ecotronics toda INTERNATIONAL

.AUDIO COMPUTING MUSIC RADIO ROBOTICS

SHersounc * *

Free
SECURICOR DELIVERY on all orders over £100 (UK mainland only) Add just £2.50 on lower price orders

Jj90 Stereo Mixer - this is a really versatile new mixer that enables the sional performance every a profes are two stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Other 'plus' features are autopanning for fast or slow slider controls. modulation, in short everything

This versatile modular mixer, teatured as a constructional article in Practical Electronics can be built up to a maximum of 24 inputs, 4 outputs and an auxiliary channel. Each input channel has Mic and Line inputs, variable gain, bass and treble controls and a para metric middle frequency equalizer. There are send and return jacks, auxiliary, pan and fader controls and output and group switching. The output channels have PPM displays and record and studio outputs. The auxiliary channel also has a PPM display and there is a headphone monitor jack and a built-intalk-back microphone. The mixer modules plug into base units each of which takes up to 6 channels. To eliminate hum, the power supply is in a separate cabinet

SALES COUNTER Collect your order from the factory. Open 9-12/1-4.30 Mon-Thurs. Easy parking, no waiting

KIT PRICES

Inout channel Output channel Auxiliary channe Blank Panel
$\begin{array}{rlr}\mathbf{£ 1 9 . 9 0} & \text { Base unit and wooden front } & £ 27.50 \\ £ 18.50 & \text { Pair of mahogany end cheeks } & £ 12.50 \\ £ 22.50 & \text { Power Supply and cabinet } & £ 19.50 \\ £ 3.00 & & \end{array}$

avinan
whole works - AND - under $£ 100$ complete' Complete kit $£ 97.50+$ VAT

Star features**

TRANSCENDENT 2000 - Although only a 3 octave keyboard the '2000' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, build it - play it! You will know you have made the right choice
Complete kit $£ 165.00$ + VAT

Digital Delay Line - With its ability to give delay times from 1.6 mSecs to up to 1.6 secs. Many powerful effects including phasing, flangine, A.D.T., chorus, echo \&

vibrato are obtained. The basic kit is extended in 400 mS steps up to 1.6 secs. Simply by adding more parts to the PCB.

Compare with units costing over $£ 1,0001$ Complete kit (400 mS delay)
$£ 130+$ VAT
Parts for extra 400 mS delay
$£ 9.50$ + VAT
Free Soldering Practise Kit on request with your first kit - useful tips, well illustrated.

TRANSCENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match. Complete kit $£ 275.00$ plus VAT (single voice) Extra voice (up to three.more) $£ 42.00$ plus VAT

WORLD
LEADERS
IN
ELECTRONIC KIT DESIGN
AND SUPPLY

5 aguromber

Dave Bradshaw: Editor
Peter Green: Deputy Editor
Phil Walker: Project Editor
Jerry Fowler: Technical Illustrator
Gary Price: Divisional Ad. Manager Ron Harris B. Sc: Managing Editor Andrew Selwood: Copy Control
T. J. Connell: Managing Director

PUBLISHED BY:
Argus Specialist Publications Ltd., 145 Charing Cross Road, London WC2H OEE, DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
TYPESET AND ORIGINATION BY:
Design International
PRINTED BY
QB Limited, Colchester.
COVERS PRINTED BY:
Alabaster Passmore

ABC

Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. © 1986 Argus Specialist Publications Ltd U All reasonable care is taken in the preparation of the magazine contents but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.

Subscription Rates. UK: $£ 18.10$. Overseas: $£ 22.50$.
USA: $\$ 29.50$. Airmail: $£ 49.50$.

EDITORIAL AND ADVERTISEMENT OFFICE
1 Golden Square, London W1R 3AB, Telephone 01-437 0626, Telex 8811896.

Abstract

FEATURES

DIGEST. .. 11 Our usual look at the news in electronics, together with our usual iconoclasm.

AUDIO DESIGN. .21 Here's a series for everyone form newcomer to expert, written by one of the leading writers in the field - John Linsley Hood.

IC UPDATE. 31 This month we're looking at some new ICs that you can buy right now - well, we hope you can, because we've already used one of them in a project.

TECH TIPS. .48 Normally any reader's circuit using a 555 doesn't take long to get sent back to source (or worse, passed on to Hobby Electronics), but believe it or not, someone has found a new use for a 555 !

AUDIOPHILE .55 This month's audiophile is all about little boxes - ones with Videotone Minimax II written in one corner. Ron Harris sees if these bargain speakers live up to their promise.

\section*{READ/WRITE} .72 Here's where we let you get in on the act - this time we have your views on induction loops and holophony.

PROJECTS

NICAD CHARGER/REGENERATOR.
Ever had that sinking feeling with rechargeable batteries - as they get older, so their capacities get smaller? Here's a project to fix all that.

UNIVERSAL EPROM PROGRAMMER. .37
The conclusion of this project - the software. But coming soon will be the ETI stand-alone programmer/emulator.

GRAPHIC EQUALISER. .41
Constructional details of our third octave graphic equaliser, the circuit of which we published last month - and details of a rather nice case that you can use for it.

THE DIGGER

As we've said in rather greater length in the article, this item has little to do with Australia - it's title derives from the fact that it's a DIGital oscilloscope trigGER.

Z80 CONTROLLER COMPUTER

 .59This month finds us looking at the circuits necessary to interface the controller to the controlled - an I/O board and an interrupt board

64K DRAM BOARD.

\qquad .64
If you've got a 6502 or 6800 based micro, and you find you need some more memory - look no further. Even if you haven't but you'd like to find out how to use dynamic RAM, you'll find this article very illuminating.

INFORMATION

THIS YEAR'S BREADBOARD
EXHIBITION... 35
ETI BOOKS SERVICE.

READERS SERVICES

 .46ETI PCB SERVICE. 77
ADVERTISERS INDEX. 82
四

01-452 1500 TECHNOMATIC:LTD 01-450 6597

BGB
 Micro Computer
 Please phone for availability

BBC Model A £299 BBC Model B £399 (incl VAT) Carr $£ 8 /$ unit Model A to Model B Fitting charge $\mathbf{£ 1 5}$ Individual upgrades also available

WORD PROCESSOR 'VIEW' 16K ROM £52
TELETEXT ADAPTOR £195.00 2nd PROCESSOR 6502/Z80 £170

FLOPPY DISC INTERFACE Incl. 1.0 operating system

 $\mathbf{£ 9 5}+\mathbf{£ 2 0}$ installation
Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES

Single drive 5\%" 100 K £235 + £6 carr. Dual drive 5% " $800 \mathrm{~K} 799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £360; 400K £490; 800K £610

ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK
OFFICIAL BBG'DEALER

CASSETTE RECORDER
 MONITORS

Ferguson 3 TO7 £26.50 \& £1.50 carr Cassette Leads $£ \mathbf{£} .50$
Computer Grade Cassettes
$\mathbf{f 0 . 5 0}$ each $\mathbf{£ 4 . 5 0}$ for 10 \& $\mathbf{£ 1}$ carr

3MC BM 1401 14in Colour Monitor RGB Input $£ 165+\mathbf{5 8}$ carr KAGA RGBI 12in Colour Monitor RGB Input $£ 235$ + $\mathbf{E B}_{8}$ carr KAGA 12in Hi-Res Green Monitor $\mathbf{£ 1 7 0}+\mathbf{£ 6}$ carr

MICROVITEC 1431 M/S 14 in Colour Monitor $£ \mathbf{2 6 9}+\mathbf{5 8}$ carr Hi Res Green Monitor $£ 99+£ 6$ carr RGB Lead for BMC/KAGA $£ 10$ Composite Video Lead $£ 3.50$

ACORN ATOM

Basic Built E135 Expanded E1T5 (carr E3 per unit) Atom Disc Pack ${ }^{2} 299+\mathbf{E 6}$ carr 3A 5V Regulated PSU $\ddot{Z O}^{\circ}+\mp \sum_{2}$ carr Phone or send for our BBC Atom list.

NEC PC 8023 BE-C
100CPS, 80 cols
Logic Seeking
Bidiractional, For ward and Reverse Line Feed,
Proportional Spacing, Auto Underline, Hi-Res and Block
Only £320

+ $£ 8$ carr.

PRINTERS

SEIKOSHA GP 100A
80 Cols 30 CPS
Full ASCll e GRAPHICS
$10^{\prime \prime}$ Wide paper
Now only $£ 175+£ 6$ carr. Ask for details on GP 250A
Parallel Printer lead for BBC/Atom to most printers $\mathbf{8 1 3 . 5 0}$ $2 . \quad$ Variety of interfaces, ribbons in stock

EPSONMX 80 and 100F/T3 MX 80 80CPS 80 col MX 100 100CPS 136 cols Lirectional Beeking, Bi Printing, 9×9 Matrix Auto Underline MX 80 F/T3 MX 100 F/T3 8430 ($\mathbf{~} 8$ Carr/Printer)

CONNECTOR SVSTEMS		
JUMP LEADS	AMPHEMOL CONNECTORS	
4 f R Rlbbon Cable with heeders		
4 pin 16 pin 24 pin 40 pin	(centronix type)	560p
1 end 145p 165p 240p 300p 2 ends 2100 2300 3450 $640 p$	36 way Solder Socket	
	centronix type)	60p
Mn Ribbon Cable with sockets	ay IDC Plug	
20 pln 28 pln 34 pln 40 pln	ntronix type)	500p
1 end 2 ends	24 way Solder Plug	
2 ends 2800 385p 450p 640 p 24in Ribbon Ceble with D. Conn	(IEEE type)	600p
25 woy Male 500p Female Eeop	24 way Solder Socket 24 way IDC Plug	500p
R8232 CONNS (25 way D) '		
24' ${ }^{\prime \prime}$ Single end Male ${ }^{\text {a }}$ (6.50	EURO	
24", Single end Female $\mathbf{£ 6 . 0 0}$	CONNECTORS	
24' 'Female-Female $\quad \mathbf{1 1 1 . 0 0}$		
24^{\prime} 'Male-Male $\quad \mathbf{£ 1 0 . 0 0}$	din STD	
24' Male-Female $\quad \mathbf{£ 1 1 . 5 0}$	$\left\|\begin{array}{lll} \text { DIN STD } & \text { Plug } & \text { Skt } \\ 4161721 \text { way } & 170 \mathrm{p} & 170 \mathrm{p} \end{array}\right\|$	2x16
DIL HEADERS	4161731 way 100p 100p	2×23
older IDC	16122×32 way 2800 300p	2×25
trpe type	Anded 2×32 way 3650	1 $\times 43$
14 pin (40p 100p	16123×32 way 275p 380p	2×43
16 pin 60p 110p	Angled 3×32 way ${ }^{\text {a }}$ 400p	2×50
24 pin 100p 190p	$x 32$ way zidc $a+c$ - 60.5	77
40 pin 200p 205p	(for 2×32 way specify a + b or a $+c$)	00

RUGBY ATOMIC CLOCK

This Z80 micro controlled clock/calender receives coded time data from NPL Rugby. The clock never needs to be reset. The facilies include 8 independent alarms and for alarm there is a choice of melody or altornatively these can be used for electrical witching. A separate timer allows recording the count. Expansion facilities provided. See July/August ETI for details. Complete Kit $\mathbf{£ 1 2 0}+\mathbf{£ 2 . 0 0} \mathbf{p \& p}$

MICROTIMER

20ith

* 24 hour 7 day timer
* 4 independent switch outputs directly interfacing to thyristor/triacs ait 7 seg. displays indicateal imo, ON/OFFand Reset Full details on request. Price for kit $\mathbf{£ 5 7 . 0 0}$

DISC DRIVES FOR THE FORTH COMPUTER

51/4" Teac FD55 Slim Line Mechanisms
FD55 40 track SDD 250kbytes unformatted
2 x FD55A 40 track SSDD 500kbytes unformatted
FD55E 80 track 500kbytes unformatted
2 x FD55E 80 track SSDD 1 Mbyte unformatted
51/4" Mitsubishi M4853 Slim Line Mechanism 80 track DSDD 1 Mbyte unformatted
$2 \times$ M485 2 Mbytes
Single drive cable $£ 8$ Dual Drive Cable $£ 12$
Other parts for FORTH COMPUTER available please send SAE for details.
bare $£ 135$ Cased $£ 155$
cased + PSU £350
bare $£ 180$ Cased $£ 205$
Cased + PSU £475
bare £225 Cased £245
bare $£ 225$ Cased $£ 24$
Cased + PSU $£ 590$

SOFTY II INTELLIGENT PROGRAMMER
The complete microprocessor development system forEngineers and Hobbyists. You can develop programs debug, verify and commit to EPROMS or used in host computers by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed, deleted orinserted and memory contents can be observed on ordinary TV. Accepts most +5 v Eproms. Softy II complete PSU, TV lead and Romulator lead $£ 169$.

UV ERASERS

UVIB up to 6 Eproms $\mathbf{E 7 7 . 5 0}$ UVITwith Timer E80.00 UV140 up to 14 Eproms $\mathbf{6 6 1 . 0 0}$ UV141 with Timer (Carr E2/eraser) All erasers are fitted with mains switches and safety interlocks

TRAINER KITS GS02 Junior Computer 50.00 6802 Nancompl $\quad 500.00$ 6809 Nancomp II $\quad 000.00$ 1802 Micro Trainer | E80 Manta | $\begin{array}{ll} & 5115 \\ 830 \text { Menta } & £ 115\end{array}$ |
| :--- | ---: | (fully built and documented) Full details on request

BOOKS (No VAT p\&p f1)
CMOSCook Book D.п

CRT Controller H/Book E5.55 Programming the $\mathbf{Z : O}$ E11.50 Z80 Microcomp. handbook 63.80 Programming the 6502 6502 Applications $\quad \mathrm{E10.20}$ 6502 Software Design 28.05 $\begin{array}{ll}6502 \text { Software Design } & \mathbf{E 1 0 . 5 2}\end{array}$ Large selection of databooks, inter facing books, books on BBC, etc in
stock. As for our list.

74 seriss		74181 74182 74164	$\begin{aligned} & 340 p \\ & 140 p \end{aligned}$	74LS 162A 74LS163A 74LS164	$\begin{aligned} & r_{p} \\ & r_{p} \\ & r_{p} \end{aligned}$	74508 74 S 10 74511	$\begin{aligned} & 80 p \\ & 80 p \\ & 7 s_{p} \end{aligned}$	$\begin{aligned} & 4063 \\ & 4086 \end{aligned}$	$\begin{gathered} \text { esp } \\ \text { 40p } \end{gathered}$	LINEAR ICs						COMPUTER COMPONENTS						
7400	300																		27581 818	${ }^{811595}$		GENE RATORS
7401	30 p	74185A	100 p	74LS185A	110p	74520	s00	4068	25p		(19			T0231						${ }^{811596}$		3-32513
7402	30 P	74190	1309	74LS186a	150p	74522	800	4069	$24 p$	cma				200		${ }^{2} 85000$	8279	11		(12.1597		Ro3-32513
7403	30 P ,	74191	130 p	74LS166	130 p	74530	800	4070	$24 p$	a MP9100c		LMT10		T-10	0	6502 400p	8282	300 p		88.5120	300	LC 850p
7404	30 p	74192	$110 p$	74LS169	10	74332	100	4071	249	A 1100		LMT11		тене\%		6502 A 460p				9802	3000	kevboato
7405	30 P	74193	$115 p$	74LS170	'140p	74537	${ }^{60}$	4072	24 p	AY-1.5080		WTisc	400	твле20	75	${ }_{65 c 02}$	${ }^{8287}$			${ }^{98364} 9$		Encoders
7406	40p	74195	110	74LS 173A	100p	74538	000	4073	240	AY- 13350	450 p		400 p			6300 2300					1000	AY 52376
7407	400	74195	100	74LS174	Thp	74540	600	4075	4	AY-3-8910 AY 3 e912	${ }^{450}$	LMm71	0	T¢9800	00	0	${ }_{\text {ITS }}$	c14	32	2020	\%m	740922
7408 7409	300	74196 74197	110p	74LS181	2000	74551 74584	${ }_{45 p}$	4077	p	${ }^{\text {cse }}$	1100	LM74		TG820	170	${ }_{68096}^{609}$	${ }_{\text {TMS }}$ TM99092		0	${ }_{\text {z/ }}^{\text {zNa27E }}$	${ }^{3000}$	
7410	300	74196	2200	74LS189	1009	74574	70	4078	225	crscear cosme	${ }^{1109}$	Lm1011	00	toxiolo		68809 110	TMS9991	$\mathrm{cl}^{1 / 4}$	0	zN4289	${ }^{1509}$	mud pate
7411	30 p	74199	2200	74LS190	75_{0}	74585	3000	4081	209	cascos	mos	LM1014	48	T01024	$10 p$	c3809E 112	${ }_{2}$ TMS99914	814	28	2N447E	2100	generators
7412 7413	300	${ }^{74221}$	1190 1009	74LS 191	${ }^{750}$	74566 745112	1009 1809	4082	${ }^{250}$	caseo		LMM1001	4	T011708		68000-LB 538	${ }_{2}^{23094 P 10}$	30	3131 309			C14411 ${ }^{\text {TSOP0}}$
7413 7414	cop	74251 74259	1009 1000	74LS 192	cop	74S112	180 120 120	4085	${ }_{75 p} 80$	crabeos cuseas		${ }_{\text {L M11830 }}$	0	TDN002 Tan2003	\%	$\begin{array}{ll}8035 & 3099 \\ 8099\end{array}$	2800910 $280 ¢ T C$		-	mem	ES	
7418	30	74285	3800	74LS 194A	TP	74S114	1200	4089	1200	craseot		L11872		tonzes		60c39 7009						
7417	400	74273	200	74LS195A	rp	74S124	300 p	4093	350	arsocio	819		4	T		8000A 4200\|	280ecta		32	2016	4009	UAPT
7420	30 p	74276	1400	74LS196	00	74S132	100p	4094	\%		\%	Lurzi		trases		cossa 300p	zoma		-		${ }_{2500} 40$	
7421	sop	74278	170p	74LS197	$\infty 00$	745133	109	4095	P	${ }^{\text {cosilice }}$	400	Lresce		T¢u2s03		C85A 900	TMenseo	10	OSteess 1100	21070	5000	
22	30	74279	108	74LS221	cop	7 $74{ }^{\text {7 }} 13138$	100	4097	${ }_{2700}$		100	Urase		Tou3610	\%	8036 E28		10 m	OSease mop	21114.3	200 p	000
7423 7425	40 p	74285	3200	74LS241	cop	74S 139	100	4098	${ }^{2750}$	CNTHOOE Culiele	0	Lucheo	11009	TEATO		8088 8741 17509 12	${ }_{235004} 7139$	mp	MC1489	2114.3		MS602 460p
7428	400	74290	100	74LS242	100	745140	100 p	4099	100	cas	300	LMM0914	2 m	TLO		8748	z800			4116-1	${ }^{2000}$	
7427	400	74293	100	74LS243	cop	745151	1800	4501	30	cas	0	Ims		Tome	0	TMS9900 514.50			MC3469	4416.15 4532.20		modulators
7428	asp	74298	1200	74LS244	000	74S153	1500	4502	${ }^{58 p}$			Lmse		TLOEA	4	TMS9935 $\quad 12$			33130 40	${ }_{48189}$	300 p	swite UHF 375
7430	309	74351 74385	${ }^{2009}$	74LLS245	1109	748157	${ }_{2000}^{200}$	4503 4504		c7002	0	Ms15131		1072	訨	0	$28000 C^{1}$	200p	c34182		3700	
7433	30 p	74368A	00 p	74LS248	110p	745183	3009	4505	360	ci40es	300	ms15	40	Trovi	1100	2800 5500			\%	5516	S530	12 MHz
7437	300	7436A	cop	74LS249	110p	74S169	6509	4506	000			MC13		Toes		z80CMOS TSOp			1024 mop	6116	350 p	CRYST
7438	400	74387A	cop	74LS251	78 p	74S174	3009	4507/4030				MC1413		T0e9		(cmos zoi			1441	6284	${ }_{7000}^{400}$	
7439 7440	400	74368 A 74376	700 160	74LS253	750 000	745175 745188	3200 100		${ }^{3200}$	Hat3se cilile	100	MC1450		Tloes	180			5	MC14412 ${ }^{\text {T00 }}$	62811	3400	
7440	400	74376	1600 1100	74LSS2567A	100	7 74.8188	1000	4510	1209 850			MC1		TL170			EPRO	Ms	10		${ }^{260 \mathrm{p}}$	KHz ${ }_{\text {400p }}$
7441 7442 A	6	74390 74393	112	74LS258A	700	74S194	3000	4511	85p	1cl7eso	0	Mc	00	Ua759	0	SUPPORT	16	mop		7is2	${ }_{350 p}^{2250}$	OMHz 270p
7443A	100 p	74490	1400	74LS259	1200	74S195	3000	4512	86p			masa		Ynz20					UN20888	7152	${ }^{2350}$	
7444	110			74LS260	${ }^{78 p}$	74S1	380	4513	1500	-1C72188		MFF100N	400	voneoia	8	3242 mem		09		${ }_{331422}$	9509	p
7445	1000	74.5		74LS261	${ }^{1200}$	74s200	$\begin{aligned} & 4800 \\ & 32000 \end{aligned}$	4514	$\begin{aligned} & \text { 110p } \\ & 1100 \end{aligned}$	1 cm7217	700	mrsoze 0	3	uneoosa		${ }_{3225} \mathrm{mp}$	2ses	$\underline{111}$	UN27	${ }_{3025}$	8000	209
7464 744 A	100 100	74LS00	24	74L2273	1250	74s225	\$200	4516	${ }_{86}$	ICMTSSS	0	Mrsos	Tmp	Uuzaon	75	${ }_{6522}^{6520}$		40	10 p			2509
7448	1200	74LS01	$24 p$	74LS279	10	74S240	4000	4517	2200		30	M L 282	0	uneos		${ }_{6522}^{63}$	${ }^{\text {2716-35 }}$	3	75109 130			
7450	sep	74LS02	24 p	74LS280	100	745241	4000	4518	48	LC7130	30	meea	10	unees		${ }_{6551}^{6032}$	${ }_{2732}^{2732}$		${ }_{\text {75110 }}^{751120}$			${ }_{3} 10.276{ }^{\text {chemz }}$
7451	${ }^{359}$	74LS03	24 p	74LS283	10 p	74S244	${ }^{600}$	4519	320	LC7137	mop_{10}	NeS31	1100	Uuraz	100	${ }_{6921}^{6551}$	${ }_{\text {2732A }}$	mm_{5}	${ }_{75113}^{712} 1100$			${ }_{\text {coser }}^{3.5795}$
7453 7454	34	74LSO4	249 240	74LS290	0000	74S251	2500 2500	4521	1209		${ }^{120}$	NESM	100	UPCCSE85		${ }_{68821}^{683}$	${ }^{27354-25}$		75114			$\begin{array}{ll}4.004 & 140 p \\ 4.194 & 150 p\end{array}$
7480	850	74LSO8	24 p	74LS293	10 p	74S258	2500	4522	$0 p$	${ }^{\text {L } 5353}$	0	NESSS NESSA		UPCC 1158				250p	${ }_{75121} 11000$	${ }_{24510}^{2021}$	${ }^{4000}$	
7470	sop	74LS09	24 p	74LS295	Pp	745280	1009	4526	79	Lisssen	1100	Neses	109	XF210		$8{ }^{40}$	${ }^{271728.30}$	c5	75122	1185030	2000	(1000
7472	$\mathrm{ssp}_{\mathrm{p}}$	74LS10	24 p	74LS297	${ }^{\text {cp }}$	74S261	3000	4527	100	${ }_{5} 5367$	1000	NES56	100	xR2200		3050 300 p		5	751588	${ }^{1851403}$	${ }^{2000}$	(10000
$\begin{aligned} & 7473 \\ & 7474 \end{aligned}$	85	74LS11	$24 p$ $24 p$	74LS298	100p	listis	2280	4529	${ }_{100 p}$	LM10C	000	NEE67	\%			Ees5			${ }^{75159}$	775887	${ }^{2250}$	
7475	cop	74LS 13	30	74LS321	3700	745268	2000	4531	75p	M 4307	0	NEE71	30	xpen		eses	Cont	ER	75180	745288 75537	1800	7.00 150p
7476	45°	74LS 14	s00	74LS323	300p	74S289	2280	4532	${ }^{65}$	Unsoba	140	Neser		$\times \mathrm{x}$		6875 mp	CRT302\%	518	75182	22523	130 p	(17.168
7480	csp	74LS 15	24 p	74LS324	${ }^{3200}$	74S299	${ }^{580}$	4534	3200	LM9310	30	Ne5S32P	100	${ }^{2009}$	10	${ }_{\text {815s }}^{8150}$	CRTS		${ }^{75172}$	825123	$150 \cdot$	${ }_{8.867}^{1.869}$
7481	100	74LS20	24 p	74LS348	00	745373	${ }_{4000}^{400}$	45388	750	L 4318	1000	NES639	1100	İN19p		${ }_{8156}^{8156}$	Erasee	\%	${ }^{75188}$			$\begin{array}{ll}10.50 & 2509 \\ 1070 & 1500\end{array}$
7483 A 7484 A	105p	74LS21	249 $24 p$	74LS3533	1200	74S3387	205p	4538	75p	LM319	100		100	zNM23E		8206 8212	EFsess	${ }_{20}^{28}$	75199	${ }_{\text {OTRTRO }}$		$\begin{array}{ll}10.70 \\ 11.00 & \\ \text { l300 } \\ \text { 300 }\end{array}$
7485	110 p	74LS24	sop	74LS356	2100			4541	800	${ }_{\text {Limas }}^{\text {Lima }}$	116	Ploza		2m		${ }_{82218} 1200$		208	73500			$\begin{aligned} & 12.00 \\ & 1509 \\ & 1800\end{aligned}$
7488	200	74LS26	24 p	74LS383	00			4543	709	Lı3362	120	пCa138				${ }_{8228}^{822}$			75451	${ }^{7564}$	${ }_{80} 10$	
7489	2100	74LS27	24 p	74LS364	1000	4000		${ }_{4}^{4551}$	1000 2400	L	100	RCA151 RCL5s	\%	2M		${ }_{8}^{82288}$			${ }_{75153}^{15483}$	8271	¢ 48	14.756
$\begin{aligned} & 7490 A \\ & 7491 \end{aligned}$	$8 s_{0}$	74LS28 74LS30	249	74LS3668	80p	4000	200	4555	2400		0	${ }_{\text {R }}^{\text {Rckses }}$	0			8243		c	70, 70	8272.	ع12	15.00 18.00 2000 $200 p$
7492A	700	74LS32	24 p	74LS367	800	4001	249	4556	800	588	000	su	218		20.		TMS99	10	${ }_{7091}^{75480}$	FD1711	20	$18.00 \quad 1700$
7493A	${ }^{85}$	74LS33	24 p	74LS3689	800	4002	${ }_{70}^{289}$	4557	2409	LM37	30	Sfrree	3			eassc.		10	75992	FD1791	820	(19.432 $\begin{array}{ll}18.450 \\ 19 & 1509 \\ 1500\end{array}$
7494	1100	74LS37	24 p	74LS373	${ }^{000}$	4006	700	4580	1400	Ms300	100	lill	30	2musect		ezssac-5			${ }_{\text {¢T28 }}^{\text {gT2 }}$	F1797	820	22000
7495A	${ }^{00}$	74LS38 $74 \mathrm{LS40}$	249 240	74LLS374	${ }_{750} 0$	4008	${ }^{209}$	4588	2400	Uscoian	100	SNTVA	0					ACE	${ }_{\text {gros }}$	W02793	278	24.00 48.000 1509 1750
7497	210 p	74LS42	cop	74LS377	130 p	4009	450	4569	1700	3		SNFO2sell	700		23	${ }^{8257 C-5}$			${ }_{\text {8797 }}^{\text {gre }}$	W02797	ع15	
74100	1000	74LS43	1500	74LS378	$\mathrm{csp}_{\mathrm{p}}$	4010	800	4572	45	Lmas	220	TA7120	1009	2U230E	40		N0661			wo2143	ع12	101000 E12
74107	cop	744547	000	74L5379	1300	4011	24 p	${ }^{4583}$	cop	Lmaser	1000	TA7130	1400								d	in Low
74109	7sp	744548	000	74LS381	${ }_{3250}$	4012	250		46	Wess7		¢ATz20				CLOCK					fle S	ckets
74110	top	74LS49	100 p	74LS385	${ }^{3250}$	$\left\lvert\, \begin{aligned} & 4013 \\ & 4014 \end{aligned}\right.$		$4{ }^{4585}$		LM3										8 pin		22 pin 50p
74111 74116	889 1700	74LS51	24 p	74LS390	${ }^{1009}$	4	700	4724	1800 7500	$L_{\text {LIM392 }}$	110	${ }_{\text {TA732 }}^{\text {TA }}$	${ }_{1509}^{1509}$			$\begin{aligned} & \text { C6818P } \\ & \text { AM58174AN } \end{aligned}$		SAA50	60	14 pin	30p	24 pin 65p
74118	1100	74LS55	$24 p$	74LS3939	1009	4018	380	14412 14418	7509										41	16 pin	$35 p$	28 pin 65p
74119	1700	74LS73A	300	74LS399	1400	4017		14418	3009		-LTA	GE	La			MSM5832RS		SAA50	11	18 pin	40p	40 pin 90 p
74120 74121	1000 860	74LS74A	359	74LS445	1200	4019	cop	14449	2600			FXED	STIC				350p	SAA50	900p	20 pin	45p	
74122	70 p	74LS76A	3 sp	74LS487	1200	4020	cop	14995	4800							LOWPROFILESO	com			WRAP SO		
74123	cop	74LS83A	70 p	74LS490	1800	4021	${ }^{000}$	145	${ }^{6050}$	${ }^{\text {SV }}$		7805	459	7805		${ }^{8} \mathrm{plin}$ 3pp	22 pin			50 p	22 p	pin 75p
74125	${ }^{\text {csp }}$	74LSE5 $74 L 586$	750	74LLS540	1000 1000	4023	700 300	14595	2000 3500	18V		7808 7808	${ }^{500}$	7906 7900		14 pin 10p	${ }^{24} \mathrm{ph}$		249014 pin		2	${ }^{75 p}$
74126 74128	ssp	74LS86 74LS90	359	74LLS5608	1000 7000	4023	300	22100	3800 7000	12 V		7812 7815	4	7912 7985	0		${ }_{20}^{28}$ pin			42	${ }^{28} \mathrm{p}$	100p
74132	75p	74LS91	000	74LS610	${ }^{10000}$	4025	249	22102	700p	18V		7815 7818	${ }_{80} 809$	${ }_{7918} 7915$	80p				$30 \mathrm{p} \begin{aligned} & \text { 20, } \\ & \end{aligned}$	000		1509
74136	70p	74LS92	$\mathrm{scos}^{\text {P }}$	74LS612	10009	4026	cop	40014/4584		24 V		7824	80p	7924								
74141 74142	${ }^{200}$	74L9893	${ }_{75 p}{ }_{\text {che }}$	74LS824	${ }_{2250} 280$	4028	809	40108	40^{2}	${ }_{88}$		78L05	30	7905	4	PT	TO-EL	CTR	ONICS			DIIVER
143	270	74LS96	1000	74LS628	2285	4029	75p	40095	120p	${ }_{15}^{12 \mathrm{~V}}$		${ }_{7}^{7812}$										
74144	270	74LS107	400	74LS629	${ }^{1250}$	4030	-350	40097	00°	15 V		8L15								700		
74145	1100	74LS109	40 p	74LS640	Op	4031		40098											311	650p		
74147 74148	1700 1400	74LS112	${ }_{469} 8$	74LS640-1	3000	4033	125p	40101	1509		OTHE	R REC	LA			FNDS						countens
74150	175p	7415114	459	74LS641	150 p	4034	2500	40102	130 p	Frodrap						MAN71/0	00p		N8910	200		
74151 A	700	744.S122	700	74LS642-1		4035	70 p	40103	2000	LM309K						man3e	${ }^{1759}$			75p		C928
74153	${ }^{200}$	74LS123	cop		3000	${ }_{4}^{4036}$	$70 p$	40104	1200 1800	LM323K		3A			50p	til32	75p 1200			120p		1040
74154 74155	${ }^{1400}$	${ }^{74 L S 124 /}$	11400	$\begin{array}{\|l} \text { 74LS643 } \\ \text { 74LS643-1 } \end{array}$	280p	4038	1100 100	40105	1509	78H05KC		5A			750p	Thioo	900		30	1000		
74158	100 p	74LS125	cop		300 p	4039	2800	40107	${ }^{\text {scp }}$							OPTO-ISC	OLAT	Rs				
74157	100	74LS 126	009	74LS644	3800	4040	${ }^{009}$	40108	3200	Varishle Re	sto					MCT2	Thlit			Please	note	
74159	178 s	74LS132		74LS645 74LS645-1	200p	${ }_{4041}^{4042}$	8sp	40109	${ }^{220}$	LM305AF						MCT26 ${ }^{\text {M }}$	${ }^{\text {Thlil13 }}$			rices ar	subj	ject to
74160 74161	${ }^{1100}$	74LS133	${ }_{\text {csp }} \mathbf{5 0}$	74LS645-1	4000	4042	${ }_{009} 00$	40110	225p 225p	LM317T					40p	MOC3020 11074	Thl16			chan	with	hout
74162	$110 p$	74LS 138	ssp	74Ls668	109	4044	200	40147	2000	Lм ${ }^{\text {L }}$ ¢		3A	VAR		25p		N139	17				
74163	110 p	74LS139	ssp	74LS669	009	4045	100 p	40163	1000	LM350T			VAR		00p	LED	S					
74164	1200	74LS 145	$\mathrm{esp}_{\text {ct }}$	74LS670	170	4046	100	40173/4087		LM396K			VAR		515	TIL209 Red						
74185 74166	110 p	74LS147	${ }_{1750} 17$	74LS682	2800 3800	${ }_{4048}^{4047}$	${ }_{560} 80$	40174	1209 1000	LM723N					509	TIL211 Green		12 p				
74187	${ }^{14000}$	74LS 151	${ }^{1450}$	74LS687	3800	4049	30	40175	1009	79HGKC			VAR		75p	TIL212 Yellow TII 220 Red		${ }^{20}$	We	also	ock	a large
74170	200p	74LS 152	200p	74LS688	${ }^{380}$	4050	350	40192	1009	78GUIC		1 A	VAR		P	TIL 212 Gree				of	Tr	ransistors,
74172	4200	74LS 153	${ }_{150} 6$	74LS783	$E 2$	5051	${ }^{85}$	40244	1500	79GUIC			VAR		250p	Til. 226 Yellow		22p	2 p Diode			Rectifiers,
74173 74174	140	74LS 154	${ }^{1509}$	7488		${ }_{4053}^{4052}$	800	40245	$\begin{aligned} & 1800 \\ & 1600 \end{aligned}$	Sinlating	gula	ars				(10) Bar Ar	rrays					-
74174 74175	1108	74LS156	${ }_{\text {csp }} \mathrm{SSP}_{\text {c }}$			4504	cop	40373	100 p	SG3524						Red (10) Green (10)		$\begin{aligned} & 225! \\ & 225 \end{aligned}$	p Triacs			rs
74176	100 p	74LS 157	s00	74500	cop	4055	100	40374	1000	TL494						RECT	EDS		Zener		dease	call
74178	1500	74LS 158	csp	74502	500	4056	acs^{10}	80c95	${ }_{75 p}^{78 p}$	TL497						Red, Green, Yellow	W	${ }^{30}$	p			
74179 74180	$150 p$	744S160A	rrp_{19}	74504	S00	4080		80 C 97	78p	78540					50p							

\square

Carriage Orders up to $f 199$ are sent by 1 st class post, and 200 toy securrcor 125 f $200+500$ by Securicor
0100050 f100 199125
Prices quoted + carriage charges) are exclusive of VAT and are subject to change without notice
Quantity Discounts are available on many products Quantity Discounts ais

MIDWICH COMPUTER COMPANY LIMITED
RICKINGHALL HOUSE. RICKINGHALL, SUFFOLK IP22 1 HH
TELEPHONE (O379) DISS 898751

Typewriter Interface

We've come across what must be one of the more crazy situations in electronics - namely that you can't buy a daisy wheel printer for less than around $£ 400$, but you can buy a typewriter with a daisy wheel printing mechanism and a keyboard for just over $£ 200$! Needless to say, it didn't take one of our contributors long to get out his soldering iron and find out exactly how you can interface the typewriter in question to a micro - well, not a micro, but just about any micro! And the make of the typewriter, well, we're not foolish enough to tell you that until next month.

