AN ARGUS SPECIALIST PUBLICATION

RITTRMTIOTM!
 CETA PGRMANENT WAVEY

 Jse Your TV As A Storage ScopeMULTIPLE
FLASH UNTFOR PHOTOCRAPHERS PORTABLE INDUGTION LOOP MICROCOMPUTER OUTPUT DFIVER

.AUDIO....COMPUTING....MUSIC....RADIO....ROBOTICS..

DELIVERY on all orders over £100 (UK mainland
only) Add just 22.50 only) Addjust $£ 2.50$
on lower price orders DJ90 Stereo Mixer - this is a really versatile new mixer that enabies the constructor DJ to produce a professional performance every time There are two stereo inputs for magnetic cartridges, a stereo auxiliary input arid mke input. Other 'plus' features are aulopanning for fast or slow slider controls. multi-mixing, ducking, interrup:, input modulation, in shon everything The
whole works - AND - under £100 complete Completekit£97.50 + VAT

TRANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 ' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, build it - play it! You will know you have made the right choice. Complete kit $£ 165.00+$ VAT

This versatile modular mixer. leatured as a constructional article in Practical Electronics can be built up to a maximum of 24 inouts. 4 outputs and an auxiliary channel. Each input channel has Mic and Line inputs variable gain, bass and treble controls anc a parametric middle frequency equalize' There are send and return jacks, auxiliary, pan and fader controls and output and group switching. The output channels have PP'M displays and record and studio outputs. The auxiliary channel also has a PPM display and there is a headphone monitor jack and a tuilt-in talk-back microphone. The mixer madules plug into base units each of which takes up to 6 channels. To elimina:e hum. the power supply is in a separate cabinet.

KIT PRICES

Input channel
Oulput channet Auxiliary channel Blank Pane!
£19.90 Base unit and wooden front E18.50 Pair of mahogany end cheeks £22.50 Power Supply and cabinet £3.00

All prices are VAT exclusive

 phonic synthesiser with outstandong design characterisics and versatility and performance 10 maten.Complete kit $£ 275.00$ plus VAT (single voice)

Dave Bradshaw: Editor
Peter Green: Deputy Editor
Phil Walker: Project Editor
Jerry Fowler: Technical Illusirator
David Kitchener: Advertisement
Manager
Joanne James: Assistant
Advertisement Manager
Ron Harris B.Sc: Managing Editor
T.J. Connell: Managing Director PUBLISHED BY
Argus Specialist Publications Ltd. 145 Charing Cross Road, London WC2H OEE DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd
12-18 Paul Street, London EC2A 4/S
(British Isles)
PRINTED BY
QB Limited. Colchester
COVERS PRIITEE BY
Alabaster Passmore

OVERSEAS AUSTRALIA - Roger Harrison

EDITIONS
and their
EDITORS CANADA - Halvor Moorshead GERMANY - Udo Wittig

Member of the Audit Bureau
of Circulation
Electronics Todav is normally published on the first Fp day in the momh preceding cover date The contents of this publica:ion meluding all arricles designs, plans deawings and programs and all copyright and other in tellectual property rights therein belong to Argus Specialist Publications Limited All rights conferred by the Lawr of Copyright and other intellectual property rights and by virtue of international copyright conven Publications Limited dnd any reproducrion requres the prior written consent of the Company. (4) 1983 Argus Specialist Publications Led All reasonable care is taken in the preparation of the magazine contents, bu the publishers cannot be held legally responsible for errors. Where mistabes do occur, a correction will nor mally be published as soon as possible afterwards. All prices and data contained in advertisements are as cepted by us ir gooc faith as correct at time of gomg to press. Neither the actertisers nor the publishers can be price or availability which may occur aftep the publica fion has closec for fress
\square Subscription Rates. UK £13.15including postage. Airmal and other rates upon ap plication to ETI Subscriptions Department 513 Iondon Road, Thornton Heath, Surrey CR4 6AR.

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST
We've waded through several tons of waste paper (ie, press releases) to bring you this month's news.

BUYER'S GUIDE TO 'SCOPES 34
If you're not inclined to build our TeleScope project, but you still want to know what's really going on in your circuits, then this guide could be handy.

TECH TIPS SPECIAL
42
Eight pages of pure genius from the country's (possibly the world's) largest design team - yourselves!

CONFIGURATIONS 57
Here's Ian Sinclair's swansong for this popular series, devoted to simple logic gates, AND, OR, and NOT.

AUDIOPHILE

76
Vivian Capel guest-writes our regular (well nearly regular) audio spot to tell us about Holophony. Holoadawhat? You'd better see what he has to say, hadn't you?

READ/ $\overline{\text { WRITE }}$
FEVAs and the Real Time Clock have both received a fair amount of your attention of late.

PROJECTS

TELESCOPE

In true ETI tradition, a fabulous project with an appalling pun for a name (TELEvision oscilloSCOPE, geddit?).

OUTPUT DRIVER
 .28

In our continued campaign against microcomputers that just sit there and do nothing (or, even worse, play silly games), a project to get your micro to flex its muscles.

PORTABLE INDUCTION LOOP . . . 52
Vivian Capel's article on Induction Loops in February raised quite a lot of interest, so here's a practical design.

FLASH SEQUENCER
63
Ever wondered what equipment photographers use to get multiple exposures? Here's ETI's answer, in hardware, just as you'd expect.

FLASH TRIGGER
70
This can be-used on its own or with the Flash Sequencer, as you please; it does exactly what it says - triggers flashes, from sound or light, or from an infra-red beam

SWITCHED MODE PSU
Constructional details of the switched mode PSU commenced last month.

ALL DEVICES FULLY GUARANTEED. SEND CHEQUE, P.O.S, CASH, BANK DRAFT EDUCATIONAL ESTABLISHMENTS OFFICIAL ORDERS WELCOME. P\&P ADD 60 p TO ALL CASH ORDERS. OVERSEAS ORDERS POSTAGE AT COST.

VAT

Enport ofder: no VAT. Applicable to U.K. Customert onty Unieas ateted otherwise. Nosiest Underground/BR Stetion: Wettord High Street.

POLYESTER RADIAL LEAO CAPACITORS: ZOV $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}$ 60; $33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}$, $100 \mathrm{n} 7 \mathrm{7n}, 150 \mathrm{n}, 220 \mathrm{n}$ 100; 330n 470n 13p: 680n 19p: Iu 23p; 1u5 40p; $2 u^{2}$ 40		FEED.THMUU CAPACITORS $1000 \mathrm{pF} / 450 \mathrm{~V}$	p
Antalum bead capacitoas	POTENTIOMETERS: Rolary, Carbon. Track 0.25 W Log \& Lin values.		
3VV O IuF, 0.22, 0.33 169: 0.47 , 0.68.			
1.0.1.5 19p: 22.3 3 19p: 17.6 .8 zmp	500n. 1K2 ¿ 2 KO LLerasi oniyl Single Gang		
10 zap. lev 22.3 .3 16p: 4.7. 6.8, 10			
14p: 15.34p: 22 30p: 33. 47 00p: 100	$5 \mathrm{Kn} 2 \mathrm{2ma}$ Single Gang Log ${ }^{\text {Lin }}$		
7p: 10V: 15, 22, 22p: 33, 47 Tom:	5KD-2M0 Smple Gang O/P Swich		
	5K0-2Mn Doubm Go		
100 V : InF. 2. A AnF 10 go: 15nF. 22	$\begin{aligned} & \text { SLIOERI } \\ & 0.25 W \end{aligned}$	$\text { es } 60 \mathrm{~m}$	

50 V . 470 nF 12 s	5k-5001 singo garo
CERAMIC CAPACITORS SOV Range 0.5 pF to 10 nF 4p. $15 \mathrm{nF}, 22 \mathrm{nF}$	
$\begin{aligned} & 33 n \mathrm{n} \\ & 200 \mathrm{nF} / 6 \mathrm{~V} 0 \mathrm{nF} . \end{aligned} \quad 6 \mathrm{D} .100 \mathrm{nF} / 30 \mathrm{~V} 70 .$	PAESET POTENTIOMETEAS
	Vertical or Horizonlal 70
OOLYSTYRENE CAPACITONS	0.25 W 100 a $3-3 \mathrm{M}$ horlz targer 12p

SILVER MaICA (Vatues in pFi	
2. 3.3. 4.7. 6.8.8.2. 10.	12. 15.18
22, 27. 33, 39, 47. 50. 56	68.75. 82
85, 100, 120, 150, 180pF	16p each
200. 220, 250. 270. 300.	330. 360
390.470 .800 .800 .820	21p each
1000 1200. 1800. 2200	30 peach
3300. 4700 pF	eopeach

nesistons

 2\% Mowif Firm

 voe not mixed
\square

OIODES

BRIDGE
ECTIFIERS

BA102
B8105B
88106
881098

TRANSISTORS

-••

THE "MARVIN" MICROCONTROLLER

The microprocessor is so strongly identified with the microcomputer that most people forget that it started life as an industrial control device. We haven't forgotten, though: next month we present a multi-purpose 280 -based control computer that you can use for a wide variety of domestic, laboratory or industrial control functions. The system is modular, consisting of an MPU board and two types of interface board, and a variety of control boards will be available.

I think you should know I'm feeling very depressed

GRAPHIC EQUALISER

The circuit diagram in the March '83 Audiophile has led to so much interest that we've decided to publish it as a full project. The unit is a very high quality device offering one-third octave
intervals, as required for professional applications, and an impressive noise and distortion performance. For reasons that will be obvious when vou see the size of the thing, this is a mono unit; two are required for stereo.

EPROM PROGRAMMER

Hands up all those readers who'd prefer the convenience of programs stored in EPROM, but are put off by the sheer inconvenience caused by erasure and programming difficulties. Next month's ETI will feature a project that is cheap to build and capable of blowing every single-supply EPROM in the 27 -and 25 -series up to and including 256 K bit devices. The appropriate driving software for 6502 -based computers will also be provided.

LOOK OUT FOR THE AUGUST ISSUE ON SALE JULY 1st

Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.

 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161. TELEX: 914977 CRIKEL G

Phono, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{mr}$. Bulgin USA. I.E.C. KNOBS: Plastic, Aluminium, Anodised, Collet, Pointer,
SWITCHES: Toggle, Biased, Rocker, Rotany, Slide, Dil, Push, METERS: CD Analogue Test and Panel, TOOLS: Pliers, Cutters, Siripoers, Trimmers, Cable METERS: LCD, Analogue Test and DEPTS ETC WELCOME OVERSEAS Same day OFFICIAL ORDERS FROM SCHOOLS GOVT CRICKLEWOOD ELECTR DISCOUNTS TEL: 01.452 0161, Tolex $\subseteq 14977$
or immediate service; no extra charge, no minimum orde
THE TRADITIONAL WAY Send cho
accepted (no coins please). All in stock items shipped same day
THE IDEAL WAY Call in and collect. We are on the main Edoware Ra (A5) just
rapies Corner and approx 3 miles from Marble Arch
POST: PACKING 6 INSURANCE Standard orders except books. VAT not chargeable abroad

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS
325 EDGWARE ROAD, LONDON W2 1BN Tel: 01-723-4242 Tlx: 295441

No	Modules	
2580	CE 608	40W Mono
2581	CE1004	100W 4 Mono
2582	CE1008	100w 8 Mono
2583	CE1704	170W 4 Mono
2584	CE1708	170W8 Mono
2585	CE3004	300W 4 Mono
2585a	FE 908	90W FET. MONO
2585b	FE1704	170W FET MONO
2585c	801	Bridge Unit for Modules
2608	CPR $1 \times$	Pre.Amp Module

WE ALSO STOCK ALL THE POWER SUPPLIES TO DRIVE THESE MODULES

PS. THESE KITS AND MODULES ARE
EXCLUSIVE OF VAT

No		Price	
2615	Complete Pre-Amp Kit	CK1010	$£ 80.00$
2616	Complete 40W Stereo Amp Kit	CK1040	$£ 105.00$
2616 amplete 80W Slereo Amp Kit	CK1080	$£ 116.00$	
2617	Complete 100W Stereo Amp Kit	CK1100	$£ 131.00$
2618	Add on Moving Coil Kit	MC12K	$£ 21.74$
2619	Pre-Amp Power Supply Kit	PSK	$£ 17.39$
TS7070 Thermal Switch			
HS5050mm Heatsink			
HS100 100 mm Heatsink			
14.95150 mm Heatsink			

PLEASE NOTE ALL CRIMSON MODULES ARE GUARAPTEED FOR 2 YEARS

VELLEMAN KITS

No	Description	Price	
K610	Mono UU using LEDS.	10.05	WE STOCK A WIDE
K1798	Stereo UU using LEDS	18.77	RANGE OF BOXES
K1874	Running Light Kit	14.95	TO HOUSE THESE
K2571	Light Computerwith EPROM	36.23	KITS IN. FROM
K2569	Three Tone Chime	8.57	VERY SMALL TO
K2575	Microprocessor Doorbell 25 funes	15.53	VERY LAFGE
K2544	Complex Sound Generator	10.26	19"MAXIMUM
K2032	Digital Panel Meter	16.61	
K2557	Digital Thermometer	26.57	
K2545	50Hz Crystal Time Base	12.00	PS. ALL KITS
K615	High Precision Stopwatch	50.29	INCLUDE VAT

Some are easy some are hard

No

K2543 Transistor Ignition
$K 2555$ Digital Freq Counter for Receivers
K2566 3 Channel Coloured Light Organ
K2572 Universal Stereo Pre-Amplifier
K2574 Universal 4 Digit U/D counter with memory
K2577 Electric Motor Speed Control
K2579 Electric Motor Speed Contr
$\begin{array}{ll}K 2579 & \text { Universal Statt/Stop } \\ \text { K2583 Heating Controller }\end{array}$
$\begin{array}{ll}K 1682 & 81.45\end{array}$
K1682 Microprocessor Universal Timer (no case)
K2580 Electronic Power Switch Dimmer
Kz551 Central Alarm Unit
11.16
45.40
19.19
6.56
44.72
11.17

61.72
61.72
1237

1548

TELETEXT KIT

This unit will make your TV fully remote control (infra-red) and bring you closer to the amazing world of teletext. The kit canalso be updated to incorporate full Prestel, and with a keyboard this can give you full message facillies for ordering foods or sending and receiving messages (E.G.) Booklng your Holidays
With a microcomputer as an alternative keyboard the world is even greater adding bulk updating to viewdata computers an recelifing telesoltware for implementation to any
Even without the Prestel option. Telesoftware from the Teletext pages freel
The full features of Teletext, including subtitles are all included n the basic kit.
An attractive styllsh case is available to complement the finished kit.
Basic: Teletext Kit (no box) £130 + VAT P/P £2.50 with box $£ 144.95$ + VAT P/P $£ 3.00$
box by itself $£ 14.95+$ VAT P/P $75 p$

PRESTEL ADAPTOR

A Prestel microcomputeradaptorto givelull autodialing to y our micro computer All the usual Prestel facilities are added via this unit, plus many more, and, can operate to any viewdata computer
You can shop from home, bank transmitt messages and receive software, which means that the uses your micro can be put to are limitless.
The unit is not restricted to just the UK,for at least 28 countries use the Prestel viewdata format, so you can also mail-order from anywhere. The Prestel unit is sultable for most micro computers even the ZX-81, so at the push of a button, the echnology of tomorrow is in your home today

ANTEX

Soldering Irons
XS25 25W 5.46+
CX $\begin{array}{lll}\text { C "iron" } & 15 \mathrm{~W} & 5.30+ \\ \text { CCN "ceramic" } & 15 \mathrm{~W} & 5.00+\end{array}$ CCN "ceramic" $15 \mathrm{~W} \quad 5.00+$ Wide range of tits and elements in slock now.
Soldering iron stand 2.40
We stock m
use or fine.

	ORYX
Iso-tip Cordless Iron	$31 \cdot 90+$
Miniature low voltage	
soldering station	$13.95+$
Oryx50 50w temp controlled 15.50	
Oryx super 30 5.90+	
All irons are 240 V mains. Earth	
Leakage current is less than 3 ua.	
The temperature controlled iron can be controlled within $\pm 2 \%$ tempera-	

COMPONENTS EDGE CONNECTORS

Device	Price
Z80A	3.20
Z80A PIO	3.20
Z80A CTC	3.20
6800	6.50
6810	3.00
6821	4.25
6502 CPU	7.50
$2114(200 \mathrm{~ns})$	1.80
2708	3.00
2716	3.20
2732	7.50
2532	3.50
2764 (200ns)	11.00
ADCO816 (8 bit)	14.90

Spectrum

Spectrum E.
VIC 20 E.C.
3.78

Z80A
Z80A PIO
50 Way E.C
18 Way E.C
64 Way E.C.Plug
64 Way EC. Socket $\quad 2.50$
31 Way E C. Plug $\quad 4.80$
31 Way E. C. Plug 2.00
We slock a very wide range of opto-devices. Irom Intra-Red to LED's to Opto-Couplers
Check us out for competitive prices and helpful service.

We also stock 74 series 74LS, C mos, transistors, capacitors, resistors, LED's, zeners, diodes, lack plugs. mains plugs XLR plugs. cannon plugs, arrow switches BNC connectors, reducers, photolak developer. PC board, sensitive \& normal, boxes, wire culters, strip pers, Edge connectors, pots, batteries, digital pulsers, logic probes. proto-boards, vero board
This is just a small sample of what we stock, if you like to see more send E 1.00 to us for our NEW 1983 CATALOGUE

BOOKS

- New Boohs

Please Note. Books are VAT exempt but add $£ 1.00$ to cover P/P

The 9900 Family Data Book
10.00

The Opto-Electronics Data Book 4.00 The Blpolar Microcomputer Databook 4.50 The Interface Circuits Data Book The TTL Data Book MDS Mempry Data Book The Linear Control Circuits Data Book
The Voltage Regulator Data Book
The Power semiconductor Data Book
-TTI Qata Book Volume I
-TTI Data Book Volume II
Towers Transistor Equivalent
Towers Digital Selector
10 Selector $\quad 750$

Why not try our mall order service, It's fast and efflcient. We
take Barclay, Access, Am Exp, Diners or Cheque
Cheques made payable to Bradley Marshall Ltd.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIG EST

Hyconomiser

Would all those readers who've rung us, sent telexes, telegrams, telemessages, letters, carrier pidgeons and so on, please note that you can get information on dealers in your area from the manufacturers, who are: Atwell Construction Ltd, Station Road, Wrington, Avon (telephone Bristel 719441). (Yes, we know, we shculd have said so in the first place . . .)

Static RAM Lookalike

ntegrated EAMs offering all the advantages of a static RAM but with the higher circuit density and lower cost on dynamic RAMS are shortly to be available from

Government Unveils Cable Plans

W/ork on advanced cable systems in up to 12 areas could start this year under proposals published recently by the Government in the White Paper,
"The Development of Cable Systems and Serwices".

The White Paper, presented to Parliament jointly by the Home Secretary and the Secretary of State for Iedustry, is a comprehensive statement of Government policy acruss the range of cable issues. In the broadcasting field, it sets cut the Government's reponse to the Hunt Report, published last October.

In outline, the broad strategy is:

Jermyn.
The Intel 2186 is a 64 K IRAM organised as an $8 \mathrm{~K} \times 8$ device but having the major advantage that it requires no external refreshing circuitry. All the DRAM refresh control circuitry is integrated on the chip allowing the user to treat the IRAM as a purely static device yet with all the advantages and performance of Intel's high volume HMOS dynamic RAM production technology.

Incorporating many systems oriented features such as low power dissipation, automatic initialisation, extended cycle operation and two-line bus control to eliminate bus contention, the 2186 is particularly suited to microprocessor systems applications where higher integration yet lower cost is required.

For further information contact Jermyn Distribution, Vestry Estate, Sevenoaks, Kent.

- Cable investment should be privately financed and marketled.
- Regulation should be as light as possible to allow the development of a wide range of services and facilities.
- The regulatory framework should be flexible so that it can adapt as technology changes. - Key safeguards are needed to ensure that existing broadcasting and telecommunications services are not impoverished and to take account of the fact that cable services will be directly available in the home.

Legislation will be introduced to establish a new Cable Authority to award franchises, supervise programme services and promote cable development. If this then goes ahead as the White Paper envisages, the Government will be prepared to authorise up to 12 pilot cable systems each covering

Man Overboard!

W e're sad to report that Peter Green will be leaving the ETI iold, taking his hideous puns with him. He won't be going far, though, just across the corridor in fact, to the Computing Toady, whoops, I mean Today, office, where he'll be assuming the editor's chair (and funny little
peaked cap too). The things some people will do for a bigger desk

Unfortunately, until we find a successor to Peter, our ability to answer technical enquiries will be severely restricted, so we'd appreciate it if you could try and sort out the problem yourself before writing. If you do write, it would help enormously if you could follow the guidelines given our Reader Services page, page 86.

The ex-deputy editor unwinds after a hard day battling against broken typewriters, Space Invaders and colour-blind artists.
a maximum of about 100,000 homes. The systems will have to offer a sositive contribution to advanced technology, comprehensive programme services, and interactive capability. In the interim, the pilot projects will be set up under existing legislation. The Department of Industry will assess technological and telecommunications proposals, while programme services will requare Home Office approval.

Existing relay operators will be

First Come . . .

Competition for our attention can be pretty hot, you know, and PR companies sometimes resort to dirty tricks, like, having noticed that ETI has an all male staff, sending us pictures of scantily clad women adorning their products. They really should know better, because here, at ETI, it's the naked truth about electronics we are after.

What has provoked this little
allowed to offer new programme services over their systems for a transitional period, pending the installation of advanced technology. (Most relay services are limited to 4 or 6 channels.) Where necessary, the normal "must carry" rule - under which they have to relay current broadcast services - will be relaxed if customers are provided with alternative means of receiving BBC and IBA channels at no extra cost.
diatribe is the near simultaneous announcement of two companies that they were the first to introduce legal cordless telephones.

We think that the fact that Fidelity (left) look so relaxed probably means it was them, and that's also the reason why British Telecom didn't send us a photo, for fear of giving the game away with their false smiles...

No, we're not going to give you any addresses - both phones will be very widely available.

Shorts

- Non-volatility in Sinclair memory has is ajvantages, or so think Cambridge Microelectronics Ltd, because they've just released the CRAMIC-81 upon an unsuspecting world. For $£ 79.95$ (plus VAT, but including p\&p), you can have 16K of long-life (10 years) of memory retention on your 2X81 . . . they must have seen our PseudoROM project. If you want complete permanance, Cambridge Microelectronics are also offering an EPROM programmer for the '81, called PROMER-81. Cambridge Microelectronics Ltd may be found at One Mi ton Road, Cambridge C84 1YU.
- Looking for a way to get rich? The National Computing Centre, Oxford Road, manchester Mi 7ED, have launched a management training package entitled 'Profits from Mirrochips'. Mind you, you've got to be fairly well off to start oft with, as the package will cost you a cool $£ 800$. - Ferranti have extended their range of microphone amplifier ICs by introducing three new products, the Z Z 475 E , ZN476E and ZN477E, designed for piezoelectric, moving coil and simple electret traisducers. Ferranti Electronics Ltd, Fields New Road, Chadderton, Oldiam, Lancashire OL9 8NP.
- They've been busy at ILP, as they've recertly aunched a new range of regulated power supply modules, as well as a new range of modular power units. Do they ever sleep? ILP Electronics Ltd, Graham Bell touse, Roper Close, Canterbury, Ként CI2 7EP.
- NEC Electronics (UK) Lid, of 116 Stevenson Street, New Stevenson. Motherwell MLI HLT have launched a new 1 f (yes, one farad) super-cap, specifically for on-board memory power backup. Rated at 5 V DC, the unit occupies less than 1 cubic inch in volume.
- Why buy when you can hire? Aughton Automation Ltd have written a brochure on their sange of computers, peripherals and robots that you can hire. Aughton Hire, Woodward Road, Kirkby Industrial Estate, Kirkby, Liverpool 133 TUZ.
- OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants SO5 4AA have launched a new desoldering station, the SA-4, for production, prototype or laboratory use.
- Also from OK, a desolder pump that has a bronze alloy tip in order to avoid CMOS static problems.
- Litesold also have a neu product, the MG self-feeding soldering gun, which allows the option of using solder from a benchmounted reel or from a reel mounted on the gun itself. Light Soldering Develoments Lid, Spencer Place, 97/99 Gloucester Road, Croydon, CR0 2DN.
- Enclosure Technology of Unit C, Southampton Airport, Southampton SO2 2HG have launched two new product ranges: the Chassis Europe, a range of chassis kits in 11 height ranges and four depths and the Harmonite instrument cases, in five heights, three widths and three depths, and also with a range of accessories.
- First of this month's rash of catalogues: this one's from HB Electronics, of Lever Street, Bolton, BL3 bBI, and feafures Ungar soldering and de-soldering equipment.
- Not exactly a catalogue, but 'a new 8 pp colour brochure' is available from BICC-Vero Patkaging, Industrial Estate, Chandlers Ford, Eastleigh, Hants SO3 32R, and it dese ribers Speredwire, as reviewed in your very own ETI in June 1982.
- There seem to be a lot of small companies based in Cambridge and specialising in ZX peripherals. Here's another one, called (original name, this) Cambridge Computing. They're ever
so excited about their new, 'totally unique' joystick for both the ' 81 and the Spectrum, that they say will work with all software. They won't be launching the thing till lune, though (they're at 1 Benson Street, Cambridge).
- We mentioned Southampton Universities' computer holidays a couple of months ago in Digest. They now tell us that they are able to offer places to disabled people, due to their having a purpose built hall for disabled students. For more information write to M.A.P.S. 37 University Roaj, Southampion SO2 ITL (tel 0703 558621).
- Why do suppliers seem to shy away from calling a catalogue a catalogue? Latest offenders (again) are Elkan Electronics, Freepost, 11 Bury Road, Prestwich, Manchester M25 8JZ, who call their catalogue of soft and hardware for the Dragon computer the 'Dragon Supermarket'. Well, really.
- Cetron c Components Lid have issued a brochure on their wirewound esistors and potentiometers. free to trade people, your copy may be had from Cetronic Components Lid, Hoddesdon Road, Stanstead Abhots. Ware, SG12 8EI.
- The Computer Irade Association inform us that if wou managed to join them before fune 1 st. then the membership would have cost you ± 20, whereas after it'll set you bact $£ 50$. The assotiation dims to represent all seetions of the induatrs, ineluding retivilers, distributors, softuare houses, manufalerem and comsultants. and mas be found al 10 . Margaret Streed, Coahille, Leicestershire LEh 2LX.
- Pronto Electronic switems. 466-478 Cranbrooh Road, Cants Hill, Ilford, Eswer hawe releaned two new ultra-lon noise opamps, the OP-27 and the OP- 37 Depending on their avalability. we're hoping to bring you a data sheet on these in the near future.

Yes, Ma'am?

A new robot, designed to work alongside rather than replacing a human being, has been launched by Patscentre International and Prutec. Yes-Man (he's the one in the middle, without a silly grin) is the latest development from the association between Patscentre, the science and technology division of PA International, the management consultancy group, and Prutec, the high technology funding subsidiary of the Prudential Assurance Company.

The importance of Yes-Man lies in its ability to work with an operator in 'mixed assembly' tasks. Yes-Man carries out the more routine portions of the task leaving the human being free to exercise his skills in the cognitive and manipulative elements to which he is best suited. This specialisation is claimed to both improve productivity and contribute to a more rewarding working environment.

- Feeling boxed in? You may be a case for assistance from Boss Industrial Mouldings Ltd, who have extended their range of ABS potting boxes. Boss Industrial Mouldings Ltd, James Carter Road, Mildenhall, Suffolk IP28 7DE.
- At last! Someone who calls their catalogue a catalogue, and not a short-form supermarket file system. Rafi Electronics, 98 Croydon Road, London SE20 7AB present a range of professional DIN standard keyboards with considerable scope for customisation.
- The Irish Amateur Computer Club has written to inform us of their existence, and to say that our readers will get a warm welcome from them. In particular, they say that they are keen to recruit people with a good knowledge of hardware. The club may be reached via Nigel Carry (general secrelary), 166 McKee Avenue, Finglas East. Dublin 11.
- Last but by no means least on our list (actually, it was at the top of the pile until it fell on the floor) comes Towers' International Digital IC Selector. From 11311 to ZN7 $\mathbf{Z 1 1 9 F}$, it lists a very large number of tCs (no, we didn'l counll with briel depailv of uere, an indieation of the pin-out, and any substitute that are stailable Published by W. Foulsham A (0 . it should be atsilable through ans good teehnic al booksherps. (Note that it denen't coser mie roprocessor IC , these have a volume of their oun in the vericor).
- We would tell wou thal the British Amateur Flectronies (lub. (lo Dichens, 26 forrest Road Penarth, South Glamorgan, have just published their latent newsetter . . . ne would tell you but the addressed the acompanving letter to "The Editor, Elec Ironics and Music Maker

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Extended Bleep
$B^{\text {fitian }}$, fist radiopager with a message display was launched by British Telecom Radiopaging in April.

A ten-digit liquid crystal display on the new pager can be used to identify the caller (by giving a phone number), or to convey a message. The last two messages are stored in its memory
and can be displayed at the touch of a button.

Like a tone pager, the new version gives a distinctive bleep to alert users. It also has a tiny lamp which flashes in response to a call. This enables users to keep in touch even when the bleep is muted to avoid disturbing others.

Display Page is the name of British Telecom Radiopaging's new service. For the first time it makes it practical for customers to advertise their paging numbers so that anyone may call them.

Guildford Gets The Wire

iscussions have been taking place between Rediffusion and Guildford Borough Council on a proposal by the company to install and operate an advanced multi channel cable television system in the city.

The proposed network would be a modern switched star cable system providing initially up to 30 television channels together with up to 20 FM channels. The system would be interactive, offering the

Modular Security

iscomp limited announce an addition to their range of security mocules and accessories with an infra-red system known as the IR 1470. The unit, which operates from a conventional supply, consists of a separate infra-red transmitter and receiver, and provides a modulated beam of infra-red light over distances of up to 5 Jft. In the event of the beam beinginterrupted, a relay in the receiver unit is energised, which if connected to an appropriate warning device can be used to sound an alarm. Botn transmitter and receiver are housed in compact moulded enclosures and easily mounted on most surfaces.

The system which is Brixish made and "ully guaranteed. is supplied with comprehensive data and costs E25.60 + VAT. For further iniormation coniact Riscomp Limited, 21 Duke Street, Princes Risb-jrough, Bucks H $\boldsymbol{T 1}_{17}$ OAT.

EMI Joins CD

A s you may have seen in the A newspapers, EMI have decided to join in on the compact disc bandwagon. They had been a significant absentee from the furore of the CD launches, but it looks as though the fact that all the players have sold out wherever they've been put on

Watch With The BBC

igithurst's latest vision analysis product has been designed to run with the BBC microcomputer. It enables the Model B BBC computer to be linked to a standard home video recorder and pre-packaged images to be transferred into the micro.

The interface, known as

No Mail Order Orics

oric Products' own mail order operation for the Oric 1 and all peripherals has stopped accepting orders, and Oric is putting its promotional strength behind retailers with a $£ 50,000$ advertising campaign for the April-June period and full colour point of sale kits available to all stockists. Oric 1 is now available from W. H. Smith, Dixons, Greens, Laskys, Micro C, Micro Peripherals, Spectrum, Computers for A11 and other specialist outlets.
sale has persuaded EMI to adopt the medium.

They say that they will be building a catalogue strength of over 200 titles during the first twelve months. Though this is a tiny proportion of just the new releases from EMI and its subsidiaries, it would still represent a 100% increase on the CD launch catalogue.
community opportunilies for several new information technology services. These include teleshopping, telebanking, security and education in the home.

If central government approval is given, Rediffusion's plans could make Guildford the first city in Britain to possess a system which, while providing a wide range of national and other - tv programmes, would enable a new concept in community television to be developed. As such it would become a model for other similar systems both in the UK and abroad.

Guildford is considered by Rediffusion to be ideally suited to this new enterprise with a demographically well balanced community (we think that means rich). It encompasses a wide range of activities and interests with opportunities for cultural and educational services provided by the university, the cathedral and other local organisations.

MicroEye, enables pictures to be digitised with a 256×256 resolution, although with the BBC Model B only 128×128 pixels are used. Digithurst decided to go ior a high resolution as it feels users will want to upgrade the system when they add a second processor to their BBC kit. The interface is supplied as a total package providing the cable connections to both the video recorder and the BBC user port. A complete suite of software is supplied

Play the AMBIT numbers game

The long awaited implementation of on-line order processing is with us at last, and whilst this means that orders for in-stock items can now be processed more efficiently, it also means that orders should be submitted using stock codes for best results. Our current catalogue (75p) includes all order codes (watch out for the new expanded Spring edition), but here's an abstract from some of the more popular lines to use as a quick reference

Remember that you can alsoaccess our catalogue via REWSHOP on REWTEL, which now includes on-line current price and delivery information. You need a 300 baud MODEM and RS232 terminal, (various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics World)

Prices shown here exclude VAT, and the P\&P charge is currently 60p per order(unless otherwise indicated). Remember that our telesales service operates with human beings (not 'dumb' machines) from 8am to 7pm (and frequently later) Monday to Friday, and 9am to 6pm on Saturdays. REWSHOP operates 24 hours a day, 365 days a year with full price and delivery information.

Ambit international
200 North Service Road Brentwood, Essex CM14 4SG

Bistromathics?

