

T20＋ 20 －Designed by Texas Engineers，this 20 watt amplifier gives Hi Fi performance at low cost． Many up－dated features and the ideal beginners kit． Complete kit $£ 29.50$ plus VAT （30 watt version－Complete kit £34．50 plus VAT）

LINSLEY HOOD 75 DE LUXE－ 75 watt amplifier with superb performance（less than $.01 \%$ distortion）．Easy construction with virtually no wiring．Complete kit $£ 75.00$ plus VAT．

TRANSCENDENT SOUNDS by POWERTRAN

For over 2000 years man has entertained himself and his friends with music played upon instruments he has fashioned with his own hands．From the earliest pipes of hollow reed in the cradles of civilisation，the brazen trumpets of ancient Rome，to the subtle strings of renaissance Europe．Pleasure in the making－Pleasure in the playing and Pleasure in the listening．
Now－in the 1980＇s its the turn of the electronics age，the age of Powertran．
In our twelve years of research and development we have introduced probably the most comprehensive and sophisticated range of synthesisers and supporting equipment ever offered to the music making，home－constructor．
Each kitis a perfectexample of how craftsman－made components， ingenious design technology，originality of concept－and rigid quality and price control－combine together in kits that are both fascinating and satisfying to construct．Our clear step by step instruction manuals ensure that the kits are well within the capability of the first time builder as well as the dedicated enthusiast．
Once you＇ve made your Transcendent Synthesiser you will be able to make the music of all the ages－from the earliest sounds of the simple pipe，through the most complex harmonies，to the most modern tonalities of Stockhausen．．．．or Steel Eye Span！

TRANSCENDENT POLYSYNTH－A four octave polyphonic synthesise with
outstanding design characteristics and versatility and performance to match，
Complete kit $£ 75.00$ plus VAT（single voice）
Extra voice（up to three more）$£ 42.00$ plus VAgi
EXPANDER－A new matching 4 voice expander to team up with your
polysynth for even a greater range and capability Complete kit f249．00 plus VATI
TRANSCENDENT DPX－Offers a five octave keyboard with power to mate 闌 Two audio outputs（can be used simultaneously）to give harpsichord and piano／honkytonk or reed with strings／brass and both are fully polyphonic．Other features include switchable touch sensitivity and a chorus ensemble unit with strong／mild effect switching．An advanced design made simple with our clearly
laid out instruction manual．
Completekit£ 295.00 plus VAT TRANSCENDENT 2000 －A＇Although only a 3 octave keyboard the＇ 2000 ＇ features the same design ingenuity，careful engineering and quality components buy it，build it－play it！You will know you have made the right choice．

1024 COMPOSER－．Come right up to the minute with this new design．It will control your synthesiser with a sequence of up to 1024 notes－or an equal selection of shorter sequences．The Composer is mains powered with
automatically charged battery to preserve your programme after switch－off． Complete kit $£ 85.00$ plus V／ATMP

DEMONSTRARION TANE－Demonstration tape now available of all three
－PRICE STABILITY：Order with confidence irrespective of any price changes we will honour all prices in this advertisement until the end of the month following the month of publication of this issue（Errors and VAT sate changes excluded）
－EXPORT ORDERS：No VAT．Postage charged at actual cost plus $£ 1$ handling and documentation．
－U．K．ORDERS：Subject to 15% surcharge for VAT，or at current rate if changed．No charge is made for carriage．Cheques，Access，Barclaycard accepted．
－SECURICOR DELIVERY：For this optional service（U．K．mainland only）add $£ 2.50$（VAT inclusive）per kit FREE ON ORDERS OVER £100
－SALES COUNTER：If you prefer to collect kit from the factory，call at Sales Counter．Open 9a．m．－ 12 noon， 1 －4．30p．m． Monday－Friday．

EDITORIAL AND ADVERTISEMENT OFFICE
 145 Charing Cross Raad ${ }_{k}$ London WC2H 0EE. Telephonè 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

DIGEST 11
Computing, hi-fi, test gear, big business small business and funny business.
ZOOM MICROPHONE
. 20
An acoustically cunning design from JVC will allow you to zoom your mike as well as your lens on a video camera. DESIGNER'S NOTEBOOK \qquad 31
Last month we explained all you needed to know about switched capacitor filters - now we have some applications.

CIRCUIT SUPPLEMENT 35
Not only all our usual circuit features and projects, this issue: there's also this eight page supplement, culled from manufacturers' data sheets with the help of copious midnight oil.
DESIGNING MICRO SYSTEMS . . . 46
How to get information into and out of your computer is our topic this month, including a description of handshảking.

BREADBOARD EXHIBITION GUIDE Special pull-out supplement between pages 58 and 59.
CONFIGURATIONS72

Is there a dentist in the house? Ian Sinclair has a sawtooth. (We wish to assure our readers that the article is better than that joke).
READ/WRITE . .83

Matching a big preamp to a little amp, and a little preamp to a big amp, plus where to buy those elusive Curtis chips and the secret of Eric.
AUDIOPHILE87

On the subject of compliance, for which one dictionary definition is an 'unworthy submission': however, this Goldring cartridge is very worthy.
TECH TIPS
.93
More hints and tips from our readers.
INDEX 82
113

PROJECTS

ELCB

25
Which stands for Earth Leakage Circuit Breaker, in case you didn't know; a very useful device for reducing the risk from electric shock.
CORTEX PART 2
Descriptions of the remaining circuitry of our 16-bit marvel, plus constructional details of the main board for those who are into soldering in a big way.
SPECTRACOLUMN .
65
Not just your average sound-to-light unit; this model has a one kilowatt display. Build several and you won't have to worry about central heating this winter.
SERVO ARM INTERFACE 77
Put muscles onto your microcomputer with part 2 of this project, wherein we give the complete details for construction and use.

SIGNAL LINE TESTER

.97
Don't get caught shorted or at a loose end: this tiny addition to your PA system will monitor cables and indicate short or open circuits.
FOIL PATTERNS
102

OVERSEAS AUSTRALIA - Roger Harrison
EDITIONS CANADA - Halvor Moorshead
and their GERMANY - Udo Wittig
EDITORS HOLLAND - Anton Kriegsman

ABC
 Member of the
 Audit Bureau of Circulation

Electronics Today is normally published on the first Fri day in the month preceding cover date. The contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conventions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the Sper written consent of the Company. Onglist Publications Lid All reasonable care is Specialist Publications Ltd All reasonable care is
taken in the preparation of the magazine contents but taken in the preparation of the magazine contents, but
the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press.
\square Subscription Rates. UK $£ 13.15$ including postage. Airmail and other rates upon application to ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR.

INFORMATION

WATFORD ELECTRONICS
33/34 CARDIFF ROAD, WATFORD, HERTS, ENGLAND
MAIL ORDER, CALLERS WELCOME
Tel. Watford (0923) 40588. Telex: 8956095
ALL DEVICES BRAND NEW, FULL SPEC. AND FULY GGURANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEOUE/POS STIUTHONS OFFACIAL ORDERS ACCPTE. TRAE AND EXPORT ENAL N.
WELCOME. PEPADD SOP TO ALL CASH ORDERS OVERSEAS ORDERS PNSTAGE AT COST. AIR/SURFACE. ACCESS ORDERS WELCOME.
VAT
Export ordere no VAT. Applicable to U.K. Customers only. Unless stated otherwis
all prices are exclusive of VAT. Please add 15% tot he total cost including P\&P. We stock thousands more Items. It pays to visit us. We are
Nestest Underground/BA Station: Watford High Strear.
Opan Monday to Seturdey: Open Monday to Seturday: 9.00 am to 6.00 pm . Ample Free Car Parking space available. ELECTROLYTIC CAPACITORS: (Valuas in uF) 500v: 10uF 52p; 47 78p; 63V: 0.47, 1.0. 1.5, 2.2, 3.3, 4.7 8p:
$1010 \mathrm{p} ; 15,2212 \mathrm{p} ; 3315 \mathrm{p} ; 4712 \mathrm{p} ; 6820 \mathrm{p} ; 10019 \mathrm{p} ; 22028 \mathrm{p} ; 100070 \mathrm{p} ; 220093 \mathrm{p} ; 50 \mathrm{~V}: 6820 \mathrm{p} ; 10017 \mathrm{p} ; 220$

 4pp 1 Lu 45p; 2u2 48p; 4u7 58p.
1000V: 1nF 17p; $10 \mathrm{nF} 30 \mathrm{p} ; 15 \mathrm{n}$ 40p; 22n 36p; 33n 42p; 47n, 100 n 42 p .

MINIATURE TRIMMERS Capacitoris
$2-6 \mathrm{pF}$
$2-10 \mathrm{pF}$
$22 \mathrm{p} ; 2-25 \mathrm{pF}, 5-60 \mathrm{pF}$
$30 \mathrm{p}:$

$2-6 \mathrm{pF}, 2-10 \mathrm{p}$
$10-88 \mathrm{pF} 5 \mathrm{p}$.

RESISTOR

RESISTORS Network S.1.L.
7 Commoned; 18 pins $1008,680 \mathrm{~N}, \mathrm{~K} 2 \mathrm{k} 2,4 \mathrm{K7}$,

DIODES

RAM FO BBC MIC 4816 10 22
 225p

 $4118-250$$4164-200$
4330
$2143=\mathrm{C}$
$4816-100 \mathrm{~B}$

夺す!

Walt Disney Productions
Well, there's this person called Sark, that's him up above with the electronic Frisbee, except he isn't really a person, he's a program, and a pretty evil one too, a really nasty piece of code. Then there's this other program, called Flynn, except he's really a person, and he's the good guy, but he's trapped with Sark inside a computer where he's fighting to the death against some video games that he wrote himself. That's Flynn's alter ego down below, called Clu, and he's driving around inside the computer in that art deco tank looking for Invader-like things to zap, except they zap him. Confused? You won't be after the next edition of ETI, where we'll be reviewing Tron, the big Christmas film from Walt Disney and a milestone in moviemaking. Sorry, I forgot about the Common Market and Eurometaphors: it's a kilometrestone
in moviemaking. Stuffed full of computer animation and other clever and unique techniques, plus a lot of video gaming mythology, this is great entertainment.

Almost as great, that is, as our extensive review of as many video games as we can get our hands on, in our 'Buyer's Guide to Conquering the Universe'. This will be just in time to help you make up your mind before the Christmas spending spree, and containing our maximum scores so you can pit yourselves against us. We'll also be presenting all our usual features plus a bumper collection of excellent projects, including a digital stage lighting dimmer and a programmable power supply. You can't afford to miss the January edition of ETI, on sale December 3rd.

Walt Disnev Productions

 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET. Tel: 01-452 0161. TELEX. 914977 CRIKEL G

CRICKLEWOOD - STOCKING PARTS OTHER STORES CANNOT REACHI

 Phono, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 4 \mathrm{~mm}$. Bulgin USA. I.E.C. KNOBS: Plasti, Aluminium, Anodised, Collet, Pointer. for immediate service; no extra charge, no minimum orderSWITCHES: Toggle, Biased, Rocker, Rotary, Slide, Dil, Push. METERS: LCD, Analogue. Test and Aling The Cutrers. Strippers, Trimmers, Cable Cutters. And much, much more In stock items (that's 95\%) posted same day. OFFICIAL ORDERS FROM SCCHOOLS. GOVT
DEPTS ETC WELCOME. OVERSEAS ORDERS WELCOME ICWO OUANTITY
CHICKLWOOD ELECTRONICS LTD., 40 CRICĶLEWOOD BROADWAY, LONDON NWZ 3 IET. TEL: 01-462 0161, Tolax 91497

CORTEX WITH OPTIONAL DISC DRIVES FITTED 16 BIT COLOUR COMPUTER

OPTIONAL EXTRAS
RS232C interface kit
 . $\mathbf{5 9} .20$ Floppy disc interface \qquad 88.60 Pair of $5 \ell^{\prime \prime}$ disc drives \mathbb{G} hardware kit56.00 READY BUILT CORTEX B - Basic machine + RS232C CORTEXC.. 410.00 ..ess.00 All items carrigge frea - prices exclusive of VAT

ALL THESE FEATURES PROVIDED AS STANDARD!

High speed 24 K byte extended basic interpreter Powerful TMS9995 T6 bit microprocessor 48 bit floating point gives 11 digit accuracy High resolution (256×192) colour graphics Memory-mapped video controller for 3D simulation Independent 16 K video RAM
16 colours available on the screen together in Graphic mode
Fast line drawing and point plotting basic commands High speed colour shape manipulation from basic Full textural error messages
String and Array size limited only by memory size Real time clock included in basic Interval timing with 10 mS resolution vía TIC function Named load and save of basic or machine code programs Auto-run available för any program
Powerful machine code monitor

ULTRA POWERFUL 24K BASIC

Assembler \& Disassembler Auto line numbering facility Full renumber command Simple but powerful line editor Buffered i/o allows you to continue executing the program while still printing
Flexible CALL statement allows linkage to machine code
routines with upto 12 parameters
Basic programs may contain spaces between keywords to make programs readable without using more memory 64K RAM using latest technology 64K DRAMS Over 34K bytes available for basic programs even when extended basic includes IF-THEN-ELSE Supports up to 16 output devices Screen and cassette included as standard Supports bit manipulation of variables from basic Error trapping to a basic routine included Basic supports Hexadecimal numbers

DIGEST

Will Industry Standardise on the 3 " Floppy?

Hitachi think it will, and they have launched a new disc drive on to the UK market to cater for the projected demand. Their product is called the Model HFD 306S, and it's pretty small as you can see from the photograph. The recording speed, recording capacity per track and other specifications are claimed to be exactly similar to those of a standard $5 k^{\prime \prime}$ floppy dise driver, so that existing disc controllers can be used to handle it. Single and dual drive units will be available, and they will accept single or double density double-sided discs.

The disc itself will be housed in a rigid plastic case with a sliding metal shutter to protect it
against contamination. While prices have yet to be decided, Hitachi say that both the drive units and the discs will be considerably cheaper than the $5 \frac{1}{}{ }^{\prime \prime}$ equivalents. How long this unit will take to find its way on to the hobbyist scene remains to be seen, but if it lives up to its maker's claims, we look forward to its arrival.

Meanwhile, four other manufacturers - Dysan, Tabor, Shugart and Verbatim - are trying to establish an industry standard for three to four inch discs. Their idea is to create a standard that will accommodate future technological advances rather than just accepting and standardising what is around at the time.

Pac-Man Champ

$T \begin{aligned} & \text { he Under-25 UK Pac-Man } \\ & \text { Champion, } \\ & \text { 16-year-old }\end{aligned}$ Craig Heap, with BBC TV
presenter John Craven, and PacMan (he's the furry one), photographed at the National Finals of the UK Pac-Man Championship held at the Barbican Centre, London on 30 August 1982. Craig's winning score was 14,174.

Scope for a Multiplexer?

Amultiplexing device which A converts a generalpurpose single- or dual-channel oscilloscope into an eightchannel instrument has been developed by GSC. The new Model 8001 multiplexer which functions in the same way as a simple logic analyser minus its memory, and allows simultaneous events on different channels to be compared and displayed in direct relationship to one another. The UK price is $£ 225$.

The instrument allows oscilloscope users to view events occurring synchronously or asynchronously, and the user can observe all eight channels at once or one of two 4-channel combinations. Details from Gobal Specialties Corp, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

Doctoring Your Memory

New from Dataman Designs is the Microdoctor; it can be plugged into your micro in place of the MPU (or clipped in over the MPU with the latter in DMA or RESET mode). The Microdoctor will 'look' around in address space, and report what it finds via the printer. Memory map, data tables, peripheral driving routines can all be located, and if your system is $\mathbf{Z 8 0}$-based, the disassembler can be used to check them. All form of memory, including dynamic RAM can be checked. The Microdoctor costs E295 plus VAT from Dataman Designs, Lombard House, Cornwall Road, Dorchester DT1 1RX, or from retailers.

Easy-To-Use Fuse

A new high performance, low profile fuse mounting system is now available from Littlefuse-Olvis. Designated OMNIBLUCK, the system provides fuse mountings for three different terminal styles, comprising solder type and quick connect blade type for $0.25^{\prime \prime}(6.35 \mathrm{~mm})$ and $0.187^{\prime \prime}(4.78 \mathrm{~mm})$ receptacles. These low height fuse mountings feature a one-piece, high amperage, self-aligning fuse clip/terminal design which eliminates resistance build-up and allows for operation at high current levels of up to 30 amps. They come in one through 12 pole units with individual pole barriers to prevent clip damage and provide electrical protection. Standard colour is grey but optional colours are available to special order including blue, green, red, white, black or yellow. In addition, two different style clip types can be supplied for circuit identity or polarisation as well as an anti-rotation boss device for single pole units only. For further information contact LittlefuseOlvis, Crowther District 3, Washington, Tyne \& Wear NE38 OAH.

Big Ni-Cads

The new 15 range of nickel cadmium general purpose cells from Chloride Alcad Limited, of Redditch, will provide standby power where essential loads are required to be maintained for 24 hours or longer. Ampere hour capacities range from 525 to 1,300 and a battery capacity of several thousand ampere hours can be provided if cells are connected in parallel. Chloride Alcad Limited, Union Street, Redditch, Worcestershire B98 7BW, England. Tel: 052762351

MULLARD SPEAKER KITS

Purposefully designed 40 watt R.M.S. and 30 watt R.M.S. 8 ohm apeaker aystems recently developed by MULLARD'S speciallat teom in Belglum. Kits comprise Mullard woofer f $^{\prime \prime}$ or $5^{\prime \prime}$ I with foam surround and aluminium voice coil. built and tested crossover based on Mullard circuit, combining low loss components, glass fibre board and recessed loudspeaker terminals. SUPERE SOUNDS AT LOW COST. Kits suppliad in polystyrene packs complete with instructions. 8- ${ }^{4} 0 \mathrm{~W}$ system - recommended cabinet size 240 $\times 216 \times 445 \mathrm{~mm}$
Price 114.80 each $+\mathbf{t 2 . 0 0} \mathrm{P}$ \& P
5^{n} 30W system - recommended cabinet size $160 \times 17 \times 295 m$

Deaigner approved flat pack cabinet kits, including grill fabric. Can be finished with iron on veneer or self adhesive vinyl etc.

STEREO CASSETTE TAPE DECK MODULE
Comprising of a top panel and tape mechanism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet of builh and tested. Foatures: Three type keys, record, rewind, fast forward, play, stop and gject. Automatic record leval contrord, play, stop and secondary inputs for stereo microphones.
 chamnels. Output 400 mV to both left and right hánd ratio: 45 dB . Wow and flutter: 0.1% Signal to nolee requirement: 18 V DC at 300 mA . Connections: The requirementa: 18 DC at 300 mA . Connections: The ien and right hand stereo inouts and outputs are via (phono sockets provided), Dlmenaions: Top panel 5 ty x Ilin. Clearance required under top panel $2 t_{i m}$.
Suppliod complete with circuit diagram and connecting Suppliod complete with circuit diagram and connecting
diagram. Attractive black and silver finish. Price $28.70+\mathbf{2 7 . 5 0}$ postage and packing. Supplementary parts for 18 V D.C. power supply
(transformer, bridge rectifier and smoothing capacitor) (transformer, bridge rectifier and smoothing capacitor)
E 3.50

6 piano type keys
NEW RANGE QUALITY POWER LOUDSPEAKERS ($15^{\prime \prime}, 12^{\prime \prime}$ and $8^{\prime \prime \prime}$. These loudspeakers are ideal for both hi-fi and disco applications. Both the 12 and 15 and aluminium centre domes. All three units have white speaker cones and are fitted with aitractive cast aluminium (ground tinish) fixing escuicheons. Specificat on and Price:
15" 100 watt R.M.S. Impedance $80 h m$ 59 oz magnet. 2" aluminium voice coil Resonant Frequency $20 \mathrm{H}_{2}$ Frequency Response to 2.5 KHz . Sensitivity 97 dB , Price f 32 each E 3.00 Packing and Car-
niage each

12" 100 watt R.M.S. Impedance $8 \mathrm{ohm}, 50 \mathrm{oz}$ magnet. 2 aluminum voice coil Resonant Frequency 25 Hz zrequency Response to 4 KHz . Sensitivity 95 dB . Price f23.70 each. E 3.00 Packing and Carriage each.

8' 50 watt R.M.S. Impedarice 8 ohms, 20 ozz , $1^{\prime \prime 2}$ aluminium voice coil, Resonant
Frequency 40 Hz . Frequency Response to $6 K \mathrm{~Hz}$, Sensitivity 92 dB Also avaithle with Frequency 40 Hz . Frequency Response to 6 KHz , Sensitivity 92 dB . Also available with black cone fitted with black metal protective grill. Price: White cone $\mathbf{f 8 . 9 0}$ each. Black
conelgrill f9.50 each. P \& P $\{1.25$ each. conagrin f9.50 each. P \& P 1.25 each.
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coill of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up
 SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3' round with protective wire mesh, ideal for bookshelf and medium sized Hi-fi speakers. Price $\mathbf{f 3} \mathbf{4 5}$ each.
TYPE 'B' (KSN1005A) 3 $\frac{1 / 2}{2}$ " super horn For general purpose speakers, disco and P.A systems etc. Price $\mathbf{5 4 . 3 5}$ each.
TYPE 'C' (KSN6016A) 2' * 5 ' wide dispersion horn. For quality Hi-fi systems and quality disens erc. Price $f 5.45$ each.
TYPE 'D' (KSN1025A) 2' $\times 6^{\prime}$ ' wide dispersion horn. Upper frequency response retained extending down to mid range $\{2 \mathrm{KHz}$). Suitable for high quality Hi-fi systems and quality

TYPE 'E' (KSN1038A) 3\%" horn tweeter with attractive silver finish trim. Suitable for $\mathrm{H}_{1}-\mathrm{fi}$ monitor sysiems etc. Price f4.35 each.
TYPE 'F' (KSN1057A) Cased version of type ' E '. Free standing satellite tweeter. Perfect add on tweeter for conventional loudspeaker systems. Price $£ 10.75$ each.
UK. post free (or SAE for Piezo leafiets).

1000 MONO DISCO MIXER

 A supert fully bultt and tasted mixer/pre-amp with integral power supply. 4Inputs 2 turntables \{ceramic certidgel. Aux. for tape deck etc., plus Mic. with
owerride switch all with individual level controls. Two sets of active tone controts override switch, ell with individual level controls. Two sets of active tone controis (bass and treble) for Mic. and main inputs. Master volume control. Monitor output
with select switch and voiune control. Outpute Main 750 mV Montor 500 m
Size $221^{\prime \prime} \times 47^{\prime \prime} \times 21^{\circ}$.
Prompt Deliveries
VAT inclusive
prices
Audio Equipment
Test Equipment
by Thandar and Leader

1K.WATT SLIDE DIMMER

- Controls loads up to 1 KW

- Compact size
$43 / 4^{\prime \prime} \times \frac{13^{\prime \prime}}{16} \times 21 / 2$
- Easy snap in fixing through panel/cabinet cut ou
- Insull

Full wave control using 8amp triac

- Conforms to BS800

Suitable for both resistance and inductive loads Innumerable applications in industry, the home, and discos/ hearres etc
Price: f 11.70 each +50 p P\&P
(Any quantity)

BSR P256 TURNTABLE

P256 turntable chassis S shaped tone arm - Belı driven - Aluminium platler Precision calibrated counter balance - Ants. skate (bias device) - Damped cueing lever - 240 volt AC operation (Hz) - Cut-oul template supplied - Completely manual amm. This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are

$$
\text { Price: } \mathbf{f 2 8 . 5 0}+\mathrm{f}^{2} 20 \text { P\&P }
$$

100 WATT R.M.S. AND 300 WATT R.M.S. MODULES
Power Amplifier Modules with integral toroidal ransformer power supply, and heat sink. Supplied as one complete buift and tested unit. Can be fitted
in minutes. An LED Vu meter is available as an optional extra.
SPECIFICATION:
Max Output Power: 110 watts R.M.S. (OMP 100)
310 wata R.M.S. (OMP 300) Loade: Open and short circuit prooi. 310 - 16 ohms. Loada: Open and short circuit proof. 4-16 ohms.
Frequency Responiwe: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$. requency Responie: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$. 50 mV at 10 K (OMP 100) $\quad 1 \mathrm{~V}$ at 10 K (OMP 300)
T.H.D.: T.H.D.: Leas than 0.1

Slzet: OMP $100360 \times 115 \times 72 \mathrm{~mm}$

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS svstem 8ohms Build a quality 60 watt R.M.S. system.
$\star 10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$

* $3^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
* 5^{*} Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
- 3 -way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz

Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ Fitted with attractive cast aluminium fixing escutcheons drit mest protective grills which are styling. Can be mounted dirccily on cabinet with or without conventional speaker fabrics All three units have aluminium centre domes and rolled foam surround. Crossover com. bines spring-loaded toudspeaker terminals and ecessed mounting panel
Price $£ \mathbf{2 2 . 0 0}$ per kit $+£ 2.50$ postage and pack ing. Availatile separately. prices on request.

12 ' 80 watt R.M.S. loudspeaker
A superb general purpose twin cone loudspeaker. 50 oz. magnet. ${ }^{2}$ aluminium voice coil. Rolled surround. Resonant frequency 25 Hz . Frequency response to 13 KHz . Sensitivity 95 dB . Impedance 80 hm .
Attractive blue cone with aluminium Attractive b
centre dome. centre dome. Price £17.99 each + £3.00 P\&P

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Flashy New
 Portable

Anew portable computer is being introduced into the UK by Epson, a Japanese manufacturer well known for its dot matrix printers and LCD displays. The computer, the HX 20 , is designed to be used anywhere, anytime. About the size of an A4 notepad, it is claimed to offer computing power and capabilities comparable to many desk-top computers.

Language is an extended version of Microsoft BASIC, operating from a 32 K RAM (expandable to 72K). Standard memory is 16 K , expandable to 32K, but just under 4 K is taken up by the operating system, leaving 12.6 K and 28.6 K respectively. Keyboard is full size ASCIIencoded, with $\mathbf{1 0}$ special function keys.

To those of you who remember as far back as October, the LCD display may look familiar. It can display four lines of 20 characters at any one time; however, there is a virtual screen
area of 255 lines by 255 characters that the real screen can be used to window. There is scope for the use of a CRT as a monitor.

Finally, there are the integral micro-cassette tape deck and dot matrix printer - fairly standard items in themselves but useful to have on board. The whole system is powered by four nicads that give a total typical operating time of $\mathbf{4 0}$ hours, and are rechargeable from the household supply.

The HX 20 is expected to be hitting the shops around the new year at a cool $£ 500$ or so.

Shorts

- From November 1st, viewers in the LWT and Thames area will be able to receive a 100 -page local teletext service. There are already local services operating in the STV and Channel areas.
- Just published by Northwood Books: Cipher Systems, the Protection of Communications, by Henry Becker and Fred Piper. It's all about cryptology, and no, you should be able to read ETI without it.
- Over fifteen million US homes will have roof-top direct broadcast satellite terminals by the end of the decade, predicts a report from International Resource Development Inc. The report goes on to say that the likely price will be $\$ 350-\$ 500$, and that only the largest equipment manufacturers will be able to compete at this cut-throat price.
- The dotty display (made by Epson) featured in Digest, October is available from Norbain Displays Ltd, Norbain House, Arkwright Road, Reading, Berks, RG2 0LT, and from Datac Ltd, Tudor Road, Altrincham, Cheshire WA14 5TN.
- While we're on the topic of Norbain, they tell us that they have started selling Vactec discrete phototransistors, photodarlingtons, and matched GaAs LED/sensor pairs.
- Sifam have launched a new range of test equipment including a low-cost DMM and a digital logic probe. Sifam Ltd, Woodland Road, Torquay, Devon TQ2 7AY.
- Ross Electronics, 49/53 Pancras Road, London NW1 2QB have just issued a new catalogue, containing their ranges of microphones, leads, intercoms, headphones, multimeters, cassette tapes and other goodies.
- Another new catalogue, this time from Draper Tools. At £6.50, it's a bit pricey for the hobbyist (the Ross cat is free).
- Why can't all suppliers make their catalogues free - there are even some people who think their's is a magazine, believe it or not. Luckily, Bernard Babani Ltd have resisted the urge to turn their catalogue into a book, even though they publish plenty of the latter in subjets that would be of interest to ETI readers. Oh yes, the cat is free, from Bernard Babani Ltd, The Grampians, Shepherds Bush Road, London W6 7NF.
- Thandar have introduced a prescaler for use with the TF100 frequency meter. It will extend the upper frequency limit of the counter to 1 GHz . Called the TP1000, the unit costs $£ 65$ plus VAT.
- Philips have launched a twiceyearly magazine for business systems users; it's called 'Connections', but, so far as we can see, it, doesn't have anything to do with either James Burke or John Julius Norwich.
- Crunchie bars to be computerised - official. Ferranti Computer Systems will be supplying the hard and software to monitor the production line of this computerised confectionery.
- Is electronics all hot air? Cooper Tools have just unveiled a new soldering or desoldering tool that uses hot air rather than a bit to heat the job. Cooper Tools Limited, Sedling Road, Wear, Washington, Tyne \& Wear NE38 9BZ.
- NEC Electronics Ltd have developed a 1 megabit mask ROM; the device should be available in the UK this autumn.
- FREDs (fast recovery epitaxial diodes - bet it took quite a lot of head-scratching to think of a product with that acronym) are being produced by Siemens litd. Reverse recovery times are claimed to be better than 35 nS .
- Yet another catalogue, this time from Aries Electronics, Eastways, Witham, Essex, CM8 3YQ; this one's full of sockets and DIP switches and jumpers.
- British Telecom have placed a firm order for 8,600 Cardphones (the type that uses bits of plastic rather than real money). It seems that the old style of 'phones can't take the money off you fast enough.
- Read/Write ROM? Surely some mistake? No, the unit in question is from Camel Products, and is a two kilobyte RAM with battery support (for when your computer is switched off) and function switches so that the memory can be written to, then further write operations locked out. The battery allows several years of data retention. It's available for $£ 29.95$ inclusive, from Cambridge Microelectronics LItd, One Milton Road, Cambridge CB4 1YU.

Inexpensive 'Scope

A $\begin{array}{ll}5 \mathrm{MHz} & \text { oscilloscope for } \\ £ 115.72 & \text { plus VAT? New }\end{array}$ $£ 115.72$ plus VAT? New, via Verospeed, from Trio is the CO-1303D with DC to 5 MHz bandwidth and a sensitivity of up to 10 mV per division. With direct access to the deflection plate terminals, the 'scope can be used at higher frequencies. There is also a 10 MHz dual-beam version at $£ 249.65$ plus VAT. Details from Verospeed, Stanstead Road, Boyatt Wood, Eastleigh, Hants SO5 4ZY.

Digital Noise Source

Using entirely digital techniques, the DNS03 digital noise source developed and manufactured by Marconi Space and Defence Systems produces a true random digital output. The device, produced as a metal case thick film hybrid measuring 1.3" $\times 1.0^{\prime \prime} \times 0.2^{\prime \prime}$, is extremely versatile and is claimed to overcome the problems of existing noisesources based on noise diodes.

The device will operate at any supply voltage between 4 volts and 15 volts and typical consumption at 5 volts is 2 mA . A disable control reduces this consumption yet further permitting its use in battery powered equipments. The hybrid will operate over the full military temperature range of $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. For further information contact: Marketing Department, Military Communications Division, Marconi Space and Defence Systems, Brown's Lane, The Airport, Portsmouth, Hampshire, PO3 5PH.

Computer Talk

Talking computers, whaf will they think of next? Using the Votrax SC-01 IC, the ADS Synthetalker is an IEEE 696/S-100 compatible speech synthesis board. Available from Appledore Electronics, you have the choice of bare board and IC, or kit, or fully assembled and tested versions. Details and data are available from Appledore Electronics (see ads index).

Another entry into this field is from DCP Microdevelopments Litd, who have introduced a speech unit for the ZX81. Designated the DCP Speech Pack (hard to remember, that one), it plugs straight into the back like so many of the Sinclair add-ons, and costs a princely $£ 49.95$ including VAT and p\&p. (A Spectrum adapter is available for $£ 2.95$.) DCP Microdevelepments Ltd, 2 Station Close, Lingwood, Norwich NR13 4AX.
(PS: Neither of these suppliers mention whether their units have an American or English accent!)

100 FREE PROCRAMS FROM SILICA SHOP - WITH EVERY PURCHASE OF AN

ATARI PRICES REDUCED!
We at Silica Shop are pleased to announce some fantastic reductions in the prices of the Atari 400/800 personal computers. We believe that the Atari at its new price will become the U.K.'s most popular personal computer and have therefore set up the Silica Atari Users Club. This club already has a library of over 500 programs and with your purchase of a 400 or 800 computer we will give you the first 100 free of charge. There are also over 350 professionally writen games and utility programs, some are listed below. Complete the reply coupon and we'll send you full details. Alternatively give us a ring on 01-301 1111 or 01.3091111

400/800 SOFTWARE \& PERIPHERALS

Don't buy a T.V. game' Buy an Atari 400 personal computer and a game cartridge and that's all you'll need. Later on you can buy the Basic Programming cartridge (f35) and try your hand at programming using the easy to learn BASIC language. Or if you are interested in business applications, you can buy the Atari 800 + Disk Drive + Printer together with a selection of business packages.
Silica Shop have put together a full catalogue and price list giving details of all the peripherals as well as the extensive range of software that is now available for the Atari $400 / 800$. The Atari is now one of the best supported personal computers. Send NOW for Silica Shop's catalogue and price list as well as details on our users club
THE FOLLOWING IS JUST A SMALL SELECTION FROM THE RANGE OF ITEMS AVAILABLE:

FREE LITERATURE

I am interested in purchasing an Atari 400/800 computer and would
ike to receive copies of your brochure and tesl reoors as well as ike to receive copies of your brochure and test reports as well as
your price ist covering all of the available Hardware and Software.
Neme
Addrese.

Postcode

NEWS:NEWS:NEWS:NEWS:N WWS:NEPS:NEWS

Quite Dishy

A new small-dish aerial hoisted on to the roof of a British Telecom building in the City of London, will be the first to be shared between a number of users. The aerial and its associated equipment will be used in further trials of British Telecom's SatStream - a satellite-based X-Stream digital service which is to be offered to UK businessmen in 1984 to provide specialist private communications within the UK and to Europe. It will subsequently serve in this location as one of the first SatStream smalldish terminals in commercial service. SatStream will offer three main benefits to its users:

- flexibility: service can be introduced at very short notice and expanded or reconfigured equally quickly
diversity: digital operation allows many different services, such as speech, telex, facsimile or data, to be integrated on the same transmission path while advanced services can be added quickly at comparatively little extra cost
- multi-destination broadcasting: of particular advantage for oneway information flow, such as news dissemination to branch offices for local distribution.

Trials of SatStream began last year with the aim of proving the service, and of creating a solid base of installation and operational experience on which British Telecom can draw when establishing a commercial service early in 1984. To provide such a service, small-dish aerials, from 3.7 to 5 m (12 to 17ft) in diameter, would be installed at rooftop level on or near customers' premises. While a single terminal may be dedicated solely for a particular customer's use, it is pro-
bably that in City centres where demand is likely to be concentrated they will be shared between several users. This would help to spread the cost.

The new 3.7 m aerial hoisted into position last weekend will provide British Telecom International - the division of British Telecom marketing SatStream - and its users with valuable first-hand experience of shared use. Trials are expected to start in a few weeks' time. The first organisations taking part will be mainly multinational, engaged in news disemination and in the oil and chemical industries. They will use the dish aerial simultaneously to communicate between offices in London and in other European cities. Experimental activities are likely to include videoconferencing and integration of a variety of services. Each user will have its own dedicated link to the aerial.

The trials will be conducted using Europe's orbital test satellite (OTS). When they are completed, the equipment will be modified to enable the aerial to work to one of the satellites to be used for commercial service - the European Communications Satellite (ECS) or Telecom 1, a French government project. It will then serve as one of SatStream's strategically located earth stations.

The first small-dish trials involved an international newspaper, providing a digital link used to transmit facsimile pages for printing its European edition. More recently small-dish terminals were installed at University College, London, and at Cambridge and Loughborough universities, for Project Universe, and experiment in computer communications by satellite.

New 'Phones from AKG

The 'phones pictured above are the K1 (yes, they really do fold up like pieces of garden trellis); they're claimed to give hifi performance and should sell for around $£ 17.25$ inc VAT. The K4
phones are the super-fi versions, and have a slightly more conventional headband. However, they'll set you back about $£ 62$. AKG Acoustics Limited, 191 The Vale, Acton W3 7QS.

First Plastic Packaged 10-Bit A/D Converter?

Eerranti Electronics has Fintroduced the ZN432E believed to be Europe's first 10-bit converters to not need a ceramic package, with the attendant expense of both ceramic and gold materials. Now Ferranti Electronics has developed a new moulded packaging technique which results in the price of the ZN432E being less than half that of its ceramic equivalent.

The ZN432E operates over the commercial temperature range $\left(0-70^{\circ} \mathrm{C}\right)$ and is available in a 28-pin D.I.L. moulded
package. A conversion time of $20 \mu s$ is guaranteed, with no missing codes. The device is TTL/CMOS compatible and includes an on-chip 2.5 volt reference.

Full details of this and all of the Ferranti Electronics range of monolothic data converters can be obtained from the Publicity Department, Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham, Lancashire, OL9 8NP. Tel: (061) 6240515.

AUPIO GLECTRONICS

 RETAIL • MAIL ORDER • EXPORT • INDUSTRIAL • EDUCATIONAL

DIGITAL MULTIMETERS
All models complete with leads and batterles
2010 A LEO 31 range. 10 A AC/OC basic 0.1% (Sabtronics) $\mathbf{8 8 1 . 5 0}$ TM353 LCO 27 range 2A AC/DC batic 0.15% (Sinclair) E86.25 2015A LCD 31 range 10A AC/DC
basic 0.1% [Sabtronics]
E89.50 TM351 LCD 28 range 10A AC/DC basic 0.1% (SInctalr) $£ 113.85$ 2001 LCD 28 range plus 5 range capicliance meter 10A AC/DC basic 0.1\% (Paniec) £108.00 TM451 4 $1 / 2$ diglt LCO every lacillty and function 0.02% basic (Thandar)
£.171.00 1503A 43/4 digit LCD 30 ranges 10A AC/DC MHZ counter 4 KHZ ose. 0.05% basic (Thurlby) $\mathbf{1 5 0 3 4 1 7 1 . 0 0}$ 1503HA As above but 25A and 0.03% bas ic

ANALOGUE MULTIMETERS - GENERAL RANGE

Low cost relistie meters (All supplied with batis/leads) (UX C/P 55p)
BANAMA 15 range pocket $20 \mathrm{~K} /$ Volt plus cont. buzzer [illus] $\mathbf{E 2 0 . 6 4}$ ET102 14 range 2K/Volt pocket 55.85 87511 range pocket 4K/Volt E8.50 M3aente 10 range plus His 10.95 20k/Volt
£1295 KRTEOO1 18 range 10 amp DC 57303Th 21 range plus Hie Test 20K/Volt $£ 16$ Hfe Tester $\quad £ 17.50$

TMK500 23 range plus 12A OC plus cont. buzzer $30 \mathrm{~K} / \mathrm{Volt}$ 68 m 36 range large scale $\mathbf{2 3 . 9 5}$ AC/DC $50 \mathrm{~K} / \mathrm{Voll}$ scate 10a $\mathbf{8 2 8 . 5 0}$ 36 DTR 23 range large scale 10 AC/DC His fast 50 meg ohm. IKV AC/DC IOOK/Volt E36.95
Choose from UK's fargest range

GENERATORS $\mathrm{r} . \mathrm{C} \star$ Puise \star \&F Function \star Audio

(UK C/P \& 1)

All modeds $220 / 240 \mathrm{VaC}$
AuDro 4 band 3 ine/SO output
TE220Max distortion 1\% 20h2/
${ }^{2} \mathbf{C O O K K M Z}$ M
LaG27 Mx x diltorito $0.5 .1 \%$
LLEADEEA1 10 Hz -1IM HZ Latiz2A 5 band 1001 - 1 MHz Sine/ $80.0 .05 .0 .8 \%$ dift. $\quad £ 146.00$ LAE 125 Az LAGI 120 A but 0.02% \%

 Bf (All
owtput)
TE200 100 KHZ - 109 MHZ 6 band
1300 NHZ harm) - 100 mHZ 6 band
E49.85 L\&E17 100 KHZ . 150 mHz (450mHZ harm) LEADER (450mHZ harm) LEADER £71.30
 200.00 TE100 1HZ - 100KHZ [THANDAR) 80.85 TG102 0.2HZ - 2MHZ (THANDAR) 2166.75

PULSE
TG105 5HZ - 5MHZ Various outputs (THANDAR) £97.75 4001 Ulitra-variable 0.5 HZ . 5 MHZ (GSC)
Also \ln siock
LOM170 20H2-20KHZ distortion neter E281.75 F61300 0.002HZ-2MHZ \&weep unction generator E377.20 SE231 100MH2 FM signal generitor CR740 RES/CAP/IND Bridge VT72 FET multimeter \quad E171.35 checker E147.20 LTC907 Signal injector/tracer and transistor checker $£ 173.65$

100 KHZ TO 30 MHZ
6 Band Trio AF Generator.
Int/Ext maO. Varlable $0 / \mathrm{P}$ to 100 mV Am In 400 HZ MOO.
 Ssaneriots
 AG202A matching 20 HZ to 200 KHZ Audio Ganarator e 78.00 inc. VAT (UK C/P £2)

analogue

MULTIMETERS

PROFESSIDMAL RANGE (UK C/P £.1.20) All fasturing AC/DC Volts/Currant and Ohms ranges with Batts/lesd Majon 20K 29 range 20K/V. 21/4A DC $121 / 2 A$ AC (PAMTEC) E33.90 MAJOR 50K 29 range 50k/V. 21/2 DC I21/2A AC IPANTECI £40.25 PAK3001 34 range 40K/V. 5A AC/DC 50 Meg. (PANTEC) 559.80 Also 500 KHZ - 500 MHZ signal injector and 3 range cap. meler
PAN3003 42 range 1 Meg/V. 5A
AC/DC I JA FSD (PANTEC) EE6.70 Protection Mrrer Setectronic
Profection mirror Scaies]

GENERATOD

MC101
8 paltarns/dois/IInes atc. Buill in
niends Pal B UHF only. Complete
with charger. case und leads.
£147. 00

VARIABLE

POWER

SUPPLIES

Mains input - Volts. Amps meter YUK C/P E1 p/I amp $12 / 24$ Voli. PP243 0/12. 12/24 Vall. 0/3 3mp.
PS1307s

DIRECT READ

 tEMPERATURETM $301-50^{\circ} \mathrm{C}$ to $\cdot 750^{\circ} \mathrm{C}$ with batiery and thermocouple £68.43

DIRECT READ HV PROBE

(UK C/P 65P)	$0 / 40 \mathrm{KV}: 20 \mathrm{~K} / \mathrm{Volt}$
E 18.40	

OSCILLOSCOPE PROBE KITS UKC/P 50p per 1 to 3	
BnC plive X_{1}	87.95
$\times 1 . \times 10$	ع810.50
$\times 100$	E16.95

DECADE BOXES

HSE 232 value fests. box. 1 hm
to 4 Meg . E 18.5

CLAMPMETER
8/IK 0/300A: 600V A
$0 / 1 \mathrm{~K}$ ohm: 9 ringes

LOW COST DIGITAL MULTIMETERS
34/ DIEIT LCD HAME HELD DIMN's: (SW = sidide switch: PB = push butten: RS = rotary) (madels * with carry case) UK C/P 65p all models

*KD2 (SW)

(SW) 13 fange D.2A OC 2 mapohm *KD30C 28 fange IA AC/OC 200
 mepohm (h8) 41.50 ${ }^{-}$-01 28 Range 2A AC/DC 20 megethm (PB) $\quad \mathbf{2 3 8 . 5 0}$

DSBLLLOSCDPES (UK C/P Fingle trace es ea.

HN307 Single trace 10MH2 5mV:0.5 micro sec. Pius bulli in component tester $6 \times 7 \mathrm{~cm}$ display (HAMEE) $\mathbf{\$ 1 5 8 . 7 0}$ Opliomal Case
3030 Singto trace 15 MHZ 5 mV .0 .5
micro sec. Plus buill in campenent tostor 95 mm tubar. Trig. to 20MH2 [CROTECH] Han203/3 Dual 20MHZ: Trig. to

display |HAMEG1 $\mathbf{2 2 5 3 . 0 0}$ HW203/4. As ahove but 2 mV . Mgeoraic CS1562a bual 10 mHZ 10 mV . 1 Hece . 140 mm tube [TR10] 5278.00 3131 Oual trace 15 WHz trig. to 35 MHZ 5 mV : 0.5 micro sec. 130 mm tube plus 3.034 Bettery 278.00 trin. to 20 MHZ buill in Micads $5 \mathrm{~m}^{2} 0.5$ trig. to 20whz built in hieads 5 mV 0.5 $\begin{array}{ll}\text { micra secs [CROTECHI } \\ \text { [Eliminator } \\ & 214.00\end{array}$ HAn204 Hew model with component faster Duril 20MHZ delayed sweap trig tester Dust zOMHZ deisyod sweap: trig to 40MHZ. 5mV 0.1 micro sec B $\times 10 \mathrm{~cm}$ $\begin{array}{lr}\text { display (HAME6) } & \text { E418.75 } \\ \text { loptlonal case } & \text { E2.1.85) }\end{array}$ (Optlonal case $10 \mathrm{M21.85}$) portable. 10 mV 0.1 usec $2^{\prime \prime}$ trace All facilitas (THANLAR) £171.00

AC Adsptor
C81577A Dual 35mHZ. 2mV
0.1 psec. 8 ingle rwoep faclily

CS 183011 thal 30MHZ. 2 mV Single sweep: Dalay line: Trig to 7ainhz: 2 mviol 1 micro set. $8 \times 10 \mathrm{em}$ display (HAMEG) Aise stocked
Trie Dual 100 mHz Thandar Channal logle analyter G8C a Channal scope ogdeptor.
Safigan all models 5 mV sens. 0.5 micre sec $0.4 \times 8 \mathrm{Em}$ display.
 140 mm fube TRRIOS List price $\mathbf{E 5 4 0 . 0 0}$
Our price 2475.01 0.2 ysec fillad delay IIme) Dalay swoep 40mm tube (TR10) List E6065.00 HM705 Dual 70 MH 2 delayad tweed:
 Lisi Cg65.00 Dur Price esis.84
DT410 Dual lomhz e2ns.e4
 Scopt probits all models - sos balow

FREDUENBY CDUNTERS (All medeis battery operated)

Order by Pozt with CHEOUESACCI
Order by Post with CHEQUES/ ACCESS/
VISA or Telephone your order, Allow up to 10 dayi for dalivery. (unlese Edvisied)

Schoola, Compenles, etc)
Pleasie write in.

Amatedr radio will become much clearer

The radio market has become more complex. Things have become more confused.

Wires get crossed as new equipment floods onto the market.

At the end of the day, even the most avid enthusiast spends more time trying to find out about new equipment than on the airwaves using it.

As for the novice?
They stand little chance of picking anything up at all.

So we've decided to clear things up.

On December 3rd our new magazine Ham Radio Today begins.

Not a magazine you need a degree in electronics to decipher.

Or one that still calls your gear a wireless.

Rather a magazine that simply clarifies the vast range of electronic gadgetry available.

Lists new equipment, analyses its performance.

Thorough reviews, special features, news items and constructional projects.

In a clear and concise way that will give everyone a perfect $5+9$.

Ham Radio Today.
Tomorrow. . .tune in and find out, 73.

SECOND GENERATION POWERFET AMPLIFIERS

NEW DESIGNS

With the introduction of two new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiars. Four key improvements have been incorporated in these second generation-modules -
1.) The use of H-PAK powerfets, resulting in improved thermal efficiency and consequently enhanced power output capebilities
2.) Low $C_{O B}$ drivers now in power transistor packages, maintaining the superb HF performance and improving driver reliability.
3.) Separate driver and input supply rails allowing a $\mathbf{1 0 \%}$ increase in available output power by incressing output stage efficiency.
4.) Bridge mode input pin allowing instant bridging between any two amplifiers
without the need for extra circuitry. without the need for extra circuitry.

PFA100 Specification
Bandruidth $10 \mathrm{~Hz} \cdot 100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
$100 \mathrm{~W}(\mathrm{Vg}= \pm 5 \mathrm{~V})$
Output Power into 80 THD $(20 \mathrm{~Hz}-20 \mathrm{KHz})$ 0.000%
0.004% typ. THD (1 KHz at 100 W) SNR

120 dB
Slew rate
$>30 \mathrm{~V} / \mathrm{uS}$
$\times 23$
$\begin{array}{ll}\text { Gain } & \times 23 \\ \text { Rin } & 30 \mathrm{~K}\end{array}$
Vs max

Price $\mathbf{£ 1 8 . 4 5}$ (Built \& Tested)
f16.45 (Kit)
PFA100 120W into 82

PFA200 Specification
$\begin{array}{ll}\text { Bandwidth } & 10 \mathrm{~Hz} \cdot 1000 \mathrm{KHz} \pm 1 \mathrm{~dB} \\ \text { Output power into } 80 & 150 \mathrm{~W} \\ \text { (Vs }\end{array}$ THO (20Hz-20K Hz) $150 \mathrm{~W}(\mathrm{Vs} \pm 60 \mathrm{~V})$ THD (1 KHz at 150 W) 0.000% typ $\begin{array}{ll} & 120 \mathrm{~dB} \\ \text { Slew rate } & >30 \mathrm{~V} / \mathrm{uS} \\ \text { Gain } & \times 23 \\ \text { Gin } & 30 \mathrm{~K}\end{array}$ $\mathrm{Kim}_{\text {max }}$
Price $\mathbf{£ 2 5 . 9 5}$ (Built \& Tested) f23.95 (кіт) 300W into 4 n

POWER SUPPLY COMPONENTS
Torotdal Mains Transtormers

Vothege	160 VA I	225 VA	300 VA	500 VA	625 VA	
40-0-40	11-171	$\|13-06\|$	14-17 \| ${ }^{\text {d }}$			
45-0-45	-	\| 13-06		¢14-17 ${ }^{\text {¢ }}$	\| 18-46	-
50-0-50		-	1	\| 18-46	121.62	

Special low flux windings. Carriage + VAT included
25A 400PIV Bridge rectifier
$10,000 \mathrm{uF} 80 \mathrm{~V}$ Electrolytics £2.60 30,000uF 75V Electrolytics £11.50

Latest boards

- Active Crossover with P.S.U.
- Voltage Controlled attentuator
P.S.U. for P.F.A. drivers

Phone or write for advice on selecting the right components for your particular application.
All prices VAT inc. Carriage 75 p . Trade lists available. Ask about our preamps, protection boards and lower and higher power amp modules.

THE POWERFET SPECIALISTS pantechnic
(incorporating J.W. Rimmer)
i) かf Ell 12, 148 Oualry Street, Liverpool L25 6HO Telephonne, 0514288485
Techrnical enquiries
367 Gruen iamess Londur, N4 TOY Tel 018006667

CATALOGUE

now available

SEE US AT
BREADBOARD
STANDS $1 \& 2$
PROBABLY THE LARGEST STOCK OF ICs \& TRANSISTORS IN THE SOUTH - TRY US FIRST!

