

MOSF=S MAK= MI CRAD =1 Brillant new design for peak performance

Glean up the airbuild our ion generator!

Hovel design techniques to secure your home or car

POWER PACKED - by POWERTRAN

Powertran's black boxes are packed with punch. Not only are they superb kits to buy and build they really do the job! Imaginative and ingenious design goes hand in hand with top quality materials and outstanding performance capability. With their smart black styling the kits harmonise visually as well as musically.
Your can built each unit independantly fór its set task and then gradually increase your array until you have a complete bank of formidable controllable power.

Complete Kit - £49.90 + VAT

Complete Kit - $\mathbf{£ 4 9 . 5 0}+$ VAT

Complete Kit - £175.00 + VAT

Complete Kit - $\mathbf{£ 6 4 . 9 0}+$ VAT

MPA 200 is a low price, high power 100 W amplifier. Its smart styling, professional appearance and performance, make it one of our most popular designs. With adaptable inputs the mixer accepts a variety of sources yet straightforward construction makes it ideal for the first-time builder

CHROMATHEQUE 5000 - a 5-channel lighting system powerful enough for professional discos yet controllable for home-effects. Sound to light, strobe to music level, random or sequential effects - each channel can handle up to 500 W yet minimal wiring is needed with our unique single-board design.

ETI VOCODER - 14 channels, each with independent level control, for maximum versatility and intelligibility: Two input amplifiers - for speech/excitation - each with level control and tone control. The Vocoder is a powerful yet flexible machine that is interesting to build and thanks to our easy to follow construction manual, is within the capability of most enthusiasts.

SP2 200 twice the power with two of the reliable, durable and economic amps from the MPA200; fed by separate power supplies from a common toroidal transformer. Superb finish and quality components throughout - up to (even over!) the standard of high priced factory-built units.

DJ90 Stereo Mixer - this is a really versatile new mixer that enables the constructor DJ to produce a professional performance every time. There are two stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Other 'plus' features are auto-panning for fast or slow, slider controls, multi-mixing, ducking, interrupt, input modulation, in short everything...the whole works - AND under $£ 100$ complete! (We have illustrated the DJ90 teamed in our own console with the Chromatheque and an SP2 200 and speakers.

Complete Kit - $£ 97.50+$ VAT

WORLD LEADERS IN ELECTRONIC KITS

- Money Back Guarantee - If you are not completely satisfied with your

Powertran Kit return it in original condition withın 10 days for full refund.

- Free Soldering Practice Kit - To assist the beginner we will supply, on request with your first kit order, a free soldering practice kit with usefui tips and ilustrations.
- Component Packs - Most kits are available as separate packs le.g. PCB component sets, hardware'sets etc). Prices in our FREE catalogue.
- Ordering - Full ordering details, delivery service, and sales counter opening - outside back of this issue

Ron Harris B.Sc : Editor Peter Green : Assistant Editor Tina Boylan : Editorial Assistant Kathryn McFarland : Editorial Secretary Rory Holmes : Project Editors Phil Walker :
Alan Griffiths: Ad Manager
T.J. Connell : Managing Director

PU̇BLISHED BY
Argus Special ist Publications Ltd.
145 Charing Cross Road, London WC2H OEE.
DESIGN AND ORIGINATION BY:
MM Design \& Print Ltd,
145 Charing Cross Road
London WC2H OEE.
DISTRIBUTED BY:
Argus Press Sales \& Distribution Ltd.,
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY
QB Limited, Colchester.
COVERS PRINTED BY:
Alabaster Passmore.
OVERSEAS AUSTRALIA - Roger Harrison EDITIONS CANADA - Halvor Moorshead and their GERMANY - Udo Wittig EDITORS HOLLAND - Anton Kriegsman

ABC
 Member of the Audit Bureau of Circulation

Electronics Today is normaliy published on the first Friday in the month.preceding cover date. LThe contents of this publication including all articles, designs, plans, drawings and programs and all copyright and other intellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual properiy rights and by virtue of international copyright conven tions are specifically reserved to Argus Specialist Publications Limited and any reproduction requires the
prior written consent of the Company. ©1982 Argus Specialist Publications we Company. O1982 Argus taken in the preparation of the magazine conte care is the publishers canno be held legally responsible for errors. Where mistakes do occur a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press
\square Subscription Rates. UK £11.95 including postage. Airmail and other rates upon application to ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR

EDITORIAL AND ADVERTISEMENT OFFICE
 145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

10. ELECTROMUSIC TECHNIQUES

Be informed, be entertained, be amused, be amazed - it's all in the news this month.

TECH TIPS

.26
When they're not writing letters, our readers are designing circuits. Here's a few more that have been submitted.

DESIGNER'S NOTEBOOK .
36
Some merry MOSFET marvels, with a discussion of the advantages of VMOS and a few circuits for you to play with.
READ $\overline{\text { WRITE }}$
56
More missives from our readers about sound, speakers, System A, life, the Uhiverse and everything

PART 3
Tim Orr winds up this designer's delight with a few well-chosen building blocks.

BREADBOARDING SYSTEMS 74
Put away the plywood, the solder and the $6^{\prime \prime}$ nails, there are better ways of prototyping circuits nowadays.

PROJECTS

NEGATIVE ION GENERATOR.

Spray some negative ions into the atmosphere and feel positive. You can build this project the way we did or experiment with the emitter design yourself.

OSCILLOSCOPE PART 2

促 details for this amazing little gadget. A small piece of test gear with a big performance.
STYLUSTIMER
R. .41
Don't destroy your precious discs by neglecting your needle; build this gadget and you'll be certain when to change your stylus.

150W MOSFET AMPLIFIER

48 Here's the amplifier you've always promised yourself. Modern technology and brilliant design give a truly state-of-the-art performance.
ROBOT MODULES:

DIGITALPWM .
66
Two for the price of one this month; first, an interface board for computer control of DC motors

OPTICALSENSOR

and second, a cunning infra-red device that'll detect walls and a whole bunch of other stuff.

LOGIC LOCK

79
Complicated enough to thwart Dr. Who's Adric, it'll certainly baffle your friendly neighbourhood burglar; yet it's very simple to build.

FOILPATTERNS

INFORMATION

NEXTMONTH'S ETI17 BOOK SERVICE64
BINDERS 23
PCB SERVICE 82
ZXCOMPUTING SUBSCRIPTIONS 84

WAIFORD EEETROUIGS

ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDEES DESEPATCHED AY RETURN OF POST. TERMS OF BUSINESS: CASHCHEQUE
POS ORANKERDRAF
 PGP ADD SOP TO ALL ORDERS. OVERS
SURFACE. ACCESS ORDERS WELCOME.

Export orders no VAT. Applicable to U.K. Customers onty. Unless stated oth
prices are excluske of VAT. Please add 15% to the total cost including p\&e.

ELECTROLYTIC CAPACITORS: IValuss in UFI 500'y: 10 UF 52p; 47 78p, 63V: 0.47, $1.0,1.5,2.2,3.3,4.78 \mathrm{p}$

SIEMENS Pcb	
Type Miniature poly. Capacitors	
250 V	
1nf. 1 n 5 ,	2n2.
3n3, 4n7,	
10n, 12n, 15n	7 P
18n, 22n, 27n, 33n	
39n, 47n	8 p
39n, 56n	12p
$82 \mathrm{n}, 100 \mathrm{n}$	11p
100 V	
100n, 120n	10 p
150n, 180n	12p
220n, 270n 15p	
$330 \mathrm{n}, 390 \mathrm{n}$ 20p	
680 n 30p	
1 uF	
2 L^{2}	
Telephone orders by Access now accepted (£10 min.) Just phone your order through, we do the rest	

MAIL ORDER, CALLERS WELCOME
 $33 / 35$ GARDIFF ROAD, WATFORD, HERTS, ENGLAND

Tel. Watford (0923) 40588. Telex: 8956095

 $\begin{array}{ll}470,880,800,820 & \text { 21p each } \\ 1000,1200,1800,2200 & \text { 30p each } \\ 3300,4700 \text { pF } & 60 \text { р each }\end{array}$

0,	60p
POLYSTYRENE CAPACITORS:10pF to $1 \mathrm{nF} \mathrm{Bp}_{\mathrm{p}} \quad 1.5 \mathrm{nF}$ to 12 nF 10p	
MINIA TURE TYPE TRIMMERS 2-6pF, 2-10pF 22p; 2-25pF, 5-56pF 30p: 10-88pF 35p	
COMPRESSIO 3-40pF, 10-80 $100-580 \mathrm{pF} 39$	0pF 28p.

RAM for

COMPUTER

Tolerance $5^{\circ} \mathrm{O}$.

Sinclair 2X81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability

With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer

Every ZX81 comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs.

Kit: £49.s

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

 - Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX 80 chips.
 E69.95

Kit or built -it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -700 mA at 9 VDC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair $\mathbf{Z X 8 0}$ or $\mathbf{Z X 8 1}$, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0276) 66104 \& 21282.

Available nowthe IX Printer for only £59..5

Designed exclusively for use with the ZX81 (and ZX80 with 8 K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings-particularly

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

AS THINGS GET TOUGH

As a man thinketh, so he will be This is a major breakthrough programme in human development disciplines which is destined to effect the lives of thousands of thinking men and women. It engages a remarkable new concept -

A MULTI-DIMENSIONAL APPROACH TO HUMAN SUCCESS AND TOTAL ACHIEVEMENT

A must for the Listening Library of every thoughtful man and woman GROWTH and RENEWAL

SELF-REALIZATION

A lesson in winning - Broadside 1 is not a psychological gimmick but a profound professional in-depth study into the attitudes and the qualities that go into the formation of the total winner. It is a programme based upon years of exhaustive research, using clinically controlled feedback studies, into the every present human desire for success and achievement as the basic motivating winning force that brings men and women alike to the forefront of our society. It is a unique and masterful attempt to define and to formulate into a controlled audio pack, the exact guide lines for creating the winner.

The motivated need

Have you ever given thought as to why some people are more successful than others?
The secret of the successful lies in direct relation to their positive attitudes and their defined purpose control.

WHAT DO YOU DESIRE? UNFORTUNATELY, THIS PROGRAMME CAN ONLY OFFER TOTAL WINNING KNOWLEDGE, THE BASIC ELEMENT SO ABSOLUTELY NECESSARY FOR POSITIVE HUMAN DEVELOPMENT

ACTION

Each unit of human life is composed greatly from dreams derived from the unconscious. He who has the ability and know-how to translate them into positive reality, will truly be placed amongst the great. Ana is Nin BROADSIDE 1 - THE INSTRUMENT OF HUMAN DEVELOPMENT

To: Broadside Associates 2 The Spinney, North Gray, Kent.	GUARANTEE I understand that if I am not fully satisfied, I can, within 15 days after despatch, return the complete programme and obtain a full refund.
Please send me the full Broadside 1 programme for which 1 enclose a cheque/postal order (crossed) for the sum of $£ 25$ (incl. VAT and Postage) made payable to BROADSIDE lallow a maximum 28 days for delivery)	
PLEASE PRINT	
Address ${ }^{\text {c. }}$	
Postcode.............. County................	

Memotech's New Memory System for the ZX881 Itgrowsas youprogress

Memopak 16K Memory Extension - $\$ 39.96$ incl.VAT

It is a fact that the $Z \times 81$ has revolutionised home computing, and coupled with the new Memopak 16K it gives you a massive 16 K of Directly Addressable RAM, which is neither switched nor paged. With the addition of the Memopak 16K your ZX81's enlarged memory capacity will enable it to execute longer and more sophisticated programs, and to hold an extended database.
The 16 K and 64 K Memopaks come in attractive, customdesigned and engineered cases which fit snugly on to the back of the $\mathrm{ZX81}$, giving firm, wobble-free connections See below for ordering information
Coming Soon...
Memotech Mi-Fes Graphics Centronics interface and Sottware Drivers Memotech Digitising Tablet RS232 Interface

All these products are designed to fit 'piggy-back' fashion on to each other, and use the Sinclair power supply. WATCH THIS SPACE for further details. We regret we are as yet unable to accept orders or enquiries concerning these products - but we'll let you know as soon as they become available.

Memopak 64K Memory Extension -\&F9.00 indVAT

The 64 K Memopak is a pack which extends the memory of the ZX81 by a further 56K, and together with the ZX81 gives a full 64 K , which is neither switched nor paged. and is directly addressable. The unit is user transparent and accepts basic commands such as 10 DIM A(9000).

BREAKDOWN OF MEMORY AREAS

0-8K . . Sinclair ROM
8-16K ... This section of memory switches in or out in 4 K blocks to leave space for memory mapping, holds its contents during cassette loads, allows communication between programmes, and can be used to run assembly language routines.
16-32K...This area can be used for basic programmes and assembly language routines.
$32-64 \mathrm{~K} \ldots 32 \mathrm{~K}$ of RAM memory for basic variables and large arrays.
With the Memopak 64K extension the ZX81 is transformed into a powerful computer, suitable for business, leisure and educational use, at a fraction of the cost of comparable systems.

Unique 3 monthtrade-in offer!

When your programming needs have outgrown the capacity provided by 16 K RAM, and you find it necessary to further extend your ZX 81 's capacity, we will take back your 16 K Memopak and allow a discount of $£ 15.00$ against your purchase of our 64 K model.*
*We reserve the right to reject for discounting purposes, units which
\qquad DATE

	Quantity	Price	Total
16K RAM, Assembled		³9.95	
64K RAM, Assembled		£79:00	
	Postage	$£ 2.00$	

\qquad
NAME
ADDRESS

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

Ace Catalogue

W/hoops - we forgot to mention Ace Mailtronix in the 'Buying Mail Order' article. This is a shame because they've got a good little catalogue with a wide range of components at reasonble prices - what's more the prices are VAT-inclusive (I hate pricing an order and then finding l've got to add on 15%). Ace offer all the services in the survey except surplus components and books, and can be found at 3A Commercial Street, Batley, West Yorks, WF17 5H J.

Power Tower

That's what Binatone are calling this hi-fi stack system, and what you have to do is guess the price of it. Nope, you're wrong - the whole lot costs $£ 150$. Honest. From the top down we've got a belt-drive record deck, three-waveband stereo tuner, stereo cassette deck with soft eject, LED meter and metal tape facility, 40 W total peak music power (hmmm...) stereo amp and matching two-way stereo speakers. The cabinet also has storage space for singles, albums and cassettes and at the price, Binatone are feeling quite pleased with themselves.

Eye Of The Needle

Robot Revival

Me're not ones to boast, but since - we published our report on Industrial Robots in September ' 81 things appear to be picking up a bit. The British robot population is now growing at more than 35% a year and has moved up to fifth in the world league table. Last year's total was approximately 700 . Even more encouraging is the attitude of the unions, which is surprisingly lacking in hostility. In fact Terry Duffy, AUEW president, has this to say of robots on the factory floor: "Failure to accept the challenge of new technology would, in my opinion, be to sabotage our national future. Robots are here to stay." How very refreshing to hear such sensible sentiments.

Another promising trend is the entry into the market of the major computer manufacturers who, until now, hadn't bothered to compete with the specialist firms. GEC, for example, is expected to augment its own in-house robotics facility through co-operation deals with Japanese companies (Japan still dominates the world robotics scene). With this sort of investment by big companies there seems to be no reason why Britain should'nt become a major supplier of industrial robots within the next two or three years.

Master Minds

What have the following five in common: Jack Kilby, Henry Ford, Ottmar Mergenthaler, Ernest O. Lawrence and Max Tishler? Well, no, none of them have appeared on the Muppet Show, but we had something else in mind. They've all just been appointed to the US National Inventors' Hall of Fame, and the one we're really interested in is Jack Kilby. He's the Texas Instruments engineer who, back in 1958, invented the integrated circuit and hence fathered all the goodies we've got today. Kilby holds more than 50 patents and is still going strong as a consultant to Tl . Wonder what it feels like to be responsible for the state of the world's technology.

Dial-A-Muzak

It's bad enough being assaulted by non-stop muzak in shops and hotels but now you won't be able to escape even when making phone calls. The Hong Kong Trade Development Council have sent us details of the Music Phone; as well as the usual modern features like autoredial and jack plug connection, this gadget has a 'music switch'. If someone wants to place you on hold without you hearing their discussion with a third party, this control plays soft music to you while you're waiting. The manufacturers, Yee King Enterprises Company, are producing 12,000 phones a month and exporting most of them to the USA and Europe; further evidence that it's all a fiendish oriental plot to subvert the West. Arrggh!

Stamp On It

j^{o} real reason for using this photograph in Digest except that it intrigued us. Apparently it's
some kind of tiny inductor thingy and since none of you have got soldering irons that small you won't want to know anything else about it, will you?

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Submicron Sculpture

These remarkably neat and tiny patterns were produced using the dew Direct-Write Lithography System (VIS-1000) developed by Varian Associates of California. The system will produce highdensity, submicron circuits at a throughput of $\mathbf{1 0 - 1 5}$ four inch wafer levels per hour. The first picture is a resolution test pattern while the second is a gate array pattern - somewhat beautiful, is it not?

New UD

Aaxell have brought out a new UD cassette with a considerably better performance than the previous one. High frequency saturation level, bias noise level and housing stability are said to be particularly good. Apparently it's due to the wonder ingredient, New PXGamma Ferric Oxide, which has fewer voids and more uniform particle size. The magnetic particle layer is also extremely uniform, causing modulation noise and DC noise to be minimised. The New UD cassettes will be on sale from early April. By the way, lads, just love the new TV ad.

Making Connections

A new range of low cost moulded battery clips have been announced by Dau. The moulded connector (a PP3 type is shown) offers long term reliability by overcoming corrosion problems. For further information contact Dau (UK) Ltd, 70-74 Barnham Road, Barnham, Bognor Regis, West Sussex PO220ES.

Shorts

- Good news for kit builders the new Spring/Summer 82 catalogue from Heathkit is out with several additions to their already extensive range and a Spring Sale on many items.
- A word processing package is now available for the TRS-80 Model 1 and II that offers a professional range of facilities for a reasonable price. You'll need 48K, one disc drive, and $£ 79.00$ plus VAT and postage. "Newscript" is available from E.A. International, 8 High St., Meldreth, Royston, Herts SG8 6JV.
- Hewlett-Pckard are getting a bit carried a way with VLSI technology - they've just developed a chip set for mainframe-like performance which includes a 32-bit processor running off an 18 MHz clock, a $16 \mathrm{~K} \times 8$ RAM and a $16 \mathrm{~K} \times 40$ ROM chip. Jeez. .
- Made in Wales. . . . the TC-2011 $20^{\prime \prime}$ colour TV from Panasonic. The set features auto-search tuning, channel memory, a teak cabinet and 3 W audio output, and is available now from authorised dealers.
- Celdis of Reading can now supply the new Mostek MK4802 16K static RAM direct from stock. Organised as $2 \mathrm{~K} \times 8$ for ease of use, the chip is compatible with all the other members of Mostek's Bytewyde memory family.
- The latest BAEC newsletter has reached us; amongst other things it contains a catalogue survey, projects, book reviews and a nice write-up on the Breadboard exhibition. Thank you, gentlemen we're glad you enjoyed it too.
- Rapid Electronics are on the move - by the time you read this ther'll be at Hill Farm Industrial Estate, Boxted, Colchester, Essex This is just off the A12 and Rapid say callers will be most welcome.
- Winner of the recent "Office of 2000 AD" design competition was an attache case containing a data processor/transmitter/receiver; if you press a button the case describes itself and how it works through a built-in loudspeaker. The day my briefcase starts talking to me is the day I give up the Beaujolais.
- Still and moving pictures from one shop; the Fotovalue photographic franchise are to introduce Telefunken VHS video into their camera shops. Products for sale are a video recorder, four televisions, accessories (including a Teletext adaptor) and a colour camera.
- Good old Goonhilly (you remember, Telstar and all that) is to get a facelift. British Telecom are replacing the antenna ready for use with the intelsat system from the end of 1984. Cost is estimated at $£ 3$ million.
- Semiconductor Specialists are now stocking two of Raytheon's high-performance dual low-noise op-amps, the RC5532 and the RC5532A. Suitable for applications in high quality audio equipment and instrumentation circuits, these chips are an all-round improvement over standard items such as the 1458.
- Why send us a press release about Britain exporting Tigers to Africa, we wondered? Because Tigers are telephone management and accounting systems manufactured by Minster Automation, that's why. Nice to see some foreign cash flowing this way for a change.
- IMF Electronics have launched a couple of professional monitor loudspeakers and a studio monitor. They feature such esoteric delights as a "ferro-fluid damped tweeter" and are apparently rather good.
- KGB Micros Ltd are now selling an IEEE 488 interface bus for Superbrain for $£ 200$. With a name like that, how can you dare refuse to buyone?
- Build a better photodiode and the world will beat a path to your door. The BPW41D from Ferranti has a very high rejection of wavelengths below 700 nm and is ideal for infra-red remote control and data transmission systems.
- Mitsubishi - bless you - have recently succeeded in manufacturing an amorphous solar cell, with the world's highest energy conversion efficiency (8.5%). My dictionary says amorphous means 'shapeless'; must be great fun trying to build them into equipment.

West Hyde Wonders

We've just received the latest West Hyde catalogue; curiously they're always out of step with the seasons (this one's dated Winter 81-82) but who cares, there are lots of goodies inside. With boxes and racks to suit any application you can think of, and then some, this is definitely the first place to look if you're after an enclosure.

Solar Sums

Drovided you don't want to do any calculations in the dark, Hanimex's new light-activated calculators dispense with the need for batteries. Even dim light is sufficient now that a new generation of very efficient light-sensitive cells have been developed, and Hanimex expect these calculators will become the leading solar calculators of the year. The SC852 has a list price of $£ 13.95$ while the 853 is $£ 10.95$.

Who's Kidding Who?

Now this is very silly. In fact we thought it was a joke, except that the press release is dated March 1st, not April 1st. Anyway, BL Systems and ITR have announced the TARDIS - Time and Attendance Direct Input System which is claimed to be much more efficient than traditional shop floor clocking-on methods. It says here that the key feature of TARDIS is the use of TIME LORD clocks - honest! - and that the computer-controlled system cuts the work involved in payroll/attendance calculations by up to 75%. Watch out, Doctor; the Time-andmotion Men are out to get you!

In Coherent

nnova 90 lasers, developed by Coherent (UK) Ltd and to be exhibited at Electro-optics/Laser International 82, are an entirely new concept in ion laser design. The "Cool Disc" bore technology gives higher guaranteed power capability with longer life expectancy, while other design features mean a hands-off, trouble-free laser for both research and industry. Maybe we can get our hands on one and have a real game of Space Invaders.

A Fine Pear

A pparently the microcomputer industry has some sort of preoccupation with fruit. We already have the Apple and Tangerine systems and shortly we'll have the PEAR II. This PAL-colour microcomputer is based on the ubiquitous 6502 microprocessor and is intended for the more advanced user who wants to choose from various programming languages. Typical options are BASIC, Pascal, FORTRAN or COBOL. The standard system has 32K of RAM, on-board expandable to 96 K using bank-select. Further expansion to suit your requirements is accomplished using plug-in cards. The PEAR II will be available around September/October of this year for £975 plus VAT, and further information can be obtained from Pearcom Ltd, 17 Nobel Square, Basildon, Essex SS13 1LP. Anyone for pomegranite?

Dai-Electric

ospitals at Wrexham and Swansea are to have reliable fire and alarm monitoring systems fitted by the Welsh Health Technical Services Organisation. The Statiscan System is based on a single threecore cable and uses timedivision multiplexing to transmit hundreds of signals from the monitoring points to the central consoles. (Of course, you all know about TDM because we featured it in Notebook in April.) The system is produced by Static Systems Group of Wolverhampton and will no doubt be of great use when the home rule nuts run out of English holiday cottages to burn. -

ENFIELD ELECTRONICS

NOISE FILTER SYSTEM
 A sophisticated combination of filters designed to eliminate interfering noises from all vehicular sources including ignition spark, alternator/generator, other etc.
 Contents:- Generator noise filter, alter* nator noise filter, Dual line noise filter and ignition noise filter.

This $3 \frac{1}{2}$ inch super horn (Flush Flange) piezo ceramic tweeter converts electrical energy into acoustic energy at an efficiency in excess of 50% a level not possible with any other type of pousisle with any other type of
loudspeaker. Economy is added to high efficiency by the elimination of crossover networks. because the unit rejects low frequency power. It has a high mpedance of over $1,000 \mathrm{ohms}$ at 1 kHz and 20 ohms at 40 kHz and it presents no added load to the amplifier.
A Super Special Offer of $\mathbf{4 6 6 5}$ Order No LO52

Please allow $2 f$ days for delivery.

Adaplors Adhesives	Cable Cont. wrapping	Desolder brald Desolder pump	Frequency counter Gassensor	LED displays	Pie-amps Photo electric relays	Sockets Sieeving	Tinned copper wire Transducers
Aerials	stripper	Diacs	Grommets	Mains adaptor		Solder	Torolds
Alarms	Capacitors	Diodes	Group panels		Rectifiers	Soldering irons	Terminals
Aluminium boxes	air spaced	bight emitting	Gronso	Meters	Resastors film	Sirens	Tuning cells
A.B.S. boxes Amolifiers	trimmer	photo rectifier	Meadphones	Microptiones	metal film	Speakers	Tuning condensor
Amplifiers	suppression	rectifier signal	Heat sinks	inserts stands	metal oxide	Switches ${ }_{\text {mercury }}$	Ultrasonic
Audible warning	ceramic	zener	I.C.s	Microprocessors	Ring cores	micro	Uitrasonic receiver
Batteries chargers connectors holders Bezels Books Boxes Bridge rectifiers Bulbs holders Busbars Buzzers		infra	.C.	M	Reg		Vero products
	polystyren	Displays	Infra	Mulist	Resistance chart	rotary	
	silver mica tantalum	Orills	Indicators	Neon bulbs Ni -Cad batteries	Signal injector	toggle	
	Cermot pre-setsChokes	Earphones Enamelled copper wite	Insulating tape	Ni -Cad chargers	Service aids silver paint switch lubricant. solder mop	watide	
			Jack connectors Jewellers	Opto electronic Oscilloscopes		push-button	open fror
	Coilformers	Etch resist products	screwdrivers			Testleads	
	Connectors	Filters	Keyboards	Panels	silicone grease	Thermistors	9am-6pm
	Coils	Ferric chloride	Keynector	Plck-up coils	antl-static spray	Thyriators	Monda
	Continuity testers	Ferrite cores		Pliers	freezit	Triacs	Monday
	Convertors	Ferrite rods	Lamps	Pre-sets	pissticseal	Transtormers mains	to
Cable	Crimp tools	Fixing Fuses	leads	Potentiometers	Aerokiene	audlo	
clips	Crocodile clips	Fuse holders	Liquid crystal	P.C.B. transiers	compound		Saturday
ties	Crystals	Fluorescent displays	displays	Probes	Aero duster	Transistors	
¢ markers	Denco products Demagnetisers	Field strength motors	LED arrays	Plugs Pressure mats	Spacers SWR meters	Transistor tester Tag strips	

208 Baker Street, Enfield, Middlesex.

؛21 SCREWDRIVER SET
6 precision sccewdrivers in hinged nlastic case Sizes-08.14.2.24 29 and $38 \mathrm{~mm} \quad \mathrm{E} .75$
ъзः NUT DRIVER SET
Sprecision nut divers in hinged plastic case
Win huring rod
Sizes-3.354 45 , and smmm $\mathbf{E 1 . 7 5}$

STal TOOL SET

bwercision instruments in hinged plastic case
Crosspont |Phlilips' screwdivers
HO ano $\mathrm{H} / \mathrm{Hex}$ key wenches
is 2 and 2 Smm $£ 1.75$
SH WRENCH SET
b piecision wrenches in ninged plastic case Sizes-4 45 5 5 band 6 mm E1.75 buv all four SETS $5121: 1 b$ and get hex key Sel free hex key set on ring Sizes 15.2.25.3 Mace o 1 harcenened sleet Made
$H \times / 1$
1.25

BRAND NEW LCD

 DISPLAY MULTITESTER. RE 188mLCO 10 MEGOHM INPUT IMPEDANCE

- $31 /$ digit ${ }^{*} 16$ ranges plus hfe test facilly for PNP and NPN Iransis:ors *Auto zero auto polarily - Single handed pushbutton operation "Over sange unocalion - 125 mm (1t, inchl lage LCD readoul *Dioue check -Fusi circuil prolection - 「est leads. battery and instructions included
Max indicalion 1993 or - 1999
Polanty indication Negative only Posilive readings appea wilhout + sign
Input impedance 10 Megonms
Zero adjust
Sampling time 250 milliseconds.
Temperalure range $-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Power Supply $1 \times$ PP 3 or equivalent gir
Consumption $\begin{gathered}\text { batiery } \\ 20 \mathrm{~mW} \\ \\ \\ \end{gathered}$
Size $\quad 155 \times 88 \times 31 \mathrm{~mm}$
Ranges
OC Vollage 0.203 mV
$0 \cdot 2 \cdot 20 \cdot 200 \cdot 1000 \mathrm{~V}$ Acc 0.8% AC Vollage $0.200 \cdot 1000 \mathrm{~V}$ Acc 12% oc Current 0.200 u A $0-2 \cdot 20-200 \mathrm{~mA}$ 0-10 A. Acc. 12 Resistance $0 \cdot 2 \cdot 20 \cdot 200 \mathrm{~K}$ onms 0-2 Megonms Acc 1\% BI.PAK VERY LOWES! POSS PRICE § 35.00 each
"IARESISTACLE RESISTOR BARGAINE"

Pidmar	(0)	Dexcripion
5	400	Mixed "All Type" Ressistors
Sx11	400	Pieformed 4.15 watt Carbe Restreas
5×12	200	4 watt Cabon Ressistors
5413	200	4. watt Cabibon Resistors
5×14	150	4) wat Resistors 22 ohm.
SxIS	100	1 and 2 watt Resistors 22 ohm. 2 m 2 Mired

cone
Covernitres approxmalt, count by weight.

AUDIO PLUGS, SOCKETS AND ACCESSORIES

2 Ereces ol Audia Plugs, Seckets and Connectors 2.10 include DIN $180^{\circ} 240^{\circ}$ Inline 3.6 Pin Soeakers. Phono. Jack. Stereo and Mono. elc. elc. Valued at well over $\{3$ normal Order No. Sx25. Our Price $£ 150$ per pak. Guaranteed to save you money

Sx26 3 Prs. ol 6 pin 240° Din Plugs and Chassis
5×27 Sackets $\begin{aligned} & \text { Right Angle Stereo lack Plug } 63 \mathrm{~mm} \text { plus }\end{aligned}$ matching meial chasssis mounting socket: Sx28 4 Phomo plugs and 2 dual phono connectors SXZ 12.5 mm Plug to 3.5 mm Sochel adaptor

MONO PRE-AMPLIFIERS

MM100 suitable for disco mixer. MM100G suitable for puitar preme mixes.
The MM100 and MiOM mono pramplifiers are compuible with the ALGQ ALED AL I2T mod AL250 powe amplifiers and their associmed power supples. MM100 Supph rorage 40-65 ipurs Tape Mag P.U. Mirophone Mex ortput 500my 2hests melooc Supply whape tobshin inputs: 2 Guitess, Mirrophones Man output 500 mw

BARCAINS

SX91 $20 \times$ lagge 2^{4} RED LED
SX42 20 small. 125 Red LED's
$5 \times 43 \quad 10$ Reclangular Green LED's 2
Sx45 30 Assorted lener Diodes 250mw. 2 watt mixed voltages. all coded Hew.
$\mathbf{S x 4 7} 4$ Blach Instrument
Knobs-winged with pointer l_{4}^{*} * Standard screw fill size 29 : 20 mm .
SX4 20 Assorted Sideer Knotes Black/Chrome, etc.
sued 12 Heons and filament Lamps. Low woltofe and mains - various types and colowrs - some penel mounting E1

SINGLE SIDED FIBREGLASS

 BOARD - 703

NPN like 2N3055 - but not full spec 100 watts 50 V min.
10 for $£ 1.50$ - Very Good Value 10 for Ef .50 - Very Good
100 s of usess - no duds Order No. SK90

5 watt (RNBS) Audio Amp

High Quality audio amplitiver Module. Ideal for use in High Quality audio amplifier module. Ideal for use record playe is. lape recoiders, stereo amps and
cassette olarers, etc. Full data and bach wp ciagam with each module.
Specification

- Power Output 5 watts RMS - Load Impedance 8.16 ohms © frequency response 50 Htz to $25 \mathrm{KH}_{2}$ - Jdb Sensitivity 70 mut for full output © inpui impedance 50 A ohms © Ste 85 a 64 a 30 mm - Iotal Harmonic
 distortion less than. 58
BI. PAk'S

MW398 NH-CAD CHARGER
Universal Ni-Cad battery charger All plastic case with itt up lid Charge/ Test switch LED indicalors at each of the live charging points
Charges - Power
PP319V, $\quad 220-940 \mathrm{VAC}$
112: 5 Sv penlite Dims

POWER SUPPLY OUR PRICE 5.25 Power supply fits arecily ullo 13 amosochel Fused tor satety Poldrity reversing socket Voltage swilch Ledd with mulliplug
Inpui 240 VAC 50 HZ Output $-3+5.6$
$759 \& 12 \mathrm{VDC}$ Raling -300 ma MW88

The Third and Fourth Hand...

This small cast iron quality made vice will clamp on to any dench or lable having a max of $1 \% /{ }^{*}$ Aporox suze $80 \times 120 \times 66 \mathrm{~mm}$
 bul have nevet gol "unst now B. Pak s Mini Vice at This helptul unit with Rod mounted hortzontaliy on Heavy Base. Crocodie chips atrached to rod ends Stx ball \& sockef joins give inimute variation and positions thioug 360° also avaliable altached to Rod a $21 / 2$ diam
magnilier giving $25 \times$ magnilication Hetpong hand unis dvaliable with or withoui magnitier Out Price with magnitier as illustrated ORDER NO. T402 £5.50
Without magnitier ORDER NO T400 £4.75

BI-PAK SOLDER

DESOLDERKIT
Kil comprises ORDER NO SX80
I High Ourlity 40 wall General Purpose Lightweight Solder:ing lion 240 v manns inci 3/16" 147 mm Dil
: Oualiy Desoldering pump High Suction wilh automatic ejection Knurled ant corrosive casing and letion nozzie
15 metres of De soldering brald on plastic dispenser
2 yds (1 83m) Resin Cored Solder on Card
1 Heal Shunt tool Iweezer Type
Total Retarl Vaiue over £12.00
OUR SPECIAL KIT PRICE ce.es

BI-PAK PCBETCHANT AND DRILL KIT
1 Expo Mini Drill 10.000 RPM 12 V OC incl conles \& $1 \times 1 \mathrm{~mm}$ /wision

I EIch Resist Pen

$1 / 2 / \mathrm{b}$ pack FERRIC CHLORIDE crystals 3 sheets copper clad board.
? sneets Fibreglass copper clac board Full instructions tor making your owi PCE boards
Relan Value over £ 15.00
OUR BI-PAK SPECIAL KIT PRICE $\mathbf{£ 9 . 7 5}$ ORDER ND SXB1

TECASBOTY

The Electronic Components and Semiconduclor Bargain of the Year. A host of Electronic components including potenliomelers - rotary and slider. presets - horizontal and vertical Resistors of moxed values 22 ohms to $2 \mathrm{MZ}-1 / 8102$ Watt. A comprehensive range of capacitors including electrolylic and dolyester ypes plus dise ceramics elcetera. Audio plugs and sockets ol various types pius switches. fuses. heatsinks. wire. nutsibolts. gromets. cable clios and tyes. knobs and P.C. Board. Inen add to thal 100 Semiconductors to include transislors, diodes. SCR's opto's, all ot which are current everyday usabte devices. In all a Fantastic Parcel No rubbishall idennifiable and valued in current catalogues al well over £2500 Our Fight Against Inflation Price -

- Beal the Budget
- Oown with Depression

JUST E6.50.

BI-PAK'S COMPLETELY NEW CATALOGUE Completely re designed full ol the type ol componenis you requile. plus some semicersing ones you will soon be using and oi coulce. the largest range of emicondictors for the Amaterl: and Prolessional you could hope to tind
There are no wasted pages ol useless intumation sa olten included in Catalogues published nowadays. Just solid facts ie price description and indoridual leatures of what we have avalable. But remember. Bi. Patis spolicy has always been to sell quality components at competitive prices and THAT WE STILL DO.
BI.PAK S COMPLEIELY MEW CAIALOCUE is now ayarable to you. You will be amared hom much you can save when you shoop for Electionic Components with a BI-Pak Cataiogue Have one by you all the time-it pars to buy Bl.Pak To recerve your copy send $\mathbf{7 5 p}$ plus 25 p p\&p

mitexalinual

TV BARGRAPH

Surely your television can be put to better use than as an aid for insomnia? The video game manufacturers pointed the way and we've published a couple of designs ourselves - but how about using the television as a research tool? Next month we do just that with our TV Bargraph project; a device that displays analogue voltages as a histogram (columns) on any domestic 625 -line set. The horizontal axis may be at the bottom of the screen (for positive-only inputs) or half-way up for AC signal displays, and the number of channels is userselectable. The basic unit has eight, while additional channel cards will give 16,32 (how about $1 / 3$ octave spectrum analysis over the audio band?), 64 and even 128 channels on a good TV. We could have used a video controller chip for this project, but you wouldn't have learnt much from it; the circuit uses standard logic ICs so you can see how the TV sync signals are generated. Don't wait for ITV2; get a new channel on your telly with the July ETI.

MOSFET BRIDGING MODULE

Now you'd think most ordinary people would be more than happy with the power output of the MOSFET amplifier published this month. But we know better. Time and again it's been proved that ETI readers like to provoke their neighbours, weaken their foundations and generally make their presence felt with LOUD music; and who are we to argue? To forestall the inevitable requests for more power, next month we show you how a cheap, simple add-on circuit will enable you to bridge two ETI-5000 modules, giving a 300 W output and shattered windows in the living room.
 \section*{\title{
LOOK OUT
 \section*{\title{
LOOK OUT FOR THE JULY ISSUE FOR THE JULY ISSUE ON SALE JUNE 5th
}} ON SALE JUNE 5th
}}

Articles described here are in an advanced state of preparation. Articles described heres may dictate changes to the final contents.
However, circumstances

VIDEO SYSTEMS

Next month we fearlessly take the lid off video recording literally. Taking time off from hi-fi, Stan Curtis has been unbolting all kinds of video recorders and finding out exactly what's inside and what it does. You never knew there was so much in it. Don't miss the July issue for the story even the video magazines couldn't bring you.

AUDIOPHILE

We've been waiting to get our hands on one of these for a long time. Look at the sleek lines, the compact build, the elega nt black enclosure, the hint of mysteries within to enthrall you long into the night. (And if you haven't figured out that next month's article features the power amp rather than the admittedly lovely lady, then one of us has the wrong magazine). The long months of flattery, threats, bribery and begging have finally resulted in a Magnetic Field Power Amplifier - the Carver Cube - being delivered into the hot, eager hands of your editor (now stop that!). As Stan Curtis pointed out a year ago, this extraordinary amp is only 7 " on a side and can punch out an incredible 200 W per channel. In that article the technical merits of the design were examined; now Ron Harris can reveal all concerning the sound quality. It's in Audiophile next month - be there!

TheMICRO PROFESSOR solvesthemystery ofmicro-processors.

Micro-Professor is a low-cost Z80A based microcomputer which provides you with an interesting and inexpensive way to understand the world of microprocessors.
Micro-Professor is a microprocessor learning tool for students, hobbyists and engineers. It is also an ideal educational tool for teaching in schools and universities.
The main object of Micro-Professor is for the user to understand the sottware and hardware of a microcomputer easily and conveniently. Besides the complete hardware/software system you have the users experimental manual. It includes self-learning text with 20 experiments which range from simple, sottware

Use the unique Micro-Computer to truly understand the inside workings of microprocessors or simply use as a Z80A evaluation system.

