

Dave Bradshaw: Editor
Peter Green: Deputy Editor
Phil Walker: Project Editor
Jerry Fowler: Technical Illustrator
Gary Price: Divisional
Advertisement Manager
Ron Harris B.Sc: Managing Editor
T.J. Connell: Managing Director

PUBLISHED BY
Argus Specialist Publications Ltd
145 Charing Cross Road, London WC2H OEE
DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
QB Limited, Colchester
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead EDITIONS
and their
GERMANY - Udo Wittig and their

ABC Member of the

 Audit BureauElectronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all articles, destgns, plans, tellectual property rights therein beiong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyrighe conventions are specifically reserved to Argus Specialist Publications Limited and anv reproduction requires the prior written consent of the Company. (c) 1983 Argus Specialist Publications Ltd \sqcup All reasonable care is taken in the preparation of the magazine contents, but the publishers cannol be held legally responsible for mally be published as soon as possible afterwards All prices and data contaned in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advert isers nor the publishers can be held responsible, however, for any variations affecting price or availability which mav occur after the publica tion has closed for press
\square Subscription Rates UK $£ 13.15$ including postage. Airmail and other rates upon application to ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey 513 London Road, Thornton Heath, Surrey
CR4 6AR.

EDITORIAL AND ADVERTISEMENT OFFICE

145 Charing Cross Road, London WC2H 0EE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

All that's new in electronics, at least for the last month or so.

DESIGNER'S NOTEBOOK I 23 You'll be surprised to learn what you can get out of a humble 1N4148 or two. Here we show how to generate 430 V from a mere 18 V .

FEVAs

37
Semiconductors are obsolete! Field Effect Voltage Amplifiers are sweeping them aside and buildings in Silicon Valley are raining executives.

NDFL
A new method of designing audio amplifiers that results in extremely low distortion from everyday components. Here's how it's done.

PROJECTS

ZX81 MUSIC BOARD
 16

From the Beatles to Bach, all with your very own Sinclair
REAL TIME CLOCK
For a long time here at ETI, we have been educating our readers about micros; now it's your turn to teach your micro to tell the time.
ORGAN PART 3.
56
Design details of the rhythm unit for this world-beating music project.

ETI THERMEMETER 70
A thermometer that remembers the maximum and minimum readings. STAGE LIGHTING UNIT.42

Overiay diagrams of the main memory and display boards.
FOIL PATTERNS

INFORMATION

[^0]COMPUTER EXHIBITIONS 21 PCB SERVICE 87

AUDIO BUYING GUIDE

The special audio buying guide will tell you which system to buy to suit your pocket. There will be good, sensible advice on all aspects of system choice and upgrading, but none of the 'buy a Lynotrio Cystemdek for $£ 10,000$ and listen to it through Granny's hearing aid until you've paid off the mortgage' variety. Incidentally, we've inserted the CENSORED stickers for your own good, to prevent you from going out and buying any gear until you've read the guide (and bought next month's ETI, of course).

DON'T MISS OUT - ORDER YOUR COPY NOW

 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161. TELEX: 914977 CRIKEL G

\qquad
\qquad

CRICKLEWOOD - STOCKING PARTS OTHER STORES CANNOT REACH!

ampholders, FUSES: $20 \mathrm{~mm} 1 \frac{1}{1}$ inch, slow or quick blow. Fuseholders. CONNECTORS: DIL. DIN. \&THE LAZY WAY Phone your order through on Access, Barclaycard, Visa or American Express hono, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}$. Bulgin USA. I.E.C. KNOBS: Plastic, Aluminium, Anodised, Collet, Pointer SWITCHES: Toggle, Biased, Rocker, Rotary, Slide, Dil, Push. METERS: LCD, Analogue. Test and All in stock items (that's Y5\%) posted same day. OFFICIAL ORDERS FROM SCHOOLS GOVT DEPTS ETC WELCOME. OVERSEAS ORDERS WELCOME (CWO + ADEQUATE POSTAGE).

定 $T 1 / C 278019$ Ci

Elecironios		mall ordens Unitz, , in fram Industrial Etate Colchester (0206) 36412.		ACCESS AN BARCLAYCA WELCOM				
cancroos	porevimemeras	Sments	masmonems					
aibu buy								
			Mnomener	Convecoss				
			5mere					
	, memmenk			min minemers				
			區	\%amzex				
The Rapid Guarantee * Same day despatch \star Competiive prices \star Top quality components $\quad \star$ In-depth stocks		ease add to total order. Please add 50 p carriage to all orders under $\mathrm{E} \$ 15$ in value. Send cheque, P.O. Or Access/Visa number with order. Our detailed catalogue costs 45 p (free with orders over $£ 10$). Callers most welcome. Telephone orders welcome with Access or Visa. Official orders						

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIG E ST

$£ 1000$ Reward

W
ell, that's got your attention - now here's the problem. It would seem that some light-fingered gentlemen have been at work in deepest Surrey. Aura Sounds Lid, sole importer of Wersi organs, pianos and accessories in the UK, suffered a burglary three days ago (that's Saturday 5th February as I write this) and several expensive items were stolen. Amongst the lost instruments was a computercontrolled rhythm unit, known in the trade as a Wersimatic CX 1 . The director of Aura, Mr. Arthur Griffiths says "The thief couldn't have stolen a more easily traceable item! This CX 1 is the only model of its type in the UK at the moment. Indeed, it is virtually a prototype and there are only 10 in existence world-wide. It is absolutely essential that we retrieve this instrument, and we are offering a reward for its recovery. Information leading to the return of the CX 1 and apprehension of the thief (thieves) concerned will carry with it a $£ 1000$ reward". Anyone who thinks they have in-

A Safe Bet

- Here's another attention-getter for this page-can you stand the excitement? Nike Clark (for it is she) is unique, with a lot to of fer, says the British Safety Council, and that's why they've chosen her to help promote their Action Days. These will be staged to assist industry avoid the disruption of accidents and unnecessary losses by bringing all the latest relevant information, products, expertise and techniques within easy, cost-effective reach of companies all over the country.

The dates are Leeds (13/14 April), Cardiff (22/23 June), Plymouth (14/15 September), Middlesborough (12/13 October) and London (20 May). Anyone wishing some Action should contact Faye Rothwell, British Safety Council, 62/64 Chancellor's Road, London W6 9RS (telephone 01-741 1231 ext. 293)
formation should contact Mr. Griffiths at Aura Sounds Ltd, Royal Oak Centre, Brighton Road, Purley, Surrey (telephone $01-668$ 9733).

Disc-continued

We continue the mini-floppy disc saga; Sony announced today (January 20th) that 13 leading floppy industry companies, composed of the following disc drive and media manufacturers, have agreed to support a mutually compatible 3.5" floppy disc format: Atari, Athana, BASF Systems Corporation, Fuji Photo Film Co. Ltd, Memorex Corporation, Mediá System Technology, Inc, Shugart Associates, Sony Corporation, TDK, 3M, Verbatim Corporation, Wabash Datatech, Inc and Xidex. "The major technological issues relating to compatibility have been settled," Sony said. "The compatibility will strengthen the
position of the $3.5^{\prime \prime}$ disk with a hard covering as the leading format for a microfloppy industry, as well as reduce costs and expand the potential market through greater second sourcing opportunities." The media itself holds up to 1 megabyte in a double-sided, 135 track per inch version. The media's hard covering protects the user's data, while the precise centring and proven 135 tracks per inch technology contribute to greater reliability by reducing the potential for positioning errors. Once the remaining specifications have been settled, Sony will grant non-exclusive manufacturing licenses to any qualified media manufacturer in order to promote widespread adoption of the standard by manufacturers.

MegaMania Mania

Having reviewed a fair number . .of games for the January ETI, your intrepid Star Warrior/Deputy Editor had come to the conclusion that high-resolution machines like the Intellivision and Atari 400 rather left the Atari VCS out in the cold. A new game from ActiVision has changed all that, however, because it's so good it's almost worth buying a VCS just for this one cartridge. ActiVision have proved that it's the game design that counts, not the screen resolution. Using only the simplest of shapes they've produced a challenging and absorbing 'space shootout', one which led to the extraordinary sight of eight ASP employees crowded into the ETI workshop one night queueing to play. This is unprecedented, because said employees would normally be quaffing draughts of ale in the local tavern after work.

What does MegaMania involve? Each attack cycle consists of eight waves of Invader-type aliens with loony shapes - these are hamburgers, cookies, bugs, radial tyres, diamonds, steam irons, bow ties (!) and dice (personally I think they look more like lumps of cheese). There are no bases to hide under, which is tricky because some of the bad dies move from left to right, others move down the screen, and some do both. The screen wraps round from top to bottom and left to right so if you miss any they come back for another shot, but it's very easy to get trapped unless you can figure out the patterns and the best tactics for each
wave. The patterns of movement are, naturally, different for every cycle. Chris 'Fingers' Palmer of Personal Computing Today holds the office record at present with 216, 530 on option 1 , difficulty b, a pretty stiff target to beat. MegaMania costs £29.95 and, even though it's only February, gets our vote as game of the year. Go out and buy one. Now.

Microtutor

We have received a letter - from Tangerine Computer Systems Ltd, designers of the Microtutor project that was featured in the August, September and October issues of ETI last year. In it they state that they have had many problems with it, paramount being their inability to obtain the necessary components. As a result of this they have taken the decision to withdraw the project from the market. Both we and Tangerine would like to offer our apologies to any readers who may have been inconvenienced by the situation.

Cross Words

0ops! we forgot to give the winners of Crossword No. 5. They were John R. Baldwin of Dorset, A. R. Moss of Hampshire and Stuart McWilliam of West Yorks. Answers:
ACROSS: 1 Chassis. 4 All Pass. 10 Ambient. 11 Dry Cell. 12 PNP. 16 Mid Range. 17 Nanovolt. 18 SME. 19 Monitors. 21 Low Power. 23 Function, 26 Anodised. 29 Owl. able. 38 Voltaic. 39 P C Board 40 Hous ing. DOWN: 2 Hybrid. 3 IIT. 5 Hous Stereo. 7 Maximum. 8 Pan. 9 Flutter. 12 Press. 13 Panel. 14 Watt. 15 Loop. 20 NPN. 22 WPS. 23 Faraday. 24 Tone. 25 Notch. 26 Album. 27 Dial, 28 DIN lack. 31 Static. 33 RF Abin. 35 USB. 37 EOR. 38 VCO.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Quartz Into Pint Pot?

The world's first analogue quartz chronograph wristwatch has been introduced by Seiko. The biggest and most experienced watch house worldwide, Seiko is renowned for its innovative achievements having many world firsts to its credit, including the recent introduction of the first television watch (see ETI Digest, September 82). Until now quartz chronographs with digital readouts have been commonplace but the introduction of the Seiko Analogue Quartz Chronograph is the result of many years of research and development. It is an achievement which is thought to be far in advance of any other watch house. Four independent micro-step motors have been successfully miniaturized into a small wristwatch module and it is this fact that has made possible the development of this new analogue quartz chronograph. Micro technlogy has also played an important factor in terms of design; the watch itself is much thinner than conventional chronographs with mechanical movements.

Other impressive technical features of this new Seiko model include a chronograph with a 5/100th second capability, a split time measurement facility, the ability to record two consecutive finishes, a tachymeter, and a remaining time indicator as well as a tally counter. All three chronograph hands go round once for demonstration purposes, by simply depressing the buttons. Four different models, one of which is a Sports 100 watch (water resistant to 100 metres), will be available in the shops in May. Each model has a stainless steel case and bracelet and the range of watches offers a choice of different colour dials and prices vary between $£ 110.00$ and $£ 140.00$ each retail.

Shorts

- Anyone who fancies going back to school this summer is invited to attend the 1983 Electronic Systems Summer School at the University of Essex. Two courses are offered, 'Feedback and Communication Systems' and 'Digital and Computer Systems'. The school will run from Sunday evening, 10th July to Friday afternon, 15th July, and teachers wishing to obtain further detials of the courses should contact Mrs J. Mead, Dept. of Electrical Engineering Science, University of Essex, Colchester (telephone 0206862286 ext. 2358).
- Or perhaps you want to find out more about computer based training, in which case you should contact Sue Punch of Mills and Allen Communications Ltd 1-4 Langley Court, Long Acre, London WC2E 9JY (telephone 01-240 1307). They're holding a one-day course on CBT techniques and uses, followed by a twoday workshop on CBT and practical design. Dates are 23rd, 24th and 25th of March and the venue is in Central Londion.
- Can't imagine what's come

over Motorola's PR people: their new development system based on the MC6809 processor, XDOS operating system and BASIC-M compiler has been named the EXORset 100. Nought out of 10 for good taste, gentlemen
- As usual, we've received word of a number of catalogues this month: first off is one from Wavetek Electronics, the test and measurement equipment manufacturers. New products include a VHF frequency synthesiser, a $3.7-7.6 \mathrm{GHz}$ microwave signal generator, and a cross channel spectrum analyser. Free copies of the 210-page catalogue are available from Wavetek's new sales and service office at Tag Lane, Hare Hatch, Reading, Berks. RG10 9LT (telephone 073522 2124).
- OK Industries UK Ltd have produced the second one; it's a new 16-page full colour brochure describing the range of Elrack terminal enclosures, lab racks and computer desks. Lots of the stuff is 19" rack-sized and, although constructed to industrial standards, most:products in the range are suitable for the electronics amateur. OK Indusțries are at Dutton Lane, Eastleigh, Hants SO5 4AA (telephone 0703 610944).
- Finally the F.C. Lane Group hàve their 1982/83 catalogue out. which contains pots, fuses, resistors, ferrites, and a wide range of cohnectors and accessories, plus flat cable. Contact F.C. Lane Electronics Ltd, Slinfold Lodge, Horsham, West Sussex, RH13 7RN (telephone 0403 790661).
© The Blacksburg Group, Inc want to encourage as many radio amateurs and şhortwave listeners as possible to use the newlyassigned 10 MHz (30 metre) band. Their Slinky Dipole (good grief!) can do the job but requires new tuning information, which Blacksburg are giving away free to any Slinky Dipole owner. Simply send your name, address, and two International Reply Coupons for your Tuning Chart. The address is PO Box 242, Blacksburg,

Virginia 24060, USA.

- Got nothing booked for May 16-17th this year? Logical Solutions, Inc and Network Conferences are holding a seminar on the design for testability (what an awful word) of LSI/VLSI circuits, including components, subassemblies and systems. Full details from Network Conferences Ltd, Printers Mews, Market Hill, Buckingham, MK18 1JX (telephone 02802 5226).
- Had any wizard wheezes lately? A new book called "The Practical Guide for Pepple with a New Idea"' will help you through the jungle that comprises the modern patent process. It also contains information about marketing your idea effectively, choosing trademarks etc etc. The book iş available for $£ 5.95$ post paid from Laurence Shaw, George House, George Road, Edgbaston, Birmingham B15 1PG.
- Dragon 32 and Tandy TRS-80 colour computer owners will be pleased to hear that a new monthly magazine of USA origins and dealing exclusively with these computers is now available. A sample copy of "Rainbow" can be obtained by sending $£ 1.95$ plus a large 56p SAE to Elkan Electronics, Freepost, 11 Bury New Road, Prestwich, Man chester M25 6LZ (or ring 061-798 $7613-24$ hour service).
- A new company with an 80% British shareholding reckons that more than $£ 400$ million will be spent on constructing new cable TV networks in Britain by next year. Cable TV Construction Ltd will act as consultants and expects to create jobs for several hundred people.
- If you fancy interfacing your Commodore 64 or VIC 20 to a Centronics printer, Wego Com= puters of 22a High Street, Caterham, Surrey can sell you the necessary interface for your serial port. The device is completely compatible with the other port devices such as disc drives and draws its power from the printer. The cost is $£ 79$ plus VAT and the phone number is 088349235 if you want more information.

EHPAK BARGANS

↔ 121 SCREWDRIVER SET

6 precision sciewdriversin hinged plasic case Sizes $\begin{array}{ll}0.8 .14 .2 .24 . & \\ 29 \text { and } 38 \mathrm{~mm} & \mathbf{1} .75\end{array}$

乡131 NUT DRIVER SET

5 precision nul drivers in hinged plasic case Wilh turning lod $£ 1.75$

ST41 TOOL SET

5 precision instruments in hinged plastic case
Crosspont (Phillips) screwdrivers
HO and H 1 Hex key wrenches
H WRENCH SET
iprecision wrenches in hinged plasic case
Sizes - 4.45 .5 .5 and $6 \mathrm{~mm} \mathbf{\varepsilon 1 . 7 5}$ BUY ALL FOUR SETS $5121: 5$ T51 and get HEX KEY SET FREE HEX KEY SET ON RING Sizes 152.25 .3
4.5 .55 and 6 mm Made of haroeneo steel $H X / 1 £ 1.25$

SIREN ALARM MODULE
American Police tryoe screamer powered from 3ny 12 :-volt supoly into 4 or 8 ohm spasker. Idal for car burglar alarm, froezer braak. down and other security purposes. BP1245 watt tiv max - Siran Alarm Module £3.85
Order No BP124

BI-PAK SOLDER

DESOLDERKIT

Kit comprises ORDER NO SX80
i High Oually 40 wall General Purpose
Lightweigla Soldering foon 240v mains in
$3 / 16^{-14.7 m m) ~ b l}$
1 Quality Desoldering pump. High Suction with automatic ejection Knurlec. anti-corrosive casing and lefion nozzle
15 metres ol De-soldering braid on prastic dispenser.
2 yds $(1.83 \mathrm{~m})$ Resin Cored Solder on Card
1 Heal Shunt lool iweezer Type Total Retal Value over $£ 12.00$
OUR SPECIAL KIT PRICE $\mathbf{£ 8 . 9 5}$

IARESISTAGLE RESISTOR EAROANE'

 Pretormed
Resisiors 4. watt Carbon Resistors E1 w watt Carbon Resistors 4 watt Resistors 22 ohm 2 m 2 Mixed 1 and 2 watt Resistors 22 ohm 2 m 2 Mixed Paks $\mathrm{S} \times 12.15$ contain a range of Casbon Film Resistors of assorted ralues hrom 22 ohms to 22 mees. Sare pounds on the se resistol paks and have a lull range to coret your projects
"Quantities approximate, count by weight.

25 pieces of Audio Plugs, Sockets and Con36 Pin. Speakers. Phono, Jack Stereo Inline 36 Pin. Speakers. Phono Jack Stereo
and Monoetc valued at well over $£ 3$ normal order No. SX25. Our Price
Guaranteed to save you money $\begin{array}{lll}\text { SX26 } & 3 \text { Prs of } 6 \text { pin } 240 \\ & \text { Chassis Sockets }\end{array}$ SX27A 60 Assorted Polystyrene Bead Capacitors Type 9500 Series PPD
SX28A 50 Assorted Silver Mica SX28A 50 Assorted Silver Mica Caps. SX29A 50 Assorted Sil
SX29A $180 \mathrm{pF}-4700 \mathrm{pF}$.
SX30A 50 High Vottage Disc Ceramics 750 v SX30A 50 High Vo:tage Disc Ceramics 750 v
min up to 8 KV Assorted useful values $£ 1.00$ min up to 8 KV Assorted useful valuer
50 Wirewound 9 watt (avg) Resistors Assorted values $10 \mathrm{hm}-12 \mathrm{~K}$

"CAPABLE CAPACITOR PAK8'			
Pat Mo.	(4)	Onscription	Price
5×16	250	Capacitors Mixed Iypes	11
5117	200	Ceramic Capacitors Miniature Mixed	E1
5×18	100	Mixed Ceramics Ipt 5fpl	E1
5419	100	Mixed Ceramics 680f 0.5 mm	[1
5120	100	Assorted Polyester/Poiystyriene Capacitors	c1
5×21	50	Mixed C280 type capacilors metal forl	1
\$122	100	Electrolytics, all sorts	51
5123	50	Quality Electiolytics $501000 \mathrm{mf}$	¢1
5024	20	Iantalum Beads. mixed	c1

BRAND NEW LCD DISPLAY MULTITESTER

RE 188 m MEGOHM MPU IMPEDANCE
LCD 10 MEGOHM INPUT IMPEDANCE
$\cdot 31 / 2$ digit * 16 ranges plus hFE test lacility PNP and NPN Iransistors *Auto zero. auto poiarity *Single-handed, pushbulton operation "Over range indication * 12.5 mm ($1 / 2$-Inch) large LCD readout * Dioue check - Fust circuil protection "Test teads battery and instructions included Maxindication 1999 or - 1999 Polarity indication Negative only Positive readings appeaf withoul + sign
Input impedance 10 Megohms Zeroadjusi Automatic Sampling time 250 milliseconds Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ Power Supply \quad xPP3 or equivalent gy $\begin{array}{cc}\text { Consumption } & 20 \mathrm{~mW}\end{array}$ SIze $\quad 155 \times 88 \times 31 \mathrm{~mm}$ DC Vollage 0.200 mV 0-2.20-200-1000V Acc: 0.8\% AC voltage $0.200-1000 \mathrm{~V}$ Acc 12% OC Current $0-200 \mathrm{uA}$ Resistance 0-2-20-200 K ohms 0.2 Megohms Acc 1%

BI-PAK VERY LOWEST POSS PRICE \& 35.00 each

\section*{SINGLE SIDED FIBREGLASS} | BOARD | | | | |
| :--- | :--- | :--- | :--- | :--- |
| Order Mo. | Pisces | Size | Sq. Ins. | Prtre |
| FB1 | 4 | $9 \times 2 x^{\prime \prime}$ | 100 | $〔 1.50$ |
| FB2 | 3 | $11 \times 3^{\prime \prime}$ | 100 | $£ 1.50$ |
| FB3 | 4 | $13 \times 3^{\prime \prime}$ | 156 | $\$ 2.00$ | DOUBLE SIDED FIBREGLASS BOARD

FB4 $214 \times 4^{\prime \prime} 110 \quad$ E2.00

SILICON POWER TRANSISTORS -703

NPN line 2N3055 - but not luil spec 100 watts 50 V min 10 for EL.50 - Very Good Value 100s of uses - no duds Order No. SX90

REGULATED ${ }^{\prime}$ VARIABLE
 STABILISED

IPOWER SUPPLY
Varable trom 2.30 vots and 0.2 Amps Kit includes VPS30 Madule, 1 - 25 volt 2 amp transformer $0.50 \mathrm{v} 2^{\prime \prime}$ Panel Meter, 1 - 0.2 amp 2" $^{\prime \prime}$ Pand Mete - 470 ohm wirewound potentionteter 1 - 47 ohm miewound potentiometer Wring Diegram
ncioded VPS30-KIT $\mathbf{Z 2 0}$.

TECASBOTY

 The Electronic Compo components including potentiometers - rotary and slider, presets - horizontal and vertical Res istors ol muxed values 2 Z2ohms to $2 \mathrm{M} 2-1 / 8$ to 2 Watt A comprehensive range of capacitors including electrolytic and, polyester types plus disc ceramics etcetera. Audio plugs and sockets ol various types plus swilches, fuses, heatsinks, wire, nuts/bolts. gromets, cable clips and tyes. knobs and PC. Board. Then add to that 100 Semiconductors to include transistors. diodes. SCR's opto's, all of which are curfent everyday usable devices In aH a Fantastic Parcet. No rubbishall identitiable and Beat the Budgel with Depression
BI-PAK PCB ETCHANT AND DRILLKIT

Compiele PCB Kil comprises
1 Expo Mint Orill 10.000 RPM
coliels \& $1 \times 1 \mathrm{~mm}$ Twist bil
col Sels \& $1 \times 1 \mathrm{~mm}$ Twist bil
I Sheet PCB Iranslers $210 \mathrm{~mm} \times 150 \mathrm{~mm}$
1 Etch Resist Pen
$11 / 210$ pack FERRIC CHLORIOE crysials 3 sheets copper clad poard
$?$ sheers Fibreglass copper clad board Full instructions tor making your own PC8
Relail Value over £ 15.00
OUR BI-PAK SPECIAL KIT PRICE © 9.75
ORDER NO SX81

PROGRAMMAALE UNIJUNCTION TRANSISTOR 2N6027/6028 PNPN Silicon $\begin{array}{llll}\text { Price: } 1-9 & 10-49 & 50-99 & 100 * \\ \text { Each: } 200 & 180 & 150 & 130\end{array} \quad \begin{array}{lll}\text { Normal Retail } \\ \text { Price } £ 0.35 & \end{array}$

SX33A 6 small /min (SOST/SPDT Toggle Switches 240v 5 am
SX35A 6 Rocker Switches
$£ 1.00$
£1.00
 sockets and adaptors, 2.5 m .
35 mm and standard sizes
SX71 $50 \mathrm{BC} 108{ }^{\text {co Fallouts" Manufac- }}$ turers out of spec on yolts or azin You test. Board Fibre glass and pape Single and double
fantastic bargain
$£ 1.00$
£ 1.00
£1.00

MORE BARGAINS!

SX51 60 metres PVC covered Hooh-up wire single and stranded Mixed
25 Assorted TTL Gates 7400 Series. 7401.7460 SX59 10 Assorted flip Flops and MSI $5 \times 60 \quad$ TIL 2 Assorted Slider 5×62 Potentiometers 40 Assorted Pie. Sets Hor/Vert SK62
etc.
SX79
10 Reed Switches - plass type 10 Reed Switches - glass type
3 Micro Switches - with lever

00312 COMPLIMENTARY PNP POWE TRANSISTORS: TO 2N3055. quivalent MJ2955-80312-T03 SPECIN PFICE 50.70 anch 10 H1 56.50 Senilyour arders to Depi. ETIA BI-PAK PO BOX 6, WARE, HERTS. SHOP AT 3 BALDOCK SI., WARE, HERTS. TERMS, CASH WITH ORDER, SAME DAV OESPATCH, ACCESS ADO 15\% VAT AND 75 p PER ORDER POSTAGE AND PACKING ADD 15\% VAT AND 75p PER ORDER POSTAGE AND PACKING

Us rour credil catd hing us on Ware 3182 now and Gel roul ouder ime taster Goods nor mally sent 2 nd Cins Mal

ZX81 MUSIC BOARD

 There have been a great many commercial and hobbyist designsfor ZX81 peripherals, but we feel this one is something special.
Full software listings will be given to help you use the board and
the price is low. Design and development by M. P. Moore.

Give your space invaders program real 'zapp' - this add-on board enables you to hear those little green monsters being blasted away. Plug in the board, load the software cassette, and with two instructions you have a wide range of on-board sounds for your computer games; or you can copy music for your ZX81 to play, or devise your own sound effects for use in your own programs. You can also mix your own sound effects with the on-board sounds if you wish.

The unit is a sound generator with a fusible-link memory programmed with sounds varying from gunshots to spaceships, and with a basic octave of notes from which a range of seven or more octaves of music is obtained. When
used with the software supplied it will bring ZX81 games to life with startling realism. The board will produce sounds with the basic 1 K ZX81 but its full potential is realised with a 16 K expansion, when the music program can provide a completely new use for those who are wondering what to do with their ZX81 now they have it.

A complete kit of parts is available (see Buylines), which also includes a comprehensive user's manual and software cassette A demonstration cassette containing on-board sounds and music generated by the add-on sound board is available at an all-inclusive price of 95 p. Petron Electronics have been good enough to grant us permission to publish both their PCB design and the complete
software listings, including the PROM hex dump, to satisfy those diehard readers who insist on doing everything themselves. However, given the low price of Petron's kit, which contains all the hardware required plus documentation, we think that this is the best way to go for cost-effectiveness, ease of construction and convenience.

Construction

All components in the circuit are mounted on a single-sided PCB (see overlay): IC sockets are supplied for all ICs. Two screened leads provide the connection from the PCB to your amplifier; all other connections to the board are made via an edge connector which plugs straight into the back of the ZX81

The ZXB1 music and sound effects board, like most other $\mathbf{Z X}$ peripherals, plugs directly into the computer.

Fig. 1 Component overlay for the ZX81 sound board.
(or 16K RAM pack if used).
First of all solder the six IC sockets and then the six links: some of these are close to each other or to other components and the use of insulated wire is recommended. Now solder resistors R1 and R2 these resistors can be of any value between 1 k 0 and 1 k 8 . Solder the electrolytic capacitors C1 and C2, taking care to mount them the right way round (see overlay), and then capacitors C3 and C4. Finally, carefully insert and solder the edge connector leaving a gap of approximately 7 mm between the connector and the PCB. The pin corresponding to 9 V on the connector is not required and, for safety purposes, has been cut. Now carefully check all your soldered joints, preferably with a magnifying glass, and make sure that there are no bridges across any of the tracks

If the board is to be used with a stereo amplifier, cut the length of screened cable supplied in half and solder the inner cores to one end to the left and right outputs, and connect the outer cores (screen) to the point marked GND. Take care to insulate these wires so that they will
not short across other component leads. If you wish to use the board with a mono amplifier, connect a wire link between the two outputs and to this link connect the inner core of one of end of the screened cable, taking the screen to 0 V and insulating the cable as before. Connect the phono plugs (or one of them if you are using a mono amplifier) to the other end of the screened cable.

Now, carefully checking the orientation of the ICs, insert them into the IC sockets. Note that IC2 and IC6 are mounted in the opposite direction to the other ICs. With your ZX81 switched off, carefully plug the board into the back of the ZX81. If you have a 16 K RAM pack, plug this on first: the sound board will plug onto the back of your RAM pack. Switch on your ZX81 and wait for the inverse K prompt to appear on your screen.

On-Board Sound Program

This program enables you to include the on-board sounds listed in Table 2 in your own programs. To use these sounds all you have to do is to load the first short program

PARTS LIST

Resistors (all $\ddagger \mathrm{W}, 5 \%$)	
R1, 2	1 k 2
Capacitors	
C1, 2	100u 16 V axial electrolytic
C3, 4	100n polyester

Semiconductors

IC1	AY-3-8910
IC2	741593
IC3	74 C 20
IC4	74 C 32
IC5	$74 \mathrm{C02}$
IC6	TBP28L22N

Miscellaneous
PCB; edge connector; IC sockets; two off phono plugs; $2 \mathbf{m}$ of screened cable.

BUYLINES

Petron Electronics supply a full kit of parts for the project. The kit includes the PCB and all components, and comes complete with a comprehensive user's manual and software cassette. The kit price is $£ 24.05$ all inclusive. The board is also available ready-built, together with manual and cassette, for £29.95. A demonstration cassette is available for $95 p$ all inclusive. The manual may be purchased separately for £1.25, refunded upon subsequent purchase of a kit. Petron Electronics may be found at 1 Courtlands Road, Newton Abbot, Devon.
from the software cassette and connect up your amplifier, keeping the volume fairly low. The following program will allow you to review the range of principal on-board sounds available before incorporating them in your own programs.

10	PRINT "SOUND NO.?"'
20	INPUT S
30	POKE 16531,S
40	RAND USR 16514
50	CLS
60	GOTO 10

In order to run this program type GOTO 10. *
The computer will now ask you the number of the sound you wish to hear: SOUND NO. ? As an example, type 153 NEWLINE. The computer will repeat this question after each sound. A continous sound (eg helicopter) must be silenced by typing 0 or another sound number.

In order to use these sounds in your own programs, enter your program without altering line 1 of program " S ". At each point in your program where you require a sound to be generated, you simply include the following program lines:-

Close-up of the prototype board.

TABLE 1

TABLE 1 BCI		
BC1	BDIR	FUNCTION
0	0	INACTIVE
0	1	WRITE TO PSG
1	0	READ FROM PSG
1	1	LATCH ADDRESS

EPROM DATA

00	00	00	00	00	00	00	00
00	00	00	00	00	00	1 F	07
10	10	10	FF	28	09	69	00
00	$3 B$	00	00	10	FF	32	08
96	02	C 8	02	64	02	0 F	00
10	10	10	3 C	00	08	00	32
03	0 F	00	10	10	10	3 C	00
08	07	10	10	10	FF	05	09
07	08	10	10	96	03	08	07
10	00	10	FF	0 C	0 F	BE	00
BE	00	BE	00	00	38	10	10
10	00	01	09	5 F	00	5 F	00
5 F	00	00	38	10	10	10	00
01	09	2 F	00	2 F	00	2 F	00
00	38	10	10	10	00	01	09
17	00	17	00	17	00	00	00
10	10	10	00	03	09	19	00
32	00	41	00	1 E	00	0 A	0 A
0 A	6 E	00	6 E	00	00	00	09
10	0 C	0 F	10	96	03	08	1 F
07	10	10	10	FF	64	09	5 A
01	5 A	01	5 A	01	00	38	0 F
0 F	0 F	05	01	05	01	05	01
00	38	10	10	10	00	19	09
FA	03	00	00	03	05	10	0 A
10	FF	01	0 C	AO	01	64	01
96	00	0 F	30	10	10	10	32
02	09	FF	3 F	10	10	10	FF
32	08	5 C	0 F	70	0 E	$\mathrm{A0}$	0 D
DC	0 C	28	0 C	28	0 C	68	$0 B$
D 2	$0 A$	46	$0 A$	$9 A$	09	22	09
22	09	AO	08	28	08	AE	07

PROGRAM 'S'

POKE 16531, x
RAND USR 16514
where x is the number of the sound required from table 2.

The sound POKEd to 16531 remains the same until changed. Therefore, if you wish to repeat the same sound, there is no need to repeat POKE 16531,x - all you need to do is repeat the line RAND USR 16514.

Fast repetition of single sounds can be used to give a different effect. For example, the following program uses the rifle shot (sound 50) to generate a machine gun sound:

70	POKE 16531,50
75	FOR D 1 TO 40
80	RAND USR 16514
85	PAUSE 1
90	NEXT D

Now type GOTO 70 and the computer will generate a burst of machine gun fire.

Table 2 gives the principal sounds that may be obtained, but there are many other interesting sounds which you can find by experimenting with other numbers not listed in this table.

HOW IT WORKS

IC6 is a fusible-link read-only memory (PROM) programmed with the data for all the on-board sounds and a basic octave of notes for music. This memory is accessed through the ports on IC1.

IC1 is a programmable sound generator (PSG), an AY-3-8910 which can be programmed to generate a wide range of sounds. Once data is written to this chip it produces and maintains the sound without continuous CPU maintenance, thus making it ideal for use with computer programs.

The PSG has three analogue outputs: outputs A and B are connected directly together and, via C1, connect to one channel of your amplifier; output C is connected via C2 to the other amplifier channel. The board will, therefore, give a dual image effect when used with a stereo amplifier. If you wish to use a mono amplifier, the analogue output C is connected directly to A and B.

IC3 and IC4a are used as an address decoder: the output of IC4a will be logic 0 when address lines A0, A1 and A4-A7 are $1 ; \overline{\mathrm{M} 1}$ must also be logic 1 . IC4b is used to provide a chip select signal for the PSG only when the Input/Output request (IORQ) is at logic 0 . Thus the output of IC4b will be 0 only when a read or write operation on the PSG is to be performed. Whenever the output of IC4b is logic 1, the outputs of IC5c and IC5d will be 0, BC1 aand and BDIR will both be 0 , and the PSG will be in the inactive state: see Table 2. (Since whenever it is deselected the 'inact' signal is sent, it is not necessary for the ZX81 program to send 'inact' to the PSG.)

IC5a and IC5b are used, together with IC5c and IC5d, to provide the necessary combinations of 0 and 1 for BC1 and BDIR. The output of IC4C drives the fusible-link PROM chip select input: this is to minimise the possibility of data bus contention between the PSG and the PROM should PSG port D accidentally be programmed as an output port, since IC4c output will only be 0 during a PSG read cycle.

