

EII MOBILE-To Be Built By Humans Run By Computer

EII MIGROTUTOR-Teach yourself To Handle Machine Code!

Playmate project
for aspiring guitarists!

Powertran's black boxes are packed with punch. Not only are they superb kits to buy and build they really do the jobl Imaginative and ingenious design goes hand in hand with top quality materials and outstanding performance capability. With their smart black styling the kits harmonise visually as well as musically.
Your can built each unit independantly for its set task and then gradually increase your array until you have a complete bank of formidable controllable power.

Complete Kit - $£ 49.90+$ VAT

Complete Kit - $\mathbf{£ 4 9 . 5 0 + V A T}$

Complete Kit - $\mathbf{£ 1 7 5 . 0 0 + V A T}$

Complete Kit - $\mathbf{£ 6 4 . 9 0}+$ VAT

MPA 200 is a low price, high power 100W amplifier. Its smart styling, professional appearance and performance, make it one of our most popular designs. With adaptable inputs the mixer accepts a variety of sources yet straightforward construction makes it ideal for the first-time builder

CHROMATHEQUE 5000 - a 5-channel lighting system powerful enough for professional discos yet controllable for home-effects. Sound to light, strobe to music level, random or sequential effects - each channel can handle up to 500 W yet minimal wiring is needed with our unique single-board design.

ETI VOCODER - 14 channels, each with independent level control, for maximum versatility and intelligibility; Two input amplifiers - for speech/excitation - each with level control and tone control. The Vocoder is a powerful yet flexible machine that is interesting to build and thanks to our easy to follow construction manual, is within the capability of most enthusiasts.

SP2 200 twice the power with two of the reliable, durable and economic amps from the MPA200; fed by separate power supplies from a common toroidal transformer. Superb finish and quality components throughout - up to leven over!) the standard of high priced factory-built units.

DJ90 Stereo Mixer - this is a really versatile new mixer that enables the constructor $D J$ to produce a professional performance every time. There are two stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Other 'plus' features are auto-panning for fast or slow, slider controls, multi-mixing, ducking, interrupt, input modulation, in short everything. . the whole works - AND under $£ 100$ complete! (We have illustrated the DJ90 teamed in our own console with the Chromatheque and an SP2 200 and speakers.

Complete Kit - $\mathbf{£ 9 7 . 5 0 + V A T}$

WORLD LEADERS IN ELECTRONIC KITS

- Money Back Guarantee - If you are not completely satisfied with your Powertran Kit return it in original condition within 10 days for full refund
- Free Soldering Practice Kit - To assist the beginner we will supp on first kit order, a free soldering pratice kit with wupply, on illustrations.
- Component Packs - Most kits are available as separate packs (e.g. PCB component sets, hardware sets etc). Prices in our FREE catalogue.
- Ordering - Full ordering details, delivery service, and sales counter opening - inside back of this issue.
PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS SP10 3NM. (0264) 64455.

Ron Harris B.Sc : Editor
Peter Green : Assistant Editor
Kathryn McFarland : Editorial Assistant Rory Holmes :
Phil Walker : Project Editors
Alan Griffiths: Divisional Advertisement
Manager
T.J. Connell : Managing Director

PUBLISHED BY:
Argus Specialist Publications Ltd.
145 Charing Cross Road, London WC2H OEE
DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd.
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
QB Limited, Colchester
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS
EDITIONS
and their EDITORS

AUSTRALIA ~ Roger Harrisor CANADA - Halvor Moorshead CERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC
 > Member of the Audit Bureau of Circulation

 Member of the

 Member of the Audit Bureau Audit Bureau of Circulation

 of Circulation}Electronics locay is normally published on the first Fri day in the month preceding cover date.] The contents of this publication including all articles, designs, plans, drawings and programs and all convright and other intellectual property rights therein belong to Argus Specialist pubications Limited. All rights conterred by the Law of Copyright and other intellectual property tions are specificially reserved copyright convenPublications Limited and any reproducrion requires the prior written consent of the Company © $\Theta 1982$ Argus Specialist Publications Ltd \square All reasonable caze is taken in the preparation of the magazine contents' but the publishers cannot be held legally responsible for errors. Where mistakes do occur a correction will nor mally be published as soon as possible atterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Nether the advertisers nor the publishers can be held responsible, however, tor any variations affecting price or availability which may occur after the publica-
tion has closed for press.
\square Subscription Rates, UK $£ 11.95$ including postage. Airmail and other rates upon application to ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR.

EDITORIAL AND ADVERTISEMENT OFFICE

 145 Charing Cross Road, London WC2H 0EE. Telephone 01-437 1002/3/4/5. Telex 8811896.
FEATURES

DIGEST
10
Some humour and some hard facts about the electronics scene.
DESIGNING MICRO SYSTEMS . . . 19
Everything you ever wanted to know about microcomputing hardware (but didn't know who to ask).

TECH TIPS .34 Three pages of circuit designs submitted by our inventive readership.

CONFIGURATIONS

 45lan Sinclair has done us proud on this one. This new series examines some of the basic transistor building blocks and gives all the design data you need to use them yourself. One to cut out and keep.

READ/WRITE

This month's page of readers' correspondence deals with such diverse topics as lucid dreams, car control and crossword puzzles.

DESIGNER'S NOTEBOOK

66
The device under scrutiny this month is the versatile DPM200, an excellent little DVM module.

DATA SHEET

You wanted it back and here it is! Our monthly glimpse at the manufacturers' info begins with a fast buffer amplifier.

PROJECTS

THE PLAYMATE
28 No, not that sort of Playmate - this one's a guitar amplifier with built-in fuzz and wah-wah effects. It's portable, too.
KITCHEN SCALES PART 2 39
We conclude this novel project with the full constructional details and the calibration procedure.
MICROTUTOR
50
Get to grips with 6502 machine code; this very cheap teaching tool allows you to get hands-on experience with the language of the microprocessor.

RUGBY CLOCK

60
How would you like a clock/calendar you never have to put right? Here it is, with a whole lot more to offer besides. SOUND TRACK72

We were bored with the usual sort of hand-held DIY electronic game, so we came up with this audio version of the shoot-'em-down type.
MOBILE 2
We've enough modules designed now to
make something of them - and it's time you got involved, too.
FOIL PATTERNS 87

BINDERS . 43

RAM SCOOP 4118200 NS : for $£ 12.95$ 4164200 NS E1.50 each INC VAT

WIRE WRAP SKTS. 24 Pin Vore 24p 14 Pin Goid 22p 16 Pin Gold 24p 100 PCS Min Ord.

C10
 oata cassettes 10 for $£ 5.75$

 Inc. VAT 50Ω ANC PLG 50, PL259 PLG 40p S0238 SKT 35p 100 PCS MIN ORD.

TELETYPE ASR33
1/O TERMINALS
"OLIVETTI TE300"
PRINTER/TERMINALS

MPU
ExPERIMENTORS $+5 v+12 v-12 y+24 v$ POWER SUPPIY

Once satin we are very plessed to ofter this suppet Powar Supply Unit and hope to satisfy most of our previous customers who were dazppointed when we sole out dua to demand last time they were advertisod!!! These units may us? havo well bean made for your lien, thay consist of a semienclosed chassis masuring $180 \mathrm{~mm} \times 120 \mathrm{~mm} \times 350 \mathrm{~mm}$ containing an sitcon actroncs to give the following fulty regulated and shon circuit proof outputs of $+5 v @ 2 \operatorname{amps} D C \quad+12 v @ 800$ ma DC $-12 v @ 800 \mathrm{maDC}+24 v @ 350 \mathrm{maDC}$ and it that's nol emounghia fuly floasing 5 voutpot © 50 maDC which may be seriesed to give a host of other wotinges. Al outputs are brought out to the font pand wia ministure jack sockers and are ajso duplicated at the rear on short flying laads Unts accepl standard 240v mams input They are ax GPO and may have minor scratches on the from panels, they are sold untested boit in good imemal condition $£ 16.50$ each $+\mathbf{£} 2.50 p+p$ complete with circuit and component last Tramstomer guaramead. HURRY WHILE STOCKS LAST!!

HIGH SPEED DATA MODEMS

A supert piece of expinearing mado by SE Lats ty: 102 "no coss somered" spocitor the GPO, the Modern 12 is a nuchronous Modem for use on DATEL 2412 sevicas or Ther data inks Many hosures nciup switheole 126 modulation 2400 baud fuld dudex 600/1200 standthy. 3uto answer. 4 wie or 2 wite aptration Set rest LEIT atatus indication CMOS echnorogy. moduar construction ongral cost ovel $£ 700$ each. Beteved brand now. suplied complete with PSU er
$£ 185.00+£ 9.50$ cariage + VAT
"Permission may be required for comection to po ines

DISTEL ©

"Dial our Database!'
Get information on 1000 's of stock items and order via your computer. 300 baud on 01.6896800 18.30 to 09006 days a week and day Sundays IT'S FREE!

Fromf195 : CAR
Fully fledged industiy standard ASR33 data ter minal. Many features including: ASCII keyboard RS232 serial interface, 110 baud 8 bit paper tape RS232 senal interface. punch and reader for oH line data preparation and
ridiculously cheap and reliable data storage Sup ridiculously cheap and reliable data storage. Sup
plied in good condition and in working order phed in good condition and in w
Options: Floor stand $\mathbf{5 1 2 . 5 0}+$ VAT

KSA33 With 20 ma loop mertace $£ 125.00+$ VAT
Sound proot enclosure $£ 25.00+$ VAT

DIABLO S30 DISK DRIVES

Another shipment allows us to offer you even greater savings on this superb 2.5 MB (formatted) hard disk drive. Two types are available both fully refurbished and electronically identical, the only difference is the convenience of changing the disk packs.
S30 front loader, pack change via front door $£ 550$ + vat
S30 fixed, pack change via removal of top cover £295 + vat
$+8-15 v$ PSU for 2 drives $£ 125+$ vat Carrizge \& insurance on drives $£ 15.00$ + vat fully OEC RKO5. NOVA TEXAS compatable further infoon controllers etc on request

MAINS FILTERS

Professional type mains filters as used by "Main Frame Manutacturers" ideal for curing those unnerving hany ups
and data ghtches, fit one now and cure your problems! and dert gitches, it one now and cure yaur pro
Suppression Devices SD5 A 105 amp $£ 6.95$
Corcominc F1900 $30 \mathrm{ampf} 1395+$ pp f1.00

DC SYSTEM SUPPLY

Proiesshanal fully cased fan cooled system supoly. Standard 240 Vac inpul with the following DC outputs 5V(@) 11 amps $+15 \cdot 17 v @$ amps. $\cdot 15 \cdot 17 v @ 8$ amps and $+24 v 2$ amps. All outputs are fully crowbar protected and the 5 volt output is fully regulared. Sold
tested and in a new or lintep used condition comalete tested and in anew or hitie used condithon complete
with circurt $£ 55.00+$ carr $£ 8.50+$ vatDMM $15.5^{\prime \prime} \times 9^{\prime \prime} \times 6$

NATIONAL MA1012LED CLOCK MODULE

$\star 12$ HOUR

\star ALARM

* 50/60 HZ

The same module as used in most ALARM/CLOCK radios today, the only difference is our price! Al electronics are mounted on a PCB measuring only $3^{\prime \prime} \times 11^{\prime \prime}$ and by addition of a few switches and 5/16 volts $A C$ you have a multi function alarm clock at a fraction of cost. Other features include snooze timer, am pm, alarm set, power fail indicator, flash ing seconds cursor, modulated alarm output etc. Supplied brand new with full data only
Suitable transformer f1.75.
$£ 5.25$

? 1/ (:TRONIC (OMPYONT N S 66%

Due to our massive bulk purchasing programme

 which enables us to bring you the best possible bargains, we have thousands of I.C.'s. Transistors, Relays, Cap's., P.C.B.'s, Sub-assemblies, Switches etc. etc. surplus to our requirements. Because we don thave sufficient stocks of any one item to include in our ads. We are packing all these items nto the BARGAN PARCEL OF A LんETINE Thousands of components at giveaway prices! pay plus we always include something trom our ads for unbeatable value!! Sold by weight$2.5 \mathrm{kts} \mathrm{f} 4.75+\mathrm{pp} \mathrm{f} 1.25 \quad 5 \mathrm{kts} \mathrm{f} \mathbf{6 . 7 5 + p p} \mathrm{f} 1.80$

A complete $1 / 0$ terminal with integral 8 hole paper tape punch and reader, full ASCII keyboard, 120 column printer, and control unit. The printer is capable of 150 baud with a serial TTL or balanced input-output sold in good overall condition but untested. Complete with circuit unguaranteed. Connect direct to your micro at ONLY£99.00 $+£ 11.50$ carr + vat

THE PRINTER SCOOP OF THE YEAR THE LOGABAX Z8O MICROPROCESSOR CONTROLLED LX180L MATRIX PRINTER

A massive bulk purchase enables us to offer you this superb professional printer at a fraction of its recen
cost of over E2000. Utilising the very latest in Cost of over $\in 2000$. Utilising the very latest in
microprocessor technology it features a host facilities with all eiectronics on one plug in P.C.B. Just study the specification and you will instantly realise it meets all the requirements of the most exacting rotessional or hobbyist user.
STAMDARD FUNCTIONS \star Full ASCII character set \star Standard ink ribbon $\&$ RS232/N24 serial interface -7 xtal controlled baud rates up
$9600 \star 194$ characters per line \star Parallel interface \star Handshakes on serial and paralle ports 4 Type tonts, itaic script, double width, italic large, standard \# Internal butfer \star Internal self test $\star 170$ CPS \star Variable paper tractor up to $175^{\prime \prime}$ wide $\$$ Solid steel construction \star All software in 2708 eproms easily reconfigured for custom fonts etc. All this and mare, not refurbished but BRAND NEW At Only $\mathbf{E} \mathbf{2 5}$ + vat

OFTIONAL EXTRAS* Iower case option $£ 25.00 * 16 \mathrm{k}$ bufter $£ 30.00^{\circ}$ Second tractor for simultaeous dual forms $£ 85.00$ * Foor stand $£ 45.00$ * specialist carriage $£ 19.00 \mathrm{~A}$ items plus VAT data sheet on request.

8" FLOPPY DISK DRIVES

Unbelievable value the DRE 7100 \& 7200 8" disk
drives urilse the finest techelogy drives utilse the finest technology to give vou 100% bus compatability with most drives available today. the only difference being our PRICE and the superb
manufacturing quatity, The 7100 single sided \boldsymbol{E} 7200 double sided drive accept hard or soft sectoring, IBM or ANSI standard giving a massive 0.8 MB 7100) \& 1.6 MB (7200) of storage Absolutely
SHUGART, BASF. SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 day warrank 100 single sided

 Dult technical manual C 2000 alone f 9.00 with drive, refund of difference on purchase of drive SPECIAL new. KODE PSU, drives 2 DRE drives $£ 39.99$ + carr + vat
$8^{\prime \prime}$ single sided. single or double de nsity diskettes $£ 1.80$ each $£ 15.00$ for 10 inc. libcase + vat.

COOLINGFANSP! "AL

Keep your equipment cool and reliable whth our range of professionsl fan ETRI $99 \times \cup 01$ Miniature equipment

ETRI $99 \times$ XVI Miniature equipmentían 240 vac working DIM 92 complete with finger guard. Makers price $\mathbf{C 1 6}$ our price E 10.25

 complete with finger guard. Makers price $£ 16$ our price $£ 10.25$BUHLER 89.11 .22 micro miniature $8-16$ vDC reversibie Ian. M Uses a brushiess DC servo motor, almost silent Junning ideal portable 10.000 hours. BRAND NEW manutacturers price $£ 32.00$ our price $£ 13.95$ MUFFIN CENTAUR cooting fans. tested ex equipment 240 V £6.50, $115 \mathrm{v} \mathbf{£ 5 . 5 0}+\mathrm{p} 5 \rho$ $£ 1.90$
KOOL TR
KOOL TRONICS Powerful snail type blower gives massive air movement with centnfugal rotor
OIM as a cube $8 \times 8^{\times 6} \times 6^{\text {air }}$ aperture $2.5^{\prime \prime} \times 2.5^{\prime \prime}$ with flange fixing. BRAND NEW 110050 Hz ac working ONLY£ $9.95+E 1.90 \mathrm{pqp}$
 Croydon, Surrey, Tel: 01-689 7702 or 01-689 8800 INFORMATION Unless otherwise stated all prices inclusive of V.A.T. Cash with order. Minimum order value $\mathbf{\text { 2 }} .00$ Prices and Postage quoted tor UK only. Where post and order value $\mathbf{E 2 . 0 0}$ Prices end Postage quoted for UK only. Whare post and
packing not indicated please add 60 p per order. Bona Fida account orders macking not indicated please add 60p per order. Bona Fida account orders same day where possible. 3\% surcharge on Access and Barclaycard orders.

SOFTY 1 \& 2

Software development systerm invaluable tool for designers, Blows, copies, reads EPROMS or surgery on 2716,27 /etc in situ whilst displaying contents on domestic TV receiver. Many other features. $£ 115$ + carr. + VAT. Optional 2716. 2716 Function Card $£ 40$ + VAT. PSU $\mathbf{E 2 0}+\mathbf{£ 1} 1.50^{\circ}$ carr. + VAT. Sofyy 2 for 2716/2732 £169+VAT

G', YIDEO

MOMTORS
Ex-equipment $9^{\prime \prime}$ Motorola Video Monitors 75Ω composite input, tested but unguaranted. $£ 39.99+£ 7.50$ carniage + VAT. Complete with circuit.

SEMICONDUCTOR GRAB BAGS

 with manutuct
TLL
74 Seris.
A pipentic purchase ol an "ecroan wa boerd" range of 74 TTL Enies !.C.s

D($\mathrm{H}^{\text {fulut Casin }}$ KEYBOARDS

 IDEAL -
 TANGERIN OHIO ETC,

Streight from the U.S.A. mada by the world tamous R.C.A Co, the VP600 Series of cased freestanding keyboards meet all requirements of the most exacting user, night down to the price
Utilising the latest in switch technology Guaranteed in excess 5 million operations. The keyboard has a host of other features including full ASCII 128 character set, user definable keys upper/lower case, rollover protection, singte 5 V rail, keyboard impervious to liquids and dust, THL or CMOS outputs, even an on-board tone generator tor keypress feedback, and a l year full R.C.A. backed guarantee

VPGOM 7 bit fully coded output with delayed
strobe, atc.
VP611 Same as VP601 with numeric pad VPGD6 Serial, RS232, 20MA and TTL output, with 6 selectable Boud Rates
VP615 Same as VP506. with numeric pad, Plug and cable for VPG01, VP611 £2.25 Plug for VP606. VP616 Post, Pecking and Insurance. ORDEA NOW OR SEND FOR DETAILS.
£1.95
5VD.C. POWER SUPPLIES
Following the recent "SELL OUT" demand for our $5 v$ 3 amp P.S.U. we have managed to secure a large quantity of ex-computer systems P.S.U.'s with the following spec.: 240 or 110 v A.C. input. Outputs of $5 \mathrm{v} @ 3-4$
amps, $7.2 \mathrm{v} @ 3 \mathrm{amps}$ and $6.5 \mathrm{v} @ 1$ 俍 $\frac{\mathrm{amps}}{} 7.2 \mathrm{v} @ 3$ amps and $6.5 \mathrm{v} @ 1$ amp. The 5 v and 7.2 v outputs are fully regulated and adjustable with
variable current limiting on the 5 v supply variable current limiting on the 5v supply. Unit is self
contained on a P.C.B. measuring only $12 \times 5 \times 3$ The 7.2 v output is ideal for feeding "on board" $\times 3$. lators or a further 3 mpl M 323 K g on board regus. effective $5 \mathrm{v} ~ 7$ lat effective 5v @ 7 amp supply Supplied complete with circuit at only $\mathbf{f 1 0 . 9 5 + £ 1 . 7 5 p p}$
Believed working but untested, unguaranteed.

5

\mathfrak{c}

POST, PACKING \& INSURAN
Export orders minimum $£ 1.50$.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIG
 Beeb's Loss of Memory
 Tf you're stuck in the waiting list

 Lfor a BBC Microcomputer, we've done some simple arithmetic that may persuade you to cancel your order and choose an alternative. One of the major selling points of the Beeb machine has always been the high resolution graphics, but it isn't until you let high-res loose on your memory that you find out the snag. For example, the Model A is adver tised as being a 16 K machine. In fact it's only 16 K if it's turned off As soon as you switch on, the operating system automatically reserves 3328 bytes as its workspace, and a further 1 K goes to the memory-mapped screen if you're in mode 7 (40×25 teletext).

Plug-in Power

T These smart cases have been added to the West Hyde range and are designed to house power supplies for low-voltage equipment such as calculators, radios and TV games. Two sizes are available, both able to accommodate PSU components including the transformer, and the case may be plugged directly into a 13 A socket. You can have any colour so long as it's black or white, and the case is moulded in impact-resistant ABS. More details from West Hyde Developments Ltd, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks, HP20 IET.

Flock Of Eagles

Gagle International, the indusEtrial electronics company, have introduced three new professional public address mixer/ amplifiers. These are the TPM 40, TPM 80 and TPM 120 models which offer - surprise, surprise 40,80 and 120 W RMS output power. All three are suitable for both four-eight ohm or 100 V line speaker systems. General spec is $30 \mathrm{~Hz}-15 \mathrm{kHz}$ frequency response, priority paging over background music, master volume controls
etc, and two year guarantee Individually, the IPM 40 has battery backup for mains failure, three mike and two auxiliary inputs, plus a tone control; the TPM 80 is mains-only with a tone control, four mike, one record deck and two auxiliary inputs; and the TPM 120 has the same inputs as the 80 but with independent bass and treble controls and more versatile input controls. Further information from Eagle International Precision Centre, Heather Park Drive, Wembley, Middlesex HA0 1 SU .

SDP Shrinks Drastically

Hot on the heels of the BICCVero Speedwire prototyping system, reviewed exclusively in the June E'TI, comes the SDP-500 range of digital panel meters. The SDP range (do we detect political overtones?) is into miniaturisation in a big way, if that's not a contradiction - they measure only $48 \times 24 \times 48 \mathrm{~mm}$. Packed into this tiny case we have the latest

LSI dual-integration A-to-D technology for high stability and excellent noise rejection (40dB at 50 Hz), bright 9.2 mm LED display with anti-glare filter, externally programmable decimal points and external hold. The eight models cover DC voltage or current measurement from $\pm 199.9 \mathrm{mV}$ to $\pm 199.9 \mathrm{~V}$ and \pm 199.9 uA to $\pm 199.9 \mathrm{~mA}$. The supply is 5 V at 100 mA maximum. For a comprehensive application guide contact Verospeed, Stansted Road, Boyatt Wood, Eastieigh, Hants SO5 4ZY.

Cut With Comfort

Now hands that do cutting can N feel soft as your face...with these self-opening, cushion-grip hand tools. The three tools each weigh about 80 grams and comprise an angle side cutter, short fine nosed and long fine nosed pliers. Each tool costs $£ 2.90$ plus 45p P\&P and VAT, and is available by mail order from Electronic Hobbies Ltd, 17 Roxwell Road, Chelmsford, Essex, CM1 2LY.

That's Entertainment?
 Tt seems there's at least one jolly 1 wag at Linvar Ltd; they've sent us details of the ASAD Work Centre. ASAD? - well, that stands for All Singing All Dancing, to signify the fact that it's somewhat versatile. When

assembled the Work Centre is 5 by $2^{\prime} 6^{\prime \prime}$, but it can be packed up into its tailor-made carton for storage. The total cost is $£ 89.90$. Drawers, cupboards, shelves and a host of other accessories are available, including a paper cutting unit. This features in the Linvar Packing Bench, built from ASAD components. This more specialised work centre is designed to be the basis of a costeffective packing department. Another aspect of Linvar's involvement in small parts storage is the 'Linbin' range of polypropylene containers, one of which is shown in the second photo. Linvar can be contacted at Bark by Road, Leicester, LE4 7LL.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Shorts

- A lot of hot air from Hellermann Electric of Plymouth; their new heat-guns, the GHM Mite and GHW-Triac are ideal for use with the "Helashrink" range of heatshrink sleeving.
- The ZN435 from Ferranti is a new multifunction eight-bit data converter. The standard 18 -pin DIL IC contains a fast DAC, an up/ down counter, a precision voltage reference and a clock generator. Uses include ramp-and-compare and tracking ADCs, low-frequency waveform generators, fader controls and radio channel selectors.
- Thorn EMI and JVC have postponed the launch of the VHD videodisc system in Japan for economic and marketing reasons. The same decision was recently taken in the USA. To achieve a coordinated launch, VHD won't now appear in the UK until 1983.
- Gulf Oil have donated an out-of-date IBM computer to the Science Museum in London. The machine was originally bought in 1978 for a quarter of a million pounds; the Science Museum hope
to have it in running order eventually.
- The first edition of the Electroware catalogue is now available and contains too much to list here; we'll just say it's good, it's free (30 p P\&P, though) and it's available from Electroware, Dutton Lane, Eastleigh, Hants, SO5 4AA.
- Stuck when it comes to metric conversion sums? The LC950 from Casio can switch from one system of weights and measures to another and has a split level display showing both sets of figures. RRP is $£ 18.95$.
- It seems there are people in the electronics industry who can think up even worse puns than us (is this possible, you gasp). MC Computers Ltd, of Newbury has launched a repackaged version of the Apple II personal computer, so naturally they've called it the Apple Pi.
- The 1982 edition of the IC Master (which contains details of more than 55,000 ICs) is now available in two hardback volumes from Paterson, Steadman and Partners of Saffron Walden. Price is $£ 59.00$ inclusive, which is one tenth of a penny per IC.

More For Less
7 emco's latest car computer, Lthe CompuCruise, has several new features but costs $£ 20$ less than the previous model. For $£ 130$ you get on-line fuel consumption; clock with stopwatch facility, cruising speed control, distancel time/fuel-to-arrive calculations, battery voltage indicators, inside and outside temperatures and about 15 other functions. The car freak who has everything (except a computer) can contact Zemco at 66 Earlsdon Street, Coventry, CV5 6EJ.

Candid Cameras

Could this be a prototype TV of Cthe future, once satellite TV brings us a bewildering choice of channels? Nope - it's JUPITER, a CCTV control system from PhotoScan Ltd for multi-camera configurations. The microprocessorbased system allows cameras to be incorporated in multiples of 32, with up to 10 monitors, video recorders, remote camera controls, controls for up to four alarms per camera, and a lot of other stuff for security with a vengeance. Because the system is software-based the surveillance system can be modified to meet the needs of any customer. PhotoScan are at Dolphin Estate, Windmill Road, Sunbury-onThames, TW 16 7HG, if you want to know more - what we want to know is, why we never see security guards that look like this.

Fax You Should Know

For a special three-month Revaluation period, ITT Business Systems will allow customers to rent a Telefax facsimile unit at virtually halfprice. At the end of the three months, they have the option to buy the unit or return it.

Lithium Cell Clicks

K odak's new disc camera is revoMlutionary in more ways than one - it will be using a high performance lithium battery from Matsushita. The disc camera does not use conventional film pictures are taken on a flat disc of film and the camera includes automatic film advance exposure control and electronic flash. The lithium battery was chosen to power all this lot because of its high-rate pulse discharge capability (greater than 1 A), wide operating temperature range,

Orient On Air

Here's a novel story - Pye HTelecommunications have won an order to supply mobile radio equipment for Chinese transport vehicles. It would have been nice to report that the rickshaw in the picture was being fitted with the equipment, but not

Facsimile transmission, as if you didn't know, is an electronic method of sending test, pictures, or graphics: the document is scanned, coded and send down a telephone line to be printed out as hard copy on a receiver anywhere in the world - all very clever, although the young lady looks quite bored by it all. If you're interested, IT'T Business Systems live at Diversey House, Chalk Lane, Cockfosters, Barnet, Herts EN4 0BU.

10-year shelf life and high reliability and safety. The lithium cell is expected to find increasing use in consumer products including cameras, flashguns, radios, transceivers, and telephone pocket pagers, as well as security and emergency equipment.
such luck; it's the Kew Kwan Motor Road Co. buses that are getting the two-way treatment. It'll be the first time that China has had radio-controlled vehicles, and Kee Kwan, who hold the exclusive bus tour franchise for Macau, expect that the system will improve route supervision, efficiency and safety.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

The Light Fantastic

This bizarre pic arrived at the office with an announcement that General Instrument Iamps of Bury St. Edmunds will be marketing Tokyo Minilite Ltd products in Europe. Assuming they haven't cheated with a fake flower, then Minilite definitely lives up to its name. For further information contact General Instrument Lamps Ltd, Beetons Way, Bury St. Edmunds, Suffolk IP32 6RA. Note to ad agencies: it's ingenious pix like

At The Zenith

Regular readers of the mag will Rknow the high regard we have for Heath Electronics and the quality of their kits, so a new printer from Zenith Data Systems ($\frac{1}{}$ Heath division) has to be good news. The Z-25 is a bi-directional printer with quad tractor feed which provides accurate forms

AUSSAT Owzat?

Hughes Aircraft Company Mhave signed an agreement to build Australia's first communication satellite system. The three satellites, to be known as AUSSAT, will provide a variety of communication services including the first TV transmissions to many of the communities and homesteads in the remote outback regions. Other services include digital data transmissions, telephony, air traffic control and maritime radio coverage. The first of the satellites

this one that make it worthwhile ploughing through the hundreds of boring press releases we get each week.
registration, and a 9×9 dot matrix head for high quality print. The character set includes all 95 ASCII characters (upper and lower case) as well as 33 graphics characters. The high print rate (greater than 150 characters per second) results in a print speed of about 300 lines per minute for 10 column lines, and 65 lines per minute for 132 column lines. The operator can select from $10,12,13.2$ or 16.5 characters per inch, while the completely enclosed cabinet results in quiet operation. The printer interfaces to microcomputers via an RS-232C serial interface or 20 mA current loop. The printer (and other Zenith products) are marketed in the UK through Zenith Data Systems outlets.

will be launched in mid-1985, and each satellite is warranted for seven years; one hell of a trip for the service engineer, though!

Stereo VHS

Cound quality continues to Simprove in the video recorder field; the new top-of-the-line HR7650 EK from JVC features stereo sound amongst a host of other goodies. This means that the inceasingly frequent simultaneous broadcasts on TV and FM radio can be recorded, as well as allowing playback of the fast-growing number of prerecorded stereo video tapes. Sound quality is further improved by the inclusion of a Dolby noise reduction system. There are some pretty good extras on the video side too, such as insert and assemble editing, a special effects playback for fast or slow picture search, double speed play, still
frame and frame advance. A full function $1 R$ remote control unit is also provided. Please can I have one for my birthday?

Change Of Key

T^{h}his is a gorgeous young lady and that's her hotel key in her hand. Well, no-one would dispute the first statement, but the second probably requires a bit of explanation. The card is part of a new programmable electronic door lock system developed by the Yale Security Group for better hotel security; the system is known as Yaletronics. Each lock uses a Yale mortice lock and a microprocessor synchronised to the central computer - the locks are each battery-powered to avoid any costly hard-wiring. The present "credit-card" keys are presently made from plastic, but anything could be used; they have the advantage of being small, light and able to have the hotel's logo, room number and other information printed on them.

Each successive guest at the hotel is assigned a different code combination from the millions stored in the computer on a floppy disc with a 5000 -room capacity. The system has a printer to record such information as who made each key, the security level and the date. There are six security levels, from guest keys through maid's keys to master keys and emergency keys. The receptionist uses the system to punch a new key for a guest when he checks in, the microprocessor in the lock

cancelling the previous card. Hotel owners with security problems can obtain further information from Yale Security Products Ltd, Wood Street, Willenhall, East Midlands, W13 1EA.

Of course, it was only a matter of time before a security company caught up with the private detectives on TV, who've been opening doors with credit cards for years..

THE MULTI-PURPOSE TIMER HAS ARRIVED

Now you can run your central hasting, lighting, hi.fi system and lots designed to contral tour mains obie Ats your selection it end oft at pro-set times ovar a 7 day cycle, os.g. To control your centrai heating fincluding differant switching times for wookendakh, jurt
connect it to your symem programme and sot it and torget it connect it 10 Your
clock will to the rest.
features include:

- 0.5^{-}LED 12 hour diuplay
- Day of wook, ampmpm and output stotus indicatorn.

Battery beckup zevess stored progerammes and continues time kooping during power toilures. (Bemtery not supglised). - Display bishking during power tailure to conserve bettiery pow - 18 progremme time sotes - Powerful "Everyday Function anabling output to mwitch avery dar but use only ona tima mer. - Direct zwitch control enabling output io tor ono hour immedistaly or atior a specified tima interval. 20 function keyped for procoramme entry.

R inclur
(Kit includes all components, PCB, assombly and programming instructions).

HOME LIGHTING KITS These kits contain all neccassay components and ful instructiont A are designed to replace a Atendard wall TDR300K Remote Control $\mathbf{£ 1 4 . 3 0}$ MK6 $\quad \underset{\text { Tranamitter for above }}{ } \mathbf{£ 4 . 2 0}$ rD300K Touchdimmer $£ 7.00$
 LD300K $\begin{aligned} & \text { Rotary Controlled } \\ & \text { Dimmer }\end{aligned}$ Rotary
Dimmer

MINI KITS

MKO TEMPRATUAE

 CONTMOLEMTHERMOSTAI Usee (LM3911 K. to somie tompere heater 1 KW mx.) and 1soal for owiching moto
 Suppliod with naro voltago wintching mpachenot Dusitiy Displeys an matoqua votuge on inear 10 elememt LED dienday as a
ber or mertar single dot. Ideas for thormostacheod to obtain 20 to tice May be diaplaya. Requires 5 -20V eupply. MEA PROPOMTIONAL Bemeratune CONTROUER owitch, this the may be wired to tor - "buirt firis powerr controller, onsbling the temperature of en on.
cloure to bo maintined to within
0.500

 kit will switch amsins loed on (o) ofti)
ior a posen time from 20 mina. to 33 hro. congee or thornor periosio moy

disco Lighting kits

\& 3-NOTE DOOR CHIME J/ δ Basod on the SABOEOO IC the kit is suppied with all components, including loudapoeker, printed circuit board, a pro-drilied box ($85 \times 71 \times 36 \mathrm{~mm}$) and full instruc.
tions. Fequire oniy a $P P 3$ gV bertery end puen-witch to completo. AN IDEAL PROJECT FOR BEGINNERS. Order at XK 102
$\mathbf{£ 5 . 0 0}$
For a detailed booklet on remote control -- send us 30p \& SAE ioday

"OPEN-SESAME"

The XK103 is a genoral purpose infrared tranemitrari occiver with one momentery (normally open) relay contor control ling motorised garage doors end two auxillory outputa for drivegorerege lights al a renge of up to 40 t . The unit 1 woo has numerous applications in the home for witching lighta, TV. closing curains, etc. Idese for agod The kit comprisee. button transminter, comporewed recosiver, a four requiring a 9 V batiory and one opto-isoleteded solid state ewitch kif for intartacing the recoiver to mains spopliances. As with all our kits, full inatrucions are supplied.

Only £23.75 xK105) can be suppliod.
XK104 £2.40 XK105 £10.50 HOME
CONTROL ${ }^{\text {thi }}$ coded comfort of your armanywheres in the to control up coded pulses into the marmain. The transmithense from by receiver moo the mains wiring transmitter injects
supply ind modes conth supply and used to swithnocted to the core received Receivers ared to switch on the to the same mains keyboerd, followed by and by means ance addressed. pushing butlons can by an or off of a 16 -way. mitter also includes become rather command. Since heatingme your fav computer interface, the trans. morning, electric blavkeurite micro to so you can OF THE POS. without rewirinake your coffen lights, componensibilumes. Thing vour hour coffee in the pre-drilled box fone transminer includes all PCI THINK Order as asitier XK_{112}

REMOTE CONTROL KITS

nas smmple infra Reo trancianter

 Putroinfre rod surce corm
 TKE CODED NTFA RED TRANSMTTER
 equiros a 9 V (PP3) or use with MRE End Mitis
recolver (MK 12) lotit.
\qquad

one and lamp brightnoes. Includesitits own mains suopaby output, toggle, control of volume

For vze with MKB k kit with 16 onivift outputa, which with further interiace circuitr, such ss relays

Moliss powerad for continuous oper
 for Use with MKB or MKE

Rolay output with DP 3 Amp chango-over contacts. may be used as
 SK13 HOH WOWEA MTMANBMITRER
Simills to MK8 but with engo of approx.

COMS DUN LATCHED SOLD STATE RELAY NO. Wiac suppliod.
Comprizes $2 \times$ 2olid state reteyn and
trima roquired (not supplied).

SHORT FORM CATALOGUE - send SAE ($6^{\prime \prime} \times 9^{\prime \prime}$). We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

We have the SOFTY 2
EPROM programmer in stock at $£ 169$ elactronic equipment upsets you, wo have just the kit for you liva.e.
At only $\mathbf{E 1 0 . 5 0}+\mathrm{VAT}$, it will make a smaller hole in your pock
then a bunch of keyal

Switches any appliance up to 1 kW
on and off at presemt times once per display drivers, switehes, LEDs, triscs. PCEs and full instructions

ol 10006

This value-Tor-monoy kit sequence, spoed of sequence
sind trequency of direction change, being variablis by mesasa of potentiometars an dimming control. Only $\mathbf{~ f 1 4 . 6 0 ~}$
Di 2100 K A lower cost version of the above, foesuring undirectional channal sequence with 1000 variable py means of a pre-set pot. Outpurt swichec only at mains zero crossing poin Only $£ 8.00$ Allowing audio ("beat") 60p

DVM/ULTRA SENSITIVE THERMOMETER KIT the ICL7128 sis lower power ite ICL7128 (o lowor power
versaion of the ICL7106 chip) and a $31 / 2$ digin liquid crvatal dieplay. This kit will form the \qquad asie of a digital multimeter Conty a fow additional resiatoras and switches digital tharmometar $1-50^{\circ} \mathrm{C}$ to $+150^{\circ}$ roading to $0.1^{\circ} \mathrm{C}$. The basic kit has ennaitivity of 200 mV for a full eccale reading. automatic polarity indication and an utrea ow powor requirement-otving of 2 year Ypical battery bite from astandard ov P.
when uzed 8 hours a day.