Another New Series

Following on from our attempt to de-mystify audio, we're about to embark upon an even more arcane area, the mention of which will usually bring a look of despair to even the most hardened engineer's face machine code programming. This series will be so simple that even the Editor - a confirmed microphobe - will be able to understand it.

And While We're Talking About Series ...

John Linsley Hood will be continuing his look at audio design with a discussion of ICs for audio applications and a look at some gremlins - noise and

IC Update

Almost without us thinking about it, this seems to have sprung into being an established series in the magazine; well, it seems to be one of the most useful roles we can play - that of disseminating information on new devices. To try and counterbalance all these microbased projects (and to keep our Editor happy), we'll be looking at some up-to-date linear devices.

ZX Backup Supply

This must be. one of the simplest projects we've published in a long while - and such a simple idea that it's surprising no one else has thought of it. What it does is to keep your ZX going if there should be a temporary supply interruption, or a blown fuse - or if grandfather should trip over the power connector!

ALL THIS AND MORE IN THE OCTOBER ISSUE OF ETI, ON SALE SEPTEMBER 2ND. PLACE YOUR ORDER NOW, OR RISK MISSING OUT!
 Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.

MULLARD SPEAKER KITS Purposefully designed 40 watt R.M.S. end 30
watte R.M.S. 8 ohm speaker systems recently watt R.M.S. \& ohm speaker systems recently Belgium. Kits comprise Mullard woofer ($8^{\prime \prime}$ or $5^{\prime \prime}$) with foam surround and aluminium voice coil. Mullard $3^{\prime \prime}$ high power domed tweeter. B.K.E. built and tested crossover based on Mullard
circuit, combining low loss components; glass circuit, combining low loss components, glass SUPERB SOUNOS AT LOW COST. Kits supplied in polystyrene packs complete with instructions. $8^{\prime \prime} 40 \mathrm{~W}$ system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price $£ 14.90$ each $+\mathbf{E} .00 \mathrm{P} \& P$
$160 \times$ system - recommended cabinet size Price $\mathbf{£ 1 3 . 5 0}$ each $+\mathbf{\varepsilon 1 . 5 0} \mathbf{P} 8$ P
Designer spproved flat pack cabinet kits, including grill fabric. Can be finished with iron on $8^{\prime \prime}$ system cabinet kit $£ 8.00$ each $+\mathbf{6 2 . 5 0 P \& P}$ 5^{*} system cabinet kit $\mathbf{~} 7.00$ each $+\mathbf{\Sigma 2 . 0 0} \mathrm{P} \& P$

STEREO CASSETTE TAPE DECK MODULE. Comprising of a top panel and tape mechanism coupled to a record/play back printed board assembly. Supplied as
one complete unit for horizontal installation into cabind one complete unit for horizontal installation into cabinet o console of own choice. These units are brand new, read
built and tested Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind, fast forward, play, stop and eject. Automatic record level control. Main inputs plus
 Output level: 400 mV to both left and right hand channels. Output Impedance: 10 K . Signal to noise
ratio: 45 dB . Wow and flutter: 0.1%. Power Supply requirements: 18 V DC at 300 mA . Connections: The left and right hand stereo inputs and outputs are via individual screened leads. all terminated with phono plugs
(phono sockets provided). Dimensions: Top panel 5 tin phono sockets provided. Dimensions: Top panel 5 it in.
$\times 11$ in. Clearance required under top panel 2in. Supplied complete with circuit diagram and connecting diagram. Attractive black and silver finish.
Price $£ 26.70+£ 2.50$ postage and packing. Price $£ 26.70+£ 2.50$ postage and packing.
Supplementary parts for 18 V D.C. (transformer, bridge rectifier and smoothing capacitor) ${ }^{\mathrm{E}} \mathbf{5} .50$.
LOUDSPEAKERS
15" 100 watt R.M.S. (HI-FI, P.A., DISCO, BASS GUITAR) Die cast chassis, $\mathbf{2}^{\prime \prime}$ aluminim voice coil, white cone with
aluminium centre dome. 8 ohm imp., Res. Freq. 20 Hz ., Freq. Resp. to 2.5 KHz ., Sens. 97 dB (As photograph). Price: $\mathbf{£ 3 2 . 0 0 +}$ £3 carriage.
$12^{\prime \prime} 100$ watt R.M.S. (HI-FI) Die cast chassis. $2^{\prime \prime}$ aluminium voice coil. Black cone. 8 ohm imp., Res. Freq. 20 Hz ., Freq. Resp. to 4.5 KHz . Sens. 95 dB . (As photograph). Price: $£ 23.50+£ 3$ carriage.
$8^{\prime \prime} 50$ watt R.M.S. (HI.FI. P.A.) $1 \frac{1}{2}$ " aluminium voice coil. White cone. 8 ohm mp . Res. Freq. 40 Hz ., Freq. Resp. to 6 KHz . Sens. 92dB. Also available with black cone fitted with black metal protective grille. (As photograph). Price: White Cone £8.90,
 12" 85 watt R.M.S. McKENZIE C1285GP (LEAD GUITAR, KEYBOARD, DISCO) $2^{\prime \prime}$ aluminium voice coil, aluminium centre dome, 8 ohm imp., Res. Freq. 45 Hz ., Freq Resp. to 6.5 KHz ., Sens. 98 dB . Price: $£ 22.00+£ 3$ carriage
$12^{\prime \prime} 85$ watt R.M.S. McKENZIE C1285TC (P.A., DISCOI 2" aluminium voice coil. Twin cone. 8 ohm imp. Res. Freq. 45 Hz ., Freq. Resp. to 14 KHz . Price $£ 22+£ 3$ carriage $15 " 150$ watt R.M.S. McKENZIE C15 (BASS GUITAR, P.A.) $3^{\prime \prime}$ aluminium voice coil Die cast chassis. 8 ohm imp., Res. Freq. $\mathbf{4 0 H z}$., Freq. Resp. to 4 KHz . Price: $\mathbf{£ 4 7 + £ 4}$ carriage.
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORV LEAFLETS SUPPLIED WITH EACH TWEETER

TYPE 'A'(KSN2036A) $3^{\prime \prime}$ round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $£ 3.45$ each.
TYPE 'B' (KSN1005A) $31 / 2$ '" super horn. For general purpose speakers, disco and P.A. systems etc. Price $\mathbf{f} 4.35$ each.
TYPE 'C' (KSN6016A) 2 " $\times 5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price $£ 5.45$ each.
TYPE 'D' (KSN1025A)2' $\times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained for high quality Hi -fi systems and quality discos. Price $\mathbf{f 6 . 9 0}$ each. discos. Price $\mathbf{L 6 . 9 0}$ each.
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finishi trim. Suitable for Hi
monitor systems etc. Price $£ 4.35$ each.
TYPE 'F' (KSN1057A) Cased version of twee ' E '. Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price $\mathbf{£ 1 0 . 7 5}$ each.
P\&P 20p ea. (or SAE for Piezo ieaflets).

OMP80 LOUDSPEAKER

The very best in quality and value. Ported tuned cabinet in hard wearing black vynide with protective corners and carrying handle. Built and tested, employing 10 in British driver and Piezo tweeter. Spec: 80 watts RMS; 8 ohms; $45 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$; Size: 20 in x 15 in x 12 in ; Weight: 30lbs.

Price: $£ 49.00$ each. $£ 90.00$ per pair
Carriage: $£ 5.00$ each. $£ 7.00$ per pair
BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar and Leader

1K.WATT SLIDE DIMMER
Controls loads up to 1 KW - Compact size
$43 / 4^{\prime \prime} \times \frac{13}{16}{ }^{\prime \prime} \times 21 / 2^{\prime}$

- Easy snap in fixing through panel/cabinet cut out - Insulated plastic case
- Full wave control using 8amp triac
Conforms to BS800
- Suitable for both resistance and inductive loads Innumerable applications in industry, the home, and discos/ theatres etc.

BSR P256 TURNTABLE

256 turntable chassis - S shaped tone arm Belt driven Aluminium platter \bullet skate (bias device) - Damped cueing lever - 240 volt AC operation (Hz) - Cut-out emplate supplied - Completely manual arm. This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are Price: $\mathbf{£ 2 8 . 5 0 + £ 2 . 5 0 \text { P\&P } . ~}$
op
PUINER AMPLIFIER MODULES

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system 8ohms Build a quality 60 watt R.M.S. system.

* $10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
$\star 3^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
$\star 5^{\prime \prime}$ Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
$\star 3$-way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz
Recommended Cab-sizei26" $\times 13^{\prime \prime} \times 13^{\prime \prime}$ Fitted with attractive cast aluminum fixing esemovable enabling a unique choics of cabinet styling. Can be mounted directly on to baffle with or without conventional speaker fabrics. All three units have aluminium centre domes and rolled foam surround. Crossover combines spring toaded loudspeaker terminals and ecessed mounting banel
Price $£ 22.00$ per kit $+£ 2.50$ postage and pack. ing Avalable separately, prices on request

$12^{\prime \prime} 80$ watt R.M.S. loudspeaker

A superb general purpose twin cone loud. speaker. 50 oz. magnet ${ }^{2}$ aluminium voice coil. Rolled surround. Resonant fre. 13 KHz Sensitivity 95 dB . Impedance 80 hm . Attractive blue cone with aluminium Attractive b Price f.17.99 each $+£ 3.00$ PGP.

100 WATT R.M.S. AND 300 WATT R.M.S. MODULES
Power Amplifier Modules with integral toroidal transformer power supply, and heat sink. Supplied in minutes. An LED Vu meter is available as an optional extra.

SPECIFICATION:
Mex Oulput Power: 110 watts R.M.S. (OMP 100) Loads: O 310 watts R.M.S. (OMP 300) Loads: Open and shoit circuit proof. 4.16 ohms.
Frequency Respons3: $20 \mathrm{~Hz}-25 \mathrm{KHz}$ Sonsitivity for Max. Output:
500 mV at (OK (OMP 100)
IV at 1OK (OMP 300) T.H.D.: Less than 0.1\%.

Supply: 240 V 50 Hz
Sizes: OMP $100360 \times 115 \times 72 \mathrm{~mm}$
OMP $300460 \times 153 \times 66 \mathrm{~mm}$

OMP $300 \varepsilon 88.00$ each $+\mathbb{E} .00$ P\&P
Vu Meter $£ 6.50$ each +50 p P\&P

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Worlds Smallest Colour TV

The first-ever LCD pocket colour television in the world has been developed in Japan by the Epson Corporation and Suwa Seikosha Company Ltd, the parent company of Epson (UK) Limited.
Measuring $16 \mathrm{~cm} \times 8 \mathrm{~cm} \times 2.8 \mathrm{~cm}$, the pocket TV utilizes new picture display devices invented by Seiko in its development of a TV watch. This flat display - which provides the key to the ultra-miniaturization represents a breakthrough in picture tube advancement and will play an important role in the progression towards a picture style colour TV, the technological goal of research organisations all over the world. Amongst the pocket TV's advantages Epsom claim no colour aberration at corners, or distortion of pictures, and good visibility in dark or light situations. There are no plans to market the TV in the UK. Epson (UK) Limited, Dorland House, 388 High Road, Wembley, Middlesex.

Is It Clicket?

A new micro-miniature switch is available through Cambion Electronic Products, and it's called the Clicket. As you can see from the photograph, it's pretty small, with a 0.1" leading space, and it has a push-on, push-off action. Cambion Eletronic Products Division, Cambion Works, Castleton, nr Sheffield S30 2WR.

Silicon On Insulator Success

Mitsubishi Electric Corporation has succeeded in manufacturing on an experimental basis a silicon-oninsulator (SOI) structure complementary metal oxide semiconductor (CMOS) device with the worlds shortest delay time of 280 picoseconds, using a laser beam recrystallization technique. This delay time is only a quarter of that of a conventional SOI device and even shorter than that of a device using a single-crystal silicon wafer.
Mitsubishi Electrics success in trial manufacture of the new SOI CMOS marks a major step toward the realization of three-dimensional integration - integration greater than the conventional very large scale integration (VLSI). To make a 3-D integrated circuit, it is necessary to cover integrated circuits on every tier of the multiple layers with oxide or nitride film for complete electrical insulation, and to place a single crystal of silicon on top of this film for the next ICs.
Transistors and other devices are integrated on the surface of single crystal silicon in conventional ICs. In the case of the SOI structure IC, singlecrystal silicon is formed on an insulator substrate; such as silicon oxide. When an SOI structure is employed, there is no malfunctioning from short circuits or in-terference, even if the distance between devices is made shorter
for higher integration.
In conventional methods of making an SOI structure, polycrystalline silicon is melted by a laser beam or an electron beam for recrystallization into a single crystal. But the single crystal thus formed is small and the direction of its growth is not fixed, causing electrical leakage and shortening of circuits.

Mitsubishi Electric solved these problems by developing a revolutionary recrystallization method, under which the scanning speed, the intensity and the direction of the laser beam are adjusted to control the direction and size of crystal. Mitsubishi Electric expect their SOI technology to have a wide variety of applications:- as the key technology for 3D integrated circuits of the future; for high speed and highly reliable CMOS LSI's without latch-up; and for thin film transistors for driving liquid crystal displays.
The work was performed under the management of the R \& D Association for Future Electron Devices as part of the R \& D project of Basic Technology for Future Industries, sponsored by the Agency of Industrial Science and Technology, MITI, Japan.

Lead Free Solder

Jimi Heat of Watford announce the introduction of a new British made allpurpose solder to replace their widely acclaimed, imported, all-metal solder launched around 12 months ago.
Supa Solda is lead free, non corrosive and capable of handing all metals including aluminium. It can be shaped, polished and even chromed. Its relatively low melting point and capillary action is claimed to make it suitable for even the most delicate applications that formerly required expensive silver-based solders.

The suggested retail price of a 'bubble pack' of Supa Solda is $£ 1.65$ and it is available from Halfords and other selected retail outlets.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Z800 Details

Zilog have revealed details of their new Z800 family of $8 / 16$ bit microprocessors. The new CPU's will run on all existing $Z 80$ software at object code level and will provide up to five times greater performance operating at clock rates of 10 to 25 MHz . The $Z 800$ also saves board space and reduces system design costs by including DMA functions, counter/ timers, serial I / O and refresh logic on the chip. Using these on-chip peripherals a small system can be designed with only the Z800 CPU, external memory and a clock crystal. An on-chip memory management unit (MMU) and cache/local memory are also included to increase the power and flexibility of the Z800.The MMU extends the Z800 CPU's logical addressing space up to 16 megabytes compared to the the Z80s maximum of 64 kilobytes. This is achieved by dividing the logical address space into pages which are mapped into larger physical memory. The MMU also provides all the features necessary to implement a virtual memory system transparent to the applications program.
The 256 byte cache memory on the Z800 chip provides the CPU with high speed access to instructions and data that would otherwise reside in slower external memory. Since this feature coupled with programmable bus timing allows the CPU clock speed to differ from the memory clock speed, fast processors (up to 25 MHz) need not be accompanied by equally fast memory devices as was necessary with earlier designs. The Z800 CPU instruction set includes all those in the $Z 80$ set plus a number of new enhancements. New instructions allow the Z800 to perform 8 and 16-bit hardware and multiply and divide, 16-bit arithmetic, 16-bit load, system call (for controlled operating system access by the user) and test and set (for multi-processing support).
group of extended processing instructions similar to those used in the $Z 8000$ and $Z 80,000$ allows the Z800 CPUs to be used with any coprocessor compatible with Zilog's extended processing architecture, including the Z8070 floating point processor.
Several new addressing modes have also been added to the Z80 CPU's original set: index with a 16-bit displacement, base index, and stack pointer relative. A program counter relative mode exists for the Z80 chip but in the $Z 800$ chip it is enhanced to allow 16-bit displacement. Furthermore, the Z80 CPU register set has been improved by allowing byte access to both the IX and IY registers (providing four additional 8bit registers) and the use of two stack pointers instead of one.

Four versions of the $Z 800$ will be available, known as the Z8108, Z8116, Z8208, Z8216. The Z8108 and Z8208 are intended for the smaller systems and employ the same 8-bit non-multiplexed bus as the Z80, allowing them to be used with either the existing Z80 peripherals or the $Z 8500$ family. The Z8116 and Z8216 are 16-bit multiplexed Z-Bus devices and can, therefore be used with the same peripheral chips used by Zilog's 16-bit Z8000 CPUs, the Z8002, Z8001, Z8003 and Z8004.
Although all four Z800 CPUs have the peripheral support circuits integrated within the chip, only the $Z 8208$ and Z8216 include the necessary address lines to permit access to the UART and the DMA functions. The versions of the Z800 (Z8216 and Z8208) with all the peripheral features are supplied in 64pin packages and support extra signal such as bus buffer control, multiple interrupts and global bus Req/Ack. The Z8108 and Z8116 which do not allow access to the DMA and UART functions are supplied in 40-pin packages. The 64pin package used for the $Z 800$ has pin spacings of 70 mil , therefore the package is approximately the same size as the standard DIL 48-pin package, currently used by the Z8001 and the Z8010 MMU.
The Z800 CPU is aimed at traditional 8bit applications including personal computers, workstations, I/O processors, network controllers, etc, that now require 16 -bit performance to meet market demands. Zilog (UK) Limited, Zilog House, Moorbridge Road, Maidenhead, Berks, SL6 8PL.

New, Large EPROMS

Now available in the UK from Bytech Ltd are the latest Intel range of UVErasable Proms. Both D2764 (8K x 8) and D27128 (16K x 8) devices are being stocked, in industry standard approved JEDEC 28 -pin packages. Both devices are available in a choice of 200, 250, 350 and 450ns access times.
The 2764 is a 5 V only, 65,536 -bit UV erasable and electronically programmable EPROM fabricated in HMOS technology. Access time is compatible to high performance microprocessors such as Intel's 8 MHz $8086-2$. In these systems the 2764 allows the microprocessor to operate without the addition of WAIT states devices is that the Output Enable (OE) is separate from the Chip Enable (CE). The (OE) control eliminates bus contention in multiple bus microprocessor systems. The standby mode reduces the power dissipation without increasing access time. The active current is 100 mA , whilst the standby mode is achieved by applying a TTL-high signal to the CE input. Bytech Ltd, Sutton's Industrial Park, London Road, Earlye, Reading RG6 1AZ

Monolithic Microphone

Honeywell has developed a process for building zinc oxide acoustical microphones and microelectronics on single silicon substrates. The "mike-on-a-chip" offers high performance, sensitivity and reliability at a fraction of the cost and size of current available ceramic acoustic microphones.
The chip-sized microphone is made possible by a new Honeywell technique. The company recently developed a reproduceable process for depositing high-quality zinc oxide thin films, substances similar in electronic response to piezoelectric ceramics but compatible with standard integrated circuit processing. Honeywell used existing semiconductor processes and equipment to fabricate the zinc oxide thin-film sensors and electronic conditioning circuitry on silicon.
The advantages of Honeywell's integrated acoustical microphones over ceramic devices are many. The integrated microphones operate at frequencies down to 0.1 hertz, whereas ceramics lose sensitivity at about 20 hertz. The integrated sensors also offer greater reliability because they are solid state, there are no parts to glue or solder, as with ceramic devices. The Honeywell sensors are also smaller and lighter than their ceramic counterparts. In addition, the sensing element is a passive device and the electronics draw less than 40 milliwatts, which means it can remain working in the field for

Industry's Fastest RAM

The industry's fastest RAM has been introduced by Motorola. It's the new bipolar 64-bit ECL RAM (MC1OH145) with an address time of 3 ns (typ) and 6ns (max). The MC10H145 is organised as a 16×4 memory array and is a member of the MECL 10KH family. These very high speeds were achieved through new circuit designs as well as advanced processing techniques. Because the device is a member of the 10KH family, its gate structure was changed from 10 K configuration to include both constant current source gates and a voltage regulator. Thee additions, as well as new configurations of logic, reduce gate delays thus producing these high speeds. Since the device is in the MECL 10 KH family it is processed with Motorola's new oxide isolated process called MOSAIC (Motorola Oxide Self-Aligned Implanted Circuit but it took them quite a while to think that one up:; which achieves smaller device geometries, improved bandwidth and reduced parasitic capacitances. The European Literature Centre, Motorola Semiconductors, 88 Tanners Drive, Blakelands, Milton Keynes.
months before requiring battery recharge or replacement.
Zinc oxide, like piezoelectric ceramic, produces an electrical charge when strained. However, zinc oxide is also pyroelectric, it produces a voltage change in response to thermal change, and this effect must be minimised in lowfrequency applications of this device. Honeywell eliminated the thermallyinduced voltage fluctuations through a unique design of concentric electrodes, that cancel all pyroelectric-induced electrical signals.
The "mike-on-a-chip" is very sensitive. It can detect one microbar of pressure (one bar equals one atmosphere or 14.69 pounds of pressure per square inch) and will exhibit signal-tonoise ratios of 5:1 at one microbar. Honeywell's "mike-on-achip" could have various applications, including hearing aids. Honeywell has applied for a patent on its integrated acoustical microphone technology.
Honeywell Control Systems Ltd, Honeywell House, Charles Square, Bracknell, Berkshire RG12 1FB.

New Micro With ROM

The NEC uPD7809G contains the largest on-chip ROM capacity of 8 K among current commercially available products, as well as 256 bytes of RAM. In addition to the powerful instruction set with 16bit arithmetic/logic instructions, the device contains versatile functional blocks such as 8-comaparator input lines, watchdog timer, programmable wait, hold function, 16-bit event/timer counter, two 8-bit programmable timers and serial interface (UART). The new unique 8-bit comparator input lines can be used, for example, for direct interface with the keyboard and the watchdog timer will prevent the program from running out of control in a noisy environment.
The 7809 (seem to have seen that number before!) features a high speed instruction cycle time of 1uS, which under 12 MHz , allow much faster 16 -bit multiply/divide operations. It is estimated at 1.5 to 5 times faster than conventional micros.
In addition to on-chip memories of 8 K for ROM and 256 for RAM, external memory expansion up to 56 K bytes is also provided for, with battery back-up operation applicable to some on-chip RAM under stand-by mode.
NEC Electronics (UK) Limited, 116 Stevenson Street, New Stevenson, Motherwell ML1 4LT, Scotland.

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS

CRIMSON ELEKTRIK

No	Modules	
2580	CE 608	40W Mono
2581	CE1004	100W 4 Mono
2582	CE1008	100W 8 Mono
2583	CE1704	$170 W 4$ Mono
2584	CE1708	170 W 8 Mono
2585	CE3004	300W 4 Mono
$2585 a$	FE, 908	90W FET. Mono
$2585 b$	FE1704	170W FETMono
$2585 c$	BD1	Bridge Unit for Modules
2608	CPR 1X	Pre-Amp Module

JOIN THE PROFESSIONALS

WE ALSO STOCK ALL
THE POWER
SUPPLIES TO DRIVE
THESE MODULES
PS. THESE KITS AND
MODULES ARE
EXCLUSIVE OF VAT

No		Price	
2615	Complete Pre-Amp Kit	CK1010	$£ 80.00$
2616	Complete 40W Stereo Amp Kit	CK1040	$£ 105.00$
$2616 a$	Complete 80W Stereo Amp Kit	CK1080	$£ 116.00$
2617	Complete 100W Stereo Amp Kit CK1100	$£ 131.00$	
2618	Add on Moving Coil Kit	MC12K	$£ 21.74$
2619	Pre-Amp Power Supply Kit	PSK	$£ 17.39$
TS70 70			
HS50 50 mm Heal Switch			
HS100 100mm Heatsink			
14.95 150mm Heatsink			
FOR 2 YEARS.			

VELLEMAN KITS

Some are easy some are hard

No Description \quad Price

K610 Mono UU using LEDS. 10.05
K1798 Stereo UU using LEDS 18.77
14.95

K1874 Running Light Kit
K2571 Light Computer with EPROM
K2569 Three Tone Chime
K2575 Microprocessor Doorbell 25 tunes
14.95
36.23
$\begin{array}{ll}\text { K2544 Complex Sound Generator } & 15.53 \\ & 10.26\end{array}$
K2032 Digital Panel Meter
K2557 Digital Thermometer
K2545 50Hz Crystal Time Base
K615 High Precision Stopwatch Description

WE STOCK A WIDE RANGE OF BOXES TO HOUSE THESE KITS INFROM VERY SMALL

TO VERY LARGE
19"MAXIMUM
PS. ALL KITS include vat

TELETEXT KIT

This unit will make your TV fully remote control (Infra-red) and bringyou closer to the amazing world ofteletext. The kit can also be updated to incorporate full Prestel, and with a keyboard this can give you full message facilities for ordering foods or sending and receiving messages (E.G.) Booking your Holidays!
With a microcomputer as an alternative keyboard the world is even greater adding bulk updating to view data computers an receiving tele-software for implementation to any personal computer.
Even without the Prestel option, Telesoftware from the Teletext pages free!
The full features of Teletext, including subtitles are all included in the basic kit.
An attractive stylish case-is available to complement the finished kit
Basic Teletext Kit (no box) $£ 130+$ VAT P/P $£ 2.50$
with box $£ 144.95+$ VAT P/P $£ 3.00$
box by itself $£ 14.95+$ VAT P/P 75 p

PRESTEL ADAPTOR

A Prestel microcomputer adaptor to give fullautodialing to your computer. All the usual Prestel facilities are added via this unit, plus many more, and, can operate lo any viewdata computer.

You can shop from home, bank transmit messages and receive software, which means thal the uses your micro can be put to are limitless.
The unit is not restricted to just the UK, for at least 28 countries use the Prestel viewdata format, so you can also mail-order from anywhere. The Prestel unit is suitable for most micro computers even the ZX-81, so at the push of a button, the technology of tomorrow is in your home today.

ANTEX

Soldering Irons			Iso-tip Cordless Iron SS25	25 W
Miniature low voltage				

COMPONENTS

Device
Price. Z80A PIO 280A PIO 3.20

6800
6810
6821
6502CPU
$2114(200 \mathrm{~ns})$
2708
2716
2732
2532 (200ns)
ADC0816 (8 bit)

EDGE CONNECTORS
ZX81 E.C.
Spectrum E.C.

2.98

$\begin{array}{ll}\text { Spectrum E.C. } & 3.78 \\ \text { VIC } 20 \text { E.C. } & 378\end{array}$ $\begin{array}{ll}\text { VIC 2O E.C. } & 3.78 \\ 50 \text { Way E.C. } & 3.30\end{array}$ $\begin{array}{ll}50 \text { Way E.C. } & 3.30 \\ 18 \text { Way E.C. } & 2.80\end{array}$ $\begin{array}{ll}18 \text { Way E.C. } & 2.80 \\ 64 \text { Way E.C.Plug } & 2.50\end{array}$ 64 Way E.C. Socket 31 Way E. C. Plug 4.80
2.00 31 Way E. C. Socket

No

K2543 Transistor Ignition
K2555 Digital Freq Counter for Receivers
K2566 3 Channel Coloured Light Organ
K2572 Universal Stereo Pre-Amplifier
K2574 Universal 4 Digit U/D counter with memory
K2574 Universal 4 Digit U/D counter
K2579 Universal Start/Stop Timer
K2583 Heating Controller
K1682 Microprocessor Univ
(no case)
K2551 Central Alarm Unit

We stock a very wide range of opto-
devfces, from Infra-Red to LED's to Opto-Couplers. Check us out for competitive prices
and helpful service.

We also stock 74 series 74LS, CMOS, transistors, capacitors, resistors, LED's, zener diodes, diodes, jack plugs, mains plugs, XLR plugs, cannon plugs, arrow
switches BNC connectors, reducers, photolak, developer, PC board, sensitive switches BNC connectors, reducers, photolak, developer, PC board, sensitive normal, boxes, wire cutters, strippers, Edge connectors, pots, batteries, digital
pulsers, logic probes, proto-boards, Veroboard. pulsers, logic probes, proto-boards, Veroboard.
This isjust a small sample of what westock, ifyou like to see more send $£ 1.00$ to us for our NEW 1983 CATALOGUE

BOOKS

*New Books
Please Note. Books are VAT exempt but add £ 1.00 to cover P/P

The 9900 Family Data Book
The Opto-Electronics Data Book
The Bipolar Microcomputer Databook 4.50
The Interface Circuits Data Book 7.00

The TTL Data Book
MDS Memory Data Book
The Linear Control Circuits Data Book 4.00
The Voltage Regulator Data Book
The Power-semiconductor Data Book 9.00
*TII Data Book Volume I 9.00
*TI Data Book Volume II 9.00

301 Circuits 8.00

Towers Transistor Equivalent 5.00

Towers Digital Selector 9.50

Towers Linear 10 Selector
Why not try our mall order service, It's fast and efficient. We take Barclay, Access, Am Exp, Diners or Cheque
Cheques made payable to Bradley Marshall Ltd.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Electronic Memo Pad

A unique totally British designed electronic memo pad which can carry out the functions of a calendar, diary, address book, note pad and a expense account log has been
launched into the UK by Domicrest Ltd. The unit measures 136 mm (W) x
$90 \mathrm{~mm}(\mathrm{H}) \times 9 \mathrm{~mm}(\mathrm{D})$ about the same size as a cigarette case, and will therefore fit in the pocket or the handbag. Called the Biztek Pad it will be percolating through. the shops with a retail price of $£ 69.95$,

New Portables(??)

The portables market is getting just silly, as these two pictures show. Top is the latest offering in this field from Aiwa - it's styled so that all the various 'components' (the tuner, the cassette deck, etc) look like separate units all just glued together. Actually, you can detach the speakers, but when they're attached to the unit, a special port is opened between them and the main case, which brings a passive radiator into play and boosts the bass response. Total output power is 28 Watts per channel (peak), and the thing has a built-in five-band graphic equaliser (readers wanting a proper graphic equaliser should turn to page 41, where they'll find part two of our own, 28-channel equaliser). Price is a cool $£ 199.95$ (It's the CA-70, from Ai-ee-wah UK Ltd, 163 Dukes Road, Western Avenue, London W5 OSY).

The other of these monsters has as you can see, a B \& W TV as well as the usual tape and radio facilities. But won't you bump into people if you walk along holding the TV in front of you? And how strong do your arms

have to be the weight isn't stated in the press release? This beast costs $£ 149.95$ and is made by Heron Electronics, Heron House, 19 Marylebone Road, London NW1 5JL (confusingly, it's called the Ingersoll XK 500).

There must be a whole generation of youth growing up with one arm longer than the. other due to carrying these things around when will manufacturers think of fitting wheels to them?

New cats for old!

SEND US THE COVER FROM ANOTHER COMPONENT SUPPLIERS CURRENT CATALOGUE, PLUS A 40p STAMP, AND WE'LL SEND YOU A FREE COPY OF THE LATEST (SUMMER) AMBIT CONCISE COMPONENT CATALOGUE ALTERNATIVELY YOU CAN SIMPLY BUY A COPY FROM YOUR NEWSAGENT- OR SEND 8Op TO THE ADDRESS BELOW

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Cheap DMM

Possibly the best value for money handheld DMM in the UK is available from the House of Instruments and hi! distributors.
Metex type 3000 is a $31 / 2$ digit LCD hand held DMM with a basic DC accuracy of 0.5%. It comes fully guaranteed for 12 months complete with test leads, battery, spare fuse, operating manual and free carrying case at $£ 29.50$ including post and packing (but exclusive of VAT).
There are 30 individual ranges of 1000 V , $10 \mathrm{amps}, 20 \mathrm{M}$ ohms, and diode test and zero check functions. Zeroing, overrange, polarity and low battery indication are all catered for automatically. Normal overload protection is provided as well as high voltage surge to approximately 3 KV . House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex, CB10 1EE.

New Line for TV

A slow-scan TV system currently undergoing field tests in prototype, will bring slow-scan television within reach of the average amateur pocket Designed and built by Davtrend Limited, it will be introduced in late summer with the launch of the Model SST-1000 SlowScan Receiver, which will be offered at the highly competitive price of less than £200.
The receiver will have facilities for accommodating a transmitter PCB that will upgrade the equipment for two-way communications. This PCB will be introduced at a later date to coincide with the launch of the full transceiver system, designated as the SST-2000 Slow-Scan Transceiver.
System specifications will be standard: that is, 128 by 128 discrete picture elements each encoded into 16 grey shades to produce one picture every 8.5 seconds. Davtrend Limited, Sanderson Centre, Lees Lane, Gosport, Hampshire PO12 3UL.

Video Recorder Head Testers

Two Video-Head Testers have been added to the Leader range of test equipment marketed by Thandar Electronics designated LHC-909V (VHS) and LHC-909B (Beta) the tester will measure the amount of wear in video heads. The unit costs $£ 45.00$ plus VAT, and for further details contact Thandar Electronics Limited, London Road, St Ives, Huntingdon, Cambs, PE17 4HJ.

