AN ARGUS SPECIALIST PUBLICATION

LOST YOUR BEARNCS?

 STEER A COURSE WITH OUR cONTEMPORARY cOMPASS
plus

Switched Mode PSU

 Pseudorom: A RAM In ROM's Glothing Labs On A ChipETI
(3)

Dave Bradshaw: Editor
Peter Green: Deputy Editor Phil Walker: Project Editor Jerry Fowler: Technical Illustrator Gary Price: Divisional Advertisement Manager
Ron Harris B.Sc: Managing Editor T.J. Connell: Managing Director PUBLISHED BY:
Argus Specialist Publications Ltd. 145 Charing Cross Road, London WC2H OEE DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4IS
(British Isles)
PRINTED BY
QB Limited, Colchester
COVERS PRINTED BY:
Alabaster Passmore.

OVERSEAS
EDITIONS
and their
EDITORS
AUSIRALIA - Roger Harrison CANADA - Halvor Moorshead GERMANY - Udo Wittig

ABC

 LLAND - Anton Kriegsman> Member of the Audit Bureau of Circulation

Electronics Today is normally published on the tirst friday in the month preceding cover date. \square The contents drawings and programs and all copyright and other in tellectual property rights therein belong to Argus Specialist Publications Limited. All rights conterred by the Law of Copyright and other intellectual property rights and by virtue of interriational copyright convenions are specitically reserved to Argus Specialist Publications Limited and ant reproduction requires the prior written consent of the Company. (c) 1983 Argus aken in the preparation of the magazine contents but taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for mally be published as soon as possible attermards Al prices and data contamed in advertisements are accepted by us in good tatt as correct at tine of going to press Neither the advertisers nor the publishers can be held responsible, however, $10 r$ any variations aftecting price or avalability which may occur aiter the publica toon has closed for pres:
\square Subscription Rates. UK $£ 13.15$ including postage. Airmail and other rates upon application to ETI Subscriptions Department 513 London Road, Thornton Heath, Surrey CR 4 GAR.

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5.
Telex 8811896.

FEATURES

DIGEST

Our monthly and occasionally irreverent look at what's new and interesting in the field of electronics. Would you believe a piranha-proof microcomputer

LABORATORIES ON A CHIP
Silicon engineering is coming of age and revolutionising technology. Now mechanical as well as electrical structures can be etched into chips.

BUYER'S GUIDE TO TEST GEAR . 42 More types of digital multimeter than you ever dreamed existed - all neatly tabulated to take the tedium from selecting the one you want.

CONFIGURATIONS
In his penultimate discourse on electronics, Ian Sinclair sheds some light on the field of opto-electronics.

DATA SHEET

By popular demand, here's four pages dedicated to the chips at the heart of the ETI 'Victory' organ; the M108/208 single chip organs.

TECH TIPS

84
Three more readers amaze you with their ingenuity as we offer some more circuit submissions.

PROJECTS

AUTOCOMPASS.
Novel circuitry and novel theory all go to make up this intriguing and innovative project.

SWITCHED MODE POWER SUPPLY. 35 You've read the theory, you've tried the maths; now build the project. Part 1 describes the circuit details.

PSEUDOROM

52 Find all the faults in your software before you burn it into an EPROM with this amazing little project. Clumsy constructors should look elsewhere, though.

IMMERSIBLE HEATER
65
Keep your tropical fish happy, keep warm, make beer or make yoghurt; but not all at the same time!
ATOM KEYPAD
A nifty computer, the Acorn Atom, and it can be even niftier if you speed up your data entry with this add-on numeric keypad.
PCB FOIL PATTERNS.

INFORMATION

NEXT MONTH'S ETI 7	ELECTRONICS DIGEST 87
BIRMINGHAM HOME	BOOK SERVICE 88
COMPUTER EXHIBITION 40	PCB SERVICE 95

Portable Induction Loop

Following the degree of interest that our feature on Induction Loops aroused, Vivian Capel has designed a practical system. Now there's no excuse for the hard-of-hearing to be left out of things anymore.

Tech Tips Special

Eight pages of ingenious, novel, and money-saving designs from one of the country's largest design teams - yourselves.

Microcomputer Output Driver

Don't let your micro just sit there, contentedly passing information back and forth inside itself - get it busy working for you, with this 16 -channel output driver.

TV Storage Scope

This little unit will enable you to utilise your TV screen to display oscilloscope waveforms. It's always seemed illogical
that you have to use two CRTs for different jobs, hasn't it now you can use just the one. Not only that, but the unit will store waveforms too, all for under $£ 100$.

Oscilloscope Survey

Just in case you're too lazy to build the TV Scope, we're taking a look at the options open if you want to buy one. And if you're too poor to afford a new scope, we'll be examining the state of the second-hand market too. If you're on the look-out for test equipment, don't miss the July issue of ETI.

LOOK OUT FOR THE IULY ISSUE ON SALE JUNE 3rd

CRICKLEWOOD - STOCKING PARTS OTHER STORES CANNOT REACH!

Lampholders, FUSES: $20 \mathrm{~mm} 1 \frac{1}{4}$ inch, slow or quick blow. Fuseholders. CONNECTORS. DLL DIN, TriE LAZY WAY Phone your order through on Access, Barciaycard, Visa or American Express Phono, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}$. Bulgin USA. I.E.C. KNOBS: Plastic, Aluminium, Anodised, Collet. Pointer,
SWITCHES: Toggle, Biased, Rocker, Rotary, Slide, Dil, Push. METERS: LCD, Analogue. Test and Panel. TOOLS: Pliers, Cutters, Strippers, AIl in stock items (that's Yb\%) posted same day. UFFICIAL ORDERS FROM SCHOOLS. GOVT

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS 325 EDGWARE ROAD, LONDON W2 1BN Tel: 723-4242

CRIMSON ELEKTRIK

JOIN THE PROFESSIONALS

No	Modules		Price		No			Price
2580	CE 608	40W Mono	18.26	WE ALSO STOCK	2615	Complete Pre-Amp Kit	CK1010	£80.00
2581	CE1004	100W 4 Mono	21.30	ALL THE POWER	2616	Complete 40W Stereo Amp Kit	CK1040	£105.00
2582	CE1008	loow 8 mono	23.90	SUPPLIES TODRIVE	2616 a	Complete 80W Stereo Amp Kit	CK1080	£116.00
2583	CE1704	ITOW 4 Mono	30.43	THESE MODULES	2617	Complete 100W Stereo Amp Kit	CK1100	£131.00
2584	CE1708	170W8 Mono	30.43		2618	Add on Moving Coil Kit	MC12K	£21.74
2585	CE3004	300W 4 Mono	42.60	PS. THESE KITS AND MODULES ARE	$\begin{aligned} & 2619 \\ & \text { TS70 } 7 \end{aligned}$	Pre-Amp Power Supply Kit Thermal Switch	PSK	£17.39
2585a	FE 908	90WFET. Mono	25.65	EXCLUSIVE OF VAT	HS50 5	0 mm Heatsink		
2585b	FE1704	170W FET Mono	33.48		HS 100	100 mm Heatsink		
2585c	BD1	Bridge Unit for Modules	7.13		14.951	50 mm Heatsink		
2608	CPR $1 \times$	Pre-Amp Module	41.70					

PLEASE NOTE ALL CRIMSON MODULES ARE GUARANTEED FOR 2 YEARS.

VELLEMAN KITS

Some are easy some are hard
No Description
K610 Mono UU using LEDS
K1798 Stereo UU using LEDS
K1874 Running Light Kit
K2571 Light Computer with EPROM
K2569 Three Tone Chime
K2575 Microprocessor Doorbell 25 tunes
Complex Sound Generator
Digital Panel Meter
K2557 Digital Thermometer
$\mathrm{K} 2545 \quad 50 \mathrm{~Hz}$ Crystal Time Base
$\begin{array}{ll}\text { K2545 } & \text { H0Hz Crystal Time Base } \\ \text { K615 } & \text { High Precision Stopwatch }\end{array}$
High Precis
Description

WE STOCK A WIDE RANGE OF BOXES TO HOUSE THESE KITS IN. FROM VERY SMALLTO VERYIARGE VERY LARGE

PS. ALL KITS include vat

No

K2543 Transistor Ignition $\quad 11.16$ K2555 Digital Freq Counter for Receivers $\quad 45.40$ K2566 3 Channel Coloured Light Organ $\quad 19.19$ K2572 Universal Stereo Pre-Amplifier 6.56 K2574 Universal 4 Digit U/D counter with memory 44.72 K2577 Electric Motor Speed Control 11.17 K2579 Universal Start/Stop Timer 7.45

K2583 Heating Controller
K1682 Microprocessor Universal Timer (no case) $\quad 61.72$ K2580 Electronic Power Switch Dimmer 12.37 K2580 Electronic Power Switch Dimmer Central Alarm Unit

TELETEXT KIT

This unit will make your TV fully remote control (infra-red) and bring you closer to the amazing world of teletext. The kit can also be updated to incorporate full Prestel, and with a keyboard this can give you full message facilities for ordering foods or sending and receiving messages (E.G.) Booking your Holidays!
With a microcomputer as an alternative keyboard the wortd is even greater adding bulk updating to viewdata computers an receiving telesoftware for implementation to any ersonal computer
Even without the Prestel option, Telesoftware from the Teletext pages free
The full features of Teletext, including subtitles are all included in the basic kit.
An attractive stylish case is available to complement the finished kit.
Basic Teletext Kit (no box) $£ 130$ + VAT P/P $£ 2.50$
with box $14495+$ VAT P/P 5300
box by itself $£ 14.95+$ VAT P/P $75 p$

PRESTEL ADAPTOR

APrestel micro computer adaptortogive full autodialing to your microcomputer All the usual Prestel facilities are added via this unit, plus many more, and, can operate to any viewdata computer.
You can shop from home, bank transmitt messages and receive software which means that the uses your micro can be put to are limitless.
The unit is not restricted to just the UK, for at least 28 countries use the Prestel viewdata format. so you can also mail-order from anywhere. The Prestel unit is suitable for most micro computers even the ZX-81, so at the push of abutton, the technology of tomorrow is in your home today

ANTEX

Soldering Irons

X25	25 W	$5.30+$				
CX	17 W	$5.30+$				
C"iron"	15 W	$4.80+$				
CCN "ceramic"	15 W	$5.30+$		CCN "ceramic"	15 W	$5.80+$
:---	:---	:---	Wide range of bits and elements in stock now.			

Soldering iron stand 2.40
We stock multicore solder for normal use or fine

Iso-tip Cordless Iron
$31 \cdot 90+$ Miniature low voltage soldering station soldering station Oryx50 50W temp controlled 15.50 Oryx super 30 All irons are 240 V mains. Earth Leakage current is less than 3 ua The temperature controlled iron can be controlled within $\pm 2 \%$ tempera lure range from $200^{\circ} \mathrm{C}$ to 400 C .

COMPONENTS EDGE CONNECTORS

Device
Device
Z80A

Z8OA PIO
Z8OA CTC
6800
6800
6810
6502 CPU
2114 (200ns)
2708
2716
2732
2532
2764 (200ns)

Price
3.20
3.20
3.20
3.20
3.20
6.50
6.50
300
3.00
425

425
7.50
1.80
1.80
3.00
3.20
7.50
7.50
3.50
14.90

Spectrum E.C $\quad 2.98$

VIC 20E.C.	3.78

50 Way E.C.
18 Way EC C. 280
64 Way EC. Plug 2.80 64 Way EC Socket 4.50 64 Way E.C. Socket 4.80 $\begin{array}{ll}31 \text { Way E. C. Plug } & 2.00 \\ 31 \text { Way E. C. Socket } & 2.10\end{array}$

We stock a very wide range of opto-devices, from infra-Red to LED's to Opto-Couplers
Check us out for competitive prices and helpful service

We also stock 74 series 74LS. C mos. transistors, capacitors, resistors. LED's, zeners, diodes. jackplugs, mains plugs XL.R plugs, can non plugs, arrow switches BNC connectors, reducers, photolak, developer, PC board, sensitive \& normal, boxes, wire cutters, strip pers, Edge connectors, pots. batteries, digital pulsers, logic probes, proto-boards, vero board.
This is just a small sample of what we stock, if you like to see more send £ 1.00 to us ior our NEW 1983 CATALOGUE.

BOOKS

New Books
Please Note. Books are VAT exempt but add $£ 1.00$ to cover P/P

The 9900 Family Data Book
10.00

The Bipolar Microcomputer Databook
The Intertace Circuits Data Book
The TTL Data Book
MDS Memory Data Book
The Linear Control Circuits Data Book
The Voltage Regulator Data Book
The Power-semiconductor Data Book
-TTI Data Book Volume I
*TTI Data Book Volume II
301 Circuits
Towers Transistor Equivalent
Towers Digital Selector
Towers Linear 10 Selector
Why not try our mail order service, it's fast and efficient. We
take Barclay, Access, Am Exp, Diners or Cheque
Cheques made payable to Bradiey Marshall Ltd

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIG Compressor/ Limiter Tips

Ian Martin, designer of the I Compressor/Limiter project we ran last month, has written suggesting some setting up hints. He thinks it would be wise to check the operation of the DC side chain before inserting the VCA chips IC2, 5 and 7: if there was a fault in the side chain which resulted in no curent being passed into the control pins on IC7 (pins 1 and 16), it's possible that the output of IC2 and IC5 could swing to the positive or negative supply rail and damage the LM13600 which follows. For this reason we suggest that these ICs are removed and the input currents to pins 1 and 16 of IC7 are measured. These should be in the region of $66 \mathrm{uA}\left(\mathrm{V}_{\text {MIN }} / 7 \mathrm{k} 5\right)$, and $V_{\text {MIN }}$ should be $0 V 5$. Both these measurements should be made with no input signal present.

New From ILP!

15 VA transformers - all fully encased in ABS plastic shells with easy fixing by an M4 bush at the base. ILP are planning to extend this facility throughout the year to cover transformers up to 120VA. ILP Electronics, Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.

Two-way
 Tapping

Complete two-way. 'live' telephone conversations can be recorded with the Ansafone 600. This microprocessor controlled unit switches from its usual role as a telephone answering machine to a two-way conversation recorder in less than a second. Ansafone, Lyon Way, Frimley Road, Camberley, Surrey.

ESTThe Sinclair That Never Forgets
R OM-81 is a memory expansion unit for the ZX81 personal computer which enables the user to read useful routines and commonly used information, stored in U.V. erasable, programmable Read Only Memory. The unit is supplied without EPROMs as these are normally programmed and provided by the user.

Two 24 pin sockets allow either 2716 or 2732 EPROMs to be used. They can provide up to 8K of memory in 2K increments. The sockets are decoded to lie between 8 K and 16 K in the $\mathrm{ZX81}$ memory map, which is just below the BASIC area. Separate 2 K and $4 k$ decoding is link selectable to make it possible to vacate locations occupied by other peripheral cards.

ROM-81 has additional circuits to allow the use of slow EPROMs. The most popular EPROMs have a maximum access time of 450 nS . This is too slow for the ZX81. A special Wait State circuit in ROM-81 automatically requests the CPU in the $\mathrm{ZX81}$ to wait until data has been read. Wait States do very slightly decrease the speed of operation of the computer and affect precise calculations of delay loops. The key device has therefore been socketed. Removing it will prevent implementation of Wait States.

ROM-81 comes in a black ABS case with a screwed down cover for quick accessibility without vulnerability. It plugs on to the ZX81 with an adaptor at the rear of the box for further expansions. It is supplied with easy to follow User Notes which give the programs for data retrieval. (But what is the camel for? - Ed).

Megamania Mangled

A e did it! We penetrated the deep mysteries of what lies beyond the magic million of Megamania (new readers will not be aware that this is the best game in the Universe). After a finger-mangling fight with the Atari joystick during a game that

New Catalogue From Toolmail

The new 1983 Toolmail 128-page full colour catalogue is now on sale, offering better value than ever before. With 600 new items and over 2,000 tools illustrated, the product range available must be larger than any specialist tool shop. Prices are still really competitive and all items are available for immediate delivery through Toolmail's efficient nationwide mail order service.

In addition, there are many new features in the 1983 Toolmail
catalogue. Of particular interest are the three $£ 1$ vouchers to be found on page 128. Valid until July 31, 1983 they are each redeemable on any order in excess of $£ 10$.

A further Toolmail venture for 1983 is the opening of the Sevenoaks Tool Room in March. Many of the tools in catalogue will be available there. Others may be ordered there through the regular Toolmail service for delivery by post. Customers may also redeem their Toolmail vouchers at the Sevenoaks Tool Room.

The catalogue is available in all major newsagents price $£ 1$. Copies are also available direct from Toolmail (1982) Limited, PO Box 46, Maidstone, Kent ME15 BEQ.

MODULES FOR SECURITY \& DETECTION

COMTECH ELEGTRONICS

Thansistors
3 Cl 1078
${ }_{3 C 109}$
$3{ }^{\text {C } 113 / 4}$
${ }^{\text {C }}$ C115/6
${ }^{3 C 117}$
${ }_{3 C 139}$
3 C 140
${ }^{3 C 142 / 3}$
3 C 160
${ }^{3} 1615$
${ }_{3 C 170}$
3 C 171
${ }^{3} \mathbf{C 1 7 2}$
${ }^{8 C 178 C}$
C179
3 C 182
${ }^{3} \mathrm{C} 182 \mathrm{~L}$
${ }^{-184}$
\% ${ }^{\text {cibaL }}$
${ }^{\text {OC2 }}$
ЗC213
SC213L
${ }^{5} \mathrm{C} 237$
- $\mathrm{BC}^{\text {238/9 }}$
${ }_{-6337}$
CC4 ${ }^{\text {ach }}$
${ }_{-1}{ }^{\text {C416C }}$
-6C477
${ }^{-6478}$
C5479
${ }^{-1} 5488$
CC549C
${ }^{\text {c }} 5556$
C5578
C5588
${ }_{\mathrm{aC} 560 \mathrm{C}}$
BCY70
${ }_{8 C Y}{ }^{\text {chi }}$
\% 0115
-013t

 \qquad

Centronics

 Interface For Spectrumyou're frustrated with the limitations of the ZX printer or would like to utilize your Spectrum for business use you can now link your Spectrum to Centronics type printers with the use of a Kempston Centronics Interface.

A major feature is the recognition of LLIST and LPRINT by the interface. This allows programs to be listed directly from your Spectrum and also allows you to printout direct from listings (BASIC only) without the need of special user calls. It is also possible to send out control codes to the printer giving the facility of different characters, i.e., condensed, expanded, etc. The interface is supplied cased and ready to use by simply plugging directly into a Centronics type printer, eg all Epsons including MX-80 F / T III, Seikosha 100 A, OKI Microline 80 etc, and also includes driving

software which allows up to 128 characters per line (depending on printer type).

There is also a range of business software from Hilderbay Ltd which can be used in conjunction with Centronics type printers, i.e., accounts, stock control, etc. The interface complete with connecting lead will be priced at $£ 45$ including VAT (mail order $£ 1$ p\&p) which includes a 12 month guarantee. Kempston (Micro) Electronics are at 180a Bedford Park, Kempston, Bedford MK42 8BL.

Look, Mum, No Keys!

 C asio's latest miniature in calculator SL80 has no keys it has flat, sensor-touch pads

Shorts

- The latest catalogue from Stotron Ltd has arrived in our offices; rather curiously it's dated 1982, but never mind, it's full of goodies. You can obtain your copy from Stotron Ltd, Haywood Way, Ivyhouse Lane, Hastings, East Sussex, TN35 4PL, telephone 0424442160.
- Since MAC has been chosen as the UK's system for future direct satellite broadcasting (see ETI March 83), it's reassuring to know that it's been successfully demonstrated in Germany. About 100 telecommunications engineers saw Multiplex Analogue Component pictures which had been sent from the IBA Engineering Centre near Winchester, England, via the European Orbiting Test Satellite stationed $36,000 \mathrm{~km}$ above West Africa. The demonstrations included a direct comparison with conventional PAL-encoded colour signals.
- Gould Power Supplies UK, of Raynham Road, Bishop's Stortford, Herts, have expanded their Econoflex range of switch-mode power supplies with the addition of the EX24/5. Not surprisingly, this is a $24 \mathrm{~V}, 5 \mathrm{~A}$ output unit. The power output is floating and fully regulated to within 0.2%, protection circuitry is incorporated, and
the input can be 110 or 220 V AC .
- Hardly a month goes by without some new information from those busy chaps at OK Industries UK Ltd. This time they've produced a new brochure describing their range of PacTec enclosures, which are moulded from impact-resistant ABS in a range of sizes from small to medium. Various colours and accessories are available. Copies of the 22-page catalogue are available from OK at Dutton Lane, Eastleigh, Hants, SO5 4AA (telephone 0703 610944).
- Remember Zemco? They manufacture
in-car microprocessor equipment and we've mentioned their products before in Digest. Anyway, the US parent company has bought out the UK operation in order to do their own marketing: the good news is that this move will result in a hefty 30% cut in prices, as well as a further financial investment in service facilities. Zemco UK's office is at 66 Earlsdon Street, Coventry CV5 6EJ (telephone 0203 79969), and readers interested in cruise controls and in-car computers are directed thence.
- Accelerate your Apple with the Accelerator II from Pete \& Pam Computers, New Hall Hey Road, Rossendale, Lancs, BB4 6JG (telephone 0706 227011). For £299 you get a plug-in board con-
which respond to finger pressure. The keyboard itself, forming part of an integrated protective wallet, is as large as the whole of a normal credit card calculator, so individual keypads are generously proportioned and well spaced making the calculator much easier to operate.

SL80 has no batteries either, saving the consumer the expense and inconvenience of having to replace a battery. Power comes from built-in solar cells, needing light intensity of only 50 lux. For the untrained 50 lux is the equivalent of a dull light for normal reading!

This tough, maintenance-free little instrument is coming into the shops at a recommended retail price of only $£ 10.95$. Casio Electronics Co Ltd, Unit 6, 1000 North Circular Road, London, NW2 7ID.

Bite A Computer!

Husky, the world's first portable microcomputer, will be on show at this year's Hanover Fair, April 13-20, where it will be demonstrating its indestructible computing power to a deadly Amazonian piranha, immersed in a tank of water at UCSL Microsystems' stand (B5604) in CeBIT Hall 1 (but don't try typing anything in while it's there!).

Husky is now in use for data capture and portable data processing applications by scientific,
commercial and military users in Europe, the United States and other countries.

Husky's applications range from guided missile support to brewery stock-taking. Husky's large memory - up to 144 K allows it to be used independently for long periods. Husky is the first portable microcomputer to offer IBM's 2780 synchronous package, allowing direct communication with mainframe computers.

Husky \qquad designed
and manufactured in Britain by DVW Microelectronics, a member of the AIDCOM International group of companies.
taining a 6502 C processor and 64 K of memory which will boost the speed of the Apple II Plus from 1 MHz to 3.58 MHz . It can run all native Apple II software. - Calling all radiologists, radiographers and clinicians the second London Course in Whole Body Tomography (whatever that is!) will be held from 7-10 June 1983. Further information may be obtained from one of the organisers, Dr Janet Husband, CT Scanning Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT (telephone 01-642 6011 ext. 496). The course is approved under HM67/27 for study leave purposes.

- A 50-page two colour catalogue is now available from STC Meridian, West Road, Harlow, Essex CM20 2BP. The range of products includes such components as picture tubes and microphones, buzzers, sounders, re-entrant horns, counters, timers and relays, as well as vacuum fluorescent displays, DC-to-DC converters, display drivers, infrared diodes, phototransistors, LED and LCD displays, and printers. - Flexible Switch Technology Ltd can now offer a low-profile QWERTY keyboard with an overall thickness of less than 2 mm . The keyboard is fully sealed and comes complete with connectors on two flexible tails. All
you have to do is plug them in to a suitable drive board. Two types are available: flat membrane switches or FST's new 'click' effect tactile buttons. You can have any colour you like as long as it's blue, black or white. Flexible Switch Technology are at Unit 31, Middlefield Industrial Estate, Sunderland Road, Sandy, Beds SG19 1RB (telephone 0767 80332).
- Sharp PC-1251 owners can now buy a spreadsheet program which allows as many as 26 columns, 100 rows, and over 200 'cells' on the sheet. You can either use it as a tool for solving the "what if" type of question, or as a mini-database with up to 100 names and telephone numbers. The program, called Easi-calc 1251, requires the CE125 printerrecorder and costs £14.95 including VAT from Elkan Electronics, 11 Bury New Road, Prestwich, Manchester M25 8/Z (telephone 061-798 7613).
- Two new books have been added to the successful 'Understanding ...' series from Texas Instruments. The titles are Understanding Electronic Control of Energy Systems' and 'Understanding Telephone Electronics', and each costs $£ 3.95$ plus $£ 1.50$ postage and packing from Texas Instruments Ltd, PO Box 50, Market Harborough, Leicestershire.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

ZX81 Music Board

We've just discovered (since the prototype was tested using a Memotech RAMpack) that it isn't possible to plug peripherals into the back of Sinclair's RAMpack. Have no fear, you can still use the Music Board: all the completed boards and kits sold by Petron Electronics will be modified so that the Sinclair memory can be plugged in behind the Music Board. Problem solved.

ORIC Overload

Tangerine Users Group (TUG) have asked us to bring to the attention of ORIC-1 owners that they are receiving several thousand enquiries per month, thereby creating an overload condition in the organisation. Although they are making every effort to respond as quickly as possible, delays of up to 14 days are inevitable, during this period of reorganisation.

Membrane Keypads From Velleman

* elleman have introduced a V new range of membrane keypads, available with 12 keys (type KB12) or 16 keys (type KB16). Both versions are offered with standard legend or with blank keys to enable customer to print their own legend.

These multi-layer keyboards are manufactured by Velleman using high quality materials with the top layer being polycarbonate film which resists scratching, dust and water. Termination is by insulated flat cable and a suitable PCB connector with 2.54 mm (0.1 inch) spacing is supplied. Ratings are 24 V and 25 mA maximum.

A data sheet with full technical specification is available upon request. Price including VAT and postage is $£ 8.44$ for both versions (1 off quantity) with discounts available for larger quantities. Velleman (UK) Limited, PO Box 30, St Leonards on Sea, East Sussex, TN37 7NL.

New Crimson Factory

ue to successful and increasing trading Crimson Elektrik has opened a new factory to hancile sales and production of all modules, kits and industrial amplifiers.

From the same date the Leicester factory will only be handling production and sales of the prestigious 600 series hifi amplifiers, available only through specialist retailers. All enquiries other than for the 600 series should now be addressed to: Crimson Elektrik, 500 King Street, Longton, Stoke-on-Trent ST3 1EZ.

High-Tech
 Pager

A new version of an economical radio paging system for on-site or wide-area use has been launched by Multitone Electronics, using technology currently unique to the company.

The system, called 'Readout', is a single or dual-format encoder (control unit) that can operate both analogue and digital pagers. This means that users with analogue equipment can protect past investment in their existing receivers and still upgrade their system to take advantage of the latest high-speed digital technology.

Up to 500 digital pagers can be added to an existing system without any need to replace the transmitter, aerial and associated wiring.

One of the key new features on FM systems is 'receiver out of range'. This prevents pager wearers from being out of contact without being aware of it. When taken out of range of the transmitter, a pager emits a lowfrequency buzz warning.

Another new feature is transmitted steering, developed to enable users to add a new digital system to an analogue system on another radio frequency. The dual-format 'Readout' can steer calls for the analogue receivers to the existing AM transmitter and calls for the new digital receivers to a new FM transmitter. Multitone is the only manufacturer that can supply an encoder to provide this facility.

For further information contact: Multitone Communications Systems Ltd, 6-28 Underwood Street, London N1 7IT. Tel: 01-253 7611.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Yet More Speakers From Wilmslow

New from Wilmslow Audio, PROKITS provide a range of speakers for the home constructor which are ideal for small venue discos, public address, parties, etc. Combining Wharfedale's design expertise with Wilmslow Audio's kit know how, they offer true hi-fi quality sound together with high sensitivity to make optimum use of the amplifier power available.

The kits contain everything required for the construction of the speakers except adhesives. Only a
few simple tools are required. Six models are offered: E50PRO (100 watts), E70PRO (150 watts), E90PRO (200 watts), E50PRO SUPER (150 watts), E70PRO SUPER (175 watts), E90PRO SUPER (300 watts). The PRO SUPER range is fitted with special hand-built bass units and the crossover networks are fitted with thermal overioad protection for the treble units and for the complete system. The photograph shows the E50PRO and the E90PRO.

Prices range from $£ 218.95$ per pair for the E50PRO to $£ 425$ per pair for the E90PRO SUPER. Details from Wilmslow Audio Ltd, 35/39 Church Street, Wilmstow, Cheshire SK9 1AS. Telephone 0625529599.

A New Name
Menema Associates is a newly formed O.E.M. company now launching a comprehensive range of products for the Oric-1 computer. Included in this range is a 'Multipurpose/Personnel Records File'. This powerful software permits the mass storage and file handling of confidential information on personnel or products. The package is priced at $£ 15.00$.

Also supporting the range is an 'Oric-1 Keyboard Trainer' software package and a growing number of games, books, and accessories for the Oric-1 owner including Oric-1 American T-Shirts. Kenema Associates Lid, 1 Marlborough Drive, Worle, Avon BS22 0DQ.

Large Format Clock/Counter

A new range of digital A counters and clocks using high brightness $3 \frac{1}{2}$ inch vacuum fluorescent character display tubes is now available from Greatech Electronics Limited. The digital counters, two, three and four digits accept BCD input with optional blanking and remote display data input control.

The clock model is available in a twelve or twenty-four hour ver-
sion with a mains frequency locked crystal controlled oscillator powered by a battery (rechargeable) during mains failure. (One of these may even be enough to help the Editor of a certain sister electronics magazine get to work on time!)

The display tube's brightness is adjustable and available in white, green, red and yellow. A variety of other colours can be provided by filtering and contrast enhancement provided to suit particular applications. Greatech Electronics Ltd, Hay Lane, Braintree, Essex.

OPTO ELECTRONICS

LEDS

3 mm , 5 mm , Rectangular Diffuse Gravestone:
Red-8p
Orange - 8p (not Gravestone)
Yellow-10p
Green - 10p
3mm Red Battery Status - 20p
5mm Red Flasher - 40p
5mm Bi Colour Red/Green - 50p
3+5mm Red Constant Current - 20p
3 or 5 mm Mounting Clips - 2.5p

INFRA RED EMITTERS

3mm TIL32 Type - 40p
5mm TIL38 Type - 40p
IRL60 Mini Radial - 30p
IRL80 Side Looker - 40p
INFRA RED SENSORS
3mm TIL78 Type - 40p
5mm BP103B (Trans) - 45p
Pin Diode (Side Looker) - 85p
NORP12 (Resistor) - 75p
LPT100 (Transistor) -40p

DISPLAYS
DL304/307-75p
DL704-90p
DL500/507-85p
DL527/528-£1.50
DL0727 (Orange) - $£ 2.00$
DL0747 (Orange) - £1.00
DL6304/307 (Green) - 80p
RB61000-£1.60
4 Digit $0.5^{\prime \prime}$ Clock - $£ 2.00$
9 Digit Calculator - 50p
DL1414 Intellegent - £12.50

OPTICAL ISOLATORS

IL74 (6 pin) - 60p
ILD74 (8 pin) - 99p
ILQ74 (16 pin) - £2.25
4N26 (6 pin) - 53p

STARTER KIT

5 each, 4 colours, 3,5mm, Rectangular Gravestone Leds
2 each, TIL38, 78, Photo Diode/2 each, ILD74 ISOL
2 each, DL307, 704, 500/1 $\times 9$ Digit Calculator Stick
£10

Forfull details of our extensive Opto range a 52 page catalogue is available at $£ 1.25$ including P\&P \& VAT or free with order £10 or over in value.

HOME CONTROL CENTRE This kit enables you to control up to 16 different appliances anywhere in the house from
comfort of your armchair. The transmitter appliance addressed. The transmitter includes a COMPUTER interface so you can pro
 swich iights, heating, electric blanket. make rewiring your house. JUST THINK OF THE POSSIBILITIES. The kit includes all PCBs and components for one transmitter and
receivers. plus a preadrilled box for transmitter. Order as XK112. £42.00 Additional Receivers XK $111 \mathbf{5 1 0 . 0 0}$

OPEN-SESAME"

The XK 103 is a general purpose infta-rod trans mirierircaceiver with ona momentary
open) religy contact and two latched irensisto output. Designed primarliy for contrilling motorised garage doors end two suxilary out
puts for driveg gerage lighis at a range of un puts for drivegarage lights at a range of up to
40 Ht . The uniz also has numerous applications in the home tor switching Hghts, IV, closing curtains, etc. Ideall for aged or dissbled persos.s.
The Kit comprises a mains powered receiver, a
four butlon transmitter complete with pre
 opto-iso iated solid state switch kit for intar-
facing the receiver to mains apoliances. tacing the receiver to mains appliances. A
with all our kits, full instructions are supplied. ONLY £23.75

3-NOTE DOOR CHIME

Based on the SAB0600 IC the kit is supplied with all components, including loudspeaker printed circuit boand, a pre drilled box Requires only a PP39V battery and push switch to complete AN IDEAL PROJECT FOR $\mathbf{£ 5 . 0 0}$

It's packed with details of all our KITS plus large range of SEMICONDUCTORS including CMOS, LS TTL, linear, microprocessors and memories; full range of LEDs, capacitors, resistors; hardware, relays, switches etc. We also stock VERO and Antex products as well as books from Texas Instruments, Babeni and Elektor ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CAN'T FORGET FOR PRICES YOU CAN'T RESIST.

Answering
service evngs and give us your Access or Barclaycard No. or write enclosing, service evngs
cheque or postal order. Official orders accepted from schools, etc. \& weekends

```
REMOTE CONTROL KITS
FOR A DETAILED BOOKLET ON REMOTE CONTROL - Send 30D+6"*9"S.AE
MKG SIMPLE INFRA RED TRANSMITTER
```



```
MK7INFRA RED RECEIVER
Mams powered writh trac output to switch up to 500W at 240V ac. Fange approx 20 it
TRC 5nok - speciai, price for MK6/MK7
MK9 4WAY KEYGOARD
For use withMK 18,MK12 
MK11 10 channel + 3 analogue orra
A mains powered LR reeciver providing control signals io 10 on/off and 3 analogue circuits. May be used
lor convoling the volume of an ampl
MK 12 16 CHANNEL LR RECEIVER ,
```


THE

\Rightarrow NOW

 availablein stock
 MICROCOMPUTER
uses FORTH which executes about 10 timas faster and requires less program memory than a comparable program using basic. Features 8 K ROM, 3 K RAM, buit in speaker,
40 key keyboard and a 32×24 line-licker free display on TV messupplied completewithleads, mains adaptor, a comprehensive easy-to-follow manual on Forth programming + FREE cassette containing 5 sample programs

ONLY $£ 75.00$

JUPITER ACE SOFTWARE

+ + £2.00 carriage + VAT $)$

33 SPACE INVADERS $\mathbf{8 3 . 9 0}$ J4 SWAMP MONSTERS $\mathbf{£ 3 . 9 0}$
$J 5$ DOT MAN
17 ZAP 'EM (ASTEROIDS) DUCK
SHOOT \& MINEFIELD (3 programs) 85.20 WHY NOT COME IN AND SEE IT FOR YOURSELF!