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If the thought of car thloves, house breakers or people tampering whth your electrical and
Our ELECTRONIC LOCK KIT includez lo-way keyboard and a special iC which provides a Torrect sequence rive a solenoid or relay (not supplied) whan four keys are depreased in the may be easily changed by means of a small comp and socket A -SAVE: function is and available enabling the open code to be stored fespecially useful in a car when it is left in a garage for servicing as the open code need not be disclozed). Size: $7 \times 6 \times 3 \mathrm{cms}$. Power

Electric Lock Mochanism
$£ 13.50$
Suiteble for use with oxisting
-

24 HOUR CLOCK/APPLIANCE TIMER KIT
CT1000K Basic Kit
CT1000k with
(Resdy Built)
(Resdy Built)
Add 50p postage a packing +15 (A.E. $£ 4.00$ (sisewhere) for $p \$$ Send S.A.E. for further STOCK DETAILS
Goods by return subject to evailability.
OPEN Smismm monioficu 10am to 4pm (Sat)

MASHMR HTMGYRONICS INOW! The PRACHTCAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

You will do the following

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw andunderstand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital eiectronic circuits and current solid state 'chips'
Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer equipment.

NewJob?NewCareer?NewHobby?GetintoElectronics Now!

BritishNational Radio\&EFlectronics School Reading,Berks.RG17BR

HIFI STEREO AMPLIFIER KITS

From one of Britain's leading esoteric amplifier manufacturers comes an exciting new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the usual price penaity.
style, easier construction and a moving magnet or moving coil inputs, 40 to 100 watts per channet, in fact, everything that made the previous models so popular is included but with added
The now range consists of The CK 1010 Stereo Pre Amplifier, The CK 1040 WPC Power Amplifier, The CK 1100 WPC Power Amplifier
CK 1010
This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and mechanical assembly of the connections and controls to the pre punched chassis
Theving coil input can be fitted to extend its versatility. (MC2K) if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an optional add-on CK 1040
This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010. All components such as heatsinks, wire and connectors are included and protection is provided from short circuit outputs.

CK 1100

Similar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinking and thermal cutouts are provided as standard.
When correctly assembled these kits are guaranteed for two years.
"It would seem then that Crimson have maintained their position at the top of the commercial kit build field. There is no oriental amplifier I know of that can better the sound of this combination overall at any price and only a fow - such as the $K A-1000$ ($£ 500+1$ - are of comparable standard. ...I can say no more than that for $£ 250$ it /CK $1010 / \mathrm{MC2K} / 1100$) is a bargain and one that
becomes the reference point for kit amplifiers from now on."

PRICES CK 1010 - RRP $£ 90.00$; CK 1040 - RRP $£ 119.00$ CK 1100 - RRP $£ 149.00$; MC2K - RRP $£ 25.000$; PSK - RRP $£ 20.00$
Barclaycard or Access accepted, otherwise send C.W.O. C.O.D. $£ 1.00$ extra. All prices include PGP to anywhere in the U.K. Export: Write for pro-forma SEND FOR FULL DETAILS ON OUR HIFI KIT PRODUCTS BY WRITING TO FREEPOST ADDRESS BELOW

FREEPOST, 9 CLAYMILL ROAD
LEICESTER LEA 5ZD. ENGLAND TEL. 0533 761920, TLX 34594

ACTIVE SPEAKER

A long time ago in a magazine far, far away (well, ETI December ' 75 to be exact), we published a design for an active crossover. The idea was to avoid the need for bulky, high current coils along with all the problems involved in high-power crossover design, and perform the filtering on the low-level signal. Each audio band was then fed to its driver via its own power amp, removing the need for any conventional crossover altogether. For some time now we've been planning to go one better by presenting a complete active speaker system, with the electronics built right into the speaker cabinet. When we tell you it's a joint design with the speakers by Badger Sound Systems and the power amplifiers by Crimson Elektrik, you'll appreciate how good it is. Don't miss the September issue of ETI if you know what's good for your ears.

AUTO VOLUME CONTROL

We had hoped to bring you this project in the issue you're holding but lack of space at the last moment meant it had to be held over. The best laid plans of mice and men etc (you can decide for yourself which category editorial staff are part of ...). Anyway, it's well worth waiting for, because with only a four transistor circuit on a small PCB you can replace your manual volume control with a completely automatic version. Note that this is true volume control, affecting loud and soft sounds equally; not a compressor which reduces the dynamic range of the signal. It's the ideal upgrade for the mike inputs on your public address system.

SIGNAL MEASUREMENT

Tim Orr, our man of many parts (most of them integrated circuits), is usually to be found within the pages of ETI expounding on the subject of electronic music in one form or another. Next month we have something a little different from him - an article about audio from the point of view of test gear. This is an in-depth feature about several aspects of electronic measurement techniques, including true RMS conversion, noise measurement, and an explanation of the decibel, a unit many people find a trifle confusing. Naturally there's also the usual helpful tables and circuits you've come to expect from us.

AUDIOPHILE

Something for the (relatively) hard of wallet is the subject of our (relatively) tame hi-fi expert. The September Audiophile will contain a review of the system shown here, which will provide you with excellent sound quality for an outlay of $£ 500$. Deck by Thorens, amplifier by Trio, loudspeakers by JBL - we're not sure if it's built by robots too, but it certainly delivers as far as performance is concerned.

MULLARD SPEAKER KIT

40 watt R.M.S. Bohm DESIGNED BY MULLARD SPECIALIST TEAM IN BELGIUM comprising a Mullard $8^{\prime \prime}$ woofer with foam rolled surround, Mullard $3^{\prime \prime}$ high power dome tweeter and a cleverly designed B.K. Electronics crossover combining spring loaded loud speaker terminals and recessed mounting panel. Supplied complete with assembly and cabinet details. Recommended cabinet size $240 \times$ $216 \times 445 \mathrm{~mm}$.
PRICE $\mathbf{£ 1 3 . 9 0 + \mathbf { £ 1 . 5 0 } \mathbf { P \& } P \text { per kit } , ~}$

STEREO CASSETTE TAPE DECK MODULE. Comprising of a top panel and rape mechanism coupled to a record/play back printed unit for horizontal installation into cabinet or console of own choice These units are brand new. ready built and tested.
Featuros: Three digit tape counter. Autostop. Six piano type keys, record, rewind, record levei control Main inputs plus record level control. Main inputs plus Input Sensitivity: 100 mV to 2 V Input Im pedance: 68 K . Output level: 400 mV to both pedance: 68K. Output ieval: 400 mV to both pedance: 10 K Signal to noise ratio: 45 dB . Wow and flutter: 0.1%. Power Supply requirements: 18 V DC at $\mathbf{3 0 0 \mathrm { mA }}$. Connections: The left and right hand stereo inputs and outputs are via individual screened leads, all terminated with phono plugs (phono sockets provided. Dimensions: Top panel $5^{1 / 2 \mathrm{in}} \times$ $11 / 4 i n$. Clearance required under top panet $21 / 4 \mathrm{in}$. Supplied complete with circuit diagram and connecting diagram. Attractive Price $\mathbf{£ 2 6 . 7 0 + \mathbf { E 2 . 5 0 }} \mathbf{~ p o}$
Supplementary paris for 18 V 號 packing. Supplementary paris ior $18 V$ O.C. power supply Itranstormer, bridge rectifier and smoothing
capacitor) $\mathbf{5 3 . 5 0}$.
new range ouality power loudSPEAKERS $15^{\prime \prime}, 12^{\prime \prime}$ and $8^{\prime \prime}$]. These Toudspeakers are ideal for hoth hi fi and units have heavy duty die-cast chassis and aluminium centre domes. All three unts have white speaker cones and arefitted with attractive cast aluminium (ground finish) fixiny escutcheons. Specification and Price
15. 10 watt R.M.S. Impedance 8ohn 59 oz magnet. 2 aluminium voice coil. Resonamt Frequency 20 Hz . Frequency Response to 2.5 KHz . Sensitivity 97 dB Price f32 each. $2 \mathbf{2} 50$ Packing and Car.
riage each.

12 100 watt R.M.S. Impedance $8 \mathrm{ohm}, 50 \mathrm{oz}$ magnet. 2" alumimum voice cort Resinant Frequency 25 Hz Frequency Response to 4 KHz . Sensitivity $95 d \mathrm{~B}$ Price K 23.70 each. f 2.50 Packing and Carriage each.

8" 50 watt R.M.S. Impedance 8 ohms, 20 oz. $11 / \mu^{*}$ aluminium voice coil, Resonant Frequency 40 Hz , Frequency Response to 6 KHz . Sensitivity 92 dB . Also avaitable with black cone fitted with black metal protective grill. Price: White cone $\mathbf{f 8} 90$ each. Black conelgrill 99.50 each. P \& P f 1.25 each.
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic iweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3' round with protective wire mesh. ideal for boukshelf and medium sized Hi-fi speakers. Price $\mathbf{f} 3.45$ each.
TYPE 'B' IKSN 1005 A) 3% ' super horn. For general purpose speakers, disco and PA systems etc. Price $\mathbf{~} 4.35$ each
TYPE 'C' (KSN6016A) 2' = $5^{\prime \prime}$ wide dispersion horr. For quality Hifi systems and quality discos etc. Price $\mathbf{f} 5.45$ each.
TYPE ' \mathbf{D}^{\prime} (KSNN1025A) $2^{\prime \prime}$ - 6 " wide dispersio: horn. Upper frequency response retanied extending down to mid range 2 KHzLI . Surrathe discos. Price f6ity Hi-físhystems and quality t6.90 each.
TYPE ' E^{\prime} (KSN1038A) 334 " horn tweeter with attractive silver tinish trim. Suitable for $\mathrm{Hi} f \mathrm{f}$ monitor systems etc. Price $\mathbf{f} 4.35$ each.
TYPE 'F' (KSN1057A) Cased version ol type ' E ' Free standing satellite iweeter. Perfect add on weeler for conventional loudspeaked systems. Price $\mathbf{E} 10.75$ each.
U.K. post free (or SAE for Piezo leafiess)

ON

1000 MONO DISCO MIXER

A superb fully built and tested mixer/pre-amp with integral power supply. 4
inputs 2 turntables (ceramic cartridge). Aux. for tape deck etc., plus Mic. with inputs 2 turntables (ceramic cartridge). Aux. to top tape deck etc., plus Mic. With verrite switch, all with individual fevel conteols. Two sets of active tone controls with select switch and votune control.
Outputs Main 750 mV Monitor 500 mW into 8 ohms Supply 220/240V AC50/60Hz Size $22 \frac{1}{2}^{\prime \prime} \times 4 \mathbf{1}^{*} \times 23^{\prime \prime} \quad$ zprice $539.99+\mathbf{E 2} .50 \mathrm{P}$ \& P

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar
and
Leader

1K.WATT SLIDE DIMMER

- Controls hads up to 1 KW

- Compacrsize
$43 / 4^{\prime \prime} \times \frac{13 "}{16} \times 21 /{ }^{\prime \prime}$
- Easy snap in fixing through panel/cabinet cut out
- Full wave control using Bamp triac
- Conforms to BS800
- Suitable for both resistance and inductive loads nnumerable applications in industry, the home, and discos
Price: $\mathbf{f 1 1 . 7 0}$ each $+50 p$ PGP (Any quantity)

BSR P256 TURNTABLE

 P256 turntable chassis - S shaped tone arm - Belt driven Aluminium platter skale (bias devicel - Damped cueing lever - 240 volt $A C$ operation $\left|\mathrm{Hz}_{2}\right|$ - Cut-out template supplied - Completely manual arm. This deck has a completely manual arm and is designed primarily for disco and studio use where all the advantages of a manual arm are Price. $\mathbf{E 2 8 . 5 0}+\mathbf{f} 2.50 \mathrm{P}$ \& PPUWER AMPLIFIER MGDULES

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system 80 hms Build a quality 60 watt R.M.S. system

* $10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
* $3^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$
* $5^{\prime \prime}$ Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
* 3 -way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13^{\prime \prime}$ Fittect with attractive cast aluminium fixing es. cutcheons andimesi pollective gralls which are emovable enabling a ungue choice of catsnet styling. Can be mounted directly on to bafle with or withour conventional speaker fatorics. All three units have alunimum cembe domes and rotled fuarm surround Crossovar com bines spring loaded tourlsweaker termmals and veressed mount my hanel
Price $£ 22.00$ per kit + C 2.50 postage and pack"M Avalable sepdratr:lv, prices orr request
12*80 watt R.M.S. loudspeaker.
A superb general purpose twin cone loud speaker. 50 oz. magnel. 2 aluminum voice coil, Rolled Surround. Resonant frequency 25 Hz . Frequency response to Attractive blue cone with aluminium Atractive blue cone with aluminium Price f17.99 ea

GENERAL PURPOSE $41 / 2^{\prime \prime}$ MINI SPEAKER
General purpose full range loudspeaker, ideal or mini systems etc.

- Rolled fabric surround - Twin cone $\bullet 80 h m$ impedance - 15 watt RMS © 1 "voice coit $130 z$ magnet -Frequency range $50 / 15000 \mathrm{~Hz}$ Price: $\mathbf{f 6 . 9 0}$ each $+75 p$ PGP

100 WATT R.M.S. AND 300 WATT R.M.S. MODULES
Power Amplifier Modules with integral toroidal ranstormer power supply, and heat sink. Supplied in an complete buitt and tested unit. Can be fitted
L.E.D. Vu meter aveilable as an optionsl extra.
Max Output Power: 110 watts R.M.S. 10 MP 1001 310 watts R.M.S. (OMP 300) Loads: Open and short circuit proat. 4-t 6 ohms. requency Respanse: $20 \mathrm{~Hz}-25 \mathrm{KHz} \pm 3 \mathrm{~dB}$.
 T.H.D.: Less than 0.1% Supply: $240 \mathrm{~V} 50 \mathrm{~Hz}_{2}$
Sizes: OMP 100360
Sizes: OMP $100360 \times 115 \times 72 \mathrm{~mm}$
OMP $300460 \times 153 \times 66 \mathrm{~mm}$
Prices: OMP 100 f 29.99 each $+\mathbf{~} 2.00$ PGP OMP 300 f 89.00 each +53.00 PG
Vu Meter f 6.50 each +50 p PGP

DESIGNING MICRO SYSTEMS When the chips are down, ETI delivers the goods. In this major new series, Owen Bishop takes the lid off computers and the ICs that go into them. This is the definitive treatise on hardware.

This series is aimed at those readers who already know something about electronics, but who would like to know how electronics is being used today in perhaps its most important application of all -- the computer. The series will be concerned with only one of the two types of electronic computer, the digital computer. The other type, the analogue computer, has several important applications but in the main its work has been taken over by digital computers.

We still owe something to the analogue computer, for our trusty work-horse, the op-amp, was originally designed as its building block. Whereas the analogue computer operates with precisely determined voltages which are allowed to vary continuously over their range and are analogues of continuous physical quantities, the digital computer operates with only two discrete voltage levels. The analogue computer depends on the high precision of its op-amps, and needs an op-amp for every step in its computations.

As we shall see, the electronic requirements for the digital computer are much simpler, allowing designers to concentrate on obtaining high speeds of action. The units of the circuit are simple logic gates, thousands of which can be manufactured on a single slice of silicon, already connected to form the complex logic circuits of the computer. This allows the digital computer to have great computing power combined with flexibility of function. It also allows the computer to be mass-produced cheaply so that, today, anyone with a few tens of pounds to spend can buy one.

The Heart Of The Matter

Figure 1 shows the heart of the computer to be its central processing unit (CPU). It is connected to a number of other devices - the peripheral devices. Input devices usually include a keyboard, so that the operator can send information to the CPU. Information may consist of instructions and data. Input devices might include sensors (eg circuits to measure

Fig. 1 Block diagram of a computer.

temperature) so that the CPU can obtain its data directly without need for intervention by a human operator. One essential part of this would be an analogue-to-digital converter sub-circuit, to convert the analogue quantity (in this case temperature), to its digital coded equivalent.

Output devices allow the CPU to communicate the results of its computations to the world outside. There is usually a monitor screen on which messages and the results of calculations are displayed. There may also be a printer or a chart plotter. Alternatively there may be direct control of a robot arm or similar device.

The memory is one place where information is stored. The instructions tell the CPU what to do (its program), and it is provided with data to work on. The computer is able to use part of the memory for storing other data which arises from its computations. Information can be transferred between CPU and memory very rapidly and in either direction. Memory is where the currently-used information is held. The store is for information that is not required urgently. The store may consist of a tape deck or disk drive, by means of which information is stored in magnetic form. Blocks of information can be transferred between CPU and store in either direction, but only relatively slowly. The amount of information which can be held in store is much greater than the amount held in memory.

The CPU

This has the job of receiving instructions and data, eithera from input, memory or store, processing the data according
to the instructions, and then sending the results of its computation to an output device, memory, store, or possibly to more than one of these. In a main-frame computer, the CPU occupies several circuit boards, but in the personal computer the whole CPU is replaced by a single integrated circuit, the microprocessor. This article and the remainder of the series will concentrate on the personal computer, or microcomputer, using a microprocessor as its CPU.

We have been able to use very large scale integration (VLSI) to put all the logical parts of the CPU on to one slice of silicon. The CPU must include an oscillator, or clock, by means of which all its actions and the actions of other peripheral devices are synchronised. It is not possible to reduce the physical size of the components required for this, in particular the quartz crystal, so a least part of the clock circuit is external to the microprocessor. The clock circuit and microprocessor (MPU) together constitute the CPU of the microcomputer.

We Want Information

Before we look at what goes on inside the MPU we must consider the concept of information in more detail. The unit of information is the bit. The term 'bit' is a shortened version of 'binary digit'. A bit can have one of two values, ' 0 ' or ' 1 ' but not any other value. This binary concept is widespread in thought, in logic and also in electronics. Table 1 shows pairs of opposite and mutually exclusive states. A binary digit is ' 0 ' or ' 1 '; it cannot be anything else. A statement is true or false; truth is by definition the whole truth, for half-truth is meaningless. A switch is either on or it is off; it cannot be partly on. If the circuits are made so that only two voltages (low and high) produce definite results and so that intermediate voltages give indeterminate results, then voltages are either high or low. Transistors are either fully off, or fully on (saturated). Given these binary states, the state of any one pair in Table 1 can be used to represent the state of any other pair. For example, we can stipulate that the digit ' 0 ' is represented in a computer circuit by a low voltage, and the digit ' 1 ' is represented by a high voltage; falsity by ' 0 ' or a low voltage, truth by ' 1 '. Here we have a system which allows numerical values and logical statements to be represented in terms of electrical signals. This is the basis of the digital computer.

TABLE 1	
0	1
No	Yes
False	True
Absent	Present
Switch off	Switch on
Transistor off	Transistor on
Open circuit	Closed circuit
Low voltage	High voltage

Grab A Byte

In this system, the bit is the minimum quantity of information to be dealt with. Normally a computer deals with far more information than this. Bits are usually handled in groups. Some of the earlier MPUs handled bits in groups of four, but the majority of micros handle them in groups of eight. A group of eight digits is called a byte. In the computer, a byte is represented by a set of eight lines (eg tracks on the PCB), each at high $(=1)$ or low $(=0)$ voltage. Or it might be represented by a set of eight flips-flops or bistables, each one either set $(=1)$ or reset $(=0)$. According to the interpretation placed on it, the byte could represent:

- A binary value, ranging from 00000000 ($=0$ decimal) to 11111111 ($=255$ decimal)
- The truth or falsity of eight different logical statements.
- A coded instruction to the computer.

There is more to be said on this subject next month, but for the moment we will rest with the fact that the computer has to handle binary information represented in electronic form.

On The Level

For most MPUs the low and high voltages are standardised at 0 V and +5 V respectively. These are the same levels as are used in the 7400 TTL series of ICs. These values are nominal; a Z80 MPU, for example, interprets any voltage between - 0V3 and 0V8 as 'low'. Any voltage between 2 V and 5 V is interpreted as 'high'. Voltages between 0V8 and 2 V produce indeterminate results and must not be allowed to occur. The lack of insistence on precise voltage levels allows computer circuits to remain relatively simple in electronic terms, yet be highly reliable in action.

Those Important Little Places

If the CPU is the heart of the computer, the heart of the CPU is its arithmetic logic unit. The ALU is where data is manipulated according to the instructions stored in memory; we shall describe some of its operations next month. The ALU is able to operate on all eight bits of a byte in a single operation. We say that the word length is eight bits, or one byte. Some MPUs, such as the Texas 9980 A , have a 16 -bit word, but the general principles of its operation are the same as described below.

As an example of a well-known MPU we shall first consider the 6502 (Fig. 2). This successful but relatively simple MPU is used in the Apple, the PET, the BBC Microcomputer, and several other popular microcomputers. The ALU operates in close conjunction with the Accumulator. This is a set of eight flip-flops which temporarily hold a byte which is to be operated on by the ALU, or is the result of an operation performed by the ALU. The two registers known as X and Y may also be used to store one byte of data each. Data can be transferred between these registers and the Accumulator in either direction. These registers are therefore useful for storing values obtained in one stage of a calculation, ready for use at a later stage. They are also used as index registers, in which the values held in X or Y are the base addresses of selected blocks of memory. This makes it simpler to access blocks of memory; when storing a table of data, for example.

Since data has to be transferred from one register to another, or from a register to the ALU, it speeds the operation of the MPU if a whole byte is transferred in one operation, rather than bit-by-bit. This requires a set of eight lines connecting all the registers and the ALU. This is called the data bus. To distinguish it from a similar set of lines which connect the MPU with the peripheral devices, it is more precisely known as the internal data bus.

It's Under Control

The control bus consists of several lines along which signals are sent to coordinate the actions of the various parts of the MPU. For example, if the data held in register X is to be sent to the ALU, a signal must be sent along a control line to register X , making it place the data on the data bus. Register X makes the lines go 'high' or 'low' according to the pattern of 0 s and $1 s$ held in its eight flip-flops. At the same time a signal must be sent along another control line to the ALU, making it accept the data now present on the data bus. The control lines emanate from a special part of the MPU called the Control.

Despite its impressive name, the Control is no more than a slave. It knows how to carry out the tasks it is allotted, but does not remember what it has just done, and does not know

Fig. 2 The internal structure of the popular 6502 microprocessor.
what task it must perform next. The list of tasks (the program) is stored in memory at a sequence of locations. The control simply fetches these instructions from memory, a byte at a time, and acts on each immediately it is received. For this purpose it needs the Program Counter, a register in which it records how far it has reached in the program - a sort of 'bookmark'. Since a single byte cannot store numbers greater than 255 (decimal), and since most programs have far more bytes than this, the Program Counter is a double-byte register. Its 16 bits allow any number up to 111111111111 1111 (binary) to be stored, equivalent to 65535 (decimal).

During its calculations, the MPU often has to store data in the Stack, a special section of memory set aside for this purpose. As data is added to or removed from the Stack, the position in memory of the first item in the Stack (the Top of Stack) changes. The Stack Pointer register records the current position of Top of Stack, so that the MPU knows where to go to retrieve the stacked data.

Status Symbols

The status register should be considered as eight individual bits, arranged together for convenience as a byte. Each bit is set (made equal to 1), or reset (made equal to 0) individually as the result of a particular operation, For example, bit 7 is set whenever the result of an operation results in a negative value. Bit 1 is set when the result of an operation is zero. These bits, which indicate whether a particular event has occurred or not, are often known as flags. Bit 0 holds the 'carry' digit from additions or subtractions in the accumulator.

The remaining sections of the MPU are concerned with communicating with the peripheral circuitry. There is the data bus buffer which detects voltage levels on the external data bus and copies these on to the internal data bus. Or it

Fig. 3 Switching on any of the transistors generates an $\overline{\mathrm{NMI}}$
can operate in the reverse direction. If the data bus is carrying an instruction, this is accepted by the instruction register. From there it goes to the control which decodes it and then acts upon it. The address bus receives outputs from certain registers putting voltage levels on the 16 address lines, a subject which will be dealt with later.

Dealing With Interruptions

The interrupt logic receives signals along any of three lines. All three lines are normally held high by pull-up resistors. The lines are thus described as 'active-low'. In other words, it requires a low level on the line to make the MPU respond. Most control lines in the computer are active-low. This makes it simple for any number of devices to bring the line to its low state. If the line is connected to open-collector transistors, for example (Fig. 3) this is equivalent to a wired-OR
configuration. Then if any one of these transistors is turned on, the voltage level on the line is made low. If a line is active-low, this fact is indicated by a line above its abbreviation (eg $\overline{\text { RST }}$ for active-low 'reset').

The reset line is used to initialize the MPU, either when the computer is first switched on or if it gets into a 'latchedup' condition, in which normal methods of controlling it do not work. There is generally a pull-up resistor holding the voltage high, with a 'Reset' press-button hidden in a fairly inaccessible place at the rear of the computer. Pressing this button temporarily grounds the reset line.

When the computer is first switched on, resetting is usually done automatically, by having a large-value capacitor to hold the line low for a short period while the rest of the system reaches its full voltage levels (Fig. 4). There is no reset button in the Sinclair ZX-81. To reset, you simply turn off the power, wait a moment or two and then reapply power. Resetting the MPU resets the program counter to zero, so that it returns to the beginning of the program stored in memory and starts again.

On receiving a low signal on one of the interrupt lines $\overline{(N M I}$ or IRQ) the MPU finishes whatever operation it is engaged in, then stores away (on the stack) any data relating to that operation. This takes only a few microseconds, after

Fig. 4 A suitable circuit for generating a power-on reset pulse. A manual reset button is also provided.
which the program counter is sent to the address in memory of a special interrupt service program. It performs whatever this program requires, then returns to its original program, recovers the data from the stack and continues with the original program as if nothing had happened. Interrupts are used by peripheral devices to gain the attention of the MPU when it is urgently required. The non-maskable interrupt (NMI) takes priority. It cannot be ignored by the MPU, and, while the MPU is performing the NMI task, it cannot be interrupted again. The Interrupt Request (IRQ) has second priority. The MPU can be pre-programmed to ignore an IRQ altogether. In the 6502, this is done by setting digit 2 of the Status Register to ' 1 '. An IRQ task can be interrupted by an NMI. After completing the NMI task, the MPU continues with the interrupted IRQ task. When this is completed (assuming there is no further $\overline{\mathrm{NMI}}$) it returns to its original program.

Z80 Anatomy

Most MPUs have the same kind of organization, or architecture, as the 6502. The Z80 MPU, which is the processor for a wide range of computers including the TRS-80 Models I and II, the Research Machines 380 Z , and the Sinclair ZX-81, has a rather more elaborate set of registers. The main set comprises the accumulator (A), the flag register (F , corresponding to the status register of the 6502), and registers $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$, and L , which are general-purpose registers. There is also an alternate set of registers, $\mathrm{A}^{\prime}, \mathrm{F}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$, $\mathrm{E}^{\prime}, \mathrm{H}^{\prime}$, and L^{\prime}. The MPU normally begins operations by using the main set, but can be switched over to use the alternate set instead, leaving the main set unaffected. It can be switched back to the main set again later.

In addition there are two index registers (IX, IY corresponding to X and Y in the 6502), a stack pointer, and a program counter. In the Z80, IX, IY, SP and PC are doublebyte registers (16 bits). Finally there's the interrupt vector register (I) in which instructions for a complex series of vectored interrupts can be stored, and the memory refresh register (R) which is used in connection with refreshing the dynamic memory of the system. This topic will be dealt with in a later article.

Fig. 5 Pinout of the Z80 microprocessor, with a suitable clock circuit.

clock circuit

Fig. 6 The clock and control signals for the $\mathbf{Z 8 0}$.

Making The Connection

The typical MPU is contained in a 40 -pin DIL package as shown in Fig. 5, which uses the Z 80 as an example. It requires a regulated 5 V DC supply, which is applied between pins 29 (system ground) and $11(+5 \mathrm{~V})$. The clock circuit supplies pulses at 2 MHz in the case of the original Z80 MPU. The newer Z80A can operate with a clock rate up to 4 MHz . The clock signal may also be taken to peripherals; for example, the circuits which control the monitor.

The eight data lines, D0 to D7, come direct from the data buffer (Fig. 2). These may act as inputs or outputs, though not in both capacities at the same time. The data bus is taken to the peripherals, to allow for transfer of data between these and the MPU. In order that the peripherals will know which one (and only one) of them is to receive or transmit data, each peripheral is also connected to the address bus. This is a set of 16 lines, A0 to A15. Address lines are outputs from the MPU. By putting various combinations of highs and lows on these lines the MPU can indicate which peripheral it is addressing. The peripheral may be a printer or a relay on a control board. It may be a single location in memory. Since there are 16 lines, there are 65536 possible combinations of highs and lows, this being the maximum number of locations which can be directly addressed. This figure is usually written in its shorter form, 64 K , where one ' K ' is not 1000 , but $1024\left(=2^{10}\right)$.

Peripheral Ptocedures

The remaining pins of the IC are connected to control lines which connect the MPU to certain of the peripherals. We will consider the input control lines first. The functions of RST, NMI and INT (= IRQ) have already been dealt with. A low level on WAIT causes the MPU to halt its operations. It may have asked a peripheral to send data to it but the peripheral is not ready to put the data on the bus. Instead the peripheral sends the WAIT signal, and the MPU suspends action until the peripheral has had time to put the required data on the bus and let the WAIT line go high again. The bus request signal (BUSRQ) is used by certain peripherals to force the MPU to hand over control of the address bus, the data bus and certain control lines. This is used during an operation known as Direct Memory Access (DMA) in which blocks of data are transferred between memory and other peripheral devices without the intervention of the MPU. This is not usually implemented on the smaller microcomputers.

There are eight outputs in the control bus of which we shall mention only three now, dealing with the rest later as part of specific examples. The Machine Cycle One output (M1, pin 27) indicates when the MPU is fetching an instruction from memory. Two outputs of special importance are read ($\overline{\mathrm{RD}}$) and write (WR). When the MPU is to receive data from a peripheral it puts the address of the peripheral on the address bus and make the $\overline{\mathrm{RD}}$ line low. This indicates to
the peripheral, which is also wired to the $\overline{\mathrm{RD}}$ line, that it is to transmit data and not to receive it. When the MPU wants to transmit data to a peripheral, it puts the address on the address bus and makes the WR line low.

Clocking On

With so many signals being passed in several directions, and with the data bus being required for transmissions into or out of the MPU, it is essential that all these activities take place to a clearly defined schedule. Although micros and their peripherals act at fantastic speeds, these are only fast according to our human scale of appreciation. To an MPU a memory which responds in a microsecond is not particularly speedy. The MPU even has to wait a while to give it time to put the data on the bus, and for the voltages to settle to their intended levels. To keep all sections of the system operating in an orderly way, and to allow the circuits a finite (even if infinitesimal) time to react, the clock is of major importance.

As an example of the way the various parts of the system interact, let us consider what happens when the MPU goes to memory to find the instruction which it is to execute next. Figure 6 shows the voltage levels on the lines concerned. The top curve shows the regular pulsing of the system clock at, say, 2 MHz . At this frequency, each of the periods T_{i} to T_{4} is 0.5 microseconds (uS). The MPU begins by making M1 low, indicating that it is about to fetch an instruction from memory. At the same time it puts on the address bus the address of the memory location in which this instruction is stored. It has obtained this address from its program counter, which has just been incremented following the execution of the previous instruction. The addressed location does not
know at this stage whether it is to be read or written to.
On the next low-going edge of clock, the Memory Request line (MREQ) indicates that this is an operation involving memory (as opposed to a printer, or monitor peripheral, for example). Immediately after this, the $\overline{\mathrm{RD}}$ line is taken low by the MPU, indicating that this is a read operation. The MREQ signal is used to enable (or 'turn on') the memory IC so that it is ready to put its data on the bus. Since many such ICs are permanently wired to the bus and since only one can be allowed to put data on to any line at any one time, memories have tri-state outputs. These can be high, low or 'high impedance'. The high impedance state means that the output is virtually isolated from the bus and not able to communicate with it. Outputs are in this state until a $\overline{\mathrm{RD}}$ signal is received by the IC. The RD signal can be fed to the memory IC so as to make its outputs change to low impedance and take the lines of the bus to high or low states.

As soon as the data has appeared on the bus the CPU reads it into its instruction register. It has until the next rising edge of the clock to do this. Then M1, MREQ and RD are made high, indicating that the operation has been completed. The total time for the whole operation is 1 uS . During the next 1 uS the CPU passes the data along its internal bus to its control, where the data is decoded as an instruction and then acted upon. While this is happending there is no need to take in further data and, since the instruction is still being decoded, the time for acting upon it has not yet arrived. In the Z80, this period is used for refreshing dynamic memories, as will be explained in a future issue.

TOROIDAL 0 - $115-230 \mathrm{~V}$ Input. Output $13.5-0-13.5 \mathrm{~V}$ rated 8VA. $\mathbf{~} 1.70$ ea. 10 off f 15 .
TOROIDAL O 120-240V Input. Output 0-12V; 10VA per winding. Encapsulated Identical to R.S. Components at 99 40. OUR PRICE f5 ea.
TELEPHONES - PEP £f 50 ea $5 \cdot 10$ units I6. Over by arrangements.
706 style Black. Grey, Blue Green $£ 5.50$. 706 style Black, Grev. Blue, Green $\mathbf{E 5} .50$ es. 10 off $£ 45$. Discoloured EA ea.
10 off f 27.50 .

746 styie Black or Grey $\mathbf{£ 7 . 5 0}$ aa. Older Black style $\mathbf{£ 2 . 5 0}$ en.
SOME EHT TRANSFORMERS \& CAPACITORS always available - please enquire.
TRANSISTOR INV
 Circult Supplied. $£ 1.25$ ea. $\mathrm{P} G \mathrm{P} \mathrm{E} \mathbf{2} .10$ off f 10 Carriage $\mathrm{f6}$.
Convert this unti to a SUPER BATTERY CHARGER Attractive green ministry quality case - removable top/bottom plates - heavy duty power
switches - high power resistors to convol current amp meter - wing nut terminals on fromt panel for connecting mounted amp meter - wing nut terminals on front panel for connecting leads.
$\mathbf{6 3 . 5 0}$ ea. PGP 55 FOUR UNITS $\mathbf{~} 12$ Carriage $\mathbf{f 6}$.
 coloured screw style 4 mm sockets giving multiple voitage \& current
outputs. As new $\mathrm{f} 12 \mathrm{P} / \mathrm{P}$ f4. AMPLIFIER BOARD complete with Heat Sink $\&$ two output Transistors type 2N5293 Circuit supplied $£ 1.50$ es.
CABLE TIES Black 13 cm long of Wh. Wht 9 cm . 60 for 50 p
TOGGLE SWITCH. Centre off. 20 p each 10 for E 1.80
4 CORE CURLY WIRE extending to 2 metres. 20p ee. 10 off $£ 1.80$; 100 off $\mathrm{E15}$ Min Potentiometres - Erie. 1 K Lin; 3.3 K Lin: 4.7 K Lin. All 15 p each.
100 off 12 100 off 12.
WIRE WOUND RESISTORS 4 WATTS - all at 10 pea ; 10 off 85 p ; 100 off $\mathrm{f7}$
 ces. Cari f6.

GEC 4 Button UHF TUNER 1.50 ea. 10 off f 12.
GEC 6 Bution UHF/VHF TUNER. E2 ed. 10 off E15.
SOLID STATE UHF TUNER 38 MHZ f1 oa. 100 off fB .
 American by RCA f6 oe; MULLARD 150 AVP Useful dia 32 mm f4 ea. Speciel HONEYWELL STAIP CHART PAPER 122 ft rolls. Ref no $378528-0100$ EVEN $12 / 68$. 50 p per foil. 10 rolls AA PGP 123.50 . BLUE THERMAL PAPER 430 ft roll $81 / h^{\prime \prime}$ wide f 1.50 per roll PGP $£ 2.6$
rolis $\mathbf{~ E 6}$ Carr. $\mathrm{f6}$.

MARCONI AM/FM SIGNAL GENERATOR type TF1066B/6S. $10-470 \mathrm{MHz}$ in 5 bands. $f 275$ each. Carriage $£ 6$.

WAYNE KERR COMPONENT BRIDGE type B521 trer2751. Rasistance 1 mOhm - 1000 Meg Ohm; Capaci-
tance $5000 \mathrm{KuF}-1 \mathrm{pF}$; Inductance $1 \mathrm{H}-500 \mathrm{H}$. of manual. ONLY £40 eactance 1uH-500kH. With copy

AVO VALVE TESTER type CT160 (22 valve bases) with copy of manual. £20 each .Carriage f6.

AVO TRANSITOR ANALYSER type CT446 with copy of manual $£ 20$ each. Carriage $£ 6$.

AVO SIGNAL GENERATOR No 2 AM/FM. AM 0.45225 MHz ; FM $20-100 \mathrm{MHz}$. With copy of manual f 75
each. Carriage f 6 .

MARCONI COUNTER/FREQUENCY METER TF1417/2 with Convertor type TF2400/TM7265-500MHz. E 26 each. Carriage f6.
TELETYPE PRINTERS KSR33-ASC11 Keyboard E50. ASR 33 - as above with 8 bit punch and reader $£ 75$. Carriage $\mathbf{f 6}$ each unit.

MULTIMETER	SINE \& SQUARE WAVE
Russian type 4324 AC/DC	AUDIO GENERATOR
volts, AC/DC current;	TYPe TE22
ohms etc.	20Hz-200Khz. Portable.
Brand new, boxed	As new
$\mathbf{£ 1 2 . 5 0 \text { each PGP } £ 2 . 5 0}$	ONLY £35 each P\&P £4

SCOPE STYLE CASE size $71 / 2^{\prime \prime}+71 / 8^{\prime \prime} \times 131 / 4^{\prime \prime}$ deep with attractive blue covers $\&$ strap handle. As is a TACHITOSCOPE but ideal for the home constructor for plarts. $£ 4.50$ each P\&P $£ 2.50$.

