AN ARGUS SPECIALIST PUBLICATION

RITEWMAITOWMIL

SPECIAL AUDIO ISSUE

 Power Four Audio Projects:
Amplifier

Using NDFL
Power Supply Upgrade from Linsley Hood
Balanced Line Amplifier
Comporessor
Limiter
System

Star sounds** 1 Star quality ** DELIVERY on all orders cver $£ 100$ (UK main and only) Add jusi $£ 2.50$ on lower pr orders
 D.co Stereo Mixer - this is a really versatile new mixer that enables the constructor DJ to produce a professional performance every time. There are two stereo inputs for magnetic cartridges a stereo auxiliary input and mike rioges, a slereo auxilary inpul and mike input. Other 'plus' teatures are autopanning for fast or slow slider controls, multi-mixing, ducking. mterrupt, input modulation, in short everything... the modulation, in short everything...the whele works - AND - under £ 100 complete! Complete kit $£ 97.50$ + VAT

 Star features **TFIANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 ' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder - buy it, build it - play it! You will know you have made the right choice
Complete kit $\mathbf{£ 1 6 5 . 0 0}+$ VAT

This versatile modular mixer, featured as a constructional article in Practical Electronics can be built up to a maximum of 24 inputs, 4 outputs and ar auxiliary channel. Each input channel has Mic and Line inputs, variable gain, bass and treble controls and a parametric middle frequency equalizer. There are send and return, acks, auxiliary, pan and fader controls and output and group switching. The output channels have PPM cisplays and record and studio outputs. The auxiliary channel also has a PPM display and there is a headphone monitor jack and a buill-in tak-back micrcphone. The mixer modulies plua into base units each of which takes up to 6 channels. To eliminate hum, the power supphs is in a separate cabinet.

KIT PRICES

tnput channel

Output channel Auxiliary channel Blark Fanel Pair of mahogany end cheeks $£ 12.50$ $£ 3.00$

All prices are VAT exclusive

TRANSCENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.

Our thanks to Howland-West International Ltd. for the cover photo.

Dave Bradshaw: Editor Peter Green: Deputy Editor Phil Walker: Project Editor Jerry Fowler: Technical Illustrator Gary Price: Divisional Advertisement Manager
Ron Harris B.Sc: Managing Editor T.J. Connell: Managing Director PUBLISHED BY
Argus Specialist Publications Ltd. 145 Charing Cross Road, London WC2H OEE DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd 12-18 Paul Street, London EC2A 4/S
(British Isles)
PRINTED BY
QB Limited, Colchester
COVERS PRINTED BY:
Alabaster Passmore

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS and their EDITORS CANADA - Halvor Moorshead GERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC Member of the Audit Bureau of Circulation

Fectronics Ioday is normally published on the first Fri dy in the month prece ding cover date The content of this publication including all articles, designs, pians. drawings and programs and all copyright and other in ellectual property rights therein belong to Argus Specialist Publications Limited. All rights conierred by he law ot Copyright and other intellectual property ights and by virtue of international copyright conven tions are specitically reserved to Argus Specialist Publications Limited and any reproduction reoures the Specialist Publications Lid Company. (c) 1983 Argus taken in the preparation of the magazine contents but the publishers cannot be held legally responsible for errors Where mistakes do occur a correction will normally be published as soon as possible afterwards All prices and datd contained in advertisements are accepted by us in good taith as correct at time of going to press. Nether the advertisers nor the publishers can be held responsible, however, for any variations affecting price or avallability which may occur atter the publicaSus closed tor press
\square Subscription Rates. UK $£ 13.15$ including postage. Airmail and other rates upon application to EII Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5 Telex 8811896

FEATURES

DIGEST

11All the latest news on the electronics scene: computing, audio, engineering, hi-fi, energy, lectures, a collection of shorts and two or three extremely silly items.

BUYER'S GUIDE TO HI-FI
An eight-page special feature for anyone dipping a toe into the hi-fi market - or, indeed, anyone contemplating total immersion. A series of complete disc-playing systems is listed, each having the ETI stamp of approval and ranging from the affordable to the ridiculous. There's also advice on compact discs, cassette decks, tuners, and everything you wanted to know about shopping for hi-fi.

CONFIGURATIONS

63
When is a diode not a diode? When it's got a couple of extra semiconducting layers and becomes a thyristor, that's when. Ian Sinclair takes a look at fourlayer devices and their uses.
TECH TIPS
More circuit design ideas from our everinventive readership: this month we feature a simple stylophone and active circuitry for a bass guitar.

PROJECTS

STABILISED PSU.
 18

We welcome J. Linsley Hood to the pages of ETI with this article on the merits of stabilised power supplies, concluding with two designs that will give you the best from your hi-fi.

60 W NDFL POWER AMP
After last month's feature on nested differentiating feedback loops, we present a 60 W , two-NDFL design with very low distortion. Use it as a module to upgrade your hi-fi or as the basis for a whole new power amp.

COMPRESSOR/LIMITER.

 .32Banish the overload blues with our broadcast-quality compressor/ limiter. This unit uses common components but has a spec straight out of a professional studio.

BALANCED LINE PREAMP
38
This balanced input differential preamp will allow the use of transducers having long leads, with low noise and low distortion.
ZX81 MUSIC BOARD PART 2 54
To conclude this project we provide full listings and explanations of the software that enables you to use the music board to the full.
ORGAN PART 4.
Our final article in this very popular series describes the construction of the Victory organ and details all the parts and prices. A must for the serious musician.
STAGE LIGHTING PART 4 70 The last part of this project gives you the remaining overlays for the autofade units and the triac power boards.
FOIL PATTERNS

INFORMATION

PSEUDOROM

We know, we know - we promised it last month. Well, it's taken us about that long to figure out how to fit it all into that sleek, compact shape you'll notice if you move your eyes a couple of inches to the right. Assuming you did, and have returned, then you have just been looking at 8 K of low-power, CMOS RAM plus a bit of address decoding and battery backup which can be write-protected and made to appear as four 2 K by 8 blocks, two 4 K by 8 blocks, or one 8 K by 8 . Now you can develop software on a device which is faster than a speeding ROM and a lot easier to reprogram.

SWITCHED MODE POWER SUPPLY

This professionally-designed unit is neat and compact, but it can deliver 12 V at 5 A without straining. Following on from our discussion of switched mode PSUs in the April issue, this project will shed more light on this seldom-discussed subject.

DATA SHEET

With the runaway success of the Victory organ project that has been featured in the last four issues of ETI, have come requests for more information on the special chips used. Ever eager to oblige, next month's ETI contains a Data Sheet on both the M108 and the M208.

COMPASS

This one's really something special. Not only does it display 16 points of the compass using an alphanumeric dot matrix readout, but it uses a new kind of sensor that relies on an apparently new branch of number theory called cyclic binaries. It's pretty stylish and cheap, too. Get the next issue of ETI and you'll never lose your bearings in your boat or car.

DON'T MISS THE JUNE ETI

ON SALE 6th MAY

40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161, TELEX: 914977 CRIKEL G

Lampholders, FUSES: $20 \mathrm{~mm} 1 \frac{1}{2} \mathrm{mh}$, slow or quick blow. Fuseholders. CONNECTORS: DIL DN, SWITCHES: 'Toggle, Biased, Rocker Rotary, Slide, Dil Pus, METERS. Anodised, Collet, Pointer. Panel. TOOLS: Pliers, Cutters, Strippers, Trimmers, Cable Cutters. And much much more DEPTS ETC WELCOME. OVERSEAS ORDERS WELCOME ORDERS FROM SCHOOLS. GOVT DISCOUNTS
CRICKLEWOOD ELECTRONICS LTD., 40 CRICKLEWOOD BY BROADWAY, LONDONOTIATION TEL: 01-452 0161, Tolex 914977

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS 325 EDGWARE ROAD, LONDON W2 1BN Tel: 723-4242

CRIMSON ELEKTRIK

No
2615 Complete Pre-Amp Kil
CK1010 2616 Complete Pre-Amp Kin Amp Kit CK 1040 2616 Complete 80W Stereo Amp Kit CK1080 £ 116.00 2617 Complete 100W Stereo Amp Kit CK1100- 131.00 2618 Add on Moving Coil Kit MC12K £21.74 $\begin{array}{llll}2618 & \text { Add on Moving Coil Kit } & \text { MC12K } & \text { £21.74 } \\ 2619 & \text { Pre-Amp Power Supply Kit } & \text { PSK } & £ 17.39\end{array}$

2585c BD1 Bridge Unit for Modules Pre-Amp Module

Price	
18.26	WE ALSO STOCK
21.30	ALL THE POWER
23.90	SUPPLIES TO DRIVE
30.43	THESE MODULES
30.43	PS. THESE KITS AND
42.60	MODULES ARE
	EXCLUSIVE OF VAT
25.65	

MODULES ARE EXCLUSIVE OF VAT

WE ALSO STOCK ALL THE POWER SUPPLIES TO DRIVE THESE MODULES
33.48
7.13
7.13

VELLEMAN KITS

No Description Price
K610 Mono UU using LEDS. 8.18

K1798 Stereo UU using LEDS
Stereo UU using LEDS

WE STOCK A WIDE RANGE OF BOXES TO HOUSE THESE KITS IN. FROM VERY SMALLTO VERY LARGE 19" MAXIMUM

PS. ALL KITS INCLUDE VAT

Some are easy some are hard
No
K2543 Transistor Ignition
$\begin{array}{ll}\text { K2543 } & \text { Transistor Ignition } \\ \text { K2555 } & \text { Digital Freq Counter for Receivers }\end{array}$
K2566 3 Channel Coloured Light Organ
K2572 Universal Stereo Pre-Amplifier
Universal 4 Digit U/D counter with memory K2577 Electric Motor Speed Control
K2579 Universal Start/Stop Timer
K2589 Heating Controller
K2583 Heating Controller Timer $\quad 6.2$
$K 1682$ Microprocessor Universal Timer (no case) $\quad 48.37$ K2580 Electronic Power Switch Dimmer 10.00 K2580 Electronic Power Switch Dimmer
K2551 Central Alarm Unit

K2571 Light Computer with EPROM
K2569 Three Tone Chime 36.23
$\begin{array}{ll} \\ & 6.56\end{array}$
K2544 Complex Sound Generator 15.53
K2032 ComplexSound Generato 15.53

K2557 Digital Thermometer
$K 2545 \quad 50 \mathrm{~Hz}$ Crystal Time Base
K615 High Precision Stopwatch Description

TELETEXT KIT

This unit will make your TV fully remote control (infra-red) and bring you closer to the amazing world of teletext. The kit Can alsob
this can give you full message facilities for ordering foods or sending and receiving messages (E.G.) Booking your Holidays!
With a microcomputer as an alternative keyboard the world is even greater adding bulk updating to viewdata computers an receiving telesoftware for implementation to any personal computer.
Even without the Prestel option, Telesoftware from the Teletext pages free!
The full features of Teletext, including subtitles are all included in the basic kit An attractive stylish case is available to complement the finished kit.

Basic Teletext Kit (no box) $£ 130$ + VAT P/P $£ 2.50$
with box $£ 144.95+$ VAT P/P $£ 3.00$
box by itself $£ 14.95+$ VAT P/P $75 p$

PRESTEL ADAPTOR

A Prestel micro computeradaptor to give full autodialing to your micro computer. All the usual Prestel facilities are added via this unit, plus many more, and, can operate to any viewdata computer.
You can shop from home, bank transmitt messages and receive software, which means that the uses your micro can be put to are limitless.
The unit is not restricted to just the UK, for at least 28 countries use the Prestel viewdata format, so you can also mail-order from anywhere. The Prestel unit is suitable for most micro computers even the $Z X-81$, so at the push of a button, the technology of tomorrow is in your home today

ANTEX

Soldering Irons

$\times 25$

CX $\begin{array}{lll}\text { C"iron" } & 17 \mathrm{~W} & 5.30+ \\ & 15 W & 5.30+\end{array}$ CCN "ceramic" 15 W 4.80+ Wide range of bits and elements in stock now.
Soldering iron stand 2.40
We stock multicore solder for normal use or fine.

Iso-tip Cordless Iron Miniature low voltage Miniature low volta
soldering station soldering station Oryx50 50W temp controll $13.95+$ Oryx super 30 . $5.90+$ All irons are 240 V mains. Earth Leakage current is less than 3 ua. The temperature controlled iron can be controlled within $\pm 2 \%$ tempera. ture range from $200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.

COMPONENTS

BOOKS

Device	Price
Z80A	3.20
Z80A PIO	3.20
Z80A CTC	3.20
6800	6.50
6810	3.00
6821	4.25
65022 CPU	7.50
$2114(200 \mathrm{~ns})$	1.80
2708	3.00
2716	3.20
2732	7.50
2532	3.50
2764 (200ns)	11.00
ADC0816 (8 bit)	14.90

We stock a very wide range of opto-devices, from Infra-Red to LED's to Opto-Couplers.

Check us out for competitive prices and helpful service.
*New Books
Please Note. Books are VAT exempt but add $£ 1.00$ to cover P/P

The 9900 Family Data Book
The Opto-Electronics Data Book
The Bipolar Microcomputer Databook
The Interface Circuits Data Book
The TTL Data Book
MDS Memory Data Book
The Linear Control Circuits Data Book
The Voltage Regulator Data Book
The Power-semiconductor Data Book
*TTI Data Book Volume I
*TTI Data Book Volume II

Why not try our mail order service, it's fast and efficient. We take Barclay, Access, Am Exp, Diners or Cheque.
Cheques made payable to Bradiey Marshall Ltd.
0.00
4.00
4.00
4.50
7.00
8.50
3.95
4.00
4.50
9.00
9.00
8.00

We also stock 74 series $74 \mathrm{LS}, \mathrm{C}$ mos, transistors, capacitors, resistors, LED's, zeners, diodes, jack plugs, mains plugs XLR plugs, cannon plugs, arrow switches BNC connectors, reducers, photolak,
pers, Edge connectors, pots, batteries, digital pulsers, logic probes,
proto-boards, vero board.
This is just a small sample of what we stock, if you like to see more send $£ 1.00$ to us for our NEW 1983 CATALOGUE.

PLEASE REMEMBER TO ADD VAT + 60P P/P

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Drawing The Line

 SomewhereAutoCAD is a two-dimensional A computer-aided drafting and design package which runs on 8 -bit and 16 -bit microcomputers under CP/M-80, CP/M-86 or MSDOS/PCDOS. It is a generalpurpose package, suitable for a wide variety of applications, including architectural and landscape drawings, mechanical, electrical, chemical, structural, and civil engineering, and printed-circuit design. The AutoCAD package, complete with drivers for all currentlysupported devices, is available in the UK from PO Box 100A, Surbiton, Surrey KT5 8HY (01-399
8530) for approximately $£ 630$. Special dealer and distributor/OEM prices are also available.

AutoCAD acts like a wordprocessor for drawings. It lets the user make drawings from simple components such as lines (of any width), circles, arcs, and solidfilled areas. Drawings may be annotated with text of any size, inserted at any point and at any orientation. The drawings can be stored on disc and in turn used as components in other drawings. The ability to define parts libraries simply by drawing them, and to write custom menus (via ordinary text files), allows specialised application systems to be easily developed under AutoCAD. Drawings may be created through keyboard commands, with a light-pen and onscreen menu, or from existing paper drawings via a digitizing

All resistor values in ohms unless marked

(c) 1978 Frank Lloyd Wright Foundation

Disc Jokey?

Despite the fact that LP records are a bit bulky when strapped to your waist, Audio Technica will be introducing (in April, or so we're led to believe) their AT 727 Sound Burger. Assuming this is not an April Fool's joke played on gullible journalists, details are as follows: the Sound Burger will play LPs or singles through its own headphones or an external amp and speakers, on any 'reasonably flat' surface, driven by its own batteries or an optional mains adaptor. The turntable is belt driven, the arm is dynamically balanced (we think that means springs), the cartridge is magnetic and the price is $£ 89.95$ (recommended, including VAT). As we said, it'll be appearing in April . . .
tablet. The large set of editing commands allows drawn objects to be moved, copied, modified, erased, rotated, and scaled vertically and horizontally. Repetitive patterns such as brick walls or memory arrays can be generated automatically. A full bi directional zoom facility allows working on the drawing at any level of detail.

Drawings can be plotted to any desired scale at any point during the drawing process. Each drawing color may be assigned to a plotter pen and line type. Utilities supplied with the package can convert drawings to or from an ASCII text file. This allows user programs to process information entered in graphic form through AutoCAD, or, conversely, the viewing or editing with AutoCAD of drawings produced by data from user programs. If the quality of these samples is anything to go by (originals were A4-sized), then AutoCAD would be useful in our workshop, let alone a design studio.

Make Light Of Soldering
 T wo new products from light

 Soldering Developments Limited are aimed at making soldering easier. First is not entirely new, but a modified version
No More Surveys!

Ne've been overwhelmed at the response to the survey in the February issue - the box containing the replies is too heavy to lift - but if you haven't sent yours back yet, please don't bother, as processing will have taken place by the time you read this and it will be too late to count. A special thank you to all the overseas readers who replied, many of whom went to the trouble of posting their forms by airmail.

Satellite
 Colloquium

NISAT-1, Britain's first TV Ubroadcasting and business satellite, is to be the subject of a full day colloquium, organised by the Institution of Electrical Engineers, to be held at the IEE, Savoy Place, London WC2, on Tuesday, 17th May, 1983 (9.15am to 4.45 pm). Non-IEE members are very welcome.

Speakers have been invited from BTI, BAe, Marconi, INTELSAT and the BBC. This meeting is designed to have wide appeal and is expected to be very popular. Admission is $£ 17.25$ to WEE members, $£ 28.75$ to nonmembers. For further information and booking contact: Karen Kimpton, IEE, Savoy Place, London WC2R 0BL (telephone 01-240 1871 ext. 308).
of an old favourite, the LE40 24 V temperature-controlled iron LSDL say that they have now incorporated proportional control and that this much improves temperature control without temperature swing or overshoot.

Recently introduced is the SK18 kit which includes an LC18 iron with three bits of different sizes, tweezers, three doubleended soldering tools, desoldering braid and three metres of cored solder. Ordered direct from Light Soldering Developments Limited, 97/99 Gloucester Road, Croydon CRO 2DN, Surrey, the kit will cost you £14.55.

Actual size: $235 \times 110 \mathrm{~mm}$

K2586-Serial Controller/Emulator Ydesigned primarily for use with K2578 velleman Eprom programmer) Actual size: $100 \times 160 \mathrm{~mm}$.

K2583 - Heating/ Temper
lavailable in kit form or as
(available in kit form or as
a built and rested unit)
a built and tested unit
Actual size: $235 \times 110 \mathrm{~mm}$

K8S16 and KBS12 Membrane Keypads lavailable with or without legend) Actual size: $65 \times 100 \mathrm{~mm}$
$100 \times 100 \mathrm{~mm}$ $100 \times 100 \mathrm{~mm}$
P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL, England.
Telephone: (0424) 753246

VELLEMAN STOCKISTS

Baxol Tele Exports Ltd., Ballinaclash, Post Rathdrum, Co. Wicklow, Rep. of Ireland.
Bradley Marshall Ltd., 325 Edgware Road, London W2 1BN. S \& R Brewster Ltd., 86-88 Union Street, Plymouth, Devon. Marshalls Electronics, 85 West Regent Street, Glasgow, Scotland. Retail outlets are required in most major towns and cities. Write for full details, including retail discounts.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Shorts

- For those of you who know what DIN 41612 is, Enclosure Technology Ltd (Unit G, Southampton Airport, Southampton SO2 2HG) have added a wide selection of these standard edge connectors to their range. Those who don't know what DIN 41612 is might care to take a look at either the Analogue Board or Real Time Clock projects published in the last couple of ETIs).
- Oops! We gave you the wrong address for BICC-Vero's new catalogue. The address we should have given you is: BICC-Vero Electronics Ltd, Industrial Estate, Chandlers Ford, Hampshire SO5 3ZR. Direct your mail thence, please.
- 3D Digital Design and Development, 18/19 Warren Street, London W1P 5DB inform us that they have introduced an interface card for the BBC micro that makes it possible to connect said machine to their low-cost INLAB modular interface system. Cards already existed for using Commodore, Apple, Sharp, Sirius and other micros with the system.
- Use your Apple as a storage scope. Details of the Applescope made by RC Electronics Inc., are available from Pete \& Pam Com puters, New Hall Hey Road, Rossendale, Lancs BB4 6JG.
- A new portable computer is on the way from Texas Instruments. Called the CC-40, it features enhanced BASIC, 6K (expandable to 16 K) user RAM, ex-
pansion port, and TI's Hex-bus expansion peripheral port, all for a suggested price of $£ 169.95$.
- Digithurst have added a graphics package to their Microsight computer vision systems. They can be found at Leaden Hill, Orwell, Royston, Herts, SG8 5QH, telephone 0223 208926.
- More news from Texas, this time to say that they have been busy with their $\mathrm{M}^{2} \mathrm{CMOS}$ process for gate arrays. The first of a new series of products is the SCX6224 (for which a performance evaluation device is available with data sheet) which is a 2400 gate array with internal gate delay times of 1 nanosecond and input frequency capability of 125 MHz .
- Looking for a modem? Thorn EMI have published a shortform catalogue (that means it ain't got many pages) of their range, claimed to be the largest manufactured in the UK. Thorn EMI Datech Ltd, Spur Road, Feltham, Middlesex TW14 0TD
- Those people at TI have been busy - there's another new computer, aimed at beginners and called the TI-99/2. Costing around $£ 75$, it will feature an elastomeric keyboard (ugh!), 16-bit processor, 4.2 K (expandable to 36.2 K) user memory and software on solid state cartridges as well as cassettes. TI Ltd, Manton Lane, Bedford MK41 7PA.
- Norbain Electro-Optics are getting into micros - waves, that is, not computers. They will be marketing the Microwave Associates Communications Inc. range of GaAs Gunn oscillators,
transceivers, detectors, and antennae. Norbain ElectroOptics, Norbain House, Boulton Road, Reading, Berkshire RG2 OLT.
- Turn your ZX Spectrum into a word processor using the new Sinclair to Centronics interface that allows you to use highquality printers. Some software is provided with the device, that comes from Euroelectronics, Zin House, Oakfield Street, Cheltenham, Glos GL50 2UJ.
- Order one for your living room: Control Data's CYBER 205 Series 600 computer is capable of 792 million calculations per second, has eight million 64-bit words of real memory (two trillion words of virtual storage), and models start at the bargain price of a mere $£ 3$ million.
- RAM Electro Acoustics Ltd, The Granary, Bracondale, Norwich NR1 2EG have been appointed sole UK agents for the Harksound range of audio turntables.
- 'Good morning campers' will probably not be the way you'll be woken up on one of Southampton University's Computer Holiday Camps. Details from Dr Lionel Wardle, Computer Holidays, 37 University Road, Southampton, SO2 1TL (send a large SAE).
- Salford University is also getting in on the act by organising machine-specific short courses. Details and dates from the Microprocessor Short Courses Unit, Dept. of Electronics and Electrical Engineering, University of Salford, Salford M5 4WT.

Pico Print?

Datac Limited of Altrincham have recently renewed their agreement to distribute the Epson range of mini-printers which includes the world's smallest thermal printer, the $\mathbf{M - 3 0}$ series. Measuring 60.2 mm wide $\times 32.9$ mm deep $\times 10.8 \mathrm{~mm}$ high and weighing just 30 g , the 16 column M-30 makes it possible to manufacture ultra thin, pocketsize calculators and other hand held devices with a printing funciton. Also available from Datac is the Epson M-25 13 column model which has a similar specification. For further information on either the $\mathbf{M - 3 0}$ or the M-25 contact Datac Limited, Tudor Road, Altrincham, Cheshire, WA14 5TN. Telephone: 061-941 2361.

North Sea Sun

O^{2}
n the West German North ea island of Pellworm the construction of the largest solar power plant of Europe has started: from July 1983 the sun will provide the recreation centre and surrounding houses with electricity. On an area of $\mathbf{1 6 , 0 0 0}$ square metres, (the area needed for two football fields), AEGTelefunken (West Germany) will build up the 300 kW solar generator which will directly convert the sunlight into electricity. In order to be able to continue to farm the island's valuable grassland the solar generators will be installed on structures with a minimum height of one metre above the ground. This DM 11 million ($£ 3$ million) project is financed mainly by the German ministry for research and development and the EEC. During the test phase the plant will provide technical data necessary for planning of future solar power plants up to the MW range. To this end, the economy and low maintenance requirements are very important criteria. Until now the solar experts of AEGTelefunken have derived their experience mainly from solar plants in countries of the Third World.

As the recreation centre needs most energy in the summertime, it is very well suited for the utilization of solar energy. Battery storage provides the power during the night and during bad weather periods. As there will be more energy available than required by the recreation centre the surplus energy will be fed into the utility grid of the Schleswag. Nowadays the price for one kilowatt-hour "solar energy" is still about DM 2 (55p). The scientists of AEG-Telefunken researching on solar energy at Wedel near Hamburg are confident to cut the cost by building up a mass production between 1986 and 1988. Altogether the EEC is supporting 16 projects on the development of photovoltaic sources of energy. Apart from the complete solar power plant on Pellworm, AEG-Telefunken is building solar generators for a dairy farm in Ireland (50 kW) and for a navigational school on the Netherland island Terschelling (50 kW). It all sounds good, but who gets the job of cleaning off the bird droppings?

Free File

E orget about catalogues E Elkan Electronics have produced the Elkan File, which contains details of all the items they sell. Sounds rather like a catalogue, doesn't it? The difference is that there are no staples! This is a very cunning move because it means that the contents spread themselves all over your desk making it impossible to ignore them.

Featured in the catalogue, I mean file, are the Nanos quick
reference cards for the $\mathbf{Z X 8 0}$ and the ZX81. It is claimed that the format of a card, as opposed to a book, makes it easier to locate information when you're actually sitting in front of the computer. This does depend on how many cups of coffee you've spilt over them. Cards for other computers are available or in the pipeline from Elkan Electronics, 11 Bury New Road, Prestwich, Manchester M25 6LZ, telephone 061-798 7613 (24 hours). The cards cost $£ 3.50$ each, but the file is free.

USING
TOMORROW'S
TECENOLOGY TO
SOLVE TODAY'S BUSINESS PROBLEMS
PAZOV
DIRECTOR
MURECTOR
145 CHARTD
145 CHARITY CROSS ROAD
LONDON WC2

The above envelope was received by us at our offices a few days ago. We don't think further comment is necessary.

Inductive Loop Amp

Deder Sound Ltd have just inR troduced their model DL1 Inductive Loop Amplifier. The DL1 is the smallest in their range and is primarily intended for use in the home. It features a current output stage, which ensures a constant current into differing load impedances, internal AGC and inputs for tape recorder/TV or high impedance microphone. The only front panel control is the on/off switch with an indicator LED. The unit is designed to operate in rooms up to 4 metres wide.

The range is completed by the LA2 and LA3 amplifiers. Both feature current output stages, inputs for microphone (low impedance), auxiliary and loudspeaker line (all balanced and floating), internal limiter and full thermal protection. The LA2 is a 30 W 2 A maximum output unit

Tech-Deck

Technics is expanding its range of cassette decks with the RS-M235X, which has three noise reduction systems. The new cassette deck features Dolby B and C and dbx noise reduction systems, making it compatible with any type of recording and offering excellent sound reproduction. In addition, the RS-M235X offers a built-in dbx disc decoder, increasing its versatility.

A Code To Bank On

A
n unbreakable code, which n unbreakable code, which
should prove of great interest to banks, businesses and other institutions requiring the confidential transmission of information, has been developed by Professor Adi Shamir of the Weizmann Institute's Department of Applied Mathematics and Dr Ronald L. Rivest and Leonard Adelman of MIT in the States, reports Bank Hapoalim, the leading Israeli bank. The cryptographic system is based on an idea originally suggested by computer scientists Whit Diffie and Martin Hellman of Stanford University in the United States.

The idea was to develop a coding system where different keys would be required for encryption and decryption. In this way, a subscriber could reveal his encryption (encoding) key, so that all users could send him messages, while the decryption (decoding) key would be known only to the receiver, ensuring complete secrecy. The new system uses very large prime numbers. It takes only a fraction of a second for a microcomputer to multiply two 100-digit prime numbers to obtain their 200-digit
dbx, the most powerful noise reduction system on the market, yields a signal to noise ratio of 92 dB with $\mathbf{1 0 0} \mathbf{d B}$ dynamic range more than enough to record any live performance, even a jet engine at take off! For simple operation, an auto-tape selector choses the correct bias and equalisation for the type of tape being used. In addition, a new system of level and balance control features in the RS-M235X. A single master level slider adjusts both channels, while a separate
product. On the other hand, it would require four billion years to solve the reverse problem: that is, to determine which two 100-digit prime numbers were used to yield a given product.

According to the system, a directory of registered subscribers will supply the public numbers of users. At the other end, the receiver will take the concealed communication and use his secret decryption key to obtain a comprehensible message. Because no prior exchange of secret information is necessary, the system is very convenient for widespread public usage. It also enables the transmission of legally binding 'signatures' to a message, so that contracts, purchase orders and cheques can be exchanged via telex.

With all conventional coding systems, both receiver and sender must possess the same confidential key. The new system, according to Professor Shamir, "is an entirely novel concept of public communication, one which we hope soon to see widely used." A prototype computer chip is now undergoing extensive testing in Boston. For further information contact: Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
control balances left and right channels when necessary, permitting smooth fade-in/fade-out effects. Colour-coded, soft touch controls aid easy operation and wide range FL meters indicate signal response.

Slim in style, the RS-M235X is available in silver or black finish and is designed to co-ordinate with the new range of Technics hi-fi separates. Retailing at £176.95 the RS-M235X can be obtained from the Technics network of authorised dealers.
and the LA3 is a 60 W 3 A maximum outputunit.

Reder Sound also manufacture PA equipment and accessories as well as inductive loop equipment. All inductive loop equipment is designed to be used in accordance with BS 6083 pt4. Reder Sound Ltd are at Premier Works, High Street, Sutton, Ely, Cambridge CB6 2RB (telephone Ely (0353) 777252).

A Thorn In The Swede

Swedish nuclear power station is to be equipped with the latest British radiation monitoring systems for routine personnel contamination checks under an order worth several million Swedish crowns (sounds much more impressive than Es) placed with Nuclear Enterprises Limited, of Beenham, near Reading.

As the world's most sensitive contamination monitoring system of its type, the Nuclear Enter-

prises IPM7 establishes Britain's

 leadership in this exacting technology. The system permits highly accurate checks to be carried out extremely rapidly to ensure personnel are free from contamination when leaving control areas. In a matter of seconds, workers' hands, feet and clothing are scanned by banks of electronic detectors inside the IPM7's specially designed 'walk-through' cubicle.Nuclear Enterprises is a subsidiary of Thorn EMI Technology, one of the major divisions of Thorn EMI's Engineering Group.

Br-PAK EARGANS

TRIACS - PLASTIC
4 AMP - 400V - TUEN2 - TAG 136 D

10 Fr	10 OFP	50 OFF	100 OFF
409	13.75	$\underline{177.50}$	$[30.00$
8 AMP 400	- 10220	G 425	
com	c5.75	[27.50	\$50.00

SIIDER POTENTIOMETERS
hastic st

Sx40 250 Siltcon Diodes-Swatching like

ng like

 Nouble out price $\mathbf{4 5 v} 75 \mathrm{~mA}$ uncoded Worthf1. 25 SX41 250 Sillicon Drodes-General Purpose. lihe 0 A 200/202. BAx13/16. Uncoded $30 \cdot 100 v 200 \mathrm{~mA} \mathrm{DO} 7$

OPTO 7-Segment Displays Brand New 1st Quallty LITRONIX DL 707R 14-pin Red $0.3^{\prime \prime}$ Common Anode Display 0-9 with right hand decimal point TTL 5 pieces $\mathbf{f 3}$ (60 p each) IN 10 pieces f5 (50p each $\begin{array}{ll}\text { PACKS } & 50 \text { pieces f20 (} 50 \mathrm{p} \text { each } \\ \text { pach }\end{array}$
 000 pieces E300 (30p each) HE MORE YOU BUY THE LESS YOU PAYI

BI-PAK'S OPTO 83 SPECIAL
A selection of Large \& Small size LED's in Red Gieen, Yellow and Clear, plus shaped devices of different rypes. 7 Segment displays, photo transistors, emitters and detectors.
Types fike MEL1I, FPT100 etc. Plus Cadmium Cell ORP12 and germ. photo transistor OCP71. TOTAL OF 25 PIECES

cIARESISTABLE AESISTOR BARGAINS'

Pata	(4)	Descriptien
SX10	400	Maxed "All Type" Resistors
5x11	400	Preformed $14.4 / 2$ watt Carbon Resistors
S $\times 12$	200	4 watl Carbon Resistors
\$ 213	200	4, watt Carbon Resistors
SX14	150	42 wath Resislors 22 ohm2 m 2 Mr red
5×15	100	1 and 2 watt Resistors 22

-Quantities appromimale count by weight

GUARANTEED TO SAVE YOU

 $\begin{array}{lll}\text { Sx20A } & 50 \text { ApF-150pf } \\ 50 & \text { Assorted Silver Mica Caps } & \text { f1.00 }\end{array}$
 SX3 4 A 50 Wio 8 KV Assorted useful values AUTO SCREWDRIVERIORILL Automatic soltal ratchet. Complete with 2 screwdiver blades, 5865 mm . 1 screwdriver cross point No. 18 three drills - $2,2.8$ and 3.65 mm -A MUST FOR ALL
HOBBY-BUILDERS \& CONSTRUCTORS. Order NO. ASD $/ 1$ £3.50 *ach

BARGAINS

SM91 $20 \times$ Large $2^{\prime \prime}$ RED LED
SX42 20 small. 125 Red LED's Sx43 10 Rectangutar Gieen LED 30 Assorted Zener Diodes all coded. New

"CAPAELE

 CAPACITOR PAKS''| Pid Mo. | Ots) | Descriptiom | Price |
| :---: | :---: | :---: | :---: |
| 5×16 | 250 | Capacitors Mixed Types | E1 |
| SX17 | 200 | Ceramic Capacitors Minasture Mixed | f1 |
| 5×18 | 100 | Mixed Ceramics 1 pt 56ipf | E1 |
| 5119 | 100 | Mixed Ceramics 6 api 0.5 mf | 11 |
| 5×20 | 100 | Assorted Polyester/Polystyrene Capacitors | f1 |
| 5121 | 60 | Mised C280 type capacitors metal foil | 4 |
| \$ $\times 22$ | 100 | Electroytics, all sorts | 11 |
| 5123 | 50 | Quality Electrontics $50-1000 \mathrm{mf}$ | 11 |
| 5424 | 20 | Tantalum Beads, mixed | 11 |

Quantites approximate count by weight.

4 Blach Instrument
Knobs-winged with pointer
Standard sciew Fit size 29 x 20 mm .
S449 20 Assorted Slider Knobs Blach/Chrome, et
sues 12 Neons and Filament Lamps. Low voluge and mairs - various types and colours - some penel mounting

1 Amp SILICON RECTIFIERS Glass Iype similar IN4000 SERIES IN4001-IN4000 50 - 500 - uncoo.s - you select lor VITS ALL perlec devices - NO durs Min SOr silicon General Purpose NPN Transitors TO:18 Case Lock fit leads - coded CV7644 Simplar to 8C147 - BC107- IT89 ALL NEW' VCE 70V IC500ma

 Silicon General Purpose PNP Transisiors To-5 Case Lock it leads coded CV9507 simila 2N2005 to | BF x 30 VC 60 IC 600 mA |
| :---: |
| 50 OH Min He 50 ALL NEW |
| 100 of |
| $500 \mathrm{dH} \quad 1000$ of | PRICE $\boldsymbol{\varepsilon} 2.50 \times 4.00 \quad £ 19.00 ~ £ 35.00$

s 152

6 Black Heatsink will fit 70.3 and 10. 220 Ready drtheo tall prlie value.
SX53 I Power thnned Heatsink. This heatsink gives the greatest possible heat dissipation in the smallest space owing to its unique staggered lin design, pre difled 103 Size 45 mm square $\times 20 \mathrm{~mm}$ high 40 p SK54 $\quad 10.66$ suze $35 \mathrm{~mm} \times 30 \mathrm{~mm} \times 12 \mathrm{~mm} \quad 35 \mathrm{p}$ sx55 1 Heat Efficrency Power Finned Heatsinh $90 \mathrm{~mm} \times 80 \mathrm{~mm} \times 35 \mathrm{~mm}$ High. Dilled to take up to $4 x$ 1.3 .50 each

SEMICONDUCTORS FROM

 AROUND THE WORLD100
A Collection of Transistors. Diodes. Rectifiers. Bridges. SCR Tracs. IC's both Logic and Linear plus Opto's all of which are current everyday usable devices

Guaranteed Value over $£ 10$ at Normal Retail Price

£ $£ 4-00$ Data eftc in
every palk
Oider Oidee No. Sx.5.