COMPONENT PACKS

PACK 1650 Resistors 47 hm to 10 PACK $240 \times 16 \mathrm{~V}$ Electrolytic Capaciors PACK 360 Polyester Capacitors 0.01 to PACK $44 \mathrm{~F} / 250 \mathrm{~V}-15$ per value $£ 5.55$ PACK 445 Sub-miniarure Presers 1000 ohm PACK 530 Low Profile IC Sockets 8,14 PACK 625 Red LEDS (5 mm dia.) $£ 1.25$

ELECTRONIC LOCK KIT XK101

 This KIT contains a purpose designed lock IC, 10 -way keyboard, PCBs and all components to construct a Digital Lock, requiring a 4 -key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 uA . Ouput: 750 mA max. Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructionsTHE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can run your ceniral heating, lighting, hi-fi system and lots
more with just one programmabie timer. Ai your selection it is designed to control four mains outputs independently, switching on
and off at pre ser times over a 7 day cycle, e.g, to control your central heating lincluding different switching connect it to your
clock will do the rest. FEATURES INCLUDE 0.5 " LED $^{12 \text { hour display. }}$ ${ }_{4}^{4}$ zero voltage switched m $50,60 \mathrm{~Hz}$ mains operation. Battery backup seves stored programmes and continues time kepeing during power feilures. (Battery not supplied). 18 programme tima sets. Powerful "Everyday" function anabling output ${ }^{10}$ switch every day but use only one tima set Useful "slage" function-rurns on output for one hour.
Direct switch control enabling output to be turned or immediately or sterer a specified time interval. 20 function keypad for programme entry
(Kit includes all components, PCB, assembly and programming instructions). ORDER AS CT5000
 supplied.

DNLY £10.50
Electric lock mechanism for use with latch locks and above kit $£ 13.50$

XK113 MW RADIO KIT Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components
to make a sensitive m niature radio Sizo 5 . to make a sensitive m niature radio. Size: $5.5 \times$ FOR BEGINNERS. $\quad \mathbf{£ 5 . 0 0}$

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to $1 \mathrm{~kW} \quad \mathrm{CT}$ 1000k Basic Ki

Switches any appliance up to 1 kW
on and off at present tim es once per day. Kit contains: AY-5. 1230 IC .
dat 0.5^{*} LEO display, meins supply, disporay drivers, switches. LEEs,
triacs, PEBs and full instructions.

DVM/ULTRA SENSITIVE THERMOMETER KIT

 This new design is based onthe Ic17126 la lower powar version of the ICL7106 chip) and a $31 / 2$ digit liquid crystal
display. This kit will form the \qquad basis of a digital multimeter are requirad-details supisis and switches digital thermometar $: 50^{\circ} \mathrm{C}$, or sensitive reading to $0.1^{\circ} \mathrm{C}$. The basic kits $+150^{\circ} \mathrm{C}$ sensitivity of 200 mV for a fuill scalo reading automatic polarity indicstion and an ultra
low power rogurirement-a typical bertery life trom a standard 9V PP Price $£ 15.50$

DISCO LIGHTING KITS

DL 1000 K

This value-for-mioney kir fea-
Tures bidirectional se-
quence, speed of seaunce

and freauency of directio
tiometers and incorporates a master dir
ning control
dLz100k
$£ 14.60$
A lower cost version of the above, teazuring
undirectional channel sequence with sred variable by means of a pre-set pot Outputs Only £8.00

Allowing audio ("beat") - light 60p

This 3 channel sound to light kif features trol and builh in mic. No connections to
speazero or amp required. No knobs to adiust simply connect

Only £11.95

MINI KITS
MK1 ELECTRONIC THERMOSTAT
USes LM3911 IC to sense temperat Uses LM3911 IC to sense temperature
$1800^{\circ} \mathrm{C}$ max) and trac to swich heate MK2 SOLIO STATE RELAY Swithes 240 V ac motrs, lights,
heaters flom togic/computer ciccuiss
 Supplied wihhour 1 Hac MKAPROPORTIONAL
TEMPERATURE CONTROLLER TEMPERATURE CONTROLLER
Uses buist tive" technique to

 act. Temp. range up to
MK5 MAINS TIMER
Mains powered timer enabling a load
up to 1 kW at 240 V ac to up to KW at 240 V ac to be switche
on loo offl for a variable mins, to 35 ars. vonger or shorte
perion component changes.
MK15 DUAL LATCHED
E5.00 STATE RELAY
\qquad enabling the MK 12 kit to contia
mains loads independently
\qquad NEW MK19 DC CO
AUOIO AMPLIFIEA May be used with virtually any stered
 With red receiver. $A \mid$
with LEDS is also inclu input selection/display (Ready Built)

For a detailed booklet on remote control - send us 30p and S.A.E. $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today. EXCLUDE VAT

ALL PRICES

LCD $31 / 2$ DIGIT MULTMMETER 16 ranges including DC votrage ($200 \mathrm{mv}-1000$
v) and AC votage. DC current (200 mA-10 A)
 gin and diode check. Input impodance 10M.

Add 65 p postage $\&$ packing $+15 \%$ VAT to tota Add E 20 Overseas Customers: Send S E Por for Goods by return subject to availability
OPEN ${ }^{\text {amm to } 5 \text { som (Mon to }}$ frit

AUTOCOMPASS

Abstract

Don't say we aren't good to you! Not only is this a unique and cheap-to-build project featuring some unusual techniques, but it also gives an insight into a little-known area of binary numbers. Design by Nigel Collier.

This novel project describes the operation and construction of an electronic compass specifically designed for use in automobiles. The unit can distinguish 16 different headings, and uses a dot matrix LED display to register the car's heading in nautical point and quarterpoint notation - for landlubbers this means N, NNE, NE, ENE and so on. The display dims automatically as the ambient light level drops.

The whole assembly, which is simply compensated for accurate readings inside the metal body of the car, is housed in an elegant matt black box, complete with a fixing bracket which enables it to be positioned almost anywhere in the car.

Finally, the sensor itself is designed using an apparently newlydiscovered set of binary numbers!

The Circuit

The unusual sensor, details of which are given later, generates a four-bit code, with each of the 16 possible numbers corresponding to a different heading. The remainder
of the logic circuitry is based around a 27162 K EPROM (at last, a non-computer-orientated use for an EPROM).

The EPROM contains the data necessary to give meaningful alphabetical displays as the perceived heading is updated. A listing of the data contained in the EPROM can be obtained from us on receipt of an s.a.e., for those amongst you with access to an EPROM programmer. Don't worry if you haven't though; ready-blown EPROMs will be available (see Buylines).

The display consists of two $7 \times$ 5 dot matrix displays type DL5735, manufactured by Litronix. These are arranged to form three adjacent display sections with areas of 5×5, 4×5 and 5×5.

Sensor Design

The operation of the sensor can best be described by looking at Fig. 1. The central pillar, topped by the pivot needle, is made from transparent perspex and houses the incandescent light source. Balanced on the pivot needle is the compass

PARTS LIST

Resistors (all $\mathfrak{\downarrow}$ W, 5\% except where stated)	
	1 kO
R2-6,9	4k7
R7	10k
R8	not used
R10,34,35	470R
R11-15,	
21-25,33	2 k 7
R16-29,26-30	30R, $\frac{1}{2} W$
R31,32	15R, IW
Potentiometers	
PR1,2	100R miniature horizontal preset, $3 W$ rating
Capacitors	
C1	220nF polyester
	470uF 6V3 axial electrolytic
C3-6	47nF polyester
C7	2n0 polystyrene
C8	2 u 263 V axial electrolytic
C9	1n0 polystyrene
Semiconductors	
IC1	2716 single rail EPROM $(+5 \mathrm{~V})$
IC2	4017B
IC3,4	4001B
IC5	7472
IC6	7475
IC7,8	74LS367
IC9	7805
IC10	ULN2003
Q1-10	BC212L
Q11	BC182L
Q12-16	OP500 phototransistor
DISP1,2	DL5735 dot matrix LED display
Miscellaneous	
LDR1	ORP12
	500 turns of 40 swg enamelled copper wire on
	1M0 1W resistor (see text)
PCBs (see	Buylines); sensor (see
Buylines); case (see Buylines); mounting hardware, wire etc.	

BUYLINES

A ready-built sensor, complete with phototransistors, is available for $£ 8$. The two double-sided PCBs, both with silkscreened component identification, are available for $\mathbf{£ 6 . 5 0}$ the pair. Customersupplied EPROMs will be programmed for 40 p plus postage. Preprogrammed 2716 EPROMs are available for $\mathbf{£ 3 . 0 0}$. An Autocompass case plus silk-screened perspex front panel is available for £4.00. Finally, a complete kit of parts, down to the last nut and bolt, will be supplied for $£ 35.00$ plus $£ 1.50$ postage and packing. All the above are available from Pilotdata Ltd, 2 Derwent Close, Wokingham, Berks.
mask - this is free to both rotate and tilt. A toroidal magnet, magnetised through its major diameter, is fixed to the mask. Thus the mask will always orientate itself in the same direction (with respect to the Earth's magnetic field) as the car's heading changes.

The mask pattern is designed such that the four phototransistors arranged around the circumference of the mask can unambiguously
encode the sensor heading. For those who are interested in this sort of thing, a full description of the coding method used is given in the box entitled 'Cyclic Binaries'.

This form of coding, rather than a standard four-bit coding for four phototransistors positioned in a vertical line, was necessary to stop

Fig. 1 (Right) The sensor mask.
Fig. 2 (Below) Component overlay.

erroneous coding occurring as the mask tilts (as it is inclined to do as the car accelerates or corners). The fifth phototransistor, Q16, reads another part of the mask, and only allows the logic circuitry to update the sensor heading when the four 'position' phototransistors are nicely matched with a mask section.

The whole assembly is fluiddamped to stop unnecessary oscillations. A somewhat incongruous loop of silicone tube is fixed onto the side of the housing. This is not a way of getting rid of spare balloons from the Christmas party - it is present to absorb any changes of volume of the damping fluid that occur with changes in temperature.

Construction

Because of the difficulties involved in the making of the compass mask, it is not recommended that the average home constructor should attempt to build his (or her) own sensor from scratch. Ready-built and tested sensors are available from Pilotdata at the address given in Buylines. We doubt if many of our readers are keen on metal-bashing either, given that Pilotdata can supply the case assemblies ready-screened and painted, but dimensions are available from us if you send a stamped addressed envelope (A4-size).

From an electronic point of view there are few problems posed by the construction - however, you will need a soldering iron with a very fine bit.

The main PCB is double-sided but not plated-through. There are seven points where isolated tracks on opposite sides of the board need to be joined with a linking pin these are shown with a dot on our overlay and a ' p ' on the silkscreened legend on the manufactured boards. Any other component lead or IC pin indicated with a dot should also be soldered both sides. The 10 terminal pins for the off-board connections must be all pushed through from the component side of the PCB. The voltage regulator and its two associated capacitors, C1 and C2, are shown in dotted outline on the overlay and must be soldered onto the underside of the PCB. The leads of the voltage regulator should be carefully pre-bent such that the mounting hole of the regulator is 19 mm below the underside surface of the PCB and flush with the edge of the board when soldered in

These two internal shots should help with construction.
position. Using an epoxy adhesive, fix a $5 / 16^{\prime \prime} 6 B A$ screw into the regulator mounting hole with the screw thread protruding out backwards from the body of the PCB.

The four coils are wound on 1 megohm, 1 W resistors. Each resistor is prepared by glueing onto each end a 9 mm square plastic or cardboard pad to retain the wire.

```
ZX81 PROGRAM TO GENERATE
                                    16 BIT CYCLIC BINARIES
INPUT N$
INPUT N$
LETP=1
DIM A$(16,4)
LET AS(P)=N$
LET N$(1)=NS(2)
LET N$(3)=N$(4)
LET N$(4) = "0"
FORC = 1 TOP
l
NEXT C 
LET A$(P) = NS
IFP<16 THEN GOTO 70
FORN = 1TOP
PRINT N, AS(N)
NEXT N
STOP
LETN$(4)="1"
IF NS=AS(C) THEN GOTO 270
NEXT C 
GOTO 140
LETP=P-1
LET N$(4)=*"."
FORC=1TOP
IF N$= A$(C) THEN GOTO 260
NEXT C
GOTO }15
HANGES TO GENERATE A 32 BIT CYCLIC BINARY
50 DIM A$ (32,5)
LET N$(4)=N$(5)
LET N$(5) = "0'*
210 LET N$(5)="1"
210 LET N$(5)="""*
```


(a)

(b)

(ic)

Fig. 3 Using cyclic binaries to detect shaft position.

Fig. 4 (Above) A cross-section through the sensor housing. binary for Fig. 3c.

CYCLIC BINARIES

The mask pattern of the compass sensor owes its existence to a group of numbers which the author has called 'cyclic binaries'. So far as we are aware, this intriguing set has so far been ignored by the mathematicians, though if anyone knows otherwise, we would be delighted to hear from them.
Consider a cross-section of a shaft (Fig. 3a) whose circumference is half white and half black. A single detector is sufficient to determine which side of the shaft is nearest the detector, by detecting the local shaft colour.

Using the same shaft, let us now introduce a second similar detector such that the angle subtended by the two detectors at the axis of the shaft is 90° (Fig. 3b). The position of a point on the shaft can now be narrowed down to one of four quadrants. This table gives the truth table for the four possibilities:

Q1	Q2	Quadrant
Black	Black	$\mathbf{1}$
Black	White	$\mathbf{4}$
White	Black	$\mathbf{2}$
White	White	$\mathbf{3}$

In these examples the detectors are obviously binary detectors: we can call black a 0 and white a 1. Thus in Fig. 3b the shaft's rotational position has been encoded as a two-bit number.

Can we extend this system to three numbers, so as to encode for eight sectors? We can, but the shaft's pattern now becomes a bit more complex (Fig. $\left.{ }^{1} 3 \mathrm{c}\right)$. As in the case for one or two detectors, the pattern is unique (ignoring simple rotations and mirror images) in generating a separate three-bit number for each of the eight sectors. Note that the detectors now subtend angles of 45° to their neigh bours.

Now the colouring of the threesensor shaft pattern can be represented by an eight-bit binary number arranged in a circle thus:
\square

I propose to write this number thus: 11100010 c
The subscript C signifies that the binary is cyclic, ie its end is joined to its start. (Note that it doesn't matter at what point in the number you start, or in what direction you proceed: 10001110 ${ }_{c}$ is the same number).

Now for four detectors with 22.5° separation: the arrangement used in the Autocompass. The shaft pattern is now divided into 16 sectors: are there any patterns which yield a unique four-bit number for each of the discernable rotational positions? The answer is obviously yes, since one is used in the compass sensor. In fact there are six such numbers (not counting rotations and reflections), and these six can be split up into three pairs. Each pair consists of a number and its inverse (ie each 1 becomes a 0 and vice versa). The pairs are:

0110101111000010 c and inverse
1000011010111100_{c} and inverse $1000010111101001_{\mathrm{c}}$ and inverse
As far as we know, perfect cyclic binaries (ie ones that generate unique positional data for each of their sectors) can be found for any number of sensors. For the sake of interest, the table below shows perfect cyclic binaries for five, six and seven sensors.
five bit.
$0000011111011100110101100010100{ }^{1} \mathrm{C}$
SIX BIT:
000000111111011110011101011100011011010011001 0110000101010001001 C
SEVEN BIT:
000000011111110111110011110101111000111011011 101001110010111000011011001101010110100011001. $00110001011000001010100101000010010001^{1} \mathrm{C}$

How can perfect cyclic binaries be generated? Consider the case of determining the cyclic binary for three sensors. Figure 5 shows the search tree involved: we have arbitrarily started from ' 000 '. If the shaft rotates one position from right to left, the new number will be '00?'. The least significant digit can be 0 or 1 , but if it is 0 , we have a repeat of the first number, so it must be a 1 . The tree shows the continuation of this pro-
cess. Every underlined number is a repeat.

The completed tree shows two routes through all eight numbers and back to the starting number. Selecting the first digit of each number along the routes, we get:
$\mathbf{0 0 0 0 1 0 1 1 1}_{\text {c }}$ (Route 1)
00011101_{c}^{c} (Route 2)
ie both routes yield the same number.
For larger cyclic binaries, drawing the tree out becomes impractical, but the search method is ideally suited to adaptation to a computer program. We've given a program here, in BASIC, which has been written for a ZX81 and will perform a tree search to generate 16-bit cyclic binaries - all you have to do to start it is enter a four-bit number. The most obvious drawback of using cyclic binaries for determining the rotational position of a shaft is that an additional gating phototransistor is necessary. This would be superfluous if the cyclic binary was also Gray-coded. Gray-coded binary number sequences are special in that any two adjacent numbers in the sequence only differ by one binary digit. The following table. shows a representative Gray coding sequence to illustrate the property:
000
001
011
010
110
111
101
100
000 etc.

Do 'super-perfect' Gray-coded cyclic binaries exist? We think not, but this judgement is based on a very limited investigation.

If you wish to search for superperfect cyclic binaries, here are a couple of hints. First, note that the detectors do not need to be adjacent (though any rotationally symmetrical arrangement of detectors will lead nowhere). Second, looking for cyclic Gray-coded sequences will be easier than looking for Graycoded cyclic binaries (if you get the distinction!). Good luck.

Fig. 6 (Above) Coil

TABLE 1

| IC6 OUTPUT VERSUS SENSOR HEADING | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| SENSOR | A3 | A2 | A1 | A0 | DECIMAL |
| HEADING | (PIN 1) | (PIN 14) | (PIN 11) | (PIN 8) | |
| HEADIN | 1 | 1 | 1 | 0 | 14 |
| NNE | 1 | 1 | 1 | 1 | 15 |
| NE | 0 | 1 | 1 | 1 | 7 |
| ENE | 1 | 0 | 1 | 1 | 11 |
| E | 1 | 1 | 0 | 1 | 13 |
| ESE | 0 | 1 | 1 | 0 | 6 |
| SE | 0 | 0 | 1 | 1 | 3 |
| SSE | 1 | 0 | 0 | 1 | 9 |
| S | 0 | 1 | 0 | 0 | 4 |
| SSW | 1 | 0 | 1 | 0 | 10 |
| SW | 0 | 1 | 0 | 1 | 5 |
| WSW | 0 | 0 | 1 | 0 | 2 |
| W | 0 | 0 | 0 | 1 | 1 |
| WNW | 0 | 0 | 0 | 0 | 0 |
| NW | 1 | 0 | 0 | 0 | 8 |
| NNW | 1 | 1 | 0 | 0 | 12 | Circuit operation shown frozen at one point in the multiplexing.

Q12-16 are phototransistors attached to the compass sensor. The voltage present at the collector of any one of the phototransistors is pulled up to a logic 1 level by the resistors R2-5 and R33, so long as the phototransistor in question is shaded from the sensor light source by the compass mask. Once exposed to light, a phototransistor will turn on and its collector voltage will drop to a logic 0 .

IC6 is a four-bit bistable latch. So long as phototransistor Q16 is shaded, the latch outputs will present the inverse of the latch inputs. However, once Q16 is exposed to light, the latch will hold the last four-bit input, irrespective of any further changes in input. in other words, IC6 is'a memory device, supplying IC1 with information concerning the sensor position at the last positional update. Table 1 shows the output of IC6 with reference to the sensor positions.

The rest of the logic circuit converts the four-bit output of IC6 to an alphanumeric display of the sensor heading. IC3c,d are configured with R7 and C7 as an astable multivibrator. With the values chosen, this generates a

Fig. 9 Autocompass circuit diagram.
square wave of about 25 kHz , which is fed to the clock input of IC2.

IC2 is a 4017 counter-divider: only one of the chip's 10 outputs can be high at any one time. Every positive transition of the clock signal advances the high output to the next pin in sequence, from right to left in the circuit diagram. Once pin 6 is driven high it activates the monostable multivibrator configured around IC4a,b. The monostable is, in effect, a pulse stretcher. The output of the monostable (pin 11) is normally low. When pin 9 of IC4a goes high, the output simultaneously goes high. As IC4b pin 11 is connected to the 4017 clock inhibit (pin 13), this immediately stops any further clocking of the 4017's outputs.

The length of time that IC4b pin 11 remains high is dependent on the resistance of the LDR. The more light that falls on the LDR, the lower is its resistance, the quicker C8 charges, and the shorter is the resultant length of the output pulse. Once pin 11 returns low again, the 4017 is free to continue clocking on the next positive clock signal transition. When IC2 pin 11 goes high, it drives the reset pin (pin 15) high which
starts the whole cycle again by sending pin 3 high. To summarise, the 4017 outputs sweep from pin 3 to pin 5; then there is a delay with all the relevant outputs of the 4017 low, this delay being dependent on the ambient light level, before the cycle repeats. It can therefore be seen that the delay constitutes a display brightness control.

IC10 is a seven-stage Darlington driver. As each input of IC10 goes high, so the corresponding output is grounded, which in turn grounds the cathodes of the five LEDs in the relevant row of each display matrix. This constitutes one-half of the display multiplexing process.

IC1 is an EPROM which produces a specific eight-bit output at pins 9-11, 13-17 (only the latter five being used) depending on the state of the 11 address input pins. We have seen that pins 5-8 of IC1 depend on the sensor heading, being driven by the outputs of IC6. The remaining seven address lines define the position of the multiplexing cycle.

The two dot matrix displays together have 14 vertical columns: the 4017 cycles through seven states. Therefore
the multiplexing circuit must service one display at a time. This is organised by IC5, a flip-flop. Every time the 4017 starts a new cycle by sending pin 3 high, the outputs of IC5 (pins 8,6) change state. Pin 8 is always the inverse of pin 6. IC5 pin 8 addresses pin 4 of the EPROM: thus pin 4 high means 'multiplex display 1', while pin 4 low means 'multiplex display 2^{\prime}.

The remaining six address lines of IC1 are driven by the outputs of IC2. The two NOR gates IC3a,3b compress the intormation on IC2 pins 10,1, and 5 to the two lines on pins 2 and 3 of IC1.

IC7 and IC8 are tristate buffers. They are gated on by the two outputs of IC5 such that only one is on at a time. Both receive the data output from IC1, and each in turn uses the data to supply current to the anodes of the LEDs in its display via the current amplifiers Q1-10.

To help show what is going on, Fig. 8 shows the multiplexing at one instant of time. Note that Q1-10 act as inverters, so a 0 at the output of the EPROM defines an LED which is lit. In this case the display could be showing the last column of, say, "NNE".

The wire is 40 gauge enamelled copper wire, and 500 turns are needed on each resistor - this won't take you as long as it might seem! Remember to scrape off the insulation from the free ends before attempting to solder them to the resistor leads. Each pair of coils consists of one which has been wound 'right-handed' and one which has been wound 'lefthanded'; ie they are not capable of superimposition, one being the mirror-image of the other. Label the two types unambiguously.

The display has four terminal pins but does not require any linking pins: all through-board connections here are made by soldering the necessary component leads on both sides (again indicated by dots). After soldering the terminal pins, which again are inserted from the component side, solder in the LED dot matrix displays. Mount them so that their pins only protrude about $\frac{1}{2} \mathrm{~mm}$ from the rear of the PCB: this allows sufficient clearance to solder to the tracks on the front of the PCB. Save the clipped leads from the resistors - they will be ideal later for joining the two PCBs together.

The boards are mounted so that the main PCB lies 10 mm below the top edge of the display PCB, and 1 mm free of the underside of the display PCB. The diagram shows the

Fig. 10 It goes together like this . . .
method used to join the boards (Fig. 10).

The interwiring of the coils to the display PCB and the sensor to the main PCB is straightforward: just keep the wiring short and neat and remember that all the wiring is taken from the underside of the PCBs. Note that the phototransistors protrude from the sensor towards the back of the instrument.

The assembly of the two PCBs and the sensor fits snugly into the case bottom, being fastened in place with three $1 \frac{1^{\prime \prime}}{\prime \prime}$ screws which have slide-on spacers. Two 6BA x $3 / 16^{\prime \prime}$ countersunk screws fix the sensor housing to the case bottom, and a further two attach the perspex fascia. The case top and fixing bracket are attached using two 6BA $\times \frac{1}{2}$ " screws, as shown in Fig. 10 . Note that the fixing bracket can either be fixed underneath the unit as shown in the photos, for dashboard mounting, or the other way up so that the compass may be hung from the car roof.

Setting Up

When benchtesting the completed PCB assembly, remember to adequately heatsink the 5 V regulator. The display is multiplexed, and so the DC current through each LED can exceed 100 mA (though for a few microseconds only, of course). But, were the oscillator to be inoperative then it would be perfectly possible to blow up the display. So play it safe temporarily disconnect the 5 V supply to the display PCB by desoldering the ninth board-linking pin from the right-hand side (viewed from the front) and check on an oscilloscope that the waveforms are what they should be (see Fig. 11).

If you don't have an oscilloscope, don't despair: an LED with a 200 R resistor in series will suffice. Ground the appropriate end and touch the LED's anode end to the output pins of the 4017 (pins 1, 2, $3,4,5,6,7,10$). When operating correctly, the LED should glow very dimly (you may need to turn off the lights to detect it). If, on the other hand, one of the channels lights the LED brightly, with the remaining channels off, then you have a fault. However, with reasonable care in construction, the compass should work first time.

The only adjustment required is the setting of the bias coils to null out the car's magnetic field. Using a map (or a second compass outside the car), position the car so that it is pointing north. If the Autocompass

Fig. 11 Some test waveforms.
does not read north, it is because of the car's field component which lies at right angles to the car's long axis. We can nullify this component by rotating the pot labelled ' N / S^{\prime} until the compass reads north.

Now the car must be positioned to point east. If the compass does not read east, it can only be because of x the car's field component which lies parallel to the car's long axis. So adjust the ' E / W^{\prime} ' pot to neutralise this component, and the compass is compensated.

Installation

The Autocompass has been designed to be easily fixed into a car, but there are a few cautionary points that must be made. First, keep it away from any loudspeakers, as they possess strong magnets which can overcome even the compensation circuits. Second, ensure that the top of the box is as level as possible in its final position - the sensor will tolerate quite a bit of tilt, but if it is level at rest then its operational range will be enhanced. Finally, the display can consume about 800 mA with the display flat out, so an in-line fuse may be desirable.

ETI

MIDWICH COMPUTER COMPANY LIMITED

FAST EX－STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

Official B／B／C Dealer

BBC COMPUTERS

Model B
Model B
M
bBC micho oisc drives

All Kits are suplion K

BBC CONNECTORS

75451
75452 211
2708
-271
-271
271
253
2732
273
276
4116
411
411
55
-61
61
15
41
10．80－ 0.80
2.95
2.45
4.95
7.55
3.45
3.45
5.45
5.99
0.85
0.80
3.25
9.45
3.30
4.95
4.45
3.95
4.45
2.25
2.95

6800 FAMILY

6800	$D 7$
6802	$D 5$
6809	$D 6$
6810	$D 1$
6821	$D 3$
6840	$D 4$
6845	$D 5$
6850	$D 2$
68488	$D 2$
68800	$D 7$
68809	$D 6$
68810	$D 1$
68821	$D 3$
68840	$D 4$
68850	$D 2$

$Z 80$ ACPU D2

780 BCPU D2 $\begin{array}{lll}\text { Z80ACTC } & \text { D1 } & 2.60 \\ \text { Z80BCTC } & \text { D1 } & 9.0\end{array}$ $\begin{array}{lll}\text { Z80ADART } & D 1 & 5.50 \\ \text { ZB0ADMA } & \text { D2 } & 6.85\end{array}$ \begin{tabular}{lll}
280 AP10 \& D1 \& 2.75

\hline

Z80AS10 \& D4 \& 9.00

\hline
\end{tabular}

${ }_{8085 A}^{\text {8080FAMII }}$

8212 8216 8224

8251 A 8253

g500EAM

6500FAMII

$\begin{array}{lll}6502 & \text { D3 } & 3.25 \\ 6502 \mathrm{~A} & \mathrm{D} & \mathbf{5} 50\end{array}$
$\begin{array}{lll}6520 & D 1 & 2.50 \\ 6520 \mathrm{~A} & D 1 & 3.16 \\ 6522 & D 5 & 3.19\end{array}$
$6522 \mathrm{~A} \quad \mathrm{D} 53.19$
FLOPPY OISC
CONTROLLERS
$\begin{array}{ll}\text { FD1771 } & 0.56 .00 \\ \text { 15．00 }\end{array}$
$\begin{array}{ll}\text { FD1791 } & \text { D6 22．00 } \\ \text { FD1793 } & D 623.00\end{array}$
$\begin{array}{ll}\text { FD1795 } & D 628.00 \\ \text { FD1797 } & D 628.00\end{array}$
WD1691 D2 12.0
imterface oevices
$\begin{array}{ll}6402 & 3.8 \\ 75107 & 0.47 \\ 75110 & 0.54\end{array}$
7511
7515
7515
751
7516
75162
75172
751
751
751
751
751
75
75

3.50 1.10

安安安 3.272.50 2.25 3.25
500

TL0

	 崖䢒춧웃		
\rightarrow 的w $480^{\circ} \mathrm{c}$	MANTOOOOOOOOO 	000ーーローロロー00－00－0000000000000000－000t0 	000000000 8889영ㅇㅇㅇㅇㅇㅇㅇ

193	0.35
$194 A$	0.35
$195 A$	0.35
196	0.45
197	0.45
221	0.46
240	0.55
241	0.55
242	0.55
243	0.55
244	0.55
245	0.70
248	0.55
249	0.55
251	0.30
253	0.35
$257 A$	0.30
$258 A$	0.35
259	0.55
261	1.00
266	0.20
273	0.54
279	0.30
283	0.40
290	0.39
293	0.39
365	0.27
366	0.27
367	0.27
368	0.27
373	0.62
374	0.62
375	0.35
377	0.60
378	0.80
379	0.90
386	0.35
390	0.45
393	0.45
011	

14 PIN 1.851 .982 .42
16 PIN 2.052 .152 .68 24 PIN 3.003 .153 .96
40 PIN 4.654 .906 .18

25 WAY Q－TYP
CONHECTORS
$\begin{array}{ll}\text { Male－Male } \\ 36^{\circ} \text { catble } & 12.00\end{array}$ $\begin{array}{ll}\begin{array}{l}\text { Male－Female } \\ 36^{\prime \prime} \text { cable }\end{array} & 12.00\end{array}$ Male single ended
$18^{\prime \prime}$ cable 4.95 Female single ended
$18^{\prime \prime}$ cable $\quad 3.95$ IOC COMNECTORS Shrouded Header
（whth efoctors） （RIght Angle
PCB mtg ）
 data books by Texas Instrumbents Linear Contro
Circuits Voltage Regulators 4.50 MOS Memory Intertace Circuits 7.00 TIL 5ith Edition Bipolar Micro
Til Pocket Guic Min Pocket Guide 3.50

CARRIAGE Orders un to $£ 199$ sent by 1 st class post and $£ 200+$ by Securicar． CHARGES $0-£ 100=£ 0.50, \varepsilon 100-199=\varepsilon 1.25, \varepsilon 200+=\varepsilon 5.00$ PRICES All prices and carriage charges quited are exclusive of VAT and are subject to change without notice．
QUANTITY DISCOUNTS Available on most products．Please tele phone for details．
OFFICIAL ORDERS are welcome from Educational Establishments Government Bodies and Public Companies．

CREDIT ACCOUNTS Are available subiect to status．Payment strictly nett 30 days．

CREDIT CARDS Payment by credit cards is accepted on most products with no surcharge．
OUT OF STOCK Items out of stock will follow with £0．45 Carriage charge at our discretion，or a refund will be issued if requested． OELIVERY All stock orders received up to 3．30pm are despatched the same day．

OOMDNHFR WARH:OUST
 THN'ALADDIN'S CAVE OF COMPUYER AND FLTCTRONIC EQUIPMENT

HARD DISK DRIVES

disk drive for DEC RKO5, NOVA, TEXAS e
Front load $£ 550.00$ - Top load $£ 295.00$
PSU type ME3029 for 2 drives $£ 125.00$
DRE $44 \mathrm{~A} 4000 \mathrm{AB} 10 \mathrm{mb} 5+5$ all configurations from 2e9s.0. Cal sales

5 AMP MAINS FILTERS

Cure those unnerving hang ups a nd data glitches
caused by mains interference. Matchbox size-Up to 5 amp 240 v load. As recommended by the ZX81 new letter. Suppression Devices SD5A £5.95.

DISIMETC

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your compute and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive
DON'T MISS THOSE BARGAINS
CALL NOW, IT'S FREE! $01-6831133$ wear way har

COMPUTER 'CAB'

Abstract

cabinet with integral switched mode.PSU. Mains filtering, and twin fan cooling Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver massive $+5 v D C$ at 17 amps. $+15 v D C$ at 1 amp and massive $+5 v \mathrm{DC}$ at $17 \mathrm{amps}+15 \mathrm{v}$ DC at 1 amp and DC at 5 amps. The complete unit is fully enclosed removable top lid, filtering, trip switch, 'Power' and 'Run' EDs mounted on front panel, rear cable entries. etc etc. Units are in good but used condition - supplied for 240 operation complete with full circuit and tech man Give your system that professional finish for only 49.95 + Carr. Dim. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5" high Useable area 16

COOLTIG FANB
Keep your hol partsCOOL Lad REELABLE with our rane
col
coling fans
CTRI S9XUOI Dim. $92 \times 92 \times 25 \mathrm{~mm}$ Miniature 240 v equipment fan complete with GOULB JB-3AR Din
very quiet running 240 ソ operation. NEW $£ 8.95$ BUHLER 69.11.22. 8-16 V DC micro miniature reversible fan Uses a brushle servo motor for exiremely high air flow, easures only $62 \times 62 \times 22 \mathrm{~mm}$. E12.95 complete with data.
fan supplied tested EX EQUIPMENT 240 y ${ }^{\prime \prime}$ 66.25 or $110 \vee$ at $£ 4.95$ or BRAND NEW 240 v at £10.50. 1000's of other fans Ex Stock

8" FLOPPY DISK DRNES

Unbelievable value the DRE $71008^{\prime \prime}$ floppy disk drive utilise the finest technology to give you 100% bus difference being our PRICE and the superb manufacturing quality! The 7100 single sided and 7200 double sided drive accept hard or soft sectoring IBM or ANSI standard rmats giving a massive $0.8 \mathrm{MB}(7100) 1.6 \mathrm{MB}(7200)$ of storage. Absolutel manual and full 90 day warranty. Carriage and insurance 99.75 .
$\mathbf{7 1 0 0}$ Single sided $\mathbf{£ 2 5 . 0 0}+$ Carr. $\mathbf{7 2 0 0}$ Double sided $\mathbf{£ 2 9 5}+\mathrm{C}$
Optional accessories: Full technical manual £20.00 alone. $£ 10.50$ with drive. Refund of difference on drive purchase. DC and AC power connector and cable kit $£ 8.45$. 50
way IDC connector $£ 5.50$. 50 way ribbon cable $£ 3.20$ per metre.

SUPER DEAL? NO - SUPER STEAL!!