PLEASE NOTE - WE WILL BE CLOSED TO CALLERS MONDAY AUGUST gth UNTIL SATUADAY AUGUST 21st INCLUBIVE

All five of the currently available Memopaks are housed in elegant black anodised aluminium cases, and are styled to fit wobble-free onto the back of the $\mathbf{Z X 8 1}$, allowing more add-ons (from Memotech or Sinclair) to be connected.

${ }^{5} 3^{40}$ plus Uait

MEMOPAK 64K MEMORY EXTENSION

The 64K Memopak extends the memory of the ZX81 by 56 K , and with the $\mathrm{ZX81}$ gives 64 K , which is neither switched nor paged and is directly addressable. The unit is user transparent and accepts commands such as 10 DIM A(9000).
Breakdown of memory areas...0-8K-Sinclair ROM. 8-16K-This area can be used to hold machine code for communication between programmes or peripherals. $16-64 \mathrm{~K}$-A straight 48 K for normal Basic use.

MEMOPAK 32 K and 16 K MEMORY EXTENSIONS

These two packs extend and complete the Memotech RAM range (for the time being!) A notable feature of the 32 K pack is that it will run in tandem with the Sinclair 16 K memory extension to give 48K RAM total.

MEMOPAK HIGH RES GRAPHICS PACK

HRG Main Features - - Fully programmable Hi-Res (192×248 pixels) - Video page is both memory and bit mapped and can be located anywhere in RAM. - Number of Video pages is limited only by RAM size (each takes about 6.5K RAM) - Instant inverse video on/off gives flashing characters - Video pages can be superimposed • Video page access is similar to Basic plot/unplot commands • Contains 2K EPROM monitor with full range of graphics subroutines controlled by machine code or USR function

MEMOPAK CENTRONICS TYPE PARALLEL PRINTER INTERFACE

Main Features - - Interfaces ZX81 and parallel printers of the Centronics type • Enables use of a range of dot matrix and daisy wheel printers with ZX8I • Compatible with ZX8I Basic, prints from LLIST, LPRINT and COPY - Contains firmware to convert ZX8I characters to ASCII code - Gives lower-case characters from ZX8I inverse character set

A complete range of $\mathrm{ZX81}$ plug-in peripherals Digitising Tablet RS232 Interface

We regret we are as yet unable to accept orders or enquiries concerning the abnve products. but we'll let you know as soon as they become available.
 Please make payable

Please Debit my Access/Barclaycard account number - Please dalete whichever aoes not apply

We want to be sure you are satisfied with your Memopak - so we offer a 14 -day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G

BRITAIN'S LEADING EXHIBITION FOR ELECTRONICS ENTHUSIASTS

 10-14 NOVEMBER 1982 at: ROYAL HORTICULTURAL SOCIETY'S NEW HALL GREYCOAT ST, WESTMINSTER, LONDON SW1.

* COMPUTERS
* AUDIO
* RADIO
\star MUSIC
* MAGAZINES

SPECIA
For the fifth consecutive year BREADBOARD is back with even more to offer electronics enthusiasts.
This is the best opportunity to update yourself on all the latest equipment, ideas and developments.
COME AND SEE THEM IN ACTION.

Book your tickets now at this special low rate.

MORE
COMPREHENSIVE THAN EVER BEFORE:

* LOGIC
* TEST GEAR * COMPONENTS
* C.B. * DEMONSTRATIONS
- GAMES
- BOOKS

- LECTURES

* SPECIAL offers

(OFFER ENDS SEPTEMBER 30th)位 ADULTS $£ 1.50$ - STUDENTS/SENIOR CITIZENS $£ 1$. PLEASE SEND........tickets @f1.50 andtickets @f1. I enclose cheque/P.O. for. \qquad
NAME.
ADDRESS \qquad
Send to: BB 82, Argus Specialist Publications Ltd, 145 CHARING CROSS ROAD, LONDON WC2H OEE.

PLAYMATE GUTAR EFFECTS/AMP

The sounds of the superstar in your own room - or in the middle of a field! The PLAYMATE will help you on your way. Design and development by Phil Walker

TThe Playmate is a small practice amplifier for use with a guitar giving a few watts output for easy listening while also providing some of the basic effects used by many musicians. It is ideally suited to those who do not carry all the various effects units around in their guitar case but would like to be able to practice at odd moments or in out-of-the-way places.

In addition to the amplifier and standard tone controls etc, various distortion and wah-wah effects are possible. As a by-product of the circuitry a sustain effect is also possible.

The sound output is provided by a small internal loudspeaker and the whole module is powered from a small mains unit or batteries. An
external foot pedal could be used with the wah effect if required. This consists of a variable resistor and a couple of other resistors to provide the necessary control current. The internal control is still active at this time and can be used to set an operating range.

The Circuit

The circuit is in general straightforward. It consists of an input buffer with a gain of about 50 followed by a signal compression stage which reduces the dynamic range greatly in order to feed the effects circuitry at a constant level. The effects consist of a distortion-inducing stage for fuzz and a variable band-pass filter for the wah wah. After the effects stages, the

dynamic range of the signal is restored to normal before being fed to the mixer, tone controls and power output stages.

The input buffer consists of a single 3140 CMOS op-amp whose gain is set at 48 by R2, R3. The following dynamic range compressor consists of one part of a LM13600 dual transconductance amplifier. The gain of this device is a function of the amplifier bias current, the input diode current and the load resistor. The output buffer of the device is used here as a peak detecting rectifier which charges a capacitor (C3) to the peak value of the output signal less two base-emitter drops (about 1V4). If this voltage is greater than about 0 V 7 the resulting current flowing through the input linearising diodes causes the effective stage gain to decrease and keep the output level constant.

Distorting The Facts

Distortion effects in this project are of two types. The first is mainly even harmonic generated by half-wave-rectifying the input, inverting it and then mixing it with the original signal to get from no distortion to complete frequency doubling. In addition to this, overload type distortion is provided by a high gain clipping amplifier using non-linear feedback (IC $3 \mathrm{a}, 3 \mathrm{~b}$).

Wah wah sound effects are produced by a current-controlled state variable filter. The control current determines the centre frequency of the pass band while a two-gang variable tesistor sets the bandwidth and compensates for inevitable gain changes.

Tone controls are of a standard type and use frequency-selective feedback networks around an op-amp. The following power amplifier has been designed to have a low quiescent

Fig. 1 Block diagram of the Playmate.

Fig. 2 Internal circuitry of the LM13600 - an operational transconductance amplifier!

If the diode current is not zero and the signal current is less than $I_{D / 2}$ then the transfer function is:-

$$
\begin{gathered}
I_{0 \mathrm{at}}=2 \times I_{a b c} \times I_{8} \\
I_{D}
\end{gathered}
$$

where
$I_{s}=$ signal current
$I_{a b c}=$ amp. bias current
$\mathrm{I}_{\mathrm{D}}=$ lin. diode current
$I_{\text {out }}=$ output current

Fig. 3 Basic voltage amplifier circuit.
current. This is important if batteries are to be used as many amps of the IC variety take 30 mA or more, or are designed for single rail working.

The LM13600
This device is used for two functions in this project. One of these is the compressor/expander while the other is the wah wah. In both of these, use is made of the fact that the
gain of the device is dependent on the amplifier bias current and the linearising diode current (provided that the input current is less than half the diode current). In fact the output resistor also determines the gain but is not so easily varied.

If the diode current is zero then the manufacturers' data sheet shows that the transfer function of the device is:-

If we use resistors for input and output, it can be seen that the voltage gain of a stage using this device can be controlled easily by use of the bias and linearising diode currents.

Figure 3 shows the basic circuit for a voltage amplifier and from it we can show that the output voltage V_{0} is dependent on the bias and diode currents.

HOW IT WORKS

The gain of the input buffer IC1 is set by R2 and R3 at 48. R1 determines the input impedance while C 1 provides DC blocking. The output from this device goes to the dynamic range compressor IC2a and its buffer IC3a. This part of the circuit also provides control signals for the expander circuit and, if required, for the wah wah effect. The buffered output from the compressor then goes via C4 to the first part of the fuzz effect circuitry constructed around around IC3b. Here an inverted half-wave-rectified version of the input signal is produced by the action of DI and D2 in the feedback network of IC3b. This is applied to RV1 from which a portion is selected and mixed with a little of the original signal. As the half-wave-rectified signal at this point of the circuit is twice as great as the straight-through signal, by varying the setting of RV1, amounts of distortion varying from none to virtual frequency doubling can be selected.

The mixture of signals obtained above is now applied to IC3c where they are amplified. The amount of amplification is determined by the setting of SW1. In position 3 minimum gain is provided and in fact the whole fuzz section is bypassed. Position 2 gives the same gain, allowing the first distortion stage to be effective. The final position connects D3 and D4 via C5 and R19 into the feedback circuit of IC3c instead of R18. This has the effect of greatly increasing the small signal gain but causing the output to limit sharply, thus clipping and squaring the output. This facility is available on whatever output is coming from IC3b.

The output from the fuzz stages now passes to the wah wah. This effect is produced by the current controlled state variable filter used in a band-pass mode. The filter is realised by using a LM13600 device with a controlled bias current providing the variable centre frequency. The ' Q ' factor is controlled by a dual gang potentiometer, half of which is used to control the ' Q ' factor while the other half compensates for the effective gain change as this is altered. In this type of circuit the frequency range is determined by the values of C7, C8, R24 and R26, while the actual centre frequency is controlled by the amplifier bias current. If the bias current is allowed to become too small it is sometimes found that a thump is heard at the output; in order to prevent this R34, R35, D5 and R33 are used in the control circuitry to keep the current above this threshold.

SW2 selects between the control options for the wah wah circuit. The 'off' position bypasses the circuit altogether, the 'pedal' position makes access to an external foot pedal if fitted, while the 'auto' position connects to an output from the compressor stage. This control signal is a current which is proportional to the amount of signal compression being
applied to the input signal. The magnitude of this current increases as the input signal increases. The result of this is that when the input signal is loud, the wah wah centre frequency is high and as the input decays, the wah wah frequency decreases with it. The effect of this is to make a wah sound automatically whenever a string or chord is played.

The output from this section is buffered and adjusted in level by IC3d. After this the signal passes to the signal expansion stage built around IC2b. C23 provides DC isolation and R36 converts the input voltage to a suitable drive current for the IC. For this application the linearising diode current is held constant while the amplifier bias current is varied. Q1 in the compressor circuit provides the control current for this stage allowing a good match in the attenuation/gain characteristics of the two stages. SW3 selects either the output from the expander or bypasses it as required to give normal or sustain on the effects channel.

A dual gang potentiometer RV4 allows mixing between the original signal and the effect-modified signal. This is followed by a volume control RV5 to set the output sound level.

After the volume control, IC5a buffers the signal before applying it to the tone control circuit around IC5b. The configuration used here is a very common type of feedback arrangement. As an approximation, the gain of an op-amp with feedback is taken as -(feedback resistor value)/(input resistor value). If we replace the feedback and input resistors with variable impedances, we find that when the feedback impedance is greater than the input impedance then the overall gain is greater than unity, and vice versa. As impedances vary with frequency, the gain at each frequency will tend to be different. The only time the gain does not vary is when the input and feedback impedances are equal whatever their magnitude. This is the general principle on which the tone control networks operate.

The final section to be considered is the power amplifier stage. Voltage amplification is provided by IC6 and the output from it drives two complementary compound Darlington pairs, Q4/Q6 and QS/Q7. Quiescent current through the output devices is set by RV8 in conjunction with Q3, R54 and C19. R59 and R60 aid in maintaining bias stability and provide some protection to the output transistors in the event of a fault. R61 and C20 compensate for load impedance variations at high frequency and C 18 reduces the high frequency gain of the power amplifier to reduce the possibility of RF oscillation. The large capacitors C21-25 are to reduce the effects of aging batteries and prevent low frequency oscillation or intermodulation distortion.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=\frac{\mathrm{V}_{\mathrm{in}} \times 2 \times \mathrm{I}_{\mathrm{abc}} \times \mathrm{R}_{\mathrm{L}}}{\mathrm{RI} \times \mathrm{I}_{\mathrm{D}}} \\
& \mathrm{I}_{\mathrm{in}}=\mathrm{V}_{\mathrm{in} /} \mathrm{R}_{\mathrm{in}} \text { Therefore }
\end{aligned}
$$

$$
\text { and the gain } \frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\text {in }}}=2 \times \frac{\mathrm{I}_{\text {abc }}}{\mathrm{I}_{\mathrm{D}}} \times \frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R1}}
$$

Fig. 4 The LM13600 as an expander.

Fig. 6 Circuit diagram for the Playmate.

Compressing With The LM13600

Figure 5 shows the citcuit used in this project to compress the dynamic range of the signal input. For very small signals I_{D} is virtually zero and the amplifier operates with a very high gain. As the signal increases, the output peak voltage will reach a level sufficient to charge the capacitor C to about one diode drop. If the input
signal tries to increase further the resulting current into the input diodes will cause their impedence to fall, thus increasing the attenuation of the input and maintaining a constant output level.
At any time the current flowing into the diodes is:-
$I_{D}=2 \times\left(V_{0}-3 \times 0.7\right)$
R2

Fig. 5 Here the LM13600 is configured as a compressor.

The 3×0.7 represents the voltage drops associated with the base-emitter junctions of the output buffer transistors and the voltage drop of the linearising diodes. This voltage does vary with temperature and current so since another control current is required for the expander function, this is derived by using a resistor and common base transistor. The configuration gives a current output which tracks the compressor control current very closely as it has the same number of junctions in series.

The LM13600 As An Expander

 If the current produced by the above circuit is fed into the bias current input of a virtually identical stage while the diode current is held a constant then the voltage gain equation above shows that the gain of the circuit will be increased as the current increases. Moreover the product of the two gains will be constant giving an invariant overall signal transfer function.

The construction details, parts list and overlays will appear next month. the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size．weight，lower radiated field and， thanks to I．L．P．PRICE．
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which 7DAYS together with a short lead ume on quantity orders which
can be programmed to your requirements with no price penalty

IYPE	$\begin{gathered} \text { Sefites } \\ \text { No } \end{gathered}$	secondaay Valls	$\begin{array}{\|c} \text { RMS } \\ \text { Curfent } \end{array}$	Pf：CE
30 va	1x010，	$\xrightarrow{6+6}$	250 166 168	
70×33mm	$\xrightarrow{2} 011$	$\underset{\substack{9+9 \\ 12+12}}{ }$	125	
Regularon	${ }^{1} \times 1,13$	${ }^{15}+13$	100	
	$\xrightarrow{1}$		－ 0.938	
	18016	coter	－ 060	
	1×17	$30+30$	050	
50 va	$2{ }^{2010}$	－ 6.6	416	¢570
comex	2x011	－ $\begin{gathered}9+9 \\ 12.12\end{gathered}$		
\％egkg	2， 2×12	cotid 12	＋ 208	
Regutarn	${ }_{2 \times 14}^{2}$	${ }^{18}+18$		$\underline{5} .10$
	22015.	${ }^{22+22}$		－poris
	${ }_{2}^{20,16}$	${ }^{25} 5$	${ }^{100}$	vaicios
	coter	co $\begin{gathered}30+30 \\ 10\end{gathered}$	\％ 0.838	IGiactic os
	con	220 240 20	（en	
80 VA	3x010			
嗗	3×011	${ }_{9+9}$	4.4	£6． 08
${ }_{\text {cegailon }}$		12＋12		
1\％\％	${ }_{3} 3014$	隹 12×18	222	
	3015	220．22	－ 1.61	
	coly	30＋30	133 132 0	
		${ }_{220}^{110}$	1072 0 0 0	
	${ }_{3 \times 150}$	240	－ 33	
120 va	4810	6 ＊ 6	1000	
$90 \times 40 \mathrm{~mm}$	4001	$9+9$	665	
12 kg	4.012	${ }^{12+12}$	500	
Regulaio		速 18.15	${ }_{3}^{4} 300$	£6．90
\％		22.22	372	－ptoro
	4016	$c25+253030$	240 200 200	－
	${ }^{4 \times 018}$	${ }_{3}+135$	171	тfrat sut
	－	${ }_{220}^{120}$	109 0 0	
	${ }_{40} 1230$	240	O50	
160 va	50011	$9 \cdot 9$		
	3，012	12＋12	666	£7．91
8 \％9	${ }^{3} 813$	$12 \cdot 15$	534	
Reguation	， 30015	$\underset{\substack{182+18 \\ 22+22}}{ }$		
	5×015	25.23	320	
			228	
	5026	${ }^{40041} 1$	2000	
	\pm	220	072	

$\star 294$ TYPES TO CHOOSE FROM！ ＊0ndem despaterd witinil DETE OF RECLIPT TOR SINCLE OR ghru QUMITIT ORDERS
－ 5 TERE MO QULBGLE CUARANTEE

TYPE	$\begin{array}{\|c\|c\|} \hline \text { SeRiles } \\ \text { Nog } \end{array}$	$\left\lvert\, \begin{gathered} \text { SECOMDAAY } \\ \text { Vohs } \end{gathered}\right.$	$\begin{gathered} \text { RMS } \\ \text { Curtent } \end{gathered}$	PaICE
225 va	5×012	$12+12$	938	
$110 \times 45 \mathrm{~mm}$	6x013	$15+15$	750	
27 kg	6×014	18＋18	625	
Regulat	6x015	22＋22	511	f9 20
	6x016	$25+25$	450	． 20
	6x017	$30 \cdot 30$	375	
	6x018	－ $\begin{gathered}35+35 \\ 40+40\end{gathered}$	321 281 281	－vatitibe
	${ }_{6 \times 025}$	$15+15$	251 250	romal $12{ }^{2} 8$
	6x033	50.50	225	
	${ }^{6 \times 028}$	110	204	
	6x029	${ }_{2} 22$	102	
	6x030	240	093	
300 va	7x013	$15 \cdot 15$	1000	
$110 \times 50 \mathrm{~mm}$	7×014	$18 \cdot 18$	B 33	
26 kg	7 n 015	$22 \cdot 22$	682	
	7x016	$25+25$	600	． 17
	7001？	30＋30	500	－Prpricoo
	${ }^{7} \times 1018$	$35+35$ $40+40$	428 375 3	－vates
	78026 7.025	$40+40$ 45.45	375 333	rotat 51400
	Tx033	30＋50	300	
	7×028	110	272	
	7×029	220	136	
	7×030	240	125	
500 Va	An 016	25， 25	1000	
$140 \times 60 \mathrm{~mm}$	8×017	$30+30$	833	¢13 53
4 kg	8×018	$35+35$	714	3.53
$\begin{aligned} & \text { Regulation } \\ & 4 \% \end{aligned}$	8x026	$40+40$	625	
	8×025	$45+45$		
	8×033 8×042	$50+50$ $55+55$	500 454 4	－01Fit tal 26
	8 8028 －	110	454	
	8×029	220	2.27	
	81030	240	708	
625 va	9×017	$30 \cdot 30$	1041	
$140 \times 15 \mathrm{~mm}$	9×018	$35+35$	892	
$\begin{aligned} & \text { Regulaton } \\ & 4 \% \end{aligned}$	${ }^{9 \times 026}$	40＋40	？ 81	16.13
	9×025	$45+45$	694	
	${ }_{9}^{9} \times 1033$	50＋50	${ }^{6} 25$	
		$35+55$ 100	568 568	
	9×029	220	284	
	9×030	240	260	

IMPORTANT：Regulation－All voltages quoted are FULL LDAD．Please add regulation figure to secondary voltage to obtain olf load voltage．
The benefils of ILP toroidal transtormers
ILP toroidal transformers are only half the weight and height of their laminated equivatents，and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows． For 110 V primary insert＂ 0 ＂in place of＂X＂in type number
For 220V primary（Europe）inser＂ 1 ＂in place of＂X＂in type number
For 240 V primary（UK）insert＂ 2 ＂in place of＂X＂in type number
How to order Freepost：
Use this coupon，or a separate sheet of paper，to order these products，or any products from other ILP Electronics advertisements．No stamp is needed if you address to Freeposi Cheques and postal orders must be crossed and payable to ILP Electronics Ltd． Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for single and small quantity orders
Also avarlable al Electrovalue，Maplin and Technomatic

Please send
Total purchase price
I enclose Cheque
Postal Orders
Int．Money Order
Debit my Access／Barclaycard No．
Name
Address

Signature
PoSt to：ILP ElecIronics Lidd，Freapost， 4 Graham Betl House．Roper Close Canterbury CT2 7EP，Kent，England．
Telephone Sales（0227）54778：Technical（0227）64723．Telex 965780

（a division of
ILP Electronics Ltd）：
TRANEFORMERE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 7 Sa \& \& \(74259{ }^{1500}\) \& \({ }^{74} 4.5\) \& \({ }_{4043}^{4042}\) \& \multicolumn{3}{|c|}{LINEARICs} \& \multicolumn{4}{|r|}{COMPUTER COMPONENTS} \& MODULATORS \\
\hline 7400 \& 11p \& \({ }_{74273}{ }^{44295}\) \& \& Prr \& ADC0808 9900 \& \& Nes534A 195\％ \& \& \& \& \& 6MHz UHF 37p 3 MHz UHF 4500 \\
\hline \& 12 \& \(\begin{array}{ll}74276 \\ 74278 \& 1100 \\ 1000\end{array}\) \& 74LL290
74509 \& ［ \({ }^{\text {P }}\) \& AN103 20 \& LM377 \& \& CPUS \& \& CRT \& \(\begin{array}{ll}81 \text { LS988 } \& \\ 9602 \& \\ 200 \\ 200\end{array}\) \& \\
\hline 7404 \& 12 p \& 74279 \& \& \begin{tabular}{l|ll}
\\
\hline 10 \& 4047 \& \(50 p\) \\
500
\end{tabular} \& － \(\begin{aligned} \& \text { AY1．} 12126000 \\ \& \text { AY1．1313 } 6860\end{aligned}\) \& LM3801AN \({ }_{\text {L }}\) \& \({ }_{\text {RCA } 4151}\) \& \& \& COntroller \& \& CRYSTALS \\
\hline \& \& \({ }^{74283}\) \& \(\begin{array}{ll}\text { 74LS298 } \\ \& \text { 900 }\end{array}\) \& （1） \& AY \& LM \(382{ }^{\text {20 }}\) \& \＄5668 \({ }^{\text {2500 }}\) \& 6502 400p \& \& CRT6545 9600 \& 50， \& \\
\hline \& \& \({ }^{74284} 5175\) \& \({ }_{74} 1529292700\) \& － \(4050 \quad 240\) \& AY1－5050 \& LM386 90p \& SAA1 \& 6502 A 500 p \& ADMA 612 \& CR15027 518 \& 2Na27－8 \& \\
\hline \& \& 742 \& 74LLS323 \({ }^{\text {175p }}\) \& 4051 45p \& AY3－1270 \& LM387 \& SAD1024AB500 \& \& \(1 / 2\) \& \({ }^{\text {5 }}\) 5780 \& ZN428E－8 500 p \& 200 KHz 2800 p \\
\hline 7408 \& \& 7429 \& 7453234 \& P 4052 \& \& LM389 \& \({ }_{\text {LLA90 }}{ }^{\text {S }}\) \& \begin{tabular}{ll}
6802 \\
68802 \& \\
\hline 7500 \\
7300
\end{tabular} \& 9 \& P \& \& p \\
\hline 7410 \& \({ }^{140}\) \& 742 \& \({ }^{74153388}\) \& － 4053 \& \& LM392N \& SN76477 480p \& 6809 \& \& \& teletext \& \\
\hline 7411 \& 18p \& 743 \& 74 \& 4055 90p \& AY－5－3600 fb \& LM393 100p \& SN76488 4500 \& \(68809{ }^{14}\) \& MEMORIES \& SFF96364 E88 \& DECODER \& \[
.5 \mathrm{MHz}
\] \\
\hline 7412 \& \& 74 \& \({ }^{741535656} 4\) \& ， \& 10070 \& LM394CH \& SN76489 \& \({ }^{68095}\) \& 2101 A 400p \& ［1MS9918 \& SAA5020 56.00 \& \\
\hline 7414 \& \({ }_{29} 2_{\text {P }}\) \& 74368 \& \(\begin{array}{ll}7415363 \\ \\ 745364 \& 1400 \\ 140\end{array}\) \& － \begin{tabular}{l}
4059 \\
\hline 8060
\end{tabular} \& CA3028 \& LM7710 \& \({ }_{\text {SP8515 }}{ }^{\text {S／20 }}\) \& \({ }_{8039}^{8035}\) \& 2102．3L 1200 \& \& SAA 5030 f9．00 \& 0 MHz 225 p \\
\hline \& \& 74390
74393 \& \({ }_{74 \text { LS365 }}\) \& \& CA3019 \& LM9 \& TA7120 1600 \& 80804 A 280p \& \({ }_{2111}{ }^{211}{ }^{\text {a }}\) \& Interface \& £16.00 \& \\
\hline \& 2 \& 90 \& 74. \& \& － \& LM 725 \& TA7204 \& \({ }^{80854} 4\) \& \({ }_{2112-A}\) \& Cs \& SAA \(5050 ¢ 9.00\) \& 2500 \\
\hline \& \& \& \& ［ 4067 ［ 2500 \& \({ }^{\text {ca3048 }}\) \& LM741 \& \({ }_{\text {ra7222 }} 161600\) \& － \& \& \& \& MHz 250 c \\
\hline 7 \& \({ }_{200}^{200}\) \& Tats series \& \& \& 360 \& LM \& TA7310 160p \& MS9980 \& \& \& DISC \& \\
\hline 7423 \& \& 74.5 \& 74L \& －\({ }_{4070}^{4069}\)\begin{tabular}{ll}
165 \\
\hline 100
\end{tabular} \& CA3080E \& LM748 \& rBA64 1 AX 1 \& 280 \& \(\begin{array}{ll}4027.3 \& 3000 \\ 4044.45 \\ 450\end{array}\) \& AM25S10 3590 \& CONTROL \& \\
\hline \& \& 744501 \& 74.5 \& 16 p \& ca \& LM1014 1500 \& r8a64 18x1 \& \({ }_{780}^{780}\) \& \({ }^{4116.15}\) \& AM25LS252102 \& ICs \& 50p \\
\hline 7426
7429 \& \({ }_{20}^{23 p}\) \& \({ }_{741503}{ }^{4120}\) \& 74.15 \& P \({ }_{\text {P }}\) \& CA3089E 2000 \& LM1801 \& rBA64i8x \& \& 4116－20 90p \& \({ }_{\text {AM26LS322250 }}\) \& \& \％ \\
\hline 7428 \& 280 \& \({ }^{741515}\) \& \({ }^{74453393}\) \& 4075 \& CA31308 \& LM1877 \& t8a651 200p \& \& \begin{tabular}{lll}
4118.3 \& 500 p \\
4164.2 \& \\
\hline 68
\end{tabular} \& COM8116 \({ }^{\text {coop }}\) \& FD1791 E30 \& 10p \\
\hline \& \& \({ }^{744 \text { LS08 }} 10\) \& 74 \& 400 \& CA3130\％ 130 \& \& \& \& 4816 AP－3 320p \& D7002 \({ }^{\text {DAC80 }}\) \& \({ }^{\text {F01793 }}\) \& 4．9152M \\
\hline \& \& \(741509 \quad 15 \mathrm{p}\) \& 1600 \& \({ }^{\text {P }}\) \& CA33160E \& LM1889 \& tBA820 90p \& SUPPORT \& \& \& \& \\
\hline \& \[
25
\] \& \(741510 \quad 130\) \& \({ }_{74} 4154900\) \& \({ }_{4081}^{4089}\) \& CA3161E \& LM2917 \& \& SUPPORT \& \& \& \& \\
\hline \& \& 74 LSt1 13p \& 74 \& 4082 \& \& Lм3302 \& \& DEVICES \& \& \& WD2143 550p \& \\
\hline \& \[
25
\] \& 74 \& 74LS54 1000 \& 4086 55p \& CA3189E 3000 \& Lм 3900 \& \& \& \& \& \& \({ }^{\text {lisep }}\) \\
\hline 7440 \& \& 74 \& 7415624150 \& － 4089 150p \& \({ }^{\text {CA3240E }}\) 1200 \& LM3909 \& \& \({ }_{3242}^{3242}{ }^{3060}\) \& \({ }_{6810}{ }^{6514} \quad 120 \mathrm{p}\) \& \(\begin{array}{ll}\text { OS88331 } \& 140 \\ \text { OS832 }\end{array}\) \& CHARACTER \& 7．168MHz \({ }^{175 p}\) \\
\hline 744 \& 70 \& \& 74 \& \({ }^{289}\) \& CA328 \& \& \({ }_{\text {TCA940 }}\) \& \({ }_{6520}{ }^{3245}\) \& 3489 210p \& － \& generators \& \\
\hline \& 9 \& 74LS20 120 \& 74.5 \& 200 \& \({ }_{\text {DAC1 }}\) \& LM3915 2250 \& tDA 1004430 \& 6522 4500 \& 7451893050 \& \({ }_{\text {DS8836 }} 150\) \& \& \\
\hline \& \& \({ }_{74} 7\) \& 7415642 2000 \& 4096 70p \& 200p \& \& TDA 100883000 \& \({ }_{655228}^{652}\) \& \({ }_{745289}{ }^{3}\) \& DS88388 \& \& \({ }_{10.5} .5 \mathrm{MHz}_{2} 250 \mathrm{O}_{\mathrm{p}}\) \\
\hline 7445 \& \[
50
\] \& \(741526 \quad 140\) \& 7415643 \& ［4097 3400 \& HA1366 195p \& LM13600 \& \({ }^{\text {den }}\) \& \({ }^{65515}\) \& 93415 600p \& LC1488 \& 0．3－251314 \& 10．7MHz 150 p \\
\hline 744 \& \({ }_{40} 0\) \& \({ }^{741527}{ }^{168}\) \& \({ }^{74 L 5644}\) \& \({ }^{300}\) \& \({ }_{\text {H1L }}\) \& M51516L 5000 \& TDA1024 120 p \& 6821 120p \& 93425 600p \& MC1489 55p \& 74S262AN \& \begin{tabular}{l}
12.00 MHz \\
14.350 p \\
\hline 150
\end{tabular} \\
\hline 7448 \& 15 \& 74L530 150 \& 74L5668 120 \& 450 \& ICL7660 \({ }^{2} 2\) \& M83712 \& \& \({ }_{68829}^{6882}\) \& \& MC3419 98000 \& 10 \& \\
\hline 74 \& \({ }^{15 p}\) \& 74 \& \& （ \(\begin{array}{ll}4502 \& 60 p \\ 4503 \& 50 p \\ 500\end{array}\) \& \& \({ }_{\text {M }}^{\text {M } 373130}\) \& rDA 2002 V 3250 \& 68840 \& ROM \& \& KEYBOARD \& \(14.756 \mathrm{MHz}_{250}\) \\
\hline \& \({ }^{150}\) \& 744533
741537 \& 74LS678 \& 4504 75 \& ICM \& MC1445 \& （tDA2006 3 300 \& \(\begin{array}{ll}6850 \\ 68850 \& 140{ }^{\text {c }} \\ 200 \mathrm{p}\end{array}\) \& Ms \& \& ENCODER \& 15.000 MHz \\
\hline 7764 \& 50p \& 74153815 \& \(7415682{ }^{\text {400p }}\) \& \({ }^{350}\) \& \& \({ }^{\text {MC1458 }}\) \& \& 6852 370p \& \& \& \& \\
\hline \& 389 \& 74LS42 300 \& \(74 \mathrm{LS684} 4000\) \& \& \({ }^{\text {CLC7120 }}\) \& Mctas \& TL071／81 25p \& ， \& \& \& \& \\
\hline 74 \& 220 \& \({ }^{741547}\) \& 74S SERIES \& \(1{ }^{4510}\) \& LC7130 325p \& MC1496 70 P \& rL07 \& \({ }^{68854} \quad 58\) \& \(745288{ }^{226 p}\) \& MC14412 900p \& \& \\
\hline \& \({ }^{25}\) \& \({ }^{7} 4\) \& \& \& LF347 160p \& MC3 \& T1074 1000 \& Pr \& \(\begin{array}{lll}745387 \\ 745871 \& 355\end{array}\) \& \& \& \\
\hline 7474
7474 \& 250 \& 74 L554 \& \(74502{ }^{\text {cop }}\) \& 4512 \& \& \({ }_{\text {MC34 }}\) \& TL \& 8155 450p \& \begin{tabular}{lll}
745457 \\
74543 \\
\hline 8500 \\
\hline 850
\end{tabular} \& \& generators \& 19.968 MHz \\
\hline \& \& \& \({ }^{74504}{ }^{\text {che }}\) \& \({ }_{4515}{ }^{45124}\) \& \({ }^{\text {LfF356P }}\) \& MC3480 600 p \& Th \& \({ }^{8156}\) E5 \& 245474 \& \(75110 / 121600\) \& MC14411 700 p \& \[
20 .
\] \\
\hline \begin{tabular}{l}
7480 \\
7482 \\
\hline
\end{tabular} \& 500 \& 74LS \& \({ }_{7}^{745080} 8\) \& （ 4516 \& （lll \& \(\begin{array}{ll}\text { M150938 } \& \\ \text { ML920 } \\ \text { M00p }\end{array}\) \& TL \& \begin{tabular}{ll}
8205 \\
82225 \& \\
\hline \(160 p\)
\end{tabular} \& \(\begin{array}{ll}745570 \\ 745571 \& 650 p \\ 65500\end{array}\) \& \& COM8116 800p \& \\
\hline \& \& 74 \& 74810 60p \& 45 \& LM10c 425 \& M 1571606200 \& ， \& 8216 \& 745573 950p \& \({ }_{751509}{ }^{140}{ }^{\text {P }}\) \& \& 26.690 MHz \\
\hline \& \& \& 74 \& \(4521 \quad 120 \mathrm{p}\) \& LM301A 2 \& \& UA2240 1500 \& \({ }^{8224}\) \& \& \({ }^{75154}\) \& UARTS \& 27.145 MHz \\
\hline \begin{tabular}{l}
7485 \\
7486 \\
\hline
\end{tabular} \& \({ }^{60 p}\) \& \& \({ }_{74530}{ }^{\text {745 }}\) \& \({ }^{4526}\)－\({ }^{\text {E5p }}\) \& LM310 \& Ne \& UAA \({ }^{\text {ULN2003 }}\) \& \({ }_{8228}\) \& EPROMs \& \& AY－3．1015P \& \\
\hline 748 \& 210 p \& \& \({ }^{74532}\) 7457 \({ }^{\text {90p }}\) \& 45 \& ［M318 150 \& NE556 \({ }^{\text {cesp }}\) \& ULN2004 55 \& 3243 3200 \& \& \({ }_{75361}{ }^{\text {150p }}\) \& \(3{ }^{\circ}\) \& \\
\hline \& 20 \& \({ }^{7415868}\) \& \({ }_{80} 0\) \& （ 4532 \& LM319 225 \& NE564 4200 \& ULN2068 250p \& \({ }^{8250}\) \& \& \({ }^{75363}\) \& AY－5－10，3P \& \\
\hline \& 35 \& \& \& \& LM32 \& Ne56 \& ULN2802 \& 8251 \& \& \& \& \\
\hline 7492
7494 \& 2250 \& 744593 \& \({ }_{74566}\) \& （ 4536 \& \& \begin{tabular}{ll}
Ne566 \\
NE567 \& 1359 \\
140 \\
\hline
\end{tabular} \& UPC575
UPC592H
2000

200 \& $\begin{array}{ll}32535 & 3509 \\ 8250\end{array}$ \& 2564 \& 75453／4 720 \& ${ }^{\text {th8402 }}$ 450p \& （194H2 3000

\hline \& ${ }_{350}$ \& 74 \& \& \& LM339 \& Ne567 \& UPC1155H 275 \& 8256 \& 2708 \& 75491／2 70 p \& TR1602 300p \& 5．80 M

\hline 7495 A \& 350 \& ${ }^{74 L 5966} \quad 50$ \& ${ }^{900}$ \& （4543 \& LM348 75p \& 375p \& Op \& 82575 \& 271 \& ${ }^{8726} \quad 1200$ \& \&

\hline \& \& ${ }^{30}$ \& \& \& \& \& \& \& \& \& \&

\hline 749 \& ${ }_{80}^{90}$ \& 7415112 \& 745132 \& 4556 \& VOLTAGE \& ULATORS \& ${ }_{655}$ \& ${ }_{8284}^{829} 4500$ \& \& \& tiex Tol \&

\hline 74107 \& 22^{2} \& \& ${ }_{7}^{745133}$ \& － \& FiXED PL \& TIC \& 900 \& ${ }^{8288}$ f11 \& 321300 \& $$
81 L 595 \text { gop }
$$ \& pin $\quad \underset{\text { pin }}{\text { fin }}$ \& 5p

\hline 74109

74110 \& 230 \& 745 \& ${ }_{7} 7451$ \& （ $\begin{array}{ll}45666 & 1700^{\prime} \\ 4568 & \\ 3000\end{array}$ \& \& \& S0p \& ${ }^{\text {TM }}$ 899978 \& TMS2776 750 p \& $\begin{array}{ll}\text { 81LS96 } & \text { 90p } \\ \text { 81LS97 } & \text { 90p }\end{array}$ \& \& $$
\begin{aligned}
& 8 \text { way } \\
& \text { in way } \\
& \text { 90p } \\
& \hline 465 p
\end{aligned}
$$

\hline 74 \& $55 p$ \& 74L123 ${ }^{34}$ \& 745157 \& 4569 \& $6 \mathrm{~V} \quad 7806$ \& ${ }_{50 \mathrm{p}} 79065$ \& \& \& \& \& \&

\hline \& $$
50
$$ \& \& 3 \& 1457230 \& BV 7808 \& 50 p 7908 600p \& ZN422 \& \& \& \& RE WRAP \& CK

\hline 741 \& ${ }_{80} 8$ \& 74 LS126 250 \& ${ }^{745175} 30300$ \& －90p \& $\begin{array}{ll}12 \mathrm{~V} & 7812 \\ 158\end{array}$ \& ${ }^{50 \mathrm{p}} 79912 \mathrm{ll}$ \& ZN427E \& \& \& \& BYTEX \&

