Fhatronime totay

BUYERS CUIDE TO BONQUERING THE UNIVERSE: VIDEO GANIES FROM BOTH SIDES OF THESCREEN

AUDIO... COMPUTING....UUSIC...RADIO....ROBOTICS.

T20 + 20 - Designed by Texas Engineers, this 20 watt amplifier gives Hi Fi performance at low cost. Many up-dated features and the ideal beginners kit. Complete kit $\mathbf{f 2 9 . 5 0}$ plus VAT (30 watt version - Complete kit $£ 34.50$ plus VAT)

LINSLEY HOOD 75 DE LUXE - 75 watt amplifier with superb performance (less than $.01 \%$ distortion). Easy construction with virtually no wiring. Complete kit f75,00 plus VAT.

TRANSCENDENT SOUNDS by POWERTRAN

For over 2000 years man has entertained himself and his friends with music played upon instruments he has fashioned with his own hands. From the earliest pipes of hollow reed in the cradles of civilisation, the brazen trumpets of ancient Rome, to the subtle strings of renaissance Europe. Pleasure in the making - Pleasure in the playing and Pleasure in the listening.
Now - in the 1980's its the turn of the electronics age, the age of Powertran.
In our twelve years of research and development we have introduced probably the most comprehensive and sophisticated range of synthesisers and supporting equipment ever offered to the music making, home-constructor.
Each kit is a perfectexample of how craftsman-made components, ingenious design technology, originality of concept-and rigid quality and price control-combine together in kits that are both fascinating and satisfying to construct. Our clear step by step instruction manuals ensure that the kits are well within the capability of the first time builder as well as the dedicated enthusiast.
Once you've made your Transcendent Synthesiser you will be able to make the music of all the ages - from the earliest sounds of the simple pipe, through the most complex harmonies, to the most modern tonalities of Stockhausen or Steel Eye Span!

TRANSGENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.: Complete kit $£ 275.00$ plus VAT (single voice) Extra voice (up to three more) $£ 42.00$ plus VAT

EXPANDER - A new matching 4 voice expander to team up with your polysynth for evena greater range and capability Completekifif249.00 plus VAT

TRANSCENDENT DPX - Offers a five octave keyboard with power to match. Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual. Complete kit $£ 295.00$ plus VAT

TRANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 ' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder buy it, build it - play it! You will know you have made the right choice.

1024 COMPOSER - Come right up to the minute with this new design. IFwill control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off.
complete kit $£ 85.00$ plus VAT
DEMONSTRATION TAPE - Demonstration tape now available of all thre kits (30 minutes)
$€ 2.00$

- PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement until the end of the month following the month of publication of this issue (Errors and VAT rate changes excluded)
- EXPORT ORDERS: No VAT. Postage charged at actual cost plus E 1 handling and documentation.
- U.K. ORDERS: Subject to 15% surcharge for VAT, or at current rate if changed. No charge is made for carriage. Cheques, Access, Barclaycard accepted.
- SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit FREE ON ORDERS OVER £100
- SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter. Open 9 a.m. 12 noon, 1 -4.30p.m. Monday - Friday.

Dave Bradshaw: Editor Peter Green : Assistant Editor Rory Holmes Phil Walker: Project Editors Gary Price: Advertisement Manager
Ron Harris B.Sc: Managing Editor T.J. Connell : Managing Director

PUBLISHED BY:
Argus Specialist Publications Ltd.
145 Charing Cross Road, London WC2H OEE DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4IS
(British Isles)
PRINTED BY:
QB Limited, Colchester
COVERS PRINTED BY:
Alabaster Passmore.
$\begin{array}{ll}\text { OVERSEAS } & \text { AUSTRALIA - Roger Harrison } \\ \text { EDITIONS } & \text { CANADA - Halvor Moorshead } \\ \text { and their } & \text { GERMANY - Udo Wittig } \\ \text { EDITORS } & \text { HOLLAND - Anton Kriegsman }\end{array}$

Member of the Audit Bureau of Circulation

Electronics Today is normally published on the first Friday in the month preceding cover date. \square The contents of this publication including all asticles, designs, plans, drawings and programs and all copyright and other in tellectual property rights therein belong to Argus
Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conven tions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the prior written consent of the Company. ©1982 Argus Specialist Publications Ltd \square All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held respor availability which may occur after the public price or availability which m ton has closed for press
\square Suoscription Rates. UK $£ 13.15$ including postage. Airmail and other rates upon application to ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR.

EDITORIAL AND ADVERTISEMENT OFFICE 145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

11
In News at 11 this month we have items to amaze you and amuse you, items to thrill you and chill you - oh, enough of the hype, just get wise and read it (or vice versa).
TRON.16

This will probably be the smash hit of the Christmas movie glut, and deservedly so, too. A film by computers and about computers, we look at what was done, how it was done, and the ideas and thoughts of the man who did it.

DESIGNING MICRO SYSTEMS . . . 31
Now we get to the man-machine interface, which sounds very deep but just means VDUs, printers and joysticks.
CONQUERING THE UNIVERSE. . . 52 Kerpow! Peeooomm! Vrooosh! Your intrepid star warrior cum hack has been boldly splitting infinitives which no man has split before in an attempt to review the state of the videogame market.

TECH TIPS

.69
This month our regular readers' design page includes a RAM-to-ROM converter for micros and an improved version of our loudspeaker protector.
CONFIGURATIONS \qquad .77
In which we take a look at the granddaddy of the IC family, the op-amp, and discuss some of the fundamentals about its operation.

PROJECTS

STAGE LIGHTING UNIT.

.22
Presenting Part the First of a project that will provide you with digital control of your theatrical lighting set-ups, with programmable scene changes and fades and brightness and stuff.
CORTEX PART 3
.42
The final part of the constructional information provides you with the PSU and keyboard details.
FUEL GAUGE. \qquad
\qquad 46 You mean a hip, up-to-the-minute guy "like you still has a meter on his dashboard? Look, build this electronic one before anyone notices and it'll just be our little secret.
ZX ADC
Here's a project of unparalleled excellence: an eight-channel, eight-bit ana-logue-to-digital converter that plugs into your 81 or Spectrum and lets you do all kinds of wonderful things.

WAVEFORM MULTIPLIER
.71 Does your synth sound weak and thin? Fret no more, this ETI wonder cure will give you a much richer sound without making you poorer.

PROGRAMMABLE PSU. 83
Power supplies are very popular with our readers. So are computers. That should ensure the success of this project since it's a precision supply that can have its voltage and current limit controlled manually or by a micro.
FOIL PATTERNS . 93

INFORMATION

NEXT MONTH'S ETI
. 7 SUBSCRIPTIONS .7

LONDON HOME

HAM RADIO TODAY1
COMPUTER SHOW . . 39 PCB SERVICE 91

Bhonithe
 мтtexatiowal

THE ETI ORGAN

Here's a major project for all you budding musicians - a twomanual and bass pedals organ. This design has a single main board that does all the usual organ stuff and also includes a very realistic-sounding multi-voice rhythm module. Sounds expensive, doesn't it? Wrong. The start-up kit to build one keyboard will cost less than $£ 100$, while a full kit (excluding cabinet) will be available for under $£ 300$. A fully-built version will also be available, still at well under the price of organs with an equivalent performance.

ZX81 ENHANCEMENT

Here's a very cheap little project for anyone who owns a ZX81 and sometimes feels like breaking it by hitting it with the cassette recorder. Yes, we've got details on how you can solve all the legendary problems this computer has with SAVEing programs, and very cheap it is too!

LOGIC PROBE

Not another logic probe? Yes, here's one that's a little more complex than before, which will give you an indication of pulse presence and polarity besides the usual high and low indications.

CRYOGENIC COMPUTERS

Do you get cold feet when you think about electronics? IBM's design engineers took it a stage further, and next month we'll be telling you what they're up to.

DESIGN COMPETITION

There's one group of people who'll be camping outside the newsagents next month: the ones who entered our Design competition. The next issue will reveal the name of the person who won the $£ 100$ prize for the best design based on free PCB we gave away with the October issue. We've also decided to publish one or two runners-up.

LOOK OUT FOR THE FEBRUARY ISSUEON SALE 7th JANUARY

Articles described here are in an advanced state of preparation. However, circumstances may dictate changes to the final contents.

 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161. TELEX: 914977 CRIKEL G

CRICKLEWOOD - STOCKING PARTS OTHER STORES CANNOT REACH!

Lamphotders, FUSES: 20 mm 11 inch, slow or quick blow. Fuseholders. CONNECTORS: DIL. DIN. \& THE LAZY WAY Phone your order through on Access, Barclaycard, Visa or American Express Phono, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}$. Bulgin USA. I.E.C. KNOBS: Plastic, Aluminium, Anodised, Collet, Pointer. for immediate service; no extra charge, no minimum order
Panel. TOOLS: Pliers, Cutters, Strippers, Trimmers, Cable Cutters: And, Analogue. Test and A日 in stock itens (that's 95%) posted same day OFFICIAL ORDERS FROM SCHOOLS. GOVT DEPTS ETC WELCOME. OVERSEAS ORDERS WELCOME (CWO + ADEOUATE POSTAGE).
CRICKLEWOOD ELECTRONICS LTD., 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET
TEL: 01-4520161, Telex 914971

ALL THESE FEATURES PROVIDED AS STANDARD!

High speed 24 K byte extended basic interpreter Powerful TMS9995 16 bit microprocessor 48 bit floating point gives 11 digit accuracy High resolution (256×192) colour graphics Memory-mapped video controller for 3D simulation Independent 16 K video RAM
16 colours available on the screen together in Graphic mode
Fast line drawing and point plotting basic commands High speed colour shape manipulation from basic Full textural error messages
String and Array size limited only by memory size Real time clock included in basic
Interval timing with 10 mS resolution via TIC function Named load and save of basic or machine code programs Auto-run available for any program
Powerful machine code monitor

ULTRA POWERFUL 24K BASIC

COMMANDS	LOG	KEY	?	RANDOM	SGET
RUN	SQR		ENTER	MAG	
SIZE	SYS	STATEMENTS	UNIT	LIST	TOF
CONT	TIC	IF	BAUD	PURGE	TON
MON	SON	ELSE	CALL	NUMBER	DIM
	BIT	ON	DATA	RENUM	DEF
FUNCTIONS	CRB	GOTO	READ	BOOT	NEW
ABS	CRF	GOSUB	RESTOR	GRAPH	END
ADR	MEM	POP	RETURN	TEXT	BIT
ASC	MWD	REM	STOP	PLOT	CRB
ATN	LEN	FOR	TIME	UNPLOT	CRF
SIN	MCH	NEXT	WAIT	COLOUR	MEM
COS	POS	ERROR	SAVE	CHAR	MWD
EXP	COL	INPUT	LOAD	SPRITE	BASE
FRA	MOD	PRINT	ESCAPE	SHAPE	
INT	RND	;		NOESC	SPOT

Assembler \& Disassembler
Auto line numbering facility
Full renumber command
Simple but powerful line editor
Buffered i/o allows you to continue executing the program while still printing
Flexible CALL statement allows linkage to machine code
routines with upto 12 parameters
Basic programs may contain spaces between keywords to make programs readable without using more memory 64 K RAM using latest technology 64 K DRAMS Over 34K bytes available for basic programs even when extended basic includes IF-THEN-ELSE Supports up to 16 output devices Screen and cassette included as standard Supports bit manipulation of variables from basic Error trapping to a basic routine included Basic supports Hexadecimal numbers

[^0]OPTIONAL EXTRAS
RS232C interface kit ..9.20 Pair of $51^{\prime \prime}$ disc drives \& hardware kit $\mathbf{£ 3 5 5 . 0 0}$ READY BUILT
CORTEX B - Basic machine + RS232C CORTEX C - As above + dis.. 100 All items carriage free - prices exclusivi.. 8 VAT 5

THE NEW MAPLIN CATALOGUE FOR 1983 BRINGS YOU RIGHT UP-TO-DATE IN ELECTRONICS \& COMPUTIIVG

Nearly 400 pages of all the most useful components and a whole big new section devoted to home computers and personal software. As always the catalogue keeps you up-to-date with the latest technology - even our ordinary miniature resistors are now superb quality 1% tolerance metal film, yet they're still only $2 p$ each. As well as our usual quality products at low prices, now we're offering quantity discounts too. So pick up a copy of our catalogue now - it's the biggest and the best!

Post this coupon now for your copy of our 1983 catalogue, price $£ 1.25+25$ p p\&p. If you live outside the UK send $£ 1.90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name
Address
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 552911/554155
Shops at
159-161 King Street, Hammersmith, London W6 Tel: (01) 7480926 Lynton Square, Perry Barr, Birmingham. Telephone: (021) 3567292 284 London Road, Westeliff-on-Sea, Essex. Tel: (0702) 554000 All shops closed Mondays

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIG

New Logic Probes and Pulsers

Two new products are now available from the OK Machine \& Tool (UK) Ltd. The PRB-1 Digital Logic Probe detects pulses as short as 10 nS , has a frequency response of better than 50 MHz and an automatic pulse stretching to $\mathbf{5 0} \mathbf{~ n S}$ but is competitively priced at $£ 33.24$. It is compatible with RTL, DTL, HTL, TTL, MOS, CMOS and microprocessor logic families and also features 120 k impedance, power lead reversal protection and over-
voltage protection to 200 V $(+V-V)$. Supply voltage range is $4-15 V$ but a PA- 1 adaptor can be supplied for use with voltages from $15-25 \mathrm{~V}$.

The PLS-1 for $£ 43.13$ is a pocket-sized, multi-mode, highcurrent pulse generator that will superimpose a dynamic pulse train (20pps) or a single pulse onto the circuit node under test, without having to unsolder pins or cut printed circuit traces, even when these nodes are being clamped by digital outputs. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic state. OK Machine \& Tool (UK) Ltd, Dutton Lane, Eastleigh, Hants SO5 4AA. Tel: 0703610944.

High-Rise RAM

-Iigh speed erasing, writing, modifying and reading of non-volatile data is made possible for software engineers by the MEMIC model T by Camel Products. Two kilobytes of fast access, low power static CMOS RAM is built into a 'Tower block' unit needing no more real estate than the $\mathbf{2 4}$ pin IC socket it plugs into. Even when plugged into a ROM socket, the flylead provided allows write operations. Hi-K Lo-K or 2 K operation is switch selectable. A power down switch permits months of non-volatility off NiCd batteries. At $£ 29.95$ (incl.) the ready to use unit comes with clear and easy user notes. Cambridge Microelectronics Ltd, 1 Milton Road, Cambridge CB4 1UY. Tel: 0223314814.

Inside-Out TV

Dhilips' new CTX small-screen colour TV, the 14" CT2006, turns on itself to show what makes this advanced receiver tick: a single board with a third less parts than previous sets.

The VDU Approaching Platform

asmin Electronics have won important contracts to supply British Rail (London Midlands Region) with their new Information Display System, which utilises a new Character Generator to give the unique choice of presenting the same information in up to seven different formats on television screens but only having to generate it once.

St. Pancras Station (London) and Preston Station are the first to

31 $\frac{1}{2}$ Digit Panel Meter

new $3 \frac{1}{2}$ digit DPM recently A announced by Lascar Electronics can be operated by 5 V DC, 110-120 V AC or $\mathbf{2 2 0 - 2 4 0} \mathrm{V}$ AC. The meter fits into a standard DIN cut-out and will replace many existing types, but offers improved performance with very low cost. Standard features include $0.43^{\prime \prime}$ (11 mm) high efficien-: cy LED's, Auto-zero, Autopolarity, bandgap reference, polarised filter and programmable decimal points. The meter is capable of single ended, ratiometric or differential measurements. Although offered in a
order this new model which will become operational in the new year. Similar systems are in use for many applications in the UK and overseas, particularly at airports. More stations are expected to adopt this information system as a key part of London Midland Regions' improvements in passenger information facilities.

The versatility of the design means that the same basic system can be very easily adapted to differing requirements of other stations while still gaining the benefits of standardisation. For each station, an important feature is the capacity to modify or extend the system without major re-design. Jasmin Electronics Limited, St. Matthews Way, Leicester LE1 2AA. Tel: (0533) 58128.

standard FSD of 200 mV , the meter can be easily programmed by the user to read many other engineering units, such as current, resistance, temperature, etc. Lascar Electronics Limited, Oakland House, Reeves Way, South Woodham Ferrers, Chelmsford, Essex CM3 5XQ. Tel Chelmsford (0245) 329797.

purposefully designed 40 watt R.M.S. and 30

 watt R.M.S. 8 M Ueaker systems tently Belgium. Kits comprise Mullard woofer ($88^{\prime \prime}$ or $5^{\text {5 }}$) with foam surround and aluminium voice coil. Mullard 3^{*} high power domed tweeter. B. K.E. buitt and tested crossover based on Mulardcircuit, combining low loss components, glass fibre board and recessed loudspeaker terminals. SUPERB SOUNDS AT LOW COST. Kits supplied in polystyrene prcks complete with instructions. $8^{\sim} 40 \mathrm{~W}$ system - reco mended cabinet size 240 Price f 14.90 each +52.00 P \& P.
$5^{\prime \prime} 30 \mathrm{~W}$ system -- recommended cabinet size $160 \times 175 \times 295 \mathrm{~mm}$
Price $£ 13.90$ each +ft .50 Pg P
Designer approvad flat pack cabinet kits, inclucing grill fabric. Can be finished with ison on veneer. or self adhesive vinyl etc.

Stereo cassette tape deck module.
Comprising of a top panel and tape mechanism coupled to a record/play back printed board assembly. Supplied as
one complete unit for horizontal instaliation into cabinet or console of own choice. These units are brand new, ready

built and tested. Features: Three

features: Three digit tape counter. Autostop. Six piano
type keys, record, rewind, fast forward, play, stop and elect, Automatic record level control. Main inputs plus secondary inputs for stereo microphones. input
Sensitivity: 100 mV to 2 V . Input Impedance: 68 K .
 channels. Output impedance: 10 K . Signal to noise
ratio: 45 dB . Wow and flutter: 0.1%. Power Supply ratio: 45d8. Wow and flutter: 0.1%. Power Supply
requirements: 18 V DC at 300 mA . Connections: The left and right hand stereo inguts and outputs are via
individual screened leads all term nated with phono piug individual screened leads, all term nated with phono piugs
(phono sockets provided). Dimensions: Top panel 5 tin (phono sockets provided). Dimensions: Top panel $5 \frac{5}{\mathrm{i}} \mathrm{in}$
$\times 11$ tin. Clearance required under top panel 2 in . \times Supplied complete with cirredit under toprap and connecting
diagram. Atractive black and siver finish diapgram. Atrractive black and silver finish.
Price
f $78.70+50$ postage and
Price $£ 28.70+£ 2.50$ postage and packing.
Supplementary oarts for 18 V D.C. power supply (transformer, bridge rectifier and smoothing capacitor)
$£ 3.50$.

6 ;iano type keys
NEW RANGE QUALITY POWER LOUDSPEAKERS (15", $\mathbf{1 2}^{\prime \prime}$ and 8^{\prime}). These disco applications. Both the $12^{\prime \prime}$ and $15^{\prime \prime}$ units have heavy duty die-cast chassis and aluminium centre domes. All three units have white speaker cones and are fitted with attractive cast aluminium (ground finish) fixing escutcheons Specification and Price
15. 100 watt R.M.S. Impedance 8ohm 59 oz . magnet, $2^{\prime \prime}$ aluminium voice coil. Resonant Frequency 20 Hz Frequency
Response to 2.5 KHz . Sensitivity 97 dB . Price $£ 32$ each $£ 3.00$ Packing and Carrage eacn.

12* 100 watt R.M.S. Impedance $8 \mathrm{ohm}, 50 \mathrm{oz}$. magnet. 2 aluminium voice coil Resonant Frequency 25 Hz . Frequency Response to 4 KHz . Sensitivity 95 dB . Price f23.70 each. £3.00 Packing and Carriage each
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohms, $20 \mathrm{oz} .1^{1 / 2 "}$ aluminium voice coil, Resonan Frequency 40 Hz , Frequency Response to 6 KHz , Sensitivity 92 dB . Also avalable with conelgrill $\mathfrak{f} 9.50$ each. P \& P f 1.25 each
PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transientresponse with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' $\mathbf{I K S N 2 0 3 6 A) 3 ' " ~ r o u n d ~ w i t h ~ p r o t e c t i v e ~}$ wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $\mathbf{f} 3.45$ each
TYPE 'B' (KSN1005A) $31 /{ }^{\prime \prime}$ super horn. For general purpose speakers, disco and P.A ce 4.35 each
TYPE 'C' (KSN6016A)2" × $5^{\prime \prime}$ wide dispersion horn. For quality Hi-fi systems and quality discos etc. Price $£ 5.45$ each
TYPE 'D' (KSN1025A)2" * 6 " wide dispersion hom. Upper trequency response retained extending down to mid range (2KHz) Suitable for high quality Hi -fi systems and quality discos. Price $\mathbf{f 6 . 9 0}$ each

TYPE 'E' (KSN1038A) 33/4" horn tweeter with attractive sitver finish trim. Suitable tor Hi - fi monitor systems etc. Price $\mathbf{£ 4 . 3 5}$ each
TYPE 'F' (KSN1057A) Cased version of type ' E ' 'Free standing satellite tweeter. Perfe: add on tweeter for conventional loudspeaker systems. Price $f 10.75$ each.
PGP 20p ea. (or SAE for Piezo leaflets).

NP

1000 MONO DISCO MIXER

A superb fully built and tested mixer/pre-amp with integral power supply, 4 inputs 2 turntables (ceramic carridgel. Aux. for tape deck etc, plus Mic. With
override switch, al with individual devel controls. Two sets of ective tone control (bass and treble) for Mic. and main inputs. Master volume control. Monitor outpur with select switch and volune controt
Outputs Main 750 mV Manitor 500 mW into 8 ohms. Supply $220 / 240 \mathrm{~V}$ AC50/60 Hz
BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar and Leader

1K.WATT SLIDE DIMMER

- Controls loads up to 1 KW
- Compact size
- Easy snap in fixing through
panel/cabinet cut ou
- Insulated plastic case
- Full wave control using 8amp
- Conforms to BS800
- Suitable for both resistance and inductive loads innumerable applications in industry, the home, and discos/
theatres etc.
Price: $£ 11.70$ each $+50 p$ P\&P (Any quantity)

BSR P256 TURNTABLE

P256 turntable chassis - S shaped tone arm - Beit driven \bullet Aluminium plalter Precision calibrated counter balance - Antiskate (bias device) Damped cueing lever - 240 volt AC operation (Hz) - Cut-out template supplise Completely manual arm. This deck has a completely manual arm and is where all the advantages of a manuai arm are

$$
\text { Price: } \mathbf{£} \mathbf{2 8 . 5 0}+\mathbf{£} 2.50 \text { P\&P }
$$

POWER AMPLIFIER MODULES

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system 80 hms Build a quality 60 watt R.M.S. system

- $10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
* $3^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
* $5^{\prime \prime}$ Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
$\star 3$-way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz
Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ Fitted with attractive cast oluminum fixing es cutcheons and iresil protective gatls which are removable enabling a unique choice of cabinet styting. Can be mounted directly on to baffle
 All three units have aluminium centre domes
 All three units have aluminium centre domes billes spring loaned loudspeaker terminals and recessed muluntina nane:
Price f 22.00 per kit + E 2.50 postage and pack ing. Available separately, prices un request
$12^{\prime} 80$ watt A.M.S. loudspeaker.
A superb general purpose twin cone loud speaker. 50 oz, magnet. 2 aluminium voice coil. Rolled surround. Resonant fre13 KHz . Sensitivity 95 dB Impedance 80 to Attractive blue cone with aluminium Centre dome. Price $£ 17.99$ each $+£ 3.00 \mathrm{PqP}$

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. * Mail order only. \star All items packed $/$ where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

Compact Speakers with Sealed Mylar Diaphragm

New from G. English Electronics is a series of dynamic mylar audio speakers designed tor use in all types of portable industrial and domestic receiving or reproduction equipment. Introduced as the DSH Series, these highly compact dynamic mylar speakers are claimed to provide

sound reproduction of exceptional quality, combining good bass response with low distortion and smooth upper frequencies. They are designed for use with amplifiers of 8 -ohm to 200 -ohm output impedance, and have an impedance tolerance of $\pm 20 \%$. Their sensitivity at 1.5 mm is $108 \mathrm{~dB} / \mathrm{mW}$ at 1 kHz , and claimed frequency response is 20 Hz to 20 kHz . The rated and maximum inputs of the DSH Series are 30 mW and 100 mW , respectively.

An important feature of these miniature speakers is that they may be supplied with special terminations to meet individual application requirements. This means that they can be incorporated, without modification, into an extremely wide range of equipment, typically portable transceivers, headphones, domestic and office audio reproduction systems, etc. Their dimensions vary according to their rated output, from 27.1 mm dia. $\times 14.3 \mathrm{~mm}$ up to 45.0 mm dia. $\times 8.2 \mathrm{~mm}$. G. English Electronics Ltd, 34 Bowater Road, Woolwich, London SE 18 5TS. Tel: 018550991.

Shorts

- CUB miniature counters are now available with a new range of converter modules that allow count inputs to be taken from solenoids. contactors, logic sources, and sensors with triac outputs. The modules are protected against dirt, oil, water and most chemicals by PVC encapsulation. Eurovector Ltd, Wessex House, Silchester Road, Basingstoke RG26 6PX. Tel: 07356 3693.
- Motorola have announced several new products including: a plastic-packaged (T0220) 40 A (RMS) thyristor with 400 A surge capability; 'medium' current (up to 100 A !) power darlington transistors capable of switching 25 K VA, the M1 10040 series; and, in the next few months, a series of gate arrays in ECL, ALS and CMOS. Motorola Ltd, York House, Empire Way, Middlesex HA9 0PR.
- Ross Electronics have launched a range of micro speakers and booster amplifiers for personal stereos. Ross Electronics, 49/53 Pancras Road, London NW1 2QB.
- Texas instruments claim to be producing the first single-chip dual peripheral drivers with single-saturating transistors capable of outputting up to 500 mA . Designated the SN75407 (NAND inputs) and the SN75408 (NOR inputs), the 100 -off price will be around 55 p . Texas In struments Ltd, Manton Lane, Bedford MK41 ${ }^{7 P A}$.
- Also available from Texas is a new handbook covering information and instruction on microprocessor systems, called (original title!) 'Software Development'. The book is aimed at both software learners and
experienced engineers, and Texas say that it covers the basic steps in the software development process. It costs $£ 12.90$ (plus $£ 1.50$ $p \& p$) and is available from Texas Instrument Ltd, PO Box 50, Market Harborough, Leicestershire.
- Zilog are at it again, this time with a new data book describing their full range of microprocessor products. Available from Zilog distributors, it costs $£ 3$, which looks like a bargain for 643 pages of information. Zilog (UK) Ltd, Zilog House, Moorbridge Road, Maidenhead, Berks SL6 8PL.
- A little more expensive than the Zilog book is a new publication from Granada Publishing Itd, PO Box 9, St Albans AL2 2NF, called the Microprocessor Data Book, by S A Money. It doesn't sound that thick at 288 pages, but believe us, when it landed on our desk it nearly carried on going it's in a large format, so it is heavily laden with facts. If we ever manage to plough through it all, we will give you a more considered opinion on all 1.4 kg of it? - Bradford \& Ilkley Community College, Great Horton Road, Bradford, West Yorkshire will be running a course to prepare for the morse examination in the Radio Amateurs ' A ' Licence. The one year course will commence on 12th January, with classes on Wednesday evenings from 1900 to 2100 hrs . (Note: if other colleges are running similar courses, we and our colleagues on 'Ham Radio Today' would be most interested to hear about them with a view to publishing details.)
- New products from Raytheon Semiconductor, Howard Chase, Pipps Industrial Area, Basildon, Essex SS14 3DD: a 10-bit 85 nanosecond D to A (that's fast enough

Design
 Teaching Aid

The Research Machine 3802 can now be interfaced to the E \& L Instruments AID-1, Analogue Interface Designer. Developed by Imperial College of Science and Technology with supporting educational texi written by Edward James, the system provides an introduction to A/D and D/A conversion, and enables the stu-
dent to have an understanding of the relationship between the computer and control applications. The AID- 1 is complete with electric motor, sensors for temperature, position, light meter digital inputs/outputs with LED indications. Other interfaces are aiso available for TRS-80 and AIM 65. E \& L Instruments Ltd, Whitegate Industrial Estate, Whitegate Road, Wrexham, Clwyd LL13 8UG. Tel: 0978 263030.

for a video signal!) called the DAC-10; and 16 and 32 K PROMs and SPROMs in 24-pin 0.3" packages.

- Ground Control (they really are called that, we have the letterhead to prove it), of Alfreda Ave, Hulibridge, Essex SS5 6LT, are producing a RAM pack for the ZX81 that, they claim, eliminates the disconnection problems that can occur with other RAM packs. They claim that you can pick up your ZX81 and shake it without a crash occurring. The basic unit costs $£ 19.95$, or $£ 24.95$ with an added keyboard sounder (prices include VAT and p\&p).
Looking for a 2 A or 6A highefficiency diode with a recovery time of 25 (or 30) ns? Then contact Power Technology Ltd, Boulton Road, Reading, Berks RG2 0LT, because they've just started selling some devices made by Varo Semiconductor that may fill the bill.
- We don't know what has gone wrong this month, as we have heard of only one new multimeter being launched - must be the time of year. This one is from Keighley Instruments Ltd, 1 Boulton Road, Reading, Berks RG2 0NL (must be next door to Power Technology), and it's called the 132. It's unusual in that it's a hand-held instrument with true RMS AC ranges and a temperature range (somebody at Keithley must have been reading Tim Orr's series on measurement techniques. . . .).
- A four-wheeled motor-driven chassis that might form the basis of a small robot (the chassis measures approx $\left.10^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}\right)$ is available for less than $£ 40$ from DRJ Electronics, PO Box 394, London SE6 1TR (catalogue 60p). - Ambisonics is not dead, but are
keeping a low profile of late after all the 'hype' several years ago. Minim Audio, of Lent Rise, Burham, Slough SE1 7NY, are hoping to their bit to bring it back to the public eye with their AD2 surround sound decoder module. The module costs $£ 49.95$, and will, when mounted in a 'host' amplifier, decode UH)-encoded recordings as well as enharcing normal stereo recordings.
- The BBC has published its plans for direct broadcasting by satellite in a booklet called (wait for it) Direct Broadcasting by Satellite - the BBC's Plans'. A limited supply of these will be available on a first-come firstserved basis from the Engineering Information Department BBC, Broadcasting House, London W1A 1AA (large A4 size stamped addressed envelope required).
- Connectors' Corner - we seem to have more new connectors this month than anything else. Semiconductor Specialists (UK), of Carroll House, 159 High Street, Yiewsley, West Drayton, Middlesex UB7 7BX have introduced the ' 400 ' range of dual-beam (thought they were 'scopes) DIP sockets; BFI Electronics Itd, 516 Walton road, West Molesley, Surrey KT8 0QF have a new snap-in connector range called the Series 600 that's already in use in the French telephone industry; BICC. Vero Connectors, Parr St, St Helens, Merseyside have introduced the M50 series fixedpitch (1.27 mm) flat-cable connecting system with a wide range of different connectors; and finalIy, Davico Industrial Ltd, Charles Street, West Bromwich, West Midlands have issued what they claim is the definitive catalogue of electrical terminals, connectors and cable ties.

CASIO MAGIC FOR 1983

ELECTRONIC DICTIONARIES - OLE!

TR-6000 TRANSLATOR CALCULATOR 6,000 words and phrases $\mathbf{£} 9.95$

This English-Spanish/Spanish-English translator is a must for next year's holiday and, naturally, the alpha-numeric keyboard doubles as a calculator to help you work out your pesetas.

BEST SELLING WATCHES
with alarm, hourly chimes and stopwateh

TS-1000 World's first thermometer watch with high and low temperature thermo alarms, daily alarm, stopwatch and world time mode. 100 metre water resistant resin case.
TS-2000 Non W/R metal version $\mathbf{E 2 9 . 9 5}$
AX-250 10 alternative displays. Over 60 functions.

Two of our most popular watches and rightly so. One lithium battery lasts 5-7 years.

CS-821 A really beautiful ultra-slim $(6.6 \mathrm{~mm})$ calculator watch. One battery lasts 15 months. GG-9 Golf stroke counter. 9 hole golf game.
We stock over 30 Casio watches, including game, joggers, divers and ladies models
See our catalogue in last month's ETI, or send for further copies

TE-2500
DICTIONARY
$£ 39.95$
Dictionary mode 1,711 words in both English and Spanish.

5-language

translation mode
36 basic sentences for
daily conversation in English, Japanese, Spanish, French and German.

Backward/forward search buttons with rapid search.
World time mode Displays all 24 time zones. Daily alarm, hourly chimes, calendar, stopwatch. Surely this amazing piece of science fact must be the most versatile watch ever created

PRICEBEATERS

We believe we are the ONLY authorised Casio dealer currently advertising in ETI. Our pricess are the lowest we are allowed to charge. Although grey imports are NOT guaranteed by Casio, we will nevertheless BEAT any lower price AND give you a VALID Casio guarantee. O RICEBEATERS from last month's ETI are as follows:
Watches
CS-821 $£ 24.95$. CA-851 £24.95. AX-250 $£ 21.50$ WS-70 £18.95. A-656 £8.50. F-85 £7.25
Calculators FP-10 Printer $£ 39$, FA-Z Interface $£ 18.50$
FX-100 College $£ 13.50$. FX-7 $£ 9.95$
MG-777 £13.50. MG-880 £10.25. MG-888 £10.25
IF YOU SEE A BETTER OFFER WE WILL BEAT IT!

PORTABLE COMPUTERS
FX-801P
ONLY £349
THE FUTURE IS HERE TODAY

High speed computer with
integral micro-cassette data
control and hard copy printer
monitoring.

Everything you need, in an area smaller than this page. This truly portable SYSTEM needs no periphersls on lengths of Wire. Batteries last 250 hours (only display) or 5,000 lines (display and printing). Typewriter style QWERTY keyboard, plus all the advanced functions of the FX-702P

FX-700P

$£ 79.95$
Truly pocket
size
BASIC programming. OWERTY keyboard. Up to 1,568 program steps, up to 222 memories, up to 10 program
areas all protected.

Upper/lower case dot matrix display. Powerful editing Upper/lower case dot matrix display. Powerful editing functions. 25 scientific functions. Subroutines. 8 leveis. 118 g . 300 hour battery life approx.

UNDERSTAND COMPUTERS

PB-100. LEARN AS YOU GO FOR E69. 96 Everyone can join the new world of computers with this easy-to-understand teaching system. LEARN with the beginners manual "An easy-tofollow introduction to the Personal Computer ${ }^{\prime \prime}$. FOLLOW the step by step examples and USE the programs supplied, or develop your own for business or home, including exciting games. QWERTY keyboard. Upper/lowe case dot matrix display. Up to 544 program steps/94 memories, expandable 10 , $988 \times 165 \times 71 \mathrm{~mm}$. Weigh 116 g . 360 hours battery life. OR-1 1 K RAM expansion module. £11.95. FA-3 cassette interface $£ 22.95$.

SOUNDS SENSATIONAL

Free vouchers, supplied on request with your order may be exchanged for accessories or goods.

DIGITAL SYNTHESISER

PLUS £45 VOUCHER
10 preset vaices and 1,000 switchable sounds, with a protected memory for your 10 favourites. 5-octave split keyboard' programmable arpeggio/real time sequencer transposition. $4 \frac{5}{6} \times 36 \times 14 \frac{3}{\text { a }}$ inches. 22.5 lbs .

BAR-CODE PROGRAMMABLE TEACHING KEYBOARDS

CT-701

5 octave, split keyboard. 20 preset sounds with variable vibrato and sustain. Fingered or auto chords with bass and arpeggio. 16 rhythm accompaniments with fill-in. Two sound effects. $5 \times 37 \frac{3}{4} \times 12 \frac{1}{2}$ inches. Weight 27.6 ibs .

PORTABLE MINI KEYBOARDS Battery or mains. Mains adaptor optional extra. MT-70

PLUS £ $\mathbf{E} \mathbf{1 9 0}$ VOUCHER

A portable mini keyboard versior: of :he C ${ }^{\top}$-701. 4 octave (not split) keyboard, 10 rhythm ascompaniments. Without the two sound effects, is is otherwise very similiar to the CT701. Battery or mains powered, with optional mains adaptor. $2 \frac{3}{4} \times 25 \times 7 \frac{1}{3}$ inches. Weight 6 lbs
MT-60. 25 voices, 8 rhythms, Easy-Play auto chords, bass MT-60. 25 voices, 8 rhythms, Easy-Play
and arpeggio. With $£ 20$ voucher . . . 149

CHRISTMAS DELIVERY: Orders received by the 18 th December will normally be delivered in time for Christmas, subject to availability.

Send cheques, P.O. or phone your ACCESS/VISA card number to:

Dept. ETI, 34 Burleigh Street
Cambridge CB1 1DG
Telephone: 0223312866

ELEGTROVALIE

- 24 HOUR NORMAL DESPATCH TIME - ESTABLISHED 1965
- all goods guaranteed brand new and TO SPECIFICATION
- APPOINTED SIEMENS DISTRIBUTORS

I.Cs - COMPUTER \& ANALOGUE

COMPUT	
${ }^{74450}$	
${ }^{7}$	
${ }_{7}^{7454514}$	
74.5380	
${ }^{744.352}$	
744.538	
7444597	
74-573	
${ }^{744575}$	
(74.545850	
7414939	
${ }^{7445112}$	
74.15139	
74 LS	
4tS15	

BOXES

SEMICONDUCTORS

	-
 z \mathscr{A} 	 - 7

METERS

Pads, accessories, etc.
PANEL MOUNTNG in $50,100,500 \mu \mathrm{~A} ; 1,5,10,50,100$,
500 mA : A either model
 680 Burnage Lans, Burn
 1 n
10
Co
10
 10n, $22 n, 6 \mathrm{p}$; 33n, 47, 7p: $100 \mathrm{n}, \mathrm{Bp}$, 7 mm
Polyester, Siemene Layer Type 7.5 mm
 $12 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n}, 33 \mathrm{n}, 4 \mathrm{n}, 7 \mathrm{p}, 56 \mathrm{n}, 18 \mathrm{n}$,
$720 \mathrm{n}, 120 \mathrm{n}, 15 \mathrm{n}, 15 \mathrm{p} ; 180 \mathrm{n}$,
$220 \mathrm{n}, 12 \mathrm{p}: 270 \mathrm{n}, 330 \mathrm{n}, 330 \mathrm{n}, 390 \mathrm{n}, 470 \mathrm{n}$,
 spacing 1 LF
depth stock

ELECTROLYTICS $1000 / 10^{\circ}$. 19			
2.2/25	13	1000/16	28
2.2/63	10	1000/25	36
4.7/63	11	1000/40	44
4.7/100	14	1000/63	76
6.8/40	10	2200/6	09
10/6	13	$2200 / 16$	44
$10 / 25$	10	2200/25	
10/40	11	2200/40	73
10/63	14	4700/16	72
10/100	15	4700/25	90
22/10	10		
$22 / 25$	11		
22/40	14	TANTALU	UM
22/63	15	BEARS	
22/100	16	$0.1 / 35$	13
47/3	03	0.22/35	13
47/10	11	0.47/35	13
47/25	12	1.0/35	13
47/40	15	2.2/16	13.
47/63	17	2.2/35	16
47/100	18	4.7/16	16
100/3	03	$4.7 / 35$	18
100/10	13	$6.8 / 16$	16
100/16	14	6.8/25	24
100/25	15	10/6.3	16
100/40	15	10/16	18
100/63	20	10/25	18
100/100	27	22/6.3	18
220/10	18	$22 / 16$	30
220/16	16	$22 / 25$	30
220/25	18	33/6.3	24
220/40	20	$33 / 10$	30
220/28	28	47/6.3	30
220/100	42	100/10	80
470/10	19	For full ran	ranges
470/16	19	of very	many
470/25	19	other	types
470/40	27	please soo	Cat
470/63	45	82 and/or	
470/100	73	rent price lis	list.

SOLDERING IRONS

Also large stocks of bits, desoldering ANTEX $C-240 \mathrm{~V}$, etc. $£ 4.60 \mathrm{~N}: \quad \times .25-240 \mathrm{~V}$
AT
 Stand $£ 1,70 \mathrm{~N}$
ORYX
50 ORYX 50 watt temp. controlled $£ 13.75 \mathrm{~N}$
SOLDER $500 \mathrm{gm} / 18 \mathrm{SWG} \mathrm{F} .60 \mathrm{~N}$: Desolder braid 1.5 m E4p

SWITCHES

Type ${ }^{C K}-1 \mathrm{P} / 72$ way, $2 P / 6$ way, $3 P / 4$
way, $4 \mathrm{P} / 3$ wey 48 p ; Min Toggles - S 7101 Way, $4 P / 3$ wey 48p; Min Toggles - S7101
SPDT 57 p; S7201DPDT $80 \mathrm{~S} ;$ S7301 3PDT 8531; make/8533 break 62p; 8225 DPDT E1.34. IN LINE ERG colour coded $0.3^{\prime \prime} \times$
DUAL
$0.1^{\prime \prime}$ format. On /Off single throw $2 P$ SDS2 54p; 4P SDS4 S5; 6 P SDS6 $\mathrm{f1.38;8sP} \mathrm{SDS8}$ DNS04 65p; DNS08 E1.00 LIST includes many now additions to items in our
catalogue.
CATALO 70p post frge with price list.
Large S.A.E. brings price list only FREE

RESISTORS

3/4, 1/3, 1/2, 3/4 watt - all 2p each, 10 of one value 15p 2% Mullard metal film 5.1 ohms - $300 \mathrm{~K} 5 p$ each, 10 of one value 40 p 5% wire wound $3 W$ or $7 W$, most $E 12$ values 1.2ohms to $8 \mathrm{~K} 2 \mathrm{9p}$ each 10 for 70 pN

$\begin{array}{lr}\text { LED's } & \\ \text { Lmm red } & 19 \\ \text { yellow } & 19 \\ \text { green } & 16 \\ \text { Mountings, } & 865\end{array}$

DISPLAYS 7-segment	RECHARGEABLE CELLS
Common	AA 99p C 27p
anode	D (4AH) 378
MAN72A red 75	PP3 cell 17.2 V
AN82A yellow	10
110	PP3 charger
MAN52A green	CHARGER
	CHARGER
Common	FOR ABOVE for any two pairs
MAN74A red 85	AA, Cor D No
MAN84A yellow	NCT230 820N
110	BUzERS
MAN54A green	6-15V solid
MANS4A gren	state

ELECTROVALUE LTD

TRON

One of the most imaginative and innovative films for some time has just been released, and it uses computers in a way never seen before. Peter Green has seen the film; now read the article.

Far above the infinite Sea of Simulation which resembles shifting, multicoloured graph paper, a jewelled ship flies on butterfly wings down a channel of pure light. Its path takes it over gridded fields populated by strange spiderlike creatures and through vast canyons with faceted, metallic cliffs that pulse with an eerie, sombre light.