Flight Electronics Ltd.
programming to designing a complex electronic cost development tool • Process controller game. Completed programes can be stored and \bullet Electronic music box \bullet Timer \bullet Noise generator re-read via the cassette interface. 2 K bytes of monitor source program with documentation is also provided in the manual. Micro-Professor provides a wide range of other

- Home appliance control • Burglar alarm
- System control simulation

Tester

applications: Low cost prototyping tool \bullet Low
 TECH SPECIFICATION 3 EPROM Drogrammer

CPU Z80A CPU high performance microprocessor with 158 instructions
SOFTWARE COMPATIBILITY Capable of executing 280/8080/8085 machine language program
RAM 2K bytes expandable to 4 K bytes
ROM 2K bytes of sophisticated monitor expandable to BK bytes
INPUT/OUTPUT 24 system I/O lines DISPLAY 6 digit 0.5 red LED display.
AUDIO CASSETTE INTERFACE 165 bit per second average rate for data transier between memory and casselte tape.
EXTENSION CONNECTORS Provides all buses of CPU, channel sigriats of CTC and i/O port bus of PIO for user's expansion
COUNTER TIMER CIRCUITS Socket is provided. 280 -CTC IC extra
PARALLEL I/O CIRCUITS Socket is provided. Z80-P10 IC extra.
SPEAKER AND SPEAKER DRIVER CIRCUITS A $2.25^{\prime \prime}$ - diameter speaker is provided for user's applications
USER'S AND EXPERIMENT MANUAL Complete self-learning lext with experiments and applications.
OPTIONS (Prices on application) Z80-CTC EPROM programmer board Prototyping Board Z80-P!O. Speech synthesiser board Audio Cassette. 2 K Ram.
KEYBOARD 36 keys including 19 function keys, 16 hex-digit keys and 1 user defined key

A 9V, 0.5A adaptor and 350 page manual is provided. Formal orders requiring

Acc \& 30 days credit.
Plazse ask for price list. Now EPRON
ybord FIITHIE69.95

MICRO-PROFESSOR is a trade mark of Multitech Industrial Corporation. 280 is a trade mark of Zilog inc.

NEGATIVE ION GENERATOR

For readers who just have to find out for themselves what this subject is all about, this negative ion generator should provide a good basis for experiment. Design by Jonathan Scott. Development by Graeme Teesdale.

The rise in popularity of negative ion generators, the claims made for them, and the attention they have received in newspapers and magazines recently has undoubtedly intrigued many readers with a technical background or interest. As the electronics associated with a negative ion generator is relatively simple, generally employing readily available components, this article describes how to build a unit that can be used as the basis for experiment.

Design Of The Emitter Head

The object of the emitter head is to take in the HT, in our case about 3 kV , and produce a stream of negative ions flowing forwards into the room in which the generator is placed. The ions are produced by a very intense field gradient, which is induced by the high voltage and the geometry of the head assembly. This ion flow is a corona wind.

It is a basic principle of electrostatic physics that the field gradient is stronger in the immediate vicinity of a point projection, the gradient being greater when the point is sharper so most ion generators employ some combination of sharp projections and high voltage.

Pointing The Way

If the points are spaced well away from other parts of the unit the ions will naturally repel themselves away from the region of emission. However, if the point or points are partially enclosed in the case of the device there may need to be either a chimney-
shaped assembly around the emitters or some sort of accelerator electrodes to help eject the ions from the emitter head. We didn't require an accelerator as the points protrude beyond the slot in the case.

Wherever there is ion production there will be ozone production. Ozone is corrosive as well as a strong antibacterial agent, and is poisonous in sufficient concentration. In order to keep it to a minimum, as low a voltage as possible should be used. Our project has been designed to give the lowest voltage compatible with adequate ion production. The design should be such as not to allow any arcing or serious breakdown; this is really only likely if you try using an "accelerator", as there will be no metal in close proximity to the emitter otherwise.

The best metal for the points which is easily obtainable is steel, preferably stainless. This is hard enough to hold an edge and will resist the effects of cathode stripping. The latter is undesirable both because the fine point will be eroded away, and also because the heavy metal ions which are ejected are undesirable agents in the air we breathe (stick to getting your minerals from cornflakes).

There is no shock hazard as the unit is not mains powered and there is a very large series resistance between the points and the multiplier output. At
most, there results something between a nip and a tickle if you touch the emitter points.

Construction

First stage of construction is to assemble the components on the PCBs; commence with the inverter board. Insert the resistors, capacitors, IC and transistors before asembling the transformer to it. As usual, take care with the orientation of the diode, IC1 and the transistors. Next, wind the transformer - details are given in the box. The transformer employs a potcore and this can be held on to the PCB with a nylon bolt - do not use a metal bolt. Cut the transformer coil wires to length, scrape off the insulation and solder them in place. The TIP31C transistors, Q1 and Q2, do not actually require any heatsink, though they do get warm in operation.

The high voltage board may be assembled next. Take care with the orientation of the diodes. Stand the capacitors erect on the board so that they do not touch each other or you may have arc-over problems between these components.

Mount the appropriate components on the 'blinker' board

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1	100 k
R2	220R
R3,5	1k0
R4	10 k
R6,7	4M7

Potentiometer
PR1 $\quad 47 \mathrm{k}$ miniature vertical preset
Capacitor

Capacitors	
C1	10u 16 V tantalum
C2	220p ceramic
C3	10n polycarbonate
C4.9	10n 1 kV ceramic
C10	3n3 or 4n7 polystyrene or
	ceramic

Semiconductors
IC1 555
Q1,2 TIP31C
Q3 BC107 or BC547
D1,8 1N4001
D2.7 1N4007 or similar (1 kV PIV)

Miscellaneous

LP1 wire-ended neon bulb (no series resistor)
PCBs (see Buylines); potcore and former (FX2242 - see Buylines); coaxial DC jack socket; case ($180 \times 110 \times 55 \mathrm{~mm}$, Vero ref. 75-2861D); five needles.
next, as you'll need this for a testing aid. It is important to watch the diode polarity here. The cathode of the diode goes to the pad marked with the 'ground' symbol. Note that the components are mounted on the copper side.

The emitter points are steel needles soldered directly to the PCB. The easiest method is to tape the needles, parallel and the correct distance apart, so they overhang the end of a wooden block etc. Support the board underneath, and touching, the overhanging needles and solder them in place before removing the tape. Since ions will be ejected from any sharp point we recommend you

The inverter and high voltage boards mounted side by side in the case, with the emitter needles protruding through the slot in the side of the case.
cut all the component leads on the high voltage board and then resolder them, using enough extra solder to give rounded solder blobs. (Make sure the same is true of the needle connections). This will prevent unwanted ion leakage.

The DC input socket we mounted on one side of the box. Exactly how the DC coaxial jack socket is wired will depend on how your plug pack output plug is wired. Some have the outer connector connected to positive, while others have it connected to the negative.

Getting It Going

You will need a multimeter and a supply of between $9 \mathrm{~V} D C$ and 14 V
DC. Switch the meter to the current range to read 300 mA full scale or more, and connect it in series with the DC supply input. Switch the supply on and, assuming all is well, adjust PR1 on the inverter board for minimum current. This could be between about $220-280 \mathrm{~mA}$.

Run the unit for a few minutes, then switch off, discharge the rectifier capacitors and feel Q1 and Q2. One should not be markedly hotter than the other, otherwise you have adjusted PR1 incorrectly or you have a fault - most likely a transistor inserted incorrectly or a dry joint between the output of IC1 (pin 3) and the bases of Q1, Q2, or Q3.

Having confirmed everything

Fig. 2 Component overlay and wiring for the ion generator. The two-board design will allow for different physical layouts and connection pads are provided for experimentation with accelerators and off-board emitters.

The DC-to-AC inverter consisis of a 555 astable multivibrator, the output of which is used to drive two transistors operated in push-pull. The collectors of Q1 and Q2 switch current through each side of the transformer (T1) primary in turn. Diode D1 prevents any damage from a supply connected with reverse polarity. Capacitor C1 is a bypass. IC1 oscillates at around $25 \mathbf{k H z}$, determined by R1 and C2. The exact frequency is unimportant. The mark-to-space ratio of the output of IC1 (at pin 3) may be adjusted by PR1, which is connected in series with pin 7 of IC1.

The output of IC1 drives the base of Q1 directly, via R3 and R2. Q1 turns on when the output of IC1 goes high. Resistor R3 is there principally to limit the base current supplied to Q 1 , while R 2 serves to discharge the base emitter junction capacitance so that Q1 turns off quickly when the output of IC3 goes low.

When pin 3 of IC1 goes high, Q3 also turns on, preventing Q2 from turning on. When pin 3 of IC1 goes low, Q1 and Q3 turn off and Q2 will turn on as base bias will be supplied via R5. Thus current is alternatively switched through each side of the primary T1. The secondary provides a voltage step-up of $25: 1$. If the supply voltage is 12 V DC, then the peak-to-peak output from the secondary of T 1 will be 600 V .

The voltage-multiplier rectifier employs the well-known Cockcroft-Walton circuit, where the output of successive halfwave rectifiers is connected in series with the previous one. This circuit provides a multiplication of six times. Thus, with a 12 V DC supply, the output will be about -3.6 kV . With a 10 V DC supply (as can be obtained from a 9 V DC battery eliminator), about -3 kV is obtained. An output for an 'accelerator' is provided.

The high voltage output to the emitter head is taken via a $4 M 7$ resistor to ensure that only low short-circuit current occurs if the emitter head is accidentally contacted or excessively humid air causes 'flashover' from the emitter.

The blinker is simply a crude relaxation oscillator. When a charge builds up on the 'antenna' pad, it will charge C10. When the voltage on C10 reaches the breakdown voltage of LP1 (about 70 V), the neon will conduct. This will discharge the capacitor, the voltage across it falling until it reaches the extinguishing voltage of the neon (about 30-40 V), which will then cease conduction. While the neon conducts, it will emit light, but as it discharges C10 fairly rapidly, all you will see is a brief flash from the neon. Diode D8 ensures only negative charges operate the blinker.

When the neon ceases conduction, the charge on C10 will build up again and the whole process will be repeated.
construct a negative ion generator and the electronics can readily serve as the basis for experimenting with different designs. Higher voltages are unnecessary - and are not usual in commercial designs - and can lead to problems with ozone generation, breakdown, etc. A connection is available on the high voltage board for
works as it should, and having adjusted PR1, assemble it all into the case and you can check its operation with the blinker.

Turn the ioniser on and grasp the blinker so that your thumb is in good contact with the pad marked by the 'ground' symbol. Hold the blinker such that the 'antenna' pad is about 10 mm
in front of the emitter. You should be able to count around one blink per second if all is well and this is a good 'benchmark' for successful operation when you experiment with different head designs and geometries.

Notes On Experimentation

This project shows but one way to
supplying an 'accelerator' on an emitter head. It should be connected via a $4 M 7,1 / 4 W$ resistor. The accelerator voltage could be tapped off lower down the rectifier chain if desired - we suggest at the junction of C6 and C8.

The exact value of capacitors C 4 to C9 on the high voltage board is not important and may be any value between about 1 nF and 22 nF or so, but should not be lower than 1 nF . The voltage rating of these capacitors should not be less than 1000 V .

The DC supply should not be greater than 15 V or more turns be wound on the secondary of T1, else you may experience insulation breakdown within the transformer.

BUYLINES

None of the electronic components for this project should cause any supply problems. The FX2242 is stocked by C.T. Electronics (Acton) Ltd. of $\mathbf{2 6 7 1 2 7 0}$ Acton Lane, London W4 5DG. Suitable steel needles can be obtained from your family sewing drawer! Failing that, any sewing accessories supplier can help you. The boards can be obtained from our PCB Service at the prices given on page 82.

The assembled blinker, which we tinned with solder to avoid sweaty finger marks and oxidation. The cathode of D8 is at the bottom.

TRANSFORMER WINDING DETAILS

Potcore: FX2242

Secondary: 125 turns of $\mathbf{0 . 2} \mathbf{~ m m}$ diameter enamelled copper wire.
Primary: 10 turns, centre-tapped, of $\mathbf{1 . 0} \mathbf{~ m m}$ diameter enamelled copper wire.

The secondary is wound on the potcore bobbin first. Wind it in five or six neat layers. Slip thin plastic sleeving over the start and finish leads so that the sleeving is held well inside the bobbin. As you finish winding each layer, insulate it with $1 \mathbf{~ m m}$ mylar sticky tape (if you can obtain it) or electrical insulation tape (a bit heavy, but it will do the job). Wind the next layer on the insulation of the previous layer, and so on until you finish winding. Wind several layers of insulation over the completed secondary. Leave the start and finish wires protruding from the different sides of the bobbin so that they exit via different slots of the assembled potcore.

Wind the primary over the secondary; it can be wound bifilar (two wires together, five turns, connect finish of one to start of other to provide centre tap) or in one winding - but don't forget the centre tap. Wind the primary so that its wires exit the potcore opposite the secondary wires.

In operation, if you have breakdown problems (arcing sounds inside the potcore) it means you have not wound or insulated your secondary carefully enough and you'll have to rewind the transformer.

MICROCOMPUTER COMPONENTS

LOWEST PRICES - FASTEST DELIVERY

OFFICTAL ORDERS
 VISA

OUANTITY DISCOUNTS

All CWO's receive a voucher value $£ 1$ aganst future purchase ${ }^{}$
Alpatched on day of recerpt with full refund on out of stock tems if requested \star
MIDWICH COMPUTER CO. LTD.
DEPT ETI. HEWIT HOUSE, NORTHGATE STREET,
BURY ST. EDMUNDS; SUFFOLK IP33 1 HQ
TELEPHONE: (0284) 701321
TELEX: 817670
there is the ETI binder. Spend your nights enjoying the finer things in life, secure in the knowledge that the finer magazines of life are safe and sound. Order one now, and let the Joneses keep up with you.

ETI Binders cost $£ 4.25$ each for UK residents, including postage, packing and VAT. For overseas orders add 30p. Send the completed coupon together with your remittance to:
ETI Binders, Argus Specialist Publications Ltd, 513 London Rd., Thornton Heath, Surrey CR 4 6AR.
Please allow three-four weeks for fulfillment of order

ORDER FORM

henerd
vame
trabess

CAMBRIDGE LEARNING

SELF-INSTRUCTION COURSES

A PRACTICAL DIGITAL ELECTRONIC KIT FOR is LESS THAN $£ 20$ is

SUPERKIT

VRI

Digital Electronic Kit suitabie for beginuers

SUITABLE FOR BEGINNERS

NO SOLDERING!

Learn the wonders of digital electronics and see how quickly you are designing your own circuits. The kit contains: seven $L S$ TTL integrated circuits, breadboard, LEDs, and all the DIL switches, resistors, capacitors, and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also available separately). All this comes in a pocket size plastic wallet for only $19-90 p$ inc VAT and p\&p. This course is for true beginners:

- asks plenty of questions, but never leaves you stuck and helpless.
teaches you about fault-finding, improvisation, and subsystem checking.
the only extra you need is a $4 \frac{1}{2} \mathrm{~V}$ battery (Ever Ready 1289, or similar), or a stabilised 5 V power supply. Using the same breadboard you may construct literally millions of different circuits.
This course teaches boolean logic, gating, R-S and J-K flipflops, shift registers, ripple counters, and half-adders. Look out for our supplementary kits which will demonstrate advanced arithmetic circuits, opto-electronics, 7-segment displays etc.
It is supported by our theory course
DIGITAL COMPUTER LOGIC AND ELECTRONICS £8. 50 £6.00 for beginners, and our latest, more advanced text,
digital design
$£ 7.00$
Please send for full details (see coupon below).
GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, UNIT 16 RIVERMILIL SITE, FREEPOST, ST IVES, CAMBS, PE17 $\angle B R$. ENGIAND.
TELEPHONE: ST IVES (OL80) 67446. VAT NO 313026022
All prices include worldwide postage 'airmail is extra please ask for prepayment invoice). Giro A/c No 2789159.
Please allow 28 days for delivery in UK

Please send me:

......SUPERKIT(S) @ $£ 19.90$

.......Free details of your other self-instruction courses.
I enclose a *cheque/PO payable to Cambridge Learning Ltd
for \subset. ... (*delete where applicable)
Please charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trustcard
Expiry Date............. Credit Card No

Telephone orders from card holders accepted on 048067446 Overseas customers (including Eire) should send a bank draft in sterling drawn on a London bank, or quote credit card number.
\qquad
\qquad

[^0]IIPTORODAS W: valleformonat
New production capacity at Canterbury has increased our range, decreased our prices, improved our special customer design service. Choose from toroidal transformers in a range of 98 types.

TYPE	$\begin{gathered} \text { SEPRES } \\ \hline \mathrm{NO} \end{gathered}$	$\begin{gathered} \text { SECONDAAP } \\ \text { volis } \end{gathered}$	RMS	$\left[\begin{array}{l} \text { PRiCE } \\ \operatorname{lnc} \text { val } \end{array}\right]$	$\begin{array}{\|l\|l\|} \hline \text { PRicEE } \\ \text { ex } V A T \end{array}$
				$\left\lvert\, \begin{gathered} \mathrm{ct} 83 \\ +\mathrm{F}_{\mathrm{p} / \mathrm{P}} / 0 \end{gathered}\right.$	
$\begin{array}{\|c\|} \hline 80 \mathrm{va} \\ 90 \times 3 \mathrm{~mm} \\ 1 \mathrm{~kg} \\ \text { Regulation } \\ \hline \end{array}$				$\left[\begin{array}{c} 5651 \\ +E_{1,9,3} \end{array}\right.$	
					$\left\lvert\, \begin{gathered} \substack{1, \beta \\ p ; \beta} \end{gathered}\right.$

Suppled with riger mountiing kit with centre bolt. steel and neoorene washers. GUARANTEED 5 YEARS

TYPE	$\begin{gathered} \text { SERIIS } \\ \mathrm{No} \end{gathered}$	$\underset{\substack{\text { SFCONDARY } \\ \text { Vots }}}{ }$	TRMS	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { nx VII } \end{array}$	$\begin{aligned} & \text { PRRCE } \\ & Q \\ & Q \end{aligned}$
$\begin{gathered} 22 b \mathrm{VA} \\ 10 \times 44 \mathrm{~mm} \\ 22 \mathrm{Kg} \\ \text { Regulanm } \\ 7 \% \end{gathered}$	5x01?	$12+17$	938		${ }^{10006}$
	Ex013	$15+15$	750	+ +173	+ ¢173
	5×014	$18+18$	${ }_{6} 21$	P\% ${ }^{\text {P }}$	P/P
	6×015	?2+22	S 11		
	5x016	$25+25$	450		
	5×017	30+30	375		
	${ }^{6 \times 018}$	$34+33$	321		
	6×076	$40+40$	281		
	6x025	$45+43$	750		
	5×033	$50+50$?25		
	${ }_{5 \times 1028}^{5602}$	110	? 04		
	$\begin{aligned} & 6 \times 029 \\ & 6 \times 030 \end{aligned}$	220	102 093		
$\begin{gathered} 300 \mathrm{VA} \\ 110 \times 50 \mathrm{~mm} \\ 26 \mathrm{~kg} \\ \text { Regudlon } \\ 6 \% \end{gathered}$	7K013	15+15	1000		£1166
	7×014	$18+18$	833	+[173	+5173
	ix015	27 +2 ?	582	P / P	
	7×016	23+23	500		
	${ }^{7 \times 017}$	$30+30$	500		
	7×018		428		
	7×026	$40+40$	375		
	7×025	45+4t	333		
	7×033	$50+50$	300		
	7×028 7×029	110 720	272 136 1		
	7×030	240	+ 25		
$\begin{array}{\|c\|} \hline 500 \mathrm{VA} \\ 140 \times 60 \mathrm{~mm} \\ 4 \mathrm{~kg} \\ \text { Regualton } \\ 4 \% \end{array}$	8×016	$25+25$	1000	11817	
	8×017	30+30	${ }_{8} 83$	+ $\mathrm{p} / \mathrm{p} 205$	
	8×018	35 +35	714	P/P	
	${ }^{8 \times 026}$	$40+40$	$6{ }_{6}$		
	8×025	$45+15$	535		
	${ }_{8 \times 033}$	$50+50$	500		
	${ }^{8 \times 042}$	5, + +53	454		
	8×028	110	454		
	8×029	220	227		
	8×030	240	208		
$\begin{array}{\|c\|} \hline 625 \mathrm{VA} \\ 140 \times 75 \mathrm{~mm} \mathrm{ml} \\ 5 \mathrm{~kg} \\ \text { Regulation } \\ 4 \% \end{array}$	9x017	$30+30$	1041		
	${ }^{9 \times 018}$	$35+35$	892	+ $\mathrm{p} / \mathrm{p} / \mathrm{p}$	$+\sum_{\rho ; \rho}^{2} 20$
	9×026	$40+40$	781		
	9x025	$45+45$	694		
	9×033	$50+50$	625		
	${ }^{9 \times 042}$	54+35	S 568		
	${ }_{9} 9 \times 28$	110	568		
	9×029 9×030	220	284 260		

IMPORTANT: Aequitation - All voltages quoted are FULL LOAD. Please add regulation figure to secondary voltage to obtain off load voltage.
The benefits of ILP toroidal transformers
:LP toroidal transtormers are oniy halt the weight and height of their laminated equivalents, and are available with 110 V . 220 V or 240 V primaries coded as follows
For 110 V primary insert " 0 " in place of " x " in type number
For 220 V primary (Europe) insert " 1 " in place of " X " in type number
For 240 V priniary (UK) insert " 2 " in place of " X " in type number
How to order Freepost
Use this coupon. or a separate sheet of paper. 10 order these products. or any products trom other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to LLP Electronics Ltd cash must be registered. C.0.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent: within 7 day of receipt of order tor single and small quantity orders
Also dvalable a! Electrovalve Mapln. Marshalls. Iechnomatic and Watlord Etectronics

Please send me the following
ILP modules
Total purchase price
Ienclose Cheque $\square \quad$ PostalOrders $\square \quad$ Int Money Order \square
Please debit my Access/Barclaycard No.
Name
Address

Signature
ET 6/6
Post to. ILP Electronics Lid. Fieepost 2. Graham Bell House Roper Close. Canterbury CT2 7EP. Kent. England
Canterbury CT2 7.P. Kent. England
Telephone (0227। 54778 : Technical (0227) 64723 Ietex 965780
Ia division of
ILP Eiectronics ILP Etectronics Ltd) TRANSFORMERS StAYAHEAD.STAY WITHUS

TECH TIPS

Surgeless 555 Clock

H.B. Broughton, Bishop's Stortford

The CMOS version of the 555 has two major advantages over the bipolar type: a) it is a micropower device; b) it is largely free of the supply current surges generated by an ordinary 555 every time its output changes state. This is important because the surge can upset other circuits powered from the same supply, but the problem can be avoided by using the rather unusual configuration shown, saving 60p an oscillator over the CMOS answer to this difficulty!

Experiment has shown that the supply surge (typically 300 mA by 100 ns) is roughly halved by using pin 3 (OUTPUT) of the 555 to charge/discharge the capacitor rther than pin 7 (DISCHARGE) and a resistor to $\mathrm{V}+$. It is reduced to less than 25% of its typical size by using pin 3 and wiring the capacitor to $V+$, and is then small enough to be removed by a 100 nF capacitor between the supply rails.

This gives the circuilt shown, a 'surgeless' clock with frequency $f=6 R C$

(R in ohms, C in microfarads), mark/space ratio of typically $3: 2$, and voltage swing of 1 to 11 V . These figures were found using a load impedance of 330 k ; the frequency is affected if load impedance is less than about $10 \times R$, but if low impedances are to be driven, pin 7 can be used and the load wired from pin 7 to power: alternatively, a 1 k 5 reistor can be taken from pin 7 to power and the load put between pin 7 and ground, though this reduces the available voltage swing at pin 7 .

With the component values shown, this clock runs at 2 kHz and produces a nice clean square wave with low rise times.

Stylophone With Memory

J.R. Walker, Norwich

This single-octave 'stylophone' can store and play back over a minute of music (two in 'slow' mode). The keyboard was constructed by pushing drawing pins into a plastic box on to which a C to C keyboard was drawn. The drawing pins are numbered one to twelve; this is just the order in which they are scanned and it doesn't matter what notes they actually are, since they are manually tuned by the presets PR1-12. LED1 indicates that no more memory is left, while SW2 allows you to stop in the middle of playback/record without affecting the tune. The unit is automatically reset when switching from play to record, and by leaving it on reset you can play tunes without affecting the one in memory. Like magnetic tape, recording completely wipes out what was previously recorded. To obtain the best results, record in 'slow' and play back in 'fast', since one finger playing is not a speedy operation!

In'fast' mode IC6 oscillates at about

10 Hz , causing IC1 and IC2 to scan the keyboard (each one clocks on by one alternately). IC4 is held off by IC3a. If the stylus is placed on one of the drawing pins, nothing will happen until the counters get to that pin. At this point they stop and IC4 turns on, producing a note. The pitch of the note depends on which preset is driving pin 7 of IC4. The note stays on until the probe is removed from the pin, whereupon everything carries on as before.

With each pulse of $1 \mathrm{C} 6,1 \mathrm{C} 7$ clocks on once, counting from 1 to 1024 in the memory. IC8 remembers if a note was played at that point. On playback all counters are reset and IC8 plays back the tune, taking 1024/10 or over 100 seconds to do so. Slow mode takes roughly twice as long.

The power rail (5 V at 200 mA) should be well smoothed (say 1000 uF 3300 uF) to preserve the memory if the supply flickers(memory is lost on powerdown). Although the circuit doesn't draw anything like 200 mA the capacity to deliver this current is important as IC4 and IC6 can draw heavily on the power rails.

Solid State Scope Using LEDs

G. Durant, Selby

This 'scope' is completely solid state, with the absence of the cathode ray tube. The tube is replaced by a 10 by 10 matrix of LEDs which provide a smaller, more robust substitute. The Y input is connected via a series resistor to IC1, an LM3914 which is an LED bargraph driver. The IC is used in the dot mode and therefore, if a waveform is applied to the Y input, a single 'dot' will appear to move up and down with the voltage from the wave. Input sensitivity is adjusted via SW1, which brings different series resistors into circuit. The resistors are odd values and are made up by placing two or three in series. If 1% resistors are used, an accuracy of about 0.25% can be achieved.

The LEDs must be spaced 1 cm apart, both on the X and Y axis. The use of an LED matrix screen means that the scope can be very thin - in fact pocketsize. Also, an LED screen does not need
very high voltages to work it, so batteries could be used. The only problem is that at high frequencies the resolution is not as good as it could be, although the scope can be used nevertheless at frequencies up to 1 MHz .

The time base uses a crystalcontrolled CMOS clock running at 1 MHz . This is broken down into lower frequencies by a string of divide-by- 10 chips, in this case 4017 s . These frequencies go to a six-way selector switch which selects the timebase frequency. The time base is variable from 100 mS right down to 1 uS in steps of 10 . A 100 pF variable capacitor, marked 'freeze waveform' is used to fine-tune the main oscillator, so the waveform can be frozen.

A suitable power supply is also shown, but any supply may be used with an output voltage of about 12 V (not more than 15 V). Even a 9 V battery could be used (eg PP9) as, in theory, only one LED is on at a time.

The scope can be expanded to use more LEDs, or to have a trigger device. For the beginner, however, the scope shown would be sophisticated enough to be of great service.

MIGHTY NINETY PACKS

SUPER VALUE PACKS ALL AT 90p EACH POSTAGE 15p PER PACK

BUY SIX PACKS AND GET A SEVENTH PACK FREE!

MN2. $2001 / 1 / \& 1 / 2$-wath Resistors

MN3. 1001 \& 2 -watt Resistors
MN4. 50 Wirevigund Resistors
MN5. 100 metal oxide Resisto
2% and 5%
MNG. 12 asstd potentiometers
MiN7. 25 assid skeleton pre-set Resis
tors.
MN8. 50 assid Electrolytic Capactors. MN9. 100 asstd Ceramic Capacitors Plte disc. ub and monolythic etc MN 10. 100 mixed capachors Polyester types. Mypes. 1 . 2Uasstd Silver Mica Capacitors. MN12. 8 Tantalum Bead Capacitors (useful values) MN13. 20 asstd Transistors BC. 2 N Serres + Power etc
MN14. 40 IN4148 Diodes
MN16. 20 min wire ended Neons
MN17. 212 volt Relays Ex nearly new equip.
MN18. 3 Encapsulated Reed Relavs $9-12 \mathrm{v}$. coll. d pole and t pole
MN19. 224 volt Relays Ex nearly new $\begin{array}{ll}\text { equpp } \\ \text { MN20. } & 1240.110 \text { to } 12 \text {-volt. } 100 \mathrm{ma}\end{array}$ Transformer
MN21. $1240 \cdot 110$ to 24 volt 100 ma Transformer
MN22. $82^{\prime \prime}$ Led s with clips. 4 red 2 yellow. 2 green
MN23. $\mathbf{3 0 0}$ asstd screws, nuts, washers. self-tappers etc
washers. self-tappers etc
MN24. 100 asstd small springs
MN27. 200 tems grommets, spacers. cable markers, plastic screws, sleeving the wraps etc

MN29 75 mts equipment wire asstd colouis and sizes
MN31. 12 asstd trimmer capacitors.
MN32. 15 30p Arr spaced eic.
MN33. 20 coil formers, ceramic. plastic, red relay erc
MN34. 25 min. glass reed switch MN35. 10 assid switches. toggle slide. micro etc
MN37. 10 asstd audio connectors Din phono etc
MN38. 1 PCB with triac control IC data
MN39. 1 oscillator PCB toads of components (no data)
MN40. 50 Polystyrene capacitors MN41 12 BC549C (Plastic BC109C) Transistors
MN42. 10 BC 107 Transistors. MN43. 10 BC108 Transistors. MN44. 10 Screwfix S.P.C. O min slide Wist.
MN51. $10 \times 0.2^{\prime \prime}$ Red LEDs
MN52 20×0.1 MFD 25 V Ceramic disc capacitors
MN54 20×0.01 MFD 25 V Ceramic disc capacitors
MN56 1014 pin low profile IC skt. DIL MNSs $2 \times$ CA723 Voltage R skt. DIL MN58. 2xCA723 Voltage Regulator MN59 3 places of Verdoboard. Useful sizes. 10×0.125 R
MN62. $10 \times 0.125^{\circ}$ Red LEDS.
MN63. 50 mixed polyester caps C280
NN63. 50 mixed polyester caps C280
Siemens etc MNG4. 5 Pre MN69 4 min push to break switch

CHORDGATE LTD. vert A 75 FARINGDON ROAD, SWINDON, WILTS TEL: SWINDON (0793) 3387'7

RETAIL SHOP AT ABOVE ADDRESSI SCHOOLS,COLLEGES, OFFICIAL ORDERS WELCOME PLEASE QUOTE NO. OF PACKS WHEN DRDERING

SPECIAL OFFER

	$1-24$	$25-99$
$2114 \mathrm{~L}-450$	$90 p$	$95 p$
$2114 \mathrm{~L}-200$	225 p	210 p
$2716(+5 \mathrm{~V})$	459 p	
2532	450 p	400 p
2732	450 p	400 p
$4116-200$	90 p	85 p
$6116-150$	550 p	500 p

BOOKS (NO VAT) (p \& p 50p/book)

Prog the 6502	$\mathrm{fln}^{1} 75$	Motorota Micro Comp HB	67.00	Sinclair Prog, Real App.	${ }^{\text {f6.95 }}$
6502 Appleations	£19.25	6 bilo Micta his	E5.50	50 Rip Roaning Games	f4.95
Prop 8 Interracing 6502	f19.50	Gerting Acpuainted $\mathrm{XX81}$	84.95	D01 Pockel Book	65.95
Espic Assy Lang. Prog.	f12.10	Hints 6 Tps 2×81	E4.25	Atom Business	E7.95
Prog me 880	f11.95	Masterng MiC Code JX81	55.95	Alom Magic Book	E5.95
288 Master Dala Book	66.50	M'C L ang Made Simple ZX91	68.95	Gieting Accuenines ATOM	${ }_{65} 9795$

ACORN ATOM

Basic Built 8K + 2K £135 Expanded $12 \mathrm{~K}+12 \mathrm{~K} \mathbf{~ f 1 8 0}$
(p\&p $£ 3$ per unit) (expanded unit includes F.P.From) ATOM PSU $£ 7.00$ ($£ 1.20$ p£p) 3A5V Regulated PSU $£ 22$ ($p \notin p$ f2)
F.P.ROM $£ 201 \mathrm{~K}$ RAM $(2 \times 2114 \mathrm{~L}) £ 2$ Tool Box ROM $£ 25$ New colour card $\mathbf{£ 3 2}$
ATOM SOUND BOARD: Kit comprises of a PSG, VIA and a 2K ROM with demo program and connectors. The board can be plugged into the ATOM Bus to provide parallel and serial output ports and audio output to mini speaker or hi-fi amplifier Complete Kit $\mathbf{£ 3 5}$
ATOM VISION: See April/May PE for project details. Interesting experiments with computer measurements and tracking. Complete kit $\mathbf{£ 4 6}$ Software Cassette/demonstration £46
Full range of software available ex stock
Send for our detailed ATOM LIST
SPECIAL OFFER: ACORN INTRODUCTORY PACKAGE £10 lincluding interactive teaching, financial planning, household and games pack)

SEIKOSHA GP100A dot matrix printer, full graphics, double width characters up to $10^{\prime \prime}$ paper width, self testing. £199 + Carriage
EPSON MX80 F/T 9×9 Matrix Printer. 80 CPS bidirectional with logic seeking condensed, emphasised and enlarged chargers or full graphics
MX 80 F/T $1 \mathbf{£ 3 5 0}$
MX80F/T2 £350 + Carr BMC 12' Green Screen, 18 MHz bandwidth £149

SOFTY II

The complete microcompressor development system for both Engineers and Hobbyists. You can develop programs, debug, verify and commit them to EPROMs. Will accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September '81 P.E. Built unit complete with PSU and TV lead £169.

16K DRAM CARD

Low CBT Memory expansion system for 6502, 280 and 8085 based microcomputers. Kit complete with PCB, all ICs and sockets (Exluding Rs and Cs) $£ 26.00$

BBC MICRO MEMORIES CONNECTORS
NOW AVAILABLE

OSCILLOSCOPE EPRT2

Be the first on your block with a hand-held scope. We continue this superb project with the full constructional details and setting-up instructions. Designs by K.W. Dugge.

The mechanical construction of voltage divider and preamp is shown in Fig. 1. The major component (and main constructional member) is the switch SW1 (a Makaswitch type). Between wafers 1 and 2 is fitted screening plate 2 (measurements as in Fig. 3) and between wafers 2 and 3 , screening plate 3 (dimensions in Fig. 4). The screening plates support the voltage divider board and are soldered to it (on the copper track). The preamplifier board forms the end of the switch assembly. The entire section is surrounded by screening plate 1 (dimensions in Fig. 1) which is screwed to the bottom of the case and to the front structure.

In order to achieve a good earth connection for the switch rotor a safety pin, mounted on screening plate 3 before assembly (Fig. 5) is used as an earth contact.

The component layouts for the voltage divider and preamplifier boards are shown in Figs. 6 and 7. Resistors R1, R2, R15, R17, R19 and R21 are soldered directly to the switch contacts. Resistor R15 passes through screening plate 2 (drill diameter 4 mm). The two 3 mm holes are used for the (insulated!) passage of the connecting wires for switch contact 1 as well as for the connection to R15/R16. The same is true for R19 and screening plate 3.

The equipment is housed in an aluminium case; Fig. 6 shows the necessary drillings and cut-outs in the front panel. The screen cut-out ($64 x$ 55 mm) must be fitted with a 'light tube', to prevent the entry of unwanted light. In the prototype instrument a plastic box was used from a pack of screws, having the appropriate outside dimensions. Behind this cutout, a green film is fitted (from stationers) on which the measurement scale (6×8 squares of 7 mm side) has been drawn with Indian ink. The screen is fixed to the inside of the front panel using strips of foam draught excluder.

Figure 6 illustrates how the main board and screening plate 1 are fixed to the front section, using a bracket for each (M3 countersunk screw through the front section and the fixing bracket).

Fig. 1 Assembly of the voltage divider and preamp unit.

Fig. 2 SW1 contact wafer arrangement. Use in conjunction with the circuit diagram published last month.

The main board provides lengthwise stiffening of the case, since it is screwed at one end to the front section and at the other to the back panel (aluminium angle $10 \times 10 \times 1 \times$ 70 mm long). The front half of the main board also provides lateral screening of the input voltage divider.

There are nine 5 mm diameter
holes in the bottom of the case (mark and drill from the circuit board, after the components have been fitted) for the adjustment of trimmer capacitors CV1-9. There is also a countersunk hole to take the M3 screw used for fixing screening plate 1 (as in Fig. 1) and three other $M 4$ countersunk holes for securing the power supply board

Fig. 3 Screening plate 2.

Fig. 6 The front panel drilling details.

Fig. 7 The internal construction of the oscilloscope

Fig. 8 The wiring details for SW2.
(marked out from the board). Note that the screw which passes through the transformer core should be made of brass or plastic.

The cathode ray tube is passed through - and only held by - the draught-excluder-coated screening cylinder. The fixing of this cylinder is as shown in the photograph. The sheet brass supports are formed to the shape of the screening cylinder and softsoldered or glued with Araldite. Q16 is screwed to, and insulated from, the back panel of the case (use a mica washer, and test the insulation after fixing!).

The back panel has six holes as follows; two $\times 8 \mathrm{~mm}$ for the insulated phono sockets (for the source voltage), four $\times 3.2 \mathrm{~mm}$ for the main circuit board fixing bracket, the M3 studding (tube fixture) and transistor Q16.

Switching On And

 Setting UpAn ammeter must be connected in the supply line for the initial operation. At switch-on, a current of about 850 mA (DC) should flow for a short time; this should fall within a few seconds to about 700 mA as the tube heater warms up and increases in resistance. The following checks and adjustments should be made in the order in which they are given.

Set the stabilised supply voltage (on C26) to 10 V , using PR7.

Check the $\mathrm{V}_{r \mathrm{E}}$ voltage on Q 18 or

Fig. 9 Overlay for the preamp.

Fig. 10 Component overlay for the voltage divider board.

PARTS LIST

Q19. This should be a 25 kHz square wave with an amplitude of 20 V peak-to-peak and an overshoot of less than 10 V . Due to tolerances in the pot core, the frequency may vary from 25 kHz .

Check the tube heater voltage: a 12-13 V peak-to-peak square wave. The heater voltage cannot be measured with a simple multimeter! The relatively high frequency of 25 kHz will
cause false readings. Check the +7 V , $-6 \mathrm{~V},+150 \mathrm{~V}$ and -460 V (on C36) supplies. Set the working point of the X-output stage, with PR6, to give 6 mA in the 150 V line. Set the working point of the Y-output stage, with PR3, to give +100 V 'after' R78/79. Set the beam to sufficient brightness with PR8 (not too bright, or the trace will be blurred). Adjust the trace for optimum sharpness
in the middle of the screen with PR9 and PR10. Set the picture width with PR5. Rotate the tube so that the X-axis is exactly parallel to the drawn scale. Fix the tube in this position using adhesive tape. Turn the Y -position potentiometer to its mid-position, and adjust the trace to the middle of the screen using PR1 (on the preamplifier board).

Fig. 11 Component overlay for the power supply board.

Next month we conclude this project with the final test procedures and calibration details.
Fig. 12 Overlay for the main circuit board.
LANKING $\underbrace{+7 V-6 V}_{\text {TO PREAMPLIFIER }}$ calibration details.

			\square		$\begin{gathered} \text { NOW OPEN } \\ \text { MONDAY-SATURDAY } \\ 9.305 .30 \end{gathered}$	
	25p	$\begin{aligned} & \text { 25WAY "U } \\ & \text { CONNECTORS } \\ & \text { 50+ } \\ & 1.70 \quad 1.10 \\ & 1.90 \quad 1.20 \\ & \text { ALL }+ \text { YAT } \end{aligned}$	$100+$ 0.95 1.00	WIRE WRAP SKTS. 24 Pin Yore 240 14 Pin Gold 22p 18 Pin Gold 24p 100 PCS Min Ord.	C10 data casseties 10 for 55.75 lice. VaI	Tr Cunhlemonis 50, INC PLE SEP 75Ω BNC PLG SAp PLESA PLI 40p S0238 SKT 36p 100 PCs MIM ORD.