SEND LARGE SAE \& 75p TO ADDRESS BELOW

Crimson Elektrik

 PROFESSIONAL AMPLIFIER MODULES| PRICE LIST -ELECTRONIC MODULES E ASSEMBLIES - APRIL 1981 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CODE | DESCRIPTION | $\begin{aligned} & \text { Less } \\ & \text { VAT } \\ & \text { fal } \end{aligned}$ | VAT | $\begin{aligned} & \text { INC } \\ & \text { VAT } \end{aligned}$ | $\begin{gathered} \mathrm{WT} \\ (\mathrm{Kg}) \end{gathered}$ |
| CE 608 | Power Amplifier Module | 18.28 | 2.74 | 21.00 | 0.18 |
| CE 1004 | Power Amplifier Module | 21.30 | 3.20 | 24.50 | 0.20 |
| CE 1008 | Power Amplifier Module | 23.90 | 3.60 | 27.50 | 0.21 |
| CE 1704 | Power Amplifier Module | 30.43 | 4.57 | 36.00 | 0.2 |
| CE 1708 | Power Amplifier Module | 30.43 | 4.57 | 35.00 | 0.22 |
| CE 3004 | Power Amplifier Module | 42.60 | 6.40 | 49.00 | 0.40 |
| BD 1 | Bridge Driver Module | 7.13 | 1.07 | 8.20 | 0.05 |
| TR 80 | Toroidal Transformer 80VA | 18.00 | 2.70 | 20.70 | 2.00 |
| TR 150 | Toroidal Transformer 150VA | 20.07 | 3.01 | 23.08 | 2.35 |
| TR 250 | Toroidal TRansformer 250VA | 25.43 | 3.81 | 29.24 | 3.35 |
| TR 2500 | Toroidal Tansformer llow noise | 33.20 | 4.98 | 39.18 | 2.80 |
| 86 | Bridge Rectifier (6 amp) | 0.99 | 0.15 | 1.14 | 0.02 |
| 812 | Bridge Rectifier (12 amp) | 1.80 | 0.27 | 2.07 | 0.03 |
| C4700/40 | Reservoir Capacitor and Clip | 1.91 | 0.29 | 2.20 | 0.00 |
| C4700 63 | REservoir Capacitor and Clip | 2.40 | 0.36 | 2.78 | 0.11 |
| C4300/63 | Reservoir Capacitor and Clip | 2.60 | 0.39 | 2.99 | 0.11 |
| CPS 80 | Power Supply | 22.82 | 3.42 | 28.24 | 2.10 |
| CPS 80D | Dual Power Supply | 27.63 | 4.14 | 31.77 | 2.25 |
| CPS 150 | Power Supply | 25.86 | 3.88 | 29.74 | 2.50 |
| CPS 150D | Dual Power Supply | 31.65 | 4.75 | 38.40 | 2.00 |
| CPS 250 | Power Supply | 32.03 | 4.80 | 38.83 | 3.60 |
| CPS 250D | Dual Power Supply | 39.43 | 5.91 | 46.34 | 3.06 |
| TS 70 | Thermal Switch $70^{\circ} \mathrm{C}$ | 1.92 | 0.29 | 2.21 | 0.02 |
| HS 50 | 50 mm Heatsink | 1.00 | 0.24 | 1.84 | 0.15 |
| HS 100 | 100 mm Heatsink | 2.60 | 0.39 | 2.99 | 0.30 |
| HS 15 | 150 mm Heatsink | 3.65 | 0.56 | 4.20 | 0.45 |
| FM 1 | Fan Mounted on $2 \times$ HS 100 | 32.13 | 4.82 | 36.96 | 1.20 |
| FM 2 | Fan Mounted on $2 \times$ HS 150 | 38.10 | 5.42 | 41.52 | 1.60 |
| CPR 1X | Pre-Amplifier Module | 31.30 | 4.70 | 33.00 | 0.16 |
| MC 2 | Moving Coil Pre-Pre-Amplifier Module | 20.00 | 3.00 | 23.00 | 0.07 |
| REG 1 | Regulated Power Supply | 8.09 | 1.21 | 9.30 | 0.07 |
| TR 6 | 6VA Mains Transformer | 2.87 | 0.43 | 3.30 | 0.21 |
| $\times 02$ | 2 Way Crossover Module | 17.39 | 2.61 | 20.00 | 0.07 |
| XO 3 | 3 Way Crossover Module | 26.09 | 3.91 | 30.00 | 0.07 |
| MU 1 | Muting Circuit for XO 2 or XO 3 | 8.35 | 1.25 | 9.00 | 0.04 |
| CK 1010 | Complete Pre-Amplifier Kit | 78.28 | 11.74 | 90.00 | 2.50 |
| CK 1040 | Complete 40 Watt Power Amplifier Kit | 103.48 | 15.52 | 119.00 | 7.30 |
| CK 1100 | Complete 100 Watt Power Amplifier Kit | 129.56 | 19.4 | 14.90 | 7.30 |
| MC 2K | Add On Moving Coil Kit | 21.74 | 3.26 | 25.00 | 0.12 |
| PSK | \| Pre-Amplifier Power Supply Kit | 17.39 | 2.81 | 20.00 | 0.7 |

SOLE DISTRIBUTION BRADLEY MARSHALL Ltd OF EDGWARE 325 EDGWARE RD. LONDON W21 BN

TEL: 01-723 4242

PHONE US TO CHECK AVAILABILITY OF COMPONENTS MENTIONED IN THIS ISSUE

Thames Valley 32 High Street Burnham-Bucks

THE ZOOM MICROPHONE

Zoom lenses have been around a long time and are standard issue on video cameras; but matching zoom microphones? How can such a thing be possible, you ask - and Vivian Capel answers.

Video sound is not much to write home about at present. This is because the track is recorded in linear fashion along one edge of the tape, unlike the video tracks which are laid down at a high writing speed diagonally across the tape by heads on a rotating drum. Slow tape speed means a low writing speed for the sound track, so it produces a poor frequency response and noise factor.

Efforts are being made to counter this, and there is a report that Sony have a prototype Beta recorder that modulates the sound on a low-frequency FM carrier and records it along with the video signal. As low recorded frequencies penetrate deeper into the tape coating, while high frequencies remain near the surface, the sound and vision recorded signals are physically separated and so do not interact. It seems that the existing audio linear track is retained so that the tapes will be compatible and will be playable on existing machines. There is little doubt that, not wanting to be outdone, the VHS camp will do something similar, so it looks as if video sound will be much improved in the new generation of machines.

Microphone Characteristics

All video cameras have zoom lenses and, to be realistic, the sound should change according to the lens setting. At the wide-angle setting, we should hear the general sounds of the surroundings, but at maximum telephoto, the ambient sound should diminish and the sounds originating in the field of view should stand out. As the lens zooms in, the transition should be gradual between the two different acoustics.

Fig. 1 Cardioid polar response (a) and super-directional response (b) obtained from a pair of out-of-phase cardioids. The response is at a nominal $1 \mathbf{k H z}$ and changes for other frequencies.

In practice, nothing happens to the sound field at all, because the microphone is fixed to the camera and is not affected by anything done to the zoom lens. Professional camera teams overcome this by following the changes in the field of view with a microphone on a boom. Keeping the microphone out of camera shot is one of the everpresent problems.

Most video camera microphones are of the omnidirectional type; they pick up sound equally from all directions. These are used because they are less prone to handling noise than the directional type, although the latter could be used to advantage if shock-proof mountings were employed.

To overcome the incongruity of a fixed sound acoustic at different zoom lens settings, IVC have produced a breakthrough in the field of microphone technology; a microphone that zooms with the lens and gives an appropriate acoustic for all settings. Before we can understand just how it works, we must consider the elements of microphone polar response.

Omniscient?

An omni-directional microphone has a diaphragm which is exposed to the environment at the front, but sealed at the back by an airtight chamber. Pressure fluctuations produced by the sound wave exert force in all directions (not merely along the axis of propagation) and this leads to pressure differences across the diaphragm that make it move backward or forward in sympathy, irrespective of the direction of the sound source.

Direct particle velocity, caused by the backward-andforward movement of air molecules along the axis of propagation, has little effect on the diaphragm because of the damping effect of the trapped air. There is a small effect though, and this gives the omni microphone a not quite equal response all around it, but the deviation is small enough to ignore for most purposes.

The Heart of the Matter

If vents are made in the rear chamber, local air pressure can reach both sides of the diaphragm so the microphone is not pressure sensitive. However, the damping has been removed, so it is sensitive to particle velocity.

Also there is a secondary effect due to slight pressure differences that exist because of the phase difference between sounds arriving at the front and rear of the diaphragm. This is dependent on frequency, and when the physical path through the vents to the rear of the diaphragm equals a wavelength, there is pressure cancellation. At half a wavelength there is reinforcement,

and below this the phase difference decreases all the way down. If the main force on the diaphragm were the pressure differences, as is sometimes erroneously stated, there would be a high peak in the treble frequency response with continual downward slope toward the bass.

Being sensitive to direct particle velocity yet relatively insensitive to pressure, the microphone responds in a directional fashion, favouring sounds coming from the front. The variation of output with angle of incidence, θ, is proportional to $1+\cos \theta / 2$; plotting a polar response curve gives a heart shape (Fig. 1a), hence the term cardioid which is used to describe microphones of this type.

If we were to place two cardioid units back-to-back we would have an omni-directional response. There seems little practical point in doing this, but as we shall see later, it does have an application.

Super Directivity

A marginal improvement in directivity can be obtained by modifying the vents to produce the hypercardioid, which has less response to sound from the sides, but a pair of small lobes with a high-ish response at the rear (Fig. 1b).

It is sometimes convenient to use a distance factor to describe directional microphones. This is the scaled distance from a wanted source at which the microphone will give the same results as an omni in terms of proportion of wanted to ambient sound. A cardioid can be placed 1.75 times further from the source than an omni, and a hypercardioid, two times.

For greater directivity, there is the gun microphone, which relies on interference and cancellation of sound waves coming from the sides. It is only effective down to the frequency at which a half-wavelength is equal to the length of the tube. Short tubes are not particularly
directional other than at the high and mid-high frequencies, while long ones are unwieldy when fixed to a camera and could intrude on the camera shot. Distance factors of around three times are obtainable, depending on length.

$1-1=$?

Supposing we mount two cardioid capsules one behind the other and connect them in opposite phase. Sound waves coming from the sides affect both equally so their electrical signals cancel and there is no output.

For sounds arriving from the front, there is a phase delay between the outputs from the two units. When the microphone spacing is equal to a half wavelength, the outputs reinforce to produce a maximum signal. At shorter wavelengths (higher frequencies) the net output drops towards complete cancellation at a one wavelength spacing. At lower frequencies (longer wavelength), output slowly falls linearly to zero at zero frequency (see Fig. 2), This double microphone is super-directional with similar polar response to the gun and the net output varies as $(1+\cos \theta) \cos \theta$. However there are two major snags. One is that the capsules must be closely spaced as this establishes the upper frequency limit above which the output drops rapidly. Moving-coil units are too bulky to get close enough, but electret capsules are quite suitable. Closely spaced anti-phase units, though, tend to give low output.

The other snag is the falling low-frequency response. This can be equalised electronically, but the amount of lift needed at the lower end will greatly emphasise thermal and handling noise.

Fiddling With Phase

However, it is possible to trade directivity for response at low frequencies. This would then be no worse than a gun microphone in which low frequency directivity reverts to just that of the cardioid unit at the bottom of the barrel. This can be done by combining the signals from the two capsules through a frequency-dependent phaseprocessor. At the highest frequencies, the units are in antiphase and function as described to give maximum directivity. They continue in this fashion down to the midfrequency range, when the phase begins to rotate until in the bass region the capsules are in phase.

Fig. 2 The frequency response for a pair of out-of-phase cardioids (mounted in line) peaks at the frequency at which the half-wavelength equals the spacing between them. Below, it decreases at $6 \mathrm{~dB} / 0 \mathrm{ctave}$, requiring high gain at low frequencies to equalise. Above, the response drops rapidly to zero at the frequency corresponding to a one-wavelength spacing.

FEATURE : Zoom Mike

Fig. 3 The response of a cardioid pair when the phase is progressively rotated from 180° to 0° below the mid-range. The bottom chart shows the phase rotation.

Directivity is maintained down to the phase change point and then it degrades until it is that of a cardioid in the bass register. Figure 3 shows the frequency response, which falls from the treble to mid-range, then picks up to full amplitude again in the bass. The other graph indicates the phase change. This can be equalised without too much trouble, as no boost is required in the low frequencies, and so handling and thermal noise are not accentuated.

This principle is used by JVC, and the mid-frequency phase-change point is around 500 Hz . By using a potentiometer in the adding ciruit, the polar response can be continuously varied. When at maximum, both outputs are combined to give the super-directional characteristic; when turned fully down, the second capsule is off, and only the first works to give a normal cardioid response.

While this would give a useful acoustic variation, it is not enough for the purpose of changing to correspond

Close-up of the S100 camera controls, showing the auto, omni and super-directional settings.
with a wide change of zoom lens setting. Earlier, though, we saw how an omni pattern could be obtained by mounting two cardioids back-to-back. Hence in the JVC microphone, a third unit is introduced directly behind the second and facing forwards. Thus we have all the necessary elements for the maximum possible change in polar response, from omni right through to superdirectional.

Control is effected by a pair of ganged potentiometers with centre taps, which neatly avoids the use of multipleganged components. The operation can be seen by reference to the circuit diagram (Fig: 4). To make life easier, we will consider the two extreme potentiometer positions, A and C, and the intermediate position B. At A, the adder receives the full output from the third capsule, and also that of capsule no. 2. Signals from capsule no. 1 pass through the opposite side of the pot to earth via the centre tap. With only capsules 2 and 3 'live', the result is the omni-directional response.

Moving to the B position, the wiper is earthed through the centre tap, so the adder never receives the output from capsules 1 or 3 , leaving number 2 on its own to provide the cardioid pattern. In the position C, the adder receives output from capsules 1 and 2, which produces the superdirectional characteristic.

In addition to changing the outputs between the three

Fig. 4 Block diagram of the JVC zoom microphone.
capsules, it is also necessary to vary the gain so that maximum gain is obtained for close-ups with the superdirectional pattern, and to take the equaliser out of circuit for cardioid and omni operation. All this is done by the second potentiometer which is connected in a negative feedback loop across the preamplifier.

In position A the potentiometer is shorted out and so is the equalisation network, so the amplifier is at minimum gain and the frequency response is flat: these are the conditions required for the omnidirectional operation. When in the central B setting, the gain is increased but the frequency response is still flat. When at the opposite extreme, position C, there is maximum resistance in the loop and hence minimum feedback and maximum gain. The equalisation network is now in circuit, so we have the required circuit conditions for the super-directional characteristic.

Of course there are an infinite number of intermediate positions afforded by the potentiometer, so an acoustic is obtained which is appropriate for all zoom lens settings. The control is linked to the lens control, so the setting is automatic and the user needs to give no thought to it.

The microphone described (type MZ-500) has been specifically designed for the S 100 and $\mathrm{GX} 77 / 88$ colour cameras, but undoubtedly it, or future versions of the principle, will find an application in many audio fields where a continuously variable polar response between two extremes is required.

MIDWICH COMPUTER COMPANY LIMITED

FAST EX-STOCK DELIVERY OF MICROCOMPUTER COMPONENTS AT UNBEATABLE PRICES

HOME LIGHTING KITS
Theve kirs comtain all necesasa, y components and full swinch and control up to 300 w. of lighting. TDR300K Romote Control $\mathbf{£ 1 4 . 3 0}$ MK6 Dimmeifertor TD300K Touchdimmer $\mathbf{£ 7 . 0 0}$ TDEK $\begin{aligned} & \text { Extension kit for 2-way } \\ & \text { switching for TO } 300 \mathrm{~K}\end{aligned} \mathbf{2 . 0 0}$ LO300K $\underset{\substack{\text { RotaryControlled } \\ \text { Dimmer }}}{\substack{ \\\text { Simb }}}$

HOME CONTROL CENTRE

This New Kemote Control Kit enables you to contiol up to 16 different appliances anyarm thair. The transmitter injects coded pul:es into the mains wiring which ar rec:ived by receiver modules connected to the same mains supply and used to switch on the appliance addressed. Receivers are followed by an on or a 16-way keyboard, pushing by an on or off command. Since the transmitter also includes a comporing, interface so vou can programme your fovour ite micro to switch lights heating electric blanket, make your coffee in the morning atc without rewiring your house JUST THINK OF THE POSSIBILITIES The KIT includes all PCBs and components for one transmitter and two receivers, plus a drilled Order es Xransmitter
der as XK112.
$£ 42.00$
Additional Recievers XK111 £10.00
ELECTRONIC LOCK KIT XK 101 This KIT contains a purpose designed lock IC 10-way keyboerd, PCBs and all components to construct a Digital Lock, requiring a 4-key sequence to open and providing over 5000 different combinations. The open sequence may be easily changed by means of a pre wired plug. Size: $7 \times 6 \times 3 \mathrm{cms}$. Supply: 5 V to 15 V d.c. at 40 uA . Ouput: 750 mA max. Hundreds of uses for doors and garages, ca anti-theft device, electronic equipment, etc Will drive most relays direct. Full instructions supplied.

ONLY £10.50

Electric lock mechanism for use with tatch locks and above kit
£13.50

CHRISTMAS PRESENTS GALORE and a $3^{1 / 2}$ digit liquid crystal display. This kit will form the

स1949

 basis of a digital multimetetonly a fow additional resistors and switches are required-details supplied), or a sensitive
digital thermometer $-50^{\circ} \mathrm{C}$ digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$
reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a sensitivity of 200 mV for a full scale reading,
sen automatic polarity indication and an ultra low power requirement-giving a 2 year typical hattery life from a standard 9V PP3 when used 8 hours a day. 7 days a week

Price $£ 15.50$
DISCO LIGHTING KITS DL 1000K
This value-for-money kit
features a bi-directional sequence, speed of sequence and frequency of direction change. being variable by by master dimming control $\mathbf{£ 1 4 . 6 0}$ DLZ100K A lower cost version of the above, featuring undirectional channel sequence with speed
variable by means of a pre-set pot Outputs switchad only at mains zero crossing points to reduce radio interference to a minimum. Optional opto input OLA1 Only $\mathbf{£ 8 . 0 0}$ Allowing audio ("beat") -light response: $60 p$
DL3000k DL3000K
This 3 channel sound to light kit features zero voltage switching, automatic level control \& built in mic. No connections to speaker or amp required. No knobs to adjust - simply conne to mains supply \& lamps. Only E11.95
PACK (1) $\mathbf{6 5 0}$ Resistors $\mathbf{4 7}$ ohm to $\mathbf{1 0}$ Mohm - $\mathbf{1 0}$ per value $\mathbf{£ 4 . 0 0}$
PACK (2) $\mathbf{4 0 \times 1 6 V}$ Electrolytic Capacitors 10 uF to 1000 uF - 5 per value $\mathbf{£ 3 . 2 5}$ PACK (3) 60 Polyester Capacitors 0.01 to $1 \mathrm{uF} / 250 \mathrm{~V}-5$ per value $\mathbf{f 5 . 5 5}$
PACK (4) 45 Sub-miniature Presets $\mathbf{1 0 0}$ ohm to 1 Mohm - 5 per value $\mathbf{£ 2 . 9 0}$ PACK (5) 30 Low Profile IC Sockets 8, 14 and 16 - pin - 10 off each $£ 2.40$ PACK (6) 25 Red LEDs (5 mm dia.) £1. 25 PACK (7) 20 BC182 NPN General Purpose Transistors $£ 1.20$ PACK (8) $\mathbf{2 0}$ BC212 PNP General Purpose Transistors $\mathbf{£ 1 . 2 0}$
All full spec. branded devices
BUY ANY 5 PACKS AND WE WILL SEND YOU 10 RED LEDs

THE MULTI-PURPOSE TIMER HAS ARRIVED
Now you can run your central heating, lighting. hi-fi systam and lots more with iust one progremmable timer. A1 Ai your selection it is
designed to control four mains outouts indenandenty designod to control four mains outputs independontly. switching on
end oft at pre.eet times over a 7 day cycle, eg to control your central heating (including different switching times for weakends? Just connect it to your system programme and set it and forget it-the clock will do the rest.
features include:-
0.5- LEO 12 hour display

Day of woak, am/pm and output status indicators 4 yoro voltogeg awitched mains outputs. Soreotra moins operation. Battery backup zaves stored programmes and continues time keeping during powor tailures. (Eatrory not supplied). 18 programme time rets.
Powerful "Evarydey" tunction enabling output to emvitch every day but use only one time nat. Uweful "sleep" function-furns on output for one hour Direct switch control anabling output to be turned 20 immediamaly or ather a specitied sime interval. Programme verificarion at the touch of a buto

REMOTE CONTROL KITS

MKE SIMPLE INFRA RED TRANSMITIER
Pulsed infra red source complete with hand-held plastic box. Requires a $9 V$ bentery
Single channel, range approx. 20t. Mains powered with a triac output to switch loads up to 500 W
 MKA CODEE DNFRA RED TRANSMITTER
Based on the SL 499, the kit includes all components to make a coded transmitter and only
E5.9\%
reauires a $9 V$ (PPP) baterer and keyboard. $8 \times 2 \times 1.3 \mathrm{cms}$

"OPEN-SESAME"

The XK 103 is a general purpose infra-redtrans: mineririreceiver with one momentary (normally ounput. Designed primarily for controlling motorized garage doors and two auxillery outputs for drive/garage lights at a range of up to
40
π 4o the unit also has numerous applications curtains, etc. Ideal for aged or dizabled porsons.
The Kit comprises a mains powered recoiver, a rour button transmitter, complete with pre-
drillad box, requiring a $9 V$ battery and one opto-isolated solid state switch kif for interfocing the recciver to mains applisncose As

ONLY $£ 23.75$

RD MK 10 18-WAYKEYBOARD
For use with MK8 and MK18
rectiver (MM 12) kit.
MK $\times 1110$ - Ch
Based on ML922 decoder If Functions incelvar
Tone and lamp brighnoes. Includes its own mains supply, For u se with MK8 kit with 16 onfoti outputs, which with furher interface circuitry, such as relaye Puts- please specily when ordering includes its own maina supuly.
MK13 11-WAY KEYBOARD For use with MK8, MK18 and MK11 kits. Mais main Powered if Trensmitter
 Marms, ivitamatic RECEIVER
For use with MK6 or MK16. Relay output with DP 3 Amp change-over contacts, may be used ${ }^{20} 5$
latched, momentary or break beam recelver. Operates from 6.13 V d.c. MK 18 HGGH POWER MR TRANSMITER
Ancller Miks but with range of approx. 60ft. $\mathbf{5 6 . 2 0}$
Opto isolated with soror voltage Rsvitch
MK15 DUAL LATCHED SOLDS STATE RELAY
MK2.
年

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any appliance up to 1 kW
on and off at present times once per
on and of at present times once per CT1000K Basic Kit
day. Kit contains: AY-5. 1230 IC 0.5^{7} LEO display, mains supply, CT1000K with white ber $156 / 131 \times 71 \mathrm{~mm}$)

Add $£ 2.50$ (Europe), $£ 6.00$ (elsewhere) for p\&p. Send S.A.E. for further STOCK DETAILS Goods by return subject to availability. 0 - D , 9 am to 5 pm (Mon to Fri OPEN 10 am to 4 pm (Setat$)$
(Kit includes all components, PCB, assembly
and programming instructions). ORDER AS CT5000

EARTH LEAKAGE CIRCUIT BREAKER
 Earth-fault currents from mains-operated equipment can kill you. Circuit breakers have featured in house-mains installations for some years: now this portable ELCB lets you take your protection anywhere. Design by Phil Walker.

fa fault occurs in a piece of mains-operated equipment, any external metal parts may be placed at earth potential. Should you complete a path to earth from the appliance, the statisticians could well be chalking up another death from electrocution. A more subtle but equally lethal danger is caused when inflammable material creates the path to earth - current flowing to ground might then generate enough heat to start a fire.

> Even if no faults are present, building, servicing or tinkering with mains equipment is a dangerous pastime. One slip with a screwdriver . . . Our easy familiarity with electricity not only breeds contempt but a steady stream of fatalities. Many of these could be avoided if earth leakage circuit breakers were used more often (in an ideal world, of course, they'd be built into every piece of mains equipment by the manufacturer).

IMPORTANT!
Used properly, this project could help to make your home a safer place by providing added protection against electric shock. However, this doesn't mean that you can forget about all the precautions that you would normally take, because, like any piece of safety equipment, you shouldn't trust it to be your sole protection from the great hereafter. Belt and braces is the order of the day where human life is concerned! In any case, it won't protect you against shocks from most types of high-voltage generator or from a shock between live and neutral. Nevertheless, this device will considerably improve protection against the most common electric shock, from live to earth.
to make your home a
ection against electric
tyou can forget about
rmally take, because,
s shouldn't trust it to
at hereafter. Bett and
man life is concerned!
nst shocks from most
a shock between live
will considerably inm-
mmon electric shock,
 The ELCB is designed to be plugged into a normal 13 A wall socket. Any normal household or small workshop device may then be plugged into the integral socket. The ELCB continuously monitors the current flowing to and from the device along the live and neutral wires; if at any time the amount of current flowing in these wires differs by more than a (small) pre-set amount, the ELCB will assume there is a fault and quickly disconnect the power from both lines. Thus any current flowing to earth (possibly via you) will trip the device, as will an
turns as the other new primaries． To find out if the transformer is working satisfactorially，follow the section．
The transformer must be a toroidal type to avoid spurious
tripping．We tried using the older
laminated type，but we found that it
ग！ fluctuations in the ambien
field；obviously a severe disadvantage！
 the operation of the ELCB，it is vital that it is of the highest quality．In particular，the relay drop－out time milliseconds，and together with a maximum possible delay of 10 milliseconds from the electronics， this will guarantee a maximum operating time of 40 miliseconds （two whole mains cycles）．The current switching capacity of the Rue ie рәрәәәхә әq 100 pinous керә」 0
0
0
0
0
0
0
0
0 time，so it＇s best to use a relay that is capable of switching the full 13 A maximum that you will ever draw from a socket．Alternatively，if you switching capacity，then we advise ＇yıed ұuәjins aył u！asnf e 8u！pnjou！ shown as FS2 in the circuit diagram． Apply a de－rating factor of at least

 relay should be capable of switching Construction
 quite straightforward provided that
component polarities are carefully observed．Before assembling it into the case，attach short lengths（about
transformer was quite sufficient． What would normally be the 110 V primary winding was used as the secondary．（The mains input wires should be passed through in the

If you use the ILP transformer， two passes of the mains input wires
may be necessary to achieve the required sensitivity（note that the transformer is operated as a current transformer and not a voltage transformer），as the OT 226 has only a 240 V primary．If you use a similar transformer with a 110 V sufficient for the primary．In any case，the test winding conductor must have the same number of

rom a standard toroidal transformer with extra windings added，and what would normally be the primary used as the secondary．We used a miniature 10 VA transformer supplied by RS Components，but this type is potted，and to
 in the middle．A better approach would be to use a type that is taped，such as the OT 226 made by ILP．In any case，ILP products are more readily available to the home constructor．
‘pəsn әм 」әuлоғsue』 әчł ЧІ！M

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">fullwave</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">RECTIIIER</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| fullwave |
| :---: |
| RECTIIIER |</table-markdown></div>

 NORMALSECONDARIES
NOT USED

The Current Transformer The transformer used to sense
the difference between the live and neutral currents，T1，can be made
accident like running an electric The particular method of fault detection we used ensures that the very hazardous condition of a person＇s body making contact between the mains supply and an independently earthed object can
be acted upon immediately；it is also independent of the integrity of normal outlet．The trip point of the
 balance current of about 25 mA will trigger it． CUURENT
TRANSFRORM

15 cm ）of thin flexible wire to
connect to the transformer，relay connect to the transformer，relay

 some thick wires to the normally－ open relay contacts to
」amod aцt Kiddns of luiod ames

 ןeגnau pue әк！！әut ssed ！puej

 contacts of the relay．

 ue ssed $(\forall 01$ ot dn lot wum 0 l）

 this wire should be connected to

 ol paŋวauuos aq plnoys asny ayt to人sem！\downarrow d ןeınəu ayl ol papaauou aq pinous pole of the relay
At this stage the components
can be mounted into the lid of the
号 226， $12 \mathrm{~V}+12 \mathrm{ti}$ secondary，${ }^{2}$ ）．We

Fig. 2 Component overlay for the ELCB.

PARTS LIST

box. This must be done with some care to avoid fouling the components in the bottom of the box. In our device the normallyclosed contacts of the relay were accessible when it was in the box and connecting the wires for the red neon was easily done. The free end of the test conductor is connected together with one of the wires from the yellow neon to the test switch (which is normally open). The 10k test resistor is fitted to the other side of the test switch. In our model this resistor is self-supporting between the switch and an insulated terminal. The other wire from the yellow neon, together with a wire from the neutral side of the power transformer, is connected to this terminal.

The wires to the reset switch can now be attached, making sure that the normally-closed terminal goes to the negative supply on the PCB, the normally-open terminal goes to the resistor and the pole goes to the capacitor.

Finally the thick output wires can be fitted into the outlet, together with the wires from the green neon. The earth conductor from the input cable is taken direct to the earth contact on the outlet and an extra wire then goes from here to the power transformer frame and to the centre tap on its secondary winding.

With a bit of luck it should now be possible to fit the box lid and base together and secure them with the bolts provided.

Setting Up

Once the device has been assembled there is very little more to be done. It should be possible to adjust PR1 so that when the TEST button is pressed the relay immediately opens. If this cannot be set up or if there is very little adjustment to spare on PR1, then to increase the sensitivity R1 may be increased in value: conversely, reduce it to reduce the sensitivity. If the sensitivity is still low when R1 is up to 47 k then take the mains (and test) wires through the centre of T1 twice instead of once.

Once this has been done the device is set up to trip at about 24 mA . Note that it responds only to the out-of-balance current flowing through T1 on the mains wires and will not protect against contacts between live and neutral which result in balanced currents.

If you want to test the device we recommend that you use another 10k resistor and NOT YOURSELF . . .

Who but the people who made the micro possible could help you understand it?

TheTexasInstruments Electronic Library.
 An in-depth series in understanding today's world of electronics.

The Understanding Electronics Series was specially developed and written to give you an in-depth knowledge of this world.

Each book is comprehensive, yet easy to understand. As informative for the electronics buff as for someone who's simply interested in what's going on today.

Together the library will give you the most complete range of titles available. Take advantage of our introductory offer and choose the book, or hooks you want from the titles below. You'll find whole new worlds of advanced technology unfolding before you.

Everything you've always wanted to know about:

1. Understanding Electronic Control of Energy Systems.

Ist edition. Ref. LCB 6642. Covers motor, generator, power distribution, heating, air conditioning, internal combustion engine, solar and nuclear systems. Softbound 272 pages. $£ 3.95$.

2. Understanding Electronic Security Systems.

1st edition. Ref. LCB 7201. A complete guide covering the basics of hard wired, photosensitive, infrared, ultrasonic and microwave systems and their use in different applications. Softbound 128 puges. $£ 3.95$.

3. Understanding Solid State Electronics.

3rd edition. Ref. LCC 336L. The principles of solid state theory. It explains electrical movement, with intermediate tuition on the applications of solid state devices. Softbound 282 puges. 13.95 .
4. Understanding Digital Electronics. Ist edition. Ref. LCB 3311. Describes digital electronics in easy-to-follow stages. It covers the main families of digital integrated circuits and data processing systems. Softbound 260 pages. $£ 3.95$.
5. Understanding Microprocessors. Ist edition. Ref. LCB 4023. An in-depth look at the magic of the solid state chip. What they are, what they do. Applications of 8 -bit and 16 -bit microprocessors; and design from idea to hardware. Softbound 288 pages. £3.95.

6. Understanding Computer Science. 1stedition. Ref.LCB5471.

 This book tells you in everyday English how today's computer has been developed, whar goes on inside it, and how you tell it what to do. Softhound 278 pages. £3.95.
7. Understanding Communications Systems.

ist edition. Ref. LCB 4521. An overview of all rypes of electronic communications systems. Softbound 282 pages. £3.95.
8. Understanding Calculator Maths. Ist edition. Ref. LCB 3321. Brings together the basic information - formulae, facts, and mathematical tools-you need to "unlock" the real power of the hand-held calculator. Softbound 230 pages. $£ 3.95$.

9. Understanding Optronics. Ist edition. Ref. LCB 5472.

Optronics is the application of light and electronics to perform a wide range of useful tasks. From car headlights to missile guidance systems. Suftbound 270 pages. $£ 3.95$.

10. Understanding Automotive Electronics.

lst edition. Ref. LCB 5771. Learn how electronics is being applied to automobiles. How the basic mechanical, electrical and electronic functions and the new microprocessors and microcomputers are being applied in innovative ways for vehicle drive train control, motion control and instrumentarion. Softbound 288 pages. £3.95.

How to order

Fill in the coupon below or if someone else has already used it, simply: 1. List reference numbers and quantities required.
2. Calculate total order value. Add $£ 1.50$ for pqstage and packing.
3. Send the list, plus your cheque payable to Texas Instruments Ltd, PO Box 50 , Market Harborough, Leicestershire.
Allow 30 days for delivery.

Texas INSTRUMENTS

y 4 4

To: Texas Instruments Limited, PO Box 50, Market Harborough, Leics. Please send me the following publications:

Free title choice: Understanding
I enclose a cheque for $£$
Name
Company (if any)
Address

[^0]electronize ELECTRONIC
IGNITION KITS
Two years ago we launched the Total Energy Discharge System, we knew it could outperform any competing system and the sales have proved just how good it is. With thousands of systems sold in over 30 countries around the World, from the cold of Norway to the tropical heat of Singapore, the system is an outstanding success.
THIS IS WHAT MAKES TOTAL ENERGY DISCHARGE SO GOOD-

The discharge circuit in block A is the heart of the system. It looks simple but outperforms any other by far. A $2 \mu \mathrm{~F}$ storage capacitor (twice the usual size) charged to +370 volts, is discharged into the ignition coil primary by SCR1, providing a high energy pulse of the correct polarity. Long after the storage capacitor is discharged, the current in the ignition coil is sustained by 'flywheel' diode D4, preventing energy flowing back to the capacitor and giving $31 / 2$ times the spark energy and duration. Instead of relying on the effects of coil 'ringing', inductor L1 commutates the SCR, giving complete freedom from the usual latching problems and allowing the storage capacitor to be recharged whilst the discharge current is still flowing in the coils,

Block B is the trigger circuit and provides faultless spark timing. The emitter of TR1 is biased from the supply to provide a variable trigger threshold, allowing triggering with the supply down to about 3.5 volts but rejecting noise and signals from contact shuffle and vibration. Capacitor C3 and its associated resistors provide a variable inhibit period, after the contacts close, which filters out extreme contact bounce on 4 cylinder engines yet still allows 8 cylinder operation to over $7500 \mathrm{rev} / \mathrm{min}$. In effect the longer the contacts stay open the longer they must remain closed before the next spark can be triggered. (Be warned:- untimed sparks can seriously damage your engines health).

Block C is the inverter, the power behind the spark. It's a 'ringing choke' type. Well designed, this type can not only be regulated and charge the capacitor from zero volts, effectively a short circuit, but is also more efficient than the traditional push-pull type. Even though it provides around 3 times the power, it still doesn't need the usual finned heat sink. Transistors TR4 and TR5 regulate the invertor output, by controlling the amount of feedback, and are in turn controlled by TR3 which compares the voltage on the storage capacitor with the reference zener D5. The output voltage is set by the zener voltage so the full output is available over the whole supply voltage range, a powerful spark is produced even with the battery down to 4 volts.

These are the more obvious features, there are many more details like the absence of 'spikes' and low di/dt and dv/dt applied to the SCR, which together with top quality components make Total Energy Discharge not only a top performer but far more reliable.

This advanced circuitry gives all the well known advantages of the best capacitive discharge systems:
Peak Performance; Improved Economy; Fires Fouled Plugs; Accurate Timing; Smooth Performance;
PLUS
Super Power Spark; Better Starting; Optimum Spark Duration; Correct Spark Polarity; L.E.D. Static Timing Light; Low Radio Interference; Designed In Reliability.

Information disclosed above does not imply any freedom from patent or copyright of Electronize Design.

Electronize Total Energy Discharge Ignition is suitable for use with:
ALL 6 and 12 volt negative earth vehicles fitted with a conventional contact breaker and coil system.
ALL Ballast resistor (cold start/low voltage) systems.
ALL Voltage triggered electronic tachometers. (Some older current impulse types (Smiths pre 1974) require an adaptor)
ANY Number of cy゙linders up to \& including 8.

SPECIFICATION

(using a typical ignition coil)		ORDINARY CAPACITIVE DISCHARGE
Spark Power	140W	90W
Spark Energy (stored energy)	$\begin{gathered} 36 \mathrm{~mJ} \\ 135 \mathrm{~mJ} \end{gathered}$	10 mJ 65 mJ
Spark Duration	500) S	160 $\mu \mathrm{S}$
Output Voltage clean spark plug fouled spark plug	$\begin{aligned} & 38 \mathrm{kV} \\ & 26 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 26 \mathrm{kV} \\ & 17 \mathrm{kV} \end{aligned}$
Voltage Rise Time to 20 kV	25 μ S	30رS

You can buy your Total Energy Discharge system as a ready assembled and tested unit ready to fit to your car or as a comprehensive kit of parts containing everything required, even a length of solder and a tube of heat sink compound. The kit comes complete with detailed, easy to follow instructions which enable even a beginner to assemble a kit in just a matter of hours.
The same top performance system is also available, in ready assembled or kit form, to suit cars and motorcycles fitted with twin ignition systems.

STANDARD UNIT
£26.70
Assembled and Tested
STANDARD UNIT KIT
£15.90

TWIN OUTPUT UNIT
£36.45
Assembled and Tested
TWIN OUTPUT KIT
£24.55

All systems are available direct from the manufacturer. Prices include VAT, postage and packing $£ 1.00$ extra. Access and Visa cards are welcome, just write or telephone quoting your number.

ELECTRONIZE DESIGN
Dept C. Magnus Rd • Wilnecote Tamworth •. B77 5BY tel 0827281000

DESIGNER'S NOTEBOOK

Last month, we looked at some of the new switched capacitor ICs. This month, Tim Orr gets down to some circuits using them.

Seven-Octave Audio Analyser

The R5606 is a single octave filter. Each R5606 is clocked with a square wave generated by a seven-stage binary divider, so that successive filter break-points are spaced at exactly one octave intervals. The resulting circuit is very simple and may be used as a real-time audio analyser or as an audio equaliser with a steep filter roll-off. Half-octave or even $\frac{1}{3}$ octave resolution could be obtained by using the R5605 or the R5604 respectively. The output signal is filtered by a simple single-pole low-pass filter to remove the effects of the sampling and the residual clock breakthrough. A simple anti-aliasing filter can also be used at the input to each filter, but this may not be considered necessary. A dynamic range of about 76 dB per channel should be obtained.

*The R5609 has a rollitiff stope of $100 \mathrm{~dB} /$ octave.
System bandwidth $=\frac{32 \times F_{f}}{100}=0.32 F_{c}$
Maximum theoretical bandwitth, as predicted by the sampling theorum $=0.5 \mathrm{~F}_{e}$

Audio Converter With Tracking Filter

The R5609 is a steep low-pass filter which can be used as an anti-aliasing filter and recovery filter in an audio converter, such a digital delay line. If the clock for the filter is derived from the system clock and the A-to-D converter, then the low-pass filter frequency will track any changes in the conversion speed.

FEATURE: Designers' Notebook.

Low-Pass Response Using the MF10

The frequency responses of second, fourth and sixth order maximally-flat low-pass filters are shown in the graph. These can be realised by cascading second order low-pass filter sections together. The table shows the break frequencies and Q factors for both maximally flat (Butterworth) and 3 dB ripple (Chebychev) responses. The maximally flat responses are easy to realise because all stages use the same clock frequency. The 3 dB ripple response requires awkward clock frequencies. A simple design example will illustrate how to use the filter.

The figure shows a design for a fourth-order 2 kHz maximally-flat low-pass filter with an overall gain of 1 in the pass band. From the table, the first stage should have a Q of 0.54 and a frequency of 2 kHz , the second stage a Q of 1.306 and a frequency of 2 kHz . Mode 1 a is the most simple realisation of the second order low-pass filter. For the first section let R3 $=10 \mathrm{k}$. Then $\mathrm{R} 2=18.48 \mathrm{k}(15 \mathrm{k}+$ 3 k 6 would do). For the second stage let R2 $=10 \mathrm{k}$, then R3 $=13.06 \mathrm{k}$ ($9 \mathrm{k} 1+3 \mathrm{k} 9$ is near enough). Both clock pins can be tied together and driven with a single 200 kHz clock (pin 12 grounded gives a clock-to-filter frequency ratio of 100 to 1).

LOW-PASS FILTER RESPONSE	1st STAGE		2nd StAGE		3rd Stage	
	\%	L	0	0	10	0
2nd ORDER BUTTERWORTH (FLAT RESPONSE)	1.0 F	0.707				
2nd ORDER CHEBYCHEV (3dB RIPPLE)	0.84 F	1304				
4th ORDER BUTTERWORTH	10 F	0.54	1,0\%	1,306		
4th ORDER CHEBYCHEV	0.4435	1076	0.95 F	5.58		
6th ORDER BUTTERWORTH	1.0%	0.518	10 F	0.707	1.0 F	1.931
6th ORDER CHEBYCHEV	6.298 F	1.044	$0.722{ }^{2}$	3.46	0.975 F	1278

* For the equivalent highpass response, use the same a factor but use the reciprocal of the frequency multiplier

Band-Pass Response Using The MF10

A simple band-pass filter can be constructed using the circuit shown as mode 1 in the first article on switched capacitor ICs, and shown again to jog your memory! For a Q of $10, R 3=100 \mathrm{k}$ and $R 2=10 \mathrm{k}$. To give the filter unity gain at resonance, $\mathrm{R} 1=\mathrm{R} 3=100 \mathrm{k}$. The external clock frequency determines the resonant frequency. By cascading two filters with a Q of 10 , a very sharp resonance curve is producedasyou can see in the graph below. If the Q factor of each filter is increased further then an even sharper response can be obtained, although this may result in a double peak if the relative resonant frequencies of the two filters deviate.

(t+7+1 $t+1+1$

FX-702P the casio pocket computer/calculstor, basic programming, 55 scientific tunctions, up to 1,680 program Price.
. 574.56
FX602 programmable calculator, 50 scientific functions and
512 program steps.
P. 2 cassette interface for FX. 702 and FX-602.
X. 100 college scientific calculator

PRICE.....................................
FX. 7 school scientific calculator.
PRICE.. ... MG-880
PRICE. \qquad
MG-888 calculator with three games and memory function PRICE.. MG-777 calculator with clock, 3 games and memon functions.
PRICE...
C. 311 calculator with memory functions

1-7018 solar fonward calculator winth percente... memory functions.
PRICE:...

RADIO AM535 - 1605 KHZ radio watch supplied complete with
cood heddphones. PRICE515. $\%$ ALARM VERSION....................

∞ - \quad -

AM/FM-MPX STEREO RADIO CASSETTE
This compact, quality product is cesigned to provide you with exceptional listening pleasure. The features include AM/FM dial-in-door, local/distance attenuator switch for better stereo reception. FM stereo indicator. Fast forwerd and eject button for caseette, balance, volume and tone controls.
PRICE..

VOICE ACTUATED TELEPHONE ANSWERING SYSTEM WITH REMOTE CONTROL

Standard twin cassette deck, microproceseor control. 2 digit LED meatege counter, Incoming call monitoring, answer onty mode, 2 -wiy conversation recording, can be uned as on o dinary tapa recorder remote control bleeper Included. PRICE

10×50
MAGNiFCATION high ovality BIINOCULARS AT A VERY REASONABLE PRICE
£19.95

MICROCOMPUTERS AND PERIPHERALS

DRAGON 32

A NEW BRITISH MADE COMPUTER This is a powerful now microcomputer specially designed for the famity and small business use. It has 32 K Bytes of RAM
(expandable
to
64 K). 16 K MICROSOFT COLOUR BASIC. High res colour graphic and very good sound features. It has full size professional keyboard and comes complete with power supply and buitt in centronic paraliel printer interface. It has a cassotte imterface and slot for games cartringes. A floppy dis 1 interface and DOS will be available shortiy Manufacturers 1 year warranty DRAGON 32
DRAGON MICROCOMPUTER 5189,95 sofr

GAM

GAMES CARTRIDGES TYPE 'S'.... 20. .80 GAMES CARTRIOGES TYPE ' O^{\prime} '.... 517.50 PRINTER CABLE

Dot matrix Parallel printer suitable for use with, DRAGON 32, B8C and all other computers with centronic compatible parallol interface. Speed 30 CPS, Double width char., stendard char., tractor feed, very good graphic capabilities, setectable line spacing.
PRICE.....
.e200.96

EPSON TYPE 3 PRINTERS

80 column, 80 CPS, dot matrix printer with high res.
 MXDO F/T. 3
As above but with friction and tractor feed. PRICE

M×100-3

136 column, 100 CPS dot metrix printer, high rese Prephic, true decendors, peper width upto 15 inches, fretion or tractor foed, centronic p PRICE RIBBON FOR MX8O. AIBBON FOR MX100
 Ladies basic watch with 5 year non stoo lithian battery. Displays hours and minutes. Black resin case.

CASIO L13-316

Ladies basic watch in metal case and stainless steel bracelet. Displays hours and minutes or date and month.
PRICE \qquad
. 88.50

(ㄱํ P PUSHBUTTON TELEPHONE

 Superbly styied, one piece,very compact push button very compact push button telephone, with last number redial facility (on pressing one button it will dialled A special MUTE Button enables you to tolk at your end without the other party hearing you The electronic buzzer can be switched on or off. PRICE........................f19.96

SILENT ALARM POCKET PAGER

 This is an individually coded 4 WATTS Radio system has corinections for door contacts and vibration sensors. 2 vibration sonsors are included. It has a range of 2 miles. Ideal for protection of vehicle 12 V op. Not licensible in UK. PRICE ONLYPROFESSIONAL MONITORS AND COLOURTV

SANCE

PMC 12A-12 inch green monitor.
PRICE
14 inch colour TV.
PRICE
SANYO
PF
PROFESSIONAL MONITORS AND COLOUR TV
SANYO SM12H-12 inch green monitor.
PRIC 12A-12 ineh greon monitor.
PAICE
14 inch Collour \qquad
SANYO SMC14H-14 inch high ves. colour mone. 8 PRICE ...431.85

RECHARGEABLE BATTERES			
CODE	TYPE	CAPACITY	PRICE
S401	AAA	200 mAH	51.30
5101	AA	500 mAH	m. 50
C1200	C	1200 mAH	2. 21
D1200	D	1200 mAH	[2. 0
R×22	Universel Charger for math		
BC2204			

PRICEf21.95

CASIO

CA-851
Calculator watch with duai time/chronograph/lap time and built in UFO invader buit in The calculator game. The calculato $-, x,+$, and con stant $x,+$, and colculations Stainless steel brace let, lithiam battery.
PRICE

2 CHANNEL HAND HELD FM-CB RIG
27 MHZ FM (U.K 27 MHZ FM (U.K. channel 14 and 30 squelch control. LED indication of transmit mode. Uses 4 AA size batteries. RF output

100 mW , receiver sensitivity 1 micro volt PRICE......E17.96 each OR 34.95 per pair

CIRCUIT
 SUPPLEMENT

Knowing how intelligent all you experimenters are, we've just given you the raw data of some of the latest integrated circuit technology there is, so you can get on with it without further ado. So we'll be expecting lots of Tech Tips based on these devices. . . . What's that? Oh, alright then, just a few circuits.

TL011, TL012, TL014, TL021 (Texas

Instruments) Fixed ratio current mirrors

- Wide inpute range, 1 nA to 1 mA
- 35 volt output capability
- high output impedance
- typically less than $\pm 1 \%$ error at 25 deg C

Ratio of input current to output current varies with device code.

Code.	
OUTPUT TO INPUT	DEVICE
CURRENT RATIO	TL1
$2: 1$	TL011
$4: 1$	TL012
$1: 2$	TLO21

Types with different sufix have different temperature ranges and guaranteed current ratio tolerances over those ranges.
C suffix: 0 to $70 \mathrm{deg} \mathrm{C}, \pm 10 \%$ over full range
I suffix: -40 to $85 \mathrm{deg} \mathrm{C}, \pm 8 \%$ over full range
M suffix: -55 to $125 \mathrm{deg} \mathrm{C}, \pm 7 \%$ over full range

Fig. 1 Pin out and simplified internal circuitry of the TL011, TL012, TL014, TL021.

Electrical characteristics: TL011, etc	min	typ	max
Input voltage (V) (note 1) $\mathrm{I}_{\text {IN }}=1 \mathrm{uA}$	0.4	1.0	1.5
$\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$	0.9	1.4	1.75
Input current (mA)			$\begin{aligned} & 5 \\ & \text { (note 2) } \end{aligned}$
Output voltage	$\begin{aligned} & 1.2 \\ & \text { (note 3) } \end{aligned}$		$\begin{aligned} & 45 \\ & \text { (note 2) } \\ & \hline \end{aligned}$
Output to input isolation (dB)	80		
Output resistance (M) $\underline{I}_{\text {IN }}=1 \mathrm{uA}$	1000		
$\mathrm{I}_{\mathrm{IN}}=1 \mathrm{~mA}$	1		
Maximum operating frequency (MHz)		10	
Continuous power dissipation (mW)			775 (note 2)

Key to footnotes

Note 1: figures for M suffix; I and C suffix types will have slightly higher voltages all round

Note 2: absolute maximum rating
Note 3: this is the guaranteed maximum minimum necessary to maintain current ratio.

Fig. 2 A phototransitor amplifier using a TL014.

Fig. 3 A two wire current-mode transmitter using the TL012.

AD536, AD636 (Analogue Devices) RMS to DC

Convertors

- true RMS to DC conversion
- dB output with 60 dB range (50 dB 636)
- low power consumption: 1 mA 536, 800 uA 636
- dual or single supply operation over a wide range of supply voltages
- current output available
- available in DIL or TO 100 packages.

Fig. 4 (right) Pin out of the AD536 and AD636.