A
new res:aurant management system Jeing introduced by Automatic Revenue Controls claims to be easier for table staff to use and give more accurate control over unventories than comparable systems. But will it stop you getting soup spilt on your lap?

Dart is the name of the system which has been on field trial in the UK for six months and has undergone several improvements to software as a result.

Waiter terminals, where staff enter their orders instead of rushing tien to the kitchen or bar physically, are not the con-
ventional off-putting numeric keypads. Instead, what waiters and waitresses see is a mimic of the menu itself, with page turnover just like the folder the guest uses at the table. Every menu item is identified by name and one-button selections are possible for most, if not all, of them. Up to 350 different individual items can be ordered at each terminal in this way. Those items may be varied between terminals - no point in having a key for Rump Steak rare in the Dar, for example.

Details from Automatic Revenue Control Lid, Home Park Estate, Station Road, Kings Langley, Hertfordshire WD4 BLZ.

Get Taped With Aiwa

A iwa, re nowned for their high specification cassette decks,
have introduced three new top line decks. According to Aiwa, these decks will capture on tape the crystal clear sound of the Compact Disc. We do hope that this doesn't mean they're en-

couraging our readers to break the copyright law. All three machines - the AD-F990, AD-F770 and the AD-F660 feature Dolby HX Professional Circuitry and Micro-grain Dual Capstan Tape Transpert. Dclby HX Pro is a specially developed anti-saturation circuit that prevents high frequencr loss, and therefore greatly improves the dynamic range at the top end of the frequency response curve

It is claimed that a metal tapelike performance can be achieved with Dolby HX Pro, even when recording with normal tapes, so the sound quality on play-back is excellent, even through a car stereo. Dolby HX Pro is net a noise reduction syster - Dolby B \& C noise reduction systems are also incorporated into the decks for improving the dynamic range over a wider frequency range.

Aiwa developed the Micrograin Dual Capstin Tape Transport to increase the contact between tape and capstan. The Micro-grain surface which is in-
corporated in the AD-F990 is composed of millions of uniform hemispheric domes, each only 2μ (micron) in diameter to ensure correct tape tension and reduced modulation noise, plus reduced wow and flutter - $\mathbf{0 . 0 2 5 \%}$ (WRMS).

At a cool $£ 349$ or so, the AD-F990 is Aiwa's top-of-therange Digital Era (for so they are called) cassette deck, which as well as featuring Dolby HX Pro and Dolby B \& C has high performance 3 head technology and introduces a newly developed amorphous alloy combination head. Also new for the AD-F990 is the auto noise reduction detector, which selects the correct noise reduction system automatically for tapes previously recorded on it.

Offering most of the features of the above, is the AD-F770 that weighs in at $£ 279.95$. Slightly lower down the market (but only very slightly) is the AD-F660, at £229.95. All these should be available through Aiwa dealers.

Digivision

TT Television \& Video have announced the results of a 10 year 20 million pound investment project which, they say, has led to a revolutionary new system of television receiver technology known as Digivision. According to ITT, this represents not one but a series of quantum jumps in the design, giving the consumer enhanced performance, reliability and greatly increased flexibility.

Digivision is not simply an extension of the digital rechnicues already incorporated in the tuning and remote control sections of some receivers, but a completely rew European development which will transform television receiver design world-wide.

In the first production designs up to 301) components of a comparable analogue-rechno.ogy receiver will be replaced by seven VLSI chips, bringing increased reliability, greater stability of per-
formance and extended yet simplified control features, together with quicker and more certain diagnosis and servicing. Later designs will include improved picture displays, with zoom and picture-in-picture facilities, noise and ghost suppression and direct digital inputs from data networks and other signal sources.

A recent sfudy of the market for TV, by Mackintosh International, has predicted that digital technology will be taken up by a large proportion of TV manufacturers, resulting in up to 40% of the market of colour receivers sold in the developed nations being taken by TVs with digital chassis. These results are in the company's report, 'Television Receivers: The Next Ten Years', which also analyses trends in other areas, such as display technology, cable TV and DBS. Unfortunately, this report is not publically available (well, they wouldn't give us a copy).

GOMDUसHR WARH:OUST
 THE 'ALADDIN'S' CAVE OF COMPUTER AFDD ELECTRONIC EQUIMENT

HARD DISK DRIVES
 Fully refurblshed Dlablo/DRE Serles 30 disk drive for DEC RKOS, NOVA TEXAS atc
 DISTMET

Front load $£ 550.00$ - Top load $£ 295.00$
PSU type ME3029 for 2 drives $£ 125.00$
DRE $44 \mathrm{~A} 4000 \mathrm{NB} 10 \mathrm{mb} 5+5$ all configurations from
£995.00. Call sales office for detalls.

5 AMP MANTS FLTEBRS

Cure those unnerving hang ups and data glitches
caused by mains interference Matchbox size-Up to 5 amp 240 v ioad As recommended by the $\mathrm{Zx81}$ news letter. Suppression Devices SD5A 〔5.95.

The UKS FIRST free of charge, 24 hr . public access data base. Get information on 1000's stock items and order via your computer and credit card On line now, 300 baud CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS CALL NOW, IT'S FREE!

COMPUTER ' CAB' $^{\prime}$

cabinet with integral switched
mode PSU, Mains filtering, and Iwin fan cooling Originally made for the famous DEC FDP8 computer system costing thousands of pounds Made to run 24 hours per day the PSU is fulty screened and will delliver a DC at 5 amps. The complete unit is fully enclosed with removable top lla filtering, trip switch, 'Power' and 'Run' LEDS mounted on Ali front panel, rear cable entries, etc etc. Units are in good but used condition - supplied for 240 v operation complete with full circuit and tech. man. Give your system that protessional finish for only $\Sigma 49.95$ + Carr. Dim. 19" wide $16^{\prime \prime}$ deep 10.5" high.
Also available LESS SSU with internal dim. 19
$10.5^{\prime \prime} \mathrm{h}$, $19.95^{\prime \prime}$. Carriage 8 insurance $£ 9.50$.

COOLITG PAR8

Coinif ineisiom $82 \times 92 \times 25 \mathrm{~mm}$
Miniature 240 equioment
finger quard $£ 9.95$.
 very quilet running $240 \vee$ operation. NEW 86.95 BUHLER 89.11 . 22- 8-16 V DC micro minlature reversible fan Uses a brushle Servo motor for extremend high air fow,
almost silent running and guaranteed 1 almost silent running and guaranleed
hr life Measures only $62 \times 62 \times 22 \mathrm{~mm}$. £12.95 complete with data. MUFFIN-CENTAUR Standard $4^{*} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$ fan supplied tested EX EOUIPMENT $240 \vee$ at at 10.50 . 1000's of other fans Ex Stock

$8^{\prime \prime}$
 LOPPY DISK DRIVES

Unbelievable value the DRE 71008 " floppy disk drive compatibillty with most drives available today. The only difference beling our PRICE and the superb manufacturing qualityll The 7100 single sided and 7200 double sided drive accept hard or soft sectoring IBM or ANSI standard ormats giving a massive $0.8 \mathrm{MB}(7100) 1.6 \mathrm{MB}(7200)$ of storage. Absolutely manual and full 90 day warranty. Carriage and insurance $\varsigma 975$.
$\mathbf{7 1 0 0}$ Single sided £225.00 + Carr. $\mathbf{7 2 0 0}$ Double sided $\mathbf{£ 2 9 5}+$ Carr Optional accessories. Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Retund way IDC connector $£ 5.50$. 50 way ribbon cable $£ 3.20$ per metre.

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. BRAND NEW ATONLYE499? VAT $=$ Made to the very highest Spec ine TEC Starwiter
FP1 $500-25$ features heary duty loe cast
chassis
print mechanism giving
 print aually. Micro proce ssor electronics
ofter full $1 A B L O / C U M E$ com mand compatabiiny
and uil coniro via CPM Wordstar etc
printing. switchable 10 or 12 pitch, full width 381 mm paper handling with upto 163 characters per line, friction feed rollers for single sheet or continuous paper Internal butfer, standard RS232 serial interiace with handshake. Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy whee and dust cover. Order NOW or contact sales office for more information
£120.00. Spare daisy wheel £3.00. Carriage 8 Ins. (UK Mainland) £10.00

TEWETYPA ASB83 1/0 TERMMAKS

 Fully fledged industry standard A SRB3 da mbal. Many features including ASCII tetect cimulry PS232 dalal auto data saud 8 bit paper tape sunch nterace 110 off line data preparation and ridiculously cheap and rellable data storage. Supplied in good condition and in working order Options: Floor stand $\mathbf{E} / \mathbf{2} 50$ +VAT KSR33 with 20 ma loop irterface E/ $25.00+$
SOFIY 2

The amazing SOFTY 2. The complete "toolkit"

 for the open heart sottware surgeon. Copies,Displays. Emulates ROM. FAM and EPROMS Displays. Emulates ROM. FaM and EPROMS include keytoard, UHF modulator. Cassette interface etc. Functions exceed capabllitiesof units costing 7 times the pnce! Only \&/69.00 DDE1.95 Data sheet on request

DATA MODEMS

range of EX TELECOM data modems. Made to most stringent spec and designed to operate Ci 24 hrs per day. Units are made to the
CCITT tone spec. With RS232 a 25 way 'D' skt. Units are sold in a tested may be required for connection to PO lines. MODEM 13 A compact. async, same size as telephone base. Up to 300 baud full duplex over 2 wires, but call mode onty $£ 75.00$ MODEM 2B/C Fully fledged up to 300 baud async. ANSWER \& CALL modes, a uto answer.
auto switching ideal networks etc. Just 2 wire auto switching ideal networks etc. Just 2 wire connection to comms line £85.00 MODEM 20-1 Compact unit for use with
PRESTEL or full duolex 2 wire link 75 bad PRESTEL or full duplex 2 wire link 75 baud
transmit - 1200 baud receive Aute anwer transmit -
£ 130.00
MODEM 20-2 same as $20-1$ but 75 baud recerve 1200 baud ransmil ei 30.00 MODEM 20-3 Made for data rates up to 1200 hall duplex mode over 2 wires $£ 130.00$ Carriage. 13A £4.50. $2 \mathrm{~B} / \mathrm{C} \$ 20 £ 9.50$. DATA PUMP MODEM COmpact Unit upto duplex over 2 wires BELL Specification with data $1 /$ ove vS 23225 way Docket remote
test th. 240 voperation Supplied complete lest etc. 240 voperation Supp
with dala $\varepsilon 65.00$ car. $£ 4.50$

8" WINCHESTER price SLASHH

Worldwide purchasing brings you two amazing Winchester SCOOPS at prices that will likely NEVER be repeated. BASF $61728^{\prime \prime} 24 \mathrm{Mb}$. Complete unit consists of mlcro processor controlled logic on 3 PCBs for all read/write and servo control functions. Fast data transfer is by the BASF 'Dis Bus' interface on a single 40 way multiplexed $1 / 0$ bus. Units have been carefully removed from believed working equipment, but at the staggering price of ONLY $£ 99.00$ are sold without guarantee. Supplied complete with 200 page + tech. Manual Dim $45 \times 22 \times 11 \mathrm{~cm}$. DC requirements $+5 \mathrm{v}_{\mathrm{o}}+12 \mathrm{v}_{\mathrm{n}}+24 \mathrm{v}$. Carriage and ins. $£ 10.00$
S100 Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs dire the Sioo bus and will control 2 disk drives, offering a total
storage of OVER 36 Mbs! and at data transfer rates in exce storage of OVER $36 \mathrm{Mbs!}$ and at data transfer rates in excess of
$7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing!! Supplied complete with user $7 \mathrm{Mb} /$ sec seeing is believing!! Supplied complete with user
configurable BIOS etc. Save a fortune, Limited quantity only. 310019 Mb . Disk drive E99900 PSU unit 516500 CO1100 controller \& BIOS E34.00 PSU extension cable E/KS.00 Full tech Manual E70.00

RECKARGEABLE BATTERIES

CrCLON type dool sealed lead acid maintenance free 2.2 .5 an will deliver ove
300 ampos on snon circuifll Brand new 300 amps
only $£ 2.95$

VIDEO MONITORS

12"CASED. Made by the British KGM display station, unit is totally housed in an attractive brushed aluminlum case with O OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much
attention was glven to construction and attention was glven to construction and rellability of this unit with features such as.
internal transformer isolated regulated DC internal transformer isolated regulated D
supply, all components mounted on two libre glass PCB boards - which hinge out ease of service, many internal controls for inearity etc. The monitor accepts standard 75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display Unost high del graphics and 132×24 lines. Units are seconohand and may have screen only apparent when monitor is switched off Allhough unguaranteed all monitors are ested prior to despatch. Dimensions approx $14^{" \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep. Supplied complete with clrcuit. 240 volt
operation. ONLY E45.00 PIUS 59.50 GARR 24" CASED. Agaln made by the KGM Co with a simitar spec as the 12 " monito Originally used for large screen data display. Very compact unit In lightweight
alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime}$ W. All silicon electronics and composite video input make an ideal unit for schools, clubs. condition
OWLYE55.00 PLUS E9.50 CARR \& IMS
14" COLOUR superb chassis monitor mad by a subsidiary of the HITACHI Co. Inputs
are TTL AGB with separate sync. and will are TTL RGB with separate sync. and will plug direct into the BBC micro etc.
Exceptional bandwidth with good 80 col Exceptional bandwidth with good 80 c
definition. Brand new and guaranieed Complete with full data \& circuit $240 \vee \mathrm{AC}$ owlyEI 199.00 PLUSE9.30 CARE

SBMICONDUCTOR 'GBAB BAGS'
 Mixed Semls amazing value content

 include transistors digital, IInear, I.C.'s triacs diodes, bridge recs, etc etc. All devices racturer's markings, fully guaranteed $50+52.95100+55.15$.TTL 74 Series A gigantic purchase of an across the board range of 74 TTL se I.C.'s enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which twy
or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C.'s full

CALLING DEC USERS
 Brand new and boxed

RSX 11 M 3.2 Documentation kits, fill 3 feet of your bookshelf! Under half price only $£ 120.00$ carr. $£ 6.500$ vat on manuals.
We are always keen to buy all types

AKL PRTCES PLTS VAT

If you misseadboard Now's the tidBOARD ' 83

The premier electronics show for the enthusiast. Moved this year for your convenience and comfort to the Cunard International Hotel, Hammersmith, London W6
Friday November 25th
Saturday November 26th Sunday November 27th

> 10am-6pm 10am-6pm $10 \mathrm{am}-4 \mathrm{pm}$ Why not bring the family to the show and envor a weekend in London? We have arranged a emplete hotel package for our visitors ? inclusive rail tickets also avai bl Send now for details of what we, the organi wrs, can offer you. Write to:
Breadboard '83
ASP Exhibitions
145 Charing Cross Road
London WC2H OEE

This year's features include

- Computer controlled model railway competition. (send off for entry form now)
- Kits to build all sorts of projects.
- Magazines and books covering most aspects of electronics.
- Components and tools at bargain prices.
- Technical advice on electronics projects and Ham Radio technique.
- Clubs/User groups for amateur electronics and computing
- Lectures by professionals on a wide range of topics. eg. Basic Tuition For Beginners,
- Holography and Producing Printed Circuit Boards.

TV STORAGE SCOPE

The ETI Telescope is so simple, it's surprising no-one thought of it before. Well, they did, but the new range of high-speed Ato-Ds from Ferranti have made it possitile to get the 'scope to work at over i MHz , while keeping the price within asceptable limits.

The project splits into two main sections: the logic board, featured here, and the memory board, to be featured next month. Unfortunately, you need both circuit diagrams in front of you to understand how the creature works, so we'll have to save the overall explanation until then.

BUYLINES

Hawk Elect oonics Test Equipment sup. ply a full kit of parts for this project. All PCBs, te case (drilled and screen. printed), the ZN441 and all the other components are included, together with a comorehensive manual. The kit price is $£ 89$. The 'TeleScope' is also av. ailable built and tested for £ 109 .

The manual may be purchased separately for E1.50, refunded on the sub. sequent purchase of a kit or finished circuit.

Prices exclude 15% VAT, and post. age and packing is $£ 2.95$ extra. The case, A-to-D converter, and the PCBs may all be rurchased separately.

Hawk Electronic Test Equipment,
Unit 1 ,
Park Wood Industrial Estate,
Bircholt Road,
Maidstone,
Kent.

HOW IT WORKS

The inpat attenuator is a series chain of resisters to ground, whose collective resistance is 1 M 2 . The front panel am. plitude : witch (SW2) provides the voltage range select by tapping from this chain. The cpacitors connected to the chain (C2-7) compensate for the induc. tive effests of the resistors at high freq. uencies.

The unput may be AC or DC-coupled by switching C1 in and out of cir. cuit with SW1.

The :rigger select switch SW3 provides either an input signal trigger, an auto trizger (a 2 kHz signal derived from the sample rate switch), or an ex. ternal trigger.

Q1 is a source-coupled FET which buffers the input signal between the input series chain variable attenuator and the flash A-to-D converter (which will be Jescribed in the next article). Q2 acts as a current source, enabling a DC offset to be added to the input sig. nal. Thi: offset is adjusted by RV1 and is used to shift the vertical position of the displayed trace. Q3 and RV2 set the trigger level, and LED1 is lit when the trigger is running.

IC2a is a D-type flip.flop, which en. ables the input address clock (IC3a) on
the leading edge of the input data via the trigger level. It is held in the reset state by a signal on pin 1 (from interboard link 5) when the input addressing is completed.

IC4a-c and the crystal XTAL. 1 form a 10 MHz oscillator and ICs 6 to 10 provide a series dividing network at divide-by- 5 and divide-by-2 stages, thus producing division in steps of 10,5 . and 2 etc down to 100 Hz . The sam: pling rate is selected from this chain by the rotary switch on the front panel. IC13a is a divide-by-2 and is used as the output address clock at 5 MHz . It is also used to re-time the data out to the modulator via IC11a.

IC2b is a D-type flip-flop which is enabled oy a line synchronisation pulse thus enabling IC3b. IC3b then allows IC14 to count eight pulses, each of one microsecond duration, before the output clock cycle is started (by IC7b). This produces an eight microsecond delay at the beginning of each line, so all data is displayed and none of the output is outside the video display area. When the output address cycle is completed (50 microseconds later), this counter resets and waits for the
reset line sync pulse.
In the same manner, IC18, 12b and 19 count line synchronisation pulses at the beginning of each field scan to enable the video output only during the middle 256 lines of interlaced scanning.

By dividing the 1 MHz signal by 16 using IC15 and IC16a, we produce a signal of 15.625 kHz , and IC17a, a monostable, then produces the line syrchronisation pulses (4.7 microseconds wide), which are mixed into the UHF modulator by IC: 2 c and 12 d . IC17b produces the field synchronisation pulses from the 50 Hz clock provided by IC 16 b : these are approximately 50 microseconds wide. IC11b prevides the control lines to switch over the memories and addressing. This changeover occurs when the input address counter has completed its cycle and the frame scan is completed.

The summing circuits used to mix the video data and the line and field synchronisation pulses are the opencollector gates IC12c and 12d at the UFF modulator input, with the resistor network providing the DC offset and modulation depth required to drive the video circuitry.

Fig. 1 Circult diagram of the ETI 'TeieScope' logic board.

Do you think that designing and understanding electronic circuits is beyond you?

The summer edition of Electronics Digest, Gateway To Circuit Design, provides a step-by-step introduction for the newcomer to the art of circuit design. Firstly, you'll be introduced to the commoner electronic components - but not in a passive way. Electronics is a practical subject, so Gateway To Circuit Design will enable you to build simple circuits for yourself, and take measurements on them (along the way learning how to use a multimeter). Once these introductions are over, Gateway To Circuit Design shows you what goes into the design of a wide range of electronic equipment - for audio, computing and electronic music, for instance.

Gateway To Electronics is an occasional popular series in Electronics Digest, published by Argus Specialist Publications. Previous issues in the series have concentrated on projects; now we'd like you to design your own!

At all good newsagents now or available by post from Electronics Digest, 513 London Road, Thornton Heath, Surrey.

We'd like

to show you that you're wrong

 FROM THE PUBLISHERS OF $2 \times$ COMPUTING

An exciting graphics/text simulation game for, the $\mathbf{Z X}-81$

NEW!

COMPUTER

 PROGRAM PLUS GIANT POSTER

75p from all good newsagents

pantechnic

THE POWERFET SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high powered amplifier ever. FETSYSTEM AMP

Features:

- HIGH POWER 1.2 KW (single ended).
- LOW VOLUME. $1 / 15$ Cubic foot inc. Heat Sink
- VERSATILE. Delivers more than 1 kW into $1 / 2$ to 8 ohms.

OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into Ω)
$1 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $1 \times 300 \mathrm{~W}$ into 2 to 4Ω
$1 \times 150 \mathrm{~W}$ into 4 to 8Ω
Etc. Etc.
Having been closely involved in a wide variety of OEM applications of their amp boards, Pantechnic became aware of numerous implementation problems often left untackled by other amp board manufacturers. These problems specifically of size and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatskink thermal circuit. The combined effect of this has been to dramatically increase the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Amp offers 1.2 kW of power in a space of $102 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heat sinks, heat sinks, heat transfer to the environment is greatly enhanced.
The flexibility of the 1.2 KW amp stems from Its division into 4 potentlally separate ampliflers of 300 W each (downrateable with cost sav ings to 150 W .) These can be paralleled, increasing current capability or seriesed (bridged in pairs) doubling voltage capability. In consequence a large varlety of amplifler/load strategies can be implemented.
As ever Pantechnic offer a full range of customising options including DC coupling, ultra high slew etc. Contact Phil RImmer on 01-800 6667 with your particular application problem.
P.S. Specs, as ever, are exemplary.

OTHER POWERFET AMPLIFIER MODULES

Model	Pric*	Renge (Rme)	Dyn-loade	Note:
-PFA100	20.65	50.150W	4:2,8	Physically small ($32 \times 78 \times$ 108 mm)
*PFA200	27.35	100.300w	4 - 8 :	Migh watts/\& ratio
PFA/HV	38.04	200-300 W	4 4, 83.16Ω	5dB dynamic headroom Drives 70 V Ilne direct.
- PFA500	42.00	250-600 W	$2 u, 4 \pi, 8 u$	25A cont output current.
	52.50	mounted on	4 Heat Exc	r (see below

*The power output of these amplifiers can be increased by approx 15% with no diminution in quality by adding PSU102 (£7.61) to your existing power supply.

Some Other Products \& Components
Type 74 Heat Exchanger. Dissipates 300 W (1.2KW fan cooled) E7.50
25A 400PIV Bridge Rect £2.17
$\mathbf{1 0 , 0 0 0} \mathbf{u F} 80 \mathrm{v}$ electrolytic with clip $£ 4.13$
PAN2O Pre-amplifier module. Very low noise and distortion £7.61 PAX2/24 2 Way active crossover (specify frequency) £10.10
PSU103 Powers $2 \times$ PAN $20+2 \times$ PAX2/24 £6.91
PAN1397 20W power amp. (LOW THD) £5.04
PSU101 Powers $2 \times$ PAN1397 £3.43
Transformer for above $\mathbb{£ 4 . 3 0 \text { (inc. postage) }}$

TOROIDAL TRANSFORMERS

Nom. VAC 160VA 225 VA 300 VA 500 VA 625VA 750 VA

$40-0.40$	10.43	12.00	13.04	-	-	-
$45-0.45$	-	12.00	13.04	18.98	-	-
$50-0.50$	-	-	-	18.98	18.84	22.00
70.0 .70	-	-	-	18.98	-	-

70.0.70
(for PFA/HV)
$\begin{array}{lll}8.96 & - & 22.00\end{array}$
Transformer prices include postage. Ask for leaflet "Choosing a Transformer."
Carriage 75p. Add VAT at 15\% to all prices.

THE POWERFET SPECIALISTS pentecnate

Mail order oniv to:
Dept ETI/7 148 Quarry Street, Liverpool L25 6Ht ! Telephone: 051-428 8485
Technical enquiries
Phil Rimmer 018006667

BRITISH LOW COST PRECISION OSCILLOSCOPES

Safoan Electronics Lid a small British company specialising in the design and manufacture of Oscilloscopes, are pleased to announce the introduction of the DT-500 Series of 5" Tube Oscilloscope.

They believe that the new range offers a Specilication ideally suitable for Colleges. Training Establishments and Service Engineers, cue to the easy to use logical lay-out of the front panel, combined with the lowest cost for any dual trace precision Oscilloscope available in the U.K. The DT-520 has an $8 \times 10 \mathrm{~cm}$ display, $5 \mathrm{mv} / \mathrm{cm}$ sensitivity, a timebase range from 1 second/cm to 100 nanosecond $T N$ itigger, $X-Y$, and Z modulation input, with a sweep output socket and is priced at E210. -

The DT-525 has the same specification plus an add/Invert facllity and 25 MHz bancwidth, at £230. -

Both versions are avaiuable with 4 mm sockets if required.

Please contact

Safgan Electronics Ltd., Omega Road, Woking, Surrey GU21 5DY Tel: (04862) 24731 or 24736

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION 2 4 OTAL ENERGY DISCHARGE
 ELECTRONIC igmition

IS

YOUR CAR

AS GOOD AS IT COUID BE?

t is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full putput even with a near flat battery.
t Is it ECONOMICAL or does it "go off" betwern services ase the ignition performance deteriorates? Teral Energy Discharge glvee much more output and mainsains ffom service to service.

- Has it PEAK PERFORMANCE of is it flot at higt bind low revs. where the igntion output is merinal? Total Energy Discharge gives a nore powerful spark fromide to the engines maximum loven with 8 cymderst.
* If the PERFORMANCE SMOOTH: The Rove Dowerfu spark of Tita Eneggy Discharge elin tnates the "netr" himfires" whitst an electranic filter smoptives out the iffects of anotent pounce etc.
* Do the Plues and POINIS always nued changing to bring the engine back to he bet? Toral Energy Discharge eliminates contact arcing and erosion by memoving the heavy electrical load. The timing stays "spot on" id the contact condition doesn't affect the performance elther. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on the market - $31 / 2$ times the power of inductive systems. $31 / 2$ times the energy and 3 times the duration of ordinary capacitive systems. These are the facts:
Performance at only 6 volts (max. supply 16 volts)
SPARK POWER - 140 W , SPARK ENERGY
36 mJ SPARK DUPATION - $500 \mu \mathrm{~S}$ ', STORED ENERGY - $\quad 135 \mathrm{~mJ}$ LOADED OUTPUT VOLTAGE

$$
50 \mathrm{pF} \text { load }-38 \mathrm{kV} \text {, }
$$

$50 \mathrm{pF}+500 \mathrm{k}$ - 26 kV
We challenge any manufacturer to publish better performance figures. Before you buy any other make, ask for the facts, its probably only an inductive system. But if an inductive system is what you peally want, we'll still give you a good deal.

- All ELECTRONIZE electronic ignitions feature:

EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, STATIC TIMING LIGHT and DESIGNED IN RELIABILITY (14 vears experience and a 3 year guarantee).

* IN KIT FORM it provides a top performance system at less than half the price of comparable ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transtormer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools
Most NEW CARS already have electronic ignition. Update YOUR CAR

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

* 2000 COMBINATIONS provided by an electronic key - a miniature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
* 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
* 10 SECONO ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in externat bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
* INSTANT ALARM OPERATION rriggered by accessories or bonnet/boot apening

Ł 30 SECOND DELAY when system is armed allows owner to lock doors etc.

- DISABLES IGNITION SYSTEM when alarm is armed
* IN KIT FORM it provides a high leval of protection at a really low cost. The kit includes evervining needed, the case, fibreglass PCE. CMOS IC's, random selection resistors to set the combination, in fact evervthing down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES SUPPLIED C.JMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

Don't Wait Until Its too Late~
Fit one NOW!
fill in the coupon and send to:

ELECTRONIZE DESIGN Dept D Magnus Rd Wilnecote Tamworth B775BY. tel 0827281000

Assembled ready to fitE (6 or 12 volt negative earth) D.I.Y. parts kit
£ $28.70 £ 19.95$ £15.90 £14.95

TWIN OUTPUT for cars and motor cycles with dual ignition
\square Twin, Assembled ready to fit £ $36.45 £ 29.95$ Twin, D.I.Y. parts kit £20.55 £22.95
INDUCTIVE DISCHARGE (12 volt only)
Assembled ready to fit
£15.55 £12.75

CAR ALARIV

Assembled ready to fit
£ 37.95
D.I.Y. parts kit
£24.95
1 enclose cheque/postal order OR debit my Access/Visa card

Name

Address

COMPUTER OUTPUT DRIVER

With this project hooked up to your computer you can drive relays, motors, lamps, solenoids, or whatever, under software control. Do something useful with your computer! Design by Geoff Nicholls.

Apersonal computer need not necessarily be used for playing games, learning programming or producing computer club newsletters. With this project, you can put it to some practical use. Just what that is I'll have to leave to your imagination and ingenuity!

Two independent groups of eight outputs are provided. Each of the 16 output driver circuits is configured to run from a 12 V supply, although higher supply voltages may be used. Each can be configured to sink up to 3 A . Simple address selection for the board is provided by an on-board DIP switch. It's a pretty straightforward project and you can vary things to suit your application(s).

Component Options

The component values shown in the circuit diagram are for output currents of up to 2 A . If other load currents are desired, then a few components need changing in order to reduce power dissipation in the output transistors.

For currents of less than 1 A , the TIP31Bs (Q17-32) may be replaced by BD139s - which have the distinct advantage of costing considerably less than TIP31Bs. However, note that BD139s have a different pinout such that the metal face on BD139s is on the opposite side of the package to the TIP31Bs.

The base current drive to the output devices is determined by R17 and R32 and may be optimised for different loads. The table here (Table 1) summarises component values for various output currents.

If the total output current is expected to exceed 20 A for more than a few minutes, then it is advisable to make the following changes:
(a) Use a terminal strip capable of passing half of the total load current through each terminal OR solder the power ground directly to the PCB ground plane.
(b) Solder several lengths of tinned copper wire to the heavy power ground track on the PCB.

Intermittent use over 20 A should not require these changes. The power dissipation calculations for transistors Q17 to Q32 were based on data for RCA. manufactured TIP31Bs. The prototype transistors developed a collector-emitter voltage of 0 V 65 at 2 A, which does not necessitate heatsinking the transistors. If high current loads are to be used, measure $\mathrm{V}_{\mathrm{ct}} \times \mathrm{I}_{\mathrm{c}}$.

The TIP31B can dissipate 2 W at $25^{\circ} \mathrm{C}$ ambient without heatsinking. Continuous use at high currents may require a small flag heatsink on each TIP31B.

The entire electronics for this project is mounted on a double-
sided PCB. During the early design phase, it was found that a singlesided PCB would require an unacceptably huge number of links. To keep the cost down, throughhole plating was not specified for this board and connections between top and bottom side tracks are made with links of 22 swg tinned copper wire, of which there are a total of 61 . IC sockets were installed on the prototype, but these are not essential.

Commence construction by giving the PCB a good inspection, looking for broken tracks and undrilled holes. Make sure the tracks are clean and bright so that soldering is easily carried out. Insert all the links first. These are identified on the component overlay diagram by a \bullet. Note that a large star is next to a ' 62 nd' link more or less in the centre of the board. This is the optional 0 V link - see the text under the heading 'Power supplies'.

The project is built on a board measuring $103 \times 165 \mathrm{~mm}$.

Next, solder diodes D1 to D17 in place. Note that the cathodes of these diodes are soldered on the component side of the board. Solder resistors R1 through R16, then R33 through R48 in place next. Mount and solder the BFR39 transistors, Q1 to Q16, in place next. All the 1 W resistors, R17 through R32, stand up on end and these may be soldered in place after the transistors. Follow with the remaining four resistors and the three capacitors. Now you can mount and solder in the output devices, Q17 to Q32. Watch orientation.

Now mount SW1, but take care you put it round the right way. The ON position of the switches should be adjacent to the edge of the board. If you're using IC sockets, put these on next. If not, solder the ICs in place. A 16 -pin DIL IC socket is used for the input connections and this can be mounted now. Last of all, mount and solder in the output terminal strip or strips. We used one 12 -way and one 8 -way strip as we could not obtain a single 20-way strip.

Having completed the construction, go over the board very carefully, looking for missed

HOW IT WORKS
First of all, note that the component values shown on the circuit diagram are for the 2 A output version. Other output current versions are possible, as explained in the text, but basic circuit operation is the same.

The host processor connects to the driver board via the 16 -pin DIL socket. IC5 compares the logic levels present on the DIL socket pins 14 (A1), 11 (A2), 13 (A3) and 12 (STROBE) to the settings of SW1a-d respectively. When a match is found, pin 10 of IC1 goes high. The STROBE input should receive a pulse edge timed to coincide with a valid data bus (pins 1 to 8 of the DIL socket) and a valid address (pins 11, 13, 14). Note that either a positive-going or a negativegcing edge of the strobe pulse may be used, according to whether the setting of SW1d is closed or open, respectively.
The AO input on pin 10 of the DIL socket determines which of the two onboard latches are being addressed. When pin 10 is low, IC4 is selected ('B outputs active'), if high, then IC3 ('C outputs active').

Each driver circuit buffers one of the 16 latch outputs and provides an open collector current sink of up to 3 A (see the text on 'Component options').

To simplify the description of the driver circuits, consider the one comprising R1, Q1, R17, R33, Q17 and D1. Diode D1 is a flywheel diode and protects transistor Q17 from excess back emf voltage when turning off inductive laads, such as a solenoid. When the latch output is low, Q1 is held off via R1 and Q17 is held off by R33. Resistor R33 speeds up the turn-off time of Q17 by providing a path to remove stored charge in the base-emitter junction.

