHT

COMTECH ELECTRONICS

${ }^{\text {BC }} 1078$												14 P		${ }_{5}^{52}$												
			100					23p							688											
								56p																		
					MPSA64 22			500				160														
8C 119	280	BC	$9 p$	BF $200{ }^{\text {a }}$	MPSA ${ }^{\text {g }}$ 24			580		34p	4008	50 p	45		6821	781	300									
BC 139	32p		109	BF 224	TIP 29A 3			1200		50	4011	140	4506		68											
			10 p	2p					2 N 4	20p																
										300																
					${ }_{\text {TIP }}$			10 p						${ }_{48}$												
				2 O									45			${ }_{7812}$										
	80		9	259				砣					45													
${ }_{\text {BC }} 1718$	9	BC 56	108	${ }_{\text {BF }} \mathbf{3 3 6}$ 369			N3	10 p			40	30 p	451	1800		782										
		BC63	200					10 P	c2	5	402		45	52p	${ }^{\text {8T }}$											
			${ }^{200}$					50p	c 226	10 p		429	${ }_{4}^{452}$	5	${ }^{87}$											
									$\mathrm{C}^{2265} 9$	0 p	402	14p	45													
${ }_{8 C}$	15	BCr		${ }_{8 F}{ }^{\text {a } 59}$	${ }_{T 17} 34 \mathrm{~A}$			20p		\％	4024	380	硡	56	808		Op									
	9		${ }^{188}$						C 2460	8p	${ }_{4}^{4025}$	${ }_{84}^{149}$	4529													
			500				N3866	ciso	${ }^{2} 246 \mathrm{M}$					1080	${ }_{82} 82$											
								30 p									5									
${ }_{8 C} 21$			${ }_{30} 3$					300				48		148 c	82	7924	${ }_{65 p}$									
								10 p																		
	9		3550					10 p				44 p	${ }_{4}^{455}$	168	TMS9981～											
			70							P				，												
									${ }_{3 A / 200 \mathrm{~V}}$			350		3900												
			700						$3 \mathrm{~A} / 400 \mathrm{~V}$	6					880A 4M 3											
			400	M 225	$2{ }^{2} 1613$			5p	6A 50	5p		520	4568	${ }^{2700}$		78ト										
				2965				${ }^{5 p}$	${ }_{64 / 200}^{\text {6A }}$			54 p		4420	14 4	Opra										
			500	${ }_{\text {M }}$				${ }^{88}$	6A／40					198 p	70056 60											
	32	B0 24	420	M 33001225	${ }^{2} 22$			280	254，100		4068	5	457	198	$214745 n 57$	H238										
				MJE 340			N545																			
	10		540	MJE 370 B00	2		${ }^{2} 5459$		LEDs			${ }_{15}$			${ }^{4016.200} 5$	TLL11	${ }^{\circ}$									
	12		55p	M．EE $3718{ }^{\text {84P }}$	2 N 222		N5550	${ }^{8}$	3 mm red	\％	${ }_{4}^{4072}$	150	459	1780												
	${ }_{12}^{12}$		68p	Stis 521				20 p																		
вс 338	12	BD	780	MJE 2955	${ }^{2} 23269$			－ 3 20p	mmge				Ics	EIS												
				MJE 305	${ }^{2} 2{ }^{2484}$																					
	10		300	${ }_{200}^{200}$			zent					5			2 pin											
BCC 416 C	10		30 p	A 1222 P	2N2904											$8 \mathrm{BP} \mathrm{\times} 43$										
	25			A				${ }^{68}$					18 pin 20 pin		0 pin 25p											
¢ $\begin{gathered}\mathrm{BC} 478 \\ \mathrm{BC} 479\end{gathered}$	238p	$\stackrel{\text { 8F } 194}{185}$	cin	MPSA 42 MPSA 43	$\begin{array}{ll}\text { 2N2906A } & 22 \\ \text { 2N2907 } & 23\end{array}$					${ }_{4}^{4 p}$	${ }_{40161}^{4098}$															
IINEA					Pacito				DES		Sistors															
				SAA5050 E10																						
${ }_{C} \mathrm{CA}$	760	LM 709	${ }_{700}^{350}$																							
${ }_{C A}$ CA		LM 71	${ }_{60 p}$		vel v pr				［																	
CA 30908	4	LM 733	750	76660																						
			14 p 50	TBA 20 S	${ }_{14}{ }^{2}$ F 63.6		3		creay																	
	10	LM 748	${ }_{\substack{350 \\ 350}}$	TEA550 240			（ens		－ 2028																	
${ }_{\text {CA }}$ CA 316	14	LM 3900			${ }^{4.7} \quad 25$.		35120		S92，																	
CA							${ }_{4 F 35}^{45^{4}}$								2 x	m）										
							${ }_{4} 2520$						RAND	NEW	COMPONENT	PACK										
CA 32760 E		${ }_{1738}$	5	TBA	10																					
	250	MC 3302	72p		22		${ }^{8}$																			
		MC 3403		TB																						
LF351		NE 529	2200	TCA270 12	2								O420				边									
－	${ }_{85 p}^{809}$	NE ${ }_{\text {ch3 }}$	${ }^{1600}$	TCA800 ${ }^{\text {The }}$																						
LF ${ }_{\text {LF }} 35$	${ }^{888}$	M	200 p		10		－																			
					l 100																					
LM		－	450	TDA2002 190	10063																					
		NE	1700	2004.4	220								0													
LM318	120	NE 565	1400	5	220				14 p				O													
		567	砍	2006																						
LM 34	600	NE 570		TDA2020250p					A／100V 25 p																	
LM	${ }^{48 p}$	NE571		20302200	47000																					
Lm_{4}	${ }^{680}$	NE645	${ }^{2700}$	dazasim	28p								19100													
	$140{ }^{\text {a }}$	RC4558		$3{ }^{\text {a }}$	2200 2200 10 205						DPST		10													
LM	${ }_{\text {120 }}^{120}$	AA1022		061					chionk																	
	${ }^{959}$	SAA 5000 SAA 51010		源							Sarig		255	Tr 14	220	biais										
$\begin{array}{r}\text { LM } 387 \\ \hline 1 \times 393\end{array}$	${ }^{1350}$	SAA5010	5sop	L										CIAL	BULK PURC	HASE										
$\begin{array}{r}\text { LM } \\ \hline\end{array}$	${ }_{45}^{16}$	SAA 5030 SAA504	E	2004					C／w）																	
ORDERING INFORMATION：Please add $\mathbf{5 0 0}$ P\＆P to all orders under £10．Cheques or postal orders made payable to Comtech Electronics Official orders welcome，trade please enquire．All items held in stock despatched same day．LARGE SAE brings full list．																										
						（N22p																				
								ecu																		
COMTECH ELECTRONICS									205 STURDEE ROAD LEICESTER LE2 9FY Telephone：（0533） 779578						＊SAME DAY DESPATCH＊ \star COMPETITIVE \＆RELIABLE＊											

DIGEST

Portable Projection TV

For those who find Clive Sinclair's $2^{\prime \prime}$ marvel a mite too small, Matsushita might just have the answer. Their latest addition to the portable TV market is a fold-flat projection colour television with a $6.5^{\prime \prime}$ screen.

The TV has been developed

Exhibitions Galore

You've seen the best, now see the rest! No, but seriously, folks, the exhibition season doesn't end with Breadboard, and there are a lot more people out there waiting to show off their wares and expertise. There are exhibitions of general interest, exhibitions aimed just at the chosen few, big exhibitions, small exhibitions, conferences, seminars, the lot. So get out your diaries and make a note of some of the following.

First off is the Acorn Education Exhibition which will take place in the Central Hall, Westminster, London, from the 25th to the 27th January. As its title suggests, the exhibition is aimed at those involved in education, teachers, lecturers, administrators, etc, and will bring together some of the many companies offering educational software, peripherals, and services for Acorn's BBC microcomputer. Interested readers should contact Tim
from Matsushita's large screem projection systems and uses three 5 cm projection tubes for red, green and blue instead of the single CRT found in conventional TVs. When folded for carrying it measures $250 \times 85 \times 310 \mathrm{~mm}$ and it weighs just 3 kg , about half the size and weight of currently available $7^{\prime \prime}$ screen televisions. It is also claimed to use only about a third as much power.

Matsushita have released very
little other information on the new TV and when we telephoned their UK press office they stressed that there are no plans as yel to introduce it here at all. Disappointed would-be purchasers will have to make do with either a Sinclair and a magnifying glass or a conventional $7^{\prime \prime}$ TV and a body-building course.

Also new from Matsushita is a more normally-sized TV (screen size is not stated) which is described as digital and multifunctional. Again, very little information is given on the circuitry, etc, but it apparently incorporates a microprocessor and several other LSI devices and thereby reduces the component count by 30% compared with conventional sets. Features include an 11-bit digital remote infra-red control unit which is theoretically capable of controlling up to 2,048 functions, allowing it to cope with additions such as a VTR, video disc, personal computer, etc. The set is equipped to handle Viewdata and Teletext and incorporates a special facility whereby a picture from one source may be inserted into a larger main picture, allowing simultaneous viewing of, for example, a programme and an information service. As with the projection TV, Matsushita say they have no plans to introduce the new model into the UK as yet. National Panasonic UK Ltd, 300318 Bath Road, Slough, Berks S11 6JB, tel Slough 34522.

Spaghetti Eater

If your office, workbench, or audio system is fast being swallowed up by a writhing mass of unidentified cables, Inmac's new cable tidies could be just what you need. Not only do they neatly group cables into bundles, they also allow you to indicate each cable's function, making it instantly identifiable.
The ties are available in both permanent and releasable form, and will hold up to six cables in a 35 mm diameter bunch. They cost $£ 5.00$ for a packet of $\mathbf{3 5}$. A releasable tie is also available with a self-adhesive pad so that a bundle of cables may be secured to any suitable surface. This type secures three or more cables in a bundle of up to 19 mm diameter and costs $£ 5.50$ for a pack of six. Lastly, there are identity ties, small ties which attach permanently to an individual cable and which have a 25 mm wide area on which you can write. These cost $£ 5.00$ for a pack of 35. Inmac UK Ltd, Davy Road, Astmoor, Runcorn, Cheshire WA7 1QF, tel 09285 67551.

Collins, Computer Marketplace Ltd, 20 Orange Street, London WC2H 7ED, tel 01-930 1612. The same people are also organising a Sinclair Education Exhibition in March, the second Acorn User Exhibition in August, and a robotics exhibition in November, and information on these can be obtained from the above address.

IFSSEC '84, the International Fire Security and Safety Exhibition and Conference, will take place at Olympia, London, from the 9th to the 13th April. Over 65,000 people are expected from all over the world to inspect the latest fire control and intruder detection products and services offered by the anticipated 700 exhibiting companies. There will also be seminars on such topics as the requirements of fire safety regulations and police policies toward intruder alarm installations. Details, conference programmes, etc, are available from IFSSEC Ltd, Cavendish House, 128-134 Cleveland Street, London W1P 5DN, tel 01-387 5050.

The British Robot Association are holding their 7 th annual con-
ference in Cambridge (no single venue mentioned) from the 141 h to the 16th May. Representatives from both Eastern and Western countries will be taking part and the organisers expect it to be their biggest yet. They are still considering papers for presentation at the conference and would welcome contributions from the industrial/applications viewpoint submitted within the next month or so. Details from the Conference Organiser, B.R.A.7, British Robot Association, 28-30 High Street, Kempston, Bedford MK42 7AJ, tel 0234854477.

Micro City is described as an exhibition of computers, business systems and communications and will take place at the Bristol Exhibition Complex from the 15 th to the 17 th May. A major feature is the Offices Of The Future exhibition-within-anexhbition which will occupy an entire hall. Details from Steve Hybs, Tomorrow's World Exhibitions Ltd, 9 Park Place, Clifton, Bristol BS8 1JP, tel 0272 292156.

Interconnection '84 is a new conference and exhibition which aims to cover the entire field of
interconnection under four main headings; board level interconnection, interboard connections, equipment-to-equipment, and techniques and board materials. It will be held at the Park Lane Hilton, London, on the 6th and 7 th June. The organisers welcome papers for presentation at the conference, preferably concentrating on one of the above headings. For further details contact Brian Morgan, Marketing Manager, Benn Electronics Publications Ltd, 146 Midland Road, Luton LU2 0BL, tel 0582417438.
Finally, and moving a little further afield, the second Electronic Displays exhibition and conference will be held at Frankfurt Fairgrounds from the 5 th to the 7 th September, and will concentrate as before on display devices, display drivers, CRT monitors and other devices used in modern information systems for text and graphic display. Again papers for presentation will be welcomed and information on this and other aspects of the event can be obtained from Network GmbH, An der Friedenseiche 10, 3050 Wunstorf 2, West Germany.

 TDR300K Remote Control TDR300K Remote Control $\mathbf{£ 1 4 . 9 5}$ | MK6 | $\begin{array}{l}\text { Tramar } \\ \text { Tranamitter for above } £ 4.50 \\ \text { TO300K } \\ \text { Touchdimmer } £ 7.75\end{array}$ |
| :--- | :--- | Ts 300 K Touchswitch $£ 7.75$

TOEK $\begin{aligned} & \text { Extension kit tor 2-way } \\ & \text { switching for TD } 300 \mathrm{~K}\end{aligned} \mathrm{f} \mathbf{2 . 5 0}$

ELECTRONIC LOCK KIT XK101 This KIT contains a purpose designed lock IC, 10-way keyboard, PCBs and all components to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 uA . Ouput: 750 mA max.
Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied. ONLY £11.50
Electric lock mechanism for use with latch locks and above kit $£ 14.95$

$$
\begin{aligned}
& \text { "OPEN-SESAME" }
\end{aligned}
$$

$\begin{aligned} & \text { contact and iwo latched rianmintor outputa. } \\ & \text { Designed primarily for controlling motorised garage }\end{aligned}$
$\begin{aligned} & \text { lights at a range of up to } 40 \mathrm{f} \text {. The unit also thas } \\ & \text { numerous applications in the }\end{aligned}$
$\begin{aligned} & \text { numerous applications in the home for awitching } \\ & \text { hights. TV. closing curtains, etc. Idesi for aged or }\end{aligned}$
$\begin{aligned} & \text { lights. TV. ciosing } \\ & \text { disabied porsons. }\end{aligned}$
$\begin{aligned} & \text { The Kit compriser a maing powered receiver, e four } \\ & \text { button transmitter complat }\end{aligned}$
$\begin{aligned} & \text { button transmitter. complete with pre drilled box. } \\ & \text { requiring s } 9 V \text { battery snd one odto isolated soidd }\end{aligned}$
$\begin{aligned} & \text { requiring os } 9 V \text { battery sind one odo-isolated solid } \\ & \text { state ewiteh kit for inter- facing the receiver to mains }\end{aligned}$
$\begin{aligned} & \text { appliances As with all our kits. full instructions are } \\ & \text { suppliad. }\end{aligned}$
supplied.

ONLY £25.00

[^0]Jd 3-NOTE DOOR CHIME \boldsymbol{d} Based on the SABO600 IC the kit is supplied with all components. including loudspeaker,
prinied circuit borard. a prodilillad box $185 \times$ $71 \times 35 \mathrm{mml}$ end full instructions. Requires only a PP3 9V battery and push-switch to complete AN IDEAL PROJECT FOR BEGIN. NERS. Order as XK $102 . \quad £ 5.50$

MICROPROCESSOR CONTROLLED MULTI-PURPOSE TIMER

 Now you can run your central hasting, lighting. hi-fi system and lotsmore with iust one programmable timer. At your selection it is more with just one programmable timer. At your selection it is
designed designed to control four mains outputb independently. switching on
and off at pre-set times over a 7 day cycle, e.g. to control your central and of at preser times over a day crcie, e.e.
heating (including different switching times connect it to your system programme and set it and forget itclock will do the rest.
features include

* during powar falues sibalitairy not sumpoliod

after a spepcitited contiol enabling
* 20 function kevpad for programme anury
* Programme varification at tha touch of a button

 and Antex proolucis as sweli is books tom Texas Instrumens, Babann ind Elektor

ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T
FORGET FOR PRICES YOU CAN'T RESIST. Answering 5-6-7 8-9-10 and give us your Access or Barclaycard No. or wite enclosing service evngs
checue or postal order. Officiail orders accepred from schools, etc \& weekends

Now only $\mathbf{£ 3 9 . 0 0}$
iKit includes all components, PCB ,
box, assembly and programming
box, assembly and programming instructions)
Order as CT6000
XK114OPTIONAL RELAYKIT
up to tour roinys, terminal blocks, etc.
 £3.90

COMPONENTS a wide range in stock including:

MINI KITS

MK1 ELECTRONIC THERMOSTAT
Uses LM3911 IC to sense tempeetite
 MK2 SOLIO STATE REL SWitrnes 240V ac motore
heate
 MK4PROPOHTIONAL
 Ioin remperature to within $0.5^{\circ} \mathrm{C}$. Ideal
tor
 ack. Temp I Ianye ep to
MK5 MAISS TIMER

 Component changes
MKIDVUALUATCHED SOLID
T6. STATE RELAY
Comises

 outpo loads inders nopendernty.temote contiol kits supplied
 May be used with virtualy any siereo
audio ampliter audio amplifier to contol bass
volume. treble and balance remotely

 input selection/displayy
control
kiss. / 10
ISee

DISCO LIGHTING KITS

DL 1000k
This value

tures bi-ciraclional se
quance. sposed of seaumence
and frouency of direction tiometers and incordorates master OLZ21000к $\quad £ 15.95$
A lower cost ver sion of the above, featuring variable by means of a pre ser pot. Qutouts switched only at mains zero crozsing points $f 8.95$
Allowing audio ("beat") - light
responge. $\mathbf{6 0 p}_{\mathbf{p}}$ response
D 13000 K
This 3 channel sound to light kit features zero voltege switching, eutomatic level
control and built in mic. No connections to speakeror amp requirgd Noknobsto ad just lamps. (1Kw channel) $f 12.95$

LCD $31 / 2$ DIGIT MULTIMETER

 16 ranges including DC voltage $(200 \mathrm{mv} \cdot 100$ and resistance (0.2 M) + NPN \& PNP transisto

HOME CONTROL CENTRE

 This kit enables vou to control up to 16 differentapoliancas anywers in
and appliances anywhere in the nouse trom the
comtort of yout armchair. The tuansmitte comtort of vout armchair. The wansmite
injects coded oulse into tha mains which are
decoded by rece ver moduts connected to the ame mains supply and usad to switch on the appliance ades a COMPUSER interface so you can pro gramme vour favourite micro (e.g. XX81) to
switch lights. heating. electric blanket, make
 THE POSSIBILITIES. The kit includes all PCBs
and components for one irensmiter and two and components
eceivers. plus a

Order as XK112. £42.00
Additional Receivers XK111 $\mathbf{£ 1 0 . 0 0}$

now oren COMPUTER

 SHOWROOM Hours: Mon-Fri 9am-5pm SAT 10am-4pm We also stock peripherals and accessories disc drives. printers joy sticks etc together with a wide range of hooks and the latest omputers including 2×81 sEND S.A.E. FOR LIST TODAYI COMPONENT PACKS PACK 1650 Resistors 47 ohm

 PACK 445 Sub miniature Presats 100
 PACK - Din - 10 of gach $£ 2.40$ PACK 625 Red LEDs (5 mm dial) f$)$

24 HOUR CLOCK/

 APPLIANCE TIMER KIT Switcher any applience up to 1 kW on andoff atpre sel times once per day. Kit contains. AYY 5.1230 IC . 0.5 " LED display, mains supoly,
dispiay drivera. switches. LEDS, Uriacs, PCBS dispiay drivers. switc
and tull instuctions. CTIOOOKBesicKitit $£ 14.90$

REMOTE CONTROL KITS OR A DEEALLED BOOKLEE ON REMOTE CONTRO MKE SIMPLE IN RRA AED TARANSMITTER Supolived with hana-hidid prastic box. Aequires 54 PPP3) Datiory
MK 7 INFRA RED RECEIVER

DVM/ULTRA SENSITIVE

 THERMOMETER KIT This new design is basod onthe ICL7126 (a lower power the ICL7126 (o lower power
varsaion of the ICL7106 chip) and $s 31 / 2$ digit liquid crystal H945 display. This kit will form the basis of a digitial multimeter (Only a few additional rasistors and switches are required-datails suppliad), or a sensitive
digital thermometer $\left(-50^{\circ} \mathrm{C} \quad\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The besic kit has as
sensitiviry of 200 mV for a full scale reading, sensitivity of 200 mV for a full scale reading.
automatic polarity indication and an ultra automatic polarity indication and an ultre low power requirement-giving as 2 year
typical battery life from a standard 9 gV Pp3 typical battery life from $\begin{aligned} & \text { astandard } 9 V \\ & \text { when used } \text { nours a day } 7 \text { days a week }\end{aligned}$ Price $£ 15.50$

Add 65p postage \& packing $+15 \%$ VAT to Add $£ 2.50$ (Europe) $\mathbf{f} 6.00$ (el sewh Sand SAE E or further STOCK DETAILS. Goods by return subject to availability.
OPEN
am to 5 pm (Mon to Fri)
10 am to 4 pm (Sat)

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Musical Spectrum

Ricoll have introduced an addon for the Spectrum which, they claim, allows a sound to be stored in memory and then replayed at any pitch. The "Action Replay" will accept an input from a microphone or other audio source and after storing it allows real-time replay using the Spectrum keyboard or an external keyboard and an external amplifier and speaker.
The unit comes in a box which plugs directly into the Spectrum and has sockets for audio input and output. The input signal is sampled at 32 kHz and stored inf 32 k of RAM in the unit. The pitch of the stored sound can then be controlled from the keyboard, Ricoll claiming four octaves upward shift and no limit to the downward shift. Using various software options, the sound can be reversed, reproduced continuously to form a sort of glitch-
free tape loop, and have effects such as echo and vibrato added. Audio bandwidth is 12 kHz , signal-to-noise ratio 66 dB , quantisation noise - 72 dB , and the manufacturers claim that distortion is undetectable and that the audio quality generally compares favourably with that of a good hifi cassette recorder. The unit is intended to be used in conjunction with a monitor which displays such factors as input level/ overload, and with some of the other software options available allows Fourier analysis and synthesis.

The complete unit with a set of demonstration software costs $£ 99.00$ including VAT and should be available from the beginning of January. A few fingers here at ETI got a bit itchyat the thought of playing with such a device, and so we have persuaded Ricoll to let us have a sample to evaluate as soon as the first production units are ready. Watch this space! Ricoll Electronics LId, 48 Southport Road, Ormskirk, Lancashire 139 1Qr, tel 069579101.

Free Of Charge

Taking the idea of low battery costs through the use of Ni Cads to its logical conclusion, Sanyo have introduced a charging
unit which doesn't need a supply of electricity. Their NC-AMI charger for $A A(H P 7)$ size cells is solar powered.

Sanyo have used what they call amorphous silicon semiconductor technology, or AMORTON for short, to produce the solar panel which has made the new charger possible. They do not say just how much output the new panel gives nor how long the unit will take to fully charge batteries. The charger, complete with four AA size Cadnica cells, should be on sale in the UK soon at a price which Sanyo say will be 'within easy reach of the average customer'.

Portable Oscilloscopes

Electronic Brokers is introducing into its range a pair of laboratory performance, portable oscilloscopes which are purpose-designed for tough operating conditions. They are both dual trace instruments, the PM3254 with single timebase and the PM3256 with added delayed timebase.
The triger and timebase circuits have been developed to give over 100 MHz bandwidth, with vertical amplifier bandwidth 75 MHz over a wide temperature range. The ruggedised CRT generates an extremely bright, small spot which produces accurate traces even in high ambient light conditions. Operational capabili-
ties included are separate variable control of main and delayed timebases, variable hold-off, X-Y display facilities and TTL triggering as standard. The trigger-view function can also be used as a third channel. Both oscilloscopes can be operated from either AC or DC power supplies.

The oscilloscopes are constructed around a strong tubular chassis. Front and rear panels are rigid plastic mouldings, the side panels are tough ABS and thick rubber bumpers offer protection to the corners. A shoulder strap is provided for easy transportation from laboratory to alternative locations.

The PM3254 costs $£ 1,096$ and the PM3256 costs $£ 1,196$. For further information contact Electronic Brokers Limted, 61/65 Kings Cross Road, London WC1X 9LN, tel 01-278 3461.

Unmatched?

It certainly won't be easy to find another microswitch which can match this one for size. Height, from the hottom of the pins to the top of the (depressed) lever is just 10 mm , width is 8 mm and thickness 3 mm . The switching operation is single pole changeover and the contacts are rated at $300 \mathrm{~mA}, 50 \mathrm{~V}$ (not, we suspect, 300 megd-amps as stated in the

New Maplin Catalogue

The 1984 Maplin Electronic Supplies catalogue arrived at the ETI offices the other day -and kept on arriving! We don't know exactly how many copies they've sent us but if any more arrive we'll have enough to build our new offices with. The new catalogue has nearly 500 pages, 20", more than the 1983 edition, and includes a section on the Heathbit range of electronics kits. For the first time, Maplin's prices appear on the page rather than in a separate supplement. The prices will hold until at least February when an update leaflet will be issued. The new catalogue
press release!) The actuating lever is designed for both simple compression and cam follower applications and the suppliers envisage it being used in scale models and for anti-tamper switching in small equipment. The switches are available in packs of ten for $£ 4.00$ including post and packing from Semiconductor Supplies International Ltd, Dawson House, 128-130 Carshalton Road, Sutton, Surrey SM1 4RS, tel 01-643 1126.

325 EDGWARE ROAD, LONDON W2 1BN Tel: 01-723-4242 TIx: 295441

JOIN THE PROFESSIONALS

No	Modules		Price
2580	CE 608	40W Mono.	18.26
2581	CE1004	100W $4 \mathrm{\Omega}$ Mono	21.30
2582	CE1008	100W 8 a Mono	23.90
2583	CE1704	170W 4 a Mono	30.43
2584	CE1708	170W 8 sl Mono	30.43
2585	CE3004	300W 4 a Mono	42.60
2585a	FE 908	90W FET. Mono	25.65
2585b	FE1704	170W FET Mono	33.48
2585c	B01	Bridge Unit for Modules	7.13
2608	CPR 1X	Pre-Amo Module	

No			Price
2615	Complete Pre-Amp Kit	CK1010.	£80.00
2616	Complete 40W Stereo Amp Kit	CK1040	£105.00
2616	Complete 80W Stereo Amp Kit	CK1080	$\varepsilon 116.00$
2617	Complete 100W Stereo Amp Kit	CK1100	£131.00
2618	Add on Moving Coil Kıt	MC12K	£21.74
2619	Pre-Amp Power Supply Kit	PSK	£17.3
TS7070 Thermal Switch 2.02			
HS50 50mm Heatsink			
HS 100100 mm Heatsink			
14.95150 mm He			

PLEASE NOTE ALL CRIMSON MODULES ARE GUARANTEED FOR 2 YEARS.

VELLEMAN KITS

No	Description	Price	
K610	Mono UU using LEDS.	10.05	WE STOCK A WIDE RANGE OF BOXES TO HOUSE THESE KITS IN. FROM VERY SMALL TO VERY LARGE 19" MAXIMUM PS. ALL KITS
K1798	Stereo UU using LEDS	1877	
K1874	Running Light Kit	1495	
K2571	Light Computer with EPROM	36.23	
K2569	Three Tone Chime	857	
K2575	Microprocessor Doorbell 25 tunes	. 1553	
K2544	Complex Sound Generator	1026	
K2032	Digital Panel Meter	16.61	
K2557	Digital Thermometer	26.57	
K2545	50 Hz Crystal Tıme Base	1200	

Some are easy some are hard

No

K2543 Transistor Ignition 11.16 K2555 Digital Frea Counter for Receivers 4540 K2566 3 Channel Coloured Light Organ 19.19 $K 2572$ Universal Stereo Pre-Amplifier 6.56 K2574 Universal 4 Digit U/D counter with memory 44.72 K2577 Electric Motor Speed Control 11.17 K2579 Universal Start/Stop Timer. K2583 Heatıng Controller Heang Controler ..-...................................... . 81.45 Microprocessor Uriversal Timer (no case) 61.72 K2580 Electronic Power Switch Dimmer 12.37 K2551 Central Alarm Unit.

TELETEXT KIT

This unit will make your TV fully remote control (infra-red) and bring you closer to the amazing world of teletext. The kit can also be updated to incorporate full Prestel, and with a keyboard this can give you full message facilities for ordering foods or sending and receiving messages (E G.) Booking your Holidays!
personal computer.
Even witr:)ut the Prestel option, Telesoftware from the Teletext pages free
The full features of Teletext, including subtitles are all included in the basic kit
An attractive stylish case is available to complement the finished kit.

ACCESSORIES

GLOBAL SPECIALTIES
PROTO-BOARDS KITS
PB101 19.65 L 152 mm W 114 mm H 36 mm PB102 24.95 L 187 mm W 114 mm H 36 mm PB105 7450 L 249 mm W $203 \mathrm{~mm} \cdot \mathrm{H} 36 \mathrm{~mm}$

Universal Ni-cad Battery Charger.
$4 \times$ Penlight Charger FW400....
$6 \times$ Cells Universat Charger FW 611 Miniature Solder Sucker

6.30 6.50 | 6.50 |
| :--- |
| 1650 |
| 6.0 | 1650

6.00
spare tips avalable
Standard Solder Sucker
Lubricating Contact Cleaner Non lubricating Contact Cleaner Spray on Insulation for PCB's 79 STRAND CABLE per mrs 045 IC. TEST CLIPS

14 way
16 way
16 way.
40 way.

ANTEX

Soldering IronsXS25		Iso-tıp Cordless Iron. 31-90+
		Miniature low voltage
CX	17W...5.30+	soldering station $13.95+$
C"iron"	15W. . . $5.20+$	Oryx50 50W temp controlled 15.50
CCN "ceramı"	15W... $5.00+$	Oryx super 30................5.50+
Wide range of bit stock now.	and elements in	All irons are 240 V mains. Earth Leakage current is less than 3 ua.
Soldering iron st	2.40	The temperature controlled iron can
We stock multicor	solder for normal	be controlled within $\pm 2 \%$ temperature range from $200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.

COMPONENTS EDGE CONNECTORS

Device	Price	ZX81 E.C. 2.98	
Z80A	320		Spectrum E.C.

2708 ... 1.80
2716
2732 7.50
2764 (200ns) $\quad 11.00$
pto-devices, from Infra-Red to LED's to Opto-Couplers.

ADC0816 (8 bit) $\quad 14.90$
heck us out for competitive prices and helpful service

We also stock 74 series 74 LS, C mos, transistors, capacitors, resis ors, LED's, zeners, diodes, jack plugs, mains plugs X LR plugs, can non plugs, arrow switches BNC connectors, reducers, photolak developer, PC board, sensitive \& normal, boxes, wire cutters, strippers, Edge connectors, pots, batteries, digital pulsers, logic probes, proto-boards, vero board
This is just a small sample of what we stock, if you'd like to see more send $£ 100$ to us for our NEW 1984 CATALOGUE.

BOOKS

*New Books
Please Note Books are VAT exempt but add $£ 100$ to cover P/P
A-Z Transistor Equivalent book (2 Volumes) 9.50 The 9900 Family Data Book
The Opto-Electronics Data Book
The Bipolar Microcomputer Databook
The Interface Circuits Data Book
The TTL Data Book
MDS Memory Data Book
The Linear Control Circuits Data Book
The Voltage Regulator Data Book
The Power-semiconductor Data Book
TTI Data Book Volumel
TIData Book Volume II.
Towers Transistor Equivalent
Towers Digital Selector 4.00
4.50 4.50 7.00 850
355 3.95 4.00 4.50 9.00 9.00 8.00

Towers Linear 10 Selector 950 9.95

FE Towers Equivalent book
Why not try our mail order service, it's fast and efficient. We take Barclay, Access, Am Exp, Diners or Cheque.
Cheques made payable to Bradley Marshall Ltd.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Belfast Chips

© cientists at Queen's University, Belfast, have designed a chip which is capable of packing in 25 per cent more circuits and working at least 10 times faster than present types. They have done it using conventional chip manufacturing techniques and their efforts have been recognised by the UK Science and Engineering Research Council who have just given grants of $£ 300,000$ to continue their work.

Researchers in the Department of Electrical and Electronic Engineereing say their desjgn holds out the prospect of the most complex chips in the world, operating at the highest possible speed. One of the three-man team behind the new development, lecturer Dr Mervyn Armstrong, said: "Although we have developed a new principle, quite a large amount of development work is still needed before a prototype chip could be successfully produced. It is, however, a major innovation for those creating and marketing tomorrow's chips."

