An Argus Specialist Publication

Logic probe - monitor up to 16 points all at once Active loudspeaker - novel,economic design Drum synthesiser - modular for flexibility Filter/amplifier for DAC/ADC - clean up your interfacing Multiple output port - expandable up to $40 \mathrm{on} /$ off outputs

sur sound 1 Star quality * *

DJ90 Stereo Mixer - this is a really versatile new mixer that enables the constructor DJ to produce a professional performance every time. There are two stereo inputs for magnetic cart ridges, a stereo auxiliary input and mike input. Other 'plus' features are autopant. Other plus features are auto-
past or slow slider controls, multi-mixing, ducking, interrupt, input modulalion, in short everything . . the whole works - AND - under $£ 100$ complete! Completekit $£ 97.50+$ VAT

This versatile modular mixer, featured as a constructional article in Practical Electronics can be buift up to a maximum of 24 inpuls, 4 outputs and an auxiliary channel. Each input channel has Mic and Line inputs, variable gain, bass and treble controls and a parametric middle frequency equalizer. There are send and return jacks, auxiliary, pan and fader controls and output and group switching. The output channels have PPM displays and record and studio outputs. The auxiliary channel also has a PPM display and there is a headphone monitor jack and a buitt-in talk-back microphone. The mixer modules plug into base units each of which takes up to 6 channeis. To eliminate.hum, the power supply is in a separate cabinet.

KIT PRICES

Inout channel Output channe: Auxiliary channel Blank Panel
$£ 19.90$ Base unit and wooden front $£ 27.50$ $£ 18.50$ Pair of matiogany end cheeks $£ 12.50$ £22.50 Power Supply and cabinet $£ 3.00$

All prices are VAT exclusive

TRANSCENDENT POLYSYNTH - A four octave poly. phonic synthesiser with outstanding design characteristics and versatility and performance to match.
Complete kit $\mathbf{£ 2 3 0 . 0 0}$ plus VAT (śingle voice) Extra voice (up to three more) $£ 35.60$ plus VAT

Star features **

TRANSCENDENT 2000 - Although only a 3 octave keyboard the '2000' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, build it - play it! You will know you have made the right choice.
Complete kit $£ 165.00$ + VAT

Digital Delay Line - With its ability to give delay times from 1.6 mSecs to up to 1.6 secs. Many powerful effects including phasing, flangine, A.D.T., chorus, echo \&

vibrato are obtained. The basic kit is extended in 400 mS steps up to 1.6 secs. Simply by adding more parts to the PCB.

Compare with units costing over $£ 1,000$! Complete kit (400 mS delay)
$£ 130+$ VAT
Parts for extra 400 mS delay
$£ 9.50$ + VAT

manual, is with:n the capability of most enthy-
siasts. Complete kil $£ 175.00+$ VAT
SP2 200 twice the power with two of the reliable,
durable and economic amps from the MPA 200; fed by
separate power supplies from a common toroidal trans
separate power supplies trom a common toroidal trans-
former. Superb finish and quality components throughoul up io (even over) the standard of high prices factory-buitt units! Complete kit $£ 64.90+$ VAT
may ene

WORLD LEADERS
IN
ELECTRONIC KIT DESIGN AND SUPPLY

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SA10 3NM. VSA ORDER BY PHONE (0264) 64455
Simply request your chosen kit and quote your Access or Barclaycard Number.

tDITORIAL AND ADVERTISEMENT OFFICE 145 Charing Cross Road, London WC2H 0EE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

The best, newest, the unusual, or the just plain silly - ETI keeps you in touch with it all.

AUDIO DESIGN........................ 26
Having discussed the problems, John Linsley Hood now suggests some solutions and takes us through a practical example.

MACHINE CODE PROGRAMMING

43
The second part of Bob Bennet's. series on how to talk to a micro in it's native tongue.

TECH TIPS
56 READ/WRITE
86
You tell us!

IC UPDATE

63Op-amps and the generation gap.

FIBRE OPTICS.

74This important new technology hashobbyists, until now that is.
PROJECTS

ACE INTERFACE20
Are you and your Ace out of touch?Interface a proper keyboard or ajoystick with this design and enjoy acloser relationship.
MC HEAD AMP31
Sneaked into the middle of AudioDesign, a neat little project from JohnLinsley Hood.
MINI DRUM SYNTH 36
If complex drum synthesisers leaveyou beat, build ETIs simple but flexi-ble module
ALARM EXTENDER 39
Protection without too much racket isthe aim of this useful little device.
MULTISWITCH47
Multi-way light switching withoumulti-cabling and multi-headaches.

MULTIPLE OUTPUT PORT.
 52

Extend your micro's reach with up toforty switched outputs.
DAC/ADC FILTER/AMPLIFIER 59
For everyone who has ever ex-perimented with analogue interfacingand ended up wishing they hadn't.
ACTIVE LOUDSPEAKER 68
This unusual design offers you all theadvantages of an active system butcosts less to build than you'd expectand runs from your existing amplifier.FAST LIGHT PEN81
ETls high speed, low cost designleaves the commercial competition atthe starting post
LOGIC CLIP91
This unique unit displays sixteen logiclevels simultaneously on its dazzlingthree-colour display, putting singlepoint logic probes firmly in the shade.

OVERSEAS
EDITIONS
and their

ABC Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. प The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus
Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property the Law of Copyright and other intellectual property rights and by virtue of international copyright convenPublications Limited and any reproduction requires the prior writiten consent of the Company. © 1983 Argus Specialist Publications Ltd - All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to

INFORMATION

Photo of the CMOS 6502 processor courtesy of Rockwell International.

16 Channel A-to-D Board

Following on in our series of projects aimed at but not exclusively for the Mircotan, here is an A-to-D board to help you connect your computer to the outside world. If you built the D-to-A board of some months ago or would like to use your computer for control or monitoring, here is the project for you, as it will be suitable for 6502 and $Z 80$ systems.

ZX Controlled Burglar Alarm

The idea of using a home computer to control a burglar alarm would have seemed crazy a few years ago. Laterly, however, the ZX81 seems to have become so common that many are languishing on shelves gathering dust. Well here's a job for them controlling a buglar alarm system. The system can also be used with the Spectrum.

Modular Preamplifier

Just so that the computer freaks don't get it all their own way, here's a top-quality preamplifier that is modular in construction. The author himself describes the design as an Audio Leggo Kit, and that's just what it is. The basic unit is a motherboard into which you slot the modules that you want - so if you don't want tone controls, you don't have to have them. But unlike other preamps, you can change your mind at a later date.

Lightsaver

Problem: when light-bult filaments are cold, their resistances are very low, so when you turn on the light a very heavy current will flow momentarially: this problem is exacerbated if you just happen to turn on when the mains cycle is near its maximum voltage. Solution: buy next month's ETI and find out!

ALL THIS AND MORE IN THE DECEMBER ETI! RESERVE YOUR COPY NOW OR RISK MISSING OUT!

[^0]
THE PREMIER SHOW FOR THE ELECTRONICS ENTHUSIAST!

Cunard International Exhibition Centre, Cunard Hotel, Hammersmith, London W6

Improved Venue

We have transferred BREADBOARD to the Cunard Hotel, offering improved facilities to the visitor, including car parking and ease of access by rail, tube and car, all in a modern attractive setting. See below for our arranged reduced hotel/rail fare package to attract enthusiasts from all parts of the country.

Planned Features include

- Lectures: covering aspects of electronics and - Amateur Radio Action Centre. computing.
- Electronics/Computing Advice Centre.
- Demonstration: electronic organs/synthesisers.
- Holography presentation.
- Practical demonstration: 'How to produce printed circuit boards'.
- Computer Corner -'Try before youn buy'.
- Computer controlled model railway competition.
- Pick of the projects - Demonstration of the best from ELECTRONICS TODAY INTERNATIONAL, HOBBY ELECTRONICS and ELECTRONICS DIGEST.
- Giant TV screen video games.
- Fobotic display.

FRIDAY November 25th 10am-6pm
SATURDAY November 26th 10am-6pm
SUNDAY November 27th 10am-4pm

Why not mako your visit to Breadboard' 83 the most enjoyable yet. At these "prices, why not bring a partner, do your Christmas shopping, have an evening on the town, see the lights, and have a weekend in London!

[^1]
HOLIDAY WEEKEND PACKAGE

\star Accommodation in a first class hotel with private bath, direct dial telephone, radio and colour television.
\star Return 2nd class rail travel from local British Rail station to London.
\star Ticket to Breadboard '83.
\star Breakfast at the hotel.
\star Prices quoted are inclusive of service and VAT.
Please note this offer closes on 1st November 1983.

REGION

Beds, Berks, Bucks, Essex, Herts, Kent, Surrey and Gtr London Cambs, Hants, Northants, Oxon, Suffolk, Sussex, Wilts
Avon, Derbyshire, Dorset, Glos, Gwent, Herefordshire \& Worcs, I.O.W., Leics, Lincs, Norfolk, Notts, Somerset, Staffs, Warwickshire, West Midlands Cheshire, Devon, Glams, Humber, Lancs, Gtr Manchester, Merseyside, Powys, Shropshire, West \& South Yorks
Cornwall, Cumbria, Dyfed, Glwyd, Gwynedd, North Yorks
Borders, Cleveland, Durham, Dumfries \& Galloway Northumberland, Tyne \& Wear
Central, Lothian, Strathclyde
Fife, Tayside
Grampian, Highland

SINGLE

1 Night	2 Nights	1 Night	2 Nights
$£ 29.25$	$£ 54.25$	$£ 47.75$	$£ 84.75$
$£ 32.50$	$£ 57.50$	$£ 57.25$	$£ 94.25$
	$£ 35.75$	$£ 59.75$	$£ 59.75$
		$£ 96.75$	
	$\ddagger 6$		
	$£ 40.25$	$£ 64.25$	$£ 67.50$

$£ 44.25$	$£ 69.25$	$£ 75.00$	$£ 112.00$
$£ 48.50$	$£ 73.50$	$£ 83.25$	$£ 120.25$

$£ 51.75$	$£ 76.75$	$£ 89.50$	$£ 126.50$
$£ 55.00$	$£ 80.00$	$£ 95.00$	$£ 132.00$
$£ 58.25$	$£ 83.25$	$£ 101.50$	$£ 138.50$

BOOKING FORM

Name:
Address:
tel:
Date of arrival: 25th Nov \square 26th Nov \square Number of nights: 1 night $\square 2$ nights Room(s) required: singletwin \square
BR departure station:
Region:

Cheques should be made payable to ASP Ltd. and sent to ASP Exhibitions, 145 Charing Cross Road, London WC2H 0EE
I enclose cheque value $£$
OR please debit my Access/B'card number:
\square

Signature

BUILD YOUR OWN cor tey 16 bit, 64 RaM colour computer

With this powerful machine (featured in Electronics Today International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!

£295

Ready built £395
All prices + VAT Carriage paid

Optional extras

RS232C interface kit
Floppy disc interface Pair of $51 / 2^{\prime \prime}$ disc drives and hardware kit
$£ 9.20$
$£ 65.50$
£365.00

Full assembly instructions and 216 page user's manual.

POWERTRAN cyjepratices

Portway Industrial Estate, Andover SP10 3NM. Tel: 026464455
To POWERTRAN CYBERNETICS, Portway Industrial Estate
To POWERTRAN CYBERNETICS, Portway Industrial Estate, Andover, Hants SP10 3NM.
Please send me
Ready built

- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Buffered i/o allows you to continue executing the program while still printing
- Flexible CALL statement allows linkage tò machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34 K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Supports up to 16 output devices: Screen and cassette interfaces included as standard
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16 K video RAM for graphics
\square
- A/C No

Name
Address

PCB FOIL PATTERNS

Sorry! These two are foil patterns for the Output Driver, published way back in July (we've only just had space for them now).

The Moving Coil Head Amplifier.

The Fast Light Pen.

The Gain Block from Audio Design; note that this will not be available through the PCB service.

The Logic Clip.

The Multiple Output Port.

The Mini Drum Synth Module.

The Alarm Extender.

The Multiswitch.

The Ace Interface.

The Active Loudspeaker.

The DAC/ADC Filter Amplifier.

MAIL ORDER PROTECTION SCHEME

II you ordet goods from Mall Order. Advertisere in this magerite and pay by post in advence of delivery, this publicalion wit consider you for, compensition il the advertistf should become psolvent or barikrupt, provised:

1. You hive not reselved the goods or had your money - roturned, and
2. You wite to the publishez of tha publicationexplainGhe the posifínnitot earlier then 28 days from the day you sent your order and novaler than 2 moniks from tret dey
Fiener do not wait until the last menort to Intorm us. Whan you white we will tell you how to make your cilim and what evidence of ayment is requiret.
We gizrantee to meet claime trom regders mace in accosdence with the tbove prociditre ts soon at powsibla Ather the advertiger has bëtn dechared bankrupt gr insolveht io a limit of et, 800 per annum for any ont \#avertiser, sa Hfected, ano up to 56,400 p aintespeat of all insolvent ¿dvetisérs. Clalms, may bé pald for higher mmounts, or when tow above procedures have nol betn complied with. it int piagrotion of thle sublication, but we do hot guivintee. to dickein view of the need to set tomp linit The commitriept and io lem gulcky al reator's ditficuniest.
The guarantes caver oniy metvinco paymentsent in eivect revponse 10 th asvertisemeni in this muguzine Inot, lot sempte, paymens made in vosponve 10 cathThuus. erc, racelved as, t tesull 61 antwingo such (dvertirmeat)
CLASSIFIED $\lambda 0$ vahtiselithtifhtexcluoto.

ASA. Ldd. Brook Hnuse. Torrngton Place. London WCIE 7HN.

Lineage:

35 p per word (minimum 15 words) Semi Display: (minimum 2 cms) $£ 10.00$ per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 1002
EXT 282
Send your requirements to: Julie Bates, ASP Ltd., 145 Charing Cross Road, London WC2H OEF

ALARMS

GFGUGITY
 Alarm Gystems

FREE COMPREHENSIVE CATALOGU
LOWEST DISCOUNY QUALITY EQUIPMENT
HIGHEST OUALIIY EQUIPI

- FULLY ILLUSTRATED
- MLCROCHIP CIRCUITRY
- QUICK DESPATCH SERVICE
- FULL INSTRUCTIONS
C.TEC SECURITY Dept E I,
C.TEC SECURITY, Dept E I,
60 Market St Wigan WN1 1 HX 60 Market St, Wigan WN1
Telephone (0942) 42444

SERVICES

MENDASCOPE LTD
Repair \& recalibrate Oscilloscopes
All makes - all models
Otter House, Weston Underwood Olney, Bucks MK46 5JS
Bedford (O234) 712445
For the complete service

REPAIRS, electrical, electronic measuring equipment. A complete service at a highly competitive price. Postage, estimates free. 14 day Turns Round. British Tele-Comm approved. Ledon Instruments Ltd, Gladstone Road, Folkstone, Kent. (0303) 57555.

YOU WANT POWER? - We got it! You specify the details of the powers supply you need we will do the rest. R. Oliver, 2 Harkness Close, Leeming Bar, Northallerton, North Yorks. Tel: 067722063.

OFFERING A SERVICE? PHONE ASP LTD 01-4371002

BURGLAR ALARM EQUIP. MENT: As usedin the trade.JN Security Centre, 176 Sydenham Road, London SE26 5JZ. 01-778-1111. Showrooms open six days.

KITS

TIME WRONG?
 MSF CLOCK is ALWAYS CORRECT never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/EST and leap year, also parallel BCD (including Weekday) output fo alarm, computeretc, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, 872.70 . ITL and 0-1V sine/square outputs, £21-60. Each fun-to-build kit includes all parts, printed circuit, case, instructions, by-return postage etc, money back assurance, GET yours CAMBRIDGE KITS 45 (TY) Old School Lane, Milton, Cambs.

WATTS NEW AT R.H.F.? V.M.O.S. F.E.T. Class A Power Amplifier Kit. Includes P.C.B., component and heatsinks. 30W R.M.S. 2 required for stereo. J-F.E.T. Preamplifier Kit, includes P.C.B., components, potentiometers and switches $\pm 15 \mathrm{v}$ power can be tapped from power amplifier. Combining F.E.T. technology and class A biasing has resulting in an amplifier of exceptional performance. For further details send S.A.E. Power Amp: $£ 20.00$. Preamplifier: $£ 20.00$. Power Supply: $£ 18.00$ (single), $£ 30.00$ (dual). ILEX Ltd, Reform Road, Maidenhead, Berks.

DIGITAL WATCH REPLACEMENT parts, batteries, displays, backlights etc. Also reports publications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen Bucks. HP15 6SGD

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate, sheet for master 15 p . Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

WIRES ' N CABLES

THE SCIENTIFIC
WIRE COMPANY 811 Forest Road, London E17 ENAMELLED COPPER WIR

ENAMELLED COPPER WIRE					
SWG	1 tb	$80 z$	$40 z$		O2
8.34	3.63	2.09	1.10		8p
35-39	3.82	2.30	1.26		93p
42-43	5.20	2.91	2.25		. 60
44-47	8.56	5.80	3.49		2.75
48	15.96	9.58	6.38		3.69
SILVER-PLATED COPPER WIRE					
14-30	9.09	5.20	2.93		. 97
TINNED COPPER WIRE					
14-30		2.41	1.39		0.94
Prices include P\&P and VAT. Orders under					
£2 add 20p. Dealer inquiries welcome.					

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. $4 \times 9^{\prime \prime}$, Paralab, Downton, Wiltshire

 The Owl Series
 ELECTRONIC TECHNICAI
 DATA BOOKS

TVT(A-2) Transistor equivalent book with short form technical data covering pages. $£ 5.20$
TVT(2N)Transistor equivalent book with short form technical data covering transistors with prefixes $2 \mathrm{~N}, 2 \mathrm{SA}, 2 \mathrm{SB}, 2 \mathrm{SD}$,
2 SK 3 N etc. Over 400 pages $\$ 5.50$ THK' Thyristor data and equivalent book covering thyristors, tetrodes, trigger diodes, triacs, UST's and PUTs. 496 pages. 520 scale drawings. $£ 9.90$ DDV/1 Part 1, European diode data and equivalent books. 500 pages. $£ 8.00$ data equivalent book E8.50
DAT 1 Part one of transistor compendium covering transistors A - BUY giving com. prehensive technical data and drawings. Over 700 pages. 88.80 DAT 2 Part two of abovecovering transistors C-Z. Over 1100 pages. $£ 11.00$ sistors $2 \mathrm{~N} 21 \cdot 2 \mathrm{NG735}$. 750 pages. E8.60
DAT 4 Part four of above covering transistors 2SA, 2SB, 2SC, 2SD, 2SJ, 2SK, 3N, 3SJ. 3SK, 4000 . Over 1200 pages. and comparison tables for integrated op amps and comparators. Over 400 pages. $£ 7.00$
LIN 2 Linear voltage stabilizers, data and comparison tables for integrated adjustlators Over 350 pages $£ 700$ lators. Over 350 pages. 17.0 . including 340 connection drawings. Over 500 pages. 88.00
Please allow 14 days for postage.
Please allow 14 days for reply or delivery.
TECHNICAL BOOK
SERVICES LTD
PO Box 79 Maidenhead, Berks SL62EG

COMPUTERS

6802 MICRO COMPUTER This micro is designed for control applications both in industry and the home. Two models are available PIA or VIA. Both arecrystal controlled and havea $5 V$ reg, 128 bytes of Ram, $18 \mathrm{in} /$
out lines +2 input fines. The via also has two 16 bit timers and a shift register. The programs are held in EPROM (not included). Types 2716,2516 and 2732 are accepted. 6862 pia kit £19.95. 6802 via kit £21.95. As-
sembled add £300. Please add 15% sembled add $£ 3.00$. Please add 15% Orders to - Xanar, 20 Baldwin Road, King's Lynn, Norfolk PE 30 4AN.

01-4371002 ETI CLASSIFIED

AMAZING gas, ruby, ligh shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

WANTED

TURN YOUR SURPLUS tran sistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs Tel: 0945584188 . Immediate settlement

ATTENTION!
Support National Hospital Radio.
Come to the
NAHBO Conference at the
Ladbroke Mercury Hotel Watford on
October 14/15/16. For bookings phone Alf Partridge on 03745-3256.
For all those interested in community radio.

FOR SALE

POWERTRAN TRANSCEN DANT 2000 with footpedal Handbuilt tested, hardly used Genuine sale £215. Phone 0480214658.

HIGH SPEED VIDEO A/D board TRW1019EC 9bit 2amps. Full documentation. £250. Tel: 01-902 6637.

OSCILLOSCOPE SCOPEX D/T 4D10A 10 mhz manual probe, etc. £175. Also Eagle regulated P.S.U. $0-30 \mathrm{v}, 0-\mathrm{Y}$ amp £25 and Tech RF Signal Generator $100 \mathrm{KHZ}-500 \mathrm{MHZ} £ 30$. All little used. 01-979 9102 (evenings/weekends).

POWERTRAN VOCODER Built but not debugged £110. Maplin Cassette Deck (XY36P). Part assembled 24. Both including postage. 0253695778 / Evenings.

ELECTRONIC ORGAN KEY-

 BOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8.01-986 8455.100W AMPLIFIER - £9.95 built! or use the same board for $50 \mathrm{~W}, 150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and PSU. SAE for full details to - ESS Amplification, Inñovation House, Guildhall Road, Hull.

FOR SALE

SHEETMETALFOLDERS $18^{\prime \prime}$ $\times 18 \mathrm{c}$ Steel, 16G Aluminium bench or vice held. Hobby or Light industrial use. $£ 38$. 01-890-7838. Day/evening.

COMPONENTS

BUMPER BOX OF BITS

WOWI We've got so many components in stock, we can't possibly list them all - So buya box. In it you'll find resistors, capacitors, displays, switches, panel's and transistors, diodes, IC's etc., coils, pots.... and so on. All modern parts - guaranteed at least 1000 items, minimum weight 10 lbs . ONLY £8.50 inc, 48 page catalogue 50p.

ELECTRONICS WORLD
1e Dews Road, Salisbury, Wilts SP2 7SN

RS232 CABLES 25 wires through E.6.3 metres. D socket to D socket $£ 13.50$. D connector plate/wall box $£ 4.95$. Each with D socket fitted $£ 7.25$. Write or phone for details: LITCOM Ltd, 129 Wavertree Road SW2 3SN. Tel: 01-671 4191

TEST EÖUIPMENT

HP SPECTRUM ANYLISER 0 to 1200 MHZ 141 T dsiplay 8554L R.F. 8552 A I.F. £38000. MARCONI TMS TF2333 $£ 6.50$ BIRD 67. Watt Metre 25/100/ 500W $\% 750$.
Phone01-864 2794

MINIATURE FM transmitter 104-108 MHZ. PP3 battery size. Broadcast quality speech from built in microphone. Range 2 miles. Ideal bug or radio mic. Supplied complete including battery $£ 7.89$ inc vat p\&p. Limited period offer. SAT Electronics, 235 Cross Street, Sale, Cheshire.

APPOINTMENTS

BUSY COMPONENTSHOP in North-West London requires hardworking person with pleasant attitude to customers in the shop and on the telephone. Knowledge of components essential. Salary negotiable. Phone the manager: 01-452 6662 .

WHAT USE A MICRO WITHOUT A PRINTER?

NEW A.D.M. 80 COL. DOT MATRIX WITH TRACTOR FEED. BACKED BY ONE OF BRITAINS LARGEST MANUFACTURERS, IT IS NOW STOCKED BY US.

INTRODUCTORY OFFER
£225 (While stocks last).
CROFTON ELECTRONICS LTD.
35 GROSVENOR ROAD, TWICKENHAM, MIDOX 01-891 1923/1513Telex 295093

E.T.I. SEPTEMBER 83 ADVERTISERS INDEX

Aitken Bros 24
Ambit International 42
Audio Electronics 58
B K Electronics 16
Black Star 67
B.N.R\&E.S 67,88
Bradley Marshall45
Branime Marketing 67
Comtech 6
Concept Electronics 67
Cricklewood Electronics 54,55
Crimson Elektrik 38
Crofton Electronics. 106
Display Electronics 90
Electronize Design. 25
Electrovalue 80
Europa Electronics 58
Frel Ltd. 46
Greenbank Electronics 85
Greenweld 62
G.S.C. 41
Happy Memories 46
Horizon Electronics. 67
House of Instruments 62
ICS 80
ILP 38,79
Kelan Engineering 61
L B Electronics 61
Magenta Electronics 85
Maplin OBC
Marco Trading. 46
Mawson Assocs 46
Microtanic. 32
Midwich Computers 51
MJL Systems 80
Musicraft 85
Pantechnic 50
Parnden Electronics. 85
Phonosonics 80
Positronics. 106
Powertran IFC,10,IBC
Qauntum Jump 85
Rapid Electronics 12
Riscomp 50
R.T.V.C. 51
Sparkrite 33
Stuarts of Reading. 61
Tape Soft 85
Technomatic 18,19
T K Electronics 14
Watford Electronics. 4,5

Low-price robots from POWERTRAN

- hydraulically powered

- microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as $£ 425$, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or $120 v$ AC or from a $12 v$ DC supply. Up to 6 independent axes are capable of simultaneous operation with positional control being provided by means of a closed-loop feedback system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard
RS232C link.

The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.

\qquad

NOW WITH PRICES ON THEPAGE

More data，more circuits，more pictures，in the brand new 480 page Maplin catalogue．Take a look at the completely revised Semiconductor section or the new Heathkit section with descriptions and pictures of dozens of kits and educational products from digital clocks to 16－bit business computers．The much expanded computer section itself，gives details of hundreds of pieces of software for Atari，BBC，Commodore 64，Dragon，Spectrum and VIC20．In addition to all this you＇ll find hundreds of fascinating new items spread through the rest of the catalogue．

As always，the Maplin catalogue is tremendous value for money and now has prices on the page！

Pick up a copy at any branch of
W．H．Smith or in one of our shops for just $£ 1.35$ or send $£ 1.65$ including postage to our Rayleigh address．On sale from 1st Nov 1983

PRONEGTS FOR THE HOME GONSTRUCTOR

Choose from our huge range of valué－for－ money projects．Projects like our Modem，Mosfet Stereo Amplifier，Home Security System，Fre－ quency Counter and
 on kits．Full construction details in our Project Books and brief specifications in our new catalogue．Dozens of fascinating new projects coming soon including a Keyboard for the ZX Spectrum with electronics to make all shifts，single－key operations．Full details in Project Book 9 on sale 11th November 1983．Order As XA09K．Price 70p．

－ーーーーーーーーーーーーーーー
Post this coupon now for your copy of the 1984 catalogue． Price $£ 1.35+30$ p post and packing．If you live outside the U．K．send $£ 2.20$ or 11 International Reply Coupons． ｜enclose £1．65．

Name．

Address．

DIG EST

Holophony -

 The Continuing Saga item on Holophony back in July. At the same time, elsewhere in the press a certain amount of cynicism was expressed over the system. Well now you can judge for yourself because a record of holophonic sound effects is available.

Out on CBS (CBS recording number TA3278), the record is a $12^{\prime} 45$ RPM and seems to be titled Zuccarelli Holophonic by Zuccarelli Labs Ltd, and your very own intrepid editor has been giving it a listen! He writes: "I must say I was somewhat disappointed at the quality of the effects, they were nothing like as good as when played through Hugo Zuccarelli's own equipment. Also the sleeve notes are far from complete - they fail to mention that you should use single-driver speakers or small-cone headphones".

Readers will also be interested to note that the Sennheiser dummy head recordings mentioned in September's READ/WRITE are available from Hayden Laboratories Ltd, Hayden House, Chiltern Hill, Chalfont St Peter, Gerrards Cross, Bucks SL9 9UG, tel 0753 888447, at $£ 1.15$ each plus 57 p postage and packing. There are just two recordings, both on $7^{\prime} 455$; one is just a straight demonstration of the dummy head in a room with a commentator walking around and talking to you; the other has. various sound effects, such as a jet aircraft passing overhead and a choir surrounding the dummy head.

IEEE Interface For The BBC

Cambridge Systems Technology, a new specialist computer company, has produced the first, fully operational IEEE interface for the BBC microcomputer. The CST Procyon allows users to communicate with the wide range of instruments operating to the IEEE-488 international standard, and is particularly valuable in educational or scientific establishments. It enables a BBC micro to be interfaced with high quality plotters and printers, frequency counters, voltmeters or disc drives, but may also be used to connect the "Beeb" to CBM equipment via a specially written Commodore filing system. It responds to any high levei language including LISP, FORTRAN, FORTH, BASIC or APL.

The PROCYON is supplied with an 8k EPROM which fits a vacant sideways ROM socket in the BBC micro and supplies an IEEE filing system which can cope with up to 16 connected devices, accepting standard operating system file commands as well as special instructions or userdefined options. Data is transferred at up to 70 k bytes of information per second, and the system is helpful and virtually fool-proof with extensive user advice facilities, error checking and visual indications of operating status.

A straightforward but comprehensive manual is supplied with the system, containing tutorials for beginners and advice on maximising the PROCYON's effectiveness. Cambridge Systems Technology, 30 Regent Street, Cambridge CB2 1DB, Tel (0223) 323302.

Slipped Disc?

A
couple of months ago we featured two so-called portable audio units in Digest and wondered, in view of their ever increasing complexity and weight, just how long it would be before someone fitted wheels to one. Panasonic's SG- 1500 does indeed have a revolving addition, but instead of being there to ease the load it just adds to it, for this truly monstrous beastie comes complete with a push-bution, slide out turntable.

Part of a new range of portable audio units called 'RX Sound', the SG- 1500 features an auto stop cassette deck and a three band tuner as well as the turntable and delivers four watts (whether RMS or peak is not specified) through its 'full range' speaker system. Weight is not specified, Panasonic being content to describe it as lightweight', and price is $£ 133.50$.

The RX-F32L from the same range does not have a turntable, presumably because they didn't have room for one after including the four, full range speakers, sur-
round effect ambience stereo, Dolby noise reduction, loudness switch, and automatic tape search system. However, for those who simply must have everything, Panasonic have produced an add-on turntable unit, the SL-N15. This is described as 'jacket sized' (we think they' mean record jacket sized) but is in reality rather thicker and features linear tracking.

Last, but presumably not least since it is the most expensive item in the range, the RX-C45L. This features a five-band graphic equaliser, ten watts per channel output, Dolby noise reduction, metal tape compatibility, full auto stop, and again it can be used in conjunction with the SL-N15 turntable. There is also something in the press release about 'soft touch', but apparently this refers to the machine rather than to potential purchasers.

The RX-F32L costs $£ 144.50$ and the RX-C45L costs $£ 177.50$. Price of the SL-N15 is not given. All items should be available through Panasonic's authorised dealers nationwide.

Electronic

Typewriters with RS232

National Panasonic recently launched a new range of electronic typewriters in the USA and now plan to market them in the UK from about the middle of next year. The two new machines, designated KX-E701 and KX-E708, are both available with an optional RS232C interface, thus enabling them to be used as letter quality printers.

The KX-E701 is described as an economically priced, standard electronic typewriter, while the KX-E708 is a full-feature model with a forty character display. Just what is meant by economical is not clear since no prices have been announced; indeed, when we telephoned panasonic UK to quiz them about it, they seemed unaware that the machines were due here at all! So perhaps you'll just have to make our typewriter interface after all . . .

Panasonic Business Equipment (UK) Ltd, 107-109 Whitby Road, Slough, Berkshire SL1 3DR, tel Slough 75841.

Low Cost DFM he Meteor 600 is the first in a series of digital frequency counters announced by Black Star Ltd. It has a frequency measurement range of $2 \mathrm{~Hz}-700 \mathrm{MHz}$, sensitivity of 25 mV at 600 MHz and resolution down to 0.1 Hz , and also features $8 \times \frac{1^{\prime \prime}}{2}$ bright LED displays, 3 gate times, 2 inputs, a trigger level control and an integral low pass filter. The counter is housed in an attractive,
sturdy, custom-moulded A.B.S. case with tilt stand. It can be operated from rechargeable batteries or mains and is supplied complete with a mains adaptor/charger and a comprehensive instruction manual. A wide range of optional accessories is also available.

The Meteor 600 costs $£ 115$ plus VAT and is available from Black Star Ltd, 9A Crown Street, St. Ives, Huntingdon, Cambs. PE17 4EB, tel. 0480-62440.

Hello,
 Computer Speaking . . .

ff your micro is feeling lonely, why not introduce it to a wider circle of friends with the new UDS V. 21 LP modem from Codex (UK) Ltd? This 300 baud stand alone machine comes in either manual or automatic answering versions and is approved for connection to the Public Switched Telephone Network, from which it draws its power. It stands only one inch high and is designed to fit neatly underneath the telephone. With a selling price of around $£ 200$ for the manual version and $£ 250$ for the automatic model, Codex anticipate a lot of interest from the small business and hobbyist markets, and are currently seeking distributors for the product to whom they are prepared to offer generous quantity discounts. Codex (UK) Ltd, 114/116 Thornton Road, Surrey CR4 6XB, tel. 01-689 2101.

Sculptured Circuits

Dowty Circuits Ltd have signed an agreement with Advanced Circuit Technology of America giving them exclusive rights to manufacture what they call sculptured circuits in this country. This patented technology permits the physical carving of copper into various shapes by a chemical milling process, allowing the thickness of a piece of copper to be varied along its length. In this way, connector systems can be fabricated in which each conductor has both its terminal pins and flexible lead made from a single continuous piece of copper, thereby increasing reliability, reducing series resistance, and reducing assembly costs, time, etc. Dowty anticipate the production of a wide range of standard and custom designs with various conductor diameters, pin densities, finishes and terminations. Dowty Circuits Ltd, Industrial Estate, Terminus Road, Chichester, West Sussex PO19 2UA, Tel 0234784516.

