## AN ARGUS SPECIALIST PUBLICATION




## EDITORIAL AND ADVERTISEMENT OFFICE <br> 145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

## FEATURES

## DIGEST

13News, views and current affairs in electronics.
AUDIO DESIGN28

Continuing this very practical series, John Linsley Hood takes a critical look at the use of ICs in audio, and then goes on to examine audio problems, starting with noise.
MACHINE CODE
PROGRAMMING
This new series is our attempt to persuade readers that it isn't as hard as it looks to talk to a microprocessor in its native language. Bob Bennett shows how it' done.
CURVING ELECTRONS.
The Hall effect is a rather useful phenomenon which is the basis of a
fair number of electronic devices. John Dance looks at how these can be employed.
TECH TIPS...................................... 52
Circuit ideas from you to us and back again.
DON'T SNEEZE. .61
There are some places on this planet where a sneeze can be very, very costly indeed.

## HOW PERMANENT IS

PERMANENT?
71
Permanent magnetism is used to store some of the greatest pleasures in life (such as music) as well as some of the less pleasant realities (income tax records). But is it reliable?

## PROJECTS

## TYPEWRITER INTERFACE

$\qquad$ .21
Daisy wheel printers are expensive daisy wheel typewriters (containing rather more bits) are cheap. (It's called economics.) Here's how to use the latter as the former.

SUPPLY PROTECTOR
.39
How many times has the flickering of the lights indicated the corrupting of your computer's memory? Here's a

solution to the problem, designed by Phil Walker.
Z80 CONTROLLER COMPUTER.. 56
In the concluding part of this project, we give details of the programmer's-eye-view of this system, together with details of some of the useful routeins you'll find with it.
ZX80 TAPE MOD
No, it's not a misprint, we really are telling owners of the ' 80 how to get reliable SAVE-ing of their programs. CAR ALARM $\qquad$ Not another car alarm? No this isn't just another car alarm, but a rather neat design with lots of optional extras - it could be used as a house alarm as well.

- Due to lack of space, IC Update and the Readers' Services Page have been held over


## INFORMATION

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS EDIIIONS
and their CANADA - Halvor Moorshead
GERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

> Member of the Audit Bureau of Circulation
ormally published on the first FriElectronics Today is normal y pubbished on the contents day in the monthpreceding coverdacle , designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property tions are specificaily reserved to Argus specialist Publications Limited and anv reproduction requires the prior written consent of the Company. © 1983 Argus specialist Publications Ltd $\sqcup$ All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will nor-
mally be published as soon as possible afterwards. All
NEXT MONTH'S ETI.
9 ETI BOOKS SERVICE.69
THIS YEAR'S BREADBOARD ETI PCB SERVICE. ..... 77
EXHIBITION 10 ADVERTISER' INDEX. ..... 82

## SPECIAL.IST ELECTRONIC COMPONENT DISTRIBUTORS

## 325 EDGWARE ROAD, LONDON W2 1BN Tel: 01-723-4242 Tlx: 295441

## CRIMSON ELEKTRIK <br> JOIN THE PROFESSIONALS

| No | Modules |  |
| :--- | :--- | :--- |
| 2580 | CE 608 | 40W Mono |
| 2581 | CE1004 | $100 W$ 4 Mono |
| 2582 | CE1008 | $100 W$ B Mono |
| 2583 | CE1704 | $170 W$ 4 Mono |
| 2584 | CE1708 | 170 W 8 Mono |
| 2585 | CE3004 | 300W 4 Mono |
|  |  |  |
| $2585 a$ | FE 908 | 90W FET. Mono |
| $2585 b$ | FE1704 | 170W FETMono |
| 2585 c | BD1 | Bridge Unit for Modules <br> 2608 |
|  | CPR 1X | Pre-Amp Module |


| Price |  |
| :---: | :---: |
| 18.26 | WE ALSO STOCK |
| 21.30 | ALL THE POWER |
| 23.90 | SUPPLIES TO DRIVE |
| 30.43 | THESE MODULES |
| 30.43 | PS. THESE KITS AND |
| 42.60 | MODULES ARE |
|  | EXCLUSIVE OF VAT |
|  |  |
| 33.65 |  |


| No |  |  | Price |
| :--- | :--- | :--- | ---: |
| 2615 | Complete Pre-Amp Kit | CK1010 | $£ 80.00$ |
| 2616 | Complete 40W Stereo Amp Kit | CK1040 | $£ 105.00$ |
| $2616 a$ | Complete 80W Stereo Amp Kit | CK1080 | $£ 116.00$ |
| 2617 | Complete 100W Stereo Amp Kit | CK1100 | $£ 131.00$ |
| 2618 | Add on Moving Coil Kit | MC12K | $£ 21.74$ |
| 2619 | Pre-Amp Power Supply Kit | PSK | $£ 17.39$ |
| TS70 70 |  |  |  |
| HS50 50mmal Switch |  |  |  |
| HS100 100mm Heatsink |  |  |  |
| 14.95 150mm Heatsink |  |  |  |
| ANTEED FOR 2 YEARS. |  |  |  |

VELLEMAN KITS

| No | Description | Price |  |
| :--- | :--- | ---: | :---: |
| K610 | Mono UU using LEDS. | 10.05 | WE STOCKA WIDE |
| K1798 | Stereo UU using LEDS | 18.77 | RANGE OF BOXES |
| K1874 | Running Light Kit | 14.95 | TO HOUSE THESE |
| K2571 | Light Computer with EPROM | 36.23 | KITS IN. FROM |
| K2569 | Three Tone Chime | 8.57 | VERY SMALLTO |
| K2575 | Microprocessor Doorbell 25 tunes | 15.53 | VERY LARGE |
| K2544 | Complex Sound Generator | 10.26 | 19" MAXIMUM |
| K2032 | Digital Panel Meter | 16.61 |  |
| K2557 | Dlgital Thermometer | 26.57 | PS. ALL KITS |
| K2545 | SOHz Crystal Time Base | 12.00 | INCLUDE VAT |
| K615 | High Precision Stopwatch | 50.29 |  |
|  | Description |  |  |

Some are easy some are hard
K610
18.77

Stereo U using LEDS
14.95

K2571 Light Computer with EPROM
36.23

K2569 Three Tone Chime
15.53
$K 2544$ Complex Sound Generator. 10.26
K2032 Digital Panel Meter
$\mathrm{K} 2545 \quad 50 \mathrm{~Hz}$ Crystal Time Base
26.57
$K 615$ High Precision Stopwatch
Price Description

> WE STOCK A WIDE RANGE OF BOXES HOUSE THESE VERY SMALL:TO VERY LARGE PS. ALL KITS NCLUDE VAT

No
K2543 Transistor Ignition
K2555 Digital Freq Counter for Receivers $\quad 45.40$
K2566 3 Channel Coloured Light Organ
19.19

K2572 Universal Stereo Pre-Amplifier
$K 2574$ Universal 4 Digit U/D counter with memory 44.72
K2577 Electric Motor Speed Control
44.72
11.17
7.45

K2579 Universal Start/Stop Timer
K2583 Heating Controller
$K 1682$ Microprocessor Universal Timer (no case) $\quad 61.72$
K2580 Electronic Power Switch Dimmer 12.37
K2551 Central Alarm Unit

## TELETEXT KIT

This unit will make your TV fully remote control (infra-red) and bring you closer to the amazing world of teletext. The kit can also be updated to incorporate full Prestel, and with a keyboard this can give you full message facilities for ordering foods or sending and receiving messages (E.G.) Booking your Holidays!
With a microcomputer as an alternative keyboard the world is even greater adding bulk updating to viewdata computers an receiving telesoftware for implementation to any
ersonal computer.
Even without the Prestel option, Telesoftware from the Teletext pages free.
The full features of Teletext, including subtitles are all included in the basic kit.
An attractive stylish case is available to complement the finished kit.
Basic Teletext Kit (no box) $£ 130+$ VAT P/P $£ 2.50$
with box $£ 144.95$ + VAT P/P £3.00
box by itself $£ 14.95+$ VAT P/P 75 p

## PRESTEL ADAPTOR

A Prestel microcomputer adaptor to give full autodialing toy ourmicrocomputer All the usual Prestel facilities are added via this unit, plus many more, and, can operate to any viewdata computer.
You can shop from home, bank transmitt messages and receive software, which means that the uses your micro can be put to are limitless.
The unit is not restricted to just the UK, for at least 28 countries use the Prestel viewdata format, so you can also mail-order from anywhere. The Prestel unit is suitable for most micro computers even the $2 \mathrm{X}-81$, so at the push of a button, the technology of tomorrow is in your home today.

\section*{COMPONENTS EDGE CONNECTORS <br> | Device | Price |
| :--- | ---: |
| Z80A | 3.20 | <br> 2×81 E.C. <br> 2.98 <br> 280A $\quad 3.20$ <br> Z80A PIO $\quad 3.20$ <br> Spectrum E.C. <br> 2.98

3.78 <br> IIC 20 E. $\quad 3.78$ <br> 50 Way E.C. $\quad 3.78$ <br> 6800 3 <br> $6800 \quad 6.5$ <br> 6821 18 Way E.C. 3.30 <br> 6821 <br> 64 Way E.C.Plug 2.80 <br> $502 \mathrm{CPU} \quad 4.25$ 64 Way E.C. Socket 2.50
4.80 <br> 31 Way E. C. Socket 2.10 <br> 2716 3.00 <br> $\begin{array}{ll}2716 & 3.20 \\ 2732 & 3.50\end{array}$ <br> $\begin{array}{lr}2732 & 7.50 \\ 2532 & 350\end{array}$ <br> 2764 (200ns) $\quad 3.50$ <br> ADC0816 (8 bit) $\quad 11.00$}

We also stock 74 series 74LS, C mos, transistors, capacitors, resistors, LED's, zeners, diodes, jack plugs, mains plugs XLR plugs, cannon plugs, arrow switches BNC connectors, reducers, photolak, developer, PC board, sensitive \& normal, boxes, wire cutters, strippers, Edge connectors, pots, batteries, digital pulsers, logic probes, proto-boards, vero board.
This is just a small sample of what we stock, if you like to see more send £1.00 to us for our NEW 1983 CATALOGUE.

## ANTEX

| Soldering Irons |  |  | Iso-tip Cordless Iron |
| :--- | :--- | :--- | :--- | ---: |
| SS25 | 25 W | $5.46+$ | Miniature low voltage |
| CX | 17 W | $5.30+$ | soldering station |

## BOOKS

*New Books
Please Note. Books are VAT exempt but add $£ 1.00$ to cover P/P

The 9900 Family Data Book
The Opto-Electronics Data Book
$\begin{array}{ll}\text { The Bipolar Microcomputer Databook } & 4.50\end{array}$
The Interface Circuits Data Book 7.00
The TIL Data Book
MDS Memory Data Book
The Linear Control Circuits Data Book
The Voltage Regulator Data Book
The Power-semiconductor Data Book
*TII Data Book Volume I 4.00 4.50

TTI Data Book Volume II
301 Circuits
ers Digital Selecto

Why not try our mall order service, it's fast and efficient. We
take Barclay, Access, Am Exp, Diners or Cheque.
Cheques made payable to Bradley Marshall Ltd.


## MULLARD SPEAKER KITS

Purposafully designad 40 watt R.M.S. and 30
watt R.M.S. 8 ohm spesker syiteme recently wett R.M.S. 8 ohm speaker syiteme recently Belgium. Kits comprise Mullard woofer ( $8^{\prime \prime}$ or 5 -) with foam surround and aluminium voice coit. Mullard $3^{\circ}$ high power domed tweeter. B.K.E. buit and rested crossover based on Mullard circuit, combining low loss components, glass ibre board and recessed loudspeaker terminals. UPERB SOUNDS AT LOW COST. Kits supplied $8^{*} 40 \mathrm{~W}$ system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price f14.90 each $+\mathbf{f 2 . 0 0} \mathbf{P}$ \& P
$5^{*} 30 \mathrm{~W}$ system - recommended cabinet size $60 \times 175 \times 295 \mathrm{~mm}$

Dasigner approved flat pack cabinet kits, including grill fabric. Can be finished with iron on veneer or self adhesive vinyl etc $5-$ system cabinet kit 77.00 each $+£ 2.00 \mathrm{P}$ \& P.


STEREO CASSETTE TAPE

## DECK MODULE

Comprising of a top panel and tape mechanism coupled to one complete unit for horizontal installation into cabinet of console of own choice. These units are brand new, ready buitt and tested. Feetures: Three digit tape counter. Autostop. Six piano
type keys, record, rewind, fast forward play stop eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones. Inpus Sensitivity: 100 mV to 2 V . Input Impedence: 68 K .
Output fevel; 400 mV to both left and right hand Output ievel: 400 mV to both left and right hand
channels. Output Impedance: 10 K . Signal to noize ratlo: 45 dB . Wow and flutter: $0.1 \%$. Power Supply requiremants: 18 V DC at 300 mA . Connections: The left and tight hand stereo inputs and outputs are via iphono sockets' provided.) Dimensions: Top panel 5 t in $\times 11$ in. Clearance required under top panel 2tin. Suppliad complete with cirruit diagram and connecting
diagram. Atractive biack and siver finish.
 Supplementary parts for 18 V D.C. power supply (transformer, bridge rectifier and smoothing capacitor)

OUDSPEAKERS POWER RANGE THREE QUALITY POWER LOUD SPEAKERS (15 , 12 and 8 See Photol tions. All units have attractive cast alu minium (ground tinish) fixing escutcheons Specification and Prices.
15" 100 watt R.M.S. Impedance 8 ohms Freq. 20 net. 2 alumin um voice coil. Res 97 dB . Price Hz 34.00 Resp. to 2.5 KHz . Sens 12" 100 watt R.M.S. impedance 8 ohms 50 oz . magnet. 2 " aluminium voice coll. Res Freq. 25 Hz . Freq Resp. to 4 KHz . Sens. 95dB. Price: 224.50 each + E3.00 P8P oz magnet 1 . .: S. Impedance 80 hms. 20 Frea 40 Hz . Freq aluminium voice coil. Res 92dB. Black Cone. Price \&9 50 kre. Sens available with black protective grille Price £9.99 each. P8P \& 1.50 .

12. 85 watt R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) $2^{\prime \prime}$ aluminium voice coil, aluminium centre dome, 8 ohm imp., Res. Freq. 45 Hz ., Freq Hz Sens, 98 dB . Price: $£ 23.00+£ 3$ carriage
12 watt R.M.S. McKENZIE C1285TC (P.A., DISCO) $2^{\prime \prime}$ aluminium voice coil. Twin cone. 8 ohm. imp. Res. Freq. 45 HZ , Freq. Resp. to 14 KHz . Price $£ 23+£ 3$ carriage. Die cast chassis. 8 ohm imp., Res. Freq. 40 Hz ., Freq. Resp. to 4 KHz . Price: $\mathbf{f} 47+£ 4$ carriage.

## PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER


TYPE A' (KSN2036A) $3^{\prime \prime}$ round with protective sized Hi fi speakers. Price $£ 4.29$ each.
TYPE 'B' (KSN1005A| $31 / 2$ " super horn. For general purpose speakers, disco and PA systems etc. Price £4.99 each
TYPE 'C' (KSN6016A) $2^{\prime \prime} \times 5$ " wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price E5.99 each.
TYPE 'D' (KSN1025A) $\mathbf{2}^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range ( 2 KHz ), Suitable for high quality $\mathrm{Hi-fi}$ systems and quality
discos. Price $£ 7.99$ each.
TYPE 'E' (KSN1038A) 3y/4" horn tweeter with atsractive silver finish Tr im. Suitable for Hi monitor systems etc. Price $£ 4.99$ each.
TYPE 'F' (KSN1057A) Cased version of type E, Free standing satellite tweeter. Perfec add on tweeter for conventional loudspeake Price 10.75 each P\&P 20p ea. (or SAE for Piezo leafiets).


op
80 LOUDSPEAKER
The very best in quality and value.
Ported tuned cabinet In hard wearing black vynide with protec tive corners and carry handle. Built and tested, employing foin British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms; $45 \mathrm{~Hz}-20 \mathrm{KHz}$ Size: 20 in $\times 15 \mathrm{in} \times 12 \mathrm{in}$; Weight: 30 pounds

Price: $\mathbf{8 4 9 . 0 0}$ each
arriag $\mathbf{E}$ per pair

## DANE

HOBBY KITS. Proven designs including glass bre printed circuit board and high quality components complete with instructions
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensi tive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ ( 9 volt) Price: $£ 7: 99 \mathrm{p}$
DIGITAL THERMOMETER $-9.9^{\circ} \mathrm{C}$ to $+99.9^{\circ} \mathrm{C}$. LED display. Complete with sensor. $70 \times 70 \mathrm{~mm}$ ( 9 volt) Prlce: $£ 27.60 \mathrm{p}$
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlied. protessional performance. Range up to 3 miles $35 \times 84 \times 12$ mm (12 volt) Price: E12.49p
SINGLE CHANNEL RADIO CONTROLLED TRANSMITTER/ RECEIVER 27 MHZ Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm} 9 /$ 12 volt) Price: $£ 16,49$ Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ ( $9 / 12$ volt) Price $£ 10.29$ P\&P All Kits +50 p. S.A.E. for complete list


BK ELECTRONICS
Prompt Deliveries VAT inclusive
prices
Audio Equipment
Test Equipment
by
Thandar
and
Leader


New model.
Improved specification O.E.M's contact barry pearne tel. 070252752

## HOME PROTECTION SYSTEM

Better to be 'Alarmed' then terrified.
Thandar's famous 'Minder' Burglar
Thandar's famous 'Minder' Burglar Alarm System
Superior microwave principle. Supplied as three units, complete with interconnection cable. FULLY
GUARANTEED
Io to 15 metres adiustable by sensitivity
Three position, key ouerated facia switch- -off-test
In armed 30 second exit and entry delay.
Indoor alarm - Electronic swept trea. siren. $104 d B$ output.

tamperipoot heavy duty metal
Both the control unit and outdoor atarm contain rechargeable batteries which provide full protection during mains failure. Power requirement $200 / 260 \mathrm{Voll}$ A 5 Ions etc. Complete with instructions
buta SAVE $£ 128$ Usual price $£ 228.85$ BKE's PRICE £99.p\&p£4 SAE for colour brochure


NEW OMP100 Mk.II POWER AMPLIFIER MODULE Power Amplifier Module complete with integral heat sink. toroidal transformer incorporates drive circuit to power a compatible ED vu meter. New improved specification makes this amplifier ideal for P.A., Instrumental sPECIFIC applications. Output PCATION Lotput Power:- 110 watts R.M.S. Frequency Response: $-15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{dE}$ T.H.D.:- $0.01 \%$
S.N.R. (Unweighted): $--\$ 18 \mathrm{~dB} \pm 3.5 \mathrm{~dB}$ Sensitivity for Max Output:-500mV @ 10K size:- $360 \times 115 \times 72 \mathrm{~mm}$ Price:- $£ 31.99+$

 픙․ Encis. thender smetrar $\square$


MIXERS ${ }^{\text {Isso }}$ OMP PRO MIX MONO OMP PROMIX MONO DISCO MTXER (As illustrated). ${ }^{4}$ Inputss-2 Hag. Disc. ${ }^{1}$ Aux. Plus Mic.with override. Andive bass and treble tone conts.
Indial level controls plus master volume. Monitor out put(head phone) for all inputs.
Output:775mV Supply 240 Vac . Size:19" $\times 5 \frac{1}{4}{ }^{\prime \prime} \times 2 \frac{12}{2}{ }^{\prime \prime}$. Prjce: $849.99+22.00$ Pta ALSO STEREO DISCO MIXER

TYPE 'E'

## B.K. ELECTRONICS

WATFORD ELECTRONICS MAIL ORDER CALLERS WEICOMF
Tel. Watford (0923) 40588. Telex 8956095
ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.s, CASH, BANK DRAFT WITH ORDERS, ACCESS/MASTER CHARGE ACCEPTED. GOVERNMENT \& EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME P\&P ADD 60p TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGE AT COST.

VAT Expont orders no VAT. Applicable to U.K. Customers only. Unless stated otheivise, We stock thousands more items. It pays to vish us. We are shtuated behind Watford Football Ground. Open Monday to Sat urday: 9.00 m to 6.00 pm. Ample Free Car parking apace avallable.




## 

\section*{| por |
| :--- | :--- |
| pon |
| neon |}



33:34 CARDIFF ROAD, WATFORD. HERTS ENGIAND





## 





## SX1000

## Electronic Ignition

- Inductive Discharge
Extended coil energy
storage circuit
Contact breaker driven
Three position changeover switch - Over 65 components to assemble - Patented clip-to-coil fitting - Fits all 12 v neg earth vehicles



## TX1002

## Electronic Ignition

Contactless or contact triggered - Extended coil energy storage circuit - Inductive Discharge - Three position changeover switch Distributor triggerhead adaptors included - Die cast weatherproof case Clip-to-coil or remote mounting facility Fits majority of 4 E 6 cyl . 12 V . neg. earth vehicles - Over 145 components to assemble.

## TX2002

Electronic Ignition

- The ultimate system - Switchable contactless. Three position switch with Auxiliary back-up inductive circuit - Reactive Discharge Combined capacitive and inductive Extended coil energy storage circuit. Magnetic contactless distributor trigger head. Distributor triggerhead adaptors included - Die cast waterproof case with clip-to-coil fitting - Fits majority of 4 and 6 cylinder 12 v neg. earth vehicles - Over 150 components to assemble
All SPARKRITE products and designs are fully covered by one or more World Patents


## SPECIAL OFFER

"FREE" MAGIDICE KIT WITH ALL ORDERS OVER $£ 45.00$

SPARKRITE 82 Bath Sireet. Walsail. West Midlands. WS 1 3DE England


NAME $\qquad$ ET10, ADDRESS

MAGIDICE
Electronic Dice

- Not an auto item but great fun -Total random selection - Triggered by waving of hand - over dice
- Bleeps and flashes during a 4 second Throw displayed io Auto display of lor 10 secoñds Muting and Off switch ow 1 second in 5


|  | $\begin{gathered} \text { SELF } \\ \text { ASSEMBLY KIT } \end{gathered}$ | NAME |
| :---: | :---: | :---: |
| SX 1000 | ¢12.95 |  |
| SX 2000 | ¢19.95 |  |
| TX 1002 | £22.95 |  |
| TX 2002 AT 80 | ¢ 32.95 $\mathbf{f} 32.95$ | £_KITREF |
| VOYAGER | f64.95 | CHEQUE NO |
| MAGIDICE | ¢9.95 |  |

## Project Special

As the majority of our readers will be all too aware, the dear old British summer doesn't last that long, and it'll be all too soon before the evenings start to close in, the clocks go back, and thoughts turn back to project work. Well, the November issue of ETI will provide plenty to keep you busy, because in our usual winter effort to lure readers away from the competition (what competition?) we shall be publishing ten projects in just the one issue. No silly plastic give-aways from us, we'll just simply deliver where it counts - the contents!

Projects will include a simple design for an active loudspeaker, which, while perhaps not offering the


Optical Fibres
We've heard all about the industrial and communications use of optical fibres - now ET; takes a look at the home use of them, with, as you would expect from us, a practical guide showing how it's done.

ultimate in audio performance, will certainly be very cost effective and relatively easy to build; a drum synthesiser module so that you can build up a small kit by using several all set to produce different noises; an add-on unit that will help to make many home-made alarms legal; an analogue amplifier/filter module for use with computer ADCs and DACs; and much, much more that we're still working feverishly on!

Add to this the fact that the next issue of ETI will be over 100 pages in size, and it looks as though there's only one possible choice of magazine for you to buy next month.


## Audio Design

John Linsley Hood continues his examination of some of the problems in audio designing with a look at distortion, and this is followed up by some practical designs for moving magnet and moving coil magnet pick-up amplifiers.

# THE PREMIER SHOW FOR THE ELECTRONICS ENTHUSIAST! 

## Cunard International Exhibition Centre, Cunard Hotel, Hammersmith, London W6

## Improved Venue

We have transferred BREADBOARD to the Cunard Hotel, offering improved facilities to the visitor, including car parking and ease of access by rail, tube and car, all in a modern attractive setting. See below for our arranged reduced hotel/rail fare package to attract enthusiasts from all parts of the country.

## Planned Features include

- Lectures: covering aspects of electronics and computing.
- Electronics/Computing Advice Centre.
- Demonstration: electronic organs/synthesisers.
- Holography presentation.
- Practical demonstration: 'How to produce printed circuit boards'.
- Computer Corner - 'Try before you buy'.
- Amateur Radio Action Centre. - Computer controlled model railway competition.
- Pick of the projects - Demonstration of the best from ELECTRONICS TODAY INTERNATIONAL, HOBBY ELECTRONICS and ELECTRONICS DIGEST.
- Giant TV screen video games.
- Robotic display.

FRIDAY November 25th
10am-6pm
SATURDAY November 26th
10am-6pm
SUNDAY November 27th
10am-4pm

Why not make your visit to Breadboard '83 the most enjoyable yet. At these *prices, why not bring a partner, do your Christmas shopping, have an evening on the town, see the lights, and have a weekend in London!
*see next page

## HOLIDAY WEEKEND PACKAGE

Accommodation in a first class hotel with private bath, direct dial telephone, radio and colour television.
$\star$ Return 2nd class rail travel from local British Rail station to London.
$\star$ Ticket to Breadboard '83.
$\star$ Breakfast at the hotel.
$\star$ Prices quoted are inclusive of service and VAT.
Please note this offer closes on 1st November 1983.

## REGION

|  | 1 Night <br> Beds, Berks, Bucks, Essex, Herts, | $£ 29.25$ | 2 Nights <br> $£ 54.25$ | 1 Night <br> $£ 47.75$ |
| :--- | :---: | :---: | :---: | :---: |
| Bent, Surrey and Gtr London <br> Kights |  |  |  |  |
| Cambs, Hants, Northants, Oxon, <br> Suffolk, Sussex, Wilts | $£ 32.50$ | $£ 57.50$ | $£ 57.25$ | $£ 94.25$ |
| Avon, Derbyshire, Dorset, Glos, <br> Gwent, Herefordshire \& Worcs, | $£ 35.75$ | $£ 59.75$ | $£ 59.75$ | $£ 96.75$ |
| I.O.W., Leics, Lincs, Norfolk, |  |  |  |  |
| Notts, Somerset, Staffs, <br> Warwickshire, West Midlands <br> Cheshire, Devon, Glams, Humber, | $£ 40.25$ | $£ 64.25$ | $£ 67.50$ | $£ 104.50$ |
| Lancs, Gtr Manchester, <br> Merseyside, Powys, Shropshire, <br> West \& South Yorks | $£ 44.25$ | $£ 69.25$ | $£ 75.00$ | $£ 112.00$ |
| Cornwall, Cumbria, Dyfed, Glwyd, <br> Gwynedd, North Yorks <br> Borders, Cleveland, Durham, <br> Dumfries \& Galloway <br> Northumberland, Tyne \& Wear <br> Central, Lothian, Strathclyde | $£ 48.50$ | $£ 73.50$ | $£ 83.25$ | $£ 120.25$ |
| Fife, Tayside <br> Grampian, Highland | $£ 51.75$ | $£ 76.75$ | $£ 89.50$ | $£ 126.50$ |

## TWIN

## SINGLE

$£ 58.25 \quad £ 83.25 \quad £ 101.50 \quad £ 138.50$

## BOOKING FORM

Name:
Address: $\qquad$ tel:
Date of arrival: 25th Nov $\square$ 26th Nov $\square$ Number of nights: 1 night $\square 2$ nights Room(s) required: singletwin $\square$
BR departure station:
Region:
Signature


Signature

Cheques should be made payable to ASP Ltd. and sent to ASP Exhibitions, 145 Charing Cross Road, London WC2H OEE
I enclose cheque value $£$
OR please debit my Access/B'card number:



## NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS



## 16-Bit CMOS <br> Micro

Harris Semiconductor has announced its 80C86 high performance CMOS 16-bit microprocessor and a family of peripheral devices. Intel Corporation, developer of the industry standard HMOS 8086, will also manufacture the new CMOS devices.

The Harris 80C86 is a completely compatible CMOS alternative for the Intel HMOS 8086. This includes pin-for-pin replacement, TTL level input/output specifications, performance parity at a 5 MHz system frequency
and complete software compatibility. The Harris CMOS 80C86 will operate with existing assembly and high level language programs.

The 80C86 features a standby power supply current of 500 microamperes maximum guaranteed over the full operating temperature and voltage ranges. The operating current of $10 \mathrm{~mA} / \mathrm{MHz}$ maximum is dramatically lower than the HMOS 8086 which operates at 340 mA maximum at 5 MHz . With CMOS, operating power is reduced as the system's frequency is reduced. The static design of the 80C86 and all other members of the family allows system design
at lower frequencies (down to DC) to further reduce operating power. For maximum power reduction, the system clock can be stopped with all power requirements falling to the standby level $(500 \mu \mathrm{~A}$ for the 80 C 86 , $10 \mu \mathrm{~A}$ for other family members).

The Harris $80 C 86$ is available now with a 5 MHz operating frequency. The $80 \mathrm{C} 86-2$, an 8 MHz system frequency compatible version, will be introduced later.

The 80 C 86 is packaged in the industry standard 40 pin $0.6^{\prime \prime}$ centre ceramic and plastic dual-in-line (DIP) packages. Harris/MHS Semiconductor, Harris Systems Ltd, 153 Farnham Road, Slough, Berks, tel 075334666.

## Mr Kit Fix-It

There's a new service for all our not-so-nimble fingered readers, being offered by WEB Logic Systems Itd. They will, for a fee (nothing in this life is completely free) build or repair your kit for you.

WEB say that they will also consider repairing any magazine project provided that it's built on a proper PCB, as published with
the magazine article. What they suggest doing in either case is ringing them and talking over what's involved, and how much it's likely to cost. Alternatively, if you can't phone, they suggest sending the project in with all the information you have (instruction booklet or full magazine article, etc) and authorisation to debit your credit card by up to so much.

WEB say that they will have a
go at - and, more importantly, they have the equipment for pretty well anything, because they've been offering a similar service to industrial clients for a while now. They expect to be able to turn most jobs around within five days of receipt of the gear.

Further information can be had from WEB Logic Systems Ltd, Gainsborough House, 15 High Street, Harpenden, Herts Al5 2RT, tel 0582762119.

## Breadboard '83

8 readboard ' 83 will be held on the 25th, 26th, and 27th November at the Cunard International Hotel, Hammersmith. This should make it a lot easier for many people to get to since Hammersmith has good rail and bus connections and the hotel is within a few hundred yards of two NCP car parks.

Breadboard has always had a friendly atmosphere regardless of where it has been held, and moving to the carpeted splendour of the Cunard Hotel should not only preserve this atmosphere but also ensure less wear on the feet!

The dates for the exhibition have been moved nearer to Christmas in response to popular demand.
this way, the exhibitors are happy because the vistors are likely to spend more, and the visitors are better placed to drop hints to their loved ones about what they would like in their Christmas stockings instead of socks, after-shave, or cheap perfume!

At last year's exhibition the lectures proved a popular feature, so much so that at times the lecture room threatened to burst at the seams! This year we will again have a broad range of topics, so check well in advance and make sure you're there early to ensure a place.

Model railway enthusiasts will be interested in our computer controlled layout competition. The rules are very simple, amounting to little more than a restriction on the size of the layout.

Bearing in mind the crowds at last year's Computer Corner, the 'advice'/'hands on' area will be larger so as to be able to cope with all those would-be purchasers of computers.

For the benefit of those who live a long way from Hammersmith, we have arranged a special package deal that will include rail travel, first class hotel, breakfast, ticket to Breadboard, and various optional extras (tickets to shows, discount vouchers, etc). You can go to the exhibition while your boy/girl friend, husband/wife or whatever does the Christmas shopping and then meet up afterwards.

Breadboard will continue as an exhibition for the enthusiast (or would-be enthusiast!) in the world of electronics. There will be no three ring circuses, fashion shows or the like, just components, magazines, books, equipment, projects, and all the assorted peripherals in which you the reader (enthusiast?) are interested.

DISCO LIGHTING KITS
ol 1000k
This value for money kif fea-
ures a bidiriectional se
quence. speed ot st seauence
and frequency of direction
and frequency of direction
change. being variable by
change. being variable by means of poitan
tiometers and incorporates dimming control. $\quad £ 14.60$
DLZ1000K
A lower cost version of the abova featuring ariable by means of a ore-set por. Output witched only at mains zerocrossing poimt to tedice radio interference to a minimum 18.00

Oplional opto input DLAI
Allowing aucio $($ "beat") - light $60 p$ response

60p
This 3 channel sound to light kit features rero voltoge switching. atoromatic level control and built in mic. No connections to
spasker or amp required. Noknobs to ajjust spanker or amp required. No knobs to adjust
simply connect to mains zupoly and


LCD $31 / 2$ DIGTTMULTMMETER 18 ranges incuuding DC voltage ( $200 \mathrm{mv}-1000$ vi snd AC volterg DC current ( $2000 \mathrm{~mA}-10 \mathrm{~A}$ )
 Test iextil mm. Requires Pp3 gv battery.

## HOME CONTROL CENTRE

 This kit enables you to contuol up to 16 different appliances anywhere in the house from the injects coded pulses into the mains which are same mains supply modules connected to the applience addressed. The to switch on the includes a COMPUTER interface so you can pro gramme your favourite micro (e.g. $\mathbf{2 x} 11$ to switch lights. heating. electric blanket, make THE POSSIBiLtites. The kit nsmiter and tw and components for one transmitter and two
receivers. plus a pre-drilled box for the vers. Plus
Order $\mathbf{a s}$ XK112. $\mathbf{£ 4 2 . 0 0}$
Additional Recelvers XK111 £10.00

## REMOTE CONTROL KITS FOR A DETAILEO BOOKLET ON REMOTE CONTROL

 MKG SIMPLE INFRA RED TRANSMITTER MKI INFRA REO RECEIVER
 mamentary control.
PAC 500 K
MK9 MK9 4. WAY KEYBOAGD
For Use with MK $18 / \mathrm{MK}$
where only 4 transmitter $\begin{aligned} & \text { E12.50 } \\ & \text { rective }\end{aligned}$
whenels are required where onl. 4 Chenels are re
MK10 18. WAY KEYBOARD
Mk11 10 channel + 3 ennlogue o/p recolver A mains powered 10 ontion rectiver providing control ussed for controling the votume of an emplifitiof.
Eli.00
brightness of alamp. etc.

outputs for ewitching.
MK1B based on the SL 490 . This kit
ETI. components to make a coded transmititer. Requires


## DVM/ULTRA SENSITIVE THERMOMETER KIT

 This new design is based on version of the ICL7106 chip) and a $3^{1 / 2}$ dight liquid crystal display. This kit will form the$$
\begin{aligned}
& \text { basis of a digital mutimetor } \\
& \text { fonly of fow edditional resistore }
\end{aligned}
$$

are required-detaits supplied) and switchee digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$ reading $10.0 .1^{\circ} \mathrm{C}$. The besic kit has sensitivity of 200 mV for a full scale reading automatic polarity indication and an ultra low power requirement-giving a 2 year yhen used 8 hours a dev, 7 deys ard

Price 515.50
Add $65 p$ postage $\&$ packing $+15 \%$ VAT to Add $£ 250$ total Overseas Customers; Add $£ 2.50$ (Europe), $£ 6.00$ (elsewhere) for Send S.A.E. for further STOCK DETAILS Goods by return subject to availability. OPEN ${ }^{\text {9am to }}$ tomm Man to


# NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS 



# Multi-Purpose Scope 

Brown Boveri claim to have scored a world first with their M2050 Digital Scope Multimeter. Measuring a mere $257 \times 169 \times$ 88 mm this (almost) pocket sized instrument combines a $3 \frac{1}{2}$ digit, 32 range digital multimeter, a digital oscilloscope featuring a $128 \times 64$ dot matrix flat screen display, and a transient recorder with two independent $512 \times 8$ bit memories.