TELETYPE ASR33
I/O TERMINALS

OLIVETTI TE300 PRINTER/TERMINALS

MPV

ExPERIMENTORS

$5 v+12 v-12 v+24 v$

 POWER SUPPLYOrce aguin we are very bloued to dive this aupat Powar Supply Unit end hope to selisty most of our preious custorners who were dirippocined whan wo sid out den to
 have wall brem made for your lab. they constis of a sumiunclosed chassis mmaring $180 \mathrm{~mm} \times 120 \mathrm{~mm} \times 350 \mathrm{~mm}$ cortrining all sicicon thactronice to give the following finy requated and short cricut proot outentis of
$+5 v @ 2$ mps $D C \quad+12 v @ 800 \mathrm{ma} \mathrm{DC}$ $-12 \mathrm{v} @ 800 \mathrm{ma} \mathrm{DC} \quad+24 \mathrm{v} @ 350 \mathrm{maDC}$ and if therds not mough a fully fioeting $5 v$ output @ 50 maDC which may be suriesed to give a host of other voticige. Al outputs en brought out to the from peral wie minimare jigk socters and ans abo duplicesed at the neer on shor fiphy loads. Unimes sccept smaderd 240v mains inat They an ox GPO and may have minor saractios on the front panela, they an bodd urrasted but in pood intanal condition. $£ 16.60$ ouch $+£ 2.50$ p+p complets with circuit end compenant liot Trantormes guaranked HURRY Whd compenemit int Trangtoma guarm

HIGH SPEED DATA MODEMS

 Fondronow Moden for un on DATE 2412 suricta, a
 modution 2400 beod thl duplex $000 / 1200$ murdyy neo maver. 4 win or 2 wiy opention Sat we LEO temas indication CMOS ectadiogy, moduler constrution ariginat cont ow $£ 700$ anch Bated trand now, viplod congtol with PSU ©
$\mathrm{f} 1 \mathrm{B5} .00+\mathrm{f} 9.50$ cariseg + VAT.
-Pornission mar be mquind for cemaction to PO linas

DISTEL ©

"Dial our Database!" Get information on 1000 's of stock items and order via yourc
baud on $01-6896800$ 18.30 to 09006 deys a week and all day Sundays |TS FREE!

DIABLO S30 DISK DRIVES

Another shipment allows us to offer you oven greater savings on this superb 2.5 MB (formatted) hard disk drive. Two types are veilable both fully refurbished and vailable both fully refurbished and electronically identica, the only differe is the
pecks. $s \times 0$ front losder, p
door $\mathrm{E550}+\mathrm{vit}$
830 fixed, peck change via removel of top cover E2e5 + vat

+ A - 15v PSU for 2 drives $\mathbf{E 1 2 5 ~ + ~ v a t ~}$ Carriege \& insurance on drives $\mathbf{£ 1 5 . 0 0 + \text { vat fully }}$ DEC RKO5, NOVA, TEXAS compatable further infoon controliers etc on request.

MAINS FILTERS

Prodessionol type mains filtera bs used by "Main Frame Manufecturers' ideal for curing those unnerving hang ups end detu gittches, fit one now and cure your problems! Suppreation Devices SD5 A10 $5 \mathrm{amp} £ 8.95$
Coreom Inc F1900 30 amp $£ 13.95+$ pp $£ 1.00$

DC SYSTEM SUPPLY

Proiessional fully cased fan cooled system supply.

 Standard $240 \vee$ ac input with the following DC Outputs $5 V @ 11$ amps $+15-17 v @$ amps. $-15-1 /$ © 8 ampsand $+24 \mathrm{v} @ 4 \mathrm{amps}$ All outputs are fully crowbar protected and the 5 volt output is fully regulated. Sold tested and in a now or littie used condition complete with circuit $£ 55.00+$ cart $E 8.50+$ vatDIM $15.5^{\circ} \times 9^{\prime \prime} \times 6$

NATIONAL MA1012LED
 CLOCK MODUE

$\star 12$ HOUR

* ALARM

$\star 50 / 60 \mathrm{HZ}$

The serme module as used in most ALARM/CLOCK radios today, the only difference is our pricel All electronics are mounted on a PCB measuring only electroni"s arre by addition of a few switches and $5 / 16$
$3^{\prime} \times 11^{\prime}$ and volts AC you have a multi function alarm clock at a fraction of cost. Other foatures include snozaze timer, amp pm, alarm set, power fail indicator, flashing seconds cursor, moduluted alarm output etc. Supplied brand new with full data only Supplied brand new with
Suitable transformer $£ 1.75$.
£5.25

[^1]
SOFTY 1 \& 2

THE PRINTER SCOOP OF THE YEAR THE LOGABAX Z®O MICROPROCESSOR CONTROLLED LX180L MATRIX PRINTER

A massive bulk purchase enablas us to offer you this superb professiinalal printer at a fraction of its recent
cosi of cost of over $£ 2000$. Uilisising the very latast in
 facilities with all electronics on one plug in i.L.C.B. Just
study the specification and you will instantly realise it study the specicaion ants of the most exacting
meets il the requirement maetis eil he requiremments

RS232 N24 serial interffica-7 xtal controled band ratas up
ink nbbon $\#$ RS232 224 serial interface $-7 \times$ xtal controled baud ratas to $\$ 4$ Type fonts itatic scriot, doubla width italic large, standard $\$$ Internal butte \star Internal seff test $\$ 170 \mathrm{CPS} \star$ Varible paper tractor up to $17.55^{\prime \prime}$ mide \star Solid stee construction \#All software in 2708 eproms eszily reconfigured for custom fonts etc. All this and more, not refurbished but BrAND NEW At Only $\mathbf{E 5} \mathbf{2 5}$ +vat
OPTIONAL EXTRAS* Iowercaseoption $£ 25.00 * 16 \mathrm{kbufferf30.00*} \mathrm{Second} \mathrm{fractorfor}$ simultieous dual forms $£ 85.00^{*}$ Floor stand $£ 45.00$ * specialist carriage $£ 19.00$ All items plus VAT data sheet on reques.

Unbelievable value the DRE 7100 E 72008 disk
drives ufilise the finest trechnology to give you 100% bus compatability with most drives avainable woday, the only difference being our PRICE and the superb
manufacturing quality. The 7100 single scoed E 7200 doubte sided drive accepth hard or sotit sectoring BM or ANSI standard gving a massme 0.8 MB
$7100) \mathrm{E} 1.6 \mathrm{MB}(7200)$ of storge

7200 double stided $\ldots .225 .00+9.00+9.50$ carr + vat full technical manual $\mathbf{£ 2 0 . 0 0}$ alone £ 9.00 with drive, refund of difference on purchase of drive. Oata sheet on requast
SPECIAL new KODE
$8^{\text {Sp }}$ single sided. single or double density diskettes $£ 1.80$ each $£ 15.00$ for 10 inc. lib case + vat:

COOLING FAN SPECIAL

Koep your equipment cool and remble wht our range of professional fans.
ETRI $99 \times$ UOO Muniur
Mune complete with finger guerd. Makets price $£ 18$ our price $\mathcal{1} 10.25$ BUHLER 69.11 .22 micro minature $8-16 \mathrm{VDC}$ reversible fan Moasures only $62 \times 62 \times 22 \mathrm{~mm}$ Usesa brushiess DC ssmomotro, almost silent runningideal Donable equipment lifa in excess of 10.000 hours. BRAND NEW manufacturers price E32.00 our prce E 13.95
MUFFIN/CENTAUR Cooling fons. tested ex equipment 240 V E6. 50 . 11 £1.90 KOOL TRONICS Poweriul snail type biower gives mossive ir moverment with cennitifugal rotor DIM as a cube 8 " $\times 8^{4} \times 6$ " air aperture $2.5 " \times 2.5^{\prime \prime}$ with flange fixing. BRAND NEW 110050 Hz

$$
\because \bullet \quad \bullet \bullet
$$

Dept E.T.I., 64-66 Melfort Rd., Thomton Heath. Croydon, Surrey. Tal: 01-889 7702 or 01-689 6800 INFORMATION Unless otherwise stated all prices inclusive of V.AT. Cash with order. Minimum order value $£ 2.00$ Prices and Postage quoted for UK only. Where post and packing not indicated please add 60p per order. Borna Fida account orders minimum $£ 20.00$. Export and trade enquiries welcome. Orders despatched same day where possible. 3\% surcharge on Access and Barclaycard orders.

Softwere development syatem inviluable tool for decigners hobbista, Atc. Enablee open heert surgery on 2716, 2708 mba Biowe copias roeds EPROMS or emuletos EPROM/ROM/RAM in situ whilse displeying contsonts on domeatic TV receiver. Marmy other fentures. E 115 + cmirr. + VAT, Optiond 2716. 2716 Function Cand E 40 + VAT. PSU $\mathrm{E} 20+\mathrm{E1} .50 \mathrm{cerr}$. VAT . setty 2 fer 2713/2112 E188+VAT

Write of phone for more datile
9"Y1DEO
MONITORS
Ex-aquipmant 8" Motorota Video Monitors 75Ω composita input, tastad but unguarnted. $\mathbf{£ 3 9 . 0 8}+\mathbf{8 7 . 5 0}$ canriage + VAT. Complote with circuit

SEMICONDUCTOR

 GRAB BAGS
 π with menufuctur

TH K KEYBOARDS

TAMGERME, OHIO ETC,

Streight fom the U.S.A. made by the world tampus R.C.A Co., the VPEOO Series of casad freastanding keyboonds meat aft raquirements of the most exacting uabr, ngity down to the pricel
Utilising the lotest in switch technology Guranteed in excass of 5 mililion the iorest in switch technology. Gueranteed in axcesss of 5 million operations. The keyboord has a hast or dinir fiatures incluging new alse rollover protection, single 5 V rail, kevpourd uppar//ower case, milover protection, cingle 5 m riil, Kovoowro on-board tone generator for keypress teedbeck, and al yoer futh R.C.A. backed guerantee.

Vrion 7 bit fully coded output with delerved
strobe, etc
VPAII Same as VPEOI with numeric pad
VFrees Serial. RSZ232. 20MA and TTL Output, with
G selectrable Boud Rater:
Ypere Same vpeors min
Phug siame as Vrow, with numeric pad, £e4.34
Plug for VPgoc, VPesic ez.10
Post, Packing and insurance.
ORDER NOW OR SEND FOR DETALS.
£1.95
ORERNOW
5V [). C. POWER SUPPL.IE S
Following the recent "SELL OUT" demand for our 5 v 3 amp P.S.U. we have managed to socure a large guantity of ox-computer systems P.S.U. With the following spec.: 240 or 10 v A.C. input. Outputs of $5 \mathrm{v} @ 3.4$ 7.2 v outputs are fully regulated and edjustabie with variable current limiting on the 5 v supply. Unit is self contained on a P.C.B. meaturing only $12^{-} \times 5^{-2} \times 3^{\prime \prime}$, The 7.2 v output is ideal for feeding "on board" regulators or a further 3 amo LM323K regulator to give an effective 5 v @ 7 amp supply
Supplied complete with circuit at only $\mathbf{5 1 0 . 5 5}+\mathbf{5 1 . 7 5} \mathrm{pp}$.
Believed working but untested, unguaranteed.

Eloctronic Car Socurity Yystom Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape. CB equipment - Programmable personal code entry system

- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen . Fits all 12 V neg earth vehicles - Over 250 components to assemble

MAGIDICE
 Electronic Dice

- Not an auto item but great fun for the family
- Total random selection

Triggered by waving of hand over dice

- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base

Hours of continuous use from PP7 battery - Over 100 components to assemble - Supplied in superb presentation gift box

SX2000

Electronic Ignition

The brandleading system
on the market today

- Unique Reactive Discharge

Combined Inductive and
Capacitive Discharge - Contact breaker driven - Three position cliangeover switch - Over 130 components to assemble - Patented clip-to-coil fitting - Fits all $12 v$ neg. earth vehicles

All EDA-SPARKRITE products and designs are fully covered by one or more World Patents
EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS 1 3DE England. Tel: (0922)614791 ${ }^{6}$

ASSEMF KIT	READY BULT UNITS	
$\mathbf{S X 1 0 0 0}$	$£ 12.95$	$£ 25.90$
$\mathbf{S X 2 0 0 0}$	$£ 19.95$	$£ 39.90$
TX 2002	$£ 29.95$	$£ 59.90$
AT. 80	$£ 29.95$	$£ 59.90$
VOYAGER	$£ 59.95$	$£ 119.90$
MAGIDICE	$£ 9.95$	$£ 19.90$

PRICES INC. VAT.POSTAGE \& PACKING
NAME
ADDRESS

I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR
£
CHEQUE NO
24 hr. Answerphone
PHONEYOURORDERWITHACCESS/BARCLAYCARD SEND ONLY SAE IF BROCHURE IS REOUIRED

Electronic Ignition

- The ultimate system Switchable contactless. Three position switch with Auxiliary back-up inductive circuit Reactive Discharge Combined capacitive and inductive. Extended coil energy storage ircuit. Magnetic contactless distributor trigger head. Distributor triggerhead adaptors included - Die cast waterproof case with clip-to-coil fitting Fits majority of 4 and 6 cylinder 12v neg. earth vehicles - Over 150 components to assemble

VOYAGER Car Drive Computer

A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Lid. Affords 12 functions centred on Fuel, Speed. Distance and Time. Visual and Audible alarms warning of Excess Speed, Frost/lce, Lights-left-on. Facility to operate LOG and TRIP functions independently or synchronously - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto intensity Unique speed and fuel transducers giving a programmed accuracy of + or - 1%. Large LOG \& TRIP memories. 2,000 miles. 180 gallons. 100 hours. Full Imperial and Metric calibrations. Over 300 components to assemble A real challenge for the electronics enthusiast!

DESIGNER'S NOTEBOOK

It's definitely a MOSFET month; we've shown you how to design big with our 150 W amp, and now Don Keighley provides a counterbalance with lots of smaller applications.

Field effect transistors (FETs) are peculiar brutes. If you've used them you'll know what I mean - negative bias voltages, depletion layers, pinch-off voltages and so on, ad infinitum. If you haven't used a FET before, the theory is simple enough: a FET is essentially a doped-silicon resistor (Fig. 1), much like a normal carbon resistor. The doped-silicon, however, exhibits a change of resistance if an electric field through the resistor varies. The electric field depends on the voltage present at the gate of the FET (Fig. 2), so a change of gate voltage changes the current through (and hence the resistance across) the device. Essentially a FET forms a voltage controlled resistance. In the example shown in Fig. 2 (a P-channe! FET) a gate voltage of 0 V will produce a resistance of approximately 100 R and a gate voltage of 5 V will produce a 1 M 0 resistance. For an N -channel FET the opposite is true; a gate voltage of 0 V will give a resistance of $100 \mathrm{R},-5 \mathrm{~V}$ gives 1 M 0 . For low drainsource voltages and low drain-source currents, the resistance change is linearly related to the gate voltage.

FETs have two enormous advantages over bipolar transistors. First, the gate input resistance is very high, meaning that virtually no current needs to be drawn from preceding circuitry. Second, FETs can exhibit very fast switching speeds - they can be used quite easily up to frequencies of many megahertz.

Problems, Problems

So, everything is fine - as long as you follow the rules. In low-power applications there is no reason why FETs can't be used anywhere a bipolar transistor can (they are, in fact, more versatile than bipolars - in low-power applications). But, therein lies the rub - power. It is very difficult (and expensive) to make a FET which can pass large currents: the main reason being the horizontal make-up of ordinary FETs. Bipolar transistors have vertical current flow and can pass larger currents

Fig. 1 A field effect transistor (FET) is a doped-silicon resistor, the resistance of which can be varied by changing the electric field through it.

Fig. 2 The symbol for a FET. Current through the FET and hence the resistance across it is controlled by the voltage at the gate.

Fig. 3 Cross-sections through a) a bipolar transistor; b) a field effect transistor.
because of it. Figure 3a shows the theoretical cross-section of a bipolar transistor and a similar cross-section of a FET is shown in Fig. 3b. Current flow in the bipolar is vertically upwards from collector to emitter and the large area through which the current passes allows large currents. FET current flow is from left to right (drain to source) and the small area of current flow means smaller currents than in a similar-sized bipolar transistor.

Recently, VMOS FETs have been manufactured which overcome the power problems normally associated with FETs. A typical VMOS FET cross-section is shown in Fig. 4. Current flow is now vertically upwards, from drain to source, in much the same way as in bipolar transistors. The larger chip area means large current. Hence we have transistors exhibiting all the advantages of FETs without the usual power limits. VMOS FETs also have some other very interesting advantages:

- low ON resistance - good for audio switching purposes.
- power amplification - as high as 10^{6}.
- positive temperature coefficient on the ON resistance - as the temperature goes up the transistor passes less current, therefore remaining thermally stable.
- easily operated in parallel to increase overall current flow - due to the inherent thermal stability no 'current hogging' by one device occurs.

We'll see applications using these advantages shortly.
The equivalent circuits of a VMOS FET (such as the VN67AF) in its OFF and ON states, are shown in Fig. 5. The zener diode protects the transistor from over-voltage on the transistor gate - it is a feature on many VMOS FETs but not all! If a VMOS transistor does not have such a gate-protection zener diode, it must be handled as a CMOS IC. You must take care to avoid static build-up between connections.

In the VMOS FET's OFF state (gate is low), diode D1 is reverse-biased and no current can flow from drain to source. In the ON state the diode is effectively shorted by a $2 R 0$ resistor, allowing current flow from drain to source. With gate-voltages between $0 V$ and $+V$ the resistor value is within the range $2 R 0$ to ∞

Fig. 4 Cross-section through a VMOS FET. Current flow is vertical, as in a bipolar transistor.
Fig. 5 Equivalent diagrams of a VMOS FET a) in the OFF state; b) in the ON state.

Fig 6. A simple unidirectional audio switch formed by a single VMOS FET.

Applications

Low ON resistances and high OFF resistances make VMOS FETs ideal for use in audio switching networks. Figure 6 shows a simple on/off audio switch controlled by the voltage on the transistor gate: +15 V turns the switch on and 0 V turns it off. Audio signals can only pass in one direction, from drain to source, but any audio voltage of about $-1 / 2 \mathrm{~V}$ to +5 V can be switched.

The extremely high gate-input resistance of VMOS FETs means that they can be switched by virtually any control method, such as CMOS, TTL, op-amps and so on. A four-channel audio multiplexer is shown in Fig. 7, which uses a bank of four VMOS FETs as input switches with the transistors being clocked

Fig. 7 Four VMOS FETs used in a four-channel audio multiplexer giving a time division multiplexed output signal.

Fig. 8 TIL gate logic can be used to control VMOS FETs but a gate pull-up resistor must be used to ensure that the FET gate reaches a high enough voltage to allow sufficient current flow through the FET.

Fig. 9 Simple audio siren. An astable oscillator provides drive to switch the VMOS FET on and off at an audible rate.
in turn by a 4017 decade counter. The fourth output of the 4017 is connected to the reset pin, giving a 1-2-3-4 count to control the VMOS FETs. As each FET is enabled by the 4017 counter the audio input at its drain is connected, via the source and a 10 k resistor, to the op amp.

If TTL logic is used to control VMOS FETs, a gate pull-up resistor must be inserted (Fig. 8) to ensure that the gate voltage is pulled up to +5 V when on - sufficient to give about 500 mA of current through the transistor. Figure 8 also shows the principle of VMOS current control through a load, in this case an indicator lamp. The load can, however, be virtually anything requiring current, eg relays, LEDs or loudspeakers.

Figure 9 shows the circuit of a simple siren using an astable (formed by CMOS gates), a VMOS FET and a loudspeaker. When the transistor is on, its drain to source resistance is about 3R0 so about 1 A (ie $V / R=11 / 11$) passes through the loudspeaker. The average current (assuming a 50% duty cycle from the astable) is therefore about 500 mA . Audio output power is thus about 2 W .

Paralleling two or more VMOS FETs in an output stage easily increases current-handling capacity. The siren circuit of Fig. 9 is redrawn in Fig. 10 with four paralleled output transistors. This more powerful siren will produce an output power in the region of 6 W . You can see that no ballasting resistors are needed (as you would require with a similar circuit using bipolar transistors) because of the positive temperature coefficient of the drain-to-source 'on' voltage. The explanation of parallel operation is very simple: if any one of the VMOS transistors begins to conduct a larger than average current it will tend to get warmer and so current flow will reduce.

Linear Applications

So far we've only considered switching applications using VMOS FETs (ie on or off), but they can just as easily be operated in a linear mode (to act as voltage controlled resistors) in the same way as ordinary FETs.

Linear regulators in power supplies are easily constructed:

Fig. 10 Paralleling output VMOS FETs can be done simply because they are inherently thermally stable.

FEATURE : Designer's Notebook

such a circuit is shown in Fig. 11. An op-amp compares the output voltage with a reference voltage derived from a zener diode and parallel variable resistance. The reference voltage is thus variable from 0 V to about 11 V . If the output voltage is less than the reference voltage, the op-amp increases the drive voltage to the VMOS FET, and vice versa, in a negative-feedback controlled loop.

Constant-current sources suitable for charging Nicad cells can be made easily using VMOS FETs, and a simple unregulated circuit is shown in Fig. 12. The current output is defined primarily by the gate voltage of the transistor by altering the ratio of the two resistors R1 and R2. By varying the gate voltage between 0 V and 5 V , a range of currents of approximately $0-250 \mathrm{~mA}$ will be obtained. Although the high output impedance of the transistor (relative to that of a bipolar) provides a level of current regula-

Fig. 11 A VMOS FET used in a linear voltage regulator. An op-amp is used in a negative feedback loop to provide the controlling gate voltage for the VMOS FET.

Fig. 12 Unregulated constant current source formed around a VMOS FET.

Fig. 13 Transistor Q2 holds the gate-to-source potential of the VMOS FET constant for any load. The current is therefore constant.

Fig. 14 A simple class \mathbf{A} power amplifier.
tion, differing loads will produce differences in current flow.
The circuit of Fig. 13 overcomes this problem with a negative feedback loop formed by Q2. This transistor holds the gate-to-source potential of the VMOS FET constant for any load. Thus the current flow is constant whatever the load.

A Class A power amplifier can be constructed with a VMOS transistor and because of the inherent thermal stability of the FET, very few precautions need be taken with the circuit (Fig. 14). The high transistor input resistance allows very high value biasing resistors. Although obviously an audio power amplifier (the transistor load is a loudspeaker!) the circuit itself will operate up to the megahertz regions.

ETI

(I.OSE UPOF゚ (OMETKEYBOARD)

AURA SOUNDS LTD.

tre the first company to successfully market WERSI organs and kits in the U.K. We have modern showrooms where we pride ourselves you will receive a friendly welcome Why fot pop in and see the WERSI range for yourself - we can always drrange a free demonstration. We also offer a free technical telephone support service which is second to none.

Alternatively, fill in the coupon below for free details. For immediate action telephone 01-668 973324 hour answering service.

AURA SOUNDS LTD.
14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733
17 Upper Charter Arcade, Barnsley, Yorkshire.

- Commet can accept uny to feor antelly keyboards (in additioa to the 2 keyboarits an thy organ - a five, nase band can piky on dié instrument.
- Wersi have simptiked self mambly more, with plug it circuite etc.
- Ergonomic playling uble eates operation the The Comet is available fn the dlegrin liad aig the spinet (W10 S) and with chromed uten Ints (W10 T) for transportapllity.
The Comet, the Orgaut to eve ut through ytid eighties - available now.
For more details of milisuperb orgnet ity us now on $01-608$, 1733 or wrlte to 1 tus Sounds Ltd. at the Purley Erazet

IHE COMET SPINET W'10 S

PORTABLE POWER?

After years of writing books on computers and awarding his famous 'White Elephants to the industry, Adam Osborne finally took the ultimate step and produced the Osborne I. Despite tairly reasonably priced well . . almost, and the main attraction seems as hardware goes, he get several hundred to be the fact that you gere thrown in tor free. pounds' worth of sottwa system up hill and down dale and generally put it through its paces, our reviewer will hopefully have recovered sufficiently to put pen to paper and report on his findings.

SIMULATING FORTH

(4) The interest sparked off by our recent series on FORTH has been so great that even we were taken by surprise. As a result, novel month we'll be publishing F operations so BASIC simulator for Fould like to try out the those of you who would actually having to buy language - without actistem - can have a a version of it won't break any speed go. It certainly wont bextremely clow, but it records, in tact it is extremely with Reverse does allow you
Polish Notation

PROGRAMMERS' TWOSTEP

OK, so you've learnt to program in BASIC Now, perhaps, you'd like to have a go at assembly but you're put onrams with the same you can't alter your progr. Well, what you ease as you can in BASsembler which lets need is our two-pass assembler which leds you write and modily machine code without and then turn your original.

So, if you'd like a professional software tool to help you with your assembly language programming, don't miss out on

our next issue!
 ARE YOU SECURE?

Or, to be more precise, are your programs? In our next issue we'll be taking a look at a rather clever method of program protection which actually allows your programs on any copied but then won't let them rue extreme! other system... frustrating in extremely We will also be publishing which guarantees ingenious Voting Loader which guaranost any perfect loading from cassettes at mind and speed. So, for your own peams and data, the security of your programs of our June make sure you secure issue.

Articles described here are in an advanced state of preparation but circumstances final contents.

STYLUS TIMER

Do you play your records with a smoothly-contoured, precisionengineered, highly-polished stylus - or a worn-out nail? Check your playing hours with the ETI Stylus Timer. Design and development by Phil Walker.

For modern styli and cartridge combinations the life of the stylus may run to many hundreds or even thousands of hours before replacement is necessary. The trouble is that even at five hours each and every day (which is quite a lot) it will take over six months to accumulate 1000 hours playing time. If you are like us you could easily forget whether you changed the old nail last week or last year, quite apart from knowing how long it has been used since then.

Don't worry, help is at hand - this device is designed to measure the total number of hours your stylus has been in use since you last changed it and give some indication of that measurement.

The device has six LEDs which, in the basic configuration, change every 200 hours. This could be used to indicate that a check on stylus condition should be carried out either at home or by your local dealer. When the last one comes on it will stay on until the device is reset (assuming the power is on).

As mentioned above, the basic
design allows for 200 hours per step, the last one occurring after 1000 hours. This can be modified to $400,500,1000$ or even 2000 hours per step giving replacement times of up to 10,000 hours for the very lightest equipment (or Scrooges), or 100 hours per step if your equipment is a little heavier than some or you want to keep your stylus in tip-top condition all the while.

In order to eliminate dependence on mains supplies when the equipment is not in use, the device contains a rechargeable battery which provides the microamp or so needed to keep the CMOS devices active. Also the LED display is turned off when not required to conserve battery power. To prevent accidents the reset facility is disabled when the device is on standby.

Designs Discussed

The circuit uses standard CMOS integrated circuits for most functions in order to keep the standby power as small as possible. This enables us to use a PP3-sized rechargeable Ni-cad battery, ensuring that with intermittent use the device should operate almost
indefinitely. (In fact a normal dry-cell PP3 battery will give a very long life but may not like the charging current flowing into it via R7).

The power for the LED display and the timing signal for the logic are taken from the AC input. This is any 50 Hz voltage source giving between 12 and 20 V at about 50 mA . For preference this supply should be switched with the turntable or equipment mains supply.

There was much discussion in the office about the actual method of detecting stylus use. The first method we considered involved detecting the presence of a music signal from the pickup, in a similar manner to the Watchdog auto-switch-off project we published in October '77. However, if the signal was tapped off after the RIAA preamp we realised the project couldn't be built by readers who lacked the confidence to muck about inside their expensive commercial hifi. On the other hand, putting the project between the deck and the preamp would lead to the knotty design problem of not degrading the pickup performance. Thus we opted for a

Fig. 1 Circuit diagram of the ETI Stylus Timer. The various lettered links are used to select the timing period (see text).

HOW IT WORKS

The 50 Hz power input is rectified by $B R 1$ and charges C2 via D1. Q2 and R7 form a simple voltage regulator using the battery $B 1$ as a reference. If there is no $A C$ input then D6 isolates the rectifier circuitry from Q2 and B1 supplies the very small bias current needed to keep the CMOS devices active via the base-emitter junction of Q2.

R4, D3 and ZD1 form a moderately stable voltage for the optical sensor and an input to the power detection circuitry IC1b. The output from the optical sensor (LED1 and Q1) is taken via $R 5$ and $R 6$ to IC1e either directly or via IC1c. This allows the circuit to operate with either an open or blocked light path as required.

Depending on the position of link A-B or A-C a 50 or 100 Hz signal will be applied to IC1f. The voltage of this signal is limited by R1, R2, D2 and ZD1 to prevent damage to IC1.

IC2 is connected such that it divides by $\mathbf{2 2 0}$ or $\mathbf{2 1 9}$ as determined by the input from IC1d. This is accomplished by the device loading its internal eight bit counter with the binary number on its inputs each time it reaches a count of zero. In this case the most significant seven bits are wired to $1101101 \mathrm{X}=218_{10}$ while the least significant bit (X) is switched between 0 and 1. The output from this stage drives IC3, a dual decade divider. The Q_{4} output from IC3a controls the division ration of IC2 as
outlined above. As the Q_{4} output is only high for two clock periods out of 10 the effective division ratio of IC2 is:-
$8 / 10 \times 220+2 / 10 \times 219=219.8$
IC3b is used to divids by 2 in the standard circuit and then drives IC4 which does the rest of the division required (a factor of 2^{14} or 16384) to give a one cycle in 200 hours signal.

IC5 is a decade counter with 10 decoded outputs. Each output is high for one clock period of the 200 hour input signal (or longer if counting is suspended). Only the first six outputs are used to drive IC6 and the sixth output also inhibits IC3b to prevent further counting. IC6 is a hex buffer with three-state outputs which have a fairly high current sink capability and can be forced to a high impedence state by a signal on pin 4. This facility is used to prevent the LED display taking current while the AC supply is off.

The reset switch PB1 is connected in an unusual place so that it can only pull the input to IC1a low when the power sense circuit indicates that the AC supply is present. When operated, the reset circuit applies a high logic level to the reset inputs of ICs 3, 4 and 5 for about a second. IC2 is not reset and will cause an error of two or four seconds in the timing but in a hundred hours or so this is not significant.
minutes in 1000 hours.
The final counter (IC5) has 10 decoded outputs of which only the first six are used. These control IC6 and thus the display. When the sixth output of IC5 goes high it disables the counter chain causing the sixth LED to remain on indefinitely.

IC6 contains six inverting buffers which have three-state outputs. This facility is used to switch off the LEDs and conserve power.

A transistor (Q2) was used in the standby battery circuit so that when operating from the $A C$ input, the supply voltage to the ICs was little different to that when operating from battery alone. Also the LED voltage can be stabilised at the correct value. The configuration allows the battery to be trickle-charged from the same supply.

Fig. 2 Constructional details of our sensor. Using different sized jack plugs will prevent incorrect connection.
mechanical solution, but adventurous readers may care to adapt this project and the Watchdog circuit for their own needs. Note that we CANNOT give any technical advice if you do try it.

The circuit operates by detecting when the tone arm is away from its rest position and then allowing the rest of the circuit to count at 50 or 100 Hz . The 50 or 100 Hz is divided by about 72 million in order to drive the final counter at one pulse every 200 hours. The already decoded outputs of this device (IC5) are used by the output driver (IC6) to power the display. The division ratio actually used is 72,024 , 064 , this being:-

```
214}\times20\times(1/5\times219+4/5\times220
(IC4) (IC3)
(IC2)
```

The error between this figure and the theoretical $72,000,000$ is 0.033% or 20

Construction

The construction of the main unit is straightforward, if a little fiddly on account of its small size. Assemble the components onto the PCB including the three links but excluding LED 2-7. Place the assembled PCB in the bottom of the box and align it over the wider spaced fixing holes with C2 next to the space for the battery. Mark the positions for the LEDs on the front panel and the jack sockets and PB1 on the back panel. Also mark a position for the power cable grommet. Drill all these holes in sizes to fit your components.

Wire up the switch and sockets. The common connection from R4 on the board should go to the sleeve connections on the jack sockets to

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	BR1 $50 \mathrm{~V}, 1$ A bridge rectifier
R1,2 100k	LED1 TIL32IR transmitter
R3 330R	LED2-5 2 mmgreen LED
R4 470R	LED6 $\quad 2 \mathrm{~mm}$ yellow LED
R5,8 47k	LED7 2 mm red LED
R6,9 4M7	Miscellaneous
R7 10k	PB1 subminiature push-button
R10-15 680R	B1 8V4 PP3-size Ni-cad (or PP3
Capacitors	- see (ext)
C1 10n ceramic	PCB (see $125 \times 65 \times 30 \mathrm{~mm}$ (Vero ref. $75-2682 \mathrm{~A}$);
C2 $\quad 100 \mathrm{u} 40 \mathrm{~V}$ axial electrolytic	case and 2.5 mm jack plugs and sockets;
Semiconductors	three pin DIN plug (if required to connect
IC1 40106B	to power unit); thin screened twin cable;
IC2 40103B	small grommet; $100 \times 55 \times 6 \mathrm{~mm}$ acrylic
IC3 4518B	sheet.
IC4 4020B	
IC5 4017B	AC POWER UNIT (IF REQUIRED)
IC6 4502B	$12 \mathrm{~V}, 6 \mathrm{VA}$ mains transformer; 100 mA fuse
Q1 TIL78 IR receiver	and fuseholder; mains neon; case
Q2 BC182L	$125 \times 65 \times 50 \mathrm{~mm}$ (Vero ref. 75.2684 B);
D14 ${ }^{\text {2 }}$ (N4148	three pin DIN socket; three-core mains
ZD1 6V8400 mW zener	cable; grommet; solder tags.

prevent accidental short circuits via the panel. The LEDs should now have their leads bent so that they will go into the board while the LED body protrudes through the panel. Finally connect the battery connector and the AC power lead. The latter should be a twin core screened cable terminated in a three pin DIN plug or similar to pick up the supply.

The Sensor

The purpose of the sensor housing is to hold the emitter and receiver in line and exclude some of the ambient light. Our sensor was constructed from an offcut of black Perspex about $90 \times 55 \times 6 \mathrm{~mm}$. This was cut into two pieces (36×55 and $52 \times 55 \mathrm{~mm}$). A U-shaped slot was cut out of the longer side of the smaller piece; then a hole was drilled in the thickness of the material in both legs of the U to take the optical devices and hold them in line. The back edge of the U was slotted to take the screened wire from the phototransistor.

Three holes were drilled along the centre line of the other piece of Perspex; two to take wires and one to take a fixing screw. The underside of the base piece was channelled out using a rasp attachment in a hobbyist drill to conceal the wires.

The sensor device is mounted in the top hole to reduce the amount of ambient light reaching it. The screened wire from the phototransistor is run along the slot in the plastic and down the hole in the base. The slot can be filled with resin and painted when finished.

If a small three-way connector can be obtained this could be used in place of the two jacks and a single length of screened cable would suffice to connect the sensor.

Power supply

The AC power supply is very simple and consists of a small mains transformer, fuse, neon indicator and three pin DIN socket mounted in a small box. Construction is very straightforward and, if the specified box is used, most small $6 \mathrm{~V} \cdot \mathrm{~A}$ transformers will fit onto the moulded pillars in the box, obviating the need for external screws.

Use and Modifications

To use the stylus timer, the sensor should be positioned so that the tone arm interrupts the light beam when it is in the rest position. Make sure that it does not foul the arm at any time if you have any sort of automatic control.

If possible the AC power supply for the device should be obtained from your system. Anything from 12 to 15 V $A C$ may be used without modification.

PROJECT : Stylus Timer

Up to 25 V may be used but R4 and R7 should then be 1 k 01 W and 27 k respectively. If the supply is greater than 25 V , one side of any available supply is earthed or if you prefer not to tamper with your system then use the simple mains power supply described.

With the sensor in position and a suitable $A C$ supply connected, press the reset button on the unit. The first green LED should light and stay alight for 200 hours of playing time, followed by the next LED until the red LED lights to indicate replacement overdue. If the power supply is switched off at any time the accumulated time is stored until the power is restored.

Other time intervals can be used in the device by changing the link positions. Changing A-B to A-C doubles the time period. Changing $\mathrm{G}-\mathrm{J}$ to $\mathrm{C}-\mathrm{K}$ or G-L increases the interval by $21 / 2$ or 5 respectively while changing it to $\mathrm{C}-\mathrm{H}$ halves it, although it will not stop on the last count as before. The link adjustments therefore give a range of 100 to 2000 hours per LED on the display - further reductions could be made by using pin 2 or 1 of IC 4 as output instead of pin 3 , giving $1 / 2$ or $1 / 4$ of the period. In some of these other positions the intervals between the lighting of each LED may not be as

Inside the Stylus Timer. Take care during construction as things are a little cramped.
regular as before (especially G-K). If it is desired to have counting enabled when the light path is obstructed then link D-F should be changed to D-E. We would like to thank Sonic Sound Audio, who live under our offices and kindly dismantled a rack hi-fi system so we could take our lead photograph.

BUYLINES

None of the electronic bits and pieces should present any problems; try any of the component companies advertising in this issue. The PCB can be obtained from our PCB Service using the order form on page 82; for the Perspex you can try plastics suppliers, arts and crafts shops or DIY emporia.

MASTHR THTFGYRONICS NOW! The PRACHICAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an aissolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.

NewJob? NewCareer? NewHobby?Getinto Flectronics Now!

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electionic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer

$\rightarrow 1$

Britain's Biggest Magazine For The Sinclair User

Over 100 pages of information and programs for the ZX81 and ZX80 user including a 1 K Chess routine!

ZX Computing is a quarterly magazine with over 100 pages of programs, articles, hints and tips for the ZX8l and ZX80. We've put the magazine together with just one aim in mind - to make sure you get the most use and enjoyment out of your Sinclair computer.

In the first issue, as well as a host of 1 K and I6K programs (the majority dumped directly onto the printer), we've got two articles to help dispel the mysteries of machine code, a chess routine which takes up just 1 K , an explanation of PEEK and POKE, an entire section on business uses of the ZX81 (complete with a program to handle the accounts of up to 100 customers) and a construction article which will show you - even if you've never used a soldering iron before - how to cheaply double the memory on your ZX81.

If you're serious about exploring the full potential of your Sinclair computer, and you want an easy-to-understand series of articles to improve and develop your programming skills, then ZX Computing is for you. Issue one is on sale now.

- Software Reviews - which programs are the best buy?
- Business Routines - put your ZX to work!
- Expansion Systems - how good and how much?
- Machine Code for ZX81- secrets revealed at last!
- DIY Memory Upgrade - cheap way of adding bytes

SUBSCRIPTION ORDER FORM

(5) MTP THTMN

513, LONDON ROAD, THORNTON HEATH, SURREY. CR4 6AR.

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
delete accordingly
Address

Please commence my subscription to ZX Computing with the

SUBSCRIPTION
RATES

(tick as
appropriate)

£7.00 for $\mathbf{4}$ issues
U.K.
:---
copy of the $\ldots . .$. issue

I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for $£$
(made payable to ASP Ltd)
Debit my Access/Barclaycard *
(*delete as necessary)

SC110 FULLY PORTABLE OSCILLOSCOPE

The new THANDAR SC110 represents a break through in Oscilloscope development The SC110 is less then $2^{\prime \prime}$ thick and weighs unders 21lbs, yet it retains the standard features of a bench oscilloscope.

LARGE SAE FOR COMPLETE LIST
Alt prices include VAT. Offical orders welcome. Mail order only, or callers by prio appointment. Barclaycard/Access welcome. Cash/cheque, etc., with order. Large SAE for complete Thandar list. Government and Educational Establishments afflcial orders welcome.

B.K. ELECTRONICS

37 Whitehouse Meadown, Enatwood, Lathron-San, Essex Ss9 5 TY Tet 8ourthend 527572
 \section*{Now our name
 \section*{Now our name means more,than means more,than ever before. ever before.
 If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
 Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.
 But you will of course still recog. nise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.
 Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.
 And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.
 Yes, we're sure you'll notice the difference. As well as that pleasantly familiar personal touch.
 BICC-VERO ELECTRONICS LTD.
 Industrial Estate, Chandlers Ford Easteigh, Hampshire SO5 3ZR. Tel: Chandlers Ford (04215) 62829.
 The mechanics of electronics

 Dice vero mict vero micc vero bice vero bice vero bicc vero Electronics Electronics Electroniks Electronics Electronics Electronic

sabtronics

Waking Performance Affordable

2010A 31⁄2-Digit L.E.D. Bench DMM 2013 31/2-Digit LCD. Bench DMM $2020 \quad 31 / 2$-Digit L.E.D. Bench DMM $2020 \quad 31 / 2$-Digit L.E.D. Bench DMM 3k-Digit L.C.D. Hand DMM \(\begin{array}{ll}2033 \& 3 \% -Digit L.C.D. Hand DMM
2035 a \& 31 / 2 -Digit L.C.D. Hand DMM\end{array}\) 2037A 312-Digit L.C. D. Hand DMM with Temp.
LP- 10 10MHz Logic Probe

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.