New Cards Make Apples Grow

New from Hawk Electronic Test Equipment is a GP1B interface card which allows the Apple to become an IEEE 488 controller for test measurement and control. The board will run up to 14 separate controllable devices with a transmission path of up to 20 meters. The on-board software interfaces directly with basic and Applesoft strings, making the Apple into a powerful and east to use IEEE 488 GP1B controller. The price of the card is $£ 189.00$ inclusive.
Also form Hawk is a 32-channel I/O card for the Apple, which enables external control and data feedback for the Apple, with four 8-bit bi-directional I/O parts, four 16-bit timers, two serial to parallel, parallel to serial, parallel to serial register and handshake capability. The price of $£ 49.50$ also includes documentation and example program. Hawk Electronic Test Equipment, Bircholt Road, Parkwood Industrial Estate, Maidstone, Kent ME15 9XT.

From Owl Micro-Communications comes a new multi-function communications interface card that turns the Apple microcomputer into a highly versatile communications device, with applications ranging from electronic mail to IBM terminal emulation.
The new Owl Multicom card is available for the Apple II plus, Apple IIe and Apple III computers and provides all the standard communications interfaces - a V24 (RS232) serial interface for synchronous and asynchronous communications, a parallel printer interface and clock/timing functions from a single slot in the Apple Cardframe. Owl Micro-Communications, The Maltings, Station Road, Sawbridgeworth, Herts CM21 9LY.

IMPECTRON SELL SHARP LC DISPLAYS

Versatile LCD Display

A $175 \times 50 \mathrm{~mm}$ LCD display panel, featuring a fully programmable 240×64 dot matrix, has been introduced by Impectron Ltd. The panel, manufactured, by Sharp of Japan, is designated the Model LM-24002G and incorporates LCD display panel, CMOSLSI driver circuits and interconnection facilities.
The new unit is capable of displaying graphs, diagrams or animated pictures
as well as letters, figures or symbols Viewing angle is a minimum of 40° whilst contrast ratio is typically 3.00 and response speed better than 300 milliseconds. The back of of the display contains ten CMOS control and driver chips, which ensure complete applications flexibility. Impectron Ltd, Foundry lane, Horsham, West Sussex RH13 SPX.

Fibre Optic Photodiode

Norban Electro-Optics Limited, sole distributors of RCA fibre optic components in the United Kingdom, have launched a new trans-impedance pre-amplfier photo diode module for "second-window" fibre optic applications.
The RCA C30986E utilise the new Indium Gallium Arsenide PIN photo diode which has excellent responsivity between 900 nm and 1700 nm and it is ideal for use at the low attenuation wavelength of 1300 nm increasingly used in fibre optic systems.

The trans-impedance preamplifier employs a low-noise gallium arsenide FET front end and a cascode feedback circuit. An emitter follower stage been added for improved output coupling efficiency. Additional device features include a system bandwidth of typically 250 MHz end and a signal to noise ratio of typically 22 db for a bit error rate of 10-9. Norban Electro-Optics Ltd., Norban House, Boulton Road, Reading, Berks RG2 OLI.

High Voltage Reed Relay

A new high-voltage reed relay developed by Hamlin Electronics uses a vacuum reed switch with tungsten contacts to give an excellent isolation interface, with hold-off voltages ranging from 5 kV up to 20 kV
DC. The new HE5100 Series is available with a selection of switching voltages from 3.5 kV DC to 17.5 kV DC. Minimum insulation resistance is $101^{\circ} 0$, and maximum initial con-tact resistance is 0.10 ; coil voltages are of $5,12,24$ and 48V DC.Hamlin Electronics Europe Limited, Diss, Norfolk, IP22 3AY.

Standard

features -

- High speed 24 K byte extended basic interpreter
- Powerful TMS9995 16 bit microcprocessor
- 48 bit floating point gives 11 digit accuracy
- High resolution (256×192) colour graphics
- Screen memory does not use up user memory space
- $\mathbf{1 6}$ colours available on the screen together in graphic mode
- Fast line drawing and point plotting basic commands
- High speed colour shape manipulation from basic
- Full textual error messages
- String and Array size limited only by memory size
- Real time clock included in basic
- Interval timing with $\mathbf{1 0 m S}$ resolution via TIC function
- Named load and save of basic or machine code programs
- Auto-run available for any program
- Powerful machine code monitor
- Assembler and Disassembler included as standard
- Auto line numbering facility
- Full renumber command
- Simple but powerful line editor
- Buffered i/o allows you to continue executing the program while still printing
- Flexible CALL statement allows linkage to machine code routines with up to 12 parameters
- Basic programs may contain spaces between key words to make programs readable without using more memory
- Over 34 K bytes available for basic programs
- Extended basic includes IF-THEN-ELSE
- Supports up to 16 output devices: Screen and cassette interfaces included as standard
- Supports bit manipulation of variables from basic
- Error trapping to a basic routine included
- Basic supports Hexadecimal numbers
- Separate 16K video RAM for graphics

International as a constructional project) you have access to highly advanced systems and software developed specially by MPE Ltd for the CORTEX. For business, education, R \& D - or simply increasing your knowledge and understanding of computers - it beats comparably priced off-the-shelf machines hands down!

STATEMENTS IF	PRINT	TIME WAIT	RENUM BOOT	MAG TOF	MWD BASE	@	()	$\begin{aligned} & \text { INT } \\ & \text { LOG } \end{aligned}$	$\begin{aligned} & \mathrm{POS} \\ & \mathrm{COL} \end{aligned}$
ELSE		SAVE	GRAPH	TON	COMMANDS	\#	I)	SQR	MOD
ON		LOAD	TEXT	DIM	RUN		FUNCTIONS	SYS	RND
GOTO	1 UNIT	MOTOR	PLOT	LET	SIZE		FNA-FNZ	TIC	KEY
GOSUB	BAUD	ESCAPE	UNPLOT	DEF	CONT	;	ABS	SGN	OPERATORS
POP	CALL	NOESC	COLOUR	NEW	MON	\%	ADR	BIT	OR
REM	DATA	RANDOM	CHAR	END	DELIMITERS	\$	ASC	CRB	
FOR	READ	ENTER	SPRITE	BIT	DELIMITERS		ATN	CRF	AND
NEXT	RESTOR	LIST	SHAPE	CRB	TAB		SIN	MEM	AND
ERROR	RETURN	PURGE	SPUT	CRF	STEP	!	COS	MWD	NOT
INPUT	STOP	NUMBER	SGET	MEM	STEP	\&	EXP	LEN	LNOT

£295
Ready built £395
All prices + VAT
Carriage paid

Optional extras

RS232C interface kit
Floppy disc interface
Pair of $51 / 2^{\prime \prime}$ " disc drives and hardware kit

Ready built
CORTEX B - Basic machine + RS232C
CORTEX C - as above + disc drives £895.00

Full assembly instructions and 216 page user's manual.

POWERTRAN cybernetics

Portway Industrial Estate, Andover SP10 3NM. Tel: 026464455

subishi Electric have been busy
lately! Their semiconductor division is
w mass producing its newly
developed 64K mask ROM chip at the
monthly rate of 100,000 units.
Operating on a single 5V
power source featuring low
power consump-tion - maximum 80mA
it is capable of fast reading
with a maximum access time of
50 nanoseconds.
This new M5M2364P 64K ROM is
totally compatible with the 64 K
EPROM, so EPROM chips used in
experimental models may be replaced by
the mask ROM chip without any
modifications. It is ideally suited for
use in personal computers,
word processors, various peripheral
equipment and video games.
In line with the increasing memory
capacities of EPROM chips, such as 128 K and
256K, Mitsubishi Electric plans to develop
mask ROMs compatible with them,
expanding its share of the mark ROM
market. Mitsubishi Electric (UK) Ltd.,
Centre Point, 103 New Oxford Street,

Shorts

- Mini discs are here! Advanced Memory Services Ltd., Woodside Technology Centre, Green Lane, Appleton, Warrington are now selling 3" Hitachi disc drives for the BBC micro, at $£ 225$ for the single version, and $£ 399$ for the double.
- Jingoistic jig: apparently British standards have been adopted for 98% of view data and Teletext TV sets throughout the world. But does it make us any money? It must have been done before, it seems such an obvious idea - GenRad Limited, Norreys Drive, Maidenhead, Berkshire have produced a noise dosimeter that can be worn in a shirt pocket.
- Jump on your micro! Crofton Electronics, 35 Grosvenor Road, Twickenham, Middlesex TW1 4AD have introduced a metal case for the BBC, at a price of $£ 39.50$ inclusive. They intend to introduce another version, with integral floppy disk housing.
- Take your floppy for a walk with a new Winchester/floppy disk exerciser from Monitest Ltd, Highdiffe House, 411-413 Lym-ington Road, Highcliffe, Christchurch, Dorset BH23 5EN. It's called the AVA 103D, and is intended as a piece of test equipment.
- A new leaflet, Power Darl-ingtons For Semiconductor Ignition (we think they mean for car engines) is available from Telefunken Electronic GmbH, Postfach 1109, D-7100, Heilbron, W. Germany.
- Now we really are getting into leaflet territory: PSP Electronics, Unit 2, 2 Bilton Road, Perivale, Greenford,

So far as we know, this has got absolutely nothing to do with electronics, but we thought that it might interest you anyway. It's a steam car that Acheson Colloids are sponsoring in an attempt on the land speed record for steam cars (set in 1906 at 129 mph). In case you are wondering what's happened to our caption photo, none of us here seem to have quite the same warped sense of humour as Peter Green who used to do them!

Middlesex UB6 7DX have issued a leaflet on the range of connectors that they sell.

- Greenpar Connectors, PO Box 15, Harlow, Essex CM20 2ER have issued a leaflet on their coaxial cables.
- Could someone please tell us why around half the leaflets we're told about are for connectors? This one is from Thorn EMI Electrical Components Ltd., Great Cambridge Road, Enfield, Middlesex EN1 1UL, and it details electrical connectors to BS 9522 N0001.
- Cotswold Electronics Ltd., Unit T1 Kingsville Road, Kingsditch Trading Estate, Cheltenham GL51 9NX have issued a leaflet on their budget range of off-the-shelf transformers.
- A new range of Suzuki electronic products is now available in the UK through Craftmaster (UK) Ltd, Tower House, Lea Valley Trading Estate, London N18 3HR. The range includes some rather neat jack connectors and cables, microphones, pianos and a personal stereo amplifier/speaker.
- Sony UK have launched their own mag for CD users, which will be distributed free to owners of Sony players.
- There's something in the air - and it could be coming from the UoSAT satellite. A newsletter on this facility for amateurs is available from UoSAT Group, Dept of Electronic and Electrical Engineering, University of Surrey, Guildford, Surrey GU2 5XH (large SAE required).
- Camel Products have introduced a 4K ROM/RAM unit, along similar lines
as the unit reported in Digest, January ("High-Rise RAM"); however, this makes it only half the capacity of the ETI PseudoROM! Camel Products were too modest to attach their address to their press release, but it is One Milton Road, Cambridge CB4 1YU.
- More jingoism: Gould Micro Power Products Division, 11 Ash Road, Wrexham Industrial Estate, Wrexham LL13 9UF have been awarded a contract from NASA worth more than $\$ 100,000$ to provide zinc-air power packs for the Space Shuttle.
- Prentice-Hall International, 66 Wood End Lane, Hemel Hemptead, Hertfordshire HP2 4RG have released a booklet on the personal computing and micro books that they publish.
- It had to come! Zemco (UK) Ltd, 66 Earlsdon Street, Coventry CV5 6EL, have introduced a handlebar mounted computer for cyclists - so that you can keep a check on your speed, average speed, etc - all for $£ 19.95$ inclusive. Incidentally, your dear Editor saw one of these in use during the recent London to Brighton 'Fun Run', but it didn't seem to help its owner go any faster.
- Jackson Brothers have been busy producing new capacitors, including a nigh voltage air dielectric variable type (the TX5), a new precision trimmer (the MT5) and a differential sensor capacitor that can be used to measure angular displacements. Jackson Brothers (London) Ltd., Kingsway, Waddon, Croydon CR9 4DG.
- New catalogues! Electrovalue, 28 St Judes Road, Englefield Green, Surrey

TW20 0HB will send you theirs for free, but Bi-Pak, The Maltings, 63A High Street, Ware, Herts SG12 9AD will take 75 p plus 25 p p\&p off you for theirs.

- Axiom Electronics tell us that they now hold 'in-depth' stocks of the MC68008, a reduced data bus version of the 68000. Axiom Electronics Limited, Turnpike Road, Cressex Estate, High Wycombe, Bucks HP12 3NR.
- The latest edition of the IBA Technical Review has landed on our doorstep, and it contains a survey of recent developments in Teletext. ETI readers may obtain copies by sending a large SAE to IBA Information Service, Crawley Court, Winchester, Hants SO21 2QA.
- A new company has been formed to exploit the microprocessor and micro computing innovations at Bath University. Called Sirius Microtech Ltd., the company is at Ashchurch Industrial Estate, Tewkesbury, Gloucestershire, and it would surprise us at ETI if this were not one of many such companies to be formed.
- Rifa have introduced a longlife electrolytic capacitor specifically for use in switched mode PSUs, with low ESR and ESL. The PEH 179 series is available through RIFA AB, Market Chambers, Shelton Square, Coventry. - $A B$ Engineering Co have issued a catalogue of their range of tool kits for professional engineers. AB Enginering Co, Timber Lane, Woburn, Milton Keynes MK17 9PL.

YOURCAREER.YOUR FUTURE.YOUR OWN BUSINESS..YOUR HOBBY THISISTHEAGE-OFELECTRONICS! the world's fastest growth industry...

There is a world wide demand for designers/engineers and for men to service and maintain all the electronic equipment on the market today - industrial - commercial and domestic. No unemployment in this walk of life! Also - the most exciting of all hobbies - especially if you know the basic essentials of the subject. . . A few hours a week for less than a year - and the knowledge will be yours. . We have had over 40 years of experience in training men and women successfully in this subject.

Our new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minumum of theory.

You learn by the practical way in easy steps, mastering all the essentials of your hobby or to start, or further, a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagram
- Carry out 40 experiments on basic electronic circuits used in modern equipment using the oscilloscope
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{H}_{1} \cdot \mathrm{Fi}, \mathrm{VCR}$ and microprocessor/computer equipment.

CACC I

COLOUR BROCHURE

Please send your brochure without any obligation to

NAME

ADDRESS

I am interested in:
\square
\square COURSE IN ELECTRONICS as described above
RADIO AMATEUR LICENCE MICROPROCESSORS OTHER SUBJECTS please state below

OR TELEPHONE US

 073451515 OR TELEX 22758 (24 HR SERVICE)ETI/9/841

AUDIO DESIGN

The object of this series is to de-mystify audio design, and show that even a comparative beginner can design circuits that work, and work well. But don't let the apparent simplicity of the approach fool you - there will be something here for all, including the most experienced of our readers.

In this first part, John Linsley Hood looks at transistors, both bipolar and field effect, and how to do simple yet very useful calculations on them.

There is a great deal of satisfaction to be gained in building something to one's own design, and finding that it works as well as one had hoped, particularly if this is the sort of thing which one can do, on one's own, without the need for a lot of technical facilities or expensive components.

This is an advantage which we share with some of the manual crafts like pottery or carpentry, but with the additional benefit that if we are not pleased with what we have done, we can take it to pieces and re-use the parts. Moreover, the scope of electronics is exceedingly wide, and this adds enormously to the interest which it will give to the experimenter.

However, there is a truism in engineering that a good design will not necessarily cost more than a poor one, in materials and labour, indeed it may sometimes cost even less, but will give much more satisfaction in use, and may have a longer trouble-free service life. Therefore, it pays in electronics, as in other forms of engineering, to know ones materials and their strengths and weaknesses. In this part, I propose to have a look at the active components (bipolar transistors and FETs) which we are likely to wish to use, and to discuss the characteristics of the passive components (resistors; capacitors and inductors) only as and when we come across them in the circuit design, and when we need to be particularly concerned with their qualities in order to obtain the best results.

Transistors Or ICs?

Most of the things which we need to do in audio circuit design can now be done just as well by the use of integrated circuits as they can be done by any assembly of transistors and separate components. Moreover, it is nearly always a lot cheaper to use an IC, if. a suitable one is available, and it will also occupy a lot less space.

Unfortunately (I say this sincerely, since I am as lazy as the next person, and I like my design work to be done for me) there are still a few fields in which discrete component circuitry will perform rather better than the equivalent ICs, or in which suitable ICs are just not available. These are high voltage systems, with supply voltages in excess of some 45 volts, high power systems, very low noise circuitry (though ICs are beginning to make inroads here), and very high fidelity systems, particularly where these also involve low signal levels.

There are, indeed, some very good ICs of recent origin which are aimed specifically at the hi-fi field, and one would be foolish to ignore their existence, so I will talk
about some of these later. However, discrete component (resistor/transistor) circuitry is still the mainstay of audio electronics, so I will start with this.

Bipolar Junction Transistors

These, the 'transistors' of common use, are now almost exclusively silicon planar devices, made from a slice of mono-crystalline, very high purity silicon, 500 to 750 microns thick, and 75 to 100 millimetres in diameter. During manufacture this slice is photographically masked in an intricate and repetitive series of patterns across its face, and controlled quantities of specific impurities are selectively diffused in a vacuum oven through the succeeding mask patterns, into the slice. This gives a construction of the type shown in cross section in Fig. 1, when the large slice is cut down into a thousand or more individual segments or 'dies'.

Fig. 1 (a) Cross section of a die; (b) a complete small-signal transistor.

NPN

PNP

Fig. 2 Transistor circuit symbols - these should be all too familiar to you!
When connections are attached to the impurity regions and the whole lot is encapsulated in a pea-sized piece of plastic, or, more expensively, mounted in a small hermetically-sealed metal container, this becomes the 'transistor' which is shown in the conventional circuit drawing of Fig. 2.
The enormous commercial success of the silicon transistor
transistor, which has now almost completely superseded the earlier germanium type, stems from the fact that this method of construction makes them very cheap to produce. I don't think that I am letting too many secrets out of the bag if I say that a large scale commercial user would probably be reluctant to pay more than 1 to $2 p$ each for these devices in any large quantity, and even at this price it is possible for the manufacturer to make a living.
Discrete junction transistors of this silicon planar type are, conveniently, available in NPN (positive supply line)and PNP (negative supply line) types, and they can be used for an enormous range of applications. However, the one which comes most readily to mind is that of a voltage amplifying stage of the type shown in. fig. 3(a) or (b). Of these, the circuit shown in 3(b) is much more predictable in its characteristics, and would therefore be preferred by the experienced circuit designer if a single transistor amplifying stage would be adequate for his purposes.

(a)

(b)

Fig. 3 (a) and (b) single transistor amplifier stages. Both these employ feedback in the setting of the operating point, but not in the signal path (assuming that the source output impedance is much lower than the value of R1 in (a).

That last comment is, however, an important one, in that the performance which can be gained from the use of a group of transistors, acting in combination, is so much. better than that of a single device that there is seldom any good reason for not using a more complex construction.
A typical two transistor amplifying stage, using complementary (NPN and PNP) devices is shown in Fig. 4.This employs some negative feedback (much more on this topic later on) to improve its linearity and bandwidth, and control its AC stage gain. With the circuit values shown, this has a gain of 100 , a bandwidth of $10-500 \mathrm{kHz}$, an output voltage swing of 28 V p-p, and, a distortion of less than 0.01%, as compared with a gain of about 40 , a bandwidth of only about halt this, and a distortion of some 5% for the single transistor circuit.

Fig. 4 A two stage transistor amplifier with a gain of 100.
This type of circuit can be elaborated still further as shown in Fig. 5, which will amplify DC as well. However, I am running ahead a little too fast. If we are to make use of circuits of this type, we must first be able to decide upon

Fig. 5 DC amplifier (with a gain of 10) using an input iong-tailed pair, Q1 and Q2.
our component values and types, with the intended use in mind. So let us do this for the circuit of Fig. 3(b), and while we are at it examine why 3(b) is a better circuit than 3(a). All we need at this stage is a knowledge of Ohms Law, a little familiarity with transistor characteristics, and a pocket calculator!

A typical small-signal plastic encapsulated transistor will have a maximum permitted dissipation of around 300 milliwatts, a current gain of 100 to 500 , which will depend a little on collector current and a maximum operating voltage in the range $20-80$ volts, with 30 volts being a typical value. In addition, to make the transistor work, there will need to be a forward bias voltage between the base and emitter of some 0.55 volts at room temperature (0.2 volts for a germanium device).

So, let us choose a 30 volt supply line for Fig 3(b), and decide to have about 15 volts across the transistor itself. A collector current of 5 mA will give a dissipation of 75
milliwatts $\left(P_{\text {watts }}=\mathrm{VI}\right.$ or $\left.=I^{2} R\right)$, which is comfortably within its permitted range. This sort of collector current will also give a reasonable small signal performance. If we choose an emitter potential of 3 V , the required base voltage will be 3.55 volts, and the collector voltage will be 18 V , giving a voltage drop of 12 V across R_{3}.

From the ohms law relationships $V=I R$, which can be rearranged as $R=V / I$ or $I=V / R$, where V is in volts, I is in amps, and R is in ohms, we can work out that R3 should be $12 / 0.005$ or 2 k 4 ohms. For 3 volts dropped across R4, this resistance, which carries virtually the same current, will need to be $1 / 4$ of this, or 600 ohms. If we assume a minimum current gain for the transistor of 100, then the base current will be 50 uA . To make sure that this doesn't influence the voltage drop in the potential divider chain R1/R2 too much, let us make the current through this 0.5 mA , which gives values for these resistors, calculated as above, of $53 \mathrm{k} / 7 \mathrm{k} 1$, to provide a base voltage of 3.55 V .

Rounding these values off to the nearest 'preferred' values will give $R 1=56 k, R 2=6 k 8, R 3=2 k 7$ and $R 4=$ 680 ohms. This will not affect the desired operating potentials too much. At this sort of collector current, the input impedance of the transistor itself will be about $5 k$, giving an input impedance to the whole amplifier circuit of some $2 k 7$. $\left(R_{\text {in }}=1 /\left(1 / R 1+1 / R 2+1 / R_{\text {lx }}\right)\right)$. A calculator with a reciprocal $(1 / x)$ function make this kind of calculation very easy.

This leaves us only with the task of deciding what values to use for C1, C2 and C3, which will be determined by the lowest frequency we want to amplify. The impedance of a capacitor is given by the formula $Z_{c}=1 /(2 \pi f C)$, where f is the frequency, in Hz , and C is the value of the capacitor, in Farads. C1 and C3 should both have impedances which are a bit smaller at this frequency than the input impedance ($2 k 7$) and the output load impedance $\left(Z_{l}\right)$ presented to the circuit - say $10 \mathrm{k} . \mathrm{Z}_{\mathrm{C} 2}$ should be less
than R3/M, where M is the hoped-for value of stage gain say $\times 100$. Doing these calculations gives $\mathrm{C} 1=6 \mathrm{u}, \mathrm{C} 2=$ 600 u and $\mathrm{C} 3=1.5 \mathrm{u}$, for a lowest operating frequency of 10 Hz .

The upper operating frequency will be determined mainly by the output stray capacitances of the circuit and its associated wiring, but could be a few hundred pF. The -3 dB point (at which the output is down to 70% of its original value) is that frequency at which $\mathrm{Z}_{\mathrm{C}_{\mathrm{s}}}$ is equal to R3 in parallel with ZL. The userful formula here is $f_{1}=1 / 2 \pi R 3 C S$. If $C S=300 \mathrm{p}$, ft will be 250 kHz .

Using the calculated resistor values shown above, we could swap transistors in the circuit of Fig. 3(b) with very little change in the DC operating conditions. How about Fig. 3(a)? In this case, the base current is determined by the collector-base voltage and the value of R1. If, as before, we make $\mathrm{V}_{\text {ce }}=15 \mathrm{~V}$, and decide on a collector current of 5 mA , then R2 will be 3 k . If we assume a current gain of 100 , then R1 $=14.45 / 0.00005=289 k$. However, suppose that the transistor current gain turned out to be 500, instead of 100, then the collector current would increase and the collector voltage would fall to about 5.5 V to preserve the status quo. The circuit would still work, but one wouldn't be able to get nearly as much output voltage swing before it began to clip. So, although simpler, and a bit cheaper in components, the circuit of Fig. 3(a) would be much more influenced by transistor characteristics than that of 3(b).

Going through the same sort of calcułations as above gives the component values shown for the two transistor circuits Figs. 4 and 5. A further advantage of the two transistor circuits not mentioned earlier is that the use of the internal negative feedback loop substantially increases the input impedance of the circuit, above the rather inconveniently low values given by the circuits of Fig. 3, which is typically a few kilohms.

The other frequently used transistcr circuit configurations are the common collector (collector at zero AC potential) also referred to as emitter follower, and the common base, which is used mainly in RF circuits or low impedance, very low noise circuit configurations.

These are shown in Figs. 6 and 7. Once again the emitter follower unity gain circuit can be improved by the use of more than one transistor, giving in a two-transistor form the very valuable compound emitter follower arrangement of Fig. 8. This has a very high input impedance, determined mainly by the input resistor network, and a very low output impedance, so that it can drive low impedance loads with very little loss of signal. Moreover, as a circuit, it has a verv low distortion indeed, and, with suitable transistors and operating values, also very low circuit noise, making it usable in a whole variety of low signal level arrangements. All in all, the two transistor compound emitter follower is one of the most useful of the unity-gain circuit building blocks, which can be made,
with complementary transistor types, to work from either a positive or a negative supply rail.

A word of warning is necessary at this point. All feedback circuits (and this includes those in Figs. 4,5,6 and 8) can oscillate if enough phase shift occurs within the input/output feedback loop. The emitter followers of Figs. 6 and 8 are very prone to this with suitable (though often unintended) combinations of lead inductance and stray circuit capacitance on input or output. To prevent this, it is useful to put a small value of resistance - a few hundred ohms will often suffice, or a bit more if the circuit conditions will tolerate this - in the input and output leads. This will not normally have any adverse effect on performance.

Combinations of transistors can be used to make oscillators and other waveform generators, but the numbers of circuits used for this are legion, and there is inadequate space to disucss these here, though they do have a part to play in audio testing.

Field Effect Transistors

These come in two basic types, junction FETs - usually referred to as just FETs - and insulated gate FETs, normally known as MOSFETS, because of their construction (metal-oxide-silicon). Both types are made by much the same general manufacturing processes as bipolar transistors. However, they tend to be quite a bit more expensive, partly because they do use rather a larger area of the slice, but mainly because they are not made as discrete transistors in such large quanitities (though very large numbers are made in CMOS and NMOS ICs) and therefore don't benefit from the same economies of scale.

Both of these devices have a much higher input impedance than bipolar devices - usually measured in millions of megohms - but do not give as high a stage gain as junction transistors when used in equivalent circuits. Junction FETs are not much bothered by static electrical charges, though some care is needed in handling MOSFETs.However, having said that, the only instance I have ever come across of them failing in handling was when a colleage of mine soldered them into an earthed circuit with a soldering iron whose case was not earthed and floated somewhere around 120 VAC!

The junction FET, whose circuit drawing is shown in Fig. 9(a), is now almost exclusively used in small signal circuitry - though Sony did produce some high power ones, a few years ago - with maximum working voltages in the range up to 50 VDC, and dissipations of a few hundred milliwatts. It is, however, a very linear device with a very high dynamic impedance. MOSFETs are very fast devices, capable of operating up to the 500 MHz range, and, until comparatively recently, have been used almost exclusively as RF amplifiers. In the past few years, though, high power MOSFETs have come into service in audio output

Fig. 8 Compound emitter follower, with gain very close to unity and 300k input impedance.

Fig. 6 A basic emitter follower.

Fig. 7 Common base circuit, shown. as an RF amplifier.

Fig. 9 FET circuit symbols: (a) junction FETS and (b) N-channel MOSFETs (P-channel would have the small arrow on the source pointing in the opposite direction).
stages, where their fast response and good linearity has conferred useful advantages. On the debit side, they do need more careful treatment in circuit design (mainly because their very high speed makes wiring inductances and circuit capacitances important where they are not even noticed in normal power transistor output stages) if troubles are to be avoided, which is why there are still relatively few power MOSFET audio amps in general use.

Fig. 10 Single stage FET amplifier.
The design of FET amplifier stages follows similar general principles to those indicated earlier in respect of bipolar circuit designs, but with a few significant differences, which we can consider in relation to the single. FET amplifier circuit of Fig. 10, and the rather better two stage circuit shown in Fig. 11. To begin with, the normal junction FET is what is referred to as a 'depletion mode device, which is to say that it normally passes current, which is reduced by the application of a bias voltage \{negative in respect to an N channel device, and positive in respect of a P -channel one) to the gate electrode. This means that an input biasing network of the kind shown in Fig. 3 is unnecessary, and the correct operating conditions can be established by a resistor in the source lead, in an identical manner to that of cathode bias in the case of a thermionic valve.
The second practical difference is that, unfortunately, the characteristics of FETs are nowhere near as precisely

Fig. 11 (Left) Two stage FET amplifier with overall negative feedback gain will be 100 and input impedance will be 10 Megohms. Fig. 12 (right) Use of a junction FET as an adjustable constant current source.
controlled as in the case of the normal bipolar junction transistor, which will always begin to turn on at a forward bias between 0.5 and 0.6 V on its base. By contrast, the specification quoted by Motorola for their 2N5457 Nchannel small signal junction FET, which is quite a popular and representative type of device, merely claims a current, at zero bias, somewhere in the range 1 to 5 mA , a slope (gm) which lies between 1 and $5 \mathrm{~mA} / \mathrm{volt}$, and a cut-off negative gate voltage between -0.5 and -6 volts. Happi-ly these are extreme limit values quoted so that the users won't throw too many of their FETs back at them as being 'outside spec'. Nevertheless, although a typical 2N5457 might have a cut-off voltage of -2 to -3 V and a zero bias drain current of 2 mA .

In the case of the circuit shown in Fig. 10, the very low input leakage current means that we could make $R, 10 \mathrm{M}$, which lets us use a relatively small and cheap input capacitor, while still having a good LF response. For a drain current of 1 mA , a source bias resistor of 1 K will give an effective negative gate bias voltage of 1 V , and a 10 K drain resistor will give (at 20 V positive supply and 1 mA drain current) a drain voltage of +10 V . Unfortunately, this doesn't give a very good stage gain. The simple formula for stage gain, where one knows the device gm, is Gain $=g_{m} R_{L}$. is still 10 K , then the gain is 10 for a slope of $1 \mathrm{~mA} /$ volt.

To retain the FET advantage of a very high input impedance, while still having a useful stage gain, coupled with the ability to use the stage with normal load impedances, we need to use a two stage circuit such as that shown in Fig. 11. In this, by using a very high current gain (C grade) transistor for Q2, and remembering that the input impedance of a transistor amplifier stage depends at LF on its base current, which becomes less as the current gain B increases, we can operate the FET at a low drain current, and a fairly high resistor for R2. By making R2 and R4 of the same value, the voltage drop across both, due to the drain current $\left\{0.55 _/ 27 \mathrm{k}\right.$ -20 uA) will be 0.55 V , and the output DC voltage, at Q2 collector will be about +11 V , with the FET having, say, -1.5 V effective gate bias. As in the circuit shown in Fig. 4, the gain is controlled by negative feedback to a value of 100; and the circuit will have a good output swing, very low distortion, and a wide bandwidth. This circuit is also quite tolerate of FET characteristics, in that variations in cut-off voltage will only make smallish changes in the DC output level.

To summarise, apart from their very much higher input impedance, and their low intrinsic distortion characteristics, FETs tend to offer rather better noise levels in high impedance circuitry than bipolar devices, but for very low impedance circuits, as would be used, for example, in a moving coil head amp, even the best of the FETs are less good than suitably chosen bipolar types. At low impedances MOSFETs tend to be rather noisy. One very useful facility of the junction FET is its capability of being used as a 'two terminal' constant current source, as shown in Fig. 10. The ability of the source current flowing through the adjustable source resistor to bias the device to a drain current level which is almost completely independent of drain voltage, within its possi-ble working limits, makes an almost ideal arrangement for giving a constant, though adjustable, current source which is usable right up to the maximum gate-source voltage of the FET. This could be used to provide an almost perfect 'fail' for the long-tailed pair circuit (Q1 and Q2 in Fig. 5).

In the next part of this series, I propose to have a look, at ICs, and some of the circuit configurations which can be used with these in the audio field, before going on to look in rather greater detail at some of the problems such as noise and distortion and other unwanted effects.

HOME LIGHTING KITS

swither end control up to 300 w of lighting.
TDA300K Romotectontrol $\mathbf{D 1 4 . 3 0}$

LO300K $\begin{gathered}\text { Rotery Controlled } \\ \text { Dimmer }\end{gathered} \mathbb{£ 3 . 5 0} \square$

HOME CONTROL CENTRE
This Now Remote Control Kit enables you to control up to 16 different appliances anywhere in the house from the comfort of your armchair. The transmitter wiring which are received by receiver modules connected to the some mains supply and usod to switch on the appliance addressed. Receivers are addressed by means of a 16 -way keyboard, followed by an on or off command. Since pushing buttons can become rather boring,
the transmitter also includes a computer interfaceso you can programme yourfavour. ite micro to switch lights, heating, electric blanket, make your coffee in the morning etc., without rewiring your house. JÚST T THINK OF THE POSSIBILTTIES. The KIT includes all PCBs and components for one transmitter and two receivers, plus a drilled box for the transmitter.