The M2050 will operate for up to eight hours on its internal NiCad batteries and when switched off will retain information stored in the transient recorder memory for up to three months. One set of input range switching serves both the multimeter and the oscilloscope and the two outputs are displayed simultaneously. The multimeter features AC, $A C / D C$, and DC operation, will operate down to 15 Hz , and has a true RMS option available on the $A C$ and $A C / D C$ ranges. The oscilloscope has comprehensive triggering facilities, a choice of eight timebases ranging from

100 uS/div to 6 minutes/div, and a roll facility which allows slowly changing inputs to be displayed without irritating flicker. The transient recorder has a maximum sampling rate of 500 kHz and features a save facility which prevents accidental overwriting of stored data.

The manufacturers claim that combining three instruments in this way reduces costs by eliminating unnecessary duplication of common circuitry and speeds up measurement by removing the need to connect up several (often incompatible!) instruments. Aside from such obvious advantages as saving space in the lab and enabling the service engineer to make more sophisticated on-the-spot measurements, suggested applications include the measurement and recording of such variables as temperature and pressure in the field.

The instrument is available as described for $£ 975$, or with the addition of a hard copy output for $£ 1150$, from John Minister Instruments, 137-139 Sandgate Road, Folkestone, Kent CT20 2DE, tel 030341598.

## Portable Computer

Immediate Business Systems have introduced NOMAD, a portable computer the size of a book yet half the weight and which offers the power of a desktop computer.

Nomad provies up to 256 K bytes of non-volatile bubble memory and has been specifically built for outdoor and harsh environment applications, so it is totally waterproof and shock resistant and can operate within temperature ranges of $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Using Microsoft M-BASIC 80 software; Nomad can be programmed directly on its full alphanumeric keyboard, or can be loaded with software developed on any CP/M-based microcomputer. Nomad has a two-line 80 character display panel, but can also be connected via an inbuilt interface (V24-V28/RS232) to drive a visual display unit or printer. Rechargeable batteries make the Nomad totally portable for in the field computing, and the use of a Z80 microprocessor provides fast processing and conservation of power.

Nomad is ideally suited for all applications where portable data processing is required, including such computer-unfriendly environments as oil exploration, steelworks, coal mines, construction, military, etc. Immediate Business Systems plc, 3 Clarendon Drive, Wymbush, Milton Keynes MK8 8DA, tel 0908 568192.

## Superbrush

The Superbrush is a compact tool which will clean and polish a variety of surfaces including, but not limited to, metallic materials. Applications include PCB track cleaning, switch and battery contact cleaning, rust removal, etc.

The brush length is controlled by a knurled cap to give a cleaning action ranging from fine

## Computer Drive Amplifier

Following the launch of its first -computer-drive New Class A amplifier, the SU-V303, Technics have now introduced two further models, the SU-V505 and the SU-V707. Unfortunately, they forgot to send us any bumf on the SU-V707 so we can only tell you about SU-V505!

The SU-V505 incorporates a number of special features. The Computer Drive New Class A system is designed to eliminate transient crossover distortion: sensors feed information on signal leve! and transistor temperature to a microprocessor which then calculates the optimum bias. To combat electromagnetically induced distortion, all the high current circuitry is placed in what Technics call a concentrated power block, effec tively isolated from the rest of the amplifier. Other features claimed for the amplifier include the use of linear feedback (no, we don't know what it is either) as opposed to mere negative feedback and a computer controlled protection system. Output is $2 \times 60 \mathrm{~W}$ into 4 or 8 ohms, both channels driven, with distortion at no more than $0.004 \%$ (still rather worse than our own NDFL amp . .).

Available in either black or silver finish, the SU-V505 sells for $£ 177.95$ and is available through Technics' nationwide dealer network. National Panasonic (UK) Ltd, 300-318 Bath Road, Slough Berkshire, tel Slough 34522.
emery cloth to coarse sandpaper. Twist the cap to expose a long brush length for a fine abrasive action, retract the brush until the bristles just protrude for a coarse action.

Recommended retail price of the Superbrush is $£ 2.29$ and inquiries are welcomed from stores and distributors as well as end users. Eraser International Ltd, Portway Industrial Estate, Andover, Hants. SP10 3LU

## Desk-Top <br> Cases

Anew, lightweight case intended primarily for desk-top applications is now available from West Hyde.

Attractively styled with smooth contours, the Empress case is manufactured from 2 mm aluminium and has a black and natural anodised finish. It has a sloping top surface at the front
which places switches, knobs and meters at an ideal angle. The four sizes available all have a common profile, so that two or more can be placed side by side on a worktop to form attractive 'suites'.

The Empress case comes complete with self-adhesive feet and is available ex-stock from West Hyde Developments Ltd., Unit 9 Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET, tel 029620441.


## COMTECH ELECTRONICS



## Fibre-Optic Lasers

Two new CW-operated injec tion laser modules and a new series of long wavelength transimpedance preamplifier photodiode modules have been announced by RCA, designed specifically for fibre-optic communications systems.

The C86041E (pictured below) is a gallium-aluminium-arsenide CW laser module with an output wavelength of 820 nanometers which is weil-matched with the wavelength of silicon photodiodes. The C86042E is an indium-gallium-arsenide-phosphide CW laser module with an output wavelength of 1300 nanometers which is well-
matched with the wavelength of InGaAs/InP photodiodes. Both types are constructed with a 0.5 meter length of fibre-optic cable internally coupled to the emitting region of the laser chip and are supplied in a special dual-in-line package for simple mounting and good thermal dissipation. The package also contains a photodiode which monitors the laser output, and which may be used in a negative feedback circuit to stabilise the output of the laser. An RTD temperature detector is provided for high duty-cycle pulsed operation at case temperatures up to $70^{\circ} \mathrm{C}$.

The C30986E Series are high speed InGaAsP (p-i-n) photodiodes with a hybrid preamplifier supplied in a 14 -pin dual-in-line package. A glass win-


## Motor Speed Controller

Cerranti Electronics has recently Fintroduced the ZN411E which, with a minimum of external components, provides precise speed control for electric motors.

Originally designed for use in a professional power drill made by a well known UK power tool manufacturer, the ZN411 will operate from the $A C$ mains or a suitable DC supply and has an on-chip shunt regulator. The circuit has a power down reset
facility and a 'soft start' capability whereby the speed builds up smoothly to the set speed. It produces negative triac firing pulses and has a triac retrigger facility. A reversing input on the chip will stop the motor, which then goes through the soft start to reach the speed set for the reverse direction.

The device is available in an 18 lead plastic Dual in Line package. Details from Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham, Lancashire, OL9 8NP, tel 061-624 0515.

dow provides optical access to the photodiode and a 50 um graded index fibre pigtail is included. This device provides high responsivity between 900 and 1700 nanometers and is optimised for the detection of 1300 and 1550 nm sources.

Additional information may be obtained from RCA Electro Optics and Devices, Lincoln Way, Windmill Road, Sunbury-onThames, Middx. TW16 7HW, tel 0932785511.

## New Op-Amps

Burr-Brown International have introduced two new operational amplifiers - a high power hybrid and a low bias current monolithic device with a JFET input.

The OPA501 is rated for continuous 80 W operation and will withstand peaks of at least 200 W without damage. It can deliver 10 amps peak into a 2 ohm load, 4 amps continuously into 5 ohms, and has output current limiting to protect both the amplifier and the load in the event of excessive drive or a fault occurring. Unity gain bandwidth is 1 MHz and the full power bandwidth is typically 16 kHz . Common mode input impedance is 250 M ohms and differential configuration input impedance is 10 M ohm.

The device is housed in an eight pin TO-3 package, the outer can being electrically isolated in order to simplify heat sinking (why aren't more power devices?). The OPA501 is designed to operate on supplies from $\pm 10 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$, and is very tolerant of supply voltage variations. Suggested applications include servo amplifiers, actuator controls and audio amplifiers.

The OPA100 JFET monolithic operational amplifier has a bias current of less than 0.5 pA at room temperature and less than 1 pA at $75^{\circ} \mathrm{C}$ but does not sacrifice performance in other areas to achieve this. Maximum offset voltage is 250 uV , offset voltage drift is $5 \mathbf{u V} /{ }^{\circ} \mathrm{C}$ maximum, and input impedance is $10^{12}$ ohms. All specifications are guaranteed over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Supplied in an eight-pin ro-99 package, the OPA 100 uses the standard 741 type pin connections. Suggested applications include current-to-voltage convertors, precision sample and hold amplifiers, and voltage amplification in high impedance circuits using biological probes, pH electrodes, etc. Burr-Brown International Ltd, Cassiobury House 11-19 Station Road, Watford, Herts WD1 1EA.

## Small Memory

$W^{\text {ANG Laboratories Inc, has }}$ introduced a low-cost highdensity dynamic random access memory module. Called SIMM (single in-line memory module) the module more than quadruples the density of the memory that can be positioned within a specified printed circuit board area, using industrystandard mounting practices.

Measuring only $.75 \times 3.00$ inches, the WANG SIMM integrates nine separate 64 K DRAMs and related decoupling chip capacitors into 64 K bytes of memory with parity (error detection). Suitable for either direct mounting or socketing on a PCB, the module offers the potential for clustering as much as one full megabyte of memory within a three-by-four-inch area of the PCB. WANG say that the SIMM could significantly lessen the need for 256 K technology, since it is denser than 256 K and is available now. WANG UK, 661 London Road, Isleworth, Middlesex TW7 4EH, tel 01-560 4151.

## New CCDs From Plessey

Dlessey have introduced four new CCD arrays: the MS1002-1 and 2850 bit registers, and the MS1003-1 and 3910 bit registers. All these devices are intended for video line storage, an application to which CCDs seem to be well suited.

The MS1002-1 is for analogue storage with interrupted clocks; the MS1002-3 is for delay-line operation with a continuous clock. Both have a video bandwidth of over 5 MHz with a clock frequency of 13.3 MHz , three times the PAL sub-carrier frequency.

The MS1003-1 änd 3 are similar, but are intended for use with a 14.3 MHz clock, four times the NTSC colour sub-carrier frequency.

The advent of satellite TV, if it ever does happen, will increase the damand for storage facilities within receivers; as regular readers may recall, the C-MAC system chosen for UK transmissions involves a large degree of time-multiplexing of the TV signal, as opposed to frequency multiplexing which is the predominant form used at the moment. Plessey Semiconductors, Cheney Manor, Swindon, Wilts SM2 1QW, tel 079336251.

## Standard features -

- High speed 24K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution ( $256 \times 192$ ) colour graphics
- Screen memory does not use up user memory space
- 16 colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only by memory size
- Real time clock included in basic
- Interval timing with 10 mS resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Buffered i/o allows you to continue executing the program while still printing
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Supports up to 16 output devices: Screen and cassette interfaces included as standard
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16 K video RAM for graphics

With this powerful machine (featured in Electronics Today International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!


## $£ 295$

Ready built £395
All prices exclusive of VAT. Carriage paid.

## Optional extras

RS232C interface kit
Floppy disc interface Pair of $51 / 4^{\prime \prime}$ disc drives E49.50 CORTEXC - as above + disc drives $\mathbf{£ 8 9 5 . 0 0}$ Full assembly instructions and 216 page user's manual.

## POWERTRAN cybernetics

Portway Industrial Estate, Andover SP10 3ET . Tel: 026464455


# NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS 

## Competition

Regisbrook of Reading have challenged the electronics world to a test of imagination with an astonishing new device the problem is that they can't think of any use for it!

The device is a highly effective portable humidity sensor - so sensitive that it will react to the moisture in exhaled breath at a distance of two feet. It is battery powered and pocket sized, with an adjustable mounting bracket and no on/off switch. The unit features a sensing grid of interleaved gold filaments on a ceramic substrate, a robust plastic case, and hermetically sealed electronics for long term stability. It has an integral alarm

## Shorts

- Not one but two catalogues from Ambit! One is aimed at industrial and commercial users and comes free on request; the other is for lesser mortals and costs 80 p from your friendly local newsagent. Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG.
- Concerned Technology, an exhibition of microprocessor based aids for the disabled and those with special needs, begins its twenty-nine stop tour in Hastings on September 8th. Details from Nancy Shawcross or Sue Hardwick on 01-789 4055/6.
- Silicon Valley, eat your heart out! The London borough of IsIington is so proud of its local micro-electronics industries that it has made a film about them. "Silicon Green" runs for thirty minutes and is available to schools, business promotions, etc. Contact Jane Smith, 01-226 1234, ext. 268.
- NAHBO, the National Association of Hospital Broadcasting Organisations, is holding its autumn conference at the Ladbroke Mercury Hotel, Watford, on 14th/16th October. Exhibitors and individuals interested in Hospital Radio are welcome. NAHBO, 56 Fleet Road, Benfleet, Essex SS7 5JN.
bleeper which cannot be/triggered by short circuiting the gold grid and which stops when the sensing grid is wiped dry.

A grand prize of a magnum of champagne, and ten second prizes of the actual moisture sensors are offered by Regisbrook for the best suggestions (serious or imaginative) of what to do with the things. Ever anxious to be of service (and to assist in the disposal of alcoholic beverages) ETI would like to suggest that a few samples be sent to Conservative Central Office for use in the selection of suitably 'dry' parliamentary candidates. Readers with better suggestions should contact Regisbrook Ltd., Studio House, 215 Kings Road, Reading, Berks.

## Improve Your Knowledge Here

Calling all would-be hams! Bradford \& Ilkley Community College are running a 1 year course in preparation for the Radio Amateurs Examination. Enrolment starts on 6th September. Those interested should contact P. Nurse, Course Tutor, Bradford \& IIkley Community College, Great Horton Road, Bradford, West Yorkshire BD7 1AY.

For those unable to get to Bradford, Frank Fear is running a similar course at Barr Beacon Comprehensive School, near the M5/M6 junction. Enrolment is on 22nd September and there's even a special 10 week crash course for those with basic electrical knowledge. Further details, telephone Aldridge 52706.

If amateur radio isn't your scene why not try Information

Technology? Thames Polytechnic's new four year honours degree course starts in October and includes a year's industrial experience. Details from the Academic Registrar, Thames Polytechnic, Wellington Street, Woolwich, London SE18 6PF.

Salford University are running a series of one and two day courses on various aspects of the CBM/PET microcomputer. The first course starts on 13th September and the complete series will be repeated in three months time. For details, telephone 061-736 5843, extension 248.

Would-be movie directors should take their megaphones and folding chairs down to Piccadilly where JVC are holding two and three day courses in video production. The courses, which cater for both beginners and the more advanced, are repeated twice monthly. Dates, etc from Phil Compton or Mike Whyman at the JVC Video Information Centre, 82 Piccadilly, London W1, or telephone 01-491 3775.

- Sinclair Research are offering a ZX81, a 16K RAM pack, and a software cassette all for $£ 45$. Available for a two month trial period, the 'starter pack' will save you $£ 30$ on current prices and is on sale at Boots, John Menzies, and other Sinclair stockists. How long will it be before they start giving away computers with packets of breakfast cereal?
- The Intron IFG 422 is a 0.1 Hz to 2 MHz function generator offering sine, square, triangle, ramp, and pulse waveforms. It has 50 ohm and TTL outputs, is light and compact, and costs $£ 195$ from House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 1EE, tel 079924922.
- Cable Check FC is a bench top go/no-go tester for insulation displacement type ribbon cables. It can test all cable/connector combinations up to 37 ways for both continuity and shorts. Cable Check Systems, Sanderson Centre, Lees Lane, Gosport, Hants, tel 0701728396.
- The South Coast Hi-Fi Show will be taking its bucket and spade and an awful lot of audio goodies down to Brighton on the 11th, 12th and 13th November. Venue is the Royal Albion Hotel, Old Steine, and details are available from Tim Purcell, 137 Marina, St. Leonards-on-Sea, East Sussex TN38 OBT, tel 0424 715133.
- Market Logic's new Macrobyte printer buffer stores computer data output until the printer is ready for $i t$, allowing the computer to carry on at its own speed. Designed to work with a Centronics interface, the Macrobyte comes in 16 k , 32 k and 64 k versions and prices start at $£ 99.95$. Tel 0432-70 456.
- Alcon Instruments claim their new pocket sized direct reading capacitance meter is as good as most bench-mounted bridges. The CP570 has five ranges from $0-50 \mathrm{pF}$ up to $\mathbf{0 - 0 . 5} \mathbf{u F}$, a three inch meter scale, a basic accuracy of $\pm \mathbf{3 \%}$ and costs $£ 51.06$ complete with leads and case. Alcon Instruments Ltd, 19 Mulberry Walk, London SW3, tel 01-352 1897.
- Advanced Micro Devices now have available a 256 K EPROM which has an access time of only 170 nS . The Am27256 is organised as $32 \mathrm{~K} \times 8$ bits, requires a single 5 V supply, has TTL compatible inputs and outputs and uses the standard 28 pin configuration. Advanced Micro Devices (UK) Ltd, AMD House, Goldsworth Road, Woking, Surrey GU21 1JT, tel 0486222121.
- For those whose penchant is listening to Stockhausen in the sauna, Fuij have introduced a high temperature cassette tape. The GT-1 will withstand $110^{\circ} \mathrm{C}$ $\left(230^{\circ} \mathrm{F}\right)$ without damage to either shell or tape and is intended for use in cars. Bell \& Howell, Alper-
ton House, Bridgewater Road, Wembley, Middlesex HAO 1EG, 01-902 8812.
- Just when you'd got all your accessories colour coordinated, Hanimex go and introduce their LC751. Described as a high fashion calculator, it is superslim and has a glossy black lacquer finish highlighted by gold keys and trim. And when fashions change, you can always use it to work things out on!
- With one snap of their powerful jaws, 3M's new TH212 and TH213 will strip both solid and stranded wires without damage to the conductor. The TH212 covers wires from 0.2 mm to 0.9 mm and the TH213 covers wires from 0.75 to 6 mm , both types adjusting automatically to all wire sizes within their range. 3M UK, 3M House, P.O. Box 1, Bracknell, Berkshire RG12 1JU, tel 034426726.
- Roxburgh Suppressors Ltd have introduced two mains filters designed for direct mounting onto printed circuit boards. The PC103 and PC105 are rated at 3 and 5 amps respectively and are full encapsulated. Roxburgh Suppressors Ltd, Eagle Road, Rye, East Sussex, tel 079733725.
- An Apple a day has clearly done wonders for the California based computer company. They've just produced the one millionth Apple personal computer and to celebrate are giving an Apple lle to every school in the state.


## electrowire <br> AUTO-ELECTRONIC PRODUCTS

## KITS OR READY BUILT

TOTAL ENERGY DISCHARGE ELEGTRONIC IGNITION

t is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full nutput even with a near flat battery.

* Is it ECONOMICAL or does it "go off"' betwew.
 much more output and maintain ${ }^{\text {I }}$ tisin sertike inswis.








 arcing ande toosiont ly yenfoving ifte heavy electrical load. The timing stays "spirt on" 解d"the contact condition doesn't affect the performance. atifter. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market $-31 / 2$ times the power of inductive systems $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts)
SPARK POWER - 140 W , SPARK ENERGY - 36 mJ SPARK DURATION - $500 \mu \mathrm{~S}$, STORED ENERGY - 135 mJ LOADED OUTPUT VOLTAGE

$$
50 \mathrm{pF} \text { load }-38 \mathrm{kV} \text {, }
$$

$50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}$
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal.

- All ELECTRONIZE electronic ignitions feature:

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY ( 14 years experience and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you' need is a soldering iron and a few basic tools:
Most NEW CARS already have electronic ignition. Update YOUR CAR


## PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM



* 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
* 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
- INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
* 30 SECOND DELAY when system is armed állows owner to lock doors etc.
- DISABLES IGNITION SYSTEM when alarm is armed.
- IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES.
SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

## Don't Wait Until Its too Late ~ <br> Fit one NOW!

fill in the coupon and send to:
ELECTRONIEE DESIGN Dept E. Magnus Rd Wilnecote • Tamworth • B77 5BY . tel 0827281000 TOTAL ENERGY DISCHARGE ( 6 or 12 volt negative earth)
TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

| $\square$ | Assembled ready to fit |
| :--- | ---: |
| $\square$ | $£ 20.70 £ 19.95$ |
| $\square$ | $£ 15.50$ |

TWIN OUTPUT for cars and motor cycles with dual ignition
$\square$ Twin, Assembled ready to fit $£ \mathbf{£} \mathbf{~} \mathbf{\square} .45 \mathbf{£ 2 9 . 9 5}$
Twin, D.I.Y. parts kit
£24.55 £22.95
INDUCTIVE DISCHARGE (12 volt only)
Assembled ready to fit
$\mathbf{£ 1 5 . 5 5} \mathbf{£ 1 2 . 7 5}$
Prices Include VAT.
$P+P \quad £ 1-00$ (UK)

CAR ALARM
Assembled ready to fit
£37.95
D.I.Y. parts kit
£24.95
I enclose cheque/postal order OR debit my Access/Visa card


Name
Address

# TYPEWRITER INTERFACE 

# Daft, isn't it? You can't get a daisy-wheel printer for less than about $£ 400$, but you can buy daisy-wheel typewriters containing not just the printer, but a keyboard and some electronics for just over $£ 200$. Jon Tyler shows us how you can interface one to your micro. 

The Silver Reed EX 42 typewriter is logically divided into two parts. The keyboard is controlled by its own 8049 microcontroller while the printing mechanism is controlled by an 8039 with an EPROM containing the software appropriate to printing the required character set. Information is passed between these devices using a serial interface. It is possible to interface to the machine via an edge connector on the main PCB but if it is to be used as an output device only, a simpler interface may be constructed which operates in parallel with the existing keyboard.

The keyboard is arranged as a 8 $\times 8$ array of keyswitches which are positioned according to the normal QWERTY convention. There are 25 connections made between the keyboard and the electronics, these taking the form of one 10 -way and one 15 -way ribbon cable connector. The modification to the typewriter is to disconnect these and reconnect them through suitable plug-socket pairs. In the prototype, these connectors were made from a 40-way wire-wrap IC socket cut into suitable lengths.

## Construction

The prototype was constructed in a plastic box measuring about $3^{\prime \prime}$ by $4.5^{\prime \prime}$ by $1.5^{\prime \prime}$. A 26 -way ribbon cable and matching connector was used to connect to the typewriter and a 12-way connector used to connect to the micro-computer parallel port. The ribbon cable was connected to the typewriter using the home-made adaptors shown in Fig. 5 . These were made by cutting a 40 -way wire wrap socket into 10


Fig. 1 (above) Keyboard matrix with pin connections.
Fig. 2 (right) How the typewriter scans the input multiplex lines to the keyboard.
and 15 way lengths which were soldered to strips of Veroboard. The ribbon cable was then soldered to these adaptors, the 26th way being left free and fitted with a solder tag. The typewriter cover is removed by unscrewing the two grub screws at either end of the platen (roller) using an Allen key. Remove the



Fig. 3 Circuit diagram for the interface.

## BUYLINES

The only difficult item here is the wirewrap socket. We suggest you experiment with any odd DIL wire-wraps you may have around before splashing out on anything fancy. 26 way ribbon cable is easily obtained by chopping up 30 or 34 way, etc. RV1 is available from Maplin,
the 26 way PCB plug and socket from Ambit, the 2716 and other semiconductors are available from several of our advertisers, and the PCB can be obtained from you-know-where (but see page 77).


Fig. 4 (left) This shows how the improvised connector is made and how it is fitted into the typewriter.

## PROJECT : Typewriter Interface



Fig. 6 (below) Program to drive the interface, to be used when an EPROM is not used.

10 REM PRINTER SIMLATOR ROUTINE
20 DIM D(128)
30 FOR $N=1$ TO 128
40 READ D(N)
50 NEXT N
60 INPUT "FILENAME" ",bE : REM READ A FILENAME
70 OPEN 1 BE: ON EOF GOTO 340
80 GET 1 CE
90 FOR P=1 TO LEN(CE) : REM GET EACH CHARACTER
$100 \mathrm{AE}=\mathrm{MIDE}(\mathrm{CE}, \mathrm{P}, 1)$
110 gosub 200
120 IF Af=CHARE (13) GOTŌ 140 : REM CHECK FOR CR
130 GOTO 180
140 Af=CHARf(10): REM IF SO PUT IN A LF
150 gasub 200
160 FOR N-1 TO 125 : REM AND A DELAY
170 NEXT N
180 NEXT P
190 GOTO 80
$200 \mathrm{X}=\mathrm{D}(\mathrm{ASC}(\mathrm{Af})+1$ ) : RBM SUBROUTINE TO PRINT A CHARACTER
210 OUT(16R7E)=X : REM OUTPUT TO A SUITABLE PORT
$220 \operatorname{OUT}(16 R 7 F)=0$ : RBM ISSUE THE STROBE
$230 \operatorname{OUr}(16 \mathrm{R} 7 \mathrm{~F})=1$
$240 \mathrm{Y}=\mathrm{IN}(16 \mathrm{R} 7 \mathrm{~F})$ : REM CHECK FOR BUSY
$250 \mathrm{Y}=\mathrm{MOD}(\mathrm{Y}, 2)$
260 IF $\mathrm{Y}<>0$ colo 240

## 270 REIURN

280 DATA $2,2,2,2,2,2,2,2,2,2,9,2,2,12,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2$
290 DATA $8,120,124,83,112,104,108,96,100,88,82,94,39,16,27,31,28,56,60,48$
300 DATA $52,40,44,32,36,24,18,30,231,92,220,95,17,122,107,115,114,113,118$
310 DATA $106,110,101,98,102,90,99,111,89,93,121,117,126,105,97,119,125$
320 DATA $127,109,123,209,8,145,8,80,96,58,43,51,50,49,54,42,46,37,34,38,26$
330 DATA $35,47,25,29,57,53,62,41,33,55,61,63,45,59,8,159,8,8,2$
340 CLOSE 1
350 STOP
360 END


Fig. 5 (above) Overlay diagram of the interface PCB.

|  | 2 <br> 2 <br> 2 <br> $\mathbf{2}$ <br> 8 |  | 늘 을 8 8 | $\begin{aligned} & n \\ & \frac{n}{2} \\ & \frac{2}{2} \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 要 } \\ & \vdots \\ & \text { S } \\ & \mathbf{S} \end{aligned}$ |  | $\begin{aligned} & \underset{y}{2} \\ & \frac{1}{2} \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { z } \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 02 |  | 20 | 08 | (a) | 40 | 11 |  | 60 | 60 |
| 01 | 02 | $!$ | 21 | 78 | A | 41 | 7A | a | 61 | 3A |
| 02 | 02 | " | 22 | 7 C | B | 42 | 6B | b | 62 | 2B |
| 03 | 02 | \$ | 23 | 53 | C | 43 | 73 | c | 63 | 33 |
| 04 | 02 | £ | 24 | 70 | D | 44 | 72 | d | 64 | 32 |
| 05 | 02 | \% | 25 | 68 | E | 45 | 71 | e | 65 | 31 |
| 06 | 02 | 8 | 26 | 6C | F | 46 | 76 | f | 66 | 36 |
| 07 | 02 |  | 27 | 60 | G | 47 | 6A | $g$ | 67 | 2 A |
| 08 | 02 | ( | 28 | 64 | H | 48 | 6E | h | 68 | 2E |
| 09 | 02 | 1 | 29 | 58 | 1 | 49 | 65 | , | 69 | 25 |
| OA | 09 | * | 2A | 52 | , | 4A | 62 | j | 6A | 22 |
| OB | 02 | + | 2B | 5E | K | 4B | 66 | k | 6B | 26 |
| OC | 02 |  | 2 C | 27 | L | 4C | 5A | 1 | 6C | 1 A |
| OD | 0 C | - | 2D | 10 | M | 45 | 63 | m | 6D | 23 |
| OE | 02 |  | 2 E | 1-B | N | 4E | 6 F | n | 6 E | 2 F |
| OF | 02 | 1 | 2 F | 1F | O | 4 F | 59 | 0 | 6 F | 19 |
| 10 | 02 | 0 | 30 | 1C | P | 50 | 5D | p | 70 | 1D |
| 11 | 02 | 1 | 31 | 38 | Q | 51 | 79 | q | 71 | 39 |
| 12 | 02 | 2 | 32 | 3C | R | 52 | 75 | 9 | 72 | 35 |
| 13 | 02 | 3 | 33 | 30 | S | 53 | 7E | S | 73 | 3E |
| 14 | 02 | 4 | 34 | 34. | T | 54 | 69 | 1 | 74 | 29 |
| 15 | 02 | 5 | 35 | 28 | U | 55 | 61 | u | 75 | 21 |
| 16 | 02 | 6 | 36 | 2 C | V | 56 | 77 | $v$ | 76 | 37 |
| 17 | 02 | 7 | 37 | 20 | W | 57 | 7D | w | 77 | 3D |
| 18 | 02 | 8 | 38 | 24 | X | 58 | 7F | x | 78 | 3F |
| 19 | 02 | 9 | 39 | 18 | Y | 59 | 6D | - | 79 | 2D |
| 1 A | 02 |  | 3 A | 12 | Z | 5A | 7B | z | 7 A | 3B |
| 1B | 02 | ; | 3B | 1 E | [ | 5B | D1 |  | 7 B | 08 |
| 1C | 02 |  | 3 C | e) |  | 5 C | 08 |  | 7 C | 9 F |
| 1D | 02 | $=$ | 3D. | 5C | ) | 5D | 91 |  | 7 D | 08 |
| 1 E | 02 |  | 3E | DB |  | 5E | 08 |  | 7E | 08 |
| 1F | 02 | ? | 3F | 3F | - | 5 F | 50 |  | 7 F | 02 |

Table 1 EPROM contents and what they do.
stage, then perhaps the best way of doing this is with a header plug in the IC socket.

Once source of trouble that you may have is with the stability of C1. We've specified a tantalum type, but you may find it necessary to use a polystyrene (we known, we know, they're big and expensive). The exact value of C 1 isn't important, but it must not vary too much over time or with temperature and electrolytics are capable of doing just that.

One option you might like to use is to connect two on off toggle switches between the 5 V rail and pins 6 and 8 of the connector SK2. These allow the selection of 15 characters per inch type spacing and of an alternative keyboard to be selected, both independent of the computer output.

This isn't necessarily the end of the story. We're so impressed by the keyboard on the EX42 that we're looking at ways of using it too. Watch this space!

ETI

# DON'T MISS THE OCTOBER ISSUE OF HOBBY ELECTRONICS! 

In it you will find a special pull-out supplement containing over 20 useful everyday circuits that form many of the basic elements of electronic design. Presented in conjunction with Bernard Babani (publishing) Ltd., it is illustrated by practical examples from the pages of Babani Books.


# GOMPUMF WARHEOUSO 

## 

## HARD DISK DRIVES

Fully refurbished Diablo/DRE Series 302.5 mb hard disk drive for DEC RKO5, NOVA, TEXAS etc

Front load $£ 550.00$ - TOp load $£ 295.00$
DRE 44A/4000AB $10 \mathrm{mb} 5+5$ all configurations from £995.00. Call sales office for details.

B AMP MANTS FLTIERS
Cure those unnerving hang ups and data glitches caused by mains interference. Matchbox size-Up to 5 amp 240 v load. As recommended by the ZX81 newsletter. Suppression Devices SD5A £5.95.

## DISYMT ©

The UKs FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive
DON'T MISS TMOSE EARCAIHS
CALL MOW, IT'S PREE
01-679 1888
7 daym per
IT WOBD - Ho parity

## COLTPURER 'CAB'

All in one quality computer
cabinet with integral switched
mode PSU, Mains filtering, and twin fan cooling. Originally made for the famous DEC PDPB computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a massive $+5 v D C$ at 17 amps, $+15 \mathrm{~V} D C$ at 1 amp and -1 DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power' and 'Run' LEDs mounted on Alif front panel, rear cable entries, etc. etc. Units are in good but used condition - supplied for
240 v operation complete with full circuit and tech. man Give operation complete with full circuit and tech. man £ 49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high E49.95 + Carr. Dim. 19 wide 16 deep 10.5 high.


## COOLTH FATS

Koen your hot partisCOOL And RELLIABLE
with our range of BRAND NEW Professional withour rang
Coinigigaisol Dim. $92 \times 92 \times 25 \mathrm{~mm}$.
Miniature 240 vequipment tan complete with finger guard co.95.
GOULD JB-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact EUNLER 69.11.22. 8-16 vDC micro EUHLER 69.11.22. 8-16 V DC micro
miniature reversible fan. Uses a brushless miniature reversible ran. uses a birush1 servo motor for extremely high air flow, 10,000
almost silent running and guaranteed hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$. hirrent cast $\mathrm{C}_{3} 2.00$. OUR PRICE ONLY e12.95 complote whth data.
WUFFIN-CENTAUA standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ fan supplied tested EX EQUIPMENT 240 v at
£6.25 or 110 v at $£ 4.95$ or BRAND NEW 240 v at $£ 10.50 .1000$ 's of other fans Ex Stock
Call for Details. Post \& Packing on all fans $£ 1.60$

## 



Unbelievable value the DRE $71008^{\prime \prime}$ floppy disk drives utilise the finest technology to give you $100 \%$ bus compatibility with most drives available today. The only difference being our PRICE and the supert manufacturing quality! The 7100 single sided drive accepts hard or soft sectoring IBM or ANSI standard ormats giving a massive 0.8 MB of storage. Absolutely SHUGART, BASF SIEMENS etc. compatible. Supplied BRAND NEW with user manual and full 90 day warranty. 7100 Single sided $\mathbf{£ 2 2 5 . 0 0}+$ Carriage and insurance $£ 10.00$.
Optional accessories: Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Refund of difference on drive purchase. DC and $A C$ power connector an
way IDC connector $£ 5.50 .50$ way ribbon cable $£ 3.20$ per metre.

## SUPER DEAL? NO - SUPER STEAL!! <br> The FABULOUS 25CPS TEC Starwriter

Daisy wheel printer at a fraction of its original cost. RAND NEW AT ONLYE4G9+ VAT=
Made to the very highest spec the TEC Starwrite
FP1500-25 features a heavy duty die cast chassis and DIABLO type print mechanism giving superb registration an print quality. Microprocessor electronics command compatability
 Many control via CPM Wordstar etc. Many other features include bi directional
printing, switchable 10 or 12 pitch, full width 381 mm paper handling with upto 163 characters per line, friction feed rollers for single sheet or continuous pape internal buffer, standard RS232 serial interface with handshake.
Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy wheel and dust cover. Order NOW or contact sales office for more information. Optional extras: RS232 data cable $£ 10.00$. Tech manual $£ 7.50$. Tractor feed
$£ 140.00$. Spare daisy wheel $£ 3.00$. Carriage $\&$ Ins. (UK Mainland) $£ 10.00$. £140.00. Spare daisy wheel $\mathbf{£ 3 . 0 0}$. Carriage \& Ins. (UK Mainland) $£ 10.00$

## DATA MODEMS

Join the communications revolution with our range of ex for 24 hrs per day. Units are made to the CCITT tone spec. With RS232 i/o levels via a 25 way 'D' skt. Units are sold in a tested and working condition with data Permission may be required for connection to PO lines. MODEM 13A compact async, same size as telephone base. Up to 300 baud, full duplex over 2 wires, but call mode only £75:00 MODEM 2B/C Fully fledged, up to 300 baud async, ANSWER \& CALL modes, auto answer, auto switching ideal networks etc. Just 2 wire connection to comms line. $\mathbf{8 8 5 . 0 0}$
MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 baud transmit - 1200 baud receive. Auto answer.
$\mathbf{8 1 3 0 . 0 0}$ 8130.00

MODEM $20-2$ same as $20-1$ but 75 baud receive 1200 baud transmit $£ 130.00$ MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circuit of half duptex mode over 2 wires, $£ 130.00$ Carriage. $13 A$ £4.50. 2B/C \& 20 £9.50. OATA PUMP MODEM compact unit upto 1200 baud full duplex over 4 wires or half
duplex over 2 wires. BELL specification with duplex over 2 wires. BELL specification with
data i/ovia RS232 25 way D socket, remote data i/o via RS232 25 way D socket, remote
test etc 240 voperation. Supplied complete with data $\mathbf{8 6 5 . 0 0}$ carr. 84.50 .