PROGRAMMABLE UNIJUNCTION TRAMSISTOR "PUT" case TO106 plastic MEU22 Similar to
2N6027/6028 PNPN Silicon Price: $1-9 \quad 10-4950.99 \quad 100+\quad$ Normal Retail Each: 20p 18p 15p 13p Price $£ 0.35$ each SX33A 6 small (min (SDST/SPDT Toggle S×35A SWitches 240v 5 Rocker Switches
$£ 1.00$
25002 A
SX32A
12 Assorted Jack \& Phono plugs, sockets and adaptors 2.5 m . SX71 50 BC108 "Fallouts" Manufac turers out of spec on volts or
SX72 A mixed bundle of Copper clad Board Fibre głass and paper Single and double sided. A lantastic bargain

SX38 100 Silicon NPN Transistors-all data and eqvt sheet. No rejects. Real value.
SX39 100 Silicon PNP Transistorsall perfect. Coded mixed types
with data and equt sheet. No reiects. Fantastic value.
2me055 The best known Power Transistors in the World - 2 N305S NPN 115 m .
Our 日i-PAK Special Offer Price:
$\begin{array}{lll}10 \text { off } & 50 \text { of } & 100 \text { of } \\ 5.50 & 15.00 & 130.00\end{array}$
-0D312 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2N3055. Equivalent M12955 - 80312 - 103 SPECIN PRICE EO. 70 each

REGULATED VARIABLE
Stabilised POWER SUPPL

Variable from 2.30 voirs and 0.2 Amps. Kit includes - $0.50{ }^{2 \prime \prime}$ Panel Meter. 1 - 02 amp $2^{\prime \prime}$ Panel iky ohm wirebound potentiometer. Wiring Diagh28
included Order No. VPS 30 kIT MINIATURE FM TRANSMITTER Freq: $95-106 \mathrm{MHz}$. Range: $1 / 4$ mile
Size: $45 \times 20 \mathrm{~mm}$. Add: $9 v$ batt
Not licence mm . K 5.50

Ideal for: 007-M15-FBI-CIA-KGB etc.

MORE BARGAINS!

> Sx51 60 metres PVC covered Hook-up wife single and stranded. Mixed colours.
> 'ix58 25 Assorted TIL Gates 7400
> Series 7401.7460
> SX59 10 Assorted flip Flops and MS:
> 50 20 Assorted Slider
> 5×62 Potentiometers
> exis etc:
> sx7) 10 Reed Switches
> 3 Micto Switches - with type

Use your credit card. Ring us on Ware 3182 NOW and get your öder even faster. Goods normally sent 2nd Class Mail.
Remember you must add VAT at 15\% to your order
Total. Postage add 75 p per total order.

The power supply can make the difference between an adequate amplifier and a great one. In this article, J. Linsley Hood explains the advantages of a stabilised PSU, and concludes with a simple and novel circuit to upgrade your hi-fi.

STABILISED

 f you look inside the boxes of some of the top name hi-fi power amplifiers - the ones that get the rave reviews from the 'goldeneared' fraternity - you will find, more often than not, that the power supply units are stabilised, rather than being of the simple transformer, rectifier, reservoir capacitor variety. The reason for this is twofold. First, the presence of a stabilised PSU is an indication of the rather greater care that has gone into the building of these amplifiers, and if you aim at the top, as a hi-fi manufacturer, this is a necessary part of your philosophy; and second, because the stabilised PSU really does confer some valuable advantages in the operation of the equipment. Let us look at some of these.

The amount of power one can get from a power amplifier, for any given load impedance, increases rapidly as the DC power line voltage is increased. However, so does the cost of the output power transistors (in fact, all the transistors), as well as the capacitors used in the design. As an aside, the fact that 50 V capacitors cost a lot less than half that of the equivalent 100 V ones is the main reason for the popularity among the high power amplifier manufacturers of direct coupled (two power supply lines of half the voltage) output stages. If Joe Public thinks that they also sound better, so be it!

Unfortunately, the realities of

Fig. 1 Simple stabilised power supply.
life are not on our side. From the point of view of the power output, what is important is the actual supply line voltage at maximum load, but what the transistors have to support is the worst case condition of line voltage off-load, and the on-load voltage will always be a good bit less than this. If, on the other hand, one has a constant DC supply, one only needs to make sure that the transistors and capacitors will stand this, and this will also be the voltage available when one is driving to full power.

Just doing a cost assessment of stabilised versus cheap-and-cheerful gives a small overall cost advantage in favour of the simple system, which is why it is more commonly used. However, the stabilised PSU has other, more subtle, advantages which are of value to the discriminating user. These are those which follow from the low ripple level on the supply line of any properly designed stabiliser circuit, and its low supply line impedance. The first of these ensures that hum breakthrough is eliminated, not just at low power levels, which is easy, but also at high powers, when the voltage ripple on the reservoir capacitor is becoming significant. The second feature, that of the low line impedance, not only gives a
lower degree of LF breakthrough from one channel to another (at frequencies where the impedance of the reservoir capacitors is significant) but also gives a more firm and solid bass response. In fact, in my view, this is a more important contribution to the firmness of bass response than the absence of an output coupling capacitor in a 'direct coupled' system.

So, having reviewed the propaganda in favour of the use of constant, stabilised power supply lines two questions remain: can one upgrade an existing amplifier this way, and how simply could one be built? The answer to the first question is almost certainly 'yes' provided that one uses some care. The second I propose to explore. Since this will be done by starting with a basic circuit and adding components, the usual practice of numbering components from left to right and top to bottom will not be followed, so as to achieve continuity from figure to figure.

The Stabilised PSU

These are normally designed along the lines shown in Fig. 1. In this a 'pass' transistor (Q1) is connected as an emitter follower

Fig. 2 Power transistor limiting values.
between the unstabilised DC input and the required stabilised DC output. The base drive current to this pass transistor is controlled by some form of error amplifier which compares some proportion of the output DC voltage with a reference voltage derived, perhaps, from a zener diode (ZD1) supplied through
R4. Depending on the zener voltage, the controlled DC output can be adjusted, within the limits set by the DC input and the reference voltage, by a suitable choice of R1 and R2. A small capacitor is usually connected across the output to make sure that the output impedance remains low at HF.

This is a very good circuit arrangement, and is used in a very wide range of designs. Indeed, with a little more internal craftiness, very similar systems are employed in the 'three terminal' IC voltage regulators one can now buy for around fifty pence. However, there are snags.

In the case of the IC voltage regulators the main snags are that they are usually limited to input voltages less than 50 V , that the maximum output voltages are usually less than 35 V and that at these voltages the available output
currents will probably be less than 0.5 amps, which is rather too low to be of much use for audio power amplifiers. Nevertheless, where these can be used, they are the best possible solution in terms of performance in relation to cost.

In the case of DIY units of this kind built up from discrete components, though higher voltage and current operation can be organised, the most immediate problem is that of the 'safe operating area rating' or SOAR as shown in Fig. 2. This graph, which is that for a typical power transistor of the 2N3055 type, shows that there are limits on the permissible conditions of operation, and that, as a general rule, you cannot allow the transistor to pass much current at voltages above some 30 V without it blowing up, due to what is known as 'secondary breakdown'. (This arises because silicon diodes have a forward voltage which decreases as they get hotter. So, if enough current, at enough voltage, flows through the transistor the resultant heating will inevitably cause some localised area of the base-emitter 'diode' to get hotter than the remainder, and then all the transistor current will plough through this small area, with expensive and inconvenient results!)

Two ways of safeguarding against this snag are possible. The first (and simpler, if the amount of current needed is less than that permissible at the given input voltage $V_{i N}$), is simply to include a current limit circuit as shown in Fig. 3.

In this, Q2 is added, with R5. If the output current taken exceeds the amount needed for the voltage drop across R5 to turn on Q2, then this will 'steal' the base current from Q1 and hold the output current to the chosen limiting value.

However, circumstances often arise where this simple answer just isn't good enough, and then it is necessary to organise a rather more cunning scheme, known as 'reentrant' short-circuit protection. In this, the protection circuit is arranged so that the full, but limited, output current is allowable up to some prearranged voltage drop across the pass transistor Q1, which is known to be within safe operating limits. If the voltage across the pass transistor exceeds this value, some supplementary circuit comes into operation to instantaneously limit the current through the transistor to some lesser value appropriate to its new collector-emitter voltage drop.

This type of arrangement is a much better scheme, and allows stabilised PSUs to be built which will give quite large current outputs at the sort of voltages which would be of use in audio amplifier systems. Moreover, the fact that the output voltage and current will both collapse rapidly in the event of an overload can allow a good measure of protection, if the limit levels are set correctly, for both the amplifier itself and also things like loudspeakers used with it.

Of course, the usefulness of a stabilised power supply is not limited to improving audio amps. This was just one of the possible uses which might appeal to the hi-fi enthusiast in pursuit of an economical and sensible route to a rather higher-fi. Also, as it happens; it is an ingredient I have in mind for a future audio amplifier design for ETI, since I don't think that perfection in this field has yet been reached, or that the last word in cost effectiveness has yet been spoken.

An Improved PSU

So - we want a simple PSU

Fig. 3 A stabilised power supply with current limiter.

Fig. 4 An alternative arrangement to Fig. 3.

Fig. 5 A stabilised power supply unit with re-entrant short-circuit protection.
system, with an adequate degree of voltage stabilisation, and a reentrant overload limit characteristic. How best can this be done?

The general scheme shown in Figs. 1 and 3 has several inherent snags, in spite of its popularity in the PSU circuit league. Of these snags, the first is that there must be a sufficient difference in voltage between $V_{\text {IN }}$ and $V_{\text {Out }}$ for $Q 1$ to be functional, and for an adequate current to flow through R3 to give the necessary output maximum current, with the lowest likely current gain in Q1. This would lead, say, in a 3 amp PSU to a value of R3 being chosen which would pass 100 mA at a 10 V input/output voltage drop. If we now have an input voltage of, say, 60 V , then when Q1 isn't asking for the full base bias current - as, for example, when the PSU was off load - the error amplifier will have to dissipate $60-10 \mathrm{~V} \times 100 \mathrm{~mA}=5 \mathrm{~W}$, with a further 1 W being dissipated in R3.

If, however, we turn Q1 the other way round, as in Fig. 4, then the base bias current can be supplied from the ' 0 V ' line, which will mean that the minimum necessary voltage drop between $V_{\text {IN }}$ and $V_{\text {out }}$ can be reduced to, say, 3 V , which will reduce Q1's dissipation. Also, only as much current is fed into Q1's base as the output current calls for. This greatly reduces the quiescent dissipation in the error amp circuitry as well. Of course, we would then have to put the current limit transistor on the input side, if we were going to use the same kind of limiting system. We can, however, do a bit better than this - using the final circuitry
in Fig. 5.
In this circuit, I have shown a two-transistor error amplifier (Q3 and Q4) which uses the 0 V line as its voltage reference, allowing us to delete the reference voltage circuit R4 and ZD1. In this circuit, Q4 is turned on by current flowing into its base through R8, Q2 and R10. This causes an amplified current to flow in Q4's collector circuit and turn on Q1. However, when the output voltage rises to a high enough level, the zener diodes ZD2 and ZD3 conduct and start feeding base current into Q3. This promptly gobbles up the current that was previously flowing into the base of Q4 and prevents the voltage from rising further.

The use of one or more zener diodes in a chain to provide the necessary output voltage - the actual output controlled voltage will be about 0 V 5 greater than the sum of the zener voltages - gives a simple system if one specific outputvoltage is required. However, zener

Fig. 6 This modification to the circuit of Fig. 5 allows a variable output voltage.
diodés are a bit noisy (especially if their individual breakdown voltages are high, which makes it preferable to use several lower voltage units in a string), so it may be advantageous to use the modified system shown in Fig. 6, if a convenient negative line is available, which would then allow the output voltage to be adjusted between 0V5 and some $3 \vee$ less than the available voltage.

Since the total amount of gain in the feedback circuit consisting of Q1, Q3 and Q4 is quite high, it is necessary to incorporate some HF stabilising element. In this case this function is performed by C3. The other part of the circuit, that of the 're-entrant' short circuit protection and current limiting action, is performed by Q2 with its associated resistors. The way this works is quite simple.

Assuming that there is no significant voltage drop across R8 and R5, Q2 will be turned on by current fed into its base by R9 (or R4 in Fig. 7), and an amplified current will be fed from the positive line into the base of Q4 via R5, R8, Q2 and R10. (R10 serves to limit the maximum current which can flow, and to reduce the amount of dissipation in Q2). The maximum forward bias potential which can be applied to Q2 is held to about 1 V 1 by the two forward biased diodes D1 and D2. So - if we try to take more current from the circuit than would produce a 0V6 drop across R5 then Q2 will lose its operating forward bias and no more current will be fed into Q4 or Q1, which will limit the possible output current to a level just a little less than this value.

However, this has ignored the contribution made by R7 and R8. If there is too much voltage across Q1, which, as we have seen above, would reduce its ability to handle large currents safely, part of this voltage will also appear across R8, and this will also tend to turn off Q2, or at least make it current-limit at lower levels of voltage drop across R5. This has the required effect of tying the output current limiting value to the voltage drop across Q1, and means that, under something approaching short-circuit conditions, only a much reduced output current• will flow.

Using The Circuit

So, here we have a fairly

PROJECT: Stabilised PSU

simple, low quiescent dissipation stabiliser circuit which uses standard discrete components and transistors, and which can be used to stabilise a single positive DC supply line (or if its 'mirror image' circuit is built, as in Fig. 7, a negative supply line too!) up to the maximum input voltages and currents which the components can stand. How, then, can we use this to improve an existing audio amplifier, which just uses a simple transformer-rectifie-reservoir capacitor system, as envisaged at the start of this article?

A single line stabilised supply is shown in Fig. 5 and a twin positive and negative supply is shown in Fig. 7: the DC output voltages and currents can be determined from the values shown in the tables. Now let us envisage a possible application. Measurement shows that on a hypothetical amplifier ' A ', all of the internal DC supplies are drawn from a single power supply source which has a quiescent output voltage level of 66 V , dropping to 55 V on full load. If, at half load, which is the worst case condition, the heatsinks don't get alarmingly hot (as we must hope), and the HT line voltage is, shall we say, 60 V , then we could assume that a fixed voltage input supply somewhere between 60 and 65 V would not over-stress the amplifier
components, and we could build this output voltage into the circuit of Fig. 5 by the use of an appropriate string of zener diodes.

Such a separate DC supply could then be housed in its own small box, with the DC feed being taken to the amplifier with which it is used. (This is assuming that there isn't room within the existing box for the larger, higher voltage transformer which will be needed, or for the other components.) What sort of benefits will this bring?

First, one would expect a significant reduction in the existing amplifier 'hum' level, if it is less than perfect in this respect. Second, one could expect an improvement both in the 'solidity' of the bass response, due to the lower LF dynamic impedance of the HT line in comparison with even a large value of supply line reservoir capacitor, and this should also give a lower level of LF channel crosstalk. This latter feature is also important because most of the crosstalk signal components are heavily distorted in typical transistor output stages. Third, one would obtain a greater immunity from consequential damage, such as loudspeaker units burning out if failure in the amplifier caused it to switch over to some unwanted high current mode; and finally, one
would get more power output from it.

This last consequence arises from the fact that output power is determined by the equation $P=V^{2} / R$, where V^{2} is the square of the RMS output signal voltage, and R is the loudspeaker load impedance. For a 30 W amplifier with an 8 ohm load and the HT supply voltage characteristic shown above, a change in full load HT voltage from 55 V to 65 V would give an increase in power from 30 to 45 W without the need for the replacement of any other components.

PCB Layouts

It makes a tidier and more professional looking unit if the necessary small components are mounted on a printed circuit board so I have shown two such suitable layouts, complete with component overlay, in Figs. 8 and 9. The circumstances in which a PSU of this type might be used to upgrade an existing audio amplifier are rather too varied for anything other than general guidance to be given. However, these circuit layouts also allow the experimentally inclined user to build himself a useful shortcircuit protected bench supply, which is literally a unit with dozens of uses.

Fig. 7 Complete circuit for a twin stabilised power supply unit (current output 3 amps at 45 V).

Fig. 8 Overlay for the circuit of Fig. 5.
PARTS LIST

Fig. 9 Overlay for the circuit of Fig. 6.

BUYLINES

Two companies that can supply the transistors used in this project are Bradley Marshall, who advertise in this magazine, and Hart Electronics Ltd. of Oswestry, Shropshire. As a guide to price, Hart charge $£ 1.50$ plus VAT each for the MJ2501 and MJ3001, while the BC447 costs 20p plus VAT and the BC448 22p plus VAT. The PCBs can be obtained using the form on page 87.

PARTS LIST

Resistors (all $\ddagger \mathbf{W}, 5 \%$ except where stated)	
$\begin{aligned} & \text { R1,101 } \\ & \text { (PR1,101) } \end{aligned}$	suitable fixed resistor or
	100k miniature horizontal preset or off-board pot
R2,102	6k8
R3, 103	$1 \mathrm{k0}$
R4, 104,7,	
107	5k6
R5,105	see Table 2
R6,106	1 ko +1 W
R8, 108	see Table 1
R10,110	10k
Capacitors	
C1,101	4700uF electrolytic (see Table 1 for working
	voltage)
C2,102	100uF 63 V axial
C3,103	1n0 ceramic
C4,104	100uF 6V3 axial electrolytic
Semiconductors	
Q1	MJ2501
Q2,104	BC448
Q3	BC182
Q4,102	BC447
Q101	M/3001
Q103	BC212
D1,2,101,	
102	general purpose silicon diodes eg 1N4148
D3,103	1 N4002
ZD1,101	5V6 400 mW zener
BR1	$600 \mathrm{~V}, 10 \mathrm{~A}$ bridge rectifier
Miscellaneous	
PCB (see Buylines); heatsink to suit; centre-tapped transformer (see Tables 1 and 2); mains switch; 3 amp fuse and fuseholder.	

WORLD'S SMALLEST COMPUTER SYSTEM?

Breast Pocket Computer - A5 Book Size Sytem. More powerful than pocket computers costing up to twice as much Sharp PC-1251 Computer Plus FREE £5 software voucher £74.95 CE-125 Printer/Micro Cassette Plus FREE £5 software voucher

$£ 94.95$

Custom made for Sales Executives. Ideal for Engineers and Hobbyists, or as a starter computer that grows into a powerful, reliable system.
PC-1251. Massive memory:-4.2K RAM (3.7K user) and 24K ROM for extended BASIC, including DIM, STRING and INKEY\$. Up to 18 programs stored in memory at once, each with its own execute key, plus reserve mode for frequently used commands. Onetouch mode selector for Reserve/Program/Run. Full range of math and science functions. QWERTY keyboard. 24 digit dot matrix display. Auto power-off, with memory protection. CE-125. Half the size of this page and less than 1 inch thickI 24 character thermal-printing of data, computatión results, programs, etc. Integral micro cassette recorder for error-free saving/loading, plus built-in interface for standard cassette recorder. Will run existing PC-1211 software but many times fasterl Powered by rechargeable NiCad batteries, or mains adaptor (supplied).

SOFTWARE DETAILS ON REQUEST

 Dimensions
PC-1251. $135 \times 70 \times 9.5 \mathrm{~mm}\left(515 / 16 \times 23 / 4 \times 3 / 8^{\prime \prime}\right)$. Weight: 115 g CE-125. $205 \times 149 \times 23 \mathrm{~mm}\left(81 / 18 \times 57 / 8 \times 29 / 32^{\prime \prime}\right)$. Weight: 550 g

SHARP PC-1500 COLOUR COMPUTER

The world's most powerful pocket computer?
PRICES, including VAT and FREE software vouchers PC-1500 Pocket Computer plus $£ 10$ software V ... $£ 159.95$ CE150 Colour Printer/Cass interface plus £10 V... £139.95 CE-155 8K RAM Expansion Module plus f 10 voucher ... $\mathbf{£ 7 9 . 9 5}$ CE-1598K RAM/ROM with battery back up +f 10 V $£ 89.95$ CE-152 Custom Cassette Recorder plus $£ 5$ voucher $£ 39.95$ CE-153 140 key Software Board plus $£ 10$ voucher £79.95 CE-158 RS-232C Interface plus $£ 20$ voucher. .. $£ 149.95$
SOFTWARE AND ACCESSORY LIST ON REQUEST

PRICES include VAT, P\&P Offers are
subject to availability Send cheques.
P.O, or phone your credie card no: to:

MODULES FOR SECUBITY \& DETECTION

ARM CONTROL UNIT
 CA 1250

This exciting new module offers all the possible features likely to be required when building an intruder alarm system. Whether used with only 1 or 2 magnetic switches or in conjunction with several ultrasonic alarm modules or infra-red units. a reall effective system can be constructed at a fraction of the cost of comparable ready-made units. Supplied with a fully explanatory Data Sheet that makes installation straight forward. the module is fuliy ested and guaranteed.
svailable in kit form £ 16.95 plus VAT

- Buil-in electronic siren drives 2 loud speakers - Stabilised output voltage
- Stabilised output voltage 2 operaung modes - full alarm/anti-tamper and 2 operating mod
panic facility
- Pixed alarm time
- Operates with magnetic switches, u/sonic or I.R. units
- Screw connections for ease of installation
- Screw connections for ease of installation - Anti-tamper and panic facility

Test loop facility

ULTRASONIC ALARM mODULE
US 4012

Fully built

 \& tested

DIGITAL VOLTMETER MODULE DVM 314

Fully built \& tested rogether with a suitable 12 V power supply and relay unit as shown. forms an eftective mprehensive Data Sheet. it is easily mounted in a ange of enclosures. A ready-dilited case and necessary

INFRA-RED

 SYSTEMIR 1470

Fully built $\&$ tested

- Range up to 50
- 12 V operation
- Supplied with full instruction

Now available, a really effective infra-red system bult to the high standards demanded by the securty industry, and yet offered at this low price. The system consists of a transmitter and receiver which provide an invisible beam over distances from 1 -50ft. or more. When the beam is interrupted, a relay is energised in the receiver unit. The use of a modulated beam combined with the infrared filters, prevent interference from artificial or sunlight. whllst LED indicators ensure easy alignment of the beam. Both units are housed in attractive black moulded enclosures which are easily mounted. Supplied with fult instructions the unit is ideal for use in conjunction with the Control Unit CA 1250 or as an independant unit.

Power Supply \& Relay

 Units PS 4012£ 4.25 + VAT
Adjustable range
from 5 ft . to 25 ft .
Provides a stabilised 12 V output and relay with 3 A
contacts. The unit is destgned to oper ate one or two contacts. The unit is destgned to operate one or two
of the ultrasonic units. Fully built and tested.

Siren Module

A realiy
fully buith
effective fully built
module contalining both
feceiver and circultry for providing
alse alarm suporession. This module, hardware is available (see right).

SL 157

Produces a loud and penetrating sliding tone operat ing from 9-15V. Capable of driving 2 off 8 ohm speakers to SPL of 110 db at 2 M . Contains an inhibit facility for use with shop lifting

Add VAT 6 50p poat and packing to

 all orders.Shop hours 9.00 - 5.30 p.m. (Wed $9.00 \cdot 1.00$ p.m.) Units on demonstration - callers walcom'. S.A.E. with all onquiries
viA
E11.95

Hardware Kit
HW 4012
$£ 4.25$ + VAT
A suitable ready-drilled case with the various mounting pillars, mains switch socket and nuts and bolts.
Designed to house the ultrasonic alarm module Designed to house the ultrasonic alarm module Size: $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$
\star ACCESSORIES \star
3-position Key Switch for use with CA 1250 , supplied with 2 keys 5 Horn speaker for uso with CA1 250 and SL157

RISCOMP LIMITED

Dapt. PE4
21 Duke Streat.
Princes Risborouğh. Bucks
Princes Risborough (084 44) 632 ${ }^{\mathbf{6}}$
Please allow 7 days for delivery

60W NDFL AMPLIFIER

Following last month's article on nested differentiating feedback loops, here is a practical amplifier design, presented as a module, with very low distortion. Design by Edward M. Cherry, Associate Professor, Dept of Electrical Engineering, Monash University.

This amplifier will perhaps be of most interest to home constructors who want to rebuild an existing system and upgrade its performance without the expense of new major components. The power output transistors employed are the well-known types MJ802 and MJ4502 which have been around for several years and have proved their reliability. Indeed, the whole design is mature and home constructors should have no difficulty in making it work.

The theoretical basis for this amplifier was discussed in last month's ETI.

Grounding

In any amplifier where the basic distortion has been reduced to a few parts per million, several distortion mechanisms not ordinarily considered may become significant. One such mechanism is associated with currents circulating in the ground leads and power-supply wiring.

Figure 1 explains the origin of this distortion. The current in each power transistor of a class B stage is a half-wave rectified version of the output. The two currents, drawn

Fig. 1 Circulating even-harmonic current in a Class-B ouput stage.

HOW IT WORKS

Figure 2 is the complete circuit of one channel of the amplifier; equations referred to in the explanation refer to last month's feature. The circuit is clearly based on Fig. 10 (last month's ETI), with major parameters
$1 / \beta=32.9$ $\tau_{x}=800 \mathrm{nS}$
The value of β is set by the overall feedback resistors R11 and R12 (470R and 15 k - see Equation 1). τ_{x} is set by:
a) R4 and R5 (330R) plus C6 and C8 (68 p) in conjunction with the chosen value of β (see Equation 13);
b) R15 and C7 ($1 \mathrm{k8}$ and 470p see Equation 14);
c) R32 and C14 (8R2 and 100n) plus the 8 ohm nominal load and L3 (6u8 H);
d) R12 and C4 (15k and 33p) via the other constants in Equation 15.

The first stage requires little comment. Q1 and Q2 operate at 1.5 mA each, Q3 is a current source, Q4 is a common-base stage to equalise the quiescent voltages on Q1 and Q2; Q5 and Q6 constitute a current mirror. R1 and C2 form a 200 kHz low-pass filter against RF interference.

The Rush current amplifier operates at 3 mA , set by R18, and it incorporates a catching diode (D1) to accelerate recovery from overdrive. The pre-driver, Q10, operates at 8 mA ; Q9 protects the stage against damagingly large currents under fault conditions. Driver quiescent current is $\mathbf{2 5} \mathrm{mA}$, set by R28.

Transistors Q12 and Q13 provide short-term protection for the power transistors. Short-circuit current is limited to about 4 A , and peak signal current is limited to 7 A . Long-term protection is provided by 2 A fuses in each supply rail; these should be 'ordinary' types, rather than delay or quick-blow. In the unlikely event of transistor failure, these fuses limit the loudspeaker current to 2 A , corresponding to 32 W into 8 ohms.

The common alternative of a single fuse in the loudspeaker lead is less satisfactory: it provides less protection for the amplifier; it provides less protection for the loudspeaker as the fuse must be rated to carry the full signal current, and it introduces distortion on large-
amplitude, low-frequency signals.
LOW FREQUENCY COMPENSATION
A feature of Fig. 2 not discussed so far is a low-frequency compensating circuit, R13 and C5.

Amplifiers of the basic circuit topology of Fig. 2 (last month) have a group delay which is different for different signal frequencies. Some frequencies take longer or shorter times than others to pass through the amplifier. High-frequency group delay in NDFL amplifiers can be corrected, as described last month, by a small capacitor in the feedback network (see Equation 15). Errors in low-frequency group delay, in both Figures 2 and 10 (last month) are associated with the input coupling capacitor and the capacitor in series with $R_{F 1}$. Low-frequency square-wave inputs are reproduced with a 'tilt' as in Fig. 3a.

One approach to this problem is to use a truly direct-coupled amplifier, with no capacitors in series with the signal path; commercial audio power amplifiers of this type appeared in the 1970s. Unfortunately, such amplifiers are prone to drift. A significant DC voltage may appear at the output even when there is no input. Although it is possible to reduce drift in a power amplifier to an acceptable level, it is not possible with today's technology to build a system that is truly directcoupled from pick-up input, through the RIAA network and the power amplifier.

In the last few years a generation of amplifiers has appeared which include some form of servo amplifier to correct the drift. All circuits known to the author re-introduce the problem of group delay, albeit in a lesser form.

The approach adopted in the design is to retain the coupling capacitors and thereby eliminate drift, but include a group-delay correcting circuit. Figure 4 shows the outline. Group delay is optimally compensated if:

$$
\mathbf{R}_{\mathrm{F} 3}=2 \mathbf{R}_{\mathrm{F} 2}
$$

$\mathbf{R}_{\mathrm{F} 2} \mathrm{C}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F} 1} \mathrm{C}_{\mathrm{F} 1}$
(17)

Figure 3 b shows the improvement in square-wave response.

Low-frequency group-delay compensation could well be included in audio power amplifiers and preamplifiers other than NDFL types.

Fig. 2 Circuit diagram of the 60 W power amp. Components marked with a single asterisk are not mounted on the PCB.

Fig. 3a Square wave response of the amp without group-delay compensation.

Fig. 3b Square wave response of the amp with group-delay compensation note the improvement over Fig. 3a.

Fig. 4 Circuit for compensating low frequency group delay: (a) basic uncompensated circuit; (b) compensated circuit.
alternatively from the positive and negative supplies, are equivalent to a circulating full-wave rectified current and this is basically an evenharmonic distortion of the signal output. If there is any mutual inductance between the powersupply wiring (including the grounds) and the signal wiring (also including the grounds), then an even-harmonic distortion is induced in the amplifier and feedback is powerless to correct it.

The circuit board has been laid out so as to minimise this effect. The areas enclosed by some tracks are critical, and home constructors making their own PCBs are cautioned to follow the layout exactly; use the foil pattern on page 84, or, better still, purchase a ready made board.

Note that the circuit uses three distinct ground symbols.
a)

b)

c)

п77
is the quiet ground track on the circuit board (one per channel). is the noisy ground track on the circuit board (one per channel).
is the metal chassis ground (there are six connections to the chassis in total).
Each channel is connected to chassis ground at two points. The
input socket is connected to the chassis (rather than insulated from it), the input lead from socket to circuit board is, screened, and the quiet ground track is connected to chassis ground at the input socket via the screen. Similarly, the ground output terminal is screwed into the chassis, the leads from the circuit board to the output terminals are a twisted pair and the noisy ground track is connected to chassis ground at the output terminals via the ground output lead. The remaining two connections to chassis are in the power supply (Fig. 5).

Note that a 10 ohm resistor, R31, links the quiet and noisy ground tracks. This resistor is short circuited at low frequencies by the input screen and neutral output wiring to chassis ground. However, the resistor takes over at high frequencies where wiring inductance become significant.

Fig. 5 Suggested PSU for the amplifier. Alternatively, see next month's ETI for a better choice.

Fig. 6 Showing the general technique for connecting inputs, outputs and grounds to a stereo pair of modules.

The $15 \mu \mathrm{H}$ filter inductors in the supply rails are also for suppressing circulating currents (R6 and $R 7$ represent the winding resistances of L1 and L2).

This amplifier employs only two nested differentiating feedback loops and its distortion is not down to the ultimate limit. The benefit of including the filter inductors is therefore marginal. The author is not blessed with 'golden ears' and cannot hear the effect of removing the filters, although the difference is clearly measurable. The filters should certainly be included in amplifiers that use three or more NDFLs. As the inductors must be home-made, and therefore cost nothing but time, and as they do make a measurable (if șmall) improvement, most home constructors will probably wish to include them. Winding data is given in Table 1.

The precise values of inductance and resistance are not important $- \pm 50 \%$ is good enough - but do not use the 1.25 mm wire from L3 as something like 0.1 ohm series resistance is essential. For a similar reason, do not parallel the $470 \mu \mathrm{~F}$ bypass capacitors C 9 and C 10 with high-frequency types. Brass or steel mounting screws are perfectly satisfactory for the filter inductors, as linearity is not important.

Critical Components

The majority of the components in this amplifier are not critical. Almost any small-signal diodes will do, such as the 1 S44, 1N914, and 1 N 4148 . Q1 and Q2 should be high-gain, low-noise types - BC109 and BC549 are among the cheapest available. The others could be
almost any small signal types: BC107 and BC547 are readily available NPN types, the BC177 and BC557 are suitable PNPs. The driver and output transistors should be the types shown: BD139 and BD140 for the drivers, MJ802 and MJ4502 for the power transistors. The biasing transistor, Q11, could be any NPN in a TO-126 pack that can be mounted on the heatsink: the BD135 and BD139 are readily available types that would suit.

Unless the contrary is indicated on the Parts List, resistors can be standard $\frac{1}{2} \mathrm{~W}$ types and the capacitors can be the lowest available working voltage. A few components, however, do require special mention. A feedback amplifier cannot be more linear than its feedback network, so the various components that constitute the feedback network should have small voltage coefficients.

Specifically:

a) The overall feedback resistors R11 and R12 should be high-stability types, such as metal oxide or metal film;
b) C4, C6 and C8 should be NPO ceramics, not high-K types (NPO means negative-positive zero, a - low-K capacitor with a very low temperature coefficient; metallised plate ceramics, for example. Silvered mica capacitors are also suitable);
c) C5 and C14 should be polycarbonate, polystyrene or polypropylene types, but not polyester (eg mylar types); d) C3 should be an ordinary cheap aluminium electrolytic, definitely not one of the relatively expensive resin-dipped tantalum types (this is not a misprint!).

TABLE 1

Formers

If a suitable type is not to hand, these may be turned from 25 mm diameter polystyrene rod to give 12 mm internal bobbin diameter with 7.5 mm winding space between cheeks.
Wire \& Winding L1, 2
Take two 1680 mm lengths of 0.75 mm diameter enamelled copper wire and wind onto each former leaving 20 mm or so lead length at start and finish. Wire \& winding 13
Take a 1190 mm length of 1.25 mm diameter enamelled copper wire and wind it onto the former. Leave 20 mm or so lead length at start and finish.
HARMONIC ANALYSIS AT 1 kHz

Notice how the harmonics drop away at small signal amplitude. In this regard a class-B NDFL amplifier is more like a conventional class-A amplifier than a class-B amplifier.
$1 \mathrm{ppm}=0.0001 \%$
HARMONIC ANALYSIS AT 6 kHz

	Rated oufput	-20 dB
Harmonic	21 V 960 W	2 V 19600 mW
2nd	115 ppm	40 ppm
3rd	100	25
4th	32	15
5th	40	9

Harmonics higher than the 3rd are ultrasonic and hence inaudible.

BUYLINES

Amongst the semiconductors, only Q16 (MJ802) and Q17 (MJ4502) could possibly present problems: these are both available from Bradley Marshall, Cricklewood and Technomatic.

Some care will be needed in ordering the capacitors mentioned as critical, though the types should not be that hard to find. The PCB is available through the ETI PCB service on page 87.

PATENT PROTECTION

[^0]

Fig. 7 Component overlay for the power amplifier.

PARTS LIST

Resistors (all $\frac{1}{2}$ W, 5% except where stated)	
R1	1k0
R2	47k
R3,13,14	33k
R4,5	330R 2\%
R6,7	see text
R8-10	4k7
R11	470R metal oxide or metal film
R12	15k metal oxide or metal film
R15	$1 \mathrm{k8}$
R16	33R
R17	68R
R18	220R
R19,26,27	470R
R20	3k9
R21	1k0, 1 W
R22,23	8k2
R24,25	100R
R28	47R
R29,30	0R47, 5 W
R31	10R
R32	8R2, 2 W or $15 R / / 18 R$, each 1 W
Potentiometer	
PR1	2k2 miniature vertical preset
Capacitors	
C1	4 4 7 axial electrolytic
C2	680pF ceramic
C3	47uF axial electrolytic
C4	33pF 100 V NPO ceramic
C5	$1 \mathrm{u5}$ polycarbonate
C6,8	68pF 100 V NPO ceramic
C7	470pF ceramic
C9,10	470 uF 63 V axial electrolytic
C11	100uF 63 V axial electrolytic
C12,13	33 pF 100 V ceramic
C14	100 nF 100 V polycarbonate
Inductors	
L1, 2	15uH (see text and Table 1)
L3	648 H (see Table 1)
Semiconductors	
Q1,2	BC109, BC549 etc
Q3,4,8,12	BC107, BC547 etc
Q5-7,9,13	BC177, BC557 etc
Q11,14	BD139
Q10,15	BD140
Q16	M1802
Q17	M)4502
D1-3	1N4148, 1N914, 1544 etc
ZD1,2	15 V 400 mW zener
Miscellaneous	
PCB (see Buylines); one 4-way and one 5-way tagstrip; heatsink to suit (see text); PCB stakes; bobbins for inductors; wire, etc.	

The 6 u 8 H inductor (L3) needs to be home-made. Winding data is given in Table 1. The bobbin should be mounted on the circuit board with a nylon screw; brass or steel must not be used, because of nonlinear eddy current losses.