Addtional Recievers XK111 £10.00

ELECTRONIC LOCK KIT XK101

 This KIT contains a purpose designed lock IC, 10-way keyboard, PCBs and all components to construct a Digital Lock, requiring a a-key. sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a pre= wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 uA . Ouput: 750 mA max. Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied.
ONLY £10.50

Electric lock mechanism for use with latch locks and above klt
£13.50

MINI KITS

 max Tequanuax

 The 28 olld Stuto Redoy

 Dinpleys an analogue votioge on a
linear 10 olement LeD dieploy as a ber or single dof 10001 for thormo merer, ivel indicators, olc. May bo gracked to obtain 2010100 elomen
disploya. Requires 5 -20V $8 u$ pply. mes mucorrmil TENONTHE COWTMOUER Bayed on the SL4L1 $2 e r 0$ voltoge ${ }^{\text {sin}}$ wich thin tia kire may powired o form onabling the tomperigture of on on:-

 Braped on the ZNIOMAE Timer IC this kit will switch a meins losd on (or offi) for aprosest time from 20 mina. 1035 hrs. Longeor or ahoner periods may
be realited by minor componen changes. Max. loed 1 KW .es.so

\int 3NOTE DOOR CHIME よ己

Based on the SAB0600 IC the kit is supplied with all components. including loudspeaker. printed circuit board. a pre-drilled box ($95 \times 71 \times 35 \mathrm{~mm}$) and full instructions. Requires only a PP3 gV battery and pushswitch to complete. AN IDEAL PROJECT FOR
BEGINNERS. Order as XK 102 BEGINNERS. Order as XK 102
$\mathbf{\Sigma 5 . 0 0}$

XK113 MW RADIO KIT

Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components to make a sensitive SV battery. IDEAL FOR BEGINNERS. E5.00

COMPONENT ACKS

PACK 1650 Resistors 47 ohm to $10 \mathrm{Mohm}-10$ per value EA .00
PACK $240 \times 16 \mathrm{~V}$ Elecrolytic Capacitors $10 \mu \mathrm{~F}$ ic PACK 360 Pot 5 Clur
PACK 5 per value 25.186
PACK 45 Sub-miniature Presers 100 ohm to 1 Mohm PACK $5 \mathbf{3 0}$ Low Profile ic Sockets B, 14 and 16 - pin PACK 625 Red LEDs (5mm dia, $1 \mathbf{1} .25$

Have you got our FREE orANGE CATALOGUE yet? NO?! Send S.A.E. $6^{\prime \prime \prime} \times 9^{\prime \prime}$ TODAY!!
It's packed with details of all our KITS plus large range of SEMICONDUCTORS including CMOS, LS TTL, linear, microprocessors and memories, full range of LEDs, capacitors, resistors, hardware, relays, switches
etc. We also stock VERO and Antex products as well
as books from Texas Instruments, Babani and Elektor ALL AT VERY COMPETITIVE PRICES. ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST.

$$
5-6-78-9-10
$$

and give us your Access or Barclaycard No. Answering or write enclosing cheque or postal order. service evngs Official orders accepted from schools, etc. \& weekends

DVM/ULTRA SENSITIVE

THERMOMETER KIT
This new dosign is baced on
the 1 ILI7126
the ICL7126 la lower power
version of the ICL7106 chip)
and $\& 31 / 2$ digit liavid crystal
display. This kit will form tho
basis of a digital multimeter
(only a fow additional resistors and switches are required-details supplied), or a aensitive digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.10+150^{\circ} \mathrm{C}\right)$ reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a
sensitivity of 200 mV for a full scale reading, automatic polarity indication and an ultra low power requirement-giving a 2 year low powor requirement-giving a
typical battery life from a standard 9V PP3 when used 8 hours a day, 7 days a week.

Price £15.50

DISCO LIGHTING KJTS

 DL 1000KThis value for.money kit fee
tures ab bi.directional se quence. speed of sequence and frequenc; of direction change, being varisble by means of poten-
tiometers and incter tiometers and
ming control. E14.03
DLZ100K
A lower cost version of the above. featuring variable by means of a pre.set pot. Outputs switched only at mains zero crossing points Optional opto input DLA1 Ory D.C. Allowing audio ("beat") - light eap
reatponse. response.
This 3 chennel sound to light kit features zero voltege switching. automatic level con-
trol and built in mic. No connections to speaker or amp required. No knobs to adius - simply connect to mains supply and

"OPEN-SESAME"

The XK 103 is a general purpose infra-red trans miter/receiver with one momentary (normally open) relay contect and two latched transisto
output. Designed primarily for controlling motorised garage doors and two auxillary out puts for drivegarage lights at a range of tou to 40 h The unit sliso has numerous apolications in the home for switching lights, $T V$, closing persons.
The Kit comprises a mains powered receiver, a four button transmitter, complete with pro-
drilled box, requiring a 9 V battery and one driled box, requiring a $9 V$ bettery and one
opto-isolated solid state switch kit for interfacing the receiver to mains appliances. As
with all our kits, full instructions are supplied.

ONLV E23.75

LCD $3 ½$ DIGIT MULTIMETER 16 ranges including DC voltage (200 inv - 1000 v) and
AC voltage. DC current $(200 \mathrm{~mA}-10 \mathrm{~A})$ and resistAC voltage. DC current (200 mA -10A) and resistance $(0-2 \mathrm{M})+$ NPN \& PNP transistor gain and
diode check diode check. Input impedance 10M. Size $155 \times$
$88 \times 31 \mathrm{~mm}$. Requires PP3 9 V battery. $£ 29.00$

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can run your centrol heating, lighting, hi-fi system and lots more with just one programmable timer. At your selection it is
designed to control four mains outputs independently, switching on and off at pre-set times over a 7 day cycle, e.g. to control your central heating (including different switching times for weokends), just connect it to your system programme and set it and forget it-lock will do the rest.
FEATURES INCLUDE:-

- 0.5" LED 12 hour diaplay.

Doy of weok, am/pm and output status indicstors.

- 5060 Hz mains operation.
- Battery backup saves atored programmes and continues time keeping during power fallures. (Battery not supplied). Oieploy blanking during power fallure to coneerve bettery pow - 18 programme time eets.
- Powerful "Everyday- function enabling output
- Useful "sleep" function-Murns on output for on
- Direct switch control enabling output to be turned on - immediately or after a apecified time interval.

20 funcion keyped for programme entry.
Programme verification at the touch of a button.
(Kit includes all components, PCB, assombly and programming instructions). ORDER AS CT5000
For a detailed booklet on
remote control - send us 30p
and S.A.E. $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today.
PRICES
EXCLUDE VAT

REMOTE CONTROL KITS

MKE Simple infora RED TRANSANTYE

Pulsed infra red source complete with hand-held plastic box. Requires a 9V battery. $\quad \mathbf{4 . 2 0}$
Single channel. range approx. 20ft. Mains powerad with a triac output to switch loads up to 500 W
 MEKB CODEDD INFRA RED TRANSAMTILR
Based on the SLLS0, the kit includes all components 10 make a coded transmitter and only
requires a $9 V$ (PP) batery and keyboard. $8 \times 2 \times 1.3 \mathrm{cms}$ MK10 1e-WAY KEVBOARD
For use with MK8 end MK 18 to generate 16 different codes for decoding by the ML928 or ML928
recoiver (MK 12) kit.
$\mathbf{E 5 . 4 0}$
Wh11 10 Chennel +3 Anelogus ofp R Recoiver
Based on ML.922 decoder IC. Functions include on/standby output, toggie, control of volume,

For use with MK8 kit with 16 on/off outputs, which with further interface circuitry, such as relays or triacs, will switch up to 16 iterns of equipment on or off remotely. Latched or momentary outputs - please sperity when ordering. Includes its own mains supply.
WK13 18-WAT KEVBOMRD For use with MK8. MK18 and MK11 kite. MK16 Moins Powerad M Transmitter
Mains powered for continuous operation - single channel, for applications such as burglar
alarins, automatic door openers, etc. Range approx. 6 ft .

For use with MK6 or MK16. Rolay output with DP 3 Amp change-over contacts, may be used es
latched. momentary or "break beam" receiver. Operates from 8.13 V d.c. Similar to MKB but with range of approx. 60t. 88.20 Similar to MKB but with range of approx. 60t. $\mathbf{8 8} .20$ plo. isolated with zero voltage switch
MK15 DUAL LATCHED SOLD STATERELAV Comprises $2 \times$ solid state relays and latch for uso
version of the MK12. 2 output triacs required (not supplied). E4co

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to kW

$$
\begin{aligned}
& \text { on and off at prosent times once per } \\
& \text { day. Kit contains: AY-5.1230 IC, CT } 1000 \mathrm{~K} \text { Basic Kit } \\
& 0 . ~ £ 14.90 ~ \\
& 0.5^{\circ} \text {. LED display, mains supply. CT1000K with white box }(56 / 131 \times 71 \mathrm{~mm}) \text { E17.40 }
\end{aligned}
$$ 0.5^{*} LED display, mains supply. display drivers, switches, LEDs,

triacs, PCBs and full instructions.

Add 55p postage \& packing $+15 \%$ VAT to total. Overseas Customers;
Add £2.50 (Europe), $\mathbf{£ 6 . 0 0}$ (elsewhere) for p\&p. Send S.A.E. for further STOCK DETAILS.

Goods by return subject to availability. OPEN ${ }^{\text {smmo semmonorofil }}$

No circuit is complete without a call to-

10amtp m (Sat) EIALINGB NORTH
CIRCUIAR RD
ctock rower clock rower Sy UXERIDEE ROAD

 01.5799794 cNOUIRIES

GOMPUHHR WARH:OUST

 THE 'ALADDIN'S' CAVE OF COMPUTER AND ELHCTRONIC EQUIPMENT
HARD DISK DRIVES

Fully refurbished Diablo/DRE Series disk drive for DEC RKO5, NOVA, TEXAS et Front load 5550.00 - Top load E295.00
PSU type ME3029 for 2 drives $£ 125.00$
DRE 44A/4000A/B $10 \mathrm{mb} 5+5$ all configurations from £995.00. Call sales office for details.

5 AMP MAINS FLTTERS

Cure those unnerving hang ups and data glitches caused by mains interference. Matchbox size-Up to 5
amp 240 v load. As recommended by the ZX81 newsamp 240 v load. As recommended by the
letter. Suppression Devices SD5A 55.95 .

DISIMT ©

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive.
DON'T MISS THOSE 8ARGAINS
CALL NOW, IT'S FREE!
CALL NOW, IT'S FREE 7 days per
01-683 1133 weat 24 gra

COMPUTER 'CAB'

All in one quality computer
cabinet with integral switched
mode PSU, Mains filtering, and twin fan cooling. Originally made for the famous DEC PDPB computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a
massive +5 v DC at 17 amps, $+15 v D C$ at 1 amp and -15 v massive +5 v DC at $17 \mathrm{amps},+15 \mathrm{v}$ DC at 1 amp and -1
DC at 5 amps . The complete unit is fully enclosed with DC at 5 amps. The complete unit is fully enclosed with
removable top lid, filtering, trip switch, 'Power' and 'Run' removable top lid, filtering, trip switch, 'Power' and 'Run' LEtc. Units are in good but used condition -/supplied for 240 v operation complete with full circuit and tech. man. Give your system that professional finish for only $£ 49.95$ + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $16^{\prime \prime} w 10.5^{\prime \prime} h 11.5^{\prime \prime} \mathrm{d}$
Also available LESS PSU with internal dim. 19"w, 16"

COOTHHG FANS

Keep your hot parts COOL and RELIABLE
with our range of BRAND NEW profes
cooling fans
ETRI $99 X U O$ Dim. $92 \times 92 \times 25 \mathrm{~mm}$. Miniature 240 v equipment fan complete with
finger guard $£ 9.95$.
GOULB JB-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact
very quiet running 240 v operation. NEW $£ 6.95$ very quiet running 240 V operation. NE
BUHLER $69.11 .22 .8-16 \mathrm{VDC}$ micro BUHLER 69.11.22. 8-16 vDC micro
miniature reversible fan. Uses a brushle miniature reversible fan. Ses a brushles
servo motor for extremely high air flow, servo motor for extremely high air flow,
almost silent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost $£ 32.00$. OUR PRICE ONLY E12.95 complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ fan supplied tested EX EQUIPMENT 240 v at
$£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240 v at $£ 10.50 .1000$'s of other fans Ex Stock
Call for Details. Post \& Packing on all fans $£ 1.60$

8" FLOPPY DISK DRIVES

Unbelievable value the DRE 71008 " floppy disk drives utilise the finest technology to give you 100% bus compatibility with most drives available today. The only
difference being our PRICE and the superb manufacturdifference being our Price and the superb manulactur-
ing 7100 single sided and 7200 double sided drive accept hard or soft sectoring IBM or ANSI standard ormats giving a massive $0.8 \mathrm{MB}(7100) 1.6 \mathrm{MB}(7200)$ of storage. Absolutely SHUGART, BASF, SIEMANS etc. compatible. Supplied BRAND NEW with user manual and full 90 day warranty. Carriage and insurance $£ 9.75$
7100 Single sided $£ 225.00$ + Carr. 7200 Double sided $£ 295.00+$ Carr. Optional accessories: Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Refund way IDC connector $£ 5.50$. 50 way ribbon cable $£ 3.20$ per metre.

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost.
BRAND NEW AT

Made to the very highest spec the TEC Starwriter
FP1 $500-25$ features a heavy duty die cast chassis and DIABLO type print mechanism giving
superb registration and print quality. Micro-
processor processor electronics
offer full DIABLE/QUME
 compatibility plus Bi directional printing, 10 or 12 pitch, 136
or 163 chars per line, full width 381 mm or 163 chars per line, full width 381 mm friction or single sheet paper, - order now or call sales office for more information and print sample. Please specify RS232 or CENTRONICS interface. Optional extras: RS232 data cable $£ 10.00$ - Tech manual £7.50. Carriage \& Ins. (UK)
£12.50. - Tractor feed option $\mathbf{£ 1 2 0 . 0 0}$

TEFEIYPS ASBBJ I/O TBBMMTARS
 FROM \&19s + CAR + VAT F

 Fully fledged industry standard ASŔ33 dataterminal. Many features including ASCII terminal. Many features including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously good condition and in working order Options: Floor stand $\mathbf{E 1 2 . 5 0}+$ VAT KSR33 with 20 ma loop interface $\mathbf{1 2 5 . 0 0}+$ Sound proof enclosure $\mathbf{£ 2 5 . 0 0}+$ VAT

SOFYY 2

The amazing SOFTY2. The complete "toolkit" for the open heart software surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator. Cassette interface etc. Functions exceed capabilities of units costing 7 times the price! Only
$\mathbf{E} 169.00 \mathrm{pp} £ 1.95$ Data sheet on request

REGBARGRABLE BATIERIES CrCLON type Do01 sealed lead acid
maintenance free 2 v 2.5 ah . will deliver over maintenance tree $2 v 2.5$ ah will deliver over
300 amps on short circuitll
Brand new at 300 amps
only 52.95
SA.

FT VR2C size 'C' 1.2 v 2 ah.
cadmium $£ 1.50$ each 10 for $£ 11.50$

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to most stringent spec and designed to operate for 24 hrs per day. Units are made to the a 25 way ' D ' skt Units RS 232 1/o levels via a 25 way 'D' skt. Units are sold in a tested and working condition with data. Permission may be required for conneclion to PO lines. MODEM $13 A$ compact, async, same size as telephone base. Up to 300 baud, full duple over 2 wires but call mode only 275.00 MODEM 2B/C Fully fledged, up to 300 baud
async, ANSWER \& CALL modes, auto answer async, ANSWE \& auto switching ideal networks etc. Just 2 wire auto switching, ideal networks etc.
connection to comms line. $\mathbf{8 8 5 . 0 0}$
MODEM 20-1 Compact unit for use with MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 baud
transmit - 1200 baud receive. Auto answer. transmit -
$\mathbf{E 1 3 0 . 0 0}$
MODEM 20-2 same as $20-1$ but 75 baud MODEW $20-2$ same as $20-1$ but 75 baud
receive 1200 baud transmit. \&130.00 MODEM 20-3 Made for data rates up to 1200 half duplex mode over 2 wires $£ 130.00$ haif duplex mode over 2 wires $\varepsilon 130.00$ For more details contact sales office.

D.C. POWER SUPPLY SPECLALS

Experimentors PSU Ex-GPO unit all silicon electronics. Outputs give $+5 \mathrm{v} @ 2$ amps. $+12 \mathrm{v} @ 800 \mathrm{ma}-12 \mathrm{v} @ 800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma} 5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim $160 \times 120 \times$ 350 mm . All outputs fully regulated and short circuit proof. Removed from working $\$ 14.50+\Sigma 2.50 \mathrm{pp}$
CUSTOMPOWERCO55 5 v @ 3 amp. Very compact unit dim. approx $60 \times 90 \times 190 \mathrm{~mm}$. Semi open chassis, full crowbar overvoltage protection. Tested Ex Equipment. E11.95 + pp£1.25
MINI SYSTEM PS
MINI SYSTEM PSU Ex equipment unit ideal for the small micro. Outputs give $5 \mathrm{v} @$
$3 \mathrm{amps}+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300 \mathrm{ma}$ Crowbar current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. + £2.00 pp.
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition Outputs give $5 \mathrm{v} @ 11 \mathrm{amps}$ " " + " $15-17 \mathrm{v} @ 8$ amps. " - " $15-17 \mathrm{v} @ 8$ amps
and " + " 24 v @ 4 amps. All outputs are crowbar protected and the 5 volt output is fully and regulated. Fan cooled Supplied tested, with circuit $£ 55.00+£ 8.50$ carr.
MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps. +12 v @ $5 \mathrm{amps},-12 \mathrm{v} @ 10 \mathrm{amps}$. All output are fully and tested. Ex-Equip. 110 v AC input. Only E 49.95 + carr. $£ 10.50$.

66\% DISCOUNT

ELECTRONIC COMPONENTS
Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's., P.C.B.'s Sub-assemblies, Switches, etc. etc. suilplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads, we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always include something from our ads, for unbeatable value! Sold by weight.
2.5kls 24.25 + pp £1.25
$5 \mathrm{kls} \mathbf{5 5 . 9 0}+\mathrm{pp} \mathrm{E} 1.80$
10kls£f0.25 + pp E2. 25
20kls£17.50 + pp £4.75

ALI PRICES PLUS VAT

video monitors

MOTOROLA $9 "$ open chassis monitor Standard 240 V AC with composite 75 ohm video input, bandwidth in excess of 18 mhz Monitors are ex equipment and although unguaranteed they are alistested prior the screens. Dim approx $9^{n} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead. ldeal 2X81 etc. or giving the tele back to the family!! Black and white phosphor. $£ 35.00$ + £9.00 Carr.
12" CASED. Made by the British KGM Co. Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case wit
OFF, BRIGHTNESS and CONTRAST
controls mounted to one side Much controls mounted to one side. Much
attention was given to construction and attention was given to construction and
reliability of this unit with features such a reliability of this unit with features such as, supply, all components mounted on two supply, all components mounted on two ease of service, many internal controls for inearity etc. The monitor accepts standard 75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will displa most high def graphics and 132×24 lines. Units are secondhand and may have screen burns. However where burns exist they are only apparent when monitor is switched off Although unguaranteed all monitors are ested prior to despatch. Dimensions approx $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep.
Supplied complete with circuit 240 volt operation. OWLV £45.00 PLUS £9.50 GARR. $14^{\prime \prime}$ COLOUR superb chassis monitor mad by a subsidiary of the HITACHI Co. Inputs are TTL RGB with separate sync. and will plug direct into the BBC micro e definition Brand new and guaranteed Complete with full data \& circuit. 240 v AC working. Dim. $14^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime}$
ONCYE199.00 PLUS 89.50 CARR.

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents include transistors, digital, linear, l.C.'s triac diodes, bridge recs., etc. etc. All devices guaranteed brand new $50+E 2.95100+E 5.15$.
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series I.C.'s enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which two or three chips in the bag would nnormally spec. $100+\varepsilon 6.90200+\varepsilon 12.10200+\$ 19.50$

OLTVETTI THESOO

REDUCED TO CLEAR

Complete input output terminal with integral8 hole paper tape punch and reader. Unit operates at 150 baud in standard ASCII. Idea as a cheap printer for a MICRO etc. 120 with data, untested unguaranteed fes,00 with data, untested, unguaranteed $\$ 65.00$
$+£ 11.50$ carr.

All prices quoted are for U.K Mainland, paid cash with order in Pounds Stirling PLUSVAT. Minimumordervalue $£ 2.00$, MinimumCredit Card order\&10.00. Minimum BONA FIDE account orders from Government depts, Schools, Universities and established companies We 00 Where post and packing not indicated please ADD 80p + VAT Warehouse open Mon-Fri 9.30 - 5.30. Sat. 10.15 - 5.30
 01-689 7702-01-689 6800 Telex 27924

NICAD CHARGER/ REGENERATOR

Many a Ni-Cad charger has graced these pages in the past; the NiCaddy is a bit different, in that it will regenerate the battery automatically for you. Design and development by Mike Punnett.

Nickel-cadmium cells are becoming increasingly popular as replacements for conventional dry batteries in a wide range of equipment. Properly used, they can give an enormous cost saving over the life of the equipment, but if misused, tend to fail early.

Since Ni-cads have a tendency to self-discharge over a few months, they have to be charged regularly. Furthermore, to avoid the inconvenience of a flat battery, they are often "topped up" with charge even when far from discharged. This leads to an effect known as whiskering, where fine deposits of cadmium build up, which can partially short-circuit the cell, as well as reducing the active electrode size. This leads to a loss of capacity; a 500 mAh cell may be reduced to 300 mAh after a year of light service and frequent charges.

It has been found that "cycling" Ni-cads can return them to an almost-new condition. This process involves discharging the battery hard (at the 1 hour rate, e.g. 500 mA for a 500 mAh battery), until it reaches the minimum safe voltage - Ni-cads can be easily damaged by over-discharging. A full charge at the 10 hour rate follows. This rather rough treatment disintegrates the whiskers of cadmium, and the full charge redeposits the metal on the electrodes. However, cycling Ni-cads "by hand" is a risky business, since they can easily be damaged.

The ETI Ni-Caddy was designed to cycle Ni-cads correctly and easily. It uses a minimum of components, and has two "programs": cycle and charge.

Operating the unit is very straightforward: the Ni -Cad is connected to it, and the appropriate button for the required program

Fig. 1 Circuit diagram.

The power supply section is quite straightforward, using a very simple voltage regulator. V_{CC} is not critical, but the reference voltage, Vref, must be stable, even though the precise voltage is not important. With a separate regulating transistor (Q1) the circuit shown is quite adequate. The two reference levels (the points at which discharge and charge respectively terminate) are derived by RV1 and RV2.

IC1 is a dual comparator which has a number of advantages over similar units, including single-rail operation, the ability to accept inputs at nearground potential, very low offset, and open-collector outputs. In the circuit, the output of IC1a goes low to indicate that the battery has reached minimum voltage, and that of IC1 b goes low when maximum voltage is reached.

IC2 is wired as two flip-flops, one for discharging (IC2a,b) and one for charging (IC2c,d). Pressing "Cycle" sets the discharge flip-flop and clears the charge flip-flop (via 02). When the battery reaches minimum voltage, or "Charge" is pressed, the discharge flip-flop is cleared and the charge flip-flop is set. The battery reaching full charge clears the charge flip-flop but does not set the discharge flip-flop. The status LEDs are driven directly by the two flip-flops, which also drive the output stage. The latter consists of a discharge circuit when Q4 is turned on, the battery discharges through R11 - and a constant current circuit consisting of QJ and its ancillary components, which is turned on by an active-low signal (when IC2 pin 11 is high, QJ is driven fully off and passes no current).
pressed. Cycle mode discharges the battery to its minimum safe voltage, and then switches to charge mode, in which the unit functions as a constantcurrent charger, automatically turning off when the battery reaches full charge. If the $\mathrm{Ni}-\mathrm{Cad}$ is already below its minimum safe voltage when connected up, the unit will automatically enter charge mode, overriding the switches, which are reenabled when the battery rises above minimum safe voltage.

Construction

Construction of the unit is quite straightforward, either on the PCB or Veroboard. Sockets are recommended for the ICs, particularly IC2 which is a CMOS device. Do not forget the three wire links on the PCB.

Table 1 gives component values for AA size $(500 \mathrm{mAh})$ cells (see later for details of use with other battery sizes). The circuit will work with batteries of up to eight cells. Remember that R11 will get hot, since the battery is discharged through this. For power ratings over 4 W , this component should be mounted off the board, preferably outside the box, to aid heat dissipation. Some of the transistors are fitted with heat sinks; Q1 has an aluminium heatsink (see overlay), Q3 and Q4 have pusj fit TO5 heat sinks.

Testing and Calibration

Check the voltages across C3 and C4. Both should be in the range 1.6.5 17.4 V . If not, the power supply section should be investigated. The precise values do not matter, since the calibration will allow for some variability.

If the power supply is working properly, the unit can be calibrated. RV1 is set to the minimum safe voltage for the battery; this is 1.1 V per cell (4.4V for a four cell battery).

An accurate, high resistance voltmeter connected to pin 8 of IC1 will enable the voltage to be checked. RV2 (full charge voltage) must be set rather more accurately, since the step in voltage which a Ni-Cad exhibits as it reaches full charge is quite small. The best method is to set the voltage too high at first; about 1.7 V per cell on IC1 pin 11 is adequate. The operation of the unit is then checked with a

No of cells	D3 voltage	R9 ohms/watts	R10 ohms/watt
2	10	$210 / 1$	$4.7 / 2$
4	8.2	$160 / 0.5$	$10 / 4$
6	5.1	$100 / 0.5$	$13 / 7$
8	3.6	$68 / 0.25$	$18 / 10$

battery which is known to be in full working order; at this stage the circuit should perform as described above, except that it will not turn off after charging. The charging current can be checked; it should be 0.1 of the cell capacity (e.g. about 50 mA for 500 mAh (AA) batteries). The test battery is then left on charge for a long period - 20 hours, if flat. This guarantees that it stabilises at full charge voltage. Since the charging is constant-current, there is no risk of damaging the battery by charging for too long. At this point, VR2 can be slowly turned down until the circuit just switches off, and the setting re-checked. The unit is now completed.

Modifications

The circuit was originally designed for AA size (500 mAh) Ni -Cads, since these are the most widely used, but it can easily be adapted for other sizes by changing R9 and R10. These are calculated from the quoted values simply by reducing the resistance and increasing the wattage in proportion to the capacity; so for a 1 Ah six-cell battery, R9 would be 50R 1W and R10, 6R 15W. (The values do not have to be absolutely exact, of course). For cells over 1 Ah capacity, it is best to upgrade Q3 and Q4; since the circuit will be on for long periods it is advisable to rate components generously, especially heat sinks. Replacing Q3/Q4 with BD132/BD131 respectively, mounted off the PCB on a suitable heat sink, will enable the

BUYLINES

[^0]PARTS LIST

unit to cope with cells up to about 4 Ah. As a rough guide, allow 1 Watt dissipation per Ah cell capacity when choosing heat sinks.
Remember that the heat sink on Q1 may need upgrading also. Allow a dissipation of 1.2 W per Ah cell capacity.

pantnchnia

THE POWERFET

 SPECIALISTS
OEM USERS

Pantechnic present the most adaptable high poweredamplifier ever. FETSYSTEM AMP
Features:

- HIGH POWER. 1.2 KW (single ended).
- LOW VOLUME. 1/15 Cubic foot Inc. Heat Sink.
- VERSATILE. Delivers more than 1 KW into $1 / 2$ to 8 ohms.

OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200W into Ω
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega\end{array}\right.$
$\left\{\begin{array}{l}1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega \\ \hline\end{array}\right.$
Etc. Etc.
Having beenclosely involved ina wide variety of OEM appllcatlons of their amp boards, Pantechnic became aware of numerous implementation problems often left untackled by other amp board menufacturers. These problems specifically of size and therimal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
ByIncludingthermal designInthe totality of boarddesignithasbeen possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatskInk thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 KW of power in a space of $102 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar airflowfound in conventional, extruded heat sinks, heat transfer to the environment is greatly enhanced.
The flexibility of the 1.2 KW amp stems from its division into 4 potentially se parate amplifiers of 300 W each (down rateable with cost savings to 150 W.) These can be paralleled, Increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented.
As ever Pantechnic offer a full range of customising options including DC coupling, ultra high slew etc. Contact Phil Rimmer on 01-800 6867 with your particular application problem.
P.S. Specs, as ever, are exemplary.

Model	OTHER POWERFET AMPLIFIER MODULES			
	Price	Pange (Rma)	Dyn-loada	Notes
*PFA100	20.65	50-150W		Physically small ($32 \times 78 \times$ 108 mm)
*PFA200 PFA/HV	27.35	100-300w	$412,8.8$	High watta/\& ratio
	36.04	200-300W	$4,8.8 .16 n$	5dB dynamic headroom
*PFA500	42.00	250-600W		Drives 70 l line direct.
	82.50	mounted on	74 Heat Exc	(see bolow).

*The power output of these amplifiers can be increased by approx 15\% with no diminution In quality by adding PSU102 (£7.61) to your existing power supply.

Some Other Products \& Components
Type 74 Heat Exchanger. Dissipates 300 W (1.2KW fan cooled) ع7.50
25A 400PIV Bridge Rect $\varepsilon 2.17$
10,000uF 80v electrolytic with clip $\mathbf{E 4 . 7 5}$
PAN20 Pre-amplifier module. Very low noise and distortion $\mathbf{\varepsilon 7 . 6 1}$ PAX2/24 2 Way active crossover (specify frequency) $\mathbb{E 1 0 . 1 0}$
PSU103 Powers $2 \times$ PAN20 $+2 \times$ PAX2/24 E8.91
PAN1397 20W power amp. (LOW THD) E5.04
PSU101 Powers $2 \times$ PAN1397 E3.43
Transformer for above £4.30 (Inc. postage)

TOROIDALTRANSFORMERS

with special low flux windings
Nom. VAC 160VA 225 VA 300 VA 500 VA 625 VA 750 VA
$\begin{array}{ccccccc}40.0 .40 & 10.43 & 12.00 & 13.04 & & - & - \\ 450.45 & - & 12.00 & 13.04 & 16.98 & - & - \\ 50.0 .50 & - & - & - & 16.98 & 10.89 & 22.00\end{array}$
$70.0-70$
(for PFA/HM
Transformer prices Include postage. Ask for leaflet "Choosing a Translormer." Carriage 75p. Add VAT at 15\% to all prices.

THE POWERFET SPECIALISTS pantecnnc

Mail order omiv to
Dept ETI/9 148 Quarry Street, Liverpool L25 6HQ Telepione 051.4288885 Technical enquinies

FGold service available. 21 days manufacture for urgent deliveries
\%Oriers cespatcnea within 2 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The banefits of ILP toroidal transformers
ILP toroidal transformers are onfy half the weight and height of their laminated equivalents. and are avaitable with 110 V . 220 V or 240 V prinaries coded as follows:
IMPOATANT: Regulation - All volages quoted are FULL LOAO. Please add regulation ligure to secondary valego to oblain of loas vorage.
For 1104 primary insert " 0 ". in place of " x " in type number.
For $220 V$ psimaıy (Europe) insert " 1 " in place of " X " in type number.
For 240V priniary (UK) insen " 2 " in place ol " X " in lype number.
Also available at Electrovalue,Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access. welcome. Trade orders standard terms.

LOW COST PROFESSIONAL TEST INSTRUMENTS

Write or phone for illustrated test instrument catalogue and price list Black Star Ltd.
9A, Crown Street
St. Ives, Huntingdon
Cambs. PE17 4EB
Tel: (0480) 62440 Telex 32339

IC UPDATE

Here are some more new ICs this month - ones that we do know you can buy!

74LS608 Memory Cycle Controller

- Provides correct timing for memory cycles
- read cycle
- write cycle
- read-modify;write. cycle.
_-"RAS"-only refresh cycle
- Page or normal modes
- Stand alone controller for CPU-to-memory interface
- Also designed to be part of a three-chip set consisting of LS600 through LS603, LS604 through LS607, and LS608 - RAS output is 3-state to share bus with LS600
- Critical times are user RC-programmable to optimise system performance

The LS608 memory cycle controller is designed to interface between a microprocessor and dynamic RAM memories. It contains six RS latches, five D-type flipflops, and more than 50 miscellaneous gates on a single chip. The LS608 combines maximum flexibility and ease of programming via RC nodes to allow optimum memory cycle performance.

After the user has selected and attached RC networks to pins 1, 12 and 15, the LS608 will deliver proper RAS, CAS, and READ/WRITE output signals to execute one memory cycle as the start input is switched from low to high. The actual cycle executed will depend upon steady state input conditions of the LS608 as indicated in the table below.

INPUT CONDITIONS

	INPUT CONDITIONS						
MEMORY CYCLE MODE							
READ	H	H	H	L	H	†	L
WRITE PAGE	H	L	H	L	H	+	L
READ-MODIFY-WRITE	H	H	L	L	H	t	L
READ	L	H	H	L	H	†	L
WRITE NORMAL	L	L	H	L	H	t	L
READ-MODIFY-WRITE	L	H	L	L	H	t	L
REFRESH REFRESH				L	H	\dagger	H
EXTERNAL REFRESH REFRESH				H	H		L

Absolute Maximum Ratings
Supply voltage, V_{cc}
Input voltage
Off state output voltage
Operating free-air temperature range

PIN PIN NaME
i RC PRECHARGE
$2 \mathrm{P} / \mathrm{N} \operatorname{IN}$

3 R/W IN
.4 KMW \mathbb{N}
$5 \mathrm{R} / \overline{\mathrm{W}}$ OUT

6 RAS ENABLE IN
7 RAS OUT

8 GND
9 CAS OUT

11 ROW/COL (or MEMBSY) OUT

12 RC RAH
13 START \mathbb{N}
14 REFRESH IN
15 RC CAS LO

Fig. 1 Pin out of the 74 LS 608.

Pin Function Table

FUNCIONAL DESCRIPTION

User-programmable timing mode for precharge/CAS high and RAS high). When low, allows a normal read or write cycle. When high allows page mode read or write cycle. Holds RAS continuously low while CAS and column addresses are sequenced.
When high, initiates a read cycle (holds RNW OUT high) and, when low, initiates a write cycle (holds R/W OUT low) if pin 4 is high and pin 14 is low.
When low, enables read-modify-write cycle. R/W IN must be high at the stant of the RMW cycle.
When high, indicates a read cycle is in progress. When low, indicates a write cycle is in progress. Normally ties to a W memory input in a system.
When low, enables RAS output. When high, $\overline{R A S}$ ' is in the high-impedance or third state.
3-state row-address-strobe output controlled by RAS ENABLE IN. In the three-chip controlterset, the RAS output of the 'LS608 ties to the RAS output of the refresh controller (LS600 through LS603).
Device and substrate ground.
Column-address-strobe output.
When low, allows $\overline{\text { CAS }}$ to latch in low state. When high, latch is removed. Can be used to improve data retrieval during read cycle.

- Drives memory address multiplexer select input, and indicates BUSY condition to processor.
User-programmable timing mode ${ }^{\bullet}$ for row address hold time (high level at ROW/COL OUT).
When changed from low to high, initiates a memory cycle.
When high, enables RAS-only refresh cycle. User-programmable timing mode* for column address strobe low time.
5 -volt power supply terminal.
$16 \mathrm{~V}_{\mathrm{cc}}$ All timing modes require a resistor to V_{cc} and a capacitor to ground Programmed time is approximately 0.29 RC.

NOTE: TAKING RAS EN HIGH TAKES RAS TO HIGH IMPEDANCE STATE AS INDICATED
Fig. 2 Normal read mode.

Fig. 3 Normal write mode.

Fig. 4 Normal read-modify-write mode.

Note that the read-modify-write cycle requires that R/W should go low at a suitable time after CAS (depending on the memory used). This cycle can be aborted (no write) by taking RMW high to terminate it, as shown in Fig. 5.

Fig. 5 Normal read-modify-write with abort after read.