For more information or details of other types

## SPECIAL MODEM OFFER

EX TELECOM. Direct connect. 2 wire, European standard, $75 / 1200$ baud data modems. Normally priced at £140.00, we have a limited quantity of guaranteed working, but cosmetically defective (ie scratches and scuifs on panels etc.) uni at a super low price of only $\mathbf{2 4 . 9 6}$. Modems are made to the highest standard and conform to the CCITT tone spec. Ideal for MICRONET, PREST EL or D skt. With data.
MODEM 2A Early version of modem 2B/C 300 baud full duplex, send-receive auto answer. RS232 i/o. With data but untested. End of line clearance.
Only \&35.0\%. Supplied complete with data. Carriage \& Ins. $£ 9.50$

## 8" WINCHESTER price SLASHH

S100 Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs direct into the S100 bus and will control 2 disk drives, offering a total storage of OVER 36 Mbs! and at data transfer rates in excess of $7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing!! Supplied complete with user configurable BIOS etc. Save a fortune, Limited quantity only. 310019 Mb . Disk drive $\mathrm{E} 499.00^{6}$ PSU unit $\quad$ E/65.00 CD1 100 controiler \& BIOS $£ 345.00$ PSU extension cable Full tech Manual
$E 20.00$
Special SUBSYSTEM prices. $1 \times 3100$ disk +.PSU + Controller or $2 \times 3100$ disks +2 PSU + Controller
All prices + VAT and carriage. 90 day guarantee. Data on request

## REGMAROEAELE MICADS

8AFT VR2C $1.2 v$ 'C' size nicads. 18 cells in ex equipment pack Good condition - easily split to single
cy +51.90 post and packing.

## UIDEO MORITORS

12" CAsED. Made by the British KGM Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case with ON OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as, internal transformer isolated regulated DC supply, all components mounted on two tibre glass PCB boards - which hinge out ease of service, many internal controls for linearity etc. The monitor accepts standard 75 ohm composite video signaivia O 239 is estimated around 20 Mhz and will display most high def graphics and $132 \times 24$ lines. Units are secondhand and may have screen burns. However where burns exist they are only apparent when monitor is switched of Although unguaranteed all monitors are tested prior to despatch. Dimensions approx. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep. Supplied complete with circuit. 240 volt AC operation. ©WY E45.00 MUSES. 50 CARR 24" CASED. Again made by the KGM Co with a similar spec as the 12 monito Originally used for large screen data display. Very compact unit in lightweight alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. All silicon electronics and composite video input make an ideal unit for schools, clubs, shops etc. Supplied in a used but working conctes

## aweyc5s.00 puse9.50 ente 8 IMs

14" COLOUR superb chassis monitor made by a subsidiary of the HITACHI Co. Inputs are TIL RGB with separate sync plug direct into the BBC micro etc. Excepition Brand new and guaranteed Complete with full data \& circuit 240 v Complete with full data \& circuit. 240 v AC working. Dim. $14^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$.
eutreise.00 meses.se enRR

## SEMICONDUCTOR

 6 (1): : $: 1: 10$
## Alxed Semls amazing value contents

 include transistors, digital, linear, I.C.'s triacs diodes, bridge recs., etc. etc. All devices guaranteed brand new full spec. with manu facturer's markings, fully guaranteed, $50+\varepsilon 2.98100+65.15$.TTL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series C. $s$ enables us to offer $100+$ mixed "mostly TL" grab bags at a price which two or three chips in the bag would nnormally cost to buy. Fully guaranteed all.C.' f fll
spec. $100+£ 6.90200+\Sigma 12.30300+\Sigma 19.50$

## CALLING DEC USERS <br> Brand new and boxed

RSX 11 M 3.2 Documentation kits, fill 3 feet of your bookshelf! Under half price onl DEC MSV11-DD 32k $\times 16$ bit RAM EISs.0 We are always keen to buy all types of used or surplus DEC equipment.

[^0]

## CRICKLEWOOD ELECTRONICS LTD

40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET TELEPHONE 01-452 0161 TELEX 914977
ALL PRODUCT FIRST GRADE FRANCHISED SOURCE
All advertised items are guaranteed to conform with, or surpass manufacturer's current data sheets. This list represents a fraction of our stock. New items are constantly being brought into stock. Cricklewood Electronics keep up with the times. Please phone about

## all your electronic needs.

HOW TO ORDER: 1Mail order with cheque, P.O., Bank Draft, Reg

Securicor available. 2Phone your order quoting Credit Card** access number. 3 Call in. You will be more than welcome. 4 Official ${ }^{*}$ CARD orders accepted from Govt. Depts., Schools, Colleges, * vishenican Armed Service Establishments, P.L.C.s and approved Express accounts. 5 Overseas orders by Bank Draft in Sterling and
minimum post and packing. DHL plus $£ 65.00$ no V.A.T. V.A.T. applicable to U.K. only. Please add 15
to order. No V.A.T. on books and datasheets.




JUST RELEASED | NENULLUSTRAT |
| :--- |
| CATALOGUS |












-n wo
day $195 \%$ of all adver-

# AUDIO DESIGN ${ }_{\text {PART } 2}$ 

As a general classification, one can divide linear ICs into two broad categories: purpose-built or dedicated ICs, aimed at the performance of one specific application; and general purpose ICs, such as the operational amplifier types, which are designed for use as versatile building blocks in a wide range of circuit configurations. The first of these categories contains a host of useful devices, whose numbers increase daily, that are capable of doing a very wide range of jobs, from providing well stabilised, ripple free, power supplies, to complete radio systems or audio amplifiers in a single package.

As a rule, hi-fi circuit designers and their customers tend rather to look askance at such purpose-built ICs in audio applications, since these devices are intended mainly for use in mass-produced consumer hardware, to simplify and reduce the cost of manufacture of competitively priced domestic electronics. A hi-fi specification is not usually either part of the IC designer's brief or of the customer's cost expectation. Nevertheless, some of these dedicated ICs perform extremely well, and have found their way into some of the most prestigious of audio systems. One must, therefore, try not to harbour preconceived opinions about their potential quality, but rather to judge these devices on their individual merits.

So far as the circuitry associated with these dedicated ICs is concerned, although it is great fun to explore their internal construction and to work out schemes for using. them in applications their designers had never envisaged, this is rather an exotic field, and full of pitfalls for the unwary. So, in general, it is prudent to stick fairly closely to the circuit applications and component values recommended by the manufacturers in their application data sheets (which one should make sure one gets with the device) since it will probably be difficult to improve greatly upon these recommendations. With general purpose ICs, these constraints upon the method of possible use do not exist, and a very wide range of circuit uses can be envisaged.

## Basic IC Amplifier Layouts

Taking the op-amp gain block as a starting point, this will be familiar as a simple, fairly wide bandwidth amplifier unit, having two inputs - one phase-inverting, one noninverting, an output pin, and two further pins for connection to a + ve and - ve DC voltage supply. Some ICs of this type (in fact, most of the packages which contain just one. gain block) also have two further pins which can be used, when connected to an external trimmer potentiometer, to adjust the DC output level of the amplifier when this is used as a DC amplifier stage. Such an op-amp IC will normally be designed to work over supply voltage ranges from $\pm 1.5 \mathrm{v}$ to $\pm 15 \mathrm{v}$, or indeed, in a suitable circuit layout, from a single DC supply within the range $3-30$ volts.


Fig. 1 Conventional circuit drawing of an operational amplifier.

The conventional circuit drawing for such an op-amp is shown in Fig. 1, where, as ever, the + and - symbols on the input leads imply the non-inverting and inverting amplifier characteristics. Although on this drawing I have shown the + and - supply connections to the IC, it is a common practice to take these as read where the ICs are used from a symmetrical or otherwise unremarkable power supply arrangement, and I propose to follow this convention and omit the power supply connecitons, where these are standard, in future drawings.

Most of the popular op-amps of the 741 type are what is known as internally compensated, which implies that negative feedback can be used in the circuit by the connection of a suitable network between the output and the inverting input pins, without having to worry about whether the amplifier will then be stable. In some of the earlier op-amp ICs, internal HF compensation was not provided, on the grounds that the necessary worst-case (unitygain) compensation would lead to a less good HF performance from the IC, at higher than unity-gain conditions, than if the compensation was done by a suitably chosen network of Rs and Cs external to the IC package. However, this situation has been overtaken by progress in IC design, and most of the contemporary IC designs will give a good HF performance without the need to accept an inconvenient external RC network.

Typical values of open-loop (ie, before any negative feedback is applied) small signal, low frequency voltage gain are in the range 100,000-200,000, and the rejection of unwanted noise and voltage fluctuations on the voltage supply lines is usually of a similar order. The common mode rejection ratio (the ratio between the open loop gain and the 'fault' gain you get when you tie the + and - inputs together and use them as if they were just one input) is usually in this range also, but it is very difficult to organise any circuit layout which will allow gains much higher than 1000 to be achieved. The most common pinconfigurations for IC op-amps are shown in Fig. 2, and a typical circuit for a small signal AC voltage amplifier is shown in Fig. 3a.

The circuit will give a stage gain determined by the ratio $\left(R_{3}+R_{2}\right) / R_{2}$. For the resistor values shown this is 48 , and this circuit will have a frequency response at 1 V out


DUAL OP-AMPS (TL072 etc)

(BOTTOM VIEW)

(BOTTOM VIEW)

Fig. 2 Common op-amp pin connections.

# Problems and ICs often, as we all know, go together. John Linsley Hood takes a look at the two of them in audio. 

(RMS) - assuming a $\pm 15 \mathrm{~V}$ DC supply - which is substantially flat from 10 Hz to 30 kHz , the LF limit being set by the value chosen for C 1 (bigger = lower) and the HF end being determined by the characteristics of the IC itself, as a consequence of its internal HF compensation.

At $1 \vee R M S$ and 1 kHz , a typical distortion figure into a 2 k ohm load, would be about $0.02 \%$ and a $\mathrm{S} / \mathrm{N}$ ratio (assuming a low source impedance) of about 75 dB , when measured over the $10 \mathrm{~Hz}-30 \mathrm{kHz}$ bandwidth. Substituting one of the newer designs of IC intended for audio use, such as a TL071 or a LF351, would halve the noise, increase the bandwidth to about 300 kHz , and reduce the 1 kHz distortion to some $0.002 \%$. Such is progress!

Such a gain block, particularly when built using a TL071 or a LF351, both of which have high impedance FET inputs and very low noise characteristics, makes a very respectable hi-fi amplifier stage, in any application where a flat gain/frequency response is appropriate. To take advantage of the convenience of a single power supply rail, which facilitates joining IC circuity on to discrete transistor layouts, the circuit of 3 a can be rearranged as shown in Fig. 3b without any loss of performance. (To assist in comparing the layout of 3 b with that of 3a, I have retained some of the component numbering of 3 a in 3b.) Lower supply voltages diminish the available output swing and tend to worsen the THD (total harmonic distortion) at any given output, though this will only become conspicuous as the expected output signal level begins to get near the maximum available due to the DC supply provided.

Both of these op-amp gain stages compare favourably, both in terms of the cost of the components and in terms of performance, with the comparable separate transistor versions, the only major snag being the limit on the possible output voltage swing imposed by the ICs restricted HT supply capability. It is no use, therefore, to try to use an IC of this type if one wants a $100 \mathrm{VP-P}$ signal output.

As shown in Fig. 2, IC op-amps of this type are available in packages which contain up to four separate amplifiers on the same chip, usually with very little sacrifice in performance, and with only minimal signal breakthrough from one to another. In particular, the dual op-amp TLO72 and LF353 types have become very popular among audio circuit designers as a means of handling a pair of stereo signal channels in one device.

## Frequency Response Shaping

While quite a lot of audio signal handling can be done with stages with linear gain/frequency characteristics, it is very useful to be able to modify this frequency response. I have mentioned above, in the case of Fig. 3a, that the LF response was determined by the value of C1. This is because, in a feedback amplifier, the gain of the stage is really determined by the ratio of the impedances in the two limbs of the feedback network. So long as the impedances of any capacitors (or inductors) in these limbs can be ignored in comparison with the resistive elements, the gain will be independent of frequency. However, if the effects of these reactive components are significant within the audio band, this linearity of frequency response will be modified, and this gives the designer considerable scope.

In order to do this kind of design work properly; it is very desirable to be able to work with complex numbers (ie, those containing the so-called imaginary value $\mathbf{i}$ or $\mathbf{j}$, which is the square-root of -1 ). Doing the necessary


Fig. 3 Simple op-amp circuit. Note that in theory C1 should be unpolarised, in practice an electrolytic is used. (b) is the circuit arrangement for use with a single-rail power supply, in all other respects it is equivalent to (a).
calculations with this type of equation is not really at all difficult, once some simple rules have been memorised, and this allows one to work out quite precisely how a circuit containing capacitors and inductors will operate, and gives both the actual gain and the phase shift. However, it is very hard to find text books which give a simple explanation and I propose, later on in this series, to give a non-mathematician's brief guide.

However, for the moment it is sufficient to remember that the $-3 d B$ point (the frequency at which the gain is reduced to $71 \%$ of its flat response value) occurs in a stage such as that shown in 3 a when the impedance of the capacitor C 1 (given by $\mathrm{Z}_{\mathrm{C}}=1 /(2 \pi \mathrm{fC}$ ) ) is equal in value to R2. Where the impedance of $C 1$ is either very much less than R2 or very much greater than R2, the stage gain


Fig. 4 'Baxandall' type tone-control circuit.


Fig. 5 Compensated ceramic pick-up input amplifier.
calculations can be simplified to (R3 $+\mathrm{R} 2) / \mathrm{R} 2$ or $\left(R 3+Z_{c}\right) / Z_{c}$. If one draws a graph and smoothly joins these three points, one will get a near-correct idea of the true way the circuit will behave.


Fig. 6 Convēntional RIAA-equalised magnetic pick-up amplifier stage (gain $=\mathbf{1 0 0}$ at $\mathbf{1 k H z}$ ).


Fig. 7 Improved RIAA-equalised magnetic pick-up amplifier (stage gain = 100 at 1 kHz ).

Thus the circuit varies its response according to frequency, and this is entirely due to the presence of the reactive components (more usually capacitors than inductors). Very many practical and useful designs are made possible: some examples are Fig. 4 , which is a tone control circuit, and, as explained in the captions, Figs. 5, 6 and 7 which are pick-up amplifiers that accord with the RIAA specifications as shown in Fig. 9. The circuit arrangement shown in Fig. 7, in which the necessary double-step correction of the curve shown in Fig. 9, is done in two stages, is more accurate, particularly in respect of the sonically important transient performance, than the simpler, more commonly used arrangement of Fig. 6. The ceramic cartridge equalisation has a different requirement, since this is an amplitude - rather than velocity - sensitive device, and requires the type of replay curve shown in Fig. 10. 'Otherwise, when it is used with an adequately high input impedance to give a flat LF response, the reproduced sound is rather lacking in treble.

Combining bass cut and treble cut stages allows one to make local lift and local cut response circuits, such as those shown in Figs. 11a and 11b and whose performance is illustrated in Figs. 12a and 12b. Figs. 11a and $b$ are really both the same circuit, but with the 'shelf' frequencies moved sideways.

I have illustrated all these later circuits using op-amps


Fig. 8 Recording velocity charactoristics employed in RIAA pre-emphasis convention for 33 and 45 RPM discs.


Fig. 9 Required replay curve for magnetic (velocity sensitive) pick-up cartridges.


Fig. 10 Required replay curve for flat frequency-response output from ceramic (displacement sensitive) pick-up cartridges.
(a TL071 will work satisfactorily in all these). Let me confess that this was at least partly for convenience - it's much simpler (and easier to follow) if one can just show an amplifier as a triangle with three leads going to it. However, this also makes the point that circuit design (and circuit lay-out in the PCB) with op-amps is very much easier than with the equivalent discrete components (this is provided, of course, that the devices you are using have adequate performance in terms of output capability, distortion, noise, etc). But I still have the feeling that, for 'ultimate-fi', circuits using discrete components alone can be superior, if only because one can get the equivalent results with far fewer components (remember that a typical op-amp can contain the equivalent of 39 separate resistors, transistors, diodes, and capacitors, each with its own imperfections, all of them contributing to an accumulated total imperfection). Instinctively, I feel that the less one handles a hi-fi signal the better the end result.

Steeper cut circuits using two or more RC elements


Fig. 11 Combined bass and treble cut circuits.


Fig. 12 Response curves for the two circuits in Fig. 11.
can be built, and if these RC groups are included in the feedback network we are now building active filters. These are great fun, but working out just what is going to happen requires rather more tricky maths, and a few useful dodges. Again, this is a topic I will defer until later. So, while I certainly use ICs in my own designs, and I accept that I will do so even more in the future as they get better and more versatile, nevertheless I do not see them displacing the circuits built up with separate transistors and resistors yet awhile. On the other hand, if one is making something like a car radio to which hi-fi standards are not really appropriate, or an FM tuner where the discrete component circuitry would be very cumbersome, not to use ICs would be truly ostrich-like behaviour.

## Noise And Distortion - And Other Problems!

So far, I have largely pretended that we are living in an ideal world, where everything is as good as we would wish. Unfortunately, this isn't true, and the extent to which we will be successful in the field of audio design as in any other - will depend on our ability to recognise the possible existence of defects, and to shape our designs, both on paper and as hardware, to avoid them. The problem, of course, is that it just isn't possible to optimise everything simultaneously, so what one ends up with must be a working compromise in which one has tried to assess what are the most important problems likely to affect one's listening pleasure, and to make sure that these are adequately dealt with.

This is, incidentally, one of the areas in which the DIY designer has a great advantage over the person who simply goes along to his hi-fi shop and hands over a wodge of pound notes for the latest black and chrome creation. This is because the commercial hi-fi is built to provide a good specification/price ratio, which will get a good review in the buyers' guides and ensure healthy sales. Unfortunately, no one really knows what makes hi-fi equipment, such as amplifiers, tuners and recorders, sound well; so, in the absence of any firm knowledge, a series of specifications relating to bandwidth, signal-to-noise ratio, power output, distortion and channel separation, have arisen - and these are the specs for which the commercial manufacturers seek to get good values. Whether the final thing sounds well cannot be so easily specified, but there are some areas, and I will look at these later, where something which measures less well does indeed sound better. So, if one is doing ones own thing one can design for sound rather than specifications.

## Noise

If, in this term one includes all unwanted intrusions into the signal output, this consists of five main categories. These are: thermal noise, defective component noise,
radio breakthrough, impulse noise, and hum (from the AC mains power supply). There are also some other kinds of device noise with transistors (and ICs) which relate to the device operating conditions, and I have lumped these with thermal noise. I will leave this until last.
Hum: in any normal domestic environment, there is a possibility of the local (in the UK, 50 Hz ) AC mains field intruding into the circuitry, even when this is battery operated. The only answer, in this case, is full screening of the lot, and care in the layout of connecting wires. Diecast metal boxes, such as those made by Eddystone and ITT, provide ideal housings for low-level and high-gain circuitry. Where one is powering equipment from the mains anyway, these problems multiply. Here one must make sure that one does not earth the equipment separately in more than one place (the all too familiar earth loop problem), one must make sure that the mains transformer has an adequately low external AC magnetic field, and that it is sited as faraway as possible from low signal level areas. Also, one needs to remember that the currents flowing in the transformer secondary, rectifier, and reservoir capacitor loop have very high peak values and will produce quite significant voltages across even small wiring resistances. Take care, therefore, to take off the DC supply from across the reservoir capacitor, including your $O V$ return! A further important point to watch is that there is no incipient instability in the circuitry of any amplifier, in that this will make it very prone to a hard rasping hum sound - similar to that given by two different earthing points on the mains DC supply.
Impulse noise: this has a lot in common with radio breakthrough, and is that annoying problem of clicks and bangs when other mains operated equipment in the same locality, lamps, fridges, central heating equipment, and so on, is switched on and off. This can be caused, partly, by the same things as radio breakthrough (see below), but is particularly exaggerated by incipient instability and unnecessarily wide gain bandwidth. If one had a moving coil head amp feeding the PU input, and if the head amp had a 10 MHz bandwidth, one would expect impulse noise problems. Thorough screening will also help here.
Radio breakthrough: for those who suffer from it, this is one of the most infuriating of problems - worse even than noisy neighbours. There is, unfortunately, no universal answer. In general, the problem arises because the various connecting leads act as aerials feeding signals into the amplifier, which are then rectified by slightly less than perfect plug-socket connections, transistors or IC semiconductors, or even by poor soldered joints. Decoupling those earth returns which are not directly connected to the chassis, via a non-inductive (eg, ceramic disc) capacitor will help, as will the connection of judicious 100 to 1000 pF ceramic capacitors between input transistor emitters and bases. Also, putting a few ferrite beads on likely live-side input leads can help. Alas, the trick which works in one case may be useless in another, so this requires a lot of experimentation, and not a little luck.
Defective component noise: in my early days as an electronics enthusiast, resistors which crackled, capacitors which spluttered, sizzled, and hissed, and valves which rang like a bell when one tapped them, were just part of life - and one tried, by réplacement, to end up eventually with a good set, until yet another component 'went noisy'. Happily, things have changed for the better, and nowadays defective components are relatively rare, at least at normal signal levels, where an electrolytic capacitor installed with reversed polarity is likely to be the major noise culprit.

However, at low signal levels, such as at the phono in-1 put to an audio amp, this isn't so reliably the case, and
while proper selection of components for the application will help, for very low level use there is no real substitute for individual testing to guarantee good performance. Remember also that most electronic components don't like heat, so if one has had to spend a lot of time with the soldering iron bit close to the component in question perhaps in taking it out of a PCB and in reinstalling it - it may not be as good afterwards as it was to begin with. Thermal noise: this is the result of the random motions of electrons - the basic carrying elements - as a consequence of their being excited by heat. This noise component increases with absolute temperature ( ${ }^{\circ} \mathrm{K}=273+{ }^{\circ} \mathrm{C}$ ), and with the amount of resistance in the circuit. The formula for calculating this is

$$
V=\sqrt{4 k \cdot T \cdot d f \cdot R}
$$

where $V$ is the mean $A C$ output voltage, $k$ is Boltzmanns constant ( $1.38 \times 10^{-23}$ ), T is the absolute temperature ( ${ }^{\circ}$ Kelvin), dF is the measurement bandwidth and R is the circuit resistance. It follows from this, immediately, that the larger the amount of resistance in the circuit (other things being equal) the worse the noise. A graph showing this relationship is given in Fig. 13.


Fig. 13 Resistor thermal noise at $20^{\circ} \mathrm{C}$.
Other sources of noise, related to circuit resistance, occur in junciton and other transistors. These are those due to what is known as base spreading resistance (which decreases as the chip size and dopant concentration increase), and shot noise, which is a statistical problem and decreases, within limits, as the ratio of the total emitter current to the fundamental electronic current lumps, the electrons, increases. There is also modulation or I/f noise, which is proportional to the current and inversely proportional to frequency: this is very much depedent on the device used. Finally, there is reverse leakage noise, which worsens as the collector (or drain in the case of an FET) voltage increases.

To summarise this, the lowest noise in a transistor stage will be given by an optimally chosen device (in respect to type and performance), operated at the collector current which is best suited to its base and emitter circuit resistance and its chip size, at the lowest sensible temperature and operating voltage, and the lowest input impedance. Since all of the noise sources are bandwidth dependent, those which arise before a bandwidth limiting filter, such as an RIAA equalising stage, are less obstrusive than those which occur after this - other things being equal. Also, those noise sources which are inductive in character, such as a magnetic pick-up on the input to a preamplifier, have an impedance which increases with frequency, and will therefore give a worse noise level since the ear sensitivity increases with frequency up to a few kHz - than a simple calculation based on its $D C$ resistance would suggest.


- Do you know what addressing modes are possible on the 6809 CPU?


## - What is the pin-out on the $\mathbf{Z 8 4 2 0}$ PIO?

- Do you know the address of Texas Instruments' UK office?
- Which of the chip select inputs on the 6810 static RAM are active high?
- What is the standby mode dissipation of the 2716 EPROM?

The answers to these and many other questions are to be found in Autumn copy of Electronics Digest, Microprocessor Data For Experimenters, out now.

## pantechnio

THE POWERFET SPECIALISTS

## OEM USERS

Pantechnic present the most adaptable high powered amplifier ever.

## FETSYSTEM AMP

Features:

- HIGH POWER. 1.2KW (single ended).
- LOW VOLUME. 1/15 Cubic foot inc. Heat Sink.
- VERSATILE. Delivers more than 1 KW into $1 / 2$ to 8 ohms.

OR $2 \times 600 \mathrm{~W}$ into 2 to $8 \Omega$
OR $4 \times 300 \mathrm{~W}$ into 2 to $4 \Omega$ ( 200 W into $\Omega$ )
( $1 \times 600 \mathrm{~W}$ into 2 to $8 \Omega$
OR $\left\{\begin{array}{l}1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc. Etc.
Having been closely involved in a wide variety of OEM applications of their amp boards, Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatskink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 KW of power in a space of $102 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heat sinks, heat transfer to the environment is greatly enhanced.
The flexibility of the 1.2 KW amp stems from its division into 4 potentially separate amplifiers of 300 W each (downrateable with cost savings to 150 W .) These can be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented.
As ever Pantechnic offer a full range of customising options including DC coupling, ultra high slew etc. Contact Phil Rimmer on 01-800 6667 with your particular application problem.
P.S. Specs, as ever, are exemplary.

| Model | OTHER Price | OWE <br> Range <br> (Rme) | AMPLIFI <br> Dyn-loads | MODULES Notes |
| :---: | :---: | :---: | :---: | :---: |
| *PFA100 | 20.65 | 50-150W | $4 \Omega, 8 \Omega$ | Physically small ( $32 \times 78$ 108 mm ) |
| *PFA200 | 27.35 | 100-300W | $4 \mathrm{n}, 8 \mathrm{~m}$ | High watts/¢ ratio |
| HV | 36.04 | 200-300W | 4.8n, $16 n$ | 5d日 dynamic headroom Orives 70 V line direct. |
| *PFA500 | $42.00$ | 250-600W | $2 \Omega, 4 \Omega, 8$ | 25A cont. output current |

*The power output of these amplifiers can be increased by approx $15 \%$ with no diminution in quality by adding PSU102 ( $£ 7.61$ ) to your existing power supply.

## Some Other Products \& Components

Type 74 Heat Exchanger. Dissipates 300 W (1.2KW fan cooled) £7.50
25A 400PIV Bridge Rect. £2.17
10,000 uF 80v electrolytic with clip $£ 4.75$
PAN20 Pre-amplifier module. Very low noise and distortion £7.61
PAX2/24 2 Way active crossover (specify frequency) $£ 10.10$
PSU103 Powers $2 \times$ PAN20 $+2 \times$ PAX2/24 £6.91
PAN1 397 20W power amp. (LOW THD) £5.04
PSU101 Powers $2 \times$ PAN1397 £3.43
Transformer for above $£ 4.30$ (inc. postage)
TOROIDAL TRANSFORMERS
with special low flux windings

| Nom. VAC | 160VA | 225VA | 300 VA | 500 VA | 625 VA | 750 VA |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $40-0-40$ | 10.43 | 12.00 | 13.04 | - | - |  |
| $45-0-45$ | - | 12.00 | 13.04 | 18.98 | - | - |
| $50-0-50$ | - | - | - | 16.96 | 10.84 | 22.00 |
| $70-0-70$ | - | - | - | 16.98 | - | - |

70-0-70
(for PFA/HV)
(tor PFA/HV) Transformer prices include postage. Ask for leaflet "Choosing a Transformer." Carriage 75 p. Add VAT at $15 \%$ to all prices.

## THE POWERFET SPECIALISTS 

Dept ETI/no 148 Quarry Street, Liverpool L. 25 6HQ Telephone: 057.4288485 Technical enquiries Phil Rimmer 018006667

sibunile

DIGITAL ULTRASONIC DETECTOR US 5063

3 levels of discrimination against false alarms

- Crystal control for greater stability - Adjustable range up to 25 ft .
- Built-in delays

This advanced new module $\mu$ ses digital signal processing to provide the highest level of sensitivity whilst discriminating againstpotential false alarm conditions. The module has a builtinexitdelayand timedalarmperiod, together with outstanding features. This advanced new module is available at
only $\mathrm{f} 13.95+$ V.A.T.
ULTRASONIC MODULE
US 4012


- Adjustable range from 5-25ft.

This popular low cost ultrasonic detector is already used inawide range of applications from intruder detectors to automatic light switches and door opening equipment. featuring 2 LED indicators for ease of setting up, the unit $\mathbf{1 1 0 . 9 5}+$ V.A.T.
INFRA-RED SYSTEM
IR 1470


Consisting of separate transmitter and receiver both of which arehoused in attractive moulded cases. the system provides on invisible modulated beam over distances of up to 50ft, Intended for use in security systems, but also deal for photographic and measurement applications, the systemis available at
only $£ 25.61$ + V.A.T.

## POWER SUPPLY \& RELAY UNIT

 PS 4012Provides stabilised 12 V output at 85 mA and contains a relay with 3 amp contacts. The unit is esigned tooperate withupto 2 ultrasonicunits
or 1 infra-red unit IR 1470 . Price $4.25+$ V.A.T.

## SIREN MODULE SL 157

Produces aloud penetrating sliding tone which. when coupled to a suitable horn speaker, produces S.P.L.'s of 110 dbs at 2 metres.
Operating from 9 - 15 V , the module contains an Operating rom
inhibit facility for use in thodule contains an
to activate circuits. Price 12.95 + V.A.T.

## 512" HORN SPEAKER HS 588

This weather-proof horn speaker provides extremely high sound pressure levels (110dbs
at 2 metres) when used with the CA 1250. PS 1865 or SL 157 . Price $[4.95$ + V.A.T.

## 3-POS. KEY SWITCH 3901

Single pote, 3-pos. key switch intended for use with the CA 1250 . Price $E 3.43$ + V.A.T.

All modules are supplied with comprehensive instructions.
Units on demonstration.
Shop hours 9.00-5.30 p.m.
Wed. 9.00-1.00 p.m.
SAE with all enquiries.

Add 15\% VAT to all prices.
Add 50 p post $\&$ packing to all orders.
Order by telephone or post
using
your credit card.

## ALARM CONTROL UNIT

 CA 1250

The heart of any alarm system is the control unit. The CA 1250 offers every possible feature that $s$ likely to be required when constructing a installation, or simply controlling a single magnetic switch on the front door.

- Built-inelectronic sirendrives 2 loud speakers - Provides exit and entrance delays together with fixed alarm time
- Battery back-up with trickle charging facility Operates with magnetic switches, pressure pads. ultrasonic or I.R. units
- Anti-tamper and panic facilit
- Stabilised output voltage
- 2 operating modes - full alarm/anti-tamper and panic facility
- Screw connections for ease of installation Separate relay contacts for switching external
- Test loop facility

Price £19.95 + V.A.T.
SIREN \& POWER SUPPLY MODULE


HARDWARE KIT
HW 1250
only
f 9.50

+ V.A.T.
This attractive case is designed to ho control unit CA 1250 , together with the control unit CA 1250, together with the appropitiatith ind ine inssary mounting pillars and punched front panel, the unit is given a professional appearance by an adhesive silk screened label.
HARDWARE KIT
HW 5063
only
£9.95


This hardware kit provides the necessary enclosure for a complete self-contained alarm system which includes the US 5063 , PS 1865, loud speaker type 305 and key switch 3200. Attractively styled, the unit when completed installation problems.
ULTRASONIC MODULE ENCLOSURE


## only

+ V.A.T.
Suitable metal enclosure for housing anindividua ultrasonic module type US 5063 or US 4012. Supplied with the necessary mounting pillars and screwsetc. For US 5063 order SC 5063; for US 4012 order SC 4012


## RISCOMP LIMITED

Dept.ETI 15
21 Duke Street
Princes Risborough
Bucks. HP17 0AT
Princes Risborogh (084 44) 6326

# $\mathbf{N}$ ew cats for old 

SEND US THE COVER FROM ANOTHER COMPONENT SUPPLIERS CURRENT CATALOGUE, PLUS A 40p STAMP, AND WE'LL SEND YOU A FREE COPY OF THE LATEST (SUMMER) AMBIT CONCISE COMPONENT CATALOGUE. ALTERNATIVELY YOU CAN SIMPLY BUY A COPY FROM YOUR NEWSAGENT - OR SEND 80p TO THE ADDRESS BELOW.......

## CIMDIE INTERNATIONAL

## * 144 PAGES;3E1 DISCOUNT VOUCHERS

$\star$ MANY PRICE REDUCTIONS:PRICE ONTHEPAGE


## (-) $\frac{9}{\text { INTERNATIONAL }}$

200 North Service Road Brentwood
Essex
CM14 4SG

Telephone 0277-230909
Telex 995194 AMBIT G Data 0277-232628 REWTEL ) 300 BAUD DUPLEX

# MACHINE CODE PROGRAMMING 

> Machine code programming has two uses: firstly, as a way of getting your (normally BASIC-loving) microcomputer to go faster; and secondly, it's the only way to get a 'naked' microprocessor to do what you want. This latter use is what will primarily interest ETI readers. However, it's pretty difficult to learn on a bare micro, so in this short series, Bob Bennett will be showing us how it's done on a home computer, with some comments on using a microprocessor in the raw.

The best way to learn to programme using machine code is to have a go, after all, that was how you learned to programme in BASIC. But then, BASIC does bear some resemblance to everyday English, and machine code looks like . . . well . . . code, so how is it done? To answer that you need to have an insight into what is happening inside the computer - not a lot, just enough to make machine code programming clearer. In this magazine, starting in August of 1982, Owen Bishop wrote an excellent series on designing micro systems, and explained how all the pieces are put together to make a computer. I'll start with a short recap of some of the points relevant to machine code programming.

## Deep In The Heart (of Texas?)

At the heart of any computer is a processor, and in most home computers it is a single chip. The Jupiter, Lynx, Spectrum and many others use a Z80 type, whilst the processor in the BBC, Vic 20, Apple, etc, is a type 6502 . Each processor has its own instruction set, which is a repertoire of instructions the processor will obey, and each processor has a


Fig. 1 layout of a minimal computer.
register set ${ }_{4}$ most of which can be used directly by the programmer. It is by the judicious use of the instruction set that the programmer manipulates the data in the registers to execute, in a controlled sequence, the various effects which constitute the desired aim of the overall programme.

CPUs differ quite a lot in both the sizes of their instruction repertoirs and in the number of registers that they contain. We'll be looking at registers in a moment.

The two more common types of memory used in home computers are random access memory (RAM), and read only memory (ROM). Fundamentally they appear the same in general makeup, inasmuch as they both have a number of locations (called addresses) where data can be placed, but in ROM that data is sealed in and cannot be altered, hence read only. It is in the ROM where the designer has put the routines to control all the effects I mentioned earlier, such goodies as PRINT, PLOT, SCROLL, etc, in fact everything your computer can do. RAM is where the machine code programmer (that's you!) places the instructions (program) which the processor hopefully will obey. The designation random is a bit of a misnomer: there is nothing random in the way the memory is accessed, at least, not (we hope) in a computer!

## Bits And Pieces

So what's the connection between RAM, ROM, registers and the processor? The answer is a bus. Not the number 8 to the office, but another name for a connecting wire, or, as is more usual in a computer, a group of wires (or tracks on a PCB). These wires carry information in the form of electrical signals, and it is the level of the voltages present on the bus which conveys the meaning of the signals. An acceptable high level can be taken to mean a 1 , and an acceptable low level can signify a 0 , which leads us to use binary notation on computing (convenient isn't it?).