Construction

Assembly of the PCB is quite straightforward. It is probably best to commence by soldering all the resistors in place. Note that R32
could be either a 2 W type (not common) or two 1 W resistors ($15 R$ and $18 R$) in parallel. Note that the emitter ballast resistors of Q16 and Q17 (R29 and R30) should have very low inductance and if you have trouble witl high frequency instability, these resistors are likely to be the culprit. The best solution may be several carbon resistors in parallel. Mount R29 and R30 a few millimetres above the board.

Assemble the diodes next,
making sure you get them all the right way round. Install the links next. Follow with the capacitors. Note that C5 and C14 must be polycarbonate types and C4, 6 and 8 must be NPO ceramics. None of the other ceramic capacitors should be hi-K types, as mentioned earlier. When mounting C9 and C11, see that there is three or four millimetres between the capacitor body and the adjacent 5 W resistors (R29 and R30) to allow for

Fig. 8 Wiring diagram for the components mounted on the heatsink.
convection around the latter.
The transistors may be mounted now. See that each is oriented correctly. Wind L3 next and mount it on the board. Details are given in Table 1. It is not necessary to strictly follow the former dimensions
given, but the inductance needs to be close to 6 u 8 H and wound from 1.25 mm wire at least, for low resistance.

Assembly of the components mounted to the heatsink comes next. The heatsinks in the original were a standard type sold by many companies and masquerading under such names as type 6W-1 (Maplin) or RS 401-807. Each heatsink has a thermal resistance to ambient of about $1^{\circ} \mathrm{C} / \mathrm{W}$, and other types could, of course, be substituted. The specified thermal resistance permits continuous operation at full power: smaller heatsinks (up to $2^{\circ} \mathrm{C} / \mathrm{W}$) could be substituted if the amplifier is to be used only for domestic sound reproduction. Use one heatsink per channel.

Three small components are mounted on the heatsink adjacent to the transistors to keep certain leads short: R28, C12 and C13. Construction is very much simplified if a 4-way tagstrip is installed under one of the collector mounting bolts of Q16 and a 5-way strip under one of Q17's mounting bolts. Figure 8 shows details.

The collector and emitter leads from each power transistor to the circuit board should be twisted. The base leads to Q14 and Q15 could be twisted in with the corresponding collector and emitter leads (although this is not necessary) and the base lead of Q11 can be kept separate. Note that all transistors must be insulated from the heatsink. Note also that the BD140 specified for Q10 needs its leads dressed to fit the board.

Quiescent current in the power transistors should be set to 40-60 mA by PR1. Be warned that this quiescent current is almost zero until PR1 is about three-quarters of its maximum resistance, after which the current increases very rapidly; be sure that PR1 is set to minimum resistance when the amplifier is turned on for the first time.

A convenient way to check the quiescent current is by means of the voltage drop across R29 and R30; this should be $40-60 \mathrm{mV}$ (total) for zero signal input to the amplifier.

See the June ETI for details of a complete NDFL amplifier system.

All devices guaranteed Brand New and to full spec. Items ex stock despatched same day. Prices are EXCLUSIVE of VAT. Please add 60p to order to cover P\&P BEFORE calculating VAT. Payment by cheque. Postal Order, Bankers Draft or Cash (PLEASE register) with order. Official orders from Govt. Depts and Educational Institutes Welcome. Trade Accounts opened subject to satisfactory status - send for details. We are pleased to receive overseas orders (please allow adequate postage - surplus to Bankers Commission and slight delay in despatch. Overseas trade enquiries welcome - send for full details. VAT not applicable to export orders. Price List detailing full range of components available - 30prefundable with first order. Please send SAE.										HAMILTON HOUSE 11 WALKERN ROAD STEVENAGE HERTS SG1 3QD Telephone (0438) 729771 Telex 825378 G				
COMPARE LINEAR	UR PR					CMOS				74LS			TANTALUM	ZENER DIODES
555CMOS	80	LM3909	70	ZN459	285	4000	11	4518	39	LS00	11	LS153 38	BEADS	2V7-33V500 MW 7
556CMOS	140	LM3911	120	ZN1034E	200	4001	11	4520	48	LSO1	11	LS155 29	0.1/35 12	5V1-75V1.3W 14
709	25	LM3914	175			4002	11	4521	90	LSO2	11	LS156 33	0.22/35 12	
741	14	LM3915	195	LOGIC ICs		4007	14	4522	105	LS03	11	LS157 25	0.33/35 12	BRIDGE
748	35	LM13600	105			4008	34	4526	55	LS04	12	LS158 27	0.47/35 12	RECTIFIERS
9400CJ	345	MC1496	68	AY-2376	590	4009	24	4527	55	LS05	12	LS160 30	0.68/35 12	
AY-3-1270	710	MC3340	120	MC1488	55	4011	11	4528	45	LS08	12	LSt61 35	1.0/35 12	1A/100V 20
AT-3-8910	370	MF10CN	350	MC1489	55	4011	11	4531	65	LS09	12	LS162 35	1.5/35 14	$1 \mathrm{~A} / 200 \mathrm{~V} 23$
AY-3-8912	540	ML924	195	MM5303	625	4012	14	4532	60	LS10	12	LS163 35	2.2/35 16	${ }^{1} \mathrm{~A} / 400 \mathrm{~V} 25$
CA3046	60	NE529	225	MM5307	1250	4013	20	4538	80	LS11	12	LS164 40	3.3/35 17	1 A/800V
CA3080	65	NE531	135	MM58174	700	4015	39	4539	80	LS12	12	LS165 50	10/25 18	2A/100V 36
CA3089	190	NE544	180	TMS6011	365	4016	20	4543	60	LS 14	22	LS168 80	15/25 28	2A/200V 40
CA3090AO	370	NE555	16	ULN2003	75	4017	32	4555	35	LS15	12	LS170 70	2.2/16 14	2A/400V 40
CA3130E	85	NE556	45	8 T26	99	4020	42	4556	35	LS20	12	LS173 47	3.3/16 14	2A/800V 52
CA3140E	36	NE565	110	8 8T28	120	4021	39	4561	100	LS21	12	LS174 36	4.7/16 16	
CA3161E	100	NE566	140	8 8T95	90	4022	39	4583	80	LS22	12	LS175 36	6.8/16 16	REGULATORS
CA3189	200	NE567	100	$8 T 97$	90	4023	12	4584	40	LS27	12	LS181 87	10/16 18	
CA3240E	110	NE570	370	81LS95	80	4024	32		50	LS28	14	LS183 05	15/16 27	78L05 30
ICL7166	880	NE571 RC4136	370 55	81 LS96	80	4025	12			LS30	12	$\begin{array}{ll}\text { LS190 } \\ \text { LS191 } & 35\end{array}$	22/15 27	$\begin{array}{ll}78 L 12 & 30 \\ 78 L 15 & 30\end{array}$
ICL7811 ICL7621	95 180	RC4136	55 45	$81 L S 97$ 81 LS98	80	4027	20 37	COMPUTERI	ICs	LS32	13	$\begin{array}{ll}\text { LS191 } & 35 \\ \text { LS192 } & 35\end{array}$	$\begin{array}{ll}33 / 16 & 40 \\ 47 / 16 & 40\end{array}$	$\begin{array}{ll}78 L 15 & 30 \\ 78 L 24 & 30\end{array}$
ICL7622	180	SL490	250	6522	310	4029	43	1802	650	LS37	14	LS193 36	100/16 75	7805 T
ICL8038	290	SL76477	380	6532	675	4035	45	2650A	1175	LS38	14	LS194 32	15/10 22	7812T 36
ICL8211A	150	SP8629	250	6821	110	4040	40	6502	320	LS40	12	LS195 32	22/10 24	7815T 36
ICM72224	775	TBA120S	70	6845	650	4042	38	6800	220	LS42	28	LS196 43	33/10 30	7824 T
ICM7555	80	TBAB00	75	6847	650	4043	40	6802	250	LS47	35	LS197 45	47/10 35	79L05 60
LF353	85	TBA810	95	6850	110	4044	40	6809	615	LS48	40	LS221 50	100/10 55	79L12 60
LF356	90	TBA820	70	6852	250	4049	21	8035	345	LS49	50	LS240 55	100/6.3 42	79 L 15 60
LM10	325	TBA950	220	6875	485	4050	22	8060	1090	LS51	14	LS241 55		7905 T
LM301A	24	TDA1008	310	8155	350	4051	42	8080A	250	LS54	14	LS242 55	63V MINI	7912 T
LM311	70	TDA1022	480	8212	110	4052	48	8085A	345	LS55	14	LS243 55	MONOLYTHIC	7915 T
LM318	120	TDA1024	115	8216	100	4053	48	280A	315	LS74	16	LS244 55	CERAMIC	$7924 \mathrm{~T} \quad 42$
LM324	30	TL06. 1	40	8224	110	4066	22 14			LS75 LS76	16 16	LS245 LS251		$\begin{array}{ll}\text { LM309K } & 130 \\ \text { LM317 } & 270\end{array}$
LM334Z	90	TLO62	80	8226	250	4068	14	MEMORIES		LS76 LS78	16	LS251 28	10 nF	LM317 270
LM3352	120	TL064	95	8228	220	4069	13			LS78	17	LS253 30	22 nF - 10	LM317T 120
LM339	45	TL071	25	8243	270	4071	13	2101 (1220ns)	395	LS83	33	LS257 29	33 nF 10	LM323K 350
LM348 LM358	60	TL072	45	88250	865 250	4072	13	2114(220ns)	295	LS85 LS86	39 15	$\begin{array}{ll}\text { LS258 } \\ \text { LS259 } & 32 \\ \end{array}$	$\begin{array}{ll}47 \mathrm{nF} & 10 \\ 68 \mathrm{nF} & 10\end{array}$	$\begin{array}{lr}\text { LM } 723 & 35 \\ 78 H 05-5 A / 5 V & 550\end{array}$
LM358	55 165	TLO74	95	8251 8253	250	4073	13	2532 2708	295	LS86	15 22	$\begin{array}{ll}\text { LS259 } \\ \text { LS266 } & 18\end{array}$	$\begin{array}{ll}68 \mathrm{nF} & 10 \\ 100 \mathrm{nF} & 14\end{array}$	78H05-5A/5V 550
LM380	65	TL082	45	8255	225	4076	44	2564	1000	LS92	25	LS273 53		RESISTORS
LM381	120	TLO84	90	8257	400	4078	13	2708	225	LS93	22	LS279 30	DIODES	
LM382	110	TL170	49	8259	395	4081	12	$2716(5 \mathrm{~V})$	210	LS95	36	LS283 38		Carbon Film.
LM384	130	UA2240	115	8279	385	4082	12	2764 (750	LS109	21	LS290 40	OA47 10	High Stab 5\%
LM386	65	ULN2003	75	8832	250	4093	23	$4116(200 \mathrm{~ns})$.	. 80	LS112	20	LS293 40	1 N 4001	1/4W 10-M 2
LM387	120	ULN2004	75	9602	220	4099	70	$4118 \cdot 3$			20	LS365 27	1 N4002 4	
LM393	95	XR2206	285	Z80ACTC	260	4502	50	4164 (450ns)	420	LS114	21	LS366 27	1 N4003 5	Metal Oxide/Film
LM711	60	ZN414	79	280ADART	775	4508	110	$5101(450 \mathrm{~ns})$	150	LS 123	34	LS367 27	1 N 40045	2\% Met. Film E24 5
LM725	325	ZN423	130	Z80ADMA	975	4510	45	5204 (150ns)	725	LS125	24	LS368 - 27	1 N 40056	1\% Met. Film E24 8
LN733	69	2N424	130	280AP10	270	4511	45	6116(150ns)			25		$1 N 40067$	
LM747	60	2N425E	340	ZN425E8	320	4512	42	6514	330	LS123	29	MICRO-MINI	1N4148 2	
LM1458	40	ZN426E	290	ZN426E8	320	4514	110	6810	115	LS136	23	100 V CERAM	1N5401 12	
LM2917	185	ZN427E	575	ZN427E8	575	4515	110			LS138	24	PLATE CAPS	1N5404 14	
LM3900	45	ZN428E	395	2N428E8	395	4516	50			LS139 LS151	27 30	1 pF 10 nF 7	$1 N 5406$ 17 iN5408 19	

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

Official B/B/C Dealer	
bec computers Model B Modet B + Disc Interiac (cariagef 6.50 by Securia	${ }_{4}^{3481.95}$
BEC MICAO DISC DRIVES BBC 31 Single 100 K Drive Expandable to	
BBC 32 2xal 0 100 10 K	${ }_{340}^{220.00}$
BBC 33 100k Uparade BBC 34 Oual 400 K Drus	(122.00
All Disk Dives (except BBC 33) are complete with anual Utitites Disc and Comnecting Cabies	
bbicmicro upgrade	
	5
	1850
	${ }_{7}^{6.70}$
${ }_{\text {BBC }} 6$ ELS ${ }^{\text {Exa }}$ Exansion K	6.45
Al Kils res supplied with	ftring instuction
	and Cable 36" ${ }_{\text {c }}$
${ }^{8 B C} 23$ Casserte Lead	${ }^{3.50}$
${ }_{8 B C}^{B 8 C} 245$ Prin Pin Prig	${ }_{0}^{0.60}$
886265 Pm DIN Pug	0.60
	10C 102×34
BBC 36 Disc Power Cable	${ }_{6} 8.00$
bac actessonits	
	${ }_{51785}^{11.30}$
${ }_{\text {BBC }} 711$ Refeexex Recene	225.00
BBC 72 Second Processo	27 177.00
${ }_{\text {BEC }} 73$ Second Processa	. 00
acoonsoot for the bic	
S8E03 Business Games	${ }_{8.65}^{8.65}$
S6EEO2 Peeko Computer	Manual $\quad 8.5$
${ }_{\text {Sexol }}$ Stieatue Giaphics	- ${ }_{\text {assetle }}^{\text {a }}$
S8xoo Gabits and Cha	${ }_{8.85}^{8.65}$
SBioz Usp cassene	14.65
SBEO1 FORTH Casselle	
S8600 Phisosoners Oues	8.85 8.65
${ }_{56603}$ Monnseres	6.65
Sbico snaper	${ }_{8}^{8.65}$
SBEcob Arcade Actio	0.35
	${ }_{8}^{8.65}$
${ }_{\text {SBG6 }}$ A Aradians	${ }_{8}^{8.85}$
SBG10 Chess	
	7.50 7.50 7
Please ring for current delivery on Acornsoft Products before ordering	
	${ }_{20 \text { Way Header }}^{827.46}$
${ }_{7}^{7415244}$	26 way Hedierer 1.76
${ }_{744152456}^{764}$	${ }_{40}^{34}$ Way Header Hearer 2.32
${ }^{\text {OS35991N }}$	${ }_{15} 5$ Way O Skt ${ }^{\text {a }}$
bbc Sofrware in eprom	
(\%ardurowe	52.00 1000
SPECIAL ${ }^{\text {a }}$	
OFFER	
Spectrum 32K	
Upgrade Kit	
$24.951 \begin{aligned} & \text { ¢ }\end{aligned}$	

75189

$$
\begin{aligned}
& \text { CRYSTALS } \\
& 1 \mathrm{M} \\
& 1.008 \mathrm{M} \\
& 18432 \mathrm{M} \\
& 2.4576 \mathrm{M} \\
& 36864 \mathrm{M} \\
& 4 \mathrm{M} \\
& 6 \mathrm{M} \\
& 8 \mathrm{M} \\
& 9.8304 \\
& 19.6608
\end{aligned}
$$

$\begin{array}{cc}\text { PINS } & \text { TIN } \\ 8 & 7 \\ 14 & 10 \\ 16 & 10 \\ 18 & 13 \\ 20 & 15 \\ 22 & 17 \\ 24 & 21 \\ 28 & 24 \\ 40 & 30\end{array}$
ZIF SOCMETS

(TEXT00L	
24 pin	5.75
28 pin	8.20
40 pin	$\mathbf{8 . 7 5}$

400 GOLD (IEXAS)
GOW

D1 2.10 432 D1 13.0 2.75
2.75
1.82
2.00
1.86
0.64
0.86
0.86
1.68
2.48

WW

 G4510
4511
4512
4514
4515
4516
4518
4519
4520
4521
4522
4526
4527
4528
4532
4541
4543
4553
4555
4556
4585 0.4
0.4
0.
0.
0.4
0
0

OIL JUMPERS

Doutils Ended

$$
\begin{aligned}
& 14 \text { PIN } 1.051 .982 .42 \\
& 16 \text { PIN } 2.052 .152 .68
\end{aligned}
$$

$$
4 \operatorname{PNN} 3.003 .153 .9
$$

$$
25 \text { WAY B TYPE }
$$ CONAECTORS

Shr CONNECTORS Shrouded Heade

 (Rilght AnglePCB Mtot

10 PIN	$\mathbf{0 . 8}$
14 PIN	$\mathbf{1 . 2}$
16 PIN	$\mathbf{1 . 3}$
20 PIN	$\mathbf{1 . 4}$
26 PIN	$\mathbf{1 . 7}$
34 PIN	$\mathbf{2 . 0}$
40 PIN	$\mathbf{2 . 3}$
50	
60 PIN	$\mathbf{2 . 3}$
	$\mathbf{3 . 3}$

IOC SOCKETS

CARRIAGE Orders up to $£ 199$ sent by 1 st class post and $£ 200+$ by CHARGES $0-£ 100=£ 0.50, £ 100-199=£ 1.25, £ 200+=£ 5.00$. PRICES All prices and carriage charges quoted are exclusive of VAT and are subject to change without notice. QUANTITY DISCOUNTS Available on most products. Please tele

FFICIAL ORDERS are weicome from Educational Establishments, Government Bodies and Public Companies

CREDIT ACCOUNTS Are available subject to status. Payment strictly nett 30 days.
CREDIT CARDS Payment by credit cards is accepted on mos products with no surcharge
OUT OF STOCK Items out of stock will follow with ع0.45 Carriage charge at our discretion, or a refund will be issued if requested.
DELIVERY All stock orders received up to 3.30 pm are despatchedthe same day.

01-452 1500 Tbohnonatic Lid 01-450 6597

BBG Micro Computer
 Please phone for availability

BBC Model B £399 including VAT plus $£ 8$ carr. Model A to Model B Fitting charge $£ 15$ Individual upgrades also available

WORD PROCESSOR 'VIEW' 16K ROM £52

TELETEXT ADAPTOR £195.00
ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK
PRESTEL ADAPTOR £90.00
2nd PROCESSOR 6502 £170 2nd PROCESSOR Z80 £290

FLOPPY DISC INTERFACE
Incl. 1.2 operating system
£95 + £20 installation
Phone or send for our BBC leaflet BBC FLOPPY DISC DRIVES Single drive $5 \% / 1100 \mathrm{~K} £ 235+\mathrm{f} 6$ carr. Dual drive $51 / 4 " 800 \mathrm{~K} £ 799+\mathrm{f} 8$ carr.
BBC COMPATIBLE DRIVES
These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: $200 \mathrm{~K} £ 360$; 400K £490; 800K £610
Drive Cables: Single £8 Dual£12

Official Beg DEALER

CASSETTE RECORDER

BBC Compatible Cassette Recorder with Counter and Remote Control £26.50 $+£ 1.50$ carr. Cassette Leads £3.50 Computer Grade Cassette £0.50p each £4.50 for $10+£ 1$ car.

MONITORS

MICROVITEC 1431 14	¢249 + ¢8
MICROVITEC 2031 20'	¢319 + ¢8
KAGA 12" RGB Mon	$\mathbf{£ 2 5 5}+£ 8$
ead for KAGA RGB	

Lead for KAGA RGB
SANYO 12" Hi Res Green Monitor

ACORN ATOM

Basic Built $£ 135$ Expanded $£ 175$
(carr $£ 3$ per unit)
Atom Disc Pack $\mathbf{2 9 9}+\mathrm{f6}$ carr 3A 5V Regulated PSU $£ 26+£ 2$ carr. Phone or send for our BBC Atom list.

NEC PC 8023 BE-C

Features include: 80 cols 100 CPS

Bi-Directional, Logic seeking, Proportional Spacing,
Forward $\&$ Severs Forward \& Reverse Line
Feed Hi-Res and Block Graphics, International and Greek charatecters.
Auto-Underlina, Super \& Sub Scripts, Friction \& Tractor, 2K Buffer, Cartridge Ribbón.
$£ 345+£ 8$ carr.

PRINTERS
SEIKOSHA GP 100A
80 Cols 30 CPS
Full ASCII e GRAPHICS $10^{\prime \prime}$ Wide paper Now only $180+$ £6 carr. Ask for details on GP 250A
Parallel Printer lead for BBC/Atom to most printers $\mathbf{E 1 3 . 5 0}$ Variety of interfaces, ribbons in stock
2,000 fan fold sheets $9 \frac{1^{\prime \prime}}{2} \times 11^{\prime \prime} £ 13.50+£ 3 p \& p$

EPSON RX80 and FX80
RX80 100CPS 80 Col Tractor Feed FX80 160CPS 80 Col F\& T Feed Logic seoking, Bidirectional, Bit image
printing, 9×9 Matrix. printing, 9×9 Matrix.
Auto Underline, Cen. tronix 8, Bit Parallel interface as standard RX80 £298 FX80 £438 ($\mathrm{E} 8 \mathrm{carr} / \mathrm{printer}$)

MICRODOCTOR

This is not a logic analyser or an oscilliscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0-$ it will print memiory map, search for code, check dataline shorts and operates peripherals Microdoctor
complete with PSU, Printer, probe cable and two configuration boards. $£ 295$.

 $40244 \quad 18$
${ }^{60 p}$ LINEARICs
 88%

 LM723
LM350

TL494 | $\mathrm{TL494}$ |
| :--- |
| $78 S 40$ | OPTO

N5777
OCP71
OR12 RP12
ORP60
RP61 $\begin{array}{lll}\text { ORP60 } & \text { 120p } & \text { TLE } \\ \text { ORP61 } & \text { 120p } & \text { TL } 100 \\ \text { OPTO：} \\ \text { OSOLATORS }\end{array}$

Til
TI
Ti
R
p
p

TH222
TiL228
Rectan
LEDs
TiL31
TL31
TIL32
TIL33
7750
Barg
DF
9368
9370

 Computer components
 MODULATO象偌荡 8755
9902
TMS4500
 2732
$2732-35$

CAT
CONTRO
CRT6545
CRT507
CRT5037
EF936／6
MC6845
MC647
MSF96364
TMSS918
TMS9927
TMS928

\qquad | 75150 P |
| :--- |
| 75154 |
| 75182 |
| 75361 |
| 75363 |
| 75365 |
| $75451 / 2$ |
| $75453 / 4$ |

85p
$60 p$
$60 p$
$60 p$
$60 p$
$40 p$
$35 p$
$50 p$
$32 p$
$30 p$
$25 p$
$25 p$
$25 p$
$25 p$
$180 p$
$40 p$
$27 p$
$40 p$
$27 p$
$27 p$
$108 p$
$24 p$
$33 p$
$80 p$
$46 p$
$24 p$
$225 p$
$190 p$
$220 p$
$225 p$
$150 p$
$120 p$
$200 p$
$200 p$
$14 p$
$60 p$
$350 p$
$50 p$
$400 p$
$225 p$
$90 p$
$225 p$
$400 p$
$60 p$
$100 p$
$70 p$

2 SC 2335	200 p	0 a
2 SC 2612	200 p	

$\begin{array}{ll}04400 \mathrm{~V} & 200 \mathrm{p} \\ 25 \mathrm{~A} 400 \mathrm{~V} & 400 \mathrm{p}\end{array}$

PLEASE ADD 40p p\＆p \＆15\％VAT
（Export：no VAT，p\＆p at Cost）

COMPRESSOR/ LMITER

When it comes to compressing those troublesome signals that are prone to overload, this ETI project really is the limit! Design by Ian Martin B.Sc.

Compressors and limiters have many uses in professional recording and broadcasting, and they can also be pretty useful to the amateur. Perhaps the single most important use is for overload protection: the limiter is set up so as to remain inactive until a signal occurs which would overload following circuits (perhaps a radio transmitter or power amplifier), at which point gain reduction cuts in and, without being very noticeable about it, the unit prevents blown fuses, gross distortion or worse.

The circuit described here has been designed to be capable of both the compressing and limiting actions - it all depends on the signal size you apply and the gains you set in the circuit. With the component values shown, the specification of this unit is very similar to devices currently in use in stereo radio broadcasting in the UK.

On The Attack

In this circuit the attack has been made very fast indeed, the time constant being 220 microseconds: hence the time taken for the limiter to react fully to an

HOW IT WORKS

Abstract

The left and right channels of the unit The left and right channels of the unit are identical, so this description will be confined to the left-hand channel.

IC1 forms a buffer, and its gain is adjustable by PR1 so that it can be used to set the input sensitivity. The variable gain cell is made up from IC2 and IC7a and their associated components. The configuration used is slightly unusual: IC2 forms a conventional inverting amplifier, its gain being determined by $\mathbf{R}_{\mathrm{F}_{\mathrm{B}}} / \mathbf{R}_{\mathrm{IN}_{\mathrm{N}}}$ in the usual way. However, while $\mathbf{R}_{\text {IN }}$ is simply $\mathbf{R 2}$, \mathbf{R}_{FB} is made up from $\mathbf{R 4}$ and IC7a which, as an operational transconductance amplifier, can be used as a current-controlled resistor. With the addition of a voltage-to-current converter to drive the control input of the LM13600, a complete VCA is formed which will produce a gain inversely proportional to the control voltage.

The first stage of the gain-control side chain is a full-wave rectifier made up from IC3a and IC6a. Q1 boosts the output current drive capability of the rectifier in order to produce a fast attack characteristic when charging C11.

From C11 onwards until the final voltage-to-current converters for the VCA, the two side chains are combined into one channel, the highest of the left or right input signals being registered on C11. In this way stereo ganging is achieved, and this prevents the stereo image from wandering from side to side during gain reduction (if the overload signal is in one channel only). The adjustment of the decay time and limiting threshold for both left and right channels is achieved easily and equally by R32 and PR5. IC8b is used as a high impedance buffer for the control voltage held on C11, which is discharged by R31. The output of this buffer is fed to PR5, which controls the side chain gain and hence the limiting threshold.

The only problem with the particular VCA configuration chosen is that should the control voltage (and hence control current being fed to IC7a) fall to zero, the gain of the VCA will increase to the open-loop gain of IC2, probably resulting in the VCA output reaching one of the supply rails (as is usually the case when an IC amplifier loses its feedback). In order to prevent this from happening, the control voltage V_{c} is prevented from going below $0 V 5$ by zener ZD1 and preset PR6. Thus the higher of either $\mathrm{V}_{\text {MIN }}$ or the output of PR5 is passed via D11 or D12 to the law-shaping amplifier IC8a.

The diode D13 and resistors R35, 36 are configured to make up for the voltage drop across D11 and D12, and maintain a tight compression ratio, typically 10:1. The output of the shaping amplifier provides a low source impedance to drive the voltage-to-current converter IC9a and Q3 (note that the left and right channels split again at this point).

TABLE 1

Measured performance of the prototype.
Gain:
Bandwidth (3 dB points):
Input impedance:
Output impedance:
Limiting threshold:
Compression ratio for signals exceeding the threshold: Crosstalk with non-speaking channel terminated with 600R (left-to-right or right-to-left):

100 kHz		20 kHz	
100 Hz	1 kHz	10 kHz	-70 dB
-70 dB	-70 dB	-68 dB	-65 dB

Noise with input terminated as above: -70 dB
(this is the gain required to make noise at the output peak to 0 dB on a standard broadcast peak program meter, ie this is the peak noise. Should a measurement be made with an RMS reading meter, this measurement may improve by as much as 6 dB).
Control voltage breakthrough onto non-speaking channel with 20 dB of gain reduction occurring on the other channel:

100 Hz
1 kHz
$-68 \mathrm{~dB}$

0 dB (adjustable)
10 Hz and 30 kHz
approximately
22k
100R
0 dB (adjustable)
10:1
$10 \mathrm{kHz} \quad 20 \mathrm{kHz}$ $-65 \mathrm{~dB}$

Tracking between channels during gain reduction:
better than 0.3 dB
Distoriōn at 1 kHz :
Input
-8 dB
0 dB

0 dB
$+10 \mathrm{~dB}$
Distortion at 100 Hz : Input $-8 \mathrm{~dB}$ 0 dB
$+10 \mathrm{~dB}$

Output	Distortion
-8 dB	-66 dB
-1 dB	-60 dB
0 dB	-58 dB
Output	Distortion
-8 dB	-58 dB
-1 dB	-45 dB
0 dB	-38 dB

NB. These figures for 100 Hz distortion were measured with a recovery time constant of 100 milliseconds (total recovery time approximately 220 milliseconds), hence a certain amount of distortion due to the compression of individual waveforms is to be expected. Increasing the recovery time constant as in the final design will improve the low frequency distortion measurements, until for long recovery times (greater than 3 seconds) they will approach the values obtained for 1 kHz .

Fig. 1 Circuit diagram of the compressor/limiter.
overload above the limiting threshold is approximately 500 microseconds. The decay time was chosen to be 330 milliseconds; hence full recovery takes place approximately 700 milliseconds after the overload has been removed from the input. This recovery time was chosen after much subjective assessment, and is the fastest possible without undue distortion of low frequencies (this being a common problem in all
compressor/limiters). However, as this is a simple one-resistor adjustment it is easy to experiment and find the best compromise for different uses.

Shaping Up

The need for the shaping amplifier built around IC8a arises because the side chain is, like most professional designs, an open loop system deriving its input from the incoming programme material and
not from the VCA output. This has the advantage that the limiting threshold and other dynamic characteristics may be altered easily and, if desired, other functions may be included. For example, de-essing could be implemented, where a treble boost in the side chain would lead to the gain reduction of highenergy, high-frequency sounds such as sibilants. It would als ρ be possible to build a feedforward or overshoot limiter, by including a suitable delay

Fig. 2 Component overlay for the unit.
line in the main chain before the VCA. In this way gain reduction would take place before the programme material reached the VCA via the delay line and even the sharpest transient would be prevented from exceeding the limiting threshold at the output. However, in most applications this is not necessary, except in cases such as disc-cutting or radio broadcasting where an overload of even the shortest duration would have dire results.

The setting up procedure is very simple indeed. PR6 should be adjusted so that V_{c} is held at $0 \mathrm{~V}_{5}$ with no input signal. PR1 and PR3 should then be adjusted to give the required gain from each channel (usually 0 dB). That concludes the static setting-up, except for PR2 and PR4 which should be adjusted for zero offset at the output of the VCA. This ensures minimal control voltage breakthrough onto the audio output during gain reduction.

To set the compression

PARTS LIST

threshold, a high level signal (for example, +10 dB) should be applied to the input, and PR5 adjusted to give 0 dB at the limiter output.

If the above sequence is followed, the limiter will act as a normal unity-gain amplifier for all signals below 0 dB , and will reduce the gain of all signals above this threshold such that the output at no time exceeds 0 dB . Should the limiting threshold need to be reduced to, say, -10 dB to be more compatible with domestic equipment, then all that is required is an increase in the gain of the side channel by that amount. This is easily achieved by increasing R13 and R22 from 20k to, say, 47k. Should an indication of gain reduction be required, this is easily provided by buffering off V_{c}, the control voltage, by 1 kO or so to prevent any fault on the metering equipment affecting the operation of the limiter (for my own. unit this metering equipment consists of a simple bargraph driver and LEDs).

BUYLINES

> Although the design of this project results in top-notch performance, it uses components that are readily available and you should be able to find everything in the adverts in this issue. The PCB can be purchased from us using the order form on page 87 .

LP-1 Logic Probe

 The LP-1 has a minimum detachable maximum input frequency of 10 MHz . This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores puise or level transistions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All for less than the price of a DVM £31.00*OModel LP 3 illustrated

LP-2 Logic Probe

 The LP-2 performs the same basic functions as the LP-1, but, for slower-speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 K ohm probe is the economical way to test circuits up to 1.5 MHz . It detects pulse trains or single-shot events in TLL, DTL. HTL and CMOS circuits,replacing separate pulse detectors, pulse stretchers and mode state analysers.
(Available in kit form LPK-1 £13.25)

£18.00*

OMOtsel LP 3 illustraters
*price excluding P. 8 P and 15% VAT

LP-3 Logic Probe
 extra high speatures of the LP-I plus lures puises as monitor lains to over 50 MHz . you the essential capabilities of a high-quality memory scope at $1 / 1000$ th the cost LP-3 captures one shot or low-rep-events all-but-impossible to detect any other way.
All without the weight, bulk, inconvenience and power consumption of conventional methods.
£49.00*
OModel LP. 3 illustrated

The New Pulser DP-1

The Digital Puiser: another new idea from G.S.C. The DP-1 registers the polarity of any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hold the button down for more than a second, the DP-1 shoots out pulse after pulse at 1000 Hz . The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very reasonable price. £51.00*

OModet LP 3 illustrated

G.S.C. (UK) Limited, Dept. 9II Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Telephone: Saffron Walden (0799) 21682.
Telex: 817477.
G.S.C. (UK) LImited. Dept. 9II. Unit 1. Shire Hill Industrial Estate, Satfron Walden, Essex CB113AQ.
Prices include P.\&P. and 15% VAT

I enclose Cheque/P.O. for Σ \qquad or debit my Barclaycard/Access/ exp. date
FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service Telephone (0799) 21682 and give us your Barclaycard Access, American Expres
number and your order will be in the post immediately.
$\left\lvert\, \begin{aligned} & \text { For FREE } \\ & \text { catalogue } \\ & \text { tick box } \square\end{aligned}\right.$
r's packed with details of all our KITS plus large range of SEMICONDUCTORS including CMOS. LS TTL. linear, microprocessors and memories; full range of LEDs, capacitors, resistors, hardware, relays, switches etc. We also stock VERO
and Antex products as well as books from Texas Instruments, Babani and Elektor ALL AT VERY COMPETITIVE PRICES
ORDERING IS EVEN EASIER - JUST RING THE NUMBER YOU CANT FORGET FOR PRICES YOU CAN'T RESIST.

