

6502-based Sound Board with Six

 Channels of D-to-AUSE YOUR MICRO FOR WORK AND PLAY

electronics today

Dave Bradshaw: Editor
Peter Green: Deputy Editor
Phil Walker: Project Editor
Jerry Fowler: Technical Illustrator
Gary Price: Divisional Ad. Manager
Ron Harris B. Sc: Managing Editor
Andrew Selwood: Copy Control
T. J. Connell: Managing Director

PUBLISHED BY:
Argus Specialist Publications Ltd.,
145 Charing Cross Road, London WC2H OEE, DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
TYPESET AND ORIGINATION BY:
Design International
PRINTED BY
QB Limited, Colchester.
COVERS PRINTED BY:
Alabaster Passmore

ABC Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. © 1986 Argus Specialist Publications Ltd U All reasonable care is taken in the preparation of the magazine contents but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good farth as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.

Subscription Rates. UK: $£ 18.10$. Overseas: $£ 22.50$.
USA: $\$ 29.50$. Airmail $£ 49.50$.

EDITORIAL AND ADVERTISEMENT OFFICE
1 Golden Square, London W1R 3AB, Telephone 01-437 0626, Telex 8811896.

FEATURES

DIGEST.

.11
The ETI alternative to breakfast television - assuming you can find a way to prop up the magazine amid the toast and marmalade.
SATELLITE TV - THE SEQUEL \qquad16

Now that the Part Report on satellite broadcasting of television programmes has been published. Vivian Capel takes a second look at the subject in the light of the recommendation.
LASER DIODES. \qquad .30
Not much use to the mad scientist designing death rays; but with far reaching implications for communications technology, amongst other things. We look at a little-known property of the ubiquitous semiconductor junction.
BROADCAST STANDARDS. \qquad42

So the satellites will be beaming down TV signals in MAC format, not E. PAL. Here we examine exactly
how this came about, and the consequences for the TV manufacturers and the paying public.
AUDIOPHILE.
.57
It's Q and A time to start with, as Ron Harris answers some typical reader enquiries. Then it's off to the armchair/test bench for a report on Coral's new cartridge.
TECH TIPS.. 68
More circuit ideas supplied by our readers - designs from hobbyists for hobbyists.
READ/WRITE. .76
A couple of massive missives as readers get their opinions off their chests and into print.
CONFIGURATIONS
79
This month lan Sinclair discusses audio power output stages, with the more common configurations and some advice on heat sinking.

PROJECTS

ZX81 USER-DEFINED GRAPHICS23

Bored with the characters that Uncle Clive Sinclair stuffed into your BASIC ROM? If you've got a 16 K RAM pack, this hardware modification to your ZX81 lets you display your own.
ORGAN PART TWO \qquad
This month we discuss the lower keyboard circuitry, the preset voice circuitry, and the Buylines we missed bust last month!

6502 SOUND DAC/CARD

 .48It's possible to get computers to do other things than fly spaceships across your TV. Here's a project that gives you three sound channels and six DACs.

ALARM MODULE.

\qquad
Provided you don't have the misfortune to be visited by a deaf burglar, this little box packs enough decibels to send him away screaming.
LOGIC PROBE
.73
This elegant design features a host o diagnostic facilities on a tiny PCB and uses only three IC packages.
FOIL PATTERNS
Due to lack of space in this issue and other circumstances beyond our control the Stage Lighting Dimmer and Cortex BASIC articles have been postponed until next month.

INFORMATION

NEXT MONTH'S ETI.............................. 7
COMPUTER EXHIBITIONS.................... 22
SUBSCRIPTIONS SPECIAL OFFER..... 28

BOOK SERVICE.. 55
PCB SERVICE. 83

WAAFORD ELECTRONICS MAIL ORDER, CALLERS WELCOME
Tel Watord (0923) 0588 Telex 8956095

MYUARLIM CAPACITORS 	

 $i^{100}{ }^{111}$
 scon

transistors

?

Ac ${ }^{A}$
.

[^0]

SWITCHED MODE PSU

Specially for those interested in extending their knowledge of electronics (which must be about 100\% of you), we are returning to the Designer's Notebook feature with not one but two articles. As you may gather from the .heading, one of these is not a million miles away from the subject of switched mode power supplies, one of the design fields often regarded as a no-go area for the hobbyist -that is, until that hobbyist reads ETI. The other Designer's. Notebook will be on voltage multipliers, so start queuing at the newsagents now.

REAL-TIME CLOCK CALENDAR

A project for all those readers with 6502-based micros that can't tell the time, or remember what day it is.If you liked the 6502 Sound/DAC card this month, you'll love this project: only in the April edition of ETI.

ZX81 MUSIC BOARD

This is a quite sophisticated though cost-effective music board for the ZX81. The board is capable of playing music without continuous CPU maintenance, and three notes may be played at once, each with independently variable volume. If you want more out of your micro, get next month's ETI.

NDFL

NDF what? We're afraid you'll have to wait until the next
ETI is published to find out what those letters stand for, but it will culminate in an entirely new audio amplifier design.
Sounds interesting.Meanwhile, here are a few clues ...

LOOK OUT FOR THE APRIL ISSUE ON SALE MARCH 4th

Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.

 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161. TELEX: 914977 CRIKEL G

-CRICKLEWOOD -STOCKING PARTS OTHER STORES CANNOT REACH!

 SWITCHES: TO 4 mm . Buigin USA. .E.C. KNOBS: Plastic, Aluminium, Anodised, Coilet, Poinier. © THE TRADITIONAL WAY Send cheque, PO or credit card number. Cash not encouraged but AR in stock items (that's 95%) , posted same day. OFFICIAL ORDERS. FROM SCCHOOLS More. \& THE IDEAL WAY Call in and collect. We are on the main Edgware Rd (A5) just $1 \frac{1}{2}$ miles from QUANIITY WELCOME. OVERSEAS ORDERS WELCOME ICWO + ADEQUATE POSTAGE). VAT Ploase add VAT at the current rate to all orders except books. VAT not chargeable abroad. CRICKLEWOOD ELECTRONICS LTD.. 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Export orders minimum f1 50 .

DIG

Low-Price High Performance Oscilloscopes

S TC Instrument Services have Sintroduced the new Iwatsu SS5710 and SS5711 4-trace oscilloscopes which combine very high performance with prices significantly lower than instruments of comparable performance. Both models offer high accuracy combined with easy to use controls and feature delayed time base (50 ns min . for the

SS5710 and 20 ns min. for the SS5711), four input channels, full $10 \times 8 \mathrm{~cm}$ CRT screen, and an operating temperature of $-10^{\circ} \mathrm{C}$ $+50^{\circ} \mathrm{C}$.

The SS5710 has a rise time of 5.8 ns (approx.), a deflection factor of $5 \mathrm{mV} / \mathrm{div}-10 \mathrm{~V} / \mathrm{div} . \pm \mathbf{2 \%}$ (1-2-5 sequence in 11 steps), and a frequency response of DC-60MHz, -3 dB (x 1 GAIN). The instruments come complete with two probes, an instruction manual and a storage bag for accessories.

Prices are a mere $\mathbf{£ 6 3 5}$ for the SS5710 and £950 for the SS5711. For further information contact STC Instrument Services, Edinburgh Way, Harlow Essex. Tel. Harlow (0279) 29522.

31/2 inch Micro floppy
 Adding to the proliferation of different

 sized micro floppy disks, Shugart Associates have launched a 3.5 inch floppy disc drive. Claimed specifications for the new unit, the SA300, include 500 kilobytes of unformatted capacity, track-to-track access time of six milliseconds, 135 tracks per inch (80 tracks per side), 300 rpm rotating speed, and transfer rate of 125 or 250 kilobits per second, in single or double density respectively. Price is expected to be around $\$ 200$ for high volume orders. Evaluation units will be available in the se-cond quarter of 1983, but when the production model will hit the streets is not yet known.The multiplicity of standards (see 'Will Industry Standardize on the 3" Floppy', Digest Dec '82) can only be harmful to end users. It's a great pity that the manufac-turers couldn't have got together at the start and sorted out their own standards first before laun-ching products. Of course, it does mean that some users will end up having to buy two rather than just one set of micro floppy drives, which all goes to make money for someone.

Cheap Print atac Limited, of Tudor Road,

DAltrincham, Cheshire have recently introduced a new range of printer mechanisms from Citizen. The 555 and 575 models are 24 and 40 column impact printers that feature red/black print, 2 and 1.2 lines per second printing speeds and 5 lines per second paper feed. Operation is from 12 V DC. Both cost $£ 49$ for the mechanism only (1-off price).

Interface boards should be available towards the middle of the year for around $£ 80$, and these will have facilities for serial and parallel interfaces.

160 Watt Monolithic Switchmode Supply

Replacing costly hybrids the L296 Power Switching Regulator delivers 4A at a voltage programmable from 5.1 V to 40 V and incorporates features such as soft start, programmable current limiting, remote inhibit and a reset output for microprocessors. The L296 is mounted in a MULTIWATT-15 plastic power package and very few external components are required.

For microprocessor systems, the reset output provides a delayed reset signal when the supply reaches a preset threshold. Both the delay time and threshold can be programm-ed by external components and either the input voltage or the output can be monitored.

Crowbar over voltage protec-tion can be realized simply by ad-ding an external SCR. The L296 incorporates the voltage sense and SCR drive circuitry for this function.
Internally, the L296 is pro-tected against reverse polarity input voltages and thermal overload. Output short circuit protection is provided by the programmable current limiter. Multi-ple L296s can be synchronised easily and remote on/off control is simplified by the TTL-level in-hibit input. The soft start rise time is programmed by an external capacitor. SGS-ATES (UK) LId., 1 Walton Street, Aylesbury, Bucks. Tel. (296) 5977.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

No, It Isn't A Mock-up

Ferranti is now offering its widely-used tuned radio frequency (TRF) circuit in a T0-92 style plastic package, designated ZN414Z: introducing the plastic packaged version has led to . price reductions of up to 25%, enabling the device is to be used in a wide range of new products. One of the first of these new applications is in an electronics wrist watch/radio.

The circuit provides a complete RF amplifier, detector and AGC circuit, requiring only six external components to give a high quality AM medium wave tuner, operating from a single cell supply with low power consumption.

Simple but effective AGC action is available using one external resistor. No setting-up or alignment is required and the ZN414Z will give excellent audio output directly into an earphone or a suitable output stage. Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham, Lancashire, OL9 BNP. Telephone 061-624 0515 and Telex 666803.

Shorts

- The more observant amongst you might have noticed a new component supplier, EMOS, advertising in our hallowed pages. Whilst new to the hobby market, they are by no means strangers to electronics, as the parent company, the Grenson Group, has been manufacturing stabilising power supplies for more than 20 years. Grenson's director, Stuart Taylor, has said ... the work that hobbyists are doing these days is often anything but amateur . . \therefore, which is somthing we've been proving for years.
- A portable, self-contained floppy disk drive tester has been introduced onto the UK market by Kontext, PO Box 11, East Hornsey, Surrey (Tel 04865 3406). The Redwood Supertest is intended for field service engineers, and provides the means of quickly positioning the heads of floppy disc drives over all the standard tracks of an alignment diskette. The UK price should be around £339 inclusive.
- The new Toolrange Catalogue incorporates a section on power supplies and transformers. Clever these Toolrange people, they time the release of their press releases so that we can't keep them back and say what they have in the
catalogue all in one go. Toolrange Limited, Upton Road, Reading RG3 4JA, Berks.
- BICC-Vero have produced a new shortform catalogue special ly for hobbyists. Products covered include circuit boards, breadboards, boxes, tools and accessories. Retail Department BICC-Vero Electronics, Parr, St Helens, Merseyside.
- Looking for a project but can't find the exact one you want? New from EPI Sales, Central Library, Northumberlands Square, North Shields, Tyne \& Wear NE30 1QU, at a price of $£ 2.50$ inclusive, is the Electronics Projects Index No 3 The Index covers projects produced by most mags with cover dates from January 1979 to December 1980. The next edition, covering 1981 and 1982 is almost ready, they tell us, though why anyone would want to know about projects in other magazines, we do not know . . .
- Another new publication, slightly more expensive, is the new IC Master. Weighing in at 3,500 pages (no, we haven't actually checked what the weight is) is a listing of over $\mathbf{5 0 , 0 0 0}$ ICs, in cluding a section on gate arrays, addresses of IC manufacturers and distributors, reps and agents, and an applications note direc tory. The directory will be available in March from Paterson/Steadman \& Partners, 34/36 High Street, Saffron Walden,

Detect Damp Desks!

Anew desktop indicator from Vaisala allows simultaneous
digital display of relative humidity and temperature to 0.1 digit accuracy. The HM 32 humidity and temperature indicator may be us-ed with a range of Vaisala probes, or connected direct to a recorder for a continuous permanent out-put reading. Relative humidity is displayed in \% RH, and temperature in either degrees

Celcius (${ }^{\circ} \mathrm{C}$) or Fahrenehit (${ }^{\circ} \mathrm{F}$), selected with an internal jumper. The indicator can be operated from a standard power supply, or by a rechargeable NiCad battery if required. Although designed for desktop use, the HM 32 has its own carrying handle for portability. Operation is simply a matter of switching on, with the measured values being shown almost immediately on the large $3 \frac{1}{2}$ digit liquid crystal displays. Full details of the HM 32 may be obtained from Vaisala (UK) Ltd, 11 Billing Road, Northampton NN1 5AW (telephone 0604 22415).

Essex CB10 1EP, at 865 a time, they're not cheap, but if you order before March 1st, there's a special reduction to $£ 55.25$. Both prices include post, packing and updates.

- Flag waving time: Thandar Electronics have managed to sell $\mathbf{£ 1 0 0 , 0 0 0}$ worth of electronics to a " "major" Japanese instrument manufacturer'. They're rather coy about who it actually is that has bought their gear.
- Tangerine Users' Group (TUG) has moved to a new HQ. They are now at 1 Marlborough Drive, Worle, Avon BS22 0DQ, tel 0934 21315.
- A case for study? Semiconductor Supplies International Ltd, Dawson House, 128/130 Carshalton Road, Sutton, Surrey SM1 4RS are now supplying a range of cases designed for desk-top and other uses, at prices starting from £5.06 exclusive.
- Radio Rentals report that the first would-be TV thief has been caught using their Burglar Alarm TV sets. The intruder was not only deafened by the alarm itself, but was set upon by the owner's two dogs as well. The owner felt so sorry for the would-be thief that he decided not to press charges! - Ambit International have been at it again - taking on new products, that is. Amongst them are the ALPS range of high-quality laser-trimmed potentiometers, the Ritel range of knobs and ac-
cessories, and some low-cost piezo-acoustic resonators. See Ambit's ad for their address and ordering details.
- Got a gear? A geared motor, that is, from McLennan servo supplies, Doman Road, Camberley, Surrey. Motors are available with a new British-built gearhead and AC synchronous, DC servo or stepped motors. Also available is a low-cost reversible AC synchronous motor.
- An addition to the 'Way' range of personal stereos from Panasonic is the RQ-J20X; Panasonic say that it's the first personal stereo to incorporate dbx noise reduction. At an RRP of £110.95, it's not cheap, but if the dbx works anything like as well as it is capable of, and if $\mathbf{d b x}$ tapes become widely available, it may well be worth it.
- Ross Electronics have recently released four new mo dels of headphones, and also a pair of in-ner ear fitting mini-phones, that bring their total range to over 20 models. Ross Electronics, 49/53 Pancras Road, London NW1 2QB. - Boss Industrial Mouldings Ltd, James Carter Road, Mildenhall, Suffolk IP28 7DE are now selling a range of snap-in lenses for 5 mm LEDs. The one-piece lenses are available round or square in a variety of colours. The lens is locked in position when the LED is inserted - ingenious, eh?

POWERFET AMPLIFIERS

NEW DESIGNS

With the introduction of four new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiers．Four key improvements have been ihcorporated in these second generation modules－
1．）The use of H－PAK powerfets，resulting in improved thermal efficiency and onsequently enhanced power output capabilities．
2．）Low C_{OB} drivers now in power transiator packages，maintmining the superb HF performance and improving driver reliability．
3．）Separate driver and input supply rails allowing a $\mathbf{1 0 \%}$ increase in available output
4．）Rower by Increasing output stage efficiency．

PFA100 Specification

PFA200 180W into 80
300 W into $4 \Omega\left(V_{S}= \pm 67 \mathrm{~V}\right)$

PFA200 Specification

Banowitht $10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
OUPet power into 80 100W（ $\mathrm{Vs} \pm 60 \mathrm{~V}$ ） THD（ $2 \mathrm{OHz}-20 \mathrm{KHz}$ ） THD（ 1 KHz at 150 W ）

SNR	100 c
Slew rate	$>30 \mathrm{~V} / \mathrm{uS}$
Gain	$\times 23$
Rin	30 K
$V_{\mathrm{s} \text { max }}$	$\pm 70 \mathrm{~V}$

Price
523.87 （Built \＆Tested） 921.70 （Kit）

And for those with a taste for power．．．
－PFAE00 Delivers 475 W into 4 ohms and 600W into 2 ohms．These highly current capable units can deliver \mathbf{Z} amps continuous into a load，whilst maintaining the PFAHV A verformance figures of the sial at digital audio and wide dynamic range programme material．Delivers 300W into 4 ohms and 8 ohms on a continuous basis，it will peak for musically significant periods of time at up to 5dBs above this． The PFA／HV is the widest dynamic range power amplifier currently available

THE HEAT EXCHAWGER ．Dher peopla keatsinks．Pantechnic design， manutacture and sell heatexchangers．Re－examination of the heat transfer procass has resulted in a radically new design possessing greatly improved efficiency．The unit $7^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$ handles PFAs up to 300 W or 1.2 KW when blown．．．．．．．． $\mathbf{2 7 5 0}$

POWER SUPPLY COMPONENTS
 Toroidal Malns Transformers

40－0－40	9.71	11.36	12.32		
45－0－45		11.36	12.32	16.05	
50－0－50，				16.05	18.80

Special low flux windings．Carriage included

25A 400PIV Bridge rectifier	$\mathbf{E 2 . 1 7}$	For the PFA／HV			
10，000uF 80V Electrolytics	$\mathbf{~ 4 . 1 3}$				

E 4.13
E 10.00
$10,000 \mathrm{uF} 100 \mathrm{~V}$ Electrolytics E .70

Phone or write for advice on selecting the right components for your particular appilcation．

All prices excl．VAT．Carriage 76p．Trade supplied
Aak about our preamps，protection boards and active crossovert

THE POWERFET SPECIALISTS pantechnic

 （incorporating J．W．Rimmer）Dept ET1／3， 148 Quarry Street，Liverpool L25 6HO
Telephome 0514288485
Techmial enguries；
Pluil Rimmer 01800666 ；

New！T．V．SOUND TUNER bulltandtested

In the cut－throat world of consumer electronics，one of the questions designers apparently ponder over is Will anyone notice if ing save money by cho ing this out？in the domestic TV set，one of the
first casualties seems to be the sound quality．Small speakers
 end no tone controls ere common
$£ 22.95$＋£2．00 p\＆p． end ell this is really quite sad，as the
n this background compact and independent TV tuner that connects direct to your Hi－Fi is a must for quality reproduction．
This TV SOUND TUNER offers full UHF coverage with 5 preselected tuning controls．It can also be used in conjunction with your video recorder．Dimensions： $111 /^{\prime \prime} \times 81_{1}^{\prime \prime} \times 3 \mathrm{~K}_{4^{\prime \prime}}$ E．T．I．kit version of above without chessis，case and hardware． $\mathbf{£ 1 2 . 9 5}$ plus $\mathbf{£ 1 . 5 0} \mathrm{p} \mathrm{\& p}$ ．

PRACTICAL ELECTRONICS SPRECIALO FFERID STEREO CASSEI IF RECORDER KIT with
 ONLY £31．00 plus £2．75 p\＆p．
 －NOISE REDUCTION SYSTEM．－AUTO STOP．－TAPE COUNTER．SWITCHABLE E．O．．INDEPENDENT LEVEL CONTROLS． 0．TWINV．U．METER．＊WOW \＆FLUTTER 0．1\％．－RECORD／PLAYBACK I．C．WITH
 ELECTRONIC SWITCHING．FULLY
 ACCURATE MATCHING OF ALL TYPES．
 Kit includes tape transport mechanism，ready punched and back
 printed quality circuit board and ail electronic parts．ie．semiconductors．
 resistors，capacitors，hardware，top cover，printed scale and mains transformer You only supply solder \＆hook－up wire．Featured in April P．E．reprint 50 p．Free with kit．

PERSONAL LS AMPLIFIER KIT

Amplifier for your personal stereo cassette player－as featured in January issue of Everyday Electronics．Turn your personal stereo into a mains powered home unit． Parts：
Stereo power amp PCB with all components， $\mathbf{£ 3 . 5 0}+\mathbf{7 5 p}$ p\＆p． p\＆

$\mathbf{£ 1 . 5 0}$ the pair $+£ 1$ p\＆p．Input \＆output sockets and plugs，£1．50．Recommended case（for the power supply and amp only），£2．95＋B0pp\＆p．P\＆P inclusive price of $£ 1.75$ for any two or more

125W HIGH POWER AMP MODULES

The power amp kit is a module for high power applications－disco units，guitar amplit－ iers，public address systems and even high power domestic systems．The unit is protected against short circuiting of the load and is sa margin exists by use of generously rated com－ ponents，result，a high powered rugged unit． The PC board is back printed，etched and raady to drill for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions．
ACCESSORIES：Suitable mains power supply with transformer： $\mathbf{£ 8 . 5 0 + £ 2 . 0 0 p \& p}$ kit with transformer： $\mathbf{8 8 . 5 0}+\mathbf{£ 2 . 0 0} \mathrm{p} \mathrm{\& p}$ ．
Suitable LS coupling electrolytic． $\mathbf{~ 1}+\mathbf{2 5 p} p \& \mathrm{p}$ ．

SPECIFICATIONS：
Max．output power（RMS）： 125 W．Operating voltage（DC）：50－80 max．Loads：4－16 ohm． Frequency response measured＠ 100 watts： $25 \mathrm{~Hz}-20 \mathrm{KHz}$ ．Sensitivity for $100 \mathrm{w}: 400 \mathrm{mV}$ ＠ 47 K ．Typical T．H．D．＠ 50 watts， 4 ohms： 0.1% ．Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ ．

BSR RECORD DECK
Manual single play record
deck with auto return and cueing lever．Fitted ridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco．

$\mathbf{f 1 2 . 9 5}+\mathbf{E 1 . 7 5}$ p\＆p． $13^{\prime \prime} \times 11^{\prime \prime}$ app．
SPECIAL OFFERI Raplacement Stereo cass－
ette tape heads $-\mathbf{£ 1 . 8 0}$ esch．Mono： $\mathbf{£ 1 . 5 0}$ esch．Erase： $\mathbf{~} 0.70$ esch．Add 50 p p\＆ip to order．
All mail to：
21E HIGH STREET，ACTON，W3 BNG．
Note：Gooos despatchad to U．K．postal addresses only． Nots：Goods despatchad to U．K．postal addresses only
All items subiect to avaiiability．Prices correct at 30／10／82 and subject to change without notice． Please allow 7 working days from receipt of order for despatch．ATVC Limited reserve the right to up． date the ir products without notice．All enquiries send
S．A．E．Telephone or mail orders by ACOESS welcome．
$\begin{array}{cc}\text { KIT } & \text { BUILT } \\ £ 10.50 & £ 14.25\end{array}$
$+£ 1.15 \mathrm{pkp}$
＋£1．15 p\＆＋＋£1．15 p\＆p．

SPEAKER BARGANS

2 WAV 10 WATT

SPEAKER KIT
$8^{\prime \prime}$ bass／mid range and $31 \mathrm{k}^{\prime \prime}$ tweeter．Complete with screws wire，crossover components cut - no cutting required． Finish－chipboard covered wood simulate．size 14\％＂ 8＊＂x 4＂．PAIR for ONLY
£12．50 plus $£ 1.75$ p\＆p．
ALL CALLERS TO： 323 EDGWARE ROAD
LONDON W2．Telephone：01－723 8432.
（5 minutes walk from Edgware Roed Tube Station）
Now open 6 deys a week $9-6$ ．Pricas include VAT．

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Give Your
 Micro An Eye

Digithurst Ltd are now selling two vision systems suitable for use with microcomputers. MicroSight 1 (pictured) is a CCTV based system which uses a Micro Eye camera interface to send images back to the computer as 8 bit digitised video. The system is aimed at the educational and R\&D market and will be of particular interest to people who are looking for a low cost introduction to the expanding field of microcomputer vision and Artificial Intelligence.

MicroSight 2 is a solid state camera based system which uses a 128×128 CID sensor to capture an image and a high speed interface to pass images back to the microcomputer either as 8 bit digital video or as threshold video.

Both systems use versions of Microsight software which consists of a command processor and disk I/O routines, a camera control routine and three display routines: one to allow interactive adjustment of camera settings, one to display facsimile and one to display binary images. A machine code routine is used to process images and produce run length encoded data which as well as being a compact form of image data also allows applications programs access to a structured database. A boundary/edge detection program is supplied to give the user an insight into the use of run length encoded data.

The MicroSight 1 system including camera, interface and software costs $\mathbf{£ 4 9 9}+$ VAT. And for the micro with a very rich owner, the MicroSight 2 system, including camera, high speed interface and software costs a mere $\mathbf{E 1 9 9 0}+$ VAT.

British Company In Orbit

Siignature of the L-Sat contract between British Aerospace Dynamics Group and the European Space Agency on December 301982 brought the value of BAe contracts for building new satellites to more than $\mathbf{£ 2 5 0}$ millions in 1982. Worth E160 millions alone, the L-Sat contract is the highlight of a very successful year for the company's Space and Communications Division which has also signed contracts as prime contractor for two other new satellite programmes: Skynet 4, the defence communications satellite for the United Kingdom Ministry of Defence worth $\mathbf{£ 5 8}$ million, and Giotto (see below), worth $£ 34$ million. Other space contracts signed last year amount to more than $£ 30$ million.

L-Sat 1, a large communications satellite scheduled for launch in 1986, is the most ambitious communications satellite programme yet undertaken by the European Space Agency, making important advances in satellite platform capability and communications techniques. (LSat will be used for direct TV broadcast services). L-Sat and its derivatives will rank as one of the world's most powerful satellite communications systems with a range of services that can include IV broadcasts to the home, high density international telecommunications, voice, data and

video links, for small earth terminals on business premises, high quality voice and data links to ships, aircraft and road vehicles and a very high capacity inter-city telecommunications service.

An agreement has been signed by British Aerospace (UK), Fokker (Netherlands), Aeritalia and Selenia (Italy), and Spar Aerospace (Canada) to co-operate in the worldwide marketing of L-Sat derivatives. (These signatories are the major contractors on the L-Sat program, with British Aerospace as the prime contractor.) A demand is foreseen for more than 100 large satellites before the end of this century. L-Sat has the distinct advantage over many smaller satellites filling similar needs in that it reduces the multiplicity of spacecraft, orbital crowding and the need for extensive ground control facilities.

A $£ 34 m$ contract was signed just before Christmas between the European Space Agency and British Aerospace Space and Communications Division for the Giotto spacecraft, Europe's first deep space probe. British Aerospace are prime contractor, leading a consortium of. European companies and will deliver the spacecraft for launch in July 1985 to begin an eight month journey to intercept Halley's Comet' in March 1986.

The Russians and Japanese are also launching satellites to observe Halley but Giotto is the most elaborately instrumented and will pass closest to the comet. Its instruments will provide data on the chemical composition of the coma region surrounding the nucleus and of the tail of the comet. A camera will take colour, photographs of the comet's nucleus and measurements will also be made of its magnetic field.

This is an exciting and technically challenging project and the total time for observation as it passes the comet will only be a few hours since the closing speed will be about 70 km per second. A special shield is being built to protect the satellite from impact of dust articles that will be about 70 km per second. A special shield is being built to protect the satellite from impact of dust particles that will vaporise metal at these speeds. The trajectory will be adjusted during flight using data from the NASA/ESA space telescope in which British Aerospace is also in-volved. There will be no second chance and great emphasis will be placed on the reliability of the spacecraft systems. The satellite has been named Giotto after the Renaissance painter whose 1303 fresco 'The Adoration of the Magi', in Padua, depicts a comet to represent the Star of Bethlehem. This is believed to have been based on personal observation of the Halley comet during one of its periodic 76 year appearances.

Major European companies supporting British Aerospace in the project include Dornier System in Germany, Thom, CSF in France, LM Ericcson in Sweden and Contraves in Switzerland.

SATELLITE TV the sequel

The government recently chose a system proposed by the IBA for the way that TV signals will be transmitted from satellites, in preference to one proposed by the BBC. Was it the right decision? Vivian Capel explains the difference between the two systems.

Very shortly a milestone in TV broadcasting will come to an end. The world's first 'high definition' TV transmissions on 405 lines which started befOre the war from Alexandra Palace, will soon cease having lasted, except for the break during the war, for more than forty years.

While it was still going strong, the present 625 -line standard was introduced, and later, the PAL colour system. These are serving very well and for most domestic applications give results which are largely free from glaring inadequacies. The quality of the picture is probably nearly as good as you can get with the present generation of TV displays.

The main drawback which sometimes intrudes is that over areas of fine detail, such as a herringbone-pattern coat, a false colour is often displayed: this is called cross luminance.

The composite video signal consists of two main components: the black-and-white detail, termed the luminance signal, and the colour information (actually two colour difference signals multiplexed), known as the chrominance signal. The picture is organised thus for two reasons. One is that the transmission can be received by black-and-white sets which simply ignore the chrominance signal. The other is that economies can be made in transmitted bandwidth.

The latter reason needs a little explanation. The amount of information that can be transmitted in a given time is limited by the bandwidth of the channel. To give good resolution over 625 lines a video signal of 5.5 MHz is required. When amplitude modulated on a carrier this produces frequencies of +5.5 MHz and -5.5 MHz or a total bandwidth of 11 MHz . However, one sideband is redundant and is reduced to 1.25 MHz , giving a bandwidth of 6.75 MHz . Sound is FM modulated and space must be left to separate adjacent channels.

The total channel width is 8 MHz , so it can be seen that there is little room for any colour information. However, the human eye is much less sensitive to colour detail than light-and-shade. Hence, the colour signal can be of a much lower resolution than the luminance without any subjective degradation of the picture.

A Red Herringbone

This is useful as it enables the colour to be accommodated without extending the bandwidth, by processing it separately as a lower-frequency signal. It is modulated on a sub-carrier of 4.43 MHz . Why 4.43 MHz ? Well, as

MAC has been tested and demonstrated over this experimental transportable 'up-link' dish aerial:

Fig 1 Spectrum of luminance signal showing how details occur at multiples of the line frequency. The chrominance signal is also at multiples of the line frequency, but being centred on 4.43 MHz , it interleaves with the luminance multiples. If there is movement of luminance detail around 4 $\mathbf{M H z}$, the signals interact producing spurious colour.
most succeeding lines in the picture are largely repetitive, most of the video information is at multiples or harmonics of the line frequency, which at 625 lines and 25 frames per second is $15,625 \mathrm{~Hz}$. In between these multiples there is nothing except on moving parts of the picture.

Now 4.43 MHz falls halfway between two multiples, and any modulation of information such as the colour signal which is also based on the line frequency, will likewise fall between other multiples. So, although the subcarrier and its sidebands occupy the same frequency spectrum as the luminance signal, they do not mutually interfere because the harmonics of each interleave with the other.

This is true of stationary pictures, but when there is motion between successive frames the information no longer is at line-frequency multiples, and so luminance and chrominance signals interact. Hence the herringbone coat looks tine as long as its wearer remains still, but the slightest movement sweeps the luminance signal detail across the 4.43 MHz harmonics so producing a spurious colour.

Coarser detail does not have the same effect because its video frequencies fall below the limited colour region which is just over 1 MHz either side of 4.43 MHz . So detail up to 3.5 MHz is innocuous. To minimise the effect, some set manufacturers limit the video response, rolling it off between 3.5 and 4 MHz . This reduces picture resolution, so one bad effect must be set against the other, and as usual, a compromise seems the best solution.

Extended PAL

So here we have an evident area for improvement, though little can be done with present channel bandwidths. When satallite TV comes on the scene matters will be quite different. The transmissions at UHF which carry the present TV service range from 470 to 854 MHz . However, the satellite transmission will be from 11.7 to 12.5 GHz (1) $\mathrm{GHz}=1,000 \mathrm{MHz}$). This will permit wider bandwidths for each of the 40 channels which have been allocated to the European broadcasting countries.

The actual bandwidth is 27 MHz , although the channel separation is 19 MHz . Interference is unlikely in spite of the overlap because adjacent channels are assigned to different countries with different satellite positions and opposite polarisation (see ETI December 1982 for a fuller explanation).

With a bandwidth of 27 MHz much can be done to improve television standards (the technical ones that is). The BBC proposed a system called Extended PAL (E-PAL), which has as its object maintaining or even increasing luminance resolution without any interaction between luminance and chrominance signals.

So how is it done? Low video frequencies are modulated on the carrier as with the existing system, but they are cut off at the transmitter above 3.5 MHz . The

Fig. 2 Frequency spectrum of Extended PAL. All luminance detail above 3.5 MHz is frequency shifted upward well beyond the range of the chrominance signal. In addition there is a $2 \mathbf{M H z}$ gap which accommodates the digital audio channels.

Fig. 3 Block diagram of decoder for Extended PAL. The shifted HF video signals are filtered through a high-pass filter to a mixer which is also supplied with 4.43 MHz from the colour decoder. Resulting stepped-down HF signals are filtered, then added to the LF video signals which are passed through a low-pass filter direct from the vision detector.
video frequencies above 3.5 MHz are not lost, but are shifted upwards in frequency by 4.43 MHz . So, detail at 4 MHz in the original picture appears at 8.43 MHz and so on. Thus the highest video frequency of 5.5 MHz comes out at 9.93 MHz . Actually, the range extends to over 10 MHz , so detail finer than 5.5 MHz is transmitted.

This leaves a gap between 3.5 MHz and 8 MHz . The chrominance sub-carrier remains at 4.43 MHz and so falls within the gap. There is no interleaving except at the extreme lower chrominance sideband so there is no mutual interference.

In the receiver all video frequencies above the chrominance and sound channels are changed back down to their original value and added to the low-frequency video signal, thus reconstituting the full range of the original. The reconstituted signal is applied to the display to give a high resolution picture that is free from spurious colour effects.

A feature of this arrangement is the 4.43 MHz frequency shift. In every PAL receiver there is a 4.43 MHz oscillator which is controlled by a synchronising signal known as the colour-burst which is transmitted after every line pulse. The purpose of this is to decode the çplour information, and it provides a phase reference whereby the alternate lines are reversed in phase to compensate tor colour discrepancies due to phase shifts in the transmission and receiving links.

Part of the output of this oscillator can therefore be us-ed for the same purpose as the local oscillator in a superhet receiver, to produce a change of frequency. The new frequency is the difference between that of the input and the oscillator, so the down-conversion is accomplished with the minimum of extra components and circuitry.