A group of crouching warriors are surrounded by skeletal 'blueprints' which solidify into futuristic lightcycles and speed forwards toward each other, trailing impenetrable coloured walls in. their wake. The cycles snap into right-angled turns, courting collision and slowly covering the playing area with a complex maze of walls. Suddenly a warrior miscalculates a turn: he is destroyed in an explosion of light and his wall disappears with him.

A huge battleship thunders across the landscape, the ultimate weapon of the tyranny that has taken over this world. Slowly, along a plane that sweeps over the craft from front to rear, it fades into a transparent, skeletal outline that continues on its journey towards a distant citadel as if nothing had happened.

This is the world of Tron. It is like no film you have seen before. And it was made as no film has been before - or will be again.

Game For A Death

Most of the standard subject matter for science fiction has been done to death - albeit in a pretty spectacular manner, given the skills of the modern special effects team. Tron is fresh and different because its director has combined two modern phenomena that have become big business: the use of high-res computer graphics for leisure, in the guise of video games, and the use of high-res computer graphics as a tool for industry. One forms the backdrop to the plot for the film, the other the means of its making. Most of the film takes place in an imaginary world inside the computer, and all the major actors have two roles, one on either side of the video screen.

Tron starts in the real world, where Flynn (Jeff Bridges, playing the sort of laconic rogue I first warmed to in Thunderbolt and Lightfoot) is running a seedy videogame arcade, and beating everyone else's maximum score to

The computer-generated face of the computer.
boot. Flynn used to be the top programmer at ENCOM, a communications conglomerate, until he wrote five crack videogames. An unscrupulous colleague, Dillinger (David Warner), steals the games from the company computer, presents them as his own, and on the strength of their success gets promoted to Managing Director; Flynn gets the elbow.

A trifle miffed at this, Flynn spends his evenings on a home computer terminal upstairs from the arcade, trying to break into the ENCOM computer and gather evidence of Dillinger's dirty work. Unfortunately for Flynn the whole system is now being run by the artificial intelligence of Dillinger's Master Control Program (MCP), which monitors the intrusion and shuts down all access by group seven users (Flynn's security rating). This has the added bonus to the MCP of preventing Alan Bradley (Bruce Boxleitner) from completing work on TRON, an independent security program that would monitor the ENCOM computer and reveal the embarrassing fact that, no longer under Dillinger's control, it is tapping into the computers of other companies, not to mention the Pentagon and the Kremlin (most readers will have spotted that TRON is the BASIC command for TRace ON). Other ENCOM employees to have their work halted are Gibbs and his assistant Lora (Cindy Morgan), who've been working on a project to disassemble objects with a laser, store the information in a computer, then reassemble it ("Beam me up, Scotty").

Alan and Lora guess that Flynn's been meddling, pay him a visit, get the whole story and decide to help him. That night they break into ENCOM; Flynn will forge a new security access so that Alan can complete his work on TRON. But Flynn is using Lora's terminal, right next to the experimental laser; the MCP fights back by disassembling Flynn and sucking him inside the computer. Flynn wakes up in an alternative universe where the inhabitants are 'Programs', electronic alter-egos of the 'Users' who wrote them. The cruel tyrant ruling this world is the MCP, aided by his henchman Sark (Warner again), who flies around in his giant carrier putting down rebellion. Any program that's useful is absorbed by the MCP; the rest are trained as gladiators and fight on the Game Grid, where videogames become a life-and-death reality. Flynn is sentenced to fight until he dies, and finds he needs all his skills to stay alive against the complex games that he himself has written.

Here Flynn meets Tron (Boxleitner), mightiest of the warrior programs and still fighting for the Users against the MCP. Tron is adept in the use of his 'identity disc', which doubles as an information store, and a personal weapon à la Frisbee. Tron and Flynn manage to escape from the Game Grid on their lightcycles and being a long journey to sabotage the MCP. Separated from Flynn by Sark's tanks, Tron meets Yori (Morgan again), a simulations program, who helps him steal her Solar Sailer project. Meanwhile Flynn has stolen a Recognizer, a vehicle used by Sark's
guards. Tron manages to contact Alan Bradley via an input output tower and his identity disc is coded with the information required to destroy the MCP. Eventually the trio meet up again on the home ground of the MCP and prepare for the final battle that will decide all their fates.

The Pong Plot

As you can see, the plot is innovative to say the least. So are the techniques used to film it. And the whole thing is the result of the drive and vision of the director, Steven Lisberger. I spoke to him during his recent visit to London to promote the film and though we started talking about Tron, he ended up leaping from subject to subject like a gazelle. For example, if you're planning to play Zaxxon, the new arcade game that's been appearing in pubs over here, be gentle with it - apparently the joystick is badly designed and machines are breaking down regularly in the USA.

Lisberger first conceived Tron in 1977 while he was directing a couple of animated TV specials called Animalympics: the inspiration was the lowly Pong, father of arcade games as we know them today. Originally the film was to have been animated entirely by computer, and as Lisberger began checking into the techniques he met many people in the industry who gave him ideas for the plot. The theme of the parent company ripping off the inventions of its employees was one, inspired by stories from people it had actually happened to.

By 1980 Lisberger and his producer, Don Kushner, had honed the script into its final form and were hawking it around the major studies. The screenplay now contained extensive scenes using live actors and conventional animation, all of which had to be carefully combined with the computer-generated footage. Within a week of being offered the project, Walt Disney Productions had, in keeping with their tradition of gambling on the success of some pioneering technique, expressed an interest and put up $\$ 50,000$ for test footage.

Lisberger And Chips

The computer-generated sequences in Tron occupy about 20 minutes of the 75 spent in the fantasy world primarily they are scenes involving the lightcycles, the tanks and Recognizers, the Solar Sailer, Sark's carrier and the face of the MCP. Three main companies were involved in the work: Digital Effects Inc, who did the opening shot of a man forming out of energy and Flynn's 'pet', Bit; the Mathematical Applications Group Inc, or MAGI; and Information International Inc, known as Triple-I or III for short. MAGI and III use completely different approaches to computer image generation and worked on separate areas of the film.

The MAGI Synthavision system (you may have seen it used in the film Demon Seed on TV recently) is unique in that it uses subroutine programs; a selection of about 50 solid geometric shapes are stored in the computer as building blocks. To generate the required images, the basic shapes may be added or subtracted from one another until the correct result is obtained. For example, to make the lightcycle you might start with a pair of

The spacious control room of Sark's battlecruiser:

Tron approaches the platform of the I/O tower.
spheres and remove cylindrical cores to give the tyre shapes, then add a smaller central sphere for the hubcap. MAGI were responsible for the lightcycles, tanks, Recognizers and so on. The company uses a Perkin Elmer System 3240 computer for the graphics calculations, using two megabytes of MOS memory and two 80 megabyte disc drives. The pictures are actually generated on a monitor by a second computer, a Celco DFR 4000. As MAGI are located in New York, all their work for the film was sent down the telephone lines via modem to the Disney Studios in California, where the animators studied the results on their monitors and called back with any corrections needed.

III uses a completely different system, in which the blueprints for the required object are digitized on a $40^{\prime \prime}$ by 60 " Taylos graphics tablet and fed into a custom-built oneoff computer they call the Foonley F-1. The computer uses the digital information to define the points of the surface, which is then coloured and shaded. This method is better for complex, irregular shapes because it doesn't rely on regular-shaped, geometric building blocks. Hence 111 are responsible for the 'human' face of the MCP as it communicates with Sark, and also the delicate Solar Sailer.

Eventually, : when the scenes have been choreographed to the satisfaction of the animators (and using computers means that changes to the action can be made in only 20-30 mintues), the images are transferred to movie film by photographing them frame by frame from the screen of a high resolution cathode ray tube. The resulting quality is superb: each frame can contain up to two million pixels and the resolution of some of the images is 2000 lines, higher than that of the film stock being used. So don't try looking for the little squares, because you won't see them.

Seeing Things In Black And White

Equal care and quality went into the filming of the live action scenes, and equally innovative techniques were used. All the denizens of the computer world wear costumes with constantly flickering bands of light - none of which existed in reality. The actors' costumes were white with black patterns and were filmed on black-andwhite film against black backdrops. The film was 70 mm rare in itself these days - and provided big negatives for the post-production work. In fact both MAGI and III had to change their equipment to VistaVision. Once the actors had been filmed, the special effects team made a series of 'mattes' and 'reveals' for each frame of film. These are masks and countermasks that allow various sections of each negative to be lit separately from below by coloured lights and rephotographed on colour stock to give the finished film frame. Most frames had to be rephotographed at least 12 to 15 times (and some as many as 45 times) to produce the required effects using eye reveals, face reveals, costume reveals and so on. The live action was then combined with backgrounds which had been either computer-generated or drawn by conventional animators. Of the 1100 special effects shots in Tron, over 700 involve composite shots with actors.

L-driver Flynn crashes his Recognizer into a bridge - a remarkable piece of special effects work.

This may seem like a stupendous amount of effort but the quality of the result is worth it. Normally a film shot using the conventional 'blue screen' matting techniques gives spaceships and actors with a noticeable line round them. This is the system where the actors or spacecraft are filmed against a bright blue background, which can then be photographically 'removed' and replaced with a different background, such as a star field or planet. Even Star Wars, which used a greatly improved version of this technique, had scenes in which it was possible to 'see the join'. Since Tron doesn't have any mattes in the conventional sense, there are no matte lines. Conventional matting will also give errors in perspective, since it's almost impossible to merge film of models shot at different locations and different times and get things dead right. Tron uses no models: everything exists only in the computer's memory and the perspective is always perfect.

One particular scene demonstrates this well. Recognizers are composed of various elemental blocks and Flynn has stolen a wrecked one by using his User powers to hold it together. But his steering's not too good and the machine hits a bridge, sending the component blocks twisting and tumbling in all directions. Flynn exerts his will and draws them together from their random trajectories, spinning and rotating back into place with perfect precision. This scene alone would have taken a team of conventional animators years to perfect.

The Digital Editor

Even the level of technology used in Tron is only the beginning. The next step is to scan the live action footage and digitize it so that it, too, may be completely manipulated within the computer. The live action can be coloured, distorted, combined with other objects, again without matte lines. In effect the computer will become a digital film printer and the optical printer will become obsolete. According to Lisberger, this sort of equipment will arrive in a couple of years - just in time for Tron II, perhaps?

Looking even further ahead, I asked how soon he thought it would be before computer graphics could simulate real scenes, such as the Star Trek episode "Court Martial" in which a disgruntled crewman fakes the computer log tape to incriminate Kirk. "I've seen sample reels where objects are indistinguishable from photos, but to simulate people will take a long time - 10-15 years," he estimates.

After Tron, our discussion turned to the videogames that the film is based on. Lisberger is a videogame buff and feels that they are a Good Thing for society. "This
technology is here to stay, and the kids who are playing these games now will grow up into adults who are familiar with it. This' has got to be helpful to their development'". But he's less happy about the way the big money-spinning games like Space Invaders and Pacman are licenced by the Japanese, who rake in the millions of dollars of profit each year. "It doesn't say much for American enterprise" he comments sadly. His opinion of Atari suing left, right and centre over Pacman copyright infringement is that it's a load of $b^{*} \|^{* * *} t$, and he feels they're really just testing out laws which are too vague. "I think the tendency in future will be towards more lenient copyright laws, but big companies like Atari will probably still try to bring lawsuits against smaller companies just to be a nuisance. It's scary that the threat is more powerful than the law itself."

Raiders Of The Lost Arcade

I wish I'd said that; but it's what Tron was dubbed in the USA when it was released. Oddly enough, when I first saw the film the only two actors I'd heard of were Bridges and Warner: since then Bruce Boxleitner and Cindy Morgan have appeared on the ITV network in a series called Bring 'Em Back Alive, which is a thinly-disguised rip-off of Raiders, even down to the theme tune - and what's more, one of the characters is called Flynn! The incestuous plagiarism of the US film and TV industry never ceases to amaze me . . .

I also spotted a few cinematic references in Tron, although Lisberger is as much a film buff as he is a video buff and these are obviously a homage to some great classics. The most blatent one is Alan Bradley's poster reading "GORT KLAATU BARADA NIKTO", the famous line from The Day The Earth Stood Still. Flynn's journey across the electronic landscape when he is atomized by the MCP echoes Bowman's journey over the weird planet at the end of 2001, and surely the scene when the Solar Sailer escapes from its hanger, pursued by Sark's giant warship and watched by the helpless guards on the ground is straight out of Star Wars? Perhaps I'm wrong, but in any case Tron has sufficient action and witty dialogue of its own. For example, when Dillinger reminds the MCP that he programmed it, it replies "I've gotten 2,415 times smarter since then": though I did cringe a bit when Sark orders the destruction of an electronic barrier with the words "Bring up the logic probe!"

Tron is already showing in London and will be on general release by Christmas. It cost $\$ 22$ million to make and has already grossed $\$ 30$ million in the USA, salvaging the reputation of Disney which suffered badly from the appalling Black Hole: a film which Lisberger admits might make people wary of Tron. Other problems he was worried about were Britain's poor cinema audiences "Your TV is too good" - and the imminent release of ET. However, there are queues outside the cinema down the road from us and Tron is already the top film after being out for a fortnight, so Lisberger's fears are probably unfounded.

Strangely enough, $E T$ is the sort of film that Disney themselves might once have made, although Lisberger isn't too impressed with it. "Tron has a moral, that we have to watch out for big business and guard against its excesses. I don't know what sort of message you could take home from $E T$, except maybe be kind to your pet'". $I^{\prime} l l$ buy that; and I'll also buy a ticket to see Tron, despite sitting through two press showings already. It's brilliant, and I thoroughly recommend it. It establishes computers as a powerful new tool for the cinema industry, and Lisberger as a major young talent to join the ranks of Spielberg, Lucas et al.

END OF LINE.

NEW GOODIES JUST ARRIVED!!!
C12 BOX88A Darlingtion Power TO3 PNP
$60 \mathrm{~V} \quad 12 \mathrm{~A}$ 117W Hfe $750 @ 6 \mathrm{~A} 75 \mathrm{p}$
C13 Nixie - Siemens ZM1336K, 14mm dig height, overall 25 man . Wire ended 50 p
C14
41212.750 power swatching rect, 800 V C15 GR05R 50 V switahing rect. 4 for 50 p C16 KBL04 4A 400V bridge 50 p C18 BSI 1 A 100 V bridge 5 for E 1

```
LAST MONTHS NEW ITEMS
N1 8085A CPU E3.50
N2 MC144775 50p
N2 LM380550, 50, 35p
4 1005uF 16V
lol
7912Ck (To3 Case!
2 3.579545MHz XalalCGU case 50p
425 way scremed cable 70.25
5 Fred switches, 20mmbody SP make 20/&
C6 12V reed relay, Sp break 40p
C8 68A00 CPU Fi.50
$ SN616A display driver 50p
    10 woy 300/m;20 way ©pp/m; 40 way f1.20/m
```

 10 W AMP PANEL

con be eether 36 V or $18-0-18 \mathrm{~V}$ input sensitivivity
Suitable transtormer, bridge rect, smoothing and
o/p capacitor: 25.50.
'COMPUTER BATTLESHIPS'
Probably one of the most popular electronic
Probably one of the most popular electronic
games on the market. Unfortunately the design
games on me marke. Unfortunately the dasign
makes it impractical to test the PCB as a working
model. alinough it may well function perifectly.
Instead we have tested the sound chip, and soll
the board for its comporent value only (PCB
may be chipped or cracked): SN76477 sound
C.; TMS 1000 u-procassor; batt chips, R's, C's
etc. Size $160 \times 140 \mathrm{~mm}$. Only f1.50.
instruction book and circuit 30p extra.

TIL302 7-SEG DISPLAY
1N4007 1000V 1A RECTS

5 mm RED LED SCOOP
Another cormpany gone bust - to your advantagell
We've bought ail heit 5 mm red LED's
MV5754, and ofier them as follows:
1k 539.50 ; 5 k f1985. Add 30% for 2 -part clip if require
LIE DETECTOR

Not a toy, this precision instrument was orginally part of an "open University" course, used to measure a change in exnotional balance, or as a lie
detector. Full details of how to use it are given. snd a circuit diagram. Supplied complete with probes, leads and conductive jelly. Needs 241 V
batts. Overall size $155 \times 100 \times 100 \mathrm{~mm}$. Only 57.95 - worth that for the case and meter alone!

BRAND NEW VEROBLOC KIT!!!

 this book features 30 diffierent proiects for assembly on
a veroblce, and the kit contains all parts necessary to
make:
Audio Ampifiers
Light $\&$ Dark Activated Switches $\&$ Alarms
Timers
Metronom
Oscilltrors \forall Tone Generators.
Warbling Door Buzzer
Two Tone Train Horn
Two Ton Train
Touch Switro
Reaction
Sourd Activaled Switch
Radio Receivers
Furz
Furz Unit
lots more!!
The introduction shows all the different compornents and explains how io use the breadboard. The verobloc
layout is shown tor circuit diagram and an exclanation of towe with the circuil diagram and an explanation of how it works.
Ideal tot beginners in electronics, but also suitable for mare advanced students.
The complete kin is csis. 5 .
case ianed in an attractive phastic caste, which can be divided up into 15 compartments in vhich your componemis niab bee stored. Complete Kit. including book. Verobloc 8 all parts
E.24.56: Book only $£ 2.25$; Kit without verobloc $£ 20.45$

1982/3 CATALOGUE

 \# Vouchers worth 60 D
\# 1 1 t ciass replay neid envelope
${ }^{\text {y }}$ \# Burgain Liss with hundreds of surplus lines
\# Huge range of components
Sent low prices
1000 resistors $£ 2.50$
We've iust purchased another 5 million preformed
resistors, and can make a similar offer to that resistiors, and can make a similar offer to that
made two years ago, at the same pricellik5231000 mixeders and jw the came pricolik5 ist -

Electrical combin
Electrical combination tock
securtiy - pick proof.
indilion maximum
combinationstl secutily - pick proof. 1 milion combinationsil
Dial is turned to the right to one number, left to a second number, then right again to to third number. Only when this has been completed in
the correct seouvence will the electrical contacts the correct sequence will the electrical contacts
close. These can be used to oporate a relay close. These can be used to oparate a retay or
solenoid. Everall dia. $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Orly
f3.96

PACKS PACKS PACKS

K517 Transistor Pack. 50 assoned full spe marked plastic devices PNP NPN RF AF. Type ${ }_{198} 239,251,214,255 ; 320, \mathrm{BF} 198,255,394$ $198,204,25,2$ Retail cost $\mathrm{f} 7+$ Special low price 275p switcher racker, slide push, rotary toggle micro etc. Amazing value at only $\mathbf{2 0 0 0}$ K622 Copper clad board. All pieces too smail for our etching kits. Mostily double sided fibreglass. 250 g (approx 110 sq ins) for 100 p
K541 it 's back!! Our most popular pack ever - Vero offcuts. This has been restricted for some time, but we have now built up a reasonable stock and can once again offe 100 sa ins of vero copper clad offculs, average size $4 \times 3^{\prime \prime}$. Offered at around $1 / 2$ the price of a naw board 320p

SOLENOID AND RELAYS

Wg21 Solenoid rated $48 \mathrm{BV} @ 25 \%$ duty cycie, but work
well on 24 V 1700 gm pull. 10 mm travell push or pull well on $24 \mathrm{4}, 1700 \mathrm{gm}$ pull. 10 mm travell push or puil
$27 \times 18 \times 15 \mathrm{~mm} 5 \mathrm{l}$ $27 \times 18 \times 15 \mathrm{~mm}$ 55p

 W733 11 年 plug in relay. 240 V ac. 3 PCO 5 A contacts
 $35 \times 30 \times 18 \mathrm{~mm}$. only $84 \mathrm{p} .10 / 77.00$ WB47 37 F 5.10 V relay. SP 3 A contact, PCB mnts $11 \times 33 \times 20.9 \mathrm{gp}_{\mathrm{p}} 10 / 17.50$
W893 Ormron LY4 mains relay, 4PCO 5A contacts.
W925 5VDIL reed relay. SP make 7 p
W924 6 V reed relay, 500 R coil, bp break contacts, 60 p W926 24 V Ormon relay type G2L 113 P , PCB vert
mntg. $28 \times 25 \times 10 \mathrm{~mm}$ Fip

ALL PRICES INCLUDE VAT; JUST ADD 50p POST

POWERFET AMPLIFIERS

NEW DESIGNS

With the introduction of four new boards PANTECHNIC have pushed forvard the performance and reliability of their powerfet amplifiers. Four key improvements have been incorporated in these second generation modules -
1.) The use of H-PAK powerfets, resulting in improved thermal efficiency and
2.) Low C_{O} drivers now in power transistor packages, maintaining the superb HF
performance and improving driver reliability.
3.) Separate driver and input supply rails allowing a 10% increase in available output
4.) Bridge mode input pin allowing instant bridging between any two amplifiers without the need for extra circuitry.

PFA100 Specification

Bandwidth $10 \mathrm{~Hz}-100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Output Power into 80 100W $\left\{\mathrm{Vs}_{\mathrm{s}}= \pm 55 \mathrm{~V}\right]$ THD ($20 \mathrm{~Hz}-20 \mathrm{KHz}$) THD (1 KHz at 100W) SNR Gain
$\mathrm{Kin}_{\mathrm{V} \text { max }}$ $<0.008 \%$
0.004% typ. 0.004% typ.
120 dB 120 dB
$>30 \mathrm{~V} / \mathrm{uS}$ $\times 23$
30 K
+70 V

Price
£17.35 (Built \& Tested)
£15.17 (Kit)
PFA100 120W into 8Ω

PFA200 180W into 88 300W into 4Ω

PFA200 Specification
Bandwidth $\quad 10 \mathrm{~Hz}-100 \mathrm{KHz}+1 \mathrm{~dB}$ Output power into 80 \{50W (Vs +50 V) THD $(20 \mathrm{~Hz}-20 \mathrm{KHz}) \quad<0.005 \%$ THD (11KHz at 150 W$) \quad 0.002 \%$ ryp $\begin{array}{ll}\text { SNR } & \\ \text { Slew rate } & >30 \mathrm{~V} / \mathrm{uS} \\ \text { Gain } & \times 23 \\ \text { Ris } & 30 \mathrm{~K} \\ \text { Vs max } & \pm 70 \mathrm{~V}\end{array}$

Price
E23.87 (Built \& Tested) f21.70 (Kit)

And for those with a taste of power
PFA500 Delivers 475W into 4 ohms and 600 W into 2 ohms. These highly current capable units can deliver 25 amps continuous into a load, whist maintaining the ex empiory performances figures of the smaller units 242.00 (buit 1 testo PFA/HV A very special module aimed at digital audio and wide dynamic range programme material. Delivery 300 W into 40 hms and 80 hms on a continuous basis, it will peak for musically significant periods of time at up to 5 dBs above this. The
PFA/HV is the widect dynamic range power amplifier currently available 534.30 (built \& tested)
The Heat Exchanger Other people sell heatsinks. Pantechnic design, manufac ture, and sell heatexchangers. Re-examination at the heat transfer process has resulted in a radically new design possessing greatly improved efficiency. The unit

POWER SUPPLY COMPONENTS
Toroidal Mains Transformers

Voltage	160 VA	225 VA	300 VA	500 VA	625 VA
$40-0-40$	9.50	11.20	12.00	-	-
$45-0-45$	-	11.20	12.00	15.50	-
$50-9-50$	-	-	-	15.50	18.15

Special low flux windings. Carriage + VAT included
$25 A 400$ PIV Bridge rectifier $£ 2.00$ For the PFA/HV 625VA 70/0/70 $\begin{array}{lll}10,000 \mathrm{uF} 80 \mathrm{~V} \text { Electrolytics } & £ 4.00 \\ £ 400\end{array}$ $30,000 \mathrm{uF} 75 \mathrm{~V}$ Electrolytics $£ 10.00 \quad 10,000 \mathrm{uF} 100 \mathrm{~V}$ electrolithic $\quad \mathbf{£ 5 . 5 0}$

Phone or write for advice on selecting the right components for your particular application.
All prices excl. VAT. Carriage 75p. Trade lists avaifeble
Ask about our preamps, protection boards and active crossovers

THE POWERFET SPECIALISTS

 pantechnic(incorporating J.W.R.Rimmer)
Dept ETI 1148 Quarry Street, Liverpool L 256 HO Telephone:051-4288485

367 Green Lanes, London N4 1DY. Tel: $01-8006667$

Modular Amplifiers the third generation

Due to continous improvements in components and design ILP now launch the largest and most advanced generation of modules ever．

WE＇RE INSTRUMENTAL IN MAKING A LOT OF POWER

In keeping with ILP＇s tradition of entirely self－contained modules featuring，integral heatsinks，no external components and only 5 connections required，the range has been optimized for efficiency， flexibility，reliability，easy usage，outstanding performance，value for money．
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders．

Module Number	Outpat Power Watts rms	LoadImpedanceΩ		$\begin{aligned} & \text { DIST } \\ & \text { T.H.D. } \\ & \text { TYP at } \\ & \text { 1KHz } \end{aligned}$		Supply Voltage Typ	Size		WT gms
HY30	15	4.8		0．015\％	＜0．006\％	± 18	$76 \times 68 \times 40$		240
HY60	30	4－8		0．015\％	＜0．006\％	± 25	$76 \times 68 \times$	$\times 40$	240
HY6060	$30+30$	4.8		0．015\％	＜0．006\％	± 25	120×78	$\times 40$	420
HY124	60	4		0．01\％	＜0．006\％	± 26	120×78	＋40	410
HY128	60	8		0．01\％	＜0．006\％	± 35	120×78	$\times 40$	410
HY244	120	4		0．01\％	＜0．006\％	± 35	120×78	＋ 50	520
HY248	120	8		0．01\％	＜0．006\％	± 50	120×78	＋50	520
HY364	180	4		0．01\％	＜0．006\％	± 45	120×78	－ 100	1030
HY368	180	8		0．01\％	＜0．006\％	± 60	120×78	$\times 100$	1030
Protection：Full load line．Slew Rate： $15 \mathrm{v} / \mathrm{L}$ s．Fisetime： $5 \mu \mathrm{~s}$ ． S / N ratio： 100 db ． Frequency response（ -3 dB ） $15 \mathrm{~Hz}-50 \mathrm{~K} \mathrm{~Hz}$ ．Input sensitivity： 500 mV rms． Input Impêdance： $100 \mathrm{~K} \Omega$ ．Damping factor： $100 \mathrm{~Hz}>400$ ．									
PRE－AMP SYSTEMS									
$\begin{array}{\|l\|} \hline \text { Module } \\ \text { Number } \\ \hline \end{array}$	Madule		Functions				Current Required		
HY6	Mono pre amp		Mic／Mag．Cartridge／Tuner／Tape／ Aux＋Vol／Bass／Treble				10 mA		， 60
HY66	Stereo pre amp		Mic／Mag．Cartridge／Tuner／Tape／ Aux＋Vol／Bass／Trebie／Balance				20 mA	£14，	32
HY73	Guitar pre amp		Two Guitar（Bass Lead）and Mic＋ seDarate Valume Bass Treble＋Mix				20 mA	£15	． 36
HY78	Stereo pre amo		separate Valume Bass Treble + Mix As HY66 less tone controlis				20 mA	E14	

Most pre－amp modules can be driven by the PSU driving the main power amp A separate PSU 30 is available purely for pre amp modules if required for E5． 47 （inc．VATI．Pre－amp and mixing modules in 18 difierent variations．
Please send for details．
For ease of construction we recommend the B6 for modules HY6－HY13 $£ 1.05$
（inc．VAT）and the $\mathbf{8} 66$ for modules HY66－HY78 $£ 1.29$（inc，VAT）．
POWER SUPPLY UNITS（Incorporating our own toroidal transformers）

Modsi Number	For Use With	Price inc． vat	Model Number	For Use With	Price inc． VAT
PSU 27 X	1 or 24 Y 30	E11．93	PSU 52 x	$2 \times \mathrm{HY} 124$	£ 17.07
PSU $41 \times$	1 or $2 \mathrm{HY} 60.1 \times \mathrm{HY} 6060,1 \times \mathrm{HY} 124$	£13．83	PSU $53 \times$	$2 \times \mathrm{MOS128}$	£17．86
PSU 42x	：×HY128	£15．90	PSU 54x	$1 \times \mathrm{H}^{\text {Y } 2488}$	£17．66
PSU 43x	$1 \times \mathrm{MOS128}$	E16．70	PSU 55x	$1 \times \mathrm{MOS248}$	£19．52
PSU 51X	$2 \times \mathrm{HY} 128.1 \times \mathrm{HY} 244$	£17．07	PSU71x	$2 \times \mathrm{HY} 244$	¢21．75

Model Number	For Use With	Price inc． VAT
PSU 72x	2xド 248	522.54
FSU 73x		こ22．64
PSU $74 \times$	$1 \times$＋iv353	E24．20
PSU $75 \times$	$2 \times$ MOS248， $1 \times$ MOS3E8	E24．20

Please note：X in part no．indicates primary voltage．Please insert＂O＂in place of
X for 110 V ＂ 1 ＂in piace of X for 220 V ，and＂ 2 ＂in place of X for 240 V

Module Number	Output Power Watts rms	$\begin{array}{\|c\|} \hline \text { Load } \\ \text { Impedance } \\ \Omega \\ \hline \end{array}$	$\begin{aligned} & \text { DISTO } \\ & \text { T.H.D. } \\ & \text { TYpat } \\ & \mathbf{1 K H z} \end{aligned}$	$\begin{aligned} & \text { RTION } \\ & \text { I.M.D. } \\ & \text { 60Hz/ } \\ & 7 \mathrm{KHz} 4: 1 \end{aligned}$	Supply Voltage TYp	Size mm	$\begin{aligned} & \hline \text { WT } \\ & \text { gms } \end{aligned}$	Price inc． VAT
MOS 128	60	4.8	＜0．005\％	＜0．006\％	± 45	$120 \times 78 \times 40$	22	Sac．
MOS 248	120	4.8	＜0．005\％	＜0．006\％	± 55	$120 \times 78 \times 80$	350	¢3こ．E＝
MOS 364	180	4	$<0.005 \%$	＜0．006\％	± 55	$120 \times 78 \times 100$	723	ここごご

Protection－Able to cope with complex loads without the need for very specia
protection circuitry（fuses will suffice）．
Frequency response（ $(-3 \mathrm{~dB})$ ：$: 5 \mathrm{~Hz}-100 \mathrm{KHz}$ ，Ingut sensitivity 500 mV rm
Input impedance： $100 \mathrm{~K} \Omega$ Damping factor： $100 \mathrm{~Hz}>400$ ．
＇NEW to ILP＇In $\mathbf{C}_{\text {ar }}$ Entertainments
Mono Power Booster Amplifier to increase the output of your existing car rad
or cassetse plaver to a nominal 15 watts rms．
Very easy to use．
Robust construction．
f9． 14 （inc．VAT）
Mounts anywhere in car．
Automatic switch on．
Output power maximum 22 w peakinta 2Ω
Frequency response（ -3 dB ） 15 Hz to 30 KHz ，T．H．D． 0.1% at 10 w 1 KHz
$5 / \mathrm{N}$ ratio（DIN AUDIO） 80 dB ，Load Impedance 3Ω
Input Sensitivity and impedance（selectable） 700 mV mss into $15 \mathrm{~K} \Omega 3 \mathrm{~V} \mathrm{~mm} \quad \cdots \mathrm{z}$ Size $95 \times 48 \times 50 \mathrm{~mm}$ ．Weight 256 gms ．

C1515
Stereo version of C15
£17．19（inc．VAT）
Size $95 \times 40 \times 80$ ．Weight 410 gms．

WITHALOT OF HELP riom

PRofissional Ill can hanuli...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HiFl Separates					Price inc. VAT
UC1	Preamp				£29.95
UP1X	$30+30 \mathrm{~W} / 4-8 \Omega$	Bipolar	Stereo	HiFi	£54.95
UP2X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	$\mathrm{HiFi}^{\text {a }}$	£54.95
UP3X	$60 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$720 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	Hifi	£74.95
UP6X	60W/4-8	MOS	Mono	HiF	£64.95
UP7X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Mono	HiFi	£84.95
Power Slaves					
US1X	$60 W / 4 \Omega$	Bipolar	Power	Slave	£59.95
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£ 79.95
US3X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	£69.96
US4X	120W/4-8	MOS	Power	Slave	£89.95

Please note X in part number denctes mains voltage. Please insert ' O ' in place of X for 110 V . ' Y ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UC1 incorporate our own toroidal transformers.

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to l.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF REQUIRED

PROGRAMMABLE STAGE LIGHTING

Tis the season to be jolly, and put on pantos. And make yourself a nervous wreck trying to control the stage lighting. This programmable lighting control unit should solve your problems. Design by David Colven and Ian Cleverley. s your lighting of Christmas pro-
 The unit will control up to 16
 levels and fade each channel up

Iductions a pain? Is your director always shouting at you in the lighting gantry about a missing spot, wrong light level or jerky fades? Do you need three hands with six fingers each during complex scene changes? Worry no more, here is a circuit that does it all for you.

Over many years of school productions the authors have come to the conclusion that a system capable of remembering scene changes and fading stage lights at pre-set rates would be a great boon. The 'computer' we developed even (eventually) met the exacting standards of our stage director.

HOW IT WORKS KEYPAD AND BUFFER

The various output lines are normally held low by resistors R1-4. When any numbered key is pressed the strobe line (KS) is taken high by one of the diodes D1-8, which triggers monostable IC1a via Q1. The monostable is necessary to debounce the keyboard. At the same time the other diodes in the keypad, D9-20, encode the numbered key into parallel binary on lines KDO-2. This parallel data is presented to the inputs of the dual two-bit latches IC6-9. Each successive key-press/monostable pulse clocks on IC2, a 4017 decade counter whose outputs go high in turn and provide the latching pulse to the required latches. The latching pulses are fed to IC6-9 via AND gates IC3a-d, 4a, whose other inputs are taken from the output of IC1a via R5.C3. These components delay the latching pulse until IC2's outputs have had a chance to settle, avoiding any problems due to double latching. One point to note is that the first digit of the light number is temporarily stored in IC8 by the first key-press before being transferred into IC6 by the second key-press.

The data must be input in a fixed order and the contents of the buffer are decoded and displayed on sevensegment common anode displays by IC10-13.
light channels of up to 2 kilowatts maximum each. It can pre-set each channel to one of 16 different light
and down at 32 different speeds. Up to 99 different scene changes can be programmed into the unit as

Fig. 1 Block diagram of the stage lighting unit. Up to 16 auto-fade/pulse generator/triac units may be controlled.

Fig. 2 Circuit diagram of the keypad unit.
described, but this can easily be extended by using extra memories and addressing circuitry to meet any requirements without theoretical limit. Eight different light levels have been found to be quite sufficient for stage use. and fade times of up to about one minute are possible. Longer fade times can be accomp:ished by programming in multiple scene changes. Individual blackout, master blackout, manual operation and fade speed-up controls are available.

The Light Fantastic

The light control circuits themselves are designed in such a way as to be easily driven from a microcomputer with two eight-bit user output ports. We felt, however,
that the expense of a microcomputer dedicated for some weeks to this single purpose could not be justified; in any case, we had enough hardware problems without adding software ones as well.

All the lighting changes are stored in RAM (a $61162 \mathrm{~K} \times 8$ low power memory) and are stored in octal. This cuts down on the complexity and expense of the circuit and makes the most efficient use of the store. It is worth it even if it means spending some time teaching your director or lighting man about number bases!

One final virtue of this unit is that by using external control voltages, one can produce many special effects and you could easily have a $32 \mathrm{~kW}, 16$-channel sound-tolight unit!

Module Mode

A modular design has been used for ease of construction and these modules are housed in two units. The main control console contains the memory section, separate auto-fade units for each light channel, the phase switching pulse generators and the power supply. The front panel controls include a calculator-sized keypad for programming the information and a pair of rotary switches for selecting the scene number: the manual override controls, blackout and speed-up switches are also located on this unit.

If a touch of luxury is desired, there's no reason why the keypad and scene select switches shouldn't be mounted separately in a small hand-held unit so that the lights can

Fig. 3 Circuit diagram of the keyboard buffer and data display circuitry.

HOW IT WORKS - MAIN MEMORY

Once the data has been latched into the buffers it is transferred into the main memory by pressing the ENTER (E) key on the keypad. This provides the E and E signals (the latter being generated by IC5a). Several things now happen at once. IC2 is reset to ' 0 ' and the output of IC14 is set to the contents of the first buffer, IC6, which contains the light number. This forms the four least significant bits of the address for 1C22, the memory IC. The seven most significant address bits are set by the scene address switches. The monostable IC1b provides a write pulse to the memory and the eight data bits from the buffer are transferred into IC22 via the tri-state bidirectional buffers IC23,24.

When the enter key is released, the tri-state buffers are set to output data from the memory to the data bus for the auto-fade units, and the memory is set to read. Nothing else is affected.

The multiplexing of the data to the individual auto-fade units during the 'replaying' of the scene information
after programming is carried out by ICs 14-19. A standard clock oscillator formed by IC5b,c and their associated com* ponents has its output squared up by IC5d. The signal clocks a J-K flip-flop, IC20a, and the Q and Q outputs of the flip-flop are NANDed with the signal to give alternate clock pulses at PC and DC, provided SW1 (the scene change switch) is switched to the clock. If SW1 is earthed then DC remains high. The signal PC clocks the counter IC14 and causes the lower four address lines (A0-A3) to ripple through a 16-byte block. These ad dress lines are also decoded by IC19 (a 4-to-16 line decoder) to give a low voltage on the appropriate output. If SW1 is in the depressed position then the DC signal is clocking and the output of the NOR gate selected by IC19 will go high, ie one of the latch enables LE0-15 will go high. This causes the data on the data bus to be latched into the corresponding auto-fade unit.

Data is thus alternately fetched from the memory and sent to the appropriate
fader unit as long as SW1 is not earthed. Therefore it is necessary to hold this switch depressed for at least 16 clock cycles to effect a transfer of all the data for one scene change.

The higher address lines for the memory, $\mathbf{A} 4-10$, are selected by two rotary switches, SW2 and SW3. One switch represents the units and the other the tens - the scene number may be set from 0 to 99. The number set is encoded to binary by the diode matrix and the appropriate bit pairs are summed by adders IC25,26.

The circuitry around Q2 is an auto battery back-up. When the console PSU is supplying power, Q2 is held on by R40,41,ZD1, and the chip select pin of the memory is held low, enabling the memory. When the console is switched off, Q2 turns off, the CS pin goes high and the memory goes to standby mode. B1 supplies the very small quiescent current required by the RAM (via D21), thus allowing the RAM to retain the data.

Fig. 4 Circuit diagram of the main memory section. This has an auto de-select and battery back-up system so that data is retained without mains power.

Fig. 5 Circuit diagram of the scene number selector.
be programmed from the auditorium with the stage in full view. The advantage of this arrangement is that setting-up can be done from any part of the theatre without having to lug round the main console and all its power cables, but the hand unit will require a sizeable length of multiway cable and with the prices these days we doubt whether anyone's budget will stretch that far.

The second unit contains the triac power circuits and can be permanently wall mounted with a suitable single-phase mains supply (up to 140 A may be drawn!). The pulses from the console are fed to opto-isolators in this unit and control the various lights.

The Keypad And Memory Buffer

This has eight numbered keys (0-7) plus a data entry key. A threebit parallel code is produced along with a strobe signal. The data from the keyboard is held in a temporary buffer store whose contents are
displayed on seven segment displays. The channel number to be programmed takes the first two keystrokes (any initial zeroes required must be entered) and requires four bits (00 to 17 octal). The next keystroke enters the light level (0 to 7) and the next two the fade rate (00 to 37 octal). The light number will be used as part of a memory address and the other eight bits are the data to be stored.

The Main Memory

When the enter key is pressed the data held in the buffer is placed in the main RAM and the buffer is reset. The eight data bits are stored in a memory location which depends on the light number and the scene number: the latter is set using a pair of rotary switches. The memory is structured in 16 byte blocks, each block representing one stage lighting change. The data for each light channel is stored in numerical order and is recalled in order before being latched into the autofade units. This transfer of data
is activated by a single switch, which is held depressed for 16 cycles of the master clock.

The two 10 -pole rotary switches which comprise the scene number switch are encoded to binary by diodes; the units and tens are then summed to give a seven-bit parallel address, the most significant bits of the address.

We've used a 6116 CMOS memory IC so that the lighting information may be retained even when the console is powered down. When this occurs the 6116 is forced into its quiescent mode and is supplied by its own private battery. The chip is automatically enabled as soon as the console is turned on again.

Auto-fade Circuits

Any number of auto-fade circuits up to a maximum of 16 may be connected to the memory module. The data for each channel for the current scene is held in an eight-bit latch/buffer. Three of the data bits are converted to a voltage

Fig. 6 Circuit diagram for one of the auto-fade units.

HOW IT WORKS - AUTO-FADE UNIT

The data buffer/latch in each of the possible 16 auto-fade units consists of two four-bit D-type bistables, and their contents control the light channel behaviour. Three of the bits from IC31 (those output on pins 16,15 and 10) are used as inputs to a digital-to-analogue converter, which gives a voltage level that controls the final brightness of the channel. With phase-switching control this voltage has to increase rapidly at low lighting levels, then more slowly and finally rapidly again. The currents from PR1-4 are fed into a low value resistor R62. To accomplish the high brightness boost, two analogue switches, IC27a,b, are used to deliver extra current into this part of the circuit when the data reads 110 or 111 (ie light levels 6 and 7). Table

1 summarises the conversion in order of increasing brightness.

The analogue voltage generated is fed to a voltage comparator, IC29. The output of this comparator is integrated by IC30 and the resulting ramp voltage is compared with the analogue voltage at the DAC. The output of the integrator will ramp up or down until it reaches a set multiple of the input voltage and then it will hunt imperceptibly until the input voltage is changed again.

Five more analogue switches (IC27c,d, IC28a,b,c) are used to control the ramp rate of the integrator depending on the data stored in the other five bits of the buffer/latch. The slowest rate is produced when all the resistors R64-69 are in series: this corresponds to
a data input of 00000 octal. As the stored number increases in magnitude, various resistors will be shorted by the appropriate analogue switches and the ramp rate will increase, until for 11111 octal all the switches are closed, all the resistors are shorted and the maximum ramp rate is achieved.

PR5 gives a reference voltage for the integrator so that it will ramp up and down at the same rate. This voltage will be approximately $3 \vee 7$ as the output from the voltage comparator will be either about 5 V or about 2 V 3 .

If a high voltage is applied to the diodes $D 67-71$, the data in the buffer will be overridden, all the analogue switches in the chain will close, and the ramp rate will increase to maximum.
which is integrated by a second circuit. The integrator ramps up or down until it reaches a level set by the input voltage, at a rate controlled by the other five bits stored in the buffer.

The actual work of regulating the power of the lights is done by the switching pulse generator: this works by sending mains-
synchronised pulses to the triac power unit. The phase control is accomplished by a standard 'ramp and pedestal' UJT circuit. The ramp rate is set by the voltage from the auto-fade circuit and the sooner it reaches the pedestal trigger voltage the earlier in the mains half cycle the triac is triggered and the brighter the lamp will be.