Switching Characteristics (see waveforms for more detail) $\mathrm{V}_{\mathrm{cc}}-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=45$ pf to GND

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	MODE	TYP	UNIT
$t_{\text {Pht }}$	START 1	RAS	$R_{L}=667-R$ to $V_{c c}$	NORMAL READ	12	ns
tor $^{\text {(1] }}$	START i	$\overline{\text { RAS }}$			425	ns
$\mathrm{taxil}_{\text {[2] }}$	START 1	$\overline{\text { CAS }}$			140	ns
$t_{\text {mH }}$ [1]	START i	CAS			405	ns
$t_{\text {mel }}$ [2]	START 1	RWW		NORMAL WRITE	715	ns
$t_{\text {min }}$ [1]	START i	R/W			440	ns
Cam	CAS HOLDI	CAS		NORMAL READ	10	ns
[mat [2]	START I	ROWICOL	$\mathrm{R}_{\mathrm{t}}=2 \mathrm{kO}$ to V_{cc}		125	ns
ta..(3)	START i	ROWICOL			670	ns
6	RW !	RW	R4L - 667 R to $\mathrm{V}_{\text {cc }}$	NORMAL RMW	14	ns
Lnu[4]	RWW	RW			355	ns
tmu1	RMWI	CAS			40	ns
tav[S]	RMWI	ROW/COL			320	ns
601	RAS ENJ	RAS	$\mathrm{R}_{\mathrm{L}}=667 \mathrm{R}$ to GND	NORMAL READ	15	ns
$4{ }^{1}$	$\overline{\text { RAS ENI }}$	RAS	$R_{L}=667$ R to $V_{\text {cc }}$		17	ns
$t_{\text {m2 }}$	RAS EN I	RAS	$R_{L}=667 \mathrm{R}$ to GND		10	ns
$\mathrm{tas}^{\text {c }}$	RAS ENT	RAS	$R_{L}=667 \mathrm{R}$ to V_{cc}		17	ns

NOTE: Measurement point for all $t_{\text {PHz }}$ output pulses is 2.9 V . Measurement point for all $t_{\mathrm{p} 2}$ output pulses is 0.8 V . All other measurement points are 1.3 V .
[1] Depends on RC network at pin 12 ($2 \mathrm{kO}, 180 \mathrm{pF}$ used for testing) and the RC network at pin 15 (Sk0, 180 pF).
[2] Depends on RC network at pin 12 ($2 \mathrm{kO}, 180 \mathrm{pF}$).
[3] Depends on RC network an pin 12 ($2 \mathrm{k}, 180 \mathrm{pF}$), pin 15 (SkO $180 \mathrm{pF7}$, and pin 1 (SkO, 180 pF).
[4] Depends on RC network at pin 1S (SkO, 180 pF).
[S] Depends on RC network at pin 1 (Sk0, 180 pF7.

Fig. 6 Typical circuit for use with 64 K by 1 DRAMs; for refresh, pin 14 is taken high, pin 13 is pulsed high, and refresh address is placed on the memory devices address pins.

LF13331/2/3, LF13201/2 Quad Analogue Switches

Fig. 7 Pin outs: LF1331 is four normally open switches with disable; LF13333 is two normally closed and two normally open with disable; LF13201/2 are as LF13331/2 but without disable.

These devices are a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is emoloved to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break-beforemake action.
These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are designed for applications where a DC to medium frequency analog signal needs to be controlled.

General Information

"ON" resistance are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$ in both the "OFF" and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON". This prevents two analogue sources from being transiently connected together during switching.

Because these analogue switches are JFET rather than CMOS, they do not require special handling.

Logic Input

The logic input (IN\}, of each switch, is referenced to two forward diode drops (1.4V at $\left.25^{\circ} \mathrm{C}\right\}$ from the reference supply (YR\} which makes it compatible with DTL, RTL, and TTL logic families. For normal operation, the logic " O " voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic "1" voltage can range from 2.0 V to 6.0 V with respect to V_{R}, provided $\mathrm{V}_{\text {in }}$ is not greater than (V_{cc} - 2.5 V). If the input voltage is greater than $\mathrm{Vcc}-2.5 \mathrm{~V}$, the input current will increase. If the input voltage exceeds 6.0 V or -4.0 V with respect to V_{R}, a resistor in series with the inputs should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

Analog Voltage

Each switch has a constant "ON" resistance ($R_{\text {on }}$) for analog voltages from (Vee +5 V) to ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$). For analog
voltages greater than $\left(\mathrm{V}_{c c}-5 \mathrm{~V}\right)$, the switch will remain ON independent of the logic input voltage. For analog voltages less than $\left(\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}\right)$, the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can go to either $\left(\mathrm{V}_{\mathrm{Eg}}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\dot{c}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as V_{EE} without destruction. The drain (D) voltage can also go to either $\left(\mathrm{V}_{\mathrm{tE}}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\mathrm{cc}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as (V_{cc} - 36V) without destruction.

Analog Current

With the source (S) positive with respect to the drain (D), the $R_{o w}$ is constant for low analog currents, but will increase at higher currents ($>5 \mathrm{~mA}$) when the FET enters the saturation region. However, if the drain is positive with respect to the source and a small analog current loss at

Fig. 8 Use of the disable node.

"ON" Resistance	$V_{A}=0, I_{0}=1 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	250	0
				200	350	Ω
"ON"' Resistance Matching		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	50	0
Analog Range			± 10	± 11		V
Logical "1" Input Voltage			2.0			V
Logical '00' Input Voltage					0.8	V
Delay Time "ON"	$V_{5}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		500		ns
Delay Time ${ }^{\text {/ OFFF" }}$	$V_{5}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		90		ns
Break-Before-Make Time	$V_{5}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		80		ns
Source Capacitance	Switch "OFF," $V_{S}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		4.0		pF
Drain Capacitance	Switch "OFF," $V_{D}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$		3.0		pF
Active Source and Drain Capacitance	Switch "ON," $V_{S}=V_{0}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0		pF
"OFF" Isolation	(Note 3)	$\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}$		-50		dB
Crosstalk	(Note 3)	$\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}$		-65		dB
Analog Slew Rate	(Note 4)	$\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}$		50		V/ $/ \mathrm{S}$
Disable Current	(Note 5)	$\mathrm{T}_{\wedge}=25^{\circ} \mathrm{C}$		0.6	1.5	mA
				0.9	2.3	mA
Negative Supply Current	All Switches "OFF," $\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.3	7.0	mA
Reference Supply Current	All Switches "OFF," $\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.7	5.0	mA
Positive Supply Current	All Switches "OFF," $V_{s}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.0	9.0	mA

PARAMETER

Negative Supply Current
Reference Supply Current
Positive Supply Current

CONDITIONS

$V_{A}=0, I_{0}=1 m A$
high analog currents is tolerable, a low $\mathrm{R}_{\text {ок }}$ can be maintained for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

Power Supplies

The voltage between the positive supply ($\mathrm{V}_{c c}$) and either the negative supply (V_{E}) or the reference supply $\left(\mathrm{V}_{\mathrm{R}}\right)$ can be as much as 36 V . To accommodate variations in input logic reference voltages, V_{R} can range from V_{EE} to V_{CC} -4.5 V). Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the device is never inadvertently installedbackwards in a test socket. If one of these conditions occurs, the supplies would zener an internal diode to an unlimited current, and result in a destroyed device.

Disable Node

This node can be used, as shown in Fig. 8, to turn all the switches in the unit off independent of logic inputs. Normally, the node floats freely at an internal diode drop $(\approx 0.7 \mathrm{~V})$ above V_{R}. When the external transistor in Fig. 8 is saturated, the node is pulled very close to V_{k} and the unit is disabled. Typically, the current from the node will be less than 1 mA .

Absolute Maximum Ratings

Positive Supply - Negative Supply ($\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{EE}}$) 36 V Reference Voltage $\quad \mathrm{V}_{\mathrm{EE}} \leqslant \mathrm{V}_{\mathrm{R}} \leqslant \mathrm{V}_{\mathrm{CC}}$ Logic Input Voltage

Analog Voltage

$$
\begin{aligned}
& V_{R}-4.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{IN}} \leqslant \mathrm{~V}_{\mathrm{R}}+6.0 \mathrm{~V} \\
& V_{E E} \leqslant V_{A} \leqslant V_{C C}+6 V ; V_{A} V_{E E}+36 V . \\
& \text { Moulded DIP (N Suffix) } 500 \mathrm{~mW} \\
& 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
$$

Analog Current
Power Dissipation (Note 1)
Cavity DIP (D Suffix)
Operating Temperature Range

Note 1: For operating at high temperature the molded DIP products must be rated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C}$ maximum junction temperature and are rated at $+100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Unless otherwise specified, $\mathrm{V} C \mathrm{C}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$, and limits apply; $-25^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}+85^{\circ} \mathrm{C}$ for the LF13331, 2, 3 and the LF13201,2.
Note 3: These parameters are limited by the pin capacitance of the package.
Note 4: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
Note 5: All switches in the device are turned "OFF" by saturating a transistor at the disable diode as shown in Fig. 8. The delay times will be approximately equal to the ton or toff plus the delay introduced by the external transistor.

Friday November 25th Saturday November 26th Sunday November 27th

10am-6pm 10am-6pm 10am-4pm

Improved venue

We have transferred Breadboard to Cunard International Exhibition Centre, so that we can offer improved facilities to the visitor, including car parking and ease of access by rail, tube and car, all in a modern attractive setting. We have also arranged a reduced hotel/rail fare package to attract enthusiasts from all parts of the country.

Planned features include

1. Full range of lectures planned over 3 days to cover most aspects of electronics and computing.
2. Electronics/Computing Advice Centre - manned by experts.
3. Demonstration of electronic organs and synthesisers.
4. Holography presentation.
5. Practical Demonstration on "How to produce printed circuit boards".
6. Computer Corner - extensive display of computer hardware - "Try Before You Buy".
7. Amateur radio Action Centre.
8. Computer controlled model railway competition.
9. Pick of the Projects - Demonstration of the best from ELECTRONICS TODAY INTERNATIONAL, HOBBY ELECTRONICS and ELECTRONICS DIGEST over the past ten years.
10. Giant T.V. screen video games.
11. Robotic display.

Why not bring the family to the show and enjoy a weekend in London? We have arranged a complete hotel package for our visitors to the exhibition. All inclusive rail tickets also available. Send now for details of what we, the organisers, can offer you.

Write to: Breadboard '83
ASP Exhibitions
145 Charing Cross Road London WC2H 0EE

electronics today international BOOK SERVICE

How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to ETI Book Service, Argus Specialists Publications Ltd, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterming only please. Prices include postage and packing. Prices may be subject to change without notice.

BEGINNERS GUIDES		
	eginner's Gulde to Basic Programming Stephenson	£4.95
	Beginner's Guide to Digital Electronics	£4.95
	Beginner's Guide to Electronics	£4.95
	Beginner's Guide to Integrated Circuits	£4.95
	Beginner's Guide to Computers	£4.95
	Beginner's Guide to Microprocessors	£4.95
COOKBOOKS		
	Master IC Cookbook Hallmark	88.65
	Microprocessor Cookbook M. Hordeski	¢6,60
	IC Op Amp Cookbook Jung	£13.15
	PLL. Synthesiser Cookbook H. Kinley	f6.60
	Active Filter Cookbook Lancaster	£12.00
	TV Typewriter Cookbook Lancaster	£9.95
	CMOS Cookbook Lancaster	£10.85
	TLL Cookbook Lancaster	£10.00
	Micro Cookbook Vol. 1 Lancaster	£14.00
	BASIC Cookbook K. Tracton	£5.20
	MC6809 Cookbook C. Warren	£5.95
ELECTRONICS		
Principles of Transistor Circuits Amos $\quad \mathbf{¢ 8 . 5 0}$		
	Design of Active Filters with experiments Berlin	¢10.40
	49 Easy to Build Electronic Projects Brown	£5.20
Electronic Devices \& Circuit Theory Boylestad £11.95		
	How to build Electronic Kits Capel	£3.55
\square How to Design and build electronic instrumentation Carr $£ 7.95$		
	Introduction to Microcomputers Daglecs	¢7.20
Electronic Components and Systems Dennis $\quad \mathbf{£ 1 5 . 0 0}$		
	Principles of Electronic Instrumentation De Sa	£11.40
Giant Handbook of Computer Software		
	Giant Handbook of Electronic Circuits	£14.75
\square Giant Handbook of Electronic Projects		
	Electronic Logic Circuits Gibson	£5.55
Analysis and Design of Analogue Integrated Circuits Gray $£ 26.95$		
	Basic Electronics Grob	£10.50
\square Lasers - The Light Fantastic Hallmark		
	Introduction to Digital Electronics \& Logic Joynson	£5.25
\square Electronic Testing and Fault Diagnosis Loveday $\quad \mathbf{6 6 . 6 0}$		
	Electronic Fault Diagnosis Loveday	£5.75
\square Essential Electronics A-Z Guide Loveday ${ }^{\text {Microelectronics Digital \& Analogue circuits and systems }}$ ¢7.20		
Millman £11.80		
	103 Projects for Electronics Experimenters Minis	¢7.25
\square VLSI System Design Muroga $\quad \mathbf{£ 3 0 . 0 0}$		
	Power FETs and their application Oxner	$£ 23.00$
\square Practical Solid State Circuit Design Olesky $\quad \mathbf{E 8 . 4 0}$		
	Master Handbook of IC Circuits Powers	£10.95
\square Electronic Drafting and Design Raskhodoff $£ 21.85$		
	VOM - VTVM Handbook Risse	¢7.25
\square Video and Digital Electronic Displays Sherr . $£ 25.40$		
	Understanding Electronic Components Sinclair	£7.50
\square Electronic Fault Diagnosis Sinclair $\quad \mathbf{¢ 4 . 5 0}$		
	Physics of Semiconductor Devices Sze	£14.50
\square Digital Circuits and Microprocessors Taub E32.00		
\square Active Filter Handbook $\mathbf{E 6 . 5 0}^{\square}$		
	Designing with TTL Integrated Circuits Texas	£14.00
\square Transistor Circuit Design Texas		
	Digital Systems: Principles and Applications Tocci	£11.85
	Master Handbook of Telephones Traister	£8.65
	How to build Metal/Treasure Locators Traister	£5.20
	99 Fun to Make Electronic Projects Tymony	£7.25
	33 Electronic Music Projects you can build Winston	£5.95

COMPUTERS \& MICROCOMPUTERS

\square BASIC Computer Games AhI 6.35
From BASIC to PASCAL Anderson
Mastering Machine Code on your ZX81 T. Baker
UNIX - The Book Banaham
Z80 Microcomputer Handbook Barden
Microcomputer Maths Barden
Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bell
Visicalc Book. ATARI Edition Bell
Visicalc Book. ATARI Edition Bell
\square Introduction to Microprocessors Brunner
Programming your APPLE II Computer Bryan
Z20 Microcomputer Handbook Barden
\square Digital Computer Fundamentals Barter
\square Getting Acquainted with your VIC 20 Hartnell
\square Getting Acquainted with your ZX81 Hartnell
\square Let your BBC Micro Teach you to program Hartnell
\square Programming your ZX Spectrum Hartnell
$\mathbf{E 8 . 5 0}^{\mathbf{5}}$
\square How to Design, Build and Program your own working Computer System Haviland
BASIC Principles and Practice of Microprocessors Heffer \square Hints and Tips for the ZX81 Hewson
What to do when you get your hand on a Microcomputer Holtzman
$\square 34$ More Tested Ready to Run Game Programs in BASIC Horn $\mathbf{£ 6 . 6 0}$
\square Microcomputer Builders' Bible Johnson $\quad \mathbf{£ 1 0 . 7 5}$
Digital Circuits and Microcomputers Johnson $\mathbf{£ 1 3 . 0 0}$
\square PASCAL for STudents Kemp
\square The C - Programming Language KErnighan
\square COBOL Jackson
\square The ZX81 Companion Maunder
Guide to good Programming Practice Meek
\square Principles of Interactive Computer Graphics Newman
\square Theory and Practice of Microprocessors Nichols
\square Exploring the World of the Personal Computer Nilles
Microprocessor Circuits Vol. 1. Fundamentals and
Microcontrollers Noll
f7.20
\square Beginner's Guide to Microprocessors Parr
\square Microcomputer Based Design Peatman
\square Digital Hardware Design Peatman
BBC Micro Revealed Ruston
Handbook of Advanced Robotics Safford
\square TV Typewriter Cookbook Lancaste MOS Cookbook Lancaster
£10.85
\square Micro Cookbook Vol. 1 Lancaster
f 14.00
BASIC Cookbork. Wh
f8.50
Principles of Transistor Circuits Amos
49 Easy to Build Electronic Projects Brown
. 20
Electronic Devices \& Circuit Theory Boylestad
11.95
\square How to build Electronic Kits Cape
$£ 7.95$
\square Introduction to Microcomputers Daglecs
ERectunic Components and Systems Dennis
entation De Sa
Giant Handbook of Electronic Circuits
1001 Things to do with your own personal computer Sawusch
\square Easy Programming for the ZX Spectrum Stewart
Microprocessor Applications Handbook Stout
\square Handbook of Microprocessor Design and Applications
Stout
\square Programming the PET/CBM West
\square An Introduction to Microcomputer Technology Williamson
\square Computer Peripherals that you can build Wolfe
$\mathbf{£ 9 . 5 0}$
\square Microprocessors and Microcomputers for Engineering S and Technicians Wooland
$\mathbf{f 5} .70$
$\mathbf{£ 1 2 . 9 5}$
E11.35
f11.35

88.90
 f5. 10

£10.50

REFERENCE BOOKS

\square Electronic Engineers' Handbook Fink £56.45 £59.55 Illustrated Dictionary of Microcomputer Technology Hordeski
\square Handbook for Electronic Engineering Technicians Kauffman $\mathbf{E 2 7 . 5 0}$
\square Handbook of Electronic Calculators Kauffman E34.40
\square Modern Electronic Circuit Reference Manual Marcus $\quad \mathbf{E 4 0 . 7 0}$
\square International Transistor Selector Towers $\mathbf{£ 1 0 . 7 0}$
\square International Microprocessor Selector Towers
\square International Digital IC Selector Towers
\square International Op Amp Linear IC Selector Towers $\quad \mathbf{£ 1 2 . 9 5}$

Please send me the books indicated. I enclose cheque/postal order for $£$ Prices include postage and packing.
wish to pay by Access/Barclaycard. Please debit my account.

Signed \qquad
Name
Address \qquad
\qquad

UNIVERSAL EPROM PROGRAMMER

To use our Universal EPROM programmer, you've got to have the software to drive it. Mike Bedford fills us in on what's needed.

The logical choice of programming language for a software package which is required to perform critical timing and which contains large frequently repeated loops, is assembler. On the other hand, the obvious choice of language for a package which is intended to run on a variety of different personal computers is BASIC. The software presented here is a compromise between the two: a BASIC program which performs the $1 / 0$ but which calls an assembler subroutine for the time critical or time consuming tasks.
The assembler routine starts at address 1C00, but this may need to be relocated in order to fit in with the memory map of some systems. If this routine is relocated, the variable MC on line 290 of the BASIC program will have to be changed to the decimal start address of the routine. Another portion of the BASIC program which may require tailoring to a particular system is line 310. The variable PA on this line contains the start address of the EPROM programmer hardware as selected by the links on the board. This address should also be updated in the assembler subroutine on line 23 which equates IC9PIA to the start address.
Microtan 65 BASIC uses the statement $\mathrm{I}=\mathrm{USR}(\mathrm{X})$ to call a machine code subroutine, having first POKE'd the low order byte of the M/C address to 34 and having POKE'd the high order byte to 35 . This is done on lines 4040-4060, 5030-5050, 6040-6060 and 7040-7060 of the BASIC program and may require modification on other machines.
Finally, the programming timing loop in the assembler routine assumes a processor clock frequency of the 750 KHz as used on the Microtan. The value loaded into register Y on line 143 of the routine will have to be modified
accordingly for other clock speeds (use hexadecimal 27 for 1 MHz).

As far as entering the program is concerned, the main BASIC program is rather long and it would be advisable to enter it in relatively small portions, saving it after the addition of each new section. This suggestion is made for two reasons: firstly it is difficult to concentrate for sufficiently long to enter the whole program at once without making errors; and, secondly it would be extremely frustrating if the computer were to crash for some reason after having typed in over 200 lines of code!

The assembler listing is rather long, and will only be of interest to readers wishing to modify the software. For this reason we haven't reproduced it here, but a copy may be obtained by sending a large
stamped addressed envelope (or international reply coupon) to the ETI office -please mark the outer envelope "PROGRAMMER
LISTING". Most users will find it easiest to enter the hex code directly.

Once the program and subroutine have been entered and recorded on cassette, it will be worthwhile investing some time carefully checking through the program. It is quite possible that a mistake may cause more than the appearance of the all too familiar SYNTAX ERROR on the screen: an error in the software could easily turn an EPROM programmer into an EPROM destroyer!

Sample Run

On page 39 is a reproduction of

1000	4 C	4 C	1 C	0000	OU 00	00	00	0	0	0000					
1 ClO	3 C	3 C	3C	3434	3418	18	18	810	1010	1018	12	10	0		
10.20	30	3 C	34	$343 C$	$3 C 3 C$	3 C	08	808	0808	0805	25	08	8		
1C30)	22	01	01	0101	0108	02	08	802	0206	0606	06	06	6	06	
1 C 40	06	05	06	0101	0101	01	00	0 Ol	0100	001	20	87	7	1 D	
1 CbO	UB	1 C	C9	02 DO	03 4C	BC		C 19	1930	308 D	25	BC	C 1	19	0
$1 \mathrm{C60}$	8 B	24	BC	A9 34	8D 25	BC	AE	E OC	OC 10	IC BD	OD	IC	C 8	d	
1 C 70	BC	A9	. 0	8D 20.	BC A9	3 C	8D	d 25	25 BC	BC BD	16	10	C 8		
1 C80	BC	20	9 C	1 D 20	62 1D	DO	03	34	4C 13	13	20	17	7	1 D	AD
$1 \mathrm{C9O}$	25	BC	49	OB 8D	25 BC			C 10	ID AD	AD 2					
icao	A2	(1)	AC	OB IC	FO 10	30	07	7 C9	C9 FF	FF FO	BB	4 C	C		
1 CB ()	Cl	35	F)	B4 4C	1310	81	35	3540	4 C 8	68 IC	19	30	O		
ICCO	BC	A9	FF	8 D 24	BC A9	34	8D	D 25	25 BC	BC AE	OC	c	BD	BD	D
1CD)	10	81	23	BC A9	0088	20		B BD	BD IF	IF IC					
ICEO	28	1 C	8 D	26 BC	2) 9 C		20	06	6210	ID FO		20			
ICFO	A2	O)	A1	35 8D					1 C BC						
1D()0	50	31	1 C	9920	BC AO	10	A2	2 FF	FF CA	CA 0	FD	88	8 D		
1 D10	4 C	Св	1 C	2087	1060			5 IC	IC 8D	3D 22	BC				
1 D20	Fo	09	AD	un IC				C 52	5210	D AD					
1030	10	8D	20	BC AD	06 IC		10	0 F0	F0 08	8 AD	20				
1040	8 D	2)	BC	AD 06	IC 29			008	08 AD						
1 D 50	26	BC	AD	06 IC				8 AD							
1D60	BC	60	E	3510	02 E6		EE	EE 05	051	C DO	03				
1 100	AD	06	1 C	29 E7	8D 09		AD	D 05	0510	1 C CD					
1 D80	AD	06	1 C	CD $\cup 8$	IC 60	16		35 A4	1436	36 AD	03	10	C 85		
1 100				8536	8E 03		8	04	04						

Fig. 1 Hex dump of the machine code -see text for details of how to obtain the assembler listing, should you need it.

Fig. 2 The main BASIC program.

a printout obtained by running he EPROM programmer support package on a Tangerine Microtan system. Note that a base address of 2000 has been selected - this being the lowest reasonable-size area of RAM on the system, the BASIC program occupying about 6 K and the machine code routine being
located at 1C00.
In answer to the question about EPROM type, a response of 2716 was given. A 2716 EPROM was inserted into the ZIF socket when the first *? prompt was printed and this was tested for erasure using the (T)EST command. The program indicated that the device was not

XTP ${ }^{X}$ START, FINISH ADDRESSES? 0807,0007 0007 EPROM $=09$ MEMORY $=A F$

EPROM TYPE? 2732
STR

START, FINISH ADDRESSES? 0200,0210 OK

TT LIVIES AGATN!

From the past it came growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home every mind.
Not a horror story, but a success story. And if electronics theory strikes terror into you then you need the help of Electronics - It's Easy. Originally a long-running series in Electronics Today international, Electronics - It's Easy was printed as a set of three books. They sold out. It was reprinted as a single volume It sold out Now this phenomenally successful publication is available again. In its third reprint Electronics - It's Easy is a comprehensive and simply written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology.
You can obtain your copy of Electronics - It's Easy by mail order using the coupon below. Make cheques or postal orders payable to ASP Ltd. alternatively you may pay by Access or Barclaycard.

Send to: Sales Office (Specials)
513 London Road, Thornton Heath
Surrey CR4 6AR
Please send me \qquad copies of Electronics - It's Easy.
I have enclosed $£$.......... ($£ 4.95$ each including p\&p)
NAME \qquad
ADDRESS. \qquad
\qquad

Please debit my account
My Access/Barclaycard No is \qquad
Signature

$1 / 3$ OCTAVE GRAPHIC EQUALISER

We conclude this studio-quality unit with the constructional details. Design by Dave Tilbrook, with additional work by Phil Walker.

The third octave equaliser divides the audio frequency band into 28 segments so a total of 28 slider pots are used.
Cutting the required slots in a front panel is an extremely difficult task so we strongly recommend using the special case from Newrad - see Bylines for details. We've deliberately chosen to use fairly small switches and indicator on the front panel - if you use larger ones, you can always enlarge the hole sizes.
Construction of the PCB is not difficult. The usual precautions should be taken with the orientation of all polarised components such as electrolytic capacitors, transistors, diodes and ICs. Note that the two voltage regulator ICs are mounted in the same direction.
Check the component overlay for the correct orientation. It is probably wise to leave the insertion of the quad op-amps until last since these are FET devices and are therefore more
sensitive to static electricity than the other components in the unit. Be careful when handling these devices before insertion on the board. Use an earthed soldering iron and discharge yourself by touching an earthed metal appliance before handling the ICs. The inputs are protected and should therefore be reasonably safe from damage by static electricity.
The method of construction we have chosen is to mount the slider pots directly on to the front panel (using short, countersunk M3 bolts) with the PCB behind.
The potentiometer wipers are attached alternately to the top and bottom of the PCB; if you use a type of pot that has only one wiper connection (as we did), then you'll have to make sure that adjacent pots are reversed on the front panel.

Interwiring

Before we mounted the PCB into the case, we soldered leads into the correct position on the PCB
for joining onto the potentiometer wipers. Note that the tops and bottoms of the slider tracks should all be joined up before the board is mounted.

We mounted the board using metal struts and plastic pillars. The struts can be attached to the aluminium extrusion by sliding the head of a $1 / 2^{\prime \prime}$ (we really mean 12 mm !) M3 bolt into the aluminium extrusion, and then clamping this in the correct position using a nut (or three, in our case, to get the spacing of the strut correct). If you don't use plastic pillars, you'll have to make sure that the PCB tracks are not inadvertently earthed by the fixing screws.

We've left the drilling of the holes in the rear panel to you, as you'll almost certainly decide to use different connectors, etc, from us! Because the case is fairly compact (neat, in ETI speak) you'll need to take care over the positioning of the fuse, mains input socket and transformer, to make sure that you

PROJECT

This photograph shows the connections between the slider pots on the front panel and the PCB - and the mounting of the front panel using struts and spacers. Note that we couldn't fit the prototype PCB into our equipment and had to make it in two sections hence the join!
don't foul the PCB. Remember that the earth on the input and output sockets must be kept separate from the case. But make sure that the case and the transformer are well earthed - we suggest making doubly sure by removing paint or
varnish around the earthing point(s) (on the inside, in the case!). To cut down mains hum, we used a screened twin cable for the internal mains lead - this needs to have adequate conductor and insulation thickness, though.

Fig 1 Overlay diagram for the PCB.

PARTS LIST

We used universal adhesive to glue on the pot knobs, otherwise they all kept falling off!

Power up

Once construction is complete, check all power supply wiring before powering up. This is especially important if a transformer has been included inside the case. In the latter case, make certain all 240 V connections are secure and check the chassis earth. If all is correct, power the unit up. The LED should light to indicate that the unit is on-

An equaliser in/out switch has been provided to ensure that a flat response can be obtained easily and without the necessity of changing the equalisation that may have • taken some time to set up. The equaliser is intended for use immediately before the power amplifier. If used in this. position the level control will probably not be used. In this case turn the control fully counterclockwise. The overall gain of the equaliser with the controls set at centre will be approximately unity. If the equaliser is intended for use from a typical line level output, the gain control can be used to supply the output levels needed by the power amplifier input.

BUYLINES

The case is available by post only from Newrad Instrument Cases Ltd, Tiptoe Road, Wootton, New Milton, Hants BH25 551 for the special price of $£ 21.00$ all inclusive to ETI readers only (this is for either the rack mounting version we used or one with plain ends - please state which you require when ordering). The PCB is, as ever, available through our PCB service. We've already mentioned the slight problem of obtaining the capacitors and how we solved it, last month. None of the other components should present problems, though as you'll be buying a number of slider pots, it's obviously worth shopping around for a good price. The cheapest we found were those from Rapid, and that's where we bought ours from.

00PS!

Note that the value of R65-80 is 10 R , not 1 kO as shown on the circuit diagram. We recommend that you switch the unit out of circuit (using the EQ OUT switch) before removing or connecting the supply, because it is capable of issueing a nasty squalk!

40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161. TELEX: 914977 CRIKEL G

-CRICKLEWOOD -STOCKING PARTS OTHER STORES CANNOT REACH!
Items not fully covered on this tist include: OPTO 7 seg LEDs, LCDs bezelled LEDs, Lamps, \& THE LZZY WAY Phone your order through on Access, Barclaycard, Visa or American Expres Lampholders, FUSES: 20 mm 11 inch, slow or quick blow. Fuseholders. CONNECTORS: DIL. DIN. for immediate service; no extra charge, no minimum order.
SWITC'HES: Toggle, Biased, Row
All in stock items (that's 95%) posted same day. OFFICIAL ORDERS FROM SCHOOLS. GOVT Staples Comer and approx 3 miles from Marble Arch. OUS
QUANTITY

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;

Where a project has apparently been constructed correctly but does not work, we will need a description of its behavior and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);

Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;

We will not reply to queries that are not ac• companied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to answer prompt-ly, but we receive so many enquiries that this cannot be guaranteed.

Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronic in-dustry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK Overseas £13.15 £16.95 Surface Mail £36.95 Air Mail
Send your order and money to: ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry). ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Back-numbers

Below we list the back-numbers that are available from our back-numbers department. Please note that this list will be out of date if you use an old copy of the magazine. Back-numbers cost $£ 1.50$ (UK or overseas by surface mail) and are available from: ETI Back-numbers Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd).

Even if the copy of ETI you need is not listed, all may not be lost, because we run a photoco-pying service. For $£ 1.50$ (UK and overseas) we will photocopy an entire article (note that parts of a series of articles count as separate articles). Your request should clearly state what article you require and the month and year in which it appeared (the index for 1980 and 198 I was published in January 1982, and the index for

1982 appeared In December 1982). Send your request to ETI Photocopies, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE (cheques should be made out to ASP Ltd).

November 78
November 79
April 80
September 80
October 80
November 80
December 80
January 81 August 82
February 81 September 82
March 81
April 81
May 81
June 81
November 81
December 81
March 82
May 82
June 82
July 82

Write for ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we are interested and give you all the boring details.

We don't bother with the bureaucracy for TechTips - all you do is to send in your idea, stating clearly if you want an acknowledgment of receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works, on a separate sheet from the circuit diagram \cdot; both sheets should carry your name, address and the circuit title. We'll let you know (within a month or so) if we want to use your Tech Tip.

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should:

1. Write to the supplier, stating your com-plaint and asking for a reply. Quote any reference number you may have (in the case of unsatisfactory or incomplete fulfillment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.

If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don t write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your che-que and supplying the goods for which you have paid, then it may be possible for you to obtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

We have in the past published small corrections to projects on the letters page, and major corrections separately. From now on corrections will appear on this page, and will be repeated for several months (just to increase our embarrassment). If a correction is too large to fit on here, we will publish it just once, but will note the fact that a correction does exist, and that copies of it can be obtained from us provided you send in an SAE. But please request copies only if you really do need them; if this service is abused, we may be forced to withdraw it.

ZX A to D (Jan '83)
D2 is shown the wrong way round on the overlay; wires on the RH side of the switch SW1 should go to top contacts. Some of the early PCBs had an error: pins $2 \& 4$ of IC1 should go to pin 16 (top) of edge connector (published foil pattern is OK).

Stage Lighting Unit (Jan, Feb, April, May '83)

Transformer specs are as follows: Primaries all 250 V ; secondaries T1: 0-6, 0-6 V, 12 VA tot; T2: 0-12, 0-12 V, 12 VA tot; D: 0-6 V, 3 VA. ICs 34, 35, 36 are 7805 SV regulators.

ZX Sound Board Design Comp. results, Feb

 '83)The first line of the program has to be entered in reverse order to get it to go in (COS, GOSUB, COPY, ASN and RND are functions). The line should read:

10 REM :"Y -=?COS GOSUB 5 COP Y ?? ASN ?RNDF??RND

Alarm Module (March '83)
R21 Is 220k (parts list OK, circuit diagram wrong) Q5 is BC182L (left off parts list).

Max Min Thermometer (April '83)
A revised foil pattern was published in July ETI. To get original PCB to work, replace D4 and D5 with wire links, cut tracks from pins 7 and 8 on IC6, and solder 15k resistor across cut - remove ICs while doing this! (It's messy but it works.)

Real Time Clock (April '83)

Frequency of XTAL1 is 32.768 kHz .
NDFL Power Amplifier (May '83)
C13 is 33 pF (parts list correct, circuit diagram wrong).
Table 1: lengths of wire quoted do not allow for lead lengths -add 40 mm or so to them. This is particularly important for L3. Resistors R29 and R30 can be wire wound types, it isn't necessary to use carbon types (their inductance will be small).

Flash Sequencer (July '83)
Q1 should be BC184L; Q2-5 should be BC182L.

Telescope (August 1983)

We had a shower of annotation falling off our diagrams! On Fig. 1, C19 (below IC14) was not labeled nor was Q2 (above R1), and there were two C23s -one should be IC22 and it doesn't matter which. In Fig. 5, IC1 2 was not labeled. Unfortunately, there was a mistake in the correction (blush!): C14 is the $22 \mu \mathrm{~F}$ tantalum on the -5 V line.

Universal EPROM Programmer (August 1983)
We had the same problem with falling annotation as above. On the overlay, IC7 is between SK2 and SK1; IC6 is between SK1 and C10; IC1 1 is between R7 and R10.

Z80 Controller Computer

Same problem yet again. On the overlay, SW1 is the rectangle beside IC5 and 6; a link through was missed to the right of pin 18 IC11.