The new approach is based on the ability to align exactly certain essential layers used to make a chip. Until now the alignment of the layers could not be precisely controlled. This has meant the patterns on each essential layer have had to be made a little larger so that even if the overlying layers do not exactly register on top of the previous layer, some part of them would make contact. The penalty is that this wastes valuable space. Exact alignment, which Queen's University say they can now achieve, frees space for more circuitry.

The other problem was speed. An average microprocessor deals with two million pieces of information every second, which are processed through some $\mathbf{3 0 , 0 0 0}$ transistors. But as more transis-

100 MHz Fibre Optic Emitters

Motorola have introduced two new infrared emitters for fibre oplic systems which are claimed to be the industry's first planar LEDs capable of data transmission at greater than 100 MHz bandwidth. The devices allow fibre optic system operation in areas previously reserved for expensive, edgeemilting LEDs and laser diodes at a significantly lower cost and a much improved operating life.
The new MFOE1201 and MFOE1202 infrared emitters are packaged in a TO-52 metal package which is hermetic, industry standard size and configuration and fits into commercially available fibre optic connectors. The internal lensing enhances coupling efficiency and provides a $250 \mu \mathrm{~m}$ diameter optical spot at 0.3 N.A. (numerical aperture) on
tors are put into the chip, the connections between them become smaller and thinner, slowing down the passage of current from one transistor to another, and consequently the response of the computer. These connections are normaliy made from poly silicon. To restore its efficiency when using thin connections the Belfast team have devised a technique to put a layer of aluminium on top of each part of the chip containing poly silicon.
The Belfast development holds out the promise of medium priced computers which can support many more user terminals than at present and also means that industrial processes now monitored by giant computers could soon come within the range of cheaper, microprocessor-based maci nes.

Red-uced!

Ciemens have introduced four red IED digital displays which offer a considerable reduction in operating power over conventional types. Dissipation is only 80 mW per digit and Siemens claim that they are ideal for use with MOS devices and in CMOS circuitry.

The low power dissipation is achieved through the use of gallium arsenide phosphide as the semiconductor material. The luminosity is $\mathbf{1 5 0 0}$ millicandela at 5 mA forward current and the forward voltage reaches a maximum of 2 V at 20 mA . The rated temperature range is -20 to +70 C
and the wavelength of the emitted light is stated to be 650 nm .

The new displays come in two, three and four digit versions and the tiny substrate area is viewed through an integral plastic magnifying lens to give a digit height of either 2.8 or 3.8 mm . They are available in 12 or 14 pin plastic packages and all types are arranged for common cathode operation.
Siemens envisage applications for the displays in all types of battery operated equipment and particularly in multimeters, digital thermometers, etc. Siemens Ltd, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex TW16 7HS, tel 09327 85691.

the emitters. The specträl response peaks at 820 nm , which is spectrally matched to the minimum attenuation region of most medium distance fibre optic cable. With a power output of 1.0 to 3.5 mW , the devices make short to medium distance, highspeed systems economically
easible. Applications are broad, and include industrial controls, computer systems, CATV and military.
For further information contact Motorola Ltd, European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes MK14 5 BP, tel 0908614614.

$1.5 \mu \mathrm{~s}, 12-\mathrm{Bit}$ ADC

Buur-Brown have introduced a 12-bit analogue-to-dig converter with a maximum conversion time of only $1.5 \mu \mathrm{Sec}$. Thought to be the fastest successive approximation A/D converter on the market, the ADC803 is accurate to $\pm \mathbf{0 . 0 1 5} \%$ of full scale range, operates with no missing codes over a -25 C to -85 C temperature range and provides both serial and parallel outpuls.

The converter incorporates a mix of proven IC and hybrid technologies and utilises state-of-the-art IC and laser trimmed thin-film components to achieve a complete A / D function including voltage reference, clock and
comparator. It is packaged in a 32 -pin $43 \times 23 \times 5 \mathrm{~mm}$ hermetically sealed DIP. Input scaling resistors allow internal selection of analogue input range from 0 to $-10 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. Output codes are complementary binary for unipolar inputs and bipolar offset binary for bipolar inputs. All digital inputs and outputs are TL compatible and power supply requirements are +15 V and +5 V . Because of its differential inpul comparator design, the ADC803 is very easy to use. The internal DAC drives a comparator input separate from the input signal so that the user's driving circuitry does not have to handle the DAC's large, fast transients.

For further information contact Burr-Brown International Limited, Cassiobury House, 1119 Station Road, Watford, Herts WD1 1EA, tel 092333837.

IEEE

Controlled Logic Analyser

The Hawk 3210 logic analyser interfaces with a host of microcomputers to give powerful diagnostic, processing display and hard copy facilities, and at $£ 2495$ is claimed to cost only about half as much as other machines offering less facilities.
The 3210 offers 32 channels of 1024 bits depth, with an internal sample clock programmable to 10 MHz . Triggers are programmable in binary, hex, octal, decimal, and ASCII for all 32 channels, including don't care states. Full pre and post trigger capability is provided, using delay of up to 1024 samples.
In timing mode, each screen page displays 128 samples of the 1024 bit storage and from any two of the four pods each carrying eight data probes. Pod 1 carries a dividable external clock
input. Glitches are detected to 30 MHz , with display detectable on or off. When displayed, glitches are shown as an overlay to data. In parallel state mode binary, parallel, octal, hex, decimal and ASCII displays of 32 channels wide by 16 lines are available, with on-screen command prompt for control.

The unit has fully menu-driven operation and keyboard control for setting trigger words and selecting timing, hex, binary, decimal, octal or ASCII formats. All menus carry prompt instructions at the foot of the display.

Initially, the 3210 analyser is available for use with Apple II machines, a converter card giving the computer IEEE compatability. However, software is now in development to allow the anlayser to be used with Commodore, Sirius and other popular makes of microcomputer and controller. Hawk Electronic Test Equipment, Bircholt Road, Parkwood industrial Estate, Maidstone, Kent ME15 9XT, tel 0622 686811.

Triple Output Power Supply

The Kikusui PWC 0620 is a triple output power supply which offers 0 to 6 volts at up to 3 amps, and 0 to +20 volts and 0 to

20 volts, at up to 1 amp . The 20 volt outputs operate in a dual tracking mode and the unit has two large front panel meters, one for current measurement, and the other for voltage. Any of the three outputs can be selected for display on the meter, and there
are separate voltage and current controls for the 6 and 20 volts ranges. The power supply is operable either in constant voltage or in constant current modes. Ripple is only 0.5 mV on all outputs, and line and load regulation is within 3 mV . It costs $£ 295$ plus VAT, which is a lot more than you will have to pay for the only-slightly-less generously rated instrument which appears elsewhere in this issue. Telonic Instruments LId, 2 Castle Hill Terrace, Maidenhead, Berkshire, tel 062873933.

SHORTS

- The Scopex Instruments story, part 2: further to our recent report of Scopex' demise, we are now assured that the company's future is secure following the purchase of their assets from the Receiver by Bridage Scientific Instruments Ltd. Bridage say that all existing orders for Scopex products will be fulfilled as soon as possible. The new address for all enquiries is Scopex, 63-65 High Street, Skipton, North Yorkshire BD23 1EF, tel 075669511.
- Regisbrooke have issued a full colour brochure describing their wide range of opto-electronic devices, LED, LCD and vacuum flourescent displays, keyswitches, display driver components, and accessories. The brochure is available free of charge from Regisbrooke Ltd, Unit 5, Horshoe Park, Pangbourne, Berkshire, tel 07357 4841.
- Further doom and gloom. At a meeting of creditors which took place on the 8th November 1983, Jupiter Cantab Ltd, manufacturers of the Jupiter Ace microcomputer, was put into the hands of a liquidator. The business is now being offered for sale, and further details can be obtained from Chater \& Myhill, Sussex House, Hobson Street, Cambridge CB1 1 NJ, tel 022366692.
- The CM200 capacitance meter will measure capacitances between 1 pF and $2,500 \mathrm{uF}$, taking three readings per second and giving the result on its $4^{1 / 2}$ digit LCD to an accuracy of $\pm 0.2 \%$. It is lightweight, will run for several hundred hours from batteries or can be connected to the mains supply, and has a calibration control which allows the user to null out up to 25 pF test lead capacitance. It costs $£ 89$ plus VAT. Thurlby Electronics itd, New Road, St. Ives, Cambridgeshire, tel 048063570 .
- In order to combat the shortage of skilled staff in the computing services industry COSIT, the Computing Services Industry Training council has been given $\mathbf{£ 6 0 0 , 0 0 0}$ by the government for its first year of operation. The program will run for five years and the object is to pay firms to help them with their training. For details contact COSIT, 5th Floor, Hanover House, 73-74 High Holburn, London WC1V 6LE, tel 01-242 5049.
- The DPM60 41/2 digit LCD module features auto-zero, auto polarity, and logic switched 200 mV or 2 V FSD with 10 uV resolution. It runs from a 7.5-15 V supply, has 10 mm high digits, and is available in kit form for $£ 29.95$ fully inclusive from Lascar Electronics Ltd, Module House, Whiteparish, Salisbury, Wiltshire SP5 2SJ, tel 07948567.
- Galatrek's combined fuse and 13 A socket tester is abut the size of a regular 13A plug and has two neons which indicate when connections are absent, reversed or correct. It costs $£ 8.00$ including VAT and post and packing from Galatrek International Ltd, Scotland Street, Llanrwst, North Wales.
- Ambit International have opened a new sales counter for their range of electronic components, books, kits, test equipment, etc. The new counter is in the Broxlea building near the High Street in Broxbourne, Hertfordshire. There is on-site parking and features include an online computer terminal and other advice and information services for customers. Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG, tel 0277231616.
- The Beckman CT233 is a clamp-type Hall effect probe which, when used in conjuction with a multimeter, oscilloscope or other voltage indicating device, allows the measurement of AC and DC currents up to 600 A . The unit handles conductors up to 45 mm diameter, runs from a 9 V battery, has an output of 600 mV for FSD, and an accuracy of 3% or better. Beckman Instruments Ltd, Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU, tel 0217427761.

Motorola have announced the adoption of the SOT-89 package for a broad range of microminiature transistors, initially including general purpose high voltage Darlingtons and RF Iransistors. The new plastic package is an alternative to the much larger 1 watt TO-92 package, and in addition to the space saving involved Motorola say the preformed leads of the SOT-89 will facilitate pre-assembly testing. Motorola Ltd, 88 Tanners Drive, Blakelands, Milton Keynes, tel 0908614614.

- Gothic Crellon have published a 64 page catalogue covering their wide rage of resistors, capacitors, semiconductors, valves, relays, switches and the micro and mini computer systems sold by Crellon Microsystems. Copies of the A4 size catalogue are available free from the Sales Department, Gothic CrelIon Ltd, 380 Bath Road, Slough, Berkshire SL1 6JE, tel 06286 4300.
- Bulgin are giving away 1984 calendar-cum-posters which illustrate their range of switches, fuse-holders and connectors. Copies are available from Brian Diggle, Advertising Manager, A. F. Bulgin \& Co. PLC, Bypass Road, Barking, Essex IG11 0AZ, tel 015945588.

01-452 1500 Trochnonatic Lid 01-450 6597

BBC Micro Computer System OFFICIAL DEALER
 BBC Model B £348

Please phone for availability

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock
$\mathrm{B}+$ Econet $£ 389$
B + DFS $£ 409$
B + DFS + Econet $\mathbf{£ 4 5 0}$ Carriage $\mathbf{£ 7}$

Model A to Model B
Upgrade Kit £60 Installation £15

LANGUAGE ROMs
BCPL ROM + Disc + Manual $£ 87$ PASCAL-TROM £44

View 16K Rom $£ 52$
Wordwise 8 K Rom $\mathbf{E 3 2}$
Carriage £1.50

WORD PROCESSOR ROMS

CASSETTE RECORDER

SANYO DR101 Data Recorder £34-
$\varepsilon 2.50$ carriage
BBC Tape Recorder $£ 28.50+\boldsymbol{\varepsilon 2} .50$ carriage Cassette Lead $£ 3+\varepsilon 1$ carrage
HOBBIT Floppy Tape $£ 135+\varepsilon 2.50$ carriage HOBBIT Zero Memory Option $\mathbf{£ 2 5}+\boldsymbol{\varepsilon 1}$ carriage Computer Grade C12 cassette 50p each $\mathbf{£ 4 . 5 0}$ for $10+£ 1$ carriage

MONITORS

MICROVITEC 1431 14" RGB Std Res $£ 215$ MICROVITEC 1451 14" RGB Med Res $£ 345$ MICROVITEC 1441 14" RGB Hi Res $\mathbf{£ 4 4 0}$ MICROVITEC $203120^{\prime \prime}$ RGB Std Res $£ 287$ KAGA VISION 12" RGB Std Res $£ 230$ KAGA VISION III 12" RGB Hi Res $£ 385$ KAGA 12"GREEN Hi Res $\mathbf{\Sigma 1 0 6}$ SANYO DM8 112 CX 12",Green H_{1} Res $\mathbf{\varepsilon 9 9}$ All leads included. Carriage $£ 7$

FLOPPY DISC INTERFACE £95 \& $£ 15$ installation

BBC COMPATIBLE DISC DRIVES

All drives are supplied with necessary cables
Single Drive without PSU: 100k $\mathbf{f 1 5 0 ;}$; $200 \mathrm{k} \mathbf{£ 2 1 5 ,}$
400k £240
Single Drive with PSU: 100k $£ 185$; 200k $£ 260^{*}$; $400 \mathrm{k} £ 330$
Dual Drive with PSU: $2 \times 100 \mathrm{k} £ 335$; $2 \times 200 \mathrm{k}$
£440*; $2 \times 400 \mathrm{k} £ 490$

* These drives are switchable 40/80 drives.

40/80 Switch Module for $1 \times 400 \mathrm{k}$ and $2 \times 400 \mathrm{k}$ Drive $£ 32$
DISKETTES
40 track SS $£ 15$; 80 track SSDD $£ 22$
80 track SSDD £24

BBC FLOPPICLENE DRIVE HEAD

Cleaning Kit with 50 disposable discs $£ 14.50$

Phone or send for our BBC leafitat

TORCH Z-80 PACK
Yout B.B.C. computer can be converted into a business machine at a cost slightly higher than an 800k disc drive. The Torch pack with twin disc drive and a Z80A processor card greatly entances the data storing and processing capability of the compurer. $\begin{aligned} & \text { pack functions as a normal BBC drive.). Z80A card comes with } 64 \mathrm{k} \text { of }\end{aligned}$ pack functions as a normal BBC drive.). Z80A card comes with 64 k of RAM and a CP/M cumpatibe operating system. The system is supplied complete with a BBC owner's user guide, a Svstems/Demo d.sc, a
PERFECT software package and COMANEX. a business management game. The PERFECT software package comprises of a DATABASE. gaLC, WORDPROCESSOR and SPELLER commercially valued at over

PRINTERS \& PLOTTERS

ACCESSORIES
Paralle| Printer Lead $\mathbf{\varepsilon 1 0} \mathbf{+ \varepsilon 1}$ carriage Serial Printer Lead $£ 8+\varepsilon 1$ carriage Epson Serial Interface $2 K \varepsilon 60+\varepsilon 1$ carriage Epson Serial Intertace $\mathbf{£ 5 0}+\mathbf{\varepsilon} 1$ carriage NEC Serial Interface $£ 42+\mathbf{~} 1.50$ carriage Epson Paper Roll Holder $\varepsilon 17+\varepsilon 1.50$ carriage
$\times 80$ Tractor Attachment $£ 37+£ 1.50$
carriage
FX Tractor Attachment $\mathbf{£ 3 7}+\mathbf{\varepsilon 1}$ carriage E2.50 carriage
Paper fand 2000

‘TIME-WARP'

REAL-TIME-CLOCK/CALENDAR
A low cost unit opens up the total range of Real-Time applications. With its full battery backup, possibilities include an Electronic Diary, automatic document dating, precise timing \& control in scientific applications, recreational use in games etc - its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installatıon required - No ROMS. Supplied with extensive applications software. £29.00

BBC EPROM PROGRAMMER

A fully self contained Epron Programmer with its own

* Personality selection is simplified by a single rotary switch
* Prograniming voltage selector switch is provided with a safe position
* Warning indicator to show programming in progress.
* Prograrrimer can read, blank check, program and verify at any address: addresses on the EPROM
* Full editor with ASCll distase supplied on cassette (transferable to disc) Programmer complete win catis f79.50- $\mathbf{1 2}$ p. \& p.

PRODUCTION PROGRAM: P8000

 P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{k} \times 8$ bytes. Devices supported range from 2704 to 27128 in single and three rall versions. Simple menu driven operation ensure easy eprom selection and reliable programming in minimum programming times. $\mathbf{6} \mathbf{6 9 5}+\mathbf{£ 6}$ carriage
BOOKS (no Vat; p\&p fil

Assembly Lang Prog. for BBC Assembly Lang prögramming on Micro by Ferguson and Shaw. Basic Prog. for BBC BBC. An Expert Guide Easy Programming on BBC Further Programming on BBC Introducing BeC Micro Programming
30 Hour Basic
30 Hour Basic BBC Sound \& Graphics Creating Adventure Programs Discovering Machine Code Structured Programming The Friendly Computer Book BBC Beyond Basic BBC
$\mathbf{f 8 . 9 5}$
BBC BBC
$\mathbf{f} .95$ $\begin{array}{r}\mathbf{f} 7.95 \\ \hline 5.95\end{array}$ $\mathbf{f} 5.95$
$\mathbf{f} 6.95$
$f 6.95$
$f 5.95$
$\mathbf{£ 5 . 9 5}$ UV1 as above but without the timer £47
$55.95+$ E2 p\&p.
E5.95
$\mathbf{f} .50$
6.50
595
5.95
£7.95
f695
6.95
£6.50
f4.50
£7.25 to avoid accidental exposure to the harmful UV rays. It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. £59 +£2 p\&p.

+ E2 p\&p.
V140 up to 14 Eproms $\mathbf{E 6 1}$
UV141 as above but with timer $\mathbf{E 7 9}$
\star SPECIAL OFFER
$2532 \quad \mathbf{f 3 . 5 0} \quad 27128$ -
$\begin{array}{lrr}\mathbf{2 7 6 4} 25 & \mathbf{f 3 . 5 0} & \mathbf{4 1 6 4 - 2}\end{array}$

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock

CONNECTOR SYSTEMS

RH LIGHTPEN:

The Acorn-approved supentor design, with a programmable 'push tip' switch. status indicator LED and an inlertace box. Supplied complete with manual. full software and basic demo programs. Colour graphics programs will be available separately £39.50

SMARTMOUTH

The 'infinite vocabulary' self-con tained speech synthesiser unit. Uses only 5-10 bytes per word no ROMs required - simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, $\mathbf{£ 3 7}+\mathbf{£ 2}$ p. \& p.

New comprehensive catalogue avail-

ABLE -- PLEASE SEND FOR PRICE LIST

$\begin{array}{ccccc}\text { Solder } & \text { 80p } & \text { 105p } & \text { 160p } & \text { 250p } \\ \text { Aryled } & 150 \mathrm{p} & 210 \mathrm{p} & 250 \mathrm{p} & \text { 365p }\end{array}$

JUMPER LEADS				
24 ' Ribbon Cable with Headers				
	14.-pin	16 pin	24	40 pm
1 end	145p	165p	${ }^{240}$ p	350p
2 ends		230p	345p	540p
24 Ribbon Cable with Soterets				
	20-pin	26 pm	34 pri	40 pir
1 end	160p	200p	280p	300p
2 ends	290p	370p	480p	525p
Ribbon Cable with 0 Comm				
25-way Male 500p Fermale 550p				

AMPHENOL CONNECTORS

36 way plug Centionics Paratlel
Solder $£ 5.25$ IDC $£ 4.95$ Solder £5.50 IDC $\mathbf{5 5} \mathbf{2 0}$ 24 way plug IEEE Solder $f 5$

24 way socket IEEE Solder $\mathbf{f 5}$

RIBBON CABLE

(Grey/meter)	
10 way	40p
16 way	${ }^{60 \mathrm{p}}$
20-way	85 p
26 way	120p
34 way	160 p
40-way	${ }^{180} \mathrm{p}$
50 way	200 p
64-way	280p

RS 232 JUMPERS

		65.00
${ }_{24}^{24}$	Se	f61000
	Male Maman	¢950

EURO

 CONNECTORSEDGE
CONNECTORS

CONNECTORS			CONNECTOR		
InN 4161/	+1.n	Skt			
31 wdy	160p 170 p	165p 1700		0.1 "	$0.156^{\prime \prime}$
11 way	170p	170p	2×18 way		140p
DINAIEI,			2*22-way	190p	240p
	${ }^{220} \mathrm{p}$	${ }^{275}$	2×23 way	175p	
	${ }_{260 p}^{275 p}$	320 p 300 p	2×25-way	225p	220p
1.1/ Way Arus P'or	260p $375 p$	300 p 350 p	$\begin{aligned} & 28 \text {-way } \\ & 1 \times 43 \text {-way } \end{aligned}$	190p	-
				260p	-
TEST CLIPS			2×43-way	600p	
$14.11{ }^{275 p} 40$		¢3	5100 Conn		600p

$\underset{\substack{\text { SOCKETSXTOM } \\ \text { 28.pn } 88.00}}{\text { TEXTOOL ZIF }}$	DIL HEADERS		
DIL SWITCHES		(iop	
	$4{ }^{\text {a }}$		${ }^{225}$

PROGRAMMABLE SPEECH BOARD

Help your computer to find its voice, with the ETI Mini-Mynah. Teach it words, phrases, sentences or even short stories -then have it repeat them back to you with a single command. Design, development, and awful name by Phil Walker.

The ETI Mini-Mynah is a speech generator with added extras $-100+$ words of memory, inflection, and low software overheads are possibly the most important.

At the heart of the system is a General Instruments SP0256-AL2 speech processor IC. This is an NMOS LSI device, containing its own microcontroller, ROM, digital filter and pulse width modulator. The main attractions of this device are that is does not require vast amounts of data to produce understandable speech, it is easy to interface with other devices, its vocabulary is not limited, and it is available to the hobbyist.

The device uses allophone speech synthesis, which means that is provides for the generation of 64 basic speech sounds (including five silences!) from which an unlimited number of words can be assembled. This, however, has the disadvantage that you have to work out exactly which sounds you need to generate to make the words you want to say - more on this later. Other versions of the SP0256 have more, different allophones.

The on-board 2 K of RAM can store up to 2048 allophones, -which can be in groups of up to 255 in length. The memory is set up by one program, which can then be deleted or over-written. To call up an allophone group thereafter requires only a single instruction within the program the computer can then get on with other tasks while the sound generator churns out the vocals! However, reproduction is not limited to the set utterances stored by the initial program individual words, phrases, parts

of sentences can be picked out by single commands, and reproduced in any desired order; just because a group of allophones were entered together, they do not have to be reproduced together.

The Circuit

The circuit consists of a 2 K block of memory, a speech generator chip, clock generator and output filter together with some control and interface devices.

The main requirements of the system is that data can be put into the memory (and read from it) under control of a common home computer. Having placed the required data in the memory, it is then possible to select a block of data by defining its start address and length. This data block will then be read by the
speech generator to produce words, phrases or complete sentences without further action by the controlling computer.

During the design stage, it was noted that only six bits are required to specify one of the 64 allophones provided by the SP0256. For this reason, and because it provides a TTL compatible square-wave output, it was decided to use a 74LS624 VCO to provide the clock frequency for the speech generator; the two spare data bits from the normal eight-bit word are used to provide a fourlevel control voltage for the VCO. This has the effect of varying the pitch of the reproduced speech as each allophone is being reproduced. The rate of change of the control voltage is slowed down by a large capacitor to give a smooth final result. Adjustment
of the 'normal' pitch and of the degree of pitch variation can be made on the board. Additionally, a VCO is rather cheaper than a crystal!

For the following discussion we will assume that the 2 K memory block is normally accessed in the address range 8192 to 10239 (decimal) for normal read and write operations and in the range 10240 to 12287 (decimal) for control functions (2000_{H} to $27 \mathrm{FF}_{\mathrm{H}}$ and 2800_{H} to $2 \mathrm{FFF}_{\mathrm{H}}$ respectively).

By reading and writing from and to addresses in the range 8192 to 10239 the RAM can be loaded with data representing the sounds to be made. The data consists of bytes of eight data bits in which the lower six select which type of sound is to be made while the top two affect the pitch of the preceding allophone. This slight inconvenience is caused by there being no latch on the upper two data bits (this would have necessitated an extra chip had it been included).

In order to start a particular data string being rendered into speech, 2048 (decimal) is added to its starting address and a byte representing its length is written to the resulting address. When this has been done the speech generator will read out the data string in sequence and generate the required sounds. This process will continue until the full number of bytes has been dealt with without any further interference by the controlling computer.

What actually happens is that the write operation loads the address counters with the lower 11 address bits and the byte counter with the data on the data bus. After this operation the speech generator chip is enabled and generates the clock and loading signals by interaction with the byte counter and a simple gate circuit until the byte counter reaches zero. At this point the operation will stop.

If for some reason the controlling computer needs to know the current status of the unit (i.e. whether it is still talking or not) this can be done by a read operation to any address in the range 10240 to 12287 (decimal) and testing the state of data bit 7. This will be high for busy or still talking and low if the MiniMynah is ready to accept a new
command. Note, however, that a false result may be obtained when the last byte is being processed as the byte counter will be zero before the speech generator has finished sounding (this will not cause a problem if
the last byte was a pause).
We have not shown a power supply or audio amp for this project as there are so many simple circuits available. A power supply of 5 V at about 300 mA should be adequate.

| PROGRAM LISTING |
| :--- | :--- |
| 10 REM (50 or more characters to take data) |
| 20 LET K $=16514$ |
| 30 FOR I $=0$ TO 50 |
| 40 PRINT I +K |
| 50 INPUT A |
| 60 IF A>255 THEN GOTO 100 |
| 70 POKE I +K,A |
| 80 PRINT PEEK (I+K) |
| 90 NEXT I |
| 100 FOR J=0 TO I |
| 110 POKE $8192+J$, PEEK (16514+J) |
| 150 POKE $10240, I$ |
| 160 IF PEEK 10240$)>127$ THEN GOTO 160 |
| 170 GOTO 150 |

Fig. 2 Example program for the ZX81.

HOW IT WORKS - PROGRAM

Line 20 sets pointer to data storage Line 20 sets pointer to data storage
start in the REM statement. Lines 30 to 90 take in up to 50 bytes of data and store it in the REM statement. The address at which each byte is to be stored is printed on the screen as is the content of that address after the operation is complete.

The process can be stopped by entering a number greater than 255.
Lines 100 to 120 transfer the data from the REM statement to the memory in the Mini-Mynah. After this, line 150 writes the number of bytes in the data string just loaded to the start address +2048 . This action triggers the Mini-Mynah to speak the equivalent of the data string as a string of sounds.

Line 160 tests the status flag and only allows the program to continue when the Mini-Mynah signals that the data string has been processed. Normally line 160 would come before line 150 and other actions would be undertaken by the computer while the Mini-Mynah was speaking (hint type line 10 in last).

Here is data for a surprise message (don't worry, it's not rude!)
$4,155,135,173,15,117,132,4,216$, $70,131,26,154,80,67,18,143,79$, 67, 19,' $196,13,19,132,24,134,67$, 16, 76, 129, 139, 211, 3, 16, 216, 134, 184,115

Note that although only 64 allo phones are available from the basic chip in the Mini-Mynah we have added circuitry which affects the pitch of the reproduced speech. This is activated by the two MSBs of the data byte and is shown in the data by adding $9,64,128$ or 192 to the allophone number in the range 0 to 63 . Be aware also that the MSBs of one byte affect the pitch of the preceding allophone not the one to which it belongs. To illustrate the effect of not using the pitch inflection, either turn the presets on the PCB to the set-up positions or subtract 64,128 or 192 as necessary from the data bytes and run the program again.

The ZX81 program will run on the basic 1K machine and you should have no problem saving it once you have input the data so that you can store phrases and re-enter them. With 16 K + machines or other systems, you will probably find it easier to store the data in arrays or data statements as appropriate.

Interfacing to the 16 K or 48 K Spectrum should, in theory, be quite simple (but we have not tried it yet) and a possible location in the memory map would be right at the top. Make sure that the area occupied by the MiniMynah is not also used by Basic or whatever high level language you use on your system.

Word	Allophone	Code (decimal)
Zero	ZZ/YR/OW	43,60,53
One	WW/AX/AX/NN1	46,15,15,11
Two	TT2/UW2	13,31
Three	TH/RR1/IY	29,14,19
Four	FF/FF/OR	40,40,58
Five	FF/FF/AY/VV	40,40,6,35
Six	SS/SS/IH/IH/PA3/KK2/SS	55,55,12,12,2,41,55
Seven	SS/SS/EH/EH/VV/IH/NN1	55,55,7,7,35,12,11.
Eight	EY/PA3/TT2	20,2,13
Nine	NN1/AA/AY/NN1	11,24,6,11
Ten	TT2/EH/EH/NN1	13,7,7,11
Eleven	IH/LL/EH/EH/VV/IH/NN1	12,45,7,7,35,12,11
Twelve	TT2/WH/EH/EH/LL/VV	13,48,7,7,45,35
Thirteen	TH/ER1/PA2/PA3/TT2/IY/NN1	29,51,1,2,13,19,11
Twenty	T2/WH/EH/EH/NN1/PA2/PA3/TT2/IY	13,48,7,7,11, 1, 2, 13, 19
Hundred	HH2/AX/AX/NN1/PA2/DD2/RR2/IH/IH/PA1/DD1	57,15,15,11,1,2,33,39,12,12,0,21
Thousand	TH/AA/AW/ZZ/I H/PA1/PA1/NN1/DD1	29,24,32,43,12,0,0,11,21
Million	MM/IH/IH/LL/YY1/AX/NN1	16,12,12,45,49,15,11

Table 1 Some useful words as allophones.

PROJECT ：Sound Board

Setting Up

 ＇sluəuoduro рәэеן

 samod Nidde pue ןeu！uiat indino mopues e лeay 人ןqeqoad II！no人 ачł ఫечł surau s！ 47 －symenbs Mini－Mynah is working；the noise should stop after a short

When it works thus far，con－
 very sure of your connections），

 momentary short across C 4 will sequence）you are ready to try it out．Use the demo program or
 Try the effect of varying RV1 and

 monster－from－the－swamp effect．

 economise but make sure you tie it down securely to prevent breakages．Similarly，the power you wish．

Interfacing

 sl！q elep 8 8u！puasəad to poylau and 12 address bits together with READ，WRITE and SELECT
（or SELECT）signals could be

 yeuk W－！u！W ач！＇ $18 \times Z$ әч！Ol UO！ е！＾чठ！ч s｜lnd чग！чм әu！！SวWO甘

 иəวмұəə马u！ppe әле әм səว！＾əр әч！pue 4 ！ Whatever host computer is
used，address lines A0 to A10

0

 must be provided by your control

There are two main phases in the There are two main phases in the
operation of this project：the first phase is the loading of the speech second phase is the reading of the stored information by the speech pro
cessor to generate the required counds．These two phases will be dis－ cussed in order． $1 \mathrm{C}, 2$ and 3 and b are In phase one，IC1，2 and 3 a and b are
used to decode the control and more景 puter interface．In this phase only pin enables data to be read from and writ－ ten into the RAM（IC5）via the data
buffer（IC9）and IC6， 7 and 8 which act as address buffers． When IC1 pin 11 When IC1 pin 11 goes low，IC4a is
enabled and the signal on the WR line
is transferred to the WE input of IC5． en transferred to the WE input of IC5．
Also while IC2 pin 11 is low，the CS And OE pins of IC5 are driven high by the output from IC1 pin 13 until either
the WR or RD inputs to IC3a goes low，

 externally．
The low on IC2 pin 11 enables the bi－ The low on IC2 pin 11 enables the bi－
directional bus buffer IC9 and also for－ ces the output of IC1d low via IC3b．
This condition causes the outputs of IC6，7 and 8 to follow the inputs from the address bus．These devices are can be loaded asynchronously by tak－
ing their pin 11 low，which is the condi－ tion just described

In phase two，once suitable data has
been loaded into IC5，a WRITE opera－
 computer such that IC2 pin 10 （75）is sent low and the WR input line is also
low．Under these conditions the output of IC4b pin 6 will be low forcing the
output of IC1d low via IC3b and thus
 8．Also the low on IC4b output causes the contents of the data bus to be
loaded into IC10 while holding the out－ put the end of the WRITE operation，
 u！d Lİl jo indino ayl tunos oazz－uou O） the speech generator is ready to

Speech Synthesis

The spoken word is a very effective way of communicating information in small quantities to and from humans. For many years and for many reasons people have been trying to imitate the sounds of speech. Early attempts used collections of (mechanical) valves, pipes, resonators and noise sources which were thought to approximate to the human vocal tract. Later on these models could be implemented electronically which greatly eased the control problems.