 The FABULOUS 25CPS TEC StarwriterDaisy wheel printer at a fraction of its original cost. BRAND ${ }^{2} E W$ AT ONLYE499, VAT Made to the very highest
spec the TEC Starwiter
FP1500-25 featues heavy duty die cast chassis and DIABLO ty print mechanism giving superb registration and processor electronic offer full DIABLO/QUM command compatability and full control via CPM Wordstar etc printing, switchable 10 or 12 pitch, full width 381 mm paper handling with upto internal buffer standine, friction feed rollers for single sheet or continuous pape Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy whee and dust cover. Order NOW or contact sales oftice for more information
Optional extras: RS232 data cable $£ 10.00$. Tech manual $£ 7.50$. Tractor feed
£120.00. Spare daisy wheel $£ 3.00$. Carriage \& Ins. (UK Mainland $£ 10.00$

IBTHTYPS ASBSB I/O THBMMTATS

FROM £195 + CAR + VA

ully fledged industry standard ASÁ33 data keyboard and printer for data I/O ASCII detect circuitry. RS232 serial interface 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in ptions: Floor stand $\mathbf{1 2} 50$ VAT KSR33 with 20 ma loop interface $£ \mathbf{1 2 5 . 0 0}+$ Sound proof enclosure $£ \mathbf{\Sigma 5 . 0 0}+$ VAT

SOFTY 2

DATA MODEMS

Join the communications revolution with our most stringent spec and designed to operate or 24 hrs per day. Units are made to the CCITT tone spec. With RS232 i/o levels via and working condtion with sold Pa tested and working condion with data Permisslon MODEM 13A MODEM 13A compact async, same size as telephone base. Up to 300 baud, full duplex MODEM 2B/C Full Hedged up to 300 ba MODEM 2B/C Fully fledged, up to 300 baud auto switching ideal networks etc Just 2 wire connection to comms line $\mathbf{£ 8 5 , 0 0}$ MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 beud Pransmit-1200 baud receive Auto answer $\mathbf{8} 130.00$
MODEM 20-2 same as $20-1$ but 75 baud receive 1200 baud transmit. £1 30.00 MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circ Carriage. 13A \&4.50. 2 E/C \& 20 £ 9.50 . DATA PUMP MODEM compact unit upt duplex over 2 wires. BELL specification with data i/o via RS232 25 way D socket, remote
test etc. 240 voperation. Supplied complete test etc. $240 v$ operation. Sup
with data $£ 65.00$ carr. $£ 4.50$.

D.C. POWER SUPPLY SPECIAIS

Experimentor $+12 v @ 800 \mathrm{ma} .-12 \mathrm{v} @ 800 \mathrm{ma} .+24 \mathrm{v} @ 350 \mathrm{ma}, 5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim $160 \times 120 \mathrm{x}$ equipment, but untested. Complete with circuit proof. Removed from working E14.50 CUSTOMP2.50 po
CUSTOM POWERCO55 5v@3amp. Very compact unitdim. approx $60 \times 90 \times 190 \mathrm{~mm}$ Sill.95 + FARNEL Dp £ 1.25 ARNELL 5 Volt 40 amps . Type number G6-40A this miniature switching psu smoothed with over voltage protection etc 120 or 240 volts $A C$ input Supplied RAND NEW and boxed with circuit and fixing screws at a fraction of the current list PERIPHERAL $00+23.00$ carr. 8 ins. EAIPHERAL SYSTEM SUPPLY, Fully cased unit supplied in a Brand new or little used condition. Outputs give $5 \mathrm{v} @ 11 \mathrm{amps}$ " + " $15 \cdot 17 \mathrm{v} @ 8$ amps, " $-115 \cdot 17 \mathrm{v} @ 8$ amps Supplied tested with circuit $\mathbf{5 5} .00+£ 8.50$ car MAIN FRAME SUPPLY. A real beety unit designed for MINI or MAINFRAME use outputs give 5 voits @ 50 amps. $+12 v @ 5$ amps. $-12 v @ 10$ amps. Al output are fully and tested Ex-Equip. 110 v AC input. Only $\& \$ 9.95+$

66\% DISCOUNT

ELECTRONIC COMPONENTS \& EQUIPMENT

the enables us to bring you the dest possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's. P.C.B.'s have sufficient stocks of any one item to include in our ads, we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always $2.5 \mathrm{kls} \varepsilon 4.25+p p E 1.25$

5kls E5. 90 + pp E1.80
10kls £10.25 + pp £2.25 20kls£17.50 + pp $£ 4.75$

RBCHARGEABLE BATTERIES maintenance free $2 v 25$ se will dead acio 300 amps
only $\mathbf{~} 2.95$

VIDEO MONITORS

$12^{\prime \prime}$ CASED. Made by the British KGM display station attractive brushed aluminium case with ON OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much
attention was given to construction and attention was given to construction and
reliability of this unit with features such reliability of this unit with features such a
internal transformer isolated regulated D internal transformer isolated regulated
supply, all components mounted on two supply, atl components mounted on two
fibre glass PCB boards - which hinge out f fibre glass PCB boards - which hinge out for
ease of service, many internal controls for ease of service, many internal controls for
linearity etc. The monitor accepts standard linearity etc. The monitor accepts standard
75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the un is estimated around 20 Mhz and will display most high def graphics and 132×24 lines. Units are secondhand and may have scree burns. However where burns exist they are only apparent when monitor is switched of. Although unguaranteed all monitors a tested prior to despatch Dimensions
approx. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ deep approx. 14 high $\times 14$ wide by 11 deep operation. ONOY E45.00 PLUSES.50 CARR 24" CASED. Again made by the KGM Co Originalty used for large screen data display. Very compact unit in lightweight alloy case dim. $19^{\prime \prime} \mathrm{H} \times 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$. Al
silicon electronics and composite video input make an ideal unit for schools, clubs shops etc. Supplied in a used but working condition
OMLYE55.00 PLUSE9.50 CARR. \& INS
14" COLOUR superb chassis monitor ma are TTL RGB with separate sync and will plug direct into the BBC micro etc. Exceptional bandwidth with good 80 co definition. Brand new and guaranteed.
Complete with full data \& circuit. 240 v $A C$ worry. Dim. $14 \times 13 \times 13$

SFMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value content

include transistors, digital, linear, I.C.'s triac diodes, bridge recs., etc. etc. All devices guaranteed brand new full spec. with facturer's markings, fu
$50+£ 2.95100+£ 5,15$.
$50+£ 2.95100+£ 5.15$
TLL 74 Series A gigantic purchase of an
"across the board" range of 74 TL series
C's enables us to offer $100+$ mixed
or three chips in the bag would nnormally
cost to buy. Fully guaranteed all I.C.'s full

OLIVETITI THESOO

REDUCED TO CLEAR

Complete input output terminal with integral operatesat 150 punch and reader. Unit. Idea as a cheap printer for a MICRO etc. 120 columns. Serial data i/o. Supplied complete with dato $\mathbf{5} 5.00$

ALL PRICES PLUS VAT

LABORATORIES ONACHIP

Silicon is turning out to have more uses than just a conventional chip material. It can be chemically machined to form a wide variety of structures, perhaps even miniature laboratories with built-in computers. Stephen McClelland explains.

What could be a new era of Lilliputian engineering is quietly unfolding thanks to a different kind of silicon chip development. Now, microscopic mechanical structures, some less than the thickness of a human hair, can be fabricated in silicon just like standard transistors and integrated circuits.

Silicon has been used for some time to create pressure and strain gauges but present techniques 'can produce nozzles, valves and sensors of all types. The manufacture of complex 3D mechanics in silicon is now being contemplated. Researchers at Stanford University, California - who dub these operations 'micromachining' - have even been able to place most of a gas chromatograph on a flat silicon wafer 5 cm in diameter. This sort of result indicates that complete electromechanical and electronic systems can be made in silicon less expensively and yet more accurately than conventional techniques would allow. The processing methods so well established in the integrated circuit industry will be capable of producing simultaneously large numbers of components in a silicon wafer with a consequent cost reduction.

All this is possible because of continuous improvement of silicon integrated circuit technology, particularly in the area of pattern definition and photolithography (the generation and transfer of a small enough mechanical pattern onto the silicon to be machined) and etching (the chemical dissolution of selected areas of silicon).

Photolithography And Etching

Photolithography has been propelled forward because of demands made by high density electronic chips which are approaching VLSI (Very Large Scale Integration) complexity. At the moment it is possible to design patterns, 200 x or $500 x$ larger than life, which will eventually produce a minimum feature size of 2 or $3 \mu \mathrm{~m}$ quite routinely. Next generation equipment will allow such features to be cut less than $1 \mu \mathrm{~m}$, making it possible to fabricate, easily, novel optical components such as diffraction gratings in silicon. But the key to micromachining has been the variety of etching techniques that carve detail on the silicon surface.

Some (isotropic) etchants merely dissolve silicon at equal rates in all directions, but some show anisotropic behaviour; that is, they preferentially etch only certain crystal planes of silicon. By etching faster in certain directions than others - and the relative difference in speed can be two orders of magnitude - predictable threedimensional shapes can be cut.

What is cut depends on both the etchant used and the crystallographic orientation of silicon used. We describe
the crystallography of silicon numerically using Miller indices, which essentially state the orientation of a plane of a silicon atomic lattice by defining its intercepts with a hypothetical set of axes (Fig. 1). From the micromachining point of view the most important planes are the (100), (110) and (111) in the (cubic) silicon lattice. Etchants like potassium hydroxide or an ethylene diamine/pyrocatechol mixture essentially migrate much faster in the (100) direction than they do in the (111) direction because the packing density of silicon atoms is much lower in the 100 direction. The result when etching is that a V-shaped notch is formed in a (100) slice where the sides of the ' V ' are the slower-etching (111) planes.

But the groove can be very accurately reproduced and its sidewalls will always make an angle of 54.74° with the surface of the silicon. Moreover the depth of the groove is directly related to the width of the surface opening etched, since etching effectively stops at the (111) planes which intersect the sides of the opening. Wafers are typically of the order of a few tenths of a millimetre thick and so it takes a few hours to etch a deep groove, or, if the surface detail is wide enough, a nozzle-shaped hole right through the slice.

Nozzles, Valves And Beams

Dr. Ernest Bassous' group at IBM has patented a variety of nozzle structures, based essentially on this technique, which are intended for projecting very fine ink sprays in high resolution printers. Although accurate dimensioning can be achieved by simply etching right through the silicon as described above, Bassous has found that better

Fig. 1 The three basic index planes of silicon.

Fig. 2 The smallest nozzle in the world? IBM Research Labs made this silicon nozzle.
nozzles can be made by employing the natural resistance to etching of heavily-doped P-type silicon. A thin layer of this is formed at the back of the wafer, uniform except where orifices are required. The wafer is then etched anisotropically from its upper surface. Etching is terminated only by the thin P-barrier but punctures the slice completely in its unprotected regions. After cleaning and silicon dioxide regrowth the final structure is shown in Fig. 2. It has an orifice typically less than $20 \mu \mathrm{~m}$ wide set in a membrane only $3 \mu \mathrm{~m}$ thick.

Another IBM researcher, Kurt Petersen, takes membrane manufacture further. He allows the etch to deliberately undercut the overlying silicon dioxide layer and so produces an ultra-thin, springy, 'diving board' structure made entirely of oxide. The 1 mm thick membranes can be easily - but not irreversibly - bent by an electric field and $\downarrow, B M$ has used them as electronically controlled scanning mirrors to reflect illuminated data from a single character generator on to a ground glass screen for display purposes. IBM also foresees applications for them in high-isolation electromechanical switches.

A flexible structure is also the basis of Dr Lynn Roylance's miniature accelerometer to study heart wall motion. In the Stanford laboratories she made a $3 \times 2 \times 0.6$ mm cantilevered beam unit entirely from etched silicon. The beam bends in response to applied acceleration with considerable sensitivity - it can detect an acceleration from $0,01 \mathrm{~g}$ to 50 g , with a 1% accuracy. The actual detecting elements for this kind of transducer are usually of a piezorestive variety. This means that the resistance of a diffused element (usually p-type) changes when it is mechanically stressed. However, these resistive elements are usually quite sensitive to temperature changes, which is why they usually take the form of a Wheatstone Bridge circuit.

Engine-eering

Silicon transducers, if they're small and light enough, can find their way into a whole spectrum of applications. They have been mounted on heart walls, on turbine components in aircraft and may well be shot into space on planetary probes. But most engineers belive that the traditional benefits of silicon processing (ie mass-produced, low cost, high precision techniques) will only really show when micromachining is adopted by a mass-production industry.

The US car industry could be just such a sponsor. Silicon sensors have been edging their way onto the Detroit production lines in a drive for higher fuel efficiency through better monitoring techniques in automobiles, although not as widely as predicted. William Wolber, a Michigan sensor specialist, describes the place of silicon components in the automobile industry as a useful addition' but warns that improvements in processing will continually be required if silicon is to be competitive. At present, the US industry wants to monitor a variety of

MICROMACHINING SILICON

Standard silicon processing techniques basically involve one or more repeats of an oxidation-etch-diffusion cycle, outlined below: - Oxidation - A layer of silicon dioxide is grown on the silicon wafer by heating it in an oxygen stream. This layer will act as the pattern definition layer for the rest of the process (a).

- Etching - The wafer is now coated with photoresist (a lightsensitive compound) which is exposed to light via a master negative glass plate on which are detailed the features to be machined (b). Unexposed parts of the resist (underlying the negative) are then easily rinsed off, but the exposed, hardened resist remains. This serves to protect the underlying oxide from dissolution when the wafer is treated with hydrofluoric acid. Unprotected oxide is dissolved off leaving bare silicon (\mathbf{c}, d).

If the wafer is now treated with an etching solution that dissolves silicon but not oxide, the silicon will be eaten away beneath the oxide window exclusively (e). If the etchant is isotropic the rate of etching will be the same in all directions. If the etchant is anisotropic it will etch in a preferential direction, eg potassium hydroxide solution will produce a V-groove in (100) orientated silicon and a vertical walled profile in the (110) direction (f).

For many devices, the process ends here or is cycled through again after a complete re-oxidation of silicon, depending on the profiles required. For more complicated structures (eg Dr. Bassous' membrane-nozzle described in the article) and to make electronic devices such as integrated circuits, gaseous impurities (eg boron compounds) are carefully allowed to diffuse into the silicon, through oxide windows like those made previously.

After the micromachining has been fully performed, the silicon wafer is split into individual silicon chips each containing a copy of the micromachined device.

Cross-section of silicon wafer, or slice, showing the procedure for cutting a simple nozzle through the wafer. Dimensions are not to scale.

variables in the engine including air and coolant temperatures and fuel metering. The latter is derived from the determination of the manifold absolute pressure by silicon strain gauge techniques.

Chromatography On A Wafer

Perhaps the most spectacular development to date, however, has been the fabrication of a gas chromatograph system on a single silicon wafer, by Dr Stephen Terry and his colleagues at Stanford. Gas chromatography, the separation of a mixed sample gas back into its components, can be broken down into three separate stages: - sample injection from the outside world

- sample separation in a long thin column
- detection and quantity measurement of each individual component.

The sample gas is injected into the system mixed with a carrier gas, typically nitrogen. Separation occurs in the column and is determined by the relative migration rates of each component in the sample. These in turn, are influenced by both the carrier gas velocity and the relative adsorption/desorption parameters of the components, in a so-called stationary phase, a substance which lines the walls of the column. With a sufficiently long column, the individual components emerge as separate entities ready to be detected by a suitable transducer.

The Stanford instrument cleverly reduces the largescale complexity required for such an instrument with micromachining. In particular, the separator column (which has to be long to achieve good separation) is coiled into a spiral groove 1.5 m long but only $200 \mu \mathrm{~m}$ by $30 \mu \mathrm{~m}$ in cross-section. It is sealed after etching with a Pyrex cover slip to make a closed capillary column. Once again, the etching is patterned through a grown silicon dioxide overcoat to define the spiral.

The components are detected by a simple, yet very effective, thermal conductivity sensor. This is essentially a nickel film resistor heated by an electric current. The temperature it actually reaches for a constant current depends on the thermal conductivity of the gas stream passing through the device.

The results of the chromatograph are impressive, especially when compared to larger laboratory instruments. It has been used so far to analyse hydrocarbon mixtures and does this very efficiently with a fast time constant - which means that sample peaks can be as short as one tenth of a second compared with the width of several seconds realized by standard laboratory instruments. This in turn means the instrument can provide better resolution of the sample.

Material Benefits

But, of course, one need not be restricted to silicon for micromachining. With slight modification, other materials can be used as long as they are compatible in basic ways with the planar process for making chips. With a little imagination, the number of applications can match the number of different materials. And some are highly exotic. The gas chromatograph discussed above, for example, has been suggested for planetary probes and what are essentially entire chip-based 'laboratories' are now being actively researched. In the space of a few millimetres, such a chip could collect, treat and analyse a sample, even to the extent of heating or micro-refrigerating it through use of the Peltier effects. For ambitious experiments on space probes, the above could be combined with gas detectors, magnetic and electric field detectors and pressure and temperature detectors, all in silicon with the advantage of suitable signal processing electronics fabricated simultaneously.

C- F- Fиестволи MUSIC

MICROSYNTH

THREE PIECE BACKING BAND Generates the sounds of three instrumentalists to back Soloists
DRUMS + BASS + KEYBOARDS Over 3,000 chord changes (60 scores) on 132 dif ferent chords-extendable to 200 scores. Master Rhythm also rexuired
FULL KIT £235 EXTENSION $£ 72$

88/72 NOTE PIANOS SPECIALISTS SINCE 1972 Using Patented biectronct tion ol P Pano Key ineriac

COMPONENT KITS including Keyboard
88 NOTE
72 NOTE
E266
N234 72 NOTE ${ }^{7}$ The above may also
chased in four parts. chased in four parts.
DOMESTIC KITS

STAGE MODEL

inc. Cabinet \& Stand
NOTE
E38

MASTER RHYTHM PROGRAMMABLE DRUMS Twenty-Four Rhythm programmable Drum Machine with twelve instruments. Eight sections are extended to $24 / 32$ measures for two bar programming. Sequence operation and instrument tone adjust. COMPLETE KIT
STRING ENSEMBLE E197.50 ROTOR-CHORMS 197.50
$\varepsilon 98.00$ SOUARE FRONT KEYBOAROS $\begin{array}{lll}88 \text { NOTE } \\ 73 \text { NOTE } & \text { £50 } & 49 \text { NOTE } \\ \text { N }\end{array}$ KEYSWITCH ITEMS ALSO AVAIL. ABLE

01-452 1500

WORD PROCESSOR 'VIEW' 16K ROM £52

TELETEXT ADAPTOR £195.00

BBC Model B $£ 399$ including VAT plus $£ 8$ carr. Model A to Model B Fitting charge $£ 15$ Individual upgrades also available

PRESTEL ADAPTOR £90.00
2nd PROCESSOR 6502 £170 2nd PROCESSOR Z80 £290

FLOPPY DISC INTERFACE
Incl. 1.2 operating system
$\mathbf{£ 9 5}+\mathbf{£} \mathbf{2 0}$ installation

Phone or send for our BBC leaflet

 BBC FLOPPY DISC DRIVESSingle drive $5 \frac{1}{4}$ " $100 \mathrm{~K} \mathbf{£ 2 3 5}+\mathfrak{£ 6}$ carr. Dual drive $51 / 4 " 800 \mathrm{~K} £ 799+$ £8 carr. BBC COMPATIBLE DRIVES
These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £360; 400K £490; 800K £610 Drive Cables: Single £8 Dual£12

$\because B \longdiv { B }$ DEALER
 OFFICIAL BEO DEALER

ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK

CASSETTE RECORDER

BBC Compatible Cassette Recorder with Counter and Remote Control $£ 26.50+£ 1.50$ carr. Cassette Leads $£ 3.50$ Computer Grade Cassette £0.50p each £4.50 for $10+£ 1$ carr.

MONITORS

MICROVITEC 1431 14" Colour Monitor............ $£ 249+£ 8$ carr.
 KAGA 12 " RGB Monitor.
$\mathbf{£ 2 5 5 + £ 8 \text { carr. } . ~}$
Lead for KAGA RGB . £10
SANYO 12" Hi Res Green Monitor.

ACORN ATOM

Basic Built $£ 135$ Expanded $£ 175$ (carr $£ 3$ per unit) Atom Disc Pack ${ }^{[299}+\mathrm{f}^{2}$ carr 3A 5V Regulated PSU $£ 26+\mp 2$ carr. Phone or send for our BBC Atom list.

NEC PC 8023 BE-C
Features include:
80 cols 100 CPS
80 cols 100 CPS ,
Bi-Directional, Logic
Proportional Spacing
Proportional Spacing,
Forward $\&$ Reverse Line
Forward
Feed, Hi-Res and Block
Graphics, International
and Greek characters,
Auto-Underline, Super \& Sub Scripts, Friction \& Tractor, 2K Buffer, Cartridge Ribbon
$£ 345+£ 8$ carr.

PRINTERS

SEIKOSHA GP 100A
80 Cols 30 CPS
Full ASCII e GRAPHICS $10^{\prime \prime}$ Wide paper Now only $£ 180+$ £6 carr. Ask for details on GP 250A
Parallel Printer lead for BBC/Atom to most printers $\mathbf{f 1 3 . 5 0}$ 2,000 fan foridy of interfaces, ribbons in stock $91_{1 \prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$

EPSON RX80 and FX80 RX80 100CPS 80 Col Tractor Feed FX80 160CPS 80 Col F\& T Feed Logic seeking, Bidirectional, Bit image
printing, 9×9 Matrix, printing, 9×9 Matrix.
Auto Underline, CenAuto Underline, cen-
tronix 8 , Bit Parallal Interlace as standard RX80 £298
FX80 £438 (E 8 carr/printer)

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calender receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided. See July/August ETI for details. Complete Kit £145+£2.00 p\&p

MICROTIMER

6502 Based Programmeable clock timer with

* 224 switching times/week cycle
- 24 hour 7 day timer
* 4 independent switch outputs directly interfacing to thyristor/triacs
* 6 digit 7 seg. displays to indicate real time. ON/OFF and Reset times
* Outpur to drive day of week switch and status LEDS. Full detais on request. Price for kit $£ 57.00$

I.D. CONNECTORS (Speedblock Type) No of Header Recap. Edge		CONNECTOR SYSTEMS			RIBBON CABLE (Grey)			
		JUMP LEADS aln Ribbon Cable with headers 14 pin 16 pin 24 pin 40 pin	AMPHENOL CONNECTORS					
		36 way Solder Type Plug (centronix type) 550p	10 way	60 p				
ways P	lug tacle Conn		lend 145 p 165 p 240 p 300 p	36 way Solder Socket		14 way	80 p	
10	90p $\quad 90 \mathrm{p} \quad 200 \mathrm{p}$	2 ends $\quad 210 \mathrm{p} 230 \mathrm{p} 345 \mathrm{p} 540 \mathrm{p}$	(centronix type) 550p		16 way	90p		
20	145p 125p 240p		36 way IDC Plug		20 way	105p		
26	175 p 150p 300p	24in Ribbon Cable with sockets 20 pin 26 pin 34 pln 40 pin	36 (centronix type)	500p	26 way	140p		
34	$2000{ }^{2600} 3800 \mathrm{p}$	1 end 160 p 210 p 270 p 300 p	24 way Solder Plug		34 way	220 p		
49	220p 190 p 550p	2 ends 290 p 385 p 490 p 540 p	(IEEE type)	500p	40 way	2650		
	2350 200p 600p	24in RIbbon Cable with D. Conn 25 way Male 500p Female 550p	24 way Solder Socket 24 way IDC Plug	$\begin{aligned} & 500 p \\ & 485 p \end{aligned}$	50 way	330 p 370 p		
					64 way	370p		
D-CONNECTORS				$\begin{gathered} \text { EDGE } \\ \text { CONNECTORS } \end{gathered}$				
		RS232 CONNS (25 way D) $24^{\prime \prime}$ Single end Male $£ 5.50$ $24^{\prime \prime}$ Single end Female $£ 6.00$	CONNECTORS					
		$24^{\prime \prime}$ Single end Female $£ 6.00$ $24^{\prime \prime}$ Feniale-Femaie $£ 11.00$	(Indirect Edge Conn)			In 0.1566 in		
9 way	15 way 25	$24^{\prime \prime}$ Male Male $\mathbf{£ 1 0 . 0 0}$ $24^{\prime \prime}$ Male-Fernale £ 11.50	Oin Sto Plug Ski			- 1400		
	90p 130p 160p 250p		4161721 way 170 p 170p	2×18 way2×22 way		200p 170p		
Angled	160p 230p 265p 425p	DIL HEADERS	$\begin{array}{ll}4161731 \text { way } & \text { 180p 180p } \\ 416122 \times 32 \text { way } & \text { 250p 320p }\end{array}$	2×23 way		210p -		
	FEMALE	older IDC type type		2×25 way		2250 220p		
Solder	110p 160p 210p 350p		Angled $2 \times 32 \mathrm{wgy}$ 325p 375p	1×43 way		260p -		
Angled	1750 240 p 310p 500 p		416123×32 way 275 p 380 p	2×43 way		395p		
Mood	95p 95p 95p 125p	$\begin{array}{lll}16 \mathrm{pin} & \\ 16 \text { pin } & 50 \mathrm{p} & 110 \mathrm{p}\end{array}$	Angled 3×32 way 400 p 2×32 way zidca $+c$ 525 p	$2 \times 50 \text { way }$				
		24 pin 100 p 150p		1×77 way				
		40pin $\quad 200 \mathrm{p} \quad 225 \mathrm{p}$	(for 2×32 way spectity $a+b$ or $a+c$)	S100 Cor		- 600p		

MICRODOCTOR

This is not a logic analyser or an oscilliscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0$ - it will print memory map, search for code, check datatine shorts and operates peripherals Microdoctor
complete with PSU,
Printer, probe cable and two configuration boards. £295.

instruments set the pace

TV \& FM Test

- Colour Bar Pattern Generators
- Sweep and Marker Generator
- CRT Tester
- Field Level Checker
- Signal Level Meter
- High Voltage Metered Probe
- Signal Generators

Audio Test

- Generators
- Attenuators
- System Analyser
- Audio Tester
- Distortion Meter
- Equaliser Amp
- Wow and Flutter Meter
- Frequency Response Recorders
- Millivoltmeters
- Log Amplifier
- Speaker Analyser

When you select an instrument from the Leader range, you get more than just sound engineering. That's guaranteed - by rigorous quality assurance at manufacture, and a one year warranty. A broad range that covers most areas of test, measurement and calibration, with advanced features and high specification as standard. Prices that are lower than you'd expect are the bonus. Probes, covers, hoods and pouches are all available to enhance the application potential and ensure that Leader instruments set the pace for others to follow.

=-isthondor ELECT ONICSI MITTED

Oscilloscopes

- 4 to 50 mHz
- Single, Dual and Quad trace
- Delayed sweep
- Wide bandwidth
- High sensitivity
- High accuracy
- Battery operated

General Test

- LCR Bridge
- Semiconductor Curve Tracer
- Transistor

Testers

- Logic Probe

Power Supplies

- Laboratory bench type - 5 models - 500 mA to 5A - Overioad Protected

Thandar Electronics Ltd, London Road, St. Ives, Huntingdon,
Cambridgeshire PE17 4HJ England. Tel: (0480) 64646. Telex: 32250.

SWITCHED MODE POWER SUPPLY

> There's a lot of unnecessary mystique surrounding the design and construction of switched mode power supplies: here's one anybody can build. Design by International Rectifier.

The advantages in using a switched mode power supply instead of a linear power regulator are well-known (if you don't know them, turn to Configurations in the April ' 83 ETI). However, the simplicity with which a linear regulator may be designed makes this configuration the most popular solution for low power applications.

The availability of low cost switching components (switching regulator ICs, magnetic components and high frequency MOSFET switches) is increasing the tendency for design
engineers to choose switched mode PSUs in their equipment. The design presented here is the work of International Rectifier and shows how such a supply may be designed quite simply by using IR HexFETs with their following desirable properties:

- no secondary breakdown
- high input impedance
- fast switching speed
- no current hogging
- no minority storage time

The project is built on a single doublesided PCB with plated-through holes, which carries all the components except
the rectifying diodes and the auxiliary power supply for the controller IC.

Acknowledgements are due to Ing. Bernadi, Ing. Cavalleri and the technicians of the D.T. Application Laboratory of Telettra-Vimercate for their contributions to the design of this power supply.

System Description

This power supply uses a halfbridge configuration that can be made to operate from either 120 or 240 V AC (the half-bridge configuration was explained in more detail in the

Designer's Notebook feature on page 63 of the April ' 83 ETI).

The circuit uses two high voltage HexFETs to drive a transformer directly from the rectified mains at a frequency of 75 kHz . The transformer output is rectified and the output voltage is stabilised by changing the duty cycle of the switching waveform with a PWM inverter circuit. This function is performed by the SG3524 (IC1) and its external components.

The power supply for the control circuit (marked on the circuit diagram as the auxiliary voltage) is obtained from the mains using a $12 \mathrm{~V}, 3 \mathrm{~W}$ transformer and a bridge rectifier.

The HexFETs are 400 V devices in a TO-220 package and are driven by transfornmers so as to provide voltage isolation between the primary and secondary circuits - this is necessary because the controller IC is grounded at the load.

The power supply can be divided into four main sections:

- High power voltage stage
- Low voltage power stage
- Driving circuitry
- Control circuitry Each of these parts will be looked at separately. Figure 1 shows the complete circuit diagram of the switched mode power supply.

High Voltage Power Stage
The mains voltage is rectified by a bridge consisting of diodes D1-4 and is filtered by C3 and C4. C3, C4, and C5, together with the HexFETs Q1 and Q2 and the transformer T1 form the halfbridge inverter. The DC voltage across C3 and C4 is applied in alternate directions to the primary of T1 as Q1 and Q2 switch commutatively. The theoretical waveforms (both voltage and current) that appear across each HexFET are indicated in Fig. 2. The full DC voltage appears at the HexFET drain only when the MOSFET is completely cut off. A 400 V HexFET allows a 15% margin in voltage, giving a lower loss during the conduction time due to a lower on resistance.

The current flowing in the transformer primary is a square wave defined by:

$$
\mathrm{Ip}=\frac{\mathrm{IO}}{\mathrm{~N}}+\mathrm{I} \mu
$$

where lo is the output current, N the primary/secondary winding ratio and $I \mu$ the magnetising current. The working current for each HexFET at maximum loading is about 1 A so the choice of a device with a 400 Vbreakdown voltage and a current capability of 2 A is more than adequate. For this switched mode power supply the IRF722 HexFET is

Fig. 2 Theoretical waveforms.
used, which is supplied in a plastic package.

The transformer is constructed using a Siemens pot core. The number of turns on the primary winding is defined by:

$$
N P=\frac{V d c}{4 \mathrm{Bm} \cdot \mathrm{f} \cdot \mathrm{Ae}}
$$

where $V d c$ is the peak voltage across $C 3$ or $\mathrm{C} 4, \mathrm{f}$ the frequency of operation, Bm the peak operating flux density in webers/square meter amd Ae is the effective core area in square meters.

The number of turns on the secondary winding is determined by this equation-

$$
\frac{N s}{N p}=\frac{V s}{V p}
$$

where V s is the voltage on the secondary including all losses due to

Fig. 1 Circuit diagram.

Fig. 3 Internal circuitry of IC1, the controller IC.
diodes, inductor, the current-sensing resistor and the dead time (see later), and $V p$ is the voltage on the primary when the system is working at the minimum allowable mains voltage and including all losses due to capacitor ripple and the input circuitry.

Low Voltage Power Stage

The output voltage at the secondary of T1 is rectified by the high speed diodes D5 and D6 and filtered by an LC section (L1, C12). The inductor value, L, must be chosen higher than the critical value so that current circulation will be stopped, ie:

$$
L>L c=\frac{\text { Vo.Toff }}{2.10 . m i n}
$$

Vo and lo.min are, respectively, the output voltage and the minimum output current (500 mA in this design). The capacitor value is determined by the following equation:

$$
\mathrm{LC}=\frac{\mathrm{Vo}_{\mathrm{o}}}{\Delta \mathrm{Vo} .8 . \mathrm{f}^{2}(\eta-1)}
$$

where ΔV o is the desired variation in output and η is the ratio between the on and off switching times. To give an output with very low dynamic impedance, the value of C 12 is chosen several times higher than the calculated value.

The additional components R13, C9, C10 and C11 are included to damp high-frequency ripple.

Driving Circuitry

The HexFETs are driven by the two transformers T2 and T3. The primary of T2 or T3 loads a small switching
transistor Q3 or Q4, which is driven directly by the output of the controller IC. To clamp the over-voltage generated by T2 or T3 during the turn-off of Q3 or Q4, the zener diodes ZD5 and ZD6 are connected in parallel with the transistors on the secondaries of the transformers.

Two zeners are connected back-toback forming a clamp which limits any gate-to-source voltage spikes to $\pm 15 \mathrm{~V}$. The gate series resistors R3 and R4 damp any unacceptable oscillations.

Control Circuitry

The control circuitry consists of a switching regulator IC (an SG3524) and a few other components. The IC provides all the functions necessary to produce a stabilised DC output voltage with a limited DC output current by controlling the duty cycle of the switching power MOSFETs. The control circuitry may be broken down into the following functions:

- Oscillator
- Dead time
- Soft start
- Short circuit protection
- DC output voltage stabilisation.

Oscillator

The frequency of the oscillator is set by R27 and C18 at 150 kHz . Figure 4 shows the relationship between resistance, capacitance, and the oscillator period. The timing resistor R27 is connected to ground through R28, which is shunted by transistor Q6. This configuration allows the frequency to be halved by the automatic shortcircuit protection, as described later.

Dead Time

To avoid the simultaneous conduction of two HexFETs during the transition time, the IC generates a blanking pulse. The width of this dead time is controlled by the value of the timing resistor CT (C18) as shown in Fig. 5. To adjust this width an external circuit consisting of PR3 and D7 is added.

Fig. 4 Oscillator parameters.

Fig. 5 Setting the dead time.

The drain voltage waveform ($50 \mathrm{~V} / \mathrm{div}$ and $5 \mathrm{uS} / \mathrm{div}$).

The drain voltage turn-on waveform ($50 \mathrm{~V} / \mathrm{div}$ and $50 \mathrm{nS} / \mathrm{div}$).

Soft Start

A few components (C16, D8, D9 and R25) provide a low duty cycle initially so that at start-up, a high current flow into the HexFET and the consequent possibility of saturating the transformer core is avoided.

Short Circuit Protection

This operation is performed by sensing the current flowing in the load via R14. The voltage developed across the resistor is fed back into the current limit sense amplifier included in the IC. The current limit can be adjusted by means of the preset potentiometer PR1. R14 must be non-inductive to prevent any possiblity of instability.

To protect the switched mode power supply from a short circuit on the secondary, the circuitry built round Q5,6 and some other components is included. The function of this circuit is is to change the value of RT (by adding R28 to R27) and thus halving the frequency of operation. In fact R28 is normally shunted by Q6, but when the output voltage drops lower than 5 V Q6
is switched off. By halving the frequency, the conduction angle is increased to allow a better performance by the IC.

DC Output Stabilisation

The control circuit is grounded at the load and the voltage sense for the feedback is direct. Through PR2, R19 and R20, a fraction of the output voltage is fed back into the internal error amplifier of the IC. The error amplifier is working in the common mode configuration (Fig. 5) and the gain at open loop is equalised with the network R26 and C17 to compensate for roll-off due to the LC filter on the output.

It's inevitable when travelling a little off the beaten path of circuit design that components will be required which are not readily available. Such is the case for the switched mode power supply and consequently we are arranging for a supplier to stock-them. Prices and addresses will be included in next month's article, which deals with the construction of this project.

Signal at the collector of Q3, Q4.

To verify the correct functioning of the unit, check that this waveform is present at the gate of the HexFET.

Fig. 6 Error amp operation.

SPECIFICATIONS

- 24 hour normal despatch time - ESTABLISHED 1965 - all goods guaranteed brand new and TO SPECIFICATION - APPOINTED SIEMENS DISTRIBUTORS

DIGITAL \& ANALOGUE I.C. SECTION

COM
 \section*{${ }^{245}$}

74LS00
$74 \mathrm{LSO2}$ $74 \mathrm{LSO2}$
$74 \mathrm{LSO4}$
74 LS 05

BOXES

VEROBOX CASES

projec
ABS.