If there are $n$ wires making up a bus, then the total information on the bus can be represented as $2^{n}$. Most home computers have eight-bit registers (where bit is a contraction of Binary digIT), so the highest number this register can hold is $2^{8}-1$ which is 255 if all the bits are 1s. These eight bits are known as a byte.

255 is not a very high number to play around with so it
is arranged that registers can be used in pairs, but only in certain combinations. This combination broadens our horizons somewhat because we can now use numbers up to $2^{16}$ which is equal to 65,536 decimal. The normal way to present data is one byte at a time, so our data bus usually has only eight wires. However, because we need a lot of memory, we use 16 wires on the address bus which allows up to 65,536 addresses, or locations to be used. This is known as 16 K or 16 Kilobytes because it gets tedious writing

## CONVERSIONS

## CONVERSION OF HEXADECIMAL TO DECIMAL

A single hexadecimal register holds up to 256, and, as we do when counting in tens, we split this into a 161 figure and a $160^{\circ}$ figure (as in tens and units). A register pair would hold figures for $16^{\mathbf{3}}, \mathbf{1 6}^{\mathbf{2}}, 1 \mathbf{1 6}^{1}$ and $16^{\circ}$.

| hex | $16^{3}$ | $16^{2}$ | $16^{\prime}$ | $\mathbf{1 6}^{0}$ |
| :---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 4096 | 256 | 16 | 1 |
| 2 | 8192 | 512 | 32 | 2 |
| 3 | 12288 | 768 | 48 | 3 |
| 4 | 16384 | 1024 | 64 | 4 |
| 5 | 20480 | 1280 | 80 | 5 |
| 6 | 24576 | 1536 | 96 | 6 |
| 7 | 28672 | 1792 | 112 | 7 |
| 8 | 32768 | 2048 | 128 | 8 |
| 9 | 36864 | 2304 | 144 | 9 |
| A | 40960 | 2560 | 160 | 10 |
| B | 45056 | 2716 | 176 | 11 |
| C | 49152 | 3072 | 192 | 12 |
| D | 53248 | 3328 | 208 | 13 |
| E | 57344 | 3584 | 224 | 14 |
| F | 61440 | 3840 | 240 | 15 |

Using the table: decimal 15 in a register pair $=000 \mathrm{~F}$ whereas 240
decimal in a single register would $=$ Fo.
A 0 BO hex $=40960+176=41136$ decimal
FEDC hex $=61440+3854+208+12=65514$
CONVERSION OF DECIMAL TO BINARY OR HEXADECIMAL
Conversion can be achieved in two ways, successive division or by spotting powers of two. Let's look at an example:
To convert 365 into binary by successive division goes as follows:
365 divided by 2 is 182 remainder 1
182 divided by 2 is 91 remainder 0
91 divided by 2 is 45 remainder 1
45 divided by 2 is 22 remainder 1
22 divided by 2 is 11 remainder 0
11 divided by 2 is 5 remainder 1
5 divided by 2 is 2 remainder 1
2 divided by 2 is 1 remainder 0
1 divided by 2 is 0 remainder 1
all successive divisions by 2 will yield the result 0 and the remainder 0.

The very first remainded we obtained the value of $2^{2}$, the next is $2^{1}$, the next is $2^{2}$, etc
So the binary for 365 is 000101101101 and the hex is 01 6D.
Spotting the powers of two would work as follows:
365 is over $256\left(2^{8}\right)$ but under $512\left(2^{9}\right)$ so the binary bit corresponding to $2^{8}$ is 1
$365-256=109$
109 is less than 128 , so the bit for $2^{7}$ is 0
109 is greated than 64 so the bit for $2^{6}$ is 1
$109-64=45$
45 is greater than 32 so the bit for $2^{5}$ is 1
$45-32=13$
13 is less than 16, so the bit for $2^{4}$ is 0
13 is greater than 8 so the bit for $2^{3}$ is 1
$13-8=5$
5 is greater than 4 so the bit for $2^{2}$ is 1
$5-4=1$
1 is less than 2 so the bit for $2^{1}$ is 0
1 is equal to 1 so the bit for $2^{\circ}$
We follow this through in the same way as before.

$\overline{255}$ TOTAL DECIMAL
Fig. 2 The make-up of an eight-bit register.
out complicated binary numbers in decimal all the time. AK is $2^{10}$, and this is equal to 1024 - it's the nearest convenient binary number to 1000 , but note that a capital $K$ is used to distinguish it from the decimal $k(=1000)$. We just have to hope that the context is such that any numbers are obviously not absolute temperatures (ie in degrees Kelvin or K)!

When you see advertisements extolling the virtues of home computers you will probably notice something along the lines of " 16 K ROM and 16 K RAM". You will know that the ROM is for the routines that the designers have built into the machine. The start of the ROM area is usually (but not always!) address 0 , so in the example given, it will extend up to address $16 \times 1024-1$, ie 16383 (the -1 is because we've started counting at 0 rather than 1 as is usual outside computers - think of a street with 16 houses, if the first is numbered 0 , the last will be number 15).

Unfortunately, this doesn't leave the RAM entirely free for the user to place all his or her programs, data, etc, because the computer needs some space to use for its own internal housekeeping (it stores what are known as the systems variables). It is very important not to over-write or corrupt the areas that the computer needs for this purpose - doing so is a very effective way of bringing your micro to its knees (or whatever the micro equivalent of a knee is). However, even in the most modest of systems, there will be more than enough space left for a decent machine code program.

## Do You Do Voodoo?

If you are a student of the occult you may have come across the word hex before (I believe it has something to do with casting a spell), but in computing circles it is a word that machine code buffs drop all over the place. Actually it is short for hexadecimal, where hexa is from the Greek pertaining to six, and decimal of course is all about tens, so putting them both together means we are counting using the base 16. Some people may believe that this is the Martian base for counting because they have sixteen fingers! Starting at zero (written as O ) we count up to 9 and then we go from $A$ to $F$ where $A=10$ decimal and $F=15$ decimal.

Note that we would write down 10 decimal as OA hex (or OAH), and 15 decimal is OF hex (or OFH): you must get used to the idea of writing hexadecimal numbers as two characters; for example, $F$ on its own is meaningless whereas OF equals 15 decimal, and FO equals 240 decimal. FF hex equals 255 decimal which, if you remember, is the maximum that a register can hold, and also the number that eight bits would represent if they were all 1 s which in turn represents one byte (see how it all fits in?), so two hex characters equal one byte. All this means that it is possible to write a machine code program in either binary, decimal or hexadecimal and still get the same result, but I think that you can discount using binary because it's far too cumber-
some (although a knowledge of the binary system is essential for some applications as you will see).

To sum up so far: a machine code program is written to (or placed in) addresses in RAM one byte at a time, some bytes representing instructions, and some representing data. Registers, either singly or in pairs, are used to manipulate the instructions and data, and the processor sorts out all that little lot. According to the information in the programme, different routines in ROM are called into use to give different effects. This is a very simplified explanation, but essentially correct, and although I have only been talking about typical home computers, very much the same sort of process happens in larger computers, only on a much grander scale.


Fig. 3 The $\mathbf{Z 8 0}$ register set. Note that there is also an alternate set of registers $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathrm{D}, \mathbf{E}, \mathbf{F}, \mathbf{H}, \mathrm{L}$, usually referred to as $\mathbf{A}^{\prime}, \mathbf{B}^{\prime}$, etc.

I mentioned earlier that I would discuss registers in greater detail, so here we go. Using the Z80 set as a model (Fig. 3), the A register is historically called the accumulator because it was used to accumulate the results of computations. It is still a hard worked register, and there are certain operations that can only be carried out using the A register, but more of that later. The F register is the flags register alias the status register. This is so important to machine code programming that it warrants a section to itself. The $B, C, D, E, H$, and $L$ registers are general purpose registers which are not found in a lot of CPUs.

When an input device requires the attention of the CPU it sends out a signal called an interrupt. What happens then depends on the CPU type, but usually an indicator signals the fact that an interrupt has occurred, and then the interrupt routine is entered. The $Z 80$ has a rather unique way of dealing with an interrupt, however. Once an interrupt has been acknolwedged, the decive puts the low byte of an address onto the data bus. The high part of the address is in the I register, the two parts forming the address of a routine to handle the interrupt.

The $R$ register is a simple counter ( 0 to 255 ) which is used to periodicaly refresh memory cells in RAM in order not to lose the contents. When a GOSUB is used in BASIC the computer uses a portion of RAM as a stack to store the address of the next instruction to be executed after meeting a RETURN. The stack is also used when pushing and popping (more later) to keep tabs on the addresses. It seems quite logical therefore to have a stack pointer to hold the address of the last item to be put onto the stack, this is the SP pair. The last registers in this set are the two used as a program counter (PC), the PC holds the address of the current instruction.

I have saved the two sets of register pairs IX and IY until now because not many CPUs have these sets. They are used
for indexed addressing which, very simply, is this, using IX .as an example. The IX pair are made to hold the address of a table, where information relating to your program has been stored, this is known as the base address. When required the IX pair will meet instructions pertaining to their role in the program. These instructions are in two parts, the first part is a number, which is added to, or subtracted from the base address. This will point to an address in the table. The second part is an instruction relating to what will happen at that address, and this may, or may not influence what happens next in your program.


Fig. 4 The flags available in register $F$.

## A Bit Of Flag Waving

As well as the general purpose registers, each processor will have a flag, or status register. These are constructed in exactly the same way as any other register, but the bits are used as indicators, or flags, to signal whether or not certain conditions have been met. The convention is that when a bit is set it is 1 , and when reset, it is 0 ; when the condition has been met the flag is set, and reset otherwise.

Every micro I know of has a zero flag of some sort one that is set when the contents of a particular register are zero. As an example, let's look at what is involved in the execution of a FOR-NEXT loop; something like this will be taking place: load a register with $n$ (the loop count); do the task contained in the loop; decrement the count ( $n=n-1$ ); test the flag to see if the register is zero. If it is not, then go back and do the task again; if it is, go on to the next task. Note that both conditions of the flag can apply, and we program the computer to do one thing if the flag is set, another if it isn't.

The more usual flags are zero, parity/overflow, sign; carry, half-carry, substract, and others may be interrupt, decimal and break. Whatever flags your processor uses, get to know them along with the instruction set. Any good computer handbook should give the instruction set, and any good library will have a computer section with a good selection of books on micros.

Other registers will include the stack pointer (SP), which may be a pair or a single register, which is used as a pointer to the stack area of memory. Index registers may come singly or in pairs, and are usually designated $X$ and $Y$ singly, and prefixed with I in pairs. As their name implies, these are used for indexing along tables of data. If you remember, a program is stored in a number of addresses, so a program counter ( PC ) is used as a pointer to these addresses. One last register: dynamic RAM will need refreshing (electrically) every now and again so that information isn't lost, so there is a refresh register (they think of everything). This list isn't exhaustive and don't worry if it isn't all completely clear what's going on. However, I hope that your appetite is whetted enough to probe further into your computer.


Please Send By Return (allow 28 days for delivery)

| QTY | REF | DESCRIPTION | PRICE |
| :--- | :--- | :--- | :--- | TOTAL

Please Send Fuil Hobbyboard Mail Order Catalogue with full range of PCB materials \& Hardware

Name
$\qquad$
$\square$ a division of KELAN ENGIMEERIMG Ltd Hookstone Park Harrogate, M. Yorts

> complete P.C.B. workshop

ET1/10/83

## THE 1984 GREENWELD CATALOGUE

Now in the course of production, the 1984 GREENWELD catalogue will be published in November. It's Bigger, Brighter, Better, more components than ever before. With each copy there's discount vouchers, Bargain List, Wholesale Discount List. Bulk Buyers List, Order Form and Reply Paid Envelope. All for just £1.00! Order now for early delivery!


## MOTORIZED GEARBOX

These units are used in a computerized tank, and offer the experimenter in robotics the opportunity to buy the electro-mechanical parts required in building remote controlled vehicles. The unit has $2 \times 3 \mathrm{~V}$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rom Data is supplied with the unit showing various options on driving the motors etc. Suitable wheels also available: details in next ad.
Motorized gearbox price £5.95

## COMPUTER GAMES

2001 Can you tollow the fiashing light pulsating tone sequence of this famous game? Supplied asa fully working PCB with speaker (no case) plus full instructions. Oniy E4.95
za02 Probably the most popular electronic game on the markel - based on the old rashioned penci and paper battleship brought it bang up to datel We supply ready built PCB containing 76477 sound effect chip, TMS 1000 micro-processor chlp, R's, C's etc. Offered for its component value only (board may be carcked or chipped), it's only $\mathbf{2 1 . 9 5 \text { . Instructions and }}$ circuit, 30p.


TREAT YOURSELF TO A NICE NEW DIGITAL MULTIMETERI!
KDS5C A DVM for the professional - this $31 / 2$ digit multitester has overload protecton, tow battery and over range indication. Full auto-polarity operation.
AC Volts: $0.2-700$
DC Votts: 0.2-1000
AC. Current 200uA-10A
DC Current: 200uA-10A
Resistance: 200R-200M
Total 28 ranges for iust £44.95
ALL PRICES INCLUDE VAT: JUST ADD 60p P\&P

# SUPPLY PROTECTOR <br>  <br> Does that flickering of the house lights all too often indicate that your ZX has just had its memory corrupted? Here's a very simple remedy, designed by Phil Walker. 

Designed primarily with the ZX81 home computer in mind but applicable to many others, this project aims to protect the program that you've just spent three hours correcting from short term mains failure or accidental supply disconnection. The sort of thing we mean is the temporary (or worse) dimming of the lights caused by lightning strikes on the grid lines or load switching at a sub-station. These effects usually only last a few tenths of a second but can cause your computer to forget itself and delete your program - resulting in instant frustration!

The solution is embodied in this project. What is needed is that the computer should be rapidly switched over to a standby battery. This need only be able to supply the current drawn for a few minutes until the normal supply is restored. The ETI Zippy does this and also sounds an alarm to tell you that something is wrong

## The Circuit

The main part of the circuit consists of B1, D1 and IC1. B1 is a Nickel-Cadmium rechargeable battery with a capacity of 110 mAh at a voltage of around 8.4 volts. This means that when fully charged it should be able to supply a $\mathbf{Z X 8 1}$ for at least 6 minutes - longer if you do not have many extras plugged in. This will even give you time to save your program on tape (provided you have a battery powered tape recorder). D1 effects the switch-over from normal supply to Zippy's internal battery while IC1 recharges the battery while the mains is available. The rest of the circuit provides the audible warning signal from the piezo-electric sounder when the normal supply voltage drops too low.

It is probably a good idea to


Fig. 1 Circuit diagram of Zippy

## HOW IT WORKS

> B1 is the main energy store with a capacity of 110 mAh and a terminal voltage of 8.4 volts. IC1 is a constant current device whose operating current is set at about 0.6 mA by R . This level of current can be sent through the battery constantly with little degradation of performance and will keep it ready for use.
> D1 blocks current flow from the power pack to the battery but will allow current to flow from the battery on to the supply lines if the power pack voltage drops below about 7.7 volts. This ensures that the supply lines never drop below this level. The internal regulator in a ZX81 needs about 6.5 to 7 volts minimum at its input pin to keep it working correctly.
> While the input voltage from the power pack is more than a volt or so greater than the battery voltage, Q1 will be turned on by current flowing through R3. This will keep C1 discharged. This
will cause the outputs of IC2a and IC2c to stay high and IC2b and IC2d to stay low.
If the input voltage falls below this level, Q1 will turn off and allow C1 to be changed via R4 until it reaches the switching threshold of IC2a. The output of IC2a will now go low and C1 will be discharged via $\mathbf{R}_{4}$ until it reaches the lower switching threshold of IC2a whereupon IC2a output will go high again to repeat the cycle. While IC2a output is low the output of IC2b will be high. This enables a similar oscillator configured around IC2c. The frequency of IC2a oscillator is of the order of $2 \mathbf{~ H z}$ while that of IC2c is around 2 kHz ; the resulting output from IC2c is bursts of 2 kHz which when applied to the piezo sounder make a slow bleep-bleep noise. IC2d is used to invert the output from IC2c and increase the signal voltage applied to the sounder.
charge the battery periodically so that you don't get caught out.

## Construction

The project can be built into a small plastic box of the type made by Bicc-Vero (see Buylines). It is a tight fit in the one specificed so some care must be taken when
siting the switch and input socket. The PCB is designed to fit along one side of the box with the battery along the other. Don't forget to cut the corners off the PCB where marked.

Assembly of the PCB is straightforward but care should be taken when fitting the diodes,


Fig. 2 Component overlay for the PCB
transistor and ICs that they are the right way round. Connect all the lead-out wires except those to the sounder before assembling the complete unit.

In our unit, the sounder was glued to the outside of the case and the wires taken inside through a small hole. Holes should also be cut for the switch, input socket and output wire. Make sure everything will fit before deciding where these holes will be.

For a ZX81, the input connector is a 3.5 mm jack socket and the output wire is terminated in a matching plug (after assembly), but for your system these can be as required. Beware . . . not all power
supplies have the centre conductor positive, so check this before wiring up.

When everything is ready, put the PCB, switch and input socket in the case, thread the output lead out through the hole provided for it (you did cut one, didn't you?) fit a grommet if you want it to look nice, and wire up the sounder and other components as neatly as possible. Do not have the battery connected while you do this, as it has a very low impedance and can discharge with some violence. The PCB can be fastened in with a bit of sticky tape if you want but it cannot move about much in the limited space available.

PARTS LIST


## BUYLINES

There should be no problems in obtaining any of the components.

## THE <br> VICTORY ORGAN

* Exciting range of authentic voices
* Preset sounds-Piano, Harpsichord, Hawaiian Guitar (with glide), Banjo (with repeat), Accordion
* 16 modern rhythms with superb sounds including handclap
* Full range of 'Easi-Play' features $\star$ Custom Programmed ROM
* Walking Bass on Lower Manual and Pedals
* Real wood veneer cabinet with American walnut finish
* The only organ with update facilities for synthesizer and
"add-a-chord" unit
* Starter kit from $\mathbf{E 9 8} .80$ + VAT
* Full kit $\mathbf{~} 280.54$ + VAT Carriage extra on kits


Send for a demonstration tape today only $£ 1.95$ inclusive. Hear the difference yourself.
Full details \& specification on request

## LEIGHTON ELECTRONIC SERVICES

17 BRIDGE STREET, LEIGHTON BUZZARD; BEDFORDSHIRE LU7 7AH
TELEPHONE (0525) 382504

# MASHMR BHFGHIONICS NOW! The Rrachicar way! 

## YOUR CAREER.YOUR FUTURE.YOUR OWNBUSINESS.YOUR HOBBY THIS IS THE AGE - OF ELECTRONICS! the world's fastest growth industry...

There is a world wide demand for designers engineers and for men to service and maintain all the electronic equipment on thie market today -. industrial .- commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - expecially if you know the basic essentials of the subject. A few hours a week for less than a year - and the knowledge will be yours. . .
We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable Our new style course will enabie of electronics by a modern, practical and visual method. No previous
knowledge is required, no maths, and an absolute minumum of theory. You tearn by the practical way in easv steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a self.
emploved servicing engineer.
Ail the training can be carried out in the comfort of vour own home and at your own pace. A tutor is available to your own pace. A tutor is avaliable to
whom you can write personally at any whom vou can write personally at any
time for advice or hetp during your time, for advice or he'p during your
work. A Certificate is given at the end wor. A Certifi
of every course

You will do the following:
Q Buitd a modern mscilioscope

- Recognise and handle current electronic components
- Read, draw ana unde stand circuit diagram
- Carry out 40 experiments on basic eiectronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electionic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi, VCR and microprocessor computer equipment.



## CACC Bütish Netional Badio \& Flectronics School Reading,Berks.RGI 1BR




Over the last few years we have received feedback via the general public and industry that our products are from Taiwan, Singapore, Japan, etc... ILP are one of the few 'All British' electronics Companies manufacturing their own products in the United Kingdom. We have proved that we can compete in the world market during the past 12 years and currently export in excess of $60 \%$ of our production to over twenty different countries - including USA, Australia and Hong Kong. At the same time we are able to invest in research and development for the future, assuring security for the personnel, directly and indirectly, employed within the UK. We feel very proud of all this and hope you can reap some of our success.
I.L.Potts - Chairman


Protection: Full load line, Slew Rate: $15 \mathrm{v} / \mu \mathrm{s}$. Risetime: $5 \mu \mathrm{~s}$. S/N ratio: 100db.
Frequency response ( -3 dB ) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitivity: 500 mV rms.
Input Impedance: $100 \mathrm{~K} \Omega$. Damping factor: $100 \mathrm{~Hz}>400$.
PRE.AMP SYSTEMS

| Modula Number | Module | Functiom | Curront Required | Price inc. VAT |
| :---: | :---: | :---: | :---: | :---: |
| HY6 | Mono pre amp | Mic/Mag. Cartridge/Tuner/Tape/ Aux + Vol/Bass/Treble | 10 mA | £7.60 |
| HY66 | Stereo pre amp | Mic/Mag. Cartridge/Tuner/Tape/ Aux + Vol/Bass/Treble/Balance | 20 mA | ¢14.32 |
| HY73 | Guitar pre amp | Two Guitar (Bass Lead) and Mic + separate Volume Bass Treble + Mix | 20 mA | £15.36 |
| HY78 | Stereo pre amp | As HY66 less tone controls | 20 mA | £14.20 |

Most preamp modules can be driven by the PSU driving the main power amp.
A separate PSU 30 is available purety for pre amp modules if required for
E5.47 (inc. VAT). Pre-amp and mixing modules in 18 different variations
Piease send for details.
Mounting Boards
For ease of construction we recommend the B6 for modules HY6-HY13 1.05
For ease of construction we recommend
(inc. VAT) and the 868 for modules HY66-HY78 $£ 1.29$ (inc. VAT).
POWER SUPPLY UNITS incorporating our own toroidal transformers)

| Model Number | For Use With | Price inc. VAT | Model Number | For Use With | Price inc. VAT | Model Number | For Use With | Prive inc. VAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PSU 21x |  |  | PSU'52X | $2 \times \mathrm{HY} 124$ | f17.07 | PSU 72X | $2 \times \mathrm{MY} 248$ | ${ }^{1} 22.54$ |
| PSU 41x | 1 or 2 HYY60, $1 \times$ HY6060. $1 \times$ HY 124 | £13.83 | PSU 53x | $2 \times \mathrm{MOS} 128$ | f17.86 | PSU 73 X | $1 \times \mathrm{HY} 364$ | 122.94 |
| PSU 42x | 1×HY128 | £15.90 | PSU 54x | $1 \times \mathrm{HY} 248$ | £17.86 | PSU 74 X | $1 \times \mathrm{HY} 368$ | £24.20 |
| PSU 43 x | $1 \times \mathrm{MOS} 128$ | E16.70 | PSU 55x | $1 \times$ MOS248 | £19.52 | PSU 75X | $2 \times \mathrm{MOS248,1} \mathrm{\times MOS368}$ | [24.20 |
| PSU 51 x | $2 \times$ HY 128 , $1 \times$ HY 244 | $£ 17.07$ | PSU 71X | $2 \times \mathrm{HY} 244$ | £21.75 |  |  |  |

Ploase note: $X$ in part no. indicates primary voltage. Please insert " $O$ " in place of
$X$ in part no. indicates peimary voltage. Please insert " $O$ " in place of
$X$ for 110 V . 11 " in place of $X$ for 220 V , and " 2 " in place of $X$ for 240 V .

| Module Number | Output Power Watts rms | $\qquad$ | $\begin{aligned} & \text { DISTDF } \\ & \text { T.H.D. } \\ & \text { Typaz } \\ & 1 \mathrm{KHz} \\ & \hline \end{aligned}$ | RTION 1,M,D. 6OHz/ $7 K \mathrm{~Hz} 4: 1$ | Supply Voltere TYp | Size mm | $\begin{array}{\|l\|} \hline \text { WT } \\ \text { GTrs } \end{array}$ | Price ine. VAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOS 128 | 60 | $4-8$ | <0.005\% | <0.006\% | $\pm 45$ | $120 \times 78 \times 40$ | 420 | £30.41 |
| MOS 248 | 120 | 4.8 | <0.005\% | <0.006\% | $\pm 55$ | $120 \times 78 \times 80$ | 850 | ¢39.86 |
| MOS 364 | 180 | 4 | <0,005\% | <0.006\% | $\pm 55$ | $120 \times 78 \times 100$ | 1025 | £45.54 |

Protection: Able to cope with complex lomes without the need for very spocial
protection circuitry (fuses will suffice).
 Input impedance: $100 \mathrm{~K} \Omega$ Damping factor: $100 \mathrm{~Hz}>400$.

## 'NEW to ILP' In Car Entertainment

C15 Power Booster Amplifier to increase the output of your existing car racio Mono Power Booster Amplifier to increase the
or cassette player to a nominal 15 watts rms.
Very easy to use.
Robust construction.
£9.14 (inc. VAT)
Mounts anywhers in car.
Automatic switch on.
Output power maximum 22w peak into $4 \Omega$
Frequancy response ( -3 dB ) 15 Hz to 30 KHz , T.H.D. $0.1 \%$ at 10 w 1 KHz
$\mathrm{S} / \mathrm{N}$ ratio (DIN AUDIO) 80dB, Load Impedance $3 \Omega$
700 mV rms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into $8 \Omega$ Size $95 \times 48 \times 50 \mathrm{~mm}$. Weight 256 gms.

C1515

Stereo version of C15
f17.19 (inc. VAT)
Size $96 \times 40 \times 80$. Weight 410 gms.

## TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available. 21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.


| TYPE | $\begin{gathered} \text { SERTES } \\ \text { No } \end{gathered}$ | $\begin{aligned} & \text { COMDAMY } \\ & \text { Volta } \end{aligned}$ | Current | PRICE | TYPE | $\begin{aligned} & \text { SERIES } \\ & \text { No } \end{aligned}$ | $\begin{aligned} & \text { ECONDARY } \\ & \text { Volts } \end{aligned}$ | RMMS Current | PRICE | TYPE | series No | Condary Vots | RMS Current | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 15 \mathrm{VA} \\ 62 \times 34 \mathrm{~mm} \\ 0.35 \mathrm{Kg} \\ \text { Regutation } \\ 19 \% \end{gathered}$ |  |  |  |  | 120 va | $4 \times 010$ | 6+6 | 1000 |  | 300 VA | $7 \times 013$ | 15+15 | 1000 |  |
|  | $0 \times 010$ | 6+6 | 1.25 |  | $90 \times 40 \mathrm{~mm}$ | $4 \times 011$ | $9+9$ | 6.66 |  | $110 \times 50 \mathrm{~mm}$ | $7 \times 014$ | $18+18$ | 8.33 |  |
|  | $0 \times 011$ | ${ }^{\mathbf{9}+9}$ | 0.83 |  | 1.2 Kg | $4 \times 012$ | 12+12 | 5.00 |  | 2.6 Kg | $7 \times 015$ | $22+22$ | 682 |  |
|  | 0x012 | $12+12$ $15+15$ | 0.63 0.50 | 85.12 | Regulation | $4 \times 013$ | $15+15$ | 4.00 | 42 | Regulation | $7 \times 016$ | $25+25$ | 6.00 | ¢088 |
|  | 0x013 | $15+15$ $18+18$ | 0.50 0.42 |  | 11\% | $4 \times 014$ | $18+18$ | 3.33 | 42 | 6\% | $7 \times 017$ | $30+30$ | 500 | 210.88 |
|  | $0 \times 014$ $0 \times 015$ | $18+18$ $22+22$ | 0.42 0.34 | + papco. + VATE0.89 |  | $4 \times 015$ | $22+22$ | 2.72 | +p8p¢1.72 |  | $7 \times 018$ | $35+35$ | 4.28 | +pspe2.05 |
|  | $0 \times 016$ | 25+25 | 0.30 | TOTALE6 79 |  | $4 \times 016$ | $25+25$ | 240 | + VAT $£ 1.37$ |  | $7 \times 026$ | $40+40$ | 3.75 | + Vatel 94 |
|  | $0 \times 017$ | 30+30 | 0.25 |  |  | $4 \times 017$ | $30+30$ $35+35$ | 2.00 | totale |  | $7 \times 025$ | $45+45$ $50+50$ | 3.00 3 | Totalel4 |
| (encased in A3S plastic) |  |  |  |  |  | 4×028 | 110 | 1.09 |  |  | $7 \times 028$ | 110 | 272 |  |
|  |  |  |  |  |  | $4 \times 029$ | 220 | 0.54 |  |  | $7 \times 029$ | 220 | 136 |  |
|  |  |  |  |  |  | 4×030 | 240 | 0.50 |  |  | $7 \times 030$ | 240 | 125 |  |
| 30 VA $70 \times 30 \mathrm{~mm}$ | $1 \times 010$ | $6+8$ $8+9$ | 2.50 1.66 |  | $\begin{gathered} 160 \mathrm{VA} \\ 110 \times 40 \mathrm{~mm} \\ 1.8 \mathrm{Kg} \\ \text { Regulation } \\ 8 \% \end{gathered}$ | $5 \times 011$ | $\begin{gathered} 9+9 \\ 12+12 \end{gathered}$ | 8.89 |  | $\begin{gathered} 500 \text { VA } \\ 140 \times 60 \mathrm{~mm} \\ 4 \mathrm{Kg} \\ \text { Regulation } \\ 4 \% \end{gathered}$ | $8 \times 016$ | $25+25$ | 10.00 |  |
| $70 \times 30 \mathrm{~mm}$ | $1 \times 011$ | 9+9 | 1.66 | -5A9 |  |  |  |  |  |  | $8 \times 016$ $8 \times 017$ | $25+25$ $30+30$ | 8.33 |  |
| 0.45 Kg | $1 \times 012$ | 12+12 | 1.25 | 20, |  | $5 \times 012$ $5 \times 013$ |  | 666 5.33 |  |  | $8 \times 018$ | $35+35$ | 7.14 | 440 |
| $\begin{aligned} & \text { Regulation } \\ & 18 \% \end{aligned}$ | $1 \times 013$ | $15+15$ | 1.00 | + pspc1.10 |  | $5 \times 013$ <br> $5 \times 014$ | $15+15$ $18+18$ | 5.33 4.44 |  |  | $8 \times 026$ | $40+40$ | 6.25 | 14.08 |
|  | $1 \times 014$ | $18+18$ $22+22$ | 0.83 0.68 | + VATE0.99 |  | 5x015 | $18+18$ $22+22$ | 3.63 | 28.43 |  | $8 \times 025$ | $45+45$ | 5.55 | +p\&pE2.40 |
|  | $1 \times 015$ | $22+22$ $25+25$ | 0.68 0.60 |  |  | $5 \times 016$ | $25+25$ | 3.20 | + p \& p ¢1.72 |  | $8 \times 033$ | $50+50$ | 500 | + VATE2.52 |
| $1 \times 017$ |  | $30+30$ | 0.50 |  |  | $5 \times 017$ | $30+30$ | 2.66 | + Vater 52 |  | $8 \times 042$ | $55+55$ | 4.54 | TOTAL ¢19 30 |
|  |  |  |  |  | $5 \times 018$ | $35+35$ | 2.28 | TOTALE11.67 |  | $8 \times 028$ | 110 | 4.54 |  |
| 50 Va | 2x010 |  | 6+6 | 4.16 |  |  | $5 \times 026$ | $40+40$ | 2.00 |  |  | $8 \times 029$ | 220 | 2.27 |  |
| $80 \times 35 \mathrm{~mm}$ | 2x011 | $9+9$ | 2.77 |  |  | $5 \times 028$ | 110 | 1.45 |  |  | $8 \times 030$ | 240 | 2.08 |  |
| 0.9 Kg | $2 \times 012$ | $12+12$ | 2.08 |  |  | $5 \times 029$ | 220 | 0.72 |  |  |  |  |  |  |
| Regulation | $2 \times 013$ | $15+16$ | 1.86 | $\begin{aligned} & 88,13 \\ & +p \& p £ 135 \\ & \text { +VAT } 1.12 \\ & \text { TOTAL } £ 8.60 \end{aligned}$ |  | $5 \times 030$ | 240 | 0.66 |  |  |  |  |  |  |
| 13\% | $2 \times 014$ | $18+18$ | 1.38 |  |  |  |  |  |  |  | $9 \times 017$ | $30+30$ | 10.41 |  |
|  | $2 \times 015$ | $22+22$ | 1.13 |  | 225 VA$110 \times 45 \mathrm{~mm}$2.2 KgRegulation$7 \%$ |  |  |  |  | $140 \times 75 \mathrm{~mm}$ | $9 \times 018$ | $35+35$ | 8.92 |  |
|  | $2 \times 016$ | $25+25$ | 1.00 |  |  | $6 \times 012$ | 12+12 | 9.38 |  | 5 Kg Regulation | $9 \times 026$ | $40+40$$45+45$ | 7.81 | P-17-12 |
|  | $2 \times 017$ | 30+30 | 0.83 0.45 |  |  | $6 \times 013$ |  | 7.50 |  |  | 9x025 |  | 6.94625 | 217.12 |
|  | 2×029 | 220 | 0.22 |  |  | $6 \times 014$ | $18+18$ | 6.25 |  | $\begin{gathered} \text { Regulation } \\ 4 \% \end{gathered}$ | $9 \times 033$$9 \times 042$ | $45+45$ $50+50$ |  |  |
|  | $2 \times 030$ | 240 | 0.20 |  |  | 6x015 | 22+22 | 511 | 8081 |  |  | $50+50$ $55+55$ | 625 568 | + VAT.E2.95 TOTALE22.62 |
|  |  |  |  |  |  | $6 \times 016$ | $25+25$ | 450 | 29.01 |  | $9 \times 028$ | 110 | 5.68 |  |
| $\begin{gathered} 80 \mathrm{VA} \\ 90 \times 30 \mathrm{~mm} \\ 1 \mathrm{Kg} \\ \text { Regulation } \\ 12 \% \end{gathered}$ | $3 \times 010$ | 6+6 | 6.64 |  |  | $6 \times 047$ | $30+30$ | 375 | +p\&p¢205 | $9 \times 030$ |  | 240 | 2.84 |  |
|  | $3 \times 011$ | $9+9$ | 4.44 |  | $6 \times 018$ |  | $35+35$ | 321 | + VATE1.78 <br> TOTAL£13.64 |  |  | 2.60 |  |  |
|  | $3 \times 012$ | $12+12$ | 3.33 | $\operatorname{ts} 38$ | $6 \times 026$$6 \times 025$ |  | $40+40$ | 250 |  |  |  |  |  |  |
|  | $3 \times 013$ | $15+15$ | 2.66 | 20.08 |  |  | $45+45$ |  |  |  |  |  |  |  |  |
|  | $3 \times 014$ | 18+18 | 2.22 | +p\&psi.72 |  | $6 \times 033$ | $50+50$ | 2.25 |  |  |  |  |  |  |  |
|  | 3x015 | $22+22$ | 1.81 | + VATE1.26 TOTAL $£ 9.64$ | $\begin{aligned} & 6 \times 028 \\ & 6 \times 029 \end{aligned}$ |  | $\begin{array}{r} 110 \\ 220 \end{array}$ | 2.04 |  | ALSO AVAILABLE |  |  |  |  |
|  | $3 \times 016$ | 25+25 | 1.60 |  |  |  | $\begin{aligned} & 1.02 \\ & 0.93 \end{aligned}$ |  | Sizes up to and including 5KVA are |  |  |  |  |  |
|  | $3 \times 017$ | $30+30$ | 1.33 |  |  | $6 \times 030$ |  | 240 |  |  |  |  |  |  |
|  | $3 \times 028$ $3 \times 029$ | 110 220 | 0.72 0.36 |  |  |  |  |  | manufactured to order. |  |  |  |  |  |
|  | 3x030 | 240 | 0.33 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

The benelfts of ILP foroiden transtiotmers
ILP toroidal transformers are only half the weight and height of their laminated equivalents. and are available with 110 V . 220 V or 240 V primaries coded as follows:
IMPORTANT: Regulation - An volieges queted are FULL LOAD. Please add regulation figure to secondary walkege to dotain off led voluege.