READER'S SERVICES

FEATURE

TECH
 TIPS

Dual Trace Unit
 John Hesketh,
 Pontefract

There have recently been two circuits published in ETI which allow two waveforms to be displayed simultaneously on a single beam oscilloscope. Both of these circuits have drawbacks, namely poor preamp performance, inadequate control over waveform position, a tendency towards instability and poor switching circuitry. The design shown overcomes these problems and will display waveforms clearly over the frequency range DC to 200 kHz .

The design may be divided into three sections, two preamplifiers (one for each channel) and a switching circuit. The switching circuit is identical to that in J. C. Harris's circuit (ETI Feb 82).

The input signal is applied to an attenuator network either via a 100n capacitor for AC coupling or directly
for DC coupling. The attenuated signal is then fed to IC1 which is wired for a gain of one and functions as an impedance matcher. This stage gives the instrument a high input impedance (approximately 9MO). A portion of the output signal from IC1 is derived via RV1, which serves as an amplitude control, and is fed to IC2 and associate components which is also wired for a gain of one. This stage provided a means of shifting the vertical position of the waveform by introducing a DC voltage onto the non-inverting input of IC2 via RV2. This stage inherently inverts the waveform and therefore a further inverting stage is employed (IC3 and associated components) to restore the original sense of the waveform. The outputs from the preamplifier's IC3/6 are fed into the signal switching arrangement consisting of IC7 and
IC8. The output from the electronic switch is then fed to the oscilloscope. In order that a wide range of
signal frequencies may be displayed, two modes of switching are employed. The two modes are 'chop' and 'alternate' and the mode of switching is determined by SW5. When displaying frequencies from DC to 15 kHz , it will be necessary to use the 'chop' mode but for frequencies above 15 kHz the 'alternate' mode should be used.

The settings of VC1-4 are quite critical at high frequencies (200 kHz), and the following procedure should be adopted in order to obtain the optimum setting of these trimmers. (The procedure is described for channel No 1 as channel No 2 is identical). Inject a $200 \mathrm{kHz} 1 \mathrm{Vp}-\mathrm{p}$ square wave into channel No 1 input and set the attenuator switch (SW2) to the $1 / 1$ position. The setting of SW1 is unimportant. Set RV1 to maximum and RV2 to mid position. Connect an oscilloscope to the output of IC2 and adjust VC1 for a perfect square wave with no overshoot or corner rounding. Remove the oscilloscope and connect to the output of IC3. Adjust VC2 for a perfect square wave. Repeat the procedure for channel No 2.

Note that the circuit requires a split supply of $\pm 9 \mathrm{~V}$.

Low-Cost Mains Time Delay Switch Alex Gray,
 Emberton, Bucks

This circuit offers a cheap, reliable replacement replacement for mechanical. and pneumatic time-delay switches such as used for corridor lights. It can also be used to protect equipment which is upset by power being applied and removed too rapidly.
When the switch is closed and reopened, the load is switched on for a preset time -1.1 $\mathrm{R}_{1} \mathrm{C}_{1}$. During this period, the circuit also switches on its own power. At the end of the time-delay both the load and the circuit are disconnected. In the event of a circuit failure, the push button will still allow the load to be switched on for safety (e.g. in corridor lighting).

If the switch is a normal latching type, the load will be powered as long as the switch is closed, subject to a minimum period. This prevents rapid cycling of the power on and off and may be used to protect equip-ment susceptible to damage from this situation.
There are only three connections and the circuit may be wired in at the ceiling rose of a conventional 'looped through circuit without any additional wiring.

The usual precautions with mains wiring must be observed. In particular, remember that, although the 555 is on a 12 V supply, that supply is
superimposed on 240 V AC above earth. The switch and the 470nF capacitor must be types designed for mains operation.

Karnaugh Map Display

K. J. Beeden,

Crawley

The Karnaugh map is a common way of representing the function of a four-input logic system. It is often taught in schools and colleges, when students are given a logic system and have to draw the Karnaugh map for it. This device allows the student to go away and test his map with the actual map generated by this device and a wired-up system on a breadboard.

IC5a and b form an astable, which clocks the 4-bit binary counter IC1. The outputs of this are fed into the quad true complements buffer, IC2, providing buffered true and inverted outputs to the system under test. The counter outputs are also used to decode the display -the three LSBs are used as select lines for the eight-way analogue switches, IC3 and 4, and the MSB is used to select the chip by connecting the true value to INH IC3 and the inverted (by IC5c) value into INH IC4.
The output of the system is connected to the input of IC5d,e,f. Thus if the output
output of the system is high for a given 4-bit number, then the output of IC5d, etc, will be low, and so current will flow from the +ve supply, via the selected analogue switch (resistance of which is conveniently about 160R) through the appropriate LED. If the output of the system is low, then the output of IC5d, etc, will be high, and so no current will flow.

This means that an illuminated LED represents a " 1 " from the system, and an unlit LED a "0".

Figure 2 shows the arrangements of LED's 1-16 required to obtain the desired Karnaugh map display.

electronic MUSIC BAND-BOX $\begin{gathered}\text { programmable } \\ \text { backing thio }\end{gathered}$

CKING BAND Generates the sounds of three instrumentalists to back Sololiats

DRUMS + BASS + KEYBOARDS Over 3.000 chord changes (80 scores) on 132 dif terent chords-extendable to 200 scorea. Master Rhythm also required.
FULL KIT £235 EXTENSION £82

88/72 NOTE PIANOS SPECIALISTS SINCE 1972 juing Peitented olectronic

COMPONENT KITS including Keytoord 88 NOTE \quad E286 72 NOTE
The above may also be purchased in four parts.
DOMESTIC KITS
inc. Cabinel, PA. \& Spkr. 88 NOTE
72 NOTE

STAGE MODEL
Inc Cabinet \& Stand
72 NOTE

All PRICES inc. vat. Chor. \& TELEPHONE AONCE俍 F PRODUCTS (ELECTRONICS) LIMITED (Dept ETI)
44A BRAMHALL LANE SOUTH BRAMHALL 4A BRAMAALL LANE SHIRE SK7 1AH
STOCKPORT CHESHI STOCKPORT CHESHIRE SK
TEL 0614393297

MASTER RHYTHM PROGRAMMABLE DRUMS Twenty Four Rhythm programmable tended to $24 / 32$ measures for two bear programming. Sequence operation and instnument tone adjust COMPLETE KIT
STRING ENSEMBLE E198.50 ROTOR-CHORUS E198.50 SQUARE FRONT KEYBOARDS 88 NOTE $£ 60$ 49 NOTE $£ 29$ 73 NOTE $£ 50$ OU NOTE $£ 19$ KEYSWITCH ITEMS ALSO AVAIL. ABLE

N EMA/ MODULAR AUTOMATIC
£24.50 TELEPHONE SYSTEM
$+\varepsilon 1$ p\&p
Each ready built module is a complete exchange
providing up to ten extension lines
\star Simply connect "phones and power supply
\star Only two wires to each telephone

* Uses ordinary dial or push-button 'phones
* Complete privacy for conversations
\star Range of several miles
* Fully expandable system

Each module allows two 'phones to be used at one time, two modules allows four, etc.

RECONDITIONED TELEPHONE8 Push Bution Tilmphones $£ 15$	TEMPERATURE GUAGE 0.120 C Remote sensor on $38^{\prime \prime}$ capilliary, panel mounting dial 55 mm . dia. Only $£ 2.50$
Push Button 748 c9.75 + £1.80. 2 for $£ 18+£ 2.50$ Recent Style Dial Phones	16 240V RANCO THERMOSTAT Wide control range (low room lemp. to over boing pointh. Sensor on 22" capillary. 2.30, including controd knod
Seconds (In good working	BUY ONE EACH OF ABOVE FOR £5.50
$\begin{aligned} & £ 15+£ 5 \\ & \text { Class } 2 \text { (discoloured) } £ 2.25+ \\ & £ 1.80 .5 \text { (or } £ 9+£ 5 \end{aligned}$	GEAREDSynctronous motor.8 i.p.m. 240VAC.3Watt £2.
UNISELECTORS. 50v, 4 Bank - Homing Bank, 25 way £3.50	SOLENOID GASVALVE. 240VAC. 5P.S.I.suitable for non-corrosive fluids. £2.20
Desk-Iop Ten Way Manual Ex. change (key 8 lamp unit)	BULGIN 3 pin free plug \& panel socket. 2A 240 V 50p
Send S.AE for free leaflet on telephone systems.	DIAL-OUT WITH YOUR COMPUTER. PCB.'s convert binary to dialing pulses and enable your computer to dial-out (with suitable interlece). Ex-equipment. Tested. $£ 12$ with explanatory notes.
L.E.M. 22 Emsc Warwick Warwick Tel: 0928	RVICES Road, θ 0740 ADD 50p P\&P ORDERS OVER £7.50 POST FREE unless steted otherwle

BUILD A BETTER AMPLIFIER!

How can you own a top class HiFl amplifler, of comparable standard to Nalms, Meridians, Quads etc., for an outlay of less than $£ 250$? - Simplel Built li yourself - with a Crimson klt.

It is not necessary to spend a small fortune to obtain true Hifi periormance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the flexibility to adapt to any users needs. All the P.C.B.'s are ready assembled and tested (they are not "potted" as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will give years of untroubled senvice. So, whether you use a simple record player or a compact disc, you can be sure to get the most from your system. E.T.I. said, in their review of the CK1010/1100: "I can say no more than that for $£ 250$ it is a bargain and one that will become the reference point for kit amplifiers from now on." Need we say more?
PRICES $\quad \star$ Summer Speclal Offer: Buy a CK1010 and any CK power amplifler and get an MC2K board freel! *
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes power from any CK power amp or separate psu. type CK 1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chane
$\varepsilon 92.00$
CK1080 - STEREO POWER-AMPLIFIER 80 watts R.M.S.JChanel
$£ 121.00$
CK1100 - STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
£134.00
MC2K - Moving coil add on kit for CK1010
E25.00
P.S.K. power supply for CK1010 (if not used with a CK power amp) CRiMSON also supply power amp, pre amp and electronic crossov receipt of an S.A.E. we will be happy to supply full details.

TO ORDER Send C.W.O. or quote your acce s card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Lid, 325 Edgeware Road, London.

* Offer closes 31st July 1983 (Return this ad with your order)

THE DIGGER

No, no, it's nothing to do with tubes of amber nectar, billabongs, tucker bags or any other antipodean artifacts. Just a device for digging around in a digital circuit using an oscilloscope - a digital trigger. Design, development, and bad puns by Phil Walker.

The ETI Digger is a very simple device which will make fault finding on digital circuits very much easier. The basic unit is in reality an eight bit comparator which provides an output signal when the input. signal is the same as that set up on the unit's switches. The unit as described will handle up to eight logic inputs which will probably be sufficient for most purposes. However, it is designed so that additional units may be plugged into the first to expand the total capability in blocks of eight.

Use

The unit must be provided with a normal TTL type +5 volt power supply (probably conveniently derived from the equipment under test $\}$. The output can then be taken to the external trigger input of your oscilloscope. In case you hadn't guessed, your next move is to set the scope to external trigger; you may have to adjust the trigger controls for best results, especially if the circuit under test contains ripple counters. The reason for this is that signal propagation delays in the devices will cause glitches in the

HOW IT WORKS

[^1]

Fig. 1 Circuit diagram.
output from the Digger unit. This is not a fault, as the input conditions are in fact true, even if only for a short time. Actually this property of the Digger could be quite useful if you suspect this action in your own circuit.

The leads from the device can be connected to the test circuit in any order but remember to set the switches in the corresponding order
or your results will be wrong. It is a good idea to use the input nearest (he output as a clock input, as this will eliminate a good many ambiguities. Don't forget to set any unused input channels to HIGH or the unit will not trigger!

The Circuit

The circuit for this device is very simple. Most of the work is

PARTS LIST

RESISTORS (1/4 W 5\% carbon film unless stated)	
R1	2K2
R2-R9	1 K (SIL resistor pack $8 \times 1 \mathrm{~K}$)
R10-R17	2K2 (SIL resistor pack $8 \times 1 \mathrm{~K}$)
CAPACITORS	
	10uF 16V electrolytic
SEMICONDUCTORS	
IC1, IC2	74LS85
LED1-LED8	3 mm Red LED
MISCELLANEOUS	
SW1-SW8	8 pole SPST DIL switch
10 way PCB socket 0.11 pitch; 5 way PCB	
socket, 0.1 " pitch; 5 way right angle PCB	
plug 0.1" pitch; box (Vero G.P. plastic box	
$72 \times 50 \times 25 \mathrm{~mm}$ 202-21025K); PCB; 10, 5	
way free plugs and 5 -w	way socket for above.

done by the two ICs which are 74LS85 devices. These are TTL fourbit magnitude comparators, and give outputs which show whether one of the two four-bit binary numbers presented to their inputs is equal to, greater than, or less than the other. In addition to the normal inputs, there is also a set of inputs which take the outputs from another similar device. When these are connected, the final output depends on all the comparisons of all the inputs to the devices connected in this way.

The rest of the circuit is devoted to providing the requisite comparison inputs to the ICs and giving a visible indication of it. The method of doing this is to use resistors to hold the inputs normally at a low level, but with switches that can force them high via an LED which will light up to show that it has been selected. The logic inputs from the test circuit are provided with pull up resistors so as to define unused inputs.

Construction

Construction of the PCB is quite simple so long as the ICs are inserted the right way round. The LEDs and capacitors must likewise be put in correctly. If you are going to use resistor packs as we did, the end with the dot or similar mark is the common terminal. Verify this with a meter if in doubt. If you use discrete resistors, mount them vertically and join all the top ends to the common terminal with a piece of stripped solid-core wire.

It will be necessary to use a 16 pin wire-wrap type socket for the DIL switch so that it can be positioned through a hole in the box. The LED leads will probably be long enough without extension. We would also recommend using ordinary sockets for IC1 and IC2.

There are 5 links to insert on the board as marked on the overlay which connect the inputs to SK2. Use thin insulated wire for these. Mounting the PCB in the box is a little tricky. First make sure that the corners have been cut off at the marks shown and check that the board will fit into the box. We found it easier to fit the PCB upside down in the box (with the track side facing the lid), so that only a little of the side walls have to be cut away to allow SK1, SK2 and PL1 to fit. Also a rectangular cut-out must be made in

Left: Overlay of the Digger; above: the Digger itself, less case.
the bottom of the box to allow SW1SW8 through. Finally eight 3 mm holes should be drilled for the LED's.
The PCB can now be bolted to the lid and the box put together. Connections to the outside world are made via the plugs and sockets. If you use rightangled plug parts, then a small piece of Veroboard soldered to them makes a robust connector. The socket should be a socket housing with crimp terminals. For greatest convenience the power connections can be made via the free socket and PL 1 while the trigger output goes from SK1. The switch can be mounted either way round in its socket allowing you the option of the test leads coming out of the top or bottom of the device, while the switch position is still up for high, for example.

BUYLINES

Nothing in this project should cause much difficulty; the SIL resistors are fair-ly widely available from suppliers such as Watford, Cricklewood, etc. The con-nectors are available from Maplin, and the PCB is available through our very own service.

Two or more Diggers can be cascaded.
Two or more Diggers can be cascaded.

Branime
 TYPE 161B DUAL POWER SUPPLYKIT

INCORPORATES A POSITIVE \& A NEGATIVE REGULATED SUPPLY
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C.
Interconnect to give 2.6 V to 32 V or $-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$
Output current 1 A at 16 V to 0.35 A at 1.3 V
Ripple is less than 1 mV

£25.99

nc $P \& P$ and VAT

Built \& Tested $£ 37.95$ inc.P\&Pand VAT
Comprehensive design details with calculations are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelled in attractive blue and grey with a printed front panel to give a professional finish. Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges.

SEND CHEQUE OR P.O. ALLOW 21 DAYS FOR DELIVERY

THERE'S NO LIMIT TO WHAT A COMPUTER WITH NO CARDS CAN DO!

It's the oldest trick in the book to grab your attention with a stupid title, but in this case there's a grain of truth in the statement above.
The interak 1 Computer System is a 4MHz Z80A development system, one which you build yourselt, perhaps tor enthusiastic home use, or more often for industrial or educational purposes
The fundamental structure is a $3 \cup 19^{\prime \prime}$ rack which has space for 13 cards ("International" size, i,e. $4.5^{\prime \prime} \times 8$ ") on 1 " pitch, with space for a power supply at one end of the rack. International size - rack mounting: Inter-rak Interak! 13 cards $4.5^{\prime \prime}$ by $8^{\prime \prime}$ gives a total potential board area of over 400 square inches, enoughfora couple of hundred chips or more: there's no real limit on what that could do is there? (It would leave a few of today's marvels a bit in the shade ut
But don't be scared, you don't have to bulld a Frankens tein's monster until you're ready. The first few cards are nected to your own TV. (or monitor), then the Z80A-CPU card the brains; then dynamic RAM and finally the Keyboard inter face (to any standard parallel ASCII keyboard and you've got a computer - with the ultimate resource: 9 empty slots for the future. (Perhaps use one of them for 2400 baud tape interface or later floppy disks.)
Example prices (excluding VAT), everything is available separately and full after sales service in case you make a mistake: Z80A CPU card £10.95, Manual £1.50, Main Parts $£ 13.41$
0 type-written pages of description, specification, price ists etc. are yours for the asking (a 25p stampand/or SAE is a help, but not essential), or telephone if you prefer. You'l effort and find out allabout interak now: a couple of minutes is all it takes to ask for a leaflet!

Greenbank
Greenbank Electronics (Dept. T9E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

\section*{Accurate Digital Multimeters at Exceptional Prices | new analogue miter with continuity |
| :---: |
| Buzze ano batery scale |}

28 RANGES, EACH WITH FULL OVERLOAD

SPECIFICATION MODELS 6010 \& 7030

- 10 amp AC/DC
- Battery: Single 9V drycrll. Life: 200 ht
- Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$.
- Weight: $\mathbf{4 0 0}$ inc. battery.
- Mode Select: Push Bution
- AC DC Current: 200μ A 10 10A
- AC Voltage: 200 mV to 750 V
- DC Voltage: 200 mV to 1000 V
- Resistance: 200Ω to $20 \mathrm{M} \Omega$

Input Impedance: 10M Ω

- Display: 31/2 Digir 13 mm LCD
- O/losd Protection: All ranges

OTHER FEATURES: Auto polarity.
buto zero, battery low indicator, ABS plestic cese with tilt stand, bettery and test leads included, optional carrying cass.
 7030
3.1\% Accu . 1% AcCl PROTECTION
 ${ }_{6010}$ NWEW $_{\text {N }}$

NEW HM 102 BZ SPECIFICATION OC Voltage: $0.25,1,2.5,10,25,100,250,1000$ volts 20,000 ohms/volt. AC Voltage: $0.10,25.100,250,1000$ vol ts 10,000 ohms/volt. Decibels: - $\quad-20$ to +22 dB DC Current: 0.50. $50 q \mu A, 0.5,50,500 \mathrm{~mA}$ Ohmmeter: 0.6 Megohms in 4 ranges. 30 ohms Centre Scale Power Supply: One 1.5 V size 'A' battery (inct Size \& Weight: $135 \times 91 \times 39 \mathrm{~mm}$, 280gr.

Add 15\% to your order for VAT. P\&P is free of charge. Payment by Cheque with Order.

AUDIOPHILE

Audiophile returns with a look at a new version of an old favourite. Ron Harris (Who's he? -Ed) has been playing with little boxes.

What do you mean "Oh no, not again?" Thought you'd got rid of me, huh? It's not as easy as that my friends. Audiophile returns to ETI with a look at some new boxes with an old and revered name-Minimax 2.
The Minimax 2s are a two-unit ported design of tiny proportions. This is a complete redesign from the originals and the speakers have a lot to live up to.
All by themselves, the original Minimaxes practically rewrote the hi-fi gospel that speakers must be big to be credible. This led to a host of manufacturers taking a serious look at the idea of high performance small enclosures, witness the

The boxes in question, in semi-naked glory! Note the-bass reflex port: the old Minimaxes didn't have that!
plethora of imitations there are now.
Presumably the idea behind the redesign is to re-establish the Videotones as the leading small speakers and the indications are that they are selling very well. Celestions magnificent SL6s have unquestionably taken this field a good deal further forward, but at a price. The Minimax 2 s are considerably cheaper and are not intended to be directly competitive.

Moving Experiences

The main problem with any small box is how to move the mass of air required to produce useful bass response when the speaker is too compact to house a large driver. Because the enclosure is smaller than the wavelength of the sound it is producing, cancellation occurs between the air mass in front of the driver and that behind the box. In short, as the unit tries to push the air away from it, instead of traveling outwards, the wave just 'wraps around' and dissipates most of its energy before reaching the listener.

This is why small speakers produce better bass close to a wall. You can't cancel a wall. The more solid the better, as the mass is what counts. As an added help, the bass driver should be of the long excursion variety in order to transfer as much energy into the air as possible. If you must use a small paddle then you have to move it further for the same effect as would be obtained with a larger surface area.

Field Work

In order that the bass driver should be able to move freely and without inducing gross distortion, the coil and magnet within which it moves must be made longer also, so that the coil never moves out of the linear region of field and is therefore evenly driven at all signal levels.

Also, although a smaller set of wooden panels should be easier to damp, and thus have their resonances kept under control, in a real box any bracing material used is more likely to affect the overall sound quality. This is simp-ly because the volume of the bracing subtracts from the volume of the .enclosure, and the less there is to start with, the less left! It is the bass which suffers, so a trade off is required. Resonating panels will colour the sound, too much bracing will reduce the base ... hmm, perhaps we could launch a computer game called 'Design A Speaker'.

In Use

Having now run briefly through the horrors of designing small speakers, how do the Minimax 2 s measure up? Despite all the pitfalls do they actually produce a creditable result? In a word yes. The originals were very worthy units and the Mark 2s should carry on the tradition admirably.

I wired in the units, somewhat unfairly, in a direct comparison to my usual reference speakers, KEF105 II's which are anything but small. The Minimax was positioned off the floor, clear of walls and for a second attempt on a shelf flat against the wall to simulate more usual conditions of usage.

The amplifier was a Denon PRA2000/POA3000 Class A set-up and the record source provided by the well trusted TD160S/SME III carrying a Shure V1 SV cartridge.

To those of you who think it 'unfashionable' to use an SME rude words and expletives. Unaffected by the frantic pursuit of something new for the sake of it often to the detriment of the results the SME continues to out-perform the pretenders. So there!

On an absolute scale the Minimax 2 is a worthwhile product. Taking into account its size, it is positively brilliant. Its greatest asset is the ability to project the sound image away from the enclosures, out into the room: This makes it very easy to forget the boxes and the size of them.

The Wall

Used in 'free-space' i.e. clear of all room boundaries, the Minimax understandably loses body in its presentation. Given a wall to help out, however, it can make a nonsense of its dimensions.

The new high frequency unit appears to improve both the smoothness and the spread of the presentation. The image is now much less dependent upon the listener's position and is free of any noticeable frequency response irregularities. Integration between the two units is good and the mid-range has a good solid sound to it.

Someone used to big, free standing enclosures, with a good deal of power behind them, would of course notice the lack of bass extension at once. However, as a starting point in hi-fi, or as a compromise answer in a small room, the Minimax 2s have much to recommend them. At the low price of $£ 75$ per pair, they are very good value and should be listened to seriously if you are thinking of buying a pair of small speakers, for whatever purpose.

One word of caution, they are relatively inefficient and hooking up less than 20W a channel is unlikely to elicit the best results from these diminutive demons.

Above: the trusted reference. An SME III doing it's bit whilst sat on a Thorens TD160S. A great deal of mud has been slung at several excellent products lately, including the SME. Ignore it. Let your own ears decide. The SME will stand up to ANY properly conducted comparison (i.e. scientifically). If you think I'm getting upset you could be right. I'm thoroughly cheesed off with unqualified, unprincipled and unsound review techniques. A mandatory qualification for producing some of this stuff seems to be that the applicant must be able to prove he has achieved brain death. End of tantrum.
would recommend around 50W per channel, despite the manufacturer's indrawn breath of cowardice. Take it easy on the volume, to the extent of not pushing in Status Quo full up, and you will be returned a smooth, well imaged sound with good hi-fi extension and more bass than you thought feasible from a box this size!

The Preamp And The Packing Case!

Also this month I was going to review Musical Fidelity's "The Preamp", an audiophile unit of modest cost and high aspirations. Due entirely to the fact that I am moving house and my entire reference system, nay life, is packed into cardboard boxes and is presently being shuffled through the lanes of Kent, I am unable to do so!

My apologies for this and as soon as normal service is resumed I will complete the findings. Meanwhile, have a topless photo.

Exit Ron Harris pursued by the office chapter of the Womens Liberation Movement, in a none-too benevolent mood.

The Preamp. Not royal, but well titled. Soon, all will be revealed in even more detail!

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.
Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or Access.
So make sure you get your copy,? of Hobby Herald by ringing

(04215) 62829.

BICC-Vero Electronics Ltd., Industrial Estate,

BIGG vero Chandlers Ford, Hampshire, SO5 3ZR.
 to build and run on your own micro.

- LIGHT PEN

8 PICTURE DIGITISER + OTHEREXCITING\&
INTERESTING PROJECTS

REALISE THE REAL WORLD POTENTIAL OF YOUR MICRO.

A newly released book written by well known author Owen Bishop and published by Bernard Babani gives fully descriptive details on how to build all 17 projects - all are fairly simple and inexpensive to construct - The most complex component (the DECODER) is supplied in kit form ready to assemble with all components and plated through PCB. Components for the projects are readily available locally or found in your workshop drawers.
Once assembled and connected to your micro the decoder is able to run any or all of the projects simultaneously.
Simple Programmes are included to get you started but of course the more experienced programmer can have hours of fun writing complex programmes to take full advantage of these easy but exciting projects.

This AM radio is supplied withbuilding instructions plus comprehensive electronic theory, exercises and test procedure. A complete learning package, requiring only a 9V battery.
The large fibreglassprinted circuit board hasbeen designed in 3 sec tions - a TRF radio, a bass treble control and an amplifier push-pull output circuit. Each section can be built and tested as a separate project.
This comprehensive radio circuit shows an application of tuned circuits, I.C.' s, field effect and bipolar transistors, common emitter and collector configurations, stabilizer circuits, feedback circuits, complementary output stages, etc.
The radio project kit should given entertainment and interest to the novice, yet provide valuable learning material for the electrical student. Particularly relevant to current T.E.C. electronic courses.
The price is only $£ 16.70$ inc. VAT $+£ 1.50$ p\&p. (Allow 28 days delivery).
Educational and quantity enquiries welcome.
Send cheque or postal order to:-
HAZZLEWOOD ELECTRONICS LTD.,
Sales Department,
149 Main Street,
Grenoside,
Sheffield, S30 3PN
Tel: 0742463585
Send an S.A.E. to receive a list of our current electronlo project kits.

MULTIMETERS

(UK C/P 65p)
RANGE DOUBLER 10A DC1
Special price...........................£15.95
ETC 5000/5001 121 Ranges
50K/V Range Doubler 10A DC
TMK 50023 Ranges 30Kiv 12A DC Plus cont. buzzer $£ 23.95$ NH56R 20K/V 22 Range Pocket

360TR 23 Range $100 \mathrm{~K} / \mathrm{V}$. Large scale 10A AC/DC plus Hfe.... £36.95 ATI 02018 Range 20K/V. DeLuxe plus Hfe Tester.......................£17.50 ST303TR 21 Range 20K/V plus Hfe Tester
..£16.95

SPEAKERS
(Hi-Fi, P.A., Disco. Bass Guitar)
8"' 60W ... £11.95

10" 50W ... £12.95
12" 100W ... £26.95
18" 100W ... £39.95

MOTOROLA PIEZO

TWEETERS IN STOCK
RETAIL - MAIL ORDER
EXPORT • INDUSTRIAL EDUCATIONAL

MUSICRAFT 303 EDGWARE RD, LONDON w 2 TEL $01-40297292898$

Digitise at up to 10 MHz . Store, then display on a UHF TELEVISION. Single shot Capture up to 250 KHz . Storage Facility for less than $£ 100$.
The Tele-Scope is a new concept in data capture utilising the latest Digitising techniques. The Tele-Scope acts - controls displays much like a conventional scope but does much much more.
A kit version is available for $£ 89$ and a Built unit for $£ 109$. A manual is included and specialist parts are available separately.
Prices exclude V.A.T. at 15% with postage and packing at $£ 2.95$ inc. The manual is available separately for $£ 1.50$ inc. which is refundable on subsequent purchase of a unit.

HAWK ELECTRONIC TEST EQUIPMENT
BIrcholt Road, Parkwood Industrial Estate, Meldllone
Kent ME15 9XT. 0622686811

Z80 CONTROLLER COMPUTER

The only way to give MARVIN a sense of proportion is to connect him with the outside world. Peter Grigson and David Harris show us how it's done.

No computer can talk to the outside world on its own - it needs interfaces to achieve this. As we've already mentioned, MARVIN is a modular computer, and so his interfaces are built on separate boards. There are two types of interface - the I/O board, and the interrupt board, both of which we will now proceed to describe.

HOW IT WORKS I/O BOARD

The circuitry divides into three parts - the

 control logic (IC1 and 2), Port A (IC3 and 4) and Port B (ICS and 6). In fact there are four ports per board the input, and to enable the relevant IC. Note that separate but sharing the same addresses.The port selection logic is very simple; four AND gates are used to detect. when one of the ports is being addressed and to enable the relevant IC. Note that the selection signals are active low. Because the system is quite simple, it was not judged necessary to include cir-cuitry to avoid more than one port being enabled at once.

The output ports (ICs 3 and 5) are based on the 74LS373 octal 0-type transparent latches: while the EN G input is high, the outputs follow the in-puts. When EN G is taken low, the lat-ches will be set to the current data. There is also an output control which may be useful in some circumstances. When this is taken high, the outputs from the 74LS373 go into a high impedance state, irrespective of the latch contents. However, the latches themselves are unaffected by the output control, and they will retain their cur-rent data, or can be set to new data. R1 and R2 keep the output control (OC) inputs, to ICs 3 and 5 respectively, low in the case of no external control signal.

The input ports (ICs 4 and 6) use 74LS244s: these are octal buffer/line drivers with tri-state outputs (the outcuts are connected directly to the data bus Internally, the buffers are in two groups of four, with separate gate inputs (G1 and G2), and when these inputs are taken low, whatever information is at their data inputs will be placed on to the data bus.

The I/O Board

The I/O board is seen by the CPU board as two I/O ports, which we've labelled A and B. Each port
has eight output lines (ie, one byte in either direction) making a total of sixteen lines and eight either direction per board. As we

әq иеэ әдәчъ ‘чұиои 7 se р рәио!ұиәш uət 'ə!!) spueoq 0/I ən!t of dn presently configured
To write to a port, the CPU places the required data on the data bus and makes the WR and the relevant port selection line low. The data is actually latched into the port when one or both of
 łndu! әчł MO!|Oł I!!M słndłno әчł łu!̣od ұеч7 ו!

 to the port, with repeat data in the

 məishs әчł म! injəsn aq p!noj s!̣」
 any extent autonomous, e.g. it contains another processor. Note, pinoys sәu!! findłno әчł łеч7 ‘дәләмоч
 (with respect to Marvin's earth), otherwise damage may occur.
әЧł 'рәұכәןəs s! fod andu! ue иวчМ inputs to it are buffered on to the data

 errors.
 board to signal the CPU board that it wishes to transfer data - like a shy little wallflower at a noisy disco, it has to wait әчł səop กdכ әчł pue 'рәуse s_{i} ?! !! ! un
 selection line low.

Interrupt Board

This board is intended for use with external timing and triggering devices.
 make the CPU stop whatever it is doing and pay attention!

PROJECT

Fig. 4 Overlay of the interrupt board.
Fig. 5 An example of how the port addresses can
be defined on the $1 / 0$ board itself. In this case,
port A has address 5 , port B has address 0 . There
is no need to use pins unless you will be changing
around port addresses suite a lot -permanent wire
links should do the job otherwise.

Fig. 6 If you don't have a suitable power supply to hand, you'll have to build one. Here is a fairly standard circuit: allow current consumptions of 500 mA for the CPU board, 200 mA per
$/ / 0$ board, and 100 mA for the interrupt board. The transformer should be able to supply more than enough current to meet the maximum demand, and C1 should be about 5000uF per amp of supply current drawn.
шодя səu!! ן ןnp!n!pu! uni ueว no人 дәчә!ə the selection signals on the CPU board

 Fig. 5 shows an example of this.

PARTS LIST INTERRUPT BOARD	
RESISTORS (1/4 W 5\%)	
$\begin{aligned} & \text { CA } \\ & \text { C1 } \end{aligned}$	1nF ceramic or polystyrene
SEMICONDUCTORS	
	74LS373
IC2	7430 or 74LS30
IC3	7414 or 74LS14
D1, D2	1 N4001
MISCELLANEOUS PCB; one 14-pin DIL socket; one 20 -pin DIL socket; pins or edge connector as required	

> Construction
> Construction of both these boards should be absolutely straightforward. We recommend using sockets for all but the simplest of the TTL gates (ie, don't bother for IC1 and 2 on the I/O Board, or with IC3 on the Interrupt -Board). Don't forget to insert the wire links as shown, and if you're not bothering with edge connectors, you'll need to insert pins in the PCB next to the edge connector
 pins in the positions marked on the I/O
 ports -but see the I/O Port Identification Section first, and decide whether you'll
be changing around the system much.

Making The Connections

 stated, you have a choice between using edge connectors (the rich
 use

provided, and these should normally be at logic high. If any line is pulled down to low, the CPU will accept the interrupt provided it has executed an enable interrupts (EI) command since the last interrupt occurred or disable interrupts (D1) command was executed. The CPU will not accept further interrupts until El has been executed again.
The CPU will complete executing the current instruction, then go to the interrupt servicing routine in the operating system. As described in the "How It Works" section, the interrupt board latches the data on the interrupt input lines when one makes the high-to-low transition, and then the monitor instructs the CPU to read this data. This will consist of all 1s except for the bit that corresponds to the input that's causing all the fuss. According to which bit it is that is zero, the CPU will look for the address of the next instruction to be executed from one of eight memory locations in RAM.
 generate another interrupt until the reset to high (and any other lines that have gone high in the mean time have also been reset).