Shorts

- ITT Cannon have introduced the AXR audio connector range, a successor to their industry standard XLR range, which features easier assembly, greater RFI protection, improved cable clamping, and lower cost. The AXR has from three to seven contacts plus a mains version, comes in sixteen shell styles, and is available from PSP Electronics Ltd, Unit 2, 2 Bilton Road, Perivale, Greenford, Middlesex UB6 7DX.
- 3M have introduced a new Scotchiok connector which may be attached to an existing cable in one action using a pair of pliers and which provides a fully insulated tapping point for a standard $\frac{1}{4}$ " blade connector. Also new is an inline fuseholder which assembles onto wire ends without prior stripping, again with only one action. Electro-Products Group, 3M United Kingdom PLC, 3M House, PO Box 1, Bracknell, Berkshire RG12 1JU, tel 0344 58755.
- Data 1/O has published a thirty-two page booklet entitled 'Programmable Logic - A Basic Guide for the Designer'. It covers all aspects of design, programming and testing including a worked example, and is available free-of-charge from Microsystem Services, PO Box 37, Lincoln Road, Cressex Industrial Estate, High Wycombe, Bucks HP12 3XI, tel 049441661.
- Och Aye, hoots mon, and the rest: Scottish ETI readers should note that the first Scottish Home Computer and Electronics Show is coming and will feature micros, software, CB, ham, hi-fi and video equipment. Venue is the Anderston Centre in Glasgow and the whole caledonian caboodle runs from the 11 th to the 13 th November. Details from Ann Lowe, Trade Exhibitions Scotland, 53/55 Commissioner Street, Crieff, Perthshire PH7 4DA, tel 0764-4204.
- CHO-JAC is a bonded foil and polymer sheath designed to protect ribbon cables against electromagnetic and radio frequency interference. Available in sizes to fit $16,26,34,40,50$, and 60 way cables, it is claimed to give a shielding effectiveness of up to 65 db and is supplied in 100 ft rolls. Chomerics Europe, Chomerics House, 14-18 Church Street, Slough, Berkshire SL1 1PZ, tel. (0753) 822242.
- The EX 110 is a new, plunger type, electrically heated desoldering tool which weighs four ounces and is designed to be operated for extended periods without tiring the operator. It features a cassette system which eases removal of the accumulated solder, operates from the mains, has a bit temperature of $420^{\circ} \mathrm{C}$, and costs about $£ 18$ plus VAT. Nietronix Ltd, West End Trading Estate, Blackfriars Road, Nailsea, Bristol BS19 2DI, tel 0272856697.
- We are often asked by readers to recommend someone who will repair and re-calibrate test meters, etc, and usually have to admit defeat. PIL will not, as far as we know, repair meters but they will re-calibrate them and whats more they'll do it to Defence Standard 05-24. Ring 01-639 0155 for details.
- Cambridge Microelectronics have introduced a 2516, 2532, 2716 and 2732 EPROM programmer for the ZX81. ROM-81 provides all the standard programming functions, requires four PP3 batteries, is housed in a neat ABS case which plugs into the back of the ZX81 and has a further expansion adaptor, and comes complete with a taped control program and user notes. Price is £19.95 plus VAT from Cambridge Microelectronics Ltd, 1 Milton Road, Cambridge CB4 1UY, tel 0223-314814.
- They may not be giving computers away with breakfast cereals yet but they are giving them with courses. Prophet Systems Ltd are running one and two day training courses in computer assisted business modelling at their Jacobean manor at Polebrook, Peterborough, and are giving away a Prophet II microcomputer to each participant. Polebrook Management Systems Ltd, Polebrook Hall, Peterborough PE8 5LN, tel 0832 72052.
- The TG-3 is a hand-held, battery operated television test generator with a direct UHF output to suit a standard 625 line set. It provides 2 MHz lines for focus check, grating pattern, dot pattern, and plain white raster, and costs $£ 46$ inclusive from Video Techniques, 101 Derby Street, Bolton, Lancashire BL 36 HH , tel 0204-26916.
- OK Industries new FG-201 function generator provides highly accurate sine, square and triangle waveforms from 1 Hz to 1 MHz into 50 ohms and offers both AM and FM modulation. There is also a 5 ohm output for sine and triangle while square wave may be used simultaneously with either as a trigger. The FG201 costs $£ 230$ plus VAT and is manufacturered by OK Industries UK Ltd, Dutton Lane, Eastleigh, Hampshire, tel 0703-610944.
- Industrialists and Researchers are invited to the First International Conference on Lasers in Manufacturing to be held at the Brighton Metropole from 1 st-3rd November. Hewlett-Packard, Rolls-Royce, and BL will be among those contributing to the conference, which aims both to highlight recent experience and to consider the future of the laser in industry. Details from The Conference Director, LIM-1, IFS (Conferences) Ltd, 35-39 High Street, Kempston, Bedford MK42 7BT, tel 0234853605.

HOME LIGHTING KITS
These kits contein all necessaly momponents and fult
instructions \& are dosigned to replace a standard wall switch bnd control up to 300 w . ol lighting. R 300K Remote Control $£ 14.30$ $\begin{array}{ll}\text { MK6 } & \begin{array}{l}\text { Timmmer } \\ \text { Transmitterfor above } \\ \text { TO300K } \\ \text { Touchdimmer } \\ \text { To7.00 }\end{array}\end{array}$ TS300k

Touchdimmer $\mathbf{£ 7 . 0 0}$
Touch switch $£ 7.00$
TDEK $\begin{aligned} & \text { Extansion kit for 2-way } \\ & \text { switching for TO } 300 \mathrm{~K} \\ & \mathbf{E} \mathbf{2 . 5 0}\end{aligned}$
Lo300K $\begin{aligned} & \text { RotaryControllad } \\ & \text { Dimmer }\end{aligned} \mathbb{£ 3 . 5 0}$

ELECTRONIC LOCK KIT XK101
This KIT contains a purpose designed lock IC, 10-way keyboard, PCBs and all components o construct a Digital Lock, requiring a 4-key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a premay be size $7 \times 6 \times 3 \mathrm{cms}$ Supply: 5 V to wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied. ONLY $£ 10.50$
Electric lock mechanism for use with latch locks and above kit $£ 13.50$
"OPEN-SESAME"
$\begin{aligned} & \text { The XK } 103 \text { is a general purpose infta, red transmittery } \\ & \text { receiver with one momentary Inormaly openl reay }\end{aligned}$
$\begin{aligned} & \text { contiact and awo latched } \\ & \text { Designed primarily for controling motorised garage }\end{aligned}$
$\begin{aligned} & \text { doors and two auxiliary outputs tor dive farage } \\ & \text { lights at a range oi up to } 40 \text { ot. The unis al so nas }\end{aligned}$
$\begin{aligned} & \text { numerous applications in the home tor switching } \\ & \text { lights. TV. closing curtains, etc. Ideal for agec or }\end{aligned}$
distabied jersons.
$\begin{aligned} & \text { The Kir comprises a mains powered raceiver, a lour } \\ & \text { button transmitrer complete with prederile }\end{aligned}$
$\begin{aligned} & \text { button transmitter, complete with predritiled box, } \\ & \text { reauiring } \mathrm{aV} \text { battery and one opto- } \text { solated solid }\end{aligned}$
$\begin{aligned} & \text { appliances } \\ & \text { supplied. }\end{aligned}$

```
XK113 MW RADIO KIT
Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components \(\times 2 \mathrm{cms}\). Requires PP 3 gV battery. IDEAL FOR BEGINNERS. \(\quad \mathbf{f 5} .00\)
```

d. 3-NOTE DOOR CHIME Jd Based on the SAB0600 IC the kit is supplied with all components. including loudspeaker. printed circuit board, a pre-drilled box $195 \times$
$71 \times 35 \mathrm{~mm}$ and full instructions. Requires $71 \times 35 \mathrm{~mm})$ and full instructions. Requires
only a PP3 9 V battery and push-switch to only a PP3 9 V battery and push-switch to
complete AN IDEAL PROJECT FOR BEGIN. NERS. Order as XK 102 . $£ 5.00$

Have you gos ou: $F R E \boldsymbol{G R E E N}$ catalogue vet?

 fDs, capremprs, lesisiors, lardwate, Felays, switanes ste Ne aiso stock vero
 GRDERING IS EVEN EASIER - .NIST RING THE NUMBER YOU CAN'T FORCET FOP PRICES YOUI AN I RE SIST

$$
5 \cdot 678 \cdot 9 \cdot 10
$$

MINI KITS
K1 ELECTRONIC TH
MK2 SOLID STATE RELA
Swiches 240 V ac motors, lights,
S
MKPpred
TEMPERATURE CONTROLL
Uses "burst lire"
tan temparature to within
tog
making. Atc. Max
ac). Temp. range up $10.900^{\circ} \mathrm{C}$ - 55.55
Mains
ered imer ena
for a variable time flom 20
(0) 35 hrs. Longer or shorer
per
Sonent changes.
ATE RELAY
MK
ds independentity. Two
cot supplied.
\|kits.) E4.50
NEW! MK19 DC CONTROLLED
s,
red receiver A 1 of 10 decoder
LEDS is aiso inctuded tor

MINI KITS

 MK2 SOLID STATE RELAY heaters from logic/comouter, fights,
Zere Supplied without triac EMPRAPATONAL Uses "burst five" technique to main.
tain temorature to within $05^{\circ} \mathrm{C}$ Ideal On photrgraphy. incubators: wine
making, etc. Max. Load 3 KW
i240V ac). Temp. rangi up to
MK5 MANS TIMER Mains powered timer enabling a load
up to KW an 240 V ac 0 be switched
an mins. to 35 his. Longer or shoner
 STATERELAY eompilises two MK2 2 with latch circuit
enabling the MK 12 kit to control two
 NEW! MK19 DC CONTROLLED May be used with viftuality any stere volume, treble and to cantiance remates, infrar red receeiver $A \rightarrow$ of to decoder input selection/display.
control kiss. $/ 10.70$

COMPONENTS

a wide range in stock including:

Answering
sta vice evngs \& woekends
 REGU
LAIORS

DISCO LIGHTING KITS DL 1000k This value for money kit fea
tures b bi-directional se quence, speed of stequence
and trequency of difection change, being variable by means of poten-
ction tiometers and incorporates ${ }^{\text {a }}$
dimming control.
$\mathbf{£ 1 4 . 6 0}$

DLZ1000K

Alower cost version of the above, featuring
Undirectional channel sequenct with speecd var rable by means of a pre-set pot. Outputs switched only at mains zero crossing points
to reduce tadio interterence to animimut $£ 8.00$ Optional opto input ola
Allowing audio "bear") Allowing
response
OL3000k 60p This 3 channel sound to light kit features
zero voltage switching. automatic level control and built in mic No connections speaker or amp required. No knobs toadjust - simply connect to mains supply and
lamps 1 KW channell
Only $£ 11.95$

LCD 31⁄2 DIGIT MULTIMETER
 giin and diode check. input impedance 10 M . Test leads included \quad ONLY $£ 29.00$

HOME CONTROL CENTRE Thiskit enables you to contol up 1016 different comfort of your armchait. The transminter
 apowance addressed. The ransmitter als gramme vour favourite micro seg. 2×1 In
 without rewiring your house JUST THINK OF
THE POSSIBLITIES. The kit includes ail PCBs THE Pomponents for one transmitter and two
and ancervers. pilus a
rectand

Order as XK112. $£ \mathbf{4 2} .00$
Additional Receivers XK111 $£ 10.00$

Now orest COMPUTER SHOWROOM f Hours: Mon-Fri 10am - 6pm Sat 10am - 4pm

Jupite

 ACE sPECTRUM ALL PRICES EXCLUDE VAT

MICROPROCESSOR CONTROLLED MULTI-PURPOSE TIMER Now you can run your central heating, lighting, hi-fi system and lots more with just one programmable tirmer. At Your selection it is
designed to control four mains outputs independently, switching on and off at pre-set times over a 7 day cycle, e.g., to control your central
heating lincluding different switching times for weekends), just heating
connec clock will do the rest.

FEATURES INCLUDE:

\qquad $50,60 \mathrm{~Hz}$ mans spareation
Baatery back sup saves siot
 awerful 'Everydar ' fun ne set
uncition
onvo enab

\qquad Now only $£ 39.00$ Kit includes all components, PCB, instructions) Order as CT6000
xK114optional to tit tour che Cys. terminal isiocks, etc rour 3 mpo

We also stock peripherals and accessories - disc drives, printers. joy sticks etc: together with a wide range of books and the latest software for all the above SEND.S.A.E. FOR LIST TODAY! COMPONENT PACKS

Pack 10 per value E 400

PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capacitors
$10 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}-5$ per value $£ 3.25$ PACK 360 Polyester Capacitors 0 PACK 445 Sub -miniature Presets 100 ohm to 1 Mohm - 5 per value $£ 2.90$
PACK 530 Low Protile PACK 530 Low Profile iC Sockets 8.14 and 16 PACK 625 Red LEDs (5 mm dia) E 1.25

24 HOUR CLOCK/ APPLIANCE TIMER KIT

 dispoiay diveris, sw
and full instivtion and dull instructions.
CTIOOK
Basickit $£ 14.90$ CT1000K with white box ($56.131 \times 7 \mathrm{~mm}) \ldots \mathrm{E17.40}$
(Ready Built $) \ldots E 22.50$

REMOTE CONTROL KITS OR A DETALLED BOOKLET ON REMOTE CONTROL MKG SIMPLE INFRA RED TRANSMITTEA suppied with hane hald plastic box Requres 9 g MK7 INFRA RED RECEIVER

 MK10 16. WAY KEYMOARD A mains comenerad La reciver proviting control
 brightess of a IMPD. etc.
MK12 16 . CHANNEL LR REGEIVER
 sutpurs tar switching
MK 18 based on the \qquad PP 3 battery and keybard Mkg mititer Reains

DVM/ULTRA SENSITIVE

 THERMOMETER KIT This new design is based onthe ICl77126 (a lower power version of the ICL7106 chip) version of the ICLL106 chip)
and a $31 / 2$ digitit liguid crystal display. his kit will form of a digital multimeter
(only a few additional resistors and switches are required-details supplied). or a sensitive digital thermometer $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a
sensitivity of 200 mV for a full scale reading, sensitivity of 200 mV for a tull scale reading,
automatic polarity indication and an ultra low power requirement-giving a 2 vear typical battery life from a standard 9V PP3 when used 8 hours a day, 7 days a week Price $£ 15.50$

Add 65 p postage $\&$ packing $+15 \%$
total Overseas Customers; Add f 250 (Europe). $£ 6.00$ (elsewh

Send S.A.E. for further STOCK DETAILS Goods by return subject to availabiijity. OPEN $\begin{gathered}9 \mathrm{am} \text { to } 5 \mathrm{pm} \text { (Mon to } \mathrm{Fr} \text {) } \\ 10 \mathrm{am} \text { to 4pm (Sat) }\end{gathered}$

Plug-Together
 Amplifier System

ff building a hi-fi amplifier from scratch sounds a bit too much like hard work, why not cheat and buy a new Boothroyd Stuart Meridian Component Amplifier? With this system you can buy just those modules you want and simply plug them together to produce an amplifier system tailored precisely to your requirements.

The Meridian Component Amplifier System consists of a number of modules of matching appearance which plug together to form a neat, slimline unit. Two coin-slot headed screws further secure the units to ensure a good connection and to prevent bits falling off when you move it around! The basic unit is a stereo power amplifier with a switchmode power supply operating at 40 kHz . The amplifiers are conservatively rated at thirty-five watts RMS each and the power supply ensures that high power transients are accommodated without straining. Although built and sold as a single unit, this block is visually divided into four adjacent modules so as to match the appearance of the rest of the system. A slim module, half the width of the apparent power modules, contains the stereo preamplifier and volume control, and this plugs onto the right hand end of the basic block. Up to twenty (yes, twenty) input modules can be added between the power and preamp modules catering for magnetic and moving coil pickups, tape, etc, and just in case this leaves you with a monster several feet long there is also a splitter module which allows you to stack one row of modules on top of another. Other modules either already available or soon to be introduced include tone controls, an FM stereo tuner, and a power supply for the preamp alone which allows you to dispense with the main power block when driving active loudspeakers or a separate power amplifier.

Although no specifications were included in the press release, Boothroyd Stuart assure us that performance in all areas is to a very high standard and that distortion in particular is so low as to be almost immeasurable. The basic unit with preamplifier and one (disc) input should sell for about $£ 375$ including VAT. Boothroyd Stuart Ltd, 13 Clifton Road, Huntingdon, Cambridge PE18 7EJ, tel 048057339.

Microtan And Microtutor Are Alive And Well . . .

Pye Electro Devices (PED) Ltd have introduced a series of fans which use a piezoelectric system rather than the conventional magnetic system. The Series 13 module A and B cooling fans have almost no moving parts and are intended for use as spot cooling devices in solid state systems.

Piezoelectric materials can be made to change shape when a voltage is applied to them. In the new fans, two flexible piezo ceramic elements are laminated to a flexible metal strip such that, when a voltage is applied, one side expands and the other contracts, causing the metal strip to bend. Two such fan blades, matched and fed with alternating voltages such that they move in phase quadrature, produce a highly focussed stream of air. PED claim that such a system offers near infinite life since there are so few moving parts. Other advantages include very low noise output, a complete absence of electro-magnetic and radiofrequency interference, no starting surge, and very low power consumption. Versions are available for use on 115 V AC 60 $\mathrm{Hz}, 220 / 240 \mathrm{~V}$ AC 50 Hz , and $D C$ supplies from 5 to 12 V and maximum dimensions are $71 \mathrm{~mm} \times 55$ $\mathbf{m m} \times 17 \mathrm{~mm}$. Pye Electro Devices Ltd, Relay and Solénoid Division, Exning Road, Newmarket, Suffolk CB8 0AX. Tel (0638) 665161.

Hi-Fi VHS

Ten Japanese companies have collaborated to produce a common standard for a hi-fi VHS video cassette recorder. Akai, Canon, Clarion, Hitachi, JVC, Matsushita, Mitsubishi, Orion, Sharp, and Tokyo Sanyo will produce machines to the new standard and a number of companies are expected to produce compatible videotapes with hi-fi stereo sound.

In the existing VHS video system, video signals are recorded and played back by rotary heads while fixed heads are used for audio signals. In the new system, two additional rotary heads are provided exclusively for the audio signals. It is claimed that this, plus the use of frequency modulated 1.3 and 1.7 MHz carriers, produces a marked improvement in dynamic range, distortion level, and wow and flutter. Other features include a newly-developed noise reduction system and the ability to use existing software on the new machines and vice-versa, although no details are given on how this is achieved.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Non-Volatile Static RAM

It'seems such an obvious idea that we are amazed no one has tried it before! In order to give their new 16 K static RAM the retention characteristics of a ROM, Mostek Corporation have included a lithium energy source within the IC package itself.

Designated the MK48Z02 Zeropower RAM, the new device uses HCMOS technology to ensure low current drain, resulting in a minimum operating life of five years (at $25^{\circ} \mathrm{C}$) on its internal lithium cell. It is organised as $8 \times 2 \mathrm{~K}$, comes in a standard 24-pin DIP package, and has the same pin-out as, for example, the

2716 EPROM, allowing it to directly replace 16 K static RAMs in many applications. No additional circuitry is required for interfacing to microprocessors since access time, read cycle, and write' cycle are all below 250 nS and require only a single +5 V supply. Features include an automatic write protection circuit which comes into operation whenever Vcc drops below 4.5 volts, thus preventing inadvertent loss of data on power up and power down, and, as with other static RAMs, there is no limit on the number of write cycles that can be performed.

The MK48Z02 Zeropower RAM is available in 200 nS and 250 nS access time versions, and one-off prices are around $£ 43$ and £39 respectively. Mostek UK Ltd, 1 Valley Drive, Kingsbury Road, London NW9, tel. 01-204 9322.

Third-

Generation 64K RAM

United Technologies' Mostek Corporation claim to have produced a third-generation 64 K dynamic RAM which provides access times of $\mathbf{8 0}$ ns to $\mathbf{1 2 0} \mathbf{n s}$. The MK45H64 uses the latest Mostek scaled NMOS process technology known as the LD3 process, featuring silicon gate, doublelevel poly interconnect, 1.5 u channel lengths and 200 A capacitor oxide for maximum critical charge. It can be used in virtually any on-line storge memory system, including mainframe computers, minicomputers, microcomputers, and with microprocessors, and in applications such as video and
graphics memory, buffer memory and terminal memory.

Multiplexed address inputs allow the MK45H64 64K dynamic RAM to be packaged in a standard 16-pin DIP with only 15 pins required for basic functionality. It is designed to be compatible with the JEDEC standards for $64 \mathrm{~K} \times 1$ dynamic RAMs, and features very fast page mode cycle times (equal to RAS access) and has TRAS (max) specified at 40 uS , allowing an entire page of 256 bits to be accessed within a single RAS cycle. The device also features a hidden refresh cycle which enables the component's output to be held valid for up to 40us by holding CAS active low, allowing refresh cycles to be performed while holding data valid from a previous cycle.

Mostek U.K. Ltd, 1 Valley Drive, Kingsbury Road, London NW9. tel 01-204 9322.

Stepper Motor Control/Drive IC

New from RIFA is a monolithic IC designed for controlling and driving bipolar stepper motors, or the direct control of d.c. motors, solenoids or relays.

The PBL 3717 is a 16 -pin monolithic bipolar IC that includes LS-TTL-microprocessor compatible logic inputs, three ad dressable current comparators, and a full H -bridge output stage with built-in protection diodes. Configured with one winding of a bipolar stepper motor, the PBL 3717 requires very few external components to form a complete control and drive stage within LSTTL or microprocessor-based stepper motor systems. It is
capable of either half- or full-step modes, and offers a range of current control from 5 mA to 500 mA continuous without a heat sink, up to 800 mA with a heat sink, and 1.0 A peak. Current levels may be either selected in steps or continuously varied, and supply voltage range is from 10 V to 45 V with a 15 V reference input. It will accept analogue or digital logic inputs of 6 V at 10 mA , for which the ideal rise and fall times are stated as 2.0 vs .

Though designed principally for stepper motor applications the PBL 3717 may alternatively be used to drive conventional d.c. motors by the appropriate adjustment of its input signals.

The operational temperature range of the PBL 3717 is 0 to $+70^{\circ} \mathrm{C}$, and it is produced in the industry standard 16 -pin plastic DIL package. RIFA AB, Market Chambers, Shelton Square, Coventry, Tel 0020327259

IGT Is Here

The General Electric Company of the USA has announced the commercial availability of a new type of power semiconductor device called the Insulated Gate Transistor or IGT. It is a gate turn on-turn off device in which, it is claimed, the advantages of power MOSFETs and bipolar transistors are combined. The result is a device which has a high input impedance like a MOSFET but a low on-state conduction loss like bipolar transistors.

The cell design and MOS gate structure of the IGT are similar to that of power MOSFETs. The major difference is that the resistance of the epitaxial drain region is modulated to a low value when the gate is turned on, resulting in very low on-state voltage drops and a forward con-
duction characteristic similar to a PIN rectifier. This allows devices rated at 500 V to operate at current densities twenty times greater than power MOSFETs and five times greater than bipolar transistors, giving a significant reduction in both chip size and cost.

IGTs either already available or soon to be introduced include a $10 \mathrm{~A}, 500 \mathrm{~V}$ device in a TO-220 package and a $25 \mathrm{~A}, 500 \mathrm{~V}$ device in a TO-218 package. They are available with a range of gate turn off times from about four micro seconds down to less than 1 microsecond. General Electric say that IGTs will cost much less than equivalent power MOSFETs and will compare favourably with bipolar transistors and darlingtons. International General Electric Company of New York, Demesne, Dundalk, Ireland, tel 010-35342 32371.

High-

Performance Sample-andHold Amplifier

Zeltex have introduced a new sample-and-hold amplifier known as the ZMP-241 which when used in front of 16-bit converters, has demonstrated an error contribution so small as to be impossible to discern at the output of the ADC.

The amplifier has been optimised for use with 16-bit A-Ds where it allows sampled data
rates of over 58 kHz to be achieved. Data sheet figures include a settling time of $10 \mu \mathrm{sec}$ for a 20 V step, a slew rate of 5 V per $\mu \mathrm{sec}$ and a small signal bandwidth of 700 kHz . Peak-to-peak noise over the 10 Hz to 100 kHz frequency range is only $75 \mu \mathrm{~V}$, and the droop rate, a measure of how long a sample-and-hold amplifier maintains its accuracy after a sample has been taken, is 5 mV per second.

100-off price of the ZMP-241 is $£ 64$ and it comes in a 50×50 $\times 10 \mathrm{~mm}$ metal case which provides a very high level of radio frequency interference screening. Data Beta Limited, 23A Buckingham Avenue, Slough, Berkshire, SL1 4QA. Tel: (0753) 75933/4.

01-452 1500 Tbehnonatic Ltd 01-450 6597

BBC Micro Computer System OFFICIAL DEALER
 Please phone for availability

 BBC Model B $£ 399$
 (incl. VAT)
 Carr £8/unit
 Model A to Model B
 upgrade kit $\mathbf{£ 5 0}$
 Fitting charge $£ 15$
 Individual upgrades also available
 TELETEXT ADAPTOR $£ 195$ WORDWISE 8K ROM £39 TORCH Z80 DISC PACK £825
 WORD PROCESSOR 'VIEW' 16K ROM $£ 52$
 BUSINESS, EDUCATION AND FUN SOFTWARE IN STOCK

FLOPPY DISC INTERFACE

incl. 1.2 Operating System £95 \& £20 installation

BBC FLOPPY DISC DRIVES

Single Drive $51_{4} 4^{\prime \prime} 100 \mathrm{~K} £ 230+£ 6$ carr.
Double Drive $51 / 4^{\prime \prime}{ }^{\prime \prime} 800 \mathrm{~K}$ f699+f8 carr.

BBC COMPATIBLE 51/4' DISC DRIVES

These drives are supplied in $B B C$ matching colour cases and with necessary cables.
SINGLE DRIVES: 100 K £ 150; 200 K £215 400 K £265
SINGLE DRIVES: with PSU 100 K £ 185 ; 200K $£ 260$ *; 400 K f330
DUAL DRIVES: with PSU $2 \times 100 \mathrm{~K} £ 355 ; 2 \times 200 \mathrm{~K} \mathbf{£ 4 7 5 *}$; $2 \times 400 \mathrm{~K} 5595$
*These drives are provided with a switch to change between 40 and 80 tracks.
DRIVE CABLES: SINGLE f8, DUAL $\mathbf{f 1 2}$
DISC MANUAL \& FORMATTING DISKETTE $£ 12.50$
Fhone or sent for our bie ratid

CASSETTE RECORDER

SANYO Data Recorder DR101
A superior quality diata recorder with dedicated computer output and monitoring facility on both record and play
$39.50+£ 1.50$ carr.
SLIMLINE Cassette Recorder complete with counter and remote control $24.50+£ 1.50$ car
60.50 each $\mathbf{f 4} 50$ for $10+£$
0.50 each. $£ 4.50$ for $\mathbf{1 0 + £ 1}$ carr

Cassette lead E3.50.

MONITORS

 MICROVITEC 203120 in Colour Monitor $£ 319+£ 8$ car KAGA 12in RGB Monitor $\mathbf{f} \mathbf{2 5 5 + \mathbf { f }} \mathbf{8}$ carr Lead for KAGA/SANYO RGB $£ 10$ SANYO HI RES GREEN MONITOR $£ 99+£ 6$ carr SANYO HI RES RGB MONITOR $£ 445+£ 8$ carr.

BBC BOOKS ${ }_{\text {no }}$ Vat p pqp f1)
Basic on BBC $\mathbf{£ 5 . 9 5}$ 30 House Basic $£ 5.95$ Programming the BBC Micro $\mathbf{£ 6 . 5 0}$ BBC Micro An Expert Guide $\mathbf{£ 6 . 9 5}$ Assy Lang Prog. for BBC $\mathbf{£ 8 . 9 5}$ 6502 Machine Codes for Beginners $\mathbf{f 6 . 9 5}$

NEC PC 8023 BE - N
120 CPS, 80 cols
Logic Seeking, Bi
directional
Forward and Reverse Line Feed.
Proportional Spacing. Auto Underline, Hi-Res and Block Graphics, Greek Char.
Set.
Only $£ \mathbf{3 2 0}+£ 8$ carr.

PRINTERS GP 100A $£ 175.00$ GP 100A $£ 175.00$
GP $250 \times \mathrm{f} 235.00$ GP 250X $\mathbf{£ 2 3 5 . 0 0}$
GP 700A $\mathbf{£} 425.00$ GP 700A £425.00
Silver Reed EX44 Daisy Wheel with Serial Interface $\mathbf{£ 3 6 5}$, with Parallel Interface $\mathbf{£} \mathbf{3 8 5}$ Carriage/Printer £8.00
Parallel Printer lead for BBC/Atom to most printers $£ 1 \mathbf{1 3 . 5 0}$ Variety of interfaces, ribbons in stock. 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} \mathbf{£ 1 3 . 5 0}+£ 3 p \& p$

EPSON RX80 and FX80
RX 80100 CPS 80 col Tractor Feed $\mathbf{£} \mathbf{2 7 0}$ FX80 160CPS 80 co F\& T Feed $\mathbf{£ 3 8 0}$ MX100F/T3£425 (Carr./printer $\mathbf{£ 8}$ NEW RX 80 FT $£ \mathbf{3 1 9}$ Carriage/Printer $£ 8$

SIDEWAYS ROM EXPANSION BOARD

This board provides 8 high quality 28 pin sockets for expanding the computer's sideways ROM capa city by a further 128 K . (As 8 K Eproms consume about 40 mA on standby and 16 K much higher, in our opinion addition of 8 extra ROMS will not overheating). All ROM sockets are of turned pin tyoe gold contacts to ensure that numerous insertions and extractions will not wear out or deform them. The board is fully buffered and also dimen sioned to ensure non interference with other on board components. Full fitting instructions supplied. $£ 25+£ 2 \mathrm{p} \& \mathrm{p}$.

TORCH Z-80 PACK

For littie more than the cost of an 800 K disc drive you can now considerably extend your BBCs capabitities. The twin drives, together with the Z 80 card gives you 64 K of memory and includes a database, word processor etc. Comes complete with manuals, CP/N Operating System, Demonstration patible with $\mathrm{CP} / \mathrm{M}^{*}$ thus allowing the use of profes sional business sofiware $£ 825+\mathbf{f 8} \mathbf{p \& p}$ Special offer from Torch: free soft 1,000, for a limited period only and subject to availability.
${ }^{*} \mathrm{CP} / \mathrm{M}$ is a trademark of Digital Research

DISC DRIVES FOR THE FORTH COMPUTER

51/4' Teac FD55 Slim Line Mechanisms
FD55A 40 track SSDD 250 kbytes unformatted
Bare: £135; Cased: £155
$2 \times$ FD55A 40 track SSDD 500 kbvtes unformatted
Cased \times psu $£ 350$ FD55E 80 track SSDD 500kbytes unformatted

Bare: £180; Cased: £205
$2 \times$ FD55E 80 track SSDD 1 Mbyte unformatted
Cased + psu £475 $51 / 4^{\prime \prime}$ Mitsubishi M4853 Slim Line mechanism 80 track DSDD 1 Mbyte unformatted $2 \times$ M4853 2 Mbytes

Bare: £225; Cased: £245
Cased + psu $£ 590$
Single drive cable $\mathbf{f 8}$; Dual Drive cable $\mathbf{f 1 2}$
Other parts for FORTH COMPUTER available send SAE for details.

NEW COPfPREHENSIVE CATALOGUE AVAILABLE
PLEASE SEND FOR PRICE LIST

CONNECTOR SYSTEMS

D CONNECTORS

MALE Solder

Solder	80p	105 p	160 p	250
Angled	150 p	210 p	250 p	

 25-way plug 385p. Socket 450p TEXTOOL ZIF SOCKETS
28-pin 58.00 $24-\operatorname{pin} \mathrm{E5} .75$
40 -pin 99.75 DIL SWITCHES $\begin{array}{rr}\text { 4-way 70p } & 8 \text {-way } 90 \text { p } \\ 6 \text {-way } 85 \mathrm{p} & 10 \text {-way } 140 \mathrm{p}\end{array}$

RS 232 JUMPERS (25-way D)

 24^{\prime}. Singie end Female.
$24^{\prime \prime}$ Femate Female. 24" Male-Female ……......... $\begin{array}{r}\text { £9.50 } \\ \mathbf{f 9} \\ \hline 9\end{array}$

$\begin{gathered} \text { EURO } \\ \text { CONNECTORS } \end{gathered}$		
DIN 41617 21-way 31-way	Plug 160 $170 p$	Skt.
DiN 41612		
2×32-way St. Pin	220p	275p
2×32-way Ang. Pin	275p	320p
3×32 way St Pin	260p	300 p
3×32-way Ang, Pin	375p	350p
TEST CLIPS		
14-pin 275p 40 -pine6		

 CONNECTORS
36-way plug Centronics Parallel
Solder $£ 5.25 \quad$ IDC $£ 4.95$
36 -way socket Centronics Parallel
Solder $£ 5.50$ IDC $£ 5.20$
24-way plug IEEE Solder $\mathbf{£ 5}$
IDC $£ 4.75$
24-way socket IEEE Solder $\mathbf{£ 5}$

RIBBON
CABLE

10.way	40p
16.way	60 p
20 way	$85 p$
26. way	120 p
34. way	160 p
40.way	180 p
50 way	200 p
64-way	280 p

PRODUCTION EPROM PROGRAMMER Type P8000 It will blank check, copy and verify up to 8 Eproms at a time. Eprom types 2716 to 27128 can be selected by a single rotary switch
$\mathbf{f 6 9 5}+\mathbf{£ 6}$ carriage.

UV ERASERS

UV1B up to 6 Eproms $\mathbf{£ 4 7 . 5 0}$ UVIT with Timer $£ 60$

UV140 E61.50

UV141 with Timer $£ 78$

 (Carr £2/eraser)All erasers are fitted with mains switches and safety in. erlocks.

‘WIRELESS WORLD' PROJECTS

Semiconductors inc r.Cs., Transistors Displays, Connectors and Sockets for most projects are stocked by us

EDGE CONNECTORS

	$0.1^{\prime \prime}$	0.156^{\prime}
2×18-way	-	$140 p$
2×22-way	$190 p$	$240 p$
2×23-way	$175 p$	$-20 p$
2×25-way	$225 p$	$220 p$
2×28-way	$190 p$	-
$1 \times .43$-way	$260 p$	-
$2 \times 43-w a y$	$365 p$	
1×77-way	$600 p$	
5100 Conn		$600 p$

ACE INTERFACE

Game playing and typing in should be fast and furious on the Jupiter Ace because of the use of FORTH. But with a membrane keyboard? Doug Bollen shows how to get round the rubber.

It is strange that something as simple as a set of keys and a joystick should pose such a problem for both makers and users of low cost computers. Beneath that intractable rubber keyboard, in an unassuming plastic box, lies many a good computer, spoilt by the lack of a real human interface. Of course,. the reason for this is a price differential of at least twenty-five quid.

A typewriter-style keyboard can reduce frustration, and more than double program and test entering speed if the key-scan plus display routine in the computer ROM is fast enough to cope with fleeting fingers. Old mini and mainframe keyboards can be picked up now
and then quite cheaply, and some of them have excellent magnetic switches. Alternatively, a good lowcost keyboard may be built with readily available switches mounted on a piece of Veroboard.

Video games are great fun, but can you imagine piloting an airliner or spacecraft with four keypresses? There is no standard for games software direction keys so a programmable joystick is an absolute necessity for the dedicated games-player.

Once you've acquired a keyboard and a joystick, you need an interface to connect them to the computer. At this rate of expenditure you could have bought a 'Flash MK IIB' computer, but
never mind, it is all part of the learning process, and those plug-in-add-ons can be very versatile.

The Jupiter Ace has a fast keyscan routine which is capable of electric typewriter performance. The space key is a trifle slower than normal, but all other keys respond well, particularly when aided by a software or hardware key beep. If the relatively large user memory (51 K expanded) of this compact language machine is taken into account along with its other features, an Ace with full-travel keyboard is capable of serious work in areas of text and data handling, as well as super-speed gaming.

This project allows a full-travel keyboard and a joystick, acting on

HOW IT WORKS - INTERFACE

The Ace rubber keyboard uses an input port which occupies eight addresses, but all even addresses (A0 low) are reserved for internal use. Data lines DO-D4, and address lines A8-A15 are used for keyscan, while D5 is reserved for tape load. The remaining three data bits may be ignored here. Because the five Ace data lines are up with no keypress, and the Ace TTL keyboard buffers have a relatively high output impedance for logic 1, it is possible to pull down the data lines externally during keyscan, and this saves on hardware and software.

Ace keys are positioned in a matrix of 5 data lines by 8 address lines. In normal inputting key-scan mode, no keypress and multiple keypresses (other than shifts) return a zero; this is also the case with INKEY. If the keyboard is read by 'address IN' (refer to Fig. 3), a combination of any five keys on each matrix line Y0-Y7 will give a multiple keypress code. For example, F7FE IN (keys 1-5) is binary 111111 with no keypress, five keys at once 10.006, key ' 1 ' on X6 111110, and key ' 5 ' on X4 101111. The MSB is the tape port which toggles between 1 and \varnothing only when you input a tape signal.