* $=25 k$ ON 636

14 PIN DIL PACKAGE

Electrical characteristics		AD536 (note 1)	AD636 (note 1)
Input	peak max. for rated performance	$\pm 20 \mathrm{~V}$ for $\pm 15 \mathrm{~V}$ supply $\pm 5 \mathrm{~V}$ for +5 V supply	$\pm 5 \mathrm{~V}$ for $\pm 5 \mathrm{~V}$ supply $\pm 5 \mathrm{~V}$ for $\pm 2 \mathrm{~V} 5$ supply
	max safe input	$\pm 25 \mathrm{~V}$	$\pm 12 \mathrm{~V}$
	input resistance	approx $17 \mathrm{k} \Omega$	approx $7 \mathrm{k} \Omega$
Accuracy	without ext. trim	$+5 \mathrm{mV} \pm 0.5 \%$ (7VRMS	$+5 \mathrm{mV} \pm 1 \% \quad(200 \mathrm{mVRMS}$
	with ext. trim	$\pm 3 \mathrm{mV} \pm 0.3 \%$ input)	$\pm 3 \mathrm{mV} \pm 0.3 \%$ input)
Frequency response (note 2)	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{mV}$	6 kHz	12 kHz
	$V_{\text {In }}=100 \mathrm{mV}$	40 kHz	80 kHz
	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$	100 kHz	$130 \mathrm{kHz}\left(\mathrm{V}_{\mathrm{IN}}=200 \mathrm{mV}\right)$
Averaging time const.	multiply by value of C_{AV} in uF	25 mS per uF	25 mS per uF
Output from buffer	max output voltage $(\min =0)$	$\begin{aligned} & +10 V(\pm 15 \mathrm{~V} \text { supply }) \\ & +2 \mathrm{~V}(\pm 5 \mathrm{~V} \text { supply }) \end{aligned}$	+1 V 4 ($\pm 3 \mathrm{~V}$ supply) $1 \mathrm{~V}(+3,-5 \mathrm{~V}$ supply)
	current	$+5 \mathrm{~mA},-130 \mathrm{uA}$	+ $5 \mathrm{~mA},-130 \mathrm{uA}$
$\mathrm{I}_{\text {OUT }}$	scale factor	40 uA per volt RMS $(+25 \%)$	100 uA per volt RMS ($+20 \%$)
	voltage compliance	$-V_{s}$ to $+V_{s}-2 V$	$-V_{S}$ to $+V_{s}-V$
dB output	scale factor	-3 mV per dB $(1 \mathrm{VRMS}=0 \mathrm{~dB})$	$\begin{aligned} & -3 \mathrm{mV} \text { per } \mathrm{dB} \\ & (0 \mathrm{~V} 1 \mathrm{RMS}=0 \mathrm{~dB}) \end{aligned}$
	error	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
	$\mathrm{I}_{\text {ReF }}$ range	5 uA to 80 uA	2 uA to 8 uA
Crest factor	error with 3:1 peak: average signal level	-0.1\%	-0.2\%
Power supplies	minimum voltage	$\pm 3 \mathrm{~V}$ or +5 V	$+3 /-5 \mathrm{~V}$ (note 3) or +5 V
	maximum	$\pm 18 \mathrm{~V}$ or +36 V	$\pm 12 \mathrm{~V}$ or +24 V
	current (quiescent)	1 mA (max 2 mA)	800 uA (max 1 mA$)$

Key to footnotes

Note 1: higher specification versions available
Note 3: may be operated on $+2 \mathrm{~V} /-2 \mathrm{~V} 5$ but will not give specified performance.

SPECIAL : Circuit Supplement

Normal Mode of Operation

Only one external component, C_{AV} is needed. For 50 Hz operation, C_{AV} should be at least $0 u 7 . \mathrm{C}_{\mathrm{F}}$ is an optional output ripple filter, and would normally be twice the capacity of $C_{A V}$ if used, though this will increase the setting time.

Fig. 5 Normal mode of connection of the AD536 and AD636.

Circuit for dB Output

VR1 should be adjusted to give the correct 0 dB point, and $I_{\text {ref }}$ should be within the range quoted in the main specifications table. An inverting and amplifying stage could be used to obtain a positive-going suitably scaled output, and also to compensate for temperature drift.

Fig. 6 Output connections for dB output.

Single Supply Connections
Note that only AC signals can be measured in this mode.

Fig. 8 Connections for a single supply rail.

Connections to trim errors

VR2 adjusts the total offset; ground the input and adjust VR2 to obtain zero output.
VR1 adjusts the gain; after adjusting VR2, apply a DC input of full scale and adjust VR1 to give the same output.

Component Values	AD536	AD636
R1	$249(180+68)$	100
R2	470 k	470 k
VR1	470	220
VR2	47 k	470 k

Fig. 9 Connections necessary to trim out errors.

Fig. 7 A complete AC digital voltmeter using the AD636 and a 7106 (or similar) ADC/LCD driver.

CEM 3350 (Curtis) dual VCF

- Dual state variable filters with independent exponential frequency and Q control
- Wide frequency range: 15 octaves typical
- Choice of two simultaneous outputs: low-pass, bandpass, or high-pass
- Wide supply voltage range: $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Definition of terms

$V_{\text {IF }}$	fixed gain input
$V_{V \mathrm{~L}}$	variable gain input
V_{LP}	low-pass output
V_{BP}	band-pass output
V_{CQ}	Q control voltage input
V_{CF}	pole frequency control input
$V_{\mathrm{CC}} V_{\mathrm{EE}}$	positive and negative supplies
$\mathrm{I}_{\mathrm{REF}}$	reference current input

Application notes

The transconductors inside the IC are NPN differential pairs with current mirror active loads (similar to CA3089) so input levels must be kept low $(20-80 \mathrm{mV})$ for acceptable distortion. Inputs must normally be attentuated and output level should be restored using a BIFET op-amp to avoid problems with input offset currents that might be caused by the transconductors' high output impedance.

Note that applying increasing negative $V_{C O}$ will increase Q, and that pole frequency decreases with increasingly positive $V_{C Q}$. For negative $V_{C F}, g_{m} F$ (and hence pole frequency) is approximately linear, but becomes exponential when V_{CO} is positive.

Fig. 10 CEM 3350 pin out and configuration as voltage controlled four-pole low-pass filter. Band-pass outputs could be cascaded by connecting $V_{i v}$ and $V_{i f}$ in the second section to V_{Bp} in the first section, and taking the output to the op-amp from V_{Bp}.

Electrical characteristics: CEM 3350 (Supplies $\pm 12 \mathrm{~V}, \mathrm{I}_{\text {ReF }} 400 \mathrm{uA}$)	min	typ	max
Pole frequency control range	4000:1	12000:1	
Sensitivity of pole frequency control scale, midrange ($\mathrm{mV} /$ decade)	57	60	63
Exponential error of frequency and Q control scale (\%) (note 1)		1.0	3.0
Transconductance of Q transconductors (mmho) (note 2)	4.5	6.9	9.3
Maximum transconductance of pole and Q transconductors (mmho)	11.0	14.2	16.0
Distortion in passband (\%) (note 3)		1,0	5.0
Maximum Q without enhancement transconductance output impedance ($M \Omega$) (note 2)	$\begin{aligned} & \hline 50 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 150 \\ & 4.0 \\ & \hline \end{aligned}$	
Supply voltages (V)	± 3		$\begin{aligned} & \pm 18 \\ & \text { (note 4) } \end{aligned}$
Supply currents (mA): $\begin{aligned} & \text { positive } \\ & \text { negative }\end{aligned}$		$\begin{aligned} & 2.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 7.5 \end{aligned}$

There is a choice of fixed gain and variable gain inputs on both filters in the IC. The difference between these inputs is shown in Fig. 14. Signals applied to the fixed gain input will have gain Q at the resonant peak and unity elsewhere in the pass-band. Signals applied to the variable gain input will have unity gain at the resonant peak, while the gain in the pass-band will by $1 / Q$. Thus the fixed gain input can give overload problems, while the variable gain input will lead to changes in output volume as Q is adjusted. One way of trying to reach the best compromise is to aportion the input between the two inputs using an attenuation network (or, in more simple circuits such as Fig. 10, feeding the signal to both inputs). Another method would be to use the fixed gain input only, and to reduce the Q if a certain signal output level is exceeded.

Q is given by:

$$
\mathrm{Q}=\frac{3}{2} \sqrt{\frac{C_{L P}}{\bar{C}_{B P}}} \exp \left(-V_{C Q} / V_{T}\right)
$$

where $V_{T} \sim 25 \mathrm{mV}$ at room temperature.

Key to footnotes

Note 1: $+60 \mathrm{mV}<\mathrm{V}_{\mathrm{CF}}<+240 \mathrm{mV}$
Note 2: control voltage $=0$
Note 3: V_{IF} or $\mathrm{V}_{\mathrm{IV}}=40 \mathrm{mV} \mathrm{p}-\mathrm{p}$
Note 4: maxımum total differential supply for guaranteed operation is 26 V .

Fig. 11 High-pass filter using CEM 3350: response will fall by 12 dB per octave below the cut-off frequency.

(a)

Fig. 14 Low-pass (a) and band-pass (b) responses for sections, with $Q=1$ and $Q=10$. In the case of curves with $V_{I F}$ or $V_{I V}$ input, other input has been grounded.

Fig. 12 (above) Low-pass and a high-pass filters can be combined to give a band-pass filter with a voltage-controlled band width. The circuit shown is an example of series interconnection; parallel interconnection is also possible.

Fig. 13 (left) The \mathbf{Q} of the circuit may be enhanced above the normal maximum of $100-200$ by applying regenerative feedback as shown: but beware too much feedback, as this will cause oscillation at the resonant frequency.

Available from Digisound Ltd.

ZN428E-8 (feranti) Eight-bit D-to-A convertor

- D-to-A convertor, data latch and reference voltage in a single package
- single supply operation
- CMOS and TTL compatible
$\bullet 800$ uS setting time

Fig. 15 ZN428 pin out.

Fig. 16 (above) Normal mode of operation of the ZN428.
Fig. 17 (left) Block diagram of ZN428.

Operational notes

When ENABLE is low, the data inputs drive the D-to-A directly. When ENABLE goes high, the data is held in the latch until ENABLE next goes low.

Internal reference voltage source is a band gap diode circuit and it needs an input current to operate. Using a decoupling capacitor is recommended. There is no internal connection between the internal reference voltage source ($\mathrm{V}_{\mathrm{REC}} \mathrm{OUT}$) and the reference input to the $\mathrm{R}-2 \mathrm{R}$ ladder ($\mathrm{V}_{\text {ReF }}$ IN).

Electrical characteristics: ZN428E-8		min	typ	max
Supplies	voltage (V)	4.5	5.0	$\begin{aligned} & 5.5 \\ & \text { (note 1) } \end{aligned}$
	current (mA)		20	30
Internal reference	voltage output (V)	2.475	2.550	2.625
	current (mA)	4		15
D-to-A convertor	linearity error (note 2)			0.5
	offset voltage, $\mathrm{V}_{\text {OS }}(\mathrm{mV}$)		2	5
	reference voltage input (V)	0		3.0 (note 3)
	settling time to 0.5 of LSB (uS)		$\begin{aligned} & 0.8 \\ & \text { (note 4) } \end{aligned}$	$\begin{aligned} & 1.25 \\ & \text { (note 5) } \end{aligned}$
	output resistance (k)		4	
Logic	enable pulse width (nS)	100		
	data set-up time (nS)	150		
	data hold time (nS)	10		
Ground	max. discrepancy between an. and dig. gnd (mV)			200

Key to footnotes

Note 1: absolute maximum is 7 V
Note 2: expressed as fraction of least significant bit
Note 3: absolute maximum $+V_{\mathrm{Cc}}$

Note 4: average after one LSB transition, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{M}, \mathrm{C}_{\mathrm{L}}=10$ pF
Note 5: average after all bits switching, $\mathrm{R}_{\mathrm{L}}, \mathrm{C}_{\mathrm{L}}$ as before.

SPECIAL : Circuit Supplement

LF 347 (National Semiconductor) quad JFET op-amp

- pin-for-pin replacement of LM148
- approximately full gain and band width down to $\pm 4 \mathrm{~V} 5$ supply voltage
- no special anti-static handling of op-amp required
- internally trimmed offset voltage.

Absolute maximum ratings:

Supply voltage:
Input voltage range, per input (note 1)
Output short circuit deviation (note 2)
Power dissipation (whole IC)
$\pm 22 \mathrm{~V}$
$\pm 19 \mathrm{~V}$ continuous
900 mW

Available from Rapid Electronics, and other suppliers.

Electrical Characteristics: LF 347 (supply voltages: $\pm 15 \mathrm{~V}$)	min	typ	max
DC voltage gain (V / mV)	50	100	
Slew rate (V/uS)		13	
Output voltage swing, load $=10 \mathrm{k}(\mathrm{V})$	12	13.5	
Gain-bandwidth product (MHz)		4	
Input resistance (ohms)		10^{12}	
Common mode rejection ratio (supply voltage $\pm 20 \mathrm{~V}$) (dB) over input voltage range (V)	$\begin{aligned} & 80 \\ & \pm 11 \end{aligned}$	$\begin{aligned} & 100 \\ & +15 /-12 \end{aligned}$	
Supply voltage rejection ratio (note 3) (dB)	80	100	
Input offset voltage (mV)		1	5
Amplifier to amplifier coupling (frequency range 1 Hz to 20 kHz , supply voltage $\pm 20 \mathrm{~V}$) (dB)		- 120	
Supply current (all four op-amps - but no load)(mA)		7.2	11

Key to footnotes

Note 1: input voltages should not be allowed to go below negative supply voltage, otherwise op-amp may be destroyed.

Note 2: only one op-amp output should be shorted at anytime, otherwise IC may overheat.
Note 3: measured for both supply voltages decreasing and increasing simultaneously.

Fig. 18 Output voltage swing vs. supply (a) and output load (b) undistorted output vs. frequency (c), output impedance vs.
frequency (d), open loop frequency response (e), and bode (f) plot for LF347.

SPECIAL : Circuit Supplement

Fig. 19 Pin out of LF347.

Fig. 20 Example of a long-time integrator, with reset, hold and starting threshold adjustment, using LF347s.

Fig. 21 We've used BIFET op-amps so much with the CEM 3350, it seems unjust that they shouldn't have a circuit or two to themselves; so here they are: a) a high accuracy sample-andhold, b) a peak detector, and c) a low-drift peak detector.

TV Alarm

Our final circuit is intended to make it harder for a thief to walk off with your TV. The basic idea is to use the aerial as the detector of the TV's non-presence. This is done by sending a small DC signal round the loop formed by the aerial pick-up loop (or the signal transformer for the aerial) and the signal transformer (or balun) in the TV. The circuit is isolated from TV signals by RF chokes RFC1 and RFC2, and C1 is inserted into the signal path to block the DC.

When the TV is disconnected, there is a 10 second delay (set by the values of R1 and C2) before the alarm goes off, so that an unwitting burglar will not know what has turned on the alarm.

This circuit is not suitable for use with TVs that have live chases. Also, there must be DC path through the TV's aerial circuit for the alarm to work.

The idea for this circuit originated in Australia. This doesn't mean that you have to turn your TV upside-down for the circuit to work. However, so doing may help with your appreciation of 'Blankety-Blank'.

ETI would like to thank the manufacturers of the ICs featured for their help.

ETI

Jupiter

The Jupiter Ace uses FORTH

The Jupiter Ace personal computer runs in FORTH, an easily understood language, typically four times as compact and ten times as fast as BASIC. Before the Ace all personal computers used BASIC and FORTH was only available to a privileged few. The Jupiter Ace also features a full-size moving-key keyboard, high-resolution graphics, sound, floating point arithmetic, a fast and reliable cassette interface and 3 K of RAM.

Available soon

Plug-on parallel printer interface.

For around $£ 20.00$ this will connect your Jupiter Ace to anything from high-speed dot matrix to letter-quality daisy

wheel printers.

Plug-on 16K Memory Expansion

For around $£ 30.00$ you will increase the memory of your Jupiter
Ace to 19 K giving you instant access to enormous amounts of information.

Software

A catalogue will be sent with every machines, and includes, initially, programs for education and entertainment.

All inclusive price

only $£ 89.95$

For $£ \mathbf{8 9 . 9 5}$ you receive your Jupiter Ace, a mains adaptor, all the leads needed to connect to most cassette recorders and T.V.s (colour or black and white), a software catalogue and a manual.
The manual is a complete introduction to the world of personal computing and a
course in FORTH programming on the Ace.
Even if you are a complete newcomer to computers, the manual will guide you step by step from first principles to confident programming.
The price includes postage, packing and V.A.T.
The Jupiter Ace is backed by a full 12 month warranty.

The Jupiter Ace is available only by mail order.
Please allow up to 28 days for delivery.
Send cheque or postal order with the form to:JUPITER CANTAB, 20 FOXHOLLOW BAR HILL, CAMBRIDGE CB3 8EP

Technical Information

Hardware
Z80A running at 3.25 MHz .
8 K bytes ROM
3 K bytes RAM
Keyboard 40 Moving-key keyboard with auto repeat on every key and Caps Lock.
Screen Memory mapped 32 column $\times 24$ line flicker-free display with upper and lower case ascii character set.
Graphics Chunky graphics (64×46 pixels) may be plotted, unplotted or over-plotted (XOR operation). Also, the entire character set (128 characters and their video inverses) may be redefined allowing intricate shapes to be drawn with a resolution equivalent to 256×192 pixels.
Sound Internal loudspeaker may be programmed to operate over the entire audio spectrum.
Cassette Programs and data in the compact dictionary format may be saved, verified, loaded and merged. Blocks of memory can be saved, verified, loaded and relocated. All tape files are named. Running at 1500 baud, the Ace will connect to most portable tape recorders.
Expansion Port Contains D.C. power rails and full $\mathbf{Z 8 0}$ Address, data and control signals. May be used to connect extra memory and other peripherals. IN and OUT words allow port-based peripherals to be addressed.
Data Structures Integer, Floating point and String data may be held as constants, variables or arrays with multiple dimensions and mixed data types. There are no restrictions on names.
Control Structures IF-ELSE-THEN, DO-LOOP DO-+LOOP. BEGIN-WHILE-REPEAT, BEGIN-UNTIL, all may be mixed and nested to any depth.
The Jupiter Ace closely follows the FORTH 79 standard with extension for floating point, sound and cassette. It has a unique and remarkable editor that allows you to list and alter words that have been previously compiled into the dictionary. This avoids the need to store screens of source, allowing the dictionary itself to be saved on cassette. Comprehensive error checking removes the worry of accidentally crashing your programs.

Designed by Jupiter Cantab

Computer Designers Steven Vickers and Richar Altwasser played a major role in creating the ZX Spectrum and then formed Jupiter Cantab to develop advanced ideas in personal computing. The Ace is the result, another all-British computer to lea the world.

01－452 1500 Teanomatic Ltd 01－450 6597

BBG Micro Computer

All mating Connectors with Cables in stock．Full range of ACORNSOFT， PROGRAM POWER \＆BUGBYTE SOFTWARE AVAILABLE

Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES
Single drive $5 \frac{1}{4}^{\prime \prime}$ SSSD $£ 235$ Double drive $5 \frac{1}{4}{ }^{\prime \prime}$ BOOK $£ 799+8$ carr．

PRINTER \＆USER PORT KIT
IC 69，70， 71 PL9， $10 £ 9.50$
Bus \＆Tube Port Kit $£ 6.50$
Official B⿴囗口 Dealer

$\begin{gathered} \text { CASSETTE RECORDER } \\ \text { Sanyo Computer Grade Recorder } \\ £ 24.50+£ 1.50 \text { Carr } \\ \text { Cassette Leads } £ 3.50 \\ \text { Computer Cassette } £ 0.50 \text { ea. } £ 4.50 \text { for } 10 \\ +£ 1 \text { carr. } \end{gathered}$	MON BMC BM 1401 14＂Colour Monitor RGB Input 18MHz Bandwidth $\mathbf{f 2 4 0}+\mathbf{E 8}$ carriage Sanyo 12＂Green Monitor Antiglare screen $999+\mathbf{f 6}$ carr．	TORS MICROVITEC 1431 M／S 14＂ Colour Monitor RGB input $£ 269+£ 8$ carr． RGB lead for BMC 58 Composite Videolead $£ 3.50$	ACORN ATOM Basic Built $\mathbf{£ 1 3 5}$ Expanded $\mathbf{£ 1 \% 5}$ （carr £3 per unit） Atom Disc Pack $\mathrm{f}_{2} 99+\mathrm{f6}$ carr 3A 5V Regulated PSU［26＋© 2 carr． Phone or send for our BBC Atom list．
NEC PC 8023 BE－C $100 \mathrm{CPS}, 80$ cols Logic Seeking， Reversonal，Forwerd and Revarse Line Feed， Proportional Specing，Auto Graphics，Greek and Block Gnly $£ 325+£ 8$ Carr．	PRIN SEIKOSHA 80 Cols 30 CPS Full ASCII e GR $10^{\prime \prime}$ Wide paper Now onbly $£ 175$ lllel Printer lead for BBC／Atom to Variety of interfaces，ribbons 2,000 fan fold sheets $91^{\prime \prime} \times 11^{\prime \prime} \mathbf{f 1 3}$	RS P 100A HICS £6 Carr st printers $\mathbf{£ 1 3 . 5 0}$ stock $+£ 3 \mathrm{p}$ 母 p	SON MX 80 and 100F／T3 MX 80 80CPS 80 cols Logic Seeking， Bi － directional，Bit Image Printing， 9×9 Matrix MX 80 F／T3 ${ }^{2} 325$ MX 100 F／T3 4430 （ e8 Carr／Printer）2

RUGBY ATOMIC CLOCK
This 280 micro controlled clock／caiender receives coded time data from NPL Rugby． The clock never needs to be reset．The facilities include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching．A separate timer allows recording of up to 240 lap times without interrupting of up to 240 lap times without interruptin See July／August ETI for details．Complete Kit $\mathrm{f} 120+\mathrm{f} 2.00 \mathrm{p}^{8} \mathrm{p}$

MICROTIMER

6502 Based Programmeable clock timer with
＊ 224 switching times／week cycle．
－ 24 hour 7 day timer
＊ 4 independent switch outpurs directly interfacing to thyristor／triacs
＊ 6 digit 7 seg．displays to indicate real time，ON／OFF and Reset times
\star Output to drive day of week switch and status LEDS
Full details on request．Price for kit $\mathbf{5} 7.00$

I．D．COMMECTORS Sppotinet TYol			
No of	Hender	hoomp	Edpe
ways	Pby	tocte	Comn
10	90p	90\％	200p
20	145p	125p	240p
26	175p	150p	300p
34	200p	${ }^{180}{ }^{\text {p }}$	310p
49	220p	130p	550p
50	235\％	200p	800\％

VSTEMS

MICRODOCTOR

This is not a logic anaiyser or an oscilliscope．It tests a microsystem and gives a printed reprint on RAM， ROM and $1 / 0-$ it will print memory map，search for code，check dataline shorts and operates peripherals and even disassembles the ROM．Microdoctor complete with PSU， Printer，probe cable and two configuration boards．£295．

[^1]
SOFTY II INTELLIGENT PROGRAMMER

The comptere micro procassor developronent systern for Engineers and Hobbyists．You can develop programs．debug，verity and commit to EPROMS or use in host computer by using softy as a comulator．Powertud editing facirties permit bytes，biocks of bytes changed，deteted or inserted and memory contents can be observed on Ordinary TV．Accepts most＋5yv Eproms． Softy II complete with PSU．TV Lead and Romulator lead $£ 169$

UV ERASERS

UVIB up to 6 Eproms $\$ 7.50$

 UVIT with Timer UV140 up to 14 Eproms 801.5 UV141 with Timer E78．00 （Carr f2／eraser）All erasers are fitted with mains switches and safety interlocks
Softy II complete with PSU．TV Lead and Romulator lead f 169

CMOS Cook Book

 6502 Assy，Lang． 6502 ApplicationsTRAINER KITS
G550 Junior Computer 055.00 6902 Nancompl $\quad 50.00$ 6889 Nancomp $11 \quad 690.00$ 1802 Micro Trainer E80 Manta （fully built and documented） Full details on request

MONITORS

MC BM 1401 14＂Colour Monitor RGB Input 18MHz Bandwidth
$\mathbf{£ 2 4 0}+\mathbf{E 8}$ carriage
Sanyo 12＂Green Monitor
Antiglare screen $\mathrm{E99}+\mathrm{f} 6$ carr．

MICROVITEC 1431 M／S $14^{\prime \prime}$ Colour Monitor RGB input $£ 269+£ 8$ carr． RGB lead for BMC 58 Composite Videolead $£ 3.50$

ACORN ATOM

（carr f3 per unit） Atom Disc Pack $£ 298+£ 6$ carr 3A 5V Regulated PSU［26＋©2 carr list．

SEIKOSHA GP 100A
80 Cols 30 CPS
Full ASCII e GRAPHICS
10 ＂Wide paper
Now onbly $£ \mathbf{1 7 5}+£ 6$ Carr
ter lead for BBC／Atom to most printers $\mathbf{5 1 3 . 5 0}$ 000 fan fold of interfaces，ribbons in stock

and 100F／T3
$\times 80$ 80CPS 80 cols 100CPS 136 cols directional，Bit Image Printing， 9×9 Matrix Auto Underline M× 80 F／T3 200 NX 100 F／T3 £430
（E8 Carr／Printer）

SPECIAL OFFER

2114 L	
$2716(+5 \mathrm{v})$	80 p
2532	250 p
$4146-2$	350 p
$4164-2$	800 p
$6116 \mathrm{P}-3$	350 p

BOOKS（No VAT p\＆p f1）

E．75
6.55

CRT Controller H／Book
65.55

Programming the $\mathbf{Z 8 0}$
Z80 Microcomp．handbook Programming the 6502 5012 Soltware $\quad \mathrm{E12.1}$ 502 Gomare Design
Large selection of databooks inter facing books，books on BBC，otc in facing books，books on BBC，otc in
stock．As for our list．

DESIGNING MICRO

SYSTEMS part 5

So far we've covered the brains of a computer, but it's still deaf and dumb, electronically. This month Owen Bishop takes on the role of ear, nose and throat specialist.

The CPU, its ROM and its RAM, the subjects of previous parts of this series, are a tightly-knit section of all computer systems. In most micros, they are mounted together on a single computer board. This month, we are concerned with the way in which this section of the computer circuit communicates with the rest of the circuit and with devices outside the computer proper. This aspect of computer design is known as Input/Output, or I/O for short.

In The Right Key

Leaving aside special-purpose computers such as those used in control applications, the most important source of input to the computer is its keyboard. This is where our finger-tips send information (instructions on what to do, and data to do it with) to the computer. As I write this sentence, my fingers are pressing keys on a computer keyboard. Each key is marked with a letter of the alphabet, a numeral or other symbol. There are also a space bar and two shift keys. How does the computer know which keys I have pressed? If I press the fifth key from the left of the second row down, I want it to put ' r ' on the screen. If I also press a shift key, I want ' R '. How does it know which key means which letter?

If a keyboard is to provide input to the CPU, it must somehow place information on the data bus. The keyboard of the computer which I use for word-processing does this in a simple way. The method is one which is commonly used in micros at the lower end of the price range. Figure 1 shows the main features of the circuit. The first point to note is that there is a bank of eight buffers between the keyboard circuit and the data bus. It would be no good if data were put directly on to the bus every time I happened to touch a key. That might be just the moment when the MPU is reading from RAM. My pressing key ' r ' just then could have disastrous results! It is essential that there is something between the keyboard and the data bus. This is the function of the buffers.

The buffers are under the control of the MPU. Each buffer has a data input, a data output and an enable input. The keyboard uses eight such buffers and they are all enabled together. When the enable input is held high $(+5$ V) the buffers are in the high-impedance state: in effect, the outputs are disconnected from the data bus. The buffers are held in this state when the MPU is busy reading RAM, or, for any other reason, does not want to know what is happening at the keyboard. When the enable input is made low (0 V) the outputs of the buffers take the states opposite to their data inputs (they are inverting buffers). The data present at the inputs appears inverted on the data bus lines.

Addressing The Problem

Enabling is under the control of a logical circuit, an address decoder. In Part 3 we described how an address is decoded in order that a particular memory cell in ROM or RAM can be read from or written to. The same technique is used here. Although the keyboard is not memory in the sense that it stores information, it is addressed in the same way as memory. Most addresses are allocated to RAM or ROM, but a few are allocated to the keyboard.

In my computer, the keyboard is addressed at 3800 to 38FF, though only a few of these addresses are actually used. The address-decoding logic gives a low output (to enable the buffers) whenever ' 00111000^{\prime} appears on the upper eight address lines (A15 to A8). The lower eight address lines (A7 to A0) go to the keyboard matrix. As it

Fig. 1 A typical keyboard circuit. To simplify this, only one row of keys has been drawn.
enters the matrix, each line goes to a buffer. These are inverting buffers with open-collector outputs.

You will see from Fig. 1 that the matrix consists of eight address buffer output lines crossed by eight data buffer input lines. The keys are simple press-to-make pushbuttons, joining an address output to a data input. The buffer input lines are normally held high because of the resistors connecting them to the +5 V supply line. When a key is pressed, an address buffer output becomes connected to a data buffer input. The fact that the address buffers have open-collector outputs means that if a buffer has a low output, it pulls the level down to 0 V . Otherwise the level remains at +5 V .

The Soft Solution

The rest of the input procedure depends on software: the monitor program in ROM contains a routine for reading the keyboard. The MPU addresses the keyboard by putting '0011 1000' ($=38$ in hex) on the high address lines (A15 to A8) and putting ' 1 ' on only one of the remaining address lines. For example, to address the first row of keys, the full address is '0011 100000000001 ' ($=3801$). For the next row we have '0011 100000000010^{\prime} $(=3802)$, then ' $0011100000000100^{\prime}(=3804)$ and so on through 3808, 3810, 3820 and 3840 to 3880 (all hex numbers, remember). The MPU puts these eight addresses in rotation on the address bus. When any one of these addresses is on the bus, the address decoder circuit enables all the data buffers. If no key is being pressed at that moment, all data outputs are low. But if one of the keys is being pressed at the same time as its address buffer output is low, a 'high' appears on one of the data lines. Thus if I press key ' r ' when the MPU is addressing 3802, line A2 is high, so its buffer output is low. Since key ' r ' connects this output to the buffer for data line D2, 0000 0010^{\prime} ($=02$ in hex) appears on the data bus. The MPU now has to go to a monitor routine to interpret this data. Using this routine, it finds out that if the data is ' 02 ' when the address is 3802, then key ' r ' has been pressed. An instant later, it will be addressing 3880 and, if the data becomes ' $00000001^{\prime}(=01)$ it can then tell that the shift key also has been pressed, and that the upper-case ' R ' is intended.

The MPU continually scans the keyboard in this way when waiting for input, decoding the data according to which address is in force at that instant. This approach to input relies heavily on software, and it takes several operations to detect and decode each key-stroke. Response is relatively slow. The routine required is further complicated by the need to deal with two keys being pressed simultaneously or in very rapid succession. It is necessary to check that a pressed key has been released before attempting to decode the next key that is pressed. This feature is known as two-key rollover. Fortunately, microprocessors work so quickly that even an experienced touch-typist is not able to outpace the keyboard decoding routines.

Encoding Made Easy

Although the circuit described above is simple and cheap to build, the MPU is required to do a lot of work. If this work could be done elsewhere, it would leave the MPU with more time to spend on other and perhaps less routine jobs. The alternative approach to keyboard decoding is to employ a special decoder IC (Fig. 2). Again, the keys are connected at the intersections of a matrix, but now both sets of lines come from the encoder IC. The IC has its own clock circuit and scans the matrix rapidly to find which X line and which Y line have been connected by a pressed key. Having detected a key-press, the output
latches of the IC are set to produce a seven-bit code corresponding to the pressed key, taking into account whether or not the shift key or possibly the 'control' key has been pressed at the same time.

You can think of the keyboard encoder as having some of the features of a ROM. When a set of eight memory cells in ROM is addressed for reading by the MPU, its output latches deliver to the data bus the byte stored in that cell. Similarly, the memory cells of the keyboard encoder each contain one code byte. The X and Y lines from the keyboard correspond to address lines. When a particular address is set up by pressing a particular key or combination of keys, the corresponding memory cells place their stored byte in the output registers of the IC. The data stored in the registers remains there until the MPU addresses the encoder. Then its register puts the stored code on the data bus and the MPU reads the code. Note that the MPU only has to perform one addressing operation: the keyboard address in the Apple II, for example, is COOO . This operation is much quicker than the laborious scanning operation described earlier. The only other thing the MPU has to do is to address the encoder reset (address C001) to reset the latches, ready for them to be set by the next key-press. Note that the encoder holds the code until the MPU requests it. In the previously described system, if the MPU is expecting input from the keyboard, it must continually scan the keyboard in case it should miss a key-press.

Ask Me In ASCII

Whereas the code generated by the circuit of Fig. 1 depends on how the circuit is wired, the code generated in Fig. 2 depends on the codes programmed into the memory of the IC during manufacture. In order to promote good communication between keyboards, MPUs and other $1 / O$ devices, a standard code has been drawn up for use in computer systems. This is the American Standard Code for Information Interchange, known as the ASClI code (Table 1). Most keyboard encoders produce ASCII code and most computers understand it!

Fig. 2 A keyboard circuit using an ASCII encoder (simplified circuit; only a few keys drawn).

A quick glance at Table 1 reveals that the seven-bit codes cover more than the printable alphabetical and numerical characters and symbols. The first two columns contain what are usually termed control codes. These are instructions for the control of peripheral devices, especially printers. They are generated when the CONTROL key is pressed at the same time as one of the alphabetical keys. The code BS, for example, is generated by pressing CONTROL and H, and means 'backspace'. Since this is a frequently used command, many keyboards have a special 'backspace' key (-) which generates this command with a single keystroke. CR means 'carriage return'. When you press the RETURN (or ENTER) key, the keyboard sends a CR code (000 1101) to the computer. This can be used, for example, to tell the computer that the program line which has just been typed in is complete and ready to be stored in program RAM. If the MPU sends such a signal to a printer, it instructs the print-head to return to the left-hand edge of the page. The DC1 to DC4 codes are Device Control codes, available for miscellaneous functions differing from one machine to another. On the TRS-80, code DC4 instructs the line printer to print at 16.7 cpi , whereas on the Apple II it is a toggle instruction to the Silentype printer to echo its printout to the monitor screen.

A further refinement found on some systems is a FIFO, or first-in-first-out device. It is wired between the encoder IC and the data line buffers. As each key is pressed, the encoder sends the corresponding ASCII code to the FIFO, which stores it. Typically, it can store up to 16 ASCII codes. The codes are sent out to the buffers in the same order as they are fed in. When the MPU is ready to read a code, a strobe signal to the FIFO results in the next available code being sent to the buffers. In this way, we have asynchronous transfer of data between keyboard and CPU. 'Asynchronous' means that the MPU and keyboard do not have to keep in step. If the MPU is temporarily busy and not able to accept input from the keyboard, the data queues up in the FIFO until the MPU is ready to accept it.

Plugging In Peripherals

Now that micros are becoming more commonplace, people are beginning to recognise that they are capable of far more than just playing arcade games or taking charge of the book-keeping. There is an increasing interest in being able to connect external devices to the micro anything from a simple games control to a robot arm. The more recently made micros, even those in the lower price range, now incorporate ICs which allow a variety of peripherals to be attached. These I/O channels are often referred to as 'ports'.

There are two main types of port IC. The parallel I/O device (or PIO) allows data to be transferred between the computer and the peripheral several bits at a time. Commonly there are eight lines, allowing transfer of one byte at a time. The serial I/O device (SIO) transfers data a bit at a time, but groups bits into eights (usually) so that a byte is transmitted as a series of eight bits. We will deal with SIOs in a later issue.

Parallel Lines

Although it is only recently that PIOs have become standard on many low-cost micros, they have always been an almost essential feature of the simple computers intended principally for control applications. A wellknown example of a PIO is the INS8154 (Fig. 3). Our old favourite, the Sinclair MK-14, had a socket to take an 8154, though the MPU used in this system (the 8060 or SC/MP) has a few direct I/O terminals of its own. Its three 'Flag' outputs can be programmed to have high or low outputs, giving a three-bit data output. The MPU also has

TABLE 1 : THE ASCII CODE								
High nibble	0	1	2	3	4	5	6	7
Low nibble								
0	NUL	DLE		0	(1)	\bar{p}	*	$\stackrel{\rho}{\rho}$
1	SOH	DC1	$!$	1	A	Q	a	q
2	STX	DC2	"	2	B	R	b	r
3	EXT	DC3	\#	3	C	S	c	s
4	EOT	DC4	\$	4	-	T	d	t
5	ENQ	NAK	\%	5	E	U	e	u
6	ACK	SYN	\&	6	F	v	f	v
7	BEL	ETB	,	7	G	w	g	w
8	BS	CAN	<	8	H	X	h	x
9	HT	EM)	9	Y	Y	i	y
A	LF	SUB	*	;	,	z	j	z
B	VT	ESC	+	$\stackrel{ }{ }$	K	[k	(
C	FF	FS	\%	$<$	L	1	1	I
D	CR	GS	-	=	M	1	m	\}
E	SO	RS	*	$>$	N	1	n	\sim
F	SI	US	1	?	O	-	o	DEL
The code is obtained by combining the high nibble (top margin) with the low nibble (left margin) to make a byte. For example the code for upper case W is ' 57 '. The code ' 20 ' represents a space.								

Fig. 3 Pin connections for the INS8154 I/O device.

Fig. 4 The $\mathbf{Z 8 0}$ PIO, showing its main connections when linking the $\mathbf{Z 8 0}$ to a peripheral device.
two 'Serial' inputs which allow two sets of input data to be fed directly to the MPU. This feature of built-in I/O is quite enough for simple control applications and may dispense with the need for a separate I/O IC.

The Acorn System 1 is a well-established control computer. It has sockets for two 8154s, the second of which is used for 1/O between the CPU and the cassette recorder. As with the keyboard, an 1/O device has to be 'located' in a certain part of memory: we say that it is 'memory-mapped'. When addressing the 8154, the top eight address bits (A15 to A8) are used for establishing the base address of the IC in the way we have already described. The IC has two chip-select inputs, one of which (CS1) is active-high, and the other (CSO) is active-low. Either or both inputs can be used to enable the chip, making it easier to work out an economical addressdecoding circuit.

The $M / \overline{I O}$ input is unusual, for as well as being an I / O device, the 8154 carries 128 bytes of RAM. This memory/IO combination is handy for control systems, for which 128 bytes may be all the RAM that is needed. The $\mathcal{M} / \overline{\mathrm{OO}}$ input is usually controlled by line A7. The remaining lines (A6 to AO) are decoded inside the 8154. To operate the 8154 as RAM, the $M / \overline{I O}$ input is made high. If the base address is AOOO (as in the Acorn System 1), RAM extends from A080 to A0FF (bit A7 always high for memory operations). To use the IC for I/O the M/IO input is made low (bit 7 always low for I/O). This section of the IC thus comes in the range A000 to A0FF. Actually, only a few of these addresses are used. Some of the addresses are used to initiate certain modes of operation; others are used when sending or receiving data. The method of programming the $I C$ is too complex to go into here, but we can outline what it is possible to do.

Data is passed between the CPU and the IC by way of the eight-bit data bus. Data is passed between the IC and the outside world (TTL levels only) by the 16 I/O lines. These are organised as two eight-bit ports, A and B. Each port can be controlled and addressed separately. Reading and writing to the device is totally under the control of the MPU. The registers in each port can be instructed by the MPU to act as outputs, or as inputs. It is also possible to control each line of a port individually, so that some of them are inputs and others are outputs.

When data is being output, it is transferred to the IC and appears on those lines which have been selected as outputs. The data stays there, even though the original
signals may have been removed from the data bus and the MPU is busy doing something else. The data can remain until the external device is ready for it, allowing the asynchronous transfer of data, as mentioned earlier. When the CPU reads from input lines, the data it receives is that which is being transmitted from the peripheral at that instant.

The Hardware Handshake

Obviously there can be problems in transmitting data through an I/O. How does the MPU know that the peripheral has received the data which has been sent to it? It is no use for the MPU to send a new set of data until it is sure that the peripheral has actually received the previous set. Conversely, how does the MPU know that there is a set of data waiting at the input port? How does the peripheral know when this data has been read by the MPU? Again, it is no good the peripheral inputting data to a port if the CPU has switched that port to the output function.

In some systems the sequence of operations and their timing may be such that complete transfer of data is assured. In other systems it is necessary to provide for signals to be sent between the MPU and a peripheral to control the flow of data. This is known as 'handshaking'.

The Z80-PIO (Fig. 4) has special control inputs and outputs and the necessary logic circuits to provide for handshaking. Like the 8154, it has two eight-bit ports, each of which can be individually programmed to act as an input port or an output port. Port A can also be programmed as a bidirectional port, allowing direct communication between the peripheral and the data bus. Alternatively, the individual lines of the port can be set for input or output, as described for the 8154. Figure 5a shows how data is sent from the MPU to a peripheral. As soon as data has been written to the IC and has appeared at an output port, the READY output goes high: this is a signal to the peripheral. When the peripheral receives this signal it knows that it must read the data. As soon as it has read the data, the peripheral puts a low pulse on the STROBE line. This causes the IC to generate a low pulse on the $\overline{\text { INT }}$ line. This goes to the MPU, telling it that the data has been read. The MPU may now send a further byte of data to the peripheral.

When inputting data (Fig. 5b), the peripheral begins by making STROBE low. The TNT pulse generated by the I/O device interrupts the MPU to tell it that there is data to

be read. At the same time, the READY output goes low, indicating to the peripheral that the data is being held, waiting for the MPU to read it, and that no more data should be sent in the meantime. As soon as the computer has read the data, the end of the $\overline{R D}$ pulse resets READY, so that the peripheral knows that reading is complete and more data can be sent. Thus the sender and receiver each know which stage the other has reached. Data is transferred between them in either direction without loss.

The 8154 has a similar handshaking procedure but this is limited to port A. The INTR line has the same function as the $\mathbb{N T}$ line, but Fig. 3 shows that there are no special control lines to correspond with READY and STROBE. instead, two of the lines of port B are taken over for this purpose when port A is to be used in the handshake mode. The remaining six lines of port B can be used independently, in the usual way.

Dealing With Interruptions

We have seen how the interrupt is an essential part of handshaking by PIO devices. The interrupt may also be used when other peripherals want to communicate with the MPU, either through an I/O device or directly to the data bus. Often, there are several peripherals connected to a system yet all give the same interrupt signal. How is the MPU to know which one of these peripherals it is dealing with?

One method is 'device polling'. Each device has a latch circuit which gives a high output when the device is trying to input data to the MPU. The latches are enabled by an address decoder, and each is separately addressed. When interrupted, the MPU goes to its interrupt routine program, disabling the interrupt function for the time being: this prevents it being interrupted again while it is attending to the current interrupt. The interrupt routine instructs it to read each register in turn to find out which device is interrupting and to jump to a particular subroutine according to which device has interrupted. Note that this program polls the devices one at a time in a pre-determined order. We can program the MPU to test first the registers of devices which cannot wait long to be serviced, leaving other less urgent devices until later. In this way the software establishes a system of priorities.

The Z80 has a vectored interrupt mode which simplifies the process of finding out which device is interrupting: at the same time as the device interrupts, it
puts certain data on the bus. This data is read by the MPU and combined with other data already in memory to form the address where the appropriate interrupt routine begins. Each peripheral identifies itself by putting this particular set of data on the bus, causing the MPU to jump to the corresponding servicing subroutine.

Who's Shouting The Loudest?

Most I/O devices have two ports, some have three, and many computers have more than one $1 / O$ device. If the MPU has two or more peripherals and all are trying to communicate with it at the same time, the situation is like a political meeting with everyone trying to shout at once! There must be a system of priorities so that, when one of the more important peripherals is communicating, the less important ones are ignored. We have seen that software provides priority, but only after the interrupt has occurred. Hardware priority ensures that a high-priority peripheral will always get preference whenever it interrupts. The most commonly used method is known as daisy-chaining.

Daisy-chaining works like this. All the PIOs or other peripherals are connected to the INT line by opencollector outputs. The line is normally held high by a pullup resistor connected to +5 V , but when any one or more interrupt outputs goes low, the voltage on the line is pulled down and the MPU goes into its interrupt routine. In order to be able to generate an interrupt output, a peripheral must be receiving a high voltage level at its interrupt enable input (IEI). Normally, the interrupt enable output (IEO) of the peripheral has the same level as its interrupt

Fig. 6 Daisy-chain priority control: all PIOs are connected to the INT line. PIO no. 3 is interrupting and passing a low signal to nos. 2 and 1 to prevent them interrupting.
input. The IEI on a peripheral receives its input from the IEO of the peripheral with the next higher priority. In Fig. 6, if none of the PIOs are interrupting, every one of them is receiving a high level at its IEI from the PIO next above it in the chain. Every one of them is able to initiate an interrupt when it wants to do so. When a peripheral is interrupting or is waiting for the MPU to respond to its interrupt request, its IEO becomes low. All peripherals below it (with lower priority) then have the low level fed down to them, and are then unable to generate interrupts.

Another method involves the use of a special priority encoder IC such as the CD4532. It is the hardware equivalent of the device-polling software mentioned above. It has eight inputs, each of which is connected to a peripheral. When any peripheral is causing an interrupt, it also puts a high level on its own encoder input. The encoder also has four outputs which can be connected to the data bus through buffers which are enabled whenever the MPU wants to read the encoder. Their outputs indicate in binary code which peripheral is interrupting. For example, if peripheral no. 6 (connected to input 6) is interrupting, the outputs put binary code 6 (0110) on the data bus. By reading the bus, the MPU can find out which device is interrupting. If more than one peripheral is interrupting at the same time, the binary code for that with the higher priority (highest number) appears at the output.

Sending A Cable

We have been so preoccupied with logic that we have largely ignored one of the main problems of the input and output of data - the wiring between the computer and the peripheral. If this is to be long, special line-driving buffers must be employed though, if the computer and
equipment are in the same room, this is rarely necessary. Computers work so fast that electrical signals can travel only a few centimetres during one cycle of operation. If wires are long, it may be impossible for the computer and its peripherals to remain perfectly in step with one another. This is one of the reasons for employing I/O ports with asynchronous interchange of data, as described above.

A more practical problem is the sheer number of conductors required. An eight-bit connection (the minimum commonly use) requires eight lines, plus a ground line and probably several control lines as well. There is a wide variety of multi-way connectors available for joining cables to computers and peripherals. Most are designed for use with ribbon cable.

Electromagnetic interference between adjacent conductors is a serious problem, especially with long runs of cable, and can lead to errors in the data being transferred. The data signals themselves are not so likely to interfere with each other, since they are all put on to the lines at the same instant, and there is a short period before they are read (again, all at the same time) during which switch-on and switch-off disturbances can settle. However, if the cable carries control signals, which are generally not turned on and off at the same time as data signals, these may interfere with the data carried in adjacent conductors. One solution is to ground alternate conductors, and use only those between them. A better solution is to use twisted pairs: one wire of a pair is used for the signal and the other wire is grounded. Special ribbon cable is made with twisted pairs with untwisted regions spaced along it, where it may be cut and linked to connectors using insulation-displacement.

ETI

MODULES FOR SECURITY \& MEASUREMENT

- Built-in electronic siren drives 2 loud speakers - Provides exit and entrance delays together with fixed alarm time
- Battery back-up with trickle charging facility
- Operates with magnetic switches, u/sonic or
- Anti-tamper and panic facility
loads - Test loop facility

DIGITAL VOLTMETER MODULE DVM 314

[^2]- Screw connections for ease of installation
- Separale relay contacts for switching external Separale relay contacts for switching external

lifting

Add VAT \& 50p post and packing to all orders.
Shop hours $9.00 \cdot 5.30 \mathrm{p} . \mathrm{m}$. (Wed. 9.00 - 1.00 p.m.) Units on demonstration - callers welcome. S.A.E. with all welcome.
anquiries.

A really
fective fully built effective fully built module containing both
ultrasonic uànsmirter sand ultrasonic uainsmitter and receiver and circuitry for providing
alse alarm suppression. This module. lalse alarm suppression. This moduly logether with a suitable $12 V$ power supply and relay unit as shown, forms on effective though inexpensive intruder alarm. Supplied with comprehensive Data Sheet, itis easily mounted in a hardware is available below

Hardware Kit

 HW 4012$\mathbf{E 4 . 2 5}+\mathbf{V A T}$
A sustable ready-drilled case with the various mount ing pillars. maris switch socket and nuts and bolts. Designed to house the ultrasonic alarm module together with its power supply Size. $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$

* ACCESSORIES *

3-position Key Switch for use with
3-position key Switch for use w
CA 1250 supplied with 2 keys
Magnetic switch (with magnet) 5^{*} Horn speaker for use with CA1250

Sinclair ZX Spectr

16Kor 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics... From only £125!

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16K RAM available, and the ZXPrinter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX 81 remains the ideal low-cost introduction to computing.

Now there's the $Z \times$ Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the $Z \times 81$. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM) 16 K of RAM (which you can uprate later to 48 K of RAM) or a massive 48K of RAM.

Yet the price of the Spectrum 16K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now - is fully compatible with the $Z X$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound-BEEP command with variable pitch and duration.
- Massive RAM-16Kor 48K.
- Full-size moving-key keyboard- all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics.
- ASCII character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair $Z X$ range of computers, the printer offers ZX Spectrum owners the full ASCll character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the $\mathbf{Z X}$ Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of hoiding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around £50.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 38R. Order				
Oty	Item	Code	$\underset{\Sigma}{\text { Item Price }}$	Total £
	Sincla	100	125.00	
	Sincla	101	175.00	
	Sincla	27	59.95	
	Printe	16	11.95	
	Posta	28	2.95	
		29	4.95	
			Total £	
Please tick if you require a VAT receipt \square				
*I enclose a cheque/postal order payable to Sinclair Research Ltd for $£$ \qquad *Please charge to my Access/Barclaycard/Trustcard account no.				
*Please delete/completeas applicable				
Signature				
PLEASE PRINT				

[^3]Sinclair Research Ltd, Stanhope Road, Camberley, Surrey GU15 3PS. Tel: Camberley (0276) 685311.

CiEID-Memotech's Plug-In Z881 heyboard

- Plugs directly into the back of your ZX81
- Keys have durable Sinclair legends
- High quality typewriter keys
- Does not inhibit other add-ons
- Automatic hold-down repeat
- Complete with buffered interface
- Fast and easy data entry
- Moveable between configurations

Memotech's Memopak Bange

Current

 Memopalis $\begin{array}{ll}40 & 1 \\ 5 & 3\end{array}$ BAT 5 Bir Centronics Interface
MEMOPAK 64K MEMORY EXTENSION

The 64K Memopak extends the memory of the ZX81 by 56 K , and with the $\mathrm{ZX81}$ gives 64 K , which is neither switched nor paged and is directly addressable. The unit is user transparent and accepts commands such as 10 DIM A(9000).
Breakdown of memory areas...0-8K Sinclair ROM. 8-16K This area can be used to hold machine code for communication between programmes or peripherals. $16-64 \mathrm{~K}$ A straight 48 K for normal Basic use.

MEMOPAK 32K and 16K MEMORY EXTENSIONS

These two packs extend and complete the Memotech RAM range (for the time being!) A notable feature of the 32 K pack is that it will run in tandem with the Sinclair 16K memory extension to give 48K RAM total.

MEMOPAK HIGH RES GRAPHICS PACK

HRG Main Features - • Fully programmable Hi-Res (192×248 pixels) • Video page is both memory and bit mapped and can be located anywhere in RAM. - Number of Video pages is limited only by RAM size (each takes about 6.2K RAM) • Instant inverse video on/off gives flashing characters • Video pages can be superimposed • Video page access is similar to Basic plot/unplot commands • Contains 2K EPROM monitor with full range of graphics subroutines controlled by machine code or USR function

MEMOPAK CENTRONICS TYPE PARALLEL PRINTER INTERFACE

Main Features - - Interfaces ZX8I and parallel printers of the Centronics type • Enables use of a range of dot matrix and daisy wheel printers with ZX81• Compatible with ZX8I Basic, prints from LLIST, LPRINT and COPY - Contains firmware to convert ZX8I characters to ASCII code • Gives lower-case characters from ZX8I inverse character set

We regret we are as yet unable to accept orders or
enquiries concerning the above products, but we'll let you know as soon as they become available.