Full colour illustrated brochure and price list from: BLACK STAR LTD.,
9a Crown Street,St. Ives,
Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339

150WMOSFET AMPLIFER

Employing MOSFETs, this power amplifier features a 'no compromise' design from Dave Tilbrook and is rated to deliver 150 W RMS maximum; it features extremely low harmonic, transient and intermodulation distortion. This is achieved by overcoming the many basic problems encountered in the use of MOSFETs for audio amplification.

The objective of this project is to provide a power amplifier module of the highest possible performance. Ideally the power amp should produce an amplified version of its input signal and contribute no sound of its own. In order to design a practical amplifier that will come as close as possible to this ideal, it is necessary to 'define' limits on the input signal characteristic and then ensure that the power amp exceeds these limits.

The problem of amplitude overload cannot be eliminated, since no practical power amplifier has access to infinite supply voltage. In order to overcome this problem, the ETI-5000 module has been designed to handle in excess of $\pm 50 \mathrm{~V}$ rails, giving it a conservative power rating of 100 W RMS into 8 ohms. The output stage has been designed so that the MOSFETs will not operate outside their safe operating area on any load in which the effective series resistance does not drop excessively below 8 ohms. Increasing the supply rails will increase the audio power output (up to 150 W RMS max.) but for normal use, we recommend sticking to $\pm 55 \mathrm{~V}$.

Similarly, since no power amp has an infinite slew rate or infinite frequency response, the input signal has been limited by a passive input filter. It can be easily demonstrated by experiment that the introduction of a passive filter that does not excessively affect the frequency response within the audio passband will not affect the sound of the input signal. This filter will define a maximum possible input slope. It is therefore only necessary to design the amplifier with a slew rate that exceeds this by a sufficient margin to ensure freedom from slew-induced distortion. Since the amplifier is operated below its slew rate limit, the

application of negative feedback will decrease distortion produced as a result of the signal slope approaching the slew rate (TIM).

Pair Difference

Differential pairs have been used throughout the design to form not only the input stage but also the voltage gain stage. This ensures that the distortion characteristics of the input and voltage gain stages are low enough so that the open loop characteristics of the amplifier will be determined by the output stage. The improved frequency and phase linearity of the differential pair make it considerably easier to ensure that the amplifier meets the

Nyquist stability criterion. Another advantage of the differential pair is its relatively high supply rejection, a parameter which is often not given sufficient attention in power amp design.

Careful control of the feedback loop and the use of a passive filter/load on the output of the module, coupled with the design points mentioned above, have yielded an amplifier with particularly low dynamic distortion characteristics. An amplifier that has been designed with these objectives in mind will automatically have low THD and TID figures. The ETI-5000 is no exception, with a THD at 1 kHz and 10 W RMS of less than 0.001%, rising

A general view showing the internal layout of the amplifier. Toroidal transformers can be used instead.

SPECIFICATIONS

Power output

100 W.RMS into 8 ohms
($\pm 55 \mathrm{~V}$ supply)
(up to 150 W with suitable PSU)

Frequency response

8 Hz to $20 \mathrm{kHz},+0-0.4 \mathrm{~dB}$
2.8 Hz to $65 \mathrm{kHz},+0-3 \mathrm{~dB}$

NOTE: These figures are determined solely by passive filters.

Input sensitivity
1 V RMS for 100 W output
Hum
-100 dB below full output (flat)

Noise

-116 dB below full output (full, 20 kHz bandwidth)

2nd harmonic distortion

$<0.001 \%$ at 1 kHz
(0.0007% on prototypes)
at 100 W output using a
$\pm 56 \mathrm{~V}$ supply rated at 4 A
continuous
$<0.003 \%$ at 10 kHz and 100 W
3rd harmonic distortion
$<0.0003 \%$ for all frequencies less than 10 kHz and all powers below clipping.

Total harmonic distortion
Determined by 2nd harmonic distortion (see above).

Intermodulation distortion
$<0.003 \%$ at 100 W
(50 Hz and 7 kHz mixed 4:1)
Stability
Unconditional
slightly to around 0.003% at 10 kHz (top end distortion figures are a function of bias current). It should be remembered, however, that obtaining low THD figures should not be the prime objective of a good power amplifier design, but results from the reduction of dynamic distortion mechanisms.

Tested And Trying?

The module has been tested exhaustively and all prototypes have performed with negligible differences.

When attempting to measure distortion figures as low as these, great care must be taken with the earthing arrangement to the test equipment. The
amplifier module will give its lowest distortion figures only when measured with respect to the correct earth. It may be necessary to remove the connection between mains earth and signal earth inside some distortion analysers. This problem will not arise when the amplifier is connected to a loudspeaker. This condition is not unique to the 5000 module, but will occur whenever an alternative earth path is provided to the output signal earth.

The sound is clean with no sign of the aggressive high frequency performance common to many transistor amplifiers. There are some amplifiers that give the subjective

Fig. 1 The basic voltage gain stage of the ETI-5000 MOSFET amplifier.
impression of being 'over smooth', ie the amplifier on first listening sounds clean and unobtrusive. Further listening test reveals, however, that these amplifiers lack detail, and complex sounds like a symphony orchestra tend to beome a single mass of sound rather than being rendered as single instruments. The ETI-5000 does not suffer from this problem!

Carefully Does It

Particular care has been taken to minimise slew-rate limiting and harmonic distortions. An inspection of the 'How It Works' section will reveal the techniques employed.

Follow the suggested constructional method and no problems will be encountered.

Construction - Module

The construction of the power amp module is not difficult since all the components are mounted on a single board. Since the design employs a fairly large amount of negative feedback, the board pattern is a critical factor in attaining the maximum theoretical performance. It would be virtually impossible to achieve the same performance if the board pattern were altered, without recourse to a distortion analyser with a sensitivity of at least 0.005% and a very good spectrum analyser. The board pattern shown ensures freedom from earth path interaction and therefore does not degrade the distortion performance of the design.

Commence construction by soldering all the resistors onto the circuit board. The OR22 (0.22 ohm), 5 W source resistors in the output stage get warm if the amplifier is operated for extended periods at high power.

Fig. 2 Component overlay of the MOSFET amp module.

Fig. 3. This overlay shows the components which are mounted directly on the copper side of the PCB.

They should never get hot enough to burn the circuit board, since any fault capable of causing this much power dissipation should blow the supply fuses first. Nevertheless, it is good construction practice to space these resistors a few millimeters off the surface of the board. The $4.7 \mathrm{ohm}, 1 \mathrm{~W}$ resistor R29 should definitely be spaced off the board since it will overheat if a fault condition should cause oscillation of the amplifier at high frequencies. Do not mount the four 100 ohm resistors R21, R22, R23, R24 at this stage. These are mounted on the rear of the circuit
board and are best left until after the MOSFETs are mounted.

Solder the four fuse clips into the board next. Now mount all of the capacitors, with the exception of $\mathrm{C} 7,8$, 10, and 11. Once again, these mount on the rear of the board. Make sure the electrolytic capacitors C1, C5, C12 and C13 are inserted with the correct orientation as these are polarised components. Mount the 1 N914s and zener diodes, taking care to orient them correctly. Solder the trimpot RV1 into place and then the small-signal transistors, Q1, Q2 and Q13.

Next step is to mount the six voltage amp transistors, Q3 through Q8. These are situated on the board in two parallel rows, each row with three transistors. In the prototype modules, the heatsinks were constructed from two pieces of aluminium, as can be seen from the photographs. The transistors are mounted using 6BA bolts, each passing through a pair of transistors. This forms a very strong assembly which can then be soldered onto the board. Insulating mica or plastic washers should be used between the metal side of the
trasnsistors and the heatsink strip, using a small quantity of heatsink compound between each mating surface. When this transistor-heatsink assembly is completed, but before soldering it into the circuit board, check that each transistor is effectively insulated from

PARTS LIST

Resistors (all $1 / 2 \mathrm{~W}, 5 \%$)	
R1	470k
R2,11	47k
R3	10R
R4,16	1k0
R5	4k7
R6,20	47R
R7,10,13,18	270R
R8	10k
R9,14,19	22k
R12	3k3
R15,21-24	100R
R17	39R
R25-28	0R22, 5 W
R29	4R7,1 W
R30	1R0,1 W
R31	150R

Potentiometer
RV1 250R vertical trimpot
Capacitors
C1 $470 \mathrm{n}, 25 \mathrm{~V}$ PCB electrolytic C2 \quad nopolyester
C3 330p ceramic or mica
C4,7,8 \quad 470p ceramic or mica
C5 $\quad 100 \mathrm{u} 25 \mathrm{~V}$ PCB electrolytic
C6 10p ceramic or mica
C9 220n polyester
C10,11 47n polyester
C12,13 100u $63 \vee$ PCB electrolytic
C14 220p ceramic or mica

Semiconductors		
Q1,2,13	BC550	
Q3,4,7,8	BF470	
Q5,6	BF469	
Q9,10	2SK134	
Q11,12	2SJ49	
D1,2,3,4	1N914 or similar	
ZD1,ZD2	12V,400 mW zener	

Miscellaneous

PCB; four fuse clips; two 3 A fuses; one plastic bobbin or similar former, 15 mm diameter; one metre of 0.8 mm dia. enamelled copper wire; two strips of 20 g aluminium,each 15 mm wide by 47 mm long (for voltage amp heatsink); heatsinks, case to suit.

Semiconductors
BR1 $200 \mathrm{~V}, 35$ A bridge rectifier
Capacitors
C1,2,3,4 10,000 uF, $80 \vee$ can
electrolytics
C5,6,7,8 100n polyester
C9 470n polyester
Transformers
T1,T2 two $\times 35 \mathrm{~V}$ secondaries

Miscellaneous

SW1. . . illuminated rocker switch, 240 V AC rated; 1 off $2 A$ fuse and fuseholder, 1 off 3-pin DIN socket; 2 off 2 -way plastic terminal blocks; 2 off phono sockets; 2 off red and 2 off black heavy duty screw terminals; clamp grommet and sundry rubber grommets; hookup wire; nuts, bolts etc; heatsink/front panel, metalwork etc.
the heatsink. Using a multimeter on the resistance range, check for shorts between the centre lead (collector) of each transistor and the heatsink strip. Note that the bolts through the six transistors are automatically insulated from the metal rear of the transistor by the plastic body of the device so no additional insulation of the bolts should be necessary.

Before mounting the MOSFET output devices it is necessary to make the heatsink bracket. This is cut from a suitable aluminium extrusion. The board has been designed to suit extrusions with one of the sides at least 40 mm wide. The transistor mounting holes have been placed so that the heatsink brackets used in the ETI 300 W modules (April '80) are compatible, although there will be some unused holes.

The output assembly should now be checked for shorts. Remove the earthing bolt first (see overlay). The resistance between the case of each MOSFET and the bracket should be checked with a multimeter. If any device shows a short to the bracket it should be disassembled and the short found. Usually it is necessary to replace the TO-3 insulating washer as most faults of this type are the result of small metal burrs cutting through the washer when mounting the device.

Once the MOSFETs are mounted, the last passive components resistors R21, R22, R23 and R24 plus capacitors C7, C8, C10 and C11 can be mounted on the rear of the circuit board. These are positioned on the rear of the board so that lead length is kept as short as possible. Cut the leads just short enough to mount the components in place.

Set-up Procedure

The recommended supply voltage for the modules is around $\pm 55 \mathrm{~V}$. With this voltage and reasonable supply regulation, the module will deliver around 100 W RMS into a nominal 8 ohm load.

First, re-check that the output devices are not shorted to the heatsink bracket. This is best done with the earthing bolt removed as mentioned earlier. If no shorts are found, replace the earthing bolt.

Do the same check for shorts between the six voltage amp transistor collectors and their heatsinks.

Check the polarity of all polarised components. It is often difficult to tell one end from the other on diodes since the markings are easily rubbed off. If in doubt, check these with a multimeter. Wind the wiper of the trimpot RV1 fully counterclockwise (least resistance). This ensures no bias is applied to the output stage. Now, remove the fuses from the board if they have been fitted and replace them with 10 ohm, $1 / 2$ W resistors.

The module can now be connected to a power supply.

Make sure that the power supply connections are sound, with good solder joints. If you have access to a current limited bench supply it is best to connect the module to this for the set-up and initial test. If you can do this, set the current limit to around 200 mA . Do not connect a load to the output of the module at this stage.

If the power is now turned on, the current through the two 10 ohm resistors replacing the fuses should be low. If these resistors start to smoke, this indicates a fault condition - turn the power off immediately.

Fig. 4 This graph shows the measured distortion versus frequency for two values of quiescent current in the output stage.

Fig. 5 The measured frequency response of the amplifier (single module). Roll-off points are defined by the input filter (low end) and output compensation network (high end).

the OV6 drop of Q3 and Q4, will cause a voltage drop of 1 V 2 across resistor R15, causing a current of 12 mA to flow in this resistor. This current is shared by Q3 and Q4 and causes a i 7 drop across resistors $R 7$ and
R18. Once again, the effective input impedance of Q5 and Q6 is in R18. Once again, the effective input impedance of Q5 and Q6 is in
parallel with the resistors, but in this case the value of $R 7$ and $R 18$ is very paraliel with the resistors, but in this case the value of R 7 and $R 18$ is very
much lower than the base impedances of Q5 and Q 6 , so this effect can be ignored in a DC analysis like this. The voltage across R7 and R18 minus the OV6 drop of Q5 and Q6 will cause $1 \mathrm{V3}$ to be dropped across 32 mA
through the resistor. Again Q5 and Q6 form a differential pair, and this through the resistor. Again Q5 and Q6 form a differential pair, and this
current is shared equally by the two transistors. The load for these devices is formed by a current mirror, Q7-Q8, that ensures the current through Q5 and Q6 will remain the same. Transistors Q4 and Q5 therefore form the main voltage gain section of the amplifier and have a typical emitterit when the output stage quiescent current has been set. Diodes D3, D4 and zeners ZD1, ZD2 protect the MOSFET output
devices from being overdriven, as described in the text. The RC-RL netdevices from being overdriven, as described in the text. The RC-RL net-
work on the output ensures that the amplifier has a correct load at all frework on the output ensures that the amplifier has a correct load al all wise result.

This very brief DC analysis of the circuit is intended to help the constructor rationalise the voltages quoted on the circuit diagram. The voitages totypes, and slight deviations from these should be expected. The input signal is fed to three RC filter sections formed by C1/R2,
R4/C2 and R5/C3. The C1/R2 fitter defines the low end 3 dB point of the amplifier at around 7 Hz , with an attenuation rate below this frequency of $6 \mathrm{~dB} / \mathrm{octave}$. The two sections R4/C2 and R5/C3 both have 3 dB points of around 30 kHz defining the top end response of the amplifier. This filter
limits the maximum signal slope to less than the slowest stage in the
amplifer. It also provides protection against
Transistor Q13 and the associated components R8, R12 and D1, D2 formaconstant current source (or sink), maintaining a final DC current through the differential pair Q1, Q2 of around 240 mA . Under no-signal
conditions this current is shared equally between Q1 and Q2. The conditions of current is shared equaly between Q1 and $Q 2$. The resistances of the transistors Q3, Q4, decreasing the effective load resistances of the differential pair to around 15k. The voltage drop across
R9 and R14, should therefore be 1 V 8 approximately. This voltage, minus

HOW IT WORKS

devices，since the resistance of only several
centimetres of track will greatly decrese
their effectiveness．
In the 5000 these capacitors are
In the 5000 these capacitors are
mounted on the rear of the circuit board with one lead soldered directly to the drains
The gate resistors R21，R22，R23 and R24
 board，again soldered directly to the

 the bias preset RV1．The maximum gate to
source voltage of these MOSFETs is 14 V ；if this voltage is exceeded the MOSFET can be

 RV1；this acts as the bias voltage for the out－
 ple can never go more than 0V6 above the
output voltage，due to the 0V6 forward dosp ә8ер！ол әч！әכu！S zaZ jo dosp әsełjo＾

sənb！uчวə⿰ วsəчł If fo uo！peu！quos aч1

 overall feedback loop．

The most common method employed to
achieve this is to increase the value of the emitter resistors in the input stage．This reduces the voltage gain of the input stage， bandwidth．Consequently，in a power amplifier employing MOSFETs in the out－
put stage，the relatively small amount of
 the output devices，and the result is an
 gate－source capacitance is cured by the ad－
dition of the capacitors $C 7$ and $C 8$ shown in dition of the capacitors C7 and C8 shown in in the circuit and with the 100R resistors
R21，R22，R23 and R24，the only other com－ ponent required to ensure total stability of the output stage is the power R LC combina－
tion formed by R29，C 9，R30，L1 and the sup－

 stage will virtually see a short circuit since
the high frequency（ $>100 \mathrm{kHz}$ ）fourier
 The inductor 11 ensures that this does not happen by inserting a reactance that in－ R30 is placed in parallel with the induc－

The other two components of this net－

 The 220 nF capacitor is necessary since
 әч！u！uo！jed！ss！p ләмоd $48!4$ ач！to pueq

әp！noid $8 z y$ pue $\angle Z y$＇9zy＇szy siopsisay
 pue sa！！！due ayi fo כ！s！sajseseys sajsued

The final components needed to ensure
 Capacitors C12 and C13 are 100 uF elec－
trolytics that provide general supply
 where the MO：FET would tend to oscillate． For this reason capacitors C10 and C11
have been included also．These capacitors
must be positioned very near the output
the voltage on the bottoms of R5 and R6 will
be almost identical．If these two resistors
are made the same value，the current be made the same value，the current
are meath each resistor，and therefore the through each resistor，and here the the collectors of OB and $\mathrm{O4}$ will
current be identical．This ensures the Q3，Q4 pair
will operate symmetrically，even when a single－ended load is attached to the pair． Furthermore，since the collector of Q3
is connected directly to the base of O6，the is connected directly to the base of Q ，the
transistors $\mathrm{Q6}$ and $\mathrm{Q4}$ combine to form a push－pilt parr wh hery high gain in iont per－ In order to achieve good transient per－
formance when drivng the slightly capacsive toad of the outpul stage int
necessary to run a fairly large amount of necessary to tun a dirly lare amounh of
current through this stage，especially the final differential pair and the associated
current mirror．In the 5000 there is approx－ imately 16 mA through these transistors， and the average power dissipation is
thereforearound 0.8 W ．

These transistors will run fairly hot，ap－ proximately 60° on the sman el ansink
shown，but the transistors are well inside their maximum ratings．The result is a
voltage amplifier stage of exceptional vorage amply very high gain．Coupled with a well－designed input differential amplifier
and a good ouput stage，the phase linearity and d good ouphts stage，the phase linearity
produced by this voltages stage is excellent， stability of the amplifier．
Since the output of the voltage gain
stage has been designed to have sufficiently
 two MOSFETs in parallel，the output stage
consists simply of the MOSFETS themselves．If a preset pot is inserted bet－ ween the collectors of of $\begin{aligned} & \text { and } \\ & \text { voltage amplifies stage of } i \text { ．} 1 \text { the voltage }\end{aligned}$ across this presel can be used as the bias
voltage for the output stage．This is shown

The gates of the output divices are con－ nected to either side of the presel via
resistors R21，R22，R23 and R24．As men－ tioned earlier，these resistors increase the time constant associated with the MOSEET
gate capacitance，reducing the frequency response of the output stage slightly but en－ Both N－channel and P－Channel
MOSFETs are used in this project．The im－ $\dot{d}=$
3
0
0
0令
年 han the negative feedback is reduced，and accept the consequent increase in distor－
tion．

When designing amplifiers intended，as this proiect is，or extremely low distortion，is designed for as low a distortion as possible． When the negative feedback is applied，tru－ E the buk of the open loop gain is provided
by the main voltage gain stage．The dif． ference amplifier will generally provide
some voltage gain but its main objective is 5
3
0 respect to its two inputs．In some power
amps the output stage is a common drain or source follower MOSFET desisn and conse－
quently has a voltage gain slightly less than E An analysis of the distortion
characteristics of the differential pair
reveal

 distortion in a bipolar transistor is due ex－
clusively to the exponential relationship
 voltage，the distortion generated by a dif－
ferential pair and a single transistor can be calculated by techniques of fourier analysis．

As well as having low distortion itself，a
differential voltage emplifier will enable
both outputs of the input differential pair

 amplifier，a problem that would otherwise
lead to increased distortion in the first

Figure 1 is a circuit diagram of the

 pair，however，must be converted into a single－ended stage suitable for driving the
output stage．This is the iob of the current
 shorted and therefore acts like a diode，but with the same characteristics as the base－
emitter junction of Q6．The bases of Q5 and emitter junction of Q6．The bases of Q5 and
Q6 are connected together and therefore 0
0 Q5 forms a cmirror image＇of the base－
emitter junction of 66 ，the vollage drop 0
0
0
0
 transistors are matched．Since the vollage
on the bases and the volatage drop arrosst he on the bases and the voltage drop across the
base－emitter junctions is almost identical，

Fig. 7 Interwiring diagram for the complete (stereo) amplifier.
NOTE THAT THERE IS NO DIRECT
CONNECTION BETWEEN CHASSIS AND OV
full power this will drop to around $\pm 50 \mathrm{~V}$. With a 10 V drop across the output devices the peak signal voltage before clipping is around 40 V , which gives 100 W into a eight ohm load. In reality, the voltage drop across the
MOSFETs is not as high as this since MOSFETs is not as high as this since
the module uses two devices in
parallel. The maximum output power of the prototype unit using the power supply shown was 112 W single channel and 105 W both channels driven (RMS).

Getting lt Coing if
Having satisfied yourself that all is
well, remove the fuses on
 your breath ... and switch on.
aınseəu 'ınכวo sıefsesip ou su!unss \forall
 up your modules then you can replace up your modules then you can replace listening tests. Before replacing the fuses allow sufficient time for the electrolytic capacitors to discharge. This will take several minutes.
 up procedure, your amplifier is ready for listening tests.

The top and bottom covers can be screwed in place once you've conformed all is well. We . . for these items as steel plates will react
 produce quite a loud hum

O 1

 input signal earth line. The best way do thisen the chassis of the power amp人jddns samod әyl uo lu! od 10 วч7 pue In this way the power amp still has a valid earth reference at its input but the possibility of a hum loop is
 an effective shield to external electrical aq ueכ wәjqoad s! 47 Inq 'sajınos asiou
 chassis to the 0 V track at selected
places in the power amplifier. The

 effective open circuit to prevent the pəu!ןno əınрәวoud su!чนеә ә૫1

 numerous other power amps, and

 by the earthing configuration in the
 Lead Astray
lap to standard shielded cable for this application. The input wiring must be kept away from the 240 V wiring at the rear of the power switch. has to be AC-coupled to the 0 V line on each board for the reasons discussed earlier. This is done by soldering a 100 n capacitor on the rear of each board, immediately beneath R3. The earthing

 between this lug and the 0 V track

Follow the interwiring diagram
carefully and recheck at each stage.

of 10 amp hookup cable and the connection for the input earth is done at the input sockets. This is shown in
the circuit diagram.
. The 10 amp hook-up cable is used instead of the more usual shielded cable, since in this application the lower resistance of the hookup cable
results in better hum rejection.
告 fact that both the power amplifier and the preamplifier used to drive it must
be connected to the same chassis ground point via their power cables. If
 power amp are connected to the 0 V point on their respective power
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
3

 amp, a closed circuit is formed. Any

 point, down the shielded cable at the power amp input to the 0 V point in the preamp and via the preamp chassis around the loop again. The presence of input earth will be seen as an input by
 The cure is to open-circuit this loop so
that hum current cannot flow in the

Interwiring
By far the biggest problem in the design and construction of any
desplifier is that of earthing. If
maximum performance is to be obtained from the ETI-5000 modules great care must be taken to ensure complete isolation of high current
earths from low current ones such as
 the large currents flowing in the speaker return earths, for example, will interact with the input and distortion
 from the electrol current signal earth amplifier will have degraded hum figures and may even be unstable. The board layout has been designed to overcome these problems through the use of a singlepoint earthing arrangement. Earth lines from the output devices and power earth
lines from the on-board electrolytic capacitors are kept separate until they reach the $0 V$ point on the circuit 뭉

The main input signal earth is the most critical. To overcome any problem the input earth is isolated from the 0 V track on the circuit board by the 10 ohm resistor R3, shown on
the circuit diagram. The input wiring to the circuit diagram. The input wiring to

READ/WRITE

Letters for this page should be addressed to Read/Write at our Charing Cross Road address.

Dear Sir,
I am writing to you about two separate matters. First, a friend of mine recently purchased a kit for the ETI System A preamp from lelgate, as recommended in Buylines. The screened cable supplied for the internal wiring was the kind which has a semiconducting layer between the screen and the inner conductor insulation. My friend did not know of such cable and, as a result, his preamp had several strange 'faults.' This could, of course, be blamed on my friend's inexperience, but I think that the same mistake could be made by other constructors. I leave the matter to your judgement, but respectfully suggest that you contact lelgate with the suggestion that they include a note in future kits making the special nature of the cable quite clear.

Second, I refer to the articles on Pickup Amplifier Design (ETI Jan. and Feb. 1982). Mr Tilbrook makes reference in the first article to a resonance which is "a function of both the mass and the compliance of the cantilever and suspension system," which occurs around 10 Hz . As far as I am aware, there is a resonance which occurs around 10 Hz , and it is a function of the cartridge compliance. However, the mass involved in this particular resonance is the mass of the whole cartridge plus the effective mass of the pickup arm (as 'seen' by the stylus tip). This mass is of the order of 5-10 grams. The effective mass of the cartridge cantilever and suspension system will be (at a guess!) 5-100 milligrams. This would lead to a resonance around 100 Hz according to Mr. Tilbrook's equation ($F=(2 \pi \sqrt{ } \mathrm{mC})$, where m is the mass of the cantilever and suspension system and C is its compliance).

I was also under the impression that the RIAA roll-off point around 50 Hz was defined by a time-constant of 3180 uS, and not 3150 uS, as published. Perhaps this was changed by RIAA at the same time as the 20 Hz roll-off was added?

Signetics data shows the input current of the NE5534 to be less than $2 u A$, typically $0.5 u A$. My own experiments have lead me to believe that the operation of a moving-magnet cartridge is not affected by a current of this order flowing through it. However, in a preamp which must suit all cartridges, a DC blocking capacitor
must be a good idea.
To sum up then, thanks for an article which treats the cartridge preamp very well indeed, despite some small confusion over resonances.
Yours faithfully,
S I Merrick,
Lancashire
David Tilbrook has been contacted about these points and we hope to be running a reply from him very soon.

Dear Mr Harris,

I advertised in ETI for 18 months but have never received any editorial comment.

We are THE UK specialists in pocket computers. This is a very exciting field which has not been taken seriously. We started by selling the PC-1211 and recently the CASIO FX-702P and at last the new SHARP PC-1500. This really is a fantastic machine. We really look after our customers with hardware software and consumables. Our mailing list has grown and we are selling all over the world.

We have the only range of books on pocket computing in the UK. Our new book "POCKET COMPUTING MADE EASY" has sections on the PC-1211 - FX-720P and the new PC-1500. This is the most comprehensive book available on pocket computing. We are giving it FREE on all orders for the PC-1500. Our 1982 catalogue is being printed and we will send free copies to your readers.

CAN YOU IGNORE ALL THIS EFFORT?

Give a small dedicated company a break. Mrs Thatcher will be grateful. Yours faithfully,
Barry Elkan,
Elkan Electronics,
28 Bury New Road,
Prestwich,
Manchester M25 8LD

O.K. You've had a mention. So stop moaning!

Dear Sirs,
May I ask you to consider the following as the basis for a future article.

It is widely known that high sound levels can cause temporary, even
permanent hearing damage. However, although this fact is widely known it is not properly understood by the public. have not seen any 'in-depth' articles on the subject in the magazines that I take.

This seems to be a glaring omission when magazines such as yourselves devote pages and pages to the production of sound in ever-increasing variety and power. I am not
immediately involved in this subejct at the moment, but my colleagues are, and frequently bemoan the lack of understanding they encounter.

Would you consider publishing an article to clearly explain the hearing process and subsequently explain the effects of abnormal sound levels. This could be supported by details of audiometrics, possibly even a circuit (or project) of an audiometer.

When you consider that many of your readers are interested in the beauty of sound, from Bach to The Police, would it not be a great benefit to help them to continue to enjoy their pleasures for as long as possible, by not having those pleasures diluted by unnecessary hearing loss?

I hope you feel that this idea has sufficient merit to result in the printed word being published.
Yours faithfully,
G.M. Francis,

Ipswich
We have published a project for a SPL meter recently, but the point on high levels is well taken and we'll look at the idea for an article in more detail.

Dear Mr. Harris,
I am writing to say how delighted we are with Peter Freebrey's article on building the Wharfedale E7O speakers using our flatpack cabinet kit!

Just a point, though, - the article refers several times to "chipboard". Our cabinet kits are made from MDF board which is much finer grained, smoother and more consistent in texture and density than the highest density chipboard. Being ideal for speaker enclosures, this material is now being used by a number of up-market manufacturers (in spite of being more expensive than chipboard).

We found the April 82 issue of $E T I$ interesting and enjoyable.
Yours sincerely,
R.F.C. Stephens,

Managing Director,
Wilmslow Audio Ltd.
To be honest no-one here had ever heard of MDF before and even now we can't find out what 'MDF' stands for!

Never was any good at woodwork anyhow.

STERIEO AMPLIFIER KIT

＊Featuring latest SGS／ATES TDA 200610 watt output IC＇s with in built thermal and short circuit protection．
－Mullard Stereo Preamplifier Module．
＂Attractive black vinyl finish cabinet， 9 ＂$\times 8 \% / 4 \times 3 \%$＂ （approx）．
－ $10+10$ Stareo converts to a 20 watt Disco amplifier． To complete you just supply connecting wire and solder． Features include din input sockets for ceramic cartridge． microphone，tape or tuner．Outputs－tape，speakers and headphores．By the press of a button it transforms into a 20 watt mono disco amplifier with twin deck mixing． The kit incorporates a Mullard LP1183 pre－amp module， plus power amp assembly kit and mains power supply． Also features 4 slider level controls，rotary bass and treble controls and 6 push button switches．Silver finish fascia with matching
knobs and contrasting
cabinet．Instructions cabinet．Instruction
available，price 50 p avarable，price 50 p ．
Supplied
FFEE with SPECIFICATIONS： SPECIFICATIONS：
Frequency response Frequency response
input sensitivity

Tone controls
Distortion
Mains supply

£16－50

$+£ 2.90$ p\＆p． Suitable for 4 to 8 ohm speakers $40 \mathrm{~Hz}-20 \mathrm{KHz}$ P．U． 150 mV ．Aux． 200 mV Mic． 1.5 mV ．
Bass $\pm 12 \mathrm{db} @ 60 \mathrm{H}$ Treble $\pm 12 \mathrm{db} @ 10 \mathrm{KHz}$ Mains supply $\quad 220-250$ volts 50 Hz ． 8＇SPEAKER KIT Two $8^{\prime \prime}$ twin cone domestic speakers．$£ 4.75$ per stereo pair plus $£ 1.70$ p\＆p．when
purchased with amplifier．Available separately $£ 6.75$ \＆ purchased
$£ 1.70 \mathrm{p}+\mathrm{p}$ ．

PRAGTICALELEGTRONICS CAR

RADIO
KIT series ॥

2 WAVE BAND，MW－LW

＊Easy to build．＊ 5 push button tuning．＊Modern design．＊ 6 watt output．＊Ready etched and punched PCB．－Incorporates suppression circuits．
All the electronic components to build the radio，you supply only the wire and the solder，featured in Practical Electronics．Features：pre－set tuning with 5 push button options，black illuminated tuning scale．The P．E．Traveller has a 6 watt output neg．ground and in－ corporates an integrated circuit output stage，a Mullard IF Module LP1181 ceramic filter type pre－aligned and assembled，and a Bird pre－aligned push button tuning unit
 （ $6^{\prime \prime} \times 4^{\prime \prime}$ app．）available as a com．
plete kit．£2．50／pack $+\mathbf{£ 1 . 5 0}$ p\＆p．
£2．00 p\＆p．

BIRDAUDIO
 STEREO CAR RADIOBOOSTER

To boost your car radio or radio cassette to 15 W r．m．s．per channel．
£9．95
f1． 50 p\＆p．

125W HICH POWER AMP MODULE

кіт：£10－50 вицт：$£ 14-25$

 $+£ 1.15 p \& p$

 $+£ 1.15 p \& p$ £1．15 p\＆p．

The power amp kit is a module for high power applicat－ ions－disco units，guitar amplifiers，public address systems and even high power domestic systerns．The unit sate in an open circuit condition．A large safety maroin exists by use of generously rated components，result，a high powered rugged unit．The PC board is back printed etched and ready to drill for ease of construction and the aluminium chassis is preformed and ready to use． Supplied with all parts，circuit diagrams and instructions． ACCESSORIES：Suitable mains power supply kit with transformer：$£ 7.50$ plus $£ 3.15$ p\＆p．
Suitable LS coupling electrolytic：$£ 1.00$ plus 25 p p\＆p．

Max．output power（RMS）： 125 W ．
Operating voltage（DC）： 50 ． Operating voltage（DC）： $50-80 \mathrm{max}$
Loads： 4.16 ohms． Loads： 4 ． 16 ohms．
Frequency response measured＠ 100 watts： $25 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$
Sensitivity for 100 watts $400 \mathrm{mV} @ 47 \mathrm{~K}$ ． Sensitivity for 100 watts： $400 \mathrm{mV} @ 47 \mathrm{~K}$ ，
Typical T．H．D．$@ 50$ watts $40 \mathrm{~ms} \cdot 01 \%$ Typical T．H．O．＠ 50 watts， 4 ohms： 01%
Dimensions： 205×90 and $190 \times 36 \mathrm{~mm}$ ．

H－FI SPEAKERS
 ATBARGAIN PRICES

GOODMANS TWEETERS

8 ohrm soft dome radiator tweet
er（ $31 /{ }^{\prime \prime}$＂sq．）for use in up to 40 W
systems；with 2 element crossove
$£ 3.50$ each（ $\mathbf{p \& p} \mathrm{f} 1$ ）or $\mathbf{£ 5 . 9 5}$ pair（ $\mathbf{p \& p} \mathrm{f}$ ）
35 WATT MICRO 2－WAY SPEAKER SYSTEM Unit comprises one 50w（4＂app．）Audax soft dome tweeter HO100．And one $5^{\text {＂}}$ Audax bass／midrange 35 w driver HIFIIJSM． Complete with 2 eiement crossover． Total impedance of system 4 ohms
£7．95

PE．STEREO TUNER KIT

This easy to build 3 band stereo AM／FM tuner kit is de－ signed in conjunction with Practical Electronics（July 81
issue）．For ease of construction and alignment it issue）．For ease of construction and alignment it incorp－ FEATURES：VHF，MW，LW Bands，interstation muting and AFC on VHF．Tuning meter．TWo back printed
PCB＇s．Ready made chassis and sale Aerial：AM．－ rod，FM－ 75 or 300 ohms．Stabalised power supply with＇ C ＇core mains transformer．All components supp lied are to P．E．strict specification．Front scale size： $101 / 2$ $\times 21 /{ }^{\prime \prime}$ approx．Complete with diagram and instructions．
£17．95 Self assembly simulated wood cabinet sleeve to suit tuner only $£ 3.50$ Plus $£ 1.50$ p\＆p．

TVSOUND TUNERKIT
 £11－45

$+£ 1.50 \rho \& p$ ．

As featured in E．T．I．December＇ 81 issue．Kit of parts including PCB，UHF tuner and selector switch with all components excluding case．
＊Transformer $£ 1.50+£ 1.50$ p\＆p（p\＆p free on trans－ former if ordered with kit）．＊Ready built LP1 183 Mod－ ule for simulated stereo operation．$£ 1.95+\mathbf{7 5 p} \mathrm{p} \& \mathrm{p}$ ．

ALL MAIL TO：

21E HIGH STREET，ACTON，W3 6NG． Note：Goods despatched to UK postal addresses only．For further information send for instruct ions 20p plus stamped addressed envelope．All items subject to availablity．Prices correct at $31 / 1 / 82$ and subject to change without notice． Please allow 7 working days from receipt of order for despatch．
ALL PRICES INCLUDE VAT AT 15\％．

PER SET $+\mathbf{f} 2.70$ p\＆p．

MONO
GIXER AMP

$£ 39.95$

50 WATT Six individually mixed inputs for two pick ups （Cer．or mag．），two moving coil microphones and two auxiliary for tape，tuner，organs，etc．Eight slider controls －six for level and two for master bass and treble，four
 $61 /{ }^{\prime \prime} \times 3 y_{4}^{\prime \prime}$ app．Power output 50 watts R．M．S．（continuous） case with matching fascia and knobs．Ready to use

ALL CALLERS TO： 323 Edgware Rd， London W2．Telephone：01－723 8432.
Open $9.30-5.30 \mathrm{pm}$ ．Closed all day Thursday． RTVC Limited reserve the right to update their products without notice．

回田回

NICADS:UK'S LOWEST PRIGES

AMBIT'S NEW CONCISE COMPONENT CATALOGUE IS OUT NOW

Availatile at your

 newsagent orAmbit's new style catalogue continues to lead the market with low prices, new items, info, 3 f 1 discount vouchers. In a recent supplier survey, we were one of only two suppliers listed in all categories!
There's a few examples of some super low prices.

relay 150 W
£10.95
Price on the page

cmos

40001
 4000 4001 4002 4007

ELECTROMUSIC TECHNIQUES PaRT 3

In the final part of this electronic extravaganza, Tim Orr tidies up the loose ends with details of ADSR and signal input circuits, plus controllers and sequencers.

The ADSR unit has become industry standard for generating envelope contours and for filter sweeps. Curtis produce an entirely voltage controlled device, the CEM3310(Fig.1). The A, D and R inputs have an exponential sensitivity; these time constants will vary an octave for a 18 mV voltage change (or 60 mV per decade) at the input pins of the $I C$. The control voltages are externally attenuated by a resistor pair (30 k and 470R). The time constants are controllable over four decades, that is from 2 milliseconds to 20 seconds. The sustain level is variable from 0% to 100%, again using voltage control (0 V to +10 V , linear law). The CEM 3310 is ideally suited to polyphonic systems where one set of ADSR pots will control 5 or 10 independent ADSR units, by use of voltage control. An ADSR unit that employs a separate pot for each parameter is shown in Fig. 2. Time constants from three milliseconds to two seconds are available. This unit can be used in monophonic synthesiser systems.

Fig. 1 (Right) A monolithic ADSR circuit using the Curtis chip. The A, D and R time constants are variable from 2 milliseconds to 20 seconds.
Fig. 2 (Below) An ADSR unit using discrete components (courtesy of Powertran Electronics).

Fig. 5 Typical monophonic synthesiser keyboard unit.

Signal Input Circuits

Synthesisers are often used as signal processors, and so a variable gain input amplifier is needed (Fig. 3). This circuit has a high level high impedance input, which makes it suitable for guitars, plus a low level impedance input suitable for a low impedance microphone. A fuzz circuit has also been included so that severe harmonic distortion can be introduced to the signal. Another useful device is the envelope follower (Fig. 4). This is a fullwave rectifier followed by a lowpass filter. The envelope is often used to sweep a VCF or a VCO, to produce dramatic effects.

Controllers

Most synthesisers are controlled from a musical keyboard. The keyboard has to generate and remember a pitch voltage $(+1 \mathrm{~V} / \mathrm{octave})$ plus a gate signal to indicate that a note is being pressed (Fig. 5). The pitch circuit is a stable current source that drives a resistor chain. A potential of 83.3 mV is set up across each 15 ohm resistor. When one note is pressed, the potential of that note is stored in a sample-and-hold unit. When the note is released the potential is retained. If more than one note is pressed, then the lower note is selected.

A sample-and-hold unit cannot retain its information for ever; it droops. A no-droop solution to pitch generation is to use a digital system, as in Fig. 6. The 74C922 is a keyboard encoder; it scans a keyboard and generates a digital code representing the last note pressed. Unfortunately it can only define 16 notes (the 74C923 can define 20) and so must be limited to rather small keyboards. The digital code is converted into a pitch voltage with an eight bit DAC, only using the most significant top four bits. Some keyboards have a dynamic feature, so that the faster you play the note the louder it sounds. This is done by timing the key transition, but it is very difficult to get a natural feel to the keyboard. Some keyboards are pressure sensitive; the harder you press down, the more pitch bend or vibrato you add to the VCO pitch. Other manual controllers such as pitch bend/vibrato wheels and joysticks are also employed (Fig. 7). The wheels are always mounted on the left hand side of the keyboard so that the musician can operate them with his left hand and play the music with his right. The pitch voltage from a

FEATURE : Electronic Music Part 3

Fig. 6 A digital keyboard, in this case for a 16 -note range.