When the latch output is high, about 5 mA of current flows into the base of Q1, thus turning it on. R17 sets the base current of Q17 and is chosen according to the output current requirement. Transistor Q17 must be saturated in order to reduce power dissipation and up to 300 mA of base current may be required for 3 A loads (see component options in main fext).

Fig. 1 Circuit diagram for the ETI Computer Output Driver. Our artis drew the line (!) at reproducing 16 identical driver circuits, so we've shown just the one.
links and components, bad joints or mis-oriented semiconductors. Fix any faults and, if you're satisfied all is well, the best way to test the beard is to hook it up and try it out!

Power Supplies

The logic power supply of +5 V should be supplied from the host computer $\mathrm{V}_{\text {cc }}$ rail through the DIL socket pins 15 and 16. The camputer's ground (0 V) should be cannected to pin 9.

The +5 V power to the drive ciscuits should not come from the host computer unless it has the

PARTS LIST

Resistors (all $\frac{1}{2} \mathrm{~W}, 5 \%$ except where stated)
R1-16,33-48 470R
R17-32 18R, 1W
R49-52 10k

Capacitors

C1	100uF 16 V PCB		
C2,3	electrolytic		
			100n ceramic
Semiconductors			
IC1	74LS02		
IC2	74LS00		
IC3,4	74LS374		
IC5	74LS86		
Q1-16	BFR39		
Q17-32	TIP31B, BD139 (see text)		
D1-16	1N4002, 1N4004 etc		

Miscellaneous

SWI 4-way SPST DIP switch
PCB (see Buylines); 16-pin DIL socket; 2
off 16-pin DIP headers; one off 12-way and one off 8 -way PCB-mounting terminal strips; 16-way ribbon cable; 22 swg tinned copper wire.

BUYLINES

No severe supply problems are anticipated with anything we've used for this project. The hardest thing to find will probably be the PCB-mounting terminal strips, but Maplin, at least, stock a suitable type, and you may be able to find other suppliers too. The PCB will, as usual, be available from the PCB Service as advertised on page 91.
capability to supply at least an extra 3 A. In any case, heavy wire should be used (at least $24 \times 0.2 \mathrm{~mm}$ hookup wire) for the power connections to the terminal strip to minimise voltage drop.

The optional 0 V link (marked with a star) should only be used for light loads. Normally, the connection between $0 \vee$ logic and power should be at the power supply.

The output drivers' power supply is shown as +12 V , but other voltages may be used, up to about 70 V . The PIV rating of diodes D1 to D16 should not be exceeded, however (best use 400 V diodes here, at least).

Hooking It Up

This project has been designed to allow up to eight boards to be connected to a computer through a single ribbon cable. In order to do this a special strobe signal must be

Fig. 2 Component overlay for the driver board, and lead details for some suitable output transistors.

TABLE 1

OUTPUT CURRENT (amps)	Q17-32	R17-32	R1-16	SUPPLY CURRENT (maximum)
3	TIP31B	15R, 1W	330R	3A4
2	TIP31B	18R, 1W	470R	2A8
1	TIP31B	22R, 1 W	$470 R$	$2 A 3$
<1	BD139	$33 R, \frac{1}{2} W$	$470 R$	$1 A 6$

supplied by the computer whenever any of the driver boards are being selected. This will probably require a small hardware circuit, unless your computer is favoured by the famous Murphy! If there is sufficient interest we may publish a general purpose interface board, but until then you will have to work out for yourself how to connect a particular computer from the following guidelines.

Assuming that the computer has an I/O scheme with eight 1/O address lines - AD0 to AD7 - then the driver board inputs $A 0$ to $A 3$ are connected to the lowest four I/O address lines of the computer, ie AD0 to AD3. Each driver board is then set up at a different address via the DIL switches, SW1a-d. This means that the driver boards will occupy 16 consecutive I/O ports. Now for the hard part!

The STROBE input (A4) must have a positive or negative going edge (see the How it Works box)
that occurs when an I/O WRITE to the driver boards is taking place. In order to fully decode the I/O port address space, the other I/O address lines (AD4 to AD7) must be gated with the I/O control signals to produce the STROBE signal. In order to get the STROBE transition timing correct, a signal such as WRP (write pulse) should also be gated in the STROBE logic. This allows the data bus to settle before the latches are locked.

The ribbon cable requires a buffered driver for each wire carrying logic signals, especially if multiple driver boards or long cable runs are envisaged.

A simpler interconnection may be implemented if a couple of I/O ports are available. In this case, the D0-D7 inputs can connect to one output port and the AO-A4 inputs to another output port. The timing of the STROBE pulse is then a matter of software driving routines.

Now circuit designing is as easy as pushing a lead into a hole... No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built-in regulated power supplies
Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

NO.	MODEL	NO OF SOLDERLESS TIE-FOINTS	$\begin{aligned} & \text { IC } \\ & \text { CAPACITY } \\ & (14 \text {-pin DIPS) } \end{aligned}$	$\begin{aligned} & \text { UNIT } \\ & \text { PRICE } \end{aligned}$	PRICE INC. P\&P 15\% VAT	OTHER FEATURES
1	P66	630	6	11.00	13.80	Kit
2	PB100	760	10	14.25	17.53	Kit
3	P8101	940	10	19.65	24.32	
4	P8102	1240	12	24.95	30.42	
5	P8103	2250	24	40.95	48.82	
6	PB104	3060	32	51.45	61.47	
7	PB105	4560	48	74.50	87.98	
8	P8203	2250	24	76.00	89.70	5V@1A
9	P8203A	2250	24	105.00	124.20	$5 \mathrm{~V} \pm 15 \mathrm{~V}$
10	P8203AK	2250	24	85.00	100.05	$5 \mathrm{~V} \pm 15 \mathrm{~V}$

Tomorrow's tools for today's problems

Sinclair ZX Spect

The growing range of Spectrum Software

You'll know already that the Spectrum has generated an enormous range of peripherals and independent software. Our own range is growing very fast and is shown in the Sinclair Software Catalogue - free with every ZX Spectrum.

rum-news!

16K now f99-95
 Previously $£ 125$.

48K now f129.95 Previously $£ 175$.

At last, a 16K colour computer with graphics for under $£ 100$! Why have we done it? Partly because the sheer volume of Spectrums sold (over 300,000 so far) has brought down unit production costs.

And partly, of course, because we hope you'll buy a Sinclair computer - and not some competitor's promise! We've all heard about colour computers breaking the $£ 100$ barrier. Here's the computer that's done it. A colour computer with advanced graphics that's fully supported, and widely available.

Right now, you can order a Sinclair Spectrum at these prices direct from Sinclair on the order form below. And to make it even easier to handle high-level computing at the
lowest possible price, we've cut the cost of the printer, too. At £39.95, it's almost unbelievable!

At prices like these, there's really no reason to wait.

ZX Printer now £39.95
 Previously $£ 59.95$

How to order your ZX Spectrum Access, Barclaycard or Trustcard holders - call 01-200 020024 hours a day, every day. By FREEPOST - use the coupon below. Please allow up to 28 days for delivery. 14-day money-back option.

Sinclair Research Ltd., Stanhope Road, Camberley, Surrey, GU15 3PS.
Tel: 0276 685311. Reg no. 1135105.

BUYER'S GUIDE TO TEST EQUIPMENT

This month, all you ever wanted to know about oscilloscopes

but were afraid to ask the man in the shop.

Next to a multimeter, an oscilloscope is the most basic measuring instrument of electronics, yet comparatively few hobbyists possess one. It's true that they're not cheap, we didn't find a single one for less than $£ 100$, but they're not that expensive either. In this survey, we've found a very wide choice of instruments is available for around $£ 350$ or less (excluding VAT).

All the oscilloscopes in the table have the following basic facilities: a Y-amplifier, with switched calibrated ranges, switchable AC or DC coupling, and a shift control; a timebase generator, with switched ranges, position control, and some means of synchronising sweep commencement at a particular point on the input Y-waveform; an on-off switch, and brightness and focus controls. (None of these features is listed in the table).

All the sensitivities are given in volts per division (note that unless a 'scope has a 130 mm screen, 1 division will be smaller than a centimetre), but not all the sweep speeds are in seconds per division: the two cheapest 'scopes (the Leader LBO-310A and the Trio CS1303D) give sweep frequencies. These two 'scopes, and the Leader LBO-512B, have relatively few calibrated Y and sweep ranges, so you would have to
rely a lot on the variable controls to view, but would not be able to measure intermediate waveforms.

All the other 'scopes have their sweep and voltage ranges in $1,2,5$ sequences, eg $1 \mathrm{mV} / \mathrm{div}, 2 \mathrm{mV} / \mathrm{div}$, $5 \mathrm{mV} / \mathrm{div}, 10 \mathrm{mV} / \mathrm{div}$, etc.

Expansion Options

Scopes with X and Y expansion options (features E and F) will have maximum sweep rates and sensitivities higher than those quoted in the calibrated range columns; expansions are typically $\times 5$ or $\times 10$. However, note that Y -expansion amplifiers usually have a lower bandwidth than the main Y amplifier, sometimes less than 1 MHz , and often decrease the accuracy as well. Variable gain controls, on the other

The Trio CO-1303D: not quite our cheapest 'scope

hand, nearly all decrease sensitivity and variable sweep controls nearly all increase sweep times (from calibrated positions).

As all the scopes have DC coupling, the bandwidth quoted is just the upper limit; in AC coupled modes, the lower -3 dB point is typically 2 Hz .

Trigger Happy

After finding the on/off switch, the next most difficult task on any oscilloscope is persuading the thing to trigger when and where you want it to. The 'scopes we've looked at have a wide variety of trigger facilities, mostly in an attempt to be user-friendly.

Firstly, in nearly all cases you can select triggering from the Y -channel or from an external trigger input. Most dual trace 'scopes allow you to select which Y -channel the triggering comes from as well. Usually the threshold signal level at which you can get any scope to trigger is equivalent to around 0.3 to 1 division on the screen. The vast majority of trigger circuits are AC coupled; DC coupled types are easier to get to trigger on slowly rising waveforms.

A level control and a slope polarity control will allow you to move the trigger point along a waveform. Some 'scopes have a single control that sets

The

Thandar
SC110A
both the level and slope polarity (eg, Scopex 4S6, Trio CS1575). A few 'scopes have trigger delay facilities, so that you can delay triggering for a pre-selected time: this is particularly useful for observing pulses with a low but regular repetition rate, because you can set the 'scope to trigger on one pulse, yet wait until just before the next pulse before commencing the sweep. One 'scope in the survey, the Hitachi V302F, achieves this in another manner, by delaying the signal slightly; however, this will only be of use on very high frequency pulses. In any case, trigger delay is extremely useful for general digital work, so that you can pick out sections of words to examine.

Many 'scopes have TV video signal filters (also called LF filters by some manufacturers) that will enable the scope to synchronise to line or frame pulse signals embedded in the video signal. The Scopex 14D10V (similar to the 14D15 in the table) takes this a stage further, by having a delay system that allows any line between number 17 and 312 to be selected and examined.

Some scopes give you the choice between bright line (or autotriggering) where the 'scope free runs in the absence of a signal, and normal triggering, where the trace is only present when there is sufficient signal to trigger the 'scope. Also available on some 'scopes is a line triggering option, where the sweep free runs all the time, with or without a signal. The battery-operated Thandar SC110A has a further, economy option, that shuts down unused sections of the scope in the absence of a signal, so reducing the average power consumption (in this mode) to 350 mW .

None of the new dual beam 'scopes in this survey are true two beam types; that is they all have just one beam that is switched between the two traces, either by chopping the beam or by switching it at the end of each sweep. Which mode is appropriate depends on the sweep rate, and some 'scopes will switch between the :wo modes automatically, depending on the setting of the sweep control (feature P); the others have manual selection of display mode (feature M).

Other Features

Some 'scopes have a component testing facility (feature T); in this mode, the scope itself applies a low frequency fusually 50 Hz or 1 kHz) signal to a component connected to it, and displays the resultant V / I graph on the screen automatically. Some waveforms for the component tester on the Cratech 3131 are shown in Fig. 1.

Oscilloscopes with an internal graticule will enable you to make parallax free measurements, because the graticule is actually on the same side of the screen glass as the phosphor.

Direct connection to the 'scope plates can be a handy facilisy on occasions, as this will allow much higher frequencies to be examined than the Y or X amplifiers can cope with. Z-modulation can also be a handy facility, particularly when the 'scope is used for less orthodox measurements.

Hanging On?

Most 'scopes are normally supplied with a short or medium persistence phosphor tube as standard. To our knowledge, the following manufaclurers offer a choice of persistences: Farnell, Gould, Hameg, Scopex. It may be worth approaching other manufacturers if you want a particular 'scope but with a longer persistence tube.

Oscilloscope probes are usually designed to feed an input impedance of 1 MO in parallel with 30 pF , with some adjustment usually available to compensate for slightly difierent impedances. Using an oscilloscope with a significantly different impedance will lead to ringing at high frequency, and possi)ly other problems. If the input capacitance is on the low side, you can always increase it, but if it's high, then you will have to use a probe that is designed specially for the input impedance.

All Singing . . .

Trio don't seem to rave been content with offering juit normal 'scope features on their CS1575, because it has the facility to do phase comparisons at the same time as observing the two Y channels. In fact, as you may guess from its relatively

(a)
(b)

'd)

Fig. 1 Above: some typical traces for the 3131; (a) when looking at a capacitor; (b) a diode; (c) diodes back to back; (d) a l-FET source to drain. Below: the beast itself in actian on a transistor.

OSCILLOSCOPES

Crotech. 3030	154	3033,3035	Single	5m to 20(12)	3	15	1//35	0.5 u to $200 \mathrm{~m}(18)$
Crotech 3131	250	3034	Dual	5m to 20(12)	3	15	1//35	0.5 u to 200m (18)
Farnell DTC12	345	DT12	Dual	5 m to 20(12)	3	12	1//30	0.5 u to 500 m (19)
4 Gould OS300	325	-	Dual	2m to 10(12)	3	20	1/128	0.5 u to 200 m (18)
Hameg HM103	158	-	Single	5 m to 20(12)	3	10	1/128	0.5 u to 200 m (18)
6 Hameg HM203-4	264	-	Dual	5 m to 20(12)	3	20	1/1/28	0.5 u to $200 \mathrm{~m}(18)$
7 Hitachi V152F	260	V302	Dual	5 m to 5(10)	5	15	1/130	0.2 u to 200 m (19)
Hitachi V203F	355	V2102	Dual	5 m to 5(10)	3	20	$1 / 130$	0.2 u to 200 m (19)
Kikusui COS5020	265	-	Dual	5 m to 5(10)	NS	20	1/130	0.2 to 500 m (20)
10 Leader LBO-310A	119	LBO-510B	Single	20 m to 2(3)	NS	4	1//40	10 Hz to $100 \mathrm{kHz}(4)$
11 Leader LBO-512B	223	LBO-510B	Single	10 m to 10(4)	3	10	1//30	1 l to 1m(4)
12 Leader LBO-514A	313	LBO-513A	Dual	5m to 10(11)	3	15	1//30	0.5 u to 200 m (18)
13 Leader LBO-522	338	-	Dual	5 m to 5(10)	3	20	1//30	0.2 t to 200 m (19)
14 Philips PM3207	385	-	Dual	5m to 10(11)	5	15	1//35	0.5 u to $200 \mathrm{~m}(9 \mathrm{x} 2)$
15 Safgan DT420	183	DT410,415	Dual	5 m to 20(12)	5	20	1//22	0.5 u to 200 m (18)
16 Scopex 4S6	148	-	Single	10 m to 50(12)	5	6	1//35	1u to $100 \mathrm{~m}(16)$
17 Scopex 14D15	230	14D10,SG315	Dual	5m to 20(12)	3	15	1//33	1u to $100 \mathrm{~m}(16)$
18 Thandar SC110A	149	-	Single	10 m to 50(12)	3	10	1//47	0.14 to $500 \mathrm{~m}(21)$
19 Trio CO1303D	120	CO1303C	Single	10 m to 1(3)	NS	5	1//35	10 Hz to $100 \mathrm{kHz}(4)$
20 Trio CS1560A	324	-	Dual	10 m to 20(11)	NS	15	1/122	0.5 u to 500 m (19)
21 Trio CS1562A	258	CS1559A	Dual	10m to 20(11)	NS	10	1/122	1 u to 500 m (18)
22 Trio CS1575	298	-	Dual	10 m to 3(6)	NS	5	1//27	0.5 t to $2 \mathrm{~m}(12)$

SECOND HAND OSCILLOSCOPES

23	Advance OS1000B	330	-	Dual	5 m to $20(12)$	3	20	$1 / / 28$	0.5 u to $1(20)$
24	Solartron CD1400	125	-	Dual	100 m to $50(9)$	5	15	$1 / / 35$	0.5 u to $200 \mathrm{~m}(18)$
25	Tektronix 545 B	100	-	Dual	50 m to NS	NS	33	NS	0.1 u to $5(24)$
26	Telequipment D63	300	-	Dual	1 m to $20(12)$	3	15	$1 / / 29$	0.2 u to $1(21)$

Note: prices in italics are for equipment that has not been reconditioned.

5 (AM)(BN)ES	CGRTUW	Rect/95/8×10	1
5 (AM)(BN)CELST	CDGIMRSTWYZ	Circ/130/8×10	2
3 BCEMNST	ACDEIMRSTVWYZ	Rect/130/8×10	3
3 BCEMNST	CDEGIPRSVWYZ	Rect/130/8×10	4
5 (AM)(BN)EST	CGKRTVWX	Rect/95/6x7	5
3 (AM)(BN)EFLST	CDEGIKLMORSTVWY	Rect/130/8×10	6
5 BCELMNST	CDEFGJOPRSVWYZ	Circ/140/8×10	7
3 BCELMNST	CDEFGJKLOPRSVWYZ	Rect/140/8×10	8
NS ABCDEMNOT	CDEFGIJKLMOPRSUWY	Rect $/ 152 / 8 \times 10$	9
NS AM	VWXZ	Circ/75/8×10	10
5 BEMS	CVWXY	Circ/130/8×10	11
5 (AM)(BN)CEFST	CEFGMORVWYZ	Circ/130/8×10	12
3 (AM)(BN)CEFLST	CDEFGIKLMORSVWYZ	Rect/130/8×10	13
5 BCEMST	CDEIOPSY	Rect/130/8×10	14
5 BCEMNST	CEGOPYZ	Circ/102/8×10	15
5 (BS)EMN	GX	Circ/100/6×8	16
3 BEMNST	CDEGHIPRSYZ	Rect/130/8×10	17
3 BELMNST	BCY	Rect/41/4×5	18
NS EN	GQVWZ	Circ/75/8×8	19
NS (AM)(BN)CET	ACDEGOPRSVWY	Circ/130/8×10	20
NS (AM)(BNS)CET	CECOPVWY	Circ/130/8×10	21
NS (BS)CEJM	CGOPUVWY	Circ/130/8×10	22

5	(AM)(BN)CDEFLST	ACDEFGIIJLOPSVWYZ	Rect $/ 130 / 8 \times 10$	23
5	ABCEFPS	ACEFLYW	Circ/130/8×10	24
3	(AM)(BN)DEFGOT	ACEFKLYW	Circ/130/8×10	25
3	(AM)(BN)DELOS	ACEFGHVWXZ	Rect $/ 115 / 8 \times 10$	26

Key to Trigger Facilities

A Automatic or preset level control
B Manual level control
C Trigger source channel selectable
D DC coupling of trigger available
E External trigger available
F HF trigger facility
G Delay facility
H Sweep hold-off facility
) Separate trigger level controls for two Y channels
L Line triggering available
M Automatic (or bright line) triggering available
N Normal triggering available
O One shot triggering available
T TV sync pulse separator available
Where facilities are bracketed together, they are only available together.

General Features

A Astigmatism control
B Operates from batteries
C Calibrator output provided
D Difference of two Y channels can be displayed
E Expansion facility on sweep
F Expansion facility on Y channel(s)
G Facility to ground Y input
H Trace locate function
1 Inverting facility on one or both Y channels
J Y output socket provided
K Internal graticule
L Illuminated graticule
M Manual selection on chopping or alternating
O Y channel turn-off facility
P Auto selection of chopping or alternating
Q Direct connection to deflection plates
$R \quad$ Trace rotation adjustable
S Sum of two traces can be displayed
T Component testing facility
\cup Variable sweep length control
\checkmark Variable Y gain control
W Variable sweep rate control
X Access to X amplifier (ie for $X-Y$ mode)
Y One Y channel can be used as X amplifier
Z Z modulation available

* = maximum value
modest bandwidth, this 'scope is specially designed for audio test work.

New Or Second Hand?

There is quite a healthy market in second hand oscilloscopes, and you can get a slightly outdated but still very useful 'scope for a fraction of the price that a new 'scope with similar specs would cost you. Newish 'scopes do turn up on the second hand market from time to time, but they don't tend to spend very long on the shelves before being snapped up. So, if you're buying a 'scope it's well worth taking a look at the second hand market.

The 'pro' of buying a second hand oscilloscope is, then, price; however, there are a few 'cons' that you should consider:

- Size: due to integration and rectangular tubes, new 'scopes are typically smaller, lighter and more economical on power (ie, don't get as hot) than older models (particularly'scopes with valves).
- Guarantees: with any new 'scope, you will get a guarantee, though the length of the guarantee will vary from manufacturer to manufacturer, and sometimes from supplier to supplier. In addition, the manufacturer has a legal obligation to provide goods of a merchantable quality. With a second hand 'scope, you may get a warranty for up to a year if the instrument has been fully reconditioned, or no warranty at all if you're buying the 'scope "as seen". We'd advise that unless you know what you're doing, you should steer well clear of the latter option.
- Parts: older scopes will probably be more unreliable and more easily damaged by a knock than new 'scopes, so you could find yourself having to scour the country while searching for a vital yet elusive bit.
- Information: though good dealers will do their best to give you reliable information, you're unlikely to get a glossy brochure to take away and peruse at your leisure. So, to an extent, unless you are already well acquainted with instruments of that type, you will possibly be purchasing an unknown quantity.

To give you an idea of what you can get second hand, we've included in the table a few 'scopes that do turn up on this market fairly often. However, dealers can't predict what their stocks will be, and that's why we can't give you a full break-down of what's available; the only way is to go to (or telephone) a dealer for up-to-date information.

The Gould Advance OS1000B is

The Trio CS-1559A (left) and the CS-1662A (right): spot the difference.
a conventional 'scope with fixed features; the other second hand 'scopes are all modular, ie you can buy different Y and, in the case of the Solartron and Telequipment, different X modules, so the actual specs you get depend on what modules the 'scope you buy has. And a word of warning: we'd like beginners to beware the Tektronix, as you need at least a pilot's licence to fly that thing (go and look at one and you'll see what we mean).

Similar Models

(all prices ex VAT)
Crotech 3033 (287) rechargeable battery-powered version of the 3030 , but without component tester
Crotech 3035 (174) similar to 3030 , but with lower bandwidth (10 MHz), larger screen (130 mm) and calibrator output
Crotech 3034 (370) similar spec to 3131, but rechargeable battery powered and smaller screen (95 mm) Farnell DT12-55 (235) as DTC12, but without component tester, sum and difference Y modes, and a slightly lower accuracy (5\% on Y deflection
Farnell DT12-14) (255) as DTC12 but without component tester
Hitachi V302F (350) similar to V152F, but with 30 MHz bandwidth and signal delay line
Hitachi V202F (220) as V203F but without delay sweep facility
Leader LBO-510B (164) vertical amplifier has same specs as LBO-310; rest as LBO-512 (tube not identical but similar)
Leader LBO-513A (263) single trace version of LBO-512
Safgan DT-410 (164), Safgan DT-415 (172) 10 MHz and 15 MHz versions of the DT-420
Scopex 14D10V (260) similar to 14D15, but lower bandwidth (10 MHz) , $2 \mathrm{mV} /$ div max. sensitivity, TV delay system (see text) and no Z modulation
Scopex SG315 (270) as 14D15, but with integral function generator
Trio 1303G (161) as 1303D but with $1.8-54 \mathrm{MHz}$ two-tone generator

Trio CS1559 (235) single trace version of the CS1562A

Addresses

Crotech Instruments Ltd, 5 Nimrod Way, Elgar Road, Reading, Berkshire RG2 OEB
Farnell Instruments Ltd, Sandbeck Way, Wetherby, West Yorkshire LS22 4DH
Gould Instruments Ltd, Roebuck Road, Hainault, Essex IG6 3EU
Hameg Oscilloscopes Ltd, 74-78 Collingdon Street, Luton, Bedfordshire LU11 1RX
Hitachi: Reltech Instruments, Coach Mews, St lves, Huntingdon, Cambridgeshire
Kikusui: Martin Associates (see secondhand 'scopes)
Leader: Thandar (see below)
Philips Instrument Dept, Pye Unicam Ltd, York Street, Cambridge CB1 2PX
Safgan Electronics Ltd, Omega Road, Woking, Surrey GU21 2PX
Scopex Instruments Ltd, Pixmore House, Pixmore Avenue, Letchworth, Herts SG6 1HZ
Thandar Electronics Ltd, London Road, St lves, Huntingdon, Cambridgeshire PE174HJ
Trio: House of Instruments Ltd, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB 10 1EE

Suppliers of secondhand oscilloscopes

Carston Electronics Ltd, Shirley House, 27 Camden Road, London NW1 9NR (Tel 01-2675311)
Martin Associates, Parthia, Beckhampton, Nr Marlborough, Wiltshire SN8 1JQ (Tel 06723-219)
P F Ralfe (Electronics), 10 Chapel Street, London NW1 (Tel 01-723 8753)

Stewarts of Reading, 110 Wykenham
Road, Reading, Berkshire RG6 1PT (Tel 0734-6804)

The $\sqrt{\text { copex }}$ SG315

A new range of test capabilities
Combined Oscilloscope and Function Generator in one Precision Instrument

SCOPEX Instruments Limited

Pixmore House, Pixmore Avenue, Letchworth, Herts. SG6 1HZ Tel: (04626) 72771 Telex: 825644

The scope
15 MHz bandwidth 5 mV sensitivity Timebase range $1 \mu \mathrm{~s}-100 \mathrm{~ms} / \mathrm{cm}$ $8 \times 10 \mathrm{~cm}$ screen vertical display $A+B$ B invert $X-Y$ dlsplay,
X deflection through A channet for max. sensitivity
Normal TV and ext. trigger

The Function

Generator
$0.2 \mathrm{~Hz}-250 \mathrm{KHz}$
Sine
Square
Triangular
DC offset variable
Duty cycle variable
Output 20v,
600 ohms
20 dB attenuator plus variable
VCF input
TTL sync output

Function Cenerator can be supplied separately for you to fit to any Scopex Dual Trace scope, just state type when ordering,FG4. FG'14/25.
Function Cenerator also available in an instrument case, FC1.

Prices:

SG315- $\mathbf{£ 2 9 5}+$ VAT. Price includes Probes and Mains Plug and carriage UK mainland.
Function Cenerator for mounting on scopex Dual Trace Scopes: FG4. FG14/25-£69+VAT Function Cenerator: FG1 $\mathbf{£ 7 9 + V A T}$

ULP. 1 M EM O RY LOGICPR

JUST OUT

OUR NEW CATALOGUE

Presented with a Professional Approach and Appeal to ALL who require Quality Electronic Components, Semiconductors and other Accessories ALL at realistic prices.
There are no wasted pages of useless information so often included in Catalogues published nowadays. Just solid facts i.e. price, description and individual features of what we have available. But remember, BI-PAK's policy has always been to sell quality components at competitive prices and THAT WE STILL DO.

CIRCUIT BOARD ELECTRONICS

THE NEW EXCITING

NAME IN PCB'S

FOR THE HOME ENTHUSIAST

COMPARE OUR PRICES

FOR COMPLETE PRICE LIST

WRITE TO
CIRCUIT BOARD COMPONENTS
55 MURDOCK ROAD
BEDFORD
TEL. BEDFORD 214219

ALL THESE FEATURES PROVIDED AS STANDARDI

High speed 24 K byte extended basic interpreter Powerful TMS9995 16 bit microprocessor 48 bit floating point gives 11 digit accuracy High resolution (256×192) colour graphics Memory-mapped video controller for 3D simulation Independent 16 K video RAM
16 colours available on the screen together in Graphic mode
Fast line drawing and point plotting basic commands High speed colour shape manipulation from basic Full textural error messages
String and Array size limited only by memory size Real time clock included in basic
Interval timing with 10 mS resolution via TIC function Named load and save of basic or machine code programs Auto-run available for any program
Powerful machine code monitor
ULTRA POWERFUL 24K BASIC

COMMANDS	LOG	KEY	?	RANDOM	SGET
RUN	SOR			ENTER	MAG
SIZE	SYS	STATEMENTS	UNIT	LIST	TOF
CONT	TIC	IF	BAUD	PURGE	TON
MON	SQN	ELSE	CALL	NUMBER	DIM
	BIT	ON	DATA	RENUM	DEF
FUNCTIOAS	CRB	GOTO	AEAD	BOOT	NEW
ABS	CRF	GOSUB	RESTOR	GRAPH	ENO
ADP	MEM	POP	RETURN	TEXT	BIT
ASC	MWO	REM	STOP	PLOT	CRB
ATN	LEN	FOR	TIME	UNPLOT	CRF
SIN	MCH	NEXT	WAIT	COLOUR	MEM
COS	POS	ERROR	SAVE	CHAR	MWO
EXP	COL	INPUT	LOAD	SPRITE	BASE
FRA	MOO	PRINT	ESCAPE	SHAPE	
INT	RND		NOESC	SPOT	

[^0]Assembler \& Disassembler Auto line numbering facility Full renumber command
Simple but powerful line editor Buffered i/o allows you to continue executing the program while still printing
Flexible CALL statement allows linkage to machine code
routines with upto 12 parameters
Basic programs may contain spaces between keywords to make programs readable without using more memory 64 K RAM using latest technology 64 K DRAMS Over 34 K bytes available for basic programs even when extended basic includes IF-THEN-ELSE
Supporis up to 16 output devices
Screen and cassette included as standard
Supports bit manipulation of variables from basic Error trapping to a basic routine included Basic supports Hexadecimal numbers

To: Powertran Cybernetics, Portway Industrial Estate,

Andover, Hants. SP10 3NM. 026464455
Please send me:
I enclose a cheque for
Please charge to my Access/Barclay Card no
Name
Address

TECH TIP SPECIAL

Eight Traces On A Single Trace Scope

Tore Solheim, Norway

This simple and inexpensive circuit can display up to eight traces on a single beam oscilloscope. Even though the capacity of such a simple circuit is limited, it will be fine as part of a home workshop. The frequency response is DC to 100 kHz with the circuit shown, and the scope sensitivity should be OV5 per division, preferably DC-coupled.

IC1 is the clock oscillator: SW1 selects chopped or alternate mode. RV1 allows the frequency to be adjusted over the range $10-30 \mathrm{kHz}$ or $200-700 \mathrm{~Hz}$ depending on the setting of SW 1 . The counter IC2 controls the two analogue multiplexers IC3, 4. One, two, four or eight traces may be selected using SW2, which couples one of the counter outputs back to the reset pin to reset the IC after the desired count length. The analogue inputs of IC3 are connected to a voltage divider, R3-9, and the output is connected, via R10 and RV2, to the negative input of the op-amp, IC5. This allows the offset voltage of the op-amp to be adjusted over a wide
range. The trace changes position by changing the offset voltage, which has no effect on the gain of the opamp. RV2 allows the voltage offset between the upper and lower traces to be adjusted from $\pm 0 \mathrm{~V} 3$ to $\pm 3 \mathrm{~V}$, ie RV2 is the position control. Separate controls aren't needed here. The eight channel inputs are connected to the analogue inputs of IC4.

The circuitry around Q1 and SW3 is to allow external triggering of the scope. This circuit isn't strictly necessary, but will often give a better display. The whole circuit is designed

Cheap Photodiodes

Donald Hopkins, Tarves

This circuit was evolved using an LED in place of a photodiode. Diode D1 can be any run-of-the-mill green or yellow LED. Red LEDs do not work, presumably because of their spectral response.

When the light source to D1 is interrupted, its reverse leakage current decreases sufficiently to cause the Darlington pair Q1, Q2 to switch off. This in turn causes the FET to conduct giving a pulse at the output.

for a $\pm 6 \mathrm{~V}$ power supply, and the inclusion of IC3, 4 means that $\pm 7 \mathrm{~V} 5$ should never be exceeded.

Why is IC5 wired in the inverting mode, when the non-inverting mode would give better results? The offset adjustment of a non-inverting lowgain amplifier using the method shown here would affect the gain. Also, the inputs should not be left open-circuit as this will cause notches on the traces. The inputs should therefore be connected to an inverting amplifier, preferably with an attenuator due to the low sensitivity.

Adding Preset Channels To A Tuner

A. Cassarrubios, London

The following circuit is a modification I made to my Audiophile FM Tuner (ETI January 81). My main design concept was to increase the number of preset channels to 10 but not increase the number of pushbuttons on the front panel, and if possible reduce the number to one. Some form of indication of which channel is selected must also be
provided.
The operation of the circuit is simple to understand and is as follows. IC1 along with R1 and C1 provide switch debouncing to produce clean pulses for $1 C 2$'s clock input. IC2 is a decade counter with 10 decoded outputs. The outputs from IC2 are taken to PR1-PR10 which along with R2-R11 provide a potential divider from which to tap off the required tuning voltage. The tuning voltage ranges from about 1 V 5 to about 10 V with the values shown, which is adequate for most tuners. Diodes D1-D10 stop any interaction between channels. The tuning
voltage output is taken from the cathode end of these diodes and is fed to the varicaps on the tuner.