The maximum clock frequency to the PSG is $\mathbf{2 ~ M H z}$. IC2 is a low power Schottky version of the 7493 counter and is used here to divide the ZX81 clock frequency by 2.
Next month we will conclude this project by giving full listings and explanations of software to play up to 833 chords of music; to devise your own sound effects; and to mix your effects with the on-board sounds.
TABLE 2

Sound N	Description	Continuous?	Sound N	Description	Continuous?
0	Silence	-	92	Mid blip	No
8	Cannon fire	No	106	High blip	No
9	Pistol shot	No	204	Musical blip	No
50	Rifle shot	No	57	Steam engine	Yes
64	Missile	No	145	Steam engine with whistle	Yes
18	Sonar	Yes	167	Train horn lower note	Yes
153	Explosion	No	178	Train horn upper note	No
190	Helicopter	Yes	32	Propellor aeroplane	Yes
28	Fog horn	Yes	39	Jet plane on the ground	Yes
29	Fog horn	Yes	134	Jet plane flying	Yes
21	Compressor	Yes	52	Mechanical hammer	Yes
99	Waterfall	Yes	49	UFO	Yes
101	Waterfall	Yes	131	UFO	Yes
121	Low bong	No	213	UFO	Yes
33	Mid bong	No	214	UFO	No
45	High bong	No	231	UFO	Yes
78	Low blip	No			

Fig. 2 Complete circuit diagram for the ZX81 sound board.
ETI

The 2001 sweeps the board at only £110*

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity - triangle waves - even a separate TL square wave output. Plus high- and low-level main outputs.
An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an AC signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immediate action - The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard *price excluding P\&P and 15% VAT number and your order will be in the post immediately or just clip out the coupon. Goods despatched within 48 hours.

Manchester Home Computer Show MIDLAND HOTIDL April 21/22/23

Your diary dates are:
Brighton May
Birmingham June
Nottingham September
Newcastle October
Cardiff December

Sponsored jointly by:
Personal Computing Today
ZX Computing
Computing Today
Home Computing Weekiy
Personal Software

At the Home Computer Shows will be a complete cross section of the hardware and software available to the home user. The emphasis is on the lower end of the price bracket with computers from $£ 50-£ 400$.

If you are interested in computers and what they can do for you then come along to our COMPUTER ADVICE CENTRE: experts will be on hand to give you impartial advice on equipment available.

Try out the machines in our own demonstration area and see programs running covering educational, games and small business applications.

There is a COMPETITION at every show to:

> WIN TWO COMPUTERS.

Win a computer for yourself as well as one for the school of your choice: free entry form with advance tickets. Also available at the show with the show catalogue.
ADMISSION $£ 2.00$ (CHILLDREN UNDER $8 \&$ O.A.P's FREE) AND IF YOU'RE A PARTY OF 20 OR MORE, THERE'S A 25\% DISCOUNT
Thursday 21 April '83 (12am-7pm) Friday 22 April '83 (10am-6pm) Saturday 23 April '83 (10am-6pm)

The Manchester Home Computer Show Midland Hotel. (Opposite Town Hall).

For advance tickets send cheque/postal order to: ASP Exhibitions
Argus Specialist Publications 145 Charing Cross Rd, London WC2H OEE Tel: 01-437-1002

DESIGNERS' NOTEBOOK

Who needs to bother winding miles of wire onto a bobbin when high voltages can be generated with some inverters and a handful of diodes and capacitors? Rory Holmes shows how it's done.

In this month's first Designer's Notebook we shall be looking at a variety of interesting voltage multiplier circuits that can be built using ordinary CMOS gates and common-or-garden $1 N 4148$ signal diodes. DC-to-DC converters for a number of applications became possible by simply driving voltage multiplier chains with an AC clock signal, again implemented with CMOS gates. The initial supply voltage can be multiplied both positively and negatively, to give for example a split rail op-amp supply from a standard 5 V TTI supply. Negative and positive voltage references used in analogue-to-digital conversion and other signal conditioning circuits can also be generated, as can general purpose high voltage bias rails.

By using a novel 'chain' of inverter gates to independently drive each node of a diode-capacitor ladder, some rather unique circuits result.

Chain Reaction

First, let's look at the usual multiplier circuits shown in Fig. 1a. These are normally used with rectifier-type diodes, low frequency $A C$ inputs (sine waves) from transformers, and electrolytic smoothing capacitors. At first glance there seems to be no common pattern between them, and little similarity to the multiplier chains used in TVs and other EHT power supplies.

Fig. 1 Standard voltage multiplier circuits.

Fig. 2 A CMOS doubler circuit.
However, in all cases the AC input waveform is fed via capacitors to appear at those circuit junctions marked ' A ' in Fig. 1a, while those junctions marked ' D ' will maintain a steady $D C$ potential relative to the earth point. We can thus redraw the circuits by connecting up the capacitors in two series chains (assuming their values are altered accordingly) and still preserve the same circuit action. One chain carries the AC signal, while the other accumulates the DC voltage shifts. Figure 1 b shows these redrawn circuits, which now appear as extensions of the standard ladder network. The doubler, of course, remains in its original form since it only has one set of capacitors.

Starting with the doubler, we can build a very simple DC-to-DC converter using one CMOS gate as shown in Fig. 2. The Schmitt inverter gate is configured as a square wave oscillator running at about 100 kHz - the multiplier capacitors C2 and C3 will therefore have a low impedance at this frequency, which is also within the switching speed capability of the 1 N 4148 s . For this reason, rectifier diodes such as the 1N4001, which have much slower switching speeds, cannot be used in these circuits.

The oscillator output at point ' A ' will therefore be switching between the 0 V and 10 V supply levels. When the output is at logic low, capacitor C2 will charge up positively (in the direction of the arrow) via D1. D2 is reverse biased and so effectively out of circuit. When point ' A ' goes high to +10 V the positive end of C 2 at ' B ' will be raised to +20 V . This reverse biases D1 and allows C3 to charge up through D2. The voltage on C3 is thus maintained at about +20 V less two diode drops (ie at 18 V 6) as the cycle repeats itself. This is known as a diode charge pump.

Building An Extension

This principle can be extended using exactly the same chainlike structure as illustrated in the positive and negative multipliers of Fig. 3. In both cases the inverter gates are cascaded and driven from a square wave

Fig. 3a A two-stage positive voltage multiplier (multiples by +3). b. A two-stage negative voltage multiplier (multiplies by -2).
oscillator at around 100 kHz . Each inverter gate contributes its own output current (a maximum of around 2 mA) via the capacitors into the multiplier chain: because of this, the available output current will always be the same no matter how many times the voltage is multiplied (two times in this case).

The positive multiplier output of Fig. 3a includes the initial positive supply potential, and so generates three times this voltage less the three diode drops of 0V7 each. The negative multiplier of Fig. 3b, on the other hand, is referenced to the ground rail, giving -2 times the voltage (again less the diode drops).

As mentioned before, all the diodes are 1N4148s: the multiplier capacitors $\mathrm{C} 2-4$ are all non-critical and may be anything from 10 nF to 100 nF . C4 may be a polarised tantalum capacitor of a few microfarads to provide further smoothing. Any type of CMOS gate which can be connected as an inverter could be used, as well as all the standard inverters, though the 4049B hex inverter offers slightly more output current. It's also possible to use the 74 C series types such as the 74 C 04 or 74 C 14 . Pin-outs for these chips are given in Fig. 4 and not on any of the circuit diagrams, since they differ from type to type.

The oscillator implementation and its frequency are also non-critical; you could experiment with anything

Fig. 4 Pin-outs for the standard hex inverter packages which may be used in the circuits given in this article.
from several kilohertz to several hundred kilohertz. Remember, though, that as the frequency decreases, the impedance for a given capacitor value will increase, so increasing the impedance of the multiplier output.

Table 1 lists out the different voltages you can expect from different chain lengths and supply voltages, based on the circuits of Fig. 3. The number of stages refers to the number of capacitors that are actively driven from inverter outputs. Using this table it becomes very easy to design a generator for any voltage requirement; the output voltage could be clamped to the exact level required using an ordinary zener diode regulator. But remember there isn't much current available, and as the output is loaded the voltage will decrease due to the supply impedance. The higher supply voltages will generally provide more output current.

Fig. 5A 110 V supply using one hex inverter IC.
As an example, Fig. 5 shows a longer multiplier designed to give 110 V and built using only one hex inverter IC, of the Schmitt trigger type (40106B). Using ceramic capacitors, this circuit could be built to a very small size.

Operating Principles

How do these multipliers actually work - the doubler circuit of Fig. 2 is straightforward, but what about the longer types? Voltage multiplier explanations are usually notoriously difficult to follow, let alone understand, and

Fig. 6 Waveforms for a two-stage positive multiplier (idealised for clarity with diode drops ignored).
we shall therefore adopt a more graphic approach. If we measure the voltages at the lettered points in Fig. 3a and plot them against time, we get the waveforms shown in Fig. 6. These waveforms have been idealised for clarity no account has been taken of the voltage drops due to the diodes in the circuit. From these it can be seen that the voltage across C2 (the difference between the waveforms A and B) is a constant 1 V , where V is the supply voltage, while that across capacitor C3 (between points C and D) is 2 V . We also know that the final output voltage across C 4 is 3 V . Moving down the chain towards the final output, then, we find that each capacitor maintains a DC charge which increases in integer multiples of the supply voltage. How so?

Consider capacitor C2 in Fig. 3a. At power-on it is discharged but when point A switches low, it charges up

TABLE 1

	CMOS SUPPLY VOLTAGE					
	5 V		10 V		18V	
OUTPUT POLARITY	+	-	+	-	+	-
NO. OF STAGES						
1	8.6	3.6	18.6	8.6	34.6	16.6
2	12.9	7.9	27.9	17.9	51.9	33.9
3	17.2	12.2	37.2	27.2	69.2	51.2
4	21.5	16.5	46.5	36.5	86.5	68.5
5	25.8	20.8	55.8	45.8	103.8	85.8
6	30.1	25.1	65.1	55.1	121.1	103.1
7	34.4	29.4	74.4	64.4	138.4	120.4

Table relating supply voltage and number of stages to the (unloaded) output voltage, for positive and negative output multipliers based on the circuits of Figs. 3a and 3b and allowing 0V7 for each diode drop.
to the supply voltage via D1 (neglecting diode drops). Point B is therefore at supply voltage. When point A switches high, then, point B is raised to twice the supply voltage. Point C must be at zero volts since it is the inverse of point A, so current flows via D2 (which is now forward biased) from point B into C3 until C3 is charged up to the voltage at B (ie twice supply). The next clock pulse takes point A low, so point B is at supply less the voltage that has leaked into C3, and C2 is topped up via D1 again. Meanwhile point C has switched to supply voltage, so point D is now at three times supply and D2 is reverse biased, preventing C3 from discharging back into C2. C3 can discharge into C4 via D3, however, so the voltage across C4 is maintained at three times supply.

It should now be clear that no matter what the length of the multiplier, each capacitor in the chain maintains a steady DC charge which equals that on the previous one plus the supply voltage, and each capacitor tops up the next one in the chain on each alternate half-cycle. Figure

Fig. 7 How multiplier voltages accumulate down the chain.

Fig. 8 Charging paths for an extended multiplier chain. The diagrams only show those diodes which are forward biased (conducting) during alternate half cycles of the drive waveform.

7a, for example, shows five stages of a multiplier chain driven by a square wave signal, while Figs. 7b and 7c use a waveform to represent the voltage levels at each capacitor node for each half of the cycle. The direction and voltage of the DC charges on each capacitor is also shown remember these are constant as shown by the graph of Fig. 6.

Looking at C1 and C2 in Fig. 7b we can see that the positive (top) end of $C 1$ will be at V volts (V is the supply voltage) while the positive end of C 2 is at 3 V volts (2 V of its own, raised up a further V volts at the CMOS output). Diode D2 will therefore be reversed biased and effectively out of circuit. For similar reasons C 3 will be at 3 V volts (less that which has leaked away) and can therefore be charged up via D3 from C2. On the other half cycle in Fig. 7 c , however, C 3 will be raised up to 4 V volts by the CMOS output, while C2 returns to 2 V . So this time D3 is reverse biased and will not conduct. C 1 is now raised to 2 V and can thus charge C2 via D2. The conducting and nonconducting parts of the circuit for each half cycle are shown in Fig. 8, which gives a much clearer illustration of the diode charge pump action.

The Appliance Of Science

Figure 9 shows the circuit of a split-rail power supply that generates $\pm 10 \mathrm{~V}$ from a 5 V supply input. It could beq

Fig. 9 A split-rail supply using one hex inverter package.
used to power low current op-amp circuitry and other CMOS circuits from a standard TTL power supply. Again, only one hex inverter pack is required and we recommend that the 4049 B is used with its slightly higher output current capability. The circuit takes advantage of the three cascaded inverters that drive the positive multiplier chain, by also using them to form a 'ring-of-three' oscillator. The multiplier chain is therefore self-oscillating!

The positive side in turn drives the negative chain of IC1d, e and f. From Table 1 we would expect the available output voltages to be +17 V 2 and -12 V 2 , which are then clamped to the $\pm 10 \mathrm{~V}$ levels by zeners ZD1 and ZD2. Series limiting resistors for the zener diodes are unnecessary due to the current-limitid output of the multiplier.

Figure 10 shows a variation on the previous circuit's positive multiplier section, using all six inverters to provide more output current at $\pm 10 \mathrm{~V}$. To achieve higher output currents, simply parallel the CMOS gates that drive the capacitor chain: the available currents will add together due to the nature of the CMOS output FETs. This technique is useful forCMOS operating at lowsupply voltages.

Figure 11 gives the circuit for a 24 -stage positive multiplier to generate a high-voltage, low-current supply. This could be used for a solid state 'megger' (high resistance meter and insulation tester). The 24 stages can be achieved using only four hex inverter packs, and will provide 433 V from an 18 V supply. This circuit illustrates the fact that the inverters may be wired up in any fashion so long as alternate capacitors receive opposite phases of the square wave.

The circuit will deliver at least 2 mA at 430 V ! - not lethal but pretty painful, so be careful. We suggest the addition of a 1 MO series resistor in the positive supply lead to limit the available current to about 400 uA . A 100 uA meter would provide suitable megohm readings.

Fig. 10 Paralleling inverter stages to give a higher current supply.

Fig. 11 A 433 V generator using a 24 -stage positive multiplier and an 18 V supply.

The new THANDAR SC110A represents a break through in Oscilloscope development. The SC110A is only $2^{\prime \prime}$ thick and weighs under 2 lbs yet it retains the standard features of a bench oscillosco

FULL-SIZED PERFORMANCE

- 10 MHz band width
- Full trigger facilities are provided including bright line and auto, with T.V. line and frame filtering
- RUNS ON ORDINARY hP11 (four)
batteries or rechargeables
- Bational extras

AC Adaptor 55.69 ; Rechargeable batteries E8.63; $\times 1$ Probe $£ 8.05$; $\times 10$ Probe $£ 9.20$; $\mathrm{x} 1 / \times 10$ Switched Probe f10.90; Carry Case E8.86.

PFM200A FREQUENCY

 METER- Pocket size - 8-Digit LED display Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$ - Resolution 0.1 Hz - Sensitivity typically 10 mV ms - Timebase accuracy 2 ppm - Battery life 10 hours © Frequency: 2 ranges, 4 gate times - Pational extras - AC Adaptor £5.69

LARGE S.A.E. Brings details of: Oscilloscope, Frequency Meters, Signal Generators, Function Generators, Pulse Generators, Analogue and Digital
Multimeters,

All prices înclude VAT. Official orders welcome. Mail order only, or callers by prior appointment. Barclaycard/Access welcome. Cash/cheque, etc., with order. Government and Educational Establishments official orders welcome

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Levolh VISA

RECONDITIONED
 TELEPHONES

Push Button Trimphones $\mathrm{E1}$
$+£ 1.80$ p\&p. 2 for $£ 28$. f2.50
Push Button 746 f 13.50 $£ 1.80 .2$ for $£ 25+£ 2.50$ Recent Style Dial Phones ${ }^{£ 4.75}+£ 1.80 .2$ for $£ 9$ $£ 2.50 .5$ for $£ 20+€ 5$
Seconds (in
Seconds (in good working
Class A
Class A (not too bad) $\mathrm{f3} .50+$ f 1.80 .5 for $\mathrm{f} 15+\mathrm{ff}^{\mathrm{f}}$
Class B (grotty)
f2 25 5 for $£ 9+55$

Desk-top Ten Way Manual Ex $\substack{\text { nange (key \& lamp uni } \\ \mathrm{f8}+\mathbf{£ 1} .80 \mathrm{P} \mathrm{\& P}}$

Older style black telephones, 63. ofdo as above. Our leaflet explains how to use G.P.O. phones
systems.

5 Digit Counters 48 V coil. Non resetable

UNISELECTORS. 50v, 4 Bank + Homing Bank, 25 way f3. 50
P.O. TYPE 4 pole jack plug with moulded lead and panel socket. ONLY f1

Various stabilised stabilised power supplies available -

FREE on request - Leaflet "D.I.Y. Telephone Systems and Automatic Exchange Design

LOW-COST, RUGGED TEMPERATURE CONTROL

HIGH QUALITY

TEMP. GAUGE $0^{3}-120^{\circ} \mathrm{C}$ Remote sensor on $38^{\prime \prime}$
capillary, panel mounting capillary, panel mounting
dial 55 mm dia dial 55 mm . dia. ONLY $£ 2.50$

16A 240V RANCO THERMOSTAT

Wide control range flow room temp. to over boiling poiny) Sensor on $22^{\prime \prime}$ capilliary. $\mathbf{E 2} .30$, including control knob RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$ 15A 240 V . Sensing coil on 41 in . capilliary pan mounting with reset button $\mathrm{E1} 1.20$
BUY ONE EACH OF ABOVE FOR E5.50
LIGHT DEPENDENT RESISTORS in olastic housina with window, heavy-duty lead. Simitar to ORP 61 You normally pay well oy
Only 30 p or f 2.35 for 10 .
GEARED Synchronous motor, 8 r.p.m., 240 V A.C. 3 Watt CR .
SOLENOID GAS VALVE. 240 V A.C. 5 P.S.I. suitable for non-corrosive fluids. $£ 2.20$
BULGIN 3 pin free plug \& panel socket, 2 A 240 V 50p
DIAL-OUT WITH YOUR COMPUTER. P.C.B. with custom chip, drive circuits and high-speed relays enables your computer to dial-out (with suitable interface). Ex-equipment. Tested. $\mathbf{£ 1 2}$ with explanatory notes.

L.E.M. SERVICES

22 Emscote Road,
Warwick
Warwickshire

ADD 50p P\&P ORDERS OVER £7.50 POST FREE unless stated otherwis

ALL ITEMS - MONEY BACK IF NOT DELIGHTED.

MODULES FOR SECURITY \& MEASUREMENT

- Bult--in electronk siren drives 2 loud speakers
- Provides exir and entrance delays rogether
- Batuery back-up with wickip charging tacility
- Operates wirh magnetic swirches u/sornc or

R unis

DIGITAL VOLTMETER MODULE DVM 314

Fully built \& tested

- Postive e negalive volidge with an iSD u 999 mV which is easily extended
- Requires unly sungle suppiy 7-12V
- High overall accuracy 0 1\% +1 dign
- Large bright 0.43 LED disslars

With this fully built and callibrined module a wide range of accurate equirment such as mullinieters,
 Fully guoranteed, the unit has bern supplied to electicily authorities. Government deparments. eit

Temperature Measurement Kit DT. 10
$£ 2.25$ + vat
Using the I.C. probe supplied. this kit provires a inear output of $10 \mathrm{Oriv} \mathrm{V}^{\circ} \mathrm{C}$ over the temperalure range from $10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ The
accurate digial thermometer
Power Supply PS 209
$£ 4.95$ + VAT
This fully built marns power supply provides two stabits sed isolated outputs of 9 V . 250 mA each The unit
UITtrasonic ALARM MODULE
US 4012
Fully built 8 tested
 kariues inely io be requiled when butlding an magnetic swicter. Whether used wiltionivi thesanic alarm modules or infrated uniss. a reali erces system can be consiructed dl a traction of with a lully explamatory Datu Sheet that makes irstallatun starght forwart the medule is lull lested and guaranteed.

- Stabilised oupul voltage for external units - 2 operating modes - tull atariza ant tampet and panic lacalily
\qquad - Separate relay cortiocis for sw ching external - Tesi broop fachiry

Siren Modul
SL 157
$£ 2.95$ + vat
icm a loud and penetraling shiding tone opera speakers to SPL of 110 db at 2 M
Contains an inhibit facility for use with sthop
circuils
Add VAT \& 50p post and packing to all orders.
Shop hours $9.00-5.30 \mathrm{p} . \mathrm{m}$.
(Wed. 9.00 - 1.00 p.m.)

Power Supply 8 Relay Units PS 4012 $£ 4.25+V A T$	Hardware Kit HW 4012
Provides a stabilised 12 V isutput and relay with 3A contacts. The unt is designed to operate one or two of the above ultasonic units. Fully built and tested.	A sutable ready-drilied case with the various mounting pillars. mains switch socket and nuts and bolts. Destgned to house the ultrasonic alarm module together with tis power supply. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$.
Siren Module	
	* ACCESSORIES *
Pioduces a loud and penetraling sliding tone operating trom 9-15V Capable of driving 2 off 8 ohm spreakers to SPL of 110 db at 2 M	3 -posirion Key Switch for use with CA 1250 supplied with 2 keys $£ 3.43$
Contains an inhibit facility for use with sthop lifting loops etc. or other break to activate circuis	Magnetic swich (with magnel) E1.17 $5^{\text {" Horn speaker for use with CA1250 }}$ $\mathbf{C 4 . 9 5}$ and SL157
Add VAT \& 50p post and packing to all orders.	RSEMED
Shop hours 9.00 - $5.30 \mathrm{p} . \mathrm{m}$. (Wed, 9.00 - 1.00 p.m.)	Dept: ETl15
Units on demonstration callers welcome, S.A.E. with alf enquiries.	21 Duke Street, Princes Risborough, Buck s. Princes Rishorough 108444 : 6326

01-452 1500 Tbehnomatic Lid 01-450 6597

WORD PROCESSOR 'VIEW' 16K ROM £52
TELETEXT ADAPTOR £195.00

ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK
BBC Model A £299 BBC Model B $£ 399$ including VAT plus $£ 8$ carr. Model A to Model B Fitting charge $£ 15$ Individual upgrades also available

PRESTEL ADAPTOR £90.00

 2nd PROCESSOR 6502 £170 2nd PROCESSOR Z80 £290 OFFICIAL $B \boldsymbol{B}$ (DEALER
CASSETTE RECORDER

Ferguson 3 TO7 £26.50 \& £1.50 carr Cassette Leads $£ \mathbf{3 . 5 0}$
Computer Grade Cassettes
$\mathbf{£ 0 . 5 0}$ each $\mathbf{£ 4 . 5 0}$ for 10 \& $£ 1$ carr

MONITORS

MICROVITEC 1431 14" Colour Monitor.. MICROVITEC 2031 20" Colour Monitor.. SANYO 14" Colour Monitor RGB Lead for SANYO RGB
SANYO 12" Hi Res Green Monitor
$. £ 249+£ 8$ carr. .£319 + £8 carr. . $£ 255+£ 8$ carr.
….............. 10

Q ACORN ATOM

Basic Built $£ 135$ Expanded $£ 175$ (carr $£ 3$ per unit) Atom Disc Pack $£ 99+\mathrm{f6}$ cart 3A 5V Regulated PSU $26+£ 2$ carr. Phone or send for our BBC Atom list.

PRINTERS

SEIKOSHA GP 100A
80 Cols 30 CPS
Full ASCII e GRAPHICS
$10^{\prime \prime}$ Wide paper
Now only $\mathbf{£ 1 9 0}+\mathbf{£ 6}$ carr. Ask for details on GP 250A
Parallel Printer lead for BBC/Atom to most printers $\mathbf{f 1 3 . 5 0}$ Variety of interfaces, ribbons in stock

FLOPPY DISC INTERFACE
Incl. 1.0 operating system $\mathbf{£ 9 5}+£ 20$ installation

Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES

Single drive $5 \not / 4 " 100 \mathrm{~K} £ 235+£ 6$ carr. Dual drive $51 / 4{ }^{\prime \prime} 800 \mathrm{~K} £ 799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K $£ 360$; 400K $£ 490 ; 800 \mathrm{~K} £ 610$

This is not a logic analyser or an oscilliscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0$ - it will print memory map, search for code, check dataline shorts and operates peripherals Microdoctor
complete with PSU.
Printer, probe cable and two configuration boards. £295.

MICRODOCTOR

I.D. CONNECTORS (Speedblock Typel

EPSON MX 80 and 100F/T3 MX 8080 CPS 80 cols 100100 CPS 136 cols Logic Seeking, Bidirectional, Bit Image Printing, 9×9 Matrix | Logic Seeking, Bi-directionad, |
| :--- |
| Bir Imege Printing, 9×9 | Bir Mmege Printing, $9 \times$

Marnix, Auto Underthe Tractior and Friction Feed,
Centronix 8 , Bit Parelle, MX $80 \mathrm{~F} / \mathrm{T} 3 \mathrm{f} 325$ $\mathrm{MX} 100 \mathrm{~F} / \mathrm{T} 3 \mathrm{E430}$ MX 100 F/T3 £430 (f8 Carr/Printer)

SOFTY II INTELLIGENT PROGRAMMER

The complete micro pron develop plete micro processority and commir to EPROMS or use in host computer by using sotty as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed. deleted or inserted and memory corkents can be observed on ordinary TV. Accepts most +5 v Eproms. Sotiy II complete with PSU, TV Lead and Romulator lead f 169

UV ERASERS UVIB up to 6 Eproms $\quad \mathbf{E 4 7 . 5 0}$ UVIT with Timer \quad E60.00 UV140 up to 14 Eproms 661.50 UV141 with Timer (Carr f2/eraser) All erasers are fitted with mains switches and safety interlocks

TRAINER KITS 6502 Junior Computer 1855.00 6802 Nancompl 1 E80.00 6809 Nancomp II $\quad 880.00$ 1802 Micro Trainer 664 E80 Manta £115 280 Menta (fully built and documented) Full details on request

BOOKS (No VAT p\&p £1)

CMOS Cook Book	$\mathbf{7 7 . 7 5}$
CRT Controller H/Book	$\mathbf{7 7 . 5 5}$

stock. As for our list.

GOMPUMFR WARH:OUSH TEE 'ALADDIN'S' GAVE OF COMPUTJR AND FLPCTRONIC EQUPMENT

HARD DISK DRIVES
 Fully refurbished Diablo/DRE Series 302.5 mb hard

 disk drive for DEC RKOS, NOVA TEXAS etcFront load $£ 550.00$ - Top load $£ 295.00$
PSU type ME3029 for 2 drives $£ 125.00$
DRE 44A 4000 A B $10 \mathrm{mb} 5+5$ all
£ 995.00 . Call sales office for details.

5 AMP MANTS FILTHRS

Cure those unnerving hang ups and data glitches
caused by mains interference. Matchbox size - Up to 5 amp 240 v load As recommended by the ZX81 news amp $240 \vee$ load As recommended 1 letter. Suppression Devices SD5A £5.95.

DISIME ©

The UKs FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive
DON'T MISS THOSE BARGAINS
GALL NOW, IT'S PRET

COMPUTER 'CAB'

cabinet with integral switched
mode PSU, Mains filtering, and twin fan cooling Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the PSU is fully SCreened and will deliver
massive $+5 v$ DC at 17 amps, $+15 v$ DC at 1 amp and -15 massive $+5 v$ DC at $17 \mathrm{amps},+15 \mathrm{v}$ DC at 1 amp and -
DC at 5 amps . The complete unit is fully enclosed with removable top lid, filtering, trip switch, "Power' and 'Run LEDs mounted on Alifront panel, rear cable entries, etc tc. Units are in good but used condition - supplied for 240 v operation complete with full circuit and tech. man Give your system that professional finlah for only £ 49.95 + Carr. Dim. 19^{+}wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high.
Useable area $16 " w 10.5 " \mathrm{~h} 11.5 " \mathrm{~d}$.
Also available LESS PSU with internal dim. 19 "w, $16^{\mathrm{n}} \mathrm{d}$.

COOLTHG FARS

Keep your hol partsCOOL and RELIABLE

Cooling tans Miniature 240 ve eutipment lan complete with Honger guard s.9.95.
very qulet running 240 vo voeration. NEW EE. BUHLER B9. 11.22 .8 .816 VDC micro
miniature reversible fan Uses
 servo motor for extremely high hirl iow
almost sient running and ourantioe 10,000
 E12.05 comploto with data.
MUFFIN.CENTAUS
MUFIN-CENTAMA Standard $4^{n} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$
 at $\{10.50$. 1000 's of other fans Ex Stock
Call for Details Post 8 Packing on ill fans $£ 1.60$

8" FLOPPY DISK DRIVES

Unbelievable value the DRE $71008^{\prime \prime}$ floppy disk drive utilise the finest technology to give you 100% bus compatibility with most drives available today. The only
difference being our PRICE and the superb manufactur difference being our puality! The 7100 single sided and 7200 double sided drive accept hard or soft sectoring IBM or ANSI standard formats giving a massive $0.8 \mathrm{MB}(7100) 1.6 \mathrm{MB}(7200)$ of storage. Absolutely manual and full 90 day warranty. Carriage and insurance $£ 9.75$.
$\mathbf{7 1 0 0}$ Single sided $£ \mathbf{2 2 5 . 0 0}+$ Carr. $\mathbf{7 2 0 0}$ Double sided $£ 295.00$ + Carr. Optional accessories: Full technical manual $£ 20.00$ alone $£ 10.50$ with drive. Refund of difference on drive purchase. DC and AC power connector and cable kit £8.45. 50 way IDC connector $£ 5.50 .50$ way ribbon cable $£ 3.20$ per metre

SUPER DEAL? NO - SUPER STEAL!!
 The FABULOUS 25CPS TEC Starwriter

Daisy wheel printer at a fraction of its original cost.
BRAND NEW AT
ONLYE499
Made to the very highest
spec. the TEC Starwitter
FP1 $500-25$ features a
heavy duty die cast
chassis and DIABLO
hery
print mechanisme
print mechanism giving
superb regostration an
orint quality Micro
print quality. Micro
processor electronics
ofter tull DIABLERCUME
compatibility plus Bi
directional printing 10 or 12 pitch, 136
or 163 chars per line ful widh
or 163 chars per line, full width
friction or single sheet paper, - order now or call sales office for more
friction or single sheet paper, - order now or call sales office for more
information and print sample. Please specity RS2
SU2 or CENTRONICS interface.
Supplied complete win ree dust cover and daisy wheel.
Optional extras: RS232 data cable E10.
£ 2.50 - Tractor feed option $£ 120.00$

RECBARGRABLE BATIERIES
CYCLON type D001 sealed lead acid crCLON type $2 v 5$ sealed will deliver over 300 amps on short circuit!! Brand new at only amps
SAFT VR

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems M ade to most stringent spec and designed to operate for 24 hrs per day. Units are made to the
CCITT tone spec. With RS232 i/o levels via CCI 25 way 'D' skt. Units are sold in a tested and working condition with data Permission MODEM 13 A compact, async, same size as telephone base. Up to 300 baud, full duplex telephone base. Up to 300 baut fuld
over 2 wires, but call mode only $£ 75.00$ MODEM 2B/C Fully fledged, up to 300 baud async. ANSWER \& CALL modes, auto answer,
auto switching ideal networks etc. Just 2 wire connection to comms line. £85.00
MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 baud transmit- 1200 baud receive. Auto answer. £130.00
MODEM 20-2 same as 20-1 but 75 baud recelve 1200 baud transmit. £130.00 MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circuit
hall duplex mode over 2 wires. $£ 130.00$ half duplex mode over 2 wires $£ 130.00$ Carriage. 13A £4.50. 2B/C \& 20 £9.50.
For more details contact sales of
D.C. POWER SUPPLY SPECLATS

Experimentors PSUEx-GPO unit alls silicon electronics. Outputs give $+5 v$ @ 2 amps

 +12v@ 800 ma. $12 v @ 800$ ma. $+24 \mathrm{v} @ 350$ ma. $5 v @ 50$ ma. 10 ating. Dim $160 \times 120 \mathrm{x}$350 mm . All outputs fully regulated and short circuit proot. Removed from working 350 mm . All outputs fully regulated and short circuit proot. Removed from working
Equipment. but untested. Complete with circuit. Transtormer guaranteed. Only
 CUSTOM POWERCOS5S $5 v$ @ 3 amp. Very compact unit dim. approx $60 \times 90 \times 190 \mathrm{~mm}$.
Semi open chassis, full crowbar overoltage protection. fested Ex Equipment.

 current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only $£ / 2.95$ + £2.00 pp.
PERPHER
PERIPHERAL SYSTEM SUPPLY. Fuly cased unit supplied in a Brand new or litite
 requiated. Fan cooled Supplied tested, with circuit $\mathbf{E 5 5} .00+\varepsilon 8.50$ car.
MOIIN FRAME SUPPLY. A real beety unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps +12 v @ 5 amps -12 v @ 10 amps. All output are fully regulated with crowbar overvoltage protection on he $5 v$ output Supplied with circuit and tested. Ex-Equip. 110 VAC input Only $E 49.95+$ carr.

66\% DISCOUNT

ELECTRONIC COMPONENTS

Due to our massive bulk purchasing programme which enables us to bring you the
best possible bargains, we have thousands of I.C.'s. Transistors, Relays. Cap's. P.C.B.'s best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's., P.C.B.'s, Sube sufficient stocks of any one item to include in our ads, we are packing all these have sufficient stocks of any one item of A LIFET/ME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always giveaway prices! Guaranteed to be worth at east alumes what you play
$2.5 \mathrm{klsf4.25}+\mathrm{pp} \mathrm{E} 1.25$
5kls $85.90+$ pp E1.80
2.5kis 125 + PpE1.25
10kis E10.25 + Pp E2.25

VIDEO MONITOBS

MOTOROLA 9" open chassis monito Standard 240 v AC with composite 75 ohm video input, bandwidth in excess of 18 mhz Monitors are ex equipment and although Unguaranteed they are all tested prior to screens Dim have no visible burns $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{n}$. Supplied complete with mains and input lead. ldea Zx81 etc or giving the tele back to the family!! Black and white phosphor $£ 35.00$ + £9.00 CASED
12" CASED. Made by the British KGM Designed for continuous use as a data
display station, unit is totally housed in display station, unit is totally housed in an
attractive brushed aluminium case with ON attractive brushed aluminium case wi OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much
attention was given to construction and reliability of this unit with features such a internal transformer isolated regulated DC supply, all components mounted on two fibre glass PCB boards - which hinge out for ease of service, many internal controls for linearity etc. The monitor accepts standard 75 ohm composite video signal via SO239
socket on rear panel. Bandwidth of the unit socket on rear panel. Bandwidth of the unit
is estimated around 20 Mhz and will display most nigh def graphics and 132×24 lines. Units are secondhand and may have screen burns. However where burns exist theyare only apparent when monitor is switched off Although unguaranteed all monitors are tested prior to despatch. Dimensions approx. $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by 11 " deep. Supplied complete with circuit 240 volt operation. OWIF $\mathbf{E 4 5} .00$ PLUS $£ 9.30$ CARR 14" COLOUR superb chassis monitor made by a subsidiary of the HITACHI Co. Inputs are TL. RGB with separate sync. and will plug direct into the BBC micro etc. Exceptional bandwid th with good definition. Brand new and guaranteed. Complete with full data \& circuit. 240 v

SEMICONDUCIOR 'GRAB BAGS'

Mixed Semls amazing value contents include transistors, digital, linear, I.C.'s triacs, diodes, bridge recs, etc etc. Alc. with mananteed brand new full spec. with facturer's markings, fully guaranteed $50+E 2.95100+E 5.15$.
TTL 74 Serles A gigantic purchase of an "across the board" range of 74 TL serie I.C.'s enables us to offer $100+$ mixed "mostly TL" grab bags at a price which tw or three chips in the bag would nnormall
cost to buy. Fully guaranteed all I.C.'s full cost to buy. Fuly guaranteed all.C.
spec. $100+\Sigma 6.90200+\Sigma / 2.30200+\Sigma / 9.50$

OLIVFMII THSOO REDUCED TO CLEAR

Complete input output terminal with integral8

 hole paper tape punch and reader. Unit as a cheap printer for a MICRO etc. 120 columns, Serial data i/a. Supplied complete with data, untested, unguaranteed $\mathbf{\Sigma} \mathbf{5 . 0 0}$ with data+ E 11.50 carr.