There is nothing very mysterious about the interface circuit of Fig. 1, it is merely a six-bit input port running in tandem with the Ace's own keyboard port, and addressed by Ag low. Two three input NORs (IC1) are configured to give an active low enable to buffer/driver IC2 during an input request. Diodes D1-D8 serve to isolate each address line. Spare input T is the alternative LOAD port. X0-X4 and YO-Y7 form the interface input lines.

Fig. 1 Circuit diagram of the interface.

Fig. 2 (a) Overlay diagram of the PCB.

(b) detail of assembly of edge connector.
any pre-selected group of five keys, to be plugged into the back of the Ace, which will not invalidate the manufacturer's guarantee or require additional software. The interface circuit mimics the Ace's internal hardware so that dual keyboards and joystick effectively operate in parallel and simultaneously. An additional input provides DC access to the internal tape-load port of the Ace for experimental purposes.

The ability to simulate key-press with a switch (without a mess of wires soldered to the computer mainboard) can provide a range of useful facilities. Allowing for shift functions and unprintable codes, there are 106 individual codes which may be obtained using INKEY during program execution, and each represents a discrete input channel. Multiple key-presses of up to forty keys are also possible with the IN word, or a compact machine code routine, and this will yield 255 key combinations or channels.

A three-octave monophonic music keyboard, fitted with suitable contacts, can make use of the readymade and debounced key-scan routine in Ace ROM, and leave 70 additional channels free for other functions. Multi-key-press offers three octave polyphonic operation.

A small pane! of insulated material, with forty 3.5 mm jack sockets, will serve as a general purpose patch-panel for switch interfacing, and is handy for quick, softwareless joystick programming. With the switch combinations available, and an equal number of possible computer responses, many other applications should spring to mind.

Construction

Ace edge connectors are not widely available, but you can use a cut-down ZX Spectrum cónnector, a
modified ZX81 connector, or one cut from a long block. Make sure that the edge connector wire length is at least 14 mm . Some, but not all, ZX81 connectors can be modified by carefully pushing out two contacts at the end of each block with a small pair of pliers and reinserting them in the ZX blanking key position, then fitting the blanking key at the end of the row to suit the Ace.

Insert the edge connector halfway into the plain side of the PCB with the blanking key to the right.

PARTS LIST

Fig. 3 The coding of the keyboard matrix

Fig. 4 Different Joystick configurations: a. a microswitch joystick rewired for the Ace and multipress on any six keys; b. pot switch joystick (Voltmace) shown for multi-press on keys 1 to 5; c. diaphragm switch joystick (Spectrovideo Quickshot) shown for multipress on keys 1 to 5; d. use of isolating diodes to avoid ghosting.

Lay a pencil along the top row of wires, on the foil side of the PCB, and apply pressure to the pencil to bend the wires inwards (see Fig. 2). Now bend the remaining row of wires inwards and adjust until the a suitable male edge connector strip into position between the wires, making sure that there is plenty of contact area free for the Rampack, and solder the wires to the strip. Position the edge connector parallel
to the PCB in all planes, 6 mm away from the board, and solder to the PCB.

Now check all solder joints with a magnifying glass (even if you do have good eyesight!) and look for whiskers or blobs of solder which may cause a short between adjacent strips. Clean minute blobs of flux from the extender strip with a brass wire brush. Plug the interface into the Ace and remove it, with power supplies OFF, several times, to remove oxidisation from the computer board. If you have a Rampack, push it on and off the interface rear extender strip too. Now switch on and check that the Ace behaves normally. With clean contacts, it should be possible to rock the Rampack slightly without crashing. Look for dry joints or dirty contacts if there is malfunctioning.

Insert the remaining components and link wires on the PCB, but leave out the longest link for the time being. Observe capacitor and diode polarities and DIL socket orientation. The screw terminal block can be made up of $8+4+$ $2,8+3+3$, or $4+4+4+2$ assemblies. It may be necessary to sandpaper the end of the blocks for a good fit on the PCB. You can insert and solder the long link wire after the diodes have been soldered.

Before inserting the ICs, check that the Ace works normally with the interface in position. Switch off, insert ICs the correct way up, and test again. The interface should have no effect on the Ace. Just to make sure, try a LOAD from a trusty tape and check all key-presses on the rubber keyboard.

Wire up the underside of your add-on keyboard according to the keyboard layout in Fig. 3, and fit optional shift lock switches if required. Try to keep switch interconnecting wiring as short as possible, to minimise circuit strays.

Your keyboard can be wired straight to the PCB terminal block, with about $\frac{1}{2}$ metre of ribbon cable, and all key-presses then tested. If some keys work erratically, or are slow on repeat, try earthing the computer via the negative side of the power supply jack plug. A joystick can also be wired to the PCB terminal block, but cannot be reconfigured without switching the computer off because of edge connector wobble. It is a good idea to run a flexible length of ribbon cable from the PCB to two 2 A terminal blocks for the joystick, which can then be reconfigured while the computer is running.

Joysticks

There are many weird and wonderful joysticks now on the market. Analogue joysticks with pots are not suitable for this

```
: LEFT
    ."left"
;
: UP
    * up"
    DOWN
    ."down"
;
    RIGHT
    * right"
    FIRE
    " fire"
MLlLTIPRESS
@ IN 31 AND ( get keypress and
mask off unwanted bits)
DUP 1 AND B=
IF
    (. is De low?)
    LEFT
THEN
DUP 2 AND B=
IF
    (is Dl low?)
    UP
THEN
DUP 4 AND Q=
IF
    { is D2 low?3
    DOWN
THEN
DUP 8 AND Q=
IF
    (is D3 low?)
    RIGHT
THEN
DUP 16 AND 日=
IF
    (: is D4 low?)
    FIRE
THEN
DROP { discard keypress)
;
: TEST
BEGIN
    CLS MLLTIPRESS 500 e
    DO
        ( slow routine down for displ
ay)
    LOOP
    0
UNTIL
;
```

Fig. 5 Five-key FORTH multi-press routine.

HOW IT WORKS MULTIPLE KEY ROUTINE

READ is a table containing a 5×8 byte

 array of ASCII codes relating directly to the logical layout of the Ace keyboard． At the end of this table is an 8 byte array， which is a table of keyboard port ad－ dresses（high byte only）．The word KEY picks up from the stack the start address of the READ table and the ASCII key value to be tested．It searches the table until it finds a match to the key value．If there is no match the routine is aborted with ERROR of as an invalid key code has been used．

By the time a valid match is found， the Z80＇s B and D registers contain an indirect pointer to the relevant port ad－ dress for the key which is to be tested（B register），and the key＇s position within that port as a data bit（ D register）．If the bit is reset $(=6)$ ，then the key is being pressed and a 1 is placed on the stack， otherwise a \varnothing is stacked，thus giving a true or false flag for testing with IF ．．． THEN．
interface．There are＇floppy－stick＇ joysticks which do not＇click＇but use switches which look like pots． Then there are diaphragm switch joysticks，and microswitch joysticks which＇click＇．Leaving aside personal styling preferences and magnetic switch joysticks，the microswitch type is preferred for this interface，but diaphragm switch joysticks（Atari，Quickshot）will work over a limited range of keys and can be rewired（with some difficulty）for all keys．

If you can find or make a microswitch joystick it should be wired as in Fig．4a．The pot type switch（Fig．4b）cannot be rewired for all key positions，but will multipress a five key row．The diaphragm switch joystick，Fig．4c， can be rewired for all keys by cutting the tracks on the switch PCB and rewiring as in Fig．4a，but make sure there are no solder joints under the switch actuator plastic ring． Unmodified，the diaphragm switch type will multipress five keys as in Fig．4b．

If you rewire the joystick according to Fig．4a，use pairs of twisted insulated wire about $\frac{1}{2}$ metre long．If you are also making a patch panel（which has a socket for each key），the joystick pairs can be terminated with 3.5 mm insulated jack plugs．To configure the joystick for a program，merely insert the appropriate plug in the socket position corresponding to the keypress，or clamp the wire pairs in the terminal blocks by following the key／matrix diagram of Fig． 3.

Certain key combinations of diagonal plus fire button could
conceivably produce unwanted responses with a few examples of commercial software．To avoid keypress＇ghosting＇，place an isolating diode in each joystick＇x＇ wire，as in Fig 4d．

Programming For The Interface

Good games software must be responsive and easy to control，not to be confused with difficult to play． There is nothing worse than a

```
CREATTE READ 48 ALLOT
        IN
        16 BASE C: 48 0
        DO
        RETYPE NUMBER DROP OUER I
        + C!
    LOOP
    DECIMAL
3
```

3. HEX
16 BASE C
;
READ IN
$43537 A 7863617364$

$\begin{array}{lllllllll}32 & 33 & 34 & 35 & 30 & 39 & 38 & 37\end{array}$
$36706 F 697579$ 口 6C
$6 B 6 A 6820606 E 6276$
FE FD FB F才 EF DF BF $7 F$
DEFINER MC
UIS CR ." BYTES: "
RETYPE NUMBER DROP' CR BASE
C.e HEX SWAP ." ENTER"
\square
DO
RETYPE NUMBER DROP c,
LOOP
CR BASE C!
DOES
CALL
;
REDEFINE IN
MC KEY (NOTE:on bytes prompt
enter 52)
DF DS DF E1 E5 68 E
$\begin{array}{llllll}5 & 15 & 1 & \text { BE } 28 \text { B CB }\end{array}$
22 D 2320 F6 10 FOE1
E7 - 3E 8 90 El 128
0985 6F 46 E FE ED
78 2F A2 11 O 0281
13 D7 FD E9
DEFINER MC
DOES>
CALL
sluggish＇thing＇which hesitantly jerks in four directions and freezes （together with the whole scenario） during a zap．It takes all the fun out of what might otherwise be an excellent game．

Multipress action is not difficult to achieve on the Ace，if INKEY is discarded in favour of IN ．Up to five simultaneous keys（those in the vertical groups XO－X4 in Fig． 3 combined with other vertical groups）will give a total of 31 key－ press combinations．Apart from the eight directions plus zap，pressing right plus left（or up plus down） could produce a tenth and eleventh response，but this is not possible on a joystick alone．

In the five key multipress routine Fig．5，you supply the direction and zap definitions，in place of the demo definitions inside the dot quotes．All five－key groups are operative because MULTIPRESS uses $\varnothing \mathrm{IN}$ ．If you want to employ only one group of keys，change number base to HEX，edit MULTIPRESS，and replace \emptyset with an address from Fig．3，then redefine

3FAE	DF	RST	18
3FAF	D5	PUSH	DE
3FBD	DF	RST	18
3FB1		POP	HL
$3 F B 2$	ES	PUSH	HL
3FB3	0688	LD	8，08
3FB5	0E 05	LD	C， 05
3 FB 7	16 Q1	LD	D，01
3FB9	フE	LD	A，（ HL ）
3 FBA	BB	CP	E
3FBB	28 DB	$J R$	z，3FC8
3FBD	CB 22	SLA	D
3FBF	QD	DEC	ᄃ
3FCO	23	INC	HL
3 FCl	20 F 6	JR	$\mathrm{NZ}, 3 \mathrm{FBg}$
3FC3	10 FO	DJNZ	3FB5
3FC5	E1	POP	HL
3FC6	E7 00	RST	20，00
3FC8	3E 08	LD	A， 08
3FCA	90	SUB	B
3FCB	E1	POP	HL
3FCC	D1 2800	LD	BC， 0028
3FCF	09	ADD	HL，BC
3FDO	85	ADD	L
3FD1	6 F	LD	L，A
3FD2	46	LD	$\mathrm{B}, \mathrm{CHL})$
3FD3	OE FE	LD	C，FE
3 FD5	$E D 78$	IN	A，（C）
3 FD 7	2 F	CPL	
3FD8	A2	AND	D
$3 \mathrm{FD9}$	110000	LD	DE， DODO
3FDC	2801	$J R$	$z, 3 F D F$
3FDE	13	INC	DE
3FDF	D7	RST	10
3FEO	FD E9	$J P$	（IY）

Fig．6a．All－keys multiple－key read program listing；b．assembler listing for the program（relative addressing）．
the MULTIPRESS and return to decimal. The word TEST places MULTIPRESS inside a BEGIN UNTIL loop and slows it down to allow time for a screen display. MULTIPRESS would normally be inside your program loop.

All Keys Multiple Key Read Routine

Gary Knight has kindly consented to the publication of his own forty key machine code routine.

To use the multiple key read routine you need to place on the stack the ASCII code of the lowercase letter or the number which appears on that key. So, to execute the word LEFT if the ' 1 ' key is being pressed you would use: ASCII I READ KEY IF LEFT THEN You can test for the ENTER, SPACE, CAPS SHIFT and SYMBOL SHIFT keys by placing on the stack decimal 13 , decimal 32 , ASCH C or ASCII S (note the last two are in upper-case). See the 'How It Works' section for this routine.

Type in everything in the listing (Fig. 6a) exactly as it stands. There are two tables of numbers (after READ IN and after MC KEY). Type

Fig. 7a. Standard Ace tape input port circuit; b. alternative tape port using spare gate on interface.
each hex number and press ENTER after each.

Tape Port and Keybeep

The standard Ace tape port input circuit is shown in Fig. 7a. R1 biases the gate input to about 2 V , and R2 acts as a tape recorder output load resistor. If the gate is omitted, it is possible to feed straight into the interface T
connection from the circuit of Fig. 7a, but gate buffering is desirable.

A suggested circuit for an alternative tape port is given in Fig. 7b. The spare three input NOR in IC1 is pressed into service (the inverted signal works) and C1 is increased in value to improve sensitivity. A higher value for R2 makes it possible to feed from DIN plugs on some tape recorders. With DC access to the tape port, you can experiment with input filtering, etc.

BUYLINES

> The following are available from I.T.M. KJ Interface PCBs $£ 4.45$ per set.
> KJ Interface Kits with PCBs $£ 11.50$ each (including full documentation).
> Assembled and tested KJ Interfaces (uncased) with applications documentation £14.50 each.
> All prices inclusive of VAT and postage. SAE for further details of KJ interfaces, patchboards etc.
> I.T.M. 119a Culverley Road, Catford, London SE6. (01-698 5351).
> Long wire ZX81 or Spectrum edge connectors are available from Technomatic (see text). PCB mounting screw terminals ($0.2^{\prime \prime}$ pitch) and keyboard switches from Maplin or Ambit International (see text). Other components are not difficult to obtain.

ELECTRONIC COMPONENTS AND TEST EQUIPMENT 35. HIBH BRIDGE, NEWCASTLE UPON TVNE NE11EW TEL: 0632 326729

MULTIMETERS
 THANDAR TM351

Bench/portable 31/2-diglt 0.5" LCD 0.1% basic accuracy 29 ranges. Battery life typically 2000 hrs - Complete with batterles \& test leads. E 113.85 .
Accessories. Carrying case £6.84. Unlversal test lead set £12.65. Service Manual £3.00.

THANDAR TM353

- Bench/portable $31 / 2$-digit 0.5" LCD 0.25%
basic accuracy 26 ranges Battery life typically 3000 hrs . Complete with batteries \&
test leads $£ 86.25$. Accessories as TM35t test leads £86.25. Accessories as TM35t.

THANDAR TM354

- Pocket size. 31/2-diglt 0.5" LCD, 0.75\% basic accuracy. 14 ranges Battery life 200 test lead set $\mathbf{E 1 2 . 6 5}$. Service Manual £3.00.

THANDAR TM451

- Bench/portable $41 / 2$-digit 0.4" LCD - 0.03% basic accuracy Full auto-ranging or manual - Sample hold Audible continuity test - Complete with battery and leads £171.35. AC Adaptor £7.99, Universal test leads £12.65. Service Manual $£ 3.00$.

OSCILLOSCOPE

THANDAR SC110A

- Bench/portable Low power 10 MHz bandwidth 10 mV senslivity $£ 171.35$. Carry-
Pratial ing case E6.34. AC Adaptor $\mathbf{E 7 . 9 9}$. Rechargable battery pack £12.65. Xt probe £8.05. $\times 10$ probe £8.20, X 1×10 Switched probe $£ 10.93$. Sprung hook trimmer pack E2.88, Manual

GENERATORS
THANDAR TG100 Function $\dagger \mathrm{Hz}$ to 100 KHZ $£ 90.85$
TG102 Function 0.2 Hz to $2 \mathrm{MHz} £ 186.75$
TG105 Pulse 5 Hz to 5 MHz 897.75

FREQUENCY COUNTERS

THANDAR TF200 10 Hz to 200 MHz

- Bench/portable 8 -digit Liquid Crystal Display. Frequency range $10 \mathrm{~Hz}-200 \mathrm{MHz}$ Resolution better than 1 ppm Sensitivity typlcally 10 mV rms - Time base accuracy 0.3 ppm. Battery life 200 hours Frequency, time average period, totalize $\&$ reset; 2 ranges, 5 gate times; external clock facility Complete with batteries. £166.75.
THANDAR TFO 4010 Hz to 40 MHz
Bench/portable 8 -digit Liquid Crystal Display. Frequency range $10 \mathrm{~Hz}-40 \mathrm{MHz}$ - Resolution 1 Hz . Sensitivlty 40 mV rms. Timebase accuracy 0.5 ppm Battery life 80 hours. Frequency, totalize \& reset: 2 gate times Complete with batteries. $£ 126.50$.

ACCESSORIES FOR TF200 \& TFO40 AC
adaptor $£ 7.99$, Carrving case $£ 6.48$, X1 Probe £8.05, X 10 Probe $£ 9.20$, Service manual £3.00. TP600 prescaler £51.75. TP1000 prescaler £74.75.

THANDAR PFM200A 20 Hz to 200 MHz - Pocket size 8-digit LED display Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$. Aesolution 0.1 Hz . Sensitivity typically 10 mV rms. Timebase accuracy 2 ppm. Battery life 10 hours. Frequany; 2 ranges, 4 gate times BNC input soc-
 AC adaptor $£ 7.99$; X1 probe $£ 8.05$, X10 probe £9.20, Service Manual £3.00.

Full spec available on all instruments, just phone or write:

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS

YOUR CAR

AS GOOD AS IT COULD BE?

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* is it ECONOMICAL or does it "go off" between services 解 the ignition performance deteriorates? Totat Energy Discharget tives

- Has it PEAK PERFORMANCE or is it tlat athigh ano fow revs. where the ignitieftouteut is marghal? Total Energy Discharge gives
 \& E yinderst:

* Do the PLuesant boitits alwavs nedudinging to bring the engine backtojebestutora Energy Discharge eliminates contact arcing ade osion hy cetoroving the heavy electrical load The timing stays "sphe wop" zand the contact condition doesn't affect the performane ther, Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
- TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market $-31 / 2$ times the power of inductive systems $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts) SPARK POWER - 140 W , SPARK ENERGY - 36 mJ SPARK DURATION - $500 \mu \mathrm{~s}^{\prime}$, STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

50 pF load $-38 \mathrm{kV}, \quad 50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}$ We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal.

* All ELECTRONIZE electronic ignitions feature

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality 2 uF discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
Most NEW CARS already have electronic ignition. Update YOUR CAR

ELECTRONIZE

 ELECTRONIC CAR ALARM

HOW SAFE IS YOUR CAR?

More and more cars are stolen each week and even a steering lock seems little help. But a car thief will avoid a car that will cause him trouble and attract attention. If your car has a good alarm systemwell there are plenty of other cars to choose from.

LOOK AT THE PROTECTION AN ELECTRONIZE ALARM CAN GIVE

خ MINIATURE KEY PLUG A miniature jack plug attaches to your key ring and is coded to your particular alarm.

* 2025 INDIVIDUAL COMBINATIONS The key plug contains two 1% tolerance resistors, both must be the correct value and together give 2025 different combinations.
* ATTRACTS MAXIMUM ATTENTION This alarm system not only intermittently sounds the horn, but also flashes the headlight and prevents the engine being started.
* 60 SECOND ALARM PERIOD Once triggered the alarm will sound for 60 seconds, unless cancelled by the key plug, before resetting ready to be triggered again.
* 30 SECOND EXIT DELAY The system is armed by pressing a small button on a dashboard mounted control panel. This starts a 30 second delay period during which the owner can open and close doors without triggering the alarm.
- 10 SECOND ENTRY DELAY When a door is opened a 10 second delay operates to allow the owner to disarm the system with the coded key plug. Latching circuits are used and once triggered the alarm can only be cancelled by the key plug.
$+$
L.E.D. FUNCTION INDICATOR An LED is included in the dashboard unit and indicates the systems operating state. The LED lights continuously to show the system is armed and in the exit delay condition. A flashing LED indicates that the alarm has been triggered and is in the entry delay condition.
* ACCESSORY LOOP - BONNET/BOOT SWITCH - IGNITION TRIGGER These operate three separate circuits and will trigger the alarm immediately, regardless of entry and exit delays.
* SAFETY INTERLOCK The system cannot be armed by accident when the engine is running and the car is in motion.
* LOW SUPPLY CURRENT CMOS IC's and low power operational amplifiers achieve a normal operating current of only 2.5 mA .
* IN KIT FORM It provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, random selection resistors to set the code and full set of components etc. In fact everything down to the last washer plus easy to follow instructions.

fill in the coupon and send to:

\square Please send more information
EIECTRONIZE DESIGN Dept D Magnus Rd Wilnecote Tamworth • B77 5BY - tel 0827281000
, =TAL ENERGY DISCHARGE (6 or 12 volt negative earth)

CAR ALARM (12 volt negative earth)

\square	Assembled ready to fit	(All wires and
\square	D.I.Y. parts kit	connectors incl.)
$\boxed{Z} 24.95$		

I enclose cheque/postal order OR debit my Access/Visa card

[^2]Address \qquad

Assembled ready to fit
£ $26.70 £ 19.95$
D.I.Y. parts kit £15.50 £14.95
TWIN OUTPUT for cars and motor cycles with dual ignition

Twin, Assembled ready to fit
£36.45 £29.95
£24.55 £22.95 Twin, D.I.Y. parts kit
TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

\square	Assembled ready to fit
\square	$\mathbf{f} 20.70 \mathrm{f} 19.95$

AUDIO DESIGN

Enough of this theoretical agonising over distortion and noise! John Linsley Hood shows us what is to be actually done about these problems - following up with a practical example, a project for a moving coil PU head-amp.

In the preceding parts of this series i have taken a, necessarily brief, look at the basic techniques of smallsignal audio circuit design, and mentioned some of the problems. However, I haven't so far talked much about distortion, or looked at how these design techniques would be employed to produce a technically advanced piece of circuitry, such as is now expected in up-market hifi gear. I will now remedy this deficiency.

Distortion

In its most general context, this refers to the way in which the output signal from some part of the signal handl-, ing chain differs from that present at its input, excepting that due solely to uniform and frequency independent amplification or attenuation. In normal use, this term is taken to refer to the waveform distortion of a continuous uniform (steady state) sinusoidal waveform, either as a result of regularly occurring kinks or bends in this waveform (harmonic distortion - so called because the distortion products occur at frequencies which are harmonically related to the fundamental frequency) or as a result of the inadvertent interaction, due to imperfections in the signal handling channel, of two - or more - frequencies simultaneously present (intermodulation distortion).

Harmonic distortion can be measured by a simple test instrument of the kind shown in Fig. 1, known as a total harmonic distortion or THD meter, in which the incoming signal is measured by an AC millivoltmeter, either directly, or through a sharply tuned 'notch' filter. If the meter is set to read full scale with the filter shorted out, and then this reading is compared with the smaller reading obtained after the notch filter is used to remove the fundamental, what will be left, as a fraction of the original, is the total harmonic distortion, plus, alas, the noise and hum accompanying the original signal.

A better, but more complicated, way of measuring harmonic distortion is to use a harmonic analyser shown in Fig. 2. In this the AC millivoltmeter is fed by a sharply-tuned variable-frequency filter having a narrow passband. This allows the magnitude of signals present at

Fig. 1 Total harmonic distortion measuring instrument.
any frequency to be compared with the magnitude of the signal at the fundamental frequency, and allows the user to avoid spurious results due to hum and noise. The magnitude of individual harmonics can then be identified, which gives a more significant assessment of what has happened to the signal on its passage through the unit under test. In the particular case of intermodulation distortion, this relates to the way in which two signals may combine within the signal handling stage to produce the so-called 'sum and difference' frequencies of the two components.

Although there were different standards employed, a fairly typical intermodulation distortion test would have used, for example, two frequencies at 70 Hz and 3 kHz , in a 10:1 ratio, and the Harmonic Analyser would then have been used to measure the amount of 2930 Hz and 3070 Hz present as a result of the non-linearity of the unit under test. More modern tests, of a similar kind, would use two identical magnitude signals at, say 19 kHz and 20 kHz and a simple low-pass filter could then be used to isolate for measurement the spurious 1 kHz (difference) frequency.

It has been claimed that this particular test gives results which correlate very significantly with the way in which an audio amplifier sounds. I am sceptical about this, if only because I know I could design an amplifier which would do well in this test and yet would sound awful.

The snag, of course, in all these tests is that they relate only to 'steady state' continuous sinewave tones, which really have very little to do with the sort of signals which audio equipment has to handle - with the occasional exception of the lovers of very slow-moving organ or flute music. Most of the sounds which inform or delight the listener are random, transitory and irregular in waveform. There is a relationship between the way in which an amplifier, say, will handle a steady state signal and the way in which it will sound on real life signals such as speech or music, but this is neither a simple nor a complete one; distortion measurements, though they relate to an important aspect of the behaviour of the system are not, of themselves, as meaningful as the advertisers of hi-fi goodies would have us believe. They need to be inter-

Fig. 2 Harmonic analyser arrangement,
preted, and weighted, in the light of experience and with an eye to their applicability.

So, in addition to knowing how to design for low distortion, we also need to have some understanding about the relative importance of the various types, so that if there is some need for compromise, the right decisions can be made. Happily, this isn't too difficult.

Harmonic Distortion

If a sinewave is asymmetrically distorted, as shown in Fig 3a this will give rise to even harmonics (2nd, 4th, 6th etc.). If the distortion is fairly smooth, as would be the case in most simple low-level signal stages without negative feedback, the main harmonic produced would be the 2nd. This is simply the same note, but one octave higher, and is therefore consonant, as would be the 4th, 8th and 16th harmonics, which would give the same note two, three and four octaves higher. Small amounts of such low-order harmonics - up to, say, 0.5-1.0\% are musically quite tolerable, and may give an apparent richness to the sound quality - much liked by the devotees of old valve amps.

Fig. 3 Harmonic (a) and intermodulation (b) distortion.
The reason why one doesn't want even musically innocuous harmonics is shown in Fig. 3b. If a smaller signal at a different frequency were present, along with this bigger sinewave, its amplitude would vary with the excursion of output voltage - simply because the waveform distortion implies a variation in stage gain as a function of output voltage. This is what is known as intermodulation distortion.

Higher order even harmonics, such as the 6th, 10th, 12th, 14th, are dissonant (if 256 Hz is middle C, its third harmonic would be 768 Hz which is somewhere near G in the octave above, and the 6th harmonic would be near the G in the octave above that), as are all the 'odd' harmonics, to an extent which increases rapidly as their 'order' increases.

The odd harmonics are due to symmetrical bending of the waveform, as shown in Figs. 4a and 4b, the latter case being that due to crossover defects in push-pull systems. As an invariable rule, the smaller the proportion of the waveform which is bent the higher the harmonic, and probably the worse it will sound. In the particular case of crossover distortion in push-pull stages, in addition to making nasty sounds, it aiso removes low magnitude signals from the output, which makes the system have a 'thin' sound. The same sort of kinks at the tips of the waveform, as in Fig. 4c, due to symmetrical clipping, would just make the sound rather hard and 'edgy' - yet both of these could be the same harmonics, present in a numerically identical quantity, but merely shifted in phase. As a kind of working rule, 0.1% of third harmonic would not be musically objectionable (though the equipment would sound 'cleaner' without it). 5th, 7th and above should not be present above some 0.02% for a plea-

Fig. 4 Waveforms containing odd harmonic distortion.
sant sounding result.
Since these are the kinds of harmonic produced by class AB (low quiescent current) push-pull transistor output stages, it is easy to see why very low orders of THD are demanded nowadays from such amplifiers, while the old valve jobs could get away with ten times as much as this, and still be applauded.

Intermodulation Distortions (IMD)

If an incoming sinewave signal is 'bent', this implies that, for that amount of signal swing, the gain of the system varies as a function of the output voltage. It follows from this that any other signals present at the same time will be modulated in amplitude, as I've already shown in Fig. 3b. This has the effect of muddling up the sound, and making it more difficult to separate the individual components.

If an amplifier limits, either because it has been driven into clipping through too big an input signal, or because it has been made to try to follow a transient which is too fast for it, it is obvious that other signals present while it has been driven into a limit condition will be lost. This second condition is known as slew rate limiting or, more fancifully, as transient intermodulation distortion (TID). Both of these problems are shown in Fig. 5 (over page).

Although a lot of technical capital has been made from TID, both in relation to its description and in relation to its cure, it is, in reality, rather less pervasive than normal IM distortion, if only because it only happens on transients, and it is rather more simple for the user to avoid just drive it a little less hard!

Reducing Distortion

Harmonic distortions usually arise from one or other of three causes: non-linearity of device voltage/current transfer characteristics; intrusion of unwanted signals (which could be distorted versions of the wanted ones) from supply lines, or by capacitive coupling from later stages (which will tend to exaggerate the higher frequency components); and by coupling of unwanted components into the signal line by poorly arranged earth line return paths.

The first of these, and part of the second, is a question of circuit design, the rest is a matter of care in layout. Being aware, for example, of the need to prevent capacitive coupling of output signals back to earlier stages

Fig. 5 Intermodulation distortion types due to (a) clipping and (b) slew rate limiting.
leads quite naturally to the thought that these parts of the circuit should be kept as far apart physically as practicable (or necessary). Being conscious of the undesirability of output circuit currents flowing in input signal paths can, without much mental stress, lead one to more elegant wiring layouts - so this isn't difficult to do adequately. It is the knowing (and remembering) which is the hard bit.

The Use Of Negative Feedback

Designing for low distortion is more demanding of thought. The major implement in this task is the use of negative feedback (NFB), in which a proportion of the outpur signal is - effectively - subtracted from the input signal. If the output signal contains components which are not present in the input, these components will be amplified in an inverted phase, as shown in Fig. 6, and will tend to cancel the distortion components present in the output.

This technique does work, and works well, but there are snags! The first of these is that the distortion components will themselves be distorted, so that an amplifier, without feedback, having 2nd and 3rd harmonics, will, with feedback, also contain 4th, 6th and 9th - and could well sound less pleasant. Also, the use of NFB is likely to make the amplifier much less stable at HF, with the possibility of continuous or incipient oscillation. This also is ruinous for sound quality, and gave rise, some years ago, to a vogue among the less inspired circuit designers for circuits without any NFB at all. The real answer to these problems is to have enough gain in the amplifier for a decent amount of NFB to be used, and to design it with an adequate stability margin, which means mainly not having too many stages within the NFB loop.

Because the final distortion figure of any feedback

Fig. 6 Negative feedback arrangement and results.
amplifier (by this we normally mean an amplifier with negative feedback) depends on the initial distortion, then we need to make the amplifier as linear as possible in its open-loop condition. The formulae for calculating the effect of feedback (negative or positive) are:

$$
\begin{aligned}
& A^{\prime}=\frac{A}{(1-\beta A)} \\
& D_{f}=\frac{D}{(1-\beta A)}
\end{aligned}
$$

where A is the gain without feedback (negative for an inverting amplifier) A^{\prime} is the gain after feedback is applied (if A is large enough, then we can use the approximation $\left.\mathrm{A}^{\prime}=-1 / \beta\right), \beta$ is the proportion of the signal fed back, D is the distortion without feedback and D_{f} the distortion with feedback.

The expression $(1-\beta A)$ is known as the feedback factor, and it reduces the gain and distortion equally in simple systems. It is normally expressed in decibels, for example 20 dB of feedback which implies that the gain has been reduced by a factor of 10 . If A and β are both positive, then the feedback factor will be less than one and both the gain and distortion will be increased, up to the point where $\beta \mathrm{A}=1$, where the gain becomes infinite and the amplifier will oscillate.

A High Quality, Low-Distortion Gain Block

So, how does one design, say, a low-distortion smallsignal amplifier. The distortion arises because of bending in the input characteristics of the device, as shown in Fig. 7. Here I have illustrated the input voltage/output current characteristics of a small-signal silicon junction transistor and a junction FET. The bipolar transistor is obviously much more bent, and will therefore give a more distorted output, but because the upward slope of the graph is much steeper it will also give much more gain. An important point to remember, though, is that the smaller the signal which is applied to the input, the less the distortion - simply because any curve becomes a straight line if a small enough part of it is used. This means that if, by some means, we can get a high enough gain from the stage, the waveform distortion due to the input characteristic curvature will be made very small. So, one must design to get the best stage gain.

Another useful point is that push-pull circuits, because they are symmetrical, cause asymmetrical distortions to cancel out, largely. The bending of a transistor $\mathrm{V}_{\text {base }} \mathrm{vs} . \mathrm{I}_{\mathrm{c}}$

Fig. 7 Input characteristics of bipolar and field-effect transistors.
characteristic is asymmetrical, therefore a push-pull input system, such as a long-tailed pair discussed in part 1 of this series, would have less distortion - by a factor of perhaps 10 - than the equivalent single-ended input stage.

To simplify the problems of stability when negative feedback is applied, it is preferable to limit the loop, around which the feedback is applied, to two gain stages. Probably the best of the possible circuit configurations is the one in which an input long-tailed pair is followed by another push-pull amplifier stage, which is, in turn, loaded by a current mirror of the kind shown in Fig. 8a. A working stage of this kind is shown in Fig. 8b. I have shown this in a standard op-amp form, with a + and - DC supply, two inputs (one inverting, one non-inverting) and an output, so we can use this exactly as if it were an IC op-amp in any appropriate circuit. However, it has the advantage that it will, with suitable transistors, be usable up to DC supply voltages of 50 V or so, allowing an output voltage swing of some $96 \mathrm{~V} P-\mathrm{P}$, or an RMS output of some 34 V , which would give good headroom.

In this circuit Q3, Q4 and R1 and R4 act as a constantcurrent source, in which, if the current through R1 produces a voltage greater than $0.55 \mathrm{~V}, \mathrm{Q} 4$ will turn on and steal the base current from Q3, to prevent Q 3 's emitter current from increasing any further. With the values shown this holds the current through Q1 and Q2 to $100 \mu \mathrm{~A}$ each, which gives a satisfactorily high input impedance to this stage. For example, if Q1 and Q2 have current gains of 200, the base currents required will only be $0.5 \mu \mathrm{~A}$.

The best input noise figure in this stage will be given if the input transistors (Q1, Q2) are PNP types - because they have N-type base regions - and for the sort of DC supply voltages which I envisage in this application ($\pm 15 \mathrm{~V}$, so that we can also use ICs) BC 214 Cs are ideal. In order to get a good output drive capability from this gainblock, I have chosen to make Q5 and Q8 pass 5 mA each, which is 10 mA through R6. If this is 100R, the potential drop across it will be 1 V . So, to provide 0.55 V across the base-emitter junctions of Q5 and Q8, the voltage drop across R2 and R3 must be 1.55 V . Since Q1 and Q2 each pass $100 \mu \mathrm{~A}$, then R2 and R3 must each be 15.5 k - the preferred value of 15 k is near enough, in practice. This defines the component values, with the exception of R4, which isn't really critical in value, and R5C1 which is a phase correcting circuit.