Answering

5-6-7 8-9-10

service evngs
and give us your Access or Barclaycard No. or write enciosing etc. \& weekends cheque or postal order. Official orders accepted from schools, etc. \& weekends

HOME CONTROL CENTRE
This New Remote Control Kit enables you to control up to 16 different appliances anyarmchair. The transmitter injects coded pulses into the mains wiring which are received by receiver modules connected to the same mains supply and used to switch on the appliance addressed. Receivers are addressed by means of a 16 -way keyboard, followed by an on or off command. Since pushing buttons can become rather boring. the transmitter also includes a computer interface so you can orogramme your favour ite micro to swich lights, heating, electric blanket, make your coffee in the morning, THINK OF THE POSSIBILITIES. The KIT includes all PCBs and components for ons transmitter and two receivers, plus a drilled Order as XK112 $\quad £ 42.00$ Additional Recievers XK $111 £ 10.00$

ELECTRONIC LOCK KIT XK101 This KIT contains a purpose designed lock IC 10 -way keyboard, PCBs and all component sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a prewired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 uA . Ouput: 750 mA max Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc Will drive most relays direct. Full instructions supplied. ONLY £10.50
Electric lock mechanism for use with latch lock: and above kit
£13.50
MINI KITS
$\begin{aligned} & \text { MK1 TEMPERATHAE } \\ & \text { CONTHOLLERTHERMOSTAT }\end{aligned}$
Usez LM 3911 IC 10 zonse tompera.
mo2 Solid Stata Relay dioal for switching morors, lighes.
$\begin{aligned} & \text { hobeters, ellc. from logic. Spto- } \\ & \text { isolated with zoro voltage switching. }\end{aligned}$
$\begin{aligned} & \text { Supplied without trise } \\ & \text { MK3 } \\ & \text { BAR/DOT }\end{aligned}$
bar or single dot. Cdeal tor thermo
$\begin{aligned} & \text { metera, } \text { Ievel indicators, atc. May be } \\ & \text { stacked to obtain } 20 \text { to } 100 \text { element }\end{aligned}$
displays. Hequires 5 -20V supply.
ME4 PROPORTIONAL
TEMPERATUAE CONTROLLER
$\begin{aligned} & \text { Based on the SL441 } \\ & \text { switch , this } \\ & \text { voltage }\end{aligned}$
*" "burst fire" power controller.
${ }^{0.5^{\circ} \mathrm{C} \text {. Max. logd } 3 \mathrm{KW}}$
$\begin{aligned} & \text { kit will switch a mains iosd on (lor offl) } \\ & \text { (in }\end{aligned}$
for a preset time from 20 mins. to 35
$\begin{aligned} & \text { hrs. Longer or shoritr perlods may } \\ & \text { be realised by minor component }\end{aligned}$
changes Max load 1 KW . 5

\int 3-NOTE DOOR CHIME σ
Based on the SAB0600 IC the kit is supplied with all components, including ioudspeaker, printed circull
board, a ore-drilled box $195 \times 71 \times 35 \mathrm{~mm}$) and full instructions. Requires only a PP3 9 V battery and push switch to complete. AN IDEAL PROJECT FOR
BEGINNERS Order as $\times \mathbb{1} 102$

XK113 MW RADIO KIT

Based on ZN414 IC, kit includes PCB, wound aerial and crystal earpiece and all components to make a sensitive 9 V battery. IDEAL FOR BEGINNERS. $\quad \mathbf{~ 5 5 . 0 0}$ COMPONENT PACKS
PACK 1650 Resisto
PACK $2 \begin{aligned} & \text { value } 40 \times 1.00 \\ & \times 16 \mathrm{~V}\end{aligned}$

- 1000 u F 5 per value Ca 25 acitors $10 \mu \mathrm{~F}$ to

PACK 360 Polyester Capacitors 0.01 to $1_{\mu} \mathrm{F} / 250 \mathrm{~V}$ PACK $4 \begin{aligned} & 5 \text { per value } £ 5.55 \\ & 45 \\ & \text { Sub-miniatur }\end{aligned}$
PACK 5 - 5 per value $£ 2.90$
PACK 530 Low Profile IC Sockets 8. 14 and 16 pin
PACK 625 Red LEDs (5 mm dia,) 17.25

THE D D Q E D A A

 MICROCONPUTERuses FORTH which executes about 10 times faster and requires less program memory than a comparable program using basic. Features 8 K ROM. 3K RAM, built in speaker, 40 key keyboard and a 32×24 line-flicker free display on TV.
Comes supplied complete withleads, mains adaptor, a comprehensive easy-to-follow manual on Forth programming + FREE cassette containing 5 sample programs. $\mathbf{E 7 5 . 0 0} 1+\mathbf{e 2 . 0 0}$ carriage $+V A T)$
JUPITER ACE SOFTWARE J5 DOT MAN

J3 SPACE INVADERS $\mathbf{\$ 3 . 9 0} \mathrm{J} 7$ ZAP 'EM (ASTEROIDS) DUCK

DVM/ULTRA SENSITIVE THERMOMETER KIT

 and a $33^{1 / 2}$ digit liquid crystal
display. This kit will form the
fonis of a dew addititional resisitors and switche
(ontione are requirod-details supplied), or a sensitive

 automatic polarity indication and an untre, low power raclumment-giving a 2 yaa Ypical batieny life from a standard 9 V Price $\mathbf{1 5} 50$

DISCO LIGHTING KITS

DLZ100K $£ 14.60$
undirectional channel sequence with speed
variabie by means of an switched only al mains zero clossing points Optionat opto inpur DLA 1 Only $\mathbf{E 8 . 0 0}$

${ }^{\text {esponse }}$

DL3000K

\qquad
Only £11.95
OPEN-SESAME ${ }^{*}$ The XK103is a general purpose infro-red drans-
mitrertreceiver with one momentary (normally open) relay contact and two latched transistor output. Dosigned primarily for controlling puts for driveligaraga lights at a renge of up to puts The unit also has numerous applications in the home for switching lights, tV. closing
curtains, etc. Ideal for aged or diesileg

currsinst persons.

The Kit comprisas a mains powered recaiver, a
 drilled box, requiring: 9 V Datery and one
opto-isolated solid state switch kit for inter-opto-isolated solid state switch kit for inter-
fecing the recoiver to mains appliancos? As ONLY £23.75

THE MULTI-PURPOSE TIMER HAS ARRIVED

 designed to control four mains outputs independently, switching on
and off at pre-ser times ovar a 7 day cycle, e. . to control your central heating lincluding different switching timas for weekends). just connect it to your system programme and ser it and forget it the
clock will do the rest.
features include:-

- 0. . * LED 12 hour display.

Day of woek, am/pm and output status indicators. 4 zero voltege switched mat
$50 / 60 \mathrm{~Hz}$ mains operation.
Battery backup saves stored programmes and continues time keeping during power failures. (Battery not supplied). 18 programme time seta.
Powerful "Everyday" function enabling output to switch evary day but use onty one time set. Useful "sleep" function-furns on output for one hour immedistely or ather a specified kime interval. immediately or ather a specifred kime intry. Programme verification at the touch of a button,
(Kit includes all components, PCB, assembly and programming instructions). ORDER AS CT5000

For a detailed booklet on
remote control - send us 30p
and S.A.E. $\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ today.
ALL
PRICES
EXCLUDE VAT

No circuit is complete without a call to-
ELECTRONICSE
11 Boston Road
London w7 3sJ

MKG SIMPLE INFRA RED TRANSMOTTE

Single channol, reans ent. Mains power, with and MK8 COOED INFPA RED TRANSMITIER
Based on the SL 490, the kit includes all components
requires $9 \mathrm{~V}(\mathrm{PP} 3)$ battery and keyboard. $8 \times 2 \times 1.3 \mathrm{cms}$ MK 10 1s WAYKEVEOARD For use with MK8 and MK18 to generate 16 different codes for decoding by the ML928 or ML926 MK1110-Channil + 3 Analogus o/p IR Recelver tone and lamp brighiness. Includes its own mains supply For use with MK8 kit with 16 on/off outputs, which with further interiace circuirry, such as relays or triacs, will switch up to 16 items of equipment on or off remotely. Latched or momentary out-
puts-please specify when ordering. Includes its own mains supply.
E11.95 MK16 Mains Powered IR Transmitter Meins powered for continuous operation - single chat
alarms, automatic door openers, etc. Range approx. 6 ft . MK 1712 V d.c. MA RECENER or use with MK6 or MK 16. Relay output with DP 3 Amp change-over contacts, may be used as
latched, momentary or "break beam receiver. Operates from 6.13 d d.c. WK18 HIGH POWER WR TRANSMITTER
Similar to MK8 but with range of approx. 60ft. 86.20 Opto-isolated with zero voltage ewitch MK15 DUAL LATCHED SOLDO STATE RELAY

$$
\begin{aligned}
& \text { Comprises } 2 \times \text { sold state erlays and latch for use with momentary } \\
& \text { version of the MK12. } 2 \text { output triacs required (not supplied). £4.50 }
\end{aligned}
$$

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to 1 kW
on and off at present times once per
day. Kit contains: AY-5-1230 IC, CT1000K Basic Kit
CT1000K with
(Ready Built)
$£ 14.90$
display drivers. switches, LEDs,
Add 65 p postage \& packing $+15 \%$ VAT to total Add 7250 (Europel f6.00 Send S A E for further STOCK Goods by return subject to availability

BALANCED INPUT PREAMP

This versatile little preamp has a host of applications in the audio-and-beyond range, not the least of which would be as a balanced mike preamp. Design by David Tilbrook.

Many transducers require a balanced or differential preamplifier rather than the simpler single input unbalanced type. Balanced microphones, for example, require a balanced preamplifier to ensure minimal susceptibility to extraneous noise sources. The concept in the balanced approach is fairly simple: the microphone, for example, is connected to the balanced preamp using three wires instead of two. Two of these wires carry signals and the other is a ground connection. The balanced source, in this case a microphone, generates a signal voltage on the two signal wires such that one of the signals is 180 degrees out of phase with the other. The two active lines are twisted together with the earth line, or a two-wire shielded cable is used to connect the mike to the preamplifier.

In this way any external noise or hum source will affect both inputs equally, producing a signal that is in phase on both of the signal wires. Such a signal is called a common mode signal. The balanced preamplifier however, is configured in such a way as to amplify only a differential signal. The preamp produces an output signal that is proportional to the