> DBFLAT EEECTRGHISS All prices quoted are for U.K. Mainland, paid cash with order in Pounds Stirling PLUSVAT. Minimum order value $\mathbf{2} \mathbf{2 . 0 0}$, Minimum Credit Card order $£ 10.00$. Minimum BONA FIDE account orders from Government depts, Schools, Universities and established companies E20.00 Where post and packing not indicated please ADD 60p + VAT Warehouse open Mon-Fri 9.30-5.30. Sat 10.15-5.30 We reserve the nght to change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.

REAL TIME CLOCK/CALENDAR

It seems strange that many microcomputers cannot tell the time of day or the date when such a facility can be so useful to the programmer. Never fear, ETI is here, with a simple peripheral for 6502-based machines. Design by M.D. Bedford

Programmers who are familiar with mainframe or minicomputers will probably be aware that it is generally possible to access the actual time and date from within a program. Such a facility is known as a real time clock and is often not available on the more modest microcomputers. It is not difficult to see that a real time clock would enhance any system applications range from control programs, to the determination of the elapsed time between occurrences, to giving listings that professional touch by using the time and date in the header.

Two approaches are possible for the implementation of a real time clock - software or hardware. Traditionally, a software solution has been used in which a hardware interrupt is generated at regular intervals, probably every 20 milliseconds, these being counted by the interrupt handling routine which then calculates the time and date. Such a system obviously requires initialising and would prompt the user for the time and
date each time the computer was switched on (our own word processor uses this system - Ed). Quite apart from the possible inconvenience, this method is probably unsuitable for most microcomputer users as it would require modification of the monitor program in ROM to prompt for the time and date. On the other hand, it is possible to devise a hardware alternative with battery back-up which is transparent to the system when not being accessed and doesn't lose the time and date on power-down of the main system.

For these reasons a hardware approach is presented here. The design is primarily intended for the Tangerine Microtan system, the PCB given here being of such a size that it will plug directly into the system rack. From an electronic point of view, however, there is no reason why the board may not be used with any 6502-based computer.

Functional Description

The real time clock, which may be configured to occupy any 16-byte block within the Tangerine

A bird's eye view of the completed project.

I/O area, has 16 registers as specified in Table 1. It will be noticed that 12 of the registers are used to store the time and date, two registers being used to store (in BCD format) any number which may take a value greater than nine. For example, the value of the minutes is calculated as (10*REGISTER 5) + REGISTER 4. Of these 12 registers, registers 1-3 are read-only, these 'seconds' registers being automatically set to zero on starting the clock.

Each time the clock is updated, ie every tenth of a second, a flipflop is set, writing a value of 15 to all the readable registers to indicate that an update has taken place since the last read. Reading a register under these conditions resets the flip-flop so that a further read will produce a valid result.

This board may also be used to generate interrupts at regular intervals, this function being controlled by register 15 as described in Table 2. Switch SW2 may be used to disable interrupts, a facility which is especially useful in view of the fact that this board does not reset at switch-on.

The remaining registers are write-only and have various control functions. Register 0 should have a value of 0 written to it to select non-test mode for normal operation. A value of 1, 2, 4 or 8 should be written into register 13 to indicate leap year, leap year +1 , leap year +2 , or leap year +3 respectively. A value of 1 written to register 14 will start the clock, whereas a value of 0 will stop it. Switch SW1 gives the board write-proteciton, hence obviating the accidental overwriting of the time and date once initialised. This facility does not affect register 15 so that interrupts may still be selected when the

Fig. 1 Circuit diagram of the real time clock/calendar. Non-Microtan owners will find a circuit to generate the IO signal in last month's ETI.
board is write-protected. Both switches are mounted so that 'down' selects the enabling of the appropriate function.

The battery back-up facility allows data to be retained when the computer is not switched on, hence avoiding the need to initialise the clock at power-on. The time and date will be retained for about three months with a fully charged battery and a minimum of one hours use every nine days will ensure that the battery remains in a state of full charge.

Construction

If the printed circuit board layout presented here is adhered to,
construction should present no difficulties. Since the board is of a single-sided design, a number of wire links need to be fitted as shown on the component layout diagram. Sockets should be used throughout for the integrated circuits. It should be noted that the MM58174 IC is fabricated in CMOS and accordingly the usual precautions of not touching the pins of the IC and not soldering the board while the IC is in its socket should be adhered to.

We suggest that DIL headers plugged into DIL sockets should be used for the wiring of the selectable address links. A 16 -pin and an 8-pin socket should be used to make up the 24 -pin by $0.3^{\prime \prime}$ socket used for
these links. The required start address should be set up as follows: the start of the board is 16^{*} (the binary number represented by links 1-6) from the start of the Tangerine I/O area, where link 1 is the least significant bit. Making links a and b gives a 0 , making link c gives a 1 . So, for example, the following links will set up the board to start at 48 bytes from the start of the I/O area: link $6 a b$, link $5 a b$, link $4 a b$, link 3 $a b$, link 2 c , link 1 c . If the board is to be constructed to a different layout to suit non-Tangerine systems, the only points to be borne in mind are that C2, C3 and C4 should be well distributed around the board and that XTAL1, CV1 and C5 should be mounted close to IC7.

HOW IT WORKS

The heart of the circuit, IC7, is the MM58174 real time clock which reads and writes four bits of data onto DB0-DB3. ALthough not absolutely necessary (since the top four bits could be masked out by programming), a neat hardware solution is provided by the use of IC8 to zero DB4-DB7 during read operations. The circuitry comprising IC1, IC6 and the DIL links gives a chip select for IC7 and IC8 when an address in the range selected by the links is accessed.

Since the MM58174 is specifically intended to interface with microprocessors such as the 8080 or Z80, the circuitry comprising IC3 and most of IC5 is required to generate the NRDS and NWDS signals from the 6502 R / \bar{W} and $\phi 2$. Hence write protection
may be provided by blocking NWDS when SW1 is in the closed position. IC4 is used to detect when register 15 is being addressed (A0-A3 all high) and under these circumstances overrides the write protection.
IC2 is to buffer A0-A3 - in fact, the whole circuit is designed to present no more than one TTL load to any bussed signal.

D1 is used to pass the +5 V supply to IC7 when it is present, the battery being trickle-charged through R2 under these conditions. When the +5 V supply is not present, D1 prevents the battery from discharging through the power supply and IC7 is supplied with sufficient voltage to operate in standby mode via D2.

TABLE 1

List of Real Time Clock Registers

Reg No Function

Access Mode
PARTS LIST

TABLE 2

DESCRIPTION OF INTERRUPT MODES

Function

Value in Register 15
no interrupts
0 or 8
single interrupt after 60 seconds
repeated interrupts at 60 second intervals
single interrupt after 5 seconds
repeated interrupts at 5 second intervals
single interrupt after 0.5 seconds
repeated interrupts at 0.5 second intervals

Fig. 2 Component overlay for the real time clock.

Programming

The following BASIC program is used for initialising the real time clock/calendar. The board should be write-enabled before running the program - however, if this is not done the user will be instructed to do so by the program. The program will fully validate the information given before writing it to the clock, to reduce the likelihood of human errors. We suggest that a time and date a few minutes ahead of the actual time is entered, the RETURN following the day of the week request being pressed exactly as this time arrives.
10 REM . . .MM58174 REAL TIME CLOCK INITIALISATION PROGRAM
20 DEF FNC $(I)=\operatorname{VAL}(M I D \$(T D \$$, I, 1))
$30 \operatorname{DEF}$ FNN $(\mathrm{I})=10 *$ FNC(I) + FNC($1+1$)
40 DIM DM(12)
50 DATA $31,28,31,30,31,30$, $31,31,30,31,30,31$
60 FOR I= 1 TO 12: READ DM(I):NEXT I
70 PRINT "MM58174 INITIALISATION"
80 INPUT "ENTER START ADDRESS OF BOARD'; AD
90 POKE AD, 0:REM . . . NON TEST MODE
100 POKE AD + 15, 0:REM... DISABLE INTERRUPTS
110 POKE AD + 14, 0:REM . . . STOP CLOCK
$1201=\operatorname{PEEK}(A D+4): 1=\operatorname{PEEK}(\mathrm{AD}+4)$
$130 \mathrm{~J}=15$ AND ($\mathrm{I}+1$): POKE AD + 4, J
$1401=\operatorname{PEEK}(A D+4)$
150 IF I = J THEN 180
160 PRINT "WRITE ENABLE REAL TIME CLOCK - RETURN WHEN DONE'; :GET A\$
170 GOTO 120
180 INPUT "ENTER TIME AND DATE IN THE FORM HH MM DD/MM/YY'; TD\$
$190 \mathrm{HH}=\mathrm{FNN}(1)$
200 IF $\mathrm{HH}<0$ OR $\mathrm{HH}>23$ THEN 180
210 POKE AD + 7, FNC(1): REM . . . HOURS * 10
220 POKE AD + 6, FNC(2): REM . . .HOURS
$230 \mathrm{MM}=\mathrm{FNN}(4)$
240 IF $M M<0$ OR $M M>59$ THEN 180

250 POKE AD + 5, FNC(4):REM . . .
MINUTES * 10
260 POKE AD + 4, FNC(5):REM . MINUTES
$270 \dot{Y} Y=F N N(13)$
280 IF YY<0 OR YY > 99 THEN 180
290 YR =
$2 \uparrow(3-(Y Y-4 * \operatorname{INT}(Y Y / 4)))$
300 IF YR $=8$ THEN
DM $(2)=29:$ GOTO 320
$310 \mathrm{DM}(2)=28$
320 POKE AD + 13, YR:REM . . . YEAR STATUS
$330 \mathrm{MM}=\mathrm{FNN}(10)$
340 IF MM < 1 OR MM >12 THEN 180
350 POKE AD + 12, FNC(10):REM MONTH * 10
360 POKE AD + 11, FNC(11):REM ... MONTH
370 DD $=\mathrm{FNN}(7)$
380 IF DD <1 OR DD $>\mathrm{DM}(M M)$ THEN 180
390 POKE AD + 9, FNC(7):REM . . . DAY * 10
400 POKE AD + 8, FNC(8):REM . . . DAY
410 INPUT "ENTER DAY OF WEEK (1-7, $1=$ MONDAY $)^{\prime \prime}$; DW
420 IF DW <1 OR DW >7 THEN 410
430 POKE AD + 10, DW:REM . . . DAY OF WEEK
440 POKE AD + 14, 15:REM . . . START CLOCK
450 PRINT "WRITE DISABLE REAL TIME CLOCK"
460 STOP
470 END
To access the time and date from within a program, the following BASIC subroutine may be used: a few words of explanation are probably appropriate. Line 1040 clears the update flip-flop by reading the clock once. The following two lines then loop until a value of 15 is read, indicating that an update has just taken place and that a tenth of a second is available to read the registers before the next update. It is the requirement to read 11 registers in this 100 milliseconds time slot (in order to avoid the possiblity of an update occurring between the reading of two registers) which accounts for the strange appearance of much of the rest of the subroutine. The inherent slowness of BASIC on an eight-bit microcomputer dictated the
avoidance of FOR-NEXT loops, subscripted variables and numerical constants in the time-critical portion. The routine returns with numeric values of seconds, minutes ... months in R2-R7 respectively, an ASCII representation of the time in TM\$ and an ASCII version of the date in DT\$.
1000 REM . . .MM58174 READING ROUTINE
$1010 R 2=A D+2: R 3=A D+3: R 4=$ $A D+4: R 5=A D+5$
$1020 \mathrm{R} 6=A D+6: R 7=A D+7: R 8=$ $A D+8: R 9=A D+9$
$1030 R A=A D+10: R B=A D+11:$ $R C=A D+12$
$1040 \mathrm{Z}=\operatorname{PEEK}(\mathrm{AD}+2)$
1050 Z $=\operatorname{PEEK}(A D+2)$
1060 IF $Z<>15$ THEN 1050
1070 R2 = $\operatorname{PEEK}($ R2 2$):$ R3 $=\operatorname{PEEK}(R 3)$: R4 $=\operatorname{PEEK}($ R4 $)$
1080 R5 = PEEK (R5):R6 = PEEK (R6): R7 $=$ PEEK (R7)
1090 R8 = $\operatorname{PEEK}($ R8 $):$ R9 $=\operatorname{PEEK}(R 9)$: RA $=\operatorname{PEEK}($ RA $)$
$1100 \mathrm{RB}=\operatorname{PEEK}(\mathrm{RB}): \mathrm{RC}=\operatorname{PEEK}(\mathrm{RC})$
1110 TM $\$=\mathrm{CHR} \$(48+\mathrm{R} 7)+\mathrm{CHR} \$$ (48 + R6) +" $:^{\prime \prime}+\mathrm{CHR} \$(48+\mathrm{R} 5)$ + CHR $\$(48+$ R4)
1120 TM\$ = TM $\$+{ }^{\prime \prime}:{ }^{\prime \prime}+$ CHR $\$(48+-$ R3) + CHR $\$(48+\mathrm{R} 2)$
1130 DT $\$=\mathrm{CHR} \$(48+\mathrm{R} 9)+\mathrm{CHR} \$$ $(48+\mathrm{RB})+{ }^{\prime \prime}$ " $+\mathrm{MM} \$(\mathrm{RB}+$ 10*RC)
$1140 R 2=R 2+10^{*} R 3$
$1150 \mathrm{R} 3=\mathrm{R} 4+10^{* R 5}$
1160 R4 $=$ R6 $+10^{* R 7}$
1170 R5 $=R 8+10 * R 9$
1180 R6 = RA
$1190 R 7=R B+10^{*} R C$
1200 RETURN
Prior to calling the above subroutine, the following portion of program should be executed to store the names of the months in the array MM\$:
10 DIM MM\$(12)
20 DATA "JANUARY"
"FEBRUARY", "MARCH",
"APRIL", "MÁY", "JUNE"
30 DATA "JULY", "AUGUST",'
"SEPTEMBER", "OCTOBER",
"NOVEMBER"" "DECEMBER"
40 FOR $N=1$ TO 12: READ
MM $\$(\mathrm{~N}):$ NEXT N

BUYLINES

The MM58174 real time clock/calendar IC is available from Cricklewood Electronics, Technomatic or Watford Electronics. The PCB-mounting switches and Nicad battery might be a bit tricky to find unless you have industrial contacts, but non-PCB types could be used and wires taken to the PCB pads; there's enough room on the PCB, which is available from our PCB Service as usual. See page 87. The Euro connector is stocked by Watford Electronics.

Play the AMBIT numbers game

The long awaited implementation of on－line order processing is with us at last，and whilst this means that orders for in－stock items can now be processed more efficiently，it also means that orders should be submitted using stock codes for best results．Our current catalogue（ 75 p ）includes all order codes（watch out for the new expanded Spring edition），but here＇s an abstract from some of the more popular lines to use as a quick reference

Remember that you can also access our catalogue via REWSHOP on REWTEL，which now includes on－line current price and delivery information．You need a 300 baud MODEM and RS232 terminal， （various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics World）．

Prices shown here exclude VAT，and the P\＆P charge is currently 60 per order（unless otherwise indicated）．Remember that our tele－ sales service operates with human beings（not＇dumb＇machines） from 8am to 7pm（and frequently later）Monday to Friday，and 9am to 8 pm on Saturdays．REWSHOP operates 24 hours a day， 365 days a year with full price and delivery information

Ambit international
200 North Service Road Brentwood，Essex CM14 4SG

Telecom directory： Consumer 0277－230909 Industrial 0277－231616 Telex 995194 AMBIT G DATEL 0277－232628

R\＆EW

気気事

Could the end be in sight for semiconductors? Once again ETI gets a world exclusive, as Owen Bishop describes the revolutionary technology which is poised to take us through to the 21st Century.

It seems an age since the Gemini spaceflights of the middle nineteen-sixties, yet then was born an entirely new concept in electronics which has only just been brought to production stage. Almost weekly we hear of spin-offs from space-age technology, but this is one which threatens to render obsolete almost all of today's circuit designs. Opto-technology, surface acoustic wave devices and bubble memories are out of the running before they have hardly begun to crawl.

FEVAs, Field Effect Voltage Amplifiers, were born in the sixties, grew up in the seventies and, in the eighties, are ready to take over all the functions that are performed by semiconductor and related devices today. Their full designation is SCFEVAs, which gives a clue to their origin, for this is an abbreviation of Space-Channel Field Effect Voltage Amplifiers. The space channel will soon replace all the N-channel and P-channel devices we take for granted nowadays.

Serendipity

No, this is not the acronym for yet another complex electronic wonder but a word which means 'making unexpected discoveries by accident'. FEVAs began this way during one of the early space-walks of the Gemini missions. The immense potential of the discovery was realized immediately by astronaut Lee Old, but it is only today that the news is beginning to surface.

It happened like this. During their second spacewalk, the astronauts were engaged in a capsule-service practise routine. Their task was to insert a plug of expanded polystyrene into a recess in the rear of the capsule in order to enhance its aerodynamic qualities in readiness for re-entry into Earth's atmosphere. You may think that expanded polystyrene is an unlikely material for this purpose but it has several features in its favour. Its strength-to-mass ratio is one of the highest, a factor of immense importance in space travel. As any handyman knows, another advantage of expanded polystyrene is that it is easily cut, and as any handyman also knows, the best way of cutting it is to use a hot wire. The extremely high thermal insulating properties of expanded polysteyrene mean that a hot-wire cutter functions perfectly, even in the sub-zero temperatures of outer space. So it was to be a neat and well-thought-out manoeuvre, but then the unexpected happened.

Blowing In The Wind

Whenever Lee switched on his hot-wire cutter, his colleague 'Gig' Potter was alarmed by intense activity on the Solar Wind Detector. This was an on-board experiment devised by the Department of Applied Physics of the University of Minniwaukee, the purpose of which was to monitor the streams of electrons being repelled from the Sun's chromosphere. When the wire was hot, the effect was like a solar gale! Lee immediately realized that there must be some kind of interaction between his hot wire and
the Solar Wind Detector. Electromagnetic interference was immediately ruled out, for the wire was not coiled and, in any event, was powered by direct current.

It must be that electrons from the atoms of the wire were being energised by the heating, were escaping from the confines of the wire and passing to the Solar Wind Detector. Maybe there was an electric field caused by the friction between Lee's space-gloves and the expanded polystyrene which was accelerating the electrons toward the detector.

Back To Earth

We hear a lot about taking Earth-bound manufacturing technologies to space to gain the advantages of the conditions there, but this is a case of bringing the conditions of space down to Earth. Lee's penetrating insight told him that the key to implementing his discovery was to create space conditions on Earth, and the solution to this problem was blindingly simple. Take a suitable container and suck the air out of it! The space channel is, in fact, known in everyday parlance as a vacuum. Lee resigned his commission in order to devote himself full-time to promoting the commercial aspects of his discovery. But Lee was back on Earth in more senses than one! He soon came up against the incredulity and stultifying caution of the financial world, at whose door must be laid the blame for the excessive delay in bringing to the human race the farreaching benefits of this new technology.

The FEVA Diode

Curiously enough, one of the key devices in this new range does not in fact amplify voltages. It mirrors the original space-walk conditions: enclosed in a sealed glass capsule (Fig. 1) is a hot wire and a metal plate. When the wire is heated by passing a current through it, and a potential difference is applied between the wire and the plate, electrons flow from the wire to the plate across the space channel. We have an electric current. As in the original scenario, the plate (corresponding to the solar wind detector) is unheated, so electrons do not flow from the plate to the wire. Current flows in only one direction, just as at a PN junction in semiconductors. These devices have taken their name from their semiconductor equivalent device and are known as FEVA diodes. But whereas we have to use highly purified silicon and rare metals such as antimony to manufacture a semiconductor device, the FEVA needs nothing but sweet nothingness to provide its conducting channel. Apart from the low-cost metals used for making the wire and plate, the FEVA is constructed entirely of re-cycled glass and plastic.

The story of the terminal pin design is an amusing one. Lee was looking for something to hold his prototype FEVA diode when he came across a handy four-pin socket which had resided for years unused in his junkbox (Fig. 2). He had never known the original purpose of this socket, for it had been in the box when it was donated to him by

Fig. 1 The prototype FEVA diode. The base is of formaldehyde-phenol plastic (known as Bakelite) and is not to be confused with the base of a transistor.
his grandfather. It suited the present purpose well and, such is the way of things once they have been found to suit, there was no real incentive to re-design the socket for later devices. The novel 'kite' configuration of the pins offers many advantages over the old-fashioned DIL array. As many electronics hobbyists known to their cost, it is so easy to insert the IC the wrong way round, but this is quite impossible with a FEVA.

Field Effect Devices

If the FEVA diode is the counterpart of the semiconductor diode, the basic FEVA device typified by the PM2DX (Fig. 3) is the equivalent of the field effect transistor. The so-called 'grid' is a sheet of wire gauze cunningly introduced by Lee between the wire and plate to modulate the electric field and so regulate the flow of electrons in the space channel. A very small change in the potential of this plate has a significant effect on the current flowing through the device, simulating the effect of gate potential in a conventional FET, though the mechanism is somewhat different and at present less well understood. A resistor placed in series with the plate (or anode as it is now called, referring of course to the corresponding anode terminal of the semiconductor diode) develops a useful change of potential running to several tens of volts. Incidentally, these devices work at high voltages, levels that would reduce the ordinary FET to a bead of charred silicon!

Integration

No sooner had the initial designs been proven in extensive laboratory and field trials than the logical follow-up was to put more than one device in the same capsule. An early example is the ECH21 frequency converter (Fig. 4), but already the OEMs, eager for the rapid and profitable returns that this new technology will generate for many decades to come, are pressing ahead with mind-boggling developments.

The first commercial product incorporating the new range of miniaturized FEVAs is to be launched in April 1983. This is a digital time-piece of elegant and sizable proportions. No need for the short-sighted to put on their specs to read this one! It comes with a durable PVC backpack for the battery power supplies, with a choice of embroidered shoulder straps for the ladies. Those of you who have a half-acre building-plot to spare and have planning permission for a five-storey block, will be pleased to know that the first 1-kilobyte FEVA-technology personal com-
puter is due to be launched in April 1984. The installation expenses may readily be recouped, for it incorporates heat-exchangers which may be connected as a thermal source for your local district-heating scheme.

In the meantime, hobbyists can throw away their magnifying glasses and turn to the man-sized technology of the future. Mauldin Electronics Ltd and Armpit International are both marketing a hobbyist familiarization conversion kit which includes an assortment of FEVAs, 3 kg of FEVA sockets, four square metres of 14 swg aluminium sheet for mounting the FEVA sockets ('chassis' is the newly coined term), a 50 W soldering iron with 8 mm bit, an oven-glove for use in handling hot FEVAs and a colourful but comprehensive wall-chart on first aid for electrocuted persons. Our own sister magazine, Spam Radio Today, is hoping to publish details of a transceiver project using these devices.

Coming Of Age

The heady days of the development era of the FEVA are over. The name itself, harking back to the sixties, is nowadays thought to be too flippant for a technology which is to bring Britain back to world domination in the

Fig. 2 Yet another type of socket to add to the massive range we already have. Known as the UX4, it is the new standard socket for FEVA diodes, and is available in a range of attractive colours: black, brown, grey or buff.
electronics of the twenty-first century (and beyond?). There is a strong move afoot to rename FEVAs even before their first name becomes a byword to the man in the street. For one thing, with the advent of the Shuttle, space technology is becoming commonplace and no longer excites the imagination as it once did. The new name for this technology firmly faces facts, replacing 'space channel' by 'vacuum'. So if you never hear anything more about FEVAs, the wonder of our age, keep a sharp look-out for their new designation - Vacuum Linked Voltage Expanders. The new name is sticking well and already the back-room boys have affectionately shortened this to 'VALVE'.

Fig. 3 (Left) Pin-out schematic of the PM2DX, the basic FEVA amplifier.
Fig. 4 (Right) Pin-out schematic of the ECH21, the FEVA technology frequency counter. Is this the first step towards a computer in a capsule?

Who but the people who made the micro possible could help you understand it?

TheTexasInstruments Electronic Library.

An in-depth series in understanding today's world of electronics.

The Understanding Electronics Series was specially developed and written to give you an in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our introductory offer and choose the book, or books you want from the titles below. You'll find whole new worlds of advanced technology unfolding before you.
Everything you've always wanted to know about:

1. Understanding Electronic Control of Energy Systems. 1 1st edition. Ref. LCB 6642 . Covers motor, generator, power distribution, heating, air conditioning, internal combustion engine, solar and nuclear systems. Softbound 272 pages. $£ 3.95$.

2. Understanding Electronic Security Systems.

1st edition. Ref. LCB 7201. A complete guide covering the basics of hard wired, photosensitive, infrared, ultrasonic and microwave systems and their use in different applications. Softbound 128 pages. $£ 1.95$.

3. Understanding Solid State Electronics.

3rd edition. Ref. LCC 3361 . The principles of solid state theory. It explains electrical movenent, with intermediate tuition on the applications of solid state devices. Softbound 282 pages. $£ 3.95$.
4. Understanding Digital Electronics. Ist edition. Ref. LCB 3311. Describes digital electronics in easy-to-follow stages. It covers the main families of digital integrated circuits and data processing systems. Softbound 260 pages. £3.95.
5. Understanding Microprocessors. Ist edition. Ref. LCB 4023. An in-depth look at the magic of the solid state chip. What they are, what they do. Applications of 8 -bit and 16 -bit microprocessors; and design from idea to hardware. Softhound 288 pages. £3.95.

6. Understanding Computer Science. 1 st edition. Ref. LCB 5471. This book tells you in everyday English how today's computer has been developed, what goes on inside it, and how you tell it what to do. Softbound 278 pages. $£ 3.95$.

7. Understanding Communications Systems.

1st edition. Ref. LCB 4521. An overview of all types of electronic communications systems. Softbound 282 pages. £3.95:
8. Understanding Calculator Maths. 1st edition. Ref. LCB 3322

Brings together the basic information - formulae, facts, and mathermatical tools-you need to "unlock" the real power of the hand-held calculator. Soffbound 230 pages. £3.95.
9. Understanding Optronics. ist edition. Ref. LCB 5472.

Optronics is the application of light and electronics to perform a wide range of useful tasks. From car headlights to missile guidance systems. Softbound 270 pages. £3.95.

10. Understanding Automotive Electronics.

Ist edition. Ref. LCB 5771. Learn how electronics is being applied to automobiles. How the basic mechanical, electrical and electronic functions and the new microprocessors and microcomputers are being applied in innovative ways for vehicle drive train control, motion control and instrumentation. Softbound 288 pages. $£ 3.95$.

How to order

Fill in the coupon below or if someone else has already used it, simply: 1. List reference numbers and quantities required.
2. Calculate total order value. Add $£ 1.50$ for postage and packing. 3. Send the list, plus your cheque payable to Texas Instruments Ltd, PO Box 50, Marker Harborough, Leicestershire.
Allow 30 days for delivery.

Texas InsTRUMENTS

To: Texas Instruments Limited, PO Box 50, Market Harborough, Leics. Please send me the following publications:

Free title choice: Understanding
I enclose a cheque for $£$
Name
Company (if any)
Address
Registered offices, Texas Instruments Lrd. Manton Lane, Bedford MK41 7PA
Registered number: 574102 England.

Sinclair ZX Spectr

16Kor 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics... From only ± 125 !

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing £ 125 ! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or' a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly bemoving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now- is fully compatible with the $Z \times$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the

 Sinclair ZX Spectrum- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard-all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers $Z X$ Spectrum owners the full ASCll character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing by providing mass on-line storage.

Each Microdrive can hold up to 100K bytes using a single interchangeable storage medium.

The transfer rate is 16 K bytes per second, with an average access time of 3.5 seconds. And you'll be able to connect up to 8 Microdrives to your Spectrum via the ZX Expansion Module.

A remarkable breakthrough at a remarkable price. The Microdrives will be available in the early part of 1983 for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt-and we have no doubt that you will be.

nclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR.			Order
aty	Item	Item Price $\boldsymbol{£}$	$\begin{aligned} & \hline \text { Total } \end{aligned}$
	Sinclai	125.00	
	Sinclair	175.00	
	Sinclai	59.95	
	Printer	11.95	
	Postag	2.95	
		4.95	
		Total £	
Please tick if you require a VAT receipt \square *I enclose a cheque/postal order payable to Sinclair Research Ltd for £ *Please charge to my Access/Barclaycard/Trustcard account no.			
\qquad			
Signature			
PLEASE PRINT			
Name:Mr/Mrs/Miss $\mid \ldots \perp \perp \perp$			
Address			

FREEPOST- no stamp needed. Prices apply to UK only. Export prices on application.

STAGE LIGHTING PART 3

Design by David Colven and Ian Cleverley.

Setting Up

Set SW5, the manual/auto switch, to manual for the channel designated ' 0 '. Check that the master blackout switch is off, and that RV1 for that channel is set to minimum (the manual "slide pot). Set the speed-up switch SW4 to off, and turn PR8 to minimum. Now switch on the mains and set PR9 to midposition. Slide RV1 to maximum and adjust PR7 for maximum light output. Then slide RV1 to minimum and set PR8 to give minimum light output (the bulb should just glow). Repeat these adjustments until the light glows at the minimum setting of RV1 and is full on at the maximum setting.

To set up the auto-fade units, first set SW5 for the channel to automatic, with RV1 at minimum. Set PR6 on the channel to be calibrated to minimum and set the scene select switches to ' 00 '. Now, using the keyboard, program the channel, ' 00 ', the lighting level, ' 0 ', and the time duration, ' 37 '. Press the enter button; the display should now read '000 37'. Enter the following:

SCENE	DATA
01	00137
02	00237
03	00337
04	00437
05	00537
06	00637
07	00737

Remember to press the enter button after each entry of five digits. Now set the scene selector switches to ' 07 ' and press SW1. Set PR5 one-third of a
rotation clockwise from minimum, set PR13 to maximum, and adjust PR6 to give the maximum light output. Now set the scene selector switch to ' 00 ' and press SW1 again. Adjust PR1 for minimum light output (the light should just glow). Now by using the scene select switches and the scene change switch to step through the data sequence just programmed in, the remaining presets PR2,3,4,10,11 and 12 may be adjusted as appropriate to give the eight lighting levels.

To adjust for an even ramp rate, reset the scene select switch and press the scene change switch so as to compare the time between the light
rising to the preset level and falling to zero. If there is any difference, adjust PR5 until the time rise and fall times of the light level are about the same. Alternatively, if you have a scope you can inject a signal at pin 2 of IC29 and look at the output (pin 6). Adjust PR5 to give a square wave with equal markspace ratio.

This completes the setting-up for the first channel. Repeat for the other channels, but remember when programming to change the channel number as appropriate for the first two key presses (' 01 ' for the next cannel and so on).

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$) IC5			
R1	270R	IC5 ${ }^{\text {c }}$	74LS04
R2-4	10k	IC6-9	74 7S75
R5	100R	IC10-13	74LS47
R6	390R	IC14	74LS163
R7-36	180R	IC15-18	74LS02
R37,38	560R	IC19	74LS154
R39	22k	IC20	$74 \mathrm{LS109}$
R40,42-50	1 k 0	IC21	74LS00
R41	1k5	IC22	6116
R88,89	470R	IC23,24	81 LS97
Capacitors		Q1,2	BC108
C1,3,4,26	100n polycarbonate or	D21,22	1 N4148
	polyester	ZD1	2V7 400 mW zener
C2	33u 16 V tantalum	DISP1-5	0.5 " common-anode seven
C5	14035 V tantalum		segment displays
Semiconductors		Miscellaneous	
IC1	74LS123	SW1	SPCO push-button or
IC2	4017		toggle
IC3,4	74LS08	PCBs (see	B Service ad on page 87).

TO AUTOFADE UNITS

"BIG TRAK" MOTORIZED GEARBOX
These units are as used in the "Big Trak" computerized vehicle, and offer the experimenter in robotics the opportunity to purchase the
trolled vehicles. The unit compis
a) $2 \times 3 V$ motors. linked by a magnetic clutch, thus enabling turning of the vehicte:
bi A gearbox contained withi prox 50 rpm.

Data is supplied with the unit showing various options on driving the mo
contuller circuit, enabling the unit to turn right, left or go straigt anged

2N3055

SCOOP!
Made by Texas - full spec devices, $\mathbf{6 0} \mathrm{p}$, each; 10
for $\mathbf{E 4 ; ~} 25$ for $\mathbf{E 9} ; 100$ for $\mathrm{E34} ; 250$ for $\mathrm{f75} ; 1000$ for $\mathrm{E4} ; 25$
for E 250.

COMPUTER SOFTWARE

We now sell range of tapes and books for
DRAGON 32, SPECTRUM, ZX81, BBC and VIC20. Send s.a.e. for fist stating for which computer required. or call in our shop.

SIMON GAME

Simon is back again. Another supply of ready buit puterised game is now with us. Supolied tested and working with speaker and instructions. $\mathbf{f 4}$.95.

COMPUTER BATTLESHIPS

Probably one of the most popular electronic
games on the market. Unfortunately the design makes it impractical to test the PC8 as a working model, although it may weil function perfectly. instead we have tested the sound chip, and sell the
board for its component value only (PCB may be board for its component value only (PCB may be
chipped or cracked). SN76477 sound IC: TMS 1000 u-processor; batt clips, R's, C's etc. size $160 \times 140 \mathrm{~mm}$.

LIE DETECTOR
Not a toy, this precision instrument was originally part of an "Open Universty" course, used to
measure a change in emotional balance, or as a lie detector. Full details of how to use it are given,
and a circuit diagram. Supplied complete with and a circuit diagram. Supplied complete with probes, leads and conductive felly. Needs 245
batts. Overall size $155 \times 100 \times 100 \mathrm{~mm}$. Onty $£ 9.95$

AA NI-CADS 10 for $\mathbf{£ 9 . 9 5}$ Brand new ricket cadmium batteries by GE, sta dolder tags borh ends. Special price, E 1.40 ea; 10 for 89.95 ; Box of $80 \mathrm{EB5}$. Nicad Charger: Charges up to 4AA, C or D cells

+ PP3. Only $₹ 7,55$.

ELECTRO DIAL
Electrical combination lock-for maximum security-
pick proof. One million combinationsll Dial isf ed to the right to one number, left to a second number, then right again to a third number. Only when this has been completed in the correct se
quence will the electrical contacts can be used to operate a relay or solenoid. Overa dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Onty $¥ 3.95$.