SEMICONDUCTORS

THE MEM MHO IMWENTED ME MERE
 CLEVER ENDUEH TO MAKE ME THINK
 IN "FRFTH
 CIT' 5
 10 TIMES FASTER
 FNB \& TIMES MDFE CRHFACT THFN
 "ERSIR"3.

VET THEY'RE DIHE ENDHEH TO SELL
ME FOR 玉s9.95!.

Richard Altwasser and Steven Vickers are the men who invented the Jupiter Ace.

After years of designing microcomputers that use BASIC (both men played a major role in creating the ZX Spectrum), they abandoned it in favour of FORTH.

FORTH is just as easy to learn as BASIC. Yet it's a faster, more compact and more structured language that educationalists and professional programmers alike prefer.

So the Jupiter Ace is the only micro-
computer you can buy that is designed around FORTH.

Using it, there's little fear of accidentally 'crashing' programs halfway through and having to start all over again (a common fault with BASIC). The Jupiter Ace's comprehensive error checking sees to that.

The Jupiter Ace has a full-size keyboard, high resolution graphics, sound, floating point arithmetic, a fast, reliable cassette interface, 3K of RAM and a full 12 month warranty.

You get all that for $£ 89.95$. Plus a mains adaptor, all the leads needed to connect most cassette recorders and T.V.'s, a software catalogue (35 cassettes available, soon to be 50), the Jupiter Ace manual and a free demonstration cassette of 5 programs

The Jupiter Ace manual is a complete introduction to personal computing and a simple-to-follow course in FORTH, from first principles to confident programming.

Plug-on 16 K and 48 K memory expansions are also available, at very competitive prices. (There'll be a plug-on printer interface available soon, too.)

It'|l take you no time at all to realise how clever Richard and Steven were to design the Jupiter Ace around FORTH. And even less time to realise what a silly price $£ 89.95$ is to charge for it.

Technical Information

Hardware
280A; 8K ROM; 3K RAM.

Keyboard

40 moving keys; auto repeat; Caps Lock

Screen

Memory mapped 32 col x 24 line flicker- free display upper and lower case ascii characters.

Graphics

High resolution 256×192 pixel user defined characters
Sound
Internal loudspeaker may be programmed for entire audio spectrum.

Cassette

Programs and data in compact dictionary format may be saved, verified, loaded and merged. All tape files are named. Running at 1500 baud.

Expansion Port

Contains D.C. power rails and full Z80 Address, data and confrol signals. Can connect extra memory peripherals.

Editor

Allows complete editing and listing of compiled programs.

Please send cheque/postal order to: Jupiter Cantab, 22 Foxhollow, Bar Hill, Cambridge CB3 8EP.

Jupiter ACE

Please send me_Jupiter Ace microcomputers @ $£ 89.95$ ($+£ 3.95$ p. \& p.) Tick here if you require VAT receipt \square

Name
Address

[^0]
BUYER'S GUIDE TO

We've been getting testy with test gear, and in particular DMMs. Here are specs on over 30, and info on more besides. You'll find

The price of DMMs has fallen so much that you can now buy a reasonable quality instrument for the same price as a relatively cheap moving coil multimeter. So why doesn't everybody use DMMs and put the moving coil meter manufacturers out of business? Firstly, the cheap end of the market is likely to be dominated by moving coil meters for some time to come because the market is too small (unlike that, for example, of watches) for economics of scale to reduce the prices drastically. Secondly, and to an extent following on from the first reason, most electronics engineers and hobbyists are more familiar with moving coil meters and so have a certain preference towards them. And finally, 'there are some occasions when a moving coil meter can be far more useful than a digital - for instance, when you're measuring a voltage that's varying by around 10% per second, when you'd find yourself completely bedazzled by the flicker of digits on a DMM. Most engineers prefer to have a choice of the meter

The Thandar TM 351

for the job, so don't throw away your old test meter just because you're going to buy a nice new DMM.

Multi-tudes Of Meters

In the table, we've listed all the test meters we were able to get information on, up to a maximum price of $£ 100$ (excluding VAT). Note that we have listed some meters as similar to those in the table. There were rather more meters than we bargained for, and we dread to think how many more leaflets will have arrived between our writing and your reading this! Some comments on the table will be helpful.

All the test meters in the table are $3 \frac{1}{2}$ digit types, ie the maximum scale reading is 1999.
You can obtain meters with more digits, but we did not come across any in the price range, though we did find some $4 \frac{1}{2}$-digit hand-held meters at just over $£ 100$. So, for example, a

[^1]200 mV voltage range on our meters will have a maximum reading of, in fact 199.9 mV , and will be, at best, able to distinguish (or resolve) voltages that are 0.1 mV different.

Accuracies

The accuracies quoted in the table are for guidance only. For two reasons we cannot quote exactly

TEST EQUIPMENT

information on the latest in other types of test gear on page 48 too. Next month, oscilloscopes.

comparable figures for different meters: different manufacturers quote their error specificaitons in different ways, though most use the method we have adopted of quoting a percentage of the reading plus a number of digits (some quote a percentage of full scale as well as or instead of the number of digits); and different ranges of the same quantity may have different errors. For example, Keithley quote an error of 1% plus 1 digit for the 2,20 and 200 mA DC ranges of the 130 , yet 2% plus 1 digit for the 2 A and 10A ranges. Also, some go further and quote different errors for different frequencies on the $A C$ ranges. So, given the space available we can do no more than give a very broad indication, and we strongly recommend that once you have narrowed down the field to those instruments you are most interested in, you should get full specs from the manufacturers or agents. You should also note that some meters have accuracy guarantees, ie, provided that the meter is used within specified temperature and humidity, and is not abused, then the meter should stay within the specifications for at least a year.

You should decide what accuracy you actually need. It isn't that often that it's necessary to measure quantities to 1%, in fact, for most purposes, 5% is perfectly adequate. However, what you might need to do is to distinguish between quantities that differ by, say, 1%, and this is a relatively straightforward task for virtually any DMM.

Note that for maximum DC and $A C$ voltage ranges, the maximum volts is always less than the maximum reading that the display is capable of. The maximum for $A C$ is specified as volts RMS, very often 700 V RMS, which will mean a peak voltage of 1000 V for a sinusoidal waveform.

Features

Most of the features are selfexplanatory, though you may be a little surprised that feature F, folds for protection, really does mean that the

DIGITAL MULTIMETERS

200 mV to $1000 \mathrm{~V}(5) \checkmark 0.8+1 \checkmark 200 \mathrm{~V}, 1000 \mathrm{~V}(2) \geq 1.2+10$
200 mV to 1000 V (5) $\quad 0.25+1 \quad 200 \mathrm{mV}$ to 750 V (5) $\quad 0.75+3$
2 V to 1000 V (4)

200 mV to $650 \mathrm{~V}(5) \quad 1.0+1$
200 mA to 650 V (5) $\quad 1.0+1$

200 mV to 1500 V (5) $\quad 0.25+1$
vo 1000 V (4) $\quad 1.0+1$
200nV 10 (000V (5) $こ 0.8+1$ 200 mV to 1000 V (5) $\quad 1.0+1$

200 mV to $1000 \mathrm{~V}(5) \quad 0.2+1$
200 mV to 1000 V (5) $\quad 0.25+1$ 200 mV to 1000 V (5) $1.35+1$

200 mV to 1000 V (5) $\quad 0.8+1$
200 mV to 1000 V (5) $\simeq 1.0+2$ 2 V to $1000 \mathrm{~V}(4) \quad 0.5+1$

200 mV to 1000 V (5) $\quad 0.5+1$
2 V to $500 \mathrm{~V}(4)$ - $2.0+5$ NS
200 mV to 1000 V (5) $\quad 0.75+5$ NS 2 V to $600 \mathrm{~V}(4) \quad 10+2 \quad 40$ to 500

200 mA (1)

OULA to $10 \mathrm{~A}(6) \smile 0.8+1-X$
OUA to $10 \mathrm{~A}(6) \approx$
\qquad 2 mA to $200 \mathrm{~mA}(3) \times$
$0.5+1$
$0.25+1$
$1.0+3$
$1.0+3$
$1.0+2$

meter folds in two down the centre. Meters with low power ohms ranges can be useful for measuring resistance values with the components still in circuit because the test voltage they apply is 0 V 5 or less, which is too low to turn on transistor or diode junctions. Not all manufac-

Keithley's 128 - the 135 has an extra digit.
turers specify the maximum test voltage that their meters will apply, so we may have missed some meters that apply less thant 0V5 on all resistance ranges (feature N).

Prices

Note that these do not include VAT. Before ordering, you should check the price with the suppliers it may be possible to get a better price than we've quoted by shopping around.

Similar Brands

These are brands that share a similar specification, with differences from the meter in the table as detailed below:
|AVO Vehicle Test 2002 ($£ 97.00$): limited basic ranges, but wide selection of special accessories specially for automotive testing;
BBC MA1D ($£ 54.00$): same ranges as MA2D (except no 10A current ranges), lower accuracy;
Beckman T100 ($£ 49.00$): same ranges as T110 (except no continuity buzzer), lower accuracy;

Elemic Digital 9 (£58.95): same ranges as Digital 10, lower accuracy; Digital 8 ($£ 52.50$): as Digital 9 but no 10A ranges;
Hansen HD30 (£36.48): as HD30B but no continuity buzzer;
HC6010 (£37), HC7030 (£47): as HC601, HC703 but with 10A ranges; Keithley 135 ($£ 225$): similar to 128 but with $4 \frac{1}{2}$ digits and higher accurancy;
Keithley 131 ($£ 139$): similar to 130 but with higher accuracy;
Lascar DP2010K ($£ 19.95$ special offer): kit version of DP2010;
Lascar LMM1001 (£79.95): as MM100 but with higher accuracy;
Sabtronics 2010A ($£ 71.00$): as 2015A but with LED display;
Thandar TM353 ($£ 75.00$): similar to TM351, but lower accuracy, no 10A range and rotary switch range selection;
Thandar TM355 ($£ 75.00$): similar to TM351, but lower accuracy and LED display.

Key to DMM Features
$A=$ accuracy guarantee
$B=$ single battery operation
$C=$ continuity beeper
$D=$ diode test facility
$F=$ folds for protection
$G=$ slider switch range/mode selection
$H=$ push-button range/mode selection
$K=$ rotary switch range/mode selection
$\mathrm{L}=$ low power ohms range
$M=$ manual ranging
$\mathrm{N}=$ low power ohms on all ranges
$\mathrm{O}=$ overload protection
$\mathrm{R}=$ autoranging
$\mathrm{S}=$ stand
$T=$ transistor test facility
Key to accessories supplied
$b=$ battery
$c=$ carry case
$f=$ sapre fuse
$k=$ test clips
$s=$ high-current shunt
$t=$ test leads
$*=20 A$ for limited period
$* *=$ likely to be discounted
NS $=$ not specified

Addresses

AVO
Thorn EMI Instruments Limited, Archcliffe Road, Dover, Kent CT17 9EN

BBC

available through:
John Minster Instruments Ltd,

137/139 Sandgate Road,. Folkestone, Kent CT20 2DE; and: House of Instruments Ltd, Clifton Chambers, 62 High Street, Saffron Walden,
Essex, CB10 1EE

Beckman

available through:
Farnell Electronic Components Ltd, Canal Road, Leeds, LS12 2TU; and, Audio Electronics, Cubegate Ltd, 301 Edgware Road, London W2 1BN
Eagle International TS T T
Precision Centre, Heather Park 750 Precision Centre, Heather Park
Drive, Wembley, HA0 1SU

Elemic

available through:
Black Star Ltd, 9A Crown Street, St
Ives, Huntingdon, Cambs PE17 4EB
Fluke (GB) Ltd
Colonial Way, Watford, Herts WD2 4TT

Hansen

available through:
Audio Electronics, Cubegate Ltd
HC601, HC703, etc
These are available through a number of suppliers, and are often sold as 'own brands', with or without the HC prefix. However, you should check that the specs are the same as those we quote which are for the House of Instruments Ltd version.

Keithley Instruments Ltd

1 Boulton Road, Reading, Berkshire RG2 0NL

Lascar Electronics Ltd

Module House, Whiteparish,
Salisbury, Wiltshire SP5 2SJ

MDS

Micro-Data Systems, Coach Mews, St Ives, Huntingdon, Cambs PE17 4BN
MIC
available from: 600 Z
House of Instruments Ltd

Micronta

available through Tandy high street shops.

Pantec Pan

available through: Audio
Electronics, Cubegate Ltd.

Sabtronics

available through: Black Star Ltd;
and, Stotron Ltd, Haywood Way,
Ivy House Lane, Hastings, East
Sussex TN35 4PL. (Stotron also sell
the Taisei DM2350, which bears a remarkable similarity to the MDS
D350, though the specs are slightly lower, for $£ 48.00$).
Sifam Limited
Woodland Road, Torquay, Devon TQ2 7AY
Thandar Electronics Limited
London Road, St lves, Huntingdon,
Cambs PE17 4HJ

Trio

available from:
House of Instruments Ltd

EQUIPMENT NEWS EQUIPMENT NEWS . .

Fluke Hand-held True RMS DMM.

Fluke has expanded its best-selling range of $3 \frac{1}{2}$ digit hand-held digital multimeters with the the introduction of a version with true RMS measurement capability. Fluke pioneered true RMS measurement on hand-held DMMs with their recently launched $4 \frac{1}{2}$ digit family and have now introduced this useful facility to their $3 \frac{1}{2}$ digit range.

Called the 8026B, this new model provides all the facilities and performance of the 8020 B series models such as 0.1% basic DC accuracy, high speed continuity bleeping for open/short continuity testing, and conductance which allows high resistance measurements from 20 Mohms to 10,000 Mohms to be made.

True RMS capability is most useful when measuring nonsinusoidal waveforms as in digital equipment, e.g. modems, terminals and monitors as well as in motor and thyristor circuits, noise measurement etc. Conventional meters using only averaging techniques can introduce errors of up to 30% or more in such applications.

Other features of the 8026A, which is priced at $£ 180+$ VAT, include a heavy duty 600 V dual-fuse system to protect against high-energy input signals, a very rugged design, non-skid rubber feet and a tilt bail for ease of use in the field. The new instrument comes with a two-year guarantee and labour warranty and a one-year calibration cycle. For further information, contact Fluke (GB) Limited, Colonial Way, Watford, Herts. WD2 4TT. Tel: 092340511.

New Source for Digicheck

The Steinel Digi-Check, a voltmeter and ohmmeter of a rather novel design, is now available from Electronic and Computer Workshop Ltd, 171 Broomfield Road,
Chelmsford, Essex CM1 1RY.

Temperature
Measurement From Your DMM

Anyone who has access to a digital multimeter can now use it as a versatile wide range temperature measuring instrument using standard type K thermo-couples, by adding the DVM/TC Interface Unit, which costs $£ 36$ (+ $£ 1.35 \mathrm{p} \& p+$ VAT) from the makers.

This new device, at considerably lower cost than a dedicated instrument, has a temperature range of -50 C to $1100^{\circ} \mathrm{C}$ and incorporates automatic cold junction compensation. Thermocouples are attached through a miniature compensated socket. A basic thermocouple and mating plug are supplied as standard with the instrument. The output of 1 mV per degree centigrade is via a 0.75 metre coiled lead fitted with, 4 mm plugs. Long term stability is claimed to be excellent and the low battery drain allows it to be used for continuous monitoring if necessary.

Full details are available from the manufacturers Graham Bell Instrumentation, PO Box 230, 39 Derbyshire Lane, Sheffield, 58 OTH. Tel: 0742582370 .

Enhanced Logic Analyzer

Two optional enhancements for their Model 632 Logic Analyzer announced by Zicon Instruments of, Norwich.

The Model 632 is designed as a high performance, low cost instrument for use in troubleshooting synchronous logic systems. It has sixteen data channels, two qualifiers and a clock input which, coupled with its integral hexadecimal display, allows it to be used "freestanding" in the analysis of microprocessor systems. The unit also provides oscilloscope outputs which are used to generate the familiar timing diagram.

In its standard form, the Mode! 632 is capable of capturing 12816 -bit words at speeds up to 4 MHz with 64 words pre-trigger.

Data can be recorded using either edge of the external clock; and a clock qualifier allows (for example) only-memory reads or only-data outputs to be recorded. The trigger word is set by four thumbwheel switches in hexadecimal code with disable/enable selection for each switch. A 1-X-0 trigger qualifier expands the trigger word to 17 bits or it may function as an external trigger.

The stored data can be examimed in one of two ways. The integral 4-digit hexadecimal display shows one word at a time with its position in memory relative to the trigger word indicated by a 2-digit cursor display extending from -64 to +63 . A timing diagram output is also provided which generates a 16-channel display on any general purpose oscilloscope with trigger and cursor position markers.

An optional 12 MHz memory speed (Option 11) is now available on this model. As a further enhancement (Option 12), Zicon Instruments have designed and produced a dedicated IEEE-488 bus data pod for use with Model 632. This probe connects directly to the bus and permits the monitoring of bus activity in either state or timing format with 8 input lines switchable between handshake and management lines or flying leads for user connection.

Current prices are: Model 632 £1095; Option 11 £295; Option 12 $£ 295$. Zicon Analyzers are distributed by STC Instruments Ltd of Harlow and Elex Systems of Bracknell. Zicon Instruments Ltd, 23 Meteor Close, Airport Industrial Estate, Norwich NR8 6HQ. Tel: Norwich (0603) 400083.

High-Current Clamps For Beckman Multimeters

Arange of three current clamps is now available to extend the $A C$ and DC current ranges of all Beckman Instruments' multimeters. The ranges are 10 to 150 A RMS AC (model CT-231, $£ 19.00$ inc. VAT), 10 to 1000A RMS AC (model CT-232, $£ 98.50$ inc. VAT) and 0 to 600A AC and DC (model CT-233, £69.00 inc. VAT, available June).

With the multimeter in the 200 mA AC position, the CT-231 displays the current directly in amperes. With the CT-232, the multimeter is set in the 2A AC position and the current reading is multiplied by 1000 . Depending on DC or AC measurement, the multimeter using the CT-232 is set to either 200 mV or 2 V DC or AC position, the readings being directly in amperes and amperes/1000 respectively. (The clamps should be usable with other brands of DMM Ed.). Beckman Instruments Ltd, Mylen House, 11 Wagon Lane, Sheldon, Birmingham B26 3DU. Tel: 021-742 7761.

Low Cost Capacitance Meter

Aportable LCD digital capacitance meter costing $£ 49.50$ plus VAT marketed by Semiconductor Supplies, Sutton, has a 0.1 pF to 2000 uF range covering virtually all electronics engineering applications. A $3 \frac{1}{2}$ digit display is provided.

The DM 6013 is supplied with an instruction manual, alligator test leads and a spare 0.2 A fuse. For further information contact Semiconductor Supplies International, Dawson House, 128/130 Carshalton Road, Sutton, Surrey SM1 4RS. Tel: 01-643 1126.

National Agreement

Wessex Electronics Ltd of Bristol has been appointed by National Panasonic (UK) Ltd to market National measuring and testing equipment.

Among the products Wessex will be distributing is a $20 \mathrm{MHz}, 32$ channel logic analyser. The VP-3620A is a dedicated unit catering to a wide range of industrial needs. It contains a logic state analysing function for self-contained microprocessor operation analysis and a logic timing function for the evaluation of peripheral operations. With its multifunction capability, National's logic analyser is also able to display the traced data in disassembled mnemonic mode corresponding to each microprocessor in use.

The National Panasacope will also be available from Wessex. The new oscilloscope (VP-5512A) offers DC to 100 MHz with an alternate sweep function. There is four channel, eight trace capability so that a large number of signals can be simultaneously observed. The Panascope features an advanced dome-meshed CRT and an auto-fix circuit for easy triggering. Ideal for field or lab use, the Panascope has a tv sync separation circuit for video
signals and variable hold off function for trigger stabilisation.

Advanced technology utilised in the Panascope, such as reduced number of parts for greater reliability and epoxy circuit boards for heat and shock resistance are also featured in the logic control series oscilloscopes (VP-5520B and VP-5530B) manufactured by National and to be marketed by Wessex. Both the VP-5520B and the VP-5530B offer multi-trace capability and facilitate accurate signal measurement up to 200 MHz and 300 MHz respectively.

Making up the initial complement of National products to be marketed by Wessex Electronics is a new generation A4 digital graphic plotter. Offering six colour graphics and plotting speeds up to $400 \mathrm{~mm} / \mathrm{sec}$, the plotter (VP-6801A) allows great versatility in the creation of graphs and line definitions. The VP-6801A features a high level of intelligence to simplify the external programming required to generate complex graphs, shapes and alphanumerics. Computer interfaces available include both GP-IB and RS-232C, thus allowing the VP-6801A to be used as a computer graphics device as well as for instrumentation graphics. Wessex Electronics Limited, 114-116 North Street, Downend, Bristol, BS16 5SE. Tel: 0272571404.

Platinum Digital Thermometer

Apocket-sized, digital thermometer, with $+/-0.1$ degrees C accuracy over an extended temperature range from -200 to +800 degrees C, is announced by Ancom Ltd. The Ancom BLR-800 offers a one degree C resolution, very good repeatability and a stability figure of 0.01 degrees C per degree C, with a wide range of standard platinum RTD temperature sensor probes. These include models for measurement of air temperature, liquid immersion, surface
temperature, hypodermic insertion and fast response types. The sensors are available with conformity to British and DIN standards in grades A, B, C, D and E and are simply connected to the instrument by a threeway plug/socket.

The BLR-800 uses a low power $3 \frac{1}{2}$ digit LCD for data display, which also displays a low battery sign.

Calibration is very simply carried out by the user, using boiling water and melting ice references.
\bar{F} or further information please contact Ancom Limited, Devonshire Street, Cheltenham GL50 3LT, Tel: 0242513861.

Sinclair ZX Spect

The growing range of Spectrum Software

You'll know already that the Spectrum has generated an enormous range of peripherals and independent software. Our own range is growing very fast and is shown in the Sinclair Software Catalogue - free with every ZX Spectrum.

16K now f99.95
 Previously $£ 125$.

48K now f12995
 Previously $£ 175$.

At last, a 16K colour computer with graphics for under £100!

Why have we done it?
Partly because the sheer volume of Spectrums sold (over 300,000 so far) has brought down unit production costs.

And partly, of course, because we hope you'll buy a Sinclair computer - and not some competitor's promise! We've all heard about colour computers breaking the £100 barrier. Here's the computer that's done it. A colour computer with advanced graphics that's fully supported, and widely available.

Right now, you can order a Sinclair Spectrum at these prices direct from Sinclair on the order form below. And to make it even easier to handle high-level ccmputing at the
lowest possible price, we've cut the cost of the printer, too. At £39.95, it's almost unbelievable!

At prices like these, there's really no reason to wait.

ZXPrinternow £39.95

How to order your ZX Spectrum
Access, Barclaycard or Trustcard holders - call 01-200 020024 hours a day, every day. By FREEPOST - use the coupon below. Please allow up to 28 days for delivery. 14-day money-back option.

Sinclair Research Ltd., Stanhope Road, Camberley, Surrey, GU15 3PS.
Tel: 0276 685311. Reg. no: 1135105.

PSEUDOROM

EPROMs never forget but they're a damned nuisance to reprogram. RAMs are easy to overwrite but they lose their contents on power-down. ETI, naturally, has combined the best of both worlds. Design by Phil Walker.

The ETI PseudoROM now offers the home constructor a device having the capacity of the larger ROM and EPROM chips, but with the programmability of RAM, which can be inserted into the existing ROM socket of your microcomputer. This makes it possible to develop large and complex operating software in one module which only occupies the same physical board area as the eventual ROM or EPROM (if used)

Another advantage is that the access time of the module is only 50 nS or so slower than the memories it contains (if you're using both the 74 HC 32 and the 74 HC 138). This will be somewhat less than the normal 450 nS spec of

Here's a fine, upstanding project . . .
many EPROM devices advertised, and could enable you to run your system at a higher clock frequency (processor permitting), so increasing throughput.

The Circuit

The circuit used in this project is essentially very straightforward and consists of four 2 K by 8 bit CMOS RAM chips, connected to an address decoder to make an effective 8 K by 8 bit memory. By means of a small battery and some extra circuitry this sizeable chunk of memory will retain its data even when unplugged from its socket. To make it even more useful the unit is constructed such that it can be used as four areas of 2 K by 8 read/write memory or alternatively four sections of 2 K , two sections of 4 K or a single section of 8 K by 8 read-only memory. All these modes are selectable by the integral switches, except that 8 K by 8 is only available when inserted into a 28 pin socket.

The point of this versatility is that the unit can be programmed in an existing RAM socket (or one can be provided) at any time and then transferred to an EPROM or ROM socket without losing data (as long as the write protect switch is used). This means that quite large sections of operating systems or special software can be modified and tested without the delays of erasing and reprogramming EPROMs or losing data in system crashes.

2-4-8K

The only difference between the 4 K and 8 K versions of this unit lie in the type of DIL plug used, the size of socket into which it is plugged and the numbering of the input/output pins on the circuit diagram. For memory simulation up to 4 K only 24 pins are needed, while for 8 K all 28 pins are required. The easiest way of inserting the unit correctly is to identify the $0 \vee$ pin and make sure it goes into the $0 \vee$ pin position in

Fig. 1 Switch operations for the Pseudorom.
the socket used. For 24 pin sockets this is pin 12, for 28 pin sockets it is pin 14. Note that for 28 pin plugs and sockets the equivalent functions will occur on pin numbers having a value of 2 greater than those of 24 pin sockets, with the exception of +5 V on pin 28 and A12 on pin 2 (this latter address line goes to the connection marked (2*) on the circuit diagram).

View from the top.

BUYLINES

The 74 HC series logic ICs which are required for this project are fairly new to the hobbyist scene and appear so far only to be stocked by Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG. The DIL switch shouldn't cause any problems but if you do have difficulty Maplin stock a suitable type. The mercury cells should be obtainable from most high street chemists and photographic shops, while the PCBs are available using our PCB Service order form on page 95.

HOW IT WORKS

The essential part of the circuit consists of IC1-4. These are 6116 CMOS $2 \mathrm{~K} \times 8$ RAMs, which have the property of consuming very little power when not in use. However, for this to happen pin 18 (CS) of each device must be at a logic high level and preferably within a few per cent of the supply voltage. Also, the remaining device pins should be held close to either supply rail. R1-19 hold the address and data pins of the RAMs close to 0 V (via R29) when the unit is unplugged, or to the positive supply rail when in position

ZD1, R28,30,31 and Q1 sense the presence of a suitable external power supply. When this is found the inputs to IC5a go low which causes its output to go low also. This then enables IC5b, IC5c and IC6 to operate. IC5c acts as a buffer for the OE control (pin 20), while IC5b buffers the WE function (normally pin 21). IC6 is used both to buffer the CS input and to use the two most significant address lines to select which RAM device is to be activated. SW1a and SW1b with their associated resistors provide default addresses to IC6 when direct inputs are not available. SW1d selects either ROM or RAM type operation whilse SW1c selects 2 K or $\mathbf{4 K} / 8 \mathrm{~K}$ ROM simulation.

D1 isolates the memory power supply from that of the host machine when the main power is off and is a germanium device for minimum voltage drop. Likewise, D2 isolates the backup battery from the main supply when not in backup mode. When the external supply fails, the control signals to the RAM ICs are all forced to logic HIGH and the battery will be able to maintain the data in the RAMs for a long time.

Construction

Examine the overlay diagram and photographs very carefully The unit consists of three PCBs mounted one on top of another. These must be assembled correctly and put together in the right order as there may be no second chance. We suggest that you follow the procedure here so that it goes together correctly, but read it carefully before starting.

Start with the smallest PCB: this is the battery connector. Take three thin brass shims about $0.1^{\prime \prime}$ (2.5 mm) wide by $0.6^{\prime \prime}(15 \mathrm{~mm})$ long and solder each to the central bar of each pattern on the PCB such that they overlap one edge by $0.4^{\prime \prime}$ $(10 \mathrm{~mm})$ or so. Bend the overlapping length round the edge of the PCB so that it lies near the non-track side. This will form the positive contact for each cell. Alternatively, any springy material to hand may be soldered into the centre hole to do the job. In fact we
used contacts from a piece of edge connector.

Next solder six lengths of 20 swg copper (or paper clip) wire into the holes nearest the free end of the battery connector described above. These wires will connect to the next board down and complete the battery holder.

The middleasized PCB should be assembled next: this will form the middle of the sandwich. Be very careful to get the right value resistors in the right holes. There are nineteen 47 k resistors and one $1 \mathrm{k0}$ resistor on the board, all of which mount vertically. Insert them into their holes and solder into position as close as possible to the board. DO NOT CUT ANY OF THE LEADS OFF.

Using two $2 \frac{1}{2}{ }^{\prime \prime}(60 \mathrm{~mm})$ lengths of 22 swg wire, connect the free ends of each line of resistors together and pass the remainder of the wire through the hole shown on the overlay; solder into position but

Fig. 2 Complete circuit diagram for the PseudoROM. All the header pin numbers refer to the 24 -pin version: add two to all the numbers for the 28 -pin version except for the pin marked (2^{*}). This is left unconnected on the 24 -pin version.

DO NOT CUT OFF. There are seven more links to be made to the lower board which should consist of $1^{\prime \prime}(25 \mathrm{~mm}$) lengths of 22 swg wire. A useful tip - squeeze the end of the wire with pliers to help it stay in the hole when soldering. Now mount D2 on the PCB making sure that the polarity is correct.

The next step is to assemble the battery connector onto this board. First insert some 22 swg tinned copper wire into the three holes in the middle PCB which lie in the centre of the cell positions. Solder them into position and crop off close to the track side and to about $\frac{1^{\prime \prime}}{4}(6 \mathrm{~mm})$ on the component side. Bend this short wire towards the edge of the PCB and flatten it (. . . GENTLY . . .). These form the negative battery contacts. Now take the small PCB and insert the six wires from it into the corresponding holes in the medium-sized PCB. Put three of the specified mercury cells in position and adjust the two PCBs until the cells are held reasonably firmly in their correct positions. Solder the link wires into position and crop them close to the PCB; then remove the cells.

Solder $12 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}(12 \mathrm{~mm})$ lengths of 22 swg wire (14 lengths for a 28 -pin plug) into the row of holes on the edge of the PCB (starting at the R29 end) such that the wire projects on the component side. Now carefully insert the two memory devices into the PCB and solder them into
position. MAKE ABSOLUTELY SURE THEY ARE THE RIGHT WAY

ROUND and TAKE FULL

PRECAUTIONS AGAINST STATIC DAMAGE. Crop the IC leads close to the foil side.

The largest PCB can now be assembled. First insert all the

PARTS LIST

Resistors (all $\mathbf{4}$ W, 5\%)
R1-27 47k
R28 10k
R29 1k0
R30,31 1k5
Capacitors
C1 40716 V tantalum
C2 10nF disc ceramic
Semiconductors
IC1-4 6116
IC5 74 C 32 or 74HC32
IC6 74HC138
Q1 BC182L
D1,2 OA91
ZD1 2V7 400 mW zener
Miscellaneous
SW1 quad SPDT DIL switch
B1-3 PX675 mercury cell
PCBs (see Buylines); 24 pin (or 28 pin)
DIL header plug; wire, thin brass shim or other contact material.

Fig. 3 Component overlay for the PseudoROM. Remember to separate the three boards before soldering!
resistors, diodes, capacitors and transistor. Note that six of the resistors (all 47 k) are mounted vertically as before with their free ends connected together and to a hole in the PCB. This time, however, the leads can be cropped close to the PCB. Next fit the DIL switch SW1, the two 74 series CMOS devices, and the remaining two memories. REMEMBER THAT ALL THE ICs ARE SENSITIVE TO STATIC. Make sure that they are the correct way round before soldering them in. Finally on this PCB, use four lengths of THIN insulated wire to make the long links shown on the overlay ($\mathrm{W}-\mathrm{W}, \mathrm{X}-\mathrm{X}, \mathrm{Y}-\mathrm{Y}, \mathrm{Z}-\mathrm{Z}$).

Having reached this stage it would be advisable to recheck all the solder joints on all the boards with a magnifying glass for accidental blobs, splashes or other faults.

From now on it will be virtually impossible to rectify any constructional errors. So check again!

Take the smaller PCB assembly and crop the wires projecting on the foil side so that the three links nearest the battery holder are virtually full length but the longest is at the edge and the shortest is farthest from it. Next crop the two lines of resistor leads and links so that the longest are about $\frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ (18
mm) and the shortest are about $\frac{1_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ (12 mm), graded evenly across the board width. This is done to make the next operation easier.

Now the tricky bit. With great care feed the wires from the smaller PCB assembly into the corresponding holes in the larger PCB. Make sure that the wires are straight when you do this and don't allow the long links to cross each other on top of the memories. It should be possible to get the two PCBs down to about $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}(6 \mathrm{~mm})$ apart. If you can't do this it may be that the transistor or capacitor is in the way. Rectify this before carrying on. The transistor must be very close to the board. If this is not the problem one of the links may be bent. This is a fault, as when properly assembled all the links between boards are straight.

When this stage has been reached successfully, solder all the inter-board links and crop off the excess wire.

The end is now in sight. Examine the connector end of the assembly you have made and offer up the 24 or 28 pin plug you wish to use. It may be necessary to file a little material off one of the PCBs so that the plug will lie square against the two PCBs when the pins are soldered in position. Do this now if necessary.

Fig. 4 An exploded view to help you through the traumas of construction. Compare with the photo below.

If there is a large blob of solder on any of the three pads where the links have been soldered already, remove some of it with a solder sucker or piece of fluxed braid. This is to allow the plug pins to seat down onto the PCB foil. Align the tags of the plug labelled with pins 13 to 24 (ar 15 to 28 for the larger plug) against the pads along the edge of the largest PCB in the assembly. Solder them carefully to the pads such that pin 24 connects to the innermost of the three joined pads (or pin 28 joins to the outermost in a 28 pin plug). This should cause the remaining pins to be forced against the link wires coming from the middle PCB. With
any luck they will be in the right place to be soldered but check first. Pin 12 (or 14 on 28 -way plug) should lie next to R29 (1 kO). If all is correct then solder them into position and crop off any excess wire.

The assembly should now be complete and after inserting the mercury cells is ready for use. These cells should be inserted with the flat or outer part of the case nearest to the small PCB. This is the POSITIVE terminal. The rounded stud is negative and goes to the middle PCB. Make sure the batteries are pushed well in so that they locate against the pairs of supporting struts and do not touch each other.

The assembled project is neat and compact - at least it should be if you've done things correctly.

Otherwise one battery will be shorted out.

Using the PseudoROM

It is recommended that the unit is only inserted or removed from its socket when the equipment using it is switched off. To make use of the unit the data must first be written into it in 2 K blocks. For this a 24 pin socket must be provided with a R/W signal on pin 21 and other signals as for a standard 2 K EPROM. SW1d should be set to connect the pin 21 input through to IC5b and SW1a and SW1b set to select the 2 K segment to be used. Data can now be entered into the unit. Change the SW1a and SW1b settings to load up the other segments as required, remembering that SW1a is the MSB and SW1b the LSB of the address.

When placed in a suitable 24 or 28 pin ROM socket, SW1d should be set so that pin 21 (23) is no longer connected to IC5b: this prevents accidental overwriting of the data. SW1c can now be used to select either 2 K ROM simulation (connecting to IC6 pin 6) or 4 K in a 24 pin socket and 8 K in a 28 pin socket (connecting to IC6 pin 1). Whichever mode is selected, the segment select addresses selected by SW1a and SW1b will be overridden by the relevant external address lines. This saves much extra switching but anomalies may occur if the 2 K ROM mode is selected in a 28 pin socket.