Fig. 8 Two portamento circuits; one linear (top), the other exponential (bottom).
keyboard is often processed by a portamento unit (Fig. 8). The pitch then glides from its last note to the next. Some people prefer exponential glides, others linear.

Sequencers

Electronic music often has a background rhythm, which is generated by some sort of sequencer (Fig. 9). A sequencer generates a string of pitch voltages which change on the beat. These are used to control a VCO which is perhaps passed through an ADSR and VCA unit. The result is a rhythmic string of notes. In the circuit, the clock is externally generated, although

Fig. 9 A simple sequencer.
there is no reason why the sequencer should not have its own dedicated oscillator. The sequence length can be modified by connecting the reset line to any output; if you connect it to the ' 8 ' output the sequence length will be 8 . An LED indicates which decoded output is active. The pitch pots have been given a three octave range, which might make tuning rather difficult; 0.1% of the pot rotation equals 3.6 cents of pitch (100 cents $=1$ semitone). Either a smaller pitch range could be used or multiturn pots could be employed, but these are rather expensive. Some sequencers quantise the pitch into semitone steps so that 2.7% of the pot rotation would equal one semitone. During this 2.7% rotation, the output pitch remains fixed. This can be done by inserting the pitch voltage into an $A D C$, using the beat signal to start the conversion and taking the DAC output as the quantised pitch output voltage.

Final Points

A modular synthesiser should have one or two simple audio mixer circuits (Fig.10,). These can be used to mix the final output signal or to send the signal to external treatments such as reverberation units, phasers or chorus units, and electronic or tape echoes.

A synthesiser relies heavily on stable and clean power supply rails. A good rule is never to dump large currents down the ground rail, as this is used as a voltage reference throughout the system. If you are going to turn lamps on and off, run them between the positive and negative rails. Ordinary 78XX and 79XX voltage regulators can be used, but if they get hot then their output voltage will drift and will give the system a long warm-up

Fig. 10 A simple audio mixer with four inputs.
time. A 723 regulator plus a power bypass transistor will give better temperature stability performance. Any hum on the supply rails will frequency modulate all the VCOs.

Good Books

Musical Applications of Microprocessors - Hayden Book Company.
Active Filter Cookbook - Howard Sams. Musical Engineers Handbook - Electronotes.

electronics today international

How to order: indicate the books required by ticking the boxes and send this page, together with your payment, to: ETI Book Service Argus Specialist Publications Ltd, 146 Charing Cross Road, London WC2 OEE. Make cheques payable to ETI Book Service. Payment in sterling only please. All prices include P \& P. Prices may be subject to change without notice

Beginners Guide to Electronics Squires $\mathbf{£ 4 . 5 0}$
Beginners Guide to Transistors Reddihough $\mathbf{£ 4 . 5 0}$
Beginners Guide to Integrated Circuits Sinclair $\mathbf{£ 4 . 5 0}$
Beginners Guide to Radio King $\mathbf{£ 4 . 5 0}$
Beginners Guide to Audio Sinclair $\mathbf{£ 4 . 5 0}$
Introducing Amateur Electronics Sinclair $\mathbf{£ 4 . 5 0}$
Introducing Microprocessors $\mathbf{£ 5} .20$
Understanding Electronic Circuits Sinclair $\mathbf{£ 5 . 3 0}$
Understanding Electronic Components Sinclair $£ 5.30$
\square TV Typewriters Cookbook $\mathbf{£ 9 . 3 5}$
CMOS Cookbook $£ 9.85$
Active Filter Cookbook $\mathbf{£ 1 1 . 3 0}$
IC Timer Cookbook 88.65
IC Op-Amp Cookbook £12.20
ITL Cookbook 99.15
MC 6809 Cookbook Carl D. Warren $\mathbf{£ 5 . 3 0}$
PLL Synthesiser Cookbook Kinley $£ 5.85$
8085A Cookbook Titus £10. 75
\square How To Build Electronic Kits Chapel £3.45
110 Electronic Alarm Projects Marston £5.25
110 Semiconductor Projects for the Home Constructor Marston $£ 5.25$
$\square 110$ Integrated Circuit Projects for the Home
Constructor Marston $\mathbf{E 5 . 2 5}$
110 Thyristor Projectors Using SCRs Marston E5.25 110 Waveform Generator Prajects Marston $\mathbf{f 5 . 2 5}$ 99 Practical Electronic Projects Friedman $£ 4.20$

What is a Microprocessor? 2 cassette tapes plus a 72-page book $£ 10.00$
\square Beginners Guide to Computers and Microprocessors with projects $\mathbf{£ 6 . 0 5}$
\square Basic Computer Games Ahl $\mathbf{£ 6 . 0 5}$
Basic for Home Computers Albrecht $\mathbf{£ 6 . 6 0}$
Illustrating Basic Alcock $\mathbf{£ 4 . 2 5}$
\square Troubleshooting Microprocessors and Digital Logic Goodman $£ 6.10$
Z-80 Microcomputer Handbook $\mathbf{f} 9.35$
\square Microprocessors in Instruments and Control Bibbero f15.30
\square Basic Basic Coan $\mathbf{£ 9 . 9 6}$
Advanced Basic Coan $\mathbf{4 9 . 9 5}$
$\square 1001$ Things to do with your Personal Computer Sawusch $£ 6.00$
\square Microcomputers, Microprocessors, Hardware,
Software and Applications Hilburn £17.40
\square Microprocessor Systems Design Klingman $\mathbf{£ 2 1 . 9 5}$
\square Introduction to Microprocessors Leventhal $\mathbf{f 1 1 . 2 5}$
Microprocessor Technology. Architecture and Applications $\mathbf{£ 1 1 . 3 0}$
\square Basic with Style Nagin $\mathbf{£ 6 . 3 0}$
7 Microcomputer Design Ogdin $\mathbf{£ 9 . 2 5}$
Hands on Basic with a PET Peckham $£ 11.95$ 6800 Software Gourmet Guide and Cookbook Scelbi £9.30
$\mathbf{8 0 8 0}$ Software Gourmet Guide and Cookbook $\mathbf{5 9 . 3 0}$ The 8080A Bugbook Rony $£ 10.05$
8080/8085 Software Design Titus $\mathbf{£ 1 0 . 0 5}$
How to Design, Build and Program your own Working Computer System $\mathbf{£ 7 . 1 0}$
Your Own Computer Waite $£ 2.25$
Microcomputer Interfacing Handbook A/D \& D/A £6.35
Crash Course in Microcomputers Frenzel $\mathbf{£ 1 4 . 9 5}$
Musical Applications of Microprocessors Chamberlain £20.95
\square The Pascal Handbook Tiberghien $\mathbf{£ 1 2 . 4 5}$
50 Basic Exercises Lamoitier $£ 11.10$
Learning Basic with the Sinclair ZX80 £4.95 Microprocessors for Hobbyists Coles $\mathbf{£ 4 . 2 5}$ Introduction to Microcomputer Programming Sanderson f5. 25
\square Microprocessors and Microcomputers for Engineering Students and Technicians Woolland $\mathbf{£ 5 . 9 5}$
\square Using CP/M - Self Teaching Guide Ashley Fernandez f6.95
[. Digital Counter Handbook Frenzel $\mathbf{£ 8 . 6 5}$
$\square 33$ Challenging Computer Games for TRS80-Apple-Pet Chance $£ 5.75$
\square How to Build Your Own Working Robot Pet Dalesta £5.75
\square Microprocessor and Digital Computer Technology £16.00
\square Guidebook to Small Computers Barden $\mathbf{£ 4 . 2 0}$
\square How to Debug Your Personal Computer Huffman £6.30
\square How to Troubleshoot and Repair Microcomputers Leuk £6.30
$\square 6809$ Microcomputer Programmes and Interfacing with Experiments Staugaard $£ 11.45$
\square Wordprocessors Programmed. Training Guide with Practical Application \mathbf{E}
\square Digital Circuits and Microcomputers Johnson $£ 9.75$
\square Experiments in Artificial Intelligence for Small Computers $\mathbf{£ 7 . 2 5}$
\square The Oscilloscope In Use Sinclair NEW EDITION 1982 \square How to Get More Out of Low-cost Electronic Test Equipment Tobery E5.50
\square Digital Signal Processing. Theory and Applications Rabiner $£ 26.40$ Electronic Communication Systems Kennedy $\mathbf{£ 8 . 9 5}$ Principles of Communication Systems Taub $\mathbf{£ 8 . 4 0}$
\square Introduction to Digital Filtering Bognor $\mathbf{£ 1 3 . 3 0}$ Transistor Circuit Design Texas Instruments $\mathbf{£ 1 0 . 9 5}$ Electronic Circuit Design Handbook Design of active filters, with experiments: Berlin $\mathbf{£ 6 . 8 0}$
\square Electronic Engineers Reference Book Turner $\mathbf{£ 4 2 . 0 0}$
\square Electronic Components Colwell $\mathbf{E 4 . 0 0}$
\square Electronic Diagrams Colwell $\mathbf{£ 4 . 0 0}$
\square International Transistor Selector Towers New $\mathbf{£ 1 0 . 7 0}$
\square International FET Selector Towers £4.60
\square International Op-Amp Linear IC Selector Towers $\mathbf{8 8 . 0 0}$
\square International Microprocessor Selector Towers $\mathbf{£ 1 6 . 0 0}$
\square Dictionary of Audio - Radio and Video Roberts $\mathbf{£ 1 6 . 0 0}$
Dictionary of Electronics Amos $£ 16.00$
\square Dictionary of Electrical Engineering Amos $\mathbf{£ 1 6 . 0 0}$
\square Dictionary of Telecommunications Amos $\mathbf{£ 1 6 . 0 0}$ Giant Book of Electronic Circuits Collins $\mathbf{£ 1 2 . 7 5}$
\square World Radio/TV Handbook Vol. 351981 £10.50
\square How to Build Electronic Projects Malcolm $\mathbf{£ 6 . 4 5}$
\square Modern Electronic Circuit Reference Manual Marcus £33.50

Please send me the books indicated. I enclose cheque/postal order for \mathbf{f}.

I wish to pay by Access/Barclaycard. Please debit my account.

Signed
Name
Address \qquad
\qquad

TRIO OSCILLOSCOPES

Range of mains operated Scopes with 5 " displays, triggered sweep (UK c/p £3.50)

560 Al 15 MHZ .10 mV : 0.5 micro s	
$566 \mathrm{a} 20 \mathrm{MHZ}: 5 \mathrm{mV}$: 0.5 micro sec.	
$577 \mathrm{~A} 3 \mathrm{MHZ}: 2 \mathrm{mV}$: 0.1 micr	£523.25
182020 MHZ : $2-5 \mathrm{mV} 1$ micro delay swee	
1830 mb	
ted delay linel New low price	¢453.00
CS1575 5 MHZ . $1 \mathrm{mV}, 0.5$ micro sec. Multi display Audio scope. £312.80	
COI $130305 \mathrm{MHZ}, 10 \mathrm{mV}$, low sweep for observation below 1 HZ and up to 450 MHZ .75 mm display (UK c/p $£ 2.00$) $£ 124.20$	

\section*{| DIRECT READ |
| :--- |
| HV PROBE $(\mathrm{UK} \mathrm{c} / \mathrm{p} 65 \mathrm{p})$ |
| ${ }^{0} / 40 \mathrm{KV}$ 20K Volt $\quad £ 18.40$ |}

MULTIMETERS

(UK c/p 65 p or $£ 1.00$ tor two) CHOOSE FROM UK's LARGEST RANGE KRTIOI 10 range pocket $1 \mathrm{~K} / \mathrm{Volt}$

OSCILLOSCOPE PROBE KITS (UK c/p 50 p per 1 to 3) Available BNC plug or Banana $\times 1 \quad £ 7.95: \times 10 £ 9.45: \times 1-\times 10$ £10.50 Also $\times 100$ (BNC only) £16.95

CLAMP-ON-METERS

 INSULATION TESTERS range carry case \& leads. Also wuilal and DC clanip in stock ($11.1 \mathrm{c} / \mathrm{p} 75 \mathrm{p}$)
 ST301 $300 A$ GON S ranges $\quad \mathbf{E P A . 5 0}$ $\begin{array}{ll}\mathbf{S T 3 1 0} 300 \mathrm{~A} \text { GONV } 9 \text { ranges } & \mathbf{3 2 . 9 5} \\ \text { K2802 150A, } 600 \mathrm{~V} \text {. AC } 7 \text { ranges } & \mathbf{\$ 3 5 . 9 5}\end{array}$ K2802 150A, 600 V . AC 7 ranges $\$ 35.95$
${ }^{*} \mathrm{~K} 2606300 \mathrm{~A}, 600 \mathrm{~V}, \mathrm{AC}$ ranges $£ 49.50$ ${ }^{*} \mathrm{~K} 2606300 \mathrm{~A}, 600 \mathrm{~V}$. AC B ranges $£ 49.50$
K 2803300 A .600 V AC 9 ranges $£ 59.95$ K2803 300A. 600V. AC 9 ranges $\$ 59.95$ K2903 900A 750 V . AC 9 ranges $£ 77.50$ K2103 1000A. 750 V . AC 9 ranges $£ 95.07$ *Optional temperature probe $£ 13.80$ ELECTHONIC INSULATIOM TESTERS
Battery oper ated complete with carry case (UK c/p £1.00)
YF500L $500 \mathrm{~V} / 100 \mathrm{Meg}$. Plus $0-100 \mathrm{ohm}$
K3103 $600 \mathrm{~V} / 100 \mathrm{Meg}$. Plus 0.26 K ohm K 3106500 V \& $1000 \mathrm{~V} 1000 \&$ \& 109.00
$£ 119.00$
K4101 Earth resistance tester £ 149.00
W500 Hand cranked insulation tester
$500 \mathrm{~V} / 100 \mathrm{Meg}$
$500 \mathrm{~V} / 100 \mathrm{Meg} . \quad £ 79.50$

SBOPE ADD ON UNITS SUITABLE LTCSO5 Semiconductor Curve tracer $\mathbf{C 9 5 4 5}$

CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery operated. Plus special features (UK c/p $£ 3.00$) 3030 Single trace 15 MHZ . $5 \mathrm{mV}, 0.5$ micro secs. Plus built in component tester. 95 mm tube
3131 Dual trace 15 MHZ , rg to $35 \mathrm{MHZ}, 5 \mathrm{mV}, 0.5 \mathrm{micro} \mathrm{sec}$
130 mm tube. plus component tester, $\mathbf{~} \mathbf{2 7 6 . 0 0}$
3034 Battery-mains dual trace 15 MHZ . trig to 20 MHZ built in Nicads. 5 mV . 0.5 micro secs (Eliminator charger optional £28.75) Also Available 3033, single trace 3034 3337, dual MHZ, 130 mm

£322.00

£356.50
£454.00
STUP PRESS
Model 3035 was £189.75-Special offer $\mathbf{1 1 6 8 . 5 0}$

THANDAR - SINCLAIR

Reliable low cost portable instruments. bench models all $25.5 \times 15 \times 15 \mathrm{~cm}$. Generators mains operated rest battery (supplied) UK c/p Hand models 65 p bench fl .15)
Oigital multimetens ($31 / 2$ digit LCD)
TM 354 Hand held. DC $2 \mathrm{~A}, 2 \mathrm{~m}$ ohm, $1 \mathrm{mV}-1000 \mathrm{~V} D C, 500 \mathrm{~V}$ AC
$£ 45.94$
IM352 Hand held. DC 10A. Hfe test. Continuity test $£ 557.44$ TM353 Bench 2A AC/DC 1000 V AC/DC 20 M ohm. Typical 0.25%
NEW LOW PRICE $£ 86.25$ IM 351 Bench. 10A AC/DC. 1000 V AC/DC, 20M ohm Typical 0 t\%
FREDUENCY COUMTERS (8 Digit)
PFM200A Hand held LED 200 MHZ 10 mV (1600 MHZ with TPEIOO
New Model fitted BNC sockets. $£ 67.50$
TF040 Bench LCD $40 \mathrm{MHZ} .40 \mathrm{mV}(400 \mathrm{MHZ}$ with TP600) £126.50 TF200 Bench LCD $200 \mathrm{MHZ} 10-30 \mathrm{mV}$ (600 MHZ with (TP600))

TPGOO 600MH $2=10$ Prescaler 10 mV
GEMERATORS (All bench models) mains operated
GENE GATORS (All bench models) mains operated.
£43.13
TG 100 Function 1 HZ -100 KHZ Sine/ SQ /Triangle/TTL 89085 TG102 Function 0.2 HZ -2 MHZ Sine/SQ/Triangle/TTL $£ 166.75$ TG105 Pulse. $5 \mathrm{MHZ}-5 \mathrm{HZ}$ (200nS-200 mS) various outputs $£ 97.75$ OSCHLLOSCOPE (Bench model low power portable)
10 MHZ 2 trace 10 mV . 0.1 micro sec All tacilities
Model SC 110
$£ 159.85$
Rechargeable battery pack $£ 8.63$. AC adaptor/charger $£ 5.69$ OPTIOMAL ITEMS
Carry case (bench only) £6.84 AC Adaptors (state model) £.5.69 TH391 DIGITAL themmometer handhedd - 50° to $750^{\circ} \mathrm{C} \quad \mathrm{E} 68.43$

KEITHLEY PROFESSIONAL DIGITAL MULTIMETER

UK c/p 75p

Model 130.25 range Easy to hold and use
1234
LCD DMM. Size $7 \times 31 \times 1.5$
Aanges
OC Volts 200 mV - $1000 \mathrm{~V} 0.5 \% 100$ micro vol AC Volts 200 mV - $750 \mathrm{~V} 1 \% 100$ micro volt DC current 2mA-10AMP 1-2\% 1 micro amp AC current 2 mA - 10 AMP 2\% I micro amp Resistance $200 \mathrm{ohm}-20 \mathrm{Meg} 0.5 \% 0.1 \mathrm{ohm}$

TV COLOURGENERATORS

PAL LCG393 VHF 6 pattern
I C6392u UHF 15 pattern $£ 143.75$ LC6392v VHF 15 pattern $£ 231.15$ LCG399 VHF/UHF 13 pattern $£ 57270$ MC101 UHF pocket colour
Fitted NICADS

[^2]

ROBOT MODULES

A brace of projects for our mobile this month; a digital PWM interface board for the motor controller so your computer can take your robot for a walk, and an optical sensor so it won't run over your cat/budgie/kids. Here's the first one. Design and development by Rory Holmes.

The digital pulse width modulator is constructed entirely from CMOS logic ICs to provide pulse control of two independent channels. Pulse width modulation can be used to control a variety of analogue functions; this design is offered to allow computer control of ETI's Dual Motor Switching Amplifier, featured in part 1.

Binary counters are used to count both the ON and the OFF periods of the mark-space cycle; thus the duty cycle is independent of the timing circuitry, being an exact ratio of two numbers.

The duty cycle data for either channel is loaded through an eight bit port common to both, and is addressed to a particular channel by the use of two strobe lines. When a strobe line is taken low the input data is latched into the associated control channel, which generates a pulse width corresponding to the input value. The pulse width will remain at this value after the data has changed and until its strobe line is activated again. The minimum strobe pulse required is 50 uS ; thus both motor speeds can be changed in about 100 us .

To suit the standard eight bit data bus of most microprocessors we have allowed seven bits for controlling the pulse width, with a further bit for setting the forward/reverse motor direction. Pulse widths can thus be obtained with a resolution of one part in 128 . With the modulation frequency set at 20 kHz (just above audibility), the pulse width can be increased from zero in 390 nS increments up the maxirnum of 50 uS ; this represents 100% duty cycle modulation ($50 \mathrm{uS}=$ one cycle at 20 kHz).

Timing signals for pulse generation can, of course, be implemented directly with software from the controlling microprocessor; however, this creates large overheads on processor time. Furthermore, any application software must be designed around these timing routines which can soon become a nightmare of interactive real-time programming

This photo shows the digital PWM board mounted above the motor driver board from Part 1 of the series.

Our design strategy has been to dedicate external hardware circuitry to the mundane and repetitive tasks, thus freeing the controlling processor for running the more sophisticated command programs.

Figure 2 shows the circuit diagrams of both channels with the accompanying description. The unit is assembled on a PCB which fits inside the existing motor driver amplifier case and runs off the same 12 V power source. A 15 -way D-type cannon socket mounted on the side of the diecast box provides input for the programming data.

Construction

The PCB should be assembled as illustrated in the overlay diagram. We recommend soldering in the 14 links first, followed by the resistors and IC sockets. Veropins should be inserted at all the input and output terminals, 17 in all, and finally the capacitors can be soldered in. Before plugging in the ICs, connect a 12 V power source at the supply points shown and check the ground and positive rail voltages at all the IC sockets. If all is well, a short length of 11 way ribbon cable can be wired up to the eight input bits, ground, and the two strobe lines.

Fig. 1 Timing diagram for the digital pulse width modulator.

HOW IT WORKS

Each of the two control channels operates in an identical fashion with some circuitry common for both. We shall describe the basic circuit action referring to the upper half of the circuit diagram in Figure 2. IC3 is the heart of this circuit, being an eight bit binary down counter with presettable data inputs; it is used to generate the variable pulse widths. The eight data bits presented at the preset inputs 10 to 17 are loaded into the counter when the synchronous load input on pin 9 is pulsed to logic low. If a clock is now fed to pin 7 the counter will start counting down to zero from this preset value. When zero is reached the previously high zero detect output on pin 14 goes low. In our configuration this zero output is used to gate the clock input via AND gate IC4a. Thus, as soon as zero is reached the clock is disabled, leaving pin 1 low and so allowing the zero output on pin 14 to remain low also. The counter IC 3 can only be restarted by another load pulse to pin 9, which presets the count start value and returns the zero output to logic high, thus enabling the clock for the down count. A look at the timing diagram of fig. 1 should clarify this sequence.

The 'zero detect' output on pin 14 directly provides the required PWM signal and is buffered by AND gate IC4b before driving the power switching stage. The load pulses are produced by the edge detector implemented using inverter gates IC5a and b. These negative-going pulses are very narrow, with a width set by differentiator C1/R2 of about 200 nS ; they are derived
from the negative-going edges of a square wave produced by the counter IC6. The load pulses for the other channel are generated in a similar fashion, but from the positive-going square wave edges. This ensures the 180° relative phase offset of the two PWM signals, necessary for reducing the peak supply current.

This square wave determines the full period of each pulse width cycle and thus sets the constant frequency of the PWM output. The counter IC6 is a dual four-bit binary counter; the stages are wired in cascade for ripple counting, and the square wave is taken from the seventh output bit. A 2.5 MHz astable clock built around IC5e and f drives both IC6 and the down counter IC3. IC6 will thus divide the master clock by 128, providing load pulses at a repetition frequency of 20 kHz which is the required modulation frequency. For a maximum duty cycle modulation of 100% the down counter must have a maximum start count of 128, giving a resolution of one part in 128. This is achieved by using only the first seven input bits of IC3 and taking the eighth to logic low. The puise width is thus variable from 0 to $\mathbf{5 0} \mathbf{u S}$ in $\mathbf{4 0 0} \mathbf{~ n S}$ increments. The eighth bit of the input port is used to set the fowardireverse direction of the motor.

The pulse width data for the preset inputs of counter IC 3 must be continuously available, since it is loaded afresh for each cycle on the negative-going edge of the asynchronous load pulse. The eight bit data port from the 'outside world' is thus latched
by IC2, a dual four bit hold-follow latch (the CMOS 4508). When the 'store' inputs on pins 2 and 14 are logic high the data appearing at the Q outputs will follow the data on the inputs; when 'store' is taken low the current data is held internally and remains on the \mathbf{Q} outputs to control the down counter.

The corresponding data input bits of each control channel on IC2 and 7 are wired together to form a common input port; data is thus altered for a particular motor channel by taking its associated store input to logic high. Strobing in new speed data is achieved using IC1a, a NOR gate. One input, the strobe line, is held normally high by $R 1$, and the other input is taken from the PWM output.

When the strobe line is now taken low the store input will only go high as the PWM output signal goes low. This arrangement ensures that any new data will be stable when it is loaded into the down counter; it also prevents the forward/reverse control from changing state while the motor driver transistors are turned on. Once the required data has been set up on the inputs, the data strobe line must be taken low for a minimum period of 50 uS to ensure the data has been latched. NOR gate IC1b is used to buffer the forward/reverse control line before it leaves the PCB. The 12 V power requirement is taken from the motor driver stage described in Part 1, with C7 providing smoothing and C4, 5, and 6 decoupling the fast switching pulses.

Fig. 3 Component overlay for the PWM board.

Testing Times

With nothing connected to the ribbon cable inputs, the two pulse width modulation outputs should be continuously low and the two FWD/REV outputs should be high (you may need to briefly touch the strobe input wires to a ground terminal). These outputs may be observed with either a 12 V FSD meter or a scope. If a scope is used, the 2.5 MHz clock can also be checked; a square wave should be observed on pins 2 and 5 of IC4.

Pulse width control for each channel may now be verified. Wire bit seven of the ribbon cable to the positive terminal. When either strobe is now taken briefly to ground, the corresponding PWM output line will change to a square wave. The duty cycle is now 50%, this ratio being 64 (bit 7) divided by 128 (full cycle), and
the meter will read 6 V . If a scope is being used the square wave pulse trains from each channel can be observed; they should be 180° out of phase with each other (in the case of square waves this looks like inversion).

This process can be repeated, taking only bit 1 positive, to give the minimum pulse width of $1 / 128$ th of the full 50 uS cycle (about 390 nS). This very small pulse cannot be detected by the meter but can be seen on an oscilloscope. Further bit combinations can be strobed in, to provide varying pulse widths in increments of 390 nS .

Modifications

The eighth bit of the data input port is used to set the forward/reverse signal line. For applications that do not require a separate direction signal, ie a computer-controlled pulse generator,

PARTS LIST

DIGITALPWM

Resistors (all $1 / 4$ W, 5\%)

R1,6-14	220k
R2,3	4k7
R4	1k0
R5	3 k 9

Capacitors

Capacitors	
C1,2	100 p ceramic
C3	33p ceramic
C4,5	10 n ceramic
C6	100 n ceramic
C7	1000 u 16 V axial
	electrolytic

Semiconductors	
IC1	4001B
IC2,7	4508B
IC3,B	40103 B
IC4	4018
IC5	40498
IC6	45208

Miscellaneous
PCB (see Buylines); Veropins.

BUYLINES

No problems at all here; most mail order

 companies advertising in this issue should be able to supply the components. See page 82 for the price of the $P C B$,this bit may be utilised for higher resolution pulse width control; the full eight bits give a resolution of one part in 256 . To implement the modification the following changes can be made.

The tracks to pins 1 and 2 and pins 12 and 13 of IC1 should be cut; this provides two unused NOR gates, whose input pins should be connected to the nearest ground track via insulated links. The tracks to pins 13 of both IC3 and IC8 should be cut; pin 13 of IC3 is now linked to pin 11 of IC2 and pin 13 of IC8 to pin 17 of IC7. Pin 7 of IC5 should be cut from its track and linked to pin 14 of IC6. The forward/reverse input line, bit 8, now becomes the most significant bit of the pulse width control.

The pulse width modulator now works in exactly the same way as before but with an output frequency of 10 kHz , exactly half the original value.

Once the board has been tested it can be mounted using brackets or adhesive PCB slots directly above the motor driver board in the diecast box. The two supply pins are wired to the existing 12 V input terminals, while the FWD/REV and PWM outputs are connected to the corresponding inputs of each motor driver channel. We used a 15 -way D-type Cannon socket bolted onto the case side for the eight bit data input. The two strobe lines and ground wire should also be wired to this connector.

ETI

PROXIMITY DETECTOR
 This project will endow your man of steel with infra-red vision; and it's not much bigger than a human eyeball. Alternatively you can use in applications such as batch counting. Design and development by Rory Holmes.

This project provides a very useful means of detecting the presence of anything by the reflection of infra-red light, and provides a direct digital output of object detection. The transmitter and receiver of the infrared beam are both mounted on the same miniaturised PCB, which is housed in a short length of aluminium tube for screening and protection. By the use of modulation and high power bursts of infra-ed at a very low duty cycle, a detection range of over a foot is achieved. The receiving photoamplifier is tuned to the same modulating frequency of 1 kHz , and thus provides good rejection of stray infrared interference. Bright lights will not affect the operation of the module.

The module features a wide supply voltage range, with an LED to indicate correct operation. A preset adjustment pot at the rear of the sensor allows the detection range to be preset at any distance between 1 and 35 cm .

Construction

Although the PCB layout (Fig. 2) is quite dense, with several vertical mounting resistors, the assembly should be straightforward. The only component of note is PR1, a $3 / 4^{\prime \prime} 20$ turn rectangular cermet preset. These are readily available, though, and should fit the board exactly. The power transistor Q3 is mounted flat, with the metal side face down; likewise, observe the orientation of the other transistors. Photodiode D1 has a chamfered edge on one side; this is mounted to face the infra-red emitter LED2, so allowing the sensitive surface to face outwards. The infra-red LED should be mounted with the flat side facing away from the photodiode (the flat identifies the cathode). After assembly of the board it is important to mount a small guard between the infra-red emitter and detector, to prevent infra-red light
passing directly to the detector before it has been reflected. The guard should be a 7 mm square, cut from unetched PCB or a piece of aluminium. It can be stuck between the two diodes and directly in front of C 4 with a blob of superglue.

The board is mounted in a 55 mm length of aluminium tube, of internal diameter 27 mm or greater.

The diagram of Fig. 3 illustrates how a 6BA nut is soldered sideways onto the PCB track directly beneath the 3 -way connector socket. Holes are drilled in one end of the tube to mate up with the indicator and preset adjustment screw. A rectangular hole also needs to be cut, allowing access to the connector socket. A 6BA bolt can now be used to tighten the board against the tube end. The sensing end of the tube may be covered with anything that is transparent to infra-red (red filter plastic polarising sheet, or just clear plastic). If openings are cut for the emitter and detector then an aluminium disc could also be used. The disc should be cut to fit the tube and mounted flush against the small guard plate with epoxy. The sensor tube may be mounted with a circular clamp that tightens round the tube; this can be seen on the photographs of our prototype.

C2, the smoothing capacitor, is shown on the circuit diagram as a

100 uF 10 V tantalum electrolytic. This value was chosen to fit on the PCB and consequently limits the supply to 9 V maximum, although the circuitry is capable of operating up to 35 V . To allow higher supply voltages, change C 2 to 22 uF 35 V tantalum. An additional electrolytic of 100 uF 40 V should be mounted underneath the board and soldered to the same pads as C2.

The sensor is now ready for testing, and the three way connector plug should be wired to a suitable power source capable of providing 100 mA (this is for the benefit of the bulb, if used; the circuit itself only takes 20 mA). A PP9 9 V battery is adequate. One of the test circuits illustrated in Fig. 4 should be adopted; if the LED arrangement is used, for example, the LED will be on when the sensor points into free space. Start with the preset fully anticlockwise; this gives minimum sensitivity and the sensors should not trigger at all.

Keeping the sensor pointed at freespace, the preset should be turned clockwise to increase the sensitivity until the LED just goes out. The preset should now be backed off until the LED just comes on again, thus setting the maximum range. Placing a hand about $12^{\prime \prime}$ in front of the sensor will now turn off the test LED, while striking

Fig. 1 Component overlay for the optical sensor. The photos overleaf show how small the unit is.

HOW IT WORKS
The proximity sensor works on the principle of transmitting a beam of modulated infrared light from the emitter diode LED2, and receiving reflections from objects passing in front of the beam with a photodiode detector D1. The circuit can be split into three distinct stages, the infra-ed transmitter, the photodiode amplifier, and a variable threshold comparator.

The transmitter provides 1 A peak current pulses for 10 uS through the infrared emitter diode, at a repetition rate of $1 \mathbf{k H z}$. Q1 is arranged as a constant current source to supply the base of Q2, and to charge up C1. As C1 charges up, the base voltage of Q2 rises until it reaches about 0V6 relative to ground. Q2 then turns on, so tuming on another constant current source formed by Q3 and LED1. This current source sets a temperature compensated voltage of about 1 V 5 across R3, thus defining a current of 1 A through the infra-red emitter LED2. After Q3 turns on, a negative pulse through C1 turns off Q2 again, thus restarting the oscillation cycle. The current pulse, determined by C 1 and R 2 is set at 10 uS . A 10 uS pulse every 1 mS is equivalent to a duty factor of 1:100, so that although 1 A peak pulses are generated, the average current required is only 10 mA . Capacitors C3 and C2 are there to provide power supply smoothing to decouple the fast current pulses.

The detector is built around IC1, a CA3240 dual op-amp. IC1a is configured as an inverting amplifier with a gain of -2 . It amplifies the infrared signal picked up by photo-diode D1. C4, which couples the diode signal to IC1a, acts as a high-pass filter in combination with the input impedance of the amplifier. Positive-going pulses of $\mathbf{1 0}$ uS duration are fed from the output, via rectifier D2, to a smoothing filter C5 and R9. This provides the signal voltage reference for the inverting input of comparator IC1b. A 2V7 reference, formed by R8 and ZD1, provides the biasing voltage for the photodiode through $\mathbf{R} 7$. It also provides the reference voltage for the nor inverting comparator input, set by potential divider PR1. R10 creates positive feedback round the comparator, to improve the switching and introduce a small amount of hysteresis. Thus, if a reflected light signal received due to the presence of an object rises above the threshold set by PR1, the comparator output will go into negative saturation. The comparator output is used to turn Q4 on or off, thus providing an open collector output for digital interfacing to logic circuits.

NOTE
D1 IS PHOTODIODE
01 IS 2N3819
02,4 ARE BC184L
03 is BD140

D2 IS 1 N4148
ZD1 IS 2 V 7400 mW ZENER
LED2 IS IS INFRA.RED LED
ED2 IS IS INFRA-RED LED

Fig. 2 Circuit diagram for the sensor.

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1	22k
R2	22R
R3	1R5
R4,10	470k
R5,6	1M0
R7	100k
R8,11	12k
R9	3M3

Potentiometers
PR1 10k 3/4" 20 turn cermet trimmer

Capacitors	
C1	68 n ceramic
C2	100 u 10 V tantalum
C3	10 n ceramic
C4	330 p ceramic
C5	47 n polycarbonate

Semiconductors

IC1	CA3240
Q1	2N3819
Q2,4	BC184L
Q3	BD140
D1	Photo-diode (TIL100 or similar)
D2	1N4148
LED1	3 mm red LED
LED2	infrared LED (TIL38 or similar)

Miscellaneous

PCB (see Buylines) threeway PCB plug and socket (see Buylines); aluminium tube (27 mm diameter, $\mathbf{5 5} \mathbf{~ m m}$ long)

Fig. 4 Any of these test circuits may be used to check out the sensor.

SUBSCRIPTION ORDER FORM

Cut out and SEND TO: Electronics Today International, 513, LONDON ROAD, THORNTON HEATH, SURREY, ENGLAND. Please commence my personal subscription to Electronics Today International with the issue

SUBSCRIPTION RATES
(tick \square as appropriate)
511.95 for 12 issues

U.K

E15.75 for 12 issues overseas surface E35.75 for 12 issues Air Mail

I am enclosing my (delete as necessary) Cheque/Postal Order/International Money Order for

(made payable to A.S.P. Ltd)

 ORDebit my Access/Barclaycard* (*delete as necessary)

Please use BLOCK CAPITALS and include post codes.
Name (Mr/Mrs/Miss)
delete accordingly
Address

Signature
Date

SUBSCRIPTIONS

The magazine you hold in your hand is the biggest seller in the UK electronics field. Why risk your newsagent running out? Take out a subscription using the form provided, and make sure of getting the next 12 issues. Don't you deserve not to miss out on the best?

```
INFRA RED IMAGE CONVERTOR TYPE 9606 ICVIA4) 1 \%" dia. Requires singie low curtent
E 2.50 ea. 10 ott fl 100
```



``` CENTAUR RANS
Secondhand 2. 50 en. New 25p ata, 10 oh E.
PULSE TRANSFORMERS. Sut mun Size \(\% \times 5 / 16 \times 1 /{ }^{1 /}\) Secondary centre tapped. New. Suriable tor Thyistor "wggering 20p ea 10 off 10.80 Motors i
```



```
diamono h controls rotahy switch single pole 10 way. Printad
```



```
C12 on.
STIEPPING MOTOAS-
-
```



``` STEPING MOCORS 6
```



``` KEYO ROAR
KEYBOARD PAD Size \(3 \times 21 / 2 \times 2 \times\) high with 12 Alma Reed Switches.
```



``` dont tak meties PGP C2. MAPD DISCHARGE CAPACITORS 8 mtd AKV 55 each. PGP \(£ 2\)
```



```
Toror
```



``` one rype f1.50
```



``` REMO TV Type MUITIPLIER. Two high votage ouipuis \& focus E1 each.
```



```
C2.50 asch MIC
10 oft IG
TRANSFOAMERS All Brand New
```



```
240 V nnuu Sec \(5 V 250 \mathrm{MA}\) Size \(111 / 16,1 \%\), \(1 \%, 2\) tor 500
```



``` Sub Min 0.
100 oft 45.
```

TOROIDAL Q 115 -230V Input Output $135.0-13.5 \mathrm{~V}$ rated 8 VA f 170 ea 10 off 515 .

TOROIDAL 0120240 V mput. Ourpur 012 V ; 70 VA per winding. Ercatasulated dentical to R.S. Components at 59.40 OUR PRICE 55 ea.
TELEPHONES. P\&P E1.50 eqa. 510 units $\mathrm{E6}$. Over by arrangements. 706 styte 8 lack, Grev, Blue, Green $\mathbf{5 5 . 5 0}$ ea. 10 off $\mathbf{4 4 5}$. Discoloured f 4 ea 16 or f2\%.50.
746 style Black or Grey $\mathbf{f 7 . 5 0}$ ea Oider Black style $£ 2.50$ ea
SOME EHH TRANSFORMERS E CAPACITORS Blways available

IRANSISTOR INVERTOR 115 V AC 17 Amp input. Swiching al 20KHZ

Convert this untt to a SUPER BATTERY CHARGER Altractive green ministry quality case removabse top $/$ hottom plates heavy tuiv powe:
switches - migh power resistors to control current centre mourted amp meter wing nut teiminais on tiont panet for connecting leads f3.50 ea. P\&P E5 FOUR UNITS E12 Carriage f6.
Miniafure VARIAC 0.6 ampp in Blue Case sire $10,4, \ldots 6,6{ }^{\prime}, "$ with 20 coloured screw stivle 4 mm
Outputs. As new f12 P/P f4.
amplifien boaro complete with Heat Sink a two output Transistors ype 2 N5293 Circuil supplied f 1.50 ea
CABLE TIES Black 13 cm iong or White 9 cm 50 for 50 p .
4 CORE CUHLY WIRE extending to 2 metres. 20p en. 10 off $\mathrm{f1.80} 100$ off f15 Mon Polentiomelres Erie. 1 K Lin; 33 K Lin; 47 K Lin A:1 15p each 100 off E 12 .

 55. Ca! f6.

GEC 4 Bution UHF TUNER 51.50 ea. 10 oft f 12.
GEC 6 Bulton UHF/VHF TUNER. GZ ea. 10 off E 15.
SOLID STATE UAF TUNEA $38 M H Z$ f1 es. 10 off $\mathrm{f8}$
PHOTOMU: TIPLIERS - All with information P\&

 HONEYWELL STRIP CHART PAPER $122+1$ ralls. Ret no 3785280100 BLUE THERMAL PAPER 430 ft foll 8 \% ${ }^{2}$ " wide f 1.50 per roll PGP ; 26 rouls 6 . Carr 66.

1 MARCONI AM/FM SIGNAL GENERATOR type TF1066B/6S. 10.470 MHz in 5 bands. $\mathbf{6} \mathbf{7 5}$ each. Carriage f6

WAYNE KERR COMPONENT BRIDGE Iype B521 (CT375), Resistance 1 mOhm - 1000 Meg Ohm; Capaci tance $50 \mathrm{KuF}-500 \mathrm{pF}$; Inductance 1 uH 500 kH . With copy of manual. ONLY $£ 40$ each. Carriage $£ 6$.

AVO VALVE TESTER type CT 160122 valve bases 1 with copy of manual t20 each Carriage 66

AVO TRANSITOR ANALYSER type CT446 with copy of manual $\mathbf{f} 20$ each. Carriage f 6 .