FERRIC CHLORIDE

New supplies just arfived -250 mg bags of
granules, easily dissolved in 500 ml of water Only E1.15. Al so abrasive polishing block 95 p.

STABILIZED PSU PANEL
A199 A versatile stabilised power supply with both
voltage $(0-30 \mathrm{~V})$ and current $(20 \mathrm{~mA}-2 \mathrm{~A})$ fulhy voltage.
variable. Many uses inc bench PSU, Ni-cad charger, gen, purpose testing. Panel ready built. tested and calibrated $\mathbf{6 7 . 7 5}$. S
and pots

REED RELAYS

TELESCOPIC AERIALS
As used in Shiclair
$100-610 \mathrm{~mm}$. Only

IN4148 - BEST PRICE

 EVER| Supplied in packs of 100 , by Toshiba E2 per pack; |
| :--- |
| 3 packs $~$ |
| $5.50 ; 10$ packs $\mathrm{E15} ; 25$ packs $\mathrm{ES2} ; 100$ | 3 packs E5.50

packs $£ 115$.

COMING SOON

MORE COMPUTER GAMES PCB's - MICROVISIONS, ALPHIE, AVENGER, INTRUDER, AND STARBIRD

GREENWELD

443A MILLBROOK ROAD, SOUTHAMPTON SO1 OHX All prices include VAT - just add 50p post. Tel (0703) 772501

POWERFET AMPLIFIERS

NEW DESIGNS
With the introduction of four new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiers. Four key improvements have been incorporated in these second generation modules
1.) The use of H•PAK powerfets, resulting in improved thermal efficiency and
2.) Consequently enhanced power output capabilities.
2.) Low $\mathrm{COB}_{\mathrm{OB}}$ drivers now in power transistor packages, maintaining the superb HF
. performance and improving driver reliabitity.
3.) Separate driver and input supply rails allowing a 10% increase in available output
4.) Bridge mode input pin allowing instant bridging between any two amplifiers without the need for extra circuitry.

PFA100 Specification

Bandwidth
$10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
$100 \mathrm{~W} / \mathrm{Vs}= \pm 55 \mathrm{VI}$
$<0.008 \%$
$0.004 \% \mathrm{typ}$.
120 dB
$>30 \mathrm{~V} / \mathrm{uS}$
$\times 22$
30 K
$\pm 70 \mathrm{~V}$

Price
£17.35 (Built \& Tested)
£15.17 (Kit)
'PFA 100120 W into $8 \Omega\left(\mathrm{~V}_{\mathrm{S}}= \pm 60 \mathrm{~V}\right)$

PFA200 180W into 8Ω
300 W into $4 \Omega\left(\mathrm{~V}_{\mathrm{S}}= \pm 67 \mathrm{~V}\right)$

PFA200 Specification Bandwidth $\quad 10 \mathrm{~Hz} \cdot 100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Oupur power into 150 W (Vs $\pm 60 \mathrm{~V}$) THD $(20 \mathrm{~Hz}-20 \mathrm{KHz}) \quad<0.005 \%$ THD 11 KHz at 150 W$) 0.002 \%$ typ $\begin{array}{ll}\text { SNR } & 120 \mathrm{~dB} \\ \text { Slew rate } & >30 \mathrm{~V} / \mathrm{uS} \\ \text { Gain } & \times 23 \\ \text { Ain } & 30 \mathrm{~K} \\ \text { Vs max } & +70 \mathrm{~V}\end{array}$

Price
$£ 23.87$ (Built \& Tested) f21.70 (Kit)

And for those with a taste for power

PFA500 Delivers 475W into 4 ohms and 600W into 2 ohms. These highly current capable units can deliver 25 amps continuous into a load, whilst maintaining the
exemplary performance figures of the smaller units £42.00 (built \& tested PFAHV A very special module aimed at digital audio and wide dynamic range programme material. Delivers 300 W into 4 ohms and 8 ohms on a continuous The PFA/HV is for musically significant periods of time at up to 5 dB s above this
тне нгАт ... $\mathbf{E 3 4 . 3 0 \text { (built \& tested }) ~}$

- THE HEAT EXCHANGER. Other people sell heatsinks. Pantechnic design manufacture and sell heatexchangers. Re-examination of the heat transfer proces has resulted in a radically new design possessing greatly improved efficiency. Th unit $7^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$ handes PFAs up to 300 W or 1.2 KW when blown...... $\mathbf{E 7 . 5 0}$
POWER SUPPLY COMPONENTS
Toroidal Mains Transformers

| Voltage | 160VA | 225 VA | $\mathbf{1}, 300 \mathrm{VA}$ | 500 VA | 625^{VA} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $40-0-40$ | 9.71 | 11.36 | 12.32 | - | - |
| $45-0-45$ | - | 11.36 | 12.32 | 16.05 | - |
| $50-0-50$ | - | - | - | 16.05 | 18.80 |

Special low flux windings. Carriage included

25A 400PIV Bridge rectitier
25A 400PIV Bridge rectirier $30,000 \mathrm{uF} 75 \mathrm{~V}$ Electrolytics
$£ 2.17$ $E 4.13$
10.00

For the PFA/HV 500 VA , 000 F 100 V ectrolyics 70-0.70 Phone or write for advice on selecting the right components for your particular application

All prices excl. VAT. Carriage 75p. Trade supplied
Ask about our preamps, protection boards and active crossovers

THE POWERFET SPECIALISTS

 pantechnic (incorporating J.W. Rimmer)Dept ET1/3, 148 Quarry Street, Liverpool L25 6HQ Telephone: 0514288485
Technical enquiries

electroytice
 AUTO-ELECTRONIC PRODUCTS

KITS OR Ready buitr

ELECTRONIC IGNITION

t Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.

* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
t Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders)
\star Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.
Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark energy of ordinary capacitive systems, 3 times the spark duration.
Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVEF SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.
- IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS:
(Older current impulse types need an adaptor)

STANDARD CAR KIT $£ \mathbf{1 5 . 9 0}$

Assembled and Tested $£ \mathbf{£ 6} 70$
PLUS
P. \& P.
f1 (U.K.)
TWIN OUTPUT KIT $£ 24.55$
For Motor Cycles and Cars with twin ignition systems
Prices include VAT
 minature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
t 60 SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.

* 10 SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
九 INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
K 30 SECOND DELAY when system is armed allows owner to
lock doors etc.

DESIGNING NDFL AMPS

The use of nested differentiating feedback loops (NDFLs) is a new technique for reducing audible-frequency distortion in an amplifier to a vanishingly low level. As the name implies, NDFLs rely on negative feedback, but they use it in a new way. Edward M. Cherry, Associate Professor of the Department of Electrical Engineering, Monash University, explains the theory involved.

In order to understand just how far the new NDFL technique can improve an amplifier, we first need to know the fundamental limits to the reduction of distortion that can be achieved with conventional techniques. To begin with, we survey familiar negative-feedback theory.

Figure 1 is a block diagram of an amplifier with negative feedback. In this diagram, the forward path corresponds to the amplifier before feedback is applied, and its gain is traditionally designated by the Greek letter μ. The feedback network returns a fraction β of the output to the input circuit, where it is in some way subtracted from the true input to provide the actual input to the forward path.

In many practical amplifiers, the subtraction is accomplished by applying the input and feedback signals to the two inputs of a balanced differential first stage of the forward path. Figure 2 is an outline practical circuit. In this circuit the feedback factor β is the attenuation of the network comprising $R_{F 1}$ and $R_{F 2}$

$$
\begin{equation*}
\beta=\frac{R_{\mathrm{F} 1}}{\mathrm{R}_{\mathrm{F} 1}+\mathrm{R}_{\mathrm{F} 2}} \tag{1}
\end{equation*}
$$

A typical value for an audio power amplifier might be $1 / 20$. The forward-path gain μ in Fig. 2 corresponds to gain from input to output when the feedback network is removed. A typical value for a simple audio power amplifier might be 1000 .

For Fig. 1 , the overall closed-loop gain A is given precisely by

$$
\begin{equation*}
A=\frac{\text { Output }}{\text { Input }}=\frac{\mu}{T+\mu \beta} \tag{2}
\end{equation*}
$$

The quantity $\mu \beta$ is called the loop gain. Physically, loop gain is the gain that would be observed if the feedback 'loop' in Fig. 1 was cut at some point, a signal was injected into one side of the cut, and the resulting signal at the other side of the cut was measured.

If the values of μ and β are such that loop gain is small compared with unity, the closed-loop gain is very nearly equal to the forward-path gain (that is, the gain without feedback)

$$
\underset{\mu \beta<1}{A}
$$

However, if loop gain is large compared with unity, the closed-loop gain approaches the reciprocal of the feed-

Fig. 1 Block diagram of a feedback amplifier.
back factor and becomes almost independent of the forward-path gain

$$
\begin{gather*}
\mathrm{A} \vec{\beta}>1 / \beta \tag{4}\\
\mu \beta
\end{gather*}
$$

The quantity $1 / \mathrm{B}$ is often called the demanded gain, as it is the value the overall closed-loop gain would take in ideal circumstances.
As a numerical example, if we suhstitute the above values $\mu=1000$ and $\beta=1 / 20$ into Equation 2, the gain of our 'typical' audio power amplifier works out as $\mathrm{A}=19.6$. The approximate Equation 4 predicts $A \rightarrow 20$, within 2% of the correct answer.

The quantity $1+\mu \beta$ occurs often in feedback theory. It is called the return difference F.

$$
\begin{equation*}
F=1+\mu \beta \tag{5}
\end{equation*}
$$

Physically, return difference has the significance

$$
\begin{equation*}
F=\frac{\text { forward-path gain }}{\text { closed-loop gain }} \tag{6}
\end{equation*}
$$

For values of loop gain greater than about 10, loop gain and return difference are almost equal - in our 'typical' example the value are 50 and 51 respectively.

Simplified treatments of feedback theory show that, if the distortion generated in the forward path (that is, the amplifier without feedback) at a particular output signal amplitude is $D_{\mu^{\prime}}$ then the resulting closed-loop distortion D_{A} at the same output signal amplitude is

$$
\begin{equation*}
\mathrm{D}_{\mathrm{A}}=\mathrm{D}_{\mu} / \mathrm{F} \tag{7}
\end{equation*}
$$

Distortion is improved when feedback is applied to an amplifier by a factor equal to the return difference. In our 'typical' amplifier, $F=51$; if the distortion without feedback happened to be 10%, then feedback should reduce the distortion to 0.196%.

More rigorous treatments of feedback theory show that Equation 7 is no more than a poor approximation to the truth. In the first place, real amplifiers are far more complicated than Fig. 1 suggests, because several different feedback paths (not all intentional!) can be identified. For example, the collector-base capacitances of transistors inevitably provide some unintended feedback at high frequencies. There is a very real problem in interpreting just

Fig. 2 Outline circuit of an audio power amplifier.
what loop gain and return difference mean when there is more than one feedback loop. Once the correct interpretation is established, return difference invariably turns out to be a function of frequency, and the reduction of distortion corresponding to Equation 7 depends on the value of return difference at the frequency of the distortion, not the frequency of the input. Feedback therefore, does not reduce all distortion components equally.

Finally, it is found that the closed-loop distortion of an amplifier can contain new components that were not present in the distortion that existed in the forward path before feedback was applied. These new distortion components initially increase as loop gain is increased, but they fall away again towards zero as loop gain is made large.

Despite all these complications, the fact remains that adequate negative feedback, properly applied, does reduce distortion. Why, then, do amplifier designers not simply apply some arbitrarily large amount of feedback and reduce amplifier distortion to the vanishing point?

TIM, IIM, PIM, . . .

In the last 10 years or so, readers of audio magazines have been made aware of a conjecture that goes something like this:
"Harmonic distortion and the usual intermodulation distortion decrease with increasing feedback. Transient intermodulation distortion (TIM) increases with increasing feedback, and is approximately directly proportional to the feedback. Therefore, there is an optimum value for the feedback at which the subjective distortion sensation is least. This optimum feedback is unlikely to exceed about 20 dB ."
More recently, there has been conjecture that heavy overall feedback should be applied with caution if interface intermodulation distortion (IIM) is to be avoided. An amplifier should provide a low open-loop output impedance so that the need for feedback-generated loudspeaker damping is minimised.

There has also been conjecture that negative feedback, which reduces the usual intermodulation distortion, may increase phase intermodulation distortion (PIM) by converting amplitude nonlinearities into phase nonlinearities.

Unequivocally, none of these conjectures has any basis in the new NDFL amplifiers. As an aside, there is a
substantial body of opinion that none of these conjectures has any basis, full stop; interested readers should refer to References 1-9.

Instability And Oscillation

A fundamental limit to the amount of feedback that can be applied to an amplifier is set by the onset of instability and oscillation.

If the magnitudes of the forward-path gain and demanded gain of the idealised Fig. 1 are plotted versus angular frequency ω (in radian/second) on logarithmic scales, the resulting graph looks something like Fig. 3. The 3 dB bandwidth of the amplifier without feedback is $1 / \tau_{\mu}$ and the gain-bandwidth product (at which gain drops to unity) is $1 / \tau_{1}$.

Because the graph is on logarithmic scales, the separation between the curves of forward-path gain and demanded gain is the loop gain (remember that, to divide two numbers, you subtract their logarithms; if you divide μ by $1 / \beta$, you get $\mu \beta$). The magnitude of loop gain falls to unity at the frequency $1 / \tau_{\mathrm{x}}$ where the curves intersect and their separation is zero (remember that the logarithm of unity is zero).

By a similar argument, return difference is the separation between the curves of forward-path gain and closedloop gain, as indicated in Fig. 3.

We could make a similar graph to Fig. 3, showing the phases of μ and $1 / \beta$. Again, the phase of loop gain would turn out to be the separation between the two curves. However, there is a remarkable piece of mathematics due to Bode, who used a transformation evolved by Hilbert (1862-1943), which shows that there is a relation between the magnitude and phase of the response of any linear system. Subject to some qualifications, our proposed graph of the phases is completely predictable from Fig. 3 and contains no new information. Interested readers may refer to Chapter 14 of Bode's book (Reference 10) but are warned that it is anything but easy going!

As an example, many readers will know that, if the forward-path in Figs. 1 and $\overline{\mathrm{B}}$-ias a high-frequency cut-off rate variously described as single pole, $20 \mathrm{~dB} /$ decade, or 6 $\mathrm{dB} /$ octave, then its phase shift is 45° at the 3 dB cut-off frequency $1 / \tau_{\mu}$, and is asymptotic to 90° at very high frequencies.

In 1932, Nyquist applied a theorem which dates back to Cauchy (1789-1857) to derive the condition for a feedback amplifier to be stable and free from oscillation. If a polar plot is made of the magnitude and phase of return difference as frequency is varied, a vaguely 'snail-shaped' curve results. Such a polar plot is called a Nyquist diagram. Subject again to some qualifications, the stability criterion for a feedback amplifier is that its polar plot of return difference should not enclose the origin. Figure 4

Fig. 3 Logarithmic plots of gain versus frequency for Fig. 1.
shows one example each of a stable situation and an unstable situation.

Because the phase of return difference can be predicted from Fig. 3 via Bode's result a Nyquist diagram can also be constructed from Fig. 3 and the onset of instability can be predicted. In 1945 Bode showed that Ny quist's criterion could in fact be expressed in terms of the gradients of the curves in Fig. 3, thereby eliminating the work of finding the phase explicitly and plotting the Nyquist diagram. Bode's exact rule is complicated, but a useful paraphrase is
"If in graphs such as Fig. 3 the separation between the forward-path gain and demanded gain decreases toward zero at a rate not exceeding $30 \mathrm{~dB} /$ decade, the amplifier is unlikely to oscillate."
This paraphrase makes no allowance for the tolerances on components. It assumes, in effect, that everything about the forward path is well known and constant. In the audio context, the paraphase takes no cognizance of the fact that the capacitance of the leads that connect an amplifier and loudspeaker is anything but well known. A more conservative rule, applicable to the audio context, is therefore
'In graphs such as Fig. 3, the separation between the forward-path gain and demanded gain should not decrease towards zero at a rate exceeding 20 dB/decade."
transistors is a fraction of a nanosecond, but for power transistors of the ubiquitous 2N3055 class the transit time may be as long as a few tenths of a microsecond. Thus, the output stage of Fig. 2 may have a pole in the vicinity of 1 MHz .

As we saw in the previous section, the unity-loop-gain frequency $1 / \tau_{\mathrm{x}}$ in Fig. 3 must be substantially less than the frequency of all poles except the dominant pole $1 / \tau_{\mu}$ if an amplifier is to be stable. If the power transistors are of the 3055 class then, no matter how fast the other transistors may be, there is going to be one pole at about 1 MHz . Therefore $1 / \tau_{x}$ must be chosen to correspond to something like 200 kHz . Even with more modern power transistors, $1 / \tau_{\mathrm{x}}$ is restricted to about 1 MHz . The art of designing a stable power amplifier involves choosing the lag compensating capacitor C such that $1 / \chi_{x}$ is appropriate to the transistors actually used.

The geometry of Fig. 3 is such that, no matter how μ, β and τ_{μ} are separately chosen, the return difference $F(\omega)$ at any angular frequency ω cannot exceed

$$
\begin{equation*}
F(\omega) \leqslant 1 / \omega \tau_{x} \tag{8}
\end{equation*}
$$

Thus, if $1 / \tau_{x}$ is designed to correspond to 200 kHz , return difference at 20 kHz cannot exceed 10 ($=20 \mathrm{~dB}$), and cannot exceed $200(=46 \mathrm{~dB}$) at 1 kHz . An amplifier that boasts 80 dB of feedback ($\mathrm{F}=10,000$ at low frequencies) must have $1 / \tau_{\mu}$ corresponding to about 20 Hz ; return difference must begin falling above 20 Hz , and the former

Fig. 4 Nyquist's stability criterion. The curves are polar plots of return. difference for changing frequency.

The practical consequence is that the forward path of an audio amplifier with conventional resistive feedback should have a single dominant pole which sets the fall-off of gain at frequencies above $1 / \tau_{\alpha}$. The second and subsequent poles should lie at frequencies substantially above $1 / \tau_{\mathrm{x}}$ (the frequency where the separation reaches zero), because each pole contributes a $20 \mathrm{~dB} /$ decade downwards slope to the graph of forward-gain path.

Maximum Available Feedback

In Fig. 2, the first stage is a long tailed pair with a current mirror at its output; the input and feedback signals are applied to the two bases to perform the subtraction process of Fig. 1. The second stage provides a large voltage gain, and the lag compensating capacitor C provides the dominant pole of the forward path corresponding to $1 / \tau_{\mu}$ in Fig. 3. The third stage is a complementary class-B emitter follower whose function is to transfer the output voltage from the second stage to the loudspeaker load. In practice, the transistors in the second and third stages are often Darlingtons, and the input transistors are often replaced by FETs.

In any similar amplifier, there is at least one pole associated with the finite transit time of electrons through each transistor. The transit time for typical small-signal
values at 1 kHz and $20 \mathrm{kHz}(46 \mathrm{~dB}$ and 20 dB) still apply.
Returning now to Equation 7, the effectiveness of feedback in reducing distortion is set by the frequency of the distortion, not the frequency of the input. The audible frequency range is generally reckoned to extend to about 20 kHz and, with the foregoing constraints, return difference at this frequency cannot exceed 10. Remembering that 20 kHz is the third harmonic of 6.667 kHz , we see that feedback cannot reduce offensive odd-harmonic distortion of mid-treble input signals by more than a factor of 10. Remembering too that 20 kHz is the seventh harmonic of 2.857 kHz , we see that feedback cannot reduce crossover distortion of mid-range input signals by more than a factor of 10 .

Until recently there has been no way around this problem except to increase the unity-loop-gain frequency $1 / \tau_{\mathrm{x}}$, and this demands that the frequencies of the transistor poles must be increased if stability is to be preserved. Fragile, expensive power transistors, with narrow bases to achieve short transit times, become mandatory.

The NDFL Approach

There is, however, another solution to the stability problem. If the forward-path gain has two dominant poles, so that its gain falls at $40 \mathrm{~dB} /$ decade, the rate of closure

Fig. 6 Logarithmic plots of gain versus frequency for Fig. 5.
between the graphs of forward-path gain and demanded gain would still be $20 \mathrm{~dB} /$ decade provided the demanded gain itself were to tall at $20 \mathrm{~dB} /$ decade. In essentials, this requires that the usual frequency-independent resistive feedback factor β should be replaced by something having a frequency dependence of the form $\omega \tau_{F}$ (remember that the demanded gain is the reciprocal of the feedback factor). Mathematicians tell us that a linearly rising frequency response corresponds to differentiation with respect to time and, in hardware terms, a capacitive feedback network will perform just this action.

Figure 5 shows the outline of an amplifier incorporating nested differentiating feedback loops. Notice first that the forward path has been separated into a number of stages, whose mid-frequency gains are μ_{1} to μ_{N} respectively. The variable s is what mathematicians call complex frequency; for sinusoidal signals its magnitude is equal to the angular frequency ω of the sinusoid. Factors of the form ($1+s \tau_{x}$) represent a frequency response that rises proportional to frequency above the frequency $1 / \tau_{x}$ - that is, they represent a zero. Similarly, factors of the form $1 /(1+s \tau$) represent a frequency response that falls inversely proportional to frequency above the frequency $1 / \tau_{0}$ - that is they represent a pole. Thus, the stages in Fig.

Fig. 8 The ($\mathrm{N}-2$)th loop of Fig. 5.

5 have special frequency responses: all stages except the first have a pole at $1 / \tau_{\text {: }}$, and all except the first and last two have a zero at $1 / \tau_{x}$.

Notice also that there are differentiating feedback networks, each denoted by $\mathrm{s} \tau_{\mathrm{f}}$, linking the output back to various points in the forward path. The resulting feedback loops are arranged one inside another, like a nest of Chinese boxes - hence the name nested differentiating feedback loops.

The amplifier is completed by an overall resistive feedback network β.

If we removed all the feedback from Fig. 5, the forward-path gain would be shown in Fig. 6: constant up to the frequency $1 / \tau_{0}$, then falling at an ($N-1$)-pole rate ($20(N-1) \mathrm{dB} /$ decade) up to $1 / \tau_{x}$, and finally levelling off somewhat to a two-pole rate ($40 \mathrm{~dB} /$ decade).

If we now applied just the overall resistive feedback β, the return difference would be as shown in Fig. 6. Distortion would be reduced by a constant large amount, approximately $\mu_{1} \mu_{2} \ldots \mu_{N} \beta$, at all frequencies up to $1 / \tau_{0}$. Choosing $1 / \tau_{0}$ to correspond to 20 kHz would virtually

Fig. 7 The inner loop of Fig. 5.
eliminate audible-frequency distortion. But the amplifier would be unusable because of oscillation.

The rate of closure of the forward-path gain and demanded gain curves breaks the rule of $20 \mathrm{~dB} /$ decade. Let us see how inclusion of the nested differentiating feedback loops solves the problem.

Figure 7 shows just the last two stages and the inner differentiating feedback factor. This 'clump' is a feedback amplifier in its own right, and Fig. 7 shows its forward-path gain (that is, the gain of the last two stages without any feedback), the demanded gain, and the resulting closedloop gain. Although the forward-path gain falls at a twopole rate ($40 \mathrm{~dB} / \mathrm{decade}$), the demanded gain falls at a one-pole rate ($20 \mathrm{~dB} / \mathrm{decade}$), and their rate of closure is $20 \mathrm{~dB} /$ decade. By itself, this 'clump' is stable.

Figure 8 shows what happens when we add the antepenultimate stage and another differentiating feedback factor. Again this 'clump' can be considered as a teedback amplifier in its own right. Provided we choose.

$$
\mu_{N-2}=\tau_{0} / \tau_{\mathrm{x}}
$$

the various gains line up as shown. The forward-path gain is the combined gain of stage ($N-2$) and stages $(N-1)$ and N with their local feedback, and this is the middle solid curve in Fig. 8. The demanded gain is the dashed curve passing through $1 / \tau_{f}$. Once again the forward-path gain and demanded gain close at $20 \mathrm{~dB} / \mathrm{decade}$, so the stability criterion is satisfied for this larger 'clump'.

Fig. 9 Complete plots of gain versus frequency for fig. 5.

And so it goes on. We can add more stages and differentiating feedback factors, and each time the curves line up as required for stability provided we choose

$$
\begin{gather*}
\mu_{1} \mu_{\mathrm{N}-1} \mu_{\mathrm{N}} \mathrm{~B}=\left(\tau_{0} / \tau_{\mathrm{x}}\right)^{2} \tag{9}\\
\tau_{\mathrm{F}}=\mu_{1} \beta \tau_{\mathrm{x}} \tag{10}\\
\mu_{\mathrm{K}}=\tau_{0} / \tau_{\mathrm{x}} \text { for } 2 \leqslant \mathrm{k} \leqslant \mathrm{~N}-2 \tag{11}
\end{gather*}
$$

Figure 9 shows the gain curves for the complete amplifier.
In designing an NDFL amplifier, the starting point is to choose the frequency $1 / \tau_{\mathrm{x}}$ so that the various transistor poles are sure to lie at substantially higher frequencies. Next choose the frequency $1 / \tau_{0}$ up to which the return difference should remain constant; 20 kHz is a suitable value for audio amplifiers. After this, the circuit more or less designs itself via Equations 9-11. above.

Outline Practical Circuit

Figure 10 shows how an amplifier of the basic topology of Fig. 2 can be modified to include two NDFLs. Interested readers should refer to references 11, 12 for more details.

Notice first that the lag compensating capacitor, C, in the penultimate stage of Fig. 2 has been removed in Fig. 10. In its place are two capacitors (C) linking the output back to various points in the forward path. These capacitors are the feedback networks of the nested differentiating feedback loops.

The output stage has been changed to include a modified form of Thiele's load-stabilising network. Some form of LRC filter is required to locate one of the poles correctly, and with the circuit shown we get double value from the components.

The input stage itself is unchanged, but an inexpensive small capacitor in the overall feedback network β can be used to correct the group delay and improve the reproduction of transient waveforms.

Another essential addition is an amplifying stage between the two nested differentiating feeback factors. This rather peculiar circuit (which dates back to Rush in 1964) seems largely to have been forgotten. It uses one NPN transistor and one

Fig. 10 Outline circuit for an NDFL amplifier.

PNP to provide a well-defined gain (13).
As already suggested, once the demanded gain $1 / \beta$ and the critical frequency $1 / \tau_{x}$ are chosen, the circuit almost designs itself. The equations are:

$$
\begin{gather*}
\frac{\mathbf{R}_{f 1}}{R_{f 1}+R_{f 2}}=\beta, \tag{12}\\
\mathrm{RC}=\beta \tau_{\mathrm{x}}, \tag{13}\\
\mathrm{R}_{\mathrm{Y}} C_{\mathrm{Y}}=\tau_{\mathrm{X}}, \tag{14}\\
\tau_{\mathrm{L}}=(\sqrt{3}-1) \tau_{\mathrm{x}} . \tag{15}
\end{gather*}
$$

All stage gains and poles and zeros automatically look after themselves.

Figure 11 (a) shows the 5 kHz square-wave response of Fig. 10 as built from 5%-tolerance resistors, 20\%-tolerance capacitors, and unselected production transistors. Evidently the circuit is 'designable'; Equations 12-15 really do predict component values for good transient response.

A nice feature of the modified Thiele circuit in Fig. 10 is that, when the load is made capacitive (a well-known source of high-frequency oscillation in amplifiers), the voltage waveform at the FEEDBACK POINT is the waveform the amplifier would have delivered into its nominal resistance load. Figures 11 (b) and (c) illustrate this; the violent ringing in Fig. 11 (b) is simply an LC resonance between the filter inductor and the load capacitance, and is in no way indicative of approaching instability.

Figure 12 shows details of the 1 kHz sinusoidal response under overdrive conditions. Note the quick,

Fig. 115 kHz square wave response of Fig. 10.

(a) 8 ohm resistance load.

(b) 8 ohm and 2 uF parallel load.

(c) waveform at feedback point for (b).

Fig. 131 kHz harmonic
distortion.

clean recovery.

An amplifier has been built in which the circuit can be switched from Fig. 2 to Fig. 10, to illustrate the improvement in performance of adding two NDFLs. Figure 13 compares the measured third-harmonic distortions of 1 kHz . Notice how the distortion of Fig. 10 drops away to below three parts per million at small signal amplitudes. Such behaviour is more typical of class-A amplifiers than class-B amplifiers, and may account for the clean sound of NDFL amplifiers.

Crossover distortion associated with incorrect bias of the output stage is one of the most audibly annoying forms of distortion. Audio amplifiers based on Fig. 2 sometimes have a type of crossover distortion that does not show up
in normal measurements. Correct biasing of the output stage relies on close tracking of the thermallycompensated biasing device and the power transistors. At best the biasing device can be thermally bonded to the power transistor case. More usually it is bonded to the heatsink, but there is no way it can simultaneously sense the actual junction temperatures of all the power transistors. Under rapidly-fluctuating dynamic signal conditions, the junction temperatures may be wildly different from each other and from the case or heatsink temperatures, and therefore the biasing may be wrong.

Figure 14 compares the static cross-over distortion of Figs. 2 and 10 when the bias is deliberately set 0V5 too low. Dynamic mistracking of the biasing circuit should not introduce audible crossover distortion in an NDFL amplifier.

One final point. The NDFL technique maximises the return difference (and hence minimises distortion components) at frequencies up to $1 / \tau_{0}$. Above this frequency the return difference falls away rapidly, and distortion rises. Choosing $1 / \tau_{0}$ to correspond to 20 kHz winimises audible-frequency distortion, but does not minimise ultrasonic distortion.

For example, a common specification for audio power amplifiers is their THD at 20 kHz . The harmonics of 20 kHz lie at $40 \mathrm{kHz}, 60 \mathrm{kHz}, 80 \mathrm{kHz}$, and so on. All are ultrasonic (and hence inaudible) and the NDFL technique does not minimise them. A measurement of THD at 20 kHz may therefore give a quite misleading indication of an NDFL amplifier's audible performance. Valid objective tests include the SMPTE and CCIF tests for two-tone intermodulation distortion, the proposed IEC test for TIM (14), Cordell's proposed three-tone test for TIM (15) and the proposed test for input-output intermodulation distortion IOD (6). The distinguishing feature of all these tests is that they measure the distortion at audible frequencies.

References

1. W. G. Jung, M. L. Stephens and C. C. Todd, An overview of SID and TIM, Audio, vol 63; part 1, pp 59-72, June 1979; part 2, pp 38-47, July 1979; part 3, pp 42-59. August 1979.
2. R. R. Cordell, Open-loop output impedance and interface intermodulation distortion in audio power amplifiers, 64th Audio Eng Soc Convention, preprint no. 1537, Dec 1979.
3. R. R. Cordell, Another view of TIM, Audio, vol 64; part 1, pp 38-49. Feb 1980; part 2, pp 42-59, March 1980.
4. E. M. Cherry, Transient intermodulation distortion: Part 1 - hard nonlinearity, IEEE Trans, vol ASSP-29, pp 137-146, April 1981.
5. R. R. Cordell, Phase intermodulation distortion - instrumentation and measurement results, 70th Audio Eng Soc Convention, preprint 1842, Nov 1981
6. E. M. Cherry and G. K. Cambrell, Output resistance and intermodulation distortion of feedback amplifiers, J. Audio Eng Soc, vol 30, pp 178-191, April 1982.
7. E. M. Cherry, Feedback, sensitivity, and stability of audio power amplitiers, I. Audio Eng Soc, vol 30, pp 282-294, May 1982.
8. E. M. Cherry and K. P. Dabke, Transient intermodulation distortion: Part 2 - soft nonlinearity, IEEE Trans, to be published*
9. E. M. Cherry, Amplitude and phase of intermodulation distortion, J. Audio Eng Soc, to be published*
10. H. W. Bode, Network analysis and teedback amplifier design, van Nostrand (Princeton NJ) 1945.
11. E. M. Cherry, Nested differentiating feedback loops in simple audio power amplifiers, J. Audio Eng Soc, vol 30, pp 295-305, May 1982.
12. E. M. Cherry, A new result in negative-feedback theory, and its application to audio power amplifiers, Int J. Circuit Th, vol 6, pp 265-288, July 1978.
13. C.J. Rush, New techniques for designing fast-rise transistor pulse amplitiers, Rev Sci Instr, vol 35, pp 149-156, Feb 1964.
14. IEC Publication 269.3, Part III - Amplifiers: Clause 22.6 "High-frequency intermodula tion distortion". (Proposal dated June 1981).
15. R. R. Cordell, A tully in-band multitone test for transient intermodulation distortion, J. Audio Eng Soc, vol 25, pp 578-586, Sept 1981.
*Manuscript copies available from the author.