Note that this module is only suitable for use in EPROM sockets with single rail power supplies and the $\overline{\mathrm{CE}}$ or $\overline{\mathrm{CS}}$ signal on pin 18 (20 for a 28 pin socket) and the $\overline{O E}$ signal on pin 20 (22 for a 28 pin socket). Pin 21 (23 for a 28 pin socket) must be logic high level: A11 address or WE as appropriate for the mode used. Unfortunately this rules out some devices such as the three-rail TMS2716, the TMS2532, and under some circumstances the TMS2516. If in doubt, consult the data sheets for your particular device and circuit.
Warning: DO NOT TRY TO PROGRAM THIS UNIT IN AN EPROM PROGRAMMER - the high voltage will damage it permanently. And take care when handling the device out of its socket - once assembled it's unlikely that any of the CMOS chips will be blown by static, but if it should happen, your guess is as good as ours how to replace them.

GT as
 Powsi

Module Number	Output Power Watts rms	$\begin{array}{\|c\|} \hline \text { Loesd } \\ \text { Impedance } \\ \Omega \end{array}$	distortion		Supply Vottage Typ	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	wT gms	Price inc VAT
			T.H.D. Typat 1 KHz	$\begin{gathered} \text { IM.D. } \\ 60 H z / \\ 7 \mathrm{KHz4:1} \end{gathered}$				
1.1430	15	4-8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	240	${ }^{18.40}$
\#\#rbil	30	1.8	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	$¢ 9.55$
Irrexbe	$30+30$	4.8	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	£18.69
HYi2A	61	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	E20.75
HY128	60	8	0.01\%	<0.006\%	± 35	$120 \times 78 \times 40$	410	¢20,75
H-244	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	¢25.47
+ど248	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	E25.47
HY364	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	£38.41
HY36\%	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 103$	1030	£38.41

Frequency response (-3dB) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitivity: 500 mV rms.
$100 \mathrm{~K} \Omega$. Damping factor $100 \mathrm{~Hz}>400$
PRE-AMP SYSTEMS

Module Number	Module	Functions	Current A aquived	Price inc. VAT
HY6	Muno pre amp	Mic/Mag. Cartedge/Tuner/Tape/ Aus + Vol/Bass/Treble	10 mA	£ 7.60
HY66	Stereo pre amp	Mic/Mag. Carridge/Tuner/Tape/ Aux - Vol/Bass/Treble/Batance	20 mA	[14.32
nv73	Guitar preamp	Two Guitar (Bass Lead) and Mic * separate Volume Bass Treble + M1x	20 mA	f15.36
HY78	Stereo pre amp	As $\mathrm{H}^{\text {Y }} 66$ less tone controls	20 mA	E14.20

Most preamp modules can be driven by the PSU driving the main power amp A separate PSU 30 is aveilabie purely for pre amp modules it required for
Ptease send for detalls.
Mounting Boards
For ease of conatruction we recommend the $\mathbf{B 6}$ 4or modules HY6-HY $13 £ 4.05$
finc. VATI and the B66 for modules HY66-HY78 £1.29 (inc. VAT
POWER SUPPLY UNITS (Incorporating our own toroidal Uanstormers)

Model Number	For Une With	$\begin{aligned} & \text { Price ine. } \\ & \text { VAT } \end{aligned}$	Moder	For Une With	Prioe inc. VAT
PSU 21x	1 or 2HY30	¢11.93	PSU 52x	$2 \times \mathrm{HY} 124$	¢17.07
PSU 41x	1 or 2 HY60. $1 \times$ HY6060. $1 \times$ WY 124	f 13.83	PSU 53x	$2 \times \mathrm{MOS} 128$	$¢ 17.86$
PSU 42 x	$1 \times$ HY128	¢15.90	PSU 54 x	$1 \times \mathrm{HY} 248$	117.86
PSU $43 x$	1) MOSI28	£16.70	PSU 55x	$1 \times$ MOS248	$\mathrm{f}_{1} 19.52$
PSU 5ix	2^HY128, $1 \times \mathrm{HY} 244$	¢17.07	PSU 7:x	$2 \times$ HY244	¢2 ${ }^{\text {. } 75}$

Model Number	For Use Whth	Price inc. VAT
PSU $72 \times$	20.4\%248	12\%.9\%
PSU 73x	1 $\times+\ldots 364$	122.4,
PSU $74 \times$	1, He368	126.j'
PSU 75x		176. 2.

Plasse note: X in part no, indicates primary voltage, Please insen o

WTHA ALOT OF

 MELP fnomQner

PRofissinnal ilifl that every enthusiast CAN HANDIF...

Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hifi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc VAT
UC1	Prearnp				£29.95
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Steres	H.F	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Busula	Moio	HiFi	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipoldr	Mono	HiFi	£54.95
UPAX	$120 \mathrm{~W} / 4 \Omega$	Bipular	Mano	HiF_{1}	$£ 74.95$
UP5X	120W/8	Bipola	Morio	HiFi	£74.95
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mone	HiF;	£64.95
UP7X	120W/4-8	MUS	Moito	HIF_{1}	£84.95
Power Slaves					
US 1X	$60 W / 4 \Omega$	Bipular	Power	Slave	$¢ 59.95$
US2 X	$120 \mathrm{~W} / 4 \Omega$	Bipular	Puwer	Slave	£79.95
US3 x	$60 \mathrm{~W} / 4-8 \Omega$	MuS	Porwer	Slave	£69,96
US4 X	$120 \mathrm{~W} / \mathrm{A} 8 \Omega$	MOS	Fower	Slave	£89.95

[^2]TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd, if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

electromise AUTO-ELECTRONIC PRODUCTS

 kits OR READY BUIT
ELECTRONIC IGNITION

15

\star is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.

* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
- Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
- Is the PERFORMANCE SMOOTH.The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.

Most NEW CARS already have ELECTRONIC IGNITION Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark energy of prdinary capacitive systems, 3 times the spark duration.
Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.

* IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS: (Older current impulse types need an adaptor).

STANDARD CAR KIT	£15.90	PLUS
Assembled and Tested	£26.70	P. \&P.
TWIN OUTPUT KIT	¢ 24.55	Price
For Motor Cycles and Cars with twin igni	on systems	include
Assembled and Tested	£36-45	VAT

Assembled and Tested $£ \mathbf{£ 6} \mathbf{7 0}$
TWIN OUTPUT KIT
£24.55
Assembled and Tested $£ 36$-45
include VAT
 each individual alarm system. (Not limited to a few hundred keys or a four bit code).
t 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
$\star 10$ SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.

* INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
* 30 SECOND DELAY when system is armed allows owner to lock doors etc.

Don't Wait Until Its too Late ~ Fit one NOW!
t DISABLES IGNITION SYSTEM when alarm is armed.

- IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

CAR ALARM KIT
£ 24.95
ASSEMBLED AND TESTED $£ 37.95$

Access and Visa
Welcome. Write or
Phone Quoting Number
Dept. D Magnus Rd. Wilnecote Tamworth. B77 5BY tel: 0827281000

CONFIGURATIONS

Ian Sinclair has seen the light! Now he wants to illuminate the rest of us. In case you hadn't already guessed, this month's topic is opto-electronics.

Opto-electronics is a word that hadn't been thought of a few years ago, but which is now used to describe a set of devices that are important enough to merit a part of this series all to themselves. An optoelectronic device is one which makes use of light as part of its electronic function, so this label includes all varieties of devices that convert light signals into electrical signals or the other way round.

The simplest opto-electronic devices of the electricity-to-light type are the familiar LEDs. Familiar they may be, but even experienced engineers are not always aware of their eccentricities. Like any other diode the LED has an anode and a cathode, and passes current in the forward bias direction; this is when the light is emitted. What is not nearly so well known is that the peak reverse voltage of these diodes is very low; if you get an LED the wrong way round in a circuit, it's usually curtains for the LED when the voltage is switched on. A typical value of peak reverse voltage is 3 V , so practically any circuit that will operate the LED when it is connected the right way round (Fig. 1) will blow it up if it happens to be the wrong way round.

Fig. 1 (Right) The basic LED operating circuit. A currentlimiting resistor must always be used unless the output resistance of the driving circuit is high.
Fig. 2 (Left) LED operation. (a) For use with AC, a silicon diode must be connected across the LED terminals as shown. (b) The two-colour LED uses two LED junctions connected in opposite directions. (c) The tri-colour LED uses separate LEDs with a common cathode connection.

In addition, the forward voltage across the LED is very much higher than the 0V6 that we merrily assume for a silicon diode. For gallium arsenide, the material used for many types of LEDs, the forward voltage is more like 2 V 1 to 2 V 4 , so that LEDs are of little use in very low-voltage circuits - they won't, for example, work from a 1V5 cell.

Current Affairs

One of the major snags about LEDs is that they consume a surprising amount of current. Manufacturers quote 'adequate' light output for red LEDs with 5 to 25 mA , and for the green/yellow varieties with 10 to 40 mA . This wouldn't be missed in a circuit operating at $5 \mathrm{~V}, 2.5 \mathrm{amps}$, but it can be quite a drain on battery equipment, often considerably more than all the CMOS ICs in a circuit intended for battery operation.

LEDs can be used with AC supplies providing there is a diode connected in reverse across each LED (to prevent excessive reverse voltage) as well as the usual current limiting resistor (Fig. 2a). Bi-colour LEDs consist of a package of two LEDs in one casing, connected in inverse parallel so that current in one direction will give a light of one colour, while the other colour is achieved by reversing the current (Fig. 2b). In this circuit, one LED protects the other against reverse voltage. Tri-colour indicators (Fig. 2c) use two diodes with a common cathode connection and separate anode leads, so that three colours can be indicated, one in each lead, plus yellow when both LED sections are activated. Personally, for indicating when mains voltage is on, I much prefer the old-fashioned neon.

On Display

When it comes to digit displays, LED types have quite a lot of competition. The traditional seven-segment display (Fig. 3) comes as a common anode or a common-cathode type (Fig. 4), and each type needs a separate limiting resistor in each driver lead. The normal method of use is to connect the display to a decoder chip such as the 7448 or 7447, which in turn takes the digital information in as BCD signals - four bits per digit. The snag again is the current consumption, $10-20 \mathrm{~mA}$ per segment, which means that displaying a figure ' 8 ' uses $7 \times 20 \mathrm{~mA}-140 \mathrm{~mA}$ just to

Fig. 3 Layout of the seven-segment display, with segment guide. An eighth segment, the decimal point, is often added.

Fig. 4 Internal connections for common anode and common cathode displays. Whichever type is used, there must be a separate limiting resistor for each segment.
display one digit! While mains-powered equipment isn't too upset by this size of current, the LED seven-segment display did not last very long in battery-powered devices, even when multiplexing was used. Multiplexing means that only one digit at a time is activated, the digits being switched on in sequence fast enough to present the appearance of all the digits being illuminated at once.

Oddly enough, the forward voltage for the segments of an LED seven-segment display tends to be lower than for diodes, around 1 V 3 to 1 V 7 . At temperatures above about $25^{\circ} \mathrm{C}$, the maximum current has to be reduced by 0.3 mA per degree to avoid over-dissipation of the junction in each segment.

One competitive display that seems to be much less well-known is the filament seven-segment display. This can use as little as 5 mA per segment, and looks surprisingly bright - it can be driven by a decoder directly with no limiting resistors, and for many purposes is superior to LED displays. The usual reason for preferring solid-state displays is long life, but the quoted life of more than 100,000 hours for the filament type of display is pretty competitive, and some LED displays are notorious for short life - one frequent candidate for replacement in my experience is the display used in the old KIM microprocessor units.

Fig. 5 Driving LCD displays. The common lead of the LCD display must not be earthed; it has to be returned to the driver IC. The waveform (b) applied is AC with no trace of DC.

Fig. 6 The vacuum photocell, and a typical circuit arrangement.

Oldies But Goodies

The two older types of displays which are also worth considering are the electron-beam type and the gasdischarge type. The electron beam display uses a miniature cathode wire to emit electrons, which will then be attracted to any positive anode. The anodes are coated with phosphors (similar to the phosphors used in cathode ray tubes), and any anode which is positive to the cathode by a sufficient voltage will glow. A $24-40 \mathrm{~V}$ supply is needed, which usually means the use ${ }^{\circ}$ of an inverter when lowvoltage batteries are used, as in calculators. The display is easy to read, and uses less current than the LED type - I still prefer a calculator using this type of display to one using the more-common LCD display.

The gas-discharge display is an older type which uses the principle of the neon light - ionisation of a low-pressure gas in an electric tield. Like all gas-discharge, this needs a high operating voltage, around $150-250 \mathrm{~V}$, but the operating current is very low: only 0.7 mA per segment in a typical application. The display is very bright, and is worth considering for mains-operated equipment whose display has to be viewed under difficult illumination conditions, such as alternate brightness and darkness. A driver IC is available nowadays - in times past (dare we say the Dark Ages?), the major handicap of using this type of display was the lack of suitable driver transistors.

Liquid Light

Last among the displays, of course, there is the LCD. A good LCD can give a dense black indication against a light grey background, is clearly visible in bright light, and reasonably visible even in low illumination conditions. There's a lot of variation between displays, however, even from the same manufacturer, and some are poor, with low contrast and very slow response to changing digits. Prices also vary considerably - one catalogue I have lists the price of a calculator-size display as being twice as much as I would have to pay for a complete calculator using a similar display!

Operating conditions for these displays are very different from those of other types of displays, because they have to be operated from high-frequency AC supplies. For this reason, displays either come with all the necessary circuitry for generating their driver pulses built in, or they can be used with a standard chip intended for this purpose. It's particularly important not to apply DC to the segments of an LCD display, because this can kill the display very rapidly.

On The Receiving End

Moving to the other end of the opto-electronics business, we find the photocells. Vacuum photocells and
photomultipliers are rather specialised, and we'll only touch briefly on these types. They rely on photocathodes, surfaces which emit electrons into a vacuum when they are struck by light. The anode which collects the electrons (Fig. 6) must be at a fairly high voltage ($100-500 \mathrm{~V}$), and the currents are small: microamps rather than milliamps. Photomultipliers obtain greater sensitivity and increased output by using secondary multiplication, meaning that the electrons from the cathode (Fig. 7) are accelerated to surfaces, called dynodes, which will release electrons each time an electron strikes the surface. If each of these multipliers releases two to five electrons for each striking electron, spectacular gain can be achieved which, unlike amplification of signals by conventional methods, is practically noise-free.

Fig. 7 Cross-section of a photomultiplier, used for detection of very low light levels.

The more familiar solid-state light-to-electrical-signal devices that we use are the solid-state photodetectors, of which the most commonly used is the cadmium sulphide cell. The ORP12 is the standard device of this type, often called an LDR (light dependent resistor). The cell consists of a strip of cadmium sulphide whose resistance decreases as light falls on it. The resistance in the dark is high, up to 10 M , and the resistance can fall as low as 100R in bright sunlight. A less well-known aspect of these cells is that they can withstand a fairly high voltage, around 100 V ; subject to their dissipation limit of 200 mW , meaning that you might need a limiting resistor connected in series. The cadmium sulphide cell is a slow-acting device, needing about 350 mS for the resistance to fall on exposure to light, and around 75 mS for the resistance to rise again when the light is shut off. The response to different colours is generally similar to that of the human eye, but the cadmium sulphide is much more sensitive to red and infrared, which is why its use in cameras is now less common than it was some 10 years ago.

Fun With Photodicdes

Other light detectors need some degree of amplification. Photodiodes are diodes of fairly conventional construction, with a transparent window over the junction,

Fig. 8 The photoresistive cell or light-dependent resistor (LDR).
which are used reverse-biased. For such a diode, the reverse leakage current increases as the intensity of light on the junction is increased. This current is small, ranging from around 1 nA in darkness to almost 1 mA in very bright light, so that amplification is usually necessary, as in the circuit of Fig. 9. The response time is about 250 nS , so that the op-amps shown in Fig. 9 would have to be replaced by a transistor circuit, using high-speed switching transistors, if you wanted to use the photodiode for high-speed signals. Combined photodiodelop-amp packages can be bought for medium-speed applications.

The old-style phototransistor, which was a transistor formed with a window above the base-collector junction, is a thing of the past: what is now called a phototransistor is a combination of silicon photodiode and transistor in one package. This combines a sensitivity that is much greater than that of a photodiode alone with a good fast response time, giving typically a 2 MHz bandwidth. This is particularly useful for receiver use in light-beam transmission systems.

Last in our catalogue for the month come the optoisolators, which consist of a combination of LED and phototransistor in a single package. These components are embedded in clear plastic, which allows light transmission but which is a good electrical insulator. It^{\prime} 's easy to achieve isolation to at least 4 kV , with reasonable signal transmission. For an ordinary isolator, the output signal will be about 20 per cent of the amplitude of the input, but when a Darlington phototransistor is used, the output can be three times or more the amplitude of the input. It's just the device I was looking for 25 years ago wher I wanted to modulate the grid of a cathode-ray tube which was working at -4 kV !

Fig. 9 Using a photodiode in conjunction with a FET op-amp. The FET type is needed because of the very high impedance of the photodiode circuit.

The Reference Point for Kit Amplifiers from now on

HIFI STEREO AMPLIFIER KITS
From one of Britain's leading esoteric amplifier manufacturers comes an exciting new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the
usual price penalty. usual price penalty
These new kits offer the choice of moving magnet or moving coil inputs, 40 to 100 watts per channel, in fact, everything that made the previous models so popular is included but with added
style, easier construction and a full two year warranty. sthe naw range consist
The now range consists of The CK 1010 Stereo Pre Amplifier, The CK 1040 WPC Power Amplifier, The CK 1100 WPC Power Amplifier
CK 1010
This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and The CK 1010 assembly of the connections and controls to the pre punched chassis.
The CK 1010 takes its DC supply from the CK 1040,1100 or, if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an optional add-on CK 1040
This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010. All components such as heatsinks, wire and connectors are included and protection is provided from short circuit outputs.

CK 1100

Simiar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinkint and thermal cutouts are provided as standara. When correctly assembled these kits are guaranteed for two years.
It would seem then that Crimson have maintained their position at the top of the commercialkit-build field. There is no oriental amplifier / know of that can better the sound of this combination overall at any price and only a few - such as the KA- 1000 (E5500+) - are of comparable standard.... I can say no more than that for $\mathrm{EL50}$ it (CK $1010 / \mathrm{MC2K} / 1100$ I is a bargain and one that
becomes the reference point for kit amplifiers from now 1 ."

PRICES CK 1010 - RRP $\mathbf{f 9 2 . 0 0}$; CK 1040 - RRP f121.00; CK 1100 - RRP $\mathbf{f 1 5 1 . 0 0}$; MC2K - RRP $\mathbf{f} 25.00$; PSK - RRPE20.00
Access accepted, otherwise send C.W.O. Allprices include P\&P to anywhere in the U.K. Export: Write for pro-forma
SEND FOR FULL DETAILS ON OUR HIFI KIT PRODUCTS BY WRITING TO ADDRESS BELOW

PHOENIX WORK

EE Crimsen Iketrik Stoke 500 KINGS STREET STOKE-ON-TRENT
LONDONOISTRIBUTOR: GBADLEY MA:SHALLLTD, 3z5 EDGWARE ROAD, LONDON WF1BN TEL: 0782330520

T.V. SOUND TUNER BUILT AND TESTED

In the cut-throst world of of the questions designers apperently ponder over is "Will anyone notice if we save money by chopp ing this out?" In the domestic TV set, one of the irst casualties seems to be the sound quality. Small speakers
$£ 24.95+£ 2.00 \mathrm{p} \& \mathrm{p}$ and all this is really quite sad, as the TV companies do their best to transmit the highest quality sound. Given this background a compact and independent TV runer that connects direct to your Hi-Fi is a must for qualit This TV SOU ND TUNER offers full UHF
his TV SOUND TUNER offers full UHF coverage with 5 pre-selected tuning controls. It can T.I kit version of a withour chassis, case hardur

PRACTICAL ELECTRONICS SPRECIAL OFEERI STEREO CASSETTE RECORDER KIT COMPLETE
 ONLF £31.00 plus $£ 2.75$ p\&p
 STQP. TAPE COUNTER. SWITCHABLE -TWIN V.U. METER. *WOW \& FLUTTER ELECTRONIC SWITCHING. - FULL $V A$ IABLE RECORDING BIAS FO

 ACCURATE MATCHING OF ALL /YPESKit ind udes tape transport mechaplsm, ready punched and back
printed duality circuit board and all electronic parts. ie. semiconductors
printed duality circuit boardand all electronic parts, i, semiconductors,

STEREO TUNER KIT

This easy to
build 3 band
stereo AM/
is designed
with P.E. July

81). For ease of construction and atignment C. IF System. FEATURES: VHF. MW, LW Bands, interstat ion muting and AFC on VHF. Tuning meter. and scale Aerial: AM-ferrite rod FM- 75 or 300 ohms. Stabilised power supply with ' C ' core mains transformer. All componen w supp. lied are to P.E. strict sporiestion, Front sjale size $101_{2}^{\prime \prime} \times 2$ approx. Complete with die
gram ond instructions. SPECIAL OFFER! £13.95 +£2.50 og to suit quner only. Finish size $11 \% / 4 \times 81 /{ }^{\prime \prime} \times 3 / 4$ STEREO CASSETTE
DECK

125W HIGH POWER AMP MODULES

The power amp kit is a module for high
power applications . disco units, guitar amplif power applications - disco units, guitar amp
iers, public address systems and even high power domestic systems. The unit is protected in an open circuit condition. A'large satety margin exists by use of generously rated com ponents, result, a high powered rugged un ready to drill for ease of construction anc the aluminium chassis is preformed and reag to use. Supplied with all parts, circuit diag ams ACCESSO

BSR RECORD DECK
Manual single play record
deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm spinded for home or dis
 $£ 12.95+£ 1.75 p$ \& p

SPECIAL OFFERL Replacement Stereo casseach. Ere heads - $£ 1.80$ each. Mono: $£ 1.50$ AA mair to
$21 E$ HIGH STREET, ACTON, W3 6NG Nota: Goods despotched to U.K. postal addrasses only All items iubjoct to availebility. Prices correct e
$31 / 5 / 83$ and uubject to chenge without notice. $31 / 5 / 83$ sind subject to change without notice.
Please allow 14 working doys from rectipt of order
for despatch. RTVC Limited reserve the right to up. d.A.E. Tolephone or mail orderi By ACCESS weicome

Accurate Digital Multimeters at Exceptional Prices
 NEW ANALOGUE METER WITH CONTINUITY BUZZER AND BATTERY SCALE
 28 RANGES，EACH WITH FULL OVERLOAD
 SPECIFICATION NIODELS 6010 \＆ 7030
 10 amp AC／DC Battery：Single $9 V$ drycell．Life Weight： 400 g inc．battery． Mode Select：Push Button AC DC Current： $200 \mu \mathrm{~A}$ to 10 A AC Voltage： 200 mV to 750 V DC Voltage： 200 mV to 1000 V Resistance： $200 \$ 2$ to 2 MS 2 Input Impedance： $10 \mathrm{M} \Omega$ Display： $31 / 2$ Digit 13 mm LCD
 OTHER FEATURES：Auto polarity auto zero，battery low indicator，ABS plastic case with tilt stand，battery and test

Add 15% to your order for VAT．P\＆P is free of charge．Payment by Cheque with Order． ARMON ELECTRONICS LTD．

Cottrell House．53－63 Wembley Hill Road，Wembley．Middlesex HA9 8BH，England

Teleuhone 01.9024321 （ 3 lines）TELEX No 923985

All items full spec																					
tran＇tors					5 p	2 N 914		4001日		74077408		74121	$\begin{aligned} & 160 \\ & 230 \end{aligned}$	LS48 30		$\left\lvert\, \begin{array}{cc} 747.14 & 30 p \\ 748-8 & 25 p \\ A Y-3-1270 \\ \hline \end{array}\right.$		ML922 300 p NE562 300 p NE566 100 p NF567 130 p			
AC 227 $A C 128$	12	${ }^{\mathrm{BC} 214}$	$6 \mathrm{6p}$	8F196																	
AC ${ }^{\text {AC }} 414$	15		60		88				30 p		${ }^{10 \mathrm{p}}$			LS73 15p							
		${ }_{\text {BC }}$	40	BF928	． 5 ¢p	2 N 1131	6 p				7 p	74123		LS74 14p	$\begin{array}{lr}\text { 1N4005 } & \text { 4p } \\ \text { 1N5402 } & 12 p\end{array}$	$\left\|\begin{array}{c} 500 p \\ C A 3018450 p \end{array}\right\|$	$\begin{aligned} & \text { LM318N } 100 \mathrm{p} \\ & \mathrm{M} 33 \mathrm{~N} \end{aligned}$	NE567 130p			
AC153	15	BC26	5 p	BF244C	1.3 p	2 N 1132	13 p	4008	25 p	7410	8 p	7412	25 p	LS75 15p	訨	CA3019 ${ }^{\text {CA302 }}$ 6－		TBagat ${ }^{\text {50p }}$			
AC		（BC478）		BF257	11 p	2 N 1304			20	7413	13 p	${ }_{74132}^{74126}$		LS76 15p	SOCKETS	Cajozal	LM380N 55p				
AC 187	10	BC301	20p	BF258	17p	2N1308	200	401		7416	10 p	74141	35 p	LS78 13p	18pin 18	CA3048 2000	LM382N 70p	TBA651 100p			
AC 187	12 D	$8 \subset 338$		BF259	100	2N2217	15p	4012	8 p	7417	10 p	74145	30 p	LS90 180			LM1458N 30p				
AC188		8C477	150			2N2219	10 p	40	350	7420	8 p	74147	85 p	LS95 350		Ca3090ad 70 p		TBAB00 60p TDA1004			
AD149	23	BC547	70	BFR40	15	2N2222A	A10p	4015	30p	7421	15p	74150	450	LS122 22p			LM390N 35 p	TDA1008 ${ }^{250 p}$			
AF	30.	BC557	5 p		25p	2N2369	10p	401	14 p	7423	15	7415		LS123 28p	$\left\lvert\, \begin{array}{ll} 28 \mathrm{pin} & 18 \mathrm{p} \\ 40 & \mathrm{pin} \end{array}\right.$	CA3130E 600	MC1495	TDA1008 250 p			
AF 1	300	BC558	5 p	BFX86	15 p	2N2904		4021	30 p	7426	15 p	741	30 p	LS157	LINEARICs	$\begin{aligned} & \text { LF356N } 60 \mathrm{p} \\ & \text { LM301AN- } 14 \end{aligned}$	MC1496P 60 p				
AF 139	20	BC559	10 p	BFx87	15 p	2N2906	10 p	4022	250	7427	12 p	74156	20 p	LS221 400				ZN424E 120p			
AF 186	400	BCY30	40 D	EFx88	22 p	2 N 2907	10 p	402	8 p	7428	12 p	74157	25p	LS251 280	$\left.\left\|\begin{array}{c} 709-8 \\ 710-14 \end{array} 16 p\right\| 15 p \right\rvert\,$	18p｜	400p				
ASY54	100	BC			13 p	2N2926G	G 8p	4027	50	743	12 p	74161									
BC 107	6 p	BCY70	10 p	BFY53	8 O	2N3055								LS279							
	6 p	BC			180 p		32 p	4030	40 p	43	80	74	355	Opto							
BC 109	60	BC	10 D	BU208	115	2N3705	$5{ }_{5}$	4041	35 p	7440	8 p	74165	35 p	ELECTRONIC	build stabilised and regulated 1 A5－5V／12V PSU．Full						
BC119	100	龺115	150	MPF104	20 p	2N3706	5 p	4042	30 p	744	450	74167	45 p		construction details supplied ．．．．．．．．．．．．．．．7．70p						
BC 143	200	BD123	300	MPF105	200	2N3707	5 p	4043	35 p	7442	20 p	7417	350	7 p							
BC 147	5 P	8 B 13	20 p	OC28	40.	2N3708	5 p	4044	280	${ }^{7444}$	500	741	20								
BC148	50	BD132	20 p	T1P29B	20 p	2N3710	5 p		18 p	7445	350	74177	30 p	${ }^{\text {Yelliow }}$［mms ${ }^{7 p}$	ZENER DIODES（400mw）： 3 V 3 3V9 4 V 35 V 6 6V2 $6 \mathrm{~V} 87 \mathrm{~V} 58 \mathrm{~V} 29 \mathrm{~V} 112 \mathrm{~V} 15 \mathrm{~V} 16 \mathrm{~V} 18 \mathrm{~V} 22 \mathrm{~V} 27 \mathrm{~V} \ldots 4 \mathrm{p}$						
8C149	5 p	801	20	${ }_{\text {TP330 }}$ TP30	200	2 N 3711	5 p	40508	20 p	7446	575	74180	23 P								
BC159	70	BD137	200	Tip34A	33 p	2N3823	350 30	4066	4	7448	280		30p	$\begin{array}{ll} \text { Green } & 7 p \\ \text { Yellow } & 7 p \end{array}$	POTENTIOMETERS（LOG VALUESONLY） 4 K 722 K						
	7 7	BD138	200	Tip36A	1270	2N3903	Bp		8 p	7450	8 p	74184	50 p		220K 470K 2M2．．．．．．．．．．．．．．．．．．．．．．．．．．．．15p						
68	60	BD139	200	Tip2955	40p	2 N 4037	24p	407	100	7451	5	74185	80								
	4 p	B	2	21 2×108	60	2N4058	4 p	407	20 p	7453	50	7490	350	voltage REGULATORS	OTARY SWITCHES：2A／ 250 V DPST．．．．．．．． 150						
BC177	8 p	BF173	120	ZTX303	60	2N4060	4 40	4	12 p	7460	4 p	74192	32 p		TANTALUM BEAD CAP：2u2／20V ．．．．．．．．．．．．．8p						
8C178	10 p	BFF 178	${ }_{1} 170$	ZTX311	6 p	2N4061		4516	50 p	7470	200	74193	35 P		POLYESTER CAP（100V）：t nF to $68 \mathrm{nF} \ldots \ldots . . .4 \mathrm{p}$ 100 nF 150 nF 330 nF 5 P 470 nF 1 LF 1 u （						
－${ }^{\text {BC1 } 186}$	15	BF180	5p	ZTX341	${ }_{60} 8$	2N5458	250	4518	35p	7472 7473	${ }_{12 \mathrm{p}}$	74194	${ }^{40} 40$	79M24 15							
BC187	12p	BF183	24 p	ZTX501		2 l 2N027				7474	14 p	74197	30 p		100nt 150nf 330nF 5p 470 nF luF $1 \mathrm{u5} 6 p$						
，	5 p	BF	17 D	ZTX503		3N128	10 p	7401	8 p	7475	16 p	74198	600	7812400							
BC212	$6{ }_{6}$	（ersig		2N697 2N698					8 p	7476	150 220	74199	40 p	7815400							
BC2 13 L	60	BF195		2N706		00	5 p	7406	11 p	7480	40 p300										
										7482748374907498		TTL＇LS＇									
D	2	4	4	，	1	1					200	LS	$8 \mathrm{8p}$	7924 450 85	BARGAIN PACKS（useful values only） 100 Ceramic caps： 150 p 100 Polystrene caps：200p						
										7492	15 p	LSO4	80								
		ylor		－	don	N20				7495	250		10	BRIDGE RECTIFIERS							
	one：	e：01－	－	8224						74	850	LS	9 p		100 Electrolytic caps：450p 100 Carbon Film Resistors 70p						
		rd			es						50 p		180		100						
											40p	LS20			PRESETS（mini horizontal）：100R 220R 470R 1 K 2K2 4K7 10K $22 \mathrm{~K} 47 \mathrm{~K} 100 \mathrm{~K} 250 \mathrm{~K} 500 \mathrm{~K} 1 \mathrm{M} \ldots 4 \mathrm{p}$						
Order $£ 7$										74	15 p	LS32	10 p	$1 \mathrm{~A} / 400 \mathrm{~V}$ 17 p $1 \mathrm{~A} / 600 \mathrm{~V}$ 17 p $2 \mathrm{~A} / 100 \mathrm{~V}$ 20 p	PRESETS（standard）100R－H $220 \mathrm{O}-\mathrm{V} 1 \mathrm{~K} 5 \cdot \mathrm{H} 2 \mathrm{~K} 2-\mathrm{H}$ 4K7－V $250 \mathrm{~K}-\mathrm{V} 500 \mathrm{~K}-\mathrm{H} 1 \mathrm{M}-\mathrm{H} 2 \mathrm{M}-\mathrm{H} \ldots \ldots \ldots . .3 \mathrm{M}$						
										74110 74113	2510	$\begin{aligned} & \text { LS42 } \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 300 \end{aligned}$								

IMMERSIBLE HEATER

This simple-to-construct project has done sterling service as a temperature controller in a common fish tank heater but has wide application. Design by Jonathan Scott.

If this project did not run directly on 240 V we would call it a simple project. It contains only one IC, a triac and very little else, yet it is a full zero-crossing switch system capable of controlling up to 1500 W of heating power that may be employed to regulate the temperature of a room, a fish tank or a bowl of yoghurt-in-the-making.

At this point, let us stress that the PCB is operating at live mains potential as the IC is designed to run directly on the mains without transformer isolation, so be careful. You should never touch any of the components while the circuit is plugged in, nor try to adjust the setpoint preset pot.

The triac must be of 400 or more volts rating, and it must be of at least 4 A current rating as the PCB is designed to take the type which comes in a bolt-on package, and these start at 4 A . This overrating, if you are only planning to have around 150 W of heater, as we did, allows you to dispense with a heatsink. There is not reason why you shouldn't have a higher rating still if the thing physically fits in place. With a heatsink, the type we found most common at the suppliers (and used) is rated at 6 A and will thus run up to 1500 W .

The thermistor you use will depend upon how much you wish to pay, how robust a component you need, and how you wish to connect it thermally to the load, as well as the temperature you are going for. We used both a cheap rod type, and a type G23. The latter is a small, but strong, glass bead type with a wide temperature range - but a $£ 5$-plus price tag! The G23 is a professional type, but reliable and predictable. As we point out later, a failure of the thermistor is not likely to cause anything but a cooling of the load, so unless you are willing to pay the price and need the reliability, use a cheap type. It is only necessary to have a resistance of 2 k 0 to 60 k at the regulated temperature. We used a type having a resistance of 47 k at $25^{\circ} \mathrm{C}$, costing only 40 p or so.

Once you have obtained the thermistor, it is necessary to select R4 and PR1 to suit. These must together be able to equal the resistance of the thermistor at the temperature you are going for. Now, the G23 has a resistance of 2 k 0 at $20^{\circ} \mathrm{C}$ and a temperature coefficient of so many ohms-perdegree. As we were going for 20-25 degrees in that model, we chose 820R for R4 and 5k0 for PR1, ensuring that we could reach 2 k 0 or a bit less. In general, if the thermistor is a cheap type, you had best measure its resistance while at the temperature you need. If it comes with specifications it will be possible to calculate the resistance at a given temperature.

So, having selected these components, you should assemble them on the PCB in accordance with the overlay diagram. Take care to get the polarity of the IC, capacitor and triac correct. Note that the metal tag of the triac is the MT2 connection, and the lead to the load is taken via a lug on the
bolt holding it to the PCB.
The final piece of constructional detail is the mounting of the thermistor. It is important to have it in close thermal contact with the item you are trying to heat. In our constructional example we are regulating the temperature of the liquid surrounding the tube within which the controller and the heater are immersed. It is thus only possible to regulate the tube temperature, as we cannot put the (live) sensor in the liquid. The sensor was pressed against the tube and seated in a blob of thermal compound of the type used for mounting transistors on their heatsinks. This meant that it was held at the temperature of the outside as much as possible, rather than at the temperature of the heater and controller themselves.