For 110 V promary insert 0 " in place of " X " in type number For 220V primary (Europe) insent ", " in place of " $X$ " in type number For 240 V primary (UK) insent 2 " in place of " $X$ ' in type number. Also available at Electrovalue, Maplin

TECHNICAL SPECIFICATIONS

| MODULE | HR314 | HR614 |
| :---: | :---: | :---: |
| Output Voltage | +13.8v $\pm 5 \%$ | $+13.8 v \pm 5 \%$ |
| Output Current | Up to 3A | Up to 6A |
| Current limit (nominal) | 3.5A approx | 7A approx |
| Maximum Input Voltage | +30v | $+30 \mathrm{v}$ |
| Minimum Input Voltage | +16v | +16v |
| Maximum input Voltage for nominal output current | +20N | +20v |
| Maximum output current at 30 N input | 1.8A approx | 3.5A approx |
| Output ripple ( 100 Hz ) - See Note 1 | c 10 mV mms | 10 mV rms |
| Size in mm. | $76 \times 68 \times 40$ high | $120 \times 78 \times 40 \mathrm{high}$ |

POWER SUPPLY UNITS: comprising toroidal transformer
plus $90 \times 50 \times 55 \mathrm{~mm}$ high printed circuit board containing smoothing and rectification
PSU31X Suitable for running one HR314 at full rated current. £13.17 inc. VAT PSU56X Suitable for running one HR614 at full rated current. $£ 19.13$ inc. VAT

# CURVING ELECTRONS 

# Magnetic fields can be mind-bending when you try to understand what's going on. They can also bend the paths of poor little innocent electrons, too. John Dance shows us a practical import of this phenomenon. 

Discovered as long ago as 28th October, 1879 by Edwin Hall of the John Hopkins University, Baltimore, the Hall effect found few applications until high quality semi-conductor materials became available since it is so small that it is difficult to detect in metals. Hall found that if a magnetic field is applied to a current carrying conductor at right angles to the direction of the current flow, a potential difference appears across the material in a direction which is at right angles to both the direction of the current flow and to that of the magnetic field.

In Fig. 1(a), the potential applied between the two electrodes causes an electric current to flow through the material. If this material is homogeneous and no magnetic field is present, the current flow through it is of uniform density. In the case of the P-type semiconductor material shown, current is effectively carried by the majority hole carriers which behave as positive charges, and these move in the same direction as the conventional current flow in the external wires.

If a magnetic field is now applied so that its direction is into the paper, Fleming's left-hand motor rule indicates that the moving holes will experience a force towards the left and will tend to curve in this direction, as shown in Fig. 1 (b). As holes cannot flow out of the left-hand face of the block of P-type material, some positive charges will accumulate there. Similarly, negative charges will accumulate on the right-hand face of the block of material since no holes can flow into this face.

The electric field created by these charges tends to repel the holes from the positively charged left-hand face


Fig. 1 (a), (b) and (c) The Hall effect illustrated by hole flow.
towards the negatively charged right-hand face. The field increases until the positive charges are again moving uniformly across the block of semiconductor material as shown in Fig. 1(c). Any tendency on the part of the positive charges to move to the left will increase the electric field, causing the charges to move directly across the block of material so that the balance is accurately restored. A pair of Hall electrodes placed in the position shown in Fig. 1(c) can be used to detect the Hall voltage produced in this way.

In the case of N-type semiconductor materials in which the majority carriers are electrons, the flow is in the opposite direction to that of the conventional current in the external wires. The left-hand rule again shows that the charge carrier movement is towards the left, but in this case the negative charge carriers build up a negative charge on the left-hand side and a positive charge on the right-hand side. Thus we can use the Hall effect to distinguish between $N$ and P-type materials by detecting the polarity of the Hall effect voltage produced.

In most metals one obtains a Hall effect voltage with the same polarity as in an N-type semiconductor material, since conduction is by means of electrons. However, the Hall voltage is much smaller than in semiconductor materials and a few metals, such as zinc, produce a Hall voltage of the opposite polarity; in such metals the interaction of the moving electrons with fixed positive ions results in the current being ettectively carried by holes. Intrinsic (pure) semiconductor materials show a small Hall effect; although the numbers of electrons and holes per unit volume are approximately equal, the electrons are more mobile, and the overall behaviour is normally like that of an N-type material.

The Hall effect in semiconductor materials produces a much larger Hall voltage than in metals because the number of charge carriers per unit volume is far smaller. The Hall voltage, $\mathrm{V}_{\mathrm{H}}$, is given by the equation:

$$
V_{H}=\frac{\mathrm{Bl}}{\mathrm{Net}}
$$

where $B$ is the magnetic flux density
I is the current flowing through the specimen
$N$ is the number of charge carriers per unit volume
$e$ is the charge of an electron $\left(1.6 \times 10^{-19}\right.$ coulombs)
$t$ is the thickness of the specimen. If one considers a piece of copper of thickness 1 mm carry-
ing a current of 1 A in a magnetic field of 1 Tesla ( 10,000 Gauss), $\mathrm{V}_{\mathrm{H}}$ works out as a mere 62.5 nV , since N is about $10^{29}$ electrons per $\mathrm{m}^{3}$ for copper. It is extremely difficult to measure 60 nV in such a circuit. In silicon, however, N may be 10,000 times smaller, so under the same conditions one obtains a $V_{H}$ value of $625 \mu \mathrm{~V}$ which is a much more reasonable voltage for measurement. Hall first detected the effect using a thin gold foil.

The Hall effect has been widely used in materials science research where it enables information to be obtained about the charge carriers. When indium antimonide semiconductor Hall cells became available, they were used for the measurement of magnetic fields, but indium arsenide produces a Hall cell with about one-tenth of the temperature coefficient of indium antimonide, although its Hall output voltage is lower. Hall cells can be used as multiplying devices, for example in wattmeters, where a voltage is used to generate a proportional current through a Hall cell using a series resistor, while the load current passes through coils which generate the magnetic field in which the Hall cell is placed. Thus the output is proportional to the product of the voltage and current.

Other important applications of discrete Hall devices include their use in brushless DC motors in which the conventional brush and commutator system is replaced by Hall effect devices and suitable amplifiers. The use of such brushless motors avoids the inconvenience of brush replacement and improves reliability, but the elimination of sparking at the brushes is perhaps the most important advantage where low electrical noise is important (such as in high quality tape recording equipment).

Hitachi developed a Hall effect tape replay head in 1977 which is stated to have a high signal-to-noise ratio and excellent transient response (since it is non-inductive). A thin film of indium antimonide is employed, the output being determined only by the magnetic flux present so that a constant response is obtained at the lower frequencies - even down to zero frequency.

## Monolithic Hall Devices

Silicon Hall effect devices have the great advantage that other circuitry can be integrated on the same silicon chip using normal IC production processes. Unfortunately the Hall voltage from silicon cells is about a hundred times smaller than that of Hall devices made from indium arsenide, but the temperature stability of silicon devices is far better and the small output levels can be amplified by on-chip components. Typical Hall voltage outputs from silicon cells are in the millivolt to tens of mV region, depending on the operating conditions.

Although most Hall effect devices are used in switching circuits, there are plenty of applications for linear


Fig. 2 Block diagram of a monolithic linear Hall effect device.


Fig. 3 Output voltage versus magnetic flux density for a UGN-3501M.
Hall devices. The basic internal circuit of the Sprague UGN-3501M linear device is shown in Fig. 2; it can be seen that the small output from the Hall cell itself is amplified by an op-amp. Offset output nulling facilities are included in this eight-pin DIL device, but not in the UGN-3501T which has only 3 connections. The UGN-3501T operates on from 8 to 12 V and the UGN-3501M from 8 to 16 V power supplies. The output voltage from a UGN-3501M device at various values of magnetic flux density with a 12 V supply, a 10 k load and two different values of resistor between pins 5 and 6 are shown in Fig. 3. The frequency response of these devices extends to about 25 kHz ( -3 dB ). The sensitivity of the UGN-3501T is roughly twice that of the UGN-3501M.

Fig. 4(a) shows an application of the UGN-3501T as a ferrous metal detector and Fig. 4(b) is the circuit used. The pole of the magnet is fixed in contact with the Hall device and the output falls by 20 mV peak as the 25 mm steel ball rolls above the sensing device. This signal is amplified by a 741 device and drives the 2 N8512 to conduction so that 0.5 A passes through the load. The low frequency response may be controlled by changing the value of the $22 \mu \mathrm{~F}$ coupling capacitor and high frequency attenuation may be introduced by using a small capacitor to shunt the feedback resistor of the 741.

By attaching the opposite pole of the magnet to the

(b)

Fig. 4 (a) and (b) A ferrous metal detector using the UGN-3501T.


Fig. 5 A Hall effect switch using the UGN-3501M.
Hall device, it can be made to sense the absence of ferromagnetic material rather than its presence.

Fig. 5 shows the use of a LM324 operational amplifier to supply a voltage gain and to transform the differential output of a UGN-3501M into a single-ended output so that the circuit can drive a load which has one side earthed. The LM324 can be operated from a single power supply provided that the output does not swing below OV. The connections shown are suitable for the detection of the field from a south pole, but if that from a north pole is to be detected, pins 1 and 8 should be reversed.

Another application for linear devices is in fluxmeters, but calibration will be required. A typical UGN-3501M provides a differential output of about 1.4 mV in a 0.1 T field. The response is quite linear to 0.1 T , but the useful linear range can be extended to 0.3 T if a resistor of about 47 R is placed between pins 5 and 6 (see Fig. 2).

Linear devices can also be employed in current measurement applications. The device may be placed in the gap of a toroid and the current passed through a coil on the toroid. This may be used for overload detection in electric motors, current limiting, etc.

Siemens have recently introduced a KSY 10 linear Hall effect position sensor in which a gallium arsenide (GaAs) substrate is employed. This device is unique in that it is manufactured by an ion implantation planar technique which produces a doped layer only $0.3 \mu \mathrm{~m}$ in thickness; the use of this thin layer enables a sensitivity of $200 \pm 30$ V/AT to be obtained with a temperature coefficient of only about $\pm 5 \times 10^{-4}$ per degree $K$. For example, it will provide a Hall output of about 200 mV with a 5 mA control current in a field of flux density 0.2 T . The sensitivity can be selected in the range 30 to 300 V/AT by choosing the appropriate ion doping level during manufacture. The two Hall voltage output connections and the two control current connections are interchangeable, since the active sub-regions are symmetrical.

The output from the KSY 10 device is proportional to the effective magnetic field and to the control current passing through the device. The sensor is only 1 mm deep, so it can easily be positioned in the magnet yoke of current converters for current measurements. The active area itself is a mere 0.2 mm by 0.2 mm and lies 0.35 mm behind the front of its mini-plastic case. The device is very suitable for determining the position or speed of toothed gears or of rack and pinion mechanisms. The wide band gap of the gallium arsenide material used enables this device to be used at temperatures of up to $150^{\circ} \mathrm{C}$, so applications in the engine compartment of motor vehicles are envisaged and it may also be used in brushless DC motors.

It is interesting to note that Yoshito Takehana's Group of the Electronic Devices Development Division of the Sony Corporation of Tokyo has developed a very sensitive silicon Hall effect sensor inside a special transistor. The output terminals of this magnetic sensor are in the reverse
biased depletion layer; a magnetic field perpendicular to the flow of the charge carriers between the base and collector terminals will produce an output of about $85 \mathrm{~V} / \mathrm{cm}$ at a flux density of 0.1 T . If such a linear device is successfully developed to the production stage, a much wider field of application may be opened to Hall effect sensor devices at some future date.

## Switching Devices

Switching or digital Hall effect monolithic devices are especially easy to use and are finding many applications in keyboards, in vehicle circuits, in toys and in any applications where movement must be converted into an electrical digital type of signal.

The basic circuit of a typical Hall effect switching device is shown in Fig. 6. An on-chip regulator is usually incorporated in the device, since this is necessary to produce a constantly repeatable performance, especially in automobile applications where the supply voltage can vary over a wide range. The regulator supplies a constant current through the Hall cell (shown by a $X$ in Fig. 6) and the two connections which supply the Hall output voltage feed the inverting and non-inverting inputs of a comparator device which in turn drives a Schmitt trigger circuit and an output stage.


Fig. 6 Block diagram of a monolithic switching Hall effect device.

When the magnetic flux density in the Hall cell changes, the Hall voltage from this cell will change so that the comparator will switch the state of the Schmitt trigger circuit. A suitable amount of hysteresis is built into the circuit so that if a small increase in the magnetic flux density causes the output to switch into its other state, an appreciably larger decrease in the flux density will be required to cause the circuit to switch back to its former state. This prevents repeated rapid switching between the two states for very small changes in the flux density.

The Sprague UGN-3019T device (formerly coded ULN-3006T), is an economical product very suitable in most applications for the experimenter. This is encapsulated in the T-type package shown in Fig. 7, the Hall element itself being at the centre of one face of the device as indicated. As Hall effect devices are used in conjunction with a magnetic field, it is obviously important that the package used should allow the device to be easily orientated with respect to the field and to be easily mounted. The type of package shown is, in the opinion of the writer, usually more convenient for magnetic field sensing than the dual-in-line packages sometimes used for Hall Effect sensors. The . UGN-3201M (formerly designated ULN-3006M) is very similar to the UGN-3019T, but is mounted in an 8 -pin dual-in-line package.

The UGN-3019T may be used in the basic circuit of Fig. 8. In the absence of any magnetic field, the internal output transistor is cut off and passes only a very small col-


ALL DIMENSIONS IN MILLIMETRES
Fig. 7 The UGN-3019T - "T" type package.
lector current (typically, $1 \mu \mathrm{~A}$, maximum $20 \mu \mathrm{~A}$ ). The output voltage is therefore 'high' and has a value which is almost equal to the positive supply voltage; this supply voltage may have any value from +5 V to +16 V with an absolute maximum of +20 V (above which the device may be damaged).


Fig. 8 A Hall effect switch using the UGN-3019T.
If a magnetic field of adequate flux density and of the correct polarity is now applied perpendicular to the face of the device, the internal Hall cell provides a voltage to the comparator of Fig. 6 which switches the Schmitt trigger so that the output transistor in the device conducts. The output falls to its low state with a typical value of +0.15 V and a maximum value of +0.4 V . The UGN-3019T can sink a current to its output of up to 15 mA , so the load resistor R1 of Fig. 8 must be chosen so that not more than 15 mA will flow into pin 3 with the particular value of positive supply voltage used.

The writer found that a UGN-3019T would switch to its low voltage output state when a small bar magnet was brought within about 3 mm of the centre of the body of the device. Owing to the built-in hysteresis in the internal circuit of the device, it did not revert back to the 'high' output state until the bar magnet was withdrawn to a distance of over 10 mm . The hysteresis characteristics of the ULN-3019T are shown in Fig. 9. A typical device switches to the 'low' output state at a field of 0.05 T and all devices are certain to switch at a field of 0.075 T at the centre of their face. A typical device reverts to the 'high'


Fig. 9 Output voltage versus magnetic flux density for a UGN-3019T.
output at 0.0225 T and all devices at a value not less than 0.01 T . The device is unaffected by small stray magnetic fields from any transformers, relays, etc. which may be near to it.

UGN-3019T circuits are unaffected by the application of a field of the opposite polarity to that required to switch the output to the low voltage state. If the field is too weak to cause switching to the low output state, an improvement in the sensitivity can be obtained by placing a piece of iron or other ferromagnetic material on the far side of the device from the magnet as close to the device as possible. A greater increase in sensitivity can be obtained if the device is placed between two magnets with opposite poles on each side of the device. It is important that the magnet should be moved on a line directly towards the centre of the device, since a displacement of about 3 mm from the centre line can more than double the required flux density.

The UGN-3019T requires a supply current of about 7 mA (maximum 9 mA ) with a 5 V supply and about 12 mA (maximum 16 mA ) with a 12 V supply. A particular advantage of Hall effect switching devices over mechanical contact switching is their high speed of operation, the rise and fall times being measured in nanoseconds with operating speeds of up to about 100 kHz . The output pulses are 'clean' without the 'bouncing' which is characteristic of mechanical contacts. Monolithic Hall effect devices are comparable in price to reed switches.

## Using Hall Switches

An important use of Hall effect switching devices is for the detection and measurement of rotation. Many types of mechanical system arrangement are possible. In the 'slide by mode one or more small magnets are mounted on a spinning disc and these magnets pass close to the face of a Hall effect IC. Each time a magnet passes the device, the circuit switches first to its low output voltage state and then back to the high output voltage state as the magnet moves away from the device.

An alternative system is the 'vane switch' technique, in which soft iron vanes attached to the rotating metal disc pass between the magnet and the Hall device. Each time ad vane passes through this gap, the magnetic flux no longer


Fig. 10 (a) and (b) Ring magnet revolution indicators.
reaches the Hall device owing to the shielding effect of the iron in the vane, and the Hall circuit switches back to its high output voltage state.

Fig. 10(a) shows a system for detecting rotation which uses a radially-magnetised ring magnet. Suitable inexpensive ring magnets for use with either type of system are readily available. Up to eight pulses per revolution per 10 mm diameter of the magnet disc are possible, so 80 pulses per revolution can be obtained from a 100 mm diameter disc. These two arrangements have been designed for the UGN-3030T device; this is similar to the other devices discussed except that switching to the low voltage state occurs at a typical flux density of 0.016 T (maximum 0.025 T ) and return to the high voltage state at 0.011 T (minimum -0.025 T ). The power supply current required is only about half that needed for the UGN-3019T. It should be noted that to ensure switching of the UGN-3030T back to the high voltage state, a field of the opposite polarity is required of flux density -0.025 T ; this is provided by the use of alternate polarity magnetic poles in the ring magnets of Figs. 10(a) and 10(b).

Rotational systems as described above have a very wide range of use in engines and machinery. One that many readers will have first-hand experience of is in car ignition circuits, where the contact breakers are replaced. This leads to the ignition timing being a once-and-for-all setting, as there is no wear, and this can only help improve fuel economy and lower exhaust pollution.

The same sort of sensor head can be used for measuring rotational speeds and counting the number of revolutions. In this case possibly the best course to take with the electronics is to have a pulse-generating circuit after the Hall effect device, so that the pulses can either be counted or fed to an analogue meter (to get a rate of revolution indication).

When fitted to a vehicle wheel such a system could have a further important use, namely in an anti-skid braking system. In this the electronics would detect when the wheel was not turning while the car was still moving. The system would then momentarily reduce the brake


Fig. 11 A Hall effect pressure switch.


Fig. 12 An acceleration sensing system.
force to the wheel so that it would turn again and control would be restored, after which full braking force would be restored. This has the effect of pumping the brakes - but be warned, it's not eary to construct such a system, and we strongly recommend not trying!

Hall effect devices can be used to detect linear motion; Fig. 11 shows a simple pressure switch. Coupled with a push-button, this sort of arrangement is common in keyboard switches. A similar application is as an acceleration detector, and Fig. 13 shows how this can be done. In this, acceleration forwards or backwards causes the magnet to move nearer to one of the two Hall devices. Conversely, the tilt sensor in Fig. 13 works by detecting when the magnet moves away from directlv above the Hall device.


Fig. 13 A Hall effect tilt sensor.
As transducers go, Hall Effect devices can give a relatively large switching capability, being capable of sinking ample current to interface directly with TTL. Fig. 14 shows a suitable circuit for interfacing to CMOS devices.

Fig. 15 shows a handy buffer circuit that can be used to drive larger loads, such as a 12 V relay coil. In Fig. 14, when the magnetic field is strong enough, the output from the Hall device will be low and the transistor will be off. Hall devices can drive reed relays directly provided that they do not pass too much current, and provided that a transient suppressing diode is connected across the coil to prevent the back-EMF from destroying the Hall device (the diode cathode should go to the positive terminal of the relay coil).

If a Hall device such as the UGN-3030T is required to control a triac such as the RCA 40669 which can handie up to 8 A RMS, a transistor amplifier stage is required between the Hall device and the triac as shown in Fig. 16. When the Hall device conducts, a current of 9 mA flows from the base of the PNP 2N5811 transistor which in turn

## FEATURE: Curving Electrons



Fig. 14 (left) Driving CMOS from a Hall effect device.
Fig. 15 (right) A current amplified for the Hall device.
supplies 80 mA to the triac gate to turn on the load current. It should be noted that the Hall device is connected to one side of the mains supply; this could be avoided by the use of an opto-coupling device between the Hall IC and the triac circuit.


Fig. 16 AC power control using a Hall effect device.


Due to promotion, Computing Today is seeking an Edjtorial Assistant. The person we are looking for is an accurate worker with a sense of humour who will be able to maintain the high standards of the magazine while keeping to deadlines. Knowledge of program assessment, development and debugging is required, both in BASIC and machine code/assembly language (preferably for the Z80 and/or 6502). Applicants should be able to express themselves in English but no journalistic experience is necessary: training in-technical journalism will be provided.

Familiarity with other languages, particularly Pascal and FORTH, would be an advantage, as would a general knowledge of electronics.

Salary is negotiable depending on age and experience. All applications will be treated in strictest confidence. To apply, send a CV to.

CT Vacancy,
Ron Harris, Managing Editor,
Argus Specialist Publications Ltd,
145 Charing Cross Road,
London WC2H OEE.

## 3002 AUTO-RANGING GAPACITANCE METER



## 5000 COUNTER-TIMER



GLOBAL SPECIALTIES CORPORATION


# It's easy to complain about advertisements. 

Every week, millions of advertisements appear in the press, on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We'd like you to help us keep advertising up to standard.

# The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. 

 A.S.A. Ltd., Brook House,Torrington Place, London WCIE 7HN.
## THANDAR PORTABLE TEST BENCH

 A wide range of high performance instruments, at prices that are hard to beat, puts professional test capability on your benchCOUNTERS - TF200 10Hz to 200MHz; TF040 10 Hz to 40 MHz ; PFM200A 20 Hz to 200 MHz (hand-held model); TP600 prescales to 600 MHz ; TP 1000 Prescales to 1 GHz .
MULTIMETERS - TM3510.1\% 31/2 digit LCD; TM353 0.25\% 3½ digit LCD; TM3550.25\%
$31 / 2$ digit LED; TM3540.75\% 31/2 digit LCD (hand-held model); TM451 0.03\% $41 / 2$ digit with autoranging and sample hold.
OSCILLOSCOPE-SC110A $10 \mathrm{MHz}, 10 \mathrm{mV}$ sensitivity, 40 mm CRT with 6 mm graticule divisions.
THERMOMETERS - TH301 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}, 1^{\circ}$ resolution; TH302 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}, 0.1$ and 1 resolution. Both accept any type K thermocouple. GENERATORS-TG100 1 Hz to 100 kHz Function, Sine, Square, Triangle Wave; TG102 0.2 Hz to 2 MHz Function, Sine. Square. Triangle Wave; TG105 5 Hz to 5 MHz Pulse, Free Run, Gated or Triggered Modes.
LOG1C ANALYSERS - TA20808 channel 20MHz; TA2160 16 channel 20 MHz .
ACCESSORIES - Bench rack, test leads, carrying cases, mains adaptors, probes,

Whormownuntpento

[^1]PUTTING THE BEST WITHIN YOUR GRASP

## TV. SOUND TUNER BUILT AND TESTED

In the cut-throat world of consumer electronics, one of the questions designer is 'Will anyone notice if we save money by chopp. ing this out?" In the domestic TV set, one of the first casualties sterms to be the sound quality. Small speakers
and no tone controis are common

and all this is really quite sad, es the

TV companies do their best to transmit the highest quality sound. Given this beckground a compact and independent TV tuner that c
This TV SOUND TUNER offers full UHF coverage with 5 pre-pelected tuning controls. It can siso be used in conjunction with your video recorder. Dimensions: $113{ }^{\prime \prime} \times 83^{\prime \prime} \times 3 \%^{\prime \prime}$
E.T.I. kit version of above without chsssis, case and hardware. $\mathbf{£ 1 2 . 9 5}$ plus $\mathbf{£ 1 . 5 0} \mathrm{p} 8 \mathrm{p}$.

## PRACTICAL ELECTRONICS SPECIAL OFFERI STEREO CASSETTE RECORDER KIT COMPLETE

ONLY £31.00 plus $£ 2.75$ p\&p.

- NOISE REDUCTION SYSTEM. * AUTO TOP. TAPE COUNTER. SWITCHABLE TWIN VU METER. WOW \& FLUTTER $0.1 \%$. RECORD/PLAYBACK I.C. WITH ELECTRONIC SWITCHING. • FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES.
Kit includes tape transport mechanism, ready punched and beck
printed quality circuit board and allelectronic parts. ie. semiconductors, Yesistors, cmpacitors, hardware, top cover, printed scale and mains transformer.


## STEREO TUNER KIT

This easy to
build 3 band
stereo AM/
FM tuner kit is designed
in conjunction
811. For ease of construction and alignment incorporates three Mullard modules and an I.C. IF System.

FEATURES: VHF, MW, LW Bands, interstat. ion muting and AFC on VHF. Tuning meter. Two back printed PCB's. Resdy made chessis and scale. Aerial: AM-ferrite rod, FM-75 or 300 ohms. Stabilised power supply with 'C' core mains transformer. All components supp lied are to P.E. strict specification. Front scale size $101_{2} \times 211^{\prime \prime}$ approx. Complete with dia
SPECIAL OFFER! £ $13.95+£ 2.50 p \& \mathrm{p}$. Sill dasembly simulated wood cabinet sleeve to suit tuner only. Finish
$£ 3.50$ Plus $£ 1.50$ p\&up.

## 125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications - disco units, guitar amplif err, public address systems and even high power domestic systerns. The unit is protected against short circuiting of the load and is safe in an open circuit tondition. A large safety margin existuly whigh powered rugged unit. The PC board is back printed, etched and ready to drill for aase of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.
ACCESSORIES: Stereo/mono mains power supply kit with transformer: $\mathbf{£ 1 0 . 5 0}$ plus $£ 2.00$ p\&up.

## AUDAX 8 "

HIGH QUALITY 40 WA
Ideal for either Hi-Fi or Disco use this speaker festures an aluminium voice coil a heavy 70 mm diameter
magnet. Frequency res: $20 \mathrm{~Hz} £ 5.95$ to 7 KHz . Impedance: 8 ohms. $+E 2.20 \mathrm{P} \mathrm{\& P}$. AUDAX 40W Ferro-Fluid Hi-Fi Tweeter
X/over on 5 kH
$-22 \mathrm{kHz} .60 \mathrm{~mm}$

$£ 5.50$
square. 8 ohm +60p p\&p.

21E HIGH STREET, ACTON, W3 6NG.
Note: Good dmepatched to U.K. portal addrespos All itami subiect so availability. Prices correct ot
$31 / 5 / 83$ and subject to chenges without notice. $31 / 5 / 89$ and subject to change without notice.
Pheees allow 14 working deys from receipt of ordier for despetch. RTVC Limited restrve the right to up. dit. A.E. Telophore or matil orders by ACCESS wilcome.


SPECIFICATIONS:
Max. output power (RMS): 125 W . Operating voltage (DC): $50 \cdot 80$ max. Loads: $4-16 \mathrm{ohm}$ $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ nse measured @ 100 wath. @ 47 K . Typical T.H.D. 50 watts, 4 ohms: $0.1 \%$. Dimensions: $205 \times 90$ and $190 \times 36 \mathrm{~mm}$.

KIT $£ 10.50$
BUILT £14.25

+ £1.15p\&p $+£ 1.15 \mathrm{p} \mathrm{\&}$.


## SPEAKER BARGANS

2 WAY 10 WATT SPEAKER KIT $8^{\prime \prime}$ bass/mid range and $3 \%{ }^{\prime \prime}$ tweeter. Complete with screws wire, crossover components and cabinet. All wood precut - no cutting required. Finish - chipboard covered wood simulate. size $141^{\prime \prime}{ }^{\prime \prime} x$ £12.50 plus $£ 1.75$ p\&p
ALL CALLERS TO: 323 EDGWARE ROAD. LONDON W2. Telephone: 09.7238432. $(5$ minutes walk from Edgware Road Tube Station)
Now open 6 days a week $9-6$. Prices include VAT.

CLEF Electronc. MUSIC MICROSYNTH
2vi Octave Music Synthewizer with two Oscit Thumbwhe 1 compenemewe instrument on
ing the full range of Symth. Music \& elvects. UULL KIT E13 Also available in 3 par
PERCUSSION MICROSYNTH
TwoChanneltouch Sensative unit plus
variable angle L.F.O., phaser, internal and external triggering

## COMPONENT KIT £89



THREE PIECE BACKING BAND Generates the sounds of three instrumentalist to back Soloists
DRUMS + BASS + KEYBOARDS Over 3,000 chord changes ( 60 scores) on 132 difterent chords - extendable 10200 scores. Maste FULL KIT \&235 EXTENSION $\boldsymbol{\varepsilon 8 2}$

## 88/72 NOTE PIANOS SPECIALISTS SINCE 1972 



COMPONENT KITS 88 including Keyboard 72 NOTE
The above may also be purchased in four parts.

DOMESTIC KITS inc. Cabinet, P.A., \& Spkr.
88 NOTE
$\$ 442$ $\begin{array}{ll}88 \text { NOTE } & 8442 \\ 72 \text { NOTE } & £ 398\end{array}$

## STAGE MODEL

72 NOTE Cabinet \& Stand
 CLEF PRODUCTS (ELECTRONICS) LIMITED (Dept ET
44A BRAMHALL LANE SOUTH BRAMHALL 44A BROMPCLRT CHESHIRE SK7 IAH
STOCKPEL


MASTER RHYTHM PROGRAMMABLE DRUME Twenty-FOur Rhythm programminstruments. Eight sections are extended to $24 / 32$ measures for two bar programming. Sequence operation and instrument tone adjust.
COMPLETE KIT STRING ENSEMBLE $\quad £ 198.50$ ROTOR-CHORUS 898.00 SOUARE FRONT KEYBOARDS 88 NOTE EEO 49 NOTE E2O 73 NOTE ESO 30 NOTE E19 KEYSV
ABLE "' MONITOR in attractive case. Non Standard coded Querty Koyboard with Numeric Keypac and 27 Function Keys. E25 each PBP E5. Tho perreso. Carr C7.
12"Mopntor. Cased. Non Standard Ingut. With
Infore20
 Kota ex int Pair. Carr
tivle $20^{\prime \prime}$ Monitors 230
INBTRUMENT CABE standard $19^{\prime \prime}$ width $\times 16^{-1}$

 GREED 75 TELEPAINTEA.
ELECTROLYTIC CAPACITOR $15,000 \mathrm{mfd} 25 \mathrm{~V}$. gLOTTED OPTO \&WITCH with data SOp. 10 oft EAFRA RED QUARTZ LAMP 230 V 820 Watts. Size $131 / x^{1 / n}$ did E1. 50 en 10 ofl $\mathrm{E10}$.
FERRANTI PHOTOCELL type MS15- sop ea. 10 oft EA output transistors type 2N3293. $12 / 24 \mathrm{~V}$ input. At VARIAC 2 amp Ex-eq. Good condition \&i2 ea. P8P E4. TiL209 fed with holder - 8p ea. 10 off 70p SOCKET 16 pin - 8p ea. 100 off zs. OEARED MOTON $117 / 234$ Vot inpuit 50HZ. 4" the


 SYMCHROHOUS MOTOA 2 Phese 9 voh AC. 375 SPM. Good torque (reeds $30-40 \mathrm{mbd}$ capechor. SUTHER SYNCHRONOUS/STEPPING MOTORS OTHER SYNCHRONOUS/STEPPING MOTORS AVAILABLE. PLEASE ENQUIRE
 THANSFONMEIS - All brand now, all 240 vots
 see 12 V 100 ma Imp emeh. TMANEPRMER 120 Vot impur sec 10-0. TOY 1 A Sub Min TManefonmen $0-120-240 \mathrm{~V}$ hpout. Sec
 Sec 13.5-0.13.5V SVA. E1.e0 esen 10 off ft 2 Tonoipal TMaNHONMEN $0-120-240 \mathrm{~V}$ mpur.


## STEWART of READING

Sub NM FULTE TTXNW ORMIEA. Sec contro tup ped. Sulabble for Thytitur trigeoting 20p eweh. TAMO DTECHANOE CAPACITON 8 mfd 4KV E eph Pepe.
TELEFWONEIE 708 my beck, thas, green, givy,
E5.50 esch. 10 off E45.
 Toxy mimoteme flith vga1sfu. zepvac 18A
 I.T.T. LO. E.M.T. CaBLE. Overat dian Emm, Top per motre. T00 moure drum 2.0 PPP E4. 10 .
 metum ini Top moeres th. Amp, oranco, gep each. 10 of E4. 23 woch. Pep
 WEY OPARD PAD 12 Aln Pemt
 EFROM 2718 Singlo rail, E1.00 eoch, 2584 em SPECTRA RELLANCE TEN TUAM POT. 100 okm志1.

 HOLDER for 1 1" $^{\prime \prime}$ fow. To wol. Wo of E1.? I.E.C. Mains Leed. 2 metre langth, haviy durty,
 MICROPHONE/EARPIECE UNEEATs. Brand TORIN SMAl Overall size $5^{n} \times 11 /{ }^{\prime \prime}$. 14 each PSP C2. TURNTABLESTVLE $240 V$ MC MOTOA. Size $82 \times$ $75 \times 78 \mathrm{~mm}$ Shat $43 \times 4 \mathrm{~mm}$ dia $E 1.50$ ea PAP C2 $0-24 \mathrm{~V} 1$ Amp. E 2 each.
EXECUTIVE TELEPHONE-PUSH EUT. TON. Functions include 10 number memory; repeat dialing; internal Microphone \& Speaker and separate handset etc. Will connect direct to Eritish Telecom System. BRAND NEW. ONLY 825 ea
 Mmy cooos ar PAckacine.
Mary more compenertis and zeei equpmemt

# TECH <br> ZX81 Background Reverse 

F.W. Picken,<br>Stoke on Trent

This simple circuit uses readily available (and cheap!) components to provide white symbols on a dark background. It can be put together on a small piece of circuit board which could then be housed inside the case of the computer and held in position by double-sided tape or Araldite.

The change-over switch, used for switching from black symbols on white and vice-versa, can be

mounted on the side of the case, a push-on push-off type probably being the most suitable due to ease of mounting. The power requirement is

very low, and can be taken from the ZX81 supply line.

Action of the circuit is very simple: ICla and c carry the negativegoing sync pulse and nothing else, thus ensuring that this is not inverted. The remainder of the video signal is inverted by IC1b. The value of RV1 needs careful setting to obtain the best results.

## Sophisticated 5V Supply

## A.J.J. Gilchrist, Paris

This supply will deliver up to 6A at +5 V . It has an active overvoltage clamp on the output. Current is limited at around 6A and has foldback short-circuit protection.

Starting on the line side, $S 1$ is a transient suppressor which helps protect the supply against high voltage transients (studies have shown spikes of 5 kV to be common on the domestic mains!), and C1, R1 cut down on switch arcing when the supply is switched off. R2 is a bleed resistor which is useful if the suply is not permanently connected as it prevents the output staying high after the unit is switched off.