\hline \& 500 \& ${ }^{744 S^{2} 1323}$ \& | 745188 | |
| :--- | :--- |
| 745189 | 3500 |
| 350 | | \& 4585 100p \& 18 V 7818 \& \& ［N428E \& \& \& \& \&

\hline 7412 \& \& ${ }^{74 \mathrm{LS136}}$ \& ${ }_{745194}{ }^{\text {3 }}$ \& \& $24 \mathrm{~V} \quad 782$ \& 50 p 7924 60p \& ZN1034E \& \& \& \& \&

\hline 74122
74123 \& ${ }_{40 \mathrm{p}}^{40}$ \& ${ }^{\text {744 }}$ \& 745200

74500 \& ｜ll｜l｜l｜l｜ \& \& ${ }_{30 \mathrm{p}}^{30 \mathrm{p}} 790505$ \& \begin{tabular}{lr}
ZN1040E \& 670p

ZNA234 \& 850

\end{tabular} \& \& \& \& \[

22 pin 65
\] \&

\hline \& 340 \& \& ${ }_{745225}$ \& 150p \& gV 100 mA 78L08 \& \& \& \& \& \& \&

\hline ${ }^{74126}$ \& \& ${ }_{7415147} 160{ }^{\text {cop }}$ \& $745241{ }_{400}^{40}$ \& ${ }^{180}$ \& 12 V 100 ma 78 L \& 30p 79L12 60p \& transistors \& \& \& 2N3702／3 \& \&

\hline 28 \& 38 \& ${ }^{74515148} 70$ \& $745250{ }^{70}$ \& ［ \& 15V 100 mA 7815 \& 30p 79L15 60p \& AD161／2 45 p \& \& \& 2N3794／5 \& 4041 \& PIASTIC

\hline 74 \& 28 \& $\begin{array}{ll}744159 \\ 7415153 & 400 \\ 700\end{array}$ \& ${ }_{745262}$ \& 100 p \& \& \& BC10 \& ${ }_{\text {brx }} \times 89$ \& ${ }_{\text {HP35 }}$ \& 2 N 379617140 \& 40594 \& Lastic

\hline 741 \& ${ }^{2000}$ \& 74． \& ${ }_{745287} 3$ \& ${ }^{2800}$ \& \& \& ${ }^{20}$ \& ${ }^{\text {BFFY0 }}$ \& \& 2N37739 \& \& $34400 V^{60 p}$

\hline 74 \& \& \& | 745288 | |
| :--- | :--- |
| 745333 | 3509 |
| 000 | | \& 40174 \& \& \& 9 c \& BFY56 33p \& T1P41A \& 2 N 3819 \& \& 㖪

\hline 741 \& ${ }^{90 p}$ \& ${ }_{7415157}$ \& ${ }_{745374}{ }^{4000}$ \& 40175 \& M309\％1A 5 LV 100 p \& p 78HGKC 600p \& ${ }_{\text {BC／57／8 }}$ \& BFY90 ${ }^{\text {B0p }}$ \& ${ }_{\text {T1P42A }}$ \& （1） $\begin{array}{ll}\text { 2N3820 } \\ 2 \text { N3823 }\end{array}$ \& \& 4

\hline 74150 \& 50 \& 744L \& 745471 \& ${ }_{40244}^{40193} \begin{array}{rr}\text { 730 } \\ \text { 1800 }\end{array}$ \& \& \％ 78 HOSCOC c50p \& ${ }^{\mathrm{BCC} 59} 5110$ \& \& ${ }_{\text {TP42C }}$ \& （2N3833 \& DIODES \& ${ }^{35}$

\hline \％15 \& ${ }^{40}$ \& 74 \& \& $40245 \quad 250 \mathrm{p}$ \& LM3137 T03 200 \& \％${ }^{\text {a }}$ \& \& BU104 225 \& （11P540 \& 2N3902 \& \& ${ }_{124}{ }^{24} 500 \mathrm{~V}$

\hline \& \& 74.5 \& 14557 \& 40373 ${ }^{4800}$ \& LM3375 3.5258 \& P 79GuIC 225 p \& BC177／8 17 p \& \& T1P129 75p \& 2N3905／6 165 \& $8 \mathrm{Br} 36.300{ }^{20 \mathrm{p}}$ \& 16A 400V 1100

\hline 74 \& ${ }_{40}{ }^{\text {P }}$ \& ${ }^{74} 4$ \& $4000 \mathrm{CMO5}$ \& 14495 300p \& LM723 150mA \& 79HGKC \& ${ }^{8 C 1779}$ \& BU109 225p \& T1P122 \& ${ }^{2 N 4037} 655$ \& OA47 \& ${ }_{\text {T28000 }}$

\hline \& 400 \& ${ }_{74} 715165$ \& 保 \& 7000 \& adi 370 \& TL497 300 p \& ${ }_{\text {BC1 } 184}{ }^{\text {SCR }}$ \& \& ${ }_{\text {H1P147 }}$ \& ${ }^{2 N 4123 / 4} 827$ \& \&

\hline 74159 \& ${ }_{750}$ \& 7415166 65p \& 12 p \& 2000 \& TLa94 400p \& Lm305A 250 p \& 30. \& Bu \& T1P2955 78p \& 2 Na \& \& HYRISTORS

\hline \& \& \& 4002 12 \& \％ \& 78805 \& pren \& ${ }^{\text {BC2212／3 }}$ \& $8{ }^{\text {8208 }}$ \& T1P4 \& $2{ }^{\text {N4427 }}$ \& OA202 \&

\hline \& 48p \& 74 \& 4006 50p \& \& \& \& （enc \& ${ }^{\text {BU406 }} 145 \mathrm{p}$ \& H1593 \& ${ }^{2}$ \& －${ }_{\text {T }}$ \&

\hline 741 \& 480 \& 744S173 700 \& $\begin{array}{ll}4007 & 18 p \\ 4008\end{array}$ \& 74S \& \& \& ${ }_{\text {BC327 }}$ \& \& ${ }_{21 \times 300}$ \& （1） \& \&

\hline \& 48 \& 74. \& ${ }_{4009}^{4008}$ \& ${ }^{74500}{ }^{\text {cosp }}$ \& OPTOELEC \& tronics \& вса37 16p \& ${ }^{5310}$ \& 452 45p \& 2N5172 ${ }^{\text {220 }}$ \& 1 N 40 \&

\hline 74165 \& 48 p \& 74 \& $4010 \quad 24 \mathrm{p}$ \& ${ }^{7} 74508$ \& ${ }^{2} \mathbf{2} 5777$ \& \& ${ }^{\text {BC338 }}$ \& м M802 ${ }_{\text {¢ } 4}$ \& \& 2N519！90p \& 1 Na 003 \& C106

\hline \& 489 \& \& 4011 14p \& 745 \& ${ }_{\text {ORP12 }}{ }_{\text {1200 }}^{\text {cen }}$ \& \& BC477／8 30 \& \& ${ }_{27 \times 504}$ \& （2N5194 \& 1N4006／7 7 p \& MCA

\hline \& ${ }^{2750}$ \& 74L \& \& 7745 \& \& Tl／31A $120{ }^{\text {a }}$ \& BC516／7 40p \& M 32955 \& 2TX552 55p \& ${ }_{\text {2N5 } 298}{ }^{\text {24，}}$ \& $1 \mathrm{~N} 5401 / 3 \mathrm{l}{ }^{14 \mathrm{P}}$ \& ${ }_{2}$

\hline 241 \& ${ }_{60}$ \& $\begin{array}{lll}7445199 & 45 p \\ 774159\end{array}$ \& ${ }_{4014}$ \& \& \& T1481 \& \& \& \& ${ }^{2 N 5401}$ 60p \& 1N540477 \& 2N4444

\hline \& \& 74.5 \& 4015 \& $765124{ }^{\text {300p }}$ \& \& TLL100 75p \& cc \& MJE340 600 \& ${ }^{\text {VNV66AF }}$ \& 2N5457／8 \& \& ，

\hline \& ${ }_{40} 5$ \& 7415194 3 35p \& ${ }_{4017}^{4016}$ \& ${ }^{745132}$ \& opto．iso \& Lators \& BC557kB 14p \& ${ }^{\text {MJEE2555 }}$ \& VN10KM 60p \& ${ }_{2} 2$ N5450 \& \&

\hline \& 45p \& ${ }^{744} 195195$ \& 50 \& ${ }^{745138}$ \& \& \& ${ }^{8 C 5599 C}$－ 16 p \& MPFILIO2 40 P \& VN66 809 \& ${ }^{\text {2N5485 }}$ \& BRIDGE \& PCB

\hline \& 80 \& ${ }^{7} 4$ \& 4019 25p \& ${ }^{745139} \quad 2250$ \& \& TK112 900 \& BCY7a
BCY71 \& MPFF103／4 ${ }^{30 \mathrm{P}}$ \& \& ${ }^{2} \mathbf{N 5 8 7 5}$ \& RECTIFIERS \& mounting

\hline 74179
74180 \& 80 \& ${ }_{7415221}{ }^{742}$ \& $\begin{array}{ll}4020 & 50 \\ 4021 & 50 \\ 40\end{array}$ \& ${ }^{745157}$ \& ${ }_{\text {MCS2400 }}$ \& \& 75 \& MPF105 ${ }^{\text {and }}$ \& 析 \& 2N \& \&

\hline \& 115 \& ${ }^{74} 5240{ }^{\text {65 }}$ \& ［4022	4020
4020	
50	\& 745163 \& $1 \mathrm{LO} \mathbf{4}^{240}$ \& \& 400 \& ${ }^{\text {MP }}$ \& $3{ }^{3}$ \& ${ }^{2 N 6059}$ \& \& RELAYS

\hline 74182A \& S00 \& 74L5 \& $4023 \quad 16 \mathrm{p}$ \& ${ }^{7}$ \& LEDS \& $0.2{ }^{\prime \prime}$ \& 80139 400 \& MP \& 45 p \& 2NE107 \& \&

\hline 74184 \& \& 7 \& 4024 32p \& 2451943 \& \& \& ${ }^{\text {BDO }} 40$ \& MPSA20 50p \& ${ }^{2 N 930}{ }^{\text {N }}$ \& 2N6247 190p \& IA G00V 30p \&

\hline ${ }^{865}$ \& 500 \& ${ }_{7415244} 600$ \& \& 745241 450p \& ${ }_{17132} 55$ \& T1L222 $\mathrm{Gr}^{\text {r }}$ \& \& MPSA42 ${ }^{\text {M }}$ \& \& 2N \& ${ }_{2}^{2 A}$ A 500 V \& ${ }^{24 V}$

\hline \& 2500 \& 745 \& $\begin{array}{ll}4027 & 24 p \\ 4029\end{array}$ \& \& 209 Rod 11 \& 228 \& ${ }^{80233}$ 75p \& MPSA56 \& ${ }^{2 N 1711}$ \& 2 SCl \& ${ }^{24} 400 \mathrm{~V}{ }^{35}$ \& Oil

\hline \& 48 \& 744．5247 \& 4028 50p \& ECLs \& T12 \& Rectingular \& \& MPSA70 50p \& ${ }_{2}^{2 N 2102}$ \& ${ }_{2 S \mathrm{SCl}}^{2060} 100 \mathrm{p}$ \& 3 A 200 V 60， \& 24 VD

\hline 74191
74192 \& 4 \& ${ }^{74 \text { LS249 }}$ \& ${ }^{4029} 5$ \& \& til216 Red \& NSB \& ${ }_{80242} 60{ }^{\text {cop }}$ \& MPSA933 \& 2N2219a 250 \& ${ }^{2 S C 1307}{ }^{2 S 50 p}$ \& ${ }_{3 A}{ }^{\text {a }} 600 \mathrm{~V}$ \& 240 VAC 200 p

\hline 193 \& ${ }_{48 p}$ \& 7415 \& ［4031 ${ }^{4030} 5$ \& MC4044 \& \& \& 边 \& M \& 2N2222A 250 \& ${ }_{2 \text { SC1969 }}$ \& ${ }_{4 A}^{4 A} 40$ \&

\hline 74194 \& 48 \& 7415253 \& ${ }_{4032}$ \& MC10116 \& DISPLAYS \& TIL312／3 ${ }^{1000}$ \& \& MPSU45 90p \& ${ }^{2 N 2369 A}$ 25p \& ${ }^{2 S C 2028} 950$ \& ${ }_{64} 50 \mathrm{~V}{ }^{\text {cop }}$ \& ${ }_{241}$

\hline \& ${ }^{48 p}$ \& ${ }^{7445258}$ \& ${ }^{4033} 1031250$ \& M $10231380{ }^{\text {a }}$ \& \& $\mathrm{TLL330}^{\text {che }} 140 \mathrm{p}$ \& ${ }_{8}^{80624}$ \& MPSU65 78p \& 2 \& ${ }^{2 \mathrm{SC} 2029}$ \& 6a 1000 \& 240 VAC 225

\hline \& ${ }_{480}^{489}$ \& 74LS259 \& ${ }_{4035}^{4034}$ \& COUNTERS \& DL707 Red 140 p \& 7750602009 \& \& T1P29A \& 2N2904／5 250 \& \& ${ }^{64} 400 \mathrm{~V}$ \&

\hline 998 \& 485 \& 7415 \& ${ }_{4036}^{4035}$ \& \& FND357 120p \& DRIVERS \& ${ }_{\text {BF257／8 }}$ 32p \& \& 2 N 2 \& 2sce \& \&

\hline 199 \& \& \& ${ }_{4038}$ \& \& \& \& BF337 30D \& ${ }^{1+1}$ \& 2N2907A 25p \& ${ }_{\text {3N128 }}^{23}$ \& 25 A 400 V 400 P \& RELAYS

\hline \& ${ }_{700}^{550}$ \& 744LS273 \& 4040 ：${ }^{400}$ \& 72168 ${ }^{\text {c18 }}$ \& fNO507 90p \& 9370 300p \& \& 111p \& \& 3N140 120 p \& \& OOR

\hline \& 70 P \& \& 4041 b0p \& \& MAN4640 200p \& \& \& ${ }_{\text {THP31C }}$ \& ${ }_{2}^{2 N 305354}$ \& 3N14） 1100 \& ENERS \& ETI

\hline \& \& \& \& \& \& \& 20／1 250 \& T1P32C \& ${ }_{2 \times 3055}^{188 p}$ \& \& NER \& PROJECTS

\hline \& \& \& \& \& \& \& （1896 \& | TIP33A | 70 p |
| :--- | :--- |
| TIP33C | 80 p | \& \& $\begin{array}{ll}40290 \\ 40361 / 2 & 2800 \\ 75 p\end{array}$ \& \& AILABLE

\hline \& \& \& \& \& \& \& 278 \& \& $2 \mathrm{N3584} \quad 250 \mathrm{p}$ \& 40408 ${ }^{\text {400 }}$ \& \& Stock

\hline \& \& \％ \& NL \& OAD， \& NDON NW10 \& 0 1E0 \& \& ASE AD \& 40p PGP 6 \& 15\％Vat \& xport no \&

\hline \& PS \& T： 17 BU： \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& Ley road \& ，LoND \& NW10 \& \& \& Ver \& \& RD \& WE \&

\hline \& \& （Tel： 0 \& 1500． 01 \& 1．450 6597．T \& 92 \& \& \& \& ACCESS C \& CARDS AC \& EPTED \&

\hline \& \& \& \& \& \& \& \& \& PRICE L \& T ON REC \& \&

\hline
\end{tabular}

TECH TIPS

Guitar Harmoniser

S.P. Giles, Edmonton

This is one for guitarists who cannot afford commercial units which cost at least $f 1000$ at the moment. Constructors who have built the CCD phaser will be familiar with the pitchchanging effect when it is set up in the vibrato mode, and must have noticed that the longer the delay, the greater the pitch change above and below the frequency of the input.

All that this circuit does is to silence the output for one half of the clock modulation oscillator's cycle. This is achieved using a 4416 quad CMOS switch, which is controlled by the square wave output of the clock modulation oscillator. This IC differs from the 4016 in that two switches will be on and two will be off even when the same control signal is applied to each switch. Depending on which way SW1 is connected, either the raised or the lowered frequency of the input will appear at the output, which can be

CMOS Phaser

S.P. Giles, Edmonton

This is an extension of the usual opamp phaser, which uses CMOS inverters instead. IC1a amplifies the input signal to compensate for some of the loss in gain through the four-stage allpass network formed by IC1b-1f and IC2a2 c . The resistance of the four resistors marked R_{X} is altered by the enhancement FETs in IC3 and the changing voltage applied to their gates by slow oscillator IC2d,e as in the ETI audio phaser.

To set up, adjust RV2 for approximately the same level as at X , then adjust PR2 until the familiar phasing sound is heard with a smooth sweep. RV2 can then be adjusted for the best effect. These adjustments should be made with RV1 at a minimum; this is a feedback control which gives a deeper phasing effect. PR1 should be adjusted so that with RV1 full on, the feedback whistle just disappears.
adjusted by the rate control or by altering the delay of the TDA 1022 s.

There are many circuits available for TDA1022 clocks and filters so I have not bothered to include them here. Constructors must remember that there will be a slight tremulant effect as the signal in harmony with the input will only be present for the time that the clock modulation oscillator is high or low.

Mains Remote
 Speaker

G.M. Perry, West Kilbride

I have used the idea you recently published as the 'Ear-stretcher' com-
munication system to produce an extension speaker. The receiver unit (slightly modified) has been built into a small speaker/cabinet unit, while the transmitter is connected to the hi-fi via a 20 dB amp and mixer. (This combines the stereo channels into a mono signal). The result is a portable speaker

which can be plugged into any mains socket in the neighbourhood and produce an acceptable audio quality from the hi-fi system. In three weeks I've been asked to build four units!

The modifications are as follows. The receiver is built as in the Earstretcher except for the following; the mains input is switched and RV1 is a $220 \mathrm{k} \log$ pot (not a switched pot); the 'mure' is wired off; $\mathrm{C} 13,14$ are 100 n ; C 15 is omitted; C 19 is 3 n 3 . In the transmitter, C6, 7, IC3 and RV1 are not used and the circuit shown here is used to provide the signal input (instead of the microphone unit). This is a mixer with a high impedance input followed by a 20 dB amp. It is important to connect the positive supply of the mixer amp to the regulated side of the transmitter power supply. Screened cable has been used for all audio connections and an operating frequency of 250 kHz was chosen to minimise mains-borne RFI on Radio 4.

 Number-guessing

I wrote this program for the Casio FX-501P and FX-502P, but it could easily be adapted for other programmables. The object is to guess a threecaular To start the gane press INV P8. The display will show the number 15 , which is the number of attempts you have. To make a guess, enter the number followed by EXE. One of two numbers will come up on the display; - 1 means the guess was too low, while 2 means the guess was too high. If you解 number of attempts you made will isplayed. The changed to give a different number of attempts.

CODE
INV P9
INV RAN LOC 2

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be as clear as possible and the text should be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today

International,
145 Charing Cross Road, London WC2H 0EE.

Intelligent Alarm Switch

S. S. Norman, Sunbury-On-Thames,

This simple circuit is built around a TCA965 window discriminator. It is a device which is given a predefined "voltage window" set by RV1 (lower limit) and RV2 (upper limit). The four outputs, which are normally high, indicate whether the input voltage (pin 8) is inside, outside, above or below the "window". Figures 1 and 2 show two possible circuits for normally open or normally closed switches.

The resistors marked * are mounted inside or fixed with epoxy to the switch to be "defended". RV1 and RV2 are set to form a window around the voltage at point Z. Once set, any attempt to cut the wires to the switch or short the switch out in an attempt to bypass it will pull the voltage at point Z out past the window and the output to the alarm will go high. Needless to say the switch will also activate the alarm in the normal way.

The smaller the window about point Z the more sensitive the circuit becomes. To set up the circuit, measure

Fig. 1

Fig. 2
the voltage at point Z (with the circuit in its standby condition). Then adjust RV1 to set the voltage at point X to be

OV5 lower than point Z. Now adjust RV2 to set voltage at point Y to be 0 V 5 higher than point Z.

Current Saving Modifications For The Musical Doorbell

William Leung, Harlow

In the original Musical Doorbell circuit (ETI December '80) IC1 and IC2 can
be replaced by a single CMOS IC. This chip has four NAND Schmitt triggers. The bistable formed around IC1a,b is different from that of the original, in that it requires a negative trigger pulse. This explains why R1 and PB1 are transposed, the presence of IC1c as an inverter, and R4 being connected to the output of IC1a rather than IC1b. Next comes the astable; this is only gated into operation when IC1 pin 8 goes high.

One further current-saving modification which I have yet to try out is to replace C7, R13 and the speaker with a piezo-electric transducer (the PB-2720). To go even further, IC4 can be an ICM7555 when using TX1, although it must be stressed that TX1 only has a range between 1 kHz and 7 kHz , so R6-R10 will need some adjustment ie they should be reduced.

POWER AMPS

PRE-AMP MODULES

> SEND COUPON
> (NO STAMP NECESSARY) FOR YOUR FREE IL.P CATALOGUE AND OPENUP TOA
> NEW WORLD OF QUALTY \& VALUE

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 4

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Oniy (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 4 and postit WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

Did you know

- LL P. are the wondis:
tangurdesigners an" manutacturers of hifl audlo indedtes?
1.L.P. plonaered oncmenalateif
 thhanced thamal stuthly;
reqeatalcal protomion ant Zaimbility.
turg at Twent power indilifers trom 1510.240 when firs inctuding the wery Tatost superctallity Deation in chuose frem?
TVENI por amp motatos
allow yee to incorporate
exelting protessional applications to your equpprent. never before avalloble to constructors and
exporimenters?
IL.R. are suppliers to
the B.B.C. IB.A.M H.S.A.
Ertish Aerospace, Marconl,
Racal; Ferrant, G.E.C., Rolls
floyce etc?

Queds an despatched tiverey
days of your ofder reactifing it mit cavared by our 5 yeat no-quiblle guarantie?
To: I.L.P. ELECTRONICS LTD.

PLEASE SEND ME IL.LP. CATALIGUE, POST PAID BY RETURN

I HAVE/HAVE NOT PREVIOUSLY BUILT WITH IL.P. MODULES

Name:
Address: \qquad
L.P. products are available also from Henr's, Marshal's, Technomatic \& Watford.

SECOND GENERATION POWERFET AMPLIFIERS

NEW DESIGNS

With the introduction of two new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiers. Four key improvements 1.) The use of H-PAK powerfets, resulting in improved
.) The use of 2.) Low COB drivers now in power transistor packages
kages, maintaining the superb HF
.) Separate driver and input supply rails allowin
power by increasing output stage efficiency
4.) Bridge mode input pin allowing instant bridging between any two amplifiers without the need for extra circuitry

PFA100 Specification
Bandwidth
$10 \mathrm{~Hz} \cdot 100 \mathrm{KHz} \pm 1 \mathrm{~dB}$
$100 \mathrm{~W} / \mathrm{V}_{\mathrm{s}}= \pm 55 \mathrm{~V} \mathrm{l}$
Output Power into 80
THD $(20 \mathrm{~Hz}-20 \mathrm{KHz})$ THD $(1 \mathrm{KHz} 2 \mathrm{at} 100 \mathrm{~W}$
$\begin{array}{ll} & \\ \text { SNR } & \text { at } 100 \mathrm{~W} / \\ & 0.004 \% \text { typ } \\ \text { Slew rate } & 120 \mathrm{~dB} \\ \text { Gain } & >30 \mathrm{~V} / \mathrm{uS} \\ \text { Rin } & \times 23\end{array}$
$\begin{array}{ll} & \times 23 \\ \text { Rin } & 30 \mathrm{~K} \\ V_{s} \text { max } & \pm 70 \mathrm{~V}\end{array}$
Price $£ 18.45$
Distortion figures
worst case
PFA100 120 W into 8Ω

PFA200 180W into 8Ω
300W into 4Ω

PFA200 Specification
$\begin{array}{ll}\text { Bandwidth } & 10 \mathrm{~Hz} \cdot 100 \mathrm{KHz} \pm 1 \mathrm{~dB} \\ \text { Output power into } 88 & 150 \mathrm{~W}\end{array}$ Output power into 88 150W (Vs $\pm 60 \mathrm{~V}$) THO (11KZz at 150 W) $\quad 0.002 \%$ typ
$\begin{array}{ll}\text { SNR } & 0.002 \% \text { typ } \\ 120 \mathrm{~dB}\end{array}$
$\begin{array}{ll}\text { Slew late } & >30 \mathrm{~V} / \mathrm{us} \\ \text { Gain } & \times 23\end{array}$
Rin max
Price $\mathbf{£ 2 5 . 9 5}$
Distorion figures
worst case

POWER SUPPLY COMPONENTS
Toroidal Mains Transformers

Voltage	160 VA	225 VA	300 VA	500 VA	625 VA
$40-0-40$	$11-57$	$13-75$	$15-59$		-
$45-0-45$	-	$13-75$	$15-59$	$20-45$	-
$50-0-50$	-	-	-	$20-45$	$27-53$

Special low flux windings. Carriage + VAT included
25A 400PIV Bridge rectifier 10,000uF 80 V Electrolytics 4.75 30,000 uF 75 V Electrolytics 4.75

Phone or write for advice on selecting the right components for your particular application
All prices VAT inc. Carriage 75p. Trade lists available Ask about our preamps. protection boards and lower and higher power amp modules.

THE POWERFET SPECIALISTS O\& REQ日RTe
 (incorporating J.W. Rimmer)
 Dept ETI/8, 148 Quarry Street, Liverpool L25 6HQ Telephone: 0514288485
 Technical enquiries:
 367 Green L.anes. London N4 1DY. Tel: 01.8006667

ACTIVE COMPONENTS MAIL ORDER SPECIALISTS
 Lowest Prices
 Fastest Delivery

VISA

24 HOUR TELEPHONE SERVICE FOR CREDIT CARD USERS
\star All prices exclude VAT and Carriage (075 + VAT) on orders under $£ 10 \star$

- Order receipted \& returned with goods If full VAT invoice required please addo $50+$ VAT

ACTIVE COMPONENTS (MAIL ORDER)
 DEPT ETI. HEWITT HOUSE, NORTHGATE STREET,
 BURY ST. EDMUNDS, SUFFOLK IP33 1 HO
 TELEPHONE: (0284) 701321 TELEX: 817670

KITCHEN SCALES PaRt 2

 The final part of this out-of-the-ordinary,state-of-the-art, nifty little gadget
describes the construction and calibration
procedures. Design and development by
Rory Holmes.

Assemble the PCB in the usual fashion, noting the IC orientation, and the polarity of ZD1 and the tantalum capacitors. Also check the BC184L pinouts; these often cause confusion. Twelve Veropins should be inserted at the points marked for external connections. Another point to watch is the hole marked beneath preset PR1; this should be drilled out to 3 mm diameter before mounting the preset, thus allowing its adjustment from either side of the board. Likewise, a 3 mm hole drilled on the other centre allows a secure 6BA mounting bolt for the board.

When complete, the board may be initially tested by inserting all the ICs into their sockets and connecting a 9 V PP7 battery to the supply terminals as indicated. If a scope is available, the

Fig. 1 Coil winding details.
digital sine wave approximation should be observed at the junction of R14 and C6; it could also be checked with a crystal earpiece, when a high pitched tone of 10 kHz should be heard. The reference supply voltage can be measured with a multi-meter across the wire link and a 0 V terminal. It should be in the region of 5 V if all is well, the exact value being unimportant. At this stage the transducer should be built and wired up before further testing of the PCB.

Winding You Up

The LVDT is wound using 32 swg enamelled copper wire on a piece of 20 mm diameter plastic tubing of the type used for electrical conduit, and available from DIY shops. Any similar piece of tubing will suffice since the dimensions are not critical. Figure 1 shows the winding arrangements. Two separate secondaries are wound either side of the central primary winding. All the windings consist of 100 turns wound in the same direction in flat layers; four layers of 25 turns for each secondary, and two layers for the primary. The accuracy and linearity of the LDVT transducer depends upon the two secondaries being as similar as possible and symmetrically positioned about the primary winding. Care should thus be take to ensure the layers are evenly wound and tightly packed. Superglue may be used to retain each layer as it is wound. After completing the windings and finishing with a liberal coat of glue the two secondaries are then wired in series opposition to form one coil by connecting together the end of each winding.

The LVDT should now be wired up to the PCB using screened leads as illustrated on the overlay diagram. On
our prototype assembly we used a tour way 'Molex' PCB plug and socket for this connection since the transducer assembly could then be conveniently plugged in.

Figure 2 shows how the LVDT is mounted to measure displacement. As described last month the mechanics of an ordinary pointer scale are utilised to provide the linear displacement with weight via the in-built spring and pivot.

For our prototype we used a small low cost Salter scale which incorporated a ball-race slide mechanism to support the weighing pan. Practically any type of scales could be converted to a digital readout, provided these is room to mount the LVDT and its associated driver electronics.

Scaling The Heights

Obviously, the more precise the mechanics of the original scale, the greater the degree of accuracy that can finally be achieved with the electronic transducer. The principle is to attach the main coil to a fixed part of the scale while the ferrite core is attached via some rigid element to the weighing pan movement, such that as weight is put on the scale the core moves linearly along its axis into the coil former.

In our prototype the two steel plates of the slide were used to support the transducer as represented in the diagram. Two pieces of PCB material fixed with epoxy act as brackets for the coil former and ferrite core

The mounting arrangement is not too critical but the following points should be observed. The coil must not be too close to steel or other magnetic material and likewise the ferrite core mounting should be non-magnetic and non-conductive. Remember to allow sufficient leeway on the ferrite mounting

The scale mechanics with the LVDT added. Compare with Fig. 2.

Fig. 2 An artist's impression of the sensor to help with construction.

Fig. 3 The (corrected) wiring diagram.
tor the tull displacement (about 1 cm). The ferrite core must be central in the tube, with the axis of both coil and core parallel to the direction of weight displacement. Sufficient rigidity can be achieved using epoxy glue on the transducer, but initially the ferrite core should only be secured to its bracket with tight rubber bands until the calibration procedure.

Having completed the transducer the entire unit can now be tested by wiring up to the LCD meter-module. Wire up the module according to the connections shown in Fig 3 (this has been reprinted due to an error in last month's diagram).

The input voltage at point B should then be connected to the corresponding point on the PCB; point A temporarily connects to the 2 V 5 reference terminal. After connecting the DVM supply rails to the 9 V terminals on the PCB, power can be switched on. When the ferrite core is near the middle of the coil the meter should be close to 0 V and will indicate + or - readings as the core is

BUYLINES

The bandgap reference diode ZN423 is available from most semiconductor suppliers as are all the other more familiar semiconductors. Ferrite rods and copper wire can be supplied by Watford Electronics and 10 turn wirewound potentiometers are available from Henry's Radio.

The most expensive item in this project is the very neat LCD panel meter, a state-of-the-art CMOS module available from Verospeed Ltd (known as the DPM200, order ref. 89-25453C).

Suitable mechanical scales are available from most large department stores from about $£ 5$ upwards. The type used on our prototype conversion was a small Salter scale with a ball-race slide mechanism . (around £6). The PCB Service advert is on page 69.

Alternatively, for the mechanically ingenious with a bent to experiment, a large selection of springs can be obtained from Proops of Tottenham Court Road for about $£ 1$!
moved to either side of the null position. The 100 mV sine wave across the primary coil can be observed on a scope along with the other waveforms illustrated last month. If all is well, the electronics can be assembled inside the scale. Figure 5 shows how we arranged the various components to fit into the existing scale box. The back of the case has now become the front to allow room for the LCD display! The 10 turn potentiometer, RV1, should also be connected up at this stage, along with the on/off switch, so completing the interwiring.

Calibration

Once you are satisfied with your mechanical arrangement for mounting the transducer and associated electronics, the scale should be calibrated using standard or known weights. First, the offset voltage input to the DVM module, marked as ' A ' on the wiring diagram, should be temporarily connected to the 2V5 reference terminal shown on the PCB overlay. The preset PR1 should be set at roughly half travel, and the scale loaded up with about 1 kg . After switching on the supply, the ferrite core should be adjusted relative to the coil until it's approximately in the middle at the null output position (this corresponds to half scale deflection). As the null position is approached the DVM will accordingly decrease to zero reading. The ferrite core should now be fixed permanently to its mounting plate using epoxy and allowed to set. When set, the DVM reading must be brought exactly to zero by the addition of small increments of weight, sugar or salt being ideal. The known weight, which can be anywhere between $1 / 2$ and 1 kg , should be added to the scale pan, and PR1 adjusted until this weight is shown on the LCD display

PROJECT : Scales Part 2

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1, 11, 13	1 k 0
R2	2 k 7
R3	27 k
R4,28	100k
R5,8	33 k
R6,7,16	22k
R9,12,17,18,	
19,20,22,24	10k
R10	220k
R14	68 k
R15	5k6
R21,25	1 ks
R23	4 4 7
R26,27	270k
Potentiometers	
	47k 10 turn wirewound potentiometer
	470k miniature horizontal preset
Capacitors	
C1,4,10	22 u 16 V tantalum
C 2	220 p polystyrene
C3,7	10 n ceramic
C5	68 n ceramic
C6	2 n 2 ceramic
C8,9	1 n 5 polystyrene
C11,12	100 n polycarbonate
C13	220 u 16 V electrolytic
Semiconductors	
ICI	LM324
IC2	4018B
IC3	4093 B
IC4	4066 B
Q1	BC184L
D1	ZN423
ZD1	2V7 400 mW zener diode
Miscellaneous	
LVDT (see t scales (see B panel meter	ext); PCB (see Buylines); uylines); $3^{1 / 2}$ digit LCD type DPM 200 (see

Potentiometers

Capacitors

Semiconductors

Miscellaneous

LVDT (see text); PCB (see Buylines); scales (see Buylines); $31 / 2$ digit LCD panel meter type DPM 200 (see Buylines)

An internal view showing the arrangement of the boards.
(turning PR1 clockwise increases the reading).

Now remove the weight to check that the reading returns to zero, and adjust PR1 accordingly (a few adjustments to PR1 may be necessary to set the correct reading for the known weight).

Finally, the offset input ' A ' can be disconnected from the 2 V 5 reference and wired to the slider of RV1. Rotating RV 1 will alter the reading and the meter can now be easily zeroed for any weight measured, including the empty scale pan. You may now proceed to calibrate the larder.

The mechanics, seen from above.

ETI
Fig. 5 Artist's impression of the 'view from the top'.

RETAIL-MAIL ORDER-EXPORT INDUSTRIAL EDUGATIONAL

DIGITAL MULTIMETERS All models complete with leads and batteries

Hand Held Models 3 /, digit LCD

[UK C/P 65p]

AC/OC Bange push button 2A 20334 Similar Sabtronics
703 As 601 but 0.2% hasic $188 \mathrm{~m} / 6011 \mathrm{~A} 15$ range + Hie tester push butan loa oc 189 m 30 range plus Hle te
Rotary switch $10 A A C / D C$ Rotary swilch
2035 ange 28 range 0.1% basic 2A AC/OC push button (Sabtronics) 2037á as 2035A plus 2 temp ranges AC/DC range 0.8% basic 10 A 30 rolary switches |Keithiey| 130 As modell 29 bui 0.5% basic $£ 102$ ACCESSORIES
AC Adaptors (2010A \& 2015A only) 85.69 Cases TM351/353 $£ 6.84$ 2001 £7.50 1503 £20.45 Touch and hoid probe THP20 £14.95

GENERATORS R-C. Pulse RF Function Audio

 All movels 220/240 Y AC AUDIO $120 \mathrm{HZ}-200 \mathrm{KHZ} 4$ band.Sine/SO $0 . \mathrm{PI}$ Sine/SO OPI TE22D Maxdistiortion $1^{\circ} \mathrm{E}$ E69.95
 AG202A Max dislortion $05.1 \%^{2 / 4}$ [TP10) LaG120A 5 band 10 HZ - 1 WHZ
Sine/SO $0.05 .0 .8^{\circ} \%$ dist. 146.00

581.50
£36.50 2010A LEO 31 range. 10 A AC/
£39.95 TM353 LCD 27 range 2A AC/DC
£54.00 2015A LCD31 range 10A AC/DC basic $0.1 \% /$ (Sabtronics)
TM 351 CCO 29 range 10A AC/ £89.5 £113.85 ع69.95 2001 LCO 28 range plus 5 range
$\mathbf{£ 7 1 . 0 0} \begin{aligned} & \text { capacitance meter 10A AC/DC } \\ & \text { Basic } 0.1 \% \text { (Pantac) }\end{aligned}$ £108.00 $1503 \mathrm{~A} 43 / 4$ dipit LCD 30 ranges 10A AC/OC 4 MHZ counter. 4 KHZ 03c. 0.05\% basic [Thurlby] 1503HA As a
0.03% basic 8171.00 $£ 189.75$

OSCILLOSCOPES

 NOW £320.00 (UK C/P £4.00) HM3307 Singla tract iO MHZ 5 mV . 05 $6 \times 7 \mathrm{~cm}$ dlsplay (HAMEG) E 158.70 $\begin{array}{lr}\text { Ox cm display (HAMEG) } & £ 158.70 \\ \text { Dptional cass } & £ 18.40\end{array}$ 3030 Single irace 15 MHZ . 5 mv .0 .5 micro
sec. Plus built in componeni lestier. 95 mm tube. Trig to 20 MHZ ICROTECHI $£ 172.50$ 3035 single trace 15 MHZ . 5 mV . Trig to 20 MH2 plus built in component les ior $0.2 \mu \mathrm{Sec}$.
130 mm Tube (CROTECH)
$£ 189.75$ 130 mm Tube (CROTECHI $£ 189.75$ HW2033 Oual 20 MHZ : Trig to 30 MHZ
$5 \mathrm{mV}: 0.5$ micro secs $\mathrm{B} \times$ 10cm 5mv:0.5 micro secs B \times locm display
iHAMEG
E253.00 cs 15624 Out 10 MH 210 mV .
 3131 Oual irace 15 MHZ Irig. to 35 MHZ
$5 \mathrm{mv}: \mathbf{0} 5$ micro sec. 130 mm lube. plus component tester.
CS 1575 Dual 5 MHZ ImV 0.5

 micro secs [CROTECHI

> Mutti-range clamps all with resisislance range. carry AND CLAMP METERS
ELECTRONIC INSULATION TESTERS (UK C/P 75p)

HAVE A BANANA!