A big advantage with E-PAL is that it is largely compati-ble with existing receivers. These could just ignore the band of up-converted high video frequencies and \quad give a response up to the roll off of 3.5 MHz . This is only a little below what is commonly received at present, and no worse than many sets that are mis-tuned. However, these sets will require some sort of sound adapter - see later.

Another potential advantage is that many countries that at present use the PAL system, which is most of Western Europe, may find the compatibility feature attractive and adopt it themselves for their satellite broadcasts.

Enter the Challenger

What might have proved a simple and logical step to go ahead with E-PAL was confused by the entry of IBA's contender MAC. The letters stand for Multiplexed Analogue Component which is not a particularly apt
description, but one no doubt chosen to make a goodsounding acronym.

It is quite different from PAL or SECAM or in fact any other known system and therefore is incompatible, and cannot be received with any existing receiver. It has one thing in common with SECAM in that information is transmitted sequentially.

With both PAL and SECAM the colour information is resolved into two (red and blue) colour difference signals. The third primary colour, green, is obtained by a process of adding and subtracting these with the luminance signal which being white, contains all three. In the case of PAL, as we have seen, the two signals are phase and amplitude modulated on to a sub-carrier which is interleaved with the video signal. With SECAM, the red and blue difference signals are transmitted sequentially on alternate lines. Each is fed to a delay line which stores it for one line and then mixes it with the incoming one. So each displayed line is a mixture of the present and previous one which reduces the vertical colour resolution by half although it avoids the luminance/colour interference of standard PAL.

With MAC, the composite colour signal and the luminance signal are transmitted sequentially, but not on alternate lines. Exactly how the signals are multiplexed depends on the sound system chosen - see Fig. 4 for details. However, both signals have to be timecompressed, so that the luminance is transmitted over $40 \mu \mathrm{~S}$ and the chrominance over $20 \mu \mathrm{~S}$ (compared to the $53 \mu \mathrm{~S}$ normally required for a line scan, and the $64 \mu \mathrm{~S}$ interval between starts of successive lines).

Fig. 4 Structure of the MAC signal for A-type and C-type sound. Note that the luminance and chrominance signals are time-compressed less for A-MAC than for C-MAC, thus obtaining the same eventual bandwidth for a lower transmitted bandwidth.

Both signals are generated simultaneously in the camera, but the chrominance signal is delayed until the end of the luminance signal for that line, then doubled in frequency and transmitted in compressed form. The luminance signal undergoes a rather smaller speeding up. As we have already seen, the chrominance signal in any colour system is of lower resolution, hence contains no high video frequencies, so the transmission of the chrominance signal at double frequency is still well within the video bandwidth of the system.

At the receiver, the reverse process takes place. The luminance signal is delayed so that it starts at the same time as the chrominance, and both are time expanded to occupy the $53 \mu \mathrm{~S}$ line scan period, and both are applied to the display circuits together. Thus the same object is achieved as with Extended PAL, luminance and chrominance are prevented from mutual interaction but in a totally different manner.

The video bandwidth at present proposed for MAC is 5.6 MHz for luminance and 1.3 MHz for chrominance. For a complete line to be transmitted in $40 \mu \mathrm{~S}$, the luminance bandwidth must be 7.5 MHz ; there is, however, room to spare if the same bandwidth is used for the chrominance signal.

Incompatible - That's What You Are

The principal drawback of MAC is its incompatibility with any other television system. Whereas existing PAL receivers could be used with front-end frequency converters to receive satellite transmissions in Extended PAL, this would not be so if the transmissions were in the MAC format. New sets would have to be purchased, which is why I think the TV manufacturers favour MAC! This doesn't mean though that everyone's TV set would be obsolete overnight when satellite transmissions commence. Terrestial UHF PAL broadcasts would continue for the foreseeable future, just as 405 line transmissions have. But inevitably there would be pressure to move towards a single system eventually.

Another factor that perhaps has not been considered, is that video recordings and games are usually played through the family TV. A change of set to another system would mean all those tapes as well as the recorder would become unplayable unless the existing set was retained. In modern homes the space required for two full-sized TV receivers may pose something of a problem. An answer to this would be dual-standard sets such as were produced when 625-line transmissions began. However, the dissimilarity between the two systems, in my opinion, makes dual-standard sets impractical.

No doubt the protagonists of MAC hope that it would be accepted as a standard by other countries, but as this would mean running two separate systems, PAL or SECAM and MAC, then dropping their existing one eventually, the chances appear slim. They are not improved either by political considerations. So, if MAC were adopted here, most likely it would leave the UK out on a limb with a nonstandard system used nowhere else in the world.

Therefore, I find it surprising that the advisory panel appointed by the Government to recommend the standard to be used for direct satellite TV broadcasting has come down in favour of MAC rather than Extended PAL. The chairman, Sir Anthony Part said that 'it was better technically, easier to manufacture, and has greater development potential'. The PAL system, he said was 'based on technology that was becoming outdated'. Sir Anthony, it might be noted, is a chairman of an insurance company.

Sound

It is generally agreed that the sound accompanying the satellite broadcasts should be digital, but there has yet to be any final decision as to its format. The European Broadcasting Union has looked at two systems, EBU System A and EBU System C (there was originally a System B, but this was withdrawn at a very early stage).

System A uses a single digitally-modulated sub-carrier with six channels of sound multiplexed together. Each channel would, under the BBC's E-PAL proposals, have had a 15 kHz bandwidth, sampled at 32 kHz , initially coded into 14 -bit words but compressed to 10-bits; the resulting 2.048 Mbits per second would have been modulated onto a sub-carrier using phase-shift keying.

System C takes a different approach and switches the whole channel into digital mode during the $9.5 \mu \mathrm{~S}$ intervals between picture lines. Using the same techniques for data compression and modulation as in the BBC's proposals, the IBA proposed putting eight sound channels into the signal. The IBA also had a proposal for using System A sound, though it did express a marked preference for System C.

There is no reason why the multiplexed information should always have to have equally sized components. The BBC have developed a system whereby a structure map is transmitted periodically; this tells the receiver how to treat the informaiton it is receiving, ie which bits go to which output.

Another system, called packet multiplexing splits the information up into packets, each one of which has its own digital label to tell the receiver how it is to be treated. However, this system carries a higher overhead and one of the sound channels would have to be sacrificed to accommodate it.

Further Enhancement

Whatever system is finally chosen, further enhancement of the picture is possible by various means. One way is by the use of a frame store. These have already been used to reduce picture noise.

The technique is based on the fact that each picture frame is almost identical to its predecessor. Examination of a short length of cine film will confirm this. Each frame can therefore be mixed with several previous ones during which time the picture will not have changed much. Noise, though, is different for each frame and the mixing averages it out.

Mixing two frames by using a single frame-store produces 3 dB noise reduction, but to achieve 10 dB a mix of 10 frames would by required necessitating 9 stores. As frame-stores are bulky and expensive, an alternative is to use a feedback loop across a single store. Feedback can be adjusted to control the mix, the greater the feedback, the more frames recycled and the greater the noise reduction. An optimum value has been found to give 8.5 dB .

While averaging has no detrimental effect on stationary portions of the picture, it produces blurring on moving parts as would be expected. To minimise this, feedback is regulated by a motion detector which compares successive frames. If there is appreciable difference, motion is assumed and feedback reduced.

Thus blurring is avoided to any great extent, but the noise reduction is also decreased. This is not a major drawback, as noise is less noticed in pictures with plenty of action than stationary ones in which reduction is greatest. The system is used by the BBC to clean up noisy programme sources, but a frame-store could also be used in a receiver to increase resolution. This is becoming more practical now frame-stores are getting smaller and cheaper.

Fig. 5 Basic principle of frame-store noise reducer. Output is fed either direct from the input or from the frame-store output depending on the auto control setting. This is governed by the motion detector which compares incoming and previous frames for differences.

Here again the idea relies on the fact that successive frames are similar with large stationary areas. Instead of unnecessarily repeating such areas in transmission, they can be sent and stored, updating occurring when there is any deviation from the stored picture. The transmission time thus saved can then be filled with finer detail to add to the stored frame. The BBC claim that a resolution equivalent to 900 lines can be obtained in this way.

Resolution varies over the picture just as noise does with the frame store noise reduction system. Stationary objects appear with the greatest detail, while moving objects have less. As we tend to examine visually stationary objects, while having little time to do so with moving ones, the subjective effect is not greatly impaired by the difference. It can though produce some rather strange effects when a stationary object starts moving slowly away, whereupon much of the detail disappears.

Lines and Frames

Neither Extended PAL or MAC propose to change the number of lines and frames. For all domestic and many other purposes, 625 lines is perfectly adequate when displayed on normal-sized direct-view screens. Colour also serves to render the line structure less noticeable than monochrome. Although having a better vertical resolution, the 819-line system in France is being phased out, so the higher number of lines is evidently considered of less benefit than other factors. The 625 -line system has also established itself as a worldwide standard except in the American continent and some Eastern countries.

When projected on to a large screen though, 625 lines do give a liney appearance, which is a consideration if the large flat wall screens that have been said to be on the way for a long time, ever turn up. In such a case the lines may have to be increased.

In Japan and America where the 525 -line standard is used it is natural that there should be more urgent thoughts of uprating their line standard. Most of us will not have seen a 525 -line picture, but the effect can be judged being halfway between our 625 lines and the old 405 lines. Not a pretty sight on large-screen direct-view sets to say nothing of projection screens!

It comes as no surprise then, that the Japanese Broadcasting Corporation NHK, has devised a new highdefinition TV standard for use with satellites. It uses 1,125 lines and has an aspect ratio of $5: 3$, which is closer to some of the wide-screen cinema films that so often appear on television, and also to natural human vision. Bandwidth required is 20 MHz which although high by present standards could be accommodated within the channel width of 27 MHz allocated for the European satellites.

The Japanese hope that their high-definition system will become a world-standard. Most of the Japanese manufacturers have lined up firmly behind it with JVC, Sony, Matsushita, Toshiba, Panasonic, Hitachi and

Ikegemi either developing equipment or actually having it in production.

America too is more than just interested. CBS are conducting trials and propose to launch it in 1987. It is to be expected that many other countries in the American continent of the 525 -line standard will leap-frog over 625 lines to the NHK system. Likely too, is it that some presently on 625 will join them.

A demonstration was held at the EBU's annual meeting in Killarney using the facilities of Radio Telefis. Material used was a CBS videotape of an American football match which was projected on to a 100 -inch screen. It is reported that not only could the stitches be seen on the football, but during a scan of the stadium the seat numbers could be clearly read! As such details could hardly be visible to a spectator actually present at the event it cannot be ignored that the story came from the land of the Blarney Stone!

So what propsect does the NHK system hold out? Only a multiplicity of standards with the possibility of MAC being used here and straight or enhanced versions of PAL and SECAM being adopted elsewhere. It looks as though the hope that the coming of satellite TV might have brought a common international standard is rapidly fading, if ever there was any grounds for its existence.

Line and Frame Doubling

In order to reduce the conspicuousness of the line structure with large projection screens, it is possible to double the line number artificially by scanning the same line twice. This can be done with a minimum of modification to existing systems. As the same amount of information is transmitted it does not increase the vertical defini-
tion, but it does give a better subjective effect.
Some readers may remember the spot-wobble that was introduced with some 405 -line receivers. It gave a small vertical oscillation to the scanning spot and thereby filled in the gaps between lines. It wasn't wholly successful as the spot was lengthened as well as widened to form an ellipse. This reduced the horizontal definition, and the whole effect was that of being slightly out of focus. Most viewers switched it off. Line doubling has the same objective but would not impair horizontal resolution.

Another factor which may be considered for improvement is the flicker rate. Flicker is noticeable when the rate is low. This can be demonstrated with a cine projector having variable speeds. As the speed is reduced, so the flicker become more pronounced.

Although the frame rate is 25 per second, the flicker rate is 50 . This is because each frame is split into two fields which are interlaced; that is the lines of one fall in between those of the other. Thus lines $1,3,5,7$, and so on are scanned to be followed by lines $2,4,6,8$, to the bottom of the picture.

Under normal conditions the flicker rate of 50 is not noticeable, but on larger screens, large bright areas can produce flicker, especially if seen out of the corner of the eye. The American frame rate of 30 giving a flicker rate of 60 is better though only marginally so.

To increase the number of frames would entail an increase of bandwidth, but as with the line, the flicker rate could be doubled by scanning each field twice in the receiver. A similar method of reducing flicker is employed in cine projectors where the light is interrupted not only when each frame is pulled down but also once or twice when the frame is stationary in the gate.

ZX81 USER-DEFINED GRAPHICS

For our second example in the DIY guide to making your ZX81 a whole lot better, we present a project that gives 16 K RAM pack owners the facility for user-defined graphics. Design by G.N. Hill, MA Hons.

The restrictions imposed by the Sinclair defined character set can conśsiderably reduce impact of many programs and the attractions of having user-definable graphics are apparent. While several manufacturers supply modules to expand the character set, the cost of £20 plus must be a rather daunting prospect to the impecunious ' 81 owner.

It is possible, however, to obtain user-definable graphics on the 16 K ZX81 for a total expenditure of less than $£ 1$ and some clever work with a soldering iron! It must be said, however, that this is not a project for the fainthearted, involving as it does a certain amount of modification and soldering within the computer; it also renders the computer unusable without the RAM pack.

Principle of Operation

In normal operation the pattern of each character is defined by eight successive bytes in the ROM. Each byte represents the display for one of the eight lines of the character, and each binary bit one dot of that line: Fig. 1 clarifies the way that this works. As there are 64 characters, a total of $512(64 \times 8)$ bytes are required, and these are located at the top of the ROM from addresses 7680 to 8191 (1E00 to 1FFF in hexadecimal). An examination of these addresses reveals that the character generator is being addressed exclusively when lines A9 to A12 are high.

The additional circuit operates by detecting when these four lines are simultaneously high with the ROM chip select line, and instead of
allowing the ROM to be switched on, the internal 1 K RAM is activated (this is not normally used when the 16K RAM pack is attached). This can then be filled with characters of

0	124	66	66	124	68	66	0

Fig 1 Memory map of the character generator and the method character generation, illustrated by the letter ' R '.
the programmer's choice. The circuit diagram is given in Fig. 2.

Construction

The circuit is constructed on a PCB as shown. in Fig. 3. Use fairly thin (insulated) wire, preferably with colour coding, for the leads between the PCB and computer. The length of the leads will need to be adjusted carefully during connection to the computer PCB in order to keep the modification as neat as possible.

Installation And Computer Modifications

To open the computer remove all leads and accessories and then peel off the rubber pads on the underside of the computer, taking care to ensure that the adhesive film is removed with the pads. Now remove the five Phillips screws visible on the underside of the computer; note that these are of
different lengths and must not be mixed on re-assembly. The base of the computer can now be lifted away to reveal the computer printed circuit board held in place by a further two Phillips screws, which must also be removed. The board is still attached to the case through the ribbon connector and should be carefully folded over the keyboard when you want to turn it over, since the ribbon connector is not easy to disconnect or reconnect.

The positioning of the switch does need to be thought out fairly carefully in order to ensure that it does not foul anything. Providing the switch is not too big, it should fit through the top of the case. Just in front of the RAM pack, towards the centre of the computer offers the most room, but do make sure before drilling the hole that it will all go back together (including the RAM pack connection) without fouling. If you find the prospect of drilling holes in your beloved
computer a little daunting, the leads can be brought out through one of the existing holes (eg round the aerial socket) to a floating switch.

The addressing of the RAM and ROM chips is performed in a slightly different way by the computer and it is therefore necessary to disconnect the 10 address lines to the RAM chip(s), reconnecting nine of them to the ($\mathrm{A} 0^{\prime}$ to $A 8^{\prime}$) ROM chip address lines and the tenth to either an earth or a logic high. This cannot be done easily from the underside of the board, as the address tracks servicing the 1K RAM also service the 16 K RAM pack. The most straightforward (if somewhat inelegant) solution is to remove the RAMs from their sockets, to bend the relevant legs through 90° and then to replace the RAMs in their sockets, but with 10 of the pins sticking out at right angles. It is now necessary to solder the address leads to these legs and into the computer PCB - Figs. 4a, b, c and d give details.

Spot Your RAM

Before doing this, it will be necessary to decide whether your particular ZX81 is of the 2114 RAM or 4118 RAM type. The former consists of two separate chips as shown in Fig. 4a; the latter has only one and the position of this is shown as a dotted outline. Identify each of the address pin numbers from Fig. 4d and run a lead from this to the relevant computer PCB hole as shown in Fig. 4c. In the case of the 2114 type it is also necessary to run leads between the two ICs. If you find difficulty in soldering directly to the IC pins, it may help to have a very thin strip of Veroboard pushed over the pins and solder to this. The leads to the switch can now be soldered into place.

Figure 5 shows the nine connections to be made to the other side of the computer board; the letters for each connection correspond with those of Fig. 3. Resistor 'R28' is removed from the computer PCB and the ROM chip select input and output connections are made through the resulting holes as shown. Figure 5 also identifies the RAMCS' track, which must be (carefully!) cut through. The PCB fits under the keyboard by the side of the heat sink.

Testing And Reassembly

It is worth quickly testing the computer at this stage. First,

Fig. 2 Circuit diagram of the user-graphic modification.

HOW IT WORKS

The inputs of the quad NAND gate IC1a are connected to the four address lines A9 to A12. The output of this gate is inverted (using the NAND gate IC2b with its two inputs connected together) and used as one of the four inputs for IC1b. A second input is produced by inverting the ROMCS (ROM chip select) signal from the ULA using IC2a. The third input is provided by the switch, which in 'user' mode supplies a high and in 'normal' mode a low. The fourth input is held permanently high.

Thus, when the switch is in 'user' mode and the ROM and the character
generator are being addressed, all the inputs to IC1b will be high and the output will be low: in any other circumstances the output will be high. This, therefore, satisfies the condition required by the RAMCS' line to the internal 'user' RAM.

The output of IC2d provides the new ROM chip select line (ROMCS^{\prime}) by performing a logical NAND between the new RAMCS' output and the inverse of the ROMCS input from the ULA. Thus, when the user RAM is being selected, the output will always be high, and when the RAM is not being selected the output will copy the ROVCS input.

Fig. 3 Component overlay for the off board components. The letters correspond to Fig. 5.

PARTS LIST

however, check, check and check again that all the joints and connections are correct and that there are no solder bridges between tracks.

Place the RAM pack in position and connect the TV lead and power supply lead. With the switch in 'normal' mode the computer should operate quite normally. In 'user' mode a regular pattern should cover the screen (each space now calling up the same random character). The program given below can be entered in 'normal' mode and run in 'user' mode to ensure that the modification is functioning correctly:

10 SLOW
20 FOR $N=1$ TO 64
30 PRINT CHR\$ N;
40 NEXT N
50 FOR $N=7680$ TO 8191
60 POKE N, 255
70 NEXT N

When run in 'user' mode the screen should suddenly black out apart from the top two lines, which should then progressively fill one character position at a time from left to right, each individual character filling from top to bottom.

Reassembly of the computer is simply a reversal of the disassembly procedure. Ensure that no leads are trapped between the pillars and the board and that the correct screws are used; short ones at the front, long at the back.

Operation Of User Graphics

It is unlikely that you will want to redefine all 64 of the available characters and the most likely requirement will be to have four or five special characters amongst the existing ones. As it is not possible to display both the Sinclair graphics

b.

d.

Fig. 4 General view of the component side of the computer PCB,
with 2114 RAM type (4118 type shown dotted). Only six of the
10 new connections are shown (a). The RAM address pins are
bent outwards (b). Connections into the ZX81 PCB from the
RAM chip(s) are shown in (c), while (d) gives the address pin outs for the RAM.

Fig. 5 Connections to the underside of the •ZX81 PCB.' RAMCS' connections are shown for both the 2114 type (dotted) and. the 4118 type (solid) RAM ICs.
and the user graphics at the same time, the simplest solution is to copy the Sinclair graphic set into the user RAM, and then to select some little-
used primary characters (eg $\leq,>$, $£$, ?) and redefine them.

The exact way that this is done can vary, but my usual approach is to copy the Sinclair graphics into the user RAM at switch on. Listing 1 gives a short program (using machine code) to achieve this. When entering the REM statement (line 1) it must be entered exactly as listed. The outlines of the graphic characters have been added to clarify which symbols to use, and don't miss the three spaces in line I which require keying in. The keyword in line 1 is entered by first . typing THEN (shifted 3), followed by GOSUB and deleting THEN using the Edit functions, but leaving the GOSUB intact. As a quick check that the line has been entered correctly, PEEK 16526 should return 118 . The program borrows some of the unused computer RAM to temporarily store the 512 bytes read from the ROM and should not, therefore, be used as part of a larger program, otherwise this may be overwritten and corrupted. If this is a problem, the program can be written entirely in BASIC and listing 2 gives such a program.

Having thus copied the Sinclair graphics into the user RAM, each program can then amend the characters as required and preferably restore the original ones at termination.

Listing-1 Program to copy Sinclair character set into user RAM, using a machine code routine.

Listing 2 BASIC program to copy
Sinclair character set into user RAM.

BUYLINES

Absolutely nothing out of the ordinary in this project, and any of the mail order component suppliers advertising in this issue will be able to supply all the parts. The PCB Service order form is on page 83.

Listing 3 gives a program enabling up to 10 new characters to be defined with the aid of a visual display and the information stored in the REM statement of line 1. Only the primary characters (with their inverse) can be redefined and these are the first 64 characters of the list on page 181 of the Sinclair manual. When all the characters have been defined and
"FINISHED?" is answered with " Y ", the program deletes itself, excepting the REM statement. This can then be used as the first line of the main program and a call for USR 16514 will exchange the Sinclair characters with the new characters required; a further call of USR 16514 will exchange them back.

When entering the REM statement of listing 3, it is important to use noughts and to have exactly the right number (166). This can be checked by PEEKING 16680, which should return 118.

This program (ie listing 3) requires the machine code values given alongside it to be POKED into the REM statement. Listing 4 gives a suitable program for doing this and this should be entered and run immediately after entering the REM statement. All of this program (except the REM statement) may then be deleted and the rest of listing 3 entered.

If more than 10 characters need to be defined, it will be necessary to

ADDRESS 165144 16519 16584 16589 15534 15539 15544 16544 16549 1654.9 16554 1655 16564					$\begin{aligned} & 64 \\ & \frac{2}{23} \\ & \frac{23}{3}, \\ & 209 \\ & 209 \\ & 235 \\ & 10 \\ & 10 \\ & \frac{10}{24} \\ & 195 \end{aligned}$

Listing 3 Program for defining new characters and storing the information in the REM statement for later use (left): the values above are to be POKEd into the REM statement of line 1 using listing 4.

Listing 4 Program for POKEing machine code values into the REM statement of listing 3.

```
DSESSRRINT "UHAT IS THE START AD
S00 PRINT "UHAT IS THE START
    S15 CLS NT MT O,O;..INPUTTNEXT NO
    NNTOE..BE POKED
    S30 INPUT IF =9, THEN STOP
```



```
3e
    S50 POKELR,D
```



```
    Sge LETOR=A+1
```

add 10 further noughts to the REM statement for each extra character required; the final address (currently 16671) in line 320 will have to be increased by 10 for each extra character, as will the value held by the two bytes in addresses 16561 and 16562 (currently 16681). This latter value is held in the usual Z80 manner, ie. low byte first and high byte second. Having added on the required number of tens to 16681 , divide by 256 to give the high byte
(being the whole number part of the result) and multiply the remainder by 256 to give the low byte. For example, $16691 / 256=65.19922$. Now $0.19922 \times 256=51$, so we have to POKE 16561, 51 and POKE 16562, 65.

Because the graphics are completely unaffected by RUN, NEW, LOAD, and so on, it is also possible to enhance many of your existing games and programs by redefining specific characters used in the game before loading the program. Thus chess games using I, K, Q etc can have proper chess symbols, missiles can magically turn from As into Cruise look-alikes, and so on.

Further Hardware Modifications

While this project was conceived as a very low-cost entry into user-definable graphics, several modifications could be made to bring a greater degree of sophistication to their operation. The manual switching could be replaced by software switching, for example: if you have an input/output port, this can be done by using one of the output port lines as the switch input for IC1b.

Only half of the 1 K memory is used and the A10 address line from the RAM chip could be switched between high and low instead of being fixed to a high, thus allowing two pages of user graphics to be available. Again, this could be a software switch controlled by an input/output port.

The PCB before modification; this is a 4118 type (compare with fig. 4a).

Playthe AMBIT numbers game
 The long awaited implementation of on-line order processing is with us at last, and whilst this means that orders

 for in-stock items can now be processed more efficiently, it also means that orders should be submitted using stock codes for best results. Our current catalogue (70p) includes all order codes (watch out for the new expanded Spring edition), but here's an abstract from some. of the more popular lines to use as a quick reference.- Remember that you can also access our catalogue via REWSHOP on REWTEL, which now includes on-line current price and delivery information. You need a 300 baud MODEM and RS232 terminal, (various suitable configurations based on popular micros have been published in recent past issues of Radio and Electronics World).

Prices shown here exclude VAT, and the P\&P charge is currently 60pperorder(unless otherwise indicated).Remember that our tele sales service operates with human beings (not 'dumb' machines) from 8 am to 7 pm (and frequently later) Monday to Friday, and 9 am to 5 pm on Saturdays. REWSHOP operates 24 hours a day, 365 days a year with full price and delivery information.

Ambit International 200 North Service Road Brentwood, Essex
CM144SG

Now tear this out, and keep it for reference!

Cut out and SEND TO : daby 513, LONDON ROAD, THORNTON HEATH, SURREY, CR4 6AR ENGLAND.
Please send my free binder and commence my personal subscription to with the

SUBSCRIPTION RATES (tick \square as appropriate)

E13.15 for 12 issues UK
E16.95 for 12 issues overseas surface E36.95 for 12 issues Alr Mall

IWTERMATIOMAI

SPECIAL OFFER

I am enclosing $m y$ (delete as necessary)
Cheque/Postal Order/International Money Order for $£$
(made payable to ASP Ltd) OR
Debit my Access/Barclaycard
('delete as necessary)
Insert card no.
Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
Address \qquad

All you have to do to receive your FREE binder is book a new subscription or renew a subscription to Electronics Today International before 30th April 1983. What could be simpler?

Signature \qquad
\qquad

LASER DIODES

The subatomic goings-on at a p-n semiconductor junction can, in some materials, generate pulses of laser light. Peter Gatehouse explains how, and it'll disappoint anyone hoping to make a death-ray with a handful of 1 N 4148 s .

Since the first lasers were born on the laboratory bench in 1960, when ruby and helium-neon devices were first set up, a vast spectrum (pun intended) of lasers has gradually been uncovered (or stumbled upon). There are now thousands of known laser lines; some materials can emit many different lines according to the energy levels between which laser action can occur. However, very few of these are convenient for use outside the laboratory as many require temperatures far below $0^{\circ} \mathrm{C}$ or use very exotic and troublesome materials.

The ruby laser is not obsolete, and some manufacturers are clearing their stock of these at reduced prices of several thousand pounds. It is an example of the solid-state laser, which, as its name suggests, has a solid laser material. A modern type is the neodyium laser which is a powerful and robust device and probably the most common solid-state laser, usually giving an infra-red output at 1060 nm at up to a few hundred watts power.

It's A Gas

There is no doubt that gas lasers are the most widely used. This is perhaps surprising as a gas is hardly as convenient to deal with as a solid, but gases have several endearing qualities: (usually) completely even distribution throughout a container; the ability to flow so the laser medium can be circulated to assist cooling; and they are far easier to prepare as a laser medium than solids, because for the latter highly pure and perfect crystals often need to be 'grown' and then cut and polished, which is expensive. Gas lasers fall into one of three groups, depending on what gives rise to the energy levels necessary to laser action. Energy levels of neutral atoms are used in one type, those of ions (atoms that have lost or gained one or more electrons) in another and the third employs the modes of vibration of molecules.

The output from a gas laser is of high quality and sometimes the efficiency (power output in the laser beam divided by the power fed in) is as high as 20% but usually only a fraction of a per cent is obtained (which is typical of lasers in general). Helium-neon gas lasers are in the first group: in the mixture of gases, helium is excited first, then transfers its energy to the neon which releases it in laser emission. Helium-neon lasers are sold by some electronics companies and you will find them in many school physics labs. They yield a high-quality continuous red beam which is difficult to use without producing the interference effects you can spend hours trying to discern with other sources of coherent light. At a cost of around $£ 100-£ 200$ (with a power supply) this is the only type of laser within reach of the (wealthy) amateur.

The Ion Age

The second group, ion lasers, will be found in any university physics lab, as they offer many different output

A typical infra-red emitting laser diode. The light is emitted through the clear window in the end.
frequencies. These are selected by placing a prism in the laser cavity which sends different frequencies in different directions and putting the end mirror of the cavity in the path of the desired frequency. Ion lasers also yield far more power than the first group (which can provide only milliwatts), giving many watts continuous output. Typical ion lasers are the argon and krypton lasers which between them can lase at various lines from 437 to 799 nm .

The third group, molecular vibration mode lasers, includes the carbon dioxide $\left(\mathrm{CO}_{2}\right)$ laser which is an extremely powerful and efficient device that yields infra-red lines near the 10600 nm 'atmospheric window' (ie the atmosphere does not absorb it, unlike most infra-red wavelengths). In continuous operation it can yield several kilowatts. Military scientists have shown much interest in this device and the Americans have recently built one into a large jet aircraft. The CO_{2} laser may one day fairly soon bear the dubious honour of being the first weapon fired in space; on earth, it has less potential as a weapon, because, although the beam is not absorbed, it is spread and rendered ineffectual by the atmosphere.

Other devices include the dye laser which makes use of molecular energy levels. Electrons in many complex organic chemicals can orbit not just a single atom but an entire molecule or part of a molecule, and can absorb or emit - light by shifting between different orbits of different energies; the bright colours of dyes occur as only certain wavelengths correspond to the energy differences by Planck's relation.. The lasing material, the dye, is in solution in water or an alcohol and usually has to be excited by another laser. Because of the useful property of being tunable to any wavelength in broad bands of the
spectrum, dye lasers are becoming very popular in laboratories. Some chemical reactions release so much energy that laser action is possible with no external power supply; the reaction of hydrogen and fluorine is an example, though special conditions are required to achieve population inversion (more atoms in the excited state than the stable one and thus great potential for emission of photons).

Diode Lasers

These devices, which are basically p-n junctions
(semiconductor diodes), have been around since 1962, when lasing took place in a GaAs p-n junction whose ends had been polished to form a cavity and which had an enormous current passed through it. The laser diode uses very heavily doped extrinsic semiconductors.(Fig. 1). The energy diagram shows the valence band and conduction band separated by an energy gap called the band gap. The gap is too large to allow electrons to gain kinetic energy (ie move) as there are no unfilled energy levels energetically near enough to those containing the electrons; yet it is small enough for an electron which receives enough energy to ocupy an energy level in the conduction band where it is free to move. Here we have an energy gap which an electron can cross if it receives a large enough kick in the form of thermal vibrations in the crystal lattice - or by a photon with an energy sufficient to supply the band-gap energy to the electron.

In the p-region of the diode, an impurity which has energy levels (without any electrons in them) just above the valence band has been diffused into the semiconductor. Electrons in the valence band are easily excited by even weak thermal vibration and acquire more energy ie move up into the level marked ' a ' for acceptor. This leaves holes in the valence band, so forming a p-type semiconductor in which the holes move under the influence of an electric field (conduction). Similarly, in the n-region an impurity whose occupied energy levels are marginally below the conduction band can donate electrons into the conduction band where they are free to acquire kinetic energy as before.

Thus, in the n-region of this heavily-doped crystal of a semiconductor there are many electrons in the conduction band, and in the p-region many holes. Now apply a voltage as marked; holes 'enter' the lattice at A (actually, electrons leave the lattice at A which amounts to precisely the same thing), and electrons enter at K , as holes and

Fig. 1 Schematic of energy levels and occupancy across a p•n' junction.

Fig. 2 Typical injection laser diode structure.
electrons move into the junction region. These electrons and holes are injected into the same physical space in the lattice, the junction between the p -region and the n -region (giving rise to the name injection laser) with the electrons all having virtually the same amount of energy more than the holes. The excitation of electrons by photons (mentioned before) is reversed as free electrons 'fall' into the holes in mutual annihilation; the electron is no longer active in the conduction band and there is one less hole acive in the valence bends - they are replaced as described above. In moving from the conduction band to the valence band, each electron releases the bandgap energy as a photon. Light is emitted from the junction region: all of it has exactly the same wavelength.

This diode is nothing more than an LED! To obtain laser action, population inversion must be achieved. That is, there must be more electrons in the conduction band ready to drop down to the valence band than there are in the valence band able to be promoted to the conduction band. In an LED, conduction band electrons decay spontaneously to the valence band. The photon emitted can do two things that are of interest to us: it can stimulate the emission of another photon of exactly the same frequency and, what's more, in phase with the first, provided it encounters another electron in the valence band at the right moment; or it can be absorbed, and in doing so promote another electron to the conduction band. The first of these processes iswhat gives rise to laser action; the second is what prevents it from occurring, and the way that this is avoided is by creating a population inversion, so that the first is more likely than the second.

In a laser, stimulated emission gives rise to the coherent light output; to turn the LED into a laser diode you need an enormous rate of injection of electrons so that there are plenty of them available for stimulated emission; this takes a very large current. When the current through a laser diode is increased, stimulated emission takes over and laser action takes place as a few photons give rise to an entire output of the same frequency and phase. The cavity is needed to reflect at least some photons back into the junction region so that the avalance is CONTINUOUS. Unless the diode gets too hot, this emission can continue for as long as you apply a current.

The acronym laser stands for Light Amplification by the Stimulated Emission of Radiation: the avalanche is precipitated by perhaps a single photon and the frequency and phase of that photon are (ideally) reproduced in the output of many millions of photons. This process is more familiar under the name amplification!

The Real Laser Diode

These do exist; please don't try to turn any LEDs info laser diodes (as I once did). RCA manufacture a range of infra-red laser diodes which are available in this country (the photograph shows one of this range). I have yet to find any ,manufacturer of visible-light laser diodes, though these have been set up in laboratories. Most laser diodes have to be operated in pulses of less than 1% duty factor; the 'large' current mentioned before to obtain laser action, called the threshold current, is responsible for this as it causes immense heating. A typical device needs a current of 36 A to lase, emitting at a rate of 20 W during a pulse. That is a respectable power for a laser, but this only occurs during the pulses. The duty cycle reduces the effective output, for this device, to a few milliwatts. So, at present, laser diodes are somewhat disappointing - an invisible output which may be useful for remote-control applications (as sensors could hardly miss such enormous flashes), or for fiber-optics.

The p-n junction is only a few millimeters square and the junction is a few thousandths of an inch thick. At present, the output is not collimated, ie it isn't a beam of low divergence, and spreads out rapidly (divergence angles approach 20 degrees). The efficiency of laser diodes is good (for lasers) at around 10% and is improved by adding layers which channel the photons into the junction area, as they tend to move out into regions where population inversion has not occurred; these are called heterostructure diodes. Continuous operation at high power has been obtained at low temperatures (meaning in liquid nitrogen), and at low power \{again in the infra-red) at room temperature in double heterostructure diodes at around 5 mW - no better
than the helium-neon laser. As demand is still low, these. still cost about $£ 100$. Pulse-operated devices cost about. $£ 20$ - but you need many hundreds of volts of power sup- ply to drive that sort of current through! The low power and high divergence of the beam make the output harmless except at close range when the eye can be damaged as with all lasers.