Q2 is the pass resistor, it is switched on by R3 when more than 100 mA is being drawn from the supply. Q1 and Q3 provide the current limiting. When current through R7 is 6A the voltage on the base/emitter junction of $Q^{3}$ is given by:

$$
V=V_{\text {out }}-R 5 * \frac{\left(V_{\text {out }}+R 7 * 6\right)}{(R 5+R 6)}
$$

$=0.58 \mathrm{~V}$ for the values shown.
Thus Q3 begins to conduct, switching Q1 on, which increases the base voltage of Q2, thus limiting the current.

This arrangement also provides foldback limiting. If we consider the output shorted, the voltage at the base of Q3 will be about 0.6 V ; thus the voltage at the collector of Q2 is approximately given by:

$$
\begin{aligned}
V & =0.6(R 6+R 5) / R 5 \\
& =0.7 V
\end{aligned}
$$

thus the current supplied will be $i=2.3 \mathrm{~A}$. The foldback current may be changed by altering R5, R6 and R7. I have set this high to ensure the supply starts up under heavy loads.

ZI, R9 and Q4 provide an active overvoltage clamp. When the output voltage rises above the zener drop plus the switch-on voltage for $\mathrm{Q} 4, \mathrm{Q} 4$ conducts. This circuit is capable of sinking 15A indefinitely (with a proper heat sink) with a much higher peak current. This ensures that the fuse blows before the protection circuit. This active clamp is necessary because one of the most common types of failure in power supplies is the pass transistor failing with the collector/emitter junction shorted.

Note that Q1, Q2 and Q3 should all be mounted on heat sinks, and Q1 must be capable of passing the maximum output current of the 78 M 05 ( 500 mA ).


# Ramped Pulse Generator For Stepper Motors 

Clive Pantrey<br>Farnborough

A circuit that I needed for use with an experimental robot arm was one which would ramp up or down the pulse repetition rate of pulses delivered to a stepper motor drive circuit. With the motor stopped, the command 'ramp up' should start the motor at its base speed (ie the speed at which the motor will start and stop
under load, without loss of synchronisation), ramp up to maximum speed (the top speed available without loss of synchronisation) and run for as long as required. The command 'ramp down' should make the motor slow down to base speed and then stop.

The figure shows the circuit that was eventually produced. IC1a/b provide clock pulses (Ramp Speed) to a four-bit binary up/down counter, IC2. On receipt of a ramp up command IC7c/d sets count up and IC7a/b enables the counter. Unless a ramp down command is received the counter will reach its maximum count (Max Speed) and hold at this until the ramp down command is
received; this will set count down and enable the counter, which will count down to zero (Base Speed), and hold again until the next ramp up command. The counter output drives a D-to-A IC3 whose ramping output controls the VCO, IC4. The lower frequency of the VCO, (Base Speed) is set by the bias adjustment of Q1. Upper frequency (Max Speed) is set by the 100 k pot at pin 11 of IC4. IC5 provides open collector drive for the output pulse train and also the on/off gate, controlled by IC6, when the counter is at zero. IC1c/d provides a set zero pulse to IC2, to ensure that the output, at pin 3 of IC5, is at base speed and off each time the generator is switched on.



## Analogue Set-Reset Latch

## T. P. West, Lancaster

Although CMOS gates are commonly used to provide analogue amplifiers, the operational amplifier is often overlooked for use in digital applications. Often; a circuit design calls for a set-reset latch within an analogue circuit: this normally requires digital circuitry to be included in the design. By the use of this cir-
cuit, spare op-amps in a package may be utilised to provide the set-reset function. The op-amp used may be of any type with the low and high voltages at the output being only a function of the op-amp's internal output drive circuitry. The resistors R1 and R2 should be chosen so that R2 $=2.4 R 1$ and $R 2<V_{\text {supoly }} / 0.05$. Although the circuit is shown for a single supply rail, it will work on a dual supply but produces a low of around the negative supply voltage. All changes in state occur on the low-to-high transition.

## 01-452 1500 Tecinonatic Ltid 01-450 6597

BBC
OFFICIAL DEALER Micro Computer System
Please phone for availability

WORD PROCESSOR 'VIEW' 16K ROM f52 TELETEXT ADAPTOR £195.00
BUSINESS, EDUCATION \& FUN SOFTWARE IN STOCK

## FLOPPY DISC INTERFACE

Incl. 1.2 operating system $\mathbf{£ 9 5}+\mathbf{£ 2 0}$ installation

## BBC FLOPPY DISC DRIVES

Single drive $51 / 4^{\prime \prime} 100 \mathrm{~K} £ 230+£ 6$ carr. Dual drive 51⁄4" 800K £699 + £8 carr.
BBC COMPATIBLE DRIVES
These drives are supplied in BBC matching colour cases.
SINGLE 100K £150; 200K £215*; 400K £265
SINGLE WITH PSU 100K £185; 200K £280* 400K £330
DUAL WITH PSU 200K £355; 400K £475*; 800K £595

* These drives are supplied with a switch between 40 and 80 tracks.
Drive Cables: Single $£ 8$ Dual $£ 12$
Disc Manual \& Formatting Diskette £17.50
Phone or send for our BBC leaflet


## CASSETTE RECORDER

BBC Compatible Cassette Recorder with Counter and Remote Control $\mathbf{2 6 . 5 0}+£ 1.50$ carr.
SANYO Data Recorder Model DR101 £ $39.50+£ 1.50$ carr. Cassette Leads £3.50 Computer Grade Cassette £0.50p each $£ 4.50$ for $10+£ 1$ carr.

## MONITORS

MICROVITEC 1431 14" Colour Monitor.............f249 + f 8 carr MICROVITEC 2031 20" Colour Monitor............ $\mathbf{£ 1 9}$ + $£ 8$ carr. KAGA 12" RGB Monitor. $\qquad$
$\qquad$ Lead for KAGA/SANYO RGB . . . . . . . . . . . . . ..... £10 SANYO 12" Hi Res Green Monitor ... $\varepsilon 99$ + $£ 6$ carr. SANYO Hi Res RGB Monitor $£ 445+\varepsilon 8$ carr.

## BBC BOOKS

Basic on BBC $£ 5.95$ 30 Hour Basic $\mathbf{£} 5.95$ Programming the BBC Micro $\mathbf{£ 6 . 5 0}$ BBC Micro An Expert Guide $\mathbf{£ 6 . 9 5}$ Assy. Lang. Prog for BBC £8.95 6502 Machine Codes for Beginners £6.95 (No VAT) $+£ 1.00 \mathrm{p} \& \mathrm{p}$

## NEC PC 8023 BE-C

## Features include:

Bi-Directional, Logic seeking Proportional Spacing,
orward \& Reverse Line
Feed, Hi-Res and Block
Graphics, International
and Greek characters,
Auto-Underline,
Friction \& Tractor
2K Buffer, Cartridge Ribbon.
E345 + $£ 8$ carr.


## PRINTERS

SEIKOSHA GP 100A 80 Cols 30 CPS
Full ASCll e GRAPHICS 10" Wide paper Now only £180+ $£ 6$ carr. GP250A £235 plus £8 car
Parallel Printer lead for BBC/Atom to most printers $\mathbf{f 1 3 . 5 0}$ Variety of interfaces, ribbons in stock
2,000 fan fold sheets $9 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3 \mathrm{p}$ \&

EPSON RX80 and FX80
RX80 100CPS 80COL Tractor Feed $£ 298$ FX80 160CPS 80COL F\&T Feed £389 MX100 F/T3£425 (Carr./printer £8) Full specification on request

RUGBY ATOMIC CLOCK
This Z80 micro controlled clock/calender receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided. See July/August ETI for details. Complete Kit $£ 145+£ 2.00$ p\&p

## MICROTIMER

6502 Based Programmeable clock timer with

* 224 switching times/week cycle
- 24 hour 7 day timer
* 4 independent switch ourpurs directly interfacing to thyristor/triacs
* 6 digit 7 seg. displays to indicate real time, ON/OFF and Rese tinies
* Output to drive day of week switch and status LEDS

Full details on request, Price for kit $\mathbf{£ 5 7 , 0 0}$

\section*{| ID CONNECTORS |
| :---: |
| Header Recep-Edge |}

DISC DRIVES FOR THE FORTH COMPUTER
51/4" Teac FD55 Slim Line Mechanisms
FD55A 40 track SDD 250 kbyte unformatted
bare
$2 \times$ FD55A 40 track SSDD 500kbytes unformatted
FD55E 80 track SSDD 500kbytes unformatted
$2 \times$ FD55E 80 track SSDD 1 Mbyte unformatted
E205
cased + psu £475
514" Mitsubishi M4853 Slim Line mechanism
80 track DSDD 1 Mbyte unformatted
$2 \times$ M485 2 Mbytes
Single drive cable £8 Dual Drive cable $\mathbf{E 1 2}$
Other parts for FORTH COMPUTER avallable send SAE for details.
PLEASE SEND SAE FOR PRICE LIST
bare: : 225 Cased: $\mathbf{E 2 4 5}$ Cased + psu £590

## SOFTY II INTELLIGENT PROGRAMMER

The complete micro processor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to EPROMS or use in host computer by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed. delered or inserted and memory contents can be observed on ordinary TV. Accepts most $+5 v$ Eproms. Softy 11 complete with PSU. TV Lead and Romulator lead $£ 169$

RIBBONCABLE Grey/meter


SPECIAL OFFER

| 2532 | $350 p$ |
| :--- | ---: |
| 2732 | $350 p$ |
| $2764-25$ | 450p |
| $27128-25$ | E25 |
| $4164-2$ | 450p |
| $6116 P-150 N S$ | $350 p$ |

B00KS (No VAT p\&p £1)

## UV ERASERS

UVIB up to 6 Eproms $\mathbf{~} 47.50$ UVIT with Timer 6 E0.00 UV140 up to 14 Eproms $\mathbf{E 6 1 . 5 0}$ UV141 with Timer $\quad$ 78.00 (Carr f / $/$ eraser)
All erasers are fitted with mains switches and safety interlocks
E.T.I.

PROJECTS
Semiconductors inc. I.C., Transistors, Displays, Connecors and Sockets for most projects are stocked by us.

CRT Controller $\mathrm{H} / \mathrm{Book}$ Programming the Z80 Z80 Microcomp. handbook Programming the 6502 6502 Assy. Lang.
6502 Applications 6502 Software Design 6502 Games
Large selection of detebooks, $\mathbf{E 1 0 . 5 2}$ facing books, books on BBC, etc in facing books. bor for our list.
stock. As for


# z80 CONTROLLER COMPUTER 

# The UK is now full of MARVINs just sitting there rusting, or worse, complaining about the pain in their diodes all down one side. Peter Grigson and David Harris tell us about the software needed to make them all spring into life. 

TThe following is split into two sections; the first is a general introduction on machine code programming the Z80. Without writing an entire book, we can't really tell you all about it, so what we've aimed at doing is to give you a flavour of what's involved. There are quite a large number of books on the $\mathbf{Z 8 0}$ in particular, and on microprocessors in general, and we would suggest getting hold of one of these. Alternatively, elsewhere in this magazine is the start of a series on maching code programming.

The second section will move on to a brief description of the operating system for MARVIN that is pre-programmed into his EPROM.

## Writing $\mathbf{Z 8 0}$ Programs

The nice thing about machine code programs is that they run the computer very fast and need a comparatively small amount of memory to achieve what can be a fairly sophisticated task. In general, machine code programming is much more appropriate to control functions because it enables you to tell the computer exactly how you want a particular task to be carried out.

Every silver lining has a cloud, and the cloud over using machine code is that a program consists of nothing but numbers, as has already been pointed out on page 35 . However, common practice is to substitute mnemonics for the code when doing the writing, and convert the instructions into machine code using either a special program (an assembler) or a table and a great deal of hard work. Such is life.$\therefore$ For the sake of clarity, we will use mnemonics for the remainder of this article.

## Getting Into The $\mathbf{Z 8 0}$

Internally, the Z80 CPU has seven eight-bit registers, $A$ (the accumulator) and B,C,D,E,H,L. There are three pseudo-16-bit registers, made by pairing $B$ and $C$,


#### Abstract

have different machine code equivalents, not just the same instruction with a different register address to be loaded.

Contents of registers can also be transferred. Any eight-bit register can be loaded with the contents of


0000-07FF MARVIN operating system
0800-OFFF User program. The operating system hands over to the routine at 0800 after reset and so this should contain the first instruction of your program.
$8000-83 F F$ RAM. The first 32 bytes from 8000 to 801 F are used by the operating system and the stack extends down from 83FF. The rest is freely available.

Fig. 1 Memory map of MARVIN.
$D$ and $E$ and $H$ and $L$. There are also the two 16-bit index registers, IX and IY. Each register can only be used with certain commands and it will pay you to make yourself familiar with the rules. All registers can be loaded directly with a number, and the mnemonic for this will be LD (reg), (number), where (reg) is the register to be loaded and (number) is the binary (or hexadecimal) number to be stored; for example, LD A, 23 stores 23 (hex) in the register A; LD HL, 1234 stores 1234 in the HL pair as a 16-bit number.

Remember that the above is written in mnemonic code, and that unless you have another micro to do the work for you, you will have to translate this into machine code before MARVIN will be able to understand what it means. Also worth noting is that the two instructions LD A and LD HL will
another. For example, LD B,D copies the contents of $D$ into $B$. Sixteen-bit registers can only be copied by two operations on their component registers; to transfer HL to BC LD B,H then LD C,L.

You will very often need to operate with more numbers than the available registers can hold and so numbers must be transferred between RAM and the CPU registers. The accumulator or any 16-bit pair can be stored at a specific address. For example, the instruction LD (8234), A stores contents of A in RAM at address 8234. The instruction LD (8234), HL involves storing 16 bits so $L$ goes into memory at 8234 and H at 8235.

Any of the other eight-bit registers can be stored at the location pointed to by the contents of HL: LD HL, 8349 then LD (HL),E puts the contents of E at 8349 .

$$
\begin{aligned}
& \text { OUT ( } \mathrm{n} \text { ), A Output accummulator contents to port } \mathrm{n} .0 \leqslant \mathrm{n}<10 \text {. } \\
& \text { OUT (C), } r \quad r \text { is any of } A, B, C, D, E, H, L \text {. The contents of } C \text { register define the port. } 0 \leqslant C<10 \text {. } \\
& \text { IN } A,(n) \quad \text { Load accummulator with data on port } n .0 \leqslant n<10 \text {. } \\
& \text { iN } r,(C) \quad r \text { is any of } A, B, C, D, E, H, L \text {. The contents of } C \text { register define the port. } 0 \leqslant C< \\
& \text { 10. Load register } r \text { with the data on port } C \text {. }
\end{aligned}
$$

Fig. 2 The Z80's Input/Output instructions. Note that it is recommended that output is channeled through the operating system if you wish to operate on individual bits.

Another useful source of temporary storage is the stack. This is a 'pile' of 16 -bit numbers in RAM onto which more can be added by the instruction PUSH: PUSH HL puts the contents of HL onto the top of the stack. The number on top can be retrieved by the instruction POP, eg POP DE removes the number from the top of the stack and puts it in DE. A special CPU register, $S P$, is used to point to the stack and is updated by each PUSH and POP.

Only simple arithmetic and logic instructions can be carried out. Any eight-bit number or register can be added to, subtracted from, ANDed with, XORed with, ORed with the accumulator and the result is stored in the accumulator,
eg ADD A, 27 ; SUB A,C ; AND A,E ; OR A,H ; XOR A,255.

As far as 16-bit registers are concerned, any of them can be added to or subtracted from HL,IX,IY with the result being stored in HL,IX,IY. For example, ADD HL,DE adds the contents of HL to the contents of DE and stores the result in HL.

The order in which the code is carried out can be controlled by use of JP (equivalent to the BASIC GOTO) and CALL (equivalent to GOSUB). When using an assembler, various points in the code can be identified with labels by writing the label at the beginning of the line with no preceding gap and following it by a colon. This tells the assembler to assign the value of the program counter at that point to the label so that when the label is used in conjunction with JP instructions, the appropriate 16 -bit address is assembled. Labels can also be used in conjunction with other instructions that require 16-bit addresses, for example, LD A, (LABEL). The instruction JR is used for local jumps within 128 bytes and assembles to a relative displacement instruction. RET is used to return from a CALLed routine.

Decision making in machine code is carried out by the use of flags. These are set according to the result of each logical or arithmetic operation. The most useful flag is called $Z$ (the zero flag) and is set if the result of an operation is zero. It is also set if $A$ equals $B$ in compare instructions, eg CP $A, B$. There are several other flags indicating other conditions and you should refer to a book to find out what these are, and when they are set.

The flags are used in conjunction with JP, CALL, JR, RET
which can be made conditional on the state of a particular flag. For example, after executing the instructions CP A,3 then JP Z,FINISH the processor will only have gone to FINISH if A was equal to 3.

The most useful instructions on MARVIN however are those involved with I/O. There are several to choose from, and Fig. 2 shows them. Note that it is best to avoid using the output instructions directly but to use the operating system output routines which will also correctly set the port masks (see below).

In order to follow the example program in Fig. 3 you will need to know one or two more things. An instruction called LDIR is used which shifts blocks of memory around. It takes a number of bytes from memory starting at the location defined by the contents of HL and copies them to memory commencing at the location defined by the contents of DE; the number of bytes it copies depends on the contents of BC .

DEFB is not a true $\mathbf{Z 8 0}$
 instruction but one to the assembler. It is followed by a series

Fig. 3 An example program to drive a stepper motor. The two operating system routines used are 5 , which reads the keyboard and returns a number at location 801 BH , and 7 , which outputs successive numbers in a sequence each time it is called. IX is the beginning of the table; IX+0 is the table; IX +1 is the position in the table of the first one to be output; IX + 2 is the first byte in the sequence, etc.

of eight-bit numbers which the assembler places directly in memory. This can be used in

- MARVIN programs to assemble the special instructions for calling the operating system routines which consist of two bytes: F7 (hex) followed by the number of the routine, eg DEFB F7,03.

An example of a typical MARVIN program is shown in Fig. 3. This program turns a motor forwards if key F is pressed, backwards if key $B$ is pressed and stops it if key 0 is pressed. It uses several of the operating system routines described below.

A stepper motor is connected to output port 1 using power transistors so that to turn it forwards the sequence

$$
10,6,9,2
$$

must be sent, one number every 10 mS . In order to turn it backwards the reverse sequence must be sent. The motor stops if nothing is sent.

## The Operating System

The operating system has two tasks: it controls the system, and this involves such chores as dealing with start-up initialisation, dealing with interrupts, communicating with other systems, etc; the other task is to provide various useful routines for controlling MARVIN's peripherals.

When power is applied or the reset switch is pressed, the operating system first clears all ports and sets the interrupt vectors to the beginning of the user program. It also sets the stack pointer to the top of RAM (83FF). It then tests to see if the user EPROM socket contains a RAM IC or an EPROM. If it detects the latter then control is transferred to the program in the EPROM at 0800 H . If it detects a RAM then it enters a routine which can receive data from a microcomputer and place it in the RAM. In order to be suitable for connection your micro must have an eight-bit user output port and either a separate user input port or a single handshake input line; Z80 PIO and, 6522 VIA are suitable. This facility is extremely useful for testing prototype programmes without having to blow an EPROM each time.

## Interrupts

In order to define MARVIN's response to interrupts, the user program should place eight vectors in RAM to define the start of routines to deal with interrupts on
each channel. Interrupts can then be enabled by an El instruction and the appropriate routine will be called (with all registers and flags preserved) on receipt of an interrupt.

User-available routines include the following:
Output Port Control Since the Z80 only provides for alteration of all eight output bits of a port at once, if the user wishes to change a bit or bits without affecting any others a note must be kept of how each bit has previously been set. The operating systems deals with this by storing masks of each output port in RAM and, if the user ensures ports are written to via the operating system routines, then the masks will be constantly updated. Routines are provided for the setting/resetting of individual bits as well as whole ports.
Outputting a sequence Certain devices such as stepper motors require a sequence of bytes to be output in order to operate. The operating system provides a routine which will output consecutive bytes of a sequence each time it is called. Timing If a real time clock is not available then the operating system is capable of generating pauses of between $100 \mu \mathrm{~S}$ and 0.65 secs to the nearests $10 \mu \mathrm{~S}$ and also between 0.1 and 25 seconds to the nearest 0.1 seconds.

Peripheral Control Routines are provided to : 1. read a keyboard of up to 64 keys consisting of simple switches connected between an input and output port ; 2. display alphanumeric data on a 7 segment display connected to an output port ;

## BUYLINES

The following will be available from ARK Electronics, 3 Barnhill, Pinner, Middlesex, HA5 25Y (please note this change of address).
EPROM containing the monitor program, 4 MHz clock, $£ 6.00$; 3 MHz (or lower) clock $£ 4.00$;
Main board PCB, $\mathbf{E 6 . 0 0}$;
Complete 4 MHz kit for the Main Board excluding the operating system EPROM £26.00.
I/O Board PCB $£ 1.50$;
Interrupt Board PCB $£ 1.50$.
Because the remaining components for the I/O and interrupt boards are very easily obtainable, ARK have not judged it worthwhile making kits available from them.
3. detect the last code sent by the MARVIN remote control ; 4. send allophones to the MARVIN speech board; 5 . output a frequency burst of between 40 Hz and 10 kHz .

The other peripherals avaiable (D/A, A/D, light dimmer) are accessed simply by writing to or reading the relevant port.

All the routines are accessed by 2 byte routines of the form: $\mathrm{F} 7, \mathrm{nn}$ where $n n$ is the number of the routine in question.

Full details of exactly how to use all the routines are supplied with the operating system EPROM.

Readers who have been puzzled by the naming of MARVIN, or who have found little sense in the humour adopted in this project series (and throughout much of the rest of the magazine) are referred to 'The Hitch Hiker's Guide To The Galaxy' et seq., copies of which should be on sale from all leading component suppliers in the Alpha Centauri district.



## Midwich

EAST ANGLIA'S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS.



## MULTIMETERS

(UK C/P 65pl'
RANGE DOUBLER 10A DC1 Special price..........................f15.95 ETC 5000/5001 121 Ranges 50K/V Range Doubler 10A DC
TMK 50023 Ranges $30 \mathrm{~K} / \mathrm{V}$ 12A DC Plus cont. buzzer ...............f23.95 NH56R 20K/V 22 Range Pocket 360TR 23 Range $100 \mathrm{~K} / \mathrm{V}$. Lar............................... Large scale 10A AC/DC plus Hfe....£36.95 ATI 02018 Range 20K/V. Deluxe plus Hfe Tester.......................f17.50 ST303TR 21 Range $20 \mathrm{~K} / \mathrm{V}$ plus Hfe Tester
....................................f16.95

SPEAKERS
(Hi.-i, P.A.,. Disco, Bass Guitar)

| $\mathbf{8}^{\text {Hi-Fi, }}$ | $\begin{aligned} & \text { A.,., Disco, Bass Guitar) } \\ & 60 W . . . £ 11.95 \end{aligned}$ |
| :---: | :---: |
| $10^{\prime \prime}$ | 50W . . . £12.95 |
| 12" | 100W .. . £26.95 |
| 18' | 100W . . . £39.95 |

## MOTOROLA PIEZO

TWEETERS IN STOCK
RETAIL - MAIL ORDER
EXPORT - INDUSTRIAL EDUCATIONAL


MUSICRAFT 303 EDGWARE RD, LONDON W.2. TEL: 01-402 9729. 2898


Digitise at up to 10 MHz . Store, then display on a UHF TELEVISION. Single shot Capture up to 250 KHz . Storage Facility for less than $£ 100$.
The Tele-Scope is a new concept in data capture utilising the latest Digitising techniques. The Tele-Scape acts controls - displays much like a conventional scope but does much much more.
A kit.version is available for $£ 89$ and a Built unit for $£ 109$. A manual is included and specialist parts are available separately.
Prices exclude V.A.T. at 15\% with postage and packing at $£ 2.95$ inc. The manual is available separately for $£ 1.50$ inc. which is refundable on subsequent purchase of a unit.


HAWK ELECTRONIC TEST EQUIPMENT
Bircholt Road, Parkwood Industrial Estate, Maidstone, Kent ME15 9XT. 0622686811

## FREQUENCY COUNTERS <br> HIGH PERFORMANCE HIGH RELABILITY LOW COST

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$
* Sensitivity $<50 \mathrm{mV}$ at 1 GHz
* Setability 0.5 ppm
* High Accuracy
* 3 Gate Times $\quad \star \quad 0.5^{\prime \prime}$ easy to read L.E.D. Display PRICES (Inc. adaptor/charger, P \& P and VAT)

| METEOR 100 | $(100 \mathrm{MHz})$ | $£ 104.07$ |
| :--- | :--- | :--- |
| METEOR 600 | $(600 \mathrm{MHz})$ | $£ 133.97$ |
| METEOR 1000 | $(1 \mathrm{GHz})$ | $£ 184.57$ |

METEOR 1000
(1GHz)
£184.57

* Low Pass Filter
* Battery or Mains
* Factory Calibrated
* 1-Year Guarantee

Illustrated colour brochure with technical specification and prices available on request.
Black ${ }^{\text {责Star }}$

BLACK STAR LTD, 9A Crown Street. St.ives,
Huntingdon. Cambs, PE17 4EB, Englard
Tel: (0480) 62440 Telex: 32339

# DON'T SNEEZE! 

# There are places on this earth where a sneeze can be very expensive indeed - and where spotlessness will be only just clean enough. Stephen McClelland elucidates. 

An anecdote, popular in the silicon chip industry, relates how, in the recent past, a certain chip company found its production going haywire. The devices it made suddenly became duds because of contamination of the otherwise ultra-clean process areas, but no one knew where the trouble lay. At length, after a massive investigation during which the factory was almost taken apart, the Company discovered to its considerable embarrassment that the person responsible for cleaning the operators' overalls had changed the washing powder. Contaminant had migrated from the freshly washed overalls into the process line, and so to the chips themselves.

Although an extreme case, the tale serves to illustrate how careful chip manufacturers have to be to ensure their production environment is flawless and the paranoia that descends when it isn't. Setting up these facilities, the cleanest places on the planet, is prodigiously expensive upwards of $£ 300$ per square foot.

Such facilities are now becoming necessary because the complexity demanded of silicon chips takes them into the VLSI (Very Large Scale Integration) domain. These chips have features, therefore, which are unprecedentedly small - about 1 micro metre (or 0.04 thousandths of an inch) in most cases. As a result even the most minute particles of dust are capable of settling on the silicon circuit during its sensitive process stages and causing havoc.

Indeed there is evidence to suggest that even the maximum pure air conditions presently achieved might not be clean enough for future chips under some conditions. But even to get to this state (dubbed Class 100 by the US because it contains a bare 100 particles per cubic foot in the critical size range) requires enormous efforts. Class 100 requires a clean-up factor of more than 100,000 times on atmospheric air (containing about 10 million particles per cubic foot).

Such clean rooms are generally maintained at positive atmospheric pressure (to prevent outside air-borne dirt from being driven in) with a wide host of complicated access doors and passages. In the cleanest facilities, floors and ceilings are both perforated to allow the filtered air to be pumped through them downwards in parallel vertical lines. The laminar flow creates a minimum of turbulence which might otherwise re-distribute the particles already present.

In addition, these areas need a formidable battery of support services. The water used to wash the silicon chips themselves must approach absolute purity - and the inadequacy of most conventional distillation techniques means that the water is usually the most expensive chemical the plant has to purchase. The gases used to pro-
cess the silicon can also present a hazard - either because they are toxic, or flammable, or both. This is one reason why even small semi-conductor houses in California especially those located near the San Andreas fault maintain elaborate fire fighting teams.

But getting a clean room 'clean' is only half the story - keeping it so is rather more difficult and research throws an interesting light on the most significant source of dirt people themselves.

A NASA study conducted by James Useller turned up some surprising conclusions. He found that one of the most destructive things you can do in a Class 100 environment is simply to write on an ordinary sheet of paper with an ordinary ballpoint pen - this alone can generate particles up to 20 micrometres in size. Stamping on the floor (whether due to a fit of pique or just through lack of exercise the study neglects to say) is almost as bad. Even workers properly clad - in astronaut-like boots, trousers, smocks and hats - can generate or redistribute particulate matter by merely moving about irregularly.

Normal breath, in fact, should produce no increase of atmospheric dirt but the best advice one can give to smokers is that they shouldn't breathe at all - NASA detected significant numbers of particles 20 minutes after the subjects had finished smoking. Personal hygiene is encouraged. Anti-social habits like scratching yourself (which releases dead skin cells) are not. Sneezing is singled out as being a big offender - it can push the particle count up by as much as 20 times. Even an overtly social act like pulling out a handkerchief to suppress it can spray the same amount of contamination into the air.

An equally insidious source of contamination is the purely chemical kind as the story at the beginning shows. Sodium ions (whether from sweat, chemicals or soap powder) can be lethal to many types of devices particularly the MOS (Metal-Oxide-Silicon) varieties. Some engineers have even suggested that MOS chip factories should never be built near sea coasts because of possible salt contamination.

Silicon chip companies are aware that the contamination risk will eventually become so strong even with conventional clean rooms that chip making will have to be taken - quite literally - out of human hands. IBM has already gone some way towards making an automatic production line that is enclosed completely in its own clean environment. Other companies are deterred by the enormous amount of investment required to overcome the tricky problems of silicon water handling. Ironically, micro-electronics, of all industries, might be very difficult to automate fully.


## TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

## IN YOUR OWN HOME-AT YOUR PRCE

ICS can provide the technical knowledge that is so e'ssential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

## City \& Guilds Certificates

## Radio Amateurs

Basic Electronic Engineering (Joint CB.G/ICS)
Certificate Courses
TV and Rudio Sorvicing
Radio \& Amplfier Consfruction
Electronic Engincering* and Maintenance
Computer Engineoring* and Programming TV, Radio and Audio Encincering Electrical Engineoring.* Installation and Contracting *Quallity ior IET Mmockete Memberthip CADC: Approved by CACC


POSTOR PHONE TODAYFDR\&RFF BOOKIFI
Please send me your FREE School of Electronics Proapectus.
Subject of Interest
Name
Address


Post to: Dept M265
ICS Schoot of Electronice
In Siewerts Rom
London SW8 405 $\square=$ (All Hours)

## [BELECTRONICS

FRUSTRATED EXPORT ORDER BRAND NEW \& BOXED. EPSOM FX80 PRINTERS $£ 350.00$ + VAT (carriage £12 tnt)
SPECIAL OFFERS Mullard .2" Red L.E.D.'s 0.06p, 7805 38p, 7805KC 5 Volt 1.5A 75p, 78H05 5V 3 AMP £3.50p, 5K $3 / 4$ " multiturn trim pots 14 for ع2.50p

## DISC DRIVE BONANZA <br> \section*{PERTEC FD650 DSDD}

8109 + VAT
TEAC FD-55F 1/2 Height DSD 80 track/
40 track selectable at our new low price E199 + VAT PAPST 3" Box Fan 220 volts 50 hz require
1 uf capacitor
£7.95 p/p £1.00
As above but 12" 22 mhz band width $\mathbf{8 8 8 . 7 0}+\mathrm{VA}$
ASC11 coded qwerty Keyboard ,manufactured by Alphanumeric (Woking UK). Model 60K brand new plus data...... £19.95p p\&p © 1.50
25 WAY 'D' Types, plugs £1.85, sockets £1.85 (solder tail) p\&p 30p. Telephone for bulk prices.
8" Drive Cabinets complete with power supply (LINEAR) to take two 8" Drives, Brand New £99.95p + VAT (carriage cost)
Twin 5" Cabinets with power supply $£ 30.00+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere $£ 40.00+$ VAT)
9'Green Phosphor Monitors Brand New and Cased Composite Video Input 18 mhz band width $£ 80+$ VAT each (carriage cost)
Textool 24 dil Zif Skt (used) £3.95p p\&p 30p
Brand New $13^{\prime \prime}$ Colour monitor fully cased. Full warranty $540 \times$ 236 pixel. RGB TTL input plus apple input $£ 220$ + VAT (carriage at cost).
BNC Lead Bonanza coax lead with BNC plug at one end, 2 metres plus $£ 1.00$ p\&p 30p and 10 metres plus $£ 2.50$ p\&p 75p


American
Expross
11 HERCIES ROAD, HILLINGDON, MIDDLESEX UB10 9 LS, ENGLAND TEL: UXBRIDGE 55399

# ZX80 TAPE MOD 

# When we published the article on modifying the ZX81 tape output to get reliable cassette operation, a plaintive cry went up: "What about my ZX80?'". Ian Ridout to the rescue. 

The predecessor to the ZX81, the $\mathrm{ZX80}$, is still a popular machine especially if fitted with the replacement Sinclair ROM. However, like the ZX81, it suffers from unreliable SAVEing onto cassette tape and LOADing from tape.

A previous article in this magazine (February 1983) gave details of how to improve the reliability of SAVEing programs onto tape for the ZX81. This article gives details of the simple modifications required to allow the ZX80 to enjoy the same SAVEing reliability onto tape. The modification costs less than $£ 1$ to do and takes only a few hours.

If you have experienced difficulty with SAVEing programs onto tape with your ZX80, observe the following recommendations before implementing this modification:

- Make sure that the EAR socket on the ZX80 is connected to the EARPHONE socket on the cassette and likewise that the MIC socket goes to either the MICROPHONE or AUX socket on the cassette (we don't want to insult your intelligence, but you'd be surprised how often . . .);
- Remove all traces of the brown magnetic tape material from the heads in the cassette player by using cotton buds dampened (not dripping wet) in white or surgical spirit;
- Use computer tapes or the higher quality audio tapes;
- When SAVEing and LOADing, keep the cassette player as far as possible from the television because the television line-scan and framescan signals will be picked up by the cassette player;
- On playing back from tape (ie LOADing) keep the volume as high as possible without the television picture breaking up. If the picture begins to break up, this indicates that the input level is overloading the computer circuitry and the playback volume on the cassette should be slightly reduced. Having
found the correct level, rewind the tape to the beginning and try to LOAD the program into the ZX80 again.

If these recommendations still fail to give you reliable SAVEing and LOADing then this article could well help you. The problem is probably due to the low signal level coming out of the MIC socket when SAVEing.

The tape system in the $\mathbf{Z X 8 0}$ is very similar to that in the ZX81, the major difference being the component numbering! As before, one IC output is for both the TV modulator and the tape out socket, via a simple filter with a peak at 3.4 kHz and a roll-off of 6 dB per octave on either side of the peak. Like the ZX81 filter, the loss is -66 dB at the pass frequencies, which leads to only 2 mV of signal at the tape output.

## Circuitry Modification

The reasons behind choosing a FET for this modification were discussed in the previous article, so I won't repeat them here. The new circuit differs slightly from that used on the ZX81 to take account of the different PCB layout.

The DC biasing conditions of the FET are such that the source voltage should be between 1 volt and 3.5 volts and this is achieved by making the source resistance about 4 k and the drain current about 0.5 milliamps.

C13 ( 47 nF ) and R34 (1k0) are retained in their original positions but C14 (47pF) is moved and R35 has to be changed in value only if a manual record-level tape recorder is used. For use with an automatic record-level machine R35 (1MO) is retained but one end has to be desoldered from the printed circuit


Fig. 1 Original tape-recording circuit.


Fig. 2 New circuit; note the difference between this and the circuit published in February.
board. See Table 1 for the values of both R35 and the gate bias resistor that I have called R45.

Most machines used for storing programs on tape are of the automatic record level type. If, with the resistor values shown for R45 (39K), the recording sounds distorted on playback through the cassette loudspeaker, R45 should be reduced in value to 6 k 2 or 8 k 2 . The sum of the values of R35 and R45 should be within the range 900 k to $1 \mathrm{M1}$ to preserve the filter characteristics.

## Doing The Modifications

Remove the five white and two black plastic studs holding the bottom half of the case to the top half and to the keyboard. These are removed by first pushing the centre plastic pins through the outer part of the studs and then pulling the complete stud out of the case.