Another system of making machines talk was also tried in which short sections of actual speech were preserved in some recording medium and played back in the sequence required. A notable example of this type of machine was the GPO (as it was then) speaking clock, TIM. This started life with the phrases recorded on glass discs.

With the boom in popularity
enjoyed by the home computer has come the demand for speech synthesis systems which allow them to communicate with people. This can be done relatively easily by recording words and phrases in digital form (PCM - pulse code modulation) and playing them back on demand. The trouble with this is that to get good quality speech requires typically 70,000 bits of data per second. Methods have been developed which reduce this requirement (for example, LPC - linear predictive coding) by predicting what happens next partly from what has gone before, but even here the data rate is of the order of one to two thousand bits per second.

The first two methods described often have the feature that speech is available only in pre-set words or phrases; this of course makes them easy to use but on the other hand sets a limit to their applicability. Also, while memory devices are getting
cheaper all the time, they take up space and consume power. The allophone method breaks down speech sounds into individual components, so that a word such as 'zero' would have its sound broken into three parts - one for the z sound, one for the er sound and one for the o; the individual speech components are called allophones.

There are a very large number of potential allophones, as many different sounds as the human voice can generate! However, for any one language, the number of sounds used (or, rather, the number of distinguishably different sounds used) is relatively small. In this case, it is necessary for a speech synthesiser to be told a reference number for each of the three or more allophones it has to produce per second, and this reduces the bit rate to around 100 bits per second. However, the allophones themselves are fairly complex, so

Sound Type Silences	$\begin{aligned} & \hline \text { Symbol } \\ & \text { /PA1/ } \\ & \text { /PA2/ } \\ & \text { /PA3/ } \\ & \text { /PA4/ } \\ & \text { /PA5/ } \end{aligned}$	Code 00 01 02 03 04	0 1 2 3 4	Duration 10 ms 30 ms 50 ms 100 ms 200 ms	Example	Notes
Short vowels	$\begin{aligned} & \text { IH/ } \\ & / \mathrm{EH} / \\ & / \mathrm{AE} / \\ & / \mathrm{UH} / \\ & / \mathrm{AO} / \\ & \text { /AX/ } \\ & \text { /AA } \end{aligned}$	$\begin{aligned} & 0 \mathrm{C} \\ & 07 \\ & 1 \mathrm{~A} \\ & 1 \mathrm{E} \\ & 17 \\ & 0 \mathrm{~F} \\ & 18 \end{aligned}$	12 7 26 30 23 15 24	$\begin{gathered} 70 \mathrm{~ms} \\ 70 \mathrm{~ms} \\ 120 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ 70 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{gathered}$	$\left.\begin{array}{l}\text { slt } \\ \text { End } \\ \text { hAt } \\ \text { bOOk } \\ \text { AUght } \\ \text { sUcceed } \\ \text { hOt }\end{array}\right\}$	These vowel sounds can be doubled to lengthen them.
Long Vowels	/IY/ /EY/ /AY/ /OY/ /UW1/ /UW2/ /OW/ /AW/	$\begin{aligned} & 13 \\ & 14 \\ & 06 \\ & 05 \\ & 16 \\ & 1 F \\ & 35 \\ & 20 \end{aligned}$	19 20 6 5 22 31 53 32	250 ms 280 ms 250 ms 420 ms 100 ms 260 ms 240 ms 370 ms	sEE trAy kite vOice tO fOOd zOne dOWn	
R-coloured yowels	/ER1/ /ER2/ /OR/ /AR/ /YR/ /XR/	$\begin{aligned} & 33 \\ & 34 \\ & 3 \mathrm{~A} \\ & 3 \mathrm{~B} \\ & 3 \mathrm{C} \\ & 2 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 51 \\ & 52 \\ & 58 \\ & 59 \\ & 60 \\ & 47 \end{aligned}$	160 ms 300 ms 330 ms 290 ms 350 ms 360 ms	lettER fERn fORtune alARm hEAr stARe	
Resonants		$\begin{aligned} & 2 \mathrm{E} \\ & 03 \\ & 27 \\ & 2 \mathrm{D} \\ & 3 \mathrm{E} \\ & 31 \\ & 19 \\ & \hline \end{aligned}$	46 14 39 45 62 49 25	$\begin{aligned} & 180 \mathrm{~ms} \\ & 170 \mathrm{~ms} \\ & 130 \mathrm{~ms} \\ & 110 \mathrm{~ms} \\ & 190 \mathrm{~ms} \\ & 130 \mathrm{~ms} \\ & 180 \mathrm{~ms} \\ & \hline \end{aligned}$	We Read cRane Like angLE, cUte, Yes	(See also /WH/) squirrel compUter (Y -sound)

Table 2 The allophones that the sound generator IC used offers.
what is needed is a table where the generator can 'look up' the composition of the allophones it is being required to produce. The data that is sent to the speech processor is not, therefore, the actual allophones themselves, but the address (or a pointer to the address) of the code for the allophone, which is stored within the device itself.

The device used here does not use PCM or LPC, as these systems would still require a very large amount of stored data. The data is actually used by the on-board processor which controls noise sources and filters, as well as the basic tone generators. The quality of speech produced is not as good as PCM or LPC systems, but it is quite intelligible.

The device used is the SP0256-AL2 which provides us with a set of 64 allophones. This imposes some restriction on what we can do, but this is not too severe.

It should be understood that in a language such as English, there is no absolute correspondence between what is written and the sounds generated when the same word is spoken. Also, it is often difficult to decide where one sound finished and another starts. To some extent the same basic sound will vary a little depending on its position within a word and also on what sounds are adjacent to it.

When programming the MiniMynah it is necessary to decide what sounds you require rather than the letters or words as written. Experiment with alternatives where they are available to get the right sound in the right position. Table 2 shows the 64 speech sounds available from the SP0256-AL2. These are broken down into groups of similar types and are shown with their decimal and hexa-decimal addresses (these correspond to the six LSBs of the data you put into the on-board RAM).

The table also shows the duration of each sound at a nominal 3.12 MHz clock frequency and gives an example or two of the sound in a word context. Notice that alternatives are given for some sounds and that short pauses are recommended before some and after others to make them effective. Try the example words to get a feel for what constructions are needed in different circumstances.

Once you have mastered the allophone set, and can produce understandable speech, you are ready to give it some life. This is where the two MSBs of the data come in. With these you can change the pitch (and duration) of the allophone immediately preceding the one whose six LSBs you are setting. By experimenting carefully, you should be able to make much more natural sounding speech rather than the monotonous, flat sound usually associated with computer speech.

Sound Type Voiced Fricatives	Symbol /VV/ /DH1/ /DH2/ /ZZ/ /ZH/	$\begin{aligned} & \text { Code } \\ & 23 \\ & 12 \\ & 36 \\ & 28 \\ & 26 \end{aligned}$	35 18 54 43 38	Duration 190 ms 290 ms 240 ms 210 ms 190 ms	Example Vest THis baTHe Zoo pleaSure,	Notes aZurè
Voiceless Fricatives	/FF/	28	40	150 ms		These allophones may be used doubly for initial or singly for final positions.
	/TH/	10	29	180 ms	THin	
	/SS/	37	55	90 ms	veST	
	${ }^{\text {/ SH/ }}$	25	37	160 ms	SHip	
	/ $\mathrm{HH} 1 /$	1 B	27	130 ms	He	
	/ $\mathrm{HH} 2 /$	39	57	180 ms	Hoe	
	/WH/	30	48	200 ms	WHig	(see also /WW/)
Voiced stops	/BB1/	1C	28	80 ms	riB	Usually need $10-30 \mathrm{~ms}$ silence preceding these.
	/8B2/	3 F	63	50 ms	Beast	
	/DD1/	15	21	70 ms	enD	
	/DD2/	21	33	160 ms	Down	
	/GG1/	24	36	80 ms	Guest	
	/GG3/	32 22	61 34	$\underset{40 \mathrm{~ms}}{440 \mathrm{~ms}}$	${ }_{\text {cot }}^{\text {peG }}$	
Voiceless Stops	/PP/	09	9	210 ms	Pow	Usually need $50-80 \mathrm{~ms}$ silence preceding these.
	/TT1/	17	17	100 ms	parTs	
	/TT2/	0D	13	140 ms		
	/KK1/	${ }_{29}^{2 A}$	42	160 ms 190 ms	Can't	
	/Кк3/	08		120 ms	Crane	
Affricatives	/ $\mathrm{CH} /$	32	50	190 ms	CHurCH JudGe	
	/JH/	0A	10	140 ms		
Nasal	/MM/	10	16	180 ms	Milk thiN No aNGer	
	/NN1/	0B	11	140 ms		
	/NN2/	38	56	190 ms		
	/NG/	2 C	44	220 ms		

Table 2 continued.

PROJECT : Sound Board

ETI FEBRUARY 1984

elecrorize AUTO-ELECTRONIC PRODUCTS KITS OR READY BUITT

TOTAL ENERGY DISCHARGE

 ELECTRONIC IGNITIONIS

AS GOOD AS IT COULD BE?
t is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
\star is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.

* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from ide to the engines maximum (even with 8 cylinders).
* Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the "'near misfires" whilst an electronic filter smoothes out the effects of contact bounce etc.
* Do the PLUGS end POINTS Katways need changing to bring the engine back to its bestr Total Energy Discharge eliminates contact
 stays "spot on" and the contact condition doesn't waffect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE T 1 a unique system and the most powerful on the market - 3 Y times the power of inductive systems $31 / 2$ times the energy and 3 times the duration of ordinany capacitive systems. The are the facts:
Performance at only 6 volts (max aupply 18 volts)
SPARK POWER - 140 W , SPARKENERGY - 36 mJ SPARK DURATION - 500 LOADED OUTPUN VOLTAGE

50 pFload - 38 kV ,
$50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}$
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only en inductive system. But if an inductive system is what you really want, we'll still give you a good deal.

* All ELECTRONIZE electronic ignitions featura: EASY FITTING, STANDARDIELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).
* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have electronic ignition. Update YOUR CAR

ELECTRONIZE ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR?

More and more cars are stolen each week and even a steering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm system well there are plenty of other cars to choose from.

LOOK AT THE PROTECTION AN ELECTRONIZE ALARM

 CAN GIVE* MINIATURE KEY PLUG A miniature jack plug attaches to your key ring and is coded to your particular alarm.
* 2025 INDIVIDUAL COMBINATIONS. The key plug contains two 1% tolerance resistors, poth.must be the morrect value and together give 2025 different combrinations.
* ATTRACTS MAXIUNUM ATTENTION This alarm system not only intermittently sounds the horn, but also flashes the headlight and prevents the engine being started.
60 SEGOND ALARM PERIOO Once triggered the alarm will sound for 60 seconds, uniess cancelled by the key plug, before resetting ready to be triggered again.
* 30 SECOND EXIT DEÜY The system is armed by pressing a small button on a dashboard mounted control papel, This starts a 30 second delay period during which the owner can apen and close doors without triggering the glarm.
* 10 SECOND ENTRY DELAY When a door ils opened a 10 second delay operates to allow the owher to disarm the system with the coded key plug. Latching circuits are used and once triggered the alarm can only be cancelled by the key plug.
* L.E.D. FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED indicates that the alarm has been triggered and is in the entry delay condition.
\star ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
* SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
\star LOW SUPPLY CURRENT CMOS IC's and low power operational amplifiers achieve a normal operating current of only 2.5 mA .
- IN KIT FORM It provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions.

EIECTRONIZE DESIGN Dept D Magnus Rd • Wilnecote • Tamworth • B77 5BY tel 0827281000 -

TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)Assembled ready to tit
£ 2 c 10 E 19.95 D.I.Y. perts kin f150 14.95

TWIN OUTPUT for cars and motor cycles with dual ignition

Twin, Assembled ready to fit
 £36.45 £29.95

 Twin, D.I.Y. parts kit£24.55 £22.95
INDUCTIVE DISCHARGE (12 volt oniy)
Assembled ready to fit
£15.95 £12.75

CAR ALARM (12 volt negative earth)
\square Assembled ready to fit (All wires and
£27.05 $£ 29.95$ D.I.Y. parts kit
connectors incl.) £24.55 £19.95
I enclose cheque/postal order OR debit my Access/Visa card

Name
Address

Z80 DRAM

We publish a superb project like Bob Campbell's 64 K DRAM board for $6502 / 6800$ systems and instead of gratitude, all we get are hundreds of letters asking for a Z80 version. Here it is then, you ungrateful lot, and don't forget to say "thank you"!

When I set out to design the DRAM Board (published in ETI Sept. 83) I had no intention of considering its use with the Z80 processor. However, the question "Can it be done?" provides a good introduction to the many considerations that must be given to the peculiarities of the Z80 when designing almost anything for it, not least a dynamic memory system.

Since this is to be an add-on or an extension to an existing system we must first consider the probable target system and the alternative solutions to the 'maximum memory objective'.

Probable target computers include:

- Z80 Systems with some dynamic memory, 16 K eg. TRS80, Video Genie; - Z80 systems with little or no memory, eg. Home Brews, μ Professor;
- ZX80, ZX81, ZX Spectrum, are not worth considering as they already have very comprehensive and cheap support.

There are three distinct solutions to satisfy the first two users. They are:-

1. Modify the DRAM Board to suit the Z80.
2. Design a new board to take in all the advantages of the $\mathrm{Z80}$ using similar techniques and with the same overall objectives. 3. Replace and extend an existing 4116 based system with 64 K chips (this applies to the first user only) using the original PCB , with either complete re-decoding
using a PROM or modifying the existing TTL decoding on board. This option will probably end up with the system ROM still within the memory map, ie. decoding 16 K blocks and upgrading to 48 K from 16 K .

Modifying the DRAM Board

Consulting the circuit diagram from the original article, it can be seen that only three signals other than the address and data buses are taken from the system. These are R/W, $\Phi 1$ and $\Phi 2$. To use the board with the Z80 these signals must be mimicked in such a way that they satisfy both the requirements of the board and the processor itself.

Assuming for the moment that the discrete refresh counter, IC1, is to be retained, then the following observations can be used as a guide to the final design:
\mathbf{R} / \mathbf{W} - this signal is high during a read cycle and low during a write to memory cicle; $\Phi 1$ - this signal, or more accurately, the rising edge of it initiates the refresh cycle, and also clocks the refresh row address counter;
$\Phi 2$ - this is slightly more complex as it signifies both a valid address and the start of a memory access cycle, read or write.

Obviously the R/W line is the simplest and in fact WR can be substituted directly in it's place. RFSH, the Z80 signal, performs a similar function to $\Phi 1$ although
it is inverted, ie negative true, and thus must be inverted before substitution. MREQ is very similar to $\Phi 2$ although again it is inverted, ie active low. One other slight complication is that MREQ, becomes active during the refresh cycle RFSH. Obviously this situation must be distinguished from a true memory access cycle.

Combining all these conditions, the two necessary logical signals can be arrived at, namely MC and RC Memory and Refresh cycle start; note that both have active rising edges. The two equations are:-

$$
\begin{aligned}
& \overline{\mathrm{MREQ}} \text { and } \overline{\overline{\mathrm{RFSH}}}=\mathrm{MC} \\
& \overline{\mathrm{RFSH}}=\mathrm{RC}
\end{aligned}
$$

These two equations can be resolved into a logical circuit in the usual way, ie, hard slog, copy someone else, intuitively or by guess work. However it is arrived at, it should look something like Fig. 1. The prime (') on any signal indicates that it is a substitute.

This solution will work in principle; however the timing constraints of the board as a whole,

Fig. 1 Generation of $\Phi 1$ and $\Phi 2$ from RFSH and MREQ.
and particularly those of the 74LS608, are such that it will probably not work without adjusting the timing components around IC17.

A slightly better solution becomes apparent from the timing diagrams of the Z80. Consider the same situation which we have just tried to avoid, MREQ becoming active during RFSH. Taking cycle T3 in Fig. 2,

Fig. 2 Diagram showing the timing of the Z80's MREQ and RFSH functions.
only in the worst possible case can MREQ become active before RFSH. Thus MREQ could be used as a cycle start directly, and that means for both refresh and memory access cycles. In fact most systems using dynamic memory use MREQ as RAS and generate ROW/COL and CAS by delay lines from that active edge. Delay lines are to be avoided if at all possible, but unfortunately this is not always so in DRAM design. The second solution now looks like fig. 3; this is much simpler than all the others and should work very
well, in theory at least. The need for the two signals $\Phi 1$ and $\Phi 2$ to control the address and data buffers means that the circuit is still more complex than it might be.

Further improvements can still be made to the circuit by using the Z80's on chip refresh row address counter.

During RFSH, the CPU puts out on the lower seven address lines a refresh row address which is cycled through 0-128, incrementing once very M1 cycle. Using this address the 393, IC1, can be dispensed with, and the 244 that goes with it, IC2. Since the Z80 refresh address is only seven bits wide, the TMS 4164 cannot be used as it requires an eight bit, 256 cycle refresh. The $486464 \mathrm{~K} \times 1$ bit memory and its derivatives (see Table 1) use a 128 cycle 2 ms refresh cycle and thus only require seven refresh address bits, and these should be used instead.

Using the Z80 refresh address counter in this way requires the primary address buffer IC 11 to be enabled on both the refresh and memory access cycles, and the address multiplexers, IC 12 and IC 14, to present the lower 8 bits A0-A7 and the upper 8, A8-A15, of any address separately. In other words, the lower 8 should be on the "a" side and the upper 8 on the " b " inputs to the multiplexers, or vice versa but not intermixed. All these modifications could be made, and the timing corrected to suit and a PROM programme devised etc,

Fig. 3 Using MREQ as a direct start for both refresh and memory access cycles.
but unless there is a pressing reason for the DRAM board to be used in this way for a Z80 application, I would advise against it. There is a great deal more to be gained by using a purpose designed Z80 RAM Board.

Such a design is presented here and the advantages are clear, but first some notes on converting the 16 K 4116 system such as that of a TRS-80 or Video Genie.

16-48K Upgrade

Those computers already using the 4116 dynamic RAMs obviously have the necessary circuitry to produce the signals to drive the RAMs properly. Those signals, including the address multiplexing, are usually controlled by the decoding circuitry, by gating either CAS and/or the enable for the output/input buffers. The main difference between a 16 K 4116 and a 64 K 4864 memory array is the 'width' of the decoding, A7 and the supply rails. Looking at the pin configuration of the two RAM chips reveals that only three pins are different, see Fig. 4. So with the minimum of modifications it is a relatively simple matter to swap the two using the original PCB.

Fig. 4 Pinouts of the 4116 and 4864 DRAMs.

PROJECT: Z80 DRAM

Fig. 5 Modified address multiplexer arrangement.

Modifying the power supply lines is the first and the simplest of the changes necessary: PIN $1 \mathrm{~V}_{\mathrm{bb}}-5 \mathrm{~V}$: this track should be disconnected, at both ends of the RAM array, from the -5 V supply; furthermore all the capacitors on this line between it and either ground, +5 V or +12 V should be removed. The track now takes no further part in the circuit until we upgrade to 256 Ks !
PIN $8 V_{\text {dd }}+12 \mathrm{~V}$: this now becomes the +5 V , ie $\mathrm{V}_{\text {I, }}$ line on the 4864; thus it should be disconnected from the original +12 V supply and reconnected to a suitable point on the computer's +5 V circuit. Any capacitors between it and ground should be retained; there is usually one per IC, and if there is not, additional ones should be added; $1 \mu \mathrm{~F}$ tants or $0.1 \mu \mathrm{~F}$ MKC will do.
PIN $9 \mathrm{~V}_{\mathrm{cc}}+5 \mathrm{~V}$: finally, this track becomes the additional address line A7. It should be disconnected from the +5 V supply and all the attached capacitors removed. The now isolated track should be connected to the unused output of the address multiplexers. Normally these are a pair of 74 LS 157 s . The remainder of the circuitry around the RAM array is identical to the original 4116 regime.

The modification to the address multiplexers, which usually consist of two 74 LS 157 s , is dependent upon the specific system. The normal approach is to have only A0-A13
inclusive connected to the inputs of the multiplexers. Both A14 and A15 must now be added to these and should correspond to the new output just connected to A7 pin 9 on the RAMs. Thus the final circuit should look something like Fig. 5. The main thing is that A0-A6 are all on one side of the multiplexer's inputs, ie, all a's or all b's.

Finally, the last modification is to the decoding circuitry, and this is probably the most machine dependent modification of all. Of the numerous systems in use, the most common is to gate the CAS signal to the appropriate RAM block through a tri-state buffer. It is necessary only to increase the decoding to this buffer to enable the new areas of RAM.

Fig. 6 Decoding circuitry of the Video Genie a) before and b) after modification.

Type No. TMS 4164	Manufacturer Texas Inst.	Refresh Cycle		
		8 bit	256 cycle	4 ms
TMM 4164	Toshiba	7	128	2
HYB 4164	Siemens	8	256	4
2164	Intel	7	128	2
HM 4864	Hitachi	7	128	2
MCM 6664A	Motorola	7	128	2 or pin 1
MCM 6665A	Motorola	7	128	2
$\mu \mathrm{PD}$	NEC			
MK	Mostek			
IMS 2600	Inmos	8	256	4
NCM 4164	National Semi.	8	256	4
F 4164	Fairchild	8	256	4
MB 8264	Fujitsu			
MB8265	Fujitsu	pin 1		
MSM 3764	OKI Somi			

Table 1 Comparison of 64 K DRAMs.

Fig. 7 Block diagram of the TMS 4500A DRAM controller.

NOTE: T_{W}-WAIT CYCLE ADDED WHEN NECESSARY FOR SLOW ANCILLIARY DEVICES

There are two distinct ways of doing this; one is to extend the existing decoding and the other is to use a PROM in a way similar to the original DRAM Board design. The latter approach would follow almost exactly the DRAM design, and those of you wishing to attempt that will find enough information in the original article.

The much simpler approach, if not as profitable in terms of added memory, is to modify the existing decoding. Normally the memory map is decoded into four 16 K blocks at the primary decoding level, and by using the unused blocks within the memory map the usable RAM can be expanded. Using the Video Genie as an example, the original circuit is shown in Fig. 6a, and the modified one in Fig. 6b. In the latter the two unused outputs of the 74LS139 (Z25) are combined to give a total RAM area of 48 K . Note that there is an unused 16 pin socket on the main PCB which can be used for the additional IC.

It can be seen then that the 4864/4116 replacement technique is relatively simple and produces a very neat and reliable 32 K expansion to the average system. To go further than the 32 K addition requires more effort and the advantages of retaining the RAM on the original PCB become less: the purpose-built Z80 64 K RAM card then comes into its own. As with the original DRAM Board design, it can be designed to be as flexible as possible, thus allowing for all the vagaries that can and do exist in the original target system. The power on jump vector, which tricks the CPU into thinking that there is EPROM at 0000 hex at restart only where there is actually RAM, is the most common difficulty to overcome. Note that this is a must for CP / M systems.

The concluding part of this article in next month's ETI will describe the new DRAM board for use with Z80 microprocessors.

Fig. 8 Timing diagram of the Z80 CPU.

The Complete Printed Circuit Workshop COMPUTING AND ELECTRONICS Project development materials

ULTRA VIOLET SENSITIVE COPPER CLAD LAMINATE

Top quality glass fibre with 1 oz Cufoil. Will reproduce tracks down to .01 inch. Positive \& Negative Resist Systems for high quality PCB production. - Economic packs at very competitive prices direct from the innovators \& manufacturers. Full range of complementary chemicals and process equipment available.

PHOTO RESIST KIT

Complete kit containing artwork PCB, and all necessary process materials. Order ref HB/2 £24.50

ARTWORK LIGHT TABLES \& UV EXPOSURE UNITS

Low cost, purpose designed units enabling high standards of design and reproduction to be achieved.

UV EXPOSURE UNIT AND

ARTBOX (illus)

A portable ready made unit containing two 8 watt UV tubes giving a $6^{\prime \prime} \times 9^{\prime \prime}$ exposure area which may also be used as a light box with the UV filter supplied. Order ref UV2 $£ 64.50$
DIY UV EXPOSURE UNIT
Perfect results everytime. Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB, Precision Photo, Label \& Panel manufacture. Order ref UV1 £27.50

FOTOTOOL - DAYLIGHT PHOTOGRAPHIC PCB LABEL \& PANEL MAKING SYSTEM

Daylight handling - UV exposable. Fototool provides highly professional photographic masters - either positive or negative - for high quality PCB reproduction - Fototool films exhibit superb resolution, stability and high image densities normally only found in professional darkroom films.

Fotopanel complements Fotofilm with a range of 10 highly attractive backing colours (including brushed aluminium), and enables professional labels \& panels to be made simply and cheaply.

FOTOTOOL KIT

Containing artwork, film and all the necessary process materials required for professional quality labels and panels. CAN ALSO BE USED TO PRODUCE PRECISION PCB PHOTOMASTERS. Order ref HB3 £23.00

PRINTED CIRCUIT ARTWORK AIDS

Three comprehensive stock ranges to suit all preferences including dry transfers, printed acetate and crepe. Precision track tapes, pads, DIL/MICROLOGIC PATTERNS ETC Includes etch resistant symbols \& tapes.

DIRECT ETCH KIT

COPY DIRECT FROM MAGAZINE or OWN DESIGN. Simple system - Complete kit containing PCB, Pattern Transfer \& Etch Resist Sheets, Tray \& Etchant, Copper Cleaning Block, Gloves $\&$ full instructions Order ref HB/1 $\mathbf{£ 1 5 . 5 0}$

PCB HARDWARE

* CASES \& BOXES \star PCB MOUNTING \& AIDS \star CONNECTORS \& PINS * TERMINALS \star DIL SOCKETS

COMPUTER ADD-ON/ INTERFACE PROTOTYPING SYSTEM

This system, designed and manufactured by Kelan, provides an attractively styled moulded case, pre-patterned PCB, 28 way connector user port extender, and 9 way PCB mounting 'D' connector to add-ons. Custom designed circuits may be easily built from this kit with a highly professional finish. Order ref HB/2090 $£ 9.50$

Easy Add-ons for ZX Spectrum \& ACE

17 exciting electronic projects to build and run your own micro.

- LIGHT PEN
 PICTURE DIGITISER - KEY PAD
 - WEATHER STATION + OTHER EXCITING 8

 MODEL CONTROLLERREALISE THE REAL WORLD POTENTIAL OF YOUR MICRO
A newly released book written by well known author Owen Bishop and published by Bernard Babani gives full descriptive details on how to build all 17 projects - all are fairly simple and inexpensive to construct The most complex component (the DECODER) is supplied in kit form ready to assemble with all components and plated through PCB. Components for the projects are readily available locally or found it your workshop drawers.
Simple programmes are included to get you started but of course the more experienced programmer can have hours of fun writing complex programmes. Please state computer when ordering.

Order ref HB/2000 "EASY ADD-ONS" BOOK

Order ref HB/2000 "EASY ADD-ONS" BOOK + DECODER KIT	$\mathbf{£ 2 4 . 0 0}$
Order ref HB/2001 "EASY ADD-ONS" BOOK ONLY	$\mathbf{£ 3 . 0 0}$
Order ref HB/2002 DECODER KIT ONLY	$\mathbf{£ 2 2 . 0 0}$
Order ref HB/2003 DECODER PCB ONLY	$\mathbf{£ 8 . 0 0}$

BBC MICRO INTERFACE

Initially designed to interface the acorn BBC Micro with turtle type robotics this unit, supplied in kit form, provides 8 control outputs and 4 Däta inputs providing a useful interface to operate numerous control applications. Order ref HB/2030 £26.50

HOBBYBOARD CATALOGUE

Newly Published Full Catalogue price $£ 1.50$ (refundable with 1st order over £10)

Please send by return:-

QTY	REF	DESCRIPTION	PRICE	TOTAL
Full Catalogue (see above)			C150	
Price inclusive of VAT \& carriage (U.K.). Please allow 21 days for delivery. Cheq :es, PO 's or signed Access orders welcomed. Overseas customers please add exira post \& packaging				
NAME				
ADDR	ESS	--:		

ouguanghonged

a division of
KELAN ENGINEERING Ltd
Hookstone Park Harrogate, N. Yorks

ambit wivisiou

Also Sales Counters at:

53 Burfialds Road, Portsmeuth
Tol: (0705) 669021
Park Lane, Broxhourne, Herts
Tol: (0992) 441631

All prices oxclude VAT postage and packing 60p Ploase quote stock numbers when ordering Belgium. Kits comprise Mullard wooter i8" or $5^{\text {") }}$ with foam surround and aluminium voice coil. Mullard 3^{n} high power domed tweeter. B.K.E. built and tessted crossover based on Mullard circuit, combining low loss components, glass tibre board and receasead loudspeaker terminals
SUPERB SOUNDS AT LOW COST. Kits supplied in polystyrene packs complete with instructions. in polystytent packs complete with instructions.
$8 \times 40 \mathrm{~W}$ system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price $\mathrm{f14.00}$ ench $+52.00 P \& P$.
$5^{*} 30 \mathrm{~W}$ system - recommended cabinet size $160 \times 175 \times 295 \mathrm{~mm}$
Price f13.90 ench $+\mathbf{f 1 . 5 0} \mathbf{P g} \mathbf{P}$
Dessigner approved flat pack cabinet kits. including grill fabric. Can be finished with uon on veneer or soff adhesive vinyl etc.

STEREO CASSETTE TAPE DECK MODULE
Comprising of a top panel and tape mechanisnn coupled to
a record/play back printed board assembly. Suppled as a record/play back printed board assembly. Supplied as
one complete unit for horizontal instalation into cabinet or consome of own choice. These units are brand new. readr
built and tested built and tested
Features: Three
Features: Three digit tape counter. Autostop. Six piano
type kes, record, rewwind, fast torward, play stop and
piect Automatic type keys, record, rewind, fast tonward, play stop and
eject. Automatic record level contiol. Main inputs plus secondary inputs for stereo mictophones. Input
Sensitivity: 100 mV to 2 V . Input Impedance 68 K Sensitivity: 100 mV to 2 V . Input Impodance: 68 K .
Output lovel: 400 mV to both leth and channets. Ouput Impedance: 10 K . Signat to noise
ratio: 45 dB . Wow and flutter: 0.1 Power Supply
 left and right hand stereo inputs and outputs are via
individual screened leads, all terminated with phone plugs (phono sockers provided). Dirmensions: Too panel 5 tin $\times 11$ in. Clasarance required under top panel 2 tin.
Supplied complete with circuit diagram and connecting Supplied complate with circuit diagram and connecting
diagram. Attractive black and siver tinish. Price $£ 28.70+72.50$ postage and packing.
Supplementary parts for 18 BV D.C. Dower supply
Itransformer, bridge rectifer and smoor

LOUDSPEAKERS POWER RANGE THREE QUALITY POWER LOUD SPEAKERS ($15^{\circ}, 12^{\prime \prime}$ and 8° See Photo) tions. All units have attractive cast aluminium (ground finish) lixing escutcheons. Speciflcation and Prices.
$15 " 100$ watt R.M.S. Impedance 8 ohms.
50 50 oz. magnet. 2 " aluminıum voice coil Res rreq. 20 Hz . req. Resp to 25 KHz Sen
97 dB . Price: $£ 34.00$ each $+£ 3.00 \mathrm{P} \mathrm{\&}$ P 12"' 100 watt R.M.S. Impedance 8 ohms 50 oz . magnet. 2 " aluminium voice coil. Res. Frea 25 Hz . Frea Resp to 4 KHz , Sen
95 dB . Price: $£ 24.50$ each $+£ 3.00$ P\&P 95dB. Price: $£ 24.50$ each $+£ 3.00$ PsP 8" 50 watt R.M.S. Impedance 8 ohms. 20
Oz. magnet. $1 / 3$ aluminium voice coil Res oz. magnet. $11 /{ }^{\prime}$ aluminium voice coil Res.
Freq. 40 Hz . Freq Resp to 6 KHz . Sens 92 dB . Black Cone. Price: §9 50 each Also available with black protective grille Price 29.99 each. P\&P \& 1.50.