MIDWICH COMPUTER COMPANY LIMITED
 FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

[^1]

 0.35
0.35
0.35
0.45
0.45
0.46
0.55
0.55
0.55
0.55
0.55
0.70
0.55
0.55
0.30
0.35
0.30
0.35
0.55
1.00
0.20
0.54
0.30
0.40
0.39
0.39
0.27
0.27
0.27
0.27
0.62
0.62
0.35
0.60
0.60
0.90
0.35
0.45
0

OIL JUMPERS 14 PIN $\begin{array}{ll}14 \text { PIN } & \mathbf{1 . 4 5} \\ 16 \text { PIN } & \mathbf{1 . 6 5} \\ 24 \text { PIN } & \mathbf{2 . 4 0} \\ 40 \text { PIN } & 3.80\end{array}$
Double Endad
14 PIN 1.851 .982 .42 6 PIN 2.052 .152 .68 24 PIN 3.003 .153 .98
40 PIN 4.654 .90
6.18
25 WAY O. TPPE CONHECTOR
Male-Male $\begin{array}{ll}\text { Male-Male } & \\ \text { 3ale cable } & \mathbf{1 2 . 0 0} \\ \text { Male- Fmale } \\ 36^{\circ} \text { cable } & \mathbf{1 2 . 0 0}\end{array}$ $\begin{array}{ll}36^{\circ} \text { cable } \\ \text { Male } & 12.00 \\ \text { ingle ended } \\ \text { is cable } & 4.95\end{array}$ $18 "$ cable $\quad 4.95$
Female single ended
18° cabie

IOC CONNECTORS Shrouded Headers

(whh ejoctors)
(Right Angle
PCB $\begin{array}{ll} \\ 10 \text { PIN } & \mathbf{0 . 8 6} \\ 14 \text { PIN } & \mathbf{1 . 2 2}\end{array}$ 16 PIN
20 PIN 26 PIN 40 PIN
50 PIN
60 PN IOC SOCKETS

electronics today international :00) Su: 10

How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service. Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in
Argling only please. Prices inciude postage and packing. Prices may be subiect to change without notice

BEGINNERS GUIDES

\square Beginner's Guide to Basic Programming Stephenson f4.95
Beginner's Guide to Digital Electronics
f4.95
Beginner's Guide to Electronics
\square Beginner's Guide to Integrated Circuits
Beginner's Guide to Computers
\square Beginner's Guide to Microprocessors
£4.95

cookbooks

\square Master IC Cookbook Hallmark
Microprocessor Cookbook M. Hordeski
IC Op Amp Cookbook Jung
f6,60
PLL Synthesiser Cookbook H. Kinley
Active Filter Cookbook Lancaster
\square TV Typewriter Cookbook Lancaster
CMOS Cookbook Lancaster
TTL Cookbook Lancaster
Micro Cookbook Vol. 1 Lancaster
\square BASIC Cookbook K. Tracton
f 13.15
\square MC6809 Cookbook C. Warren

ELECTRONICS

\square Principles of Transistor Circuits Amos
Design of Active Filters with experiments Berlin
49 Easy to Build Electronic Projects Brown
\square Electronic Devices \& Circuit Theory Boylestad
How to build Electronic Kits Capel
How to Design and build electronic instrumentation Carr
Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
Principles of Electronic Instrumentation De Sa
Giant Handbook of Computer Software
Giant Handbook of Electronic Circuits
\square Giant Handbook of Electronic Projects
\square Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray Basic Electronics Grob
\square Lasers - The Light Fantastic Hallmark
\square Introduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault Diagnosis Loveday
\square Electronic Fault Diagnosis Loveday
\square Essential Electronics A-Z Guide Loveday
\square Microelectronics Digital \& Analogue circuits and systems Millman
$\square 103$ Projects for Electronics Experimenters Minis
\square VLSI System Design Muroga
7 Power FETs and their application Oxner
\square Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
\square Electronic Drafting and Design Paskhodoff
VOM - VTVM Handbook Risse
\square Video and Digital Electronic Displays Sherr
\square Understanding Electronic Components Sinclair
\square Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
\square Digital Circuits and Microprocessors Taub
Active Filter Handbook
\square Designing with TTL Integrated Circuits Texas
Transistor Circuit Design Texas
Digital Systems: Principles and Applications Tocc
\square Master Handbook of Telephones Traister
How to build Metal/Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony
99 Fun to Make Electronic Projects Tymon
COMPUTERS \& MICROCOMPUTERS

BASIC Computer Games Ahl

From BASIC to PASCAL Anderson
Mastering Machine Code on your $\mathbf{2 \times 8 1}$ T. Baker
UNIX - The Book Banaham
Z80 Microcomputer Handbook Barden
Microcomputer Maths Barden
\square Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bell
\square Visicalc Book. ATARI Edition Bell
7 Introduction to Microprocessors Brunner
\square Programming your APPLE II Computer Bryan
\square Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A/D \& D/A Carr
\neg Musical Applications of Microprocessors Chamberlain
30 Computer Programs for the Home Owner in BASIC
D. Chance
\square Micracomputers Dirkson f 5.95
$£ 23.00$
$\mathbf{8} 8.40$
f10.95
$£ 21.85$
$£ 7.25$
$\ddagger 25.40$
£7.50
f4.50
f14.50
f32.00
f6.50
f14.00
f14.00
$f 14.00$
£11.85
$\mathbf{f 8 . 6 5}$
$\mathbf{£ 5 . 6 5}$
$\mathbf{~} 7.20$
7.25
f5.95
\square Getting Acquainted with your VIC 20 Hartnell
\square Getting Acquainted with your ZX81 Hartnell
\square Let your BBC Micro Teach you to program Hartnell
Programming your ZX Spectrum Hartnell
\square The ZX Spectrum Explored HArtnell
How to Design, Build and Program your own working Computer System Haviland
\square BASIC Principles and Practice of Microprocessors Heffer
\square Hints and Tips for the 2×81 Hewson
What to do when you get your hand on a Microcomputer Holtzman
34 More Tested Ready to Run Game Programs in BASIC Horn $\mathbf{£ 6 . 6 0}$
\square Microcomputer Builders' Bible Johnson
\square Digital Circuits and Microcomputers Johnson £13.00
\square PASCAL for STudents Kemp
\square The C - Programming Language KErnighan $\mathbf{£ 1 7 . 2 0}$
\square The 2X81 Companion Maunder
\square Guide to good Programming Practice Meek
\square Principles of Interactive Computer Graphics Newman
\square Theory and Practice of Microprocessors Nichols
\square Exploring the World of the Personal Computer Nilles
Microprocessor Circuits Vol. 1. Fundamentals and
Microcontrollers Noll
\square Beginner's Guide to Microprocessors Parr
\square Microcomputer Based Design Peatman
Digital Hardware Design Peatman
\square BBC Micro Revealed Ruston
Handbook of Advanced Robotics Safford
1001 Things to do with vour own personal comput
I
\square Easy Programming for the ZX Spectrum Stewart
Microprocessor Applications Handbook Stout
\square Handbook of Microprocessor Design and Applications

Stout

\square Programming the PET/CBM West
\square An Introduction to Microcomputer Technology Williamson
Computer Peripherals that you can build Wolfe
and Technicians Wooland

REFERENCE BOOKS

Electronic Engineers' Handbook Fink
£56.45
Electronic Designers' Handbook Giacoletto
f59.55
[] Illustrated Dictionary of Microcomputer Technology
Hordeski
\square Handbook for Electronic Engineering Technicians Kauffman $£ 27.50$
\square Handbook of Electronic Calculators Kauffman $\mathbf{£ 3 4 . 4 0}$
\square Modern Electronic Circuit Reference Manual Marcus $£ 40.70$
\square International Transistor Selector Towers
f 10.70
International Microprocessor Selector Towers $\quad \mathrm{f16.00}$
\square International Digital IC Selector Towers $\quad \mathbf{f 1 0 . 9 5}$
International Op Amp Linear IC Selector Towers 5850 Illustrated Dictionary of Electronics Turner \quad £12.95
7.95
19.50

$\begin{array}{r} \\ \mathbf{f} 5.50 \\ \hline\end{array}$

15.70

11.35

£11.35

f 8.90

E5. 10
10.50
9.10
9.45
f 12.15
f .50

7.50

$E 7.15$
-
. 70

5

9

5
10.75
13.00

\section*{}

-

5

| REFERENCE BOOKS | |
| :--- | ---: | ---: |
| Electronic Engineers' Handbook Fink | $\mathbf{£ 5 6 . 4 5}$ |
| \square Electronic Designers' Handbook Giacoletto | $\mathbf{£ 5 9 . 5 5}$ |
| Illustrated Dictionary of Microcomputer Technology | |
| Hordeski | $\mathbf{£ 7 . 2 5}$ |
| \square Handbook for Electronic Engineering Technicians Kauffman | $\mathbf{£ 2 7 . 5 0}$ |
| \square Handbook of Electronic Calculators Kauffman | $\mathbf{£ 3 4 . 4 0}$ |
| Modern Electronic Circuit Reference Manual Marcus | $\mathbf{£ 4 0 . 7 0}$ |
| \square International Transistor Selector Towers | $\mathbf{£ 1 0 . 7 0}$ |
| International Microprocessor Selector Towers | $\mathbf{£ 1 6 . 0 0}$ |
| International Digital IC Selector Towers | $\mathbf{£ 1 0 . 9 5}$ |
| \square International Op Amp Linear IC Selector Towers | $\mathbf{£ 8 . 5 0}$ |
| \square Illustrated Dictionary of Electronics Turner | $\mathbf{£ 1 2 . 9 5}$ |

\square

$\sqrt{5}$

,

VIDEO

Servicing Home Video CAssette REcorders Hobbs Complete Handbook of Videocassette Recorders Kybett
Theory and Servicing of Videocassette Recorders McGinty
Beginner's Guide to Video Matthewson
Video Recording: Theory and Practice Robinson
Video Handbook Van Wezel
Video Techniques White
$f 11.80$
$£ 7.95$
f 11.95
$\mathbf{f 5 . 2 0}$

Please send me the books indicated. I enclose cheque/postal order for \mathbf{f}
Prices include postage and packing.
1 wish to pay by Access/Barclaycard. Please debit my account.

Signed
Name
\qquad

5	2	2	4											

5	2	2	4											

5	2	2	4											

4	9	2	9											

4	9	2	9											

4	9	2	9											

4	9	2	9											

ned ...

```
......................................................................................
-........
```

.............
\qquad
\square
mana
nan
and

Git ais

 powsi

 powsi}

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever

WE'RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology 1 LP are recognised as world leaders.

Module Number	Output Power Watis	LoadImpedance Ω	distortion		Supply Vottage Typ	$\begin{aligned} & \text { Size } \\ & \text { mo } \end{aligned}$	$\begin{aligned} & \text { WT } \\ & \text { gms } \end{aligned}$	Price inc. VAT
			т.M.D. Typat 1 KHz	$\begin{aligned} & \text { I.M.O. } \\ & 60 \mathrm{~Hz} / \\ & 7 \mathrm{KH} \boldsymbol{A} \cdot 1 \end{aligned}$				
"1Y:4)	15	4.8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	244	1.8 .40
11 ¢6i)	30	4.8	0.915\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	¢9.55
-1varion	-61+30	4.8	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	£ 18.69
19Y179	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	£20.75
1:Y\|7\%	60		0.01\%	<0.006\%	± 35	$120 \times 78 \times 10$	410	£20.75
HY:AA	1%	1	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	£25.47
	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	£25.47
hy-3fa	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	¢38.41
	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	¢38.41

Protection Full load ine. Slew Rate: $15 \mathrm{~V} / \mathrm{Ls}$. Risetime: 5 Ls . S / N ratio. 100 d
requency response $1-3 \mathrm{~dB} 15 \mathrm{~Hz}$ - 50 KHz . $100 \mathrm{~Hz}>400$

Moduls Number	Module	Functions	Current Required	Price inc. VAT
HYe	Minto pre dmp	Mic/Mag. Caitriage/Tuner/Tape/ Aux + Vol/Bass/Treble	10 mA	£7.60
14 Y (6)	Stureo pre amp	Mux + Val/Cass/dge/Tuner/Tape/	20 mA	£14.32
HY7.3	(iuitar preatrip	Aux + Vol/Bass// reble/Balance Two Guitiar (Bass Lead) and Mic * sendrate Volume Bass Treble + Mix	20 mA	¢15.36
1+Y78	Stereu pre amp	As HY66 tess tone controls	20 mA	£14.20

Most pre-amp modules can be driven by the PSU driving the main power amp
Most pre-amp modules can be driven by the PSU onving he main power amp
E5.47 linc. VATI. Pre-amo and mixing modules in 18 different variations.
Please send tor details.
Mounting Boards
For ease of construction we recommend the 86 for modules $\mathrm{HY} 6-\mathrm{HY} 13 £ 1.05$ POWE

Model Number	For Use With	Price inc. VAT
PSU $21 \times$	1 or 2 HV30	f11.93
PSU41x	1 or 2 HY60, $1 \times$ HY6060, $1 \times$ HY 124	¢13.83
PSU 42x	$1 \times \mathrm{HY} 128$	£15.90
PSU $43 x$	$1 \times \mathrm{MOS} 128$	£16.70
PSU $51 \times$	$2 \times$ HY $128.1 \times$ HY2A4	¢17.07

Mordel Number	For Use With	Price inc. VAT
PSU 52 x	$2 \times \mathrm{HY} 124$	£17.07
PSU 53x	$2 \times \operatorname{MOS} 128$	£ 17.86
PSU 5ax	$1 \times \mathrm{HY} 248$	¢17.86
PSU 55x	$1 \times \mathrm{MOS248}$	f19.52
PSU $71 \times$	$2 \times \mathrm{HY} 244$	£21.75

Model Number	For Use With	Price inc. VAT
PSU $72 \times$	$2 \times$ HY248	¢22.54
PSU 73x	$1 \times$ HY364	E22.54
PSU 74 x	$1 \times \mathrm{HY} 368$	¢24.20
PSU $75 x$	$2 \times \mathrm{MOS} 248,1 \times \mathrm{MOS368}$	£24.20

[^2]| Module Number | Output Power Watts rms | $\begin{gathered} \text { Load } \\ 1 \text { mpedance } \\ \Omega \end{gathered}$ | distortion | | Supply Voltage TYp | $\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { WT } \\ \text { gms } \end{array}$ | Price inc. VAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | T.H.D.
 Typat 1 KHz | $\begin{gathered} \text { I.M.D. } \\ \text { 60Hz/ } \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$ | | | | |
| MOS 128 | 60 | 4.8 | <0.005\% | <0.006\% | 445 | $120 \times 78 \times 40$ | 420 | [30.4 |
| MOS 248 | 120 | 4.8 | <0.005\% | <0.006\% | ± 55 | $120 \times 78 \times 80$ | 850 | E39.86 |
| mos 364 | 180 | 4 | <0.005\% | <0.006\% | ± 55 | $120 \times 78 \times 100$ | 1025 | E45.54. |

Protection: Able to cope with complex loads without the need for very special
Slew rate: $\quad 20 \mathrm{~V} / \mathrm{\mu s}$ s. Rise time: $3 \mu \mathrm{~s}$. S / N ratio 100 d
Frequency response (-3dB). $15 \mathrm{~Hz}-100 \mathrm{KHz}$. Input sensitivity 500 mV m
'NEW to ILP' In Car Entertainment
Mono Power Booster Amplifier to increase the output of your existing car rad
or cassetle player to a nominal 15 watts rms.
eveasy to use.
£ 9.14 (inc. VAT
Robust construction.
Automatic switch on
Aun power maximi 22 wat ino 4Ω
Frequency response $(-3 \mathrm{~dB}) 15 \mathrm{~Hz}$ to 30 KHz , T.H.D. 0.1% at 10 w 1 KHz
S/N ratio (DIN AUDIO) 80dB, Load Impedance 3Ω
nout Sensitivity and impedance lselectable) 700 mV rms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into 8Ω Size $95 \times 48 \times 50 \mathrm{~mm}$. Weight 256 gms .
$C 1515$
$\mathbf{£ 1 7 . 1 9 \text { (inc. VAT) }}$
Size $95 \times 40 \times 80$. Weight 410 gms.

WITHALOT OF

MELP riom QPr:

PROFESSIONAL HIFFI THAT EVERY ENTHUSLAST

 CAN HANDLE...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Separates					Price inc. VAT
UC1	Preamp				£29.95
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	$¢ 54.95$
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	¢54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mano	HiFi	£54.95
UP4 X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	Hifi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£74.95
UP6X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	¢64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	£84.95
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	$£ 59.95$
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3 X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Siave	£69.96
US4X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	£89.95

[^3] (U,K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D please add $£ 1$ to TOTAL value of order.
PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

ORGAN part 3

Design by Richard Watts.

Fig. 1 Circuit diagram of the rhythm section of the Victory organ, including the handclap generator.

This month we conclude the description of the organ circuitry ready for the constructional notes next month. Before doing so, some minor notational changes are required due to continuing development work on the prototype and the consequent re-allocation of certain switches. In Fig. 1 of the February article, the terminal marked R15 (by D6) is now C17, and the terminal marked C15 in Fig. 4 of last month's article should be connected to +12 V , not +5 V . Mark these changes, spread out the two previous issues for reference, and away we go with the rhythm unit.

I Got Rhythm

The heart of the rhythm unit is the M258 ROM (IC24). This has a maximum capacity of 8 K , organised as 16 rhythms of 32 counts with 16 outputs. In fact this is not all used, as some rhythms have only a 24 count requirement. All inputs to and outputs from the IC are active low.

When the rhythm on/off switch is on, connector C13 is taken low. This low is applied to inverter IC21e, which causes a high to be input to pin 26 of the ROM. Although this is a bidirectional connection capable of outputting sync pulses, it is used in this

case as the reset input. The low on terminal C16 is also taken to pin 1 of IC22a. This NOR gate, together with IC22b, R169, R170, C64 and the tempo potentiometer (which is connected a across terminals R9, R10) form the rhythm clock generator. The clock input is supplied to pin 27 of the M258. Selection of a rhythm is achieved by switching four input lines (pins 7, 19, 9 and 20) which the IC then decodes using an internal four-to- 16 line decoder.

The 16 rhythms are available from nine switches such that each of the first eight is used for two rhythms, called up by the ninth switch (called program $1 / 2$). The eight rhythm switches are mechanically latched and self-cancelling on a new selection. The switches connect +5 V to each of the terminals R2 to R8 which connect to triple three-input NOR gate IC25, used here as an eight-to-three line encoder. Notice that the leftmost rhythm switch does not connect to any points, but due to the mechanical cancelling action of the switches removes +5 V from any of the NOR gate inputs, thus giving the eighth state of all outputs high. The program selector switch provides the fourth bit of information to pin 20 of IC24. The final input requirements are that pins $28,14,3$ and 1 be at +5 V and pin 2 at ground. This covers the input requirements for the M258: now to the outputs.

Timing within the M258 is arranged such that each count of a rhythm lasts for two cycles of the clock input. The 16 active-low outputs normally remain active for one clock cycle only, but eight of them have the option that they may remain active for the whole count (two clock cycles). This gives the facility of selecting whether the output is pulsed per clock cycle or can be either high or low. In the first state the output must always return to high; in the second it may not, depending on programming. In this ETI organ application pins 5 and 11 are programmed in the second manner: their full purpose in life will be described later.

Output pins $17,21,23,12,18$ and 16 are all used to control the automatic bass patterns when the walking bass 1 and 2 features are selected. If walking bass 1 is selected, point C9 is taken low and enables the NOR gates on the outputs from pins 17, 21 and 23. These gates act as inverters and supply positive pulses through diodes D53-55 to pins 8 -10 of both the M108 and M208 ICs.

Fig. 2 Connection details for the rhythm switch.

The effect of this is to cause any bass note being played (from either the lower keyboard or the pedals) to be varied in accordance with the codes appearing on pins $8-10$. When walking bass 2 is selected, point C9 is pulled high through R220 to +5 V since the grounding by the walking bass switch is cancelled; point C11 is also taken low. This now enables the outputs from the other set of M258 pins (12, 16 and 18) to control the bass note.

Triggering for the bass envelope is is developed in either of these modes from pin 12 of the M108/208 which provides an active-low pulse named TDB (trigger decay bass) every time the bass code changes. This pulse is inverted by either IC5b or IC5d, which are enabled since the selection of either walking bass 1 or 2 removes the high (+12 V) from point C10. This turns off IC7a, thus letting the input of IC6a go high and hence its output low. This low enables the NOR gates as inverters and allows them to pass trigger pulses to the bass output gating circuits. If both walking bass 1 and 2 are switched off while the rhythm is still running, the outputs from the M258 are prevented from passing through the NOR gates (IC27a-d and IC22c,d) and their outputs will be low. Point C10 going high also enables other triggering arrangements for the bass since the TDB signal will no longer be present. If either walking bass 1 or 2 is selected and the rhythm switched off then all the outputs from the M258 will be disabled (high) and therefore all the outputs from the NOR gates will be low. Pin 8 of the M108/208 is now taken high by point C 16 from the rhythm on/off switch via D59.

Bass trigger changeover is made by point C17 going low (through the rhythm on/off switch) and pulling the input to inverter IC6a low via D6. Point C17 going low also causes IC2a to turn off momentarily due to the coupling by C 8 . This briefly removes $\overline{\mathrm{FS}}$ from B 6 ,
latched output at pin 7 of the M208. This is necessary to ensure that, when the rhythm is stopped, the pedals do not continue of their own accord. This momentary disable circuitry is also used on the input side of the M108 to cancel any memorised chord if the rhythm is switched off. It is worth pointing out here that the M258 and the NOR gates supplying the bass codes run from +5 V while the $\mathrm{M} 108 / 208$ run from +12 V . This does not cause a problem since the bass code inputs of the M108/208 will accept anything from +4 V to +18 V as a high level input on these pins when running from +12 V itself.

The M258 output pin 24 is a downbeat indicator and goes low on the first : count of any selected rhythm. This signal is connected to four parallel inverters from IC21 to provide current drive to the LED downbeat indicator. Output pin 8 was discussed last month with the lower manual rhythm guitar voice and is used to trigger this voice. The length of decay for the rhythm guitar is determined by the state of output pin 11: this output is one which has the steady state output programmed. If this pin is high the discharge time of C54 is long, thus giving a long chord from the guitar. If the pin is low the discharge time is shortened by putting R145 across C54 and thus giving the short guitar chord. This feature is very important in providing a good, musically interesting backing, and emulates the 'real' guitarist's performance more correctly.

Rhythm Voices

Eight different 'instruments' can be triggered by the M258 outputs. These are cymbal long, cymbal short, cymbal strike tone, handclap, tom-tom, clave, snare drum and bass drum. The bass drum, clave and tom-tom all use similar damped oscillator circuits but with different resonant frequencies. As an example of their operation, the clave voice is triggered by pin 10 of IC24. The
oscillator comprises IC25a, R182,183, C68 and C69, the resistors and capacitors determining the frequency of oscillation. Normally the circuit does not oscillate but when a low appears on pin 10 of the M258 a pulse is generated by C67, D46 and R181 which causes the circuit to oscillate momentarily. -This damped oscillation synthesizes the sound of the clave and is fed via R225 to IC12b, which is the rhythm mixer/preamp. After decoupling by C88 and the output impedance raised by the series resistance R231, the rhythm sounds pass to the rhythm volume control and then to the final mixer/preamp. Q18 is connected to the rhythm on/off switch so that with the switchoff, Q18 is turned on and shorts out any residual rhythm noise.

The cymbal voice is more complex than any other because of its importance in rhythms. It is developed by triggering a mixture of two noise sources and, optionally, a cymbal strike tone generator which also doubles as cymbal voicer. The first noise source develops white noise and comprises the reverse-biased base-emitter junction of Q19 connected to Q20, which is the amplifier. The output level of this circuit is adjusted by PR7 and is coupled through R191 and C72 to the base of Q15.

Fig. 3 The wiring of the expansion socket.

The other noise source is responsible for the metallic 'ring' content of the cymbal sound and comprises hex Schmitt inverter IC28 and quad EXOR gate IC29. IC28 is used to form six oscillators, which are EXORed in various combinations and and finally mixed together and coupled via C76 and R197 to the emitter of Q15.

The cymbal trigger pulse from pin 3 of the M258 passes via C70 and causes Q15, normally biased off by R190, to conduct and output a mixture of the two noise sources to its collector, where it is filtered by IC25b. The duration of the cymbal sound is largely determined by how long C71 in the base circuit of Q15 remains discharged. If the M258 output on pin 5 is not active, ie is high, C71 will be charged fairly quickly via R185 (22k) and D48 in parallel with R190. If, however, pin 5 is low, C71 will take much longer to charge through R190 (4M7) alone. These two time constants give the long and short cymbal sounds. Output pin 5 is the other output referred to which does not always return to its high state with each clock cycle. The cymbal strike tone is derived from output pin 4 and makes use of the cymbal filter as a damped oscillator. By careful programming of the ROM, excellent hi-hat effects can be produced in conjunction with the short cymbal sound.

The snare noise trigger is from pin 22 of the M258 and is inverted by IC21f. This positive-going pulse is then coupled via C78 to the emitter follower Q16: D50, R202, C79 and R203 provide shaping for the pulse which is fed to the base of Q17. This transistor is also fed with white noise from Q19, 20 and is normally off: hence no snare no ise. When the trigger pulse arrives, Q17 is switched on and amplifies the white noise, which then appears on its collector. Thus the snare drum noise is developed from a passive strike tone, resultant from the fast rise time of the trigger, together with the white noise. The drum part of the snare is produced by the tom-tom generator IC26a.

The last voice on the rhythm unit is the handclap generator, which is gradually appearing on commercial units and will become an industry standard during the year. The generator is enabled by taking pin 2 of IC30a (a NOR) low. Note that IC30 is connected to $a+12 \mathrm{~V}$ supply, which is necessary for one of the gates to be used else-
, where on the organ. (This highlights one other useful feature of the M258 - all

Fig. 4 Circuit diagram of the PSU and amplifier (component numbers restart from 1).
outputs are open-drain and can therefore be pulled up to whatever voltage is required. A quick look at the schematic will show this feature used to effect.) The positive-going output from IC30a pin 3 is fed to Q21, which gates white noise from Q19,20, and also to IC30b,c which are connected as a monostable. The rising and falling edges of this monostable will trigger the damped oscillator of IC31a, producing two beats of the handclap. This is overlayed with white noise from Q21 and filtered by IC31b. Both sound components are summed in the rhythm mixer IC12b.

Amplifier/Power Supply

The power supply is of a standard configuration, the $\pm 18 \mathrm{~V}$ supplies being used for the amplifier IC. The 12 V supply is obtained from a 7812 regulator IC fed from the +18 V rail and the +5 V (used only in the rhythm section) is derived from the +12 V by Q1.

The power amplifier is an integrated circuit type TDA2030L. Its output is fed to a four ohm loudspeaker via a headphone socket which breaks the connection to the speaker when
used. Signal reduction for headphone use is made by a 100 R resistor attached to the headphone socket.

The input to the power amplifier is made via IC3c (part of a 4016) which is used to keep the audio line disconnected for a short period immediately after switch-on. This eliminates spurious outputs from both the generator ICs and the rhythm unit caused by switching transients. The audio line both into and out of IC 3 c is biased at +6 V by R 4 and R 7 , fed from the junction of R8,9 and C9. This is necessary since IC3 is running from a single supply.

At switch-on, IC 3 c is off because pin 5 is tied to ground through R6. C7 is allowed to charge through R5 until the voltage on C 7 is sufficient to turn on IC3a and IC3b, which are connected in parallel. This then applies the +12 V to pin 5 of IC3c, turning it on and connecting the audio line to the power amplifier.

BUYLINES

Prices for kits of organ parts are available on application to Leighton Electronic Services, 17 Bridge Street, Leighton Buzzard, Beds LU7 7AH (tel. 0525 382504). A demo cassette is available for $£ 1.95$.

thobbyboord
 mail order products for electronic projects
 SPECIAL INTRODUCTORY KIT OFFERS

To enable the price conscious enthusiast to be a PROFESSIONAL
Hobbyboard Systems are derivatives from well proven, high quality PCB manufacturing techniques - they produce quality products for technical projects - why settle for less?

PRINTED CIRCUIT TRANSFER \& ETCH (KIT HB/1)

A complete kit which includes simple Foil Pattem transfer system, rub dow transfers, copperclad PCB and all processing materials and requirements including explicit instructions. (Up to 10 circuits/kit)

Normal Price E15.00 SPECIAL OFFER PAICE 812.00 INCL. VAI PRINTED CIRCUIT PHOTO RESIST PRINT \& ETCH (KIT HB/2)
A complete kit which enables you to make top quality PCB's the prolessional way. Includes full set of artwork aids, photo resist PCB and all process materials and requirements. (Up to 10 circuits/kit)

Normal Price E24.00 SPECIAL OFFER PRICE E16.00 INCL. VAT

DAYLIGHT PHOTOGRAPHIC SYSTEM (КIT HB/3)

Now you can make your own Photopositives and Negatives to professional slandards - NO DARKROOM - complete kit with Pos. \& Neg. film and all processaids.

Normal Price £19.50
SPECIAL OFFEA PRICE
s13.00 WCL. VAT

PHOTOLABEL \& PANEL SYSTEM

 (KIT HB/4)Now make professional labels \& paneis for your project cases - finish the job properly - complete kit includes artwork transfers and materials to print fully laminated Plastic Panels in 5 colours. (Up to 20 labels/kit)

Normal Price £22.50 KITS HB/2, $3, / 4$ REOUIRE UVEXPOSURE

SPECIAL OFFER PAICE
E15.00 INCL. VAT

BUILD YOUR OWN UV UNIT (hb/Uv1)

UV Lamp. Holder 8 Shade supplied with full assembly instructions to build a unit which will give superb results normally only obtained from very high cost systems-FASTEXPOSURES-FINELINEREPRODUCTION

Normal Price $£ 27.00$
SPECIAL OFFER PAICE E18.00 INCL. VAT

Hobbyboard UV ARTBOX (hb/uv2)

A fully buit, self-contained artwork table and UV exposure unit - TWO for the price of ONE - EXPOSURE AREA $9^{\prime \prime} \times 6^{\prime-}$ EXCELLENT VALUE

Normal Price $£ 65.00$
Even greater savings if you order kits $\mathrm{HB} 2, \mathrm{HB} / 3$ and $\mathrm{HB} / 4$ with your new exposure unit KIT HB/5 FULL PHOTO KIT - $£ 60.00$ INCL VAT KIT HB/6 FULL PHOTO KIT - $£ 90.00$ INCL. VAT

ORDER FORM

only please for Special Ofters,
Please send me the following as quickly as possible aty description PriceCat. TOTAL \square KITHE/1-PCBTRANSFER\&ETCHKIT KITHB/2-PCBPHOTORESISTKIT KITHB/3-DAYLIGHTPHOTOKIT-KITHB/4-PHOTOLABELPANELKIT KITHB/5-FULLUV/1 PHOTOKIT KITHB/6-FULLUV/2PHOTOKIT
HB/UV1-DIYUVEXPOSURE UNIT HB/UV2-HobbyboardUV ARTBOX

Name Address \& 16.00 \& ع13.00- \& £15.00- £ ع90.00 ع90.00

E18.00-	£
£49.00-	£

Please Send further details [
KELAN (Hobbyboard)
North Works, Hookstone Park, Harrogate, North Yorkshire. 8 0423-883672
A division of Kelan Engineering Lto.

The portable professional

 A frequency counter that fits in the palm of your hand. That's the MAX-550 from G.S.C. An accurate, easy-to-use instrument with a guaranteed measuring range from 1 kHz to 550 MHz , the MAX-550 measures only $2 \times 6 \times 1.5$ inches and weighs less than half a pound. Yet its bright 6 -digit LED display and its internal crystalcontrolled timebase combine to give readings with an accuracy of 3 parts per million on signals down to 250 mV .
 Simple to operate? It has to be, with no need for switching or adjustment of polarity, slope, trigger or input level, and with built-in automatic lead-zero blanking. It runs from internal rechargeable batteries or an external d.c. supply, comes with a whole range of accessories, and costs - believe it or not - only $£ 85$ (plus V.A.T. and P. \& P.)
 To find out more, fill in the coupon right away

 G.S.C. (UK) Limited, Dept 9B
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ Telephone: Saffron Walden (0799) 21682 . Telex: 817477

Suparior Quality Precision Made NEW POWER RHEOSTATS

New ceramic construction,
assembly, continuously rated assembly, continuously rated 25 WATT 10/25/50/100/150/250/500/1K』 1.5k Ω EO WAT 250055 50 + 50p P\& so WAT 50Ω E5. 50 + 50p P\&P (Es. 90 inc. VAT) 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega / 3.5 \mathrm{k} \Omega$ Black + 7 thor SkP Skirted 20 inc. VAI) Ideat for above Rheostats 30 p en. + VAT

SOLID STATE E.H.T. UNIT

input 230 V A.C. Fully isolated. Aprox. 15KV. Buith in 10 sec . Timer. Easil modified tor 20 sec. 30 sec e to continuous operstion. Size
$155 \times 85 \times 50 \mathrm{~mm}$. Price $\mathrm{ES}+75 \mathrm{P}$ P\&P. (Total inc. VAT 66.61).

240V A.C. SOLENOID VALVE
Designed for Air/Gas at 0-7. Water 0.5 psi. Iniet/outiet " 38 ".
bndy. Manuf. Dowraswitch Asco.
Price: $£ 5.50+75 \mathrm{p}$ P\&P ($\mathbf{E 7 . 1 0}$ inc. VAT). N.M.S METERS (New) - 90 mm DIAMETER AC Amp. TYpe 62T2:0, 1A, 0-5A, O-10A. DC Amp. Type $65 C 5$ 0-5A, 0-10A, 0-50A, 0-100A. DC Voh 30V. All types

ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES 4ft 40 watt fe 70 inc. VAT E10.00 (callers only).
2420 watt 58.20 . Post $E 1.25$ (88.57 inc. VAT \& P)

 6 in 4 watt $\mathbf{2 2 . 5 0}+450$ ($£ 3.39$ inc. VAT P\&P). Complete bollast unit for either $6 \mathrm{~V}, 9 \mathrm{~V}$ or 12 V tube 200 V AC 1 A (\mathbf{E} e. 98 inc. VAT P\&P).
BLACK LIGHT BULBS
Self-ballasted Mercury U.V. 175W Bulbs. Available for either B.C. or E.S. fitting Prica incl. p\&p \& VAT \&11.50.
400 W UV LAMP AND AA
 SOLENOIDS

 CONTACTOR
AMF $230 V$ AC 2 c/o $25 A .55 .50+75 p$ p 8 ($(£ 7.19$ inc. VAT)
AEG. Arrow-Hart. etc, from stock. Phone your enquiries Stockists for Finnigans Hammerite paint and Waxoyl products

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT 0-260V 200 W 1 ampinc. a.c. voltage
$0.5 \mathrm{KVA}(21 / 2$ amp MAX$)$ $0.5 \mathrm{KVA}\left(2^{1 / 2} \mathrm{amp} \mathrm{MA}\right.$
$1 \mathrm{KVA}(5$ amp MAX)
$1 \mathrm{KVA}(5 \mathrm{amp}$ MAX)
$2 \mathrm{KVA}(10 \mathrm{mp}$ MAX)
$2 \mathrm{KVA}(10 \mathrm{amp} \mathrm{MAX})$
$5 \mathrm{KVA}(25 \operatorname{amp} \mathrm{mAX})$
$10 \mathrm{KVA}(50 \mathrm{amp} \mathrm{MAX})$
$15 \mathrm{KVA}(75 \mathrm{mp} \mathrm{MAX})$

3-PHASE VARIABLE VOLTAGE TRANSFORMERS

Dual input $200 \cdot 240 \mathrm{~V}$ or $380-415 \mathrm{~V}$. Star connected KKVA amp per phase max $£ 113.40$ | 10 KVA 16 amp per phase max | E170.10 |
| :--- | :--- |
| | E345.45 |

Comprehensive range of L.T., AUTO (110-240V), ISOLATION TRANSFORMERS available for im mediate delivery. Leaflet on request.

EPROM ERASURE KIT

Why weste money? Bulld your own EPROM ERASURE for a fracion of the price of a made-up unit. Complete kit of parts less case,
oinclude $12^{\prime \prime} 8$ watt 2537 Angst Tube. Ballast unit, pair of bi-pin to include 12 " 8 watt 2537 Angst Tube. Bailast unit, pair of bi-pir
eads. Neon indicator, safety microswitch, on/off switch and cir
CUit. LESS CASE. Price: $\mathbf{£ 1 3 . 6 0 + 7 5 D}$ P\&P. (Total incl. VAT $\mathbf{£ 1 6 . 5 0}$). WeSS CASE. Price: $\mathbf{E 1 3 . 6 0 + 7 5 \mathrm { p } \text { P\&P. (Total incl. VAT } 1 \text { 1s. }}$. Unit MUST be fitted in suitable case

FROM STOCK AT PRICES THAT DEFY COMPETITION!

ac geared motors

DC MOTORS MICROSWITCHES RELAYS REED SWITCHES SOLENOIDS PROGRAMME TIMERS
C.F. BLOWERS AC CAPACITORS STROBE KITS FLASHTUBES CONTACTORS SYNCHRONOUS MOTORS

GEARED MOTORS
5 rom
inc. VAT) $71 / 2 r p m$ Motor approx 30 tb in. 110 V A.C. complere with Transformer for 240 V A.C. $£ 10.20+£ 1.50$ p\&ip total inc. VAT 13.45)
71 rpm WYNSCALE motor spprox. 10 th inch.
A.C. supplied with suto transformer 240 V .
A.C. operation. $£ 9.75$ pap $£ 1.50$ ($\mathbf{(1 2 . 9 4}$ inc. VAT).
N.M.S.

42 rpm. 110 A.C. 50 hz .1001 b inc. reversible, will operate on 230 A.C. Speed remains at 42 rpm but to
c2.50 ($\because 3.75$ inc. VAT). N.M.S
TRANSFORMER 240 V A. A. M.S.
38.3 rpm GEARED MOTOR. Torque 351 b .in reversible 115 V AC inc
 incl. VAT E8.80).