Instead of using the auto-fade output voltage, the control for the pulse generator can come from a manually operated potentiometer, a
blackout control or from an external sound-to-light or flasher circuit. Each pulse generator has its own pedestal zener diode to eliminate interaction between channels, and the pulse generators are connected to the power-controlling triacs by opto-isolators.

Triac Control Circuit

As mentioned above, optoisolators are used for safety (the prototype has suffered a few disasters which would have melted down the whole of the control unit if these hadn't been fitted). They also allow the control unit to be earthed while the triac trigger pulse is referenced to the neutral line.

The opto-isolator transistor drives a transistor switch and amplifier that pulses the gate of the triac negative via a resistor.

Power Supplies

These may seem to be a bit over-designed but this is necessary. The first of them supplies the +5 V for the main logic and memory boards and the autofaders: two independent 5 V rails are generated in order to prevent stray pulses on the auto-fade supply doing horrible things to the memory.

The second PSU provides the supply rail for the pulse generator circuits, together with a totally unsmoothed output of about $33-36 \mathrm{~V}$ which is fed to the zeners in each pulse generator to produce the pedestal voltage (which drops to $0 \vee$ twice each mains cycle). The input buffer amplifier transistor can suffer from thermal drift despite the resistor values around it being chosen to minimise the problem: this results in all the light levels increasing gradually after switch-on.

Fig. 7 Each auto-fade unit requires one of these pulse generator and triac circuits.

TABLE 1

LEVEL	CODE	CURRENT SOURCES	TYPICAL VOLTAGE
0	000	PR1	1V75
1	001	PR1,PR2	2V5
2	010	PR1,PR3	2V75
3	011	PR1,PR2,PR3	2V85
4	100	PR1,PR4	3 V
5	101	PR1,PR2,PR4	$3 \vee 15$
6	110	PR1,PR3,PR4,R61	4 V
7	111	PR1,PR2,PR3,PR4,R61	4V25

Fig. 9 Circuit diagram for the power supplies required by this project.

To correct this tendency, should it be present, the output voltage of the second PSU is made variable so that compensation may be made for any residual drift.

The third PSU is located in the triac power control unit and does not require regulation. It is capable of driving all the triac channels and has its positive rail connected to the neutral line as a reference for the triac gate.
Next month we give the constructional details of the Stage Light Dimmer.

HOW IT WORKS --PULSE GENERATOR -

The input voltage to the pulse generator, either from the auto-fade unit or the manual control pot, is amplified and buffered by Q3. Q4 acts as a constant current source which charges up capacitor C9 at a rate that depends on the input voltage: PR9 and R79 set the minimum charge rate. The voltage on the emitter of the unijunction transistor Q5 will rise as C 1 charges until it reaches the trigger voltage. The UJT then conducts, discharging C9 through R81 and the LED in IC33, the opto-isolator. This sends a trigger pulse to the triac. As C9 is discharged at the end of each half-cycle (when the b1/b2 voltage falls), this pulse is synchronised with the mains zerocrossing point. The delay is set by the rate at which C9 charges and hence the power level supplied to the lamp is varied.

The manual control RV1, working through D73, will override the auto-fade unit if the pot voltage is increased above the auto-fade voltage, allowing special effects. SW5 switches between auto and manual modes and SW6 can black out the channel by pulling the base of Q3 to earth. All the channels can be blacked out if the master blackout line is taken low.

When the opto-isolator is fired Q6 is switched off because its base is pulled negative. This allows Q7 to turn on, giving a negative voltage pulse via R85 to the triac gate which turns on the triac (if it isn't already on). The delta capacitor network C10-12 together with 11 help to minimise mains-borne interference caused by switching transients. A 10 A fuse affords some protection for the triac in the event of a fault occurring.

 Please phone for availability

01-450 6597

8×4816 AP-3 100ns $£ 21.60$ F.D. INTERFACE KIT IC 77-78£70.00

BBC Model A £299 BBC Model B $£ 399$ (incl VAT) Carr £8/unit Model A to Model B upgrade kit $£ 50$ Fitting charge $\mathbf{£ 1 5}$ ANALOGUE PORT KIT IC 73, SK6 £7.30 RS423 \& VDU Port Kit £10.80

PRINTER \& USER PORT KIT
IC 69, 70, 71 PL9, $10 £ 9.50$
Bus \& Tube Port Kit £6.50

All mating Connectors with Cables in stock. Full range of ACORNSOFT, PROGRAM POWER \& BUGBYTE SOFTWARE AVAILABLE

Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES

Single drive 51⁄4" 100K £235 + £6 carr.
Dual drive 5¼" 800K £799 + $\mathbf{f 8}$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K $£ 340$ DUAL: 200K £ 360; 400K £490; 800K £610 official BG dealer

MONITORS

BMC BM 1401 14" Colour Monitor RGB Input 18MHz Bandwidth $\mathbf{£ 2 4 0}+\mathbf{£ 8}$ carriage
Hi Res Green Monitor Antiglare screen $£ 99+£ 6$ carr.

ACORN ATOM

Basic Built $£ 135$ Expanded $£ 175$
(carr f 3 per unit)
Atom Disc Pack $£ 299+£ 6$ carr 3 A 5V Regulated PSU $£ 26+£ 2$ carr. Phone or send for our BBC Atom list.

PRINTERS

SEIKOSHA GP 100A

80 Cols 30 CPS
Full ASCII e GRAPHICS
$10^{\prime \prime}$ Wide paper
Now only £175 + £6 carr. Ask for details on GP 250A
Parallel Printer lead for BBC/Atom to most printers $£ 13.50$ Variety of interfaces, ribbons in stock

MICROVITEC 1431 M/S $14^{\prime \prime}$ Colour Monitor RGB input £269 + £8 carr. RGB lead for BMC $£ 8$ Composite Videolead $£ 3.50$ 2,000 fan fold sheets $9 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime} £ 13.50+f 3 p \& p$

RUGBY ATOMIC CLOCK
This 280 micro controlled clock/calender receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities provided. See July/August ETI for details. Complete Kit $£ 120+£ 2.00 p^{\&} p$

MICROTIMER

6502 Based Programmeable ciock timer with

* 224 switching times/week cycle
* 24 hour 7 day timer
* 4 independent switch outpurs directly interfacing to
thyristor/triacs
* 6 digit 7 seg . displays to indicate real time, ON/OFF and Reset times
* Output to drive day of week switch and status LEDS. Full detals on request. Price for kit $£ 57.00$

CONNECTOR SYSTEMS

I.D. CONNECTORS (Spoestolocis Typa) No of Hedder Rocep Edge	CONNECTOR SYSTEMS				
	JUMPER	amphenol connectors		RIBBONCABLE (Grey)	
		36 way Solder Type Plug			
	24. misom Cabue wim hoders	(centronix trpe)	550p		
	1eme	${ }^{36}$ way Solder Socket ${ }_{\text {a }}^{\text {(centronix tye) }}$	550p		
	$2 \mathrm{mms}{ }^{24}$		550 p		
		24 way Solder Plug	500p	come	
		${ }^{24}$ way Solder Plug			
		24 (IIEEE Eype)	500p $\substack{\text { 500p } \\ \text { 485p }}$		
			EDGE CONNECTORS		
			ant way		
	DIL HEADERS			$\underset{\substack{225 p \\ 225090}}{2229 \mathrm{p}}$ $\begin{gathered} 2590 \\ 25009 \\ 0 \end{gathered}$	
	A on ${ }_{\text {on }}^{\text {a }}$			$\begin{gathered} 395 \mathrm{p} \\ 700 \mathrm{p} \\ \hline \end{gathered}$	
	(140w				

MICRODOCTOR

This is not a logic analyser or an oscilliscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / 0$ - it will print memory map, search for code, check dataline shorts and operates peripherals Microdoctor
complete with PSU,
Printer, probe cable
and two configuration
boards. £295.

SOFTY II INTELLIGENT PROGRAMMER

The complete micro processor devalopment system tor Engineers and Hobbyists. You can develop programs, debug, verify and commit to Ernit bytes, blocks of bytes changed, deleted
 or inserted and memory contents can be observed on ordinary TV. Accepts most
Softy II complete with PSU, TV Lead and Romulator lead $£ 169$

UV ERASERS

UVIB up to 6 Eproms $£ 47.50$ UVIT with Timer $\quad £ 60.00$ UV140 up to 14 Eproms $\mathrm{E61.50}$ UV141 with Timer $£ 78.00$ (Carr f2/eraser)
All erasers are fitted with mains switches and safety interlocks

TRAINER KITS 6502 Junior Computer E85.00 6802 Nancomp I 6809 Nancomp Il 1802 Micro E80 Manta Z80 Menta (fuily built and documented) Full details on request

SPECIAL OFFER

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

DESIGNING MICRO SYSTEMS PaRTG

The previous article explained how the computer handles input and output of data but how many of us read and write in binary? This month Owen Bishop explains the operation of more user-friendly interfaces.

Quite a number of electronic circuits produce their output in analogue form, and it is beyond the ability of a computer to read such data unless it is first converted to digital form. Examples of devices with analogue outputs are electronic thermometers, pressure transducers, audio amplifiers (for speech recognition etc) and indeed any device which produces an output voltage varying over a predefined range. Even a simple carbon pot can be included in this list. The Games Controller of the Apple II, for example, uses a 150 k potentiometer (there is also a push-button connected to a memory-mapped latch, but this is a digital input). The position, or setting, of the potentiometer is the analogue quantity to be measured. The computer has a quadruple timer IC and, when the Games Controller is plugged in to the computer board, the pot becomes part of the RC circuit of the timer. When the MPU is to read the setting of the Controller, it first triggers the timer (the trigger input is memory-mapped) then measures the length of pulse produced. It does this by reading the memory-mapped output over and over again, counting how many times it reads 'high' until it eventually reads a 'low'. The number of 'high' reads is approximately proportional to the angular setting of the control knob. The analogue-todigital conversion is crude and far from linear, but certainly good enough for its intended application.

Fig. 1 Analogue-to-digital conversion for a games controller.

A-to-D Conversion . . .

Many computers have on-board A-to-D ICs such as the National Semiconductor ADC0801 (Fig. 2). This converts any input voltage in the range 0 V to 5 V to digital output in the range 0 to 255 (00 to FF in hex). The heart of the IC is a chain of resistors in series, with 5 V across the ends of the chain.

Fig. 2 Simplified block diagram of an A-to-D converter such as the ADC0801. V $\mathrm{V}_{\text {REF }}$ is an on-chip or external reference voltage. V_{c} is the output voltage from the resistor chain, which is compared with $V_{I N}$, the analogue voltage which is to be converted.

Internal logic controls CMOS analogue switches which switch resistors into or out of the chain, so producing a voltage $\left(\mathrm{V}_{\mathrm{c}}\right)$ which can range from 0 V to 5 V in 256 steps. At each stage a comparator matches the output of the chain against the analogue voltage $\left(V_{i N}\right)$. The largest resistor is switched in and out first, to determine if the input is less than or greater than 2 V 5 . Then the next largest resistor is switched in and out to narrow the possible range to within 1 V 25 . At each stage the chain output and analogue input are matched more and more closely. After eight attempts the closest match will have been found. The logic signals which have produced the match are then used to set the eight output buffers to one of the 256 possible combinations which can be read as a byte (0 to 255) by the computer. This IC converts the voltage with true linearity, with an accuracy of half a step in 256 steps and takes only a few hundred microseconds to do so. If we want greater accuracy, there are similar A-to-D ICs with a 12 -bit output. Note that it is the converter which does the work: the MPU only has to read the result. We do not need to write software to instruct the MPU to measure pulse lengths as with the Games Controller. This saves time and simplifies programming.

Most A-to-D ICs have ways of altering the span of the input range, so that voltages from, say, 0 V to 2 V produce the full-scale output range, 0 to 255 . In addition you can

Fig. 3 Simplified block diagram of a simple A-to-D converter, the 507 C . $\mathrm{V}_{\text {REF }}$ is an on-chip or external reference voltage. V_{IN} is the analogue voltage to the converted; Vour is the square wave output.
adjust the offset so that, for example, you obtain a reading of 0 when the input is 10 V and reading of 255 when the output is 12 V .

As might be expected, a A-to-D IC is a sophisticated circuit and is correspondingly expensive. If an application requires several analogue inputs and high conversion time is not of paramount importance, the inexpensive 507C IC provides linear conversion in 1 mS with seven-bit resolution. This has a resistor ladder (Fig. 3), and the counter supplies current to each resistor in binary sequence. The op-amp adds the currents and the result is that the output ramps down a voltage from $0.75 \times$ supply voltage to 0.25 x supply. If the enable input is high, the comparator gives a high output whenever the ramp voltage exceeds the analogue input voltage: thus the length of time the output is low is a measure of the analogue voltage (Fig. 4). The MPU can find this time by using a program like that described for the Games Controller.

Fig. 4 The input and output voltages of the 507C A-to-D converter. The computer measures t, which is proportional to $V_{\text {in }}$.

. . . And The Converse Conversion

If a periphera! needs an analogue signal to control it (eg controlling the speed of a motor), we need circuits which can convert the digital output of the computer into its analogue equivalent.

The ZN425 D-to-A converter makes use of an R-2R ladder (Fig. 5). The switches are under the logical control of the eight-bit input. As the count increases, the output voltage increases in proportion (see panel). To drive a low impedance device the output must be buffered by an operational amplifier.

This IC may also be used for A-to-D conversion, using its binary counter. The counter is clocked by an external pulse generator, and as it counts the pulses, switches controlling the R-2R ladder are closed and opened in a binary sequence. The output is a staircase ramp of 256 steps. An external amplifier compares the output from the ladder with the analogue voltage which is to be converted. When the ramp output equals the analogue voltage, the output from the amplifier inhibits the clock. At this point the logic output which controls the switches can be read as an eight-bit equivalent of the analogue input.

Fig. 5 Block diagram of the ZN425E D-to-A converter. $V_{\text {REF }}$ is an on-chip or external reference voltage. The amplifier is not on the chip but is an external op-amp (eg 741).

Screens And Printers

The way most owners receive information from their micros is through the screen. This may be a domestic TV set or a monitor unit specially designed for the purpose. Those whose main interest lies in arcade games, adventures, and the like usually need no more than the screen, but anyone with an interest in programming soon finds that the screen alone is not enough. There is the tedium of copying long listings of favourite programs from the screen, and the frustration of being able to see only a few lines of program at any one time. Sooner or later, the serious programmer adds a printer to the system. This month we shall deal with both these ways of receiving information from the micro.

The fact that the technology of high-speed (for the time) printing was already available in the form of teletype machines, lead to the early mainframe computers having a printer but usually no screen. We are reminded of this early use of teletypes by some of the curious control codes which abound in the ASCII character set (see last month's article). The screen of the early mainframe computers, if any, was often a CRT in which the X and Y deflection plates were under the direct control of the computer. It was a kind of high-grade oscilloscope, with the computer using the electron beam to 'draw' an image on the screen. This was suitable for displaying charts and graphs, but not much use for text.

With a modern computer, the electron beam scans a rectangular area on the end of the CRT, in the same way as a TV set. The field (or raster) consists of a large number of horizontal lines (the number varies according to the system) placed close together (Fig. 6). Each line is scanned in turn, from the top to the bottom of the screen. Most TV systems have an interlaced raster in which the beam first scans alternate lines down the screen and then returns to scan the ones between the first set. As the beam scans, its intensity (and hence the brightness of the glow produced

HOW THE R-2R LADDER WORKS

Assume all switches are set to 0 V . The three left-hand resistors are equal to $2 R$ and $2 R$ in parallel, and so can be replaced by a single R resistor. Thus the four resistors shown are equivalent to 2 R switched to 0 V . We can carry this reasoning all along the ladder, until we reach a switch that is not set to 0 V .

If all except $S W 7$ are set to $0 V$, and $S W 7$ is set to V (the reference voltage), we can consider all resistors to the left as equivalent to a single $2 R$ resistor, switched to 0 V . We have a potential-divider, and $V_{0}=V / 2$. This corresponds to the expected output, since $128 / 256=1 / 2$.

If all except SW6 are set to 0 V and SW6 is set to V , we can consider all resistors to the left to be replaced by a single $2 R$ resistor, switched to 0 V .

$$
I_{0}=V / 3 R ; \quad I_{1}=\left(V-V_{1}\right) / 2 R ; \quad I_{2}=V_{1} / 2 R
$$

By Kirchoff's Law (sum of currents entering a point must equal sum of currents leaving a point):

$$
I_{0}=I_{1}-I_{2}, \text { so }
$$

$V_{1} / 3 R=\left(V-V_{1}\right) / 2 R-V_{1} / 2 R$, giving

$$
2 \mathbf{V}_{1}=3 \mathbf{V}-3 \mathbf{V}_{1}-3 \mathbf{V}_{1}
$$

on the screen) is modulated. If the beam is strongly modulated, so that it produces either bright light or none, we can use it to produce a textual display of good contrast. Fig. 7 shows how a line of text can be built up from dots of light in seven successive scans. These are followed by a number of lines in which the beam is blanked (off) to provide spacing between rows of text. This process is repeated all the way down the screen.

Fig. 6 How text is displayed on a TV screen.

$$
V_{1}=3 V / 8
$$

Now we can calculate V_{0} :

$$
V_{0}=2 V_{1} / 3=V / 4
$$

This corresponds to what is expected since 64/256 $=1 / 4$.

Here both SW6 and SW7 are switched to V.

$$
I_{0}=\left(V-V_{1}\right) / 3 R \text { but } I_{1} \text { and } I_{2} \text { are as above. }
$$

$$
\begin{gathered}
I_{2}=I_{0}+I_{1}, \quad \text { so } \\
V_{1} / 2 R=\left(V-V_{1}\right) / 2 R+\left(V-V_{1}\right) / 3 R
\end{gathered}
$$

which simplifies to $V_{1}=5 \mathrm{~V} / 8$.
Now $V_{o}=V_{1}+\left(V-V_{1}\right) / 3=5 V / 8+V / 8=3 V / 4$.
This is what we expect, since $192 / 256=3 / 4$.

This kind of reasoning can be repeated all along the chain. getting more and more complicated, but with the same kind of result. If all the switches are set to V, the maximum V_{o} is obtained, ie $255 / 256 \mathrm{~V}$.

As Fig. 7 shows, it is possible to build up well-defined alphabetic characters from a 7×5 matrix of dots. Numeric characters, punctuation marks and various other symbols can also built up in this way. We will now look in more detail at what the computer has to do in order to produce such a display. Visual displays are a field in which microcomputer designers have felt themselves free to use their inventiveness. Consequently, there are almost as many ways of producing the display as there are makes of microcomputer. Our discussion will therefore deal only with the main principles which are common to most micros.

Fig. 7 Enlarged view of the first few letters shown in Fig. 6.

The Writing's On The Screen . .

Figure 8 shows the signal which is fed to the grid of the CRT to modulate the beam to produce scan 5 of Fig. 7. The length of a single dot-producing pulse is of the order of 15 uS . This waveform is produced by a circuit like that shown as a block diagram in Fig. 9. Most micros have what is termed a memory-mapped display. A certain block of memory addresses is set aside for holding the text. Normally it requires one byte of data for each character. For example, if the screen has 16 lines, with 64 characters per line, the memory area must consist of 1024 bytes, or 1 kilobyte. Whenever text is to be displayed, the CPU stores the ASCII codes corresponding to each character in the appropriate memory cell.

Fig. 8 The signal required to produce the fifth scan of Fig. 7.
The video RAM, as this section of memory is usually called, is read in sequence by the video circuitry. Although video RAM can be addressed by the MPU like any other part of RAM, in some micros it has its own control signals and its own data bus to connect it with the video circuit. For most of the time it operates independently of the microprocessor. The ASCII code for each character in turn is transferred to the data latch. It is held there while the next code is being fetched. The output from the latch goes to a character generator IC. This is a special kind of ROM (see Designing Micro Systems, ETI October 1982) which converts an ASCII code into the corresponding pattern of dots. It has inputs from the latch to tell it which character is to be generated, and from the synchronising circuit to tell it which one of the seven lines of dots is to be generated. It has five outputs. that indicate which dots are to be displayed as white and which will be black.

Fig. 9 Block diagram of the circuit for displaying text.
The output from the character generator is converted from parallel to serial form by the shift register. This produces a train of pulses, some high, some low, like those shown in Fig. 8. These are fed to a video mixer circuit where line synchronising pulses and frame synchronising pulses are added. The combined video signal is then passed through a buffer circuit to the monitor.

Such a signal is not suitable for sending to a domestic TV set. The TV is expecting a UHF carrier signal from an' aerial, modulated by the video signal. So, if a TV is being used, the signal from the video mixer must first go to a modulator. This produces a UHF carrier signal (usually on

Channel 36) with the video signal imposed on to it. When the TV receives this signal it demodulates it, recovering the original video signal that it then uses to produce the display. The additional processes of modulation and demodulation inevitably lead to distortion; consequently, the resolution obtainable on a TV is inferior to that obtained on a proper monitor screen. A TV is acceptable when there are 40 or fewer characters per line, but when there are 60 characters or more the use of a monitor is much to be preferred.

Graphics Galore

The variety in methods of producing textual displays is exceeded by the variety of techniques used for producing graphics. A few micros (eg ZX81 and PET) use the character generator to produce geometrical shapes and other designs and symbols. These can be combined on the screen to produce designs of almost infinite complexity. This technique exploits one of the useful features of character generators: they can be programmed to produce any or all of the possible patterns on a 5×7 (or larger) matrix. For example, we can have them programmed for different styles of letter or for special letters for different languages. There 2^{35} permutations of dots, far more than can be accommodated within a single IC, so the snag of this method is that the user is limited to the range of symbols selected by the manufacturer. If you are writing programs for playing Bridge or Blackjack, the hearts and clubs symbols will be useful but, if your interests lie in cash account programs, they are a waste of space on the chip.

Fig. 10 Graphics blocks, as used in the TRS-80 Model I. (a) Each pixel has the binary value shown. (b) and (c) The sum of, values of 'on' blocks plus 128 gives the code. (d) How a block is displayed by scanning (letter A for comparison of sizes). The blocks are displayed on a 6×12 matrix, leaving no space between adjacent blocks.

Many computers use graphics blocks (Fig. 10) as a means of constructing displays. A block may consist of six sub-blocks (or pixels, which is the name used for picture elements). Designing displays by this method involies interpreting your picture six blocks at a time and programming the computer with the corresponding code. The codes are stored in video RAM, as with text. Separate circuits are used in place of the character generator to convert the code to the corresponding set of video signals and feed them to the shift register. If the designs required are regular (such as decorative borders), programming is simple but it becomes very time-consuming if you want to draw complicated pictures.

A third approach to graphics is to deal with each pixel separately, and allocate one bit in video RAM to each pixel. If the value of the bit is ' 0 ', the corresponding pixel is 'off' (black screen). If it is ' 1 ', the pixel is 'on' (white screen). A medium-resolution graphics display, for example MODE 5 on the BBC Microcomputer, has 256 lines, each with 160 pixels. This gives a total of 40960 pixels. Allotting one bit per pixel, the video RAM must provide 5 kilobytes. If the display is to be in colour, an
additional 5 K bytes are required to indicate colour information for four colours, or an additional 15 K for 16 colours. With the high-resolution display on the BBC Microcomputer (MODE 0) there are 640 pixels per line, requiring 20 K , but allowing for only two colours. It can be seen that high resolution graphics, and particularly highresolution colour graphics, require a very extensive video RAM. The cost of RAM has fallen in recent years, making it feasible to provide micros with good high-resolution colour graphics at relatively low cost. But, unless special 'paging' address circuitry is introduced, a micro with a 16-bit address bus is limited to 64 K of memory, into which ROM, program RAM and the video RAM must be fitted. Consequently, an increase in the size of the video RAM means a decrease in the address space left for program RAM. If video RAM is physically a section of RAM itself, instead of being a separate entity as in some micros (see above), this section of RAM can be used for video when a program is to have plenty of graphics in colour, but can be turned over to program or data storage when graphics are not required. This is the system generally adopted in micros with high resolution graphics.

A Colourful PAL

In the PAL system of colour television, used in most European countries, colour transformation is transmitted by modulating the luminance (brightness signal) with a very high frequency chrominance (colour) signal. The way in which the chrominance signal is derived and subsequently decoded in the TV set is too complex to go into here. The final result is that three separate signals are derived to control the red, green and blue guns of the colour tube.

The output from a computer to an RGB colour monitor consists of four signals, on separate lines. The 'sync' signal provides the pulses needed for synchronising scanning with the reading of video RAM. The other three signals (R, G and B) control the three electron guns of the colour tube. Whenever there is a pulse on R, a red dot is produced on the screen. Whenever there is a pulse on G , we obtain a green dot. In either case only one kind of phosphor (red or green) is made to glow. If there are pulses on R and G at the same time, both electron guns are activated. A red dot and a green dot are produced in the same region of the screen. From the normal viewing distance it appears that there is a yellow dot on the screen. All colours are produced by mixing red, green and blue in various combinations and proportions.

The availability of separate signals for the red, green and blue guns means that excellent colour rendering with full saturation may be readily obtained on an RBG monitor. For those who wish to use a domestic colour TV, micros with colour graphics usually have a TV output. in the video mixer circuit the RGB signals are combined with the luminance signal before modulation and the composite signal is sent to the TV set. As with monochrome TV , losses of signal quality occurring during demodulation and decoding mean that resolution and colour rendering is not as good as with a monitor.

High resolution colour graphics can give an intricate picture but, with so many pixels to be individually dealt with, one might think that programming would be too laborious for the average user. In fact, high resolution graphics may be easier to handle than the graphics blocks or generated characters described earlier. Since there is only one shape (a dot) instead of dozens or hundreds, we avoid the need to specify which shape is to be displayed. Since each pixel can be specified solely by its X and Y coordinates of the screen, the basis of pixel graphics is mathematical and it lends itself readily to mathematical
treatment. It is easy to write routines for drawing lines, circles, or triangles, and for filling in areas with solid colour. The high-level language may include commands such as DRAW, PLOT, and CIRCLE, which perform these functions automatically, leaving the user to supply only the parameters. Graphs, bar charts, clock faces and all kinds of designs which are composed of reasonably simple geometrical shapes can be programmed in a few lines.

Getting Into Print

Controlling a printer is very different from controlling a monitor or TV. When controlling a monitor, the computer is responsible for all the timing and signal generation. The monitor merely transfers this signal to the screen as a raster of lines, varying in brightness along their length. Once the data has been transmitted, there are no further problems for the computer, for the monitor is able to work fast. The signals it receives are almost immediately translated into a pattern on the screen.

A printer takes a much larger share of the work on itself. The computer simply tells the printer which. letter is to be printed next. Then the printer works out how and where to print the letter, or when to feed the paper on to print the next line. It can even organise itself to save time by printing alternate lines from right to left! In order to do this the printer needs an elaborate logic circuit. This may often include a microprocessor specially devoted to managing its activities. If the printer is of the dot-matrix type, it also needs a character generator to tell it which combinations of printing needles to fire at the ribbon (Fig. 11).

Fig. 11 Dot-matrix printers use a matrix of printing needles. If a needle is fired it hits the ribbon and makes a dot on the paper. In (a) a capital G is produced on a 5×7 matrix. In (b) a lower-case g is produced with a tail beneath it using a 5×9 matrix. In general, printers with few rows are not able to offer descenders like this.

The main disadvantage of a printer compared with a screen is that it deals with data much more slowly. There is a physical limit on how rapidly we can accelerate and then decelerate the appreciable mass of the print head (be it a matrix of needles or a daisywheel) and the rollers or sprockets which feed the paper to it. By contrast, the beam

Fig. 12 Parallel data transfer between computer and printer.
of electrons in a CRT is virtually massless and can be directed and modulated almost instantly.

There are two main ways in which a computer and printer may be connected. The parallel transfer of data is illustrated in Fig. 12. An example of this system is the Centronics interface, originally devised by manufacturers of Centronics printers but now adopted by many other manufacturers. The first point to note is that there is twoway communication, in contrast with the one-way communication between computer and monitor. This is a consequence of the relatively slow speed of a printer. A computer can instruct a printer far faster than the printer can print. Rather than have the computer waste its valuable time waiting for the printer to operate letter by letter, we let the computer send a long string of commands to the printer in rapid succession. Since there are eight data lines, the computer can send a byte at a time. This is normally the ASCII code for the letter required. The printer can also interpret ASCII control characters for operations such as line feed (LF) and carriage return (CR). Whenever the computer is outputting data it makes the DATA STROBE line low. this has the same function as the WR control line used internally, and is derived almost directly from it. Similarly, the data lines are separated from the data bus of the computer only by latches, which hold the data long enough for the printer to be able to receive it. In some micros a general-purpose I/O device is used for this purpose (see Designing Micro Systems, ETI December 1982).

The I/O device or the buffers leading to the printer data lines need only one decoding circuit to enable them. Thus a printer needs to have only one address in RAM allocated to it. In comparison with the video screen, the printer makes minimal demands!

Printer Buffer

When data is received by the printer it is stored in a small RAM, called the holder buffer. This holds the codes for about 80 characters (maybe more), which is enough to print one line of text. It stores codes as they come in, then reads out codes previously stored and prints the characters they represent. When the computer sends a long string of codes the buffer is likely to become full. Also the printer has occasionally to stop printing to move on the paper to the next line. Again, codes will accumulate in the buffer. At this stage the printer puts a signal on the BUSY line. The effect of this is to interrupt the computer and make it stop sending any more data. When the printer has printed all that it has stored and its buffer is empty, the BUSY signal is taken off the line and the computer is free to send the next batch of data. On some interfaces there is also an acknowledge line ($\overline{\mathrm{ACK}}$), a handshaking line by which the printer informs the computer that it has done whatever it was told to do and is awaiting fresh instructions. There may be an OUT OF PAPER line for

Fig. 13 Serial transfer of data between computer and printer.
signalling this fact to the computer. The level on this line is usually controlled by a micro-switch connected to a lever which is in contact with the paper. An OUT OF PAPER signal causes the computer to send no more data until the normal level is restored.

Are You Being Serialed?

The alternative way of sending data to a printer is to transmit a series of pulses along a single line. This has obvious advantages in that only a single data line is required instead of eight. The most frequently used system of serial data transfer is known as the RS232C standard. The standard specifies voltage levels and rates of data transfer and the system to be used for coding the data. The standard also covers the types of connector to be used so that any pair of devices employing RS232C may be coupled together and expected to communicate reliably.

In Fig. 12 the pulses drawn above the parallel data lines indicate that the computer is sending 01000001 (or 65 decimal, the ASCII code for ' A '). In Fig. 13 the same ASCII code is being sent serially along one data line. Sending eight bits one after another is obviously slower than sending them in parallel, a byte at a time, as in Fig. 12 , but since printers are relatively slow this is not a great disadvantage.

There are various ICs available for converting parallel data to serial data. A simple parallel-in-serial-out (PISO) shift register such as the 74LS166 will do the job, but ICs specially designed for computers do it better. A universal asynchronous receiver transmitter (UART) is an example of such an IC. This provides two-way communication, being able to receive parallel data from the CPU and transmit it as serial data, and to receive serial data from a peripheral and pass it to the CPU as parallel data. The latter function is not required for use with a printer, but would be used, for example, when two computers are required to communicate with each other. Not only does the UART convert from parallel to serial (or the other way about) but it takes the parallel data, makes it into a train of eight pulses, and adds a 'start' pulse and a 'stop' pulse to the beginning and end of the train.

Correcting The Errors

Since it requires only one data line, serial data transmission is suited for long distance. Parallel data transmission is rarely used under such circumstances. The longer the line, the greater the chance of stray electromagnetic interference finding its way on to the line and into the data receiving circuit. This is why the train of pulses often includes an extra pulse known as the parity bit. The idea of this is to allow the receiving device to check that no spurious pulse has been added as a result of interference during transmission. The parity bit is calculated by the UART before the data is transmitted, and is added to the end of the train of data pulses, then followed by the stop bit or bits. The value to be given to the parity bit is found by counting how many 1s are present in the data. If the number is even, the parity bit is made 1 , so the total number of 1 s becomes odd. If the number of 1 s in the data is already odd, the parity bit is made 0 , so retaining the odd number of 1 s . At the receiving end the UART simply has to count the number of 1 s in the train. If it is odd, all is well and it then sends on the train (minus the parity bit) to be decoded. If the number of 1 s is even, a transmission error has occurred and the device or its operator can be alerted. This system is not absolutely error-proof for two errors could occur which would be self-cancelling. However, if the average rate of error is, say 1 in 100,000 bits on any occasion, the chance of two errors occurring on that occasion is 1 in
$10,000,000,000$ bits, which can be fairly safely disregarded.

The system described above is known as odd parity. It is aiso possible to work with even parity, in which the parity bit makes up the 1 s to an even number. Most UARTs can be programmed to deal with either type of parity.

It's Your Timing That's Crucial

Figure 10 shows the train of pulses required to transmit the ASCII code for 'A serially. It includes an even parity bit. The voltage level specified for signalling 0 is -3 or more, while the level for 1 is any voltage lower than - 3 V . The interval between successive groups of pulses can be as long as necessary. The receiver waits until a. start blarrives and then decodes the nine or so bits which follow. There is no interval between successive pulses. The sequence of five $0 s$, for example, is received as one long high pulse. It follows that the transmitter and receiver must both have a method of timing the duration of pulses. Both circuits have oscillators or clocks built in to them to fix the rate at which they work. When two devices are coupled both clocks must operate at the same riequency. To assist standardisation, a number of frequencies have been selected for use with RS232C interiaces.

The rate of transmission of data is expressed in baud. This unit, named after a French engineer, J. M. E. Baudot, is equal to the number of bits transmitted per second. Standard rates are 110, 150, 300, 600, 1200, 2400, 4800, 9600 and 19200 baud, though the higher ones are not included in the RS232C standard. To simplify circuit design there are baud rate generator ICs. These are driven by a high frequency crystal oscillator circuit; the high

Fig. 14 The waveform of a serial signal (see text). There may be one or two 'stop' bits. The holding period between successive signals may be any length, which is why the system is called asynchronous.
frequency is divided by internal counter circuits to produce a range of output frequencies at standard baud rates. A UART may be connected to one or other of these outputs, depending on which baud rate is to be used. An interface usually has the facility for switching the UART to any one of the generator outputs, so that the rates on transmitter and receiver may be matched.

Since this is an asynchronous system, matching of timing does not have to be of high precision. Timing at the receiver begins when a start bit is received. The clock at the receiver has to remain in phase with the transmitting clock only for the duration of 10 to 11 pulses. The receiving clock probably runs slightly slower or faster than the transmitting clock, but this does not matter. It can get only a fraction of a pulse out of phase in such a short time, and this is not enough to cause errors in decoding. When the next train of pulses arrives, timing begins all over again from the arrival of the start pulse. Any discrepancies of timing which might have accumulated between trains are eliminated.

ETI

MODULES FOR SECURITY \& MEASUREMENT

- Built-in electronic siren drives 2 loud speakers Provides exit and entrance delays together with fixed alarm ime
- Battery back-up with trickle chafging facilty
- Operates with magnetic switches, w/sonic or I.R. units
- Ant-tamper and panic facifity

DIGITAL VOLTMETER MODULE DVM 314

 is ideally suited for operating the DVM at Temperature Measurement module.ULTRASONIC ALARM features likely to be required when butiding an intruder atarm system. Whether used with only 1 or 2 magnetic switches or in conjunction with several ulrasonic alarm modules or infra-red units, a really effective system can be constructed at a fraction of the cost of comparable ready-made units. Supplied with a fully expianatory Data Sheet that makes instalation straight forward, the module is fully rated and guaranteed.
available in kit form f16. 95 + VAT
Stabilised ouput voltage for external units - 2 operating modes - full alarm/anti-tamper and panic facility

- Screw conmections for ease of installation - Separate reiay contacts for switching exiernal loads
- Test loop facility
 US 4012
Fully built $\&$ tested

Fully built $\&$ tested

- Positive 6 negative voltage with an FSD of 999 mV which is easily extended - Requires only single suppiy $7-12 \mathrm{~V}$
- High overall accuracy $-0.1 \%+1$ digıt - Large bright 0.43^{*} LED displays - Supplied with full applications data

With this fully buift and calibrated module a wide range of accurate equipment such as multimeters, thermometers, batterv indicators etc. canbe constructed at a fraction of the cost of ready-made units. Full details are supplied for extending the voltage range, measuring current, resistance and temperature. - Fully guaranteed, the unit has been supplied to eiectricity authonties, Government departments, etc.

Temperature Measurement Kit DT. 10

$£ 2.25$ + vait
Using the I.C. probe supplied, this kit provides a linear output of 10 mV C over the temperature range from $10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is ideai for use in conjunction with the DVM module providing an accurate digital thermometer
$£ 4.95$ + VAT
This fully built mains power supply provides two stabilised isolated outputs of $9 \mathrm{~V}, \mathbf{2 5 0 \mathrm { mA }}$ each. The unit

Provides a stabilised 12 V output and relay with 3 A contacts. The unit is designed to operate one or two of the above uitrasonic units. Fully built and tested.

Siren Module

SL 157
$£ 2.95$ + va
Produces a loud and penetrating sliding tone operat-
ing from $9.15 V$. ing from 9.15 V . Capable of driving 2 off 8 ohm speakers to SPL of 110 db at 2 M
Contains an inhibit facility for use with shop
lifting loops etc. or other lifting loops etc. or other break to activate circuits
Add VAT \& 50p post and packing to all orders.
Shop hours $9.00-5.30 \mathrm{p} . \mathrm{m}$. (Wed. 9.00-1.00 p.m.
Units on demonstration - callers welcome. S.A.E. withallenquiries

$25+$ va
Hardware Kit
HW 4012
$\mathbf{E 4 . 2 5}+$ VAT
A suitable ready-drilled case with the various mount ing pillars. mains switch socket and nuts and bolts. Designed to house the ultrasonic alarm module together with its power supply. Size. $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

ACCESSORIES *
3-position Key Switch for use with
CA 1250 supplied with 2 keys
Magnetic switch (with magnet)
5"Horn speaker for use with CA1250

RISCOMP LIMIED

Dept:ETI/13
21DukeStreet,
Princes Risborough, Bucks.
Princes Risborough (08444) 6326
Telephone Orders Weicome

The Jupiter Ace uses FORTH

The Jupiter Ace personal computer runs in FORTH, an easily understood language, typically four times as compact and ten times as fast as BASIC. Before the Ace all personal computers used BASIC and FORTH was only available to a privileged few. The Jupiter Ace also features a full-size moving-key keyboard, high-resolution graphics, sound, floating point arithmetic, a fast and reliable cassette interface and 3 K of RAM.

Available soon

Plug-on parallel printer interface.

For around $£ 20.00$ this will connect your Jupiter Ace to anything from high-speed dot matrix to letter-quality daisy wheel printers.

Plug-on 16K Memory Expansion

For around $£ 30.00$ you will increase the memory of your Jupiter Ace to 19 K giving you instant access to enormous amounts of information.

Software

A catalogue will be sent with every machines, and includes, initially, programs for education and entertainment.

All inclusive price

For $£ 89.95$ you receive your Jupiter Ace, a mains adaptor, all the leads needed to connect to most cassette recorders and T.V.s (colour or black and white), a software catalogue and a

Technical Information

Hardware

Z80A running at 3.25 MHz .
8 K bytes ROM
3 K bytes RAM
Keyboard 40 Moving-key keyboard with auto repeat on every key and Caps Lock
Screen Memory mapped 32 column $\times 24$ line flicker-free display with upper and lower case ascii character set.
Graphics Chunky graphics (64×46 pixels) may be plotted, unplotted or over-plotted (XOR operation). Also, the entire character set (128 characters and their video inverses) may be redefined allowing intricate shapes to be drawn with a resolution equivalent to 256×192 pixels. Sound Internal loudspeaker may be programmed to operate over the entire audio spectrum.
Cassette Programs and data in the compact dictionary format may be saved, verified, loaded and merged. Blocks of memory can be saved, verified, loaded and relocated. All tape files are named. Running at 1500 baud, the Ace will connect to most portable tape recorders.
Expansion Port Contains D.C. power rails and full Z80 Address, data and control signals. May be used to connect extra memory and other peripherals. IN and OUT words allow port-based peripherals to be addressed.
Data Structures Integer, Floating point and String data may be held as constants, variables or arrays with multiple dimensions and mixed data types. There are no restrictions on names.
Control Structures IF-ELSE-THEN, DO-LOOP DO-+LOOP. BEGIN-WHILE-REPEAT, BEGIN-UNTIL, al! may be mixed and nested to any depth.
The Jupiter Ace closely follows the FORTH 79 standard with extensions for floating point, sound and cassette. It has a unique and remarkable editor that allows you to list and alter words that have been previcusly compiled into the dictionary. This avoids the need to store screens of source, allowing the dictionary itself to be saved on cassetie. Comprehensive error checking removes the worry of accider:aily crashing your programs.

Designed by Jupiter Cantab
Computer Designers Steven Vickers and Richard Altwasser played a major role in creating the ZX Spectrum and then formed Jupiter Cantab to develop advanced ideas in personal computing. The all-British computer to lead

Go on a computer date

 (and take along the wife and kids)Have you ever fancied spending the day playing with an Atari, or a Sinclair, or an Apple computer?

Well, these plus a complete cross-section of the hard and software available to the home user, will be on display at the London Computer Show.

The emphasis is on the lower end of the price bracket, with computers from $£ 50-£ 300$.

You will be able to chat to the manufacturers and play with the computer before you buy.

So bring along the wife and kids (who'll probabiy be more of an expert on what you're buying than you).

And if you're a party of 20 or more, there's a 25% discount.

Friday 7th January '83 (10.00am-6.00pm)
 Saturday 8th January '83 (10.00am-6.00pm) Sunday 9th January '83 (10.00am-4.00pm)

THE LONDON HOME COMPUTER SHOW.

Royal Horticultural Society's Old Hall, Vincent Street, London SW1.
${ }^{*}$ For advanced bookings for parties of 20 or more, please send cheques payable to Argus Specialist Publications Ltd. (Dept. LHCS, 145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002.