The Future

Industry is slowly picking up on the laser diode, and this should speed the availability and flow of new devices. The laser diode is a favourite for fibre optics; the pressure is on to develop reliable continuous operation cheaply as it is really very easy to modulate laser diode output. Visible devices will occur soon with any luck, and in the distant future we may see the exotic devices such as frequency doubling crystals, electrooptic switches, beam deflection systems which are solidstate etc, all of which would doubtless find many applications outside the laboratories and military research centres - just as the laser itself did.

Data on laser diodes and many other electrooptic devices can be obtained from Norbain Electro Optics Ltd, Emitter and Sensors Division, Norbain House, Arkwright Road, Reading, Berks RG2 OLT. Anyone interested in lasers might find 'Lasers and their applications' by M. J. Beesley (published by Taylor \& Francis Ltd) interesting. We would like to thank RCA Ltd for their kind permission to reproduce Fig. 2.

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS

1983 CATALOGUE NOW AVAILABLE
 SEND LARGE SAE + 75p TO ADDRESS BELOW

CRIMSON ELEKTRIK

PROFESSIONAL AMPLIFIER MODULES NOW AVAILABLE OVER THE COUNTER!

HIGH PRECISION STOPWATCH DIGITAL THERMOMETER INFRA RED DETECTION SYSTEM ELECTRIC DRILL SPEED CONTROL

NEW TELETEXT KIT NOW AVAILABLE WITH PRESTEL ADAPTER (OPTIONAL EXTRA) BASIC KIT $\mathbf{f 1 2 0}$

PRODUCTS ABOVE AS FEATURED IN RECENT ELECTRONIC EXHIBITIONS

COMPUTER CHIPS NOW AVAILABLE Z80A CPU £3.20 2732 300NS $\mathbf{£ 7 . 5 0}$ Z80A CTC . $£ 3.20$

2764 300NS. £11.00 Z80A P10. £3.20
PRICES EXCLUSIVE OF VAT

OFFICIAL TEXAS INSTRUMENT SUPPLIER

NEW AND FREE FROM GSC.

NEW an exciting range of projects to build on the EXP300 breadboards.
NOW anybody can build electronic projects using "Electronics-by-numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD KIND
You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.
HOW DO YOU MAKE IT.
Our FREE project gives you clear "step-bystep" instructions. For example "take Resistor No. 1 and plug it into hole numbers B45 and B47".
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC goes into F35)"
"Take. . ."Well! why not "clip-the-coupon" and get your FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and.

EXPERIMENTOR BREADBOARDS

The largest range of breadboards from GSC
Each hole is identified by a letter/number system
EACH NICKE : SILVER CONTACT CARRIES A LIFE TIME GUARANTEE
Ali modular construction means that any Experimentor breadboard can be 'snap locked' together to build
breadboards of any size

The 'one chip' breadboard Takes 8, 14, 16 and up to 22 pin IC's Has 130 contact points including 2 bus

EXP350 The 'beginners breadboard' you can have FREE 12 Electronics by Numbers' PROJECTS

EXP300

The most 'widely bought' breadboard
Don't miss out on our 'NEW AND FREE' projects They cas be built on the EXP300

EXP600
The Hobbyist microprocessor' board
EXP650
The 'one chip microprocessor' board
EXP4B
Snaps on four extra bus bars
PB6
The ultimate breadboard kit
PB100
The most kit for the least money

NEW AND FREE FROM G.S.C. 24 HOUR SERVICE.
Tel (0799) 21682 with your Access. American Express, Barclaycard number and your order will be put in the post immediately
TO OROFR MIST CI IP THF COIIPON

global specialties corporation

GSC Unit 1, Shire Hill ind Estate Telephone (0799) 21682 Telex 81747

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

GOMPUMHR WARH:0UST

THE 'ALADDIN'S' CAVE OF COMPUTER ARD ELECTRONIC EQUIPMENTI

HARD DISK DRIVES

disk drive for DEC AKO5. NOVA TEXAS
Front toad $£ 550.00$ - 0 lopad $£ 295.00$ PSU type ME3029 for 2 drives $£ 125.00$
£995.00. Call sales office for details.

5 AMP MAIIS FILTERS

Cure those unnerving hang ups and data glitches amp 240 v load. As recommended by the ZX81 newsamp 240 v load. As recommended by the
letter. Suppression Devices SD5A £5.95.

DISIMET ©

The UKS FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive.
DON'T MISS THOSE BARGAINS
CALL NOW, IT'S FREE! $01-6831133$ makerzing

Coomy FANS

Miniature 240 v equipment fan complete with finger guard E9.95.
GOULB JB-3AR Dim. $3^{\prime \prime} \times 3^{\prime \prime} \times 2.5^{\prime \prime}$ compact
very quiet running 240 v operation. NEW £6.95 very quiet running 240 v operation. NE
BUHLER 69.11.22. 8-16 v DC micro miniature reversible fan. Uses a brushles servo motor for extremely high air flow,
almost silent running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost $£ 32.00$. OUR PRICE ONLY E12.95 complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$
fan supplied tested EX EQUIPMENT $240{ }^{\prime \prime} \mathrm{v}$ at fan supplied tested EX EQUIPMENT 240 v at
$£ 6.25$ or 110 v at $£ 4.95$ or BRAND NEW 240 v at $£ 10.50$. 1000's of other fans Ex Stock
 formats giving a massive 08 MB
 manual and full 90 day warranty. Carriage and insurance $£ 9.75$.
$\mathbf{7 1 0 0}$ Single sided $£ 225.00$ + Carr. $\mathbf{7 2 0 0}$ Double sided $£ \mathbf{2 9 5 . 0 0}+$ Carr. Optional accessories: Full technical manual $£ 20.00$ alone. $£ 10.50$ with drive. Refund way IDC connector $£ 5.50 .50$ way ribbon cable $£ 3.20$ per metre.

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. BRANDNEW AT ONLYE499+VAT

Made to the very highest
spea the TEC Starwriter spec the TEC Starwitter
FP1500-25 features a FP1
heavy duty die cast chassis and DIABLO type
print mechanism giving print mechanism giving superb registration
print quality. Micro print quality. Micro
processor electronics
offer full DIABLE/QUME
compatibility plus compatibility plus Bi directional printing, 10 or 12 pitch, 136
or 163 chars per line, full width 381 mm or 163 chars per line, full widt 381 mm friction or single sheet paper, - order now or call sales office for more information and print sample. Please specify RS232 or CENTRONICS interface. Optional extras: RS232 data cable $\mathbf{£ 1 0} 0$.00 eptional extras: RS232 data cable £10.
£12.50. - Tractor feed option $\mathbf{£ 1 2 0 . 0 0}$

BECHARGEABLE BATIERIES

 CYCLON type D001 sealed lead acidmaintenance free $2 v 2.5$ ah. will deliver over maintenance free 2 v 2.5 ah. Will deliver over
300 amps on short circuit! Brand new at only $\mathrm{E2} .95$

SAFT VR2C size 'C' 1.2 v 2 ah.
cadmium E1.50 each 10 for $\boldsymbol{E l} 1.50$

DATA MODFMS

Join the communications revolution with our
range of EX TELECOM data modems. Made to most stringent spec and designed to operate for 24 hrs per day. Units are made to the CCITT tone spec. With RS232 i/o levels via a 25 way 'D' skt. Units are sold in a tested and working condition with data. Permission may be requird MODEM 13A compact, async, same size as telephone base. Up to 300 baud, full duplex OODEM 2B/C Fully floded up to 300 MODEM 2B/C Fully fledged, up to 300 baud auto switching ideal networks etc. Just 2 wire auto switching, ideal networks etc.
MODEM 20-1 Compact unit for use with PRESTEL or full duplex 2 wire link 75 baud
transmit - 1200 baud receive. Auto answer. ع130.00
MODEM 20-2 same as $20-1$ but 75 baud recelve 1200 baud transmit. £130.00 MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circuit or half duplex mode over 2 wires $£ 130.00$ hair duplex mode $50.2 \mathrm{~B} / \mathrm{C} \& 20 £ 9.50$.
Carriage $13 \mathrm{~A} £ 4.50$.
For more details contact sales office.

TEHETYYPASBE5Y 1/0 THRMITIATS Fully fledged industry standard ASRB3 data terminal. Many features including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for
off line data preparation and ridiculously off line data preparation and ridiculously sgood condition and in working order Options: Floor stand $\mathbf{f 1 2 . 5 0}+\mathrm{VAT}$ KSR33 with 20 ma loop interface 125.00 + Sound proof enclosure $\mathbf{£ 2 5 . 0 0}+$ VAT

SOFTY 2

The amazing SOFTY 2. The complete "toolkit" for the open heart software surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS
of the 2516,2532 variety. Many otherfeatures of the 2516,2532 variety. Manyotherfeatures
include keyboard, UHF modulator. Cassette include keyboard, UHF modulator. Cassette
interface etc. Functions exceed capabilities of interface etc. Functions exceed capabilities of
units costing 7 times the pricel Only units costing7 times the price! Only
$\mathbf{E 1 6 9 . 0 0} \mathrm{pp} £ 1.95$ Data sheet on request

SUPPLY SPECLALS

Experimentors PSUEx-GPO unit all silicon electronics. Outputs give $+5 \mathrm{v} @ 2$ amps. $+12 \mathrm{v} @ 800 \mathrm{ma} .-12 \mathrm{v} @ 800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma} .5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim $160 \times 120 \times$ 350 mm . All outputs fully regulated and short circuit proof. Removed from working
equipment, but untested. Complete with circuit. Transformer guaranteed. Only E14.50 + 22.50 pp .
CUSTOM POWERCO55 5 v @ 3 amp. Very compact unit dim. approx $60 \times 90 \times 190 \mathrm{~mm}$. Semi open chassis, full crowbar overvoltage protection. Tested Ex Equipment. ElI.95 + pp £1.25
MINI SYSTEM PSU Ex equipment unit ideal for the small micro. Outputs give $5 \mathrm{v} @$
3 amps. $+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only $\mathbf{£ 1 2 . 9 5}$ + £2.00 pp.
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give 5 V @ 11 amps, +1 and regulated. Fan cooled Supplied tested, with circuit $555.00+£ 8.50$ carr.
MAIN FRAME SUPPLY.
MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ $50 \mathrm{amps}+12 \mathrm{v} @ 5 \mathrm{amps}-12 \mathrm{v} @ 10 \mathrm{amps}$. All output are fully and tested Ex-Equip. 110 v AC input Only $\mathbf{E 9 9 . 9 5}+\mathrm{carr}$ ع10.50.

66\% DISCOUNT

ELECTRONIC COMPONENTS

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s, Transistors, Relays, Cap's. P.C.B.'s,
Sub-assemblies, Switches, etc. etc. suriplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always ude something from our ads. for unbeatable value! Sold by weight
2.5klsE4.25 + pp £1.25

5kls $85.90+$ pp $£ 1.80$
10kls£10.25 + pp £2.25 20kls£17.50 + pp £4.75

ATL PRIGHS PLUS VAT

video mONITORS

MOTOROLA 9" open chassis monitor Standard 240 V AC with composite 75 ohm video input, bandwidth in excess of 18 mhz Monitors are ex equipment and although Unguaranteed they are all tested prior to creens. Dim approx $9^{n} \times 9^{\prime \prime} \times 9^{n}$. Supplied complete with mains and input lead. Tdea ZX81 etc or giving the tele back to the
family!! Black and white phosphor. $£ 35.00$ + + 9.00 Carr.
12" CASED. Made by the British KGM Co. Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case w controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as internal transformer isolated regulated DC supply, all components mounted on two ibre glass PCB boards - which hinge out for ease of service, many internal controls for 75 ohm composite video signal via SO239 socket on rear panel Bandwidth of the unit is estimated around 20 Mhz and will display nost high def graphics and 132×24 lines. Units are secondhand and may have screen burns. However where burns exist they are only apparent when mon lor is swiched of asted prior to ested $14^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide by $11^{\prime \prime}$ dee approx 14 high $\times 14$ wide by 11 " deep. operation. OWLY $£ 45.00$ PLUS $£ 9.50$ CARR. 14 " COLOUR superb chassis monitor mad by a subsidiary of the HITACHICO. Inputs plug direct into the BBCC micro etc definition. Brand new and guaranteed. Complete with full data \& circuit 240 v AC

SEMICONDUCTOR

 'GRAB BAGS'Mixed Semis amazing value contents include transistors, digital, linear, L.C.'s triacs diodes, bridge recs., etc. etc. All devices guaranteed brand new full spec. with manu facturer's markings, fully guaranteed, $50+£ 2.95100+\ldots 5.15$.
TTL 74 Series A gigantic purchase of an "across the board" range of 74 TTL series C.'s enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which two or three chips in the bag would nnormally spec. $100+$ £6.90 $200+£ 12.30200+$ \& 19.50
OLIVETMI TTHOO

Complete input output terminal with integral 8 hole paper tape punch and reader. Unit operates at 150 baud in standard ASCII. Idee as a cheap printer for a MICRO etc. 120 with data, untested, unguaranteed $\mathbf{\Sigma C} 5.00$ Allpricesquotedarefor U.K Mainland paid cash with order in Pounds Stiring PLUSVAT. Minimumordervalueef.00, Minimum Credit Card order \mathbf{E} O.00. Minimum BONA FIDE account orders from Government depts, Schools, Universities and established companies E20.00 Where post and packing not indicated please ADD 60p + VAT Warehouse open Mor-Fri 9.30-5.30. Sat. 10.15-5.30

64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey
$01-6897702-01-6896800$ Telex 27924

In this month's trip through the Victory organ circuitry, we look at the lower keyboard and the filtering and envelope arrangements for the preset voices. Design by Richard Watts.

Before we start to talk about this month's circuitry, there are a few things to mention about last month's diagrams. For a start, some of the lettering dropped off Fig. 1 somewhere between the drawing board and the printers, so: the unmarked diodes by IC2a and IC2b are D4 and D5, while those by IC5c and IC5d are D11 and D12. The terminal marked PEDAL TRIGGER should also be labelled C5 and that marked MANUAL TRIGGER should also be labelled C7. C here denotes the switchbank controlling the automatic functions of the organ. The junction just below D7 should have a dot, ie it is a junction and not a crossing point.

In Fig. 2, pins 5 and 6 of IC9a should be linked together. In Fig. 3, the op-amp marked IC10 is actually IC10a, the other half appearing this month. Also, the label 'TO RHYTHM CIRCUIT' on IC12a pin 5 should be 'TO R127/128' (on Fig. 2 this month).

Finally, the number of letters and phone calls we've had in the last couple of weeks prove how popular this project is - what a shame we forgot to include a 'Buylines' last month! That's been rectified this time round. So, get out last month's ETI - you'll need to refer to some of the circuits - and off we go with some more of How It Works.

The Lower Keyboard

The lower keyboard or manual uses an M108 IC (IC14), which operates in exactly the same way as the M208 but has one fundamental difference. Both ICs have the facility to operate as either a single 61-note keyboard or as a split keyboard, with the lower section able to perform the single finger chord function, amongst others. It is the size of this lower section that differs between the ICs. The M208 has a 17 key lower section and the M108 a 24 key lower section. The use of these ICs in their specific locations in the Victory organ is necessary to fulfil the total specification of the instrument.

Lower keyboard scanning is as for the upper keyboard except that the data input lines B1 to B5 are used. The circuitry comprising IC13, IC6e and Q5 which sits between the M 108 B line inputs and the B line connections from
the keyboard is used to enable the keyboard data information to be transferred to alternative B inputs on the M108, and is necessary under certain switch settings to maintain constant pitch outputs from the lower keyboard.

In normal operation the audio outputs are taken from pin 17 through R98 to amplifier IC16a, from where they are taken to the passive filter network R129, R130, C51 and C52. This filter produces the lower keyboard melodia voice. The audio is also taken via R137 to the VCA IC19 which is used for the rhythm guitar voice. Control current for this IC is supplied from Q4 and C54 via R142. Q5 base receives negative-going pulses via C55 from the rhythm memory IC pin 8 (see next month). The decay rate of C54 and thus the length of decay on the rhythm guitar voice can be reduced on application of a low signal to the cathode of D37. This effectively discharges C54 through R145 and D37. This low signal is also provided by the rhythm memory IC. Without this low on D37 cathode, the discharge path for C54 is through R142 and the 3080 E itself. The rhythm guitar voice is therefore not available without the rhythm unit on.

Switching of the lower keyboard voices is as for the upper voices and mixing is accomplished in IC16b. The output from the mixer is fed via R134, which is shorted out if Lower Manual Accent is selected, to R127 and the main mixer/amplifier.

Single finger chord is available on the lower keyboard and, when selected, outputs a complete four-note chord plus bass note when only one key is depressed. The four notes of the chord are output from pins 3-6 of IC14. The SFC selection takes point C1 high which turns on all the switch sections of IC15, thus connecting these outputs through to the voicing circuits. Point C1 also connects through D33 to pin 12 of IC7d which enables F7 via D16 to B6. This performs the keyboard split mentioned earlier and enables the lower section for its special functions.

The positive voltage at point C 1 is also connected to pin 5 of IC2d, thus connecting F6 via D31 to B6. This gives the SFC instruction to IC14 and causes the chord contents to be output
to pins 3-6. The root note of the chord is available at pin 6 , the third note at pin 5 , the fifth at pin 4 and an octave to the root note at pin 3 (unless the 'seventh' feature is selected, in which case pin 3 outputs the 7th note).

Lower Manual Memory

Lower manual memory is also available by removing 0 V from point C3. This enables IC2c which connects F4 and F5 to B6 via D21 and D22 respectively. $\overline{\mathrm{F} 4}$ latches the outputs of the upper section of the lower keyboard while F5 latches the outputs of the lower section of the lower keyboard. The bass note is latched at pin 7. If SFC and lower manual memory are both selected, bass audio is automatically selected to come from the lower keyboard since point C 2 is disconnected from +12 V by the SFC switch. The bass trigger input point C 6 must be connected to point C7 by selecting bass from the lower keyboard on the changeover switch. Since lower keyboard memory is being used and therefore keys are being played and then released, utilisation of the KPA signal from IC14 cannot be used to trigger the bass, otherwise it would be heard only when the key is held, and leaving the chord output less a bass note when the key is released. To overcome this, another output signal from the M108 is used.

This signal is called NPA and goes low whenever a memorised note is present in the accompaniment section ie the lower section of the keyboard when it is split. This low voltage is inverted by IC5c which is enabled by the state of point C10. The positive output from IC5c is passed via D11 to the bass trigger circuitry. This ensures that a memorised chord always has bass accompaniment.

If the SFC is de-selected while a chord is being memorised, the change at point C 1 from +12 V to 0 V is coupled through C40 and D25 to pin 13 of IC2c. This momentarily disconnects F4 and F5 from B6, disabling the output latches and stopping the chord and bass outputs. If a note is now played on the lower keyboard it will be latched at the output pin 17. Up to four notes played simultaneously can be latched. The TDS output from the M108 is connected via

Fig. 1 Circuit diagram of the lower keyboard circuitry. The output from ICI 6a pin 7 passes to the circuit on the next page.

D17 to pin 13 of IC2c (the latch enable) to ensure that any previously latched note or notes are cancelled when the next is played.

A bass note corresponding to the leftmost or only note played will be output on pin 7. The enable for the split keyboard mode (connecting F7 to B6) to pin 12 of IC7d is supplied, when the SFC is off, by virtue of the fact that point C4 is high (bass from lower keyboard) and point C1 is low (SFC is off). This gives the AND gate IC9d highs on both pins 1 and 2, giving a high at pin 3. This is connected via D32 to pin 12 of IC7d.

Back now to the situation with both SFC and lower keyboard memory
on. The chord can be modified to a minor (flattened third) or a seventh by use of the pedals which are disabled from their normal function by the SFC switch. Playing any black pedal (ie sharps and flats) causes +12 V to be connected through the second pole of the pedal switch via D19 to pin 13 of IC9b. Since the other input (pin 12) of this gate is held high by R85, the output pin 11. will go high, thus connecting F3 via D23 and IC8b to B6. This tells IC14 to change the chord being output to a minor. Since the output of the AND gate is connected back to its input by R83, the minor function remains latched on until another key is pressed to change the
chord, or the same key is pressed again. This causes the M108 to output a KPA pulse which is coupled through C39 to the AND gate input pin 12. This momentary low disables the AND gate and causes the newly played chord to be played as normal. Operation of the 7th modification to the chord is achieved by playing any brown pedal (naturals). The switching arrangement is the same as for minor except that $\bar{F} 2$ gets connected to B6.

Preset Voices

These voices (the piano, harpsichord, Hawaiian guitar, banjo and accordion) all use IC18, another 3080E operational transconductance amplifier

Fig. 2 The preset voicing circuitry. The rhythm volume plug allows the connection of a 25 k logarithmic off-board potentiometer.

Fig. 3 The wiring for the preset voice switch bank.

Fig. 4 The wiring for the automatic function switch bank.
configured as a VCA. The audio input is applied to the point A1 and the control envelope to the point A3. These points connect, through an edge connector, to the preset voice switch bank. As can be seen from Fig. 3, the selection of piano, harpsichord and Hawaiian guitar each connects an independent audio input to A1. The banjo and accordion select the same voice but considerably different envelopes.

The piano voice which connects to point A2 is actually a tap off the trombone voice via RS1. The amplitude envelope on A4 is also utilised by the harpsichord preset and operates as follows. When a key is depressed, the M208 (IC1), outputs a signal called (trigger decay solo) which, in common with KPS is active low, but unlike RPS does not remain low .for the duration that the key is held. It is a pulse output of approximately 9 ms which is developed internally by the M208 and is output whenever a key is depressed, even if a previously depressed key is still held down. TDS is inverted by Q10 and applied to follower Q11 whose emitter connects to C56. It is the charge and discharge rate of C56 which determines the piano and harpsichord amplitude envelope.

PROJECT

Fig. 5 (Top) The circuitry to produce the piano/harpsichord envelope and the banjo repeat.
(Middle left) The circuit for the Hawaiian guitar envelope. (Middle right) The accordion envelope circuit.
(Bottom left) Filter for the harpsichord voice. (Bottom right) Filter for the banjo and accordion voice.

Two decay rates are possible: one if a key is played and held and a second, shorter, delay if a key is played and released quickly, as is the case when playing a real piano or harpsichord. First, if a key is played and held, C56 is charged very quickly through Q11, resulting in a fast (percussive) attack. After about 9 mS the TDS signal returns to its normal state and no more current is supplied to C56, which starts to discharge. Since the key is still held down, the KPS signal is still present and so the collector of Q4 is high. This reverse biases D38 so the only discharge path for C56 is through R124 and IC18. This results in a long decay.

If a key is played and then released, the same attack is apparent but since KPS is no longer present, Q4 returns to its saturated state, thus providing a discharge path for C56 through D38, R148 and Q4. This gives a short decay.

The harpsichord voice is developed by mixing 8^{\prime} and 4' square wave signals via R161 and R162, then filtering this mixture with C62 and R163. This audio signal is then connected to the harpsichord switch through point A5.

The Hawaiian guitar voice at point A6 is another 'tap off', this time via R50 from the clarinet voice. The
amplitude envelope on point $A 7$ is similar in operation to the piano/harpsichord envelope except that there is only one decay rate and KPS is used as the trigger. KPS is supplied to an inverter, Q12, and via Q13 to C60, resulting in the same fast attack: however, since R57 is connected across C60 this will be its discharge path, giving a long decay but only when all the keys are released.

The banjo and accordion voice is developed from the 16' staircase (IC3b pin 1) through the filter network C63, R164 and R165, and is available at point A8. The banjo is a repeating voice, ie when a key is depressed and held, the audio is alternately passed and blocked by the VCA (IC18) at about 11 Hz . This technique is widely used on organs to give the effect of plucking or strumming the instrument. The repeat oscillator comprises a 555 (IC20) and its associated components. It is configured here as a gated astable multivibrator which will give square wave pulses at pin 3 whenever pin 4 is taken high. D39 is included to give a very short pulse (about a $1: 5$ mark/space ratio). Since pin 4 is connected to Q4 collector, output pulses are produced whenever a KPS signal is present. The components between IC20 pin 3 and point A9 act as attack and

Fig. 6 Waveforms associated with the preset voicing circuitry, as described in the text below.
decay shapers for the output square waves and produce an exponential control voltage.

In Accordion

The accordion amplitude envelope requires a slow attack and, when the key or keys are released, a fast decay. This envelope is available from point A10 and is developed by KPS causing Q4 to shut off. This allows C61 to charge through R159 and D41, resulting in the slow attack. Once charged, C61 is able to remain charged so long as the key is held down (ie KPS is present) and therefore the voice remains audible. Once all the keys are released and KPS is removed, Q14 returns to its saturated state and provides a rapid discharge path for C61 via R 160 and D42. The output from the preset VCA (IC18) is fed via R 126 to the output mixer/amplifier IC12a.

BUYLINES

The response to this project has been amazing! Unfortunately, the prices for all the various options haven't been finalised as we go to press, so interested parties should contact the designers: that's Leighton Electronic Services, 17 Bridge Street, Leighton Buzzard, Bedfordshire LU7 7 AH (telephone 0525 382504).

SinclairZX Spectrum

16Kor48KRAM.. full-size movingkey keyboard.. colourandsound.. high-resolution graphics... From only $\ddagger 125$!

First, there was the world-beating Sinclair ZX80. The first personal computer for under £100.

Then, the $\mathrm{ZX81}$. With up to 16 K RAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the 2×81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The $Z \times$ Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASICROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard- all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set-with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers $Z \times$ Spectrum owners the full ASCll character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spertrum, are set to change the face of personal computing by providing mass on-line storage. Each Microdrive can hold up to 100 K bytes using a single interchangeable storage medium.

The transfer rate is 16 K bytes per second, with an average access time of 3.5 seconds. And you'll be able to connect up to 8 Microdrives to your Spectrum! via the ZX Expansion Module.

A remarkable breakthrough at a remarkable price. The Microdrives will be available in the early part of 1983 for around £50.

ZX Spectrum software on cassettes -available now

The Spectrum software library is growing every day. Subjects include games, education, and business/ household management. Flight Simulation...Chess ...Planetoids.. History...Inventions ...VU-CALC...VU-3D ...Club Record Controller...there is something for everyone. And they all make full use of the Spectrum's colour, sound, and graphics capabilities. You'll receive a detailed catalogue with your Spectrum.

ZX Expansion Module

This module incorporates the three functions of Microdrive controller, local area network, and RS232 interface. Connect it to your Spectrum and you can control up to eight Microdrives, communicate with other computers, and drive a wide range of printers.

The potential is enormous, and the module will be available in the early part of 1983 for around £30.

Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS.
Tel: Camberley (0276) 685311.

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14 -day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you willbe.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR. Order

Please tick if you require a VAT receipt \square
*l enclose a cheque/postal order payable to Sinclair Research Ltd for £ \qquad
*Please charge to my Access/Barclaycard/Trustcard account no.
*Please delete/complete
as applicable
Signature
PLEASE PRINT
Name: Mr/Mrs/Miss $|\perp|$
Address

FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.

BROADCAST
 STANDARDS
 FEATURE

What factors made the government choose .. the IBA's Multiplexed Analogue Component system in preference to what seemed the logical choice, Extended PAL? Dave Bradshaw investigates.

The two system proposals submitted by the BBC and IBA were examined by an 'Advisory Panel', chaired by Sir Anthony Part, and hence the report of the panel is known as the Part Report. As already described by Vivian Capel in his article (page 16), MAC uses System C sound, in which the sound is compressed into the intervals between picture lines: this gives a capacity of up to eight sound channels. When the IBA originally submitted its proposal, it wasn't known if System C would be a practical proposition by the time that DBS was due to come into
service, and so their original proposal was for System A, using an 8.5 MHz sub-carrier. During the course of the Advisory Panel's deliberations, the British Radio and Electronic Equipment Manufacturers' Association (BREMA, a very welcome acronym) stated that they thought that System C would be practicable, and the IBA changed its proposal to System C. Hence the panel actually considered two MAC systems - known as A-MAC and CMAC, though only C-MAC was put through the technical trials.

Technical Assessment

The competing systems were put on trial and the location was chosen, by drawing lots, to be the BBC research department at Kingswood in Surrey. Transmission and reception of two signals was simulated, as were the different noise levels, and co-channel interference from the same and different systems. However, the possible effect of an out-of-alignment receiver was not evaluated.

The panel reported that both systems showed a 'noticeable improvement in definition compared with PAL', with MAC having the edge over E-PAL, though E-PAL still offered a considerable improvement over PAL.

Both systems began to show the effects of noise impairment on vision at around the same noise level, 14 dB , but were quite viewable at 11 dB . At lower carrier-to-noise ratios, E-PAL gave a less acceptable picture than MAC, the latter having approximately a 2 dB advantage over the former. Sound quality remained very good down to 7 dB carrier-to-noise ratio.'

MAC had a lower tolerance to co-channel interference than E-PAL. However, the interfering signal levels needed to produce any observable effect on either system were quite unrealistic. So, round one to MAC.

War of the Words

As you may imagine, neither the BBC nor the IBA were silent about the merits of their systems. Both made written and aural submissions to the Advisory Panel. Amongst the arguments advanced for E-PAL were:

QPSK	- Phase Shift Keyer
NICAM	- Near Instantaneous Companding
C/N	- Carrier to Noise Ratio
C/l	- Carner to Interference Ratio

(c) HMSO

Fig. 1 Set-up for comparative demonstrations:

- the PAL system has been in use since 1967 and there are 14 million receivers operating on this standard. E-PAL transmissions are compatible with conventional PAL decoders (though a converter would be needed for the digital audio). There would be a very marginal loss of quality compared to that obtained from PAL transmissions - so marginal that most users would not notice any difference.
- the resolution of pictures at home is limited by the receiver and display. High definition TV (HDTV) is about 10 years away, so there is little point in radically altering transmission standards before its introduction.
- the extra circuity needed for an E-PAL receiver compared to a PAL receiver is very small, simple and well understood.

Enter the IBA

The IBA's two-pennyworth included the following points:

- MAC is more likely to be adopted as a common European standard than E-PAL because of its technical superiority (most of the rest of Europe is currently engaged in debating DBS systems, and the European Broadcast Union, EBU, will be considering the possibility of a single common standard later this year)
- because in the MAC system the components (luminance, Y , and colour differences U and V) are kept separate, MAC is a closer complement to the emerging studio practice of keeping and storing the components separately rather than encoded into a composite single video signal.
- MAC is designed from scratch to match the FM satellite channel (rather than to be compatible with existing practice) which leads to a better subjective noise performance. - MAC has greater potential for enhancement or providing the basis for HDTV systems.
- finally (and here's the rub), MAC is well suited to the scrambling systems that would be necessary for pay-TV.

A European Standard?

The situation in Europe is that countries are divided between the PAL and SECAM systems, and for political reasons, SECAM countries are not very likely to adopt PAL, or vice-versa. Ironically, the only possible way of getting uniformity is to make everyone change.

The European manufacturers' association, EACEM, has shown an interest in the MAC system. However, the EBU has expressed a strong preference for System-A sound, though this preference was expressed at a time when it appeared that System-C sound could not be implemented in time. France and Germany have already decided to proceed at an early stage to DBS using their existing SECAM and PAL systems for vision, though it is not clear whether either has ruled out the possibility of changing to an enhanced system at some stage in the future (fortunately the coding of the signals is done on the ground, the satellite being a 'transparent' device in this respect).

Incidentally, a note to all you cynics out there. Harmonisation of broadcast standards is not simply another case of rather pointless Euro-bureaucracy, because there is expected to be a considerable international audience for TV programmes. In fact, the BBC thinks that its pay TV service could gain a lot of revenue from the continent.

What has Cable TV to do with it?

Quite a lot actually, because cable companies stand to make a penny or two out of satellite TV themselves. This is

Fig. 2 Modified E-PAL signal spectrum - an E-PAL signal with Type A sound.
because the cost of putting up your own antenna will be much more than the cost of getting a cable company to deliver the signal to you via their network (provided you're one of the lucky 60% or so of the population to whom cable TV will be offered . . .) So, because cable companies will be carrying the DBS services, they too had their comments to deliver to the Advisory Panel.

As it happens, the cable companies wanted yet another system, a modified E-PAL with both digital sound and conventional analogue sound, so that existing sets would be fully compatible with E-PAL without the digital sound module. However, the panel felt that this would be impractical, and, in its conclusions, said that it thought that MAC would be more suitable for cable transmission because of the absence of sub-carriers.

Judgment Day

In its recommendation, a recommendation that was very rapidly accepted by the government, the Advisory Panel endorsed MAC, rejecting three of the BBC's central points. Firstly, they considered that the results obtained using an E-PAL signal with a standard PAL receiver were unacceptable; secondly, that it would be worth developing a new system before the introduction of HDTV; and thirdly, that the extra circuitry for MAC would be little trouble to manufacture.

On the last point, there was felt to be some difficulty in fabricating one of the filters for the E-PAL receiver, whereas, once integrated, the time multiplexing circuits for the MAC receiver would be relatively simple to fabricate. The panel accepted all the IBA's claims for the MAC system. The BBC is philosophic about the decision going against it, and view the subject now as a dead issue.

Program And Payment

Very much a live issue is the way the BBC will use the two DBS channels it has been allocated. One is presently planned to be an open service, possibly called 'Window on the World' and utilising the best of programmes from abroad and the BBC's extensive archives. There will be a supplementary licence fee for DBS services, presently planned to be comparatively small (around $£ 10$); after all, it won't be necessary to use special detector vans to spot DBS antennas.

The other channel is planned to be a pay service, using some sort of signal scrambling; you will have to pay to get the unscrambling device (or, more likely, you will have to pay to get the data that your receiver will need to do the unscrambling). There are all sorts of different proposals for how the scrambling and unscrambling might be done, and the scrambling method will be varied from time to time,
with a mode-shifting digital key being transmitted periodically.

How viewers are going to be asked to pay for the service also has to be decided. The two possibilities are a simple monthly subscription (this has the attraction of simplicity) and a pay-as-you-go system. The latter would greatly ease negotiations for material such as feature films, because the BBC would be able to negotiate an apportioning of the income generated rather than a fixed fee; and it is very much a feature of plans for the pay channel that it should have new films. However, the government has ruled out pay-as-you-go for cable TV, so DBS may also have that option closed to it.

Despite the prediction that cable TV will reach, at most, only 60% of the population, and despite the cable companies' plans to carry the DBS channels, the BBC is very seriously worried by the prospect of direct competition between DBS and cable pay services. The BBC has undertaken that its DBS services will be self supporting, and that it should not place an additional burden on the standard licence income. For a while there was serious consideration of withdrawing from DBS altogether, but it has now been decided to go ahead - this may have been helped by some recent, rather pessimistic forecasts for cable TV.