As the design of the housing is largely up to the individual constructor, there is very little to say about the physical makeup of the project. If you are copying the format shown in the pictures,

THE ZERO CROSSING SWITCH TECHNIQUE

In normal phase control switching the switching element, an SCR or triac, is triggered into conduction at some time during each half cycle. The moment of switching is varied, so that the duration of the applied voltage pulse, which corresponds to the fraction of the cycle left at the point of triggering, is varied. This is a simple and direct method which does vary the applied power fairly smoothly (see Fig. 1). Unfortunately, the sudden application of voltage tends to produce a lot of electromagnetic radiation due to the sudden current change in the load circuit. This is responsible for a lot of radio frequency interference, or RFI.

In ZCS the switching element is only allowed to change to the conducting
state when the supply voltage is crossing the zero-voltage point - hence the name. This means that there are no sharp voltage transitions across the load, and so no RFI. The penalty paid is that only whole half cycles are applied to the load. The system is thus not readily applicable to lighting applications as the lights flicker badly due to the relatively long periods between conduction and isolation (see Fig. 2).

For applications where the system has sufficient inertia, such as heating, this system is by far the superior technique. As the required functions are available within a single, relatively cheap IC it is practicable to built a ZCS system with almost the same ease as a proportional system.
 CURRENT, GENERATING RFI
Fig. 1

SWITCH CLOSES AND OPENS ONLY WHEN SUPPLY AT ZERO VOLTS, PREVENTING RF:
Fig. 2

NOTE:
IC1 IS CA3059
TR1 IS TIC226D OR SIMILAR $6 A / 400 \mathrm{~V}$ TRIAC

assembly is rather straightforward. I he only point to note is that you will have to take particular care to see that the tube is sealed against the accidental entry of liquid. Here, Silastic or a similar silicone sealant comes in very useful.

This simple project uses very few parts, most of which are commonly stocked items. However, to choose a suitable thermistor it will be necessary to check in the mail order companies' catalogues; they don't bother putting these items in their magazine ads. Maplin stock the G23, plus a suitable selection of cheap rod thermistors. We got our fish tank heater in the local pet shop, but if you do this it's advisable to check the various types in the shop, making sure that you can get into it and that there's room for the PCB. The PCB can be obtained from the PCB Service using the order form on page 95.
Fig. 3 The circuit. Simple, what?

BUYLINES

g. 3 The circuit. Simple, what?

It is necessary to set the preset pot before sealing up the immersible tube. This is done be carefully setting the system up with water coming up to the point on the tube above where the sensor is located. Then, allow a couple of
hours of undisturbed operation and measure the liquid temperature with a thermometer. Adjust the preset pot (mains unplugged!) and repeat. If you measured the thermistor beforehand, while at the correct temperature, you can adjust the pot/R4 combination to give you that resistance straight away and there should be no need to make a second adjustment of the pot. If at some later stage you wish to change the set point, Silastic is easy to peel away and you can reseal the tube when the adjustment is made and checked.

We do not advise you to leave an access hole to permit adjustment of the pot because, firstly, someone might try and do that with the power on (poof!) or more likely the liquid will find a way of invading the tube and quietly ruin the components.

HOW IT WORKS

Most of the functions of this temperature controller are contained inside the IC, so let's take a look at the zero-voltage switch IC first.

Three zero-voltage switches are made by RCA - the CA3058, CA3059 and CA3079. They are all designed to control a thyristor in a variety of AC power switching applications for $A C$ input voftages of $24,230,230$ and 277 V at 50, 60 and 400 Hz . Each incorporates four functional blocks as follows (refer to the block diagram here):

- Limited-Power Supply - permits operation directly from an $A C$ line.
- Directional On/Off Sensing Amplifier - tests the condition of external sensors or command signals. Hysteresis or proportional-control capability may easily be implemented in this section. - Zero-Crossing Detector - synchronises the output pulses of the circuit at the time when the AC cycle is at zero voltage point; thereby eliminating radiofrequency interference (RFI) when used with resistive loads.
- Triac Gating Circuit - provides highcurrent pulses to the gate of the power controlling thyristor.

In addition, the CA3058 and CA3059 provide the following important auxiliary functions:

- A built-in protection circuit that may be actuated to remove drive from the triac if the sensor opens or shorts.
- Thyristor firing may be inhibited through the action of an internal diode gate connected to Terminal 1.
- High power DC comparator operation is provided by overriding the action of the zero-crossing detector. This is accomplished by connecting pin 12 to pin 7. Gate current to the thyristor is continuous when pin 13 is positive with respect to pin 9 .

Because the CA3079 does not incorporate the built-in protection circuit, the CA3058 or CA3059 have been specified for this project. If the project is used to control a fish tank heater, one doesn't want to boil one's finny friends in the event of a thermistor failure!

Now we know what's inside the IC, how is it put to work in the circuit?

Initially, consider the triac to be turned off. Some current flows into pin 5 of the IC and this is limited by R1-3 and rectified within the IC to provice about 8 $\vee D C$ for the operation of the circuit. Capacitor C1 smooths this supply. Inside the IC are a number of separate subcircuits centered on a comparator ('ON/OFF SENSING AMP'). Connection of pins 9,10 and 11 uses internal resistors to establish half supply rail (about 4 V) as one of the levels to be compared. When the voltage on pin 13 exceeds half rail potential the comparator activates a circuit which turns the triac on at the next supply zero, and each subsequent zero until the voltage fall's below half rail.

Clearly then, PR1/R4 must be selected so that they add up to the resistance of the sensing thermistor at the temperature for which it is desired to regulate. Thus, when the temperature reaches the preset point, the voltage across TH1 corresponds to half rail potential on pin 13.

Pin 14 allows the protection circuit to detect when TH1 goes either open circuit or short circuit by looking at the voltage at the junction of R4 and TH1. If this voltage nears the DC supply rail or the local common (N), there has been a failure, and the firing of the triac is inhibited until the condition is removed.

The supply dropping resistors R1-3 are used instead of a single resistor purely for size considerations. All that is required is that they deliver 10 to 50 milliamps to the IC's rectifier-regulator.

The sensing thermistor must be a negative temperature coefficient type (NTC), as its resistance must drop with increasing temperature in order to reduce the voltage on pin 13 as the temperature is brought towards the setpoint. There is sufficient excess supply current to allow it to draw at least one milliamp if necessary. Thus, any of the common small bead types with a few kilohms of resistance at the setpoint may be used. The total permissable sensor resistance range is 2 k 0 to 100 k .

Fig. 4 Component overlay.

Naked and clothed. At top is the naked PCB (approximately life size) to compare with the component overlay. The lower picture shows the completed immersible temperature controller from a common fish tank heater. The arrow shows the positioning of the thermistor sensor.

PARTS LIST
Resistors (all $\frac{1}{2} \mathrm{~W}, 5 \%$ except where stated)
$\begin{array}{ll}\text { R4 } 4 & \text { 820R (see text) }\end{array}$
Potentiometer
$\begin{array}{ll}\text { PR1 } & \begin{array}{l}\text { 5k0 m } \\ \text { preset }\end{array}\end{array}$
Capacitor
C1
$100 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum
Semiconductors
IC1 CA3059
TR1 6. A, 400 V triac eg TIC226D or similar

Miscellaneous
TH1 thermistor to suit applic tion eg G23 glass bead type (see text)
PCB (see Buylines): solder lug; hookup wire; heating element etc.

POWERFET AMPLIFIERS

NEW DESIGNS

With the introduction of four new boards PANTECHNIC have pushed forward the performancė and reliability of their powerfet amplifiers. Four key improvements have been incorporated in these second generation modules -
1.) The use of H-PAK powerfets, resulting in improved thermal efficiency and consequently enhanced power output capabilities.
2.) Low C_{OB} drivers now in power transistor packages, maintaining the superb HF
performance and improving driver reliability.
3.) Separate driver and input supply rails allowing a 10% increase in available output
4.) Bridge mode input oun atlowing instant
.) Bridge mode input pin allowing instant bridging between any two amplifiers
without the need for extra circuitry.

PFA100 Specification

Bandwidth	$10 \mathrm{~Hz} \cdot 300 \mathrm{KHz} \pm 1 \mathrm{~dB}$
Output Power into 88	$100 \mathrm{~W}(\mathrm{Vs}= \pm 55 \mathrm{~V})$
THD 220 Hz -20KHz)	<0.00\%\%
THD $\{1 \mathrm{KHz}$ at loow)	0.004\% typ.
SNR	12 ddB
Slew rate	$>30 \mathrm{~V} / \mathrm{uS}$
Gain	+23
Rin	30 K
Vs max	$\pm 70 \mathrm{~V}$

£17.35 (Built \& Tested)
f15.17 (Kit)

PFA200 180W into 8Ω
300 W into $4 \Omega\left(\mathrm{~V}_{\mathrm{S}}= \pm 67 \mathrm{~V}\right)$

PFA 100120 W into $8 \Omega\left(\mathrm{~V}_{\mathrm{S}}= \pm 60 \mathrm{~V}\right)$

PFA200 Specification

Price
$\mathbf{E 3 . 8 7}$ (Built \& Tested) $£ 21.70$ (Kit)

And for those with a taste for power

- PFA500 Delivers 475 W into 4 ohms and 600 W into 2 ohms. These highly current capable units can deliver 25 amps continuous into a load, whilst maintaining the
- exemplary performance figures of the smaller units...... $\mathbf{4 2 . 0 0}$ (built \& tested) programme material. Delivers 300 W into 4 ohms and 8 ohms on a continuous basis, it will peak for musically significant periods of time at up to 5dBs above this. The PFA/HV is the widest dynamic range power amplifier currently available £34.30 (built \& tested)
- THE HEAT EXCHANGER. Dther poople sell heatsinks. Pantechnic design, manufacture and sell heatexchangers. Re-examination of the heat transfer process has resulted in a radically new design possessing greatly improved efficiency. The
unit $7^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$ handles PFAs up to 300 W or $\uparrow 2 \mathrm{KW}$ when blown. $£ 7.50$

POWER SUPPLY COMPONENTS
Toroidal Mains Transformers

Voltage	460 VA	225 VA	300 VA	500 VA	625 VA
$40-0-40$	9.71	11.36	12.32	-	-
$45-0-45$	-	11.36	12.32	16.05	-
$50-0-50$	-	-	-	16.05	18.80

Special low flux windings Carriage included

25A 400PIV Bridge rectifier	¢2.17	For the	PFA/HV	500VA	70.0.70
10,000uF 80 CV Electrolytics	¢4.13				£16.05
30,000uF 75V Electrolytics	£10.00	10,000	00 V Elec		E5.70

Phone or write for advice on selecting the right components for your particular application.
All prices excl. VAT. Carriage 75p. Trade supplied
Ask about our preamps. protection boards and active crossovers

THE POWERFET SPECIALISTS

 pantechnic(incorporating J.W. Rimmer)
Dept ETI/6 148 Quarry Street, Liverpool L25 6HO
Telephone: 0514288485
Technical enquiries

BIG TRAK" MOTORIZED GEARBOX

These units are as used in the "Big Trak" computerized vehicte, and offer the experimenter in
robotics the opportunity to purchase the electro-mechaniczl parts reguired in building remote conveles. The unt comp
a) $2 \times 3 V$ motors. linked by a magnetic clutch, thus enabling turning of the vehicle;
bI A gearbox contained within the black $A B S$ housing brox 50 rpm.
Data is supplied
controtier circuit, enabling the unit to tutn right, left or go straigt ahead.

AA NI-CADS 10 for $\mathbf{£ 9 . 9 5}$ Brand new nickel cadmium batteries by GE, stan-
dard 1.2 V at $450 \mathrm{~mA} / \mathrm{H}$. Professionat quality with for 59.96 ; 80 x of 80 ces. x of 80 E86. Nicad Charger: Charges up to 4AA, C or D cells

+ PP3. Only $\mathbf{5 7 . 9 6}$.

NOW REDUCED TO £3.95

ELECTRO DIAL

Electrical combination lock-for maximum security-
pick proof, One million combinations! Dial pick proot. One million combinationstl Dial is turm-
ed to the right to one number. left to a second number, then right again to a third number. Only when this has been completed in the correct sequence will the electrical contacts close. These dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Oniy $£ 3.96$.

FERRIC CHLORIDE
New supplies just arrived -250 mg bags of
granules, easily dissolved in 500 mt of water. Only granules, easily dissolved in 500 ml of wat
1.15. Also abrasive polishing block 95 p .

STABILIZED PSU PANEL

A1s9A versatile stabilsed power supply with both
voltage $(0-30 \mathrm{~V})$ end current $(20 \mathrm{~mA} .2 \mathrm{~A})$ fully variable. Many uses inc bench PSU, Ni.cad charger, gen, purpose testing. Panel ready buil and pots $\mathbf{8 6 . 0 0}$. Full data supplied.

REED RELAYS

Manufacturers rejects - DIL and other PCB
mounting types. SP $D P$ and $4 P$ - make mounting types. SP, DP and 4P - make, break
and c/o contacts. Not tested, so may be only par

TELESCOPIC AERIALS
As useo in Sinclair
$100-610 \mathrm{~m}$ in. Only 960 .

COMPUTER SOFTWARE

We now sell a range of tapes and books fo
DRAGON 32, SPECTRUM, ZXB1, BBC and VIC20. Send s.a.e. for list stating for which com

D-TYPE CONNECTORS

Gold plated pins. solder bucket British ma		
Gway f	${ }^{1.9} 9$	${ }^{10}$
9way socket	1.17	94
9way hood	1.30	. 8
15 way plug	1.10	88
15 way socket	1.87	34
25 way plug	1.60	1.28
25 way socket	2.52	2.02
Many other types of connectors in stock at com petitive prices DIN, Jack, IOC		

COMPUTER BATTLESHIPS

Probably one of the mos: popular electroni makes it impractical to test the PC8 as a workin model, although it may well function perfectly. In slead we have tested the sound chip and sell the coard for its component value only iPCB may be chipped o cracked). SN76477 sound IC

 SIMON GAME
Simon is back again. An oiner supply of ready built puterised game is now with us. Supplied com and working with speaker and instructions. $\mathbf{E 4 . 9 5}$.

LIE DETECTOR

Not a toy, this precision instrument was originally

 para of an "Open Unlversity" course, used to detector. Full details of how to use it are given. probes, leads and conductive jelly. Noedste with batrs. Overall size $155 \times 100 \times 100 \mathrm{~mm}$. Oniy $\mathrm{ES} . \mathrm{S} 5$PACKS PACKS PACKS
K60t We have iust purchased a large quantity of
smail signal transistors and diodes - ait
smath signal transistors and diodes - at
are
marked plastic/metal: NPN/PNP. Many
have 2SA. B. C. D, numbers but many are
coded Special low price to ciear 100 gm (approx 400) 86.50 250 gm (approx 1000) 815.00
$1 \mathrm{Kg}($ approx 4000$)$

type - most values from 10 uf to
$1000 \mathrm{f}_{\text {i }}$ neary all 10 V , tew 16 V . Bag of

watt 5\% Pack 1000 - yes. 1000% and $1 / 2$ watt 5% hi-stab carbon tilm resistors with
pre-formed leads for PCB mounting. Enot protormed leads ior PCB mounting. Enor.
mous range of preferred values from a few ohms to several megohms. Only 250p.
$5000510 ; 2,000$ e 36 . 520 Stcr

- rocker, slide, push. rotary,togole, micro otc. Amazing value at only 200 p .
K 22 Copper clad board. All pleces too small for
our etching kits. Mostly double sided fibre551 litass. 250 g (approx 110 sa ins) for 100 p Vero oftcuts. Thls has been pestricted for some time. but we have now buitit upa asonabie stock and can once again oftlor
100 sq ins of vero copper clag oftcuts. average size 4×3. 4 . Otfered at around $1 / 2$ the K530 too Assorted polyeater ca
ern components. radial and axial leads. All values from 0.01 to 1 ut at voltages from 83
to $1000!$ Super value at $£ 3.03$.

GREENWELD

433A MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT - just add 50 p post. Tel 772501

INTELLIGENT VOICE TERMINAL - easy to use speech synthesis -

- PRONOUNCES ALL ASCII LETTERS, NUMBERS AND USEFUL SYMBOLS
- ALLOPHONE DICTIONARY ALLOWES USER TO SYNTHE SISE 'ANY' WORD
- RS232C INTERFACE-SELECTABLE BAUD RATE
- INTERNAL LINE BUFFER ALLOWS HIGH SPEED DUMP
- CAN BE USED INSTEAD OF A PRINTER
- INTERNAL MEMORY FOR COMMONLY USED WORDS

AND PHRASES

- COMPACT UNIT WITH MAINS SUPPLY OPTION
M.I.M.'s Inteligent Voice Terminal is designed as an easy to use yet sophisticated peripheral for microprocessors and minicomputers. The Terminal is treated as a printer accepting a line of ASCII characters at high speed and then pronouncing them at the correct speed, thus freeing the user from timing considerations. It may be used to add extra realism to games, or other interactive programs, but imposes very little in terms of software or execution time on the host computer.

PRICES Type 1032/5 (5V PSU) - £129 Type 1032/240 (240V PSU) - £149
Please add VAT (15\%) and postage (£2) to above prices. Send orders (Cheques, postal orders only) or requests for further information to the following address.

MIM ELECTRONICS LTD BROADWAY DUKINFIELD CHESHIRE SK16 4UU

MAKE YOUR OWN FRONT PANELS

Containing artwork, film and all the necessary process materials required for professional quality labels and panels CAN ALSO BE USED TO PRODUCE PRECISION PCB PHOTOMASTERS £23.10
UV EXPOSURE UNIT AND ARTBOX (Ref: UV2) A portable ready made unit containing two 8 watt UV tubes giving a $6^{\prime \prime} \times 9^{\prime \prime}$ exposure area which may also be used as a light box with the UV filter supplied. $\mathbf{£} 64.60$
Price inclusive of VAT \& carriage. Please allow 21 days for delivery. Cheques. PO's or signed Access orders welcomed.

a division of
KELANENGINEERINGLtd Hookstone Park Harrogate. N. Yorks
complete P.C.B. workshop

FOR HI-FI\&ELECTRONICS ENTHUSIASTS!
We are the specialists of electronic kits. A catalogue with comptete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with cases), alarm clocks, appliance timers, CB amplifiers, test equipment, control (electronic touch switch, sound activated switch, light activated switch, infra-red remote controll, music generators, battery fluorescent light and high quality black anodised amplifier cases . . etc. with illustrative pictures now available at the cost of 60 p including $P+P$, together with a 10% discount voucher for your first order.

EQUALIZER \& REVERBERATION AMPLIFIER
Equaliser Built £73.50

All prices include VAT

 $\mathrm{TA}-28060 \mathrm{~W}+60 \mathrm{~W}$ stereo amplifier
$\mathrm{Ez7} .50 \mathrm{Kh} \quad £ 33.50 \mathrm{Ass}$. TA-920 $70 \mathrm{~W}+70 \mathrm{~W}$ sterso amplifier $\underset{£ 36.50 \mathrm{Kit}}{ } \mathrm{E} 42.50$ Ass.

Available Soon

- Wholly made of black anodised aluminium sheets - Suitable for high quatioy amplifiers and many other purposes o Top, bottom and
rear cover removbble for access o Different sizes available - Compatible price - Front panel is of brushed aluminium finish

To: Concept Electronics Ltd., 5 t Tollington Road, London N7 6PB
Mail orders only
Please send me the electronic kits catalogue \& the 10% discount voucher for my first order. I enclose 60 p in stamps/cheque/postal order. Make cheques pavable to Concept Electronics Ltd

Name :-..
Address
Block caps please

DOZENS OF APPLICATIONS INCLUDE: AUTOMATION DEVICES - CONTROL APPLICATIONS COMMUNICATIONS EQUIPMENT - BUSINESS MACHINES WORD PROCESSORS GRAPHICS DISPLAYS - SCIENTIFIC AND EDUCATIONAL

OPTION BOARDS INCLUDE:

- FLOPPYDISK CONTROLLER £80
- SPRITECOLOURGRAPHICSBOARD£99 - R50 TECHNICALMANUAL£6. 50 PRICES INCLUDE + +P

ALSOAVAILABLE PIO, SIO, IEEE 488 PORT', REAL TIME CLOCK, PROTOTYPING BOARD, MATHSPROCESSORUSES AMD9511 ATODCONVERTOR, STEREO SOUNDMUSIC BOARD, 192K RAM BOARD, CASSETTE INTERFACE, HARD DISCINTERFACE, CPM2.2AND TURBODOS AVAILABLE. INTERFACE KITS FORALLLEADINGMICROS PRICES ON APPLICATION.

「PLEASEMAKE CHEQUESIPOSTALORDERS - PAYABLE TO RADE SYSTEMSLTD.

R50 DIY SINGLEBOARDCOMPUTERE215 FLOPPYDISCCONTROLLERE80 \square
I SPRITE COLOURGRAPHICSBOARD£99 | R50 TECHNICAL MANUAL $£ 6.50 \square$
MORE INFORMATION■
I AMOUNTENCLOSED. £
NAME
I ADDRESS

DATA SHEET M108/M208 SINGLE CHIP ORGAN

Given the great popularity of the Victory organ that we've been featuring in ETI since February, it isn't surprising that there have been many enquiries about further information on the SGS-Ates chips that form the heart of the project. This Data Sheet should clear up most of the questions.

The M108/M208 is a single chip organ featuring solo and/or accompaniment modes. It accepts 61 keys arranged in a 12×6 matrix; a scanning cycle takes 576 microseconds and all keys pressed are accepted. There are two keyboard formats: either 61 keys (solo) or 24 plus 37 (M108), 17 plus 44 (M208) keys (accompaniment and solo) with the possibility of automatic chords of the 'accompaniment' section. There are internal anti-bounce circuits.

A top octave synthesizer is incorporated for the generation of three 'footages'. More than one chip can be employed with synchronisation through the reset input. There are separate analogue outputs (for each foot) for solo, accompaniment and bass sections (square wave of 50% duty cycle) with the average value constant. Each section also has 'key down' and 'trigger' outputs. Sustain is provided for the last keys released in the solo section.

There are several choices of operating mode in the accompaniment section: - Manual, with or without memorisation of the selected keys (free chords with alternate bass),

- Automatic, with or without memorisation of the selected key (priority to the left for automatic

Fig. 1 Block diagram of the IC.
chords and bass arpeggio). When in automatic mode there are again several possibilities:

- Major or minor third
- With or without seventh.

The chip operates from a standard single supply of +12 V $\pm 5 \%$, with a low dissipation of less than 600 mW . All inputs are protected from electrostatic discharges.

General Characteristics

The characteristics of the M208 are similar to those of the M108; the only difference is the keyboard split, which is $24+37$ for the M108 and $17+44$ for the M208 when used in 'accompaniment + solo' mode.

The circuit comprises:

- Two pins for clock input; one for the matrix scanning, the other tor the incorporated Top Octave Synthesizer (TOS); by connecting both the clock inputs to the same matrix scanning clock (1000.12 kHz), the three footages generated are $16^{\prime}, 8^{\prime}$ and 4^{\prime}.
- Six inputs from the octave bars (keyboard and control scanning).
- Three multiplexed data inputs for addressing the bass selection. These inputs normally come from the outputs of an external memory (negative or positive logic with control inside the chip).
- Eight signal outputs divided by section: three for the solo section (16', $8^{\prime}, 4^{\prime}$), four for the accompaniment section (16^{\prime} or root, 8^{\prime} or $3 \mathrm{rd}, 4^{\prime}$ or 5 th, 8 th/7th according to operating mode), one for the bass.
- Twelve outputs for the matrix scanning.
- Five trigger and key down outputs: $\overline{\mathrm{KPS}}$ (key pressed solo), $\overline{\mathrm{TDS}}$ (trigger decay solo), KPA (key pressed accompaniment), $\overline{\text { NPA }}$ (pitch present in accompaniment outputs), $\overline{T D B}$ (trigger decay bass) respectively. These outputs, in conjunction with an external time constant, allow the formation of the envelope of the sustain and percussion effects. The duration of the trigger pulses is approximately 9 milliseconds
- One input (reset) to synchronize the device or more than one device (with the same keyboard scanning and using a single contact per key). The reset action, provided by ant
external circuit, is of the power-on reset (high active) type and its duration must be approximately 0.5 milliseconds.
- One TEST pin (in use it must be connected to V_{DD}).
- Two supply pins.

Features

The main feature of this chip is the possibility of formating the keyboard either with 61 keys (only 'solo' without automatism) or separating it into two sections ('accompaniment + solo') with the possibility of chord and bass automatic in the first section.

- The ' $61 / 24+37^{\prime}(17+44)$ control chooses the keyboard operating mode, ie the whole keyboard dedicated to 'solo' or 24 (17) keys dedicated to 'accompaniment' and 37 (44) to 'solo'.
- The 'Man/Auto' control, which operates only in case of 'accompaniment and solo', chooses the manual or the automatic accompaniment.
- The 'Sust OFF/Sust ON' allows the storage of the 'solo' section and handles the whole keyboard or 37 (44) keys depending on the operating mode.
- The 'Latch/Latch' similarly allows the storage of the 'accompaniment' + solo' only.
- The '3rd + 13 rd-' which operates only in case of 'accompaniment + solo' and 'automatic' changes the automatic chord generated from major to minor or vice versa.

Fig. 2 Pin connections for the M108/M208.

MATRIX ORGANISATION (KEYBOARD AND CONTROLS)

C_{1} is the first key on the left, C_{6} is the last key on the right of the keyboard.

The '7th OFF/7th ON^{\prime} adds the seventh to the automatic chord generated.

The 'Antibounce ON/Antibounce OFF' disables the antibounce circuit which is usually enabled.

- The 'ROM Low/ROM High' selects between ROMs with return to ' 1 ' (Low active) or with return to ' 0 ' (High active). Usually the chip is enabled for ROMs with return to ' 1 ' (Low active).

'Solo' Operation

In this case the chip recognizes the whole keyboard as 'solo' and does not read the controls which concern the 'accompaniment + solo' operation. The chip identifies all the keys pressed and transfers to the outputs of each section the analogue sum of corresponding pitches. The outputs are current generators with average value constant, therefore it is sufficient to connect the pins to one load and send the signals on to the filters.

In the case of 'Sustain OFF' each new key pressed or released is accepted or deleted in a time less than 576 microseconds. In the case of 'Sustain $O N^{\prime}$ the chip has a different operation according to whether the new key (keys) is pressed or released: each new key pressed is always accepted in a time less than 576 microseconds, whereas each key released is deleted with a delay of 73 milliseconds and only if there are still keys pressed. In fact, if after the 73 milliseconds there are no keys pressed, the last key (or keys) released remains stored until new. keys are pressed. In this mode it is possible to have Sustain, with external envelope shaping, for the last keys (or key) released. The pitch
envelope is controlled by a DC signal $\overline{\text { KPS }}$ (any key pressed), and there is also an AC signal TDS (trigger decay solo) which provides a pulse whenever a key is pressed. An appropriate antibounce circuit, inside the chip, solves the problems associated with the keyboard contacts.

'Solo + Accompaniment' Operation

In this case the chip identifies the 'accompaniment' on the first 24 (17) keys on the left, and the 'solo' on the remaining 37 (44) keys and reads all the controls which concern the 'accompaniment' section. The 'solo' function is identical to '61 keys' mode, but for the 'accompaniment' section there are two possibilities:

Manual

The chip identifies which keys are pressed in the 'accompaniment' section, and transfers to the 'accompaniment' outputs the analogue sum of the corresponding pitches. The 'accompaniment' section is fully independent of the 'solo' section and the signals (if there is no 'latch') remain at the output only while the keys are pressed even if there is 'sustain on'.

The 'bass' section gives at the bass output an alternating bass bet-

Fig. 3 The input clock waveform.
ween the first on the left and the first on the right of the keys pressed in the 'accompaniment' section; the pitch switching timing is dependent on an external ROM (three bits). The 'accompaniment' control stores the last keys released and the output signals, including the bass output, remain until new keys are pressed. The $\overline{T D B}$ (trigger decay bass) output gives a pulse corresponding to every output change; there are also two DC signals, KPA (any key pressed accompaniment) and NPA (pitches in output accompaniment) relative only to the 'accompaniment' section. The first of these signals (analogous to $\overline{\mathrm{KPS}})$ concerns the keyboard and does not consider the 'latch' condition. The second on the contrary concerns the 'accompaniment' output and considers the 'latch' condition.

Automatic

The chip recognizes in the 'accompaniment' section only the first on the left of the keys pressed and, according to the setting of the following controls, produces a major or minor chord with or without seventh only the 4^{\prime} footage but with separated outputs for root, third, fifth and eighth (or seventh if the chord is with seventh).

The bass section gives the bass arpeggio among root, third, fourth, fifth, sixth, seventh and eighth with pitch switching dependent on an external ROM (3 bits). In automatic mode the two octaves of the 'accompaniment' section inside the chip are connected in parallel both for the chord and for the bass; therefore by pressing any one of the two keys of the same note the chip generates the same chord.

The 'latch' control stores the major chord and the bass pitches (until new keys are pressed); the modification of the chord stored (from major to minor, addition of seventh) is always possible by operating the proper controls: by releasing these controls the chord becomes major again. It is possible to delete the stored pitches both in manual and in 'automatic' mode by a latch control signal.
Once again there are $\overline{K P A}, \overline{N P A}$, and $\overline{T D B}$ information; however the $\overline{T D B}$ pulse, which normally appears at each arrival of the ROM codes, does not appear if there are no pitches in the 'accompaniment' (and bass) outputs or, in the case of alternate bass (in manual mode) if the codes indicate conditions of indifference.

Parameter	Test conditions	Min.	Typ.	Max.	Unit

RECOMMENDED OPERATING CONDITIONS

$V_{D D}$	Highest supply voltage		11.4	12	12.6

STATIC ELECTRICAL CHARACTERISTICS (Positive logic, $\mathrm{V}_{\mathrm{DD}}=+10$ to +14 V , $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=0$ to $50^{\circ} \mathrm{C}$ unless otherwise specified)

INPUT SIGNALS

V_{H} Input high voltage	Note 1	$\mathrm{V}_{\mathrm{DD}}-1$		$\mathrm{~V}_{\mathrm{DD}}$	V
	Note 2	4		18	V
	Note 3	$\mathrm{V}_{\mathrm{DD}}-2$		$\mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{H}} \quad$ Input low voltage	Note 1	V_{SS}		$\mathrm{V}_{\mathrm{SS}}+1$	V
	Note 2	V_{SS}		$\mathrm{V}_{s \mathrm{~s}}+0.6$	V
	Note 3	V_{SS}		$\mathrm{V}_{\mathrm{SS}}+2$	V
	I_{LI}	Input leakage current	$\mathrm{V}_{1}=14 \mathrm{~V} \mathrm{~T}_{2 \mathrm{mb}}=25^{\circ} \mathrm{C}$		

LOGIC SIGNAL OUTPUTS

R_{ON}	Output resistance with respect to V_{SS}			300	500
R_{ON}	Output resistance with respect to V_{DD}	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OD}}-1$ (driver off)		15	25

POU'WER DISSIPATION

I_{DD} Supply current	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$		30	45	mA

ANALOGUE SIGNAL OUTPUTS (the external load must be connected to $V_{\text {Do }} / 2$)

| $\mathrm{I}_{\mathrm{OH}} \quad$Output current with
 respect to $\mathrm{V}_{\mathrm{DD}} / 2$ | Outputs loaded with 1 kO
 resistor versus $\mathrm{V}_{\mathrm{DD}} / 2$ | 35 | 50 | 70 | $\mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IotOutput current with
 respect to V_{SS} | Outputs loaded with 1 kO
 resistor versus $\mathrm{V}_{\mathrm{DD}} / 2$ | -35 | -50 | -70 | $\mu \mathrm{~A}$ |
| Note 1: Refers only to the clock inputs
 Note 2: Refers only to the inputs from the external memory
 Note 3: Refers only to the reset input. | | | | | |

DYNAMIC ELECTRICAL CHARACTERISTICS

MASTER CLOCK INPUT

$\mathrm{f}_{\mathrm{i}} \quad$ Input clock frequency			1000.12		kHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \quad$Input clock rise and fall time 10% to 90%	1000.12 kHz		40	nS	
$\mathrm{t}_{\text {on, }} \mathrm{t}_{\text {off }}$Input clock ON and OFF times	1000 kHz		-	.	nS

TOP OCTAVE SYNTHESISER CLOCK INPUT

$\mathrm{f}_{\mathrm{i}} \quad$ Input clock frequency		100	1000.12	2500	kHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} \quad$Input clock rise and fall times 10% to 90%	1000.12 kHz		40	nS	
$\mathrm{t}_{\text {on },} \mathrm{t}_{\text {off }}$Input clock ON and OFF times	2000 kHz		250		nS

$\overline{\text { TDS }}$ and $\overline{\text { TDB }}$ OUTPUTS

$\mathrm{t}_{\mathrm{on}} \quad$ Pulse duration	1000 kHz		9.216		mS
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Outputs rise and fall times 10% to 90%	1000 kHz		100	

FEATURE : Data Sheet

Fig. 4 The frequency range of each octave ($\mathbf{1 6}^{\prime}, 8^{\prime}, 4^{\prime}$ footages).

ABSOLUTE MAXIMUM RATINGS

$V_{D D}$	Source supply voltage with respect to $V_{s s}$ (GND) pin voltage	-0.3 to +20 V
V_{i}	Input voltage with respect to V_{ss}	-0.3 to +20 V
l_{0}	Output current at any pin	
$\mathrm{T}_{\text {op }}$	Operating temperature	0 mA

Stresses above those listed under "Absolute Maximum Ratings"' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 5 Connection of the keyboard and control switches.

NOTE: THE SWITCH 'OPEN' CORRESPONDS TO 'KEY NOT PRESSED' OR (SEE THE TABLE 'MATRIXORGANISATION')

BASS TRUTH TABLES

Fig. 6 A typical application.

Play the AMBIT numbers game

The long awaited implementation of on-line order processing is with us at last, and whilst this means that orders for in-stock items can now be processed more efficiently, it also means that orders should be submitted using stock codes for best results. Our current catalogue (75p) includes all order codes (watch out for the new expanded.Spring edition), but here's an abstract from some of the more popular lines to use as a quick reference.
Remember that you canalso access our catalogue via REWSHOP on REWTEL, which now includes on-line current price and delivery information. You need a 300 baud MODEM and RS232 terminal, (various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics

Prices shown here exclude VAT, and the P\&P charge is currently 60p per order(unless otherwise indicated). Remember that our tele sales service operates with human beings (not 'dumb' machines) from 8am to 7pm (and frequently later) Monday to Friday, and 9am to 8 pm on Saturdays. REWSHOP operates 24 hours a day, 365 days World).

-1.. M1.	ALL KITS INCLUDE PCBs	
Full kits include printed circuin boards, components, hardware, 1.c. sockets, cases atc. unless stated (nor batteries). If you do not have the issue of E.T.I. which		
	NTMA	
	Smix	
	ENOINERS STEHMOSCOPE Mar 81	
Mах/ААопй	infrah heo alanm fobl 81	
hioh cuality phono amplifiers fee bz.		
moving coil stage ane is.ts		
	Ulithasonic eurg inale	
	CMOS logic tesien aug ${ }^{\text {a }}$	
CARALARM NOO 81 - fion		
MORE KITS - SIMILAR STYLE TO ETI Instructions included (separately 45p each) Please quote ref. no. when ordering		
O1 SEAT EELT REMMNEA		
	a	
WEIRD SOUND EFFECTS GENERATOR		
os in sint tanesiston tisteb		
(e) Elt		
Os CABLE TRACEE		
	O20 uitrasound burglaralarm emo.43	
MAGENTA ELECTRONICS LTD EB26, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY		
ADD 45 p PGP P	Prices inc. vat Prficial ordeas welcome overseas 	

MONITORS 10

HIGH RESOLUTION ~ AND LOW COST !