Fig. 3 How to get inside the ZX80.
Now remove the three plastic clips holding the PCB to the back half of the case by carefully squeezing them and pushing them through the PCB.

For use with manual recordlevel machines, remové R35 (1M0) and insert one end of the new R35 ( 820 k ) into the left hand end of the position vacated by the old R35. For use with automatic record-level machines, desolder only the righthand end of R35 (1M0). The rest of these instructions apply irrespective
of the type of cassette machine to be used.

Carefully remove C14 (47pF) and resolder it in series with R35 so that its right-hand end is soldered into the PCB hole from which the right-hand end of R35 was removed. The left-hand end of C14 should be soldered to the free end of R35 and trimmed off as short as possible.

Solder R45 (See Table 1 for value) in the position shown in Fig. 5. Solder the negative end of C15 $(22 \mu \mathrm{~F}, 16$ volt) as shown keeping the lead short and leave its positive end unconnected for the moment.

If the metal cased 2 N 3823 is used, solder the drain and screen leads together and then cut one of them off. Solder the drain lead to the +5 volt PCB line shown. Connect the FET gate lead to the junction between C14 and R45. One end of a 3 k 9 resistor (R46) is soldered to the $0 V$ lead shown and its other end connected to the positive end of C15 and the source of the FET. It is important to check the connections to the FET and to make sure they are not touching each other.

Put the PCB and the back of the case together again, securing them as before, with the three pushthrough plastic studs inserted from the back.

At this point test the modification by plugging in the television (tuned to channel 36) and the computer power. When the normal computer television picture appears, plug in the two cassette leads to the computer and the cassette, write a two or three line program and SAVE it. LOAD it into your ZX80 observing the suggestions earlier in this article.

## Fault Finding

The FET gate should be at 0 volts, the drain should be at +5 volts and the source at about 2 volts ( 1 V to 3.5 V ). If not, check the connectins and the layout.

SAVE a short program on to the cassette and listen to it through the cassette loudspeaker. If it sounds distorted, reduce the value of R45 as mentioned earlier.

See the February ' 83 issue of this magazine for a fuller fault finding guide.


Table 1 Values of R35 and R45

## BUYLINES

Nothing, but nothing should cause you any problems here. You don't even need a PCB!


Fig. 4 Before (left) and after (right) the modification.


## MULTIMETERS

THANDAR TM3s1
basic accuracy 29 rangigest 0.5" LCD e 0.1\% basic accuracy 29 ranges. Battery life typically 2000 hrs Complete with batteries \& Accessories Carrying ng case £8.84. Universai est lead set $\mathbf{E 1 2 . 0 5 .}$. Service Manual E3.00.

## THANDAR TM353

Bench/portable $31 / 2$-digit 0.5" LCD 0.25
basic accuracy 26 ranges Battery life est leads E88.25. Accessories as TM351.

## THANDAR TM354

Pocket size. $31 / 2$-digit $0.5^{\prime \prime}$ LCD, $0.75 \%$ bastcaccuracy. 14 ranges Battery life 200 test lead set E12.25 case e3.45. Universal

## THANDAR TMAS1

- Bench/portable 41/2-digit 0.4" LCD 0.03\% basic accuracy Full auto-ranging or manual - Sample hold Audible continuify test - Complete with battery and leads $£ 171.35$. AC Adaptor $£ 7.90$, Universal test leads £12.65. Service Manual \&3.00.


## OBCILLOSCOPE

THANDAR SC110A
Bench/portable Low power 10 MHz
 bandwidth 10 mV sensitivity £171.35. Carrying case E6.34. AC Adaptor e7.99. Rechargprobe £8.20, X1 X10 Switched probe £10. $\mathrm{XB}^{10}$ Sorung hook trimmer pack £2.88. Manul. Sprung

GENERATORS
THANDAR TG100 Function 1 Hz to 100 KHZ E90. 85
TG102 Function 0.2 Hz to 2 MHz £188.75 TG105 Pulse 5 Hz to 5 MHz E 97.75


## FREQUENCYCOUNTERS

## THANDAR TF200 10 Hz to 200 MHz

 Bench/portable 8-digit Liquid Crystal Dis play. Frequency range $10 \mathrm{~Hz}-200 \mathrm{MHz}$ Resolution better than 1 ppm Sensifivity ypically 10 mVrms - Time base accuracy 0.3 pm. Battery life 200 hours 5 gate times; external clock facility © Complete with batteries $£ 166.75$.THANDAR TFO40 10 Hz to 40 MHz
Bench/portable 8-digit Liquid Crystal Display. Frequency range $10 \mathrm{~Hz}-40 \mathrm{MHz}$ Resolution 1 Hz . Sensitivity 40 mV rms. - Timebase accuracy 0.5 ppm Battery life 80 hours. Frequency, totalize \& reset: 2 gate times Complete with batteries. £126.50.
ACCESSORIES FOR TF200 \& TFO4O AC adaptor $£ 7.99$, Carrying case $£ 6.48$, X1 Probe 88.05 , X10 Probe E5.20, Service manual E3.00. TP600 prescaler E51.75. TP1000 prescaler 874.75 .

THANDAR PFM200A 20 Hz to 200 MHz - Pocket size 8-digit LED display - Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$. Resolution .1 Hz . Sensitivity typically 10 mV rms. Timebase accuracy 2 ppm Battery life 10 hours. FreKets 4769 Accessories Carring case 53.45 AC adaptor £7.99, X1 probe £8.05, X10 probe £9.20, Service Manual £3.00.

Full spec available on all instruments, just phone or write:

Schools, colleges, universities supplied on official orders.
Prices inciude VAT. Please add $£ 1.00$ postage to orders under $£ 20.00$.

AUTUMN CLEARANCE SALE
ALL YOUR FAVOURITE MODULES AT
RIDICULOUS PRICES WHILST STOCKS LAST!

31000 SLC
The famous high performance three channel sound to light modulator with automatic switching to chase. 1000W per chan. £25

MULTI-4
Various four channel chaser effects in both manual and sound modes, plus LED drive circuits.

31000 SL
Basic three channel sound to light modulator with high performance filters Bass-mid-treb-master. 1000W per chan.

PA3 - (MAG OR CER) The popular compact disco module with all the facilities for a stereo deck. Drives any power amplifiers.

## 41000 SLC

Similar to the 3SLC but four channels and auto level filters and LED drive circuits.

## 41000LCS

Four channel forward man/ sound chaser, as other modules up to 1000 W per channel.

## FASCIA PANELS

For all types of lighting modules, complete with knobs/ rocker switch, and some with LEDS Blue/white.$E 5$

## ACO1

Active crossovers for three way sound system. Individual channel and master controls.
n/
$E 18$
obs/
5

## POWER DIMMER MODULES

For band and theatre applications, these modules provide the ideal do-it-yourself package for custom designed lighting systems. Available in local or low voltage controlled remote formats and various chase/ sound to light effects.
Extensive information upon request.
PHONE OR WRITE FOR FREE DATA SHEETS.
NOTE: ALL PRICES INCLUDE VAT.
Please add 75p for postage on individual modules.
Cheques/PO/Access all welcome.
Tel: 01-640 6053 or 01-689 4138
L\&B ELECTRONIC
34 Oakwood Ave., Mitcham, Surrey

## FOR HI-FI \& ELECTRONICS ENTHUSIASTS CONCEPT ELECTRONICS LTD 51 Tollington Road, London N7 6PB <br> Mail order only

We are the specialist of electronic kits and rack mounting cabinets. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation control modules, music generator, battery flourers, cbamplifiers, test equipment, counting cabinets etc with illustrative pictures now available at the quality rack mounting
25p p\&p.
Professional rack mounting cabinet

| Penel Size | Rear Box | Price |  |
| :--- | :--- | :--- | :--- |
| WH (inch) | WH H | AL | STEEL |
| $19 \times 5$ | $17 \times 4.5 \times 10$ | 27.54 | 23.54 |
| $19 \times 4$ | $17 \times 3.5 \times 10$ | 25.24 | 21.24 |
| $19 \times 3.5$ | $17 \times 3 \times 10$ | 24.09 | 20.09 |
| $19 \times 3$ | $17 \times 2.5 \times 10$ | 24.09 |  |
| $19 \times 2.5$ | $17 \times 2 \times 10$ | 22.94 | 18.94 |
| $19 \times 6$ | $17 \times 5.5 \times 12$ | 28.69 | 24.69 |
| $19 \times 5$ | $17 \times 4.5 \times 12$ | 27.54 | 23.54 |
| $19 \times 4$ | $17 \times 3.5 \times 12$ | 25.24 | 21.24 |
| $19 \times 3.5$ | $17 \times 3 \times 12$ | 24.09 | 20.09 |
| $17 \times 3.5$ | $15.5 \times 3 \times 9$ | 21.79 | 17.79 |
| $17 \times 2.5$ | $15.5 \times 2 \times 9$ | 20.64 | 16.64 |
| $17 \times 4$ | $15.5 \times 3.5 \times 1225.24$ | 21.24 |  |
| $17 \times 3$ | $15.5 \times 2.5 \times 1224.09$ | 20.09 |  |

Please add $£ 2.50 \mathrm{p} / \mathrm{p}$ per item
$\star$ Wholly made of black anodised aluminium sheets $\star$ Suitable for high quality amplifers and many other purposes $\star$ Top, side and rear cover removable for access $\star$ Separate front mounting plate $\star$ Heavy gauge front panel is of brushed aluminium finish enhanced with two professional handles With ventilation slits and plastic feet.
The low cost steel version is also avaitabie. The size and features as well as the front panel is the same as the aluminium cabinets except the rear box is manufactured from panel is the sameas th
steel painted in black.

CONTROL MODULES


TY-7 Electronic touch switch
TY-1 1 Light activated switch $\mathbf{\text { E4.50 Ass. }}$
E2 20 KIt $\mathbf{8 3} .50$ Ase.
TY-18 Sound activated switch
(Clap switch) $£ 4.50 \mathrm{Kit}$ £5.95 Ass. TY-38 Sound activated switch
(voice-switch) £5.50 Kit £7.50 Ass.
Tr-41 infra-red remote control
(Receiver and transmitter)
E17.20 Kit £21.95 Ass.

HI-FI AMPLIFIER MODULES


TA-323A 30W + 30W stereo amplifier TA-820 60W + E18.95 Kit E23.98 Ans. TA-820 $60 \mathrm{~W}+60 \mathrm{~W}$ stero amplifier TA-920 70W +70 W stereo amplifier e35.50 KI £35.50 Kit £42.50 Ass.

## CAR ALARM

## Alarmed at the prospect of your car taking a walk? Ian Forster shows you how to protect it, or your house, a little better. Development by Phil Walker.

This multi-purpose alarm unit can be used in a car, or, if desired, in the home with the addition of a 12 V power supply. The basic version provides for a fairly simple alarm that can be
triggered either by a negative-going or a positive-going pulse. If the source of the alarm is removed, the unit will reset itself, as is required by law (and one's neighbours!). There is a delay of
approximately 16 seconds before sounding a piezo alarm, which could be used as a warning, and the main car horn will be sounded after about 24 seconds.

There seems to be a good

| RESISTORS (all $\frac{1}{4}$ W 5\%) | C4, 6, 8, 9 | $33 \mu 16 \mathrm{~V}$ axial | Q4, 6 | BC182, TIP31, |
| :---: | :---: | :---: | :---: | :---: |
| R1, 2, 5 56K |  | electrolytic |  | BD131 |
| R3 560K | C5 | $100 \mu 16 \mathrm{~V}$ axial | Q5, 7 | BC212 |
| R4, 8 10k |  | electrolytic | D1-6 | 1N4148 |
| R6 470k | C7 | 100 n or $1 \mu$ | D7-10, 12-15 | 1N4148 |
| R7 100k |  | unpolarised (3ee | D11 | OA91 |
| R9 1k0 |  | text) | L.ED1 | single LED |
| R10, 12 270k | C10, 11 | 100n ceramic or |  |  |
| R11 820k |  | polyester, 24 V min | MISCELLANEOUS |  |
| R13 18k | C12 | $100 \mu$ axial | RLA1 | 12 V (or 24 V , see |
| R14 33k |  | electrolytic, 24 min |  | text) relay, NO |
| R15 680R | C13, 14 | 100n ceramic or |  | contacts |
| R16, 17, 18, 19, 20, 18 k |  | polyester | Piezo tweeter or piezo horn (see text), normally open push-button switch, PCB, wire, etc. |  |
| 21 $18 k$ <br> $R 22$ $100 k$ |  |  |  |  |
| $\begin{array}{ll}\text { R22 } \\ \text { R23, } 24 & \text { 100k } \\ \end{array}$ | SEMICOND |  |  |  |
|  | IC1 | 4093BE |  |  |
| CAPACITORS | $\text { Q1, } 2$ | $\mathrm{BC}^{\text {C212 }}$ | NOTE: Items in italics are for the extension options. |  |
| C1, 2, 3 <br> 100n ceramic or polyester | Q3 | $\begin{aligned} & \text { BC182, TIP31, } \\ & \text { BD131, } \end{aligned}$ |  |  |

Fig. 1 Circuit diagram: the basic circuit is shown in black and the optional sections in blue.



Fig. 2 Component overlay for the PCB.

## HOW IT WORKS

The basic circuit is that of a latch, built round IC1a and IC1b, and two drivers for the audible alarms, built round IC1c and Q1, and IC1d and Q2. However, it's not quite that simple . . .

On switch-on, C4 and C5 share current via D3 pulling one of the inputs of IC1b low, which disables the latch until C5 is charged and C4 discharged via R3: this prevents the circuit being immediately activated at switch-on. If any troubles develop in this respect, it may well be because the values of C4 and C5 are not correct, electrolytics having very wide tolerances. On switch-off, C5 is discharged via D4 and R4.

A negative-going pulse at INPUT1 or a positive-going pulse at INPUT2 will trigger the latch, causing the output of IC1a to go high. C6 charges via R6 and C8 via R11, and LED1 is lit via R14, Q3, R15.

When C6 reaches a sufficient voltage, IC1c will start to oscillate at a frequency determined by C7/R7. For use with a piezo tweeter as a horn, C 7 should be

100n which will give an oscillation frequency of 3 kHz . This can be fed to a piezo tweeter via R8 and Q1, to make a very unpleasant sound in a would-be thief's ear! R9 is needed to discharge the tweeter because there is no DC path through these beasties, and it would otherwise just sit at around $+V$.
Similarly, when C8 reaches a sufficient voltage, IC1d will begin to oscillate at about 1.5 Hz , and this will turn the car horn on and off via R13, Q2 and RLA1. D6 protects Q2 against back-EMF from the coil of RLA1. The output of IC1d is also used to pump down C4 (via D5 and R10) so that the latch will be reset after a period, but will retrigger almost immediately if the input conditions persist.

Circuit A allows a 24 V relay to be used instead of a 12 V one. C7 should be changed to $1 u 0$ to lower the oscillation frequency of IC1d to $300 \mathrm{~Hz} . \mathrm{C10}, \mathrm{D} 7$, D8 and C11 and C12 form a fairly straightforward voltage doubler to provide the 24 V necessary. Q4 is needed to
invert the output from Q2 and pull down rather than up.

Note that in either case, you connect the relay contacts to suit your car - we have shown how to connect them when your car switches on the positive line to sound the horn, but some (eg Minis) switch the negative side, the positive side of the horn being permanently connected to the 12 V supply.

Circuit B can be used to substitute a self-oscillating piezo-horn for the piezo tweeter - this could be useful if you use a 24 V relay with circuit A .

Circuit $C$ passes a small current through the car horn; if the connection to the horn is interrupted, the alarm will be triggered.

Circuit $D$ is the fast-acting circuit; when the normally open external contact is closed, Q7 is turned on, and this charges C6 and C8 via R22, and D12 and D15, as well as latching the alarm in the usual way through C14. D13 and 14 and R23 and 24 are necessary to reset this circuit.
supply of 24 V relays around at bargain prices, mainly because they're a lot less convenient for most circuits than 12 V types. For this reason, the circuit can be adapted to drive a 24 V type, as shown in circuit A (shown in blue on the main circuit diagram). This circuit has the disadvantage that you cannot use the piezo tweeter, and circuit $B$ shows how to connect a self-oscillating piezo horn instead.

A common thieves' tactic is to cut the lead to the horn before attempting to break into the car itself. This can be foiled by circuit C, which will trigger the alarm if this is done - note that once the horn lead is cut, there is no way that it can be used, so just the warning siren will go off.

Finally, there may be some items that you may want to protect
with a fast-acting alarm, and circuit D provides for this: all that is needed is a set of normally open contacts that can be arranged so as to close.

The method you use to trigger the car depends on how your car is wired up. Most cars have courtesy light switches mounted in the door pillars, and these could be used. Another possibility is to use mercury switches to detect any motion or disturbance.

## Construction And Setting Up

Construction of the PCB should present no problems, provided the usual precautions are followed. Things being what they are, it would also be best to make up your mind which options you want before building, though at a pinch
bits and bobs can be added later.
As mentioned in How It Works, should there be any problems with the circuit arming at switch-on, then C4 and C5 are the most likely culprits.

If you use circuit $A$ with a particularly current-thirsty relay, then it may be possible that R9, C10 and C12 will need revising (R9 should be reduced in value, C10 and C12 should be increased); Q1 may possibly need upgrading to a high gain medium power type and/or heatsinking, as might Q4.

Otherwise, your biggest headache will be the triggering switches. Unfortunately, we can't advise you generally on this because everybody's car or home will vary; but let us say that careful though put into this aspect will not be wasted.

## BUYLINES

Nothing here should present any problems. A self-oscillating piezo-alarm is available from Maplin and the PCB is, as ever, available through our very own PCB service.

## BUILD A BETTER AMPLIFIER!



How can you own a top class Hifi amplifier, of comparable standard to Naims, Meridians, Quads etc., for an outlay of less than £250? - Simple! Built it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "poted" as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will'give years of untroubled service. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your system. E.T.I. said, in their review of the CK $1010 / 1100$ : "I can say no more than that for $£ 250$ it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?
PRICES $\star$ Summer Special Offer: Buy a CK1010 and any CK power amplifier and get an MC2K board freel!* $\star$
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes power from any CK power amp or separate p.s.u. type
CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chane
$£ 92.00$
CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
CK1080 - STEREO POWER-AMPLIFIER 80 watts R.M.S./Chanel
£121.00
CK1100 - STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
£134.00
MC2K - Moving coil add on kit for CK1010
£151.00
$\mathbf{E 2 5 . 0 0}$
P.S.K - power supply for CK1010 (if not used with a CK power amp) £20.00
CRIMSON also supply power amp, pre amp and electronic crossover modules, power supplies and hardware - too much to list here - but on receipt of an S.A.E. we will be happy to supply full details.

TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd 325 Edgeware Road, London.

* Offer closes 31 st July 1983 (Return this ad with your order)


## electronics today international 500 B 8 <br> How to order: indicate the books required by ticking the boxes and send this page together with your payment. to ETI Book Service, Argus Specialist Publications Litd, 145 Charing Cross Road, London WC2 OEE Make cheques payable to ETi Book Service Payment in sterling only please. All prices include $P$ \& P. Prices may be subject to change without notice

## BEGINNERS GUIDE

Beginner's Guide to Basic Programming Stephenson
Beginner's Guide to Digital Electronics
Beginner's Guide to Electronics
Beginner's Guide to Integrated Circuits
Beginner's Guide to Computers
Beginner's Guide to Microprocessors

## C00KB00KS

```
Master IC Cookbook Hallmark _{10.1
Micropracessor Cookbook M. Hordeski
IC Dp Amp Cookbook Jung
PLL Synthesiser Cookbook H. Kinley
Active Filter Cookbook Lancaster
Active Fitter Cookbook Lancaster 
CMOS Cookbook Lancaster
TTL Cookbook Lancaster
Micro Cookbook Vol. }1\mathrm{ Lancaster
BASIC Cookbook K. Tracton
MCDB0S Cookbook C. Warren
Master IC Cookhook Hallmark (f10.15
    £7.70
    f14.25
```

Design of Active Filtars with experiments Berlin
49 Easy to Build Electronic Projects Brown
How to build Electronic Kits Capel
How to Dasign and build electronic instrumentation Carr
introduction to Microcomputers Daglecs
Electronic Components and Systams Dennis
Giant Handbook of Computer Software
Giant Handbook of Electronic Projects
lasic Electronics Grob
Introduction to Digital Electronics \& Lagic Joynson
Electronic Fault Diagnosis Loveday

ELECTRONICS
electronics

Principles of Transistor Circuits Amos
Principles of Transistor Circuits Amos ..... 58.50
611.30
65.6049 Easy to Build Electronic Projacts Brown

Electronic Devices \& Circuit Theory Boylestad ..... $\$ 1320$ow to build Electronic Kits Capecomputers Daglec33.557.20

Principles of Electronic Instrumentation De Sa
Pectronic Components and Systems Dennis
Principies of Electronic instrumentation De Sa ..... 11.0Fiant Handhook of Computer Software12.95

Giant Handbook of Electronic Circuits ..... 817.35fiant Handhonk of Electronic Projects

Electronic Logic Circuits Gibson
Eectronic Iogic Circuits Gibson ..... 511.75

Analysis and Design of Analogue Integrated Cirtuits Gray
Aasic Electronics Grob ..... 30.25

lasers - The Light Fantastic Hallmarktroduction to Digital Electronics a Logic Joynson111.30

Electronic Testing and Fault Diagnosis Lovedaylectronic Fault Ulagnosis LovedayE7.70

Essential Electronics A-Z Guide LovedayMicroelectronics Digital \& Analogue circuits and systems Millman87.50
103 Projects for Electronics Experimenters Minis ..... 6.30
Si Systen Design Murog34.10
Power FETs and thair application Oxner ..... $\pm 9.43$
Practical Solid State Circult Design Olasky ..... E25.00
Master Mon ..... E12.85
Electronic Drafting and Design Raskhodoff ..... 29.15
OM - VTVM Handbook Risse98.50
ideo and Digital Electronic Displays Sherr ..... 28.85
Understanding Electronic Componef7.50
Efectronic Fault Diagnosis Sinclairf4.50
Pyalcs of Somiconductor Devices Sze517.3532.0
retive Fitter Hand wic
ctive Filter Handbook ..... $\pm 7.00$Designing with TTL Integrated Circuits Texas15.20ransister Circuit Desion Texas15.20
Digital Systems: Principles and Applications Tocc
12.50
12.50
Master Handbook of Telephones Traister68.60
595
How to build Metal/Treasure Locators Trais
99 Fun to Make Electronic Projects Tymony33 Electronic Music Projects you can build WinstonE6.5
COMPUTERS \& MICROCOMPUTERS
BASIC Computer Games Ah ..... E6. 35
From BASIC to PASCAL Anderson ..... f995
Mastering Machine Code on your ZX81 T. Baker ..... £7. 25
UNIX - The Book Banaham ..... $\mathbf{£ 8 . 7 5}$
$\mathbf{£ 1 0 . 9 5}$
280 Microcomputer Handbook Barden
280 Microcomputer Handbook Barden ..... £10.95Microcomputer Maths Bardenf11.50Digital Computer Fundamentals BarterE1555
Visicalc Book. APPLE Edition Bell ..... 15.55
Yisicale Book ATARI Edition Bell ..... 23.00
ntroduction to Microprocessors Brunner69.65
Programming your APPLE II Computer Bryan ..... 69.25
Microprocessor Interfacing Car ..... 57.70
Microcomputer Interfacing Handbook AD \& D/A Carr ..... 528.85
30 Compester Programs for the Home Dor in BASIC D. ..... Eg 25Microcomputars Uirkson69.30
69.50
APLE Personal Computar for Beginaers Dunn ..... 511.80

Troubleshooting Microprocessers and Digital Logic Goodman Geting Acquainted with your VC 20 Hartnell
Getting Acquainted with your 2Xe1 Hartnell
Lat your BEC Micro Teach you to program Hartnell
rogramming your $\mathbf{Z X}$ Spectruin Hartnell
The ZX Spectrum Explored Hartnell
59.25

The 2x spetrim Exior Harnor
Haviland
BASIC Principles and Practice of Wicroprocessors Heffer
Hints and Tips for the $\mathbf{2 X 8 1}$ Hewson
What to do when you get your hand on a Microcomputer Holtzman 34 Mere Tested Ready to han Game Programs in BASIC Horn
Nicrocomputer Builders' Bible Johnson
Digital Circuits and Microcomputers Johnson
PASCAL for Students Kemp
The C - Programaing Language Kemighan
COBOL Jackson
The ZXIt Compannion Maunder
Guide to Good Programming Practice Meak
Principles of Interactive Computer Graphics Newman
Theory and Practice of Microprocessers Nicholas
Exploring the World of the Personal Comptter Nilles
Microproceseer Circuits Vol 1. Fundometels and Microcontrollors $\mathrm{E12}$
Beginner's Guida to Microprocessors Parr
Microcomputer Based Desiga Peatman
Digital Hartware Design Peatman
BBC Micro Reovealad Ruston
Handbook of Advanced Robotics Safford
001 Things to do with your own persenal cemputer Sawusch
Easy Programming for the $\mathbf{Z X}$ Spectrum Stewart
Microprocesser Appllcations Mandbook Stout
Aandhook of Wicreprocessor Design and Applications Stout
Programming the PET/CBN West
An Intruduction to Microcomputer Technoloey Williamson
Computer Peripherals that you can build Wolfe
Microprocesears and Microcomputers for Engineeriag Students and Techni ciens Wooland

## REFERENCE BOOKS

 I wish to pay by Access/Barclaycard. Please dehit my account.

## 52 $\mathrm{I}_{2} 41111111111$

$\square$
$\qquad$
$\qquad$
$\qquad$


## N EM/I MODULAR AUTOMATIC <br> £24.50 $+£ 1 \mathrm{p} \& \mathrm{p}$ <br> Each ready built module is a complete exchange

 providing up to ten extension lines$\star$ Simply connect'phones and power supply
$\star$ Only two wires to each telephone

* Uses ordinary dial or push-button 'phones
* Complete privacy for conversations
$\star$ Range of several miles
* Fully expandable system

Each module allows two 'phones to be used at one time, two modules allows four, etc.

| RECONDITIONED <br> TELEPHONES <br> $+£ 1.80$ p\&p. 2 for $£ 28+$ <br> Push Button $746 \quad £ 975+$ <br> £1.80. 2 for $£ 18+£ 2.50$ <br> Recent Style Dial Phones <br> $\mathbf{£ 4 . 7 5}+£ 1.80 .2$ for $\mathbf{£ 9}+$ $£ 2.50 .5$ for $£ 20+£ 5$ <br> Seconds (in good working <br> ${ }^{\text {Class }} 1 \mathrm{E} 3.50+£ 1.80 .5$ for <br> $\mathbf{E} 15+\mathbf{£} 5$ <br> Class 2 (discoloured) $£ 2.25+$ $£ 1.80 .5$ for $£ 9+£ 5$ |
| :---: |
| UNISELECTORS. $50 \mathrm{v}, 4$ Bank - Homing Bank, 25 way $£ 3.50$ |
| Desk-top Ten Way Manual Exchange (key $\&$ lamp unit) with instructions $\mathbf{E 8}+\mathbf{\varepsilon 1 . 8 0} \mathbf{~ P \& P}$ |
| Send S.A.E for free leaflet on telephone systems. |


BUY ONE EACH OF ABOVE FOR $£ 5.50$

GEAREDSynchronous motor, 8 r.p.m. 240 V A.C. 3 Watt E2.

SOLENOIDGASVALVE. 240 VA.C. 5 P.S.I. suitable for non-corrosive fiuids. $\mathbf{E 2 . 2 0}$

BULGIN 3 pin free plug $\&$ panel socket. 2A 240 V 50p

DIAL-OUT WITH YOUR COMPUTER. PCB.'s convert binary to dialing pulses and enable your computer to Tested. $\mathbf{E} 12$ with explanatory notes.


## L.E.M. SERVICES

22 Emscote Road,
Warwick,
Warwickshire
Tel: 0926490740
ALL ITEMS - MONEY BACK IF NOT DELIGHTED

ADD 50p P\& ORDERS OVER E7.50 POST FREE uniese stated otherwise


## ELECTROVALITE



## BUYING GUIDE

It's amazing what you'll find in the pages of our current price list, be you beginner, expert or professional. The list below gives some dea of the enormous stocks we carry and our service is just everything you look for. Write, Phone or call for our Summer price list now!

It's FREE! Good Bargains Good choice mention
when
Access' facilties
Aerosols
Batteries
Boxes
Breadboards
Computers \&
equipmnt. Capacitors
ELECTROVALUE LTD. 28 St. Jude's Rd., Englefield Green, Egham, Surrey TW20 OHB. Phone - Egham 33606 (STD 0784: London 87) Telex: 264475 Northern Shop 680 Burnage Lane, Manchester (Caliers Only) EV (061-432 4945) Computing shop 700 Burnage Lane M/c. (061-432 4866).

|  |  |
| :---: | :---: |
| Full Kits Inc. PCBs, hardware, electronics, cases (unloss stated). Less batterios. <br> Project reprints 45p extra. Soparatoly $45 \mathrm{p}+\mathrm{pl} \mathrm{p}_{\mathrm{p}}$ |  |
|  |  |
| mAlanced infut preamp May 83 | Leo Jewtuer jut |
|  | GUTA NOTE EX A MOER April 81 <br>  |
|  | GOUW C Fit ETETHOCOPE Mar B1 LEM E20. |
|  |  |
|  |  |
|  |  |
|  <br>  |  |
| HESTCONTNOL Fob 82 ...................28.45 | Eu9.98 |
| MAGENTA ELECTRONICSLTD | Official school orders weicome |
| Statis., DE14 2ST. Mail Order Only | OVERSEAS: Payment muat be in sterling PRISH REPUELIC + EFPO - UK PAICES |
| 10283) 664 |  |
| (eat | EUROPE: UK PRICES + 10\%. <br> ELSEWHERE: WRITE FOROUOTE |

# HOW PERMANENT IS PERMANENT? With the silicon revolution in full swing, everybody from private individuals to the governments of nations are dependent on the use of magnetism for the storage of information. Is our faith in the technique misplaced? Vivian Capel investigates. 

Some years ago it was reported that the BBC were considering whether or not to dispose of their vast library of sound recordings on disc after dubbing them on to tape. The decision was against, because although there would be considerable savings in space, magnetic recordings were deemed to be too ephemeral to trurst as the medium for preserving so many historic and unrepeatable sounds.

This decision would seem to be justified by the fact that on more than one occasion broadcasts have had to be cancelled because the tape had been inadvertently wiped. Imagine if this had happened to an historic only copy! Most users of magnetic storage for sound, video and computer programs will know that this is all too easily done!

Video recordings in particular would seem to be vulnerable. Each picture field with all its colour information and light and shade detail is stored in a single microthin magnetic diagonal line, much narrower than a human hair, across the width of the tape which itself is a thin plastic film. Compared to that a cine film seems positively robust.

As most readers are aware, erasure of a magnetic recording is usually done with a magnetic field. In modern equipment, this is nearly always an alternating field applied either from an erasing head or from a special erasing unit. In some older cheap reel-to-reel recorders erasure was achieved by bringing a permanent magnet into contact with the tape.

Quite fascinating stories have circulated which tell of a credit-card company that was almost put out of business when a workman walked through its computer centre with a magnet in his toolbox, thus erasing all the magnetically stored data. An even more interesting one concerns the Inland Revenue records that were wiped clean by a nearby airport radar! Hope springs eternal ...

Another way that the magnetization of a tape can be destroyed is by heat. Apart from the effect of heat on the plastic substrate, above a certain temperature (known as the Curie point), a magnetic material will lose its ability to hold magnetization. This phenomenon is made use of in some brands of thermostatic soldering iron. Here, a disc made of magnetic material is placed in the bit of the iron. In the barrel of the iron is a small magnet, which, because it is attracted to the material in the bit, holds a contact shut. When the iron comes to the required temperature, which is also the Curie point of the bit, this attraction ceases, opening the contact and cutting off the heating current.

Now before everyone dashes out to dispose of their video recorders and floppy disc drives so as to get the best price before the rush starts, let us take a closer look at the
process of demagnetisation. A fully magnetised tape, like any other magnetised material, needs a certain minimum field strength applied to its surface to impress or remove magnetism. This field strength is known as the coercivity of the material. To understand how this works, you could think of a thug trying to get you to do something you didn't want to do - for example, hand over your money. If the thug applies enough coercing force, you must give way. However, your capacity to resist will depend on how strong you are. It's just the same with magnetic materials - some are much harder to magnetise (and to demagnetise) than others.

For audio cassettes a figure for coercivity of around 300 to 400 (ie 2.4 to $3.2 \times 10^{4} \mathrm{~A} / \mathrm{m}$ to our SI readers) oersteds is common, video tapes are usually somewhat higher. This means that a magnetic field of that order would be required to demagnetise a fully magnetised (or saturated) tape. Of course, tapes are not recorded into saturation otherwise the recorded signal would suffer distortion, so a normally recorded tape would be completely erased by a lesser field that that of the specified coercivity. Even so, it would take a field of at least 100 oersteds to do any damage to the recording.

So what sort of fields do we find around domestic equipment? External fields depend on the current flowing in the apparatus and the number of turns if a transformer, motor winding or other inductive component is involved. It also depends on the efficiency of the internal magnetic path. For example, a toroidal mains transformer is more efficient in containing the field through its core than a laminated type. Thus there is very little fieid external to a toroidal transformer. Equipment screening is another factor.


Magnetic tape - too ephemeral for the BBC.

A power drill running under full load will take a heavy current and the internal magnetic path is not particularly efficient taking in, as it must do, the rotating motor amature. So we can expect a sizeable external field. Surprisingly, the field at the casing of a domestic power drill under load has been measured at around 10 oersteds. This is well below that which could affect a recorded tape. House wiring and flexible mains leads also generate fields, but even when carrying a heavy current these are not great. The reason is that cable is reasonably straight and so constitutes only a single turn compared with the hundreds of turns of a transformer or motor windings. Further more, both live and neutral are contained within the same cable, and as these are carrying equal and opposite currents, there is a high degree of cancellation of the produced field. (For maximum cancellation the conductors would need to be tightly twisted.) So there is not much to worry about from these.

Permanent magnets are fairly common in domestic equipment - a few examples are in loudspeakers, tin openers, magnetic door catches, magnetic switches for burglar alarms, etc. Some of these produce fields of 1,000 oersteds and more, and could constitute a real hazard. Any such device coming into direct contact with a recorded tape or disc would certainly wipe that portion of the recording clean.

One factor which saves endangered recordings is that magnetic field is very strongly dependent on distance. For a single magnetic pole, the magnetic field would be proportional to the inverse square of the separating distance. However, magnetic poles come in opposite pairs, and this has the effect of making the field fall off even more quickly - the further you get away from the one pole, the more the field from the other pole tends to cancel out the field altogether.

This has the consequence that the casing around a video cassette, for example, will be sufficiently thick to protect it from contact with most small magnets - but it's still probably not a good idea to have a magnetic catch on the door of the cupboard in which you keep your tapes, just in case!

The situation is somewhat different with a floppy disc. This is contained in a protective packing similar to an ordinary record sleeve except that the disc is played inside the cover through a slot. The sleeve is there mainly to protect against finger marks and other minor handling hazards. It is not very thick, about 0.5 mm , so any magnet that was brought into contact with it would almost certainly wipe part of the information on the disc. Therefore, some care is needed in handling and storing these.

Then what about those stories of chain-reactions, with whole shelves of tapes being wiped out by a single stray field? It is possible for such a reaction to take place along the length of a single tape if the recording is of very low level. This was demonstrated some years ago by a team who were developing a method of recording very high frequency square waves with zero bias. The recorded signals were of very low amplitude but at one stage the recording level was accidentally increased to ten times that of normal. It was found that the previous 1,000 feet or so of recording had been wiped out by the excessive flux form the recording head at that one point travelling backward. To verify that this in fact was the cause, the conditions were repeated and other possible factors eliminated. The result was the same: erasure of the entire reel.