As yet the IBA has not been granted a DBS channel, though three remain unallocated and it is thought certain that the IBA will get at least one.

Hardware Issues

Initially, the average domestic installation will consist of three parts: the antenna and out-of-doors unit that will be mounted directly beneath the antenna and will do the down-conversion of signal frequency; the indoor unit that will convert the MAC encoded video signals and the digital sound signals into a form the TV can cope with; and the TV set itself. It is possible to make indoor units that would produce a PAL output, but this would mean that a lot of effort had been wasted!

Better would be an indoor unit that produced either an RGB or YUV output, and a TV set with inputs to match. Providing such component video inputs would add little to the cost of the TV, and the indoor unit would actually be cheaper to make. Eventually, dual standard TV sets would become available, incorporating both MAC and standard PAL circuits. Unfortunately there is not the bandwidth available to transmit MAC signals from terrestrial transmitters, so we are stuck with PAL for the foreseeable future.

One Final Thought

There is just one last horrible possibility: what if the EBU does, against all the odds, decide on a European standard, but one that isn't MAC? The BBC or the government might be seriously tempted to change again, and we could have a re-run of all the arguments.

Direct Broadcasting by Satellite: Report of the Advisory Panel on Technical Transmission Standards, Chairman Sir Anthony Part, is available from HMSO for $£ 5.60$. The BBC have withdrawn their leaflet detailing their plans because it dealt very largely with E-PAL; they do not intend to issue a replacement in the foreseeable future.
I would like to thank the $B B C, I B A$ and British Aerospace for their help in the preparation of this article; also Her Majesty's Stationery Office for permission to reprint the diagrams.

Finally, I think that Plymouth Poly deserve a mention; they too proposed a DBS system, though it obtained onlya couple of rather dismissive mentions in the report. Full marks for trying, anyway, Plymouth.

MEMDPAK 16K For those just setting out on the road to real computing, this pack transforms the $\mathbf{Z X 8 1}$ from a toy to a powerful computer. Data storage, extended programming and complex displays become feasible.
For even greater capacity, memory packs can be added together $(16+16+16 \mathrm{~K}$ or $16+32 \mathrm{~K})$. The MEMOPAK 32 K and the MEMOPAK 64 K offer large memories at economical prices.

Hemoteci

> MEMOCALC The screen display behaves as a 'window' on a large sheet of paper on which a table of numbers is laid out. The maximum size of the table is determined by the memory capacity, and with a MEMOPAK 64 K a table of up to 7000 numbers with up to 250 rows or 99 columns can be specified. Each location in the table can be either a number which is keyed in or a formula which generates a number. Every time the command to 'calculate' is given, all the formula in the table -are re-evaluated. Spreadsheet analysis started as an aid to cash-flow analysis, but this powerful tool has now been generalized and MEMOCALC with its special ability to perform iterative calculations is invaluable in the performance of numerical tasks.

The Memotech approach to micro-computing is to take the well-proven and popular ZX81 as the heart of a modular system. This small computer houses the powerful ZBOA processing unit and acts as the central processor module through which the MEMOPAKS operate.
Memotech has a reputation for professional quality, producing units which are designed to fit perfectly, to look well-balanced, and to work efficiently and reliably.
The modular approach gives $\mathrm{ZX81}$ owners the freedom to design the system they really need. Furthermore, the inter-compatibility of the modules ensures that later additions will click straight in, to give you a system that grows with your ambitions and abilities
As one example, a system with 16 K of memory and MEMOCALC is all that is required to perform sophisticated numerical calculations giving the same results as a computer at 10 times the price. The problem may be as complicated as a cash flow or productionschedule, or as simple as household accounts or pocket money budgeting. If the bank manager wants to see the cash flow, then a single print instruction to the Centronics 1/F will give a printout which is more than acceptable to any bank.
The example system which is shown, on the other hand, would satisfy the needs of someone who wanted to enter data via a light-touch keyboard, construct and label graphs, and then copy the screen to an BO-column printer. Only 16 K of memory is used here but with additional memory, more than one video page can be stored. Up to 7 successive pages can be displayed cyclically to give animated displays.

EMDPAM HRG This pack breaks down the constraints imposed by operating at the ZX81 character level and allows

 high definition displays to be generated. All 248×192 individual pixels can be controlled using simple commands, and the built in software enables the user to work interactively at the dot, line, character, block and page levels. Scrolling, flashing and animation are all here.

MEMDPAK GRAITONIBS $/ / F$ The BASIC commands
LPRINT, LLIST and COPY are used to print on any CENTRONICS type printer. All ASCII characters are generated and translation takes place automatically within the pack. Reverse capitals give lower case. Additional facilities allow high resolution printing. The full capabilities of your printer are now under the control of the 2×81.

MEUDPAK 281 ASSEIIDIEV This click-in EPROM
based pack accepts standard $\mathbf{Z 8 0}$ assembly language mnemonics to allow you to write faster and more compact programs. It has its own ADD, EDIT, LIST, ASSM and QUIT functions, the editor allowing insertion, deletion, automatic line renumbering and error checking. Source code and object code listings can be displayed and printed in decimal or hex format.

MENDTECY MEy/IORTI The light-touch positive stop
keys of this elegant typewriter-pitch keyboard allow you to work faster, more accurately and more confidently. To speed you along we have added an extra SHIFT key to the array at top right. The keyboard is attached by a cable to the Keyboard Buffer which fits in amongst your other Memopaks or straight onto the back of your $\mathrm{ZX81}$.

To ensure that your expectations are realised, care is taken at every stage to design features into the system to anticipate your frustrations and to forestall them. For example:
A) Memories are cumulative e.g. 16 K and 32 K can be added to the MEMOPAK 16 K or even to the Sinclair 16K RAM pack.
B) The HRG firmware allows commonly used constructions (such as scrolling, shading and labelling graphs), which might otherwise be beyond the user's programming capabilities, to be evoked by a few simple commands.
C) The Centronics I/F converts $\mathrm{ZX81}$ character codes into ASCII and extends the print line to the width of the printer, still using the LLIST, LPRINT and COPY commands.
Looking forward, Memotech will continue to back the ZX81 through 1983 with fast storage devices, pressure sensitive electronic drawing boards and more software packs including a wordprocessor and an RS232 interface.

MEMOPAKS may be ordered by post (cheque, Access/Barclaycard quoting number) or by telephone. Please make cheques payable to Memotech Ltd. and please include $£ 2.00$ per unit for packaging and postage inland (overseas £З.00).

We want to be sure you are satisfied with your Memopak - so we offer a 14-day money back guarantee on all our products.
DEDOTECH
MEMOTECH LIMITED, WITNEY, OXON. OX8 6BX TELEPHONE (0993) 2977 TELEX 83372 MEMTEC G

6502-BASED AUDIO BOARD

Here's a powerful and versatile peripheral for people requiring a digital-to-analogue or sound-generating capability for their computer. Although the PCB is designed for Tangerine users, the circuit may be readily interfaced to any 6502-based system. Design and development by M. D. Bedford.

WThen control applications on a microcomputer are proposed, it soon becomes evident that DACs and ADCs are required to interface to the real world. For more light-hearted uses and for games, the addition of sound effects can do much to enhance a program. Although multiplexed ADCs are available, giving eight or 16 channels and requiring only one eight-bit port plus control lines to support them (see the ZX ADC in the January ' 83 issue), DACs require eight bits per channel and would quickly use up the available I/O ports on most systems. For this reason, the circuit which is presented here was designed so that it wouldn't use system I/O ports. The board presented here is specifically intended for the Tangerine Microtan system and as such will plug directly into any expansion slot on the system motherboard: DIL switches or links are provided on the board in order to configure it to start at any 16 -byte boundary within the 1 K I/O area.

For users with other 6502-based systems it should not prove difficult to interface the circuit. The only non-standard signal is the one designated IO which is used in the Microtan system to indicate that an address within the I/O area (ie within the address range BCOO to BFFF) is being accessed. On any other system, address lines A10-A15 should be decoded to generate such a signal and Fig. 3 shows a simple circuit which may be used:

The Circuit

The DAC0800 is a low-cost high-speed multiplying DAC with an accuracy of ± 1 LSB which, when

The completed Sound/OAC board in a Tangerine Microtan rack-mounted system. The board may be used with other 6502 -based systems.
used in conjunction with an opamp, is capable of giving a low impedance voltage output. Six of these devices have been used with 747 dual op-amps to give outputs in the range $0-10 \mathrm{~V}$.

The General Instruments AY-3-8910 programmable sound generator IC forms the basis of the sound effect feature of this board, the LM380 being provided in order that a loudspeaker may be driven with no external circuitry. 6520 PIOs are used as a simple and inexpensive means of interfacing the DAC0800 and AY-3-8910, but 6821s may also be used. Buffering of some signals limits the load presented to the bus signals.

The circuitry comprising IC16, IC17 and the bank of DIL switches allows the positioning of the board in any 16-byte block within the I/O area. The start address is calculated as the binary number given by the six switches multiplied by 16 , where the switches on the circuit diagram are shown in the ' 1 ' position and SW1 is the least significant. For example, if switches SW1-6 are in
positions $0,0,0,0,0,1$ then the first address on the board will be 16 bytes from the start of the I/O area

Construction

The layout of a printed circuit board is presented here and, due to the fairly high packing density it is suggested that, for those intending to incorporate the circuit into a Microtan system, this layout be adhered to. It should be noted that the board is of the double-sided, pinned-through type with the result that every hole not intended for the mounting of components should be fitted with a pin and soldered both on the top and the bottom of the board. Scrutiny of the overlay will reveal that this must be carried out prior to the fitting of any DIL sockets. If, however, it is not intended to fit the circuit board into a card frame along with other Tangerine boards, then a larger board may be used and some form of breadboarding technique employed for construction. If this option is taken care should be

Fig. 1 Component overlay. The tinted tracks are the underside of the double-sided board: through-board pins soldered on both sides are required wherever a dot appears.
exercised in the positioning of certain capacitors. C4 and C23-27 should, as far as possible, be well distributed around the board. C7, 10, 13, 16, 19 and 22 decouple the -12 V rail, and these components should be positioned so that one capacitor from each of the two sets
is close to each of the DAC0800s. One final point applies irrespective of the method of construction: since DIL switches are relatively expensive and in such an application will most probably be set up once and rarely changed, it is suggested that, as an alternative,

PARTS LIST

Resistors (all $\frac{1}{4}$ W, 5\% except where stated)	
R1-12	10k 2\%
R13	2R7
R14	20k
R15-26	12k 2\%
Potentiometer	
RV1	22k logarithmic
Capacitors	
C1, 5, 7, 8 ,	
10, 11, 13,	
14, 16, 17,	
18, 20, 21	100n ceramic
C2	470u 16 V axial electrolytic
C3	2u2 10 V tantalum
C4, 6, 9, 12,	
18, 19, 22-2710n ceramic	
Semiconductors	
IC1-3	LM747
IC4	LM380
IC5, 6, 8, 9,	
11, 12	DAC0800 or DAC0801
IC7, 10, 13,	
15	6520, 6820 or 6821
IC14	AY-3-8910
IC16	74LS30
IC17	74LS08
IC18	74LS04
IC19	74LS245
IC20	74LS138
Miscellaneous	
SK1	3-way, 5 mm pitch, PCB terminal block
SK2	14-pin DIL socket
SK3	2×32 way A + B DIN
	Euro connector (male, angled pins)
SW1-6	hex DIL changeover switch (see text)
PCB (see Buy	Switch (see text) alines); DIL sockets to suit

BUYUNES

No problems with the semiconductors for this project - it's all standard stuff and people like Technomatic, Watford and Cricklewood should have no trouble supplying you. The only difficulty may lie in finding a supplier for the DAC0800 which seems to be a bit elusive: Maplin supply the 0801 which is an acceptable substitute. The Euro socket required for Tangerine rack owners is available from Watford, while the PCB can be obtained from our PCB Service as usual. The order form is on page 83.

DIL headers with appropriate soldered links are used and plugged into DIL sockets.

Programming

While it is beyond the scope of this article to give a detailed functional description of the 6520 and AY-3-8910 ICs, it is expected that the BASIC routines presented here will enable the board to be used without difficulty. Ir, order to make full use of the sound generator, however, it is suggested that an AY-3-8910 data sheet is consulted (the company you buy the chip from should be able to help). In the routines given, the

Fig. 2 Circuit diagram of the sound/DAC card.

[^1]The data Input to IC6 is latched by port A of the peripheral interface adapter IC7 (port B of IC7 latches the data for ICS). Similarly ICS 10 and 13 latch the data for ICs 8,9 and 11, 12 respectively.

The fourth PIA, IC15, utilizes both ports to control the sound generator chip, IC14. The three audio outputs of this chip are fed via C3, R14 and the volume control RV1 into IC audio power amp IC4.

C1 and R13 form the Zobel network and C2

C2 the DC blocking capacitor for the amp output. The audio signal and analogue voltages are fed off board via SK2, a DIN socket with a header-plug.
Address decoding for the board is performed by $I C S 16,18$ and 20. SW1-6 select which 16-byte block of memory the board occupies. For people using systems other than the Microtan, which generates the 10 signal required, the additional decoding circuit for lines A10-15 shown in Fig. 3 will be required. The data bus is buffered by IC19, with the R/ W signal on pin 1 selecting the direc-tion and the output of IC 16 enabling the tri-state buffers via pin 19. Bus signals which are required by several chips in the circuit are buffered by IC17.

Fig. 3 Non-Microtan users who wish to build this project will require this circuit to produce the 10 signal.

| | IC1 | IC2 | IC3 | IC4 | IC5 | IC6 | IC7 | IC8 | IC9 | IC10 | IC11 | IC12 | IC13 | IC14 | IC15 | IC16 | IC17 | IC18 | IC19 | IC20 |
| :--- |
| OV | | | | $3,4,5$
 7,10
 11,12 | | | 1 | | | 1 | | | 1 | 1 | 1 | 7 | 7 | 7 | 10 | 8 |
| $+5 V$ | | | | | | | 20 | | | 20 | | | 20 | 40 | 20 | 14 | 14 | 14 | 20 | 16 |
| +12 V | 9,13 | 9,13 | 9,13 | 14 | 13 | 13 | | 13 | 13 | | 13 | 13 | | | | | | | | |
| $-12 V$ | 4 | 4 | 4 | | 3 | 3 | | 3 | 3 | | 3 | 3 | | | | | | | | |

Table 1 This is a list of power supply connections to the various ICs for people doing their own board layout.
variable BA should be set to the base address of the board.
DAC Handling Routine. In this, routine, which should be executed once at the start of the program, N should be set to the number of DAC channels to be initialised. After execution of the routine, the statement:

POKE $X, B A+2 *(N-1)$
will write the value X to the N th DAC channel.

10 REMDAC INITIALISATION $20 \mathrm{FOR} A D=\mathrm{BA}$ TO BA $+2^{*}$ ($\mathrm{N}-1$) STEP2
30 POKE AD + 1,0: REM....ALLOW ACCESS TO DDR
40 POKE AD,255: REM....SET DDR TO OUTPUTS
POKE AD +1 , 4: REM....ALLOW ACCESS TO OUTPUT REGISTER 60 NEXT AD

Sound Effect Routines. The initialisation routine should be executed once at the start of the program: after this subroutines 1000 and 2000 may be called for writes and reads respectively to the AY-3-8910 registers. In these two routines, REG should be set to the register number before entry: for a write, DAT should be set to the value of the data to be written and when reading, DAT will contain the data read after return from the
subroutine.
10 REM....AY-3-8910
INITIALISATION
20 POKE BA + 15,0: REM.... 6520
PORT B TO WRITE
30 POKE BA $+14,255$
40 POKE BA + 15,4
1000 REM....AY-3-8910 WRITE
ROUTINE
1010 GOSUB 3000: REM....LATCH
ADDRESS
1020 POKE BA + 12, DAT:
REM....WRITE DATA
1030 POKE BA + 14,2
1040 POKE BA + 14,0
1050 RETURN

2000 REM....AY-3-8910 READ
ROUTINE
2010 GOSUB 3000: REM....LATCH
ADDRESS
2020 POKE BA + 13,0: REM.... 6520
PORT A TO READ
2030 POKE BA $+12,0$
2040 POKE BA +13,4
2050 POKE BA + 14,1: REM....READ
DATA
2060 DAT $=\operatorname{PEEK}(B A+12)$
2070 POKE BA + 14,0
2080 RETURN
3000 REM .. LATCH ADDRESS
ROUTINE
3010 POKE BA + 13,0: REM.... 6520
PORT A TO WRITE
3020 POKE BA $+12,255$
3030 POKE BA +13,4
3040 POKE BA + 12, REG:
REM....LATCH ADDRESS
3050 POKE BA + 14, 3
3060 POKE BA + 14,0
3070 RETURN
Where it is only intended to write to the AY-3-8910 registers, a saving in execution time and program size may be made by incorporating lines 3010-3030 of the latch address routine into the initialisation routine and using the following routine for writing. In this case subroutines 2000 and 3000 are not required.

1000 REM.:..AY-3-8910 WRITE ROUTINE FOR WRITE-ONLY APPLICATIONS
1010 POKE BA + 12,REG:
REM....LATCH ADDRESS
1020 POKE BA + 14,3
1030 POKE BA + 14,0
1040 POKE BA + 12, DAT:
REM....WRITE DATA
1050 POKE BA + 14, 2
1060 POKE BA + 14,0
1070 RETURN

A completed board, sporting the sound chip and three of the possible six DAC channels.

NEW GOODIES JUST ARRIVED

ROBOTICS
Motor drive + gearing, as used on "Big Trak" com-
puterised tank. 2 motors with magnetically linked puterised tank. 2 motors with magnetically
clutch. Supplied wilh data + circuits. 64.98

AA NI-CADS 10 for $\mathbf{5 9 . 9 5}$
Brend new nickel cadmium battories by GE, standard tags both ends. Special price, $\mathbf{E 1 . 4 0}$ ea: 10 for 99.95 : Box of 80 exb.
Nicad Charger:
PP3. Oniy E. 96

TELESCOPIC AERIALS
As used in Sinclaik microvision. 9 section
100.610 mm . Only 95 p

1N4148 - BEST PRICE EVER
Supplied in packs of 100 , by Tosshiba $£ 2$ per pack, 3
packs $£ 5.50 ; 10$ packs $£ 15 ; 25$ packs $£ 32 ; 100$ packs puppks
packs
€115.

REED RELAYS

Manufacturers rejects - DL . and other PCB moun-
ting types. SP , DP and 4 P , make, break . ting types. SP, DP and 4P - make, break $\& \mathrm{clo}$
contacts. Not iested, so may be onty partially work. ing or o / c etc. so very low price - pack of 10

OPTO SCOOPIII

$0.3^{\prime \prime}$ CC MS 131C 50p; 4 for f1.e
$0.6^{\prime \prime}$ CA Dual digit MS261 90 p
$0.6^{\prime \prime}$ CC 4 digit MS4631 f1 $0.27^{\prime \prime}$ CA Tilit 302 659: 4 for $\mathbf{f 2} .00$ All supplied with pin-our data.

FERRIC CHLORIDE

New suppties just arrived -500 mg bags of granules Also abrasive polishing block 98 p .

Provicus Mencte New heme N1 8095A CPU 23.60
N2 MC14175 80
N3 LM380 50
$\begin{array}{ll}\text { N4 } & 1000 \mathrm{uF} 16 \mathrm{~V} \text { Ax 15p }\end{array}$ N5 ${ }^{6850 ~ 1000}$
C1 7912CK 1TO3 Casel 709
C2 $3.579545 M H z$ Xtol HC6U cose $80 p$ C5 Reed switches, 20 mm body SP mike 20121
C8 68AOO CPU $11 . E 0$
C9 UONB118A diphor driver EDP
$\mathrm{C10}$ Speedbloc ribbon cabilo: 10 why $30 \mathrm{p} / \mathrm{m}$;
C12 BDX88A Darlingron Power TO3 PNP 60V

 C14 $\begin{gathered}\text { height, overall } 25 \mathrm{~mm} \text {. Wire enoed } 80 \mathrm{p} \\ \text { BV212-750 power switching rect, } 800 \mathrm{~V}\end{gathered}$ C15. 4 for 51.50
C15 GRO5R 50V 5 A switching rect. 4 for 50 p

LIE DETECTOR

Not a toy, this precision instrument was originally part of inge in emotional balance, of as a lie detector Full details of how to use it are given, and a circuit diagram. Supplied complete with probes, leads and conduciva jelly. Needs 24.4 V botts. Overall size 155
$\times 100 \times 100 \mathrm{~mm}$. Only 0.95 worth that tor the case and meter alonel

COMPONENT PACK8

K603 150 wirewound resiaton from 1 W to 12 W . with a good range of values $\mathrm{C1.75}$ KS05 20 aseorted potentionveries; all trpes including single ganged, rotary und-allder E1.70 K611 200 emnath value pory, mica, ceraric caps
from a few pf to . 02 uF . Excellent variety E1.20 K514 100 silver mica caps from 5 pF to a fow thousand pF . Tolerances from 1% to 10% \&2 KO20 Switch Pack, 20 different rocker, slide. rotary, togole, push micro, etc. Only E_{2}

BRAND NEW VEROBLOC KITI!!
ust published by Babani, Mr. R.A. Peololds new book 30 SOLDERLESS BREADBOARD PROJECTS" a Verobloc, and the kit contains all parts necessayy to
to
Audio Amplifiers
ight \& Dark Activated Switches \& Alarms
Metronome
Oscilitatrs $\&$ Tone Generators
Narbling Door Buzzer
Touch Switch
Reaction Game
Sound Activated Switch
Aadio Receiver
furz Unit
The lots more!!
The introduction shows an the different components and exclains thow to use the breadboard. The Verobloc
layout is shown for every project together with the circuit diagram and an explanation of how it works. Ideal for begimners in electronics. but also suitable for more advenced students.
The complete kit is contained in an attractive plastic
case, which can be divided up into 15 ,
Which your components may be stored.
Complete Kit, including book, Verobloc $\&$ al pants
E24 56 ; Book only $£ 2.85$; Kit without Verobloc $E 20.46$.

1982/3 CATALOGUE

Biggerl Betteril Buy onelit Only TEp inc. posi - Look what you getl - Vouchers worth 60p

- lst cless reply paid envelope
- Bargein List with hundreds of surplus lines
- Bargein List with hundreds
- Low, low prices

Sent free to schook, colloges otc.

RECULATED PSU PANEL

 Exchaive Greenweld design, fully variable$0-28 \mathrm{i}$ in $20 \mathrm{~mA}-2 \mathrm{~A}$. Board contains all componeris except pots and transformer. Only 27.7. Suitable transformer and pots 28 . Send SAE for fulter cotains.

1,000 RESISTORS $\mathbf{2} .50$

We've just purchased another 5 miltion preform ed resistors, and can make a similar offer to that K523-1,000 mixed it and IW 5% carbon film resistors, preformed for PCB mantg. Enourmous range of preferred values. 1,000 for $\mathbf{2} .50$; $5,000 \mathrm{E10} ; 20 \mathrm{k} \mathrm{ES}$.

COMPUTER BATTLESHIPS

Probably one of the most popular electronic games on the market. Unfortunately the design
makes it impractical to test the PCB as a working model, although it the PCB as a workperfectly. Instead we have tested the soit chip, and sell the board for its component value only (PCB may be chipped or cracked).
SN76477 batt clips, R's. C's; TMS 1000 u-processor: batt clips, R's, C's etc. Size $160 \times 140 \mathrm{~mm}$. Onl
f1.50. Instruction book and circuit 30 p extra.

SIMON GAME

$\ddot{P} \dot{C} B^{\text {i }}$, back again. Another supply of ready built PCB's tor this flashing wight/pusating tone
computerised game is now with us. Supplied, tested computer ised game is now with us. Supplied,
and working with speaker Θ instructions $\mathrm{f4.95}$

FILAMENT DISPLAYS

$2{ }^{2} 7$ meg dieplay 125 mm high, ideel for TTL operation, taking 5V BmA peer eeg. Std 14 DIL opection, takig cI sech, 4 for Ex.0. Dete
perctage. Only
supplied.

New Products

HIFI STEREO AMPLIFIER KITS
From one of Brinein's leading esoteric amplifier manufacturers comes an exciling new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the usual price penalty.
These new kits offer the choice of moving magnet or moving coil inputs, 40 to 100 watts per channel, in fact, everything that made the previous models so popular is included but with added style, easier construction and a full two year warranty.
The new range conslats of The CK 1010 Stereo Pre Amplifier, The CK 1040 WPC Power Amplifier, The CK 1100 WPC Power Amplifier.
CK 1010
This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and mechanical assembly of the connections and controls to the pre punched chassis.
The CK 1010 takes its DC supply from the CK 1040, 1100 or, if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an opinal moving coil input can be fitted to extend its versatility. (MC2K)
CK 1040
This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK $\mathbf{1 0 1 0}$. All components such as heatsinks, wire and connectors are CK 1100
Similar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinking and thermal cutouts are provided as standard.
When correctly assembled these kits are guaranteed for two years.
It would seem then that Crimson have maintained their position at the top of the commercial kit build field. There is no oriental amplifier I know of that can better the sound of this combination pverall at any price and only a few - such as the KA-1000 ($£ 500+$) - are of comparable standard. . . I I can say no more than that for E250 it (CK 1010/MC2K/1100) is a bargain and one that ecomes the reference point for kit amplifiers from now on."

PRICES CK 1010 - RRP 992.00 ; CK 1040 - RRP £121.00; CK 1100 - RRP £151.00; MC2K - RRP £25.00; PSK - RRP £20.00
Barclaycard or Access accepted, otherwise send C.W.O. C.O.D. $£ 1.00$ extra. All prices include P\&P to anywhere in the U.K. Export: Write for pro-forma SEND FOR FULL DETAILS ON OUR HIFI KIT PRODUCTS BY WRITING TO FREEPOST ADDRESS BELOW

$\rightarrow \rightarrow$ Cinsorncorcic
 PHOENIX WORKS
 500 KINGS STREET
 STOKE-ON-TRENT
 LONDONDISTRIBUTOR BRADLEYMARSHALLLTD,325EDGWAREROAD,LONDONW21 BN
 TEL: 0782330520

Are you interested in CASSETTE TAPE HEADS, CASSETTE MECHANISMS, FLOPPY DISK DRIVES, TEST CASSETTES, AMPLIFIER, KITS FROM 30 TO 100 WATTS, FM TUNER KITS, CASSETTE RECORDER KITS,

COMPUTER PRINTERS? If you are, it would be a good idea to write or telephone for your copy of our FREE list.

HART ELECTRONIC KITS LTD

Penylan Mill. Oswestry. Shropshire SY10 9AF
Tel 06912894
Personal callers are always welcome but please note that we are closed all day Saturday.

electronics today international BOOK SERVICE

How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to ETI Book Service, Argus Specialists Publications Ltd, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterming only please. Prices include postage and packing. Prices may be subject to change without notice.

BEGINNERS GUIDES

\square Beginner's Gulde to Basic Programming Stephenson £4.95 \square Beginner's Guide to Digital Electronics 44.95 Beginner's Guide to Electronics
64.95

Beginner's Guide to Integrated Circuits
£4.95
\square Beginner's Guide to Computers
£4.95
Beginner's Guide to Microprocessors
$\mathbf{4 4 . 9 5}$

COOKBOOKS

\square Master IC Cookbook Hallmark

88.65

Microprocessor Cookbook M. Hordeski
\square IC Op Amp Cookbook Jung
f6,60
PLL. Synthesiser Cookbook H. Kinley
Active Filter Cookbook Lancaster
TV Typewriter Cookbook Lancaster
\square CMOS Cookbook Lancaster
TTL Cookbook Lancaster
\square Micro Cookbook Vol. 1 Lancaster
BASIC Cookbook K. Tracton
\square MC6809 Cookbook C. Warren

ELECTRONICS

\square Principles of Transistor Circuits Amos
Design of Active Filters with experiments Berlin
49 Easy to Build Electronic Projects Brown
Electronic Devices \& Circuit Theory Boylestad
Electronic Devices \& Circuit Theor
\square How to Design and build electronic instrumentation Carr
Introduction to Microcomputers Daglecs
Electronic Components and Systems Dennis
\square Principles of Electronic Instrumentation De Sa
Giant Handbook of Computer Software
Giant Handbook of Electronic Circuits
Giant Handbook of Electronic Projects
\square Electronic Logic Circuits Gibson
Analysis and Design of Analogue Integrated Circuits Gray Basic Electronics Grob
\square Lasers - The Light Fantastic Hallmark
\square Introduction to Digital Electronics \& Logic Joynson
Electronic Testing and Fault Diagnosis Loveday \square Electronic Fault Diagnosis Loveday
£13.15
f6.60

Essential Electronics A-Z Guide Loveday Microelectronics Digital \& Analogue circuits and systems Millman
103 Projects for Electronics Experimenters Minis VLSI System Design Muroga
Power FETs and their application Oxner
\square Practical Solid State Circuit Design Olesky
Master Handbook of IC Circuits Powers
Electronic Drafting and Design Raskhodoff
VOM - VTVM Handbook Risse
Video and Digital Electronic Displays Sherr
Understanding Electronic Components Sinclair
Electronic Fault Diagnosis Sinclair
Physics of Semiconductor Devices Sze
Digital Circuits and Microprocessors Taub
Active Filter Handbook
\square Designing with TTL Integrated Circuits Texas Transistor Circuit Design Texas
Digital Systems: Principles and Applications Tocci
Master Handbook of Telephones Traister
How to build Metal/Treasure Locators Traister
99 Fun to Make Electronic Projects Tymony

COMPUTERS \& MICROCOMPUTERS

\square BASIC Computer Games AhI
From BASIC to PASCAL Anderson
Mastering Machine Code on your ZX81 T. Baker
\square UNIX - The Book Banaham
Z80 Microcomputer Handbook Barden
Microcomputer Maths Barden 11.85

Digital Computer Fundamentals Barter
Visicalc Book. APPLE Edition Bell
\square Visicalc Book. ATARI Edition Bell
\square Introduction to Microprocessors Brunner
Programming your APPLE II Computer Bryan
Microprocessor Interfacing Carr
Microcomputer Interfacing Handbook A/D \& D/A Carr Musical Applications of Microprocessors Chamberlain 30 Computer Programs for the Home Owner in BASIC
\square Getting Acquainted with your VIC 20 Hartnell
\square Getting Acquainted with your ZX81 Hartnell
\square Let your BBC Micro Teach you to program Hartnell
\square Programming your ZX Spectrum Hartnell
\square How to Design, Build and Program your own working Computer System Haviland
SASIC Principles and Practice of Microprocessors Heffer
\square Hints and Tips for the 2X81 Hewson
\square What to do when you get your hand on a Microcomputer Holtzman
$\square \mathbf{3 4}$ More Tested Ready to Run Game Programs in BASIC Horn $\mathbf{f 6 . 6 0}$
\square Microcomputer Builders' Bible Johnson $\mathbf{£ 1 0 . 7 5}$
\square Digital Circuits and Microcomputers Johnson $\mathbf{~} 13.00$
\square PASCAL for STudents Kemp
\square The C - Programming Language KErnighan
\square COBOL Jackson
\square The ZX81 Companion Maunder
Guide to good Programming Practice Meek
Principles of Interactive Computer Graphics Newman
\square Theory and Practice of Microprocessors Nichols
\square Exploring the World of the Personal Computer Nilles
Microprocessor Circuits Vol. 1. Fundamentals and
Microcontrollers Noll
Beginner's Guide to Microprocessors Parr
\square Microcomputer Based Design Peatman
\square Digital Hardware Design Peatman
\square BBC Micro Revealed Ruston
\square Handbook of Advanced Robotics Safford
1001 Things to do with your own personal computer Sawusch $\mathbf{£ 7 . 5 0}$
\square Easy Programming for the ZX Spectrum Stewart
\square Microprocessor Applications Handbook Stout
\square Handbook of Microprocessor Design and Applications
Stout
\square Programming the PET/CBM West
\square An Introduction to Microcomputer Technology Williamson \square Computer Peripherals that you can build Wolfe \square Microprocessors and Microcomputers for Engineering Students and Technicians Wooland

REFERENCE BOOKS

\square Electronic Engineers' Handbook Fink
£56.45
\square Electronic Designers' Handbook Giacoletto
\square Illustrated Dictionary of Microcomputer Technology Hordeski
\square Modern Electronic Circuit Reference Manual Marcus
\square International Digital IC Selector Towers f8.50
\square International Op Amp Linear IC Selector Towers

VIDEO

\square Servicing Home Video CAssette REcorders Hobbs

Beginner's Guide to Video Matthewson

\square Video Techniques White $£ 12.95$

Please send me the books indicated. I enclose cheque/postal order for $£$
Prices include postage and packing.
wish to pay by Access/Barclaycard. Please debit my account.

Signed \qquad
Name
Address \qquad
\qquad
\qquad

EUROPA ELECTRONICS

SENDFOR AFREELISTOFOUR LARGE RANGEOFITEMS
ALL DEVICES ARE NEW, FULL SPEC AND GUARANTEED Post \& Packing: Add 30 p to all orders under $£ 5$. VAT: All UK orders add 15% to total cost including p. \& p.

Retail Shop: North Parade Electronics, Mollison Way, Edgeware Middlesex

habbyboard mail order products for electronic projects
 SPECIAL INTRODUCTORY KIT OFFERS

To enable the price conscious enthusiast to be a PROFESSIONAL
Hobbyboard Systerns are derivatives from well proven, high quality PCBmanufacturing techniques - they produce quality products for technical projects - why settle for less?

PRINTED CIRCUIT TRANSFER \& ETCH (KIT HB/1)

A complete kit which includes simple Foil Pattern transfer system, rubdown transfers, copper clad PCB and all processingmaterials and requirements including explicit instructions. (Up to 10 circuitskit) , FFER P:ICE

Normal Price $£ 15.00$

PRINTEDCIRCUITPHOTO RESIST PRINT \& ETCH (KIT HB/2)
A complete kit which enables you to make top quality PCB's the professional way. Includes full set of artwork aids, photo resist PCB and all process materials and requirements. (Up to 10 circuits/kit)

Normal Price $£ 24.00$ SPECIAL OFFER PRICE
DAYLIGHT PHOTOGRAPHIC SYSTEM (KITHB/3)
Now you can make your own Photopositives and Negatives to professiona standards - NO DARKROOM - complete kit with Pos. \& Neg. film and all process aids.

Normal Price £19.50

PHOTO LABEL \& PANEL SYSTEM
 (KIT HB/4)

Now make professional labels 8 panels for your project cases - finish the jot properly - complete kit includes artwork transfers and materials to print fully aminated Plastic Panels in 5 colours. (Up to 20 labelskit).