Diodes D11-D25 are a decoding matrix for IC3, which is a sevensegment decoder driver. When pin 11 of IC2 is high, there are no logic signals on any of the binary inputs of IC3, so a zero is displayed. The logic signal from pin 11's output drives Q1, which in turn illuminates the figure ' 1 ' in the display. PR11 is set so that the intensity of the figure ' 1 ' matches that of the seven-segment display.

The circuit is relatively easy to construct and component layout is not critical.

Car Radio Aerial Preamplifier

Neil Dobson,
 Newcastle-Upon-Tyne

This circuit is a very high gain, high frequency amplifier using two NPN transistors in cascode. The input is taken via SK1 and C3 to the base of Q2. The amplified signal (between 200 kHz and 200 MHz) is passed to the base of Q1, whish is connected in the common base mode, giving a very good gain at high frequencies.

R1-3 set the bias voltages for the two transistors, while R4 and C4 provide negative feedback and help increase the bandwidth of the stage.

Capacitor C1 and C7, along with R6, are the supply decoupling components and also help to filter out any noise generated by the engine. Note that L 1 is a radio frequency choke, which can be made by winding 28 turns of 22 swg copper wire on resistor R5; this will give a lower gain on long and medium wave, but as the desired frequency increases (ie VHF) the reactance of L 1 will increase,
allowing more of the amplified signal to pass through capacitor C6.

The two diodes connected across the input socket are to protect the transistors against static discharges and overloading. If it is found that the gain is too high, then by changing C4 to, say, 500 pF , the gain can be' reduced to a lower level.

The amplifier has been in use for over five months now and has proven to be very stable and surprisingly quiet as regards adding any noise to signals in low signal-strength areas especially on VHF.

High Speed EightBit A-to-D Converter

Michael Jones, Dorset

An analogue-to-digital converter is a useful device for any computer system. The circuit shown operates at up to 100,000 conversions per second - making it ideal for use with the full range of audio frequencies. As shown, the circuit has just one channel; more may be added by using more converter ICs (for maximum speed) or using an analogue multiplexer, such as the CD4051, which has eight channel inputs selectable under software with a three bit output port. If it is to be used at full speed, machine code programming is essential.

The given circuit will work on any Z80A system running at 4 MHZ without automatic I/O cycle wait state insertion. It will work with slower clock frequencies with corresponding increases in conversion time. Decoding occurs on port OFFH only; this may be changed by placing inverters on the appropriate input to IC9. There is no need for a status port since the circuit is constantly converting and latching the result in IC6. It returns the result of the most recent conversion when read, unless it has already been read, in which case it inserts wait states until the current conversion is complete. In this way continuous reading will guarantee one result per 10 microseconds. It is not possible, because of time constraints, to use polling software. In addition, this arrangement permits a DMA device to carry out the transfer in the background. By adjusting the clock reduction circuit around IC3 it should be possible to cater for frequencies of 2 MHZ or less, but still having 100,000 conversions per second.

Circuit operation is fairly simple. ICs 8 and 9 decode the input port, so enabling the tri-state latch (IC6), the WAIT gate (IC7b) and the wait latch (IC1). The latter ensures that WAIT is only issued when there is no new data. IC2a restarts the conversion as soon as possible after the end of the previous conversion. IC7a and IC4b latch the data into IC6 after it has settled. The actual converter (IC5) accepts an input in the range $0-2 \mathrm{~V} 55$ in 10 mV steps, continually outputting its best estimate on pins 18 through 11 using successive approximation (binary search). Care should be taken that the input doesn't exceed 3 V 5 or become negative.

Expander Gate

w. K. Todd, Colchester

This circuit is a simple expander gate and can be used to reduce the surface noise of records and tapes. It is based around an NE571 compander chip, used as an expander below the threshold set by the red LED. The LM381 amplifies the input signal by 40 dB ; this is rectified in the 571 by a current mirror circuit and is smoothed by C4. When the voltage reaches the forward voltage of LED1 it draws current and hence limits the current to the gain cell. This causes linear operation above the threshold.

For stereo operation the LEDs should be matched for forward voltage. The circuit as shown is designed for 15 V ; if other supplies are to be used R2 will have to be changed. Better DC biasing around the op-amp in the 571 will improve the DC offset.

Gray, Binary And Radix Code Manipulation

L. N. Owen B.Sc, Beaulieu

When working with encoders it is desirable to use a coding system which changes only one bit at a time - Gray code is designed for this purpose. However, for manipulation Gray code is not very convenient and has to be converted to another form; this usually being binary, one's complement or radix. The modules shown provide simple means of converting from one code to another by using standard TTL hardware. Using these circuits, code manipulation to and from any of the above conventions is possible. In many cases the speed of operation has considerable advantages over that of microprocessor software-based code conversions.

Battery Back-up Supply For RAM

R. Metcalf, Sheffield

Using a rechargeable 6 V lead acid battery and the voltage control circuit shown here, data can be held in a memory for a considerable length of time (governed only by the storage capacity of the battery). Nicads have a comparatively small Amp-hour rating for their package size and recharge rate.

An IC regulator would find the 1 V voltage margin between input and output too small for reliable operation. In this circuit the 741 op-

Running LEDs From A 1V5 Battery

Andrew Marshall, Nottingham

Most LEDs require operating potentials of between 1 V 6 and 2 V , but the circuit shown here enables light emitting diodes to operate from a 1 V 5 bat-
amp sees a fixed 2 V 7 on its inverting input and subtracts the difference between this and the non-inverting input from its output. The ratio, once set by the preset, remains constant.
tery. The circuit uses a 'voltage doubler' and an astable multivibrator. Germanium transistors and diodes are used, as these have a smaller forward voltage drop across p-ri junctions than comparable silicon devices. (This is to increase the output voltage and enable the circuit to operate at lower input voltages.)

To operate the circuit to make the LEDs appear on continuously C1 and $C 2$ should be chosen to be 47 nF , and $C 3$ and $C 4$ to be 10uF. To make the LEDs flash alternately, C1 and C2 should be around 100uF and C3 and C4. should be about 1000 uF . To operate only one LED omit the circuitry within the dotted box.

Although TIL. 209s are indicated in the circuit diagram, other LEDs may be used.

Date Display In European Format Using American Digital Clock Chips

R.C. Callister, Cambridge

Many hobbyists will have built digital clock/calendars based on American LSI circuits. These invariably display the date in American format (month-day) rather than the day-month preferred in European countries. The following simple circuit allows inversion of the month and day displays on a typical chip (the CT7001) without affecting the time display, even though the latter is multiplexed on the same digit lines.

The trick is to use the am/pm indicator output signals to tell whether the time or date is currently being displayed. When the time is being output either the am or pm signal is active (high); when the date is output both are inactive (low). Thus the am/pm outputs may be ORed together and used to switch a four pole data selector. A single CMOS $4019 B$ chip provides all the required logic except for the OR gate and one inverter. If spare inverter and OR gates are not available on the clock board, they may be replaced by a transistor and diodes as indicated.

When the output of the OR gate

is high (time displayed) the data selector outputs follow the A inputs; when the OR gate output is low they follow the B inputs. The A and B iriputs are interconnected so that the digit pairs D1/2 and D3/4 are interchanged when the data selector switches.

ZX Graphics Board Modification No. 1

Simon Gamble, Coventry

This is a modified circuit diagram for the ETI ZX Graphics Board. With the

Foolproof Combination Lock

Ben S. Meyer, South Africa

This lock really is foolproof, as all the keys except the correct one will cause a reset. The problem with other types of lock is that only the dummy keys will cause a reset. All voltages given are for a 10 V supply.

A power-on reset is provided by C1. When reset, pin 3 of IC1 is at 10 V . When code key ' 0 ' is pressed, the voltage across C 1 rises to above 8 V . This triggers IC2a whose output clocks IC1. This causes pin 3 to return to 0 V , and pin 2 goes high. Pressing the other keys repeats this action until pin 11 goes high.

Pressing a dummy key will cause the voltage across R2 to fall to zero, while pressing a code key out of order will cause a drop to $1 \mathrm{~V} . \mathrm{C} 1$

addition of the two NAND gates as shown, the character RAM appears in the memory map at both 7680-8191 and 15872-16383. However, when the switch is set to 'normal', the RAM only appears at 15872-16383. This means that the graphics set can be PEEKed from ROM and POKEd straight into the character RAM without having to be loaded into the user RAM first and does not require switching midway through the setting up program.

If R 1 is removed from the ETI board and placed together with IC3 on a separate piece of Veroboard, then connect the output of IC3b to the connection originally used by the switch on the ETI board. No further
discharges via R3 and as soon as the voltage at pin 2 falls below the 3 V 3 reference, IC 1 is reset by a high at pin 15.

All the output pins except the one currently switched high by the count are held at ground by IC1. This causes a problem, as it would be impossible to advance the counter since the respective switch would be grounded before it could be released and so reset the count to zero. C1 holds the charge on it during clocking, long enough for the key to be released. The diode prevents any discharge through R2. R3 discharges C 1 and provides a bias path for the diode. The value of the capacitor can be altered to suit your needs, but R3 is a part of the voltage divider $\mathrm{R} 1,2,3$ and its value cannot be changed.

R4-12 are current limiters which prevent damage to IC1 if more than one key is pressed. To reset the system after the output has been enabled, just press any key.
changes need to be made to this PCB and it can then be sold at a later date in pristine condition! Note that the switch functions are now reversed.

Incidentally, when PEEKing from the ROM, if the value PEEKed is subtracted from 255 and the remainder is POKEd to the character RAM, then on switching to 'user' the whole screen will be inverted except for the border.

Four-digit Multiplexed BCD to ZX81 Adaptor

W.K. Todd, Colchester

This device interfaces a four-digit common-cathode multiplexed BCD output device, such as the 7217 counter IC, with a ZX81. The circuit is

based around IC1, a 74LS670 4×4 register file. The digit select inputs address the Write Address pins, WA and WB, via diodes D1-4. The Write Enable pin, $\overline{W E}$, is pulled low by diodes P5-8 when any digit is selected.

The ZX81 address decoding is performed by IC3a, b and IC2d in the same manner as the A-to-D interface in ETI, January '83. When an address between 12288 and 16383 is PEEKed, the output of IC2b goes low and enables the outputs of IC1 via the RE pin: the data is outbut onto the data bus on lines D0-3. Data lines D4-7 are pulled low via the diodes D9-12, allowing the computer to read the data bus directly. The Read Address of the register file is driven directly by the address lines AO and A1. IC2a disables the internal ROM via D13 when the device is being PEEKed.

Common anode devices could be used with this circuit if the digit select lines were driven by transistor inverters.

Digital Audio Switch

J. W. Harris, Macclesfield

The circuit uses a CMOS 555 which oscillates at a frequency determined by the equation:

$$
F=\frac{1.46}{C 1(R 1+R 2)}
$$

The output from IC1 is decoded by IC2, a decade counter divider, which is activated by PB1. When PB1 is pressed, IC2 produces a positive voltage at one of its four outputs, each of which controls two of the eight switches in ICs 3 and 4, and an LED circuit.

When a switch control goes high, the corresponding audio input is selected, and an LED lights to indicate which input has been selected.

Output 5 on IC2 is connected to RESET, so when pin 10 of IC2 goes high the decoder resets and the next pulse from IC1 selects input A.

The chosen values for R1, R2, and C_{1} produce a frequency of 4 Hz , so IC2 selects each audio input and then resets in 1 second. If PB1 is kept pressed, the input will change every quarter of a second.

ICs 1 and 2 are powered from +12 V , and ICs 3 and 4 are powered from +5 V and -5 V .

Logic State Analyser

L. V. Barker, Swansea

When testing a logic circuit, it is sometimes necessary to know the simultaneous state of several nodes. A logic probe or oscilloscope will not easily tell this and the best solution is usually a logic analyser. These are, unfortunately, rather expensive; a
solution presented here is a logic state analyser. This is an eight bit latch controlled by an input from the circuit under test and easily expandable to more input lines.

The heart of the circuit is the 74LS373, IC3: an eight bit latch. It is controlled by pin 11; when this pin is high (logic 1) the output data is equal to the input data, but when it is taken low, the device latches the data then on the input pins, thereby remember-

ing it. In this application the input pins are connected to the circuit under test and the outputs drive light emitting diodes LED3-10.

IC1 is a D-type flip flop used to control IC3. In its reset state, achieved by pressing PB1, Q1 is at logic 1 as is IC3 pin 11. The LEDs now follow the input data. When a rising edge appears on IC1 pin 3, $\overline{\text { Q1 }}$ goes to logic 0 causing the data on the input pins to be latched. It stays in this condition until PB1 is pressed. LED1 and LED2 give readouts on the state of IC1.

IC2 is a quad exclusive-OR gate; IC2c is used as either a buffer or as an inverter depending on the position of SW1. Three triggering modes exist; these are:

1) SW1 in position 1: latch on rising edge on control input
2) SW1 in position 2 : latch on falling edge on control input
3) SW1 in position 3: latch when PB2 is pressed

To increase the number of channels, more 74LS373 devices can be connected, with the pin 11 of each connected to pin 6 of IC1. The prototype used five devices giving 40 channels of input.

ZX Graphics Board Modification No. 2

M. Austen B.Sc, Hatfield

I must congratulate G.N. Hill on an extremely simple and clever circuit for obtaining user-defined graphics from a ZX81. However, I was a little disappointed that the idea had not been thought out a little more carefully to provide an improved circuit. The problem with the published circuit is that of having to first read the character data from the ROM and store it in memory, and then enable the character RAM before writing the stored character data into this RAM. A slightly different circuit will allow data to be written to the RAM without it being 'selected', and without causing a bus contention with the ROM. The revised circuit has a lower component count (by one), but does require two further connections to the ZX81 circuit board.

When the address lines A9, A10, A11 and A12 all go high, the output of IC1a will go low. If ROMCS from the ULA is low also, the output of IC2a will be low too. With the switch in the position shown, the output of IC2c (and hence RAMCS') will go low only if a write operation is being performed by the CPU. The output of IC2d, and hence ROMCS', will only go low if a read operation is being carried out. With the switch in the alternative position, RAMCS' will go low whenever the output of IC2a goes low, and ROMCS' will not go low when IC2a goes low.

This means that when the switch is in the disable position as shown, the character ROM can only be read from, and the character RAM can only be written to. With the switch in the enable position, the character ROM is effectively disabled and the character RAM can be read from and written to.

Therefore, to transfer the character data from ROM to RAM, simply read from the appropriate location and then write the data to the same location. When the RAM is then enabled, it will contain the required character data. The BASIC program given will illustrate this.

10 FORI = 7680 TO 8191
20 POKE I, (PEEK (I))
30 NEXT I

Keyboard AutoRepeat Circuit

G Franklin, Mid-Glamorgan

This circuit is intended for use with keyboards that do not have a 'repeat' facility. It is not only simple to install, but gives the user the repeat facility on every key on the keyboard.

Basically, the strobe line from the keyboard activates the monostable (IC2); this disables the output of the 555 and prevents its pulses reading the new strobe line. After approximately 3 seconds, the output of IC2 changes state and the signal from the

555 is passed on to the new strobe line. If the key is released before the monostable finishes its timing period, only one character will be sent. For a key press of longer than 3 seconds, approximately 10 characters per second will be entered (the frequency being set by the 555 , used in its astable mode). The circuit is shown for use with a positive-going sfrobe signal: for a negative strobe, samply move the last NAND gate (used as an inverter) to the input strobe line.

Connecting the circuit into your computer requires the removal of the current strobe line from your keyboard and re-routing it through the circuit.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ITI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be as clear as possible and the text should be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International,
145 Charing Cross Road, London WC2H OEE.

MEMDPAK 1 BK For those just setting out on the road to

 real computing, this pack transforms the $\mathrm{ZX81}$ from a toy to a powerful computer. Data storage, extended programming and complex displays become feasible.For even greater capacity, memory packs can be added together $(16+16+16 \mathrm{~K}$ or $16+32 \mathrm{~K})$. The MEMOPAK 32 K and the MEMOPAK 64 K offer large memories at economical prices.

MEMOIECH

MEMOCALC

The screen display behaves as a 'window' on a large sheet of paper on which a table of numbers is laid out. The maximum size of the table is determined by the memory capacity, and with a MEMOPAK 64 K a table of up to 7000 numbers with up to 250 rows or 99 columns can be specified. Each location in the table can be either a number which is keyed in or a formula which generates a number. Every time the command to 'calculate' is given, all the formulae in the table are re-evaluated. Spreadsheet analysis started as an aid to cash-flow analysis, but this powerful tool has now been generalised and MEMOCALC with its special ability to perform iterative calculations is invaluable in the performance of numerical tasks.

The Memotech approach to microcomputing is to take the well-proven' and popular 2×81 as the heart of a modular system. This small computer houses the powerful Z80A processing unit and acts as the central processor module through which the MEMOPAKS operate.
Memotech has a reputation for professional quality, producing units which are designed to fit perfectly, to look well-balanced, and to work efficiently and reliably.
The modular approach gives 2×81 owners the freedom to design the system they really need. Furthermore, the intercompatibility of the modules ensures that later additions will click straight in, to give you a system that grows with your ambitions and abilities.
As one example, a system with 16 K of memory and MEMOCALC is all that is required to perform sophisticated numerical calculations giving the same results as a computer at 10 times the price. The problem may be as complicated as a cash flow or production schedule, or as simple as household accounts or pocket money budgeting. If the bank manager wants to see the cash flow, then a single print instruction to the Centronics I / F will give a printout which is more than acceptable to any bank.
The example system which is shown, on the other hand, would satisfy the needs of someone who wanted to enter data via a light-touch keyboard, construct and label graphs, and then copy the screen to an 80 -column printer. Only 16 K of memory is used here but with additional memory, more than one video page can be stored. Up to 7 successive pages can be displayed cyclicly to give animated displays.

memopak hrg

 This pack breaks down the constraints imposed by operating at the ZX81 character level and allows high definition displays to be generated. All 248×192 individual pixels can be controlled using simple commands, and the built in software enables the user to work interactivelv at the dot, line, character, block and page levels. Scrolling. flashing and animation are all here.
MEMOPAK Centronics I/F
 The BASIC commands

LPRINT, LLIST and COPY are used to print on any
CENTRONICS type printer. All ASCII characters are generated and translation takes place automatically within the pack. Reverse capitals give lower case. Additional facilities allow high resolution printing. The full capabilities of your printer are now under the control of the $\mathbf{2 \times 8 1}$

MEMOPAK Z80 Assembler This click-in EPROM
based pack accepts standard 280 assembly language mnemonics to allow you to write faster and more compact programs. It has its own ADD, EDIT, LIST. ASSM and QUIT functions, the editor allowing insertion, deletion, automatic line renumbering and error checking. Source code and object code listings can be displayed and printed in decimal or hex format.

MEMOTEGH KBYHORH The light-touch positive stop
keys of this elegant typewriter-pitch keyboard allow you to work faster, more accurately and more confidently. To speed you along we have added an extra SHIFT key to the array at top right. The keyboard is attached by a cable to the Keyboard Buffer which fits in amongst your other Memopaks or straight onto the back of your $\mathbf{Z X 8 1}$.

To ensure that your expectations are realised, care is teken at avery stage to design features into the system to anticipate your frustrations and to forestall them. For example:
AI Memories are cumulative e.g. 16 K and 32 K can be added to the NEMOPAく 16 K or even to the Sinclair 16K RAM pack.
BI The HR 3 firmware allows, commoniy used constructions (such as scrolling, shading and labelling graphs), which might otherwise be byyond the user's programming capabilities, to be evoked by a lew simple commands.
C) The Centronics I/F converts 2×81 character codes into ASCII and extends the print line to the width of the printer, still using the LLIST, L?RINT and COPY commands.
Looking forward, Memotech will continue to back the 2×81 through $1 \ni 83$ with fast storage devices, pressure sensitive electronic drawing boards ard more software packs including a wordprocessor end an RS232 interface.
MEMOPAKS may be ordered by post (cheque, Acces̀s/Barclaycard quoting number) or by telephone. Please make cheques payable to Memotech Lid. and please include $£ 2.00$ per unit for packaging and postage inland loverseas $£ 3.00$).

Memotech products are available from major branches at W.H. Smith and John Menzies.

We want to be sure you are satisfied with your Memojpak - so we offer a 14 -day money back guarantee on all our products.

MEMOTECH

MEMOTECH LIMITED, WITNEY, OXON. OX8 68X TELEPHONE (0993) 2977 TELEX 83372 MEMTEC G

PORTABLE INDUCTIONLOOP

A few months ago we highlighted the problems of the hard-ofhearing when attending public performances. Now Vivian Capel shows how a do-it-yourself system can be easily implemented for small halls.

The problems of the hard-ofhearing when trying to listen to a public address system in hall, and how these can be eliminated by the installation of an induction loop was fully covered in the article contained in the February 83 issue of ETI. For the benefit of readers who might have missed it we will give a brief recap.

When listening through a hearing-aid hall acoustics are emphasised, as also are nearby audience sounds. This makes the PA sound almost unintelligible. For the past few years, most NHS hearingaids have an internal induction coil which can be switched in in place of the microphone: this enables the user to pick up electromagnetic fields directly from some telephones and so avoid the distortion of double conversion from electrical signal to sound and from sound back to electrical signal. The switch on the hearing-aid is labelled T (telephone) and M (microphone).

If an induction loop is wired around the hall and fed from the PA system, any such hearing aids switched to T will pick up the programme free from acoustics and all extraneous noises. The design of a loop depends on the area to be enclosed, total length of loop wire,

PARTS LIST

[^1]resistance of suitable cable, number of turns in the loop, available output impedance of amplifier and output power available. Optimum vertical displacement from the hearing aid is $3-4$ feet, which for a seated audience puts it at skirting board or floor level. This gives a fairly even field intensity over the whole loop area. Wiring over obstructions such as doorways has little effect, nor do intervening objects such as chairs, even if these are metal framed.

In short, the induction loop is an ideal method of enabling the hard-of-hearing to hear perfectly via their own hearing-aids and with few problems in design or installation.

Having enjoyed the facility in halls where loops are installed, disappointment has been expressed by some hearing aid users when attending meetings or functions in premises not so equipped. Where the halls are hired for one-off occasions, installing a loop is hardly practical, especially in a large auditorium unless of course it was
to remain permanently thereafter. Even then, the installation would take time, and the design some advance measurement and calculations.

Loop the Loop

A solution which has been devised and proved highly successful is that of a portable loop of fixed length, which is run to enclose a selected block of seating. Although the whole hall is not covered, the block is large enough to be more than adequate to serve those needing it along with their friends and families, thus avoiding segregation.

The loop is housed in a Portabloc cable drum (or similar) and consists of 30 yards of threecore 16/0.2 mains cable. One end is connected to a socket on the side of the drum, while the free end is terminated in a matching plug. When the plug is inserted in the socket, the three cores are connected in series to form a threeturn loop.

Fig. 1 Circuit diagram for the portable induction loop.

Fig. 2 Assembling the self-contained loop. The socket and the LED are mounted on the central plate on this side, the terminal block for the 100 V line connection on the other.

The 30 yards of cable is about the maximum that the drum will hold, and when paid out will give a loop of some 28 yards circumference. A couple of yards must be allowed going to and from the drum. The cable is just run around the desired area, laying it on the floor. If required it can be secured to a wooden floor at certain points with masking tape to keep it in place, especially the ends leading to the drum which should be placed at a convenient nearby position. It is not usually necessary to tape it excessively.

A feature of this arrangement is the flexibility of the shape of the area served. On average, seating rows are a yard apart, and along the row there are two seats to the yard. So if the loop is formed into a square with 7 -yard sides, it will serve seven rows of 14 seats each, a total of 98 seats. Another configuration could be a 10×4 yard rectangle which would enclose four rows of 20 seats. Of course, any combination up to the maximum loop length can be accommodated. There need be little cable left over, as each extra row takes only a further 2 yards approximately, irrespective of its length. So the number of rows can be selected to take almost the full length of cable.

Got A Match?

Loop resistance is 3.2 ohms total. This might appear to present a matching problem for the amplifier: however, there is a simple solution. As the loop will be fed from a PA amplifier, it is assumed that the output will be 100 V line; so the matching is done by a 100 V transformer. The 10 watt MT 10 unit supplied by Eagle will just fit inside the hub of the Portabloc drum.

BUYLINES

Abstract

There are some specialist items in this project, but nothing that could cause great difficulties. The cable drum is supplied by RS Components, order code 488-668, but as RS do not supply to the public you will have to buy this through a local component supplier or radio shop. Eagle, too, will not supply small orders direct to the public, but if you ring them at 01-902 8832 they will give you the address of your nearest local distributor. The mains cable can be expensive if bought by the yard at a local shop; in addition to the profit there is also a mark-up for the cutting wastage. It will be cheaper to buy a 50 metre drum and keep the extra for something else.

There are two taps on the secondary, 16 ohms and 8 ohms, but it is often overlooked that taking the output from between the 16 and 8 ohm taps does not, as might be expected, result in an impedance of a further 8 ohms but a much lower value.

When the tappings are accurate, the impedance between the 16 and 8 ohm connections is a surprising 1.37 ohms. In practice, the tappings are often higher than the nominal value. With the transformer used for the prototype they measured 8.7 and 22.5 ohms. The formula for calculating intertapping impedance is: $Z=\left(V^{\prime} Z_{1}-\sqrt{ } Z_{2}\right)^{2}$
where Z is the unknown impedance, $Z_{\text {, }}$ is the impedance of the higher tap and Z_{2} the impedance of the lower one.

Remarkably, the value for the transformer used worked out to 3.2 ohms, an exact match for the loop resistance. However, any impedance from this value down to the 1.37 ohms would drive the loop satisfactorily. This method of obtaining low impedance outputs by intertapping connection is a useful one which could be applied for driving other unconventional loads. Using the 4 and 8 -ohm taps gives lower impedances still, of the order of 0.68 ohms.

The primary of the transformer is set to the 10 watt tap, and the loop takes 8 watts from the line. With a lower impedance output between the tappings, power consumption would be less. Most PA amplifiers would have enough reserve power to drive this, so it can be connected to any convenient amplifier in the system.

Connections are brought out from the transformer in the drum
hub to a terminal block on the outside, this being the opposite side to the socket for the loop itself. The Portabloc drums have aluminium discs on each side which can easily be drilled to take sockets or component mountings.

The final feature is the provision of an LED to indicate that the loop is working. This is connected across the loop via a 68 -ohm resistor and with a shunt reverse-connected diode to protect it from inverse valtages. It can be mounted on the aluminium disc bearing the loop socket, and the drum placed when in use so that the LED can easily be seen. It will flicker on and off in sympathy with the sound and so indicate whether power is reaching the loop. If it is brighter than usual, the loop may be open-circuit somewhere.

The plug and socket used was a metal clad five-pin pair obtained quite reasonably from the local electronics emporium. This gives a couple of spare contacts in case of future trouble, but only three contacts are required and any suitable plug combination will serve. Robustness is the main consideration, and some means of securing the plug in the socket by a screwed ring or latch is desirable.

Installation

This is simple and can be done in very little time. First select the area to be served: count the number of seats in the row, subtract from 28, and halve the remainder. The result will be the number of rows that can be covered, unless the seats or rows are wider than normal. Start paying out the cable at the point where the drum will rest, and circumnavigate the block until you return to the stating point. If there is more than a couple of yards left, the loop can be extended to another row; if it doesn't quite make it, the loop will have to be brought forward a row. Secure to the floor where necessary with masking tape.

Plug in the cable plug to the socket, then run a twin pair from the connecting block back to the PA amplifier and connect to the 100 V output. Put some music and check that the LED is flickering and that's it.

Remind the ushers to direct users to the right place and tell them to switch their hearing aids over to the T position. A notice to this effect can also be displayed in the foyer or somewhere where potential users will see it.

GT ais
 powe:

WTHALOT OF

MELP riom

PROIFSSIONAL IIIFI THAT EVERY ENTHUSIAST

 CAN HANDII....
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price ine. VAT
UCI	Preamp				¢29.95
LPIX	$30+30 w / 4-8 \Omega$	Bipolar	Steres	HiF ${ }^{\text {l }}$	¢54.95
UP2 X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiF:	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	MiF,	£54.95
UPAX	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	MiFl	£74.95
UP5 X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiF_{1}	£74.95
UP6X	60w/4-8	MOS	Mono	HiF,	$\mathrm{C} 64.95$
UP7X	120W/4-8	MOS	Mono	Mifi	¢84.95
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	¢59.95
US $2 x$	120w/4 Ω	Bipolar	Power	Siave	$£ 79.95$
US3X	$60 w / 4-8 \Omega$	MOS	Power	Slave	¢69.96
US4X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	$¢ 89.95$

[^2]
ELECTROVALUE

THE LARGEST RANGE OF WORLD-FAMOUS SIEMENS COMPONENTS IN THE U.K 24 HOUR NORMAL DESPATCH TIME - BETTER PRICES - BETTER SERVICE - BETTER CHOICE

CONFIGURATIONS

It's been a year since Configurations started, and now Ian Sinclair brings the series to a close, shutting the AND, OR, and NOT gates behind him.

For anyone who has worked with linear circuits for a long time, the first contact with digital circuits always comes as a shock because the action of digital circuits is unfamiliar, and the way in which the circuits respond to signals is equally unfamiliar. In this final part of Configurations, therefore, we shall concentrate on the most basic of digital circuit, the gate, and how the two most common of 'families' of digital circuits, TTL and CMOS, carry out gate action. For once, also, we're going to assume rather less in the way of background knowledge than we've taken for granted in previous parts, because all the problems in adapting to digital circuitry are at the start - once you have had some experience, this sort of message is not needed!

Let's be clear from the start what we mean by digital circuits and gates. A digital circuit is, strictly speaking, one which works with signals that consist of several separate voltage levels, so that a voltage which is to be counted as a signal must be at or near one of these levels. The digital circuits that we make most use of are binary digital circuits, meaning that the signals into them and from them consist of only two voltage levels which we refer to as a matter of convenience as 0 and 1 . What the actual voltages happen to be is unimportant - the important feature is that there should be just these two levels. Most logic circuits operate with what we call positive logic, in which 0 means zero volts and 1 means a positive voltage; a few older circuits can still be found which use negative logic, in which 1 is a negative voltage.

The advantages of using just two voltage levels are considerable. We don't have to worry about bias, for example, in the design of circuits, provided that we arrange for each active device in a circuit to be turned on at one voltage level and off at the other. This encourages the use of ICs, because bias is difficult to arrange reliably inside ICs. We don't need much in the way of voltage amplification, because with only two voltage levels to consider, the output signals can be of about the same voltage levels as the input signals. The only voltage amplification we need to consider is as much as is needed to restore the 1 level to normal when it has been reduced by, say, the 0V6 drop across a conducting diode (Fig. 1). The third major factor is that tolerances in component values have much less effect

Fig. 1. Voltage levels. The presence of a diode, or a transistor junction, in the path of an output can change the output level by $0 V 6$ or so. The tolerance of voltage must be enough to make allowances for this.

A	B	0
0	0	0
0	1	0
1	0	0
1	1	1

A	B	0
0	0	0
0	1	1
1	0	1
1	1	1

Fig. 2. The two main gate types, with International (MIL) symbols, and the BS symbols that are used for TEC and C \& G courses. The truth tables describe the gate actions.
on signals than they have in linear circuits. A logic 1 voltage which is nominally 5 V can drop as low as 3 V 6 and still be useable as a logic 1 voltage. The logic 0 voltage can rise as high as 0V8 and still be useable as a logic 0 voltage.

Since the normal concern of linear circuits, amplification with low distortion, is simply not necessary for digital circuits, the actions that digital circuits perform are necessarily quite different. One of the fundamental actions of a digital circuit is gating, and it is gating that we shall look at in the rest of this article.

Digital Gates

A digital gate is a circuit which has inputs that are digital signals and an output (or more than one output) which is also a digital signal. Since the output is a digital signal, it must have a voltage level at any instant which is at logic 0 or at logic 1, and what the level actually is depends entirely on the combination of inputs that happens to be presert at that instant. It is for this reason that the gate circuit is often referred to as a combinational circuit. The two most important types of gate circuits are referred to as AND and OR gates respectively, and we can describe their actions by a table that shows what the output will be for every possible combination of inputs. Such a table is called a 'truth table', and the truth tables for AND and OR gates with two inputs are illustrated in Fig. 2. These tables show that for the two-input AND gate, the output will be at logic level 1 only when both inputs are at level 1: for the OR gate, the output will be at level 1 when either or both inputs are at level 1 .

Truth tables become less useful when a gate has a large number ot inputs, because the number of lines needed for a truth table is 2^{n}, where n is the number of inputs to the gate. The same rules apply, however, irrespective of the number of inputs, so that the action of the AND and the OR gates can be described in ways that are more compact

A	Q
0	1
1	0

(BS)

Fig. 3. The inverter or NOT gate.
than truth tables, using what is called Boolean Algebra. We haven't space to deal with this here.