Present this token duly completed when buying your ticket for a 50p reduction. Only 1 token allowed per person. Name Mr/Mrs/Miss
Address \qquad

HOME LIGHTING KITS
These kits contain all necessary components and futi
instructions \& are designed to replace a standiard wal instructions \& are designed to replace a sto
switch and control up to $300 w$. of lignting.
TDR300K Remote Control $£ 14.30$

 TDEK $\begin{aligned} & \text { Extension kit for 2-way } \\ & \text { switcting for TD } 300 \mathrm{~K} \\ & \mathbf{2 l | l |} \\ & \end{aligned}$ LD300KK | Rotary Contriled |
| :--- |
| Dimmer |
| |

CHRISTMAS PRESENTS GALORE

PACK (1) 650 Resistors 47 ohm to 10 Mohm - 10 per value $£ 4.00$
PACK (2) $40 \times 16 \mathrm{~V}$ Electrolytic Capacitors $\mathbf{1 0 u F}$ to $1000 \mathrm{uF}-5$ per value $£ 3.25$ PACK (3) 60 Polyester Capacitors 0.01 to $1 \mathrm{uF} / \mathbf{2 5 0 V}-5$ per value $£ 5.55$ PACK (4) 45 Sub-miniature Presets 100 ohm to 1 Mohm-5 per value $£ 2.90$ PACK (5) 30 Low Profile IC Sockets 8, 14 and 16 - pin - 10 off each $£ 2.40$ PACK (6) 25 Red LEDs (5 mm dia.) $£ 1.25$
PACK (7) 20 BC182 NPN General Purpose Transistors $£ 1.20$ PACK (8) 20 BC212 PNP General Purpose Transistors $£ 1.20$

All full spec. branded devices
BUY ANY 5 PACKS AND WE WILL SEND YOU 10 RED LEDs

DVM/ULTRA SENSITIVE THERMOMETER KIT This new design is based on
the ICLIT126 (a lower power version of the $\mid C L 7106$ chipl and a ${ }^{1 / 2}$ digit liquid crystal
display. This kit will form the

7949 basis of a digital multimeter Conny a few additional resistors and switche

are reauired details are required-details supplied), or a sensitive | digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ |
| :--- |
| reading to $0.1^{\circ} \mathrm{C}$ |
| $\left.150^{\circ} \mathrm{C}\right)$ | reading to $0.1^{\circ} \mathrm{C}$ The Dasic kit has a

sensitivity of 200 mV for a full scale reasing sensitivity of 200 mV for a full scale reading,
automatic polarity indication and an ulter automatic polarity indication and an ultra
low power requirement-giving a 2
vear
 when used 8 hours a day, 7 days a week.

Price $£ 15.50$
DISCO LIGHTING KITS DL 1000 K
This value-for-money kit
features a bi-directionai sequence, speed of sequence
and frequency of direction
change, being variable by meanse of potentiometers and incor master dimming control. $\mathbf{£ 1 4 . 6 0}$

DLZ100K

A lower cost version of the above, featuring undirectional channel sequence with speed variable by means of a pre-set pot. Outputs
switched only at mains zero crossing points switched only at mains zero crossing points Optional opto input DLA1 Only $\mathbf{£ 8 . 0 0}$ Allowing audio ("beat")-light response.0p
0L3000k This 3 channel sound to light kit features zero
voltage switching, automatic level control \& voltage switching, automatic level control \& built in mic. No connections to speaker or amp
required. No knobs to adjust - simply connect required. No knobs to adjust - simply connect
to mains supply \& tamps. Only $\mathbf{£ 1 1 . 9 5}$ (1Kw/Channel)

"OPEN-SESAME"

The XK 103 is a general purposa infra-red transmitter/receiver with one momentary (normally
open) relay contact and two latched transistor output. Designed primarily for controlling motorised garage doors and two auxillary outputs for drive/garage lights at a range of up to
40 ft. The unit also has numerous applications 40 ft . The unit also has numerous applications
in the home for switching lights, TV , closing curtains, etc. Ideal for aged or disabled persons.
The Klitcomprises a mains powered receiver, a
four button transmitier, complete with prefour button transmitier, complete with pre-
drilled box, requiring a gy battery and one opto-isolated solid state switch kit for interfacing the receiver to mains appliances. As
with all our kits, full instructions are supplied. ONLY £23.75
wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40uA. Ouput: 750 mA méx.
Hundreds of uses for doors and garages, car anti-theft device, electronic equipment, etc. Will drive most relays direct. Full instructions supplied.

ONLY $£ 10.50$
Electric lock mechanism for use with latch locks and above kit
$£ 13.50$

FREE

REMOTE CONTROL KITS

MK6 SiMPLE INFRA REO TRANSMITIER
Pulsed infra red source complete with hand held plastic box. Requires a $9 V$ battery $\quad \mathbf{E 4 . 2 0}$
MK7 INFRA RD RECEVER
Single channel, range approx. 20ft. Mains powered with a triac outpurt to switch loads up to 500 W at 240V ac, E5.00 MK8 CODED INFRA RED TRANSMITTER
Based on the SLa90, the kit incluces
 MK 1016 -WAY KEYBOABD
 $\begin{aligned} & \text { Mercivar } \\ & \text { MK } 11 \\ & 10-C h n n n o l ~\end{aligned}+3$ Anelogue o/p IR Receiver
 tone and lamp brighness. Includes its own mains supply.
MK12 16 -CHANEL IR RECEVER £ 12.00 MK12 16-CHANNEL LR RECEIVER
For use with MK8 kit with 16 on/off
of pats, which with further interface circuitry, such as relay or triacs, will switch up to 16 items of equipment on or off remotaly. Latched or momentary out-
 MK16 Mains Powered 1 R Transmittor alarms a automatic door openers, ete. Range approx. 6 f .
MK1, MK 17 12V d.c. IR RECEVER
For use with MK6 or MK For use with MKG or MK16. Relay output with DP 3 Amp change-over contacts, may be used as
Iatched, momentary or "break beam" receiver. Operates from 5 -1 1 lV d.c. Iatched momentary or breal beam
MK 18
SiIGHPOWER TRANSMITER

Ancillory Kits : Mk2 Solid State Relay
Opto isolated with zero voltage switch
Opto-isolated with zero voltage switching. No. triac supplied. $£ 2.60$
MK15 DUAL LATCHED SOLIO STATE RELAY
Comprises $2 \times$ solid state relays and latch fo
24 HOUR CLOCK/APPLIANCE TIMER KIT
Switches any appuance up to 1 kW
on and off at present times once per \quad CT1000k Basic Kit

CT1000K Basic CT1000K with wh
 (Ready Built) white box ($56.131 \times 71 \mathrm{~mm}$)
 | f 14.90 |
| :---: |
| $\mathrm{f17.40}$ |

 day. Kit contains: AY-5-1230 ic display drivers, swithes, LEDs,$$
\begin{aligned}
& \text { display drivers, switches, LEDs } \\
& \text { triacs, PCBs and full instructions }
\end{aligned}
$$

FREE
SHORT FORM CATALOGUE - send SAE ($6^{\prime \prime} \times 9^{\prime \prime}$). We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

Add 55p postage \& packing $+15 \%$ VAT to total. Overseas Customers:
 Send S.A.E. for further STOCK DETAILS
Goods by return subject to availability.
0 EN $\begin{gathered}\text { Gam to } 5 \mathrm{pm} \text { (Mon to Fri) } \\ 10 \mathrm{am} \text { to } 4 \mathrm{pm} \text { (Sat) }\end{gathered}$

Amatenr radio will become much clearer after 3rd Dec.

The radio market has become more complex. Things have become more confused.

Wires get crossed as new equipment floods onto the market.

At the end of the day, even the most avid enthusiast spends more time trying to find out about new equipment than on the airwaves using it.

As for the novice?
They stand little chance of picking anything up at all.

So we've decided to clear things up.

On December 3rd our new magazine Ham Radio Today begins.

Not a magazine you need a degree in electronics to decipher.

Or one that still calls your gear a wireless.

Rather a magazine that simply clarifies the vast range of electronic gadgetry available.

Lists new equipment, analyses its performance.

Thorough reviews, special features, news items and constructional projects.

In a clear and concise way that will give everyone a perfect $5+9$.

Ham Radio Today.
Tomorrow. . .tune in and find out, 73.

CORTEX part 3

Fig. 1 Component overlay for the power supply.

Fig. 2 The keyboard overlay, in two halves so it doesn't get stapled into illegibility.

PARTS LIST

The CAPS LOCK switch is physically different from the rest and is wired in with wire links. Press this switch into its bracket together with the Q and W switches before fitting to the board. It is most important that the switches fit squarely on the board. The best way to be sure of this is to solder only one pin of each switch and then holding the board, press in turn each of the switches while reheating the soldered joint. If any are misaligned this will correctly position them. The key tops can now be pressed on and the remaining pins soldered.

The power supply is on a singlesided PCB with six wire links and it is best to fit these before any components. Connections to and from this board are made via connectors and to ensure that their
pins are soldered in squarely, fit the sockets on to them during soldering. The power supply is all on the back panel and the power transistors use this as a heatsink, being fitted to it with mica insulating washers.

As well as holding the input and output sockets, the rear panel has provision for a cooling fan and one should be fitted when disc drives are used.

The disc drives pass through the front panel and are screwed onto a mounting plate. Plates on the sides of the drives press against the panel, thereby making a rigid sub-assembly which fits into the cover of the computer. The standard kit has a panel with no cut-outs for disc drives and a new panel is provided with the drives when purchased.

There are two positions in which the main board can be fitted.

The board has provision for a Eurocard connector for expansion purposes and there is a cut-out in the side of the computer through which the connector passes; for external expansion the board fits at the far right hand side. However, if the add-on units are to be fitted internally then the position to the left is used.

BUYLINES

Powertran are supplying complete kits

 of parts and component packs for the Cortex. A complete 64 K Cortex kit will cost $£ 295$ plus VAT, carriage free. A ready-built 64 K Cortex will cost $£ 395$ plus VAT, carriage free. Prices for addons (eg floppy discs, RS232C interface, memory expansion etc) and for component packs (eg PCB, semiconductors etc) can be found in Powertran's brochure. Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP10 2NM. Telephone 026464455.

E.T.I. KITS
 ALL KITS
 INCLUDE PCBs

Full kits include printed circuit boards components, hardware, I.C. sockets, cases etc. unless stated (not batteries). If you do not have the issue of E.T.I. which
includes the project - you will need to order the instruction reprint at an extra 45 p each. PCBs included. Reprints available separately $45 p$ each $+p \& p 45 p$.

SPECTRACOLUMN DEC 82, Less case and lights $£ 34.85$ p PLAYMATE Augu/Sept 82, lezs optional foot RECHARGEABLE BATTERY extra E19.96 pedal + mains unit..53.888 CUAL LOGIC PROBE Sept 8299 AUTO VOLUME CONTROL Sep 82 ± 4.28 less case AUTORANGING GAPACITANCE METER Mar/April 82 PHONO AMPLIFIERS Fob 87.99 HIGH QUALITY PHONO AMPLIFIERS Feb 82. Less case coll stage ... MOVING MAGNET STAGE PEST CONTROL Feb 82 ... GUITAR TUNER Jan 82 COMPONENT TESTER Dec 81
CAR ALARM Nov 81 ENLARGERTIMER ... SOUND BENDER OCt 1 1.......................e22.85

ADVENTURES WITH DIGITAL ELECTRONICS

New book by Tom Duncan in the popular 'Adventures' series. This book of entertaining and instructive projects is designed for hobbyists, and students. It provides a stepping stone to the microprocessor
The first part deals with the properties of some basic ICs used in digital electronics The second part gives details of how to build eight devices - shooting gallery, 2 way traffic lights, electronic adder, computer space inyaders game, etc.
For each project there is an explanation of 'how it works' and also suggestions for 'things to try'
No soldering - all circuits built on 2 Bimboard 1 breadboards.
Adventures with Digital Electronics book $£ 3.25$. Component pack $£ 42.50$ ref. ETDC All the components needed including 2 breadboards and hexadecimal keyboard Available less breadboards $£ 29.98$ ref. ETDF. Both less battery

MAGENTA ELECTRONICS LTD

EW23, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS
DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY

ADD 45p P\&P

TO ALL ORDERS
Prices inc. VAT
ACCESS and BARCLAYCARD IVISA) ORDERS ACCEPTED BY PHONE OR
sae all enouiries.

OFFICTAL ORDERS WELCOME VERSEAS Paymient must be in stering RISH REPUBLIC and BFPO ELSEWHERE - Write for Quote.

Desk-top Ten Way Manual Ex
change (key \& lamp unit)
change (key \& lamp unit) $\mathbf{f 8}+£ 1.80$ PGP

Recent Style P.O. Telephones 2 for $£ 9+£ 2.50 .5$ for $£ 20+£ 5$

Older style black telephones, £3. p\&o as above. Our leatlet explains how to use G.P.O. phones in home intercom systems.

```
Operator's Headset with Mic.& & Pole
```

```
Operator's Headset with Mic.& & Pole
``` Jack
\(\mathbf{f} .75\)

5 Digit Counters 48 V coil. Non resetable

UNISELECTORS. \(50 \mathrm{v}, 4\) Bank +. Homing Bank, 25 way \(£ 3.50\)

D CONNECTOR SOCKETS with cover, 50 way

50V 8A TRANSFORMER.
Ideal for big power supply unit BEAT THATI

Various stabilised power supplies available - Excellent prices send for details

FREE on request - Leaflet "D.I.Y. Telephone Systems and D.I.Y. Telephone Systems

\section*{LOW-COST, RUGGED}

TEMPERATURE CONTROL
High Quality

TENP. GAUGE \(0^{3}-120^{\circ} \mathrm{C}\)
Remote sensor on \(38^{\prime \prime}\) capiliary, panel mounting dial 55 mm . dia.

ONLY £2.50

16A 240V RANCO THERMOSTAT
Wide control range (low room temp. to over boiling point) Sensor on 22" capilliary, \(£ 2.30\), including control knob RANCO THERMAL CUT-OUT \(100^{\circ} \mathrm{C}\) 15 A 240 V . Sensing coil on 41 in . capiliary pane! mounting with reset button \(£ 1.20\)
BUY ONE EACH OF ABOVE FOR \(£ 5.50\)
LIGHT DEPENDENT RESISTORS in plastic housing with window, heavy-duty lead. Similar to ORP 61 You normally pay well over double for resistor alone Only 30 p or \(\notin 2.35\) for 10.
GEARED Synchronous motor, 8 r.p.m., 240 V A.C. 3 Watt f2.
SOLENOID GAS VAIVE. 240 V A.C. 5 P.S.l. suftable for non-corrosive fluids. \(£ \mathbf{2} \mathbf{2 0}\) BULGIN 3 pin free plug \(\&\) panel socket, 2 A 240 V 50p
AUTOMATIC DIAL UNIT. (mains powered). These units connect into a telephone and dial a number when a punch-card is inserted. Card a instructions supplied Cards readily available. Many uses. Only \(£ 8+\mathbf{£ 1}\) p\&fp L.E.M. SERVICES
22 Emscote Road.
Warwick.
Warwickshire
ADD 50p PGP ORDERS OVER £7.50 POST FREE unless stated otherwise ALL ITEMS - MONEY BACK IF NOT DELIGHTED.

Now you can indulge your ambition to spend more time playing music. At the same time you can build a superb organ at home, yourself, and it will cost you less than half the ready assembled price. You need no previous experience in electronics or carpentry WERSI makes it easy.
Do you have to be a virtuoso or a music lover to benefit from building a WERSI organ? No . . . this would mean failure to recognize the sense of the hobby. Even after your project is completed you will be able to discover new excitement from the world of music. Whether you play haunting blues stomping disco, liturgical hymns or classic renditions the new generation of WERSI organs will make your life more enjoyable. Want to know more? Just fill in the coupon below, and we'll send you all the information.

WERSI ORGANS \& PIANOS LTD
14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733.

There are now TEN retail outlets for WERSI ORGANS and kits and there's a friendly welcome awaiting you at all the showrooms listed below. We offer free demonstrations and a technical support service second to none. Pop in and discover The World of WERSI for YOURSELF.

1 AURA SOUNDS ITD
14-15 Royal Oak Centre, Brighton Read, Pariey, Surrey 01-668 9733
2 AURA SOUNDS LTD
17 Upper Charter Arcade, Barnsley, S. Yorks. 02265248
3 AURA SOUNDS LTD
1729 Coventry Road, South Yardiey, Birmingham 021-707 8244
4 ELECTRO VOICE SALES LTD
Maple Cross Industrial Estate, Denham Way, Rickmansworth, Herts. Tel. Rickmanaworth 75381
5 ELECTRO VOICE SALES LTD
388 Aspley Lane, Nottingham 0602296311
6 ELECTRO VOICE SALES LTD
486 Felixstowe Road, Ipswich, Suffolk 0473710051
7 ELECTRO VOICE SALES LTD
626 Lanark Road, Juniper Green, Edinburgh 14 031-441 4248
8 MICRO DIY CENTRE LTD
Albany Road, Newquay, Cornwall 063735953
9 TWS LTD
185 Walton Summit Centre, Bamber Bridge, Preston, Lancs. 077237249
10 Waveband Ltd
29 Oxford Street, Whitstable, Kent 0227262006
Want to know more about WERSI? Look for the other advertisement in this issue and send the coupon to the Head Office address below-we'll send you free details.

WERSI ORGANS \& PIANOS LTD
14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733

\title{
FUEL GAUGE
} Moving coil meters? How passé. If Ford is prepared to spend millions of pounds on computer-aided design and robot assembly, the least you can do is fit your car with an electronic fuel gauge. Design by A. M. Smithers.

The standard petrol gauge, as fitted to most cars, is of a primitive 'hot-wire' design, the gauge responding to the heating effect of the current through it, which in turn varies with the resistance of the fuel gauge sender unit located in the fuel tank. The chief disadvantage of such a gauge is the inaccuracy of reading. Running out of petrol is advantageous only in certain circumstances and even then it would be nice to know exactly when it was going to occur! A far more elegant, and indeed, much prettier solution would be a bargraph type display which could be accurately calibrated. With the help of the LM3914 bargraph display driver this can easily be effected. The standard sender unit in the tank is retained, but the petrol gauge is disconnected at the instrument panel and the sender unit is, instead, connected to the input. R2 provides the current source for the sender unit previously obtained from the gauge itself. Please note that considerable adjustment is provided on the circuit resulting in the value of R2 and, indeed, the resistance of the sender unit being not at all critical.

The voltage developed across the sender unit of the car in which the prototype was fitted varied from around 10 V when empty to around 2 V when full. A 741 operational amplifier is used to invert this signal by comparing it with a 5 V reference provided by R4 and R5. The output of the op-amp varies from about 0V5 when the tank is empty to about 8 V when it is full. This output is now of the correct sense to be fed to a standard LM3914 expanded scale voltmeter. The potential divider formed by R7 and PR1 provides a full scale adjustment which may be calibrated against a brimming full petrol tank. Similarly PR2 provides a zero adjustment for calibration against an empty tank.

\section*{Construction}

The circuit is relatively simple and may be constructed on Veroboard or the PCB design as illustrated. IC sockets are recommended, particularly to novice constructors, as LM3914s do not come cheap and removing an 18-pin IC is no easy task in any case. The LEDs may be soldered directly to the board as shown or may be mounted remotely, for instance on the car dashboard with flying lead connections to the PCB. If mounting the LEDs on the board specified, please note that \(0.125^{\prime \prime}\) LEDs must be used as \(0.2^{\prime \prime}\) types will not fit!

R2, the 100 R 2 W resistor is not of a critical value and to save costs, on the prototype this component. was made up of \(4 \times 470 \mathrm{R} \frac{1}{2} \mathrm{~W}\) resistors in parallel. Any similar combination resulting in a power handling of \(1 W 5\) or more may be used.

Provision is made on the PCB for converting the circuit to dotmode display. Although this modification would not be advantageous for a fuel gauge, the project can of course be used for

\section*{HOW IT WORKS}

A current source for the fuel gauge sender unit is provided by R2. A voltage proportional to the resistance of the sender is therefore developed between the input and ground. In a typical vehicle this voltage will vary from 2 V when full to around 9 V when empty. This variable input is inverted around a reference voltage derived from R4 and R5 by a unity gain inverter consisting of IC1, R3 and R6. C1 is deliberately larger than is normal for frequency compensation to slow down the response of the circuit, thus providing a far more static display, free from annoying flicker. A variable potential divider formed by R7 and PR1 sets the FSD of the LM3914 bargraph display driver.

PR2 serves two purposes: the setting of this pot adjusts the zero level of the voltmeter, while the value sets the LED current. A value of 2 k 2 was chosen to given an LED current of around 7 mA according to the formula:
\[
\mathrm{I}_{\text {IED }}=\frac{1.2(10+\mathrm{R})}{\mathrm{R}}
\]
where \(R\) is the value of PR2 in kilohms. A current of 6 mA per LED with all LEDS illuminated corresponds to a maximum dissipation in IC2 of around 600 mW which is inside the rated maximum of 660 mW .

The components ZD1, R1 and Q1 form a simple stabilised power supply of around 10 V . This value allows for a weak battery while still maintaining accuracy.

any purpose requiring a monitor with a response that is inversely proportional to a linear input.

\section*{Testing And Calibration} After assembly of all components, connect the unit to a 12 V supply and short the input terminal temporarily to 0 V . It should be now possible by adjustment of PR1 to obtain a full 10 LED display with adjustment to at least half FSD. With the input shorted to +10 V PR2 should adjust for no LEDs illuminated, again with considerable adjustment both ways. If the unit fails to function check for solder shorts, misfitted components, broken PCB tracks and faulty components - in that order.

To calibrate the unit it is obviously necessary to have access to the car with fuel tank full and empty; we recommend that the following procedure is adopted. Run the car until the tank is nearing empty. Drain the tank into a suitable container by disconnecting the fuel line at the pump and refill the tank with about 2-3 pints of fuel to allow a certaịn safety margin even when the gauge registers empty. Connect the unit temporarily to the car and after allowing the tank contents to settle, accurately measure the voltage at the input and record this value. Replace the tank contents, drive to a garage and fill the tank completely with fuel. Again accurately measure the voltage at the input.

Remove the unit to the test bench, apply power and connect a low value potentiometer between the input and ground. Now using the recorded values, the unit may be calibrated on the bench by applying the correct voltages by adjustment of the potentiometer. This method of calibration is necessary because the two adjustments are highly interactive and calibration would otherwise entail filling and draining the fuel tank several times, which would be time-consuming and possibly expensive. When calibration is complete, seal the presets with wax or nail varnish and finally install the unit in the car. Take care not to allow the track around the edge of the PCB touch the chassis when mounting the unit - this is the +10 V rail and blown fuses will result.

The display brightness is set by the value of PR2. This value is chosen to give a current of about 6 mA per LED which corresponds to a dissipation of around 600 mW in the LM3914 when all LEDs are

Fig. 2 (Above) Component overlay.
This is slightly altered from the prototype shown.
Fig. 3 (Below) Connection details for the unit.

illuminated. As the maximum allowable dissipation of the device is 660 mW , on no account should the value of PR2 be reduced.

A design point is that the display is of 10 LEDs and most modern cars have tank capacities of around 10 gallons. Thus an approximate direct readout of 'gallons remaining' is obtained and a fair estimation of fuel consumption may be made.

PARTS LIST
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Resistors (all \(\frac{1}{4} \mathrm{~W}, 5 \%\) except where stated)} \\
\hline R1 & 1 k 0 \\
\hline R2 & 100R 2 W (see fext) \\
\hline R3-7 & \\
\hline \multicolumn{2}{|l|}{Potentiometers} \\
\hline & 10k miniature horizontal preset \\
\hline PR2 & 2 k 2 miniature horizontal preset \\
\hline \multicolumn{2}{|l|}{Capacitors} \\
\hline & 100n polyester or polycarbonate \\
\hline C2 & 22u 16 V tantalum \\
\hline \multicolumn{2}{|l|}{Semiconductors} \\
\hline IC1 & 741 \\
\hline IC2 & LM3914 \\
\hline Q1 & BFY51 or similar \\
\hline ZD1 & 10 V 400 mW zener \\
\hline LED1-10 & 0.125" red LEDs \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline PCB (see mounting & Buylines); hardware for \\
\hline
\end{tabular}

\section*{BUYLINES}

> No problems with any of the components here; everything should be sold by everybody, and most of it could be found in your junk box. The PCB can be obtained using the PCB Service order form on page 91 .

\section*{Sinclair ZX \\ \(\mathbf{S}\) pectr}

\section*{16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics... From only £125!}

First, there was the world-beating Sinclair ZX80. The first personal computer for under \(£ 100\).

Then, the ZX81. With up to 16 KRAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

\section*{Professional powerpersonal computer price!}

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM.

Yet the price of the Spectrum 16K is an amazing \(£ 125\) ! Even the popular 48 K version costs only \(£ 175\) !

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around £60.

\section*{Ready to use today, easy to expand tomorrow}

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now- is fully compatible with the \(Z X\) Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

\section*{Key features of the Sinclair ZX Spectrum}
- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard-all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally \(\times 192\) vertically, each individually addressable for true highresolution graphics.
- ASCII character set-with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

\section*{ZX Spectrum software on cassettes-available now}

The first 21 software cassettes are now available directly from Sinclair. Produced by ICL and Psion, subjects include games, education, and business. household management. Galactic Invasion...Flight Simulation...Chess... History...Inventions ...VU-CALC...VU-3D ... 47 programs in all. There's something for everyone, and they all make full use of the Spectrum's colour, sound and graphics capabilities. You'll receive a detailed catalogue with your Spectrum.

\section*{RS232/network interface board}

This interface, available later this year, will enable you to connect your ZXSpectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only \(£ 20\) is possible only because the operating systems are already designed into the ROM.

Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS.
Tel: Camberley (0276) 685311.

\section*{How to order your ZX Spectrum}

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-2000200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

\title{
MEMOTECH
}

\section*{realises the ZX81 potential}

The Memotech approach to microcomputing is to take the well-proven and popular ZX81 as the heart of a modular system. This small computer houses the powerful Z80A processing unit and acts as the central processor module through which the MEMOPAKS operate.
Memotech has a reputation for professional quality, producing units which are designed to fit perfectly, to look well-balanced, and to work efficiently and reliably.
The modular approach gives ZX81 owners the freedom to design the system they really need.
Furthermore, the intercompatibility of the modules ensures that later additions will click straight in, to give you a system that grows with your ambitions and abilities.
To ensure that your expectations are realised, care is taken at every stage to design features into the system to anticipate your frustrations and to forestall them. For example:
A) Memories are cumulative e.g. 16 K and 32 K can be added to the MEMOPAK 16 K or even to the Sinclair 16K RAM pack.
B) The HRG firmware allows commonly used constructions (such as scrolling, shading and labelling graphs), which might otherwise be beyond the user's programming capabilities, to be evoked by a few simple commands.
C) The Centronics I/F converts ZX81 character codes into ASCII and extends the print line to the width of the printer, still using the LLIST, LPRINT and COPY commands.
As one example, a system with 16 K of memory and MEMOCALC is all that is required to perform sophisticated numerical calculations giving the same results as a computer at 10 times the price. The problem may be as complicated as a cash flow or production schedule, or as simple as household accounts or pocket money budgeting. If the bank manager wants to see the cash flow, then a single print instruction to the Centronics I/F will give a printout which is more than acceptable to any bank. The example system which is shown below, on the other hand, would satisfy the needs of someone who wanted to enter data via a light-touch keyboard, construct and label graphs, and then copy the screen to an 80 -column printer. Only 16 K of memory is used here but with additional memory, more than one video page can be stored. Up to 7 successive pages can be displayed cyclicly to give animated displays.
Looking forward, Memotech will continue to back the ZX81 through 1983 with fast storage devices, pressure sensitive electronic drawing boards and more software packs including a wordprocessor, an RS232 interface and a Z80 assembler.

MEMOPAKS may be ordered by post (cheque, Access/Barclaycard quoting number) or by telephone. Please make cheques payable to Memotech Ltd. and please include \(£ 2.00\) per unit for packaging and postage inland (overseas \(£ 3.00\)).

We want to be sure you are satisfied with your Memopak - so we offer a 14 -day money back guiarantee on all our products.

\section*{MEMOTECH LIMITED} 3 COLLINS STREET OXFORD OX4 1XL ENGLAND

TEL. 0865722102
TELEX 837220 ORCHID G

\title{
BUYER'S GUIDE TO \\ CONQUERING THE UNIVERSE
}

\title{
Only a few shopping days to Christmas, and we're full of goodwill to all men and xenophobia towards aliens. Peter Green has been killing as many as possible (aliens, that is), and this is how he got on.
}

No doubt you all think it's a pretty cushy job, playing video games day after day and getting paid for it too. That's because you're not sitting here trying to type this article with the twin ailments of Intellivision Thumb and Atari Cramp. The former is caused by excessive pressure on the direction disc through sheer panic when you're trapped by a falling boulder in Astrosmash. The second is the result of trying to keep a firm grip on the joystick while throwing the USS Enterprise all over the known universe.

Which brings me to my first complaint. Oh great video game companies, when are you going to produce a decent hand controller? The offerings of the two giants leave a lot to be desired. The Atari controller needs a lot of force on the joystick if you're to be certain you've closed the switches, and as a result the left hand which is gripping the controller base starts to go numb quite quickly: especially when you have to tighten your hold because you're starting to sweat and lose your grip. On the Intellivision the flat direction disc is, I think, a lot easier to use (although there are many in the office who'd dispute that), but I still find that in the excitement of a game I'm pressing too hard, which quickly makes the end of the thumb sore. I suppose the real answer is to cultivate a calm attitude during play, but this is almost impossible (maybe we should produce a book on Zen and the Art of Videogames!).

By far the worst problem with the Intellivision is the fire buttons on the sides of the Controller. These need a ridiculous amount of pressure to push them in, which isn't so bad when they have to be momentarily pressed; but in one game which required continuous pressure for rapid firing, I ended up dead because my hand simply couldn't grip the controller any longer. So loosen your springs, gentlemen!

The next problem was actually getting hold of anything to review! At this time of year it seems everyone has the same idea, and time after time I was told by the PR companies that they had nothing for me because everything was out on loan and none of the journalists would return it. This explains the lack of reviews for the Atari VCS in particular, and as for the Philips G7000-1 never managed to lay my hands on one.

Maybe I should propose a new video game in which a screenful of journalists acquire video games and when
they've had them for a certain length of time you can blast them with a 30 kW X-ray laser . . .

Eventually I managed to get a reasonable selection together, though, and play-testing began. It became apparent that there are three broad categories of game: ones where you have to kill an infinite series of strange things and get the highest number of points, those where you have to kill a finite number of strange things in the fastest possible time, and those that simulate some real human activity. The success or failure of any of these types depends mostly on how well the designer has struck the balance between challenge and skill level. If a game is so easy you can master it after playing it once, it's a bad game; so, too, is one that kills you off within 30 seconds no matter how much you practise. The ideal game is fairly easy at the lower levels but increases in difficulty at just the right pace to keep step with your increasing familiarity with it. It should be possible to play it again and again and always find that extra challenge that brings you back for more: unfortunately few games can achieve this.

One of the best guides to the success of the game, I found, was the number of people that started looking over my shoulder while I was playing, and how many of them fought to take my place when I went to the loo! There are a lot of dedicated gamers in our office and the highest scores that we give are not necessarily mine (in fact they're rarely mine!).

\section*{Star Raiders (Atari 400)}

This is one of the best Star Trek simulations you can buy. The TV shows the view through the viewscreen of the Enterprise, with stars drifting past very realistically, and an array of readouts at the bottom giving co-ordinates, energy left, number of kills and so on. The joystick is used to steer the ship and aim and fire the photon torpedoes, while the keyboard gives functions such as forward and aft view, shields on/off, long range scan, galactic chart, attack computer on and hyperspace controls. Basically the idea is to protect your starbases by locating your enemy (and there's a lot of them) on the galactic chart, travelling to their location by hyperspace (a spectacular effect as you storm through the starfield) and kill all the aliens you find there. Simple, huh? Until you discover that the controls work as they would in real life so that when the joystick is pushed forward the ship's bow drops and the view
through the screen rolls up. Ditto left and right movements. This topsy-turvy system takes a bit of getting used to, and the only course is to stick at it until your brain finally clicks. Once you get the knack of steering you still have to cope with the fact that your photon torpedoes move with true perspective and dwindle in size, so aiming is an acquired art too. Mastering all this is quite satisfying, but once you've beaten the basic game and try to move up you find that the difficulty leaps enormously: your shields are no longer impervious, you quickly take a lot of damage and die fairly rapidly. This assumes you actually found any aliens in the first place, because on the higher levels you have to steer through hyperspace and this is damned difficult. No-one in the office has beaten this game on anything other than novice level, and our highest rating so
far is Lieutenant Class 4 far is Lieutenant Class 4.

\section*{Missile Command (Atari 400)}

Another cracker for the 400, this is the one where a central missile base is trying to defend the cities on either side by shooting down the aircraft, satellites and nuclear warheads which are doing their best to decimate the landscape. The catch is that you have to position your target cursor just the right distance in front of the enemy because they only detonate if they fly into the explosion of your missile and it takes a finite time for your missile to reach its target. And don't miss - most of the warheads are Multiple Independent Re-entry Vehicles, so if you don't knock them out fast you suddenly find they split into half-a-dozen or so. Bonus points are awarded each time you clear the screen for cities saved and missiles not used, and the amount you score increases as the game progresses, but after a certain point the nasty smart bombs appear. These don't fly blindly into your fireballs, but will always dodge them if possible. This means you either have to lay a pattern of charges around them, or get good enough to hit them spot on. Tricky. Our maximum is 74,420 , and we can recommend this as a good game.

\section*{Space Invaders (Various)}

Here I have to admit that l've never been able to understand the runaway success of this game - it bores me rigid. Anyway, what can I say? Everyone's seen this and knows that there's a screenful of aliens who fly in gradually descending rows while you try to stop them doing same by shooting upwards with your laser. Whoopee. Since I can't get up the enthusiasm to practise this one my score is derisory, but my brother-in-law's sister is so good she can get the score on a VCS up to all nines and then clock it round to zeroes. It's safe to say that if you can manage that you're not doing too badly.

\section*{Defender (BBC Model B)}

Possibly the best simulation of an arcade game on a micro that we've seen yet. Full colour, excellent highresolution graphics, all the sound effects you could ask for and a fast, challenging game. Acornsoft have definitely come up with the goods on this one. The game follows the standard Defender format: your spaceship is flying over the surface of a planet populated by little men who are prone to being kidnapped by alien landers. Your task is to prevent this antisocial behaviour by lasering the alien ships before, during but not after - because if they complete their task by reaching the top of the screen, they turn into very fast mutants which plough straight into you. Extra points are awarded if you can rescue a human in mid-air, and even more if you land him safely. Once you've cleared the first wave things turn progressively nastier, with bombers, pods, swarmers and other whatsits all after your blood. This is when you really need your smart bombs, which instantly detonate everything on screen: very useful in a tight corner. There are seven control keys for various functions so just getting yourself co-ordinated takes a while, but it's worth persevering. I started out by getting maximum scores of 450 (by ramming three landers!) but after a couple of hours I was soon getting respectable totals. Current office maximum resides with a colleague on Personal Computing Today, who racked up 54,350.

\section*{The Empire Strikes Back (Atari VCS)}

This is one of the new releases for Christmas from Parker and quite good it is too. The game recreates the battle from the film of the same name, in which Luke Skywalker and his pals take on the Imperial Walkers in their snowspeeders on the ice planet Hoth. You are the pilot of a snowspeeder trying to prevent a line of walkers from reaching the right-hand side of your TV. The action actually takes place over an area eight screens wide, and a small radar view at the bottom of the screen tells you exactly where you are in the larger scheme of things. Walkers are tough critters - you have to hit them 48 times in the body to destroy them, whereas they can take you out with five shots or fewer. This would make the game almost impossible but for two things. The first is that for every two minutes you can keep the snowspeeder alive, you get 20 seconds of the Force being with you, which makes you invincible; as soon as this happens you can just sit there blasting away and ignoring enemy missiles. The second thing is the occasional appearance of very small 'bomb hatches' on the body of the walker; if you can get a laser bolt into one it destroys the walker immediately. The bad news is that if you play the harder games, these bomb hatches will often launch homing smart bombs which chase you for a considerable time (of course there's bonus points in it if you can shoot them down). There's an infinite sequence of walkers, and they get faster and more accurate as time goes on, so this game ends when your last snowspeeder has been destroyed, the object being to score as highly as possible. On game 13, the hardest (smart bombs and solid walkers that destroy you if you fly into them), the current maximum is 5,562 .

\section*{Yar's Revenge (Atari VCS)}

Now most of the time you can play a video game and when someone asks what you're doing, you can give a coherent answer. But when you reply that you're a Yar who's trying to kill the deadly Qotile with your Zorlon cannon, you tend to get forehead-tapping and pitying looks. Well, ignore the infantile plot and concentrate on the game: which isn't one of the most gripping we've played. You're a sort of intelligent space-going housefly (stop laughing at the back there) and your enemy, the Qotile, is hiding behind a shield. Your job is to break through the shield, either by shooting out cells from a distance or getting in close and eating them. Eating a cell or touching the Qotile loads your Zorlon cannon, which is the only thing which will destroy the Qotile (tough things, Qotiles). Shoot through the gap in the shield and pow! Exit one Qotile and enter another. To give some added spice the Qotile periodically turns into a spinner and fires itself

across the TV at you. Possibly a good game for the kids but it won't keep you engrossed for long. Our maximum score on the normal game with maximum difficult setting was 116,923 . If you're interested, Yar's Revenge is the second game from the right on the top row at the end of Atari's TV ad.

\section*{Starstrike (Intellivision)}

Now you've all seen this one - it's in the Mattel TV adverts. It doesn't take too much intelligence to figure out that this is meant to be as close to the Death Star canyon sequence from Star Wars as Mattel can get without breaching the copyright laws. Your ship is flying above a trench (actually your ship stays stationery and the trench rotates beneath you). You can manoeuvre about but you have to be careful not to hit any part of the enemy space station or the game's over. You can judge your position and height by the shadow under your caraft. The score starts at 8000: it decreases steadily as time goes on and increases every time you shoot down the enemy ships which fly down the trench at you. The object of the game is to successfully bomb the five red targets that appear over the horizon and pass beneath your ship (if you haven't got out of position by chasing aliens). Get killed or fail to hit all five targets before your score reaches zero and it's bye-bye Earth - the red thingies take off and decimate the ol' home planet. The idea isn't bad, but the balance of the game could do with a bit of work: it's too easy to beat on the lowest level and too fast to beat at the higher ones. Our maximum - 6462 on level 1. There's a good video game lurking in the Death Star sequence, but this isn't it.

\section*{Astrosmash (Intellivision)}

Superficially this seems almost identical to Space Invaders, and yet I found it a lot more to my liking. You have a laser base at the bottom of the screen which you can move right and left, and which fires upwards at all sorts of space debris which is dropping out of the skies towards you. Every time you hit an object, it explodes (and if you're lucky it detonates another piece which was flying too close): every time an object hits the ground, you lose points. Now and again large or small white 'spinners' start falling - you must hit these or you lose a base when they land. As your score goes up you can score points faster, but the action speeds up and you then get guided missiles which home in on your laser and attack UFOs which fly across the screen lobbing huge bombs at you. The main trick with this game is to get a good rapid-firing technique established, but as pointed out earlier, the stiffness of the

Mattel push-buttons gets you cramped very quickly. At least Mattel have had the decency to provide a pause facility on this game, so you can loosen up your fingers before carrying on. As is usual in games of this type, the various scoring levels are indicated by the background changing colour and some of them make the targets a bit harder to see; I'm not sure if this is deliberate obstruction or not! Not a bad game at all, and worth trying to beat our maximum of 23,190.

\section*{Skiing (Intellivision)}

Not a bad little simulation, this, though if I were programming it I think l'd alter the rates of acceleration and deceleration which seemed a bit exaggerated to me. There's a choice of two courses, downhill or slalom, 15 degrees of mountain slope, and up to six different skiers so you can make it a team event with your friends. The difference between the two courses is that the downhill course is designed for speed, with a fair distance between gates (and mounds of snow to jump over), while the slalom requires some precision skiing with tight turns (which were a bit beyond my abilities!). The game is improved immensely by the excellent detail of the skiers (Mattel have always been best at this aspect of graphics) and by the sound effects, which include realistic thumps as you collide with the trees and a cheering crowd as you pass the finish line. Unfortunately I didn't seem to be able to complete the course in less than a minute (best time was 64.6 seconds, making me a hot-dogger), but l'll keep trying. Now where's that wax . . .?

\section*{SNAFU (Intellivision)}

Peculiar name for a game (especially if you know what it stands for - and we can't print it here), but quite good fun to play. There are four snakes on the screen, two controlled by the computer and two which can be steered using the hand controllers. There are various types of game based on two basic ideas: trap games and bite games. In the former the trail grows continuously so that a complex maze develops on the screen, and the object is to force your opponents to trap themselves and crash into a wall. The other type involves snakes of a finite length, the trick being to run your head over your opponent's tail and gradually eat him away. Some permutations allow the possibility of diagonal movement, some have obstacles which must be avoided. Once the number of snakes on the screen has been reduced to two, the computer takes it upon itself to play one of two rather catchy little tunes, just to make things a bit more entertaining. There's no score of ours to beat, since all the games involve you against an opponent. A good game when you're fed up with killing aliens.

\section*{Utopia (Intellivision)}

Now here's an unusual one: this is a sort of graphicsbased version of Kingdoms, where you rule an island community and score points by maximising the well-being of your people. Tyrants need not apply. You can play against an opponent, who takes the other island, or simply try to beat your previous best score. As head of the Treasury you can decide whether to buy fishing boats or PT vessels, crops, houses, schools, factories, forts, or hospitals: you decide whether to co-operate with your neighbour or wage war on him. Natural hazards include storms and hurricanes: unnatural hazards include pirate ships who sink your fishing vessels. The game consists of a number of rounds from 30 seconds to 2 minutes, after which you are told how many points you scored, how much your population has increased (or decreased), and the amount of gold in the treasury. I liked it.

\section*{Dungeons And Dragons (Intellivision)}

This is great! I've always been a fantasy lover and this is a really different type of computer game. Set off across the mountainous terrain towards Cloud Mountain, with the ominous snoring of the fearsome Winged Dragons in the background as they wait for their next meal - you. Plan your route carefully, as some mountains are impassable while the rest have caves containing arrows, tools, and fierce monsters to guard them. The caves and tunnels only light up as you pass along them so you have to become adept at tracking your prey. Some monsters leave visual clues to their presence (though what I thought were dragon droppings turned out to be something eise) and some can be heard as you approach. It's up to you to learn the various signs and strengths of the foe, because the manual won't help you: in fact it was a long time before I realised what made the spiders dangerous. If you can keep at least one of your three men alive to the end, you get to find the two halves of the Crown of Kings, although when you do the finale is something of an anticlimax. There are four skill levels, sightseer, weekend adventurer, seasoned adventurer and hero, and I finally managed to reach hero, despite the incredible speed of the baddies and the paucity of arrows on this level. Who is this Conan chap anyway? One of Mattel's better games.

\section*{Tron - Deadly Discs (Intellivision)}

Mattel have managed to tie up the licence for the home video game market from Disney (there are also Tron arcade games on the way), and this first cartridge is based on the Frisbee fights from the film (see the review on page 16). You take the part of Tron, facing three opponents on
the Game Grid in a duel using identity discs. You can move about, throw your disc in any of eight directions (judging the lead on your moving target if you don't want to miss), or block your opponents' disc when they aim at you. The bad guys enter the arena through doors which you can jam open - get two opposite each other and you can teleport through from side to side, giving strategical superiority as well as allowing you to recover one hit (three hits and you're dead). Should you clear the screen, however, one of Sark's Recognizers appears to repair the jammed doors. Knock out its robot eye, a devilishly tricky manoeuvre, and you get 10 times warrior value bonus points. Watch out after 10,000 points, though: your scoring rate has increased considerably but your opponents are faster and more accurate at aiming. Sometimes you'll get dark blue Leaders, who can carry homing discs or discs that count as two blows; the purple Bulldog warriors are slower but need two hits to kill them. After you reach a million points (and by now I've played enough to believe it's possible), the computer switches tactics and sends on orange guards with paralyzer sticks, which need four blows to kill them and can end the game simply by touching you. My new ambition is to get up to this stage of play: I've already racked up 242,500, and a curse on the homing disc that got me just short of reaching the quarter million! The only way to score highly, by the way, is to learn to use the hand controller by feel alone. If you keep looking down to see which button to push, you aren't going to last very long. This gets my vote as favourite game of the article.