Normal Price $£ 22.50$
KITSHB/2,13, 14 REQUIRE
UVEXPOSURE

BUILD YOUR OWN UV UNIT (HB/UV1)

UV Lamp, Holder \& Shade supplied with full assembly instructions to build a unit which will give superb results normally only obtained from very high cost systems - FAST EXPOSURES-FINE LINE REPRODUCTION
Normal Price $£ 27.00$ SPEC AL OFFER PRICE

SPECAL OFFERPRICE
stan INGL. VAT
Hobbyboard UV ARTBOX (HB/UV2)
A fully built, self-contained artwork table and UV exposure unit - TWO for the price of ONE - EXPOSURE AREA $\mathbf{B}^{\circ} \times 6^{\circ \prime}-$ EXCELLENT VALUE

Normal Price E65.00 GPECIALOFFERPRICE
Evengreater savings if you order
kits $\mathrm{HB} 2, \mathrm{HB} / 3$ and $\mathrm{HB} / 4$ with your new exposure unit
KIT HB/5 FULL PHOTO KIT- $£ 60.00$ INCL. VAT
KIT HB/6 FULL PHOTO KIT - $£ 90.00 \mathrm{INCL}$ VAT
ORDERFORM
Cheques or Pustal Orders
only please for Special Offers.)
Please send me the following as quickly as possible

CTV	DESCRIPTION	Price Cat.	TOTAL
\square	KITHB/1-PCBTRANSFER\&ETCH KIT-	£12.00-	£
\square	KITHB/2-PCB PHOTORESISTKIT-	E16.00-	\underline{E}
\square	KITHB/3-DAYLIGHTPHOTOKIT-	£13.00-	ε
\square	KITHB/4-PHOTOLABELPANELKIT--	¢15.00-	$\underline{\Sigma}$
\square	KIT HB/5-FULL UV/1 PHOTOKIT-	£60.00-	E
\square	KITHB/6-FULLUV/2PHOTOKIT-	£90.00-	$\underline{1}$
\square	HB/UV1-DIY UVEXPOSUREUNIT -	£18.00-	ε
	HB/UV2-Hobbyboard UVARTBOX-	849.00-	\underline{E}
Name		P\&P	
Addre			

Please Send further details \square
KELAN (Hobbyboard)
North Works, Hookstone Park, Harrogate, North Yorkshire. § 0423 883672

After dispensing, on tablets of newsprint, some wise words about various readers' problems, Ron Harris turns his attention to the new cartridge from Coral.

I' m going to start this month with a selection of letters, chosen to illustrate a general point or two that crops up in a number of readers' enquiries. There are several overall principles concerning setting up a hi-fi system, such as compatibility, component-matching, power requirements etc etc that have been repeated endlessly by all the hi-fi press - and will ever more be repeated - that are so fundamental to the task they should be inscribed across the walls of hi-fi emporia throughout the land.

I do not wish to go through ritual incantations herein, so please to accept a summary.

This can be as concise as: everything must be matched to everything else (especially cartridge to speakers) and the system is only as good as its weakest link.

With that in mind let us take up the discourse . .

Getting Decked Out

I have recently acquired a Sony PSX600 automatic record deck and wish to replace the cartridge (supplied) with something better. I am not sure what cartridge will match the deck and want your advice to choose a new one. How good is the Sony one anyway? My amplifier is a Sony STRV55 and I use Mission 700 loudspeakers.
J. BANKS, STRETFORD, MANCHESTER.

Answer The easy one first. If you'd read your December '82 copy of ETI properly (lose 10 points for inattention) you would have seen our review of the Goldring G910IGC which is designed to work in a range of the bet-ter automatic decks, such as yours. Taking into account the bright loudspeakers you favour, this would be a good choice. Have a listen to it yourself if you can manage it and see what you think. Others to try: Shure M97HE and Dynavector DV20.

Unbalanced And Bias

My hi-fi system is made up of a Thorens TD1 50 and Mayware arm and a Shure V15 III cartridge, a home-made Texan amplifier and a pair of Mordaunt-Short Signifier speakers that I got as a birthday present. I am happy with it except that it seems to have no bass since I changed the speakers and it doesn't have the same power. The sound is a bit 'tinny' now and I get more surface noise. I had the speakers checked by the shop and there was nothing wrong with them. Do they match the amplifier or should I change them again? If so what should I buy to match it? P. RAWLINGS, TUNBRIDGE WELLS, KENT.

Answer What car do you drive? A Lincoln-Continental with a Mini engine perhaps? There is nothing amiss with the speakers by the sound of it, but that amp is just ever so slightly out of place. It is not powerful enough to drive the Signifiers. t is not good enough to be in the system at all. In fact it wants dropping out - from a great height preferably.

You are not getting increased surface noise: it is just that the Signifiers are showing you what has always been there! (I shudder to think what sort of speakers you used before . . .) While I am at it, that record player could do
with sorting out, too. The Shure is a very bright cartridge, unless loaded properly - and the Texan won't do that either. This is almost certainly aggravating the 'tinny' sound, as you so graphically describe it. The Mayware arm we have had problems with under test for similar reasons, but if it works in your system . . .

I would suggest you get yourself a decent amp of around $50-100 \mathrm{~W}$ per channel, and the HE stylus upgrade for your V15 III. If the system still sounds bad to you then, you have two choices: (i) Sell the lot and buy a transistor radio. It'll still sound 'tinny' but at least you'll know why. (ii) Change your ears.

First Time Nerves

Being of unsound mind and a little body I am about to buy my first ever hi-fi. After a lot of research activities and reading up I have decided on the following. My room is about $12^{\prime} \times 8^{\prime}$ and I will be using it for all types of music. I am being foolishly brave I know, but could I have your comments and suggestions for improvement please.

Also which tape should I use with a Sony TCK-55 deck? I know you reviewed it years and years ago and I thought you might remember.
Ms D. COSTERN, OXFORD.
System: - Oracle/SME III/Dynavector Karat Diamond, Carver C1/M-400 Cube, Celestion SL6 speakers.
Answer First system???? A $£ 600$ record deck and $£ 500$ cartridge and it's your first system . . . ?

The Cube and the SL6's are an inspired choice. That set-up will provide magnificent transients and a sound out of all proportion to the size of the units.

The record deck, however, is not so inspired. For a start, the arm and cartridge don't match. You will need to either go down to the Karat Ruby, or change the arm upwards to either the Ittok or 'The Arm' to get the best out of the cartridge.

Frankly, though, I wonder if you've auditioned something like a TD160S/SME III/V15 V against the Oracle combination. Beyond reproach as your intended deck may be (and it is the best turntable in the universe) it is probably too expensive for your needs. Quite a way to start, nonetheless.
PS (It wasn't years and years either, and Maxell or Sony are your best bet.)

All Things Being Equal I'm Helping

I have an unusually shaped living room and it's got a wooden floor. No matter what sort of system we try in it, there is NO WAY to get a flat response. I think I need a graphic equaliser and wondered if you could help out with a circuit or something . . . (Preferably one-third octave.) I think your past projects are old-fashioned now and wondered if you are going to do a modern one.
B. EVANS, BIRKENHEAD, MERSEYSIDE.

Answer How to win friends and influence people. You want me to give you a circuit for a one-third octave equaliser after you dared to call our past attempts oldfashioned? Smooth talkers like you should be in politics.

You'd go down well in the SDP.
Since you've been so charming about it, how could I refuse? Below you will find the circuit for an ultra-high quality equaliser. ETI may well produce it in a project later, but for now it is simply a tried and tested design. Board layouts and all that are not forthcoming, so please don't write in for them.

Coral MC-82

This month's review is the new Coral moving-coil cartridge, the MC-82. A deal has obviously been done and it sports a (Goldring) van den Hul stylus! The unit is sold as an up-market version of the excellent MC-81, which by now has probably reached 'Classic' status.

The MC-82 will cost around $£ 130$
design, requiring step-up of some sort. As an everincreasing number of better
decent head-amp these days, this is a problem fast disappearing.

There are, in addition, a goodly number of specialist head-amps to be had, and choosing is as much a matter of taste as anything else.

The MC-82 is an interesting product, offering more than just a new point to an old success story. As always it is immaculately presented, in a thick clear perspex box.

The pickup itself is a pretty golden colour and the body is identical to the MC-81 and MC-88E. Saves on the production, I suppose. The stylus is not user-changeable and must be returned to Coral for exchange.

Test Run

As can be seen from the results below, the MC-82 turned in the to-be-expected faultless technical performance. Optimum tracking was achieved at 2 g 1 , above which no improvement could be obtained. With a weight of round 5 g and a compliance at over 20 cu ($\times 10^{-6} \mathrm{~cm} /$ dyne), the unit will match a wide range of arms and decks. (Tests were conducted using an SME III.)

The frequency response was flat $20-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$, a remarkable result. Excellent control of tip resonances shows in the smooth treble extension. Nothing to complain about and much to praise.

The van den Hul stylus is one recently covered in this feature, in connection with Goldring's own G910IGC.

TEST RESULTS: CORAL MC-B2

Frequency Response
Channel Separation
Impedance
Optimum Tracking Weight
Channel Balance
Compliance
Output Voltage
Weight
Price
$: 20-20 \mathrm{kHz} \pm 1 \mathrm{~dB}$
: 27 dB at 1 kHz
5 ohms (recommended loading of 30R)
: 2 g 1
: within 1.2 dB
: approximately 22 cu
0.25 mV into 30 R
$: 5 \mathrm{~g}$
: around $£ 130$

You are referred to ETI December 1982 for a detailed description. Basically it imparts better groove contact and thus better tracking. In addition it seems to reduce susceptibility to surface noise - a contention borne out in the $\mathrm{MC}-82$, incidentally - and on the Goldrings has a very open and detailed presentation.

Sound Product?

Having set up the MC-82 and settled back to listen, amp glowing merrily (well it is Class A), I found it a rewar-

Fig. 1 Frequency response of the Coral MC-82 moving coil cartridge.
ding experience. This Coral is very good. It is totally unlike the MC-81, totally unlike the Goldrings and I can think of no other cartridge at all to which it is similar, except perhaps the Ortofon MC-30 and that is high praise indeed.

The Coral has the open mid-range of all the best moving-coil units, with a good detailed bass, which is perhaps a trifle loose at the very bottom end of the spectrum. The treble is clean and sharp without ever being hard or incisive. A cymbal sound demonstrates this very well.

The van den Hui once again seems to reduce its carrier's susceptibility to surface noise and backgrounds, ac-cordingly, are quieter than with other cartridges. Voices are portrayed very well and the sound stage as a whole is well balanced and without undue emphasis in any part of the spectrum.

At the price of $£ 130$ the MC- 82 is not cheap. It is value for money, however, when you consider the competition around. Coral have produced a cartridge here which performs exceptionally well and at a level which forces me to compare if to far more expensive units. I can only recommend that if you are looking for a cartridge in this price range - or higher - you give the MC-82 a try.

It must be the season for van den Huls, because here we go again! Goldring have just released their first ever moving coil cartridge, called the Electro II and retailing at around £ 125 .

The main design aim has been to improve upon the ability of present cartridges to reproduce detail by eliminating non-linear energy losses in the cartridge itself. To this end, no adhesive is employed in the construction and a rigid die-cast assembly is used. Very high precision mouldings are required.

Audiophile is on the phone, trying to get hold of one and see how it all manages to stay in one piece.

BHPAK BARGAINS

${ }_{5 \text { ¢T2 }}$ SCREWDRIVER SET

6 precision screwdrivers in hinged piastic case Sizes -0 8. 1.4.2.2.4.

ऽ 31 NUT DRIVER SET

5 precision nut drivers in hinged plashic case With turning rod.
Sizes: -3.35 .4 .4 .5 and 5 mm . $\mathbb{1 . 7 5}$ 5141 TOOL SET
5 precision instruments in hinged plastic case
Crosspoint (Philtips) screwdrivers -
HO and H 1 Hex key wrenches: -
152 and 25 mm £1.75
ST51 WRENCH SET
5 precision wrenches in hinged plastic case
Sizes: - 4. 4.5.5.5 5 and 6 mm . £1.75
 HEX KEY SET FREE HEX KEY SET ON RING Stzes 15.2.25.3 4.5. 5.5 and 6 mm . Made of hardened steel HX/1 £1.25
"IARESISTADLE AESISTOA EARGAINB"

Pat Ma.	C\%	Ourciption P
5119	400	Mured "NI Type" Resistors
SX11	400	Preformed 14.:2 watt Carbon
5×12		Resistors
		W walthabon Res
${ }_{513}$	20	\% watt Carbon Resistors
5×14	150	4 watt Resistors 22 ohm. 2 m 2 Mixed
5×15	100	1 and 2 watt Resistors 22 ohm- 2 m 2 Mixed

Quantities approximate. count by weight.
25 pieces of Audio Plugs. Sockets and Con 36 Pin, Speakers. Phono. Jack Stereo and Mono etc Valued at well over $£ 3$ normal Orde No. SX25. Our Price 1.50 per pak Guaranteed to save you money
SX26 3 Prs of 6 pin 240° DIN Plugs and COAssis pockels lystyrene Bead SX27A 60 Assorted Polystyrene Bead
Capacitors Type 9500 Series PPD $£ 1.00$ SX28A 50 Assorted Silver Mica Caps. 50 Assorted
$5.6 \mathrm{pF}-150 \mathrm{pF}$ $180 \mathrm{pF}-4700 \mathrm{pF}$
£1.00
SX30A 50 High Voltage Disc Ceramics 750 v min up to 8 KV Assorted useful values Assorted values 1onm-12K

SIREN ALARM MODULE

Amarican Police type scraamer powered Irom any 12 -volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm, freezer breakdown and other security purposes. BP124 5 watt 12 v max - Siren Alarm Modvie
$£ 3.85$
Order No
BP124

BI-PAK PCB ETCHANT

 AND DRILL KITComplete PCB Kit comprisas
1 Expo Mini Drill 10.000 RPM 12 v DC inci 3 collets \& $1 \times 1 \mathrm{~mm}$ Twist bit 1 Sheet PCB Iransters. $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ 1 Etch Resist Pen.
$11 / 2 \mathrm{lb}$ pack FERRIC CHLORIDE crystals. 3 sheets copper clad board 2 sheets Fibreglass copper clad board Full instructions tor making your own PCB boards
Retail Value over $£ 15.00$ OUR BI-PAK SPECIAL KIT PRICE $\mathbf{5} 9.75$ ORDER NO SX8

PROGRAMMABLE UNIJUNCTION TRANSISTOF "PUT" case T0106 plastic MEU22 Similar to Price: $1.9 \quad 10-49 \quad 50-99 \quad 100^{+} \quad$ Normal Retai $\begin{array}{llll}\text { rice: } 1.9 & 10-49 & 50-99 & 100^{+} \\ \text {Each: } 20 \text { p 18p } & 15 p & \text { Normal Retail } \\ \text { 13p } & \text { Price £0.35eac }\end{array}$ SX33A 6 small (min (SDST/SPDTToggle SX35A 6 Witches 240 F Samp

$$
\begin{gathered}
\text { SX35A } 6 \text { focker } \\
250 \mathrm{~V} 2 \mathrm{~A}
\end{gathered}
$$

A 2 Assorted Jack \& Phono plugs.
sockets and adaptors, 2.5 m .
3.5 mm and standard sizes

SX71 50 BC108 "Fallouts" Manufac turers out of spec on volts or gain You test. mixed bundle of Copper clad Board Fibre gtass and papper. Single and double sided. A
rantastic bargain $£ 1.00$

BRAND NEW LCD

 DISPLAY MULTITESTER.
RE 188 m

LCD 10 MEGOHM INPUT IMPEDANCE
$* 31 / h$ digit * 16 ranges plus hFE test lacility tor PNP and NPN transistors *Auto zero. auto polarity * Single-handed. pushbutton
operation *Over range indication * 12.5 mm ($1 / 2$-inch) large LCD readout ${ }^{*}$ Diote check -Fust circuit protection *Test leads. battery and instructions included
Maxindication 1999 or - 1999
Polarity indication Negative only
Positive readings appear without + sign
Input impedance 10 Megohms Zero adjust Automatic Sampling lime 250 milliseconds Temperature range $-5^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ Power Supply $1 \times \mathrm{PP} 3$ or equivalent $9 v$ Consumption anm
Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$
RANGES
DC Voltage $0-209 \mathrm{mV}$
$0-2 \cdot 20-200 \cdot 1000 \mathrm{~V}$. Acc: 0.8% AC Voltage $0 \cdot 200 \cdot 1000 \mathrm{~V}$
Acc. 1.2% DC Current 0.200 u 0-2-20-200mA. 0-10 A. Acc: 1.2%
Resistance $0-2 \cdot 20-200 \mathrm{~K}$ ohms Resistance 0.2-20.200K
0-2 Megohms. Acc: 1\%
BI-PAK VERY LOWEST POSS PRICE

SINGIE SIDED FIBAEGLASS

 BOARD| Orider Ma. | Piecs | Sis | Sq. lm | , |
| :---: | :---: | :---: | :---: | :---: |
| Fil | | $9 \times 2 \times{ }^{\prime \prime}$ | 100 | E1.50 |
| FB2 | 3 | $11 \times{ }^{\prime \prime}$ | 100 | E1.50 |
| F23 | 4 | 13×3 " | 156 | E2.00 |
| DOUBLE SIDED FIBREGLASSBOARD | | | | |

SILICON POWER TRANSISTORS -703
NPN like 2N3055 - but not full spec 100 watts 50 V min.
10 for $\mathbf{E 1 . 5 0}$ - Very Good Value 100s of uses - no duds Order No. SXse

REGULATED

VARIABLE STABILISED
POWER SUPPLY

1 - VPS30 Mockie, 1 - 25 volt 2 amp trmstormer,
$1-0.50 \mathrm{~V} Z^{\prime}$ Pand Meter, $1-02 \mathrm{amp} Z^{\prime \prime}$ Panel Meter.

$$
\begin{aligned}
& \text { £ } 1.00 \\
& 250 \vee 2 A \\
& \text { X32A } 12 \text { Assorted Jack \& Pheno plugs. }
\end{aligned}
$$

1-470 ohm wirewound potentiometer, 1 - $\mathbf{4} 7$ chm
wirewound polentionterar Wiing Diegram
included VPS3O KIT $£ 21$
SIREN ALARM MODULE
American Police type screamer powered from any 12 volt tupply into 4 or 8 ohm speaker. Idsal for car
burglar alarm, freezar brsak-down and other
Siren Alarm Module $£ 3.85$

SX38 100Silicon NPN Transistors-all perfect Coded mixed types with data and equt sheet. No rejects.
SX39 100 Silicon PNP Transistors-
$£ 3.00$ all pertect. Coded mixed types rejects. Fantastic value. $\quad £ 3.00$
2M3055 The best known Power Transistors in the World - 2N3055 NPN 115 5 Our BI-PAK Special Offer Price 10 of 50 ef $\quad 100$ at

BD312 COMPLIMENTARY PNP POWER TRANSISTORS: TO 2N3055. Equivalent MJ2955 - BD312 - T03 SPECIN PRICE 20.70 ach 10 of 56.50

MORE BARGAINS!

SX51 60 metres PVC covered Hook-up wite single and stranded. Mixed colours.
5x5s 25 Assorted Ti. Gates 7400
5×59 Series. 7401.7460.
SX59 10 Assorted flip Fiops and MSI.
SX6O 20 Assarted Slide
Potentiometers
Sx62 40 Assoited Pre-Sets Hor/Vert
Sx79 10 Reed Swiches - glass bpe 3 Micro Switches - with lever

-AUTO-ELECTRONIC PRODUCTS

 KITS OR READY BUITT

 KITS OR READY BUITT}

ELECTRONIC IGNITION

* is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
\star is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
\star Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
\star Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
\star Is the PERFORMANCE SMOOTH. The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.

Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - $31 / 2$ times more spark power than inductive systems $31 / 2$ times the spark energy of ordinary capacitive systems 3 times the spark duration.
Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO interference, Correct spark polarity and DESIGNED IN RELIABILITY.

- IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality $2 \mu \mathrm{~F}$ discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS: (Older current impulse types need an adaptor).

STANDARD CAR KIT £15.9
 Assembled and Tested $£ 26.70$
 PLUS
 P. \& P. E1 (U.K.)

TWIN OUTPUT KIT £24.55
For Motor Cycles and Cars with twin ignition systems
Assembled and Tested $£ \mathbf{3 6} \mathbf{4 5}$

Prices include VAT

PROTECT YOUR CAR WITH AN ELECTRONIZE ELECTRONIC ALARM

- 2000 COMBINATIONS provided by an electronic key - a minature jack plug containing components which must match each individual alarm system. (Not limited to a few hundred keys or a four bit code).
$\star \mathbf{6 0}$ SECOND ALARM PERIOD flashes headlights and sounds horn, then resets ready to operate again if needed.
$\star 10$ SECOND ENTRY DELAY allows owner to dis-arm the system, by inserting the key plug into a dashboard mounted socket, before the alarm sounds. (No holes in external bodywork, fiddly code systems or hidden switches). Reclosing the door will not cancel the alarm, before or after it sounds, the key plug must be used.
\star INSTANT ALARM OPERATION triggered by accessories or bonnet/boot opening.
$\star 30$ SECOND DELAY when system is armed allows owner to lock doors etc.

Don't Wait Until Its too Late ~ Fit one NOW!

- DISABLES IGNITION SYSTEM when alarm is armed.
* IN KIT FORM it provides a high level of protection at a really low cost. The kit includes everything needed, the case, fibreglass PCB, CMOS IC's, random selection resistors to set the combination, in fact everything down to the last nut and washer plus easy to follow instructions.

FITS ALL 12 VOLT NEGATIVE EARTH VEHICLES. SUPPLIED COMPLETE WITH ALL NECESSARY LEADS AND CONNECTORS PLUS TWO KEY PLUGS

CAR ALARM KIT
£24.95
PLUS
P. \& P.
f1 (U.K.)
Prices
ASSEMBLED AND TESTED $£ 37.95$
include

ALARM MODULE

This module is very small, very cheap, very simple and extremely loud indeed. Use it to make an existing burglar alarm tamper-proof or as the basis of a new system. Design by Phil Walker.

This project is designed to monitor the state of open and closed loop alarm circuits, together with the main power supply. If disconnected from the main system or from its external power source, it will trigger the internal noise source to draw attention. A rechargeable battery inside should keep it going for some hours once triggered; the unit cannot be reset until the fault condition has been removed.

A delay has been built into the trigger circuit so that the initial alarm tone is at reduced volume: useful if you wish to dash into a protected area and switch off the alarm circuit before all hell breaks loose, or if you've triggered it by accident. This could be shortened from the present 10 seconds or so if more immediate response is required. The sound output from the device is quite painful at close quarters even though the battery drain is reasonably small: testing the project in our workshop nearly led to insurrection and multiple lynchings by the staff from our other magazines! If used in a car the normal current drain from the car battery will be less than 5 mA . The time delay in this case may need to be altered for best effect (C1 adjusts this).

The Alarming Truth

The circuit for this project can be considered as four basic blocks. The first is dedicated to detecting all the alarm conditions, which are power failure, closed loop disconnection, and open loop contact. All these conditions will start the delay timer in the second block, and all except the power failure detector will make the alarm sound immediately.

The second block contains a time delay circuit, a thyristor latch and a power switch. When an alarm condition is detected in the first block, the time delay circuit will start. This may allow a small amount of current to flow through the output power switch, thus making a low volume sound as a

The Alarm module is completely self-contained. Here you can see the tweeter, the reset button and DIN socket for connecting the alarm sensor switches and optional external alarm.

With the case apart you can see how the tweeter fixing screws hold the PCB standoff pillars in place.
warning. If the alarm condition is not a power failure, a larger current will be drawn to make a more definite sound.

If the alarm condition persists until the delay circuit times out, the SCR switch can be turned on, switching the sound output to maximum, activating the relay driver and maintaining this condition until the reset button is pressed and released. However, the reset button is not effective unless the alarm condition has been removed from the input circuitry.
The reset button also acts as a test button in that it causes the alarm to sound while it is pressed (but only when everything else is in a normal condition).

The third block is the alarm sound generator and output transducer. The basis of this is a self-oscillating transformer-coupled multivibrator. This is tuned by the
capacitance of the piezo-electric tweeter to a frequency of a few kilohertz. Note that a normal loudspeaker is not usable here.

This circuit configuration takes the 8 V available from the battery and converts it to an approximate sine wave of around 18 V peak to

BUYLINES
There are a number of unusual com-
ponents for this project. The piezo-
electric tweeter is the Motorola type A
and can be obtained from BK Electronics
Ltd, 37 Whitehouse Meadows,
Eastwood, Leigh-on-Sea, Essex SS9 5TY.
The pot core can be ordered as type
29-835-41 from Neosid (Small Orders),
PO Box 86, Welwyn Garden City, Herts
AL7 1AS. The relay is RS type 349-658, or
else the Electrovalue type 42 should fit.
Electrovalue are at 28 St Judes Road,
Englefield Green, Egham, Surrey TW20
PHB . Watford Electronics, 33/34, Car-
biff Road, Watford, Herts stock the
2N5062, and the PCB can be obtained
from our PCB Service on page 83.
peak across the tweeter. As these devices are much more efficient than moving coil loudspeakers, the sound output is pretty high. In addition the current drain from the battery is only about 30 mA while the alarm is sounding. While not sounding, the battery is charged via the LM334Z constant current device (this feature should be omitted if a normal PP3 battery is used).

The final block of the project is the relay driver. This consists of a VMOS FET acting as a switch to turn on the current through a small relay. A diode is placed across the coil to absorb the back EMF when the current is switched off. The contacts of the relay can be used to activate an external alarm if required.

A useful tip: when assembling and testing this project connect the external +12 V supply first, then ensure that the 'closed loop' contact is connected to 0 V and the 'open loop' is unconnected before connecting the internal battery. Alternatively, a wool pullover or thick cushion may be used.to protect the ears!

Construction

The prototype unit fitted into a small general purpose box. The piezo-electric tweeter was screwed to the outside and the circuit board mounted with pillars to the same screws. For better protection, the mounting screws can be made loose at the case and PCB so that there can be no possibility of undoing
them from the outside of the case. A trace of epoxy glue on the threads should hold them in the right place. Then again, there's always pop rivets.

The construction of the PCB poses no unusual problems provided that the component polarities are followed carefully (although some lead bending may be necessary). The transformer, T 1 , is a standard RM10 ferrite transformer core. Starting at one of the inner pins of the single section former, wind on 100 turns of 32 swg wire and terminate it to one of the outer pins. Now wind on from the remaining outer pin, another 100 turns in the same direction and terminate this to the inner pin adjacent to the start of the first winding. If desired, a layer of tape can be placed over each layer of wire to keep the windings neat.

When assembling the transformer, place the ferrite cores around the bobbin and without pressing the centre of the cores at all ease the clips provided into the recesses on the ferrite parts.

For connection to the outside world we used a seven-pin DIN plug and socket. This was sufficient to carry all the necessary connections, including the relay output. However, you may prefer to solder wires from the sensor directly onto the PCB. For added protection the 'closed loop' connection could be used to ensure that the case could not be opened without setting off the alarm.

HOW IT WORKS

The sound output from the unit is produced by TX1 (a piezo-electric tweeter) which is driven by the oscillator Q7, $8, R 18,19$ and $T 1$. The frequency of operation of the circuit is determined by the inductance of $T 1$ and the capacitance inherent in TX1.

If SCR1, Q2 or Q3 (via PB1) are on then the current through R17 will make Q6 conduct, thus applying the battery voltage to T 1 and the relay driver circuit around Q9. This causes the alarm to sound and also activates any external device connected to the relay contacts RLA1.

The presence of an external power supply is sensed by Q4. This transistor is kept non-conducting while the input voltage is above about 10 V and the voltage across R11 is greater than about 8 V . If the supply voltage drops below 10 V or Q 2 conducts, then the voltage across R11 will drop and allow Q4 to conduct. This causes C 1 to charge up via R14 until Q5 conducts enough to turn SCR1 on via ZD2. This then sound the alarm.

Q2 can be turned on in two ways. Either the 'closed loop' input can be disconnected from ground, allowing current to flow down R2,3 and D2 into its base, or the 'open loop' input can be grounded, thus turning on Q1 and supplying Q2 base via R6. Both these conditions are abnormal and will trigger the sound circuit after a short delay.

The reset switch PB1 is connected to the anode of R1 on one side and to Q3 collector on the other. In order for the unit to be reset by this switch, Q3 must be on. This is only the case when Q2 is off and the input supply voltage is connected. When Q3 is on and PB1 is operated, the anode of SCR1 is pulled low, thus removing its holding current. When PB1 is released, SCR1 will not conduct until it is triggered again. Note that the alarm will sound when PB1 is pressed to test or reset the unit.

Fig. 1 Complete circuit diagram of the Ell Alarm Module.

Fig 2. Component overlay for the Alarm Module.

PARTS LIST

$\begin{aligned} & \text { Resistors (all } \frac{1}{} \mathrm{~W}, 5 \% \text {) } \\ & \text { R1, 2, 4-6, } \\ & 9,11,12, \end{aligned}$	
15, 16	10k
R3, 17	2k2
R7	1k0
R10	68 R
R13, 14,	
18-20	100k
R21	220k
Capacitors	
C1	100u 10 V tantalum
C2	100n ceramic
Semiconductors	
IC1	LM334Z
Q1, 4, 6	BC212L
Q2, 3, 7, 8	BC108
	BC182L
SCR1	C103 or 2N5062
D1, 11	1N4001
D2-10	1N4148
ZD1	3V9 400 mW zener
ZD2	2V7 400 mW zener
Miscellaneous	
PB1	single pole push-button
RLA	two-pole relay, 12 V 200 R coil, PCB-mounting
	RM10 pot core ($A_{t}=$ 400), with $100+100$ turns of 32 swg copper wire on a single section bobbin (8 pin)
TX1	Motorola piezo-electric tweeter type A
PCB (see rechargeable approximate tery clips, tional seven	Buylines): PP3-sized Nicad battery; metal case ly $100 \times 100 \times 50 \mathrm{~mm}$; batuts, bolts, pillars, etc; oppin DIN plug and socket.

This vertical view shows the internal layout of the project with the wiring connections. With a case of the specified size, there is just enough room for a PP3 battery.

01-452 1500 Tbcincomatic: Liti 01-450 6597

BBC Model A £299 BBC Model B £399 (incl VAT) Carr £8/unit Model A to Model B Fitting charge $£ 15$ Individual upgrades also available

WORD PROCESSOR 'VIEW' 16K ROM £52
 PRESTEL ADAPTOR £ 90.00
 TELETEXT ADAPTOR £195.00 2nd PROCESSOR 6502/Z80 £170

FLOPPY DISC INTERFACE
Incl. 1.0 operating system
$\mathbf{£ 9 5} \mathbf{+} \mathbf{£ 2 0}$ installation

Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES Single drive 5% " $100 \mathrm{~K} \mp 35+£ 6$ carr. Dual drive 5% " $800 \mathrm{~K} 799+£ 8$ carr.

BBC COMPATIBLE DRIVES
These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £360; 400K £490; 800K £610 Official.BBG'dealer
ACORN SOFT/BBC SOFT/GAMES PADDLES IN STOCK

MONITORS

3MC BM 1401 14in Colour Monitor RGB input $\mathbf{5 1 6 5}+\mathbf{8 8}$ cart KAGA RGBI 12in Colour Monitor RGB Input 235 + 88 carr KAGA 12in Hi-Res Green Monitor $\mathbf{5 1 7 0}+\mathbf{5 6} \mathbf{c a r t}$

MICROVITEC 1431 M/S 14in Colour Monitor $\mathbf{£ 2 6 9}+\mathbf{5 8}$ carr
Hi Res Green Monitor $599+$ E6 carr RGB Lead for BMC/KAGA $£ 10$ Composite Video Lead $£ 3.50$

ACORN ATOM
Basic Built E135 Expanded E175 (carr $E 3$ per unit) Atom Disc Pack ${ }^{[80} 9+\mathbf{5 6}$ carr 3A 5V Regulated PSU $\boldsymbol{Z}^{\circ}+\neq 7$ carr. Phone or send for our BBC Atom list.
$\mathbf{£ 0 . 5 0}$ each $£ 4.50$ for $\mathbf{1 0} \boldsymbol{\&} \mathbf{£ 1}$ carr

NEC PC 8023 BE-C

100CPS, 80 cols
Logic Seeking,
Bidiractional, For ward and Aeverse Line Feed, Uroportional Spacing, Auto Graphics, Greek Char. Set.
Only $\mathbf{£ 3 2 0}$

+ £8 carr.