N.E.C. GEARED MOTOA 152 IPm, 2001 b . in. 230 V A.C. 50 Hz . Ratio 9.2 to 1 . NOn reverse Ratio 9.2 to 1 . Non reverse. Incl. capac maker's price. $\mathbf{E 4 1 . 2 8}+$ Cart + VAT. N.M.S.

INDUSTRIAL STROBE KIT

Ideal for Industrial and Educational purposes. Produces high intensity flash variable from approx 1 to 70 f.p.s. Price less case: $827+£ 2$ Pap total incl. VAT ©33.36). Suitable Case and Reflertor $\mathbf{£ 1 2 . 5 0}+\mathbf{£ 2}$ P\&

 Eib. E8) Foolscan SAE tor furher defoils including Super Hy:Lyght COMPRESSOR
 $230,240 \mathrm{VaC}$. 28.4 .45 inc, VA

BLOWERNACUUM PUMP

3 phase A.C. moton $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V} .1 .425 \mathrm{rbm}$, $1 / \mathrm{sh} . \mathrm{p}$. cont. Direct coupled to wiliam allday Alcoss carbon vane blowar/vacuum pump.
INSULATION TESTERS NEW
(E58.65 inc. VAT \& P) 1000 VOLTS 1000 N E55.00
P\&P 2.00 (286.55 inc. VAT \& P). SAE for leaflet.
SANGAMO WESTON TIME SWITCH
Type $\$ 251200 / 250 \mathrm{AC} 2$ on/2 off every 24 hours. 20 amps contacts
with override switch. Diameter 4×3, price $\mathrm{Es.ED}$ P\&P $£ 1.00$

Also availabie Sanga Weston 60 amp and AEG 80 . for details.
Trpe S28 1 on, or 1 timed c/o every 24 hours,
Price $£ 11+$ E1 p\&p. ($£ 13.80$ incl. VAT). N.M.S.
Proe $\mathbf{s} 3$ + + \& Pap. (13.80 incl. VAT). N.M.S.

Phone in your enquiries

Ample parking space Showroom open Monday-Fridar

57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB, 01-995 1560

ACCOUNT CUSTOMERS MIN. ORDER £10

9 Little Newport Street London WC2H 7JJ Tel: 01-437 0576

THANDAR PORTABLE TIESTBENCH

A wide range of high performanceinstruments ${ }_{r}$ at ṕrices that are hard to beat, puts professional test capability on your bench.
COUNTERS - TF200 10Hz to 200MHz; TF040 10Hz to 40MHz; PFM200A 20Hz to 200MHz (hand-held model); TP600 prescales to 600 MHz ; TP1000 Prescales to 1 GHz .
MOLTIMETERS-TM3510.1\%31/2 digit LCD; TM353 0.25\% 31/2 digit LCD; TM3550.25\% 31/2digit LED; TM3540.75\% 31/2 digit LCD (hand-held model); TM451 0.03\% 41/2 digit with autoranging and sample hold.
OSCILLOSCOPE-SC110A 10MHz, 10 mV sensitivity, 40 mm CRT with 6 mm graticule divisions.
THERMOMETERS - TH301 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C}, 1^{\circ}$ resolution; TH302 $-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F}, 0.1^{\circ}$ and 1° resolution. Both accept any type K thermocouple. GENERATORS - TG100 1 Hz to 100 kHz Function, Sine, Square, Triangle Wave; TG102 0.2 Hz to 2 MHz Function, Sine, Square, Triangle Wave; TG 1055 Hz to 5 MHz Pulse, Free Run, Gated or Triggered Modes.
LOGIC ANALYSERS-TA2080 8 channel 20 MHz ; TA2160 16 channel 20MHz.
ACCESSORIES - Bench rack, test leads, carrying cases, mains adaptors, probes;

Send for our latest catalogue and price list. Thandar Electronics Ltd,
London Road, St. Ives,
Huntingdon, Cambridgeshire PE174HJ Telephone (0480) 64646. Telex 32250.

ELECTRONICS LIMITED PUTTINGTHE BEST WITHIN YOUR GRASP

DESIGNER'S NOTEBOOK 2

Our second Notebook topic is that much-misunderstood beast, the switched mode power supply. P.S. Wilson of International Rectifier gives a step-by-step explanation of the various types and design examples.

The term 'switching mode power supply' is used to describe DC-to-DC converters and AC-to-DC converters which operate on a switching principle. Using switching techniques, voltage step-up and voltage inversion can be achieved, as well as the more common voltage step-down function. The advantages of using switching techniques over a linear solution are the reduction in the size of components (such as power transformers and output filter capacitors) by operating at high frequency, and dramatic improvements in efficiency, since the power elements are either fully turned 'on' or 'off' and do not operate in the linear mode. The disadvantages of switching mode solutions are increased noise and radio frequency interference (RFI) which is generated during the switching transitions. Circuit complexity is increased, as in addition to the control circuit, a power switch, rectifier, high frequency transformer or inductor and drive circuitry is required.

Switching mode solutions are, however, costcompetitive with linear power supplies in off-line applications at and above the 100 W level. Switch mode power supplies are also used at lower power levels in DC-to-DC converters where there is a special requirement such as high efficiency, for example in solar energy conversion, or small size for mobile communications equipment.

Basic Principles

The circuit and waveforms in Fig. 1 illustrate the basic principle of the switching mode supply by comparison with a linear regulator. The circuit configuration shown is for a voltage step-down conversion. When switch SW1 is closed the input supply voltage is applied to the inductor L1, and current flow in the inductor will rise with a ramp waveform, charging capacitor C1 and also supplying the load connected at the output of the supply. When SW1 is opened (equivalent to turning off a semiconductor device) the inductor current diverts into the rectifier, D1. The voltage at circuit node ' P ' falls instantaneously to a rectifier forward voltage drop below the 0 V line, and the current flow in the inductor follows a negative ramp waveform. The power supply load is now supplied both from the inductor and from the output capacitor, C1. When SW1 again closes, D1 becomes reverse biased and the inductor is again connected to the input supply. In the steady state condition, the positive volt-second product applied to the inductor must balance the negative volt-second product applied when the rectifier conducts. The voltage at the output of the supply is regulated by controlling the 'on'/'off' ratio, or duty cycle of the switch SW1. Because the switching element is either 'on' or 'off' the power loss is small and the efficiency of the supply approaches 100%.

Comparison with the linear regulator (Fig. 1b) shows an efficiency of approximately $V_{0} / V_{\text {IN }}$.

Figure 2 illustrates how, by rearranging the circuit elements SW1, L1 and D1, voltage step-up and voltage inversion can be achieved. Provided that the current flowing in L1 does not fall to zero between the conduction phases of SW1, the circuit configuration in Fig. 2a can be said to provide a 'non-pulsating' output current. This feature allows low output ripple voltage to be achieved. The configuration shown in Fig. 2b, however, will exhibit a 'pulsating' output current as the inductor current is diverted from the output when SW1 closes. The input current flow, however, can be arranged to be non-pulsating, so reducing the ripple voltage on the input supply. The voltage inverting circuit, Fig. 2c has pulsating current waveforms at both input and output terminals.

To overcome this apparent restriction on operating mode, transformer-coupled circuits can be used. The voltage conversion achieved is then defined by the transformer turns ratio and the polarity of the output rectifiers. Figure 3 illustrates the most common circuit configurations in use today. In addition to increasing flexibility, the transformer-coupled solution offers the option of an isolated output supply.

Figure 3 a shows a transformer-coupled circuit configuration analagous to the voltage step-up circuit in Fig. 2b. The dots against the transformer windings indicate

Fig. 2 Circuit configurations to achieve different $V_{1 N} / V_{\text {our }}$. (a) Voltage step-down. (b) Voltage step-up. (c) Voltage inversion.
their polarity. SW1 and D1 conduct during opposite phases of the drive signal, that is, they conduct nonsimultaneously.

Figure 3 b is analagous to the voltage step-down circuit in Fig. 2a. SW1 and D1 conduct simultaneously. During the switch 'off' time, current flow in L1 is diverted through a second rectifier, D2. The purpose of the third winding on the transformer is to reset the magnetic core of the transformer during the switch 'off' time. If this was not done, the magnetic core would become DC-biased and may saturate, resulting in poor performance (low efficiency and high pulse currents in the primary winding and SW1).

Figure 3c, the push-pull converter, is again analagous to the circuit in Fig. 2a. The difference between this circuit configuration and the forward converter shown in Fig. 3b is that the transformer is biased bidirectionally by switches SW1 and SW2 which conduct alternately. Consequently the 'reset' winding shown in Fig. 3b is not required. The output filter components L1, C1 operate at twice the switching frequency, allowing some size reduction. Each switching device (SW1, SW2) passes only one half of the output current divided by the transformer turns ratio, n. Consequently this solution may be preferred to the solution shown in Fig. 3b at higher power levels (greater than 100 W).

Figure 3d ịlustrates a type of push-pull converter commonly used in off-line applications. Its main advantage, apart from the automatic resetting of the transformer core, is that the maximum voltage seen by either switch does not substantially exceed the input supply line voltage. Consequently, 400 V switches can be used when working directly from the rectified 240 V mains supply. Capacitor C2 prevents DC biasing of the transformer core which may otherwise arise through asymmetry in the switching waveforms of SW1 and SW2. Capacitors C3, C4 effectively divide the supply to the transformer by two.

Finally, Fig. 3e represents a further modification to the
basic forward converter in Fig. 2a. The capacitors C3, C4 in the previous figure are replaced by two more switches; SW3, SW4. DC magnetisation of the transformer core is prevented by capacitor C2. The full supply voltage is now applied across the transformer primary as switches SW1 and SW4 and then SW2 and SW3 close simultaneously. The maximum voltage applied to any of the switches will not exceed the supply voltage significantly. This 'full bridge' configuration is used in high power switching power supplies where the size and cost of capacitors C3, C4 to replace the switches would be prohibitive. The same circuit configuration is used to drive reversible DC motors.

Switching power supplies can use capacitive elements as the energy transfer medium, rather than magnetic components which have been considered so far. Generally, capacitive circuits are limited to use at high frequency (greater than 10 kHz) and relatively low power levels. Figure 4 shows a capacitive voltage multiplier and a voltage inverting circuit. An example of such a circuit, which is available in integrated form, is the ICL7660 from Intersil Inc.

Operation of the circuit in Fig. 4a is as follows. Initially, SW2 is closed and SW1 'off'. Capacitor C1 is charged to $V_{\text {iN }}$ through rectifier D2 and SW2. SW2 then opens and SW1 is closed. This causes the voltage seen at the anode of rectifier D 1 to rise from $\mathrm{V}_{\mathbb{N}}$ to a value determined by the relative sizes of capacitors $\mathrm{C} 1, \mathrm{C} 2$. When $\mathrm{C} 1=\mathrm{C} 2$, the voltage at the output of the supply will rise toward $2 \mathrm{~V}_{1 \mathrm{~N}}$. SW1 is then opened and SW2 closed to repeat the cycle.

The circuit in Fig. 4b operates on the same principle. SW1 charges capacitor C 1 to $\mathrm{V}_{\mathbb{I N}}$. SW2 is then closed, taking the cathode of rectifier D1 negative to a value determined by $\mathrm{C} 1, \mathrm{C} 2$. Capacitor C 1 is then recharged through SW1 and D2.

What Semiconductor?

As is inferred by the name 'switching mode' the semiconductor devices required for this application are primarily switching devices. The requirements for the switches are:

- Low conduction losses.
- Fast switching times.
- Voltage rating to match the circuit configuration and input supply voltage.
- Ability to withstand an overload.
- Good safe operating area (SOA) when used in an inductive load switching circuit.
These requirements can be met, largely, by a wide variety of bipolar transistors, thyristors and SCRs. More recently, power MOSFETS have been introduced with voltage and current ratings suitable for use in switching power supplies (current ratings to 40 A and voltage ratings to 500 V). These devices offer substantial advantages over bipolar transistors in the following areas:
- Low gate drive power - simplifying the driver stage.
- Fast switching times which are largely temperature insensitive - allowing operation at frequencies greater than 50 kHz .
- Good overload capability - the device is not limited by gain or second breakdown. Power dissipation is the limiting factor.
- The positive temperature coefficient of 'on' resistance assists current sharing when devices are parallelconnected to achieve higher current ratings.
Rectifiers for switching power supplies have similar requirements to the switching devices. The type of rectifier used is governed by the circuit application as indicated in Table 1.

Monolithic switching regulator circuits of limited output power capability are available (Fairchild uA78S40,

Fig. 3 Transformer-coupled switching mode circuits.
(a) Flyback converter. (b) Single-ended forward converter. (c) Push-pull converter. (d) Half bridge circuit. (e) Full bridge circuit.

Texas TL497A), and the trend toward integrated power functions can be expected to accelerate. There are a number of integrated control circuits for switching mode power supplies available, allowing the control circuit board complexity to be reduced. The functions available in these circuits include: an oscillator, a voltage reference, a regulator, a current limit function and a driver stage. Some of the more common devices are: Philips TDA1060 which is pin-for-pin compatible with the Signetics NE5560, the Silicon General SG3524 which is multi-sourced, the Texas Instruments TL494 which is also available from Motorola, Fairchild and Fujitsu (as MB3759) and the Motorola MC3420.

TABLE 1

Application
High Frequency Switching

High Current, Low Voltage Switching

High Voltage Switching

Magnetic Component Design

Magnetic components are used in the majority of switching mode power supplies. It is, generally, only at low power and high frequency that capacitive circuits can be used. Magnetic components are used not only as high frequency transformers and DC inductors, but also as drive transformers, providing isolation between the control circuit and the power switching elements, and as current sensing elements.

Some of the criteria for the selection of a magnetic component as a high frequency transformer core are:

- Operating frequency range.
- Maximum magnetic flux density.
- Loss coefficient at the operating frequency.
- Available winding area.
- Primary to secondary coupling factor, and isolation. Ferrite cores in a variety of shapes and materials are available. Metal powder cores, laminated and tape wound cores are also available for specialist applications.

Transformer Design

As an example, consider the design of a switching mode transformer to operate at 50 kHz in a half bridge circuit (refer to Fig. 3d). The input voltage is $310 \mathrm{~V}+5 \%$, 10% and the output required is 5 V at 40 A .
Step 1. Select a core material suitable for operation at 50 kHz and a core size commensurate with the power loading. Example: Mullard FX3740 core, A16 material; Philips EC52/24/14 core, 3C8 material.
Step 2. Calculate the number of primary turns required to avoid saturation of the transformer core under worst case loading. Check that the worst case core losses do not cause excessive core operating temperature. Check that the winding area is adequate. Check that the magnetising current is less than 10% of the load current for efficient

Fig. 4 Capacitive converter circuits. (a) Capacitive voltage multiplier. (b) Capacitive voltage inverter.
operation. Example: Worst case loading will occur with maximum input supply voltage and maximum duty cycle for the switches.

$$
V_{I N} \max \frac{\delta \max }{f_{o}}=\widehat{B} \cdot A e \cdot n
$$

where $\mathrm{V}_{\text {IN }} \max$ is the maximum voltage applied to the transformer

$$
=\frac{310+5 \% \cdot V}{2}
$$

$=50 \mathrm{kHz}$

f_{0} is the operating frequency

$\begin{aligned} & \mathrm{B} \\ & \mathrm{B} \text { is the peak working flux density of the core, at elevated } \\ &= 200 \mathrm{mT}\end{aligned}$ temperature
$=200 \mathrm{mT}$
Ae is the magnetic cross secitonal area of the core $=180$ mm^{2}
n is the minimum required number of turns
Hence $n_{\text {min }}=40.7$ turns
Working at a peak flux of 200 mT , at 50 kHz , core losses are approximately 1 W 8 . This corresponds to a rise in core temperature above ambient of approximately $20^{\circ} \mathrm{C}$. Assuming a conversion efficiency of 70%, the input power requirement is 286 W . The lowest input voltage, applied across the transformer primary is $(310-10 \%) / 2 \mathrm{~V}=139 \mathrm{~V}$. This gives a primary winding current, assuming 0.9 duty cycle, of approximately 2A3. .

Assuming a current density in the transformer winding of $4 \mathrm{~A} / \mathrm{mm}^{2}$, the cross-sectional area of wire used for the primary winding should be $0.57 \mathrm{~mm}^{2}$, corresponding to a wire of diameter 0.85 mm . Assuming a packing factor of two (because a circular cross-section conductor is used) the winding area consumed by the primary winding will be $2 \mathrm{n} \times 0.57 \mathrm{~mm}^{2}=46.7 \mathrm{~mm}^{2}$. The available winding area on the core, after making an allowance for isolation is $304 \mathrm{~mm}^{2}$. The primary winding will take only $1 / 6$ of the available area.

The magnetising inductance of the winding is determined by:

$$
\mathrm{L}_{\mathrm{m}}=\frac{\mu_{\mathrm{o}} \mu_{\mathrm{a}} \mathrm{n}^{2} \mathrm{Ae}}{l_{\mathrm{e}}}
$$

where L_{m} is the magnetising inductance in Henries
μ_{o} is the permeability of free space $=4 \times 10^{-7} \mathrm{H} / \mathrm{m}$
μ_{a} is the amplitude permeability of the core $=10^{3}$
I_{e} is the magnetic path length in the core $=105 \mathrm{~mm}$

$$
L_{m}=3.62 \mathrm{mH}
$$

The peak magnetising current is given by the equation:

So

$$
\begin{gathered}
\quad \frac{V_{i n} \min }{2}=\frac{2 \cdot L_{m} I_{m} f_{o}}{\delta \max } \\
I_{m}=\frac{V_{i n} \min . \delta \max }{4 . L_{m} \cdot f_{o}}=86 \mathrm{~mA}
\end{gathered}
$$

The peak magnetising current represents 4% of the load current, which is acceptable.
Step 3. Establish the transformer turns ratio. Example: The voltage required at the secondary winding of the transformer is a function of the power supply output voltage (5 V), the duty cycle of the switches SW1, SW2, and the voltage dropped across the rectifiers and resistance of the output inductor L1. Disregarding the circuit losses initially, the transformer output voltage can be found by balancing the volt-second products for the output inductor in the minimum input supply condition, when the duty cycle is 0.9 .

$$
\left(V_{x}-V_{o}\right)=\left(V_{o}+V_{f}\right)(1-\delta)
$$

where V_{x} is the transformer output voltage.
V_{0} is the supply output voltage
$=5 \mathrm{~V}$
δ is the duty cycle
V_{F} is the rectifier forward drop
$=0.9$
$=1 \mathrm{~V}$

$$
V_{x}=5 V 7
$$

To this figure must be added the circuit losses, $V_{F}+I_{0} \cdot R_{L}$,
where I_{O} is the rated output current, and R_{L} is the series resistance of L 1 and the circuit wiring.

A minimum output voltage of 7 V can be used. The minimum input voltage is 139 V , so the transformer turns ratio is 20:1. Assuming a primary winding of 40 turns (marginally below the minimum, resulting in a slightly higher peak flux density, $\widehat{\mathbf{B}}$, which can be tolerated in this example), each secondary winding comprises two turns.
Step 4. Transformer winding design. The correct design of the transformer windings will result in a reproducible and efficient transformer design. The conductor size and placement can have a significant effect on winding losses in a high frequency design. Example: The primary winding consists of 40 turns of 0.85 mm diameter wire, which can be wound in two layers each comprising 20 turns. The available winding breadth on the transformer core is approximately 20 mm after an allowance of 4 mm at either end for isolation. The secondary consists of two windings, each of two turns. The conductor for these windings is in strip form, being 8 mm in width and 0.625 mm thick. The windings are wound side by side on the former. Electrostatic screens and isolation are wound between primary and secondary windings. Worst case windings losses arise at maximum loading. Primary winding loss is 3 W 4 maximum, and the secondary winding loss 1W25 watts maximum. When added to the transformer core losses of 1W8 the worst case transformer loss is 6 W 45 at a core temperature of $100^{\circ} \mathrm{C}$. The transformer is capable of operating in ambient temperatures up to $35^{\circ} \mathrm{C}$ without additional heatsinking. (Core data and ratings are drawn from the manufacturers' literature).

Inductor Design

The operating conditions of the magnetic core in the inductor are significantly different from those of the switching mode transformer. The core must withstand a DC magnetising field, without saturation. For this reason, an air gap is commonly introduced into a magnetic circuit. This can be either in the form of a single gap introduced, say, in the centre pole of an ' E ' core, or can be a distributed gap throughout the core material. The distributed gap solution presents a lower radiated magnetic field. When a gapped core is used, the magnetic flux is sorted mainly in the gap. There are small flux excursions as the load current ramps up and down. As an example, consider the design of an output filter inductor to be used with the 50 kHz transformer previously designed. The operating frequency will be 100 kHz . The maximum output current is 40 A and the minimum output current for continuous current flow in the inductor is 4 A .
Step 1. Calculate inductance value required, and the energy storage capability required. Example: The minimum voltage applied to the inductor by the transformer secondary winding is 5 V 7 with a 0.9 duty cycle. The current in the inductor can be allowed to rise by 8 A maximum during this time if the current flow is to remain continuous when the output loading is minimum, ie 4 A .

$$
\left(V_{I N} \min -V_{0}\right)=L \min . \quad \frac{l_{L} \cdot f o}{\delta \max }
$$

where $V_{\mathbb{I N}} \min$ is the voltage applied to the inductor $=5 \mathrm{~V} 7$ V_{0} is the output supply voltage $=5 \mathrm{~V}$ Lmin is the minimum inductance value I_{L} is the peak to peak inductor current $=8 \mathrm{~A}$ fo is the operating frequency $=100 \mathrm{kHz}$
δ max is the switch duty cycle
$=0.9$

$1 \mathrm{~min}=1.6$ microhenries

The energy storage capability is $L . I_{m}{ }^{2}$ where I_{m} is the peak current flowing in the inductor $=44 \mathrm{~A}$, so $\mathrm{L} . \mathrm{I}_{\mathrm{m}}{ }^{2}=3.1 \mathrm{~mJ}$.

Step 2. Select a suitable inductor core and determine the air gap required (if it is not a distributed gap material). The majority of magnetic core manufacturers provide selection charts/guides for this purpose. Example: Philips core EC35/17/10 with a 0.9 mm air gap will meet the energy storage requirement (equivalent to the Mullard FX3720).
Step 3. Calculate the number of turns required and determine the inductor losses. The core data gives an effective permeability or an A_{L} value (inductance per turn of the coil) for gapped cores, which enables the number of turns to be calculated and rounded up to the nearest half turn. The inductor losses are primarily in the winding and these can be determined using a similar method to that used to calculate the transformer winding losses. Example: For the Philips EC35/17/10 core with a minimum air gap of 0.9 $\mathrm{mm}, 4$ turns are required to give an inductance of 1.6 microhenries. The winding losses can be written as $\mathrm{I}_{\mathrm{eff}}{ }^{2} \cdot \mathrm{~F}_{\mathrm{R}} \cdot \mathrm{R}_{\mathrm{DC}}$ where
$I_{\text {eff }}$ is the RMS current flowing in the inductor winding
F_{R} is a resistance multiplier to account for high frequency operation
$R_{D C}$ is the $D C$ resistance of the winding.
The high frequency impedance of the winding is a minimum for a conductor of thickness 0.57 mm . Making the winding with copper strip of thickness 0.5 mm and width 20 mm gives a $100^{\circ} \mathrm{C}$ AC winding resistance of 0.58 mR . The winding loss is 0W93, resulting in an inductor temperature rise above ambient of $18^{\circ} \mathrm{C}$ when fully loaded.

Drive Transformer Design

Various approaches to the design can be made, though the choice is frequently restricted by the operating conditions and the drive requirements of the semiconductor switch. Thyristors and power MOSFETS can be driven by pulse transformers. The length of the trigger pulse and the circuit impedance are designed to comprehend the drive requirements of the worst case drive. Bipolar transistors require a continuous base current supply which often results in a larger transformer core being needed. The need for a wide variation in switch duty cycle often results in the drive supplied to the switching device being compromised: the forward base current supplied during long duty-cycle operation may be the bare minimum to maintain the transistor in saturation. At short duty-cycles the base current supplied can be far in excess of the device requirements, compromising its switching performance. This effect is less severe when power MOSFETS are used as the switches, since they do not exhibit storage time effects.

As an example, conside the design of drive transformers for power MOSFETS when used as the switches in the 50 kHz switching mode power supply. A single transformer with two primary and two isolated secondary windings culd be used. A disadvantage of this approach, however, is the absence of negative gate bias to turn off the MOSFETs at any duty cycle other than the maximum of 0.5 , which would give poor noise immunity in normal operation. Instead, separate transformers are used and the magnetising energy stored in the transformer core during the conduction phase is used to assist turn-off. The transformer design is similar to that required for a singleended forward converter, Fig. 3b.

Step 1. Select a suitable magnetic material and core size. Example: The operating frequency is 50 kHz and the average current flow in the windings will be low. A core material with a high permeability is desirable to maintain a low level of magnetising current. Winding area is a significant factor in determining the core size and will depend on the isolation voltage rating desired. For this application consider the Philips core P1418 in 3B7 material, with an $\mathrm{A}_{\llcorner }$
value of $2,200 \mathrm{nH} / 1000$ turns and a total winding area of $9.4 \mathrm{~mm}^{2}$.
Step 2. Calculate the number of turns required for the primary winding and the magnetising inductance and current. Example: To avoid core saturation when operating at maximum duty cycle, with a supply voltage of 15 V , the minimum number of turns required in the primary winding is given by:

$$
V_{\text {in }} \cdot \frac{\delta \max ^{\iota}}{f_{o}}=\widehat{B} \cdot \text { Ae. } n_{\text {min }}
$$

where $\mathrm{V}_{\text {IN }}$ is the supply voltage
$=15 \mathrm{~V}$
δ max is the maximum duty cycle
$=0.45$
f_{o} is the operating frequency $\quad=50 \mathrm{kHz}$
\bar{B} is the peak magnetic flux density in the core $=180 \mathrm{mT}$ Ae is the magnetic cross sectional area of the core $=25.1$ mm^{2}
$\mathrm{n}_{\text {min }}$ is the minimum number of primary turns
Hence $\mathrm{n}_{\text {min }}=30$ turns
The magnetising inductance, with n, the number of turns equal to $n_{\text {min }}$ is given by:
where:

$$
n_{\min }=10^{3} \sqrt{\frac{L_{M}}{A_{L}}}
$$

L_{M} is the magnetising inductance in millihenries
A_{L} is the inductance factor in nanohenries/ 1000 turns
2,200
Hence $L_{m}=2.0 \mathrm{mH}$
The magnetising current at maximum duty cycle is

$$
I_{M}=\frac{V_{\mathbb{I N}} \cdot \delta \max }{L_{M} \text { fo }}=67.5 \mathrm{~mA}
$$

Step 3. Check that the winding area on the ferrite core is adequate. Example: To calculate the winding area required for the primary winding, we must first estimate the average current flow. The current required to drive the power MOSFET IRF720, which would be used in this application, at 50 kHz , is low compared to the magnetising current (1.7 mA averaged over a switching cycle). So, the average magnetising current level can be assumed. A suitable wire gauge is 0.1 mm diameter. Because of handling difficulties, a 0.2 mm wire may be preferred. The winding area consumed is approximately 20% of the total winding area of the transformer. Assuming that the drive transformer has a $1: 1$ turns ratio, giving a $\pm 15 \mathrm{~V}$ gate drive to the power MOSFET, the winding area is adequate, after an allowance for isolation spacing has been made.
Step 4. Calculate the minimum permitted drive pulse for safe turn-off. Example: Because this design relies on the transformer magnetising energy to switch off the power MOSFET, a minimum drive pulse must be defined where by the magnetising energy equals the worst case turn-off energy for the MOSFET. Turn-off energy requirements for the MOSFET $=\mathrm{Q}_{\mathrm{C}} \cdot \Delta \mathrm{V}$ where Q_{C} is the maximum gate charge figure.

$$
\Delta V \text { is the gate voltage swing }
$$ Magnetising energy in the transformer

$=\left(\mathrm{V}_{\mathrm{IN}} \cdot \mathrm{t}_{\mathrm{on}} \mathrm{min}\right)^{2} / \mathrm{L}_{\mathrm{M}}$ where $t_{o n} \min$ is the duration of the minimum drive pulse. Equating these figures, assuming $\mathrm{Q}_{\mathrm{C}}=17 \mathrm{nC}$ for the IRF720 device, gives a minimum drive pulse of $\mathrm{t}_{\mathrm{on}} \mathrm{min}=$ 2.15 microseconds, which represents a minimum duty cycle, at 50 kHz , of 0.22 .

In the June ETI we will be publishing a switching mode power supply similar to the half bridge design used for the examples here: the project will look more closely at the functions of the actual controller IC.

toroidats

The toroidal transformer is now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size，weight，lower radiated field and thanks to I．L．P．PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．

${ }^{100}$		com	cites	pact				
cos	1200	cis		£512				
		R：${ }^{12}$				mal ounit		
	\％016			cotem				
	20,0	6.6						
come					225，		\％	
		䢕：	，		，$\times 2 \times$	\％		
			－	\％omb		\％oid	cos	
						${ }_{33} 33$	${ }^{3}$	
	年，		$\substack { 64 . \\ \begin{subarray}{c}{64 \\ 313{ 6 4 . \\ \begin{subarray} { c } { 6 4 \\ 3 1 3 } } \end{subarray}$					
		and					com	
						20，		
	2000	－						
come	ciol	5：5						
				$£ 6.90$				
Ampen								
				£7．91				
				nextimo				
						${ }^{\text {cis }}$		

IMPORTANT：Regulation－All voltages quoted are FULL LOAD．Please add regulation figure to secondary voltage to obtain olf load voltage．
The benelits of ILP toroidal transformers
ILP toroidal transformers are only half the weight and height of their laminated equivalents，and are available with 110 V ． 220 V or 240 V primaries coded as follows For 110 V primary insen＂ 0 ＂in place of＂x＂in type number．
For 220 v primary（Europe）inser＂ 1 ＂in place of＂x＂in type number
For 240 V primary（UK）insen＂ 2 ＂in place of＂X＂in type number
How to order Freepost
Use this coupon，or a separate sheet of paper，to order these products，or any producis from other ILP Electronics adventisements．No stamp is needed if you address to Freepost Cheques and postal orders must be crossed and payable to ILP Electronics Ltd． Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for single and small quantity orders．
Also available at Eleclrovalue．Maplin and Technomatic

Please send
Total purchase price
\square Postal Orders \square
int．Money Order \square
Debit my Access／Barclaycard No
Name
Address

signature

Post to：ILP Electronics Lid，Freepost 4 Graham Beil House，Roper Close
Canterbury CT2 7EP，Kent．Englano
Telephone Sales（0227）54778：Technical（0227）64723：Telex 965780. 표른

NEW：T．V．SOUND TUNER BuITMODTEsTED

In the cut－throat world of
consumer electronics，one of the questions designers pparently ponder over is＂Will anyone notice if we save money by chopp ing this out？＂In the domestic TV set，one of the irst casualties seems to be and no tone controls are speakers

PRACTICAL ELECTRONICS SPECCIL OFFERT STEREO CASSETTE RECORDER KIT ©
 ONLY £ $\mathbf{3 1 . 0 0}$ plus $£ 2.75 \mathrm{p} \& \mathrm{p}$ ． －NOISE REDUCTION SYSTEM－AUTO EO ANDEPENDENT LEVEL CONTRBL ．TWIN V M METER WOW \＆FIUTTER 0.1% RECORD／PLAYBACK IC WITH ELECTRONIC SWITCHING．FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES．
 Kit includes tape transport mechanism，ready punched and back
 printed quality circuit board and all electronic parts．ie．semiconductors

PERSONAL LS AMPLIFIER KIT

Amplifier for your personal stereo cassette player－as featured in January issue of Everyday Electronics．Turn your personal stereo into a mains powered home unit．
Parts：
Stereo power amp PCB with all components，$£ 3.50+75$ p p\＆p．
Power supply unit $£ 1.95+£ 1.50$ p\＆p ．Pair of eliotical speakers，
 $£ 1.50$ the pair $+£ 1$ p\＆p．Input \＆output sockets and plugs，$£ 1.50$ ．Recommended case for the power supply and amp only）． $\mathbf{£ 2 . 9 5}+80 \mathrm{p}$ p\＆p．P\＆P inclusive price of $\mathbf{£} 9.75$ for any two or more

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications－disco units，guitar amp iers，public address systems and even high power domestic systems．The unt is protected against short circuiting of the load and is safe margin exists by use of generously rated com ponents，result，a high powered rugged unit． The PC board is back printed，etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions．
ACCESSORIES：Suitable mains power supply

SPECIFICATIONS
Max．output power（RMS）： 125 W．Operating voltage（DC）：50－80 max．Loads：4－16 ohm frequency response measured＠ 100 watts：
25 Hz .20 KHz ．Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ ＠ 47 K ．Typical T．H．D．＠ 50 watts， 4 ohms： 0.1% ．Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$

BSR RECORD DECK

deck with ai play record

 deck with auto return and cueing lever．Fitted ridge 2 speeds with 45 rpm spindle adaptor ideally spinded for haptor ideally $£ 12.95+$ £ $1.75 p$ \＆
SPEAKER BARGAINS

2 WAY 10 WATT SPEAKER KIT
$8^{\prime \prime}$ bass $/ \mathrm{mid}$ range and $3 K^{\prime \prime}$
tweeter．Complete with screws， and cabinet．All wood pre－ cut－no cutting required． Finish－chipboard covered wood simulate．size $141 /{ }^{\prime \prime}$＂\times
SPECIAL OFFER1 Replacement Stareo cass－ ette tape heads－$£ 1.80$ each．Mono：$£ 1.50$ each．Erase ：$£ 0.70$ each．Add 50 p p\＆p to order．

21EHIGH STREET ACTON，W3 6NG Note：Goods despatched to U．K．postal addresses only At tems subject to availability．Prices correct at
$30 / 10 / 82$ and subject to change without notice． Please allow 7 working days from receipr of order for despatch．RTVC Limited reserve the right to up－ date their products without notice．All enquiries send £ 12.50 plus $£ 1.75$ p\＆p

ALL CALLERS TO： 323 EDGWARE ROAD LONDON W2．Telephone：01－723 8432 （5 minutes walk from Edgware Road Tube Station）
Now open 6 days a week $9-6$ ．Prices include VAT．

ETI APRIL 1983

CLEF Eectrontc MUSIC

AMDEK Kits	
Distortion	
Compressor	£36
Phaser	240
Tuning Amp	± 36
Metronome	¢36
Flanger	$f 63$
Chorus	$f 54$
St. Mixer	f9
Graphic	f72
Delay	£130
Percussion	f54
Rhythm	f90
by ROLAND	

SIX OCTAVE STAGE MODEL
COMPONENT KIT 2234
complete kitrse
MANUFACTURED 5550

ELECTRONIC

 PIANOSSPECIALISTS SINCE 1972
Clef Pianos adops the noost advanced
form of Touch Sensitive action which simulates piano Key intertia using a
patented electronic tecilnique.

71 OCTAVE

 DOMESTIC MODEL COMPONENT KIT I266 COMPLETE KIT ${ }^{\text {E } 442}$ Two Doniestic Models are avaiable including the 88 note full size version.Four intermixable Yoice Controis may be
used to obtain a wide variatior: of Piano used to oblain a wide variatio
tone, including Harpsichord. Both Soff and Sustain pedals ane incorporated in tie Design and internal
Effects are provided in the form of Tremole, Honky Chorus. and Phase
Flanger. Flanger.
A power Piano top whifh may be renoved froin the Base for easy transportation.