GET Bic

Module Number	Output Power Werts rms	$\begin{array}{\|c\|} \hline \text { Load } \\ \hline \text { impedonnes } \\ \Omega \end{array}$	$\begin{aligned} & \text { DISTT } \\ & \text { T.H. } . \\ & \text { TVo.at } \\ & \text { 1KHz } \end{aligned}$	$\begin{aligned} & \text { ORTION } \\ & \text { I.M.D. } \\ & \text { GOH2 } \\ & 7 \mathrm{KHz} 4: 1 \\ & \hline \end{aligned}$	Supply Votrap Typ	Size mm	$\begin{aligned} & \text { WT } \\ & \mathrm{gms} \end{aligned}$	Price Inc. VAT
h:Y 30	15	4.8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	240	£8.4
hyfio	30	4.8	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	¢9.55
HY6060	$30+30$	4.8	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	¢18.69
hyriz	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	£20.75
HY128	60	8	0.01\%	<0.006\%	± 35	$120 \times 78 \times 40$	410	£20.75
HY2n4	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	£25.47
HY248	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	£25.47
HY364	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	£38.41
HY368	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	£38.41

Module Number	Output Power Watts rms	$\begin{array}{\|c\|} \hline \text { Loond } \\ \text { Impeodorne: } \\ \Omega \\ \hline \end{array}$	DISTORTION		Supply Voluge Typ	$\begin{aligned} & \hline \text { Size } \\ & \mathrm{mm} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { WT } \\ \text { gms } \end{array}$	Price inc. VAT
			T.H.D. Typat 1KHz	$\begin{aligned} & \text { 1.M.D. } \\ & \text { 600Hz } \\ & 7 \mathrm{KHz} \mathrm{4:1} \end{aligned}$				
MOS 128	60	48	<0.005\%	<0.006\%	± 45	$120 \times 78 \times 40$	420	£30.41
MOS 248	120	48	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 80$	850	¢39.86
MOS 364	180	4	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 100$	1025	£45.54

Protection: Able to cope with complex loads without the need for very speciat
protection circuitry (fuses will suffice).
Slew rate: $20 v / \mu \mathrm{s}$. Rise time: $3 \mu \mathrm{~s}$. S / N ratio: 100 db
Frequency response (-3 dB): $15 \mathrm{~Hz}-100 \mathrm{KHz}$. Input sensitivity: 500 mV rms
Input impedance: $100 \mathrm{~K} \Omega$.

Protection: Full load line. Slew Rate: 15v/ /ss. Risetime: Sus. S/N ratio: 100 db Frequency response (-3 dB) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitivity: $\mathbf{5 0 0 \mathrm { mV } \text { rms. }}$ input impedance: $100 \mathrm{~K} \Omega$. Damping factor: $100 \mathrm{~Hz}>400$.

Module Number	Module	Functions	Current Required	Price ine. VAT
Hy6	Muno preamo	Mic/Mag. Cartricge/Tuner/Tape/ Aux + Vol/Bass/Treble	10 mA	¢7.60
HY66	Stereo pre amo	Mic/Meg. Cartridge/Tuner/Tape/ Aux + Vol/Bass/Treble/Balance	20 mA	£14.32
HY73	Guitar preamp	Two Guitar (Bass Lead) and Mic + separate Volume Bass Treble + Mix	20 mA	£15.38
HY78	Stereo pre amp	As HY66 less tone controls	20 mA	£14.20

Mono Power Booster Amplifier to increase the output of your existing car radio
or cassette player to a nominal 15 watts rms.
Very easy to use.
Robust construction. $\quad £ 9.14$ (inc. VAT)
Mounts anywhere in car.
Automatic switch on.
Output power maximum 22w peak into 4Ω
Frequency response (-3 dB) 15 Hz to 30 KHz , T.H.D. 0.1% at 10 w 1 KHz
S/N ratio
input Sonsitivit and impedance (selectable) 700 mV rms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into 8Ω

C1515
Stereoversion of C15.
£17.19 (inc. VAT)
A separate PSU 30 is available puraly for pee amp modules if required for
$£ 5.47$ linc. VAT). Pre-amp and mixing modules in 18 different variationa
Please send for de tails.
Mounting Boards
For ease of construction we recommend the B6 for modules HY8-HY 13 £1.05
linc.VAT) and the 886 for mocules HY66-HY78 £1.29 (inc. VAT).
POWERSUPPLYUNITS (Incorporating our own toroidal transformers)

Model Number	For Uno With	Price ine. VAT		For Use With	Price inc. VAT
PSU 21X	1 or 2 HY 30	E11.93	PSU 52X	$2 \times \mathrm{HY} 124$	E17.07
PSU 41 x	1 or 2 HY60, $1 \times$ HY6000, $1 \times$ HY 124	£13.83	PSU 53X	$2 \times \mathrm{MOS128}$	£17.86
PSU 42x	$1 \times \mathrm{HY} 128$	£15.90	PSU 54x	$1 \times \mathrm{HY} 248$	£17.86
PSU 43x	$1 \times \mathrm{MOS} 128$	£16.70	PSU 55X	$1 \times \mathrm{MOS} 248$	£19.52
PSU 51x	$2 \times \mathrm{HY} 128,1 \times \mathrm{HY} 244$	£17.07	PSU 71X	$2 \times \mathrm{HY} 244$	¢21.75

$\begin{aligned} & \text { Moden } \\ & \text { Nurmber } \end{aligned}$	For Use With	Price inc. VAT
PSU 72X	$2 \times \mathrm{HY} 248$	¢22.54
PSU 73x	$1 \times \mathrm{HY} 364$	£22.54
PSU 74x	$1 \times \mathrm{HY} 368$	£24.20
PSU 75x	$2 \times \mathrm{MOS248,1} \mathrm{\times MOS368}$	£24.20

WITHALOT OF

HELP riom

Q
 CAN HANDIE...

Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY7B to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Seomates					Price inc. VAT
UC1	Preamp				£29.95
LPPIX	$30+30 W / 4-8 \Omega$	Bipolar	Stereo	HiFi	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£74.95
UP6X	60W/4-8	MOS	Mono	HiFi	${ }^{1}$ £64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	Hifi	£84.95
Power Slaves					
US1X	60W/4 Ω	Bipolar	Power	Slave	$£ 59.95$
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3X	60W/4-8	MOS	Power	Slave	£69.96
US4X	120W/4-8	MOS	Power	Slave	£89.95

Please note X in part number denotes mains voltage, Please insert ' O ' in place of
X for 110 V . '1' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper quoting the name and date of this journal. By sending your order to our quoting the name and date of this journal. By sending your order to our
address as shown at the bottom of the page opposite, with FREEPOST address as shown at the bottom of the page opposite, with FREEPOST
clearly shown on the envelope, you need not stamp it. We pay postage for clearly shown on the envelope, you need not stamp it. We pay postage for
you. Cheques and money orders must be crossed and made payable to I.L.P. you. Cheques and money orders must be crossed and made payable to I.L.P.
Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.
PAYMENTMAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED
Post to: ILP Electoonics Lid., Freepast 4,
Grahem Bell House, Roper Close,
Canterbury CT2 7EP, Kent, England.
Telephone: (02271)
Technical: (0227) 64723.
Telex: 985780.

64K DRAM BOARD

Mucking around in memory? Seeking space? Look no further, here's a bounty (no connection with those distracting TV ads) of bits, rapacious in real-estate, for your 6502 or 6800 system to gorge itself on. Design and development by Bob Campbell.

Most microcomputer users find out fairly quickly that there is no such thing as too much memory. But even today with memory as cheap as it is, many systems are on sale with less, often considerably less than the 64 K that most eight-bit microprocessors are capable of addressing. The independent suppliers are usually very quick to-provide units to fill this gap, but one system not well covered in this respect is the Tangerine Micron/ Microtan 65. Until recently, there was only the TAN RAM, but now there is the CMOS alternative. However, despite advantages in power consumption and battery back-up, the CMOS unit, like the TANRAM, is large and fairly expensive. More than one board is required to provide the maximum possible memory. The approach here is to use the highest density dynamic RAM chips readily available and allow the user to access all of it except where it would clash with essential EPROM, I/O or CPU board RAM. This leads to an extremely flexible and cost ef-fective system. Although specifically designed for the Microtan 65 computer together with either a disc system or TUG's Eprom Storage Card (the MOS Disc concept) the design retains enough flexibility to accommodate almost any desired configuration of computer and operating system, the only prerequisite is a 6502 or 6800 CPU .

Design

The board uses the latest 64 K by 1 bit dynamic RAM chips, TMS 4164-15. These are decoded into 641 K blocks, with all but four of the blocks used in its standard configuration. Making almost $61 / 4 \%$ of the RAM effectively redundant may at first sight seem a little extravagant, however even allowing for this the cost per K is less than $£ 1.00$. If one adds the other savings on hardware, sockets, power supply requirements board space etc., the

64 k chip route stands out above all the other alternatives.

The heart of the system is the 74LS608 memory cycle-controller (MCC). This chip generates all the signals the RAM requires to perform the two types of cycles necessary for proper operation. The MCC generates these signals from the CPU's clocks 01 and 02 together with the decoded signal RE, RAM enable. It is important not to confuse this signal with the Tanbus signal RAME. The only signals used from the bus are the address and data lines together with R/W, 01 and 02 and because of this and the use of a PROM address decoder, this board is very flexible. in design and easily adapted to suit other systems.

Dynamic RAMs

The two great advantages of dynamic RAM are its extremely low power consumption and its packing density. This is achieved by the design of the actual memory element which is in fact a very small capacitor. The logic level stored being defined by the presence or
absence of a charge on that capacitor. Because all capacitors have a finite leakage, the charge on the capacitors must be periodically topped up. This procedure is called refreshing and is accomplished by performing what is known as a RAS only refresh cycle.

This RAS only refresh cycle consists of first setting up an eight bit address at the input latches and strobing RAS low, while maintaining CAS high. The complete chip is refreshed when all 256 row addresses have been treated similarly. Data retention is assured if all these 256 cycles are completed at least once every 4 msec .

Apart from the necessity to refresh every 4 msec there is one other penalty to pay for the 16 pin packing density and that is the multiplexed address bus. Figure 1 shows the internal architecture of the 4164.

To address every memory element within the IC, 16 address bits must be applied; These are separated into the row address and the column - address, each latched onto the multiplexed address bus

Fig. 1 Internal architecture of the TMS4164 DRAMs used in the project.

Fig. 2 Processor and memory cycle controller timing.
upon the appropriate signal RAS or CAS.
In full, the memory cycle consists of five stages. Firstly the row address pins and RAS pulled low. Then the address multiplexers are switched placing the other eight bits, the column address, onto the address pins and CAS pulsed low. This last operation enables the chip and, depending on the status of the R/W line, enables the input or output buffers, thus completing a read or write cycle.
There are two other possible types of cycle, the page mode read/write and the read modify write cycles. However since neither of these apply to the 6502 or 6800 type of processor it is not necessary to consider them further here.
It is important to note that the 6502 operates in what is known as the early write cycle where the R/W line is set up long before CAS goes low. This enables the data in (D) and data out (Q) pins to be connected together and thus have a common data bus.

Obviously the sequence and timing of the two cycles, refresh and memory, is extremely important. The RAS only refresh cycle is particularly significant for two reasons: firstly, it is necessary to perform it regularly (256 times every 4 msec), and secondly, it is effectively a dead cycle, when the CPU cannot access memory.
Refresh cycles can be carried out in either burst mode or hidden transparent mode. Burst refresh is a technique where all the memory elements are refreshed consecutively whilst the processor is held in a wait or halted state. This dead time is called the refresh overhead, which, more accurately, is defined as the ratio of the time taken to refresh all the memory elements and the maximum refresh interval. In well-designed systems with the 4 msec 64 K rams this overhead can be as low as 2%. As the circuitry needed to maintain this type of refresh system is complex it is not commonly used outside the realms of very fast microcomputers, minis and mainframe systems.

The other technique, hidden refresh, is the more commonly used. This technique relies upon the fact that the CPU will always have a period within any instruction or machine cycle when it will not access the system bus, and one refresh cycle can be accomplished during this period. Thus after a maximum of 256 instruction cycles all the memory elements will have been serviced. This technique has the great advantage of a zero refresh overhead rate and is totally transparent to the CPU and thus the user.
In this design the two cycles, refresh and memory, are sequenced by the main CPU clocks 01 and 02 . While 01 is high, the CPU sets up the R/W and address lines, the rising edge of 02 signifying a valid memory address. This edge of 02 is normally used to enable the address and data buffers. Thus while 01 is high, the CPU is normally isolated from the system bus, and the refresh cycle can be accomplished during this period. In addition by using 01 to clock the eight bit refresh row address counter all 256 row addresses can be refreshed sequentially. Figure 3 shows exactly the relationship and timing of these events.

PROM Program Design

The memory map of the RAM board is controlled directly by the TBP24S10 PROM, which acts as a complex address decoder. Before programming the PROM, the desired memory map must be established. The minimum requirement for most systems will be the system monitor, the I/0 area and unless there is a serial VDU as the screen, some screen memory. Some systems use a relocatable area of memory for the screen RAM, the video controller accessing the system bus directly. If the target system is of this type then no provision should be made for the screen RAM in the PROM program. Remember the overriding factor when designing the memory map is that there must not be two components within the system which have the same address. Taking the standard configuration of the Microtan as our worked example, the minimum memory map is as shown in Fig 4.
Once you've determined the memory map(s) required, the upper six address lines should be written out bit fashion (bit by bit ... ?). Each bit corresponds to a PROM address bit; however because of the PCB board layout, the one-to-one

Fig. 3 Memory timing for various operations and approximate timing round the MCC.

respondance is not in numerical order.
In addition, by using the two extra PROM address lines A7 and A8, there is the facility to have up to four programs and therefore four memory maps resident on the board at one time, selectable by means of the DIL switch SW1. Using the two tables 1 and 2 it is possible to calculate all the PROM addresses which are required to be 'blown'.

Remember that PROMs are not erasable, once a memory location is altered from the "all 1's" condition, it cannot be reversed. There is however an escape route if a mistake is, made during programming. The program is created by blowing only the operative bits within the data word from a 1 to a O.In this design, only one of the four bits available is used (bit 4). If an error is made during programming, then it is possible to use an alternative bit by breaking the PCB track at pin 9 IC15, installing a link to either pin 10, 11 or 12 (bits 1-3 inc.) and reprogramming the PROM using the appropriate data word. (Alternatively, this would make it possible to hold a total of 16 memory maps in the PROM).

It is beyond the scope of this article to describe the methods for actually programming the PROM, suffice to say that the amount of programming by nature of it's use, is small, so it would be feasible to use the switchbox type of programmer.

Construction and Setting Up

The construction of the board is very straightforward, particularly if the PCB design presented here is followed exactly: there are, after all, only 18 ICs. The PCB is a double sided design but to keep costs down it doesn't use platedthrough holes. To make the necessary interconnections, track pins or short lengths of wire must be soldered between the two in the positions marked on the overlay diagram with a black dot. These pins must be soldered in first,

AREA	HEX ADD	SIZE
A)TANBUG	FFFF	2 K
RAM	F8OO	
	F7FF	14 K
B) I/O	CO00	1 K
	BFF	
RAM	BCOO	
	BBFF	46 K
C) CPU BOARD	0400	1 K
RAM	$03 F F$	1

Fig. 4 Minimum memory map for the Microtan.

PROJECT

PARTS LIST

Fig. 5 Circuit diagram of the complete project.

Power lines \& decoupling capacitors. 1 u 0 all tantalum. 10 u tantalum or low leakage solid electrolytic.
prior to any other components, as there are some beneath the DIL sockets; । advise checking the continuity of each one thoroughly, as mistakes are difficult to rectify later. The remainder of the soldered components can be assembled in almost any order, but I've found that it pays to be systematic and to follow a list, checking off each component as it is soldered in.
All the usual checks should be carried out before the ICs are in-serted into their sockets. Particular attention should be given to avoiding solder bridges in the daisy chained RAM area of the board.
It is useful to insert the chips in three stages and perform some functional checks on the system at each stage. The first of these stages is to insert the PROM and all the TTL, with the exception of the 74LS608
(IC16) and the 74 LS245 data bus buffer (IC14). Now powering up the board on the bus can be performed with all the Tanex RAM and EPROM still resident without the risk of any memory conflict occurring. This procedure will allow you to check the following items with the system running.
A dual beam oscilloscope is really desirable particularly if you have
deviated from the timing component values for any reason. However it should be possible if you don't have access to a oscilloscope to use a good logic probe to check that all the appropriate signals are present.

The most relevant signals to check first are 01 and 02 and their complements 01, 02, RE and DBE should be active only when a valid address within your programmed memory map is accessed. Next check that the two address buffers, IC2 and IC11, are switching correctly

SYSTEM ADDRESS												HEX ADD.	COMMENTS
A15	A14	A13	A12	A11	A10								
1	1	1	1	1	1	FFFF	TANBUG						
1	1	1	1	1	0	F800							
1	0	1	1	1	1	BFFF	I/O						
1	0	1	1	1	1	BC00							
0	0	0	0	0	0	$03 F F$	CPU BOARD RAM						
0	0	0	0	0	0	0000							

Table 1 Revised system memory map.

Table 2. Programming sheet for the PROM.

64K DYNAMIC RAM BOARD PROM PROGRAMMING SHEET ... OF ... 4									
SYTEM ADDRESS PROM ADDRESS	SW1	SW2	11	10	13	14	15	12	HEX PROM ADD
	8	7	6	5	4	3	2	1	BLOW TO 07
	0	0	0	0	0	0	0	0	
		0	1	1	1	1			3 F
	0	0	1	0	1	1		1	2 F
	0	0	1	1	1	0	1		3B

exactly 180° out of phase with each other, and that the refresh address counter IC1 is functioning correctly as an eight-bit counter. The final check at this stage is to measure the pulse delay and shaper circuits formed by the diode/resistor networks and IC17. The three signals RAS cycle start (RCS), memory cycle start (MCS) and refresh (RFSH) should all correspond to the timing diagram in Figure 3. Any deviation should be adjusted by altering the value of the capacitor and/or resistor within the relevant RC network. However if the stated tolerances of the components are adhered to there should be no problems.
Having completed all the checks and adjustments so far the next stage is to insert the 74LS608 memory cycle controller, which should produce the necessary signals RAS, CAS, MUX and R/ W. These four main signals should be checked against the timing diagrams in Figures 2 and 3 . The important factors are the relationships between cycle start, CS, and RAS, MUX, CAS sequence and the RAS refresh cycle. The row address hold time RAH, CAS low and the precharge time are the major controlling times and are all programmable via the three RC networks on the 74LS608. Under standard conditions with the 750 KHz Microtan system clock these times have quite a large latitude. However with faster clock rates the times become proportionally more critical. All these times can be calculated from the memory data sheets.
One fault which may occur at this point has the symptoms RAS permanently low, CAS, MUX and R/W permanently high. If this situation exists try shorting very briefly pin 12 to ground. If the controller then starts to function correctly then the 74LS608 is at fault. I understand from Texas that on a number of the older batches of chips there is a fault with the power-on-reset circuit, newer batches, I am assured, are all O.K.
Having checked that all the relevant signals are present at the RAM chip sockets, the RAM chips themselves can now be inserted. Power down first. These are very static sensitive so take all the usual precautions, they are also upside down in relation to the other ICs on the board.

Be warned that if they are inserted with pin 1 to the upper edge of the board they will be irrevocably damaged, and at $£ 4.00$ each a mistake could be very expensive. Finally insert the data buffer IC13. With construction and testing completed there is still one task to finish before the board is inserted back into the rack and powered up. Remove all Tanex RAM and EPROM, and all other memory map conflicts, for example the hires graphics board, failure to do this will probably destroy ALL the memory components in the system.

After powering up the board in the now "minimised" system, unless you've chosen to create a memory map option which retains the Tanex EPROM your system will be running in Tanbug or TUG bug. The quickest way to check the RAM from here is to boot up Basic and XBUG from disc or ESC and let it do the check. 47103 BYTES FREE should appear as the message header. Note some difficulties may be experienced because the F7F7 error jump will not exist immediately. This will show up only if an error occurs during the boot up procedure e.g. miss keying; simply RESET and start again to recover.

Assuming this initial check appears to be OK then a more comprehensive memory test routine should be performed; the one published in the November 1981 issue of Computing. Today is most suitable. However it should be noted that these types of test do not pick out the periodic bit drop out and only extensive usage in BASIC or similar will show up this problem.

Other Systems

The board relies only upon signals derived directly from the CPU 01, 02, R/W and the address and data buses. Since all these signals will be present in any 6502-6800 system, conversion is. relatively simple.
The only component that needs to be altered in anyway is the PROM which does all the decoding. The essential considerations are those concerning the design of the memory map and, in particular, possible address conflicts. Remember no two components, be they RAM or I/O should have the same address! A suggestion for those with a Microtan but no discs or ESC is to leave the XBUG EPROM resident (FOOOF7FF) and us the tape routines instead.

As so much detail has been given in the general section, this 'How It Works' is going to be fairly brief. During 01 high the main bus buffers IC11 and IC13 are disabled, removing the RAM from the system bus. The refresh row address counter IC1 is connected directly to the RAM ICs (IC3-10) via the enabled buffer IC2. The rising edge of 01 is first buffered by two OR gates and then, via the pulse generator network D1, C1, R1, IC17, it applies a pulse to the REFRESH ENABLE pin (14) of the memory cycle controller IC16. The same rising edge is delayed by D2, C2, R2, IC17, before reaching the CYCLE START pin 13 of IC16. This delay is necessary to satisfy the refresh hold time of the memory cycle controller, and must be maintained at 20 ns minimum. The MCC then responds by pulsing RAS low for a period of time determined by the RC network at pin 12, the row address hold time. The rising edge of RAS is the end of the refresh cycle.

The memory cycle starts with the rising edge of 02 (falling edge of 01) at which point the address bus buffer is enabled directly by 02 and assuming the address is within the memory map, the PROM output 04 is already high. This output combned with 02 produces via IC18 two signals DBE and RE.

DBE enables the data buffer IC13; RE delayed via $03, \mathrm{C} 1, \mathrm{R} 3, \mathrm{IC} 17$ is fed to the CYCLE START input of IC16 the memory cycle controller. This last event causes the MCC to start the actual memory access cycle. The RAS output (pin 7) goes low then, after the programmed RAH time, the R'W line is allowed to pass through and the MUX output then goes low switching over the address multiplexers IC12 and IC14 to the column address. CAS then goes low for a period of time CAS LO. All three outputs RAS, CAS, MUX then go high. This point should coincide with the falling edge of 02 when the data from or to the RAM is latched by either the CPU or the memory depending on the status of the RW line.

The next refresh cycle then occurs on the rising edge of 01 and so the system carries on until the power is removed.

Those who design their own PCBs should take care to heed the memory manufacturer's recommendations on decoupling and PCB layout around those chips. Particular attention should be given to the ground and power supply lines, which effectively surround each chip; the arrangement of interlocking fingers on the typical breadboard is definitely out. Similarly the decoupling of the TTL chips should be comprehensive enough to avoid too much power supply noise, a major culprit of periodic bit drop out. Lastly, the 74LS608 MCC gets hot, but since the lead-frame is directly coupled with both the substrate and the ground pin, a large area of copper around pin 8 should alleviate the problem and improve reliability. With regards to systems employing faster clock rates than 1 MHz , as long as, the RAH, PRECHARGE CAS low times and the refresh hold time for the MCC are satisfied (calculating them from the manufacturer's data sheets), no significant problems should occur.

PARNDON ELECTRONICS LTD. Depl 23.44 Paddock Mead. Harlow, Essex. CM18 7RR. Tel: 027932700	
RESISTORS: $1 / 1 /$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance Bandoliered and colour coded. Full Range 1 RO-10M. $\mathbf{£ 1 . 0 0}$ perhundred mixed (Min 10 pervalue) $\mathbf{£ 8 . 5 0}$ per thousand mixed (Min $\mathbf{5 0}$ per value) Special stock pack 60 values. 10 of each $\mathbf{5 5 . 5 0}$	
1000 V	DIODES: [N4148 $\mathbf{1} 1.60$ per hundred
Full Usi Available - Send SAE ALL PRICES INCLUDE VATT \& POST \& PACKING - NO EXTRAS MIN ORDER - UK £1.00 OUERSEAS $£ 5$ CASH WITH ORDER PL_EASE Same Day Despatch	

PROBLEMS WITH THAT PROJECT?

$$
\text { We will - } \begin{aligned}
& \text { * BUILD } \\
& \text { TEST } \\
& \text { REPAIR }
\end{aligned}
$$

All your Electronics Kits and projects.
Prices from only $£ 5.00$

* Call us now for a quote. *

WEB Logic Systems Ltd 15 High Street, Harpenden, Herts. 05827-62119

FEEL HEALTHIER WITH ZEPHION

Bring fresh clean air into your home with the Zephion Air loniser.

Air free from smoke, dust and other pollutants of modern day living can bring to many the relief of breathing comfortably once again. We are confident that you will be delighted with the Zephion Air loniser, but If you are not entirely satisfied a full money back guarantee is available if items are returned in good condition within 28 days.

BUILD IT YOURSELF!
T0:-
Dateplue Devolopaents
81, Cholaeley rosd
RGI 3LY TEL:- 073467027
ADDRESS \qquad
\qquad

2EPIIION KITS - £24.15p
(Kits include all ports)ZEPIIION AIF TONERS
BUILT AND TESTED. E34.50p
Money immediately cefunded if
Prices include VAT \& postage; allow 14 days for delivery. oataplus he

Soft-sectored floppy dlscs per 10 in plastic library case: 5 inch SSSD £17.00 5 inch SSDD £19.25 5 inch DSDD £21.00 5 Inch DSQD £26.35
8 Inch SSSD £19.25 8 inch SSDD £23.65 8 Inch DSDD £25.50
74LS serles TTL, large stocks at low prices with DIY discounts starting at a mlx of just 25 pleces. Write or 'phone for llst.

Please add 50p post \& packing to orders under £15 and VAT to total. Access \& Visa welcome, 24 hr service on (054 422) 618. Government \& Educatlonal orders welcome, 15 minlmum. Trade accounts operated, 'phone or write for detalls.
Happy Memorles (ETI), Gladestry, Kington,
Herefordshire. HR5 3NY. Tel: (054 422) 618 or 628

READ/WRITE

Switch Troubles

Dear Sir,
I have recently had an unfortunate incident with an EPROM programmer, in which two PIRs and a 7805 regulator were destroyed. The incident happened when throwing a switch (which swapped a certain supply line between 25 V and 5 V). The result was that the programmer went dead, along with the 5 V power supply and the two PIR's. (The 25 V supply was not affected as it was simply two car batteries in series.) The cause was simple, when the switch was half way across when switching over, it joined the 25 V and the 5 V supplies with the aforementioned results.

To be honest I now consider myself lucky that the 5 V power supply was only supplying the programmer, if it supplied the rest of the computer as well then I have no doubts. whatsoever that I would be left with a PCB of fried chips of the silicon sort of course.

To get to the point, I am now very wary about what switch I use for such purposes, and I would advise that others watch out for these type of switches, which should not really be sold.

Yours faithfully,

R. P. D. Mallett,

Sandwich, Kent
P.S: If you don't believe that a firm would make such a switch then try out the enclosed one. (You can keep it!) P.P.S: Thanks for an excellent magazine!

This reader has demonstrated all too effectively that it's important to distinguish between make-before-break and break before-make types of switches! For instance, so far as we are aware, all toggle switches are break-before-make, and a large proportion (but not all) slider switches are make-before-break. In fact, it was a slider switch that was sent to us by the above correspondent.

Induction Loops
 Dear Sir,

I was very impressed by the excellence of the article on 'Inductance Loops' by Vivian Capel in the February 7983 issue of Electronics Today. It is a very clear exposition of the way to design an induction loop for hearing-aid users and to decide on the amplifier and transformers required for most systems.

As manufacturers of every sort of audio transformer for more than 40 years we have been approached on many occasions to give advice on inductor installation, particularly in churches, where frequently there is a limited budget and the volunteer from the congregation who undertakes the work is generally non-technical. In future we propose to refer him to Mr Vivian Capel's article and to co-operate by supplying the most reasonably priced transformers for the project. These can be specially designed without additional cost to fit in with the usual PA system amplifier already installed or separate amplifier if desired. The transformer audio outputs we have encountered within the last year or so are mostly between 20 and 700 watts, although last year in a large theatre up north, we supplied four 700 watt transformers which were used presumably for the stall, circles and gallery areas.
Inductor loops are not new although in connection with deaf aids they have come into prominence of recent years. In about 1934 - nearly 50 years ago- the following pioneering experiments were carried out by the undersigned who was building a new house at the time. It was decided for the purpose of listening to radio to install a continuous twin wire cable behind the wainscottin around every room in the house with sockets provided so that a loudspeaker could be plugged in anywhere and this still exists. Whilst working on inductor devices for HM Services at that time, it occurred to me that by putting my twin wires in parallel and feeding the loops in the rooms from my amplifier with two LS5 valves for output, I was creating an audio magnetic field everywhere. I then took various annealed mumetal rods about $1 / 4$ " diameter and tried them on different search coils which were connected to my very sensitive S.G. Brown A type adjustable gap earphones normally used for my ham radio reception
(my call sign then, and now was G205). Incidentally these phones had conical diaphragms like miniature moving coil speakers which were operated by a cantilever reed.

I found that by wearing the phones connected to the search coil I could sit in any room without being connected by wires and listen to the radio programs. It did occur to me that by having loops upstairs and downstairs I had a Helmholtz coil system which tended to give excellent magnetic field distribution, particularly in the middle of the room. (We use much smaller Helmholtz coils nowadays to determine the screening effect of mumet I can by taking voltages picked up by a search coil in air and then enclosed in the can).

All my experiments were published by me in an article in the Wireless World in the mid 1930's. I remember suggesting that the pick up device in cinemas and theaters could be in the form of a mumetal walking stick or umbrella stick fitted with a search coil, and for the ladies (shades of Queen Victoria) - a mumetal handle with search coil on lorgnette spectacles.

I do not claim to be the originator of induction loops but my amateur pioneering experiments were certainly carried out arid published more than 45 years ago.

Yours truly,
Dr G. A. V. Sowter,
Consultant to Sowter Transformers PO Box 36, Ipswich IP1 2EG

Holophony

Dear E.T.I.
I was interested to read about Mr Zuccarelli and his Holophony in July ETI, and thought you might be interested to hear of my own experiments with the idea.
About 15 years ago, having built a stereo tape recorder, I then got to wondering why two microphones did not give a very clear recording when two ears were obviously adequate for us. The obvious difference seemed to be the ears.

I then conducted experiments at the dead of night under the bedclothes (not having an anechoic chamber!), trying to decide in the dark where the tick of a pocket watch appeared to come from. I discovered that the various lobes on the outer ear give us a means of judging direction of sound. By pressing down and 'blanking off' different bits of the ear I discovered which bit did which - those at the
top tell us about sound above the head, and the bits at the back are to do with front-back direction, and so on.

I then modeled two Plasticine ears and fitted them to omni-directional mic inserts. Fitted to a paper-mache head (filled with cloth , to damp self resonance), the results were quite spectacular - especially using headphones.

I enlisted the help of a few school friends and found that the 'head' gave quite repeatable results. We found we had to put felt 'hair' on the back to aid front-back discrimination.

There seemed to be some variation in perceived results between different people - which seemed to be due to variations in the size of ear, and different hair lengths.

When I was at university, I excitedly announced my findings to my tutor - who was at one time an accomplished recording engineer - He Said: "Oh yes, they did all that research in the '30's at Bell Telephone Labs!" So there I rather left it - but I am sure the principle has possibilities, although there will always be greater or lesser variations between the dimensions of the head and ears used to record and the head and ears which receive the recording, and therefore
some subjective variation of results. As to the idea being new - it seems that truly nothing is.

Yours sincerely
Richard Buswell
Buswell Machine Electronics Skelmersdale

We're now convinced that there is something more to the holophonic technique than we thought when we published Vivian Capel's report. This is due to Dave Bradshaw having had the opportunity of visiting Hugo Zuccarelli and hearing holophonic sound at first hand, through loudspeakers as well as headphones. We're hoping to do a full report on this at some stage in the future, time and space permitting, but in the meanwhile ETI readers might like to try explaining the results of the following experiment, that you can do for yourselves. It takes two people, one of whom we'll call the experimenter, and the other is the subject.

The subject should shut his or her eyes, and firmly jam a finger in one ear, so that all sound is excluded (so far as possible). The experimenter should take a box of matches (or a ring of keys) and shake it, moving it around the subject's head. The subject should be asked to point in the direction from which the sound is coming. Most people with normal hearing (provided their ears aren't blocked up with wax!) should be able to point approximately in the direction of the sound, even when it is on the other side of the head from the open ear. To make the conditions more stringent, you could start shaking the matches from this side, so that there is no possibility of the brain having a reference sound with which to refer the (ear lobe modified) sound to.
If any of our readers have access to an anechoic chamber we'd be most interested in hearing of the results of doing the above experiment in it. We'd also like to hear of anyone who has access to a conventional dummy head recording (Sennheiser did have such a recording, but their UK office was unable to help us).

THE
 victory

\star Preset sounds Piano, Harpsichord, Hawaiian Guitar (with glide), Banjo (with repeat), Accordion

* 16 modern rhythms with superb sounds including handclap
* Ful1 range of 'Easi-Play' features *Custom Programmed ROM

Walking Bass on Lower Manual and Pedals

* Real wood veneer cabinet with American walnut finish
* The only organ with update facilities for synthesizer and
"add-a-chord" unit
* Starter kit from $£ 98.80$ + VAT
\star Full kit $£ 280.54$ + VAT Carriage extra on kits

Send for a demonstration tape today only $£ 1.95$ inclusive. Hear the difference yourself. Full details \& specification on request LEIGHTON ELECTRONIC SERVICES

FREE CAREER BOOKLET

Train for success in Electronics Engineering, T.V. Servicing, Electrical Engineering-or running your own business!

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the fields of electronics, T.V., electrical engineering-now it can be your turn. Whether you are a newcomer to the field or already working in these industries, ICS can provide you with the specialised training so essential to success.

Personal Tuition and 80 Years of Success

The expert and personal guidance by fully qualified tutors, backed by the long ICS record of success, is the key to our outstanding performance in the technical field. You study at the time and pace that suits you best and in your own home.

You study the subjects you enjoy, receive a formal Diploma, and you're ready for that better job, better pay.

TICK THE FREE BOOKLET YOU

WANT AND POST TODAY

ELECTRONICS ENGINEERING

A Diploma Course, recognised by the Institute of Engineers \&-Technicians as meeting all academic standards for application as an Associate.

ELECTRICAL ENGINEERING

A further Diploma Course recognised by the Institute of Engineers \& Technicians, also covering business aspects of electrical contracting.

T.V. \& AUDIO SERVICING

A Diploma Course, training you in all aspects of installing, maintaining and repairing T.V. and Audio equipment, domestic and industrial.

RUNNING YOUR OWN BUSINESS

If running your own electronics, T. V. servicing or electrical business appeals, then this Diploma Course trains. you in the vital business knowledge and techniques you'll need.

NAME.
ADDRESS.