PRINTERS

SEIKOSHA GP 100A 80 Cols 30 CPS Full ASCII e GRAPHICS $10^{\prime \prime}$ Wide paper Now only $\mathrm{f}^{175}+\mathrm{f6}$ carr. Ask for details on GP 250A
Parallel Printer lead for BBC/Atom to most printers $\mathbf{f 1 3 . 5 0}$ Variety of interfaces, ribbons in stock

EPSON MX 80 and 100F/T3 MX 80 80CPS 80 cols MX 100 100CPS 136 cols Logic Seeking, B directional, Bit image Auto Underline MX 80 F/T3 $£ 32$ MX 100 F/T3 (f8 Carr/Printer)

74 StRisb		$\begin{aligned} & 74181 \\ & 74182 \end{aligned}$	$\begin{aligned} & 340 p \\ & \text { 140p } \\ & \text { 180p } \end{aligned}$	74LS182A 74LS163A 74LS164	$\begin{aligned} & 7 p_{p} \\ & 7 S_{p} \\ & 7 s_{p} \end{aligned}$	74S08 74S 10 74S11	$\begin{aligned} & 80 p \\ & 80 p \\ & 80 p \end{aligned}$	$\left\lvert\, \begin{aligned} & 4063 \\ & 4086 \\ & 4087 \end{aligned}\right.$	$\begin{gathered} 06 p \\ 40 p \\ 230 p \end{gathered}$	LINEAR ICs						COMPUTER COMPONENTS						
7400	30 p															cpu				${ }^{81595}$		character
7401	300	${ }^{71185 a}$	1800	74.51854	1100	${ }^{74520}$	300	4088	${ }^{259}$	notsel	E1s		${ }^{2000}$	TE231	100	1002CE			2008	${ }_{\text {812 }}^{\substack{81296 \\ 81159}}$		R03－32513
7402	30 p	741	1309	74451868	${ }^{1800}$	74522	${ }^{000}$	${ }^{4069}$	269					тем90	8	2850A				${ }^{81}$ 1598	1400	UC ${ }^{\text {850p }}$
7403	30 p	74191	${ }_{1309}^{130}$	${ }^{7} 74218186$	${ }_{100} 100$	74530	100	${ }^{4071}$	249		0	m		TB810	\％	6502 400p		${ }^{300 \mathrm{p}}$		88Lsizo	3009	LC 850p
7405	30 p	74993	115p	74LS170	1400	74537	300	4072	$24 p$	AY－1－5050		Limb			\％	${ }^{6502 a}$ atep					1600	Keveonad
7406	4	74194	110p	74LS173A	100p	74538	100	4073	$20 \cdot$	AY－3－1350	45	urraci		теме\％	10	6000	82880		аm2els31	2037A		
7407	400	74196	100	74LS174	74	74540	cop	4075	200	AY－3－8910	450 p					6302				${ }^{\text {cose }}$	1100	5922
7408	${ }^{30}$	74196		74LS175	75p	74551	45	4076	${ }^{65}$	Ar30912		474		Tccen		8309	TMS990			2 N 236 EE	350	74 c923
7409	30	74197	11	74.5181	${ }^{200}$	${ }^{74584}$	459	4077	${ }^{259}$	cioren	${ }_{100}^{100}$	imps	＋	T0A1010		6809	TMs			ZTM2TE	1000	
7410	30	74196	${ }_{2200}$	74LS183	1000	74574	700	${ }^{4078}$	250	casms		LM1011	4	teatoza		${ }^{68809}$ ع10					${ }^{2509}$	Mintors
7411	30	74199	11200	74LS190	$7{ }_{70}$	74585	${ }_{1000}$	4081	20 p			LM1014		T041024		68309E 512	${ }^{2} \mathbf{7 0 0 9}$	30	DME131	2 LNMTE	1000	mehatoms
7412 7413	300	74251	100	74LS192	0 m	7445612 745112	1300	4085	60p	${ }^{\text {cherseo }}$		Lmies	\％			${ }_{6035}^{6000028}$						116
7414	70 p	74259	1500	74LS193	000	745113	120p	4086	75p	a		LM1877	4	т042000		803	280					750p
7418	30	74285	300p	74LSI94A	7\％	74S114	120p	4089	1200		Hes	LM1872		tonz2004		80С39						
7417	40 D	74273	200 p	74LS196a	7 T	$74{ }^{7} 124$	3000	4093	${ }^{35}$			Lm188				8000月			332	21018	${ }^{4009}$	$\begin{aligned} & \text { UAR } \\ & -15 \end{aligned}$
7420	${ }^{30}$	74276 74278	1700	74LS196	000	748132 745133	0 p	4099	0	ca	13	w－237		TL					Sas	2102	2300	3000
7422	30	74279	000	74LS221	00p	74S138	100 p	4096	0 p	${ }^{\text {chateo }}$		Lresce	\cdots	Town		${ }_{8088}^{80} 0$	TM34500	ci4	ossens		5000	
7423	36	74283	$105 p$	74LS240	000	74S138	18	4097	270			Wermed	m	To		${ }^{6088} 1717509$			1488	143	${ }^{2009}$	Comeor 3009
7425	40	74285	3200	74LS241	000	745139	100 p	4098	${ }^{5} \mathrm{p}$	c		unse		TEA10022		8741512	soms		MC16es	2147	4009	402
7428	40	74290		74LS242	000	74140	100 p	4099	S00			Lume				8748				410.15	3000	\％
7427	40	74293	0	74LS243	000	74S151	1800	4501	350			Usse		rios	0	TMS9900 514				${ }_{4}^{4} 532.20$	${ }_{2009}$	
7428 7430	330	74298 74351	${ }_{2009}$	74LS244	110	las 745157	Op	4503	ssp	crassoc	\cdots	См13600	1 mp	TLO71	＋	$\begin{array}{ll} \text { TMS99995 } & \text { £12 } \\ \text { ZASO } \end{array}$			¢с3380	481 EAP		
7432	30	74365A	100	74LS247	11	745158	200 p	4504		D7002		MS1513		${ }^{7}$		z80a		m	мс3480	5514	$4 \mathrm{se0p}$	and
7433		74368 A	000	${ }^{74 L 5248}$	119	745183		4505		¢		маз		TLOE1		z800			C34097		${ }^{3500}$	
7437	300	${ }^{7436 A}$ A	000	74LS249	110p	${ }^{745169}$	${ }^{65009}$	4506／14030	0 p	дисоеов			10	rose		z80CMOS （Clios ziol				61148．	400p	cayst
7439	40	743681	70	74LS253	75p	74 S 175	3200		p			MC	49	T08	18			18	c1441	62341	${ }^{7000}$	32.788 KHz
7440	400	74376	1000	74LS256	800	74S188	1609	4508	1200	1088		MC1405L	10	TLOM					4		260 p	1009
7441	cop	90	110	74LS257A	70	745189		10						$\pi 1$					ULN2004	743	2250	100 HHz 2700
7442 A	70p	74393	112	74LS288A	ros	74 74194	300	4511	P	${ }^{1} 1.727850$	0	маз	\％	Un7s9	150p	devices	$\begin{aligned} & 2518+5 \mathrm{~V} \\ & 2512.35 \end{aligned}$			74528	${ }_{2250}$	
7444	11	7490	140 p	74LS260	78p	$74 \mathrm{S196}$	3800	${ }_{4513}$	150 p	${ }^{1618038}$	00		\％	unail		${ }^{2051}$ E11	1232		UN2002	${ }^{23415}$	${ }^{1000}$	sp
7445	100	74.58	mes	74LS261	1200	74S200	4600	4514	110 p	－		${ }_{\text {MrScose }}$	${ }^{400 p}$	unezosa		2	32－30	E11	Uu2039 1m	${ }^{23625}$	${ }^{25000}$	15780 2009
7468				${ }^{74 L 5288}$	${ }^{200}$	745201	3200	4515	Op	1cMTSss		missoc	m	unesou		0620 \％m		mo	75107			80900
7447 A	1009	74LS00	249	${ }^{7415273}$	${ }^{125}$	74S225	${ }^{3200}$	${ }^{4516}$	P		14	mis	＋	Uu	40	${ }_{65232}$	${ }^{8+5 v}$		106			${ }^{2 \mathrm{MHz}} \quad 175$
7448	${ }_{3}^{120}$	74.	249	${ }^{\text {74LS279 }}$	1000	745240 745241	${ }_{4000}$	${ }_{4518}$	200	LC	5	mise	08	Uiver		${ }_{0}^{6032}$ e32 mim		m	7510			
7451	359	74LS03	24 p	74LS283	00p	74S244	00	4519	32	LC7	0	Ness	130	unvas		${ }_{6821}^{651}$	${ }^{2732}$		${ }_{75113}^{5012}$			3.57961009
7453	389	74LSO4	24 p	74LS290	0	744251	0 p	4520	00p	L5	180	Nest	0	UPCO		${ }_{68821} 300 \mathrm{p}$	2764－28	2200	75114			1400
74	38	742505	24 p	744229	${ }^{0000}$	74S257	P	${ }_{4}^{4521}$	1sp	${ }_{4}^{15351}$	0	nesse	\％	upcra			27 CL 2		7515	2	1000	100p
7470	60	74LS09	24 p	74LS295	140 p	745280	1000	4526	700	Lr3es	∞	Nese	400	UR		10		mp	${ }^{5122}$ 1400			${ }^{4.008}$
7472	ssp	74LS10	24 p	74LS297	59	745261	300\％	4527	200	${ }_{L}^{153565}$	1100	Ness6	5			0		45	${ }^{51509}$	18saca	2000	［1．000
7473	${ }^{54}$	74LS11	24 p	74LS228	${ }^{100 p}$	745283	Q	4528	${ }_{5} \mathrm{p}$	L	0 m	nese7	1250	22		00 p			$1 \times$	745188 $7 / 5287$	${ }^{1009}$	（000
7476	45	74LS 14	300	74LS323	300 p	745289	225p	4532	csp	U5008C	70^{0}	NEsen	＋	x O 22	190	${ }_{\text {exrs }}^{\text {esest }}$ mp	CRTS	E10	${ }_{75182}^{75181}$	${ }^{7} 45389$	${ }_{12500}^{2250}$	7.168 175p
7480		74LS 15	24p	74LS324	3200	74S299	560p	4534	300p	LM310	30	NESS	10	2009		${ }^{1154}$	cars	${ }^{12}$	7172	${ }^{225123}$	1500	3.00 8.887 1750 175
7481	100 p	74LS20	24 p	74LS348	200p	745373	400 p	4536	${ }^{2509}$			Ness3a		${ }_{\text {20，}}^{2014}$		${ }^{8155}$		8	${ }^{\text {c／ile }}$			$10.50 \quad 2509$
7483 A		74LS21	24 p	${ }^{74 L 5352}$	${ }^{1200}$	745374	400	4538	${ }_{75} 78$	Wm318	10	Ness3	0	2M123E		${ }_{8200}$	Frises		75180	comt		$10.70 \quad 1509$
7484 A	${ }^{125 p}$	${ }^{74 L S 22}$	249	74LS353	${ }_{2100}^{1200}$	74S387	225p	4541	${ }^{\text {sp }}$	Mas24		op－07m	¢	${ }^{2424 E}$		${ }^{8212}$	${ }_{\text {ersesem }}$	${ }^{28}$	${ }^{75358}$	${ }^{1} \cdot$		$\begin{array}{ll}11.00 \\ 12.00 & 3009 \\ 1509\end{array}$
7488 7488	1109 420	74LS24	${ }_{249} 6$	${ }^{74 L 5383}$				${ }_{4543}^{4543}$	0 p		110			24025Es	\％	－8264			${ }_{75651}$	75sa	E10	${ }^{14.00}$
7489	210 p	74LS27	24 p	${ }^{74 L 5364}$	${ }^{160}$	4000 S	Es	4551	1009	¢us3e	100	${ }_{\text {RCA } 151}$	4	2 2427E		${ }_{8238}^{823}$			${ }^{75452}$	边 68.3	¢ ${ }^{\text {¢ }}$	${ }_{\text {14，} 14.756}^{14.318}$
7490A		74LS28	249	${ }^{\text {74LS365 }}$	${ }^{\circ} \mathrm{P}$			${ }^{4553}$	08		＋	RCLESA		${ }^{\text {ZuF2eg }}$		${ }_{\text {823 }}$			${ }^{\text {masa }}$	8272	812	15.00
7491	709	${ }^{744530}$	249	${ }^{74 L 5386}$	800	4000	$\begin{aligned} & 20 \mathrm{p} \\ & 240 \end{aligned}$	4556	p	L	\％	sscose	18	zunges		\％eso			7589011109	O788A，	${ }_{813}{ }^{\text {c13 }}$	$\begin{array}{ll}18.00 \\ 18.00 & \\ & 1700 \\ 1000\end{array}$
7492 A 7493 A	70	${ }^{744 \mathrm{LS32}}$	249	${ }^{\text {74LSLS3689 }}$	${ }^{609}$	4002	259	4557	2400	Lıst1	100	sfrreses	¢	Ot		${ }^{2353 C}$		16	\％sasa	FD1791	20	$18.432{ }^{150 p}$
7494	110 p	744537	249	${ }^{74 L 5373}$	100	4006	700	4580	1400	पses	100	100	3			S5AC－5			${ }^{\text {тT20 }} 110 \mathrm{~m}$	${ }^{\text {Fp1790 }}$	20	19069
74954	60p	74	239	74LS374	${ }^{00 \mathrm{p}}$	${ }_{4}^{4007}$	250	4566		UM30		SNTR							${ }_{8156}^{818}$	W02793	${ }_{27}^{7}$	24.0001500
7497	110	${ }^{74 L S 40}$	40p	${ }^{74 L 5377}$	130 p	4009	459	4569	1700	LM	20	SNTEA93	m			$8257 C-5$			${ }^{190}$	W02797 W01691	（278	
74100	100 p	74LS43	1809	74LS378	15 P	4010	100	4572	45	Umses	228	TAT120	1290	Du 230 E		$\begin{aligned} & 8259 C-6 \\ & 375 \end{aligned}$		140	${ }_{\text {gTog }}^{\text {8T9 }}$	wo21	${ }_{812}$	Px01000
74107	ω	74LS47	0 p	74LS379	130p	4011	$24 p$	4583	cop	LM		ta7130								Tum	ed P	Pin Low
74109	15p	74LS48	100	${ }^{74 L 5331}$	\％	4012	${ }^{25 p}$	4584	${ }^{460}$		3700	${ }^{\text {Ta720s }}$									file So	ckets
74110	\％p	${ }^{742549}$	${ }^{1009}$	74LS365	2sp	4013	30	4585	909	Lk		－${ }_{\text {Ta7zos }}^{\text {tapaz }}$								8 pin	25 p	22 pin 50p
74		${ }_{744 \mathrm{LS54}}^{7}$	24p	${ }^{74 L 53939}$	1000	4014	${ }_{700} 0$	14411	1800 7800	U4392a	1109	tar310	109			$\begin{aligned} & \text { MC6818P } \\ & \text { MM58174AN } \end{aligned}$		SAA		14 pin	30p	24 pin 65p
74118	1100	74LS55	249	74L5396a	100	4018	30	14412	7800										700p	16 pin	35p	28 pin 65p
74119	1700	74LS73A	300	74L5399		4017	559	14418	3009		OL	GE	ULAT			MSM5832R		SAA50		18 pin	40p	40 pin 90 p
74120 74121	1000 850	74LS74	${ }_{450}$	74LS445		4018	${ }_{000} 0$	14419	${ }_{4200}^{2809}$			FXED P	8TI				350p			20 pin	45p	
74122	70 p	74LS76A	30 p	74LS487	1200	4020	000	14496	4500							Low PRofile s	OCKEt	\％	As WIRE	wrap sock		ay texas
74123	${ }_{00} 0$	74LSE3A	709	74．5490	130	4021	${ }^{00}$	14500	${ }^{6050}$	${ }^{5 V}$		7805			${ }^{609}$	${ }^{1} \mathrm{p}$ in ${ }^{\text {ajop }}$	$2{ }^{2} \mathrm{p}$		切 $\left.\right\|^{8 \mathrm{pln}}$	50	22 p	pin 75p
74125 74126	${ }_{65 p}$	${ }^{74 L S 65}$	75 p	74LS541	${ }^{1009}$	${ }_{4}^{4022}$	700 300	122990	2000 3500	${ }_{18} \mathrm{~V}^{2}$		${ }_{7806}^{7888}$	800	7906 7909	0_{000}	14 pin	22 pl		240 ${ }^{40}{ }^{14} \mathrm{pm}$		2	7 sp
74128 74128	${ }_{850}{ }_{80}$	74LS86 $74 L S 90$	450	74LSS08	700p	${ }_{4024}$	300	${ }_{22101}^{22100}$	${ }_{700}$	12 V		${ }_{7815} 78$	45	7912	0	${ }_{18}^{16}$	28 pl		3209018 pm	4		pm $\quad 1000$
74132	75p	$74 \mathrm{LS91}$	000	74.5610	${ }^{10000}$	4025	249	22102	700p	19V		${ }_{7818}^{7815}$	${ }^{500}$	7915 7978	${ }^{600}$	${ }_{20} 8 \mathrm{pin}$ 10p			30p $\begin{aligned} & \text { a }\end{aligned}$	00		P00
74336	700	74LS92	85	74LS612		4026	40	40014／458		24 V		7824		7924								
74141	${ }^{2009}$	${ }_{\text {74LS958 }}$	${ }_{750} 8$	74LS824	${ }_{2250} 28$	${ }_{4028}^{4027}$	409	40108	440	SV	100 mA	${ }_{78 \mathrm{~L}}^{78 \mathrm{LOS}}$		79.06		OPT	O－EL	ECTR	ONIC			DRIVER
74143	${ }_{270} 200$	74LS96	100	74LS628	${ }^{225} 9$	4029	73 p	40085	1200	12 V		${ }_{78 L 12}$		79.12	600							
74144	2700	74LS107	40 p	74LS629	$125 p$	4030	35p	40097	30	15 V		78.15	30 p	792． 15	50 p					\％	${ }^{936}$	350
74145	110 p	74LS 109	409	74 LS640	200p	4031	${ }_{105}^{125}$	0098	1409										311	1800		OUNTERS
74147 7448	1700 1400	${ }^{\text {74LS112 }}$	450	74L5640－1	3000	${ }_{4033}$	125p	40101	1250		OTH	R REC	LAT			${ }^{*}$						COUNTE
74150	173p	74LS114	450	74 LS64	150p	4034	250p	40102	130 p	Fthedrap						M M W1／	000		N8910	120p		
${ }_{7}^{741514}$	700	7445122	700	74LS642－1		4035	P	401	2000	LM309K						man3e	Sp			75p		C928
74153	000	74LS123	100		${ }^{3000}$	4036	70p	401	1200	LM323K		3 3A			2500		759 1200	\％		1200		1040 670p
74154	140 P	74LS124／		${ }^{7445643}$	260 p	${ }_{4038}^{4037}$	${ }^{1100}$	${ }^{40105}$	${ }^{130}$	${ }^{78 H 05 K C}$		5 A			5750	TLi00	908	Sft	3306	1000		
74155 74158	${ }_{1009}^{009}$	74LS 125		74LS643－1	3000	${ }^{4038}$	${ }^{1009}$	40107	stip	78H12					750p	OPTO－IS	OLAT	ORS				
74157	100	74LS 126	000	74LS644	3600	4040	cop	40106	3200	Varimbe Re	Tegratio					RGV	㙰学					
74159	175 p	74LS132		74LS6A5	${ }^{200}$	4041	550	40109	200	LM305AH					2350	MCS26	${ }_{\text {Thl11 }}^{\text {The }}$					
74180	110 p	744S133	${ }^{00 p}$	74LS645－1		${ }_{4}^{4042}$	000	40110	${ }_{2250}^{2250}$	LM317T		TO			1509	Mocsiozo				prices ar		
74161 74162	${ }_{100}^{00}$	74LS136	sto	74LS668	${ }_{400}^{400 p}$	4043	${ }_{600} 00$	4	${ }_{200}^{2250}$	LM317K		${ }_{3}{ }^{\text {3A }}$	VAR		2205	HLO74	16N13			change	with	
74163	1109	74LS139	55	74LS669	cop	4045	$100 p$	40163	100p	LM350t			$V A R$		4000	LED	SS					
74164	1200	${ }^{74 L 5145}$	ssp	74LS670	1700	4046	000	40173／408		LM396K			VAR		815							
74185	110 p	74.5147	1759	${ }^{74 L 5682}$	${ }^{230}$	4047	000		1200	LM723N					50 p	TIL211 Green						
74186	P	74LS148	1409	${ }^{74 L 5684}$	${ }^{360}$	4048	550	40174	100 p	${ }^{78 H G K C}$			VAR		${ }^{650}$	TIL212 Yello		20	＇We	also	ck	a large
74187	4000	74.5151	csp_{5}	${ }^{7415687}$	${ }^{3509}$	4049	30	40175	1000	79HGKC			AR		${ }^{675 p}$	TIL220 Red		15	5p range			
74170	200 p	74LS 152	2000	$74 L 5688$	${ }^{380}$		${ }^{35}$	40192	100 p	78GUIC			VAR		225 p	TILa12 Green			${ }^{\text {sp }}$ p range			sist
74172 74173	${ }^{42009}$	74LS153	${ }_{1850}^{65}$	74LS783		4	8590	40244	1800 1500	79GUIC			VAR		250p	TIL226 Yellow Bar A		22	2 p Diode	s，Brid	ge R	Recti－fiers，
74174	nop	74LS 155	6sp	18 3ER		4053	0	40257	1000	${ }^{\text {ICLI7660 }}$						Red（10）Bar A			Triacs		yristo	ors and
74175	1059	74LS156	${ }_{6 S p}$			4504	000	40373	10p	SG3524						Green（10）		225	p Zene		ease	call for
74176	100p	74LS157	309	74500	00p	4055	00p	40374	100 p	TL494					300 p	RECT．	EDS					
${ }_{74178}$	1509	74.5158	${ }_{\text {sp }}$	74502	50 p	4056	${ }^{250}$	80 c96 $80 \mathrm{Ca7}$	759	TL497					300 p	Red．Green．Yell	Iow	30	detais．			
79		74LS160A		74504		4069		80×97		78S40					250							

Microtan Clock Switching For Software Tests

K. E. Knibbs, Huntingdon

I designed this circuit because I needed a system of switching the clocks on Microtan system from the normal speed of 750 kHz to 1 MHz in order to test software in real time which had been written for a standalone 6502 controller. The circuit functions as follows: the two
oscillators fire the monostables IC2 and IC3 for their minimum period of approximately 20 nanoseconds. Only when these fire at the same time does an output appear at pin 3 of IC5d: This pulse is used to clock the D-type flip-flop IC4, the input of which is the debounced switch. The output enables IC5a or IC5b which allows either a 6 MHz or an 8 MHz clock signal to enter IC5c. This ensures that no clock pulse is either too short or too long and is glitch-free. The circuit has been in use for over three months and no system crashes have been caused by it.

Low Resolution Pulse Generator

G. Foote, Woodford Green

This circuit produces pulses whose width is controlled by a three bit word and which can be used to control motors and similar devices where high resolution isn't needed.

IC1 is a decade counter with outputs ' 0 ' to ' 9 ' going high in turn. Here it counts from ' 0 ' to ' 8 ' and is reset by the ' 9 ' output which is connected back to the reset pin. Outputs ' 0 ' to '7' are connected to IC2, an eight-line-to-one-line multiplexer. The output which is connected to pin 3 by the internal switches of the IC depends on the value of the three-bit word on pins 9, 10, 11.

IC3 is configured as a bistable and is set by the ' 8 ' output of IC1. It is
reset by one of the other outputs of IC1; the one selected by IC2. The length of the output pulse at pin 3 of IC3a depends on which output of IC1 is used to reset the bistable, the output being selected by the three-bit word input to IC2. Note that the 4051 could be replaced by a 4512 data selector.

Digital Frequency Meter
 William Leung, Harlow

The design shown is an alternative to those projects for DFMs that utilise one of those new fangled all-in-one DFM chips. As you can see from the circuit diagram, the only additional circuitry required is an input preamplifier and a suitable regulated 12 V power supply.

IC5 is a real-time five-decade counter incorporating a multiplexed $B C D$ output. With the aid of IC8 (a BCD-to-seven-segment decoder) and transistors Q1 to Q5, the counter and display section of the DFM is formed.

The BLANK pin on IC8 is used to extinguish the displays while IC5 is counting, otherwise pin 4 of IC8 should be connected to the positive rail. The frequency reference oscillator is somewhat unique in that a 500 kHz ceramic resonator is used.

In practice it offers reasonable accuracy: however, the circuit can be easily modified to use a 1 MHz quartz crystal. In this case, the connections between IC2 and IC7 of the frequency divider section will require the inputs of IC7 to be connected to pins $3,5,12$, 14 and 15 of IC2. Pin 14 of IC3 should also be connected to IC2 pin 2, and a suitable multiplexing frequency of around 1 kHz should be fed to pin 10 of IC5.

Depending on the position of SW1b, either $1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ or 100 Hz will appear at IC9 pin 11 (see Fig. 2, point P), where IC9a is a D-type flip-flop configured to divide by two.

Should IC9a be continuously enabled, the output of IC9a will, in fact, be a square wave of half the applied frequency with a mark/space ratio of 1:1. This means that for a 1 Hz applied frequency, 0.5 Hz will appear at IC9a pin 13 and the time for which the cycle will be high is, in fact, one second. This is then fed to the gate IC6a. However, only one such gating

CONNECT PINS 8,9,12,13 OF IC3 TO GROUND

Fig. 1
pulse is produced, after a certain time period set by C3 and R18. The monostable formed round $1 C 6 c, d$ is used to give the reading period of the display, when triggered, by enabling IC8 and disabling IC9a. At the end of the monostable period, a short pulse is produced at S which resets the counter. IC1e is there to ensure that IC9a is not enabled before the reset pulse to the counter is produced (see T), otherwise all hell will break out!

Finally, the D-type flip-flop that remains is used as the basis of the overflow indicator; on the transition of the counter from 99999 to 00000 , a pulse is produced at IC8 pin 15 which latches IC9b pin 1 high, thus lighting up the LED. Pressing PB1 resets the whole system.

Fig. 2

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be as clear as possible and the text should be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copyright. Items for considerations should be sent to ETI TECH-TIPS, Electronics Today International, 145 Charing Cross Road, London WC2H OEE

Module Number	Output Power Wetts rims	$\begin{array}{\|c\|} \hline \text { Loed } \\ \text { Impendornco } \\ \Omega \end{array}$			Suppty Voluap TVP	Size mm	$\begin{aligned} & \text { WT } \\ & \mathrm{gms} \end{aligned}$	Price inc. VAT
HaY 30	15	4.8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	240	${ }^{18.40}$
HY60	30	48	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	¢9.55
17Y6060	$30+30$	48	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	€18.69
HYY 124	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	£20.75
HY128	60	8	0.01\%	<0.006\%	± 35	$120 \times 78 \times 40$	410	E20.75
HY244	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	¢25.47
HY248	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	E25.47
HY364	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	E38.41
HY368	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	E38.41

Module Number	Output Power Watta rms		$\begin{aligned} & \text { DISTO } \\ & \text { T.H.D. } \\ & \text { Typat } \\ & \mathbf{T K H z} \\ & \hline \end{aligned}$		Supply Vottage Typ	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$	$\begin{array}{\|l\|} \hline W T \\ \mathrm{gms} \end{array}$	
MOS 128	60	4.8	<0.005\%	<0.006\%	± 45	$120 \times 78 \times 40$	420	¢30.41
MOS 248	120	4.8	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 80$	850	f39.86
MOS 364	180	4	<0.005\%	<0.006\%	± 55	$120 \times 78 \times 100$	1025	¢45.54

Protection: Able to cope with complex loadt without the need for very special
protection circuitry (futes will sulfice).
Slew rate: $200 / \mu \mathrm{ss}$. Rive time: $3 \mu \mathrm{~s}$. S/N ratio: 100 db
Frequency response (-3dB): $15 \mathrm{~Hz}-100 \mathrm{~K} \mathrm{~Hz}$. Input sensitivitr: 500 mV rms Input impedance: $100 \mathrm{~K} \Omega$. Darnoing factor: $100 \mathrm{~Hz}>400$.

'NEW to ILP' In Car Entertainments

Mono Power Booster Amplifier to increase the output of your existing car radio
or cassette player to a nominal 15 watts rms.
Very easy to ure.
Robust construction.
$£ 9.14$ (inc. VAT)
Mounts anywhere in car.
Automatic switch on.
Output power maximum 22 w peak into 4Ω
Frequency reeponse (-3d8) 15 Hz to 30 KHz . T.H.O. 0.1% at 10 w 1 KHz
S / N ratio IDIN AUDIOI BodB, Losd Impedance 3Ω
Size $95 \times 48 \times 60 \mathrm{~mm}$.
Size $95 \times 48 \times 60 \mathrm{~mm}$. Weight 256 gms .
C1515
Size $95 \times 40 \times 80$. Weight 410 gms.
Asparate PSU 30 is availdsle puraly for pre amp modules if recuired for
E5.47 (inc. VATI. Pre-amp and mixing modules in 18 different varistions
hease send for details.
Mounting Boards
For ease of construction we recommend the B6 for modules HY8-HY13 $£ 1.05$
inc.VATl and the 886 for moctules HY66-HY78 $£ 1.29$ (inc. VAT).
POWERSUPPLYUNITS (Incorporating our own toroidal transformers)

Model Number	For Ueo With	Priop inc. VAT
PSU 21X	1 or 2 HY30	611.93
PSU $41 \times$	1 or $2 \mathrm{HY} 60.1 \times \mathrm{HY} 6000 \mathrm{l} \times \mathrm{HY} 124$	¢13.83
PSU 42x	$1 \times \mathrm{HY128}$	£15.90
PSU 43x	$1 \times$ MOS 28	£16.70
PSU $51 \times$	$2 \times \mathrm{HY} 128,1 \times \mathrm{HY} 244$	E17.07

Modill	For Use What	Price inc. VAT
PSU 52X	$2 \times \mathrm{HY} 124$	¢17.07
PSU 53x	$2 \times \mathrm{MOS128}$	£17.86
PSU 54X	$1 \times \mathrm{HY} 248$	£17.86
PSU 55X	1x MOS248	¢19.52
PSU 71X	$2 \times \mathrm{HY} 244$	¢21.75

$\begin{array}{\|l\|} \hline \text { Medel } \\ \text { Number } \end{array}$	For Use With	Prics inc. VAT
PSU 72X	$2 \times \mathrm{HY} 248$	¢22.54
PSU 73X	$1 \times \mathrm{HY} 364$	£22.54
PSU 74x	$1 \times \mathrm{HY} 368$	£24.20
PSU 75x	$2 \times \mathrm{MOS248}$, $1 \times \mathrm{MOS368}$	£24.20

[^2]
WITHALOT OF

HELP riom

Qn: ELECTRONICS LTD

CAN HANDLE...
 Unicase

PROFFSSIONAL HIFFI THAT EVERY ENTHUSIAST

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY7B to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Seomates					Price inc. VAT
UC1	Preamp				£29.95
UPIX	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	$£ 54.95$
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	$£ 54.95$
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£74.95
UP6X	60W/4-8	MOS	Mono	HiFi	${ }^{\text {¢ }}$ £64.95
UP7X	120W/4-8ת	MOS	Mono	HiFi	£84,95
Power Slayes					
US1X	60W/4 Ω	Bipolar	Power	Slave	$£ 59.95$
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3X	60W/4-8	MOS	Power	Slave	£69.96
US4X	120W/4-8	MOS	Power	Slave	$£ 89.95$

[^3]

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST
address as shown at the bottom of the page opposite, Wh . Way postage for
you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENTMAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

LOGIC PROBE

Are you probing logically? S. G.Applebaum describes a circuit that will help if you are.

The logic probe circuit described here has been found to be invaluable in debugging and fault-finding on logic systems using discrete CMOS ICS. Utilising three integrated circuits, the probe will allow the checks listed in Table 1 to be carried out.

The probe is supplied from the logic system under test - power is picked up by a flying lead from the board and terminated with croc clips or miniature connectors. The probe will work from a DC supply

Fig. 1 Circuit diagram for the Logic Probe.

of 5 V to 15 V and consumes less than 10 mA . Input impedance is approximately 100 k and threshold levels are set at logic $0<1 / 3 \mathrm{~V}_{\mathrm{cc}}$ and logic $1>2 / 3 \mathrm{~V}_{\text {cc }}$.

The circuit diagram is shown in Fig. 1 with a suitable component layout in Fig. 2 . Utilising the layout shown the probe may be housed in a length of $\frac{7}{8}$ " diameter polythene tubing as stocked by DIY shops for plumbing applications. If this diameter tubing is used, then the two 47 nF capacitors determining

FAULT

1. Open circuit check
2. Circuit at logic 1.
3. Square wave input
4. Negative-going pulse
5. Presence of glitches down 100 nS duration

Both LEDs off Green LED on
Red LED
Red and Green LEDs on
Green LED on, Red LED flashing
Pulse stretching causing red or 100 mS .
the timing of the MC, 14538 monostables should be mounted on the track side of the PCB.
Alternative types of IC may be used for IC1 and IC2 e.g. TL062, CA3240E for IC1, and CD4098, MC14528 for IC2. Total component cost should be less than $£ 5.00$, plus PCB.

HOW IT WORKS

R1, D1 and D2 form the input protection; IC1a detects high logic levels, and IC1b detects lows. If neither of these are present, neither of the LEDs can light.
D8 and IC3a/D8 detect steady high and low states respectively, while monostable IC2a and IC2b detect positive and negative going pulses respectively. The cross-connections from the data outputs to the reset inputs prevent both monostable firing concurrently, so that, for example, a positive-going pulse will trigger IC2a. but IC2b will be held off until the monostable period has timed out, and so will not be trigge red by the trailing edge of the pulse.

NAND gates IC3b,c only allow the LEDs to light when there is a valid logic state as detected by IC1a,b.

PARTS LIST

Resistors (all $1 / 4$ watt 5% carbon)			
R1	10 k		
R2, 3	220 k		
R4-6	330 k		
R7, 10,	11		
R8k			
R8, 9	1 k 0		
R12, 13	2 k 2		

Capacitors

C1,2 27 n polycarbonate

Semiconductors		
IC1	LF353N	
IC2	MC14538, 4098 etc.	
IC3	4011B	
D1-D8	1N4148	
LED 1	Red high intensity 0.2in.	
LED2	Green high intensity 0.2 in.	

Miscellaneous

PCB, connectors, case

Fig. 2 Component overlay.
TORODDALS
The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TY¢		$\begin{aligned} & \text { SECONOARY } \\ & \text { Volts } \end{aligned}$	Cuws	PAICE
		$\begin{aligned} & 6+6 \\ & 9+9 \\ & 12+12 \\ & 1+9+15 \\ & 182+16 \\ & 22+22 \\ & 25+25 \\ & 30+30 \end{aligned}$		$\mathbf{£ 5 . 1 2}$ iotur
$\begin{aligned} & 50 \mathrm{Va} \\ & \mathbf{8 0 \times 3 5 \mathrm { mm }} \\ & 09 \mathrm{~kg} \\ & \text { Requation } \\ & 13 \% \end{aligned}$			416 277 208 106 138 138 113 1.00 083 045 0.22 0.20 0.20	$£ 5.70$ 10:ALlocs
$\begin{gathered} 80 \mathrm{va} \\ 90 \times 30 \mathrm{~mm} \\ 1 \mathrm{~K}_{\mathrm{p}} \\ \text { nopopion } \\ 12 \% \end{gathered}$			664 644 3.33 2.66 2.22 181 180 1.33 072 0.36 0.33 033	£6. 08 -wertis Tork cas
		$6+6$ $6+9$ $12+12$ $15+15$ $18+18$ $22+22$ $23+25$ $30+30$ $35+35$ 110 220 240 28		$£ 6.90$ -vatrios 10tach 19 w
$\begin{aligned} & 160 \mathrm{VA} \\ & 10 \times 4 \mathrm{~mm} \\ & 18 \mathrm{~kg} \\ & \text { Requation } \\ & 8 \% \end{aligned}$		129 $12+9$ $12+12$ $15+15$ $18+18$ $22+22$ $25+25$ $30+30$ $35+35$ $40+40$ $4+10$ 220 200 200		$\mathbf{£ 7 . 9 1}$

$\star 234$ TTPES TO CROOSE FROM!
\star orders despatcind wifila 7
DIts or mecilit roz ziche on
SHLL QUATHIT ORDERS

* 5 TLAR mo pUBBLE CULPATITL

TYPE	$\begin{array}{\|c\|} \hline \text { SERIES } \\ \mathrm{NO} . \end{array}$	$\begin{gathered} \text { SECONDARY } \\ \text { VOHIS } \end{gathered}$	$\begin{aligned} & \text { RMS } \\ & \text { Current } \end{aligned}$	PRICE
225 VA $110 \times 45 \mathrm{~mm}$ 22 kg Regution 7%		$12+12$ $15+15$ $18+18$ $22+22$ $25+25$ $30+30$ $35+35$ $40+40$ $45+45$ $50+50$ 10 220 240	$\begin{aligned} & 9.38 \\ & 7.50 \\ & 6.25 \\ & 5.11 \\ & 4.50 \\ & 3.75 \\ & 3.21 \\ & 2.81 \\ & 250 \\ & 2.25 \\ & 2.04 \\ & 1.02 \\ & 0.93 \end{aligned}$	$£ 9.20$ - pop c2 00 - vatiti 64 totaifize
 300 Va $110 \times 50 \mathrm{~mm}$ 26 Kg Regulation 6%	7×013 7×014 7×015 7×16 7016 7×017 7×18 7×026 7×026 7×025 7×033 70028 7×029 7×030 7	$\begin{aligned} & 15+15 \\ & 18+18 \\ & 28+22 \\ & 25+25 \\ & 30+30 \\ & 35+35 \\ & 40+40 \\ & 4+45 \\ & 50+50 \\ & 110 \\ & 220 \\ & 240 \end{aligned}$		£10.17 - pro E2 00 , VAI $\mathrm{f1} 8$ rotal S1a 00
500 VA $140 \times 60 \mathrm{~mm}$ 4 Kg Regutzion 4%		$\begin{gathered} 25+25 \\ 30+30 \\ 35+35 \\ 40+40 \\ 45+45 \\ 50+50 \\ 55+55 \\ 110 \\ 220 \\ 20 \end{gathered}$	1000 833 7.14 6.25 655 505 500 454 454 4.27 208 208	$\begin{gathered} 23.53 \\ \text { - Doct } 235 \\ \text { - } 2015738 \\ \text { rotac } 61826 \end{gathered}$
 625 VA $140 \times 75 \mathrm{~mm}$ 5 Kg Regulaino 4%	$9 \mathbf{x} 017$ 9×018 9×026 9×025 9×033 9×042 9×028 9×029 9×030 9×0	$30+30$ $35+35$ $40+40$ $45+45$ $50+50$ $55+55$ 110 220 240	$\begin{array}{r} 1041 \\ 892 \\ 781 \\ 7.94 \\ 8.25 \\ 568 \\ 568 \\ 284 \\ 2.60 \\ \hline \end{array}$	

IMPORTANT: Regulation - All vohages queted are FULL LOAD. Piesse add regulation figurs to secondary voltage to obtain off load voltage.
The benefits of ILP toroidal transformers
HLP toroidal transformers are only half the weight and height of their laminated equivalents. and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows:
For 110 V primary insert " 0 " in place of " X " in type number.
For 220V primary (Europe) insert " 1 " in place of " X " in type number.
For 240V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products, or any groducts from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barciaycard welcome. All UK orders sent within 7 days of receipt of order for single and smail quantity orders.
Also avariable at Electrovalue. Maplin and Technomatic.