AVO SIGNAL GENERATOR NO 2 AM/FM. AM 045 225 MHz ; $\mathrm{FM} 20-100 \mathrm{MHz}$. With copy of manual $\mathbf{\varepsilon 7 5}$ each. Carriage E 6.
MARCONI COUNTER/FREQUENCY METER TF 1417/2 with Convertor type TF 2400 / TM 7265 - 500 MH
f 35 each. Carriage f 6 .
TELETYPE PRINTERS KSR33-ASC11 Kevboard $\mathbf{6 5 0}$ ASR 33 - as above with 8 bit punch and reader $£ 75$
Carriage f. 6 each unit.

> MULTIMETER
Russian type $4324 \mathrm{AC} / \mathrm{DC}$ volts, AC/DC current; ohms etc. Brand new
$\mathbf{1 2 . 5 0}$ each PGP $£ 250$

SINE \& SQUARE WAVE AUDIO GENERATOR AUDIO GENER
TYpe TE22 20 Hz -200Khz. Portable. As new
ONLY $£ 35$ each PGP 44

SCOPE STYLE CASE size $71^{\prime \prime}+71 / 8^{\circ} \times 13 \%^{\prime \prime}$ deep with attractive blue covers \& strap handle. As is a TACHITOSCOPE but ideal for
puarts. $\mathbf{f 4} .50$ each PGP $\mathbf{~} 2.50$

ISOLATING 240 V input 240 V Output 1300 Watts £15 each. Carr. £6

IKEGAMI 20" BLACK WHITE MONITORS Solid State. Video in Int \& Ext Sync c65 each. Carriage $f 6$

MINIMUM ORDER OF GUODS £3. MINIMUM PACKAGING \& POSTAGE £1.50. VAT at 15% MUST be added to TOTAL of GOODS \& PACKAGING. BUT PLEASE ensure sufficient monies is sent to cover PACKAGING and Postage to avoid delays in us dispatching your order. CALLERS VERY WELCOME SIRICTL. BETWEEN $9 a m-1 \mathrm{pm}$ and 2.5 pm Mondav to Saturday inc. BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

HAPPY MEMORIES
Part type
1 off 25-99 100 up
4116 200ns $\quad 0.950 .850 .70$
4116 250ns $\quad 0.90 \quad 0.80 \quad 0.60$
4816 100ns For BBC comp $\quad 3.30 \quad 2.95 \quad 2.70$
4164 200ns $\quad 6.15 \quad 5.25 \quad 4.65$
2114 200ns Low power $\quad 1.25 \quad 1.15 \quad 0.95$
2114 450ns Low power $\quad 1.20 \quad 1.10 \quad 0.90$
4118 250ns
6116 150ns CMOS
2708 450ns
2716 450ns 5 volt
2716 450ns three rail
2732 450ns Intel type $\quad 4.25 \quad 3.95 \quad 3.35$
2532 450ns Texas type $\quad 4.25 \quad 3.95 \quad 3.35$
Z80A-CPU £4.75; Z80A-P10 £4.95; Z80A-CTC £4.25
Low profile IC sockets:
$\begin{array}{llllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$
Pence $9 \begin{array}{lllllllll}10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$
Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD $£ 17.00 ; 5$ inch SSDD $£ 19.25 ; 5$ inch DSDD £21.00; 8 inch SSSD £19.25; 8 inch SSDD £23.65; 8 inch DSDD £25.50
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.
Please add 30p post \& packing to orders under $\mathbb{f} 15$ and VAT to total. Access \& Barclaycard welcome. 24 hour service on (054 422) 618. Government \& Educational orders welcome, f15 minimum. Trade accounts operated, phone or write
for details.
HAPPY MEMORIES (ETI)
Gladestry, Kinston, Herefordshire HR5 3NY
Telephone: (054 422) 618 or 628

All BO SS Breadboards directly accept $.3^{\prime \prime}, .4^{\prime \prime}, .5^{\prime \prime} \& .6 "$ pitch DIL IC's and have numbered and lettered rows and columns allowing exact location indexing.
A. EuroBreadBoard. 500 contacts, ideal for schools and training establishments.
B. EuroSolderBoard. Exact printed circuit board copy of ' A ' enabling progression to permanent and rugged assembly.
C. BIMBOARD 1. 550 contacts plus component support bracket. BIMBOARD's 2, 3 and 4 also available providing 1100,1650 and 2200 contacts respectively.
D. BIMBUSTRIP. 2 additional power lines, slot onto any ' C ', ' G ' or B IMBOARD DE SIGNER.
E. PC BIMBOARD. Exact printed circuit board copy of 'C' plus 'D' enabling permanent pcb circuits to be generated.
F. Layout Pad. Exact paper copy of ' E ' for planning or recording layouts.
G. MPUroBreadBoards. 1422 contacts including power bus strips on all sides. Specifically for MPU circuits it is standard $160 \times 100 \mathrm{~mm}$ Eurocard size.
Adventures with Microelectronics. A beginners book based on BIMBOARD 1. Covers simple circuits, built step by step and includes component lists and sources.
Note: All B IMBOARD's 1,2,3 and 4, BIMBUSTRIP and MPUroBreadBoards slot onto each other thereby providing larger circuit development working areas.

JUST RELEASED

 BIMBOARD DESIGNERS. Incorporate 2 BIMBOARDS (4 to special order) plus integral fixed 5 V and adjustable $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ power supplies.

James Carter Rd, Mildenhall, Suffolk, IP28 7DE Tel: Mildenhall (0638) 716101 Telex 818758

UITS. GOMPONENTS michios a painis

FORGET YOURGET

 RING 5 to 10 IT'S COMPON 10MAIL ORDER MADENT
OUR NEW SADE EASY OUR NEW SALES NO.

DVM/ULTRA SENSITIVE
THERMOMETER KIT

and a ${ }^{1 / 2}$ digit hquid crystal
display. This kit will form the
besia of a digital multimeter

[7043

(only a fow additional resistors and switches ore required-deteila supplied), or a sennitive
digital thermameter $\left(-50^{\circ} \mathrm{C}\right.$
to $\left.+150^{\circ} \mathrm{C}\right)$ digital thermometer $\left(-50^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$
reeding to $0.1^{\circ} \mathrm{C}$. The basic kit has reading to $0.1^{\circ} \mathrm{C}$. The basic kit has a
senaitivity of 200 mV for a full scale reading. automatic polarity indication and an ultra low power requirement-giving s 2 year typicel bartery life from a slandard 9V PP3 when used 8 hours a day. 7 davs a week. Price 115.50

Besed on a single inte-
grated circuit (SABOBOO),
this kit comes complete grated circuits camplette ELECTRONIC MOOR
this
with loudspenter and

XK102 3-NOTE DOOR CHIME CHIME drilled box (size: 95 x
$11 \times 35 m m$ and requires
only A PP3 battery and
pushbutton to complete.
The unit produces a 3-note
harmonicsily related tone harmonicslly related tone sequence when the push.
button is opersted button is operoted and may
be usod to replece any be usod to replace any
doorball or wwitched by Iogic in such spolications af elarmi, PA syeterss sond toys. The unit
drawn loss then fuA from the bstery in draws less than luA from the bsttery in
the rtandby mode and producces 150 m W output which may be resdily amplified if
a louder eound is requirsed the smell a louder sound is required. The small
number of components make this an number of components make this an
ideal project for beginners.
$\mathbf{E 5 . 0 0}$

NEW 1982 FREE SHORT FORM CATALOGUE SEND SAE TODAY ($6^{\prime \prime} \times 9^{\prime \prime}$) We also stock: Vero products Antex Soldering Irons Babani Books

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If the thought of car thieves, house breakers of people tampering with your electrical and electronic equipment upsets you, wo have just the kit for you.
Our ELECTRONIC LOCK KIT includess 10 -way keyboard and a special IC which provides a 750 mA output to drive asolenoid or relay (not supplied) when four kovs are dapressed in the corry be equily changed by means of a small plug and socket. A "SAVE" function is also available onabling the open code to be stored fespecially useful in a car when it is leth in avarage for servicing as the open code need not be disclosed). Size: $7 \times 6 \times 3 \mathrm{cms}$. Power Consumption is $40 u A$ at 5 V to 15 V d.c.
At only $£ 10.50+$ VAT
At only f10.50 + VAT, it will make a smaller hole in your pocket than a bunch of keys) Electric Lock Mechanism
Suituble for use with existing door locks and above eiectronic lock kit.

THE MULTI-PURPOSE TIMER HAS ARRIVED Now you can run your central heating. lighting. hi.fi system and lots
more with just one programmable timer. At your selection it is denigned to control four mains outputs independently, switiching on and oft ot pre-sel times over a 7 day cycie, e.g. to control vour central
heating lincluding different switching times. for weskendal, just hasting including diferent switching times for weekendal.
connect it to your sysiem programme and set it and forget it - it
clock will do the rest. clock will do the rest.

FEATURES INCLUDE
ONLY E45 WITH SO MANY EXTRA - 0.5- LED 12 hour display FEATURES.

- Day of woek, am/pm and output status indicators.
- 50 reohz moins operation.
- Battery beckup 2evea st
(Battery not supplied).
(Battery not supplied).
18 programme time sets.
Powarlul "Everyday" function enabling output to switch every dey but use only one time set. Usetul "sleep" function-turns on output for one hour.
20 function heyped for programme entry.
Programme varificesion at the touch of a button.
THERE HAS NEVER BEEN A CLOCK CAPABLE OF SO MUCH AT SUCH A LOW PRICE-
IKit includen all componants, aseambly and programme instructions at an attrective caee). RING 5 to 10 $567-8910$ ALL PRICES EXCLUDE VAT

74 LSTTL		CMOS

24 HOUR CLOCK/APPLIANCE TIMER KIT

Switches any apoliance up to 1 kW CT1000K Basic Kit
 CT1000K Basic Kit CT 1000 K with white Box

 d.5" LED display, mains supply,
display drivers. switches, LEDs,
ditd 50p postage \& packing + 15% VAT to total.
trien display drivers, switches, LEDs,
 Add $£ 1.50$ (Europe), $£ 4.00$ (elsewhere) for p\& Send S.A.E. for further STOCK DETAILS Goods by return subject to availability
0 ER $\begin{gathered}9 \mathrm{man} \text { to 5pm (Mon to Fri) } \\ \text { 10am to 4pm (Sat) }\end{gathered}$

BREADBOARDS

In the beginning there was the bird's nest; and engineers saw that it was bad. Since then a great many systems for prototyping and small scale production of electronic circuits have been developed, and Peter Green has been getting his hands on some of the latest ones.

Breadboards have come a long way since the days when a prototype circuit was an impenetrable jungle of wires soldered to nails banged into a piece of wood. (Honest, it really was like that once!) When the plug-in type of breadboard arrived on the scene it was a great advance; components could be unplugged and swapped around with great ease if the circuit didn't work, and if you needed to build larger circuits you simply linked more boards together. However, connections still had to be made with loops of wire all over the place, and the boards were no use for small scale production; this had to be done by track cutting on Veroboard, which can get a bit tedious, or by designing a $P C B$, which can get expensive.

The new generation of breadboarding systems have been designed to overcome these disadvantages. They fall into two general categories; a 'wrap-and-solder' type where enamelled wire is wrapped around the component pins and then soldered to make the connection, and the IDC types. Insulation displacement connection involves forcing plastic-coated wire between tines of some sort which pierce the insulation and make an electrical connection to the conducting core without breaking the wire. Both types have the same attractive features - that is, the boards are low-profile with neat wiring and nounsightly loops to be pulled off accidentally. Furthermore, all three systems that we looked at come in standard board sizes and are capable of being plugged into a card frame, etc, and used in the same way as a normal PCB.

Quick/Connect

Quick/Connect is an IDC system sold by Dage Eurosem, and many readers will have seen it on their stand at the Breadboard Exhibition last November. A handheld wiring pen is used to push 30 awg solid copper wire into two-pronged tines on the wiring side of the board. The tines pierce the insulation to make a gas-tight joint without soldering; up to two wires will fit into a single tine, giving the equivalent of four levels of wire-wrapping. Components are then inserted into the sockets which form the other end of the the tined pins.

The Quick/Connect wiring pen and bobbin.

This photo shows the underside of a Quick/Connect Eurocard. Interwiring of the components is done between the tines and a data bus, for example, is easily wired (left of board). At the top of the page you can see the component side of this board; ICs are especially suited to the system.

Abstract

The Quick/Connect pen is metal and plastic and consists of a tube which terminates in a guide channel/insertion head. Wire is fed down the tube from a bobbin held between offset metal prongs at the top of the pen. This bobbin is also made of metal and is quite large (4 cm in diameter); consequently the pen feels somewhat unbalanced and awkward and doesn't handle easily. At first the prongs held the bobbin so tightly that wiring up was heavy going, but flexing them outwards to give a looser fit cured the problem and made the pen almost effortless to use. The wire itself is available in a wide range of colours so that colourcoding may be employed on complicated boards.

Boards are available either fully populated with sockets or blank for the user to insert sockets as and where he requires. We were provided with a fully populated single Eurocard for this review, so we cannot comment on the ease or otherwise of socket insertion; but it would appear from the catalogue that only industrial users would be interested. A variety of expensive tools, including a press are required (unless you fancy your chances with a mallet), and the hobbyist wouldn't want that sort of outlay; however, in industry people might well prefer this capital outlay to paying for full boards with lots of pins they'll never use. A large range of standard boards either exist or are planned, including various Eurocard sizes and boards compatible with Apple, S-100, Dec Unibus and other microcomputer

 buses.Apart from the balance aspect, once the tension in the bobbin is correct the tool is very easy to use; very little pressure is required to force the wire between the tines. However, you need good light and lots of concentration because misalignment of the insertion head over the tines means you sever the wire instead of connecting it (as I found to my dismay on several occasions). When you want to cut the wire, at the end of a wiring run, you'll have to use side-cutters - no built-in cutting device is provided.

Component insertion depends on what you're actually trying to plug in, and is easiest for ICs - after all, this system is primarily designed for digital applications. The IC simply plugs
into the sockets on the component side of the board, where it is firmly held. The manufacturer recommends the use of a special tool but we found insertion fairly easy without one. The problems start when you want to use other types of component. Tantalum, ceramic and polycarbonate capacitors fitted OK, as did 3 mm LEDs and small signal transistors. We found that some $1 / 4 \mathrm{~W}$ resistors fitted while others had leads just a little too thick; 1 N4148s are OK but not the 1N400X series; while 5 mm LEDs, electrolytics, polyesters and anything in a T0220 package were much too big. The catalogue suggests that such components be soldered to the sockets (bye bye reuseability) or soldered to DIL 'component carriers' (ie header sockets) which are then plugged into place. However, we found a simpler solution; all you have to do is plug in ordinary DIL IC socket into the board sockets and then plug your large components into the IC socket. The photograph shows an example. This would be useful if you wanted to put a 7805 voltage regulator on a computer card, for example.

Quick/Connect is a system which will obviously have a lot of appeal to industrial users, as it offers easy, reliable wiring in development work and a low profile finished board which can be stacked in a card frame on a $1 / 2^{\prime \prime}$ pitch. However, it's unfortunate that the pen has the odd 'feel' to it (at least it did to me), and of course the price will not be any help to it as regards sales to the hobbyist market.

Distributed by: Dage Eurosem Ltd, Rabans Lane, Aylesbury, Bucks HP193RG.
Prices: Fully populated Eurocard $£ 59.00$ +VAT. Wiring pen $£ 10.00$ + VAT. Reel of wire(50ft) $£ 3.36$ +VAT.

Fig. 1 Working anticlockwise from the top left, we have the IDC principle, the Quick/Connect and Speedwire pins, and a diagram showing the Speedwire termination technique.

Speedwire

This is so new that the sample we played with is one of only five preproduction sets in the country, and jealously guarded it was too! However, we were informed that the launch was to be at the All-Electronics Show here in London; this should have been a few days ago as you read this, so if you went you may have seen the system on the BICC-Vero stand.

Speedwire is a similar system to Quick/Connect but some features show the benefits of industrial hindsight. The pen and

Close-up of the Speedwire pen.
bobbin are plastic with a central metal guide tube, and consequently very light, while the bobbin itself is pivoted on the pen axis rather than off-centre, so that balance and handling are better.

The wiring tines are quite innovative, being a castellated tube - rather like the top of a castle turret, with slots cut on three sides but not the fourth (see the diagram). The pins are arranged in the board so that their slots are all orientated in the same direction. To daisy-chain terminals together, the tool is held so that you insert the wires through the pair of opposing slots, which make the IDC connection as usual. You work across the board in this manner, holding the tool at the same angle to the board, until you reach the endpoint of the signal chain. The tool is then rotated 90° so that the wire is forced through the single slot on the final insertion; this makes the last IDC connection while the unslotted pin face opposite automatically severs the wire. Damn clever, these British.

The Speedwire sockets suffer from the same problem as Quick/Connect, namely that large component leads won't fit; but the same solutions apply and in any case, the Speedwire sockets are slightly larger(all the $1 / 4 \mathrm{~W}$ resistors fitted).

When Speedwire becomes available it will be sold both with fully populated boards (again, we saw a single Eurocard), and as drilled boards with fit-them-yourself pins. However, the process is easier than for Quick/Connect as only one tool is required, looking rather like a safety razor. You open it up and insert the pins (which are supplied on a strip like Soldercon sockets), then push them home into the required holes and snap off the carrier strip. The tool ensures that the pins are inserted to the correct depth, and we found it quite easy to use. This is obviously much more economical for the small-scale user, or the large-scale user with only a small amount of components perboard.

Initially there will be two kits available. The first contains a plain unpopulated Eurocard, contacts and insertion tool, wiring pen and spare wire, while the second has fully populated Eurocard, a wiring pen and spool of wire, spare wire spools and a pair of Speedwire cutters.

Although we didn't have our hands on it for more than two hours before it was whisked away again, we were impressed by the quality of this system. Indeed, once the kits are available we'd like to have another go with it(that's a hint, Mike!).

Distributed by: BICC - Vero Electronics (Retail Dept), Industrial Estate, Chandler's Ford, Eastleigh, Hants SO5 3ZR.
Prices: Not yet known. Apply to BICC-Vero for further information.

Roadrunner

This is the sole 'wrap-and solder' system of the three mentioned in this article. The system is based around two components; a distribution pen for feeding out the wire, and plastic distribution strips which act as guide channels. In use, this method is quite different from the others under consideration; it is also well established, and was on show at Breadboard 81. The wire used is 36 swg quick soldering enamel (or QSE); the bobbins are only 2 cm in diameter and so the pen is smaller and lighter than the other types.

Before using the pen, the distribution strips must be secured to the wiring side of the board. The manufacturers supply two specially designed "Roadrunner" boards, a single height Eurocard and a double height Eurocard; however, the beauty of the system is that any type of board is suitable since connections are made directly to the component pins rather than to special sockets. For example, Veroboard, bare matrix board (no copper) or even a bit of scrap paxolin you've drilled a few holes in, can all be used if circumstances demand. The plastic strips are of two types; 2" press-fix for use on boards with 1.02 mm diameter holes on a 2.54 mm pitch matrix, and $6^{\prime \prime}$ lengths which must be glued in place with a contact adhesive. The photos show the castellated nature of the strips, which can hold a large number of wires while allowing easy routing to the component pins and maintaining a low profile.
How to position the Roadrunner distribution strips for high density (left) (right).

[^3]that will fit through the holes in the board, just like ordinary PCB construction. To use the system most effectively, a wiring schedule should be prepared; this will not only act as a point-topoint wiring guide but also encourages thought about the optimum arrangement of the components. Wire runs should be kept to a minimum for efficient operation.

With all the strips and components in place, wiring can begin. The protruding wire end (about 4 mm) is bent over slightly to prevent it being pushed back up the guide tube, then inserted into the first hole and wrapped several times around the pin. The wire is routed into the strip through one of the cutouts, then along and out to the next connecting point where another wrap is made. When the first run is complete, press down on the wire against the board with the metal guide tube; this severs the wire. Feed out another 4 mm of wire, bend it over and wire the second run. Continue working through the schedule until all the connections have been made.

Fig. 3 Plan view of Roadrunner wiring. No more than than three pins should be wired from each break in the strip.

To complete the construction, all the connections are soldered using a high temperature iron and resin cored solder. The solder removes the insulating lacquer on the wire and makes good the joint. Note that a high temperature is very important here, otherwise the enamel will not burn off properly resulting in poor or nonexistent electrical contact. The bit temperature should be approximately $420^{\circ} \mathrm{C}$, and certainly higher than $400^{\circ} \mathrm{C}$. My iron wasn't really up to it, but Roadrunner will supply suitable types.

Although the fact that soldering is involved makes mistakes a little harder to correct than with IDC, it is possible. Incorrect wires should be cut at the component and left in place - pulling them out of a tightly packed loom could strip the enamel from adjacent wires and cause short circuits. If you haven't used IC sockets, a faulty IC can be cut away on the component side and a replacement soldered to the original leads.

To sum up, Roadrunner has many advantages. Any type of component or board can be utilised, and in digital circuits a very high packing density can be achieved. The complete boards have a very low profile and may be mounted in card frames on a $0.6^{\prime \prime}$ pitch. Furthermore, existing PCBs may be modified or repaired with the system, unlike the IDC systems.

Modifying a PCB using the Roadrunner system.
Distributed by: Roadrunner Electronic Products, 116 Blackdown Rural Industries, Haste Hill, Haslemere, Surrey GU27 3AY.
Prices: Euro Introkit $£ 15.99$ + VAT. Single Eurocard $£ 4.50$

+ VAT. Wiring Pencil and bobbin $£ 2.99$ +VAT. QSE wire (pack of four) $£ 2.12$ +VAT. High temperature soldering iron $£ 5.99$ + VAT.

MULLARD SPEAKER KIT 40 watt R.M.S. $80 h m$ DESIGNED
BY MULIARD SPECIALIST TEAM IN BELGIUM comprising a Multard $8^{\prime \prime}$ woofer with foam rolled surround, Mullard $3^{\prime \prime}$ high power dome tweeter and a cleverly designed B.K. Electronics crossuver combining spring loaded ioudspeaker terminals and recessed mounting panel. Supplied complete with assembly and cabinet details. Recommended cabinet size $240 \times$ $216 \times 445 \mathrm{~mm}$.
PRICE $£ 13.90+\mathbf{£ 1 . 5 0}$ P\&P per kit

STEREO CASSETTE TAPE DECK MODULE. Comprising of a top panel and tape mechansm coupled to a record/play back printed board assembly. Supplied as one complete console of own choice. These units are brand console of own choice. Thes
new, ready built and tested
Features: Three digit tape counter. Autostop. Six piano type keys, record, rewind fast forward, play, stop and eject. Automatic record level control Main inputs plus secondary inputs for stereo microphones. Input Sensitivity: 100 mV to 2 V Input $\mathbf{I m}$ pedance: 68 K . Output level: 400 mV to both eft and right hand channels. Output Im pedance: 10 K . Signal to noise ratio: 45 dB Wow and flutter: 0.1%. Power Supply requirements: 18 V DC at 300 mA Connections: The left and right hand stereo mputs and outputs are via individual screened leads, all terminated with phono plugs (phono sockets provided, Dimensions: Top panel $51 / 2$ in x 111/4in. Clearance required under top panel gram. Suppied complete with circuit diagram and connecting diagram. Attractive Price $£ 26.70+£ 2.50$ po
rice $£ 26.70+\mathbf{£ 2 . 5 0}$ postage and packing Supplementary parts for 18 V D C. power supply (transformer, bridge rectifier and smoothing
capacitor) $\mathbf{£ 3 . 5 0}$.

Specificat on and Price: riage each.

PRICE $£ 63.25$
UK Post FREE

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices Audio Equipment Test Equipment by Thandar and
Leader

NEW RANGE QUALITY POWER LOUDSPEAKERS (15", 12' ${ }^{\prime \prime}$ and $8^{\prime \prime}$). These ounspeakers are ideal for both hi.fi and disco applications. Bort he 12 and 15 unds have heavy duty die.cast all three unts have white speaker cunes and are fitted with attractive cast aluminium (ground tinish) fixing escutcheons.

15" 10% watt R.M.S. Impedance 80 hm 59 oz maynel. 2 "aluminumb vole coll Resonant Frequency 20 Hz . Frequency Price $£ 32$ each. $£ 2.50$ Packing and Car

12" 100 watt R.M.S. Impedance 8 onm, 50 oz magnet. 2 alummum voice coll Resonant Frequency 25 Hz . Frequency Response to 4 KHz Sensitivity 95 dB Price f23.70 each. f2.50 Packing and Carnage each
$8^{\prime \prime} 50$ watt R.M.S. Impedance 8 ohms. 20 czz . $1 / / 3$ aluminium voice cbil. Resonant Frequency 40 Hz , Frequency Response to 6 KHz . Sensitivity 92 cis . Also available with
black cone fitted with black metal protective grill. Price: White cone $\mathbf{f 8} 90$ each. Black conelgrill $£ 9.50$ each. P \& P f 1.25 each.
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dymamic tweeters. As a crossover is not required these units can be added to existing speake systenis of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.
 TYPE 'A' (KSN2036A) ${ }^{\prime \prime}$ " iond with protective
wire mesh, ideal for bor, kshelf and medium sized Hi-fispeakers Price f 3.45 each
TYPE 'B' (KSN1005A) 3% '" super hom. For genera purpose speaks, Price f4.35 each and P.A sustems elc Price 4.35 each
TYPE 'C' (KSN6016A) 2' , $5^{\prime \prime}$ wide dispersion horn. For quality H_{1} fi systems and quality discos etc. Price f. 545 each
TYPE 'D' (KSN1025A)2' • $6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range (2 KH) Suitable for high quality Hi if systems and quality discos Price f 6.90 each
TYPE 'E' (KSN1038A) $33 / 4$ " horn tweeter with attractive silver finish trim. Suitable for $\mathrm{H}_{1} \mathrm{f}_{1}$ monitor systems etc. Price $\mathbf{E 4 . 3 5}$ each,
TYPE 'F' (KSN1057A) Cased version of type ' E '. Free standing satellite iweeter. Perfect add on weeter for conventiona! ourspeaker
systems. Price $£ 10.75$ each. systems. Price $£ 10.75$ each.

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY

athrolis and mesil protective golls which are (embable enabltag a wigue chace of cathme stylag. Can be mownted directly on to betfle

1K.WATT SLIDE DIMMER

- Controls loads up to 1 KW

- Compact size
$43 / 4^{\prime \prime} \times{ }^{13} 16{ }^{\prime \prime} * 21 / 2^{\prime}$
- Easy snap in fixing through
panel/cabinet cut out
- Insulated plastic case
- Full wave control using 8amp
- Conforms to BS800
- Suitable for both resistance and inductive loads
Innumerable applications in industry, the home, and discos

Price: $\mathbf{£ 1 1 . 7 0}$ each $+50 p \mathrm{P} \& \mathrm{P}$ (Ary quantity)

BSR P256 TURNTABLE

P256 turntable chassis - S shaped tone arm Precision calibrated cnunter balance - Andi skate (bias device) - Damped cueing lever - 240 voli AC aperation (Hz) - Cut out template supplied - Completely manual arm. This deck has a conmpletely manual arm and is designed primarity for disco and studio use:
where all the advantages of a manual arm aro

Price: $\mathbf{£ 2 8 . 5 0 + f 2 . 5 0 P \& P P ~}$

PUWER AMPLIFIER MODULES

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system $80 h m s$ Build a quality 60 watt R.M.S system.

* 10° Woofer
+ 3" Tweeter
* 5^{\prime} Mid Range
* 3-way crossover With or without comventuna sperke! fabrits
Ali three unts have alumimum center domes sud whed foam sumbund Crossover com bones sprine tomed tourdspeaker termbals and Price $\mathbf{f 2 2 . 0 0}$ per kit - £2 50 postage and pack

12" 80 watt R.M.S. loudspeaker

 A superb general purpose twin cone loud speaker. 50 uz. Magnet ${ }^{2}$ aluminum volce coil. Rolled surounci Resonam quency 25 Hz . Frequency response13 KHz Sensitivity 95 dB . Impedance 8ohm 13 KHz . Sensitivity 95 dB . Impedance 80 hm
Attractive blue cone with aluminium centre dome.
Price f1799 each + f2 50 PGP

GENERAL PURPOSE 4 $1 / 2^{\prime \prime}$ MINI SPEAKER
General purpose full range loudspeaker, ideal for mini systems elc

- Rolled fabric surround \bullet Twin cone \bullet 8ohm impedance 15 watt RMS 1 voice coil $-130 z$ magnet \bullet Frequency range $50 / 15000 \mathrm{~Hz}$ Price: $\mathbf{£ 6 . 9 0}$ each $+\mathbf{7 5 p}$ PGP

100 WATT R.M S.
Power Amplifier Modules with integral toroidal transformer power supply and heat sink Supplied as one complete built and tested unit. Can be fitted in minutes. Auxilliary stabilised supply and drive circuit incorporated to power an L.E.D.V.u. meter. available as an optional extra.

SPECIFICATION

Max. output power 100 watts R M S. IOMP100) Loads: 'Open and short circuit proot) $\mathbf{4} \cdot 16$ ohms Frequency Response20Hz 25 K Hz ; 3dB Sensitivity for 100 watts 500 mV at 10 K Size: $360 \times 115 \times 80 \mathrm{~mm} \quad 00.1 \%$ Prices: OMP 100W $\begin{array}{llll}\text { E29.99 } & \text { £2.00 P\&P }\end{array}$ V.u. Meter $\quad \mathbf{6 6 . 5 0}$

\star SAE for current lists. \star Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicable) in special energy absorbing $P U$ foam. Callers welcome by prior appointment, please phone 0702-527572.

Here's the case... now what's the project?
 If you're about to start on a new project, you're no doubt looking

 for the right enclosure. With around 1,000 different cases and 250,000 case parts currently in stock, we must be your number one choice. Why not send for our catalogue, price $£ 1$ including $P \& P$.| Month | Project | Case |
| :--- | :--- | :--- |
| June 1981 | Antenna Extender | BOA 115 |
| July 1981 | Super Dice | BOC 450G |
| September 1981 | LAB PSU | SWF 222X |
| November 1981 | Music Processor | CL2 ADJ |
| | Voice-over Unit | ACE 150K |
| December 1981 | TV Sound Tuner | CL2 AEL |
| | Component Tester | MIN 030 |
| | | + MIN 030W |
| February 1982 | IChing Computer | BOC 708 |
| May 1982 | Insulation Tester | BOC 440 |
| | Water Heater Controller | BOC 450 |

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months, Weekdays and Milliseconds, also STOPCLOCK and parallel BCD output for computer or alarm, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the RIGHT TIME, only $£ 62.80$.
LOSING DX? Antenna fault? Poor reports? Check FAST with an Antenna Noise Bridge, MEASURE resonance 1150 MHz and radiation resistance 2-1000 ohms, MORE DX. £15.70.
Each fun-to-build kit includes all parts, printed circuit, case, postage etc, instructions, money back guarantee so GET yours NOW.

CAMBRIDGE KITS
 45 (TF) Old School Lane, Milton, Cambridge

SHUGART FLOPPY DISK DRIVES
No case, No Power Supply
SA 400 5\%" S.S.S.D
SA $450 \quad 5 \frac{1 / 4 *}{\prime \prime}$ D.S.S.D.
SA 800 8" S.S.S.D
FLOPPY DISKS - BOXES OF TEN
Singie sided $35 / 40$ Track Louble sided $35 / 40$ Track $5 \% / /^{\prime \prime}$
Single sided 77 Track $\begin{array}{ll}\text { Double sided } & 77 \text { Track } \\ & 51_{4}^{\prime \prime} \\ 8{ }^{\prime \prime}\end{array}$ PRINCE 12" MONITORS
P 4 White
P31 Green
2/3' FULLY INTERLACED C.C.T.V. CAMERAS
PLEASE PHONE FOR CURRENT PRICES
CROFTON ELECTRONICS LIMITED

COMBINATION LOCK

A dazzling digital device, deftly designed to defend your domicile from dangerous desperadoes. Design and development by Rory Holmes.

For almost every lock made there's a thief to match it, and for every set of keys there's always someone to lose them. Such problems of security can now be overcome thanks to ETI's new Logic Lock, where the only moving part is the door latch! The complete device including the keypad and control-box can be built for about $£ 10$ and incorporates some very useful features in the design, resulting in total simplicity of operation.

The keypad, pictured above, can be built by anyone using completely standard components. It provides a waterproof and very rugged touchsensitive input, which will last much longer than mechanical contact switches since there's virtually nothing to go wrong with it.

Programmed Protection

A single switch on the control-box puts the lock into either 'program' or normal 'operation' mode. In 'program' mode new combination sequences of any length from one to 14 digits can be entered directly through the keypad. Any number of repeated digits may be used, and the complete sequence will be stored in CMOS memory. A change of combination can thus be effected in seconds. After programming, the lock is left in 'operate' mode where the 5101 CMOS memory consumes only 10 uA of standby current, allowing long operating life from a 6 V battery.

As soon as the first number is

entered the memory receives full power for a 25 second period, allowing the combination sequence to be entered. The front panel LED illuminates for each number received to provide operator feedback, and also gives low battery indication by remaining off when replacement is due. The keypad input has been fully debounced to eliminate false entry errors. When the last digit is tapped in, the solenoid door bolt will activate for a preset time of around six seconds allowing the door to be opened. The LED also comes on during this period to confirm entry of the correct code.

The Logic Lock has well over four million million combinations, and an alarm was therefore considered unnecessary. Your local illegal entry operative can tamper with this lock until the cows come home; it won't open. Even a PDP-11 hooked into the keypad cable would take nigh on 6000 years of computing power to crack the code!

An optically coupled solid state relay is used to switch power to the solenoid, again being cheaper and more reliable than its mechanical counterpart. The PCB will accommodate several optional output configurations, for switching either mains or DC solenoid door latches.

Installation

Since the solenoid bolt mechanism is remote from the keypad and controlbox, the logic lock may be placed anywhere in the vicinity and is not restricted to door mounting, although this would be more conventional. Obviously, the important factor is mounting the keypad on the outside and the control-box on the inside the keypad could be mounted next to the bell push, allowing the ribbon cable to take the same route into the house as the bell wires. The control-box is screwed or stuck to the inside of the door and the keypad can be fixed to the outside using a strong epoxy. Alternatively the inside of the keypad can be filled with resin or Araldite and a long fixing bolt allowed to set in the resin. The keypad can then be bolted directly through the door. A hole drilled behind the keypad lets the ribbon cable pass through the door to the control-box. The wires for connecting up the solenoid latch, which are normally tacked across the door and pass across the hinges, should be connected up to the control box as shown in the wiring diagram.

The inclusion of an earth terminal for mains switching applications provides an extra degree of protection in the unlikely event of an opto-isolator fault.

Fig. 1 The complete circuit diagram for the ETI Logic Lock. A general-purpose output is provided; next month several application circuits are given to suit mains or DC solenoids.

HOW IT WORKS

Numerical input to the lock is achieved using IC1, an eight input priority encoder. When one of its input lines is taken high, the corresponding number allocated to this line appears in binary form on its output lines, pins 6,7, and 9 . An input key detect signal, GS, is also available on pin 14; this line goes high if any input line is activated.

The eight input lines are activated using a touch keypad. Resistors R1-8 keep the inputs normally low, and they are taken high when the skin resistance of a finger bridges the input pins to the central +6 V rail. Capacitors C1 to 8 debounce this switching action to provide a measure of stability and the key detect output is further debounced to give completely reliable operation of the sequencing logic.

The rest of the circuitry consists of a four-bit counter IC4, which addresses part of a 256×4 bit CMOS memory (IC3). The data output of the memory is compared with the three bit keyboard word using EXOR gates IC2a, b and c, to provide an equal (logic low) or unequal (logical high) I signal for controlling the subsequent action.

All of this circuitry has two modes of operation. With the switch in position 1, the 'write' mode is selected for programming a new combination sequence; position 2 is
the 'operate' mode where the circuit waits for a valid combination sequence to activate the lock.

To explain the 'write' mode we shall assume that the counter IC4 is on count 1 (ie only output A is at logic 1), and there are zeroes in all memory locations.

IC5b, a NAND Schmitt trigger, provides a debounced control signal from the GS line. GS is normally low, thus pin 2 of IC5b is low; also C14 is discharged via D5, so holding pin 1 low. Thus the output on pin 3 is normally logic high. When any input number is touched the GS line goes logic high, taking pin 2 of IC5b high and allowing C14 to charge up through R 17 with a 150 ms time constant.

Now, as long as the GS line is still high when the pin 1 voltage reaches the trigger threshold, the gate output will switch low. When the touch input is released, GS goes low, C14 discharges through D5, and the Schmitt trigger output returns high again.

The control output from pin 3 is taken to five different circuit points. The negative-going edge is differentiated by C15 and R18 to produce a brief negative pulse as an input number is activaled. During the 'write' mode this pulse is routed via SW1 to the write line of the memory, IC3 pin 20. As this pin is taken low the current
data on pins 11, 13 and 15 (corresponding to the input number) is recorded at the present address. The IN1 memory input on pin 9 is also taken directly from the control line and will thus always be zero when the 'write' pulse occurs. This data bit is used to indicate the end of a correct combination sequence during the 'operate' mode (a necessary marker, since any length of sequence is permissible). The control line is taken directly to the clock input on pin 15 of IC4 and also to the preset input A at pin 4. As the control line returns to logic high when the touch input is released, the address counter IC4 is clocked on by one count on the positive-going edge.

The cathode of D6 is also taken low by the control line, thus turning on Q2 via R19 to illuminate the front panel indicator LED1. This shows that an input has been received to give a measure of operator feedback. As the timing diagram of Fig. 2 indicates, the above recording process repeats for each number that is selected on the touch pad, with the corresponding binary values being stored sequentially in consecutive memory addresses.

After entering the required digits, the sequence is terminated by moving SW1 to position 2, the 'operate' mode. As the switch closes, one last write pulse is

Fig. 2 Timing diagram for the Logic Lock logic! It will repay careful study in conjunction with the circuit diagram and How It Works section.

Next month we conclude this project with the component overlay and application circuits.
generated as C12 charges up through R12 (C12 was previously discharged via R13). No touch inputs are activated so the INT memory input is held at logic 1 by the control line. When the logic 1 is written to memory the associated OUT1 output also goes high, activating the solenoid timer monostable built around IC5a. (The solenoid is energised by this monostable for both normal lock operation and at the end of a write sequence. Although the door must already be open during reprogramming, the solenoid provides a useful indication of successful reprogramming.)

The pin 5 input of IC 5 a is normally held low by R13, thus disabling this gate. However, after the brief write pulse caused by changing SW1, pin 5 is taken high via R12. Pin 6 was also held low by R10, but as the OUT4 data output goes from low to high, the previously discharged capacitor C11 takes pin 6 high. The gate output on pin 4 will thus go low for a period set by the R10-C11 time constant. This time period is about five seconds and is used to turn on both the front panel indicator (via D7), and the solenoid lock mechanism, thus allowing plenty of time to open the door.

The monostable signal turns on
transistor Q1, which applies current to the LED in an opto-isolator and allows isolated external power to be switched to the solenoid. (Transistor or thyristor optoisolators may be used).

When the monostable finishes its time period, the output returns high again. C13 differentiates this positive-going edge to provide a load pulse to the counter IC4. The preset A input is held at logic 1 by the control line, so the counter will return to its first state, switching the OUT1 memory output back to logic low.

The lock has now been programmed with the desired sequence and remains in its resting state of count position 1. When a number is now entered, the negative-going pulse produced through C15 appears on pin 9 of the EXOR gate IC2d.

This gate is wired as an inverter and the positive-going output pulse is fed to the pin 12 input of NAND gate IC5c. The other input to the NAND gate comes from the three bit comparator at the junction of D2,3 and 4. These diodes (with R11) form a three input AND gate; thus, if the data from the input encoder wired to one side of the digital comparator has the same binary value as the data currently on the OUT memory outputs feeding the other side,
then the pin 13 input of IC5c will remain low via R11. However, if the two values are not equal, there will be a logic high output from at least one of the exclusive OR gates IC2a, b or c, taking the input of IC5c high via the corresponding diode. Thus if a wrong number is entered, the short positive pulse from IC2d will appear in inverted form on the pin 11 output of IC5c. IC5d further inverts this pulse before feeding it to the load input on pin 7 of counter IC4. Since the preset A input of the counter is held low by the control line when this load pulse is received, the counter resets to zero. At the end of the wrong number input the control line goes high to clock the counter on to its count 1 resting state. Every wrong number entered will always return the counter back to the beginning of the sequence, regardless of where it occurs. As long as the correct numbers are entered in sequence, no reset pulses occur and the counter will be clocked on to the next number at the end of each entry.