The gain/bandwidth, noise and THD figures for this circuit block are quite excellent (see Table 1), and allow it to be used in a very high quality audio preamp to obtain a standard of performance which would not be bettered by an commercial unit on the market, though some of the more astronomically priced ones might equal it. If one restricts the \pm DC supplies to 15 V , one could substitute

Fig. 8(a) Current mirror circuit arrangement.

Fig. 8(b) High gain, low distortion gain block. R7 and R8 (marked with *) are optonal 100R resistors which lessen the need to match the characteristics of Q6 and Q7 - they could be replaced with links.
any commercial unit on the market, though some of the the LF351 or the TL071, for this gain block with only a small lowering of audio performance, though, as mentioned above, the gain block is not so restricted in DC supply potentials.

The Passive Components

There are a few further points which are worthy of comment, at this stage, concerning components. Quite a lot of thought has been given to the sound quality changes imparted to audio circuitry by the components used. So far here, we have only considered the way in which the circuit will work, and what values of components we should employ. However, when we actually get down to the detailed design of audio stages, we can no longer simply say a resistor is a resistor is a resistor . . .! There are two main problems with real resistors, excess noise due to random variations in the path current will actually take through the resistance track and voltage dependence of resistance (even at power levels too low to wam it up significantly).

The consensus of opinion here is that metal film types are the best, with metal oxide types comparable in performance, foflowed by carbon film, and with carbon
Gain. (without NFB) 30,000x
Bandwidth. 300 KHz
Distortion: Less than 0.003% at 1 KHz
at $\times 100$ gain
Square wave performance. No overshoot.
IMD. Not measurable.
Input noise resistance. 1 k 5
Note. The circuit is stable, as it stands, for gains (set by NFB) down to 5. For unity gain use; an output Zobel network of 1000 pF and 180 ohms should be added.
Table 1 Performance of the gain block.

Fig. 9 RIAA stage input impedances.
composition, a long way down the list. For low values of resistance, wirewound types are excellent, but tor higher values the inductive effects are troublesome. In the case of capacitors, non-polar types are always better, with polypropylene, polystyrene, polycarbonate and polyester film types shown in descending order of preference. (This is largely a function of dielectric loss and hysteresis.) In the polar types (electrolytics), low equivalent series resistance (low ESR) capacitors are preferable, but in the absence of these, supply line bypass capacitors should always be bypassed with a smaller non-polar film type. If you are really fussy you can bypass this again by a smaller monolithic ceramic type. For low signal levels, if large capacitance values are necessary, in the audio path, use one of the new low-leakage miniature aluminium types. Tantalum bead typès, in addition to being very dear, are now thought to spoil the clarity of the signal.

Returning to our gain block of Fig. 8b, for the best sound quality, the DC supply lines should always be stabilised - in addition to being bypassed to the 0 volt line by an adequately large low ESR capacitor. Up to $\pm 24 \mathrm{~V}$ we can use IC voltage regulators for this purpose, which is the most economical solution.

RIAA Equalisation Stage

At the conclusion of this series, I propose to describe a high quality audio amplifier and preamp as a 'proof of the pudding'. The gain block just described will make an excellent RIAA input stage for this, though there are a few other considerations in the way it is used. In the last part of this series, I referred to resistor noise, a thing which is present in all low level circuitry as a measurable background. In the case of Fig. 8b, the important part, in relation to resistor noise, is the input circuit, shown in Fig. 9 'in the way it would be connected for an RIAA equalisation stage.

Here we have two input transistors, each with their
own internal input resistance ($\mathrm{R}_{\text {be }}$), and with external impedances between their bases and the 0 V line, which are effectively in series with $R_{b e}$ so far as the noise resistance is concerned. Since the noise components due to these add as the root of the squares, and this gives the same result as if all the resistors were added together as a lump noise resistance, the task, for minimum noise, is to try to make the total $-R_{\text {in }}$ (in parallel with the pick-up impedance) $+R_{b e}(Q 1)+R_{b e}(Q 2)+R_{b e}$ (in series with $\left.C_{b}\right)-$ as small as practicable. Here is a snag. For any sensible value of collector current for Q1 ând Q2 this will be larger than likely values for R_{fb} and $\mathrm{Z}_{\text {pu }}$, and limits the lower value of noise resistance to some $1 \mathrm{k5}$, at low frequencies. (At higher frequencies the inductive impedance of the 10 mH or so of the PU coil will be the dominant factor anyway).

This compares with noise resistance of 4 to $5 k$ for the better third generation audio op-amps now available. From the noise figure graph shown in the last part of this series, 1 k 5 will give a noise output of $0.7 \mu \mathrm{~V}$ at room temperature and 20 kHz bandwidth. This would give a signal to noise ratio of some 73 dB , with reference to a typical $3 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$ output signal from a low output PU. However, in practice, the shape of the RIAA correction curve, which slopes down with increasing frequency, limits the effective bandwidth to about 2 kHz , and allows a practical S / N ratio of about 83 dB from this sort of input noise resistance. (The TL071/LF353 would give an S/N figure, under the same conditions, of around 79 dB , which is still good).

It should be remembered, however, in order not to get lost in the wild and woolly world of specifications, that the average LP disc, when new and played on a good turntable, can manage only about $65 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. Moreover, when one has had it for a little while and played it a few times, this S / N ratio is likely only to be about $55-60 \mathrm{~dB}$, due to surface noise.

In the last part of this series, when talking about opamp ICs, I described a good quality, simple, two stage RIAA equalisation module, using a passive RC second

Fig. 10 (left) High quality RIAA equalisation stage, hased on the gain hlock of Fig. 8(b) or a highquality op-amp.
stage to cope with the $1 \mathrm{kHz}-21 \mathrm{kHz}$ part of the response curve. One can get a bigger output signal before overload (ie, more 'headroom') if one uses an active RC stage for the second part. A complete circuit for one channel is shown in Fig. 10.

For any readers who would like to experiment with the gain block, a suitable PCB layout for a single unit is shown in Fig. 11. However, I would like to postpone further discussion of the use of the gain block (and the design of the PCB) until I describe the complete preamp later in this series.

Moving Coil Head Amps

To the great sorrow of those companies who had been making a good living from the manufacture of precision, light-weight PU arms, aimed at the increasingly light and free tracking moving magnet or variable reluctance PU cartridges, the more massive low-output moving coil units (which are more ideally mounted on the end of a short length of crowbar) have swept the ultimate-fi scene. This is main!y, I think, because of their more vivid and dramatic stereo presentation - though the $M M$ brigade are fighting back on this score and are narrowing the audio gap.

For the moment, MC cartridges are the choice of the critical users, and these mainly have a very low output
which is typically in the range $50-500 \mu V$ for a $1 \mathrm{~cm} / \mathrm{sec}$ recorded velocity. This level of output is too low for it to be used directly with a normal RIAA input stage, so a head amplifier is needed. This has to work with an input load impedance of typically 50 ohms, and must be designed for the lowest possible transistor and input circuit noise if it is to compete satisfactorily with the rather more mundane step-up transformer.

When head amps of this type were first employed, the low effective input noise resistance was achieved by putting a lot of small signal transistor stages in parallel, so as to reduce the overall input resistance. This was a bit inelegant as an approach, and now it is more common to choose an input transistor which has an adequately low base-emitter effective resistance on its own (these are often to be found among the plastic encapsulated small power transistors, in the $3-4 \mathrm{~A}_{\mathrm{c}}, 30-40 \mathrm{~V} \mathrm{~V}_{\text {ce }}$ range). The actual device type must be chosen with some care, from a manufacturer of known quality. I prefer Motorola, ITT or National Semiconductors, though this is not an exhaustive list. The device should also be tested before use, under the actual operating conditions.

The circuit should then be chosen to make the gain of the first stage sufficiently high that the noise contributed by later stage transistors can be neglected in comparison

Moving Coil PU Head Amp

The theoretical background for this circuit has been discussed in the main section of Audio Design, so all that remains to be done here is to give the practical details necessary to construct the project.

There are only two points that need to be made: firstly, the electrolytic capacitors used should be low ESR types; if you don't find these easy to obtain, then you could get away with using ordinary or tantalum types (whatever your convictions are) suitably bypassed
with unpolarised capacitors.
The second point concerns the earthing. We've shown an earthing point near the input. However, there are bound to be cartridges and/or systems for which use of this particular earthing point will cause massive hum loop problems, so we recommend that you tread very carefully on your choice of earthing. Remember that you are dealing with a very small signal!

The unit should be small enough to mount in the base of
most record decks. However, the magnetic field of the motor may just manage to cause problems too . . . In any case, be very.careful not to obstruct the suspension of the turntable and arm.

One final point is that you will need an on-off switch: to save the bind of having to switch the head amp, you could use a relay driven from the PSU of the pre- or power amplifier. Using a relay means that you isolate the head amp from the earth system on the main amp.

Overlay diagram for circuit of Fig. 12.
with the amplified signal. Additionally, the values of the resistors used in the circuitry should be kept as low as the circuit design can allow, and the transistors, especially the input one(s), should be operated at collector currents which will minimise $R_{b e}$ and 'shot' noise.

On the other hand, because the signal levels are so low, the harmonic distortion from such a stage can usually be ignored. This situation does not apply, however, to transient performance, so the stability margin of the negative feedback loop, if one is used, should be high. Also, perversely, the tonal characteristics of the components used, especially the capacitors in the signal line, seem to grow more important as the signal levels are reduced. So, the moral is to use the best quality components one can afford at this stage.

Having laid down these general guide-lines, the actual design of a good quality low-noise MC head amplifier is not too difficult, and I have shown a suitable circuit in Fig. 12, with a PCB layout for this in Fig. 13. Because of the very low signal levels involved, hum pick up is likely to be a problem in an 'integrated' system, so it makes life a lot simpler if one can design it so that the whole unit can be housed in a small screened box, separate from the main preamp, and isolated apart from the input and output signal connections. 'Single-point' earthing of the head amp circuitry is also very desirable.

The actual circuit in Fig. 12 is a very straightforward two stage voltage amplifier, using an input long-tailed pair of suitable PNP input transisotrs, biased to operate a 250 uA , which is near the optimum value for the devices choser. The second stage amplifier transistor (Q 3) is a very low noise small-signal type operated at 3 mA collector current (determined by R6). The overall gain is controlled to

Fig. 12 Moving coil cartridge head amplifier.
45 by the feedback resistors R5 and R4. The -3 dB point is set to 20 Hz (a very suitable value for record replay use) by C1. In order to avoid the possibly deleterious characteristics of capacitors in the signal path, the head amp uses a direct-coupled circuit, where the DC NFB also holds the output DC value to 0 V , plus or minus a few millivolts.

Metal film resistors, and appropriately chosen capacitors (low ESR types for C1, C3 and C4 and polystyrene foil types for C2 and C5) should be employed. Because the supply voltages for which the unit has been designed are $\pm 1.5 \mathrm{~V}$, it is possible to run the unit from a pair of alkaline manganese cells, or ordinary 1.5 V ' HP ' series batteries, of AA, C or D sizes (the bigger sizes will make for more economical running) which allows the unit to be separately powered and eases the task of getting a hum-free system.

electronics today international $=00$ a 5 Bile
 How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice

BEGWNERS GUIDE

Beginner's Guide to Basic Programming Stephenson
Beginner's Guide to Digital Electronics $\mathrm{E5}_{\mathrm{F} .35}$
Beginner's Guide to Electronics
Beginner's Guide to Integrated Circuits 55.35
Beginner's Guide to Computers
Beginner's Guide to Microprocessors

cookbooks

Master IC Cookbook Hallmark	$\mathbf{£ 1 0 . 1 5}$
Microprocessor Cookbook M. Hordeski	$\mathbf{£ 7 . 7 0}$
IC Op Amp Cookbook Jung	$£ 14.25$
PLL Synthesiser Cookbook H. Kinley	$£ 7.70$
Active Filter Cookbook Lancaster	$\mathbf{£ 1 3 . 4 0}$
TV Typewriter Cookbook Lancaster	$\mathbf{£ 1 1 . 1 5}$
CMOS Cookbook Lancaster	$\mathbf{£ 1 1 . 8 5}$
TTL Cookbook Lancaster	$\mathbf{£ 1 0 . 9 5}$
Micro Cookbook Vol. 1 Lancaster	$\mathbf{£ 1 5 . 3}$
BASIC Cookbook K. Tracton	$\mathbf{£ 6 . 0}$
MC6809 Cookbook C. Warren	$\mathbf{£ 7 . 2}$

ELECTHONICS

Principles of Transistor Circuits Amos
Design of Active Filters with experiments Berlin £11.30
49 Easy to Build Electronic Projects Brown
f6.00
Electronic Devices \& Circuit Theory Boylestad $£ 13.20$
How to build Electronic Kits Capel
£3. 55
How to Design and build electronic instrumentation Car

introduction to Microcomputers Daglecs

£7.20
Electronic Components and Systems Dennis
£15.00
Principles of Electronic Instrumentation De Sa
£11.40
Giant Handbook of Computer Sotware
f12.9
Giant Handbook of Electronic Circuits
£17.35
Giant Handbook of Electronic Projects
$£ 11.75$
Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray
£5.55

Basic Electronics Grob
£30.25
Lasers - The Light Fantastic Hallmark
£11.30
-2.75
Electronic Testing and Fault Diagnosis Loveday
£5.25
Electronic Fault Diagnosis Loveday
f6. 25
Essential Electronics A-Z Guide Loveday
£7.50
Mieroelectronics Digital 8 Analogue circuits and systems Millman f1270
103 Projects for Electronics Experimenters Minis
VLSI System Design Murroga
Power FETs and their application Oxne
Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
99.40

Electronic Dratting and Design Raskhod off
£12.85
VOM - VTVM Handbook Risse
$£ 8.50$
Video and Oigital Electronic Displays Sherr E28.85
Understanding Electronic Components Sincla f7.50
Electronic Fault Diagnosis Sinclair
f4.50
Physics of Semiconductor Devices Sze
E4.35
Digital Circuits and Microprocessors Taub
E3200
Active Filter Handbook
£7.60
Designing with TLL Integrated Circuits Texas Transistor Circuit Design Texas
£15.20
Digital Systems: Principles and Applications Tocci
£15.20
Master Handbook of Telephones Traister
f 12.95
How to build Metal/Treasure Locators Traister
${ }_{99}$ Fun to Make Electronic Projects Tymony
33 Electronic Music Projects you can build Winston

COMPUTERS \& MICHOCOMPUTERS

BASIC Computer Games Ahl
From BASIC to PASCAL Anderson
Mastering Machine Code on your ZX81 T. Baker £7. 25
UNIX - The Book Banaham
Z80 Microcomputer Handbook Barden
Microcomputer Maths Barden
Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bell
Visicalc Book. ATARI Edition Bell
introduction to Microprocessors Brunner
Programming your APPLE 11 Computer Bryan
Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A/O \& D/A Carr $£ 8.75$

Musical Applications of Micropracessors Chamberlain
71190
11.90
$£ 9.90$
f15.55

30 Computer Programs for the Home Owner in BASIC D. Chance
Microcomputers Dirkson
f23.00
for Beginners Dunn
Microcomputers/Microcomputers - An Intro Gioone $\quad \mathbf{£ 1 . 8 0}$
Troubleshooting Microprocessors and Digital Logic Goodman Getting Acquainted with your VIC 20 Hartnel Getting Acquainted with your ZX81 Hartnell Let your BBC Micro Teach you to program Hartnell Programming your ZX Spectrum Hartnell The ZX Spectrum Explored Hartnell
How to Design, Build and Program your own working Computer System Haviland
BASIC Principles and Practice of Microprocessors Heffer Hints and Tips for the ZX81 Hewson
What to do when you get your hand on a Microcomputer Holtzman 34 More Tested Ready to Run Game Programs in BASIC Horn Microcomputer Builders Bible Johnson
Digital Circuits and Microcomputers Johnson
PASCAL for Students Kemp
The C - Programming Language Kernighan
COBOL Jackson
The ZX81 Companion Maunde
Guide to Good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nicholas
Exploring the World of the Personal Computer Nilles Microprocessor Circuits Vol. 1. Fundamentals and Microcontrollers Noll
\square Beginner's Guide to Microprocessors Parr
Microcomputer Based Design Peatman
1130
Digital Hardware Design Peatman
igitalun
Blot
Handbook of Adyanced Robotics Safford
1001 Things to do with your own personal computer Sawusch
Easy Programming for the ZX Spectrum Stewart
Microprocessor Applications Handbook Stout
andbook of Microprocessor Design and Applications Stout Programming the PET/CBM West
An Introduction to Microcomputer Technology Williamson Computer Peripherals that you can build Wolfe
Microprocessors and Microcomputers for Enginecring Students and cians Wooland
9710

REFERENCE BOOKS

Electronic Engineers' Handbook Fink
Illustrated Dictionary of Microcomputer Technology Hordeski
Handbook for Electronic Engineering Technicians Kauffman
Handbook of Electronic Calculators Kauffman
Modern Electronic Circuit Reierence Manual Marcus
International Transistor Selector Towers
International Microprocessor Selector Towers
International Digital IC Selector Towers
international Op Amp Linear IC Selector Towers
Ilustrated Oictionany of Electronics Turner
£56.45
IDEO
Servicing Home Video Cassette Recorders Hobbs
Complete Handbook of Videocassette Recorders Kybett
Theory and Servicing of Videocassette Recorders McGinty
Beginner's Guide to Video Matthewson
Video Recording: Theory and Practice Robinson
Video Handbook Van Weze

Please send me the books indicated. I enclose cheque/postal order foi E. Prices include postage and packing I wish to pay by Access/Barclaycard. Please debit my account.

\square

\qquad
\qquad
\qquad
\qquad

NEW! OUT SOON

MINIDRUM SYNTH

Why beat about the bush when you could be beating upon our latest up-beat offering? Design by A.G. Atkins; development by Phil Walker.

Since commercial drum machines first appeared in the late ' 70 s there have been numerous designs published for the home constructor. Some of them were very good, some were not too bad, and some appeared in magazines other than ETI, but almost without exception they were comparatively complex and cost quite a lot to build. Whilst the little unit described here cannot claim as many facilities as some of its illustrious forbears, it does offer good performance at a very low price, and it is very easy to build:

The circuit is that of a manually operated, single channel drum synthesiser. The input sensor consists of a small loudspeaker operating as a microphone, the circuit being arranged so that a light tap on the loudspeaker will cause the synthesiser to produce a drum beat. The circuit includes controls for the adjustment of pitch, decay
time and output level and features two basic pitch modulation envelopes. With SW1 open, the pitch remains constant throughout the drum beat, while with SW1 closed, the pitch falls sharply as the beat decays. With short decay times this latter effect produces a very natural sound, while with longer decay times the sound becomes less drum-like but if anything more interesting, opening up lots of possibilities for off-beat effects.

Construction

Construction is pretty straightforward since everything except the potentiometers, the switch, the input sensor, the battery, and the output connector is mounted on the PCB. The IC can, if desired, be fitted into a socket, but however you do it make sure it's the right way round. The same goes for the electrolytic capacitors (C1, 2, 3, and 6) the two diodes, and of

HOW IT WORKS

The input sensor can be almost any small loudspeaker. Its output is fed to the amplifier formed by Q1 and its associated components. The amplified signal is converted into pulses by Q2 which then charge up C4. This charge leaks away via R6 and RV1, the latter setting the decay time. Q3 acts as a buffer, passing the voltage on $\mathbf{C 4}$ to Q 5 via R9. IC1, the $\mathbf{5 5 5}$ timer is connected to form a free-running oscillator whose frequency is controiled by RV3. The oscillator output is fed via R10 to the base of Q5. Q5 acts as a crude modulator, the output from its collector taking the form of a series of pulses whose amplitude is determined by the voltage on C4. These pulses are then fed to the output via D2 and RV2.

If SW1 is closed, current flows from the collector of Q4 into the oscillator circuit. The magnitude of this current is roughly proportional to the voltage on $\mathrm{C4}$, and causes the oscillator frequency to increase as C4's voltage increases and to decrease when it falls. Thus; as the charge on C4 leaks away after each trigger pulse, the oscillator frequency will drop from its initial value.

Fig. $2($

course all the transistors. No case has been described since there are no real layout problems and almost anything you can come up with should be suitable. One possibility, however, is to mount all the bits in a drum-shaped container with the sensor held against the underside of the upper surface. The instrument can then be 'played' by tapping on this surface with a pencil, or your fingers, or even a drum-stick! If
preferred, the electronics can be mounted in a more conventional case and the sensor connected via a suitable length of lead. Ordinary twisted flex should be fine; since the sensor has a very low impedance there should be no problems with noise pick-up. SW1 can be any single pole switch, and if the battery is to be permanently installed in the case you may wish to include an on-off switch.

BUYLINES

Absolutely no problems at all with this one. All of the components, semiconductors included, are available from any number of regular advertisers, and the PCB is, as always, available through our PCB service (see page 89).

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

BUILD A BETTER AMPLIFIER!

How can you own a top class HiFi amplifier, of comparable standard to Naims, Meridians, Quads etc., for an outlay of less than $£ 250$? - Simple! Build it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "potted" as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will give years of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your system. E.T.l. said, of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your syster in their review of the CK1010/1100: "I can say no more than that for £250 it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?
PRICES
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes power from any CK power amp or separate p.s.u. type P.S.K
c92.00
CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
$£ 121.00$
CK1080 - STEREO POWER-AMPLIFIER 80 watts R.M.S./Chanel
£134.00
CK1 100 - STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
MC2K - Moving coil add on kit for CK1010

£25.00
20.00

CRIMSON also supply power amp, pre amp and electronic crossover modules, power supplies and hardware - too much to list here - but on receipt of an S.A.E. we will be happy to supply full details.
TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd, 325 Edgeware Road, London.

MANUFACTURERS OF PROFESSIONAL, DOMESTIC \& INDUSTRIAL AMPLI ICATION
PHOENIX WORKS, 500 KING STREET, LONGTON, STOKE-ON-TRENT, STAFFORDSHIRE. ST2 1EZ 玏 0782330520

ALARM EXTENDER

Is your alarm system the talk of the neighbourhood? Fit ETIs simple add-on unit and protect your social conscience. Design by S.W. Terry.

Many of the alarm systems currently in use, whether commercial designs or home-made units, have an ouput that remains on continuously once triggered, stopping only when reset. There is obviously a danger with such alarms that they will be triggered when you are absent for a long period, initially drawing attention as desired but going on to cause considerable anoyance to the neighbours. At its worst, this could result in your facing a little legal unpleasantness. One way of overcoming the problem is to have an alarm which sounds only for a pre-determined time, long enough to attract attention but not so long that it becomes a nuisance to those nearby.

The ETI Alarm Extender provides this facility and is designed so that it may be easily fitted to
existing alarm installations. It will work from any supply voltage between five and fifteen volts, enabling it, in most cases, to be connected directly to the existing supply and making it ideal for use with car alarm systems. With the values of R1 and C1 given the alarm will sound for about twenty minutes, but this may readily be adjusted to suit the requirements of the user.

Construction

Everything except the relay is mounted on the PCB. The three ICs are CMOS types and are best mounted in sockets rather than soldered direct. Make sure that they are inserted the right way round, and similarly take care with Q1, C3, and D1. Note that C3 is quite close to the mounting holes at that end of the PCB, and that if a physically

HOW IT WORKS

IC1 is a 4047, a CMOS multivibrator which can operate as a monostable, but which is here used as a bistable, its frequency being set by R1, C1. IC2, a 4020, is a 14 -stage ripple binary counter which counts the pulses generated by IC1. When the ALM input is low, IC3b pulls pin 4 of IC1 high which prevents it oscillating, while IC3d holds pin 11 of IC2 high, thus holding its output low.

When ALM goes high, the relay is turned on via IC3b, IC3a, and Q1. IC1 and IC2 are enabled and IC1 starts supplying pulses at the rate of about 12 Hz (assuming the values of R1, C1 given) to IC2. After 16,384 pulses have been received, the Q14 output (pin 3) of IC2 goes high, turning off the relay and preventing further input pulses from reaching IC2.

The period can be adjusted by altering the values of $C 1$ and $R 1$, and is equal to

36,045 R1 C1 seconds.
The output time can also be halved by using Q13 (pin 2) instead of Q14 on IC2.

Fig. 1 Circuit diagram of the alarm extender

Fig. 2 Component overlay for the PCB
large capacitor is used here you may need to pass the mounting bolts or whatever through the holes before fitting it.

No case has been shown since it is assumed that the unit will be fitted inside an existing alarm, but if this proves impractical almost any small case would be suitable. Note that, if the alarm is fitted outdoors, the case and inter-unit wiring should be made as weathertight as possible. The relay can be mounted on a simple bracket, or even set in Araldite if you prefer.

Having built and installed the PCB and relay, the final step is the modification of the existing alarm wiring. If the alarm circuitry operates on a voltage higher than fifteen volts (you did check the alarm voltage before commencing construction, didn't you?) you will have to arrange a suitable dropper circuit. This should not present too many problems because the Alarm Extender is fairly tolerant of supply voltage variations. Aim for a supply voltage of rather less than fifteen (eg, twelve volts) so as to allow some room for manouevre. If the alarm voltage falls within the range
five to fifteen volts and is stabilised there are no problems and you can connect the Alarm Extender directly.

Moving on to the input and relay connections, you will have to locate within the existing alarm wiring the output lead. Depending on the type of alarm you have, this may be the + ve feed to the relay which activates the output transducer (bell, siren, etc.), or it may be the direct connection between a semiconductor switching device and the output transducer. Again, you should check this before commencing construction since we cannot guarantee that the alarm extender will work with ALL alarm systems. Having located this lead (and only after switching the alarm off!), break it and take the two ends to the two normally open contacts on the relay of the alarm extender. Identify which of these leads comes from the alarm trigger circuitry and run a further lead from it to the ALM input on the alarm extender. Note that, if the alarm runs from a
high voltage and you have had to drop the supply rail before connecting the alarm extender, you may also need to insert a further resistance in series with the ALM input (or to increase R2 in value). The unit is now ready for testing.

PARTS LIST

RESISTORS (all $\frac{1}{4} \mathrm{~W}, \mathbf{5 \%}$)	
R1	330k (see text)
R2	10k (see text)
R3	100R
R4	2k2
CAPACITORS	
C1	100n (see text)
C2	10n
C3	100u tubular electrolytic 16 (min) working
SEMICONDUCTORS	
IC1	4047
IC2	4020
IC3	4011
Q1	BD139
D1	1N4001
miscellaneous	
185R, 12V relay (Varley VP2 or similar);	
PCB; two 14 pin and one 16 pin DIL sockets; mounting bolts, spacers, etc.	

BUYLINES

> A suitable relay is available from Maplin and ever, thing else is just too available for words. For the $P C B$ see page 89 .

You win every time!

When you get this NEW \& FREE project from GSC

NEW: an exciting range of projects to build on the EXP300 breadboards. NOW anybody can build electronics projects; it's as easy as A.B.C. with G.S.C.!

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC. Each hole is identified by a letter/number system. EACH NICKEL SILVER CONTACT CARRIES A LIFE TIME GUARANTEE. Any Experimentor breadboard can be 'snap-locked' with others to build a breadboard of any size.

> 1. EXP 325 £2.00 The ideal breadboard for 1 chip circuits. Accepts 8,16 and up 1022 pin 1 cs. Has 130 contact points including two 10 point bus-bars.
2. EXP $350 £ 3.45$ Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 oin ics. Has 270 contact
points including two 20 point bus-bars.
3. EXP $300 £ 6.00$ The most widely bought breadboard in the UK. With 550 contact points. two 40 point bus bars. the EXP 300 will accept any size IC and up 106×14 pin
DIPS. Use this breadboard with Adventures in DIPS. Use this breadboard with Adventures in Microelectronics.
4 EXP 600 £7.25 Most MICROPROCESSOR projects in magazines and educational books are built on the EXP
800 .
5. EXP 650 £4. 25 Has $6^{\prime \prime}$ centre spacing so is perfect for MICROPROCESSOR applications.
6. $\operatorname{EXP} 4 \boldsymbol{B} £ 2.50$ Four more bus-bars in "snap-on" unit.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.
7. PROTO-BOARD 6 KIT $£ 11.00630$ contacts, four 5 way binding posts accepts up to six 14 -pin Dips.
8, PROTO-BOARD 100 KIT Complete with 760 contacts accepts up to ten b-pin Dips, with two base. Large capacity with kit economy.
£14.25

FREE project:

AUTO-DICE

Liven up your board games with this sophisticated electronic dice circuit! When the 'throw' switch is pressed, a numerical display flashes up rapidly changing numbers. After a few seconds, the 'rolling' stops, and the final result is displayed; any number, randomly selected, from 1 to 6 . A few seconds later the display turns off to conserve your battery, letting the games go on uninterrupted for weeks!

HOW DO YOU MAKE IT?

Our FREE project sheet gives you a large, clear diagram of the components layed out on an EXP 300 breadboard. Each component is labelled, and the values are given in a component listing. Even the 'row and column' lettering of our EXP 300 is shown to make the ocation of the correct holes, in which to push the components, easy to find. There's no soldering involved; it couldn't be easier! As an extra bonus, there's a full circuit description, and the details of a regulated power supply on the other side of the sheet.
"Clip the coupon" and get your FREE project sheet with each EXP 300 bought. AND a free catalogue! Just ask about our other free projects too.

For further details of our FULL PROTO-BOARD RANGE, please send for our free catalogue.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd. Dept. 9B.

Unit 1. Shire Hill Industrial Estate.
Saffron Walden. Essex CB11 3AQ
Telephone: Saffron Walden (0799) 21682
G.S.C. (UK) Limited Dept 9B, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB113AO Prices include P \& P and 15% VAT

[^3]Address
I enclose Cheque/P.O. for $£$ \qquad or debit my Barclaycard/Access/ American Express card no. \qquad expiry date
FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service
Telephone (0799) 21682 and give us your Barclaycard, Access. American
FOr FREE
Express number and your order will be in the post immediately
tick box

New cats for old

SEND US THE COVER FROM ANOTHER COMPONENT SUPPLIERS CURRENT CATALOGUE, PLUS A 4Op STAMP, AND WE'LL SEND YOU A FREE COPY OF THE LATEST (SUMMER) AMBIT CONCISE COMPONENT CATALOGUE. ALTERNATIVELY YOU CAN SEND 80p TO THEADDRESS BELOW.......

* 144 PAGES 3 E1 DISCOUNT VOUCHERS

 MANY PRICE REDUCTIONS FPICE ON THE PAGE

* DIRECT FROM.ин

-If - IN INTERNATIONAL

200 North Service Road Brentwood
Essex
CM14 4SG

Telephone 0277-230909
Telex 995194 AMBIT G Data 0277-232628 REWTEL \gg 300 BAUD DUPLEX

MACHINE CODE PROGRAMMING

In this second part of this series, Bob Bennett looks for implied and immediate addresses on the computer's memory map.

HEX
DECIMAL

Whereabouts in RAM your machine code program will go depends on the memory structure of your computer. A look at the computer's memory map will show the areas in RAM reserved by the computer for 'housekeeping' duties. These duties consist of keeping tabs on everything that happens whilst the computer is switched on. Figure 5 shows a portion of a memory map for no computer in particular; how it works is fairly simple, but does require a lengthy explanation.

The display file is shown as occupying 704 addresses, each of one byte: these 704 bytes store information relating to the picture on the screen. The working area of the screen in our example consists of 32 columns by 22 rows, and 32 times 22 equals 704 . The reason I referred to working area is that there are usually two rows at the bottom of the screen reserved for the input data. As a rule the top left hand corner of the screen is position 0,0 , and this is the first address in the display file. Suppose that you printed the letter A in position 0,0: the code for letter A would be stored in address 16384.

The print buffer is merely a temporary store for data going out to a printer, but this area can often be used by the programmer.

Any good computer handbook has a section devoted
to the system variables, which are a series of reserved addresses usually given short names. These addresses contain information, dealing with which comprises the major portion of the housekeeping I mentioned before. Each system variable consists of one, two, or very rarely, three or more bytes. If there is only one byte then the address will usually contain a number, the value of which may determine the action to be taken by the computer. The Spectrum, for example, has a single byte system variable called PIP that contains a number which determines the length of the keyboard click.

If there are two bytes, then the two consecutive addresses of the system variable themselves hold an address. This is usually the starting address of an area in RAM where a particular variable is stored. For example, when you assign letters or strings as variables, the information relating to those variables is held in an area of memory. If you had a system variable called VARS, this would consist of two bytes, and would hold the starting address of that area.

The area of RAM, from the system variables onwards, is the part that is of primary interest to machine code programmers. As your list of variables is added to, or subtracted from, then the area it occupies can fluctuate. This
is true of the area taken up by your BASIC program, as you add or delete lines. Areas in RAM can be reserved for machine code programs, and there is usually plenty of information around telling you how to do it for your particular computer.

How . . .

Once you have found out where to put your program, the next task is to get it there! There is really only one way it can get there, but there are several methods of doing it (that's a bit like saying 'there is only one road to Rome, but there are many means of transportation'). The program is POKEd into addresses, byte by byte. Starting with the first address, and the first byte, the addresses are incremented after each POKE.

If you have never met POKE before it's how you get information into RAM. Consider this example of a direct command, POKE 32000,119 decimal: this means place the decimal number 119 into address 32000 . If your computer allows you to use hex direct then the command could be POKE 32000,77 hex. The complementary command to POKE is PEEK, so, after entering the above example, the instruction PEEK 32000 would cause the number 119 decimal to be printed to the screen. Of course, you can only POKE information into RAM, but you can PEEK at either RAM or ROM.

Probably the most widely used method of entering machine code programs into home micros is via a hex loader. If your micro doesn't support hex direct then the hex code has to be entered as a string, sliced and then converted to decimal before POKEing into the addresses. Otherwise, the decimal conversion can be left out. Another method might use the READ/DATA statements if your computer has them.

Assemblers and compilers can also be used to get your program into memory. Taking the assembler first, this is a program that could either be resident in ROM or loaded in via tape, etc. This will take your assembler language statements and convert them into machine code. Before the program can run, however, the statements are checked for validity, and an opportunity is given to edit the program. A compiler is a program, usually loaded into the computer, which converts a higher level language, such as BASIC, into machine language. If the last two methods have to be loaded in then they do use up memory, which is usually a precious commodity. So how the program gets into the computer is a combination of personal preference and what your computer will support.

What . . .

The instruction set, mentioned last month, is where you will find all the instructions you will use in machine code programing. Ideally they will be in tabular form, giving both decimal and hexadecimal notation, and sometimes you might find the binary form given as well. Also they should include the assembler mnemonics, and the number of bytes per instruction. Those of you with Sinclair micros have everything that you need, apart from the byte count, in the handbook. Because the instruction set for the $Z 80$ is very comprehensive 1 will be using that for the examples I give. Don't worry if your computer doesn't have a Z80 CPU, the same principles will apply.

Don't Forget The Post Code!

Before very long 16-bit micros will be as common in the home as the eight-bit ones are now, but until then I will be dealing only with the eight-bit variety. Addressing modes are simply a way of getting round the fact that ad-
dresses require 16 bits, but our data word is only eight bits long. The first addressing mode $l^{\prime} \| l$ explain is the implied because it is the simplest, and only one byte long.

Sometimes known as the register direct, the implied mode is so named because the data source and destination are implied in the instruction. For example, to load the B register with the contents of the C register requires the instruction 41 hex in the Z80 set. Here the source is the C register and the destination the B register, this could be shown as $\mathrm{C} \longrightarrow \mathrm{B}$. Incrementing and decrementing registers, and No OPeration and RETurn instructions use the implied mode.