Please send
Total purchase price
I enclose Cheque
Posala Oides \square
Debit my Access/Barclaycard No
aseess \qquad
Signature
Post to: ILP Electronics Ltd, Freepost 4 Graham Bell House, Roper Close. Canterbury CT2 7EP, Kent, England.
Telephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780 .
(a division of
ILP Electronics Ltd)
TRANBFOAMERS

MONITORS

HIGH RESOLUTION-AND LOW COST!

Either cased or open frames to
OEM's. The specification is right, the price is even better.
Phone or write to our Sales Manager, RichardCox, for immediate action.

CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TWI 4AD. Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

Part type	1 off	$25-29$	100 up
4116 200ns	0.77	0.69	0.66
4116 250ns	0.75	0.63	0.60
4816 100ns For BBC comp	2.01	2.25	$\mathbf{1 . 9 5}$
4164 200ns	3.99	$\mathbf{3 . 5 6}$	$\mathbf{3 . 4 2}$
2114 200ns Low power	$\mathbf{1 . 1 5}$	$\mathbf{1 . 0 0}$	0.90
2114 450ns Low power	0.95	0.85	0.80
4118 250ns	3.25	2.85	2.65
6116 150ns CMOS	3,55	3.20	2.95
2708 450ns	2,60	2.25	2.10
2716 450ns 5 volt	2.35	2.10	2.02
2716 450ns three rail	5.75	5.00	4.65
2732 450ns Intel type	3.50	3.15	3.00
2532 450ns Texas type	370	3.30	3.00

Z80A-CPU $£ 3.95$ Z80A-Pi0 2.99 Z80A-CTC $£ 2.99$ 6522 PIA $3.70 \quad 7002$ A-D £4.60 36912.75
88LS120 £2.20 7805 reg $0.50 \quad 7812$ reg 0.50
Low profile IC sockets:

Pins	8	14	16	18	20	22	24	$2 \overline{8}$

$\begin{array}{lllllllll}\text { Pence } 9 & 10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$
Soft-8ectored floppy discs per 10 in plastic library
case: 5 inch SSSD $£ 17.00$; 5 inch SSDD $£ 19.25$; 5 inch DSDD $£ 21.00$; 8 inch SSSD $£ 19.25 ; 8$ inch SSDD £23.65; 8 inch DSDD £25.50
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.
Please add 50p post \& packing to orders under £15 and VAT to total. Access \& Barclaycard welcome. 24 hour service on (054 422) 818. Government \& EducaBarclaycard welcome. 24 hour service on
tional orders welcome, $£ 15$ minimum. Trade accounts operated, phone or write for details.
HAPPY MEMORIES (ETI)
Gladestry, Kinston, Herefordshire HR6 3NY Tel: (064 422) 618 or 628

3 CHANNEL SOUND/LIGHT CHASER $£ 35.70$ LB31000SLC A high performance sound to lightproviding bass, mid and treble separation, employing in the absence of a music signal 1000W/channel.	
All the advantages of the SLC withou chase Controls: bass/mid/treble/master sensitivity	* 4 CHAN AND MORE ${ }^{4} 4$ CHAN UUUITISOUNOC * 4 CHAN SEOUENCER 4 CHAN SOUNO CHASER * FASCA PANELS Active Crossovers $\mathbf{£ 1 7 . 9 0}$ Isu (3-way $300 \mathrm{~Hz} / 3 \mathrm{kH})$ (3-way $300 \mathrm{~Hz} / 3 \mathrm{kH}$
 Le B ELECTRONIC 34 Oakwood Ave, Mitcham, Surrey CR2 1AQ	

SC110A FULLY PORTABLE OSCILLOSCOPE

The new THANDAR SC110A represents a break through in Oscilloscope development. The SC110A is only 2 inches thick and weighs under 2 lbs yet it retains the standard features of a bench oscillosocpe.

FULL-SIZED PERFORMANCE

- 10MHz band width
- 10 mV per div. sensitivity
- Full trigger facilities are provided including bright line and auto, with T.V. line and frame filtering
- RUNS ON ORDINARY HP11 (four)
batteries or rechargeables
- Basic price - £170 UK Post free

Optional extras
AC Adaptor 55.69 ; Rechargeable batteries 18.63; X1 Probe 88.05 ; $\times 10$ Probe £9.20; X1/X10 Switched Probe £10.90; Carry Case ©8.86.

PFM200A FREQUENCY

Meter

- Pocket size - 8-Digit LED display Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$ © Resolution 0.1 Hz - Sensitivity typically 10 mV rms - Timebase accuracy 2 ppm - Battery life 10 hours e Frequency: 2 ranges, 4 gate times ePrice f57.80 UK Post free Optional extras - AC Adaptor E5.68

LA GE S.A.E. Brings details of: Oscilloscope, Frequency Meters, Generators, Function Generators, Pulse Generators, Analogue and Multimeters, Digital Thermometer, C.R.T. Tester, Logic Analyser etc.

All prices include VAT. Official orders welcome. Mail order only, or catters by prior appointment. Barclaycard/Access, welcome. Cash/cheque, etc., with order. Govemment and Educational Establishments official orders wêlcome.
B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY Tel: Southend 527572

Full kits include printed circuit boards components, hardware, I.C. sockets, cases etc. unless stated (not batteries). If you do not have the issue of E.T.I. which
ncludes the project - you.will need to order the instruction reprint at an extra 45p each. PCBs included. Reprints available separately $45 p$ each.

SPECTRACOLUMN DEC 82. Less case and lights £34.85p PLAYMATE Augu/Sept 82, leess optional foot RECHARGEABLE BATTERY extra.......... $\mathbf{f 1 9}$

 INBULATION TESTER May 82ET17.58 GUITAR NOTE EXPANDER April 81 AUTORANGING CAPACITANCE METER Mar/Aprib 82
HIGH QUALITY PHONO AMPLIFIERS Feb 82. MOVING COIL STAGE
 PEST CONTROL Feb 82...
GUITAR TUNER Jen 82 COMPONENT TESTER Dec 81 CAR ALARM NOV 81 \qquad 531.88
6878 CNALARM NOV81 …................................. $\mathbf{f 1 9 . 7}$ SOUMO BEMDER … .-............................29.25 WATCHDOG SECURITY ALARM AUM 81 .EP. 68 DRUM MACHINE April81
ENGINEERS STETHOSCOPE Mar 81 ENGINEERS STETHOSCOPE Mar 81.....
SOUNO PRESSURELEVEL METER Feb SOUNO PRESSURE LEVEL METER Feb 81.150 .98 INFRARED .. $£ 443.98$ INFRA RED ALARM Feb
4INPUTMIXER Dec 80 MUSICALDOORBEELLDEC 80 METRONOME NOV 80 CAPACITANCE METER AUG 80 CAPACITANCE METER Aug 80
CMOS LOGICTESTER Aug 80 £62.
E29. CLICK ELIMINATER Aug 8088 CLICK ELIMINATOR Aprii 79 f67.70 Or less case

ZX A.D.C.

complete kit - suits '81 and Spectrum complete kit - suits 81 and Spectrum -
8 Analogue Inputs -8×8 giT outputs 8 Anaiogue inputs -8×8 Bi outpuns Simple programming - just PEEK one
address for each channel - no special set-up' routines needed Incredibly versatile and simple to use. Complete kit - with case, sockets, and printed circuit.
As featured in
Jan 83 ETI
£34.98

MAGENTA ELECTRONICS LTD
EY25. 135 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY ADD 45p P\&P TO ALL ORDERS
ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR POST.
SAE ALL ENQuIries.

Prices inc. VAT

- official orders welcome OVERSEAS Payment must be in sterling. PRICES EUROPE - UK PRICES + 10% ELSEWHERE - Write for Ouote.
his is a protessional rect mounting cabinet that will allow vou to gat your equipment off the bench Rack mountin ovides security for your equipment and easy access for m
- Top, botharm end rean cover romoveble for accese \# Plates have hoavy duty grey paint finish \&ront penel

FEATURE

READ/WRITE

Letters for this page should be addressed to Read/Write at our Charing Cross Road address.

Dear Sir

I would like to ask Tim Orr why he states that 'most complex filter designs require a large number of precision resistors and capacitors'.

What does he mean by 'most filters'? What is a 'complex filter' is it in the form $a+j b$? What is a 'large number' in this context? Do switched capacitor filter systems use fewer components?

The accuracy of monolithic capacitors of 1% tolerance is not low but is typically within the range $\pm 1 \%$.. So what?

Switched capacitor techniques do not 'get over' many problems, but simply defer them, at the expense of increased complexity, meaning more system components (eg, clock generators), and 'sweep the real problems under the carpet.'

The fact is that there is absolutely no way a normal, switched capacitor filter can be, component by component, any better, or less expensive, than its analogue counterpart, nor can it perform any better for a given set of fixed requirements (in the sense of classical filter design or modern network theory), nor can it handle high power, as wire-inductor types do. The only advantage I can see for switched-capacitor filters is their ability to scale according to the clock frequency. Whereas this is an advantage for certain, specific applications, Tim Orr gives the impression that it is universally true. It is not so.

I must point out that I have no connection with commercial interests regarding linear filter suppliers, just an interest in your magazine and in the whole truth!

What, for example, are the phase characteristics and filter characteristics of switched-capacitor filters? What are their time-delay equations? I find nothing, apart from scaling, to recommend switched capacitor filters instead of analogue designs, for most applications. By comparison, one can easily determine the phase/time/response characteristic of any analogue filter, construct it from published data (in design tables) and accurately predict how it will behave. It needs no clocks, etc, and transmits power.

Why use an untried technique
when there is a perfectly good proven design methodology available, which meets all-the requirements?

Would it be possible, for example, to construct the following filter (in which I do have an interest) using switched capacitor techniques:
$Q=2.0,0.1 \mathrm{~dB}$, Cauer, 8th
order, band-pass, $-40 d B$ stop, gain=1.0.

If it is possible, does it use fewer components than, or is it cheaper than, or any better than my LC version, and can we find its phase delay?

Putting it another way, most filters in use today are simple RC 3 dB per octave types - what could be simpler than one resistor and one capacitor?

> Yours faithfully Terence B Layzell Enfield

We take Mr Layzell's point, in that switched-capacitor filters will not replace all discrete filters. However, they can be very useful on occasion, and the two occasions that come to mind are the Spectrum Analyst and Spectracolumn published recently. In equipment manufacture, the costs of any particular item of equipment is largely determined by the package count, and, within certain fairly obvious limits, the price of the packages has little influence. So, in many cases, it may pay manufacturers to go to much more complex (Sorry! complicated) filter design using fewer packages with many legs - ie using a switched-capacitor design with a very complicated circuit rather than a conventional filter with a relatively simple circuit.

Dear Sir

Having read several of the latest issues of ET/, I find it most distressing that a lot of the circuits I have made have come from the Tech Tips section, not because your designs do not interest me, but because the circuits I find in this section have invariably been in ET/ or one of the other leading mags before (OTHER leading mags? -

Ed.); but the readers have found a cheaper way of doing the same thing, in fact sometimes 50% or more cheaper. For example the circuit I am working on at present was featured in ETI Tech Tips in January 1981: a simple combination lock. With this circuit and a
solenoid I made a combination bolt for my outside shed door, and many of my friends have tried (at my
request) and failed to crack it. A combination lock was featured in the magazine some months before but not with a 4017 IC. Needless to say, it cost me less than a quarter of what it would have done if I had made i(from the magazine as it was first featured. All I can say is 'thank you'tQ M. D. Chapman, as he saved me a lot of money. The whole unit complete in a box but less the solenoid cost me $£ 5$ as opposed to $£ 22.75$ for the other one.
So, all you designers at ET/, get your brains working on some cheaper circuits for us, or, failing that, make the Editor publish some more of the readers' designs so that we can save enough money to buy next month's issue of ET/: There must be more than seven or eight designs sent in each month. How much longer must we waste time and money putting in a stack of components and/Cs when, with slightly different components, we can halve the time and cost it takes to make these projects?

Yours sincerely D Saunders Sittingbourne

The original Combination Lock design you refer to was published in ETI in March 1981; since then we have published a rather cheaper design as a project in June and july 1982; and we've also published yet another as a Tech Tip in November 1982, so you can't say we don't give you a wide choice! The two designs we published as projects do incorporate rather more features than the two Tech Tips, so, on balance, all the circuits have something to offer.
As to cost, we try to keep ETI at the fore-front in technology, and this sometimes means that the circuits we publish are rather more expensive to build than we'd like, because, for obvious reasons the components used will not be found
in readers' spares boxes. We also like to publish designs that do something more cheaply and/or more elegantly than existing designs when we get hold of them.

Desktop Ten Way Exchange (key \& lamp unit) $£ 8.00+£ 1.80$ P \& P	S	
Recent style P.O. telephones £ $4.75+£ 1.80$ P \& P 2 for £ $9+£ 2.505$ for $£ 20+£ 5$	TEMPERATURE CONTROL HIGH QUALITY	
Older style black telephones £3. P\&P as above. Our leaflet explains how to use G.P.O. phones on home intercom systems.	Remote sensor on $38^{\prime \prime}$ capillary, panel mounting dial 55 mm diameter. ONLY £2.50	
Operator's Headset with Mic. \& 4 Pole Jack		
5 Digit Counters 48 V coil. Non resetable	Wide control range (low room temp. to over boiling point) Sensor on 22"' capilliary. $\mathbf{E 2 . 3 0}$, including control knob	
UNISELECTORS. $50 \mathrm{v}, 4$ Bank + Horning Bank, 25 way E3.50	15A 240V. Sensing coil on 41 in . capilitiary panel mounting with reset button $\mathbf{£ 1 . 2 0}$	
D CONNECTOR SOCKETS with cover, 50 way	LIGHT DEPENDENT RESISTORS in Dlastic housina with window, heavy-duty lead. Similar to ORP 61. Onty 30p or $\mathbf{£ 2 . 3 5}$ for $\mathbf{1 0}$.	
SOV BA TRANSFORMER. Ideal for big power supply unit or amplifier $\mathbf{f 1 2}$ inc. pEtp. BEAT THAT!		
	GEARED Synchronous motor, 8 r.p.m., 240V A.C. 3 Watt EZ .	
	SOLENOID GAS VALVE. 240 V A.C. 5 P.S.I. suitable	
Various stabilised power supplies available - Excellent prices send for details.	BULGIN 3 pin free plug 8 panel socket, 2A 240 V 50p	
FREE on request - Leaflet "D.I.Y. Telephone Systems and Automatic Exchange Design'.	AUTOMATIC DIAL UNIT. (mains powered) These units connect into a and dial a number when a punchcard is inserted. Card \& instructions supplied. Cards readily available. Many uses. Only $£ 8+£ 1$ p\&p	
L.E.M. SERVICES 22 Emscote Road Warwick Warwickshire ALL ITEMS - MONEY BACK IF NOT DELIGHTED.		

TURNTABLE KITS

FROM

INPUT DESIGN LTD

THE LEADING MANUFACTURERS OF TURNTABLES IN KIT FORM KITDECK 2 NORMAL PRICE £ 115.00

SPECIAL

 CHRISTMAS OFFER TO READERS OF ETI
inc. VAT
($\mathrm{P}+\mathrm{P} £ 3 . .00$)

HOME CONSTRUCTOR TURNTABLE KIT NOW £49.50 ($\mathbf{P}+\mathbf{P} £ 1.95$)
 5 YEAR GUARANTEE
 MONEY BACK IF NOT SATISFIED

Pay by Barclaycard, Access or CWO. Export: Write for Pro-forma

PALACE STREET,	Telephone:
BIGGLESWADE,	0767316655
BEDS. SG18 8DP	Telex: 826671

PALACE STREET
0767316655
Telex: 826671

PARNDON ELECTRONICS LTD Dept. No, 23,44 Paddock Mead, Harlow, Essex, CM18 7RR. Tel. 027932700
RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5 \%$ tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded.
$£ 1.00$ per hundred mixed (Min 10 per value) $£ 8.50$ per thousand mixed (Min 50 per value)
DIODES: IN4141 3p each. Min order quantity 15 items $£ 1-60$ per hundred
Gold plated contact in fully sealed base. Solve those programming problems. 4 Way 86 p each 6 Way £ $1-00$ each 8 Way £ 1.20 each
DIL SOCKETS: High quality, low profile sockets 8 pin $=10 \mathrm{p}: 14 \mathrm{pin}=11 \mathrm{p}: 16 \mathrm{pin}=12 \mathrm{p}: 18 \mathrm{pin}=19 \mathrm{p}: 20 \mathrm{pin}=21 \mathrm{p}$: 22 pin $=23 \mathrm{p}: 24$ pin $=25 \mathrm{p}: 28$ pin $+27 \mathrm{p}: 40$ pin +42 p .
ALL PRICES INCLUDE V.A.T. \& POST and PACKING-NO EXTRAS MIN ORDER - U.K £ 1.00 OVERSEAS £ 5.00 CASH WITH ORDER PLEASE

LOW COST PROFESSIONAL TEST INSTRUMENTS

Belemic

Hand Held Analogue and
Digital
Multimeters
16 Models
from $£ 18.75$

Write or phone for illustrated test instrument catalogue and price list
Black Star Ltd.
9A, Crown Street St. Ives, Huntingdon
Cambs. PE17 4EB
Tel: (0480) 62440 Telex 32339

Computing Monthly looks at a computer as the beginning of something interesting rather than an end in itself.

We thought that using a micro to drive something other than a TV screen could open up fascinating possibilities.

A few simple circuits, used as building blocks, can stretch your computer, your imagination and your fun, a long way.

If you understand the basics of digital electronics, you'll appreciate the fun you can
have by
linking logic
circuits to your micro.
If you don't, then read our new series which starts this month and explains digital electronic circuits from basics. Also this month, we show you how to build an infrared remote controller for your micro.

That's what Electronics and Computing is all about giving you ideas for new
applications, and giving you the software to expand your micro. Project by project we show you how to add another dimension to your computer.
For example, in this month's issue we explain dialogue programming using the PILOT system - what it is and how it works.

And inside is enough information to build you own hi-res graphics computer.
All you need is a hot soldering iron and a cool 75p 0°

WHERE ELECTRONICS AND COMPUTING INTERFACE.

CONFIGURATIONS

The editor expressly forbids his neighbours from reading this month's Configurations, because it's all about audio power output stages. Ian Sinclair shows the way to deafness for the quiet life.

Alot of people who feel quite happy with the design of voltage amplifier stages are never quite so confident with power output stages. The reasons are not difficult to find, because few textbooks go into much detail about transistor power output stages, and one or two offer rather misleading advice.
The essential problem of power output is to get power delivered into a load, and a theorem which is often quoted in this respect is the maximum power theorem - Fig. 1. This states that if the power source has fixed values of internal resistance and supply voltage, then the maximum transfer of power will occur when the load has the same value of resistance. The maximum power in the load will then be 50% of the total power, with the other 50% being dissipated across the internal resistance. The use of this theorem governed the design of valve output stages for decades.

Fig. 1 Maximum power theorem. This states that the maximum possible power, is transferred to the load when RL $=$ Rs. This does not imply that the load gets the maximum share of power.
Things have changed, however, and we can easily obtain transistors with very low internal resistance values and use them in circuits whose internal resistance can be as lttle as a fraction of an ohm. The maximum power theorem isn't useful here, because we don't actually want maximum power, only as much as we can handle, and preferably most of it across the loudspeaker terminals. In any case, we don't want to have to use loudspeakers with im-pedances of only a fraction of an ohm. When we use a loudspeaker whose impedance is several times that of the amplifier, we can be sure that most of the power dissipated is across the loudspeaker rather than across the output transistors, and that's just what we want, whether it's the maximum possible power or not.
The very low output resistance of transistor power amplifiers also explains why it is that the power output of a transistor amplifier increases when you use a loudspeaker of lower impedance - your average pre-war textbook can't explain that one! If we were to attempt to use a load that matched the resistance of the amplifier output stage, it's pretty certain we would burn out the transistors.

Some Like It Hot

Speaking of which brings us to the second point about power output stages. With low internal resistance, there is no problem about delivering power, but the performance
of a power amplifier in this respect is limited by the rate at which the transistors in the output stage can dissipate the heat which is inevitably caused when current flows through them. As long as the rate of heat generation' (which is volts x amps) equals the rate of heat dissipation, the temperature will remain steady, but raising the dissipa-tion also means raising the temperature, and this is the limiting factor for transistors, because if the collector junction, which is where the heat is generated, gets too hot, it will melt, and that's the end of the transistor. Many output transistors which could dissipate 150 W if the heat could be removed efficiently will dissipate only a miserable 20 W under realistic working conditions.

The design of a transistor power amplifier, therefore, starts with a consideration of heat-sinks. The traditional method is to use a quantity called thermal resistance, which is defined as the temperature rise per degree (centigrade) of dissipated power. When a heat-sink has a thermal resistance of $4^{\circ} \mathrm{C} / \mathrm{W}$, then it will be $4^{\circ} \mathrm{C}$ hotter than the air around it when it is dissipating $1 \mathrm{~W}, 40^{\circ} \mathrm{C}$ hotter than the air when it is dissipating 10 W , and so on - the temperature rise equals thermal resistance times power dissipated. For a transistor bolted on to a heat-sink, there are several thermal resistances in series (Fig.
2) the thermal resistance of the collector junction to the mounting surface of the transistor, the thermal resistance of the mounting surface to the heat-sink (which will be increased if you use a mica washer for insulation), and the thermal resistance of the heat-sink itself to the air. Like electrical resistances, these can be added (that's why we use them!), and when the result is multiplied by the intended power dissipation, the result will tell you how much hotter than the air your transistor junction will be. Remember that the air actually around the area of the heat-sink may not be all that cool,- a conservative figure to use is $40^{\circ} \mathrm{C}$ - and then add on the rise in temperature that you have calculated. If the result is well short of the maximum

TOTAL THERMAL RESISTANCE $=\theta_{1}{ }^{+\theta_{2}+\theta_{3}}$
Fig. 2 Thermal resistances. For a single transistor on a heat-sink, the thermal resistances are in series, and can be added. For other configurations, these quantities can be treated exactly like electrical resistances.
allowable figure for the transistor, well and good; if not, then you need to improve your heatsinking, or use a different transistor, or both.

Making A Transformation

With that out of the way, we can now look at some configurations. Most of us automatically think of the PNPNPN direct coupled pair when we think of output stages, but there are still a lot of single-ended transformer-coupled stages around, similar to the design of Fig. 3. A Class A stage like this is designed by finding the maximum dissipa-

Fig. 3 A single-ended Class A stage, using transformer coupling.
tion you can get away with, and then fixing the supply voltage and calculating the signal current. If we take it that the average DC level at the collector of the transistor is equal to the supply voltage (Fig. 4), then at peak power output, the signal voltage (instantaneous voltage, that is)

Fig. 4 The (ideal) output waveform at the collector of the circuit of Fig 3. The inductance of the transformer is responsible for the portion of the wave which is above supply voltage.
will drop to zero and rise to twice supply voltage. This makes the peak voltage of the output signal equal to the supply voltage, and the RMS power is equal to
$\frac{\text { peak volts } \times \text { peak current }}{8}$
so that peak current, I_{D}, equals

$$
\frac{8 \times \text { power }}{\text { supply power }}
$$

- you will have to check for yourself that the transistor can cope with this peak current. The next step is to calculate the transformer ratio. The peak voltage V_{p} across the loudspeaker will be

$$
\frac{\sqrt{\text { power }}}{8}
$$

and the transformer ratio will have to be

$$
\frac{\text { supply voltage }}{V_{p}}
$$

Fig. 5 The basis of the single-end push-pull Class B stage, most succinctly known as the totem-pole output.

- this is usually a step-down ratio. The transformer should have enough primary inductance to ensure that it will handle low frequencies reasonably well, but you don't want to design the transformer in detail unless you are a cardcarrying masochist.

The single-ended stage is not exactly brilliant from the point of view of distortion, and the voltage gain is usually very low, so that negative feedback from the speaker terminals to the input of the power stage is rather ineffective. The negative feedback can be taken to an earlier stage, but the drawback here is that the phase shifts may be excessive, particularly since a transformer is present, and these can make your negative feedback become positive at one end of the frequency range, causing distinctly nasty sounds to come from the speaker. The main merit of a single-ended transformer-coupled stage of this type is that it can deliver a fair amount of power from a low supply voltage, something that is not easy for the traditional direct-coupled design.

Fig. 6 Using two diodes in series to stabilize the bias of the output pair.

The Traditional Transistors

With that brief introduction -meet the traditional direct-coupled output stage as used in practically all of the hi-fi, medium-fi and no-fi amplifiers in the world. The design consists of a pair of complementary emitterfollowers in a Class B single-ended push-pull circuit (Fig. 5), with both transistors on one heat-sink, capacitor coupl-ing to the loudspeaker, and lots of negative feedback. It's a design on which an incredible number of variations can be achieved, however, and also one whose performance can be greatly enhanced by Careful choice of components,
and well-planned construction. The driver stage for the output pair may use diodes to adjust the DC voltage difference that is needed between the bases of the output pair (Fig. 6) or an almost-saturated transistors (Fig. 7) or with a common-emitter pair used in place of emitterfollowers, and driven by an op-amp (Fig. 8).

Fig. 7 An alternative method of stabilisation using a transistor.
Like all Class B stages, linearity, especially near the crossover point (Fig. 9) where one transistor starts to conduct as the other one stops, is always a problem. The gain in this region is very low, so that negative feedback is not the cure-all that many designers seem to expect it to be. Since the basic output stage is a couple of emitterfollowers, it has a voltage gain that is less than unity, and the driver stage usually has a low gain also, so that the feedback loop has to be taken over a number of stages (Fig. 10).

C3 IS ABOUT 10 n AND IS FOR STABILITY PURPOSES
R3,R4 AROUND 1 OOR-220R DEPENDING ON DRIVE NEEDS OF
OUTPUT PAIR AND CAPABILITIES OF OP-AMP.
R1, R2 EQUAL AROUND 47k
Fig. 8 A circuit which uses an op-amp to drive an output pair. The transistors are NOT in the normal totem-pole configuration, because each is being used as a common emitter amplifier rather than as an emitter-follower. If Darlington power output transistors are used, this c:an be a very economical high-power stage.

- The problem of crossover distortion has driven several designers to use Class A stages of very similar configuration. When both of the transistors of the output pair are driven with a signal, the efficiency can be as high as 30% (as compared with 78% for Class B), and the availability of high-power transistors with low thermal resistances has encouraged the use of Class A - a typical circuit is shown in Fig. 11. The distortion figure, measured before applying feedback, is still fairly high (10% or more at full power), but feedback greatly improves this. More important, the distortion level tends to be least at low power outputs, unlike the Class B circuit in which the distortion is greatest at low level - when it is also most noticeable - due to the crossover problem.

Fig. 9 Crossover distortion. (a) an ideal mutual characteristic for a power transistor. (b) How the characteristics of two identical transistors would combine if each were just cut-off with no signal present. (c) The distortion of wave-shape caused at crossover with insufficient bias. (d) Crossover distortion can be reduced by increasing bias on each transistor, but unless the transistors have unusually straight characteristics, a lot of bias will be needed.

Fig. 10 Using feedback over several stages in a Class B output circuit.

Fig. 11 A Class A output stage - note that both output transistors are of the same type. For low distortion, they should be carefully matched.

MARCO TRADING

adaptors

Manufocturnes note: We can supply OFF THE SHELF $1000+$ quantities of the above transformers.

These high quality British made European Adaptors are ideal for driving radio's, cassette recorders, TV games,
calculators etc etc.

These adaptors fit the UK shaver socket.

UK POWEA SUPP $200 \mathrm{~m} / \mathrm{A}$. Fully Regulated and Stabilised. Complete with $200 \mathrm{~m} /$ A. Fully Regulated and Stabilised. Complete with Price $£ 295+750$ p 50

MULTIMETER SPECIAL

Russian type U4324 20,000 O.P.V. DC Voltage: $06,1.2,3,12,30,60,120,600$, 1200.

AC Voltage: 3, 6, 15, 60, 150, 300, 600, 900. DC Intensity M/A: $0.06,0.6,6,60,600,3000$ AC Intensity M/A: $0.3,3,30,300,3000$. DC Resistance: $0.2,5,50,500,5000 \mathrm{~K}$.

Brand new 3 channel chart recorders from 869 in cluding charts etc.
Send 35 p Now for our latest Catalogue. Fantastic Value it includes capacitors, diodes, resistors, transistors, LEDs, boxes, cable, prepaid envelopes and much, much more.
Please add 35 p postage and packing and 15% VAT to all orders.
Send orders to:

MARCO TRADING (Dept ETI)
 The Moltings, High Street,
 Telephone: WEM (0939) 32763

Every order receives our latest special offer lists. Or send SAE.
All orders despatched by return of mail.

SPECTRUM

24 LINE INPUT/OUTPUT PORT..f18.95
(motherboard not required)
MOTHERBOARD - SIX SLOTS..£26.50
MOTHERBOARD PCB ONLY... $\mathbf{5 6}$
SPECTRUM 28 WAY CONNECTOR....................................f3.25
MALE CONNECTOR... $\mathbf{£ 1 . 8 0}$
3.4 WAVF RIBBON CABLE E per metre.....................................f1.80

2X81

40 KEY KEYBOARD..f20.00
SPARE KEYS each... 0.25
MOTHERBOARḊ - 2 SLOTS...f15.00
24 LINE INPUT/OUTPUT PORT...f18.95
16K RAM PACK... $\mathbf{E 2 5 . 0 0}$
MUSICBOARD ..£18.95
23 WAY FEMALE CONNECTOR.. $\mathbf{2} .50$
MALE CONNECTOR...f1.60
24 WAY RIBBON CABLE per metre.....................................f1.40
GETTING ACQUAINTED WITH YOUR
ZX81 .. $\mathbf{£ 4 . 9 5}$
PROGRAMMING FOR REAL
APPLICATIONS .. 66.95
REAL APPLICATIONS TAPE.. $\mathbf{£ 1 1 . 4 4}$
MASTERING MACHINE CODE... $\mathbf{~} 7.50$
Prices are for built items. Postage 40p under $\mathbf{8 4 . 0 0}$. Export postage (surface) $\mathbf{1 1 . 8 0}$. Access accepted. Send sae for full catalogue.

REDDITCH ELECTRONICS

21 FERNEY HILL AVENUE, REDDITCH
WORCS Bg7 ARU

 ConstructorSeriesSpeakers IT'S SO EASY Have fun, save money, building a Kef design with aWilmslow Audio CS Total kit.
No electronic or woodworking knowledge necessary and the end result is a proven topquality design that you'll be proud of
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts, bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil.
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E.
Prices: CS \uparrow (As 101) $\quad \mathbf{£ 1 1 0}$ pr. inc. VAT, plus carr./ins. $£ 5.50$ CS1A (simplified LS3/5A) $£ \mathbf{1 0 3}$ pr. inc. VAT, plus carr./ins. $£ 5.50$
CS3 (as 103.2)
CS5 (as Carlton II) $\mathbf{£ 1 2 9}$ pr. inc. VAT, plus carr./ins. $£ 10.00$

CS7 (as Cantata)
$\mathbf{£ 1 9 2}$ pr. inc. VAT, plus carr./ins. $\mathbf{£ 1 5 . 0 0}$
$\mathbf{£} \mathbf{2 5 0}$ pr. inc. VAT, plus carr./ins. $\mathbf{£ 1 8 . 0 0}$

MTMEATM
 5000

The firm for Speakers

8
 0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Catalogue £ 1.50 post free
Lightning service on telephoned credit card orders!