CORTEX Part 2

Build yourself a better brain: this month we explain the remaining Cortex circuitry and the construction of the main board.

Serial I/O on the Cortex is handled by a versatile UART, the 9902. The CPU communicates with the UART via its serial I/O bus, based on the Communication Register Unit or CRU, which requires only three wires; thus the device fits easily into an 18-pin package. The 9902 is fully programmable and the range of variations is so great that it's outside the scope of this article. In the Cortex the chip is configured to handle RS232 eightbit codes with even parity and $1 \frac{1}{2}$ stop bits; the communication rate can be set from BASIC using the BAUD command and the device is activated using the UNIT statement. The parameter for UNIT is a 16 -bit word, each bit corresponding to a channel that can be either on (1) or off (0).

Channel 0 is the keyboard/ screen channel; channel 1 is the 9902 that is already wired into the PCB. Channels 2-15 are implemented in software and only require the addition of extra

SIZE	DDEN	TRANSFER RATE (kHz)	DIVISION RATIO (IC87)	MONOSTABLE PERIOD (US)	COMMENTS
0	0	125	12	3.0	$51^{\prime \prime}$ single density
0	0	250	6	1.5	$5 \frac{1}{4}^{\prime \prime}$ double density
0	1	250	6	1.5	$8^{\prime \prime}$ single density
1	1	500	3	0.75	$8^{\prime \prime}$ double density

BUYLINES

Powertran are supplying complete kits of parts and component packs for the Cortex. A complete 64 K Cortex kit will cost $£ 295$ plus VAT, carriage free A ready-built 64 K Cortex will cost $£ 395$ plus VAT, carriage free. Prices for addons (eg floppy discs, RS232C interface, memory expansion etc) and for component packs (eg PCB, semiconductors etc) can be found in Powertran's brochure. Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP10 2NM. Telephone 026464455.

9902 s on the CRU bus. The Cortex powers up set to UNIT 1. Executing UNIT 2 disables the keyboard and passes control to the 9902. UNIT 3 enables both simultaneously.

Fig. 2 Circuit diagram of the RS232 and cassette interfaces.

HOW IT WORKS - RS232 AND CASSETTE PORT

The RS232 port consists of IC68, a TMS9902 Asynchronous Communications Controller (ACC) and the TTL-toRS232 signal level shifters (IC74a,b and IC71b,c), IC68 is a completely softwarecontrolled device; its baud rate can be set at anything from 46 baud to over 100,000 baud. The number of bits to be transmitted or received can also be changed, as can the type, the parity and number of stop bits. The CPU drives the ACC through the serial I/O (CRU) bus. The ACC is decoded as a 32-bit block, each bit being selected by the five address lines A10-A14.

The cassette interface uses another ACC, IC67. First a 4.8 kHz op-amp oscillator (IC72c) drives a level shifter (IC71d) before being divided by two in the first flip-flop (IC73a). This ensures
that the waveform has a unity markspace ratio. The serial output from IC67 then controls the action of the second flip-flop, IC73b, via the EXOR gate IC3b. When the output is high, IC73b acts as a shift register, passing through the 2.4 kHz tone; however, when the ACC output goes low then synchronously at the next clock pulse, IC73b starts to divide by two, hence generating 1.2 kHz . The key point here is the synchronous switch from one tone to the other. The signal is high-pass-filtered and attenuated by R46, R47 and C23 betore passing to the tape recorder.

On playback the signal is first amplified by a factor of 100 and buffered in IC72b before going through an all-pass filter, IC72c. This is necessary because of the nature of tape recording.

When square waves are recorded on tape they are accurately captured; however, on playback frequency equalisation is carried out in the tape recorder but the phase relationship is destroyed, resulting in a 'spiky' sine wave. This is corrected by the linear phase-shift-versus-frequency characteristic of the all-pass filter. Thus the original square wave shape is recovered at the output of IC72a. This is then level-shifted by IC71a and used to trigger a monostable (IC70a). At the end ot the monostable period (312.5 uS) the state of the signal is sampled by the D type flip-flip IC69a. As the half-periods of the two tones lie either side of the monostable period, each tone generates the opposite logic level at the sample point.

HOW IT WORKS - FLOPPY DISC CONTROLLER

The TMS9909 (IC76) is a highly complex micro-controller, designed to work in conjunction with the TMS9911 DMA controller to transfer data from floppy discs. The FDC can control up to four drives which can be a mixture of two sizes or types.

All signals that go to the drives are open-collector buffered by IC80,82,83 and terminated by a resistor pack on the last drive in the chain. The signals from the drives are terminated on the board by a resistor pack and then buffered by IC84.

The raw data pulses from the drive, after being buffered by ICB4a, are stretched by a monostable (IC70b) by an amount dependent on the data transfer rate selected by the 'SIZE' I/O bit and the 'DDEN' (double density enable) signal (see Table 1). The output of the
monostable is used to control IC77, a digital phase-locked loop. The output of IC77 is, in the unlocked state, half the input clock frequency. When the loop is locked to a signal then the PLL inserts or deletes clock pulses in the pulse stream, thus shifting the average frequency. The programmable divider IC87 and divider IC69b are controlled by the 'SIZE' and 'DDEN' signals to select the correct clock frequency. The raw data is synchronised by IC88 to the PLL clock and then fed to the FDC. The FDC separates the interleaved clock and data bits from the pulse stream and sends data bytes via single byte DMA transfers to main memory.

Mini-floppy ($51_{4}^{\prime \prime}$) drives require a motor control signal to start and stop the disc rotating. Upon starting, the disc will not be ready for data transfers for one
second while the disc gets up to speed. To reduce the time required to access the disc repeatedly IC79b keeps the motor running for five seconds after it is de-selected and IC79a provides the initial one second 'not ready' signal to the FDC. For standard ($8^{\prime \prime}$) drives that don't generate a 'ready' signal there is a set of four jumpers.

The BASK interpreter has a 'BOOT' command which causes the FDC to read the first track from disc 1 and execute it as a machine code program. This could, for example, then search for and load the UCSD interpreter. In order that the system can boot from any type of disc there are two jumpers called 'SIZE' and 'DENSITY' which are read by IC63. This enables the BASIC interpreter to set up the FDC correctly.

Fig. 3 Circuit diagram for the floppy disc controller section.

Fig. 4 Component overlay for the Cortex main board. Note that the numerous unmarked capacitors are for supply decoupling and are 47 n ceramics. The grey tracks are those on the top (component) side of the board. Some changes in the IC numbering have occurred since last month due to a board redesign. To make last month's circuits agree with the above overlay, alter the

THE EXHIBITION YOU CANT AFFORD TO MISS

EXHIBITION GUIDE

Introduction

BREADBOARD exhibition has now been on the scene for five years and has proved that there is a place for an exhibition for the serious electronics hobbyist. We normally use the term electronics enthusiast but one must remember that often beginners are as enthusiastic as those of us with many years experience - often more enthusiastic!

Various local exhibitions or club shows occur during the year, all of which offer something of interest to see and often to buy. Breadboard, being a centralised exhibition professionally run, can offer facilities a local club show cannot. As well as having the venue and stands that you'd expect at the premier amateur exhibition, we are fortunate in being able to attract exhibitors more used to professional exhibitions, and who are perhaps unwilling, for whatever reason, to attend the smaller shows.

Breadboard ' 82 not only has the stands you would expect with components, books, magazines, computers, kits etc, but also there will be a series of lectures and demonstrations for those that wish to improve their minds (or rest their feet!).

We will also be introducing a Computer Forum for the newcomers to computing, where some of the more popular home computers will be available for you to try out. Our staff wil be on hand to help you understand those areas that are giving you a late-night nervous breakdowns!

This year we are fortunate in having two particularly interesting exhibitions/demonstrations. One is a computer moderated wargame using computers together with a scale terrain, troops, etc., that enables the visitor to assume command of the overall tactics of a modern battlefield. Should be interesting to see if Ruritania really could be next years number one super-power! Secondly we will be having a fascinating exhibition of holograms. These will be supplied by Light Fantastic and really have to be seen to be believed. For not even an arm or a leg could you buy one for your own home.

For those parts that need special restoration we will have the usual bar and restaurant open for your use beneath the exhibition hall. Don't miss Breadboard '82, you could even save yourself some money on some of the exhibition's special offers!

Peter Freebrey, Exhibition Manager

SPECIAL ATTRACTIONS

COMPUTER MODERATED WAR-GAMES

Dave Rotor sponsored by Amplicon Micro Systems, Brighton; figures supplied by Adventure Worlds, London, SW1
Wargames give you the chance to be your own general! The game that will be played at the exhibition is based on a small-scale encounter somewhere in Europe during World-War II. The players each have a small force at their command - made up of infantry, tanks and/or artillery and have to fight out their encounter on the terrain of the board. Each game turn represents a relatively small interval of time (eg, 3 minutes) and during one move, the commander of each side can tell any or all of his forces to move or fire selected weapons. The men and machines involved in the conflict will be represented by $1: 1 / 200$ scale models specially for the humans, however the computer will have an 'image' of the battle-field stored in memory.

Fed with each players' move, the computer works out the practical consequences, governed by data on the weapons in the possession of each side, the conditions of the terrain, the men, the weather, etc. The performance of the weapons, and even the men, is deduced from known details of real-life battlefield performance.

Suppose you have a squad of ten men and you decide to move them into battle; it's known that armed men can travel at 3 miles an hour in reasonable conditions. Depending on the time that each move represents, the squad will move a proportional scaled distance (worked out by he computer) in the direction you specify. If you order them to fire their weapons (or if your opponent's tank fires at them, for instance), the effectiveness will be gauged by the distance, the known effectiveness of the weapons against the type of target they are firing on, and
all the other factors programmed. The computer will then tell you what degree of damage you have inflicted on each other.

The sort of calculation involved in the evaluation of the tables, etc, used to take human moderators some considerable time; now a fair sized home-computer can do the calculations involved in less than a second. During the exhibition, both war-gamers and computer programmers will be on hand to give detailed explanations of the programming and the theory behind the game.

HOLOGRAMS

Light Fantastic Gallery, Covent Garden, London.

Light Fantastic is the first permanent gallery of holography in Britain, and was set up after the success of the 1977 and 1978 Light Fantastic exhibitions at the Royal Academy.

Holography itself has progressed a long way since the first indistinct three-dimensional images were produced in 1947 by Gabor, a scientist working at the Rugby Electrical Company in Scotland. Gabor was subsequently awarded a Nobel Prize for his invention.

The invention of lasers in 1960 made holography much more of a practical proposition. Most of the early laser-produced holograms had to be lit by laser in an area with low ambient light level. Later in the 1960s, the technique was improved to allow holograms to be lit with a standard tungsten halogen light source. The development continued from here, now allowing low cost high-volume production in acceptable commercial quality.

Holographic Exhibitions Ltd (holding company for Light Fantastic) provide a total design to installation service for commercial holography.

Light Fantastic will be showing a selection of some of the most striking items from their permanent collection.

EXHIBITORS

Here are just a few of the many leading companies who will be exhibiting their latest lines. More and more companies are booking all the time, and electronics is a rapidly changing field, so we won't have full details of all the exhibitors until the last minute - this is just a foretaste of what is to come. A full catalogue will be available at the exhibition.

ELECTRONICS TODAY INTERNATIONAL

You've read the magazine, you've built the projects, now visit the stand and meet the people who are responsible for it all.

On display will be a large number of our projects, including the brand new 16 -bit home computer, the robot arm, and many, many more, all springing into action before your very eyes! Besides this, you'll be able to put your questions to us, and we'll do our best to help. So come and see us on our stand.

HOBBY ELECTRONICS

An intelligent robot in a plastic basin is but one of the marvels on show to those of you who come to visit the Hobby Electronics stand at this year's Breadboard Exhibition.

As well as being able to see some of our best projects at close quarters - yes, they really do exist - you will get the chance to meet the people who produce HE. So, if you've been having some problem with getting your prototypes to work, or you'd just like to air your views on the mag, then pop along and we'll do our best to enlighten you. Even if you're the shy retiring type, don't be discouraged, just stroll up and play with something that takes your fancy - there's so much to choose from amongst test gear, audio, RF, gadgets, games and the like, that we'll be surprised if you want to look at any of the other exhibitors. Though, of course, there are plenty of others around, should you be that way inclined!

COMPUTING TODAY

Computing Today is the leading magazine for the serious home computer user looking for the professional approach. Written by micro users for micro users, inside each issue you will find feature articles, projects, general topics, software listings, news and reviews. You'il also be able to buy copies of the current magazine (as well as back issues where available) and any of our popular range of CT Software. So, if you're a committed micro user, come and meet the editorial staff and we'll show you a truly personal approach to microcomputing.

PERSONAL COMPUTING TODAY

Since its first issue in August of this year, PCT has become the magazine for the not-so-experienced computer enthusiast. We provide lots of helpful advice on choosing and using a home computer and associated peripherals, a directory of off-the-shelf software, plus lots and lots of programs from the very simple to the stunningly sophisticated. Come and visit our stand, and see how we can help you find your way through the maze of computing.

ETI, HE, CT and PCT are all magazines published by ARGUS SPECIALIST PUBLICATIONS LTD. Other magazines include Electronics Digest, ZX Computing and Personal Software.

ARGUS SPECIALIST PUBLICATIONS LTD, 145 Charing Cross Road, London WC2H 0EE, Tel 01-437 1002/3/4/5

BRADLEY MARSHALL LTD

Bradley Marshall is one of the leading electronic component distributors in the UK, building a reputation for the highest quality items in every area of the micro-electronics business. At Breadboard ' 82 they will be exhibiting a select range of items from their diverse spectrum covering over 3,000 individual product categories.

Whilst it is almost impossible to keep pace with change in the electronic market, Bradley Marshall feel confident that their new 1983 catalogue is as up-to-date as it is possible to be. As well as the complete range of Bradley Marshall components, the catalogue contains a great deal of component data to aid the hobbiest. Bradley Marshall are delighted to be able to make available advance copies of the catalogue exclusively for Breadboard ' 82 at a special exhibition price of 50 p.

Bradley Marshall are the sole London distributors of Crimson Electrik Professional Audio Amplifier Modules. Crimson Electrik Modules are internationally renowned with a reputation based on quality, reliability and value for money as witnessed by the BBC, IBA and KEF to name but three. Bradley Marshall will be displaying the complete range of these extraordinary amplifiers at Breadboard ' 82.

Thandar and Leader are names that need no introduction to either the professional engineer or dedicated hobbyist as makers of some of the finest precision test equipment and accessories on the market today. Bradley Marshall will be displaying and demonstrating a selection from this high quality range.

They say a bad workman blames his tools - but not Bahco, the foremost quality tools from Sweden. The complete range is available from Bradley Marshall and will be on display at the exhibition.
BRADLEY MARSHALL LTD, 325 Edgware Road, London W2 1BN. Tel: 01-732 4242

The captrunning longe Electro Hobby show

Keyboards - Watches - Clocks - Games - Calculators - Portable Computers - Musical Instruments

Casio have a world-wide reputation for QUALITY, RELIABILITY and VALUEFOR MONEY

BE AN AGENT
Sell our products to your friends and family and earn a 10% commission.
Details on-request.

IF YOU SEE A BETTER OFFER WE WILL BEAT IT

FULL DETAILS OF INDIVIDUALITEMS AVAILABLE ON REQUEST

GENERAL SPECIFICATIONS
All Casiotone keyboards (except VL-Tones) are polyphonic - up to 8 notes can be played simultaneously. They all have an integral amplifier and loudspeaker, plus output jacks for headphones and external amplification.

DIGITALSYNTHESISER
CT-1000P
NEW
£325
A RUNAWAY SUCCESS ALREADY 10 preset voices and 1,000 switchable sounds, with a protected memory for your 10 favourites. 5 -octave split keyboard; programmablearpeggio/real time sequencer.

49 BREATHTAKING SOUNDS CT-202
£275
RAVE REVIEWS OF THESE SCINTILLATING VOICES 49 instrument sounds over 4 -octaves, with a 4 voice memory function. 3 vibrato settings and sustain. $35 / 6 \times 341 / 8 \times 111 / 4$ inches. 15.81 bs.

CT-101
£199
25 voices, including Piano, Organ, Harpsichord, Accordion, Xylophone, Chimes, Clarinet, Flute, Violin, Mandolin, Guitar and synths.
4-voice memory function. Vibrato and sustain
$45 / \mathrm{K} 30 \% \mathrm{k} \times 11 / 4$ inches. 16.81 bs .
BEST SELLING 4 OCTAVE EASY-PLAY
CT-403

Identical to the CT-101 but in addition has easy-play auto chords and 16 rhythm accompaniments. 17.6 lbs .

CASIOTONE KEYBOARDS

The world's fastest selling keyboards ORDER TODAY - PLAY TOMORROW SECURICOR 24 hour delivery at no extra charge (CT models). Small keyb CASH \& CARRY from Cambridge.

PORTABLE MINI KEYBOARDS
Battery or mains. Mains adaptor optional extra:
NEW 4 OCtAVE EASY-play MT-60

IT HI M NTV NTMW

£149
25 voices with sustain and vibrato 8 rhythm accompaniments with 'Intro/fill-in' function. Easyplay auto chords, bass and arpeggio. $25 / 3 \times 25 \times 73 / 8$ inches. 5.51 bs .
MT-40
*

$£ 99$

3 octaves plus a 15 -note bass keyboard with auto matic function. 22 voices, with sustain/vibrato. 6 auto rhythms with dual fill-in. $21 / 2 \times 23 \times 7$ inches Weight 4.9 lbs .

MT-31

The MT-31 does not have a bass keyboard, auto function or rhythm accompaniment but it is other-
wise identical to the MT-40 Weight 4.4 lbs . wise identical to the MT-40. Weight 4.4 I bs.

VL-1

$£ 35.95$

Tens of thousands of this little marvel sold. 29-note mono keyboard. 100 -note tune memory. 5 preset sounds plus ADSR selector. 10 auto rhythms. One-Key-Play button. Calculator $11 / 8 \times 13 / 4 \times 3$ inches Weight 15.4 oz .

VL-10 Tiny executive version of the VL-1 with one voice. $1 / 2 \times 73 / 4 \times 21 / 2$ inches. Weight 4.3 oz. $£ 26.95$

ORDER FORM ON BACK PAGE

BAR-CODE PROGRAMMABLE

 TEACHING KEYBOARDSThe 345 (max) note steps and 201 (max) chord steps can be programmed by both Casio bar-coded music score and/ or manual entry via the keyboard.
The Auto Play function. One-Key-Play function and Melody Guide (lights above the keyboard show you the next note to play.. can teach you to play your pro grammed selection. One of the finest teaching aids so far developed." E\&MM

CT-701

5 octave, split keyboard. 20 preset sounds with variable vibrato and sustain. Fingered or auto chords with bass and arpeggio. 16 rhythm accompaniments with fill-in. Two sound effeets. $5 \times 373 / 4 \times 131 / 2$ inches. Weigh 27.6 lbs.

CT-601 Identical to the CT-701, but without the programming and teaching functions. NEW

A portable mini keyboard version of the CT-701. 4 octave (not split) keyboard. 10 rhythm accompaniments. Without the two sound effects, it is otherwise very similar to the CT-701. Battery or mains powered, with optional mains adaptor. $23 / 4 \times 25 \times 73 / 8$ inches. Weigh 6 lbs.

4NOTE POLYPHONIC MICRO
$\mathrm{VL}-\mathrm{L}-2-2=0$
11 11 II 1111 il
£79.95

Up to 240 melody notes can be entered and stored. Auto play and One-Key-Play functions. 3 octave keyboard with 10 preset sounds and 8 rhythm accompaniments Battery or mains powered, with optional mains adaptor

OPTIONAL ACCESSORIES

Bar coded/standard music. From $£ 2.95$ CS-H domestic stand. CT models
$f 30.00$ CS-P Stage stand. CT models. CS-E 2nd K/B extension for CSP SP-E volume pedal. CT models. SP-E sustain pedal. CT models PC- 3 hard case. MT-60 70 PC-3 hard case. MT-60/70 HC-A hard case. CT-101/403
HC-B hard case. CT-601/701/1000P HC-B hard case. CT 202
HC-3 hard case. CT-AD-4160 mains adaptor. VL- 1 $\mathbf{5} 35.00$
$\mathbf{f} 12.00$
$f 12.00$
f 25.00
$f 6.50$
$f 9.95$
$\mathbf{f} 9.95$
$\mathbf{f} 13.00$
$f 13.00$
$\mathbf{f} 30.00$
$£ 30.00$
$£ 40.00$
f 40.00
$\mathbf{f} 44.00$
$\begin{array}{ll}\text { AD-1E mains adaptor. MT models/VL-5 } & \mathbf{£ 5 . 0 0}\end{array}$

WORLD'S FIRST THERMOMETER WATCH

NEW

TS-1000
ONLY $£ 24.95$

100m water resist

- Full display
- 12/24 hour
- Thermometer
- Thermo alarm
- Daily alarm
- Time signal
- Pro. stopwatch
- World time Resin case

WORLD'S MOST VERSATILE WATCHES 10 alternative displays - over 60 useful functions.

WATER RESISTANT

Rugged, go anywhere sports watches. All have a full display of time and auto calendar. Alarm and selectable half-hourly time signal. Countdown alarm timer with repeat memory function, ideal for dinghy racing. Professional $1 / 100$ second stopwatch. Time is always on display, regardless of display mode. Amazing 5/7 year lithium battery life. 12/24 hou display.
Except for the W-35, the stainless steel case watches have a protective black bezel. (W-450, W-450C, DW 1000 and the DW-1000C).

100 mW /R

200m W/R Divers

We stock CITIZEN and SEIKO divers watches Please also see J-30 under Jogging Watches.

ANALOG/DIGITAL

The best of both worlds, with both analog and $12 / 24$ hour digital time display (dual time). Calendar, alarm, ame signal, pro. stopwate.

AA-86 LCD analog display. Countdown alarm timer with amazing, eye-catching moving graphics! AQ101 Classic analog, with date memory function.

GAME WATCHES

- Calendar, alarm, time signal, pro. stopwatch

NEW

GOLF WATCH
GG-9 £17.95

When playing real golf
counts strokes at each
hole. Totals strokes over 9
holes.
When playing Game
par for each of 9 holes
Distance from hole
indicator. Select golf club.
Select direction of swing.
Bunkers and out of bounds
Stroke counter
Memorises lowest score.

GM-30 Destroyer/submarine sea battle game. GM-40 Catch blocks from UFO and build pyramid

GAME/CALCULATOR WATCHES
Calendar, alarm, time signal, pro. stopwatch Popular DIGITAL INVADER game

ORDER FORM ON BACK PAGE

CALCULATOR WATCH

MULTI-ALARM WATCHES
Daily alarm with pre-alarm; daily alarm with post alarm; weekly alarm (or extra daily alarm); Hourly

CA-951 Calculator. 2 melody alarms.
CA. 95 Resin version of CA-951 $£ 19.95$
MM-400 6 melodies. Monthly alarm or extra daily alarm. Dual time. Time is always on display.

JOGGING WATCHES

Calendar, alarm, time signal, pro. stopwatch
Pacer signal for jogging and rhythmic sports.

$\mathrm{J}-30$
$\mathbf{f} 12.95$
J-50
J-100

J-30 50 metre water resistant. Countdown alarm timer. Input data: Pacer signals. Output data: Elapsed time. $37.7 \times 31.4 \times 7.6 \mathrm{~mm}$ thick.
$\mathrm{J}-50$ Countdown alarm timer. Input data: Pacer signals, length of stride. Output data: Elapsed time, distance covered.
$J-100$ as $J-50$ but with calculator function instead of countdown alarm timer.

STANDARD WATCHES

Calendar, alarm, time signal, dual time, $1 / 10$ second stopwatch.

ULTRA SLIM - GOLD PLATE OPTIONAL Calendar, alarm, time signal, dual time. stopwatch

A- 6606.4 mm thick. A-660G gold plated $£ 14.95$ SA- 50.4 .6 mm thick. Countdown alarm timer. $1 / 100 \mathrm{sec}$. stopwatch. SA-50G gold plated $£ 9.95$.

LADIES WATCHES

Basic 4-digit watches displaying hours and minutes; calendar; seconds.
L-50G gold plated. L- 780 Ultra compact.
LADIES ALARM WATCHES

LA- 650 Time, calendar, alarm, hourly time signal, countdown alarm timer
LM-320 Time, calendar, daily alarm with 3 selectable melodies, hourly time signal, professional stopwatch. stainless steel case.

50 METRE WATER RESISTANT

W-5 Basic 4 digits, displaying hours and minutes calendar, seconds.
LW-601 Time, calendar, alarm, hourly time signal countdown alarm timer.

SYMPHONIC ALARM CLOCK

ELECTRONIC GAMES
NEW FOR CHRISTMAS 1982
CG-10
SOLAR SHUTTLE f12.95
Powered by solar cells. Does not require batteries.

CG-20 MONEY \& BOMB £12.95

Powered by solar cells. Does not require batteries.

ILLUSTRATION NOT AVAILABLE at time of going to press

CG-105 MOTORCYCLE RACE
An exciting and engrossing game
£14.95
CG-110 SPACE BATTLE
for the enthusiast - a real challenge! $£ 14.95$

BG-20 BOXING GAME
£16.95

A new version of the very successful BG-15. Now has a full screen, with the calculator function relegated to one sidel Clock and alarm function.

CALCULATOR GAMES DIGITAL SPACE INVADERS

COMPENDIUM OF 3 GAMES

ALARM CLOCK CALCULATORS

	5.j3.30
--゙̈号	
ㄸamex	
불ํํ	

BG-15
BOXING GAME
$£ 14.95$
Clock, alarm
calculator

Fortune teller, Matchmaker, calendar, alarm clocik
BQ-1100 Biolator, alarm clock calculator $£ \mathbf{1 6 . 9 5}$

3 melodies, universal calendar, date memories, 2 date alarms, daily alarm, countdown alarm/stopwatch, time memory. UC- 365 wallet size. UC-360 card size.

SCIENTIC CALCULATORS KEY: $d=$ number of digits. $b=$ approx. battery life $f=$ scientific functions. $S D=$ standard deviations. R/P = Rectangular/Polar co-ordinates conversion: $((-))=$ number of parentheses. $\mathrm{H}=$ hyperbolics.

Dims: $19 \times 76.5 \times 149 \mathrm{~mm} 3,000-7,500 \mathrm{~b}$
FX-7. 8d, 23f. (13)
FX-82 8d, 38f. SD, ((6))
FX-100 10d, 42t, SD, R/P, ((6))

FX-950

FX-550	FX-900	FX-950
$\mathbf{£ 1 5 . 9 5}$	$\mathbf{£ 1 7 . 9 5}$	$£ 19.95$

FX- 550 10d, 48f. SD. R/P. ((6))
FX-900 8d, $41 \mathrm{f}, \mathrm{SD}, \mathrm{R} / \mathrm{P}$, ((15)), b SOLAR. FX-950 10d, 49f, SD, R/P. ((15)), H, b SOLAR.

FX-8100 $£ 19.95$
$8+2 d, 46 f, S D, R / P$, ((5)), H, b 1 year.

Clock, calendar;
Clock, calendar;
$1 / 100$ stopwatch,
alarm, hourly chimes,
$2 \times$ alaunt hourly chimes,

PROGRAMMABLES
FX-3600P
$£ 22.95$
$10+2 \mathrm{~d}, 50 \mathrm{f}, \mathrm{SD}$
R/P. (188))
Integrals, Regression
2 program areas, 38
steps, 7 memories

FX-602P $f 69.95$
Plus FREE Protessional Programming Pack, worth $£ 9.95$
$10^{4} 2 \mathrm{~d}, 50 \mathrm{f}, \mathrm{SD}, \mathrm{R} / \mathrm{P}$
((33))
10 program areas, up to
512 steps, up to 88
memories. Alpha/
numeric display.

PORTABLE COMPUTERS

NEW

BASIC FOR BEGINNERS

PB-100 $£ 69.95$
Learn as you go
Now you can enfer the new age of computers with this easy-tounderstand system
LEARN with the beginners manual "An easy-to-tollow introduction to the Personal Computer". FOLLOW the step by step examples and use the programs supplied, or develop your own for business or home, including exciting games QWERTY keyboard. Upp/lower case dot matrix display. Up to 544 program step/94 memóries, expandable to 1,568 steps / 222 memories, all protected. A truly pocketable $9.8 \times 165 \times 71 \mathrm{~mm}$. Weight 116 g . 360 hours battery life. OR-1 1K RAM expansion module. $£ 11.95$. FA-3 cassette interface $£ 22.95$.

SHARP PC-1500 COLOUR COMPUTER

Probably the most powerful pocket computer on earth plus FREE SOFTWARE

-	
\square	- - -

$£ 169.95$
$£ 149.95$ $£ 79.95$

PC-1500 Computer PL
 16 K ROM extended BASIC. 3.5K RAM (expandable). QWERTY keyboard. matrix display. With clock, calendar, alarm and around 30 scientific functions. CE-150 4-colour printer/plotter and cassette interface. Available late 1982. RS-
232C interface; 140 key custom software board; custom cassette recorder; 232C interface; 1 custom briefcase

Colour brochure and software list on request.

CMICROL SPECTRUM

PROFESSIONAL SOFTWARE YOUR SINCLAIR SPECTRUM
USE AND LEARN Vol. 1. 25 BASIC PROGRAMS on cassette + 100 PAGE BOOK Professionally written programs, routines and articles packed with practical ideas, hints and tips. Your perfect $16 / 48 \mathrm{~K}$ Spectrum starter kit. $\quad £ 9.95$ USE, ND LEARN Vol. 2. 30-MACHINE CODE ROUTINES for high speed graphi s, games and serious programs. On cassette with 50 PAGE BOOK. The easy way to add machine code power and speed to your BASIC programs Available December 1982. For 16/48K Spectrums
THE DATABASE PRACTICAL, POWERFUL. RELIABLE - the best Spectrum database - and the easiest to use. Written in machine code and BASIC. Detailed literature available on request, or for the ultimate demonstration try the DATABASE yourself with MICROL's 14 day money back guarantee. Av. Octobe -82.48K only (Microdrive add-on option Jan. '83) $£ 9.95$ THE SPREADSHEET Visicalc for $£ 10$? Not quite - it lacks some of Visicalc's little-used features, runs slightly slower but has all the main Visicalc capabilities (including REPLICATE, SPLIT WINDOW. HELP) and some improvements (including easier dual screen command structures). Compare it for yourself with all other versions including of course Sinclair's ownl Av. November '82. 48 K only. (Microdrive add-on option Jan. '83).

MICROL 14 -day money-back guarantee

EFFECTS PROCESSORS
FG01 Flanger $£ 58.50$

PH. 03 Phaser $£ 45$
CH. 02 Chorus $£ 54.90$
CO. 04 Compressor $£ 42$
CE. 22 Chorus Ensemble $£ 102$
AD. 33 Analog Delay $£ 116$
PH. 44 Phaser $£ 87$

MANUFACTURERS 12 MONTHS GUARANTEE ON ALL ITEMS
PRICES include VAT, post and packing, or carriage. SAME DAY DESPATCH OF GOODS, subject to availability. Send cheques, PO or cash (registered), or telephone your ACCESS/VISA /BARCLAYCARD number to:

38 BURLEIGH STREET, CAMBRIDGE CB1 1DG. TELEPHONE (0223) 312866

NEW FX-801P

ONLY £'349
THE FUTURE IS HERE TODAY

High speed computer with integral micro-cassette data control and hard copy printer monitoring.

Everything you need, in an area smaller than this page. This truly portable SYSTEM needs no peripherals on lengths of wire. Batteries last 250 hours (only display) or 5,000 lines (display and printing). Typewriter style OWERTY keyboard, plus all the advanced functions of the FX-702P

FX-702P $£ 79.95$

With FREE Microl professional Programming Pack, worth $£ 9.95$ BASIC programming up to $\mathbf{1 , 6 8 0}$ program steps, up to 226 memories, all protected when switched off.

55 scientific functions, Subroutines, 10 levels. FOR/NEXT looping, 8 levels, Edit debug and trace modes. 240 hours battery life. $17 \times 165 \times 82 \mathrm{~mm} .176 \mathrm{~g}$. FA-2 cassette interface/adaptor $£ 19.95$. FP- 10 hard copy printer $\mathbf{£ 4 4 . 9 5}$ MICROL PROCOS. Save up to 90% of programming time. Visicalc-type' system answers 'what if' questions and a nalyses trends. On tape $£ 24.95$ PROCOS is supplied FREE if you purchase the FX-702P. FA-2 and FP- 10.

NEW
FX-700P $£ 79.95$

TRULY POCKET SIZE

BASIC programming. QWERTY

keyboard. Up to 1,568 program steps
up to 222 memories, up to 10 program
areas, all protected.
Upper/lower case dot matrix display. Powerful editing functions. 25 scientific functions. Subroutines. 8 levels. FOR/NEXT loops, 4 levels. $9.8 \times 165 \times 71 \mathrm{~mm}$. Weight 118 g .300 h 8 ur battery life approx. FA- 3 cassette interface $£ 22.95$. FP. 12 printer (Dec '82) $£ 49.95$

AMDEK

AMDEK Kits by Roland - for creative musicians
Easily assembled - professional results - modifiable for unique sounds

DSK 100 Distortion Kit $\quad \mathbf{£ 3 1 . 5 0}$ PHK 100 Phaser Kit CMK 100 Compressor Kit CHK 100 Chorus Kit FLK 100 Flanger Kit TAK 100 Tuning Amp

EMK 100 Elec. Metronome £36 PCK 100 Percussion Synth $£ 54$ MXK 600 Stereo 6 ch . mixer $£ 90$ DMK 100 Delay Machine $£ 130$ GEK 100 Graphic Equaliser $£ 72$ RMK 100 Rhythm Machine $£ 90$
Please supply/send details of
Total $f \ldots \ldots \ldots . .$. enclosed, or debit my ACCESS/VISA/BARCLAYCARD

Breadboard '82 10-14 November The Royal Horticultural Halls Vincent Square London SW1

Admission £1.00 (50p under 16's \& OAP’s)

Open Wednesday 10 November	$1000-1800$
Thursday 11 November	$1000-2000$
Friday 12 November	$1000-1800$
Saturday 13 November	$1000-1800$
Sunday 14 November	$1000-1600$

Enquiries: Administration \& Publicity
Peter Evans
0747-840722
Space Sales
Colin Mackenzie
01-2869191
Supported by Electronics Today International . Hobby Electronics . Personal Computing Today .
Computing Today with a combined circulation of over 230,000 copies a month

BERNARD BABANI (PUBLISHING) LTD

As the leading publisher of Radio, Electronics and Computer books in the U.K., we shall be displaying our entire range of publications on our stand.

Our series of titles is one of the largest available and covers practically every aspect of radio, electronics and computers with subjects to interest all enthusiasts from the complete beginner to the highly experienced.

All our books offer extremely good value, being inexpensive paperbacks ranging from 20 p to $£ 3.50$. Our new 1982/83 catalogue covering all our books is available FREE to all visitors to our stand and we strongly advise you not to miss it!

BERNARD BABAANI (Publishing) Ltd, The Grampians, Shepherds Bush Rd., London W6 7NF, Tel 01-603 2582/7296

BRADFORD CONSULTANTS LIMITED

Bradford Consulants Ltd are manufacturers and distributors of a comprehensive range of ABS plastic multipurpose boxes, designed for the professional, with the hobbyist in mind. Due to the large turnover but with the relatively small overheads of a small company, we are able to offer comparatively low prices and a personal service.

As an additional extra, we offer a large range of unusual items not normally found elsewhere, at prices the amateur can afford. An early visit to our stand may prove very worthwhile.

Bradford Consultants Ltd, Prospect House, 39 Leeds Road, Rawdon, Leeds, LS19 6NW, Tel: 0423-506406

CHORDGATE LIMITED

We are suppliers of electronic components and equipment to the hobby electronics/amateur radio market. We specialise in the resale of manufacturers' surplus to the retail customer. We advertise in the popular magazines and our catalogue/special offers list wil be available on our stand.

We have retail shops at 75 Farringdon Road, Swindon, Wilts, Tel 0793 33877, and at 21 Deptford Broadway, London SE8, Tel 01-691 5106.

CHORDGATE LIMITED, 194A Drove Road, Swindon, Wilts, Tel 0793-33348

ELEKTOR PUBLISHERS LTD

Elektor magazine provides practical and reliable circuit designs as well as an unequalled printed circuit board service (EPS) for many of the constructional projects published. In addition, there is the Elektor software service (ESS) of programs for microcomputers on disc or tape.

Elektor books will be available from our stand. Besides books containing large numbers of constructional projects, the stand will feature books for those who would like to learn more about computing, electronics, etc.

The Elektor technical query service (TQ) is available should unforeseen problems occur, and members of the technical editorial staff will be present at the stand to answer any questions.

Working projects will be on display. All visitors will be able to buy annual subscriptions to Elektor at the stand.

ELEKTOR PUBLISHERS LTD, Elektor House, 10 Longport, Canterbury, Kent. Tel 0227 54430/54439

JPR DISTRIBUTORS

JPR are wholesale dealers in all types of electronic components from industrial surplus and other sources. We will be offering for sale a wide range of useful components including: switches relays, transformers, capacitors, semiconductors, P.S.U's, converters, ni-Cads, module cases, hardware packs, etc. etc. Also a varied selection of assemblies and part assemblies at unbelievable prices for home constructors. For audio equipment constructors we wil be exhibiting a range of loudspeakers and cabinets at very competitive prices.

Trade enquiries are welcomed, and we are aliways interested in purchasing large quantities of redundant or surplus components.
JPR DISTRIBUTORS, 49 Wadeson Street, London, E2 9DP, Tel: 01-980 1028/9

LIGHT SOLDERING DEVELOPMENTS LIMITED

Litesold products have been supplied to professional and hobby users throughout the world for over 25 years. The projects on which today's electronics hobbyist is working frequently embody high technology components, and professional quality soldering irons and hand tools are essential for the best results. We have a wide range of soldering irons, from miniature irons suitable for very fine work (and to fit the hands of young beginners), general purpose irons for electronic work, and electronically temperature-controlled irons and stations. There are also re-chargeable cordless irons, and instant heat soldering guns. Also on display are top quality soldering aids, pliers, cutters, screwdrivers, de-soldering tools, wire strippers, miniature tool sets, and solder. Whether you are a beginner or an expert you will find essentials for your work bench on the LITESOLD stand.

LIGHT SOLDERING DEVELOPMENTS Ltd., 97-99 Gloucester Road, Croydon, CRO 2ND, Tel 01-687 0574

ROADRUNNER ELECTRONIC PRODUCTS LTD

As manufacturers and distributors of a wide range of electronic and computer related products Roadrunner is striving for continual growth and development of its product range.

A combination of a competitive pricing structure and guaranteed 'same-day' service on most items helps to ensure customer satisfaction. The Electronic Products catalogue, available at the show, features a wide range of cuircuit board and enclosure accessories.

Highlighted at the show will be the Roadrunner wiring system which makes prototyping of electronic circuitry up to five times faster compared with other techniques. Available at the show will be the system and the full range of our other products, including $19^{\prime \prime}$ subracks, Roadrunner Handiracks, Eurocard and S100 prototyping boards, DIN 41612 two-part connectors, DIP sockets, soldering irons and much more.

Available now from Roadrunner is an all in one development instrument called the Powerlab. Ideal for schools, colleges and universities and industrial establishments, as well as computer and electronic clubs, this single instrument provides several linear power supplies, waveform generator and two-phase clock generator, plus other unique and useful features. Details available from the stand.

New from Roadrunner is an excellent range of branded products to support the word processing revolution. Printers and printer supplies from Diablo, Qume, Wang, NEC and Xerox, including a comprehensive range of ribbons and accessories to fulfil most computer and word processing requirements. An extensive series of acoustic hoods from Viking and Grenadier. Quality ranges of diskettes from Dysan, Maxell, Verbatim and Nashua. Microcomputer systems from ITT/Apple and Commodore; plus a comprehensive stock of printer, telex, typewriter and photocopier consumables available for 'same-day' despatch.

Full details of these computer products at the show.
ROADRUNNER ELECTRONIC PRODUCTS LTD, 116 Blackdown Rural Industry, HAste Hill, Haslemere, Surrey, GU27 3AY, Tel 042853850.

VELLEMAN (U.K.) LIMITED

Velleman electronic kits were introduced to the U.K. market nearly a year ago. They had their public debut at Breadboard ' 81 where they attracted immense interest. Since then they have been enthusiastically purchased throughout the U.K. where they are fast earning a reputation for their originality, high quality and excellent service.

The kits are graded by difficulty and cover a wide field of applications. They include kits using microprocessors, infra-red systems, power supplies, dimmers, motor control units, amplifiers, sound and light units, digital counters, timers, and many more including their popular Eprom programmer.

Velleman have a design and development laboratory in their Belgium factory where new, exciting kits are regularly produced to add to their range. They undertake major development projects for large companies throughout Europe and this highly qualified technical expertise is responsible for their successful range of kits.

They are designed to interest not only those just beginning the addictive hobby of electronics, but also those engineers and enthusiasts who have experience in this area of technology and are able to use the Velleman kits for many of their projects and equipment.

Velleman will have a large selection of their kits available at Breadboard for inspection and sale, and an engineer will be on hand for most of the time to advise and answer questions. Their illustrated catalogue will be obtainable from the stand and is always available on request from the UK office.

VELLEMAN (U.K.) LIMITED, P.O. Box 30, St. Leonards on Sea, East Sussex, Tel 0424753246.

WATFORD ELECTRONICS

Watford Electronics was established just over nine years ago. From a very modest start, we have now grown to our present size which makes us one of the leaders in the hobbyist/OEM Electronic components supplier's market. In 1973 our range of components was no more than 500 items; today the range has increased to more than 8000 items and keeps on increasing every week to keep pace with the changing technology.

Our two aims at Watford Electronics are to supply first grade components at very competitive prices and to provide an excellent service to both mail order and shop customers. The former we have been able to achieve by bulk buying direct from the manufacturers wherever possible, thus eliminating the middleman and passing the price advantage over to our customers. The latter we have been able to achieve by sheer hard work and dedication on the part of our staff. 80% of the mail-order orders received are processed and despatched the same day. The remainder (except where items may be out of stock) are despatched the next day. Access orders received by telephone are processed and despatched the same day.

We stock a comprehensive range of components, including linear, computer, CMOS and TTL ICs, transistors and other discrete semiconductors, nearly every variety of passive component, transducers, hardware and a large variety of connectors at very reasonable prices.

On our stand at Breadboard Exhibition, we shall be displaying some of the thousands of components that we sell. (N.B. We shall not be selling components from our stand due to sheer volume and variety that we would have to transport every day, but we will be accepting orders for postal dispatch. As a special concession, all orders over $£ 5$ accepted at the exhibition will be post free.) We shall be demonstrating our latest 'Ultimum' Micro Expansion System linked to various Micro Computers. Our Managing Director, Mr. N. Jessa will be in attendance. He will be pleased to meet and have a chat with the thousands of our customers who we have no opportunity to meet otherwise.

WATFORD ELECTRONICS, 33/35 Cardiff Rd, Watford, Herts. WD1 gED, England, Tel Watford 40588/9

Booking If your company would like to take a stall at the exhibition, ring Colin Mackenzie on 01-286 9191 soon.

Lectures and Demonstrations

Wednesday	1100	ETI Music Demonstration
10th November	1200	Cable TV
	1300	ETI Music Demonstration
	1400	BICC-Vero: Speedwire
	1500	Gateway to Electronics
	1100	ETI Music Demonstration
Thursday	1200	Cable TV
11th November	1300	BICC-Vero: Wire-wrapping
	11400	The Digital Solution
	1500	ETI Music Demonstration
	1100	ETI Music Demonstration
	1200	Cable TV
Friday	1300	The Digital Solution
12th November		
	1400	BICC-Vero: Speedwire
	1500	ETI Music Demonstration
	1100	Electronic Music Techniques
Saturday	1200	The Digital Solution
13th November	1300	BICC-Vero: Wire-wrapping
	1400	Holography
	1500	Electronic Music Techniques
	1600	Cable TV
	1100	ETI Music Demonstration
Sunday		
14th November	1200	BICC-Vero: Speedwire
	1300	Cable TV
	1400	ETI Music Demonstration

all Lectures will take place in the lecture THEATRE, WHICH IS APPROACHED BY THE LIFT OR STAIRS IN THE MAIN FOYER

WHILE EVERY EFFORT HAS BEEN MADE TO ENSURE THE ACCURACY OF THIS PROGRAMME, PLEASE CHECK FOR DETAILS OF ANY CHANGES WHEN YOU ARRIVE

ETI Music Demonstration

Music projects that have appeared in ETI over the past few years will be put through their paces by a professional musician. This is a good opportunity to decide, with your ears, which synthesiser or fuzz-box to build.

Cable TV - G. Brant, BSc
Cable and satellite TV systems are the newcomers to the broadcasting world of the ' 80 s . A brief description of the existing transmission network will be given, followed by a look at these new media.

BICC-Vero

BICC-Vero Electronics will be giving audio-visual demonstrations of their new insulation displacement system called Speedwire, ideal for fast positive contacts. On alternate days, there will be lectures on wire-wrapping, an alternative system for solderless connections.

Gateway to Electronics - Dave Bradshaw, MSc
This is a lecture for beginners in electronics, and will offer a mixture of very basic circuit theory and practical advice.

The Digital Solution - Owen Bishop, BSc
In these lectures I propose to cover the whole range of applications of digital electronics, including digital computing, D-A conversion, digital recording, remote control, etc. There will be a selection of working demonstration circuits to illustrate points made in the lectures.

Electronic Music Techniques - Tim Orr, BSc
The lecture demonstration will consist of a technical explanation coupled with a musical demonstration of a polyphonic music synthesiser, a digital delay line and a vocoder: all these have been designed by the lecturer.

Holography - Andrew Pepper

This will be an introduction to the principles, methods and techniques of practical holography.

Other exhibitors will include:
BICC-Vero
Leighton Electronics
Micro Aids Electronics
British Amateur Electronics Club
Assn of London Computer Clubs
Thames Valley Electronics
Marco Trading
Electronics \& Computing Monthly
SGS Electronics
Expo Drill Company
and many more.

labelling thus: IC6a to IC1c, IC6b to IC1d, IC6e to IC1e, IC12a to IC2b, IC1c to IC6c, IC1d to IC12a, IC1e to IC12b, IC1f to IC12c, IC14a to IC4b, IC2b to IC17b. IC14 and IC75 are not used in the new numbering. R26 is not needed in the PAL circuit, but the modulator needs a 10 k pull-up to +5 V , so we've called this R26. IC60b clock goes to 0 V , IC60b SET goes to SYNC.

Construction

The main board and the keyboard both have plated-through PCBs, ie there are tracks on both sides and connections between the sides are made by the copper that has been plated onto the sides of each hole. There are therefore no track-link pins; it is, however, good practice to apply solder to EVERY hole to reinforce the connections which in some cases carry power. This happens automatically when boards are 'flow soldered' by passing over a wave of solder in a solder bath during factory assembly. With plated-through boards it is particularly important not to make errors of construction as removal of soldered-in parts is more difficult soldered-in parts is more difficult
than on conventional boards and

$\overline{\text { RESET }}$

Fig. 6 Circuit diagram for the keyboard.

KEYBOARD

HOW IT WORKS - E-BUS

The E-BUS is a powerful and compact bus which allows many intelligent cards to share a common resource of memory and I/O cards. In order to share out the resources on the bus, each card has a priority according to its position. This is done by passing a signal down the bus which goes into each card as GRANTIN and comes out as GRANTOUT to form the GRANTIN of the next card. A second signal, BUSY, tells each card if the bus is in use or free. If the bus is free and a card requires the bus, it disables the lower priority cards with the GRANTOUT signal and if the GRANTIN signal and BUSY are OK it asserts BUSY and enables its data and address bus buffers.

Once the bus transfers are complete or if a higher priority card requires the bus, then the card will relinquish control. All these events are synchronised by a backplane clock, BUSCLK. Each data transfer that takes place must signal its completion using READY.

The 74LS2001 gate array (IC89) contains the bus arbitration and control logic to gain and release the bus with timeouts upon error conditions. If the card cannot gain control of the bus after 128 clock cycles, it aborts with a timeout interrupt. Also, if after 16 clock cycles the transfer has not been signalled as complete using the READY line, the controller completes and issues a timeout interrupt.

The E-BUS has provision for a multibit interrupt code signalled by the INTEN signal. This interface only provides a single interrupt level using the INTEN signal. The data, address and interrupt signal are multiplexed onto the same pins to conserve connections. The ALATCH signal is used to enable the address latches when the address is on the bus. Then either $\overline{D E N}$ or $\overline{W E}$ will be signalled, to show that either a data read or write is occurring and that data is now on the bus. The INTEN signal can be used to latch the interrupt code.

The keyboard is a separate unit providing a fully encoded output. Most of the work is carried out by the 2376 keyboard encoder (IC4). This IC contains a 50 kHz oscillator and two ring counters of eight and 11 stages, the outputs of which form an XY matrix across which the switches are connected. By this means each key is sequentially scanned. The closing of one of the switches for a sufficient length of time for switch bounce to be completed causes the scanning to stop; a 'valid' signal now appears on the strobe output. The encoder also contains a 2376-bit ROM (hence the IC name) arranged as three groups of 88 words of nine bits. The shift and control inputs select one of the three groups and the individual word is addressed by the ring counters.

IC3 is a data selector. D2 is either the output $B 6$ or $B 8$ depending on whether upper or lower case characters are selected by the CAPS LOCK switch. Repeated entry of a character is accomplished by multiple strobe signals from IC1, which is a dual monostable arranged as an oscillator and is enabled by a high level on the clear inputs.

Fig. 7 Circuit diagram for the power supply.
the chances of this being required are much reduced by fitting ALL parts before soldering - if the last part left for fitting is not the one required for the last space you can be pretty sure that the required part is in the wrong holes! IC sockets should be regarded as essential; these are provided with the kits and should be fitted with the index mark corresponding with the index mark on the overlay.
The final part appears next month.

The computer main board and keyboard together require a 5 V at 3 A supply, together with low current $\pm 12 \mathrm{~V}$ rails. One amp plastic voltage regulators on small finned heatsinks are used for the 12 V supplies; for the 5 V supply a 1 A regulator is also used but the currentcarrying capacity is boosted by bypassing it with a 15 A power transistor, the base current of which passes through the regulator. R1 prevents the off-load input current of the regulator from turning on the transistor when there is no load during testing. The resistor also increases the
speed of operation of the transistor. The luf capacitors are for the stability of the regulator and the 100 nF capacitors are used to remove fast transients orginating from the mains. The zener will clamp any spikes that reach the output.

To simplify the addition of floppy discs these are powered from the same board. The drivers require about 0A7 at 5 V which is also supplied by Q1; they also require +12 V at 1 A 6 with higher surges at switch-on, and this is provided by a separate section using Q2 controlled by IC4.