NOP, or no operation, is self explanatory, nothing happens (nothing, that is, except a fractional waste of time). This is a very useful instruction that could be used in a timing loop, or to occupy addresses that you intend to overwrite with data later on in the program. Or perhaps you haven't quite decided what to do in one patch of the program. An approximate number of NOPs will reserve the space for you until you have made up your mind. As for the RETurn, this is perhaps the most important instruction you will use. Without it, in some computers, you could be stuck in an infinite loop. In its simplest form, it can be regarded as an instruction to return to the place from whence you were sent - more will be explained later.

All simple register to register transfers use the implied mode, but as an exercise see how many of these instructions you can find in your set. The golden rule is that there is only byte in the whole instruction.

For Your Immediate Attention

The immediate mode is the next easiest addressing mode that you can use. As with the implied, the immediate mode does not involve any addresses, but there are now two bytes per instruction. The instruction 3E hex in the $Z 80$ set means load register A with the number that follows; in the 6502 set the same instruction would be A9 hex. This might have the mnemonic Ld A,n, or M $\rightarrow \mathrm{A}$, or even MVI A, D8; note well that the names are not CPU instructions; they are just humanised memory aids. That last mnemonic sums everthing up nicely because it means, move immediate (ly) into A a data byte of eight bits. Other instructions of this type include add n to a patricular register or subtract n from a particular register. Again as an exercise, pick out all the immediate mode instructions out of your set.

Now that we have reached two byte instructions, I'd like to clear up a point that seems to confuse newcomers to machine code programming. The idea that the same byte can represent two different things might seem at first glance to be perplexing, but stop and think. Let me take as an example the instruction above, load A with n. This could be written in a Z80 program as 3 E , 3 E (or for the 6502, A9,A9). What happens is that when the computer gets to the first 3 E it regards it as an instruction, an instruction to load the byte that follows (which also happens to be 3 E) into register A . What the second number stands for is up to you, as the programmer, to decide. It may be just a number you want to manipulate, or it could be the code of a character you want to print to the screen. Whatever, the computer recognised the first 3 E (or A9), as an instruction requiring two bytes. After carrying out that instruction the computer would carry on with the rest of the program from the instruction which came after the second bytre. Every instruction belongs to a class that requires one, two, or more bytes for proper execution. It is the programmers responsibility to ensure that the computer starts off in the right place!

ETI

TELETEXT KIT

This unit will make your TV fully remote control (infra-red) and bring you closer to the amazing world of teletext. The kit can also be updated to incorporate full Prestel, and with a keyboard this can give you full message facilities for ordering foods or sending and receiving messages (E.G.) Booking your Holidayst
Wersonal computer.
Even without the Prestel option, Telesoftware from the Teletext pages free!
The full features of Teletext, including subtitles are all included in the basic kit: An attractive stylish case is available to complement the finished kit.

Basic Teletext Kit (no box) $£ 130+$ VAT P/P $£ 2.50$ with box 144.95 + VAT P/P £ 3.00
box by itself $£ 14.95+$ VAT P/P $75 p$

SEE US AT

 THE PREMIER SHOW

FOR THE TRUE ELECTRONICS ENTHUSIAST Cunard International Exhibition Centre November 25, 26th, 27 th

ANTEX				YX
Soidering Irons			Iso-tip Cordless tron	31-90+
XS25	25W	$5.46+$	Miniature low voltage	
CX	17W	$5.30+$	soldering station	13.95+
C"iron"	15W	$5.20+$	Oryx50 50W temp co	d 15.50
CCN "ceramic"	15W	$5.00+$	Oryx super 30	$5.90+$
Wide range of bits and elements in			All irons are 240 V	Earth
Soldering iron stand 2.40			The temperature contr	iron can
We stock multicore solder for normal			be controlled within ture range from $200^{\circ} \mathrm{C}$	empera- $0^{\circ} \mathrm{C}$

COMPONENTS EEDGE CONNECTORS

Device	Price		2.98
Z80A	3.20		ZX81 E.C.

We also stock 74 series 74 LS , C mos, transistors, capacitors, resis. tors, LED's, zeners, diodes, jack plugs, mains plugs XLR plugs, cannon plugs, arrow switches BNC connectors, reducers, photolak, developer, PC board, sensitive \& normal, boxes, wire cutters, strippers, Edge connectors, pots, batteries, digital pulsers, logic probes, proto-boards, vero board.
This is just a small sample of what we stock, if you like to see more send $£ 1.00$ to us for our NEW 1983 CATALOGUE

BOOKS

[^4]A-Z Transistor Equivalent book (2 Volumes)
The 9900 Family Data Book
0.00

The Opto-Electronics Data Book 4.00
The Bipolar Microcomputer Databook 4.50
The Interface Circuits Data Book $\quad 7.00$
The TTL Data Book
MDS Memory Data Book
The Linear Control Circuits Data Book $\quad 3.95$
The Voltage Regulator Data Book 4.50
The Power-semiconductor Data Book 9.00
*TTI Data Book Volume I 9.00
*TTI Data Book Volume II 8.00
301 Circuits
Towers Transistor Equivalent
5.00
9.50
$-\quad 9.95$
tinear 10 Selecto
E Towers Equivalent book
Why not try our mail order service, It's fast and efficient. We take Barclay, Access, Am Exp, Diners or Cheque.
Cheques made payable to Bradley Marshall Ltd.

Wabash soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00 5 inch SSDD £19.25 5 inch DSDD £21.00 5 inch DSQD £26.35
8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total. Access \& Visa welcome. 24 hr service on (054 422) 618. Government \& Educational orders welcome, £15 minimum. Trade accounts operated, 'phone or write for details. Happy Memories (ETI), Gladestry, Kington, Herefordshire. HR5 3NY. Tel: (054 422) 618 or 628

BUY NOW WHILE STOCKS LAST!

MULTIMETER SPECIAL Russian type U4324 d.c Voltage $0.6,1.2,3,12,30,60,120,600,1200$ a.c. Voltage: 36, 15. 60, $150.300,600,900$ d.c. intensity m/a: $\begin{aligned} & \text { a.c. } \\ & \text { d. }\end{aligned}$ d.c resistance: $0.2,5,50500,500 \mathrm{kOhm}$ a.e. level dB: 10 to $+12,20,000 \mathrm{OPV}$.

FANTASTIC SPECIAL PRICE: £12.00 including P/P and VAT

SPECIAL RESISTOR
makes easy work of establishing and displaying on the oscilloscope frequency responses of equalisers, active fliters, crossover networks audio amplifiers, etc
professional appearanerator: frequency range 0.2 Hz to 200 KHz
save pounds and enjoy at iow cost
function generator: 0.2 Hz to 200 KHz with linear setting over 6 ranges e wavitorms: sine, square 5 VPD ; square wave in 4 stepa from $12 \mathrm{KHz} \otimes$ sing \& triangle continuousiy ajusiable from

Prices are subject to 15% VAT + VAT (p \& p £2.50)

FREL LTD.

ELECTRONIC DESIGN \& MARKETING P.O.BOX 10 - LUDLOW SHROPSHIRE SY8 1DB TELEPHONE : 05845620
vow. PACKS value 10 F -1 M
30 onf tor $£ 3.00$
$1 / \mathrm{WW}$.10 ea.value 10 R -10 M off for E 500 610 off for $\varepsilon 5.00$
$1 / 2 \mathrm{~W}$ Sea value $2 R 2$
$-2 \mathrm{M}_{2}$ -2 ML
$3 / 2 \mathrm{of}$ for $£ 350$
$1 / \mathrm{W}$. 10 ea value $2 \mathrm{CP}-2 \mathrm{M} 2$
730 off for E 6.00

These very high quality British made two pin Europeanadap tors are idea! for driving Radios, cassette recorders, TV games, calculators etc The adaptors fit in the UK shave
REF D.C. Voltage Current $1+10+100+$ $\begin{array}{lccccc}\text { EOB } & 4.5 \mathrm{~V} & 200 \mathrm{~m} / \mathrm{a} & \text { 50p } & \text { 45p } & \text { 32p } \\ \text { EM3 } & 6 \mathrm{~V} & 200 \mathrm{~m} / \mathrm{a} & \mathbf{1} 1.00 & 80 \mathrm{p} & 55 \mathrm{p} \\ \text { EO9 } & 6 \mathrm{~V} & 400 \mathrm{~m} / \mathrm{a} & \mathbf{£ 1 . 5 0} & \mathrm{\Sigma 1.25} & 85 \mathrm{p}\end{array}$ (Postage \& Packing: 45 p per adaptor or $£ 1.60$ per 10 £4.50 per 100)

	CENTRONICS 306 LINE PRINTERS	
Calcomp 563 drum		
platter XY plots up to $31^{\prime \prime}$		
Immaculate condition		
5 Volt 5 Amp Reg Module.		
The perfect basis for your custom power sup-	professional fast	FLOPPY DISC DRIVES
ply. ONLY E2.50p plus	compact line-printer. 80	Fantastic MEMOREX
50pp\&p.	columns, 120 char/sec. Paratiot i/f. Quality at a	550 8" $^{\prime \prime}$ discs mounted in
$12^{\prime \prime}$ display scope. Neat Unit but no data hence	silty price. Vertical format	attractive case with
$\text { only } £ 49.00 \text { p plus } £ 9.50$	unit. To inc. operations	power supply and fan.
p\&p.	manual. ONLY £129.00.	Shugart standard 50 way
DRE 4000A 5Mbyte hard	Carriage (England)	interface. Space for second drive. £149.00
disc drives brand new	(230 pages) £10.00.	(carr. E9.50).

MAWSON ASSOCIATES
 124 Lennard Rd, Beckenhem, Kent BR3 10P

WE ALSO BUY COMPUTERS
AND COMPUTEQ PEAIPHERALS
01-778 3000
Caflers wetcome by appointment

Please add 15\% VAT to the above prices
MARCO TRADING, DEPT. ETI
THE MALTINGS, HIGH STREET, WEM, SHROPSHIRE SY 4 SEN All orders despatched by return of mail. Tel: (0939) 32763

SY4 SEN.

last

 compact line-printer. 80 columns, 120 char/sec. silly price. Vertical format unit. To inc. operations manual. ONLY £129.00. Carriage (England) £17.50. Tech manual 1230 pages) f10.00.
MULTISWITCH

Light seeks switches; in fact, lots of switches: object, turning on (and off)'. Bright idea by D J Rayner; development by Dave

Bradshaw.

Have you ever wished you could have extra light switches controlling the same light, yet baulked at the idea of ripping out your plastering to install those four-way mains cables that this necessitates? Figure 1a shows what would be involved in wiring up such a system in the conventional way.

Never fear, help is at hand, in the form of the ETI Multiswitch. The equivalent circuit diagram is shown in Fig. 1b. In fact this diagram
doesn't show all the unit's advantages; here are a few more: - all wiring is at earth (or +5 V relative to earth) so there's no need to use mains cable. You can use the thinnest cable you can get hold of, so it can be concealed fairly easily without the need to chase it into the wall;

- similarly, the switches do not have to be mains-rated, although you can leave your existing switches in place and use them;
- you can have up to eight
switches all controlling the same light, and you can add or remove switches without having to alter any of the rest of system;
- finally, as the light can be switched on and off from lots of different positions, it's likely to be switched on and off quite a lot! Zero voltage switching can improve bulb life dramatically under these circumstances, and so the unit has been designed to allow the light to come on only when the line voltage is close to zero.

Fig. 1a Ah, in the good old days this was the circuit you'd have to use to switch a light from more than a couple of switches; it was a good circuit - it kept many a plasterer in gainful employment, not to mention the copper mills . ..

Fig 1b ... then those young heathens from ETI came along and designed a thingummy that didn't require big thick wires to be buried in the wall - such is progress.

Fig. 2 Circuit diagram of the thingummy.

The idea for this unit germinated when it was noticed that the Karnaugh map required for such a unit was exactly the same as that for a parity checker, ie the output should change state when, one and only one of several inputs changes state (ie, a switch goes from open to closed or vice-versa).

Unfortunately, there is no readily available CMOS parity checker (at least, not that we could find), and therefore the circuit had to be implemented using TTL. However, once it was decided that a PSU had to be designed, it was noticed that for very little extra in the way of components, the unit could also be made to perform zero voltage switching, as mentioned already.

Construction

Not very much needs to be said about the construction of the PCB itself, though it should be pointed out that mains is present on about half of the board, and it should be accorded with suitable respect. You can finish it off by installing it in a suitable plastic or metal case note that if you use a metal case it must be earthed. Make holes at opposite ends for the mains cables and the switch wiring.

Installation

The unit is intended to be installed well out of the way of tiny,

IC1 is the parity checker. All inputs are pulled high by R1 to 8, unless any of the switches SW1 to 8 are closed. Fewer switches may be used, and unused inputs left unconnected. We have left you the option of using either even or odd parity outputs, so that you can arrange for the lights to be either on or off with all the inputs high.

If the parity is odd, then the even output from IC1 will be low, the base of Q1 will be pulled low via D1 turning it on, and the LED in IC2 will be extinguished, so that SCR1 will also be off.

The extra circuitry to detect zero voltage crossing consists of D2, D3 and R11. When no current is flowing from BR1, D3 frees the negative output of BR1 from remaining at the voltage at the negative end of C 1 . Thus the negative output voltage from BR1 will rise to the positive supply voltage, pulled up by R11. Q1 can only turn off when this voltage is close to the positive supply voltage (and when the even output of IC1 is high). When Q1 turns off, the load will be energised via IC2 and SCR1.

If you need to drive only a very small lamp, you could drive it directly using just IC2, and omitting SCR1. However, this risks blowing IC2 should the bulb blow (it's not uncommon for light bulbs to go momentarily S / C when blowing).
RESISTORS (all $\frac{1}{4}$ W 5\% unless stated)

R9	by 1 ko
R10	1 ko

R10 270R
R11 470R, $\frac{1}{2} \mathrm{~W}$
R12 56R
CAPACITOR
C1 $\quad 470 \mu$ 16V PCB type

SEMICONDUCTORS

IC1	74LS280
IC2	MOC3020 opto-
	triac
IC3	7905 regulator
	$(-5 \mathrm{~V})$
Q1	BC478 or similar
D1, 2	1N4148 or similar
D3	1N4001 or similar
BR1	1A 50V bridge
	rectifier
SCR1	400V 4A(min) triac
	TIC246D or similar

miscellaneous
Transformer (mains to $9 \mathrm{~V}+9 \mathrm{~V}$, 3VA
total, PCB mounting, see Buylines);
20 mm fuse (0 A 5 max) plus PCB
mounting holder; PCB-mounting screw terminals, vertical (2 off); PCB; case; veropins for switch connections; switch to choice (see text).

Fig. 3 Overlay diagram of the thingummy. Note that R11 gets a little warm and should be mounted standing slightly proud of the board.
inquisitive fingers, and it is not suitable to be treated as anything but a piece of electrical wiring hardware. The screw terminals are not intended to support either the weight of the unit, or of a light fitting, etc. If you do use the unit
with flex, rather than fixed cable wiring, then you must anchor the cable in some way, by using suitable cable glands for instance. Fig. 1b shows the wiring diagram if you're using the unit in a new system; alternatively, you can
wire up an existing two-position circuit (provided it's in good condition) as just one switch, by earthing one end and connecting the other as an input to the Multiswitch.

THE
 VICTORY ORGAN

* Exciting range of authentic voices
* Preset sounds-Piano, Harpsichord, Hawaiian Guitar (with glide), Banjo (with repeat), Accordion
* 16 modern rhythms with superb sounds including handclap
* Full range of 'Easi-Play' features * Custom Programmed ROM
* Walking Bass on Lower Manual and Pedals
* Real wood veneer cabinet with̀ American walnut finish
* The only organ with update facilities for synthesizer and "add-a-chord" unit
* Starter kit from $£ 98.80$ + VAT
\star Full kit $£ 280.54+$ VAT Carriage extra on kits

Send for a demonstration tape today only $£ 1.95$ inclusive. Hear the difference yourself.
Full details \& specification on request

OEM USERS

Pantechnic present the most adaptable high powered amplifier ever. FETSYSTEM AMP
Features:

- HIGH POWER. 1.2KW (single ended).
- LOW VOLUME. 1/15 Cubic foot inc. Heat Sink
- VERSATILE. Delivers more than 1 KW into $1 / 2$ to 8 ohms.

OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
R $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } \Omega\end{array}\right.$
OR $\left\{\begin{array}{l}1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc. Etc.
Having been closely involvedin a wide variety of OEM applications of their amp boards, Pantechnic became aware of numerous imple mentation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatskink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 KW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heat sinks, heat transfer to the environment is greatly enhanced.
The flexibility of the 1.2 KW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150W.) These can be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented.
Pantechnic offer a full range of customising options including DC coupling, ultra high slew etc. Contact Phil Rimmer on 01-800 6667 with your particular application problem

Model

OTHER POWERFET AMPLIFIER MODULES
*PFA100 $21.96 \quad 50.150 \mathrm{~W} \quad 4,8^{\text {: }} \quad$ Physically small $(32 \times 78 \times$ $108 \mathrm{~mm})$
$\begin{array}{lllll} & 29.52 & 100-300 \mathrm{~W} & 4 \Omega, 8 \Omega & \text { High watts } / \mathrm{E} \text { ratio }\end{array}$
PFA/HV 36.04 200-300W $4,8 \Omega, 16 \Omega$ SdBdynamic headroom
*PFA500 $\quad 45.22 \quad 250-600 \mathrm{~W} \quad 2 \Omega, 4 \Omega, 8 \Omega \quad$ 25A cont. output current. *The power output of these amplifiers can be increased by approx 15% with no diminution in quality by adding PSU102 (£7.61) to your existing power supply.

Some Other Products \& Components

Type $\mathbf{7 4}$ Heat Exchanger. Dissipates 300W (1.2KW blown) £7.50. 25A 400PIV Bridge Rect. £2.17
$100,000 \mathrm{uF} 100 \mathrm{v}$ cptn. grade with clip $£ 9.75$
PAN20 Pre-amplifier module. Very low noise and distortion £8.48
PAX2/24 2 Way active crossover (specify frequency) $£ 10.10$
PAX3/24 3 Way active crossover (-do-) $\mathbf{£ 1 9 . 5 0}$
PSU103 Powers $2 \times$ PAN20 +2 Xovers $£ 6.91$
PAN1397 20W power amp. (LOW THD) £5.04
PSU101 Powers $2 \times$ PAN1397 £3.43
Transformer for $101 £ 4.30$ (inc. postage)
TOROIDAL TRANSFORMERS
with special low flux windings

Nom. VAC	160 VA	225VA	300 VA	500 VA	625 VA	750 VA
$40-0-40$	10.43	12.00	13.04	-	-	-
$45-0-45$	-	12.00	13.04	16.96	-	-
$50-0-50$	-	-	-	16.96	19.84	$\mathbf{2 2 . 0 0}$
$70-0.70$	-	-	16.96	-	-	
(for PFA/HV)						
Transformer prices include postage. Ask for leaflet "Choosing a Transformer."						
Carriage £1, Add VAT at 15\% to all prices.						

THE POWERFET SPECIALISTS OR日R A R

Mailorder only to
Dept ETI;11 148 Quârry Street, Liverpool L256HQ Telephone 051-428 8485
Téchnical enquiries
Phil Rimmer 01.8006667
dIGITAL ULTRASONIC DETECTOR US 5063

- 3 levels of discrimination against false Clarms
- Crystal control for greater stability - Adjustable range up to 25 ft .
- Built-in delays

This advanced new module uses digital signal processing to provide the highesr level of sensitivity whilst discriminating against potential alse alarm conditions. The module has a bulta selectable entrance delay, plus many more outstanding features. This advanced new module is available at
only £13.95 + V.A.T.
ULTRASONIC MODULE
US 4012

- Adjustable range from 5-25ft

This popular low cost ultrasonic detector is aready used in a wide range of applications from and door opening equipment. featuring 2 LED indicators for ease of setting up, the uni
f 10.95 + V.A.T.
INFRA-RED SYSTEM
IR 1470

Consisting of separate transmitter and receiver both of which are housed in attractive moulded modulated beam over distances of up to 50 ft operating a relay when the beam is broken Intended for use in security systems, but also ideal for photographic and measuremen applications, the systemis avalableat only E25.61 + V.A.T. $\begin{aligned} & \text { Size } 80 \text { by } 50 \\ & \text { by } 35 \mathrm{~mm} .\end{aligned}$

POWER SUPPLY \& RELAY UNIT PS 4012
Provides stabilised 12 V output at 85 mA and contains a relay with 3 amp contacts. The unit is designed tooperatewithupto 2 uttrasonicunit
or 1 infra-red unit IR 1470 . Price $\mathbf{f 4 . 2 5}$ - V.A.T.

SIREN MODULE SL 157
Produces a loud penetratingsliding tone which, when coupled to a suitable horn speaker produces S.P.L.'s of 110 dbs at 2 metres Operating from $9-15 \mathrm{~V}$, the module contains an inhibit faclity for use in 'break to activate'

511/2" HORN SPEAKER HS 588

This weather-proof horn speaker provides extremely high sound pressure levels (110 dobs at 2 metres) when used with the C
1865 or SL 157 . Price f4. 85 + U.A.I.

3-POS. KEY SWITCH 3901

Single pole. 3-pos. key switch intended for use single pole. 3-pos. key switch intent.
with the CA 1250 . Price $£ 3.43$ - V.A.T

All modules are supplied with comprehensive instructions.
Units on demonstration. Shop hours 9.00-5.30 p.m. Wed. 9.00-1.00 p.m.
SAE with all enquiries.

Add 15%. VAT to all prices.
Add 50 p post $\&$ packing to all orders.
Ordër by telephone or post
4 using your credit card.

ALARM CONTROL UNIT CA 1250

The heart of any alarm system is the controlunit The CA 1250 offers every possible feature that is likely to be required when constructing a installation, or simply controlling a single magnetic switch on the front door

- Built-in electronic sirendrives 2 loud speakers - Provides exit and entrance delays together with fixed alarm time
Battery back-up with trickle charging facility Operates with magnetic switches, pressure
pads. ultrasonic or I.R. units
- Anti-tamper and panic facility
- Stabilised output voltage

2 operating modes - full alarm/anti-tamper and panic facilty
Screw connections for ease of installation
Separate relay contacts for switching external
loads

- Testlooplaciny

Price $\mathbf{£ 1 9 . 9 5}+$ V.A.T.
SIREN \& POWER SUPPLY MODULE PSL 1865

Acompletesirenand powersuppiy module which is capable of providing sound levels of 110 dibs at 2 metres when used with a horn speaker. In up to 100 mA A switching relayis alsoincluded so that the unit may be used in conjunction with the US 5063 or US 4012 to form a complete alarm.
Price $£ 9.95$ + V.A.T.
HARDWARE KIT
HW 1250
only
f9.50

+ V.A.T.

his atrractive case is designed to house the control unit CA 1250 , together with the ppropriate LED indicators and key switch. Supplied with the necessary mounting pillars and punched front panel, the unit is given a screened label. Size 200 by 180 by 70 mm

HARDWARE KIT
HW 5063
only
£9.95

+ V.A.T.
This hardware kit provides the necessary enclosure for a complete self contained alarm system which comprises the US 5063, PS 1865 Attractively styled, the unit when completed. provides an effective warning system without instailation problems.
ULTRASONIC MODULE
ENCLOSURE

only

£2.95

Suitablemetal enclosure for housing an individual ultrasonic module type US 5063 or US 4012. Supplied with :he necessary mounting pillars and screwsetc. For US 5063 order SC 5063, for US 4012 order SC 4012

Bucks. HP17.0AT
Princes Risborogh (084 44) 6326

Midwich

EAST ANGLIA＇S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS．

T．V．SOUND TUNER BUILT AND TESTED

In the cut－throat world of
consumer electronics，one pparently ponder over is＂Will anyone natice if
we save money by chopp
ing this out？＂In the
domestic TV set，one of the
first casualties seems to be
the sound quality．Smal！speakers
and no ione controls are common

and all this is really quite sad，as the
TV companies do their best to transmit the highest quality sound Give $£ 24.95+£ 2.00 \mathrm{p} \& \mathrm{p}$
compact and independent TV tuner that connects direct to your Hi－Fi is a must for quality
reproduction．The unit is mains－operated．
This TV SOUND TUNER offers full UHF coverage with 5 pre－selected tuning controls．It can also be used in conjunction with your video recorder．Dimensions： $113 / 4^{\prime \prime} \times 8 \frac{1}{2} \times 31 / 4^{\prime \prime}$
E．T．I．kit version of above without chassis，case and hardware．$£ 12.95$ plus $£ 1.50$ p\＆p，

PRACTICALELECTRONICS S SPECIAL O FEERI STEREO CASSETTE RECORDER KIT
 ONLY $£ 31.00$ plus $£ 2.75 \mathrm{p} \& \mathrm{p}$ ． ＊NOISE REDUCTION SYSTEM．＊AUTO STOP．＊TAPE COUNTER．＊SWITCHABLE ＊．TWIN V NDEPENDENT LEVEL CONTROLS 0.1% ．RECORD／PLAYBACK I．C．WITH ELECTRONIC SWITCHING．FULLY VARIABLE RECORDING BIAS FOR
 ACCURATE MATCHING OF ALL The
 Kit includes tape transport mechanism，ready punched and back printed quality circuit board and all electronic parts． 18. semiconductors，
 printed quaiity circuit board and all electronic parts．1e．semiconductors， resistors，capacitors，hardware，top cover，printed scale and mains transformer
 | |
| :---: |

81）．For ease of construction and alignment it incorporates three Mullard modules and an

FEATURES：VHF，MW，LW Bands，interstat－ on muting and AFC on VHF．Tuning meter． Two back printed PCB＇s．Ready made chassis and sca⿻彐丨．Aerial．AM－ferrite rod，FM－75 or 300 ohms．Stabilised power supply with ${ }^{\circ} \mathrm{C}$ core mains transformer．All components supp－ lied are to P ．E，strict specification．Front scale size $1012^{\prime \prime} \times 21 / 2^{\prime \prime}$ approx．Complete with dia－ ram and instructions．
SPECIAL OFFER！
£13．95＋£2．50p\＆p．

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications－disco units，guitar amplif iers，public address systems and even high power domestic systems．The unit is protected in an open circuit condition．A large safety margin exists by use of generously rated com－ ponents，result，a high powered rugged unit The PC board is back printed，etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions．
ACCESSORIES：Stereo／mono mains power supp
STEREO CASSETTE
DECK DECK
Stereo cassette tape deck trans－ port with elect－ Manuf．
Manufacturer＇s surplus－－brand ional－sold without warrant
$£ 11.95$
plus $£ 2.50$ p\＆p．
Just requires
mains transform er and input／ and a volume control to com
plete．Supplied with full connection details．

SPECIFICATIONS．
Max．output power（RMS）： 125 W ．Operating voltage（DC）：50－80 max．Loads： $4-16 \mathrm{ohm}$ ． $25 \mathrm{~Hz}-20 \mathrm{KHz}$ Sensitivity for 100 w .400 mV ＠ 47 K ．Typical T．H．D．＠ 50° watts， 4 ohms： 0.1% ．Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ ．

KIT £10．50
BUILT £14．25
HIGH QUALITY 40 WATT
RMS BASS／MIDRANGE
Ideal for either Hi －Fi or
features an aluminium voice
coll a heavy 70 mm diameter magnet Frequency res： $20 \mathrm{~Hz} \quad £ 5.95$ to KHz ．Impedance： 8 ohms．＋ $\mathcal{E 2} 20 \mathrm{P} \& \mathrm{P}$ ．
AUDAX 40W Ferro－Fluid $\mathrm{Hi}-\mathrm{Fi}$ Tweeter

21E HIGH STREET，ACTON，W3 6NG．
Note：Goods déspatched to U．K．postal addresses only．
＋f1．15 p\＆p．

SPEAKER BARGAINS

2 WAY 10 WATT

SPEAKER KIT
$8^{\prime \prime}$ bass／mid range and $31 / 4^{\prime \prime}$ tweeter．Complete with screw wire，crossover components cut－no cutting required． Finish－chipboard covered wood simulate．size $1411^{\prime \prime} \times x$ £ 12.50 plus $£ 1.75$ p\＆p．

ALL CALLERS TO： 323 EDGWARE ROAD． LONDON W2．Telephone：01．723 8432. $(5$ minutes wadk from Edgware Road Tube Station）
Now open 6 days a week $9-6$ ．Prices include VAT

MULTIPLE OUTPUT PORT

Is your computer a megalomaniac at heart? Here's a circuit that will allow it to have up to 40 slaves, by Stephen Huckstepp.

This project is intended for use with virtually any computer, the only prerequisite being access to the data and address buses and to the control signals IORQ and WR or their equivalents.

There can be up to 40 on/off outputs from the port, all of which can be used to drive external circuitry. The port is expanded in groups of eight, with eight being the minimum (well, you could have a port with no outputs if you really wanted . . .). As the board makes provision for the maximum number of outputs, subsequent expansion up to the maximum is no problem.

However, the main draw-back is that this circuit will be fairly slow and software-intensive to operate. This is because each write operation outputs to only one bit in any group of eight outputs, but to each group simultaneously. So, for instiance, while writing to bit 3 in group 2, you will be writing to bit 3 in all the other groups (though not the same information). Most of the software you will need will involve setting up
the data in the correct format to go to the port.

Provision has not been made to drive equipment that requires a handshake control. However, an alternative use for a spare output data line from the computer might be as a 'data valid' signal, rather than as a clear as suggested in the 'How It Works' section.

Construction

There is very little to say about the construction of this project except to recommend that the usual CMOS precautions should be followed. Although all the devices used are relatively inexpensive, it is probably still a good idea to use IC sockets, as failed device could be a !!!! to remove.

When connecting up to the computer, note that the lines for D5 and D7 have been transposed on the PCB. Check your computers memory map to set up a suitable address for the port, and use the links to make the port occupy this address.

BUYLINES

Nothing in this project should cause any difficulties. The SIL connectors are available from Maplin and others, the ICs are widely available, and the PCB is available through our very own PCB service.

PARTS LIST

RESISTORS	
R1-7	SIL resistor pack, 7 by 10k
R8-15	SIL resistor pack, 8 by 10 k
R16	10k $\frac{1}{4}$ W 5\%
CAPACITOR	
C1	$100 \mu 6 \mathrm{~V}$ (min) tubular electrolytic
SEMICONDUCTORS	
IC1	4069
IC2	4072
IC3-7	4099
MISCELLANEOUS	
SK1	16-pin DIL socket and header plug
SK2-5	10-way SIL connectors, $0.1^{\prime \prime}$ pitch
PCB; case to choice; wire, etc.	

PCB; case to choice; wire, etc.

Overlay diagram of the multiple output port; note that the pin-out for SK1 is

Circuit diagram of the multiple output port.

HOW IT WORKS

This circuit is based on the 4099 eight-bit latch, used for IC3 to 7 , which is one of the cheaper low-power latches that are readily available. The circuit shown is relatively slow to operate, but is very cheap to build!

Five address lines are used to select the port; the inverters, IC1a to e can be selected in or out using the links, so as to set up an address that is convenient.

IC2 decodes both the address and the port request lines, IORQ and WR. The output from IC2b enables all the chip select lines on all the latches. Thus
when a write operation occurs, the same bit on all the latches is written to at once.

Of the data bits, D5 to D7 are used to address the bit to be written to. The remaining data bits are the data that is to be written, D0 being the data for the selected bit in the first latch (IC3), D1 for the second latch (IC4), etc.

Because of the mode of addressing selected, if you want to leave a particular bit in one latch unchanged, while altering the same bit in the other latches, you must re-write the same data as
before.
There is no need to install all the latch ICs if you do not need them, the system will still work with just one latch in position (though you'll only get eight outputs, of course). If you don't use the full capability, you may find it useful to connect the clear (CLR) input to one of the unused data bits.

Note that the data inputs D5 to D7 feed inputs on all five latches; this may make it necessary to buffer these lines at the computer, depending on what other peripherals are connected to the data bus.

TELEPHONE 01-452 0161 TELEX 914977

ALL PRODUCT FIRST GRADE FRANCHISED SOURCE

All advertised items are. guaranteed to conform with, or surpass manufacturer's current data sheets. This list represents a fraction of our stock. New items are constantly being brought into stock. Cricklewood Electronics keep up with the times. Please phone about all your electronic needs
HOW TO ORDER: 1 Mail order with cheque, P.O., Bank Draft, Regis tered Cash, or write Credit Card* number on order with signature Please add 60p post, packing and insurance, more for heavy goods.
,

Securicor available. 2Phone your order quoting Credit Card number. 3Call in. You will be more than welcome. 4 Officia orders accepted from Govt. Depts., Schools, Colleges, Armed Service Establishments, P.L.C.s and approved accounts. 5 Overseas orders by Bank Draft in Sterling and $£ 2.00$ minimum post and packing. DHL plus f 65.00 no V.A.T.
V.A.T. applicable to U.K. only. Please add

DELIVERY all in stock items despatched same day (95\% of all advertised items are in stock), items out of stock

TECH TIPS

Cassette Logic Driver

Mike Hobbs, Basingstoke

This circuit allows microcomputers with cassette motor relays to control a logic controlled cassette deck with a remote control socket. It was originally designed for the BBC Microcomputer but will be suitable for many others. The circuit was designed to drive a TEAC $\mathrm{C}-3 \mathrm{X}$ cassette deck but is suitable for any machine where the control inputs are grounded to operate the control circuitry.

When you LOAD a program the cassette relay closes and this is used to trigger IC2b to give the cassette deck a PLAY pulse. When the cassette relay opens it triggers IC2a to give a STOP pulse. When you need
to SAVE a program you press the RECORD SET button before pressing RETURN on the computer. IC3 holds the record mode until the STOP pulse clears it when the operation is complete. This is done to prevent inadvertently recording when intending to read into the computer.

Additionally the circuitry around IC4 provides control from the computer user port so you can have direct control from the software. Obviously it is a simple matter to extend the capabilities of this interface to provide control of the rewind and fast forward functions also. In fact there is a spare gate in IC4, IC5 and IC6 which can be used for, say, the rewind function without any additional ICs being required. The computer user port has direct control over the cassette control signals and therefore the software must provide the correct pulse duration to activate the deck solenoids. The user port signal lines
must be driven low to activate the cassette deck because on the BBC Microcomputer the port is set up as an input port on power-up which means that the inputs to 1 C 4 will float high and not try to activate all cassette solenoids at once!

Isolation is provded by the optoisolator so that there is no risk of damaging components in either the interface or the cassette deck due to different earth potentials or accidental shorting.

IC1 is a schmitt trigger inverter IC to eliminate contact bounce which is quite considerable on some microcomputer cassette relays.

The whole interface will fit onto a module $100 \times 120 \mathrm{~mm}$ which will fit neatly inside the BBC Microcomputer and with careful mounting and suitable connectors the connector can be accessed from the gap at the rear of the BBC machine. The RECORD SET button can be mounted neatly next to the row of LEDS on the front panel. The power can, of course, be taken direct from the power supply's external output and the cables routed back into the machine via the gap above the port access recess underneath.

Capacitor Tester

Andy D'Rozario, Manchester.

During circuit development, situations often arise which call for a capacitor to be checked to ascertain
whether or not it is functioning. The circuit shown here gives a quick audio and visual indication of the state of the capacitor by using its most basic property - that of DC blocking.