Low cost reliable meters (Ali supplied with batis/leads] [UK G/P55p)
Banana 15 ranga pockat 20K/Volt pius cont. buzzer [IIIU8) $£ 20.64$ TIOL 12 range $1 \mathrm{~K} / \mathrm{Vall}$ - $\mathbf{£ 4 . 8 5}$ NH55 10 range dockbl $2 \mathrm{~K} /$ Voli $\begin{aligned} & \mathbf{8 5 . 7 5} \\ & \mathbf{2 6 . 5 0}\end{aligned}$ ST5 11 range pocket 4K/Volt $\mathbf{\$ 7 . 5 0}$ NH56R 22 range pockel 20K/Voft

YN360TR 19 range plus Hie tast 20K/Volt KRT5001 16 range 10 amp OC ranga doubla 50K/Volt ST303TR 21 range plus Hie Tes 20K/Volt
TMK500 23 range plus 12A OC plus cont. buzzer $30 \mathrm{~K} /$ Volt
168 m 36 range large scale 10 A 168 m 30 range large scale 10A
AC/DC $50 \mathrm{~K} /$ Volt 360TR 23 range large scale 10A $A C / D C$ Hie test 50 meg ohm. IKV AC/OC $100 \mathrm{~K} /$ Voit
Choose Irom UK's largest range

GALL IN AND SEE FOR YOURSEITF
 OPEN SIX DAYS A WEEK ALK MCDELS

(UK C/P Single track £3 ea. Salgan $£ 3$ ea.
Jual track £4ea. SC110 £1.00)
HM4 412-5 Oual 20 MHZ delayed sweep
 display [HAMEG] [Optional case $\mathbf{£ 2 1 . 8 5]}$

$\begin{array}{r}66.90 \\ \\ 68.75 \\ \hline\end{array}$

TOP QUALITY
ANALOGUE MULTIMETERS
(UK C/P El 1.20]
rangers.
ring
ALC Volis/Curfent and Ohms
 MAJOR SOK 29 range $50 \mathrm{~K} / V .2$ A OC
12\%A AC PAATEC 128/ AC [PANTECI
m1zoo 30 range IDO 200 Meg. [1ROBIN| PAN3001 34 range 40K/V 5A AC/OC C 49.95
 Also 500 K hz - 500 M
3 range cap. meter. 3 range cap. mater
pan3003 42 ran 1μ FSO (NOTE 3001 \& 3003 Electronic Protection Mirror 8 catess)
K 140026 range large 8 alait $20 \mathrm{~K} /$ Woht. 10 A AC/OC. 20 Meg ohm. 5 KV AC/OC
K 200039 range 10 Meg ohm tnput 25 HZ - 1 MHZ

DIRECT READ HV PROBE GUK C/P 65pI $0 / 40 \mathrm{KV}: 20 \mathrm{~K}$

VARIABLE POWER SUPPLIES

 (UK C/P \&1)PP241 $0 / 12 \quad 12 / 24$ Volt
$0 / 1 \mathrm{mmp}$
PP243 0/12. $12 / 24$ Voli
$0 / 3 \mathrm{amp}$
$£ 35.00$
$£ 59.95$

'SCOPE ADD ON UNITS

LTCSOS Semiconductar curve HZ65 Companent tesser [HAMEG]

DIRECT READ TEMPERATURE

LOGIC PROBES/MONITOR

 GSC LP2 15 MHZ probe E 19.85 $\begin{aligned} & \text { LEADER LDPO76 } 50 \text { MR2 (with } \\ & \text { casel } \\ & \text { C56.90 }\end{aligned}$ GSC LM1 monitor 18 io 16 pin

Order by Post with CHEQUES ACCESS/VISA or Telephone your order
Allow up to 10 days for delivery (unless advised)

CONFIGURATIONS

Not ETI's answer to James Burke but a new series aimed at the designer. Ian Sinclair will be looking at some of the basic workaday circuits that often get eclipsed by the more glamorous ICs, showing you how and why they work and how and why to use them. We kick off this month with common-emitter transistor bias.

Configurations is a new series which aims to provide you with fundamental circuit design data for a number of the most commonly used circuit blocks. A very large amount of circuit work concerns these standard arrangements, so that by gathering your pages of Configurations each month, you will be able to build up a complete designer's handbook of circuits and their design data. We're starting this month with the most fundamental of all - biasing and calculating gain and bandwidth of the single-stage common-emitter amplifier, using a silicon transistor with a resistive load.

(a) TO FIND A VALUE FOR R_{b}, GIVEN A DESIRED

VALUE OF V_{C} :

$$
\begin{aligned}
& R_{b}=\frac{R_{L} h R_{L} \cdot h_{f e} \cdot\left(V_{C C}-0.6\right)}{V_{C C}-V_{C}} \\
& \tilde{R}_{L} A N D R_{b} \mid N \text { KILOHMS }
\end{aligned}
$$

(b) TO FINO WHAT VALUE OF V_{C} WILL BE CAUSED BY A GIVEN BIAS RESISTOR:
$v_{C}=\frac{v_{c c} \cdot R_{b}-R_{L} \cdot h_{f e}\left(v_{c C} \cdots 0.6\right)}{R_{b}}$
R_{L} AND R_{b} IN KILOHMS

Fig. 1 Simple singleresistor bias circuit. The value of resistance depends critically on the value of h_{fe} for the transistor.

The simplest bias circuit, of course, is that of Fig.1, using a single bias resistor connected between the base and the supply positive. We're not going to spend much time on this one, because it's not a very good bias method from any point of view. The reason is that the resistor value has to be spot on for this methodto work, and you have to know the current gain (h_{f}) value for that particular transistor (not just the average for the type) to a fair degree of accuracy. If you need to use that method and have a box of 1% tolerance resistors handy, then the design data is illustrated in Fig. 1. One of the few things that can be said for the circuit is that a high input resistance is attainable, but more on that subject later.

A Favourable Bias

A much more practical bias method is illustrated in Fig. 2. This makes use of DC shunt feedback between the collector and the base of the transistor, and is less likely to be upset by the changes that occur in the characteristics of the transistor as it heats up. You still have to know the h_{t} value for the transistor, but the collector voltage won't be so far out if you just use an average value for the type and it happens that the one you're using is at one end of the range of values. The formula, like the previous one, assumes that the base-to-emitter voltage when the transistor is conducting will be 0 V 6 and since this is the quantity that changes most as a silicon transistor heats up, it's worth while taking a look at how this bias method is affected.

(a) TO FIND A VALUE FOR R_{b}, GIVEN A DESIRED VALUE OF $V_{C^{z}}$

```
R
RL}AND R R IN KILOHMS
EXAMPLE: IF R 
R
(b) TO FIND A VALUE FOR V}\mp@subsup{V}{C}{}\mathrm{ , GIVEN R}\mp@subsup{R}{b}{}\mathrm{ :
V
```

Fig. 2 Shuntfeedback bias. The value of collector voltage is less dependent on the h_{fe} value. Note the units, with all resistances in kilohms.

Figure 3 shows two calculations of collector voltage, both assuming a supply voltage (V_{cc}) of +9 V , load resistor of $2 \mathrm{k} 2, \mathrm{~h}_{\text {te }}$ value of 100 , and bias resistor R_{b} of 88 . However, one uses $0 V 6$ as the $\mathrm{V}_{\text {be }}$ figure and the other uses 0 V 5 . The difference in the collector voltage is negligible, which points to this method of bias as being a very useful one when you are worried about the effect of temperature changes on the performance of the transistor.

```
ASSUME IN BOTH CASES THAT R R
```



```
WHEN V be }=0\mathrm{ V5, V V
DIFFERENCE IN V}\mp@subsup{V}{C}{}=70\textrm{mV
```

Fig. 3 Effect of temperature. The $V_{\text {be }}$ (assumed 0 V 6 for a silicon transistor) decreases as the temperature rises. The calculations show that the collector voltage value is hardly affected.

The circuit uses feedback, of course, and unless something is done to remove the feedback of $A C$, the gain of the stage and its input resistance will be reduced. The reduction in gain isn't serious for most circuits, but the input resistance problem can be more serious - it's detailed later in this article. Both can be tackled if AC is removed from the feedback path by splitting the bias resistor into two parts and decoupling it, as shown in Fig. 4.

Fig. 4 Removing AC feedback by splitting the bias resistor into two sections and decoupling.

An Arrangement With Potential

The most-extensively used of all bias methods is our old friend in Fig. 5, which uses a potential divider to provide a constant voltage (we hope) at the base of the transistor, and DC feedback (series feedback this time) through the emitter resistor to stabilise the bias. The notable thing about the formula is that h_{fe} doesn't appear anywhere in it, so that the bias should not be affected by the value of h_{f}. This means that the circuit is very tolerant of wide ranges of h_{fe} values, providing the base current of the transistor is not so large that it disturbs the base bias voltage set by the potential divider. As a rule of thumb, if the current flowing through R 1 and R 2 (equal to $\mathrm{V}_{\mathrm{cc}} /(\mathrm{R} 1+\mathrm{R} 2)$) is something like 100 times the base current of the transistor, then the circuit will work exactly as per design, and any transistor whose base current is within limits can be used with the same bias components. If the base current of the transistor is far from negligible then complications arise, and it's easier just to use lower values of R1 and R2 - but for the effect on input resistance, see later. For voltage amplifier stages where the collector current is only about 1 mA , values like 6 k 8 and 1 k 5 on a 9 V supply will suit the circuit very nicely.

$$
\begin{aligned}
& \text { (a) TO FIND R } \mathrm{R}_{8} \text { FOR A DESIRED } \mathrm{V}_{\mathrm{C}} \text { : } \\
& R_{B}=\frac{R_{L} \cdot\left(\frac{V_{C C} \cdot R_{2}}{R 1+R_{2}}\right)-0.6}{V_{C C}-V_{C}} \\
& \text { (b) TO FIND } V_{C} \text { FOR A GIVEN } R_{s} \text { : } \\
& v_{C}=v_{C C}-\frac{R_{L} \cdot\left(\frac{V_{C C} \cdot R_{2}}{R 1+R_{2}}\right)-0.6}{R_{B}}
\end{aligned}
$$

Fig. 5 The potential-divider bias method. This is particularly useful for mass-produced circuits, because bias does not depend on h_{fe} values.

Decoupling Is De Problem

One disadvantage of the circuit is that there's an emitter DC voltage so that the available voltage swing at the collector is correspondingly reduced. The other point, which is important where space is limited, is that decoupling of the emitter resistor is essential. Without decoupling the gain is low; it's given by $\mathrm{R}_{\mathrm{L}} / \mathrm{R}_{e}$ and will be around two to six times for the kind of values you are likely to end up with in a practical circuit. The decoupling capacitor operates at low voltage, so that a 3 V or 6 V type is normally adequate, but its value has to be large to avoid a noticeable loss of gain at low frequencies. It certainly isn't enough to have the reactance of the capacitor equal to the resistance value of R_{e} at the lowest frequency for which the amplifier is intended to be used, because if you make this assumption for each coupling and decoupling time constant, you'll end up with practically no gain at that frequency. Aim for a capacitor reactance of about one fifth of the emitter resistance value at the lowest frequency you intend to use and the results will be more acceptable. With C in microfarads and R_{e} in kilohms, this means a value given by the equation

$$
\mathrm{C}=\frac{5000}{2 \pi \mathrm{f} \cdot \mathrm{R}_{\mathrm{e}}}
$$

and for a 390 ohm emitter resistor, this indicates a capacitor value of around 50 uF for a 40 Hz breakpoint. Even at 3 V working, this is going to be a component that will be larger than the resistors or the transistor.

> IF $h_{i e}=$ INPUT RESISTANCE IN KILOHMS, I $\mathrm{I}=$ STEADY COLLECTOR CURRENT IN MILLIAMPS, AND $h_{\mathrm{fe}}=$ VALUE OF CURRENT GAIN, THEN $$
h_{\text {ie }}=\frac{h_{\mathrm{fe}}}{40 . i_{\mathrm{C}}}
$$ EXAMPLE: IF $\mathrm{h}_{\mathrm{fe}}=400$ AND $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$, THEN $\mathrm{h}_{\mathrm{ie}}=\frac{400}{40 \times 1}=10 \mathrm{k}$

Fig. 6 Transistor input resistance, h_{ie}. Note this is for the transistor only, and assumes zero-signal conditions.

You Know My Resistance Is Low

The input resistance of an amplifying stage is, as the name suggests, the ratio of input voltage to input current for an AC signal at a frequency in the middle of the bandwidth. The input resistance of a transistor is not constant, but if we take the value which it has at the setting of the bias current, with no signal, than this is a reasonable average to take for small signal inputs - small meaning millivolts. The value is calculated as shown in Fig. 6, and it depends on the h_{fe} value and the bias current. In general, using transistors with high h_{fe} values operated at low collector currents will give the highest input resistance values for the transistor, but you can usually assume values in the region of 1 k 0 to 10 k .

These are just input resistance figures for the transistor itself, however, and the total input resistance will be affected by the bias components. When we use the potential divider bias circuit, for example, both R1 and R2 (in Fig. 5) are connected between the base and a line which is at $0 \mathrm{~V}(\mathrm{AC})$. How so, you ask? Well, as far as AC voltage is concerned, the supply positive line is as much of an earth as the genuine earth line, since they are connected to each other by a whopping great electrolytic in the power supply circuit. Hence all of these bias resistors are in parallel across the base-to-earth path, considerably lowering the input resistance (Fig. 7). If you think that the shunt feedback circuit of Fig. 2 is better then think again, because the collector end of the bias resistor is connected to a voltage which is in antiphase to (and of much greater amplitude than) the base voltage, so it behaves as if its value were R_{b} / G connected to earth. G is the voltage gain of the stage, so that if $R_{b}=88 \mathrm{k}$ and $G=50$, then the bias resistor is effectively 1 k 76 in parallel with the input resistance of the transistor itself.

$1 / R_{\text {IN }}=1 / 5+1 / 1.5+1 / 6.8$ (ALL RESISTANCES IN KILOHMS), SO
$\mathrm{R}_{\text {IN }}=0.986 \mathrm{k}=986 \mathrm{R}$ WHERE $\mathrm{R}_{\text {IN }}$ IS TOTAL INPUT RESISTANCE
Fig. 7 The effect of bias components and $\mathbf{h}_{\text {ie }}$ on total input resistance.

Gainful Employment

The output resistance of a single transistor amplifier consists of the output resistance of the transistor itself, usually around 30 k , in parallel with the load resistor. Since load resistor values are usually of the order of 1 k 0 to 10 k , this in practice means that we can use the load resistor value as the value for output resistance when we are dealing with resistor-capacitor coupled stages.

The crunch comes when we want to find what the gain of an amplifying stage will be. For a silicon transistor which has enough h_{fe} to class it as being in the land of the living, the maximum voltage gain is given by $40 \times \mathrm{V}_{\mathrm{RL}}$, where V_{RL} is the voltage across the load resistor when no signal is applied - the bias voltage in other words across R_{L}. For example, if you are using a transistor with 4 V 5 across the load resistor, then the maximum gain is 40 x 4.5, which is 180 times (we showed how to derive this figure in 'Gm Revisited', April 79), and that's the value which can be
measured if you use a low impedance signal generator, a very small signal amplitude, and a high-impedance oscilloscope to measure the output.

Practical circuits, however, use higher-resistance devices as signal sources and lower resistance devices as signal loads, so that the gain when we take into account the potential-dividing effect of all these loss-makers is a lot less. For example, if we imagine our transistor stage to be fed with a signal from another stage with an output resistance of 2 k 2 and feeding into a stage with input resistance of 1 k 0 (and with these same values itself) then its gain (Fig. 8) will be a miserable 17.5 times. It's not the gain of the transistor which has fallen, notice; it's the attenuation caused by the potential dividers which is dissipating the signal. The moral is that input and output resistances are important when you are aiming for maximum gain, and that everything you can do to raise input resistance and reduce output resistance can be useful.

IF TRANSISTOR GAIN IS 180, THEN SIGNAL INTO TRANSISTOR $=\frac{V_{I N} \times 1 \mathrm{kO}}{3 \mathrm{k} 3}$
AND SIGNAL OUT $=180 \times \frac{V_{\text {IN }} \times 1 \mathrm{kO}}{3 \mathrm{k} 3}$ SOTHAT $V_{\text {OUT }}=180 \times \frac{V_{\text {IN }} \times 1}{3.3} \times \frac{1}{3.3}$
$=17.5 \mathrm{~V}_{1 \mathrm{~N}}$
Fig. 8 The effect of input and output resistances in forming potential divider circuits with the internal resistances of source and load.

LOW-FREQUENCY GAIN IS 3dB DOWN ON MIDBAND GAIN WHEN $\frac{1000}{2 \pi \cdot \mathrm{I} . \mathrm{C}}=\mathrm{R}_{\text {IN }} \quad$ (C IN MICROFARADS R IN KILOHMS) OR $\mathrm{t}=1000$ (f IN HERTZ)
high-Frequency gain is 3dB down on midband gain when
$f=\frac{1000}{2 \pi \cdot A_{L} \cdot C_{S}} \quad \begin{gathered}\text { (C) } C_{S} \text { IN PICOFARADS, } R_{L} \text { IN KILOHMS } \\ t \text { IN MEGAHERTZ) }\end{gathered}$

Fig. 9 The time constants which affect bandwidth for a single stage.
Note the different units for the two equations.

Strike Up The Bandwidth

The bandwidth of an amplifier stage is defined as the range of frequencies over which the gain does not drop 3 dB below its midband value. For a simple amplifier stage, the limits of bandwidth are set by the time constants of the coupling and emitterdecoupling capacitors at the low frequencies, and by the effects of stray capacitance at the high frequencies - Fig. 9 shows the details. Most modern transistors have good high-frequency gain and since stray capacitance can be made small with modern circuit layouts, frequencies into the many megahertz range can be expected. This is much more than is necessary (or desirable) in many cases, and it's a wise precaution to trim the bandwidth for the purpose you need. This can be done by introducing a time constant into the feedback network of a simple filter.

All of which brings us inexorably to the subject of feedback, and that's where we'll start next month, when we'll be looking at feedback pair circuits, their biasing and their gain.

QUALTTY DOES NOT HAVE TO COST VERY NUCH！

AUDAX HI－FI－SPECLAL PURCHASES
HD20825H4C 月＂Bass mid range Bextrene cone $40 / 60$ watt systems $\Sigma 9$
 $60 / 80$ wall systerns 60780 watt systerms
HD13825H4C $5 "$ ，has Helze2shac HD13825．j smaller magret version
HIF20JSMC 8 ＂bass mid ranqe toam surround square silve tront $30 / 50$ watr system HIF20ES B $^{\prime \prime}$ hass mid range tor $30 / 50$ watl systems roll surtound treated cone 4 ohin $£ 6.958$ ohm $£ 795$ HIFB7BSMO 4＂closed back mid range for $30 / 50$ watt systems． H0100025 HR 1 ＂dome tweeter $4^{\prime \prime} / 1$ ame for $60 / 80$ watt systems

High quality TV sound converter，plugs into aerial socket of yout FM tuner 9 volt battery operated （battery not supplied）．Nothing to look at but just listen＇Covers all U．K．UHF Channels
＊Fitted slow－motion drive（Mk III）$£ 1150$ our button push－button version $£ 1450 \mathrm{c} / \mathrm{p} 65 \mathrm{p}$ ．（UK Post etc 65 p ） On Demonstration for callers 10301 Edgware Road

 2 Imerier hom lor hi futcecoipa 3 Propies hitit and dieco 4 Fion tree itif

ORDER BY POST（OR PHONE）OR CALL IN

－

An entire range of low－cost high－ performance instruments

sabtronios

Waking Performance Affordable

[^0]502041 Hz －200KHz Function Generator
$-8110 A 100 \mathrm{MHz}$ 8－Digit Frequency Meter
－ 8610 A 600 MHz 8－Digit Frequency Meter
8610 B 600MHz 9 ．Digit Frequency Metar
8000 1 1 GHz 9－Digit Frequency Meter
8700 10MHz Universal Frequency
PSC－65 600 MHz Presceler
90055 MHz Single Trace Oscilloscope
－Also avallable in kit form．

Test our low priced test equipment．It measures up to the best．Compare our specs and our prices－no－one can beat our price／performance ratio．

Full colour illustrated brochure and price list from： BLACK STAR LTD．， 9a Crown Street，St．Ives， Cambs．PE17 4EB
Tel：（0480）62440．Telex 32339

CLEF Electronic MUSIC

COMPLETE KIT 136390

ELECTRONIC

 PIANOSSPECIALISTS SINCE 1972

71 $\frac{1}{4}$ OCTAVE
DOMESTIC MODEL
COMPONENT KIT $£ 244$ COMPAETE KII £399．90
manuactured f675

年为

SIX OCTAVE

 DOMESTIC MODEL COMPONENT KIT $\mathbf{f 2 1 7}$ manufacture fs95
MICROSYNTH

THE COMPACT MUSIC SYNTHESIZER

COMPLETE KIT
WITH CABINET
£118．50

STRING ENSEMBLE （A，Publwhid in cominetiont wish＇Irentival filacernmios＇） A bers poputar Kevhoard Somberice kit．for Group or llathe we with a liour chelate sompass and split Kevhorad ちルい1t． COMPONENI KIT f 179.00	ROTOR－CHORUS Compreliensice two peed brgan ratur simulator plus a three pinane chorus generator． COMPONENT KIT fB9．00 KEYBOARDS Our Square Front Keyboards 88 NOTE（A－CI E57．00 73 NDTE（F F） 147.00 five octave $\{30.00$ FOUR OCTAVE $\mathbf{~} 28.75$
hilce lu7：（let Pruducth have winvistenty prowiced leading designs It whe theth of Flectromic Musical Inwrumente．niany of which have heer muhh lied in technical mazan，nece With musical guation of Whith hine wen wecwithle cemplected by constructors over a wide rame io uchncal capabiliy．Bach up TELEPHONE advice is watishle th ill sur custemers．	
PRIEES INCLUDE VAI，UK CARRIAGE \＆INSURANCE ICARRIAGF EXTRA ON MFO PIANOS）．Please iend S．A．E．for our complete lisis，or wse our relephone VSA／ACCESS Scrvice．Competitive quotaions san be civen for EXPORT orders－in Australia please contact JAYCAR in Sydney．	
CLEF PRODUCTS（ELECTRONICS） LIMITED （Dept ETII 44A Brimihialk Latre South，Braınhatl Stockpert，Cheshore SK）1AH 061．439 3297	

＂THE computer BAND－BDX＂
CAs Puhisher in conjunction with＂Practical Electronics＂
COMPLETE COMPLETE

KIT

£289
£399
MANFD．
 A ravolution in une field ol Compuler Music Generation！

 differery chords．Wing inlanced micionrixe mor technoligy． Tempe．Cimmplete Alustic load he cectromied ill any Red and at chosen

THE Proggammate DRUM MACHINE

The（Cof Alaster khythm is capable of voring 24 selectahle rhythmic drum pitherns，imented．Mudiffed and enterish the Operator on to
 into mothus typical of plasin！wili Drumstlehs．Reushes．of Latin mesican Buhpses and rlate

ELECTRONIC IGNITION Makes a good car betrer

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE \qquad higher output voltage under all conditions.
IMPROVED ECONOMY —_ no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING \qquad prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE _ immune to contact bounce and similar effects which can cause loss of power and roughness.
PLUS
SUPER POWER SPARK $\quad 31 / 2$ times the energy of ordinary capacitive systems - $31 / 2$ times the power of inductive systems.

OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING \qquad full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.

LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a smafl soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL June'81 Issue and EVERYDAY ELECTRONICS December'81 issue

FITS ALL NEGATIVE EARTH VEHICLES, 6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE E2.95

STANDARD CAR KIT
 Assembled and Tested
 £ 14.85
 £ 24.95
 TWIN OUTPUT KIT
 £ 22.95
 Assembled and Tested $£ \mathbf{3 4 . 7 0}$

ELECTRONIZE DESIGN

Dept. E, Magnus Road, Wilnecote
Tamworth, B77 5BY
Phone: (0827) 281000

TECHNICAL DETAILS
The basic function of a spark ignition system is often lost among claims or longer 'burn times' and other marketing fantasies. It is only necessary o consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the park is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fue will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at 2000 rev/min. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ prevents energy being reflected back to the storage capa ordinary $C D$ times the spark energy and 3 times the spark duration of ordinary c . D .
systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to sture twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes ali unwanted signals caused by contact volt drop, contact shuffle, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)
SPARK ENERGY
(STORED ENERGY)
SPARK DURATION
OUTPUT VOLTAGE (LOAD 50pF EQUIVALENT TO CLEAN PLUGS)

TOTA
ENERGY ORDINARY DISCHARGE DISCHARGE
$140 \mathrm{~W} \quad 90 \mathrm{~W}$
$36 \mathrm{~mJ} \quad 10 \mathrm{~m}$
$135 \mathrm{~mJ} \quad 65 \mathrm{~mJ}$
$500 \mu \mathrm{~S} \quad 160 \mu \mathrm{~S}$
$38 \mathrm{KV} \quad 26 \mathrm{KV}$
OUTPUT VOLTAGE (LOAD 50pF + $500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)

26 KV
17 KV
VOLTAGE RISE TIME TO 20 KV (Load 50pF)
$25 \mu \mathrm{~S} \quad 30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

MICROTUTOR PART 1

BASIC, Pascal and the like are OK but if you want to get the most out of your micro then machine code is where it's at. This machine code tutor will help you throw off your chains; you have nothing to lose but your SYNTAX ERRORS. Design and development by Tangerine Computer Systems.

Real computing was able to escape from the lofty realms of the mainframe and into the hands of the layman because of two major developments. The first was when large-scale integration techniques enabled the production of small, versatile microprocessor chips which were adapted into small, relatively low-cost microcomputers. (The microprocessor was originally conceived for use in industrial machine control.) The second was the invention of the BASIC computing language, which allowed the complete beginner to write working computer programs easily and without any knowledge of the system hardware he was working on

Unfortunately such ease of use can only be obtained by means of a compromise, and the major drawback of the average mictocomputer is speed - or rather lack of it. BASIC is painfully slow when compared to the speed of operation of the microprocessor, because each BASIC statement requires a series of machine code subroutines to be executed. Obviously better use can be made of the system hardware if programs are written directly in the language of the microprocessor - machine code. Direct access to the processor means access to swift, versatile and efficient programming.

All Systems Go Consequently some of the most popular
micro systems haven't had BASIC as a language at all! Typical products include KIM, SYM, the latelamented MK14 and the AIM 65, still a well-known 6502 machine code development system. And now there's the ETI Microtutor, a project we're hoping will coax more of our readers away from the security of BASIC and into machine code, the real stuff of microcomputing.

The Microtutor has been designed for us by Tangerine Computer Systems, who were responsible for the highly popular Space Invasion game we published in November 1980. The monitor program for the system is based on TANBUG, as used in the Microtan 65 computer from the same company; this is a remarkably powerful monitor with many useful programming commands available to make machine code easier to manipulate. The hardware is designed around the 6503, a member of the 6502 family with the same instruction set but an address range of only 4 K as opposed to the more usual 64 K . Thus the microprocessor is more compact
(only 28 pins instead of 40), but any software written for it will also run on the Microtan 65. Furthermore, once you'te familiar with the instruction set of the 6500 family you should be able to write machine code programs for home computers based on the 6502 such as the PET, Acorn System 1. Acorn Atom, Superboard, UK101, Apple, VIC and the BBC machine, which should give you plenty of scope! (Indeed, the PET is designed so that the entire system can be reconfigured from software, but you'll have to become pretty good to attempt that!)

Give Us The Tool
The Microtutor is a very sophisticated and professional-looking piece of equipment. The hex keypad is mounted directly on the PCB, as are the power supply regulator, cassette interface, and a VDU with UHF output on channel 36 for direct connection to a domestic TV set (one up on the AIM 65!). The PCB is incredibly compact and a masterpiece of design, as you can see from the photographs.

The only external equipment required is a battery charger type power supply (supplied with the kit from Tangerine), and a domestic TV and cassette recorder for storing your programs (not supplied with the kit!). In the interests of economy of design and cost, the Microtutor has no

Fig. 1 Component overlay for the Microtutor. Note that all the ICs have pin 1 pointing upwards.
graphics and the ASCII set repeats through the entire range of 256 character codes. Only upper case is available (see Table 1).

Apart from a teaching aid for machine code programming, the Microtutor is also intended to be used for I/O experiments; thus all the bus lines and control signals are brought out to pads on the PCB so that external circuitry can be connected.

The only thing to remember about machine code is that it is very unforgiving of errors. Unlike BASIC ${ }_{2}$ a programming blunder won't produce a polite message on the screen and a chance to try again; more often than not your program and data may be corrupted, or the thing gets locked into an endless loop until it disappears up its own data bus. When developing software for a home computer there is otten little choice at this point but to switch off the machine to cure things, causing loss of program and laborious reentry. We've had some nasty experiences in the office with the PET this way! On the Microtutor things are more civilised; two buttons are

SPECIFICATION	
CPU:	6503 (addresses 4K)
ROM:	2 K containing monitor
	program. EPROM is 2716 (5 V version)
RAM:	1 K . Used for user pro-
	gram and memory-
1/0:	mapped VDU 1 K space available
Display:	16 rows by 32 characters,
	upper case only

The PCB is very compact and uses thin tracks, so a fine bit is essential on your soldering iron.

PARTS LIST

Resistor (all ${ }_{\frac{1}{4} \mathrm{~W}} \mathbf{5}$ (${ }^{\text {) }}$	IC11	74LS32
R1 75R	IC12-14	74LS157
R2 470R	IC15	6503
R3 220R	IC17, 18	2114
R4-1722 271 l 0	IC19	86S64BWF
R18, 2410 k	IC20	2716
R19, 23 120k	IC21	74 LS 374
R20, 21 2k2	IC22	74LS244
R25, 26, 28 22k	IC 23	LM358
	IC24	7805
Capacitors	Q1, 2	BC184L
$\mathrm{C}_{1} 100 \mathrm{u} 10 \mathrm{~V}$ PCB electrolytic	D1-3	1 N4148
$\mathrm{C} 2,5,6,9-17100 \mathrm{n}$ ceramic	ZD1	6 V 8400 mW zener
C3, $8 \quad 10 \mathrm{n}$ ceramic	Miscellaneous	
C4, $7 \quad 100 \mathrm{p}$ ceramic	XTAL1	6 MHz crystal 100 uH choke
Semiconductors	SK1	miniature charger socket
IC1, 8 74LS04		(PCB-mounting)
IC2 74LS73	SK2	5 -pin DIN socket
IC3.9 74LS393		(PCB-mounting)
IC4 74LS21	PB1, 2	push-buttons (PCB-
IC5, 16 74LS74		mounting)
IC6 74LS08	PCB (se	uylines); hex keypad; UHF
IC7 74LS11	modulato	pe UM1111E36; [C sockets;
IC10 74LS00	PCB-mou	g heatsink for regulator.

Fig. 2 Complete circuit diagram for the Microtutor.

BUYLINES

A complete kit of parts for this project, in-

HOW IT WORKS

The CPU (IC15) and the video display share the same memory. Access to the memory is switched at the processor's $\not \not 22$ clock rate (as on the Microtan 65), using the address selector IC12-14. This alternately connects the CPU and CRT address onto the RAM chips IC17, IC18. IC16a is a R/W synchroniser to ensure the RAM chips get proper set-up and hold times on the R / W line after it passes through the address selector IC12.

The master clock oscillator is built around three of the inverters in IC1; XTAL1 sets the operating frequency at 6 MHz . The clock signal enters the counter chain down the left of the circuit diagram at pin 1 of IC2a. IC3 generates all the character addresses along the video line for CRT refresh, with IC4a and IC4b/IC5a generating two of the timing signals required by the character generator IC19. The count length of IC3 is determined by the AND gate IC6a. IC7a generates the line sync pulses while IC5b/IC6b produce the line blanking. The line sync pulses also clock counter IC9, which together with IC2b generates all the line addresses. IC2b, IC7b and the associated logic controls the count length of the line counter and produces the frame sync. IC2b also produces the frame blanking directly.

IC19 is the character generator which receives data from the memory chips IC17, 18 during the time interval that the CRT refresh address is switched through. Data is latched and the character pattern is clocked out under the control of the various input signals to this chip. The chatacter data is mixed with the line and frame blanking in IC7c, while the line sync and frame sync pulses ate mixed in the AND gate IC6c to give a composite sync. The output of IC 7 c is mixed with the composite sync in the diode circuit (D1, D2 and associated resistors) to give an analogue video signal which is fed to the UHF modulator.

The modulator requires a supply of about 6 V 5 . To avoid the need for a separate PSU, this is derived using the DC-DC converter based on L1 and Q1, which is driven via R6 from the CRT counter chain.

IC20 is the 2 K EPROM containing the monitor program. For the EPROM to be enabled, A11 must be high and R / \bar{W} in the read mode; these lines drive NAND gate IC10c which provides the chip select signal to pins 18 and 20 of the EPROM. Gates IC8c, IC6d, IC10d, IC8e and IC11b,c enable the I/O port, controlling the hex keypad and the cassette interface. Any location between 400 and 7FF (Hex) will address the port provided the I/O control line has not been pulled low externally. When reading, IC22 is enabled; when writing, IC21 is enabled. IC23 and associated components form the input amplifer for the cassette interface.

The only expansion the Microtutor has is for I/O experiments; the address bus, data bus, $R / \mathbf{W}, 2$ and I / O control lines all come out to pads on the PCB. If the user builds an external I/O circuit then that circuit must operate the I/O control, which is active low, to disable the keypad circuits, otherwise bus contention will result. The monitor program assumes that they keypad is located at 7FF. Any location in the 1/O address space will activate the keypad port if I/O control is not pulled low, however. For further I/O experiments, all eight bits from IC21, 22 are brought out to pads. This means that users can experiment with bigger keypads or utilise the unused bits. RST and IRQ also come out to pads on the PCB.
provided, reset and interrupt. Both wil get you back into the monitor from a faulty program if it gets out of hand, without clearing the memory; interrupt will do so without losing any breakpoints you may have set (breakpoints are explained fully later).

Construction

The PCB is double-sided but through-hole plated, so components only have to be soldered on the underside. Fit all the low profile components first, ie the link, resistors, diodes and choke, then the keypad. This is stuck to the component side of the board with double-sided sticky pads; insert the connecting wires through the holes in the PCB first first, secure the keypad in position with the pads and then solder the connections.

Now you can fit all the IC sockets and capacitors but don't insert the ICs until later. Solder the choke, crystal and transistors in place, then the UHF modulator. The voltage and its heatsink are bolted to the PCB and no insulating washers are required.

Finally mount the two sockets (power and cassette) and the large push-buttons, then insert all of the ICs paying great attention to the device type.

Ready To Go

Once you've double-checked everything, you're ready to connect the power supply and TV set. The modulator is connected to the TV using UHF coaxial cable with a phono plug at one end and the usual coax plug at the TV end. Switch on the set and tune the TV until you get a steady black-and-white picrure - at this point the screen will contain garbage. Press the RESET button and the screen should announce TANBUG. You may now use the keypad, as described below, to enter the wonderful world of machine code.

As an example of the sort of power you've got at your fingertips, here's a direct comparison. Some time ago it was necessary for someone in the office to check all four-digit numbers for certain combinations of digits. A BASIC program on the PET took about five minutes to write and about 15 minutes to run. The same problem, when solved by the Microtutor, took somewhat longer to write the program, but checked through all 10000 numbers in three seconds!

All About TANBUG

The TANBUG monitor program is located in 2 K bytes of read only memory (ROM) at the top of the address space ie pages $8-15$. It
contains facilities to enter, modify, run and debug programs. TANBUG will only operate in the memory map of the Microtan system, it is not a general purpose 6502 software package and has been specifically written for Microtan/Microtutor.
2 K ROM

Fig. 3 Memory map.
Locations $2 \emptyset \emptyset-3 \mathrm{FF}$ (pages 2 and 3) are the visual display memory TANBUG writes to these locations whenever a command is typed to the monitor. Locations in pages 4 to 7 are the addresses of the peripheral attachments, eg keyboard. Locations $10 \phi-1 \mathrm{FF}$ (page 1) are used as the stack by the microprocessor. Since the stack is of the push-down variety it follows that the whole of this will not be used as stack storage in the majority of programs. TANBUG requires to use locations $1 \mathrm{~F}(\mathrm{O}$-1FF as stack storage (only 16 locations). The rest of this area is free for user programs. Locations $4 \emptyset$ - FF are also available as user RAM, the preceding locations 0 -3F being reserved for use by TANBUG. User programs which do

TABLE 1			
Hex	Character	Hex	Character
20	Space	40	@
21	!	41	A
22	*	42	B
23	\#	43	C
24	\$	44	D
25	\%	45	E
26	\&	46	F
27		47	G
28	$($	48	H
29)	49	1
2A	*	4 A	J
2B	\pm	4 B	K
2C	\%	4 C	L
2D	-	4 D	M
2E	.	4 E	N
2F	1	4 F	O
30	0	50	P
31	1	51	Q
32	2	52	R
33	3	53	5
34	4	54	T
35	5	55	U
36	6	56	V
37	7	57	W
38	8	58	X
39	9	59	Y
3A		5 A	Z
3B	-	5 B	[
3 C	$<$	${ }_{5} \mathrm{C}$	1
3D	$=$	5D	I
3 E	$>$	5 E	\wedge
3 F	?	5 F	-

not use the stack may therefore be loaded anywhere in the area $4 \phi-1 \mathrm{EF}$ For user programs which do use the stack, the user must calculate how many stack locations are required and reduce the upper limit accordingly.

The keypad is used as follows, its layout being shown in Fig. 1.
TANBUG interrogates the keypad tor a depressed key, then translates the matrix encoded signal into an ASCII character which it puts up on the visual display. Because of the limited number of keys it has been necessary to incorporate a shift function on the keypad. So, to obtain the character P for example, the user presses and releases SHIFT, then depresses and releases P. The SHIFT key contains a self-cancelling facility - if the user presses SHIFT twice in succession the pending shift operation is cancelled. So as an example, using the two keys SHIFT and 8 the operations SHIFT P yields P on the display. SHIFT SHIFT P yields 8 on the display. DEL deletes the last character typed. Repeated deletes erase characters back to the beginning of the line.