After the last number in the sequence is entered, the counter will address the terminating location. The previously low OUT1 output goes high, triggering the solenoid timer monostable as described earlier and the door will now open.

ETI PCB SERVICE

Up until now. PCBs were always the hardest component to obtain for a project, Of course you could make your own, but why bother anymore?
Now you can buy\%our boards straight from the designers - us! As of this issue all (nomcopyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our orototypes, so you can be stire 'K's accurate e e and will be finished to the high standard yotic would expect from ETI.
In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please note that NO OTHER
BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

APRIL 79 Guitar Effects Unit Click Eliminator JUNE 79	£2.64	APRIL 81 Musical Box Drum Machine (two boards) Guitar Note Expander
\square Accentuated Beat Metronome	£3.60	JUNE 81
FEBRUARY 80		\square Mini-drill Speed Controller
\square Tuning Fork	£2.64	\square Alien Attack
MARCH 80		\square LED Jewellery: Cross
\square Signal Tracer	£2.27	Spiral(two boards) Star(two boards)
AUGUST 80		\square Waa-phase
\square CMOS Logic Tester	£2.64	
- Capacitance Meter	£2.93	JULY 80
\square Ultrasonic Burglar Alarm	£2.87	\square System A A-MM/A-MC
OCTOBER 80		System AA-PR
\square Cassette Interface	£2.93	Smart Battery Charger
\square Fuzz/Sustain Box	£3.27	
NOVEMBER 80		AUGUST 81
\square Touch Buzzer	£1.93	\square System A Power Amp (A-PA)
\square Light Switch	£1.93	\square FlashSequencer
\square Metronome	£1.93	Hand-clap Synthesiser
\square 2W Power Amp	£1.93	- HeartbeatMonitor
\square RIAA Preamplifier	£1.93	\square Watchdog Home Security
\square Audio Test Oscillator	£3.13	(two boards)
DECEMBER 80		SEPTEMBER 81
\square Musical Doorbell	£2.80	\square Mains Audio Link (three boards)
\square Bench Amplifier	£2.53	\square Laboratory PSU
\square Four Input Mixer	£2.64	
JANUARY 81		OCTOBER 81
\square LED Tacho	£4.13	$\begin{aligned} & \text { Enlarger limer } \\ & \square \text { Sound Bender } \end{aligned}$
\square Multi-Option Siren	£3.20	\square Thermal Alarm
\square Universal Timer	£3.31	\square Micropower Pendulum
FEBRUARY 81		
\square Infra-red Alarm(four boards)	E6.64	NOVEMBER 81
\square Pulse Generator	£3.57	Music Processor Voice-Over Unit
MARCH 81		\square CarAlarm
\square Engineer's Stethoscope	£2.65	\square Phone Bell Shifter

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE. Make cheques payable to ETI Book Service. Payment in sterling only please. Prices may be subject to change without notice.

Total for boards $\quad £$ Add 45p p\&p

Total enclosed

Address

(1) "
 WIRING SYSTEM SPECIAL INTRODUCTORY OFFER! PROJECT KIT - ONLY £5.40 MORE THAN 25\% OFF Normal Price $£ 7.26$
Consists - High density hobby board wiring pencil, $5 \times 6^{\prime \prime}$ Glue Strips, 4 coloured enamelled wire bobbins, 1 tinned copper wire bobbin.
ROADRUNNER IRON - ONLY E5.00 MORE THAN 15\% OFF Normal Price $£ 5.99$ Spec - 240V 17W High Temp Iron suitable for soldering enamelled wire.

ROADRUNNER PRODUCTS IDEAL FOR

- WIRING SIMPLE LOGIC CIRCUITS
- WIRING MICROS \& MEMORIES - WIRING DISCRETE CIRCUITRY - REPAIRING \& MODIFYING PCB's USE AS A TRAINING AID

Whance system		LINNED CONTACTS		One-piece guide blocks	
EURO INTROKT	15.99			08 CARD PITCH	
PROUECT KIT	7.26	B Way 9p la way 12p 16 Way 14 p		3U86け 64 HP	268
MININIT A	6.68	18 War 18p 20 War 18p		3U 404 P	${ }_{1.43}$
MINISIT E	6.21	22 WAY 21p 2\% WAY 22 p		3020 HP	0.78
PCB REPAIP KIT	541	28 WAY 25p 40 WAY 35p		individual rails	0.16
TRAMNING KIT	${ }^{\text {a }}$. 95	GOLDCONTACTS			
GEN GLUE STRIPS $20 . \mathrm{PKT}$	310 339			Oin 41612 Comn strew	0.36/20
H/O GUVE STAIPS 20/PKI PRESS STRIPS 20, PKT	$\begin{aligned} & 3.39 \\ & 2.71 \end{aligned}$			Other accessories a	
OSE PENCH	2.99	20 Way 319 p 22 way 28 p	21 WaY 31p 28 WAY 40p		
TOW PENCIL	294	40 Way 50 D		$\underset{\text { ROADRUNNER IRON }}{\text { High }}$	
blue bobbins 4/PkT	2.12	DIN 41612 CONWECTOAS		High lemp Iron Generat Pup aron	5.99
COPPER COLOUA	2.12	332 way 日 type Plug		tronstand	482
GREEN COLOUR	212 2.12		1.42	Spare lion bits ea	+482
MIXED PACK OF 4	2.20	32 way Socker Solde tag64 way C yybe Plad	2.32		
TCW BOBBINS 2 PKT	0.98		146	Weller tron bits, en	155
Hobay boaro S SIIED	1.75	64 way C lybe Plug 64 way Sockel WW Pins	2.21	Desokter brad ea	0.95
PROJECT EUROCARD	380	64 way Socher Sorder rag 96 way a 150 avaluble		Mcroshears Knite	347 045
single eupocard		EUROCARO SUBAACKS Kils of 2 end plates 2 ront \& rear rats hixmy screws and integial tixing for D'N 41612 Connectors		Tweezers	1.49
D/SIDED	4.50			Spoltace cutter	1.49 1.91
DOUBLE EUROCARD				Pinlinsenter	
OSIDEO	0.60			Solder Pins 100	0.50 850
HOBBY BOARD CONNECTOR 28 WAY MODULAR TYPE				Clue strip athessive	des
WW PINS	1.95				
SOLDERTAGS	1.95	6U/84tP 19 wide lrame	29.99		

USE ROADRUNNER PRODUCTSFOR VERSATILITY, ECONOMY AND PROFESSIONAL RESULTS

TAKE ADVANTAGE OF THIS INTRODUCTORY OFFER TO THE ROADRUNNER WIRING SYSTEM \& ORDER NOW
WHEN ORDERING ASK FOR THE NEW ROADRUNNER CATALOGUE FREE!

GOOD VALUE FROM ROADRUNNER 19" Eurocard Subrack complete

ONLY £19.86

 Full range of accessories available.[^4]I enclose cheque/P.O. for $£$
or debit my Barclay Card/Access No.

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor. CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

- Lowest prices - Largest stocks *
* Expert staff - Sound advice *
* Choose your DIY Hifi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
- Ample parking *
\star Access Visa American Express accepted

35/39 Church Street, Wilmisow, Cheshire SK9 1AS \square

Lightning service on telephoned credir card orders!

ZX81 HARDWARE

40 KEY KEYBOARD Kit $£ 20.95$ Built $£ 25.75$ (RE77)

* Proper tyoewriter style keys.

* All legends and graphics in two colours. * .
* Complete with ali parts, connectors, feet and cormprehensive instruction

24 LINE IN/OUT PORT Kit $£ 16.95$ Built $£ 18.95$ (RE98)

* Each ine either in or ou

* Controled hy BASIC.
* Alows orinter R ΔM io be used without a motherbcard
iMotherboard version kit E 13.50 Buit f 14.50)

3 CHANNEL SOUND/TIMER BOARD

Kit $£ 16.95$ Built $£ 18.95$ (RE161)
${ }^{*}$ * 3 Condependent Criannels.

* Controled by BASIC
* Compleie instrucuons with examples provided

MOTHERBOARD Kit f15.75 Built f18.50 (RE82)

* Two cornectors on board.

CONNECTORS \& PLUGS

* 23 Way temale connector for 2X80/1. (RE80) $\mathbf{1 2 . 9 5}$
* 23 Way male connector. (RE f87) £1..30
* RAM pack connector, Allows RAM pack to be remote from ZX80/1. (RE170) $£ 6.95$ buitt
* In/out conrector and sound board connector (RE78B) $\mathbf{2} .95$

BOOKS \& TAPES

Getting acqualnted with 2×81
Mastering machine code.
Programming for teal applications
Tape for real applications book.
fa.95
.
.55 .95
$\mathbf{f 5} 95$
Send SAE 5" * $7^{\prime \prime}$ for free illustrated catalogue
All products available ex stock tallow 7 days extra for built products
Payment: Cash with order. Or ACCESS/BARCLAYCARD.
Official order weicome. Dealers write for rates.
All prices include $P \& P$ and VAT. Overseas add f1.80
REDDITCH ELECTRONICS
DEPT ET1
21 FERNEY HILL AVE.,
REDDITCH,
WORCS. B97 4RU
TEL: (0527) 61240

New Products
 x

HIFI STEREO AMPLIFIER KITS
From one of Britain's leading esoteric amplifier manufacturers comes an exciting new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the usual price penalty.
These new kits offer the choice of moving magnet or moving coil inputs, 40 to 100 watts per channel, in fact, everything that made the previous models so popular is included but with added style, easier construction and a full two year warranty.
The now range consists of The CK 1010 Stereo Pre A
CK 1010
This kil contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and mechanical assembly of the connections and controls to the pre punched chassis
The CK 1010 takes its DC supply from the CK 1040, 1100 or, if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an optional add-on moving coil input can be fitted to extend its versatility. (MC2K)
CK 1040
This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010 . All components such as heatsinks, wire and connectors are included and protection is provided from short circuit outputs.

CK 1100

Similar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinking and thermal cutouts are provided as standard
When correctly assembled these kits are guaranteed for two years
It would seem then that Crimson have maintained their position at the top of the commercial kit-build field. There is no oriental amplifier / know of that can better the sound of this combination overall at any price and only a few - such as the KA 1000 ($£ 500+$) - are of comparable standard. . . . I can say no more than that for E250 it (CK 1010/MC2K/1100) is a bargain and one tha becomes the reference point for kit amplifters from now on.

PRICES CK 1010 - RRP £90.00; CK 1040 - RRP $£ 119.00$; CK 1100 - RRP $£ 149.00$; MC2K - RRP $£ 25.000$; PSK - RRP $£ 20.00$
Barclaycard or Access accepted, otherwise send C.W.O. C.O.D. 11.00 extra. All prices include P\&P to anywhere in the U.K. Export: Write for pro-forma
SEND FOR FULL DETAILS ON OUR HIFI KIT PRODUCTS BY WRITING TO FREEPOST ADDRESS BELOW
FREEPOST, 9 CLAYMILL ROAD
LEICESTER LEA 5ZD. ENGLAND
TEL. 0533 761920, TLX 34534

WE WILL BEAT BY 5\% ANY LOWER PRICE ADVERTISED BY COMPETITORS*
 Sharp Portable Colour Computer for only £278 + VAT

100 METRE WATER RESISTANT

W-100 Resin
case/strap £19.95

W-150C
S/S case,
resin strap
£21.95

W-150
All
All
S/S
f24.95

Time and auto calendar. Alarm and hourly chimes. Countdown alarm timer with repeat memory function. Professional $1 / 100$ second stopwatch. Time is always on display, display mode. Amazing 5 year
life. Superior to the $W-250$

50 METRE WATER RESISTANT

$12 / 24$ hour time and auto calendar. Alarm and hourly chimes. Professional $1 / 100$ second stopwatch to 12 hrs . Compact and slim cases, approx. 8 mm thick. 5 year lithium battery.
OTHER MODELS
AX-210. The world's most versatile watch? Analog Display
LC Display of hours and minutes
Digital Display

- Local time, 12 or 24 hour
- Full calender dispiay
- Countdown alarm timer with
memory function
- memory function

Professional
stopwatch
Hourly time signal. Daily alarm electronic buzzer or 3 selectable melodies. Rapid forward/back setting. $9.4 \times 35.4 \times 36 \mathrm{~mm}$
Usual price: $£ 29.95$
Lowest price elsewhere

- £27.95
* * *NEW * * *

CA95. Calculator, 4 alarms, houriy time signal, stopwatch Black resin case/strap £19.95.
CA951 Metal case/bracelet version of CA95 $£ 29.95$. Other models. CA85 £19.95; CA851 $£ 29.95$; J100 £19.95; GM10 £19.95; SA50 £14.95; SA50G £19.95.

LOOK, NO BATTERIES

FX. 950 SOLAR CELL SCIENTIFIC Powered by almost any light. 50 Powered by almost any light. 50 scientific functions, with nesting of Hyperbolics, Standard Deviations ttc. 10 digit display. $5.4 \times 73 \times 129 \mathrm{~mm}$ Supplied with waliet.
£22.50

FX-900 8-digit version with less functions $£ 19.95$

The Revolutionary New PC-1500 and CE-150

PC- 1500 Computer
£169.95
CE-150 4-colour Printer
£149.95
CE-151 4K Byte RAM
£49.95
CE-155 8 K Byte RAM
$£ 79.95$
We are convinced that this is the world's most advanced PC- 1500 sotrware
MICROL 1500 SOFTWARE SERIES
The Portable Computer Comes of Age with advanced ready-to-run software to meet the needs of management science, engineering and the professions. Major features in-
 hensive "plain English" hensive plain English operating manuals. (4) No compute exp Future requred. (5) on Fapability Plus: Full colour print commands with Auto Colour Audit-Trail and Archive options, sophisticated usererror recovery systems and Database Integrity Protection

MiCROL 1500 Software Series from $£ 200$ to under $£ 20$ Brochure on request
Worldwide dealer network now being established Dealer enquires welcome.

The PC-1500 approaches the Personal Computer in ability. 16K bytes of ROM and up to 11.5 K bytes of RAM memory, with battery protection. Multiple program storsge capacity. 'BASIC' program language with two dimensional arrays and variable strings. QWERTY keyboard with upper and lower case. Word-processor solware Line width 26 characters. graphic 1×150 colour Graphic Printer/Two Cassette Interface (for saving/loedingl prints virtually any drawing, with lace (ert and right printing. Vari emple conth from 4 to 36 characters. With rechargeable bettery and mains adaptor
Dimensions: PC. $1500195 \times 25.5 \times 86 \mathrm{~mm}$. Wt 375g. CE-150 $330 \times 50 \times 115 \mathrm{~mm}$. Wt 900 g .
Available soon: RS-232C Interface. Software boerd to serve as input keys in graphics, or pictures, previously drawn on a template.

Brochure on requast.

The Scientific Portable Computer

CASIO FX-702P Only E99.95
Plus FREE MiCROL Professional Programming Pack IRRP f9.95) or we will beat any lower price by 5%. The widest range of math, science and statistics, (55 in all, including Regression and Correlation). BASIC. Up to 1,680 program memory steps, up to 226 data memories.
Subroutines, 10 levels; FOR:NEXT looping, 8 levels. Edit, Subroutines, 10 levels; FOR: NEXT looping, 8 levels. Edit, debug and trace modes. 240 hrs battery life.
$7 \times 165 \times 82 \mathrm{~mm}$. Wt 176 g
MiCROL 702 PROCOS Professional Computing Solutions on tape. Save up to 90% of programming time with his electronic equivalent of pen and paper. 'Visicalc-type systems answers 'what if' questions and analyses trend
24.9 F .

Peripherals for FX.702P, 602P, 601P and 5021501P FA-2 Remote control Cassette Interface $\mathbf{£ 1 9 . 9 5}$ P- 10 Permanent hard copy printer. AC/DC 702 PACKAGE DEALS
ack A: $702+F A-2+$ PROCOS . $£ 44.95$

Pack B; $702+$ FA-2 + PROCOS £139.95
Pack C; $702+$ PPP + FP-10 + PROCOS 179.95 $\mathrm{f} \mathbf{£ 1 3 9 . 9 5}$ £179.95

World's Fastest Programmable?

CASIO FX-602P Only $£ 74.95$ With FREE MiCROL Professional Programming Pack (RRP 9.95) or we will beat any lower price by 5%. 50 scientific functions. Up to 512 program steps, up to 88 mem ories, all protected when switched off Programs; PO to Pa Go up to 10 pairs Up to 9 subroutines nestablets at 11 levels. FA-2 AP-10

CASIO FX601P Now only £30.25 Similar to the FX-602P but with 128 program steps, 11 memories; 18 brackets, up to 6 levels; up to 9 subroutines, nestable up to 4 levels.
FX-3600P 38 program steps E2.95* Others $\mathbf{E 2 1 . 9 5 *}$ FX-8100 With Clock, Alarms, Stopwatch.......... 19.95 FX-950 £22.95; FX-900 £19.95; FX-550 £19.95; FX-100 £16.95; FX-82 £ 12.95 ; FX-7 £10.95; FX-5 £8.95.
FT-7 Fortune Teller f16.S5; BG-15 Boxing f16.95;ML.75 Card. 12 melody alarms E 14.96 ; ML120 wallet version [14.95; UC380 Card, UC385 Wallet $£ 19.95$. BASIC. LC950 Metric Conversions on two displa
E16.95; MG777 3 games/clock f14.95; MG880 $\mathbf{E 1 0 . 9 5}$.

CASIOTONE CT-701 COMPUTERISED PROGRAMMABLE KEYBOARD/ORGAN

Fully Programmable, 5 octave, Polyphonic Keyboard

CT-701

Other Casiotones:
VL-10 £26.95; VL-1 £35.95; MT-31 £69; MT-40 £.99; CT-101 £195; CT-202 £275; CT-403 £275.

Program the 345 melody steps and the 201 chord steps (max) with music specially scored in bar code and read by a light pen, or enter your own chords and melody vie the keyboard, with full editing and repeat facilities.
3-way replay: Automatic, One key play, Melody Guide (lights above the keyboard indicate the next note to playl. Spit keybard, companiments, fingered or auto chords with walking bass and arpeggio, fill-in and effect buttons. $373 / 4 \times 137 / 16 \times 5^{\prime \prime}$. Weight: 12.5 kg (27.61bs).

CT601. As 701 but without programming functions . $\mathbf{5 9 6}$

* Providing the advertiser has stocks and we do not sell at a loss

PCB FOII PATTERNS

Above: The Digital PWM foil pattern.
Below: The board for the MOSFET power amp module.

USED EQUIPMENT	LOW-COST, RUGGED
Ex-P.O. Multimeters in leather case. $\mathrm{AC} / \mathrm{DC}$ Volts, DC current, ohms. Absolute Bargain $\mathrm{f6}+\mathrm{f} 1.50 \mathrm{pfp}$	TEMPERATURE CONTROL
500V MEGGER	
Transistorised Insulation and four decade re	
bridge with four ranges nvaluable parrying handle. Uses one PP9 batt. $£ 15.00+£ 2$ P\&P	16A 240V RANCO THERMOSTAT Wide control range (low room temp. to over boiling point) Sensor on $22^{\prime \prime}$ " capilliary. $\mathbf{f 2} \mathbf{2 3 0}$, including control knob
Recent Style P.O. Telepho $\mathbf{f 4 . 7 5}+\mathbf{f 1 . 8 0} \mathbf{P \& P}$ 2 for $£ 9+\mathbf{£ 2 . 5 0 . 5}$ for $\mathbf{£ 2 0}+$	RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$ 15A 240V. Sensing coil on 4tin. capillary panel mounting with reset button f 1.20
5 Digit Counters 48V coil. N resetable	AVOMETER Similar to Model 71 which currently retails for over E 45. These units are, as with all of our used equipment, Tested and Guaranteed to be in good working order. Price includes Leather case.
AUTOMATIC DIAL UNIT. amains powered. These units telephone and dial a number when a punch-card is inserted. Card $\&$ instructions supplied. uses. Oniv E \& +f 1 p p p	
UNISELECTORS. 50v, 4 Bank + Homing Bank, 25 way $\mathbf{f 3 . 5 0}$	20 K Ohms per Volt (D.C.) 1 K Ohms per Volt (A.C.) D.C. Volts $-1,2.5,10.25,100,250,1,000$
D CONNECTOR with Cover. 50 way	OHMS - $\times 1, \times 100, \times 10 \mathrm{~K}$ LIMITED STOCK AT $\mathbf{f 1 4 . 5 0}+\mathbf{f 1}$ p\&p
60V 8A TRANSFORMER. Ideal for big power supply unit or THATI THAT!	professional quality p.a. modules All to near broadcast spec. $7^{\prime \prime} \times 2^{\prime \prime}$ rack mounting, Require 40 to 50 volt stabilised supply. Lne Distribution Amp 30 K in. 4×600 out. Gain gives up to 20 dB . Mixer - 10 stareo or 20 mono channels (no controls) gain up to 10dB. E12 each + ${ }^{\text {fin }} 1.50$ ptp. MIC AMP - Switchable gain + fine gain control L.F. Cut. $\mathrm{f} 14.50+\mathrm{f} 1.50$ ptp.
FREE on request -- Leaflet 'D.I.Y. Telephone Systems and Automatic Exchange Design'.	
LE.M. SERVICES 233 Rugby road LEAMINGTON SPA CVB2 gOY. WARWICXSHIRE	VICES ADD 50 PGP MOAD NSP CV32 60Y- ORDERS OVER C7.50 POST FREE

MAGENTA ELECTRONICS LTD.

E.T.I. KITS - full kits include printed circuit boards, components, hardware, I.C. sockats, case itc. unloss stated. (Not batteries).
If you do not have the issue of E.T.I. which includes the project - you will need to order the instruction reprint as an extre 45p each
Reprints available separately 45p each + p\&p 45p.

INSULATION TESTER May $82 \ldots16 .98$	f43.33
SOUND EFFECTS 3. PHASOR/EXPLOSION	RECHARGEABLE BATTERY extra $\mathbf{1 9 . 9 8}$
SOUND EFFECTS 4. GUNSHOT May 82 f10.98	HANDCLAP SYNTHESISER Aug 81 . . . 29.98
AUTORANGING CAPACITANCE METER Mar	WAH PHASE June 81. Less pedal . . .
	LED JEWELLERY June 81. Cross £2.47.
ACCURATE VOLTAGE MONITOR Apr 82	Star $\mathbf{E 9 . 4 1}$. Sprial $\mathbf{f 7} \mathbf{2 0}$.
f13.63	ALIEN ATTACK Jan $81 f 19.76$
AUTOMATIC CONTRAST METER Apr 82,	GUITAR NOTE EXPANDER April $81 \mathrm{f16.47}$
less extrusion $\mathbf{E 2 6 . 7 7}$	DRUM MACHINE April 81 559.98
SOUND EFFECTS 1 BOMB DROP Apr 82 f 12.47	ENGINEERS STETHOSCOPE Mar $81 . . . \mathrm{f} 19.19$
SOUND EFFECTS 2. STEAM TRAIN April 82	SOUND PRESSURE LEVEL METER Feb 81
HIGH QUALITY PHONO AMPLIFIERS Feb 82	INFRA RED ALARM Feb $81 ~ ¢ 54.98$
less case	
MOVING COIL STAGE f17.98	MUSICAL OOORBELL Dec $8011 .61$
MOVING MAGNET STAGE. f17.68	
PEST CONTROL Feb 82 66.77	CASSETTE INTERFACE Oct 80
GUITAR TUNER Jan $82988 .98$	ULTRASONIC BURGLAR ALARM Aug 80
	U............................ . . . $£ 26.82$
MUSIC PROCESSOR Nov $81 ~ f 49.98 ~$	CAPACITANCE METER Aug $80180 .26$
	CMOS LOGIC TESTER Aug 80 f10.97
ENLARGER TIMER Oct $\mathbf{£ 2 6 . 5 9}$	CLICK ELIMINATOR April 79. f61.55. Or less
SOUND BENDER Oct $81 ¢ 20.76$	case $\mathbf{4} \mathbf{4 6 . 5 7}$.
WATCHDOG SECURITY ALARM Aug 81	

MORE KITS AND

 COMPONENTS IN OUR LISTS FREE PRICE LIST orders or send sae (9×4)CONTAINS KITS, PCBS
COMPONENTS

1982 ELECTRONICS

 CATALOGUEIllustrations, product descriptions, circuits all included. Up-to-date price list enclosed. All products are stock lines for fast delivery Send 80 p in stamps or add 80 p to order. MORE KITS FROM H.E., E.E. and E.T.I. PROJECTS IN THEPRICE LIST

\section*{SOLDERING/TOOLS ANTEX XS SOLDERING IRON 25W 55.48
 SOLDERING IRON STAND E2.40
 SPARE BITS Small, standard, large. For XS and X25 irons 65'p each SOLDER Handy size 99p SOLDER CARTON $£ 1.84$ DESOLDER BRAID 69p DESOLDER PUMP f6.48 HEAW TO SOLDER LEAS 29p LOW COST CUTTERS £1.69 LOW COST LONG NOSE PLIERS f1.68 WIRE STRIPPERS + CUTTERS £2.69 HELPING HANDS JIG 56.30
 VERO SPOT FACE CUTTER $\mathbf{E 1 . 4 9}$ PIN INSERTION TOOL 1.98 VEROPINS (pk of $10010.1^{\prime \prime} 52 \mathrm{p}$ MULTIMETER TYPE 1 ($1,000 \mathrm{opv}$) MULTIMETER TYPE 2 (20.000 opv) with transistor tester. Very good CROCODILE CLIP TEST LEAD SET 10 leads with 20 clips98p RESISTOR COLOUR CODE CALCULATOR ….............21p ED. 11 colours 49p
 ILLUMINATED MAGNIFIERS Small 2" dia. ($5 x$ mag.) Large $3^{\prime \prime}$ dia. ($4 x$ mag CASTIRON VICE.. SCREKETTOOL SET PUROBREADBOARD S DEC BREADBOARD SIMBOARD 1 BREAD $\mathbf{E} 3.98$ VEROBLOC BREADBOARD . . 4.20

Please mention Electronics Today when replying to this advert
MAGENTA ELECTRONICS LTD
EX13, 135 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST. 028365435 . MON. FRI. 9-5. MAIL ORDER ONLY AOD 45p P \& P TO ALL ORDERS

ALL PRICES INCLUDE 15\% V.A.T

P \& P 45 p

OFFICIAL ORDERS WELCOME IRISH REPUBLIC \& B.F.P.O. EUROPE: Deduct 10\% from prise in Sterling. ACCESE ORDERS ACCEPTED BYPRDONISA) SAETALL ENQUIRES.

GREENWELD 443A Millbrook Road Southampton SO1 OHX All prices include VAT at 15% - just add 50p post 1982/3 CATALOGUE

Blggerl Betterll Buy onell! Only $T_{5 p}$ inc. poat - Look what you getl! - Vouchers worth 60p

1st class reply paid envelope
Wholesale list for bulk buyers

- Bargain List with hundreds of surplus lines - Huge range of components

Low, low prices
Sont free to schools, colleges etc.

1000 RESISTORS £2.50

We've just purchased another 5 milion preformed
resistors, and can make a similar offer to tha made two years ago, at the same pricolll K523 - 1000 mixed $1 / 4$ and $1 / 2 \mathrm{~W} 5 \%$ carbon film resistors, pretormed for PCB mntg. Enormous renge of preferred values. 1000 for $£ 2.50$: 5000
$\mathrm{f10}: 20 \mathrm{k} \mathbf{5 3 6}$ f10: 20k 136
200 ELECTROLYTICS $\mathbf{£ 4 . 0 0}$ K524 Large variety of values/voitages, mostly
cropped leads for PCB mntg. $1-1000 \mathrm{FF}, 10-63 \mathrm{~V}$ cropped leads for PCB mntg. 1-1000uF, $10-63 \mathrm{~V}$. All new full spec co
200 £4: $1000 £ 17.50$

LIE DETECTOR

This beautifully made precision instrument is not a toy or gimmick, it was originally used on an Open University course to measure changes in emotional balance by detecting small changes in skin resistance. Full details of how to use it are provided, together with a
circuit diagram. Suplied complete with circuit diagram. Suplied complete with probes, leads and conductive jeliy. Needs $2 \times$ $41 / 2 \mathrm{~V}$ batteries. Overall size $155 \times 100 \times$ worth more than we're asking for the whole unitl! $\mathbf{7 7 . 9 5}$
STABILIZED PSU PANEL

A199 A versatile stabilized power supply with both voltage $(0-30 \mathrm{~V})$ and current ($20 \mathrm{~mA}-2 \mathrm{~A}$) fully variable. Many uses inc bench PSU Nicad charger, gen. purpose testing. Panel ready built, tested and calibrated. $\mathbf{7 7 . 7 5}$. Suitable transformer and pots $\mathbf{6 6 . 0 0}$. Fuli data supplied.

PACKS PACKS PACKS

$K 517$ Transistor Pack. 50 assorted full sp

 marked plastic devices PNP NPN RF AF. Type numbers include 8C114, 117, 172, 182, 183, 198, 239, 251, 214, 255, 320, BF198. 255, 394, 2N3904 etc etc. Retail cost $£ 7+$. Special low price 275pK520 Switch Pack. 20 different assorted switches - rocker, slide, push, rotary, toggle, micro etc. Amazing value at only 200 p each 200 mm long. What a bargain 50 p
K 522 Copper clad board. All pieces too small for our etching kits. Mostly double sided fibreglass. 250 g (approx 110 sq ins) for 100 p
KE41 It's backll Our most popular pack ever - Vero offcuts. This has been restricted for some time, but we have now built up a reasonable stock and can once again offer 100 sa ins of vero copper clad offcuts, averaae size $4 \times 3^{\prime \prime}$. Offered at around $1 / 2$ the price of a new board 320 p

'MICROVISION' Cartridges

 These are a small PCB with a micro-processor conisole. Only snag is we don't have any consoles!! However, they can be used as an oscillator with 4 different freq. outputs simply by connecting a battery and speaker. Tested and working (as$72 \times 60 \mathrm{~mm}$

ONLY 25p each!

ELECTRO-DIAL

Electrical combination lock for maximum security, absolutely pick-proatl! One million combinations! Dial is turned to the right to one number, left to a second number, then right again to a third number. Only when this has been completed in the correct sequence will the electrical contacts close. These can be used to operate a relay or solenoid etc. Overal dia $65 \mathrm{~mm} \times 60 \mathrm{~mm}$ deep. Finished in brigh chrome. With combination the price is $\mathbf{E 9 . 9 5}$ Also available without combination, bu instructions are provided on how to find it Takes about $20 \mathrm{mins} \mathbf{f} .95$

COMPONENTS

2200uF 100 V cans $77 \times 35 \mathrm{~mm} 75 \mathrm{p}$ each 10 for $f 5.50$
MK 4027 shift register 8 for $f 6$
21028 RAM 8 for $£ 3$
2708 EPROM £1.50
MIR50 infra red 5 mm LED 30p
DM160 tuning indicator 50 p
RC4136 op-amp similar to 741 . 14DiL package 10 for $£ 1$
AY-5-4007D 24DIL chip counter/display. 4 decade up/down 7 seg o/p $0-6 \mathrm{MHz}$. -12 -5V supply f 1
FND501 + - 10.5 in red display comm cathode $\mathbf{C 2 5 p}$
MAN6710 Dual digit Red 0.56 in 7 seg display Murpia ceramic filter 55 MHz 40 data 1.00 $10 \mathrm{M} 1 / 2 \mathrm{~W}$ resistors 5% carbon film. Pack of 200 for $\mathbf{f} 1$

MIXED LED PACK

All new full spec by Micro, Fairchild, etc.
Red, Yellow, Green, Amber, Clear, 3 mm \& 5 mm . Pack of 50 assid $£ 3.95$; $250 £ 15$

SOLENOIDS AND RELAYS W921 Solenoid rated $48 \vee$ at 25% duty cycle, but work well on 24 V i 700 gm pull, 10 mm travell push or pull $27 \times 18 \times 15 \mathrm{~mm} 55 \mathrm{p}$
W922 Mains 240 V ac solerioid, 10% duty cycle. push or puil, 16 mm travel. $50 \times 20 \times 16 \mathrm{~mm}$. Only
W895 9V DC relay 500R SPCO $28 \times 24 \times 19.50$ p W733 11 pin plug in relay, 240 V ac, 3 PCO 5 A contacts 62.50 . Base 936 p
W838 700R 24 V 4 PCO "continental" relay $35 \times$ 30×18, only 84p; 10/f7.00
W847 37R $5-10 \mathrm{~V}$ relay. SP 3 A contact, PCB
mntg $11 \times 33 \times 20.95 \mathrm{p} \cdot 10 / \neq 70$ mntg $11 \times 33 \times 20.95 \mathrm{p} ; 10 / \mathrm{f7.50}$
W893 Omron LY4 mains relay, 4PCO 5A contacts. £2.50
WB96 24 V ac coil, but works well on 6 V DC. $2 \times$ 10 A c/o contacts. Ex-equip, only 60 p
5V 3A REGULATED PSU KIT A197 All components + heat sink to build this simple yet useful power supply. A regulated output of 5 V at up to 3 A for just $£ 2.50$. Suitable transformer ($9 \mathrm{~V} 3 A$) $£ 4.85$.
AMAZINGI COMPUTER GAMES PCB's for PEANUTSII
A bulk purchase of PCB's from several well known computer games including Battleships, Simon, incredibly low prices
'STARBIRD'
Gives realistic engine sounds and flashing laser blasts - accelerating engine noise when module is pointed up, decelerating noise when pointed
down. Press contact to see flash and hear blast of lasers shooting. PCB tested and working complete with speaker and batt, clip (needs PP3). PCB size $130 \times 60 \mathrm{~mm}$. Only $\mathbf{5} .95$
'SIMON'
The object of this game is to repeat correctly a longer and longer sequence of signals in 3 different games. Instructions includedl. PCB contains chips, switches, lamphorders and lamps, and is tested working, complete with speaker. 130 mm . Only $\mathbf{E 3} .95$
'COMPUTER BATTLESHIPS' Probably one of the most popular electronic games on the market. Unfortunately the design makes it mpractical to test the PCB as a working nstead we have tested the sound chip, and seli the board for its component value only (PCB may be chipped or cracked): SN76477 sound IC; TMS 1000 u-processar; batt clips, R's, C's etc. Size $160 \times 140 \mathrm{~mm}$. Only $£ 1.50$. Instruction book and circuit 30p extra

SECOND GENERATION POWERFET AMPLIFIERS

NEW DESIGNS

With the introduction of two new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiers. Four key improvements have been incorporated in these second generation modules -
1.) The use of H-PAK powerfets, resulting in improved thermal efficiency and consequentiy enhanced power output capabilities.
2.) Low C_{OB} drivers now in power transistor packages, maintaining the superb HF performance and improving driver reliability.
3.) Separate driver and input supply rails allowing a 10% increase in available output 4.) Bridge mode input pin allowing instant brid
4.) Bridge mode input pin allowing instant bridging between any two amplifiers without the need for extra circuitry

PFA100 120W into 8M

PFA200 Specification	
Bondwidth	10 Hz 100 K Hz + 148
Dutput power into 8M	150W (V) + 60V)
THO (20) 2 : 20 KH	0.005\%
THO (IKHz at 150M	0.002\%
SNR	120dB
Slew rate	2 MiuS
Gain	$\times 23$
Rin	30 K
Vs max	$+70 \mathrm{~V}$

Price $\mathbf{£ 2 5 . 9 5}$

PFA200 180W into 8M
300W into 4M
POWER SUPPLY COMPONENTS
Toroidal Mains Transformers

Voltage	160	225	300	500	625
$40-0-40$	$11-51$	$13-75$	$15-59$	-	-
$45-0-45$	-	$13-75$	$15-59$	$20-45$	-
$50-0-50$		-	-	$20-45$	$27-53$

Special low flux windings. Carriage + VAT included
$\begin{array}{ll}25 \mathrm{~A} 400 \mathrm{PIV} \text { Bridge rectifier } & £ 2.50 \\ 100.000 \mathrm{uF} \text { 80V Flectrolytics } & £ 4.75\end{array}$

Phone or write for advice on selecting the right components for your particular application
All prices VAT inc. Carriage 75 p. Trade lists available Ask about our preamps, protection boards and lower and higher power amp modules

THE POWERFET SPECIALISTS pantechnic
(incorporating J.W. Rimmer)
Mail order only to:
Dept ETI/5, 148 Quarry Street, Liverpoal L25 6HO. Telephone: 051.4288485
Technical enquiries:

Technical enquiries
367 Green Lanes, London N4 1DY. Tel: 01.8006667

SUPERSALE '81

All full soec. brand new devices.
2114 (450nsi $\mathbf{f} 1.00,4116$ (200ns) £1.15, $2708 \mathrm{f1.85,2516} \mathrm{(single} \mathrm{rail)} \mathrm{)}$ £3.00. NEC 2732 £5.50, 2532 £6.00. 2114 (200ns) $£ 1.40$. P/P 35p on above devices
Brand new and boxed, Lie Detector. Made for the Open University. size: 150 mm (length) $\times 100 \mathrm{~mm}$ (width) $\times 90 \mathrm{~mm}$ (height). Complete with 100 microamp motor movement 90 mm $\times 75 \mathrm{~mm}$. Supplied complete with leads and pads, less batteries $12 \times$ $4.5 \mathrm{v}) £ 7.50+\mathbf{f} \mathbf{~} \mathrm{p} / \mathrm{p}$.
SELF-CONTAINED battery powered digital recorders Complete with data entry keyboard with 10 diait LED displav plus modem interface and chata f 25 per system. Sorry, callers only
ZETTLER low profile PCB relay $30 \mathrm{~mm} \times 36 \mathrm{~mm} 4.8 / 6.9 \mathrm{y}$ d.c $2 / 2.5 \mathrm{amps}$ a.c. contacts. 85p p / p 35p.
9Way SoE CONNECTORS 9 Way Socket Isolder) 75p 15 Way wirewrap plug $£ 1.00$
37 Way Plug (solder) $\mathbf{£ 1 . 8 0}$ 37 Way Plug (solder) E1.80 37 Way Socket (solder) $£ 1.80$ 25 Way Plug (solder) E1.85 25 Way Socket isolder) 1 1 piercing) $£ 2.65$
piercing) $£ 2.65$
piercingl $£ 2.65$
50 Way Plug (sold P/P on above 35p

COVERS
3 Way (Plastic) £1.00, 50 Way (Plastic) f1.20, 25 Way (Plastic) 95p, 25 Way (Metal) $\mathbf{£ 1 . 2 5 , 2 5}$ Way (Metal) ITT open £1.00, 15 Way (Plastic) 60p, 15 Way (Metal) 95p P/P on above 35p

DISPLAYS
HP 5082/74144 digit DIL display full spec $£ 1.50$ each, p\&p 35 p

HP5082/7650 .4'CA left and right decimal point. high brightness, decimal point.
only $65 p, 12$ for $6.50, ~ p \& p ~ 35 p . ~$

SUPERSAVER 1
DIL header Plugs (No covers) 14 way 18 p , 16 way 25 p, 24 way 95p (all gold plated) p/p 35p. Ansley Header plugs. 14 Way 75p, 16 Way 95p, 24 Way $£ 1.50$. (Insulation plercing typel p/p 35p. Ansley I/O Header plugs PCB Mounting . 1 in 26 Way straight

SUPERSAVER 2
Tantalum Capacitors 25 volt. 4.7 uF, 14 for f1, p\&p 35p.

SUPERSAVER 3
PRICE SMASH FND500 . 5 in . LED displays, full spec 65p each, p\&p 35p, larqe quantities POA.

SUPERSAVER 5
3M 26 way insulation piercing sockets $£ 1.40$ p/p 25p.

SUPERSAVER 6
 VIDEO LEAD

$11 / 2$ metres with PL259 plug $\mathbf{f 1 . 0 0}$ p/p 35p

SUPERSAVER 7
Thyristors Type 16 Ria 100 Vrrm 1000 volts at 22 amps $£ 1.65$ each. Limited stock, p/p 35p
Stud mounted rectifiers, type 40 HF 1001250 volts, $40 \mathrm{amp}, 4$ fo. £2.50 p/p 35p

SUPERSAVER 8
ONE ONLY - TEXAS SILENT 700 TERMINAL. RS232 110 baud. 700 TERMINAL. RS232 110 baud.
As new - $\mathbf{~} 235$. Carriage at cost. SUPERSAVER 9 VELLEMAN EPROM Programmer kit $£ \mathbf{2 0 0}$. Built $£ 300$ + VAT. S.A.E for full descriptive leaflet. SUPERSAVER 10
Tangerine Microtan 65 Blank PCB. £4.50, p/p 50 p (6502 based, 1 K on e4.50, p/p 50p (6502 based, 1 K on

PAPST MINI-FAN $31 / 4^{\prime \prime} \times 3^{1 / 4 "} \times$ $1.5^{\prime \prime}$ deep. 220 v 50 Hz . Brand new and boxed. $£ 9.50 \mathrm{p} / \mathrm{p} \in 1.00$.