Half of the NE556 oscillates at approximately 200 kHz and is used to

Active Bass Tone Control

Ian Willats, Worcester

The circuit was designed to improve the tonal variation of a bass guitar, being physically small enough to replace the passive tone controls in the guitar body. Low power consumption is achieved by the use of LM324 type op-amps (the LM358 is 'halt an LM324'), allowing battery operation from a PP3. Current drain is about 1 mA .
Operation of the tone control is
as follows: the pickup signal is buffered by IC1a and fed via R2 to mixer IC1b. The boost/cut control RV1 allows a combination of signals to enter the state-variable filter formed by ${ }^{\prime}$ IC2a, b, c, whose centre frequency can be varied by means of RV3 between 40 and 700 Hz (with the given components). The output of the filter is then fed back into the mixer via R4.

In this manner, the selected frequency can be boosted or cut by up to $\pm 10 \mathrm{~dB}$. If SW2 is opened, however, R4 is grounded via R6 and R7 so that a flat frequency response results. This allows a preset effect to
provide a train of positive pulses. These pulses are passed through the device under test to the two LEDs and an audio oscillator formed by the other half of the NE556.

The resultant pulses appearing at point X will vary with the device under test as follows:
Capacitor OK - positive and negative pulse train at point X, both LEDs illuminated; Q1 conducts and an audio tone is produced.
Capacitor S/C - only a positive pulse train at point X, only one LED illuminated, C1 charges up and a lower tone produced.
Capcitor O/C - no pulse train, neither LED illuminated, C2 discharges and the audio oscillator is reset.

A PB2720 piezoelectric transducer was used at the output of the audio oscillator, but a high impedance speaker or earpiece should do just as well.

The tester needs the capacitor under test to be greater than 30 nF to produce an audio output reliably, however the LEDs will indicate the correct condition down to 100 pF at 5 \checkmark supply voltage, and 50 pF at 12 V .

be easily applied to the guitar.
The Q of the filter is set at about 1.4 by R6 and R7. This rather broad peak was found to be musically more useful than a very 'peaky' filter response. Note that the frequency control RV3 is wired so that low frequency effects are obtained when it is turned fully clockwise, giving a subjectively linear control.

IC2d simply provides a low impedance signal ground at half the supply voltage. Switch SW1 is provided to simultaneously switch off the active circuitry and bypass it, for operation in the event of battery failure. In the passive mode only the volume control RV2 is used.

None of the component values given are critical, and some experimentation is useful to match the circuit to a particular guitar. There is no reason why the circuit should not be used in a lead guitar if C3 and C4 are changed to, say, 22 nF , to suit the higher frequency range.

Finally, a note about construction - as space is generally very limited inside a guitar body, the circuit can be built directly onto the undersides of the IC sockets and the pots, allowing for easy mounting. The smallest available components should be used. SW2 can be incorporated as a push-pull switch on pot RV1, which makes pre-setting effects very easy to accomplish.

DAC/ADC

FILTER/AMPLIFIER

ETI supplies the missing link for all your analogue to computer interface circuits. Design by C. D. Oddy.

Anyone who has ever seriously experimented with analogue interfaces to home computers must be all too aware of the problems involved - if you're not too careful you wind up with opamps everywhere in a variety of hastily concocted amplifier, buffer, and filter circuits. And some of them won't even be hastily concocted; some of them will have taken up a considerable amount of your precious time in the designing. What you need is a handy little unit that will perform any or all of the functions of amplifer, buffer, and filter at the mere twiddle of a control or two. What you need is the ETI filter-amplifier.

The filter-amplifier consists of two active blocks together with
input and output buffers and switchable AC or DC coupling. The two active blocks are an amplifier with a variable gain of 0 to 100 and a plus or minus five volt variable offset followed by a low pass filter whose cutoff frequency may be varied over the range 16 Hz to 30 kHz and which may be switched out of circuit when not required. It can be used as an amplifier to match low level signals to the input of an ADC, as a buffer to correct mismatching of signal sources, as a filter to smooth the stepped output of a DAC, and for a multitude of other similar purposes.

Construction

Assembly is simplified by the use of a single quad op-amp for the

Fig. 1 (left) Component overlay for the PCB

Fig. 2 (below) Connections to RV4

Positronics

FOR PROFESSIONAL POWER SUPPLY UNITS

Positronios leads the field in providing an in expensive range of professional specification power supply units, to industry and the enthusiast. Their features and performance being worthy of instruments twice their price, such as visual LED indication of mode, either constant current or constant voltage, ripple less than 1 mv , voltage regulation betterthan 0.01%, load regulationbetterthan 0.01% plus overioad protected.
Also available in kit, they come complete with a step by step guide to problem free construction, placing them well within the pocket and competence of even the novice.

PSU 301

* 0.30 volt output
* 0.1 amp output continuous
* Integral 6 range meter giving
$0.3 \mathrm{v} \quad 0.100 \mathrm{~mA}$
$0-110 \mathrm{~V}$ 0-300 ma
$0-30 \mathrm{~V} \quad 0-1 \mathrm{~A}$
Built \& Tested £49.90

PSU 301.5

0.30 volt output

* 0 - 1.5 amp óutput continuous * Integral 6 range meter giving, $0.3 \mathrm{v} \quad 0.100 \mathrm{~mA}$
$0.10 \mathrm{~V} \quad 0.500 \mathrm{~mA}$
$0-30 \mathrm{~V} \quad 0-1.5 \mathrm{~A}$
In Kit £46.90
Built \& Tested $£ 59.90$
From kit or built and tested you will have a highly controlable power source of exacting design, engineering and quality.
All prices inclusive of VAT. P\&P $£ 2.90$. Please allow 21 days delivery POSITRONICS
Unit 4, New Enterprise III, Montgomery Street Starbrook, Birmingham B11 1DS Tel: 021-350 2267

PSU 303 (DVS)

- $0-30$ volt output
* $0-3$ amp output continuous
* Integral 6 range meter giving,
$0-3 \mathrm{v} \quad 0.100 \mathrm{~mA}$
$0-10 \mathrm{~V} \quad 0.500 \mathrm{~mA}$
$0-30 \mathrm{~V} 0-3 \mathrm{~A}$
Performance light weight toroidal transformer.
DVS Dual Voltage Switched Designed by Positronics this allows the unit to deliver twice the current of conventional variable power supply units.
In Kit $£ 58.90$
Built \& Tested $£ 74.80$ POSIT

Sub Min PULSE TRANBFORMER. Sec centre tappot. Suita
RAPID DISCHAPGE CAPACTOR I mid AKV

emeh PQP EL

TELEPHONES. 706 tyte
E5.50 each. 10 off E45.
Discosed fill
groy 2.90 aech. PEP $£ 2$ eech. $4-10$ unite black or
TOKIN NOISE FILTER VG215FU. 250VAC 15A $50 / 60 \mathrm{HZ}$. With fixing bracket. Now Ez ewch. VU METEA. Scaled $0-5$, size $1 \frac{1}{1} \times 7 / 8^{\prime \prime}, 50$ ench 10 off E4
Now. 70 O SPEAKER. 3 1" dia. 50 ohm 0.2 Watt.

 Mutri Colour RIBBON CABLE 10 way, Elp Pip
metre, 10 metree f4. 14 wey Tip per motre, to methe Ef, 100 metren EMO.
ILUUMINATED ROCKER SWITCH. 2 pole 250 V 8 ILUUMINATED ROCKER SWHCH. 2 pow 250 V Amp, orange, 560 sech. 10 off 84 .
PCB KEYBOARD PAD. 19 pusti contscts, 0-9; A-F
 KEYBOARD PAD. 12 Alma Reed Switches, push to melce, 0-9; "; Blank, sire $3 \times 2 \xi \times 2$ "high, 4 EPROM 2716 Singlo rain, E1.ED wech, 2564 es SPEETRAL RELIANCE TEN TURN POT. 100 ohm $\pm 1 \%$. Brand now, Tpp each 10 off Et.
8LIDER POTENTIONETER TV SLIDER POTENTIOMETER. Twin Gang. 200K or RAMEL MOUNTIMG FUSE HOLDEA for $1 \frac{10}{}$ "f fusp. sop eich. 10 off 21.50 .
DELIMG LEE CHASGIS MOUNTNG FUSE HOLDER for 1 I." fune 15 p erch. 10 off E1. iep. Mench. 10 off E5. 4 CORE CURLY WIRE extending to 2 metres. 20p eech, 10 off E1. 10. MICROPHONE/EARPIECE INSERTS. Brand TORIN SNAIL. 10 off ta. Overall size 5 lype ELOWER 230Volts 22 Watts. Overail size 5 " x 1/2". £4 each PRF£2. $75 \times 78 \mathrm{~mm}$ Shat $43 \times 40 \mathrm{~mm}$ AC MOTOR. Size $82 \times$ $75 \times 78 \mathrm{~mm}$ Shat $43 \times 4 \mathrm{~mm}$ dia. $£ 1.50 \mathrm{ea} \mathrm{P} \mathrm{\& P} \mathrm{P} 2$.
TRANSFORMER Input $0-220-240 \mathrm{~V}$ Sec $0-12$, $0-24 \mathrm{~V}$ 1 Amp. $£ 2$ each.
EXECUTIVE TELEPHONE-PUSH BUTEXECUTIVE TELEPHONE-PUSH BUT-
TON. Functions include 10 number memory; repeat dialing; internal Microphone \& Speaker and separate handset etc. Will connect direct to Eritish Telecom System. BAAND NEW. ONLY 225 ea. papes.
Minimum Order of Goods E3. Mintmum PAP E1.50. VAT at 15\% MUST be zdded to TOTAL OF Many more componente and teat

 MORE … FOR … MORE DISPLAY
nearly 50\% more with the NEW LARGE 6 inch rectangular CRT with illuminated inner face graticule, 6 KV : accelerator voltage for a brighter, higher resolution display with guaranteed accuracy.

*

1 milli Volt per cm in the vertical axis, valuable for observing complex low level waveforms especially with 20 nano sec per cm Sweep Speed.

MORE FACLITIES

like push-button MODES inc. Add, Sub, Alt and Chop - V mode trigger SOURCE - NEW super video sync - Front panel control of Astig, Trace rotation, Scale illum and $X-Y$ - Chan IO/P, Int. Mod etc, etc.

AT REAL VALUE FOR MONEY PRICES

Fully. Guaranteed for 2 years inc. Free 'pick up' and 'return'

VISA | In a hurry? Then |
| :--- |
| ring (0799) 24922 |

House of Instruments.
Clitton Chambers. 62 High Street.
Saftron Walden, Essex CB10 1EE
Telephone: (0799) 24922 Telex: 818750

TRiO

hi: comperitive hi:

Ask for FREE DATA

House of Instruments Ltd.

IC UPDATE

The world of op-amps never stands still, as a glance at the specifications of these devices will testify. No sooner have we got used to the third (or fourth, depending on which manufacturer's literature you've been reading) than the next one comes along.

OP-27, OP-37 Very Low Noise OpAmps

Features

- Very low noise;
spectral noise density: $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
$1 / \mathrm{f}$ noise corner frequency 2.7 Hz
- Very low Vos drift:
$0.2 \mu \mathrm{~V} / \mathrm{month}$
$0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
High gain: $1.8 \times 10^{6} \mathrm{~V} / \mathrm{V}$
High output drive capability
- High slew rate: $2.8 \mathrm{~V} / \mu \mathrm{S}(17 \mathrm{~V} / \mu \mathrm{S}, \mathrm{OP} 37)$
- Wide gain bandwidth product: $8 \mathrm{MHz}(63 \mathrm{MHz}, \mathrm{OP} 37)$
- Good common mode rejection radio: 126 dB
. Low input offset voltage: $10 \mu \mathrm{~V}$
- Minimum low frequency noise: $0.08 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{p}} 0.1 \mathrm{~Hz}$ to 10 Hz
Low input bias and offset currents: 10 nA

PIN	FUNCTION
1	$V_{\text {OS }}$ TRIM
2	INVERTING INPUT
3	NON-INVERTING INPUT
4	$V-$
6	OUTPUT
7	V+
8	$V_{\text {OS TRIM }}$

Absolute Maximum Ratings

Supply Voltage $+22 \mathrm{~V}$

Differential Input Voltage.. $\pm 0.7 \mathrm{~V}$
Internal Power Dissipation....................................... 500 mW
Output Short Circuit Duration...............................Indefinite
Störage
Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
OP-37A/B/C... $25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OP-37E/F/G................... $+85^{\circ} \mathrm{C}$

Description

The OP27 and OP37 are designed for use where low noise (both spectral density and burst), wide bandwidth, and high slew rate are required along with low input offset voltage, low input offset temperature coefficient, and low input bias currents in gains greater than or equal to ten. Digital nulling techniques performed at wafer sort make it

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}\right.$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

Notes: 1. For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. This parameter is tested on a sample basis only, and guaranteed to an LTPD of 10 .
3. Caution the common mode input range is a function of supply voltage, see typical performance curves. Also, the input protection diodes do not allow the device to be removed or inserted into the circuit without first removing power
4. Parameter is guaranteed by design.
5. Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.

feasible to guarantee temperature stable input offset voltages as low as $25 \mu \mathrm{~V}$. Input bias current cancellation techniques are used to obtain 10 nA input bias currents.

These op-amps are especially useful for instrumentation and professional quality audio systems. Applying the slew rate - power bandwidth equation ($f p=S R / 2 \pi V_{p}$) the OP27 will have an undistorted output up to its power bandwidth frequency of 34 kHz , and an undistorted output of $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ at 100 kHz . The same equation applied to the OP37 gives a power bandwidth frequency of 208 kHz , with an undistorted output of $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ at 338 kHz . This performance is adequate for the most demanding high fidelity

applications.
In addition to providing superior performance for the professional audio market the design of these op-amps uniquely addresses the needs of the instrumentation designer. Power supply rejection and common mode rejection are both typically 120 dB . Input offset voltage can be externally trimmed without affecting input offset voltage drift with temperature or time.

The OP27 has a phase margin of 70° at unity gain, which guards against peaking (and ringing) in low gain feedback circuits. Stable operation can be obtained with capacitive loads up to 2000 pF . By decoupling the load

Fig. 1 (left) Offset nulling
Fig. 2 (right) Large signal transient response of OP37

capacitance with a series resistor of 50R or more load capacitances larger than 2000 pF can be accommodated. Input offset voltage can be externally trimmed without affecting input offset voltage drift with temperature or time.

Low Impedance Microphone Preamp

In this preamp the transformer converts the low microphone impedance up to a value that is close to the optimum source impedance required by the OP37 for best noise performance. The optimum source impedance can be calculated as the ratio of $\mathrm{e}_{n} \mathrm{i}_{\mathrm{n}}$ which for the OP37 is ap-

Fig. 3 Low-Z microphone preamp.

proximately 7000 . Fortunately the noise performance does not degrade appreciably until the source impedance is four or five times this optimum value. The source impedance at the output of this transformer of 15 k still provides near optimum noise performance. C1 rolls off the high frequency response at 90 kHz giving a noise power bandwidth of 140 kHz .

Instrumentation

The OP27 and OP37 are particularly adaptable to instrumentation applications. When wired into a single opamp difference amplifier configuration, they exhibit
outstanding common mode rejection ratio. The spot voltage noise is so low that it is dominated almost entirely by the resistor Johnson noise.

The three op amp instrumentation amplifier of Figure 8 avoids the low input impedance characteristics of difference amplifiers at the expense of two more operational amplifiers and a slight degradation in noise performance. The noise increases because two amplifiers are contributing to the input voltage spectral noise instead of one. Thus the noise contribution, exclusive of resistor Johnson noise, increases by slightly more than the $\sqrt{ } 2$. The spectral noise voltage increases from approximately $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ to approximately $4.9 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, with the third amplifier contributing about 10% of the noise.

The gain of the input amplifier is set at 25 and the second stage at 40 for an overall gain of 1000. R7 is trimmed to optimize the common mode rejection (CMRR) with frequency. With balanced source resistors a CMRR of 100 dB is achieved. With a 1 k source impedance imbalance CMRR is degraded to 80 dB at 5 kHz due to the finite ($3 \mathrm{C} \Omega$) input impedance.

RIAA Phono Preamplifier

The new moving coil magnetic phono cartridges have sensitivities that are an order of magnitude lower than the sensitivity of a typical moving magnet cartridge $(0.1 \mathrm{mV}$ per cm / S versus 1.0 mV per cm / S). This places a greater burden on the preamplifier to achieve more gain and less noise. The OP27 is ideally suited for this task. The object in designing an RIAA phono preamp is to achieve the RIAA gain-frequency response curve while contributing as little noise as possible to avoid masking the very small signal generated by the cartridge. The circuit shown is adjusted to match a 40 dB RIAA curve. Note that by convention the RIAA gain is specified at 1 kHz . With the "break points" of the curve specified at 50,500 and 2.1 kHz respectively the entire curve is fixed by the specified gain at 1 kHz .

The circuit is designed to operate with a $3 / 4000$ step up transformer to present the optimum source impedance to the amplifier for best noise figure. The optimum source impedance is obtained as the ratio of the spectral noise voltage e_{n} to the spectral noise current i_{n} (when e_{n} has dimensions of $n V / \sqrt{H z}$ and i_{n} has dimensions of $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ and the ratio has dimensions of $\mathrm{k} \Omega$). The circuit is designed to be tested and adjusted independent of the transformer; for this purpose introduce a very low level signal around 1 mV at test point $T P-1$. The first stage is a wideband stage which provides a small amount of gain (1. + R4/R5) approximately equal to 10 dB . Low value feedback resistors must be used to prevent additional noise due to the spectral current noise or excessive Johnson noise. The gain of the first stage reduces the noise contribution of the second stage. The RIAA transfer curve poles and zeros are due entirely to the feedback network of the second stage.

Fig. 4 Single op-amp difference circuit.
Fig. 5 Three op-amp difference amplifier.

sufficiently separated in frequency that they may be estimated with the following equations:

$$
\begin{gathered}
\mathrm{f}_{1}(50 \mathrm{~Hz}) \approx \frac{1}{2 \pi \mathrm{R} 7 \mathrm{C} 3} \quad \mathrm{f}_{2}(500 \mathrm{~Hz}) \approx \frac{1}{2 \pi \mathrm{R} 8 \mathrm{C} 3} \\
\mathrm{f}_{6}(2100 \mathrm{~Hz}) \approx \frac{1}{2 \pi \mathrm{R8C} 2}
\end{gathered}
$$

These equations are only approximations. Final tuning is performed with the adjustable capacitors and potentiometers; by successfully injecting $100 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 21 kHz at TP1 and adjusting CV1, RV1 and CV2 for -6 dB , -20 dB , and -40 dB (relative to LF response).

	HORIZON ELECTRONICS(Midands)Dept. H/H Charlotte St. Rugby Tel: 78138Prime quality. TERRIFIC PRICES. Mail order only					
					LANEAR ICT ${ }_{7}^{48} 75$ gOLDERING iRONS 15 way pive cover 25 wity pua Socket TOGOLS SWitches Min OPDT S. Min SP STDT	
ABOVE: Just a few exmples _ Send S.A.E./List ADD: 65 p p\& to all orders under $£ 5.00$ VAT: add 15% VAT to total order value						

-BECOME A RADIO AMATEUR

Train now for the Radio Amateur Licence examination. No previous knowledge needed, only a few hours per week of home study for 3 to 6 months. Post coupon now for details or tel. 073451515 (24 hr service)

British National Radio \& Electronics School Reading, Berks. RG1 1 BR

British National Radio\&EFlectronics School READING, BERKS. RG1 1BR
Name
Address
L E ELi/11/84 BLOCOCK ĊA

FOR HI-FI \& ELECTRONICS ENTHUSIASTS CONCEPT ELECTRONICS LTD 51 Tollington Road, London N7 6PB

 Mall order onlyWe are the specialist of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with cases), alarm clocks, appliance timers, CB amplifiers, test equipment control modules, music generator, battery flourescent light and high quality rack mounting cabinets etc. with illustrative picture 25p p\&p.
Professional rack mounting cabinet

Panel Size	Rear Box	Price	
WH (inch)	WHD	AL	STEEL
19×5	$17 \times 4.5 \times 10$	27.54	23.54
19×4	$17 \times 3.5 \times 10$	25.24	21.24
19×3.5	$17 \times 3 \times 10$	24.09	20.09
19×3	$17 \times 2.5 \times 10$	24.09	-
19×2.5	$17 \times 2 \times 10$	22.94	18.94
19×6	$17 \times 5.5 \times 12$	28.69	24.69
19×5	$17 \times 4.5 \times 12$	27.54	23.54
19×4	$17 \times 3.5 \times 12$	25.24	21.24
19×3.5	$17 \times 3 \times 12$	24.09	20.09
17×3.5	$15.5 \times 3 \times 9$	21.79	17.79
17×2.5	$15.5 \times 2 \times 9$	20.64	16.64
17×4	$15.5 \times 3.5 \times 1225.24$	21.24	
17×3	$15.5 \times 2.5 \times 1224.09$	20.09	

Please add $£ 2: 50 \mathrm{p} / \mathrm{p}$ per item

Branime
 TYPE 161B Bu) MEACHINC KITS DUAL POWER SUPPLY KIT

INCORPORATES A POSITIVE \& A NEGATIVE REGULATED SUPPLY
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C.
Interconnect to give 2.6 V to 32 V or
$-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$
Output current 1 A at 16 V to 0.35 A at 1.3 V
Ripple is less than 1 mV

225.99
 inc. P\& P and VAT

Built \& Tested $\mathbf{£} 37.95$ inc. P\&P and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelled in attractive blue and grey with a printed front panel to give a professional finish.
Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges

SEND CHEQUE ORP.O
ALLOW 21 DAYS FOR DELIVERY

TY-7 Electronic touch switch
£2.90 Kit $£ 4.50$ Ass. TY-11 Light activated switch
TY-18 Sound activated switch.50 Ass.
Sound activated switch
T -38 Sound $£ 4.50 \mathrm{Klt} £ 5.95 \mathrm{Ass}$.
(voice-switch) $£ 5.50$ KIt $£ 7.50$ Ass.
TY-41 Infra-red remote contro
£17.20 Kit £21.95 Ass.

BRANIME MARKETING LTD ${ }_{\text {dept. et/1/11 }}$
BALTHANE IND. EST., BALLAŜALLA, ISLE OF MAN

HIGH RELIAXBILITY LOW COST

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.
\star Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
\star Sensitivity $<50 \mathrm{mV}$ at 1 GHz * Battery or Mains
\star Setability $0.5 \mathrm{ppm} \quad$ Factory Calibrated

* High Accuracy 1-Year Guarantee
* 3 Gate Times * $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P \& P and VAT)
$\begin{array}{lll}\text { METEOR } 100 & (100 \mathrm{MHz}) & £ 104.07 \\ \text { METEOR } 600 & (600 \mathrm{MHz}) & £ 133.97 \\ \text { METEOR } 1000 & (1 \mathrm{GHz}) & £ 184.57\end{array}$
Illustrated colour brochure

ACTIVE LOUDSPEAKER

In the halycon days of the hi-fi boom, DIY loudspeakers were published at a rate of several a month. However, it's now been over a year since we last published a design in ETI. Jeff Macaulay takes a fresh look!

There is confusion reigning in the hi-fi world at the moment, and reading some hi-fi magazines you might well be convinced that the only apporach is to spend all your money on just the record deck and make do with whatever amp and speakers you can afford on the little change you have left from your life's savings.

The alternative is to make do with the latest chrome-plated wonder with built-in obsolescence (though, thankfully, hi-fi rack systems seem to have gone out of fashion). To read the advertising blurb that accompanies these units, one could be forgiven for thinking that products launched as recently as the previous week were junk

Fig. 1 (below and page facing) Circuit diagram of the active loudspeaker.

NOTE.
IC1 IS TL082
IC2,3 ARE CA3040
O1,6 ARE BC147
Q2,7 ARE BC142
Q3,5,8,9 ARE 2N3055
04,9 ARE BC143
LS1 IS B200 8R
LS1 IS HD 100/25 8R

* $03,5,8,10$ ARE MOUNTED ON A HEATSINK
compared to the current 'flavour of the month'.

This situation has been compounded by the introduction of compact disc - is it worth spending money on analogue systems when digital is just around the corner? One can already hear the cries of anguish from certain highlanddwelling turntable manufacturers.

While we'll admit that it is a truism that if you degrade the sound at the start of its journey through your hi-fi, there is absolutely nothing you can do to improve it, there is still a case for having a good speaker system to do the final conversion of electrical energy into sound energy.

Unfortunately no currently available drive unit can be made to cover the whole audio spectrumi properly. For good bass response a heavy large diameter cone is required. The acual amount of bass that can be radiated by the speaker is directly proporitonal to both the

HOW IT WORKS

For the purposes of analysis, the circuit can be split up into four sections: the low-pass filter around IC1a, the highpass filter around IC1b and the two power amplifiers around IC2 and IC3
The two filters are based on the wellknown Sallen and Key configurations, and both have component values such as to give a Butterworth type response with a \mathbf{Q} of 0.7 . All that this means is that the values are chosen so as to give a minimum of response ripples in the pass-band whilst giving a maximum rolloff outside the pass-band that a twopole filter can deliver.

It is usual to include some compensation for the uneveness of the responses of the drive units at this stage. However, as we've already explained, both the drive units selected have very good flat responses, and this was judged to make compensation superfluous.
Both the power amplifiers are the same (with the minor difference of the connection C13 and C14), and are based on the 'brains and brawn' principle. In this, the op-amps IC2 and IC3 provide the open-loop gain for the system, while the transistors simply provide a current sourcing capability well beyond that of
the op-amps.
Taking a close look at the bass amplifier circuit, IC2 is a CMOS type opamp which offers very low noise and a very good slew rate. The output from this is fed to the quasi-complementary output stage built around Q1 to 5 .
To avoid serious distortion at the crossover between the lower and upper sets of driver transistors, a bias voltage is provided between the 'bases' of the compound output transistors (Q2/3 and Q4/5) by Q1 which is, with PR1, wired as a $V_{b e}$ multiplier.
Because of the high input signal, very low gain is needed from the power stage, so the feedback level can be very high. R12 and RV1 in one arm and R11 in the other set the level of feedback, so RV1 can be used to adjust the level of the bass output - in fact, it's wired as a balance control, so it simultaineously adjusts the treble output.

Finally, note that the treble and bass units are connected in the opposite phases. This is to keep the reponse level at crossover; without this the two units would be in antiphase at the crossover point (this is due to the inevitable phase alteration caused by the filters).

cone area and the maximum cone excursion. For good treble, though, the converse is true. A small light cone, or dome, with low mass is required to give good transient response.

As a consequence, almost all practical speaker systems that merit the title "hi-fi" contain two or more drive units connected to the power amplifier through a crossover. To work properly (or even at all) the crossover has to be designed for the specific drive units it is to be used with, to take account of the very complex (in both senses of the word) load that an audio drive unit presents on its terminals. Standard filter equations just don't work when you're dealing with a circuit component that defies any sort of simple representation.

PROJECT : Active Speaker

Fig. 3 Construction details of the cabinet and front baffle.
tuning extends the LF response by making the enclosure into a mechanical tuned circuit. However, to operate effectively the enclosure and drive unit have to be matched and adequately damped. This can be difficult for the constructor.

For this design, a resistive port enclosure has been used. This form of loading is similar to the reflex but in this instance the port is fabricated from a series of small holes in the front baffle. This form of loading has one major advantage over both reflex and infinite baffle types. The Q of the speaker resonance is greatly reduced. This renders the enclosure essentially aperiodic at low frequencies. At the same time, deep bass output is augmented by the port whilst the transient response is better than both reflex or sealed box.

Construction

The construction of this project can be neatly divided into two parts, electronic and mechanical. The electronics can be tackled first. As you can see from Fig. 2 most of the components are mounted on the PCB. Very little comment is required about this except to ensure that all the semiconductors and electrolytics are correctly orientated.

The board is mounted on the heatsink along with the power transistors. Before mounting the board, though, be sure to solder the veropins in! To avoid the underside of the board shorting out on the heatsink spacers are used. Alternatively the board can be supported by means of nuts on the retaining bolts.

The power transistors and transformer should now be

TILES FITTED BETWEEN BATTENS AS SHOWN

PARTS LIST

 LOUDSPEAKERThese are the parts required for one speaker.
DRIVE UNITS
$\begin{array}{ll}\text { Tweeter } & \text { Audax HD100/25 } \\ \text { Bass Unit } & \text { KEFB200 }\end{array}$
PANELS (all cut from $\quad 5^{\prime \prime} / 15 \mathrm{~mm}$
melamine faced chipboard) melamine faced chipboard)
A (2 off) ${ }^{*} 1^{\frac{1}{3}}{ }^{\frac{1}{\prime \prime}}$ by $100^{\frac{3^{3}}{}{ }^{\prime \prime}}$

C (4 off) 6 $\frac{1}{2}^{\prime \prime \prime}$ by $2 \frac{1}{1}^{\prime \prime}$
$\begin{array}{ll}\text { D (2 off) } & 23^{\prime \prime} \text {, by } 12^{\prime \prime} \\ \text { E (} 4 \text { off) } & 21^{\frac{3}{4}}{ }^{\prime \prime} \text { by } 2 \frac{1}{\frac{1}{2}, \prime}\end{array}$
F (4 off) $\quad 9^{\prime \prime \prime}$ by $2 \frac{1}{8}{ }^{\prime \prime}{ }^{\prime \prime}$
MISCELLANEOUS
Ceramic tiles, $00^{\prime \prime}$ by $00^{\prime \prime}$, 00 off; BAF acoustic wadding $00^{\prime \prime}$ thick, $00^{\prime \prime}$ by $00^{\prime \prime \prime}$; wood glue and chipboard screws. *One of these to form the front baffle, see Fig. 3 for details.
mounted onto the heatsink. The latter is mounted with self tapping screws into $\frac{1^{\prime \prime}}{8}$ pilot holes drilled as shown. The output stage power transistors are mounted on their insulating kits and a check for short circuits between the cases and the heatsink should be made. Last to be mounted are the smoothing capacitors C15 and C16.

Now the interwiring should be attended to. The leads to the drive units, to the collector and emitters of the power transistors, and those between the PCB and the smoothing capacitors should all be in fairly heavy duty wire.

To set the quiescent current, the following procedure should be followed. First, adjust the two presents PR1 and PR2 so that their sliders are shorted to the outputs of IC2 and IC3 respectively. Check that
this is the case using a multimeter.
Remove the two wire links (or, if you're very clever, don't fit them in the first place!) and connect up two 100R resistors instead. When you switch on, you should find a 2 \checkmark voltage drop across both of these. If you don't find this, there must be a fault somewhere - this will be particularly noticeable if either of the resistors should decide to burn out! Also check that the amplifier outputs are at zero volts.

Next adjust PR1 until the voltage across the 100R resistor near to C11 has risen by a futher 1.0 volts. Adjust PR2 for a further 1.0 volts increase across this resistor. Switch off, replace the wire links; the amplifier module is now ready for use. Repeat this procedure for the other channel's module.

Cabinet Making

The mechanical work consists of making the cabinet. Fig. 3 shows the plans for this item. It is absolutely vital to ensure that the chipboad is cut accurately to size, or a little over as you can trim it down to the exact size with a Surform or similar.

It's usual to use either high density or mixed density chipboard for loudspeaker construction. We've taken the slightly unusual step of using melamine-veneered type because the high density chipboard tends to have resonances with higher Qs. The mixed density chip could be used instead, but it's not easy to obtain. Before assembly begins, carefully check the sizes of all the panels. Also check the squareness.

Assembly is achieved as follows: first fix the battens in place using chipboard screws and a suitable glue. Assemble the enclosure except for the front panel, using screws and glue again.

Next fit the amplifier module as shown in the rear of the case; drill holes to accommodate RV1's spindle and the wiring to the mains transformer and for the input connections. You can use either a piece of wire (dodgy) or suitable connectors for these, but do be sure not to leave any air gaps.

Damping of the cabinet walls by adding mass to them in the form of ceramic tiles - will help to prevent radiation from the rear of the drive unit reaching the outside world through the walls. The tiles will reflect the sound back into the wadding (which you'll be putting into the cabinet at a later stage) where it can be absorbed.

One position where it isn't appropriate to use tiles is on the rear panel behind the bass unit: sound would be reflected back to the cone, which would then reradiate it, resulting in a smeared sound. However, adequate mass loading is achieved by the heatsink, which, because of its shape, doesn't generate the same problems with reflection.

The ceramic tiles should be glued in as shown; they will fit neatly between the battens with a clearance of about $\frac{1^{\prime \prime}}{4}$. Many adhesives are suitable for this job, but we've found that Araldite Rapid, applied as a blob on each corner, gives reliable results.

All that now remains is the front baffle (see Fig. 3 for cutting details). Note that the front baffles are made in mirror image pairs, and that the drive units are slightly offset from the centre line to avoid possible diffraction problems.

The B200 is mounted using the template provided with the speaker unit. Note that the 7.5 mm recess is not cut here. Initial experiments with the recess cut showed no discernible audio advantage so the unnecessary complication has been avoided. Note, though, that the
foam gasket supplied has been used. Also supplied with the B200 are the mounting screws and T nuts. The tweeter is fitted with four self-tapping screws; $\frac{3^{\prime \prime}}{4}$ No. 6 size is suitable. Note the recesses needed for the tweeter's terminals: these should be cut out with a rasp or similar. Connect the wires to the tweeter before fitting as it can be difficult to manouvre the soldering iron in the confines of the recess.

The last part of the assembly consists of fitting the BAF wadding. This is done in two stages. First cut a section out of the sheet about $12^{\prime \prime}$ square. This is stretched across the rear of the B200 and fixed into place with a few panel pins.

The remainder is now rolled up and placed in the cabinet. Finally screw the front baffle into place with chipboard screws. Now the speaker is ready for use!

We haven't included a mains switch in the speaker; if your amp has one, wire the speakers to a suitable switched outlet socket on the existing amplifer. Connect the input to the loudspeaker to the output of the power amplifier, using screened cable if you wish (though this is probably not necessary), and switch on.

USING FIBRE OPTICS

Does copper wire leave you stranded? Is your data missing the bus? L. N. Owen focusses our (tunnel?) vision on a radical alternative.

1t is common knowledge that British Telecom and similar organisations now use optical fibres as a transmission medium instead of conventional wiring. This comparatively new technology has been refined to provide a highly efficient system for long-distance telecommunications, but as yet has not been used widely by the experimenter and hobbyist. This is almost certainly because of the high cost and the scale of typical applications (do you really want to build a 10 km transmission line?), but like most new technologies it has produced a number of spin-offs, and some of these do fall within the scope of the humble experimenter.

The main cause of the high cost of transmission systems is the need to use coherent light, that is, light of a specific phase and wavelength. To achieve this, and because of the need for a concentration of high energy to overcome long distance transmission losses, lasers are used. Obviously, if we can do without the laser, things become much cheaper. If we use a much lower energy source, and one which produces incoherent (random) light, we lose the ability to transmit over distances greater than 50 m and to use certain phase dependent techniques, but we open up a very broad field of applications indeed.

In all the sample circuits given here, the incoherent light source is a narrow-beam, high-intensity, red LED. These can be bought ready mounted into fibre optic hardware, or, for the painstakingly adventurous, bought loosely and then mounted and polished for the specific application. The former method is strongly recommended for the inexperienced.

When using fibres, signals are transmitted using light. Light is electromagnetic radiation, and thus since it has no electrical charge, it cannot be affected by electric fields. In other words, by using fibre optics, the system is free from electrical noise such as mains or radio interference.

Fig. 1 Comparison of bandwidth over distance for copper wire and optical fibre.