12' 85 watt R.M.S. McKENZIE C1285Gp' LLEAD GUITAR, KEYBOARD, DISCO) $2^{\prime \prime}$ aluminium voice coil, aluminium centre dome, 8 ohm imp., Res. Freq. 45 Hz ., Freq. Resp. to 6.5 KHz . Sens. 98 dB Price: $\mathbf{£ 2 3 . 0 0}+\ldots 3$ carriage
12'85 watt R.M.8. McKENZIE C1205TC (P.A., DISCO) 2' aluminium voice coil. Twin cone. 8 hm imp. Res. Freq. 45 HZ . Freq. Resp to 14 KHz . Price $£ 23+$ £3 carriage $15^{\prime \prime} 150$ watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) 3" aluminium voice coil. Die cast chassis. 8 ohm imp., Res. Freq. $\mathbf{4 0 H z}$.; Freq. Resp. to $\mathbf{4 K H z}$. Price: $\mathbf{f 4 7}+\mathbf{f} 4$

PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coll) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

TYPE 'A (KSN2036A) 3' round with protective wire mash, ideal for bookshelf and medium sized Hifi speakers. Price $\mathbf{E 4 . 2 9}$ each.
TYPE 'B' (KSN1005A) $31 / 2$ " super horn For general purpose speakers, disco and P.A -ystems etc. Price E4.99 each.
TYPE 'C' (KSN6016A) 2" • 5' wide dispersion TYPE 'C' (KSN6016A) 5 " wide dispersion horn. For quality
discosetc. Price E5.89 each.
TYPE 'D' (KSN1025A) $2^{\prime \prime}$ * $6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained
extending down to mid range $/ 2 \mathrm{KHz})$ Sutable exter high quality Hi-fi systems and quality discos. Price $\mathbf{E} 7.99$ each.
TYPE 'E' (KSN1038A) $3 y_{4}$ '' horn tweeter with attractive silver tinish ifim. Suitable for Hi-f monitor systems etc. Price $\mathbf{E} 4.99$ each.
TYPE 'F' (KSN1057A) Cased version of type ' E ' Free standing sarellite tweeter. Perfect add on tweeler for conventional loudspeake
svstems. Price f10 75 each P\&P 20p ea. (or SAE for Plezo leafiete).

op
and value
Ported tuned cabinet in hardwearing black vynide with protective corners and carry handle. Bult and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms; $45 \mathrm{~Hz}-20 \mathrm{KHz}$, Size: 20 in $\times 15 \mathrm{in} \times 12 \mathrm{in}$; Weight: 30 pounds.
Price: $£ 49.00$ each
$£ 90$ per pair
Carriage: $£ 5$ each $£ 7$ per pair

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar and Leader

DANTEC

HOBBY KITS. Proven designs including glass ibre printed circuit board and high quality components complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres $57 \times 46 \times 14 \mathrm{~mm}$ (9 volt) Prlce: £7.99p
DIGITAL THERMOMETER $-9.9^{\circ} \mathrm{C}$ to $+99.9^{\circ} \mathrm{C}$. LED display. Com plete with sensor. $70 \times 70 \mathrm{~mm}$ (9 volt) Price: $\mathbf{£ 2 7 . 6 0 p}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap con trolled professional performance. Range up to 3 miles $35 \times 84 \times 12$ mim (12 volt) Price: E12.49D
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres. Double coded mod ulation Receiver output operates relay with $2 a m p / 240$ vol contacts |deal tor many applications Receiver $90 \times 70 \times 22 \mathrm{~mm} 9$ 12 volt) Price: $\mathbf{E 1 6 . 4 9}$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}(9 / 12$ volt) Price £10.29 P\&P All Kits +50p. S.A.E. for complete list

3 watt FM
Transmitter
BSR P256 TURNTABLE
P256 tumtatble chassis S shaped tone arm

- Belt driven Aluminium platter - Belt driven - Aluminium platter e Precision calbrated counter balance Anti
skate bous devicel Damped cueing lever - 240 volt $A C$ operation (Hz) © Cut.aut template suppled o Completely manual arm. This deck thas a completely manual arm and is designed pimarlv for disco and studio use
where all the advantages of a manual arm are

CO POWER AMPLIFIER MODULE

New model.
Improved specification

NEW OMP100 Mk.II POWER AMPLIFIER MODULE Power Amolifier Module complete power supply and glass fibre p.c.b. assembly. Incorporates drive circuit to power a compatible LED vu meter. New improved specification makes this ampitions ideal for PA., Instrumental SPECIFICATION
Output Power:- 110 watts R.M.S
Loads:- Open and short circuit proof 4/16 ohms.
Freque
Frequency Response:- $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$. S.N.D.:- (Unwelghted): $-118 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$. Sensitivity for Max Output:- 500 mV @ $\mathbf{1 0 K}$. Sonsitivity for Max Output:- 500 mV 910 m.
Size: $360 \times 115 \times 72 \mathrm{~mm}$ Price $-£ 31.99+$
£2.00 P8P MOSFET versions available up to 300 W. R.M.S.
HOME PROTECTION SYSTEM
Better to be 'Alarmed' then territied.
Thandar's famous 'MInder' Burglar Alarm System.
Superior microwave principle. Supplied as three units.
complete with interconnection cable. FULLY
GUARANTEED.
up to 15 metres adjustable by sensitivity control.
Three position, key operated tacia switch - off - test

- armed. 30 second exit and entry delay.

Indoor alarm
104 dB output.

Outdoor Alarm - Electronic swept frea. siren. 98 dB output Housed in a tamper-proof heavy duty metal case.
Both the control unit and outdoor alarm contain rechargeable batteries which provide full protection duringmainz Expandable with door sensors, panic buttons etc. Complete with instructions.
SAVE £128 usual price E 22885 BKE's PRICE £99.p\&p£4

STEREO DISCO MIXER

STEREO OISCO MIXER with 7 band graphic

 equaliser and 10 segment L.E.D. Vu Meters. Ma outstanding features.5 Inputs with individual fader controls:-
2 Mag. turntable, 2 Aux. plus Mic. with talk-over switch. Headphone monitor. Master output contro with Hi-Low outputs. Compatible with our OMP Power Amplifiers
Size: $360 \times 200 \times 120 \mathrm{~mm}$. Supply $240 \mathrm{~V} / 50 \mathrm{~Hz}$ AC

Vurf B.K. ELECTRONICS

There could be a whole new generation of soldering irons just around the corner. Dave Bradshaw has been trying his skills on the EC50 iron from Litesold.

It is one of my few beliefs that one of the largest impacts that electronics will have on the world is to make hitherto 'stupid' devices 'intelligent'. By this, 1 mean that vacuum cleaners, as an example, may have the ability to modify the power going to the motor to prevent the usual off-load 'racing' that often occurs, and, possibly, to reduce the noise (if you have ever used an industrial cleaner, you'll understand the need for this latter point).

So it is not a little ironic (if you will excuse the impending pun) that soldering irons haven't changed all that much - most of those in use in hobby circles are pretty primitive specimens.

Actually, manufacturers have a somewhat impressive term for the sort of iron that just about everyone has they call them thermally balanced; this means that the iron's temperature will settle at the point where the heat input is equalled by the convection and radiation losses from the bit and barrel and conduction losses into the handle.

When the iron is applied to a workpiece, the temperature of the tip will inevitably drop. The iron will then have to recover after removal off the job. The heat that goes to the job comes from both the heat stored in the iron betore contact (the heat is stored in the thermal capacity of the materials in the bit and element) and from the heat being generated in the iron.

It is here that there is a conflict of design requirements. A fairly massive iron would be able to solder larger jobs than one with a lower capacity, because it would have a larger reservoir of stored heat to give to the job. However, it will take a lot longer to heat up a more massive iron (as well as to cool it down) and it will, after a fairly largish heat outflow, take longer to recover; also it will probably be less convenient to use because it will be 'bit-heavy.

To get round this you can increase the power of the element. If you've ever had to solder with a more powerful iron than you would normally use, you'll probably have found, as I have, that in some ways it's a lot more convenient than using a small iron. The element is so hot that anything you apply the tip to is heated up in no time at all, and you can work a lot faster than normal. However, the crunch is that a larger power almost invariably means a longer barrel, or a much hotter tip, or both. A longer barrel means that soldering any number of joints is very tiring, because it's that much more difficult to position the bit accurately. A hotter tip means that you run the risk of destroying delicate components or of stripping off PCB foils.

All this said, it's really quite surprising that simple, thermally balanced soldering irons work as well as they do! However, if you're going to be a serious constructor
it's almost inevitable that you will have to buy two or possibly even three irons of different sizes to make it possible to deal with all the soldering requirements you are likely to meet.

Soldering Electronic

Well, the obvious thing to do is to have some form of electronic control over the heat supplied to the soldering iron element. This is relatively simple in principle - a temperature sensor in the element is linked to some electronics that turns the element on whenever the temperature drops below a selected value. The problem is that the way that this is usually built is to have a separate control unit, with a special iron that can be used with only that particular unit. This is done because it is easiest to control a low voltage - so the control units have largish transformers in them to supply the low-voltage soldering iron element as well as the control electronics (it goes without saying that the element of a controlled soldering iron is usually rather more powerful than that of the equivalent thermally balanced unit, otherwise the controlled iron would actually be worse than the balanced unit).

This has two main disadvantages: firstly, it makes the soldering iron/control unit expensive - you'd be hard put to buy a controlled iron with control unit for under $£ 50$; secondly, it makes the iron a lot less convenient to cart around.

Even with a separate control unit, you don't always get a particularly flexible unit - with many of them, to alter the bit temperature you have to change the bit itself. This means that you have to let the iron cool off first!

Some irons have been made that have a controlled temperature and don't need a separate unit; however, until recently, so far as we know these were not electronic - they used either the Curie point or some sort of thermal expansion effect to open and close mains contacts, with the resulting questionable applicability to delicate (particularly CMOS) electronics.

Enter The EC50!

It is on to this scene that Litesold have launched the EC50. This is an electronically controlled soldering iron but with all the electronics mounted in the handle. Don't worry, there isn't a mains transformer in there too, the element operates at mains voltage and is switched on and off by a triac at zero crossing.

To supply the electronics, Litesold have come up with a rather neat trick - and before other manufacturers copy it, I must point out that it is the subject of

DERING IRON

The soldering iron is shown at about 65% actual size here.
a patent. Like all really good ideas, it seems so obvious that you wonder why no one thought of it before.

The trick is this: to get the correct supply voltage for the electronics, some sort of mains dropper is required. A dropper resistor is used, but rather than being in the handle, where its eight watts of disipation would make the iron uncomfortable to hold, it is wound onto the element itself, as a separate winding, so it contributes towards the heating of the element.

The temperature of the element is monitored by a thermistor mounted right up at the top end of the element, so it actually sits inside the bit. According to Litesold, this thermistor is the single-most expensive bought-in component in the iron! The temperature of the iron can be set using a control on the side of the handle.

Inside is a rather friendly neon (I'm afraid that I'm an old reactionary in that I prefer neons to LEDs as indicators!) which indicates both when the mains is applied to the iron and when the element is on. One gripe I would make about soldering irons in general is that there is no indication of when mains is being applied - how many of you (like me) have picked up a soldering iron by the wrong end, thinking that you'd switched it off some time before? Wouldn't it be a good idea if more irons had indicators in their handles?

In Use

Well, no matter how elegant the ideas that went into the iron, the crunch issue is how well it performs. This I, and a few other members of the ETI team, were only too pleased to put to the test.

First of all, I tried some PCB assembly work using the standard bit. The PCB I assembled did have $0.1^{\prime \prime}$ spaced DIL ICs on it; however, there was no tracking inbetween the pins. Using the standard bit, soldering was a bit tight, although possible to get a reasonable job (I'm not the world's most fussy solderer anyway!). Later, Phil Walker assembled one of our 64 K DRAM boards using the iron but with a special fine-work bit, and his conclusion that this was actually easier than using his usual iron, which is a soldering station with a pointed bit.

The heat supplying capabilities of the iron were not exactly taxed by this trial, so off I went, scurrying down into my cellar to see what I could find. After beating off monstrous spiders, creepy-crawlies, etc, I eventually uncovered two items of valve gear - one was an oscilloscope that I built many moons ago, and the second was an old "Williamson' valve amplifier that had been donated to me by the father of a friend (it's amazing how junk cupboards give up their wares to you when you mention that you're interested in electronics!).

The oscilloscope had been assembled using a 25 W iron, coincidentally also made by Litesold but a rather older vintage, so it was not that surprising that I could find nothing in it to tax the iron. However, the amplifier was a different matter.

It was built using a hefty piece of copper wire as a busbar earth line; besides this it used paper smoothing capacitors as there used to be a time when people thought that unpolarised capacitors 'sounded' better than electrolytic ones (I've heard that somewhere before. . .). These capacitors have massive metal terminals, and it looked as though they had been soldered to the busbar using a blowtorch (perhaps I exagerate a little, but only a very little!). Here was a test!

However, the iron coped admirably with these joints, making it possible to dismantle them and make them up again - though this was the only time that I saw the second section of the indicator neon on for any noticeable period.

Finally, I used the iron to solder some rather awful cheap PCB board that I was foolish enough in my youth to build a whole audio amplifier with. The board is made fom paxolin, and the copper has a very bad tendancy to lift off when any heat is applied to it, making periodical repairs to the amplifier a nightmare.

At first, I used the iron at its temperature setting as delivered (this is the setting that it was used on for the other jobs in this report). With this setting, the foil lifted fairly quickly after application of the iron. However, turning the iron's temperate down to minimum made it possible to solder without the foil lifting - although the fluxes in the solder will

Please ignore the grubby hand and concentrate instead on the small screwdriver-setable temperature control. There ar no callibrations, but this, in practice, should not cause problems.

obviously have a lower scouring effect at this lower temperature, making it necessary to tin all component leads beforehand.

Ian Pitt reports that he tried using the iron for a number of unusual jobs, including soldering together the joint of a small pair of scissors and soldering metal contact straps onto RR size NiCads, all of which the iron did successfully.

The only grumble that we all had about the iron was that the handle got slightly warm in one place -
not so warm as to ever be uncomfortable (but not like a certain iron that is very common but also sometimes very difficult to hold!), but enough to be noticeable.

Conclusion

In my opinion, this is rather an excellent tool that is a pleasure to use (in fact I hope that Litesold don't want the test iron back!). Although it is a lot cheaper than a soldering station, it is still around four times the price of a conventional soldering iron, so you would have to do quite a lot of soldering to justify the cost. That said, for use away from the bench, it is obviously much more convenient to be able to carry just one iron rather than several.

The EC50 costs $£ 26.19$ direct from Litesold, and this price includes P\&P and VAT. Litesold's full name is actually Light Soldering Developments Limited, and they may be found at 97/99 Gloucester Road, Croydon, Surrey CRO 2DN, telephone 01-689 0574/5/6.

Look into the World of Electronics with the Tele-Scope. 10 MHz storage for less than $£ 100$.
Capture those elusive waveforms on your own T.V. Screen. The Tele-Scope converts analogue data to a digital format for storage in its memory, displaying continuously until refreshed with new data. Build it yourself for $£ 89$ (exclusive of VAT and package and posting), or buy it built and tested for $£ 109$ (excluding VAT and package and posting). Package and posting for either unit is $£ 2.95$.
The manual is available for $£ 2.00$ which is refunded on subsequent unit purchase.
Also available from Hawk are Apple expansion I/O Cards with 32 channels of controlability, or convert your Apple to an IEEE Controller with GPIB Controller card (interfaces directly in Applesoft!) $£ 49.50$ and $£ 189$ respectively (excluding VAT).
For more data contact:-

HAWK ELECTRONIC TEST EQUIPMENT

Bircholt Road,
 Park Wood Industrial Estate, Maidstone, Kent ME15 9XT. Telephone 0622686811

EEEGTROMLIUE Your SPEGIALIST SUPPLIERS for HOLAFHIORS

Not only will you find a wide selection of all the usual types
you may require in our $A-Z$ proyou may require in our A-Z pro-
ducts list; there are also many others made necessary by oday's ever advancing electronics - just one more example of how much bet
Electrovalue serves you.
Please mention this journal when getting in
touch with Electrovalue.
touch with Electrovalue.
D SEAIES CONNECTORS
, 15,25,37 or 50 way connectors with corresponding covers and retainers. Gold plated contacts. Max current per contact - 5A

ID CONNECTORS

For connecting ribbon cable to PCBs. Insulation Displacement Type: 16,20,26,34 and 40 way, 1 A per socket. Straight or right angle plug fitting; cable socket has strain reliet.
RPC CONNECTORS
5 way and 7 way chassis plugs and sockets. DIN style layout. Gold plated pins, 250V/5A
rating per socket
OTHER TYPES
Edge connectors. DIN, jack plugs and sockets, phon, QG, BNC, UHF and power:

BaITAIN'S LEADING qUALITY GOMPONENT SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST attractive discounts-fate postace good seavice \& oeliveny

	ACRESS NMsARSLYCRPhoned OrdersNalconm
Phone (0784) 33803; Telex 284475 TW200HB	
North-680 Burnage Lane, Manchester (061) 4324945	
Ev Computing Shop:	
700 Burnage Lane, Manchester (061) 43138	

LB ELECTRONICS

FRUSTRATED EXPORT ORDER BRAND NEW

 \& BOXED. EPSON FX80 PRINTERS £350.00 + VAT (carriage $£ 12$ tnt)GOULD MMG 5-10 switched mode PSU 5 volts 10 amp 220 Volt input size approx $61 / 2^{\prime \prime} \times 2^{3 / 4}$ "x $3^{1 / 1 / 2 " ~ w e i g h t ~} 1$ kilo $\mathbf{£ 2 5}$ p/p £3.
LOGITEC FT50001 dot matrics printer 100 cps , friction/tractor $\overline{\mathrm{E} 289}+\mathrm{VAT}$. Carriage $£ 10$. S.A.E. leaflet plus print-out.
PRESTEL monitors 6 " green phosphor screen 12 digit keyboard printer port, cassette port, keyboard port (for full qwerty keyboard) Brand new and boxed $\mathbf{£ 1 7 5}+$ VAT. Leaflet S.A.E

At the time of going to press we are attempting to modify these units into a computer terminal with built in modem. Please phone for details

DISC DRIVE BONANZA

TEAC FD-55F $1 / 2$ Height DSD 80 track/
40 track selectable at our new low price $£ 199$ + VAT. £8 carriage. Shinon $1 / 2$ height $51 / 4$ "drive, 40 track, brand new, single sided, double density $£ 140$ + VAT. Carriage $£ 8$
Just arrivedfull qwerty keyboard plus numeric padcompletelycased (x equipment) believed to be RS232 $£ 16.95$ (callers only)
25 WAY ' D ' Types, plugs £1.85, sockets £1.85 (solder tail) p\&p 30 p . Telephone for bulk prices.
Brand New Vero Card racks 3 u 24 slot $£ 12.00$ (callers only).
Twin 5" Cabinets with power supply $£ 40.00+$ VAT (providing a disc drive is purchased from us if drives purchased elsewhere $£ 50.00+$ VAT).
9' Green Phosphor Monitors Brand New and Cased Composite Video Input 18 mhz band width $£ 80+$ VAT each (carriage cost) Brand New $13^{\prime \prime}$ Colour monitor fully cased. Full warranty 540 x 236 pixel. RGB TTL Input plus apple Input $£ 160$ + VAT carriage at cost)
26 WAY IDC Socket plus $11 / 4$ meter ribbon cable $£ 2$ p/p 35 p
40 WAY IDC to 40 way IDC (Female plus 7 meters of ribbon $£ 5 \mathrm{p} / \mathrm{p} £ 1$.

TEL: UXBRIDGE 55399

Guess who builds this great

Logic Probe...YOU! toin $£ 14.52$

With this easy-to-build Logic Probe Kit from GSC and just a few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.

With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from $\begin{array}{llll} & & \begin{array}{lll}\text { Complete, } \\ \text { easy-to-follow } \\ \text { instructions }\end{array} \\ \text { help make this a }\end{array}$ either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from GSC.

,

THE 'ATADDENS' CAVE OF COMPUTER AND ELECYRONIC EQUPMEIR

HARD DISK DRIVES
Fully refurbished DABLO/DRE series
DEC RKO5, NOVA, TEXAS compatibl
Front load. Free stand or rack mount esso.00 $\begin{array}{ll}\text { Exchangeable type (via lid removal) } & \text { EZ95.00 } \\ \text { me3029 PSU }\end{array}$ DIABLO/DRE 44-4000NB $5+5$ ex stock from $£ 995.00$

Plus in house reparr, refurbishing service. Cultcoabsascanabio

CALCOMP PLOTTERS

9363 colour digital incremental, $37^{\prime \prime}$ drum, parallel interface and accessories
7184 colourdigital 8×5 FEET flat bed \& controller (cost 25,000) 1 only at \quad EI,950.00 Viewing by appointment.

coomng FANS

Keep your hot parts COOL and RELLABLE

with our range of BRAND NEW protessional Colinfoxuol
ERR1 fingiature 240 y equipment tan complete with

very quiet running 240 voperation NEW E6. BUHLER E9.11.2. $2.8-16 \vee D C$ micro
miniature reversible fan Uses a brushles servo motor tor extremely high air flow almost silent running and ouaranteed 10.000
 E12.05 comploto wht data.
 E6.250. 110 at at 84.95 or BRAND NEW
at $£ 10.50$. 1000 's of other fans EX Stock

BRAND NEW CASED WORD PROCESSOR KEYBOARDS

THE ORIGINAL FREE OF CHARGE dial up data base 1000's of stock items and one off bargains.
ONLINE NOW- 300 baud ONLINE NOW
word, no parity.
$01-6791888$

MAINS FILTERS

by mains interference.
SD5A As recommended by $\mathbf{Z \times 8 1}$ news letter. matchbox
 E5.95 fitted

COMPUTER 'GAB'

All in one quality computer cabinet with integral switched mode PSU, Mains filtering, and twin fan cooling. Originally made for the famous DEC POPB compute ystem costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive $+5 v$ DC at $17 \mathrm{amps},+15 \mathrm{vDC}$ at 1 amp and -15 v DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power' and 'Run' LEDs mounted on Ali front panel, rear cable entries, etc 240 v operation complete with full circuit and tech. man Glve your system that professional finith for only £49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high.

DRE 7100

8" Disk Drives New $£ 225$ + VAT

VIDFO MONITORS

12" CASED. Made by the British KGM Designed for continuous use as a data attractive brushed aluminium cased in an OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as, internal transformer isolated regulated DC supply, all components mounted on two fibre glass PCB boards - which hinge out ease of service, many internal controis for
tinearity etc. The monitor accepts standard 75 ohm composite video signal via SQ239 75 ohm composite video signal via ser
socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display most high def graphics and 132×24 lines. Units are secondhand and may have screen only apparent when monitor is switched oft. Although unguaranteed all monitors are ested prior to despatch. Dimensions approx 14 high x 14 wide by 11 deep. Supplied complete with circuit. 240 volt operation. OWY EtS.00 PLUSE9.50 CARR. 24" CASED. Again made by the KGM Co
with a similar spec as the 12 monito
Originaily used for large screen data Originaily used for large screen data display. Very compact unit in lightweight alloy case dim. $1^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22 \mathrm{~W}$. Al
silicon electronics and composite video nput make an ideal unit for schools, clubs PIUYE55.00 PLUS E9.50 CARL 6 IWS SEMICOMDUCTOR 'GBAB BAGS'

Mixed Semis amazing value contents

 include transistors, digitat, linear, l.C.'s triacs diodes, bridge recs., etc, etc. All devices facturer's markings, fulty guaranteed $50+E 2.95100+E 5.13$.TTL 74 Series A gigantic purchase of an "across the board" range of 74 TL series I.C.'s enables us to offer $100+$ mixed
"mostly TTL" grab bags at a price which "mostly TLL" grab bags at a price which two
or three chips in the bag would nnormally or three chips in the bag would nnormally
cost to buy. Futly guaranteed alt C 's futi spec. $100+E 6.90200+E 12.30300+E 19.30$

DEC CORNER

MOSTEK CRT 80E Brand new dual eurocard, 280 based VT100 PLUS

 emulator with graphics etc $E 499.00$ BALL-MB 3.5" Box LTC, PSU EJES.00 RK05-J 2.5 Mb disk drives E\&50.00 PDP1 105 Cpu, Ram, i/o. $E 450.00$ DILOG DO 100 RKOS LSI $4 \times$ RKOS diskcontrotter
E450.00 Controller
LAXX-NW LA1 80 RS232 serial int ertace and buffer option $E 330.60$ LAX 34 -AL LA34 tractor feed LA34 Keyboard assembly BC05W-15 interface cables
H317B interface adaptor

ATH PRTCHS PTUS VAT

QUALITY INTERFACE CABLES \& CONNECTORS

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. RANO NEN ATONLYE499+ VAT $=$

Save over cao?

processor electronics
offer full DIABLO/QUME

- ELELBM

All prices quotedare forU.K Malnland, paid cash with order in Pounds Stirfing PLUSVAT. Minimum ordervalue£2.00. Minimum Credit Card order£ 10.00 . Minimum BONA FIDE account orders from Government deDts, Schools. Universities and establishedccmesies E20.00 Where post and packing not indicated please ADD 80p + VAT Warehouse open Mon-Fri 9.30-5.30. Sat 10.15-5.30. We reserve the right to change prices and. specifications without notice. Trade, Bulk and Export enquiries welcome. 32 Biggin Way, Upper Norwood, London SE19 3XF Telephone 01-679 4414 Telex 27924

BENCH POWER SUPPLY

The floor is littered with exhausted HP2s, your home-made solar power plant has started its winter hibernation, and the gerbil hasn't spoken to you since you attached that dynamo to its exercise wheel. ETI to the rescue with a superb bench power supply unit from Grenson.

Bench power supplies rarely come high on the electronics enthusiasts' list of essential test equipment. There must be many who, having acquired a multimeter, 'scope, and possibly a signal generator, are then content to go on powering their high-tech lash-ups from a string of dry batteries. Yet for the really serious experimenter a power supply is virtually an essential, the only practical means of obtaining multiple and dual rail supplies which are reasonably stable and can be varied in voltage. Even people who only use their equipment and skills to construct projects from magazine articles (ours of course!) or to repair ailing electrical equipment are bound to wish they had one sooner or later. How many pieces of battery-operated equipment have you tried to repair in which the battery compartment becomes unusable as soon as the case halves are separated?

Fear not, gentle ETI readers, salvation is at hand. The ETI bench power supply does just about everything you could reasonably ask of such a unit, costs much less to build than equivalent commercial designs, and is even available as a full kit of parts. It has outputs of $+5 \mathrm{~V},+15 \mathrm{~V}$ and -15 V all of which can be varied, and two meters measuring voltage and current which can be jointly switched to monitor any of the outputs. The +5 V supply gives 2.5 A and is variable over the range $3-8 \mathrm{~V}$. The +15 V and -15 V
supplies give 0.5 A each and are variable over the range ± 8 to $\pm 16 \mathrm{~V}$; a single control varies both supplies, the negative output accurately tracking the positive one to ensure that the two are balanced at all times. All supplies are protected against overload and against external voltages injected into their outputs.

Construction

The PCB should be assembled first, inserting solder pins then small components such as resistors and semicoductors before the
capacitors. Ensure C5 and C11 have M4 fibre washers fitted over their legs before soldering them onto the board. This will prevent solder flowing through PCB holes. Check the polarity of all the components, particularly diodes and capacitors as these will be destroyed if fitted incorrectly. All wirewound resistors and diodes need to be mounted at least $1 / 8^{\prime \prime}$ clear of the board to prevent heating of the SRBP material. This is par-
ticularly important with D1, D2, D3 and D4.

If you are not building the power supply from the kit, you

Fig. 1 Circuit diagram of the bench power supply unit.

Table 1 Voltage check list to aid trouble-shooting. The measurements were made with the unit running from 240 V mains, the outputs set at $+5,+15$ and -5 V , no output loads, and with respect to OV.

Fig. 2 (left) Equivalent internal circuit of the MC1723.

BUYLINES

A complete kit of parts for this project will be available from Grenson Electronics Ltd, High March, Long March Industrial Estate, Daventry, Northants NN11 4HQ, tel 03272 5521. The kit will cost $£ 48.50$ plus $£ 3.35$ post and packing plus VAT, making a total of $£ 59.62$. Alternatively, the unit is avail able built and tested for $£ 82$ plus post, packing, and VAT, making a total of £98.15. Note that the PCB for this project will NOT be available through our PCB service.

HOW IT WORKS

10 V is produced from the secondary of T1 and is full wave rectified via D1, 2, 3, 4. The resulting voltage is then smoothed by C1 and fed to Q1 collector, Q1 being biased on by Q2 which is in turn controlled vid pin 10 by IC1. The output from pin 10 is determined by pins 4 and 5 , both being inputs to the control amplifier on the IC. Pin 6 is a fixed reference of 7 V and is trimmed by PR1 and fed to pin 5 , while pin 4 senses the output voltage via the divider chain R12, RV1 and R13. Therefore RV1, which is situated on the front panel, controls the output voltage over the range 3 V to 8 V . The capacitor C4 is used as an output filter.

The voltage produced across wirewound resistor R6 at high loads, ie greater than 2.5 amps , is used to operate the over current protection circuit. This circuit consists of R9, Q3, R11, PR2, R10 and pins 2,3, on the IC. The over current trip level is set using PR2 and is kept constant over the voltage range by the action of Q3. The over current mode on the $+5 V$ line has a foldback characteris-
tic, which results in a short circuit current of approximately 1 amp.
The +5 V line is protected from +ve or -ve voltages injected back into its output by D5 and D6. Full current and voltage metering is provided and is calibrated using PR 3 to set the current meter and PR4 the voltage meter.
The +15 V output is produced in the same way as the +5 V output using the 723 linear regulator. The only difference in circuit terms is $\mathbf{Q} 6$ which ensures a smoother supply to run IC2 and the absence of Q3, which is due to the difference in over current protection. Whilst the +5 V has a foldback mode the +15 and -15 both go into a constant current mode. The overload limit on the +15 V is adjusted with PR5

The output voltage is adjusted in the same way using RV2, and as on the +5 V line the output is fully protected against misuse and the injection of other voltages by D12 and D13.

The -15 V is produced in a different way to that of the +5 V and +15 V . It does not use an IC but has the control circuit
constructed with discrete components. Q13 and Q10 are in a long tailed pair configuration and function as a virtual earth amplifier to control the base of Q11. Any error in the -15 V output is corrected by reducing or increasing the drive on Q 9 via Q8. Fine adjustments to align the -15 V are made using PR10. Hence, when RV2 on the front panel is adjusted the -15 V should track the +15 V across it's entire range of $8-16 \mathrm{~V}$. Overcurrent on the -15 is the same as on the +15 ; constant current is adjusted by PR9. The circuit Q7, R28, R31, Q12, R36, PR9 is used in place of the IC as in $+5,+15$ for overcurrent protection on the -15 V . The
-15 V supply is protected against misuse and injected voltages by D18 and D19.

Full current and voltage metering is provided for the $\pm 15 \mathrm{~V}$ lines and is adjustable using PR12 and PR11 for - 15 and PR7 and PR8 for +15 V . The 3 pole, 3 way rotary switch SW2 provides switching between outputs for the meters so that they can indicate voltage and current simultaneously for each line.

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$, unless otherwise stated)	
R110	100 R
R2	10R
$\begin{array}{r} \mathrm{R} 3,5,15,18,1 \\ 22,29,30,33 \end{array}$	
$\begin{gathered} \text { R4, 23, 28, 31, } \\ 32,41 \end{gathered}$	1 kO
R6	R33 3W wirewound
R7, 8	330R
R9, 34, 38	2k2
R11	100k
R12	10R, 1/2W
R13	$47 \mathrm{R}, 1 \mathrm{~W}$
R14	1k0 3W wirewound
R16	5k6
R17	220R
R20,35,37	1 R8 4W wirewound
R21	10k
R24,25,39	470R, 1/2W
R26	1k2
R27	1 k 5
R40	680R, 1/2W
R42	12k

RV1
RV2
PR1, 3, 5, 6, 7,
9, 10, 11
PR2
PR4, 8, 12

Capacitors
C1
C2
C3, 8, 9, 12, 13
C4
C5, 11
C6
C7
C10,14

100R
 1 kO
 470R horizontal skeleton preset 2k5 horizontal skeleton preset 10 k vertical skeleton preset

5000u 16V electrolytic 100u 25 V electrolytic 10 n 50 V ceramic 1000u 25 V radial electrolytic 1000 u 40 V radial electrolytic 470 u 40 V radial electrolytic 10u 63 V radial electrolytic 220u 25V radial electrolytic

Semiconductors

IC1, 2,	MC1723
Q1, 4,	2 N 3232
Q2, 5, 8, 11	2 N 3053
Q3,6,7	BC107
Q10, 13	MM4002
Q12	BCY70
D1, 2, 3, 4, 5, 6,	
$12,13,18,19$	BY255
D7,8,9, 10,14,	
$15,16,17$	BYX36
D11	1N4148

Miscellaneous	
M1, 2	1mA FSD meter
SW1	mains toggle, 2A
SW2	250 V
	3 pole, 3 way rotary \quad switch

PCB; IC sockets; M4 fibre washers; Heatsinks; insulated terminals; mains fuseholder and fuse; knobs; mains neon; Case; mains cable and strain-relief bush; solder tags; insulating kits for the power transistors; nuts, bolts, washers, etc.