EARTH OF SOURCE
OTH OF PREAMP
Fig. 1 Balanced line with transformer coupling.
Output impedance:
Nominally 260 ohms. Depends on calibration but easily adjusted to 80 dB .

```
Frequency response (10k load): }12\textrm{Hz}-60\textrm{kHz}\pm0.1\textrm{dB
Frequency response (10k load): }12\textrm{Hz}-60\textrm{kHz}\pm0.1\textrm{dB
THD (at 5 V RMS output): }\quad<0.007%\mathrm{ at }100\textrm{Hz
THD (at 5 V RMS output): }\quad<0.007%\mathrm{ at }100\textrm{Hz
    <0.006% at 1 kHz
    <0.006% at 1 kHz
    <0.012% at }10\textrm{kHz
    <0.012% at }10\textrm{kHz
Distortion figures can be expected to decrease further at more
Distortion figures can be expected to decrease further at more
realistic signal levels but become difficult to measure.
realistic signal levels but become difficult to measure.
Total equivalent input noise: - }124\textrm{dB}\mathrm{ (approx)
Total equivalent input noise: - }124\textrm{dB}\mathrm{ (approx)
Input impedance:
Input impedance:
difference between its two inputs. Since the signal is generated out of phase, it is amplified. The noise source, however, is a common signal and is the same in both input wires. The difference between the noise signals on each of the input wires is therefore zero, and is not amplified. With this technique small signals can be sent over long lines, an otherwise impossible task due to the susceptibility of these lines to mains hum in particular.

\section*{A Transformation}

In audio the most common method employed to implement a balanced line is with transformers. The basic approach is shown in Fig. 1. The source may be a microphone or a small preamplifier inside the microphone, or simply the output from a mixer or other electronic device. This is connected to the input of a balancing transformer that is wound to represent the correct load to the driving stage. The output of this transformer consists usually of a bifilar-wound secondary connected as shown in Fig. 1. A similar transformer is used at the other end of the line to convert the
differential signal back into one that can be amplified by the single input preamp.

This technique has the advantage that the signal earth of the source need not be connected to that of the preamplifier. This can be a very useful feature at times, particularly when large numbers of cables are connected together at a common point such as at a mixing console. The ability to isolate the input earths of the various inputs enables complete freedom from hum loops, which otherwise can become almost impossible to remove.

Transformers have disadvantages, however. First, good ones are expensive as they must be carefully wound and shielded from external hum fields. Since the transformer is a coil of wire, wound specifically for good response over the complete audio spectrum, they are particularly susceptible to magnetic fields produced by power transformers and so on. The problems associated with isolating the transformers from power supply hum fields can be very real, if not impossible in some instances.

It is often said that a transformer's ability to reject a common mode signal is inferior to that of a balanced preamplifier such as the one to be described in this project. Although this is true it is largely irrelevant, since the limit to common mode rejection is usually set by the shielded cable used to connect the input devices. Even the best quality cables seldom allow common mode rejections greatly in excess of 60 dB , a figure which is easily surpassed by most input transformers. The main advantage of differential preamps over transformers is cost and relative lack of susceptibility to hum fields. This makes it substantially easier to mount the preamp within the equipment to avoid degradation of
the signal-to-noise ratio by hum pickup. Another advantage of the preamp over transformers is that even the best transformers generate significant amounts of harmonic distortion in comparison to distortion figures easily obtained with an op-amp based balanced design.

\section*{Construction}

Construction of the unit is straightforward if the ETI PCB is used, since all components are mounted on the board. The usual precautions should be taken. The circuit employs several electrolytic capacitors so be certain these and the diodes and ICs are inserted with the correct orientation. The circuit is shown to run from a nominal \(\pm 20 \mathrm{~V}\) supply. This ensures a clean
\(\pm 15 \mathrm{~V}\) supply to the op-amps giving the circuit good headroom. If this voltage is not available, however, the circuit will run perfectly well on a lower supply voltage. If the supply is clean regulated DC the on-board zeners can be eliminated. If not, replace them with a lower voltage type to suit the supply voltage.

Close tolerance resistors ( \(1 \%\) or \(2 \%\) ) are specified for R6, 7,8 and 9 so that any DC inbalance between the input stages, IC1 and IC2, can be balanced out by PR1.

It is a good idea to use low noise metal oxide resistors for the input resistors, R3 and R4, to get good noise performance. They cost little more than standard carbon deposition types. Indeed, metal oxide resistors could well be used

\section*{DESIGN THEORY}

The differential input needed is easy to implement with the help of operational amplifiers, since these have inverting and non-inverting inputs already. The simplest circuit that could be used and one that is adequate with microphones is shown in Fig. 2. This circuit is the standard differential op-amp circuit and offers good performance with most balanced sources. The resistor from the non-inverting input to ground is made the same value as the feedback resistor. In this way the gain of the stage is determined by the ratio of the resistors R2/R1. With the inverting input grounded, the gain of the op-amp is given by the standard formula
\[
(R 2+R 1) / R 1
\]

In this case, however, the input resistor in series with the non-inverting input and the resistor from this input to ground form a potential divider and attenuate the signal by an amount given by:
\[
V_{i}=V(R 2 /(R 1+R 2))
\]

So the total gain of the stage at the coninverting input is
\(((R 2+R 1) / R 1)(R 2 /(R 1+R 2))\)
or \(R 2 / R 1\), which is the same as the inverting input.

This circuit, however, has the disadvantage that the impedance to earth from each of the two inputs is very different. The impedance at the noninverting input can usually be regarded as approximated by the series combination of the two resistors, ie R1 + R2. The impedance at the inverting input is simply that of the input resistor, since the inverting input is a virtual earth once feedback is applied in this way. This does not bother most balanced sources, since a true balanced source works independently of the ground connection.


Fig. 2 Preamp stage with a simplybalanced input.

The impedance seen by the balanced source is a result of that due to both input resistors and the internal impedance from base to base of the input differential pair within the op-amp. In most circuits the resistance of the input resistors completely dominates and it is sufficiently accurate to quote the input impedance to balanced sources as \(2 \times\) R1.

A major disadvantage of this circuit is that the ability to reject common mode signals can be seriously degraded with some sources by differences in the source impedance to the two inputs. Remember that it is the matching of the two sets of resistors that determines the common mode rejection ratio. This is the ratio of the input signal to the output signal when a common mode signal is applied. It is usually quoted in dB. The value quoted earlier for shielded cables of around 60 dB is a relatively easy figure to obtain with the op-amp circuit so long as the driving source impedance is the same for both inputs. A mismatch of only one per cent will degrade the common mode rejection ratio(CMRR) of an otherwise well designed preamp by around 20 \(d B\), and result in a figure that could easily be unsatisfactory.

Another disadvantage of this circuit is that it is not capable of delivering the full gain needed of the preamplifier and still give satisfactory distortion figures. If we take a nominal output signal level from a balanced microphone to be around 0.2 mV and the required output from the preamp to be around 100 mV , then a gain of 500 is required, or around 54 dB . The distortion figure obtained using the best op-amps available would be unsatisfactory. For example, an NE5534A at a gain of 500 would have a distortion figure around \(0.15 \%\), a poor figure by modern standards and well outside the capabitities of a good transformer. The solution is simply to decrease the gain of the stage and add a second stage to make up the difference. This, however, does not solve the problem of degradation of the CMRR on some sources. The real solution is to add a third op-amp to the design and implement a full instrumentation amplifier.

The basic circuit for an instrumentation amplifier is shown in Fig. 3. The second stage, formed by IC3, is the same


Fig. 3 The solution to the problem. as the simple differential amplifier in Fig. 2, but its inputs are buffered by the input stages formed by ICs 1 and 2. Resistor pairs R2, R3 and R4, R5 and R6, R7 are made equal. The gain of the second stage is simply \(\mathbf{R 6} / R 4\) as derived above, but the gain of the first stage is given by the slightly more complex formula:
(R1 + 2R2)/R1
The overall gain is therefore
\[
\frac{\mathbf{R 6}}{\mathbf{R} 4} \times \frac{\mathbf{R} 1+2 \mathbf{R} \mathbf{2}}{\mathbf{R} 1}
\]

If the value of R4 and R5 is made large in comparison to the estimated difference in the output impedances of the two input op-amps and if the gain of these two op-amps is the same then good CMRR will result.

A problem can occur on many instrumentation amplifiers in ensuring that the gains of the input op-amps are as close as possible to being the same. One feature of this circuit is that the CMRR is affected to a lesser extent by the matching of the resistors around the first stage. Furthermore, this will not be degraded by mismatch of the source impedance to the two inputs. The overall gain of the preamplifier is divided into two stages ensuring sufficient amounts of negative feedback to provide low distortion.


Fig. 4 Circuit diagram.

\section*{HOW IT WORKS}

The circuit is a relatively straightforward instrumentation amplifier. The main differential stage is formed by IC3, the TL071. This is a biFET op-amp with good common mode rejection ratio (CMRR) figures. This stage is buffered from the inputs by a pair of NE5534A op-amps that also provide additional gain and determine the overall noise performance of the preamp. As mentioned in the other box, the overall gain of the preamp is determined by the gain of the first and second stages. The gain of the second stage is determined by the ratio of R11 to R9, and is around 10. The gain of the first stage is approximately 20 , giving an overall gain of about 200 , or 46 dB. If you require a different gain to this, try to keep the ratios of gain in the first and second stages the same. The amount of gain provided here should be suitable for most microphones, pro-
viding around 100 mV output from a 0.5 mV input signal level.

The circuit is DC-coupled at the input. This assumes that the driving source will be transformer or capacitively coupled at the output, which should be a safe assumption. The input impedance of the stage is set by the two input resistors R3 and R4. To increase the input impedance, simply increase the value of these resistors.

The RC networks consisting of R1-C1 and R2-C2 are high frequency filters to reduce the circuit's susceptibility to RF interference.

The split power supply is provided either from two zener regulators or from a well-regulated and filtered DC source. The supply pins to each IC are decoupled by 1 kO resistors and 10 n capacitors to prevent IC-to-IC interaction and possible feedback via the supply rails.

BUYLINES
We haven't used anything in this project that isn't commonplace in the advertisements of the mail order companies: even the NE5534A is becoming fairly well-stocked. The PCB can be ordered from our PCB Service on page 87.

PARTS LIST
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors (all \(\ddagger \mathbf{W}, 5 \%\) except where stated)} \\
\hline R1,2 & 39R \\
\hline R3-5 & 560R \\
\hline R6,7 & 5k6 1\% \\
\hline R8,9 & 2k7 1\% \\
\hline R10 & 10k \\
\hline R11 & 27k \\
\hline R12 & 100R \\
\hline R13 & 47k \\
\hline \multicolumn{2}{|l|}{R14,15,} \\
\hline 18,19 & 220R \\
\hline \multicolumn{2}{|l|}{R16,17,} \\
\hline 20,21 & 120R \\
\hline \multicolumn{2}{|l|}{Potentiometer} \\
\hline PR1 & 10k miniature vertical preset \\
\hline \multicolumn{2}{|l|}{Capacitors} \\
\hline C1,2 & 4 n 7 ceramic \\
\hline C3 & 10u 35 V PCB electrolytic \\
\hline C4,5 & 10u 16 V PCB electrolytic \\
\hline C6-8 & 10 n ceramic \\
\hline \multicolumn{2}{|l|}{Semiconductors} \\
\hline IC1,2 & NE5534A (see text) \\
\hline IC3 & TL071 \\
\hline ZD1,2 & \(15 \mathrm{~V}, 1 \mathrm{~W}\) zener \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline PCB (see & ylines) \\
\hline
\end{tabular}
throughout, without a significant cost penalty.

The PCB has been designed so that an external connection must be provided between the \(0 \vee\) point on the PCB and the signal earth. The correct place for this connection is at the input to the preamplifier, ie on the input socket. A separate wire is run from the 0 V point to the signal earth point of the input socket. The signal leads from the input socket to the PCB should be shielded cable with the earth braid connected at both ends. The signal earth should not be connected to the chassis directly. RF shielding can be accomplished by connecting a 100 nF capacitor between the signal earth at the input socket and the chassis. This will eliminate any problems with hum loops that might otherwise be formed around the mains earth line.


Fig. 5 Component overlay for the differential preamp.

\section*{Play the AMBIT numbers game}

The long awaited implementation of on－line order processing is with us at last，and whilst this means that orders for in－stock items can now be processed more efficiently，it also means that orders should be submitted using stock codes for best results．Our current catalogue（75p）includes all order codes（watch out for the new expanded Spring edition），but here＇s an abstract from some of the more popular lines to use as a quick reference．

Rememberthat you can alsoaccess our catalogue via REWSHOP on REWTEL，which now includes on－line current price and delivery information．You need a 300 baud MODEM and RS232 terminal， （various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics World）．

Prices shown here exclude VAT，and the P\＆P charge is currently 60 p per order（unless otherwise indicated）．Remember that ourtele sales service operates with human beings（not＇dumb＇machines） from 8 am to 7 pm （and frequently later）Monday to Friday，and 9am to 6 pm on Satur days．REWSHOP operates 24 hours a day， 365 days a year with full price and delivery information．


\section*{HARD DISK DRIVES}

Fully refurbished Diablo/DRE Series 302.5 mb hard disk drive for DEC AKO5, NOVA TEXAS etc.
PSU type ME3029 for 2 drives \(£ 125.00\)
DRE \(44 \mathrm{~A} / 4000 \mathrm{AB} 10 \mathrm{mb} 5+5\) all configurations from details.

\section*{5 AMP MAINS FILTBRS}

Cure those unnerving hang ups and data glitches caused 240 v load As recommended by the ZX81 news amp 240 v load As recommended by the
letter. Suppression Devices SD5A \&5.95.

\section*{DISTEL®}

The UK's FIRST free of charge, 24 hr . public access data base. Get information on \(1000^{\prime} s\) of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE EARGAINS CALL NOW, IT'S FREE! \(01,8851.165 \begin{aligned} & \text { week a4 hru } \\ & \text { per day }\end{aligned}\)

\section*{COMPUTER 'GAB'}

\author{
cabinet with integral switched
}
mode PSU, Mains filtering, and twin fan cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver massive +5 vDC at \(17 \mathrm{amps},+15 \mathrm{vDC}\) at 1 amp and -15 DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, 'Power and 'Run
LEDs mounted on Alifront panel, rear cable entries, etc LEDs mounted on Ali front panel, rear cable entries, etc etc. Units are in good but used condition - supplied for
\(240 v\) operation complete with full circuit and tech. man 240 V operation complete with full circuit and tech. man \(£ 49.95\) + Carr. Dim. 19" wide \(16^{\prime \prime}\) deep 10.5" high. Useable area \(16^{\prime \prime} \mathrm{w} 10.5^{\prime \prime} \mathrm{h} 11.5^{\prime \prime} \mathrm{d}\)
Also available LESS PSU with internal dim. 19"w, \(16^{n}\)

\section*{COOLTIG RANS}

Keep your hot parts COOL and \(A\) ELIABLE Keep your ro
with our rang
coollin fang cooliln fans ETRI \(99 \times U \mathrm{OL}\) Dim. \(92 \times 92 \times 25 \mathrm{~mm}\) Miniature 240 veq finger guard \(\subset 9.95\)
GOULB JE-3AR Di GOULD JB-3AR Dim. \(3^{\prime \prime} \times 3^{n} \times 2.5^{\prime \prime}\) compact
very quiet running 240 v operation. NEW \(£ 6.9\) BUHLER 69.11 .22 . 8.16 v DC micro
miniature reversible fan Uses a brushl miniature reversible fan Uses a brushless servo motor for extremely high air flow,
almost silent running and guaranteed 10,00 almost sitent running and guaranteed
hr life. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\)
Current cost 832.00 . OUR PRICE ONLY E12.95 complete with date.
MUFFIN-CENTAUR standard \(4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}\) fan supplied tested EX EQUIPMENT 240 v at
\(£ 6.25\) or 110 v at \(£ 4.95\) or BRAND NEW 240 v at \(£ 10.50\). 1000 's of other fans Ex Stock.

\section*{SUPER DEAL? NO - SUPER STEAL!!}

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. -BRANDNEWAT
ONLY E499+
Made to the very highest
spoe the EIEC Stawittor
PPM \(500-25\) features a
heavy duty die cast
chassis and DIABLO typ
print mechanism giving
print mechanism giving
supert registration and
print quality. Micro-
processor electronics
offer full DIABLEJQUME compatibility plus BI directional printing 10 or 12 pltch, 136
or 163 chars per line, full width 381 mm
friction or single sheet paper, - order now or call sales office for more
information and prlnt sample. Please specify RS232 or CENTRONICS interface.
Supplied complete with FREE dust cover and daisy wheel Optional extras: RS232 data cast cover and daisy wheel
\[
\text { eea-pition } £ 120.00
\]

BEGBARGEABLE BATTERLES CYCLON type DOO1 sealed lead acid maintenance free \(2 v 2.5 \mathrm{ah}\). will deliver over
300 amps on short circuit!! Brand new at only 52.95 SAFT VR2

\section*{DATA MODEMS}

Join the communicatlons revolution with our range of EX TELECOM data modems. Made fo most stringent spec and designed to operate Cor 24 hrs per day. Units are made to the a 25 way ' D ' skt. Units are sold in a tested and working condition with data Permission MODEM 13A compact, async, same size as Holephone base. Up to 300 baud full duplex lever 2 wires, but call mode only \(£ 75.00\) MODEM 2B/C Fully fledged up to 300 baud async, ANSWER \& CALL modes, auto answer, auto swltching, ideal networks etc. Just 2 wire connection to comms line. £85.00 MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire llink 75 baud transmit - \(\mathbf{1 2 0 0}\) baud recalve. Auto answer. \(\$ 130.00\)
MODEM 20-2 same as \(20-1\) but 75 baud recelve 1200 baud transmit \& 130.00 MODEM 20-3 Made for data rates up to 1200 baud In full duplex mode over 4 wire clrcuit or half duplex mode over 2 wires. £130.00 hertap 13A £4.50. \(2 \mathrm{~B} / \mathrm{C}\) \& 20 £9.50.


\section*{FLOPPY DISK DRIVES} drive accept hard or soft sectoring IBM or ANS standard formats giving a massive \(0.8 \mathrm{MB}(7100) 1.6 \mathrm{MB}(7200)\) of storage. Absolutely SHUGART, BASF, SIEMANS etc. compatible. Supplied ERA
7100 Single sided \(£ 225.00\) + Carr. 7200 Double sided \(£ 295.00+\) Carr. Optional accessories: Full technical manual \(£ 20.00\) alone. \(£ 10.50\) with drive. Refund of difference on drive purchase. DC and AC power connector and cable kit £8.45. 50 way IDC connector \(£ 5.50\). 50 way ribbon cable \(£ 3.20\) per metre.

Unbelievable value the DRE 71008 " floppy disk drives utilise the finest technology to give you \(100 \%\) bus compatibility with most drives available today. The only difference being our PRICE and the superb manufacturing quality! The 7100 single sided and 7200 double sided

NEWTYPE ASBBSI I/O TERMmiALS
Fully fledged industry standard ASR33 data terminal. Many features including ASCll detect circuitry. RS232 serial interface 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand E12.50 + VAT
KSR33 with 20 ma loop interface \(\mathbf{1} \mathbf{1 2 5 . 0 0}+\) Sound proof enclosure \(£ 25.00\) +VAT

\section*{SOFIY 2}

The amazing SOFTY 2. The complete "toolkit" for the open heart software surgeon. Copies, of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator. Cassette interfaceetc. Functions exceed capabilities of units costing 7 times the price! Only
£ 169.00 ppe1.95

\section*{video monitors}

MOTOROLA 9" open chassis monitor Standard 240 v AC with composite 75 ohm video input, bandwidth in excess of 18 mhz Monitors are ex equipment and although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens. Dim approx \(9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}\). Supplied
complete with mains and input lead. ldeal ZX81 oic or giving the topur family! Black and white phosphor. \(\mathbf{E 3 5} .00\) +89.00 Carr. 12" CASED. Made by the British KGM C Designed for continuous use as a data display station, unit is totally housed in an
attractive brushed aluminium case with ONattractive brushed as and CONTRAST controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as, internal transformer isolated regulated DC supply, all components mounted on two fibre glass PCB boards - which hinge out for ease of service, many internal controls for linearity etc. The monitor accepts standard 5 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unit
is estimated around 20 Mhz and will display is estimated around 20 Mhz and will display
most high def graphics and \(132 \times 24\) lines. Units are secondhand and may have screen burns. Howevar where burns exist they are
only apparent when monitor is switched off Although unguapanteed all monitors are ested prior to despatch Dimensions approx \(14^{\prime \prime}\) high \(\times 14^{\prime \prime}\) wide by \(11^{\prime \prime}\) deep. Supplied complete with circuit 240 volt operation. OWLY E45.00 PLUSE9.50 CARR. 14 " COLOUR superb chassis monitor mad by a subsidiary of the HITACHICo. Inputs
are TTL RGB with separate sync. and will plug direct into the BBC micro etc definition. Brand new and guaranteed. Complete with full data \& circuit 240 VAC working. Dim. 4 " 13 x 13 .
owIYEI99.00 pLUSE.50 CARR.

\section*{SEMICONDUCTOR 'GRAB BAGS' \\ Mlxed Semis amazing value content}
include transistors, digital, linear, I.C.'s tria diodes, bridge recs, etc etc. All devices guaranteed brand new full spec. with manufacturer's markings, fully guaranteed, \(50+82.95100+85.15\)
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TLL seri
I.C.'s enables us to offer \(100+\) mixed mostly \(\Pi L^{"}\) grab bags at a price which two or three chips in the bag would nnormally cost to buy. Fully guaranteed all I.C.'s fuli

\section*{OLIVETHI} TESOO

\section*{REDUCED TO CLEAR}

Complete input output terminal with integ hole paper tape punch and reader. Unit Ideal as a cheap perinter for a MICRO etc. 120 columns, Serial data i/a. Supplied complete with data, untested, unguaranteed \(\mathbf{\Sigma} \mathbf{S 5 . 0 0}\)

\title{
DBFLAM \\ ELECTRAHITS
}

All prices quoted are for U.K Mainland, paid cash with order in Pounds StirlingPLUSVAT. Minimumordervalues 2.00, Minimum Credit Cardorder \(\mathbf{E 1 0 . 0 0}\). MinImum BONA FIDE account orders from Government depts, Schools, Universitles and established companies E20.00 Where post and packing not indicated please ADD 60p + VAT Warehouse open Mor-Fri 9.30-5.30. Sat 10.15-5.30 We reserve the right to change prices and.specifications without notice. Trade, Buik and Export enquiries welcome.

\title{
BUYER'S GUIDE TO HI-FI SYSTEMS
}

\title{
And now we proudly present the Thinking Man's Guide to Buying Hi-fi. That is, ETI has done the thinking, now you go out and do the buying! Bring your own wallet (all sizes catered for).
}


Buying a hi-fi system is a harrowing experience, especially the first time out. After you've bought all the hi-fi mags for six months, thoroughly digested the conflicting and often lunatic advice given therein, listened to all your 'expert' friends disagreeing with each other and dared to cross the threshold of a shop . . . what then?

One word - LISTEN. It matters not a jot what anyone else tells you - us included - if you don't agree with the choice, don't buy it! You're going to have to live with it. However, it is a good idea to have a shortlist based upon reviews, price, but don't forget, most important of all are your own auditionings.

Reading the specialist audio press can be enlightening - but it can be mystifying too. At one time you could read through two or three different magazines and still be told that whether you were spending \(£ 500\) or \(£ 5000\) on a system, unless you bought a particular \(£ 300\) turntable you were wasting your money! The field has to some extent sobered up of late, since crashing circulations and retreating advertisers have brought with them a certain measure of common sense. If you want a magazine reviewer's recommendation for 'which magazine' - mine would be Hi-Fi For Pleasure. It is a title that is not only a good read but has consistently demonstrated a sound technical understanding and displayed a commendable intelligence, when all around it were losing theirs!
(It's fun being an electronics-based magazine sometimes - we could never get away with saying things like that in the hi-fi press!)

In this supplement we're taking a different ap-
proach to the overall compatibility 'table' approach. Instead we have listed out eight full systems, from \(£ 350\) to \(£ 8500\) in price and which we have personally tried and tested (except one - and you'll see why . . .)

In this way each forms a perfectly good buy in itself - assuming you like the sound yourself, of course - or at the least will make a good starting point in the demonstration room when you're down to the final choice.

Each of the systems is for records only: no allowance is made in price for tape or tuner. Additions such as these we left until later. We have some advice to offer on those too, but in the form of a list of models which we have had through our hands at some point and have found to be good. A number of people have very expensive record playing systems but have tacked onto the end of them cassette decks of considerably lower-fi, to use as background music and so on. Because of this we have made no attempt to assign tape and tuner to the primary systems. You pick and choose as you like to fit your own individual needs.

A word of explanation about the system tables to be found overleaf. The first column contains details of our recommended system and the retail price (as far as we know - do shop around for bargains). The order of components is record deck, arm (if not included with the deck), cartridge, preamp/power amp combination, and speakers. Any alternatives are given in the second column with their prices bracketed.

We've also illustrated each of the systems to the best of our ability, but some companies were as compliant as concrete cantilevers, and the 'first class' post wasn't, so there are some unfortunate omissions. C'est la vie ...


-

 he Thorens TD \(160 S\) is the basis for this system
and although it does need very careful setting up - which any good dealer will carry out - it returns a performance which is far above that promised by the price of \(£ 175\). It will consistently outperform decks costing \(£ 350\) or more and as such is used in our next system upwards as well as in this one. The SME has become rather unfashionable of late, but is still THE best universal arm available. It matches high compliance designs particularly well and the
V 15 V in particular.

\footnotetext{
With the Trio and the SL6, this adds up to a com-
}


 system which will provide greater power ing the speakers to Heybrook HB3s allows the use of ing the speakers to Heybrook HB3s allows the use of
 The Carver \(\mathrm{M}-400\) or 'Cube' is well-known for its


 vides a good match. If you have another \(£ 100\) floating about spare, you
could improve the system still further could improve the system still further by substituting the excellent KEF 105 IV for the HB3. These are the
smaller version of the illustrious 105 II and have many
of that unit's admirable traits.


well matched to ESL-63 both electrically and for quali-
. As a no-compromise source the Oracle/FR 64 Koetsu is practically unbeatable. Put this little lot together and you have as high a quality disc system as
it is possible to get. The ESL-63 is very touchy about room positioning and will not give of its best in a small room, but then if you can afford nearly four grand to play records you are not likely to live in a \(12 \times 12\)
bedsit ... are you? .

Enter the Quad ELS-63 at \(£ 1200\) the pair. If you - want the best possible reproduction in the this is it. To drive them Quad's own 405 (now in Mk. 2 livery) takes some beating. It would appear that these two are designed to work together, since the 405 will lose units costing three or four times the price into the some other speakers which are regarded as an easier load!

As an alternative the Class A Denon POA-3000 is


f you thought \(£ 3500\) was expensive, try \(£ 8500\) ! We
must stress that we've never heard this precise arrangement of components and think it unlikely anyone else has either!
The Threshold amp is very highly regarded and on piece of work indeed. Magnificent in all but generosity. \(£ 4600\) is a lot of cash.
The (Sumiko) Arm is another supreme example of
That Which Is Possible \({ }^{\prime}\) - given no constraints on price as a starting point. If you ever get this system together we'd be only too pleased to come and have a listen - we'll even bring the beer!



\section*{\(\omega\) NE世 \\ }
 than-ever importance. Without going through every amplifier input and every tape/tuner output, there is only useful advice is to check the model you want

 equal sensitivity and output levels, so that you are not flogging some poor little input stage to death somewhere to obtain the level you want.
Here we are presenting a list of ET Here we are presenting a list of ETI approved
models - which is not to say that nothing else is approvable! These just happen to be components of which we have had experience and can thoroughly recommend as good performers and good value. Check them over if you're buying into this market. upon how much you value that particular source. The more you pay, the better they get.

\section*{CASSETTE DECKS}
\begin{tabular}{|lr|}
\hline MODEL & \(\mathbf{£}\) \\
\hline Sony TEF 44 & 110 \\
Technics RSM230 & 155 \\
Alpage AL-100 & 173 \\
Akai GX-F51 & 200 \\
Pioneer CT7R & 260 \\
Teac C3X & 360 \\
Alpage AL-300 & 372 \\
Bang and Olufsen Beocord 8002 & 459 \\
Revox B710 II & 943 \\
Nakamichi 1000 ZXL & 1000 \\
\hline
\end{tabular}


\section*{TUNERS}

\begin{tabular}{|lrr|}
\hline MODEL & \(\mathbf{£}\) \\
\hline Yamaha 7760 & 143 \\
NAD 4150 & 159 \\
Sugden T48 II & 161 \\
Lux T115 & 170 \\
A \& R T21 & 190 \\
Sony ST-J75 & 200 \\
Pioneer F9 & 200 \\
\hline
\end{tabular}

\section*{COMPACT DISCS?}

Perhaps the most relevant question at present is whether or not you should buy an analogue disc system now at all, or go straight for the incoming Compact Disc systems. Our advice would be to wait. While the Compact Disc is of undoubtedly higher quality than any vinyl spinner, the price is horrendous at present, and the records are expensive and very limited in choice.

In about a year the players will be cheaper by far, the choice much wider and the software library five times the size. If you like the music offered and love the gadgets - go buy it. Which one you get is probably irrelevant, as there should not be a whole lot of difference in performance between properly designed units, despite the ad claims.


\title{
G3T 30 po , 3 B
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Modute Number & Output Power Watts rms & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Load } \\
\text { Impediance } \\
\Omega
\end{gathered}
\]} & \[
\begin{aligned}
& \text { DIST } \\
& \text { T.H.D. } \\
& \text { Typat } \\
& 1 \mathrm{KHz} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { ORTION } \\
1 . \mathrm{M.D} . \\
60 \mathrm{~Hz} . \\
7 \mathrm{KHz4:1} \\
\hline
\end{gathered}
\] & Supply Volsape Typ & \multicolumn{2}{|l|}{Size mm} & WT gms \\
\hline HY30 & 15 & \multicolumn{2}{|l|}{4.8} & 0.015\% & <0.006\% & \(\pm 18\) & \multicolumn{2}{|l|}{\(76 \times 68 \times 40\)} & 0 \\
\hline HY60 & 30 & \multicolumn{2}{|l|}{4.8} & 0,015\% & <0.006\% & \(\pm 25\) & \(76 \times 68 \times\) & \(\times 40\) & 240 \\
\hline HY6uto & \(30+30\) & \multicolumn{2}{|l|}{4.8} & 0.015\% & <0.006\% & \(\pm 25\) & \(120 \times 78\) & \(\times 40\) & 420 \\
\hline HYY24 & 60 & \multicolumn{2}{|l|}{4} & 0.01\% & <0.006\% & \(\pm 26\) & \(120 \times 78\) & \(\times 40\) & 410 \\
\hline HY 128 & 60 & \multicolumn{2}{|l|}{8} & 0.01\% & <0.006\% & \(\pm 35\) & \(120 \times 78\) & \(\times 40\) & 410 \\
\hline HY24a & 120 & \multicolumn{2}{|l|}{} & 0.01\% & <0.006\% & \(\pm 35\) & \(120 \times 78\) & \(\times 50\) & 520 \\
\hline HY248 & 120 & \multicolumn{2}{|l|}{8} & 0.01\% & <0.006\% & \(\pm 50\) & \(120 \times 78\) & + 50 & 520 \\
\hline HY364 & 180 & \multicolumn{2}{|l|}{4} & 0.01\% & <0.006\% & \(\pm 45\) & \(120 \times 78\) & +100 & 1030 \\
\hline HY368 & 180 & \multicolumn{2}{|l|}{8} & 0.01\% & <0.006\% & \(\pm 60\) & \(120 \times 78\) & + 100 & 1030 \\
\hline \multicolumn{10}{|l|}{Protection: Full tood line, Slew Rate: \(15 \mathrm{v} / \mu \mathrm{s}\). Risetime: \(5 \mu \mathrm{~s}\). \(\mathrm{S} / \mathrm{N}\) ratio: 100 db . Frequency response \((-3 \mathrm{~dB}) 15 \mathrm{~Hz}-50 \mathrm{KHz}\). Input sensitivity: 500 mV ims. Input Impedance: \(100 \mathrm{~K} \Omega\). Damping factor \(100 \mathrm{~Hz}>400\).} \\
\hline \multicolumn{10}{|l|}{PRE-AMP SYStems} \\
\hline Module Number & \multicolumn{2}{|l|}{Module} & \multicolumn{4}{|c|}{Functions} & Current Required & \multicolumn{2}{|l|}{Price inc. VAT} \\
\hline HY6 & \multicolumn{2}{|l|}{Mono pre amp} & \multicolumn{4}{|l|}{Mic/Mag. Cartindge/Tuner/Tape/ Aux + Vol/Bass/Treble} & 10 mA & & \\
\hline HY66 & \multicolumn{2}{|l|}{Stereo pre amp} & \multicolumn{4}{|l|}{Mic/Mag. Cartidge/Tuner/Tape/} & 20 mA & & \\
\hline HY73 & \multicolumn{2}{|l|}{Gutar pre amp} & \multicolumn{4}{|l|}{Two Guitar (Bass Lead) and Mic + separate Volume Bass Treble + Mix} & 20 ma & tı 15 & \\
\hline HY78 & \multicolumn{2}{|l|}{Stereo pre amp} & & Y66 less & tone controls & & 20 ma & £14 & \\
\hline
\end{tabular}

Most pre-amp modules can be driven by the PSU driving the main power amp. 5.47 linc VATh Pre-amp and mixing modules in 18 different varlations. Please send for detalls.
Mourting Poards
For ease of construction we recommend the \(\mathbf{B 6}\) for modules \(\mathrm{HY} 6-\mathrm{HY} 13 £ 1.05\)
linc. VAT) and the B66 for modules HY66-HY78 ©1.29 (Inc. VAT).
POWER SUPPLY UNITS (Incorporating our own toroidal transformers)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Model Number & For Use With & Prict inc. VAT & Model Number & For Use With & Price inc VAT & Model Number & For Use With & Price inc VAT \\
\hline PSU 21X & 1 or 2 HY 30 & £11.93 & PSU 52x & \(2 \times\) HY 124 & £ 17.07 & PSU 72x & \(2 \times \mathrm{HY} 248\) & \({ }^{\text {¢ } 22.54}\) \\
\hline PSU 41x & 1 or 2 HY60, \(1 \times\) HY6060, \(1 \times\) HY 124 & £13.83 & PSU 53x & \(2 \times \mathrm{MOS128}\) & £17.86 & PSU \(73 \times\) & \(1 \times \mathrm{HY} 364\) & [22.54 \\
\hline PSU 42x & \(1 \times\) HY128 & £15.90 & PSU 54x & \(1 \times \mathrm{HY} 248\) & ¢17.86 & PSU 74x & \(1 \times \mathrm{HY} 368\) & E24.20 \\
\hline PSU 43x & \(1 \times \mathrm{MOS} 128\) & £16.70 & PSU 55x & \(1 \times\) MOS248 & £19.52 & PSU 75x & \(2 \times \operatorname{MOS} 248,1 \times\) MOS 368 & -24.20 \\
\hline PSUSix & \(2 \times\) HY128, \(1 \times\) HY244 & £17.07 & PSU71x & \(2 \times \mathrm{HY} 244\) & £21.75 & & & \\
\hline
\end{tabular}

\footnotetext{
Pläase note: \(\begin{aligned} & \mathrm{X} \text { in part no indicates primary voltage. Please insert "O" in place of } \\ & \mathrm{X} \text { for } 110 \mathrm{~V} \text {, "1" in place of } \mathrm{X} \text { for } 220 \mathrm{~V} \text {, and "?" in place of } \mathrm{X} \text { for } \mathbf{2 4 0} .\end{aligned}\)
}

\section*{WTHALOT OF MELP niom Qner}

\section*{PROFISSIONAL IIFII THAT EVERYY ENTHUSIAST} CAN HANDII...

\section*{Unicase}

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

\section*{Hi Fi Separates}

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, \((<0.01 \%)\), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.


\section*{Power Slaves}

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{UNICASES} \\
\hline \multicolumn{5}{|l|}{HIFI Separates} & Price inc. VAT \\
\hline UCI & Preamp & & & & \(\bigcirc\) \\
\hline UP1 X & \(30+30 W / 4-8 \Omega\) & Bipolar & Stereo & HiF & ¢54.95 \\
\hline UP2X & \(60 \mathrm{~W} / 4 \Omega\) & Bipolar & Mono & HiFi & f 54.95 \\
\hline UP3X & \(60 \mathrm{~W} / 8 \Omega\) & Bipolar & Mono & HiFi & £54.95 \\
\hline UP4X & \(120 \mathrm{~W} / 4 \Omega\) & - Bipolar & Mono & HiFi & £74.95 \\
\hline UP5X & \(120 \mathrm{~W} / 8 \Omega\) & Bipolar & Mono & HiFi & ¢ 74.95 \\
\hline UP6X & 60W/4-8 & MOS & Mono & HiFi & £64.95 \\
\hline UP7X & \(120 \mathrm{~W} / 4-8 \Omega\) & MOS & Mono & HiFi & £84.95 \\
\hline \multicolumn{6}{|l|}{Power Slaves} \\
\hline USIX & \(60 \mathrm{~W} / 4 \Omega\) & Bipolar & Power & Slave & £59.95 \\
\hline US2 X & \(120 \mathrm{~W} / 4 \Omega\) & Bipolar & Power & Slave & £79.95 \\
\hline US3X & 60W/4-8 & MOS & Power & Slave & £69.96 \\
\hline US4X & 120W/4-8 & MOS & Power & Slave & £89.95 \\
\hline
\end{tabular}

Please note \(X\) in part number denotes mains voltage. Please insert ' \(O\) ' in place of
\(X\) for 1 ITOV, ' 1 ' in place of \(X\) for 220 V (Europe), and ' 2 ' in place of \(X\) for 240 V \(X\) for 110 V, ' 1 ' in place of \(X\) for 220 V (Europe), and ' 2 ' in place of \(X\) for 240 V (U.K.) All units except UC 1 incorporate our own torodal transformers.

\title{
ZX81MUSIC BOARD
}

With the circuit and construction covered last month, we now turn to the software routines that enable you to use this project to the full. Design and development by M. P. Moore.


Fig. 1 Table of notes as used by the input routine.
\begin{tabular}{|c|c|}
\hline 1 & REM (our machine code) \\
\hline 2 & CLS \\
\hline 5 & DIM H(7) \\
\hline 10 & FOR \(\mathrm{N}=1 \mathrm{TO} 7\) \\
\hline 15 & LET H(N) \(=76\) \\
\hline 20 & NEXT N \\
\hline 25 & PRINT "CLEAR MUSIC SPACE (Y OR N) OR PLAY (P) OR LIST (L)?" \\
\hline 30 & \[
\begin{aligned}
& \text { IF INKEY\$ = "N" THEN } \\
& \text { GOTO } 55
\end{aligned}
\] \\
\hline 31 & \[
\begin{aligned}
& \text { IF INKEY } \$=\text { "P" THEN } \\
& \text { GOTO } 200
\end{aligned}
\] \\
\hline 33 & \[
\begin{aligned}
& \text { IF INKEY\$ = "L" THEN } \\
& \text { GOTO } 350
\end{aligned}
\] \\
\hline 35 & IF INKEY\$ < >"Y" THEN GOTO 30 \\
\hline 36 & FAST \\
\hline 40 & FOR \(N=16670\) TO 21670 \\
\hline 45 & POKE N, 255 \\
\hline 50 & NEXT N \\
\hline 51 & SLOW \\
\hline 55 & PRINT "'SHARPS?"; \\
\hline 60 & LET \(\mathrm{Z}=78\) \\
\hline 65 & GOSUB 1150 \\
\hline 100 & PRINT "FLATS?"; \\
\hline 105 & LET \(Z=74\) \\
\hline 110 & GOSUB 1150 \\
\hline 136 & CLS \\
\hline 137 & \begin{tabular}{l}
PRINT "EDIT FROM LINE \\
NO.";
\end{tabular} \\
\hline 140 & INPUT Z \\
\hline 141 & PRINT Z \\
\hline 142 & PRINT AT 21,0;Z; " [3 SPC] \({ }^{\text {] }}\) \\
\hline 143 & LET \(\mathrm{X}=0\) \\
\hline 144 & FOR \(D=(Z-1)^{*} 6+16670\) TO 21670 STEP 2 \\
\hline 148 & SLOW \\
\hline 149 & GOSUB 1000 \\
\hline 150 & IF \(N \$<>\) " 5 " THEN GOTO 155 \\
\hline 151 & LET \(Z=Z-2\) \\
\hline 152 & LET D \(=\) D-8 \\
\hline 153 & LET \(\mathrm{X}=2\) \\
\hline 154 & GOTO 170 \\
\hline 155 & IF \(N \$=\) " \(\mathrm{R}^{\prime}\) THEN GOTO \\
\hline 156 & IF N\$ = "E" THEN GOTO \\
\hline & 136 \\
\hline 157 & \[
\begin{aligned}
& \text { IF N\$ }=\text { "P" THEN GOTO } \\
& 200
\end{aligned}
\] \\
\hline
\end{tabular}

The music program allows the ZX81 to play up to three notes simultaneously. The range is from A octave 1 upwards, where middle C is C4 (see Fig. 1). There is sufficient memory space with a 16 K expansion to enter 833 chords of music. Everything possible has been done to facilitate the entering of music. The key signature (sharps or flats) is set to begin with and remains set until changed; changes may be made during the entering of music; each of the three channels has an independently set volume; the same note repeated on one channel will give a continuous note, but if played on alternating channels, will give a repetitive note.

The symbols used are + (sharp), - (flat) and = (natural). The functions available are EDIT, which is used for entering and editing music already entered, and includes BACKSPACE and REPEAT functions;

LIST, which allows you to read the music entered, and PLAY.

Program " M " is very long and takes about five minutes to load. Having loaded the program the sequence of operations is as follows:-
Type GOTO 2 NEWLINE. The computer will ask: CLEAR MUSIC SPACE (Y OR N) OR PLAY (P) OR LIST (L)?

The second and third functions don't interest us at the moment, and since the music space is clear to start with, type N .
The computer now asks SHARPS? If the key signature contains sharps, type them in (in any order) followed by NEWLINE.
If there are no sharps type 0
NEWLINE.
The computer now asks FLATS?
Deal with the question as for sharps.
The computer asks EDIT FROM

\section*{BUYLINES}

> Petron Electronics supply a full kit of parts for this project; we must apologise to them and any purchasers of the kit for the incorrect price given last month. The complete kit including PCB, all components, comprehensive user's manual and the software cassette containing this month's programs, costs \(£ 24.95\) all inclusive. The board is also available ready-built together with manual and cassette, for \(£ 29.95\), or in a smart ABS plastic case for onlyy \(£ 34.90\). Please state whether you require the board to be wired for mono or stereo. A demonstration cassette is available for \(95 p\) all inclusive, while the manual may be purchased separately for \(£ 1.25\), refunded upon subsequent purchase of a kit. Petron Electronics may be found at 1 Courtlands Road, Newton Abbot, Devon.