SIX OCTAVE

DOMESTIC MODEL
COMPONENT KIT £Z34 COMPLETE KIT E3S MAN E620 Component Kits includc Keybcard. Key
switch hardware, and all clectronic components and Inay be purchased in four stages at no extra cost.
Complete Kits further contain Cabincts, wiring harness, Pcdals and in the case of
Domestic Models both Power Atuplifier and Speaker. The Six Octave Stage Piano has the sume
range of Voices and Effects and is range of Voices and Effects and
designed for use with an External Amplifier and Speaker

MICROSYNTH
THE COMPACT MUSIC SYNTHESIZER

COMPLETE $\quad 2 \frac{2}{2}$ OCTAVES KIT SWITCH ROUTING 2 OSCILLATORS £129.00 - THUMBWHEEL - 2SUB.OCTAVES

STRING ENSEMBLE
 Synthesizer Kit for Group or
Home use. Four Octave polyphonic instrumen with split
keyboard facility. Cabinet requires control panel (not requirts control panel (not
supplied) to be fitted to side of
kenboid kevboard. COMPONENT KIT E197.50 CABINET 44.40

ROTOR-CHORUS

 Compretensive wa sped organrolor simulior ulus athre prase rotio simulatar plus a threc phaz
chorus selerealoe CIMPDNENT KIT E99.00

KEYBOARDS

Our Square Front Kcyboards
88 NOTE (A-C) E62.67 88 NOTE (A-C) E62. 67
73 NOTE (FFF) 651.75 73 NOTE (F-F) ${ }^{\text {E51.75 }}$
FIVE OCTAVE $£ 41.97$ FIVE OCTAVE $£ 41.97$
FOUR OCTAVE $£ 31.62$

Since 1972 Clef Producis have consistentiy produced leading desigers in the field of Electronic Musical Instruments, many of which have bect published in technical magazines. With musical quality of paramount
importance, new techni, ues have been cvolved and the latest nusically importance, new techni, iues have been evolved and the latest musically
valid technoiogy has been incorporated into projects which have been successfully completed by constructors over a wide range of technica! successinly completed back up TELEPHONE advice is available to all our
capabily.
customers. All instruments are on show. All instruments are on show

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE (CARRIAGE EXTRA ON MYD PIANOS). Please send S.A.E. for our complete lists. or use our Ielephone VISA/ACCESS Service.
Competitive quotations can be given for EXPORT orders - in Australia Competitive quotations can be given for EXPORT orders - in Australlia
please conlact JAYCAR in Sydney. Visit our shouroom.

CLEF PRODUCTS (ELECTRONICS) LIMITED
(Dept. ETII, 44A Bramhall Lane South. Bramhall. Stockport, Cheshire SK7 1AH 0614393297

"THE сомputer BAND-BOX"

COMPLETE
£320
MANFD

(MASTER RHYTHM ALSO REQUIREDI
A bolution in the field of Computer Music Genaration!
musicians instrument for vocal g instrimental soloists
practice - five performance - recording
The BAND BOX provides an Electronic Backing Irio consisting of Drums, Bass, and a Chord instrument (one of 16 Wavcform/Envelope combinations), with the capacity to store over $\mathbf{3 , 0 0 0}$ Uscr Programmablc
Chord Changes on more than 120 different Chords. Using advanced Chord Changes on more than 120 different Chords. Using advanced
Mictoprocessor technology, Playback of $50-100$ Scores can be executed in any Kcy and at chosen Tempo. Compleze Music Pad is electronically Indexed and stored on secondary battcry back-up. Faciity cxists for composition of Intro, Repcat Chorus, and Coda sections ingluding
Multiple Score Sequences. Sockets are provided for Volum Pedal and Foosswitch plus separate and mixed instrument Outputs. Total size

THE Progemmabl DRUM MACHINE

 EIGHT TAACK PROGRAMMING/ PATTERNS/ TWELVE INSTRUMENTS/SEOUENCE SEQUENCE COMPLETE KIT $£ 79$
MANFD. - $£ 119$

The Clef Master Rhythm is capable of storing 24 selectablbe rhythmi drum patterns, invented, modificed, and entered by the Operator on to Exght instrumentation tuacks. A three position Instrumentation control expands the number of instruments available to twelve. grouped into sounds typical of piaying with Drumsticks, Brushes, or Latin Amerrea
Bongos and Claves. Sequence operation allows two rhythm seetions to be coupled with the second (B) section appearing at four, eight or sixteen Bar repetition. Al
drums can be adjusted for level and resonance on internal contris drums can be adjusted for level and resonance on internal controls to suil
individual taste, thus producing good musical sounds on a battery driven

Accurate Digital Multimeters at Exceptional Prices
 NEW ANALOGUE METER WITH CONTINUITY BUZZER AND BATTERY SCALE

28 RANGES, EACH WITH FULL. OVERLOAD

SPECIFICATION NIODELS 6010 \& 7030
: 10 amp AC/DC

- Battery: Single 9 V drycell. Life: Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$ - Weight: 400 inc. battery. * AC DC Current: $200 \mu \mathrm{~A}$ to 10 A - AC Voltage: 200 mV to 7500 V * Resistance: 200Ω to $2 \mathrm{M} \Omega$
- Input Impedance: 13 ms LCD - Display: $3 \frac{1}{2}$ Digit 13 mm LCD

OTHER FEATURES: Auto polarity auto zero, battery low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case. PROTECTION

Add 15% to your order for VAT. P\&P is free of charge. Quantity discount for trade on application. ARMON ELECTRONICS LTD.

Cottrell House, 53-63 Wembley Hill Road. Wembley. Middlesex HA9 8BH, England
Telephone 01-9024321 (3 lines)
TELEX No. 923985

Time was when a maximum-
minimum thermometer had
alcohol and mercury and little
magnetic things in the glass
tube. The ETI version is less
fragile, more versatile, and can
interface to control equipment.
Design by Phil Walker. MAX/MIN THERMOMETER

This project can monitor the temperature of its surroundings while storing the maximum and minimum temperatures reached in digital form. While the normal readout is by analogue meter, the data on the maximum and minimum temperature can be read out as two eight-bit numbers, possibly into a micro system or other type of data or control system. The unit will store its information until the mains supply is switched off or the reset button is activated. Switching the readout mode will not change the date.

Units such as this are useful for checking the central heating, making sure that the greenhouse is not getting too hot or cold, weather forecasting, or even checking the freezer. With a few simple mods it would be possible to convert the unit to an under or over temperature alarm and program it digitally. (This is left as an exercise for the reader - please don't write to us!)

The Circuit

This can be considered as several main blocks. First we have the clock generator which produces a series of narrow pulses at a fairly low frequency. These pulses are deliberately made narrow to avoid the possibility of spurious clock pulses being generated by the comparator circuits when the analogue output voltage from the D -to-A converters changes. These clock pulses are applied to gating circuits which will allow them to go
on to the D-to-A converters only when conditions are correct.

The D-to-A converters used in this project are of a type which contain an internal eight-bit counter. This allows us to make an A-to-D converter with few external components. Moreover we can stop and start the conversion process whenever required.

The method used for A-to-D conversion is to reset the counters to all zeros at which time the analogue output voltage will fall to 0 V , and then supply clock pulses to the counter until the analogue
output rises sufficiently to cause a comparator to change output states and cut off the clock pulses. The analogue output voltage from the D -to-A converter will now match the voltage at the other input to the comparator and will stay at this level until the other input voltage changes in such a way that the comparator changes state again and re-enables the clock pulses to the counter.

The two configurations used in this project both work in this way, except that one D-to-A output is used direct for the ' $M A X$ ' detector

Fig. 1 Block diagram of the max/min thermemeter ('cos it remembers - geddit?).

Fig. 2 Component overlay for both boards.
while the other is inverted, such that it starts at maximum volts and falls towards 0 V as the counter increments. This is used to drive the ' MIN^{\prime} ' detector circuit. The result of the circuitry is that one D-to-A
output follows and stores the maximum voltage while the other follows and stores the minimum. The other input to the comparators mentioned above is a voltage proportional to temperature.

PARTS LIST

In the first instance this is generated as a current by a LM334Z IC. The current through this device is directly proportional to absolute temperature. This current is fed into the summing input of an operational amplifier together with a constant offset current derived from the reference voltage source of the D-to-A converter. The resultant current generates a voltage at the output of the op-amp suitable for driving the comparator inputs.

The final part of the circuit is the readout. This is provided by a moving coil meter driven by a high impedance buffer. This can be switched to read 'MAX', 'MIN' or 'ACTUAL' temperatures over the ranges -25 to $+100^{\circ} \mathrm{C}$ or 0 to $+25^{\circ} \mathrm{C}$.

Construction

Construction of the PCB for this project should cause no problems. The main things to be careful with are remembering to insert the four wire links, the orientation of the ICs, diodes, capacitors etc and BR1. R13 can be either a single 20k 1% resistor as shown, two 10k 1% resistors or even an $18 \mathrm{k} 5 \%$ and a 4 k 7 preset. Pads are available on

Fig. 3 Complete circuit diagram.

HOW IT WORKS

IC3a, R1 and C6 form the master clock circuit, which generates a square wave of around 50 Hz or so. This is differentiated by C7 and R2 and the positive spikes only are passed via D2 on to IC3b and IC3C. Only when the other inputs to these gates are high will the spikes be inverted and passed on to the D-to-A converters, IC4 and IC5, as clock pulses. IC3d, R4, R5 and C8 take the input from PB1 and produce a suitable reset signal for the two DACs. This can, however, be overridden by a direct input via D1 (take terminal low to reset), allowing remote control by a computer, for example.

The D-to-A converters, IC4 and IC5, contain an internal counter which can be used when pin 2 of the device is high. This condition is maintained by R7. The counter is reset by a low on pin 3 and will respond to clock pulses on pin 4. After reset the output from the device is at 0 V : at each clock pulse the output voltage rises by 10 mV to a maximum of $2 V 55$ (another clock pulse at this point will take it back to 0 V). The output from IC4 is compared with the output from the temperature sensor circuit by comparator IC6c and while it is lower, IC6c output will be high, so IC3b pin 5 will be high and enable the clock signal to IC4. While this condition persists the output from IC4 will rise steadily until it equals
and exceeds the output from the sensor circuit. Now the output from IC6c will go low, IC3b input will be low and no more clock pulses will reach IC4. The output from IC4 will stay at the same level until either the temperature sensor voltage exceeds it again or the rese function is used. The output from IC4 is thus a measure of the maximum temperature reached, since it can only increase unless reset.

The circuit around IC5 works in a very similar way except that its output is inverted by ICGa such that the voltage presented to the comparator IC6d starts at 2V55 and falls to 0 V as the counter in IC5 is incremented. In this case the output from IC6d is high while the output from IC6d is higher than the output from the temperature sensor circuit. This means that the voltage from IC6d will start from 2V55 at reset and fall until it matches the output from the temperature sensor. It will stay at that level until the temperature sensor output falls to a lower level or the reset is operated. This means that the output from IC6d is a measure of the minimum temperature, since it can only decrease unless reset.

The temperature sensor device is an LM334Z. This IC is designed as a constant current device but has a linear
emperature coefficient. In effect the current is proportional to the absolute temperature $\left(0^{\circ} \mathrm{C}=273^{\circ} \mathrm{K}\right.$ or Ab solute). In this circuit R12 supplies a constant 255 uA from the voltage reference terminal of IC5 to the virtual earth (inverting) input of IC6b. The temperature sensor IC8 is set up so that it takes this amount of current at $-25^{\circ} \mathrm{C}$: this means that the output voltage of IC6b will be $0 \vee$ at this temperature. As the temperature rises the current drawn by IC8 will increase and the output voltage from IC6b must ise so that the extra can be sent through R13. The voltage across R 13 will be directly proportional to the temperature rise. Setting of the sensor current is accomplished by PR2 and R21.

The normal method of indication for this project is by means of a moving coil meter, with SW1 selecting the display of the maximum, minimum or actual temperature. IC7 is normally used as a high impedence buffer but by means of PB2 its gain can be increased to $x 5$ for greater ease of reading in the range of 0 to $25^{\circ} \mathrm{C}$. The sensitivity of the meter is set by PR1.

The power supplies for this project are quite simple but a mains-derived type was felt to be desirable as the drain on the +5 V rail is in the region of 70 mA .
the PCB for all these options.
C1 and C2 may be vertical or horizontally mounted as desired, although we had to make C2 an axial type so as not to foul any of
the components mounted on the front panel of our tight-fit case. Take care to ensure that the mains input to the board cannot touch the rear panel (use insulating tape if
necessary). Use a cable clamp to secure the wire. Wiring to the front panel components is straightforward: the sensor PCB is connected to the main board via a

OPERATION OF VOLTAGE INVERTER

OPERATION OF

length of cable and a three-pin DIN connected on the front panel. The length of the wire is not critical so long as its insulation is good; however, care must be taken to keep the polarity correct.

For those people using the same meter as us (see Buylines), we've reproduced the artwork we drew for our prototype meter scale at the back of the magazine with the foil patterns (page XX). If you wish you can cut it out (get Mummy to help you with this) and use it to replace the existing scale.

Setting Up

The Meter Circuit. Zero the meter mechanically with the power off. Connect the input of IC7 (pin 3) to point ' A ' (marked on the overlay diagram at the junction of R10 and R12) instead of to the wiper of SW1, apply the power and set the meter to full scale deflection using PR1. Remove the power and restore the connection from IC7 input to SW1 wiper.

The Sensor Circuit. Ensure that the total value of R13 is twice that of R12. If desired, R13 can be two $10 \mathrm{k} 1 \%$ resistors in series, or an 18 k 5% resistor and a 4 k 7 trimmer if a 20k 1% device is not available. Pads have been provided on the PCB for one or two resistors or a resistor and a preset - the alternative positions are shown dotted on the overlay. The theoretical value for R13 is actually $2.016 \times \mathrm{R} 12$ but this sort of value is not easily available.

Connect the sensor, switch on the power and with the sensor immersed in a melting ice and water mixture, adjust PR2 until a reading of $0^{\circ} \mathrm{C}$ is obtained (one-fifth of full scale deflection). The unit should now be ready for use: coverage will be $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ in increments of $0.5^{\circ} \mathrm{C}$ approximately (256 steps) for the maximum and minimum functions, while the actual temperature is continuous.

A close-up of the sensor probe; we used a cermet preset for stability.

PROJECT: Thermometer

Fig. 4 (Above) The pin-out for the ZN425E digital-to-analogue converter.
(Right) Inside the box, you can see how cramped things are, and inexperienced constructors may wish to use a bigger box than the one we specify in Buylines. This is especially the case if you intend to fit some kind of interface socket for a digital readoul of the data, to a control unit, for example. We didn't bother on the prototype.

SPEAKER BUILDERS!

The $128 / 20$ by IMF ELECTRONICS is the advanced bass driver used in that company's ruthlessly accurate professional and domestic monitors. A massively constructed styrene and fibreglass coned woofer, the 128/20 enables outstanding bass performance (free air resonance is typically only 20 Hz) and is now available to the home constructor from sole distributor Badger. $128 / 20$ is only one of a series of new IMF Electronics drivers featured, with data, enclosure suggestions and even active conversions (our 204011 active system was the main project in ETI September 1982) in our 1983 catalogue. Please send $4 \times 15 \frac{1}{2} \mathrm{p}$ (overseas 3 dollars).
Stockists of CRIMSON ELEKTRIK components and kits
BADGER SOUND SERVICES LTD 46 WOOD STREET,
LYTHAM ST. ANNES, LANCS. FY8 4QG
Telephone: 0253729247
(closed Mondays)

Phone or write to our Sales Manager, Richard Cox, for immediate action.

CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TW1 4AD. Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

E.L.E. MLS	ALL KITS INCLUDE PCBs
Full kits include printed circuit boards, components, hardware, I.C. sockets, cases etc. unless stated (not batteries). If you do not have the issue of E.T.I. which	includes the project - you will need to order the instruction reprint at an extra 45p each. PCBs included. Reprints available separately $45 p$ each + p与p 45 p.
2x ADC Jan $83 \times \quad$ C3.93	WATCHDOG SECURITY ALARM Aug 81.547 .66
SPECTRACOLUMN Dec 82. Less case and lights	RECHARGEABLE BATTREY extra
PLAYMATE Augu/Sept 82, hess optional toot	WAH PHASE June 81 L Loss pedal - -i.l. 14.78
pedal + mains unit	LED JEWELLERY June 81. Cross22.98
Caseextra	SuITAR NOTE EXPANDER Adrit 81 E17.98
AUTO VOLUME CONTROL Sepl 82 C4.22 less case	DRUM MACHINE April $81 \times$ -
INSULATION TESTER MaY 88.	ENGINEERS STETHOSCOPE Mar 81.1 IT 220.98
AUTORANGING CAPACItANCE METER	SOUND PRESSUAE LEVEL METEA Feb 81
HIOH OUALITY PHONO AMPLIFERS Fob 82 .	INFRA AED ALARM FEb 81 659.96
Lass case	4 INPUT MIXER Dec $80 \times \quad . \quad 571.74$
MOVING COLL STAGE -- - - --.......c19.76	MUSICAL DOORBELL Dec 80 -...........esi2.
MOVING MAGNET STAGE...-	METRONOME Nov 80 .
PEST CONTROL Feb 82:	
COMPONENT TESTER DOC 81 …-......c8.78	CMOS LOGIC TESTERAAUg ${ }^{\text {a }}$
CAAALARM Nov81 - ${ }^{\text {cig.t }}$	cuick eluminator Aprit 79 e67.00 Or less case
ENLARGER TMMER ...)	849.88
SOUND BENDER Oct $81 \quad$ -	
MORE KITS - SIMILAR STYLE TO ETI Instructions included (separately $45 p$ each) Please quote ref. no. when ordering	
	O12 METRONOME
O2 EXTAPE CONTTOL .-..............93	013 2XINTERFACE BOARD \quad I11.78
033 CHANNEL SOUNDTOLIGHT [51.40	O14 DRUM SYNTHESIZER
O4 WEIRD SOUND EFFECTS GENERATOR	
OS In Situ transistor tester -norse	CASE extra
OS ELECTRONIC DICE	O17 MEMORY BANK-MINISYNTH - \quad - 630.43
O7 DIGITAL CAPACITANCE METER C21.82	O18 MASTHEAD AMPLIFIER
010 CONTINUTY CHECKER	O20 ULTRASOUND BURGLAR ALARM ...220.43
Q11 FUZZBOX ${ }^{\text {a }}$	
MAGENTA ELECTRONICS LTD	
EB26, 136 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY	
ADD 45p P\&P TO ALI ORDERS	Prices inc. VAT
ACCESS AND BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR POST sae all enouiries	official orders welcome overseas Payment must be in sterling. IRISH REPUBLIC and BFPO - UK PRICES. EUROPE - UK

SPECTRUM

24 LINE INPUT/OUTPUT PORT. (motherboard not required)	.f18.95
MOTHERBOARD - SIX SLOTS	.£26.50
MOTHERBOARD PCB ONLY.	£6.50
SPECTRUM 28 WAY CONNECTOR	£3.25
MALE CONNECTOR.	£1.80
34 WAY RIBBON CABLE per metre.	£1.80

ZX81

40 KEY KEYBOARD	f20.00
SPARE KEYS each.	£0.25
MOTHERBOARD - 2 SLOTS	.f15.00
24 LINE INPUT/OUTPUT PORT	.f18.95
16 K RAM PACK	f25.00
MUSIC BOARD	. $£ 18.95$
23 WAY FEMALE CONNECTOR	.£2.50
MALE CONNECTOR.	£1.60
24 WAY RIBBON CABLE per metre.	¢1.40
GETTING ACQUAINTED WITH YOUR	
ZX81	£4.95
PROGRAMMING FOR REAL	
APPLICATIONS	f6.95
REAL APPLICATIONS TAPE.	.f11.44
MASTERING MACHINE CODE.	¢7.50
Prices are for built items. Postage postage (surface) f1.80. Access acce catalogue.	Export for full

REDDITCH ELECTRONICS

21 FERNEY HILL AVENUE, REDDITCH
WORCS B97 4RU

When you need to update yourself with all that is available in the "Do-it-yourself" market, then you need the Hobby Herald.

Packed with product information essential to the electronics enthusiast, this new electronics catalogue lists over 60 exciting products ranging from All Purpose Cutters to Verobloc, the solderless breadboard. All products are available throughout the U.K. from over 200 stockists.

HOBBY HERALD

Alternatively ordering products through the Herald is simplicity itself, and you can pay by either cheque, Barclaycard or Access.
So make sure you get your copy of Hobby Herald by ringing
(04215) 62829.

BICC-Vero Electronics Ltd., Industrial Estate,
Chandlers Ford, Hampshire,

CONFIGURATIONS

Power corrupts, and absolute power corrupts absolutely. At least, it can burn out the odd diode or two. This month lan Sinclair examines the area of power supplies and some of the facts you aren't often told.

Power packs, you might think, are among the simpler of electronic circuits to design, and yet there is probably more cut-and-try used in the power supply section of a circuit than in all the rest of the circuitry that you construct. The reason seems to be a lack of coherent explanations of the action of the reservoir capacitor - only too often you are simply told that it "provides an earth route for $A C$ ripple ${ }^{\prime \prime}$, and no more. We have to start this month, then, by putting that sort of misconception to rights.

Fig. 1 Simple half-wave rectifier circuit with no reservoir capacitor. The waveform is unidirectional, but certainly not what we would call DC.

Consider for the sake of simplicity, a half-wave rectifier circuit and a load (Fig. 1). The waveform across the load will consist of about half of the input waveform, the positive half in this example because of the way we have chosen to connect the diode - reverse the diode and you will select the negative half of the wave. This type of output is called a unidirectional wave - the peaks are in one direction (positive) only, with no negative peaks - but it isn't exactly anyone's idea of DC. A DC voltmeter connected to the load of this circuit reads what DC voltmeters always read, the average voltage, which is around $\mathrm{E}_{\mathrm{o}} / \pi$; approximately $0.32 \mathrm{E}_{\mathrm{o}}$, assuming that the diode is 'perfect' in the sense of having no forward voltage drop across it. We can allow for the forward drop, which can't be neglected if the output voltage is low, by subtracting its value from E_{0}, the peak $A C$ input. This is only an approximation, but it is good enough for practical purposes.

Fig. 2 A half-wave circuit with a reservoir capacitor added. The capacitor charges to the peak voltage of the input wave, and the charged capacitor supplies the load while the diode is reverse-biased.

Fig. 3 This shows why the peak reverse voltage on the diode is doubled when a reservoir capacitor is used.

Bring On The Reserves

Now when a reservoir capacitor is connected to the circuit (Fig. 2), things change considerably. To start with, imagine that the load resistance is very high, so that only a small amount of current is being taken. Instead of the rectifier conducting for the whole positive cycle of the AC wave, it now conducts only for a tiny fraction of the time of the wave, right at the peak. The reason is that the first

Fig. 4 The waveform of ripple, caused by the time constant of the reservoir capacitor and load resistance.
half-cycle, when the supply is switched on, will charge the reservoir capacitor to the peak positive value of the AC wave, less the forward diode drop, and when the AC input at the anode of the diode drops below this value, the diode will cut off. From this moment until the next positive peak of the wave comes along, all the current that is supplied to the load is supplied from the reservoir capacitor, which is why it's called a reservoir! Far from just being a bypass for $A C$, the reservoir is the main store and supplier of DC to the load.

All the current that dribbles out from the capacitor results in the voltage across the capacitor dropping as its charge is drained, so that the diode has to supply this
charge again next time it conducts. You don't get something for nothing - the diode passes large currents for short time intervals instead of conducting steadily over a half-cycle as it did when no reservoir was used. The overall result is that the diode has to be able to pass peak currents that are many times greater than the average current, it spends most of its time cut off, the maximum reverse voltage across the diode is twice the AC peak voltage (see Fig. 3), and there is a 'ripple' on the output wave which is caused by the drop in voltage as the reservoir capacitory discharges (Fig. 4). The waveform of this ripple is a sawtooth, rich in harmonics, not simply a piece of left-over sine wave as some explanations would hint at, so that it is a potent source of hum interference in the rest of the circuit.

The approximate amplitude (peak to peak) of the ripple is given by It / C, where I is the average current drawn by the load, C is the size of reservoir capacitor, and t is the time between positive wavepeaks. Using units of milliamps for 1 , microfarads for C and milliseconds for t , we get units of volts for the amplitude of ripple. For example, if you draw 100 mA from a 1000 uF capacitor with a half-wave rectifier for which t is about 20 mS , then the

Fig. 5 A summary of the conditions for common power supply configurations.
ripple amplitude is $(100 \times 20) / 1000$, or 2 V , which isn't exactly negligible. Using a full-wave rectifier, which recharges the capacitor at 10 mS intervals, you get a 1 V ripple. I his tormula isn't toolproof - it applies only when you have the situation in hand, and will give silly answers if the reservoir capacitor is much too small or if the amplitude of the AC input is very small, but it's a good guide to realistic values for power supplies generally.

The voltage output of the circuit with no load current is equal to the $A C$ peak voltage, but as the load current increases, the ripple also increases and the average DC output drops until it can become almost as low as the value you would get with no reservoir, $0.32 \mathrm{E}_{\mathrm{o}}$ for half-wave, and twice as much as for full-wave (bridge or splitsecondary type of circuit). Figure 5 summarises the operating conditions for different rectifier configurations. Ripple, and the drop of output voltage when output load

Fig. 6 An elementary stabiliser - the power transistor in this example would be a medium-power type with a high value of $h_{i f}$.
current is taken, can be minimised by increasing the size of the reservoir capacitor. Obviously, it is also an advantage to have a short time between recharging the reservoir, so that high-frequency supplies need less in the way of reservoir capacitance - one of the many reasons for the popularity of switch-mode power supplies these days.

A Stable Situation

Another defensive measure is stabilisation. Stabilisation does not mean that some circuit is used which will miraculously bump up the voltage output from the reservoir capacitor, it simply means making the best of what you have. Suppose you have a nominal 8 V supply, and that at the full planned output current of 150 mA it can have a 2 V peak-to-peak ripple. This value implies that the voltage will drop momentarily as low as 6 V twice on each AC cycle, assuming that full-wave rectification is used, so that if we use only 5 V of this supply, these changes caused by ripple will not affect the 5 V output at all. This is the action of a stabiliser - it's a circuit which is a voltagedropper, but arranged so that the drop is variable, keeping the output voltage constant while the input voltage varies.

A stabiliser has to operate so as to fulfil two requirements. First it must keep its output voltage constant as the input voltage varies, and second, it must keep the output voltage constant as the load current varies. The two may sound identical at first glance, but they are not - the first calls for the output to be constant while the voltage across the stabiliser is varying, the second calls for the combination of the stabiliser and the rest of the power pack to have almost zero internal resistance.

Figure 6 shows a very basic form of stabiliser. The voltage at the output is set by the value of the zener diode, and because of the voltage across the base-emitter of a transistor, the output voltage will be around 0V6 less than the zener diode voltage. This should ensure that the voltage of the output is stabilised against changes at the input resistances of the order of a few milliohms can be ob-

Fig. 7 A block diagram of the comparator type of power supply stabiliser. This type is rarely built nowadays because of the ready availability of IC equivalents.
tained using circuits of this type.
crease to some extent as the load current increases. Nevertheless the stabilisation is better than it would be in the absence of the circuit (something wrong if it were not!), and can be improved by amplifying the signal to the base of the regulator transistor - a variation on the circuit is shown in Fig. 7. The output voltage is compared with the zener voltage, and the output of the comparator is used to control the base of the regulator transistor. Very low output resistances of the order of a few milliohms can be obtained using circuits of this type.

I've drawn the circuit as a block diagram because it isn't very often nowadays that we have to build stabilisers with separate components. The reason, of course, is the
ready availability of IC regulators, particularly the 78
series. These take advantage of being ICs (so that circuit complications are not a problem for production, only for design) to incorporate features such as current foldback, meaning that the current will be regulated if there is any risk of over-dissipation. This ought to prevent overload and give these regulators a very long life - I say ought, because in my experience these regulators quite frequently fail, and I suspect that the fold-back arrangements are not always completely effective.

The 78 series covers most of the 'popular' supply voltages, but if we should want an odd value then a modification to the circuitry, as shown in Fig. 8, can do the

Fig. 8 Varying the output voltage of an IC stabiliser. A variable resistor is illustrated, but a fixed value resistor could be used once the correct value has been established.
needful, at the expense of a slight loss in stabilisation. Similarly, if we want a lot more current from the output than the normal 78 series can supply, then we can use the IC to control an external transistor, as shown in Fig. 9. Circuits like these can cope with about 99 per cent of our needs.

Switching The Subject

Having mentioned switch mode power supplies, however, I feel I should explain further because, unless you follow the development of TV circuitry, you may not have come across details of them (though a switch mode supply was used in the venerable Apple 2 computer, and a switch mode supply is now used in the BBC computer atter early users complained that the old version burned the varnish off their tables). Basically the principle is to

Fig. 9 Increasing the current-handling capability of an IC stabiliser. The stabiliser handles the rated current, and any amount beyond this value is handled by the auxiliary transistor circuit, preserving voltage stability.
dispense with a mains transformer, and rectify the mains voltage so as to produce a high voltage DC. By dispensing with the resistance of a mains transformer, and by using a reservoir capacitor of surprisingly modest capacitance (but rated for 500 V !), this supply voltage can be quite stable. It is then applied to a switching circuit which charges a capacitor several thousand times per second and discharges it just as frequently into the primary of a transformer which, because it operates with highfrequency signals, can be small and well-insulated. The outputs of this transformer are rectified, and need only small reservoir capacitances because of the high frequency that is used. There is no need for a stabiliser of the oldfashioned wasteful type either, because the output voltage can be sampled by a comparator, and the output of the comparator used to alter the switching times. The idea is that if the output voltage drops, the switch can spend more time passing current into the primary of the transformer; if the output voltage is too high, the switching circuits cut off earlier. There is no waste involved - what is not used is held in the reservoir capacitor ready for the next switching operation.

Fig. 10 An outline of a switched mode power supply. No values are shown, because the transformer is a critical component and the other circuitry can be obtained in IC form.

The main advantage is that the supply runs astonishingly cool, with no huge heatsinks needed for the regulator. The advantages for TVs and computers are obvious - 1 remember one computer which left scorch marks and which could have served as a sandwich toaster. Another advantage is that no AC voltage adjuster is needed - whatever the mains voltage happens to be will be compensated for by the switching process, and there are ICs which will take care of the whole operation. For a more detailed description of the operation of switched mode power supplies, see Designer's Notebook on page 63.

One point of caution concerns servicing. If you are working on a switch mode power supply, remember that it uses high voltages, and that part of the circuit is always live to the mains when it is operating. On many TV receivers, in accordance with the belief that a designer worth his salt will make the inside of a TV as dangerous as possible in order to kill off amateur mechanics, the whole chassis is live or at least not isolated from the mains. The growing trend to make TVs in monitor form so that they can be connected directly to video recorders instead of by the ridiculous method of re-modulating the signal may at last bring us electrically into line with the rest of the world in this respect.

Interak 1 - HOME COMPUTERS DO NOT WORK!
 You've already got a 'home' computer - am I right? You may be anyone - a Hospital Electronics Workshop, a Establishment, or you may be just plain Joe Soap. Either way round - you're fed up with the boss, or your wife (may be the same thing), always asking you - "Very nice, but what does it do?" I know you can make it do What's that hou must be pretty clever, buck - talk about spaghetti!
 They look lovely, home computers, don't they - until you bolt on all the things round the back that the designer couldn't (or wouldn't) include.
 think we both know what is needed: A "rack and card' build it yourself system (Interak 1!). Something like Acorn's and Tangerine's original plug in systems, before they wen on 10 more profitable things, but you don't want it 6502 based - Interak
 has any sense?
 f you use interak 1, the Z80A CPU is on one card, the VDU Interface is on another. Dynamic RAM on another, and so ony slot". And that ugly expansion adaptor, and the special box of bits you've got sticking out of the back, can be neatly re-packaged and slid into the spare siots in Interak 1.
 I've got no space to say more this advert's cost a few a SAE ors already!), so send me a stamp ($20, \frac{1}{2}$) you the 38 -page low-down
 David Parkins
 P.S. Although this advert may sound a bit corny (we have to get your attention somehow) Interak 1 really is a serious, sensible system with thousands of cards sold, and in daily use. Cards.
 Greenbank
 Greenbank Electronics (Dept. T3E), 92 New Chester Road, New Ferry, Wirral, merseyside L62 5AG Telephone: 051-645 3391
 \sim

CAMBRIDGE LEARNING SELF-INSTRUCTION COURSES

NEW
 MICROPROCESSORS \& Microelectronics $£ 6.50$

Now you can learn all about microprocessors their construction, design, and operation - using our programmed learning technique. Suitable for all ages, all levels of interest, this course has been designed for ease of understanding. It assumes no prior knowledge other than arithmetic; and at the end you will know what that piece of "black plastic" in your computer is actually doing.
Contents include: algorithm design, programmable logic, microcomputer architecture, a microprocessor family, semiconductor technology, number systems, arithmetic - integer and floating point, data representation and scaling, programming, microprocessor development system.

GSC SUPERKIT

£19.90

Learn the wonders of digital electronics - without the problems of soldering.
This practical beginners kit comes complete with instruction manual, components, and EXP300 breadboard to teach you all the basics of digital electronics. The only extra you need to buy is a $4 \frac{1}{2} \mathrm{~V}$ battery.
This self-instruction course teaches gating, boolean logic, R-S and J-K flipflops.
DIGITAL shift registers, ripple coun-

COMPUTER DESIGN
$£ 8.50$
This up-to-date theory course covers the design of digital computers, both from their individual logic elements and from integrated circuits. You are first shown the way in which simple logic circuits operate and then, through a series of exercises, arrive at a design for a working machine.
Please send for our free booklist for further information on these and our other courses.
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAmbridge learning limited, unit is rivermill site, FREEPOST, ST IVES, CAMBS, PE17 $\angle B R$, ENGLAND TELEPHONE: ST IVES (0480) 67446 . VAT No 313026022
All prices include worldwide postage (airmail is extra please ask for prepayment invoice). Giro A/C No 2789159. Please allow 28 days for delivery in UK

SUPERKIT(S) e £19.90
DIGITAL COMPUTER DESIGN(S) e 88.50

- MICROPROCESSORS \& MICROELECTRONICS @ 66.50 I enclose o *cheque/PO payable to Cambridge Learning Lid
for f. (*delete where applicable)
Please charge my
*Access / American Express / Barclaycard/Diners Club Eurocard /Visa / Mastercharge / Trusts
Expiry Date............ Credit Card No

Signature
Telephone orders from card holders accepted on $0480 \quad 67446$ Overseas customers 'including Eire) should send a bank draft in sterling drawn on a l.ondon bank, or quote credit card number.

Name.
Address.

Cambridge Learning Limited. Unit is Rivermill Site, FREEPOST.
St Ives. Huntingdon, Cambs. PE17 CBR, England. (Registered in England No 1328762

LB ELECTRONICS DISC DRIVE BONANZA

PERTEC FD650 DSDD 8" $\mathbf{£ 1 9 9}+$ VAT PERTEC FD200 $5 \frac{1}{4}{ }^{\prime \prime}$ SSDD .. $\mathbf{£ 1 0 0}+$ VAT
The above drives are suitable for the BBC Micro, we can supply full documentation if requested with purchase of the drives only. Also available is a word processing
package with is a tape to disc program (i.e. will not run without discdrives.