Fig. 3 Overlay diagram of the PCB.
will have to find and drill your own case. The case supplied with the kit and used in our prototype measures about 265 x $130 \times 180 \mathrm{~mm}$, and almost any case of about the same size or a little larger should be suitable. However, you should bear in mind the weight of the transformer and choose a fairly sturdy case, preferably steel rather than aluminium. Drill out your case to suit the components, if possible following the layout used in the prototype and shown in the photographs, but don't worry if this proves difficult because the layout is not critical.

Mount all the front panel components except the two meters which are fragile and best left until last. The rotary switch, SW2, is best wired before fitting into place, but don't terminate the ends of the wires to PCB pins yet. Take care when tightening RV1 and RV2 as overtightening will cause damage to the potentiometers.

Wire RV1, RV2 and all of the output sockets to form a loop which passes horizontally behind the front panel slightly above the components concerned. Make up the two heatsink assemblies ensuring that each power transistor (Q1, Q4, Q9) is properly insulated using mica washers and bushes. A
smear of silicone grease under each transistor and mica washer helps heat transfer from the transistor case to the heat sink. Take the three leads from each power transistor through their respective grommets, the collector connection being via a solder tag on the transistor mounting screw.

Mount the transformer and use a large capacitor clip to mount C1 vertically near the front panel. Fit the mains fuse holder and cable clamp to the rear panel, then wire the fuse, switch, neon and the transformer primary, taking care to ensure that a good earth is established by cleaning paint off under the heatsink mounting screw and using a solder tag. Wire the transformer secondary and $C 1$, using the solder tags. The $P C B$ can now be fitted into place, and all wires terminated to the relevant solder pins. Start with the transformer secondary and power transistors followed by the output sockets and voltage pots and finally the rotary switch.

It is best to leave the meters off until the unit has been tested so as to avoid the risk of damage. When all has been checked and found to be working, wire the meters to the appropriate connections on the rotary switch SW2.

Setting up

When the time for switch on comes there are two options; a) use a variac and wind the input up slowly or b) just switch straight on!

If a variac is available, initially supply the unit with a few volts only. Having ensured that the unit is not taking large amounts of mains current, check that the polarity of the DC unstabilised voltages across the terminals of C1, C5 and C11 are correct. If all is well, increase the mains supply slowly whilst measuring the outputs to ensure that they are rising a few volts behind their respective unstabilised supplies and are correctly polarized. With RV1 and RV2 set at midway, the outputs should start to stabilize at their nominal values. If the outputs are correct, increase the mains supply to 240 V and proceed with the setting up.

If you intend to switch the unit straight on, double check the connections throughout the unit, paying particular attention to the mains fuse, transformer, smoothing capacitors C1, C5 and C11 and the power transistors Q1, Q4 and Q9. Make sure all the diodes and IC's are the right way round! Set pots RV1 and RV2 to mid range. If all is well, $2.5 \mathrm{~V}-4 \mathrm{~V}$ should appear at the 5 V output, with $8 \mathrm{~V}-11 \mathrm{~V}$ on the $\pm 15 \mathrm{~V}$ terminals.

With the unit switched on and working, rotate RV1 on the front panel and check that the +5 V output varies from approximately 3 V to 8 V . Adjust PR1 on the PCB to set the upper and lower limits accurately.

Compare the voltages on the +15 and -15 volt outputs and adjust PR10 on the PCB until the -15 V output agrees with the +15 V output. Rotate RV2 on the front panel and check that both outputs swing in tandem from approximately $\pm 8 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$, then adjust PR6 on the PCB to set the upper and lower limits accurately.

The next stage is to set the overload protection circuits on each output to the appropriate trip values, and this is most easily accomplished using variable resistors as the loads. However, don't worry if you can't get hold of any variable resistors with a high enough power rating because, with a little care, it is perfectly possible to set the levels using only a few odd fixed

PROJECT: Bench Power Supply

wirewound resistors.
Assuming the use of a 10 ohm 20 watt variable load resistor and a current meter in series between the +5 V output terminal and the 0 V terminal, set PR2 fully anti-clockwise and the resistor to minimum load, ie 10 ohms, and switch on. With RV1 set to give maximum output, adjust the load resistor to give 2.75 A current reading on the external meter. Slowly turn PR2 clockwise until the current just starts to fall. If the load is now increased the output voltage and current should collapse. Leaving PR2 set, return the load resistor to 10 ohms and repeat the test first with RV1 set fully in one direction and then the other, checking that the current limit remains the same from 3 to 8 V output. The short circuit current should be equal to or less than one amp.

If you only have fixed value wirewound resistors to hand, choose one or more to give a value which will draw 2.75 A at between 3 and 8 V . Thus a 1.2 ohm 10 watt, a 2.7 ohm 25 watt, or anything in between would be suitable. Connect this resistor or resistors in series with the meter across the +5 V output and adjust the voltage until the meter reads 2.75 A. Slowly turn PR2 clockwise until the current just starts to fall, then reduce the value of the load resistance either by shorting it or, preferably, by placing another similar value of resistance in parallel with it. The output voltage and current should now both collapse. If you have sufficient wirewound resistances to hand, make up another load resistance of a different value so that you can repeat the test at a different output voltage.

The procedure for setting the +15 V current limit is the same as for the +5 V except for the values and the constant current characteristic of the 15 V lines. The ideal load would be a 50 ohm, 50 watt variable resistor in conjunction with a 1 amp FSD meter connected between the +15 V terminal and the 0 V terminal. With PR5 turned fully anticlockwise, the output current is set to 0.55 A and PR5 slowly adjusted clockwise until the voltage just starts to fall. The output current should remain the same at any overload level. Check the current limit is the
same across the +15 V output range, and note that the -15 V line should collapse with the +15 V line even though it is not loaded.

The -15 V output is set up in exactly the same way as the +15 V output, except, of course, that the meter and load resistance are connected between the -15 V and 0 V terminals. With PR9 turned fully clockwise adjust the load resistor to give 0.55 A , then slowly turn PR9 anti-clockwise until the voltage just begins to fall. Again, the output current should remain the same at any overload level, and you should check that limiting takes place at the same point across the -15 V voltage range.

As with the +5 V output, the $\pm 15 \mathrm{~V}$ outputs can be set up without variable loads by choosing suitably rated resistors whose value is such that they will draw 0.55 A at between 8 and 16 volts. A 15 ohm 5 watt, 27 ohm 15 watt, or anything in between could be used. The procedure is then the same as that given above except that the current is set to 0.55 A using the output voltage control, RV2, and you will have to check that the current remains the same for all overload levels by placing resistors in parallel with the load to reduce it in value.

If all is well so far, you are now ready to install the meters. M1 is the voltmeter and M2 is the current meter, and they should be connected to SW2 in accordance with the circuit diagram and taking great care to observe polarity. Set both meters mechanically to zero using their centre screws, then switch on the supply and set the +5 V output to 5 V exactly using an accurate external meter. Set SW2 in the +5 V position and then adjust PR4 until M1 reads correctly. Connect an ammeter and variable load resistor in series across the +5 V output and adjust the resistor to give exactly 2 A reading on the meter (if you don't have a variable resistor with a high enough rating, choose one or more wirewound resistors to give 2A or a similar current which is clearly marked on both meter scales). Adjust PR 3 until M2 agrees with the reading on the external ammeter.

Turn SW2 to the +15 V position and use an accurate
voltmeter to set the +15 V output to exactly 15 V using RV2. Adiust PR8 until M1 agrees with the external voltmeter. Connect an accurate ammeter in series with either a variable load resistor or a network of fixed wirewound resistors across the +15 V output so that a current of 0.5 A is drawn, then adjust PR7 until M 2 reads 0.5 A . Repeat the procedure for the -15 V supply with SW2 set to -15 V and using PR12 to adjust the voltage reading on M1 and PR11 to adjust the current reading on M2.

Trouble Shooting

The bench power supply is quite straightforward in its construction, and provided you have followed the guidelines given you should have no problems getting it to work first time. If, however, you are unfortunate enough to encounter difficulties, the following notes should help you to sort it out.

If, on switch on, the fuse blows immediately, check very carefully the mains wiring up to the primary of the transformer; it is very unlikely that a tault on the secondary of the transformer will cause the mains fuse to blow. If the fuse remains intact but the unit gives no output at all, check the wiring around $\mathrm{C} 1, \mathrm{C} 5$, and C11 and the orientation of the rectifying diodes. The correct voltages to be found on these three capacitors are given in Table 1. Check also the wiring of the three power transistors and make sure that the voltages on them agree with those given in Table 1. Next, check the +15 V circuitry in detail since a fault here will prevent any voltage appearing at the +5 and -15 V outputs even if these are working correctly. This is because the +15 V line supplies the drive for the +5 V line, and the -15 V line is designed always to mirror exactly the voltage appearing on the +15 V output. The +15 V circuitry is also the first place to look if the unit works correctly on the +5 V output but not on the +15 and -15 V outputs. The voltages which should appear on IC1 in the +5 V circuitry and IC 2 in the +15 V circuitry are shown in Table 1.

Discover a full colour monitor for less than $£ 200$ which is compatible with the majority of small Micros

$\mathbf{5 1 9 9 . 9 5}$ + VAT \& CARRIAGE
*SUPERB GRAPHIC RESOLUTION
*UNIQUE GREEN TEXT OR FULL COLOUR OPTION *COMPOSITE/RGB INPUTS
*SPECIFICALLY DESIGNED TO DISPLAY THE 'SPECIFICALLYMESIGNED TO DISPLA -SOUND WITH BUILT IN SPEAKER AND VOLUME CONTROL

- ATTRAC TIVELY DESIGNED METAL CASE IN BEIGE AND DARK BROWN
- FULL 12 MONTH GUARANTEE

The full range of NOVEX MONITORS are The full range of NOVEX MONITORS
avalable through dealers nationwide. Dealer enquiries welcome.

For further detaik and stockiss of the NOVEX MONITOR range please camplete and return to: OISPLAY DISTRIBUTION Limiled. 35 Grosvenor Road,
Twickenham, Middx Tel. 01.891 1923/1513 Telex 295093

CLEF Electronc MUSTC MICROSYNTH

 PERCUSSION MICROSYNTH
TwoChanneltouch Sensative unil plus
variable angle LF.O. phaser, internal and external triggering

IIIIITIIIII

THREE PIECE BACKING BAND Generates the sounds of three instrumentalists back Soloisis
DRUMS + BASS + KEYBOARDS Over 3,000 chord changes (60 scores) on 132 different chords - extendable to 200 ecores. Master FULL KIT E235 EXTENSION EB2*

MASTER RHYTHM PROGRAMMABLE DRUMS Twenty Four Rhythm programmable Crum Machine with twelve instruments. Eight sections are ex. tended to 24/32 measures for two bar programming. Sequence cipet. COMPLETE KIT

STRING ENSEMBLE E198.50 | ROTOR-CHORUS | E98.00 |
| :--- | ---: | SOUARE FAONT KEYBOARDS 88 NOTE \& 00 49NOTE £20 73 NOTE 850 30 NOTE $£ 19$ KEYSWITCH ITEMS ALSO AVAILABLE

An in-depth series in understanding todays world of electronics.

From'TexasInstruments.

The Understanding Electronics Senes was specially
developed and written to give you an in-depth knowledge of this worid.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our special offer and choose the book, or books you want from the ritles below. You'll find whole new worlds of advanced rechnology unfolding before you.

L Understanding Electronic Control of Energy Systems. Ist edirion Ref. LCB 6642 Covers motor, generator, power distribution, Ist edinon Ref, LCB $\mathbf{6 0 4 2}$. Covers motor, generator, power distribution, systems. Softiound 272 pages. 84.50 .
2. Understanding Electronic Security Systems.
lse celition. Ref. LCB 720 A A complere guide covenng the basics of hard wired, photosenssitive infrated, ulrrasonic and microwave systems and their 3. Understanding Solid State Electronics
3. Understan

3nd edinon Ref LCC 3 Bot The principles of sold state cheory. It explains dectrical movement, wrth intermediate tution on the applicanons of solid 4 U
4. Understanding Digital Electronics, Is edition Ref.LCB 3311 Describes dipital decronics in easy-to-follow stages. It covers the main farmules of digital integrated cricuirs and dara processing systems.
5. Understanding Microprocessors, ist edrion. Ref. LCB 4023.
An in-depth look ar the magic of the solid stare chip. What they are what An ir-depth look at the magic of the soldd stare chip. What they are, what they do. Applicatons of 8 -brt and 16 -bir microprocessors, and design
from idea to hardware. Softhuund 288 pages. $£ 4.50$.
6. Understanding Computer Science. istedirion Ref.LCB 547 L This book rells you in everyday Enclish how today's computer has been developed, what goes on inside it, and how you tell it what ro do.
Softbound 278 pages. $£ 4.50$.
7. Understanding Communications Systems, Ist edition. Ref. LCB 452 A An overview of all types of electrontic commiunications systems. Sofitbound 282 pages. $£ 4.50$.
8. Understanding Calculator Maths. Ise edrion. Ref. LCB 3322 Bneqs togather che basci information - formulae, facts, and mathematical tools-you need to "urlock" the real power of the hand held calculator.
Softbound 230 pages $£ 450$. Softbound 230 pages. 14.50 .
9. Understanding Optronics, 1st edinon. Ref LCB 5472.

Oprronics is the application of light and electronics to perform a wide range of useful casks. From car headlyghts to missile guidance systems. Softhound 270 pages. 54.50 .
10. Understanding Automotive Electronics. Ist ediuon Ref LCB 572. Leam how electronics is being applied to and the new microprocecssors and microcerniputers are heing applied in innovative ways for vehicle drive train control, motion control and instrumenration. Soffbound 288 pages $£ 4.50$.
11. Understanding Telephone Electronics.
ist edinion Ref. LCB 714 L The powerful, positive thrust of electronics is making the etepephone an even more important communication link Conventional telephone fundamentals. analog and digial dectronics,
principles, newer digital techniques and hardware implementation are covered in this book Softbound 288 pages 1450 .
12. Understanding Electronic Control of Automation Systems. Ist edixion. Ref. LCB 6 bad. This lymik is abour aurmationexplains in simple lanquaye the subject of ele friunic control of a autumation and effor used to automare proxcesses Softtound 280 pages. 14.50

How to order

Fill in the coupon below or if someone else has already used it, simply: 1 List reference numbers and quantiices required.
2. Calculate roval order value Add $£ 1.50$ tor postage and packing. 3. Send the list, plus your cheque payable to Texas Instruments Lid,「O Box 50 . Marker Harborrnugh, Levestershire
Allow 30 days for diver Allow 30 days for delivery.

electronics today international 300K SERYCE
 How to order: indicate the books required by ticking the boxes and send this page, together with your payment. to: ETI Book Service. Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice

BEGINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson $\{5.35$
Beginner's Guide to Digital Electronics £5.35 £5.35

Beginner's Guide to Integrated Circuits
Beginner's Guide to Computers

COOKBOOKS

Master IC Cookbook Hallmark	£10.1
Microprocessor Cookbook M. Hordeski	£7.7
IC Op Amp Cookbook Jung	£14.2
PLL Synthesiser Cookhook H. Kinley	£7.7
Active Filter Cookhook Lancaster	£13.4
TV Typewriter Cookbook Lancaster	£11.1
CMOS Cookbook Lancaster	f11.8
TL Cookbook Lancaster	£10.9
Micro Cookbook Vol. 1 Lancaster	£15.3
BASIC Cookbook K. Tracton	¢6.0
MC6809 Cookbook C. Warren	¢7.2

ELECTRONICS

Principles of Transistor Circuits Amos
Design of Active Filters with experiments Berlin
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
How to buid Electronic kits Cape
How to Design and build electronic instrumentation Cart
Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
Principles of Electronic Instrumentation De Sa
Giant Handbook of Eloctronic Circuits
Giant Handbook of Electronic Projects
Analysis and Design of Analogue Integrated Circuits Gray
Analy s and
Basic Electronics Grob
introduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault Diagnosis Loveday
Electronic Fault Diagnosis Loveday
Essential Electronics A-Z Guide Loveday
Microslectronics Digital \& Analogue circuits and systems Millman
103 Projects for Electronics Experimenters Minis $\quad £ 8.30$
VLSI Systom Design Muroga
f8.30
PowerFETs and their application Oxner
Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
Eloctronic Drafting and Dosign Raskhodoff
VOM - VTVM Handhook Risse
Video and Digital Electronic Displays Sherr
Understanding Electronic Componants Sinclair
Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
Designing with TIL Integrated Circuits Texas
Transistor Circuit Design Texas
Digital Systems: Principles and Applications Tocci
Master Handbook of Telephones Traister
How to build Metal/Treasure Locators Traiste
How to buid Metal/Ireasure Locators Traister
33 Electronic Music Projects you can build Winston
COMPUTERS \& MICROCOMPUTERS

```
BASIC Computer Games Ah
From BASIC to PASCAL Anderson
Mastering Machine Code on your ZX81 T. Baker
UNIX - The Book Banaham
280 Microcomputer Handhook Barden
Microcomputer Maths Barden
Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bel
Visicalc Book. ATARI Edition Bell
Introduction to Microprocessors Brunner
Programming your APPLE II Computer Bryan
Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A/D & D/A Carr
Musical Applications of Microprocessors Chamberlain
30 Computer Programs for the Home Owner in BASIC D. Chance
Microcomputers Dirkson
APPLE Personal Computer for Beginners Dunn
Microcomputers/Microcomputers - An Intro Gioone - £11.80
```

Beginner's Guide to Microprocessors Par
Microcomputer Based Dasign Peatman f 11.30
Digitah Hardware Design Peatman59.8
vesied Ruston2. 4
58.51001 Things to do.with Your own personal computer Sawusch
Easy Programming for the ZX Spectrum StewartMicroprocessor Applications Handbook Stout$£ 7.15$Handbook of Microprocessor Design and Applications Stout$£ 34.40$
Handbook of Microprocessor Design and Applications Stout $£ 37.60$
ramming the PET/CBM West£17.00
An Introduction to Microcomputer Technology Williamson
Computer Peripherals that you can build Wolfe $\mathbf{£ 1 2 . 4 0}$

Microprocessors and Microcomputers for Engineering Students and Techni cians Wooland

REFERENCE BOOKS

Electronic Engineers' Handbook Fink

VIDEO

Sorvicing Home Video Cassette Recorders Hobbs
Complete Handhool of Videocassotta Recordors Kybet
Complate Handbook of Videocassette Recorders Kybett $\mathbf{1 9 . 2}$
heory and Sarvicing of Videocassette Recorders McGinty \quad £12.95
Beginner's Cuida to Videa Macthewson
Video Recording: Theory and Practice Robinson $\mathbf{E 1 4 . 4 0}$
Video Techniques White

Please send me the books indicated. I enclose cheque/postal order for f. Prices include postage and packin I wish to pay by Access/Barclaycard. Please debit my account.
\square बंशरण 111111111
\qquad
Name
\qquad

BUILD A BETTER AMPLIFIER!

How can you own a top class HiFi amplifier, of comparable standard to Naims, Meridians, Quads etc., for an outlay of less than £250? - Simple! Bulld it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimsion Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "potted" as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will give years of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your system. E.T.I. said in their review of the CK1010/1100: "I can say no more than that for $£ 250$ it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?
PRICES
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) tanes power from any CK power amp or separate p.s.u. type CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
P.S.K - power supply for CK1010 (if not used with a CK power amp)

CRIMSON also supply power amp, pre amp and electronic crossover modules, power supplies and hardware - too much to list here - but on receipt of an S.A.E. we will be happy to supply full details.

TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd, 325 Edgeware Road, London.

MICROTANIC COMPUTER SYSTEMS LTD.

MICROTAN 65 NO OTHER COMPUTER IS AS PERSONAL!

For less than E 60 you can start building your own Computer that truly suits your needs and. of course, eventually far more superior to any Computer available off-the-shelf.
MICROTAN 65 comes in kit form, complete with manual, full instructions, board with components. (kit form or fully built) our full back-up service, and your own Microtan World Magazine available on subscription.

FLEXIBLE \& EXPANDABLE SYSTEM - 1 K to 256K! Just look at the options:
1 DISK CONTROLLER
2 REAL TIME CLOCK
3 EPROM PROG. CARD
4 SOUND BOARD
5 SERIAL $1 / 0$ BOARD
6 PARALLEL 1/0 BOARD

7 MASS EPROM STORAGE BOARD 8 INDUSTRIAL CONTROLLER BOARD 9 40K RAM BOARD
10 HIGH RES. GRAPHICS 256×256
11 PRINTER FACE BOARD
12 ASC11 KEYBOARD
anguages available: Machine Code, Assembly, Basic, Forth,
and Pilot

HOW TO ORDER: p\&p. Please allow 14 days for delivery.

Post to: Tel No. 01-693 1137
BUILD
AS FAST
OR SLOW
ASYOU
l IKE!

Fuli
instructions

Enter details in the coupon below, enclosing your cheque made payable to: Microtanic Computer Systems Ltd. Prices include VAT add £ 1.50

Posi to: MICROTANIC COMPUTER SYSTEMS LTD 16 UPLAND RD. LONDON SE22
manual

MICROTANIC COMPUTER SYSTEMS LTD

SHOWROOM: 16 UPLAND RD DULWICH, LONDON SE22 TEL: 01-693-1137

MAIL ORDER: 235 FRIERN RD. DULWICH LONDON SE22

Also available from: Waltham Forest Computer Centre 889 Lee Bridge Rd. Nr Whipps Cross, Walthamstow E7 Tel: 01-520 7747

Microtan World Magazine

Please rush me my starter kit (Please tick)
\square kit form - I will build myself $£ 59.95$ \square Fully Built
\square Complete system wall chart lenclose my cheque/P.O. for E Name. \qquad Address.

TT LIVESAGAIN!

From the past it came, growing daty, striking terror into the hearts of lesser publications, and spreading its influerice acioss the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you neea the help of Electronics - It's Easy. Oniginally a long-running series in Electronics Today International, Electronics - It's Easy was printed as a set of three books. They sold out It was reprinted as a single volume It sold out Now this phenominaly succe:essful publication is avalable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply written guide which explains the theory land the practice) of electronics step by step. Every aspect of the subject is covered, starting with the: bdsic punciples and working through to the how and why of today's technology
You can obtarr your copy of Electronics - It's Easy by mall order using the coupon below Make cheques or postal onders bayable io ASP Lid. alternatively ycu may pay by Access or Barciaycard

Send to: Sales Office (Specials),
513 London Road, Thornton Heath Surrey CR4 6AR
Please send me.....copies of Electronics -
It's Easy. I have enclosed $\mathbf{f} . . .$.
including p\&pl.
name
ADDRESS
\qquad

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00 5 inch SSDD £19.25 5 inch DSDD £21.00 5 inch SSQD £23.35 5 inch DSQD £26.35
8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50
74 LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total. Access \& Visa welcome, 24 hr service on (054 422) 618. Government \& Educational orders welcome, $£ 15$ minimum. Trade accounts operated, 'phone or write for details.
Happy Memories (ETI), Gladestry, Kington, Herefordshire. HR5 3NY. Tel: (054 422) 618 or 628

BAND/THEATRE LIGHTING

As the UK's fastest growing supplier, we are pleased to announce the advanced power pack series of stage lighting controllers, featuring the latest in electronic control technology.
Coupled with a range of desks for theatre and band applications, and the D.I.Y. module series we boast the most competitive prices around.
Its now pointless to hire, so whether its 6 K or 600 K , let us quote for your particular needs.

MJL SYSTEMS LTD

45 Wortley Rd, W. Croydon, Surrey, U.K. CRO 3EB
(Sales Manager)
01-6894138
Mon-Fri 9-5

MODULAR PREAMPLIFIER ari mant

In this final part, we give constructional details of this expandable audio project. Designed by Barry Porter.

As with the smaller preamplifier described in December, assembly is based on the use of a mother board with the individual modules plugged into mating connectors. The pins for these are on a $0.1^{\prime \prime}$ pitch, so it is quite acceptable to use a length of veroboard to carry the interconnection busses between modules.

Details of the disc amplifier, muting relay control and power supply were given in part 1, and will not be repeated here. If it is required that insertion of the headphone jack plug should cause the output relay to cut off the unbalanced output, the 6 V 8 zener diode in the delay circuit should be connected to earth via the common contact switch on the jack socket as shown in Fig. 10. So that the headphone amplifiers are not powered when they are not in use, their supply voltages should be obtained from the switched rails of the delay relay.

BUYLINES

[^1]Other constructional comments in part 1 may be applied to this larger unit, which may be built into one of the standard rack-sized cabinets obtainable from a number of suppliers.

Once the preamplifier is working (again, see part 1) the output belance pre-sets must be adjusted to give equal voltages from the two outputs. The easiest way to do this is to temporarily connect two equạl value, close tolerance resistors in series with the output and adjust the respective pre-set for zero volts at their junction when a 1 kHz signal is applied. (Fig. 11).

In use, the performance of this pre-amplifier is virtually identical to the more basic unit described in part 1. With the tone controls switched into circuit the noise increase is only about 1 dB with negligible additional distortion. The limited amount of control has caused no problems - in practice, if more than 10 dB of lift or cut is required, it's not hi-fi you've got but a potential advertising copy for exchange and mart!

The situation that displays the advantages of the tone control most is when small bass-light loudspeakers are being used. Applying a limited amount of bass lift, with the frequency control set to about 50 Hz , will usually make it possible to increase the speakers' bass extension without encountering overload problems - something that is impossible to do when the turn-over frequency is fixed.

Although not detailed here, the individual 'building blocks' method of construction lends itself to a number of possibilities - for example, it is quite easy to modify the tape connections to allow for two recorders with cross dubbing, even providing balanced record outputs if required. A further enhancement could be to include
record level controls on the front panel, with suitable VU or LED monitors displaying the signal level being sent to the recorder. Indeed, with a little thought, that Concorde flight-deck look might not be too far away....

Some Changes

There have been some relatively minor changes between the circuit diagrams published last month and the PCB layouts printed here. They are:
on the tone control module:
C2 was left off the circuit diagram in error; this is a compensation capacitor for IC1 (as C5 is for IC2) and is included on the overlay; C13 and C14 have been added in the leads to the wipers of RV2 and RV4; these are to prevent any offset voltages being passed around and amplified;
IC4 and IC5 have been combined into a single dual op-amp rather than two single op-amps;
on the balanced output stage:
IC1a and b have been interchanged;
on the headphone amplifier: the input filtering to IC1 has been changed and the values of R1 and R2 are different; however, the PCB allows the original circuit to be used if desired;
on all modules:
supply line decoupling capacitors have been added; these were not shown on the circuit diagram last month (except for the headphone amplifier, where unpolarised capacitors have been added in parallel with the existing electrolytics).

Note also that the tone control stage is split over three boards for stereo operation. Unfortunately, it wouldn't quite fit onto two, so it was decided to split off the filter sections so that at some future date, constructors could alter

Fig. 1 PCB overlays for the tone control: the main board above is for a single channel, so two of these are required, whilst the filter board (below) is a stereo board, so only one of these is required. Note carefully which parts you need two of for stereo.

these, for example, to include a 'mid' control.

Swings And Roundabouts

It is possible to modify the component values of the disc amplifier and of the unbalanced output stage so that it is not necessary to use E96 series resistors. This will actually give a less accurate response technically (degrading the error on the RIAA characteristic to 0.3 dB), but for most people this will not be that noticeable (if it is noticed at all!)

For the disc amplifier, the modified component values are as
follows:

follows:	
R2	$4 k 7$
R3	$6 k 8$
R6	$12 k$
R10	$7 k 5$
R11	560 R or $1 \mathrm{kO}^{*}$
R12	39 R or $82 \mathrm{R}^{*}$
R13	6 k 8 or $8 \mathrm{k} 2^{*}$
R14	3 k 3 or $1 \mathrm{k} 5^{*}$
R15	82 k
R16	$15 \mathrm{k} / 1330 \mathrm{k}(\mathrm{T} 3=3179.5 \mu \mathrm{~s})$
C7	10 n
C11	33 n

* For R11, 12, 13, 14 the first figure given is for moving coil cartridges and the second is for moving magnet.

The value of R9 that should be used will depend on the required sensitivity of the input stage; for

PARTS LIST TONE MODULE

RESISTORS	
R1*	100k
R2*	330k
R3*	10R
R4*	47k
R5*, 10*	1k8
R6*,11*	8k2
R7* ${ }^{*} \mathbf{8}^{*}, 9^{*}, 16 *$	10k
R12*	$3 \mathrm{k6}$
R13*	3k9
R14*	2k2
R15*	4k7
R17*	1 k2
R18-21	33R
RV1**, ${ }^{* *}$, ** *	10k lin
RV3**	50k anti-log
RV5**	10k log
CAPACITORS	
$C 1^{*}$	$330 \mathrm{n} 250 \mathrm{~V}$ Mullard polyester
C2* ${ }^{\text {5 }}$, ${ }^{*}$	22p 21/2\% polystyrene
C3*, ${ }^{*}$, 13*, 14*	$22 \mu 16 \mathrm{~V}$ PCB nonpolarised electrolytic
C4* ${ }^{\text {10 }}$ *	100 n 250 V Mullard polycarbonate
C6*, C8*, C11*	10p 21/2\% polystyrene
C12*	150n Mullard polycarbonate
C15*,16*,19,20	$220 \mu 25 \mathrm{~V}$ PCB
C17*, 18*,21,22	electrolytic
SEMICONDUCTORS	
$\text { IC1* } 2^{*}, 3^{*}$	NE5534
IC4**	NE5532
PCBs: 2 off tone, 1 off filter; edge connectors: 6 off 10 way, 2 off six way	
* R1 to 17, C1 to 18 and IC1 to 4 are required in both channels so two of each are required for stereo. ** RV1 to 5 could be stereo potentiometers or two single potentiometers each for stereo, as required.	

moving coil cartridges, the appropriate values are as follows:

R9 Value	Sensitivity 10 k 0.11 mV
5 k 6	0.2 mV
3 k 3	0.33 mV
2 k 2	0.49 mV

For moving magnet, the following values are appropriate:

R9 Value	Sensitivity
820R	2.17 mV
560 R	3.03 mV
270 R	5.41 mV
150 R	8.0 mV

Additionally, IC1 (LM394) can be replaced with a parallel pair of

Fig. 2 Overlay of the PCB for the balanced output driver - this is a stereo board, so only one is required, but note the components that you have to obtain two of.

Fig. 3 Overlay diagram for the headphone amplifier; again, this is a stereo board and again, you will have to sort out which components you need two of.

2SD786 transistors, which are available from XCEL Audio Parts Ltd, and they are somewhat cheaper than the LM394.

For the unbalanced output stage, the modified component
values will depend on whether it is to be used as a tape output buffer or as an output stage to feed the power amplifier. For use as a tape output buffer, the values shown in Table 1 apply.

Record Output Level	Gain	R6	R4	C2
499.5 mV	7.95 dB	1 k 5	1 k 0	100μ
976.9 mV	13.77 dB	3 k 9	1 k 0	100μ
$1.2 \mathrm{~V}(0 \mathrm{VU})$	15.65 dB	5 k 6	1 k 1	100μ

PARTS LIST BALANCED OUTPUT MODULE

RESISTORS	
$\mathrm{R} 1^{*}, 2^{*}, 3^{*}, 4^{*}, 5^{*}, 6^{*},$	
7*,8*	3k3 1\%
R9*,10*	33R1\%
R11*, 12*	1 kO
R13*,14*	47k
R15,16	33R
RV1*	10k min vertical preset
CAPACITORS	
C1*,2*	22p polystyrene
C3*, C4*	$100 \mu 16 \mathrm{~V}$ PCB
	non-polarised electrolytic
C5*, ${ }^{*}$	100n Mullard
	polycarbonate
C7,8	100n 250 V Sie-
C9,10	mens polyester $220 \mu 250 \mathrm{~V}$ PCB
C,10	electrolytic

SEMICONDUCTORS

IC1*
NE5532
MISCELLANEOUS
PCB; edge connectors: 2 off 10 way

* R1-14, RV1, C1-6 and IC1 are required in both channels, so two of each of these components are needed for stereo.