\section*{LINE NO.}

Since you are starting from scratch enter 1 NEWLINE.
The computer is now ready to accept up to 833 'lines' of music. A

\section*{PROGRAM}


\section*{HOW IT WORKS - MUSIC PROGRAM}

Array \(H\) is a one-dimensional sevenposition array which is used to keep a record of whether each note A-G is natural, sharp or flat. Lines 5 to 20 load the value for natural (76) into each position of array \(\mathbf{H}\). Lines 25 to 35, depending on the answer typed in, make the computer jump accordingly or continue from line 36. Lines 36 to 51 clear the memory space set aside for music by POKEing the stop code 255 to each memory location reserved. In conjunction with the BASIC subroutine at lines 1150 to 1195, lines 55 to 110 set the initial key signature by making the value of the appropriate position of H equal 78 for sharps and 74 for flats. Lines 137 to 142 make \(Z\) equal to the current line number for entering and editing music. Variable \(X\) is used to keep a record of which channel note you are currently entering. Line 144 sets up a loop using D where D starts with the address of the memory space corresponding to line number ( \(Z\) ) and ends with the value 21670 , which is the last available music space. Line 149 calls the BASIC subroutine at line 1000 . This subroutine inputs a key-press or series of key-presses which will either be note data, silence or one of the five available functions: REPEAT (R), BACKSPACE (5), PLAY (P), LIST (L) or EDIT (E). If silence or one of the functions is entered the computer returns to line 150.

If note data was entered the computer continues at line 1002 with a check that the data entered was in fact valid note data. Line 1009 makes variable H equal to the code of the note entered minus 37. If the data entered does not contain an appending sharp, flat or natural sign, line 1010 makes the computer jump to line 1030. Lines 1015 to 1025 adjust array H accordingly (sharp, flat or natural) depending on the second character of \(\mathrm{N} \$\) (ie N\$ (2)). Lines 1030 to 1040 load the variable \(N\) with the code of the note entered (ie \(\mathbf{N} \$(1)\) ) and adjust this value together with corrective maths depending on the note (sharp, flat or natural) stored in array \(\mathbf{H}\) to provide the address of the basic note data in the preprogrammed PROM. Lines 1045 to 1050 POKE this data to memory position 16581 and a machine code subroutine based at 16567 returns N with the basic tone period value of this note, ie the lowest octave. Lines 1055 to 1059 print the note and its sign on the screen. Lines 1060 to 1065 make variable \(H\) equal to the code of the octave number entered depending on whether \(N \$\) is two or three characters long. Line 1066 prints the octave Lines 1067 to 1075 correct the value of H and set up a loop using H where \(H=H\) to -1 . This loop is used to divide the basic data in \(\mathbf{N}\) by 2 (this has the effect of raising the note one octave each time \(N\) is divided by 2 ) until the correct tone period data is obtained. Line 1086 corrects the tone period value of \(N\), otherwise it would be one octave too high. Lines 1095 to 1110 set H to equal the most significant byte of the note and \(N\) to equal the least significant byte.

Line 115 returns the computer from this subroutine at line 1001 because:1) BACKSPACE function (5) was entered; it runs through lines 151 to 154 adjusting the values of \(Z, D\) and \(X\) to etfect a backspace. Lines 155 to 157 check to see if the computer was returned with functions \(\mathbf{R}, \mathbf{E}\) or \(\mathbf{P}\) and if so, it jumps
accordingly.
) If 0 was entered, the computer runs through lines 159 to 162 entering silence in the current note position and printing spaces in that note position on the screen.
3) If L was entered, the computer jumps to line 350 to list data.
4) If \(P\) was entered, the computer jumps to line 200 to play the music.
5) If E was entered, the computer goes back to line 136 to restart the edit function.
6) If \(R\) was entered, the computer jumps to line 510.
7) If note data was entered, the computer runs through lines 164 and 165 which POKE the tone period data in the current memory position.
Line 170 calls a BASIC subroutine located at 2000 . This subroutine simply checks whether or not the data just dealt with was the third note of a chord, and if so, scrolls the screen up two lines and prints a new line number before returning. Line 185 causes the computer to oop back to line 144 ready to enter the next string of music data. If all the available memory space were taken up, the computer would fall through line 185 and actuate the section of the program which plays music from line 200.
Had the \(\mathbf{R}\) function returned the computer from the subroutine at 1002 the computer would have jumped to line 510 which puts the question FROM CHORD NO. ? Lines 511 to 565 perform a block copy of the lines specified and adjust the display accordingly. Lines 200 to 210 ask whether you want to set channel volumes, or edit or list. If the answer is \(E\) the computer jumps back to the EDIT program at line 136; if \(L\) is entered the computer jumps to the LIST program at line 350; if you didn't want to set the volumes so that the answer was N , the computer jumps to line 265. Lines 215 to 260 input volumes for the three channels A, B and C and POKE the volumes required to memory locations 16540, 16541 and 16542 respectively. Lines 265 to 270 input the value of the pause used in line 296 to regulate the speed at which music is played. Line 276 sets \(D\) to the address of the first memory position containing music data. Line 280 calls a machine code subroutine based at line 16514 which initialises the PSG for three channels of sound. This subroutine programs the PSC with the volumes held in memory locations 16540 to 16542 . Line 282 checks the current music memory position for the STOP code (255) and if this position equals 255 it identifies this as the end of the music, and the computer jumps to 299 . Lines 283 to 294 POKE to memory positions 16561 to 16566 the six bytes of tone period data for the next chord to be played.

It may be thought that memory space could have been saved by making lines 283 to 294 a loop. This proved, however, to have an unacceptable slowing effect on the maximum speed available (ie 0 ). Line 295 calls a machine code subroutine which relays the data in memory position 16561 to 16566 to the PSG, thus producing the next chord. Line 296 is the pause regulating the speed using the variable \(\mathbf{S}\) and, since this program section is run in the FAST mode, line 297 POKEs Sinclair's obligatory 255 to memory position 16437. Line 298 causes the computer to jump back to line 282 to
continue with the next chord. As we have seen, when the end of the music is reached, the computer jumps to line 299. Lines 299 to 307 load the silence value 0 to memory positions 16561 through 16566 and line 310 outputs this last set of data to the PSG using the above-mentioned machine code subroutine located at 16543. Line 315 then causes the computer to jump back to line 200.

The LIST (L) function starts at line 350. Lines 351 to 365 input and print the line number that is being listed which is held in variable \(Z\). Variable \(X\) is used to keep a record of which channel data is being calculated. Line 371 sets the variable \(K\) to the memory address of the last note data to be listed in one full screen ( providing a STOP code 255 is not encountered first). Line 372 sets variable D up in a loop, where D starts with the value of the first music location to be listed and thereafter holds the current memory position of data being calculated. Variable \(Y\) is used to keep a record of the octave as it is being calculated in lines 395 to 405 . Lines 380 to 385 set variables \(L\) and \(M\) to the value of the data for the current note being listed. Lines 386 and 387 check for the STOP code 255 in variables \(L\) and \(M\), and if it is detected the computer prints STOP and jumps to line 491. Lines 388 and 389 check for silence (0) and if detected the computer prints spaces and then jumps to line 470. Line 390 sets variable \(L\) to the value of the complete tone period. Lines 395 to 405 calculate the octave in Y by multiplying the value of \(L\) by 2 until it is within range of the basic octave values (ie greater than or equal to 1966).

Lines 410 to 425 reconstitute this new data into variables \(L\) and \(M\). At this point the number held in \(L\) and \(M\) will be the same as a number in the basic octave of notes in the pre-programmed PROM. Lines 430 to 435 POKE this data to memory positions 16619 and 16620 . Line 440 calls up a machine code subroutine which returns with L set to the memory position of the PROM where the note data POKEd in lines 430 and 435 is to be found. Lines 445 to 455 reconstitute the value of \(L\) in variable \(M\) so that \(M\) contains the Sinclair code for the correct note A to G . Line 456 runs a check on variable \(M\), so that if \(M=37\) (ie \(G\) sharp) the computer, rather than printing 9, prints G (code 44 ). Line 460 prints the note thus calculated. Line 465 checks the value of \(L\) to see if it is a whole number. If it is not, due to the maths in lines 445 to 455 , the note will be a sharp and line 465 prints + (sharp). Line 466 likewise checks to see if \(L\) is a whole number, and if it is, prints the sign for natural ( \(=\) ). Line 467 checks for the note being \(G\) sharp and corrects the octave value in Y accordingly. Lines 468 to 470 print the octave and the next three spaces. When a screen-full of data has been listed, D will equal K. Line 471 checks for this and if \(D=K\) the computer jumps to line 491. As with the EDIT function (E), the LIST function uses the subroutine at line 2000 to keep the VDU display correct. When it has finished listing music the computer continues at line 491. At lines 495 to 505 the computer waits for a further command EDIT (E), PLAY (P) or LIST (L), and jumps accordingly.

THIS BAR SHOULD BE ENTERED AS FOLLOWS
\begin{tabular}{clll} 
LINE No. & Ch1 & Ch2 & Ch3 \\
1 & E4 NEWLINE & ONEWLINE & O NEWLINE \\
2 & C5 NEWLINE & ONEWLINE & ONEWLINE \\
3 & C5 NEWLINE & ONEWLINE & ONEWLINE \\
4 & E4 NEWLINE & ONEWLINE & ONEWLINE \\
5 & C5 NEWLINE & ONEWLINE & O NEWLINE \\
6 & C5 NEWLINE & ONEWLINE & ONEWLINE \\
7 & E4 NEWLINE & ONEWLINE & ONEWLINE \\
8 & C5 NEWLINE & ONEWLINE & ONEWLINE
\end{tabular}

Fig. 2 Calculation of the number of lines in a bar.
'line' of computer music is a note (or silence) entered in each of the three channels \(A, B\) and \(C\).
Channels A and B are played through one audio output and C through the other if a stereo amplifier is used.

When copying music you must find the shortest note in the score: longer notes must be converted to the equivalent multiple of the shortest note to find the number of computer 'lines' in a bar (see Fig. 2). Notes 1, 3, 5 and 6 in the example are half the length of notes 2 and 4. The total number of computer 'lines' in the bar is therefore 8.

A note repeated on the same channel will sound as one continuous note. If the notes are to sound distinct, you must change from one channel to another (see Fig. 3).

Let us go back to our instruction 1 NEWLINE.
The computer is now displaying 1 at the bottom left-hand corner of the screen. It is waiting for notes to be entered in channels \(\mathrm{A}, \mathrm{B}\) and C . Supposing you wish to enter \(A\) below middle \(C\) in channel \(A\), silence in channel \(B\), and \(E\) below middle \(C\) in channel \(C\). Type:-
\(\begin{array}{rr}\text { A4 } & \text { NEWLINE } \\ 0 & \text { NEWLINE } \\ \text { E3 } & \text { NEWLINE }\end{array}\)
The computer now displays on the screen:-
\(1 \quad A=4\)
\(E=3\)

2
It is now waiting for the second 'line' of music.
Supposing the key signature has been set as 2 sharps ( F and C ) and the following is now entered:-
\begin{tabular}{ll} 
C4 & NEWLINE \\
A3 & NEWLINE \\
F3 & NEWLINE
\end{tabular}

The computer now displays on the screen:-
\(1 \quad A=4\)
\(A=3\)
\(E=3\)
\(C+4\)
\(F+3\)

The computer has automatically made \(F\) and \(C\) into sharps, and is now waiting for 'line' 3 of music. If you now want to make C and F natural, type:
\[
\begin{array}{ll}
C=4 & \text { NEWLINE } \\
\text { A3 } & \text { NEWLINE } \\
F=3 & \text { NEWLINE }
\end{array}
\]

The computer now displays on the screen:-
\(1 \quad A=4\)
\(2 C+4\)
\(3 \quad C=4\)
\(A=\)
\(E=3\)
\(3 \quad C=4 \quad A=3 \quad F=3\)

The computer is waiting for 'line' 4 of music. The same procedure applies, of course, for changing notes from flat to natural and viceversa.

The BACKSPACE function enables you to backspace as required from any point in the music. The instruction is:
5 NEWLINE.
The REPEAT function allows the repetition of line(s) from the line specified to the line you have reached. Instruction:- R NEWLINE. The computer will ask:-

\section*{FROM CHORD NO.}

Type in the line number from which you wish to repeat, followed by NEWLINE.
The computer will now repeat the line(s) requested.

PLAYING of music is effected through the instruction:-

\section*{P NEWLINE}

Wait for the screen to clear. The computer will now print:-
SET VOLUMES (Y OR N) OR EDIT
(E) OR LIST (L)?

If you want to play the music and have not already set the volumes, type Y.
The computer now prints:- \(\mathbf{A}=\) Volumes range from 0 (silence) to 15 (loudest)
Type in the volume you require for channel A, followed by NEWLINE. The computer repeats the question for channel B, and when dealt with, C. It will then print:- SPEED? Speeds vary from 0 (fastest) upwards where 50 is approximately one second per computer 'line' or chord. Type in the speed you require, followed by NEWLINE and the computer will ask PLAY FROM LINE NO.?
This question is answered by typing in the line number you wish the computer to start playing from. To start at the beginning type 1 followed by NEWLINE: the computer will now play the music you have entered.

When the music ends, the computer will ask:-
SET VOLUMES (Y OR N) OR EDIT (E) OR LIST (L)?
\begin{tabular}{cllll} 
\\
LINE No. & ChI & Ch2 & Ch3 \\
1 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE \\
2 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE \\
3 & 0 & NEWLINE & G4 NEWLINE & 0 NEWLINE \\
4 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE \\
5 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE \\
6 & 0 & NEWLINE & G4 NEWLINE & 0 NEWLINE \\
7 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE \\
8 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE \\
9 & G4 NEWLINE & 0 & NEWLINE & 0 NEWLINE
\end{tabular}

Fig. 3 Example of repetitive notes.

If you want to play the music again without changing the volumes, type N and the computer asks:- SPEED? Enter the speed as before and the music will be played again.
If however you wish to change the volumes or one or more channels, type Y and proceed as before.

LISTING of music entered is effected by typing L NEWLINE and the computer will ask:- LIST FROM LINE NO. Type in the line you wish to start listing from, followed by

\section*{NEWLINE.}

The screen will go grey for about 20 seconds and then the computer will have printed 11 lines of music, starting from the line number you typed. You may now type \(\mathbf{P}\) or \(\mathbf{E}\) or L depending on which function you wish to use; to continue listing type \(L\) and give the line number that would carry on from where the first listing ended; to make alterations to the music or to enter more music, type \(\mathbf{E}\), and to play the music, type P.

\section*{Devising Your Own Sound Effects}

The third program on the software cassette effectively gives you direct access to the registers in the PSG. These registers are programmed with data to build up sound effects. The following is a short summary of the registers used and their functions.

Registers 0 to 5 determine the pitch (frequency) of the three notes on channels A, B and C. Registers 0 , 2 and 4 are used to fine-tune the frequency of \(A, B\) and \(C\)
respectively. Registers 1, 3 and 5 coarse-tune the frequencies. Data to the fine tune registers can vary from 0 to 255 , and data to the coarse tune registers from 0 to 15 .
Register 6 can vary from 0 to 31. This sets the pitch of any white noise to be included. Register 7 is the enable register. Bits D0 to D5 enable noise and/or sound on channels A, B and C. 0 in a bit of

Fig. 4 The functions of the bits in PSG register 7 .
this register enables a function, 1 disables it (see Fig. 4).
Registers 8, 9 and 10 set the volumes of channels A, B and C respectively. These can vary from 0 (off) to 15 (loudest). If you send the number 16 to any of these registers, the volume of channels thus set will be varied according to data in registers 11, 12 and 13, the envelope generator, as follows. Register 11 is used to fine-tune the envelope period; data sent to this register can vary from 0 to 255. Register 12 is used to coarse-tune the envelope period and data to this register can also vary from 0 to 255. Register 13 selects the shape of the envelope generator's waveform (Fig. 5).

Now, connect up your amplifier, keeping the volume fairly low, and load the third program (" \(D\) ") from the software cassette. Type GOTO 2 NEWLINE. The computer will now print:-

\section*{YOU HAVE A CHOICE OF: \\ A (TO HEAR THE SOUND AGAIN)}

R (TO ENTER ALL NEW DATA) C (TO CHANGE SPECIFIC DATA) (TO LIST DATA) S (TO SILENCE THE PSG)
Since you have not yet entered any data, type R. The screen will clear and the computer now prints:-

\section*{REGISTER 0 DATA?}

Type in 0 as the data for register 0 , followed by NEWLINE.
The computer will respond:-

\section*{REGISTER 1 DATA?}

Type in \(\mathbf{0}\) as the data for register 1, followed by NEWLINE. The computer will continue to request data for all registers in this manner. As an example, give it the following:-
Reg. \(\begin{array}{lllllll}1 & 123456 & 78 & 9 & 10 & 11-1\end{array}\) 1213
Data
000000317161616255409 If you examine the data you have just entered, you will see how the computer generated the sound of cannon_fire. This data for cannon fire is contained in the PROM. The computer now repeats the question at the beginning of the program. If you type \(\mathbf{A}\), the computer will repeat the sound and will again ask the same question.

Now type C. The computer will respond with:- REGISTER?


This little board does all the hard work.

\section*{Type 6 NEWLINE. The computer} will now ask:- DATA?
Type 8 NEWLINE. In response to the next question REGISTER? type 12 NEWLINE and in response to DATA? type 5 NEWLINE. Now type 99 NEWLINE
You have just changed the data in the computer to generate a rifle shot. If you now type \(\mathbf{L}\) the computer will list the data for you. You can silence a continuous sound by entering 0 into all register locations. Since doing this would wipe out your sound data, the function \(\mathbf{S}\) for silence is included which will switch the sound off without altering your data.
If you wish to start the sound again, type \(\mathbf{A}\).

When you have perfected your sound, use the LIST function and copy out the data. You can use your own sounds in your own programs using the fourth program ( \({ }^{\prime \prime} \mathrm{G}^{\prime \prime}\) ) on the software cassette.

\section*{Mixing User And PROM Effects}

Having loaded program " \(\mathrm{G}^{\prime}\) ", type GOTO 10 NEWLINE. This runs a short program which simplifies the entering of your sound data. The computer asks HOW MANY
SOUNDS? Type in the number of different sounds of your own that you wish to include in your program, followed by NEWLINE. The computer display will now look like this:-

\section*{HOW MANY SOUNDS?}

\section*{SOUND No. 1}

REG. 0 DATA?
Type in the data for register 0 in your first sound followed by
NEWLINE. The display will now read:-
HOW MANY SOUNDS?
SOUND No. 1

\section*{REG. 1 DATA?}

Type in the data for register 1, sound 1 as before. When you have entered data for all 14 registers, the display will read:

\section*{HOW MANY SOUNDS?}

SOUND No. 2
REG. 0 DATA?
Continue entering data as before. When all the data for all your sounds has been entered the program will stop.

The user sound data is held in an array called A; in order not to lose this data do not use CLEAR or RUN. When you wish to run a program use the GOTO function Do not use an array called A in your program and don't use variables \(Y\) and \(Z\).

The fourth program consists of lines 1 to 9 and 10 through 21. DO NOT ALTER LINES 1 through 9 , though if you wish, when you have entered your sound data, you can delete lines 10 through 21 . When you wish to use your own sounds in your program simply insert the following two lines:-
LET \(\mathbf{Z}=\mathbf{x}\)
where \(x\) is the number of your sound,

\section*{GOSUB 2}
when your sound will be heard. You can of course mix your own sounds with the on-board sounds in your programs. Use the on-board sounds in the manner previously described - it is not necessary to load program " S " to do this if you have loaded program " \(\mathrm{G}^{\prime}\).


Fig. 5 Envelope diagram for register 13.

Line 2 dimensions a one dimensional array with 14 positions called \(A\). This array is used to hold the data for the sound effects you are devising. Line 4 makes the computer jump to 200 where it is instructed to print the selection menu. Line 225 makes the computer iump to line 60. Lines 60 to 75 wait for an answer to this question and the computer jumps accordingly. If the function selected was \(R\) the computer jumps to line 5 . Line 6 sets up a loop using variable \(D\) where \(D\) \(=1\) to 14. Line 10 prints the current register number which is held in \(D\) and asks what data you wish to go to that register. Lines 15 to 20 input and print the data. Line 25 causes the computer to loop back to line 6 until data for all 14 registers ( 0 to 13) has been entered. Line 35 again sets up a FOR NEXT loop using D where D equals from 1 to 14 (the PSG register numbers). Line 40 POKEs the register number to memory position 16515 and line 45 POKEs the data for that register to 16519. Line 46 calls a machine code subroutine based at 16514 which outputs to the PSG register (16515) data (16519). Line 50 causes a loop back to line 35 which continues until the data for all 14 registers ( 0 to 13) has been relayed to the PSG. Line 55 then causes a jump to 200 and a repeat of the initial question.

If the answer to the question at 200 is A, the computer again runs through lines 31 to 55 causing the PSG to repeat the sound. If the answer is \(C\), the computer jumps to line 100 . Lines 102 to 110 ask you the number of the register whose data you wish to alter. Line 110 inputs your answer in D and line 111 checks to see if your answer was 99, which would indicate that you had finished altering data for the time being and wished to hear the sound again - in which case the computer would jump to line 30. If your answer was not 99, the computer continues and lines 115 to 125 input and print your new data for the register you gave. Line 130 causes the computer to jump back to line 102 for you to change more data. If your answer
was \(L\), you wished the computer to list register data and it would jump to line 150. At line 155 a loop is again set up using \(D\). Line 160 prints the register number ( \(\mathrm{D}-1\) ). Line 165 prints the data for that register. Line 170 causes the computer to loop back to line 160, which it continues to do until data for all 14 registers have been displayed. Line 180 makes the computer wait for you to type \(F\), when it will jump to line 30 and your sound will again be heard. If your answer was S, ie the PSG was maintaining a continuous sound and you wished to silence it without losing your data, the computer would jump to 230 . Lines 230 to 234 comprise yet another loop using D to output 0 to all PSG registers causing the PSC to become silent.
NOTE: (5 SPC) MEANS " 5 SPACES"
\begin{tabular}{|c|c|}
\hline 1 & REM (our machine code) \\
\hline 2 & DIM A(14) \\
\hline 3 & CLS \\
\hline 4 & GOTO 200 \\
\hline 5 & CLS \\
\hline 6 & FOR D \(=1\) TO 14 \\
\hline 10 & PRINT "RECISTER";
\[
\text { D }-1 ;{ }^{\prime \prime} \text { DATA?"; }
\] \\
\hline 15 & INPUT A(D) \\
\hline 20 & PRINT A(D) \\
\hline 25 & NEXT D \\
\hline 31 & CLS \\
\hline 35 & FOR D \(=1\) TO 14 \\
\hline 40 & POKE 16515,(D-1) \\
\hline 45 & POKE 16519,A(D) \\
\hline 46 & RAND USR 16514 \\
\hline 50 & NEXT D \\
\hline 55 & GOTO 200 \\
\hline 60 & \[
\begin{aligned}
& \text { IF INKEY\$ = "A" THEN } \\
& \text { GOTO } 30
\end{aligned}
\] \\
\hline 61 & IF INKEY = " 5 " THEN \\
\hline & GOTO 230 \\
\hline 65 & IF INKEY \$ = "R" THEN \\
\hline & GOTO 5 \\
\hline 70 & IF INKEY\$ = "C' THEN \\
\hline & COTO 100 \\
\hline 71 & IF INKEY\$ = 'L' THEN \\
\hline & GOTO 150 \\
\hline 75 & GOTO 60 \\
\hline 100 & CLS \\
\hline 101 & PRINT "TYPE 99 AS A \\
\hline
\end{tabular}

REGISTER
NUMBER [5 SPC] WHEN YOU WISH TO HEAR THE SOUND."
102 PRINT "WHICH REGISTER?"
110
110
111
112
115
120
125
130
150
155
160
165
170
175
176
INPUT D
IF D \(=99\) THEN GOTO 30
LET \(\mathrm{D} .=\mathrm{D}+1\)
PRINT D - 1; " DATA?";
INPUT A(D)
PRINT A(D)
GOTO 102
CLS
FOR D \(=1\) TO 14
PRINT "REGISTER ";D - 1,
PRINT "DATA";A(D)
NEXT D
SLOW
PRINT "PRESS ""F""" WHEN
YOU HAVE FINISHED"
IF INKEYS < > "F" THEN
GOTO 180
GOTO 30
PRINT "YOU HAVE A
CHOICE OF:"'" A (TO HEAR
THE SOUND AGAIN)"," R
(TO ENTER ALL NEW
DATA)"," C (TO CHANGE
SPECIFIC DATA)"" L (TO
LIST DATA)"," S (TO
SILENCE THÉ P.S.G.)"
GOTO 60
FOR D \(=1\) TO 14
POKE 16515, (D-1)
POKE 16519,0
RAND USR 16514
NEXT D
CLS
GOTO 200

This program comprises a line of machine code, a subroutine at line 2 and a program to facilitate the entering of user sound data. This latter program is from line 10 to line 21 . It sets up an array called A whose size depends on the number of different user sounds to be provided for. Lines 13 through 19 comprise a double loop which inputs the user's sound data into the appropriate position of array \(A\).

The subroutine at line 2 is called when a sound, whose data is in array \(A\), is to be heard. As has been explained, variable \(Z\) is set to the number of the user's sound. Line 2 sets up a loop using variable \(Y\) where \(Y=1\) to 14. Line 4 POKEs the register number ( \(Y-1\) ) to memory position 16579 and line 5 POKEs the data for that PSG register which is already in array \(A(Z, Y)\) to memory position 16583. Line 6 calls a
machine code subroutine based at 16578. This subroutine outputs the number at memory location 16579 to the PSG to select a register and the number at memory location 16583 to the PSG as data for this register. Line 7 causes the computer to loop back to line 4 until data for all 14 PSG registers has been output. The user can insert instructions 3 FAST and 8 SLOW, but we recommend leaving these out since the operation of a program in FAST mode causes the computer to discontinue maintaining the video display. This would be annoying, especially in games programs.
\begin{tabular}{ll}
1 & REM our machine code \\
2 & FOR Y \(=1\) to 14 \\
4 & POKE 16579, \(Y-1\) \\
5 & POKE 16583, \(A(Z, Y)\) \\
6 & RAND USR 16578
\end{tabular}

NEXT Y
RETURN
PRINT "HOW MANY
SOUNDS?'
INPUT S
DIM A \((S, 14)\)
FOR \(N=1\) TO S
FOR R \(=1\) TO 14
PRINT AT 1,0;"SOUND
NO.";
PRINT AT
2,0;"REG."R-1;" DATA?"
INPUT \(A(N, R)\)
NEXT R
NEXT N
CLS
STOP
Machine code at line 1 :
3E xx D3 FF 3E xx D3 F7
C9

\section*{POWERFET AMPLIFIERS}

\section*{NEW DESIGNS}

With the introduction of four new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiers. Four key improvements 1.) The use of H-PAK powerfets, resulting in improved thermal efficiency and consequently enhanced power output capabilities.
2.) Low \(\mathrm{COB}_{\mathrm{OB}}\) drivers now in power transistor packages, maintaining the superb HF performance and improving driver reliability.
3.) Separate driver and input supply rails allowing a \(10 \%\) increase in available output power by increasing output stage efficiency
4.) Bridge mode input pin allowing instant bridging between any two amplifiers without the need for extra circuitry.

\section*{PFA100 Specification}
\begin{tabular}{ll} 
Bandwidth & \(10 \mathrm{~Hz} \cdot 900 \mathrm{KHz} \pm 1 \mathrm{~dB}\) \\
Output Power into 80 & \(100 \mathrm{~W} / \mathrm{Vs}= \pm 55 \mathrm{~V})\) \\
THD \((20 \mathrm{~Hz}\)-20KHz) & \(<0.008 \%\) \\
THD 11 KHz at 100 W\()\) & \(0.000 \% \%\) typ. \\
SNR & 1200 dB \\
Slew rate & \(>30 \mathrm{~V} / \mathrm{uS}\) \\
Gain & \(\times 23\) \\
Rin & 30 K \\
Vs max & \(\pm 70 \mathrm{~V}\)
\end{tabular}
\(\mathbf{£ 1 7 . 3 5}\) (Built \& Tested)
£15.17 (Kit)
PFA100 120W into \(8 \Omega\left(V_{S}= \pm 60 \mathrm{~V}\right)\)


PFA200 180W into \(8 \Omega\)
300 W into \(4 \Omega\left(\mathrm{~V}_{\mathrm{S}}= \pm 67 \mathrm{~V}\right)\)


PFA200 Specification \(\begin{array}{ll}\text { Bandwidth } & 10 \mathrm{~Hz} \cdot 100 \mathrm{KHz} \pm 1 \mathrm{~dB} \\ \text { Output power into } 88 & 150 \mathrm{~W} \text { (Vs } \pm 60 \mathrm{~V} \text { ) }\end{array}\) Output power into 80 150W \(\mathrm{VS} \pm 60 \mathrm{VI}\) THD \(\left(20 \mathrm{~Hz}-20 \mathrm{KHz} \mathrm{H}^{2}<0.005 \%\right.\) THD [ 1 KHz at 150 W ] \(0.002 \%\) typ \(\begin{array}{ll}\text { SNR } & 120 \mathrm{~dB} \\ \text { Slew ate } & >30 \mathrm{~V} / \mathrm{uS} \\ \text { Gain } & \times 23\end{array}\) \(\begin{array}{ll}\text { Rin } & 30 \mathrm{~K} \\ \mathrm{Vs} \text { max } & \pm 70 \mathrm{~V}\end{array}\) Price
\(£ 23.87\) (Built \& Tested) \(€ 21.70\) (Kit)

And for those with a taste for power
- PFA500 Delivers 475 W into 4 ohms and 600W into 2 ohms. These highly current capable units can deliver 25 amps continuous into a load, whilst maintaining the
PFA HV A performance figures of the smalier units audio and wide dynamic range programme material. Delivers 300 W into 4 ohms and 8 ohms on a continuous basis, it will peak for musically significant periods of time at up to 5d8s above this. The PFA/HV is the widest dynamic range power amplifier currently available
- 34.30 (buit 4 tested
- the heat exchanger. Other people sell heatsinks. Pantechnic design, manufacture and sell heatexchangers. Re-examination of he hear waffic pry The has resulted in a radically new design possessing greatiy improved efficiency. The unit \(7^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}\) handles PFAs up to 300 W or 12 KW when blown
POWER SUPPLY COMPONENTS
Toroidal Mains Transformers
\begin{tabular}{l|c|c|c|c|c} 
Voltage & 160 VA & 225 VA & 300 VA & 500 VA & 625 VA \\
\hline \(40-0-40\) & 9.71 & 11.36 & 12.32 & - & - \\
\(45-0-45\) & - & 11.36 & 12.32 & 16.05 & - \\
\(50-0-50\) & - & - & - & 16.05 & 18.80
\end{tabular}

Special low flux windings. Carriage included
25A 400 P/V Bridge rectifier \(£ 2.17 \quad\) For the PFA/HV 500VA 70-0.70
 Phone or write for advice on selecting the fight components for your particular application.

All prices excl. VAT. Carriage 75p. Trade supplied
Ask about our preamps, protection boards and active crossovers

\section*{THE POWERFET SPECIALISTS Dentechne (incorporating J.W. Rimmer)}


When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

\section*{HOBBY HERALD}

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque,
Barclaycard or
Access.
So make
sure you
 get your copy of Hobby Herald by ringing
(04215) 6282.9.

BICC-Vero Electronics Ltd Industrial Estate,

vero Chandlers Ford, Hampshire, SO5 3ZR.

\section*{Accurate Digital Multimeters at Exceptional Prices \\ NEW ANALOGUE METER WITH CONTINUITY BUZZER AND BATTERY SCALE}

28 RANGES, EACH WITH FULL OVERLOAD

SPECIFICATION NODELS 6010 \& 7030
- 10 amp AC/DC

Battery: Single 9 V drycell. Life: 200 hrs
Dimensions: \(170 \times 89 \times 38 \mathrm{~mm}\)
Weight: 400 g inc. battery.
Mode Select: Push Button.
- AC DC Current: \(200 \mu \mathrm{~A}\) to 10 A
- AC Voltage: 200 mV to 750 V
- RC Voltage: 200 mV to 1000

Input Impedance: \(10 \mathrm{M} \Omega\)
- Display: 3 \(1 / 2\) Digit 13 mm LCD
- O/load Protection: All ranges

OTHER FEATURES: Auto polarity.
auto zero, battery low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying PR case.

NEW HM 102 BZ SPECIFICATION

Voltage: \(0.25,1,2.5,10,25,100,250,100\) volts \(20,000 \mathrm{ohms} / \mathrm{yol}\) - AC Voltage: \(0.10,25,100,250,1000\) volts 10,000 ohms/vo
* Decibels:

DC Current: \(0.50,500 \mu \mathrm{~A}, 0.5,50,500 \mathrm{~mA}\)
0.6 Megohms in 4 ranges.

30 ohms Centre Scale
- Power Supoly: One 1.5 V size ' A ' battery (inci) Size \& Weight: \(135 \times 91 \times 39 \mathrm{~mm}, 280 \mathrm{gr}\)

HM 101 POCKET SIZE NULTIMETER SPECIFICATION
* DC \& AC Voltage: \(0.10,50,250,1000\) voits,
- Decibels
- DC Currert
- Ohmmeter:
- Power Supply

Size \& Weight
Quantity discount for trade on application

2000 ohms/vol
\(-1010+22 \mathrm{~d}\)
0.100 mA
0.1 Megohm in 2 ranges

60 ohms Centre Scale
One 1.5 V size ' \(A\) ' battery (incl) \(90 \times 60 \times 29 \mathrm{~mm}, 92 \mathrm{gr}\). incl. battery E5.50

Add \(15 \%\) to your order for VAT. P\&P is free of charge. Payment by Cheque with Order. ARMON ELECTRONICS LTD. Access \& Barclaycard accepted.

Cottrell House.53-63 Wembley Hill Road, Wembley. Middlesex Ha98BH. England
Telephone 01-9024321 (3 unes)
TELEX No 923985
New Products


\section*{HIFI STEREO AMPLIFIER KITS}

From one of Britain's leading esoteric amplifier manufacturets comes an exciting new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the
usual price penalty usual price penalty
style, easier construction and a full wov year warranty moving coil inputs, 40 to 100 watts per channel, in fact, everything that made the previous models so popular is included but with added
The new range consists of The CK 1010 Stereo Pre Amplifier, The CK 1040 WPC Power Amplifier, The CK 1100 WPC Power Amplifier

\section*{CK 1010}

This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and The CK 1010 takes its DC connections and controls to the pre punched chassis.
moving coil input can be fitted to extend its versatility. (MC2K) if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an optional add-on

\section*{CK 1040}

This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010. All components such as heatsinks, wire and connectors ar CK 1100
Similar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinking and thermal cutouts are provided as standard
When correctly assembled these kits are guaranteed for two years.
"It would seem then that Crimson have maintained their position at the top of the commercial kit-build field. There is no oriental amplifier / know of that can better the sound of this combination overall at any price and only a few - such as the KA. 1000 ( \(£ 500+\) ) - are of comparable standard.... I can say no more than that for E250 it (CK \(1010 / M C 2 K / 11001\) is a bargain and one that
becomes the reference point for kit amplifiers from now on."

PRICES CK 1010 - RRP £92.00; CK 1040 - RRP £121.00; CK 1100 - RRP £151.00; MC2K - RRP £25.00; PSK - RRP \(£ 20.00\)
Barclaycard or Access accepted, otherwise send C.W.O. All prices include P\&P to anywhere in the U.K. Export: Write for pro-forma SEND FOR FULL DETAILS ON OUR HIFI KIT PRODUCTS BY WRITING TO ADDRESS BELOW

Crimsconthektrik Stoke
PHOENIX WORK
500 KINGS STREET
STOKE-ON-TRENT
LONDON DISTRIBUTOR: BRADLEY MARSHALL LTD, 325 EDGWARE ROAD, LÓNDON W21 BN
TEL: 0782330520

\title{
electromize AUTO-ERECTRONIC PRODUCTS \\ kits or ready sult
}

\section*{ELECTRONIC IGNITION}

* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
* Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrica! load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
t Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires' whilst an electronic filter smooths out the effects of contact bounce etc.

Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - \(31 / 2\) times more spark power than inductive systems \(31 / 2\) times the spark energy of ordinary capacitive systems, 3 times the spark duration.
Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.
- IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality \(2 \mu \mathrm{~F}\) discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS: (Older current impulse types need an adaptor).

\section*{STANDARD CAR KIT \(£ 15.90\) \\ Assembled and Tested \(£ 26.70\)}

PLUS
P. \& P.
£1 (U.K.)
TWIN OUTPUT KIT
£24.55
For Motor Cycles and Cars with twin ignition systems
Prices
include

\section*{PROTECT YOUR CAR WITH AN ELECTRONIZE \\ ELECTRONIC ALARM \\ \(\star 2000\) COMBINATIONS provided by an electronic key - a}
minature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
t 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
* INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
* 30 SECOND DELAY when system is armed allows owner to lock doors etc.

Don't Wait Until
Its too Late ~
Fit one NOW!
( DISABLES IGNITION SYSTEM when alarm is armed.
* IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES. SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

CAR ALARM KIT
£24.95
PLUS

ASSEMBLED AND TESTED \(£ 37.95\)

\title{
CONFIGURATIONS \\ And so to solid state switches. In this month's Configurations Ian Sinclair looks at the basic techniques involving the thyristor and its close relatives.
}

As a component, the thyristor is so closely related to the diode that thyristor circuits just had to follow the treatment of power supplies last month. Technically, the thyristor is a four-layer diode, but as far as we are concerned, it's a silicon diode that is switched into conduction by a signal at a third electrode, the gate, as shown in Fig. 1. In many respects, however, the action is very much that of a normal silicon diode; for example, it will not conduct in the reverse direction (cathode positive), and it has about 0V6 forward drop across the anode-cathode terminal when it conducts. The distinguishing feature is that the start of forward conduction only occurs when a trigger pulse arrives at the gate and fires the thyristor. Whatever you subsequently do to the gate, the thyristor will continue to conduct until the forward current falls below a value known as the holding current, at which point the thyristor will turn off. However, while the thyristor is on, it is as fully conducting as a silicon diode would be.


Fig. 1 The thyristor: (a) circuit symbol, (b) arrangement of semiconductor layers.

\section*{Triggers Fingered}

One point that is not always sufficiently understood is that the triggering requirements can vary enormously from one type of thyristor to another. A lot of small thyristors will trigger for a gate current of only a fraction of a microamp, so that interference signals will trigger the thyristor if the gate terminal is not 'earthed' to the cathode by a low-value resistor. A lot of false triggering of burglar alarms seems to be due to thyristor circuits in which the gate has too high a resistance to the cathode, making the gate circuit a very efficient aerial for any radiated energy! Even when quite low resistance values are used, thyristors can trigger in lightning storms or because of static discharges, so that some careful design of the gate circuit and extensive testing is needed if you are in the alarm business. The combination of low resistance and a suppressor ferrite bead placed at the gate terminal helps a lot! Large thyristors need rather more in the way of gate current, but even these can be triggered by a fraction of a milliamp.

Thyristors are most at home in circuits which use DC or unsmoothed (but rectified) AC. The use of rectified AC is particularly popular (Fig. 2) because the thyristor will


Fig. 2 Elementary switching circuit for use with rectified AC. When the switch is on, current will flow through the load.
switch off each time the supply voltage reaches zero, and all that we need to concentrate our attention on is the triggering which switches it on again. Where a thyristor is used in a DC circuit, there is the extra complication of reducing the voltage across the thyristor to zero in order to switch it off (Fig. 3).


Fig. 3 Turning off a thyristor which is operated from DC. Pressing the switch will discharge the capacitor, pulsing the anode of the thyristor and so stopping the current. This is enough to prevent conduction until the gate is pulsed again.

\section*{A Passing Phase}

Down to configurations. The most useful basic triggering circuit is the phase-controlled thyristor fed with rectified AC as illustrated in Fig. 4. The load can be placed in the leads to the bridge rectifier, in which case the thyristor will control the average power dissipated in the load,


Fig. 4 Basic circuit for thyristor control of an AC circuit, using a bridge rectifier to supply the thyristor. The load, however, operates from AC.


Fig. 5 A thyristor regulator. This makes a very useful prestabiliser circuit, or can be used as a stabiliser in its own right where very precise stabilisation is not needed.
despite the fact that the load is working on AC and the thyristor is controlling a rectified supply. An interesting option is to place a reservoir capacitor on the cathode side of the thyristor, giving a low-cost and low-dissipation form of voltage regulation (Fig. 5). The gate control can be obtained from a charging capacitor, as demonstrated in Fig. 6, or from a zener diode as in Fig. 5 - remember that there is no triggering until the gate voltage is about OV6 above the cathode voltage.


Fig. 6 A typical phase control circuit for AC. The thyristor will conduct on only half of the input wave, so that a 'power-doubler' circuit, which switches a diode across the thyristor in the reverse conduction direction may be needed for a larger range of power control (shown dotted).

Simple triggering from a charging capacitor is never entirely satisfactory, because the thyristor cannot be relied upon to fire at exactly the same stage of charging in each cycle. To get round this, the simpler circuits make use of a trigger diode or diac which enisures more reliable triggering. The trigger diode has the curious characteristic that it will remain non-conducting while the voltage across it in either direction builds up, suddenly conduct at some voltage level which is determined by its construction, and remain fully conducting until the voltage across it has dropped almost to zero (Fig. 7). A diac wired between a charging capacitor and the gate of the thyristor, with a load of a few hundred ohms connected between the gate and the cathode to avoid unwanted triggering will serve nicely to make the triggering much more reliable. What you then have to be sure of is that you have enough voltage around to operate the diac - depending on type, you may need up to 15 V across it before it starts to conduct.