PARTS LIST - MAIN BOARD

Resistors (all stated)	$1 / 4 \mathrm{~W}, 5 \%$ except where	$4-6,9,10,$	100n ceramic	$\begin{aligned} & \text { IC23 } \\ & \text { iC25,65,78 } \end{aligned}$	74LS20
R1,2	470R	C7	470 n ceramic	91	74LS32
R3-5,11,32	4 k 7	C8	33u 16 V PCB electrolytic	IC26	74LS612
R6-8,20,21,		C11,12,16	33p ceramic	IC28,29	74LS27
28,37,41,45	330R	C14	47p ceramic	IC32	TMS4500
R9,12,13,15,		C15,18,27	22u 16 V PCB electrolytic	IC33,85	$74 \mathrm{LS139}$
39,40,46,52,		C19	100p ceramic	IC36-43	TMS4164
55,61,69	10k	C20	22 n ceramic	IC44,97	74 LS 245
R10,14,47,		C21,23	10n ceramic	IC45-47	TMS2564
58,63	100R	C22	330n ceramic	$1 \mathrm{C48}$	TMS9929
R16-19	560R	C24	5 n 6 ceramic	IC49-56	TMS4116
R22	120k	C28	100u 16 V PCB	IC57,58	4016B
R23,24,31,			electrolytic	IC59	LM1889
	$1 \mathrm{k0}$	C29	330 p ceramic	IC60	4013
R25,29,33	2 k 7	CV1	6-30p trimmer	IC62,63	74LS251
R27	390R			IC64	74LS259
R30	1 k 5	Semiconductors		IC67,68	TMS9902
R34	1 k 8			IC70	74LS123
R35,60	$2 \mathrm{2k} 2$	${ }_{81} 1$ C1,6,12,27	74LS04	IC71	75189 A
R38,53,54	100k			IC72	TL084
R42	$6 \mathrm{k8}$	IC2,17,18,	74LS74	IC73	$74 \mathrm{LS73}$
R43	3 lk 39 k		74LS86	IC74	75188 TMS9909
R48-50	8 k 2	IC4,21,31,93 74LS00		IC86	$74 \mathrm{LS297}$
R51	$1 \mathrm{M0}$	${ }_{\text {IC7,24 }}$	74LS02	IC87	74LS163
R56,59,68	4 k 7 resistor array	IC8 ${ }^{\text {c }}$	74LS9911	IC89	74LS2001
R57	22 k	$1 \mathrm{C} \mathrm{C}_{108} 84$		Q1,3,4	2N3904
R62 ${ }_{\text {R64-67,71 }}$	${ }_{150 \mathrm{R}}^{27 \mathrm{k}}$ resistor array	94-96,98,99	74LS244		${ }_{\text {BC212 }}$
R70	18k	IC1 1 IC13,77,90 IC15,34,35	TMS9995	D1-4	1N4148
			74LS08	LED 1-4	LEDs to choice
			74LS138	Miscellaneo	S
C1	1 n 0 ceramic	${ }_{82,83}$	74LS07	PCB (see Bu	ylines); case (see Buylines);
${ }_{C}$	4 u 716 V PCB electrolytic	-1819	74LS164	IC sockets;	(connectors to suit; UHF M1233 or UM1286).
C3,25,26	10u 16 V PCB electrolytic	IC20,79	L.M339		

THEN
 DISK DRTVES
 Diablo/DRE 8eriee 302.5 mb. fully refurbished DEC RKO5 media and sot tware compatabia. Front load Es50. Top loadsies
 PSU for 2 drives Cl 125
 Diablo-Dre 44A-4000A or $4000 \mathrm{~B} 10 \mathrm{mb} 5+5$ removable pack new and refurbished from EPOS.
 CDC 80 mb removable pack DEC RM03 media and sottware compatlbie brand new from $\mathbf{E 2}, 930$.
 Honeywell $5+510 \mathrm{mb}$ drives $\mathrm{E} 450 \mathrm{good} \mathrm{s} / \mathrm{h}$ condition. For more information on controliars, expansions and ready to
 DTSIMT (C)
 The UK's FIRST free of charge, 24 hr . public access data base. Get information on $1000^{\circ} 8$ of stock items and order via your computer and credit card On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MIS THOSE EARCANS CNLL NOW, IT'S FREE 7 daye per $01-6831133$ -

COMPUTER 'CAB'

All in one quality computer cabinet with integral switched mode PSU. Mains filtering and twinfancooling Originally made for the femous and desion conter system costing 1000's of pounds and designed to run 24 hours per day. The PSU 18 fully
screened and will deliver a massive +5 v DC at 17 amps screened and will deliver a massive +5vDC at 17 amps,
+15 vDC at 1 amp and -15 vDC at 5 amps. The unit is fully +15V DC at 1 amp and-15vDC at 5 ampa. The unit is fuly enclosed with removable top lid, twin tan Cooing, mains
filtering, trip switch, 'power on' and 'run' LEO's, aluminium front panel and rear cable entrys Give your system that professional finish for only $E 9.9^{5}+£ 9.50$ carr. - Dim. $19^{\prime \prime}$ wide 16^{*} deep $10.5^{\prime \prime}$ high. Usablearea $16^{\circ} \mathrm{w} .10 .5^{\prime \prime} \mathrm{h}$. 11.5° d Units are in good but used cond ition 240 or 110 vworking-
complete with data. Largestocks of PDP 8 spares - enquire.

coowisg FAMs

Kepp your "Hot Parts" cool and reliable with our

 Enfi $0 \times x 001$ Miniature equipment tan 240 vac working DIM $92 \times 25 \mathrm{~mm}$ BRAND NEWcomplete with finger guard Makers price $£ 16$ complete with fis
 BUHLER 09.11 .22 micro miniature $8-16 \mathrm{vDC}$
reversible fan. Measures only $62 \times 62 \times 22 \mathrm{~mm}$ reverable fan. Messures only $62 \times 62 \times 22 \mathrm{~mm}$.
Usea a brushless DC servo motor almost silent running ideal portable equipment, lite in excess of 10,000 hours BRAND NEW manufactures price £32.00 our price E12. © NUFFIN/CENTAUR cooling fans DIM $120 \times$ $120 \times 38 \mathrm{~mm}$ tested ex equipment 240 V E. 25

KOOLTRONICS Powarful snail type blower
gives massive air movement with centrifugal givts massive air movement with centrifugal
rotorDim as a cube $8^{\circ} \times 8^{\prime \prime} \times 6^{\circ}$ airaperture $2.5^{\prime \prime} \times$ 2.5 withtlange fixing BRAND NEW 110 v 50 Hz ac working ONLYE. 9 + +1.90 psp

1/ 91 MTOPTY DISK DRIVES
 8" FLOHL
 Unbelievable value the DRE 7100872008

give you 100% bus compatability with most drives available today, the only difference give you 100\% bus compatability with most drives availabie today, the only diference double sided drive accept hard or soft sectoring IBM or ANS! standard giving a nassive 0.6 MB Compatable Supplied BRAND NEW with user manual and 90 day warranty.
7100 single sided
7200 double sided
200 double sided ...288.00 + 9.50 carr + vat full technical manual $\mathbf{2 0 . 0 0}$ alone $\mathbf{\$ 9 . 0 0}$ with drive, refund of difference on purchase SHUGA
SHUGART s/h $800-28^{\prime \prime}$ Drive's 110 v 50 Hz motor $\mathbf{E 1 6 0}+\mathrm{E} 9.50$ carr
Removed from working equipment but untested. SAt 20 Alignment disk's 8%. $\%$

SUPER SCOOP

CRNMRONICS 739-8

The "Do everything Printer" at a price that will NEVER be repeated Standard Centronics intertace, full
epacing for word proceseor applications, 80-132
columns, single sheet, roll or sprocket paper handifing plus much more. AvallableonlyfromDISPLAY ELECTRONICSat ridiculous price of only $\mathbf{E 2 9 9 . 0 0}$ Options: carriage \& insurance $\mathcal{E} 10.00$ interface Cable $E 10.00$ RS232 Converter\& 5 S.00

MHNEYPI ASBBST -

1/0 TBRMminals

 Fully fledged industry standard ASR 33 data terminal. Many features Including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface. 110 baud. 8 bit paper tape punch and reader fooff line data preparation and ridiculously off line data preparation and ridiculously cheap and reiable data storage. Supp
good condition and in working order Options: Floor stand $\mathbf{E} \mathbf{1 2 . 5 0 + V A T}$ KSR33 with 20 ma loop interface $\mathbf{1} \mathbf{2 5 . 0 0}+$ KSA33 with 20 ma loop interiace E125.00 +
Sound proof enclosure E25. $00+$ VAT

SOFTY 2

The amazing SOFTY 2. The complete "toolkit" for the open heart sottware surgeon. Copies, Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Manyother eatues interiaceetc. Functions exceed capabilities of units costing? times the pricel Only
E169.00 pp 1.95 Data sheat on request
RGA TULY GASED

A\&cill CODED Kirmoands

Straight from the USA made by the worid famous RCA Co, the VP600 Series of cased reestanding keytooards meet all requirements of the most exacting user, right down to the pricel Utilising the latest in switch technology. Guaranteed in excess of 5 milion operations. The keyboard has a host of other feat ures including full ascli 128 character set, user protection single 5 V rall, keyboard impervious toliquids and dust TTL orCMOS outputs even toinquids and dust. Th orCMOS outputs, ev feedback and a 1 year full RCA backed guarantee.
VP001 7 bit fuliy coded output with delayed strobe atc
VPF 11 Same as VP601 with numeric cad
VPSO8 Serial, RS232, 20MA and TTL ts4.95 output with6selectableBaudRates ecais VP816 Same as VP606, with numeric pad Plug for VP606, VP616 £2.10 Post Packing and Insurance Post, Packn and insurance El.gs

MANTS FILTERS

Professional type mains fiters as used by Main Frame" manufacturers. Ideal or curing it one now and cure your problems
Suppression Devices SA5A
upto 5 zmp load 65.95
Corcom Inc F1886 up to 20 ampload Es.s0 Corcom Inc F1900 upto 30 amp load E12.85

blemargsable BATYMRIS8

CYCLON type DOO1 sealed lead acid maintenance free 2 v 2.5 ah . will deliver over 300 amps on short circuit!! Brand new at only $\mathbf{2} 2.95$
SAFT VR2C size 'C' 1.2v 2 ah. nickel cadmium E .50 each 10 for $\$ 11.50$

D.O. POWRE SUPPLY SPRCLATS

ExperImentors PSUEx-GPO unit all silicon elecironics. Outputs give $+5 \mathrm{~V} @ 2$ amps. $+12 v @ 800 \mathrm{ma} \cdot 12 \mathrm{v} @ 800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma} .5 \mathrm{v} @ 50 \mathrm{ma}$. floating. Dim $160 \times 120 \mathrm{x}$ 350 mm . All outputs fully regulated and short circuit proof. Removed from working E/4.50 + 22.50 pp .
E14.50 + 22.50 pp.
POWER ONE CPI
FOWER ONE CP143 super compact unit giving continuous output of 5 v @ 5 amps dim. $215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $£ 21.00+£ 1.50 \mathrm{pp}$. Cusiompherc full crowamp. Verychpacrunition approxa Ex Equipment elf.95 + pp £1.25
EIf.95 + pp £1.25
MINI SYSTEM PSU Ex equipment unit ideal for the small micro. Outputs give 5 v @ $3 \mathrm{amps}+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only $\mathbf{E 1 8 . 9 5}$ + £2.00 pp.
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give $5 \mathrm{v} @ 11$ amps " + " $15-17 \mathrm{~V}$ @ 8 amps. "-" $15-17 \mathrm{~V}$ @ 8 amps requlated Fan cooled Supplied tested, with circuitE55.00 + $£ 8.50$ carr.
MAN FRAME SUPPLY. A real beely unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 ampa $+12 \mathrm{v} @ 5$ amps $-12 \mathrm{v} @ 10$ amps. All output are fully regulated with crowbar overvoltage protection on the 5 v output. Supplied with circuit and tested Ex-Equip. 110 v AC input. Only $£ \mathbf{1 9 . 9 5}+$ carr. $£ 10.50$.

66% DSOODMW
 ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best poss|ble bargalns, we have thousands of I.C.'s. Transistors, Relays, Cap's, P.C.B.'s, Sub-assemblies Switches, etc. etc. surtplus to our requirements Because we don't have sufficient stocks of any one hem to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at fitems into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway priced Guaranteed to be worth at least 3 times what you play plus we always include something from our ads for unbeatable value! Sold by weight
2.5kis $£ 455+p p \mathrm{E} 1.25$

5kls $5 \mathbf{5} .90+$ pp $£ 1.80$
10kIsE10.25 + ppE2.25
$20 \mathrm{kl3E17.50}+\mathrm{pp} £ 4.75$

9" Monitors

DTIO Monitor a complete MOTOROLA 9^{*} video monito oused in
an attractive meta
$10^{\prime \prime}$ deep 16° wide and 11
high. The monitor has a 75 on 16 wide video input with a bandwioth of $18 \mathrm{mhz} A$ seperate internal PSU delivers 5 v dc for external use and 12 VDC for video monitor. The case has sufficient room inside for mounting other units such as $5^{\prime \prime}$ disk drives etc. Intemal pots give full control over all monitor functiona Supplied in a tested, as new or little used condition. 240 v AC operationE5s.00 Carriage and Insurance $£ 10.50$
MOTOROLA $9^{\prime \prime}$ open chassis monitor Standard $240 \vee$ AC with composite 75 ohm video input, bandwidth in excess of 18 mhz Monitors are ex equipment and although unguaranteed they are all ested pror to despatch, and have no visible burns on the screens Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead ideal Black and White phosphor $£ 35.00+£ 9.00$ Carr

SHTHCOLDOCLOA 'GMaB Bacs'

Mixed Semis amazing value contents include transistors, digital, linear, LC.'s triacs, diodes, bridge recs, etc. etc. All
devices guaranteed brand new full spec with manufacturer's markings, fully guaranteed $50+$ E8. ©5 100+ E5. 7 Se "across the board range of 74 TML series I.C.'s enables us to ofter $100+$ mixed "mostly TTL" grab bags at a price which two or three chips in the bag quaranterd all I.C.'s full spec. $100+35.9$ guaranterd all 1.C. sfull spen
$200+E 12.20300+\$ 19.50$

> DSFLAM
> -ELETRTINHE
> All prices quoted ara for U.K. Mainland paid cash with order in Pounds Stifiling PLUSVAT. Minimumordervaluefidia. MinimumCredit Cardorderc 1a. 0 . Minimum BO NA FIDE account orders from Government depts, Schools, Universties and estabished companies We. Where post and packing not indicated please ADD ©op + VAT Warehouse open Mor-Fri 9.30-5.30. Sat 10.15-5.30. We reserve the right to change prices and specifications without notice. Trade Eulk and Export enquiries welcome.
> 64.66 Melfort Road, Thornton Heath. Near Croydon. Surrey $01 \cdot 6897702-01 \cdot 6896800$ Telex 27924

NEW AND FREE FROM GSC.
NEW an excitiny range of projects to build on the E XP300 breadthoards.
NOW anybody can buiid electronic projects using "Electronics by \cdot numbers", its as "Easy as A, B, C with G.S.C!"
FREE project
MUSICAL DOORBELL OF THE 3RD KIND You've seen the film, now haunt your visitors with the tune!
Each time the doorbell is pushed the eerie tune plays out, then switches off to conserve battery power.
HOW DO YOU MAKE IT
Our FREE project gives you clear "step by step" instructions. For example "take Resistor No. 1 and plug it into hole numbers B45 and B47'
"Take IC No. 1 and plug it into hole numbers E35 to E42 and F35 to F42, (pin 1 on the IC gous into F 35)"
"Take. :"Well! why not "clip.the coupon" and get vour FREE step-by-step instruction sheet and your FREE 12 projects with each EXP300 hought and your FREE catalogue and

EXPERIMENTOR BREADBOARDS

fxp300

t× $\mathbf{x} 60$

ri., in:
$1 \times$ P650
xp:43
phsi
phous

NEW AND FREE FROM G.S.C 24 HOUR SERVICE

Experimentor Breadboards	Unit Price Inc. P\& $P+15 \%$ VAT	Oumatity Required
Exp 325	¢2. 76	
Exp 350	84.65	
Exp 300	¢8.05	
Exp 600	£8.74	
Exp 650	5.5-17	
Exp 4B	¢3. 62	
PB 6	¢12.36	
PB 100	¢15.52	

NAME
ADDRESS

Debit my credit card No.
Expiry date
Piesse send free catulogute Tick \square Dept. 9 P

$\square \longrightarrow$

SPECTRACOLUMN

With this project we throw some light on the problem of how to jazz up your disco or party. This cost-effective, crammed-witheverything light column can be used singly or in groups to dazzle the dancefloor. Design by Rory Holmes.

The ETI Spectracolumn is an up-market sound-to-light system; by this we mean its lighting effect is a cut above the average 'three bulb' systems, although its cost is not. Ten mains bulbs, arranged in a column, respond to the intensity of music (or any sound signal) within a preselected frequency range. It works like a giant bargraph voltmeter; the more energy in the chosen frequency band the more bulbs will illuminate, forming a column of light that rises up from the floor and follows the rhythm of the music. The display system is very versatile; it can be built with any type of bulb in any configuration, and may be expanded for large parties or discos. Multiple columns can be set to adjacent frequency bands to build into a giant spectrum analyser and display system. Imagine - a kilowatt light column devoted to each octave across the whole audio spectrum!

In designing the band-pass filter system we have made use of the latest switched capacitor filter IC the MF10. This device contains two second order filters whose cut-off frequencies are directly controlled by a square-wave clock input. Clock frequency control removes the constraint of having to use high tolerance filter network components
and the associated difficulty of altering the filter frequency. The clock, and thus the filter frequency, can be set from a logic divider chain to provide any frequency in octave increments. We have configured the MF10 as a low-pass filter in cascade with a high-pass filter to allow complete control of the filter band. The upper and lower frequency limits may be set independently under logic control using rotary switches. There is no setting up or filter tuning required and the entire range of octaves is implemented with very few components.

On The Circuit

With the price of modern triacs and some economical design work from ETI, what seems to be a complex system in fact turns out to have only about $£ 18$-worth of parts (less the PCB and lightbulbs). Since the triacs don't need heatsinking, we adopted the 'let's get it all on one board' philosophy, and did exactly that. Even the small crystal mike that picks up the audio signal is mounted on the PCB to provide complete isolation between the sound equipment and the mains. Mounting a single board directly with all the bulbs in the column housing also removes the inconvenient cables that often make

Fig. 1 Block diagram of the Spectracolumn.

Ten white light-bulbs, hanging on a wall ...

Fig. 2 Circuit diagram for the complete Spectracolumn.
TABLE 1

 PULSES ON
Q1 BASE

Fig. 3 Triac zero-crossing switching waveforms.
the dancefloor a dangerous place to negotiate. Finally, the design features zero-crossing triac control, so your sound equipment won't be plagued with RFI.

Using the system could n 't be easier; just plug it into the mains and switch on! No other connections are needed, because the internal mike picks up the music signal. The sensitivity control is turned up as required for the sound level, and a 'background' control is available which moves the illumination 'baseline' up or down the column, so increasing or decreasing the amount of light. With no sound it acts as a giant dimmer control.

The display could be hung on the wall, as we did for our photograph, or stood vertically on the floor. Large sheets of 'cinemoid' acetate (available from most good art shops) may be wrapped around the entire column to provide a coloured tube, which also tones down the display. But keep the plastic well away from the light bulbs!

The alternative is to use coloured bulbs. A three column system, using red, green, and blue for the bass, middle, and treble ranges would be an ideal starting system for most disco light shows. The filters could, for example, be

set at 20 Hz to $312 \mathrm{~Hz}, 312 \mathrm{~Hz}$ to 2.5 kHz , and 2.5 kHz to 20 kHz . As more Spectracolumns are added into the system the filter ranges can be instantly amended according to taste; but watch out for the current rating of your mains sockets!

Construction

All the components except the controls are mounted on our PCB. The triacs, the transformer, and even the microphone are mounted on board, as the overlay diagram of Fig. 4 illustrates. Assembly should begin first with the links, then resistors, followed by ICs and so on. IC sockets should be used as a good precaution, but note that IC5 is an 18 -pin device and IC2 is a 20 -pin DIL! Follow the overlay diagram for the orientation of all the components and solder in everything except the PCB-mounting transformer, the triacs, and the crystal mike.

The metal heatsink tab of the triacs has been used to form a screw terminal for the lamp connections (it's connected internally to the central leadout wire MT2). Hence the middle terminal lead of all the triacs must be completely cut off, which immensely simplifies board design too. The remaining two leads are inserted into the board and a 6BA

The block diagram of Fig. 1 illustrates the different parts of the system. Sound from a microphone is amplified and fed through both low-pass and high-pass filters (digitally controlled); the resulting audio signal is then rectified to produce a voltage envelope proportional to the sound intensity within the pre-defined frequency band. This envelope is displayed using a bargraph voltmeter IC to drive triac-switched mains bulbs which light up in a column according to the instantaneous sound level. A simple power supply provides both the 10 V DC rail and the 100 Hz signal for zerocrossing triac control.

Figure 2 shows the complete circuit diagram for the Spectracolumn. The audio signal provided by the music or other sound is picked up by the microphone insert MIC1 and amplified by IC1a, which is configured as a straightforward non-inverting amplifier with a gain of 100 . The high input impedance required by the crystal mike is set by R1 to be about 2 M 0 .

The audio input from this gain stage is taken via the sensitivity control RV1 (acting as a potential divider) to the input of the filter system at R4. The audio filter system is built out of an MF10 monolithic switched capacitor filter. This IC (featured in last month's Designer's Notebook) contains two identical second order (12 dB per octave) filter systems which can be configured in a number of different modes, with the filter corner frequency being determined by a single square wave clock input.

We have used the MF10 to construct both a low-pass and a high-pass filter, which are wired in cascade. The resistor values shown have been chosen to give a pass band gain of 3 and a Q of 1 . The cut-off frequencies are set to be $1 / 50$ th of the applied clock signals, which can be independently varied for each filter. Using high and low-pass filters in cascade results in a band-pass type of response, where the bandwidth can be very effectively controlled using the two input clocks, and positioned in any part of the spectrum. The clock on pin 10 of the MF10 controls the low-pass filter determining the upper frequency limit, and the clock input on pin 11 determines the high-pass filter's corner frequency, thus setting the lowest frequency that will be passed.

The clock signals are generated and selected using a separate block of CMOS logic circuitry. IC4c and d are configured as a standard CMOS astable to provide the master clock of 2 MHz . This clock is fed directly to the counter divider chip IC3 (a 4040). The Q outputs progressively divide the clock frequency by two to give those frequencies shown in Table 1. As music lovers will know, dividing the frequency thus will give us equal octave increments; the entire audio bandwidth is thus catered for using the 11 outputs of the 4040. The two remaining gates of IC4 take their inputs from the common pole of each 10 -way rotary switch, SW1 and SW2, buffering the outputs from the divider chip and
providing selectable clock frequencies to program the high and low-pass filters.

The band-pass filtered audio signal is coupled via C2 to a precision half-wave rectifier, built around IC1b. A positivegoing audio envelope thus appears across C3. R16 determines the attack time constant and R15 the decay timeconstant. Potential divider RV2 supplies an offset voltage derived from the 1V4 reference to the non-inverting input terminal of the op-amp IC1b. This allows a 'background' voltage level to be superimposed on the envelope voltage, giving an independent control of the light column's illumination. The 1V4 reference is created by the forward voltage drop across D1 and D2 which are biased by resistor R14; this reference is also used to feed the internal resistor chain of the LM3915 at pin 6 of IC5. The LM3915 converts the envelope voltage applied at the pin 5 signal input to an array of 10 switched outputs. Pin 4 is the earth reference for the signal and resistor chain voltages; it is tied to the 5 V 'pseudo earth' rail. This half supplyvolts rail is derived from the lowimpedance potential divider R13, 20.

Direct drive from IC5 to the triacs is achieved by tying the mains neutral to the positive rail on IC5 and the common MT1 terminals of all the triacs. The switched outputs of IC5, which provide constant current, are taken directly to the gates of the triacs and the bulbs are placed in series with the triacs in the returning mains live lead. Now, resistor R21 is normally used for setting the output drive current of the LM3915, going from the pin 7 reference to ground.

In our arrangement, however, it is switched to ground using Q1. Thus when Q1 is off, the constant current sources that drive the gates of triacs SCR1 to 10 will all be disabled, and the triacs cannot turn on. Q1 is driven by brief pulses derived from the zerocrossings of the mains cycle; in other words when the AC mains cycle reaches $0 \vee$ (which occurs 100 times per second), transistor Q1 turns on and allows the triacs to be triggered on only at this moment. The triacs automatically turn off again as the mains current falls away to zero, assuming there is no further drive signal. For the triac to turn on, then, the corresponding output from IC5 must be 'active' due to the sound level, and at the same time as a zero-crossing pulse occurs. By turning on the triacs and thus the lamp current flow only when the mains voltage is close to zero, the problems of radio frequency interference are effectively avoided.

The circuitry is powered from a 10 V supply rail, regulated by the 10 V zener diode ZD1, and decoupled by C5. The centre-tapped 9-0-9 V transformer is full-wave rectified by D6 and D7; Q2 is driven by the 100 Hz signal at the junction of D6 and 7 to detect the zero crossing points. As the voltage cycle falls down to zero the voltage on the base of Q2 also falls. When it goes below 0V6 Q2 will turn off (the zero crossing point), thus allowing Q1 to turn on. D5 and R17 isolate the full wave rectified DC from the 10 V power rail.
nut and bolt are used to clamp the metal tab to the PCB. The bolt protrudes above the component side and a further washer and nut can be added to create a screw terminal. When all the triacs are bolted in place their leadout wires should be soldered and cropped as normal. The lamp wires will be retained on the screw terminals using solder tags.

The PCB-mounting transformer has been used simply for convenience and should be soldered in as a normal component. Other types could also be used provided they are connected to the PCB pads as per the circuit diagram. Bolts should also be fitted, in the same manner as the triacs, to make screw terminals on the pads marked for the mains connections. The photographs of our completed PCB show these terminal connections.

Our crystal microphone insert was 23 mm in diameter; it should be mounted last. The metal screening case of the insert is connected internally to one of its terminals. This screen terminal should be identified (use an ohmmeter) and wired to the mid-rail reference as shown on the overlay; ensure that the wire used is very thin and flexible. A piece of sponge foam about the size of the mike should be stuck to the PCB and the mike may then be glued on top of this to provide a resilient mounting, free from direct vibration pickup.

An electret condensor type of mike insert could also be used and would probably give better quality sound pickup. They usually come with their own internal FET preamplifier, which requires a 1V5 power supply. Luckily, the 1V4 reference terminal indicated on the overlay is ideal for this job, and may be wired directly to the insert.

When the board is completely assembled the two control pots and the mode switch can then be wired up as indicated. Veropins should be inserted as terminals at the appropriate points. The two rotary switches for the frequency selection should also be wired up using ribbon cable as shown in the diagram. Note that the rotary

BUYLINES

All of the electronic components, including the hard-to-find MF10, are available from Rapid Electronics, Hill Farm Industrial Estate, Boxted, Colchester, Essex CO4 5RD. The fluorescent fitting, bulbs and holders will be available from any electrical store, while the order form for the PCB Service can be found on page 99.

With the front panel removed, you can see the single PCB we employed. All the pots and switches are mounted on the sides.
switches are both set to select one out of 10 corner frequency outputs from the PCB and the rotary switches are offset by one frequency band relative to each other: ie the upper limit switch ranges from 40 Hz to 20 kHz while the lower limit ranges from 20 Hz to 10 kHz .

Testing And Setting Up

After wiring up the controls some initial tests can be made before completing the assembly. Initially, do not connect any light bulbs and do not plug in any ICs; but do remember that all parts of the circuit are effectively live. Connect the mains as shown via a double pole toggle switch and a 5 amp fuse, and then switch on. Using a voltmeter check that there is about 10 V across C 5 and 5 V across C 7.10 V should also appear across pins 8 and 4 of IC1, pins 8 and 13 of IC2, pins 16 and 8 of IC3, pins 14 and 7 of IC4 and pins 3 and 2 of IC5. If all is well, unplug from the mains and insert all the ICs. One light bulb can now be wired onto the SCR5 terminal, its other lead returning to mains live. Set the upper limit switch to 5 kHz , and the lower limit to 640 Hz ; this gives a fairly broad frequency band for vocal testing. The unit should be turned on again with SW3 set in bar mode. Altering the background control RV2 should cause the bulb to switch on and off at some point. As the bulb switches off continue to turn RV2 in the same direction to the end of its travel. The background illumination control is then at its zero setting. Now, depending on the sensitivity setting, a loud noise should re-illuminate the bulb. Increasing the sensitivity control should eventually allow the bulb to come on with normal speech volume. If this test works

PARTS LIST

satisfactorily then all the bulbs can be wired up to their corresponding terminal posts and the entire display can be tested.

Turning the background control up should result in the successive illumination of bulbs; now turn it down to zero, when all the bulbs should be off. Increasing the sensitivity control will now allow sound to illuminate all the bulbs. Having established a good sensitivity setting, different types of music from a record deck or radio can be used to check the different frequency bands available on the rotary switches. The display can be
switched to dot mode at any time, which provides an interesting effect with constant light level.

A Case In Point

The actual hardware construction of the light bulb arrangement is very much a matter of personal choice. We used large white plastic bulb holders, and mounted the entire column and PCB in a fluorescent light case that was to hand. The case was earthed and provided a nice self-contained unit. Batten-mounting bulb holders could equally well be screwed down to a long strip of wood and

Fig. 4 This diagram shows how to wire up SW1 and SW2.
the electronics mounted in a separate diecast box. The photographs illustrate the construction method we used.

A number of important points should be noted with the final assembly. Owing to the circuitry used, the positive rail is directly connected to the mains neutral; therefore all parts of the circuit should be treated as being effectively live since somebody could easily swap the mains and neutral leads by accident at the mains plug end. Consequently we suggest:

- The PCB should be mounted in a metal case on insulating pillars or blocks.
- The case should be earthed to the mains but there should be no other connection between the PCB and the case. Circuit ground must not connect to mains earth.
- The mode switch and on-off switch should both be 250 V mains rated and have a current rating sufficient for the total power of the bulbs used.
- The pots and rotary switches should all have plastic spindles and plastic knobs. Ideally the metal pot cases should be insulated from the chassis, or they could be soldered directly to the PCB terminals such that only the plastic spindles pass through the chassis.
- For the reasons of mains isolation the microphone must stay inside the

.Fig. 5 Component overlay for the Spectracolumn. Use spade connectors for the triac and mains connections.
case; and on no account try to connect up the mike input to a direct audio signal from your sound equipment (this could be done only with an audio isolating transformer).

Notes On Modifications

For those with the urge to experiment here are some notes on modifying circuit values: R3 decreases the mike preamplifier gain; decreasing R4 and R8 increases the filter gain; increasing R6 and R10 will increase the Q of the filters; R18 alters the frequency of the master clock, currently set at 2 MHz ; R21 determines the drive current to the triacs; increase C3 or R16 to increase the attack/decay display time constant; R16 could be a 22 k variable pot.

This close-up of the business end of the Spectracolumn shows how we cut away part of the front panel of the fluorescent fitting to allow sounds to reach the crystal mike insert. A cover can be built using speaker cloth and a stiff card frame, as shown in the photograph on the first page of this article.

ETI

30 Solderless
Breadboard Project - Book 1

NEW GOODIES JUST ARRIVED!! | 60 V | 12 A 117 W Hie $150 @ 6 \mathrm{~A}$ |
| :--- | :--- |
| 15 D | | C13 Nixie - Siemens ZM1336K, 14 mm digin height. overall 25 mm . Wire ended 50 p 14 BY 212.750 power switching rect, 800 V 15 GROSR 50 V switehing rect. 4 tor 50p $\mathrm{C}_{162} 21 \mathrm{PIT5} 50 \mathrm{~V} 20 \mathrm{~A}$ rect $7 \mathrm{Fp}_{5}$ ${ }^{\text {C17 }} 17 \mathrm{KBL} 044 \mathrm{~A} 400 \mathrm{~V}$ bridge 50 p

LAST MONTHS NEW ITEMS

10000 F 16 V Ax. 15p
6850 . 1000
${ }^{6850} 1000$
MM5290 $50{ }^{5}$
7912 K , TO3 Casel 7 7 9

40 DLL LP skts 10/t2 100/E16 45 wey screened cable $7 / 0.250 \mathrm{p} /$ motre
5 Abed switches, 20 mm body SP make $20 / \mathrm{s}$
 8 68ADO CPU \& .50
C9 UDN61 14 AA display diviver 50p
10 Speedblock ribbon cable:
10 W AMP PANEL
 can be iither 36 V or $18-0-18 \mathrm{~V}$ Input sensitivity iv too 10 W output. Small H / S on board: E 2.95 . Suitabie Uransformer, bridge rect, smoothing and \%/p capacitor: ft.50.

'COMPUTER BATTLESHIPS

 Probably one of the most popular electronic games on the marke. Unfortunately the design mokes athpractica it umy well function perfecty. od Istead we have tested the sound chip, and sall he board for is compored) SN76477 sound I. TMS 10004 -processor: batt clios R^{\prime} ' C^{\prime} 's tic. Size $160 \times 140 \mathrm{~mm}$. Only $\mathbf{f 1 . 5 0}$. instruction book and circuit 30p extra.TIL302 7-SEG DISPLAY 1N4007 1000V 1 A RECTS

5 mm RED LED SCOOP Another company gone bust - to Your actuantag We ve bought all their smm rod

LIE DETECTOR

Nor a toy. this precision instrument was orgmally part of an "Open University" course. used to detector. Full details of how to use it ate given, and a circuit diagram Supplied complete with probes, leads and conductive jelly. Needs 24 IV batts. Overall size $155 \times 100 \times 100 \mathrm{~mm}$. Only 57.95

- worth that for the case and meter alonell

BRAND NEW VEROBLOCK KIT!!! 30 SOLDERLESS BREAOBOARD PROJECTS" this book features 30 different projects for assembly on a Verobloc, and the kit contains all pars necessary to make:
 Audio Amplif
 Timers
 Metronome Osciliators $\&$ Tone Generators
 Warbling Door Buzzer
 Touch Switch
 Roaction Game
 Radio Receiver Fuzz Unit
 Fuzz Unit + lots more!
 The introduction shows all the ditterent components and exclains how to use the breadboard. The Verobloc layout is shown for every project together with the circuit diagram and an explanation of how it works. ideat tor begimers in electronics, but also suitable for more advanced students.
 The complete kit is contained in an attractive plastic case, which can be divided up into 15 compartments in which your components may be stored. © omphete Kit, including; book, Verobloc \& all parts $£ 24.96$; Book only $£ 2.25$; Kit without verobloc $£ 20.46$.

1982/3 CATALOGUE
Only 75 p inc. post - Look what you getll $\#$ Vouchers worth 60
\#1st class reptay paid envelop
\#Wholessie list tor bulk buyers
${ }_{i}^{\text {Hingige }}$ Hugange of components
${ }^{*}$ L Low, low prices
1000 resistors $£ \mathbf{2 . 5 0}$
We've just purchased another 5 million preformed
resistors, sid can make a similar offer to that made two vears sgo, at the same pricellik523 1000 mixed t and $1 W 5 \%$ carbon film resistort

ELECTRO-DIAL

Electrical combination lock - for maximum security - pick prool. second number, then right again to a third number. Only when this has been completed in the correct sequence will the electrical contect close. These can be used to operste a relay or
solenoid. Overall dia. $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep Only 801 enoid
53.56

PACKS PACKS PAC

$K 517$ Transistor Pack. 50 assorted full s. marked plastic devices PNP NPN RF AF. Type numbers include BC114, T1, 12, 285 $2 N 3004$ etc atc Rerail cost $97+$ Special low price 275p
K620 Switch Pack. 20 different assorted switches - rocker, slide, push, rotary. toggle micro etc. Amazing value at only 200p for our etching kits. Mostly double sided fibre glass. 250g (approx 110 sq ins) for 100p K541 lt's back! Our most popular pack ever - Vero offcuts. This has been restricted for some time, but we have now built up reasonable stock and can once again offe 100 sq ins of vero copper ciad offcuts, average size $4 \times 3^{\prime \prime}$. Offered at around $1 / 2$ the price of a new board 320p

SOLENOID AND RELAYS

W921 Solenoid rated 48 V @ 25% duty cycle, but work
well on 24 V 1700 gm pull. 10 mm travel) push or pull $27 \times 18 \times 15 \mathrm{~mm} 56$
W922 Mains 240 V ac sotenoid, 10% duty cycle, push or pull 16 mm traval. $50 \times 20 \times 16 \mathrm{~mm}$. Only E 1.50
W895 $9 \vee$ OC relay 500 R SPCO $28 \times 24 \times 19.50 \mathrm{p}$ W895 9 VVOC relay 500R SPCO $28 \times 24 \times 19.50 \mathrm{p}$ W733 11 pin plug in relay, $240 \mathrm{~V} \mathrm{ac}, 3 \mathrm{PCO} 5 \mathrm{~A}$ contact
2. 50 . Hase 36 p 22.50. Hase 36p
W838
700 R $35 \times 30 \times 18 \mathrm{~mm}$ oniy $84 \mathrm{p}, 10 / 77.00$ W847 37R $5-10 \mathrm{~V}$ relap, SP 3 A contact, PCB mntg $11 \times 33 \times 20$. 96 p 10/67.50
W893 Omion LY4 mains relay, 4PCO 5A contacts.
W925 5 V DIL reed relay. SP make 75
W924 6 V reed relay, 500 R coil, DP break contacts, B0p
W926 24 V Omron relay tyoe G2L 113 P PCB W926 24 V Omion relay
$\mathrm{mntg} .28 \times 25 \times 10 \mathrm{~mm} 75 \mathrm{p}$

CONFIGURATIONS

Transistors as amplifiers, transistors as multivibrators - now we consider transistors as sawtooth generators. If you want to know the timebase, ask Ian Sinclair.

The timebase is a circuit which generates a sawtooth waveform, one whose voltage changes linearly with time: a graph of voltage plotted against time will be as shown in Fig. 1 (though it may be either positive-going or negative-going). The bestknown application is in oscillosope timebases, but the circuit can also find use in digital-analogue converters and in timing circuits.

The most simple timing circuit is, of course, a capacitor charging through a resistor (Fig. 2). The time constant CR determines the total charging time which, though theoretically infinite, is in practice about four or five times the length of the time constant. The graph shape of voltage plotted against time is, however, exponential rather than linear because the charging current drops as the capacitor charges. All timebases of the capacitorcharging type therefore need some method of keeping the charging current constant as the voltage across the capacitor rises.

Transistor Control

In the days of valves, many elaborate circuits were devised to overcome the problem of constant current control, but it took the development of the transistor to come up with a really simple system with good perform-

Fig. 1 The waveform of a perfect timebase - this should be a straight line.

Fig. 2 Capacitor charging. When a capacitor is charged through a resistor the waveform is an exponential rather than a straight line.

Fig. 3 Using a transistor in place of a resistor for capacitor charging. Since the current through the transistor remains constant, the sweep waveform is straight rather than exponential.

Fig. 4 Block diagram of an oscilloscope timebase.
ance. A transistor whose base-emitter junction passes a constant current will also pass a (larger) constant current between its collector and its emitter, and this current can be maintained up to the level where the collector voltage is less than half a volt different from the emitter voltage.

Figure 3 shows a simple timebase circuit using this principle. Q1 is a switching transistor which is normally conducting, keeping the voltage across the capacitor low. Q2 is a PNP transistor whose base current is set by the resistor chain R2, R3, RV1, and which can be varied by altering the value of RV1. Since the base current is constant, the collector current will also be constant. Q3 is simply an emitter-follower to avoid non-linear effects which would be caused by a resistive load connected across the charging capacitor (since a resistance takes more current as the voltage across it is increased). For best results, Q 3 should be a transistor with a high h_{fe} value, and a double emitter-follower is often preferable to ensure the highest possible input resistance.

The action is as follows. When Q1 is cut off by a negative pulse at its base, capacitor C 1 can be charged by current flowing through Q2. This current will not change until the collector voltage of Q2 has reached a value close to the positive supply voltage, so that the wave form is linear up to this region. If Q 1 remains cut off, the waveform will then flatten off, but if Q1 is switched on again before this point is reached, then a good sawtooth shape is preserved.

Timing The Timebase

The action depends to a large extent on switching the transistor Q1 at the correct times, and all timebases consist
basically of two sections - a square wave generator which handles the switching and a sawtooth generator which provides the desired waveform. An oscilloscope timebase would use a level-detecting circuit at the output to ensure that the switching transistor Q1 was switched off before the voltage level at the output reached the non-linear region - a block diagram with waveforms is shown in Fig. 4. In this arrangement, the repetition rate of the timebase is determined by an astable which provides a trigger pulse. The trigger pulse sets the bistable, which in turn cuts off the switching transistor of the timebase generator and so starts the charging of the capacitor. When the charging has reached some preset voltage level, the level detector (comparator) circuit switches the bistable back, so discharging the capacitor ready for another sweep. For many oscilloscope purposes, the astable is set to run freely at a low speed, and is synchronised to whatever waveform is to be displayed - this is the auto timebase system found on most modern oscilloscopes. The sweep speed is then determined by the time constant of the charging capacitor.

The use of a transistor as a constant current device for a timebase is good enough for many purposes, but two other methods of creating linear sweep waveforms from the basic capacitor charging circuit have been well established for many decades in oscilloscope circuitry. One of these is the bootstrap circuit. Bootstrapping is positive feedback applied over a circuit in which the gain is less than unity, so that it does not cause oscillation.

By His Bootstraps

The principle of the bootstrap is shown in Fig. 5. A capacitor is charged through two series resistors, and a unity-gain amplifier is connected so that the voltage across the capacitor can be applied, in phase but with its DC level shifted, to the point where the resistors join. When the capacitor starts to charge, the increase of voltage across the capacitor causes a matching increase of voltage across $R 2$, so that the voltage across $R 2$ has not changed in this time. Since the voltage across R2 is constant, the current through R2 is also constant, which is the condition for a linear sweep.

Fig. 5 The principle of the bootstrap timebase circuit.

Fig. 6 A practical form of the bootstrap circuit, using an emitter-follower as the unity-gain amplifier.

The bootstrap depends on being able to keep the voltage at the junction of the resistors at a constant amount greater than the voltage across the capacitor. The whole idea seemed so absurd when it was first proposed that the (US) inventor remarked that it seemed "rather like lifting yourself by your own bootstraps". As so often happens, the name stuck.

A practical form of the timebase is shown in Fig. 6. Q1 is, as before, the switching transistor which starts and stops the sweep. The charging resistor chain consists of R2, R3 and RV1, of which R3 is a limiting resistor whose value is set so that excessive current does not flow through Q1 when the variable is set at its minimum value. D1 is used to prevent C 1 from discharging below about 0 V 7 , so ensuring that Q2 will not switch off, causing non-linearity. If Q2 is allowed to switch off, then the timebase output will have a decided 'kink' at the voltage at which Q2 switches on.

Q2 is an emitter-follower, whose emitter is connected through a zener diode ZD1 to the junction of R2 and R3. The zener diode, along with the base-emitter voltage drop of Q2 determines the voltage across R3 and RV1, so that the charging rate can be calculated. For example, suppose the voltage is 6 V , the values of RV1 and R3 add to 56 k and C 1 is 22 nF . The charging current 1 is $6 / 56 \mathrm{~mA}$, which is 0.107 mA , and the rate of change of voltage across C 1 is I/C1. Using units of milliamps and nanofarads, the rate of rise of voltage will be in volts/microsecond, and the example gives 0.00486 , equivalent to 4.86 volts per millisecond. If you know the sensitivity figure for the cathode ray tube for which the timebase is to be used (in terms of centimetres of deflection per volt), then you can calculate what amount of amplification will be needed to obtain full screen coverage, and what time constants will be needed for the various scan speeds.

There are limitations on the voltage gain of the emitter follower and the frequency range over which the zener diode remains effective, but with suitable choice of components, good timebase circuits can be designed around this core configuration. Commercial circuits of this type often look remarkably complicated, but once the bootstrap section is separated from the other parts of the complete timebase (the triggering and the comparator sections), the essential simplicity of the circuit can be seen.

The Miller Alternative

The other basic capacitor charging circuit is the Miller integrator. These two circuits, the bootstrap and the Miller, were curiously polarised for many years, with the bootstrap used on US equipment and the Miller on UK equipment almost exclusively. This is no longer completely true, but though you will see bootstrap timebases appearing on equipment designed in this country, you will even now seldom see a Miller timebase used on the other side of the pond.

The Miller timebase is named after (yes, got it!) Miller, who discovered the result of negative feedback across the anode-grid capacitance of triode valves. The name became attached to the timebase (which was not designed by Miller) because the Miller timebase makes deliberate use of such feedback to achieve linearity. The basic circuit is shown in Fig. 7, and the most startling thing about it is its simplicity, because the switching transistor is also the current regulator! If we imagine the transistor starting cutoff, then a square wave applied to the input will raise the base voltage until the transistor starts to conduct. When conduction starts, however, the collector voltage will drop, and the negative feedback through C1 will prevent the base voltage from rising to the level of the input voltage. Once this has happened, the base voltage can rise

FEATURE: Configurations

Fig. 7 The basic Miller timebase circuit.
only as fast as the capacitor C1 can be discharged, and the discharge is at a steady rate because of the negative feedback.

The time constant for the Miller integrator is given by the value of R1 and C1 rather than R2 and C1 as you might expect, and the conventional use of the circuit as shown here produces a timebase waveform which is negativegoing, with a small 'step', as shown in Fig. 8, just at the point where the transistor switches on.

The circuit will operate in the opposite direction, when the 'free' end of R1 is at ground potential. In this case, the voltage at the transistor's collector rises just quickly enough to keep sufficient current flowing into its base (and also R1) to keep it on. In both cases, the simplest way to achieve the fly-back is to connect a diode, D1, in parallel with R1. For operation in the opposite direction from that first described, the direction of the diode must be reversed.

More elaborate versions of the Miller use two stages of amplification with the output in phase, and a lowimpedance stage driving the capacitor. Very good results can be obtained, and with a wide-band op-amp used in place of a transistor, excellent timebase linearity is possible.

Fig. 8 The waveform from the simple Miller circuit.
Before we leave the subject, timebases can also make use of the growth of current through an inductor. The effect that is used here is the inductive equivalent of capacitor charging, and it is useful because if the inductor is also a deflection coil for a cathode-ray tube, then the timebase and deflection system can be combined. Linearity is much less easy to achieve, however, and one method is the use of a saturable reactor in series with the inductor which carries out the timebase action. The inductance of a saturable reactor will vary with the amount of voltage across it in order to keep the current constant. Using this and other components, it is possible to balance out the worst of the non-linearity of the charging process. For truly linear timebases, however, the capacitor charging circuits which we have described in this article are considerably superior to inductive timebases. No-one watching TV seems to care too much if the characters are very slightly fatter on the right hand side of the screen than on the left, but we need to know the truth from our oscilloscopes!

ETI

there is the ETI binder. Spend your nights enioying the finer things in life, secure in the knowledge that the finer magazines of life are safe and sound. Order one now, and let the Joneses keep up with you

ETI Binders cost $£ 4.25$ each for UK residents, including postage, packing and VAT. For overseas orders add 30 p . Send the completed coupon together with your remittance to:
ETI Binders, Argus Specialist Publications Ltd,
513 London Rd., Thornton Heath, Surrey CR4 6AR.
Please allow three-four weeks for fulfillment of order.

ORDER FORM

Please send me...............ET/ Binders. I enclose cheque/postal order for $£$. \qquad
I wish to pay by Access/Barclaycard. Please debit my account.

Signed \qquad
Name..
Address
\qquad

CLEF electronic MUSIC

ELECTRONIC
 PIANOS

SPECIALISTS SINCE 1972
 form of Touch Sensitive action which
simulates piano Key inertia using a patented etectronic technique.

71 OCTAVE

DOMESTIC MODEL
COMPONENT KIT F226
COMPEETE KIT CLO Two momeir Modes jate suilable
 used to obrain a wide variation of Piano lone, including Harpsichord. Both Soft and Sustain pedals are in-
corporated in the Design and internal corporated in the Design and internal
Effects are provided in the form of Effects are provided in the form of
Tremolo, Honky Chorus, and Phase Flanger. A power amplifier integrates into the Piano top which may be removed from
the Base for easy transportation.

SIX OCTAVE

DOMESTIC MODEL
COMPONENT KIT E234 COMPLETE KIT E3\% MAN E820 Component Kits include Keyboard. Key
switch hardware, and all electronic components and may be purchased in four slages at no exira cost. Complete Kits Prther contain Cabinets, wiring harness, Pedals $\begin{aligned} & \text { Domestic Models both Power Amplifier }\end{aligned}$ and Speaker.
The Six Octave Stage Piano has the same range of Voices and Effects and is
designed for use with an External Amplifier and Speaker.

SIX OCTAVE STAGE MODEL
COMPONENT KIT $£ 234$ MANUFACTURED EENO

MICROSYNTH

THE COMPACT MUSIC SYNTHESIZER

COMPLETE		- 22 OCTAVES
KIT	- SWITCH ROUTING	- 2 2Scillato
£129.00	- THUMBWHEEL	- 2 SUB-OCTAVES

STRIMG
ENSEMBLE
Syniery popizer Kit for Keyboard, Synhessizer Kit for Group or
Home use. Four ociaci
and polyhonoic instrumen wich split. Kesboard faciily. Cabioct requires control pancl frot suppliedd to be fited to side of COMPONENT KIT E197. 50 CABINET E4.00
Since 1972 Clef Products have consistedily he field of Electronic Musical Instruments, many of which desigers in published in technical magazines. With musical quality of paramount importance, new techniques have been evolved and the latest musically valid technology has been incorporated into projects which have been successfully compleced by constructors over a wide range of technical capabitity. Back up EELEPHONE ad

PRICES INCLUDE VAT, UY CARRIAGE $\operatorname{INSURANCE}$ (CARRIAGE EXTRA ON MFD PIANOS). Piease send S.A.E. for our comptere lists, or une our tetephome VISA/ACCESS Servis Compein coneci Ja YCAR In Sydney, Vidit our showroom

CLEF PRODUCTS (ELECTRONICS) Comprehensive two speed organ rotor simulator plus a three pha
chorus generator. COMAPNNENT KIT E58.00

KEYBOARDS

Our Square Front Keyboards 88 NOTE (A-C) 662.67 73 NOTE (F-F) 651.7 FIVE OCTAVE $£ 41.9$ FOUR OCTAVE E31
LIMITED
"THE computer BAND-BOX"
COMPLETE

	\bigcirc
	Camat
£320	+
MANFD.	