Greenbank Electronics (Dept. T3E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

ETI PCB SERVICE

Up till now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymore!
Now you can buy your board straight from the designers - us! As of this issue all (non-copyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our prototypes, so you can be sure it's accurate, and will be finished to the high standard you would expect from ETI.
In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please notes that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!
APRIL 79Guitar Effects Un
Click Eliminator
JUNE 79Accentuated BeatMetronome
FEBRUARY 80Tuning Fork
MARCH 80
Signal Tracer

AUGUST 80
 CMOS Logic Tester
 Capacitance Meter

Ultrasonic Burglar Alarm
OCTOBER 80
Cassette Interface
Fuzz/Sustain Box
NOVEMBER 80
Touch Buzzer
Light Switch
Metronome
2W Power Amp
RIAA Preamplifier
Audio TestOscillator
DECEMBER 80
Musical Doorbell
Bench Amplifier
Four InputMixer
JANUARY 81
LED Tacho
Multi-Option Siren
Universal Timer
FEBRUARY 81Infra-red Alarm(four boards)
Pulse Generator
MARCH 81Engineer's Stethoscope APRIL 81Box
Drum Machine (two boards)
Guitar Note Expander

JUNE 81

Mini-drill Speed ControllerAntenna Extender

$\begin{aligned} & \mathbf{£ 2 . 6 4} \\ & \mathbf{£ 6 . 6 4} \end{aligned}$	LED Jewellery: Cross Spiral(two boards) Star(two boards) Waa-phase
£3.60	JULY
	\square SystemA A-MM/A-MC
£2.64	\square SystemAA-PR
£2.64	\square Smart BatteryCharger
£2.27	
	AUGUST 81 System A Power Amp(A-PA)
E2.64	\square Flash Sequencer
E2.93	\square Hand-clap Synthesiser
£2.87	\square Heartbeat Monitor
	Watchdog Home Security (two boards)
E2.93	
E3.27	SEPTEMBER 81
	\square Mains Audio Link (three boards)
£1.93	\square Laboratory PSU
E1.93	
£1.93	OCTOBER 81
E1.93	\square Enlarger Timer
E1.93	Sound Bender
£3.13	\square ThermalAlarm
	\square Micropower Pendulum
£2.80	NOVEMBER 81
£2.53	\square Voice-Over Unit
E2.64	\square Car Alarm
	\square Phone Bell Shifter
£4.13	DECEMBER 81
£3.20	\square Alcohometer (two boards)
£3.31	\square Bodywork Checker
£6.64	JANUARY 82
£3.57	JANUARY 82 Parking Meter Timer
£2.65	\square Infant Guard
£2.64	FEBRUARY 82
£5.60	\square Ripple Monitor
£3.20	\square PestMonitor
	IChing Computer(two boards)
£2.93	\square Moving-magnet stage
E3.20	\square Moving-coil stage

MAY 82
DVMeg
$£ 2.72$
$£ 3.06$
£4.51
$£ 4.17$
£2.25
$\mathbf{£ 2 . 6 5}$ June $\mathbf{8 2}$
$\mathbf{£ 1 . 1 7} \square$ Ion Generator (two boards)
£5.53
$£ 2.47$
$\begin{array}{ll}\text { MOSFET Amp Module } & £ 6.78 \\ \text { Logic Lock } & £ 3.06\end{array}$
$\begin{array}{ll}\text { Logic Lock } & £ 3.06 \\ \text { Digital } P W M & £ 3.34\end{array}$

| £4.77 \square Digital PWM | $£ 3.34$ |
| :--- | :--- | :--- |
| £3.44 \square Optical Sensor | $£ 1.74$ |

£3.97 Stylus Timer $\quad £ 2.59$

TV Bargraph (main board) $\quad £ 4.56$

	$£ 7.35$	
$\boxed{£ 4.53}$	\square Hotwire	$£ 2.28$
	\square Bridging Adaptor	$£ 2.63$
		$£ 2.38$

	AUGUST 82	
£3.40	\square Playmate (three boards)	£7.20
£2.65	Kitchen Scales	£1.84
£2.63	Sound Track	£4.25

| £2.21 | |
| :--- | :--- | :--- |
| £3.97 | |
| SEPTEMBER 82 | |
| Auto Volume Control | |

£2.81 Dual Logic Probe $£ 1.93$

£2.96	OCTOBER 82	
f5.21 \square	Message Panel (one card)	£8.79

$\mathrm{£} 1.75 \quad$ NOVEMBER 82
$\mathrm{f} 1.40 \square$
Spectrum Analyst (3 boards)
£14.33

\square Pulse generator	$£ 5.29$
$£ 2.20$ Message panel interface	$£ 1.91$

£1.56 DECEMBER 82
$£ 5.55 \square$ ELCB

	$£ 2.41$	
	Servo Interface (two boards)	$£ 5.87$
$£ 1.92$	Spectracolumn	$£ 4.82$
$£ 5.15$	Signal Line Tester	$£ 1.25$

$\underset{\text { f }}{ } \mathrm{f} .15 \mathrm{Signal}$ Line Teste f1 25
£3.49 JANUARY 83

ETI/831/1 Fuel Gauge	$£ 3.00$
ETI/831/2 ZX ADC	$£ 2.25$

ETI/831/3 Programmable PSU $£ 3.00$ MARCH 83
ETI/833/1 6502 Sound/DAC $£ 11.16$
ETI/833/2 Alarm Module £3.15
ETI/833/3 ZX81 Graphics £0.93
ETI/833/4 Logic Probe
£2.17
Signed
Name
Address.
Prices subject to change without notice.
Total for boards
£...........
Add 45p p \& p
0.45

Total enclosed
£...........
hit performance hit comperitive hi!

HIGH QUALITY AT LOW COST ع34.00

hii 26 FULLY PROTECTED RANGES hif LARGE $3 ½$ DIGIT LCD DISPLAY hif $\pm 0.5 \%$ basic DC ACCURACY hii AC and DC VOLTS and AMPS + OHMS
HC6010 has an additional 10 Amp Range HC703 has a basic DC Accuracy of $\pm 0.1 \%$ HC7030 has an extra 10 Amp Range HM101R - 102R and 102BZ are Analog models Ask FOR FREE DATA
Easy to Order: Fill in and post the coupon enclosing cheque/P.O./Credit Card details or Official Order.

VISA Access ansemal	$\begin{aligned} & \text { (1) In a hurry? Then } \\ & \text { (0799) } 24922 \end{aligned}$	
Name		
Address		
Please send:		
.HC601's at £40.25	(inc. VAT + P + D).	
. .HC6010's at £43.70	(inc. VAT + P + D)	
. .HC703's at £51.75	(inc. VAT $+\mathrm{P}+\mathrm{D}$).	
. .HC7030's at $£ 55.20$	(inc. VAT + P + D)	
. .HM101R's at $£ 7.75$	(inc. $V A T+P+D$).	
. HM102R's at f14.38	(inc. VAT + P + D) .	
$\ldots .$. . ${ }^{\text {a }}$ M102BZ's at f 16.10 (inc. VAT + P+D)		
	Total $£$.	
Please tick and fill in number of card I Barclaycard \| Access	American Express : 1Diners Club	
Credit Card No. Please allow 14 days for delivery.		
		Credit Card No

hi: (eomperilive hi:

CRLEULRTDR sales

CASO
FX 702P..................... $\mathbf{£ 7 1 . 9 5}$
FX 602P...................... $\mathbf{E 6 3 . 9 5}$
FX 2800P...................£16.95
FA 2 INTERFACE.......f19.95
FX 78..........................£17.95
FX 550.........................£15.95
FX 900 SOLAR.......... $\mathbf{£ 1 7 . 9 5}$
700P £71.95
PB 100.........................f63.95
FX 3600P................... $\mathbf{£ 2 0 . 9 5}$
FP 10 PRINTER....... $\mathbf{£ 3 9 . 9 5}$
FX 100.........................£14.95
FX 350........................£14.95
FX 950 SOLAR...........£19.95

SHARP

EL 510380 steps......f28.95 EL 506H....................£15.95 PC 1211.....................f86.95 PC 1211 Printer interface
..................................£71.95
EL 510080 steps......f54.95
EL 507
523.95

PC 1500...................£168.95
PC 1500 colour printer
£145.95

TEXAS Instrūuments

Abstract

RANK E.M.T. METER 0-30KV DC METRIX WOBBULATOR type 210 PEIRIX WOBBULATOR type $210-.530 ~(535$ ADVANCE RF SIGNAL GENERATOR tyoe 62 $150 \mathrm{KHZ}-220 \mathrm{MHZ}$. CW/Mod.:.......................30 ADVANCE RF SIGNAL GENERATOR YYPe SGE28 150KHZ-220MHZ CW/Mod..........e50 ype gicha 1 MZ-1MHZ...........................fol ADVANCE AUDIO SIGNAL GENERATOR type H1. 15 HZ -50KHZ Sine/Square............ 25 SOKHZ Sine/Squar ADVANCE RF SIGNAL GENERATOR TyPe E2 TOOKHZ-100MHZCW/Mod....................... METERO-10KV10 ERNST TURNER B' ELECTROSTATIC VOLT. METER Model 3200.2 KKV 12 ERNST TURNER s° ELECTROSTATIC VOLT- 14 METER MODE1 ERNST TURNER B° ELECTROSTATIC VOLT. METER MOde1 320-10KV............................ ERNST TURNER" ELECTROSTATIC VOLTADVANCE DIGITAL MULTIMETER TyDe DMM2. TMK MÜLTIMETER Model 700 . 20K. Volt. Ranges to 10 Amps E 5KV......................E18 AVOMULTIMETER Model 72. CompactE12 LINSTEAD L.F. SIGNAL GENERATOR type G2 SOLARTRON DIGITAL VOLTMETER type LM1420.2... ROBAND TRANSISTORISED SUPPLY Type T104. $0-30 / 0-30 \mathrm{~V} 1 \mathrm{~A}$ DC. Metered T104. 0-30/0-30V 1A OC. Metered RACAL DIGITAL FREQUENCY MER Iype SA520.-. TE . 10 180A TRANSISTOR TESTER Type TTI................................. ESP AUTOMATIC CAPACITANCE BRIDGE Model 300A. 1 pf 200 m fd. Auto ranging. 0.5% accuracy KPRR UNIVERSAL BRIDCE B221 TAYLOR VALVE TESTER Model 4SD2....... 935 ROBAND TRANSISTORISED SUPPLY type T1060-100V 1A DC. metered.................... 330 PYE SCALAMP ELECTROSTATIC VOLT. QUIPMENT SOLD IN WORKING ORDER or further detalls contact DWAYNE STEWART. Please eheck evailabllity before ordering. Carriage all units $\mathbf{2 7}$. VAT to be added to total of Goods \& Carriage. S.A.E. for Lists.

LB ELECTRONICS

 DISC DRIVE BONANZAPERTEC FD650 DSDD 8"£199 + VAT PERTEC FD200 $5 \frac{1}{4}{ }^{\prime \prime}$ SSDD .. $\mathbf{£ 1 0 0}+$ VAT The above drives are suitable for the BBC Micro, we can supply full documentation if requested with purchase of the drives only. Also available is a word processing package which is a tape to disc program (i.e. will not run without destroyers)

Offered with Full documentation at $\mathbf{E 9 . 8 0}$ pftp 50 p.
BRAND NEW AND BOXED PLUS DATA P\&P AT COST
$5 \frac{1}{4}$ in Slimline for APPLE \qquad
\qquad
\qquad .. .82 .25 + VAT Controller Card for above .. \qquad $\mathbf{f 4 8 . 0 0}$ + VAT ASC11 coded querty Keyboard manufactured by Alpamenc (Woking, UK). Model 60K brand new plus data 19.95 p\&p $£ 1.50$ SELLOUT used (Gar replacement by us) 2716 (5 v) 1.50 each p\&p 30p. 12 for f 15 p\&p 75p
25 WAY 'D' Types, plugs $£ 1.85$, sockets $£ 1.85$ (solder tail) p\&p 30p. Telephone for bulk prices.
CASE model 430 Data modem, no informationf30 each p\&p $£ 3.50$
INTERSCAN ACCOUSTIC COUPLER
$10^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$ WITH ELECTRONICS, SOUND
TIGHT UNIT, FOR STANDARD GPO HAND SET. NO DATA - $£ 10.00$ (INC VAT) P\&P $£ 1.75$

LB ELECTRONICS 11 HERCIES ROAD, HILLINGDON, MIDDLESEX UB10 9LS, ENGLAND TEL: UXBRIDGE 55399 ARy

	DISC DRIVE Memorex $5508^{\prime \prime}$ Floppy drive, mounted in case with power supply and fan. Room for second drive. Only $£ 225+€ 750$ SHUGART 801. 8" Floppy - $\mathbf{2}$ only at $\mathbf{£ 2 5 0}+\mathbf{£ 7 . 5 0}$ DRE 4000A (258-9901) Hard disc -1 only $£ \mathbf{3 0 0}$. BASF6172 24 Megabyte Winchester with PSU $£ 700$ 69 Key keyboard 5 volt CMOS - believed ASC but no data hence $£ 20$ Multi Rail PSU 5 volt at 4 amp . 12 volt at $2.5 \mathrm{~A}, 12$ vo at 350 mA only $\mathrm{f} 17.50+£ 1.80$ $5 \mathrm{~V}, 5 \mathrm{amp}$ Regulator module $£ 2.50+50 \mathrm{p}$ Data dynamic RO390 printers 110 Baud ASCll RS232 $-20 \mathrm{~mA} E / 5$	
MAWSON ASSOCIATES 01-778 3600		

PCB FOIL PATTERNS

TECHNICAL TRAINING
 IN ELECTRONICS,
 TELEVISION AND AUDIO

IN YOUR OWN HOME-AT YOUR PACE
ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guar antee coaching until you are successful

City \& Guilds Certificates
Radio Amateurs
Basic Electronic Engineering (Joint C\&GG/ICS)
Certificate Courses
TV and Audio Servicing
Radio \& Amplfier Construction
Electronic Engineering* and Maintenance Computer Engineering* and Programming Microprocessor Engineering*
TV, Radio and Audio Engineering
Electrical Engineering.* Installation
and Contracting -Quollty tor IET Aenociate Memberahip $\xrightarrow{5 \times 4}$
CAOC Approved by CACC
Member of $A B C C$
POST OR PHONE TODAV FOR FREE BOOKLET
Please send me your FREE School of Electronics Prospectus.
Subject of Interest
Name \qquad
Address

Po sto
Dept E262
ICS School of Electronics 160 Stewarts Road.
$01-62299$

500000000

IN STOCK
WASHERS SPRING CLIPS CLAMPS SOLDER TAGS SOLID STATE INSULATORS and many other pressed parts ELECTROMECH SALES LTD. MELDRETH RD., SHEPRETH, ROYSTON, HERTS. S68 6PS
TEL: 076361372

PCB FOIL PATTERNS

MDA 1982

LOOKING FOR COMPONENTS! HARDWARE! CASES! TRY YOUR LOCAL LISTED STOCKIST

AVON
ANNLEY ELECTRO
190 Bedminster Down Road Bedminster Down, Bristol I
Tel: 0272832622 $\begin{gathered} \text { Open Mon-Sat 9am - } 6.30 \mathrm{pm} \\ \text { Wed Ilam-2pm } \end{gathered}$
BEDFORDSHIRE
BROADWAY ELECTRONICS 1 The Broadway. Bedford, Tel: 02342136311 Open: 6. days $9-5.300_{1 / 2}$ day Thur. Lunch 1.30-2.30 Specialists in components and Acorn computers and Acorn computers.
DORSET
D.J. ELECTRONICS 64 Ensbury Park Road, Bournemouth Tel: (0202) 515073 Open Mon - Sat 9am-6pm
HERTFORDSHIRE
GODDARDS COMPONENTS $110 \cdot$ Loridon Road, St. Alban Tel: St. Albans 64162 Open, Mon-Sat 9.30am-5.30pm ($1 / 2$ day Thur)

LANCASHIRE

ETESON ELECTRONICS
158 Lower Green
Poulton-le-Fylde, Blackpool Tel: (0253) 885107
Open: 9.30am-12.30. 1.30-5.30. Closed Wed \& Sun. Electronic Component Specialists

MERSEYSIDE

MYCA ELECTRONICS
2 VICTORIA PL; SEACOMBE FERRY WALLASEY, 144 6NR Tel: 0518388847
Open Mon-Sat 10am-5.30pm Mail Orderprice list 50p refundable

PROGRESSIVE RADIO
93 Dale Street. Tel 051236098247 Whitechapel Tel 0512365489

Liverpool 2
THEELECTRONICSSPECIALISTS
Open: Tues-Sat 9.30-5.30

W. MIDLANDS/WARCS

CoventrySt Kldderminster
Components, computers, car radios, C.B.s, Amateur Radio
and all electronic hobby equipmen Open: Mon-Sat 9-6, Sun 10-2 Tel: 05622179

NORTHAMPTONSHIRE

* A new company selling electronic components * Mail order and walk round supermarket * Vast stocks and very competitive prices

High Narch, Daventry NN11 4Ha Telephone 032725523 Telex 311245 Off A45 opposite John O' Gaunt

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002
 STAFFORDSHIRE
 ELECTRONICS SUPPLIES 105 HIGH STREET WOOLSTANTON NEWCASTLE Tel: 0782636904
 Open Mon-Wed 9-6, Thurs 9-12 \& 5-7 Fri \& Sat 9-9, Sun 11-2

S. WALES
 STEVE'S ELECTRONIC SUPPLY CO. LTD.
 45 Castle Arcade, Cardiff TEL: 022241905
 Open: Mon-Sat 9-5.30
 For components to computers

WARWICKSHIRE

Horizon

Electronics
Charlotte St, Rugby. Tel: Rugby 78138 Open 5 Days 10-6 (closed Wed) Wide range of components and R.S. stockists 1983 Mail Order Catalogue 75p

YORKSHIRE

ACE MAILTRONIX LTD. 3A COMMERCIAL STREET Batley. Tel: (0924) 441129 Open: Mon-Fri 9am-5.30pm. (Sat 1pm) Retail and Wholesale
Please include my business details in the next available issue of ELECTRONICS TODAY
INTERNATIONAL:
BUSINESS NAME \qquad
ADDRESS \qquad
\qquad
\qquad
\qquad
TEL NO
OPENING HOURS
RETAIL \square Wholesale \square MAIL ORDER
(Please tick)
CONTACT: (FOR OFFICE USE ONLY)
!
!
!
!
!
!
!
!
!
!
!
!
! I

ADVERTISEMENT RATES semi: Display (min 2 cms) 1-3 insertions $\mathbf{£ 1 0 . 0 0}$ per cm $4-11$ insertions $£ 9.00$ per cm $12+$ insertions $\mathbf{£ 8 . 0 0}$ per $\mathbf{c m}$ Lineage 35 p per word (min 15 words) Box Nos. $£ 2.50$
Closing date 1st Friday in the month preceding publication date.
All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Send your requirements and cheque /P.O. to:
E.T.I. CLASSIFIED ADVERTISING, 145 CHARING CROSS RD, LONDON WC2H OEE

DIGITAL WATCH REPLACEMENT parts batteries, displays, backlights etc. Also reports pubications, charts. S.a.e. for full list Profords Conersdrive, Holmergre 2 , Bucks, HP15 6SGD

AERIAL AMPLIFIERS Improve weak television reception. Price $£ 6.70$, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

DESIGN - ARTWORKS - PRODUCTION PROBLEMS? For electronic design / hardware / software. P.C.B. artworks/assembly test. We offer a complete service at very competitive rates. For details contact: Colin Holloway, c/o Atom Computer Services Ltd, 11 Sleighburn Avenue, Silverdale Nottingham. Tel 0602817471.

BIG BARGAIN BOX

Our Bif Bargain Box cortains over a thousand components -
 these the price we ae asking if bought separatelr. Approx, weight
ONLY 55.00 ine. post - you're bound to come back for -nothorlll
147A FOUNDRY LANE, SOUTHAMPTON SO1 3LS Lots of surplus bargains on our latest list - send an SAE for your

BLEEPER Electronic Seat Belt Reminder, Flashers, full kit of parts, easy fitting, $£ 6.95$, c.w.o. Micro-Tech Industries, Brighouse, HD6 1PD.
BUMPER BOX OF BITS
Wownit We've got so many components in stock, we can't
possibly fist them alill - So buy a box, in it youtll find resistors,
etc, coils, pots . . and so oni. All modern parts - guaranteed at
eic, coils, pots. . and so sin. Af modern parts - guarans,
ELECTRONICS WORLD
1e Dews Road, Salisbury. Wilts SP2 7SN

BURGLAR Alarm Equipment. Please visit our 2,000 sq.ft showrooms or write or phone for your free catalogue. C.W.A.S. Ltd, 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

ATTENTION ELECTRONIC ORGAN KIT BUILDERS

Shop soiled 60 note plastic keys $£ 17.25$ 30 note all timber pedal boards $£ 86.25$ Few only! Mini consoles oak or mahogany f195 ex works including V.A.T. George Sixsmith organ builders, Hillside Organ Works, Carrhill Rd., Mossley, Nr. Ashton-u-Lyne, Lancs. Tel: Mossley 3009

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55d. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick f 1.75 sq . ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

A really compact high performance CCTV camera for only $£ 130.00$ plus VAT plus P/P, Total $£ 152.95$. Size $3^{\prime *} \times 3^{\prime \prime} \times 9$:" 240 v operation. 1v p-p output. Lens extra.

CROFTON ELECTRONICS LIMAITED

35 GROSVENOR ROAD, TWICKENHAM. MIDOLESEX TW 1 4AD
Telephone 01-891 1923/01.891 1513 Telex 295093 CROF TN G

CIRCUIT DESIGN, Prototype construction, analogue or Digital, Siangle Circuits or Complete Instruments/Systems. Write A. J. ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082-346) 536.

$\begin{aligned} & \text { CENTURION } \\ & / A_{1} \frac{1}{2} / 4+1 / 1 / 103 \end{aligned}$
We manufacture, you save £ff's Send s.a.e. or phone for our Free list of professional D.I.Y. Burglar Alarm Equipment and accessories. Discount up to 20% off list prices. e.g. Control Equipment from $£ 15.98$, Decoy Bell Boxes from $£ 5.95$ inc. TRADE ENOUIRIES WELCOME -0484-21000 or 048435527 (24 hr. ans.) CENTURION ALARMS(ETI) 1265 Wakefield Road, Hudderstield HD5 98E, W. Yorkshirel Access \& Visa Orders Welcomed

SHEETMETAL FOLDERS $18^{\prime \prime} \times 18 \mathrm{G}$. Steet, 16G. Aluminium, bench or vice held. Hobby or light industrial use. £38. 01-890 7838 day/evenings.

CONVERT ANY TV into Large Screen Oscilloscope (by external unit). Costs approx. $£ 12$ to build. Circuit and plans $£ 3$ or SAE details. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

BOUND SETS E.T.I. Complete years 1974, 1980, also some 1973-1981. Offers. Wilmslow, 0625533380.
U.V. LIGHT EXPOSER UNIT for use in prep. of photo-resist P.C.B.'s. Attractive wooden construction with exposer area of $250 \times 150 \mathrm{~mm}$. Case $350 \times 250 \times 95 \mathrm{~mm}$. 240 V operation. Only £37.00 inc. p\&p. Send cheque to V.E.P. Ltd., 116 Byron Way, Northolt, Middlesex or ring 01-845 5018.

COPPER CLAD Double Sided Fibreglass, $12^{\prime \prime} \times 8^{\prime \prime} .10$ sheets $£ 6.5$ sheets $£ 4$. Davron, Box No. E.T.I.202, Asp Ltd., 145 Charing Cross Road, London WC2.

GOVERNMENT SURPLUS components and equipment, send s.a.e. for list: AFR Electronics, School Lane, Moulton, Northampton.
WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

SPECTRUM GAMES SALE. Venture (7 games in 1), was $£ 6.3$ compulsive games, was $£ 5$. The lot on one cassette for just $£ 6$. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

SLIDE TAPE SYNCHRONISER

Synchronise slides with music and/or commentary with our PLL
slidid tape slide tape synchroniser kit. Any cassette/ tape recorder or deck can synchroniser socket.
Units can be ganged together for multi-projector use and could be used in any project that requires tone goneration/detection (remote control devices, tape based programmable controller
sequencer etc. etc.) - full details supplied.
Basic kit $\mathrm{f12.95}$ (includes PCB, relay, electronic components and detailed instructions.
Complate kit f19.95 (as basic kit plus case and all switches, leads, plugs and connectors required.) All prices include $p \in p$.
Dapt ET3 FREEPOST, Sutton Coldfilield. Weat Midands B74 2BR (no stemp required)

A LASER FOR $£ 120$. Complete in cabinet with power supply. Send 50p for details, plus information regarding other Lasers, Holograms, available new and ex-exhibit. DHS Developments, Wellington Court, 11 Alma Square, Scarborough.

DON'T MISS THE APRIL EDITION OF

ON SALE FRIDAY THE 4th OF MARCH

FOR ALL YOUR CLASSIFIED REQUIREMENTS RING 01-4371002
FOR IMMEDIATE PLACEMENT OF ORDER PLEASE QUOTE ACCESS OR BARCLAYCARD

USE ELECTRONICS TODAY INTERNATIONAL'S CLASSIFIED 135p per word, minimum 15 words. Box Nos. $\mathbf{£ 2 . 5 0}$ extra or $\mathbf{£ 1 0 . 0 0}$ per single column centimetre - all prepaid). Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, to Electronics Today International Classified, 145 Charing Cross Road, London WC2 OEE

1.	2.	3.	4.	5.
6.	7.	8.	9.	10.
11.	12.	13.	14.	15.

Please place my ad in the next available issue of E.T.I.:
Name
Address
Tel. No.
I enclose my cheque/P.O. for the value of $£$.

Get moving with these new developments in UK Robotics

- advanced electrohydraulic designs for education, industry and now available to the home constructor.

Hebot II is a turtle-type robot which takes programming out of the two dimensional world of the VDU into the real three dimensional world Given a DC supply of 9.15 V it can perform a bewildering number of moves under compute control - forwards, backwards, left and night - with each wheel independently controlled it has blinking eyes. bleeps with a choice of two tones and has a solenoid operated pento chart its progress Touch sensors coupled to its shell return data, about is environment, to the computer for it to calculate evasive or exploratory action. Hebot II connects directly to an I/O port or alternatively with the universal interlace board to the expansion bus of a 2×81 or other computer

Up to the nano-second hard, firm and softwar developments embodied in a complete system. , ega Hertz 16 bit CPU; 64K upwardly compatibl DRAM; separate 16 K video DRAM and 24 K TI Powe Sasic with overwrite. Supports up to four Disc drives o mixed type with 16 serial I/O ports. Programmable Baud rate and comprehensive E Bus interface designed to support real world applications.
Very high resolution graphics gives 3D simulation in 16 colours on 36 prioritised planes of user definable characters. Software FORTH coming includes this trendy language along A h NOS C/PM.
Hardware components available separately with details in Nov, Dec, and Jan issues of ETI. Software features include; Real time clock, full renumber command, buffered I/O to free machine whilst

Robotic experience is becoming as essential a subject as co puting MICROGRASP provides the lowest cost means of acquiring that experience but despite its uitra low price the robot has considerable versatility There are 5 axes each using a servo motor and there is leerback from each of the arm movements. Control is by any computer with an expansion bus - the $\mathrm{ZX81}$ being particularly suitable Servoing is achieved with hardware on the interlace board to keep programming simple and the robot is operated under BASIC commands with no computer specilic soltware required. The interlace board is memory mapped using only 64 bytes at any of 1024 switch selectable locations.
MICROGRASP robot kit with power supply Universal computer interface board ki 23 way edge connector
2×81 peripheral/RAM Pack spitter board

$\$ 125.00$
 $\begin{array}{r} \\ \mathbf{1} 25.00 \\ \\ \hline 48.50\end{array}$
 $\begin{array}{r}\text { } \\ \mathbf{8} 8.50 \\ \\ \\ \hline 2.50\end{array}$

£3.00 MICROGRASP, INTERFACE BOARD AND ZX81
printing, call to machine code routines, hexadecimal support and userfriendly textual error trapping messages.

If computers interest you then the Cortex will expand your understanding infinitely more than off the shelf machines. Use it in business, education, research or just play with the incredible graphics capability. At Powertran we are using these machines in conventional roles, in product control and R \& D. We shall coordinate the Cortex user group and distribute software for the TMS 9995 CPU. Complete 16 bit 64 K computer kit $£ 295.00$ + VAT Complete 16 bit 64 K computer ready built $£ 395.00+$ VAT.

-op of the range is the Genesis P102 which has dual speed control, continuous servo operation and double acting c, nders for increased torque on the wrist and arm rotation on s. The microprocessor based control system has addinal memory, position interrogation via the RS232C inter*ace increasing the versatility of computer control and inputs are provided for machine tool interfacing.
eal s system READY BUILT $\quad \$ 1950.00$ (Electronics Tocay international December issue on CORTEX)

Example prices and specifications

Genesis $\mathbf{S} 101$

Base: $195^{\prime \prime} \times 11^{\prime \prime} \times 75^{\prime \prime}$
Litting capacity 1500 gm Arm lift: $66^{\prime \prime}$

Weight: 29 kg

4 axis model in kit form 5 axis model in kit form 5 axis model Ready Built

Genesis P101

Base: $19.5^{\prime \prime} \times 11^{\prime \prime} \times 75^{\prime \prime}$ Liting capacity 2000 gm Arm lengths be
Weight 34 kg
4 axis model in kit form
140 6 axis model $\mathrm{E495}$ 6 axis model Ready Bull ${ }^{5950}$ Complete Systems as shown in Photograph above Genesis $\mathbf{S 1 0 1}$
4 axis system in kt form $£ 635.50$ 5 axis system in kıI form $\mathbf{£ 6 9 5 . 0 0}$ 5 axis syslem Ready Built $\mathbf{£ 1 3 5 5}$ Genesis P101
4 axis system in kt form $£ 742.00$ 6 axis system in kt form £852.00 All prices exclusive of VAT
(117 GENESIS P102 PROCESSOR BOX, HAND HELD CONTROLLER AND CORTEX COMPUTER

With prices starting below $£ 1,000$ the Genesis range of general purpose robots provide a first rate introduction to robolics for both education and industry Erovide a hirst rate intronuction to robolics for beth education and indusiry Each has a sell-contamed hydraulic power source. which enables loads of several pounds 10 be smooinly handied The system operated trom a single phase 240 or 120 V AC supply or a 12 VDC supply. The machine can be supplied with up to 6 axes each of which is fully independent but capable of simultaneous operation. Position control is achieved by means of a closed-loop feedback system based around a dedicated microprocessor. Movement sequences can be entered, stored and replayed by use of a hand held controller. alternatively the systems can also be intertaced to an external computer via a standard RS 232C link.

GENESIS S101 AND GENESIS P101 WITH PROCESSOR BOXES AND HAND-HELD CONTROLLERS

SPG=CHSMUHESEER THE MAPLIN TALK-BACK

Now your computer can talk!

*Allophone (extended phoneme) system gives unlimited vocabulary.
\star Can be used with unexpanded VIC20 or ZX81- does not require large areas of memory.
*In VIC20 version, speech output is direct to TV speaker with no additional amplification needed.
\star Allows speech to beeasily included in programs.
Complete kit only £24.95.
Order As LK00A (VIC20 Talk-Back)
LK01B (ZX81 Talk-Back)
Full construction details in Maplin Projects Book6
Price 70p.Order AsXA06G (Maplin Mag Vol. 2 No.6)

KEYBOARD WITH ELECTRONICS FORZX81

* Full size, full travel keyboard that's simple to add to your ZX81 (no soldering in ZX81).
*Complete with electronics to make "Shift Lock", "Function" and "Graphics 2" single key selections.
*Powered (with adaptor supplied) from ZX81's own standard power supply
Full details in Project Book 3 (XA03D) Price 60p. Complete kit (excl. case) $£ 19.95$. Order As LW72P Case $£ 4.95$. Order As XG17T.
Ready built-in case $£ 29.95$. Order As XG22Y.

OTHER KITS FORZX81

3-Channel Sounds Generator (Details in Book 5). Order As LW96E. Price $£ 10.95$.
ZX81 Sound On Your TV Set (Details in Book 6). Order As LKO2C Price $£ 19.95$
ZX81 I/O Port gives two bi-directional 8 -bit ports (Details in Book 4).
Order As LW76H. Price $£ 9.25$.
ZX81 Extendiboard will accept 16 K RAM and 3 other pluspicB: modules. Order As GB08J. Price $£ 2.32$ Edge Connectors (4 needed)

Order As RK35Q. Price $£ 2.39$

HOME SECURITY SYSTEM
 Six independent channels - 2 or 4 wire operation. External horn. High degree of protection and long term reliability Full details in Projects Book 2.

MATINEE ORGAN

Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1000$. Full construction details in our book (XH55K). Price $£ 2.50$ Complete kits available Electronics (XY91Y) $£ 299$ Cabinet (XY93B) $£ 99.50^{*}$ Democassette(XX43W) E1.99

25W STEREO MOSFETAMPLIFIER

* Over $26 \mathrm{~W} /$ channel into 8Ω at 1 kHz bothchannelsdriven * Frequency response 20 Hz to $40 \mathrm{kHz} 亡 1 \mathrm{~dB}$.
* Low distortion, low noise and high reliability power MOSFET output stage.
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires (plus toroidal transformer and mains lead terminations). *Complete kit contains everything you need including pre-drilled and printed chassis and wooden cabinet. Full details in Projects Book 3. Price 60p (XA03D). Complete kit only $£ 49.95$ incl. VAT and carriage (LW71N).

BUY IT WITH MAPCARD

Send now for an application form - then buy it with MAPCARD MAPCARD gives you real spending power -

up to 24 times your monthly payments. instantly.

MAPLIN ELECTRONIC SUPPLIES LTD PO. Box 3, Rayleigh. Essex SS6 8LR Telephone. Sales (0702) 552911 General (0702) 554155 Shops at. Note: Shops closted Merthdy 159 King St. Harmmersmith. London W6 Telephone 017480926 284 London Rd. Westchift on Sea. Essex Telephone (0702) 55400)0 Lynton Square, Perry Barr. Birmingham. Telephone (021) 3567292

Post this coupon now!

Please send me a copy of your 1983 catalogue. I enclose $£ 1.50$ (inc p\&p). If I am not completely satisfied I may return the catalogue to you and have my money refunded. If you live outside the U.K. send $£ 1.90$ or 10 International Reply Coupons.

Name

Address

MAPLIN'S FANTASTICPROJECTS

Full details in our project books. Issues 1 to 5: 60p each Issue 6: 70p.
In Book 1. (XA01B) 120 W rms MOSFET ComboAmplifier - Universal Timer with 18 program times and 4 outputs - Temperature Gauge - Six Vero Projects. In Book 2 (XA02C) Home Security System - Train Controller for 14 trains on one circuit - Stopwatch with multiple modes - Miles-per-Gallon Meter.
In Book 3 (XA03D) ZX81 Keyboard with electronics Stereo 25W MOSFET Amplifier © Doppler Radar Intruder Detector - Remote Control for Train Controller.
In Book 4 (XAO4E) Telephone Exchange for 16 extensions Frequency Counter 10 Hz to 600 MHz Ultrasonic Intruder Detector - I/O Port for ZX81 - Car Burglar Alarm - Remote Control for 25W Stereo Amp.
In Book 5 (XAO5F) Modem to European standard 100W 240V AC Inverter - Sounds Generator for ZX81 - Central Heating Controller - Panic Button for Home Security System - Model Train Projects - Timer for External Sounder
In Book 6 (XA06G)* Speech Synthesiser for ZX81 \& ViC20 - Module to Bridge two of our MOSFET Amps to make a 350W Amp - ZX81 Sound on your TV © ZX81 Interface for Modem - Scratch Filter © Doorbell for Deaf - Simple FM Tuner* - Damp Meter*.

- Projects for Book 6 were in anadvanced state at the time of writing, but contents may change prior to publication (due 11th February 1983)

MAPLIN'S NEW 1983 CATALOGUE

Over 390 pages packed with data and pictures and all completely revised and including over 1000 new items. On sale in all branches of WHSMITH
隹 ma, mes

[^0]:
 万

 Th min

[^1]: The circuitry consists of six DACs, ICs 5-12, and one sound generator chip, IC14, which has three separate sound channels and a noise generator. The circuitry for each of the DAC ICs is identical and we will only discuss IC6. The eight bits of data are held on pins 5-12, while the complementary current outputs are on pins 2 and 4. The DAC is configured for positive impedance output operation with 100 on pin 2 connected to ground and the other output fed into the buffer op-amp IC3a.

[^2]: | Plesse note: X in part no. indicates primary voltage. Piosts intert " O "in placs of |
 | :--- |
 | X for $110 \mathrm{~V}, ~ " ~$ |

 X for 1100, " 1 " in place of X for $\mathbf{2 2 5 V}$, and " 2 " in place of X for $\mathbf{2 4 0 V}$

[^3]: Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for 110 V . ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