\section*{Preppie (Atari 400)}

And this gets my vote as the best-written piece of 'nonalien' games software yet published. The game is based on the arcade game of Frogger, and the playing area is a golf course. Preppie is the American for caddie, and the poor soul has to retrieve a series of lost golf balls in a fixed time limit. The problem is that he has to traverse a fairway being criss-crossed with lawnmowers, golf carts, and on the harder'levels, bulldozers (don't ask me what they're doing on a golf course), then leap from log to log, barge and alligator to cross a river. All the time you're playing, the computer is seranading you with a selection of catchy tunes in three-part harmony, and the graphics are quite superb. We particularly liked the bit where the caddie gets flattened out after hitting a lawnmower - sadists that we are. There are 10 difficulty levels, and no-one here has yet succeeded in surviving level 6 (it's the killer frog on the towpath that causes the problems). Our high score is 14,730 . Very highly recommended, despite its rather frightening price tag of \(£ 23\) (this is a tape, not a cartridge).

\section*{B-17 Bomber (Intellivoice)}

The first of the games for the Intellivision that requires the use of the add-on Intellivoice module. You are flying a bombing mission over Europe during the Second World War, and throughout the flight you're getting a series of comments and warnings in a (pretty appalling!) Texan drawl. "Bandits at six o'clock", it announces, and you switch to the view from that gunnery position to shoot down der Luftwaffe. Sometimes this doesn't work, because there's a line of bullet holes across the canopy and your gunner is dead! Once you've reached your target, you can sight through the bomb doors and release your thousand-pounders ("Bawmbs awaay...") and hopefuly hit something ("That was awn tarrgit . .."). The cockpit displays leave a lot to be desired, considering the sort of quality you can get out of an Intellivision: just a green horizon wobbling about as you try to dodge the flak. Not a bad game, but I think I'd want to see some better software than this before 1 went out and bought an Intellivoice.:

\section*{Cloudburst (VIC 20 cartridge)}

We've included this one for people who aren't sery good at Space Invaders etc. Basically it's just sineer carnage, with enemy practically throwing themselves onto your laser bolts. At some unspecified future time the Earth's atmosphere has become so polluted that mutant creatures have spawned in the acid clouds and are dropping down amidst acid rain to ravage the planet. Your laser gun can fire up, or to the left and right to slaughter any creatures making their way across the surface after landing. The screen colours are restful tints of pink, red and blue, to counterpoint the machine-gun speed of your laser fire and the ferocity with which the mutants hurl themselves at you. In between games the VIC plays you a snatch of rather incongruous 12 -bar boogie. The easiest

\section*{FEATURE: Video Games}
level is damn fast, and anyone who claims he can survive longer than 10 seconds on level 9 is a liar.

\section*{Jumbo Pilot/Sub Commander (Atari 400)}

Here are two especially for those of you with very poor reflexes. You require the reaction time of a corpse to play these because they are 'real-time simulations' ie pretty slow. In Jumbo you have to take off, fly across country and land. It takes 11 minutes or so just to taxi into position and lift off, and you can then spend anything up to two hours watching the dials in the cockpit do very little, until you attempt to land and plough into the tarmac. Then all you can do is start again. Frustrating, huh? The least the author could have done was to include an option
to practise landing without going through the rest of the game. Our highest score is zero, since no-one's been able to land yet; but one of us did manage to do a barrel roll successfully!

Sub Commander is a simulation of World War Two submarine combat against shipping convoys in the Mediterranean. You have all mod cons like sonar, periscope, hydrophones and torpedoes, plus a satellite reconnaissance of the Med (in WW II? Oh well . . .). You stalk the ships, aim through the periscope and hopefully torpedo them before they blow you out of the water with depth charges. Rather more action in this game, but still a bit slower than my tastes run to. Highest score so far is 10,420.

 just what's going on in an integrated circuit for only \(£ 87^{*}\) The LM2A's sixteen LED indicators show the static and dynamic logic states of all the pins on 14 or 16-pin IC packages, and GSC's unique Proto-Clip provides rapid, reliable contact with the circuit. You can use the LM2A with different logic families, too. A front-panel switch lets you select TTL or C-MOS, and a variable threshold control covers any voltage from +1 V to +9 V for other logic levels. It's small and light enough to hold in the hand, and operation is simplicity itself. Take the logical course of action - fill in the coupon now.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept 9L Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AO. Telephone: Saffron Walden (0799) 21682. Telex: 817477.
* Price excluding P\&P and \(15 \%\) VAT.

\section*{CALCULATORS}

\section*{CASIO SUPER DEALS}

\section*{CASIO FX702P}
dot matrix display basic language. Up to 1680 stemps/226 memories Now only £71.00

FP10 PRINTER FOR 602/702 \(\mathbf{£ 4 0 . 0 0}\)

\title{
CLEF Eectronic MUSIC
}

\section*{AMDEK Kits}

Distortion \(£ 3\) Distortion
Compre
Phaser
Tuning Amp
Tuning Amp
Metronome
Flanger
Chorus
St. Mixer
Graphic
Graphic
Delay
Percuss
Percussion
Rhythm
by ROLAND

ELECTRONIC PIANOS SPECIALSTS SINCE 1972

 patemed dectronicictectrinice.

\section*{71 OCTAVE}

DOMESTIC MODEL
COMPONENT KIT PE66
COMPEETE KIT E442 Two dommit Modete zete paiable
 Four it obtain a wide variation of Piano
usene, including Harpsichord. tone, including Harpsichord.
Both Soft and Sustain ped Both Soft and Sustain pedals are in-
corporated in the Design and internal corporated in the Design and internal
Effects are provided in the form of Tremolo, Honky Chorus, and Phase Flanger. A power amplifier integrates into the the Base for easy transportation.

\section*{SIX OCTAVE}

DOMESTIC MODEL
COMPONENT KIT 2234 COMPLETE KI Component Kits include Keyboard. Key
switch hardware, and all electronic switch hard and may be purchased in four stages at no extra cosi. Complete Kits further contain Cabinets, wiring harness, Pedals and in the case and Speaker.
The Six Octave Stage Piano has the same range of Voices and Effects and is designed for use wit an External Amplifier and Speaker.

SIX OCTAVE STAGE MODEL
COMPONENT KIT E234

MICROSYNTH
THE COMPACT MUSIC SYNTHESIZER

COMPLETE
KIT SWITCH ROUTING E129.00 © THUMBWHEEL - \(2 \frac{1}{2}\) OCTAVES - 20SCILLATORS - 2 SUB-OCTAVES

\section*{STRING} ENSEMBLE
A very popular Keyboard Synthesizcr Kit for Group or
Home polyphonic instrour Octave polyphonic instrument with split
Keyboard facility. Cabine! requires control panel (not
supplied to supplied) to be fitted to side of COMPONENT KIT E197.50 CABINET 841.40
since 1972 Clef Products have consistently produced leading desigrs in the field of Electronic Musical Instruments, many of whici have been published in technical magazines. With musical quality of paramount valid technology has been incorporated into projects which have been successfully completed by constructors over a wide range of technical capability. Back up TELEPHONE advice is available to all our
customers. All instruments arc on show

PRICES INCLUDE VAT, UK CARRIAGE \& INSURANCE CARRIAGE EXTRA ON MFD PIANOS). Please send S.A.E. for our complete lists, or use our telephone VISA/ACCESS Service. Competitive quotations can be given for EXPORT orders - in Australia
CLEF PRODUCTS (ELECTRONICS) LIMITED
Dept. ETi, 44A Bramhall Lane South, Bramhail. tockport, Cheshire SK71AH 061-4393297
"THE computer BAND-BOX" COMPLETE

(MASTER RHYTHM ALSO REQUIRED)
A revolution in the field of Computer Music Generation:
A musicians instrument for vocal \& instrumental soloists practice - live performance - recording
The BAND BOX provides an Electronic Backing Trio consisting of Drums, Hass, and a Chord Instrument (one of 16 Waveform/Envelope combinations), with the capacity to store over 3,0oo vser Prigramable Microprocessor technology, Playback of 5()\(-100\) Scores can be executed in any Key and at chosen Teripo. Complete Music Pad is electronitally ndexed and stored on secondary batery back-up. Facily exsluding Multiple Score Sequences. Sockets are provided for Volum Pedal and Footswitch plus separate and mixed instrument Oulputs. Total size \(9^{\prime \prime} \times 11^{\prime \prime} 41^{\prime \prime}\) incorporating Master Rhythm.

\section*{THE Progammale DRUM MACHINE}

EIGHT TRACK
PROGRAMMING
TWENTY.FOUR
PATTERNS/
TWELVE
INSTRUMENTS/
SEQUENCE
SEQUENCE
COMPLETE KIT \(£ 79\)
MANFD. - f119

The Clef Master Rhythm is capable of storing 24 seleclabibe mythmic drum patterns, invented, modified, and entered by the Operator on to Eight Instrumentation tracks. A three position Instrumentation control expands the number of insruments available to twelve, grouped in:
sounds typical of playing with Drumsticks, Brushes, or Latin American Bongos and Claves.
Sequence operation allows two rhythm sections to he coupled with the second (B) section appearing at four, eight or sixteen Bar repetition. All drums can be adjusted for level and resonance on internat controls to suit
individual taste, thus producing good musical sounds on a battery driven \(\begin{aligned} & \text { individual taste, thus } \\ & \text { unit } 8 \frac{1}{2}\end{aligned} 5^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}\)

SC110A FULLY PORTABLE OSCILLOSCOPE

\section*{Interak 1}

\section*{HOME COMPUTERS DO NOT WORK!}

You've already got a 'home' computer - am I right? You may' be anyone - a Hospital Electronics Workshop, a University Computer Dept., an Electronics Research Establishment, or you may be just plain Joe Soap Either way round - you're fed up with the boss, or your wife (may be the same thing)' always asking you - 'Very things so you must be pretty clever, but what a mess What's that heap of junk plugged \(n\) the back - talk about spaghetti!
They look lovely, home computers, don't they - until you bolt on all the things round the back that the designer couldn't (or wouldn't) include.
think we both know what is needed: A "rack and card" build it yourself system (Interak 1!). Something like Acorn's and Tangerine's original plug in systems, before they went on to more profitable things, but you don't want it 6502 based - Interak 1 uses the Z80A, (doesn't everybody who has any sense?).
If you use Interak 1, the Z80A CPU is on one card, the VDU interface is on another, Dynamic RAM on another, and so on. Very tidy, and very modular because "any card fits in any slot. And that ugly expansion adaptor, and the special box of bits you ve got sticking out of the back, can be neatly re-packaged and slid into the spare slots in interak ve got no space to say more this adverts cost a few hundred SAE or neither or 'phone if you prefer, and l'll send you the 38 -page low-down.
you the 38 -pa
P.S. Although this advert may sound a bit corny (we have to get your atsem with thousends of cards sold, and in daily use. Cards, Manuals, all available separately inc. circuit diagrams.

GREENBANK
-
Greenbank Electronics (Dept. T12E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{SC110A FULLY PORTABLE OSCILLOSCOPE} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline & new THANDAR SC110A represents a break through in Oscilloscope opment. The SC110A is only \(2^{4 \prime}\) thick and weighs under 2 lbs yet it retains the ard features of a bench oscilloscope. \\
\hline & \begin{tabular}{l}
FULLSIZED PERFORMANCE \\
- 10 MHz band width \\
- 10 mV per div. sensitivity \\
- Full trigger faciities are provided including bright line and auto, with T.V. line and frame filtering \\
- fUNS ON ORDINARY HP11 (four) batteries or rechargeables \\
- Basic price - \(\mathbf{f 1 7 0}\) UK Post free Optional extras \\
AC Adaptor \(£ 5.69\); Rechargeable batterios, 68.63; X1 Probe \(\mathbf{6 8 . 0 5}\); X10 Probe [.9.20; \(\times 1 / \times 10\) Switched Probe \(£ 10.90\); Cerry Case f8.86. \\
PFM200A FREOUENCY METER \\
- Pocket size -8-DigitLED display Frequency range \(20 \mathrm{~Hz}-200 \mathrm{M}!\mathrm{Hz}\) or Resolution \(0.1 \mathrm{~Hz}_{2}\) - Sensitivity typically 10 mV rms - Timebase accuracy 2 ppm - Porsery 10 hours \(\bullet\) Frequency: 2 ranges, a spate times - Price E67.50 UK Post tive Optional extras - AC. Adapter E .69
\end{tabular} \\
\hline & GE S.A.E. Brings details of: Oscilloscope, Frequency Meters. Sijnal erators, Function Generators, Puise Generators, Analogue and Multimeters; Digital Thermometer, C.R.T. Tester, Logic Analyser etc. \\
\hline \multicolumn{2}{|l|}{All prices include VAT. Official orders welcome. Mail order only, or callers by purior appointment. Barclaycard/Access welcome. Cash/cheque, etc., with order. Government and Educational Establishments offisial orders weicones.} \\
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
B.K. ELECTRONICs \\
 Tel: Southend 527672
\end{tabular}} \\
\hline
\end{tabular}

\section*{Pu Pantred NEN CIRCUIT PRODUCTS EXCLUSIVEMAIL ORDER FOR PRICE CONSCIOUS ENTHUSIASTS}

Kelan Engineering, establised for over 12 years as manufacturers of high Quality Printed Circuit boards and the original innovators of the Positive Photo Resist System NOW INTRODUCE.

the complete Printed Circuit Workshop
\(\star\) Copper Clad Boards \(\star\) Veroboards
\(\star\) Breadboards \(\star\) Artwork materials
\(\star\) Hobbyboard Photo Resist System the simplest, cleanest method ensuring high quality PCB's EVERYTIME.
\(\star\) Plastic \& Die Cast Boxes \& Cases
\(\star\) Connectors \(\star\) Sockets
\(\star\) Terminals \(\star\) Screws, Nuts, Spacers etc. \(\star\) Workshop Tools
\(\star\) Drills \& Machines.
\(\star\) ZX81 \& SPECTRUM INTERFACING SYSTEMS AND ACCESSORIES.

\section*{SPECIAL OFFER}

Complete - low cost introductory Hobbyboard Photo Resist Kit includes UV exposure lamp \& full instructions for DIY UV unit - all artwork, board \& chemical requirements + "Introduction to Circuit Making"

Please send me details of:-
Hobbyboard mail order catalogue
Hobbyboard Photo Resist System
Hobbyboard ZX81/SPECTRUM SYSTEM
Hobbyboard special offer
NAME
ADDRESS
I have completed \(\square\) electronic projects during the past 12 months

KELAN (Hobbyboards) LTD North Works, Hookstone Park, Harrogate, North Yorkshire. ふ0423-883672

\title{
ZXANALOGUE-TO-DIGITAL CONVERTER
}

\section*{Expand the consciousness of your computer and let it sample the delights of the real world with this low-cost ADC. Design by Rory Holmes.}

How about a tast, eightchannel, eight-bit analogue-to-digital converter, all in one small box that plugs neatly onto the back of your Sinclair computer and costs about \(£ 15\) ? A rhetorical question, really, because that's what we're presenting in this article. The applications for this project are numerous since A-to-D converters allow your computer access to the 'real worid': and the real world, as the data acquisition experts call it, is anything which varies smoothly and continuously, such as temperature, sound lievel, voltage, position, speed and so on. Eight channels of analogue input data, each with a resolution of one part in 256, will open up a whole new field of applications for your computer and programs. For example, some of the things you might consider include real-time graphs for multi-variable displays, eight-channel spectrum analysers (or even Spectrum
analysers!), VU meters for recording work, process control programs, central heating control, potentiometer-type joystick inputs (up to four sets of two axes), weather station computers, waveform analysis by computer, aircraft simulations and so on. You might even be able to make good Uncle Clive's boast that the ZX81 could control a power station!

\section*{The ADC IC}

Our analogue-to-digital converter is based around the new 7581 IC, a complete data acquisition system on a chip with some very handy features. The best of these features concerns the way in which data is made available to the host computer: by using a 'dual port RAM' and internal scanning logic the conversion process is made completely transparent to the user. Basically this means that the microprocessor need do nothing:
the latest analogue data is always available and may be read from a small memory-mapped region of the computer's address space (éight consecutive bytes).

The chip will convert each channel in 50 microseconds and performs a complete conversion update of all eight channels in 400 microseconds. The analogue input voltage range is \(0-10 \mathrm{~V}\) and these limits will correspond to 00 and FF Hex respectively.

The unit plugs into your computer via a double-sided edge connector, and, if you want, you can include a switch to enable the unit to switch between the ZX81 and the Spectrum port configurations. The eight analogue inputs enter the unit via a 15-way 'D' type connector. The system derives its low-current 5 V supply directly from the expansion bus, so it will start functioning as soon as the computer is switched on,

The ADC plugs on like a commercial unit.

Here you see the protruding edge socket.

Fig. 1 Circuit diagram.

\section*{HOW IT WORKS}

Figure 1 shows the complete circuit of the eight-channel analogue-to-digital converter. There are four separate parts to this circuit: the main converter device IC3, the master clock oscillator (a single CMOS gate), a negative voltage reference generator, and the address decoder. The 7581 (IC3) is a complete eight-bit, eight-channel data acquisition system, designed for direct interface to microprocessor buses. The 7581 accepts eight analogue inputs and sequentially converts each input into an eightbit binary word using the successive approximation technique. Results from the conversions are stored in an internal eight-bit eight-word 'dual port RAM'. The dual port RAM allows a microprocessor to access the analogue data independently of the internal updates; all the data acquisition is therefore transparent to the programmer. The analogue data appears to be permanently available in eight successive 'read only' RAM locations - you cannot write to these addresses.

The converter requires a master clock for its scanning logic and this is provided in our circuit by IC4a, a Schmitt inverter gate wired as a 1.6 NHz oscillator. Conversion of a single channel takes 80 clock periods, with a complete scan through all eight channels taking \(\mathbf{6 4 0}\) clock periods. At 1.6 MHz this corresponds to 50 uS and 400 uS respectively.

The converter is wired in our circuit for simple unipolar conversion using a -10 V reference supply. In this case the eight-bit word covers an analogue range of \(0-10 \mathrm{~V}\) as illustrated in the transfer characteristic diagram of Fig. 2. The actual analogue input circuitry is shown in Fig. 4. An R-2R resistor ladder forms a multiplying DAC to perform the A-to-D
conversion. Each input, including the reference input, has an impedance of about 20 k . A status output is also available which allows an external device to identify which channel is being updated at a given moment: it provides a signal, synchronised to the master clock, which follows the scanning logic and pulses low for channel 0 . The status signals as related to the master clock are shown in Fig. 5.

The reference voltage generator that provides -10 V for IC 3 is based on the voltage multiplier principle and allows a single 5 V supply to power the entire unit. The voltage tripler is constructed using CMOS Schmitt trigger inverters, and a capacitor-diode multiplier chain formed by C2-4 and D2-5. The inverters are connected as a self-oscillating ring running at several kilohertz to provide the AC square wave to the voltage multiplier. The tripler should give 15 V at the negative side of the smoothing capacitor C5 but due to diode and impedance losses this is reduced to about 12 V . The zener diode ZD1 is then used to clamp this voltage to the 10 V reference level.

The address decoding is performed using the same system we designed for the Message Panel Interface (why reinvent the wheel?). IC1 and IC2 perform the address decoding and the slide switch SW1 selects either memorymapped decoding for the ZX81, via IC1b, or I/O-mapped decoding for the ZX Spectrum via IC1a. When the decoder is switched for the Spectrum the states of the bus lines IORQ (1/O request), A5 (address bit 5), and RD (the read signal) are continuously monitored for logic lows. If they all go low together, then the Spectrum is performing an IN addr, \(X\) command, and the output of

NOR gate IC1a will go high. This output is inverted by IC2a, which in turn takes the chip select pin of the converter (pin 13) to logic low. As the chip select goes low the data from IC3's internal memory (addressed by the three lower address bits A0, A1 and A2) is made available to the data bus for the read operation. Thus any of the eight-bit data words may be read at any time.
The rest of the gates in the decoder section are effectively ignored, and as far as the Spectrum is concerned the A13, A14 and A15 inputs are connected to the wrong bus pins anyway.
When plugged into a ZX81, however, with the selector switch in its other position, these other gates become usefully active. With IC2c wired as an inverter, address bits A14 and A15 must be high and A13 low in order to take the output of IC1c to logic high: this means the second 8 K address block is being selected. The output of IC1c is inverted by IC2d and fed to one input of IC1b, a NOR gate. The other two inputs of this gate monitor logic low states on the MREQ (memory request) and \(\overline{R D}\) bus lines.
Thus the output of IC1b will only go high when the ZX81 is performing a memory read operation at a location between 8192 and 16383. The output of IC1b is fed to the chip select pin of IC3 via the selecter switch and inverter as before. IC2b inverts and buffers the enable signal to drive the ROMCS line (linked via SW1b): consequently this line will go high through diode D1 whenever the interface is addressed and switch off the 8 K ROM in the ZX81.

The 15 mA or so supply current for the TTL and CMOS is taken directly from the 5 V supply rail on the ZX bus.

Fig. 2 Transfer characteristic diagram.
updating the analogue data at the chosen memory locations ready for PEEKing or machine code access.

There's no reason why this device couldn't be used with any other computer. All you have to do is find a handy unused hole in your system's address space and design suitable circuitry to decode the chosen range of addresses. This circuitry will replace the section of our circuit involving IC1 and 2.

\section*{Construction}

The entire eight channel converter is built into a plastic Verocase to form a very neat and solid unit which plugs directly into the Sinclair expansion connector,

Fig. 3 Internal block diagram of the 7581.

Fig. 4 The analogue input circuitry of the 7581.
either on the ZX81 or the Spectrum: A standard 15-way 'D' type socket allows access to the eight analogue inputs and a few other internal connections. This is a right-angled PCB-mounting type which is soldered directly to the track side of the PCB to reduce interwiring. Since the wire-wrap edge connector socket is also soldered to the PCB, the only part external to the PCB is the selector switch, which is optional. If you anticipate using only one computer then wire links can be used to replace the switch contacts at the appropriate overlay points.

The PCB should be assembled first, following the overlay diagram of Fig. 6. Don't forget the six wire links and take care over the orientation of all the diodes and ICs. The 23 -way edge connector must be mounted the right way round and with the polarizing key at position three. The edge socket must have long wire-wrapping pins so that when mounted it will protrude through the front of the box as illustrated by our prototype (see the photograph). The socket is mounted from the component side, and the pins should protrude about 2 mm through the track side for subsequent mounting of an optional edge connector plug (to allow other ZX add-ons to be plugged in).
Ensure that the socket is square and parallel to the PCB before soldering the pins. A 43-way edge connector could also be used, provided it is sawn off at either end to leave the polarizing key at position three.

The 'D' type socket should be left until last, when its right-angled pins can be inserted from the track side of the board and pushed home as far as possible. The soldering of this component is difficult but not

Fig. 5 Status signals.

Fig. 6 Component overlay.

PARTS LIST
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Résistors (all \(\frac{1}{4} \mathrm{~W} 5 \%\))} \\
\hline & \[
470 \mathrm{R}
\] \\
\hline R2 & 680R \\
\hline R3 & 22k \\
\hline Capacitors & cop cerami \\
\hline C1 & 68p. ceramic \\
\hline C2-4 & 33n ceramic \\
\hline C5 & 10u 16 V tantalum \\
\hline \multicolumn{2}{|l|}{Semiconductors} \\
\hline IC1 & 741527 \\
\hline IC2 & 74LS00 \\
\hline IC3 & 7581 \\
\hline IC4 & 401068 or 74C14 \\
\hline D1-5 & 1 N 4148 \\
\hline ZD1 & 10 V 400 mW zener \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline SW1 & DPDT miniature slide switch \\
\hline SK1 & 23-way double-sided edge connector \\
\hline & 15-way right-angled PCBmounting ' \(D\) ' type cannon socket \\
\hline PCB (see B code 65-251 & uylines); case, Vero order 4 F. \\
\hline
\end{tabular}
impossible, providing a small soldering bit is used.

The PCB should be filed to the shape shown in the overlay diagram, since it has to fit into the lid section of the case: the two corner pillars which take the main case bolts will also need to be filed
away slightly. At this stage, a slot should be cut in the appropriate position to take the connector socket so the assembled PCB can be fitted into the lid. It should sink down until the tops of the ICs touch the inside of the lid. The edge connector should now be almost clear of the slot and the diodes and capacitors should just clear the filed-down case pillar.

By mating up the two case halves, you can find the position for an appropriate slot to be cut in the base of the case to clear the ' \(D\) ' type socket. If a switch is to be fitted this should be glued, using cyanoacrylate or epoxy glue, to the side of the base section as shown in our internal photographs: the switch contacts will just clear the PCB. On our prototype we fixed three large stick-on rubber feet into the base of the Verobox; these support the PCB at the correct height, and when the case halves are screwed together, they will hold the PCB firmly in place.

The diagram of Fig. 7 shows the pinout connection for the ' \(D\) ' type socket; it's a good idea to draw this along with the corresponding address locations onto an adhesive

\section*{BUYLINES}

The 7581 analogue-to-digital converter chip can be obtained from Technomatic Ltd for about \(£ 8\). Technomatic also stock the other semiconductors and the ' \(D\) ' type connector: check their advert for prices and ordering details. The special wire-wrap 23-way edge connector for use with \(Z X\) computers can be obtained from Timedata, 57 Swallowdale, Basildon, Essex: alternatively you could get hold of a 40-way version and cut it to size as described in the main text. The PCB Service advert is on page 91 for those unable to etch their own boards. The joystick units mentioned in the text are available from Remcon Ltd, 1 Church Road, Bexley Heath, Kent (telephone no. 01-304 2055).

Fig. 7 Pinout for the ' \(D\) ' type connector we used.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ TABLE 1 } \\
\hline & \multicolumn{2}{|c|}{ ADDRESS LOCATIONS } \\
\cline { 2 - 3 } CHANNEL & ZX81 & SPECTRUM \\
8 & 8199 & 65503 \\
7 & 8198 & 6550 \\
6 & 8197 & 65501 \\
5 & 8196 & 65500 \\
4 & 8195 & 6599 \\
3 & 8194 & 65498 \\
2 & 8993 & 6547 \\
1 & 8192 & 65496 \\
\hline
\end{tabular}
label, which can then be stuck onto the back of the box. There are two unconnected pins on the socket which could be connected (using insulated wire links) to any other two signals, say +5 V and the master clock.

Having completed the assembly, the A-to-D converter may be plugged into a Sinclair computer and tested. One of the analogue inputs may be wired up to the simple pot circuit shown in Fig. 8 and the corresponding address location can be looked at via the computer. Table 1 shows the address locations for each input; the command PEEK addr is used for the ZX81 and the command \(\operatorname{IN}\) addr for the Spectrum. For a 0 V input the memory byte will contain 0 while

Fig. 8 How to connect pots for testing and when using the unit as a joystick port.
for the full 10 V input it will contain 255 or FF in Hex. The number (in eight-bit binary) will vary proportionately for all the voltages in between. A small program to continuously print out the value of all eight memory locations would help in the testing procedure.

After you are satisfied that the unit is working the programming options are practically limitless; eight real time voltage inputs continously available to either BASIC or machine code programs! Dedicated games players who want to use the unit to interface joysticks to the computer will find a suitable source of two-axis joysticks fitted with 4 k 7 pots listed in Buylines. Figure 8 shows how they should be wired up.

Using the case specified will tax your construction skills but it is possible to get everything in!

\section*{LB ELECTRONCS}

\section*{DISC DRIVE BONANZA}

PERTEC FD650 8" DSDD . . . \(£ 199\) + VAT PERTEC FD250 52" DSDD. . £145 + VAT PERTEC FD200 \(51 / 4^{\prime \prime}\) SSDD. \(\mathbf{£ 1 0 0}\) + VAT

BRAND NEW AND BOXED PLUS DATA P \& P AT COST

\section*{INTERSCAN ACCOUSTIC COUPLER}
\(10^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}\) WITH ELECTRONICS, SOUND TIGHT UNIT, FOR STANDARD GPO HAND SET. NO DATA - £10.00 (INC VAT) P \& P \(£ 1.75\)

> LB ELECTRONICS 11 HERCIES ROAD, HILLINGDON, MIDDLESEX UB10 9LS, ENGLAND TEL: UXBRIDGE 55399

\section*{A LIGHTING REVOLUTION!}

THE MINI-12
Compact 2-preset blue/black desks.
- 6 channel hand held controller .. \(\mathbf{f 7 0}\)
- 12 channel 2 preset desks ... 180
- 18 channel 2 preset desks
- 6 channel 13A power packs
(prices do not..12
(prices do not include VAT and delivery)

THE MICRODIM PACK
An ideal method of providing channels that plug easily and quickly to your lamps, the mains and the desk. Can be free-standing or wall mounting. Complete with 10 M mains lead.

After extensive research MJL have arrived at a means to provide the complete lighting versatility you require, at a price you can afford. ITS CALLED DIGI-DIM TECHNOLOGY. Out goes the expensive voltage control method and in comes the micro-chip. If your requirement is for amateur or professional theatre, mobile or fixed lighting rigs, rock bands, or simply general purpose, then waste no more time and phone or write for FREE information to:

MJL SYSTEMS LTD. (Dept A)
45 Wortley Road, W. Croydon, Surrey CRO 3EB, U.K.
Tel: 01-689 4138
Our sales desk is open Mons to Frids 9.30-5.30

PRICE HELD ONLY UNTIL DEC 24th
It's true! Specially for Christmas, an incredibly low new price for 'Speechtime' - the first ever easy-to-build speaking clock kit. 'Speechtime's' combination of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own - equally suitable for beginner or expert.
Speechtime also makes a great gift to build for someone else. Look at these 'plus' features:
- Accurate to a minute a year - Adjustable voice pitch
- Pocket size - approx. \(5 \mathrm{in} . \times 21 / 2 \mathrm{in}\). \(\times 1 \mathrm{in}\).
- Grained stainless-steel case
- Useful in the home or office

Silicon Speech Systems
(A Powertran Subsidiary)
PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3NM

EASY ORDERING BY TELEPHONE - RING ANDOVER (0264) 64455
AND GIVE YOUR ACCESS OR
BARCLAYCARD NUMBER
\(\pm\)

DC VOLTAGE (5 ranges) \(0.8 \%\) accuracy \(100 \mu \mathrm{~V}\) to 1000 V AC VOLTAGE (2 ranges) \(1.2 \%\) accuracy 100 mV to 1000 V DC CURRENT (5 ranges) \(1.2 \%\) accuracy 100 nA to 10 A RÉSISTANCE (4 ranges) \(1 \%\) accuracy \(1 \Omega\) to \(2 \mathrm{M} \Omega\)
Price \(\mathbf{£ 4 9 . 9 5}\) includes VAT, postage \& packing. Optional accessories.

Deluxe protective case \(£ 6.90\) including VAT p\&p 10AC current shunt \(£ 6.90\) including VAT \(p \& p\)

62 CURTIS ROAD, WHITTON,
entemp
HOUNSLOW, MIDDLESEX TW4 5PT
TEL (01) 8942723

\section*{EUROPA ELECTRONICS}

Mail Order to: 160 High Road, Willesden, London NW10 2PB TEL: 01-459 2480
SEND FOR A FREE LIST OF OUR LARGE RANGE OF ITEMS ALL DEVICES ARE NEW, FULL SPEC AND GUARANTEED
Post \& Packing: Add 30 p to all orders under \(£ 5\). VAT: All UK orders add \(15 \%\) to total cost including p. \& p.

These are high quality, very reliable industry standard disk drives. These can be used as single sided/single density or double sided/double density depending on the host computer disk interface. Compatible with most microcomputers e.g. VIDEO GENIE, ATOM, TRS 80, BBC COMPUTER, SUPER BRAIN, NASCOM etc. If used as double sided/double density then the storage capacity is 3.5 MAGABITS/DRIVE (unformatted), track density is 48 TPI and can daisy chain up to 4 drives. 90 day warranty. One Disc Drive only..... \(\mathbf{£ 1 6 9 + \text { VAT } = \mathbf { ~ } 1 9 4 . 3 5}\)
Two Disk Drves \(\mathbf{£ 3 2 9}+\) VAT \(=\mathbf{£ 3 7 8 . 3 5}\) Single boxed with power supply \(\mathbf{£ 1 9 9}+\) VAT \(=\mathbf{£ 2 2 8 . 8 5}\)

BBC AND ATOM COMPATIBLE DISK SUB-SYSTEM WITH BUILT IN DISK CONTROLLER CARD
These sub-systems consist of one ot These sub-systems consist of one ot
two TOSHIBA disk drives, a power supply and a \(B B C\) and \(A\) TOM M compatable disk controller card housed in a strong case. The disk controller card can read and write to single or double sided diskettes in single or double density (FM or MFM) format.
Single Drive Sysiem (400 KByte storage capacity)
£289 + VAT \(=£ 332.35\) Dual Drive System (800 KByte storage capacity)
\(\mathbf{£ 4 5 9 + V A T}=£ 527.85\) EPSON TYPE 3 PRINTERS

80 column. 80 CPS, super and subscripts, auto underlining, tractor feed, 32 print fonts, Bi-directional printing, logic seeking, \(9 \times 9\) matrix, high res. graphics, centronic parallel interface.
Price Only \(\mathbf{£ 2 9 9}\) + VAT \(=\mathbf{£ 3 4 3 . 8 5}\)
MX80 F/T-3
As above but with tractor or friction paper feed.
Price.............. £325 + VAT \(=\mathbf{£ 3 7 3 . 7 5}\)
MX100-3
136 columns, 100 CPS, all other festures of MX80 plus true descenders, adjustable paper width up to 15 inches friction or tractor feed, centronic parailel interface
Price

\section*{OKI MICROLINE PRILTERS}

MICROLINE 80: Features 80 columns, 80 CPS, friction and pin feed. Unidirectional block graphics. Centronics parallel interface. prape.................... £219 + VAT \(=\mathbf{£ 2 5 1 . 8 5}\) MICROLINE 82A: Features 80 columns, 80 GPS, friction and pin feed, bidirectional printing, paraliel and serial (1200 bauds) interface.

\section*{MEC 8023 PRINTER}
\(100 \mathrm{CPS}, 80\) columns, bi-directional friction and tractor teed, high res'. and block graphics proportional spacing and Centronic paralle

\section*{DRIGOM 32}

\section*{NEW BRITISH COMPUTER}

32 K Bytes of RAM (expandable to \(64 \mathrm{~K}) . \quad 16 \mathrm{~K}\) Byte MICROSOFT COLOUR BASIC. High res. Colour COLOUR BASIC. High res. Colour
graphic and very good sound features. It has full size professional keyboard and comes complete with power supply and a. built-in centronic parallel printer interface. It has a cassette interface and a slo for games cartridges. A floppy disk interface and DOS will be available shortly.
Dragon 32 \(\mathbf{£ 1 6 5}+\mathbf{V A T}=\mathbf{£ 1 8 9 . 7 5}\) Joysticks (per pr).. \(\mathbf{\Sigma 1 6}+\) VAT \(=\mathbf{\Sigma 1 8 . 4 0}\) 30 CPS Printer... \(\mathbf{\Sigma 1 7 9}+\) VAT \(=\mathbf{\Sigma 2 0 5 . 8 5}\) Printer Cable....... \(£ 12+\) VAT \(=£ 13.80\) Cassette Lead... Cassette Recorde \(£ 17.90+\) VAT \(=£ 20.59\)
Colour Monitor
\(\mathbf{\Sigma 1 9 9}+\mathbf{V A T}=\mathbf{£ 2 2 8 . 8 5}\)
- DRAGON SOFTWARE -

The following software is available
Special 1 - Finance - Dragon Quest • Madness of the Minotaur • Quest - Madness of the Minotaur - Flipper - Space Trader • Alcatraz

\section*{Escape - Mansion Adventure -}

\section*{ALL CASSETTES}
\(\mathbf{£ 6}+\mathbf{V A T}=£ 6.90\) each

\section*{CASIO CALCULATORS}

- FX.702P the casio pocket computer/calcuator, basic pragrammer, 55 scientific func Special Price........... \(£ 65\) +VAT \(=\mathbf{\Sigma 7 4 . 7 5}\) Special Price........... \(\mathbf{E x 5}\). scientific function and 512 programme steps.
Price..................\(~\)
565
VAT \(=\mathbf{~} 64.40\) \(\begin{aligned} & \text { Price } .556 ~+~ V A T ~\end{aligned}=\mathbf{£ 6 4 . 4 0}\) - FA-2 cassette interace for FX-702 and FX
602 Price............ \(\mathbf{£ 1 6}+\) VAT \(=\mathbf{\Sigma 1 8 . 4 0}\) - FP-10 Mini printer for FZ-702 and FX-602 Price.................\(~\)
\(237+\) VAT \(=\mathbf{8 4 2 . 5 5}\)
PX - FX-100 College Scientific Calculator Price \(£ 12+\) VAT \(=\mathbf{£ 1 3 . 8 0}\)
FX-7 School Scientific Caiculator - FX-7 School Scientific Calculator \(=\mathbf{\varepsilon 9 . 2 0}\) Price......................... \(\mathbf{\Sigma 8}+\) VAT \(=\mathbf{\Sigma 9 . 2 0}\) Price 9 + VAT \(=\mathbf{£ 1 0 . 3 5}\) Price..................... \(\mathbf{2 9}\) + VAT \(=\mathbf{\varepsilon 1 0 . 3 5}\) PMG.777 Calculator with clock and 3 games
Price \(\mathbf{£ 1 2}+\) VAT \(=\mathbf{£ 1 3 . 8 0}\)

CASIO CALC / CLOCK / GAME Basic Calcula-
tor with alarm
cock and a
realistic boxing
game on a
large display.

\section*{GUARANTEED LOWEST PRICES}

We guarantee that our prices are the lowest on the market. If you can find any item advertised and in stock at less than our price we will match that price

SEIKOSHA QP SERIES GRIPHITP PRIITERS

GP-100 30 CPS, 80 column, Hi-Re graphic line repeat function, adjustable up to 10 " paper width, tractor feed, \(5 \times 7\) dot GP-100A centronic parallel interface GP-100VC Vic 20 interface \(\mathbf{2 1 9 9}\) + VAT = \(£ 288.85\) GP-250X New 50 CPS, 80 column, traccharaciers, double height and/or double width characters, \(5 \times 8\) dot matric, parallel and serial (RS232) interface.
PROFESSIOMAL MONITORS
- GREEN MONITORS tors with composite and sync green moniable for most computers BM12A 15MHZ monitor£69 + VAT \(=\mathbf{£ 7 9 . 3 5}\) SM12H 18MHZ monitor £89 + VAT=£102.35 monitors, RGB or composite and sync input. SCM14N Normal-res. 400 dots \(\mathbf{~} \mathbf{~} 228.85\) SCM14M Medium-res. 600 dots \(\quad £ 389.85\)
SCM14H High-res 800 dots SGM14H High-res. 800 dots £573.85

\section*{CORDLESS PHONES}

\section*{LONG RANGE TELEPHONE}

This is a long range (\(2-5\) miles) cordiess exten sion phone with intercom facility between port able hand set and the base station. You can recelve all incoming call and dial oul to anywhere in the world from the hand set from any location within 5 mile radius of your home or office. The maximum range is achieved by using roof to oplional antenna (not included).
LONG RANGE EXTENSION \(£ 249\) +VAT \(=\mathbf{£ 2 8 6 . 3 5}\)
NTENNA \(=\mathbf{2 8 6 . 3}\)
\(\mathbf{£ 4 5}+\mathrm{VAT}=\mathbf{5 5 1 . 7 5}\)
MEDIUM RANGE TELEPHONE
Similar specifications to the above model but with operational range of \(1 / 2\) to \(21 / 2\) miles (with roof top antenna).
\(\mathrm{£179}+\mathrm{VAT}=£ 205.85\) E179 + VAT = 2205.85 £45 +
SHORT RANGE TELEPHONE
A short range cordless telephone for use within the house or from the garden. Receive and make Short Range Telephone... \(\mathbf{\varepsilon 9}+\) VAT \(=\mathbf{£ 7 9 . 3 5}\) 40 MILE RANGE CAR TELEPHONE
his mobile telephone fits into your car and en ables you to receive and make calls to anywher the world from within 40 mile radius of you home or office (use rooftop antenna).
Car Telephone 11195 + VAT \(=\)

\section*{CISIO AX-250}

Dual time, 12 or 24 hour opmemory function, chronograph with lap time, optional hourly time signal, daily alarm, 3 optional melodies or ordinary bleeper. Calendar display, lithium battery. Stainless steel bracele
Price ... £19 + VAT = £21.85

Price \(\ldots \ldots \ldots \ldots . . £ 13.86+\) VAT \(=\mathbf{1 5 . 9 5}\)
SHARP VIDEO RECORDERS AT BARGAIN PRICES
- VC9300 Microprocessor Controiled VHS video recorder with video search and still irame teatures.
Price................. \(£ 339+\) VAT \(=£ 389.85\) video recorder with full remote control, 5 event/14 day timer, video search and still frame lea1ures.
Price
\(£ 459+\) VAT \(=£ 527.85\)

\section*{CASIO AG-21}

\section*{CASIO W-35}

CASIO LB-315

\section*{CASIO LF-120}

This is a very slim 5 functions

\section*{Price....\(£ 8.65\) + VAT \(=£ 9.95\)}

Alarm/chronograph and count down timer, iwo line display normal display is hours, minutes
seconds, month, date and day o seconds, month, date and day o
the week. Water resistant to depth of 50 metres. Chrome cepth of 50 metres. Chrome colour case and stai
adjustable bracelet. Price £15 + VAT = £17.25

\section*{CASIO DW-1000}

This is a waterproof divers watch
up to 200 metres depth It has up to 200 metres depth. It has alarm, chronograph and countdown timer. A two ine liquid crystal display shows hours, minutes,
seconds, month, date day of the week and \(12 / 24\) hour option Comes in Chrome colour and Price ... \(£ 29+\) VAT \(=\mathbf{5 2 3} 35\)
FM-WIRELESS INTERCOM

 nitter and pocket ily coded 4 WATTS Radio trans has connectors for door contacts and vibration rance of 2 miles. Ideal for protection at inded It has a perty Power requrements for transmitter is 12 V dc.
vot ticensible in UK PRICE.

\section*{HIFI STEREO AMPLIFIER KITS}

From one of Britain's leading esoteric amplifier manufacturers comes an exciting new package of stereo amplifier kits, designed to offer alt the advantages of true high fidelity but without the usual price penaliy.
These new kits offer the choice of moving magnet or moving coil inputs, 40 to 100 watts per channel, in fact, everything that made the previous models so popular is included but with added style, easier construction and a full two year warranty.
The new range consists of The CK 1010 Stereo Pre Amplifier, The CK 1040 WPC Power Amplifier, The CK 1100 WPC Power Amplifier.
CK 1010
This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and mechanical assembly of the connections and controls to the pre punched chassis.
The CK 1010 takes its DC supply from the CK 1040, 1100 or, if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an optional add-on noving coil input can be fitted to extend its versatility. (MC2K)
CK 1040
This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010 . All components such as heatsinks, wire and connectors ar included and protection is provided from short circuit outputs.
CK 1100
Similar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinking and thermal cutouts are provided as standard
When correctly assembled these kits are guaranteed for two years
It would seem then that Crimson have maintained their position at the top of the commercial kit-build field. There is no oriental amplifier / know of that can better the sound of this combination overall at any price and only a few - such as the KA-1000 (\(£ 500\) +) - are of comparable standard. . . . I can say no more than that for \(\mathrm{tz250}\) it (CK \(1010 \mathrm{MMC2K} 11100\)) is a bargain and one that becomes the reference point for kit amplifters from now on.