A revolution in the fied of Compurter Music Generation
A musicians instrument for vocal e instrumental soloista practice - live performance - recording
The BAND BOX provides an Electronic Backing Trio consisting of Drums, Bass, and a Chord Instrument (one of 16 Waveform/Envelope Chord Changeg on more than 120 different Chords. Using advanced Microprocessor technology, Playback of $50-100$ Scores can be execute in any Key and at chosen Tempo, Complete Music Pad is electronically Indexed and stored on secondary battery back-up. Factions including Multiple Score Sequences. Sockets are provided for Volum Pedal and Footswitch plus separate and mixed instrument Outputs. Total size $19^{\prime \prime} \times 11^{\prime \prime} 4 \frac{t^{*}}{}$ incorporating Master Rhylhm

THE progremmeble DRUM MACHINE

The Clef Master Rhythm is capable of storing 24 seleclabibe rhythmic drum patterns, invented, modified, and entered by the Operator on to Eight Instrumentation tracks. A three position instrumentation control
expands the number of instruments available to twelve, grouped into sounds typical of playing with Drumsticks. Brushes, or Latin American Bongos and Claves.
Sequence operation allows two rhythm sections to be coupled with the second (B) section appearing at four, eight or sixteen Bar repetition. All individual taste, thus producing good musical sounds on a baltery driven unit $8 \frac{1^{\prime \prime}}{} \times 5^{\prime \prime} \times 2 \frac{1}{2}{ }^{\frac{1}{2}}$

Sell our products to your friends and family and earn 10% commission. Details on request

SERVO INTERFACE

PART 2

Are you being servoed? This month we get to grips with the construction of our arm interface board, which can also be used to control up to four servos for any other application you can think of. Design by Rory Holmes.

The servo interface is built on a single-sided PCB. An additional double-sided PCB is used to make a lead-through type of edge connector plug, similar to that used on the $Z X$ printer. The interface electronics are too bulky to be mounted directly on the Sinclair edge-connector, but our small Verobox-enclosed plug, wired to the main board via ribbon cable, puts less strain on the expansion connector.

Start construction with the main PCB, soldering in the links and resistors first (there should be eight links altogether), followed by the IC sockets and other components. Insert Veropin terminals at all the computer bus connections, since this makes wiring up to the ribbon cable easier. Veropins, or a five-way Molex connector socket should also be used at the servo output terminals as illustrated on the PCB overlay diagram of Fig. 1.

Adjust Your Address

The three DIL switches can be replaced by appropriate wire links if the address combination that you wish to use is going to be a permanent fixture. The address selection details given below should be studied to appreciate the possible configurations of the address decoder. Observe that the two switches corresponding to the Z80 control lines (those nearest C4) should always be set to logic low, ie
closed. Also note that IC3 is positioned the other way round to the other ICs.

We used the Pactec type HP case to house the main PCB which was mounted by four bolts at the corners. Four ordinary grommets were used as spacers over the bolts to allow room under the PCB for the ribbon cables. These ribbon cables are wired up to the two PCBs as shown in the main overlay and edge-connector wiring layout -- an 11 -way ribbon is used for the topside and a 14-way for the bottom side.

Pot Luck

The edge connector PCB is cut to exactly fit into the smallest Vero potting box. By a lucky coincidence the 23 -way Sinclair expansion bus will exactly fit the inside of this box. The solder tags on the edge socket are spaced wider apart than the PCB thickness and must be adjusted slightly - don't forget the keyway orientation shown in the wiring layout. One row of tags should first be soldered as they are to the 'underside' PCB terminals and then the other row can be bent down to reach the topside terminals, allowing the assembly to fit in the Verobox.

Figure 3 shows how slots should be cut in the box to house the edge connector plug and socket. Two large size stick-on rubber feet should be positioned on the inside
of the lid to hold the board firmly in place as the lid is screwed down. If one of the feet is stuck above the ribbon cable entry point, it will act as a cable clamp. A very neat and solid connector system will result from this construction method.

Address Selection

If the Spectrum computer is to be used then IC7 and IC8 should not be plugged in the address lines that would normally reach these ICs from the ZX81 do not go to the same pins on the Spectrum bus), but IC9 must be used. Under these circumstances the switches SW1 and SW2 and the associated pull-up resistors are not actually required on the board though they can be left in place (open circuit) if future ZX81 use is anticipated. Jumper JA must be fitted while JB and JC are left open. The switches on SW3 should all be set to logic low, ie closed, and then the four servo addresses will be

Servo 1 OUT 65340, X
Servo 2 OUT 65341, X
Servo 3 OUT 65342, x
Servo 4 OUT 65343, X
For use with the ZX81, IC8 and 9 must be fitted while IC7 is optional depending on the degree of address decoding required. Jumper links JB and JC should be fitted but not link JA. The memory map given in part 1 showed the address line logic levels needed to decode different address ranges.

PARTS LIST

Fig. 1 (Right) Overlay for the servo arm interface board.

Fig. 2 (Below) Overlay for the edge connector PCB; this will allow the use of other perípherals, such as the ZX Printer in our lead photograph. Ribbon cable with 14 ways and 11 ways is used, although one of the wires from the 11 -way piece is soldered to the other side of the PCB as shown.

Fig. 3 Construction of the edge connector box.

A completed interface board; the ribbon cable colds under the PCB.

These logic levels are set on the switches to decode the required addresses for the servo locations.

As an example, the switches on the PCB could be set to the following logic levels (address bits 2 , 3,4 , and 5 are uncommitted so the decoder will respond to a range of addresses):
switch $\begin{array}{llllllllll}7 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ logic
level $1 \begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$ Thus servo 1 will respond to an address in binary of

$$
0011111111111100
$$

or $3 \quad F \quad F \quad C$
in hexadecimal. In decimal this gives servo addresses of:

Servo 1 POKE 16380, X
Servo 2 POKE 16381, X
Servo 3 POKE 16382, X
Servo 4 POKE 16383, X
The servo 4 location is the highest byte of the second 8 K block.

Testing

Once all the cables are wired up the interface can be tested by plugging in to the Sinclair expansion port, either on a Spectrum or a ZX81. Ensure that the jumper links and IC/address switch combinations are set up for the type you are using, and start with no ICs plugged in. If the computer resets correctly and still seems to work, then the first hurdle is over. Check that the 5 V power rail appears at all the IC sockets and then disconnect the interface to plug in all the ICs. With both presets at mid-travel turn PR1 45° anti-clockwise and PR2 45° clockwise; this will give a suitable pulse width to start with.

Plug in the interface again, reset the computer, and write zeros (using either the POKE or OUT command) to your chosen servo locations. On checking the servo outputs with a scope the 20 to 25 mS repetition (frame) rate should be observed, and the positive-going

BUYLINES
The 23-way edge-connector socket specified in the Parts List is avaliable from Watford Electronics. Electroware stock the Pactec case used for housing the interface board; you can find them at Dutton Lane, Eastleigh, SO5 4SL (telephone 0703 610944). The two PCBs, one for the servo arm interface and the other for the connecting plug, can be purchased using the PCB Service order form on page 99.
pulses should be at their smallest width of about 1 mS . PR2 may be used to adjust the 'minimum' pulse width. To decrease the pulse width, turn PR2 clockwise. All the servo output channels should be producing identical pulse sizes but with the appropriate phase lag according to the time slot where they occur.

Now, choosing a specific servo channel, observe the pulse output on a scope as the number 127 is written to this channel. The pulse width should shift to be about 2 mS , and this 'maximum' pulse width can be adjusted using PR1. If a servo is at hand it can be connected up as shown in the diagram of Fig. 4, whereupon it should immediately take up the position dictated by the pulse width. Different numbers can now be POKEd to the servo to test a number of pulse positions.

identical for up to four servos
Fig. 4 Servo connections.

Rubber feet in the case help support the connector board.

GET ais .

WITHALOT OF HELP riom

PROFIfSSIOMAL CAN HANDII...
 Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly.

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, ($<0.01 \%$), stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

PowerSlaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

HIFI Separates					Price inc. VAT
UC1	Preamp				$£ 29.95$
LPix	$30+30 W / 4-8 \Omega$	Bipolar	Stereo	HiFi	£54.95
UP2X	$60 W / 4 \Omega$	Bipolar	Mono	HiF_{1}	£54.95
UP3X	$60 W / 8 \Omega$	Bipolar	Mono	HiFi	£54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5X	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	HiFi	$£ 74.95$
UP6X	60W/4-8	MOS	Mano	HiF	£64.95
UP7X	120W/4-8	MOS	Mono	HiFi	£84.95
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£59.95
US2X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Slave	£79.95
US3X	60W/4-8	MOS	Power	Slave	£69,96
US4X	120W/4-8	MOS	Power	Slave	£89,95

[^4]

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate sheet of paper, quoting the name and date of this journal. By sending your order to our address as shown at the bottom of the page opposite, with FREEPOST clearly shown on the envelope, you need not stamp it. We pay postage for you. Cheques and money orders must be crossed and made payable to I.L.P. Electronics Ltd. if sending cash, it must be by registered post. To pay C.O.D. please add $£ 1$ to TOTAL value of order.

PAYMENT MAY BE MADE BY ACCESS OR BARCLAYCARD IF

APPLEDORE ELECTRONICS ${ }_{\text {opet ETI }}$ 4 MEETING STREET, APPLEDORE, NEAR BIDEFORD, NORTH DEVON EX39 1RJ TELEPHONE: BIDEFORD (STD Code 02372) 5629

CLOCK KIT ZULU II

- Operates on 12 VAC or 12 V DC
- On board XTAL timebase
- Automatic battery back-up

24 -hour format and 31 -day calendar

- $\frac{1}{2}$ in. readouts show hrs, mins, secs
- Unique NOX ${ }^{\text {tm }}$ circuit activates read-outs with a
handclap
- Readouts can be constantly on
- Special noise suppression and a battery reversal
comp
Complete Kit ..88.50
Plastic Case in BLUE with ruby lens $\mathbf{E 4}$

SN76477N SOUND CHIP £4.00 Data $£ 1.00$ Data avallable with purchase of chlp only.
A ginal chlp versatile SOUNDS EFFECTS GENERATOR
SN76477N Is Idealy suited for applicatlons such as arcade or home video games alarms, sound effects boxes and toys.

> EPROM 2716
> Single $5 v$ 450nS.................E2 4116-200ns............ 70 p LM70970p EPROM 1702A E5

New! From the design team at ADS
\geqslant Sole ADS Agent on Synthesiser
SPEECH SYNTHESISER
SOUND GENERATION
Sounds may be created with the SC-01 phonemes, by waverform synthesis with the D to A Converter, or a combination of both. The output of the SC-01 and the output of the DAC may also be mised to allow sound effects to be generated with speech, an external audio line-input into the maxer is also provided. The mixing of the DAC and Externalinput with the Speech is program-controlled.
*The ADS kit comes with the sockets and passive components soldered in. The user inserts IG's and Jumpers.

Bare Board (with manual) Want to know more? - SAE for details
Bare Board (v
RCA Phono Plus

- Three RCA Plug Connectors are required

ADS Kit "See note.
Assembled and Tested
Phraser

Music Boxes
 Commercial

 DisplaysCer Horna Bullet -
New Super Music
Machine Kit.
SAE for details.
Step by step
instructions.
Complete
Kit
£16

ULTRASONIC SENDER/RECEIVED KIT

Total Security. Completely invisible ultrasonic (23 KHZ) Sound beam - works like a photoelectric beam but is uneffected by light, heat or noise. Separate Transmitter and Receiver can be used from 6 inches to 25 feet! A solid object breaking the beam causes an output to go low that will sink up to 150 MA to drive a Relay, TRIAC etc. Complete electronics are provided. Works on 12 V DC (unregulated) and draws less than 10 MA . Use it for burgiar alarms, object counters, automatic door openers, automatic door bells, electronic rat trap! AND MORE. AUTO TIMEOUT CIRCUIT KIT PROVIDES ADJUSTABLE ENTRY DELAY, TRIGGERS ALARM, REARMS ITSELF. $\mathbf{5 2 8 . 0 0}$ complete

SE-01 Sound Effects Kit

 The SE-01 is a complete kit that contains all the parts to build a programmable sound effects generator. Designed around the new Texas Instruments SN76477 Sound Chip, the board provides banks of MINI DIP switches and posts to program the various combinations of the SLF Controls. A Quad Op. Amp IC is used to implement Controls. A Quad Op. Amp IC is used to implement an Adjustable Pulse Generator, Level Comparator The 3 in $\times 3$ in PC Board features a prototype area to allow for user added circuitry Easily programm ed to duplicate Explosion, Phaser Guns, Steam Trains, or almost an infinite number of other sounds. The unit has a multiple of applications. The low price includes all parts, assembly manual programming charts, and detailed 74677 chip specifications. It runs on a 9 v battery (not included). On board 100 MW amp will drive a small speaker directly, or the unit can be connected to your stereo with incredible results! (Speaker not included.) Main chip SN76477 is included in kit. COMPLETE KIT ONLY...f15CLANG BEEP ZAP/

COMPUTER SOUND CHIP. The amazing AY-3-8910 is a fantastically powerful sound and music generator, perfect for use with any 8 -bit microprocessor. Contains 3 tone channels, noise generator, 3 channels of amplitude controls, 16 -bit envelope period control, 2 parallel $1 / \mathrm{O}, 3 \mathrm{D} / \mathrm{A}$ converters plus much more. All in $40-\mathrm{pin}$ DIP
Super easy to interface to the S 100 or other busses.
$£ 2.45$ for 60-page data manual. Data av. with purchase of chip only.

f5 each

24 HR ANSWERING SERVICE Ordering Information: Terms of business end Educational institutions official arders arcepted Trade and export inquiry welcome.
P. and P. add 60p. Export Orders add $£ 2$.

The DOOMSDAY Alarm

The best noise-maker for burglar wharm
Four separate adjustable oscillators are mixed,
stepped and disabled at state that is adjustable. The 10 -watt output gives ear-splitting volume. The kit comes with all electronics and drilled and plated PC board. Requires 12 v DC at 1 amp. Also reas 8 ohm speaker (not included). TOTALLY DEFIES INATTENTION
Complete Kit ..f10

OVERVOLTAGE PROTECTION

 KITComplete Kit ... $\mathbf{5 8 . 0 0}$ Provide cheap insurance for your expensive equipment. Trip voltage is adjustable from 3 to 30 volts. Overvoltage instantly fires a $25 A$ SCR and shorts the output to protect equipment. Should be used on units hat are 15 Al Dietronics supplied Drilled and plated PC board.

KLUGE CARD (S-100)
Simplify your projects with a prototype Breadboard with extras.
BARE BOARD \& MANUAL 6809 SINGLE BOARD COMPUTER IEE S-100 STANDARD
Uses Motorola's powertul MC6809 CPU.
ACIA PIA 8080 simulated I/O RS-232 Handshake.
8 sel. Baud Rates.
BARE BOARD:
COMPLETEKIT:
ADSMON (2716):
ADSBASIC (2716):
$\begin{array}{ll}\text { G MANUAL } & \mathbf{E 4 9 . 5 0}\end{array}$
MB-3. /3 SLOT MOTHERBOARD
$\mathbf{5 3 6 . 0 0}$
PROMBLASTER (\$-100)
Programming most familias of Eproms. The ADS Promblaster is controlled by software running
under either CP/M or stand alone with our under either CP/M or stand alone with our
680 S. CARD WITH SOFTWARE: CP/M Version on $5 t^{\prime \prime}$ or $8^{\prime \prime}$ disk. PROMWRITER'09 in 2716 . Please state clear
COMPLETE KIT: COMPLETE KERSION
698.00
588.00 1538.00 $\mathbf{f 1 9 5 . 0 0}$
$\mathbf{c} 190.00$

READ/WRITE

Letters for this page should be addressed to Read/Write at our Charing Cross Road address.

Dear Sir,
I read with interest Tim Orr's series on electro-music techniques, and plan to use some of his circuits in a project. The problem is, as far as I can find out, your advertisers do not seem to stock the Curtis devices mentioned. Could you please give me some indication as to where these items may be obtained?
D. J. Stephenson,

Cheltenham
Digisound Ltd are the agents for the Curtis ICs used in Tim Orr's circuits. In particular, the CEM3310 costs $£ 4.20$, CEM3320 is $£ 4.00$, CEM3330 is $£ 4.40$, and the CEM3340 is $£ 6.10$, plus $\mathbf{3 0}$ p postage and packing, and VAT must be added to the total order. Digisound are at 14/16 Queen Street, Blackpool, Lancs FY1 1PQ (Tel. 0253 28900).

Dear Sir,

I am presently constructing an audio amplifier which consists of the System A preamp and the Audiophile power amp split into two mono amps so that they may be sited next to the speakers.

Do you think it will be necessary to attenuate the output of the System A preamp down to 500 mV to match the Audiophile preamp output or is this. unnecessary as the maximum voltage swing from each preamp is almost the same?

If the DC offset of my System A preamp is sufficiently low as to make the capacitor at the output unnecessary, can I also dispense with the electrolytic capacitor at the input to the Audiophile power amp?

Finally I am using toroidal transformers in the power amps which, although they function correctly, hum quite loudly. The manufacturers (ILP) suggest that the cause is a poor mains waveform. Is there any way of reducing this effect for a modest cost?

D. A. Davies,

W. Sussex

No, it shouldn't be necessary to attenuate the output of the preamp, because the mis-match in levels is fairly small, and the right way round in any case $(775 \mathrm{mV}$
output into a 500 mV input - the other way round would stop you from getting maximum output from the power amp). Ideally, you could leave out both the DC blocking capacitors, but in practice, we wouldn't recommend doing so because then any DC fault in the preamp would be amplified and fed through all the way to the loudspeaker's coils, which is one of the best ways we've discovered of destroying them. So for safety's sake, leave one of the caps in circuit, though keeping both is not necessary.

In our opinion, a well-designed transformer (toroidal or otherwise) should not be obtrusively noisy. However, you may have accentuated the relatively innocuous noise any mains transformer is bound to make by the way you have mounted it. We suggest experimenting with alternative techniques, for example, mounting the transformer on something soft and accoustically dead (foam rubber would be ideal but for its inflammability - so try whatever you have to hand until you find something that works).

Dear Sir,

First of all, congratulations on an interesting magazine. I am, at present, in the process of building the System A preamp and the 150 W MOSFET amplifier. I would appreciate it if you could let me know of the modification involved in matching these units. I note that the preamp's output is 775 mV and the amp's input is 7 V .

Also, could you tell me which configuration to use to match an Elite EEI 700 MM cartridge to the preamp's input?

Yours faithfully,
W. Suzor,

South Africa.
Hmm - the opposite problem to Mr Davies. Well, you can settle for leaving things as they are and possibly not getting quite the maximum volume out of the system (it all depends on the outputs of the signal sources): or you can tinker with the preamp. Referring back to the circuit diagram in the July 81 issue, R37
may be increased to 15 k : on the other hand you could reduce RV2 to a 470R pot or solder a 1 k 0 resistor from either side of RV2 to ground. The first modification might affect the preamp stability, the second will alter the operating characteristics of the balance control. You'll just have to suck it and see . . .

As for the cartridge matching, we recommend the use of option H in this instance. Good listening.

Dear Sir,

It was intriguing to read in the September 82 issue of Which? (with Money Which?) of the possibility of an electronic solution to the ancient problem of ascertaining when it is possible to have sex without contraception and no danger of pregnancy. Your designers will enjoy working on a project which will interpret temperature changes in the breasts and indicate if sex without conception is possible. I do hope that you can come up with such a design - it is bound to be popular.

Yours sincerely,
W. K. C. Townley,

Morecambe.
Not only does this suggestion win our Raincoat of the Month award, but if followed up would probably offend our female readership.

Dear Sirs,

With reference to ETI September, page 11; Digest News. 'Eric' is the Tangerine Users Group mascot; yes, a small IC is the mascot of that fairly large users group. Eric is more commonly known as a 24-pin 2708 EPROM. Yours faithfully,
Master N. P. Leirs,

Swansea

PS How about a binder for my five years of back issues of ETI or a year's subscription (even better) for the above info.
Thanks for identifying Eric; as promised in the Digest item, you don't win a prize! (Sorry if we got your name wrong, but we couldn't make out your signature.)

OOPS

Two small errors crept into the Spectrum Analyst project last month. In Fig. 3, the circuit diagram of the filter-rectifier block, R37-52 should be 10k, as listed in the Parts List. In Fig. 5, the overiay for the main board, the +10 V and -10 V connections marked 'FROM PSU' (at the corner of the PCB nearest the caption) should be swapped over. In the Cortex article, the block diagram showed two TMS9995s; the VDP is, of course, a TMS9929.

$B G B A T E A B E A T S$

TRIACS - PLASTIC

4 AMP - HON - THEN - TAG THED

1 CFP	19078	S00FP	100 OFF
4	63.15	111.5	E3) 00
8 AMP 400\% - T0220-TAG425			
(6)	¢5.75	¢27.50	E50.6

slider potentiometers
Pisste Ulamm Imeet Mano ALL AT

SX40 250 Silicon Doodes-Switching like IN414800.35 All good-uncoded. Worth doubleour price $45 v 75 \mathrm{~mA} \quad \mathbb{1} .25$ Sx41 250 Siticon Diodes-General Purpose, like 0A200/202 BAx13/16. Uncoded $30-100 \vee 200 \mathrm{~mA} 00.7$

4.25

\qquad

10 SA SCR's TO64 $3 \times 50 y .3 \times 100 \mathrm{r} 2 x$ $200 v .2 \times 400 \mathrm{v}$ Super value less than $1 / 2$
 200v. 2 a 400v. All coded Biand new. a five away al.

BI-PAK'S OPTO 83 SPECIAL

A selection of targe $\&$ Small size LE''s in Red Green, Yellow and Clear, plus shaped devices of differeni iypes. 7 Segment displays, phocio transistors, emilters and detectors. Types like MEll1, fPTIOO etc. Plus Cadmium Cell ORP12 and germ photo transistor OCP71.

1 Amp Silicon Rectifiens
 50 - 500 - uncoos.d - you select lor VLIS ALL perlect devices - NO duts Mim 50 50 br E1.00 - wort dowile ORDEA NO SX76 Silicon Genemal Pupose NPN Trensiors T0. 18 Case Lock fil liseos - cooded C7764 Simemax lo BC147 - BC 107 - TTE9 ALL NEW! VCE 70 IC500mA He 75.250 50 oft 100 on 500 on 1000 on n

Slicon Gemean Purpose PNP Tisonsisoors $\mathrm{TO}-5 \mathrm{Case}$
 BF $\times 30$ VC 60 IC 600 ma Min He SO ALL NEW 50 on 100 on 500 oth 1000 on

MINIATURE TOOLS FOR HOBBYISTS

 EOXES-ALUWINIUM plastic ALUMINIUM BOXES Made with Bright Aluminium folced Made with Bright Aluminium folded construction with deep lid and screw SIZE'L W H OrderNo.

Plastic Boxes

Coloured Black. Close titting.
Flanged Lid. lixing screws into brass bushes SIZE *L H Order No Price

Plastic as above but with 144 Et.e0
$\begin{array}{lllll}4 & 23 / 4 & 1 & 146 & 1.40\end{array}$
Plastic sloping front
$51 / 2 \quad 41 / 4 \quad 21 / 4$
slope
10
$1 / 2$
All measurements for boxes are shown in inches. $L=$ Length. $W=$ Width. $H=$ Heigh

-GADCHARCLER Universal Ni. Cad ballery charger. All plastic case with ilft up lid. Charge/Test swith LED indicators at each of the tive charging points

Charges:- Power:-
PP3(9V) 220-240V AC
U12(1.5V penite) Dims: (1111.5V C") $\quad 210 \times 100 \times 50 \mathrm{~mm}$ U2|15V D) ES.OS
POWER SUPPLY OUR PRICE $\mathbf{E 3 . 2 5}$
Power supply tits drectily into 13 amp socket Fused for satety Polarity reversing socket Voltage swilch Lead with multi pug input:-240V AC. 50HZ Output:- -3.456. $5.9 \&$ i2V DC Rating -300 ma MW88

Silicon NPN'L' TypeTransitors

 T0-92 Plastic centre colleclor Like BC182L - 183L - 184 L Like BC182L - 183 L - 184 LVCBO 45 VCE0 30 IC200mA He $100-400$ ALL perfect devices - uncoded ORDER AS 5×1 B3L 50 of 100 off 500 ot 1000 off $\begin{array}{llll}\mathbf{£ 1} .50 & £ 2.50 & £ 10.00 & £ 17.00\end{array}$ PNP SILICON TRANSISTORS: Simila $1 \times \times 500-2 T \times 214-\varepsilon$-Line VCEO 40 VCBO 35 ic 300 mA He $50-400$ Brand Nem - Uncoded - Pelect Devices 50 oft 100 oth 500 oth 1000 oft $\begin{array}{llll} & £ 2.00 & £ 3.50 & £ 15.00 \\ & £ 25.00\end{array}$

BA NUT DRNER 8ET Set of 5 BA spanner shertus plus unimernal handle in roll-up wallet. Szess O BA 24.8 .8 BA . Order No T 182 NEOW BCREWDRIVER
$7{ }^{2} \mathrm{in}$ blade no NS 10 Mmp each
$5 \frac{1}{2}$ blade no NS2 0.50 p each

Cuarantee
 Satistaction or your money back has

 alwars been BI-PAK's GUARANIEE and it still is All these Sale tiems are in slock, in quantity and we will despatch the same day as your arder is recerved
IC SOCKETS

The lowest price ever.

Pin. $\quad 10$ oft $\quad 50$ off 100 off

14 pin 90 p \quad E3.75 \quad CB 50
$\begin{array}{llll}18 \text { pin } & 95 \% & \mathbf{8 4 . 0 0} & \mathbf{8 7 . 0 0}\end{array}$

VOLTAGE REGULATORS
 T0220 Pastitu to 7805-50p 1905-550 $\begin{array}{ll}7812-50 & 7912-55 \\ 7815-50 & 7915-55 p\end{array}$

8 Bit MHCROPROCESSOR
 GATE MOS TECHNOLOGY As used in Nationals nso30 Micro Compuler Fantily Instruction Cycle Time 2 us Supplied wilh lunctional Block Diagram
BRAND NEW -
NOT seconds on reclams
NOT seconds on reclaums juyipif
\% perteil ORDER NO SX8080 DIII
Normar Sell price 4.50 each
Our Bi-Pak Special Price 22.00 SO HURRY - LIMITED STOCKS
40 Pin IC Sockel to tit $\mathrm{S} \times 8080$ OHter price ORDER NO 1609301

MULTITESTERS
130,000 opv Including lest leads and case
AC vols: 0.2.5-10-25-100-250-500-1.000-
DC vots:- 0-0.25-1-2.5-10-25-100-250-1,000.
DC current- $0.50 \mathrm{ua} 0.5 \mathrm{ma}-50 \mathrm{ma} 0.12 \mathrm{amps}$ Resistance- $\mathbf{0}-6 \mathrm{KK}$ ohms -70 K ohmss 6 mmeg ohms 60 meg ohms
Decibels:- -20dth to plus 56db.
Shorn lest:- Inernal bunzer.
Dims:- $160 \times 110 \times 50 \mathrm{~mm}$
0/No. 1315. OUR PRICE
ONLY £24.75

B-PAK'S COMPLETELYNEW GATALOGUE
Completely te-designed. Fult of the type of components you reauire. plus some very interesting ones you will soon be using and ot course, the largest ange of semiconductors tor the Amateur and Proiessional you could hope to tind.
There are ho wasted pages of useless information so often included in Cataiopues pubilshed nowadays. lust solid liacts ie. price, description and individual features of what we have avaliable. But remember. B. Pah's policy has always been to sell quality components at competitive prices and TMAT WE STML DO.
BI.PAK S COMPLETELY MEW CATADGCUE is now avalable to you. You will be amarec how much you can save when you shop for Electronic Components with a Bi. Pan Catapue. Have one by you all the time-it pays to buy Bl.PAK.
To receive your copy send $75 p$ plus $25 p$ p\& p.

MICRO-PROFESSOR

YOUR GUIDETOTHE WORLD OF MICROPROCESSORS

Alow cost tool forlearning, teaching \& prototyping.

(by phone or post) Complete the coupon todayl Please allow 28 days for delivery. Please send me: Price Oty p\&p Micro-Professor £79.95 E2.95 SSB-MPF board E69.95 E2.95 EPB-MPF board £84.95 £2.95 PRT-MPF board £74.75 £2.95 Total
I enclose cheque/P.O. for $E . .$.

Name

Address
\qquad
\qquad
\qquad
\qquad

Micro-Professor is a low-cost $\mathbf{Z 8 0}$ based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors and utilise their unlimited potential.
Mlero-Professor is a complete hardware and software system whose extensive manual gives you detailed schematics and examples of programme code. A superb learning development tool for students, hobbyists and microprocessor engineers, as well as an excellent teaching aid for instructors of electrical engineering and computer science courses.
Technical specification
Z80 CPL, 2K RAM, 2K monitor, 24 1/0 lines, LED display, cassette interface, CTC/PIO facility, $2.25^{\prime \prime}$ speaker, three manuals, 36 keyboard. Options include; EPROM board, speech board and printer board.
Please send or telephone for full details.
Now
includes 2K
BASIC

FLIGHT ELECTRONICS LTD. FIIght House, Qaayside Rd, Southampton, Hants SO2 4AD. Tel: (0703) 34003/27721. Telex: 477793.

[^5]
AUDIOPHILE

Ron Harris has got lots of arms. This doesn't mean he can write articles faster than the rest of us, but it's useful for testing cartridges. Here he tells you how to give your hi-fi the (Gold)ring of confidence.

The G910IGC represents something of a rethink for Goldring. Some time ago, they launched their successful G900IGC with a compliance approaching $50 \mathrm{cu}\left(\times 10^{-6} \mathrm{~cm} /\right.$ dyne); they subsequently issued the G910 with an identical generator system and stylus, but a much reduced compliance. Ostensibly this was to bring the G900 cartridge a potentially wider audience by allowing its use in higher mass arms. (The G900IGC itself is really only viable in an SME, since any higher arm mass is liable to bring the resonance into the range where it will affect the audible reproduction.)

The resonant frequency generated by the compliance of the cantilever and the combined arm and cartridge mass can be calculated from:

$$
f_{r}=\frac{1}{2 \pi \sqrt{(M+m)} C_{o}}
$$

where $f_{r}=$ resonant frequency (Hz)
$\mathrm{M}=\mathrm{arm}$ effective mass (grams)
$\mathrm{m}=$ cartridge mass (grams)
$\mathrm{C}_{\mathrm{o}}=$ Compliance (cu)
Ideally this figure should lie above the frequencies of warps on records ($4-7 \mathrm{~Hz}$), yet below the audio range of 15 Hz upwards: a suitable compromise has been established as being between $9-12 \mathrm{~Hz}$. If you do the arithmetic, it becomes very clear that with a compliance figure up around 50 cu the G900IGC is going to have a hard time with any arm having an effective mass higher than about $6-7 \mathrm{~g}$.

Thus the 910 iGC , with its compliance of 25 cu , will be more suitable for a much wider range of arms and thus allows a more secure performance in more decks. (Goldring recommend arm masses between 3 g and 12 g .)

No Arm Done?

It is not just the frequency of the resonance that matters, but the strength of the resonance is important too. Damping is becoming an increasingly popular option on tonearms these days, as the importance of this subsonic resonance is recognised. The effect of energy entering the resonance is to excite the arm into motion (thus affecting the cartridge's hold upon the groove) and/or to degrade the reproduction of the lower registers by pouring energy into the system at a frequency sufficiently close to the bass register to 'modulate' the signal and colour the sound severely.

In the past, ultra-high compliance figures of around 60 cu have been present in cartridge designs, notably from Empire. Shure and Goldring too were following that path, and Shure's new V15V still has a cantilever with compliance of around $35-40 \mathrm{cu}$. It does, however, incorporate its own damping system. The thinking behind this idea is that the ideal pickup system consists of a massless arm and cartridge, tracking at zero grams. Such a unit would have no inertia and no overshoot. With no mass it could not wear out records and would track every groove perfectly. Ever lower arm mass figures were

pursued earnestly, the SME Series III reaching a low of around 6 g . The Ortofon Concorde and the Shure MV30HE are both attempts to reach as close as possible to the unobtainable ideal.

The closest thing, in practice, to the massless groove scanner is probably the laser-beam of the Philips Compact Disc player. It's impossible to wear out what you don't touch. Surface noise is also eliminated by this method and even scratches on the surface can be 'correlated' out by the following circuitry. Visions of silent background, massive dynamic range and practically invulnerable records are promises that lie temptingly just beyond the next technological revolution. One more miracle to await, headphones in hand and conductor's baton raised.

Speaking as a professional cynic, l've yet to hear a convincing demonstration of this 'new-wave' hi-fi. Good ol' analogue - warts and warps et al - can still beat the sleeves off anything else l've heard. Listen to a top flight analogue recording of a live performance - the Deutsche Gramophone 'Ring Cycle' for example - and I think you'll see what I mean.

Fig. 1 Cross-sectional drawing of the Goldring G901IGC cartridge.

Lots of Life - But Not Live

A vital part of a live recording is the effect of the hall in which the recording was made. Any bounded space will affect sound generated within it. Resonances are (again) present and they reinforce certain sections of the sound spectrum, effectively adding peaks to the overall frequency response. These are directly related to the size of the hall or room and will in addition limit the bass response obtainable.

Reflections from the boundaries reach the recording mics later than the original signal and add 'reverberation' to the sound. With a different frequency spread for each reflection, depending upon the nature of the boundary doing the reflecting, a definite character will be added to the overall result.

This is because few materials reflect all audible frequencies equally, and most will absorb some quite readily. High frequencies are soaked up by brick, cloth, carpet, people - even plants! Bass frequencies are harder to absorb and travel quite effortlessly through walls into next door's living room, for example, adding little to a sense of neighbourly good-will in the process.

Thus overall, each concert hall - and living room will have a distinct sonic character to impart to sound produced within it and it is this low-level information that digital recording is, at present anyway, lousy at replaying. Recordings of even the best orchestras and musicians are apt to sound decidedly lacking in life and character. No 'ambience' is a more up-market method of expressing the same sentiment. In plain terms they just sound dull and flat.

A Bit Short?

Perhaps as the sampling rates and number of bits used in each sample increase, this problem will be resolved. For the moment, though, we are left with the uneasy feeling that the circuitry is filtering out the life with the noise! Almost enough to justify a science fiction story or two, that - emotion classed as surface noise and filtered out at the reproduction stage! Worth a quiet shudder or two over a glass of wine, methinks.

If your tastes don't run to opera, try the new Ry Cooder LP, 'Into the Slide Area'. It was recorded live and the quality is absolutely magnificent. Frequency balance has been well maintained and the voices come across superbly. Match that one, Philips!

Back To The Plot

At least this all goes to show that there is quite a few years left in the record deck yet. It will be a considerable time until G910IGCs and Karat Diamonds become as hard to get as pine needles! It is interesting to note, though, that Quad mention in the release for their new preamp (see later in this article for more details) that the auxiliary input is now intended for 'compact disc players'

So now that we've established that the G910IGC possesses a future, let's take a closer look at it. As I said, it is identical to the G900IGC in all respects, save that lowered compliance.

This means it has the van den Hul stylus point, with its Improved Groove Contact geometry (IGC). This means a minor radius of a mere 3.5 um and a major (contact) dimension of 85 um lying perpendicular to the groove. Thus the stylus as a whole closely approximates to the shape of the head which cut the master disc in the first place.

Being of the same shape means that it is supposed to have less trouble following the groove - and staying in it - than other stylus profiles. Claimed benefits are improved definition of detail, better imaging through

The point of the exercise? The van den Hul in close-up. The advantages of the shape are claimed to be decreased wear, due to increased contact radius, and improved groove following abilities.
channel separation and stability, low record wear through increased contact area and lower intermodulation distortion. Not quite everything but the kitchen sink, though close. The elliptical tip may as well pack up and go home!

The really disquieting thing is that the IGC cartridges deliver on all the claims made for them! The surface noise really is very low, stereo image is excellent and you won't find better detail in a cartridge anywhere. Worrying that.

Stiffer Upper Lip

The older G900ICC works exceptionally well in an SME Series III, and I've encountered no problems playing the unit in this manner. Many are the tales I have heard, however, of horrendous bending cantilevers, sound breaking-up faster than the Labour Party, and unstable bass response which rocks speaker cones on their suspensions.

Most of these, I suspect, can be put down to poor matching between cartridge and arm. Still, it does a manufacturer no good to get lumbered with such tales, whether they are his fault or not. The 910IGC is thus a most sensible answer to the criticisms.

TEST RESULTS

G910IGC SERIAL NUMBER 1142
OUTPUT VOLTAGE (AT $5 \mathrm{~cm} / \mathrm{s}$): 6.6 mV (L)
$6.7 \mathrm{mV}(\mathrm{R})$
CHANNEL SEPARATION: $\quad 1 \mathrm{kHz}: 30 \mathrm{~dB}$
FREQUENCY RESPONSE:
$10 \mathrm{kHz}: 24 \mathrm{~dB}$
$20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1.5 \mathrm{~dB}$
(see graph)
STATIC COMPLIANCE: 25 cu
EQUIVALENT TIP
MASS:
0.4 mg

CHANNEL BALANCE (AT
1 kHz):
within 1.5 dB
VERTICAL TRACKING
ANGLE:
24°
OPTIMUM TRACKING
WEIGHT:
OPTIMUM ELECTRICAL
LOAD:
WEIGHT:
TYPICAL PRICE:
1.7 g

47k/200p
4.3 g
$£ 59.00$ including VAT

Fig. 2 (above) Frequency response plot of the G901IGC. Would that it contained a few deficiencies so that I could moan about them.

I tried the 910IGC in a wide variety of arms, from the SME itself to an Audio Technica of dubious parentage. It gave a good account of itself in all. Curiously it also appeared to offer a more refined performance than the 900IGC, even with the SME. Could it be there are more refinements lurking within the strangely shaped shell than Goldring are admitting?

The treble in particular seemed to have been cleanedup somewhat with the 910 producing a clearer and sharper rendition of transients than its stable companion. The overall performance could simply be described as more confident and controlled, but can in no way be totally ascribed to the mere lowering of compliance.

Bench Testing

Putting both a 900 and 910 through a series of tests side-by-side failed to reveal any significant technical differences between them. The 910 measured out at $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1.5 \mathrm{~dB}$ with a slightly falling upperend response, which may in some way account for the tolerance of surface noise.

Output was very high at around 7 mV and overload problems may well arise on lesser preamps. Using the cartridge with lower grade systems is a waste anyway, but check nonetheless. You will need around $90-100 \mathrm{mV}$
overload to be reasonably safe.
Separation was very high also, at around 30 dB at 1 kHz and 24 dB at 10 kHz . Optimum tracking was achieved at 1.7 g and no practical improvement is to be gained beyong this.

Under a microscope the finish on the diamond was very good and the alignment appeared to be spot-on. Goldring have obviously gone to a good deal of trouble with their van den Hul point and it shows in the product.

Competition Results

At around $£ 60.00$ the G910IGC is not cheap. By today's inflationary standards it is difficult to justify calling it expensive, however. Taking into account the very fine performance offered, the cartridge can justifiably be labelled as value for money. The sound quality is nicely open and well detailed. Bass is extended and free of 'boom', a characteristic which has, perhaps, been gained at the expense of a little 'weight'. Treble is clean and extended also, with no sign of the hardening on difficult material which can so easily beset lesser designs.

A good product, then, and one which has a great deal to offer a wide range of users. I personally preferred the G910IGC to its more specialised companion the 900 . A worthy contender in the $£ 50-£ 100$ market.

Above: the new Quad 34 preamp - sorry, 'control unit' - lined up with the FM4. nother new Quad model is quite an event. That's more than one THIS YEAR . . . must be a rush of blood to the design department. The versatile filtering is retained from the existing 44 and the price is, well, interesting. Audiophile is trying to lay its hands on one, so more details when we hear from Huntingdon. Mind you, after that crack about design departments . . .

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following:
Build a modern oscilloscope
Recognise and handle current electronic components
Read, draw and understand circuit diagrams
Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'

- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment.

NewJJob?NewCareer?NewHobby?Getinto Flectronics Now!

CALCULATORS

$10+2$ digit dot matrix, full alpha numeric upper and lower case. 50 functions. Up to 512 steps $/ 88$ memories. (601P up to 128 steps/11 memories.)
FX602P $£ 63.00$
FX601P $£ 37.00$

FA2 CASSETTE INTERFACE $£ \mathbf{£ 1 9 . 0 0}$
FP10 PRINTER FOR 602/702 $£ 40.00$
dot matrix display basic language Up to 1680 stemps/226 memories Now only £71.00

HEWLETT ULTRA HIGH QUALITY CALCULATORS PACKARD
hP11C SUPER DEAL PRICE
203 program lines, 21 addressable memories NOW ONLY $£ 89.95$

HP10C New ModelPOA

> HP16C New Model .
\qquad ..f119.95 HP41CV 5 times 41C memor
HP12C financial/stats... £119.95 HP15C New Model £119.96

HP41C/41CV Software Modules, All Subjects. \qquad
NEWTI 57 LCD 50 functions/8 memories. 10 digit LCD $£ 21.95$ NEW TI 55-II LCD 122 functions, linear regression, up to 56 steps/8 memories. 10 digit LCD .. 32.95 NEW TI Programmer Essential tool for programmer...... $\mathbf{£ 4 4 . 9 5}$ TI 58C 172 functions, up to 480 steps/ 60 memoriesE64.95 TI 59 With magnetic card reader up to 960 steps/ 100
memories
PC 100 C Printer for TI58/58C/59
.. $\mathbf{1 1 9 . 9 5}$
\qquad f179.95
TI 58/58C/59 Software modules. All subjects
.f35.95
FP 10 Scientific/Statistical Print + Display.
.f69.95

Full range of Canon, Casio, Hewlett Packard, Sharp, and Texas Calculators and accessories supptied Large SAE with all enquiries please

Export less 10% - All payments in $£$ sterting
All prices include post, packing, VAT, 12 months guarantee Payment with order, Cash, P.O., Cheque or Access

CALCULATOR SALES $\&$ SERVICE

Freepost (ines stamp roquines UK).
PO Box 13, Redditch, Worcs B98 0BR Telephone Redditch (0527) 43169

TORODALS

The toroidal transformer is now accepted as the standard in industry, overtaking the bosolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TYPE	$\underset{\substack{\text { SERIES } \\ \text { No }}}{ }$	$\begin{aligned} & \text { SECONDARY } \\ & \text { Volls } \end{aligned}$	ams Current	PRICE
30 Va	18010	$6+6$	250	
$70 \times 30 \mathrm{~mm}$	1×011	$9+9$ 12.12	166	$E 5.12$
045 Kg	1 $\times 0+2$	12.12	! 25	
$\left\|\begin{array}{l} \text { Reguraino } \\ 18 \% \end{array}\right\|$	12013	$15 \cdot 15$	100	- Diocion
	1×014	$18+18$	083	Wat 097
	1×015	$22+22$	068	rotaltom
	'x016	25+25	060	
	${ }_{4 \times 017}$	$30+30$	050	
50 VA	22010	$6+6$	416	
$80 \times 35 \mathrm{~mm}$	2x011	9*9	277	
09 kg	2×012	12+12	208	
$\begin{gathered} \text { Regulalion } \\ 131 / \% \end{gathered}$	2x013	$15+15$	${ }^{1} 66$	
	2×014	18+18	138	c.10
	20015	$22+22$	113	-0,0tis
	2×016	$25+25$	100	- watel 0 S
	2×017	$30+30$	083 085	toial 560 os
	2×028	110 220	045 0.22	
	$\underset{2 \times 030}{2 \times 29}$	240	020	
80 va	3x010	$6+6$	6.64	
$90 \times 30 \mathrm{~mm}$	3x011	$9+9$	444	
1 kg	3x012	12*12	333	60
Regulation 12%	3x013	$15 * 15$	2.66	0.08
	3×014	18+18	222	-0tact 68
	3×015	22+22	181	
	3×016 3×017	$25 * 25$ $30+30$! ${ }^{60}$	
	+3x017	$30+30$ 110	133 0 0	
	3x029	220	036	
	3x030	240	033	
120 va	4×010	6*6	1000	
90x 40 mm	4×019	9+9	${ }^{6} 66$	
12 kg	4×012	12+12	500	
$\begin{aligned} & \text { flegulation } \\ & 11 \% \end{aligned}$	4×013	$15+15$	4.00	690
	4x014	18+18	333	
	4×015	$22 \cdot 22$	272	0\%fi6
	4×15	$25+25$	240	- watriz 18
	4×017	$30 \cdot 30$	200	total 9936
	4×018 4×028 4×28	35×35 110	171 109 109	
	4×029	220	054	
	4×030	240	0.50	
160 VA	5×011	9+9	${ }^{8.89}$	
$1110 \times 40 \mathrm{~mm}$	58012	12* 12	666	
18 kg	50013	15+15	533	
Regulation8%	5×014	$18+18$	444	7.91
	5×015 5×016	$22+22$ $25+25$	3 363	-p/pri 67
	5×016	$25+25$ $30+30$	${ }^{3.68}$	
	5×018	$35+35$	2.28	Totals/10 0
	5×026	$40+40$	200	
	5×028	110	145	
	5×029 5×030	220 240	1072 068.	

- 24 TTPES TO CROOSE FROM! - onames pespltcird witimi DITS OF LDCLITT FOR ELHELL OR 8HL OULTITT OLDEDS
 $\star 5$ TEAR WO QUIBBLE CULDIMTEE

TYPE	$\underset{\substack{\text { SERIESS } \\ \text { No }}}{ }$	$\begin{array}{\|c\|} \hline \text { SECONDARY } \\ \text { Volis } \end{array}$	$\begin{gathered} \text { RMS } \\ \text { Current } \end{gathered}$	PRICE
225 va	6×012	$12+12$	938	
$110 \times 45 \mathrm{~mm}$	6×013	$15+15$	7.50	
22 kg	6x014	18+18	6.25	
$\begin{gathered} \text { Requlation } \\ 7 \% \end{gathered}$	6×015	$22+22$	5.11	997
	6×016	$25+25$	450	
	6x017	$30 \cdot 30$	375	-8ipf7 00
	6x018	$35+35$	3.21	- watcices
	6x026	$40+40$ $45+45$	281 2.50 2.	Totalsiz es
	6×033	$50+50$	2.25	
	6×028	110	204	
	6x029	220	1.02	
	6x030	240	0.93	
300 va	7x013	15+15	10.00	
$110 \times 50 \mathrm{~mm}$	7x014	18+18	833	
26 kg	7×015	$22 \cdot 22$	5.82	
$\begin{aligned} & \text { Requatation } \\ & 6 \% \\ & \hline \end{aligned}$	7×016	25+25	500	
	7×017	30+30		
	7×018	35+35	428	18
	7×026 7×025 7	$40+40$ $45+45$	3.75 3.33 3	
	7x033	$50+50$	3.00	
	7×028	110	2.72	
	7×029	220	${ }^{1} 136$	
	7 7 030	240	125	
500 Va	8×016	$25+25$	1000	
$140 \times 60 \mathrm{~mm}$	8×017	$30+30$	833	435
${ }^{4} \mathrm{Kg}$	8×018	$35 \cdot 35$ $40+40$	714	13.0
$\begin{aligned} & \text { Regulation } \\ & 4 \% \end{aligned}$	8×026 8×025	$40+40$ $45+45$	6.25 555 5	- Dotitis
	8x033	40+40 50	5 500	-uatic so
	8×042	$55+55$	454	10tal E18 26
	8×028	110 200	454 207 20	
	8×029 8×030	220 240	2 2 2 08	
625 va	9×017	$30+30$	10.41	
$140 \times 75 \mathrm{~mm}$	9×018	$35+35$	892	
Regufation ${ }_{\text {a }}$	9×026	$40+40$	781	10.13
	990225	$45+45$ $50+50$		- Dider so
	9×033 9×042	$50+50$ $55+55$	662 568 568	- watcz 79
	9×028	110	568	
	98029	220	${ }_{2}^{284}$	
	9×030	240	260	

IMPORTANT: Regulation -All vallages quoted âre FULL LOAO. Please add regulation tigure to secondary voltage to obtrin off load vollage.
The benefits of ILP toroidal transformers
ILP toroidal transtormers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insert " 0 " in place of " X " in type number.
For 220 V primary (Europe) insert " 1 " in place of " X " in type number.
For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these products. or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Also available at Electrovalue, Maplin and Technomatic.

Please send
Total purchase price
1 enclose Cheque \square
Postal Orders
$\mathrm{s} \square$
Int. Money Order
Debit my Access/Barclaycard No.
Name
Address

Signature
Post to: ILP Electronics Ltd, Freepost|4 Graham Bell House, Roper Ciose Canterbury CT2 7EP. Kent. England.
Telephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780
(a division of ILP Electronics LId)

5 V to 25 V Switched Mode PSU For EPROM Blowing

C.J. Jay, Bristol

The circuit shows the application of a Fairchild 78540 switched mode power supply chip used to generate a 25 V or 5 V (binary selectable) V_{pp} input to a 2716 type EPROM. The supply was designed to be quite small and compact so that it could fit onto a single card EPROM programmer. All the necessary power input requirements were satisfied by a single 5 V V_{cc} input; this circuit will therefore eliminate the need for a transformer derived 25 V supply and the additional supply distribution on an already overcrowded microcomputer backplane.

The 78540 is designed into a 'step up' circuit configuration. The output is derived from pin 1 of the IC, the cathode of the internal charge pump diode D1, to a reservoir capacitor C3. When the internal transistor Q1 is turned on, current flows through inductor $\mathrm{L1}$ causing energy to be stored in the magnetic flux around the windings; the charge pump diode is reversed biased when Q1 is conducting. When Q1 turns off the magnetic flux collapses, inducing a positive voltage at node A. If this node voltage exceeds the voltage on the positive plate of capacitor C3, D1 will conduct and the capacitor will charge to a more positive potential. To regulate the output voltage it is necessary to control the switching of Q1. This is achieved by tapping Vout through a potential divider of R1 and PR1 to pin 10 of the 78540 . This negative feedback controls the on/off times (mark/space), and the frequency at which Q1 switches. Q1 is driven from an internal voltagecontrolled oscillator, which is in turn controlled by the negative feedback derived from Vour.

Q3 has been included in the potential divider to select the amount of feedback required to provide outputs of 25 or 5 V . When Q3 is turned on the feedback is reduced,

so $V_{\text {our }}$ will rise to +25 V . When off, feedback is increased and the output will fall to +5 V . To set the output voltage range it is necessary to adjust the multiturn cermet type trimpot, PR1. This should be done off load because high voltages can be generated if the feedback has been initially set up incorrectly. The CONTROL input may be CPUprogrammed via a TTL, latch or PIA; the two resistors R2 and R3 are chosen to enable Q3 to be driven hard on or hard off by TTL high or low level inputs.

Other components used in the design are a timing capacitor C 1 of $4 n 7$, a peak current limiting resistor of OR22 (R4) and a current limiting resistor R5, 180R. Capacitor C2 was included to aid smoothing of the switch ripple on the 25 V output. L1 is 34 turns of 24 swg wire on an RS RM6 ferrite core.

Regarding the performance, the circuit provides an excellent stabilised output of 25 V for loads requiring up to 75 mA . The +5 V supply does exhibit 500 mV of switching ripple, but superimposed on a mean 5 V DC level this will not violate the static input requirements of the $2716^{\prime} s V_{p p}$ input. The conversion efficiency of the entire supply was about 60%.