Similarly, magnetic fields have no effect on the signal, and two fibres cannot interfere with each other since the light travels longditudinally, any stray photons being absorbed by the fibre jacket material. Thus crosstalk is non-existant, reducing the need for heavy screening and filtering equipment. Furthermore, as light is the carrier, any safety hazards that may arise with warm wires or electrical sparks are eliminated, a considerable advantage in, for example, the petro-chemical industry, where fibre-optic sensors are rapidly replacing all other systems. In addition, most optical fibres are chemically inert, small in size, light in weight, and are sufficiently flexible to be run just about anywhere. And yet, in spite of all these advantages, the single most important factor in the choice of fibre-optics as a transmission system is the range of frequencies it will handle (see Fig. 1).

For optical fibres

$$
\text { Bandwidth } \sim \text { 1/length }
$$

whereas for electrical cables Bandwidth $\sim 1 /(\text { length })^{2}$

Fibre Physics

Before using fibre a few principles must be understood, the most fundamental being that of the critical angle, or total internal reflection (TIR). Referring to Fig. 2, when light passes from one medium to another of a different density, some light will be reflected and the remainder will be refracted. The angle of emergence of the refracted ray, θ, is found from Snell's Law:

$$
n_{1} \sin \theta=n_{2} \sin \theta
$$

where n_{1}, n_{2} are the respective refractive indices and θ is the angle of incidence.

If θ is increased, there will be a specific point where the angle of emergence, θ, is 90°. At this angle there is no partial reflection, and this is known as the critical angle, θ. The critical angle can be determined from:

Fig. 2 Illustration of Total Internal Reflection.

$$
\begin{aligned}
\mathrm{n}_{1} \sin \theta_{c} & =\mathrm{n}_{2} \sin \theta \\
\theta & =90^{\circ} \text { at the critical angle } \\
\sin 90^{\circ} & =1 \\
\theta_{c} & =\sin ^{-1}\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)
\end{aligned}
$$

If the angle of incidence is further increased, then all the light rays are internally reflected, and this is known as total internal reflection (TIR). Light is transmitted through a fibre by TIR; all other spurious partially reflected, or sub-critical rays dissipate very rapidly.

From this it can be seen that there is a discrete range of angles of valid input. This range is illustrated in Fig. 3 for an air/fibre interface, and is called the acceptance angle, θ_{a}. Applying Snell's Law again we have:

$$
\begin{aligned}
& \mathrm{n}_{0} \sin \theta_{\mathrm{a}}=\mathrm{n}_{1} \sin \left(90-\theta_{\mathrm{c}}\right) \\
& =n_{1} \cos \theta_{c} \\
& =n_{1} \sqrt{1}-\sin ^{2} \theta_{c} \\
& \text { but } \quad \sin \theta_{c}=n_{1} / n_{2} \\
& \sin \theta_{\mathrm{a}}=\underline{n}_{1} \sqrt{\left.1-n_{2} / n_{1}\right)^{2}} \\
& =\mathrm{n}_{1}-\mathrm{n}_{2} \\
& =0.45 \text { typically } \\
& \text { For the most typical case } \quad n_{0}=1 \text { (air) } \\
& \begin{aligned}
\sin \theta_{\underline{a}} & =n_{1} \sqrt{1-\left(n_{2} / n_{1}\right)^{2}} \\
& =\sqrt{n_{1}^{2}-n_{2}^{2}}
\end{aligned} \\
& =0.45 \text { typically }
\end{aligned}
$$

$\operatorname{Sin} \theta_{\mathrm{a}}$ is known as the numerical aperture, and it is a basic parameter for fibre selection.

Fibre is a three-dimensional media, and as such it supports several modes of propagation, the fundamental two being meridonal and skew. Skew rays follow light paths which never intersect the fibre axis; a special case of the skew mode of travel is that of a ray which travels paralle! to the fibre axis, never being reflected throughout the fibre length. Fundamental fibre theory is concerned only with meridonal rays. These, as implied, travel through the fibre axis after each rebound from the fibre/cladding interface.

The final piece of mathematics waiting to be tackled is in calculationg transmission losses. There losses come from three major sources:
i) curvature loss
ii) core/cladding interface
iii) fibre material

The curvature loss is a long-distance phenomena and can be ignored for our purposes. Core/cladding interface losses are due to slight non-uniforimities causing a localised change in c (the speed of light in the fibre body) and subsequent transmission loss. The attenuations in the fibre material are due to two processes. Firstly, impurities in the fibre can cause light to be scattered in a similar manner to the core/cladding interface. Secondly, impurities within the fibre can absorb certain wavelengths. There are two ways around this latter problem: buy an expensive, highly purified cable, or choose a suitable emitter whose peak

Fig. 3 Acceptable Angle needed to achieve TIR.
wavelength coincides with the maximum transmission spectra of the fibre.

Additional transmission losses come from couplings. The coupling loss is generally given in the respective data sheet (usually in $\mathrm{dB} /$ connection). For fibres it is given as $\mathrm{dB} / \mathrm{km}$. Thus, for a 1 m length of polymer cable with a LED emitter and two bulkhead connectors, the representative calculations are:

Overall

attenuation $=\left(\right.$ emitter coupling loss) $+2^{*}$ (bulkhead loss) + (fibre attenuation) + (detector coupling loss)

$$
=2+5+1+2
$$

$$
=10 \mathrm{~dB}
$$

but the overall
attenuation $=10 \log ($ emitter flux/detector flux. $)$ $=10 \log \left(\Phi_{i} / \Phi_{r}\right)$
$\log \Phi_{r}=\log \Phi_{t}-1 \mathrm{~dB}$
We usually know the maximum transmissable power, $\boldsymbol{\Phi}_{\mathrm{t}}$ $=20 \mu \mathrm{~W}$ say

$$
\begin{aligned}
\log \Phi_{r} & =\log 20-1 \\
\Phi_{r} & =2 \mu \mathrm{~W}
\end{aligned}
$$

It is also usual to know the optical sensitivity of the detector,

$$
S=0.44 \mathrm{~A} / \mathrm{W}, \text { say }
$$

Hence

$$
\text { current }=0.44 \text { or }
$$

$=0.88 \mu \mathrm{~A}$ maximum
This example shows the importance of keeping connections to a minimum, especially when using high attenuation fibres, which the cheaper variety tend to be.

Techniques

Optical fibres can be used in one of three ways: illumination, data transmission and sensing.

Taking the simplest case first, fibres can be used very effectively as illuminators, the principle being that of providing a light source channelling it where you will. Any form of optical fibre can be used for this purpose, in fact several types of heavy-gauge fishing line have sufficed for short distances. many cables can use the same source and thus provide a very effective and efficient means of illumination. Typical examples are instrument panels, microscopes, meters, switches, logos, etc.

Transmission of data is, as mentioned earlier, not generally practicable for the hobbyist, but there are exceptions, and a few possibilities are discussed in the section on circuits. Both analogue and digital data may be transmitted, although digital data will have to be handled serially.

Sensing covers an enormous range of fibre-optic applications. Optical sensors must be able to convert an input (pressure, temperature, flow, etc.) into variations of either light intensity; phase spectrum, or polarisation, but within the limitations we have set ourselves only amplitude modulation can be used. This not as great a restriction as it might seem because the majority of sensors use amplitude modulation anyway.

Amplitude can be modulated by absorption, emission, and by changes in refractive index. By juggling with these three parameters, fibre optics can be used for measuring strain, pressure, vibration, liquid and solid levels, gas presence, shaft position, temperature, and much more depending upon the type of end transducer used.

One of the simplest applications of fibres as sensory devices is in position detection (Fig. 4a). A similar system using reflected light could be equally well employed (Fig. $4 b)$. The same system can be extended easily to counting

Fig. 4 Position detection using optical fibres.
applications, using pulse counting circuitry, and some forms of quality control. In the reflective mode there is a threshold of surface finish order for the light to be reflected at sufficient intensity, and in the direct mode there are intensity thresholds depending upon the colour density or opacity of thw moving object (eg, testing paper quality).

Taking the principle a stage further why not apply it to a shaft encoder - too late, several systems are already in use, operating both in the reflective and direct modes (Fig. 5). Encoders are also being mechanically coupled to measure pressure. With the same ingenuity, attach fins to

Fig. 5 Shaft encoders and flow meters.

Fig. 6 Measurement of pressure.
another encoded disc (Fig. 5c) and you have a successful form of flow measurement. This particular type operates by counting the number of pulses per unit time and thus calculates the flow rate.

If the reflection method is reconsidered and the polished surface is replaced by a reflective flexible membrane then a form of pressure transducer is realised. Physical arrangement and typical response are shown in Fig. 6. Response 1 is for a single fibre pair whereas trace 2

Fig. 7 Principle of the optical level.

Fig. 8 Transmission loss sensors.

FEATURE : Fibre Optics

is for a semicircular fibre bundle. This vividly shows that transmission and reception need not be limited to a single fibre, in fact, most cases employ bundles of fibre in various configuraitons. One of the most popular is a random bunch of emitter and receiver fibres in a larger circular or semicircular cable. The reasoning behind this is that light leaves the fibre generating a cone of light rays. Reflecting this cone will disperse the rays even more, thus covering a greater reception area (Fig. 7). This technique is known as an optical lever.

A very sensitive optical sensor can be produced using the principle illustrated in Fig. 8. Two fibres can be made to lose transmission energy in three different ways, according to the distance between the ends, the lateral displacement, and the angular displacement. Using this technique, researchers have managed to measure displacement of as little as 0.005 angstorms. A graph showing typical characteristics for the three methods is given in Fig. 9.

All of the sensors described above work by interfering with the transmission of light between two terminated fibres. This is by no means the only way in which amplitude modulation can be used in sensor applications,

Fig. 9 Characteristics of transmission loss sensors.

Fig. 10 Fixed/floating microbending transducer.
and a possible alternative is shown in Fig. 10. As mentioned earlier, where the angle of incidence exceeds the critical angle, light is transmitted through the cladding, thus reducing the overall intensity at the detection end. If the critical angle is artificially exceeded by some external excitation, then not only have we another form of displacement sensor, we also have one which modulates an unbroken beam of light. Such microbending transducers can be adapted to measure many different variables, but they are obviously ideally suited to the measurement of pressure. They have been used in microphones, since acoustic signals produce pressure changes, in flow meters (measuring turbulence) and in various other vibrational measuring devices.

Circuits!

The purpose of this section is simply to present a few tested emitter/detector circuits as a guide to further experimentaiton. Design usually revoles around input sensitivity and speed of serial transmission; however, various other factors such as analogue linearity, fitting, etc., do creep in.

The first circuit, Fig. 11, is one of the most useful since

Fig. 11 (above) TTL compatible link.

Fig. 13 TTL receiver
it provides a medium-distance TTL-compatible link. Using standard polymer cable this circuit can transmit up to 200 K bit/s over a distance of 10 m .

Figure 12 is a standard transmission line, the RS232. Belling-Lee produce a pair of transmitter/receiver modules designed to directly replace RS232 links. The use of fibres then eliminates all the noise problems, twisted pairs and emitting loops. The modules are made for PCB mounting with screw-on connectors. Primarily they are intended for glass fibres but any type can be used. They provide viable computer/VDU links up to 200 m .

The circuit of Fig. 12 can be modified to become a TTL or CMOS transmission system simply by shorting the 2 k 7 input resistor of the transmitter and modifying the receiver as shown in Fig. 13. The A1489 linear receiver acts as a current buffer and thus provides the RS232 to TTL interface.

Figure 14 is an audio frequency fibre optic transmitter. It is simply an inverting amplifier with a gain of about -60 which drives the emitter via an NPN transistor. The preset, RV1, should be set to give $0 V$ at the collector of Q1.

If power consumption is a problem with transmitters then a series-driven emitter circuit is required (Fig. 15a). This configuration is TTL compatible, gives easy digital control, and high brightness. The driving current in the LED is given by

$$
I_{f}=\left(V_{\mathrm{cc}}-V_{f}-V_{\mathrm{ol}}\right) / R 1
$$

where $V_{c c}=$ supply voltage

$$
\begin{aligned}
V_{f}= & \text { ON voltage of LED } \\
V_{o t}= & \text { low voltage of the open-collector } \\
& \text { output }
\end{aligned}
$$

If the current step is so high that supply line modulation is occurng, a shunt driven emitter can be used (Fig. 15b). The power consumption is greater than a series circuit but the current step is reduced. The drive current is given by

$$
I_{f}=\left(V_{\mathrm{cc}}-V_{i}\right) / R 1
$$

Receiver design depends on which parameter you want to measure, and whether it is digital or analogue. However, the final signal processing is up to you.

Figure 16 is an audio frequency receiver compatable with the transmitter of Fig. 14. In its base form it is a simple one transistor amplifier driven by a photodiode. Obviously there are many variations on this simple theme: DC/AC amplifiers, A/D convertors, logarithmic or linear, etc.

Finally, for the keen and wealthy, there are several optical communication receiver hybrid circuits available. These provide most of the reception functions on chip, the user being able to control the sensitivity and operating speed. One such chip is the LH0082. This requires only a photodiode and a stable power supply for its basic preparation (Fig. 17a). Add a few minor components and the device can function over a range of 3 nW input sensitivity (@100 Kbit/s) to 300 nW input sensitivity (@ 15 $\mathrm{Mbit} / \mathrm{s}$). Additionally it can operate in an analogue mode (Fig. 17b).

Fig. 14 Audio frequency transmitter.

Fig. 15 Series and shunt driven transmitters.

Fig. 16 Audio frequency receiver.

(b) ANALOGUE CONFIGURATION, $50 \mathrm{mV} / \mathrm{uW}$

Fig. 17 Optical communcation receiver.
Hopefully these circuits will provide a useful springboard for many projects, as well as making a relatively new technology accessable to the masses! ETI

GET BIC
 \bullet

(5) Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever.

Protection: Full load line. Slew Rate: $15 \mathrm{w} / \mu \mathrm{s}$. Risetime: $5 \mu \mathrm{~s}$. S/N ratio: 100 db . Frequency response (-3 dB) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitivity: 500 mV rms. Input impedance $100 \mathrm{~K} \Omega$. Damping factor $100 \mathrm{~Hz}>400$.

PRE-AMP SYSTEMS

Module Number	Module	Functions	Current Required	Price inc. VAT
HYO	Mono pre amo	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Vol/Bass/Treble	10 mma	E760
HY66	Stereo pre amp	Mic/Mag. Cartridge/Tuner/Tape/: Aux + VolfEass/Trebie/Balance	20 mA	£14.32
HY73	Gusiar pre amo	Two Gutar (Bass Lead) and Mic + seorarate Volume Bass Treble + Mix	20 mA	215,36
HY78	Stereo pre amp	As HY66 less tone controls	20 ma	¢14.20

Most pre-amp modules can be driven by the PSU driving the main power amp
A separate PSU 30 is available purety for pre amp modules if required for
E5.47 (inc. VAT). Pre-amp and mixing modules in 18 diffargnt variations.
Please send for details.
Maunting Boards
For ease of construction we recommend the B6 for modules HY6-HY $13 £ 1.05$
(inc. VAT) and the $\mathbf{B 6 6}$ for modules HY66-HY78 E1.29 (inc. VAT).
POWER SUPPLY UNITS (Incorporating our own toroidal transformers

Model Number	For Use With	Prica inc. VAT	Model Number	For Use With	Price inc. VAT
PSU 21 x	1 or 2 HY 30	$£ 11.93$	PSU 52X	$2 \times \mathrm{HY} 124$	£17.07
PSU $41 \times$	1or 2 HY60, $1 \times \mathrm{HY} 6060,1 \times \mathrm{HY} 124$	£13.83	PSU 53x	$2 \times \mathrm{MOS} 128$	¢17.86
PSU 42X	$1 \times \mathrm{HY} 128$	£15.90	PSU 54x	$1 \times \mathrm{H}^{2} 248$	$E 17.86$
PSU 43x	: \times vosi28	£16.70	PSU 55x	1 \times MOS248	$\mathrm{£}^{19.52}$
PSU 51x	$2 \times \mathrm{HY} 128.1 \times \mathrm{HY} 244$	£17.07	PSU $71 \times$	$2 \times \mathrm{HY} 244$	£21.75

Model Number	For Use With	Price inc. VAT
PSU 72X	$2 \times \mathrm{HY} 248$	f22.54
PSU 73 X	$1 \times \mathrm{H} \times 364$	¢22.64
PSU $74 \times$	$1 \times \mathrm{HY} 368$	[24.20
PSU $75 \times$	$2 \times \operatorname{MOS} 248.1 \times \operatorname{MOS} 368$	¢24.20

Please note: $\begin{aligned} & X \text { in part no. indicates primery voitage, Please insert " } O \text { " in place of } \\ & X \text { for } \$ 10 \mathrm{~V} \text {, "" in place of } X \text { for } 220 \mathrm{~V} \text {, and " } 2 \text { " in place of } X \text { for } 240 \mathrm{~V} .\end{aligned}$
ILP Electronics Ltd., Dept 2, Graham Bell House, Roper Close, Canterbury CT2 7 EP, Kent, Englandi* Telephone: (0227) 54778 Technical (0227) 64723. Telex: 965780.

THEATRE \& BAND LIGHTING

$12 \times 1 \mathrm{~K}$ LESS THAN £200!

The days of hiring your electronics are over. Youknow we manufacture a range of power packs, desks, lanterns, stands, etc. NOW WE ARE PLEASED TO INTRODUCE THE APD SERIES OF MODULAR DIMMERS. Incorporating technology that allows the control of Inductive as well as resistive loads, you build a system exact to your requirements, and save a fortune in process. So where is the sense in hiring????

Contact our sales for free infor:
The Sales Manager MJL SYSTEMS LTD 45 Wortley Road
W. Croydon CRO 3EB Surrey, U.K.
Tel: 01-689 4138
(Mon-Fri 9-5pm)

SUPERKITS!

FOR BETTER MUSIC \& EFFECTS
SETS INCL PCBS, ELECTRONIC PARTS, INSTRUCTIONS, BOXES, WIRE, SOLDER BATTERIES NOT INCL, BUT MOST WILL RUN FROM 9 V TO 15 V DC SUPPLIES. FULLER DETAILS IN LIST

CHORUS UNIT: A solo voice of instrument sounds like more COMPRESSOR: Limits \& levels maximum signal strength ECHO UNIT: With double tracking
FREQUENCY DOUBLER: Raises guitar frequency by 1 octave FRE QUENCYCHANGER\&WAVEFORM MODIFIER-Tunable unit FLANGER: Fascinating effects plus phasing
FUZZ: Smooth distortion whilst keeping natural attack \& decay GUITAR EFFECTS: Multiple variation of level \& f|termodulation GUITAR OVERDRIVE: Fuzz plus varlable filter quality GUITAR SUSTAIN: Extends effective note duration JABBERVOX: Voice disguiser with reverb \& tremolo MAD-ROJ: Variable sirens, incl police, galaxy, machine guns METRONOME: With audible \& visual beat \& down-beat marking MICROPHONE PRE-AMP: with bass \& treble switching NOISE LIMITER: reduces tape 8 system hiss PHASER: with automatic \& manual depth \& rate controls REVERB: with variable delay $\&$ depth controls RHYTHM GENERATOR: 15 switchable rhythms
RING MODULATOR: with integral oscillator control RING MODULATOR: with integral oscillator cont
ROBOVOX: versatile robot type voice modifier ROBOVOX: versatile robot type voice modifier
ROGER 2-GONG 2 gongs sounded at end of transmissio SCRAMBLER:Codes \& decodestransmissions authorised chans SPEECH PROCESSOR: tor clearer transmission STORM EFFECTS: Automatlc \& manual, wind, raln, suf TREMOLO: deep temolo with depth \& rate control VOCODAVOX: modular vocoder
VODALEK: Robot type voice modulator
VOICE-OP-SWITCH: with variable sensitivity \& delay WAH-WAH: with auto-trigger, manual \& oscillator control

KIT162 £28.60 KIT133 £12.38 KIT168 £38.10 $\begin{aligned} & \text { KIT168 } \\ & \text { KIT98 } £ 38.10 \\ & \text { K }\end{aligned}$ KIT98 KIT153 £18.73 $\begin{aligned} \text { KIT153 } & \text { £18.73 } \\ \text { KIT91 } & \text { £9.28 }\end{aligned}$ $\begin{array}{rr}\text { KIT91 } & \text { £9.28 } \\ \text { KIT42 } & £ 13.54\end{array}$ $\begin{array}{ll}\text { KIT42 } & £ 13.54 \\ \text { KIT56 } & £ 17.53\end{array}$ KIT75 $£ 9.36$ KIT150 £19.88 KIT146 £8.23 KIT143 £11.28 KIT144 £7.08 KIT145 E8. 33 KIT164 £17.56 KIT122 $£ 16.86$ KIT170 £32.40 KIT179 £13.83 KIT165
KIT126
£10.04 KIT126 $£ 10.04$ KIT110 $\mathbf{E q . 0 5}^{6}$ KIT154 £13.66 KIT136 $£ 8.44$ KIT136
KIT152
£ 59.4 KIT152 £59.0 KIT123 $£ 13.80$
KIT1 MANY OTHER GREAT KITS IN CATALOGUE such as Autowah, bass boost, call sign comparator, frequency generator, Funky-wobulo!, harmonola, hum-cut, mixers operated fader Wheery-jeebyl wobble-wah plus digital, synthesise junlor syn thesiser, envelope shapes, D-A converter, multiwaveform VCO, Keyboards, contacts, etc. Send S.A.E. for comprehensive catalogue (overseas send £ 1)
Add 1 P\&P \& 15% VAT to all orders. (Overseas post details stated in ct). Payment CWO, Chq. PO. Access. Barclay; or pre-arranged collection. Despatch usually 10-14 days. Details correct at press, E\&OE

PHONOSONICS MAIL ORDER
Dept ET3N, 8 Finucane Drive, Orpington, Kent BR5 4ED Tel: Orpington (STD 0689) 37821. Mon-Fri 10.5

Callers by appointment

FAST LIGHT PEN

If you want to use your computer for some real work instead of all these silly games, a light pen can be a useful tool. Design by Martin Postranecky.

This circuit will enable you to build a light pen for use with most home computers, but at a fraction of the price of any commercial unit with comparable performance. Apart from cost, the circuit's main advantages are the very high response speed and the compatability with a large range of TV or monitor brightness and contrast settings.

Going Soft

In order to construct a light-pen system, both software and hardware are needed. This article covers the hardware in some detail, but, apart from giving some hints, leaves the construction of the software largely up to the reader. However, we do hope to be able to give software details in a future issue (no promises, though, so there's no excuse for laziness on your part).

Generally, computers have a dedicated area of RAM that contains the information for the TV display. Words of data are read sequentially, each word being enough information to determine the brightness and colour of an area of screen known as a pixel. The size of the pixel - the number of lines it extends across and how far it extends along them depends on the computer, but the pixel will be refreshed at a standard rate, every 40 mS in the UK system of two fields of $312 \frac{1}{2}$ lines in 20 mS .

When the electron beam "hits" the pixel at which the light pen is pointing the sudden change in phosphor brightness will trigger the light pen circuit. The resultant TTL output pulse can then be used to generate an interrupt which will identify the display file pointer position for that pixel. Your software should then either vary the content of that particular display element or
generate an offset vector to move the element to follow (TRACK) the light pen.

Light Hardware

Obviously the response of the light pen must be very fast to enable you to capture the required element. With the photodiode used in this design, the TTL pulse is generated in under 300 nS ; if an even faster response is required try a silicon PIN photodiode, eg BPX-65.

The circuit is very easy to build using the PCB layout provided. The only difficult part is the negative supply line, -7.0 V at about 30 mA (the Video Amplifier will probably catch fire above $\pm 8 \mathrm{~V}$ and the comparator will not work with less than -6V!). But as most computers provide -7 V , -12 V or -15 V line, the simple BZY88 (6V8) Zener regulator should be satisfactory provided the correct

The ETI version of the light pen - unlike the author, we used the body of a highlight pen so that we could fit in the optional switch.
value for the series esistor, R11, is used, as given by Table 1 .

The MIXED SYNC line is normally available at the TTL level in any computer somewhere on the video mixer board - most likely as an output of a ZNA134J or an equivalent IC. If all else fails try the cheap and simple circuit shown in Fig. 3 using the VIDEO OUTPUT line of your computer.

Body Building

To form the lightpen body, I used the barrel of a cheap ball-point pen with the photodiode push-fitted in the "sharp" end behind the 1 mm 'hole'. But any ball-point / fountain / felt-tip pen / cigar tube / etc would be just as effective - use your imagination! Two points to remember - it is much easier to use a pen barrel

HOW IT WORKS

Light falling on the reverse-biased photodiode PD1 increases the leakage current through the diode and R1. The resultant voltage change is AC coupled to the emitter follower Q1 and appears across its emitter load R4. Signal amplification is further provided by the variable-gain Video Amplifier IC1. The SET GAIN potentiometer PR1 is connected between the high gain select pins 4 and 11 and allows the voltage gain to be set between about 50 and 200 .

Any small change in the amplifier output (about 10 mV) is detected by the analog voltage comparator, IC2 and appears as a negative-going TTL pulse at the output pin 11. This pulse is inverted by IC3a and clocks out the two complementary output lines LPOUT (Q1, pin 5) and LPOUT (Q1, pin 6) of the dual flip-flop, IC4 with its DATA 1 (pin 2) tied high via $\mathbf{R 8}$.

The low-going edge of LPOUT also triggers the monostable IC5. After the preset time period - variable by the SET PULSE LENGTH potentiometer PR2 the high-going edge of the IC5 output Q
(pin 1) clocks-out the low-going output Q2 (pin 8) of the flip-flop IC4 (DATA 2, pin 12, is again tied high via R7). After passing through gate IC3b and inverter IC3c, this pulse sets the CLEAR 1 (pin 1) of IC4 low and thus clears the flip-flop IC4 outputs, LPOUT and LPOUT. The CLEAR 1 will remain low (and so prevent any further friggering of IC4) until the CLEAR 2 (pin 13) is brought low by the next Line Sync pulse of the MIXED SYNC line. This system ensures that only one pulse in any TV scan line is passed to the computer and prevents any spurious trigerring caused by the CRT flyback or sync pulses.

The STROBE (pin 13) of IC2 is normally held high by R2. If the optional switch SW1 is used in the LIGHT PEN body the STROBE will normally be low, inhibiting the IC2 output. The operation of the push-to-break switch SW1 allows the STROBE line to swing high enabling the IC2 output. Capacitor C4 removes the worst of the switch bounce from the STROBE line.

Fig. 1 Circuit diagram of the light pen.

Fig. 2 Timing diagram of the light pen.

- if the size of the light pen body permits, you might find it useful to mount a small push-to-make switch on it (SW1) connected between the ground (shield) and the third wire. You can use SW1 as a push-to-write switch.

Setting Up

Construction of the main PCB should pose no problems. Please make sure that all the ICs are the right way round - they don't all fit the same way! Don't forget to insert all
five links as shown on the PCB overlay and re-check the polarity of the zener ZD1 and the electrolytic capacitors. (If you think all this is superfluous, you don't know your Murphy's law).

Use and oscilloscope or a logic probe to look at the output of IC4 pin 5. Point the light pen at the TV screen with the brightness and contrast setting fully down (ie, dark) and adjust the GAIN present potentiometer PR1 so that the line stays low.

Then set both brightness and contrast back to the usual level and

Fig. 3 Circuit to recover the MIXED SYNC pulse from the composite video.
point the light pen at some white display element. Slowly increase PR1 until a single pulse appears on the TTL output line. Because the light pen could cover two or more scan lines depending on the CRT size, you may get two or three pulses repeated at $64 \mu \mathrm{~S}$ interval. You should be able to reduce the gain with PR1 and/or TV brightness control sufficiently to obtain just a single pulse.

Finally set the required pulse duration by the PULSE LENGTH potentiometer, PR2 (adjustable between about 200 nS and $2 \mu \mathrm{~S}$).

All that remains now is to sit down and write your software to actually use the light pen. What about a (computer) game of battleships . . .?

Table 1 Values of R11 for various negative host computer supply voltages.

PROJECT : Light Pen

1u0 10 V tant
47 n polyester
180p ceramic
47 u 10 V tubular
electrolytic
${ }_{0}^{0}$

SกOJNV713DSIW
SyOIOnGNODIWAS
ISTI SIVVd

SILVER-REED

PRINTER/TYPEWRITER

AS FEATURED ON LAST MONTH'S FRONT COVER

$$
\text { R.R.P. £339. } 25
$$

EX42 SPECIAL PRICE £245.00

JUST LOOK WHAT YOU GET!

1. Latest technology daisywheel printer
2. High quality keyboard
3. Interface option to most micros
4. Automatic correction (16 characters)
5. Post, packing \& insurance free
6. Other quality features

We also supply other Silver Reed models.
Phone for details of our interface. Cash refund if returned undamaged within 14 days. Cheques/POs to

TAPESOFT

01-892-1909
55 Morley Road, Twickenham, TWl 2HG.

OPTICAL FIBRES

\star Silica fibre PTFE coated, $25 \mathrm{~dB} / \mathrm{km} 0.05 \mathrm{~mm}^{2}$ active area Xmits near UV

* Glass flbre urethane coat, $60 \mathrm{~dB} / \mathrm{km} 0.03 \mathrm{~mm}^{2}$
active area Xmits near IR
Acrylic fibre, $0.75 \mathrm{~mm}^{2}$ active area $800 \mathrm{~dB} / \mathrm{km}$. Xmits visible light only
\star Glass Bundle, PVC sheath, $400 \mathrm{~dB} / \mathrm{km} 1.0 \mathrm{~mm}^{2}$ active area, 440 tibres
\star Acryllc Bundle, sheathed, $800 \mathrm{~dB} / \mathrm{km} 0.78 \mathrm{~mm}^{2}$ active area, 16 fibres

Lenth in Metres
Silica Fibre
Glass Fibre
Acrylic Fibre
Glass Bundle

QUANTUM JUMP LIMITED
 Dept ETI, 98 Queens Drive,

ept ETI, 98 Queens Dr
Liverpool L18 1 JN .

FOR COMMUNICATIONS AND LIGHTING

SAMPLE PACK: contains six metres of Acrylic fibure plus one metre samples of the other fibres. in the Pack is a booklet that contains circuit dlagrams, drawings, and practical tips. Its forty pages give details of fibre theory, manufacture, properties, and many uses. Send $£ 5.45+50 \mathrm{p}$ P\&P.

MARE'S TAIL: A ferruled bundle of 5000 glass fibres that spread out into a $22^{\prime \prime}$ diameter spread shape, For use in a fibre optics lamp. Send $\mathbf{\Sigma 1 1 . 5 0}$ incluslve.

Add 50p postage on orders
Add 50 p postage on orders
under 10 . Don't add VAT.
nder M 10 . Don't add
Marder only.

READ/WRITE

Component Supplies

Dear ETI,
Your IC Update feature is most interesting, not least for your introductory remark about neither IC being actually available to the hobbyist.

It encapsulates something I've long been feeling - that the home constructor/hobbyist/amateur etc is often regarded as a convenient disposal route for the obsolete, substandard and just plain trashy.

Maybe I'm in a minority, my. electronics interests being focused on audio with aspirations to the building of equipment with the sonic qualities of Mark Levinson, Threshold, etc. It's a continual pain to deal with supliers who can't even deliver what they advertise (and what they advertise often lags far behind industrially-available components).

I'd have thought that there was scope for someone, somewhere to get on a platform as a purveyor of genuine quality up-to-date goods as an alternative to the present system of 'bargain packs' and 'just as good only cheaper' (it's never as good and always costs you more to put right in the long run). Not that I condemn the cheapos entirely, many of us started there - but to what extent are we stuck there for the want of an alternative and for the want of a bit of imaginative energy?
Yours
Dick Bowman
London E17
We're very glad that at least one reader concurs with our remarks. We have, ourselves, access to 'professional' sources for components, and frequently we are unable to specify components that we'd like to because they are not available on the hobby market. So what do we do - do we leave out the devices in question, as we've done so far, or do we use them and hope that we can persuade someone, somewhere to sell them to readers?

To a great extent, what actually makes its way on to the hobby market depends on manufacturers' pricing policies - if the 100 (or even 1000) off prices are punitive,
none of the advertisers in our magazine will stock bits because no one will buy them. And can you blame them?

We've spent quite a lot of effort trying to get manufacturers to recognise that the hobbyist market is important. It is very frustrating indeed to speak to an engineer who started out as a hobbyist (admittedly, probably before going on to do a formal qualification in electronics) who still doesn't recognise that we're important. It's also surprising how little it is recognised that ETI and (to be generous to the opposition for once!) other hobbyist
magazines are widely read by professional engineers.

ZX81 Tape Mod

Dear Sir,
On page 61 of the February issue you publish an article by Mr lan Ridout concerning modifications to facilitiate recording programs from the ZX81 on to cassette. Talk about a sledgehammer to crack a nut!

A year or so ago I did modify my son's ZX81 - and then quite a few of his friends' got done - to increase the write signal to cassette. Inspection of the Sinclair circuitry had revealed, as Mr Ridout states, that only about 1 millivolt RMS of signal emerged from the ' 81 ' at the cassette port, after the double 47 us filter. Changing Sinclair components R29/C12 to 330K and 150pF worked with some 20 different machines, from metered hi-fi decks to autolevelled portables. This, of course, tripled the signal to the cassette. 220K/220 PF combinations were also acceptable, giving a fivefold increase approx.

To use an FET as a buffer is a substantial overkill - needless when even a loading of, say, $10 k / 4 n 7$ would be acceptable to the machine and give over 100 mV of signal, RMS: It is far more likely to create difficulties with the circuit published in your magazine owing to the very high signal level, than the easy and modest change of 1 resistor and 1 capacitor.

Yours sincerely,
P. A. Duvall

Theydon Bois

We don't accept that using one transistor is comparable to using a sledgehammer! Certainly, if we'd managed to fit in a couple of ICs, perhaps a dedicated micro to handle the tape signals . . . then that criticism really would be in order. As to difficulties with high signal levels, we've had none reported as yet - and, in any case, it's always far easier to get rid of excessive levels than it is to boost inadequate ones.

Fuel Economy

Dear Sir,

Your comments on the Hyconomiser suggested that readers might be interested in the possible advantages of electronic mpg devices. Mine is a Mobelex Maximiser, giving an instantaneous readout in mpg, and a record of fuel used, to tenths of a gallon. My car is a 1972 Datsun Bluebird (1600cc) which, until a replacement carburettor was fitted a few years ago gave exceptionally economical consumption. I had always suspected that I had been lucky, and when the consumption on a run increased from the early 40 s to the late 30 s I fitted the meter to check up on the situation.

I had hoped that the meter might indicate places on the performance curve where the carburettor was delivering an economical mixture, and this proved to be the case. Observing the meter readings at steady speeds showed that just above 50 mph gave a noticeably low reading. This was a rather lower cruising speed than the one I had found by trial and error to be economical with the previous carburettor, but checks on mileage and fuel put in (which agreed very closely indeed with the meter readings) showed that I could now get an overall consumption very close to 50 mpg , though traffic holdups and so on seemed perpetually to conspire to limit me to forty-nine point something and deny the triumphant fifty-plus. Nevertheless, 1 found the improvement of over ten miles per gallon very satisfying on those unavoidable long runs.

Of course, it is not all joy, and meter watching needs a certain frame of mind, where driving satisfaction comes from saving, rather than the wind in the hair. The meter shows what we all know but prefer not to believe. Hard acceleration can show as little as six or seven mpg, while one
enthusiastic overtaking up hill can more than counteract ten miles of careful driving on the level. Most of the economical methods I already knew, but didn't practise regularly until the meter kept reminding me of my wastefulness. One new - to me - tip is not to let the speed increase as the car breasts a hill. Easing off to keep the speed constant can show startling improvements, which of course follows logically if one considers that if acceleration is costly, acceleration up hill is far worse.