The very simple phase-control system operates well enough for a lot of applications, particularly for light dimming, but more care is needed where electric motors are being controlled, mainly because of the back-EMF that motors of the AC/DC type will generate. When any motor of this type is spinning, it will act as a generator of DC (even if the supply to the motor is AC), and the thyristor must be capable of withstanding a reverse voltage which consists of the peak reverse AC plus this additional voltage generated by the motor.

The methods that are used for thyristor control of the


Fig 7. The diac, and its typical characteristic.
larger motors, larger than your domestic power drill/food mixer motor, are a lot more specialised. For these circuits, charging capacitors are simply not precise enough as a method of triggering the thyristor at the correct point in the waveform: more elaborate trigger circuits, synchronised to the mains frequency, have to be used. These pulsegenerating circuits can be coupled to the thyristor circuitry by using small pulse transformers, so that the timing circuits need not be connected to the circuits that the thyristor controls. This is particularly important when thyristors are used in high-voltage three-phase circuits, because the thyristors may be operating at voltages well above or below earth, yet the control box needs to be earthed.

Radio interference is a continual problem for any thyristor circuit which makes use of phase control. Because the thyristor is being switched on when there is a substantial voltage across it, there are large current pulses which can be devastating for radio or TV receivers in the neighbourhood and which can also trigger other thyristors. It's essential, therefore, to design really effective pulse-transient suppression into the gate and anode circuits, and to ensure in the practical construction that the suppressors are placed as close as possible to the terminals of each thyristor. In general, small series inductors and


Fig. 8 Principles of zero-voltage switching circuits. The controller (usually an IC) will switch the thyristor on at the point when the AC wave passes through zero. This ensures minimal RF interference, unlike the phase-control method.

\section*{FEATURE: Configurations}
parallel capacitors will do all that is needed, but they have to be capable of taking high peak currents, and must be wired close enough to prevent any wiring from acting as a radiating aerial.

\section*{The Zero Option}

The other way of controlling thyristors in energycontrol circuits is seen much less in the small-scale circuits that we tend to be more familiar with. This alternative is zero-voltage switching, and it involves switching the thyristors on at the instant when the voltage between anode and cathode is zero. This has the advantage of generating no more interference than a silicon diode would, which is very much less than is generated by the phase-control circuit: but it can be used only with loads like water-heaters which have very long time constants. If you switch your electric drill motor on for 100 mS in each second, the speed will be rather erratic to say the least, but a water or room heater switched in this way does not cause noticeable fluctuations of temperature because the temperature does not shoot up rapidly when the heater is on, nor shoot down when the heater is off. Figure 8 shows an outline of a typical zero-voltage control circuit - there is an IC which can be used to govern the whole operation.


Fig. 9 Using a triac in a circuit where the switching signals are very small. Note that the whole circuit is live to mains.

\section*{For My Next Triac . . .}

The triac is a two-way equivalent of the thyristor, with the main circuit terminals labelled MT1 and MT2 rather than anode and cathode, since current can flow in either direction through the triac. Like the thyristor, the triac remains non-conducting until it has been triggered by a pulse at its gate terminal; the pulse can be of either polarity, but the minimum amplitude for firing is not the same for the two possible polarities. Again like the thyristor, the triac ceases to conduct when the current through it becomes too low to sustain conduction. Triacs are extensively used to switch raw \(A C\) because a triac circuit


Fig. 10 Isolating the mains part of the circuit from the control part by using a pulse transformer.
represents a considerable saving on components as compared to a small thyristor circuit, even if the equivalent triac is more expensive than two thyristors. Figure 9 shows a typical triac circuit for \(A C\) use that can operate using a very small triggering input, such as from a microphone or photocell. The transformer supplies a low voltage for the gate circuit, and the rectifier bridge is arranged so that an unsmoothed full-wave rectified voltage is fed to the transistor amplifier circuit. When the transistor conducts, the current flowing in the bridge rectifier will also flow through the gate of the triac, triggering the triac on each half-cycle. The trigger current is \(A C\) because the gate is wired in the \(A C\) side of the transformer. Note that the whole circuit is connected to mains - if an isolated lowvoltage circuit is needed, then the gate must be triggered by a circuit using a pulse transformer rather than directly as in this example, and the part-circuit shown in Fig. 10 is needed.


Fig. 11 The unijunction connected to provide a short pulse when a switch is pressed.

Triggering thyristors or triacs via a pulse transformer needs a fairly sharp spike waveform, and one of the devices that has traditionally been used to provide this type of waveform is the unijunction. As the name suggests, this uses one junction on an N-type silicon base whose doping normally ensures that the conductivity is low (resistance high). The junction is placed so as to provide an emitter terminal, and when the emitter voltage is raised to the conducting level, the injection of holes into the bar will make it highly conductive. This is the triggered state, which can be maintained only if a current continues to flow through the emitter. Unijunction circuits are arranged so as to prevent this continuous current, so ensuring a clean sharp pulse.

A unijunction 'one-shot' pulse generator is illustrated in Fig. 11. With the switch open, the emitter of the unijunction is earthed, and the device is non-conducting. Closing the switch contacts changes the voltage on one side of the capacitor from earth to the positive supply voltage, and the voltage on the other side will increase similarly, so triggering the unijunction. The conducting unijunction generates a positive-going spike at the earthy end of its circuit, and also charges the capacitor so that the end of the capacitor connected to the emitter is at about earth voltage. This process is very brief, and when the switch opens again, the emitter of the unijunction is protected from negative pulses by a diode.

The triggering voltage for a unijunction is a fixed fraction of the total voltage applied across the main terminals - the fraction is known as the 'intrinsic stand-off ratio', and is usually around 0.6 , implying that the device will trigger when the emitter voltage is about 60 per cent of the supply voltage. Because this ratio is fixed, changes in the supply voltage do not make much difference to the frequency of the output.

\section*{TOROIDAS}

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.
*Gold service available.
21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.

\section*{*5 year no quibble} guarantee.


The benefits of ILP toroidal transtormers
ILP toroidal transformers are only halt the weight and height of their laminated equivalents. and are available with 110 V . 220 V or 240 V primaries coded as toliows
IMPORTANT: Regulation - All volitages quoted are FULL LOAD. Please add regulation ligure to secondary IMPORTANT: to oblain of load voltage.
For 110 V primary insert " \(O\) " in place of " \(X\) " in type number
For 220 V primary (Europe) insent " 1 " in place of " \(X\) " in lype number
For 240 V primary (UK) insen " 2 " in place of " \(X\) " in type number
Also available at Electrovalue, Maplin, Technomatic and Barrie Electronics.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access



\title{
ORGAN part 4
}

\title{
We conclude this excellent musical project with the constructional and setting up details, as well as the pricing for all the various bits and pieces. Design by Richard Watts.
}

Before starting on the construction details for the organ, there is one section of circuitry remaining that needs to be explained - that of the swell pedal and glide control. Figure 2 in the February article contains the circuity in question. The swell pedal performs the function of volume control for the whole organ and acts upon the signal which is output from the main mixer to the power amplifier. It operates by using an LDR (light dependent resistor), which is connected between ground and the signal line and which has a 12 V MES bulb mounted facing it. As the swell pedal is moved up and down, an optical filter is moved in the light path, allowing more or less light to reach the LDR and thus altering its resistance. This method of control is far superior to using potentiometers, which go noisy with age and wear and can produce fearful noises when connected to an amplifier input. The light operation ensures noise-free performance.

Attached to the side of the swell pedal is the glide switch. When operated, this switch causes the organ tuning to go flat by a semitone; when released, it allows it to slowly return to its original state. This effect is useful on all the voices and brings particular realism to those such as Hawaiian guitar and trombone.

When operated, the glide switch grounds the junction of D13 and D14: this discharges C18 through R34 (100R) and results in an immediate reduction in clock frequency, therefore flattening any audio currently being output. When released, the D13/D14 junction is again left open circuit, and C18 is allowed to return to its former state. The rate at which it returns is determined by the value of C18 and the amount by which the tuning is varied is determined by R33. The connection of D13 to the glide switch also causes the vibrato, if
selected, to be disabled by switching off IC8a for the duration of the glide switch operation. This adds to the effect of the glide.

\section*{Construction}

The main PCB is screen-printed with the component overlay and should present no constructional problems. A block diagram of the organ showing how all the remaining sections are interconnected to the main board is given in Fig. 1 as a guide to assembly.

The keyboard assembly comes as a complete unit, requiring only the contact assembly to be fitted. The keyboard chassis is fitted with end supports upon which both keyboards may be hinged up to facilitate access to the underside, where the contact assembly (the keyboard PCB) is fitted.

The keyboard is assembled as follows. First install and solder all the 1 N4148 diodes with the cathodes (ringed) facing away from the bus bars. Next, with the board trackside up, install and solder all the track pins; one per diode and one per bus bar section. Ensure that the pins are pushed far enough into the PCB - the widest part of the


The finished organ.
pin should be in contact with the track. Now, with the board 'diode side up', put a small solder blob on each of the pins just installed - this will help later. Next the Molex connector, through which all connections are made to the contacts and bus bars, is to be fitted and soldered. Install the connector from the component side, leaving the longest part of the pins uppermost, and solder the underside.

Now the bus bars can be fitted in turn as follows. Put two bus bar supports onto each bus bar section as shown in the diagrams and photograph. Use the upper of the two holes in the support. Align the bus bar supports with their locating holes in the PCB and mount the supports. A touch with a hot soldering iron to the protrusion below the board will secure the support; a spot of glue on the topside of the board is an alternative measure but take care not to get glue on the bus bars. Also keep your handling of the bus bars and contacts to a minimum as these are silver compounds and can get tarnished. Now slide the bus bar so that its left-hand end meets its associated pin and solder the bar to the pin. Take care not to use an excess of solder here since solder or flux running along to the contact area of the bus bar will impair the contact surface.

Insert the other 12-key bus bar sections and the 7-key section in the same way as described above. The top \(C\) key bus bar, since it handles one key only, has no bus bar support and is soldered directly to its pin at \(90^{\circ}\). Check that no section of bus bar is touching any other section and check all joints on the underside of the board, as it is now to be mounted onto the keyboard chassis for insertion of the key contacts.

Insert the keyboard PCB spacers in the underside of the PCB as


Fig. 2 (Above) The overlay for the main board. This is silk-screened on the finished item.

Fig. 3 (Below) The keyboard overlay.


Fig. 1 The pedalboard overlay, which extends for 13 switch/diode pairs (above) and a sample switchbank overlay (right). All three
switchbanks are similar: this is the preset voice.

PARTS LIST



A picture of the assembled main board.


Fig. 4 (Above) The component overlay for the amplifier/power supply.



Fig. 5 Diagram showing the keyboard assembly. Compare with the photograph below.


\section*{BUYLINES}

The Victory organ is available either as a complete kit or as sub-kits. The sub-kits are as follows: Starter kit (all parts for upper manual organ sounds); £98.80: Presets kit (upper manual preset voices); £14.54: Lower manual and bass kit (the lower manual and bass voices); \(£ 71.64\) : Pedal board kit; \(£ 30.84\) : Rhythm unit kit (includes ROM with programmed rhythm and bass patterns); £24.74: Amp and power supply unit; \(£ 36.96\) : Swell pedal and speakers; \(£ 34.54\). VAT must be added to all prices. The total for all the sub-kits is \(£ 312.06\) plus VAT but if the complete Victory kit is ordered at one time the price is reduced to \(£ 280.54\) plus VAT. If you wish to build the organ in the cabinet shown in the photographs, it costs \(£ 143\) and is supplied ready assembled with pre-drilled holes for the keyboard assemblies. A demonstration tape is available for \(£ 1.70\) plus VAT. Carriage on all kits is extra, and individual components may also be ordered: a leaflet from the suppliers contains full details of the prices. Contact Leighton Electronic Services L.td, 17 Bridge Street, Leighton Buzzard, Beds. LU7 7 AH (telephone 0525 382504, telex 826717) for more information.


For easy construction, the keyboards hinge up and lift off.
shown. These will force-fit the holes in the PCB but may be glued or held against the board by using a small amount of Vaseline if the force fit proves difficult. Insert a spacer in each hole. Next, invert the keyboard and support it at the ends. This protects the surface of the keys and also ensures that the black keys are not depressed, as would be the case if the keyboard were just inverted and placed on a surface. It can now be seen that there are two rows of PCB securing holes in the keyboard chassis running along its length. Using the row nearest the front of the keys, lower the contact PCB onto the chassis and secure it with the screws supplied.

Finally the contacts can be fitted. Place a contact through the hole in the key contact actuator and move the wider end of the contact alongside its associated pin. Position the contact such that any excess length is through the contact's actuator and not at the pin end. Solder the contact to the pin. Repeat with all the contacts. Mechanical noise from the keyboard can be kept to a minimum by the insertion of a small amount of silicon grease or similar lubricant into the key contact actuator prior to the contact insertion.

\section*{Cheeky Comments}

The sidecheeks (the bits on the end of the keyboards) are injection mouldings supplied with the correct cut-outs, where required, for the mounting of the various switches and pots. The preset voices, rhythm and automatic function switchbanks are each mounted on a small PCB with a connector, and these assemblies are screwed onto mouldings on the underside of the sidecheek. The push-on button caps are secured to the switches with glue. It should be noted that the 'preset voices' switches have a slightly wider spacing than the other two switchbanks and have correspondingly larger push-buttons: be sure to have the correct ones before using the glue!

The voices/effects switchbank is mounted directly onto the main PCB; it comes complete with coloured and printed switch covers. The complete assembly of board and switchbank is then screwed to its sidecheek. The sidecheeks fit simply onto the keyboard chassis by clipping them in at the front and securing them at the back edge by two screws.


Here you can see the pedalboard PCB mounting arrangement.

All interboard connections are made using ribbon cable and insulation displacement connectors (IDC).

The pedalboard is a complete assembly requiring only the contacts to be fitted. These are in the form of two pole changeover switches (13 in all) which are mounted on a PCB with the associated pedal diodes and connector plug. The switches are then screwed to the pedalboard and the pedalboard bolted into the cabinet using four bolts (see the photograph).

The swell pedal assembly requires only the wiring of power \((+12 \mathrm{~V})\) to the bulb, and the coaxial signal lead from the preamp output to be connected across the LDR. This unit is then secured by four screws through its base plate: these need not be removed for access to the swell pedal as the pedal can be


A view inside the organ cabinet showing the tweeter, and speaker and swell pedal.
slid out from the front of the organ. The single pole glide switch is part of the swell pedal assembly and requires only ground to one contact and the glide circuitry to the other.

The amplifier assembly consists of the chassis, the PCB and the mains transformer. The latter two items are mounted on the former, which is also used as the heatsink for the +12 V regulator and the power amplifier IC. The regulator does not need to be electrically isolated from the chassis as its tab is at ground, but the amplifier IC must be electrically isolated using a mica washer.

The output signal from the amplifier is taken via the headphone socket to the speaker and piezo tweeter. No crossover is necessary with this type of tweeter.

The cabinet to be supplied needs no assembly and readily accepts all the subassemblies described above. It has integral mounting nuts for the bolts that secure the pedalboard assembly and speaker; a cut-out for mounting the tweeter is incorporated, as is a headphone socket mounting hole. The cabinet is finished in real wood veneer and has a removable back and lid for easy access.

\section*{Setting Up}

The simplest method of tuning the organ is to select \(A\) above middle C (that's the sixteenth note down from the top) on the upper keyboard with \(8^{\prime}\) flute selected. The frequency of this note should be 440 Hz . It may be adjustable either by using an A tuning fork and listening for beats, or by monitoring pin 1 of IC4a with a scope or frequency counter. The tuning control is PR2. Alternatively, IC6d pin 8 may be monitored for 1000.12 kHz .

The vibrato oscillator frequency is not critical and is usually about 6 Hz . Adjustment is made using PR1 and it may be monitored at the collector of Q3. Alternatively you can select, say, clarinet with vibrator and play individual notes, adjusting PR1 for the most pleasing effect.

The upper keyboard VCA, in common with the other two (preset voices and rhythm guitar), needs to be balanced as the control current envelope does not automatically centre around signal ground. The result of any imbalance on the upper keyboard VCA is to produce an undesirable thump when a key is depressed. So, with no upper keyboard voice selected, depress any upper key and adjust PR3 to one end of its travel. Then, while repeatedly depressing the key, move PR3 through its travel. It will be noted that at the extremes of the preset travel the thump will be


The amplier/PSU board.
loudest and there will be a point on the preset where it is minimal. The VCA is balanced at this point.

The preset voices VCA is balanced by selecting the banjo voice and playing any upper key. Adjustment of PR5 will eliminate the thump which will occur with the voice at the banjo oscillator rate.

The rhythm guitar VCA can be balanced by using PR6 while the rhythm guitar voice is selected and any rhythm is selected. It is not necessary to play any keys and the task will be made easier by turning the rhythm volume right down and also having the lower manual accent on.

To adjust the noise volume preset (PR7), select swing on the rhythm unit and set the tempo to mid-range. Turn PR7 fully clockwise, then turn it anticlockwise until the white noise tends to sound continuous. Now turn it back slightly until the organ is making the normal sound of a snare drum. PR7 may be further adjusted clockwise to suit individual taste.

Finally, the overall volume of the organ can be adjusted by using PR4.

\section*{MONITORS}


\section*{HIGH RESOLUTION ~ AND LOW COST !}

Either cased or open frames to OEM's. The specification is right, the price is even better.
Phone or write to our Sales Dept for immediate action and prices.

\section*{CROFTON ELECTRONICS LTD}

35, Grosvenor Road, Twickenham, Middx, TW1 4AD Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

\section*{HAPPY MEMORIES}


Low profile IC sockets: Pins 81416182022232840 Pence 91011141518192533

Soft-sectored floppy discs per 10 in plastic library case:
5 inch SSSD £17.00 5 inch SSDD \(£ 19.255\) inch DSDD £21.00 5 inch DSQD \(£ 26.35\)
8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50

745 LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under £15 and VAT to total. Access \& Visa welcome. 24hr service on (054 422) 618 Government \& Educational orders welcome, £ 15 minimum Trade accounts operated, 'phone or write for details

Happy Memories (ETI),
Gladestry, Kington, Herefordshire. HR5 3NY.
Tel: (054 422) 618 or 628

\section*{POWER DIMMER MODULES}

A range of electronic modular dimmers designed to suit your custom channel and facility requirement - Considerable saving over commercial equipment
- All the commercial facilities and more
- Compatable special effects
- Preset/remote/master


\section*{PARNDON ELECTRONICS LTD}

Dept. No.23', 44 Peddock Mead, Harlow, Eseen CM18 712en. Tel. 027932700
RESISTORS: \(1 / 4\) Watl Carbon Film E24 range \(\pm 5^{11 / / /}\) tolerance High quality resistors made under strictly controlled conditions ty automatic machines. Bandoliered and colour coded
£1.00 per hundred mixed. (Min 10 per valuel
£ 8.50 per thousand mixed. (Min 50 per valuel
Special stock pack 60 values. 10 off each \(\mathbf{5 5} 59\)
DICDES: IN4148 3peach. Min order quantily - 15 items
£ 1.60 per hundred
CAPACITORS, REGULATORS, SWITCHES, I.C. TRANSISTORS, DIODES, etc, etc. FULL LIST AVAILABLE - SEND S.A.E.

DIL SOCKETS: High quality. luw profile sockets
8 pin - 10p. 14 pin - 11p. 16 pin - 12p. 18 pin - 19p. 20 pin-21p.
22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER - UK EI 00 OVERSEAS \(\& 5\) CASH WITH ORDER PLEASE


Visual Display Units Burroughs MT686 VDUs These versatile micro controlled programmable controlied programmable terminals have 3 RCA 1802 CPUs and 64 K of memory. \(12^{\prime \prime}\) Green screen ( \(80 \times 25\) ) RS232. 106 key detached key board. Can also be used as quality video monitor. \(\mathbf{f 1 4 9}+\mathbf{E 1 5}\) carr. WHILE STOCKS LAST

professional fas columns 120 char. 80 Paralled i/f Quality at vill price Vertical forma liny pree. Vertical unit. To Vc. operation manual. ONLY \(\mathbf{f 1 4 9 . 0 0}\) Carriage (England) 17.50. Tech manua (230 pages) \(\mathbf{~ 1 0 . 0 0 .}\)


\section*{FLOPPY DISC DRIVES}

Fantastic MEMOREX \(5508^{\prime \prime}\) discs mounted in attractive case with power supply and fan Shugart standard 50 way interface Space way second drive. \(£ 199\) (carr. £9.50)

\footnotetext{
\section*{MAWSON ASSOCIATES}

124 Lennard Rd, Beckenham, Kent BR3 10 P WE ALSO BUY COMPUTERS
AND COMPUTER PERIPHERALS

01-778 3600
Callers welcome by appointment
}

\section*{E.T.I. KITS}

\section*{ALL KITS INCLUDE PCBs}

Full kits include printed circuit boards, includes the project - you will need to components, hardware, I.C. sockets, order the instruction reprint at an extra cases etc. unless stated (not batteries). If \(45 \rho\) each. PCBs included. Reprints you do not have the issue of E.T.I. which avaiable separately \(45 p\) each +p 4 p 45 p .


MORE KITS - SIMILAR STYLE TO ETI
Structions included (separately 45 p eac
Please quote ref. no. when ordering




MAGENTA ELECTRONICS LTD
E826, 135 HUNTER ST BURTON-ON-TRENT STAFFS DE14 2ST 0283 65435. MÓN-FRI 9-5. MAIL ORDER ONLY ADD 45p P\&P
TO ALL ORDERS
ACCESS And BARCLAYCARD IVISAI
SAE ALL ENQUIRIES
frices inc. VAT
OFFICIAL ORDERS WELCOME OVERSEAS
Payment must be in sterling. IRISH REPUBLIC
and BFPO UK PRICES. EUROPE UK and BFPO - UK PRHCES. EUROPE - UK
PRICES \(+10 \%\). ELSEWHERE - Write for Quote

\section*{}

OUR GREAT NEW ILLUSTRATED CATALOGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT

\section*{AT UNBEATABLE PRICES! \\ 54}

SEND S.A.E. OR PHONE NOW
FOR YOUR COPY
thiefcheck burglar
ALARM D.I.Y SYSTEM


MAIN
DISTRIBUTOR
A.D. ELECTRONICS DEPT. HE3
217 WARBRECK MOOR AINTREE IVERPOOL L9 OHUULOL1 5238440

\section*{ELECTRONIC BARGAIN SUPPLIES}

AMPLIVOX ULTRA LIGHTWEIGHT
TRANSDUCER EARPHONES. Imped. ence 300 ohms. Made to tit inside Protective and crash helmets or can be used as pillow earphones. As new \(\varepsilon 4\) per pair. P.P.
£1.00. 2 pairs \(£ 8.00\) post tree. 4 pairs £ 15.00 post free.
NEW SURPLUS RELEASE VERSATILE BENCH POWER SUPPLY UNITS. CO tains high quality transformer made to exacting specifications giving one 20 v out put and one 20-0-20v output. All outputs 3
amps. D.C. input \(110 / 250 \mathrm{v}\). \(50 \mathrm{c} / \mathrm{s}\). Bridge rectification. contained on metal chassis with robust compact case size \(7^{\prime \prime} \times 51 /{ }^{\prime \prime}\) \(\times 41 / 2^{\prime \prime}\). Easily modified to give 40 or 60 vt out puts. Makes an ideal variable power supply. Normally cost a round \(£ 60.00\). OUR PRICE
AS NEW with circuits 88.50 Capr \(£ 3.00-\) AS NEW with circuits £8.50. Capr. £3.00. 2 units for 220.00 Carr. free.

GENUINE TRANSFORMER BARGAIN Brand new Westool 15 v . 1 amp transior
mers. Mains input. \(£ 2.75\) each. PP. 75 p. O mers. Mains input. \(£ 2.7\)
FOOT SWITCH. (Mains operation). Con tains two micro switches and lead. Meta case. Good condition. £3.50 each. Postage
50 p 2 for \(£ 7.50\) post free.
HAVE YOU SEEN THE
HAVE YOU SEEN THE GREEN CAT tronic. audio at unbelievably low prices Send 50 p for catalogue. (Refundable on purchases.)
TRY A JUMBO PACK. Contains transis tors, resistors, caps, pots, switches, radio andelectronic devices. OVER £50 WORTH MINI JUMBO PACK MINI JUMBO PACK ( \(£ 20\) worth) for \(£ 5.00\)
P.P. \(£ 1.50\).

PLEASE ADD 15\% VAT to all orders including carriage and P.P.

\section*{\({ }^{1}\) \\ ConstructorSeriesSpeakers \\ IT'S SO \\ EASY \\ Have fun, save money, building a Kef design with a Wilmslow Audio CS Total kit. No electronic or woodworking knowledge necessary and the end result is \\ }
a proven top-
quality design
that you'll be proud of
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric,
terminals, nuts, bolts, etc
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E.
Prices:CS1 (As 101)
\(\mathbf{£ 1 1 0} \mathbf{p r}\) inc. VAT, plus carr./ins \(£ 5.50\) CS1A(simplified LS3/5A) £103 pr. inc. VAT, plus carr./ins. £ 5.50 CS3 (as 103.2 ) \(£ 129\) pr.inc. VAT, plus carr./ins. \(£ 10.00\) CS5 (as Cariton II) £192 pr. inc. VAT, plus carr./ins. £15.00 CS7 (as Cantata) \(\mathbf{£ 2 5 0}\) pr. inc. VAT, plus carr./ins. \(£ 18.00\)

rid

\section*{8}

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS Catalogue - \(£ 1.50\) post free
Lightning service on telephoned credit card orders!


\section*{RECONDITIONED}

TELEPHONES
Push Button Trimphones \(£ 15\)
+E 1.80 p\&p. 2 for E 28 £2. 50
Push Burton 746 f 13.50 \(£ 1.80 .2\) for \(£ 25+£ 2.50\) Recent Style Dial Phones \({ }^{\mathrm{E} 4.75}+\mathrm{E} 1.80\). 2 for \(\mathrm{f9}+\) Seconds (in good
Seconds (in good working
order) order)
Class A (not too bad) \(£ 3.50+\)
\(£ 1.80 .5\) for \(£ 15+£ 5\) £1.80. 5 for \(\mathrm{f} 15+£ 5\) 5 for \(\mathrm{f} 9+\mathrm{f} 5\)

Desk-1op Ten Way Manual Ex-
hange (key \& lamp unit)
\(8 \mathbf{+ 1 . 8 0 \text { PGP }}\)
Older style black telephones, f 3 . D\&o as above. Our leaflet explains how to use G.P.O. phones in home intercom systems.

5 Digit Counters 48 V coil. Non resetable 75p

UNISELECTORS. 50v, 4 Bank + Homing Bank, 25 way \(£ 3.50\)
P.O. TYPE 4 pole jack plug with moulded lead and panel

Sock. ONLY
Various stabilised power supplies available - Excellent prices send for details.

FREE on request - Leaflet "D.I.Y. Telephone Systems and Automatic Exchange Design'

\section*{LOW-COST, RUGGED} TEMPERATURE CONTROL

HIGH QUALITY


TEMP. GAUGE \(0^{3}-120^{\circ} \mathrm{C}\) Remote sensor on \(38^{\prime \prime}\)
capillary, panel mounting capillary, panel
dial 55 mm dia.

ONLY \(\mathbf{f} \mathbf{2 . 5 0}\)

16A 240V RANCO THERMOSTAT Wide control range (low room temp. to over boiling point Sensor on 22" capilliary. \(\mathbf{£ 2} \mathbf{3 0}\), including control knob
RANCO THERMAL CUT-OUT \(100^{\circ} \mathrm{C}\) 15 A 240 V . Sensing coil on 41 in . capilliary pane mounting with reset button \(£ 1.20\)

BUY ONE EACH OF ABOVE FOR 55.50
LIGHT DEPENDENT RESISTORS in olastic housin with window, heavy-duty lead. Similar to ORP 61 You normally pay well over double for resistor alone Only 30p or \(\mathbf{Z 2} 35\) for 10.
GEARED
Watt \(\mathbf{f 2}\). SOLENOID GAS VALVE. 240 V A.C. 5 P.S.I. suitable for non-corrosive fluids. \(\mathbf{£ 2 . 2 0}\)
BULGIN 3 pin free plug \& panel socket, 2A 240 V 50p
DIAL-OUT WITH YOUR COMPUTER. P.C.B. with custorn chip, drive circuits and high-speed relays enables your computer to dial-out (with suitable interface). Ex-equipment. Tested \(£ 12\) with explanatory notes.

ADD 50p P\&P ORDERS OVER £7.50 POST FREE unless stated otherwise

\footnotetext{
ALL ITEMS - MONEY BACK IF NOT DELIGHTED
}

\title{
TECH TIPS
}

\section*{Simple Organ}

\section*{J. P. Macaulay, Crawley}

With the financial climate being what it is the following circuit may be of interest to harassed parents whose children want a stylophone. A simple oscillator is formed with two CMOS NAND gates (half a 4011B). Under quiescent conditions no sound is emitted. When the stylus is placed on the keyboard the circuit is made through the selected preset and the oscillator produces a square wave which is coupled to the output stage, an LM386. This IC is ideally suited to this application since its maximum output is limited to 200 mW and its quiescent current consumption is 3 mA . This, together with the fact that both ICs will work with battery voltages as low as 4 V , means that a fairly long battery life can be expected.

The organ will obviously require some form of keyboard. A simple one can be made from a piece of \(0.15^{\prime \prime}\) matrix Veroboard with alternate tracks removed. Tuning is most easily done with the aid of a digital frequency meter; if all else fails the instrument can be tuned by ear against a piano.

\section*{Electronic Guitar}

\section*{Ouentin Rice, Mitcham}

The circuit shown here was fitted inside a friend's Rickenbacker bass to increase the versatility of the guitar. Its controls are as follows: pickup/phase select, volume 1 and 2 , bass, middle and treble tone controls and middle turnover frequency. It has low current consumption and can be used either with a battery, or with the 'phantom' power supply connected to the jack socket. It seems likely that most guitars will feature active circuitry in the future, giving musiçians greater flexibility
 during a live performance.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ITI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be as clear as possible and the text should be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International,
145 Charing Cross Road, London WC2 H OEE.


\section*{LB ELECTRONICS DISC DRIVE BONANZA}

PERTEC FD650 DSDD \(8^{\prime \prime}\)
\(£ 199+\) VAT TEAC FD-S5F²/3 Height DSDD 80 track Brand New
\(£ 228\) + VAT Cannon \(5 \frac{1}{4} a^{\prime \prime}\) drive SSDD Shugart Compatable
\(£ 139\) + VAT
The above drives are suitable for the BBC Micro, we can supply full documentation if requested with purchase of the drives only. Also available is a word processing package with is a tape to disc program (i.e. will not run without discdrives.

Offered with Full documentation at \(£ 9.80\) p\&p 50p
BRAND NEW AND BOXED PLUS DATA P\&P AT COST
Apple controller card for two drives \(\mathbf{£ 4 0 . 0 0}+\) VAT p\&p 50p ASC11coded qwerty Keyboard manufactured by Alphanumeric (Woking UK Model 60 K brand new plus data ........................... \(\mathbf{£ 1 9 . 9 5 \text { p\&p £1.50 }}\) SELLOUT used (Guarangeed replacement by us) 2716 ( 5 v ) 1.50 each p\&p 30p. 12 for \(\mathbf{f 1 5}\) p\&p 75p
 Telephone for bulk prices.
CASE model 430 Data modem, no information ......£30 each p\&p £3.50
(Manuals available \(£ 5.00\) each)
INTERSCAN ACCOUSTIC COUPLER
\(10^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}\) WITH ELECTRONICS, SOUND TIGHT UNIT, FOR STANDARD GPO HAND SET NO DATA - £10.00 (INC VAT) P\&P £1.75
8" Drive Cabinets complete with power supply (LINEAR) to take two \(8^{\prime \prime}\) Drives, Brand New \(599.95 p+\) VAT (carriage cost) Twin 5" Cabinets with power supply \(£ 85.00\) + VAT (to arrive shortly) 9" Green Phosphor Monitors Brand New and Cased Composite Video Input 18 mhz band width \(£ 78+\) VAT each (carriage cost)

\section*{LB ELECTRONICS}

11 HERCIES ROAD, HILLINGDON
MIDDLESEX UB10 9LS, ENGLAND
TEL: UXBRIDGE 55399

\section*{HOME COMPUTERS DO NOT WORK!}

You've already got a 'home' computer - am I right? You may be anyone - a Hospital Electronics Workshop, a Jniversity Computer Dept., an Electronics Research Establishment, or you may be just plain Joe Soap
Either way round - you're fed up with the boss, or you wife (may be the same thing) always asking you - "Ver nice but what does it do?" 'I know you can make it do things, so you must be prelly clever, but what a mess. What's that heap of junk plugged n the back - talk about spaghetti!
They look lovely home computers, don't they - until you hon all the things round the back that the designer boit on all the things round the back that the designer couldn't (or wouldn t) include
is needed: A rack and card Ther (Interak 1!). Something like Acorn's ad ased Inerak 1 uses the Z80A (doesn't everybody who based-Incerak
hou use Interak 1 the 780 ACPU is on one card the VDU interface is on another, Dynamic RAM on another, and so Very tidy, and very modular because "any card fits in vi" And that ugly expansion adaptor, and the special of bits youre got sticking out of the back can be neatly re-packaged and slid into the spare slots in Interak
por space to say more this advert's cost a few ve got no space to say more (nis adver stomp hundred SAE or neither or' nd/or SAE, or you the 38 -page low-down David Parkins
P.S. Although this advert may sound a bit corny (we have to get your attention somehow) Interak 1 really is a serious, sensible system with thousands of cards sold, and circuit diagrams.

\section*{Greenbank}

Greenbank Electronics (Dept. T3E), 92 New Chester Road New Ferry, Wirral, merseyside L62 5AG Telephone: 051-645 3391 (Dept T5E)

\section*{MARCO TRADING SPECIAL OFFERS}

\section*{Transistors}

BC308A- PNP 30V, 0.2A. 0.3W, 130MHZ. (Similar to: BC178, 205, 213, 252, 513,558 )
Price: 10 for 50 p; 100 for \(£ 3.00 ; 1000\) tor \(£ 20.00\); Larger Oty prices on application)
BC170: NPN 20V, 0.1A, 0.3W, 100MHZ (Similar to: BC108, 183, 208, 238, 383
Price: 10 for 50p; 100 for £3.00; 1000 for £20.00. Larger Qty prices on application)

BC250A- PNP 30v, 1.2A, 0.3W, 130MHZ. (simitar to: BC178, 213, 252, 308, 513, 558
Price: 10 for 75 p; 100 for \(£ 6.00 ; 1000\) for \(£ 50.00\). Larger Qty prices on application)
AU110-PNP 160V, 10A, 30W, (Similar to AU107, 2N5324, 2N5325) Price: 10 for \(£ 12.00 ; 100\) for \(£ 85.00\)

\section*{Capacitors}

470 u 16 V Radial ( \(25 \mathrm{~mm} \times 15 \mathrm{~mm}-4 \mathrm{~mm}\) lead length) 5 p each: \(£ 3.00\) per 100 1000416 V Radial ( \(30 \mathrm{~mm} \times 15 \mathrm{~mm}-4 \mathrm{~mm}\) lead length) 8 p each: \(\Sigma 5.00\) per 100 3300 u .6 V Axial ( \(50 \mathrm{~mm} \times 20 \mathrm{~mm}\) ) 25 p each: 10 for \(\varepsilon 2.00\). 100 for \(£ 15.00\)

Boxes
Plastic boxes complete with removable lids (Fixing screws not supplied) Size: \(3^{\prime \prime} \times\) \(3 \times 1 / 2\) Deep. Available in black or red (Please state colour when ordering). Price 50p each; 10 for £4.00

\section*{Transformers}

Good quantity transformers with independent secondaries
Primary: 240V Secondary 1: 15-0-15V at \(11 / 2 \mathrm{~A}\) per side, Secondary 2: 9 V at 4 A (with a bridge gives 12 VDC
Price: \(£ 2.50\) each (P\&P £1.20 in addition to 35 p normal charge)
Multibloc 4-Way Extension Socket
PVC body with internal cable grip fitted with 13A use and neon indicator. Max total load 13A 250 V : Length \(101 / 2\). Width \(21 / 2\)
Price: \(£ 4.50\) each (P\&P 25p in addition to \(35 p\) normal charge).
Send 35p NOW for our latest Catalogue. Fantastic value it includes capacitors diodes, resisturs, transistors, LEDs, boxes, cable, prepaid envelopes and much much more

Please add 35p postage and packing and \(15 \%\) VAT to all orders
Send orders to
MARCO TRADING (Dept ET4)
The Maltings, High Street, Wem, Shropshire SY4 5EN
Telephone: WEM (0939) 32763
Every order receives our latest special offer lists. Or send SAE All orders despatched by return of mail


GEARED MOTOR \(117 / 234\) Volt Input 50 Hz . 4" dia
 shatt. Now 83.50 ench PGP 83 . \(\times 4 y^{\prime \prime}\) doep. I DC MOTOR 6-12 Votrs. Mechanical Constan Speod Control 1 I' dia. \(\mathrm{E1}\) each.
MOTOA 12 V DC with pulley speed control. \(\mathrm{E1}\) each. SYNCHBONOUS MOTOR 2 Phase 9 volt AC. 375 APM. Good torque ineeds \(30-40 \mathrm{mfd}\) capacito

OTHER SYNCHRONOUSISTEPPING MOTOR AVAILABLE PLEASE ENOUIRE

GEARED MOTOA 12 V 50 HZ . 4 Watt \(1 \mathrm{rpm}, 2^{\prime \prime}\) die CENTAUR FANS 41". Brand new, \(100 \mathrm{~V} 20 \mathrm{~W}, 2\) CENTAUR FANS 41
 THANSFORMERS' - All brand new, all 240 voit

 each
Sec \(12 V 100 \mathrm{MA}\) SOp eech
TRANSFOQMER
TRANSFORMER \(127 / 220\) Volt Inpur. Sec 12V 1A TRANSFORMER 120 Vott inpur. Soc \(10.0-10 \mathrm{~V} 1 \mathrm{~A}\) Top each
Sub Min TRANSFORMER 0.120 .240 V Input. Soc \(12.0-12 \mathrm{~V} 4 \mathrm{VA} 76 \mathrm{P}\) esch 10 off 58 TOROIDAL TRANSFORMER 0.115 -230V Inpu Sec 13.50 .13 .5 V 8VA. 1.51 .50 each 10 off \(\mathrm{E12}\) TOROIDAL TRANSFOAMER \(0.120-240 \mathrm{~V}\) InPu f4 welch. 10 off rS5.
Sub Min PULSE TRANSFOAMER. Sec centre tap ped. Suituble for Thyristor triggering 200 eech. 10
off 11.0 . Off \(E 1.20\). each PEPEZ.

TELEPHONES, 70
Eisech. 10 off \(\mathbf{5} 45\).
 10 by arrangements. \({ }^{10}\) asich. 4.10 units E . Over TOKIN NOISE FILTER VG215FU. 250VAC \(15 A\)
\(50 / 60 \mathrm{HZ}\). With VO METER. Scalod bracket. New f2 each. 10 off 24.
1.T.T. LOUD SPEAKER 3 t" dia. 50 ohm 0.2 war Now. Top each. 10 off E 6.50
E.H.T. CABLE. Overall dia \(5 \mathrm{~mm}, 10 \mathrm{p}\) per metr. Multi Colour AIBBON CABLE 10 way, \(50 p\) per motre, 10 metres 24 . 14 way 750 per metre, 10 mevree ge, 100 metree f 40 .
ILUMINATED ROCKER SWITCH. 2 pole 250 V B Amp, orange, 50p eech. 10 off fu JOYSTICK SWITCH 4 directions, Ez each. PGP CATHODE R \& D14-12GH E40 each, SE5/2A/P31 E25 each. Many others available, piease enquire. plus 3 optional, \(\mathrm{f1} .50\) each. 10 off \(\mathrm{f12}\)
KEYBOARD PAD. 12 Alma Ree 12 . Ato make, 0-9: *: Blank. size \(3 \times 21 \times 2\). high, EPROM 2716 Sing E SPECTRAL RELIANCE TEN TUAN POT. 100 ohm I 1\%. Brand now, Tpp emch 10 off E8.
SLIOER POTENTIOMERER. Twin Gang, 200K o 2M, 35p each 10 off E3. 20p each. 10 off 180
BELLING LEE CHASSIS MOUNTING FUS HDLDER for \(1 l^{\prime \prime}\) fuse, 15 p each. 10 off f . I.E.C. MAINS LEAD. 2 metre lengith, heavy duty 4 CORE CURLY WIRE extending to 2 matres, 200 MICROPHONE/EARPIECE INSERTS. Brand now. 750 each. 10 off fB.
EXECUTIVE TELEPHONE•PUSH BUT. TON. Functions include 10 number memory; repeat dialing; internal Microphone \& Speaker and separate handset
etc. Will connect direct to British Telecom System. BRAND NEW. ONLY E25 ea. P\&PE4.
PUSH BUTTON TELEPHONES for Inter
746 Systems. BRAND NEW. PAP 12 ea. 746 style Two Tone Grey E8 each Quantity discount - Please Enquire
Minimum Order of Goods E3. Minimum PGP Minimum Order of Goods 23. Minimum PGP
E1.E0. VAT at \(15 \%\) MUST be mdded to TOTAL OF GODDS 6 PACKAGING.
Many more componenti and tent oquipment

\section*{STEWART of READING}

\section*{整}

ZX81 OWNERS
SPECIALISED PRODUCTS MODULAR EASY TO USE FOR HOMEINDUSTRY \& EDUCATION

TE10 INPUTI OUTPUT PORT - Easy to use. Fits between ZX \& RAM PACK/PRINTER (if required). No skill required to connect. Can be used for such things as: - motor control; sound/music generators, connection to square wave generating, control of rotating aerishs, even train sats etc. Port has 16 programmable \(1 / 0\) lines and may be used without any electronics knowtedge o connect other add-ons. Motherboard required ONLY when two or more addons are used at any one time.
FULLY ASSEMBLED
[17.95.
KIT (WITHOUT CASE)
f14.96.
TE12 4 CHANNEL RELAY BOX - To suit Port Contact rating:- 240 v AC/1.5A - 24 V DC or 110 V AC/3A. Up to 4 units i.e. 16 relays can be operated
c14.95.
E9.96
TE15 8 WAY TRANSIBTOR DRIVER
69.96

TE17 © WAY SWITCH UNITIEDUCATIONALI -
\begin{tabular}{l}
E 12.95 \\
\hline
\end{tabular}
TE18 WAY INDICATOR UNITIEDUCATIONALI
tod via
TE20 JOYSTICK \& FREE GAME - (2 Joysticks may be connected via
Motherborsd.)
f12. 55
TE30 MOTHERBOARD - Allows multiples combinations of add-ons' - up
to \(161 / 0\) line may be used - \(\quad £ 15.95\)
TE40 8 CHANNEL analogue to digital unit
£24.95
TE126 POWER SUPPLY - \(6 / 7.5 / 9 \mathrm{~V}\) DC at 300 mA - Required for use with
dd-ons TE12/15 G 18
16 WAY SINGLE SIDED EDGE CON E1.95. EXTENDED PIO NOTES \(£ 1\). PRICES INCLUDE VAT
Receipts atways provided: - Delivery normally ex-stock. ADD \(50 \%\) towards \(\rho G \rho\) on \(3 / 1\) orders under \(E 20.00\), with the exception of accessories, e. g. Edge on. Full instructions and examples with SENROUCTS. FOR CATALOGUE. TELEPHONE ORDERS ACCEPTED.

TEL: 061.7754461 (24 hour)