\title{
MICRO-PROFESSOR \\ VOUR GUIDETOTHE WORLD OFMICROPROCESSORS
}

\section*{Alow costtool forlearming, teaching \& prototyping.}
(by phone or post) Complete the coupon today!
Please allow 28 days for delivery.
Please sendme: Price Oty p\&p Micro-Professor \(£ 79.95 \quad £ 2.95\) SSB-MPF board £69.95 £2.95 EPB-MPF board £84.95 £2.95 PRT-MPF board £74.75 £2.95 Total

\section*{Name}

Address
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)

Mlcro-Professor is a low-cost Z80 based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors and utilise their unimited potential
Miciro-Professor is a complete hardware and software system whose extensive manual gives you detailed schematics and examples of programme code. A superb learning development tool for students, hobbyists and microprocessor engineers, as well as an excellent teaching aid for instructors of electrical engineering and computer science courses.

\section*{Technical specification}

Z80 CPU, 2K RAM, 2K monitor, 24 1/0 lines, LED display, cassette interface, CTC/PIO facility, 2.25 " speaker, three manuals, 36 keyboard. Options include; EPROM board, speech board and printer board.
Please send or telephone for full details.
\(\boldsymbol{E 7 9 . 9 5}^{\text {+tep }}\)
Now
includes \(2 K\)
BASIC

FLIGHT ELECTRONICS LTD. Filght House, Quayside Rd, Southampton, Hants SO2 4AD. Tel: (0703] 34003/27721. Telex:477793.

\title{
TECHRAM To ROM Converter
}

\author{
A. Whitaker, Grimsby
}

How many times have you experimented with machine-code on an MZ-80 computer or similar system where the monitor is loaded off tape into RAM, and crashed it by accidentally re-writing the monitor? Faced with the same problem on a Z80-based system I am planning to build, I devised a method of turning RAM into ROM under software control. The idea is really very simple after the monitor or desired language has been loaded from tape into the computer, an OUT instruction is used to program the inputs of a bank of OR gates. Whether the OR gates are inside a chip or made from two diodes and a resistor, by considering one input as an enable, we see that if the enable goes high (logic 1) the output must also go high, irrespective of the data on the other input. This can be used to disable the WRITE line going to a RAM board. When the enable input is low (\(\operatorname{logic} 0\)) the OR gate acts as a buffer and lets the data on the other input through, so the WRITE line is unaffected. By disabling the WRITE pin on a RAM chip, the RAM is turned into a Read Only Memory - obviously this will not stop your RAM
from losing its contents as soon as the power is turned off, but can prevent loss of data due to the odd bug in a user's program.

Although the basic idea was just to protect the language loaded off tape, special areas of memory can be protected by using address decoding or simply interrupting the WRITE line going to individual RAM chips. Using one of these methods, OUT statements could be used before running a program to disable most of the RAM, leaving only workspace and/or the screen (video) RAM to be corrupted by the user's program.

\section*{Modified Loudspeaker Protection Module}

\author{
A. Caulderhead, 62 Hayfield Terrace, Denny, Stirlingshire
}

Having built the Audiophile 4000 system and installed the speaker protector as published in ETI July 1980, my main misgiving with this arrangement was that I had to open up the power amp case to check or change the battery; it also meant that the amplifier was connected to the speakers via two relays.

I have since built the System A amplifier and installed this modified version of the protection circuit. This uses the two spare inverters in the 4049B and gives a \(2-4\) second switchon delay. The output of IC1f is at logic 1 until C4 charges up, holding IC1e's output low. Q1 is therefore turned off for this period and the loudspeakers are not connected. Q2 is biased on and LED1 lights up to indicate that the speakers are disconnected. Note that in this case, the speakers must be wired through the normally-open contacts on the relay rather than the normally-closed contacts as in the original design: this gives the added advantage that the circuit fails safe.
The whole lot is powered from the System A preamp supply, which is regulated to 5 V to power IC1.

PS. If any readers from my neck of the woods want to hear the System A they can drop a line to the above address.

\footnotetext{
Tech-Tips is-an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ITHis prepared fo considercigeuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be as clear as possibie and the text hould be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copiright tems for consideration should be sent to EUI TECH-LIPS, Elecronics today international
}

\section*{AUDIO AMPLIFIERS}

510 watt (RMS)
AL20 5 wath Audio Amp Modide 22:30 supply \(E 3.57\)
Al 3 Pa 7.10 watt Austio Amp. Modue 22.32 V sspph
f4.16.

AUDIO AMPLIFIERS
15.25 .35 watts (RMS)

SPMi20 is a fixed voltage stabliser with an outpuf volage of ather 45v. 55v or 65v. Designed for use in
S 122 SUPPLIES

 ALED PA100 to 15 wetts fABA SPM12045 45 Sabilised supply Suit \(2 \times\) ALSO PA1DO to 25
 SPM120.65 E5N Stabifised supply Suit: \(2 \times\) ALI20 PA201 \(1 \times\) AL250 f6.38 SG30 \(150-15\) Stabilised power supply for \(2 \times\) GEIMO MKII \(\mathbf{f 3} 8\). udio amplications, the stabliser which provides outpur carrents up to 2.5 A aperates direct from a mains Granstorner requiring only the addition of awo Electrovtic capacitars to cmopiete the power supoly.

\section*{MINIATURE FM}

TRANSMITTER MODULE Frea. \(95-106 \mathrm{MHz}\) Range: he mile Size: 45 mm \(\times 20 \mathrm{~mm}\) Add gv batt. Not licensed in UK Ideal for 007 -M19-FBI-CIA-KGB-etc. Price: \(£ 5.50\) MAGNETIC CARTRIDGE PRE-AMPLIFIER
Eniey the quafiry of a ragnefic cartrioge with your ceremic equipment using the MPA30 which is a quality preamp. enabling magnetic cartridges to be used where tacilties exist for ceramic cartidgas only. With a DIN input socket \& full, easy to tothow instructions. mpa30 Stereo Mag Cartridge, Preamp. - inpul 3.5 my 0 Outpat 100 mw e327.

AUDIO AMPLIFIER
Audio Ampififer, 5NW R.M.S., with integral heat sink and short errant protection.
Introduced io fultilit the demend tor a fully yotectiod power amp., capable fo drinng high quatity speaker spstems at up to 50 w with distriton levels below 05\% toeal for domestic use. Discos, P.A. Systems, dectronic argans, etc. The generously rated componentis ensure continuous operation al high cotput lends: 1120 50 Audio Amp Modide 50 70v suppay
f13.14.

\section*{MONO PRE-AMPLIFIERS} nmiloo suitable for disco mixer. MMIOGG suitable for guitar preamy mixet.
The MM100 and MM10GG mono pre:amplifiers ase compatitle with the AL6i, A880, AL120 and Al250 power ampififers and thior associated pewer supples.
 Microohone Max outpur 500 mv E12.43 MM100G Supply voltage 4065sw inpurs: 2 Guitas, Microphones Max osftut

\section*{GE100 MKII 10 Chamel. Monrographic
Equaliser.}

Only \(155 \mathrm{~mm} \times 65 \mathrm{~mm} \times 50 \mathrm{~mm}\) indiuding the \(10 \times 10 \mathrm{~K} 45 \mathrm{~mm}\) slider polentiometers and knots which are mounted on a beard above the cricuity. In the range of 31 Hz to 18KHz you can cut and boost \(\pm 12 \mathrm{~dB}\) with the in sididers. \({ }^{\prime}\) eagh with teavency markes of the crruit board. The each with trequency marked on the cracuit board. The
GF100 uses incurde muxers, P.A sysiems and discos it
 audio exsipment. Power supply for GE100 on \(\mathrm{SG30}\) Together with Transfomer no: 2043

\section*{BI-PAK'S COMPLETELY NEW CATALOGUE}

Compietely sedesugned full ut the tyoe at combeniert ;ou redule pis sume very, nterestang ones fou wil conn te using zadd of course the lagest ange of semicornductors to the Amate : and Protessional you covid hepe to the There are no wassed page ol uspeess mb:mation so otten nincluded !n
 indwdial features of ath: we taye avalable But emembel Bi Pah poric has always been to ne: qualty components at cempetitive pitces zact THAT WE STLLL DO.
 amared how hisch yur can ade when you shop tor tlection: Cenpenerty: Io recerve your copy send \(\mathbf{7 5 p}\) plus 250 p\& \(p\)

BI-KITS
STA5 5 wans pee channel Steree Amphifer Kit consising STAFS 15 watts per channel Stere Amplifier Kir of \(2 \times\) AL20 amplifers \(1 \times\) PA12 pre amplitier \(1 \times\) PS 12 power suppy \(1 \times 2036\) transormer and necessary wiring diaprem \(\mathbf{E 1 9 . 5 2}\). STA10 10 wats per channel Steren Amplifier Kil conssting of \(2 \times\) ALiso amplifiers \(1 \times\) PA12 preampifiee \(1 \times\) PS 12 power supply \(1 \times 2036\)

\(1 \times\) Spupn \(2 \times A\) LbO ampifers \(1 \times\) Pallol preamplifie coupding capacitors for 8 ohms 470 tand 56 necessary wring dragrams \(E x 6.76\). STA25 25 watts per

Dept. EIIT, BL-PAKPO GOX 6WAREHERTS - Seady your orders to Dept. ETIT, BIPA
SHOP AT 3 BALDOCK ST.. WARE: HERIS.

THRMS, CASH WITH ORDER SAME DAY OESPATCH, ACCESS BAFCLAYCAFD ALSO ACCEPTED TEL (OS20) 3 382. GIRO 388 7006 ADD \(15 \%\) VAT AND 75 p PER ORDER POSTAGE ANÓ PACKING

The PA200 is basically our popular PA100, modifications being made to make it compatible with the highe output amplifiers i.e. Al 120 \& AL 250 . The unit boasts six push button selectors giving a choice of 3 inputs, 2 fititers, for both high and low frequencies and a stereo a mono button, contioning to give a top quality stereo pre-ampififier and tone control

PA12 Supply voltage 22.32w input sensitivity 30 mm Suin AL \(10 / \mathrm{AL} 20 \mathrm{AL} 30\) 6a.55. PA100 Supply votrage 3055 N inputs. Tepe Tunes Meg P.U. Suit: ALbuiAlBo f17.f5i

AUDIO AMPLIFIER
125 watts (RMS), AL250.
A power ampitier providing an output of up to 125 w RMS, into a 4 ohm load. Four 115 w tansistors in the output stage makes it extremely fugged while damage trom incorrect or short cricuit loads is prevented by a four transistor protection circuit for use in many applications such as disco urits, sound reinforcement systems, batkground music players etc. \(\mathbf{E 1 9 . 6 0}\).
AL250 125 worn Audio Amp Module 5080 N
s甲ply
ernat

Transtormers are not inciuded with
power supplies. SPM120 Renge
also require ressubit and output capocitoss

\section*{TRANSFORMERS}
20341.7 arp 35 swal sPM80 54.5020353 amp 55v fees. 2058750 mA 17 V Suit PS 12 E2.85. 20401.5 amp \(0-45 v .55 \mathrm{~F}\) Suit SPM120i45 SPM120.55y E5. 15. \(20112 \mathrm{amp} 0.55 \mathrm{v}-6 \mathrm{~N}\) Sut SPM120155 SPM120ib5v flach. 20391 amp of 20 N Suit Stergo 30 E3.50. 204 150mA 150-15v Suit SG30 \(\mathbf{£ 1 . 6 0}\)

\section*{ACCESSORIES}

13 Teak Cabimet Suit Stereo \(30300 \times 25 \times\) Blmm \(\mathbf{7 . 0 0} 140\) Teak Cabinet Suit STA \(15425 \times 290 \times\) 95 mm ce.5a FP 1000 front Pane for PA100 \& PNOCO f1.80 BPIOD Back Panel for PA100 of PAZOO E1:20 GE1LIFP font Panel for one GE100Null E1.J5. TCSC Kit of Parts inckeding Teak Cobinet chassin, sockets 6 knobs etc to house STA 15 Ampifierl \(\mathrm{f17.50}\) PSZ50 Consists - 1 tapacitor 64 diodes for constructing unstabilised power supply for AL250 to 125 wats E280

 Clos Moil
Remember you most add ivs at 15\% by mors Total. Poitres add.50p per Toth ote

\title{
WAVEFORM MULTIPLER
}

\title{
A single VCO on a synth is, to be honest, pretty boring. Generate rich multiple oscillator sounds by hooking it up to one of our multiplier boards. Design by David Ward-Hunt.
}

Many synthesisers, both mono and polyphonic, utilise two or more VCOs, slightly detuned, to generate a rich chorusing sound. Chorus or phasing treatment of a single VCO can go some way towards livening up the sound, but these tend to suffer from a rather repetitive sweep and on some units a considerable amount of background noise during periods of silence - not to mention aliasing when used with high frequency high harmonic content waveforms which any decent synthesiser is capable of producing.

The beauty of using two or more slightly detuned oscillators is that in addition to producing a full chorusing sound, the problems of background noise and bandwidth are eliminated. However, multiple VCOs don't come cheap! An alternative method of achieving a 'multiple oscillator sound' is to generate additional waveforms from the existing VCO output. If each of these 'new' waveforms is out of phase with the original and with each other, then a fuller sound will be heard. However, the richness of the sound from multiple oscillators comes not from the fact that they are out of phase with each other, but from the fact that the phase difference is continually changing the ear perceives phase change rather than phase difference. Therefore it is necessary not only to have additional out-of-phase waveforms, but their phase differences should be continually moving with respect to each other and the original.

\section*{A Passing Phase}

The circuit described here does just that. It will accept sawtooth, triangle or sine wave inputs, though with the latter two the output will bear little resemblance to the original waveform due to the circuit action: however, they are still useful

The picture shows how the prototype was mounted in a Teko Alba A23 case, but this is not essential and most people will build the boards into their synth.
sounds to experiment with. The circuit has been used successfully to treat the VCO sawtooth outputs from a number of synthesisers including the Transcendent, Digisound ' 80 and PE Minisonic; it has also been used with a Korg Sigma and Roland SHO2 (see the interfacing notes below). The one disadvantage of the circuit (there has to be one, doesn't there?) is that for setting-up purposes, constructors will need access to a scope or a second VCO with which to adjust the circuit to produce the correct waveforms.

\section*{Using The Multiplier}

The multiplier board is fed with the output from your existing VCO. With a sawtooth waveform fed to the circuit, the output is a series of six sawtooth waveforms each individually phase modulated and mixed with the original sawtooth from the VCO. One multiplier PCB (generating six 'new' waveforms) is used with each VCO. If you do have two or more VCOs each feeding a separate multiplier board the effect is outstanding, especially when the VCOs are tuned to form a
> chord. The output from the multiplier(s) is then fed back to the synthesiser and treated by the VCF and VCA in the normal way.

\section*{Construction}

The project consists of two PCBs. The first holds the modulation oscillators for phase modulating the multiplier; the second PCB holds the multipliers and associated circuitry. The reason for splitting the project into two PCBs is that one modulation PCB is sufficient to drive up to four multiplier PCBs. (In fact there is no reason why it wouldn't drive more; however, we believe that if you intend to use more than four multiplier boards, the small additional expense of another modulator is well worth it for adding an even richer sound.)

All the components are mounted on the two PCBs with the exception of two diodes which are mounted on a switch (thereby saving two wires from the PCB to the switch). The only external connections required are the VCO input and the output from the unit plus the power supply connections (see below) which ideally should

Fig. 1 Block diagram of the ETI Waveform Multiplier. Should you require an even richer sound, there's no reason why more than six multipliers shouldn't be used.

Fig. 2 The waveforms associated with various sections of the circuit. This indicates the operation of the unit and will also guide those people who are setting up the unit with an oscilloscope.
come from the same power supply as the VCO being input to the unit.

Interwiring between the PCBs should be clear from the diagram, as should the wiring up of the switch with its associated zener diodes. The switch is a DPDT with centre off and it is essential (for setting-up purposes if nothing else) to have this 'off' position (see Buylines).

A note is in order here about the component numbering. In order to make the numbering clearer and logically the same for each of the six multipliers on the PCB, each resistor or preset is designated by a two-figure number. The first figure indicates which of the six multipliers it is associated with, and the second is the 'relative number' of the component. For example, R11 is ' R 1 ' on the first multiplier, R 21 is ' R 1 ' on the second multiplier, R35 is 'R5' on the third multiplier and so on.

With regard to the modulation PCB, though all the capacitors are of the same value, take care not to mix up the resistors associated with the two oscillators, as each oscillator should have all three of its resistors the same value. If not, the modulation output waveform will take on a pulse form at the output associated with the first op-amp in each oscillator.

\section*{PARTS LIST}

\section*{MODULATION BOARD}

Resistors (all \(\frac{1}{4} \mathrm{~W}, 5 \%\))
R1-3 1M8
R4-6 2M2
Capacitors
C1-8 100 n polyester
Semiconductors
\begin{tabular}{ll}
IC1 & LM324 \\
IC2 & LM1458 \\
ZD1,2 & 6 V2 400 mW zener
\end{tabular}

Miscellaneous
SW1 DPDT with centre off (see PCB (see Buylines)

MULTIPLIER BOARD
Resistors (all \(\frac{1}{4}\) W, 5\%)
R1-3,
11,12,13,14,
15,16,21,22,
etc to \(66^{22,} 100 \mathrm{k}\) (39 in total)
R4 18k

\section*{Potentiometers}

PR11-61 100k miniature horizontal preset (six in total)
PR12-62 220k miniature horizontal preset (six in total)

Capacitors
C1,2 47 u 16 V PCB electrolytic
C3-6 100n polyester
Semiconductors
\begin{tabular}{ll}
IC1 & LM1458 \\
IC2-4 & LM324 \\
D1-6 & IN4148
\end{tabular}

\section*{Miscellaneous}

PCB (see Buylines); case to suit (Teko Alba A23); sockets to suit.

NOTE:
ZD1. 2 ARE 6V2 ZENERS
SWi' IS DPDT WITH CENTRE OFF

Fig. 3 Complete circuit diagram of the Waveform Multiplier.

Fig. 4 Component overlays for the modulator board (top) and the multiplier board (bottom), and the interwiring required. Several multiplier boards may be driven from one modulator board.

\section*{HOW IT WORKS}

The modulation oscillators are based on a standard three phase oscillator; two of these are used. Each of the three integrators in the loop outputs a waveform that is one-third of a cycle behind the others. The speed of the two oscillators is set at about 0.6 Hz and 0.4 Hz respectively. This modulation rate was found to give the best simulation of a number of oscillators running in free phase over a wide keyboard span.

It should be noted that the output of these oscillators is, in fact, a trapezoid shape waveform and it might be thought that some filtering would be required to produce a waveform more akin to a sine wave. This was tried in the development stage, but in practice the trapezoid waveform gave a better randomness to the overall output, whereas with a sine wave modulation a more definite sweep could be detected on long sustained notes.

Referring now to the multiplier circuit, the output from the synthesiser VCO is taken to IC1a configured as an inverter/buffer; the VCO waveform also goes to one input of the comparator IC2a. The other input of the comparator is fed with a voltage set up on PR11 together with the modulation voltage via

R12. With a positive-going sawtooth, the point at which the comparator goes high is determined by the sum of the fixed voltage from PR11 and the modulating voltage via R12. As shown in the waveform diagram, with a rising modulation voltage the width of the pulse at the comparator's output increases. However, the comparator will, of course, always reset at the same moment as the VCO sawtooth. Thus the comparator's reset is synchronised with the original sawtooth, whereas its positive-going excursion can be voltagecontrolled to any point within one cycle of the input waveform.

The output of the comparator is rectified by D1 and summed with the inverted sawtooth from IC1a via R11. These voltages (actually currents) result in a new sawtooth whose reset point is determined by the positive-going edge of the comparator. Thus, as shown in the waveform diagram, this new sawtooth is phase-shifted from the original and the amount of phase shift is dependent on the comparator pulse width. The output of the summing amplifier IC2b is taken via R15 and mixed with the other multiplier outputs plus the original sawtooth (via R3), where IC1b acts'as the mixing amplifier.

\section*{Setting Up}

As stated earlier in the article, setting up requires access to an oscilloscope; you should have two VCOs and some method of listening to their output, but hopefully these requirements will not be a problem for most constructors.

Once all the components have been installed, ensure that the ICs, diodes and the two polarised capacitors are correctly orientated. All the ICs should be facing the same way and the diodes mounted on the PCB should have their band pointing towards pin \(1 /\) pin 14 of the ICs. Turn all the presets to their mid-position.

The setting up procedure is reasonably straightforward, though repetitive, since each of the six multipliers has two presets which need to be adjusted; however, your efforts will be rewarded!
Constructors with access to a scope will find it easier to use the scope to see the various waveforms mentioned in the text. Those of you

A view inside the prototype showing how it is configured to provide four independent channels driven by one modulator board. Miniature jack sockets are used for input and output (see also the lead photograph).
without a scope will be using your ears rather than your eyes, so make sure you have some means of listening handy. Either an amplifier and speakers, or headphones of reasonable quality will do, but remember we are listening to a 'raw' signal so don't stick it straight into your favourite hi-fi amp!

The first step is to power up the circuit and apply a VCO sawtooth waveform running at about 500 Hz (for ease of listening - so with a scope it doesn't matter). Ensure that the modulation switch is in the off position. Attach a lead to the output of IC1b (junction of pin 7 and R2). This should be outputting the VCO sawtooth (inverted). Next move the scope probe or audio lead to the junction of D1 and PR12 (marked A on the component overlay). This is the comparator output from which we want to get an approximate square wave output. At first you may hear no sound at all, but as PR11 is rotated you should hear a square wave break in with the pulse width varying as you turn the preset. Adjust PR11 for an approximate \(50 \%\) duty cycle. (For

\section*{BUYLINES}

A kit of parts for this project, comprising glass fibre PCB and all electronic components, is available from Digisound Ltd, 14-16 Queen Street, Blackpool, Lancs FY1 1PQ. The prices, inclusive of VAT and postage, are \(£ 10\) for the multiplier and E6.05 for the modulator. Housing the project is entirely up to you and most people will simply fit the boards inside their synth, but we put ours into a Teko Alba A23 case to match the rest of the Project 80 modules. If you want to do likewise, the case is available from West Hyde, Unit 9, Park Street Industrial Estate, Aylesbury, Buck.
those unfamiliar with this sound, adjust PR11 for the 'loudest' sound. When the duty cycle is less than about \(30 \%\) or more than about \(70 \%\) a 'thin' spiky sound predominates, so set PR11 midway between these two - an accurate \(50 \%\) is not important.) Repeat this step on each of the five other multipliers.

With the comparators now set up, we need to adjust the presets on the comparator outputs so as to give a smooth sawtooth waveform. PR12 is the preset associated with this adjustment. Attach your lead to the output of IC2b (junction of pin 1 and R15 - point B on the overlay). Until PR12 is correctly adjusted the sawtooth will contain a jump in it as shown in the waveform diagram. Using a scope, all you need to do is turn PR12 until this jump is smoothed out. Without a scope you will need two VCOs in order to accomplish this adjustment.

First, slow down the VCO which is connected to the circuit, to its lowest setting (somewhere around one cycle per second is fine). Now attach a lead from the aforementioned junction of pin 1 and R15 (point B) and run it to the FM input of your second VCO. If you now listen to the output of this second VCO it will be frequencymodulated by the sawtooth wave that we need to smooth out. So all you need to do now is turn PR12 until this second VCO gives a smooth upward frequency sweep followed by a sudden return to the starting frequency. This may sound difficult to perform but in fact it is surprising how easily the ear can detect any jumps in the modulating
waveform. However, if you are unsure of what a VCO sounds like when it is being frequencymodulated by a slow running sawtooth, listen to this effect on its own before trying to set up PR12. Again this adjustment is carried out on each of the six multipliers.

With all the multipliers now set up, speed up the VCO connected to the circuit, attach a lead to the output and you should see/hear a multiple sawtooth waveform. Now switch the modulators on (either setting of SW1) and you should hear a 'phasing' sound as the modulation builds up. Finally, check that the two 'on' positions of SW1 give different depths of modulation.

If, when the modulation switch is set to 'full' you find you can hear a distinct pause or break in one of the new waveforms, this indicates an incorrect setting of the preset associated with the comparator. To determine which one needs a finer adjustment, check each of the six multipliers by attaching an audio lead or probe to point \(B\) and adjust PR11, 21, 31 etc as appropriate, so that even with full modulation depth the comparator (and thus the sawtooth) remain within the range of one full cycle of the original sawtooth.

\section*{Interfacing Notes}

The original circuit was developed for a Digisound 80 modular synthesiser; this has \(\pm 15 \mathrm{~V}\) supplies and a positive-going \(0-10 \mathrm{~V}\) VCO output. However, the circuit is fairly tolerant of a wide range of conditions and can be adapted to almost any synth with possibly some small additional components. The most likely problem concerns the ratio of the VCO output amplitude when compared with the voltage supply rails. The minimum and maximum supply voltages to the circuit described are \(\pm 5 \vee\) to \(\pm 16 \mathrm{~V}\). Bearing in mind these two limits, the waveform to be treated should be equal to or greater than one-third the sum of the voltage rails.

If the input waveform does not meet these requirements the obvious course is to add an op-amp to the front end of the circuit to bring the waveform up to the required level. For instance, with the PE Minisonic, which is pretty much a worst case, the power supply is \(\pm 9 \mathrm{~V}\), the VCO output is 1 V peak-to-peak. In this case a simple \(\times 6\) amplifier would do, but so as to allow plenty of headroom a \(\times 8\) amplifier was made up. ETI

\section*{GOMPUYHR Them:OUST \\ THE 'ALLADLIS' CAVE OF COLPUUER AND ELECHRONIC EQUIPMENT}

\section*{DIBK DRTVES}

Diablo/DRE Serfes 302.5 mb. fully refurbished DEC RK05 media and sottware compatable. Front load 8530.
Top load extss.
PSU for 2 drives \(E 12 s\)
Dinblo -Ore 44A-4000A or \(4000 \mathrm{~B} 10 \mathrm{mb} 5+5\) removable pack new and refurbished from 9985
CDC 80 mb removable pack DEC RM03 media and softwar compatible brand new from \(\mathbf{\$ 2 , 9 5 0}\).
Honeywell \(5+510 \mathrm{mb}\) drives \(\$ \$ 50 \mathrm{good} 3 / \mathrm{h}\) condition For more information on controliars, expansions and ready go sub systems contact sales office.

\section*{DISTHEC}

The UKs FIRST free of charge, 24 hr . public access data base. Get information on \(1000^{\prime}\) s of stock items and order via your computer and credit card On line now, 300 baud. CCITT tones, full duplex, fully interactive.
DON'T MISS THOSE EARGAINS
CALL NOW, IT'S PREE
\(01-8351155\) weak at per

\section*{COMPUTER 'CAB'}

All in one quality computer cabinet with integral switched mode PSU. Mains filtering and twinfancooling Onginaly made for the famous 1000's of pounds and designed to run 24 hours per day. The PSU is fully \(15 v\) on wind 17 amps, 15vDC at 1 amp and -15 V DC at 5 amps. The unit is fully iltering trip switch 'power to fitening, trip switch, 'power on' and 'run' LED's, aluminium protessional finish for only \(\mathbf{\$ 9 . 9 5}+£ 9.50\) carr. - Dim. 19 wide 16 deep \(10.5^{\prime \prime}\) high Usablearea \(16^{\prime \prime}\) w. 10.5" h. \(11.5^{\prime \prime}\) nits are ingo bu

\section*{COOLITG FATS}

\section*{Keep your "Hot Parts" cool and reliable withour} range of proforssional tans ETRI 90XLO1 Miniature equipment tan 240 complete with finger guard Makers price 516 our pricese. 5
BUHLER 69.14 .22 micro miniature 8-16 vDC reversible fan. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\). Uses a brushless DC servo motor almost silent runningideal portable equipment, life in excess price \(£ 32.00\) our priceEt2, 95
Price EJN.00 our Pricex iz.s. \(120 \times 38 \mathrm{~mm}\) tested ex equipment 240 v e6. 2 Ls \(115 v E 493+p \& p \varepsilon 1.90\)
KOOLTRONICS Powerful snail type blower gives massive air movement with centrífugal
rotor DiM as a cube \(8^{n} \times 8^{\prime \prime} \times 6^{n}\) sir rotor Dim as a cube \(8^{\circ} \times 8 \times 6^{\prime \prime}\) air aperture \(2.5^{n} \times\) ac working ONLYE.95 \(+£ 1.90\) p\&p

\section*{8" HLOPII DISK DRIVES}

Unbelievabie value the DRE \(7100 \& 72008\)
disk drives utilise the finest technology to disk drives utilise the finest technology to geing 1 PRICE and the subabity with most dives available oday, the only difference double sided drive accept hard or soft sectoring IBM or ANS! standard giving a massive \(0.8 \mathrm{MB}(7100) \& 1.6 \mathrm{MB}(7200)\) of storage Absolutely SHUGART, BASF
SIEMENS etc compatable. Supplied BAAND NEW with user manual and 90 dey SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 day Warranty.
7200 single sided.
\(. \mathbf{E 2 2 5 . 0 0}+9.50+\) vat
. \(\mathbf{3 5} .00+9.50\) carr + va
full technical manual \(£ 20.00\) alone \(\mathbf{8 9 . 0 0}\) with drive, refund of difference on purchase
SHUGART s/h 800-2 8" Drive's 110 v 50 Hz motor \(\mathbf{5 1 6 0}+\mathrm{E} 9.50 \mathrm{cart}\) Removed from working equipment but untested. SA120 Alignment disk's \(\mathbf{8 9 . 9 5}\)

\section*{SUPER SCOOP}

\section*{CENTHRONICS 739-2}

The "Do everything Printer" at a price that will NEVER be repeated Standard Centronics interface, full graphics, 4 type fonts with high derinition a proportionai spacing for word proceasior applications, 80-132 columns, single sheet, roll or sprocket paper handling plus ridiculous price of only \(\mathbf{8 9 9 . 0 0}\) Options: carriage \& insurance \(\mathbb{E 1 0 . 0 0}\) RS232 Converter \(\$\) K5.00
save
£250
 I/0 THinnminats
ully fledged industry standard ASAB3 dat Fully fledged industry standard ASR33 dat
terminal. Many features including ASC II keyboard and printer for data l/O auto data keyboard and printer for data I/O auto data baud. 8 bit pader tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand E12.50 + VAT KSR33 with 20 ma loop interface \(\mathbf{E 1 2 5 . 0 0}\) Sound proof enclosure \(£ 25.00+\) VAT

\section*{SOFIT 2}

The amazing SOFTY2. The complete "toolkit" for the open heart software surgeon. Copies, Displays Emulates ROM, RAM and EPROMS include keyboard UHF manyotherfeatures interface etc Functions exceedcapabilities of units costing 7 times the pricel Only
£169.00 pp £1.95 Data sheet on request

\section*{RCA 工UIT CASED ASCI CODED KEYBOARDS \\ \\ TANOTRUE OWIO ETC,}

Straight from the USA made by the world famous RCA Ca, the VP600 Series of cased freestanding keyboards meet all requirements pricel Utilising the latest in switch technology. Guaranteed in excess of 5 million operations. The keyboard has a host of other features including full ASCII 128 character set, user definable keys, upper/lower case, rollover protection, single 5 V rail, keyboard impervious tollquids anddust TML orCMOSoutputs, even an orboard tone generator for ceypress feedback a
quarantee
quarantee.
Vpe01 7 bit fully coded output with delayed strobe etc.
VFB11
VF611 Same as VP601 with numeric pad VP50s Serial, RS232, 20MA and TTL outputwith 6 selectableBaudRates VP616 Same as VP606, with numeric pad Plug and cable for VP601, VP611 12.25 Plug for VP806, VP616 £2. 10
Post, Packing and Insurance ORDER NOW OR SEND FOR DETAILS

\section*{MANS FILTERS}

Professional type mains fiters as used by Main Frame" manufacturers. Ideal for curing fit one now and cure your problems. Suppression Devices SA5A
upto 5 ampload ES. 95
Corcom Inc F 1886 up to 20 amp load \(£ 9.50\) Corcom Inc F1900 upto 30 amp load \(\mathbf{E 1 2 . 2 5}\)

\section*{RECHARGEABLE BATTERIES}

CYCLON type DOO1 sealed lead acid maintenance free \(2 v 2.5\) ah. will deliver over 300 amps on short circuitt! Brand new at only \(\mathrm{EA}_{2} .95\)
GAFI VR2C size ' \(C\) ' 1.2 V 2 ah nicket cadmium 1.50 each 10 for \(E 11.50\)

\section*{D.C. POWR SUPPLY SPEGLATS}

Experimentors PSU Ex-GPO unit all silicon electronics. Outputs give \(+5 \mathrm{v} @ 2 \mathrm{amp}\)
 equipment, but untested. Complete with circuit. Transformer guaranteed. Only E14.50 +82.50 pp
POWER ONE CP143 super compact unit giving continuous output of \(5 \mathrm{v} @ 5 \mathrm{amps}\). dim. \(215 \times 67 \times 80 \mathrm{~mm}\). BRAND NEW and guaranteed Only \(E 21.00+\varepsilon 1.50 \mathrm{pp}\). emi open chassis, full crowbar overvoltage protection. Tested Ex Equipment \(11.95+\) pp \(£ 1.25\)
MINI SYSTEM PSU Ex equipment unit ideal for the smali micro. Outputs give \(5 v\) @ 3 amps. +12v @ 1 amp and \(-12 \mathrm{v} @ 300\) ma. Crowbar overvoltage protection and current limit. Fully tested. Dim \(70 \times 165 \times 320 \mathrm{~mm}\). Complete with Circuit only \(\mathbf{1 2 . 9 5}\) \(+£ 2.00 \mathrm{pp}\)
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition.Outputs give 5 V @ 11 amps, " + " \(15-17 \mathrm{~V} @ 8\) amps " \({ }^{-1}\) " \(15-17 \mathrm{~V} @ 8\) amps and " + " \(24 \mathrm{v} @ 4\) amps All outputs are crowbar protected and the 5 volt output is fully equlated. Fan cooled Supplied tested, with circuit \(\mathbf{E 5 5 . 0 0}+£ 8.50\) carr.
MAIN FRAME SUPPLY. A real beety unit designed for MINI or MAINFRAME use outputs give 5 volts@ 50 amps \(+12 \mathrm{v} @ 5\) amps \(-12 \mathrm{v} @ 10\) amps. All output are fully
regulated with crowbar overvoltage protection on the 5 v output Supplied with circuit and tested Ex-Equip. 110v AC input. Only \(£ 49.95\) + carr. \(£ 10.50\).

\section*{9" Monitors}

DT10 Monito a complete MOTOROLA 9 " video monit housed in an attractive metal case DIM approx
high. The monitor has a 75 ohm video input with a bandwidth of 18 mhz a seperate internal PSU delivers \(5 v\) dc for external use and 12 v DCforvideo mo iftor. The case has sufficient room inside for mounting other units such as \(5^{n}\) disk drives etc. Internal pois give full control over all monitor functions Supplied in a tested, as new or little used condition. 240vAC operationd55.00 Carriage and Insurance \(£ 10.50\)
MOTOROLA \({ }^{\prime \prime}\) open chassis monitor. Standard 240 v AC with composite 75 ohm video input, bandwidit in excess of 18 mhz Monitors are ex equipment and although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens. Dim approx \(9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}\). Supplied complete with mains and input lead Ideai Black and White phosphor \(\mathbf{E s} .00+£ 9.00\) Carr

\section*{SEMCONDUCTOR \\ 'GRAB BAGS'}

Mixed Semis amazing value contents include transistors, digital, linear, I.C.'s devices guaranteed brand new full spec with manufacturer's markings, fully guaranteed, \(50+£ 2.95100+E 5\). is across the board range purchase of an series I.C.'s enables us to cffer \(100+\) series l.C.'s enables us to cffer \(100+\) mixed "mostly TTL" grab bags at a price would normally cost to buy Futhy guaranteed all I.C.'s full spec \(100+86.90\) guaranteed all 1.C.s full s

\section*{300 BAUD}

\section*{DATA MODEMS}
oin the communications revolution with ou standard EX GPO \(2 a / b\) data MODEMS. Modem operates on standard CCITT tones with full auto answer facilities. Will switch to ANSWER orORIGINATE. Standard RS232 connections. deai networks. DISTEL etc condition E5S.00 carr. £8.50.

\section*{1800 BAUD}

\section*{DATA PUMP MODEMS} Compact unit for use with private or "Dial up lines Designed to work in pairs at any baud rateupio 1200 fullduplex (4 wire circuit) or ha emote test facilities. RS232 Vo olines etc Supplied with data in working order, but less case cover \(\$ 65.00+£ 4.50\) carr.

\section*{66\% DISCOUNIT \\ ELECTRONIC COMPONENTS \& EQUIPMENT}

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of l.C.'s, Transistors, Relays, Cap's, P.C.B.'s, haveassembies, Switches, etc etc suriplus to our requirements. Eecause we don't have suficient stocks of any one item to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at ems in giveaway prices Guaranteed to.be worth at least 3 times what you play pus we always
unbeatable value! Sold by weigh
2.5kise4.23 + pp £1.25
10kisE10.25 + ppE2.25

5kls 5 . \(90+p p £ 1.80\)
20kle \(E 17.50+p p \varepsilon 4.75\)

\section*{OLIVEIHII \\ 191800 \\ REDUCED TO CLEAR \\ Complete input output terminal withintegrals} hole paper tape punch and reader. Unit operates at 150 baud in standard ASCII. Ideal as a cheap printer for a MICRO etc 120 with data untested unguaranteed EAP星 with data, untested, unguaranteed \(\mathbf{E S} \mathbf{5}, 00\) Card order£ 10.00. Minimum BONA FIDE accounfi orders from Govermment depts, Schools. Universities and establishedcompanies E80.00 Where post and packing not indicated please ADP \(\overline{00} \overline{\text { P }}\) VAT Warehouse open Morr Fri \(9.30-5.30\). Sat. \(10.15-5.30\).
We reserve the right to change prices and speciflcations without notice. Trade Bulk and Export enquiries welcome Wercome. 64-66 Melfort Road, Thornton Heath, Near Croydon, Surrey 01-689 7702-01-689 6800 Telex 27924

Don't miss the Christmas rush. Don't waste your money on throw away Dry cell batteries. Buy Ever Ready RECHARGABLE Nicad Batteries. Run your toys, radios, cassettes or even kitchen equipment. Each charge lasts as long as a dry cell, but you can re-charge them up a 1,000 times or more. So think of the money you can save at 1 p a charge.

BUY NOW
and have a set charged ready for Christmas.
(Available in four standard sizes)
\begin{tabular}{|c|c|c|c|c|c|}
\hline NICAD & DRY GELL EQUIVALENT & CAPACITY & 1.9 & 10.24 & 24.900 \\
\hline 'AA' & HP7 & 0.5 AH & 0.90 & 0.85 & 0.82 \\
\hline \({ }^{\prime}{ }^{\prime}\) & HP11 & 2.2AH & 2.40 & 2.30 & 2.20 \\
\hline SUB \({ }^{1} \mathrm{D}^{\prime}\) & HP2 & 1.5 AH & 2.30 & 2.15 & 2.00 \\
\hline 'D' & HP2 & 4.0AH & 3.40 & 3.20 & 3.05 \\
\hline PP3 & PP3 & 0.11 AH & 3.90 & 3.65 & 3.40 \\
\hline
\end{tabular}

\section*{Ni-Cad Battery Chargers}

Type AC1 charges up to \(4 \times\) AA cells at a time.....................55.90
Type MC2 charges up to \(4 \times A A, C, D\) cells \(\&\) also \(P P 3 ' s . . f 8.50\)
Postage FREE on Mainland UK orders SEND NOW your cheque/postal orders to
B.N.O.S. ELECTRONICS Dept. ETI,

GREENARBOUR, DUTTON HILL,
GT DUNMOW, ESSEX CM6 3PT
TEL: 037184767
Also ACCESS and VISA cards welcome

\section*{DISC DRIVE}

Memorex 550 8" Floppy drive, mounted in case with power supply and fan. Room for second drive. Only \(£ 225+£ 7.50\)
SHUGART \(8018^{\prime \prime}\) Floppy - \(\mathbf{2}\) only at \(\mathbf{E} 250+\mathbf{~} 7.50\) DRE 4000A (258-9901) Hard disc - \(\mathbf{1}\) only \(£ 300\). BASF 617224 Mega byte Winchester with TSU - 1 only \(\mathbf{£ 7 0 0}\)

69 Key keyboard 5 volt CMOS - believed ASCll but no data hence \(£ 20\)
Muitit Rail PSU 5 volt at 4 amp .12 volt at 2.5A, 12 volt at 350 mega Amps only \(£ 17.50+£ 1.80\)
\(5 \mathrm{~V}, 5 \mathrm{amp}\) Regulator module \(\mathbf{£ 2 . 5 0 + 5 0 p}\).
Data dynamic RO390 printers 110 Baud ASCII RS232 20 mega amps \(£ 75\)

\section*{MAWSON ASSOCIATES}

\section*{01-778 3600}

Callers welcome by appointment and all 2 nd hand goods WE ALSO BUY WE ALSO BU
SELECTED
COMPUTERS COMPUTERS
AND COM PUTER
PEPIPHERALS

MARCO TRADING
Primary Secondary Current \(1+10+100+\) \(240 \mathrm{~V} 4.5-0-4.5 \mathrm{~V} \quad 400 \mathrm{~m} / \mathrm{a}\) 50p \(45 \mathrm{~F} \quad 35 \mathrm{p}\) \(240 \mathrm{~V} \quad 6-0-6 \quad 500 \mathrm{~m} / \mathrm{a} \quad\) e5p \(\quad\) e0p \(\quad 48 \mathrm{p}\)
Manufacturers note: We can supply OFF THE SHELF \(1000+\) quantities of the above transformers.

These high quality British made European Adaptors are ideal for driving radio's, cassette recorders, TV games, calculators etc etc.

These adaptors fit the UK shaver socket.

UK POWER SUPPLY/CHARGER. Input 240 V . Output 9 V \(200 \mathrm{~m} /\) A. Fully Regulated and Stabilised. Complete with Reversible 4 Way Plug.

\section*{MULTIMETER SPECIAL}

Russian type U4324 20,000 O.P.V.
DC Voltage: \(06,1.2,3,12,30,60,120,600\), 1200.

AC Voltage: \(3,6,15,60,150,300,600,900\). DC Intensity M/A: \(0.06,0.6,6,60,600,3000\) AC Intensity M/A: \(0.3,3,30,300,3000\) DC Resistance: \(0.2,5,50,500,5000 \mathrm{~K}\). ge level dB: 10 to +12 .