Either cased or open frames to OEM's. The specification is right, the price is even better.

Phone or write to our Sales Dept for immediate action and prices.

CROFTON ELECTRONICS LTD

35, Grosvenor Road, Twickenham, Middx, TW1 4AD. Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

July issue on sale at your newsagent from 10 th June Place your order now!

User-definable, high resolution graphics for the Sinclair ZX81 computer - without fuss! This is a simple add-on PCB that plugs into the ZX81 ROM socket; no modifications to the computer hardware are needed in this project! The ZX HRG is completely software controlled and allows you to program high resolution graphic characters for, say, a Space Invader game, graph plotting or anything else.
Software control allows the high resolution characters, once set up, to be saved on cassette then loaded and re-used at any time, and switching between either HRG user-graphics or the standard Sinclair character set is easy, under software control. Any single element of an 8×8-pixel character can be individually controlled, giving a screen resolution of 256×176, allowing fine detail graphics programming.
The ZX HRG Board is the first half of a Sinclair Graphics Package. The second project is a user-programmable joystick controller-the first of its kindl Unlike all others it can be instructed to operate with any commercially available games programme, and will appear in the August issue of Hobby Electronics. A slightly different version for the Sinclair Spectrum will also be out shortly.

Although these articles are boing prepared for the next issue, circumstances may after the final content.

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The benefits of ILP toroidal transtormers
ILP toroidal transformers are only half the weight and height of their laminated equivalents: and are avaiable with 110 V . 220 V or 240 V primaries coded as follows
IMPORTANT: Regulation - Ail voltages quoted are FULL LOAD. Please add regulation tigure to secondary voltage to obtain oft had vollage
For 110 V primary insert " 0 " in place of " X " in type number
For 220 V primary (Europe) inser " 1 " in place of " X " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number
Also available at Electrovalue,Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

The addition of a numeric pad to the standard QWERTY keyboard greatly increases the ease of use of a microcomputer, both for programs containing extensive numerical statements and for joystick operations, where the layout of the numeric keys corresponds directly to the direction of movement of an object being controlled on the VDU. Anyone accustomed to using machines both with and without numeric pads will appreciate the advantages of the extra keys. An additional drawback of the QWERTY keyboard is that the ,$+ *$ and $=$ operations are obtained by shifted keys. This can be very frustrating and lead to errors when entering programs.

For all these reasons it is desirable to be able to add a basic calculator pad, containing the numbers $0-9$, the decimal point, equals sign and the four arithmetic operators, to machines not originally supplied with such a facility. Unfortunately such an accessory is not generally available for most micros. This article describes a calculator pad designed specifically for the Acorn Atom, although the general principles employed are capable of straightforward modification to other machines which use a similar system of scanning the key matrix. The whole unit can be constructed for under $£ 20$, but it does involve soldering to the masterboard of the Atom, so construction should not be undertaken by the fainthearted.

Fig. 1 Part of the Atom keyboard matrix. Each row is connected to one or more columns by a single keyboard switch. The rows are driven by the 3 -to- 10 decoder IC26. The columns are read by the PIA IC25.

Matrix Scanning

In order to understand the operation of the unit described here, or in order to modify it for other machines or to incorporate alternative functions, it is essential to understand how the Atom reads a depressed key. Figure 1 shows the appropriate section of the Atom circuit. It can be seen that each character key connects a particular row (numbered 0 to 9) with a particular column (numbered 0 to 6). For example, key ' 9 ' connects row 4 with column 1 . The SHIFT key works in a slightly different way, so I will first describe the operation of reading an unshifted key.

The Atom operating system includes a machine code routine
that scans the keyboard. Normally all the rows $0-9$ are held at logic high. The columns are connected by pull-up resistors to the +5 V rail, so they are also logic high. In this state the depression of a character key has no effect, since it merely connects two lines both in the same state. When the scan commences, each row is successively driven low by IC26. The routine then interrogates each column to see if it is low. Consider the state when row 4 has been set low. If no key has been pressed the columns will all be high. If key 9 is pressed, however, column 1 will be connected to row 4 , which is low. Column 1 will thus be pulled low and the Atom will know from the

Fig. 2 The principle of the keyboard extension. The unshifted key ' 9 ' drives column 1 low when row 4 is also low. The shifted key ' $=$ ' drives column 1 low when row 1 is low; it also pulls column 6 low to give the shift operation.

Fig. 3 The complete circuit of the keypad extension.

BUYLINES

Nothing at all unusual in this project and most suppliers should have the components in stock. One source for the case we used is BI-PAK Semiconductors, PO Box 6, 63a High Street, Ware, Herts SG12 9AG (telephone 0920 3182/3442): they also stock the semiconductors and resistors. The order number for the case is 148 . The PCB can be ordered using our PCB Service order form on page 95.
information stored in ROM that the combination 'row 4 low and column 1 low' means that key ' 9 ' has been pressed. A similar process works for all the unshifted keys.

For the shifted keys use is made of column 6. Figure 1 shows that this is normally high, but that if the SHIFT key is pressed it pulls the line low by direct connection to the 0 V line. The key scan routine therefore also interrogates column 6 and, according to its state, decides whether a dual-role key, such as $'=I-$ ' is to be interpreted as shifted or unshifted.

Circuit Principles

The direct way of extending the ATOM keyboard would be to parallel each keyboard switch by a corresponding key on the pad.

However, this would involve having 16 unconnected switches and 32 connecting wires. This would be a very inefficient system and would not be able to cope with shifted characters as single-key operations. The system employed in this design employs an OR gate for each key, and is illustrated in Fig. 2 for two keys, one the unshifted ' 9 ', the other the shifted ' $=$ '.

Consider first the unshifted ' 9 ' key. When the Atom drives pin 5 of IC26 low (this corresponds to row 4 - see Fig. 1) one input of the upper OR gate is driven low. So long as key ' 9 ' remains open, however, the other input of this gate remains high. The OR action then maintains the output high, so pin 20 of IC25 (column 1) remains high. If, on the other hand, key ' 9 ' is closed both

Wiring up to the Atom - the diagram below refers.

Fig. 4 A diagram of the Atom PCB (rearside of the keyboard) showing take-off points for the wiring. The numbers refer to the pins on IC25 and IC26 (as Fig. 1 shows, this numbering is unambiguous), and correspond to the numbers on the PCB.
PARTS LIST

Resistors (all	tW,
R1-16	10k
Semiconductors	
IC1-4	74LS32
D1-19	OA202

Miscellaneous
PCB (see Buylines); 16-switch keypad matrix (see text); $\frac{1}{2}$ meter 15 -core plus screen cable; case to suit.
inputs to the OR gate are low, and the output is low. The fourth possibility (pin 5 of IC26 high, ' 9 ' low) also results in a high output, so pressing ' 9 ' will not have any effect unless row 4 is also low, as required. The purpose of the diodes is to isolate the outputs of the various OR gates. In the absence of the diodes, when one gate tried to go low it would be pulled up by all the other gates connected to the same line. It would also upset the operation of IC26. The diodes have a similar effect to open-collector outputs. However, open-collector OR gates are not generally available.

Now consider the operation of the shifted ' $=$ ' key. The logic of the lower OR gate is identical to that just described, but in addition a diode connection to pin 25 of IC25 pulls column 6 low, thus simulating the effect of the combined operation of the SHIFT and ${ }^{\prime}=1-{ }^{\prime}$ keys on the Atom keyboard. The complete circuit is shown in Fig. 3. Note that for 16 keys, the 16 OR gates conveniently occupy four quad OR gate ICs (type 74LS32).

Construction

The most expensive item is the keyboard itself. It should contain 16 single-poll switches with one side commoned to the 0 V rail. The author used a very cheap but entirely satsifactory unit from Watford Electronics Ltd. Perusal of the advertising columns should reveal a source of a suitable alternative for less than $£ 10$. Avoid decoded types, which are connected in a matrix fashion unsuitable for this application. As a last resort you could make your own from the readily available keypad switches.

The circuit should be constructed on a printed circuit board. Veroboard can be used, but is much more difficult to wire up and looks messy with so many connections. We've designed a double-sided PCB for this proiect with care this shouldn't cause grave ditticulties to home constructors,

Fig. 5 Component overlay for the project. Remember to solder both sides of the board at each point indicated by a dot.
and finished boards will be on sale through our PCB Service. To avoid the cost of plated-through holes, links between the two sides of the PCB are required: these are shown by dots on the overlay. If the position has a component lead, solder it on both sides of the board - otherwise fit a through-board link.

Now comes the tricky bit. The problem is to find suitable places on the Atom masterboard to pick up connections to the key matrix. After an hour or so of probing with a multimeter we came up with the connection diagram of Fig. 5. We don't need to distinguish between the sets of pins for IC25 and IC26, incidentally, as the two have no numbers in common.

All the keyboard matrix connections can be made to the pins of the existing keyboard
switches. The supply connections are somewhat trickier. The 0 V is taken from a large area near IC22 (it will be necessary to scrape away the green varnish in order to solder the lead), while the +5 V is taken from the top end of R3. The photograph will hopefully make things clear.

The number of connections required between the Atom and the PCB is 16 , including the 0 V and +5 V rails. These are conveniently provided by 15 core and earth cable, of which a length of half a meter is ample. You will have to make a hole in the Atom case to bring the cable through.

The pad is mounted in a sloping fronted Bim case, which conveniently matches the shape of the Atom case, and helps to give a uniform appearance to the finished product.

Interak

THERE'S NO LIMIT TO WHAT A COMPUTER WITH NO CARDS CAN DO!

It's the oldest trick in the book to grab your attention with a statement above.
The Interack 1 Computer System is a 4 MHz 280 A develop ment system, one which you build yourself, perhaps lo enthusiastic home use, or more often for industrial or educational purposes.
The fundamental structure is a $3 \cup 19^{\prime \prime}$ rack which has space for 13 cards ("International" size. ı.e. $4.5^{\prime \prime} \times 8^{\prime \prime}$) on 1 pitch, with space for a power supply at one end of the rack 13 cards $4.5^{\prime \prime}$ by 8 " - rives a total potential board area of ov 400 squarenches enough tor a couple of hundred ohips more, there's no reall limit on what that could do is there? It would leave a few of today's marvels a bit in the shade en?)
But don't be scared, you don't have to build a Frankensein's monster until you're ready. The first few cards are pretty straightforward:' First the VDU-K, which can be connected to your own T.V. (or monitor), then the Z80A-CPU card, the brains; then dynamic RAM, and finally the Keyboard inter face (to any standard parallel ASCII keyboard). and you've got a computer - with the ultimate resource: 9 emply slots for the future. (Perhaps use one of them for a 2400 baud tape interface or later floppy disks.)
exarately and tull after sales service in case vou makle eparale YAOA CPU card C10.95 Manual yo make a Parts £13.41.
40 type-written pages of description. specification, price lists etc, are yours for the asking (a 25p stamp and/or SAE is a help. but not essential), or telephone if you prefer. You'lif effort andfind out allabout Interak now; a couple of minutes is all it takes to ask for a leaflet!

Greenbank
Greenbank Electronics (Dept. T6E), 92 New Chester Road, New Ferry, Wirral, merseyside L62 5AG Telephone: 051-645 3391 (Dept T5E)

CIRCUIT BOARD ELECTRONICS

THE NEW EXCITING

NAME IN PCB'S

FOR THE HOME ENTHUSIAST

COMPARE OUR PRICES

FOR COMPLETE PRICE LIST

WRITE TO
CIRCUIT BOARD COMPONENTS
55 MURDOCK ROAD BEDFORD
TEL. BEDFORD 214219

WHY USE STRIPBOARD?

Make your own PCB. It's easy:
 "GET YOU STARTED" KIT

12 V Mini Drill (takes ${ }_{2}^{2} \mathrm{~A}$)
1 mm Bit.
25 sq ins Copper Clad
PCB Etchant for $\frac{1}{2}$ Itr.
Tweezers and Dish.
Fine Etch Resist Pen.
Instructions. Only $\mathbf{£ 6 . 0 0}$
'SUPER'' KIT. As above with: 3 Pens, Fine-Medium-Thick. 75 sq ins Copper Clad. 3 Sheet Transfers - Etch Resist Only $\mathbf{E 8} \mathbf{8 0}$.

SIMPLE PCB DRILL
12 V Motor with chuck attached with 3 collets 0.8 to $2.0 \mathrm{~mm} \mathbf{£ 4 . 5 0}$.

PCB ETCHANT

Double strength to make: itr solu tion. f0.90.
ETCH RESIST PENS
Set of 3. Fine-Medium-Thick £1.80.
Cheques \& P.O.'s pavable to POPS Components. Callers welcome to our new shop extension. Five times the size

RESISTOR FILE

Std E12 VALUES : $1 \mathbf{4}$ CARBON FILM 10s) to $10 \mathrm{M} s$) 73 PRINTED ENVELOPES EACH CONTAINING 10 FULL SPEC, 5% RESISTORS COVERING THE E12 SERIES FROM 10Sะ TO $10 \mathrm{M} \Omega$ IN A SMART FLIP-TOP FILE FOR YOUR WORK BENCH £8.50

CHEQUES \& P.O's
SUPER FILE. AS PAYABLE TO: POPS COMPONENTS.
PRICES ARE INCLUSIVE
 100 RESISTORS IN EACH BUT ADD 60p P\&P TO EACH ORDER

ENVELOPE £55.00

REFILL ENVELOPES CONTAINING $10 \times 1 \mathrm{~W}$ RESISTORS
ANY E 12 VALUE FROM 10S TO 10MEGS 15p EACH
CONTAINING $100 \times \frac{1}{4}$ RESISTORS ANY E12 $£ 1.20$ EACH
Please allow 28 Days Delivery
POPS COMPONENTS $38 / 40$ LOWER ADDISCOMBE RD, CALLERS WELCOME @ CROYODN, SURREY CRO GAA TEL: 6882950

Lendon
 College oif Furniture

COURSES IN ELECTRONICS FOR THE MUSICINDUSTRY

T.E.C. DIPLOMAIN MUSICAL INSTRUMENT STUDIES
(2 years full time specialising in Electronics)
T.E.C. HIGHER DIPLOMA IN MUSICAL INSTRUMENT TECHNOLOGY
(2 years full time specialising in Electronics)
The Electronics option of these T.E.C. courses allow the student to specialise in music industry applications.
Suitable students would be interested in both music and electronics and wish to combine them.
Higher Diploma applicants would normally have an A level or its equivalent in an appropriate subject.
Applications forms and further details are obtainable from the Senior Administrative Office at the College.

Department of Musical Instrument Technology London College of Furniture
41-71 Commercial Road
London El ILA 01-2471953

VAST STOCKS OF COMPONENTS AT RIDICULOUSLY LOW PRICES

MAIL ORDER

we offer the best component prices in the business, and no order is too small to receive our first class attention.

COMPONENT WAREHOUSE

we have a huge warehouse full of components, test equipment - in fact virtually everything you will ever need. Come and have a browse around. Open Mon. to Sat. - 9am to 4 pm . You will easily find us opposite the John O'Gaunt Hotel on the A45.

SEND A LARGE S.A.E. FOR OUR FREE COMPREHENSIVE CATALOGUE

TECH TIPS

Scope Bargraph Unit

Graeme Durant, Selby

This circuit is designed to be used in conjunction with any ordinary oscilloscope which has an X -deflection input, and allows it to be used as a bargraph display. The screen has 10 useable col umns, thus making it suitable for use with the ETI Spectrum Analyst published recently.

The heart of the circuit is IC1, an LM3914 bargraph driver. The input to this, pin 5 , is connected to a sawtooth generator running at about 1 kHz , formed around Q1. Q1 is a constant current generator supplying 5 mA and charging a 330 nF capacitor to create a linear sweep. As the voltage on this capaci-
tor reaches the upper CMOS threshold, about two-thirds supply, a latch formed by IC5b and c is triggered by IC5a. This rapidly discharges the capacitor through IC8d. When the voltage has dropped to the lower CMOS level, about one-third supply, the latch is reset and the capacitor starts to charge up again. Thus a linear sawtooth waveform is produced.

This is buffered by IC2 and fed out to drive the X amplifier in the scope. However, as this sweep also drives a bargraph IC which has its upper and lower limits set to be similar to the two CMOS switching levels, the 10 outputs go low, one at a time, in sequence. These outputs are used to drive a multiplexing system: a set of 10 analogue switches (IC6b to IC8c). These are driven via inverting Schmitt triggers, diodes and pullup resistors due to the limited drive cap-
ability of IC1 at logic 1 .
The multiplexed output is sent to the scope's Y input via another analogue switch, which is normally on, but cut off while the sweep capacitor discharges so as to blank out the 'flyback'. Alternatively, the ' Z modulation' input of the scope could be used if one is available.

In use, the internal sweep generator in the scope is turned off and the circuit is connected. It is recommended that a regulated supply of 15 V is used so as to provide adequate X output drive. The X sweep level is adjusted until a suitable width of diplay is produced (this being a horizontal line at the present), which should be moved to the bottom of the screen. Now the inputs to the scope may be connected and the Y sensitivity of the scope adjusted to give a good display.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ITI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be as clear as possible and the text should be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS,

Electronics Today International,
145 Charing Cross Road, London WC2H OEE.

Improving
 Crossover
 Performance (Zobel network)

J. P. Macauley, Crawley

When designing crossover networks, problems are encountered due to the reactive nature of the speakers. This problem can cause ringing, and more importantly the roll-offs will not occur at the frequency that the normal design calculations would indicate. It is pointless to design a crossover on the assumption that the impedance remains at a constant value throughout the operating range.

In fact a moving coil speaker looks like an inductance and a resistance in series. Because of the inductance the impedance of the speaker increases with frequency. It is not unusual to find that the impedance presented by a nominally 8 ohm speaker is nearer 15 ohms at 3 kHz.

This problem can be overcome by shunting the speakers in the pro-
posed system with a series resistorcapacitor combination. If the values of these components are correctly chosen the speaker will look like a nearly pure resistive load to the crossover. Obviously this ensures that the latter rolls the response of the speakers on and off at the calculated frequencies without problems.

The circuit is shown in Fig. 1, and the component values are determined as follows. Feed the speakers with a sine wave at the desired crossover frequency via a 100R resistor (see Fig. 2). Measure the output voltage at the output of the generator (V_{1}) and the voltage across the speaker terminals $\left(V_{2}\right)$. The impedance of the speaker Z can now be determined by the equation

$$
Z=\frac{100 \times V_{2}}{V_{1}-\dot{V_{2}}}
$$

The DC resistance is now measured across the speaker terminals and R is made equal to this. C can now be determined from the equation

$$
C=\frac{Z-R}{2 \pi f^{2}}
$$

Fig. 1.

Fig. 2.

where f is the crossover frequency in Hertz and C is given in Farads. The speaker and network now present a resistive load equal to R and the crossover can safely be calculated on this assumption.

ETI

Car Radio Latch

A. Miller, Loughborough

When fitting a car radio or cassette player into a car, one problem is deciding which side of the ignition to connect the supply lead. If it's connected to the ignition side the keys must be in to use the radio, a potential hazard if children are left listening. On the other hand, if it's connected to the battery side you have to remember to turn off the radio every time you leave the car.

The answer is simple - you connect to both using the circuit shown here. Normally the radio is left switched on and it will go on and off with the ignition. But if the ignition is off, switching the radio off and then on again also turns the radio on.

The circuit consists of a latch using Q1 and Q3, which controls a driver stage Q4. The LED indicates the state of the latch and is optional, but it doesn't consume any extra power since without it, the power would only be dissipated in R6. C2 serves to trigger the latch on and off with the ignition, and R4 prevents false triggering during starting. If the radio goes off after starting R4 should be increased, and if the radio

fails to go on and off with the ignition, R4 should be reduced.

When the latch is in the 'off' state, a small current passes through R7 to the radio. While the radio is on, C3 and C4 will remain discharged, but if the radio is off, C3 and C4 charge to the full battery voltage. If the radio is switched on, C4 rapidly discharges through the radio leaving C3 to discharge via Q5 and D1 and produce a current in R8. This turns on Q2, triggering the latch to supply power to the radio. C1 ensures reliable triggering.

Q1,2,3 and 5 are all general-purpose transistors, such as the BC108/BC158
types, and Q 4 is a power Darlington with at least 2 A rated collector current. No heatsink should be necessary for Q4, as it is always either off or in saturation. D1 is a general-purpose diode such as the 1 N 4148 . R4 is the only component with a critical value and may need adjusting as mentioned earlier. All the component values are those used in the prototype and any similar values should work. The quiescent power consumption is either 2 mA or 10 mA depending on the state of the latch, but if the vehicle is to be left standing for longer than a fortnight the unit (or the battery) should be disconnected.

| N MODULAR AUTOMATIC |
| :--- | :--- | :--- | :--- | £24.50

Universal NLCAD, battery charger. All plastic case with lith up lid. Charge/Test switch. LED indicators at each of the five charging points.

Charges:- PP3 (9V). U12 (1.5V pensite). U11 $\left(1.5 \mathrm{~V}\right.$ "C" C^{\prime} \}, U2 (1.5V "'D"). Power:- $220-240 \mathrm{~V}$ AC. Dims:- 210 , $100 \times 50 \mathrm{~mm}$. Knock down price only while stocks
last.
Order No
Multitester \& Transistor Tester
DC volts $0.1 \mathrm{v}-5 \mathrm{v}-2 \cdot 5 \mathrm{v}-10 \mathrm{v}-50 \mathrm{v}-250 \mathrm{v}-1000 \mathrm{v} \pm 3^{\circ}$ AC volts $0-10 \mathrm{v}-50 \mathrm{v}-250 \mathrm{v}-1000 \mathrm{v} \pm 3 \%$
DC current 0-50uA-2.5mA-25mA-0.25A $\pm 3 \%$
Resistance
Resistance:
Midscale $20-200-200 \mathrm{k}-200 \mathrm{k}$ ohms
Maximum 2k-20k-2m-20m ohms
As a transistor tester
Leakage current 0-150uA at 21 k range
$0-15 \mathrm{~mA}$ at X 10 range
0.150 mA at X 1 range

PLEASE ADD 15\% VAT \& $\mathrm{f} 1 \mathrm{P} \& \mathrm{P}$

ENFIELD
ELECTRONICS $\begin{aligned} & 208 \text { BAKER ST, ENFIELD, } \\ & \text { MIDDX. Tel: } 01-3661873\end{aligned}$

PARNDON ELECTRONICS LTD.

Dept. No.,23', 44 Paddock Mead, Harlow, Eseer CM18 7RR. Tel. 027932700
RESISTORS:
made under strictly film E24 range \pm " "folerance High qualive resistors
and colour coded
£ 1.00 per hundred mixed (Min LO per value)
£ 8.50 per thousand mixed (Min 50 per valur)
Sperval stock pack 60 values 10 off each $\mathbf{f 5} 50$
DIODES: IN4148 3p each Min order quantive is,tem
£1.60 per hundred
CAPACITORS, REGULATORS, SWITCHES, I.C. TRANSISTORS, DIODES, etc, etc. full list available - Send S.a.e.
DIL SOCKETS: High qualuv low prohle sockets
8 pin - 10p. 14 pin - 11 p. 16 pin - 12p. 18 pin - 19 p. 20 pin - 21 p. 22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.

ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK \&I OO OVERSEAS \&S CASH WITHORDER PLEASE

Visual Display Units Burroughs MT686 VDUs These versatile micro controlled programmable erminals have 3 RCA 1802 CPUs and 64 K of memory. 12" Green screen (80 $\times 25$) RS232 106 key detached key board. Can also be used s quality video monitor 5149 + f15 carr WHIL STOCKS LAST. STOCKS LAST.

professional fast
compact line-printer. 80 compact line-printer. 80
columns, 120 char/sec. Parallel i/f. Quality at a silly price. Vertical format unit. To inc. operations manual. ONLY f149.00 Canual. ONLY f149.00. Carriage (England) 1230 . Tech man (230 pages) f 10.00 .

FLOPPY DISC DRIVES
Fantastic MEMOREX $5508^{\prime \prime}$ discs mounted in attractive case with power supply and fan. Shugart standard 50 way interface. Space for interfand space for second drive. $£ 199$ (car ©9.50).

MAWSON ASSOCIATES

WE ALSO BUY COMPUTERS
01-778 3600

Callers welcome by appointment
AND COMPUTER PERIPHERAL
Callers wacome by appointment

ELECTRONIC BARGAIN SUPPLIES

EX-GOVT VALUE and SEMICONDUCTOR EQUIVALENTS GUIDE
Contains an up to date fully comprehensive cross referen ced guide to British and American Service valves and semiconductors. £2.50 plus pp. 30p.

VALVE AND PROJECTOR LAMP LIST

Valves from 1925 to 1980. Many obsolete types. Modern TV, radio and transmitting valves. Send 60p. (Refundable on purchase) Or free with Ex-Govt., Valve Guide. We buy and sell valves in any quantity, large or small.

PLEASE ADD 15\% VAT to all orders including carriage and P.P.
Myyers Electronis
Devices
Dept. ETI2 12/14 Harper Street. LeedS LS2 7EA Tel. (0532) 452045 . Retail premises at above addres (opposite Corals). 9 to 5 . Mon to Sat. Sunday 1010
appointment Govt. Surplus items always in stock

Do you think that designing and understanding electronic circuits is beyond you?

The summer edition of Electronics Digest, Gateway To Circuit Design, provides a step-by-step introduction for the newcomer to the art of circuit design. Firstly, you'll be introduced to the commoner electronic components - but not in a passive way. Electronics is a practical subject, so Gateway To Circuit Design will enable you to build simple circuits for yourself, and take measurements on them (along the way learning how to use a multimeter). Once these introductions are over, Gateway To Circuit Design shows you what goes into the design of a wide range of electronic equipment - for audio, computing and electronic music, for instance.

Gateway To Electronics is an occasional popular series in Electronics Digest, published by Argus Specialist Publications. Previous issues in the series have concentrated on projects; now we'd like you to design your own!

At all good newsagents now or available by post from Electronics Digest, 513 London Road, Thornton Heath, Surrey.

We'd like to show you. that you're wrong

MASHMR THTFGYRONICS NOW! The PRACHICAT WEy!

This new siyle course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You tearn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a se!f employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
Read,draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer

NewJob?NewCareer? NewHobby?Getinto BlectronicsNow!
FREEE!

clectronics today international -OOU 5 InTM
 How to order: indicate the books required by ticking the boxes and send this page. together with vour payment, to: ETI Book Service.

 Argus Specialist Publications Ltd. 145 Charing Cross Road. London WC2 0EE. Make cheques payable to ETI Book Service. Payment in sterling only please. Prices wnclude postage and packing. Prices may be subiect to change without notice
BEGINNERS GUIDES

\square Beginner's Guide to Basic Programming Stephenson £4.95
Beginner's Guide to Digital Electronics
f4.95
\square Beginner's Guide to Electronics
\square Beginner's Guide to Integrated Circuits
Beginner's Guide to Computers
■. Beginner's Guide to Microprocessors

COOKBOOKS

- Master IC Cookbook Hallmark
f8.65
\square Microprocessor Cookbook M. Hordeski
£6.60
\square IC Op Amp Cookbook Jung
£13.15
\square PLL Synthesiser Cookbook H. Kinley
\square Active Filter Cookbook Lancaster
f6.60
£12.00
TV Typewriter Cookbook Lancaster
CMOS Cookbook Lancaster
[]L Cookbook Lancaster
Micro Cookbook Vol. 1 Lancaster
BASIC Cookbook K. Tracton
MC6809 Cookbook C. Warren 10.85

ELECTRONICS

\square Principles of Transistor Circuits Amos
Design of Active Filters with experiments Berlin f 10.40

- 49 Easy to Build Electronic Projects Brown
\square Electronic Devices \& Circuit Theory Boylestad
\square How to build Electronic Kits Capel
\square How to Design and build electronic instrumentation Carr
Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
\square Principles of Electronic Instrumentation De Sa
\square Giant Handbook of Computer Software
\square Giant Handbook of Electronic Circuits
Giant Handbook of Electronic Projects
\square Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray
Basic Electronics Grob
\square Lasers - The Light Fantastic Hallmark
\square Introduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault Diagnosis Loveday Electronic Fault Diagnosis Loveday
Essential Electronics A-Z Guide Loveday
Microelectronics Digital $\&$ Analogue circuits and systems Millman
$\square 103$ Projects for Electronics Experimenters Minis VLSI System Design Muroga
\square Power FETs and their application Oxner
Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
\square Electronic Drafting and Design Raskhodoff
Electronic Orafting and Design
\square VOM - VTVM Handbook Risse
\square Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair
Electronic Fault Diagnosis Sinclair
\square Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
\square Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas
\square Digital Systems: Principles and Applications Tocci
Master Handbook of Telephones Traister
\square How to build Metal/Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony
33 Electronic Music Projects you can build Winston
\square Getting Acquainted with your VIC 20 Hartnell
\square Getting Acquainted with your ZX81 Hartnell
\square Let your BBC Micro Teach you to program Hartnell
\square Programming your 2X Spectrum Hartnell
The ZX Spectrum Explored HArtnell
How to Design, Build and Program your own working Com System Haviland
\square BASIC Principles and Practice of Microprocessors Heffer Hints and Tips for the $\mathbf{Z X 8 1}$ Hewson
What to do when you get your hand on a Microcomputer Holtzman
34 More Tested Ready to Run Game Programs in BASIC Hor
\square Microcomputer Builders' Bible Johnson
\square Digital Circuits and Microcomputers Johnson $\quad \mathbf{1 3 . 0 0}$
\square PASCAL for STudents Kemp
The C - Programming Language KErnighan
COBOL Jackson
The ZX81 Companion Maunder
\square Guide to good Programming Practice Meek
\square Principles of Interactive Computer Graphics Newman
\square Principies of Interactive Computer Graphics New
\square Theory and Practice of Microprocessors Nichols
£7. 20

Microprocessor Circuits Vol. 1. Fundamentals and Microcontrollers Noll

f 17.20

$\begin{array}{r}77.95 \\ \hline 7.50\end{array}$

59.50

E .50
E .70
£.
$\mathbf{f} 12.95$
f12.95
$f 11.35$
f 11.35

Beginner's Guide to Microprocessors Parr
Microcomputer Based Design Peatman
Digital Hardware Design Peatman
\square BBC Micro Revealed Ruston
18.90
$£ 5.10$
\square Handbook of Advanced Robotics Safford $\quad \mathbf{1 2 . 1 5}$
1001 Things to do with your own personal computer Sawusch $£ 7.50$
Easy Programming for the ZX Spectrum Stewart $£ 7.15$
Microprocessor Applications Handbook Stout E34.40
\square Handbook of Microprocessor Design and Applications Stout
$£ 37.60$
\square Programming the PET/CBM West
An Introduction to Microcomputer Technology Williamson
\square Computer Peripherals that you can build Wolfe
and Technicians Wooland

REFERENCE BOOKS

Electronic Engineers' Handbook Fink
$\{56.45$
D Electronic Designers' Handbook Giacoletto
559.55
\square Illustrated Dictionary of Microcomputer Technology Hordeski
\square Handbook for Electronic Engineering Technicians Kauffman Handbook of Electronic Calculators Kauffman
\square Modern Electronic Circuit Reference Manual Marcus
International Transistor Selector Towers

VIDEO

\square Servicing Home Video CAssette REcorders Hobbs $\quad \mathbf{£ 1 1 . 8 0}$
Complete Handbook of Videocassette Recorders Kybett
Theory and Servicing of Videocassette Recorders McGinty
Theory and Servicing of Videocassette
Beginner's Guide to Video Matthewson
[] Videu Recording: Theory and Practice Robinson
Video Handbook Van Wezel
E7.95
£14.40
Video Techniques White
E12.50

Please send me the books indicated. I enclose cheque/postal order for \mathbf{f}
Prices include postage and packing
I wish to pay by Access/Barclaycard. Please debit my account.

Signed
Name
Address

HYCONOMISER

Although not electronic, we believe that Vivian Capel's report on the Hyconomiser will interest ETI readers as it could affect something very near to their hearts - their wallets! After all, the more cash you save, the more you can spend on electronic goodies.

Petrol-saving gadgets have abounded over recent years, and even before that when the stuff was much cheaper. Savings were marginal with most, some made no difference and a few actually increased consumption! It was with great scepticism, then, that I greeted the announcement of yet another, especially as it cost the not insignificant sum of $£ 47.50$. Even today you can buy quite a few gallons of petrol for that.

The ad claimed savings of up to 20%. That phrase 'up to' of course is the let-out; 5% or even 2% could be said to qualify. However, I was impressed by the fact that all the listed suppliers and fitters were well-known main-agent garages that had reputations to lose. Fitting, incidentally, must be by a trained mechanic, and this is included in the price.

Still suspicious, I phoned all the garages and questioned the mechanics. All were enthusiastic except a Volkswagen dealer who was having troubles, which I believe have since been resolved.

So what actually is it and what does it do? Much of the wastage in a petrol engine is due to large drops of fuel which are too big to be fully burnt before they are ejected from the exhaust. Some, because of their size and mass do not move quickly enough to make it around the sharp bends of the inlet ducts, hit the walls and run down the cylinders to dilute the oil. This is aggravated at part-throttle settings by the throttle-plate, which diverts the flow toward the manifold walls. A further factor is the lowpressure region set up under the throttle-plate which tends to deflect the fuel toward the front cylinders, thus giving uneven distribution and power loss. And finally in the fuel saga, uneven atomisation produces regions of uneven mixture in the combustion chambers around the plug tips.

A formidable collection of ills, curable you might think only by completely redesigning the petrol engine! Not so, for the Hyconomiser claims to overcome them all. How? By sonic pulses.

Blowing In The Wind

It consists of a plastic cylinder containing three plastic balls. A controlled air flow passes through the cylinder making the balls resonate at three different frequencies from 850 Hz to 2.5 kHz . The pulsed air flow is injected through a tube into the intake manifold below the carburettor. There the highest frequency produces a cone of microturbulence that smashes the fuel droplets into a fine mist with particles smaller than 20 microns.

The mixture still has to be distributed evenly to all cylinders, and evenly within each cylinder. This is the job of the middle and lower frequencies which set up areas of turbulence throughout the fuel inlet system.

The results are less consumption, more power, smoother running and, of interest to the environmentalists, less exhaust pollution. Engine and plugs also run
cleaner. Air/fuel ratio is maintained closely to the optimum 14.6:1 stoichiometric region.

Well, it sounds good but does it work? I decided to take a chance and had one fitted. Beforehand I made a careful check on my consumption in my elderly 1964 Wolseley 16/60, and for mixed town and country travel found it was 23 mpg . After fitting, I repeated the test with the same journeys. In view of the 'up to' phrase I would have been happy with 10% improvement: so I was very pleased to achieve 28 mpg , a 21% increase. Later, on a single longdistance run I did 34 mpg , but had no previous figure for this run to compare with.

I discussed this later with Hyco's managing director Tom Pearse. I learned that performances in excess of 20% were not at all uncommon, and I saw a report by one of the main-agent garages of before-and-after tests on various more recent model cars at several fixed speeds. Some were considerably higher, although this would not be a fair test of everyday motoring. Pressed for a minimum expected figure, Mr Pearse said he would be surprised if a normal production car did not attain 15% improvement.

As to cleaning the engine, I found it does this too. The makers stipulate that cars with old engines should be returned to the fitter after about 150 miles for re-tuning the device. It is in fact individually tuned for resonance with the particular engine it is fitted to. The turbulance breaks up the carbon deposits and thereby enlarges the combustion area, causing the device to de-tune. Once re-tuned the engine remains carbon-free and there is no further need of tuning.