One doesn't need to watch the meter all the time - in fact, once one has explored the performance envelope with it, if you drive by your findings you don't need to use it at all, yet I personally wouldn't be without one in future. On the other hand the ideal meter would differ in some respects from the one I have fitted. When one is using small quantities of petrol the fuel flow transducer appears to give a signal every second or two, and the combination of this data with the more frequent speed signals gives a display that flickers over some 5-10 mpg. It would be easy to be dismissive about the meaningfulness of the display, but in fact the trend of the figures is quite easilyfollowed - indeed, after some degree of use one can begin to read subtleties into the way the display is operating. Nevertheless, some kind of integrating device that would operate over a second or two would make the device easier to interpret, particularly by the impatient or nontechnical. Again, reading the tenths against the mileage enables a quick check on mpg attained over the last five miles or fifty miles, or since the beginning of the journey, but it would be pleasant to do this automatically rather than by mental arithmetic.

Incidentally, the best mpg I have ever attained over a distance was coming eastward on the M4 from the service area on the summit level. A strong tail wind enabled me to display (and check on the mileage/consumption figures) over 80 mpg for some thirty miles. Needless to say, awful rush-hour jams at the London exit reduced my overall figure to about fifty . .

Unfortunately I lack both the time and the expertise to design my own ideal meter, but I feel that I would now be able to offer quite a lot of useful advice to anybody thinking of obtaining or designing one.

I am sure that a device like the Hyconomiser could improve the consumption of any car that, like mine on its new carburettor, was operating slightly rich. However 1 don't understand the emphasis on the so-called optimum mixture, where the oxygen and hydrocarbons are present in the exact quantities needed for the theoretical reaction. In real life, some of the petrol and some of the oxygen just can't get together, and both petrol and oxygen are wasted. For some forty or fifty years two mixtures have been aimed at: 1. A rich mixture for maximum power with excess fuel, where all the oxygen is burned, but some petrol is wasted.
2. A weak mixture for cruising, with excess air, where all the fuel is burned, but some oxygen passes off unburned (don't forget that four fifths of the gas in the cylinder is nitrogen, that passes out hot but unchanged, so a little excess oxygen is unimportant). Modern carburettors try to operate in these. two regimes, and avoid the 'optimum' mixture like the plague. The problem, leaving aside gross failures to atomize, is that no improvement in mixing arrangements can improve the mixing beyond a certain point determined by the mathematics of probability.

This effect was first noticed, to my knowledge, in connection with the Lumiere 'Autochrome' colour photographic plates circa 1910. The system depended on an intimate mixture of red, green and blue fine transparent powders to produce a mosaic screen with many million elements to the square inch. However aggregations of many grains all of the same colour produced objectionable spots on the plates, and it became apparent that more thorough mixing did nothing to alleviate the problem. In the 1920s.E. J. Wall showed that the number and size of these clumps of grains was very close to that predicted by probability theory. Even larger clumps of grains should have been present, but plates with these were presumably rejected by visual inspection.

Anyone who hopes to create an ideal mixture without 'lumps' merely by mixing or agitation is, 1 am afraid, attempting to evade one of the laws of nature.
Yours sincerely
Michael C. Jones
Harrow

We have considered doing a

 project for a fuel consumption monitoring system, as the electronics involved would be relatively simple and easy to design. However, the problems come in trying to design the fuel volume and the distance travelled transducers.
Tropical Programming

Dear Editor,

I'm having infinite trouble with my Atari Cassette Programmer and wrote to HE wondering if their EPROM project earlier this year the magazine takes some time to reach me out here!) would be of use. They say not, but suggested contacting you.

I need some way of storing programs and loading them; my 410 program recorder seems to store them but won't load. There are two of us in Fiji with Ataris and both of us have exactly the same problem. My friend got a disc drive, but that's packed up too, so we are driven to lying on the beach, drinking from a coconut and dreaming of programming.
Any suggestions welcome.
Rob Patterson
Lelan Memorial School Fiji

This must be the cruellest letter

 we've received in a long time how is it possible for anyone to worry about programming when there's important business like lying on the beach to get on with? There's nowt so queer as folk (well known north of England saying No. 42).So far as we are aware, the 410 programmer is a reliable piece of equipment and should work. However, it's probably the excess heat that's giving the trouble, by causing the timing components in either the recorder or the interface to change value just enough for the two not to be compatible. Have you tried using the computer and recorder in an air conditioned room? Alternatively, we suggest contacting Atari themselves.

[^5]

YOUR CAREER.YOUR FUTURE.YOUR OWNBUSINESS..YOUR HOBBY THIS ISTHEAGE-OF ELECTRONICS! the word's fastest growth industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - ecpecially if you know the basic essentials of the subject. A few hours a week for less than a year - and the knowledge will be yours. . .
We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minumum of theory.

You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write.personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic eléctronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi, VCR and microprocessor/computer equipment.

$\mathrm{CACC}_{]}$British National Badio\&\&Hectromics School Reading, Berks.RG1 1BR

COLOUR BROCHURE

POST NOW TO

Please send your brochure without any obligation to

NAME

ADDRESS

1 am interested in:

\square COURSE IN ELECTRONICS as described above
RADIO AMATEUR LICENCE MICROPROCESSORS
OTHER SUBJECTS
please state below
OR TELEPHONE US
073451515 OR
TELEX 22758
(24HR SERVICE) CAC

ETI/11/841

ETI PCB SERVICE

The best way to get a really professional finish to your project is to use a professionally made PCB look no further, here they are!

In order to ensure that you get the correct board, you must quote the reference number when ordering - if you don't, you may get sent the wrong board. The code can also be used to identify the year and month that a particular project was outlined in: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.
1979
E/794-1 Guitar Effects Unit2.64
E/794-2 Click Eliminator6.64
E/796-1 Accented Beat Metronome3.60
1980
E/803-1 Signal Tracer2.27
E/808-1 CMOS Logic Tester .
2.64
E/808-3 Ultrasound Burglar Alarm
E/...2.87
E/8010-2 Fuiz/Sustain Box
3.27
E/8011-5 RIAA Preamp 1.93
E/8011-6 Audio Test Oscillator3.13
E/8012-1 Musical Doorbell . 10
E/8012-3 Four Input Mixer2.64

1981

E/811-1 LED Tacho4.13
E/811-2 Multi-Option Siren3.20
E/812-1 Universal Timer 3.31
E/812-2 IR Alarm (4 boards)6.64
E/812-5Pulse Generator3.57
E/813-1 Engineer's Stethoscope2.65 E/814-2 Drum Machine (2 boards)
.. 5.60
E/814-4 Guitar Note Expander3.20
E/816-8 Waa-Phase1.53
E/816-9 Alien Attack3.48
E/817-1 System A-Input
(MM or MC)
.2.65
E/817-2 System A - Preamp5.17
E/817-3 Smart Battery Charger1.97
E/818-3 Hand Clap Synth3.97
E/818-5 Watchdow Home Security (2 boards) ...
E/819-1 Mains Audio Link (3 boards) ..5.31 .7.35
E/819-4 Laboratory PSU4. 43
E/8110-1 Enlarger Timer3.40
E/8110-2 Sound Bender2.65
E/8111-1 Voice Over Unit3.97
E/8111-2 Car Alarm2.81
E/8111-3 Phone Bell Shifter2.96
E/8112-1 Alcoholmeter (2 boards) 5.21
E/8112-3 Bodywork Checker1.75
E/8112-4 Component Tester 1.49

1982

Prices quoted are valid until December 1983
How to order: indicate the boards required by
ticking the boxes and send this page, together
with your payment, to: ETI PCB Service, Argus
Specialist Publications Ltd, 145 Charing Cross
Road, London WC2H DEE. Make cheques
payable to ETI PCB Service. Payment in sterling
only please. Prices subject to change without
notice.
Total for boards
Add 45p p\&p
Total enclosed

PLEASE ALLOW
 28 DAYS FOR DELIVERY

E/831-2 ZX ADC 2.25
E/831-3 Programmable PSU
11.16
11.16
E/833-1 SoundBoard 3.15
E/833-3 ZX81 User Graphics 0.93
E/833-4 Logic Probe 2.17
E/834-1 Real Time Clock 7 .60
E/834-2 Thermemeter(2 boards) 8.47
E/834-4 Stage Lighting - Main .. 11.94
E/834-5 Stage Lighting - Display 3.00
E/835-1 Compressor/Limiter5.38
E/835-2 Single PSU 3.38
2.75
E/835-3 Dual PSU 3.49
E/835-4.2 NDFL Amp 6.85
E/835-5 Balance Input Preamp 2.81
E/835-6 Stage Lighting 5.38Autofade
E/835-7 Stage Lighting - Triac Board 4.12
E/836-1 to 3 Pseudorom 3.15
E/836-4 Immersible Heater 2 .00
E/836-5 Atom Keypad4 .50
E/837-1 Flash Sequencer 2.32
E/837-2 Trigger Unit Main Board 2.32
E/837-3 Trigger Unit Transmitter 1.44
E/837-4 Switched Mode PSU 14.00
E/838-1 Graphic Equalise 7 .91(four-off) 2.55
E/838-3 Universal EPROM prog 8 .38
E/839-1 NiCad Charger/Regen 3.28
E/839-2 Digger 2.96
E/839-3 64K DRAM 12.24
E/8310-1 Supply Protector. 1.900
E/8310-2 Car Alarm 3.46
E/8310-3 Typewriter Interface. 3.63
E/8311-1 Mini Drum Synth 2.67
E/8311-2 Alarm Extender 2.79
E/8311-3 Multiswitch 3.12
E/8311-4 Multiple Port. 3.77
E/8311-5 DAC/ADC Filter 2.80
E/8311-6 Light Pen. 4.00
E/8311-7 Logic Clip 2.18
E/8311-8 MC Head (JLLH) 2.76

COMPUMHR MTR W:OUST

HARD DISK DRIVES

Fully refurbished Diablo/DRE Series 302.5 mb hard
disk drive for DEC RKO5, NOVA TEXAS etc.
Front load $£ 550.00$ - Top load $£ 295.00$
PSU type ME 3029 for 2 drives $£ 125.00$
DRE 44A/4000AB $10 \mathrm{mb} 5+5$ all configurations from £ 995.00 . Call sales office for details.

5 AMP MAINS FLTERS

Cure those unnerving hang ups and data glitches
caused by mains interference. Matchbox size-Up tos amp 240 v load As recommended by the ZX81 news letter. Suppression Devices SD5A £5.95.

DISTHEC

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive.
DON'T MISS THOSE BARGAINS
CALL NOW, IT'S FREE
$016791888 \quad 7$ days per

COLPDTBR 'CAB'

All in one quality computer
cabinet with integral switched
cabinet with integral switched
mode PSU, Mains filtering an
mode PSU, Mains filtering, and twin fan cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive +5 VDC at $17 \mathrm{amps},+15 \mathrm{DC}$ at 1 amp and -1
$D C$ at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip swltch, 'Power' and 'Run' removable top lid, filtering, trip switch, 'Power' and 'Run'
LEDs mounted on Ali front panel, rear cable entries, etc. etc. Units are in good but used condition-supplied for 240 v operation complete with full circuit and tech. man. Glve your system that professional finish for only £49.95 + Carr. Dim. ${ }^{19}{ }^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5 " high. Useable area 16 "W $10.5{ }^{1 / h} 11.5{ }^{5} \mathrm{~d}$.
Also available LESS PSU, with Internal $19^{\prime \prime} \mathrm{w}$. $16^{\prime \prime} \mathrm{d}$. $10.5^{\prime \prime} \mathrm{h}$. E 19.9 g . Carriage \& insurance $£ 9.50$.

C00LTMG FANB

Keep your not parts COOL and RELABLE with our rang
Cooint fans Kim $92 \times 92 \times 25 \mathrm{~mm}$. Miniature 240 y equipment tan complete with finger fuad ca. 95 . very quiet running 240 vo operation. NEW $E 6.95$ BUHLER 69.11.22. 8-16. EDC micro miniature reversible tan. Uses a brushless
servo motor for extremely
nigh air fiow
 hrlife Measures only $62 \times 62 \times 22 \mathrm{~mm}$,
Current cost $\Sigma 3.200$ OUR PRICE ONLY E12.95 compliot with data.
 Tan supplied tested EX EQUUPMENT 240 vat
$\varepsilon 6.25$ or $110 \mathrm{Vat} £ 4.95$ or BRANO NEW 240 V

8^{98} MDOP DTE DETIX

Unbelievable value the DRE $71008^{\prime \prime}$ floppy disk drives utilise the finest technology to give you 100% bus compatibility with most drives available today. The only difterence being, our PAICE and the superb accepts hard or soft sectoring 1BM or ANSI standard formats giving a massive 0.8 MB of storage. Absolutely SHUGART, BASF SIEMENS etc. compatible. Supplied BRAND NEW with user manual and full 90
Optional accessories: Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Refund of difference on drive purchase. DC and AC power connector and cable kit $£ 8.45$. 50 way IDC connector $£ 5.50$. 50 way ribbon cable $£ 3.20$ per metre.

SUPER DEAL? NO - SUPER STEAL!!
 The FABULOUS 25CPS TEC Starwriter

Daisy wheel printer at a fraction of its original cost. BRAND $N E W$ AT ONLYE489i+ VAT=Made to the very highest
spec the TEC Starwriter Spec the TEC Starwrite heavy duty die cast
chassis and DIABLO
chassis and DIABLO type chint mechanism giving
puperb registration and superb registration and
print quality. Microprint quality. Micro-
processor eiectronics offer fuil DIABLO/QUME command compatability
and full control via CPM Many other features in Wordstar etc. printing, switchable 10 or 12 pitch, full width 381 mm paper handling with upto internal buffer, standard RS232 feed rollers for single sheet or continuous pape Supplied absolutly BRAND NEW with 90 day guarantee and FR and dust cover. Order NOW or contact sales office for more infor daisy whee Optional extras: RS232 data cable £10.00. Tech manual $£ 7.50$. Tractor
$\mathbf{£ 1 4 0 . 0 0}$. Spare daisy wheel £3.00. Carriage \& Ins. (UK Mainland) £10.00.

 FRUME193 + CAR + VA Fully fledged industry standard ASṘ3 3 dat terminal. Many features including ASCl1 keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand E18.50 + VAT KSR33 with 20 ma loop interface\&125.00 +
 SOFTY 2

The amazing SOFTY 2. The complete "toolkit" for the open heart sottware surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Many ot herfestures include keyboard, UHF modulator. Cassette interface etc. Functions exceed capabilities of units costing 7 times the price: Onty $\mathbf{\$ 1 6 9 . 0 0} \mathrm{pp} £ 1.95$ Data sheet on request

DATA MODEMS

Join the communications revolution with our range of EX TELECOM data modems. Made to most stringent spec and designed to operate
for 24 hrs per day. Units are made to the CCITT tone spec. With RS232 V o levels via a 25 way'D' skt. Units are sold in a tested and working conditton with data Permission may be required for connection to PO lines. MODEM 13A compact, async same size as telephone base. Up to 300 baud full duplex over 2 wires, but call mode only E 75.00 MODEM 28/C Fully fledged up to 300 baud async, ANSWER \& CALL modes, a uto answer, auto switching ideal networks etc. Just 2 wire connection to comms line. E85.00
MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 baud
transmit - 1200 baud receive Auto answer transmit-1200 baud receive. Auto answer. E130.00
MODEM 20-2 same as 20-1 but 75 baud receive 1200 baud transmit. $£ 130.00$ MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circuit or half duplex mode over 2 wires $£ 130.00$
Carriage 13A $£ 4.50 .2$ B/C \& $20 ~ £ 9.50$ Carriage. 13A £4.50. 2 E/C \& 20 £9.50. DATA PUMP MODEM compact unit upto
1200 baud full duplex over 4 wires or half duplex over 2 wires BELL specification with data i/ via RS232 25 way D socket, remote
test etc. 240 voperation. Supplied complete test etc. 240 v operation. Supp
with data $£ 65.00$ carr. $£ 4.50$.

For more information or details of other types
of ex. stock modems contact sales office.

SPECIAL MODEM OFFER

EX TELECOM. Direct connect. 2 wire, European standard, $75 / 1200$ baud data modems. Normally priced at $£ 140.00$, we have a limited quantity of guaranteed working, but cosmetically defective (ie scratches and scuffs on panels etc.) units at a super low price of only $\mathbf{5 4 9} 93$. Modems are made to the highest standard DISTEL's forthcoming high speed ports. Standard RS 232 data i/o via 25 way D skt. With data.
D skt. With data.
MODEM 2A Early version of modem 2B/C 300 baud full duplex, send-receive, auto answer. RS232 i/o. With data but untested. End of line clearance.
Onty E 55.00 . Supplied complete with data. Carriage \& Ins. £9.50

$8^{\prime \prime}$ WINCHESTER price SLASHH

$\mathbf{S 1 0 0}$ Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs direct into the S100 bus and will control 2 disk drives, offering a total storage of OVER 36 Mbs! and at data transfer rates in excess of $7 \mathrm{Mb} / \mathrm{sec}$ seeeing is believing!! Supplied complete with user configurable BIOS etc. Save a fortune, Limited quantity only. 310019 Mb . Disk drive $\mathbf{\$ 4 9 9 . 0 0}$ PSU unit $\quad \$ 165.00$ CD1100 controller \& BIOS E345.00 PSU extension cable $\quad \mathbf{E 9 . 9 5}$ Full tech Manual $\mathbf{E 2 0 . 0 0}$
Special SUBSYSTEM prices. 1×3100 disk + PSU + Controller
£799.00 K1295.00 All prices + VAT and carriage. 90 day guarantee Data on request.

RECHARCEABLE NICADS

SAFT VR2C $1.2 v$ 'C' size nicads. 18 cells in ex equipment pack Good cells in ex equipment pack Good condition -easily split to single cells £9.50 + £1.90 post and packing.

VIDEO MOMITOBS

$12^{\prime \prime}$ CASED. Made by the British KGM Designed for continuous use as a data display station, unit is totally housed in an
attractive brushed aluminium case with ON OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and
reliability of this unit with features such as reliability of this unit with features such as,
internal transformer isolated regulated DC internal transtormer isolated regulated DC
supply, all components mounted on two fibre glass PCB boards - which hinge out ease of service, many internal controls for linearity etc. The monitor accepts standard 75 ohm composite video signal via SO 239 is estimated around. 20 Mhz and will display most high def graphics and 132×24 lines. Units are secondhand and may have scree burns. However where burns exist they are only apparent when monitor is switched off Although unguaranteed all monitors are tested prior to despatch. Dimensions approx. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep. Supplied complete with circuit. 240 voll A operation. owly ex5.00 plUS E9.sO camn. 24" CASED. Again made by the KGM Co with a similar spec as the 12^{2} monitor. Originally used for large screen data
display. Very compact unit in lightweigh alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Al silicon electronics and composite video
input make an ideal unit for schoals, clubs, shops etc. Supplied in a used but working sondition.
OWLYES5.00 PLUSE9.50 CARR. © INS $14^{\prime \prime}$ COLOUR superb chassis monitor made are TTL RGB with separate sync. and will plug direct into the BBC micro etc Exceptional bandwidth with good 80 co definition. Brand new and guaranteed. Complete with full data 8 circuit 240 v AC working. Dim. $14^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$
owlyEi99.00 plus E9.30 sARR.

SHMICONDUCTOR 'GBAB BAGS'

Mixed Semis amazing value contents include transistors, digital, linear, I.C.'s triacs, diodes, bridge recs, etc. etc. All devices
guaranteed brand new full spec. with ma guaranteed brand new full spec. with manter
facturer's markings, fully guaranteed. facturer's markings, ful
$50+E 2.95100+$ ES. 15.
TTL 74 Serles A gigantic purchase of an "across the board" range of 74 TTL series across the board range of $4 T \mathrm{~T}$ se
C.'s enables us to offer $100+$ mixed "mostly TL" grab bags at a price which or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C.'s full
spec $100+£ 6.90200+£ / 2.30300+£ \$ 9.50$

CALLING DEC USERS

Brand new and boxed

RSX 11 M 3.2 Documentation kits, fill 3 feet of your bookshelf Under half price DEC MSV1 1-DD $32 \mathrm{k} \times 16$ bit RAM $£ 195.00$ DEC MSV11-DD $32 k \times 16$ bit RAM E195.0
We are always keen to buy all types of We are always keen to buy all typ
used or surplus DEC equipment.

LOGIC CLIP

Ever been frustrated trying to test a digital circuit with only one single-point logic probe? Never fear, ETI comes to the rescue with this 16 -point, 4 -state CMOS/TTL logic probe.

This logic clip is a very useful addition to a digital test-set, speeding up the tedious testing of MSI devices, such as flip-flops and counters. Such clocked logic requires both stimulus and effect to be observed, and this is difficult to do with a conventional logic probe. The usual solutions of a multi-trace oscilloscope and a logic analyser will be just a bit beyond the means of the average ETI reader. The ETI
logic clip provides equivalent facilities at a much more approachable cost.

When built, the logic clip simply clips on top of the IC to be tested (using an IC test clip), showing the logic state (high, low, undefined or pulsing) of all 16 pins of the IC. The probe caters for both TTL and CMOS ICs - the high and low logic levels are selected by a single switch.

Goodbye Tedious Testing

The logic clip is the ideal partner for the ETI Dicrobe logic pulser (September 1982), which can provide suitable stimuli for the IC under test. For example, let us suppose that we wish to test for the proper operation of a binary counter. If we use a normal probe, each counter output must be checked before the next clock pulse can be applied, to make sure that the clock pulse is producing the desired response - a binary count. Contrast this with using the logic clip, which simply fits on top of the counter chip, leaving your hands free. You sit back, push the pulser button and watch the count progress.

Dazzling Dual Colour

The circuit basically consists of two identical logic probes, which compare the input with selectable logic levels for low and high, and drive the display LEDs accordingly. The small size of the clip is
achieved by scanning eight pins on either side of the test IC, and feeding the selected test voltage to these two logic probes. Of course, there would be little point in doing this if all the data was displayed on one LED - the result would be a meaningless blur, so the display is made up of two rows of eight multiplexed dual colour LEDs, one row for each logic probe.

These dual colour LEDs are connected between the outputs of the high and low comparators, and give the following indications:
High: green
Low: red
Undefined: off
Oscillating: yellow
With experience, the mark/space ratio of an oscillating mode can be estimated from the degree of red or green in the yellow indication. To make the device easier to read, the LEDs are laid out in the pattern of the IC pins (see Fig. 2a), each LED
corresponding to the test pin below it.

The scanning is done by 4051 CMOS one-of-eight analogue selectors for both input and display. These have an on resistance of about 160 , and so will limit the current through the LEDs. The scan address lines are provided by the binary counter IC2, fed by oscillator IC1, which runs at a frequency high enough to maintain persistence of the display (ie, no flicker). The rather odd order in which the pins are scanned is due simply to the constraints of the PCB design.

Construction

The probe consists of two circuit boards attached to an IC test clip, each board displaying the state of the eight pins on it's side of the IC. Start the construction by soldering the wire links above R6 on board 2, then insert the resistors

Fig. 1 Construction of the logic clip is on two boards which are then glued onto an IC clip.

PROJECT : Logic Clip

BUYLINES

Sispa woup puutiqo sendip isisi ino	

Fig. 4(a) The layout of the indicator LEDs. (b) Mounting details of the twocolour LEDs.
and C1. Next, fit the LEDs: these are dual colour devices, with a flat on the package that indicates the red anode/green cathode lead. Form the LED leads as shown in figure 4b.

Connect SW1 to points 6 to 11 , following the layout shown in the overlay diagram. Now solder the ICs in place, noting their orientation and taking care not to make any solder bridges across the many fine tracks. Next, carefully solder the resistors R3, 4, 7 and 8 on the foil side of board 2 , keeping the resistors as close to the board as possible. Finally, solder the power jack socket in place, taking both power rails to each board from the socket.

Once the boards have been, assembled, it would be advisable to test them before attempting final construction. Temporarily wire the boards together using lengths of insulated wire to join points 1-5. Plug in the power jack and apply suitable test voltages to each of the sixteen inputs (e.g. try $V+, 0 V$ and $V+12$). Check that the LEDs light correctly for both CMOS and TTL threshold levels. If they do not, check that the LEDs are connected the right way round, and that all the components are inserted correctly.

Tricky . . .

Now for the tricky bit of mounting the boards onto the test clip. Details will depend on the type of clip used, but the method we used for our hinged clip will apply. to most types.

First, shape the test contacts so they fit through the holes in the PCB. Bend these pins to make the edge of the board flush with the plastic of the clip. Then solder the boards to the clip with the components facing inwards. This joint may be strengthened by filling between the board and the clip with epoxy resin, such as Araldite. Finally, make the inter board
connections 1 to 5 with lengths of fine, flexible insulated wire. These wires will be flexed as the clip is used, so it would be wise to reduce the strain on them. This can be done by making a loop in the wire like that shown in figure 5, and ensuring that the wire is at right angles to the board.

. . . But You Can Do It

The probe is a rather odd shape, so we recommend building a case around the boards, using 60 thou plastic sheet ('Plasticard'), available from most good model shops. This should be cut to size and glued together with polystyrene cement.

If you have never worked with plasticard before, we had better explain how easy it is to use. To cut it, you just score a line with a sharp knife, such as a scalpel (fairly heavily for 60 thou), and snap along the score line. As the clip hinges, there are two halves to the case, which simply shroud the boards, covering the soldering. The logic select switch is glued into a hole in one of the sides, and the power jack socket into the other.

If you feel unable to build the case, then find a suitably sized box to hold both boards, wire the boards firmly together, and connect

Fig. 5 How we suggest looping the * connecting wires between the two boards.
the test clip to the probe unit via a length of ribbon cable.

Expanda-clip

There are other possible uses of the clip, for instance, a number of similar units could be built on one board (with a different PCB layout), for use on 40-pin devices. Alternatively, the logic clip could be used to monitor bus lines, etc.

Also, it is worth noting that there is facility on the board for the clip to be powered by a supply other than that of the circuit under test, allowing low voltage devices to be tested, whilst keeping the LEDs brightly lit. This can be done by breaking the foil at the point marked ' X ' (the connection between the + ve supply and the resistor divider chain) and connecting a voltage sense line to the spare PCB pad just below point X. This line is then connected to the + ve supply rail of the unit under test, with the clip powered by another source. This may be necessary even for TTL circuits, due to the variation in 'on' resistance of the 4051 selectors.

Having struggled through a rather involved construction, you should be left with a very useful and time saving tool. Happy probing!

SAVE HUNDREDS ON
 YOUR HI-FI-NOWI

HI-FI NOWI-the new magazine with a new wayof giving yau the buying information you need - NOw!
HI-FI NOWI - will tell you the E99 speaker that sounds like £200-NOW!
HI-FI NOW! - will help you spend Et' to make your persometstereo like amillion dollars-NOW!
HI-FI NOWI will even make sure you spend $£ 2,000$
wisely-NOWI
HI-FI NOW! - answers the questions jou are asking about hi-fi-NOW!

Wharfedale, KEF, Rotel, Sansui, Marantz, Koss, Sony, Pioneer, Hitachi. Just some of the names in the first issue of HI-FINOW!

HI-FI NOWI AT YOUR NEWSAGENT NOWI ONLY 85p!

TT LINES AGAMN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics - It's Easy. Originally a long-running series in Electronics Today International, Electronics - It's Easy wes printed as a set of three books. They sold out It was reprinted as a single volume. It sold out. Now this phenominally successful publication is avalable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written guide which explans the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology.
You can obtain your copy of Electronics - It's Easy by mall order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barciaycard

Send to: Sales Office (Specials),
513 London Road, Thornton Heath Surrey CR4 6AR
Please send me.....copies of Electronics It's Easy. I have enclosed $£ . . .$. . ($£ 4.95$ each including $\mathbf{p \& p}$).
I name
ADDRESS

SERVICE SHEET

Enquiries

We receive a very large number of enquiries, Would prospective enquirers please note the following points:

- We undertake to do our best to answer en quiries relating to difficulties with ETI projects in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been con structed correctly but does not work, we wil need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK:
$£ 13.15$
£16.95 Surface Mail
£36.95 Air Mail
Send your order and money to: ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Below we list the backnumbers that are available from our backnumbers department. Please note that this list will be out of date if you use an old copy of the magazine. Backnumbers cost $£ 1.50$ (UK or overseas by surface mail) and are available from: ETI Backnumbers Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd).
Even if the copy of ETI you need is not listed, all may not be lost, because we run a photocopying service. For $£ 1.50$ (UK and overseas) we will photocopy an entire article (note that parts of a series of articles count as separate articles). Your request should clearly state what article you require and the month and year in which it appeared (the index for 1980 and 1981 was published in January 1982, and the index for

1982 äppeared in Decémber 1982). Send your request to ETI Photocopies, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE (cheques should be made out to ASP Ltd).
November 78
November 79
April 80
September 80
October 80
November 80
December 80
January 81
February 81
March 81
April 81
May 81
June 81
November 81
December 81
March 82
May 82
June 82
July 82
August 82
September 82
October 82
December 82
February 83

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate.. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telehone number).
We don't bother with the bureaucracy for Tech Tips - all you do is to send in your idea, stating clearly if you want an acknowledgement of receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works, on a separate sheet from the circuit diagram; both sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should:

1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.
If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

We have in the past published small corrections to projects on the letters page, and major corrections separately. From now on corrections will appear on this page, and will be repeated for several months (just to increase our embarrassment). If a correction is too large to fit on here, we will publish it just once, but will note the fact that a correction does exist, and that copies of it can be obtained from us provided you send in an SAE. But please - request copies only if you really do need them; if this service is abused, we may be forced to withdraw it.

Programmable Power Supply (January 1983)
Lascar Electronics have now moved to Module House, White Parish, Salisbury, Wiltshire SP5 2SJ.
Flash Sequencer (July '83)
Q1 should be BC184L; Q2-5 should be BC182L.
Telescope (August 1983)
We had a shower of annotation falling off our diagrams! On Fig. 1, C19 (below IC14) was not labelled nor was Q2 (above R1ı, and there were two C23s - one should be IC22 and it doesn't matter which. In Fig. 5, IC12 was not labelled. Unfortunately, there was a mistake in the correction (blush!): C14 is the 22μ tant on the $-5 V$ line.

Graphic Equaliser (August 1983)

D2 and D3 are shown the wrong way round in the power supply circuit diagram on page 20.

Universal EPROM Programmer (August 1983)

Quite a few sillies here! On the circuit diagram (page 46), C6 is 100 u and C 9 is 100 n , not the other way round as given. Some bars were omitted from note three of
Table 1 on page 48: it should have read
"CE/PGM (27 series) is equivalent to PD/PGM (not PD/PGM) (25 series)." The penultimate sentence of the first paragraph on page 50 should read ". . . adjust RV1 for a potential of +25 V at /C10 output." On the overlay, IC7 is between SK2 and SK1, IC6 is between SK1 and C10, IC11 is between R7 and R10, R3 is between R2 and Q2, and Q7 is between Q6 and Q8. A link is missing between IC7 and SK1, and the unidentified pins at the right hand end of SK3 are the +5 V line. Finally, C10 appears twice in the parts list but only the first entry is correct, and the second DIL socket should, of course be 8 , not 80 , way.

Z80 Controller Computer (August 1983)

On the overlay, SW1 is the rectangle beside ICs 5 and 6, C6 should be shown between ICs 3 and 7, and a link through has been missed - to the right of pin 18, IC11. Typewriter Interface (October 1983)
There are two errors in Table 1 on page 24: location 3C should contain E7 and location 3 F should contain 5 F .
Car Alarm (October 1983)
In the semiconductors section of the parts list, Q1, 2, 5, and 7 should be BC212L, Q3 should be BC182L, and Q4, 6 should be TIP31 or BD131. There was also another (inconsequential) silly but we bet you've already spotted that one!
Tech Tips (October 1983)
Ramped Pulse Generator For Stepper Motors - pin 1 of IC2 should be grounded, the Ramp Up and Ramp Down inputs accept negative, not positive, going pulses, and IC7 should be a 4011 rather than a 4001

READER'S SERVICES

Subscription Order Form

To: ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey, CR4 6AR, England.
Please commence my subscription to Electronics Today International. I enclose a cheque*/Postal Order*/International Money Order* for the appropriate fee*, made out to ASP Ltd.
Please debit my Access*/Barclaycard* account number*
\square

Signature

(* delete as appropriate)
Please indicate subscription required and fee enclosed
UK \& Rep of Ireland:
Overseas surface mail:
Overseas air mail:
$\begin{aligned} \text { UK } £ 13.15 & \square \\ £ 16.95 & \square \\ £ 36.95 & \square\end{aligned}$
Until further notice, each subscription includes a
free binder (normal price $\mathbf{£ 4 . 2 5)}^{\mathbf{4}}$
PLEASE COMPLETE YOUR NAME AND ADDRESS in block capitals
Name
Address \qquad

please include postal code as appropriate

Date of order.
THIS COUPON IS VALID UNTIL: 31st DECEMBER 1983

Backnumber Order Form

To: ETI Backnumbers Department, 513 London Road, Thornton Heath, Surrey CR4 6AR, England.
Please supply me with the following backnumber(s) of ETI
Month
Year
Month
Year
Month
Year
I enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.50$ per magazine ordered, made out to. ASP Ltd (* delete as appropriate).
Total money enclosed $£$.
PLEASE COMPLETE YOUR NAME AND ADDRESS IN
BLOCK CAPITALS
Name.
Address

Binder Order Form

To: ETI Binders, 513 London Road, Thornton Heath, Surrey CR4 6AR, England.
Please send me..binder(s) for ETI. I enclose a cheque*/Postal Order*/International Money Order* to the value of $£ 4.25$ per binder required, made out to ASP Ltd (* please delete as appropriate).

```
Total money enclosed \(£\)
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS
```

Name
\qquad
Address

please include postal code as afpropriate

Date of order.
Note that binders cost the same for UK and overseas; overseas orders will be send by surface mail.

THIS COUPON IS VALID UNTIL: 31st DECEMBER 1983

Photocopy Order Form

To: ETI Photocopies Department, 145 Charing Cross Road, London WC2H OEE, England.
Please supply me with the following photocopies:

I
Name
Address

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order
Note that the cost is the same for overseas orders as for UK orders; overseas orders will be sent by surface mail.
PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING.
THIS COUPON IS VALID UNTIL: 31st DECEMBER 1983

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE

ICS can provide the technical knowledge that is so essentia to your success, knowledge that will enable you to take advant age of the many opportunities open to the trained man. You sludy in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Certificates
Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)

Certificate Courses

TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance Computer Engineering* and Programming TV, Radio and Audio Engineering Electrical Engineering,* Installation and Contracting - Qually for Er H heocclace Momborthip CACB

Approved by CACC
. Member of $A B C C$

POST OR PHONE TODAY FOR FREE BOOKLET

ELEGTROVALIE

Please
mention
this journal
when
applying
'Access' facilties Aerosols Batteries
Boxes
Breadboards
Computers \& equipmnt. Capacitors

[^0]: Articies described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.

[^1]: *see next page

[^2]: Name

[^3]: Name

[^4]: *New Books
 Please Note. Books are VAT exempt but add $£ 1.00$ to cover P/P

[^5]: ETI welcomes all it's readers (publishable) opinions on the contents of the magazine, and issues related to electronics. Send your letters to The Editor, ETI, 145 Charing Cross Road, London WC2H 0EE.