Having described some of the background to TANBUG it is now possible to describe the commands and syntax of TANBUG, ie how to use it. An example is shown later on. All numerical values of address, data and monitor command arguments are in hexadecimal. The symbol <CR> means on depression of the carriage return key, $<$ SP $>$ the space key, and $<$ LF $>$ line feed. In all examples, text to be typed by the user will be in bold type, while TANBUG responses will not. indicates the cursor. $<A D D R>$ means a hexadecimal address, $<$ ARG $>$ means hexadecimal data and $<$ TERM $>$ means one of the terminators $\langle\mathrm{CR}\rangle,\langle\mathrm{SP}\rangle$, or $<$ LF
All commands are of the form <COMMAND><TERM> or
$<C O M M A N D><A R G>$ TERM $>$ or <COMMAND $><$ ARG $>$, $<$ ARG $><$ TERM $>$ or <COMMAND > < ARG> $<$ ARG $>$, <ARG><TERM $>$ where $<$ COMMAND $>$ is one of the mnemonic commands and <ARG> is a hexadecimal argument applicable to the command. It should be noted at an early stage that the longest argument will contain four hexadecimal characters. If more are typed all but the last four are ignored. As an example consider the memory modify command M1234 $\$ \emptyset 78$ $<C R>$. In this case location $\$ \phi 78$ will be modified or examined as all but the last four characters are ignored.
$<$ TERM $>$ is one of the terminating characters $\langle\mathrm{CR}\rangle,\langle\mathrm{SP}\rangle,\langle\mathrm{LF}\rangle$ or $<\mathrm{ESC}>$ ．In fact TANBUG accepts any of the＂control＂＇characters（HEX code (-2ϕ) as terminator．TANBUG will reply with a ？if an illegal com－ mand is encountered．

Starting The Monitor

Press the reset button on the Microtutor．TANBUG will scroll the display and respond with TANBUG

Note that on initial power－up the top part of the display will be filled with spurious characters．These will disap－ pear as new commands are entered and the display scolls up．On subse－ quent resets the previous operations remain displayed to facilitate debugging．

Memory modify／examine command M

The M command allows the user to enter and modify programs by chang－ ing the RAM locations to the desired values．The command also allows the user to inspect ROM locations，modify registers and so on．To open a location type the following

$$
\mathrm{M}<\mathrm{ADDR}><\text { TERM > }
$$

TANBUG then replies with the cur－ rent contents of that location．For ex－ ample，to examine the contents of RAM location $1 \phi \phi$ type $\mathrm{M} 1 \phi \phi<\mathrm{CR}>$ TANBUG then responds on the display with

M1中申，$\varnothing \mathrm{E}$ ，
assuming the current contents of the location were $\phi \mathrm{E}$ ．

There are now several options open to the user．If any terminator is typed the location is closed and not altered and the cursor moves to the next line scrolling up the display by one row．If however，a value is typed followed by one of the terminators $\langle\mathrm{CR}\rangle$ ，
$<\mathrm{LF}>$ or $<\mathrm{ESC}>$ the location is modified and then closed．For exam－ ple，using＜CR＞

location $1 \phi \varnothing$ will now contain FF．If however $<\mathrm{SP}>$ is typed，the location is re－opened and unmodified．

M10＠，ゆE，FF Mゆ1ФФ．ФE，

This facility is useful if an erroneous value has been typed．The terminators $<$ LF $>$ and $<$ ESC $>$ modify the cur－ rent location being examined，then open the next and previous locations respectively ie using＜LF＞

M100， ©E，FF MD101，AB，
and using＜ESC＞
M100．（DE，
M ϕ FFF，56，

Using＜LF＞makes for very easy program entry，it only being necessary to type the initial address of the program followed by its data and $<$ LF $>$ ，then responding to the cursor prompt for subsequent data words．

Note that locations 1FE and 1FF should not be modified．These are the stack locations which contain the monitor return addresses．If they are corrupted TANBUG will almost certainly＂crash＂and it will be necessary to issue a reset in order to recover．

List command L

The list command allows the user to list out sections of memory onto the display．It is possible to display the contents of a maximum of 120 consecutive memory locations simultancously．To list a series of locations type

$$
\begin{gathered}
\text { L <ADDR > },<\text { NUMBER }> \\
<T E R M>
\end{gathered}
$$

where $<A D D R=$ is the address of the first location to be printed and ＜NUMBER＞is the number of lines of eight consecutive locations to be printed．TANBUG pauses briefly between each line to allow the user to scan them．For example，to list the first 16 locations of TANBUG（which resides at C $(\downarrow$ FFF）type

$\mathrm{LC} 00,2<\mathrm{CR}>$ ．

The display will then be
LCOQ， 2
C $\dagger \emptyset$ A2 FF 9A E8 861720 B7
C 48 FF 8D F3 BF A2 0 E BD DF
If zero lines are requested（ie $<$ NUMBER＞$=\emptyset$ ）then 256 lines will be given．

Go command G

Having entered a program using the M command and verified it using the L command，the user can use the G command to start running his own program．The command is of the format G＜ADDR＞＜TERM＞． For example，to start a program whose first instruction is at location $1 \phi \phi$ type Gi $\phi \phi<C R>$ ．When the user program is started the cursor disappears．On a return to the monitor it re－appears．

The G command automatically sets up two of the microprocessor＇s internal registers：
a）The program counter（ PC ）is set to the start address given in the G command．
b）The stack pointer（SP）is set to location 1 FF ．
The contents of the other four internal registers，namely the status word（PSW），index X（IX），index Y （IY）and accumulator（A），are taken from the monitor pseudo registers
（described next）．Thus the user can either set up the pseudo registers before typing the G command，or use instructions within his／her program to manipulate them directly．

Register modify／examine command \mathbf{R}

Locations 15 to 1 B within the RAM reserved for TANBUG are the user psuedo registers．The user can set these locations prior to issuing a G command；the values are then transferred to the mictoptocessor＇s internal registers immediately before the user program is started．The pseudo register locations are also used by the monitor to save the user internal register values when a breakpoint is encountered．These values are then transferred back into the microprocessor when a P command is issued，so that to all intents and purposes the user program appears to be uninterrupted．

The R command allows the user to modify these registers in conjunction with the M command．To modify／examine registers，type R $<\mathrm{CR}>$ and the following display will apppear（location 15 containing $\phi \phi$ say）．

TABLE 2	
15	Low order byte of program counter （PCL）
16	High order byte of program counter（PCH）
17	Processor status word（PSW）
18	Stack bointer（SP）
19	Index X（IX）
1A	Index Y（IY）
1B	Accumulator（A）
R	

Now proceed as for the M command．
Naturally the M command could be used to modify／examine location 15 without using the R command－ the R command merely saves the user the need to remember and type in the start location of the pseudo registers．Psuedo register locations are shown in Table 2．Two typical instances of the use of the R command are：－
a）Setting up PSW，IX，IY and A before starting a user program．
b）Modifying registers after a breakpoint but before proceeding with program execution（using the P command）for debugging purposes．
Note that when modifying registers in case（b）care must be taken if PCL， PCH or SP are modified，since the proceed command P uses these to determine the address of the next instructions to be executed（PCL， PCH ）and the user stack pointer（SP）．ET

1 Amp SILICON RECTIFIERS Glass Type simitar IN4000 SERileS IN4001-1N4004 50 - 500 O - uncoded - you select toi VITS ALL Derted derikes - NO auvs Min 50 v 50 lor $£ 1.00$ - wort double OROER NO. S×76
 Lock fill leads - coxeed CV7644 Sinilia to 8 C147 - BC107-2T89 ALL NEWY VCE $70 \sim 1$ CL500m He HRICE $£ 2.00 £ 3.80 £ 17.50 £ 30.00$ है Sulicon General Puridose PNP IIansistlos $10-5$ Case LOck fit leass cooed CVY507 simial 2N2905A to bFX30 VC 60 IC 600 mA Min he 50 All NEW

BL-PAK PCB ETCHANT AND DRILL KIT

Complete PCa Kil comprises
I Expo Mini Drill 10.000 PPM i2v DC incl 3 contets $\& 1 \times 1 \mathrm{~mm}$ Twist bit IS Sneet PCB Transfers $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ ${ }_{1}$ EIch Resist Pen. 1 Y/lo pack FERRIC CHLOR 3 sheets copper clad board
2 sheets Fioteglass copper clad board Full instructions lor making your own PCB boards.
Retail valut over $£ 15.00$ DUR BI-PAK SPECIAL KIT PRICE £9.75 ORDER NO S×81

BARCAINS

5x91 $20 \times$ large 2" RLOLLE
 5×4220 small 125 Reallos

Sx43 io Reciannuara Greenclos 046 Assorted Zene: Diodes 250 mm 2 wart mised vollages alic coted Nem
sxar 4 Blach instrument
Knobs-winged with pointer is.

Slandard sciew fill sie 29 . | Slanaard sciem fill size $29 x$ |
| :---: |
| 20 ma |

5×49

20 Assorted Sideer Knobs
sxeo 12 Meons and filament Lamos Low 12 heons and filament Lamps Lom
woitare and mairs - various types miage and manse - walious types
and colowis - some panel mounting

BI-PAK'S COMPLETELY NEW CATALOGUE BI-PAK' C COWPL very interest ing ones fou will soon be usimg ann ot cousse ihe largest ange of semicenducters tor the Amaleur and Piofessionat you could hope to Ind
There are no wasted Dages of useless intamation so ot ten inciuded :n Catalagues fublisthed nowdidas Just solid far is ie Dice deschintion and
 bas alwaw been fo sell qualitit componentis al cumpettive plices and THAT WE STLLC DO.

Io receive yourcopy send $\mathbf{7 5 p}$ plus 250 D\&D
 مit pur ode men fater Cecos nexmaly sem 2nd Clom Mal. cies mal.
 Tobl. Posbege ado 75p per Tost acter

USED
 EQUIPMENT

Ex-P.O. Multimeters in leather ohms. Absolute Bargain
Leads not included.
$\mathrm{f} 6+£ 1.50 \mathrm{p}$ ¢p

500V MEGGER

Transistorised Insulation Tester and four decade resistance
bridue with four ranges. bridye with four ranges.
Invaluable piece of test gear. In Invaluable piece of test gear. in one PPG batt. $£ 15.00+£ 2$ P\&P
Recent Style P.O. Telephones $\mathrm{E} 4.75+\mathrm{f1} .80 \mathrm{PEP}$
2 for $£ 9+£ 2.50$. 5 for $£ 20+£ 5$

COMPACT TELEPHONE

With wall-mount bell $\mathbf{6 6 . 5 0}$ Older style black telephones, E3. Dáp as above. Our leatlet phones in home intercorn systerns.

5 Digit Counters 48 V coil. Non resetable
UNISELECTORS. $50 \mathrm{v}, 4$ Bank + Homing Bank, 25 way $£ 3.50$
D CONNECTOR SOCKETS
with cover. 50 way
GOV BA TRANSFORMER. Ideal for big power supply unit or amplifier f12 inc. p\&p. BEAT - THATI

FREE on request - Leaflet D.I.Y. Telephone Systems and Automatic Exchange Design'

LOW-COST, RUGGED

TEMPERATURE CONTROL
HIGH QUALITY

TEMP. GAUGE $0^{3}-120^{\circ} \mathrm{C}$
Remote sensor on 38 capillary, panel mounting.
dial 55 mm , dia

ONLY £2.50

16A 240V RANCO THERMOSTAT Wide control range (low room temp. to over boiling point) Sensor on $22^{\prime \prime}$ capillary. $£ 2.30$, including control knob

RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$ 15 A 240 V . Sensing coil on 41 in . capilliary panel mounting with reset button $£ 1.20$
BUY ONE EACH OF ABOVE FOR E5.50
LIGHT DEPENDENT RESISTORS in plastic housina with window, heavy-duty lead. Similar to ORP 61. You normally pay well over double for resistor alone.
Only 300 or $£ 235$ for 10 Only 300 or $£ 2.35$ for 10.
GEARED Synchronous motor, 8 r.p.m., 240 N A.C. 3 Watt f_{2}.
SOLENOID GAS VALVE. 240 V A.C. 5 P.S.I. suitable for non-corrosive fluids. $£ \mathbf{2} .20$
BULGIN 3 pin free plug $\&$ panel socket, 2A 240 V 50p
AUTOMATIC DIAL UNIT. (mains powered. These units connect into a telephone and dial a number when Cards readily available. Many uses. Only $\mathbf{f 8}+\mathbf{£ 1} \mathrm{p} \& \mathrm{p}$

TEL: 092630622 FOR QUANTITY DISCOUNTS ETC
ALL ITEMS - MONEY BACK IF NOT DELIGHTED.

SINCLAIR COMPUTERS

We are the leading werld-wide Sinclair exporr
spectalist including Norway. Sweden, Finland and specialst including Norway, Sweden. Finland
Denmark. Write tor our surprisingly tow prices.

PRINTERS

Buy any of the below and get a free interface kit
and word processor program for UK101 or and word processor program tor UK101 or
Superboard. Seikosha GP100A $\mathbf{~ c z o s . ~ O K I ~ M i c r o l i n e ~}$
 $\underset{\text { Epson MX100/3 } \mathrm{E429} \text {. }}{\substack{\text { E349. } \\ \hline}}$

VIC 20 COMPUTER

Two special oflers: it it is bought widh the vic 20
we can supoly the cassevie recorder for fi30.43. Afternatweit. we will supply y froder kit with each

 low cost memory board. nu nead for a mother.
boord, comes will 3 K ram on boord + socket for a rom + sockers for another 24 K of low current
Nmas tam IJust plug in chivs to expand memory) E49. 27 K version $\mathrm{E100}$. Extra temery chips Ef per
KK .

UK101 AND
SUPERBOARD

Only E10. The beiow accessories suit both the
UKiOI and Superboard: Extra ram ∓ 10 per K UK101 and Superboard: Extra ram $\mathbb{Z} 10$ per K.
Cegrnon $£ 22.50$. Wemon E14.55. Word processor program $\mathbf{f 1 0}$. Centonics interface kit $\mathbf{E 1 0 .} 610$ expansion board f179. Cased minifloppy disc
drives with DOS single E 275 , dual $\mathrm{f415}$.

NEW GENI 1 £299

EG3014 Expansion box with $16 \mathrm{~K} / 32 \mathrm{~K}$ ram f199/ G213. We are Cumana disc drive specialists for the Genie. 4 Single sided disc drives: 40 track 2005 ,
dual 40 track $\mathbf{5 3 4 6}, 80$ track E269, dual 80 track f469. Double-sided, disc drives: 80 track $f 339$. dual
track
f699. Double density coll

BATTERY

ELIMINATORS*

BATTERY

ELIMINATOR KITS*

 100ma 0.12 ce.50. Stabilized
kits 2.18 V 100 ma $93.12,1-30 \mathrm{~V} 1 \mathrm{~A} 58.50,1-30 \mathrm{~V} 2 \mathrm{~A}$

TV GAMES*
BI-PAK AUDIO
MODULES*
PS 12 Ef.75. T538 £2.90. AL60 f5.62. BMT80 f6.38.
Stereo 30 f19. AL80 $\mathrm{f8}$. 56 .

[^1]ADD 50p PGP ORDERS OVER $£ 7.50$ POST FREE unless stated otherwise
Supertoard f14. Guard band kii for Supertboard

					${ }^{7448}$						MEMORY TELEPHONE								
		cisp																	
			${ }^{\text {a }}$	$\begin{gathered} \text { cop } \\ \substack{0 \\ 20} \\ x_{0} \end{gathered}$															
			,																
										$\stackrel{\substack{g_{p} \\ 7 p}}{ }$									
													${ }_{31}^{4}$						
	dions										106	1							
Volage												3							
,																			
${ }^{4}$	11.5000		7202																
,15																			
coicle																			
${ }^{24}$			${ }^{\text {a }}$																
${ }^{7}$																			
			,																
													SAL						

	HONETWELL PROXIMITY OETECTOA integral amplilier Br OC, £3.50 ea PHOTD CONDUCTIVE CELL 5125 High-power Cds cell 600 MW . lor cantral circuils Resisiance 8000 ohm to 4 K Max volts 240 Sice 1 in 1/2n RIBEON MICHOPHONE with pre amo on chassis 113		UTTRA SONIC TRANSDUCERS HOHC/S Camplete on 18 in Scieered cable, $E 173$ each pars $\mathrm{f}^{2 \mathrm{SS}}$ ULTAA SONIC transmitter. Complete umim uncased lequires 15V: $\mathbf{f 3 . 2 5}$ FOSTEA OYNAMIC MICRDPWONES 200 ohm impadance Moving coll Complete on chassis f1 15 par
	I.M380 Amplifier . . . 85p IM318N Hi Slew Op Amp £1.50	QUALITY FANS "Whisper Model" by Roton Low power consumption (less than IO walts) Silent rumning 115 s tiwo In series to 230 w 5 N 60 HZ	STEAEO CASSETTE Mechumiams 6 or 12 volt Complete with hoas strase of Sobenord E5.50 mech Brand new
		Size $4 \% \times 4 \% \times 1 / 5$ Only f6. 50 inc. VAT BRAND NEW 50\% less than manufacturers arice	IV Convergence Pots UImI
	STEAED CASSETTE TAPE HEADS Oualiy replacement tarmost recorders with inounting	hewtent packaho displars 5082.7650 HIGH efficiency ano vera baight Only f1.00 weh	EX-MOTOROLA 5+5-WATT CAR STEREO AMPLIFIERS
ampge mectufer B00 PIV 35 amps $1 / 2 \times 1 / 2 \times 1 / 2030.50$		Set of 6 for $\mathbf{f 5}$ Hell tinch red cominion anade will replace DL707, 14-pmin DH	Complete and tested units Medium and Long Wave Supplied as wo buill units $15 \times 2 \times 2$ in 1 with cireuit and data Dnly 55 pair. Includes pre-amp
	RECHARGEABLE gATTERIES	"CHERRY" ADD-0N KEYPAD	
Hintic Diodea Full spec but no polarity band PW 1,000 C1I	varta 36 volts deac MAH225 $\mathbf{E 1 5 0}$ DRYFH 6 volt 45 amp	LIST PRICE A comoact 12-bution 52000 keypad sultable lor use OUR with Cherry Keyboard PRICE blus faul extra keys	
MINIATUAE MP.C POTENTIOMETEAS. Mode! M2 High-quality. 5% tolerance. 7 . watt, with lin spindies An values, act onms -47 k only 60 p anch per 10. 50p each per 100 . 40pearn	XIAR FILTER 10.7mess, 12.50 separation , $1 / 2 \times 1 / 4 \times 1 \mathrm{inch}$ f1.00 $100 \mathrm{KC} / \mathrm{S}+1 \mathrm{meg} 3$-pin f1 00		to extend its lunclions plus faur extra keys Supplied brand new with dara A 3 * 4 non encoded s!ngle mode keyboard
MIANTITY DISCOUNTS ON All items (uniess stated), 15% per 1020% per $50,25 \%$ per 100 . Al items BRAND NEW (uniess ocherwise stated). DELVERY from stock - add post 35p per order EXPORT TELEX 262284 incl. VAT. enquiries Transonics invited Mono 1400			

READ/WRITE

Letters for this page should be addressed to Read $/ \overline{\text { Write }}$ at 145 Charing Cross Road, London WC2H 0EE.

Dear Sir,

I am writing to enquire if your magazine or any of your readers have heard about or tested an electronic device for inducing dream consciousness (lucid dreams).
This bedside machine monitors the breathing rate of a sleeper by means of a sensitive thermistor attached to the nose. During a dream period, the breathing rate increases above normal; this is used to trigger a mild electric signal to the wrist of the dreamer telling him that he is dreaming and should become conscious in his dream.
Lucid dreams, being far more vivid than normal, are in full colour and three dimensional. The dreamer also has full control over his dream environment and can manipulate it at will. He can dream consciously about anything he chooses and total dream recall is normal.

This equipment was designed and developed by a Dr. Keith M. T. Hearne of Hull University and I believe manufactured and marketed by Campden Instruments (Incam Ltd) of London. But despite persistent enquiry, I have seen no test or reports on this equipment in electronic magazines. Have you or any of your readers seen anything?
I would be very grateful for any information you may have come across on this interesting device!
Yours faithfully,
Mark Botham,
Northumberland
Sorry, never heard of it. Sounds like it makes video games look a bit sick though. Control your dreams at will, eh? Interesting...very interesting...

Dear Mr. Harris,

I am enclosing my entry for your Prize Crossword No. 3. However, I am sorry to say that I do not find this feature up to the usual standards of the rest of the magazine.
May I draw your attention to Crossword No. 1 in the January issue. Clue 24 Down was "Radiation particles are certainly not passive.' At first I chose "Active"' as the answer. However, on reflection, a radiation particle may be an ion, so I changed the answer to "Action."

You can imagine my surprise when you published the answer as "Active." The problem really lay in the fact that
the only letter crossed with this puzzle was the letter ' C ', common to both possible answers.

Now, five months later, in Crossword No. 3, the same difficulty arises. Clue 22 Across is "Timely happening." The only letter crossed with is the second letter, which I make an ' E '. Hence the possible answers (all having some connection with time) are as follows: Decay, Death, Delay, Hence, Hertz, Leave, Merge, Peaky, Recur, Relay, Relic and Telex.

Many of these are also technical terms and therefore likely to be the correct answer. May I remind your Crossword compiler that the rule is: ' ${ }^{\text {lf }}$ a clue is to be made wholly or partly vague, the answer must have sufficient letter crosses to enable it to be verified as the sole answer.' The puzzle to be solved should involve ingenuity in word manipulation, not guesswork or thought transter!
Yours sincerely,
Paul M. Richardson,
Tavistock
Comments received. Passed on to our compiler, who will no doubt have a few cross words to say in reply.

Dear Sir,
I was happy to read the article in your April Birthday supplement entitled,
"Steering Wheel? - Wot Steering Wheel?''. Enclosed is a copy of a letter I sent to the Prime Minister in February this year.
Robert W. Teasdale,
Newcastle-Upon-Tyne
Letter to Prime Minister,
February 1982
On giving some thought to future cars, I thought it would be a good idea if they had some form of electronic control.

The system of flashing lights on the motorways was a good idea, but motorists tend to ignore this system, and I though that futuristic systems could be devised to electronically control the speed of cars (to prevent them going too fast under certain conditions, eg fog), with a built-in safety device for the driver to ignore these signals in an emergency: electronically controlled to respond to certain speed limits; controlled to stop or slow at traffic lights (being able to override this signal if
conditions desired it); controlled to slow at pedestrian crossings, crossroads and junctions; controlled to keep a safe distance from the car in front (with an override to overtake for a short period if necessary and an exterior signal to indicate when on override); controlled to slow at obstructions, again with an override.

Fast cars are dangerous and use a lot of energy. What is required is a safe, controlled car with power to get up hills and through adverse conditions.

I'm sure it would be better to have a safe, controlled system rather than fast dangerous cars, thus cutting down on accidents, death, disablements, and the work of all the services involved in accidents. I hope these suggestions can be put to future scientists and car manufacturers.

Dear Sir,

As so many of us are now using electronically operated quartz crystal controlled watches, may I suggest that an article giving a detailed description of their operation would be of considerable interest.
I am, yours sincerely,
H. Vernon Kirby (Regular Reader), Hayling Island

Couldn't agree more. You wanna write it?

Dear Sir,

I know that you are busy men, but looking through recent ETIs, I came across two speaker systems - the ETI V3 (Oct 1981) and the Wharfedale E70 kit (April 1982). I would be interested in knowing your views on them.

Do you feel that it would be of interest to ETI's readership if you reviewed all the hi-fi projects and compared them to corresponding commercial units?
Yours faithfully,
M. G. Hill,

Harrow
The V3 and E70 are designed to meet different criteria. The V3 is an 'all-rounder' primarily intended for use with a wide range of music at 'normal' (if there is such a thing) volume levels. It is designed to be as neutral as possible in its portrayal of the signal.

The E70 is a high-efficiency speaker with an exciting 'lively' sound balance. It is most at home with the type of music best suited to this method of replay.

As to reviewing ETI projects, could you believe anything anyone says about their own product? Our objectivity would have to be suspect.

RUGBY CLOCK

If you want to know the time, ask MSF Rugby. This accurate and versatile clock/

 calendar is packed with facilities and never needs resetting. Design and development by Stephen Makumbi.

Clock designs appear fairly regularly in hobbyist magazines, but they usually fall into one of two basic types. The first type derives clock pulses from the 50 Hz mains, and while these provide a highly accurate long-term performance, mains frequency variations in the short term can cause errors of several seconds in either direction. The second type relies on a built-in oscillator, usually crystalcontrolled which gives excellent shortterm precision but a steadily accumulating long-term error.

If only you could build your own atomic clock! This is a project slightly
outside the scope of the magazine, but fortunately it isn't necessary to go quite that far. We can all get to share the atomic clock at the National Physical Laboratory because it's used to send coded time data, 24 hours a day, on a 60 kHz radio carrier from a transmitter at Rugby. The signal is transmitted at around 50 kW RF power and can be received over most of Western Europe. Of course, a specialised receiver is required to demodulate and decode the time signals, and that's the project we're offering; a clock that displays the correct time of day, date, day of week, and plenty. more besides, with no need to ever
correct it. Even when the signal completely disappears the clock senses this and automatically switches on to its own crystal timebase back-up clock.

All the information is checked thoroughly for parity and validity. As an example, February 29 th 1983 will be rejected and dashes put into the display in place of the date.

We've included a comprehensive alarm system comprising no less than eight independent alarms. For each alarm setting there is a choice of a melody (author's 12 bar rock), altering the state of eight TTL-compatible lines, or both! The eight lines could, of course, be used

Fig. 1 Block diagram of the Rugby Clock.

Typical time display. Display format is set to 12 hour clock.

Mode 2, phase 2; alarm number 1 has been set for buzzer and port to function.
to turn on and off eight different electrical appliances (through relays).

There is also a separate timer with a unique mode of operation capable of recording up to 240 lap times without interrupting the count! All this makes is simply the best clock available for home use - or anywhere!

General Description

There are three basic modes of operation designated 1,2 and 3 ; clock, alarm, and timer respectively. On reset the clock automatically enters mode 1 . Another switch would enter mode 2. In order to enter mode 3 (timer) you have to press reset while pressing one of the switches.

The emphasis in this system is ease of expansion and interfacing. To this end, all the important CPU lines are brought out to a dual 32 -way connector. Also, all the information that is transmitted is output to six decoded port selects (including the timer). We intend to publish useful add-on units in the future. The entire unit can be controlled by an external computer, instead of by the push-buttons.

The Circuit

At the heart of the system is a Z80 microprocessor. Several other processors were considered including the RCA CPD 1802 for its low power consumption, Intel 8039 for its 'all-in-one' design, plus good BCD handling, and the Intel 8088 for its speed and overall superior processing power.

The $Z 80$ was chosen because a good interrupt structure was of paramount importance in this application. IC4 decodes the lower 32 K of the 64 K address space into eight blocks each 4 K long. These eight blocks are allocated to the PROM, RAM and six LCD displays. It might appear a waste for each digit in the display to take up an entire 4 K of addressing space, but this simplifies

Mode 2, phase 1; the hours have been set at 12 for alarm number 2 .

Mode 2, phase 3; bit 1 of alarm 6 will switch high when the alarm goes off.
decoding logic and reduces chip count. Furthermore, there is 32 K of memory still free!

As you may have gathered from the above text, the displays are 'memory mapped'; whenever the CPU wants to read or write to memory (in the lower 32 K) pin 3 of IC6c goes high, MREQ goes low, and A15 is low, indicating to IC4 that a memory read or write is about to take place. If at this time the address bus contains 2XXX to 7 XXX hex ($\mathrm{X}=$ don't care) then one of the six LCD displays will be selected. Similarly IC19 is used to decode the input/output section. This IC is active when $A 7$, $\overline{\text { IORQ }}$ and one of $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ are low; the port selected depends on the binary value that is present on A 2 to A 4 . This effectively divides the lower 128 port addresses (out of a possible 256) into eight separate ports each four addresses long and repeating 16 times.

The CPU clock signal is generated by XTAL1, IC5a, R1, C1, CV1. This is fed to IC5b and IC5c which are connected in parallel to provide a higher drive and isolation.

IC5d and IC5e together with R2, $\mathrm{R} 3, \mathrm{R} 4, \mathrm{C} 2$, SW 5 form the manual and automatic power-on reset. The RESET signal is ANDed with M1 by IC6a,
IC6b to form a hardware reset for the PIO (Zilog ran out of pins and omitted a proper reset pin). Incidentally although Zilog don't mention it, it's possible to reset the PIO by software. This method is used in this application, but the hardware alternative is there in case another application using the board requires it. (Anyway, we had a couple of NAND gates spare!)

IC9 to 14 are LCD display latchdecoders. Information available at the

Fig. 2 (Above) Coding data into one second. (a) a 0 ; (b) a 1 ; (c) time difference; (d) a second containing odd parity.

Fig. 3 (Right) The five clock faces available in Mode 1. From top to bottom they are time of day; date; day of week and master alarm indicator; time since clock switched to back-up; and BST/GMT time difference.

data pins (2-5) is latched internally when the latch input (pin 1) receives a positivegoing pulse. Since this is of opposite polarity to the signals coming from IC4, a hex inverter is used.

LCD displays require a square wave drive signal on the segments in antiphase to that on the backplane. IC8c and IC8d provide such a signal with a frequency of approximately 50 Hz .

This is fed to the backplane input of the display and also to each display driver (IC9-14). These ICs perform the phase reversal, but unfortunately they don't have decimal point and colon outputs so these have to be generated externally using PIO A0 and A1. IC8a and IC8b perform the phase reversal on these.

IC15 performs several functions; serial input port (SIO), timer, tone generation for radio data, internal timing, user timer (mode 3) and alarm tune.

IC17 also performs several functions, including inputting the state of the switches SW 1-SW4, inputting radio data, controlling the display decimal point and colon, inputting the default hour format (12/24); it's also a programmable output
port in conjunction with mode 2 !
The receiver follows an unusual design. For a start there are no cumbersome coils; instead the entire tuning section comprises two state variable filters in series (IC20, 21). They also provide the necessary gain to couple to IC22 via FET buffer Q1. The two filters provide very good selectivity which is required at these low frequencies due to interference, especially from TV timebase circuitry. When properly tuned by PR1-4 it is possible to have the receiver closer to a TV set than is possible with many current designs. IC22 is a tone decoder whose output pin goes low when a signal within its passband is present at its input (pin 3). Q2 inverts this signal to high for 'carrier on'. There are some spare inverters on the main board which could have been used instead, but the aim was to have a selfcontained receiver.

Rugby Transmissions

The incoming radio carrier is switched off and on throughout the entire minute to convey the time information in

Fig. 4 Switch functions for Mode 2, phase 1.

Fig. 5 Switch functions for Mode 2, phase 2.

Fig. 6 Switch functions for Mode 2, phase 3.
binary-coded form. The carrier is switched off at the beginning of every second, and the point within the first half of the second that it comes on again determines whether the bit sent within - that second is a logic 1 or 0 , ie, if it switches on after 100 mS , then the bit is a 0 . Otherwise it will switch on after 200 mS in which case the bit is a 1 . Figure 2 should make this clear.

As each second transmits only one bit of a binary coded number more than one second may be needed to transmit a whole number. Each unit is allocated the minimum number of bits which will represent the maximum value of that unit; for instance. 'Day of Week' takes up three seconds (three bits) since these will contain binary combinations $0-8$ (8 not used).

Seconds $7-16$ contain information about the time difference between BST and GMT. An extra pulse (break in carrier) will indicate $1 / 100$ th second difference.

The total number of pulses within seconds 1-8 represent the number of hundredths of a second that BST lags behind GMT. Otherwise, those which occur in seconds 9-16 indicate BST leading GMT by their total multiplied by 10 milliseconds.

Seconds 17-51 contain the time, date, day of week, month and year. Seconds 51-59 contain a unique binary code which is used by detecting systems to synchronise; although the clock presented here uses a different system for synchronisation.

Seconds 52-58 also contain a parity checking code on the information that was received between seconds 17-51. That is to say a pulse 300 mS long indicates that the unit in question should have an odd number of 1 bits. A pulse of $30 n \mathrm{mS}$ indiratos an puen number of 1 s

The first second (0th) contains a fast serial code which also specifies the time, date and month.

Just before this code is a very short negative-going pulse (carrier off). It is the only pulse shorter than 3 mS in the entire minute. For this reason it is detected by its unique size and used for synchronisation. The fast code is then read immediately. Synchronizing on this code as opposed to the six second ident makes it possible to make another attempt within 10 mS of the previous attempt if the previous one was false. In the other case it would take at least six seconds to find out if the ident is valid or not before the subsequent trial is attempted.

More On Modes

As mentioned earlier, there are three basic modes which the clock could be in. In order to economise on front panel switches, SW 1-4 are all multifunction and the function of each switch

PROJECT : Rugby Clock

depends on which mode, face or phase one is in.

Mode 1

Mode 1 is the default mode on power-on and displays the current time and related information. When the unit is first switched on a blip should be heard from the buzzer in sympathy with the incoming signal. This is useful for tuning purposes, as the receiver can be tuned until a clean blip (generally one a second) is heard.

After some time the blip will stop and the display will change from dashes to the correct time. The date information will take a further minute to appear. Now, assuming that you have waited this further minute, then pressing SW1 causes the display to change to date, month, and year. Press SW1 again and the day of week will appear on the left hand digit while the right hand digit will be either ' A ' or ' P ' (AM or PM). The middle two digits will contain letters ' AL '. This is the master buzzer enable/disable indicator. If while on this third face you press SW4 the letters 'AL' will begin to flash, indicating that the master alarm is enabled, ie any of the eight alarm settings will sound the buzzer of the preset time. With the master alarm disabled, none of the alarm settings will ever activate. Repeatedly pressing SW4 will toggle the master alarm between 'enabled' and 'disabled'.

Pressing SW1 once more will move on to face 4 which shows the amount of time in hours and minutes since the clock has switched to automatic back-up time. Normally this face will show

> " 00.00 - "' meaning that the clock is running on Rugby Time.

Pressing SW1 once more will move on to face 5 which shows the BST/GMT time difference information. L indicates 'lagging' while ' H ' indicates 'leading'

Finally, pressing SW 1 again will wrap round to face 1 to display the time. It is possible to do a quick return to face 1 from any face except face 3 by pressing SW4 twice. Pressing SW2 while face 1 is displayed will change from 12 to 24 hour display and vice-versa.

Mode 2

In Mode 2 any one of eight alarms may be set to sound the buzzer and/or configure the state of the eight lines on port B . Each individual alarm can be enabled/disabled to sound the buzzer or alter the settings of the eight port lines.

From Mode 1, press SW4. The display will show 'AL', indicating the alarm mode. From here you can branch in any one of three directions depending on what you want to do. Let's call this point X. If you want to set an alarm time, from point X press SW3. The display will show a 1 on the right hand side indicating that the current alarm is alarm 1. The rest of the display will contain dashes, and the hour position will be flashing meaning that the hours will be the next unit to be set (like a digital watch). Pressing SW1 will advance the hours. Pressing SW2 will cause the minute 'tens' to flash. Similarly pressing SW 1 will alter the minute tens. Pressing SW 2 once more will advance to minute 'ones', and then wrap round to hours. SW3 will advance through the alarm
numbers and is effective from whichever state the 'setting' procedure is in.

To exit 'alarm set' mode at any time press SW4 which will turn the display back to time display. Press SW4 again to go back to point X. This time we want to enable the alarm we have just set to sound, so press SW1 and then press SW3 to the desired alarm number. Now press SW 1; the 'A' will start to flash. If you also want to enable the alarm to alter the port lines, press SW2; 'P' will start flashing. Press SW4 to go to mode 1.

For the third branch from point X , press SW4 again and this time follow it by SW2. Press SW3 to advance to the desired alarm number, then press SW2 to advance to the required bit number. Pressing SW1 will cycle through - , H, L; refer to Fig. 3 for the significance of these letters. Once, again, to exit, press SW4.

When any of the set alarm times come up the buzzer should play a tune and the port lines will take up the state that was programmed. A nyone who dislikes the tune can get it changed for one of their choice by sending a good quality tape or a manuscript to the designer via Technomatic. Details of the charge for this service will be available from Technomatic.

When the tune starts playing, pressing SW4 will stop it. Pressing SW3 will start a 10 minute snooze delay after which the tune will play again. When the tune is playing SW4 and SW3 will perform these two functions no matter what mode, phase or face you happen to be in; the current meaning of those switches will be postponed for one key depression.

Mode 3

This is the timer mode. It is entered by pressing SW5 (reset) and SW4 simultaneously, then releasing reset followed by SW4. The display will show both the colon and the decimal point. Presssing SW4 will start the count; pressing SW4 again will stop it. Pressing SW2 during the count will latch the current display. Repeated pressing of SW2 will latch (and store) up to 240 laps. Pressing SW1 will view the laps in store even while counting is in progress. Pressing SW3 will display the current count, if you happen to be viewing laps or have just latched a lap.

Expansion

The board was built with expansion in mind, hence the 64 -way connector which carries all important signals. We hope to publish useful add-ons in the future.

Next month we continue this project with the circuit diagrams and How It Works.