Al fuil spec. brand new devices. 2114 (450ns) C1.00, 4116 (200ns) E1.00, 2708 E2.50, 2516 (single raill $\subset \mathbf{2} \mathbf{5 0}$, NEC 2732 £5.00. 2532 f5.50, 6116-3 £4.96 2764 Intel £10.00 p\&p 35p on above devices. ApPLE USERS
Thla new oxciting sllmilne disc drive, width $54^{\prime \prime}$, helght $11^{\prime \prime}$ depth 8^{8}. Fully cased to plug depth 8 . Fully cased to plug straight into Apple in. Win boot up Apple dos 3.2 and 3.3 automorted oxclusively by us at an introductory price of introductory price
${ }+\mathrm{VAT}$. Controller $}$ PCB to plug straight into your Apple $\mathrm{E} 48+$ VAT. P\&P on Drive E 2.50 . PGP on Controller PCB 75p. Full descriptive leaflet available with SAE. Dealer enquiries welcome. SELF-CONTAINED battery powered digital recorders. Complete with data entry keyboard with 10 diait LED disolav - plus modem interface and charger Some data £25 per system. Sorry, catiers only.
ZETTLER low profile PCB relay $30 \mathrm{~mm} \times 36 \mathrm{~mm} 4.8 / 6.9 \mathrm{v}$ d.c $2 / 2.5 \mathrm{amps}$ a.c. contacts. $85 \mathrm{p} p / \mathrm{p}$ 35p. D TYPE CONNECTORS 9 Way Socket (solder) 75p 15 Way wirewrap plug $£ 1.00$ 37 Way Plug (solderl $£ 1.80$ 37 Way Socket Insulation Piercing f3.E0
37 Way Socket (solder) $£ 1.80$ 25 Way Plug (solder) $\mathbf{£ 1 . 8 5}$ 25 Way Socket (solder) $£ 1.85$ 25 Way Plug (insulation piercing) $\mathbf{5 2 . 6 5}$
25 Way Socket Insulation piercingl $\mathbf{2 2 . 6 5}$
P/Pay Plug (solder) t2.00 P/P on above 35p
37 Way (Plastic) $£ 1.00,50$ Way (Plastic) $£ 1.20,25$ Way (Plastic) Prastic) 25 Way (Metal) $£ 1.25$, 25 Way (Metal) ITT open $£ 1.00,15 \mathrm{Way}$ (Plastic) 60p. 15 Way (Metal) 95p
P/P on above 35p

SUPERSTALE B2

 LB ELECTRONICS

 LB ELECTRONICS

 DISPLAYS

 DISPLAYS
 SUPERSAVERI

HP 5082/74144 digit DIL display full spec $\mathbf{£ 1 . 5 0}$ each, p\&p 35 p. arge quantities POA.
LED 3 Digit DIL 55p, p\& $\mathbf{4 5 p}$ p. HP5082/7650.$^{\prime \prime}$ right decima point, high brightness, only 65p 12 for $\mathbf{£ 6 . 5 0}$, pfp 35 p

SUPERSAVER 1

DIL header Plugs (No covers) 14 way $18 p, 16$ way $25 \mathrm{p}, 24$ way $95 p$ (all gold plated) p/p 35p. Ansley Header plugs. 14 Wa 75p. 16 Way 95p, 24 Way f1.50. (Insulation piercing type) p/p 35p. Anslay IIO Header plugs PCB Mounting . 1 in 26 Way straight 65p. 40 Way r/a £1 pip 35p.

SUPERSAVER 2

BUZZ PLUG
13 amp plug fitted with buzzer to indicate power cut. Brand new, | less battery, $\mathbf{E 2 . 5 0 ~ p / p 7 5 p}$

SUPERSAVER 3
7805, 5 volt, 1.5 amp voltage regulators, full spec. 75p p\&p 15p SUPERSAVER 5
3M 26 way insulation piercing sockets $£ 1.40 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$.

SUPERSAVER 6

26 way 10C Socket (ribbon mounting) £1.40. 40 way £1.00; 20 way, 75 p .16 way 55 p.
SUPERSAVER 7
Stud mounted rectifiers, type 40 HF 1001250 volts, 40 amp, 4 for f2.50 p/p 35p

SUPERSAVER 8
S116-2 (100nS) f6.00 p\&p 35p SUPERSAVER 9
Tangerine Microtan 65 mini motherbord 5 slot Supplied without sockets $\mathbf{f 9 . 5 0}$ inc data. P\&P 50p £4.50, p/p 50p (6502 based, 1 K on board).

PAPST MINI-FAN $31 /{ }^{\prime \prime} \times 3 \%{ }^{\prime \prime} \times$ $1.5^{\prime \prime}$ deep. 220 V 50 Hz . Brand

SUPERSAVER 12
$\left\{\begin{array}{l}\text { SUPERSAVER } 12 \\ 2.5 \mathrm{~mm} \text { power plug and } 2 \text { metres } \\ \text { of cable. Suitable for Acorn Atom, }\end{array}\right.$ ZX81 etc. Only $£ 1.00$ per $10 \mathrm{p} / \mathrm{p}$ 25 p . Trade enquiries welcome.

SUPERSAVER 14
BOX FANS $115 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$. $120 \mathrm{~mm} \times 120 \mathrm{~mm}$. New. $\mathbf{E 4 . 5 0}$. 250V f6 50 PEP f1 00

SUPERSAVER 15
$5 \mathrm{~K} 3 / 4^{\prime \prime}$ multiturn trimpots, PCB mounting, per box of $14 \mathbf{~} \mathbf{2} .50$. p\&p 35p.
OPTRON OPTO SLOTTED SWITCH (TyPE OPB-814) E1 p\&p 35p. SUPERSAVER 17
VU METER $48 \mathrm{~mm} \times 50 \mathrm{~mm}$ approx. overall size. Face size prox. overall size. Face size new. E1.15 p\&p 30p (Sent at purchaser's risk).

SUPERSAVER 18 SALE PCB AMP (LM380). Unused. $65 \mathrm{~mm} \times 95 \mathrm{~mm}$ approx. $9-12 \mathrm{v}$ DC. 85p p4p 35p.

SUPERSAVER 19
10 DIGIT (Red). LED display. (.122in. digit siza). With built-in driver chid and built-in lens magnifier. Data sheet supplied. Brand new, $£ 1.50$ p $4 p$ 35p.

SUPERSAVER 20
41⁄2in. JUMPER LEAD. 16 DIL header to 16 DIL header. $95 p$ p\&p 30p.
SUPERSAVER 21
8251 £3.00 ea, 8253 £6.00 ea, 8224 $8251 £ 3.00$ ea, $8253 £ 6.00$ ea, 8224
$£ 2.00$ ea, AY $/ 5 / 1013 £ 2.25 \mathrm{p} / \mathrm{p}$ 35p.

SUPERSAVER 22
1/b reel of solder 18 SWG 64/36 alloy $\mathbf{6 5} .5022$ SWG 60/40 $\mathbf{f 6 . 5 0}$ ptp 90p
A TERRIFIC GIVEAWAY. MC 1489 RS232 RECEIVER. Brand new 46 p each. 10 for $£ 3.50$. Large iquantities p.o.a. pfp 30p.

SUPERSAVER 23

 64 Way DIN 41612 edge connectors to fit Microtan stu. plug or socket

$$
\text { SUPERSAVER } 24
$$ Singer Error RAte Analyzer model TE 950 RS 2329600 Baud Brand new $\mathbf{f 1 0 0} \mathrm{p} \mathrm{\& p}$ at cost

MICRO REVOLUTION

 The Now Z8 Processor, Complete PCB and perta to produce this new CBU, built in tiny Basic and 4K Ram. RS232C output plus User Ports. Only $4.5^{\prime \prime} \times 4.5^{\prime \prime}$ E85 + VAT. Further details SAE PIP E2.00. Motherboard pius Eprom Programmer to follow shortly.
ROUND TURNED PINS AUGATIC SOCKETS 20 DIL 38p 24 DIL 50p 18 DIL 25p 40 DIL 95p

WE STOCK a vast range of TTL, CMOS, some 74LS. MINIATURE OGGLES, etc.
PSUs. We have a large stock of power supplies at very realistic prices (callers).

SUPERSAVER 25

KEYBOARD Touch sensitive (capacitant) Alpha numeric $6 \frac{1}{2}{ }^{\prime}$ $\times 9^{*}$ brand new, believed to be ASC coded. No data $\mathbf{E 7 . 9 5} \mathrm{p}$ \&p $65 p$
NEW LINES
UECL Edge connector 1 " 75 Way gold plated (wire wrap) $£ 1.65$ each p/p 35p.
REG PCB (less components), 5 V 1 amp, 12V 1 amp and heatsink $(60 \mathrm{~mm} \times 90 \mathrm{~mm})$. Brand new, f1.00. Heatsink only, 55p. P/P 35p.
NEC FIP4B13 4 digit glass display Igreen with centre colons and plus and minus sign), only £1.35. P/P 30p.

TELEPHONE UXBRIDGE 55399
PL259 SOCKET CHASSIS MOUNT. 50p pep 30p.
TRANSFORMERS 012, 0241 amp £2.50, P\&P 50p.
TLL SALE 7410 9p. 7413 18p; 7416 18o. 7490 28p. 74155 45p. 74174 60p, $74181 \quad 74285$ f2.25. PGP 35p.
WHY PAY POUNDS? - Just arrived Amphenol 36-way plug and socket (used) to fit all your printer. Only E2.75 per pair. P/P 35p.
Terms cash with order (official orders welcomed from colleges, etc). All enquiries s.a.e. please. All prices inclusive of VAT. unless otherwise stated Postage as shown per item.

Reject flashing LEDs (red) some flash, some stay ome don't wor 25 for EREE 10 Parcels $£ 9.00$

PLEASE DO NOT ORDER GOODS FROM OLD ADVERTS PHONE BEFORE ORDERING SURPLUS STOCKS PURCHASED
FOR CASH

LB ELECTRONICS
11 HERCIES ROAD ILLINGDON, MIDDLESEX
UB10 9LS, ENGLAND
All enquiries s.a.e. please
Telephone answering machine service out of business hours. New retail premises, now open Mon, Tues, Thurs. Fri, and Sat, 9.30-6.00 Lunch 1-2.15 weekdays. Closed all day Wednesday. We are situated just off the A40 opposite Arewer.
ALL PRICES INCLUSIVE OF VAT
UXBRIDGE 53399

Guess who builds this great

Logic Probe...YOU! ${ }_{\text {ton }}^{\text {Lin }} \mathbf{E 1 2 . 5 0}$
 With this easy-to-build Logic Probe Kit from GSC and just a

 few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from GSC.

GLOBAL SPECIALTIES CORPORATION
 GLOBAL SPECIALITIES CORPORATION. DEPT $9 Z$
 Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex.

G.S.C. (UK) Limited, Dept. 9Z

Unit 1. Shire Hill Industrial Estate, Saffron Walden, Essex. CB 11 3AO Telephone: Saffron Walden (0799) 21682 Telex 817477

Name
Address

Inc P8P and 15\% VAT
 LPK-1 £15.52

I enclose cheque/ FREE Catalogue

Phone your order with Access. Barclaycard
or American Express
Card No.
e
\qquad \square
-
\square tick box []

Bigger and Better for 1982

the colourful Wilmslow Audio brochure -the definitive loudspeaker catalogue!
Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
\star Lowest prices - Largest stocks $\star ~$
\star Expert staff - Sound advice \star
\star Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)

* Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - orphone with your credit card number)

* Access - Visa - American Express accepted *
also HiFi Markets Budget Card.

35/39 Church Street, Wilmslow, Cheshire SK9 1AS

ain Lightning service on telephoned credit card orders
 Lightning service on telephoned credit card orders!

TURNTABLE KITS FROM
INPUT DESIGN LTD
THE LEADING MANUFACTURERS OF TURNTABLES IN KIT FORM

KITDECK 2 NORMAL PRICE $\mathbf{f 1 1 5 . 0 0}$

SPECIAL CHRISTMAS OFFER TO READERS OF ETI

inc. VAT
($\mathrm{P}+\mathrm{P} £ 3.00$)

HOME CONSTRUCTOR TURNTABLE KIT NOW £49.50 ($\mathbf{P}+\mathrm{P} £ 1.95$)

5 YEAR GUARANTEE

MONEY BACK IF NOT SATISFIED
Pay by Barclaycard, Access or CWO. Export: Write for Pro-forma
PALACE STREET,
Telephone:
BIGGLESWADE,
0767316655
BEDS. SG18 8DP
Telex: 826671

SIGNAL LINE TESTER

If you're a PA person, here's an incredibly simple device to prevent embarrassment when all you can give them is the sound of silence. Design by Vivian Capel.

This project came about as a result of a very unfortunate incident. The author was in charge of a large public-address system that had been temporarily installed to cater for a public meeting with an audience of several thousand. There were spare microphones, spare inputs on the mixer, and to make quite sure, a spare mixer under the bench. Very little really could go disastrously wrong - but it did! Part way through the main speech everything went dead. Calm and reasoned diagnosis was employed (it wasn't really, but I couldn't admit to blind panic). Finally, after what seemed an age of silence from the speaker and murmerings from the audience, the fault was revealed as a dead short across the audio cable between mixer and amplifier rack.

Thus the fault-warning unit here described was conceived, embarrassment being the mother of invention! The idea was to constantly monitor the condition of a signal cable; if it should go either short-circuit or open-circuit, an appropriate LED would immediately light up to indicate what had happened.

The device could be used not only for public address applications, but any situation where a vulnerable signal cable needs protection by constant monitoring. A security intercom or telephone link, for example, could be monitored to reveal a fault or tampering as soon as it occurred, and avoid the need for frequent testing.

Requirements

To utilise the device successfully, the normal signal for which the cable is used must be AC. Furthermore there must be a DC path or load resistor at the far end of the cable to pass the small open-circuit mode sensing current. The input to the amplifiers or other equipment at the far end must be AC-coupled otherwise the input stages could be affected by the DC monitoring potentials. As a rule,
these conditions are met in most slave amplifiers by the input gain control and following coupling capacitor. Should the capacitor come first, a load resistor must be added across the input socket.

Fig. 1 Component overlay for the line checker. The line below PR1 may be replaced by a resistor - see text.

PARTS LIST

Resistors (all ${ }_{\text {d }} \mathbf{W}, 5 \%$)	
R1	100k
R2	10k
Potentiometer	
PR1	10k miniature horizontal preset
Capacitor	Ou 25 V axial electrolytic

Semiconductors
Q1, 2 BC108
LED1, 23 mm red LED

Miscellaneous

PCB (see Buylines); case and sockets (if built separate from audio equipment).

BUYLINES

[^6]In considering the design, several features were deemed desirable. First, the value of the load terminating the line should not be critical. While false indications can be obtained under extreme load conditions with the circuit eventually evolved, there is a wide latitude in load values and no false alarms wil be obtained within the specified limits. The nominal load for which the circuit was designed is 10 k , but variations up to 20 k and down to under 1 k 0 can be tolerated. This will accommodate most applications, but other values could be obtained by changing the values of the three resistors from those given.

Second, the circuit must take very little current as it is active for the whole time the mixer is switched on. A current of 1 mA was stipulated as the maximum allowable in the quiescent mode. This meant that few active components could be used, and that they had to be non-conducting until a fault condition occurred.

Third, the unit should be as simple as possible; far too many electronic circuits at present are needlessly complicated. In this case simplicity was pursued not merely for its own sake but as a fundamental necessity for fault monitoring equipment. It has to have a high degree of reliability if it is to be depended upon, and every extra component is one more that could itself break down.

Construction

The original circuit was built in to the mixer and powered from the mixer batteries, but construction and housing is by no means critical and almost any convenient form can be used. Input and output sockets can be standard jacks, Cannon XLR plugs or any suitable terminations appropriate for the equipment involved.

Before applying the battery voltage make sure that the variable preset PR1 is fully advanced so that maximum resistance is in circuit. If it should be fully the other way

HOW IT WORKS

The circult dlagram is shown in Fig. 1: we will consider the operation of the open-circuit Indicator first. The emitter of Q1 ls taken to the junction of R2 and PR1 which have values of 10 k and 1 kO respectively, so the emitter is at a potentlal of one-tenth of the supply. The base of Q1 ls connected to the junction of R1 (100k) and the load, which is nominally 10k; hence lt too ls at one-tenth of the supply voltage. Therefore there is no forward blas on $Q 1$ as the base and emitter are at about the same potential, so no current passes through it and the LED in its collector circult.

If the load now goes open circult, the positive voltage on Q1 base rises since it is no longer tled down, so Q1 becomes
forward biased, and curreñt flows through LED1, illuminating It. Current limiting is provided by PR1 in the emitter circuit, which safeguards LED1.

The short clrcuit detector is built round Q2. The base of thls transistor is taken to the R2-PR1 junction, and Is at one-tenth of the supply; Q2 emitter is connected to the Junction of R1 and the load, and so it too has base and emitter at the same potential and is cut off. Should the load become short circuited, the emitter voltage drops to zero which means there is a poiltive blas on the base. Therefore Q2 conducts and LED2 lights to Indicate a short. Although there is no current-limiting resistor in series with LED2, the bias on the transistor can
be adjusted by PR1 to glve the correct current and desired illumination.

Note that neither fault condition affects the warning clrcult of the other. If the load is short-clrculted, Q1 base drops to $0 \mathbf{V}$ while its emitter is still positive, so it is driven even further Into cut-off. Similarly, If the load becomes open-circuit, the emitter voltage of Q2 rises above that of ita base.

The capacitor C1 blocks DC from the sending equipment, should there be any, from upsetting the operation of the warning circuits and vice versa. It also prevents any DC path in the output of the sending device from shunting the load and rendering the open-circult test ineffective.

Fig. 2 Circuit diagram of the signal line tester.
there will be no limiting resistance for LED1 and it could be destroyed. If preferred, the value can be split between a 500R preset and 560R fixed resistor for the sake of safety. Once set, the preset should not require re-adjustment, and so can be sealed with a spot of paint.

Connect a 10 k load resistor across the output socket. If one is already fitted across a switched jack socket, this will not be necessary. On applying the supply, both LEDs should remain off. Disconnect the load and LED1 should light up. Now short-circuit the output; LED1 should go out and LED2 illuminate.

It will be found that one LED is brighter than the other due to differences in the h_{fe} of the transistors and tolerances of the resistors. Adjusting PR1 will produce equal brightness, so repeat the open-circuit and short-circuit tests and adjust PR1 each time until the desired illumination is achieved. Decreasing the value darkens LED2 and brightens LED1 and vice-versa.

Check that both LEDs are off with loads of 20k and 1 kO . If LED1 glimmers at 20 k increase the value of R1 to 120 k or even more if required. This may be necessary if Q1 has an exceptionally high h_{fe}.

CAPACITORS

 180, 220, 270, 330, 390, 470, 560, 680, 820pF; 68, 82, 100, 120, 150, $2 n 7,3 n 3,3 n 9,4 n 713 p, 5 n 8,6 n 8,8 n 210 p$ CERAMIC Very small, 1.8, 2.2, 2.7, atc. up to in 8p each. 1n5, 2 n 2 , $3 n 3,4 n 7,6 n 8$ Ep; $10 \mathrm{n}, 22 \mathrm{ncp} 33 \mathrm{n}, 47 \mathrm{n} 7 \mathrm{p} ; 100 \mathrm{n} \mathrm{Ep}$.
 30n, 47n 7p. 282n, 1000 9p; 120n, 160n 11pi 180n, 220n 12p; 270n, 330n
 specing 2,2 35p
depth otocka. ELECTMOLYTICS NON-poler (for LS X-overs) BOV peat $2 \mu \mathrm{~F}$ 24p; 4 4 F
 6.8/40, 10/25, 22/10, 100: 10/40, 22/25, 47/10 11p; $47 / 25$ 125; $100 / 10$
 100/10, 19p;470/40; 1000/16 27p; $1000 / 26 \mathrm{~F} ; \mathrm{p} ; 1000 / 40$, 2200/16 44p; 1000/63 7tp; 2200/40,4700/18 73p.
PLUCGAULE AIEMEN8 single ended
1/63, 2.2/63, 4.7/E3 10p; 10/83, 22/63 8p; 22/40, 47/18 10p; 47/40 12p;
 220/16, 220/25 13p; 470/6.315p; 470/10 18p; 470/18 18
$470 / 40$ 28p; 1000/10 22p; 1000/16 23p; $1000 / 25$ 40p.
LARGE CANS: SIEMENS
 TANTALUM
 15p;22/16. 22/25, 33/10. 47/6.3, 100/3 30 p
LOW LEAKAGE All single ended $0.1 / 50,0.22 / 50,0.47 / 60,4.7 / 3511 \mathrm{p} ; 1 / 60,2.2 / 60,4.7 / 5011 \mathrm{p} ; 10 / 16$,
$22 / 611 \mathrm{p} ; 10 / 35,22 / 10,22 / 16,22 / 35,47 / 6,47 / 1012 \mathrm{p} ; 47 / 18,100 / 6$ $12 p$
catalooue 70p post free inc. 70 p Refund voucher
ORDEAS CAN BE
ACCEPTEO BY MAIL
ACCEPTEO BY MA
OR TELEPHONE
Please mantion ETI when ordaring or writing

- VAT - additional at 15% on all UK orders
- VAT - additional at 15% on an UK orders
FREE POSTAGE and packing on UK CWO orders fb .76 inc. VAT and upwards. Under add 40 p inc. VAT
Discounts do not orders over $£ 23.00-5 \%$, over $557.50-10 \%$ Discounts do not apply to 'Net' frems ishown by N after the price, or to
orders paid for by credit card)

ELECTROVALUE LTD
2sE St Jude's Roed, Enclofied Grwen, Eghem, Surrey TWza OHE
Telaphone Eghem (STD 074; London 87 3sion; Tlox 20447.
Northem Branch (personal thoppers only)
Computing at:
700 Burnage Lane, Manchester (061-431 4866)

uitar Effects Unit
Click Eliminator
JUNE 79Accentuated Beat Metronome
FEBRUARY 80
Tuning Fork
MARCH 80Signal Tracer
AUGUST 80
AUGUST
CMOS Logic Tester
Capacitance Meter
Ultrasonic Burglar Alarm
OCTOBER 80
Cassette Interface
Fuzz/Sustain Box
NOVEMBER 80
Touch Buzzer
Light Switch
Metronome
2W Power Amp
RIAA Preamplifier
Audio Test Oscillator
DECEMBER 80Musical Doorbell
Bench Amplifier
Four Input Mixer
JANUARY 81LED Tacho Multi-Option Siren
Universal Timer
FEBRUARY 81
(four boards)
Pulse Cenerator
MARCH 81Engineer's Stethoscope APRIL 81Musical Box
Drum Machine (two boards)
Guitar Note Expander JUNE 81
\square Mini-drill Speed Controller
Antenna Extender

	\square LED Jewellery: Cross
£2.64	$\square \quad$ Spiral(t
£6.64	\square Star(tw
	\square Waa-phase
£3.60	JULY 80
	\square System A A-MM/A
	\square System A A-PR
E2.64	\square Smart Battery Charger

£2.27

	\square System A Power Amp(A-PA)
£2.64	Flash Sequencer
£2.93	\square Hand-clap Synthesiser
E2.87	
	\square Heartbeat Monitor
	Watchdog Home Security (two boards)
	E2.93

E2.93
E3.27
£1.93
$£ 1.93$
£1.93
E1.93
£1.93
E3.13
$£ 2.80$
$E 2.53$

$\mathbf{£ 4 . 1 3}$
$\mathbf{E 3 . 2 0}$
£2.64
£5.60
$£ 3.20$
SEPTEMBER 81
Mains Audio Link(three boards)
Laboratory PSU
OCTOBER 81
Enlarger Timer
Sound Bender
Thermal Alarm
Micropower Pendulum
NOVEMBER 81
Voice-Over Unit
Car Alarm
Phone Bell Shifter DECEMBER 81 Alcohometer(two boards)
Bodywork Checker Component Tester

JANUARY 82

Parking Meter Timer Infant Guard Guitar Tuner(two boards) FEBRUARY 82

E2.93
E3.20

Ripple Monitor PestMonitor I Ching Computer (two boards) Moving-magnet stage Moving-coil stage
$\mathbf{E 1 . 4 7}$
$\mathbf{E 2 . 6 4}$
$\mathbf{E 1 . 6 5}$

APRIL 82
Contrast Meter
£2.83
Sound Effects board
E2.40
High Impedance Probe
Guitar Practice Amp
Accurate Voltage Monitor
£1.97
Accurate Voltage Monitor $\quad \mathbf{E 2 . 0 5}$

£2.65	MAY 82	
E5.17	\square DVMeg	£2.92
E1.97	\square Analogue PWM	E3.37
	\square Slot Car Controller	E4.96
	\square Wattmiser	£4.53
	\square Sound Effects Board	E2.40

E4.77	June 82
£3.44	\square Ion Generator (two boards)
E3.97	-

$\mathbf{E 3 . 4 4} \square$ Ion Generator (two boards)	E66.22
$\mathbf{E 3 . 9 7} \square$ Ion 'Blinker'	$\mathbf{£ 2 . 6 0}$

	\square MOSFET Amp Modu	£699
	\square Logic Lock	£3.41

Digital PWM
f3.84

Optical Sensor
Stylus Timer $£ 198$
£7.35
E4.53
Oscilloscope (four boards)
$\mathfrak{f} 298$
JULY 82
\square Mike Switching Unit
£2.04

E3.40

23.65
$\mathbf{E 2 . 6 3}$

E2.63
E2.21
$£ 3.97$
£2.81 \square Playmate (three boards)
$£ 7.92$
£2.96
£5.32
£1.97

E2.37
 £1.80 £5.97

TV Bargraph (main board)
£4.85
TV Bargraph (channel card) $£ 2.44$
Hotwire
£2.99
Bridging Adaptor $£ 2.74$ AUGUST 82

Kitchen Scales $£ 2.70$
Sound Track $£ 4.38$
SEPTEMBER 82
Auto Volume Control
£2.07
Dual Logic Probe £2.31
OCTOBER 82
£2.08 \square Spectrum Analyst (3 boards)
NOL
£16.29
E1.85
E5.31
E3.80
$£ 3.80$

DECEMBER 82
\square ELCB
£6.09Servo Interface (two boards)
Spectracolumn
\square Signal Line Tester£2.27

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus

Specialist Publications Ltd, 145 Charing Cross
Road, London WC2H 0EE. Make cheques payable to ETI PCB Service. Payment in sterling only please.
Prices subject to change without notice.
$\begin{array}{lr}\text { Total for boards } & £ \ldots \ldots \ldots \\ \text { Add } 45 p p \& p & 0.45 \\ \text { Total enclosed } & £ \ldots \ldots . .\end{array}$
Total enclosed

Signed.
\qquad
Address.
Signed...
-2

SC110A FULLY PORTABLE OSCILLOSCOPE

The new THANDAR SC110A represents a break through in Oscilloscope development. The SC110A is only $2^{\prime \prime}$ thick and weighs under 2 lbs yet it retains the standard features of a bench oscilloscope

fULL.SIZED PERFORMANCE

- 10MHz band width
- 10 mV per div. sensitivity
- Full trigger facilities are provided including bright line and auto, with T.V. line and frame filtering
- RUNS ON ORDINARY HP11 (four)
batteries or rechargeables
- Basic price - E170 UK Post free Oprional extras
AC Adaptor $£ 5.69$; Rechargeable batteries £8.63; X1 Probe $\mathrm{f8.05}$; X10 Probe $£ 9.20$; X1/X10 Switched Probe f10.90; Carry Case £8.86.

PFM200A FREQUENCY

METER

- Pocket size - 8-Digit LED display Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$ - Resolution 0.1 Hz - Sensitivity typically 10 mV rms - Timebase accuracy 2ppm - Battery life 10 hours e Frequency: 2 ranges, 4 gate times Price f67.50 UK Post free Optionel extres - AC Adaptor $£ 5.69$

LARGE S.A.E. Brings details of: Oscilloscope, Frequency Meters, Signal Generators, Function Generators, Pulse Generators, Analogue and Digital Multimeters, Digital Thermometer, C.R.T. Tester, Logic Analyser etc

All prices include VAT. Official orders welcome. Mail order only, or callers by prior appointment. Barclaycard/Access welcome. Cash/cheque, etc., with order Government and Educational Establishments official orders welcome
B.K. ELECTRONICS

37 Whitchousa Meedows, Enetwood, Lelph-o
Tel: Bouthend 527672

Electronics
1a Dews Road, Salisbury, Wilts Tel: (0722) 21262 World

CALC PANEL???

interesting panel $180 \times 125 \mathrm{~mm}$ with 15 digit gas discharge display, 7905 , 7805 (7) both on heatsinks'; 3300 uF ' $40 \mathrm{~V}, 23 \times 1$ N4004 40 DIL skt, 3×20 SIL skts, $4 \times 18 \mathrm{DIL}$ skts + R's, C's etc. All components are mounted on etc. Alc components are mounted been soldered inl! ljust a blob here and soider. Special low price $£ \mathbf{£}, 50$

16 DITT DISPLAYS SOPI! Burroughs Panaplex 7-seg gas discharge type, 0.3 in character height. Only 50p as we have no data. ALSO: as above but 12 digit 40p ALSO: 9 digit 10 mm high 40p
3 each type, only E 3.00 3 each type, only $\mathbf{E 3 . 0}$
COMPONENT PACKS
E1 Approx 300 resistors, al full length lead, carbon/carbon film mostly, few Only $£ 1.50$
E2 Approx 200 disc ceramic capacitors Big range of values, small size $4-12 \mathrm{~mm}$ dia. $\mathbf{5 0 - 5 0 0} \mathrm{V}$ working $\mathbf{£ 1 . 5 0}$
E3 Approx 1000 components, mostly preformed resistors, $\frac{1}{2}$ and $\frac{1}{2} \mathbf{W} \mathbf{~} 1.50$

Come and visit our shop - Full range of new and surplus components + CB goodies
Post 50p. Prices include VAT. Free illustrated list sent with overy order, or send SAE.

SLIDE SWITCHES Multiposition as used on calcs, etc. 5 different types ranging from single pole 5 way, to one with 3 switches on one carrier. Pack of 10 switches (2 sach type) for just $£ \mathbf{£ 2 0}$

BF257 PANEL

$10 \times$ BF257 high voltage, $11 \times$ BC266A + R's and C's and diodes 40 DIL skts) on PCB $180 \times 175 \mathrm{~mm}$. All this for just $\mathbf{E 1 . 0 0}$

CMOS/74 PANEL

Neat PCB $215 \times 70 \mathrm{~mm}$ with 21 1N4 148, 16 TO18 transistors, 741, R's and C's - and best of all, 2×4502, $4011,2 \times 74366$ all in sockets. Also ONLY $\mathbf{E} 2.00$

ODDS AND ENDS

20 way SIL skt - 20 connectors on 0.1 pitch. Can be cut to any size. Pack of $10 € 2.00$ (RS equiv price $£ 4.96$) 40 way DIL skt by TI. Limited qty. 5 fo £1.00
Heatsink - T05 18 mm dia $\times 11 \mathrm{~mm}$ high. Pack of 10 50p; 100/ 4.30 ; 1 k $E 39$ 27 way cable 3 m long with 28 DIL header plug one end and 0.1 pitch 30 way (4 pins missing) edge connecto other end. Only 75 p ribbon cable connector (like RS 468-153). Special low price 60p each; 4 for $\mathbf{~} \mathbf{2} .00$ uPD566H 2 stage AVD amp $£ \mathbf{2} .00$

SUBSCRIPTION ORDER FORM
Cut out and SEND TO : Electronics Today International, 513, LONDON ROAD, THORNTON HEATH, SURREY, ENGLAND.
Please commence my personal subscription to Electronics Today International with the

SUBSCRIPTION

RATES
(tick \square as appropriate)
f13.15 for 12 issues UK
f 16.95 for 12 issues overseas surface f 36.95 for 12 issues Air Mail

1 am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for
(made payable to A.S.P. Ltd) Debit my Access/Barclaycard* (*delete as necessary)

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrss/Miss)
Address

Signature

Date

SUBSCRIPTIONS

We bring you the widest ranging and most informative articles you can buy. We publish the most original and ingenious projects anywhere. The only thing we can't do is control the cost of living. Subscribe now and laugh at inflation for the next 12 months.

OPEN FRAME MONITORS AVAILABLE FOR OEM'S The 'PRINCE'of Monitors

offers better Monitoring.

24 MHz Bandwidth-ensures a clear crisp display. Available with P4 White P31 Green AND L1 ORANGE

Scen: 625 IInes $/ 50 \mathrm{~Hz}$. Deflection: 110°. Active raster: $240 \times 172 \mathrm{~mm}$. Bandwldth (3 dB): $10 \mathrm{~Hz}-24 \mathrm{MHz}$ (at 3 dB points). Character display: 80 characters $\times 24$ llnes. Horlzontal frequency: $15625 \mathrm{~Hz} \pm 0.5 \mathrm{KHz}$.
Vertlcal frequency: 50 Hz . Horlzontal linearity: $\pm 3 \%$. Vertical linearlty: $\pm 2 \%$. Geomatrle distortion: $\pm 1.5 \%$. EHT (at zero beam current): $13 \mathrm{kV} \pm 0.5 \mathrm{kV}$. Power drain: 30 Watt approx. Voltage supply: 110 V A.C. $50 \mathrm{~Hz} / 220 \mathrm{~V}$ A.C. $-50 \mathrm{~Hz} / 240 \mathrm{~V}$ A.C. $50 \mathrm{~Hz} /$ $\pm 10 \%$ upon request. Video Input: $2 \times \mathrm{BNC}$ - or CINCH - or PL 259. (composite video) negative sync. input 0.5-4V p.p. across 75 Ohms. X-Ray radiation: conforms to I.E.C. Spec. No. 65. Overall dimenslons: $320 \times 270 \times 265 \mathrm{~mm}$. Weight. 7 Kg approx. Amblent temperature: $0-45^{\circ}$
OTHER CROFTON PRODUCTS INCLUDE: Computer peripheral equipmant. Frame grsbber. Floppy disk drives, Floppy disks, Computer power supplles, C.C.T.V. monitors, Uncased monitors, Monitor P.C.Bs., Cathode ray tubes. VHF/UHF modulators, Video tlit units, Camera lens. Camera tubes, Printed circult board service.

CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TW1 4AD. Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G
 POWER DIMMMER MMODULES suit your custom channel and faciility requirement - Considerable saving over commercial equipment ['SUPER DISCOUNT8' - All the commercial facilties and more - Compatable special effects Easily installed and wired
SPC - Simple but effective 1000 W cntroller 45.70 SPU - Used in conjunction with RS units for \qquad Coniact our soige Doak and MC - Master dimmer for SPC/RS units..... $\begin{array}{r}12 \\ \hline\end{array}$ S - Remote controlier for SPU/SPC Units. 20.00 Discour - Su EFFECTS ACCESSORIES
MXSL - Four channel sound to light.
MXLS - Four Channel Sequencer 638.90 .523 .70
MXLC-S Four channel sound chaser
..57.20

\section*{LBPA3}

£36.70
Magnetic or ceramic deck All the requirements of a stereo disco preamp on one board, left and right deck mixers/tons
controls $/ \mathrm{misc}$. mixer $/$ tones $/$ mic. auto fade over decks/and P.F.L. The unit can be used with virtually any power amp

AND MORE!

* 4 CHAN SIL AITTO CHASER * 4 CHAN MULTI SOUND CHASER
* 4 CHAN SEQUENCER
* 4 CHAN SOUND CHASER
* fascia panels

Active Crossovers $\mathbf{£ 1 7 . 9 0}$ (supply $£ 7.20$)

Don't hesitate to write or phone for immediare information. AII post except power dimmer (C1.75). Cheques/PO/COD/Access all welcome

Tel: 01-840 6063 (Mon to Fri 9 to 5)
18 B ELECTRONIC 34 Oakwood Ave, Mitcham, Surrey CR2 1A0

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p each BUY SIX PACKS AND GET A SEVENTH FREE

Please add 20p per pack postage
Please allow 7 days delivery.

MN2. 200 ± 81-watt Resistors.
MN3. 100 i 92 watt Resimorrs.
MN5. 100 metal oxide Ressistors. $\% \%, 2 \%$ and
MMS. 12 sastd potentionneters.
MN7. 25 asestd potentionnetars. $\operatorname{skeleton}$ preset Resistors.
MMBe. 50 asstd Electrolytic Capacitors. MNit. 100 asstd Ceramic Capacitors Pite. disc. MNE. 100 asstd Ceramic
MNT0. 100 mixed capacitors. Potyester Monvertyrene, Motallised, Radial and Axial typ MN11. 20 seatd Siver Mica Capecitors. MN12. 8 Tantafum Boad Capacitors /useful values). MN13.
Power tc.
MN14. 40 IN4148 Diodes.
MN18. 20 min . wro-ended Neons.
MN17. 2 12-voh Relays. Ex nearty now equip. MN19. 15 P.C.B. mounting M.E.S. mimpholdeno
MNED. 1 240-110 to 12 -vet 100 ma
MNET. 1 240-1 10 to 24 -volt 100 ma
Transiormer.
MN2Z. 8 2" Led's with clips, 4 red, 2 yellow, 2 green.
MNZ3. 300 asstd screws, nuts, washers, self tappers otc.
MNETS. 80 Assoc. rubber grommets. MN2s. 76mts equipment, wire, asstd colours and sizso.
MN30. $3 \times 2 \mathrm{~mm}$ length, 3 core, mains cabse. MMR2. 15 30pF Beehive trimmers.

MN36. 10 asstd switchas, toggle, side, micro
MN3s. 10 sub-min SP, C/O slide switch MN37. 10 asstd audio connectors. Din phono

MN40. 50 Polystyrene capacitors.
MN46. 35 asstd diodes Zener, rect, signal, swit ching.
MN46. 15 asstd Zener diodes.
MN48. 200 items 4BA asstd length screws, nuts 4 washers.
MN4. 200 items 6BA asstd length screws. nuts $\&$ woshers.
MNED. 3 pieces of veroboard useful sizes, min total 35 sa inch.
MN61. $10 \times 0.2^{\prime \prime}$ red LED.
MN52. $10 \times 0.125^{\circ}$ red LED.
MN53. $20 \times 0.1 \mathrm{mfd} 25 \mathrm{v}$ ceramic disc caps. MNE4. $20 \times 0.1 \mathrm{mfd} 25 \mathrm{v}$ coramic disc caps. MNEF. 10 watt audio amp boand with circuit MN56. 1014 pin low profile IC skt DIL. MN67. $10 \quad 16$ pin low profile IC skt DIL. MNeo. 10 asstd TriL IC's. MN63. 50 mixed polyester caps C280, Siemens MNEA. 5 Press to make min switches. MNE8. 200 asstd veropins, turret tags, PCB

MN69. 4 min push to break switch MN70. PC8 with push SW whth attrective chrome plastic knobs $1 \times 8 \mathrm{C241,1} \mathrm{\times} \mathrm{BC300}$ $2 \times 8 \mathrm{BC} 27$
CMOSS
$4025,200 \mathrm{~mm}$ fuse
hoider +22 resistors, capscitors, diodes etc. MN71. IZN414 RADIO IC.
MN34. 25 min grase reed switch.

See us at Breadboard, Stand 78
CHORDGATE LIMITED
RETAILER SHOPS AT
75 FARRINGDON ROAD, SWINDON, WILTS
Tel. (0793) 33877
21 DEPTFORD BROADWAY, LONDON SE8

ADVENTURES WITH DIGITAL ELECTRONICS

New book by Tom Duncan in the popular 'Adventures' series.
This book of entertaining and instructive projects is designed for hobbyists, and students. It provides a stepping stone to the microprocessor.
The first part deals with the properties of some basic ICs used in digital electronics.
The second part gives details of how to buikd eight devices - shooting gatlery, 2 way traffic lights, electronic adder, computer space invaders game, etc. For each project there is an explanation of 'how it works' and also suggestions for things to try'
No soldering - all circuits built on 2 Bimboard 1 breadboards.
Adventures with Digital Electronics book E3.25. Component pack $\mathbf{f 4 2 . 5 0}$ ref. ETDC All the components needed including 2 breadboards and hexadecimal keyboard Available less breadboards $\mathbf{£ 9 . 9 8}$ ref. ETDF. Both less battery.

MAGENTA ELECTRONICS LTD

EV22, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS
DE14 2ST 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY

ADD 45p P\&P
TO ALL ORDERS
ACCESS and BARCLAYCARD (VISA) ORDERS ACCEPTED BY PHONE OR Post.
SAE ALL ENQUIRIES.

Prices inc. VAT

official orders welcome
OVERSEAS Payment must be in sterling. IRISH REPUBLIC and BFPO - UK ELSEWHERE - Write for quote.

PCB Foil Patterns

PCB FOIL PATTERNS

Greenbank Electronics (Dept. TI2E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG Telephone: 051-645 3391

PRICE HELD ONLY UNTIL DEC 24th
It's true! Specially for Christmas, an incredibly low new price for 'Speechtime' - the first ever easy-to-build speaking clock kit. 'Speechtime's' combination of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own - equally suitable for beginner or expert.
Speechtime also makes a great gift to build for someone else. Look at these 'plus' features:

- Accurate to a minute a year - Adjustable voice pitch
- Pocket size - approx. 5in. $\times 21 / 2 \mathrm{in} . \times 1 \mathrm{in}$.
- Grained stainless-steel case
- Useful in the home or office

Silicon Speech Systems
(A Powertran Subsidiary)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3NM

EASY ORDERING BY TELEPHONE

 - RING ANDOVER (0264) 64455 AND GIVE YOUR ACCESS OR BARCLAYCARD NUMBERELECTRONIC COMPONENTS AND TEST EQUIPMENT 35. HIGH BRIDGE. NEWCASTLE UPON TVNE NE1 1EW TEL: 0632326729

SAFGAN OSCILLOSCOPES- 5 mV /div sensitivity. Choice of Bandwidth $10, \mathrm{MHz}, 15 \mathrm{MHz}, 20 \mathrm{MHz}$. $1 \mathrm{~S} / \mathrm{div}-100 \mathrm{O}$ S/div. Calibrated timebase. Solid trigger with bright line auto, normal and TV. XY facilitv. 2 modulation. Calibration output. Bright and clear display. Portability. - Model DT410-10 MHz M 205.85. Model DT415-15 MHz 217.35 . Model DT420 20 MHz € 28.85 . Send S.A.E. FOR FULL spec.

Thandar tm 354 3 $1 / 2$ Digit led digital pocket multimeter - DC volts 1 mV to 1000 V - AC volts 1 V to 500 V AC rms - DC current 1 Na to 2A - Resistance 1 S to 2 MS - Diode check \bullet Basic accuracy ${ }^{+}$ (0.75% of reading +1 digit) - Battery life typically 2000 hrs - leads inc. - $£ 45.94 \bullet 40 \mathrm{KV}$ Probe $£ 34.95 \bullet$ Universal test lead set $£ 12.95$

KDE5C LCD DIGITAL MULTIMETER

- 31 digit Auto zero - Auto polarity - Full overload protection 10 Meg 9 input impedance - Over range and low battery indication DC volts 200 mV - 1000 V 5 ranges AC volts 200 mV - 700 V 5 ranges - DC current $200 \mu \mathrm{a} 10 \mathrm{~A} 6$ ranges - AC current $200 \mu \mathrm{a}-10 \mathrm{~A} 6$ ranges - Resistance 200 @-200 Meg? - Complete with battery, test leads, spare fuse and carrying case £39.95

THAMDAR SC110 SINBLE TRACE LOW POWDER 2" OSCLLLOSCOPE • Bandwidth DC to 10 Mhz • Sensitivity: 10mV/ div to 50 V /div. - Sweep speeds: 0.1 ar secs $/$ div to 0.5 secs $/$ div Power reauirements 4-10 V DC 4 'C' cells : Size \& weinht $255 \times 150 \times 40 \mathrm{~mm}: 800 \mathrm{gms} \mathrm{f} 171,35$ a truly portable and superb instrument - Carrying case 58.86 - AC Adaptor E 5.69 - Hicad Batt pack $£ 8.63-\times 1$ probe 59.78×10 probe $£ 11.50$ Complete range of Thandar instruments available from stack S.A.E. for CAT. \& prices.

G.S.C. SOLRERLESS BREADBOARDS •Accepts all components with leads up to .033" - Replaceable nickel-silver spring clip contacts. - Combines thus strip with board • Unlimited expansion • $\cdot 3^{\prime \prime}$ and $6^{\prime \prime}$ centre chanels - Three free experimental circuits with every purchase

	Centre	Strip	Strip	Tie	Term	i.c.	
	Channel	Length	Width	Points	Clips	Coty.	Price
EXP-600	15 mm	152mm	61mm	550	110	${ }^{3} 28$ pin	-7.50
EXP-300	8 mm	152 mm	53 mm	550	110	${ }^{8} 14$ pin	68.90
EXP-48	n/a	152 mm	25 mm	160	32	n/a	[2.76
EXP-650	15 mm	91 mm	61 mm	270	54	${ }^{1} 40 \mathrm{pin}$	44.31
EXP-350	8 mm	91 mm	53 mm	270	54	${ }^{3} 14$ pin	6,74
EXP-325	8 mm	48 mm	53 mm	130	26	${ }^{122 p i n}$	f1.80

Please send S.A.E. for catalague listing complete range of G.S.C.
Instruments and 日oards.
SABTRDMICS LCD MULTIMETER MODEL 2033. - DC valts 100 uV 1000 V Accuracy $+5 \%$ - AC volts 100 NV - 1000 V Accuracy $\pm 1 \%$

- DC current 10,NA-2A Accuracy $\ddagger 1 \%$ - AC current 10nA-2A Accuracy
$\pm 1 \%$ - Resistance 112.20 MS Accuracy $\pm 1 \% \bullet \$ 42.27$. Please send 30 p for full Sabtronic catalogue and price list

THK 5OO MULTIMETER • 30 kopv. © AC volts 2.51025100250 5001000 V • DC valts 0.25125102510251002501000 - DC current 50 мa 5 MA 50 MA 12 amp - Resistance $0-6 \mathrm{~K}$ 60K, 60 meg . - Decibels $-20 \mathrm{to}+56 \mathrm{~d} / \mathrm{b}$ - Buzzer continuity test - Size 160×110 $\times 65$ - Batteries and leads inc. $\mathbf{£} 26.95$

YH360 TR MULTINETER • AC volts 10502501000 - DC volts $0.1,0.5,2.5,10 y 150 \mathrm{y} 250 \mathrm{v}, 1000 \mathrm{y}$. © DC current 50 Na 2.5 MA , 25MA, 250 MA - Resistance $0-2 \mathrm{~K} 20 \mathrm{~K} 2 \mathrm{M} \Omega, 20 \mathrm{MS}$, Transistor check $-D B \cdot 10 \mathrm{db}-+22 \mathrm{db} \mathrm{£} 16.95$

4 DESOLDERING TOOL E5. 4

SCHOOLS, COLLEGES, UNIVERSITIES SUPPLIED. PHONE OR SEND YOUR ACCESS dR barclaycaro humber. prices incluoe vat. please ado 75p postage to OROERS UHOER $£ 10.00$

SINCLAR COMPUTERS

UK prices are shown first. The bracketed prices are export pricus which include insured air-mail postage
to ant the countries of Europe including Norway, to all the countriee of Europe including Norway,
Sweden. Andend end Demmerk. For overseas cumomer ounwide Europe an extra f5 postage per

 (E14).
Rempect

DRAGON 32 £173.

COMMODORE COMPUTERS

Commodore b4 Ere. Vic 20 Inso. Kit 10 allow the

 2000350 orien.

GENIE COMPUTERS

 E 9 . Douth density convertor $\mathrm{f72}$. High rezolution graphics $\mathbf{D E}$. Printer interface $\mathbf{f 3 6}$.

UK101 AND SUPERBOARD

 32×48 display expansion kits UK101 10 . Series 1 Supertoard f14. 32K memkory expansion board 680.Cogm Cegmon $\mathbf{E 2 2 . 5 0 .}$ Word processor prog $\mathbf{f 1 0}$. Centronics interface kit f10. Cased disc drives with
oos single f27. double $\mathbf{6 4 1 5}$. Stand alone floppy
disc controller 686 .

PRINTERS

Buy any of the below and get a free interface kit and word processor program for UK101 or Superboard. Epson MX80FT3 E349. Epson MX80T3 E319. Epson
MX100/3 $\mathbf{~ E 4 2 9 . ~ S e i k o s h a ~ G P 1 0 0 A ~ E 1 9 9 . ~ O K 1 ~}$ MX100/3 $\mathbf{E 4 2 9}$. Seikosha GP100A $\mathbf{E 1 9 9}$. OKI
Microline 80 E235. OKI Microline 82A $\mathbf{5 3 3 3}$. OKI Microline 83A f446. OKI Microline 84 f742.

5V POWER KITS

Fully stabilized 5V computer and TTL power kits.
1.5A 67.23 .3 A £12.17. GA $£ 2$. .

SHARP COMPUTERS

 We can supply Epson MX80 and MX100 printers to fund plus printer price. We also specialize in interfacing printers to the MZ80K MZ80A and MZ80B both with and without the I/O box
SWANLEY ELECTRONICS

DEPT ETI. Ω GOLDSEL RD., SWANLEY. KENT

Postage E 1 on Sinclair products \{UK), E 3.50 on other computers, E4.50 on printers and 50 p on ether orders. Please add VAT to all prices. Official credit and overseas orders welcome

HAPPY MENOORIES

Part type
4116 200ns
4116 250ns
4816 100ns For BBC comp
4164 200ns
2114 200ns Low power
2114 450ns Low power
4118 250ns
6116 150ns CMOS
2708 450ns
2716 450ns 5 volt
2716 450ns three rail
2732 450ns Intel type
2532 450ns Texas type

1 off 25-29 100up
$\begin{array}{lll}0.83 & 0.72 & 0.66\end{array}$
$\begin{array}{lll}0.75 & 0.65 & 0.60\end{array}$
$\begin{array}{lll}2.45 & 2.10 & 1.95\end{array}$
$\begin{array}{lll}4.95 & 4.55 & 4.20\end{array}$
$\begin{array}{lll}1.15 & 1.00 & 0.90\end{array}$
$\begin{array}{lll}0.95 & 0.85 & 0.80\end{array}$
$\begin{array}{lll}3.25 & 2.85 & 2.65\end{array}$
$\begin{array}{lll}3.70 & 3.20 & 2.95\end{array}$
$\begin{array}{lll}2.60 & 2.25 & 2.10\end{array}$
$\begin{array}{lll}2.60 & 2.25 & 2.10\end{array}$
$\begin{array}{lll}5.75 & 5.00 & 4.65\end{array}$
$\begin{array}{lll}3.75 & 3.25 & 3.00\end{array}$
$3.75 \quad 3.25 \quad 3.00$

Z80A-CPU £4.36 280 A -PIO £.3.25 $\quad 7812$ res 0.50
Low profile IC sockets:
$\begin{array}{lllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 \\ 40\end{array}$
Pence $9 \begin{array}{lllllllll}10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$
Soft-sectored floppy discs per 10 in plastic library
case: 5 inch SSSD E17.00; 5 inch SSDD f19.25; 5
inch DSDD $£ 21.00 ; 8$ inch SSSD $£ 19.25 ; 8$ inch
SSDD £23.65; 8 inch DSDD £25.50
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.
Preve add poet \& packing to orders under f15 and VAT to total. Access F Acteycard welcome. 24 hour eervice on (054 422) 618. Government \& Educetorial orders welcome, f15 minimum. Trede accounts operated, phone or wite for details.