Offered with Full documentation at $\mathbf{£ 9 . 8 0} \mathrm{p} \& p$ 50p.
BRAND NEW AND BOXED PLUS DATA P\&P AT COST
Apple controller card for two drives
$.540 .00+$ VAT p\&p 50p
ASC11 coded qwerty Keyboard manufactured by Alphamenc (Woking UK) Model 60 K brand new plus data $\mathbf{£ 1 9 . 9 5 \mathrm { p } \ell \mathrm { p } £ 1 . 5 0}$ UK). Model 60 K brand new plus datais by 2716 (5 v) 1.50 each p\&p 30p. 12 for $£ 15$ p\&p 75 p .
 Telephone for bulk prices.
CASE model 430 Data modem, no information $£ 30$ each p\&p $£ 3.50$ (Manuals available $\mathbf{£ 5 . 0 0}$ each)
INTERSCAN ACCOUSTIC COUPLER $10^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ WITH ELECTRONICS, SOUND TIGHT UNIT, FOR STANDARD GPO HAND SET NO DATA - £10.00 (INC VAT) P\&P $£ 1.75$

LB ELECTRONICS

 11 HERCIES ROAD, HILLINGDON, MIDDLESEX UB10 9LS, ENGLAND Bich TEL: UXBRIDGE 55399
FOR HI-FI \& ELECTRONIC ENTHUSIASTS!

We are the specialists of electronic kits. A catalogue with complete range of products including pre-amp modules, power amp modules, pre and power amplifier modules, complete kits of amplifiers, equalizers, reverberation amplifiers (with cases), alarm clocks, appliance timers, CB amplifiers, test equipment, contro remote control), music generators, battery fluorescent light and high quality black anodised amplifier cases . . . etc. with illustrative pictures now available at the cost of 60 p including $P+P$, together with a 10% discount voucher for your first order.

All prices include VAT

PROFESSIONAL RACK MOUNTING CABINET

- Made wholly of black anodised aluminium sheets - Suitable for high quality amplifiers and many other purposes © Top, bottom and rear cover removable for access - Different
sizess available sizes available Compatible price - Front
panel is of brushed aluminium finish

To: Concept Electronics Ltd., 51 Tollington Road, London N7 6PB
Mail orders only
Please send me the electronic kits catalogue \& the 10% discount voucher for my Concept Electronics Ltd

Name
Address
Block caps please

MULTIMETERS

(UK C/P 65p)
RANGE DOUBLER 10A DC1 Special price...............................£15.95 ETC 5000/5001 121 Ranges $50 \mathrm{~K} / \mathrm{V}$ Range Doubler 10A DC TMK 50023 Ranges $30 \mathrm{~K} / \mathrm{V}$ 12A DC Plus cont buzzer f2395 NH56R 20K/V 22 Range Pocket 360TR 23 Range $100 \mathrm{~K} / \mathrm{V}$. Large scale 10A AC/DC plus Hfe.... 536.95 ATI 02018 Range 20K/V. DeLuxe plus Hfe Tester.................... $£ 17.50$ ST303TR 21 Range $20 \mathrm{~K} / \mathrm{V}$ plus Hfe Tester£16.95

SPEAKERS

(Hi-Fi, P.A., Disco, Bass Guitar)
12" 50W£14.95
12" 100W
£19.95
15" 100W
£29.95
18" 100W
£39.95
Postage and Packaging $£ 3$
RETAIL • MAIL ORDER EXPORT • INDUSTRIAL EDUCATIONAL

by		tal
cheus,	ALl PRICES	CATALOG
Acossivisa	INCLUDE	SEND
	VAT	(UK200)

MUSICRAFT 303 EDCWARE RD, LONDON W.2. TEL:01-402 9729 /2888

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY ARE YOU MAKING THE MOST OF YOURSELF? HAVE YOU CONSIDERED FURTHERING YOUR TRAINING IN ELECTRONICS?

We offer:
CNAA BSc in Electronic Engineering A four year part-time degree for mature students, includes study of Digital, Telecommunications and Control systems.
Entry qualifications: HNC or equivalent in Electrical and Electronic Engineering or Applied Physics. This degree is considered by the Council of Engineering Institutions as meeting their C.Eng. academic requirements.

HND in Electrical and Electronic Engineering
A $2 \frac{1}{2}$ year sandwich course, including study of Electrical, Electronic and Communication Engineering, combined with control Engineering and Digital Techniques. Entry qualifications: 1 ' A ' level in Mathematics or Physics.

For further details and application forms, contact The Department of Engineering, Cambridgeshire College of Arts and Technology, Cambridge CB1 2AJ. Telephone (0223) 63271.

MASHMR HTHGYRONICS NOW! The PRACHTCATS way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during you work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope

Recognise and handle current electronic components
Read, draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment

- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

Newdob?NewCareer?NewHobby?Getinto Flectronics Now!

 as described above radio amateur licence

BritishNational Radio\&Electronics School Reading:Berks.RGI 1BR

PCB FOIL PATTERNS

The foil patterns for the Stage Lighting memory board are too large to be printed: an SAE to us will secure a copy.

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

 IN YOUR OWN HOME - AT YOUR PACEICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advant age of the many opportunities open to the tramed man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Certificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)

Certificate Courses

TV and Audio Servicing Radio \& Amplfier Construction Electronic Engineering* and Maintenance Computer Engineering* and Programming Microprocessor Engineering* TV. Radio and Audio Engineering Electrical Engineering,* Installation and Contracting *Qualify for IET Associate Mombership CACC

POST OR PHONE TODAY FOR FREE BOOKLET

Visual Display Units Burroughs MT686 VDUs These versatile micro controlled programmable terminals have 3 RCA 1802 CPUs and 64 K of memory. 12" Green screen (80×25) RS 232 . 106 key detached keyboard. Can also be used as quality video monitor. f149 + £15 carr. WHILE STOCKS LAST.

professional fast compact line-printer. 80 columns, $120 \mathrm{char} / \mathrm{sec}$. Parallel i / f. Quality at a silly price. Vertical format unit. To inc. operations manual. ONLY £149.00. Carriage (England) £17.50. Tech manual (230 pages) f 10.00 .

FLOPPY DISC DRIVES

 Fantastic MEMOREX $5508^{\prime \prime}$ discs mounted in attractive case with power supply and fan. Shugart standard 50 way interface. Space for second drive. f199 (carr f9.50)MAWSON ASSOCIATES
124 Lennard Rd, Beckenham, Kent BR3 10P
WE ALSO BUY COMPUTERS
AND COMPUTER PERIPHERALS
01-778 3600
Callers wetcome by appoint ment

NEW SURPLUS RELEASE

VERSATILE BENCH POWER SUPPLY UNITS Contains high quality transformer to exacting VERecifications giving one 20 v output and two 30 v outputs. All outputs 3 amps D.C. Input $110 / 250$ special
$50 \mathrm{c} / \mathrm{s}$. Bridge rectification. Contained on metal chassis with robust compact case size $7{ }^{2} \times 51^{*} \times$
41^{*}
 ost aro FOOT SWITCH (Mains operation). Contalns two micro
condition. $£ 3.50$ each. Postage 50 p .2 for $\mathbf{~} 7.50$ Post Free. IGHTWEIGHT HEADSETS (Govt. release). Brand new 600 ohms impedence. A Bargain at $\mathbf{E 3 . 5 0}$ Pp £1. Two for f7.
 New release of MoD Mostly with lead and DIN plug. Used but nice condition. Three designs of case Switch incorporated, Mostly whithead and
housing. Price one mike our choice $£ 2$ plus $50 \mathrm{p} p$. Bargain offer all three mikes $\mathrm{EA} .50 \mathrm{pp} \mathrm{f1}$. HAVE YOU SEEN THE GREAT CAT? 1000^{\prime} s of new components, radio, electronic, audio at unbelievably low prices. Send 50 p and receive INDICATOR.
Try J JUMBO PACK. Contains transistors, resistors, caps, pots, switches, radio and electronic
devices. Over $£ 50$ worth for 511 Carriage and packing $£ 2.50$. MINI JUMBO PACK ($\mathbf{2} 20$ worth) for $\mathrm{f5} \mathrm{pp} £ 1.50$.

PARNDON ELECTRONICS LTD

Dept. No,23, 4 Paddock Mead, Hertow, Eatex CM18 7th. Tel. 027932700
RESISTORS: $1 / 4$ Wart Carbon Film E24 range $\pm 5 \%$ tolerance High quality resistors made under strictly controlled conditions hy aulomatic machines. Bandoliered and colour coded
El.00 per hundred mixed (Min 10 per value)
E8.50 per thousand mixed (Min 50 per value)
Special stock pack 60 values. 10 ofl each $\mathbf{5} 59$
DIODES: IN4148 3p each Min order quantity- 15 items
£ 1.60 per hundred
CAPACITORS, REGULATORS, SWITCHES, I.C.
TRANSISTORS, DIODES, etc, etc.
FULL LIST AVAILABLE - SEND S.A.E.
DIL SOCKETS: High quality low profile sockets
8 pin - $10 \mathrm{p} .14 \mathrm{pin}-11 \mathrm{p} .16 \mathrm{pin}-12 \mathrm{p} .18 \mathrm{pin}-19 \mathrm{p} .20 \mathrm{pin}-21 \mathrm{p}$. $22 \mathrm{pin}-23 \mathrm{p} .24 \mathrm{pin}-25 \mathrm{p} .28 \mathrm{pin}-27 \mathrm{p} .40 \mathrm{pin}-42 \mathrm{p}$.
ALL PRICES INCLUDE V.A.T. POST \& PACKING - NO EXTRAS
MIN ORDER - UK E1 00 OVERSEAS ES CASH WITH ORDER PLEASE

\square ENFIELD ELECTRONICS

TALK TOTHE WHOLE WORLD

and discover a new one for yourself. If you're experienced or even a beginner our skilled preparation will enable you to obtain a G.P.O. Licence.

\qquad

Up until now PCBs were always the hardest component to obtain for a projed of course you/of. could make your own, but why bother anymore?
Now you can buy your boards straight from the desinners - us! As of this issum 3
copyright) PCBs will be available automatically ingen the ETI PCB Service. Eadroord 15 of 19 produced from the same master used to build our prolotypes, so you can be settetis aceuinatyous and will be finighed to the high standard you would expet from ETI.
In addition to the PCBs for this montr's projects, we aremaking available some of the more . . popular designs from our recent past. See the list below for details. Please note that NOOTAEPR BOARDS ARE AVAILABLE. If it's not listed, we dowt have it!

APRIL 79
Guitar Effects Unit
Click Eliminator
JUNE 79
Accentuated Beat Metronome
FEBRUARY 80Tunirg Fork
MARCH 80
Signal Tracer
AUGUST 80
CMOS Logic Tester
Capacitance Meter
Ultrasonic Burglar Alarm

OCTOBER 80

Cassette Interface
Fuzz/Sustain Box
NOVEMBER 80
Touch Buzzer
Light Switch
Metronome
2W Power Amp
RIAA Preamplifier
Audio Test Oscillator
DECEMBER 80
\square
Musical Doorbell
Bench Amplifier
Four Input Mixer
JANUARY 81
LED Tacho
Multi-Option Siren
Universal Timer
FEBRUARY 81
Infra-red Alarm (four boards)
Pulse Cenerator
MARCH 81Engineer's Stethoscope
APRIL 81
Musical Box
Drum Machine (two boards)
Guitar Note Expander
JUNE 81
Mini-drill Speed Controller
Antenna Extender
LED Jewellery: Cross Spiral (two boards)
Star(two boards)
Waa-phase

JULY 80

$\begin{aligned} & \mathbf{£ 2 . 6 4} \\ & \mathbf{E 6 . 6 4} \end{aligned}$	JULY 80
	\square System A A-MM/A-MC
	\square SystemAA-PR
	\square Smart Battery Charger
£3.60	
	AUGUST 81
£2.64	\square System A Power Amp(A-PA)
	\square FlashSequencer
	\square Hand-clap Synthesiser
£2.27	\square Heartbeat Monitor
	Watchdog Home Security (two boards)

	\square Ion 'Blinker'	£2.47
E2.65	\square MOSFET Amp Module	£6.78
E5.17	\square Logic Lock	£3.06
	\square Digital PWM	£3.34
	\square Optical Sensor	£1.74
	\square Stylus Timer	£2.59
E4.77	\square Oscilloscope (four boards)	£11.60
£3.44	JULY 82	
£3.97	\square Mike Switching Unit	£1.87
£1.83	\square TV Bargraph (main board)	£4.56
£5.31	\square TV Bargraph (channel card)	£2.28
	\square Hotwire	£2.63
	\square Bridging Adaptor	£2.38
£7.35	AUGUST 82	
£4.53	\square Playmate (three boards)	£7.20
	\square Kitchen Scales	£1.84
	\square Sound Track	4.25
E3.40	SEPTEMBER 82	
E2.65	\square Auto Volume Control	£1.84
£2.21	\square Dual Logic Probe	£1.93
	OCTOBER 82	
£3.97	\square Message Panel (one card)	£8.79
$\begin{aligned} & £ 2.81 \\ & £ 2.96 \end{aligned}$	NOVEMBER 82	
	\square Spectrum Analyst (3 boards)	£14.33
£5.21	\square Pulse generator	¢ $£ 5.29$
£1.75	\square Message panel interface	£1.91
£1.40	DECEMBER 82	E1.
	$\square E L C B$	2.41
£2. 20	\square Servo Interface (two boards)	£5.87
$\begin{array}{r} £ 1.56 \\ £ 5.55 \end{array}$	\square Spectracolumn	£4.82
	Signal Line Tester	£1.25
$£ 1.92$£1.68£5.15$£ 3.49$	JANUARY 83	
	\square ETI/831/1 Fuel Gauge	£3.00
	\square ETI/831/2 ZX ADC	£2.25
	ETI/831/3 Programmable PSU	£3.00
£3.49	MARCH 83	
	\square ETI/833/1 6502 Sound/DAC	£11.16
£2.72	\square ETI/833/2 Alarm Module	£3.15
f4.06	\square ETI/833/3 ZX81 Graphics	£0.93
¢4.17	\square ETI/833/4 Logic Probe	£2.17
£2.25	APRIL 83	
	\square Thermemeter (main board)	£3.99
	\square Thermemeter (sensor)	£0.72
£5.53	\square Stage Lighting (memory)	£11.97
	\square Stage Lighting (display board)	£2.96

How to order: indicate the boards required by
ticking the boxes and send this page, together with
your payment, to: ETI PCB Service, Argus
Specialist Publications Ltd, 145 Charing Cross
Signed
Road, London WC2H OEE. Make cheques payable
to ETI PCB Service. Payment in sterling only please.
Name
Prices subject to change without notice.

Total for boards	$£ \ldots \ldots .$.	PLEASE ALLOW
Add $45 \mathrm{p} p \mathrm{p}$	0.45	28 DAYS FOR

Total enclosed

£.......... | DELIVERY |
| :---: |

Address
Please include my business details in the next available issue of ELECTRONICS TODAY INTERNATIONAL:

RETAIL
WHOLESALE \qquad MAIL ORDER \qquad (Please tick)

CONTACT: (FOR OFFICE USE ONLY)

ADVERTISEMENT RATES Semi-Display (min 2 cms)

1-3 insertions $£ 10.00$ per cm
$4-11$ insertions $£ 9.00$ per cm
$12+$ insertions $\mathbf{£ 8 . 0 0}$ per cm
Lineage 35 p per word ($\min 15$ words) Box Nos. $£ 2.50$
Closing date 1st Friday in the month preceding publication date.
All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available 'on request)
Send your requirements and cheque /P.O. to:
E.T.I. CLASSIFIED ADVERTISING, 145 CHARING CROSS RD, LONDON WC2H OEE

DIGITAL WATCH REPLACEMENT parts batteries, displays, backlights etc. Also reports pubications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen, Bucks, HP15 6SGD

AERIAL AMPLIFIERS Improve weak television reception. Price $£ 6.70$, S.A.E for leaflets. Electronic Mailorder Ramsbottom, Lancashire BLO 9AGH.
PRINTED CIRCÜItS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick $£ 1.75$ sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

BUMPER BOX OF BITS

Wowil We've got so many components in stock, we can't possuibly list them allll - So buy a box, in it you'll find ressistors. capecitors, dieplays, ewitches, panels with transistors, diodes, IC's atc, coits, pots... and 20 on. All modern parts - guaranc.
teast 1000 items, minimum weight 101 los . ONLY 58.50 inc. ELECTRONICS WORLD
1* Dews Road, Salisbury, Wilts SP2 7SN

BURGLAR Alarm Equipment. Please visit our 2,000 sq.ft showrooms or write or phone for your free catalogue. C.W.A.S. Ltd, 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920

CONVERT ANY TV into Large Screen Oscilloscope (by external unit). Costs approx. $£ 12$ to build. Circuit and plans $£ 3$ or SAE details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

COPPER CLAD Double Sided Fibreglass $12^{\prime \prime} \times 8^{\prime \prime} .10$ sheets $£ 6.5$ sheets $£ 4$. Davron Box No. E.T.1.202, Asp Ltd., 145 Charing Cross Road, London WC2

HIGH POWER MERCURY ION LASER emits green/red light. Easily built by the amateur constructor. Ideal school project etc. Comprehensive kit of plans, including source of all materials, $£ 5.25+25$ p P\&P. Lastertech, 31 Milll Brow, Chadderton, Lancs.

A really compact high performance CCTV camera for only $£ 130.00$ plus VAT plus P/P, Total $£ 152.95$.
Size $3^{\prime \prime} \times 3^{\prime \prime} \times 9$ 9". 240 v operation. 1v p-p output. Lens extra.

CROFTON ELECTRONICS LIMMTED

35 GROSVENOR ROAD. TWICKENHAM
MIDOLESEX TW1 4AO
Telephone 01 891 1923/01.891 1513
Telex 295093 CROFTN G

GOVERNMENT SURPLUS components and equipment, send s.a.e. for list: AFR Electronics, School Lane, Moulton, Northampton.

WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

SPECTRUM GAMES SALE. Venture (7 games in 1), was $£ 6.3$ compulsive games, was $£ 5$. The lot on one cassette for just $£ 6$. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

SLIDE TAPE SYNCHRONISER

Synchronise sidides with music and/or commentary with our PLL
slide tape smohroniser kỉ. Any cassette/tape recorder or deck can be used together with any projector with remote control or synchroniser socket.
Units can be ganged together for multi- projector use and could be used in any proiect that requires tone generation ddetection
(remote control devices, tape based programmabie controlert/ sequencer etc. etc.) - full detais supplied
Basic kit £12.95 (includes PCB detailed instructions.
Complato kht $\mathbf{£ 1 9 , 9 6}$ las basic kit plus case and all swithes, leads. plugs and connectors required). All prices include p\&p.
Dapt ETa FREEPOST. Surton Coldfield, Weat Miclands 874 2BR Surton Coldfield, W
Ino stamp required

CIRCUIT DESIGN, Prototype construction, analogue or Digital, Single Circuits or Complete Instruments/Systems. Write A. J. ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082-346) 536.

E6.50 Post 65p MINI-MULTI TESTER Deluxe pocket size precision moving coil
instrument. Impedance + Capacity - 4000 o.p.v. Battery included. 11 instant ranges measure: CC volts $5,25,250,500$. AC volts $10,50,500,1000$. DC amps $0-250 \mu \mathrm{~m} ; 0 \mathrm{O}$
250 ma . Continuity and resistance 0 to 600 K ohms.

SEW PANEL METERS $\mathbf{5 4 . 5 0}$ $50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 50 \mu \mathrm{pa}$,
$50 \mathrm{ma}, 100 \mathrm{ma}, 25$ volt, VU Meter. $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$
Facia $2 i \times 2 \times 1$ in. Post 65 f .
FAMOUS LOUDSPEAKERS

CONDENSERS VARIOUS, 1 pF to 0.01 mF 350 V 5
$400 \mathrm{~V}-0.001$ to $0.05 \mathrm{Ep}: 01$ 15p; $0.2525 \mathrm{p}: 0.4735 \mathrm{~J}$ 1000 V 0.1 mF 25p; $0.22 \mathrm{mF} 30 \mathrm{p} ; 0.47 \mathrm{mF} 60 \mathrm{p} ; 1750 \mathrm{~V} 0.22 \mathrm{mF} 50 \mathrm{p}$. 2 poie $2 W, 4$ pote $2 W 600$ eas.
TWIN GANGS $120 \mathrm{pF} \mathrm{f} 1 ; 500+200 \mathrm{pF} \mathrm{f} 1$.
SINGLE SOLID DIELECTRIC 100 pF , 500 pF F 1.50 GEARED TWIN GANGS 25pF 95p; $365+365+25+25 \mathrm{pF}$ E1 SLOW MOTION DRIVE 6:1 90p. REVERSE VERNIER 60p. VERNIER DIALS 36 mm E2. 25 . 50 mm f 2.7 ,
SPINDLE EXTENDERS 85 p . COUPLERS 65 p NEON PANEL INDICATORS 250 V . Red $11 \times 145 \mathrm{p}$. Found at 40 p . RESISTORS. 10 Q to 10 M . $1 \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{p}, 2 \mathrm{~W} 10 \mathrm{p}$. HIISH STABILITY. IW 2%. 10 ohms to 1 ing. 10 p
Ditto 5% Preferred values 10 ohms to 10 neg. 3 p Ditto 5%. Preferred values 10 ohms to 10 , n .
WIRE-WOUND 10 ohm to 10 K 5 watt 20p.

 $16 \times 6-\mathrm{E} 1.10: 14 \times 9-£ 1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-\mathrm{E} 1.7$ ALUMINIUM BOXES WITH LIDS

BRIDGE RECTIFIER 200V PIV1. $12 \times 8 \times 3$ E3.60. 4 amp E1.50. 8 amp E2.60. DIODES $1 \mathrm{a}, 10 \mathrm{p} ; 3 \mathrm{a}, 30 \mathrm{p}$. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 6O MINIATURE TOGGLES SP 40p: DPDT EOp. THE "INSTANT" BULK TAPE ERASER Siftabte for cassettes
A.C. mains $200 / 240 \mathrm{~V}$
Ideai all Recorders.
Tapes, Discs. Casseties, Computers. 29
HEAD DEMAGNETISER PROBE 85.00

MAINS TRANSFORMERS

TEST, SERVICE, REPAIRS - Computers (Business and Personal) - VDU's 0 Monitors - S100 Boards EPROM SERVICE - Erase - Program © Copy © Modify MICRO UP.GRADES, HARDWARE - Printers - Monitors - Disc Drives Nascom Disc interface - $28 /$ Basic Expansion System Power Supplies - Cables A. \boldsymbol{N}. Electronic \& Computer 211 Pervices Ltd Barn Drive Guildford, Surrey Tel: (0483) 504897

NEW AUDIO/RADIO/TV valves, sockets, etc. S.a.e. lists: LEC, 25 Ridge Road, Letchworth, Herts SG6 1PW.

48K SPECTRUM CASSETTE, loop filter design program for Motorola MC145152 series synthesisers (and similar), plus five other RF design programs, £4.99. El Syd, 20 Wingrove Hill, River, Dover, Kent.

MATINEE ELECTRONIC ORGAN, professionally built. As new, buyer collects, no of fers, $£ 399$. Tel Uckfield (0825) 4001.

AMAZING ELECTRONIC PLANS. Lasers, super-powered cutting rifle, pistol, light show, ultrasonic force fields, pocket defence weaponry, giant tesla, satellite tv pyrotechnics, 150 more projects. Catalogue f 1 (refundable) form Plancentre, Bromyard Road Industrial Estate, Ledbury HR8

BLEEPER ELECTRONIC SEAT BELT REMINDER, flashers, full kit of parts, easy fitting, £6.95 plus 55p PGP. C.w.o. MicroTech Industries, Brighouse, HD6 1RD.
UNBEATABLE PRICES FOR OUR ELEC TRONIC COMPONENTS, CMOS, TTL Linear etc (eg NE555 12p; NE555 28p; Texas Sound Chip SN76477N £1.75). Send sae for full list -

COMPONENTS: Chassis mounting fuse holders, $11 \mathrm{p} ; 20 \mathrm{~mm}$ fuseholder screwdriver release 6.3A, 93 p ; 20 mm fuses, mains, from $14 p$, anti-surge from 17p; Aerial spliter/combiner, from $£ 3.33$; Diodes, from $4 p$; Capacitors from 10p; Light emitting diodes 5 mm round lens: red $9 p$, yellow $12 p$, green 11p, red/green/yellow 32p. Resistors from 2 p ; Transistors from 13p. Postage and packing 50 p . Send sae for details to: R\&B Electi que, 3 Shute End, Wokingham, Berks, RG11 1 BH . Mail order only.

ALL NEM COMPONENTS

c.mos

4004-8p, 4017-25p; 4019-14p; 4022-32p; 4023-12p $28 \mathrm{p} ; 4081-10 \mathrm{p} ; 4518$ - $28 \mathrm{p} \cdot 4520-26 \mathrm{p} \cdot 4528-34 \mathrm{p} ; 455$ 140p; ME567-38p; SP X6-20p; $314 \mathrm{~A} 223-4 \mathrm{p}$.

TH
7400-6p; 7404-8p; 7412 -8p; 7419-14p; 7414-20p 7416FJ-12p: 7495-24p; 741.592-24p

30p P+Porder under E6. No VAT
V. BANSAL, 14 DAVIGDDR ROAD, HOVE, SUSSEX

TEL: (0273) 732419

PUSH BUTTON TELEPHONE, 40 number memotry, build your own for around $£ 16$ us ing standard components. Full circuit, plans, and construction details, £3 (not BT approved). Ms M. J. Ellis, 1 Wells Drive, Heaton Mersey, Stockport, Cheshire.

STEREOPOWER 120 WATT £10.85
Case + Controls + Sockets + Instructions Flbreglass PCB + Protected Outputs KIA, 8 Cunliffe Road, Ilkley.
TANGERINE OWNERS 40 K CMOS RAM Card, new options, including kit form and prices. For details T H Microelectronics, phone 0602392965 evenings.

WHATEVER YOU'RE SELLING DO IT QUICKLY \& CHEAPLY Phone ASP Classified 01-437 1003

> BROADCAST QUALITY FOR YOUR NEXT MIXER PROJECT
> - Over 100 Audio Sub-Units - Kit or Ready Built

> Our new Mic \& Mag Disc Pre-amps incorporate the super low noise Mullard/Signetic NE5534 IC. All items listed are identical to those used in our professional consoles

[^4]
Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

Abstract

Hers if is a turtie-lype robot when takza programming out of the two dimensional worle of the VCL into the real three dimensional world Given a JC supply of $9-15 \mathrm{~V}$ in can perturn a bewildering number oi moves incer computer cortral - terwards. backwards lett ard righ - with each where independently controlled Li has binking eyes, bleeps with a chore of wo tones and has a soleno drerated pen to chert its Diogress Touch sensos:- couplec to its shell relurn date. aboli is environment to the comsuter tor it to calculate evesive or exploratory action. He dot it connects directly to an 'O port or alternatively with the universanin:erface board to the expansion bus of a ZX 81 er other computer

Up to the nano-second hard, firm and softwar developments embodied in a complete system Mega Hertz 16 bit CPU; 64 K upwardly compatib DRAM; separate 16 K video DRAM and 24 K TI Pow Basic with overwrite. Supports up to four Disc drives of mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications.

Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along with NOS C/PM.
Hardware components available separately with details in Nov.
Dec, and Jan issues of ETI. Software features include; Real time clock. full renumber command, buffered I/O to free machine whilst

Top oi the range is the Genesis P102 which has dual speed control, continuous servo operation and double acting cylirters for increased torque on the wrist and arm rotat on joints. Thé microprocessor jased control system has addtional memory, position interrogaticn via the RS232C interface incieasing the versatility of camputer control and inputs are provided for machine tool interlacing.
6 axis systen READY BUILT \quad £1954.00 Powerran CORTEX 16 bil 64 K compule K: $£ 295.00$ READY BUILT $£ 395.00$ (Ele:1ronics Today Internal Cnal Decmrther issue on CORTEX)

Example prices and specifications
Genesis $\mathbf{S 1 0 1}$
Base $19.5^{\prime \prime} \times 11^{\prime \prime} \times 7.5$
Litting camacity. 1500 gm Welgnt: 2skg
4 axis model in kit form 4 axis morel in kit form
5 axis model in kit lorm

Genesis P101

Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 75$
Liting capacity: 2000 gm Arm lengths between axles $14.0^{\prime \prime}$ Weight 34 kg
4 axis model in kit form $\quad \mathbf{6 7 5}$ 6 axis model in kil form $£ 595$

Complete Systems as shown in Pholograph above
Genesis S101
4 axis syslem in kil form £681.50 5 axis system in kIt form $£ 737.50$ 5 axis system Reacy Buill $£ 1450$ Genesis P101
6 axis system in kit form $\mathbf{6 9 4 5 . 0 0}$ 6 axis system Reacy Built $£ 1650$

Ali prices exclusive of VAT
GENESIS P1GI2 PFOCESSOR BOX, HAND HELD CONTROLLE A AND CORTEX COMPUTER

145.00
$\mathbf{8} 48.50$ $£ 48.50$
$£ 2.50$ ${ }_{£ 3.00}^{〔 2.50}$ MICROGRASP, INTERFACE BOARD AND ZX81
printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At F*owertran we are using these machines in conventional roles, in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU Complete 16 bit 64 K computer kit $£ 295.00+$ VAT. Complete 10 bit 64 K computer ready built $\boldsymbol{£ 3 9 5 . 0 0}+$ VAT

With prices s:anting below $£ 1.000$ the Genesis range of general purpose robots Frovide a first rate introduct on to robotics for both education and industry. Each has a self-contained hydraulic power source, which enables loads of several pounds to be smoothly handled. The system operated from a single phase 240 or 120 V AC surply or a 12 V DC supply. The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous with up to 6 axes each of which is fulty independent bul capable of simultaneous operation. Pasinon contro is achieved by means of a closed-loop reediback be entered slored and rep ayed cy use of a hand held controller, alternatively the sy ziems can alsc be intertuced to an external computer via a standard RS 232 C ink.

GENESIS 5131 ANC G ENESIS P101 WITH PROCESSOR BOXES AND HANE-HELD CONTROLLERS

(CYBERNETIC DIVISION)

 PJRTWAF INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NM Plone Enquiries (0264) 64455
sp: THE MARLIN TALK-BACK

Now your computer can talk!

* Allophone (extended phoneme) system gives unlimited vocabulary.
* Can be used with unexpanded VIC20 or ZX81does not require large areas of memory.
\star In VIC20 version, speech output is direct to TV
speaker with no additional amplification needed.
* Allows speech to be easily included in programs.

Complete kit only £24.95.
Order As LK00A (VI C20 Talk-Back).
LK01B (ZX81 Talk-Back).
Full construction details in Maplin Projects Book 6.
Price 70p. Order As XA06G (Maplin Mag Vol. 2 No. 6).

KEYBOARD WITH ELECTRONICS

 FOR ZX81

* Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in ZX81)
* Complete with electronics to make "Shift Lock "Function" and "Graphics 2" single key selections.
* Powered (with adaptor supplied) from ZX81's own standard power supply.
Full details in Project Book 3 (XA03D) Price 60p Complete kit (excl. case) $£ 19.95$. Order As LW72P. Case 1495 . Order As XG17T.
Ready built-in case $£ 29.95$. Order As XG22Y

OTHER KITS FOR ZX81

3-Channel Sounds Generator (DetaIls in Book 5) Order As LW96E. Price $£ 10.95$
ZX81 Sound On Your TV Set (Details in Book 6). Order As LKO2C Price $£ 19.95$.
ZX81 1/O Port gives two bidirectional 8 -bit ports (Details in Book 4)
Order As LW76H. Price $£ 9.25$
ZX81 Extendiboard will accept 16 K RAM and 3 other plug-In modules.
PCB
Order As GB08J. Price $£ 2.32$

Edge Connectors (4 needed):
Order As RK350. Price $£ 2.39$

HOME SECURITY SYSTEM

Six independent channels - 2 or 4 wire operation. External horn. High degree of protect ton and long term reliability Full details in Projects Book 2 (XAO2C) Price 60p

MATINEE ORGAN

Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1000$. Full construction details in our book (XH55K) Price $£ 250$ Complete kits available. Electronics (XY91Y) $£ 299$ Cabinet (XY93B) $£ 9950^{\circ}$ Demo cassette (XX43W) 1.99

25W STEREO MOSFET AMPLIFIER

* Over $26 \mathrm{~W} /$ channel into 8 s at 1 kHz both channels driven \star Frequency response 20 Hz to 40 kHz £ 1 dB
*Low distortion, low noise and high reliability power MOSFET output stage
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations).
* Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet Full details in Projects Book 3. Price 60p (XA03D). Complete kit only $£ 49.95$ incl. VAT and carriage (LW71N)

BUY IT WITH MAPCARD

Send now for an application form - then buy it with MAPCARD. MAPCARD gives you real spending power up to 24 times your monthly payments. instantly
All prices include VAT \& carriag

MAPLIN'S FANTASTIC PROJECTS

Full details in our project books. Issues 1 to 5: 60p each Issue 670 p
In Book 1 (XA01B) 120W rms MOSFET ComboAmplifier Universal Timer with 18 program times and 4 outputs Temperature Gauge Six Vero Projects.
In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes Miles-per-Gallon Meter
In Book 3 (XA03D) 2X81 Keyboard with electronics Stereo 25W MOSFET Amplifier Doppler Radar Intruder Detector - Remote Control for Train Controller In Book 4 (XA04E) Telephone Exchange for 16 extern sons Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - 1/O Port for 2×81 - Car Burglar Alarm - Remote Control for 25W Stereo Amp In Book 5 (XA05F) Modem to European standard 100W 240V AC Inverter Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder.
In Book 6 (XA06G)* Speech Synthesiser for ZX81 \& VIC2O - Module to Bridge two of our MOSFET Amps to make a 350W Amp - $\mathbf{2 \times 8 1}$ Sound on your TV © ZX 81 Interface for Modem Scratch Filter Doorbell for Deaf - Simple FM Tuner • - Damp Meter

- Projects for Book 6 were in an advanced state at the time of writing, but contents may change prior to publication (due 11th February 1983.

MAPLIN'S NEW 1983 CATALOGUE

Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items On sale in all branches of WH SMITH
Price $£ 1.25$

Post this coupon now!

Please send me a copy of your 1983 catalogue. I enclose $£ 1.50$ (inc p\&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $£ 1.90$ or 10 International Reply Coupons.

Name

Address
.
P.O. Box 3, Rayleigh, Essex SS6 8LR

Telephone: Sales (0702) 552911 General (0702) 554155 Shops at: Note: Shops closed Mondays 159 King St. Hammersmith, London W6. Telephone: 01-748 0926 284 London Rd., Westcliff-on-Sea, Essex. Telephone: (0702) 554000 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292

[^0]: NEXT MONTH'S ETI
 .7 BOOK SERVICE.53

[^1]: CARRIAGE Orders up to $£ 199$ sent by 1 st class post and $£ 200+$ by
 CHARGES $0-£ 100=£ 0.50, £ 100-199=£ 1.25, £ 200+=£ 5.00$.
 PRICES All prices and carriage charges quoted are exclusive of VAT and are subject to change without notice. shone for detail

[^2]:

[^3]: Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for 110 V, ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V

[^4]: PARTRIDGE 56 Fleet Road. Benfleet, Essex SS7 5JN, England ELECTONICS THE MIXER PEOPLE