"BIG TRAK" MOTORIZED GEARBOX
These units are as used in the "Big Trak" computerized vehicle, and offer the experimenter in robotics the opportunity to purchase
trolled vehicles. The unit comprises:
a) \(\quad 2 \times 3 \mathrm{~V}\) motors, linked by a magnetic clutch, thus enabling turning of the vehicle;
b)
A gearbox contained within the black ABS housing reducing the final drive speed A gearbox conta
approx 50 rpm.
ors, as well as a direction
controller circuit, enabling the unit to lurn right, teft or go straight ahead.

AA NI-CADS 10 for \(£ 9.95\)
 sold



Now REDUCED TO £3.95

\section*{ELECTRO DIAL}

Electrical combination lock-for maximum security-
pick proot. One million combinations!! Dial is lurned to the right to one number, left to a second
number, the n itht again to a third number. Only number, then right again to a third number. Only
when this has been completed in the correct sequence will the electricai contacts close. These can be used to operate a reiay or solenoid.
Overall dia \(65 \mathrm{~mm} \times 60 \mathrm{~mm}\) deep. Only E 3.95 .

FERRIC CHLORIDE



\section*{STABILIZED PSU PANEL}
 both voltage (0-30V) and current (2OmA-2A) fully
variable. Many uses inc benct PSU, Ni-cad variabie, Many uses inc bench PSU, Ni-cad
charger, gen. purpose testing. Panel ready built, tested and calibrated \&7,75. Suitable tra

\section*{REED RELAYS}

Manulacururers. Eijee


TELESCOPIC AERIALS As used in Sinclair
610 mm Only
OSP.

IN4148-BEST PRICE EVER


\section*{COMING SOO}
more Complien canis rces
- MICROVISOONS, ALYHE
avewoer, intividen, ano tarimid

COMPUTER BATTLESHIPS Probably one of the mast popular plectronic makes it imporactical to tost the PCB as a workinn modei, although it may well funcion portractly: Insiago we have tasiea he sourna chiv, and sell



\section*{SIMON GAME}

Simon is sack apan. Another supolyol ready buily puterised pame us now with us Supplied tested and working with speaker and instructions.


\section*{LIE DETECTOR}

Nota toy, this orecision nistumment was orginally measure a chanoe in emotional balance. of as a
 and 2 ircuit diogram suphied complete with
 2N3055

SCOOP!!
 lor Eziss.

COMPUTER SOFTWARE EDUCATIONAL, UTILITY, GAMES



Wholesale list
We have in stock many million ol componentis industrai USers atc. Can we supply you, 1007 Oor
 buyers list.

\section*{GREENWELD}

443A MILLBROOK ROAD, SOUTHAMPTON SO1 OHX
All prices include VAT - just add 50p post. Tel 772501
hit performance hi: competitive hi:

hi: completilive
\(\star \star\) OPEN ALL HOURS \(\star \star\)
PONENT WAREHOUSE is now open Monday to Saturday 9 a.m. to 4 p.m. You will easily find us opposite the John O'Gaunt Hotel on the A45. Even more Fantastic bargains to be found.



See construcitonal article in February ' 82 'Practical Electronics' Available in kit form or built up.
Prices (inc VAT \(p+p\) )
Kit
\[
\begin{array}{lll}
\text { CV } 7644 \text { (military BC107) Only f0.09 } & \text { Kit } & \text { Built } \\
& \text { © } 44.00 & \mathbf{\$ 7 2 . 0 0}
\end{array}
\]

Fuseholders - 20 mm - Panel \(\mathbf{1 0 . 4 0}\)
BC108810p BC149 7p BC171B13p BC182P10p BC2128 9p BC302 40p BC350A17p BC558A14p BC114 15p BC154 23p BC173 10p BC183L 9p BC212L 9p BC307A12p BC351822p BC612L 17p


 \(\xrightarrow{\text { BC147 10p }}\)

Dept 4 E , High March eleqelelel Tel: 032725523 Telex: 311245 GRENEL G. Please add 50p per order post and packing - except Where higher is indicated plus \(15 \%\) postage at cost cheques and P.O. payable to EMOS Lid. Allow up to 14 days for delivery. Send large SAE for comprehensive catalogue.


FOR HI-FI\&ELECTRONICS ENTHUSIASTS!
We are the specialists of electronic kits. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with felectronic touch switch, sound activated switch, light activated switch, infra-red remote control), music generators, battery fluorescent light and high quality black anodised amplifier cases . . etc. with illustrative pictures now available at the cos of 60 p including \(P+P\), together with a \(10 \%\) discount voucher for your first order.
EQUALIZER \& REVERBERATION AMPLIFIER
Equaliser Built £73.50


Reverbervator
Bult \(£ 79.50\)
All prices include VAT



PROFESSIONAL RACK MOUNTING CABINET


Available Soon
- Wholly made of biack anodised aluminium sheers © Suitable for high quality amplifiers and many other purposes Top, bottom and
rear cover removable for access sizes available Compatible price - Front panel is of brushed aluminium finish

\section*{To: Concept Elactronics Ltd., 51 Toilington Road, London N76PB} Mall orders only
Please send me the electronic kits catalogue \& the \(10 \%\) discount voucher for my first order. I enclose 60p in stamps/cheque/postal order. Make cheques payable to Concept Electronics Ltd.

\section*{Name}

Address

\title{
STAGE LIGHTING PART 4
}

\section*{Design by David Colven and Ian Cleverley.}


Above is the overlay for one autofade card and left, the overlay for one of the triac boards. No PCBs are given for the power supplies as these consist of little more than strings of capacitors in parallel and methods such as Veroboard are cheap and easy to employ.

\section*{PARTS LIST}
\begin{tabular}{|c|c|c|c|c|}
\hline Resistors (all \(1 / 4 \mathrm{~W}, 5 \%\) ) & PR5 & & IC29,30 & 741 \\
\hline R61,84 4k7 & PRS & preset & IC31,32 & 74LS75 \\
\hline R62,77 470R & PR6,7 & \(1 \mathrm{M0}\) miniature vertical & IC33 & opto-isolator eg CNY17 \\
\hline R63,75 100k & & preset & IC37 & 4028 B \\
\hline \(\begin{array}{ll}\text { R64,76 } & 10 \mathrm{M} \\ \text { R65 } & \text { 4 } 7\end{array}\) & PR8 & 10k miniature vertical & Q3,6,7 & BC108 \\
\hline R66,78 2M2 & PR9 & preset & Q4 & BC214L \\
\hline R67 1M2 & PR9 & 47k miniature vertical & Q5 \({ }^{\text {SCR1 }}\) & TIS43 \\
\hline R68 560k & & & D64-79 & 1N4148 \\
\hline R69 270k & \multicolumn{2}{|l|}{Capacitors} & \multirow[t]{3}{*}{ZD2} & \multirow[t]{3}{*}{\(12 \vee 400 \mathrm{~mW}\) zener} \\
\hline \(\begin{array}{ll}\text { R70-74 } & \text { 10k } \\ \text { R79 } & 47 \mathrm{k}\end{array}\) & C7 & \multirow[t]{2}{*}{4 u 716 V tantalum
100 nF polycarbonate or} & & \\
\hline R80 330 R & C9 & & & \\
\hline R81,85 100R & C10 & 100 nF mains-rated & \multicolumn{2}{|l|}{Miscellaneous} \\
\hline \(\begin{array}{ll}\text { R82 } & 1 \mathrm{k0} \\ \text { R83 } & 120 \mathrm{k}\end{array}\) & & capacitor (eg IS or & SW5 & SPDT toggle switch \\
\hline R83 120k & & mixed dielectric) & L1 & 14 turns of 15 A cable on \\
\hline Potentiometers & C11,12 & \(47 n F\) mains-rated capacitor & LP1 & a 3/8" ferrite' rod lamp to suit \\
\hline RV1 10k linear & & & FS1 & 10 A fuse and fuseholder \\
\hline preset & IC27,28 & 4016B & \multicolumn{2}{|l|}{sheet aluminium for heatsink} \\
\hline
\end{tabular}


\section*{electronics today international 300K SERMCE}

How to order: indicate the books required by ticking the boxes and send this page. together with your payment. to ETI Book Service. Argus Specialist Publications Ltd, 145 Charing Cross Road. London WC20EE, Make cheques payable to ETI Book Service. Payment in sterling only please. Prices include postagie and packing. Prices may be subrect to chanqe without notice

\section*{BEGINNERS GUIDES}
\(\square\) Beginner's Guide to Basic Programming Stephenson ©4.95
\(\square\) Beginner's Guide to Digital Electronics
4.95
\(\square\) Beginner's Guide to Electronics
4.95

Beginner's Guide to Integrated Circuits
4.95
\(\square\) Beginner's Guide to Computers f4.95
\(\square\) Beginner's Guide to Microprocessors

\section*{cookbooks}
\(\square\) Master IC Cookbook Hallmark
88.65
\(\square\) Microprocessor Cookbook M. Hordesk
\(\square\) IC Op Amp Cookbook Jung
£6,60
\(\square\) PLL Synthesiser Cookbook H. Kinley
Active Filter Cookbook Lancaster
TV Typewriter Cookbook Lancaster
\(\square\) CMOS Cookbook Lancaster
\(\square\) TTL Cookbook Lancaster
Micro Cookbook Vol. 1 Lancaster
BASIC Cookbook K. Tracton
£13.16
£6.60
f12.00
£9.95
f10.00
\(\square\) MC6809 Cookbook C. Warren

\section*{ELECTRONICS}
\(\square\) Principles of Transistor Circuits Amos
\(\square\) Design of Active Filters with experiments Berlin
88.50
\(\square 49\) Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
How to build Electronic Kits Capel
How to Design and build electronic instrumentation Carr
\(\square\) Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
Principles of Electronic Instrumentation De Sa
Giant Handbook of Computer Software
\(\square\) Giant Handbook of Electronic Circuits
\(\square\) Giant Handbook of Electronic Projects
Electronic Logic Circuits Gibson
\(\square\) Analysis and Design of Analogue Integrated Circuits Gray
\(\square\) Basic Electronics Grob
\(\square\) Lasers - The Light Fantastic Hallmark
\(\square\) Introduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault. Diagnosis Loveday Electronic Fault Diagnosis Loveday
Essential Electronics A-Z Guide Loveday
\(\square\) Microelectronics Digital \& Analogue circuits and systems Millman
\(\square 103\) Projects for Electronics Experimenters Minis \(\square\) VLSI System Design Muroga
Power FETs and their application Oxner
\(\square\) Practical Solid State Circuit Design Olesky
\(\square\) Master Handbook of IC Circuits Powers
Electronic Drafting and Design Raskhodoff
VOM - VTVM Handbook Risse
\(\square\) Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub Active Filter Handbook
\(\square\) Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas
\(\square\) Digital Systems: Principles and Applications Tocci Master Handbook of Telephones Traister
How to build Metal/Treasure Locators Traister 99 Fun to Make Electronic Projects Tymony 33 Electronic Music Projects you can build Winston

\(\square\) Getting Acquainted with your VIC 20 Hartnel
\(\square\) Getting Acquainted with your 2X81 Hartnell
\(\square\) Let your BBC Micro Teach you to program Hartnell \(\square\) Programming your \(2 X\) Spectrum Hartnell

\section*{System Haviland}
\(\square\) BASIC Principles and Practice of Microprocessors Heffer
\(\square\) Hints and Tips for the \(\mathbf{2} \times 81\) Hewson
\(\square\) What to do when you get your hand on a Microcomputer Holtzman
\(\square 34\) More Tested Ready to Run Game Programs in BASIC Horn
Microcomputer Builders' Bible Johnson
\(\square\) Digital Circuits and Microcomputers Johnson
- PASCAL for STudents Kemp
\(\square\) The C - Programming Language KErnighan
\(\square\) COBOL Jackson
The \(\mathbf{2 X 8 1}\) Companion Maunder
Guide to good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
Theory and Practice of Microprocessors Nichols
\(\square\) Exploring the World of the Personal Computer Nilles
Microprocessor Circuits Vol. 1. Fundamentals and Microcontrollers Noll

E7. 15
\(\square\) Beginner's Guide to Microprocessors Parr
\(\square\) Microcomputer Based Design Peatman
\(\square\) Digital Hardware Design Peatman
\(\square\) BBC Micro Revealed Ruston
\(\square\) Handbook of Advanced Robotics Safford
£10.75

1001 Things to with Your own personal computer Sawusch \(£ 12\)
\(\square\) Easy Programming for the ZX Spectrum Stewart Sawusch \(\mathbf{£ 7 . 5 0}\)
\(\square\) Microprocessor Applications Handbook Stout \(\quad \mathbf{~} 34.40\)
\(\square\) Handbook of Microprocessor Design and Applications Stout
\(\square\) Programming the PET/CBM West
\(\square\) An Introduction to Microcomputer Technology Williamson
\(\square\) Computer Peripherals that you can build Wolfe
and Technicians Wooland

\section*{REFERENCE BOOKS}

7 Electronic Engineers' Handbook Fink
f56.45
[] Electronic Designers' Handbook Giacoletto
\(£ 59.55\)
Illustrated Dictionary of Microcomputer Technology Hordeski
\(\square\) Handbook for Electronic Engineering Technicians Kauffman
\(\square\) Handbook of Electronic Calculators Kauffman
Modern Electronic Circuit Reference Manual Marcus
\(\mathbf{£} 7.50\)
\(\mathbf{f} 34.40\)
International Transistor Selector Towers
f 40.70
\(\square\) International Microprocessor Selector Towers
-International Digital IC Selector Towers
£10.70
International Op Amp Linear IC Selector Towers
£16.00
Illustrated Dictionary of Electronics Turner
18.50

\section*{VIDEO}
\(\square\) Servicing Home Video CAssette REcorders Hobbs
f11.80
Complete Handbook of Videocassette Recorders Kybett \(£ 7.95\)
T. Theory and Servicing of Videocassette Recorders McGinty f11.95
\(\square\) Beginner's Guide to Video Matthewson \(£ 5.20\)
\(\square\) Video Recording: Theory and Practice Robinson
\(\square\) Video Handbook Van Wezel
\(\square\) Video Techniques White
f12.95

\section*{COMPUTERS \& MICROCOMPUTERS}

Please send me the books indicated. I enclose cheque/postal order for \(\mathbf{f}\) Prices include postage and packing
I wish to pay by Access/Barclaycard. Please debit my account


Signed
\(\qquad\)
\(\qquad\)

\section*{BASIC Computer Games Ahl}
\(\square\) From BASIC to PASCAL Anderson
\(\square\) Mastering Machine Code on your \(\mathbf{Z X 8 1}\) T. Baker
UNIX - The Book Banaham
Z80 Microcomputer Handbook Barden
Microcomputer Maths Barden
Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bell
Visicalc Book. ATARI Edition Bell
\(\square\) Introduction to Microprocessors Brunner
Programming your APPLE II Computer Bryan
Microprocess or Interfacing Carr
\(\square\) Microcomputer Interfacing Handbook A/D \& D/A Carr - Musical Applications of Microprocessors Chamberlain

30 Computer Programs for the Home Owner in BASIC D. Chance

Microcomputers Dirkson
Microcomputers Dirkson
APPLE Personal Computer for Beginners Dunn
Microcomputers/Microcomputers - An Intro Gioone

\title{
YORK
}

New Electronics Store Opening Offers

DIGITAL MULTIMETER

£29.95

TMK 500

£22.50

C106D - 35p or ten for \(£ 3\) -
LM317T - \(£ 1.80\) or ten for \(£ 15\) TRIAC 400V,6A - 70p or ten for \(\mathbf{£ 6}\) 60 Way Ribbon - \(£ 2.50\) per metre. 0.1 uF 25V - 100 for £2.50. Photo Board \(6 \times 4\) Single Sided \(-£ 1.75\) Photo Board \(6 \times 4\) Double Sided - \(£ 1.99\)

Prices include VAT. Please add 50p p\&p. GILLYGATE ELECTRICS 3 Gillygate
York YO3 7EA 0904-51012

\section*{ELECTRONIC MUSIC}

MODULAR SYNTHESISER (KIT OR READY BUILT); MICRO-PROCESSOR CONTROL SYSTEM;

INTEGRATED CIRCUITS FROM CURTIS ELECTROMUSIC SPECIALTIES (CEM SERIES); ETC. ETC.

Write or telephone for latest price list from:-

\section*{DIGISOUND LIMITED}

14/16 QUEEN STREET, BLACKPOOL, LANCS FY1 1PQ
TEL: 025328900

\section*{Branime \\ TYPE 161B DUAL POWER SUPPLY KIT}

INCORPORATES A POSITIVE \& A NEGATIVE REGULATED SUPPLY
BOTH ARE ISOLATED \& ADJUSTABLE 1.3V TO 16V D.C. Interconnect to give 2.6 V to 32 V or \(-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}\) to \(-16 \mathrm{~V} / 0 /+16 \mathrm{~V}\)
Output current 1 A at 16 V to 0.35 A at 1.3 V Ripple is less than 1 mV

\subsection*{255.99 \\ inc. P \& P and VAT}

Built \& Tested

£37.95 inc. P\&P and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design. The kit, which uses quality components, is complete with instructions. Case punched and stove enamelled in attractive blue and grey with a primted front panel to give a professional finish.
Excellent for the beginner, the experienced amateur and as a tutorial for schools and colleges.

SEND CHEQUE OR P.O
ALLOW 21 DAYS FOR DELIVERY
BRANIME MARKETING LTD dept. ETI BALTHANE IND. EST., BALLASALLA, ISLE OF MAN

\section*{CLEF еиествоміс MUSIC}

MICROSYNTH
 ing the fuil rane ol Synt Music 8 entiects.
FJLL KKT \(\& 129\) Also avaliable in 3 parts.


THREE PIECE BACKING BAND Generates the sounds of three instrumentallsts to back Soloists

DRUMS + BASS + KEYBOARDS Over 3,000 chord changes ( 60 scores) on 132 diferent chords - extendable to 200 scores. Master FULL KIT £235 EXTENSION £72

88/72 NOTE PIANOS SPECIALISTS SINCE 1972 Using Patented electronic
tion of Piano Key Inertia


COMPONENT KITS including Keyboard
88 NOTE
£266 72 NOTE The above may also be 23 chased in four parts.

DOMESTIC KITS inc. Cabinet, P.A. \& Spkr.
88 NOTE
\(\begin{array}{ll}88 \text { NOTE } & \text { E442 } \\ 72 \text { NOTE } & \text { E398 }\end{array}\)

\section*{STAGE MODEL}
inc. Cabinet \& Stand
NOTE
£38

ALL PRICES INC. VAT. CARR, \& TELEPHONE ADVICE
S.AE. for full Specs \& MANF, PRICES VISA-ACGESS CLEF PRODUCTS (ELECTRONICS) 亡 IMITED (Dept ETI) 44A BRAMHALL LANE SOUTH ERAMHALL STOCKPORT CHESHIRE SK7
TEL O61 5393297


MASTER RHYTHM PROGRAMMABLE DRUMS Twenty-Four Rhythm programm able Drum Machine with twelve tended to 24/32 measures for two bar programming. Sequence operation and instrument tone adjust. COMPLETE KIT E79 STRING ENSEMBLE \(£ 197.50\) ROTOR-CHORUS £98.00 SQUARE FRONT KEYBOARDS 88 NOTE £60 49 NOTE £29 73 NOTE £50 30 NOTE £ 19 KEYSWITCH ITEMS ALSO AVAIL.
ABLE
Multitester \& Transistor Tester
DC volts \(0-1 \mathrm{v}-5 \mathrm{v}-2.5 \mathrm{v}-10 \mathrm{v}-50 \mathrm{v}-25\) \(A C\) volts \(0-10 v-50 \mathrm{v}-250 \mathrm{v}-1000 \mathrm{v} \pm 3 \%\)
DC current 0-50uA-2.5mA-25mA-0.25A \(\pm 3 \%\) Resistance:
Minimum 0-2-2-200-200k ohms
Midscale 20-200-20k-200k ohms
Maximum \(2 \mathrm{k}-20 \mathrm{k}-2 \mathrm{~m}\)
Universał NI-CAD, battery charger. All plastic case with lift up lid. Charge/Test switch. LED indicators each of the five charging points.
Charges:- PP3 (9V), U12 (1.5V penlite), U11 \(\left(1.5 \mathrm{~V}\right.\) "c'"), U2 ( 1.5 V " \(\mathrm{D}^{\prime}\) "), Power:- \(220-240 \mathrm{~V}\) AC, Dims: \(-210 \times 100 \times 50 \mathrm{~mm}\). Knock down price only while stocks
Only \(£ 6.00\) Order No. MW 398
\(0-150 \mathrm{uA}\) at \(Z 1 \mathrm{k}\) range
\(0-150 \mathrm{~mA}\) at \(X 1\) range \(\qquad\)
Leakage current 0-150uA at Z1k range 0.150 mA at Xt range


ENFIELD
ELECTRONICS \(\begin{gathered}208 \text { BAKER ST, ENFIELD. } \\ \text { MIDOX. Tel: } 01-3661873\end{gathered}\)
L

\section*{DPTICAL FIBRES ,oncommamarous}
* Silica fibre PTFE coated, \(25 \mathrm{~dB} / \mathrm{km}\) \(0.05 \mathrm{~mm}^{2}\) active area. Xmits near UV
- Glass fibre urethane coat, \(60 \mathrm{~dB} / \mathrm{km}\) \(0.03 \mathrm{~mm}^{2}\) active area. \(x\) mits near IR
* Acrylic fibre, \(0.75 \mathrm{~mm}^{2}\) active area 800 \(\mathrm{dB} / \mathrm{km}\). Xmits visible light only
* Glass Bundle, PVC sheath, \(400 \mathrm{~dB} / \mathrm{km}\) \(1.0 \mathrm{~mm}^{2}\) active area, 440 fibres
\(\star\) Acrylic Bundle, sheathed, \(800 \mathrm{~dB} / \mathrm{km}\)
\(0.78 \mathrm{~mm}^{2}\) active area, 16 fibres
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{Length in M} \\
\hline Type & 10 & 25 \\
\hline Silica Fibre & £6.26 & £14.68 \\
\hline Glass Fibre & £5.20 & £12.40 \\
\hline Acrylic Fibre & ¢3.03 & £6.90 \\
\hline Glass Bundle & £3.80 & £8.75 \\
\hline Acrylic Bundle & £8.10 & £19.35 \\
\hline
\end{tabular}

QUANTUM JUMP LIMITED
Dept ETi, 98 Queens Drive, Liverpool L18 1 JN

SAMPLE PACK: contains six metres of Acrylic fibre plus one melre samples
the other tibres. In the Pack is a booklet that contains circuit diagrams drawings, and practical tips. Its lorty pages give details of tibre theory. manufacture, properties
and many uses Send and many uses. Send
\(£ 5.45+50 \mathrm{p} \& \mathrm{P}\) \(؟ 5.45+50 \mathrm{p}\) P\& MARE'S TAIL: A ferruled bundle of 5000 giass fibres that spread out into a 22 diameter dome shape. For use in a fibre optics lamp. Send \& 11.50
inclusive
\[
\text { Add } 50 \text { p postage on orders under }
\] £10. No VAT. SAE for details. Mail order only.

E.Z CIRCUIT. quick easy \& reliable ...the best way to make one or two-of-a-kind PC boards"! That s what "DOc" Savage (hobby editor. Radio Electronics magazine) says aboul E-Z. CIRCUIT. Why all the excitement?
Simple. E-Z CIRCUIT's exclusive 1 oz.. pressure-sensitive copper tapes \& patterns apply directly to the PC board. creating an actual current carrying circuit. Simply apply E-Z CIRCUIT's Copper Mounting Configurations to the board. solder your components into place. and you have a professional. production quality PC board instantly... without artwork. pholography. screening or etching.
There's no need to worry about mistakes etther. With E-Z CIRCUIT's special two-phase adhesive. you can make corrections modifications or improvements quickly \& easily without damaging the performance or appearance of your PC board
For building. prototyping or repairing PC hoards instantly. E-Z CIRCUIT truly is the quick. easy, reliable way
Prove it to yourself. send for your FREE copx of the E.Z CIRCUIT Copper Products Techareat Manual \& Catalog EZ.3001. See why DOC Savage \& thousands of other users recom
mend E.Z CIRCUIT for instant PC boards. mend E-Z CIRCUIT for instant PC boards.

Send lor vout FREE E Z CIRCUIT Prinled Circul
products Techmical Manual \& Catalog EZ 3001


\section*{(e) Engineering \(\varepsilon\) elecironic Desian Services Lrd.}

Unit 7. Enterprise Centre, Childers Road, Limerick. IRELAND Tel: [061] 49366

\section*{EXPO DRILLS}

\section*{KITS TOOLS ACCESSORIES}

\section*{TITAN DRILL AND STAND}

Engineering in miniature, the most powerful British, 12 Volt D.C. drill made, producing 10,000 R.P.M., 1740 C.M.P. comes complete with tommy bar, allen key, steel chuck +4 collars, size zero, \(1 / 16,3 / 32,1 / 8\). Specially designed for drilling P.C. Board, mild steel, and many other uses in electronics, other crafts and hobbies

Name
Address


MUSICRAFT 303 EDGWARE RD, LONDON W.2. TEL. 01-402 9729/2998

\section*{TALK TOTHE WHOLE WORLD}

Study now for the
RADIO AMATEUR'S EXAMINATION
We have had 40 years successful experience in training men and women for the G.P.O. Transmitting licence. - FREE R.A.E. brochure without obligation from:- British National Radio \& Electronics School READING, BERKS. RG1 1BR

\section*{SPEAKERS}
(Mi-Fi, P.A., Disco, Bass Guitar)
12" 50W ........f14.95
12" 100W ......f19.95
15" 100W ......£29.95
18" 100W
£39.95
Postage and Packaging \(£ 3\)
RETAIL - MAIL ORDER EXPORT - INDUSTRIAL EDUCATIONAL
\begin{tabular}{lcl} 
Order by post \\
with cheques, \\
Access \(/\) visa or \\
you can \\
telephone your & ALL PRICES & CATALOGUE \\
& INCLUDE & SEND LARGE \\
& VAT & SAE
\end{tabular} \(\begin{array}{lcc}\begin{array}{l}\text { Access/Visa or } \\ \text { you can } \\ \text { telephone your }\end{array} & \text { INCLUDE } & \text { SEND LARGE } \\ & \text { VAT } & \text { SAE }\end{array}\) 20 ,
MULTIMETERS
RANGE DOUBLER 10A DC1 Special price.........................f15.95 ETC 5000/5001 121 Ranges \(50 \mathrm{~K} / \mathrm{V}\) Range Doubler 10A DC

TMK 50023 Ranges 30K/V DC Plus cont. buzzer..............£23.95 NH56R 20K/V 22 Range Pocket

360TR 23 Range 100 K scale 10A AC/DC plus Hfe... \(\mathbf{£ 3 6 . 9 5}\) AT) 02018 Range \(20 \mathrm{~K} / \mathrm{V}\). DeLuxe plus Hfe Tester f17.50 ST303TR 21 Range 20K/V plus Hfe Tester

                    .....................................................


Class \({ }^{2.0}\)

Above: the elusive meter scale artwork for last month's Max/Min Thermemeter

A complete set of foil patterns for the Stage Lighting Unit can be obtained by sending
a large stamped addressed envelope to ETI, 145 Charing Cross Road, London WC2H 0EE.
Mark your envelope 'FOIL PATTERNS'.

\section*{MASHMR THTHOYZOMTOS NOW! The PRAcHMCAT way!}

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is avallable to whom you can write personally at any time. for advice or help during your work. A Certificate is given at the end of every course

You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw andunderstand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V Hi-Fi and microprocessor/computer equipment


NewJob?NewCareer?NewHobby?GetintoElectronics Now!


\section*{MAKE YOUR OWN P.C.B's.}

\section*{TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO} IN YOUR OWN HOME-AT YOUR PACE
ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advant age of the many opportunities open to the traned man You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS quarantee coaching until you are successful

\section*{City \& Guilds Certificates}

Radio Amateurs
Basic Eloctronic Engineering (Joint C\&G/ICS)
W. Certificate Courses

TV and Audio Servicing Radio \& Amplifier Construction Electronic Engineering* and Maintenance Computer Engineering* and Frogramming Microprocessor Engineering*
TV, Radio and Audio Engineering Electrical Engineering,* Installation and Contracting "Qually for IET Aenociate Momborship \(\square \overrightarrow{C A C P}\)

Approved by CACC
Member of ABCC
POST OR PHONE TODAY FOR FREE BOOKLET
Kit contains: Lamp, Holder \& Shade together with full instructions for DIY Unit which offers PCB, Precision Photo, Label \& Panel manufacture
£27.60
Price inclusive of VAT \& carriage. Please allow 21 days for delivery. Cheques, PO's or signed Access orders welcomed. anow ond vincios a division of KELAN ENGINEERING Ltd Hookstone Park Harrogate, N. Yorks

Please send me your FREE School of Electronics Prospectus.
Subject of Interest \(\qquad\)
Name
Address


\section*{E.T.I. - MAY 83 ADVERTISERS INDEX}
A.D.E. Electronics ..... 73
Ambit International ..... 41
Armon Electronics ..... 61
Audio Electronics ..... 80
Badger Sound Services ..... 80
Bicc Vero ..... 60
Bi-pak ..... 16
BK Electronics ..... 51
Black Star ..... 66
BNRS ..... 75,83
Bradley Marshall ..... 10
Bramine Marketing ..... 82
Circuit Board Components ..... 76
Clef products ..... 82
Comtech ..... 17
Comquip ..... 28
Concept Electronics ..... 78
Cricklewood Electronics ..... 8,9
Crimson Elektrik ..... 61
Crofton Electronics ..... 72
Delta Tech ..... 17
Digisound ..... 82
Display Electronics. ..... 42
Edwards Electronics ..... 80
Electronize Design ..... 62
Electrovalue ..... 14
EMOS ..... 78
Enfield Electronics ..... 83
Engineering \& Electrical ..... 83
Europe Electronics ..... 67
Expo Drills ..... 83
Gillygate Electronics ..... 82
Greenbank ..... 76
Greenweld ..... 77
G.S.C. ..... 35
Happy Memories ..... 72
House of Instruments ..... 78
ICS ..... 86
LP. ..... 52,53,66
Kelan Engineering ..... 86
LB Electronics ..... 76
L \& B Electronics ..... 72
L.E.M. Services ..... 73
Magenta Electronics ..... 73
Maplin ..... OBC
Marco Trading ..... 76
Mawson Associates ..... 72
Midwich ..... 29
Musicraft ..... 83
Myers Electronics ..... 73
Parndon Electronics ..... 72
Powertran ..... IFC,IBC
Riscomp ..... 23
Rocar ..... 80
Quantum Jump. ..... 83
Rapid Electronics ..... 6
J. W. Rimmer ..... 60
R.T.V.C ..... 67
Sparkrite ..... 68
Stuarts of Reading ..... 77
Technomatic ..... 30,31
Tempus (Micro Mail) ..... 23
Thurnall Eng ..... 77
TK Electronics ..... 36
Velleman UK ..... 12
Watford Electronics ..... 4,5
Wilmslow ..... 73

\title{
ETI PCB SERVICE
}

Up until now PCBs were always the hardest component to obtain for a project. Oi course you \(d=\) could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! As of this issme aly copyright) PCBs will be available automatically from the ETI PCB Service. Eackbosid/s produced from the same master used to build our prototypes, so you can be sttert's aceunatyo and will be finished to the high standard you would expect from ETI. In addition to the PCBs for this monttrs projects, we are-making available some of the thor \({ }^{8}\) : popular designs from our recent past. See the list below for details. Please note that NO OThete BOARDS ARE AVAILABLE. If it's not listed, we dor't have it!





Cheruen/PO :
DM somence
Prop. RE E. David Loodon E17
Prop. RE DACIC LIA
PEASOMAL CALIERS \& TRADE ENOUTRIES WEICOME
DIGITAL WATCH REPLACEMENT parts, batteries, displays backlights etc. Also reports publications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen Bucks. HP15 6SGD

\section*{NEW COMPONENTS CHEAPEST PRICES \\ New full spec parts ex stock. Same day despatch SAE or phone for full lists Example prices: 10 uf. 35 v radial capacitators 5 p each. \(100 \mathrm{y} / 4 \mathrm{w}\) resistors \(75 \mathrm{p}(1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}\) - other valves available). BC308B 10 p each 25IN 4148 for only 45p COLCHESTER COMPONENTS Unit A2 \\ Cowdry Centre, Colchester (0206) 66345}

NOW OPEN IN NEWCASTLE, Waterloo Street, "Marlborough Electronic Components" for the best in electronic components, test equipments etc. Tel 618377.

\section*{EQUIPMENT}


AERIAL AMPLIFIERS Improve weak television reception. Price £6.70, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

\section*{HIGH POWER MERCURY ION} LASER, emits green/red light. Easily built by the amateur constructor. Ideal school project, etc. Comprehensive kit of plans, including source of all materials, \(£ 5.25+25\) p P\&P. Lasertech, 31 Mill Brow, Chadderton, Lancs.

TELEPHONE MONITOR KIT connects between telephone line and your cassette recorder and automatically records all phone useage. Complete kit including case and PCB only £9.95. Dept. ET5 UNITECH (Midlands). FREEPOST, Sutton Coldfield, West Midlands, B74 2BR. (Not British Telecom Approved).


BLEEPER ELECTRONIC SEAT BELT REMINDER, flashers, full kits of parts, easy fitting, \(£ 6.95\) plus 55p P\&P. C.W.O. Microtech Industries, Brighouse, HD6 1RD.

\section*{COPPER CLAD Double Sided} Fibreglass, 12 " \(\times 8\) ". 10 sheets £6. 5 sheets £4. Davron, Box No. E.T.I. 202, ASP Ltd., 145 Charing Cross Road, London WC2.

\section*{BURGLAR Alarm Equipment. Please visit our 2,000 sq. ft. showrooms or write or phone for your free catalogue. C.W.A.S. Ltd., 100 Rooley Avenue, Bradford BD6 1DB. Telephone} 0274308920.
U.V. LIGHTEXPOSER UNIT for use in prep. of photo-resist P.C.B's. Attractive wooden construction with exposer area of \(250 \times 150 \mathrm{~mm}\). Case \(350 \times 250 \times\) 95 mm .240 v operation. Only £37.00 p\&p Send cheque to V.E.P. Ltd. 5 Hewens Rd. Uxbridge UB10 OFR


\section*{WANTED: ELECTRONIC} COMPONENTS and test equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley

WANTED Trancedent DPX packs one to thirteen. Spy, 19 Queen Mary Ave, Queens Park, Glasgow.

\section*{FOR SALE}

STEREOPOWER 120 WATT £10.85 p.case \& controls \& sockets \& instructions..KIA-8, Cunliffe Road, Ilkley.. 300 watt slaves £15 E/E.


Anything to sell?
Then sell it quickly and cheaply
Phone ASP classified
01-437 1002 Ext 204

AVO 8 MODEL 8 MK5. with leads in perfect condition \(£ 70\) Phone Romford 21052 anytime.

ELECTRONIC ORGAN Two keyboards. Nice cabinet. Working but requires little work to complete £65. Dartford 20659.

TAPE RECORDER LEADS 7 pin Din to \(2 / 3.51 / 2.5\) jack plugs. Like AL 912 p Intended for BBC computer \(£ 2\) each post free A. Harvey, 38 St. Michaels Grove, Fareham, Hants, Mailorder only.

SHEETMETAL FOLDERS 18'' \(x 18 \mathrm{c}\) steel, 16 g aluminium Bench or vice held. Hobby or light industrial use. £38. 01 . \(890-7838\) day/evening.

\section*{APPOINTMENTS}

\section*{ASSISTANT FILM RECORDISTS}

Assistant Film Recordists are required to undertake the operation of tape, disc and 16 mm reproduction and recording equipment in Sound Transfer areas and Dubbing Theatre Record Rooms.
Candidates should have a knowledge and experience of film sound transfer and dubbing methods, together with an understanding of the use of sound in television film production. Normal hearing is essential.
These vacancies are offered on a contract basis of approximately three months duration. Salary \(£ 7314-£ 8859\) according to qualifications and experience plus shift allowance when worked. Based West London.
Contact us immediately for application form (quote ref. 1153/ETI and enclose s.a.e.): BBC Appointments, London, W1A 1AA. Tel. 01-580 4468 Ext. 4619.

We are an Equal Opportunities Employer
BBGtv

AUDIOPHILE FM TUNER ETI Jan 81 with frequency readout (not LED's) and manor supplies TV tuner in Classic II case. £50 Tel 05402677.

\section*{PLANS 'N DESIGN}

AMAZING ELECTRONICS PLANS.Lasers, super-powered cutting rifle, pistol, light show, ultrasonic force fields, pocket defence weaponry, giant tesla, satellite TV pyrotechnics, 150 more projects. Catalogue £1 (refundable) from Plancentre, Bromyard Road Industrial Estate, Ledbury HR8.

\section*{KITS}

ELVIN ELECTRONIC ORGAN Kit built. Needs minor repairs. Offers. All accessories mint condition Telephone (01) 9476354.

PRINTED CIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.50. Developer 35p. Ferric Chloride 60 p. Clear acetate sheet for master 15 p . Copper-clad fibreglass board, approx. 1 mm thick \(£ 2.00\) sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

PUSH BUTTON TELEPHONE, 40 number memotry, build your own for around £16 using standard components. Full circuit, plans, and construction details, E3 (not BT approved). Ms M.J. Ellis, 1 Wells Drive, Heaton, Mersey, Stockport, Cheshire.

\section*{AVOID WASTED RESPONSE}

Reach over 65,000 people in the electronics field and fill your vacancy cost effectively and quickly. For details phone: ASP classified 01-4371002 Ext 204

\section*{CLASSIFIED ADVERTISEMENT - ORDER FORM}
\begin{tabular}{|l|l|l|}
\hline 1. & 2. & 3. \\
\hline 4. & 5. & 6. \\
\hline 7. & 8. & 9. \\
\hline 10. & 11. & 12. \\
\hline 13. & 14. & 15. \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Advortise nationally in these columns to ovar 100,000 readers for only 35p per word (minimum charge 15 words). Simply print your message in the coupon and send with your cheque or postal order made payable to Argus Specialist Publications Ltd to:
CLASSIFIED DEPT., ELECTRONICS TODAY INTERNATIONAL 145 Charing Cross Rd., London WC2H OEE
Tel: 01-437 1002
Please indicate classification required.
Name
Address

Tel.No.(Day)
We take Access and Barclaycard
Please place my advert in E.T.I. for \(\square\) months. Please indicate number of insertions required.

\section*{Get moving with these new developments in UK Robotics}

\section*{- advanced electrohydraulic designs for education, industry and now available to the home constructor.}

Hebot II is a turtle-tyoe robot whicm akes programming aut of the two dimension al world of the VDU into the real inree dimensional worid. Eiveria DC-sispply of 9- \({ }^{*} 5 \mathrm{~V}\) it can perform a bewildering rumber of moves under computer sontrol - forwards, backwatos left and righi - with each wheel independenily corfrolled. It has blinking myes, bleeps with a choice of fwa tones and has a solenoid operaled pen to chart its progress. Touch sensigrs couce to ite. shell retu:n data, about its envirorment. wh the co nputer for i: te calculate evasive or exploratory ax*lon Hepos ll connects directly: o an \(1 / 0\) port or alternarively with ine uniwersal inter ace board to the expansion bus of a \(Z \times 81\) or other computer.


Robotic experience is becoming as essertial a subject as computing MICROGRASP provides the lowest cost means of acquiring that experience but despite its itra low price the robot has considerable ersatility There are 5 akes eech using a servo motor and there is teedback from each of the arm movements. Control is by any computer with an expansior bus - the ZX81 being particularly suitable. Servoing is achieved with haroware on the intelface board to keep programming simple and the robot is cperated under BASIC commands with no computer specific softwere required. The interface board is memory mapped using only 64 bytes at any of 1024 switch selectable locations
MICROGRASP robot kit with prower supply Unversal computer interfece board kil 33 way edge connector
ZX81 peripheral/RAM Fazk szinter board


MICROGRASP, INTERFACE BCARD AND ZX8
printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles, in product control and \(R\) \& \(D\). We shall coordinate the Cortex user group and distrisute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit \(£ 295.00+\) VAT Complete 16 bit 64 K computer ready built \(\mathbf{£ 3 9 5 . 0 0}+\) VAT
Up to the nano-second hard, firm and software developments embodied in a complete system. Mega Hertz 16 bit CPU: 64 K upwardly compat DRAM; separate 16 K video DRAM and 24 K TI Power Basic with overwrite. Supoorts up to four Disc drives of mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive \(E\) Bus interface designed to support real world applications.
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along with NOS C/PM
Hardware components available separately with details in Nov Dec, and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered I/O to free machine whilst

Top of the range is the Genesis 102 which has dual speed control, contiruous servo operation and double acting cylinders for increased torque on the wrist and arm rotation joints. The micropiccessor based control system has addifional memory position interrogation via the RS232C interface increasing the versatility of computer control and inputs are provided for machirie trol interfacing 6 axis system READY ¥ulli
£ 1950.00 Powertan COFTEX te bi: 64K computer Kir \(£ 295.00\) READY BUILT \(£ 395.00\) (Electranics Today interraional December issue on CORTEX)


Example prices and specifications
Genesis 5101 Base \(195^{\prime \prime} \times 11^{\prime \prime} \times 7.5^{\circ}\) L'ting capacily. 1500.3 m Weigrt 29 Kg
4 axis model in kit form 5 axis model in klt tom

Genesis P101
Base 195" \(\times 1\)
Liting capacity 2000 gm A.rm lengiths between axies \(140^{\prime \prime}\) Weight 34 KG
\(\begin{array}{lll}4 \text { axis model in kia orm } & £ 675 \\ 6 \mathrm{E} \text { exis model in } \mathrm{kiA} \text { form } & \\ \mathbf{£ 5 9 5}\end{array}\)
Complete Systems as shown in Photograph above
Genesis S101
\begin{tabular}{l} 
Genesis \\
4 axis syste:n in kit form \\
\(£ 681.50\) \\
\hline
\end{tabular} axis syste:n in kil form \(£ 681.50\)
5 axis sysle'n
kit torm
\(£ 737.50\) 5 axis system Reacy B:ilit £1450 Genesis P101
6 axis system in kit form \(£ 945.00\) 6 axis system in kit form \(£ 945.00\)
6 axis system Ready Ruill \(£ 1650\)

All prices exclusive of VAT

With prices starting below \(£ 1,000\) the Genesis range of general purpose robots provide a first rate introduction to robotics :ar both education and industry, Each has a self-contained hydraulic power source, which enables loads of several pounds to be smoothly handied. The system mperated from a single phase 240 or 120 V AC supply or a 12 V DC supply The rrachine can be supplied with up 105 axes each of which is fully independent but capable of simultaneous operation Position control is achieved by means of a closed-loop feedback syster based around a dedicated microprocessor Movement sequences can be enteres. stored and replayed by use of a hand held controller, alternatively the systems can also be interfaced to an externa، computer via a standard RS 232C syst
link.


GENESIS S•01 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD SONTROLLERS


\section*{Now your computer can talk!}
*Allophone (extended phoneme) system gives unlimited vocabulary.
*Can be used with unexpanded VIC20 or ZX81 does not require large areas of memory.
*In VIC20 version, speech output is direct to TV speaker with no additional amplification needed.
*Allows speech to be easily included in programs.
Complete kit only £24.95.
Order As LKooA (VIC20 Talk-Back). LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6.
Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH ELECTRONICS FOR ZX81

* Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in ZX81).
*Complete with electronics to make "Shift Lock" 'Function" and "Graphics 2" single key selections. * Powered (with adaptor supplied) from \(\mathrm{ZX81}\) 's own standard power supply.
Full details in Project Book 3 (XA03D) Price 60p. Complete kit (excl case) \(£ 19.95\). Order As LW72P Case \(£ 4.95\). Order As XG17T.
Ready built-in case \(\mathbf{6 2 9 . 9 5}\). Order As XG22Y

\section*{OTHER KITS FOR ZX81}

3-Channel Sounds Generator (Details in Book 5) Order As LW96E. Price \(£ 10.95\)
ZX81 Sound On Your TV Set (Details in Book 6). Order As LK02C. Price \(£ 19.95\).
ZX81 I/O Port gives two bi-directional 8 -bit ports (Detaits in Book 4).
Order As LW76H. Price 69.25
2X81 Extendiboard will accept 16K RAM and 3 other plug-in modules.

PCB:
Order As GB08J. Price \(£ \mathbf{£ 2 . 3 2}\)
Edge Connectors (4 needed)
Order As RK350. Price \(£ 2.39\)
HOME SECURITY SYSTEM
Six independent channels-2 or 4 wire operation. External horn. High degree of protection and long term reliability. Full details in Projects Book 2
 (XA02C) Price 60p

\section*{Post this coupon now!}

Please send me a copy of your 1983 catalogue. I enclose \(£ 1.50\) (inc p\&p) If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send \(£ 1.90\) or 10 International Reply Coupons.

\section*{Name}

Address
MATINEE ORGAN
Easy-to-build, superb specification Comparable with organs selling for up to \(£ 1000\). Full construction details in our book (XH55K). Price \(£ 2.50\) Complete kits available Electronics (XY91Y) £299.9 Cabinet (XY93B) \(£ 9950^{*}\) Demo cassette (XX43W) E1.99 MOSFET output stage.

Send now for an application form - then buy it with MAPCARD MAPCARD gives you real spending power up to 24 times your monthly payments. instantly.


\section*{25W STEREO MOSFET AMPLIFIER}

* Over \(26 \mathrm{~W} /\) channel into \(8 \Omega\) at 1 kHz both channels driven \(\star\) Frequency response 20 Hz to 40 kHz ridB
* Low distortion, low noise and high reliability power
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations)
* Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet Full details in Projects Book 3. Price 60p (XA03D). Complete kit only£ 55.20 incl. VAT and carriage (LW71N).

\section*{BUY IT WITH MAPCARD}

\section*{MAPLINS FANTASTIC PROJECTS}

Full details in our project books. Issues 1 to 5: 60p each Issue 6: 70p
In Book 1 (XA01B) 120W rms MOSFET ComboAmplifier - Universal Timer with 18 program times and 4 outputs - Temperature Gauge - Six Vero Projects. In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter
In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25W MOSFET Amplifier Doppler Radar Intruder Detector - Remote Control for Train Controller In Book 4 (XA04E) Telephone Exchange for 16 exten sions - Frequency Counter 10 Hz to 600 MHz U Ultrasonic Intruder Detector - 1/O Port for ZX81- Car Burglar Alarm - Remote Control for 25W Stereo Amp
In Book 5 (XA05F) Modem to European standard 100W 240V AC Inverter © Sounds Generator for ZX8 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G) Speech Synthesiser for ZX81 \& VIC20 - Module to Bridge two of our MOSFET Amps to make a 350W Amp - ZX81 Sound on your TV
- Scratch Filter Damp Meter

MAPLIN'S NEW 1983 GATALOGUE

All prices include VAT \& carrage. Please add 50p handing charge to orders under \(f 5\) total value


Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items On sale in all branches of WH SMITH
Price \(£ 1.25\)


MAPLIN ELECTRONIC SUPPLIES LTD P.O. Box 3, Rayleigh, Essex SS6 8LR Telephone: Sales (0702) 552911 General (0702) 554155 Shops at: Note: Shops closed Mondays 159 King St., Hammersmith, London W6. Telephone: 01-748 0926 284 London Rd., Westcliff-on-Sea, Essex. Telephone: (0702) 554000 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292```


[^0]:    The principle of nested differentiating feedback loops, on which this amplifier depends, is patented in Britain and principal overseas countries. Commercial enquiries should, in the first instance, be directed to the Legal Office, Monash University, Clayton, Victoria 3168, Australia.