HAPPY MEMORIES

Part type
4116 200ns
4116 250ns
4816 100ns For BBC comp
4164 200ns
2114 200ns Low power
2114 450ns Low power
4118 250ns
6116 150ns CMOS
2708 450ns
2716 450ns 5 volt
2716 450ns three rail
2732 450ns Intel type
2532 450ns Texas type
Z80A-CPU $£ 4.35$ Z80A-PIO $£$ 6522 PIA £3.98 7805 res $\mathbf{0 . 5 0} \quad 7812$ res $\mathbf{0 . 5 0}$ Low profile IC sockets:
$\begin{array}{llllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$ $\begin{array}{lllllllll}\text { Pence } 9 & 10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$ Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00; 5 inch SSDD £19.25; 5 inch DSDD £21.00; 8 inch SSSD £19.25; 8 inch SSDD £23.65; 8 inch DSDD £25.50
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.
Please add 30p post $\&$ packing to orders under $£ 15$ and VAT to total. Access \& Barclaycard welcome. 24 hour service on $(054$ 422) 618. Government \& Educa tional orders welcome, f15 minimum. Trade accounts operated, phone or write

HAPPY MEMORIES (ETI)
Gladestry, Kinston, Herefordshire HR5 3NY Telephone: (054 422) 618 or 628

1 off 25-29 100up
$\begin{array}{lll}0.83 & 0.72 & 0.66\end{array}$
$\begin{array}{lll}0.75 & 0.65 & 0.60\end{array}$
$\begin{array}{lll}2.95 & 2.70 & 2.50\end{array}$
$\begin{array}{lll}6.15 & 5.25 & 4.65\end{array}$
$\begin{array}{lll}1.15 & 1.00 & 0.90\end{array}$
$\begin{array}{lll}0.95 & 0.85 & 0.80\end{array}$
$\begin{array}{lll}3.25 & 2.85 & 2.65\end{array}$
$4.25 \quad 3.65 \quad 3.35$
$\begin{array}{lll}2.60 & 2.25 & 2.10\end{array}$
$\begin{array}{lll}2.60 & 2.25 & 2.10\end{array}$
$\begin{array}{lll}5.75 & 5.00 & 4.65\end{array}$
$\begin{array}{lll}3.95 & 3.45 & 3.25\end{array}$
$3.95 \quad 3.45 \quad 3.25$
Z80A-CTC $\mathbf{£ 3 . 2 5}$
ar 5

quality design
quat you'll be proud of
Each kit contains all cabinet components, accurately machined for easy assembly, speaker drive units, crossovers, wadding, grille fabric, terminals, nuts, bolts, etc.
The cabinets can be painted or stained or finished with iron-on veneer or self adhesive woodgrain vynil
Easy foolproof assembly instructions supplied. Set of constructor leaflets sent free on receipt of large S.A.E.

Prices: CS1 (B110B/T27A) £110 pr.inc. VAT, plus carr./ins. £ 5 CS1A(B110A/T27A) £103 pr, inc. VAT, plus carr./ins. £ 5 CS3 (B200G/T33A) £129'pr.inc. VAT, plus carr./ins. $\mathbf{£ 1 0}$
CS5 (B200G/BD139B/T33A) £192 pr. inc. VAT, plus carr./ins. £15
CS7 (B139B/B110B/T33A) £250 pr. inc.VAT, plus carr./ins. £15

8
 0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
1982 Catalogue - £1.50 post free
Lightning service on telephoned credit card orders!

NICADS: UK'S LOWEST PRICES

AMMBIT'S NEW CONCISE COMPONENT CATALOGUE IS OUT NOMV -
Price on the same

Ambit's new
style catalogue continues to lead the market with low prices, new items, info, $3 \times$ E1 discount vouchers. Here's a few examples of some super low prices:
$78 \times 1 \mathrm{~A}$ BC237/8/9 3SK51 54p
10 MHz XTALS £2
8 Pole 10.7 MHz XTAL filters $£ 14.50$ 2 GHz coax relay 150 W f10.95

+ all the usual stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc

HENRTE

COMPUTER KIT DIVISION

404 EDGWARE RD, LONDON W2 1ED TEL: 01.4026822 - TANGERINE - TANGERINE - TANGERINE MICROTAN 65

NUCROTAN BE CONTENTS
Hath quality plated thru hoie printed circuit board, solder resist and silk screened component identification 6502 microprocessan 1 K montivo TANBUG Now with $\mathbf{V}^{\mathbf{Y}}$ Bug IK FAM for user pragramme, stack and display memory VLIU alphenumeric dispiay ol 16 rows by 32 cheracters, MCROTAN 65 system File binder 136 paga, bound luers hardwaredsoftware manual with constructional details and sample programmes. Logic and discrete com conemits to fuly expand MICROTAN 85 .
tha MICROTAN 85 kit has won widespread acclaim for its superb presentation. We pay attention to detail Kit form $\mathbf{£} 69.00+$ f10.35 VAT, total $£ 79.35$
MmCrotan or assembled and tested.
Specification as above, butt assembled and fully bench tested by ourseves
$\mathbf{E 7 9 . 0 0}+$ E11.85 VAT, total f90.85
YOU MAY DEDUCT
FROM MICROTAN 65 KITS AND ASSEMBLED UNITS LISTED HERE
ONLY FROM US
DELIVERY EX-STOCK
POST PAID
Limited Quantity Available

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses,
SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months, Weekdays and Milliseconds, also STOPCLOCK and parallel BCD output for computer or alarm, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the RIGHT TIME, £69-60.
60 KHZ RUGBY RECEIVER, as in MSF Clock, serial data output, decoding details and ZX81 listing for local. GMT and SIDEREAL time, £22-20.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, instructions, money back guarantee so GET yours NOW.

CAMBRIDGE KITS

45 (TH) Old School Lane, Milton, Cambridge

DESIGNER'S NOTEBOOK

This month Rory Holmes provides you with all the design information you need to incorporate the DPM200 module into electronic measurement circuits. It requires few external components and is ideal for portable instruments.

Amajor role of electronic equipment is very often the measurement and display of some quantity, either from the 'real world' or an electronic parameter. The new generation of digital voltmeter modules allows the inherent readout accuracy of a digital system to be simply and conveniently implemented due to their low cost, low power and very small size. The price of moving coil meters is steadily increasing while the price of the solid-state ones is naturally falling.

Although digital meters lack an indication of analogue trends, this will soon cease to be a valid criticism. Medium resolution LCD bargraphs coupled with digital readouts will have all the advantages of both, with an increasingly attractive versatility.

The DPM 200 module is described as a state-of-the-art $31 / 2$ digit LCD meter. Briefly, its features are:

- High contrast, wide angle display
- Wide range of programmable symbols
- Ultra-low current consumption
- Single rail supply (5-15 V)
- Auto-zero and auto-polarity
- 0.05% accuracy
- Built-in bandgap reference voltage
- Low battery indicator
- Programmable decimal points

Fig. 1 PCB pin connection diagram for DPM200.

Dimensions in mm
Fig. 2 Physical dimensions of the module. Panel cut-out is $68 \times$ 33 mm .

It is based around the latest dual-slope integration CMOS DVM chip, the 7126, and is certainly the best of its ilk available to the hobbiest.

Figure 3 shows the circuit diagram of the module. The great versatility of this device comes from the large number of user connections provided (38 in all) as shown on the connection overlay of Fig. 1.

When used in conjunction with other circuitry it offers a

		TABBLE 1

Fig. 3 Circuit diagram of the module. R1, R2 and C1 determine the integrator time constant and C 2 reduces the susceptability to noise of the auto-zero circuitry. The display is guaranteed to read zero when the analogue input is 0 V . An input filter formed by R3 and C3 assists with overload protection for the 7126 IC. The input voltage may exceed the
supply voltage provided the input current does not exceed 100 uA . The frequency of the internal oscillator is determined by R4 and C5 and provides three samples per second typically. The module is calibrated by means of VR 1 for a full scale reading of 200 mV with link LA in circuit and resistor $\mathbf{R}_{\text {c }}$ omitted.
number of unexpected bonuses for the designer. A square wave clock signal, an extra negative supply rail, a bandgap precision voltage reference, a common rail for op-amp references, plus four logic signals for autoranging meter circuits - all these signals are available for use in external circuits. Table 1 charts the pin numbers in numerical order with their symbols and basic functions.

Supply Rails

The module can be operated from a single supply between 5 V and 15 V across pins 1 and 14 , at a current of 100 uA , using the bandgap reference. However, the internal reference can be used instead, reducing the current to 50 uA with a minimum voltage of 7 V . A low battery warning indicator is set to come on at 6V4, determined by the R8/R10 potential divider. R10 can be altered if required; 220 k gives a 7 V 2 warning.

Legends/Annunciators

The symbols can be enabled very easily by directly connecting the XDP output on pin 18 (an inverted backplane
signal) to the required segment. This may also be done via logic or switches for automatic selection of the decimal points.

Inputs

Pins 2 and 3 are the non-inverting and inverting inputs respectively; these analogue inputs are truly differential and may be operated to within 0V5 below the positive supply and 1 V above the negative supply. Common mode rejection ratio within this range is typically 86 dB .

Voltage References

The Analogue Common pin is included primarily to set the common mode voltage for battery operation or for any system where the input signals are floating with respect to the power supply. The common pin sets a voltage that is approximately 2 V 8 more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6 V . However, the analogue common has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate (greater than 7 V) the common voltage will

Fig. 4 Measuring the ratio of two voltages. The maximum input voltage is $\pm 2 \mathrm{~V}$ with a 9 V supply.

Fig. 5 Measuring a floating voltage source with 200 mV full scale. Autopolarity indication is implemented, together with the decimal point and mV annunciation.

TABLE 2			
	REQUIRED FSD	LA	$\mathbf{R}_{\mathbf{c}}$
LA	2 V	10 M	1M0
(NHI)-6	20 V	10 M	100k
)	200 V	10M	10k
	2000 V	10 M	1 k 0
	200 uA	LINK	1 k 0
N 10)	2 mA	LINK	100R
	20 mA	LINK	10R
	200 mA	LINK	1R

have a low voltage coefficient. (0.001%), low output impedance (about 15R), and a temperature coefficient typically less than $800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The analogue-to-digital converter of the IC operates in a ratiometric mode, such that the digital display is $1000 \mathrm{~V} 2 / \mathrm{V} 1$, as shown in the diagram of Fig. 4. Here, the inverting inputs of the reference and voltage inputs are both connected to common (REF LO and IN LO). REF HI is normally connected to the 100 mV bandgap reference from REF + as shown in Fig. 5, thus giving the 200 mV full-scale deflection. Output REF + is 100 mV with respect to REF - when the latter is correctly terminated. REF BG is 1V2 with respect to REF - . REF - should normally connect to the COM terminal as the diagram indicates.

To alter the full-scale reading of the DVM module, the link LA and resistor R_{c} shown in the circuit of Fig. 3 should be altered. Table 2 shows the values required for several ranges of current and voltage.

Outputs

The polarity output on pin 7 is a square wave in-phase with the backplane signal when the analogue input has positive polarity and in anti-phase when the input has negative polarity. It can be connected directly to the " - "'symbol (pin 23) for normal
polarity indication. The clock on pin 16 may be used for systems timing or as an inpat to override the internal oscillator and control the sample rate. If CLK is connected to V - the display may be held at a particular value but this should not be connected for extended periods as the steady DC potential applied to the LCD may cause the segments to "burn".

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and auto-zero (1000 to 3000 counts). For signals less than full scale, auto-zero gets the unused portion of reference de-integrate. This makes a complete measure cycle of 4000 (16000 clock pulses) independent of input voltage.

An oscillator frequency of 48 kHz is used for three readings per second.

Test

The test pin serves two functions. It is coupled to the internally generated digital ground through a 500 R resistor (digital ground is set at approximately 5 V below +V). Thus when operated from a single battery supply, TEST can be used as the 0 V rail for externally generated segment drivers, such as decimal points (or any other presentation the user may want to include on the LCD display), or it may be used as a common mode reference level to ensure compatibility with most op-amps.

If TEST is connected to $\mathrm{V}+$ the LCD segments will be turned on and the display will read as shown in Fig. 6(This mode should not be used for extended periods, to avoid damage to the LCD).

-1688

Fig. 6 The display when in the 'TEST' condition.

SPECIFICATION	
Input impedance:	$>100 \mathrm{M}$
Full scale reading:	199.9 mV
Accuracy:	0.05% of reading ± 1 digit
Power supply:	$5-15 \mathrm{VDC}$
Power consumption:	50 uA (in low power mode), typically 8,000 hours PP3 life
Sample rate:	3 readings per second
Auto-zero:	No necessity to adjust for offsets
Auto-polarity:	Automatic polarity indication eliminates the need to reverse input leads to obtain correct reading.
Overrange warning:	1 in leading digit with other digits suppressed
Bandgap reference ($50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ.)	incorporated tor excellent stability of reading
Digit height:	$15 \mathrm{~mm}\left(0.6^{\prime \prime}\right)$ can be read at distances up to 10 metres
Low battery warning:	direct display, voltage threshold easily adjusted
Operating temperature:	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Overall dimensions:	$72 \times 36 \times 12 \mathrm{~mm}$
Panel cut-out:	$68 \times 33 \mathrm{~mm}$
Display annunciators:	many useful legends are built into the custom LCD which may be activated as required
Auto-zero	With the inputs shorted, the display should read zero, the negative sign being. displayed about 50% of the time
Overrange:	Inputs greater than full scale will cause suppression of the three least significant digits, i.e. only 1 or -1 will be displayed
Polarity	The absence of a polarity sign indicates a positive input reading. A negative input is indicated by a negative sign.

ETI PCB SERVICE
Up until now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! As of this issue all (nort copyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our prototypes, so you can be sure it's accurate, and will be finished to the high standard you would expect from ETI.
In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please note that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

APRIL 79		APRIL 81		FEBRUARY 82	
\square Cuitar Effects Unit	£2.64	\square Musical Box	£2.64	\square Ripple Monitor	£2.08
\square Click Eliminator	£6.64	\square Drum Machine(two boards)	£5.60	\square Pest Monitor	£1.85
		\square Cuitar Note Expander	E3.20	\square IChing Computer(two boards)	£5.31
JUNE 79				\square Moving-magnet stage	£3.80
\square Accentuated Beat Metronome	£3.60	JUNE 81		\square Moving-coil stage	$£ 3.80$
FEBRUARY 80		\square Mini-drill Speed Controller	£2.93	APRIL 82	
\square Tuning Fork	£2.64	\square Antenna Extender	£3.20	\square ContrastMeter	£2.8
		\square Alien Attack	£2.64	\square Sound Effects board	£2.40
MARCH 80		\square LED Jewellery: Cross	£1.47	\square High Impedance Probe	£1.97
\square Signal Tracer	£2.27	$\square \quad$ Spiral(two boards)	£2.64	\square Cuitar Practice Amp	£7.57
		\square Star(twoboards)	£2.65	\square Accurate Voltage Monitor	£2.05
AUGUST 80		\square Waa-phase	£1.53	MAY 82	
\square CMOS Logic Tester	£2.64			$\square \mathrm{DVMeg}$	£2.92
\square Capacitance Meter	£2.93	JULY 80 -		\square Analogue PWM	£3.37
\square Ultrasonic Burglar Alarm	£2.87	System A A-MM/A-MC	$£ 2.65$ $£ 5.17$	\square Slot CarController	£4.96
OCTOBER 80		[] Smart Battery Charger	£1.97	\square Wattmiser	£4.53
\square Cassette Interface	£2.93	- Smart BateryCharger		\square Sound Effects Board	£2.40
\square Fuzz/Sustain Box	£3.27				
NOVEMBER 80		AUGUST 81		June 82	
\square Touch Buzzer	£1.93	\square System A Power Amp(A-PA)	£4.77	- Ion Generator (two boards)	
\square Light Switch	£1.93	\square Flash Sequencer	£3.44 £3.97	C.) Ion 'Blinker' [i MOSFET Amp Module	£6.99
\square Metronome	£1.93	\square Heartbeat Monitor	£1.83	\square Logic Lock	£3.41
\square 2W Power Amp	£1.93	\square Watchdog Home Security		\square Digital PWM	£3.84
\square RIAA Preamplifier	£1.93 $\mathbf{£ 3 . 1 3}$	(two boards)	£5.31	[] Optical Sensor	¢1.98
				\square Stylus Timer	£2.98
DECEMBER 80			¢735	\square Oscilloscope (four boards)	£13.19
Musical Doorbell Bench Amplifier	${ }_{\text {¢ }} \mathrm{E} 2.50$	\square Laboratory PSU	${ }^{\text {¢ }}$		
\square Four Input Mixer	£2.64			JULY 82	
		OCTOBER 81		\square Mike Switching Unit	£2.04
JANUARY 81		\square Enlarger Timer	£3.40	\square TV Bargraph (main board)	£4.85
\square Multi-Option Siren	£4.13 £3.20	\square Sound Bender	£2.65	\square TV Bargraph (channel card)	£2.44
\square Multi-Option Siren	${ }_{\text {¢ }} \mathrm{E} 3.31$	\square Thermal Alarm	£2.63	\square Hotwire	£2.99
	£3.31	\square Micropower Pendulum	E2.21	\square Bridging Adaptor	£2.74
FEBRUARY 81					
\square Infra-red Alarm(four boards)	£6.64	NOVEMBER 81		AUGUST 82	
\square Pulse Cenerator	£3.57	Music Processor \square Voice-Over Unit	$\begin{aligned} & £ 7.35 \\ & £ 3.97 \end{aligned}$	\square Playmate (three boards)	£7.92
MARCH 81		\square CarAlarm	£2.81	\square Kitchen Scales	£2.70
\square Engineer's Stethoscope	£2.65	\square Phone Bell Shifter	£2.96	\square Sound Track	£4.38

SC110 FULLY PORTABLE OSCILLOSCOPE

The new THANDAR SC110 represents a break through in Oscilloscope development. The SC110 is only $2^{\prime \prime}$ thick and weighs under 2 lbs yet it retains the standard features of a bench oscilloscope.

FULL-SIZED PERFORMANCE

- 10 MHz band width
- 10 mV per div. sensitivity
- Full trigger facilities are provided including bright line and auto, with T.V. line and frame filtering
RUNS ON ORDINARY HPII (four)
batteries or rechargeables
- Basic price - £159 UK Post free Optional extras
AC Adaptor 55.69 ; Rechargeable batteries $\times 1 \times 10$ Switched Probé f 1090 . Cary Case $\times 1 / \times 10$ Switched Probe $£ 10.90$; Carry Case
$f 8.86$.

PFM200A FREQUENCY

METER

- Pocket size - 8-Digit LED display -

Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$ Resolution $0.1 \mathrm{~Hz} \bullet$ Sensitivity typically 10 mV rms - Timebase accuracy 2ppm Battery life 10 hours - Frequency: 2 ranges, 4 gate time
Optional extras - AC Adaptor $£ 5.69$

[^2]B.K. ELECTRONICS

37 Whitehouse Meadows, Enstwood, Leiph
Tel: 8outhend 527572

OPEN FRAME MONITORS AVAILABLE FOR OEM'S The 'PRINCE'of Monitors
offers better Monitoring.
24 MHz Bandwidth-ensures a clear crisp display.
Available with P4 White P31 Green AND L1 ORANGE

Scan. 625 lines $/ 50 \mathrm{~Hz}$. Deflectlon: 110°. Active raster: $240 \times 172 \mathrm{~mm}$. Bandwidth (3dB): $10 \mathrm{~Hz} \cdot 24 \mathrm{MHz}$ (at 3 dB points). Character display. 80characters $\times 24$ lines. Horizontal frequency: $15625 \mathrm{~Hz} \pm 0.5 \mathrm{KHz}$. linearity: $\pm 2 \%$. Gerometric distortion: $\pm 1.5 \%$ EHT (ar zero beam current): $13 \mathrm{kV}+0.5 \mathrm{kV}$. Power drain: 30 Watt approx. Voltage supply: $110 V$ A.C. $50 \mathrm{~Hz}_{2} / 220 \mathrm{~V}$ A.C. $-50 \mathrm{~Hz}_{2} / 240 \mathrm{~V}$ A.C., 50 Hz / $\pm 10 \%$ upon request. Video input: $2 \times$ BNC - or CINCH - or PL 259. (composite video) nagative sync. input $0.5-4 \mathrm{~V}$ p.b. across 75 Ohms. X.Ray radiation: conforms to I.E.C. Spec. No. 65 . Overall dimensions: $320 \times 270 \times 265 \mathrm{~mm}$. Weight: 7 Kg . approx. Ambient temperature: 0.45
OTHER CROFTON PRODUCTS INCLUDE: COmputer peripherai equipment, Frame grabber. Floppy disk drives, Floppy disks, Monitor P.C.B's. Cathoderay tubes, VHF, UHF modulators Video switchers, Video distribution amplitiers, Camera housings, Pan and tilt units. Camera lens, Camera tubes, Printed circuit board service. CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TW1 4AD. Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

- KITS $£ 32, £ 50, £ 75, £ 85$ including full instructions \bullet CONTROL PANELS $£ 18, £ 23, £ 29, £ 37 \bullet B E L L$ BOXES $£ 6.25, £ 7.50$ - PRESSURE PADS £1.06, $\mathrm{£} 1.45, \mathrm{f} 2.45$ - 4 CORE CABLE (100m) f8eSIRENS £7.50*CONTACTS 72p, 74p, 76p \bullet ULTRASONCIS £34.50•DOOR PHONES £49.42•
BUY A KIT OR DESIGN YOUR OWN SYSTEM send sae or phone now for free fully illustaateo catalogue IT TELLS YOU ALL YOU NEED TO KNOW! Carriage Included. VAT Extra 15\%
A. D. Electronics, Dept EII 7, 217 Warbrech Moor, Aintrie, Liverpool LS OHV 0515238440 Trade Enquiries Welcome

AMARAL Limited

26 HIGHFIELDS, EARLEY, READING RG6 2RZ, ENGLAND Tel: National 0734864745 ; International + 44734864745 Access or Barclaycard Add VAT $15 \% 50 \mathrm{p}$ p\&p, Mail Orders / Tel orders only Send SAE for complete list
CMOS - 4001 15p; 4002 15p; 4006 52p; 4011 15p; 4012 15p; 4013 25p; 4016 26p 4017 45p; 4020 53p; 4022 47p; 4023 15p; 402440 p; 4025 15p; 4027 29p; 402850 p 4029 60p; 4040 50p; 4046 47p; 4046 67p; 4049 25p; 4050 25p; 4051 52p; 4052 52p; 4053 47p; 4060 76p; 4066 31p; 4068 15p; 4069 15p; 4070 15p; $407656 \mathrm{p} ; 4081$ 15p; 4032 15p; 4085 39p; 4086 39p; 4511 57p; 4518 59p; 4520 57p; 4543 87p; 4555 43p. 40106 17p.
74LS - 00 12p: 02 13p: 04 14p: 08 14p; 10 13p; 11 14p; 14 47p; 20 13p; 21 15p: 27 15p; 28 18p; 30 13p; 32 13p; 40 13p; 4240p; 73; 24p; 74 22p; $7624 \mathrm{p} ; 8571 \mathrm{p} ; 86$; 17 p :
 155 47p; 154 37p; $16455 \mathrm{p} ; 16616 \mathrm{p} ; 17353 \mathrm{p} ; 17437 \mathrm{p} ; 17537 \mathrm{p} ; 19363 \mathrm{p} ; 22160 \mathrm{p}$:

MICROS ETC - Z80CPU 345p; Z80ACPU 395p; Z80CTC 295p; Z80ACTC 295p; Z80P10 340p; Z80AP 10 370p; 8085 375p; 8085A 525p; MC148858p; MC1489 58p. CRYSTALS - 3.6864 125p; 4.0000125 p; 6.144125 p.
SPECIAL OFFER - Buy a Micro from us and get a crystal for 75 p
IC SOCKETS - 14 pin 8p; 16 pin $8 \mathrm{pp} ; 18$ pin 12p; 24 pin 18p; 28 pin 24p; 40 pin 28 p. REGULATORS - T.0. 220 Type - 780538 p ; 781238 p ; 7815 38p.

electronics today international

 300K SEiMCHow to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service Argus Specialiat Publications Lid, 145 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice

Beginners Guide to Electronics Squires $\mathbf{£ 4 . 5 0}$
Beginners Guide to Transistors Reddihough $\mathbf{£ 4 . 5 0}$
\square Beginners Guide to Integrated Circuits Sinclair $\mathbf{£ 4 . 5 0}$
Beginners Guide to Radio King $\mathbf{£ 4 . 5 0}$
Beginners Guide to Audio Sínclair $\mathbf{f 4 . 5 0}$
\square Introducing Amateur Electronics Sinclair $\mathbf{£ 4 . 5 0}$
Introducing Microprocessors $\mathbf{£ 5 . 2 0}$
\square Understanding Electronic Circuits Sinclair $\mathbf{£ 5 . 3 0}$
Understanding Electronic Components Sinclair $\mathbf{£ 5 . 3 0}$
TV Typewriters Cookbook $\mathbf{£ 9 . 3 5}$
CMOS Cookbook $£ 9.85$
Active Filter Cookbook $£ 11.30$
IC Timer Cookbook $£ 8.65$
IC Op-Amp Cookbook $\mathbf{f 1 2 . 2 0}$
ITL Cookbook $£ 9.15$
MC 6809 Cookbook Carl D. Warren $\mathbf{£ 5 . 3 0}$
PLL Synthesiser Cookbook Kinley $\mathbf{£ 5 . 8 5}$
8085A Cookbook Titus $\mathbf{£ 1 0 . 7 5}$
\square How To Build Electronic Kits Chapel $£ \mathbf{} \mathbf{\square} .45$
110 Electronic Alarm Projects Marston $\mathbf{£ 5 . 2 5}$
110 Semiconductor Projects for the Home Constructor Marston $\mathbf{£ 5} .25$
110 Integrated Circuit Projects for the Home
Constructor Marston $\mathbf{£ 5} .25$
110 Thyristor Projectors Using SCRs Marston $\mathbf{6 5 . 2 5}$ 110 Waveform Generator Projects Marston $£ 5.25$ $\mathbf{9 9}$ Practical Electronic Projects Friedman $£ 4.20$
[] What is a Microprocessor? 2 cassette tapes plus a 72-page book $\mathbf{£ 1 0 . 0 0}$
\square Beginners Guide to Computers and Microprocessors with projects $\mathbf{£ 6 . 0 5}$
\square Basic Computer Games Ahl $\mathbf{f 6 . 0 5}$
\square Basic for Home Computers Albrecht $\mathbf{£ 6 . 6 0}$
Illustrating Basic Alcock $\mathbf{£ 4 . 2 5}$
T. Troubleshooting Microprocessors and Digital Logic Goodman $£ 6.10$
($\mathbf{2 - 8 0}$ Microcomputer Handbook $\mathbf{£ 9 . 3 5}$
Microprocessors in Instruments and Control Bibbero £15.30
Basic Basic Coan $\mathbf{£ 9 . 9 5}$
Advanced Basic Coan $£ 9.95$
$\square 1001$ Things to do with your Personal Computer Sawusch $\mathbf{f 6 . 0 0}$
\square Microcomputers, Microprocessors, Hardware, Software and Applications Hilburn $£ 17.40$ Microprocessor Systems Design Klingman $£ 21.95$ - Introduction to Microprocessors Leventhal $\mathbf{£ 1 1 . 2 5}$

Microprocessor Technology, Architecture and Applications $£ 11.30$
\square Basic with Style Nagin $\mathbf{f 6 . 3 0}$
Microcomputer Design Ogdin $\mathbf{£ 9 . 2 5}$
Hands on Basic with a PET Peckham $\mathbf{£ 1 1 . 9 5}$
6800 Software Gourmet Guide and Cookbook Scelbi f9.30
$\square \mathbf{8 0 8 0}$ Software Gourmet Guide and Cookbook $£ 9.30$
The 8080A Bugbook Rony $\mathbf{£ 1 0 . 0 5}$
8080/8085 Software Design Titus $£ 10.05$
How to Design, Build and Program your own Working Computer System $\mathbf{f 7 . 1 0}$
\square Your Own Computer Waite $\mathbf{£ 2 . 2 5}$
Microcomputer Interfacing Handbook A/D \& D/A £6.35
Crash Course in Microcomputers Frenzel $£ 14.95$
\square Musical Applications of Microprocessors Chamberlain f 20.95
\square The Pascal Handbook Tiberghien $£ 12.45$
50 Basic Exercises Lamoitier $£ 11.10$
\square Learning Basic with the Sinclair ZX80 £4.95
\square Microprocessors for Hobbyists Coles $£ 4.25$
\square Introduction to Microcomputer Programming Sanderson £5.25

Microprocessors and Microcomputers for Engineering Students and Technicians Woolland $£ 5.95$
\square Using CP/M - Self Teaching Guide Ashley Fernandez £6.95

- Digital Counter Handbook Frenzel $\mathbf{£ 8 . 6 5}$
i 33 Challenging Computer Games for TRS80-Apple-Pet Chance $£ 5.75$
\square How to Build Your Own Working Robot Pet Dalesta $£ 5.75$
\square Microprocessor and Digital Computer Technology f16.00
\square Guidebook to Small Computers Barden $\mathbf{£ 4 . 2 0}$
\square How to Debug Your Personal Computér Huffman $\mathbf{£ 6 . 3 0}$
\square How to Troubleshoot and Repair Microcomputers Leuk $£ 6.30$
$\square 6809$ Microcomputer Programmes and Interfacing with Experiments Staugaard $\mathbf{£ 1 1 . 4 5}$
1] Wordprocessors Programmed. Training Guide with Practical Application $\mathbf{£}$
\square Digital Circuits and Microcomputers Johnson $\mathbf{£ 9 . 7 5}$
\square Experiments in Artificial Intelligence for Small Computers $\mathbf{f 7 . 2 5}$

TEST

\square The Oscilloscope In Use Sinclair NEW EDITION 1982 How to Get More Out of Low-cost Electronic Test Equipment Tobery $\mathbf{£ 5 . 5 0}$
\square Digital Signal Processing. Theory and Applications Rabiner $£ 26.40$
\square Introduction to Digital Filtering Bognor $\mathbf{£ 1 3 . 3 0}$
\square Transistor Circuit Design Texas Instruments $\mathbf{£ 1 0 . 9 5}$
\square Electronic Circuit Design Handbook Design of active filters, with experiments: Berlin $\mathbf{£ 6 . 8 0}$
[.] Electronic Enginears Reference Book Turner $\mathbf{f 4 2 . 0 0}$
Electronic Components Colwell $\mathbf{£ 4 . 0 0}$
\square Electronic Diagrams Colwell $\mathbf{£ 4 . 0 0}$
International Transistor Selector Towers New $£ 10.70$
International FET Selector Towers $\mathbf{£ 4 . 6 0}$
\square International Op-Amp Linear IC Selector Towers $\mathbf{f 8 . 0 0}$
International Microprocessor Selector Towers $£ 16.00$
Dictionary of Audio - Radio and Video Roberts $\mathbf{£ 1 6 . 0 0}$
Dictionary of Electronics Amos $£ 16.00$
Dictionary of Electrical Engineering Amos $£ 16.00$
Dictionary of Telecommunications Amos $£ 16.00$
Giant Book of Electronic Circuits Colins $£ 12.75$
\square World Radio/TV Handbook Vol. 351981 £10.50
\square How to Build Electronic Projects Malcolm $\mathbf{£ 6 . 4 5}$
\square Modern Electronic Circuit Reference Manual Marcus £33.50
Please send me the books indicated. I enclose cheque/postal order for f. . .
I wish to pay by Access/Barclaycard. Please debit my account.

| 5 | 2 | 2 | 4 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 9 | 2 | 9 | | | | | | | | | \square |

Signed
Name
Address

SOUND TRACK
 Play it again (and again, and again), SAM!

 When you feel like working off your aggressions, try to zap the nasties as they fly past. Design and development by Phil Walker.The ETI Sound Track is an 'arcade' game you can carry in your pocket. It requires no special displays as all the cues are sounds. The object of the game is to intercept all 15 of the attackers with your own armament. In order to do this you have to judge the best moment to fire from the simulated sound of the attacker. It is made more realistic by the fact that both volume and frequency changes due to Doppler shift are included. As the game progresses the speed of the attack increases to prevent you getting too used to one pace. Also there are three levels of skill which determine how difficult it is to hit the attackers at all.

At the end of the game, if enough of the attackers have been intercepted, an LED will light up to
give an assessment of your performance. As an option, an aiming control can be fitted, if space permits, which will allow multiple shors if you are quick enough. To start the game, press the reset button and wait for the first attack. Now it's up to you. Bear in mind that your shots are effective only at the end of the shooting noise and while the target light is on,

The Circuit

The circuit for this project uses standard op-amps, CMOS counters and gates and a special sound effects IC. This allows us to make fairly realistic sounds to simulate an object flying past, some sort of weapon being fired and an explosion if a successful interception has been

made. In order to make the completed project hand-held, the PCB is fairly crowded but quite a lot has been put onto it.

The heart of the system is a voltage controlled oscillator operating at a frequency of less than 0.2 Hz . This provides two outputs; one is an asymmetrical triangle wave which controls the attack sound effect and simulates the position of the target while the other output is a logic signal to drive the score counters. The VCO frequency is modified by the attack counter such that the attacks proceed more rapidly as the game progresses.

The fire control section of the circuit produces two signals. The first of these is a long pulse which causes the shooting sound to be made by the sound generator. The second, immediately after, is a short pulse which enables the hit detector. If at the same time the ramp from the VCO is within the limits of the window discriminator in the hit detector, then a HIT will be registered and the HIT counter updated. At the same time the sound generator will be switched to provide an explosion effect.

The sound select logic and analogue control switching (in the absence of any other demand) will
assume an attack sequence and configure the sound generator to give a mixture of white noise and a tone. As the ramp voltage from the VCO falls, simulating an attack, the volume will increase to a maximum and then decrease again. Simultaneously, as the volume reaches its peak, the pitch of the tone will decrease rapidly and stabilise at a lower level to simulate Doppler shift. While the ramp voltage returns to its starting level the sound generator is inhibited.

If either shooting or explosion effects are demanded, these will take precedence over the attack sound. The explosion is produced by envelopeshaping the white noise source in the chip while the shooting sound is given by an audio frequency VCO, frequency-modulated by a much lower frequency triangle wave.

The display given by the LEDs is to give some indication of the number of successful interceptions made in a game. The first LED will light when eight out of the 15 attacks have been stopped. The next will light at 12 , then 14 , and finally 15. There is one other LED which flashes each time a HIT is possible, but note that the shoot button usually has to be pressed before it lights.

Construction

No major problems should be encountered in making this project; care must be taken when soldering the board as there are many places where tracks run between IC pins. Make sure that all the links are in

Fig. 1 Component overlay for the Sound track hand-held 'arcade' game. Note that some components are mounted off-board; see the photographs.
place and that diodes, ICs and polarised capacitors are the right way round. Low profile IC sockets may be used but the case we used may then be a little tight.

SW1, R6 and R7 were mounted so that they fitted beside the battery compartment on one side while PB1 and PB2 went the other side. The LEDS are mounted on the front of the box so that they poke through the panel; use a little glue to hold them in place. Some interconnection work
and components have to be put on to these (D7-10) and this should be kept as close to the panel as possible. If there is room, fit RV1 and R7 but this will only be possible if a very small potentiometer is available or a different box is used.

All interwiring should be carried out using thin flexible wire and kept as short as practicable. When fixing the loudspeaker check first that it will fit in the desired position and adjust fixing pillars etc. to ensure this. It is

PARTS LIST

_PROJECT : Sound Track

Fig. 2 Circuit diagram for the Sound Track.
intended that it fits with part of the cone overlapping the battery compartment so a little shaving with a
 the speaker position is known, drill a series of holes in the panel and glue it into position.

The witing may now be
completed and the box assembled to
finish the project Fit a PP3 battery to
the connectors and it should be ready. the connectors and it should be ready

The on-off switch, SW2, is mounted on
the front panel at the bottom right-hand
side such that it will be over R38, 41-43.

BUYLINES

Not too much here that's hard to find. The sound generator chip is one of the latest ones from the Texas Instruments range, so it
should be available from TI stockists such as Technomatic and Watford Electronics. The Pac-tec case is available from Watford or direct from OK Machine and Tool Ltd, 22

HOW IT WORKS

to make it conduct) the output voltage will e the same as the input. When, however, Q6 starts to conduct, the junction of R38,
R41, and R43 will stay at a constant potenR41, and R43 will stay at a constant potenvoltage rises, more current will flow into the voltage rises, more current will flow into the
circuit via $\mathbf{R 3 8}$. A small amount of this will go through R41 to drive Q6 further into conduction, drawing the rest out via R43. This action will continue until the voltage across $Q 6$ is virtually zero again. The output from Q6 drives the volume control pin of
IC10 via IC9a.

The last effect is of a decaying explosion. While IC10 will produce the noise of
the explosion, the decay envelope has to be generated by Q3 and Q4. Most of the time the base of Q3 is held at 5 V 6 by the output of IC7d (part of the "HIT"' latch). In the event of a 'HIT'' being registered, the base
of O 3 will now be driven low. C6, which previously was held at about 5 V by Q3, will start to discharge via R35. The voltage on C6 is buffered by Q4 and fed to IC10 by
IC9c. Also for the explosion effect, R44 is IC9c. Also for the explosion effect, R44 is
connected into circuit by IC9b. This changes the noise slightly to give a more realistic sound. C11 and R48 are included in the amplifier circuit feedback to give more
 down on the hiss effect of the digital
generation of the various noises.
suitable display on the LEDs when Q5 is enabled by IC5a at the end of the game.范 only a short pulse is available at its output. The analogue control signals for the sound generator chip IC10 ae produced in three parts and switched into circuit when
required by IC9. The control signals for IC9
 AND gate made up of D6, D5, and R37. The analogue control signals are produced individually. The Doppler styie fall in frequency as each attack progresses is produced by IC2b. This device has a fairly high gain and at the start of the attack its output is driven to the positive rail by the ramp output from the VCO. As the ramp voltage
falls past the reference voltage the output of falls past the reference voltage the output of IC2b will change from positive to negative
quickly (but not instantanously). If there is quickly (but not instantanously). If there is output will modulate the oscillator in IC10 via R45.