PARTS LIST HEADPHONE AMPLIFIER

RESISTORS	
R1*	47k
R2*	330k
R3*	1 kO
R4*	150k
R5*	1 k 5
R6*, ${ }^{*}$	10R
R8*	470R
R9*, 10*	4R7
R11*	47R
R12,13	33R
CAPACITORS	
C1*	$100 \mathrm{n} 250 \mathrm{~V}$ polyester
C2*	$22 \mu 16 \mathrm{~V}$ PCB non-polarised
	electrolytic
C3*	10p polystyrene
C4*	22p polystyrene
C5,6	$100 \mu 25$ V PCB electrolytic
C7,8	100n polyester
SEMICONDUCTORS	
IC1*	NE5534
Q1*	BC411 or similar NPN
Q2*	BC461 or similar PNP
${ }^{*}$ R1-11, C1-4, IC1 and Q1,2 are required in both channels so two of each are required for stereo.	

Table 1 Revised component values for the tape output buffer.

Fig. 4 Here is the overlay diagram for the mother'board of the preamp as featured in the first part of the description in December '83; this board will be available through the PCB service. However, we have not reproduced a lay-out for the mother board of the extended system because the whole idea is for it to be adaptable to your needs - so everyone can make up their own, customised preamp using the same basic blocks.

Fig. 5 A suggested front-panel lay-out for the small preamplifier.

Control	Imbalance
Callibration	1.94 dB
2	3.93 dB
4	6.02 dB
6	8.29 dB
8	10.88 dB

Table 2 Characteristics of the balance control.

For use as an output stage, R4 can be 180 R and R6 can be 220 R. The revised balance control characteristics are shown in Table 2.

After all that, all that remains for us to do is to wish you happy listening!

PARTS LIST MOTHER BOARD

CAPACITORS	
C1,2	$220 \mu 25 \mathrm{~V}$ electrolytic
MISCELLANEOUS	
PL1,3	8-way edge plug
PL2,4,10	6-way edge plug
PL5-9,11	10-way edge plug
ADDITIONAL PARTS REQUIRED TO	
MAKE FULL	EAMPLIFIER (EXC.
UNREG SUPPLY)	
Input selector switch: 4-way (or to suit)	
2-pole	
Tape/source switch: 2-pole 2 way	
Volume control: 10 k log stereo (but see	
'Construction', ETI Dec '83, page 60)	
Balance control: 1 k0 lin stereo	
Direct switch; 2-pole 2-way	
Output resistor: to suit (100R suggested)	
Indicator LED: to suit	
Connectors for disc, aux, tape, tuner (as required) and output (also PSU); knobs,	

pantechnic

OEM USERS

Pantechnic present the most adaptable high powered amplifier ever. FET SYSTEM AMP
Features:

- HIGH POWER. 1.2KW (single ended).
- LOW VOLUME. 1/15 Cubic foot inc. Heat Sink.
- VERSATILE. Delivers more than 1 KW into $1 / 2$ to 8 ohms

OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W}\end{array}\right.$
Etc. Etc.
Having been closely involved in a wide variety of OEM applications of their amp boards, Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By includingthermaldesign in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatskink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 KW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heat sinks, heat transfer to the environment is greatly enhanced.
The flexibility of the 1.2 KW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost sav ings to 150 W .) These can be paralleled, increasing current capability or seriesed (bridged in pairs) doublling voltage capabllity. In conse quence a large variety of amplifier/load strategies can be imple mented.
Pantechnic offer a full range of customising options including DC coupling, ultra high slew etc. Contact Phil Rimmer on 01-800 6667 with your particular application problem.

*The power output of these amplifiers can be increased by approx 15% with no diminution in quality by adding PSU102 ($\mathbf{\Sigma 7 . 6 1}$) to your existing power supply.

Some Other Products \& Components

Type 74 Heat Exchanger. Dissipates 300W (1.2KW blown) £7.50. 25A 400PIV Bridge Rect. E2. 17
10,000uF Electrolytics with clips:-
80V £4.75; 100 V £6.15; 100 V Cptr.GR. £9.75
PAN20 Pre-amplifier module. Very low noise and distortion £8.48
PAX2/24 2 Way active crossover (specify frequency) $£ 10.10$
PAX3/24 3 Way active crossover (-do-) £19.50
PSU103 Powers $2 \times$ PAN20 +2 Xovers $\mathbf{E 6 . 9 1}$
PAN1397 20W power amp. bi-polar i/e (LOW THD) $£ 5.39$
PSU101 Powers $2 \times$ PAN1397 E3.43
Transformer for PSU101 £4.30 (inc. postage)
TOROIDAL TRANSFORMERS
with special low flux windings

Nom. VAC	160VA	225 VA	300 VA	500 VA	625 VA	750 VA
$40-0.40$	11.30	14.35	16.30	-	-	-
45.0 .45	-	14.35	16.30	22.57	-	-
$50-0.50$	-	-	-	22.57	27.70	30.43
$70-0.70$	-	-	-	22.57	-	-

Transformer prices include postage. Ask for leaflet "Choosing a Transformur,
Carriage 75p. Add VAT at 15\% to all prices.
THE POWERFET SPECIALISTS pantechnic

Dept ETI/2 148 Quarry Street. Liverpool L. 256 HO

Midwich
EAST ANGLIA'S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS

AUDIO DESIGN

When it comes to the reel issues of audio recording, John Linsley Hood has got it taped.

AIthough the tape recorder, in its cassette form, is now so common a part of our lives that we can take it almost for granted, in reality, recording on magnetic tape is beset with so many problems, and hedged round with so many restrictions and limitations, that it is surprising that it even works at all, let alone that it gives the superb results which, when all is done well, it can!

Having said that, it is difficult to find any descriptions of this technique which explain these problems and limitations in a way which is at all easy to follow - so before I proceed to look at the types of circuitry which are needed for tape recording, I propose to try to explain, as simply and lucidly as I can, just what it is that we need to do.

Fig. 1 The basic principle of tape recording.

The Process

If we pull a piece of unmagnetised iron oxide coated tape past a recording head, as in Fig. 1, and we apply an alternating current to the electrical winding on this head, we will leave a series of magnetised regions, as indicated by $\mathrm{N}-\mathrm{S}-\mathrm{N}-\mathrm{S}-\mathrm{N}-\mathrm{S} \ldots$. , produced by the magnetic field at the trailing edge of the record head gap. These will have a 'wavelength' along the tape given by $\lambda=$ tape speed (ins/ sec)/frequency (Hz). If we try to replay this, with a head having a gap length X, we will have zerooutput when $X=$ λ, since both ends of the gap will be sitting on parts of the tape which are identically magnetised (i.e., both N or both S). This is Problem No. 1: the gap length of the replay head imposes an absolute limit on the upper frequency response.

It is a characteristic of magnetic induction that the voltage induced in a coil of wire is linearly proportional to the speed with which the magnetic flux through that coil is changed. In mathematical terms this is expressed

Fig. 2 (left) The theoretical AC output from a tape replay head. Fig. 3 (right) An idealised replay amplifier characteristic.

Fig. 4 (left) NAB recommended record characteristic (effective).
Fig. 5 (right) NAB recommended replay response (effective).
$V=\mathrm{L} . \mathrm{dB} / \mathrm{dt}$ where L is the inductance, B is the flux density and t is time. (d/dt is the mathematical notation for a rate of change with time).

The result of this is that if we were to record at a constant remanent flux level on the tape, which we will assume will be given by a constant level of (RMS) current through the record head, we will end up with a replay characteristic as shown in Fig. 2, in which the output increases linearly with frequency. This will necessitate a replay characteristic such as Fig. 3 if we are to get a level final frequency response; this, in itself, would not present any great circuitry difficulty.

In the same way in which an internationally agreed standard is employed in the manufacture and replay equalisation used for 33 RPM and 45 RPM gramophone records (the RIAA standard) there is an internationally accepted standard for record and replay equalisation for tape and cassette recording (the NAB standard). This requires effective record and replay characteristics of the type shown, with the appropriate time-constants for the turn-over points on the frequency scale, in Figs. 4 and 5. When the replay equalisation curve is superimposed

$15 \mathrm{ins} / \mathrm{sec}$	50/3180 NAB/BSI	35 DIN/CCIR
$38 \mathrm{cms} / \mathrm{sec}$ (
$7.5 \mathrm{ins} / \mathrm{sec}$	50/3180 NAB/BSI	$70 \mathrm{DIN} / \mathrm{CCIR}$
$19 \mathrm{cms} / \mathrm{sec}$		
$3.75 \mathrm{ins} / \mathrm{sec}$ $9.5 \mathrm{cms} / \mathrm{sec}$	90/3180 BSI	140 CCIR
	70 or $120 / 3180 \mathrm{BSI}$ and DIN/CCIR	
		(Cassette only)

Table 1 Equalisation time constants of various standards; NAB (or NARTB) - National Association of Radio and Television Broadcasters (USA); BSI - British Standards Institute; DIN - Deutscher Industrie Normenausschus (W. Germany); and CCIR - Comite Consultatif International des Radiocommunications (International Standards Organisation).

Fig. 6 A practical replay equalisation characteristic for reel-to-reel tape-recorders which conforms to NAB recommendations (cassette replay to BSI/DIN specifications would use 70/120 us).
on the curve of Fig. 3, we get the practical replay equalisation characteristic of Fig. 6 , which is what we will hope to find if we do some measurements on the replay side of a commercial tape or cassette recorder.

To avoid the need for a replay gain characteristic which continues to rise as frequency decreases, the NAB curve provides for an LF turn-over point of 50 Hz , expressed as a 3180μ s time constant, and an HF turnover point that depends on tape speed as listed in Table 1. Turn over frequency, f, is given by $f=1 / 2 \lambda \pi C R$; the value of CR is the time constant, and this is normally expressed in microseconds ($\mu \mathrm{s}$) so that Cs in nanofarads and Rs in kilohms can be used directly for calculations, avoiding the need to throw in factors of 10^{9}, etc.

Problems

The above has assumed an ideal world; however there are a number of problems, as follows (this is not a complete list!).

1. Maximum replay frequency: As already mentioned, the size of the replay gap imposes an absolute limit on the upper frequency response.
2. Effect of replay head gap spacing: Since it is the trailing edge of the record head gap which leaves the remanent magnetic domains on the tape, to a first approximation, the width of the recording head gap is not very important. However, this is not true of the replay head (as we've already seen). Below the maximum replay frequency, the HF response is very dependent on gap width, as I have shown in Fig. 7. Unfortunately, the out-

Fig. 7 (left) Output level versus frequency response for different tape speeds.
Fig. 8 (right) Output level versus frequency response for different head gaps.

Fig. 9 Tape magnetisation characteristics: (a) for small magnetisations; (b) for large magnetisation.
put from the head also falls as the head gap-width is reduced, partly because there is less magnetic material in the gap, and partly because of the magnetic shunt effect due to the proximity of the two sides of the head gap.
3. Effect of tape speed: The differing equalisation characteristics quoted above tacitly recognise that the performance of the recorder, other things being equal, will be very strongly influenced by the speed at which the tape passes under the replay head. Not only will the output signal fall as the speed is reduced, the HF performance will also be impaired, as I have shown in Fig. 8.
4. Tape magnetic non-linearity: All of the above problems pale into insignificance in comparison with the high degree of non-linearity of the magnetic tape itself. The characteristics of this are shown in Fig. 9. If a small signal current is applied to the windings of the recording head (which is an electro-magnet with a small parallel gap held in contact with the tape, set as accurately as possible perpendicular to the direction of motion of the tape), the remaining flux on the tape (B_{r}) will be related to the applied magnetising force (H, which is proportional to the current flow through the winding on the head) in the way shown in Fig. 9 a.

Clearly, this would not lend itself to hi-fi reproduction. At small signal levels the recording would be very inefficient, with hardly any remaining magnetism on the tape at all. At higherlevels there would be the equivalent

Fig. 10 The effect of HF bias on tape magnetisation linearity.
of a large amount of 'crossover' distortion, and at greater recording levels still, there would be a lot of 3rd and other high-order harmonics generated as the tape magnetisation was pushed into the regions where the curve flattened again. Also, to add to the problems, if the tape is magnetised fully, there is a 'hysteresis' loop in its magnetic characteristic, as shown in 9 b .

Fortunately, after a lot of early experimentation with this medium, a trick was found which would solve this snag. This scheme was known as 'HF bias', or, in normal tape parlance simply as 'bias'. I will explain.
5. Need for bias: If a suitable high frequency $A C$ signal is simultaneously applied to the recording head with the signal which it is desired to record, and if this HF signal, which will typically be somewhere in the range 30 kHz 250 kHz , is a good bit larger than the recording signal (typically 20 to 100 times) so that it sweeps the BH characteristics of the tape backwards and forwards across the non-linear region of the BH characteristic, one can, surprisingly, end up with a quite linear magnetisation of the tape, as shown in Fig. 10a. However, as you will by now expect, there is another snag, and this is that the final recording characteristics of the tape depend on the size of the applied bias waveform. If we apply more, we get the curve shown in Fig. 10b., which is one of reduced recording sensitivity. Also, too much bias tends to'erase' the higher audio frequencies which we are trying to record. Moreover, the 'correct' level of bias depends a lot on the actual tape being used at the time, and, without previous experience, we cannot know what that will be!
6. Problems with bias: The dependence of recording characteristics on bias level is shown in the graph of Fig.

Fig. 11 How recording characteristics vary with bias current; note that only curves a) and b) are to the same scale.
11. In this curve (a) shows the relationship between recorded level and bias current at 1 kHz , and (b) the same thing for an in put recording signal at 10 kHz . Clearly, the bias setting has a large effect on the flatness of frequency response of the tape recorder. Curve (c) shows the effect on the distortion of the recoded signal of the bias level. Good HF response is not readily compatible with low THD. The effect of bias level on tape 'modulation' noise is shown in Fig. 11, curve (d). Here, happily, low noise levels fit in fairly well with other needs.

The actual frequency of the bias signal is not very important, though there is some evidence that the recorded noise level on the tape, and the distortion at the upper end of the audio spectrum, may both be lessened by the choice of the higher bias oscillator frequency. The snag here is that it is the current through the head which is important, and because the windings have inductance, a higher bias frequency will require a higher applied bias voltage. Also, the head will work progressively less efficiently at higher frequencies, which contributes to this effect.
7. Design of bias oscillator: The tape cannot distinguish the source of the signal which is applied to it. It will therefore record small noise voltages present on the bias voltage waveform just as easily as it will record the noise components present on the incoming signal. So, if the bias voltage waveform is 20 times the size of the signal being recorded, its signal-to-noise ratio will need to be a lot more than 20 times better if it is not to degrade the $S /$ N ratio of the incoming signal. You will note that I have referred to bias voltage, not to bias current. This is because the noise signal will be wide band, and will not be restricted by the inductance of the head to the same extent as the HF bias waveform. Therefore, the higher the bias frequency, the better the S / N ratio which is demanded of the bias oscillator.

The actual waveform of the bias oscillator is not so important, provided that it is symmetrical. If it is unsymmetrical, it will have the effect of the B-H curve, which will reduce the available undistorted output. Also, an unsymmetrical waveform contains an implicit DC component, which will magnetise the head, greatly reducing its effectiveness, and possibly causing partial erasure of the tape.

In the early 1970s, when I was very interested in cassette recording, I did some experiments with both square wave and sawtooth bias waveforms. Both worked, and the square appeared to be quite effective. However, for reasons of practical convenience, it is desirable that the erase oscillator should operate at the same frequency as the bias oscillator, and it is easier to get large voltages at a good S / N ratio from an LC sinewave oscillator. Square wave (RC) generators tend to have a fairly poor S / N ratio, due to jitter on the 'flip' times.
8. Effect of head inductance: Our aim, in recording, is to record all the frequencies in the audio band equally. However, the recording head has inductance, which will restrict the flow of current at higher frequencies. It is necessary, therefore, to find some way around this problem. Of the possible solutions, the simplest is to put a resistor, say 47 k , in series with the output from the recording amplifier, to swamp the effect of the changing impedance of the record head with frequency. This also helps keep the bias HF voltage out of the recording amplifier. Bias voltage intrusions would probably do no harm provided that they did not push the record amplifier into a non-linear or overload condition.

Other useful solutions, which make lesser demands on the size of the signal output from the recording amplifier, are to design this amplifier so that it has a high out put impedance, or to use a current NFB loop to make the amplifier look like a constant current source. All DC components must be rigorously excluded from the head windings to avoid head magnetisation. If a DC blocking capacitor is used, it should be of good quality, and switch-on current surges through this must be prevented.
9. Head alignment: The way in which the width of the replay head affects the HF response of the recorder has been shown above (Fig. 7). This presumes that the head is accuratelyaligned so that its gap is at right-angles to the direction of travel of the tape. If the gap is skewed, its effective length will be greater, and the HF output will be less. The same applies if the record and replay heads do not have the same alignment. This may be less important if one records ones own tapes, but on pre-recorded tapes this is vital. Happily, alignment tapes are fairly easy to buy. On these, though a double-beam oscilloscope makes matters simpler, one can do quite a good job by just adjusting head azimuth for maximum HF output, usually by working upwards through the frequency test bands provided.
10. Noise and noise reduction: Because of the granular nature of the oxide coating deposited on the tape, all tape recordings will suffer from some degree of background noise. In addition to this, any parts of the record process which tend to clump, or otherwise disturb, the uniformly random distribution of the manetic domains will make this background noise worse. Erase oscillator systems are not perfect in this respect, as can be shown by listening to the background noise on a bulk erased tape, as bought, and after it has been 'erased' by ones own recorder following the recorder of a zero signal.

The output from the tape recorder will depend on the tape speed and (although not discussed so far, this is a fairly logical extension of the arguments above) on the ta pe width at the head; so, the lower the tape speed and the narrower the tapehead width, the worse the signal to noise ratio will be. This becomes a particular problem with cassette recorders, where the tape creeps past the head at $1.875^{\prime \prime} / \mathrm{sec}$, and the track width is only 30 thou. or so anyway. The signal output from a cassette recorder replay head will be minute, and will demand a lot of skill in the design of the replay amplifier.

The poor basic S / N ratio of the reproduced signal from a cassette replay head (though this is now improved by better heads and better ta pes) has brought into prominence the various noise reduction schemes, of which the most common is the Dolby B system, used by most cassette recorder manufacturers under license from the Dolby Laboratories. In this a degree of HF pre-emphasis is applied to the record signal, in which both the amount of HF pre-emphasis and the turn-over point above which this pre-emphasis is applied, is automatically adjusted in response to the measured level of the incoming signal. The reverse compensation is applied on replay to restore a flat frequency response.

There is a snag, of course. This is that, unless some means is provided for monitoring the ta pe output which is only posible on relatively expensive three-head cassette machines, some assumptions must be made by the cassette recorder manufacturer, in setting up the Dolby B replay operating levels, about the actual signal level which his recorder will give on replay for a given

Fig. 12 Record pre-emphasis and de-emphasis for cassettes, showing additional compensation for head losses.
input recording level. This will depend on the actual tape chosen by the user, and on the appropriateness of the bias setting. Nevertheless, in spite of these objections, the Dolby B system does work surprisingly well, even on simple machines, and can give a6-10dB improvement in overall S / N ratio.

Nowadays, predictably, Dolby B processing circuitry is available on a single IC chip, the LM 1011, which, complete with application circuitry, can be bought by the experimentally minded for a few pounds. The use of these for any commercial gain would however, require a license from the Dolby laboratories.

In many commercial machines, the relay amplifier is muted while the tape is not moving to avoid drawing the attention of the listener to the background hiss of the replay am plifier. This is a refinement I wish I had thought of in the middle 1970s when I published my own cassette recorder design. One lives and learns!
11. Head losses: We have assumed, so far, that the recording and replay heads - which are often the same unit in cassette recorders - behave in a perfect manner. They don't. Mainly because of the finite gap width, their HF performance is poor. This means that some form of HF pre-emphasis has to be applied, during recording, to assist in achieving a satisfactory HF output. This recording pre-emphasis, of $15-25 \mathrm{~dB}$ magnitude, will be applied, as shown in Fig. 12, at the point where it is expected that the replay HF response will start to fall. This is not a good thing, since it will tend to cause HF overload, and increased distortion and intermodulation effects, but is feasible because signal amplitudes at HF are generally low.

Practical Circuit Design

We have seen from the above what some of the problems are in ta pe recording. Since these are exaggerated in cassette recorders, because of the narrow low-speed tape tracks, a look at the design of the electronics in a cassette recorder - excluding the Dolby processing will show the types of circuit layout which will be needed in all these systems.

Replay Amplifier

The over-riding consideration here is of low noise in the amplifier, since the input signal will only be about 0.5 mV , and a $60 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio will demand an effective in put noise of 0.5 uV , from the amplifier and input circuitry. Figure 13 of Part 2 (ETI October 1983) we saw that this

Fig. 13 A typical cassette replay amplifier giving the frequency response shown in Fig. 6.
will depend on the input circuit resistance, the bandwidth, and the input devices. Fortunately, the effective bandwidth of the replay amplifier, because of its downward slope with frequency, is only 1 to 2 kHz . Nevertheless, this necessitates an effective input resistance of only some few thousands of ohms. We must be careful, therefore, that we do not needlessly include input resistive components, to add to the 300-600 ohms of the head winding resistance. The required equivalent input noise resistance required by the desired S / N ratio does put most of the audio ICs out of consideration; however, there are a few, such as the Signetics/Mullard NE5533/5534, the Precision Monolithics/Raytheon OP27, and the Hitachi 12017, which would be satisfactory electrically. Of these, the latter has a non-standard base connection, which would make it awkward to substitute, whereas the ICs with the standard 741 type connections could be upgraded as better devices appeared.

In commercial units, for reasons of economy it is customary to use the same amplifier for both record and replay, with appropriate component changes accomplished by multiple switching. however, from the point of view of the amateur constructor, and certainly for the ease of explanation, it makes life easier to show the record and relay circuits as separate entities. I have shown a suitable circuit design, based on a low-noise opamp, in Fig 13.

In this circuit, the output of the replay head (through suitable switching if it is combined with the record head) is taken directly to the input of IC1. The gain-frequency characteristics of this stage are determined by the RC network in its negative feedback loop. Referring back to Fig. 6, we see that the LF gain is rolled off at 50 Hz (a $3180 \mu \mathrm{~S}$ time constant), at a gain of 500 . From this we can infer that the total resistance in the feedback path, from
output to -ve in, must be 500 K , if R1 is 1 k 0 . Also, the time constant of R1C2 must be 3180 sS . If R1 is 1 k 0 then C 2 must be 3180 nF or $3.18 \mu \mathrm{~F}$. This shows how simple the use of 'time constants' makes the task of working out circuit component values.

Now, we require the gain to decrease linearly from 50 Hz to 1.33 kHz (in the case of the $120 \mu \mathrm{~S}$ equalisation) or 2.27 kHz (for 70 uS). This we can accomplish by means of C 3 and R 2 and R3, switched by S1. If C 3 is 5 n 0 F - this must have an impedance greater than 500 kat 50 Hz , but we can't afford to go too high (Z_{50} for $5 \mathrm{n0}$ is 636 k) then the $120 \mu \mathrm{~S}$ time-constant will be given for a value of $\mathrm{R} 2+\mathrm{R} 3$ of $120 / 5=24 \mathrm{k}$. Also, the $70 \mu \mathrm{~S}$ time constant will require $R 2$ on its own, to be $70 / 5=14 k$. So $R 2=14 \mathrm{~K}$ and $R 3=10 K$.

IC2 is a simple output buffer stage, to give an adjustable gain of 1 to 11, depending on the setting of RV1. R5 gives some output isolation, and the value of C4 is chosen so that the LF response is adequate. Since $3.18 \mu \mathrm{~F}$ gives a -3 dB point at $50 \mathrm{~Hz}, 22 \mu \mathrm{~F}$ will give a -3 dB point at 7 Hz , which is low enough.

A small circuit refinement is the inclusion of C 1 across the cassette head to tune the head, with its internal inductance, to some 15 to 18 kHz . The actual value will depend on the head inductance, and can be calculated from the formula $f_{s}=1 / 2 \sqrt{ } L C$. A value of $680-820 \mathrm{pF}$ will be in the right order. This limits the wideband noise output from the head, and reduces the chance of noise being worsened by cross-modulation within the input IC amplifier.

C5 across the first amplifier stage performs a similar bandwidth limiting function. This may not be acceptable for the NE5533 or 5534, so regard it as an option.

Record Amplifier

This has to meet five design requirements. The output must be large enough to drive the cassette record head through the 47 k swamp series resistance. A normal IC op-amp will do this quite well, with very low distortion, when operated from ± 12 or 15 V supplies. It has to provide a means for adjusting the record signal level. It has to provide a modicum of bass lift, say +3 dB at 50 Hz and +6 dB at 30 Hz , to compensate for the specified rolloff in the replay curve. It has to provide the specified deemphasis at $70 \mu \mathrm{~S}$ or $120 \mu \mathrm{~S}$ as required, and finally, it has to generate a peak, of +15 dB or so, at 15 kHz , to offset the head losses.

A circuit which will meet these requirements, and give a high quality performance, is shown in Fig. 14. In this IC3 is a simple unity gain buffer amplifier, which has a low output impedance but yet allows a high impedance input to the record level control. R9, R10, C6 and S2 generate the 70 and $120 \mu \mathrm{~S}$ de-emphasis characteristics.

FEATURE : Audio Design

Fig. 15 A cassette recorder bias and erase oscillator.

Since we have calculated suitable values for these for the replay amp., we can use these again. R11 is a trimmer resistor which we can use to assist in getting an optimally flat overall frequency response, by lessening the extent of this de-emphasis. IC4 is a gain stage with a lowfrequency gain of 5.7. However, the LCR network formed by L1, C8 and RV4 is tuned to resonate at 15 kHz ; this makes the gain increase at this frequency to an extent which is governed by the Q of the circuit, which can be adjusted by RV4 (for the tuned circuit, $f_{6}=$ $1 / 2 \pi$ LC).

R11, R12 and C9 generate the boost at $50 \mathrm{~Hz}(3180$ μ s, the time constant of C9R11) and the levelling off at $30 \mathrm{~Hz}(5300 \mu \mathrm{~s}$, the time constant of $\mathrm{C} 9(\mathrm{R} 11+\mathrm{R} 12)$). IC5 is another straight gain stage, with a gain of 5.7 , and this drives the record head through C11 and R19.

Overall, the gain of this amplifier is 30 at 1 kHz , which allows a 5 V RMS output from IC5 for a 170 mV input. Bias is applied to the head directly from the bias oscillator circuit.

Bias and Erase Oscillator

In reel-to-reel recorders, and in the rather more upmarket cassette decks, a separate transformer would be used, both as the coil in the LC erase oscillator, and as a transformer coupling from a secondary winding to drive the erase coils and HF bias circuitry. However, in cassette recorders, provided it is not proposed to use 'metal' tape (for which very high erase voltages across the erase head are needed to achieve the required 60 dB erasure of previously recorded signals) it is quite satisfactory to use the erase head itself as the coil in the oscillator circuit, and up to 25 V RMS can be generated by the oscillator circuit shown in Fig. 15. A small proporton of this is then bled off through an RC network to bias the record head.

The actual RMS bias voltage across the head for optimum recording characteristics must be determined by experience for the record head and tape being used, but it will probablylie somewhere between 5.5 and 10 V RMS, as measured by a wide-bandwidth AC millivoltmeter. Understandably, from Figs. 10 and 11, there is no such thing as a 'correct' bias voltage setting. All that one can do is to try to choose a voltage at which all of the conflicting tape characteristics are partially satisfied, in your own judgment. As simple a soluton as any is to design the record and replay amps so that they give a reasonably good frequency response, and then trim the 'bias' voltage so that the overall frequency response is as level as possible. Obviously, if one has good instruments and a lot of time to experiment, a better compromise value could be found.

In Conclusion

These then are the basics of tape recording, and the circuits shown above, when used with a suitable cassette mechanism, an adequate power supply (derived for example from a pair of + and - output 12 or 15 V IC stabilisers and a decent quality pair of supplyline bypass capacitors) and some form of recording level indicator which could well be a simple one-IC AC millivoltmeter of the form shown Fig. 16., could be used to make a quite high performance DIY cassette recorder. However, being realistic, I do not really believe that anyone in the UK at the moment would want to build himself a cassette recorder - unless, of course, he had most of the parts already to hand - when he could buy one, ready built, and with all the trimmings, for about two thirds of the wholesale price of the components.

Nevertheless, it is useful to know what kind of circuitry is employed in tape recorders, and what the problems and limitations are, so that one might rebuild or modify existing unsatisfactory equipment, or simply so that one can know where the strengths and weaknesses of the method lie. Also, because every tape or cassette recorder represents the end product of a very large number of design compromises, which affect distortion, modulation noise, overload characteristics, flatness of response and background noise level, as well as the straightforward HF bandwidth, cassette and reel to reel tape recorders difter in sound quality, one from another, very much more than, say, audio amplifiers or tuners do. Evaluation of the effect of these many compromises is truly an appropriate field for the 'subjective' listener.

I have tried, in this series, to take a brief look at the types of circuitry which are used in audio equipment, to try to show how the designer might do his circuit calculations, and to attempt, where possible, to remove the mystery from this subject. During this, I have been aware that one of the major areas of calculation, that involving capacitors and resistors, has been skirted round rather hurriedly, and the reader has been left with just a few useful landmarks, rather than a map. This is because more detailed calculations require the use of algebra employing 'complex numbers'. However, speaking as one who is really a very poor mathematician, I honestly do not think that there is anything in this which should frighten anyone (especially if they have a pocket calculator to do the sums for them) - indeed, some of the calculations are really quite fun to do. I am therefore verypleased that the Editor has indulged my wish to try to show that this is really quite simple, in the next part of this series.

HERRY'S

 AUDIOELECTRONICS
wilh case |r otary switches) +Side bution - case $£ 2.95$
 ${ }_{2}^{2 ~ m e g ~ o h m ~}$ $K 03050$
2 meg ohm KD30C 26 range 18 AC/OC 20 meg ohm $£ 29,50$ Weter $3000-30$ range $10 A A C$. $D C$ 20 meg ohm
 K0615 a 16 range 104 oC 2 meg plus
Hie tester
SifA
8ench models
TM355 29 range LED IOA AC OC 20 meg Thandar
TM356 26 range LCO 10A AC, OC 20 meg Thandar [Amplaces TM353]
Thanst 29 range LCO IDA AC. OC 20 meg
SFAM 250024 rangeLCO 24 AC DC 20 meg 20.75 ALSO IN STOCK Thurlby. Meirx and Beckman Prolessional series incl. True Ams. etc

MULTIMETERS

MN1 $1028220 \mathrm{~K} / \mathrm{V}$ 1OA OC 22 range \& cont. buzzer $£ 13.50$ 2A DC plus cont. buzzer £23.95 M556n 20K/V 22 range pocket 830 A 26 range $30 \mathrm{~K} / \mathrm{V}$. 10 A AC/OC overloa
protection. etc
3601 F 23 range $100 \mathrm{~K} / \mathrm{V}$ targe scale 10A
AC/OC plus *fe AC/DC plus the
ac 10 C 3 range 100 K / V deluxe. 12 A at 102
18 range $20 \mathrm{~K} / \mathrm{V}$. Deluxe plus the
YM360TR 19 range 20K/V plus He tester

CHERAY keyopard. pl
ampleyocm to housez
ample rocm to house a COMPLIIE SYSTEM and power silver Crey in with litings ICase Lop delachabie! Unil is with side ventilation ital Ior MASCOM ACOAM I AMGERINE or your own system. Size $18 \times 15^{\prime \prime} \times 4^{\prime}$ - . |liront slapes
$\mathbf{5 2 7 . 5 0}$ me. vat uutiper 201
LOGIC PROBES
LP10 10 MHZ
accessories
HIGH VOLTAGE METER
roxivall cas.00
DIGITAL CAPACITANCE
METER (UK C / P PS5p
DMEO13 E52.75
TRANSISTOR TESTER Olirect reating PMP. MPM. Atc TUK ${ }^{T / P 65 p \mid}$
SIGNAL GENERATORS ${ }_{220 / 240 \mathrm{VAC}}$ FUnction: All sine/square/triangle/TTL eic

PULSE various lucilities 5 HZ .5 MHz Abolo. Multiband Sine/Square LAG27 to HZ 101 MH2 AGO2A 20 HZ to 200 KHZ |list $\mathrm{E94} .501$ LA6 120 A 10 HZ - 1 MHZ Low Distortion SG402 100 KHZ to 30 MHZ |list £79.50|

SINGLE TRACE UK C/P $£ 3.00$

lester
SC1 10 A
Post liee $£ 177.10$
$£ 171.00$ Posilire
abolional
Micals El2
HM103 15 MHZ $2 m V 6 \times 7$ displidy plus

HM203/4 Dual 20 MH2 plus component
CS 15624 Dual 10 MHz ILis1 £321.00)
$£ 303.60$

$£ 26950$
VARIABLE POWER SUPPLIES

PP243 3mp version E59.95
 230 N of twin meter
 899.50

FREQUENCY COUNTERS
PFMrizo
digititio
$£ 77.60$
MET1008 digitLED bench 2 ranges 100 MH2 2100.35
 MEO 40 Q digit C CD 40 mHZ . Thandar

HENRY'S

404 -406 Edgware Road. London. W2 IEO
Computer $01-402$ 6822. Components: $01-7231008$
Test Equipment \& Communications: 01.7240323
AUDIO ELECTRONICS
301 Edoware Roas. London. W2 18N
01.7243564 AAll mail it this aidress

CS 15654 Dual 20 MH2 All lacilites (Lisi
a weop delay
V212 Dual 20 MH?
v222 Dual 20 MHZ plus extra lacilitites
422 Dunt 40 Wh2 porcuble
134 Oual Trace 10 MHz slorep delay
MI MITACMI CEOTECH \& TRIO
OPTIOMAI PROEE KIT
X 18.8 .95
Huge stocks of esmicens.
components tools, ste. Large ringe of components, tols. Bti. Large range CALLINANO SEE ORDER BY POST OR PHONE.