Another circuit which is usually classed among the gates is the inverter, sometimes called a NOT gate. Its truth table (Fig. 3) is simple - the logic voltage output is the inverse of its logic voltage input. Circuits which combine the action of the NOT gate with the action of AND are called NAND gates; circuits which combine NOT action with OR action are called NOR gates, and the truth tables for these types are shown in Fig. 4. One further gate which is less important as a basic circuit, but which is needed in arithmetic circuits, is the exclusive-OR gate, or EXOR-gate, whose action is illustrated in Fig. 5. The name comes from the fact that the action is like that of the OR gate but excluding the case where both inputs are 1.

A	B	0
0	0	1
0	1	1
1	0	1
1	1	0

A	B	0
0	0	1
0	1	0
1	0	0
1	1	0

Fig. 4. NAND and NOR gates, formed by combining AND/OR gates with inverters.

Logic circuits which make use of gates are connected so that the output of one gate can pass signals to the input of the next gate in the circuit - we say that one output can drive one or more inputs. This usually means that the output has to be able to supply (source) or absorb (sink) current, and the number of inputs that can be driven by one output is called the fanout of that gate. The size of the

A	B	0
0	0	0
0	1	1
1	0	1
1	1	0

Fig. 5. The exclusive-OR (EXOR) gate and its truth table.
fanout depends on the design of the input and the output stages of the gates. A fanout of 10 is generally considered to be satisfactory, meaning that 10 gate inputs can reliably be driven from one gate output.

TTL Gates

The old-style 'standard' TTL gate uses bipolar transistors, but using a common-base circuit rather than the more familiar common-emitter. The inputs (Fig. 6) are to the emitters of transistors whose bases are connected through a current-limiting resistor to the supply positive voltage of 5 V . A common feature of the IC construction is the creation of several emitters on to one base, so that several inputs are fed in by the same transistor. An input stage like this will draw no current when the input voltage is logic 1, because such an input biases the transistor off. An input which is at logic 0 , however, has the effect of earthing the input terminal, and current will flow through the base-emitter junction of the transistor to earth. Unlike our linear circuits, this input current comes out from the input! Standard TTL is constructed so that this current is about 1.6 mA , so the resistance between the input terminal and earth must be low enough to ensure that when this amount of current flows, the input voltage at the terminal must not rise above the maximum voltage level permitted for logic 0 , usually around $0 V 8$.

Fig. 6 (Left) TTL input. The base of the transistor is connected to +5 V through a resistor, and the inputs are to emitters - more than one emitter (and as many as 13) can be formed on to one base.

Fig. 7 (Right) Driving a TTL stage from an NPN emitterfollower. The logic 0 voltage is likely to be too high because of the current from the input of the gate.

The requirement to have current flowing out from the input at logic 0 means that not all driving circuits are useable. In particular, the NPN emitter-follower, which is so often the automatic choice for many purposes, is unsuitable because (Fig. 7) when the input is at logic 0, the current from the gate will flow through the emitter resistor. A PNP emitter-follower, arranged as shown in Fig. 8, can allow a satisfactory logic 0 voltage, but only if the voltage at the base of the emitter follower can be taken low enough - preferably to a negative voltage, because of the inevitable 0V6 difference between base and emitter voltage levels. The most satisfactory simple driving stage is the straightforward common-emitter amplifier circuit as shown in Fig. 9.

No driving problems should exist if the input of a gate is driven by the output of another gate of the same family. Figure 10 shows the conventional circuit arrangement for a standard TTL gate output, which uses two transistors and a diode in series. A logic 1 output corresponds to having

Fig. 8. (Left) Using a PNP emitter follower as a driving stage - a better approach.

Fig. 9. (Right) Driving a gate from a common-emitter stage the most satisfactory single-transistor drive stage.
the top transistor of the pair conducting and the bottom transistor shut off, and because the base voltage of this top transistor cannot be more than the supply voltage of +5 V , the emitter voltage must be no more than $4 \mathrm{~V} 4-4 \mathrm{~V} 5$, which makes the output voltage (because of the diode) only around $3 \mathrm{~V} 8-4 \mathrm{~V} 0$. Don't be surprised, then, if you find that the logic i output from a gate is lower than the supply voltage. The logic 0 voltage from this circuit will be the voltage across the bottom transistor when it is fully conducting, which can be as low as 0V2, depending on the load.

The layout of the output stage is such that only one of the output pair of transistors will be conducting at any time during normal operation. If two gate outputs are connected together, however, it would be possible to have one output at logic 1 (top transistor conducting) and the other at logic 0 (bottom transistor conducting), so that at a low resistance path for current was created (Fig. 11). This would have the effect of burning out one transistor in each gate, so that for the few applications in which gate outputs have to be connected together, special gate ICs described as opén-collector types are used. These have no 'top' transistor in the output stages, and are designed to work with an externally connected resistor load (Fig. 12).

Fig. 10. The usual TTL output stage. One of the pair of output transistors will conduct to connect the output to either 0 or 1 levels.

Standard TTL, though still circulating in very large numbers, has been replaced in production by the lowpower Schottky TTL chips, distinguished by the letters LS in the type numbers. These LS chips make use of a component, the Schottky diode, which is not particularly well known, so that some description is called for. The Schottky diode uses a combination of metal (usually aluminium) and semiconductor in its junction to obtain a very low for-

Fig. 11. Why gate outpuls should not be connected together.

Fig. 12. (Left) The sutput stage of an 'open-collector' stage. These stages need an external load resistor.

Fig. 13. (Right) Using Schottky diodes as logic elements.
ward voltage, between 0 V 1 and 0 V 2 as compared to the 0V6 for a silicon diode. This makes these diodes ideal for use in logic circuits, as illustrated in Fig. 13, and also makes it possible to construct transistor stages which do not sàturate. Saturation occurs in a conventional transistor stage when the base current of a transistor, which has a collector load, is so high that the collector voltage bottoms. The effects of saturation are to achieve a very low collector voltage, around 0 V 2 , but also to flood the base junction with charge carriers (electrons or holes depending on whether the transistor is PNP or NPN). When the base voltage is suddenly removed from such a saturated transistor, this charge takes some time to clear, so that the transistor remairs conducting - it will not switch rapidly from the conducting state to the non-conducting state. The time is usually less than a microsecond, but it limits the soeed at which a gate circuit can operate reliably.

Fig. 14: (a) Using a Schottky diode to prevent transistor saturation. (b) The symbol for a transistor into which a Schottky diode has been incorporated.

A Schottky diode placed between the collector and the base of a transistor (Fig. 14) will prevent such saturation. When the collector voltage reaches a level which is about 0V2 lower than the base voltage, the Schottky diode wil conduct, connecting the base and the collector circuits and so bypassing the base. By avoiding saturation in this way, the transistor can be made to switch very much more rapidly at the minor expense of having a collector voltage which does not reach quite so low as that of a standard TTL stage. Figure 15 shows the internal circuitry of a typical LS type of gate circuit in which the presence of Schottky diodes is indicated by the modification to the shape of the base symbol in the transistors.

CMOS

Finally among the commonly-used logic gate circuits we have the CMOS types. These depend on the use of MOSFETs rather than bipolar transistors, and the inputs are invariably to the gates of the MOSFETs as compared to the emitters of the transistors in TTL stages. For this reason, no measurable current flows either into or out from the input of a CMOS gate when we use low-frequency signals, and the fanout under these conditions can be very high. The size of fanout is limited by the ability of the outputs of CMOS gates to supply currents of more than a milliamp or so, because the capacitance of each CMOS input is fairly high, and rapid switching demands that each capacitance be charged and discharged rapidly, calling for current which the output of a CMOS gate may not be able to supply. The operating currents and the dissipation of a CMOS gate will therefore increase as the operating frequency is increased, and it is this factor which limits the fanout and the speed of these gates. A typical CMOS gate circuit is shown in Fig. 16.

Fig. 15. Circuit for a NAND gate using Schottky diodes.

CMOS gates have a convincing list of advantages for many purposes. The supply voltage can be in the range +3 V to +15 V rather than the fixed +5 V of the TTL circuits. The currents that are required by CMOS gates are very much smaller, so that CMOS is almost an automatic choice when battery operation is required.

For most practical purposes, your choice of logic circuits will be between LS TTL types and CMOS types, with the CMOS types chosen from the 4000 family (RCA), or from the less-well known 74C series (National Semiconductor) in which the type numbers correspond to those of the 74 series of TTL chips. For all purposes which require

Fig. 16. Circuit of a typical CMOS gate - this one is an AND gate.
low consumption, lower operating speeds and small power outputs, CMOS is the more likely choice, but LS TTL chips are essential for many computing operations in which a high clock-rate is used - you may even find that you need the still-faster (and more power-consuming) 74 H types.

We have now reached the end of Configurations, having covered a large number of devices and circuits. I hope that you have found the descriptions and the hints useful, and that some of them will have opened up new frontiers in circuit design for you, because that was the aim of the series. All I can do now is to wish that your circuits will always do what you want them to!

Due to promotion

is seeking an Assistant or Deputy Editor

We need someone who will help us to maintain the high technical and journalistic standards of the magazine. The successful applicant will be an accurate, speedy worker who keeps to deadlines, but maintains a sense of humour through thick and thin. A knowledge of electronics and/or microcomputers is needed. Experience in magazine layout would be an advantage.

A competitive salary awaits the right person.
Because of the key nature of this post, we are anxious to make an early appointment, so do not delay in writing, with your cv.

All applications will be treated in strict confidence.
Apply to:
Ron Harris,
Managing Editor,
Argus Specialist Publications,
145 Charing Cross Road,
London WC2H OEE.

MAKE YOUR OWN P.C.B's. \& FRONT PANELS

PHOTO RESIST KIT (Ref HB2)
Complete kit containing artwork PCB, and all necessary process materials NORMAL REC. PRICE £24.60
UV EXPOSURE UNIT (Raf: UV1)
Perfect results everytime. Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB. Precision Photo, Label \& Panel manufacture NORMAL REC. PRICE £ 27.60

UV EXPOSURE UNIT AND ARTBOX (Ref: UV2)
A portable ready made unit containing two 8 watt UV tubes giving a $6^{\prime \prime} \times 9^{\prime \prime}$ exposure area which may also be used as a light box with the UV filter supplied NORMAL REC. PRICE $£ 64.50$

FOTOTOOL KIT (Ref: H83)
Containing artwork, film and all the necessary process materials required for professional quality labels and panels. CAN ALSO BE USED TO PRODUCE PRECISION PCBPHOTOMASTERS

NORMAL REC. PRICE $£ 23.10$
OFFERS VALIO UNTIL AUGUST 31 st 1983
meverumer Please send me the following as quickly as possible

QTY DESCRIPTION
PHOTO RESIST KIT (HB2)
UV EXPOSURE UNIT (UV1)
UV ART8OX (UV2)
FOTO TOOL KIT (HB3)
ICheques or Postal Orders only
please for Special Offers).

$$
=
$$

\square Price includes VAT \& Carriage
Name
Address
a division of
KELAN ENGINEERING Lid Hookstone Park Harrogate. N. Yorks
complete P.C.B. workshop

ET1/783

T.V. SOUND TUNER BUILT AND TESTED

consumer alectronics one of the questions designers isparently poniser over we save money by chood ing this out $2^{\circ "}$ In the fomestic TV set, one of the

ACCURATE MATCHING OF LLLL TYPES
Kit includes tape transport mechanism, ready punched and back
printed quality circuit board and all electronic parts. ie. semiconduct ransform

STEREO TUNER KIT

build 3 band
stereo AM/
FM tuner kit
is designed

in conjunction

81). For ease of construction and alignment incorporates three Mullard modules and an C. If System.

FEATURES: VHF, MW, LW Bancts, interstat on muting and AFC on VHF. Tuning meter and scale. Aepial. AM-ferrite rad, FM-75 or 300 ohms. 'Stabilised power supply with 'C core mains transformer. All canponents supp ied are to P.E. strict spectication. Front sla. ram and instructions
SPECIAL OFFER! $£ 13.95+£ 2.50$ p\&p Self assemaly simulated wood cabinet sleeve E3.50 Plus $£ 1.50 \mathrm{p}$ \&p

125W HIGH POWER AMP MODULES

ower apotications - disco units, guitar amplif ers, public address systems and even h gh ower domestic systems. The unit is protected gainst short circuiting of the load and is sate in an open circuit ionation. A large satery ponenis result, a high oowered rugged unit. The PC thoard is back printert, etched and eady io drill for ease of construction and the luminium chassis is pretormed and ready to se. Supplied with all parts, circuit diagrams and instructions.

STEREO CASSETTE

BSR RECORD DECK

Manual single plav reco and cueing lever. Fitted
with stereo ceramic cart ridge 2 speeds with 45 r, spindle adaptor ideally
 $\mathrm{£} 12.95+$ E1.75 p\&p.

SPECIAL OFFERI Replacement Sterbo casssach. Erase: $\mathbf{5 0} .70$ each. Acd 50p p\&e to order.

```
21E HIGH STREET, ACTON, W3 6NG
```

Note: Goacy denpatched to U.K. Dostal adsrenten
$31 / 5 / 83$ end whbiect to chenge menthut notice.
Plown allew 14 working dive from reccept of oider
dete their products whthout notize. All enouirien nem

SPECIFICATIONS
 voltage (DC): $50 \cdot 80 \mathrm{max}$. Loads: 4.16 chm . Frequency response measured @ 100 watts. 25 Hz . 20 KHz . Sensitivity for loow. 400 m @ 47 K . Typical T.H.D.@ 50 watts, 4 ohms
0.1%, Oimensions: 205×90 and $190 \times 36 \mathrm{~mm}$

SPEAKER BARGAINS

 2 WAY 10 WATT SPEAKER KIT8" bass/mid range and 3\% weeter. Complete with scre and cabinet. All wood pre. cut - no cuiting required Finish. chiphoard covered wood simulate. stze $141 /{ }^{\prime \prime}$ " x $8 \%{ }^{\circ} \times 4^{\text {". }}$. PAIR for ONLY $\mathbf{£ 1 2 . 5 0}$ plus £ 1.75 p\&p
ALL CALLERS TO: 323 EDGWARE ROAD LONDON W2. Tolephone: 01.7238432

TOROTDAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

| TYPE | SERIES SECNDARY
 No | REMS
 Volts |
| :---: | :---: | :---: | :---: | :---: |
| Current | | | PRICE

30 VA
$70 \times 33 \mathrm{~mm}$
0.45 kg
Regulation

1×010	6*6	250	
1×011	9*9	+ 66	C540
1×012	12*12	125	25.45
1×013	$15+15$	1.00	+ D8DE1 10
1×014	18*18	083	- varco 99
1×015	$22+22$	0.68	TOTALE758
1×016	$25+25$	0.60	
1×017	$30+30$	0.50	
2×0 10	6+6	416	
2×011	$9+9$	2.77	
2×012	$12+12$	208	
2×093	$15+15$	1.66	C6 13
2×014	$18+18$	138	20.13
2×015	22-22	113	+p8pEl 35
2×016	$25+25$	100	+ VATE! 12
2.017	$30+30$	083	TOTAL ¢8.60
2x028	110	045	
2×029	220	022	
2×030	240	0.20	
3×010	$6+6$	6.64	
3×011	$9+9$	4.44	
3x012	12+12	3.33	666
3×013	$15+15$	2.66	20.60
3×014	$18+18$	222	+ D80¢572
3×015	$22+22$	-81	+ Vatel. 26
3×016	$25+25$	160	TOTALE964
3×017	30-30	1.33	
3x028	110	072	
3x029	220	036	
3×030	240	033	

TYPE SERIES SECONDA
RMS
Current
120 Va
$90 \times 40 \mathrm{~mm}$
12 kg
Regulation
11%

120 va	4×010	6+6
\% $\times 40 \mathrm{~mm}$	4×011	$9+9$
12 kg	4×012	$12+12$
Regulation	4×013	$15+15$
11\%	4×014	$18+18$
	4×015	$22+22$
	4×016	$25+25$
	4×017	$30+30$
	4×018	$35+35$
	4×028	110
	4×029	220
	4×030	240

10.00	
6.66	
5.00	
4.00	
3.30	

27.42

+VAIE1 37
TOTAL E10 51

Price	trpe	$\underset{\substack{\text { SERIES } \\ \text { No }}}{\text { cose }}$	$\underset{\substack{\text { secondary } \\ \text { Volts }}}{ }$	${ }_{\text {Russ }}^{\text {Rusent }}$	price
	300 Va	7×013	$15+15$	1000	
	$110 \times 50 \mathrm{~mm}$	7×014	${ }^{18+18}$	8.33	
	${ }^{2.6 \mathrm{Kg}}$	7×015	22+22	6.82	
87.42	Regulation	7×016	$25+25$ $30+30$	6.00 500	\&10.88
		7×018	$35+35$	4.28	+ psp¢2.05
		7×026	$40+40$	375	+ VATE1.94
		7×025	${ }^{45+45}$	3.33	total§14.87
		7×033 7×028	$50+50$ $1+0$	3.00 272	
		7×029	220	1.36	
		7×030	240	1.25	
	$\begin{gathered} 500 \mathrm{VA} \\ 140 \times 60 \mathrm{~mm} \\ 4 \mathrm{mg} \\ \text { Regulation } \\ 49 \% \end{gathered}$	8×016	25+25		
		8×017	$30+30$	8.33	
		8×0.8	35+35	714 625	£14.38
8.43		8×025	$45+45$	5.55	+ p8 D¢ 2.40
-8.8.172		8×033	50.50	5.00	+ Vat§252
tale $1+67$		8×042	55+55	4.54	TOTALE19,30
		8×028	110	454	
		8×029	220	2.27	
		8×030	240	208	
29.81	$\begin{gathered} 625 \mathrm{va} \\ 140 \times 75 \mathrm{~mm} \\ 5 \mathrm{Kg} \\ \text { Regulation } \\ 4 \% \end{gathered}$	9×017	$30+30$	10.49	
		9×018	$35+35$		
		9×025	$45+45$	781 6.94	£17.12
		9×033	$50+50$	${ }_{6} 6.25$	+ D80¢2.55
		9×042 9×028	${ }_{110}^{55+55}$	568 568	
		9×029	220		
		9×030	240	2.60	
	ALSO AVAILABLE Sizes up to and including 5KVA are manufactured to order.				

Price	trpe	$\underset{\substack{\text { SERIES } \\ \text { No }}}{\text { cose }}$	$\underset{\substack{\text { secondary } \\ \text { Volts }}}{ }$	${ }_{\text {Russ }}^{\text {Rusent }}$	price
	300 Va	7×013	$15+15$	1000	
	$110 \times 50 \mathrm{~mm}$	7×014	${ }^{18+18}$	8.33	
	${ }^{2.6 \mathrm{Kg}}$	7×015	22+22	6.82	
87.42	Regulation	7×016 7×017	$25+25$ $30+30$	6.00 500	£10.88
		7×018	$35+35$	4.28	+psp¢2.05
		7×026	$40+40$	375	+ VATE1.94
		7×025	$45+45$	3.33	total§14.87
		7×033 7×028	$50+50$ $1+0$	3.00 272	
		7×029	220	1.36	
		7×030	240	1.25	
	$\begin{gathered} 500 \mathrm{Va} \\ 140 \times 60 \mathrm{~mm} \\ 40 \\ \text { 4g } \\ \text { Regulation } \\ 49 \% \end{gathered}$	8×016	25+25		
		8×017	$30+30$	8.33	
		8×0.8	35+35	714 625	£14.38
8.43		8×025	$45+45$	5.55	+ $\mathrm{p} 8 \mathrm{p} ¢ 2.40$
-8.8.172		8×033	50.50	5.00	- vate252
tale $1+67$		8×042	55+55	4.54	TOTALE19,30
		8×028	110	454	
		8×029	220	2.27	
		8×030	240	208	
29.81	$\begin{gathered} 625 \mathrm{va} \\ 140 \times 75 \mathrm{~mm} \\ 5 \mathrm{Kg} \\ \text { Regulation } \\ 4 \% \end{gathered}$	9×017	$30+30$	10.49	
		9×018	$35+35$		
		9×025	$45+45$	781 6.94	£17.12
		9×033	$50+50$	6.25	+ D80¢2.55
		9×042 9×028	${ }_{110}^{55+55}$	568 568	+VATE2.95 TOTAL 22.62
		9×029	220		
		9×030	240	2.60	
	ALSO AVAILABLE Sizes up to and including 5KVA are manufactured to order.				

500 VA

$$
£ 8.43
$$

£14.38

$$
\begin{aligned}
& \text { +D8 DE1 } 72 \\
& \text { +VATE: } 52 \\
& \text { TOTALE } 1.67
\end{aligned}
$$

+ p8 DE2.40
+VATE252
TOTALC1930
.625 va

Price	trpe	$\underset{\substack{\text { SERIES } \\ \text { No }}}{\text { cose }}$	$\underset{\substack{\text { secondary } \\ \text { Volts }}}{ }$	${ }_{\text {Russ }}^{\text {Rusent }}$	price
	300 Va	7×013	$15+15$	1000	
	$110 \times 50 \mathrm{~mm}$	7×014	${ }^{18+18}$	8.33	
	${ }^{2.6 \mathrm{Kg}}$	7×015	22+22	6.82	
87.42	Regulation	7×016 7×017	$25+25$ $30+30$	6.00 500	£10.88
		7×018	$35+35$	4.28	+psp¢2.05
		7×026	$40+40$	375	+ VATE1.94
		7×025	$45+45$	3.33	total§14.87
		7×033 7×028	$50+50$ $1+0$	3.00 272	
		7×029	220	1.36	
		7×030	240	1.25	
	$\begin{gathered} 500 \mathrm{Va} \\ 140 \times 60 \mathrm{~mm} \\ 40 \\ \text { 4g } \\ \text { Regulation } \\ 49 \% \end{gathered}$	8×016	25+25		
		8×017	$30+30$	8.33	
		8×0.8	35+35	714 625	£14.38
8.43		8×025	$45+45$	5.55	+ $\mathrm{p} 8 \mathrm{p} ¢ 2.40$
-8.8.172		8×033	50.50	5.00	- vate252
tale $1+67$		8×042	55+55	4.54	TOTALE19,30
		8×028	110	454	
		8×029	220	2.27	
		8×030	240	208	
29.81	$\begin{gathered} 625 \mathrm{va} \\ 140 \times 75 \mathrm{~mm} \\ 5 \mathrm{Kg} \\ \text { Regulation } \\ 4 \% \end{gathered}$	9×017	$30+30$	10.49	
		9×018	$35+35$		
		9×025	$45+45$	781 6.94	£17.12
		9×033	$50+50$	6.25	+ D80¢2.55
		9×042 9×028	${ }_{110}^{55+55}$	568 568	+VATE2.95 TOTAL 22.62
		9×029	220		
		9×030	240	2.60	
	ALSO AVAILABLE Sizes up to and including 5KVA are manufactured to order.				

TOTAL £13.64

$$
\begin{aligned}
& £ 9.81 \\
& \begin{array}{l}
\text { +pspE2.05 } \\
+ \text { VAT } 178 \\
\text { TOTAL } 13.64
\end{array}
\end{aligned}
$$

The benelits of ILP toroidal translormers

ILP torordal transtormers are only hall the weigh and height of thenl lamnated equivalents, and are avallable with 110 V 220 V or 240 V primaries coned as lollows
IMPORTANT. Regulation - All voltages quoled are Full Load Prease add reguation ligure to secondary vothage to optain oft load vollage
For 110 V primary insent 0 in placeol x in type number
For 220 V pumary (Europe) insent "1 in place ol x^{x} "in type number
For 240 V primary (UK) insent ? "in place of ' X in iype number

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

FLASH SEQUENCER

Astound your friends, freak out your budgie and out-do David Bailey (who?) with the ETI Flash Sequencer (trick photos a speciality). Design by Phil Walker.

This unit has been designed to be used either on its own or with the multi-function trigger unit described on page 70 .

It can be used with up to four separate flashguns connected directly to it and will enable you to get some very interesting action shots.

The delay between each flash can be set by means of the single control over a range of about I millisecond to 1 second. This should cover most needs of this sort of shot, h.it could be altered edsily by changing component values.

Use

This is, of course, up to the individ jal user but with the basic unit described here it would probably be reasonable to set up camera and flash guns on tripods or similar firm supports. Then connect the trigger unit to the camera flash socket (use a suitable adaptor if necessary) and the flashguns to the unit. Set up the focus and aperture

The ETI Flash Sequencer can control up to four ilashguns.
to suit the subject and flashguns used and set the shutter speed so that it is longer than the TOTAL delay on the unit. This usually means that you will have to work on a dark night or indoors if you use long delay times.

You will probably have to find the proper aperture setting by trial and error at first, but if you use a black or very dark background and

Not four, but one. This bouncing plastic cup was captured at various points in its flight using the sequencer.
your subject moves between flashes, the normal or slightly smaller aperture is a good starting point.

With the multi-function trigger unit all sorts of interesting possibilities open up for photographing wildlife or transient events, especially if a solenoidoperated shutter release can be arranged.

The Circuit

The main parts of the circuit are the input latch configured around ICle and f, the sequence generator consisting of IC2, IC1a, b, C and d, and the output pulse generators IC 3, 4, 5, 6, 7 and Q2, 3, 4 and 5 . The input latch can be reset to the READY condition by SW2 and will force the timing network to discharge all its capacitors by means of Q1 and D4 to 7. This state is indicated by the LED.

A negative-going pulse at the input or a press on SW 1 will make the latch change state and allow the sequence to start. After the first delay period the LED in IC + will be turned on for about 10 ms , causing its associated SCR (or triac) to turn on and trigger the flashgun to which it is connected. This action occurs when C3 has been charged by the current through RV1 and R6 to the upper threshold voltage of ICIb . The output from IC1b is coupled viad a differentiating network 1 C 7 and

R8) to IC3c - also a Schmitt trigger. This negative-going pulse causes the output from IC3c to go high for about 10 mS , thus turning Q2 on and hence IC4.

IC1b having changed state, the current from RV1 is now diverted to C4 and will charge this up at the same rate until its voltage reaches the upper threshold of IC1d. A similar set of actions now occurs in IC3b and IC5, resulting in another flashgun being triggered and the timing current being diverted yet again to C5.

The sequence ends when C6 charges and the final flashgun triggers. The circuit is now ready to be reset for another operation.

By means of SW3, a negative pulse generated by C2 and R7 can be routed to the sections of IC3 such that one or all the outputs can be triggered with no delay. This could be used to advantage if the unit is triggered direct from a camera socket and no other lighting is used for special effects or just to get as much light as possible. Beware when using this facility with long delay times set on RV1, as one or more flashguns may recharge and trigger again as the delay operates.

The circuit should not take more than about 10 mA when READY and much less than that when timed out.

The negative-going input pulse to trigger the unit can be derived from a switch or logic source.

Fig. 1 Circuit diagram. The output connections (marked with an asterisk) depend on the opto device used - see text.

HOW IT WORKS

ICle and f are connected together to form a simple latch: R4 is included to avoid shorting the output of IC1e. When SW2 is pressed the output from this latch is set high, this will cause C2 to discharge via R7 and turn Q1 on. Q1 will discharge C3, 4, 5, 6 via D4, 5, 6 and 7 while lighting LED1 via R6. At the same time IC2 will be disabled by the high level on pin 6 from the input latch. This prevents LEDI from being bypassed by the switches in IC2.

In this condition the outputs from IC1a, b, c and d will be high and C7, 8, 9 and 10 can discharge via their associated resistors. This will set the inputs to IC 3a b, c and d to high levels and thus the outputs to a low. Q2, 3, 4 and 5 will be off and the outputs of IC4, 5, 6 and 7 will not conduct.

Assume for the moment that SW3 is in the open position (delayed sequence). If SW1 is now closed or a negative-going pulse appears at the input, this will be passed on via C1 and D3 to the latch formed by IC1e and f causing its output to go low. Q1 will now turn off, extinguishing LED1 and releasing C3, 4, 5 and 6. IC2 will now be enabled and current can now flow in C3 via R6, RV1 and the three switch sections of IC2. This capacitor will charge up until its voltage reaches the upper threshold of IC1b (this is a Schmitt trigger device), whereupon IC1b output will go low. This causes the current to be diverted to C4, where a similar process occurs. At the same time the high-to-low transition is passed through C7 to IC3c whose output will go high from 10 mS or so. This will turn Q2 on and thus IC4 will turn on.

Some time later C4 will charge up to the Schmitt threshold and IC1d will go
low, diverting the current into C5 while also causing IC5 to conduct. The cycle of events will continue with IC1c/IC6 and IC1a/IC7. The result of all this is that flashguns connected to the outputs of IC4,5,6 and 7 will be fired in sequence with a delay between each one determined by R6 and the setting of RV1 (and the residual resistance of IC2). IC2 is in fact a triple CMOS changeover switch with a typical on state resistance of 200 ohms.

C7, 8, 9 and 10 have been included to ensure that the opto-coupler LED inputs are not driven continuously, as this would take a lot of current. These capacitors and R8, 9, 10 and 11 define the 'on' time to be about 10 mS . C12 will hold enough charge to provide this even from an aging battery. C11 and D11 isolate the rest of the circuitry from the LED drivers to maintain proper operation.

C2 and R7 (via SW3, D8, 9, 10) provide the alternative operating modes. The initial trigger pulse can be fed via these components to the sections of IC3 such that IC7 will turn on immediately or all the outputs will come on together. Care must be used here as the outputs may pulse again after the set delay time and thus trigger the flashgun(s) again if they recharge in time.

You may notice that the inputs to ICia, b, c and d will only have their capacitors connected, and no DC path exists to bias them, once the switches have been operated. This will not cause any problems over the 5 seconds maximum of the timing period, as the leakage of the tantalum bead capacitors is quite low and they will have to discharge a long way before the Schmitt trigger gates change state.

PROJECT : Flash Sequencer

Resistors (all \ddagger W, 5\%)	
	100R
R2	100k
R3, 4, 7-13	$1 \mathrm{M0}$
R5	10k
R6	1 k 0
Potentiometer	
RV1	1M0 logarithmic
Capacitors	
	10nF miniature disc ceramic
C2	33 nF miniature polyester
C3-6	14035 V tantalum bead
C7-10	10 nF miniature polyester
	470uF 10 V aluminium PCB electrolytic
C12	1000 uF 10 V aluminium axial electrolytic
Semiconductors	
IC1	40106B
IC2	4053B
IC3	4093B
IC4-7	H11C4 (opto-SCR) or MOC3020 (opto-triac).
Q1	BC214L
Q2-5	BC2121.
D1-11	1N4148
LED1	any red LED
Miscellaneous	
$\text { SW } 1,2$	miniature push-to-make push-button switch
SW3	three-way slide switch
SW4	miniature on/off slide switch
PCB (see Buylines); box - Verocase 125	
3.5 mm jack socket and plug; PP3 battery and clip; four small grommets; four off 1 metre flash extension cables; wire, cable ties etc.	

Inside the sequencer.

Fig. 2 Component overlay of the ETI Flash Sequencer.

Construction

Construction of this project should pose no great problems. Take care when positioning the front panel components that they do not foul the parts on the assembled PCB. Note that R1, D8, 9 and 10 are mounted on the panel. It is essential that all the diodes, ICs, and any other polarised components are mounted the correct way round.

We recommend that IC holders are used for the CMOS devices and that care is taken to avoid static discharge damage to these devices

BUYLINES

The MOC3020 is available from Technomatic and is much easier 10 obtain than the H11C4. Everything else is standard and readily available, although if you can't find the specified case in the catalogue of your favourite supplier, it can be bought direct from BICC-Vero Electronics, Retail Dept. School Close, Industrial Estate, Chandlers ford, Eastleigh, Hants SO5 3ZR. The PCB can be bought from our PCB Service as advertised on page 91.

The rear of the sequencer carries the on-off switch. We bought four flash extension cables in order to get the right connectors.

The picture on page 63, and the one below of an eraser bouncing from right to left, were shot using the sequencer and the trigger unit above. See page 70.

Output Connections

There are two different connection points for the output from the opto-couplers. This is to accommodate either opto-SCR or opto-triac devices. If opto-SCR devices are used, the flashgun trigger leads must be connected across pins 4 and 5 with pin 4 negative and pin 5 positive. You will have to check the polarity of the connections to the base of the flashguns you use, and this will vary from make to make (ours had a positive inner). If you connect up for one particular make, the trigger unit may not work on another.

If you use opto-triacs, the
flashgun trigger leads should be connected across pins 4 and 6; polarity is unimportant, which will save all the above messing about, so we recommend this option

Other Points

As we found that sockets for flashgun connectors are unobtainable (unless already connected to something such as a camera) we bought four flash extension cables and cut the unwanted ends off. These were then taken into the box via small grommets and wired directly to the proper terminals. A small cable tie on each lead just inside the box served to take the strain off the
connections. It may be a good idea to buy three one-metre extension cables and one much longer one, so that you can use the extra length from this for the camera-to-unit link (it will have the correct connector).

For greater protection the unit could be built inside a diecast box. This may also be necessary if static discharge causes premature triggering of a flashgun.

Calibration of the delay control would need special apparatus and would depend on the quality of RV1. But the type of device specified should give a reasonable subjective control over the required range.

ETI

COMTECH ELECTRONICS

MASMMF FTHGHZONICS NOW! The PRACHICAL way!