The fitters did not inform me of this, and some thousand miles later my consumption had climbed and the device was completely off tune. Re-tuning restored optimum economy once more.

I can also confirm that the performance of my car is more sprightly although I have not pursued this too far, as my driving is definitely economy-orientated.

Fig. 1 Schematic diagram showing the operation of the Hyconomiser. By acoustically atomising the petrol, improved combusion and air/fuel ratio results.

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM

EQUIPMENT

AT UNBEATABLE PRICES! AINTREE LVERPOOL L9 OHUO51 5238440

TALK TOTHE WHOLE WORLD

Study now for the
RADIO AMATEUR'S
EXAMINATION
We have had 40 years successful experience in training men and women for the
 G.P.O. Transmitting licence.

- FREE R.A.E. brochure without obligation from:British National Radio \& Electronics School READING, BERKS. RG1 1BR
Name
Address
ETIIG/8i7 \qquad

MULTIMETERS
 (UK C/P 65p)

RANGE DOUBLER 10A DC1
Special price...........................f15.95 ETC 5000/5001 121 Ranges $50 \mathrm{~K} / \mathrm{V}$ Range Doubler 10A DC . 196.50 TMK 50023 Ranges 30K/V 12A DC Plus cont. buzzer£23.95 NH56R 20K/V 22 Range Pocket f10.95
350TR 23 Range $100 \mathrm{~K} / \mathrm{V}$. Large scale 10A AC/DC plus Hfe.... $£ 36.95$ ATI 02018 Range 20K/V. DeLuxe plus Hfe Tester.............................17.50 ST303TR 21 Range 20K/V plus Hfe Tester

MUSICRAFT 303 EDGWARE RD, LONDON W.2. TEL: 01-402 9729/2898

WHY WRITE TO LONDON

When you can walk to the Midlands largest selection of DIY.
Plugs, sockets, connectors, cable, flex, leads, boxes, Aerials, styli, components, elements, semi-conductors, meters.
In fact the lot!
Spares and repairs for all electronic, electrical and audio.
H. G. Electronics Co.

1350 Stratford Road, Hall Green, Birmingham B28 9EH Telephone: 021-777 2369

SPEAKERS

(Hi-Fi, P.A., Disco, Bass Guitar) 12" 50W£14.95 12" 100W£19.95 15" 100Wf29.95
18" 100W£39.95 Postage and Packaging £3 RETAIL - MAIL ORDER EXPORT - INDUSTRIAL EDUCATIONAL

\qquad

Hobly Eectomics - z×8 HR
 \section*{E.T.I. - JUNE 83 ADVERTISERS INDEX}

A.D. Electronics 90
Aitken Bros 70 70
Ambit Int 75
Armon Electronics 64
Audio Electronics 63
Bi-pak 16
BK Electronics 14
Black Star 77
BNRS 87, 90
BRadley Marshall 10
Cambridge Kits 86
Circuit Board Components 83
Clef Products 76
Comtech Electronics 12
Comquip 67
Concept Electronics 82
Cricklewood Electronics 8,9
Crimson Elektrik 62
Dataman Design 19
Delta Tech 64
Display Electronics 28
Electronize Design 58
Electrovalue 39
Emos 83
Enfield Electronics 91
Flight Electronics 49
Greenbank 82
Greenweld 68
G.S.C. 69
Happy Memories 91
H.G. Electronics 90
Horizon Electronics 91
ICS 91

ILP 56,57,77
Jupiter Cantab 41
Kelan Engineering 82
L B Electronics 90
L\&B Electronics 76
L.E.M. Services 86
London School of Furniture 83
Magenta Electronics 76
Maplin OBC
Marco Trading 90
Mawson Assocs 86
Midwich 27
M.I.M 69
Musicraft 90
Myers Electronics 86
Parndon Electronics 86
Pops Components 83
Powertran IFC,IBC
Rade Electronics 70
Rapid Electronics 6
Riscomp 12
Riscomp
R.T.v.c.
diäp..........is 63
J. W. Rimmer 68 68
Scopex 87
Service Trading 62
Sinclair Research 50,51
Sparkrite 81
Stuarts of Reading 82
Synchro Services 26
Technomatic 32, 33
TK Electronics 18
Thandar Electronics 34
Watford Electronics 4,5
TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE

ICS can provide the technical knowledge that is so essentia to your success, knowledge that will enable you to take advan age of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guar antee coaching until you are successful

City \& Guilds Certificates

Radio Amateurs

Basic Electronic Engineering (Joint C8:G/ICS)
Certificate Courses
TV and Audio Servicing
Radio \& Ampliier Construction
Electronic Engineering* and Maintenance
Computer Engineering* and Programming TV, Radio and Audio Engineering Electrical Engineering,* Installation and Contracting

Quallity for IET Amociate Membership
CADC , Approved by CACC
Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of Interest
Name
Address
$01-6229$ (All Hours

HAPPY MEMORIES

Soft-sectored floppy discs per 10 in plastic library case:
5 inch SSSD £17.00 5 inch SSDD $£ 19.255$ inch DSDD £21.00 5 inch DSQD £26.35
8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50

745 LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list

Please add 50 p post \& packing to orders under $£ 15$ and VAT to total. Access \& Visa welcome 24 hr service on (054 422) 618 Government \& Educational orders welcome, £15 minimum. Trade accounts operated, 'phone or write for details.

Happy Memories (ETI),
Gladestry, Kington, Herefordshire. HR5 3NY
Tel: (054 422) 618 or 628

PCB FOIL PATTERNS

AVON

ANNLEY ELECTRO

190 Bedminster Down Road
Bedminster Down, Bristol
Tel: 0272632622
Open: Mon-Sat 9am-6.30 pm Wed 9am-2pm
DORSET
D.J. ELECTRONICS

64 Ensbury Park Road, Bournemouth.
Tel: (0202) 515073.
Open: Mon-Sat 9am-6pm.

LANCASHIRE

ETESON ELECTRONICS 5 15B Lower Green,

Tel: (0253) 885107

MERSEYSIDE
MYCA ELECTRONICS
2 VICTORIA PL, SEACOMBE FERRY, WALLASEY, L44 6NR

Tel: 0516388647
Open Mon-Sat 10am-5.30pm
Mail Order price list 50 p refundable

LOOKING FOR
COMPONENTS! HARDWARE! CASES! TRY YOUR LOCAL LISTED STOCKIST

PROGRESSIVE RADIO
93 Dale Street. Tel 0512360982 47 Whitechapel, Tel 0512365489 Liverpool 2
THE ELECTRONICS SPECIALISTS'
Open: Tues-Sat 9.30-5.30

W. MIDLANDS

WANIERANDT
103 Coventry St., Kidderminster Components; computers, car radios, C.B.'s, amateur radio
and all electronic hobby equipment minterni Open: Mon-Sat 9-6, Sun 10-2 TEL: 05622179
H. G. ELECTRONICS CO 1350 Stratford Rd., Hall Green Birmingham. Tel: 021-777 2369 Open: Mon-Sat 9-5.30 (Closed Weds) Electrical accessories, plugs, skts, leads, Electronic components, computers, audio, video, tape, disco, hi-fi. .

NORTHAMPTONSHIRE

* A now company selling electronit components.
* Mail arder and walk-round supermarket.
* rast stacks and very competitive prices.

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

STAFFORDSHIRE

 SUPPIIES Wolstanton, Newcastle Tel: 0782636904
Open: Mon-Wed 9-6, Thurs 9-12 \& 5-7, Fri \& Sat 9-9, Sun 11-2

S. WALES

STEVE'S ELECTRONIC SUPPLY CO. LTD.
45 Castle Arcade, Cardiff
TEL: 022241905
Open: Mon-Sat 9-5.30
For components to computers

WARWICKSHIRE

Charlotte St, Rugby. Tel: Rugby 78138 Open 5 Days 10-6 (closed Wed) Wide range of components and R.S. stockists 1983 Mail Order Catalogue 75p

YORKSHIRE

AFE
ACE MAILTRONIX LTD.
3A Commercial Street,
Batley. Tel: (0924) 441129
Open: Mon-Fri 9am-5.30pm. (Sat 1pm)
Retail and wholesale.

Please include my business details in the next available issue of ELECTRONICS TODAY INTERNATIONAL:

BUSINESS NAME:
ADDRESS: \qquad

ETI PCB SERVICE (a) a Up until now PCBs were always the hardest component to obtain for a projed of course you $0 \sqrt{6}$

 could make your own, but why bother anymore? Now you can buy your boards straight from the lesigners - us! As of this issum alif(onco copyright) PCBs will produced from the same master used to buald our pribotypes, so you can be and will be finished to the high standard you would expitct from ETI.
In addition to the PCBs ior this montors projects, we arsmaking available some of the thore ? popular designs from our recent past. See the list below lor details. Please note that Nd othen BOARDS ARE AVAILABLE. If it's not listed, we sort have it!

ALWAYS QUOTE THE PCB CODE WHEN ORDERING PLEASE

	1979
\square	E/794-1 Guitar Effects Unit 2.64
\square	E/794-2 Click Eliminator 6.64
\square	E/796-1 Accented Beat Metronome 3.60
	1980
\square	E/803-1 Signal Tracer 2.27
\square	E/808-1 CMOS Logic Tester. 2.64
\square	E/808-3 Uitrasound Burglar Alarm . 2.87
\square	E/8010-1 Cassette Interface 2.93
\square	E/8010-2 Fuzz/Sustain Box 3.27
\square	E/8011-5 RIAA Preamp 1.93
\square	E/8011-6 Audio Test Oscillator . . . 3.13
\square	E/8012-1 Musical Doorbell 2.80
\square	E/8012-3 Four Input Mixer 2.64
	1981
\square	E/811-1 LED Tacho 4.13
\square	E/811-2 Multi-Option Siren 3.20
\square	E/813-1 Universal Timer 3.31
\square	E/812-1 IR Alarm (4 boards) 6.64
\square	E/812-5 Pulse Generator 3.57
\square	E/813-1 Engineer's Stethoscope. . . 2.65
\square	E/814-2 Drum Machine (2 boards) . 5.60
\square	E/814-4 Guitar Note Expander . . . 3.20
\square	E/816-8 Waa-Phase 1.53
\square	E/816-9 Alien Attack. 3.48
\square	E/817-1 System AS- Input (MM or MC) 2.65
\square	E/817-2 System A - Preamp . . . 5.17
\square	E/817-3 Smart Battery Charger . . . 1.97
\square	E/818-3 Hand Clap Synth 3.97
\square	E/818-5 Watchdog Home Secuity (2 boards). 5.31
\square	E/819-1 Mains Audio Link
	(3 boards) 7.35

Lineage:
35 p per word (minimum 15 words) Semi Display: (minimum 2 cms)

1. 3 insertions $£ 10.00$ per cm $6-11$ insertions $£ 9.50$ per cm $12+$ insertions $£ 9.00$ per cm All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)

01-437 1002 EXT 204

Send your requirements to: Jo James, ASP Ltd., 145 Charing Cross Road, London WC2H OEF.

Chequerac te-
Dil Somarof Rood Loadoo E17
PIRSONAL CALUERS \& TRADE ENOUTRIES WELCOME

UNBEATABLE PRICES for our electronics components. CMOS, TLL, Linear etc. (e.g. NE555 - 12p, NE556 _- 28p. Texas soundchip SN76477N
£1.75). Send S.A.E. For full list Micro Times. 19 Mill Street, Bideford, N.Devon.

BUILDING A TAPE DECK? We supply Papstprecisiontape drive/rewind motors, 120/220 VAC, 12000 RPM, 14 W only $£ 4.90$ new, ($£ 16.80$ elsewhere). Matching capacitor 60p, p\&p £1.50 .STEPPING MOTORS ideal for Robotics, any precision cotnrol six-wire, 5.4V, 1.5A DC, torque 450 zin, $£ 4.90$ used p\&p £1.50. Greymoor Robitcs (EM-AT), 5, Southern Hay, Cavendish Road, Weybridge, Surrey, KT13 OJN.

RADIO COMPONENT SPECIALISTS

 Access-Barclay-Visa. Lists 31 p.
BUMPER BOX
 BITS

WOW! We've got so many compo nents in stock, we can't possibly list them all! - So buy a box. In it you'll find resistors, capacitors, displays, switches, panels with transistors, diodes, IC's etc., coils, pots... and so on. All modern parts - guarenteed at least 1000 items, minimum weight 10 lbs . ONLY £8.50 inc.
ELECTRONICS WORL'D
1 e Dews Road, Salisbury, Wilts. SP2 7SN

SURPLUS

MANUFACTURERS REQUIREMENTS. All brand new Tip35A 60p. Tip36A 65p. 2N4405 35p. 2N6284£1.50, 2N6287 £1.50. Limited quantities. Mr Howard, 13 Clifton Road, Huntington, Cambs. (0480) 57339.

NOW OPEN IN NEWCASTLE, Waterloo Street, "Marlborough Electronic Components" for the best in electronic components, test equipments etc. Tel 618 377.

NEW COMPONENTS CHEAPEST PRICES
 New full spec parts ex stock. Same day despatch SAE or phone for full lists
 Example prices: 10 uf. 35 v radial capacitators 5 p each. $100 \mathrm{y} / 4 \mathrm{w}$ resistors $75 \mathrm{p}(1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$ - other valves available). BC308B 10p each 25IN 4148 for only 45p
 COLCHESTER COMPONENTS Unit A2
 Cowdry Centre, Colchester (0206) 66345

FULL COMPREHENSIVE

 RANGE oflC's, Transistors, Diodes, capacitors, etc. Please send 75 p inc. p\&p for catalogue, inquiries S.A.E. to R. Jones Electronics, 267 Rectory Road, Grays, Essex. Or ring Grays Thurrock 33158.MAIDSTONE ELECTRONIC COMPONENTS shop. Thyronics. Control Systems 8, Sandling Road, Maidstone, Kent, Maidstone 675354.

CONSTRUCTING AN AUDIO MIXER?

> To achieve a high quality finish you need commercially produced printed panels
> - sub-frames - main frames etc designed and manufactured specifically for this purpose.

PARTRIDGE ELECTRONICS

THE MIXER PEOPLE
56 Fleet Road, Benfleet, Essex, SS7 5JN, England. (Large S.A.E. please)

KITS

DIGITAL WATCH REPLACEMENT parts, batteries, displays, backlights etc. Also reports publications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen Bucks. HP15 6SGD
PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15p. Copper-clad fibreglass board, approx. 1 mm thick $£ 2.00$ sq. ft. Post/packing 75p. White House Electronics Castle Drive, Praa Sands, Penzance, Cornwall.

ANYTHING TO SELL?
 Then sell it quickly and cheaply Phone ASP Classified 01-437 1002 ext. 204

SOFTWARE GAMES

 cassette-will allow you to stop, list or copy any previously unstøppable tape. Includes two tree utilities. State if for 2×81 of \$pectrum. Send just £3, BobKer, 29 Chadderton Drive, yhsworth, Bury, Lancs.
EQUIPMENT

CENTURION ALARMS

We manufacture,

 you save £ £ £'s Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories. Discount up to 20% off list prices, eg. Control Equipment from £15.98, Decoy Bell Boxes from $£ 5.95$ inc.trade enauiries welcome C) 0484-21000 or 048435527 (24 hr. ans.) CENTURION ALARMS (ETi) 265 Wakefield Road. Hudderstield
HD5 9BE. W. Yorkshire Access \& V Visg
Orcors Welcomed

intruder alarms LTD WHOLESALE SUPPLIES MAIL ORDER DEPT

Bell Boxes $\mathbf{8 6 . 0 0}$	
Dummy Boxes	£4.50
Bell 6".	$\varepsilon 7.50$
SIRENS	
Minimite	£4.50
Electronic	$\varepsilon 7.50$
Cable (4 core)	£7.00
PRESSURE MATS	
Stair	£0.95
Standard	£1.50
CONTROL PANELS	
Battery T/E/E	£20.00
F.S.N. 20/40	£36.00
CONTACTS	
Aluminium	£1.85
Surface	80.75
Flush	£0.65
Quickfits	£0.75
BEAMS	
Infra Red	£31.50
Ultrasonic comp	£36.00
Rec Battery	£6.95
nneownt on quantity - Manap add 15\%	
HOR ORDEGS LESS THAN CI PEP E2.00OVER CSO PAP FREE	
alalarms itd	
86 Derby Lane, Old Sw	pool 13

HIGH POWER MERCURY ION LASER, emits green/red light. Easily built by the amateur constructor. Ideal school project, etc. Comprehensive kit of plans, including source of all materials, £5.25 + 25p P\&P. Lasertech, 31 Mill Brow, Chadderton, Lancs.
BURGLAR Alarm Equipment. Please visit our $2,000 \mathrm{sq}$. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

COPPER CLAD Double Sided Fibreglass, $12 " \times 8$ ". 10 sheets £6. 5 sheets £4. Davron, Box No. E.T.I. 202, ASP Ltd., 145 Charing Cross Road, London WC2.
AERIAL AMPLIFIERS Improve weak television reception. Price [6.70, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.
U.V. LIGHT EXPOSER UNIT for use in prep. of photo-resist P.C.B's. Attractive wooden construction with exposer area of $250 \times 150 \mathrm{~mm}$. Case $350 \times 250 \times$ 95 mm .240 v operation. Only £37.00 p\&p Send cheque to V.E.P. Ltd. 5 Hewens Rd. Uxbridge UB10 OFR.

> NEW 1983 EDMUND SCIENTIFIC CATALOGUE NOW AVAILABLE 72 pages of Solar Energy, Lab Equipment. Photography. Magnifers. Health, Astronomy. Motors, Magnets, Holography. Fibre Optics. Weather, And More' Send for FREE copy to Dept ET10, Rhenbergs Sciences Ltd, SovereignWay, Tonbridge, Kent TNS 1RN or ohone 0732 357779

HIGH QUALITY 240 v inverter transformers with circuit diagram, $160 \mathrm{va} / 12 \mathrm{v} £ 13,500 \mathrm{va} /$ $12 v$ £21, 300va/24v £15, 625va/24v £23. Includes VAT: and $p \& p$. Tornado Wind Generbators, 75 Benslow Lane, Hitchint,Herts.

Whatever you are selling.
Do it quickly
and cheaply
Phone ASP
Classified
01-4371002

CONVERT Zx8T to Eprom Programmer. ZP4000 unit £55 $\triangle \triangle$ AT or SAE details Enterprise Jechnofogy ExM ted. P.O. Box 140. Wigan WN 3 6LF.

VERORACKS 19" BRAND NEW, beautifully made, will take card size 11.5 cms by 20.1 cms it has 40 card slides marked 1-20. Lockable front panels size 11.5 cms by 30.5 cms and 11.5 cms by 13 cms (PSU PANEL) PSU chassis included with plug and socket on back panel. 5 off " D " type cut outs on rack back panel, provision for fixing board sockets on rack. Only £30.00. Custom made fully enclosed case for the above, with carrying handles and back panel cut out for rack connections, colour Blue Only £25.00. RACK WITH CASE FOR £50.00 all prices have VAT and postage included in them. "Q" SERVICES, 29 LAWFORD CRESCENT, YATELEY (0252) 871048 CAMBERLEY, SURREY.

TEN OLIVETTI TE300 Input/ output Terminals integral 8 hole paper tape punch and reader, 110 Baud Standard ASCII. Serial input/output. 120 columns untested, unguaranteed. Buyer to collect. £40 each. Mr Â. J. Stitchman, Chesterfield College of Technology, Infirmary Road, Chesterfield S41 7NG. (0246) 201011 ext. 337.

SHEETMETALFOLDERS 18" $\times 18 \mathrm{c}$ Steel, 16G Aluminium bench or vice held. Hobby or Light industrial use. £38. 01 -
890-7838. Day/evening.
FOR SALE G.S.C. 2001 Function generator: Maxi 100 Frequency counter virtually unused £80 each 05402677.

STEREOPOWER 120 WATT £10.85 p.case \& controls \& sockets \& instructions..KIA-8, Cunliffe Road, Ilkley.. 300 watt slaves £15 E/E.

Components to sell?
 Phone ASP Classified on
 01-4371002 ext. 204

BOOKS \& PUBLICATIONS

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliaphonic music, telekinetics. Computer software. S.A.E. 4×9 " , Paralab, Downton, Wiltshire.

AMAZING ELECTRONICS PLANS.Lasers, super-powered cutting rifle, pistol, light show, ultrasonic force fields, pocket defence weaponry, giant tesla satellite TV pyrotechnics, 150 more projects. Catalogue $£ 1$ (refundable) from Plancentre. Bromyard Road Industrial Estate, Ledbury HR8.

AVOID WASTED RESPONOSE

To fill your vacancy cost effectively and quickly.
Reach over 65,000
people in the
electronics field.
For details
Phone ASP
Classified
01-4371002 Ext. 204

TELETEXT (Oracle/Ceefax) add-on adaptors for any television. Only £147.50 plus £2.45 postage. Also Viewdata (Prestel). Access/Visa. Cytel (ETI). Freepost Bristol BS10 6BR. (0272) 502008 anytime.

ZX81 INVERSEVIDEO MODULE. No more eye strain, simple to fit inside computer. Complete with full instructions and change over switch. Only £6.95 inc. p\&p. Send cheque to Xerox Electronics, PO Box 2 , Loamhead, Midlothian, Scotland.

45% of our readers own a home

 computer.Reach them through
ASP Classified Phone 01-437 1002 ext. 204

WANTED

WANTED: ELECTRONIC COMPONENTS and test equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley.

SPY CASSETTE. Amazing cassette will allow you to stop. list or copy any previously unstoppable tape. Includes two free utilities. State if for ZX8 1 or Spectrum. Send fust E3. Bobker. 29 Chadderton Drive. Uns worth. Bury. Lancs

Design Engineers
 Satellite Communications

Major expansion of our Space Division has created numerous opportunities for engineers to be involved in some of the most technologically challenging work on meteorological and communications satellites. Qualified Hardware and Software Design Engineers of various levels of experience are required for posts which vary from Engineering Manager/Group Leader to membership of a Design Team. Disciplines include

Spacecraft Systems Communications Systems

Microwave Systems and Equipment

 Radar and Signal Processing Electronic Circuit DesignMechanical, Thermal and Dynamics Design Power Supplies Switch-Mode
Salaries and benefits will reflect the importance we attach to the positions and relocation assistance is available if required
Please write or telephone stating your qualifications, recent experience and area of interest to Jack Burnie. Marconi space \& Defence systems Limited, Browns Lane. The Airport. Portsmouth. Hants. Tel (0705) 674019 Ref: BL 34.
(All posts are open to men and women)

Marconi

Space \& Defence Systems

COULD YOU SELL THIS SPACE

If you are young, enthusiastic, ambitious and hardworking then read on.
We need someone of your calibre to join ASP Classified. The atmosphere's exciting and the career prospects excellent.
Call Sally Collins on 01-437 102 and find out more about this exciting opportunity.

WILL THE POSTMAN INTRODUCE YOU TO A NEW APPOINTMENT NEXT WEEK?
He could do _if he's deliverying your free weekly copy of Executive Post, the unique executive jobs newspaper published by PER, part of the Manpower Services Commission
Because each week Executive Post carries:
\star an average of 30 pages of UK and overseas job opportunities: technical, professional, scientific, managerial and commercial
\star informative editorial on job-hunting and career development

* news on starting your own business, on vocational training and on further education
Contact Kevin Edwards now for your sample copy - and next week, the postman could helpyour jobsearch come to a successful conclusion.

Executive Post, Moorfoot, The Moor,
Sheffield S1 4PQ.
Tel. Sheffield (0724) 704584.

VIDEO ENGINEERS

Redifusion Consumer Manufacturing Ltd is seeking intermediate and senior video engineers with OND, HND or similar qualifications, together with a knowledge of analogue and digital circuits, to join a small team working on a wide variety of projects associated with video cassette recorders, video cameras, disc players, colour TV receivers and monitors.
In addition to analysis of performance and long term reliability factors, assessment reporting is an important part of the team's function and the ability to express oneself verbally and in writing is essential.
Our laboratories are situated atChessington with in easy communting distance of the Surrey countryside
Attractive salaries and the usual big company benefits are offered to suitably qualified and experienced engineers. If you believe you can make an effective contribution to our future video projects please write to or phone:-

Mr. Harry Brearley
Rediffusion Consumer Manufacturing Ltd.,
Fullers Way South,
Chessington,
Surrey, KT9 1 HJ
Telephone: 01-3975411

CLASSIFIED ADVERTISEMENT - ORDER FORM

1.	2	3.
4.	5	6.
7.	8.	9.
10.	11	12.
13.	14	15.

Advertise nationally in these columns to over 100,000 readers for only Advertise nationaily in these columns to over 100,000 readers for only
36 p per word (minimum charge 15 words). Simply print your mestage in the coupon and send with your cheque or postel order mode payable to Argus Specialist Publicationa Ltd to:
CLASSIFIED DEPT. ELECTRONICS TODAY INTERNATIONAL
145 Charing Cross Rd., London WC2H OEE.
Tel: 01-437 1002
Please indicate classification required.
Name
Address

Tel.No. (Day)

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

Hebot il is a t-rile-type robot which lakes programming out of the two dimensional world of the vou ato the real three dimens ional world Given a DC supply cf $G-15 \mathrm{~V}$ it can periorm a bew derm number of moves under computer cortfol - forwards, tackwards lett ard right - with each wheel independemly sontrolled I: has bl nting eyer, bleeps with a choice of two tones and hes a solenoud cperathd pen to char its progress. Touch senscrs coupled to ins shell relurn data about its exviromment to the computer for it to calculate evasive or experratory action. Hebct Il connects directly to an 1/O port or aternatively with 're uriversal intertace board to the expansion bus of a $Z \times 8^{\circ}$ or othei conpute

Robotic experience is becorning as essential a subject as computing MICROGRASP provides the bwest cost means of acquring tha experience but despite its ultra tow price the robot has co-siderable versatility There are 5 axes each using a servo motor and there is feedback from each of the alm movements. Control is by any computer with anexpansior bus - the $2 \times 3^{\prime}$ being particu arly suttable Servonc is acheved with hardware on the intertace board to keep programming simple and the robot is coperatec uncer BASIC commands with no computer specific so twale required. The interface board is memory mapped ssirig only 64 bytes at any of 1024 switch selectable locations

MICROGRASP robot kit with pawer supply Universal computer interface buard kit 23 way edge connector
ZX81 peripheral/RAM Pace sollter board
£145.00
$£ 48.50$ $£ 2.50$
$£ 3.00$ MICROGRASP, INTERFACE BOARD AND ZX81

MICROGRASP, INTERFACE BOARD AND ZX81
printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles, in product control and R \& D. We shall co ordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit $£ 295.00$ VAT Complete 16 bit 64 K cornputer ready built $£ 395.00$ + VAT
Up to the nano-second hard, firm and softwa
developments embodied in a complete system. Mega Hertz 16 bit CPU; 64 K upwardly compa DRAM; separate 16K video DRAM and 24K TI Powe Basic with overwrite. Supports up to four Disc drives o mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications

Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along with NOS C/PM.
Hardware components available separately with details in Nov, Dec. and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered I/O to free machine whilst

Top of the range is the Genesis Pro? which has dual speed control, comtinuous servo operation and double acting cylirders for increased torque on the wrist and arm rotation joints. The microprocessor based control system has additional memory, position interrogation via the RS232C interface increasing the versatility of corrputer control and inputs are providec for machine tool interfacing.
6 axis system FEADY BUILT $£ 1950.00$ Powertran COF EX 16 bit 64 K sorrfuter kit $\mathbf{£ 2 9 5 . 0 0}$ READY BUILT $\mathbf{£ 3 9 5 . 0 0}$

Example prices and specifications

Genesis S101
Base $195^{\prime \prime} \times 11^{\prime \prime} \times 2.5^{\prime \prime}$
Lifting ta apacily. 1500 gm Arm lift $65^{\prime \prime}$
Weignt 29 kg
4 axis motel in kit form axi notel kit form

Genesis P101

Base: 9.5" $\times 11^{\prime \prime} \times 7.5^{\prime \prime}$
Lifting capasity 2000 gr Weight 3 atrg
4 axis madel in kit form $\underset{\mathbf{E} 595}{\mathbf{£} 675}$

Compiete Systems as shown in Pholograph above
Genesis 5101
4 axts sy flom in kitorm $£ 681.50$ 5 axis syatem in kit orm £. 737.50 5 axis system Reacy Built £1450 Genesis P101
6 axis system in kit *orm $£ 945.00$ 6 axis system in kit orm $£ 945.00$

All prices exclusive of VAT
GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND CO ZTEX COMPUTER

With prices starting below $£ 1,000$ the Genesis range of general purpose robots provide a first rate introduction to robetics for both education and industry. Each has a self-contained hydraulic power source, whict enables loads of several pounds to be smbothly kandled. The system operated from a single phase 240 or 120 V AC supply or a 12 VDC supply. The machme can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous weration Position contral is achieved by means of a closed-ioop feedback operation. Position contron £425
$£ 475$ system based around a dedicated microprocessor. Movement sequences can systems can also be intertaced to an external computer via a standard RS 232 C link.

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS
(CYBEANETIC D VISION) PORTWAY NOUSTRIAL ESTATE ANDOVER HANTS SP 10 3-M Phor E Enquiries (0284) 84455 Export Enquiries Povjertran International Hollom Down Farm Lopcombe Salisbury Wiltshire SP5 1BP
Tel: 0264781575 TLX: 477407 ZENMON

Sole UK Agents for Heathkit

NOW THE norld－famous Heath－ kit range of superb electronic kits is available from Maplin－the newly appointed exclusive UK distributor．Kits range from a simple clock for beginners to a unique Robot（see pic）with which you can learn about robotics．

There is a range of training courses covering electronics and computing topics，many contain－ ing constructional projects．For full details，pick up a copy of the latest Maplin magazine or write for a free copy of our Heathkit catalogue．Order As XH62S．

GREAT PROJECTS FROM E\＆MM

OUR NEW book＂Best of E\＆MM Projects Vol．1＂brings together 21 fascinating and novel projects from E\＆MM＇s first year．

Projects include Warmony Gen－ erator，Guitar Tuner，Hexadrum． Syntom，Auto Swell，Partylite，Car Aerial Booster，MOS－FET Amp and other musical，hi－fi and car projects． ORDER AS XHGIR．PRICE： 1.

Maplin＇s Fantastic Projects

FULI DEEALLS in our project hooks．Price 70p each．

In Book 1 （XA01B） 120 W rms． MOSFET Combo－Amplifier－ Universal Timer with 18 program times and 4 outputs－Tempera－ ture Gauge－Six Vero Projects．

In Book 2 （Xa020）Home Security Sistem－Train Control－ ler for If trams on one circuit Stopwatch with multiple modes －Miles－per－Gallon Meter．

In Book 3 （XA03I） 2×88 Key－ board with electronics－Stereo 25W MOSFET Amphfier－Dop－ pler Radar Intruder Detector－ Remote Control for 7 rain Con－ troller．

In Book + （ X （0） E ）Telephone Exchange for thextensions－ Irequency Counter 10 H,

600MH／－Iltrasomie Intruder Detector－I／O Port for ZX8I －Car l3urglar Aarm－Remole Control for 25 W Stereo Amp． In Booh 5 （ VAOSF ）Modem to Furopean standard－low 240 V AC Inverter－Sounds Generator for ZXXI－Central Heating Controfler－Pamic Button for Home Security System－Model Train Projects－Timer for Ey－ ternal Sounder．

In Book 6 （Ya06G）Speech Symthesiser for ZX81 \＆VIC 20 •

25W Siereo MOSFET Amplifier

Over $26 \mathrm{~W} / \mathrm{channel}$ into 8 se a

 I kH ，both channels dirven．＊Frequency response 20 Hz 10 $40 \mathrm{kHz} \pm \mathrm{IdB}$ ．
＊Low distortion，low noise and high reliability power MOSFEI output stage．
＊Exiremely easy to build．Almost everything fits on main peb．
cutting interwiring to just 7
wiren（plus toroidal transformer and mains lead terminations）． －Complete kit contains every thing you reed including pre－ drilled and printed chassis and wooden cabinet．
Full details in Projects Book 3. Price 70p（XA03D）Complete hit only 555.20 incl ．VAT and car－ riage（LW7IN）．

[^3]Module to Bradge lmo of our MoSFET Amps to make a 350 W Amp－ZXXi Sound onsour IV• Scratch Filter－Damp Meter Four Smple Projects．

In Book 7 （XA07H）＊Modem Interfate for $Z \mathrm{XXI}$／VIC20－Degi－ tal Imlarger I imer／Controller－ I）Xers Audo Processor－Sucep Oncillator－Minilab Power Supply－Leectronic Loch • and others．
＊Profects for Book 7 nere in an adranced state at the neme of writing．but conlchls may changa priow to publicanon（ctue tah 1／a） $19 \times 3)$

Computer Shopping Arrives

AS FROM June 1 st you can place orders directly with our computer from your personal computer．The computer shop－ ping revolution has arrived！To communicate，you＇ll need a modem（our RS232 compatible modem kit is LW99H price £39．95）and an interface（our ZX81 interface LK08J price $£ 24.95$ is available already with many more for most popular micros coming soon）．

Just dial us up on 0702 552941 and youll be able to interrogate our soch file then place your order，type in your credit card number and a tew minutes after sou hang up your order will print out in our warehouse ready for packing．And all without saying a word．

Tiy out the future way of shopping now！You＇ll see im－ mediately what stock we⿱丷天心 got as allable and bou＇ll discover hou casy it is to ensure your order is catally right．And you＇ll see prectsels what the current price is for each $1 t e m$ and what total amount will be charged to your credit card．It all helps to make nuying easier． ring now！

MATINEE ORGAN

EASY－TO－BUILD，superb specifica－ tion．Comparable with organs selling for up to $£ 1000$ ．

Full construction details in our book（XH55K）．Price \｛2．50．Com－ plete kits available．Electronics （XY91Y）！299．95＊．Cabinet（XY93B） $\pm 99.50^{*}$ ．Demo cassette（XX43W） £1．99．

Maplin＇s New 1983 Catalogue

Over 390 pages

 pached with data and pi tures and all completelyrevised and in－ cluding over 1000 new items．

MAPIIN FIFCTROVIC SLP－ PIIES IINITED，P．O．Box 3 ． Rayleigh，Essev Ss6 81．R．Tele－ phone：Sales（0702） 552911 General（0702） 554155.

Shops at： 159 King st．，Ham－ mersmith，London W6．Tel：01－748 0926． 284 London Rd．，Westcliff－ on－Sea，Essex．Tel：（0702）554000． Lynton Square，Perry Barr，Birm－ ingham．Tel：（021） 3567292.
Shops closed Mondays．
fll prices include 1,47 \＆carriage． Please add 50p handling charge to orders under L 5 totalv ilue

[^0]: Available for immediate delivery. Allow 14 days for p. \& p. U.K. price only (export price on request).

[^1]: The HC (well, sometimes) 601 (left) and the MIC-3300A (right): both these meters (and their relatives) turn up at a variety of sources.

[^2]: Please note X in part number denoles manis voltuge. Please insert ' O ' in place of X for 110 V . ' 's pace of X for 220 V it uropet, and ' 2 ' if place of X for 240 V (U.K.) All unis excent UCl uncurpurate sur owil horotal tramstormers.

[^3]: ｜POST THIS COUPON NOW： Please send me a copy of your 1983 catalogue．I enclose 61.50 （inc．P\＆P）．If I am not completely satistied I may return the cata－ ｜logue to you and have my money refunded．If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons．

 ## Address

 Post Code