Special Price \(\mathbf{£ 1 5 . 0 0}\) inc \(p / p\) and VAT
Send 25p Now for our latest Catalogue. Fantastic Value it includes capacitors, diodes, resistors, transistors, LEDs, boxes, cable, prepaid envelopes and much, much more.
Please add 35p postage and packing and \(15 \%\) VAT to all orders. Send orders to:

\section*{MARCO TRADING (Dept ETI/1)}

The Maltings, High Street.
Telephone: WEM (0939) 32763
Every order receives our latest special offer lists. Or send SAE. All orders despatched by return of mail.

\section*{WHYUSE STRIPBOARD?}

Make your own PCB. It's easy:
"GET YOU STARTED" KIT 12V Mini Drill (takes \(\frac{1}{2} \mathrm{~A}\)). 12 mm Bit.
25 sq. ins. Copper Clad. PCB Etchant for \(\frac{1}{2}\) Itr. Tweezers and Dish, Fine Etch Resist Pen Instructions. Only f6.00
"SUPER" KIT As above with: 3 pens, Fine-Med.-Thick. 75 sq. ins. Copper Clad. 3 Sheet Transfers-Etch Resist. Only \(£ 8.50\).

SIMPLE PCB DRILL
12 V Motor with chuck attached with 3 collets 0.8 to 2.0 mm . \(£ 4.50\).

\section*{PCB ETCHANT}

Double strength to make \(\frac{1}{2}\) ltr. solution. 90p.

ETCH RESIST PENS
Set of 3, Fine-Med.-Thick. \(£ 1.80\)
Callers Welcome 9am to 5.30 pm Prices are inclusive but add 60 p P \& \(P\) to each order.
Cheques \& P.O.'s payable to POPS
Components.

\title{
CONFIGURATIONS
}

\section*{And so to op-amps, the most venerable members of the linear IC family. Ian Sinclair traces their ancestors, descendents and lifestyle.}

Before the reason for the name becomes shrouded in the mists of history, perhaps it's just as well to look at the origins. Operational amplifiers were designed for analogue computers, which are machines used for solving mathematical equations. They do so, not by using binary arithmetic as digital computers do, but by connecting up a network of components which represents either a mathematical relation or an equation. In the case of a mathematical relation (eg, \(y=x^{2}\)) the circuit will have an input, \(x\), and an output, \(y\), that will vary according to the relationset up and according to the value of \(x\). Equations can be either ordinary (eg, \(x^{2}+4 x+3=0\)) or differential (eg, \(d^{2} y / d x^{2}+x=0\)); the circuit will be connected in a loop; and in the case of the ordinary equation it will give an output that represents the solution (or one of the solutions) to the equation. The solution to a differential equation is itself a mathematical relation (in the case of the example given above, \(y=A \sin x+B \cos x\)), so the circuit will have an input and an output the coefficients of the equation, \(A\) and \(B\), will be determined by the initial values of the circuit voltages, but that takes us a bit beyond the present scope of this article).

An essential part of representing a mathematical operation in electrical terms is an amplifier with very high gain whose frequency response can be modified by using negative feedback. Typical operations that can be simulated by amplifiers of this sort include the mathematically important ones of differentiation and integration (Fig. 1), and the amplifiers which were designed for these purposes very reasonably became known as operational amplifiers.

Fig. 1 The operations of differentiation and integration performed on a square wave.

\section*{The Perfect Specimen}

The specification for a perfect operational amplifier was that it should have infinitely high gain, infinitely high input resistance, zero output resistance, and as much bandwidth as was needed - it was particularly important to have the gain maintained right down to DC. Analogue computers are still produced, though they don't have the
importance they once had, and the operational amplifiers which were once made using valves, and then transistors, are now made as ICs. The requirements are still pretty much the same, because our definition of an operational amplifier nowadays is as a high gain DC-coupled amplifier whose behaviour can easily be controlled by using negative feedback. Since the behaviour (gain, bandwidth, shape of gain-bandwidth curve) is so easily modified by the use of negative feedback, the operational amplifier is the nearest thing we have to an all-purpose amplifier, and that's why operational amplifiers were among the first linear ICs that were produced.

Fig. 2 Part of the specification for the 741 op-amp.
To start with, consider the typical specification of one of the best-known op-amps, the 741. This is illustrated in Fig. 2, to show how close we can get to the ideal specification. One point of importance is the bandwidth. If you use a 741 at its full gain, you must expect the bandwidth to be very severely limited - less than 100 Hz at maximum gain. Some care has to be taken if 741 s are used in audio circuits, because in some feedback circuits that include filtering the chip may be working at a very high gain at the ends of the bandwidth, even though its midband gain is low.

\section*{Offset Problems}

Getting down to configurations, the main point about op-amp circuits is how to bias them. Very few applications call for the 741 to be operated as a differential DC amplifier at full gain, but for these applications a balanced power supply is needed. Additionally, some form of input offset balancing will be needed. This is necessary because there are bound to be some very small mis-matches between the resisfors and transistors that make up the two input circuits (see later). The gain of the op-amp is so high that any imbalance will be amplified up, so that with both inputs tied to zero, the output of the op-amp will not be zero by quite a margin.

Manufacturers usually specify typical and maximum input offset voltage and input offset current. These are the differences between the input voltages and the input
currents (with both inputs very close to zero volts) needed to obtain an output voltage of zero. With the 741 and many other op-amps there are offset trim connections that allow you to trim out the voltage offset. A circuit for the 741 is shown in Fig. 3. However, the input currents will still be slightly different, and there may be the odd circuit

Fig. 3 Using the offset adjustment to balance out the internal currents.
for which this will need to be taken into account.
The offset adjustment will have to be repeated at intervals, because the settings drift. The effect of temperature and time conspire to make the output voltage change (drift) away from zero, so that an op-amp at full gain is a rather unstable device which needs frequent checking. Fortunately, we seldom need to make use of the full gain of the op-amp, and most of the circuit configurations make use of feedback bias circuits.

Figure 4 shows one of the most common bias methods. The circuit uses a balanced power supply, and bias is obtained by connecting a resistor between the output and the out-of-phase or inverting input (marked as \(-)\). The in-phase or non-inverting input (+) is connected to earth, so that the output voltage will be almost zero, just enough to apply the correct offset voltage (which is usually less than a millivolt) to the inverting input. The gain of this circuit depends on the resistance of the signal source. If we represent this as a resistor in series with the input, R1, then the gain is simply \(-R 2 / R 1\) (the - sign indicates that the signal is inverted).

Fig. 4 The feedback bias system in a circuit which uses the out-of-phase, or inverting input for signals.

This circuit is DC-coupled throughout, but if we do not need DC gain, then a single-ended supply version can be constructed, as indicated in Fig. 5. Capacitor coupling must then be used to avoid shorting out the bias voltage, choosing capacitors with low leakage, and the supply voltage must be adequate - the quoted minimum voltage across the chip is 3 V .

When this configuration is used, the inverting input voltage remains practically constant when a signal is applied. When a balanced power supply is used, in fact, the inverting input is virtually at earth voltage, and this 'virtual earth' effect means that signals applied to the input terminal (one end of R1) are flowing through R1 to a point

Fig. 5 A single-ended power supply version of the Fig. 4 circuit.
which is as good as earthed as far as signals are concerned. This makes the input resistance of the circuit equal to the value of R1, and it limits the application of the circuit to some extent, because if the input resistance is to be reasonably high, then the feedback resistor R 2 will have to be of an unreasonably high value to achieve a modest gain. If the feedback resistor has too high a value (in the megohm region), then the bias currents at the input of the chip, typically 200 nA , will cause voltage drops which we can't ignore without making our calculations go considerably astray. The input resistance of the op-amp itself is large, but the use of negative feedback to the same input as the signal makes the input resistance low because of the 'virtual-earth' effect.

Fig. 6 Using signal input to the in-phase, or non-inverting input of the 741 .

\section*{Improved Impedances}

Another configuration of the op-amp is illustrated in Fig. 6. This time the input is taken to the non-inverting input, and the inverting input is used only for the feedback. In this balanced version of the circuit, the input resistance can be higher, because the resistance R3 does not control the gain of the amplifier, and the source resistance is of no interest unless it is unusually high. The gain is given by (\(R 2+R 1\))/R1.

It's quite straightforward to combine the biasing arrangements of Fig. 5 with the non-inverting circuit of Fig. 6. However, a word of caution: all those resistors and all those capacitors combine to form low-pass filters, and at frequencies around their cut-offs, these will all produce considerable phase-shifts, and this may lead to what you've designed as an amplifer actually turning out to be an oscillator!

\section*{Slewing About}

The 741 type of operational amplifier has a lot a merits, but it is a design which is now showing its age. Much more recent designs have, in particular, wider
bandwidths，and are impressively better in one respect－ slew rate．The slew rate of an operational amplifier is the maximum rate－of－change of output voltage expressed in volts per microsecond，and it affects large signals（which change by a greater voltage）more than small signals．The point is that if the maximum rate of change of voltage is \(1 \mathrm{~V} / \mathrm{us}\) ，then a 10 V change would need 10 us ，and a 10 V signal is limited to one tenth of the bandwidth of a 1 V signal．The effect in practical terms is that the useful bandwidth of the amplifier for sine waves depends on the amplitude of the waves，and the shape of output for a square wave input also depends on the amplitude of the wave．

Slew rate limiting is caused by stray capacitances within the chip．When voltages change，these stray capacitances have to be charged or discharged，and the amount of current which flows in the input stages is very small，not enough to allow these capacitances to be charged or discharged quickly．All amplifiers suffer from this to some extent，but slew rate is much less of a problem for discrete component circuits whose circuits are not DC－ coupled and which can therefore use large currents and small values of load resistors．The typical slew rate of the 741 is \(0.5 \mathrm{~V} / \mathrm{us}\) ，and this is rather poor in comparison with more modern designs such as the Motorola MC1741S， which has a slew rate of \(15 \mathrm{~V} / \mathrm{uS}\) ．

The other feature of the 741 which causes problems is that the peak amplitude of signal output must not be allowed to approach the supply voltage limits，because the internal biasing is no longer effective if this is done．This restriction can be quite irksome if the op－amp is to be used with low voltage single－ended supplies，and an alternative for such applications is the current difference amplifier （CDA），of which the best known example is the National Semiconductor LM3900N．This chip is an operational current amplifier whose internal circuitry，though remarkably similar to that of the 741，allows operation at output voltage levels very close to either ofthe supply voltages．

Fig． 7 A typical LM3900 circuit．
The design principles for CDAs are very different from those used in the 741．The output voltage depends on the difference between the currents at the two inputs，and the circuits that use these chips are distinguished by large resistor values．In the circuit of Fig．7，for example，if we aim for an output voltage which is half of the supply voltage，then，remembering that the current through R3 must be the same as the current through R2，the value of R3 must be half of the value of R2．Since the input currents are very low，these resistor values have to be high，and values of several megohms are common．The voltage gain in the circuit shown is R3／R1，as for the 741 type of amplifier，but the voltage swing at the output can reach very close to the supply voltage limits．Current difference amplifiers are used mainly in circuits which operate at the lower ranges of frequency because of the effects of stray capacitances on the very large value bias resistors．ETI

\section*{TOROD}

The toroidal transformer is now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size，weight，lower radiated field and， thanks to I．L．P．，PRICE．
Our large standard range is complemented by our SPECIAL
DESIGN section which can offer a prototype service within
7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & \[
\left.\begin{gathered}
\mathrm{SERIISS} \\
\mathrm{No}
\end{gathered} \right\rvert\,
\] & SECONDAR
Vats & \[
\begin{gathered}
\text { RMS } \\
\text { Current }
\end{gathered}
\] & Price \\
\hline \multirow[t]{6}{*}{\[
\begin{gathered}
30 \mathrm{va} \\
20 \times 30 \mathrm{~mm} \\
04 \mathrm{~kg} \\
\text { Reguation } \\
181 \%
\end{gathered}
\]} & \(1 \times 010\)
\(1 \times 011\) & \({ }^{6+6}\) & 250 & \\
\hline & & \(\underset{\substack{9+9 \\ 12+12}}{ }\) & 1868 & \(\mathbf{5} 5.12\) \\
\hline & ：0013 & \(15+15\) & 100 & \\
\hline & \(1 \times 14\) & & 0，83 & －vatic 809 \\
\hline & \(11 \times 015\) & & － 088 & TOLAL 5708 \\
\hline & ， & & － & \\
\hline \multirow[t]{9}{*}{\[
\begin{gathered}
50 \mathrm{Va} \\
80 \times 35 \mathrm{~mm} \\
0.9 \mathrm{Kg} \\
\text { Regulative }
\end{gathered}
\]
\[
\left.\right|_{\text {Regulall: }}
\]} & \(2 \times 10\) & \({ }^{6+6}\) & & \\
\hline & & & & \\
\hline & 22012 & \({ }^{12+12}\) & 2.08 & \\
\hline & 2013 & \({ }^{15+15}\) & ， 86 & £5．70 \\
\hline & 20044 & － \(18+18\) & 1.38 & \\
\hline & 2015 & \(c22+2225+25\) & 1．30 & － \\
\hline & 20.17 & \(\underset{\substack{30+30 \\ 10}}{ }\) & － 083 & rome co os \\
\hline & － \(\begin{aligned} & 20028 \\ & 20029\end{aligned}\) & \({ }_{220}^{110}\) & （0．45 & \\
\hline & ， & 240 & 0.20 & \\
\hline \multirow[t]{10}{*}{\[
\begin{gathered}
80 \mathrm{va} \\
\mathbf{9 0 \times 3 0 \mathrm { mm }} \\
\mathbf{1 g g} \\
\text { hegulaino } \\
12 \%
\end{gathered}
\]} & \(3 \times 0\) & & 6.64 & \\
\hline & & 9＋9 & 4 & \\
\hline & 3 x 012 & \(12+12\) & 3.33 & \\
\hline & \(3 \times 1\) & \(15+15\) & 2.66 & 08 \\
\hline & 3 x 014 & \(18+18\) & 222 & \\
\hline & 3x015 & \({ }_{2}^{22+22}\) & ：81 & valt \\
\hline & 30016 & 25＋25 & 1．80 & roikic 8 \\
\hline & 3017 & \(\xrightarrow{30+30} 110\) & & \\
\hline & 3n 3029 & 220 & \[
\begin{aligned}
& 0.72 \\
& 0.36
\end{aligned}
\] & \\
\hline & \({ }_{3 \times 030}\) & 240 & 0.33 & \\
\hline \multirow[t]{10}{*}{} & \(4 \times 0\) & \({ }^{6+6}\) & & \\
\hline & 4 & 9＋9 & & \\
\hline & \(4 \times 012\) & \(12+12\) & 50 & \\
\hline & \(4 \times 013\) & \(15+1\) & 4.00 & \\
\hline & \({ }^{4} \times 1014\) & \({ }_{\substack{18 \\ 18+18 \\ 12+28}}\) & \({ }^{3} .33\) & \\
\hline & \(4 \times 015\) & 22＋22 & 2.22 & ratis \\
\hline & \({ }^{4 \times 017}\) & \(\underset{\substack{23+25}}{\substack{20+30}}\) & \({ }_{2} 2.00\) & crata \(\mathrm{c}^{29}\) \\
\hline & \(4 \times 18\) & 35＋35 & 1.1 & \\
\hline & ｜ \begin{tabular}{|l|}
\(4 \times 288\) \\
\(4 \times 29\)
\end{tabular} & 110 & 1098
0.94 & \\
\hline & （ & \({ }_{240}\) & － 050 & \\
\hline \multirow[t]{9}{*}{} & & & & \\
\hline & \(5 \times 012\) & \(12+12\) & 6.66 & \\
\hline & \(5 \times 013\) & 15＋15 & 5.33 & \\
\hline & \(5 \times 014\) & \({ }^{18}+18\) & 4.46 & \\
\hline & \({ }^{3 \times 15}\) & 边 \(22+22\) & 边 320 & \\
\hline & \(5 \times 077\) & \(30+30\) & 2.68 & \\
\hline & Sex \(5 \times 018\) & & 228
200
208 & rotale， 08 \\
\hline & \({ }_{5 \times 028}\) & 110 & 145 & \\
\hline & & 220
200 & & \\
\hline
\end{tabular}

\section*{\(\star 294\) TTPES T0 CHOOSE FROM！ \(\star\) oddcrs despatched within 7 DAIS OF RECEIPT TOR SIMGLE OR SMAL QOLMTITY ORDERS \(\star 5\) year no quibble gulanntee}
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & \[
\begin{gathered}
\text { SERIES } \\
\text { No }
\end{gathered}
\] & \[
\begin{gathered}
\text { SECONDARY } \\
\text { Volts }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { RMS } \\
\text { Current } \\
\hline
\end{array}
\] & PRICE \\
\hline \[
\begin{array}{|c|}
\hline 225 \mathrm{VA} \\
110 \times 45 \mathrm{~mm} \\
2.2 \mathrm{xg} \\
\text { Aegulaton } \\
7 \% \%
\end{array}
\] & & \[
\begin{gathered}
12+12 \\
15+15 \\
18+18 \\
22+22 \\
25+25 \\
30+30 \\
35+35 \\
40+40 \\
45+45 \\
50+50 \\
110 \\
220 \\
240
\end{gathered}
\] & \[
\begin{aligned}
& 9.38 \\
& 7.50 \\
& 6.35 \\
& 5.11 \\
& 4.50 \\
& 3.75 \\
& 321 \\
& 2.81 \\
& 2.50 \\
& 2.25 \\
& 2.04 \\
& 1.02 \\
& 0.93
\end{aligned}
\] & \\
\hline \[
\begin{array}{c|}
\hline 300 \mathrm{VA} \\
10 \times 50 \mathrm{~mm} \\
266 \mathrm{~kg} \\
\text { Regulation } \\
6 \%
\end{array}
\] & \(7 \times 013\)
\(7 \times 014\)
\(7 \times 015\)
\(7 \times 15\)
\(7 \times 016\)
\(7 \times 17\)
\(7 \times 18\)
\(7 \times 026\)
\(7 \times 25\)
\(7 \times 033\)
\(7 \times 028\)
\(7 \times 029\)
\(7 \times 030\) & \begin{tabular}{l}
\(15+15\) \\
\(18+18\) \\
\(25+25\) \\
\(30+30\) \\
\(35+35\)
\(40+40\) \\
\(45+45\) \\
\(50+50\) \\
110
220 \\
240
\end{tabular} & 0.9
10.00
833
6.82
6.00
5.00
4.26
3.75
333
3
3.00
2.72
136
1.25 & \begin{tabular}{l}
£10．17 \\
－010 5200 \\
＋Whici 83 \\
TDTAL 514 OD
\end{tabular} \\
\hline 500 VA
\(140 \times 60 \mathrm{~mm}\)
4 kg
وegutaton
\(4 \%\) & \(8 \times 016\)
\(8 \times 017\)
\(8 \times 018\)
\(8 \times 26\)
\(8 \times 25\)
\(8 \times 205\)
\(8 \times 03\)
\(8 \times 03\)
\(8 \times 042\)
\(8 \times 208\)
\(8 \times 029\)
\(8 \times 020\)
8 & \[
\begin{gathered}
25+25 \\
3+30 \\
35+35 \\
40+40 \\
45+45 \\
40+50 \\
5+55 \\
1150 \\
220 \\
280
\end{gathered}
\] & \[
\begin{array}{|c}
\hline 10.00 \\
833 \\
7.14 \\
6.25 \\
555 \\
5500 \\
4.54 \\
4.54 \\
2.27 \\
2.08 \\
\hline
\end{array}
\] & \\
\hline 625 VA
\(140 \times 5 \mathrm{~mm}\)
K Kg
Regutaion
\(4 \%\) & \(9 \times 017\)
\(9 \times 018\)
\(9 \times 206\)
\(9 \times 025\)
\(9 \times 23\)
\(9 \times 33\)
\(9 \times 020\)
\(9 \times 028\)
\(9 \times 202\)
\(9 \times 29\)
\(9 \times 030\) & \(30+30\)
\(35+35\)
\(4+40\)
\(45+45\)
\(50+30\)
\(545+55\)
110
220
240 & \[
\begin{array}{|}
1041 \\
892 \\
781 \\
7694 \\
6925 \\
688 \\
568 \\
568 \\
2.84 \\
280
\end{array}
\] & \begin{tabular}{l}
£16．13 \\
 \\
＊VAT C？ 79 \\
rolal ci＇\({ }^{2}\)
\end{tabular} \\
\hline
\end{tabular}

ImPORTANT：Aegulation－AIl voliages quoted are FULLL LOAD．Please add regulation figure to secondary voltage to obtain ofl load voliage．
The benefits of ILP toroidal transformers
iLP toroidal transtormers are oniy half the weight and height of their laminated equivaients，and are available with \(110 \mathrm{~V}, 220 \mathrm{~V}\) or 240 V primaries coded as follows For 110 V primary insert＂ 0 ＂in place of＂\(X\)＂in type number．
for 220 V primary（Europe）inser＂ 1 ＂in place of＂\(x\)＂in type number．
For 240 V primary（UK）insert＂ 2 ＂in place of＂\(X\)＂in type number．
How to order Freepost：
Use this coupon，or a separate sheet of paper，to order these products，or any products from other ILP Electronics advertisements．No stamp is needed if jou address to Freepost．Cheques and postal orders must be crossed and payable to tLP Electronics Ltd． Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for single and small quantity orders．
Also avallable at Electrovalue，Maplin and Technomatic

Please send
Total purchase price
I enclose Cheque \(\square\) Postal Orders \(\square \quad\) Int．Money Order \(\square\)
Debit my Access／Barclaycard No
Name
Address

Signature
Post to：ILP Electronics Ltd，Freepost 4 Graham Bell House，Roper Close Canterbury CT2 7EP，Kent，England．
Telephone Sales（0227）54778：Technical（0227）64723：Telex：965780．
 ILP Electronics Ltdo）

TRANSFORMEAS

\section*{TURNTABLE KITS \\ FROM \\ INPUT DESIGN LTD}

THE LEADING MANUFACTURERS OF TURNTABLES IN KIT FORM

KITDECK 2 NORMAL PRICE \(£ 115.00\)

\section*{SPECIAL CHRISTMAS OFFER TO READERS OF ETI}

inc. VAT
\[
\text { (} \mathrm{P}+\mathrm{P} £ 3.00 \text {) }
\]

\section*{HOME CONSTRUCTOR TURNTABLE KIT NOW £49.50 (\(\mathrm{P}+\mathrm{P} £ 1.95\))}

5 YEAR GUARANTEE
MONEY BACK IF NOT SATISFIED
Pay by Barclaycard, Access or CWO. Export: Write for Pro-forma

Practical Design of Digital Circuits will instruct the reader who is famillar with basic electronic principles but with no previous knowledge of digital electronics in the practical aspects of digital design. It should appeal particularly to engineers and enthusiasts wishing to expand their knowledge in practical rather than theoretical directions.
The book is divided into three main parts covering: the principles of digital electronics and the wide range of devices available; how to use these devices in costeffective designs, including two detailed examples; microprocessors, showing them to be particularly versatile and sophisticated devices. 0408011831324 pages \(£ 9.95\)

ORDER NOW from your
local Bookseller
In case of difficulty this coupon can be returned to Shirley Godden at the address below.
Please send me \(\qquad\) copy/ies of Practical Design of Digital Circuits (Kampell \(0408011831 @ 9995\)
i enclose chequelpo for f \(\qquad\) \(\sin\) tola

FROM
ADDRESS \(\qquad\)

\section*{KD25C LCD DIGITAL MULTITESTER}
\(0.4^{\prime \prime}(10 \mathrm{~mm}) 3 \frac{1}{2}\) digit (1999) LCD display. Automatic zero and polarity. Full overload protection. Complete with hand strap, battery, test
probes, spare fuse and CARRYING CASE.
Input Impedance: DC 10 M ohms, \(A C 1 \mathrm{~K}\) ohms
\begin{tabular}{|c|c|c|}
\hline measurement & ranges & \\
\hline DC VOLTS & \[
\begin{aligned}
& 0.2 \mathrm{~V} \\
& 0-20 \mathrm{~V} \\
& 0-200 \mathrm{~V} \\
& 0.1000 \mathrm{~V}
\end{aligned}
\] & \\
\hline AC VOLTS & \[
\begin{aligned}
& 0-200 \mathrm{~V} \\
& 0-500 \mathrm{~V} \\
& 0-2 \mathrm{~mA}
\end{aligned}
\] & \\
\hline DC Current & \[
\begin{aligned}
& 0-20 \mathrm{~mA} \\
& 0.20 \mathrm{~mA}
\end{aligned}
\] & \\
\hline RESISTANCE & \(0-2 \mathrm{~K}\) ohm \(0-20 \mathrm{~K}\) ohm \(0-200 \mathrm{~K}\) ohm \(0-2 \mathrm{M} \mathrm{ohm}\) & \[
524.95
\] \\
\hline \multicolumn{2}{|l|}{Dims: \(138 \times 86 \times 36 \mathrm{~mm}\)} & \[
\begin{aligned}
& \text { £1.50 P\&P } \\
& +\quad 15 \% \text { VAT }
\end{aligned}
\] \\
\hline
\end{tabular}

Official Orders Welcomed, GVT/Educational Dept etc

arcs
We can offer you Barclaycard or \(\begin{gathered}\text { Wess facility. just telephone your card number to }\end{gathered}\) place an order.

\section*{ambit's new autumn/winter catalogue}

ALL THE 'USUAL' BITS (Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS
* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES

ORDERS SUBMITTED USING STOCKCODES DESPATCHED WITHIN 8 WORKING HOURS
* PHONE ORDER SERVICE - (NO MACHINES!)

\[
\begin{gathered}
8 \text { AM - } 7 \text { PM MON - SAT } \\
0277230909
\end{gathered}
\]
* COMPUTER ORDER SERVICE - 'REWTEL' 6 PM - 9 AM 300 BAUD/RS232 (IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959

ambit's new autumn/winter catalogue

ALL THE 'USUAL' BITS (Rs, Cs, Tr's, ICs etc) + ALL THE TRICKY BITS or direct
* TOKO COILS, INDUCTORS, LC FILTERS
* PCM FILTERS, VHF/UHF HELICAL FILTERS
* UNELCO CAPACITORS
* PCI INTELLIGENT LCD MODULES
* TOKO SWITCHES : F SERIES/R7000 SERIES
* ALPS POTENTIOMETERS AND KEYSWITCHES
* TOYO-TSUSHO COAX RELAYS FOR TX/RX
* CRYSTAL FILTERS, CERAMIC FILTERS
* WELLER SOLDERING IRONS
* COOPER TOOLS
* TEST EQUIPMENT
* BOOKS, MANUFACTURERS' HANDBOOKS
* HARDWARE, CASES, PANELWARE, ETC.
* MODULES, R\&EW KITS
* RF POWER DEVICES ORDERS SUBMITTED USING STOCKCODES
DESPATCHED WITHIN 8 WORKING HOURS
* PHONE ORDER SERVICE - (NO MACHINES!)

\[
\begin{gathered}
8 \mathrm{AM}-7 \text { PM MON - SAT } \\
0277230909
\end{gathered}
\]
* COMPUTER ORDER SERVICE - 'REWTEL'

6 PM - 9 AM 300 BAUD/RS232
(IT MAY BE 24 HRS BY THE TIME YOU READ THIS) 0277230959
 of ambitious people to move up into higher paid more secure jobs in the field of electronics - now it can be your turn. Whether you are a newcomer to the field or already working in the industry. ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the TCS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home, In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

\section*{City and Guilds Certificates}

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Basic Electronic Engineering (C\&G/ICS)
Radio Amateurs

\section*{Certificate Courses}

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation
*Qualify for IET Associate Membership

\title{
PROGRAMMABLE POWER SUPPLY
}

\section*{We hear a lot these days about computing power but here it is, literally. With this PSU plugged into a suitable port on your micro you can control your voltage and current bit by bit. There's manual control, too. Design by Phil Walker.}

This versatile piece of equipment is basically a programmable power supply. It allows you to set the output voltage and/or current to very close limits by means of your computer keyboard without actually touching the unit itself. Even more useful, in some cases, is that a sequence of voltage and/or current levels can be programmed in advance. The unit has a range of \(0-25 \mathrm{~V} 5\) in 100 mV steps and 25 mA to 1 A 6 in 25 mA steps.

The prime controlling element in the power supply section is an LM317 integrated voltage regulator device. In this project it is used as a high-gain self-protecting power transistor. In order to get the rated output from the device under all operating conditions, two power rails are used. The lower one, 17 V , is used while the required output is less than 12 V , the higher supply rail of 34 V is used when the required output is greater than 12 \(V\). The purpose of this configuration is to keep the dissipation in the LM317 as low as possible. This is necessary because the LM317 will not allow the full 1A6 output to flow if there is more than about 17 \(\checkmark\) across it.

The reduced power dissipation in this circuit arrangement allows us to have a constant current output characteristic over the whole range instead of a 'foldback' limiting circuit.

\section*{Construction}

The project was constructed in the specified Newrad case, but it's a fairly tight fit and it may well be easier to use the next size up (S2/38) to allow more elbow room. Construction of the PCB is straightforward so long as polarity of components is observed where relevant. We used PCB plugs and sockets for the digital input as this is

The handsome face of the ETI Programmable power supply.
most convenient. IC8, Q3, D4 and D5 are mounted on the heatsink and wired through a grommet in the rear panel. It makes things easier here if some PTFE insulators are used to hold the diodes and connecting wires. Use insulating mica washers with heatsink compound under IC8 and Q3 to conduct the heat away while preventing unwanted short circuits. Together with the heatsink, the mains switch, fuse, mains cable and control input socket are all mounted on the rear panel.

It will help considerably if the front and rear panel components

\section*{BUYLINES}

\footnotetext{
Not too much in the way of unusual components for this project: the ZN428 and D-range connector may be hard to track down but Technomatic can supply both parts. The case we used is available from Newrad Instrument Cases Ltd, Tiptoe Road, Wootton, New Milton, Hants BH25 5SJ, telephone New Milton 615774; the PCB can be obtained, as usual, from our PCB Service as advertised on page 91. The optional DVM module, the DPM05, is stocked by Lascar Electronics, Oakland House, Reeves Way, South Woodham Ferrers, Chelmsford, Essex CM3 5XQ, telepbone 0245329797.
}
are fitted and wired as far as possible before the chassis is finally fitted. Make sure, however, that you leave enough room to insert the chassis afterwards. Note that R4, 25, 27 to 31 are mounted on their associated front panel components, though we did find room on the PCB for R4 after the prototype was completed, and it is shown thus on the overlay.

The transformer, main capacitors, bridge rectifier and PCB together with D6 and R26 are mounted on the chassis supplied with the case. Some solder tags and tagstrip will be useful for mounting the smaller components and connecting to the capacitors. The large capacitors used in the prototype were mounted horizontally using two clips each.

\section*{Setting Up}

Having constructed the project and checked for wiring errors very carefully, put RV1 and RV2 to minimum, close SW3 and set SW2 to local. Switch on and check that the voltages on C1, C2 and C7 are \(+34,+17\), and -34 (\(\pm 5 \mathrm{~V}\) or so). If not, check the wiring again. Now make sure that the +5 V and -5 V

Fig. 1 Circuit diagram for the power supply. The heavier tracks carry the high current. Note the
central earthing system.

\section*{HOW IT WORKS}
voltage at this point determines the out-
THE CURRENT REGULATOR CIRCUIT IC5 is the circuit element which detects the voltage generated by the output current flowing through R26. This voltage is compared with the current limit input rent limit is exceeded, the output of IC5 is driven towards the negative rail. This
 current at its preset limit
R10, 11 and PR1 set the sensitivity of
 help stability.

\section*{THE PROGRAMMABLE INPUT}

 bits of IC2 are programmable as greater
 rent limit circuit. This also means that the unit is not completely off under any
 available in IC3 for setting the output

 this section can be used on their own
with external address decoding or in
 other section (selected by a suitable link on the PCB) if required.
THE PANEL METER MODULE
This optional part of the circuit allows the user to monitor the output voltage or current from the unit: SW4 is used to select the mode and range required. R27 to 31 form a divider network to scale the
meter to the correct measuring range. meter to the correct measuring range.
The module used has a nominal input of 100 mV for a reading of 1000 . It also has provision for selecting the decimal point
position and this is made use of by a sec.position and this is made use of by a sec-
tion of SW4. It is necessary to use +5 V and -5 V to supply the meter as it will
 are at or near the negative supply. The module has its own internal band-gap
voltage reference and if accurate

定

 uiddns əalpisod \(1 \rightarrow \varepsilon\) pue \(\wedge \angle I E\) lies
 e op!nodd oq dajqnop ąepjos anem creary.

 via Q3 and D5. Q1, R24, D2, 3 and R23
form a simple constant current source which tends to turn Q3 on. ZD3 acts to maintain the base of Q3 at 5V6 above
the output level. By emitter follower ac-

 plied via Q3 and D5 but will come via D4.
\(\wedge 0 \varepsilon+\) sヨliddחS גyvilixnt and \(-5 \vee\) to enable them to cover the guikels ə!!чM asues כ8ełjon indino Xjddns wnu!xeu а!пןоsqe d!эч ш!ч!м
 כI ue pue रiddns 1 og ayl dof woll
 aчt dosp of uoppeu!quos apo!p sauaz
 is supplied with +5 V from IC1 THE VOLTAGE REGULATOR

ICB is the main regulator device in this Su!pajond-jןas e se palpan s! +! !po!ond
 current into or out of this terminal is
 amplifier with a gain of 10 . It also

 \(\checkmark\) in by means of 5 sw2

Fig. 3 How to wire up the range switch and its resistors to the DPM.

Fig. 4 Component overlay. Note some components are mounted off-board.

A side view showing the construction of the PCB.
rails are correct on the PCB. If not, check component polarities and placement. Rotate SW4 through all its positions and check that it reads at or somewhere near zero in all positions. With SW4 in the 10 V range (or a 10 V meter connected at the output) adjust PR2 for 0 V output. Connect a voltmeter to RV2 wiper and adjust RV2 until it reads 2 V 55 with respect to the 0 V rail. Adjust PR3 until the output reaches 25 V 5 (SW4 in 100 V position).

Now connect the voltmeter to RV1 wiper and adjust RV1 until it reads 2 V 55 . Turn RV2 to minimum and connect an ammeter to the output terminals. Advance RV2 a little and a current of between 1 and 2 amps should flow. Adjust PR1 until this current is 1A6.

If all these steps have been accomplished without smoke, the supply should be operational. The only thing left to check is the digital control section. Connect all the data inputs on SK1 to 0 V and connect \(\overline{E N 1}\) to 0 V using the link indicated beside IC4 in Fig. 4. Now, with AO at \(0 \vee\) take EN2 low momentarily. Repeat this with AO high. Now
check that the outputs from IC2 and 3 are at 0 V (IC2 will be 30 mV or so positive). Set SW2 to 'remote' and readjust PR2 if necessary.

Set all the data inputs to +5 V and latch in this new information using A0 and EN2 as in the previous paragraph. Readjust PR3 and (with care) PR1. The unit should now be ready for use. Note, when doing the above procedures it may be advisable to provide pull-up resistors on unconnected inputs.

The A0 line selects the voltage D-to-A converter when low and the current D-to-A converter when high. EN1 could be the select line while \(\overline{E N 2}\) would be the R/W on 6502-type systems, or \(\overline{W R}\) on the Z80 etc. For most applications it is advisable that there should be some means of isolation between the control processor and this unit to prevent earth loops and other undesirable effects; this may well be in the form of opto-isolators. Pads are provided to allow the EN1 link to be repositioned to use the other section of IC1 and gain extra decoding capability, should this be necessary.
\begin{tabular}{|c|c|}
\hline Resistors (all stated) & \(\frac{1}{4} \mathrm{~W}, 5 \%\) except where \\
\hline R1 & 100R 1 W \\
\hline R2,9,21,25 & 1k0 \\
\hline R3 & 390R \\
\hline R4 & 4k7 \\
\hline R5,6 & 47R \\
\hline R7 & 180R 2W5 \\
\hline R8,23 & 3k3 \\
\hline R10,11,13, & \\
\hline 15,17,19 & 10k \\
\hline R12,14,16 & 100k \\
\hline R18 & 82k \\
\hline R20 & 330R \\
\hline R22 & 470R \\
\hline R24 & 120R \\
\hline R26 & 1R0 2W5 \\
\hline R27* & 10k 1\% \\
\hline R28* & 100k \\
\hline R29 & 82k 1\% \\
\hline R30 & 820k 1\% \\
\hline R31 & 8M2 5\% or better \\
\hline *R27 and R & 88 may be replaced with a \\
\hline
\end{tabular} single \(9 \mathrm{k} 11 \%\) resistor

\section*{Potentiometers}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Potentiometers} \\
\hline RV1,2 & 10k linear \\
\hline PR1 & 22 k miniature horizontal preset \\
\hline PR2 & 2k2 miniature horizontal preset \\
\hline PR3 & 47k miniature horizontal preset \\
\hline \multicolumn{2}{|l|}{Capacitors} \\
\hline C1,2 & 10,000u 25 V can electrolytic \\
\hline C3 & 1 u 035 V tantalum \\
\hline C4 & 100n ceramic \\
\hline C5-7 & 220u 63 V axial electrolytic \\
\hline C8 & 100p ceramic \\
\hline
\end{tabular}

Semiconductors
\begin{tabular}{|c|c|}
\hline IC1 & 78L05 \\
\hline IC2, 3 & ZN428 \\
\hline IC4 & 74LS139 \\
\hline 1C5,6 & TL081 \\
\hline IC7 & \(79 \mathrm{L05}\) \\
\hline IC8 & LM317K \\
\hline Q1 & BC212L \\
\hline Q2 & BC182L \\
\hline Q3 & TIP140 \\
\hline D1-3 & 1N4148 \\
\hline D4-6 & 1N5401 \\
\hline ZD1 & 12 V 1W3 zener \\
\hline ZD2 & 30 V 1 W 3 zener \\
\hline ZD3 & 5 V 6400 mW zener \\
\hline LED1 & panel-mounting red LED \\
\hline BR1 & \(200 \mathrm{~V}, 2\) A potted bridge rectifier \\
\hline BR2 & \(200 \mathrm{~V}, 1\) A potted bridge rectifier \\
\hline
\end{tabular}

Miscellaneous
SW1 two-pole mains-rated onoff rocker switch SW2 two-pole miniature changeover toggle switch SW3 two-pole on-off toggle switch(5A@30V) SW4 three-pole four-way rotary switch
FS1 \(\quad 20 \mathrm{~mm} 1\) A fuse
T1 \(\quad 0-12,0-12 \mathrm{~V}, 50\) VA mains transformer
LP1 mains neon indicator
PCB (see Buylines); DPM05 LCD DVM module (see Buylines); PCB plugs and sockets if required (one off 10 -way and two off three-way); 15 way D-range connector (see Buylines); three off screw terminals; three knobs; can capacitor clips; tag strip; transistor mounting kits and heatsink compound for LM317 and TIP140; heatsink (\(2.0^{\circ} \mathrm{C} / \mathrm{W}\)); cable and hardware; case, Newrad type S2/37 (see Buylines).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{POWER DIMIMER MODULES Arange of electronicic modelard dimmers designed to
suit \(y\) vur custom channel and facility requirement} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Remene} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \begin{tabular}{l}
CHASER \(£ 35.70\) \\
LB31000SLC
\end{tabular} & \multirow[t]{2}{*}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{LB31000sL M N} \\
\hline \multicolumn{2}{|l|}{578} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Don't hesitate to write or phone for immediare information. All
post except power dimmer (f1.75). Cheques/PO} \\
\hline \multicolumn{2}{|l|}{el: 01-640 6053 (Mon L 8 B ELECTRONIC 34 Oakwood Ave, Mitch} \\
\hline
\end{tabular}

\section*{HAPPY MEMORIES}
\begin{tabular}{|c|c|c|c|}
\hline Part type & 1 off & 25-29 & 100 \\
\hline 4116 200ns & 0.83 & 0.72 & 0.66 \\
\hline 4116250 ns & 0.75 & 0.65 & 0.60 \\
\hline .4816 100ns For BBC comp & 2.45 & 2.10 & 1.95 \\
\hline 4164 200ns & 4.95 & 4.55 & 4.20 \\
\hline 2114 200ns Low power & 1.15 & 1.00 & 0.90 \\
\hline 2114 450ns Low power & 0.95 & 0.85 & 0.80 \\
\hline 4118 250ns & 3.25 & 2.85 & 2.65 \\
\hline 6116 150ns CMOS & 3.70 & 3.20 & 2.95 \\
\hline 2708 450ns & 2.60 & 2.25 & 2.10 \\
\hline 2716 450ns 5 volt & 2.60 & 2.25 & 2.10 \\
\hline 2716450 ns three rail & 5.75 & 5.00 & 4.65 \\
\hline 2732 450ns Intel type & 3.75 & 3.25 & 3.00 \\
\hline 2532 450ns Texas type & 3.75 & 3.25 & 3.00 \\
\hline
\end{tabular}

Z80A-CPU £4.35 Z80A-PIO £ \(\mathbf{1} . \overline{25}\) Z80A-CTC \(£ 3.25\) 6522 PIA \(£ 3.98 \quad 7805\) res \(\mathbf{0 . 5 0} \quad 7812\) res \(\mathbf{0 . 5 0}\) Low profile IC sockets:
\(\begin{array}{llllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}\)
\(\begin{array}{lllllllll}\text { Pence } 9 & 10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}\)
Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00; 5 inch SSDD £19.25; 5 inch DSDD £21.00; 8 inch SSSD \(£ 19.25\); 8 inch SSDD £23.65; 8 inch DSDD \(£ 25.50\)
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.
Please add 30 p post \(\&\) packing to orders under \(£ 15\) and VAT to total. Access \& Barclaycard welcome. 24 hour service on 1054 422) 618. Government \& Educational orders weicome, \(£ 15\) minimum. Trade accounts operated, phone or write

\section*{ALARNS}

OUR GREAT NEW ILLUSTRATED CATALȮGUE IS PACKED WITH INFORMATION ON SUPERB QUALITY, PROFESSIONAL BURGLAR ALARM EQUIPMENT
AT UNBEATABLE PRICES!

SEND SA.E. DR PHONE NOW
FOR YOUR COPY
THIEFCHECK BURGLAR
ALARM D-HY SYSTEM

A.D. ELECTRONICS DEPT. ETI1 217 WARBRECK MOOR AINTREE LVERPOOL 19 OHUU515 5238440

\section*{PARNDON ELECTRONICS LTD}

Dept. No.23; 44 Paddock Mead, Hartow, Eseer CM18 7 RR . Tel. 027932700 RESISTORS:
made and colour coded.
£1.00 per hundred mixed. (Min 10 per value)
E8.50 per thousand mixed. (Min 50 per value
Special stock pack 60 values. 10 off each \(\mathbf{5 5} 50\)
DIODES: WN4 148 3p each. Min order quantity - 15 ttems
\(\mathbf{E 1 . 6 0}\) per hundred
DIL SWITCHES: Gold plated contact in fully sealed bawe wowe thene
programming problems.
4 Way 86p each 6 Way \(£ 1.00\) each 8 Way \(\mathbf{E 1} 20\) each
DIL SOCKETS: High quality. tow profile sockets
8 pin - 10p. 14 pin - 11p. 16 pin - 12 p. 18 pin - 19p. 20 pin - 21p. 22 pin - 23p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.