FOR HI-FI \& ELECTRONICS ENTHUSIASTS CONCEPT ELECTRONICS LTD .51 Tollington Road, London N7 6PB

 complete range of products including pre-amp modules, power amp modules. pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with cases), alarm clocks, applance timers, CB amplifiers. tes quality rack mounting cabinets etc. with illustrative pictures now available at the cost of $35 p+25 p p \& p$.Professional rack mounting cabinet

Panel Size Rear Box Pric	
WH (inch) W H D	AL STEE

$19 \times 5 \quad 17 \times 4.5 \times 10 \quad 2754$ STEEL 23.54

19×5	$17 \times 4.5 \times 10$	27.54	23.54
19×4	$17 \times 3.5 \times 10$	25.24	21.24

19×4	$17 \times 3.5 \times 10$	25.24	21.24
19×3.5	$17 \times 3 \times 10$	24.09	20.09

$19 \times 3 \quad 17 \times 2.5 \times 10 \quad 24.09$

| 19×2.5 | $17 \times 2 \times 10$ | 22.94 | 18.94 |
| :--- | :--- | :--- | :--- | :--- |
| 19×6 | $17 \times 5.5 \times 12$ | 28.69 | 24.69 |

$\begin{array}{lllll}19 \times 6 & 17 \times 5.5 \times 12 & 28.69 & 24.69 \\ 19 \times 5 & 17 \times 4.5 \times 12 & 27.54 & 23.54\end{array}$
$\begin{array}{lllll}19 \times 4 & 17 \times 3.5 \times 12 & 25.24 & 21.24 \\ 19 \times 3.5 & 17 \times 3 \times 12 \times 3 \times 9.09 & 20.09\end{array}$
$\begin{array}{lll}19 \times 3.5 & 17 \times 3 \times 12 & 24.0920 .09 \\ 17 \times 3.5 & 15.5 \times 3 \times 921.7917 .79\end{array}$ $\begin{array}{lr}17 \times 3.5 & 15.5 \times 3 \times 921.7917 .79 \\ 17 \times & 15.5 \times 2 \times 920.6418 .64\end{array}$ $\begin{array}{ll}17 \times & 15.5 \times 2 \times 920.6418 .64 \\ 2.5 & 15.5 \times 3.5 \times 1225.24 \\ 21.24\end{array}$ $17 \times 4 \quad 15.5 \times 2.5 \times 1224.0920 .09$ Flejse add $£ 2.50 \mathrm{p} / \mathrm{p}$ per item
\star Wholly made of black anodised aluminium sheets \star Suitable for high quality amp lifers and many other purposes \star Top, side and rear cover removable for access \star Separate front mounting plate \star Heavy gauge front panel is of brushed aluminium finish enhanced with two provessional handles \star With ventilation slits and plastic feet

號 front panel is the same as the aluminium cabinets except the rear bo x is
TA-700 60W power amplifier

Kit $£ 12.50$ Inclusive
Specifications:
Power output:- 60 W rms into 8 ohms BOW rms into 4 ohms Frequency response: $5 \mathrm{~Hz}-1$ 150KHz THD: Less than 0.01\% $8 R$ 1 KHz
TI D: Less than 0.006\% Sensilivity: 1V/60W output
S/N ratio: better than 100 dB
Ass. £18.50 Inclusive . Power supply: ± 30 spatele.fiAped ance: $4-16$ ohms TA-700 is a high quality poweramplifierwith the following advanced features: \star IN put stage is the latest mirror cliccuitiy using two DUAL TRANSISTOR PACKAGES. (dual transistor package is two transistors encapsulated on a single chip of silicon ensuring that they have very closely matched characteristics) \star
Output stage using two high power Darington transistors -DC coupling Output stage using two high power Darington transistors -DC coupling throughout \star Extra low TID (Transient Intermodulation Distortion) \star Each module includes a large 20 extrusion gold anodised heatsink.

electroyse AUTO-ELECTRONIC PRODUCTS

KIIS OR READY BUIIT

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain fu tput even with a near flat battery.
t Is it ECONOMICAL or does it "go offbetween services as the ignition performance deteriortas? Total Energy Discharge gives much more output andmantans it romservice to senice:
- Has it PEAK FRFORNANCE or is it flat at high and low revs. where the gnition output is marginal? Total Energy Discharge gives a.poro pouserful spark from ide to the engines maximumin feven with Beyfinders
* is the PERFORMANCE SMOOTH The more powerfilisp ark of Total Enegy Discharge eliminates the "rear misfires". Whals t an electrunic filter sroothes out the effects of contad bounce etc.
t Do the PLUES and PCINTS always need, chan ging to bring the engine back to its best Totaf Energ Disc arge eliminates contact arcing and etosion by removing the heavy electrical load. The timing stays "spot on" and" the contact condition doesn't affect the performa Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most poweriul on the market - $31 / 2$ times the power of inductive systems: $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts)
SPARK POWER - 140 W , SPARK ENERGY
36 mJ SPARK DURATION - $500 \mu \mathrm{~S}$ ', STORED ENERGY 135 mJ LOADED OUTPUT VOLTAGE

$$
50 \mathrm{pF} \text { load } \quad 38 \mathrm{kV}, \quad 50 \mathrm{pF}+500 \mathrm{k}-26 \mathrm{kV}
$$

We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you really want, we'll still give you a good deal.

- All ELECTRONIZE electronic ignitions feature: EASY FITTING, STANDARDIELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT end DESIGNED IN RELIABILITY (14 years experience and a 3 year guarantee).
* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic toois.
Most NEW CARS already have electronic ignition. Update YOUR CAR

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

t 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
t 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
t 10 SECOND ENTRY DELAY allows owner to dis-arm the. system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.

* INSTANT ALARM OPERATION triggeredby accessories or bonnet/boot opening.
t 30 SECOND DELAY when system is armed allows owner to lock doors etc.
- DISABLES IGNITION SYSTEM when alarm is armed.
t IN KIT FORM it provides a high leval of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.
FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES. SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

Don't Wait Until Its too Late ~

Fit one NOW!

fill in the coupon and send to:

ELECTRONIZE DESIGN Dept E. Magnus Rd. Wilnecote • Tamworth B77 5BY. tel 0827281000
TOTAL ENERGY DISCHARGE (6 or 12 volt negative earth)

Assembled ready to fit
£25. $10 £ 19.95$ D.I.Y. parts kit £15.50 £14.95

TWIN OUTPUT for cars and motor cycles with dual ignitionTwin. Assembled ready to fit . $£ \mathbf{3 6 . 4 5} £ \mathbf{£ 2 9 . 9 5}$ Twin, D.I.Y. parts kit
£2\&.55 £22.95
INDUCTIVE DISCHARGE (12 volt only)
Assembled ready to flt
£15.05 £12.75

CAR ALARM

Assembled ready to fit£37.95
D.I.Y. parts kit
£24.95
I enclose cheque/postal order OR debit my Access/Visa card以 LL11111111111111」
Name
Address

LOOKING FOR COMPONENTS! HARDWARE! CASES! TRY YOUR LOCAL LISTED STOCKIST

AVON
ANNLEY ELECTRO
190 Bedminster Down Road Bedminster Down, Bristol I
$\begin{gathered} \text { Tel: } 0272832622 \\ \text { Open Mon-Sat } 932 \mathrm{am}-6.30 \mathrm{pm} \\ \text { Wed Ilam-2pm } \end{gathered}$
BEDFORDSHIRE
BROADWAY ELECTRONICS 1 The Broadway. Bedford, Tel: 02342136311 Open: 6.days $9-5.300_{1 / 2}$ day Thur Lunch 1.30-2.30 Specialists in components and Acorn computers.
DORSET
D.J. ELECTRONICS 64 Ensbury Park Road, Bournemouth Tel: (0202) 515073 Open Mon-Sat 9am - 6pm
HERTFORDSHIRE
GODDARDS COMPONENTS 110 - Loridon Road, St. Albans Tel: St. Albans 64162 Open, Mon-Sat 9.30am-5.30pm (1/2 day Thur)

LANCASHIRE

ETESON ELECTRONICS

(\quad 158 Lower Green Tel: (0253) 885107

Open: 9.30am-12.30. 1.30-5.30. Closed Wed \&
Sun. Electronic Component Specialists

MERSEYSIDE

190 Bedminster Down Bedminster Down, Bristol I
el: 0272832622
Wed Ilam-2pm

BEDFORDSHIRE
ROADWAY ELECTRONICS The Broadway. Bedford Tel: 02342136311 Lunch 1.30-2.30 Specialists in components

DORSET

D. ELECTRONICS

Bournemouth
Tel: (0202) 515073

HERTFORDSHIRE

GODDARDS COMPONENTS
Tel: St. Albans 64162
(1/2 day Thur)

MYCA ELECTRONICS
2 VICTORIA PL; SEACOMBE FERRY WALLASEY, L44 6NR, Tel: 0518388847
Open Mon-Sat 10am-5.30pm Mail Orderprice list 50p refundable

PROGRESSIVE RADIO
93 Dale Street. Tel 051236098247 Whitechapel Tel 0512365489 Liverpool 2
THEELECTRONICSSPECIALISTS
Open: Tues-Sat 9.30-5.30

W. MIDLANDS/WARCS

: \$ 9 (\% 1 ' 6
CoventrySt KIdderminster
Components, computers, car radios, C.B.s, Amateur Radio
all electronic hobby equipmen
Open: Mon-Sat 9-6, Sun 10-2
Tel: 05622179

NORTHAMPTONSHIRE

* A new company selling electronic components * Mail order and walk round supermarket * Vast stocks and very competitive prices

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002

STAFFORDSHIRE
73
ELECTRONICS SUPPLIES 105 HIGH STREE WOOLSTANTON NEWCASTLE Tel: 0782636904
Open Mon-Wed 9-6, Thurs 9-12 \& 5-7 Fri \& Sat 9-9, Sun 11-2

S. WALES
 STEVE'S ELECTRONIC

 SUPPLY CO. LTD.45 Castle Arcade, Cardiff TEL: 022241905
Open: Mon-Sat 9-5.30
For components to computers

WARWICKSHIRE
 Horizon
 Electronics
 Charlotte St, Rugby. Tel: Rugby 78138 Open 5 Days 10-6 (closed Wed) Wide range of components and R.S. stockists 1983 Mail Order Catalogue 75p

YORKSHIRE

ACE MAILTRONIX LTD. 3A COMMERCIAL STREET Batley. Tel: (0924) 441129 Open: Mon-Fri 9am-5.30pm. (Sat 1pm) Retail and Wholesale
Please include my business details in the next available issue of ELECTRONICS TODAY INTERNATIONAL:
BUSINESS NAME \qquad
ADDRESS
\qquad
\qquad
\qquad
TEL NO \qquad
OPENING HOURS
RETAIL \square WHOLESALE \square MAIL ORDER \square (Please tick)
CONTACT: (FOR OFFICE USE ONLY)

ETI PCB SERVICE

Up till now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymorel Now you can buy your board straight from the designers - us! As of this issue all (non-copyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our prototypes, so you can be sure it's accurate, and will be finished to the high standard you would expect from ETI. In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please notes that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

ALWAYS QUOTE THE PCB CODE WHEN ORDERING PLEASE

	1979	\square	E/8110-2 Sound Bender	2.65
\square	E/794-1 Guitar Effects Unit 2.64	\square	E/8111-1 Voice Over Unit	3.97
\square	E/794-2 Click Eliminator 6.64	\square	E/8111-2 Car Alarm	2.81
\square	E/796-1 Accented Beat Metronome 3.60	\square	E/8111-3 Phone Bell Shifter	2.96
		\square	E/81 12-1 Alcohometer (2 boards)	5.21
	1980	\square	E/8112-3 Bodywork Checker	. 75
\square	E/803-1 Signal Tracer 2.27	\square	E/8112-4 Component Tester	1.49
\square	E/808-1 CMOS Logic Tester. 2.64			
\square	E/808-3 Ultrasound Burglar Alarm , 2.87		1982	
\square	E/8010-1 Cassette Interface 2.93	\square	E/821-1 Parking Timer	2.20
\square	E/8010-2 Fuzz/Sustain Box 3.27	\square	E/821-3 Guitar Tuner (2 boards)	5.55
\square	E/8011-5 RIAA Preamp 1.93	\square	E/822-1 Ripple Monitor	1.92
\square	E/8011-6 Audio Test Oscillator. . . 3.13	\square	E/822-2 Allez Cat Pest Repeller	1.68
\square	E/8012-1 Musical Doorbell 2.80	\square	E/822-5 Moving Magnet Stage.	9
\square	E/8012-3 Four Input Mixer 2.64	\square	E/822-6 Moving Coil Stage.	3.49
		\square	E/823-4 Capacitance Meter (2 Bd)	10.14
	1981	\square	E/824-5 Voltage Monitor	,
\square	E/811-1 LED Tacho 4.13	\square	E/825-1 DV Meg	2.72
\square	E/811-2 Multi-Option Siren 3.20	\square	E/825-2 Analogue PWM	3.06
\square	E/813-1 Universal Timer 3.31	\square	E/825-3 Slot Car Controller	4.51
\square	E/812-1 IR Alarm (4 boards) 6.64	\square	E/826-1 Ion Generator (3 Bds)	. 00
\square	E/812-5 Pulse Generator 3.57	\square	E/826-4 MOSFET Amp Module.	6.78
\square	E/813-1 Engineer's Stethoscope. . . 2.65	\square	E/826-5 Logic Lock	3.06
\square	E/814-2 Drum Machine (2 boards) . 5.60	\square	E/826-6 Digital PWM	3.34
\square	E/814-4 Guitar Note Expander . . . 3.20	\square	E/826-7 Optical Sensor.	1.74
\square	E/816-8 Waa-Phase 1.53	\square	E/826-9 Oscilloscope (4 Boards)	11.60
\square	E/816-9 Alien Attack. 3.48	\square	E/827-7 TV Bargraph Main	56
\square	E/817-1 System AS-Input	\square	E/827-3 TV Bargraph Channel	2.28
	(MM or MC) 2.65	\square	E/827-4 Hotwire	2.63
\square	E/817-2 System A - Preamp . . . 5.17	\square	E/827-5 Bridging Adaptor	2.38
\square	E/817-3 Smart Battery Charger . . . 1.97	\square	E/828-1Playmate (3 Boards).	7.20
\square	E/818-3 Hand Clap Synth 3.97	\square	E/828-4 Kitchen Scales.	. 84
\square	E/818-5 Watchdog Home Secuity	\square	E/8285 Sound Track	. 25
	(2 boards). 5.31	\square	E/829-1 Auto Volume Control	$.1 .84$
\square	E/819-1 Mains Audio Link (3 boards) 7.35	\square	E/829-2 Dual Logic Probe . .	93
\square	E/819-4 Laboratory PSU. 4.53	\square	E/8211-4 Pulse Generator	$\text { . } 5.29$
\square	E/8110-1 Enlarger Timer. 3.40	\square	E/8212-1 ELCB	2.41

E/8212-2 Servo Interface (2 Boards) 5.87
E/8212-4 Spectracolumn. 4.82
1983
\square E/831-1 Fuel Guage 3.00
E/831-2 ZX ADC 2.25
E/831-3 Programmable PSU 3.00
E/833-1 Sound Board 11.16
E/833-2 Alarm Module. 3.15
E/833-3 ZX81 User Graphics 0.93
E/833-4 Logic Probe 2.17
E/834-1 Real Time Clock 7.60
E/834-2 Thermemeter (2 Boards) . . 8.47
E/834-4 Stage Lighting - Main . . 11.94
E/834-5 Stage Lighting - Display. . 3.00
E/835-1 Compressor/Limiter 5.38
E/835-2 Single PSU 2.75
E/835-3 Dual PSU 3.49
E/835-4.2 NDFL Amp 6.85
E/835-5 Balanced Input Preamp . . 2.81
E/835-6 Stage Lighting - Autofade 5.38 \square E/835-7 Stage Lighting - Triac Board 4.12
E/836-1 to 3 PseudoROM (3 Bds) . 3.15
E/836-4 Immersible Heater 2.00
E/837-5 Atom Keypad 4.50
E/837-6 Switched Mode PSU . . . 14.00 E/836-5 Atom Keypad 4.50
\square E/837-1 Flash Sequencer. 2.32
\square E/837-2 Trigger Unit Main Board . . 2.32 \square E/837-3 Trigger Unit Transmitter . . 1.44 \square E/837-4 Switched Mode PSU . . . 14.00 $\square E / 838-1$ Graphic Equaliser. 7.91 $\square E / 838-2$ Servo Fail-Safe (four off) . 2.55 \square E/838-3 Universal EPROM prog. . . 8.38
\square E/839-1 NiCad Charger/Regen . . . 3,28
\square E/839-2 Digger 2.96
口 E/839-3 64K DRAM 12.24
What The PCB Code Means
The first two numerals indicate the year in which the project was published; the third the year. The numeral after the dash uniquely identifies the board within those boards published that month.

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC 2H OEE. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.

Total enclosed $£$.

PCB FOIL PATTERNS

PCB FOIL PATTERNS

Sorry! Due to lack of space, foil patterns for Marvin's interface boards and the NiCaddy will have to wait until next month.

Lineage:

35p per word (minimum 15 words) Semi Display: (minimum $2 \mathbf{c m s}$) $£ 10.00$ per single column centimetre Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

COMPONENTS

MAIDSTONE
ELECTRONIC
COMPONENTS shop. Thyronics.
Control Systems 8,Sandling Road, Maidstone, Kent, Maidstone 675354.

SOLID STATE AC RELAYS 5-32 V.D.C. input P.I.V. 400 V.A.C. 10 amp £5.50; 3 amp $£ 3.50$. Axial fans 24 D.C. brush less, $120 \mathrm{~mm} £ 15.00,80 \mathrm{~mm} £ 13.0024 \mathrm{~V}$ D.C. Drive motors (servo type) $£ 2.00$. Cash with order. Collectric, 28 Leygreen Close, Luton, LU2 OSQ

BURGLAR ALARM EQUIP. MENT: As usedinthetrade. JN Security Centre, 176 Sydenham Road, London SE26 5JZ. 01-778-1111. Showrooms open six days.

For all your classified requirements contact Julie On $01-4371002$ extn. 282

D.I.Y. ELECTRONIC SECURITY SYSTEMS. British Standard, residential and cable free burglar alarms, video, audio and card access, door entry systems, all systems fully guaranteed, vehicle alarms. Send a large sae or visit our showroom. CobraSecuritySystems Ltd 155 Station Aoad, Chingford, London E4 6AG.

VALVES

EXT-GOV VALVE and Semiconductor Equivalents Guide. Contains an up to date fully comprehensive cross reference guide to British and American Service valves and semiconductors, $£ 2.50$ plus pp 30p. Valve List. Valves from 1925 to 1980. Many obsolete types. Modern TV, radio and transmitting valves. Send 60 p (refundable on purchase). Or free with Ex-Govt., Valve Guide. We sell valves of all types. Please send SAE for your requirements. DEPT ETI Myers Electronic Devices, 12/14 Harper Street, Leeds LS2 7EA. Tel: (0532) 452045.

01-437. 1002 EXT 282
Send your requirements to: Julie Bates,
ASP Ltd.,
145 Charing Cross Road, London WC2H OEF

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E 4×9 ", Paralab, Downton, Wiltshire.
MANUALS for test and communications equipment. Send S.A.E. forlist. P. Mack, 14 Court Eight, Hemingway Road, Witham, Essex CM8 2QU.
ETI 1973 TO DATE. Offers around £40. Numerous other odd mags included. Phone $01-6369499$ ($9.30-4.30$).

WIRES AND CABLES

THE SCIENTIFIC WIRE COMPANY 811 FOREST ROAD, LONDON E17 01-5311566

FOR SALE

ELECTRONIC ORGAN KEYBOARDS andotherparts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Dalston Lane, London E8. 01-986 8455.

SHEETMETALFOLDERS 18 " $\times 18 \mathrm{c}$ Steel, 16 G Aluminium bench or vice held. Hobby or Light industrial use. $£ 38$. 01-890-7838. Day/evening.

This column

 is read by over 55,000 potential buyers. Make sure you don't miss them.
Advertise in Classified

Tel: 01-437 1002
Extn. 282

PB2720SOUNDERS. 3 for $£ 1$. 5 mm LEDS with clips, red or green, 10 for $£ 1$. Push to make switches 10 for $£ 1$ P.C.B. containing NE555 and 4011B25p each 100 uf or 10 uf caps 10 for £1. Post/packing 40p. Microtech Industries, Brighouse, HD6 1PD.

FOR SALE. Touch sensitive, polyphonic transcendent DPX Synthesizer. Assembled but notcompletelydebugged. Only £250. (Original kit cost $£ 300$). Phone 02357-3560 after 6pm.

LABORATORY CONTENTS DISPOSAL. Wide variety of test equipment. Suitable individuals, colleges, etc. Tel: $040-$ 3766236.

3 SUPERB POWERSLAVES . 120 Watt case \& sliders/ ع10.85 ... 100 Watt modules/ $\varepsilon 7 \ldots 60+60$. cased 240 volt, selector \& controls/£20.. KIA-8, Canliffe Road, llkley.
P.C.B. MATERIALS. We buy in bulk tokeepyour costs down. Copper clad fibreglass board $12^{\prime \prime} \times 6$ " $£ 0.90$. Etch-resist pen £0.95. Five assorted transfer sheets £2.10. P.C.B. drills $0.8 \mathrm{~mm}, 1.0 \mathrm{~mm}, 1.2 \mathrm{~mm}$ £ 0.75 each. Ferric chloride ($1 / 2 \mid b$) £0.95. Post and Packaging 40p. Deron Electronic Supplies, New Enterprise workshops, Albion Row, Byker, Newcastle upon Tyne, NE6 1LQ.

CLEARANCE SALE of panel meters. Over 1.000 in stock from 50p each. Send 30p for list. Rainbow Electronics, 7 Greenfield Road, Colwyn Bay, Clwyd LL29 8EL. Tel. 0492 2992.

AERIALS

AERIAL BOOSTERS

NEXT TO THE SET FITTINQ B45H/G-UHFTV.Gainaboul20 dbs. B45H/G-UHFTV.Gain about 20dos. Tunable over ine
band. Price 8.70 .
BII-vHFIFM RADO
14dbs. When RADO. Gain about 14abs. When on the off position conPrlce 87.70.
All boosters we make use a PP3/006p/ $6 F 22$ type battery or $8 v$ to 18 V DC. P8P 30 P per order.

Electronic Mallorder Led
82 Bridge St., Ramsbottom, Lancs, BLO日AG.
Tel: (070882) 3036
Accosalisa Cands Welcome, sae leallets

SOFTIIARE APPIICATIONS
 SPY CASSETTE. Spectrum/ ZX81 let's you stop and copy any previously unstoppable tape. Simply press Cfor instant copy. If a Spectrum £3.95. ZX81 version £2.50. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs

SOCIETIES

ALWAYS WELCOME, new members to help support free enterprise in space, promote space exploration and oppose the Moon Treaty. For further information write to: Free Space and Space Settlers Society. (ETI), c/oChíis Forrest, 8 Barton Bridge Close Raglan, Gwent.

Refer to Classified for seeking new members, clubs, etc. Tel: 01-437 1002 Extension 282

KITS

DIGITAL
REPLACEMENT displays, backlights etc. Also reports publications, charts: S.a.e. for full list Profords Conersdrive, Holmergreen Bucks. HP15 6SGD

PRINTED CURCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer now greatly Improved and very much faster. Aerosol cans with full instructions, $£ 2.50$. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper clad fibreglass board approx. 1 mm thick $£ 2.00$ sq. ft. Post/Packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

EQUIPMENT

Printed Circuit Boards to your specification from artwork through to finished board.

QUICK DELIVERY COMPETITIVE PRICES

35 Grosvenor Road Twickenham. Middlesex TEL:01•8911923/1513 Telex,29509

BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft. showrooms or write or phone for your free -catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

RS232 CABLES and D-type connectors at competitive prices. 25-way D connector plate/wallbox for only $£ 5.25$. Write or phone for details. VEP Limited, 5 Hewens Road, Uxbridge UB10.Tel:01-848 7207.

COMPUTERS

CORTEX GOMPUTER with RS232 working fast and powerful. £310. Phone Mr Hill, Midhurst 3632 after 7 pm .

ForA/I ETI Classifieds Tel: 01-437 1002 ext282

WANTED

EXCHANGE ANYTHING related with electronics, computers, music synthesisers, etc. For immaculate Yamaha TT500 Enduro Motorcycle worth £500. Tel: 0774435788.

TURN YOUR SURPLUS tran-sistors, IC's etc into cash. Con- tact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. Tel: 0945 584188. Immediate settlement.

PLANS'N DESIGN

AMAZING ELECTRONICS PLANS. Lasers, super-powered cutting rifle, pistol, light show, ultrasonic force fields, pocket defence weaponry, giant tesla, satellite TV pyrotechnics, 150 more projects .. Catalogue $£ 1$ (refundable) from Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

SERVICES

Promote your
service in this
space by ringing
ETI Classified

CLASSIFIED ADVERTISEMENT - ORDER FORM

Advertise nationally In these columns, to over 100,000 readers for only 35 p per word (minimum charge 15 words)
Simply print your message In the coupon and send with your cheque or postal order made payable to
Argus Specialist Publications Ltd to:
CLASSIFIED DEPT., ELECTRONICS TODAY INTERNATIONAL
145 Charing Cross Rd., London WC2H OEE. Telephone: 01-437 1002
Please indicate classification required.

Name.
Address.
Tel. No. (Day)

ELEGTROVALUE

Understandably
Britain's most popular
and relied upon
suppliers of SEMICONDUCTORS
I.C.S
COMPONENTS COMPUTING EQUIPMENT TOOLS, BOXES, CONNECTORS OUR SUMMER PRICE LIST TELLS ALL Send for your FREE copy by return BETTER PRICES, BETTER CHOICE, BETTER SERVICE
Don't forget to mention Electronics Today Int with your request

Electrovalue Ltd

Head Office, Mail Order Dept and Shop
28c St Judes Road, Englefield Green, Egham Surrey TW20 OHB
Telephone Egham (STD 0784; London 87) 33603; Telex 264475

Manchester branch for personal shoppers
680 Burnage Lane, Burnage, Manchester M19 1NA. Telephone061-432 4345
EV Computing shop-(Member of the Microvalue Group)
700 Burnage Lane, Manchester. Telephone 061-431 4866

MAIL ORDER PROTECTION SCHEME

If you order goods from Mail Order Advertisers In this magazine and pay by post in advance of delivery, this publication will consider you for compensation if the advertiser should become insolvent or bankrupt, provided: 1. You have not received the goods or had your money returned; and
2. You write to the publisher of this publication explaining the position not earlier than 28 days from the day you sent your order and not later than 2 months from that day. Please do not wait until the last moment to Inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insolvent to a limit of $£ 1,800$ per annum for any one advertiser, so affected, and up to $£ 5,400$ p.a. in respect of all insolvent advertisers. Claims may be paid for higher amounts, or when the above procedures have not been complied with, at the discretion of this publication, but we do not guarantee to do so in 'view of the need to set some limit to this commitment and to learn quickly of reader's difficulties.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example. payments made in response to catalogues. etc, received as a result of answering such advertisements):

CLASSIFIED ADVERTISEMENTS ARE EXCLUDED

E.T.I. SEPTEMBER 83 ADVERTISERS INDEX

Aitken Bros 53
Ambit International 16
Armon Electronics 54
Audio Electronics 29
Bicc Vero 57
BK Electronics 10
Black Star 30
B.N.R.S 58
Bradley Marshall 14
Branime Marketing 54
Clef Products 50
Concept Electronics 74
Cricklewood Electroncis 44,45
Crimson Elektrik 50
Dataplus Development 71
Display Electronics 26
Greenbank Electronics 54
Happy Memories 71
Hawk Electronics 58
Hazzlewood Electronics 58
Horizon Electronics 71
ICS 74
ILP ,63
Kelan Engineering 57
L.E.M. Services 50
Magenta Electronics 58
Maplin OBC
Marco Trading 71
Mawson Assocs. 58
Midwich 8
Musicraft 58
Pantechnic 29
Parndon Electronics 71
Powertran BC
Rapid Electronics 12
Service Trading 53
Sparkrite 40
Stuarts of Reading 74
Technomatic 6,7
TK Electronics 25
Watford Electronics 4,5
W.E.B.Logic SystemsTestLtd 71

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

Hebot II is a turtle-type robot which takes programming Out of the two dimensional world of the VDU into the real three dimensional world Given a DC supply of $9-15 \mathrm{~V}$ it can perform a bewildering number of moves under computer control - forwards, backwards, left and right - with each wheel independently controlled it has blinking eyes. bleeps with a choice of two tones and has a solenoid operated pen to chart its progress Touch sensors coupled to ts shell return data, about its environment. to the computer for it to calculate evasive or exploratory action. Hebot II connects directly to an I/O port or alternatively with the universal interface board to the expansion bus of a 2×81 or other computer.

Up to the nano-second hard, firm and softwar Jevelopments embodied in a complete system. ega Hertz 16 bit CPU; 64K upwardly compatibl
DRAM; separate 16 K video DRAM and 24 K TI Powe Basic with overwrite. Supports up to four Disc drives o mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications.
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along \& h NOS C/PM.

- fardware components available separately with details in Nov, Dec, and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered I/O to free machine whilst

Robotic experience is becoming as essential a subject as co puting MICROGRASP provides the lowest cost means of acquiring that experience but despite its ultra low price the robot has considerable versatility There are 5 axes each using a servo motor and there is feedback from each of the arm movements. Control is by any computer with an expansion bus - the ZX81 being particularly suitable Servoing is achieved with hardware on the interface board to keep programming simple and the robot is operated under BASIC commands with no computer specific software required. The interface board is memory mapped using only 64 bytes at any of 1024 switch selectable locations.
MICROGRASP robot kit with power supply Universal computer interface board kit 23 way edge connector
2X81 peripheral/RAM Pack splitter board
$£ 125.00$
$£ 48.50$ $£ 48.50$ £3.00 MICROGRASP, INTERFACE BOARD AND ZX81
printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles, in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64K computer kit £295.00 + VAT Complete 16 bit 64 K computer ready built $£ 395.00$ +VAT.
op of the range is the Genesis P102 which has dual speed control, continuous servo operation and double acting c. nders for increased torque on the wrist and arm rotation ons. The microprocessor based control system has addinal memory, position interrogation via the RS232C interace increasing the versatility of computer control and inputs are provided for machine tool interfacing.
e a s system READY BUILT $\quad £ 1950.00$ (Electronics Today International December issue on CORTEX

Example prices and specifications

Genesis S101
Base: $19.5 \times 11 \times 75$ Arm lift: $66^{\prime \prime}$

Weight: 29 Kg

4 axis model in kit form £390 5 axis model in kit form 5 axis model Ready Built
Genesis P101
Genesis P10
Base: $19.5^{\prime \prime} \times$
Lifting capacity. $\times 7.5$
Arm lengths between axte Weight 34 Kg
4 axis model in kit form $£ 495$ 6 axis mode in kit form $£ 595$ 6 axis model Ready Bull Complete Systems as shown in Photograph above
Genesis S101
4 axis system in kit form $£ 635.50$ 5 axis system in kit form $£ 695.00$ 5 axis system Ready Built $£ 1355$ Genesis P101
4 axis system in kit form $£ 742.00$ 6 axis system in kit form $£ 852.00$ 6 axis system Ready Built $£ 1525$ All prices exclusive of VAT

GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND CORTEX COMPUTER

With prices starting below $£ 1.000$ the Genesis range of general purpose robots provide a first rate introduction to robotics for both education and industry Each has a self-contained hydraulic power source. which enables loads of several pounds to be smoothly handled. The system operated from a single phase 240 or 120 V AC supply or a 12 VDC supply. The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous operation. Position control is achieved by means of a closed-loop feedback system based around a dedicated microprocessor. Movement sequences can be entered, stored and replayed by use of a hand held controller. alternatıvely the systems can also be interfaced to an external computer via a standard RS 232C link.

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS

MAME ALI THE PIGHT connections

 with a MAPLN MODEM KITExchange programs with friends, leave or read messages from the various Billboard services. talk to computer bureaux, or place orders and check stock levels on Maplin's Cashtel service. A Maplin Modem will bring a whole new world to your computer and vastly increase its potential.
Now you can exchange data with any other computer using a 300 baud European standard (CCITT) modem and because the Maplin Modem uses this standard, you could talk to any one of tens of thousands of existing users.
Some computers need an interface and we have kits for the ZX81, VIC20/Commodore 64, Dragon and shortly Spectrum and Atari whilst the BBC needs only a short program which is listed in Project; Book 8. A Maplin Modem will add a new dimension to your hobby.
Order As LW99H (Modem Kit) excluding case. Price £39.95.
YK62S (Modem Case). Price $£ 9.95$
Full construction details in Projects Book 5.

NEW MAPLIN STORE OPENS IN MANCHESTER

Manchester's Oxford Road station and about five minutes walk from the city centre. There is excellent parking on meters in the adjacent side roads and we're about five minutes drive straight in from junction 10 on the M63 at the start of the M56. Call in and see us soon!

Maplin's Fantastic Projects

Full details in our project books. Price 70p each.
In Book 1 (XA01 B) 120Wrms MOSFET Combo-Amplifier: Universal Timer with 18 program times and 4 outputs : Temperature Gauge : Six Vero Projects.
In Book 2 (XA02C) Home Security System : Train Controller for 14 trains on one circuit : Stopwatch with multiple modes : Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics : Stereo 25W MOSFET Amplifier : Doppler Radar Intruder Detector : Remote Control for Train Controller.
In Book 4 (XAO4E) Telephone Exchange for 16 extensions : Frequency Counter 10 Hz to 600 MHz : Ultrasonic Intruder Detector : $1 / 0$ Port for ZX81 Car Burglar Alarm: Remote Control for 25W Stereo Amplifier.

LEARN ROBOTICS

Great Projects
 From E\&MM

Our new book "Best of E\&MM Projects Vol. 1" brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include Harmony Generator, Guitar Tuner, Hexadrum. Syntom, Auto Swell, Partylite, Car Aerial Booster, MOSFET Amp and other musical, hi-fi and car projects.

Order As XH61R. Price $£ 1.00$.

[^0]: Nothing to cause any problems here. PCB through PCB service page, case a la carte (to choice), semiconductors all readily available -when was the last time we published such a trouble-free project?

[^1]: Not much to say here really. The LED, switch and resistor combination on four inputs to each IC provides a low when the switch is open and a high when it is closed. Also when the switch is closed the LED will light showing that a high has been selected for that channel.

 When the logic input pattern on the input pins matches that on the switches the output from each IC will change state and thus trigger a scope connected to the final output. The outputs from one IC will directly drive the cascade inputs of another and so extend the width of the comparison. The inputs from the test circuit are provided with pull up resistors so any unused input will appear as a high and this must be set on the cor-responding switch. Cl and C2 are pre-sent to decouple the supply rails. R1 is a pull up for the "=" cascade input.