- 1243504 AAl meill io his auuress

THE 1984 GREENWELD CATALOGUE

Now in the course of production, the 1984 GREENWELD catalogue will be published in January (sorry about delay). Its Bigger, Brighter. Better, more components than ever before. with each copy there's discount vouchers, Bargain List, Wholesale Discount List. Bulk Buyers List, Order Form and Reply Paid Envelope All for just $£ 1.00$! Order now for early delivery!

MOTORIZED GEARBOX These units are as used in a computerized tank, and offer the experi-
mienter in robotics the opportunity to buy the electro-mechanical parts required in building remote controlled vehicles. The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling ker by a magnethic clutch a hearbox con-
turning of the viicle. and a ger tained within the black ABS housing, reducing the final drives speed to approx 50 rpm . Data is supplied with the unit showing various options on driving the motors etc. $\mathbf{£ 5} .95$. Suitable wheels also available: $3^{\prime \prime}$ Dia plastic with black tyre, drilled to push.fit on spindie 2 for £1.30 (limited aty). $3^{\prime \prime}$ dia aluminium disc 3 mm thick, drilled to push-fit on spindle. 2 for 68 p.

2N3055 SCOOP! Made in Texas - full spec devices 60p each: 10 or $£ 4 ; 25$ for $£ 9 ; 100$ for $£ 34$; 250 for $£ 75$; 1000 for $\mathbf{£ 2 6 5}$.

5 mm RED LED SCOOP! Full spec brand new devices at a low. £13.50; 1000 £ 39.50 .

1 N5400 3A 50V RECTS Bulk purchase enables us to offer these special low prices: 25 £1.50; 100 £200: 250 £12; 1000 £43; 5000
50V $11 / 2 A$ BRIDGE RECTIFIER

This ready built mains adaptor supplies 45 V . $150 \mathrm{~mA} D C$, so can easily be modified 10 a stablized 5 V supply. Built in continental plug for standard mains supply. Only £1.95; 10 £16; $25 £ 32$;
HEATSINK

Z905 Finned black ally heatsink $125 \times$ $198 \times 23 \mathrm{~mm}$ with $4 \times 2 \mathrm{~N} 3055$ and $4 \times$
OR25 5W R's. Only $\mathbf{~ 2 2 . 5 0}$

NICAD CHARGER

Versatile unit for charging AA, C, D and PP3 batteries Charge/tes: switch. LED indicators at each of the 5 charging
points Mains powered $210 \times 100 \times 50$ points Main
$\mathrm{mm} £ 7.95$

STABILIZED PSU PANEL A199 A versatile stabilized power supply with both voltage (2.30V) and current (20mA.2A) fully variable. Many uses inc bench PSU, Nicad charger gen. purpose testing Panel ready built. tested and calibrated $£ 7.75$. Suitable transformer and pots $\mathbf{£ 6 . 0 0}$. Full data supplied

TTL PANELS
Panels with assorted TTL inc LS types. Big variety. 20 chips $£ 1.00$; 100 chips £4.00; 1000 chips $£ 3.00$

RIBBON CABLE
Special purchase of multicoloured 14 way ribbon cable - 40p/merre: 50 m £18; $100 \mathrm{~m} \mathrm{32.00;} 250 \mathrm{~m}$ £65.00.

TREAT YOURSELF TO A NICE NEW DIGITAL MULTIMETER!! KD555C A DVM for the protessional this 3/2 digit multitester has overload protection, low battery and overrange indication. Full auto-polarity operation. AC Volis: $0.2-700$
DC Votts $0.2-1000$
AC Current: 2004A-10A
DC Currert: 200uA-10A Resistance. 200R-200M Total 28 ranges for just $£ 44.95$

PUSH BUTTON BANKS W4700 An assortment of latching and independent switches on banks from 2 to 7 way. CPCO to 6 PCO A total of at £6.50; 250 £ 14.00 ; 1000 £45.00
"THE SENSIBLE 64" David Highmores new book on the commodore 64 now available $£ 5.95$

TELESCOPE AERIALS As used in Sinclair microvision. 9 section $100-610 \mathrm{~mm}$. Only 95 p

FERRIC CHLORIDE New supplies just arrived - 500 mg bags of granules, easily dissolved 500 ml of water. Only $£ 1.15$ Also abrasive polishing block 95p

CMOS PANEL

Z904 Panel $240 \times 165 \mathrm{~mm}$ with $6 \times$ 4099,723 all in sockets, $14 \times 8 \mathrm{~A} 200 \mathrm{~V}$ C networks. 30×1 N4001, sub-min relay. R's, C's, etc. $1 £ 4.95$

SEAT BELT ALARM Originally for sale at $£ 8.95$, these well made units $70 \times 50 \times 25 \mathrm{~mm}$ provide both PE2720 dinducer Peady built with circuit and instructions for just 44.95 . Also available as a kit, for just $£ 4.95$. Also available as a kit, together with instructions. ONLY £3.95.

BULK BUYERS LIST
Send for our thest wholesale list - IC's from 5p, R's £2/1000, transistors 21/2p,

VEROBLOC £1 off Our biggest selling breadboard on offer at a special price of $£ 4.10$
NUT SCRE WS WASHERS \& BOLTS Over 2 miltion in stock. metric. BA, selffor list

COMPUTER GAMES

2901 Can you follow the flashing light pulsating tone sequence of this famous game? Supplied as a futly working PCB with speaker (no case) plus full instructions Only $£ 4.95$
2902 Probably the most popular electronic game on the market - based on the old tashioned pencil and paper battleship game, this computerized version has brought it bang up to date! We supply a ready built PCB containig 76477 sound effect chip. TMS 1000 micro-processor chip. R 's, Cs etc.
Offered for its component value only (board may be cracked or chipped), it's only
30 p.
£1.95. instructions and circuit 30p.

T.V. SOUND TUNER BUILT AND TESTED

In the cut-throat world of consumer electronics, one onsumer electronics, one apparently ponder over s "Will anyone notice if we save money by chopping this out?" In the domestic TV set, one of the first casualties seems to be the sound quality. Small speakers
 and no tone contrals are common and all this is really quite sad, as th TV companies do their best $£ 24.95+$ £2.00p\&p compact and independent TV tuner that connects direct to your Hi.Fi is a must for quality compact and independent TV tuner that connects direct to your Hi . Fi is a must for quality reproduction. The unit is mains operated. This TV SOUND TUNER of fers full UHF
This TV SOUND TUNER offers full. UHF coverage with 5 pre-selected tuning con trols. It can E.T.I. kit version of above without chassis, case and hardware. $£ 12.95$ plus $£ 1.50$ p\&p.

PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT WiTh Case

ONLY £31.00 plus $£ 2.75$ p\&p. * NOISE REDUCTION SYSTEM. * AUTO E.Q. - INDEPENDENT LEVEL CONTROLS - TWIN V.U. METER. - WOW \& FLUTTER 0.1\%. - RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. FULLY VARIABLE RECORDING BIAS FOR
ACCURATE MATCHING OF ALL TYOE
Kit includes tape transport mech anism, ready punched and back
printed quality circuit board and all elec ronic parts. if. semiconductors, esistors, capacitors, hardware, top cove r, printed scale and mains transtorme
You only supply solder \& hook-up wire. Featured in April P. . reprint 50 .

STEREO TUNER KIT

build 3 band
stereo AM/
FM tuner kit is designed in conjunction
with P.E. (July
811. For ease of construction and alignment t incorporates three Mullard modules and an

FEATURES: VHF, MW, LW Bands, interstation muting and AF'C on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM-ferrite rod, FM- 75 or 300 ohms. Stablised power supply with ${ }^{\circ} \mathrm{C}$ core mains transformer. All components supplied are to P.E. strict specification. Front scale size $101 /{ }^{\prime \prime} \times 21 / z^{\prime \prime}$ approx. Complete with diaSPECIAL OFFER! E 13.95 +£2.50p\&p

STEREO CASSETTE DECK

125W HIGH POWER AMP MODULES

The power amp kit is a module for high
power applications - disco units, guitar amplifpower applications - disco units, guitar amp
iers, public address systems and even high power domestic systems. The unit is prolected against short circuiting of the load and is sate in an open circuit condition. A large safety margin exists by use of generously rated com ponents, result, a high powered rugged unit The PC board is back printed, etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use. Supolied with all parts, circuit diagrams

ACCESSORIES: Stereo/mono mains power supply kit with transformer: $\mathbf{E 1 0 . 5 0}$ pius $£ 2.00$ p\&p

SPECIFICATIONS
Max. output power (RMS) 125 W. Operating voltage (DC). $50-80 \mathrm{max}$. Loads: $4 \cdot 16 \mathrm{ohm}$. Frequency response measured @ 100 watts: $25 \mathrm{~Hz}-20 \mathrm{KHz}$. Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ @ 47K. Typical T.H.D. @ 50 watts, 4 ohms. 0.1%. Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

AUDAX 8 "

HIGH QUALITY 40 WATT
 RMS BASS/MIDRANGE

Ideal for either Hi-Fi or Disco use this speaker features an aluminium voice
coil a heavy 70 mm diameter
magnet. Frequency res: 20 Hz
$\mathbf{£ 5 . 9 5}$ $\begin{array}{ll}\text { magnet. Frequency res: } 20 \mathrm{~Hz} & \mathbf{£ 5 . 9 5} \\ \text { to } 7 \mathrm{KHz} \text {. Impedance: } 8 \mathrm{ohms} & +\mathbf{£ 2} 20 \text { P\&AP. }\end{array}$ AUDAX 40W Ferro-Fluid Hi-Fi

All mail to:
21E HIGH STREET, ACTON, W3 6NG. Note: Goods despatched to U K. postal addresses anly.
All tramb eubisct to availability. Prices correct at KIT £10.50 BUILT £14.25

SPEAKER BARGAINS
2 WAY 10 WATT
SPEAKER KIT
$8^{\prime \prime}$ bass/mid range and $3 \%^{\prime \prime}$
iweeter. Complete with screws
wire, crossover components
and cabinet. All wood pre-
cut - no cuting cut - no cutting required
Finish - chipboard covered Finish chipboard covered wood simulate, size $14 / 2^{\prime \prime} \times$
$81 / 4^{\prime \prime} \times 4^{\prime \prime}$. PAIR for ONLY $£ 12.50$ plus $£ 1.75$ p\&p.
ALL CALLERS TO: 323 EDGWARE ROAD, LONDON W2. Teleplione: 01.7238432 . (5 minutes walk from Edgware Road Tube Station)
Now open 6 days a week $9-6$ Prices inclute VAT) Please all ow 14 working days from receipt of order
for despatch. RTVC Limited for despatch. RTVC Limited reserve the right to up.
date their products without notice. All enquiriou kend date their products without notice. All enquiritas rend
S.A.E. Telephone or mail orders by ACCESS welcome

Electronic Brokers

Test Equipment DSTRIBUTORS

 \longrightarrow Philips PM 2517X Handheld OMM £172 Muiti-function. 4 digit autoranging with manual override. True RMS to 10Amp. Battery operation. Optional accessories extend measurement capabilities. Philips PM 3207 15MHz Oscilloscope £325 Tough light-weight portable for field service work with big screen. Dual trace, TV triggering. $X-Y$ operation, add and invert.

4 Philips PM 5107 Function Generator £295 Designed for audio and educational applications. Low distortion LF generator 10 Hz to 100 kHz , sine and square waveforms. TTL output.

E139 Small, light-weight for TV servicing
Five different test patterns for colour and monochrome. Tone for audio checking. Video

- シ".....

Jow Fluke 70 series Analog/Digital Handheld Meters All meters have 3 year warranty, all feature measurement functions of volts, ohms, amps and diode test.
JF 73 £65 DC accuracy 0.7\% Autoranging JF 75 \&75 DC accuracy 0.5\% Auto/manual ranging JF 77 E95 DC accuracy 0.3\% Touch hold function Multi purpose holster
\triangle Philips PM 6667/01 Frequency Counter E290 High resolution 7 digit computing counter from 10 Hz to 120 MHz . Auto ranging on all waveforms. PM 6668/01 [£425] performs to 1 GHz .

 Oscillo Dual trace for general purpose applications in industry and education. X-Y operation. TV triggering, add/invert and component tester.

4 Hameg HM 103 10MHz Oscilloscope £158 Single trace, suitable for field service or home constructor. Two year warranty applies to this and all Hameg instruments.

Hameg HM -203-4 20 MHz

- Hameg HM 204

20MHz Oscilloscope £365 High performance instrument with sweep delay. Versatile triggering to 50 MHz , variable hold off control, Z modulation and internal illurninated graticule.

I.C.E. Microtest 80 Multimeter £19 Compact meter in robust case.
40 ranges of measurement with high sensitivity and accuracy. Large range of inexpensive accessories. LondonWC1X 9LN.Te::01-8331166. Telex 298694 Electronic Brokers |

MACHINE CODE PROGRAMMING

Every month we plunge deeper into the arcane mysteries of machine code - taking our readers with us, we hope. This month, Bob Bennett goes beyond the index registers

Last month I gave examples of instruction of the form Ld (pq),A etc, and showed how two bytes are pushed back onto the stack. I also left you with the question of what happens if you push HL and pop DE. The answser is that both HL and DE now hold the data that was in HL originally.

One last thing, for the moment, regarding the stack: when you have finished with your machine code program and wish to return to BASIC, for example, then you must make sure that everything that you pushed onto the stack has been popped off. This is because when you GOSUB, and call to USR (machine code) program is a COS $\cup B$, then the return address is pushed onto the stack. When the time to return comes along then the address is popped off the stack, but if you have left some pushes un-popped, so to speak, then some very funny things can happen.

Whether you use pq to represent an address, or mn a number, doesn't matter a jot, as long as you, the programmer, know what is happening. However, what is significant is the presence or absence of brackets in the instruciton, as 1 mentioned last month. Fig. 11 shows part of a program with a Z 80 instruction to load

$=\mathbf{L d} \mathbf{H L}, \mathrm{mn}^{\mathbf{n}}$
Fig. $11 \mathbf{Z 8 0}$ instruction to load HL with 30000 decimal.

HL with $30,000 \mathrm{~d}$ or 7530 h . Note how the low byte, the one in L, goes straight after the instruction. Some of you will be familiar with the BASIC instruction, PRINT PEEK (address) $+256 \times$ PEEK (address +1); now you can match up the request with Fig. 11. The difference between the two instructions 2 A - Ld HL, (Pq) and 21 - Ld HL,mn should now be apparent. The first instruction loads the contents of the address pq into L , and the contents of $\mathrm{pq}+1$ into H ; the second instruction loads the byte n into L and the byte m into H. If the two bytes $m n$ represent an address, then HL is said to be pointing to that address.

Taking The Indirect Route

The Z80 instruction $77-\mathbf{L d}(\mathbf{H L}), \mathbf{A}$ is an example of indirect addressing, which if you work it out, means load the contents of the A register into the address which is pointed to by the HL pair. This is the machine code equivalent of the BASIC instruction POKE

Fig 12 One way of printing a screen position 0,0.
(address), with whatever. Earlier I explained that the display file is a series of addresses, with each address holding a byte of information relating to the screen display. I also gave the address $16384 \mathrm{~d}-400 \mathrm{Ch}$ as being the address of screen position 0,0 for no particular computer. Fig. 12 shows how to poke the code for the letter A onto the screen at position 0,0 using one method, and Fig. 13 shows a different method. However, an explanation is required for the method used in Fig. 13.

Suppose that you didn't know the address of the position 0,0 on the screen, but the system variable called D File held the address. If the address of D File was $19634 \mathrm{~d}-400 \mathrm{Ch}$ this would mean that 400 Ch would hold the low byte of the address of position 0,0 and 400Dh would hold the high byte.

One last example in this section is the Z80 instruction 7 E - Ld $\mathrm{A},(\mathrm{HL})$, which is the machine code equivalent of the BASIC instruction PEEK (address). Of course, registers other than A and HL can be used, but you should by now be able to identify the other instructions. Just in case you are wondering about the term indirect addressing, the instruction 77 - Ld (HL),A pokes the contents of register A into the address via the HL pair. What I haven't mentioned yet is the use of such instructions in a program, so here is
a short explanation using the two instructions given above.

Suppose instead of poking the letter A onto the screen, we had poked the code for 1 (this could be the start of a score, or the first try at something or other). Later on in the program we will want to test for the limit, say 9 , and if we have reached it then finish, otherwise increase (increment) the score and carry on. The instruction 7E - LD A, (HL), where HL points at the screen position of the number, will load A with the number on the screen. Comparing register A with the limit, 9, we can either finish if A equals 9, or increment A, poke it back onto the screen, and carry on with the program. I'll be covering the compare instructions later on, but it does involve the use of the flags. Things should be starting to fall into place now, but it does require a little thought.

Fingering The Index

Because the index registers X and Y allow great flexibility in machine code programming, this section will cover a lot of ground. As you get to know how the index registers work the easiest way to visualise them is as pointers to a table, the X registers moving horizontally, and the Y registers moving vertically. This doesn't happen literally of course, but the table concept can easily be programmed. Because I wrote about indirect addressing in the last section, l'll give a couple of examples from the 6502 set using indirect and indexed addressing together. Pre-indexed indirect addressing is the grand title of the first example, and Fig. 14 will make what's happening clearer.

The instruction A1 - Ld A,(I,X) requires a second byte after the op-code (A1). This second byte is added to the contents of the X register to get the address of the first of two sequential bytes in zero page of the memory. These two bytes form the address of the byte to be loaded into the accumulator (or A register). In the example I've assumed that the X register holds 70 h and that the second byte of the instruction is 0Ah. These two are then added together to get 7Ah (any carry bits will be lost) which is used as
a pointer to locations 007 Ah and 007 Bh in the memory. The contents of these two locations are treated as a 16-bit address (low byte in the lower address) and in our example this is 4000 h . This is the address which holds the byte to be loaded into the accumulator, in this case FFh, to finish the instruction. Note that the X register still contains 70 h at the end of the instruction. A most useful mnemonic would be A (byte $2+(X)$) which illustrates quite clearly what is happening. Although I mentioned zero page addressing above, you could have reasoned out what was going on without it, because the X register will only hold one byte.

The second example from the 6502 set is B1 - Ld $A(1), Y$ which is a post-indexed indirect instruction, with the mnemonic $A \leftarrow((Y)+($ byte2 $)$). Before you look at Fig. 15, and before you read my explanation, see if you can work out what it does; think of the use of brackets.

The second byte, in this case BE, is address $00 B E$, and 00 BE and 00 BF hold the two bytes of an address, in this case 4000 h . The byte in the Y register, which is FFh, is now added to 4000 h to make 40 FFh , and in address 40 FFh is the data that is loaded into the A register. What could be simpler?

Please note that only certain index registers can do particular jobs in the 6502 set. I leave it as an exercise for you to work out how the two prefixes pre- and post- are justified.

The Z80 CPU has a host of instructions involving index registers IX and IY. The instructions for the IX and IY pairs are the same as those for the HL pair with the prefix DD for IX and FD for IY instructions. As an example I'll take the Z80 opcode 77 - Ld (HL),A which I used in the previous section; the instruction DD 77 - LD (IX + d), \mathbf{A} is the indexed equivalent. This is quite straightforward; it means: poke the contents of A into the address formed by adding d to IX. That letter " d " means that there are three bytes in the instruction and " d ", for displacement, is the third byte. This byte is treated as an 8 -bit signed 2 's complement number and thus has a value between -128 d and $+127 \mathrm{~d} .(80 \mathrm{~h}=-128 \mathrm{~d}, 00 \mathrm{~h}=0 \mathrm{~d}$ and 7 Fh $=+127 \mathrm{~d}$.) If IX held 4000 h and we wanted to load

Fig. 14 Pre-indexing addressing from the $\mathbf{6 5 0 2}$ set.

Fig. 15 Post-indexing indirect addressing from the $\mathbf{6 5 0 2}$ set.

the A register into address 4079h, then the full instruction would be:- DD 7779 .

By now you should be able to recognise just about every addressing mode that you may come across. Before I carry on, though, I would like to just clear up something I just touched upon at the beginning of this month's article, when I was discussing pushing and popping.

Apart from the fact that we can't use line numbers in machine code, we do have the equivalent to GOSUB instructions where we GOSUB to an address (location). The 6502 instruction set has only the one instruction to GOSUB and that is 20 - JSR where JSR means jump to subroutine. Now don't confuse this jump with the relative jumps and the like, that I wrote about earlier. Just as in BASIC, this jump to a subroutine expects a RETURN which with the 6502 is 60 - RTS or return to subroutine (I always think of it as return to sender!).

The $Z 80$ set has quite a few GOSUB instructions, although they are labelled CALL, with the simplest being CDpq - Call pq. All of the flag conditions can be used for Calls in the Z80 set; for example, CCpq CALL Zpq, which means, when the result of the last instruction is zero, GOSUB pq. Again flag conditions can be used for a return, such as DB - RET C, when carry flag is set. The straightforward return in the Z80 set is C9. A word of warning, though: keep tracks on your calls to subroutines, and make sure that the returns match up. If in doubt, re-read this month's opening section.

A Logical Conclusion

A seemingly innocuous one-byte instruction is increment, or add one to. This can apply to single registers, pairs, index registers and even inc,(HL). The 6502 has single byte instructions for incrementing its X and Y registers only. Increment is one of three add instructions which involve the use of absolute binary arithmetic. All that means is that we will be using binary, but with no fractions and no negative or positive numbers. This will become clearer as we go along anyway.

Taking a single register first, as you would expect, increment will just add 1 to the contents of that register. This is all very well until the contents of that register reach FF , which is the maximum number that one register can hold. So now what happens? Fig. 16 should be of some help, and if you don't understand binary addition then this explanation will put you right. Remember that a binary digit, or bit, can only be either 1 or 0 , if we add two 1 s together the answer must be 0 and carry one over to the left. Starting at bit 0 , the one on the right in Fig. 16, work your way to the leftmost bit which is bit 7 .

Contents of register $=F F=11111111$ binary

1 INC or add 1
Contents of register $=00=00000000$

Fig. 16 Incremementing the contents of a full register.
You should finish up with all the bits at 0 , which means that the register now holds zero. So you see, incrementing a full register, or register pair, simply means that we start at zero again, and the zero flag should be set. I say should be set because it's always
advisable to check on the flags situation in the instructions set.

By the way, what happened to the last carry to the left, the one after we added 1 to bit 7? The answer in the case of incrementing is that it was discarded, but with the next two add operations it is important, as it affects the carry flag. The 6502 also has 2 and 3-byte instructions for incrementing (and decrementing) memory locations directly and indirectly.

In the Z80 set, you can add register to register, such as ADD A,B, or add pairs such as ADD HL,DE. Again, index registers can be involved, and even an instruction such as ADD A, (HL). Usually the only register that you can add a constant to is register A, in instructions such as ADD A,n. Fig. 17 shows the simple addition of two registers, which is quite straightforward. Again, when the two numbers added together come to more than one register can hold then the register that is being added to will pass through zero. This time, something different happens, so let's take a look at an example.

> Contents of register $A=50$ decimal $=00110010$ binary Contents of register $B=100$ decimal $=01100100$ binary Contents of register $C=150$ decimal $=10010110$ binary

Fig. 17 Adding two full registers together.
Suppose register A held D1 or 209, and register B held $B 0$ or 176 and the instruction was ADD A,B. Fig. 18 shows what happens, but l'll put it into words as well. Adding 209 and 176 gives an answer of 385 ; subtracting 256 leaves 129 , which is what finishes up in register A.

Just to prove what a glutton for punishment I am, 1 will now go through the binary addition in Fig. 18. Bit 0 , the rightmost bit, is where we start, and $0+1$ equals 1 so a 1 goes on the bottom line. Bits 1,2 and 3 are 0 in both registers so 0 goes on the bottom line in each case. Bit 4 in both registers is 1 so down goes 0 and a carry to the left. Two 1 s make a carry from bits 5 and 6 , this 1 goes into bit 7 position on the bottom line. Those two 1 s above the bottom line in bit 7 position give a carry to the left, and this last carry sets the carry flag 7.

> Contents of register $A=209$ decimal $=11010001$ binary Contents of register $B=176$ decimal $=10110000$
> Contents of register $A=129$ decimal $=10000001$ binary A carry to the left sets the carry flag

Fig. 18 What happens when two registers added together come to more than 255 decimal.

The third add instruction is ADC, which stands for add with carry, and is really straightforward. What happens is that all the above rules apply plus the fact that the current value of the carry flag is added on to the total, and the carry flag altered according to what happens during the current instruction. In other words, if there is a carry over from bit 7 then the carry flag will be set, otherwise reset. The 6502 has no register to register arithmetic, but uses memory locations especially zero page locations - instead, but always with ADC.

The subtraction instructions follow exactly the same pattern as the addition instructions with regard to the registers, etc. The first SUBtraction is DECrement, or decrease by 1 , then $S \cup B$ and finally $S B C$ or
subtract with carry. As you might expect, if you decrement a register, or register pair, which holds zero, then the number will zoom round to FF or FFF. Rather than me give you an example of subtracting in binary, why not have a go yourself? Write down two decimal numbers, take the smaller from the greater, convert the two numbers to binary, underneath write down the answer from the decimal subtraction converted to binary. Now work out how you can arrive at the answer.

AND The Rest

Usually there are three logical instructions that you can use which are AND, OR and XOR. Taking AND as the first example, it usually comes in the form AND, r where r is another register such as AND,C. There should be an instruction such as AND, n where n is any number up to FF, and you may get $A N D(H L)$ and even AND (IX + d). Your C.PU instruction set should show what AND instructions you can use. Whatever the instruction, everything is ANDed with register A, the accumulator.

Assuming that register A holds $F F$ and register B holds OF, Fig. 19 shows what happens when the

```
Register A holds \(\mathrm{FF}=11111111\)
Register \(B\) holds \(0 F=00001111\) AND
Register A holds \(0 F=00001111\)
```

Fig. 19 The result of the instruction AND B.
instruction $A N D, B$ is met. The explanation couldn't be easier: if the bits in A and B are both 1 then that bit remains the same in register A.

Check with your CPU instruciton set, but an AND instruction will usually alter all of the flags, with the carry flag always being set. If, during the writing of your program, you are not sure of the status of the carry flag, then AND A or AND FF will always reset it for you. Another use for ANDing is to mask off certain bits, and this is worth an explanation.

In the first part of this series I made a passing mention to a refresh register which is used to ensure that data isn't lost from RAM by the simple expedient of each address from time to time. What happens is that this register, R, starts off at zero and is incremented until it reaches 7F, it is then discharged and starts at zero again. So at any time register R will hold a number between 00 and 7F. The Z80 set has an instruction ED 5F - Ld A,R which, if used from time to time in a program, gives the effect of putting a random number in A. If you want to make sure that this 'random' number doesn't go above a certain number all you have to do is AND, x where x is your limit; note, however that if you chose an x that is not equal to $2^{n}-1$, this operation will not return a truly random number (why?).
The refresh register is acutally 8 bits but only the 7 lower bits are incremented automatically. The 8th bit can be set or reset by using the Ld R,A - ED 4F which transfers the contents of the A register to the refresh register. The refresh register will then be incremented from that value but the MSB will stay in its current state.

ETI

ETI FEBRUARY 1984

CAMBRIDGE LEARNING

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and 80 Years of Success

 The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

 WANT AND POST TODAY

SELF-INSTRUCTION COURSES

GSC SUPERKIT £19.90

Learn the wonders of
digital electronics!
This practical kit for beginners comes complete with an instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The course needs no soldering iron; the only extra you need to buy is a $4 \frac{1}{2} \mathrm{~V}$ battery.
Using the same board you can construct literally millions of different circuits.
The course teaches boolean logic, gating, $R_{-} S$ and J-K flipflops, shift registers, ripple counters, and half-adders.
It is supported by our theory courses
DIGITAL COMPUTER LOGIC
which covers: basic computer logic; logical circuit elements; the design of circuits to carry out logical functions; flipflops and registers; and

DIGITAL COMPUTER DESIGN
 £9.50

Our latest, most up-to-date course on the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Other courses available include:
MICROPROCESSORS \& MICROELECTRONICS @ $£ 6.50$ COMPUTER PROGRAMMING IN BASIC @ £11.50
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 15 RIVERMLLL SITE, FREEPOST, ST IVES. CAMBS, PE17 4BR, ENGLAND. TELEPHONE: ST IVES (0480) 67446. VAT NO 313026022
All prices include worldwide postage (airmall is extra please ask for prepayment invoice). Giro A/c No 2789159. Please allow 28 days for delivery in UK.

```
......SUPERKIT(S) e £19.90
DIGITAL COMPUTER DESIGN(S) £ 9.50
```

......DIGITAL COMPUTER LOGIC @ £7.00
1 enclose a *cheque/PO payable to Cambridge Learning Ltd for £.......... (*delete where applicable)
Please charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard/Visa / Mastercharge / Trustcard
Expiry Date............ Credit Card No
Sıgnature..
Telephone orders from card holders accepted on 048067446 Overseas custoners (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.
\qquad
\qquad Cambridge Learning Limited, Unit IS, Rivermill Site. FREEPOST, St Ives, Huntingdon, Cambs, PE17 4BR, England. (Registered in England No 1328762).

PCB FOIL PATTERNS

The Modular Preamplifier boards.

The Bench Power Supply; note that this will not be available through the PCB service.

Mrasuma BHEGMRONICS now:

 The PRAGHIOATA wey:
YOURCAREER.YOUR FUTURE.YOUR OWNBUSINESS.YOUR HOBBY THIS ISTHE AGE—OF ELECTRONICS! the word's tastest growth industry...

There is a world wive gemand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also ... the most exciting of all hobbies - especially if you know the basic essentials of the subject. A few hours a week for less than a year -- and the knowledge will be yours. . .
We have had over 40 years of experience in training men and women successfully in this subject.

> Our new style course wili enable anyone to have a real understanding of electronics by a modern r, actica and visual method. No previous knowiedge is required, no maths, and knowiedge is required, no maths, and
an absolute minumum of theory.

> You learn by the practical way in easy steps, master:n! al! the essentials of vour hobby or to s.art ne further, a employed servicing enainee*

> All the training can be carried out in the comfort of your own home and at your own pace A tuto: is available to whom you can write personally at any time, for advice or nelp during your work. A Certificate is g ven at the end of every course

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern
equiprient using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T. V. HI.FI, VCR and microprocessor/computer equipment.

CACC Buitish National Badio\&2Hlectronics School Reading, Berks.RG1 1BR

M? अ 3!
 COLOUR BROCHURE

 post now to
 Please send your brochure without any obligation to
 NAME
 ADDRESS
 \qquad
 ETI/2/841
 British MNational Radio\&\&Flectronics School Reading,Berks.RGI lBR

ETI PCB SERVICE

The best way to get a really professional finish to your project is to use a professionally made PCB look no further, here they are!

In order to ensure that you get the correct board, you must quote the reference number when ordering - if you don't, you may get sent the wrong board. The code can also be used to identify the year and month that a particular project was outlined in: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.