Another effect required to simulate an object passing is that the noise produced by it will first increase and then decrease. This is accomplished by the circuit around Q6. output is low. At low voltages Q 6 will be off but the output will again be low. As the voltage applied to the circuit increases, (until the voltage on the base of Q 6 is sufficient

IC1b buffers the voltage at the junction of R1 and R2 to give a reference at half the
supply. IC1a and IC2c form a very low fresupply. voltage controlled oscillator. R20-23 make a simple D-to-A converter which varies the VCO frequency by a small amount as the game progresses. The timing VCO and provision is made by D $1-3$ to stop the circuit oscillating when the required 15 IC2a and IC2d form a window comparator whose position and width can be varied by RV1 and SW1. IC3a and IC3c are connected as a monostable and are triggered by PBI being closed. C3 ensures that the
period of the monostable is not affected by further dosures of PB1. When the monostable time ends, IC3b is enabled for a short time determined by R31 and C4. This signal is inverted by IC8b and is applied
with the outputs from the window comwith the outputs from the window com-
parator circuit to ICGa. If all the inputs to this IC are high at the same time this signifies a "HIT"' and the output of ICGa will go low. This action causes the latch formed by IC7c and IC7d to be set with IC7c output high. The resulting low on
IC4b clock input increments that counter, increasing the score, while further counting on the same attack run is prevented by the
latch action in IC7c/d. IC5b, $6 \mathrm{~b}, 7 \mathrm{~b}$ and 7 d decode the outputs from IC4b to give a

SPECIALIST ELECTRONIC COMPONENT DISTRYBUTORS
Tel: 723-4242

$\begin{aligned} & \text { PROMELYTHE } \\ & \text { LANESTSTOCK } \\ & \text { OF MES \& } \\ & \text { TNUMEASTORS } \\ & \text { TNTME SOUTH } \\ & \text { TRY US FIRST } \end{aligned}$
LANVEE RAMGE OF ACCESSORIES
Plugs
Sockets
Audio Connectors
Veroboards
IC Sockets
Soldering equipment
Screw drivers (BAHCO)
Sifam Knobs etc.
LAMEE RANGE O
Transistors
Capacitors
Diodes
Triacs
Thyristors
Opto
Resistors
Potentiometers
Fuses
Bridges
Please send S.A.E. for

SPECIAL

 STEINAL MULTICHECK £7.50 + VATNormal price £10. 26
BUY WITH ACCESS BARCLAYCARD A/EXPRESS DINERS
Just phone we do the rest

MAIL. ORDER FASTER SERVICE PHONE 723-4242

40 WAY RIBBON

 CABLE $\mathbf{£ 2} 20$ metre Header plugs 14 way, 16 way, 40 wayBAHCO TOOLS SIDE CUTTERS $\begin{array}{ll}2132 \\ 2112 & 57 \cdot 10\end{array}$ END CUTTERS 2211 PLIERS $\begin{array}{ll}2411 & \text { E6.75 } \\ 2435 & \text { E6.78 }\end{array}$ ICE MULTIMETERS Microtest $80 \quad$ E16-60 Supertest 680 R $£ 32 \cdot 00$ Supertest 680E £24. 24

BREADBOARD'S EXP 325 EXP 600 EXP 350 EXP 650

 EXP 300 EXP 4B
$\begin{array}{ll}\text { LP1 } & \text { LP2 } \\ & 00\end{array}$ EXPERIMENTER KITS
PB6
PB100
PLEASE REMEMBER To ADD $\mathbf{1 5 \%}$ VAT

325 EGWARE ROAD LONDON W2 1BN BARCLAYCARD * ACCESS * DINERS * A/EXPRESS

HOME CONSTRUCTOR TURNTABLE KITS
 from INPUT DESIGN LTD

THE LEADING MANUFACTURERS OF TURNTABLES IN KIT FORM
NORMAL RETAIL PRICE $£ 49.50$

SPECIAL

INTRODUCTORY OFFER TO READERS OF ETI

This kit includes AC Synchronous motor las used on $£ 350$ decks) Pulley, Belt, Drive Hub, Spindle, Bearing, Glass Platter, Felt Mat, Switch, Electronics, Cable and full instructions together with blueprint for plinth assembly.
Any other parts (ie Lid) available as optional extras

5 YEAR GUARANTEE

MONEY BACK IF NOT SATISFIED
Pay by Barclaycard, Access or CWO. Export: Write for Pro-forma

Bigger and Better for 1982
the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

$$
\star \text { Lowest prices - Largest stocks }
$$

* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities)
* Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with yourcredit card number)

* Access - Visa - American Express accepted *
also HiFi Markets Budget Card

8
0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS

Lightning service on telephoned credit card orders!

 A.S.A. Ltd., Brook House, Torrington Place, London WCIE 7HN.

DATA SHEET

The HOS-100 high speed, bipolar, voltage follower/buffer amplifier is designed to provide high current drive at frequencies from D.C. to 125 MHz . Featuring a slew rate of $1400 \mathrm{~V} / \mu \mathrm{s}$, output drive of $\pm 10 \mathrm{~mA}$ into $1 \mathrm{~K} \Omega$ loads, excellent phase linearity (2°) and low distortion ($<0.1 \%$).
Ideal for wide range for buffer applications including high impedance input buffers for fast A to D convertors and comparators, coaxial cable drivers, yoke drivers in high resolution CRT displays etc.

Features

\square Wide Bandwidth - d.c. to 125 MHz
\square High Slew Rate $-1400 \mathrm{~V} / \mu \mathrm{s}$
\square Operating Temperature Range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
\square High Output Drive $- \pm 10 \mathrm{~V}$ with 100Ω Load

Applications

\square Current Boosters
\square High Speed AVD Input Buffers
\square Coaxial Cable Drive
\square High Speed Line Drivers
\square Video Impedance Transformation

Absolute Maximum Ratings

ximum Continuous Output Current ximum Peak Output Current erating Temperature Range (Case)

Electrical Characteristics

$\left(V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega . T_{C}=25^{\circ} \mathrm{C}\right)$

Parameters	Conditions	Min	Typ	Max	Units
Input Bias Current Input Impedance	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V} \mathrm{rms} . \mathfrak{f}=1 \mathrm{kHz}$	100	$\begin{aligned} & 5 \\ & 200 \\ & \hline \end{aligned}$	25	$\mu \mathrm{A}$ k /
Voltage Gain	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V} \mathrm{rms} . \mathrm{f}=1 \mathrm{kHz}$	0.94	0.96	1.0	VN
Output Offset Voltage	$R_{S}=50 \Omega$		10	25	mV
Output Offset Voltage Tc	$R_{S}=50 \Omega$		25	75*	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Impedance	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vrms}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=500 \Omega$		8	12*	Ω
Output Voltage Swing	$\begin{aligned} & R_{S}=50 \Omega \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$	$\pm 12^{*}$	$\begin{aligned} & \pm 13 \\ & \hline \end{aligned}$		V
Supply Current	$\begin{aligned} & V_{1 N}=0 V \cdot V_{S}= \pm i 5 . \\ & V_{S}= \pm 5 \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$	20	mA mA
Power Consumption	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}$		450	600	mW
Slew Rate	$V_{1 N}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$	1000	1400		$\mathrm{V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\text {IV }}=1 \mathrm{Vrms} . \mathrm{R}_{\mathrm{S}}=50 \Omega$	100	125		MHz
Rise Time	$\Delta V_{\text {IN }}=0.5 \mathrm{~V} . R_{S}=50 \Omega$		2		ns
Propagation Delay	$\Delta \mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V} . \mathrm{R}_{\mathrm{S}}=50 \Omega$		1.5		ns
Phase Nonlinerearity	$\mathrm{BW}=1$ to $20 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$		2		Degrees
Harmonic Distortion	$f>1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=50 \Omega$		<0.1		\%

[^3]
Typical Performance Curves

Figure 2: Frequency response

Figure 3: Output offset voltage vs temperature

Figure 4: output voltage vs supply voltage Supply current vs supply voltage

Applications

Layout Considerations

As is the case with any high-speed design, proper layout is critical to avoid the introduction of unnecessary errors due to high-frequency coupling, stray capacitance, and the like.

Large ground planes should be used whenever possible to provide a low resistance, low inductance circuit path, as well as shielding the effects of high-frequency coupling. Sockets should be avoided, as the increased inter-lead capacitance can degrade bandwidth. Input and output connections should be kept as short as practical.

Capacitive Loading

The HOS-100 has been designed to drive capacitive loads of several thousand picofarads (such as coaxial cable) without oscillation. In these applications, peak current resulting from ($\mathrm{C} \times \mathrm{dv} / \mathrm{dt}$) should be limited below the absolute maximum peak current rating of $\pm 250 \mathrm{~mA}$.

Also, power dissipation due to driving capacitive loads plus standby power should be kept below the total power rating of 1.5 W .

Typical Applications

Figure 5: Current booster

Figure 6: Coaxial cable driver

Figure 7: High speed shield/line driver

NEWI SOUND TO LIGHT LADDER

10 channel drive to line of lights - very effective. 0-300 watts per channel. Total 3000 watts. Select bar or dot display mode. Also includes 10 channel strobe and chase effects. Switch selectable frequency - low - middle - high. Mono or stereo input either by direct wire or internal microphone. LED panel monltoring of status. Kit includes all parts and instructions. Lights not included. Output via 2 PB52 sockers. Plugs oxtra f 2.24 oach.

> SOUND TO LIGHT LADDER - GREAT NEW KIT
£ 49.98 inc. VAT and Postage (Less lights)
MAGENTA ELECTRONICS LTD
EZ15, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST. 0283 65435. MON-FRI 9-5. MAIL ORDER ONLY ADD 45p P\&P TO ALL ORDERS

OFFICIAL ORDERS WELCOME

PRICES INC VAT PEP $45 p$

IRISH REPUBLIC \& B.F.P.O. EUROPE:
Deduct 10\% from prices thown Payment. must be in Sterling. OROERS ACCEPTED BY PHONE OR POST.

Please

 mention
when replying

 to all adverts

MONTHLY IN ELECTRONICS TODAY YOUR OWN 'WHERE TO BUY IT' GUIDE

AVON

ANNLEY ELECTRO

190 Bedminster Down Road Bedminster Down, Bristol Tel: 0272632822
Open: Mon-Sat 9am-6.30 pm Wed 9am-2pm

BEDFORDSHIRE

```
BROADWAY ELECTRONICS
    1 The Broadway, Bedford,
        Tel: 0234 213639
        Open: 6 days 9.5.30 1/2 day Thu
        lunch 1.30 2.30.
    Specialisis in electronic components and
        Acorn computers
```


DORSET

D.J. ELECTRONICS

64 Ensbury Park Road, Bournemouth.
Tel: (0202) 515073.
Open: Mon-Sat 9am-6pm.

HAMPSHIRE

GAINES ELECTRONICS

3, West Street, Fareham. Tel: (0329) 234891
Open: 6 days 9am-5.30pm RS component stockis1. Wide range of components tor the enthusiast

HERTFORDSHIRE

GODDARDS COMPONENTS
110 London Road, St. Albans.
Tel: St. Albans 64162
Open: Mon-Sat 9.30am-5.30pm
(1/2 day Thur)

S. IRELAND
preprct
25 Parnell St, Dublin 1. Tel: Dublin 740662
Open 6 days 9 am- 5.30 pm Components. Computers. Video games.

LANCASHIRE

ETESON ELECTRONICS
15B Lower Green,

LONDON

SAMSONS ELECTRONICS LTD
9/10 Chapel St. 21/23 Bell St. NW1.
Tel: 01-262-5125, 01-723-7851.
Open: $10 \mathrm{am}-6 \mathrm{pm}$. (Sat 1 lam -5 pm).
Vast selection of components at ridiculous prices.

W. MIDLANDS

[PATH ELECTRONIC SERVICES] 369 Alum Rock Road, B'ham. Tel: 0213272339.
Open: $10 \mathrm{am}-6 \mathrm{pm}$ weekdays.
Sat 9.30am-5pm. Contact Peter A. Thomas. Wholesale and retail supplies.

NOTTINGHAMSHIRE

DAMON electronics

99 Carrington St. Nottingham. Tel: 53880 (mail order available) Open: 6 days 9.30am- 5.30 pm .
Specialists in T.V. F.M. aerials.

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

TYNE AND WEAR

AITKEN BROS \& CO

35 High Bridge
Newcastle Upon Tyne.
Tel: 326729
Open: 9 am- 5.30 om (Sat 5 pm) closed Wed. Retail and Wholesale supplied.

S. WALES

CRRDIGATG ELECTRDTILS
Chancery Lane, Cardigan,
Tel: Cardigan (0239) 614483
Open: Mon-Sat 10am-5pm. Closed Wed. Electronic components $\&$ Acorn computer stockist.

WILTSHIRE

camlab electronics

27 Faringdon Rd. Swindon
Tel: (0793) 34917
Open: 6 days 9 am- 5.30 pm
Speciaists in Ioud soeakers. Wide selection: $1 / 4{ }^{\prime \prime}$. $18^{\prime \prime}$

YORKSHIRE

ACE MAILTRONIX LTD.
3A Commercial Street,
Batley. Tel: (0924) 441129
Open: Mon-Fri. am-5 30pm. Sat 1 pm$)$ Retail and wholesale.

PLEASE MENTION

 ELECTRONICS TODAY WHEN USING THESE SHOPS!

ETIMOBILE 2

Regular readers will have followed our Motor Control series with (we hope!) a curious interest. It may have crossed your mind to wonder exactly what ETI is up to now. All this talk of Robot Control and no robot!

Way back in our April issue we showed the base of our Mobile 2, and since then have been steadily mounting modules into it, building up the basis of an advanced robotics project.

This month it's time to lay out the complete series and to involve the future participants and designers in the project - you! We have developed a complete mobile, with arm and
computer link which we will be presenting over the next few months. After that it's up to you, our readers. We hope to be able to continue the series with projects and features based upon your designs and programs for the Mobile 2.

Too Mobile?

The complete ETI Mobile comprises a tracked base with servo driven arm - for which a low-cost metalwork kit is available-infra-red proximity detectors, on-board interface and control circuitry, wireless link to a home computer port and an experimental positional detection system.

Enough of this 'you and us' attitude-it's time for some reader involvement. We've been publishing robot modules thick and fast, but now it's your turn to be inventive; together we can make beautiful robots.

The home computer acts as the "brain'" and can be thus programmed to make decisions upon the information returned to it by the Mobile. The latter's motor drive system is linked via an eight-bit port arrangement to the control board, placing the tracks directly under computer control.

This means that a set of prearranged instructions can be sent to the mobile, causing it to follow a path around obstacles and obstructions, thus functioning in any environment. As the computer carries all the software, decisions upon "what to do if..."' can be modified and expanded at the touch of a cursor!

Similarly, the arm is ported onto the bi-directional data link and can be software controlled from the computer. Alternatively the arm may be used as a 'stand-alone' design, for which the interface has also been configured.

Some Arm In it

The servo-driven manipulator we are proud of! Produced in conjunction with Remcon Electronics, it overcomes many of the complex mechanical hangups which beset earlier constructs.

It is ideal for teaching purposes, being controllable by any of:
(i) a standard radio control system, such as employed in model aircraft, etc.
(ii) a 'tele-operator' which allows direct instruction of the arm - and the pupil operating it.
(iii) a microcomputer, using our interface.

Above: The analogue PWM control board and motor driver board for the Mobile 2.

Below: The Mobile 2 with hand controller and servo manipulator.

 unit.

MOBILE $2-$	
MECHANICAL	
SPECIFICATTON	
TRACTOR UNIT	
Dimensions:	$193 / 4^{\prime \prime} \times 131 / 2^{\prime \prime} \times$
	51/2" high (unloaded)
Ground Clearance:	11/4" unladen
Operational Payload:	11 lbs .
Will climb a 3" stepped full payload.	bstruction with
Ratio of drive units:	60:1 (variable, see Buylines).
Drive Voltage:	7V2
Starting Current:	9 A
Running current:	3 A 5
Operational Velocity:	2.5 feet per second.
Smooth Incline Capability:	30°

By varying the type of servo employed, the function and power of the arm can be selected to suit the application required.

To reduce the load placed on the servos, the arm is designed to be selfbalancing, whatever servos are used. On the standard manipulator, high resolution types are employed to improve accuracy as much as possible
while under computer control.
The mechanical set-up of these arms is critical for best performance, and for that reason we have arranged that they be supplied built and tested, as part of the mobile metalwork, or as a separate item if you prefer. Buylines has the details.

Base Comments

The heart of the whole system is the tractor unit upon which the Mobile is constructed. The final design, although very simple in appearance, has only been arrived at after much debate and experimentation.

Tracks were used for their superior abilities with regard to climbing obstacles and coping with varying surfaces, ie. carpet, concrete, vinyl, etc. Infra-red rotation counters are fitted to both the motordrive shafts, to enable accurate control to be exercised over both the base speed and direction.

A brief spec of the capabilities of the base are given elsewhere in this article. All the metalwork is purpose built, and pre-drilled for our range of modules. After having tried out various commercial options - model tank mechanics, for example - we came to
the conclusion that not only is it the superior to have custom metalwork made - it is actually cheaper! Initially we had ruled it out purely on grounds of expected price level.

How Close Encounters?

Mobile 2 is a fairly large beast to let loose around your living room (19×13 x $5^{\prime \prime}$ approx. not including arm and cover!) and so it is important that it be prevented from colliding with obstacles. Remember that so far as it is concerned anything in the way, be it your prize drinks cabinet, hi-fi speaker or granny, is simply an obstruction.

In our June 82 edition we published our 'Proximity Detector' module, of which Mobile 2 has four. They are mounted above each track corner and may be angled, such that even glancing contact is prevented. They provide adequate protection.

The control board logic is so configured that the IR detectors provide an override which halts operation of any program, so long as an obstacle is present. Unless programmed to do anything else, the mobile will halt at any obstruction large enough to register on two detectors, ie a wall.

Well Developed Robot

Our Mobile 2 is presented as an open-ended project. We want our readers to carry it on and develop it as far as they can. The modules to come from $u s$ will be:

1) Arm Interface and control circuitry, to allow stand-alone control, or porting to main PCB of Mobile 2.
2) Main Control PCB - mounted within the mobile and will accept up to four eight-bit peripherals, with appropriate strobing, and operate in conjunction with the link.
3) Computer Link - a bi-directional data transfer system which has as a receiver a home computer system to which it connects via a standard interface.
4) Experimental Positional System - to allow the Mobile to 'map' its environment and thus function more precisely.
One future use for the Mobile which we are still working on - is that of office messenger. It would be 'called' to a particular room or desk, loaded with papers, etc, and dispatched to another location, programmed at point of departure. It will have to avoid doors, people and cats whilst doing so! That one may be a while coming if left to us,
but we'll get there! It would use the same metalwork and basic electronics.
"If left to us" is the key phrase there - what about that vast reservoir of design talent and ingenuity that goes under the name of ETI's readership? It's about time you got into robotics, too!

Once we complete the basics of this project, then its up to you to carry it on. Even now, if you have any ideas or strong feeling as to how the Mobile should grow, let's hear them. We will publish what correspondence we can on the subject and implement any ideas which are practical!

Next month, we commence construction of the Mobile with the base, motors and speed control. Past modules which will be used in the Robot were published in:-

1) ETI March 82 p. 61-63
2) ETI April 82 p. 94-97
3) ETI May 82 p. 34-36
4) ETI June 82 p. 66-70

Photocopies are available from our offices if you've been foolish enough to lose your back issues! (Enclose $£ 1.25$ - inclusive of p\&p- for each article. Address your request to: Xerox Department, ETI, 145 Charing Cross Road, London, WC2H 0EE)

BUYLINES

The metalwork for this project is all available from Remcon Electronics Ltd, 1 Church Road, Bexleyheath, Kent ('Tel. 01-304 2055)

They supply the tractor unit as a complete kit with full assembly instructions. All injection moulded components for track and suspension system are included-as is an assembly spanner! The aluminium chassis is ready punched and drilled with all required fixings. Motors and gearboxes are supplied as assembled and coupled to the
output shatts. I he tinal ratio of the gearboxes may be varied between 300:1 and $3: 1$ to obtain different performances from the mobile. The price complete, including VAT and $p+p$, is $£ 125$. Drive units are available separately at either $£ 21.25^{\text {² }}$ without shafts, or $£ 26.75$ with. Prices are inclusive.

The manipulator, supplied built and tested and ready wired, will be described more fully in a for thcoming article, but is available now, with high precision servos, for $£ 175$ all inclusive.

ADVERTISEMENT R A 3 Semi-Display (min 2 cms) $1-3$ insertions $\mathbf{£ 6 . 0 0}$ per cm $4-11$ insertions $£ 5.50$ per cm $12+$ insertions $\mathbf{£ 5 . 0 0}$ per cm
Lineage 21 p per word (min 15 words): Box Nos. $£ 2.00$
Closing date 2nd Friday of the month preceding publication date.
All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card lavailable on request)

Send your requirements and cheque/P.O. to:
HOBBY ELECTRONICS CLASSIFIED ADVERTISING, 145 , CHARING CROSS RD; LONDON WC2H OEE.

MICROMINITURE medium wave matchbox radio kit, astound your friends, $£ 5$. Ion Electric, 72, Willow Drive, Solihull, B90 4HW.

ANY SINGLE SERVICE SHEET £1/L.S.A.E. Largest stockists Service/Repair manuals. Named T.V. Repair data f 6.50 (with circuits f8.50). S.A.E. pricelists, free publications, quotations. Auseti, 76 Churches Larkhall, Lanarkshire.

Close encounters group Personal introductions and social events. Meet interesting, attractive people. Local, 051-931 2844 (24 hours).
PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55d. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick f 1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

ASSISTANT FILM RECORDISTS (OR TRAINEES) Manchester

To work in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes. Some mobile film recording work involved. Candidates must have professional experience and practical knowledge in this field. current driving licence and normal hearing. Salary $\mathfrak{6} 6884-£ 7929$ according to qualifications and experience. Relocation expenses considered.
Candidates not possessing all the qualifications may be considered as Trainees on a lower salary scale, requiring attendance at the BBC"s Training Department at Evesham. For appointment as a Tratnee, 'O’ level standard of education or equivalent, preferably including Physics and/or Maths and a basic knowledge of clectronics, plus a practical interest in sound recording, would be required.
Contact us immediately for application form (quote ref. 1396/ET and enclose s.a.e.): BBC Appointments, London WIA IAA.
Tel. 01-580 4468 Ext. 4619.
We are an Equal Opportunities employer
BBGt

PCB FOIL PATTERNS

125 WATT firebreglass poweramps toz heatsink + instructions £10.85p. A Law 8 Cunliffe Road, (over Incatile) likley LS29 9DZ Return ad - Free Pak - Quality. Capacitors

TRITON L5.1 1u.5K RAM, 8K Eprom board in single enclosure remote keyboard fully documented. $£ 125$ o.n.o. 04382366. extension 917. office hours

GUITAR/P.A. MUSIC AMPLIFIERS

100 watt superb ueble/bass overdrive, 12 months guarantee. Unbeatatie at 550 ; 60 watl f 44.200 watl E68, 100 wall iwin channel, sep treble/bass per chan nel E65; 60 wott $£ 52$. 200 wall $¢ 78,100$ wars four chan nel, sep theble hass per channel, f75; 200 wat t98: slaves 100 watt $£ 37,200$ walt $£ 60.250$ watt $£ 70 ; 500$ f1290, overdive luyl will tietle and bass bousters f28; 100 wall combo, supetb sound, overdrive, slurdy construction, castors, unteatable. f100; Iwin channe £115; bass combo f 118 , speakers 15in. 100 wall $£ 36$: 12in. 100 watt f 24.60 walt f 18 , microphone Shure Unidyri B f28,

Send cheque/P.O. to:
62 Thorncliffe Avenue, Dukinfieid
Cheshire. Tel: $061-3082064$.

BURGLAR alarm equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium C.W.A.S. Ltd.

COPPER CLAD BOARD double sided fibre glass, 20 sheets, 12×8 " 66.00 . 5 sheets $12^{\prime \prime} \times 8^{\prime \prime}$ £4.00. Including P\&P. Davron, 1 Bankside, off New Street, Chelmsford.

STOCK CLEARANCE. Mixed Resistor Packs: $\frac{1}{4} / \frac{1}{2} w$, pre-formed, un-used. $1-11 \mathrm{~b}$ pack (2500 -plus) $£ 2.50 .50$; 2tb pack $£ 4.60$; Exceeding $2 \mathrm{lbs} £ 2.00$ per lb. 2A Mains Filters RS 238-435, f3.50 each. 16-pin Headers (without covers) 6 for f.1. 8-pin i/c holders 12 for $£ 1.20 \mathrm{~mm}$ Chassis Fuseholders 4 for $£ 1$. General Purpose Diodes 25v 50ma, 75 for f1. TTL Sale: 7412,10 for f 1 ; 7485,2 for £1; 74914 for $\mathrm{f} 1 ; 74122,5$ for $\mathrm{f} 1 ; 74123,5$ for $£ 1,74188, \mathrm{f} 2$ each. 2 N 3055 (full spec.) 2 for f1, Bridge Rect 26 m B10A, 25A/100v, 11/10" sq., £2.50 each. All prices include VAT/P\&P. Linway Electronics, 843 Uxbridge Road. HAyes End, Middx UB4 8 HZ .

PROXIMITY SENSORS infra red. 6 inch range 5 to 15 v supply. Miniature design $6.5 \times$ $5 \times 2 \mathrm{~cm}$. Only $£ 16.50$. Leaflet. Cheshire Micro Design, 66 Close Lane, Alsager, Stoke-onTrent, Staffs.

OSCILLOSCOPE £12. Easy built unit plugs into T.V. aerial socket and converts it to large screen oscilloscope. Costs approx. f 12 to make. Circuit and plans $£ 3$. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.
T. \& J. ELECTRONICS COMPONENTS Quality components, competitive prices. Illustrated catalogue 45p. 98 Burrow Road, Chigwell, Essex.

ELECTRONICS component shop in MAID. STONE, KENT! Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

600 RESISTORS

High quality Carbon Film $1 / \mathrm{W} 5 \% \mathrm{E} 12$ series 60 values 10 per value
$f 5$ INCLUDING VAT PGP
COVE COMPONENTS
58 Southwood Rd.. Cove.
Farnborought, Hants GU14 $0 . \mathrm{JJ}$
Mail Order only

AERIAL AMPLIFIERS improve weak television reception. Price $£ 6.70$, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

MOS-FET AUDIO MODULES Hitachi devices, Hitachi spec., glass boards, extruded heatsinks, tested, guaranteed 24 months.
120 watts $/ 8$ ohms, $120 \mathrm{w} / 2 \mathrm{~A}$ supply: $£ 13.95$. 240 watts $/ 4$ ohms; $120 \mathrm{v} / 4 \mathrm{~A}$ supply; $£ 19.95$. 400 watts $/ 2$ ohms; 120v/7A supply; $£ 29.95$.

Power supplies/pre-amps avaitable. Post/ packing 80 p. Stamp for detairs. Quantity discount.
Audio-Tech., 8 Parsons Close, Church Crookham, Addershot, Hants GU13 0HL. Tol: 025142203.

DO YOU WISH TO LEGALLY TRANSMIT AUDIO SIGNALS OVER BRITISH TELECOM CIRCUITS?

We manufacture approved Interface Equipment for NARROW or WIDE BAND PRIVATE WIRE and PUBLIC SWITCHED TELEPHONE NETWORK circuits. also TELECOM LINE CIRCUIT SAFETY BARRIERS

PARTRIDGE ELECTRONICS

The Mixer People

DIGITAL WATCH REPLACEMENT parts batteries, displays, backlights etc. Also reports pubications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen, Bucks, HP15 6SGD
B.C.N.U. AT THE SUSSEX MOBILE RALLY 10.30 to 5.0 pm on Sunday 18th July 1982, Brighton Race Ground, Racehill, Brighton. It's the winner for radio amateurs. Free car parking and many attractions for the whole family. Usual trade stands. All under cover.

A LASER FOR $£ 120$. Complete in cabinet with power supply. Send 50 p for details, plus information regarding other Lasers, Holograms, available new and ex-exibit. DHS Developments, 18 Eldred Road, Workington, Cumbria.

MORSE TUTOR KIT, generators, text or let ter/number groups, speed, fully adjustable. P.C.B. components, case $£ 21.71+£ 3.28$ V.A.T., s.a.e. details. Whitehythe Electronics Limited, Ockham Works, Ewhurst Green, Robertsbridge, E. Sussex TN325RD

FIND-A-FRIEND through FIND-A FRIEND'S new confidential, inexpensive service. Your ideal friendship/relationship - all ages - countrywide. SAE/Telephone: FIND-A-FRIEND (ETI), Temple House, 43-48 New Street, Birmingham, B2 4LH. 021-429-6346.

AMAZING ELECTRONICS PLANS. Lasers, Super-powered Cutting Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue 95p - From Plancentre, 16 Mill Grove. Bilbrook. Codsall, Wolverhampton.

LYNX (Audio Processors) - The Great New Name in Electro-Music. Revers $\mathbf{f 2 9 . 9 5}$; Fuzz/sustains $£ 19.95$; Drum synthesizers £21.95; Autowahs, phasers and custom-built multi-music processors. S.a.e. for brochure: to: Lynx (Audio Processors) 26 Aldingbourne Close, Ifield, Sussex.

10 Camphill Industrial Estate

 West Byfleet. Surrey KT14 6EW Tel: Byfleet (09323) 51676

4011 TO. 084017 FO. 30

COPPER CLAD BOARD $\mathrm{s} / \mathrm{s}, 5 \mathrm{p}$ sq ins, 50p sq ft up to $6^{\prime \prime} \times 6^{\prime \prime}$ pr $4^{\prime} \times 3^{\prime \prime} \mathrm{d} / \mathrm{s} 7 \mathrm{p}$ sq ins, 80p sq ft inc p\&p. 29 Andrews Way, Hatt, Cornwall PL12 6PE.
DIGISOUND Modular synthesiser, three vco's, two filters, reverb, etc, 49 keybard, cased, f240. Tel 043872093

USE ELECTRONICS TODAY INTERNATIONAL'S CLASSIFIED (35p per word, minimum 15 words. Box Nos. $£ 2.50$ extra or $£ 10.00$ per single column centimetre - all prepaid). Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, to Electronics Today International Classified, 145 Charing Cross Road, London WC2 OEE				
1.	2.	3.	4.	5.
6.	7.	8.	9.	10.
11.	12.	13.	14.	15.

Please place my ad in the next available issue of E.T.I.:
Name
Address
Tel. No.
I enclose my cheque/P.O. for the value of f

CAC

POST OR PHONE TODAY FOR FREE BOOKLET

Piease semal your FREE Schocal of

thertunics Prospuntus
Subject
Interest
Name
Address

.

ADVERTISEMENT INDEX

Active Component 88
A.D. Electronics 70
Ambit International 65
Amral 70
Audio Electronics 44848
Bi-Pak 56
BK Electronics $18 \& 70$
Black Star 48
BNRS 16
Bradley Marshall 76
Cambridge Kits 65
Chiltmead 24
Clef Products 48
Cricklewood Electronics 8 \& 9
Crimson Electrik 16
Crofton Electronics 70
Delta Tech 57
Electronize Design 49
Electrovalue 57
Enfield Electronics 47
Greenbank Electronics 42
Greenweld 76
Happy Memories 64
Hemmings Electronics 64
Henrys Radio 57 \& 65
ILP 32 \& 37
L \& B Electronics 70
L.E.M 56
Magenta Electronics 80
Maplin 92
Marco Trading 80
Mawson Ass 59
Memotech 25
Pantechnic 38
Powertran 2 \& 91
Parndon 65
Rapid Electronics 11
Relay-A-Quip 59
T.J. Brine 42
RTVC 59
Tempus 27
Swanley Electronics 56
Technomatic 32 \& 33
TK Electronics 15
Watford Electronics 4 \& 5
Wilmslow Audio 64 \& 76
Woodfields Systems 59

PRECISION - by

คตบเมีาม

THE FIRST WORDS AND THELAST WORD IN ELECTRONIC

For more than eleven years Powertran have been designing and manufacturing the finest quality elactronic kits. All of our now considerable range have featured in the electronics press and literally thousands have been bought and built by contractors in the UK and World-wide.
Our philosophy is always the same - we offer ingenuity and originality in the construction phase by using only top class designers. We offer machines with power, versatility and performance - capability fully equal to their factory built rivals. We offer only the highest quality materials and components throughout to ensure years of useful and reliable service, we offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the careful first time builder as well as the dedicated enthusiast.
Our hallmark of success lies in the number of our clients who have built our whole range - many assembling several units for others to use often on the professional music scene.
We believe in taking every care throughout - months spent checking and testing the design and development. Vigorous checking of every component, constant pre-despatch quality control, careful packaging...even door to door delivery by Securicor!
We are naturally very proud of our Transcendent range of synthesizers designed by Tim Orr and regularly featured in ETI. They represent the best in constructional interest and in musical performance.

TRANSCENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match Complete kit $\mathbf{f} 275.00$ plus VAT (single voice) Extra voice (up to three more) $\mathbf{4 2 . 0 0}$ plus VAT.

EXPANDER - A new matching 4 voice expander to team up with your polysynth for even a greater range and capability,

Complete kit $£ \mathbf{4 9 . 0 0}$ plus VAT
TRANSCENDENT DPX - Offers a five octave keyboard with power to match. Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. Ar advanced design made simple with our clearly laid out instruction manual.

TRANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 ' features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder buy it, build it. . . play it! You will know you have made the right choice. Complete kit $\mathbf{£ 1 6 5 . 0 0}$ plus VAT

1024 COMPOSER - Come right up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off. Complete kit $£ 85.00$ plus VAT)

DEMONSTRATION TAPE - Demonstration tape now available of all three kits (30 minutes).
$£ 2.00$

T20 +20 - Originally designed by Texas Engineers. This is a 20 watt amplifier with true H -Fi performance at a minimal cost. New features include true Toroidal transformer, new wiring. single circuit board and improved presentation. An ideal beginners project. Complete kii £ 29.50 plus VAT. Also T30 $+30-30$ watt version complete kit $£ 34.50$ plus VAT

LINSLEY HOOD 75 DE LUXE - A 75 watt amplifier originally published in Hi-Fi News. Superb performance characteristics with less than $.01 \%$ distortion. Modular construction with 14 interconnecting boards - virtually no wiring so assembly is easy as is subsequent checking and maintenance. Complete ki? $£ 75.00$ plus VAT.

WORLD LEADERS IN ELECTRONIC KITS.

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement until the end of the month following the month of publication of this issue. (Errors:and VAT rate changes excluded. EXPORT ORDERS: No VAT. Postage charged at actual cost plus $f 1$ handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage, or at current rate if changed. Cheques, Access, Barclaycard accepted. SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit. FREE ON ORDERS OVER £100. SALES COUNTER: If You prefer to collect kit from the factory, call at Sales Counter. Open 9a.m.-12 noon, 1-4.30p.m. Monday-Friday

KEYBOARD WITH ELECTRONICS FOR ZX81

* A full size, full travel 43 -key keyboard that's simple to add to your ZX81 (no soldering in 2×81).
* Complete with the electronics to make "Shift Lock", "Function" and "Graphics 2" single key selections making entry far easier.
* Powered from ZX81's own standard power supply - with special adaptor supplied.
* Two colour print for key caps.
* Amazing low price.

Full details in our projects book. Price 60p. Order As XA03D
Complete kit for only $\mathbf{f} 19.95$ incl. VAT and carriage.
Order As LW72P

25W STEREO MOSFET AMPLIFIER

A superb new amplifier at a remarkably low price,

* Over 26 W per channel into 8Ω at 1 kHz both channels driven.
* Frequency respôise 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$.
* Low distortion, low nọise and high reliäbility power MOSFET output sfăge.
* Extremely easy to build. Almost everything fits on main pcb, cutting interwiring to just 7 wires iplus toroidal transformer and mains lead terminationss).
* Complete kit contains everything you need including pre drilled and printed chassis and wooden cabinet.
Full details in our projects book. Price 60p.
Order As XA03D
Complete kit for only $£ 49.95$ incl. VAT and carriage.
Order As LW71N

ELECTRONIC SUPPLIES LTD.
All mail to:
P.O. Box 3, Rayleigh, Essex SS6 8LR

Tel: Sales (0702) 552911 General (0702) 554155
Shopsar:
159 King St., Hammersmith, London W6. Tel: 01-7480926 284 London Rd., Westcliff-on-Sea, Essex. Tel: (0702) 554000 Note: Shops closed Mondays

MATINÉE ORGAN
Easy-to-build, superb specification. Comparable with organs selling for up to $£ 1,000$. Full construction details in our book. Price $\mathbf{£ 2 . 5 0}$.
Order As XH55K.
Complete kits available:
Electronics-£299.95.
Cabinet- $\mathbf{£ 9 9 . 5 0 ~ (c a r r i a g e ~ e x t r a) . ~}$
Demo cassette price $£ 1,99$. Order As $\mathrm{XX43W}$.

MILES PER GALLON METER

Digital display shows you how economical your driving is as you go along.
Complete kits available
Full details in our projects book.
Price 60p.
Order As XA02C.

Don't miss out - get a copy of our catalogue now! Over 140,000 copies sold already!

On sale now in all branches of WHSVIITH 解 price fl .
320 big pages packed with data and pictures of over 5,500 items.

Post this coupon now!

Please send me a copy of your 320 page catalogue. I enclose f 1.25 (nc. 25 p pfp). If I am not completely satisfied I may return the catalogue to you and have mity money refunded.
If you live outside the U.K. send $£ 1.68$ or 12 Intemational Reply Coupons.

Name
Addres

[^0]: －2010A $3 y_{2}$－Digit L．E．D．Bench DMM
 －2015A $3 y_{2}$－Digit L．C．D．Bench DMM $20203 y_{2}$－Digit L．E．D．Bench DMM 2033 with Microcomputer Interface －2035A 31．Digit L．C．D．Hand DMM －2037A 3\％－Digif LC．Hzad OMM 2037a with Temp．
 Lp－10 10 MHz Logic Probe

[^1]: except thase sections marked with a. Overseas
 and official credit orders welcome.

[^2]: LARGE 25p S.A.E. Brings details of: Oscilloscopes, Frequency Meters, Signal Generators, Function Generators, Pulse Generators, Analogue and
 Multimeters, Digital Thermometer, C.B.T. Tester, Logic Analyser

 All prices include VAT. Official orders welcome. Mail order only, or callers by prio appointment. Barclaycard/Access welcome. Cash/cheque, etc., with order Government and Educational Establishments official orders welcome.

[^3]: *Applies over full temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