Desk-top Ten Way Manual Exchange (key E lamp unit) £8 + $\mathbf{5 1 . 8 0 ~ P G P ~}$	LDW-CDST, RUEGED	
Recent Style P.O. Telephones $\mathbf{£ 4 . 7 5 + £ 1 . 8 0 ~ P G P}$ 2 for $\mathbf{f} \mathbf{9}+\mathbf{£ 2 . 5 0 . 5}$ for $\mathbf{£ 2 0 + \mathbf { E 5 } 5}$		
	MIEH QUAUTY	
Older style black telephones, E3. D\&D as above. Our leaflet explains how to use G.P.O. phones in home intercom systems.	TEMP. GAUGE $\mathrm{P}^{\mathrm{P}}-120^{\circ} \mathrm{C}$ Remote sensor on $38^{\prime \prime}$ capillary, panel mounting dial 55 mm . dia. ONLY $£ 2.50$	
Operator's Headset with Mic \& 4 Pole		
5 Digit Counters 48 V coil. Non	16A 240V RANCO THERMOSTAT Wide control range (low room temp. to over boiling point) Sensor on 22" capilliary. E2.30, including control knob.	
UNISELECTORS. 50 v , 4 Bank + Homing Bank, 25 way $\mathbf{f 3 . 5 0}$	RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$ 15 A 240 V . Sensing coil on 4 lin. capiliary panel mounting with reset button $£ 1.20$	
	BUY ONE EACH OF ABOVE FOR ¢6.50	
D CONNECTOR SOCKETS with cover, 50 way	LIGHT DEPENDENT RESISTORS in plastic housinc with window, heavy-duty lead. Similar to ORP 61 You normally pay well over double for resistor alone. Only 30p or $£ 2.36$ for 10.	
GOV 8A TRANSFORMER Ideal for big power supply unit or amplifier $\mathbf{f 1 2}$ inc. p\&p. BEAT THAT!	GEARED Synchronous motor, 8 r.p.m., 240 V A.C. 3 Watt f .	
	SOLENOID GAS VALVE. 240 V A.C. 5 P.S.I. suitabie for non-corrosive fluids. $\mathbf{£ 2 . 2 0}$	
Various stabilised power supplies available -- Excellent prices send for details.	BULGIN 3 pin free plug $\&$ panel socket, 2A 240V 50p	
FREE on request - Leaflet 'D.I.Y. Telephone Systems and Automatic Exchange Design'.	AUTOMATIC DIAL UNIT. (mains powered). These units connect into a telephone and dial a number when a punch-card is inserted. Card $\&$ instructions supplied. Cards readily available. Many uses. Only $\mathbf{5 8}+\mathrm{ff}$ patp	
L.E.M. SERVICES 22 Emscote Road, Warwick, Warwickshire ALL ITEMS - MONEY BACK IF NOT DELIGHTED.		

A LIGHTING REVOLUTION!

THE MINT-12
Compact 2-preset

...	

(prices do not include VAT and delivery)

THE MICRODIM PACK An ideal method of providing 6 channels that plug easily and quickly to your lamps, the mains and the
 mounting. Complete with 10 M mains lead.

After extensive research MJL have arrived at a means to provide the complete After extensive vility you require, at a price you can afford. ITS CALLED DIGI-OIM lighting versatility you require, at a price you can afford. method and in comes the micro-chip. If your requirement is for amateur or professional theatre, mobile or fixed lighting rigs, rock bands, or simply general purpose, then waste no more time and phone or write for FREE information to:

MJL SYSTEMS LTD.(Dept A)
45 Wortley Road, W. Croydon, Surrey CRO 3EB, U.K. Tel: 01-689 4138
Our sales desk is open Mons to Frids 9.30-5.30

PRACHCAL DESTCN OF DICHELL CIICULIS Rampe

Practical Design of Diglital Circuits will instruct the reader who is famillar with basic electronic principles but with no previous knowledge of diglial electronics in the practical aspects of digital design. It should appeal particularly to engineers and enthuslasts wishing to expand thelr knowledge in practical rather than theoretlcal directions.
The book is divided Into three main parts covering: the principles of digital electronics and the wide range of devices available; how to use these devices in costeffectlve designs, Includlng two detalled examples; ;microprocessors, showing them to be particularly versatlle and sophisticated devices. 0408011831324 pages £9.95

FROM
ADDRESS

ewnes Technical Books
 AN IMPRINT OF BUTTERWORTHS, BOROUGH GREEN SEVENOAKS. KENT TN15 8PH

PARNDON ELECTRONICS LTD.
Dept. No.23', 44 Peddock Mead, Hemiow, Eseen CM18 7nh. Tei. 027932700
RESISTORS: $1 / 0$ Wan Carbon Film E24 range $\pm 5 \%$ toletance High quality resistors
made under strictly comrolled conditions ty automatic machines Bandoliered and colour coded
£1.00 per hundred mixed. (Min 10 per value)
E8. 50 per thousand mixed (Min 50 per value)
Special stock pack 60 values. 10 off each $\mathbf{E 5} .50$
DIODES: IN4148 3p each. Min order quantity. 15 Items
E1.60 per hundred
DIL SWITCHES: Gold plated contact in fully sealed bave velve thow programming problems
4 Way 86p each 6 Way $£ 1.00$ each 8 Way $£ 1.20$ each
DIL SOCKETS: High quality, luw profile sockets
8 pin - 16 p. 14 pin - 11 p. 16 pin - 12 p. 18 pin - 19p. 20 pin - 21 p. $22 \mathrm{pin}-23 \mathrm{p} .24 \mathrm{pin}-25_{0} .28 \mathrm{pin}-27 \mathrm{p} .40 \mathrm{pin}-42 \mathrm{p}$.

ALL PRICES INCLUDE V.A.T. POST \& PACKING - NO EXTRAS
MIN ORDER - UK. 11 00 OVERSEAS \&5 CASH WITH ORDER PLEASE

THE MOST COMPREHENSIVE RANGE OF COMPONENTS，KITS AND MODULES IN THE WORLD \＆THERE＇S ONLY ROOM FOR A FRAGTION HERE，GET THE CATALOGUE AND FIND THE REST．
CMOS－TTL

\author{

4009 ub
 | 4090 |
| :--- |
| 4011 |
 －

}

－2．8ら
> 0.11
0.13

\section*{| 74 LS |
| :--- |
| $74 \leq 15$ |
| 745 |
 74LStO

$74 \mathrm{LS}: 1$
74 LS 12
 \section*{$\begin{array}{ll} & \text { 74LS } 138 \\ 0.12 & 74 L S 139 \\ 0.12 & 74.145 \\ 20 & 74 L 5151\end{array}$} 74 LS
74 LS
74 S 2
74 LS 2 74152
74452
7452 ざす $74 L S 30$
74 LS 32
74 S 33
74 L 38 $74 L 538$
$74 L 540$
74.542
 $T_{4}<S_{5}$
$T_{4}<S_{5}$
$T_{4}<555$ 744555
744573
74.574 $74 L 575$
$74 L 576$
$74 L 578$ $>4 L 5>8$
$>4\langle 583$
$>4 \angle 585$象示}

Vemory

ω ∞ ∞ ∞

 $1611 \quad 160$

1.52	U265	3.16
1.95	U266	2.43
2.53	LC7137	7.50
1.75	ICM7216B	19.50
129	ICM7216C	19.95
2.75	ICM7217A	9.50
2.26	SP8647	6.00
9.60	95H90	7.80
2.03	HD1055 ${ }^{1}$	2.45
2.03	HA12009	6.00
3.38	H044015	4.45
3.75	HD44752	8.00
1.48	MC145151P	6.00
2.75	280a	3.75
3.20	280A P10	350
2.35	Z80A CTC	4.00
1.48	Z80A DMA	9.95
3.65	Z80A DART	7.50
0.94	Z80A S10／1	11.00
450	Z80A S10／2	11.00
1.87	2804 S10／9	9.95
2.75	28001	65.00
2.15	8255	258
1.45	6800P	2.90
122	6809	875
1.95	6802	3.50
1.20	68A00P	425
1.55	68B00P	465
0.33	2114－L2	1.49
3.85	4116－2	1.59
3.90	2732	400
2.27	2716	3.00

Coils，Filters：Toko，Murata，NTK，Cathodeon．

TOKO FIXED VALUE CHOKES（E12 Values）

7BA－ 1 to $1000 u H$	$\mathbf{1 6 p}$	$10 R B-1$ to 120 mH	33p
$8 R B-1$ to 33 mH	$\mathbf{1 9 p}$	10RB -.15 to 1.5 H	43p

[^7]ALL PRICES SHOWN EXCLUDE VAT．P\＆P 60p per order．

Here＇s the case．．．

what＇s the project？
If you＇re about to start on a new project，you＇re no doubt looking for the right enclosure．With around 1000 different cases and 250,000 case parts currently in stock，we must be your number one supplier．To choose exactly the right case to complete your project send today for our fully illustrated， comprehensive catalogue，price $£ 1$ including $P \& P$ ．

West Hyde Developments Limited
Unit 9，Park Street Industrial Estate Aylesbury，Bucks HP2O 1ET
Telephone：（0296）20441．Telex： 83570 W HYDE G

Branime
 TYPE 161B
 I DUAL POWER SUPPLY KIT

INCORPORATES A POSITIVE \＆A NEGATIVE REGULATED SUPPLY
BOTH ARE ISOLATED \＆ADJUSTABLE 1．3V TO 16V D．C．
Interconnect to give 2.6 V to 32 V or $-1.3 \mathrm{~V} / 0 /+1.3 \mathrm{~V}$ to $-16 \mathrm{~V} / 0 /+16 \mathrm{~V}$
Output current 1 A at 16 V to 0.35 A at 1.3 V
Ripple is less than 1 mV

Built \＆Tested

$\mathbf{5 7 . 9 5}$ inc．P\＆P and VAT

Comprehensive design
details with calculations
are included so that the kit is an excercise in power supply design．The kit，which uses quality components，is complete with instructions．Case punched and stove enamelled in attractive blue and grey with a printed front panel to give a professional finish．
Excellent for the beginner，the experienced amateur and as a tutorial for schools and colleges．

SEND CHEQUE OR P．O．
ALLOW 21 DAYS FOR DELIVERY
BRANIME MARKETING LTD dept．h
BALTHANE IND．EST．，BALLASALLA，ISLE OF MAN

electronics today international

sook seivice
 How to order indicate the books requifed by ticking the boxes and send this page, together with your payment, to ETI Book Service,

Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2 0EE. Make cheques payable to ETI Book Service. Payment in
terling only please. Please add 15% to total for postage and packing, maximum $£ 3.00$. Prices may be subject to change without notice

ω	\square Beginner's Guide to:	£3.95
0	\square Radio	${ }_{\mathbf{f 3} 3.95}$
Ш1	\square Colour Television	¢3.95
2	\square Video	£3.95
2	\square Digital Electronics	£3.95
$\underline{2}$	\square Transistors	E3.95
0	\square Integrated Circuits	E3.95
$\boldsymbol{\square}$	\square Computers	53.95
∞	\square Tape Recorders	± 3.95
	\square Electric Wiring	£3.95
	\square Microprocessors	£3.95
	\square Questions And Answers on:	
	\square Electricity	£1.95
	\square Electric Motors	£1.95
	\square Electric Wiring	f1.95
	\square Colour Television	f1.95
	\square Electronics	¢1.95
	$\square \mathrm{Hi}-\mathrm{fi}$	¢1.95
	\square Integrated Circuits	¢1.95
	\square Amateur Radio	f1.95
	\square Radlo and Television	¢1.95
	\square Radio Repair	f1.95
	\square Transistors	¢1.95
	\square Personal Computing	f1.95
\boldsymbol{O}	\square Active Filters	f10.45
\checkmark	ICOp-Amps	f11.15
	\square CMOS	69.05
	\square IC Timers	67.65
	\square TTL	68.35
0	Cheap Video	¢5.55
$\underline{8}$	Son of Cheap Video	¢6.95
\bigcirc	\square TV Typewriter	¢8.35
O	\square PLL Synthesiser	¢5.60
0	$\square 80854$	¢9.75
	\square Electronic Projects In Music	${ }^{63} 9.95$
	\square Electronic Projects In Audio	63.95
	\square Electronic Projects In The Car	¢3.95
\boldsymbol{O}	\square Electronic Projects In The Home	63.95
2	\square Electronic Projects In The Workshop	¢3.95
)	\square Electronic Projects In Hobbies	¢3.95
	\square Electronic Projects In Radio And Electronics	¢3.95
	\square Electronics	£3.95
	\square Electronic Game Projects	¢3.95
0	-110 CMOS Digital IC Projects for the Home Constructor	¢3.95
	$\square 110$ Electronic Alarm Projects for the Home Constructor	${ }^{63} .95$
a	$\square 110$ Operational Amplifier Projects for the Home Constructor	¢3.95
6	$\square 110$ Semiconductor Projects for the Home Constructor	¢3.95
4	$\square 110$ Thyristor Projects using SCR s and Triacs	£3.95
	The Illustrated Home Electronics Fix-it Book H. Davidson	¢8.95
	\square How to build electronic kits	¢2.95
0	\square How to build electronic projects Malcolm	f6.95
	[] Beginner's Guide to Computers and Microprocessors	
∞	Adams	¢6.25
∞	\square Programming your Apple Il Computer P. Bryan	f6.95
$\underline{\square}$	\square Projects in Machine Intelligence for your Home	
0	Computer D.L. Heiserman	f6.95
	$\square 30$ Computer Programs for the Home-owner in Basic	
0	D. Chance	£6.95
0	\square COBOL G. Jackson	f6.95
	$\square 6502$ Software Design Scanlon	f9.05
	\square Programming and Interfacing 6502 with experiments	
	De Jong	£11.15
0	\square Basic BASIC Coan	88.95
	\square Advanced BASIC Coan	88.95
2	$\square \mathbf{Z 8 0}$ Microcomputer Handbook Barden	¢8.35
	\square Introduction to Pascal Zaks	f11.50
	1001 Things to do with your personal computer Sawusch	$\mathbf{6 6 . 5 0}$
	\square Microcomputers, Microprocessors. Hardware, Software	
	and Applications Hilburn	£19.45
	\square Microcomputer Design Ogdin	f12.00
¢	-8080/8085 Software Design Book 1 Titus	59.05
	8080/8085 Software Design Book 2 Titus	¢9.05
	\square Microcomputer Interfacing Handbook A/D \& D/A	¢7. 10
	Microprocessors and Microcomputers for Engineering	
	Students and Technicians Woolland	¢4.95
$\underline{2}$	I How to build your own working robot Pet Dalesta	f6. 50
5	1 How to Troubleshoot and Repair Micro-Computers Lenk	¢6.80
	\ldots Experiments in Artificial Intelligence for Small	
	Computers	¢6.65

\square ROM Disassembly. Part A 0000H-0F544 Dr Ian Logan

2X81 Basic Book Robin Norman
The ZX81 Pocket Book T. Toms
\square Troubleshooting Microcomputers and Digital Logic Goodman
\square How to design, build and program your own working, computer system Haviland
Introduction to Microprocessors
\square Principles of Interactive Computer Graphics W.M. Newman

49 Explosive Games for the ZX81 T. Hartnell (Ed)
Getting Acquainted with your ZX81 T. Hartnell
\square The Gateway Guide to the ZX81 and ZX80 M. Charlton
Mastering Machine Code on your ZX81 Ton i Baker
34 Amazing Games for the 1k ZX81 A. Gourlay
\square The ZX81 Comnpanion B. Maunder
\square The ZX81 Comnpanion B. Maunder
Not Only - $\mathbf{3 0}$ Programs for the Sinclair ZX81 1k
Machine Language Programming made simple for your Sinclair
\square Byteing Deeper into your ZX81 M. Harrison
-.] The Cambridge Collection 30 Programs for the ZX81 R. Francis

Hints and Tips for the ZX81 A.D. Hewson
\square Basic Computer Games David Ahl
\square More Basic Computer Games David Ahl
\square How to get more out of Low-Cost Electronic Test
Equipment Tobery
\square Electronic Testing and Fault Diagnosis G.C. Loveday
Design of Op-Amp Circuits with Experiments H.M. Berlin

Design of Active Filters, with experiments Berlin
\square Electronic Components Colwell
Electronic Diagrams Colwell
BP88 How to Use Op-Amps E.A. Parr
Electronics Fault Diagnosis lan Sinclair
\square Complete Guide to Reading Schematic Diagrams J. Douglas-Young
\square Practical Solid State Circuit Design J.E. Oleksy
Electronic Devices and Circuit Theory R.L. Boylestad
Operational Amplifier Circuits. Design and Applications D.E. Johnson
$£ 7.00$
D.E. Johnson
£17.95
\square Power Electronics C.W. Lander
\square Practical Electronics Handbook lan Sinclair
\square Electronic Communicstions Systems Kennedy
\square Transistor Circuit Design Texas
Designiing with TTL Integrated Circuits
\square Modern Electronic Circuit Reference
\square International Transistor Selector Towers
\square International Microprocess or Selector
International Op Amp Linear IC Selector
International FET Selector
\square International FET Selector
Electronic Engineers Reference Book
Dictionary of Telecommunications
D Dictionary of Electronics
[] Dictionary of Audio, Video and Radio
.] Dictionary of Electrical Enginearing

Please send me the books indicated. I enclose cheque/postal order for f......... I have added 15% surcharge for postage and packing (maximum $£ 3.00$).
I wish to pay by Access/Barclaycard. Please debit my account.

Signed
Name
Address

\section*{| MONTHLY IN |
| :---: |
| ELECTRONICS TODAY - |
| YOUR OWN' WHERE TO |
| BUY IT' GUIDE |}

DORSET

D.J. ELECTRONICS 64 Ensbury Park Road, Bournemouth. Tel: (0202) 515073. Open: Mon-Sat Gam-6pm.

LOOKING FOR COMPONENTS! HARDWARE! CASES! TRY YOUR LOCAL LISTED STOCKIST

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

S. WALES

HERTFORDSHIRE

GODDARDS COMPONENTS

 110 London Road, St. Albans. Tel: St. Albans 64162Open: Mon-Sat 9.30am-5.30pm (1/2 day Thur)

LANCASHIRE

ETESON ELECTRONICS E. Fopoulton-le--Yy Lowe Brackpooi Tel: (0253) 885107
Open: 9 30am-12.30.1.30-5.30. Closed Wed \& Sun Electronic Component Specialists.

CARDIGAT ELELTRONILS
Chancery Lane, Cardigan,
Tel: Cardigan (0239) 614483
Open: Mon-Sat 10am-5pm. Closed Wed Electronic components $\&$ Acorn computer stockist.

WARWICKSHIRE

HORIZON ELECTRONICS (MIDLANDS)

Charlotte St, Rugby. Tel: Rugby 78138 Open 5 Days 10-6 (closed Wed) Wide range of components and R.S. stockists

MERSEYSIDE

MYCA ELECTRONICS 2 VICTORIA PLACE
SEACOMBE FERRY SQUARE WALLASEY L44 6NR Tel: 0516388647
Open: Mon-Sat 10am-5.30pm

YORKSHIRE

ACE MAILTRONIX LTD.
ASE Commercial Street,
Batley. Tel: (0924) 441129
Ben: Mon-Fri 9am-5.30pm. (Sat 1pm)
Retail and wholesale.

ADVERTISERS INDEX

Ad. Elec 105
Aimbit. 106
Aitken......... 103
Ambit86
Amtron96
Appledore82
Armon 82
Audio Elec.
84, 85
84, 85
BK Elec 12, 100
Black Sta 105
BNRS 90
Bradley Marshall 18
Bramine Mkt 106
Chordgat 101
Carlton 109
Cambridge Learning 109
Clef Products
8. 9
8. 9
Cricklewood Elec
.91
Crimson 101
Croft 92
Dataman Design 33
Display Elec. 63
Electrovalue98
Electronize Design 30
Electronics World 100
Enfield91
Flight.96
Greenbank.103
Greenweld.71
GSC. 64, 95
Happy Memories
Heath Elec71
ICS 109
ILP 80, 81, 92
Input Design86
.95LB Elec
LGBEl 101
LEM Services 104
Magenta 101
Maplin 116
.. .54
MJL.. 105
Midwich Comp 23
Newnes Tech 10
Parndon 105
Powertran. 2, 10, 103, 115
Rapid Elec. $1 . .6$
Relay-A-Quip 104
RTVC. 70
Silica Shop14
Sinclair Research 52, 53
Sparkrite75
Swanloy 44, 45
Tempus 76
Tempu 29
Thames Valley 19
T.K. Elec24
West Hyde106
Wilms 86

TECHNICAL TRAINING IN ELECTRONICS, TELEVISION AND AUDIO

 IN YOUR OWN HOME-AT YOUR PACEICS can provide the technical knowledge that is so éssential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained man. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.

City \& Guilds Certificates

Radio Amateurs
Basic Electronic Engineering (Joint C\&G/ICS)

Certificate Courses

TV and Audio Servicing Radio \& Amplfier Construction Electronic Engineering* and Maintenance Computer Engineering* and Programming Microprocessor Engineering* TV, Radio and Audio Engineering Electrical Engineering,* Installation and Contracting *Quality for IET Associate Membership AACC Approved by CACC

Member of $A B C C$
POST OR PHONE TODAY FOR FREE BOOKLET

CNC 10 PCB HOLDER

the home
The CNC 10 has a board capacity of $8^{*} \times 8^{\circ}$ and langer boarche (maximum 8° wide) may be accommodated since they can project beyond the ende of the rels.
Adjustment of the board rails is extremely simple and they are locked in the deerec. position by one central locking clamp. A further clemp anpblee the PCB, when in position, to be rotated through 360 degrees and locked in the required position. An optional foam pad is available which enables a number of componants to be inserted prior to soldering. Pad size $8^{\prime \prime} \times$ $8^{\prime \prime}$.

CNC 10: f16.10 INC. VAT FOAM PAD \& CLIIP: f5. 64 INC. VAT
Please add $£ 1.50$ to cover postage. Available direct from the manufacturer:

CARLTON NICHOL \& CO. LTD. GOLOKEY INDUSTRIAL ESTATE, KELVEDON, COLCHESTER, ESSEX

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF-SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, RIGHT TIME, £69.60.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer etc, decoding details and $\mathbf{Z X 8 1}$ listings for LOCAL. GMT and SIDEREAL time, $£ 22.20$.
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$, Receiver f19.40.

LOSING DX? Speech Compressor $£ 15.30$
ANTENNA NOISE BRIDGE, 1-150MHz, 2-1000 ohms, £18.60.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, instructions, money back assurance so GET yours NOW.
CAMBRIDGE KITS
45 (TM) Old School Lane, Milton, Cambridge. Tel: 850150

USE ELECTRONICS TODAY INTERNATIONAL'S CLASSIFIED

(35p per word, minimum 15 words. Box Nos. $£ 2.50$ extra or $£ 10.00$ per single column centimetre (min. 2cms) - all prepaid Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, to Electronics Today International Classified,

145 Charing Cross Road, London WC2 OEE

| 1. | 2. | 3. | 4. | 5. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6. | 7. | 8. | 9. | 10. |
| 11. | 12. | 13. | 14. | 15. |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

Please place my ad in the next available issue of E.T.I.:

Name

Address
Tel. No.
I enclose my cheque/P.O. for the value of $£$

ADVERTISEMENT i A ES Semi-Display (min 2 cms)
 1-3 insertions $£ 10.00$ per $\mathbf{c m}$
 $4-11$ insertions $\mathbf{£ 9 . 0 0}$ per cm
 12 + insertions $\mathbf{£ 8 . 0 0}$ per cm Lineage 35p per word (min 15 words) Box Nos. $£ 2.50$
 Closing date for February 1983 issue Thursday, 2nd December 1982.

All advertisements in this section must be prepaid.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request)
Send your requirements and cheque /P.O. to:

E.T.I. CLASSIFIED ADVERTISING, 145 CHARING CROSS RD, LONDON WC2H OEE

AERIAL AMPLIFIERS Improve weak television reception. Price $£ 6.70$, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

COPPER CLAD BOARD double sided fibre glass. 20 sheets $12 \times 8^{\prime \prime} £ 10,10$ sheets $12 \times$ $8^{\prime \prime} \mathrm{f} 6,5$ sheets $12 \times 8^{\prime \prime} £ 4$. including P\&P. Davron, Box No. E.T. 202, 145 Charing Cross Road, London W.C. 2.

WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

ROBOTICS

WHEELS, MOTORS, BATTERIES, SOLENOIÓS, GEARS, SPROCKET'S AND MORE. FOR LISTS SEND 60p TO: DRJ ELECTRONICS
PO BOX 394, LONDON SE6 1TR Money returnable

OPTICAL FIBRES for use in communications, electrical isolation, remote sensing, illumination, etc. Introductory package contains five sample lengths of Silica, glass and plastic fibres totalling ten metres plus a forty page fibre optics guide with theory, uses, practical circuits, etc. Send $£ 5.95$ to Quantum Jump LTd., 53 Marlborough Road, Liverpool 13.

CONSTRUCTING AN AUDIO MIXER?

To achieve a high quality finish you need commercially produced printed panels - sub-frames - main frames etc. designed and manufactured specifically for this purpose.

56 Fleet Road, Benfleet, Essex SS7 5JN, England (LARGE S.A.E. PLEASE)

> BIG BARGAIN BOX
> Our Big Bargain Box contains over e thousand components
resistors, capecitors, pots, switches, diodes, resistors, capecitors, pots, switches, diodes, transistors, panels,
bits and pieces, odds and ends. Al useful stuft - would cost many times the price we are asking if bought separately. Approx. weight
> ONLY E5.00 inc. post - you're bound to come back for another!
> 147A FOUNDRY LANE, SOUTHAMPTON SO1 3LS
> Lots of surplus bargains on our latest list - send an SAE for your
> our latest lis
copy now.

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55d. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick £1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

A really compact high performance CCTV camera for only $£ 130.00$ plus VAT plus P/P, Total $£ 152.95$. Size 3"x 3 "x 9": 240v operation. 1v p-p output. Lens extra.

CROFTON ELECTRONICS LIMAITED

35 GROSVENOR ROAD. TWICKENHAM. MIDDLESEX TW1 4AD
Telephone 01891 1923/01.891 1513
Telex 295093 CROF TN G
T. \& J. ELECTRONICS COMPONENTS Quality components, competitive prices. Illustrated catalogue 45p. 98 Burrow Road, Chigwell, Essex.

4राEK
 VIDEO AND AUDIO EQUIPMENT

- 20° Colour Monitor - R, G, B + SYNC inputs. Open fram chassis needs maina isol. $1 / \mathrm{P} .155$ VAC $\mathrm{EP9} .55$ en
- 14° Colour Monitor - R, G, B + SYNC Inputs cased needs
- Transformer for above monitors E12.95 ea. suitable for use with above monitors - full instructions for fitting EPa.s6 en.
- Low voltage power sup
- Hifi speakers 30 Watt walnut cab with black cloth front -2 way $61^{\prime \prime}$ base 2^{*} tweeter $£ 29.96$ per pair - 5 Watt 4^{*} Speaker unita ET .60 con.
- Programmabie sound generator board: based on GI AY-3-8910 TTL Trigger input will play pre-programmed tunes from Prom.
All prices include 15% VAT - P/Packing extra - cash with order

Sathlight Ltd.. Santa Fe Buildings, Stoke Orchard, Bishops Cleeve, Cheltenham, Glos. GLL2 4RU
or further detalls Phona: Cheltenham 10242$\} 675073$
SUPERB PHILIPS OSCILLOSCOPE Accurate and highly versatile. Only $£ 120$. Phone: Colchester (0206) 866123.

ELECTRONICS componient shop in MAIDSTONE, KENTLThyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

SEND SAE for our catalogue. Details of ads. 6809 single board computer. IEEES-100 Standard. S100 Prom-Blaster. Cluge Card. Synthesiser. Etc. Also competitive prices for linear, CMOS, TTL and other kits. Micro-Times, 19 Mill Street, Bideford, North Devon EX39 2JR. (02372) 79798.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: SAE $4 \times 9^{\prime \prime}$. Paralab, Downton, Wilts.

MOS-FET AUDIO MODULES
Hitachi devices, Hitachi spec., glass boards extruded heatsinks, tested, guaranteed 24 months.
120 watts/ 8 ohms; $120 \mathrm{v} / 2 \mathrm{~A}$ supply; $£ 13.95$. 240 watts/ 4 ohms; $120 \mathrm{~N} / 4 \mathrm{~A}$ supply; $£ 19.95$ 400 watts/ 2 ohms; 120w/7A supply; £29.95

Power supplies/pre-amps available. Post/ packing 80 p. Stamp for details. Quantity discount
Audio-Tech., 8 Parsons Close, Church Crookham, Aldershot, Hants GU13 OHL Tel: 00. 1420800

BURGLAR Alarm Equipment. Please visit our 2,000 sq.ft showrooms or write or phone for your free catalogue. C.W.A.S. Ltd, 100 Rooley Avenue, Bradford BD6 1DB. Telephone 0274308920.

APPOINTMENTS

TO BOOK YOUR APPOINTMENTS ADVERTISING RING BRIDGETTE SHERLIKER ON 01-437-1002

WILDERN ELECTRONICS LTD for all microprocessor-based system designs, GPIB interfaces/software, S100 systems using our own CPU (also sold separately). Instrumentation systems, peripheral interfacing. Test/Control equipment, Established 1977, MAPCON consultants. Contact Mr 'Priestley, Portsmouth 831041.

SPECTRUM VENTURE. Exciting new game for the Spectrum (7 games in 1). In colour, with sound and fantastic screen effects, 16 K and 48 K version supplied on one cassette for f 6 . Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

BRYSTEP ELECTRONICS

10 Camphill Industrial Estate West Byfleet. Surray KT14 6EW Tel: Byfleet (09323) 51676

Many. many other items held in stack. S.A.E. Ior full stockand price list. Also seperste list of itema which art exbergain price. We fully guarantee your monay backin FULL if any inem fails, provided it is returned within 28 days of receipt. We have never had to return moneyyet.			
- Connectora Camnon ${ }^{\text {T }}$			
			(iodos
FREE With every order: I pack of 15 if wett cerbon film resiotors			
Sorry: MAIL ORDER ONLY Please add $\mathbf{E 0 . 3 0} \mathbf{p q p}$ and V.A.T. (1) 15\%			
SPECIAL OFFER FOR THIS IS [3. $65(207+1$			

FIND-A-FRIEND through" "FIND-AFRIEND'S new confidential, inexpensive service. Your ideal friendship/relationship. - all ages - countrywide. SAE/Telephone: FIND-A-FRIEND (ETI), Temple House, 43-48 New Street, Birmingham, B2 4LH. 021-429-6346.

CIRCUIT DESIGN, Prototype construction, analogue or Digital, Siangle Circuits or Complete Instruments/Systems. Write A. J ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton 'Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082-346) 536 .

DIGITAL WATCH REPLACEMENT parts batteries, displays, backlights etc. Also reports pubications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen, Bucks, HP15 6SGD

TRANSCENDENT 2000 SYNTHESISER. Excellent condition. Fully working. Home use only. £200 o.n.o. Tel: (0277) 363292.
"STEREOPOWER" 120 WATT $\mathbf{~} 10.85$. Case + controls + sockets + data!! Fibreglass + protected outputs. KIA, 8 Cunliffe Road, llkley.
P.S.U.s 5v1A f10.99. 5 v 3 A f14.99. 5v5A £25.99. $1.2-30 \mathrm{v} \quad 100 \mathrm{~mA} £ 14.99$. 1.5A £24.99. 5A £32.99. Edwards Electrics, Unit 3, Mill Lane, Bridgwater, Somerset.

TELEPHONE MONITOR KIT, connects between telephone line and your cassette recorder and automatically records all phone useage. Complete kit including case and PCB only f9.95. Dept. ET5, UNITECH (Midiands), FREEPOST, Sutton Coldfield, West Midlands B74 2BR. (Not British Telecom Approved).

> AIRCRAFT COMMUNICATIONS HANDBOOK (UK/Europe) including Spot MF, HF, VHF, UHF, Frequencies, Military \& Civil Airports, Air Traffic Control Centres, Long Range Stations, Meteorological Broadcasts, Broadcast Times, Navigation Beacons, Co-ordinates, Callsigns, Maps, etc. £7.50 P/P £1. PLH Electronics, 97 Broadway, Frome, Somerset BA11 3HD.

TRANSPARENT FLEXIBLE KEYBOARD COVERS to fit computers, control systems, testing stations etc. Will reduce contamination of equipment and help to reduce down time. Ideal for manufacturing industries. Details from DBM Products, Box 6, Melton Mowbray, Leics. Telephone 0664 68415 after 3 p.m.

PACK OF TWO BNC T5R PLUGS £1.20, 27vdc 4 Pole (Mains 'Continental' type) change over relay $£ 1$.20. Coax change over relay 9 vdc f 4 . All prices include VAT \& postage. Send SAE for list AFR Electronics, School Lane, Moulton, Northampton.

TRS 80 L2 16K plus Quick Printer plus all manuals. Little used. £300 o.n.o. Hastings 446810.

BATTERY ELIMINATOR MAINS to 9 VOLT DC Stabllised output, 9 voh $400 \mathrm{~m} . \mathrm{a}$. UK made whth terminals. Overload cut put. $5 \times 3 \ddagger \times 21 \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios. Cassettes. 44.50 . Post 50 p .
LOW VOLTAEE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$1,2,4,5,8,16,25,30,50,100,200$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 2 \mathrm{p} ; 50 \mathrm{~V} 3 \mathrm{p} ;$
1000 mF 12 V ह0p: $25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} \mathrm{Ep} ; 1200 \mathrm{mF} / 76 \mathrm{~V} 60 \mathrm{p}$.
 $2500 \mathrm{mF} 50 \mathrm{~V} 7 \mathrm{p}: 3000 \mathrm{mF} 25 \mathrm{~V} 00 \mathrm{p} ; 50 \mathrm{~V}$ Ep. 3300 mF 日3V 51.20 ; $4700 \mathrm{mF} 83 \mathrm{~V} 51.20 ; 2700 \mathrm{mF} / 76 \mathrm{~V} \mathrm{f1}$. 4700 mF 40 V 86p; 1000 mF 100 V E1.

TRIMMERS 30pF, 50 pF 10 p . 100 pF , 160 pF rep. 600 pF 30 p . CONDENSERS VARIOUS, 1 pF to 0.01 mF 360 V Ep. $400 \mathrm{~V}-0.001$ to $0.05 \mathrm{Ep} ; 0115 \mathrm{p} ; 0.252 \mathrm{zp} ; 0.473 \mathrm{zp}$.
$1000 \mathrm{~V} 0.1 \mathrm{mF} 2 \mathrm{p} ; 0.22 \mathrm{mF} 30 \mathrm{p} ; 0.47 \mathrm{mF} 00 \mathrm{p} ; 1750 \mathrm{~V} 0.22 \mathrm{mF}$ ECp. 1000V
 SIN GLE 80 LID DIELECTIIC 100 pF E E00pF E1.50. GEARED TWIN GAMO8 25 pF E5p: $385+365+25+25 \mathrm{pF} \mathrm{E1}$. SLOW MOTION DRIVE 6:1 s0p. REVERSE VERNIER 60p.

 HIGH STABILITY. jW $2 \% 10$ ohma to 1 meg . ep . Ditio 6%. Preforred values 10 ohme to 10 mm
WiRE-WOUND 10 ahm to 10 K 5 wott 2 pp .

 $18 \times 10-E 3.20$ All 21
ALUMINIUM PANELS

ALUMINIUM Boxes with lids

BRIDGE RECTIFIER 200 V PIV 1 amp SOp. $2 \mathrm{amp} t 1.00$ $4 \mathrm{amp} E 1.60 .8 \mathrm{amp}$ 22.ED. DIODES 1 a , 10 p : 3 a . 30 p . TOGGLE SWITCHES SP 4Op. DPST OPD. 1 THE "INSTANT"' BULK TAPE ERABER Suitable for caecottien and all sizes of tope reels. Ideal ell Recorders. Tapos, Disce, Cametras, Computers.
HEAD DEMAGNETISER PROBE E5.

MAINS TRANSFORMERS

5-8-10-16V, $\ddagger \mathrm{A}$ 6 G 1A $6-0.6 \mathrm{~V} .1 \pm \mathrm{A}$ 9V250ma 9 V3A $9-0.9 \mathrm{~V} 5 \mathrm{ma}$ $10-0.10 \mathrm{~V} 2 \mathrm{~A}$ $10-30-40 \mathrm{~V}$ 12 V 100 ma 12 V 3 A $12-0-12 \mathrm{~V}, 2 \mathrm{~A}$ 15-0-15V 2A			
RADIO COTIPONENT SPECALSTS			
DEPT. 6, 377 WHITEHORSE ROAD, CROYDON, SURREY, U.K. TEL: OT-9A1 168 万			
Post EDp MInimum. Calters Welcome. Closed Wed. Same day despatch. Accese-Barclay-Visa. Leta 31p.			

NDEX 82

Once again it's time to tread boldly into word-processor-land and sort out our year's offerings into alphabetical order. Everything we've done is listed (sometimes more than once under alternative names or alternative sections) with the exception of Digest (always up front), Foil Patterns (always up back) or Read/Write (why would you want to know where that was?)

FEATURES	MONTH	PAGE
A Decade of Electronics: 10 Years of ETI	Apr	
Breadboarding Systems	Jun	74
Buying Mail Order	Mar	66
Casio FP-10 Printer	Mar	40
Circuit Supplement	Dec	35
Column Loudspeaker Design	May	17
Computer-controlled Live Music	Feb	53
Electromusic Techniques Part 1	Apr	17
Electromusic Techniques Part 2	May	47
Electromusic Techniques Part 3	Jun	59
Engineer's Guide To Printers	May	40
Facts On DACs and ADCs	Mar	19
HP-11C Calculator	Mar	79
Index 80/81	Jan	90
Military Electronics	Feb	68
Pickup Amplifier Design	Jan	19
Robotics Today	Jan	84
Satellite TV	Nov	17
Teletext Explained	Jan	34
User's Guide To Microphones	Feb	38
Video Systems	Jul	77
Voltage-controlled Potentiometers	Jan	65
ZX Printer	Feb	93
Zoom Microphone	Dec	20
PROJECTS		
10 MHz Oscilloscope Part 1	May	53
10 MHz Oscilloscope Part 2	Jun	30
10 MHz Oscilloscope Part 3	Jul	63
150 W MOSFET Amplifier	Jun	48
16 Bit Computer Part 1	Nov	25
16 Bit Computer Part 2	Dec	55
2040 If Loudspeaker	Sep	46
Accurate Voltage Monitor	Apr	23
Active Loudspeaker	Sep	46
Auto-volume control	Sep	63
Automatic Contrast Meter	Apr	39
Autoranging Capacitance Meter Part 1	Mar	48
Autoranging Capacitance Meter Part 2	Apr	108
Combination Lock Part 1	Jun	79
Combination Lock Part 2	Jul	39
Computer Expansion (EPROM card)	Apr	26
Computer Expansion (EPROM programmer)	Apr	26
Computer Expansion (1/O Card)	Feb	76
Computer Expansion (sound card)	Jan	58
Cortex Cómputer Part 1	Nov	25
Cortex Computer Part 2	Dec	55
DVMeg	May	73
Dicrobe	Sep	68
Dual Logic Probe	Sep	68
Dummy Load	Jan	71
Earth Leakage Circuit Breaker	Dec	25
Economical Heater Controller	May	22
Electronic Doorbell	Oct	29
Guitar Practice Amplifier	Apr	121
Guitar Tuner	Jan	41
Heat/Light Controller	Oct	25

High Quality Phono Amplifiers	Feb	45
Hotwire	Jul	73
1 Ching Computer	Feb	60
IF Strip Tester	Oct	26
Infant Guard	Jan	80
Infinite Improbability Detector	Mar	35
Instrument Probe	Apr	57
Insulation Tester	May	73
Kitchen Scales Part 1	Jul	30
Kitchen Scales Part 2	Aug	39
Light Wand	Mar	73
Logic Lock Part 1	Jun	79
Logic Lock Part 2	Jul	39
Message Panel	Oct	53
Message Panel Interface Board	Nov	68
Microphone Switching Unit	Jul	20
Microtutor Part 1	Aug	50
Microtutor Part 2	Sep	72
Microtutor Part 3	Oct	46
Negative fon Cenerator	Jun	19
Parking Meter Timer	Jan	29
Pest Control	Feb	89
Playmate Cuitar Effects/Amp Part 1	Aug	28
Playmate Guitar Effects/Amp Part 2	Sep	16
Polystyrene Cutter	Jul	73
Precision Pulse Generator	Nov	39
Robot: Motor Controller	Mar	61
Robot: Analogue PWM Speed Control		
Part 1	Apr	94
Robot: Analogue PWM Motor Control		
Part 2 (May	34
Robot: Digital PWM Speed Control	Jun	66
Robot: Proximity Detector	Jun	69
Robot: Opto-tachometer Speed Control	Jul	59
Robot: Mobile 2	Aug	82
Robot: Chassis Construction	Sep	25
Robot: Servo Arm Interface Part 1	Oct	69
Robot: Servo Arm Interface Part 2	Dec	77
Rugby Clock Part 1	Aug	60
Rugby Clock Part 2	Sep	39
Series 5000 Bridging Adaptor	Jul	85
Series 5000 MOSFET Amplifier	Jun	48
Signal Line Tester	Dec	97
Slot Car Controller	May	79
Solid State Reverb Unit	Apr	101
Sound Effects 1: Bomb Drop	Apr	50
Sound Effects 2: Steam Train	Apr	118
Sound Effects 3: Phasor and Explosion	May	63
Sound Effects 4: Gunshot	May	89
Sound Track	Aug	72
Sound-to-Light Unit	Oct	31
Spectracolumn	Dec	65
Spectrum Analyst	Nov	52
Stylus Timer	Jun	41
TV Bargraph	Jul	50
Touch Switch	Oct	30
Upgrading Amplifier PSUs	Feb	26
Wattmiser	May	22

CIRCUIT DESIGN

Circuit Supplement	Dec	35
Electromusic Techniques Part 1	Apr	17
Electromusic Techniques Part 2	May	47
Electromusic Techniques Part 3	Jun	59
Facts On DACs And ADCs	Mar	19
Pickup Amplifier Design	Jan	19
Voltage-controlled Potentiometers	Jan	65

DESIGNER'S NOTEBOOK

Distable Analogue Signal Touch Switch	Jul	69
DPM200 Digital Panel Meter	Aug	66
Extra Supply Rails	Jul	69
FET Applications	Jun	36
LM1897	Feb	33
MC145414	Nov	45
MF10	Nov	45
Measurement Techniques Part 1	Sep	59
Measurement Techniques Part 2	Oct	18
Nine Unusual Techniques	Jul	68
OM335	Mar	83
R5600 Series	Nov	45
Remote Control Systems	May	67
Secondary Mains Switching	Jul	69
Simple Pulse Burst Generator	Jul	69
Single Pulse From Input Level Change	Jul	68
Switched Capacitor Filters Part 1	Nov	45
Switched Capacitor Filters Part 2	Dec	31
TTL-to-CMOS Logic Interface	Jul	68
Time Division Multiplexing	Apr	45
Transistor Function Generator	Jul	69
Two Bit A-to-D Converter	Jul	68
Uprated Zener Diode	Jul	68

KIT REVIEW
Wharfedale E70

REVIEWS

REVIEWS	Jun	74
Breadboarding Systems	Mar	40
Casio FP-10 Printer	Mar	79
HP-11C Calculator	Apr	35
Wharfedale E70	Feb	93

TECH TIPS		
240-120 V Converter (Resistive Load)	Oct	78
Aerial Lift For Car Radio/cassettes	Mar	55
CMOS Fuzz/tremolo	Sep	23
CMOS Phaser	Aug	34
CMOS Sustainer For Electric Guitar	Jul	27
Car Lights Warning Device	Mar	55
Caravan Water Supply Monitor	Jul	26
Cheap Auto-Waa	Sep	22
Cheap PET Cassette	Apr	114
Cheap Voltage Reference	Jan	75
Comprehensive CMOS Logic Gate Test Rig Apr	115	
Computer Keyboard Encoder	Nov	84
Computer TV Sound Modulator	Oct	78
Computer/Synth Keyboard Interface	Dec	93
Differential Mixer And Earthing Problems	Mar	76
Dual Trace On Single Beam Scope	Feb	84
Economy CMOS Vocoder	May	60
Electronic Switch	Feb	85
Enlarger Timer	Apr	115
Enriching Synthesiser Sounds	Oct	77
Four Bit A-to-D Converter	Oct	77
Frequency-to-phase-controlled PSU	Apr	113
Fully Debounced Keyboard	Apr	113
Guitar Harmoniser	Aug	34
Guitar Tracking Oscillator	May	61
High Efficiency Piezo Siren	Dec	93
Indicating Remote Switch For Recorder	Mar	55
Intelligent Alarm Switch	Aug	36
Low Cost ASClI Encoder	Feb	85

Low Resolution A-to-D Converter	Sep	23
Mains Failure Emergency Light	Jul	26
Mains Remote Speaker	Aug	34
Modifications For The Musical Doorbell	Aug	36
Number-guessing On The FX-501P	Aug	35
Organ Conversion for IC Piano	Jan	76
PROM Blowing By Computer	Nov	83
Penalty Kicks	Jul	26
Remote Camera Release	Apr	114
Room Thermometer	Apr	114
Rotary Combination Lock	Nov	84
Salvaging Fluorescent Displays	Jan	75
Simple Graphics on a Scope Screen	May	61
Simple Intercom	Feb	83
Single Push-button Op-amp Flip-flop	Mar	57
Solid State Scope Using LEDs	Jun	27
Stage Lighting Bank Changeover Unit	Feb	84
Stylophone With Memory	Jun	26
Surgeless 555 Clock	Jun	26
Switchable Bridge Amplifier	Jan	76
Switched Guitar Volume	Nov	85
Switched Mode PSU For EPROM Blowing	Dec	94
Switched Supply For EPROMs	Feb	83
Tamper-proof Burglar Alarm	Sep	22
Variable Stereo Field	Jan	76
Visual Simple Sound Analyser	Mar	56
Wind-power Control Circuit	Mar	57

CONFIGURATIONS

Amplifier Feedback Loops	Sep	53
Common Emitter Transistor Bias	Aug	45
Common-collector \& Common-base CircuitsOct	41	
Timebase Circuits	Dec	72
Transistor Multivibrators	Nov	35

DESIGNING MICRO SYSTEMS		
CPUs and Microprocessors	Aug	19
Binary, Decimal and Hex	Sep	34
ROM, PROM, EPROM and EAROM	Oct	61
RAM	Nov	60
Keyboards And I/O	Dec	46

AUDIOPHILE		
Budget Hi-fi System	Sep	29
Carver M-400 Cube' Power Amp	Jul	44
Carver M-400 Power Amp	Oct	34
Carver M-400 Power Amp	Nov	79
Crimson CK1100 Power Amp	Nov	79
Crimson Elektrik CK1010/CK1100	Feb	19
dbx Discs	Mar	28
Denon POA 3000 Power Amp	Nov	79
Denon POA 3000 Power Amp	Oct	34
Denon PRA 2000 Preamp	Oct	34
Dynavector Karat Ruby Cartridge	Apr	88
Goldring C910IGC Cartridge	Dec	87
High Power Amplifier Comparison Part 1	Oct	34
High Power Amplifier Comparison Part 2	Nov	79
Hitachi 7500 II (bridged) Power Amp	Oct	34
Hitachi 7500 II (bridged) Power Amp	Nov	79
Hitachi 9500 II Power Amp	Oct	34
Hitachi 9500 II Power Amp	Nov	79
Hitachi HMA-7500 II/HCA-7500 II	May	28
JBL Radiance R82 Loudspeakers	Sep	29
Revox B780 Receiver	Mar	28
Shure MV30HE Cartridge	Apr	88
Shure V15V Tonearm	Jul	44
Sigma Drive	Jan	46
Thorens TD166 II Deck	Sep	29
Trio KA-1000 Power Amp	Jan	46
Trio KA-50 Amplifier	Sep	29

ON SALE IN ALL
BRANCCHES OF WHSSMTH
FROM 18th NOVVEMBER 1982
PRICE 191.25 components and a whole big new section devoted to home computers and personal software. As always the catalogue keeps you up-to-date with the latest technology - even our ordinary miniature resistors are now superb quality 1% tolerance metal film, yet they're still only $2 p$ each. As well as our usual quality products at low prices, now we're offering quantity discounts too. So pick up a copy of our catalogue now - it's the biggest and the best!

Post this coupon now for your copy of our 1983 catalogue, price $£ 1.25+25$ p p\&p. If you live outside the UK send $f 1.90$ or 10 International Reply Coupons. I enclose $£ 1.50$.

Name

Address .

B

 ELECTRONIC SUPPLIES LTD

 P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 552911/554155 Shops at:159-161 King Street, Hammersmith, London W6 Tel: (01) 7480926 Lynton Square, Perry Barr, Birmingham. Telephone: (02.1) 3567292 284 London Road, Westcliff-on-Sea, Essex. Tel: (0702) 554000 All shops closed Mondays

[^0]: Registered office: Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA. Registered number: 574102 England.

[^1]: NEW COMPREHENSIVE CATALOGUE AVAILABLE

[^2]: Gep :r Fully built \& tested
 Fully built $\&$ tes

 With this fully built and calibrated module a wide range of accurate equipment such as multimeters. thermometers, battery indicators etc, can be constructed at a fraction of the cost of ready-made units. Full detaits are supplied for extending the voitage range, measuring current. resistance and temperature.
 Fulty guranteed, the unit has been supolied to electricity authorites. Government depanments, etc.

 ## Temperature Measurement Kit DT. 10

 $£ 2.25$ + VAT
 Using the I.C. probe supplied, this kit provides a linear output of $10 \mathrm{mV}{ }^{\circ} \mathrm{C}$ over the temperature range from $10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit is deal for use in conjunction with the DVM module providing an accurate digital thermometer.
 Power Supply PS. 209
 $£ 4.95$ + VAT
 This fully buith mains power supply provides two stabilsed isolated outputs of 9 V . 250 mA each. The unit is ideally sulted tor operating the DVM at Temperature Measurement module.

 $$
 \begin{aligned}
 & \begin{array}{l}
 \text { Positive \& negative voitage with } \\
 999 \mathrm{mV} \text { which is easily extended }
 \end{array} \\
 & \text { Requires only single supply } 7 \cdot 12 \mathrm{~V} \\
 & \text { - High overall accuracy }-0.1 \%+1 \text { dign } \\
 & \text { - Large bright } 0.43^{*} \text { LED displays } \\
 & \text { - Supplied with futt applications data } \\
 & \text { onfy - Requires only single supply } 7.12 \mathrm{~V} \\
 & \text { f11.95 - High overall accuracy }-0.1 \%+1 \text { dig' } \\
 & \text { - Large bright 0.43 LED displays }
 \end{aligned}
 $$

[^3]: FREEPOST- no stamp needed. Prices apply to UK only. Export prices on application.

[^4]: Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for $110 \mathrm{~V},{ }^{\prime} 1$ ' in place of X for 220 V (Eurapel. and ' 2 ' in place of X for 240 V (U.K.) All units except UCt incorporate our own toroldal transformers.

[^5]: Mail order only Trade enquiries welcome Bulk order discounts \bullet Prices include VAT

[^6]: Nothing is used in this project that you can't find in your junk box. The PCB can be bought from our PCB Service as advertised on page 99.

[^7]: RETAIL SHOP OPENING HOURS NOW IN STOCK
 Monday to Thursday 8．30－6．30 MF 10 －National＇s new Dual
 Friday 8．30－8．30 Saturday 9．00－5．30 Switched Capacitur Fitter
 （Access＋Barclaycard ordeys accepted）