This however, does not happen under normal circumstances. In fact, it is a common practice to erase part of a tape by re-recording it, while the remainder stays unaffected. Audio tape enthusiasts having open reel machines often eliminate clicks and bumps in amateur
productions by judicious use of a permanent magnet, and post-recorded fades can be made by sweeping a magnet over the particular length of tape while gradually raising or lowering it.

So with normal recordings the tape affected is only that portion which comes in close proximity to the magnetic field. As for several tapes being wiped by chain reaction, this is just a myth. The only way a number of tapes could be affected would be if there were a pervading field of such intensity as to exceed the tape coercivity at the surface of the tapes themselves.

There are stories in circulation about flash bulbs being triggered off by radar installations, and demolition teams that won't use electrical detonators nearby; and indeed, directly in front of a radar dish a magnetic field of several thousand oersted can exist. This would certainly be enough to wipe any magnetic tape clean, but any person in the vicinity would already be experiencing a few problems on their own account! In any case, airports and other users of radar don't like bodies getting in the way, so the antennae are usually mounted well away from people.

However, the question of whether or not a strong electromagnetic radiation field could cause erasure is worth exploring. 3 M , the tape manufacturers conducted some experiments to determine this in America. The object was to discover the effect of microwave energy. Reels of recorded tape were actually placed in a microwave oven and the power applied until the reels and the tape began to melt and burn. Those parts of the tape that were not physically damaged were examined and the recording was found to be unaffected. The tape had not demagnetised.

A further experiment was tried using radar. Reels of recorded tape were placed directly in front of a radar dish having a range of 250 miles, Two lots of tape were used, one placed at a distance of 18 feet, and the other much closer at 16 inches. These were scanned by the radar beam for 16 minutes, then removed and examined. It might be anticipated that the nearer tapes would have suffered from the magnetic field, but in fact both lots were unaffected. There was no physical damage, and the recorded signal level was the same as before.

So, radar can be eliminated as a hazard for magnetic recordings, but there is another potential danger for tapes that are transported by air travellers, and also by air freight. Firstly, baggage, or packages that are sent through the post which for some reason may give rise to some suspicion, may be examined by means of X-rays. In other experiments by 3 M , recorded tapes were exposed to X-rays of much higher level that those normally used for parcel examination. Again there was no ill effect and the


Floppy discs - the most vulnerable to demagnetisation.
recordings were intact, with no loss of signal level.
Secondly, at most air terminals, passengers are required to pass through a weapons detector with their hand luggage. These devices are magnetically operated, so what effect could they have on a recording? The majority are passive, that is they do not produce a magnetic field of their own but measure changes in the earth's magnetic field caused by ferrous objects. These pose no threat at all to recordings.

Other detectors are active. These produce a magnetic field in a doorway or other region through which the passenger must pass. Any metal object distorts the field, and the change is detected by instruments. Usually the field employed is quite low, in the region of 20 oersteds, which is insufficient to affect a magnetic recording. There are some detectors, though, that go up to 100 oersteds. Although below the coercivity of fully saturated tapes, they do constitute a hazard. While in most cases no damage may result, if there is reason to suspect that a high intensity field is in use it may be safer to advise the staff that you have recorded tapes, and request a visual examination instead.

Could, under normal circumstances, the temperature ever go sufficiently high to affect recordings? Certainly it's common experience that the temperature inside a car with its windows closed can soar to the unbearable - particularly in countries blessed with warmer climates than Britain. However, for iron oxide the Curie point is around $850^{\circ} \mathrm{F}\left(450^{\circ} \mathrm{C}\right)$ and physical damage to the tape substrate or case (or to the recorded itself) would occur long before this temperature was reached.

The Curie point for chromium dioxide is $250^{\circ} \mathrm{F}$
$\left(120^{\circ} \mathrm{C}\right)$ which, although still above boiling point and hence unlikely to be attained in a domestic environment, can still cause problems. This is because as the temperature rises towards the Curie point (remember that physical phenomena are governed by the absolute temperature, and although $50^{\circ} \mathrm{C}$ looks a long way from $120^{\circ} \mathrm{C}$, the equivalents $323^{\circ} \mathrm{K}$ and $393^{\circ} \mathrm{K}$ look a lot closer) magnetic materials become much more susceptible to small magneitc fields. This principle was at one time used in the copying of videotapes: heat was used to transter the magnetic pattern from the master tape to an intermedaite medium and from that to the copies.

So one possible effect of excessive heat is printthrough, ie signals from one layer of tape getting superimposed on an adjacent one to give pre- or post echo. This can and does happen at normal temperatures when thin (long playing) tapes are spooled up without playing, for long periods. High temperatures can therefore increase this risk. Print-through is also more likely in the presences of an external field which would be insufficient to erase the tape.

To sum up, there is not very much danger to magnetic tapes in most domestic environments apart from print through, provided the common sense precautions are taken. Obviously, if you allow a combination of hazard factors to occur together, the risk to the recording is increased commensurately.

I would add on a personal note that audio recordings made by me some 30 years ago have survived various hazards and sound as good today as they did on the day they were made.

## FEEL HEALTHIER WITH ZEPHION <br> Bring fresh clean air into your home with

 the Zephion Air Ioniser.

Air free from smoke, dust and other pollutants of modern day living can bring to many the relief of breathing com-
fortably once again. fortably once again.
We are confident that you will be delighted with the Zephion Air loniser, but if you are not entirely satisfied a full money back guarantee is available if items are returned in good condition within 28 days.



## PCB FOIL PATTERNS



MARVIN's Interrupt Board (from ETI Sept)


MARVIN's I/O Board (from
ETI Sept)

ZX Supply Protector


Typewriter Interface


NiCad Charger (from ETI Sept)

## TT LWESAGAIN!

From the past it came, growing dally, striking terror into the hearts of lesser publications, and spreading its influence aciuss the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Elec tronics - It's Easy. Originally a long-running series in Electronics Today Internatıonal, Electronics - It's Easy was pritited as a set of three books. They sold out. It was reprinted as a single volume it sold out Now this phenominally successful publication is avaılable again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the: basic, prificiples and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mall order using the coupon below. Make cheques or postal orders wayable to ASP Ltd, alternatively ycu may pay by Access or Barciaycard.



## MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers in this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided:

1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day.

Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for any one advertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payments made in response to catalogues, etc, received as a result of answering such advertisements):
CLASSIFIED ADVERTISEMENTS ARE EXCLUDED.

## THEATRE \& BAND LIGHTING

## $12 \times 1 \mathrm{~K}$ LESS THAN £200!

The days of hiring your electronics are over. Youknow we manufacture a range of power packs, desks, lanterns, stands, etc. NOW WE ARE PLEASED TO INTRODUCE THE APD SERIES OF MODULAR DIMMERS. Incorporating technology that allows the control of Inductive as well as resistive loads, you build a system exact to your requirements, and save a fortune in process. So where is the sense in hiring????

## Contact our sales for free infor:

The Sales Manager
MJL SYSTEMS LTD 45 Wortley Road w. Croydon CRO 3EB Surrey, U.K.
Tel: 01-689 4138
(Mon-Fri 9-5pm)

PARNDON ELECTRONICS LTD.
Dept. 23, 44 Paddock Mead, Harlow, Essex. CM18 7RR. Tel: 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance Bandoliered and colour coded. Full Range 1RO-10M. $\mathbf{8 1 . 0 0}$ per hundred mixed (Min 10 per value) $\mathbf{£ 8 . 5 0}$ per thousand mixed (Min 50 per value) Special stock pack 60 values. 10 of each $\mathbf{£ 5 . 5 0}$


Full List Available - Send SAE ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK $£ 1.00$ OVERSEAS $£ 5$ CASH WITH ORDER PLEASE Same Day Despatch

## PROBLEMS WITH THAT PROJECT?

We will - * BUILD<br>* TEST<br>* REPAIR

All your Electronics Kits and projects.
Prices from only $£ 5.00$
*Call us now for a quote. *
WEB Logic Systems Ltd
15 High Street, Harpenden, Herts.
05827-62119

## ETI <br> PCB <br> SERVI <br> C E

The best way to get a really professional finish to your project is to use a professionally made PCB look no further, here they are!

In order to ensure that you get the correct board, you must quote the reference number when ordering - if you don't, you may get sent the wrong board. The code can also be used to identify the year and month that a particular project was outlined in: the first two numbers are the year, the third is the month and the number after the hyphen indicates the particular project.

Note that these are all the boards that are available - if it isn't listed, we don't have it.
Our terms are strictly cash with order - we do not accept official orders. However, we can provide a pro-forma invoice for you to raise a cheque against, but we must stress that the goods will not be dispatched until we receive payment.

## 1979

E/794-1 Guitar Effects Unit ..........2.64
E/794-2 Click Eliminator ................6.64
E/796-1 Accented Beat Metronome3.60

## 1980

> E/803-1 Signal Tracer
> E/808-1 CMOS Logic Tester
1981
E/811-1 LED Tacho ..... 4.13
E/811-2 Multi-Option Siren ..... 3.20
E/812-1 Universal Timer ..... 3.31
E/812-2 IR Alarm (4 board ..... 6.64
E/813-1 Engineer's Stethoscope ....
E/814-.............................................. 5.60
E/814-4 Guitar Note ..... 3.20
E/816-9 Alien Attack ..... 3.48
(MM or MC) ..... 2.65
E/817-2 System A - Preamp ..... 5.17
E/817-3 Smart Battery Charger ..... 1.97
E/818-3 Hand Clap Synth ..... 3.97
Security (2 boards) link ..... 5.31
(3 boards) ..... 7.35
E/819-4 Laboratory PSU ..... 4.53
E/8110-1 Enlarger Timer ..... 3 .40
E/8111-1 Voice Over Unit ..... 3.97

E/8111-2 Car Alarm .......................2.81 E/8111-3 Phone Bell Shifter ..........2.96 E/8112-1 Alcoholmeter (2 boards) 5.21 E/8112-3 Bodywork Checker ........1.75 E/8112-4 Component Tester ..........1.49


## E/8212-4 Spectracolumn .4 .82

 1983E/831-1 Fuel Gauge ..... 3.00
E831-2 ZX ADC ..... 2.25
E/831-3 Programmable PSU ..... 3.00
E/833-1 Sound Board ..... 1.16
E/833-2 Alarm Module ..... 3.15
E/833-3 ZX81 User Graphics ..... 0.93
E/833-4 Logic Probe ..... 2.17
E/834-1 Real Time Clock ..... 7.60
E/834-2 Thermemeter (2 boards) ..... 8.47
E/834-4 Stage Lighting - Main ..11.94E/834-5 Stage Lighting - Display 3.00
E/835-1 Compressor/Limher .....  5.36
E/835-2 Single PSU ..... 2.75
E/835-3 Dual PSU ..... 3.49
E/835-4.2 NDFL Amp ..... 6.85
E/835-5 Balance Input Preamp ..... 2.81
E/835-6 Stage Lighting Autofade ..... 5.38
E/835-7 Stage Lighting -
Triac Board ..... 4.12
E/836-1 to 3 PseudoROM ( 3 boards) ..... 3.15
E/836-4 Immersible Heater ..... 2.00
E/836-5 Atom Keypad ..... 4.50
E/837-1 Flash Sequencer ..... 2.32
E/837-2 Trigger Unit Main Board ..... 2 .32
E/837-3 Trigger Unit Transmitter ..1.44
E/837-4 Switched Mode PSU ..... 14.00
E/838-1 Graphic Equaliser ..... 7 .91
E/838-2 Servo Fail-Safe (four-off) ..... 2.55
E/838-3 Universal EPROM prog .... 8.38
E/839-1 NiCad Charger/Regen .....  3.28

E/839-2 Digger ..... | 2.96 |
| :--- |
| 2.24 |

E/8310-1 Supply Protector. .....  1.90
E/8310-2 Car Alarm. ..... 3.46
E/8310-3 Typewriter Interface. ..... 3.63 ..... 3.63

Prices quoted are valid until December 1983

How to order: indicate the boards required by
Signed
ticking the boxes and send this page, together
with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross
Road, London WC2H OEE. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.
Total for boards
£......................
Add 45p p\&p
Total enclosed

Name

Address
$\qquad$
$\qquad$
$\qquad$

## ELECTRONICS TODAY INTERNATIONAL

## Lineage:

35p per word (minimum 15 words) Semi Display: (minimum 2 cms )

## $\rightarrow$ rin

 £10.00 per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
$01-4371002$
EXT 282
Send your requirements to: Julie Bates, ASP Ltd., 145 Charing Cross Road, London WC2H OEF

## ALARMS



| Bell Boxes. . . . . . . . . . . . . . . . . . . $\mathbf{8 6 . 0 0}$ |  |
| :---: | :---: |
| Dummy Boxes. | 84.50 |
| Bell 6". | £7.50 |
| SIRENS |  |
| Minimite. | £4.50 |
| Electronic | ¢7.50 |
| Cable (4 core) | £7.00 |
| PRESSURE MATS |  |
| Stair. | c0.95 |
| Standard | E1.50 |
| CONTROL PANELS |  |
| Battery T/E/E | £20.00 |
| F.S.N. 20/40 | £36.00 |
| CONTACTS |  |
| Aluminium. | E1.85 |
| Surface. | ع0.75 |
| Flush. | £0.65 |
| Quickfits | £0.75 |
| BEAMS |  |
| Infra Red. | E31.50 |
| Ultrasonic comp. | E38.00 |
| Rec Battery | . $£ 8.95$ |

## 


ven 20 Hor me
A) alantas 270

3 Derby Lane, Old Swen, Liverpoof is

## FREE <br> catalogue of Burglar ALARM Equipment

Top quality D.I.Y. systems and parts at trade prices.

Send SAE or phone:-

## C-TEC SECURITY

 Dept ETI60 Market Street
Wigan WN1 1 HZ
Tel: 094242444

BURGLAR ALARM EQUIP-
MENT: As usedin the trade. JN Security Centre, 176 Sydenham Road, London SE26 5JZ. 01-778-1111. Showrooms open six days.

## ULTRASONIC ALARM SELF-CONTAINED LOUDSPEAKER DESIGN

* Easy installation
* Adjustable sensitivity control

Automatic reset after time out $\star$ Motion Detection using

- Moppler Effect"
* Delay time features for exit and re-entry to premises
- External speaker or siren can be connected to the phono jack for remote monitoring
Nuto sally open relay contacts for auto switching of external devices during alarm mode
* Applicable for home security systems: Screw terminals available for the type magnetic or trap switches $\star A C / D C$ operation (requires mains adaptor)
Fabulo
Fabulous value RRP £39.99
Our Pnce $\mathrm{E} 19.99+£ 2.50$ p.p. 8 insurance (Note: we have a few units returned
under guarantee which are unchecked and sold without guarantee @ £12.00 $+\mathrm{p} . \mathrm{p}$.
Send cheque, postal order or phone with credit card details


COMPUTERS

6802 MICRO COMPUTER
This micro is designed for control applications both in industry and the home. Two models are available, PIA or VIA. Both are crystal controlled and have a 5 V reg, 128 bytes of Ram, $18 \mathrm{in} /$ has two 16 bit timers and a shift register. The programs are held in EPROM (not included). Types 2716, 2516 and 2732 are accepted 6862 pia kit £19.95. 6802 via kit £21.95. As:
sembled add $£ 3.00$. Please add $15 \%$ SAT. Discount available on $5+$ qty. Orders to - Xanar, 20 Baldwin Road, King's Lynn, Norfolk PE30 4AN.

## SPACE TO LET

## Aerial Mast Space To Let by Tender

Thames Water Authority is offering Aerial Space on two of their 18.3 metres masts in Kensington (base of masts O.D. Newlyn 57.82 metres).

Copies of tender documents to be obtained from the Surveyor, Thames Water Authority, 20 Blyth Road, Bromley, Kent BR1 3UB. (Ref. MCF/38/L/2).

## Thames Water

## APPOINTMENTS


-Traffic Signals InspectorateElectronics Technician

The Council employs a technical inspectorate within the Transportation and Development Department to check the traffic signal equipment maintenance work carried out by contractors, monitor equipment fault rates and investigate and remedy faults.

The traffic signalling equipment involved incorporates a wide range of technologies, including microprocessor based control systems, electro-mechanical equipment, street hardware and cabling and vehicle detectors. Many junctions are controlled by a central computer system using data transmission over telephone lines.

We now seek a technical officer with practical electronics experience and a background in light current electrical/electronics who has diagnostic ability and the capacity to use electronic test gear. Experience of traffic signal control equipment would be an advantage. The job involves frequent site visits and officers must be capable of working alone on-site and be prepared to work outside normal hours when necessary.

Salary: £6,498-£9,258 inclusive.
Candidates should preferably be qualified to at least ONC level, or equivalent; and hold a current driving licence.

Reply to: Transportation and Development Department, Greater London Council, Room 454B, The County Hall, SE1 7PB or telephone 01-633 7791/3476. Closing date: $23 r d$ September 1983.

The GLC welcomes applications from all sections of the community, irrespective of an individual's sex, ethnic origin, colour or sexual orientation and from people with disabilities who have the necessary attributes to do the job.


| KITS |
| :---: |
| WRONG TIME? <br> WSF CLOCK is ALWAYS CORRECT - |
|  |  |
|  |
| Minutes and Seconds, auto GMT/BST |
|  |  |
|  |
|  |
| time signais, built-in antenna, 1000 Km |
| range, ¢72 72.cokHz Rugby Receiver, as in MSFClock, $£ 24.20$. |
|  |  |
|  |
|  |
|  |
| CAMBRIDGE KITS <br> 45 (TX) Old School Lane, Milton, Cambridge |
|  |  |

PRINTED CIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive aquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master $15 p$. Copper-clad fibreglass board, approx. 1 mm thick £2.00 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.
TUNE SYNTHESISER KITS. 25 well-known tunes plus 3 chimes, using door chimes or in toys £12.15. Made-up units attractively boxed £21. 3 note chime kits £5.20. Prices include VAT and P\&P. R.J.P. Electronics, 27 Denham Way, Camber, East Sussex, TN31 7XP. Tel: 0279225549
DIGITAL WATCH REPLACEMENT parts, batteries, displays backlights etc. Also reports publications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen Bucks. HP15 6SGD

## BOOKS \& PUBLICATIONS

PARAPHYSICS
JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics Computer software. S.A.E. $4 \times 9$ ", Paralab, Downton, Wiltshire.


ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

100W AMPLIFIER - £9.95 built! or use the same board for $50 \mathrm{~W}, 150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms etc., by using alternative output transistors and PSU. SAE for full details to - ESS Amplification, Innovation House, Guildhall Road, Hull.


35 Grosvenor Road,
Twickenham, Middlesex
TEL:01•891 1923/1513 Telex 295093 weak television reception. Price £6.70. S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire, BLO 9AGH.

## WIRES N CABLES

Promote your service to your readers by using :
ETI
Classified
01-4371002
SHEETMETALFOLDERS $18{ }^{\prime \prime}$ $x$ 18c Steel, 16G Aluminium bench or vice held. Hobby or Light industrial use. £38. 01- 890-7838. Day/evening.

DUAL FLOPPY DRIVES. Exequipment. Large capacity. $£ 125$ each. S.A.E. details. Farrel, 78 Glenfield Road, Paisley. 041-884 6240.

MINIATURE FM transmitter 104-108 MHZ. PP3 battery size. Broadcast quality speech from built in microphone. Range 2 miles. Ideal bug or radio mic. Supplied complete including battery $£ 7.89$ inc vat p\&p. Limited period offer. SAT Electronics, 235 Cross Street, Sale, Cheshire.

BARGAIN PACKS: 100PC electrolytic capacitors plus 100 resistors. $£ 2.00$. T. Merrill, 97 Goodwood Road, Leicester.

## WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

RS232 CABLES and D-type connectors at competitive prices. 25-way D connector plate/wallbox for only $£ 5.25$. Write or phone for details. VEP Limited, 5 Hewens Road, Uxbridge UB10. Tel: 01-848 7207.

SURPLUS - ExEquipment 120 watt $(60+60)$ poweramplifiers . . . Case, controls + sockets, smoothing, glass/ PCB + heatsinking. Boxes + data £10. KIA-8, LS29-9DZ data 10. KIA-8, LS29-9DZ.

## THE SCIENTIFIC

WIRE COMPANY
> a1 Foreat Road, London E17

ENAMELLED COPPER WIR

| ENAMELLED COPPER WIRE |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| SWG | 116 | 802 | $40 z$ | $20 z$ |
| $8-34$ | 3.63 | 2.09 | 1.10 | $88 p$ |
| $35-39$ | 3.82 | 2.30 | 1.26 | $93 p$ |
| 42.43 | 5.20 | 2.91 | 2.25 | 1.60 |
| $44-47$ | 8.56 | 5.80 | 3.49 | 2.75 |
| 48 | 15.96 | 9.58 | 6.38 | 3.69 |
| SILVER-PLATED COPPER WIRE |  |  |  |  |
| 14-30 | 9.09 | 5.20 | 2.93 | 1.97 |
| TINNED COPPERWIRE |  |  |  |  |
| 14-30 3.97 | 2.41 | 1.39 | 0.94 |  |
| Prices includeP\&Pand VAT.Orders under |  |  |  |  |
| E2 add 20p. Dealer inquiries weicome. |  |  |  |  |



REPAIRS, electrical, electronic measuring equipment. A complete service at a highly competitive price. Postage, estimates free. 14 day Turns Round. British Tele-Comm approved. Ledon Instruments Ltd, Gladstone Road, Folkstone, Kent. (0303) 57555.

Reach over 55,000 potential customers by advertising here.

Tel: 01-437 1002<br>extn. 282

## COMPONENTS


#### Abstract

BUMPER BOX OF BITS WOW! We've got so many components in stock we can't possibly list them all - So buya box. In it you'llfind resistors, capacitors, displays, switches, panels and transistors, diodes, IC's etc., coils, pots.. and so on. All modern parts - guaranteed at ONLY 88.50 inc. 48 page catalogue 50 p .

ELECTRONICS WORLD 16 Dews Road Salisbury Whts SP2 7SN


BARGAIN component packs. Digital/linear IC's, resistors caps, switches etc. Worth at least 5 times price of only £3 each, 40 p P\&P. Farrell, 78 Glenfield Road, Paisley.

## PLANS 'N DESIGN

CONVERT any TV into large screen oscilloscope. External unit plugs into aerial socket of TV. Circuit \& plans $£ 3$ or S.A.E details. J. Bobker, 29 Chadderton Drive, Unsworth,. Bury, Lancs.
AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, new solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

## DO YOU WISH TO LEGALLY TRANSMIT AUDIO SIGNALS OVER BRITISH TELECOM CIRCUITS?

We manufacture approved Interface Equipment for NARROW or WIDE BAND PRIVATE WIRE and PUBLIC SWITCHED TELEPHONE NETWORK circuits.
Also TELECOM LINE CIRCUIT SAFETY BARRIERS.

56 Fleet Road, Benfleet,

PARTRIDGE ELECTRONICS The Mixer People

Essex, SS7 5JN, England. (Telephone 03745 3256)


Cherqua/PO toc.

Prop. R.E. Davidion
PLRSONAL CALISRS \& TRNDE BNOURRISS WECOME

## FREE CATALOGUE

Our massive comprehensive electronics catalogue was ready, but now it isn't. Owing to modernisation and rapid expansion it was out of date before it was printed.
The new one is on the way and untilthen we can offeryou a temporary catalogue FREE.

Send a large s.a.e. to: ANNLEY ELECTRO
190 Bedminster Down Road Bedminster, Bristol

## RECRUTIING? SELLING A PRODUCT? OR A SERUICE?

GET MAXIMUM BENEFIT FOR YOUR MONEY
FIND OUT ABOUT OUR WHOLE RANGE OF PUBLICATIONS IN: COMPUTING VIDEO RADIO ELECTRONICS

Simply telephone ASP CLASSIFIED 01-437 1002 (We take Access and Barclaycard)

## CLASSIFIED ADVERTISEMENT -- ORDER FORM

Advertise nationally in these columns to over 100,000 readers for only 35 p per word (minimum charge 15 words). Simply print your meseage in the coupon and send with your cheque or postal order made payable to

Argus Specialist Publications Ltd to:
CLASSIFIED DEPT., ELECTRONICS TODAY INTERNATIONAL
145 Charing Cross Rd., London WC2H OEE. Telephone: 01-437 1002
Please indicate classification required.

|  |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Name
Address.

Tel. No. (Day)
WE TAKE ACCESS AND BARCLAYCARD
Please place my advert in E.T.I. for $\square$ months. Please indicate number of insertions required.


TYNE \& WEAR

| NOW OPEN IN NEWCASTLE <br> FOR THE BEST IN ELECTRONIC COMPONENTS TEST EQUIPMENT AND ACCESSORIES |
| :---: |
| Mariborough Electronic Components <br> 15 Waterloo Street, Nowcastle NE1 4OE1 Tali $618: 377$ |
| Open 9am-6pm Mon-Sat Easy Parking STOCKISTS OF <br> TRANSISTORS, RESISTORS, CAPACITORS, I.C. DIODES, ELECTRONIC BOOKS EIC. REPAIRS UNDERTAKEN |

## TYNE \& WEAR

COMPEX (UK) LTD 68 J.F.K. Est, Washington, NE38 7AJ Tel: 091-418-7814
Mail order list of 500 bargains free: Ind user 100+ price list 7500 items free: Includes cap's, diodes, transistors from $1 \frac{1}{2} p$, ICs from $9 p$, res $5 \% 1 / 4 w$ £ 4.00 1000... Nicads, leds, pots, switches \& v.rs.

## S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD. 45 Castle Arcade, Cardiff TEL: 022241905
Open:.Mon-Sat 9-5.30 For components to computers

## WORCS/W. MIDLANDS



## YORKSHIRE

Please include my business details in the next available issue of ELECTRONICS TODAY INTERNATIONAL:

BUSINESS NAME:
ADDRESS:


OPENING HOURS:
RETAIL $\qquad$ WHOLESALE $\qquad$ MAIL ORDER []
(Please tick)
CONTACT: (FOR OFFICE USE ONLY)

## Build and test your own circuit with the New Verobloc Kit



Try the new prototyping method of building and testing circuits with the British-made Verobloc kit. It consists of:

1. Verobloc. 2. A pad of design sheets for planning the circuits. 3. A component mounting panel for the larger components, i.e. switches, etc.

You can expand the circuit area by simply interlocking two or more Veroblocs and, of course, with normal usage, they can be used time and time again without damaging contacts or component leads. The glass nylon material is virtually unbreakable and able to withstand temperatures from $-60^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$.

So take advantage of our special price of $£ 5$ per kit (including VAT) by completing the coupon below, or telephone (04215) 62829 ( 24 hours). This offer closes December 31st, 1983.

We are exhibiting at the following exhibitions, so why not come along and see the products for yourself.

- Personal Computer World, The Barbican, September 28-October 2. Stand No. 159.
- Electronics Hobby Fair, Alexandra Pavilion, October 27-30. Stand Nos. 625 and 725.
Our new catalogue containing over 150 new products is available from mid-October.



## E.T.I. - OCTOBER 1983 ADVERTISERS INDEX

Aitken Bros ..... 65
Ambit International ..... 34
Audio Electronics ..... 59
Bicc Vero ..... 82
BK Electronics ..... 5
Black Star ..... 60
B.N.R. \& E.S. ..... 41, 60
Bradley Marshal ..... 3
Clef Electronics ..... 59
Comtech Electronics ..... 16
Concept Electronics ..... 65
Cricklewood Electronics ..... 25, 26
Crimson Elektrik ..... 52
Crofton Electronics ..... 76
Dataplus Developments ..... 52
Display Electronics ..... 20
Electronize Design ..... 27
Electrovalue ..... 70
Frel Ltd ..... 62
Greenbak ..... 52
Greenweld ..... 38
G.S.C. ..... 49
Happy Memories ..... 60
Hawk Electronics ..... 60
Horizon Electronics ..... 70
ICS ..... 62
ILP ..... 42,43
Kelan Engineering ..... 38
LB Electronics ..... 62
L\&B Electroncis ..... 65
L.E.M. Services ..... 70
Magenta Electrovalue ..... 70
Maplin ..... 84
Marco Tradig ..... 70
Mawson Assocs ..... 70
Midwich Computers ..... 19
MJL Systems ..... 76
Musicraft ..... 60
pantechnic ..... 33
Parnden Electronics ..... 76
Powertran ..... 2, 18, ..... 83
Rapid Electronics ..... 12
Riscomp ..... 33
R.T.V.C ..... 10
Sparkrite ..... 8
Stuarts of Reading ..... 59
Technomatic ..... 54, 55
Thandar Electronics ..... 19
TK Electronics ..... 14
Watford Electronics ..... 6, 7
W.E.B. Logic Systems Test Ltd ..... 76

## Low-price robots from <br> 

 POWERTRAN- hydraulically powered - microprocessor controlled

The UK-designed and manufactured range of Genesis general purpose robots provides a first-rate introduction to robotics for both education and industry. With prices from as low as £425, even the home enthusiast can aspire to his or her own robot.

Each robot in the Genesis range has a self-contained hydraulic power source operated from single phase 240 or 120v AC or from a 12v DC supply. Up to 6 independent
 axes are capable of simultaneous operation with positional control being provided by means of a closed-loop feedback system based on a dedicated microprocessor. Movement sequences can be programmed by means of a hand-held controller or the systems can be interfaced with an external computer via a standard RS232C link.


The top-of-the-range P102 has dual speed control, enhanced memory and double acting cylinders for increased torque on the wrist and arm joints. There is position interrogation via the RS232C interface, increasing the versatility of computer control and inputs are provided for machine tool interfacing.

All Genesis robots are available either ready-built or in kit form. The latter provides not only extra economy but also valuable additional training as an assembly project.


For under $£ 100$, Hebot II takes programming off the VDU and into the real world. Each wheel is independently controlled by a computer, enabling the robot to perform an almost infinite number of moves. It has blinking eyes, a two-tone bleep and a solenoidoperated pen to chart its moves. Touch sensors coupled to its shell return data about its environment to the computer enabling evasive or exploratory action to be calculated.

The robot connects directly to an I/O port or, via the interface board, to the expansion bus of a ZX81 or other microcomputer.

## HEBOT II

Weight 1.8 kg
complete kit with assembly


A real, programmable robot for under $£ 200$ ! Micrograsp has an articulated arm jointed at shoulder, elbow and wrist positions. The entire arm rotates about its base and there is a motor driven gripper. All five axes are motor driven and servo controlled, giving positive positioning. The robot can be controlled by any microcomputer with an expansion bus - the Sinclair ZX81 being particularly suitable.

## MICROGRASP

Weight 8.7 kg , lifting capacity

## 100 g

Robot kit with power
supply
£145.00

## GENESIS S101

Weight 29 kg , lifting
capacity 1.5 kg
4-axis model (kit form)

## GENESIS P101

Weight 34 kg , lifting capacity 1.8 kg

6 -axis model (kit form) $\mathbf{£ 6 7 5}$ 6 -axis complete system (kit form)
6 -axis complete system
(ready built)

Universal computer interface board kit
$£ 48.50$
23 way edge connector $£ 2.50$ AX81 peripheral/RAM pack
splitter board
£3.00

> 5-axis model (kit form) $\begin{aligned} & \text { 5-axis complete system } \\ & \begin{array}{l}\text { (kit form) } \\ \text { 5-axis complete system }\end{array}\end{aligned} \quad £ \mathbf{4 7 3 7}$
$£ 425$

## GENESIS P102

Weight 36 kg , lifting capacity 2 kg 6-axis system (kit form)
£1175.00
6 -axis system (ready built) Powertran Cortex microcomputer self-assembly kit ready-built
£295.00 £395.00


# MAKE RUITHE PJCHTR connecruis with a MAPLIN MODEM KIT <br> Exchange programs with friends, leave or read messages from the various Billboard services, talk to computer bureaux, or place orders and check stock levels on Maplin's Cashtel service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential. <br> Now you can exchange data with any other computer using a 300 

 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.Some computers need an interface and we have kits for the ZX81 VIC20/Commodore 64. Dragon and shortly Spectrum and Atari whilst the BBC needs only a short program which is listed in Projects Book 8.
A Maplin Modem will add a new dimension to your hobby
Order As LW99H (Modem Kit) excluding case. Price $£ \mathbf{~} 39.95$.
YK62S (Modem Case). Price f9.95.
Full construction details in Projects Book 5
 area with displays of hundreds and hundreds of different software packages for Atari, BBC, Commodore 64, Dragon, Sord M5, Spectrum and VIC2O.
You will find us at 8, Oxford Road opposite the BBC, between Piccadilly and the University complex. We're just a few steps from


Manchester's Oxford Road station and about five minutes walk from the city centre. There is excellent parking on meters in the adjacent sideroads and we're about five minutes drive straight in from junction 10 on the M63 at the start of the M56.
Call in and see us soon!

## Great Projects From E\&MM

Our new book "'Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include Harmony Generator, Guitar Tuner, Hexadrum, Syntom, Auto Swell, Partylite, Car Aerial Booster, MOS-FET Amp and other musical, hi-fi and car projects.
Order As XH61R. Price $\mathbf{f 1 .}$


## Maplin's Fantastic Projects



Full details in our project books. Price 70p each.
In Book 1 (XA01B) 120W rms MOSFET Combo-Amplifier - Universal Timer with 18 pro gram times and 4 outputs Temperature Gauge - Six Vero Projects.

In Book 2 (XAO2C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25W MOSFET Amplifier - Doppler Radar Intruder Detector - Remote Control for Train Controller.

In Book 4 (XA04E) Telephone Exchange for 16 extensions - Frequency Counter 10 Hz to 600 MHz - Ultrasonic Intruder Detector 1/O Port for ZX81 - Car Burglar Alarm -

## LEARN ROBOTICS

- with Hero 1: the new robot who sees, hears, speaks and detects movement!
This remarkable microprocessor-controlled robot is the perfect robotics training system for industry, home and schools. Hero 1 can see, hear, speak, detect moving and stationary objects and determine their distance, pick up small objects, move in any direction and can learn from your instructions.
Hero 1 is a superbly documented Heathkit kit.
Order As HK20W (Robot Kit) Price $£ 1.599 .95$
 Amp.
In Book 5 (XA05F) Modem to European standard - 100 W 240 V AC Inverter Sounds Generator for ZX81 - Central Heating Controller Panic Button for Home Security System Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 Module to Bridge two of our MOSFET amps to make a 350W Amp - ZX81 Sound on your TV - Scratch Filter Damp Meter Four Simple Projects.

In Book 7 (XA07H) Modem (RS232) Interface for ZX81/ VIC20 - Digital Enlarger Timer/ Controller DXers Audio Processor - Sweep Oscillator CMOS Crystal Calibrator

In Book 8* (XA08.J) Modem (RS232) Interface for Dragon VIC Extendiboard - Synchime Electronic Lock Minilab Power Supply Logic Probe Doorbell for the Deaf.
*Projects for Book 8 were in an advanced state at the time of writing, but contents may change prior to publication (due 13th August 1983).


[^0]:    All prices quotedare for U.K. Mainland, paid cash with order in Pounds Stinling PLUSVAT. Minimumordervalue $\mathbf{2 2}$. $\omega$, Minimum Credit Card orderf 10.0. Minimum BONA FIDE account ordersfrom Government depts, Schools, Universities and establishedcompanies E2e.co Where post and packing not indicated please ADD 60 p + VAT Warehouse open Mon-Fri 9.30-5.30. Sat. 10.15-5.30. We reserve the right to change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.

[^1]:    Send for our latest catalogue and price list.
    Thandar Electronics Ltd,
    London Road, St. Ives,
    Huntingdon, Cambridgeshire PE174HJ.
    Telephone (0480) 64646. Telex 32250.