\footnotetext{
ALI PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS
MIN ORDER -UK. E1 00 OVERSEAS 55 CASH WITHORDER PLEASE
}

\section*{high resolution - AND LOW COST !}

Either cased or open frames to OEM's. The specification is right, the price is even better.

\section*{Phone or write to our Sales Manager, Richard Cox, for immediate action.}

\section*{CROFTON ELECTRONICS LTD}

35, Grosvenor Road, Twickenham, Middx, TW1 4AD. Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

WTITETM AOUTDO
The firm for Speakers

8
0625529599

35／39 Church Street，Wilmslow，Cheshire SK9 1AS Catalogue－\(£ 1.50\) post free
Lightning service on telephoned credit card orders！

FT．V．SOUND TUNER еurumotsstio

In the cut－throat world of consumer electronics，one of the questions designers apparently ponder over is＂Will anyone notice if We save money by chopp ing this out？＂In the domestic TV set，one of the
 the sound quality．Small speakers and no tone controls are common
this background a
\(\mathrm{T} V\) companies do their best to transmit the highest quality sound．Given this background a compact and independent TV tuner that connects direct to your \(\mathrm{Hi}-\mathrm{Fi}\) is a must for quality compact and ind
This TV SOUND TUNER offers fuh UHF coverage with 5 pre－selected tuning controls．It can also be used in conjunction with your video recorder．Dimensions： \(113 / /^{\prime \prime} \times 8 \frac{1}{2}\)＂\(\times 3 / /^{\prime \prime}\)
E．T．I．kit version of above without chassis，case and hardware．\(£ 12.95\) plus \(£ 1.50 \mathrm{p} \& \mathrm{p}\) ．

\section*{PRACTICAL ELECTRONICS STEREO CASSETTE RECORDER KIT \\ ONLY £31．00 plus \(£ 2.75\) p\＆p．}
＊NOISE REDUCTION SYSTEM．＊AUTO STOP．＊TAPE COUNTER．＊SWITCHABLE E．O．INDEPENDENT LEVEL CONTROLS． －TWIN V．U．METER．．WOW \＆FLUTTH ELECTRONIC SWITCHING．FULLY VARIABLE RECORDING BIAS FOR ACCURATE MATCHING OF ALL TYPES．
Kit includes tape transport mechanism，ready punched and back
orinted quality circuit board and all electronic parts．is，semiconductors，
resistors，capacitors，hardware，top cover，printed scale and mains transtorme
You only supply solder \＆hook－up wire．Featured in April P．E．reprint 50p．Free with kit．

\section*{P．E．STEREO TUNER KIT}

This easy to build 3 band stereo AM／FM tuner kit
is designed in conjunction with Ptactical Electronics July 81）．For ease of construction and align IF System．
IF System． \(\mathrm{FEATURES:} \mathrm{VHF} \mathrm{}. \mathrm{MW} ,\mathrm{LW} \mathrm{Bands}\), FEATURES：VHF．MW，LW Bands，interstation muting and AF Crint PCB Ready made chassis and scale Aerial AM－ferrite rod FM -75 or 300 ohms．Stabilised power
 AM－ferrite＇ C ． upply with \(C\) mains ransforion．All component scale size \(10 \% 2^{\prime \prime} \times 21 / 2^{\prime \prime}\) approx．Complete with diagram and instructions．Self assembly simulated wood cabinet sleeve \(£ 17.95\) Plus \(£ 2.50 \mathrm{p} \& \mathrm{p}\) ．\(£ 3.50\) Plus E 1.50 p\＆p．

\section*{125W HIGH POWER AMP MODULES}

The power amp kit is a module for high power applications－disco units，guitar amplif iers，public address systems and even high power domestic systems．The unit is protected against short circuiting of the load and is safe margin exists by use of generously rated com－ ponents，result，a high powered rugged unit． The PC board is back printed，etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use．Supplied with all parts，circuit diagrams and instructions．
ACCESSORIES：Suitable mains power supply kit with transformer：\(£ 8.50+£ 2.00\) p\＆p
 Suitable LS coupling electrolytic．\(£ 1+25 p p \& p\)

SPECIFICATIONS：
 oltage（DC）：50－80 max．Loads：4－\(=\)－ requency response measured 100 \(25 \mathrm{~Hz}-20 \mathrm{KHz}\) ．Sensitivity for 100 w ： ＠ 47 K ．Typical T．H．D．＠ 50 watts， \(4=-\cdots \mathrm{s}\) \(0.1 \%\) ．Dimensions： \(205 \times 90\) and \(150 \times\) ลニー
\[
0.7 \% \text {. Dimensions: } 205 \times 90 \text { anc } \text { Yax }
\]

KIT
£10．50
£14．25

\section*{BSR RECORD DECK}

Manual single play record
deck with auto return and cueing lever．Fitted with stereo ceramic cart－ ridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco \(£ 12.95+£ 1.75 \mathrm{p} \& \mathrm{p}\) ．
 ette tape heads－\(£ 1.80\) each．Mono：\(£ 1.50\) sach．Erase： \(\mathbf{8 0 . 7 0}\) each．Add 50p p\＆p to order．

\section*{All mail to}

21 EHIGH STREET，ACTON，W3 6NG Note：Goods despatchad ta U．K．pastal addresses only All items subject to availability．Prices correct at \(30 / 10 / 82\) and subjecs to change without notice． Please allow 7 working davs from receipt of order dare their products without notice．All anquiries zend S．A．E．Telechone or mail orders by ACCESS welcom

SPEAKER BARGAINS
2 WAY 10 WATT

\section*{SPEAKER KIT}
\(8^{\prime \prime}\) bass／mid range and \(3^{\prime}=\) weeter．Complete witt．scre Wire，crossover componer
and cabinet．All wood pre－ and cabinet．All wood pre－ Finish－chipboard coverec． wood simulate．size \(14: a^{\prime} x\) \(83 / 4^{\prime \prime} \times 4^{\prime \prime}\) ．PAIR for ONL £ 12.50 plus \(£ 1.75\) p\＆ ．
ALL CALLERS TO： 323 EDGGARE ROAD，
LONDON W2．Telgphone： 01.7238432

\section*{clectromye \\ ELECTRONIC IGNITION KIIS OR READY BUILT}

\section*{IS YOUR CAR AS GOOD AS IT COULD BE?}
* Is it EASY TO START in the cold and the damp? Total Energy Discharge will give the most powerful spark and maintain full output even with a near flat battery.
* is it ECONOMICAL or does it "go off" between services as the ignition performance deteriorates? Total Energy Discharge gives much more output and maintains it from service to service.
* Has it PEAK PERFORMANCE or is it flat at high and low revs. where the ignition output is marginal? Total Energy Discharge gives a more powerful spark from idle to the engines max. (even with 8 cylinders).
* is the PERFORMANCE SMOOTH.The more powerful spark of Total Energy Discharge eliminates the 'near misfires'whilst an electronic filter smooths out the effects of contact bounce etc.
\(\star\) Do the PLUGS and POINTS always need changing to bring the engine back to its best. Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition doesn't affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
Most NEW CARS already have ELECTRONIC IGNITION. Update YOUR CAR with the most powerful system on the market - \(31 / 2\) times more spark power than inductive systems \(31 / 2\) times the spark power of ordinary capacitive systems, 3 times the spark duration.

Total Energy Discharge also features:
EASY FITTING, STANDARD/ELECTRONIC CHANGEOVER SWITCH, LED STATIC TIMING LIGHT, LOW RADIO INTERFERENCE, CORRECT SPARK POLARITY and DESIGNED IN RELIABILITY.
- IN KIT FORM it provides a top performance system at less than half the price of competing ready built units. The kit includes: pre-drilled fibreglass PCB, pre-wound and varnished ferrite transformer, high quality \(2 \mu \mathrm{~F}\) discharge capacitor, case, easy to follow instructions, solder and everything needed to build and fit to your car. All you need is a soldering iron and a few basic tools.
FITS ALL NEGATIVE EARTH VEHICLES
6 or 12 volt, with or without ballast.
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS:
(Older current impulse types need an adaptor).
\begin{tabular}{|c|c|c|}
\hline STANDARD CAR KIT & £15.90 & PLU \\
\hline Assembled and Tested & £26-70 & P. \(q\) \\
\hline TWIN OUTPUT KIT & £24.55 & Prices \\
\hline For Motor Cycles and Cars with twin igni & on syster & include \\
\hline Assembled and Tested & £36.45 & VAT \\
\hline
\end{tabular}

ELECTRONIZE DESIGN
Dept. D. Magnus Rd Wilnecote Tamworth B77 5BY tel: 0827281000

The basic function of a spark ignition system is often lost among claims for longer "burn times" and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.
The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting 2000 uS at 2000 \(\mathrm{rev} / \mathrm{min}\). spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.
The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.
* SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving \(31 / 2\) times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.
\(\star\) HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to store twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
\(\star\) PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.
\begin{tabular}{lcc}
TYPICAL SPECIFICATION & \begin{tabular}{c}
Total \\
Energy \\
Discharge
\end{tabular} & \begin{tabular}{c}
Ordinary \\
Capacitive \\
Discharge
\end{tabular} \\
SPARK POWER (Peak) & 140 W & 90 W \\
SPARK ENERGY & 36 mJ & 10 mJ \\
STORED ENERGY & 135 mJ & 65 mJ \\
SPARK DURATION & \(500 \mu \mathrm{~S}\) & \(160 \mu \mathrm{~S}\) \\
OUTPUT VOLTAGE (Load 50pF, & 38 kV & 26 kV \\
equivalent to clean plugs) & & \\
\begin{tabular}{l}
OUTPUT VOLTAGE (Load 50pF \\
+ 500k, equivalent to dirty plugs) \\
VOLTAGE RISE TIME TO 20kV \\
(Load 50pF)
\end{tabular} & 26 kV & 17 kV \\
\end{tabular}

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

ETI PCB SERVICE Up until now PCBs were always the hardest component to obtain for a projecte of course you could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! Asof this issue \(\mathbf{3}\) / (wol copyright) PCBs will be available automatically from the ETI PCB Service. Eac produced from the same master used to build our prototypes, so you can bestre \$'s aceurate and will be finished is \(_{0}\) the high standard you would exprect from ETI. In addition to the DCBs for this month's projects, we are making available some of the nbre mpular designs from our recent past. See the list belosf for details. Please note that NO OTHERE BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

\author{
APRIL 79 \\ Guitar Effects Unit \\ Click Eliminator \\ JUNE 79 \\ Accentuated Beat Metronome \\ FEBRUARY 80 \\ \(\square\) \\ Tuning Fork \\ MARCH 80 \\ \(\square\) \\ Signal Tracer \\ AUGUST 80 \\ CMOSLogic Tester \\ Capacitance Meter \\ Ultrasonic BurglarAlarm \\ OCTOBER 80 \\ Cassette Interface \\ Fuzz/Sustain Box \\ \section*{NOVEMBER 80} \\ ouch Buzzer \\ Light Switch \\ Metronome \\ 2W Power Amp RIAA Preamplifier Audio Test Oscillator DECEMBER 80 \\ Musical Doorbell \\ Bench Amplifier \\ Four Input Mixer \\ JANUARY 81 \\ \(\square\) LED Tacho \\ \(\square\) Multi-Option Siren \\ \(\square\) Universal Timer \\ FEBRUARY 81 \\ \(\square\) Infra-red Alarm (four boards) \\ Pulse Generator \\ MARCH 81 \\ \(\square\) Engineer's Stethoscope APRIL 81 \\ \(\square\) \\ Musical Box \\ Drum Machine(two boards) \\ Cuitar Note Expander JUNE 81 \\ \(\square\) Mini-drill Speed Controller \\ Antenna Extender
}
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{\[
\begin{aligned}
& £ 2.64 \\
& £ 6.64
\end{aligned}
\]} & \(\square\) LED Jewellery: Cro \\
\hline & \(\square \quad\) Spiral(twoboard \\
\hline & \(\square \quad\) Star(two boards) \\
\hline & \(\square\) Waa-phase \\
\hline \multirow[t]{2}{*}{£3.60} & JULY 80 \\
\hline & \(\square\) System A A-MM/A-MC \\
\hline £2.64 & \(\square\) System A A-PR \\
\hline E2.64 & \(\square\) Smart Battery Charger \\
\hline \multirow[t]{3}{*}{£2.27} & \\
\hline & AUGUST 81 \\
\hline & \(\square\) System A Power Amp (A-PA) \\
\hline £2.64 & \(\square\) FlashSequencer \\
\hline £2.93 & \(\square\) Hand-clap Synthesiser \\
\hline \multirow[t]{2}{*}{£2.87} & \(\square\) Heartbeat Monitor \\
\hline & Watchdog Home Security (two boards) \\
\hline £2.93 & \\
\hline \multirow[t]{2}{*}{£3.27} & SEPTEMBER 81 \\
\hline & \(\square\) Mains Audio Link (three boards) \\
\hline £1.93 & \(\square\) Laboratory PSU \\
\hline E1.93 & \\
\hline £1.93 & OCTOBER 81 \\
\hline £1.93 & \(\square\) Enlarger Timer \\
\hline £1.93 & \(\square\) Sound Bender \\
\hline \multirow[t]{2}{*}{£3.13} & \(\square\) Thermal Alarm \\
\hline & \(\square\) Micropower Pendulum \\
\hline £2.80 & NOVEMBER 81 \\
\hline E2.53 & \(\square\) Voice-Over Unit \\
\hline £2.64 & \(\square\) Car Alarm \\
\hline & \(\square\) Phone Bell Shifter \\
\hline £4.13 & DECEMBER 81 \\
\hline \multirow[t]{3}{*}{£3.31} & \(\square\) Alcohometer(two boards) \\
\hline & \(\square\) Bodywork Checker \\
\hline & \(\square\) Component Tester \\
\hline \multirow[t]{2}{*}{£3.57} & JANUARY 82 \\
\hline & \(\square\) Parking Meter Timer \\
\hline \multirow[t]{2}{*}{£2.65} & \(\square\) Infant Guard \\
\hline & \(\square\) Guitar Tuner(two boards) \\
\hline £2.64 & FEBRUARY 82 \\
\hline £5.60 & \(\square\) Ripple Monitor \\
\hline £3.20 & \(\square\) PestMonitor \\
\hline & \(\square\) IChing Computer(two boards) \\
\hline £2.93 & \(\square\) Moving-magnet stage \\
\hline £3.20 & \(\square\) Moving-coil stage \\
\hline
\end{tabular}

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus

Specialist Publications L.td, 145 Charing Cross
Road, London WC2H OEE. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices subject to change without notice.
Total for boards
Add 45p p \& p
£..........
Total enclosed
0.45
£.........

Signed
Name
Address.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy . steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following:
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw andunderstand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. \(\mathrm{Hi}-\mathrm{Fi}\) and microprocessor/computer
 equipment.

\section*{NewJob?NewCareer?NewHobby?Getinto تlectronics Now!}

\section*{PCB Foil Patterns}

\section*{\(\left(\begin{array}{lll}2-2 \\ 0 & 0 & 0 \\ \text { The firm for Speakers } \\ \hline\end{array}\right.\)}

\section*{Bigger and Better}
the colourful Wilmslow Audio brochure -the definitive loudspeaker catalogue!
Everything for the speaker constructor-kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
* Lowest prices — Largest stocks *
\(\star\) Expert staff - Sound advice *
\(\star\) Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) \(\star\) Ample parking *
Send \(£ 1.50\) for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)
* Access - Visa - American Express accepted * also HiFi Markets Budget Card.

0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

\section*{CNC 10 PCB HOLDER}

Ideal for small scäle production, testing, research, service engineers, education and the home constructor
The CNC 10 has a board capacity of \(8^{\prime \prime} \times 8^{\prime \prime}\) and longer boards (maximum \(8^{\prime \prime}\) wide) may be accommodated since they can project beyond the ends of the rails.
Adjustment of the board rails is extremely simple and they are locked in the desired position by one central locking clamp. A further clamp enables the PCB, when in position, to be rotated through 360 degrees and locked in the required position.
An optional foam pad is available which enables a number of components to be inserted prior to soldering. Pad size \(8^{\prime \prime} \times\) \(8^{\prime \prime}\).

CNC 10 : \(£ 16.10\) INC. VAT
FOAM PAD \& CLIP:
£5.64 INC. VAT
Please add \(£ 1.50\) to cover postage
Available direct from the manufacturer:

\section*{CARLTON NICHOL \& CO. LTD., GOLDKEY INDUSTRIAL ESTATE \\ KELVEDON, COLCHESTER, ESSEX}

\section*{SAVE fff's ON HOME HEATING BILLS}

UNIQUE DIGITAL THERMOSTAT
POSSIBLE FUEL
SAVINGS OF
UP TO \(25 \%\)

Normally manufactured exclusively for the trade. Features: Continuous readout of ambient temp via 3 digit 7 segment display
- LED indicates when pump is in operation \(0.2^{\circ} \mathrm{C}\) Hysterises
- 240v 3A control contacts - Switched set temperature Freeze protection setting

High specification - Simple to calibrate -
 Connect in place of existing thermostat Requires 240v 2VA supply - Kit includes all necessary components, Enclosure, diagrams* and instructions.

\section*{Kit price only \(\mathbf{£ 3 9 . 9 0}\). Assembled Price \(\mathbf{£ 4 9 . 9 0}\)}

Prices include P\&P and VAT
Send cheque or PO to: DICON ELECTRONICS LIMITED Bond Street, Bury, Lancs BL9 7DU Tel 061-797 5666 Telex 665362

\begin{tabular}{|c|}
\hline MONTHLY IN \\
ELECTRONICS TODAY - \\
YOUR OWN 'WHERE TO \\
BUY IT' GUIDE \\
\hline
\end{tabular}

\section*{AVON \\ ANNLEY ELECTRO \\ 190 Bedminster Down Road Bedminster Down, Bristol Tel: 0272632622 \\ Open: Mon-Sat Sam-6.30 pm Wed Sam-2pm}

\section*{BEDFORDSHIRE}

BROADWAY ELECTRONICS
1 The Broadway, Bedford, Tel: 0234213639
Open: 6 days \(9-5.30\). \(1 / 2\) day Thur Specialists in electronic comp
speciansts in electronic components and Acorn computers

\section*{DORSET}
D.J. ELECTRONICS

64 Ensbury Park Road, Bournemouth. Tel: (0202) 515073. Open: Mon-Sat 9am-6pm.

\section*{HERTFORDSHIRE}

\section*{GODDARDS COMPONENTS} 110 London Road, St. Albans.

Tel: St. Albans 64162
Open: Mon-Sat 9.30am-5.30pm (\(1 / 2\) day Thur)
LOOKING FOR
COMPONENTS! HARDWARE!
CASES! TRY YOUR LOCAL
LISTED STOCKIST

\section*{LANCASHIRE}

W. MIDLANDS/WARCS
 STAFFORDSHIRE

ELECTRONIC 105 High St., Wolstanton, Newcastle
Tel: 0782636904
Open: Mon-Wed 9-6, Thurs 9-12 \& 5-7, Fri \& Sat 9-9, Sun 11-2

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

\section*{S. WALES}

CRRDIGAT ELECTROTILS
Chancery Lane, Cardigan,
Tel: Cardigan (0239) 614483
Open: Mon-Sat 10am-5pm. Closed Wed. Electronic components \(\&\) Acorn computer stockist.

\section*{STEVE'S ELECTRONIC SUPPLY CO. LTD.} 45 Castle Arcade, Cardiff

TEL: 022241905
Open: Mon-Sat 9-5.30
For components to computers

\section*{WARWICKSHIRE}

\section*{\(H_{\text {Leitronces }}\)}

Charlotte St, Rugby. Tel: Rugby 78138
Open 5 Days \(10-6\) (closed Wed) Wide range of components and R.S. stockists. 1983 Mail Order Catalogue 75 p

\section*{YORKSHIRE}

ACE MAILTRONIX LTD 3A Commercial Street Batley. Tel: (0924) 441129
Open: Mon-Fri 9am-5.30pm. (Sat 1pm) Retail and wholesale.

\title{
ADVERTISEMENT RATES Semi-Display (min 2 cms)
} \(1-3\) insertions \(£ 10.00\) per cm 4.11 insertions \(£ 9.00\) per cm \(12+\) insertions \(\mathbf{£ 8 . 0 0}\) per \(\mathbf{c m}\) Lineage 35p per word (min 15 words) Box Nos. £2.50 Closing date 1st Friday in the month preceding publication date.
All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Send your requirements and cheque /P.O. to

\section*{E.T.I. CLASSIFIED ADVERTISING, 145 CHARING CROSS RD, LONDON WC2H OEE}

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, \(\mathbf{f 2 . 2 5}\). Developer 35p. Ferric Chloride 55p. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick f1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: SAE \(4 \times 9^{\prime \prime}\). Paralab, Downton, Wilts.

BURGLAR Alarm Equipment. Please visit our 2,000 sq.ft showrooms or write or phone for your free catalogue. C.W.A.S. Ltd, 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

> BIE BAREAMN BOX \(\begin{aligned} & \text { Our Big Bargain Box contains over a thousand components - } \\ & \text { resistors, capacitors, pots, swithes, diodes, zansistors, panels, } \\ & \text { bits and pieces, odds and ends. Al useful stuff - would cost many } \\ & \text { times the price we are asking if bought separately. Approx. weight } \\ & \text { 4lbs. } \\ & \text { ONLY f5.00 inc. post - you're bound to come back for } \\ & \text { another!1! } \\ & \text { ESP }\end{aligned}\) 147A FOUNDRY LANE, SOUTHAMPTON SO1 3LS Lots of surplus bargains on our latest list - send an SAE for your copy now.

CIRCUIT DESIGN, Prototype construction, analogue or Digital, Siangle Circuits or Complete Instruments/Systems. Write A. J. ATTWOOD, C.Eng.. MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082-346) 536.

AERIAL AMPLIFIERS Improve weak television reception. Price f6.70, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

SPECTRUM VENTURE. Exciting new game for the Spectrum (7 games in 1). In colour, with sound and fantastic screen effects, 16 K and 48 K version supplied on one cassette for \(£ 6\). Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

\section*{ATTENTION ELECTRONIC ORGAN KIT BUILDERS}

Shop soiled 60 note plastic keys \(£ 17.25\) 30 note all timber pedal boards \(£ 86.25\) Few only! Mini consoles oak or mahogany £195 ex works including V.A.T. George Sixsmith organ builders, Hillside Organ Works, Carrhill Rd., Mossley, Nr. Ashton-u-Lyne, Lancs. Tel: Mossley 3009

PACK OF TWO BNC 75R PLUGS \(£ 1.20\), 27vdc 4 Pole (Mains 'Continental' type) change over relay \(£ 1.20\). Coax change over relay \(9 v d c\) £4. All prices include VAT \& postage. Send SAE for list AFR Electronics, School Lane, Moulton, Northampton.
T. \& J. ELECTRONICS COMPONENTS Quality components, competitive prices. Illustrated, catalogue 45 p. 98 Burrow Road, Chigwell, Essex.
'STEREOPOWER' - 120 WATT - £10.85. Case + Stereo Controls + Sockets + Data!! Kia, 8 Cunliffe Road, Ilkley. MERRY CHRISTMAS.

WILDERN ELECTRONICS LTD for all microprocessor-based system designs, GPIB interfaces/software, S100 systems using our own CPU (also sold separately). Instrumentation systems, peripheral interfacing. Test/Control equipment, Established 1977, MAPCON consultants. Contact Mr Priestley, Portsmouth 831041.

\section*{MONITOR YOUR PHONE}

Our unique telephone monitor kit connects between the phone line and any cassette recorder and automatically records all incoming and outgoing phone calls unattended - 24 hours a day.
Use it to record important or interesting phone calls, to detect and trace unauthorised phone use, to analyze phone useage, etc.
The kit comes complete with all components, leads plugs. PCB, and attractive case. Send only \(\mathbf{£ 9} 95\) to:

UNITECH (Midlands) Dept ETI FREEPOST
Sutton Coldfield, West Midiands 37428 R (No stamp required)
(Not British Telecom Approved)

LYNX AUDIO PROCESSORS. The Great New Name in Electro-music. Revers E 99.95. Fuzz/Sustains \(£ 19.95\). Programmable Drum Synthesizers (dual channel) £59.95. Autowahs, Phasers and Custom-Built Multimusic Processors. S.A.E. for Brochure to: Lynx Audio Processors, 26 Aldingbourne Close, Ifield, Sussex.

A really compact high performance CCTV camera for only \(£ 130.00\) plus VAT plus P/P, Total \(£ 152.95\). Size 3"x 3"x 9". 240v operation. 1v p-p output. Lens extra.

\section*{CROFTON ELECTRONICS LIMITED}

35 GROSVENOR ROAD. TWICKENHA
MIDDLESEX TW1 4AD
Telephone 01.891 1923/01.891 1513
Telex 295093 CROFTN G
DIGITAL WATCH REPLACEMENT parts batteries, displays, backlights etc. Also reports pubications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen, Bucks, HP15 6SGD

PSU's 5V3 £19.99. 5V5A £26.99. 1-30V 1.5A £26.99. \(5 \mathrm{~A} £ 32.99\). inc. p\&p. S.A.E. Lists. Edwards Electrics, Unit 3, Mill Lane, Bridgwater, Somerset.

EPROMS. Small Surplus Quantity of 2532 Eproms. Brand new, full spec. devices. £ 3.25 each or \(£ 2.95\) each for quantities of 10 or more. Please make cheques payable to 'A1 Systems'. Apply Box No. ETI203. Asp Ltd, 145 Charing Cross Road, London WC2.

HAVEN HARDWARE. Spectrum Fruit Machine \(£ 4.95\). UK 101/Superboard products still available. ZX kits: Repeat Key \(£ 3.95\). Inverse Video £3.45. S.A.E. for built prices/ beeper/keyboard/software details. 4 Asby Road, Asby, Workington, Cumbria.

stock CLEARANCE.

Wirewound Resistors C7, C14, FA75, W24, AW1602, 16ER. Cannon Plugs Sockets JP12, JS12. 74S133, 8284A, 74193, 7483, 74120. Diode 12F40. Static Ram 2102. Amphenol Connectors MS3102A-20-24S, MS3106A-2024P, MS3106A-20-29p. For prices contact Pat Critchfield, Posidata Limited. Telephone 025652741.

COPPER CLAD Double Sided Fibreglass, \(12^{\prime \prime} \times 8^{\prime \prime} .10\) sheets \(£ 6.5\) sheets \(£ 4\). Davron, Box No. E.T.I.202, Asp Ltd., 145 Charing Cross Road, London WC2.

\section*{BRYSTEP ELECTRONICS}

FOR SALE Taylor Instrument. AM Signal Generator Model 68A/17. Hardly used. Offers. Lymm 3127 evenings.

DISCO CONSOLE. Build your own from our plan £2.40. Andrew Burnett, Dept. ETI, 12 Cameron Avenue, Kinross KY137BG.
WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. O Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.
C.C.T.V. SYSTEMS Easily Installed from £225. S.A.E. for details. Roberts Electrical Services, Wigmore Lane, Halfway House, Shrewsbury.

A LASER FOR f120. Complete in cabinet with power supply. Send 50p for details, plus information regarding other Lasers, Holograms, available new and ex-exhibit. DHS Developments, 18 Eldred Road, Workington, Cumbria.

> DON'T MISS THE FEBRUARY ISSUE OF E.t.l. ON SALE JANUARY THE 7th FOR YOUR CLASSIFIED ADVERTISEMENTS RING BRIDGETTE ON 01-437 1002
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{} & f6.50 Post 65 p MINI-MULTI TESTER Deluxe pocket size precision moving coil instrument. Impedance + Capactry - 4000 o.p.v. Battery included. 11 instant tanges
measure: DC volts \(5,25,250,500\) AC volts 10, 50, 500, 1000 . DC amps \(0.250 \mu \mathrm{a}\); 0 250 ma . Continuity and resistance 0 to 600 K ohms. \\
\hline & De-Luxe Range Doubler Model, 50,000 o.p.v. \(£ 18.50 .7 \times 5 \times 2\) in. Post \(£ 1\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
NEW PANEL METERS \(£ 4.50\) \\
\(50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}, 5 \mathrm{ma}\), \(50 \mathrm{ma}, 100 \mathrm{~ms}, 25\) volt. \\
Vu Meter. \(500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}\). Facia \(2 \frac{1}{4} \times 2 \times 1 \frac{1}{4} i n\). Post 65p.
\end{tabular}} & \[
\begin{gathered}
\mathrm{v} \\
\mathrm{v}
\end{gathered}
\] & \\
\hline \multicolumn{4}{|l|}{FAMOUS LOUDSPEAKERS} & \multicolumn{2}{|r|}{Post f2 each} \\
\hline Make & Model & Size & Watts & Ohms & Price \\
\hline Seets & Tweeter & 4 in & & & ¢9.50 \\
\hline Audax & Tweeter & 4 in & 30 & 8 & ¢6.50 \\
\hline Audax & Mid-Range & 4int & 50 & 8 & \(\underline{\mathrm{E} .50}\) \\
\hline Seas & Mid-Range & 44in & 100 & 8 & £12.50 \\
\hline Seas & Mid-Range & 5 in & 80 & 8 & ¢12.00 \\
\hline Goodmans & Woofer & 8 in & 25 & 4 or 8 & ¢6.50 \\
\hline Audax & Woofer & 8 in & 40 & & £14.00 \\
\hline Audax & Woofer & 10 in & 50 & 8 & ¢16.00 \\
\hline Goodmans & 8 HB & Bin & 60 & 8 & £12.50 \\
\hline Rigonda & Fuil-Range & 10 in & 15 & 8 & f5.00 \\
\hline Baker Hi -Fi & Deluxe & 12in & 15 & 8 & ¢14.00 \\
\hline Baker Hi-Fj & Major & 12in & 30 & 4/8/16 & ¢14.00 \\
\hline Baker Hi-Fi & Superb & 12in & 30 & 8/16 & £24.00 \\
\hline Baker P.A. & Group 45 & 12 in & 45 & 4/8/16 & f14.00 \\
\hline Baker Mi-Fi & Auditorlum & 12 in & 45 & 8/16 & ¢20.00 \\
\hline Baker Hi-Fi & Auditorium & 15 in & 60 & 8/16 & \(\pm 34.00\) \\
\hline Baker P.A. & Group 75 & 12 in & 75 & 4/8/16 & ¢18.00 \\
\hline Goodmans & G8 Group & 12 in & 90 & 8/16 & f27.50 \\
\hline Baker P,A, & Group 100 & 12 in & 100 & 8/16 & ¢24.00 \\
\hline Baker P.A. & Disco 100 & 12in & 100 & 8/16 & ¢24.00 \\
\hline Baker P.A. & Group 100 & 15 in & 100 & \(8 / 16\) & [32.00 \\
\hline Baker P.A. & Disco 100 & 15 in & 100 & 8/16 & ¢ 32.00 \\
\hline Goodmans & HPD Disco & 12 in & 120 & & \(\underline{59.50}\) \\
\hline EMI & 450 & \(13 \times 8\) in & 10 & \(3 / 8\) & ¢8.00 \\
\hline Goodmans & HP Bass & 18in & 230 & 8 & \(\mathbf{6 8 0 . 0 0}\) \\
\hline
\end{tabular}
R.C.S. LOUDSPEAKER BARGAINS
 \(51 / 2 \mathrm{in}\). \(£ 3 ;\) Bin. \(£ 3\); 10 in . \(£ 5\); 12 in . \(£ 6\).
\(15 \mathrm{ahm}, 3 \mathrm{in} .5 \times 3 \% \mathrm{in} .6 \times 4 \mathrm{n} .5 \mathrm{in}, \mathrm{£} 2.50 .61 / 2,8 \times 5 \mathrm{in} . \mathrm{f3}\).
BATTERY ELIMINATOR MAINS to 9 VOLT DC Stabilised output, 9 volt 400 m.a. UK made with terminals. Overload cut out. \(5 \times 3 \frac{1}{4} \times 2 \frac{1}{2}\) in. Transformer Rectifier U'int. Suitable Radios. Cassettes. f4.50. Post 50p.
LOW VOLTAGE ELECTROLYTICS
\(1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF}\) 15V 10 p .
\(1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}\).
\(500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} ;\)
500 mF
\(1000 \mathrm{mF} 12 \mathrm{~V} 50 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 1200 \mathrm{mF} / 75 \mathrm{~V} 80 \mathrm{p}\). \(100 \mathrm{mF} 6 \mathrm{~V} 50 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 2000 \mathrm{mF} / 100 \mathrm{~V} \mathrm{E} 1.20 \mathrm{p}\).
220 mF. \(2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 50 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}\).

HIGH VOLTAGE ELECTROLYTICS \(8 ; 450 \mathrm{~V}\) \(\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+50 / 300 \mathrm{~V} \\ 32 / 35 \mathrm{~V} & 75 \mathrm{p} & 20+20 / 450 \mathrm{~V} & 75 \mathrm{p} & 100+100 / 2275 \mathrm{~V}\end{array}\) \(\begin{array}{rrrrr}{[50 / 350 \mathrm{~V}} & 80 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 85 \mathrm{p} & 150+200 / 275 \mathrm{~V} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathbf{f 1 . 8 0} & 220 / 450 \mathrm{~V}\end{array}\)
TRIMMERS 30pF, 50pF 10p. 100pF, 150pF 15p. 500pF 30p. CONDENSERS VARIOUS, 1 pF to 0.01 mF 350 V 5 p . \(400 \mathrm{~V}-0.001\) to \(0.055 \mathrm{p} ; 0115 \mathrm{p} ; 0.2525 \mathrm{p} ; 0.4735 \mathrm{p}\).
\(1000 \mathrm{~V} 0.1 \mathrm{mF} 25 ; 0.22 \mathrm{mF} 30 \mathrm{p} ; 0.47 \mathrm{mF} 60 \mathrm{p} ; 1750 \mathrm{~V} 0.22 \mathrm{mF} 50 \mathrm{p}\). WAFER SWITCHEES. 1 pole 12 W , 2 pole \(6 \mathrm{~W}, 3\) pole \(4 \mathrm{~W}, 4\) pole 3 W ,
WA

SINGLE SOLID DIELECTRIC 100 DF . 500 pF fI .50.
GEARED TWIN GANGS 25pF 95p; \(365+365+25+25 \mathrm{pF}\) f1 SLOW MOTION DRIVE 6:1 90p. REVERSE VERNIER 60p. VERNIER DIALS 36 mm f2.25. 50 mm E2. 75.
SPANDLE EXTENDERS 60 p . COUPLERS 40 p . SPINDLE EXTENDERS GOp. COUPLERS 20 A . RESISTORS. \(10 \cap\) to 10 M . \(1 \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{~L}, 2 \mathrm{~W} 10 \mathrm{p}\).
HIGH STABILITY. \(+\mathrm{W} 2 \% 10\) ohms to 1 meg .10 p HIGH STABLLITY. \(\frac{1}{2}\) W \(2 \% 10\) ohms to 1 meg. 10p Ditto \(5 \%\). Preferred values 10 ohms to 10 :ne
WIRE-WOUND 10 ohrn to 10 K 5 watt 20 p .

 ALUMINIUM BOXES WITH LIDS
 \(10 \times 7 \times 3 £ 3.12 \times 5 \times 3\) £2.75. \(12 \times 8 \times 3 \times 3\) £2.50. BRIDGE RECTIFIER 200 V PIV \(\frac{1}{2} \mathrm{amp} 50 \mathrm{p} .2 \mathrm{amp} \mathrm{E1.00}\).
4 amp E1.50. 8 amp E2.50. DIODES \(1 \mathrm{a}, 10 \mathrm{p}: 3 \mathrm{a}, 30 \mathrm{p}\). 4 amp E1.50. 8 amp E2.50. DIODES 1a, \(10 p: 3 \mathrm{a}, 30 \mathrm{p}\). MINIATURE TOGGLES SP 40p; DPDT 60 p .
THE "INSTANT" BULK TAPE ERASER A C. mains \(200 / 240 \mathrm{~V}\). dieal all Recorders,
Tapes, Discs. Cassettes, Computers.
HEAD DEMAGNETISER PROBE 5.00

\section*{MAINS TRANSFORMERS}
\begin{tabular}{|c|c|c|c|}
\hline 5-8-10-16V & \({ }^{5} 50\) Post & & \\
\hline 6 V 1/ A -16V, \(\frac{1}{2}\) & \({ }^{2} 2.50080 \mathrm{p}\) & 24 V 21 A Twice & ¢8.00 \\
\hline 6-0-6V, \(1 \frac{1}{2} \mathrm{~A}\) & E3,50 £1 & \(20{ }^{2} 1 \mathrm{~A}\) & \({ }_{53} 5300{ }^{\text {E1 }}\) \\
\hline 9 V 250 ma & f1.50 80p & 20/40,60V1A & ¢ 4.50 E1 \\
\hline 9 V 3 A & £3.50 £ 1 & 25-0.25V 2 A & \(44.50{ }^{\text {¢ }}\) \\
\hline 9.0-9V 50 ma & £1.50 80p & 28 V 1 A Twice & \\
\hline \({ }_{10-30-40 V}^{10.0}\) & & \[
30 \mathrm{~V} 11 \mathrm{~A}
\] & ¢3.50 ¢1 \\
\hline \(10-30-40 \mathrm{~V}\)
12 V 100 ma & & \(30 \vee 5 A\) and & \\
\hline 12 V 3 A & \(\underline{\mathrm{E} .50} \mathbf{5 1}\) & \(17-0-17 \mathrm{~V} 2 \mathrm{~A}\)
35 V & ¢4.50 \\
\hline 12-0-12V, 2 A & ¢ \(£ .50 \mathrm{f} 1\) & 35 V 2 A & ¢4.00 \(£ 1\) \\
\hline 15-0-15V2A & ¢3.75 ¢1 & 0-12-27V 2 A & \begin{tabular}{l}
£12.00 \(£ 2\) \\
\(£ 3.50\) £1
\end{tabular} \\
\hline \multicolumn{4}{|l|}{RADIO COMPONENF SPECIALSTS} \\
\hline \multicolumn{4}{|l|}{DEPT. 6, 337 WHITEHORSE ROAD, CROYDON, SURREY, U.K. TEL: 01-684 1665} \\
\hline \multicolumn{3}{|r|}{Post 50p Minimum. Callers Welcome. Closed Wed. Same day despatch. Access-Barclay-Visa. Lists 31p.} & VS \\
\hline
\end{tabular}

USE ELECTRONICS.TODAY INTERNATIONAL'S CLASSIFIED
(35p per word, minimum 15 words. Box Nos. \(£ 2.50\) extra or \(\mathbf{£ 1 0 . 0 0}\) per single column centimetre (min. 2cms) - all prepaid
Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, tó Electronics Today International Classified, 145 Charing Cross Road, London WC2 OEE
\begin{tabular}{l|l|l|l|l|l|l|}
\hline 1. & 2. & 3. & 9. & \\
\hline 6. & 7. & 8. & 14. & 10. \\
\hline 11. & & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Please place my ad in the next available issue of E.T.I.:
Name
Address
Tel. No.
I enclose my cheque/P.O. for the value of \(f\)

Electronic kits for the thrifty!
Build 50 interesting Proiects on a PC Chassis with surplus components from your 'Spares Box'.
EXPERIMENTERS'S PRINTED CIRCUIT KIT Contents: 4 assorted boords to sult the enclosed designs. Etching Powder, Rosist Paint, Solvent, Crystal Sets, Transistor Radios, Transmitters, Amplifiers, intercoms, Radio Controi. Metal Detector. Photoelectric and Ultrasonic Alarms, 'Perpetual Motion', Light 'Beam Teiephone Instruments', Testers, Gadgers, erct. You can build at negigibibe cost with 'Surplus' or reclaimed parts and tran'
sistors you already have. sistors you already have. Price: \(£ \mathbf{£} .50\). Postage and Packing 50p

\section*{PHOTOELECTRIC KIT}

A ki of basic parts to butio a simple infra.Red Sensitive Photoe sistor, Transistors, Diode, Resistors, Connector, Latching Relay, Chassis Board, Case, Screws and instructions.

Price: \(\mathbf{£ 4 . 5 0}\). Postage and Packing 50p

\section*{OPTICAL KIT}

A kit of parts to build an IR folden-beam Projector and Receiver to suit the above kit. Contents: 2
A kit of parts to build an
Lenses, 2 Mirrors, \(2.45^{\circ}\) blocks, infra-Red Filiter, Lampholder, Building Plans.
Price: \(£ 3.70\). Postage and Packing 30p
Both kits together make an excellent Invisble. Beam Burglar Alarm
EXPERINENTAL ELECTRONICS 335 Battersea Park Road, London SW11 4SL Tel: 01-720 2683
Send SAE for full details of all kits and circuits

\section*{Please mention} E.T.I. when replying to all adverts

\section*{ADVERTISERS INDEX}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Ad Elec 87} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Armon Elec 88}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & Aura Sound \\
\hline \multicolumn{2}{|l|}{Bi-Pak 70} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Black Star 76}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{BNOS 76} \\
\hline \multicolumn{2}{|l|}{Bradley Marshall 44} \\
\hline & Calculator Sales \\
\hline & Servic \\
\hline \multicolumn{2}{|l|}{Cambridge Kits 94} \\
\hline \multicolumn{2}{|l|}{Carlton Nichol 94} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Clef Products 59}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Cricklewood.................8,9} \\
\hline & Crimson Elektric 68 \\
\hline \multicolumn{2}{|l|}{Crofton.............................. 87} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Display Elec 74}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Electrovalle.................... 15} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Elkan Elec 88}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Enfield Elec 94} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Europa 66}} \\
\hline & Experimental Elec 98 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Flight Elec 68}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Globin Spec Corp 57 \\
Greenbank.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Happy Memories.............. 87
ICS...................... 82 \\
\hline \\
\hline put Desig \\
\hline Jupiter Canta \\
\hline Kelen Eng 60 \\
\hline L\&B Elec 87 \\
\hline LB Elec. \\
\hline LEM Services \\
\hline Magenta \\
\hline Maplin 100 \\
\hline Marlo Trading................... 76 \\
\hline Manson \\
\hline Memotech50,51 \\
\hline Midwich Co 30 \\
\hline M.J.L. \\
\hline Newnes Tech Books....... 80 \\
\hline Pantechnic \\
\hline Parnoon Elec \\
\hline Pops Components 76 \\
\hline Powertran.........2, 10, 66, 99 \\
\hline Rapid Elec \\
\hline Relay A Quip.................... 94 \\
\hline Riscomp......................... 37 \\
\hline R.T.V.C........................... 88 \\
\hline Sinclair Research48,49 \\
\hline Sparkrite 89 \\
\hline Target Elec 81 \\
\hline Technomatic28, 29 \\
\hline \\
\hline Elec \\
\hline \\
\hline nslow \\
\hline
\end{tabular}
```


[^0]:    To: Powertran Cybernetics, Portway Industrial Estate, Andover, Hants. SP10 3NM. 026464455
    Please send me:
    I enclose a cheque for
    Please charge to my Access/Barclay Card no
    Name
    Address