This new style course will enable anyone to have a real understanding of electrorics by a modern. practical and visual method. No previous k nowledge is required, no maths, and an absolute minimum of theory. You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certiticate is given at the end of every course

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read draw andunderstand circuit diagrams
- Carry out 40 experiments on bas c
electronic circuits used in modern
equipment
- Build and use digital electronic circuits
- Lna current solid state chips
- Learn how to test and service every iype of electronic device used in industry and commerce today. Servicing of radio. T.V Hi.Fi and microprocessor/computer

NewJob? NewCareer?NewHobby?Getinto Tlectronics Now!
FFREE!
 NAME

I am interested in: ETI/7/83 Ca,
British National Radio \&c Flectronics School Reading, Berks.RGl 1BR

01-452 1500 Tbchnonatic Ltd 01-450 6597

OFFICIAL DEALER

WORD PROCESSOR 'VIEW' 16K ROM £52

Micro Computer System
Please phone for availability

BBC Model B £399 including VAT plus $£ 8$ carr Model A to Model B
Upgrade kit £50
Fitting charge $£ 15$
Individual upgrades also available

WORDWISE 8K ROM £39
TORCH Z80 DISC PACK $£ 780$

FLOPPY DISC INTERFACE
Incl. 1.2 operating system $£ 95+£ 20$ installation

BBC FLOPPY DISC DRIVES

Single drive 5% " $100 \mathrm{~K} £ 235+$ £6 carr. Dual drive 5 1/" $800 \mathrm{~K} £ 799$ + f 8 carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £360; 400K £490; 800K £610 Drive Cables: Single £8 Dual $£ 12$ Disc Manual \& Formatting Diskette $£ 17.50$

Phone or send for our BBC leaflet

BUSINESS, EDUCATION \& FUN SOFTWARE IN STOCK

CASSETTE RECORDER

BBC Compatible Cassette Recorder with Counter and Remote Control $£ 26.50+£ 1.50$ carr. Cassette Leads $£ 3.50$ Computer Grade Cassette £0.50p each £4.50 for $10+£ 1$ carr.

MONITORS

MICROVITEC 1431 14" Colour Monitor MICROVITEC 2031 20" Colour Monitor KAGA 12" RGB Monitor Lead for KAGA RGB SANYO 12" Hi Res Green Monitor
$649+£ 8$ carr $\mathrm{f} 319+£ 8$ carr £255 + £8 carr. c9e.... 10
f9s + 16 carr

BBC BOOKS

Basic on BBC $£ 5.95$ 30 Hour Basic $£ 5.95$ Programming the BBC Micro $£ 6.50$ BBC Micro An Expert Guide $\mathbf{£ 6 . 9 5}$ Assy. Lang. Prog for BBC £8.95 6502 Machine Codes for Beginners £6.95 (No VAT)

NEC PC 8023 BE-C

 ${ }_{80}$ Features include 80 cols 100CPS Bi-Directional, Logic sProportional Spaclng Proportional Spacling,
Fonnard Forward \& Reverse Line
Feed Feed, Hi-Res and Block Graphics, Internationa
and Greek characters and Greek characters,
Auto-Underline Auto-Underline, Super \& Sub 2 K Butier, Cartridge Ribbon
$\mathbf{£} \mathbf{3 4 5}+\mathbf{£} 8$ carr

PRINTERS SEIKOSHA GP 100A 80 Cols 30 CPS Full ASCII e GRAPHICS 10" Wide paper Now only $£ 180+$ £6 carr GP250A E235 plus £8 carr
 Parallal Printer

EPSON RX80 and FX80 RX80 100CPS 80COL Tractor Feed £298 FX80 160CPS 80COL F\&T Feed £438 MXIOOF/T3 £425 (Carr./printer £8) Full specification on request $2,000$ fan fold sheets 9$\}^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$ p 8 p

RUGBY ATOMIC CLOCK This Z 80 micro controlled clock/calender receives coded time data from NPL Rugby The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided. See July/August ETI for details, Complete Kit £145 + £2.00 p\&p

MICROTIMER

6502 Based Programmeable clock timer with

- 224 swirching times/week cycle
- 4 hour 7 day timer

4 independent switch outputs directly interfacing to thyristor/triacs

- 6 dign 7 seg. displavs to indicate real time. ON/OFF and Rese tinies
- Ounpur to drive day of week switch and status LEDS

Full derails on request. Pfice for kit $\mathbf{5 7} .00$

RIBBONCABLE

PLEASE SEND SAE FOR PRICE LIST

MICRODOCTOR

This is not a logic analyser or an oscilliscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0$ - it will print memory map, search for code, check dataline shorts and operates peripherals Microdoctor
complete with PSU
Printer, probe cable and two configuration boards. £295.

SPECIAL OFFER

BOOKS (No VAT p\&p E1)

E.T.I.

PROJECTS
Semiconductors inc I.C. Transistors, Displays, Connecors and Sockets for most projects are stocked by us.

CRT Controller H/Buok Programming the 280 280 Mierocomp. handbook Programming the 6502 6502 Assy. Lang. 6502 Applications 6502 Software Design 6502 Games
Large selection of $\mathbf{~} 10.52$
facling books. books on BBC, etc in lacing books. books on BBC, etc in

E8. 50

 t11.50 66.95 c10.25 c12.10 510.20 19.05 510.52 etc in

TRIGGER UNIT

If you're building the ETI Flash Sequencer described elsewhere in this issue, a unit to fire it on various stimuli is a must. This design triggers on sound, light or an infra-red beam. Design by Phil Walker.

This project has been designed to drive the ETI Flash Sequencer and provide facilities to trigger one or more flashguns and get the effect of a multiple exposure at one go. It can be used to trigger on the breaking of an invisible infra-red light beam up to 1 metre in length, on the sound of a pin dropping or even when another flashgun goes off. These functions add a new dimension to creative photography, especially on action shots.

Use

The visible light trigger will normally be used as a slave trigger, allowing up to four extra flashguns to be set off by one which may be fitted to the camera. This will allow 'filling in' or special effects to be created by using relatively cheap flashguns.

The sound trigger option allows all sorts of things to be captured on film, such as objects being thwacked by hammers, drops of water being thrown in all directions and many other noisy events.

Lastly the infra-red beam will allow many other events to be recorded in which the object of the picture is not broken, mangled, or disturbed except by the flash. The content of your pictures can now explore new fields.

If you wish to use this unit to trigger the camera shutter, there are two possibilities open. The first is
that you have an electrical release on your camera, in which case the maker's handbook should be consulted to see whether it can be used.

The second is that a small extra circuit will be necessary, consisting of a power switch and solenoid. Some mechanical linkage could connect the solenoid to a cable or air release and thus release the shutter. The flashgun or flash sequencer would then connect to the camera in the normal way. These methods will avoid the shutter being open for long periods, which might cause unwanted images if all the extraneous light has not been kept out.

Construction

Construction of this unit is relatively straightforward but care must be taken that the components on the front panel do not foul the PCB or battery when assembled. The most critical part in this respect is the three-way mode-select switch. If you use the case specified it will be found necessary to cut off the screw pillars on the lid portion of the box so that the battery and switches fit in. It is recommended that thin screened wire is used for the PCB-to-panel connections (except LED and power) as there are two high-gain amplifers on board which will probably pick up any stray signals.

Keep the transistor leads short (not more than 5 mm above board) and take full anti-static precautions when fitting IC1 into its socket. Make sure all the diodes, transistors and electrolytics etc are fitted the right way round.

The infra-red photodiode should have its leads kinked before soldering in place so that it can be positioned properly in front of the hole in the back panel. It will be about 8 to 10 mm above the board. The visible light photodiode is mounted in a small grommet and connected to the PCB with flying leads.

It may be advisable to use a panel-mounting LED as the infra-red beam indicator, or paint the rear of an ordinary one black to prevent light from it reaching the photodiode. From this point of view it may be a good idea to paint the whole interior of the case black or line it with black light-proof tape.

Transmitter

This is very easy to assemble so long as the components are put in the right way round. The leads of the IR transmitter LED should be left long enough so that the LED can be bent round and fitted through the case. Make sure that there is enough room for this when fitting the switch. There should be enough space to fit the PCB into the box vertically but a little filing may be needed.

HOW IT WORKS

RECEIVER

The circuit can be considered in three sections. First the modulated infra-red receiver circuit starts with the detector diode D1. This converts the incoming light pulses to small current changes through R1. The resulting voltage is greatly amplified by Q1 and Q2 before being converted to a suitable logic signal in Q3. The output from Q3 is shaped by IC1f before triggering the 700 uS monostable formed by IC1a and b. When the infra-red beam is being received the output from this monostable consists of a train of pulses $\mathbf{7 0 0}$ uS low and 300 uS high (approximately). This train of pulses is applied via R13, 14 and D4 to C6. The time constant for C6 charging is about 1 mS while for discharging it is about 10 uS. This means that the voltage on C6 is always low while the IR beam is
being received. Thus the output from IC1c is normally high and LED1 will be lit to indicate this condition. If the beam is broken for more than 1 mS a pulse will be missed, the monostable will not discharge C6 and will allow it to charge to the threshold of IC1C. This is a Schmitt trigger device and its output will change state sharply to a low level. This will be transferred via C7 and may be selected by SW1 as the required trigger signal.

Secondly, any sound in the area may be picked up by the crystal microphone and amplified by Q5 and Q6. A portion of this is tapped off by RV1 (acting as a sensitivity control) to drive Q7 which converts it to a suitable logic signal. This may now be selected by SW1 as the desired trigger.

Thirdly, D6 may selected as the
signal source. This will respond to bright lights such as other flashguns to give a 'slave' capability. Any of these signals can be selected by SW1 and used to drive the monostable formed by IC1d and e. This provides a low-going output pulse each time the required trigger conditions are met - that is, on a broken IR beam, a loud noise or a bright light.

THE INFRA-RED TRANSMITTER
This produces a 1 uS pulse through the IR transmitter diode every 1 mS . The pulse width is determined by R2 and C2 while the repetition rate is set by R1 and C2. IC1 is a 555 timer IC whose output drives the LED via R3 to limit the current a little. D1 and C1 isolate the timing network ${ }^{\text {f }}$ rom the effect of the high current pulses on the battery supply. C3 also helps to reduce these effects.

Fig. 1 Circuit diagrarn for the main
board.

Fig. 2 Circuit diagram for the separate transmitter.

Right: Inside the main unit. Take care when wiring to the switches.

PARTS LIST - RECEIVER

Resistors (all \ddagger W, 5\%)		C7,12	10nF ceramic
R1	27k	C8,14	100uF 10 V tantalum
R2,6 220k		C9,11,13	100 nF ceramic
R3, 11-13,		C10	2 u 235 V tantalum
18, 22	1 MO		
R4	22k	Semiconductors	
R5, 16, 19	2k2	IC1	40106B
R7	560k	Q1-3,5,6	BC109
R8,10, 14,	10k	Q4	BC182L
20, 23		Q7	BC214L
R9 ${ }^{\text {a }}$	120k	D1	TIL100 IR receiver
R15	100k		photodiode
R17	270k	$\begin{aligned} & \text { D2-5,7,8 } \\ & \text { D6 } \end{aligned}$	TN4148 BPX65 or similar visible
R21 R24-26	$2 \mathrm{M2}$ 10 M	D6	BPX65 or similar visible light photodiode
Potentiometer		Miscellaneous	
RV1	100k logarithmic	$\begin{aligned} & \text { SW1 } \\ & \text { SW2 } \end{aligned}$	three-way slide switch on/off slide switch
Capacitors		PCB; box 39 mm (o	- Verocase $125 \times 65 \times$
C1	100uF 10 V axial aluminium electrolytic	$\begin{aligned} & 39 \mathrm{~mm} \\ & 3.5 \mathrm{~mm} \end{aligned}$	ret. 202-21048D); two off niature jack sockets and
C2,3,6	1n0 ceramic	plugs; min	ature crystal microphone;
C4	33nF ceramic	PP3 9 V	tery; M2 $\times 5 \mathrm{~mm}$ screws,
C5	680pF ceramic	wire etc.	

Setting up

The infra-red beam link may need a little adjustment for best operation. While doing this it will be necessary to shade the receiver from room lights and other sources. First, switch on the transmitter and place its LED close to the unmarked side of the photodiode (this should be the side nearest the rear panel and visible through the hole in it). Make sure that the 'beam-on' LED lights up. Keeping the transmitter LED pointing toward the receiver, move it away until the indicator LED goes out. Adjust the receiver LED so that it comes on again. Repeat this until a range of about 1 metre is achieved.

The visible light photodiode should not need much attention unless it is too sensitive. If this is the case, it can be de-sensitised with a small piece of masking tape or similar material over the front surface.

Fig. 4 Component overlay for the trigger unit main board.

Fig. 3 Component overlay for the transmitter. Left: A tight squeeze but it will all fit in!

DOZENS OF APPLICATIONSINCLUDE: AUTOMATION DEVICES - CONTROL APPLICATIONS COMMUNICATIONS EQUIPMENT - BUSINESS MACHINES WORD PROCESSORS GRAPHICS DISPLAYS - SCIENTIFIC AND EDUCATIONAL

OPTION BOARDSINCLUDE - FLOPPY DISKCONTROLLER£80 - SPRITECOLOURGRAPHICSBOARD£99 - R50 TECHNICAL MANUAL $£ 6.50$ PRICES INCLUDE + + P

ALSO AVAILABLE PIO. SIO. IEEE 488 PORT REAL TIME CLOCK. PROTOTYPING BOARD. MATHS PROCESSORUSES AMD9511 A TOD CONVERTOR, STEREO SOUNDMUSIC BOARO, 192K RAM BOARD CASSETTE INTERFACE, HARD DISC INTERFACE CPM 2.2 AND TURBODOS AVAILABLE INTERFACE KITS FOR ALL LEADINGMICROS, PRICES ON APPLICATION

PLEASEMAKE CHEQUESTPOSTALORDERS PAYABLETO RADE SYSTEMSLTD.
R 50 DIY SINGLE BOARD COMPUTER $£ 215$ FLOPJY DISCCONTROLLER $£ 80$ I SPRITE COLOUR GRAPHICSBOARD $199 \square$ I R50 TECHNICALMANUAL£6.50 MORE INFORMATION AMOUNTENCLOSED £ \qquad F NAME
adDRESS

POSTCODF

RADE SYSTEMSLTD. 290AHIGHROAD WILLESDEN. LONDON NW102EU Co
computer

GEARED MOTOR $117 / 234$ Vot Inpur SOHz. 4" du K 51 deop. ahatr. Now 63 each PGP it
 Dhat Now R. .50 ench PGP E Speed Control 1 it die $I 1$ mech. MOTOA 12 V OC with pultor, 8 mamn-conductor BYNCHRONOUS MOTOR 2 Phene 9 vot AC. 375 APM. Good torque ineoos 3040 mid cmpecitor Sutible for Mobrices/ Plotits atc. El each. OTHER SYNCHRONOUSISTEPPING MOTORS

GEAAED MOTOR 120 V
 CENTAUR FANS 4:Ch.
 Cond. Q ach PEPRE. Brand new. Yoov 2OW. 2 CENTAUR FANS 4$\}, 115 V$ Now, CA BO wech TRANSFORMERS - AM brand new : Ell 240 volts sec 25.5 V 2.5 A . Sue $3 \mathrm{j} \times 21 \times 2 \mathrm{~K}, \mathrm{RZ.50}$ each. seech i2v 100 MA sop reech. ThANBFO MER $127 / 220$ AMS E1.50 Eech TRANSFORMEA 120 Vort Input. Ser 100 NOV IA Top each TOMOIDAL TRANSFORMEA $0-115.230 \mathrm{~V}$ InDU TOMOIDAL TRANSFORME 0.120 .200 V Ing. SSCC $0.12 \mathrm{~V}: 0.12 \mathrm{~V} 10 \mathrm{VA}$. Sub Min PULSE TRANSFORMER. Sec conte tap ped. Suituote for Thyistor triggermg 200 eech. 10 MAPID DISCM each PEPE

 C5.50 each 10 ort 445. grov 0.60 eoch. P\&P fZ eech. 4.10 units G 7 . Over TOKIM MOISE FILTER VG215FU. 250 VAC 15 A $50 / 60 \mathrm{~Hz}$. Writh fintiog bracker. Now a ouch. To off CL . I.T.T. LOUD SPEAKER 31, du 50 omm 0.2 Wart New. Theach. 10 of CE .50. 100 metre drum E7.EOPGP 44.
Muti Cotoul RIBBON CABLE 10 way 500 Oet
 Totice RE. 100 Motres Ew. Amp, orange. SOp ewch. 10 oHt 4. Jorstick switch 4 droctione ar men. PGP

 Many othert Aven PaD 19 puan conte

 emech. 276 Smploch 2564 f SPECTRAL RELIANCE TEN TURM POT. 100 amm
 2M. WD Wech 10 oHt C3. 200 eech. 10 OH K1.50.
BELIING LEE CHASSIS MOUMTING AUSE HOLDER Ior $1!^{\prime \prime}$ 'ture. 160 wech. 10 ON CT. 1.E.C. MAINS LEAD 2 metre length, haew duty. 40 CONEF CURIY WIR
4 CONE CURLY WIRE extending to 2 metres. 20 p MICROPMONE/EARPIECE INSERTS. ETand now. To eech. 10 ofl at.
EXECUTIVE TELEPHONE.PUSH BUTTON. Functions include 10 number memory, repeat dialing, internal Mic-
rophone a Speaker and separate hancset etc. Will connect direct to Eritish Telecom System BRAND NEW. ONLY £25 a. P\& PC4.
PUSH BUTTON TELEPHONES for Inier7 nal Systems. BRAND NEW. PAP E2 as. KRONE typ FETAD 731 Beige EB en Quantity discount - Please Enquire M1 80 . VAT Or dee of Goode 15%. Minimum PGP Mony GOOODS G PACKACING. Mony more compenents end teent equip

Branime
 TYPE 161B
 DUAL POWER SUPPLY KIT

incorporates a positive \& a negative regulated supply BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16 V D.C. Interconnect to give 2.6 V to 32 V or $-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$ Output current 1 A at 16 V to 0.35 A at 1.3 V Ripple is less than 1 mV

Built \& Tested £ 37.95 inc. PGP and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelled in attractive blue and grey with a prinied front panel to give a protessional finish
Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges.
SEND CHEOUE OR P.O.
ALLOW 21 DAYS FOR DELIVERY
BRANIME MARKETING LTD dept. eti BALTHANE IND. EST., BALLASALLA, ISLE OF MAN

BIG ELECTROLYTICS

from

* Computer grade
* Made by Sprague or G.E.
*Short shelf life
BARGAIN PRICES TO CLEAR * ONLY £2.50 EACH *
any of the following values

$300,000 @$	7 V	$100,000 @ 30 \mathrm{~V}$
185,000	@	15 V
$120,000 @$	71,000	@ 40 V
15 V	60,000	@ 40 V

IMMEDIATE DELIVERY

p\&p 1 or 2 capacitors $£ 1.00$
3 to 6 " $£ 1.50$
$6+\quad$ £2.00
Dept. 5F , High March, Daventry, NN11 4HQ Tel. 032725523

Please add 15\% V.A.T
Send large s.a.e. for catalogue giving details of our vast range of components.
Walk round supermarket open Mon . Sat 9 . 4
Come and see our fantastic offers.

Accurate Digital Multimeters at

28 RANGES, EACH WITH FULL OVERLOAD

SPECIFICATION NIODELS 6010 \& 7030

- 10 amp AC/DC
- Battery: Single 9 V drycell. Life: Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$. Weight: 400 g inc. battery. - Mode Select: Push Button - AC DC Current: $200 \mu \mathrm{~A}$ to 10A - AC Voltrage: 200 mV to 750 V - DC Voltage: 200 mV 101000 V - Resistance: 200Ω to $2 \mathrm{M} \Omega$ Inpur Impedance: $10 \mathrm{M} \Omega$ - Display: 3% Digit 13 mm LCD

OTHER FEATURES: Auto polarity auto zero, battery low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case.

NEW HM 102 BZ SPECIFICATION volis 20,000 ohms/vols. AC Voltage: $0.10 .25,100,250,1000$ 10,000 ohms/volt -20 to +22 dB

Decibels:

$0.50,500 \mu \mathrm{~A}, 0.5,50,500 \mathrm{~mA}$
Ohmmeter: 0.6 Megohms in 4 ranges
30 ohms Centre Scale
Power Supply: One 1.5 V size ' A ' battery (inci) Size \& Weight: $135 \times 91 \times 39 \mathrm{~mm}, 280 \mathrm{~g}$

HM 101 POCKET SIZE NULTINIETER SPECIFICATION

- OC \& AC Voltage: $0.10,50,250,1000$ volts.

-10 to +22 dB

- DC Currerit:
- Ohmmeter: $\quad 0.1$ Megohm in 2 ranges
- Power Supoly 60 ohms Centre Scale
- Size \& Weigh One 1.5 V size A 'battery (incl)

One 1.5 V size A battery (incl)
$90 \times 60 \times 29 \mathrm{~mm}, 92 \mathrm{gr}$. incl. battery
battery
Quantity discount for trade on application.
Add 15% to your order for VAT. P\&P is free of charge. Payment by Cheque with Order. ARMON ELECTRONICS LTD. Access \& Barclaycard accepted.

LBELECTRONICS

LIMITED STOCKS

Brand new havard H 452 , power supply and Nickel charger output 13 volts at $0.7 \mathrm{~A}(\max 1 \mathrm{amp}) 7^{\prime \prime} \times 3^{\prime \prime} \times 31 / 2^{\prime \prime}$ appx. Fully cased and boxed only £4.95p plp £1.70p

SPECIAL OFFERS
(while stocks last) Mullard .2" Red L.E.D.'s 0.06p, 7805 38p, 7805 KC 5 Volt 1.5 A 75 p $78 \mathrm{HO5} 5 \mathrm{~V} 3$ AMP £3.50p, 5K $3 / 4^{\prime \prime}$ multiturn trim pots 14 for ع2.50p

DISC DRIVE BONANZA

PERTEC FD650 DSDD

TEAC FD-55F $1 / 2$ Height DSDO 80 track Cannon $2 / 3$ drive SSDD Shugart Compatable E288+VAT annon $2 / 3$ drive SSDD Shugar Compatable $\mathbf{5 1 2 9}+\mathrm{VAT}$ 40 Track
Apple controller card for two drives £40.00 + VAT p\&p 50p ASC11 coded qwerty Keyboard ,manufactured by Alphanumeric Woking UK). Model 60K brand new plus data. £19.95p p\& p £1.50
25 WAY 'D' Types, plugs $£ 1.85$, sockets $£ 1.85$ (solder tail) p\&p 30p. Telephone for bulk prices.
$8^{\prime \prime}$ Drive Cabinets complete with power supply (LINEAR) to take iwo 8" Drives, Brand New $£ 99.95 p$ + VAT 5p (carriage cost) Twin 5" Cabinets with power supply $£ 30.00+$ VAT (providing a disc drive is purchased from us, if drives purchased elsewhere $\{40.00$ + VAT)
9" Green Phosphor Monitors Brand New and Cased Composite Video Input 18 mhz band width $£ 78+$ VAT each (carriage cost)

American Express

LB ELECTRONICS
11 HERCIES ROAD, HILLINGDON,
MIDDLESEXUB1O 9 LS, ENGLAND
VSA. TEL: UXBRIDGE 55399

Low profile IC sockets: Pins 81416182022232840
Pence 91011141518192533
Soft-sectored floppy discs per 10 in plastic library case:
5 inch SSSD £17.00 5 inch SSDD £ 19.255 inch DSDD £ 21.00 5 inch DSQD £26.35
8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50

745LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list

Please add 50p post \& packing to orders under £15 and VAT to total. Access \& Visa welcome. 24 hr service on (054 422) 618 Government \& Educational orders welcome, §15 minimum Trade accounts operated, 'phone or write for details.

Happy Memories (ETI),
Gladestry, Kington, Herefordshire. HR5 3NY
Tel: $(054422) 618$ or 628

EUROPA ELECTRONICS

M.al Order to 160 High Road, Willesden, Lo vidon NW10 2PB TEL: 01-907 1659

SEND FOR A FREE UST OF OUR LARGE RANGE OF ITEMS ALL DEVICES ARE NEW, FUL SPEC AND GUARANTEED

Post \& Packing: Add 30p to all orders under £5
VAT: All UK orders add 15% to total cost including p. \& p

AUDIOPHILE

Stop press. Just in time for this issue, Vivian Capel supplied a report on the topical and apparently revolutionary Hugo Zuccarelli and Holophonic Head. Don't go away, it isn't a music hall act . . .

What caused hard-bitten cynical audio experts to gasp in amazement? What produces multidirectional sound from two channels; and still does so when one channel is switched off? What has put conventional stereo, and even quad, into the same class as the wind-up trumpet gramophone? What modern discovery has been clouded with more myths and confusion than The Ring? Who or what is Ringo?

The answer to all these questions lies in the new brainchild of 26-year old inventor Hugo Zuccarelli, the Argentine-born Italian now resident in London. The system is termed holophony after a claimed, though rather tenuous, comparison with holography.

It seems that Mr. Zuccarelli has been musing over the principles of holophony for a long time, since he was nine no less, but it wasn't until October 1981 that he filed a European Patent Application which describes his invention and gives patent protection in nine European countries.

Since then, particularly in January and February of this year, there have been press demonstrations and a TV programme in the 'Real World' series. The results of these have been impressive indeed, with audio experts and reviewers being converted from scepticism to astonished acceptance. Neurophysiologist Dr. Martin Rosenberg of London University has joined the redoubtable Angus Mackenzie (who is not given to extravagant praise) in acclaim with phrases such as "quite striking and novel," and "absolutely remarkable.'

Sounds Interesting

So what was the cause of all the excitement? The demonstrations were conducted with recordings played through a pair of conventional stereo headphones, although a pair of stereo speakers suitably placed will give the same result. This immediately strikes a favourable note, as it means that potential users do not have to buy or change expensive hi-fi, or find room for extra speakers as with the defunct quad systems. Existing speakers can do the trick, with perhaps a move from the usual stereo front location to a side position. Another proviso we shall see later.

Some of the recorded material was played by digital recorder, but there were also recordings from an ordinary stereo cassette machine. There was no evidence of a special decoder (as needed with the quad systems): in fact there was little different from an ordinary stereo system except the recordings.

These consisted of everyday sounds rather than music, and so were more readily comparable to normal experience; people moving about and talking, matches being struck, birdsong and jet aircraft. The remarkable thing was that in every case the exact location of the sounds could be pin-pointed. Not only in front, as is the case with normal good stereo, but at the sides and the back, and even overhead and below at floor level. There was a com-
plete sphere of locatable sound sources. Tr is demonstrated the superiority over quad systems, which imperfectly create the illusion of 'surround sound' and fail to give a height dimension.

The degree of realism was so great as to produce descriptions such as 'terrifying' from the subjects especially when the experience took place in a darkened room, and the eyes could not contradict the evidence of the ears. One auditioner spoke of withdrawing his feet instinctively as he heard someone walking directly in front of him, the sound of footsteps coming unmistakably from the floor, while another claimed to have felt the "heat" from a match that was struck in front of his face. Those listening in a normally lit room but with eyes closed as instructed, frequently had to open them to reassure themselves that it was only a recording.

Myths And Legends

There is then no doubt, that the system does work, and it works quite remarkably. The question (and it is a big one) is HOW does it work?

Although protected by patent, Zuccarelli is more than normally protective in guarding the secret. Perhaps he has good reason to be, as imitators in the past have not fourd it impossible to get around patents. So, in addition to be-

ing vague in describing the principle of working, he has disseminated half-truths which have been interpreted in various ways by journalists, mostly with completely erroneous 'explanations'. Also statements have been made which are quite misleading.

The result, as readers who may have seen press reports in other magazines will have gathered, is confusion and conflicting theories. Some of these appear to be contrary to the known facts of physics and biology, and unfortunately have done little to raise the system's credence in the minds of doubters. It is a pity that what is undoubtedly a genuine breakthrough should be so surrounded by clouds of suspicion and scepticism.

Let us take a look at what has been already published. Firstly, the name holophony is meant to imply a similar mode of operation to that of holography. With this, a beam from a coherent light source such as a laser is split into two parts. One is the reference beam which is directed at a photographic plate or film. The other illuminates the object to be photographed from which reflections are also received at the plate. These are delayed by reason of the extra distance they have travelled, the delay thus being proportional to the depth of the object.

The object beam is now has a slightly different phase than the reference, and re-combining them at the photographic plate produces interference patterns. Where there are no reflections from the object such as from holes in its surface or beyond its boundaries, there are no patterns on the plate, only the reference beam.

Thus the plate carries two-dimensional information corresponding to the flat or frontal appearance, but in addition it has information reagarding the depth as conveyed by phase differences and the resulting patterns. So the original image in depth can be reconstituted with the use of a laser.

Your Theory Is Crazy . . .

In an attempt to reconcile this principle with the claimed workings of holophony, writers have tried to idenfity the two components, the signal and reference, and have met with trouble, especially in the case of the latter. They report Zuccarelli as asserting that the ear is not a receiver but a transmitter. It actually radiates a sound which interacts with the incoming pressure waves and compares them to produce a resultant signal which somehow has spatial information.

A variant of this is that the reference is like 'pink' noise (the audio technician's term for noise in which each octave of random frequencies contains equal power, in contrast with 'white' noise where the power increases according to a square law for each rise in octave), and that we call this noise 'silence'. Incoming signals are alleged to mix with this and thereby become spatially identifiable.

There are two obstacles to this theory. One is that there seems to be nothing published in the medical and biological books as to the ear radiating sound - strange that such a phenomena has passed unnoticed before!

The second is that, even if true, in what way could the mixture of an internally generated signal and the external ones identify the location of the latter? Remember that with the hologram, the reference and object beams originate from the same source, and it is the displacement from the phase of the original that conveys the spatial information in the reflected one.

Mr Zuccarelli is also reported as saying that he communicates directly with the brain: "We actually record brain codes". As we shall see, spatial coding which the brain unravels as spatial information certainly does take place, but such a statement is rather misleading. It suggests
that sound and the ears are not involved at all, in which case one might expect to have electrodes implanted in the head in order to accept the recorded signals!

This mysterious non-auditory concept of the recorded signals is further heightened by Zuccarelli's reported emphatic denial that microphones are used at all in the recording process. In fact this is simply not true; two cardioid microphones with a minimum diaphragm diameter of 7 mm are employed as transducers in the recording device.

Allusions to 'encoding', the 'generator', and the coments that "if an electronics expert were to examine the latter it is unlikely he would understand $\mathrm{it}^{\prime \prime}$, all serve to enhance the aura of way-out complexity, and discourage too-close investigation. We are further told that Hugo would never sell the secret, and that "someone might find it in 10 or 20 years".

All highly intriguing stuff, but having blown away the chaff, let u's see what remains.

Limitations Of Traditional Hearing Theory

The traditional explanation of how we distinguish the origin of sounds is that the pressure waves reach one ear slightly later than the other, thus giving rise to a phase difference. Furthermore, the amplitude is marginally greater at the nearer ear. The head casts an acoustic shadow, thus giving rise to these effects. The extent of the phase and amplitude differences depend on the sound location, allowing us to sense direction.

Zuccarelli correctly points out that this theory is inadequate to explain all the facts of spatial identification in hearing. For example, persons who are completely deaf in one ear can still identify sound-source locations, although to a limited extent. According to the theory they should have no spatial information at all.

You can check this for yourself by closing your eyes and plugging one ear, then getting someone to rattle a box of matches or some keys at various points around your head. You will find that the locations can be closely identified soth laterally and vertically, especially around the hemisphere of the exposed ear.

Another fact is that two microphones placed on either side of a dummy head in the position of the ears will indeed give a spatial location to sounds coming from the front, this being the way binaural recordings are made. However, the effects are ambiguous: sounds from the rear have the same effect and there is no way they can be distinguished. Furthermore, there is no means of telling whether sources are high or low-height information is absent.

Now why should this be? We have only two auditory receptors on our heads, just like the microphones. We have no hearing organs on the top or at front or back, only at the sides. Yet these can identify sound sources in any direction, and for good measure, whether they are near or distant! How? Why?

Holophony

By asking questions such as these, Hugo Zuccarelli arrived at an explanation which seems to fit all the known facts. The spatial encoding takes place as the sound enters the ear. While the head plays a part in this, the major factor is the auricle or the external part of the ear. A pressure wave enters the ear canal directly and is conducted down to the eardrum, but a larger portion is collected by the auricle (due to its larger area) and is reflected around the whorl, to follow the direct wave slightly later. The delay is small, but it does produce a phase difference, especially at higher frequencies.

If the auricle was symmetrical, then such reflections would be similar irrespective of the direction of the wave
fronts. What is required is a reflector that is asymmetric in all directions. The human auricle fits this need perfectly, there being no two directions in which the reflective path is the same. Hence the delay and phase difference depends largely on the direction of the sound source. It is in this sense that the ear generates its own spatial code, by comparing these reflections with the direct sound originating from the same source.

Thus the similarity with holography can be more clearly appreciated and the term holophony justified.

Reflection of a sound pressure wave only occurs to any degree when the reflecting surface is a quarterwavelength in size or larger. The spatial location facility would therefore be expected to be frequency-dependent. Frequencies above 3.4 kHz are well handled by the shortest auricle dimension, and down to 1.4 kHz by the longest. Below this, the head itself comes into play at frequencies down to 450 Hz , although with rather less precision.

It must be remembered, though, that there are few if any natural sounds that are pure fundamentals; nearly all consist of fundamental plus a varying number of harmonics. Thus a sound in the low frequency range could be spatially located by reason of its harmonics.

This is in accord with common experience; low frequency sounds with few harmonics are notoriously difficult to place. Have you ever tried to locate the source of a mains hum from several separate pieces of equipment? Or the direction of a distant explosion? Such low frequencies travel through the auditory system without modification and so without any spatial coding.