1979	
-	E/794-1 Guitar Effects Unit 3.04
\square	E/794-2 Click Eliminator. 7.64
\square	E/796-1 Accented Beat Metronome 4.14
1980	
-	E/808-3 Ultrasound Burglar Alarm 3.30
\square	E/8010-1 Cassette Interface 3.37
\square	E/8010-2 Fuzz/Sustain Box 3.76
\square	E/8011-5 RIAA Preamp. 2.22
\square	E/8012-3 Four Input Mixer. 3.04
1981	
\square	E/811-1 LED Tacho 4.75
\square	E/811-2 Multi-Option Siren. 3.68
'	E/812-2 IR Alarm (4 boards) 7.64
\square	E/812-5 Pulse Generator 4.11
\square	E/814-2 Drum Machine (2 boards) 6.44
\square	E/814-4 Guitar Note Expander 3.68
\square	E/816-8 Waa-Phase 1.76
\square	E/816-9 Alien Attack 4.00
\square	E/817-1 System A-Input (MM or MC).
\square	E/817-2 System A - Preamp. 5.95
\square	E/817-3 Smart Battery Charger. 2.27
\square	E/818-3 Hand Clap Synth. 4.57
\square	E/818-5 Watchdog Home Security (2 boards) \qquad
\square	E/819-1 Mains Audio Link (3 boards) 8.45
\square	E/819-4 Laboratory PSU. 5.21
\square	E/8110-1 Enlarger Timer. 3.91
\square	E/8110-2 Sound Bender 3.05
\square	E/8111-1 Voice Over Unit 4.57
\square	E/8111-2 Car Alarm. 3.23
\square	E/8111-3 Phone Bell Shifter. 3.40
\square	E/8112-4 Component Tester. 1.71
1982	
\square	E/821-3 Guitar Tuner (2 boards) ... 6.38
\square	E/822-1 Ripple Monitor 2.21
\square	E/822-2 Allez Cat Pest Repeller . . . 1.93
\square	E/822-5 Moving Magnet Stage 4.01
\square	E/822-6 Moving Coil Stage 4.01
-	E/823-4 Capacitance Meter (2 boards) 11.66
\square	E/824-5 Voltage Monitor 2.14

E/825-1 DV Meg. 3.13	
\square	E/826-1 Ion Generator
	(3 boards) 9.20
-	E/826-4 MOSFET Amp Module. . . . 7.80
\square	E/826-5 Logic Lock 3.52
\square	E/826-6 Digital PWM 3.84
\square	E/826-7 Optical Sensor 2.00
\square	E/826-9 Oscilloscope
	(4 boards) 13.34
ㅁ	E/827-7 TV Bargraph Main. 5.24
\square	E/827-3 TV Bargraph Channel. 2.62
	E/827-4 Hotwire. 3.02
\square	E/827-5 Bridging Adapter 2.74
\square	E/828-1 Playmate (3 boards). 8.28
\square	E/828-4 Kitchen S -ales 2.12
-	E,828-5 Sound Track. 4.89
\square	E/829-1 Auto Volume Control. 2.12
\square	E/829-2 Dual Logic Probe 2.22
\square	E/8211-4 Pulse Generator 6.08
\square	E/8212-1 ELCB 2.77
\square	E/8212-2 Servo Interface (2 boards)
\square	E/8212-4 Spectracolumn 5.54
1983	
口	E/831-1 Fuel Gauge 3.45
\square	E/831-2 ZX ADC. 2.59
\square	E/831-3 Programmable PSU. 3.45
\square	E/833-1 SoundBoard. 12.83
\square	E/833-2 Alarm Module 3.62
\square	E/833-3 ZX81 User Graphics 1.07
\square	E/833-4 Logic Probe 2.50
\square	E/834-1 Real Time Clock 8.74
-	E/834-2 Thermemeter (2 hoards) 9.74
\square	E/834-4 Stage Lighting - Main . . 13.73
\square	E/834-5 Stage Lighting - Display 3.45
\square	E/835-1 Compressor/Limiter 6.19
\square	E/835-2 Single PSU 3.16
\square	E/835-3 Dual PSU 4.01
\square	E/835-4.2 NDFL Amp 7.88
\square	E/835-5 Balance Input Preamp. . . . 3.23
\square	E/835-6 Stage Lighting
	Autofade...................... . . 6.19
\square	E/835-7 Stage Lighting -
	Triac Bo

E/836-1 to 3 PseudoROM
(3 boards)3.62

- E/836/4 Immersible Heater 2.30
E/836-5 Atom Keypad. 5.18
E/837-1 Flash Sequencer. 2.67
E/837-2 Trigger Unit Main Board. 2.67
E/837-3 Trigger Unit Transmitter. 1.66
E/837-4 Switched Mode PSU 16.10
E/838-1 Graphic Equalisr 9.10
E/838-2 Servo Fail-Safe(four-off)2.93
E/838-3 Universal EPROM prog. 9.64
E/839-1 NiCad Charger/Regen. 3.77
E/839-2 Digger. 3 .40
E/839-3 64 K DRAM. 14.08
E/8310-1 Supply Protector 2.19
E/8310-2 Car Alarm 3.98
E/8310-3 Typewriter Interface 4.17
E/8311-1 Mini Drum Synth 3.07
E/8311-2 Alarm Extender 3.21
E/8311-3 Multiswitch 3.59
E/8311-4 Multiple Port 4.34
E/8311-5 DAC/ADC Filter 3.22
E/8311-6 Light Pen 4.60
E/8311-7 Logic Clip 2.5
E/8311-8 MC Head (JLLH) 3.17
E/8312-1 Lightsaver. 1.85
E/8312-2 A-to-D Board. 12.83
E/8312-3 Light Chaser (2 bds) 7.54
E/8312-4 ZX Alarm 6.04
1984
E/841-1 Vector Graphics 8.27
E842-1 Speech Board (Mini-Mynah) 10.97
MODULAR PREAMP
E842-2 Disc input (mono) 3.73
E842-3 Output stage (stereo) 3.73
E842-4 Relay/PSU 3.73
E842-5 Tone, main (mono) 3.73
E842-6 Tone, filter (stereo) 3.73
E842-7 Balanced output (stereo). 3.73
ㅁ. E842-8 Headphone amp
(stereo). 3.73
E842-9 Mother board 9.01

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.

Total for boards
Add 45 p p\&p
Total enclosed

Signed \qquad

Name

Address

SERVICE SHEET

Enquiries

We receive a very large number of enquiries Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some axceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK: ± 73.75
$£ 17.55$ Surface Mail
f36.95 Air Mail
Send your order and money to: ETI Subscrip-
tions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd). Note that we run special ofiers on subscriptions from time to time (though usually only for UK subscriptions, sorry).
ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Below we list the backnumbers that are available from our backnumbers department. Please note that this list will be out of date if you use an old copy of the magazine. Backnumbers cost E1. 50 (UK or overseas by surface mail) and are available from: ETI Backnumbers Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd).
Even if the copy of ETI you need is not listed, all may not be lost, because we run a photocopying service. For $£ 1.50$ (UK and overseas) we will photocopy an entire article (note that parts of a series of articles count as separate articles). Your request should clearly state what article you require and the month and year in which it appeared (the index for 1980 and 1981 was published in January 1982, and the index for

1982 appeared in December 1982, and the index for 1983 in January 1984). Send your request to ETI Photocopies, Argus Specialist Publications Ltd, 1 Golden Square, London W1R 3AB (cheques should be made out to ASP Ltd).

June 77
February 78
July 78
September 78
October 78
November 78
December 78
March 79
April 79
May 79
June 79
August 79
September 79
November 79
April 80
May 80
July 80
August 80
September 80
October 80
November 80
December 80
January 81
February 81
March 81

April 81
May 81
June 81
September 81
October 81
November 81
December 81
January 82
February 82
March 82
May 82
June 82
July 82
August 82
September 82
October 82
November 82
December 82
March 83
April 83
May 83
June 83
july 83
August 83
September 83

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telehone number).
We don't bother with the bureaucracy for Tech Tips - all you do is to send in your idea, stating clearly if you want an acknowledgement of receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works, on a separate sheet from the circuit diagram; both sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should:

1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line We are not able to help directly, because basically the dispute is between you and the supplier, but a
letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for classine d ads,

OOPS!

We have in the past published small corrections to projects on the letters page, and major corrections separately. From now on corrections will appear on this page, and will be repeated for several months (just to increase our embarrassment). If a correction is too large to fit on here, we will publish it just once, but will note the fact that a correction does exist, and that copies of it can be obtained from us provided you send in an SAE. But please - request coples only if you really do need them; if this service is abused, we may be forced to withdraw it

Telescope (August 1983)

We had a shower of annotation falling off our diagrams! On Fig. 1, C19 (below IC14) was not labelled nor was Q2 (above R11), and there were two C23s - one should be IC22 and it doesn't matter which. In Fig. 5, IC12 was not labelled. Untortunately, there was a mistake in the correction (blush!): C14 is the 22μ tant on the $-5 V$ line.

Graphic Equaliser (August 1983)

D2 and D3 are shown the wrong way round in the power supply circuit diagram on page 20.

Universal EPROM Programmer (August

1983)

Corrections to this project are listed in the article "Universal EPROM Programmer Revisited" which appeared in the January '84 issue.

Z80 Controller Computer (August 1983)

On the overlay, SW1 is the rectangle beside ICs 5 and 6, C6 should be shown between ICs 3 and 7, and a link through has been missed - to the right of oin 18. IC11.

Typewriter Interface (October 1983)

An update article on this project will appear in the March ' 84 issue.

Car Alarm (October 1983)

In the semiconductors section of the parts list, Q1, 2, 5, and 7 should be BC212L, Q3 should be BC182L, and $Q 4,6$ should be TIP31 or BD131. There was also another (inconsequential) silly but we bet you've already spotted that one!
Tech Tips (October 1983)
Ramped Pulse Generator For Stepper Motors - pin 1 of IC2 should be grounded, the Ramp Up and Ramp Down inputs accept negative, not positive, gong pulses, and IC7 should be a 4011 rather than a 4001. Active Loudspeaker (November 1983) Gremlins attacked the parts list on page 72 leaving a trail of 00 's in their wake. The ceramic tiles should be $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ square and you need six of them. The BAF wadding needs to be about as wide as the enclosure's internal height, i.e., about $21^{\prime \prime}$, and long enough to loosely fill the space when rolled up with a bit left over to cover the back of the bass unit. The thinner the wadding you use, the greater the length you will require.

Standard features -

- High speed $\mathbf{2 4 K}$ byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only bymemorysize
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor

Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
Basic programs may contain spaces between key words to make programs readable without using more memory
Over 34K bytes available for basic programs

- Extended basic includes IF-THEN-ELSE
- Interfaces for screen and cassette included.
- Supports bit manipulation of variables from basic

Error trapping to a basic routine included
Basic supports Hexadecimal numbers
Separate 16 K video RAM for graphics

With this powerful machine (featured in Electronics Today International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D-or simply increasing your knowledge and' understanding of computers - it beats comparably priced off-the-shelf machines hands down!

STATEMENTS	PRINT	TIME	RENUM	MAG	MWD		()	NOG	POS	$=$
ELSE	?	SAVE	GRAP	TON	BASE	@	U	LOG	COL	
ON		LOAD	TEXT	DIM	COmman's	\#	FUNCTIBNS	SQR	MOD	$>$
GOTO	1 UNIT	MOTOR	PLOT	LET	RUN		FNA-FNZ	SIC	KND	$<$
GOSUB	BAUD	ESCAPE	UNPLOT	DEF	CONT	?	ABS	SGN		<
POP	CALL	NOESC	COLOUR	NEW	MON	\%	ADR	BIT	OPERATOLS	<>
REM	DATA	RANDOM	CHAR	END		\$	ASC	CRB		-
FOR	READ	ENTER	SPRITE	BIT	DELMITES	"	ATN	CRF	LOR	+
NEXT	RESTOR	LIST	SHAPE	CRB	TO	,	SIN	MEM	AND	
ERROR	RETURN	PURGE	SPUT	CRF	TAB		COS		LAND	
INPUT	STOP	NUMBER	SGET	MEM	STEP	\&	EXP	LEN	NOT	\wedge
					THEN		FRA	MCH	LNOT	

Self assembly kit

£295

All prices exclusive of VAT. Carriage paid.

Optional Extras

Floppy disc interface electronics Hardware kit \& connectors for disc drives RS232C interface kit
Pair of $51 / 4^{\prime \prime}$ disc drives (SS)
Pair of $51 / 4^{\prime \prime}$ disc drives (DS)

POWFRTRAN cyverneticics stid.

 Portway Industrial Estate, Andover SP10 3ET. Tel: 026464455

MARCO'S SPECIAL OFFERS
SPECMu PmeE nussin de Votage: 06, 12, 3, 12, 30, 60, 120, 600,1200

PARNDON ELECTRONICS LTD. Dept. 23, 44 Paddock Mead, Harlow, Essex. CM1 8 7RR Tel: 027932700	
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance Bandoliered and colour coded. Full Range 1RO-10M. $\mathbf{8 1 . 0 0}$ per hundred mixed (Min 10 pervalue) $\mathbf{£ 8 . 5 0}$ per thousand mixed (Min 50 per value) Special stock pack 60 values. 10 of each $£ 5.50$	
RECTIFIERS 1 Amp 3 Amp 50V $3 p$ 14 p 100 V 4 p 14 p 200 V 5 p 14 p 400 V 6 p 19 p	3122 Digit LCD Dieplay: 1 colon, 3 decimal points plus/minus sign and lo bat indicator. Complete with low power 7106 A/D converter display driver. Driver set $\mathbf{£ 8 . 9 5}$ Display $£ 3.50$ Drtiver $\mathbf{8 6 . 5 0}$
$\begin{array}{rlr}600 \mathrm{~V} & 8 \mathrm{p} & 20 \mathrm{p} \\ 1000 \mathrm{~V} & 9 \mathrm{p} & 25 \mathrm{p}\end{array}$	DIODES: IN4148 $\mathbf{8 1 . 6 0}$ per hundred
$\begin{array}{ll}\text { DIL } & 8 \text { pin-10p. } 14 \text { pin-11p. 16p pin-12p. 18p pin-19p. 20p pin-21p } \\ \text { SOCKETS } & 22 \text { pin-23p. } 24 \text { pin-25p. } 28 \text { pin-27p } 40 \text { pin-42p. }\end{array}$	
Full List Available - Send SAE ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK £ 1.00 OVERSEAS $£ 5$ CASH WITH ORDER PLEASE Same Day Despatch	

ELECTRONICS TODAY INTERNATIONAL

Lineage:
35 p per word (minimum 15 words) Semi Display: (minimum 2 cms) £10.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

$01-4370699$
Send your requirements to: Debbie Miller ASP Ltd.
1 Golden Square, London W1.

A7 INTRUDER ALARMS

Wholesale Alarm Suppliers
Latest D.I.Y. \& Wholesale Published Catalogue Write off for your copy
86 Derby Lane, Old Swan, Liverpool 13
Tel: 051 2283483 or 051-220 0590

BURGLAR Alarm Equipment: Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

PLANS 'N DESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

EQUIPMENT

BROADCAST QUALITY FOR YOUR NEXT MIXER PROJECT
 - Over 100 Audio Sub-Units - Kit or Ready Built
 Our new Mic \& Mag Disc Pre-amps incorporate the super low noise Muliard/Signetic NE5534 IC. All items listed are identical to those used in our professional consoles
 PARTRIDGE ELECTRONICS
 56 Fleet Road, Benfleet Essex SSJ 5JN, England (LARGE S A.E: PLEASE) THE MIXER PEOPLE

35 Grosvenor Road, Twickenham, Middlesex TEL:01. 891 1923/1513 Telex 295093

AERIAL AMPLIFIERS improve

 weak television reception Price 56.70 . S.A.E. for leaflets Electronic Mailorder, Ramsbottom, Lancashire, BLO 9AGHTRANSPARENT flexible keyboard covers allow operation of computers in dirty environments. Datails from: DBM Products, Box 6, Melton Mowbray, Leics. (0664 68415 after 4pm)

POWER SUPPLIES. Excellent layout includes two panel meters in attractive aluminium case. 5 outputs $\pm 15 \mathrm{v} \pm 5 \mathrm{v}$ $100 \mathrm{ma}+25 \mathrm{v} 1.5 \mathrm{~A}$ variable. £55.50. J\&S Mailorder, 6 Albion Grove, Stoke Newington, London N16.

100W Amplifier - 89.95 built! Or use the same board for $50 \mathrm{~W}, 150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and P.S.U. SAE for full details to ESS Amplification, Innovation House, Guildhall Road, HULL.

INTEGRATED CIRCUIT TE8TER Computer controlled IC tester-tests mos ell the comptuer the IC number and hi return. It can also identity unmarked ICs. Includes software \& Instructions. Only $£ 39.85$. ${ }^{\text {Sinclairs. }}$. Mortay
 Shiremore, Newcastle Upon Tyne
 COMPUTERS

Mult band portable radio. Air-WB-PB/TV FM/CB. squelch 20 directional aeria Xw3.75"X X2': £12.50
Personal MW radio headset with built-in speaker and belt clip. takes one PP3 battery. complete with lightweigh headphones $\mathbf{E 6 . 2 5}$
High quality crimp-tool. crips terminals, culs mild steel boits. cuts and strips wire complete with 25 assorted terminals E2.30.
t2sW 5 -band car stereo booster 27
ame as above but with 7 - band equaliser
L-707) £34.50
Same as (L-707) but with LED power dicator (L-710) \&37.00
ultable 25 W car speakers. 3 .way swivel(weeler. if X 17) £38.50
All items guaranteed. prices include VAT and postage.

Orders to
334 Dickenson Road, Longsight
Manchester M13 ONG
iMail Order Only

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs Tel: 0945584188 . Immediate settlement.

BUMPER BOX OF BITS

 WOW' We've got so many components in stock, we can't possibly list them all - So buya box. In it you'llifind resistors, capaci-tors disolays. switches panels with transistors. diodes. IC's etc., coils, pots... and sistors. diodes, Cs etc., coils, pots... and
so on. All modern parts - guaranteed at least 1000 items. minimum weight 101 lbs ONLY $£ 8.50$ inc. 48 page catalogue 50 p.

ELECTRONICS WORLD
1e Dewe Road, Sallebury, WIIts SP2 7SN

BULK COM PONENTS

 Resistors-idealfor making into packs orust to increase stocks at a very low price We're selling new, tult lead length resistors in origina! boxes/packets/reels Because most are packed in thousands (some are 100 's) you'll need to buy a large get carbon/film/oxide mixed tolerances 1% to 20% in $1 / 6 \mathrm{~W}, 1 / \mathrm{W} 81 / 2 \mathrm{~W} .20,000 £ 26$: 50,000 £60; 100,000 £ $110 ; 1 / 4$ million 250; 1 million $£ 950$. All prices inclusive SAE for samples.
We also stock capacitors, semiconduclatest list
PCELECTRONICS in bulk SAE for
ROMSEYRDICS 1 THORNHILL,
SALISBURY, 'WILTS SP5 2SD'

COMPONENTS, kits, circuits, etc. SAE for free list. PIP Marketing, Two Bridges, Blakeney, Glos GL 15 4AF

KITS

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - nevergains or loses, SELFSETIING at switch-on, 8 diglts show Date, Hours, and leap year, receives Rughy 60 KHz and leap year, receives Rugby 60 KHz atomic time signals, built-1n antenna,
1000 Km range $£ 72.70$. AUDIO OSCILLATOR 0-1V sine/square, TLL, £21-60
Each fun-to-bulld kit (ask for full list) includes all parts, printed circuit, case, instructions, byreturn postage etc money back assurance, SEND away NOW

45 CAMBRIDGE KITS
45 (TB) Old School Lane,
Milton, Cambs.
DIGITAL WATCH REPLACEMENT parts, batteries, displays, backlights etc. Also reports publications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen Bucks. HP15 6SGD

STEREO AMPS boxed + data £10. Case, controls + sockets - 120 watt (pfotected) glass/ PCB built and tested - KIA, 8 Cunliffe Road, Ilkley-300watt slaves/£15.00.

FULL SPEC. Computer ICs TMS9929 £14.95. 8086D £22.95. Z80B £5.95. Morley Electronics, 1 Morley Place, Shiremoor, Newcastle Upon Tyne.
TRANSCENDENT 2000, assembled fully working $£ 150$ Casiotone MT40, as new, $£ 70$. Free delivery mainland. Norwich (0603) 51182.
ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

SERVICES
 MENDASCOPE LTD

Repair \& recalibrate Oscilloscopes All makes, all models Scopex, Safgan, older TEK \& TQ Otter House, Weston Underwood Olney, Bucks MK46 5JS Beford (0234) 712445
For the complete service
REPAIRS, electrical, electronic measuring equipment. A complete service at a highly competitive price. Postage, estimates free. 14 day Turns Round. British Tele-Comm approved. Ledon Instruments Ltd, Gladstone Road, Folkstone, Kent. (0303) 57555.
MICRO-COMPUTER repairs. ZX Spectrum, VIC 20, C64 Pets, Commodore computers, printers and floppy disk. Phone Slough (0753) 48785. Monday to Saturday.
BOOKS \& PUBLICATIONS
PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×9 ", Paralab, Downton, Wiltshire.

FUTURE

TECHNOLOGIES
(ETI) 1 Hollybrook Rd., Shiriey Southampton SO1 6 RB CBM 64 Computer
80 column Board for 64
with cassette 82 blank tapes VIC 20 starter pack. $\begin{array}{r}\text { £115 } \\ \\ \hline\end{array}$ Cossette alone $\mathbf{4 4} 90$........ $£ 139$ Spectrum 16K £99.95, tapes 81 en Also Atari, Texas accessories, sottware Cheque/PO with order.
Send large SAE tor lists (23ρ stamp)
Add $£ 1$ P\&P for orders under $£ 50$
All prices include VAT

COMPUTER ADD-ONS

Microtan 65 Eprom Switching Board

Perm any 4 from 16 . Software controlled Bareboard + instructions $\mathbf{8 1 9 . 9 5}$ pos free. Also available 64×25 colour VDU card, 3 pass assembler, word process etc Large SAE for details.
M.P.D., 7 Cedar Close, Grafham, Huntingdon PE18ODZ.

PHOTOGRAPHY

PCB PHOTOGRAPHY
FILM NEGATIVES and POSITIVES from your Black \& White or Taped Same Size, Reduced.
Same Size, Reduced or Enlarged Upg. 10 Pos. $\mathbf{E 5 . 0 0}$. incl. postaqe . cw Neg. G Hould sworth M.I.R.R. . 14 St. Edwards Romd, Southees, Hants.

\square T

AVON
ANNLEY ELECTRO
190 Bedminster Down Road Bedminster Down, Bristol Tel: 0272632622
Open: Mon-Sat 9am-6.30 pm Wed Sam-2pm

LANCASHIRE

ETESON ELECTRONICS
15B Lower Green.
-Fylde, Blackpool Tel: (0253) 885107
Open: 930 arn 12.30 .1305 .30 Closed Wed \& Su
Electronic Companent Specialists.

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD.

Open: Mon-Sat 9-5.30
For components to computers

FOR ALL YOUR CLASSIFIED NEEDS PHONE DEBBIE ON 01-437 0699

E.T.I. ADVERTISERS INDEX - FEB 84

Ambit International 34
Audio Electronics 62
Bimsales 79
Bi-pak 78
B K Electronics 35
B.N.R\&E.S 74
Bradley Marshall 14
Cambridge Learning 69
Clef Products. 47
Compex(UK)Ltd 78
Comtech Electronics 10
Concept Electronics 68
Cricklewood Electronics 67
Crimson Elektrik 49
Crofton Electronics. 47
Delta Tech
Display Electronics 40
Electronic Brokers. 63
Electronize Design 27
Electrovalue 38
Flight Electronics 9
Greenbank Electronics 68
Greenweld Electronics 62
Global Specialties Corporation 39
Happy Memories 50
Hawk Electronics 38
Horizon Electronics. 79
ICS 69
ILP 67
Kelan Engineering 33
L B Electronics 39
Maplin OBC
Marco Trading. 79
Microtanic. 49
Midwich Computers 55
MJL Systems 50
Pantechnic. 55
Parndon Electronics 79
Powertran IFC,77,IBC
Rapid Electronics 28
R.T.V.C. 63
Sparkrite 16
Stewarts of Reading 39
Technomatic 18,19
Texas Instruments. 47
T.K.Electronics 12
Watford Electronics. 4,5

Argus Specialist Publications Ltd.

Technical Editorial Assistant

Multitalented electronics genius required for demanding editorial position.
However, we'll settle for an enthusiastic electronics buff who can develop a working prototype from a thumbnail sketch and transform an author's submission into intelligible text and diagrams.

The job will best suit someone with a broad knowledge of electronics and requires, above all, the capacity for attention to detail and strict accuracy.
Journalist's skills are not needed - they are quickly picked up - though if you have some knowledge of magazine production, so much the better!

We have no fixed ideas as to age, experience or formal qualifications, as enthusiasm and an enquiring mind are more important.

Apply with up-to-date CV to: Ron Keeley, Editor, Hobby Electronics,
Argus Specialists Publications, No. 1, Golden Square, London W1R 3AB.

All applications treated in strictest confidence.

If an advertisement is wrong we're here to put it right.

 If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below. The Advertising Standards Authority.ASA Ltd, Dept 3 Brook House, Torrington Place, London WCIE 7HN

High performance, low price kits for today's musicians

DIGITAL DELAY LINE

Digital delay circuitry is an absolute necessity for high quality studio work, but usually comes with a four-figure price tag.

Powertran can now offer you digital quality for the price of a high analog unit. The unit gives delay times from 1.6 m Secs to 1.6 secs with many powerful effects including phasing, flanging, A.D.T., chorus, echo and vibrato. The basic kit is extended in 400 mSec steps up to 1.6 seconds simply by adding more parts to the PCB.
Complete kit
(400 mS delay)
5130
Parts for extra 400 mS delay
(up to 3)
$£ 9.50$

‘DESTINY’ MIXER

This versatile mixer offers a maximum of 24 inputs, 4 outputs, and an auxiliary channel. Input channels have Mic/Line, variable gain, bass/treble, and middle frequency equaliser. Output channels have PPM displays and record/studio outputs. There are send/return jacks, auxiliary, pan and fader controls, and output and group switching. There is also a headphone jack and built-in talk-back microphone.

TRANSCENDENT 2000

ETI single board synthesizer.

This professional quality 3-octave instrument is transposable 2 octaves up or down, giving an effective 7 -octave range

There is portemento pitch bending, VCO with shape and pitch modulation, VCF with high and low pass outputs and separate dynamic sweep control, noise generator and an ADSR envelope shaper. Other features include special circuitry with precision components to ensure tuning stability.

Complete kit \qquad

MPA 200
100 watt mixer/amplifier

Here's a rugged, professionally finished mixer amp designed for adaptability, stability and easy assembly. Using new super-strength power transistors and a minimum of wiring, it offers a wide range of inputs (extra components are supplied for additional inputs), 3 tone controls, each with 15 dB boost and 15 dB cut, and a master volume control.

Complete kit \qquad £49.90
SP2-200
2-channel, 100-watt amplifer

The SP2-200 uses
two of the power amplifier
sections of the MPA 200 (above), each with its own power supply. A custom designed toroidal transformer enables both channels to simultaneously deliver over 100 W rms into 8 ohms. Each channel has its own volume control, and a sensitivity of 0.775 mV (OdBm) makes this amplifer suitable for virtually all pre-amps or mixers.

Complete kit
£64.90

CHROMATHEQUE 5000

ETI 5-channel lighting

Many lighting control units are now available. Some perform switching and others modulation of light output according to musical input. The Chromatheque combines both func= tions. It controls 5 banks of lamps up to 500 W each in either analog or digital mode. And the 5 channels give more colours and more exciting linear and random sequencing than is possible with 3 or 4 -channel systems. Versatile light level controls enable the lights to be partially on to suit the mood of the occasion. Wiring is minimal and construction straightforward.

Complete kit \qquad

All prices are exclusive of VAT. Free carriage in UK - export at cost.

Full details in our project books. Price 70p each.

In Book 1 (XA01B) 120W rms MOSFET Combo-Amplifier Universal Timer with 18 program times and 4 outputs - Temperature Gauge Six Vero Projects.
In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes. - Miles-per-Gallon Meter.

In Book 3 (XA03D) ZX81 Keyboard with electronics - Stereo 25W MOSFET Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XA04E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz • Ultrasonic Intruder Detector • I/O Port for ZX81 - Car Burglar Alarm Remote Contol for 25W Stereo Amp.
In Book 5 (XA05F) Modem to European standard • 100 W 240V AC

199 CATALOGUE

A massive 480 big pages of description, pictures and data and now with prices on the page. The new Maplin catalogue is the one book no constructor should be without. Now includes new Heathkit section. On sale in all branches of W.H. Smith. Price $£ 1.35$ - It's incredible value for money. Or send $£ 1.65$ (including $p \& p$) to our mail-order address.

Maplin's Fantastic Projects

Inverter - Sounds Generator for $\mathbf{Z X 8 1}$ - Central Heating Controller - Panic Button for Home Security System Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20. Module to Bridge two of our MOSFET amps to make a 350W Amp - ZX81 Sound on your TV • Scratch Filter • Damp Meter - Four Simple Projects
In Book 7 (XA07H) Modem (RS232) Interface for ZX81/VIC20 - Digital Enlarger Timer/Controller - DXers Audio Processor • Sweep Oscillator • CMOS Crystal Calıbrator

Great Projects From E\&MM

Our book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first Year. Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects. Order As XH61R. Price £1.

In Book 8 (XA08J) Modem (RS232) Interface for Dragon and Spectrum Synchime - I/O Ports for Dragon Electronic Lock - Minilab Power Supply - Logic Probe - Doorbell for the Deaf.

In Book 9 (XA09K) Keyboard with electronics for ZX Spectrum - InfraRed Intruder Detector •Multimeter to Frequency Meter Converter - FM

Radıo with no alignment - Hı-Res Graphics for ZX81. Speech Synthesiser for Oric - VIC Extendiboard •ZX81 ExtendiRAM Dynamic Noise Limiter for Personal Cassette Players - TTL Levels to Modem/RS232 Converter - Logic Pulser - Psuedo-Stereo AM Radio Ni -Cad Charger Timer - AdderSubtractor - Syndrums' Interface Microphone Pre-Amp Limiter.

THE MAPLIN MODEM KIT

Exchange programs with friends, leave or read messages from the various Billboard services, talk to
computer bureaux, or place orders and check stock levels
 on Maplin's Cashtel service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential.
Now you can exchange data with any other computer using a 300 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.
Some computers need an interface and we have kits for the ZX81, VIC20/Commodore 64, Dragon and Spectrum and shortly Atari, whilst the BBC needs only a short program which is listed in Projects Book 8.
A Maplin Modem will add a new dimension to your hobby.
Order As LW99H (Modem Kit) excluding case. Price £39.95.
YK62S (Modem Case) Price £9.95.
Full construction details in Projects Book 5.

Post this coupon now for your copy of the 1984 catalogue. Price $£ 1.35+30$ p post and packaging If you live outside the U.K. send $£ 2.20$ or 11 International Reply Coupons. I enclose $£ 1.65$

Name
Address

ELECTRDNIC
SUPPLIES LTD
Mail Order. P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911. Shops at: 159-161 King Street, Hammersmith, London W6. Tel: 01-748-0926. - 8 Oxford Road, Manchester. Tel: 061-236-0281. - Lynton Square, Perry Barr, Birmingham. Tel: 021-3567292. - 282-284 London Road, Westcliff-on-Sea, Essex. Tel: 0702 554000. - 46-48 Bevois Valley Road, Southampton. Tel: 070325831. All shops closed ail day Monday.
All prices include VAT and carriage. Please add 50p handling charge to orders under $£ 5$ total value (except catalogue).

[^0]: XK 113 MW RADIO KIT
 Based on ZN414 IC, kit includes PCB, wound aerial and crystal earplece and all components to make a sensitive miniature radio. Size: $6.5 \times$
 $2.7 \times 2 \mathrm{cms}$. Requires PP3 9 VV battery. IDEAL FOR BEGINNERS. $£ 5.50$

[^1]: We have arranged for the supply of the harder-to-get parts for the various modules; in the following packs, the parts are as specified by the designer. Disc amplifier ($\mathrm{R} 2, \mathbf{3}, 6,9,10,11,12,13$, $\mathbf{1 4 , 1 5 , 1 6 , C 3 , 7 , 8 , 9 , 1 1 , 1 2 , 1 3) ~ £ 6 . 1 0 ; ~}$ Tone control (RV1-5 stereo pots, C1, $3,4,9,11,12)$ £6.55;
 Unbalanced output stage ($\mathbf{R} 4,6,11,13$, balance control pot, $\mathrm{C} 1,2,3,6,7,8,9,10$, 13,14) £6.55;
 Balanced output stage ($C 3,4,5,6$) $£ 3.68$ Headphone amplifier ($\mathbf{C 1}, 2$) $£ 1.38$ All these prices include VAT but not postage, which is 80 p per pack on top. The packs are available from XCEL Audio Parts Ltd, 2 nd Floor, 33 London Road, Bromley, Kent BR11 1/G, telephone 01-464 4967. Note that the PCBs are available from our PCB service, and that there has been additional advice on oblaining parts for the modules in earlier installments of this article, but it was too long to repeat here!