The theory also fits the phenomena of the retention of restricted locational ability with one ear only. One of the things that can be affected by hearing in mono is the facility for judging the distance of a sound. Each ear fixes the direction, and if the directions are notably different it must be because the sound source is near. Conversely a virtually similar direction means the source is distant.

All this information is fed to the brain which supplies an instantaneous fix on the location of any sound. Thus it serves as the decoder of the data encoded by the external ear and its orifice.

Recording

So now we come to the big question; how can audio signals be recorded and encoded to simulate our natural direction-finding mechanism? It doesn t take long to arrive at the conclusion that the best way is to copy nature. If an artificial head is constructed that contains an auditory system closely resembling that of the human head, but has microphones in the position of the ear drums, then the sounds picked up by them will have spatial coding just as those reaching the natural ear drums. The same phase displacements and diffractions are all present.

This is the basis of Zuccarelli's system; an artificial head called Ringo. Of course artificial heads have been used before for making realistic binaural recordings, but these have not duplicated the auditory system with any accuracy, and their main object is to simulate the acoustic shadow of the human head between the ears.

Ringo is quite different. The head is made of a plastic material such as polystyrene and rubber, and has two ears which faithfully copy the auricle of the human ear. These lead into cavities which again duplicate the ear orifice, and from there pass into the auditory canal. This is some 24 mm long, the first 8 mm of which is the same plastic material as the auricle, but the remaining 16 mm is lined with a more rigid plaster coating. This is to simulate the fibro-cartilaginous and bony portions of the human canal respectively. It is of elliptical cross-section which is twisted

Fig. 1. The received sound from a nearby source makes different angles at each ear. From a distant sound the angles are vitually the same. The brain interprets the directional differences between the ears in terms of distance.
through about a quarter turn, and has an abrupt dilation some half-way along. Thus the internal contour of the human channel is closely duplicated.

At the end of each canal is a cardioid microphone oriented in the same plane as the ear drum. Cardioid microphones are not pressure-operated but are exposed at the rear of the diaphragm, giving them the pressuregradient or velocity mode of operation. The ear drum is also not enclosed at the rear but opens through a tube known as the Eustachian tube into the pharynx at the top of the throat. By means of this, air pressure is equalised on both sides of the ear drum.

In a similar manner, a tube runs from the back ot each microphone diaphragm to a large cavity which corresponds to the human oral cavity. In this way, the acoustic properties of the Eustachian tubes and oral cavity (which influence the result although they may not be in the direct sound path) are duplicated. Microphone cables pass out through the oral orifice.

It was found in the development of the head that the identification of front and rear sounds was influenced by the presence of hair. In fact, it seems that men who are bald are less able to distinguish between certain front and rear originating sounds than those with normal hair. (one wonders if a hat might improve the ability in such cases). Anyway, Ringo is also equipped with a wig, and so has all the features for accurate spatial sound identification demanded by the theory.

Reproduction

Recorded sounds are amplified in the usual way and fed to a pair headphones or loudspeakers. They are heard by listeners, but because they include the natural spatial coding, the brain interprets them as coming from some location relative to the listener corresponding to that of the original sound relative to the recording head.

So far so good, but in entering the listener's ear do not the reproduced sounds ungergo a spatial coding again and so present the brain with a doulbe coded signal? The short answer must be yes, and if the reproduced sounds were actually coming from various directions the brain would be much confused.

However, the real direction of the reproduced sounds is fixed; in the case of headphones, it is on an axis with the ear. The sounds are therefore unidirectional and no different spatial coding takes place in the ear. The recorded coding provided by the dummy head herefore takes over, and the brain responds. We can therefore regard the side position as a mean point or reference from which the apparent direction deviates according to the recorded coding.

However, as may be expected, the human auditory system consists of various air chambers producing resonances, and some frequencies are favoured at the expense of others. According to the International Standard Loudness Contours, peaks in human hearing occur at 400 $\mathrm{Hz}, 4 \mathrm{kHz}$, and 12 kHz , these being the average over a large number of subjects tested.

The dummy head also has resonances, although these are somewhat lower at 2.5 kHz and 7.5 kHz . Like the
human hearing system, the peaks are due to the iundamental and third harmonic.

If uncorrected, these peaks would appear in addition to those present in natural hearing and would result in a distorted frequency response. They play no part in the spatial coding, so can be ironed out without any detriment to the working of the system.

Correction can be done by means of acoustic boxes in the head near the microphone diaphragms, but more conveniently it is done by connecting an equaliser circuit somewhere in the recording chain.

It was also found in developing the system, that sounds coming from the front and rear differed in their frequency response from those facing the ear at the side. Front radiated sounds emphasize the high frequencies, while those from the rear accentuate the low. Furthermore, there is a displacement between the fundamental and harmonics caused by the auricle reflection, and these also differ according to the direction of propagation. All this adds to the spatial coding.

Earlier the point was made that holophonic recordings need no decoder other than the brain, and so can be played on any domestic playing equipment, disc or tape. This is true but there is one proviso: hi-fi speakers having two or more units fed by a crossover network may not be suitable. The reason is that these often introduce phase anomalies. Since it is the subtle phase differences that constitute the spatial codification, any other introduced by the speakers (or amplifiers, for that matter) would disrupt the code.

The best type of loudspeaker for holophonic material is a single wide-range driver. Alternatively a multi-driver speaker may be used providing it has been designed to give zero phase shift between the drivers. Some have been produced with this characteristic.

Fig. 2. The anatomy of Ringo.

Future Prospects

As prospective users do not have to equip themselves with special players or decoders, and the results are so startingly better than conventional stereo or quad, the future of holophony would appear to be bright. As onechannel reproduction gives results almost as good as twinchannel, even cheap mono player users could benefit.

The technique could be used in broadcasting and television to considerably enhance some of the existing dreary fare. All that is required is to convince the upper echelons of the BBC and ITA of the fact. Unfortunately, the confusion and mysticism surrounding the subject won't have improved its chances there.

On the recording front things are more hopeful, with discs being made and more on the way. So far (as might be expected) the recordings are of pop, but serious music lovers may well imagine the effect with a large-scale choral work. In 'ive broadcasts, the coughs and programme rustling come from various points behind and would be less intrusive (as at an actual performance) than they usually are when broadcast. Imagine what could be done with broadcast drama with the constraints of the small television screen replaced by a wide stage stretching all round. The possibilities for creative use are almost without limit.

Hugo Zuccarell and his associate Mike King have formed a company, Holcphonic Zuccarelli Laos Ltd, for the exploitation of holophony. Ringo is understood to be an active partner!

Postscript

Since preparing the above article, I have had the opportunity of a conversation with Hugo Zuccarelli. He blames the confusion surrounding holophony entirely on the jourralists who have reported it and describes their efforts in rather strong terms that I would prefer not to repeat. Now it is true that non-technical reporters writing for the popular press often get the wrong end of the stick when reporting on lechnical matters, and many use their imagination to fill in the bits they don't know. However, the extent of the misinformation in this case points to a paucity of information at the source. I found this to be true myself; in response to my request for details and specific questions about the system, I received merely a montage of photccopied press-cuttings. These just underlined the confusion of the reporters who wrote them. Accordingly I had dig elsewhere and pursue other channels for the information.

Now this may be due to inexperience in PR and disseminating accurate information to the press - a fault not unknown in more established enterprises - or it could be attributable to the aforementioned caution over giving too much away to potential competitors.

In cur conversation he maintained that holophony does not consist of recorded sound, and referred to the analogy of the hologram which is not a record of a picture as such but interference patterns. True, but a hologram is a recording of light, although in a different pattern from a normal photograph. Similarly holophony is a recording of sound which can be defined as vibrations in air that produce sensations of hearing, even though these contain spatial-encoded phase delay.

If this were not so, holophonic recordings could not be reproduced directly through headphones and loudspeakers.

It seems that Mr Zuccarelli restricts his definition of sound to the original propagations from the sound source, and this could well be responsible for the confusion and some of the more fanciful descriptions.

Bigger and Better

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs includiag the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

- Lowest prices - Largest stocks *
- Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * wo listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send 51.50 for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

- Access - Visa - American Express accepted
also HiFi Markets Budget Card

0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned uredit card orders!

PARNDON ELECTRONICS LTD.

RESISTORS: \& Watt Carbon Fllm E24 sange $\pm 5 \%$ tole rance Hieh quality resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded
1.00 per hundsed mixed. (Min 10 per value) 8.50 per thousand mixed (Min 50 per value)

$$
\text { Special stock pack } 60 \text { values. } 10 \text { off each } \mathbf{5 . 5 0}
$$

DIODES: $1 N+148$ 3peach Min order quantity 15 items

$$
\begin{aligned}
& 1 N 4188 \text { 3p ea } \\
& \$ 1.60 \text { per hundred } \\
& \hline
\end{aligned}
$$

CAPACITORS, REGULATORS, SWITCHES, I.C. TRANSISTORS, DIODES, etc, etc FULL LIST AVAILABLE - SEND S.A.E.
DIL SOCKETS: High quality. Iow profic sockels

$$
8 \text { pin- } 10 \text { p. } 14 \text { pin- } 11 \text { p. } 16 \text { pin - } 12 \text { p. } 18 \text { pin - 19p. } 20 \text { pin }-21 \text { p. }
$$ 22 pin -23 p. 24 pin -25 p. 28 pin -27 p. 4 pin -42 p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK \&I.OOOVERSEAS 55 CASH WITH ORDER PLEASE

Visual Display Units Burroughs MT686 VDUs These versatile micro controlled programmable terminals have 3 RCA 1802 CPUs and 64 K of memory. 12" Green screen (80×25) RS232. 106 key detached keyboard. Can also be used as quality videc monitor. $\mathbf{f 1 4 9}+\mathbf{£ 1 5}$ carr. WHILE STOCKS LAST.	CENTRONICS 306 LINE PRINTERS professional fast compact line-printer. 80 columns, $120 \mathrm{char} / \mathrm{sec}$. Parallel i/4. Quahty at a silly price. Vertical format unit. To inc. operations manual. ONLY £149.00. Carriage (England) £17.50. Tech manual (230 pages) £10.00.	FLOPPY DISC DRIVES Fantastic MEMOREX $5508^{\prime \prime}$ discs mounted in attractive case with power supply and fan. Shugart standard 50 way interface. Space for second drive. f199 (carr. E9.501.
MAWSON ASSOCIATES 124 Lennard Rd, Beckenham, Kent BR3 1QP		
WE ALSO BUY COMPUPERS ANO COMPUTER PERIFHERALS	01-778 3600	Callers metcome by appointment th inems sold working but not g'teed

READ/WRITE

Letters for this page should be addressed to Read/Write at our Charing Cross Road address.

Dear Sir

I was most disappointed to see your article on FEVAs or Valves, in the April edition of ETI. I see enough stupidity in the world without reading it in electronics magazines.

I can do without that sort of rubbish. You have just lost one regular customer.

Yours sincerely,
K. I. Sparkes, BSc, A/EE,

ARCS,
Hemel Hempstead.

Dear ETI
Any prizes for spotting the April fool? Mind, the FEVAs nearly had me fooled - I read half the article like a lamb - then it clicked!

Nice try - ETI!
Margaret Hibbert,
Pontypridd.

Dear Sir
Please find enclosed a photo of a FEVA in my possession. It was found that Bakelite did not like high temperatures, and the pins were a little weak. An Edison screw was much more robust, and, as you can see, it is the No. 6 Valve.

This one is brand new; the heater is low voltage for safety and runs very bright. Ideal for reading ETI by.

Name and oddress supplied.

You can please some of the people some of the time

Dear ETI
Your RAM has had a power failure. Gareth Lee (Read/Write October 1982) wrote asking you about expander/ compressor norse reduction circurts and you FORGOT even to MENTION' your own - November 1977 -
"COMPANDER" based on the NE571. I built one and it did have some unsat isfactory features: the record/play switch and compression ratio switch introduced noise and made tape monitoring impossible, but a Mark I/ version using one NE570 per channel and based on the "100 Circuits" design works well and produces a major noise reduction. Mark I/I - using 4066s to control expansion/compression ratio is now on the breadboard.

Howard B Broughton
Putney, London
We look forward to receiving a Tech Tip from Howard!

Dear Sir
I read with interest your article in the April 1983 ETI, using our MM58174AN (the Real Time Clock Ed.) Unfortunately, the design breaks many of the design rules for using the part.

1. The diode derived supply will be typically 4.3 volts normally, well out of spec. This will cause read errors. It may also cause latch up if any pin is driven obove 4.3 volts. This is usually destructive.
2. The write protect switch SW1 is a good idea, but will not prevent IC6 and IC5c producing glitches on power up/down, causing erroneous data to be written into the MM58174AN. This is a common but serious design fault, and typically stops the clock or corrupts data during power down.
3. Most 6502 based systems demand memory and peripherals with an access time of less than 1 microsecond. The MM58174AN does not meet this requirement, having an access time of 1.2 microseconds at 5 volts and 25 deg C. At 4.5 volts and 70 deg C, this increases to 1.9 microseconds. Clearly wait states must be introduced. Typically some registers will be read correctly and others will not if this important parameter is ignored.
4. I commend your designer for fitting C5, many people fail to realise its importance. Ideally it should be 12 or 15 pF , but 10 pF will probably be OK. 5. You correctly state the importance of reading all required registers of the MM58174AN in 100 mS , which is tricky in BASIC, but make no mention of servicing the Interrupt, which is somewhat involved.
5. The PCB track to pin 15 (clock in) should be moved further away from the track to pin 12 (ADO), or noise may be coupled in causing the clock to run fast.

Quirky behaviour may be tolerable in some home constructed equipment, but I honestly believe that your readers will demand utter reliability from a real time clock if it is to have any practical value.

My fear is that many of your readers will waste the ir time building a real time clock card that doesn't work very well. They will probably blame the component and waste the
manuiacturer's time, craving advice and assistance. They will probably also
waste much of your time, by phoning and writing to ETI.

Sorry to sound super critical, but I have spent three years helping and persuading people to use the
MM58174AN properly, and I think
you have undone it all!
Yours sincerely
D.E.Brown,

Applications Manager,
National Semiconductor (UK) Ltd.
The author replies:
Taking National Semiconductor's points in order:

1. If a supply voltage of 4 V 3 is "well out of spec", then the data sheets contain wrong information. I have both an N.S. and an R.S. data sheet for the device, both of which quote a minimum supply voltage of 4 VO .
2. Whereas in theory / accept that powering up/down could cause glitches on CS and NWDS hence corrupting data, I haven't found in practice that this happens. If the device is prone to this sort of problem, it is unfortunate that it is not mentioned in the data sheet which in actual fact suggests the contrary. The N.S. data sheet describes a typical microprocessor application in which the
circuit diagram includes a battery back up and is therefore intended for uses in which it will be powered up and down without resetting the MM58714AN.
This circuit contains no write protection facility at all, CS and NWDS being connected directly to the bus. 3. I was concerned whilst designing the RTC board that the access time on the MM58714AN was rather long for the 6502 processor. However, since an alternative method of interfacing would have greatly increased the complexity of the board, I was tempted to experiment with the configuration actually used. The circuit proved to be successful in practice and my choice of this configuration was confirmed when I encountered a similar circuit in another magazine (Shame! - Ed). I have more recently spoken to the author of this article who informed me that the circuit was closely based on applications information supplied by R.S. Components and that the circuit has also been manufactured on a commercial basis with no problems. 4. No comments.
3. I would imagine that no more than 5\% of readers building this board would wish to use it in the interrrupt mode. It was therefore my intention to make
mention of the fact that the board could also be used to generate interrupts without using a lot of space to describe something that would be of interest to a small minority. Obviously any reader intending to use interrupts may obtain all the relevant information from the data sheet.
4. I have noticed that the RTC does in fact run slightly fast. I had originally explained this as being due to the tolerance of the crystal, as the inaccuracy is no greater than that which I experience with my digital wrist watch which presumably uses a similar chip and crystal. I would imagine that the comment made by N.S. is a more likely explanation. It is a pity that if the circuit board geometry is so critical to the correct operation of this device that no mention of this requirement is made in the data sheet.

To summarise, I think that the following two points sum up my thoughts:
A. The board does in fact work.
B. All but one of the points above could not have been discovered by reading the data sheet. Perhafs there is a need here for a more accurate and more detailed data sheet.

Mike Bedford

"w VICTORY ORGAN

* Exciting range of authentic voices
* Preset sounds-Piano, Harpsichord, Hawaiian Guitar (with glide), Banjo (with repeat), Accordion
* 16 modern rhythms with superb sounds including handclap
* Full range of 'Easi-Play' features * Custom Programmed ROM
* Walking Bass on Lower Manual and Pedals
* Real wood veneer cabinet with American walnut finish
* The only organ with update facilities for synthesizer and "add-a-chord" unit
* Starter kit from $\mathbf{£ 9 8 . 8 0}+$ VAT
* Full kit £280.54 + VAT Carriage extra on kits

Send for a demonstration tape today only $£ 1.95$ inclusive. Hear the difference yourself.
Full details \& specification on request

POWER SUPPLY PART 2

Before powering up the complete supply it is better to check each of the control circuit functions
separately. The first check should be the auxiliary power supply for the control 1 C . Connect an isolated 12 V power supply to V_{A} and check that the current is not greater than 200 mA . Verify that the collector waveforms of Q3, Q4 and the waveform at the gate of each HexFET is as shown in the photographs at the end of last month's article.

The next task is to set up the dead time. With a dual trace scope connected to pins 11 and 14 of IC1, adjust the preset PR3 so that the dead time measures 1.5 microseconds.

To set up the current limit circuit, disconnect R15 and apply a voltage of 550 mV in its place. With the scope connected to pin 11 of IC1, adjust

TABLE 1

Output Inductor L1: Siemens pot cores 30×19 AL400, with 20 turns of 1.4 mm diameter enamelled copper wire in three layers (7 turns per layer). $\mathrm{L}=160 \mathrm{uH} \pm 5 \%$.
Power Transformer T1: Siemens pot cores 30×19 AL10500; Primary P1, 24 turns of 0.355 mm diameter enamelled copper wire in one layer;
Secondaries S1, S2, $6+6$ turns of 0.95 mm diameter enamelled copper wire wound bifilar in one layer; Primary P2, 24 turns of 0.355 mm diameter enamelled copper wire in one layer;
insulation suitable for 220 V should be wound between each primary and secondary layer; primaries and secondaries should be wound in the order listed.
Drive Transformers T2,3: Siemens pot cores 14×8 AL3300-5500; Primary is 60 turns of 0.2 mm enamelled copper wire;
Secondary is 60 turns of 0.2 mm enamelled copper wire. Insulation suitable for 220 V should be wound between the primary and secondary layers.

Fig. 1 How to connect the windings of T1.
preset PR1 until the waveform disappears. The current limit is now set for about 5.5 amps .

To adjust the stabilisation circuitry, connect an auxiliary adjustable power supply across the output terminals (making sure you follow the polar ty), and slowly increase the voltage from zero to 12 V . With the scope still connected to pin 11 of IC 1 , check that the frequency of operation changes from 40 kHz to 75 kHz as the voltage passes through 5 V . This confirms that the short circuit protection is working. When the voltage reaches 12 V , adjust the preset PR2 until the waveform present at pin 11 disappears.

Now the power supply is ready to be powered up. Connect the main line to the AC input through a variac, and connect a load to the output. Slowly increase the input voltage and verify that the supply begins to operate. With a nominal 220 V AC input adjust again, if necessary, PR1 and PR2. If everything is working correctly, remove the variac and plug the supply directly into the $A C$ mains for normal operation.

Kindly Note . . .

The text for the switched mode power supply was originally written in Italian, and some errors have occurred in the translation. Please note the following corrections to the June article:

Page 36, column 2. The sentence should read "A 400 V HexFET allows a 15% margin in voltage and gives a lower loss during the conduction time than would a device with a higher voltage rating, because of its lower 'on' resistance".

Page 37, column 1. The statement before the first equation should be "- must be chosen higher than the critical value so that current circulation will not be stopped".

Page 37, column 2. The first paragraph should read "- the zener diodes ZD5 and ZD6 are connected in parallel with the transistors on the primaries of the transformers".

Page 37, column 3. The first paragraph should read "The width of this dead time is controlled by the value of the timing capacitor CT . . ."

Page 38, column 2. The figure referred to under DC Output Stabilisation should be Fig. 6, not Fig. 5.

In the specification, the sixth line is " 100 Hz ripple", not " 100 kHz ripple".

Additionally, not that the control circuit is 'grounded' to the positive rail
of the output, providing a -12 V supply rather than a +12 V supply. Also, the first photo was printed upside down.

PARTS LIST

Resisters (all $1 / 4 \mathrm{~W}, 5 \%$ except where stated)	
R1,2	390k
R3,4,15	27 R
R5,6	270R
R7,8	1k0
R9.12	430R
R13	2k2 3W
R14	OR13W
R16	2 k 2
R17	1 MO
R18	10k
R19	12k
R20	1k5
R21	5k6
R22,25	510k
R23,24	5 k 1
R26	51k
R27,28	2k49 1/2\% metal oxide
Potentiometers	
PR1	200R multiturn cermet
PR2	2 k 0 multiturn cermet
PR3	5k0 multiturn cermet
Capacitors	
C1,2	10 nF 630 V polyester
C3,4	220 uF 250 V aluminium electrolytic (switching)
Cs	$24263 \checkmark$ poly carbonate
C6,7	560 pF 630 V ceramic
C8,14,16	140 polycarbonate
C9	470 pF 630 V ceramic
C10	4 n 71000 V ceramic
C11	4 u 750 V polycarbonate
C12,19	1000 uF 25 V aluminum electrolytic (switching)
C13	4 n 7 ceramic
C15	33 LF 10 V tantalum
C17	100 nF polycarbonate
C18	2 n 21 \%/2\% polycarbonate

Semiconductors

Semiconductors		
IC1	SG3524	
Q1,2	IRF720	
Q3,4	BSX32	
Q5	2N3502	
Q6	2N1613	
D1-4	1N5408	
D5,6	1N3981	
D7.9	BAV20	
ZD14	15V, 1W zener	
ZD5,6	$33 V, 1 W$ zener	
ZD7	10V, 400 mW zener	
ZD8	2V7,400 mW zener	

Miscellaneous

TH1 15R NTC thermistor L1 (;ee Table); T1.3 (see Table); PCB (see Buylines); heatsinks for Q1,2 and rectilier diodes.

BUYLINES

A camplete kit of components for this project can be obtained from Electrovalue, 28 E St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. The price is $£ 51$ plus VAT and does not include the double-sided, plated-through hole board which is available from our PCB Service for $£ 14$ plus postage and paching (see the ad on page 91).

TALK TOTHE WHOLE WORLD

Study now for the
RADIO AMATEUR'S
EXAMINATION
We have had 40 years successful experience in training men and women for the

G.P.O. Transmitting licence.
T FREE R.A.E. brochure without obligation from:British National Radio \& Electronics School READING, BERKS. RG1 1BR
Name .
Name .
Address

Greenbank Electronics (Dept. T7E), 92 New Chester Road, New Ferry, Wirral, merseyside L62 5AG Telephone: 051-645 3391 (Dept T5E)

CALLING ALL THEATRE GROUPS \& BANDS

MJL manufacture a range of lighting desks and power packs for the enteriainment Industry, and whether your pro or amateur, you will find our prices attractive. It makes no sense to hire when you can own your own equipment, so why not drop us a line:

The Sales Manager MJL Systems Ltd. (power division) 45 Wortley Road, W. Croydon

Surrey CRO 3EB
or Phone 01-6894138

MULTIMETERS

(UK C/P 65p)
RANGE DOUBLER 10A DC1
Special price........................ $\mathbf{1 5 . 9 5}$
ETC 5000/5001 121 Ranges 50K/V Range Doubler 10A DC
TMK 50023 Ranges 30K......16.50
DC Plus cont. buzzerE23.95
NH56R 20K/V 22 Range Pocket
$360 T R 23$ Range $100 \mathrm{~K} / \mathrm{V}$. Large scale 10A AC/DC plus Hfe 536.95 ATI 02018 Range 20K/V. Deluxe plus Hfe Tester 51750 ST303TR 21 Range 20K/V plus Hfe
Tester
plus Hfe
$£ 16.95$

rde by Pee min choques ALL PRICES CATALOGUE Access Visa or INCLUDE SEND LARGE
you can
tatophone yout You can
tolephone
orders

(UK 200)

MUSICRAFT 303 EDGWARE RD, LONDON W.2. TEL: 01-4029729/2898

WHY WRITE TO LONDON

When you can walk to the Midlands largest selection of DIY.
Plugs, sockets, connectors, cable, flex, leads, bokes, Aerials, styli, components, elements, semi-conductors, meters.
In fact the lot!
Spares and repairs for all electronic, electrical and audio.
H. G. Electronics Co.

1350 Stratford Road, Hall Green,
Birmingham E28 9EH
Telephone: 021-777 2369

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular nonworking projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the out-
, come if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its \# behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking
It these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift!);
- Other than through our letters page, Read/Write, we will not reply to enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We will not reply to queries that are not accompanied by an SAE (or international reply coupon). We are not able to answer enquiries over the telephone. We try to a answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

UK: £13.15
Overseas: £16.95 Surface Mail £36.95 Air Mail
Send your order and money to: ETI Subscriptions Depart-

- ment, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to - time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Below we list the backnumbers that are available from our * backnumbers department. Please note that this list will be
: out of date if you use an old copy of the magazine. Backnumbers cost $£ 1.50$ (UK or overseas by surface mail) and are available from: ETI Backnumbers Department, 513 London Road, Thornton Heath, Surrey CR4 6AR (cheques should be made payable to ASP Ltd).

Even if the copy of ETI you need is not listed, all may not be lost, because we run a photocopying service. For $£ 1.50$ (UK and overseas) we will photocopy an entire article (note that parts of a series of articles count as separate articles). Your request should clearly state what article you require and the month and year in which it appeared (the
index for 1980 and 1981 was published in January 1982, and the index for 1982 appeared in December 1982). Send your request to ETI Photocopies, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE (cheques should be made out to ASP Ltd).
November 78
November 79
April 80
September 80
October 80
November 80
December 80
January 81
February 81
March 81
April 81
May 81
June 81
November 81
December 81
March 82
May 82
June 82
July 82
August 82
September 82
October 82
December 82
February 83

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you you all the boring details.

We don't bother with the bureaucracy for Tech Tips all you do is to send in your idea, stating clearly if you want an acknowledgement of receipt. If possible, please type your explanation of why the circuit is different, what it does and how it works, on a separate sheet from the circuit diagram; both sheets should carry your name, address and the circuit title. Unused Tech Tips will be returned.

OOPS!

We have in the past published small corrections to projects on the letters page, and major corrections separately. From now on corrections will appear on this page, and will be repeated for several months (just to increase our embarrassment). If a correction is too large to fit on here, we will publish it just once, but will note the fact that a correction does exist, and that copies of it can be obtained from us provided you send in an SAE.

Subscription Order Form

To: ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey, CR4 6AR, England.
Please commence my subscription to Electronics Today International. I enclose a cheque*/Postal Order*/International Money Order* for the appropriate fee*, made out to ASP Ltd.
Please debit my Access*/Barclaycard* account number*

\section*{| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Signature
(* delete as appropriate)
Please indicate subscription required and fee enclosed

UK \& Rep of Ireland:
Overseas surface mail:
Overseas air mail:
UK $£ 13.15 \square$

Until further notice, each subscription includes
free binder (normal price $£ 4.25$)
PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name
$£ 16.95 \square$
£36.95 \square
\qquad
Address \qquad

PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order.
THIS COUPON IS VALID UNTIL: 31st AUGUST 1983.

- Backnumber Order Form

To: ETI Backnumbers Department, 513 London Road, Thornton Heath, Surrey CR4 6AR, England.
Please supply me with the following backnumber(s) of ETI
!
Month Year \quad Y
Month Year
Month Year
| enclose cheque*/Postal Order*/International Money Order* to the value of $£ 1.50$ per magazine ordered, made out to ASP Ltd (* delete as appropriate).

Total money enclosed $£$

PLEASE COMPLETE YOUR NAME AND ADDRESS BLOCK CAPITALS

Name
Address \qquad
\qquad
\qquad
\qquad
\qquad
PLEASE INCLUDE POSTAL CODE AS APPROPRIATE
Date of order
Note that the cost is the same for orders from overseas as
for UK orders; overseas orders will be sent by surface mail.
PLEASE CHECK THAT THE BACKNUMB

Binder Order Form

To: ETI Binders, 513 London Road, Thornton Heath, Surrey CR4 6AR, England.

Please send me...binder(s) for ETI I enclose a cheque*/Postal Order*/International Money Order* to the value of $£ 4.25$ per binder required, made out to AS^{P} Ltd (* please delete as appropriate).

Total money enclosed $£$
PLEASE COMPLETE YOUR NAME AND ADDRESS IN
BLOCK CAPITALS
Name.
Address ...
I
-
1
-
please include postal code as appropriate
Date of order.
Note that binders cost the same for UK and overseas; overseas orders will be send by surface mail.

THIS COUPON IS VALID UNTIL: 31st AUGUST 1983.

Photocopy Order Form

- To: ETI Photocopies Department, 145 Charing Cross

Road, London WC2H OEE, England.
1
Month................Year Article....................
\square
1

- Month................Year Article

I enclose cheque*/Postal Order*/...

- Order to the value of $£ 1.50$ per photocopy ordered, made out to ASP Ltd (* delete as appropriate).

PLEASE COMPLETE YOUR NAME AND ADDRESS IN BLOCK CAPITALS

Name
\qquad

1 Date of order

- Note that the cost is the same for overseas orders as for UK orders; overseas orders will be sent by surface mail.
PLEASE REMEMBER TO INCLUDE MONTH AND YEAR WHEN ORDERING.
- THIS COUPON IS VALID UNTIL: 31st AUGUST 1983.

BUILD A BETTER AMPLIFIER!

How can you own a top class Hifi amplifier, of comparable standard to Naims, Meridians, Quads etc., for an outlay of less than $£ 250$? - Simple! Bullt it yourself - with a Crimson kit.

It is not necessary to spend a small fortune to obtain true Hifi performance. Crimson Kits offer all the features and sound quality of the most esoteric amplifiers available and their ease of assembly ensures that they work first time and continue to do so. Not only do Crimson Kits offer outstanding value, but they also have the fle exibility to adapt to anyusers needs. All the P.C. B.'s are ready assembled and tested (they are not "potled as we believe disposable modules are rather extravagant!) therefore constructing a kit is pleasurable in itself and, once built, will give years in their review of the. Ski, wher amplifiers from now on." Need we say more? mors
PRICES \& Summer Special Offer: Buy a CK1010 and any CK power amplifier and get an MC2K board freel!" *
CK1010 - STEREO PRE-AMPLIFIER (moving magnet, tape, tuner input) takes-power from any CK power amp or separate p.s.u. type
CK1040 - STEREO POWER-AMPLIFIER 40 watts R.M.S./Chanel
£92.00
CK1080 - STEREO POWER-AMPLIFIER 80 watts R.M.S./Chanel
ع121.00
CK1100 - STEREO POWER-AMPLIFIER 100 watts R.M.S./Chanel
MC2K - Moving coil add on kit for CK1010
P.S.K. - power supply for CK1010 (if not used with a CK power amp) £20.00
CRIMSON also supply power amp, pre amp and electronic crossover modules, power supplies and hardware - too much to list here - but on receipt of an S.A.E. we will be happy to supply full details

TO ORDER Send C.W.O. or quote your access card no (phone orders accepted) Crimson Products are also available from Bradley Marshall Ltd. 325 Edgeware Road, London.

* Offer closes 31st July 1983 (Return this ad with your order)

[-F CRIMSON ELEKTRIK STOKE

MANUFACTURERS OF PROFESSIONAL. DOMESTIC \& INDUSTRIAL AMPLIFICATION PHOENIX WORKS. 500 KING STREET, LONGTON, STOKE-ON-TRENT. STAFFORDSHIRE. ST2 IEZ 0782330520

E.Z CIRCUIT .'quick. easy $\&$ reltable the besi way 10 make one or two-ol-a.kind PC boards' ' That's what 'Doc' Savage (hobby editor. Radio Electronics magazine) says about E.Z CIRCUIT. Why all the excitement?
Simple. E.Z CIRCUIT's exclusive 1 oz . pressure-sensilive copper tapes $\&$ patterns apply directly to the PC board, creating an actual current carrying circuit Simply apply E. 2 CIRCUIT's Copper Mounting Configurations to the board. solder your components into place, and you have a professional. production quality PC board insfanfly withoularlwork photography. screening or elching
Theres no need to worly aboul mistakes either With E.Z CIRCUIT's special iwo phase adhesive. you can make correc. lions. modificalions or improvements quickly \& easily without damaging the performance or appearance of your PC board
For building prototyping or repairing PC noards instantly. E.Z CIRCUIT iruly is the quick. easy. reliable way
Prove it to yourself. send for your FREE copy of r : siasirir the E.Z CIRCUIT Copper Products Printed Circuit Technical Manual 8 Catalog EZ-3001 See why Doc Savage $\&$ thousanas of other users recom. mend E. \angle CIRCUIT tor insianI PC boards

Send for vour f HEE E Z CIRCUIT Printed C

Engineering E Electronic Design services Lrd.

Unil 7. Enterprise Centre, Childers Road, Limerich. IAELAND Tel: (061) 49366

	$\begin{aligned} & \text { HORIZON ELECTRONICS } \\ & \text { Dept H/E Charlotidands) St. Rugby Tel: } 78138 \\ & \text { Prime quality. TERRIFIC PRICES. Mail arder anly } \end{aligned}$				1
REQULATORS 15/12/45 1 12mp *w 2ENEDA 133 tı 30 V 590 mW 13 mal DRODES IN 4001 4007 IN 5404,6 5405 5408 GRIOGES $\begin{array}{ll}1 \\ 2 & \mathrm{amp} \\ 200 \\ 100 \mathrm{w}\end{array}$ 2 dmp 200 v 2 6 amp 100 v $6 \operatorname{simp} 200 \%$ $6 \operatorname{mon} 400 v$ THYRISTORS Iplatic) 8 mmp 400 y		${ }_{8}^{24}{ }^{24 m p}$ Tooals switches $\mathrm{Man}^{\mathrm{Mn}} \mathrm{DP}$. Sp ST 5. Min: Sp st			
ABOVE. Just a few exmples Send S.A.E./List ADD 65 p 88 p to all orders under $£ 5.00$ VAT add i5\% VAT to total order value					

SOUNDS AND MUSIC FOR
 ZX81 AND SPECTRUM

Music Board Project featured in ETI April/May '83 COMPATIBLE WITH SINCLAIR $16 K$ RAM PACK \& $Z X$ PRINTER On-board prom - wide range of sounds with 2 basic commands. Easy-to-use program to devise and use your own sound effects. Comprehensive music program with ordinary music notation A-G to copy or write music - over 800 three-note chords with 16K. Full piano range. Complete with detailed manual and software cassette only £24.95; built \& tested £29.95*; cased £39.90*.

- State ZX81 or Spectrum - stereo or mono. Demo cassette 95p.

Thutil Kahumins (Dept.ETM
Courtlands Road, Newton Abbot, Devon TQ1 2 2JA (0626) 62836

PCB FOIL PATTERNS

PCB for the Trigger Unit IR transmitter.

The Trigger Unit PCB.

pectre
1

48 K

SPECTRUM

ELECTRONICS

$£ 6.95$

your circuits on the T.V. screen using standard symbols. you can draw
graphics defined components may be rotated as required. Addicted or crossed and individual allows the computer to activate your circuit to display power symbols throughout. Design may be activated, modified, re-activated, printed or
saved on tape.

NUMERIC

$£ 6.95$
rotated through 90 degrees and the axes subsequentiy varied to suit. Solves
right-angle Eriangles. simultaneous and standard deviation, arithmetic mean and quadratic equations. Produces plus deviation curves. All displays can be sent ent of correlation of lista

SHARES

$£ 6.95$
graphs of performance over las year, 200 days or 12 days plus wrirren
such as such as holdings, original and latest prices, percentage variationatad
equivalent annual variation. Holdings can be manipulated, bought and sold
at will.

NUTRION

£6.95
Far more than a diet book. Butlds up a profile based on your physique and calorie inkake and ideal weight, but your personal advise, not only on tendency to become deficient in vitamins, minerals exe. Offers advice on
foods to correct the bilater memory can be accessed ar wlince. Detailed information on all foods held in
These programs are exceptionally user friendly and have all been written in consultation with professionals in their respective flelds. They all have
comprehensive writren instructions and are fully guaranteed. Dealer
enquiries welcomed.
Please make cheques payable to SPECTRE
2 MULL CLOSE, OAKLEY, BASINGSTOKE, HANTS

PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY
Audio Range: $10 \mathrm{~Hz}-100 \mathrm{Khz}$, in four switched ranges. Distortion
Extremely low.
(.0015\% typical, @ 1 Khz).

Output
1 v into 600Ω, with
Fixed and Variable Atten
Sine and Square Wave
Based on a Linsley Hood design
Battery or Mains.

£36.00 (batty)
Tax extra $£ 5.40$
P\&P £2.00

TELERADIO ELECTRONICS
325 FORE STREET. EDMONTON, LONDON N9 OPE
$01-8073719 \quad$ Closed Thursdays
SAE for lists

E.T.I. KITS

 19.43 Less case Ballanced Input pre-amp May 83 £ 10.99 Less case Full kits inc. PCB's. Hardware. Cases. 1.C Sockets. etc (unless stated). Less| | WIM PHASE Jume 81 Leen pede LED JEWELEAY JUM 81. Crom - D2. Sur cen spray
 GUTTAR NOTE EXPANDER ADRII 81 DRUM MACHINE AOTI 81 ENGINEERS STETHOSCOPE ME 8 : SOUND PAE8BURE LEVEL METER F\&b 81
 INFAA AED ALARM FBED 81 4 INPUT MIXER Dec 80
 MUSICAL DOORBELL Dac BO METRONOME Nov 80 ULTAASONIC BURGLAR ALARM AUG BO EB .58 CAPACITANCE METER AUg 80 CMOS LOGIC TESTEA AUG 30 CLICK ELIMINATOR April 79 a87.70 Or ioss cane (40.) |
| :---: | :---: |
| MAGENTA ELECTRONICS LTD EF30, 135 Hunter St., Burton-on-Trent Stalfs., DE142ST. Mall Order Only Add $45 p$ pif to all orders. Prices include VAT. Access \& VIsa accepted by phone or post. | Otficial orders welcome.
 OVERSEAS:- Payment must be in sterling. Add 10% to prices except BFPO \& Irish Republic |

ETI PCB SERVICE

Up until now PCBs were always the hardest component to obtain for a project Of course you $\sqrt{6}$ could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! As of this sswe alt [moncopyright) PCBs will be available automatically from the ETI PCB Service. Eackion ind produced from the same master used to build our prototypes, so you can be setfe H's aceutatie and will be finished to the high standard you would expect from ETI.
In addition to the PCBs ior this monttr's projects, we are making available some of the hore popular designs from our recent past. See the list below for details. Please note that Nd OThetro BOARDS ARE AVAILABLE. If it's not listed, we dor't have it!

ALWAYS QUOTE THE PCB CODE WHEN ORDERING PLEASE

	1979	\square	E/819-4 Laboratory PSU.	4.53
\square	E/794-1 Guitar Effects Unit 2.64	\square	E/8110-1 Enlarger Timer.	3.40
\square	E/794-2 Click Eliminator 6.64	\square	E/8110-2 Sound Bender	2.65
\square	E/796-1 Accented Beat Metronome 3.60	\square	E/8111.1 Voice Over Unit	3.97
		\square	E/8111-2 Car Alarm	2.81
	1980	\square	E/8111-3 Phone Bell Shifter.	2.96
\square	E/803-1 Signal Tracer 2.27	\square	E/8112-1 Alcohometer (2 boards)	5.21
\square	E/808-1 CMOS Logic Tester 2.64	\square	E/8112-3 Bodywork Checker	1.75
\square	E/808-3 Ultrasound Burglar Alarm . 2.87	\square	E/8112-4 Component Tester	1.49
\square	E/8010-1 Cassette Interface 2.93			
\square	E/8010-2 Fuzz/Sustain Box 3.27		1982	
\square	E/8011-5 RIAA Preamp 1.93	\square	E/821-1 Parking Timer.	2.20
\square	E/8011-6 Audio Test Oscillator . . . 3.13	\square	E/821-3 Guitar Tuner (2 boards)	5.55
\square	E/8012-1 Musical Doorbell 2.80	\square	E/822-1 Ripple Monitor	1.92
\square	E/8012-3 Four Input Mixer 2.64	\square	E/822-2 Allez Cat Pest Repeller .	1.68
			E/822-5 Moving Magnet Stage .	3.49
	1981	\square	E/822-6 Moving Coil Stage.	3.49
\square	E/811-1 LED Tacho 4.13	\square	E/823-4 Capacitance Meter (2 Bd)	10.14
\square	E/811-2 Multi-Option Siren 3.20	\square	E/824.5 Voltage Monitor	1.86
\square	E/813-1 Universal Timer 3.31	\square	E/825-1 CV Meg	2.72
\square	E/812.1 IR Alarm (4 boards) . . . 6.64	\square	E/825-2 Analogue PWM	3.06
\square	E/812-5 Pulse Generator 3.57	\square	E/825-3 Slot Car Controller	4.51
\square	E/813.1 Engineer's Stethoscope. . . 2.65	\square	E/826.1 Ion Generator (3 Bds)	8.00
\square	E/814-2 Drum Machine (2 boards) . 5.60	\square	E/826-4 MOSFET Amp Moduls.	6.78
\square	E/814-4 Guitar Note Expander . . . 3.20	\square	E/826-5 Logic Lock	3.06
\square	E/816-8 Waa Phase 1.53	\square	E/826-6 Digital PWM .	3.34
\square	E/816-9 Alien Attack. 3.48	\square	E/826-7 Optical Sensor.	1.74
\square	E/817-1 System AS- Input	\square	E/826-9 Oscilloscope (4 Boards)	11.60
	(MM or MC) 2.65	\square	E/827.7 TV Bargraph Main	4.56
\square	E/817-2 System A - Preamp . . . 5.17	\square	E/827.3 TV Bargraph Channel	2.28
\square	E/817-3 Smart Battery Charger . . 1.97	\square	E/827-4 Hotwire	2.63
\square	E/818-3 Hand Clap Synth 3.97	\square	E/827-5 Bridging Adaptor	2.38
\square	E/818-5 Watchdog Home Secuity	\square	E/828-1Playmate (3 Boards)	7.20
	(2 boards) 5.31	\square	E/828-4 K itchen Scales.	1.84
\square	E/819-1 Mains Audio Link	\square	E/828-5 Sound Track.	4.25
	(3 boards) 7.35	\square	E/829-1 Auto Volume Control	. 1.84

STRICLY CASH WITH ORDER - OFFICIAL ORDERS ARE NOT ACCEPTED

Prices Quoted are valid until 1st October 1983
How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus
Specialist Publications Ltd, 145 Charing Cross
Signed
Road, London WC2H 0EE. Make cheques payable
to ETI PCB Service. Payment in sterling only please.
Prices subject to change without notice.
Name
\qquad
Add $45 p p \& p \quad 0.45 \quad 28$ DAYS FOR
Total enclosed
£.
Address

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE
ICS can provide the technical knowledge that is so essentua to your success, knowledge that will enable you to take advantage of the many opportunties open to the trained man You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS quarantee coaching until you are successful.

City 4 Guilds Certificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)

Certificate Courses

TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming
TV, Radio and Audio Engineering
Electrical Engineering,* Installation
and Contracting -Quality tor IET Aerociate Momborahip

POST OR PHONE TODAY FDR FREE BOOKLET

| Nat |
| :--- | :--- |

MONTHLY IN
ELECTRONICS TODAY -
YOUR OWN 'WHERE TO
BUY IT' GUIDE

AVON

ANNLEY ELECTRO

190 Bedminster Down Road
Bedminstar Down, Bristol
Tel: 0272632622
Opan: Mon-Sat Sam-6.30 pm Wed Sam-2pm

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON

01-437-1002.

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD. 45 Castle Arcade, Cardiff TEL: 022241905 Open: Mon-Sat 9-5.30 For components to computers

WARWICKSHIRE

W. MIDLANDS

H. G. ELECTRONICS CO 1350 Stratford Rd.. Hall Green Birmingham. Tel: 021-777 2369 Open: Mon-Sat 9-5.30 (Closed Weds) Electrical accessories, pluge. skte. leads, Electronic components, compaters, audio, video, tape, disco, hi-fi.

NORTHAMPTONSHIRE

* A naw company selling alectronic compentants.
* Weit erder and weth-resnd sepermarket.
* Yast stecks and very cempetitive micas.

Migh March. Deventry. MMII 4MA Totephene 03212 S523. Teler 312245 cofl has eppesite John O'Gannt.I

-fonzon

 ELECTRONICsCharlotte St, Rugby. Tel: Rugby 78138 Open 5 Days 10-6 (closed Wed) Wide range of components and R.S. stockists 1983 Mail Order Catalogue 7 Fp

WORCS/W. MIDLANDS

103 Coventry St., Kiddermınster Components, computers, car radios, C.B.'s, amateur radio and all electronic hobby equipment Open: Mon-Sat 9-6. Sun 10-2
TEL: 06622179

YORKSHIRE

ACE MAILTRONIX LTD. 3A Commercial Street, Batley. Tel: (0924) 441129 Open: Mon-Fri 9am-5 30pm. (Sat 1pm) Retall and wholesale

Please include my business details in the next available issue of ELECTRONICS TODAY INTERNATIONAL:

RETAIL
WHOLESALE
MAIL ORDER
(Please tick)
CONTACT: (FOR OFFICE USE ONLY)

01.4371002

EXT 204
Send your requirements to: Julie Bates,
ASP Ltd.,
145 Charing Cross Road,
London WC2H OEF

Abstract

\section*{WANTED}

WANTED: ELECTRONIC COMPONENTS and test equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley. Camberley.

PLANS 'N DESIGN

AMAZING ELECTRONICS PLANS.Lasers, super-powered cutting rifle, pistol, light show. ultrasonic force fields, pocket defence weaponry, giant tesla, satellite TV pyrotechnics, 150 more projects. Catalogue $£ 1$ (refundable) from Plancentre. Bromyard Road Industrial Estate, Ledbury HR8.

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliaphonic music, telekinetics. Computer software. S.A.E. 4×9 " . Paralab, Downton, Wiltshire.

SOFTWARE APPLICATIONS

HIGH RESOLUTION GRAPHICS For Sinclair ZX81 1 K without hardware! Tape and instructions only $£ 3.99$. P. Moody, 1, Benson Street. Cambridge CB4 3QJ.

CORTEX SOFTWARE

GRAPHICS SKETCHPAD. Easy design and modification of shapes and chars. Very useful tool for games animation. Cassette and user guide.〔4.95. G. Alexander, Flat One, 40 Priory Road, Malvern, Worc.

NASCOM $1 / 2$ speach using SP. 0256 I.C. circuit details and software to drive PIO $£ 3.50$. R. W. Chandler, 15 Belvedere Mt, Leeds LS 11 7ED.

EXHIBITIONS

SUSSEX MOBILE RALLY. A day by the sea with the family for £1. Brighton Raceground. 17 th July. $10.30 \mathrm{am}-5.00 \mathrm{pm}$. Free car parking. Good catering under cover.

MINIATURE TRANSMITTER KIT. Complete with easy to follow instructions. Only $£ 4.80$. Ashley, 10 Stone Road, Coal Aston, Sheffield S 18 6AH.

BUILD A HE-NE LASER. Plans and instructions $£ 2.00$. includes lists of all components, (can be purchased separately). Lasertronics, 21 Grosvenor Road, Scarborough.

PUSH BUTTON TELE. PHONE, 40 number memory. Build your own for around $£ 16$ using standard components. Fullcircuit, plans, and construction details, $\sum 3$ (not BT approved). Ms M. J. Ellis, 1 Wells Drive, Heaton, Mersey, Stockport, Cheshire.

ADD ONS

TELETEXT (Oracle/Ceefax) add-on adaptors for any television. Only $£ 147.50$ plus $£ 2.45$ postage. Also Viewdata (Prestel). Access/Visa. Cytel (ETI). Freepost Bristol BS10 6BR. (0272) 502008 anytime.

FOR SALE

AMPEX $1^{\prime \prime}$ TAPE TRANSPORT MECHANISM. £350. Set 8-track heads $£ 50$ with circuit plans and construction details. 19" rack mounting cabinet, 6 ft tall, free to purchaser. 061-9987143.

TANGERINE MICROTAN COMPUTER. Professionally built V2.3 monitor, manual £40. Memotech 16 K memory pack. brand new. Boxed £25. Tel: 01 . 4550320.

CONVERT Z $\times 81$ to Eprom programmer. ZP4000 unit £55 + VAT or SAE details Enterprise Technology Limited. P.O. Bo\% 140, Wigan WN3 6LF
ELECTRONIC ORGAN KEY. BOARDS and other parts being cleared out as special offer Elvins Electronic Musical Instruments, 40A Daiston Lane, London E8 01-986 8455
VERORACKS 19" BRAND NEW, beautifully made, wil take card size 11.5 cms by 20.1 cms it has 40 card slides marked 1-20. Lockable front panels size 11.5 cms by 30.5 cms and 11.5 cms by 13 cms (PSU PANEL) PSU chassis ircluded with plug and socket on back panel. 5 off "D" tipe cut outs on rack back panel, provision for fixing board sockets on rack. Only £30.00. Sustom made fully enclosed case for the above, with carrying handles and back panel cut out for rack connections, colcur Blue Only £25.00. RACK WITH CASE FOR 550.00 al' prices haveVAT andpostage included in them. "Q" SERVICES, 29 LAWFORD CRESCEN ${ }^{-}$. YATELEY (0252) 871048 CAMBERLEY, SURREY.
SHEETMETALFOLDERS $1 \varepsilon_{i}^{\prime \prime}$ $\times 18 \mathrm{c}$ Steel, 16G Aluminium bench or vice held. Hobby or Light industrial use. £33. 01 -
890-7838 Day/evening

[^3]

BURGLAR Alarm Equipment. Please visit our $2,000 \mathrm{sq}$. ft. showrooms or write or phone for your free catalogue. C.W.A.S Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

BURGLAR ALARM EQUIP. MENT: As used in the trade. JN Security Centre, 176 Sydenham Road, London SE26 5JZ. 01-778-1111. Showrooms open six days.
U.V. LIGHTEXPOSER UNIT for use in prep. of photo-resist P.C.B's. Attractive wooden construction with exposer area of $250 \times 150 \mathrm{~mm}$. Case $350 \times 250 \times$ 95 mm .240 v operation. Only £37.00 p\&p Send cheque to V.E.P. Ltd. 5 Hewens Rd. Uxbridge UB10 OFR.

> NEW 1983 EDMUND SCIENTIFIC CATALOGUE NOW AVAILABLE 72 pages of. Solar Energy. Lab. Equipment Photography. Magnifiers. Health. Asironomy. Motors. Magnels. Holography. Fibre Optics. Weather. And More! Send for FREE copy io: Dept ET10, Rhenbergs Sclences Lid, Sovereign Way. Tonbridge. Kent TNS 1RN or phone 0732 357779

EASY MONEY. Installing electronic alarms in friends cars. Sounds if headlamps left on. Fitted 5 mins. Full details $£ 1+$ SAE. F. W. Kelly, 6 Rydal Close, Sacriston, Durham

SHUGARTSA400 51/4"SS/DD Floppy Disc Drives $£ 55$ each Fedrranti VDU for spares/ repair $£ 60$ ono. Orpington 71317.

HIGH POWER MERCURY ION LASER, emits green/red light. Easily built by the amateur constructor. Ideal school project, etc. Comprehensive kit of plans, including source of all materials, £5.25 + 25 p P\&P. Lasertech, 31 Mill Brow, Chadderton, Lancs.

COPPER CLAD Double Sided Fibreglass, $12^{\prime \prime} \times 8^{\prime \prime} .10$ sheets £6. 5 sheets £4. Davron, Box No. E.T.l. 202, ASP Lid., 145 Charing Cross Road, London WC2.

AERIAL AMPLIFIERS Improve weak television reception. Price E6.70, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

35 Grosvenor Road
Twickenham, Middlesex
TEL: 01.891 1923/1513 Telex 295093

The

Circuit Broker
selects from twenty reliable, economical P.C. suppliers.
The Circuit Broker, W.Q. Ltd.,

19, Storey's Way, Cambridge CB3 ODP Tel: (0223) 311811

NEW COMPONENTS

 CHEAPEST PRICESNew full spec paris ex stock. Same day despatch SAE of phone for full lists Example prices: 10 uf. 35 v radial capacitators 5 p each. $100 \mathrm{\%}$ w resistors $75 \mathrm{p}(1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ - other valves available) BC308B 10p each 25 IN 4148 for only 45 p
COLCHESTEF COMPONENTS
Unit A2
Cowdry Centre, Coichester (0206) 66345

MAIDSTONE ELECTRONIC COMPONENTS shop. Thyronics. Control Systems 8, Sandling Road, Maidstone, Kent, Maidstone 675354.

NOW OPEN IN NEWCASTLE, Waterloo Street, "Mariborough Electronic Components" for the best in electronic components, test equipments etc. Tel 618 377

FOR ALL YOUR CLASSIFIED REQUIRMENTS PHONE ASP LTD. 01-4371002

CLASSIFIED ADVERTISEMENT - ORDER FORM

Advertise natlonaily in these columns to over 100,000 readers for only 35 p per word (minimum charge 15 words)
Simply print your message in the coupon and send with yor only 35p per word (minimum charge 15 words) Argus Spectal wist your cheque or postal order made payable to CLASSIFIE
145 Charing Cross Rd., London WCONICS TODAY INTERNATIONAL
Rd., London WC2H OEE.
Telephone: 01-437 1002
Please indicate classification required.

Name
Address

Tel. No. (Day)

TRAINEE ASSISTANT FILM RECORDISTS

Would you like to specialise in sound with the BBC TV's Film Department?
Trainee Assistant Film Recordists work initially in Sound Transfer and Dubbing areas operating sound recording equipment with the prospect of moving on to location Film Recording work in due course
EXCELLENT TRAINING is given if you have ambitions to do this type of work but lack experience. You will need ' O ' level standard of education or equivalent, preferably including Physics and/or Maths and a basic knowledge of electronics. Applicants should be able to demonstrate a practical interest in Sound Recording. Normal hearing and colour vision are essential and applicants must hold a current driving licence or be prepared to obtain one within a reasonable period.
Successful candidates will start their three year training period in January 1984 at a salary of $£ 5,451$ (currently under review). An additional allowance is paid for shift work (not nights). Based West London. Relocation expenses considered.
Contact us immediately for application form (quote ref. 1350/ETI and enclose s.a.e.): BBC Appointments, London, W1A 1AA. Tel. 01-580 4468 Ext. 4619.
Completed application forms to be returned by Friday,
15th July 1983.
We are an Equal Opportunities employer
BBGtv

METROPOLITAN POLICE

For cost effective

 results when you need to recruit Top Quality PersonnelPhone EII Appointments 014371002 extn 204

```
For turther ditails and an opplication form witte to
The Estoblistment Otficer
Room 213 (ET1/TTOSS)
105 Regency Street
LONDON SWIP &AN
or ring 01.220 3122(26 hour onswering service)
Closing date lor receipt of completed applications is
2arh June 1983
```


IT'S A BETTER BUY THAN MOST AT LESS THAN £4 PER MHZ.
THE PRICE IS AS CRISP AS THE IMAGE ORDER TODAY - WE'LL SHIP RIGHT AWAY. All major Credit Cards accepted.
Phone for details of cased and open frame monitors.
CROFTON ELECTRONICS LTD.
35 GROSVENOR ROAD. TWICKENHAM. MIDDX 01.891 1923/1513 Telex 295093

E.T.I. JULY 83 ADVERTISERS INDEX

A.D. Electronics 90
Aitkin Bros. 90
Ambit Int
16
16
Armon Electronics 74
Audio Electronics
51
51
Bi-pak 51
BK Electronics 14
Black Star
62
62
B.N.R.S. 67,85
Bradley Marshall 10
Branime Marketing 74
Circuit Board Components 51
Clef Products
92
92
Concept Electronics
73
73
Comeuip
80
80
Comtech Electronics 67
Cricklewood Electronics 8,9
Crimson Elektrik 88
Crofton Electronics
98
98
Display Electronics 18
Electronize Design
26
26
Electrovalue 50
Emos 74
Engineering and Electrical Design Services
88
88
Europa Electronics
75
75
Flight Electronics
27,39
27,39
Greenbank Electronics 85
G.S.C 31
Happy Memories
75
75
H.G. Electronics 85
Horizon Electronics
88
88
ICS 92
ILP 40,41,62
Kelan Engineering
85
85
Kempston 25
LB Electronics 75
L\&B Electronics
98
98
L.E.M. Services 92
Magenta Electronics
92
92
Maplin OBC
Mawson Assocs.
80
80
Memotech 54,55
Midwish 19
MJL Systems 61
Musicraft 85
Pantechnic 25
Parndon Electronics 80
Petron Electronics
88
88
Powertran IFC,56,IBC
Rade Systems 73
Rapid Electronics 6
R.T.V.C.
61
61
Saffqan Electronics
25
25
Scopex 39
Sinclair Research
32,33
32,33
Sparkrite 12
Spectre Electronics 90
Stuarts of Reading 73
Technomatic 68,69
Teleradio
90
90
Watford Electronics 4,5
Wilmsiow Audio 80

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

Up to the nano-second hard, firm and softwar developments embodied in a complete system Mega Hertz 16 bit CPU; 64K upwardly compati DRAM; separate 16 K video DRAM and 24 K TI Powe Basic with overwrite. Supports up to four Disc drives of mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications.

Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along with NOS C/PM.
Hardware components available separately with details in Nov, Dec, and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered $1 / O$ to free machine whilst

Top of the range is the Genesis P102 which has dual speed control. continuous servo operation and double acting cylinders for increased torque on the wrist and arm ra:ation joints. The microprocessor based control system has addltional memory, position interrogation via the RS232C interface increasing the versatility of computer control and inputs are provided for machine tool interfacing. 6 axis system READY BUILT
Powertran CORTEX 16 Dit 64 K computer Kil $£ 295.00$ READY BUET $£ \mathbf{2 9 5 5 . 0 0}$

$£ 1950.00$
Example prices and specifications
Genesis S101
Base $195^{\prime \prime}=11^{\prime \prime}=75^{\prime \prime}$
Litting capactiy 1500 gm Weignt 29 Kg 4 axis model in kil ferm $£ 425$

Genesis P101
Lising capaciry 2000 ejm
Arm lenghs between axles 14.0
Neight 34 Kg 4 axis model in kut form $\mathrm{m} \quad £ 675$

Complete Systems as shown in Pholograph above
Genesis S101
4 axis system in kit sarm $£ 681.50$ 5 axis systern in kit 10 rm $£ 737.50$ 5 axis systami Reacy Sull E. 1450 Genesis P101
6 axis system in kul "orm $£ 945.00$
6 axis system Ready 3 ull $£ 1650$
All prices exclusive of VAT
GENESIS P102 PROCESSOR BOX, HANJ HELD CONTRCLLER AND CORTEX COMPUTER

MICROGRASP, INTERFACE BOARD AND ZX81
printing, call to machine code routines hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles, in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit $£ 295.00+$ VAT Complete 16 bit 64 K computer ready butl $£ 395.00+$ VAT.

With prices starting below $£ 1000$ the Genesis range of general purpose robots provide a firsl rate introduction to rotctics for both education arid industry Each has a seif-contained hydraulic powy source which enables loads of several pounds to be smoothly handleo the system operated from a single phase 240 or 120V AC supply or a 12 VD © supaly The machine car be supplied with up 106 axes each of which is fully independent but capable of s multaneous operation. Position control is achieved by means of a closed-losp feedback system based. around a dedicaled micropryjeessor Movement seguences can be entered. stored and replayed by'use of athand held controller altematively the systems can aiso be unterfaced to an extemial computer via a slanc.ayd RS 232C

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES
AND HAND-HELD CONTROLLERS

Send now for an application form - then buy it with MAP(ARI).

MAPCARI) gives you real spending pouer - up to 24 times your monthly payments - instantly!

Sole UK Agents for Heathkit

NOW THE world-famous Heathkit range of superb electronic kits is available from Maplin - the newly appointed eaclusive th distributor. Kits range from a simple clock for beginners to a unique Robot (see pic) with which you can learn about robotics.

There is a range of training courses covering electronies and computing topics, many containing constructional projects. For full details, pick up a copy of the latest Dlaplin magazine or write for a free copy of our Heathkit catalogue. Order As X1162s.

GREAT PROJECTS

 FROM E\&MM -

OUR NF.W book "Best of F\&MM Projects Vol. ${ }^{\prime \prime}$ brings together 21 fascinating and novel projects from E\&MM's first year.

Projects include larmom (ienerator. Guitar Tuner. Itexadrum. Sy ntom. Auto Sucll. Partslite. Car Aerial Boonter, Mos-FET Amp and wher muscal. hi-tit and car progects. ORII:R AS XIGIR. PRICl-!

Maplin's Fantastic Projects

IOI.I. UFIINII.S in our project books. Price 70p each.

In Book I (XAOIB) I 20W rms Mosidra Combo-Amplilur Ifoscrallomer with ix progan timevand + output, - Icmperature (iauge - Sil Varbrogects.

In Book 2 (N: © 2 () Home Sceurits Sivicm - Iraun Cinntroller for ititains on one circurt Stopuatch with mulaple mode - Nifer-fur- (iallon Neter.
 haard with clectronte - Sterea
 plet Radar Intruder ICtector Remote (ontrol for Iran (onraller.

In Bowk 4 IXAOAI: lelephone Fichange tor 16 evenvions * lreyuency counter 10円) for

GonMif/ - I'Itrawnme Intruder Detector - $1 / 0$ Port for $/$ Xix 1 - Car Burglar darm - Remate Contral tor $25 W$ Sterea Amp. In Bowh 5 (X : 05 F) Modem M I:uropean sandard - |ondW 2tu) AC limerter - Sounds Cicnemator for ZXXI - Central |leating (ontraller - Pans Button for Ihome Securits Suntem - Model Itan Progect - fimer for faternal Sounder

In Book 6 (NAOb(i) Speceh Suntherser for $7 \times X 1$ d VIC 20

Madale to Bradge imo of onr MOSII I Ampromake as Sow Amp - ZXisi Sound on bourTlSuratch I liter - Dampi Meter Four Smple Project.

In Booh 7 ((Xio711) *Mlodem
 tal f-nlarger lamer/ContrallerD Xers Audo Procowor - Sucep Oncillatur - Manlah Pomer Suppls - Hectromic lach - and wher.

* Prame N tor Rooch - nere man chamed vate at the tume ot "riture but comions mat dianere
 14×31

Computer Shopping Arrives

AS FROMI June Ist you can place orders directly with our computer from your personal computer. The computer shopping revolution has arrived! To communicate, you'll need a modem (our RS $\mathbf{S} 232$ compatible modem kit is L.W99H price £39.95) and an interface (our 7.X81 interface I.K08.J price $£ 24.95$ is available already with many more for most popular micros coming soon).

Just dial us up on 0702 5529+1 and woull be able to interrogate our sonch lile then place sour order. supe in sour credit card mumber and a fer monutes after sou hang up sour order will print but in our warchouse reads for packing. And all without sayme a Burd.

Try out the future was of ,hopping now! Youll we immedaatels what toch weve got walable and youll dscoser how cas it 10 to envure your order is catetly ryhn. And bou'll ee precoels what the current proce is for cach item and what total amount will be charged to your credit card. It all help. to make nuynge cancer. So gice us a ring now!

25W Stereo MOSFET Amplifier

* Oner 2ow/channel into X! at 1kll/ hoth chammeld driven. - Frequencs response 20H, w $40 \mathrm{kH}=1 \mathrm{dl}$.
* 1.0 dowtortorn, low nome and high relabiloty power MOSFI:1 output stage.
* I:xeremely cav! tohutd. Amme everythang tits on man pib. cutting interviring to just 7

matinee organ

F.ASY-TO-BLII.D, superb specification. (omparable with organs selling for up to $£ 1000$.

Full construction detals in our book (XH5SK). Price $!250$. Complete kits available. Electronics (XY91 Y) 2299.95*. Cabinet (XY93B) £ 99.5()*. Demo cassette (XXt? \&1.99.

Maplin's New 1983 Catalogue

Over 390 pages

 pracked with data and piclures and all completclyrevised and in-
cluding ower
loxo) new jtems.
On sale in all hranches

I post iniscotpon vow:

Please send me a cop! of your
19x3 catalogue. 1 enclose 21.50 | (inc. P\&P). If 1 am not completels satistied I may return the cata| logue to you and hate ms mones I refunded. If sou live outside the 1 UK send 21.90 or 10 Imternational | Reple Coupons.

Hures (plus toroidal transformer and mains lead terminations). - Complete hit contains eversthing sou reced including predrilled and promed chatsis and wooden cabinet.
Full details in Projects Booh 3 Price 70p(XAO3!) Complete kit only 555.20 incl. VAT and carriage (I.W7IN).

> MAPIIN ELACCRONIC SUPPI.IF.S I.IMIIF.D. P.O. Box 3. Rayleigh. Fissex SS6 8I,k. Telephone: Sales (0702) 552911 (ieneral (0702) 55+155.

> Shops at: I59 King St., Itammersmith, I.ondon W6. Tel: 01-748 0926. 284 London Rd., Westcliff-on-Sea, Esse . Iel: (0702) 554000 . I.ynton Square, P'erry Barr, Birmingham. Tel: (021) 3567292.
> Shops closed.1 Hondays.
> All prices include 1.41 \& carriage. Pleave add sop handling charge 10
orders under E 5 total $\cdot \mathrm{T}$ Iue.

[^0]: copcombe, Salisbury. Wilts SP5 18P 0264781545 Telex 4774 C 7 Zenmon

[^1]: One Portabloc empty cable drum (see Buylines).
 One MT 1010 watt 100 V line transformer, Eagle or similar (see Buylines).
 One pair of three (or more) contact plug and socket (socket to be chassismounting).
 One red LED with mounting clip.
 One silicon diode (any type).
 One 68R $\frac{1}{2} \mathbf{W}$ resistor.
 One pair of screwed terminal blocks. 30 yards of three-core $16 / 02$ mains cable (see Buylines).

[^2]: Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for 110 V . '1 in place of X for 220 V (Europe). and ' 2 ' in place of X for 240 V (U.K.) All units except UC incorporate our own torordal transformers.

[^3]: Whatever you are selling.
 Do it quickly and cheaply
 Phone ASP Classified
 01-4371002