SUPERSAVER 12
2.5 mm power plug and 2 metres of cable. Suitable for Acorn Atom, ZX81 etc. Only f1.00 per $10 \mathrm{p} / \mathrm{p}$ 25p. Trade enquiries welcome.

SUPERSAVER 14 BOX FANS $115 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$. $120 \mathrm{~mm} \times 120 \mathrm{~mm}$. New. £4.50. 250V f6.50. P\&P $£ 1.00$.

SUPERSAVER 15 $5 \mathrm{~K} 3 / 4^{\prime \prime}$ multiturn trimpots, PCB mounting, per box of $14 \mathbf{£ 2 . 5 0}$ As above 1 K and 50K, p\&p 35p. SUPERSAVER 16
OPTRON OPTO SLOTTED SWITCH (Type OPB-814) £1, p\& 35 p.
VU METER $48 \mathrm{~mm} \times 50 \mathrm{~mm}$ ap. prox. overall size. Face size $50 \mathrm{~mm} \times 2 \mathrm{Bmm}$ approx. Bránd new. £1.15 p\&p 30p. (Sent at purchaser's risk).

SUPERSAVER 18 SALE PCB AMP (LM 380). Unused. $65 \mathrm{~mm} \times 95 \mathrm{~mm}$ approx. 912 v DC. 85p p\&p 35p.

SUPERSAVER 19 10 DIGIT (Red). LED display. (.122in. digit size). With built-in driver chip and built-in lens magnifier. Data sheet supplied. Brand new, £1.50 p\&p 35p

SUPERSAVER 20
41/2in. JUMPER LEAD. 16 DIL. header to 16 DIL header. 95 p p\&p 30p.

SUPERSAVER 21
$8251 £ 3.00$ ea, 8253 f 6.00 ea, 8224 £2.00 ea, AY/5/1013 £2.25 ρ / p 35 p .

SUPERSAVER 22
1tb reel nf cnifier 1R SWG 64/36 alloy $£ 5.50 \mathrm{p} \mathrm{\&} \mathrm{p} 90 \mathrm{p}$.
A TERRIFIC GIVEAWAY. MC 1489 RS232 RECEIVER. Brand new 46p each. 10 for $\mathbf{\text { f3.50}}$. Large quantrties p o.a. p\&p 30p.

SUPERSAVER 23

64 Way DIN 41612 edge connectors to fit Microtan etc. plug or socket E3.45 ea. pip 350 éa

JUST ARRIVED large quantity of assorted Microwave Wave Guides, various bands + noise sources from 55 . Callers only.

MICRO REVOLUTION

 The New 28 Processor, Com plete PCB and parts to produce this new CBU, built in tinyBasic and 4K Ram. RS232C Basic and 4K Ram. RS232C output plus User Ports. Only Further detaiis SAE P/P $\mathrm{E}_{2.00}$. Motherboard plus Eprom Programmer to follow shortly. Programmer to follow shortly.

AUGATIC SOCKETS

(The best available)

 16 Dil $20 \mathrm{p} \quad 24$ Dil 50 p 18 Dil 25p 40 Dil 55pWE STOCK a vast range of TTL, CMOS, some 74LS. MINIATURE TOGGLES, etc
PSUs. We have a large stock of power supplies at very realistic prices (callers)

NEW LINES
UECL Edge connector. 1 ' 75 Way gold plated (wire wrap) 11.65 each p/p 35p.
REG PCB (less components), 5 V 1 amp, 12 V 1 amp and heatsink ($60 \mathrm{~mm} \times 90 \mathrm{~mm}$). Brand new, £1.00. Heatsink only, 55p. P/P 35p.
NEC
NEC FIP4B13 4 digit glass display ${ }^{\text {g green with centre }}$ colons and plus and minus sign), only $£ 1.35$. P/P 30p.

PL259 SOCKET CHASSIS MOUNT. 50p pep 30p.
TRANSFORMERS 012, 0241 amp E2.50, P\&P 50p.
TL SALE 7410 9p, 7413 18p. 7416 180. 7490 280. 74155 45p 74174 60p, $74181 \quad 74285$ E2.25. P\&P 35p.
WHY PAY POUNDS? - Just arrived Amphenol 36-way plug and socket (used) to fit all your printer. Only $\mathbf{£ 2 . 7 5}$ per pair. P/P 35p.
Terms cash with order (official orders welcomed from colleges, etc). All enquiries s.a.e. please. All prices inclusive of VAT, unless otherwise stated. Postage as shown per item.

PLEASE DO NOT ORDER GOODS FROM OLD ADVERTS. PHONE BEFORE ORDERING

PURCHASED wainicis FOR CASH LEA
LB ELECTRONICS 11 HERCIES ROAD HILLINGDON, MIDDLESEX UB10 9LS, ENGLAND Telephone answering machine Telephone answering machine
service out of business hours. New retail premises, now open Mon Tues, Thurs, Fri, and Sat, $930-600$ Lunch 1-2 15 weekdays. Closed all day Wedweekdays. We are situated just off the A40 opposite Master Brewer.
ALL PRICES INCLUSIVE OF VAT
UXBRIDGE 55399

NAMAL assoclates

No. 1 CLAYGATE ROAD, CAMBRIDGE CB1 4JZ Tel. 0223248257 TLX 817445

Computer I.C.s		27		$\begin{aligned} & 132 \\ & 138 \end{aligned}$	$\begin{array}{r} 44 \\ .33 \end{array}$	Voltage Regu:	
2144-200	. 99		. 12			78055 V +	. 35
2144-200LP	. 99	28	. 15	145	. 74	781212 V +	. 35
2532	4.10	30	. 12	148	95	781215 V +	. 35
2716	1.95	32	12	151	30	79055 V +	35
2732	4.10	33	16	153	28	791212 V	35
4116 - 150	. 75	37	15	154	80	791515 V	.35
4116-200	+ 4.75	38	15	155	. 38	792424 V	.35 3.00
6116	4.75	40	12	156	36	LM323K	3.00
5516	7.50 2.75	42	. 33	157	30	Crystals	
6800	2.75 3	47	. 38	161	37	Cystats	
6802 6809	3.60 8.75	48	$\begin{array}{r}59 \\ \hline\end{array}$	162	. 40	100 Hz 2.00 MHz	2.75 2.65
6810	8.75 1.15	49 51	59	163	.38 46	3.00 MHz	1.00
6821	1.15	54	. 14	164	. 90	$3,579 \mathrm{MHz}$	1.00
6850	1.40	55	12	173	. 69	3.932 MHz	1.00
8085A	5.25	73	21	174	. 46	$4,000 \mathrm{MHz}$	1.58
8224	1.85	74	16	175	46	$4,194 \mathrm{MHz}$	1.35
8228	3.75	75	. 24	193	45	$6,000 \mathrm{MHz}$	1.00
8255	3.30	76	. 20	196	. 57	6.144 MHz	1.25
280 CPU	3.25	78	. 19	197	. 60	$6,400 \mathrm{MHz}$	1.50 1.50
Z \& A ACPU	3.60 3.60 3	83	44	240	. 87	$10,000 \mathrm{MHz}$	1.50
280 P 10 Z 20 AP10	3.60 3.60	85	60	241	87		
280 AP10 Z80 CTC	3.60 2.75	86	. 15	242	78		
280 ACTC	3.25	90	. 30	244	. 60		
		92	. 33	245	. 88	8 PIN	. 06
		93	. 33	248	60	14 PIN	. 09
74LS Series		95	42	257	43	16 PIN	. 09
00	. 10	109	21	259	78	18 PIN	13
0104	. 12	112	. 21	266	22	20 PIN	. 14
05	14	113	21	273	70	22 PIN	. 17
08-13	. 12	123	43	290	55	24 PIN	. 18
14	. 38	124	90	- 373	. 70	28 PIN	. 25
15-22	. 12	125	. 24	374	. 72	40 PIN	. 25
26	. 16	126	25	393	. 60		

COMPUTERS

We stock computers and accept Sinclair ZX 81 in part exchange. Minimum of $£ 20.00$ is offered for your ZX81 in part exchange for a VIC 20 or Arcom colour Computers.

NEW
 Domestic cassette INTERFACE for VIC 20 ONLY $£ 17.00$

 Simply connects your VIC 20 to any Cassette player. A bargain at half the usual price.
NEW

VIC 20 Memory expansion Packs
3K RAM £21.00
8K RAM £58.70
(Expandable to 16K)
16K RAM . $£ 83.48$
Simply plug into the existing expansion port of VIC 20.
Battery Ram backup available. Price on application.

WE GUARANTEE FACTORY PRIME PARTS

In depth stocks. Competitive prices. Government and colleges orders welcome. Please inquire for special prices for quantity orders. Please add P\&P $£ 1$ \& VAT. Minimum Order $£ 10$. Access orders welcome.

01-723 1008/9

CAllers fo: $4 O$ EDGWARE ROAD. LONDON WZ 1 ED
MI mail orderduuport enquiniss, 11112 Paddington Green, London WZ

AUDIO VIDEO SERVICES 19 Galsworth Avenue, Romford RM8 4PX 016996680 Mall Order: CWO Please add 40p P\&P VAT 15\%. Send sae for price list								LS174 56 LS175 58 LS221 70 LS242 96 LS244 86 LS245 110		$\begin{aligned} & 2102 \\ & 2114-3 \\ & 2114 \mathrm{~L}-3 \\ & 4116-3 \\ & 2708 \end{aligned}$	105p 105p 145p 99p 210p
${ }^{T T L}$	10 p	74109	359 320	4025	${ }^{16 p}$	LS10	$16 p$ $17 p$			2716	375p
17400	10p	74423	32 p	4029	${ }^{27 \mathrm{p}}$	LS 13	32 p			OPTO	
7403	14p	74141	45p	4040	60p	LS14	48p	TRANSIS	11p	-704	
7404	14 p	74151	40p	4046	70p	LS20	16p	${ }_{\text {BC109 }}$	11 p	-1707	
7407	28p	74153	40p	4049	28p	LS26	19p	8C147/8	${ }_{9 p}^{12 p}$	DL707	80p
7409	17p	74157	${ }_{65}{ }^{\text {cop }}$	4050	${ }^{28 p}$	${ }_{\text {L }}$	${ }^{18 p}$	8C157/8	10p	LEDs	
7410 7413	14p	74160 74161	${ }_{\text {65p }}$	4051	62p $62 p$	LS51	17p	${ }_{\text {BC182/4 }}$	9 p	Green, Red	
7414	$34 p$	74162	54p	4053	62 p	LS54	${ }^{18 p}$	BC212/4	920	Small	12p
7416	25p	74164	65p	4055	${ }^{60 p}$	LS73	30p	BD131/2	$\mathrm{map}_{40 \mathrm{p}}$	Lerge	12p
7420	$14 p$	74174	70p'	4060	65p	LS74	${ }_{33 \mathrm{p}}^{25}$	8F194/7	10p		
7423	28 p	74175	70p	4068	${ }^{35 p}$	LS90	33 p	8F259	32p	REGS.	
.7430 .7438	15p 26p			4069	17p	LS92	42p	BFY51	30p	7805	S8p
7441	56p	CMO	-8	4081	22p	LS107	35p	BU208	160p	7812/5	00p
7442	40p	4001	12 p	4082	22p	LS109	30p	2N3055	4 p	7905/12	
7447	46 p	4002	12p	4511	659	LS123	80p				ADS
7451	${ }_{16 p}$	4009	12p	4518	46p	LS125	64p	DIL SOC	KETS	Copperclad	.1,
7454	${ }^{16 p}$	4011	14p	4520	65p	LS ${ }^{\text {LS }} 138$	32p		${ }_{8 p}$	2.5'x3.75"	73p
7473 7474	28p	4013	33p	4	115p	LS138	${ }_{\text {85p }}$	${ }_{14}^{8} \mathrm{pin}$	${ }_{9 p}^{8 p}$	$2.5{ }^{\prime \prime} \times 5$ '"	83p
7486	25p	4018	28p			LSt39	40p	${ }^{16}$ pin	${ }^{10 p}$	$3.75{ }^{\prime \prime} \times 3.75^{\prime \prime}$	$83 p$
7490	${ }^{28 p}$	4017	${ }^{50 \mathrm{p}}$	LSOO	12p	LS 157	${ }_{54}^{\text {57p }}$	18 pon	18 p 20 p	5' $\times 3.75$ '"	98p
7492	350 300	${ }_{4023}^{4020}$	60p 19 p	LS02	15p	LS161	64p 54p	${ }^{24}{ }^{24 \mathrm{pin}}$	20p	$3.75{ }^{\prime} \times 17^{\prime \prime}$	328p
(74107	32 p	4024	39p	LSO4	1080	LS154	49p	40 pin	32 p	4.7' $\times 17^{\prime \prime}$	428p

-KITS $£ 32, £ 50, £ 75$, $£ 85$ including full instructions \bullet CONTROL PANELS £18, £23, £29, £37•BELL BOXES £6.25, £7.50• \bullet PRESSURE PADS $£ 1.06, £ 1.45, £ 2.45 \bullet 4$ CORE CABLE $(100 \mathrm{~m})$ £8eSIRENS $£ 7.50 \bullet$ CONTACTS 72p, 74p, 76p• \bullet ULTRASONCIS $£ 34.50 \bullet$ DOOR PHONES $£ 49.42 \bullet$
BUY A KIT OR DESIGN YOUR OWN SYSTEM SEND SAE OR PHONE NOW FOR FREE FULLY ILLUSTRATED CATALOGUE. IT TELLS YOU ALL YOU NEED TO KNOW Carriage included. VAT Extra 15\%

ELECTRONIC IGNITION

Makes a good car
better

As a KIT
 KIT
 READY
 BUILT

TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE \longrightarrow higher output voltage under all conditions.
IMPROVED ECONOMY _ no loss of ignition performance between sarvices.

FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING —__ prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE _-_ immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK — $31 / 2$ times the energy of ordinary capacitive systems - $31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING ——_ full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.
DESIGNED IN RELIABILITY
an inherently more reliable circuit combined with top quality components - plus the "ultimate insurance' of a changeover switch to revert instaritly back to standard ignition.
IN KIT FORM
it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to follow instructions, complete with circuit diagram, are provided - all you need is a smalf soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL June'81 Issue and EVERYDAY ELECTRONICS December' 81 Issue
fits all negative earth vehicles,
6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE $\mathrm{E}_{2} .95$

STANDARD CAR KIT £ 14.85
 Assembled and Tested $£ 24.95$
 TWIN OUTPUT KIT £ 22.95 For Motor cycles and cars with win ignition syrems
 Assembled and Tested $£ 34.70$

Please

 mentionwhen replying

to all

 adverts
LIGHTNING

DO YOU NEED：Electronic components，Toals，Test Equipment，Cases，Cabinets and Hardware Etc．IN A HURRY？？ THEN YOU NEED：
LIGHTNING Electronic Components WHY？P？？？

Express Despatch
All Low Prices
In Depth Stock
All New Guaraanteed Goods from Leading Manufacturers
With aall that going for us，going to you，can you really afford to be without a copy of our brend new exciting CATALOGUE
Many Prices Reduced－Many More Stock Lines Send for YOUR Copy Now ONLY 70p Post Paid

LIGHTNING ELECTRONIC COMPONENTS
84 Birchmoor Road，Birchmoor，Tamworth，Staffs B78 1AB （NOTE New Address）

NICKEL CADMIUM BATTERIES

	AA（HP7） 0.5 AHr	$\begin{gathered} \operatorname{sug}_{1.2 \mathrm{AH}} \end{gathered}$	'C' (HP11) $1.65 \mathrm{AHr}$	$\begin{aligned} & \text { C' (HP11) } \\ & \text { 2.0AHr } \end{aligned}$	$\begin{aligned} & \text { 'D. (HP2) } \\ & \text { 4.0AHr } \end{aligned}$	$\begin{aligned} & \text { PP3 } \\ & 0.1 \mathrm{AH} \end{aligned}$
－ $\begin{array}{r}1-24 \\ 25-99\end{array}$				¢2．25 ¢2．10 1		f3．79
50－99	${ }_{\text {co．}}^{6}$	¢1．15	${ }_{\text {c1i }}^{61.62}$		${ }_{\text {c2 }} \mathbf{6 2 . 6 7}$	

All cells are brand new full spec devices from reputable mnfrs．All Nickel Cadmium cells（except PP3）are supplied complete with solder tags and are＇VENTED＇dovices suitable for fast charge． CHARGERS－single or dual O／P 10 charge PP3，AA or SUB＇C＇cells in 12.14 hrs ichargers will charge＇C＇and＇O＇celts but with longer charging timel Units supplied complete in plug top case with tlying leads．Number of cells（10 max）in series and type muat be specified for each re－ quired O / P when ordering

$$
\begin{aligned}
& \text { SINGLE O/P CHARGER £5.04 } \\
& \text { DUAL O/P CHARGER £5.72 }
\end{aligned}
$$

TRANSFORMERS－as

Data and charging circuits free with orders over $f 10$ otherwise 30p post．
P\＆10\％if order less than order over $f 10$ ．Prices DO NOT INCLUOE VAT and this should be added to the total order

SOLID STATE SECURITY， Dept．（ETI）Bradshaw Lane． Parbold，Wigan，Lancs． Telephone 02576－3018．

CALCULATORS
 SHARP

 ONLY £158．95

7156 dot matrix display， 65 keys，16K ROM，3．5K RAM program in basic language
CE150 4 COLOUR PRINTER／INTERFACE ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ． 139.95 CE151 4K PLUG IN RAM PACK

\author{

EL5100
 61 functions， 24
 | digits， 10 memories， |
| :--- |
| 80 steps............$~$ |
| 45 |
 80 steps

}

EL5103 dot matrix display， 63 functions 6 memories， 80 steps ．．．．．．．．．．．．．．．．． $\mathbf{f 2 8 . 9 6}$

CASIO REft fu：

FX702P program in basic language，up to 1680 steps $/ 226$ memaries， 55 functions £97．95

FA2 Cassette Interface ．．．．．．．．．． $\mathbf{Z} 19.95$

versatile multi
display，multi
display，multi
function alarm
chronograph
£27．95

FX602P $10+2$ digit dot matrix display 50 functions，up to 512 steps／8 £71．95

FP10 Printer Unit for 602／702 ．．．543．96

D－	
133456989093	FX3600P 38 steps， 2
－\square व可号号	programs， 61 61 functions，
ロロ®ロロロ゙ロ	lithium powered
卫号号号它	121．95

£21．95

TEXAS INSTRUMENTS

T158C

172 functions up to 480 steps／ mories
£65．95
magnetic card，up to 960 steps／ 100 memories £119．95 Printer PC100C £151．95
Progamar
£44．95

HEWLETT PACKARD

HP41C
professional machine with full range of peripherals． 319 registers， 2240
£182．95

HP11C
see ETI review
203 program lines， 21 addressable memories
£99．95

Export welcome all payrnents in f^{\prime} stering
L．PRICES INCLLOE VAT．POST \＆PACKING UK
Ali goods new，hoxed and tully guaranteed Large？SAt w
CALCULATOR SALES \＆SERVICE
PO Box 13，Reddith，Worcs 898 8NS Telephone（0527） 43169

TECHNICAL STAFF

Would you like an opportunity to live in Australia and pursue a career in Telecommunications?
The Overseas Telecommunications Commission (Australia) which links Australia with the rest of the world by communications satellites, submarine cables and radio has vacancies for Technicians and Technical Officers.
The successful applicants will be involved in one of the following areas in the operation and maintenance of the Commission's:

- processor controlled switching and transmission equipment in the Sydney Metropolitan area
- international satellite communication facilities at Carnarvon - Western Australia, Ceduna - South Australia and Moree - New South Wales.
- submarine cable and HF radio facilities at Commission stations situated on the Australian Coast and Guam.

REMUNERATION:

Technician
 Technical Officer Grade 1
 Technical Officer Grade 2
 Senior Technical Officer Grade 1

\$A14805-16080 p.a.
 \$A14805-17759 p.a. \$A18180-19086 p.a. \$A19597-20517 p.a.

QUALIFICATIONS:
Successful completion of Part 3 - full Technological Certificate of the Telecommunications Technician's Course conducted by the City \& Guilds of London Institute.
The Higher National Certificate in electrical or Electronic Engineering and registration as a Technician Engineer with the U.K. Engineer Registration Board.
Or a recognised equivalent of the above.
For Technicians: 4 years of experience including time in training.
For Technical Officer: 6 years of experience including time in training.

General:

OTC offers excellent working conditions. At most locations staff work rostered shifts with a 9 -day fortmight and attractive shift penalties are applicable. Good opportunities exist for advancement to higher positions. Successful applicants must be prepared to serve at any of the Commission's stations within Australia if and when required. The Commission will reimburse removal expenses between stations.
Applications should set out details of position/s applied for, present position, qualifications and experience. Applications should be addressed to:

> The Director, Personnel and Administration Branch,
> Overseas Telecommunications Commission (Australia),
> G.P.O. Box 7000, SYDNEY. N.S.W. 2001.

Applicants will be supplied with an information leaflet giving full details of the positions and conditions of employment. OTC Representatives will be conducting interviews in the United Kingdom.

PARNDON ELECTRONICS LTD.
 Depr. No, 23', 4 Pudtock Meed, Hatow, Eever CM18 7RR. Tel. 027932700

RESISTORS: $1 / 4$ Watt Carbon Film E24 range $\pm 5^{1 / 1 / n}$ tolerance High quality resistors made under strictly controlled conditions by automatic machines. Bandoliered and colour coded
£1.00 per hundred mixed (Min 10 per value)
£3.50 per thousand mixed. (Min 50 per valuet
Special stock pack 60 values 10 off each $\mathbf{E 5} 59$

DIODES: IN4148 3p each Min order quantity - 15 trems £1.60 per hundred

DIL SWTTCHES: Gold plated conlact in fully sealed base whee illoss programming problems
4 Way 86 p each 6 Way $£ 1.00$ each 8 Way $\mathrm{E1} .20$ each
DIL SOCKETS: High quality tow profile sockets
8 pin - 10p. 14 pin - 11 p. 16 pin - 12 p . 18 pin - 19 p. 20 pin - 21 p.
22 pin - 23 p. 24 pin - 25p. 28 pin - 27p. 40 pin - 42p.
ALL PRICES INCLUDE V.A.T. \& POST \& PACKING - NO EXTRAS MIN ORDER - UK I 100 OVERSEAS \& 5 CASH WITH ORDER PLEASE

AMARAL Limited

26 HIGHFIELDS, EARLEY, READING RG6 2RZ, ENGLAND Tel: National 0734 864745; International +44734864745 Access or Barclaycard Add VAT 15\% 50p p\&p. Mail Orders / Tel orders only Send SAE for complete list
CMOS - 4001 15p; 4002 15p; 4006 52p; 4011 15p; 4012 15p; 4013 25p; 4016 26p; 4017 45p; 4020 53p; 4022 47p; 4023 15p; 4024 40p; 4025 15p; 4027 29p; 4028 50p 4029 60p; 4040 50p; 4046 47p; 4046 67p; 4049 25p; 4050 25p; 4051 62p; 4052 62p; 4053 47p; 4060 76p; 4066 31p; 4068 15p; 4069 15p; 4070 15p; 4076 56p; 4081 15p; 4082 15p; 4085 39p; 4086 39p; 4511 57p; 4518 59p; 4520 57p; 4543 87p; 4555 43p; 40106 17p.
74L5 - $0012 \mathrm{pp}: 02$ 13p; 04 14p; 08 14p; 10 13p; 11 14p; 14 47p; $2013 \mathrm{p} ; 21$ 15p; 27 15p; 28 18p; 30 13p; 32 13p; 40 13p; 42 40p; 73 24p; 74 22p; 7624 p; $8571 \mathrm{p} ; 86$ 17p; 15p; 28 18p; $3013 \mathrm{p} ; 32$ 13p; 40 13p; 42 40p; 73 24p; 74 22p; $7624 \mathrm{p} ; \mathbf{8 5} 71 \mathrm{7p} ; 86$ 17p; ${ }^{90}$ 39p; 93 44p; 112 23p; 123 60p; 126 31p; $13240 \mathrm{p} ; 138$ 38p; 139 38p; 153 47p 155 47p; 157 37p; 164 55p; 166 116p; 173 53p; 174 37p; 175 3/p: 193 63p; 22160 p 240 83p; 241 83p; 244 73p; 245 90p; 251 46p; 253 51p; 257 44p; 279 39p; 28346 p

 CRYSTALS - 3.6864 125p; $4.0000125 \mathrm{p} ; 6.144125 \mathrm{p}$.
SPECIAL OFFER - Buy a Micro from us and get a crystal for 75 p

REGULATORS - T.O. 220 Type - 7805 38p; 7812 38p; 781533 P .

HENRy
COMPUTER KIT DIVISION

404 EDGWARE RD, LONDON W2 1ED TEL: 01-402 6822

- TANGERINE - TANGERINE - TANGERINE MICROTAN 65

MMCROTAN © 8 COMTENTS
Hish quality pleted thru hole printed circuit boerd, sotder rasist and silk screaned component identificstion 8502

 ponerte to tuly expand MICROTAN ES.
The MICROTAN 85 kit he won widespresd accam for its supert presentation. We pay sttention to detail -
Ift form $\mathbf{E} \mathbf{9 8 . 0 0}+\mathrm{f} 10.35$ VAT, total f 79.35
MCROTAN 86 assambled and testod.
Specification as above, but assembled and fully bench tested by ourselves
£79.00 + $\mathbf{1 1 1 . 8 5}$ VAT, total 990.85
YOU MAY DEDUCT
£10
FROM MICROTAN 65 KITS AND ASSEMBLED UNITS
LISTED HERE
ONLY FROM US
DELIVERY EX-STOCK
POST PAID
Limited Quantity Available

MONTHLY IN
ELECTRONICS TODAY -
YOUR OWN 'WHERE TO
BUY IT' GUIDE

BEDFORDSHIRE

BROADWAY ELECTRONICS
1 The Broadway, Bedford,
Tel: 0234213639
Open: 6 days 9-5.30. $1 / 2$ day Thur lunch 1.30-2.30
Specialists in electronic components and Acorn computers

DORSET

D.J. ELECTRONICS

64 Ensbury Park Road, Bournemouth.
Tel: (0202) 515073.
Open: Mon-Sat Gam-6pm.

HAMPSHIRE

CGINS EIECTRONIES
3, West Street, Fareham
Tel: (0329) 234891
Open: 6 days 9am-5.30pm. RS component stockist. Wide range of components for the entitusiast.

HERTFORDSHIRE

GODDARDS COMPONENTS 110 London Road, St. Albans.

Tel: St. Albans 64162
Open: Mon-Sat 9.30am-5.30pm ($1 / 2$ day Thur)

FOR SERVICE AND CONVENIENCE - USE YOUR LOCAL DEALER!

LOOKING FOR

 COMPONENTS! HARDWARE! CASES! TRY YOUR LOCAL LISTED STOCKIST
S. IRELAND

PT랔쿨

25 Parnell St, Dublin 1.
Tel: Dublin 740662
Open: 6 days 9 am- 5.30 pm Components. Computers. Video games.

LANCASHIRE

ETESON ELECTRONICS Ee EePoulton-le-Fylde, Blackpoil Tel: (0253) 885107
Open: 9.30am-12.30. 1.30.5.30. Closed Wed \& Sun.
Electronic Component Speciaiists.

LONDON

SAMSONS ELECTRONICS LTD 9/10 Chapel St. 21/23 Bell St. NW1. Tel: 01-262-5125, 01-723-7851. Open: $10 \mathrm{am}-6 \mathrm{pm}$. (Sat $11 \mathrm{am}-5 \mathrm{pm}$) Vast selection of components at ridiculous prices.

W. MIDLANDS

[PATH ELECTRONIC SERVICES] 369 Alum Rock Road, B'ham. Tel: 0213272339.
Open: $10 a \mathrm{~m}-6 \mathrm{pm}$ weekdays.
Sat $9.30 \mathrm{am}-5 \mathrm{pm}$. Contact Peter A.
Thomas. Wholesale and retail supplies.

NOTTINGHAMSHIRE

DAMON electronics

99 Carrington St. Nottingham Tel: 53880 (mail order available)

Open: 6 days $9.30 \mathrm{am}-5.30 \mathrm{pm}$.
Specialists in T.V. F.M. aerials.

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

TYNE AND WEAR

AITKEN BROS \& CO

35 High Bridge Newcastie Upon Tyne. Tel: 326729
Open: 9am-5.30pm (Sat 5pm) closed Wed Retail and Wholesale supplied.

S. WALES

ERRDIGRT ELELTRCTHES
Chancery Lane, Cardigan,
Tel: Cardigan (0239) 614483
Open: Mon-Sat 10am-5pm. Closed Wed Electronic components \& Acorn computer stockist

WILTSHIRE

camlab electronics

27 Faringdon Rd. Swindon Tel: (0793) 34917
Open: 6 days 9 am- 5.30 pm
Specialists in loud speakers. Wide selection: $11^{\prime \prime}-18^{*}$

YORKSHIRE

ACE MAILTRONIX LTD.

 3A Commercial Street, Batley. Tel: (0924) 441129 Open: Mon-Fri 9am-5.30pm. (Sat 1pm) Retail and wholesale.
PLEASE MENTION ELECTRONICS TODAY WHEN USING THESE SHOPS!

SEND TO:- ETI/HE CLASSIFIED, 145, CHARING CROSS ROAD, LONDON WC2H OEE. TEL: 01-437 1002 Ext. 50.

RECHARGEABLE BATTERIES

PRIVATE OA TRADE ENOUNAES WELCOME

 FULL RANGE AVAILABLE. S.A.E. FOR LISTS ©1. 45 tor Bcoklet. "Nickel Cedmium Power' plus Cotalogue. "New range of sealed lead now available:. Write or call: Sendwell Plant Lid., 2 Union Drive. BOLDMERE, SUTTON COL DFIELD. WEST MIDLANDS. 021-3549764.STOCK CLEARANCE Mixed resistor Packs: $1 / 4 \mathrm{~W} / 1 / 2 \mathrm{~W}$, Pre-formed, unused. 1 lb Pack (2500 plus) $£ 2.50$; 2 lb Pack £4.60; Exceeding 2 lbs $€ 2.00$ per lb. All inclusive VAT, P\&P. LINWAY ELECTRONICS, 843 Uxbridge Road, Hayes End, Middx. UB4 8HZ. Tel: $01-$ 5733677.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: SAE $4 \times 9^{\prime \prime}$. Paralab, Downton, Wilts.

CLOSE ENCOUNTERS GROUP Persona introductions and social events. Meet interesting, attractive people. Local, 051-931 2844 (24 hours).

BUILT TRANSMITTERS £2.90. Receive on FM. Range 150 yds. Refund Guarantee. (Unlicensable). P. Faherty, 37 College Dr., Ruislip.

BURGLAR alarm equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Ltd.

MOS-FET AUDIO MODULES
Hitachi devices, Hitachi spec., glass boards, extruded heatsinks, tested, guaranteed 24 months.

120 watts/ 8 ohms; 120v/2A supply; $£ 13.95$ 240 watts/ 4 ohms; $120 \mathrm{v} / 4 \mathrm{~A}$ supply; E 19.95 400 watts/ 2 ohms; 120v/7A supply; E29.95

Power supplies/pre-amps available. Post/ packing 80p. Stamp for details. Quantity discount.
Audio-Tech., 8 Parsons Close, Church Crookham. Aldershot, Hants GU13 OHL. Tol: 0251422503.

IONISER KIT (Mains Operated)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a tountain, tilling your room. The result? Your air feels fresh, pure, crips and wonderfully refreshing.
All parts, PCB and full instructions
£12.50
A suitable case including front panel,
£10.50
Price includes post \& VAT. Barclaycard/Access welcome

T. POWELL

Advance Works, 44 Wallace Road, London N1 Tel: 01-226 1489
Hours: Mon-Fri 9-5 pm Sat 9-4.30 pm

GUITAR/P.A. MUSIC AMPLIFIERS

100 watt superb treble/bass overdrive, 12 month guarantee. Unbeatable at $£ 50 ; 60$ watt $\mathbf{£} 44 ; 200$ watt f68; 100 walt twin channel, sep. weble/bass per chanhel $\mathbf{E 6 5 ;} 60$ watt $£ 52 ; 200$ watt $£ 78 ; 100$ watt four channel, sep trebte/bass per channel, $175 ; 200$ watt $£ 98$; slaves 100 watt $£ 37 ; 200$ watt $£ 60 ; 250$ watt $£ 70 ; 500$ watt £140; fuzz boxes, great sound $£ 12$; bass fuzz 12.90; overdrive fuzz with treble and bass boosters f28; 100 watt combo. superb sound, overdrive, sturdy construction, castors, unbeatable, $£ 100$; twin channel £115; bass combo f118; speakers 15 in . 100 watt $£ 36$; 12 in . 100 watt E 24 ; 60 watt E 18 ; microphone Shure Unidyn B f28,

Send cheque/P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield
Cheshire. Tel: 081-308 2064

DIPLOMA IN ELECTRONICS Full time courses in Electronic Engineering. Also courses leading to CITY AND GUILDS Examinations. Tel: LONDON SCHOOL OF ELECTRONICS: 01-263 5938.

WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, $£ 2.25$. Developer 35p. Ferric Chloride 55p. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick f 1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.
T. \& J. ELECTRONICS COMPONENTS Quality components, competitive prices. Illustrated catalogue 45p. 98 Burrow Road, Chigwell, Essex.

600 RESISTORS

High quality Carbon Film $1 / 4$ W 5% E12 series 60 values 10 per value f5 INCLUDING VAT PGP COVE COMPONENTS 58 Southwood Rd., Cove, Farnborough, Hants GU14 OJJ Mail Order only

CENTURION BURGLAR ALARM EQUIPMENT Send SAE for froe list or a cheque/PO for $£ 5.95$ for our special offer of a full sized decoy bell cover. To Centurion Dept ETI265, Wakefield Rd. , Huddersfield W. Yorkshire. Access \& Barclaycard Telephone orders on 0484-35527.

CIRCUIT DESIGN, Prototype construction, analogue or Digital, Siangle Circuits or Complete Instruments/Systems. Write A. J ATTWOOD, C.Eng., MIERE, Heathercote Heatherton Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082-346 536.

COPPER CLAD BOARD double sided fibre glass. 10 sheets $12^{\prime \prime} \times 8^{\prime \prime}$ £6.00. 5 sheets $12^{\prime \prime} \times 8^{\prime \prime} £ 4.00$. Including PGP. Complete PCB service. Davron, 1 Bankside, off New Street, Chelmsford.

ANY SINGLE SERVICE SHEET £1/L.S.A.E. Largest stockists Service/Repair manuals. Named T.V. Repair data $£ 6.50$ (with circuits £8.50). S.A.E. pricelists, free publications, quotations. Auseti, 76 Churches Larkhall, Lanarkshire.

HAVEN HARDWARE (WINNER OF THE DAILY EXPRESS/PHILISHAVE BUSINESS AWARD). ZX KITS (S.A.E. for Built prices/ details). PROGRAMMABLE GRAPHICS f19.95 (First ever for ZX80/81). Works with printer - no hidden bugs - edge connector not used. Repeating Keymodule $£ 3.45$. Keyboard f17.50 (P\&P f1.00). Edge connector $£ 2.20$. Inverse Video/l.O Port Memory/Colour (Extended sheet available) P.O.A. 4 Asby Road, Asby, Workington, Cumbria.

TELETEXT, (Ceefax/Oracie) or Viewdata (Prestel) add-on adaptors for your existing television or microcomputer. Discount prices. Mail order. Bristol (0272) 502008 anytime.

SPARE PARTS For all digital watches Batteries, crystals, displays etc. Send SAE for full list. Profords, Copnersdrive, Holmergreen, Bucks HP15 6SGD.

KEYBOARDS / CONSOLES / POWER SUPPLIES New fully encoded ASCII keyboards made by world's largest keyboard manufacturer. Slimline stabilised power supply $240 \mathrm{~V} / 120 \mathrm{~V}$ input, 5 volt 1 amp output, $350-400$ m.A. Keyboards from $£ 47$ to $£ 55$. Consoles $£ 19$. Power Supplies $£ 12.50$. GIVE AWAY PRICES FOR EXISTING STOCKISTS. Keytronic International 01-428 0111.

ROBOTS Specially developed robot interfaces for the robot hobbyist. Easily connected to your micro. Wirte for full details: Gleaves Robodynamics, 20 Hartington Road, off Smithdown Road, Liverpool 8, L8 0SG.

GRUNDIG CASED PSU 0/25V 2A. Excellent working condition. Voltage current metered overload protection. $£ 20+\mathrm{f} 5$. S.H.E. 5, St. Joseph's Park, Ballycruttle, Downpatrick BT30 7EN.

AMAZING ELECTRONICS PLANS. Lasers, Super-powered Cutting Rifle, Pistol, Ligh Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue 95p - From Plancentre, 16 Mill Grove, Bilbrook, Codsall, Wolverhampton.

TOP QUALITY - UNBEATABLE PRICES

We specialise in top quality equipment for groups, disco and HiFi. High power amplifiers up to 600 W , lighting units, consoles, power supplies, etc.
Send for catalogue 60p from: SILVERQUESTLTD 21 Belmont Road, Luton LU1 1LL, Bedfordshire
Tel: (0582) 37226

INEXPENSIVE DISCO CONSOLE with Cross Fade $£ 2.40$ for our plans. A. Burnett, Dept. E.T.I., 12 Cameron Avenue, Kinross KY13 7BG.

AERIAL AMPLIFIERS Improve weak television reception. Price £6.70, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BL0 9AGH.

POWERTRAN TRANSCENDANT DPX. As new. As featured in ETI £250. Also Acorn Atom 12K £150. Ring: Albert Midhurst 3632 7 p.m.

DIGITAL WATCH BATTERIES any type $£ 1.20$ each. Send SAE or $15 p$ with number or old battery to DISLEC Y, 511 Fulbridge Road, Werrington, Peterborough.

USE ELECTRONICS TODAY INTERNATIONAL'S CLASSIFIED (35p per word, minimum 15 words. Box Nos. $£ 2.50$ extra or $£ 10.00$ per single column centimetre - all prepaid).
Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, to Jenny Naraine, 145 Charing Cross Road, London WC2 0EE.

Please place $m y$ ad in the next available issue of E.T.I.:
Name
Address
Tel. No.
I enclose my cheque/P.O. for the value of $£ . .$.

CONSTRUCTING AN AUDIO MIXER?

To achieve a high quality finish you need commercially produced printed panels - sub-frames - main frames etc designed and manufactured specifically for this purpose.

THE MIXER PEOPLE
56 Fleet Road, Benfleet, Essex SS7 5JN, England (Large SAE please)

A really compact high performance CCTV camera for only $£ 130.00$ plus VAT plus P/P, Total $£ 152.95$. Size $3^{\prime \prime} \times 3$ "x 9 :. $240 v$ operation. iv p-p output. Lens extra.

CROFTON ELECTRONICS LIMITED
35 GROSVENOR ROAD. TWICKENHAM. MIDDLESEX TW1 4AD
Telephone 01.891 1923/01-891 1513
Telex 295093 CROFTN G

COMPUTER CONTROLLED SOUND IS HERE!

This unique device receives serial data from any computer, baud rate up to 4800 , responds only to its own address code (preset by on-board d.i.l. switch) and is capable of attenuating any audio signal in 1.5 db steps from 0 db to infinity. Once the device has been enabled, all other devices will ignore the commands until a new address has been transmitted. These devices can be built into amplifiers mixers etc, or anywhere computer control of audio signals is required. The kit comes complete with all parts, sockets etc, and is supplied with instructions for use. A 5 V power supply is required. Up to 127 devices can be individually addressed on one loop: Order ref:. MED01.

Price $£ 69.50+$ VAT P\&́P $£ 1.50$
Cheques, posta/ orders crossed and payable to:

MEDIATRONICS

3 Alnwick Drive, Hollins, Bury, Lancs 061-796 6410

SMALL REED switches 10 p . Reed relays 6 v 12v DC 40p. Postage 25p. Grimsby Electronic Components, Lambert Road, Grimsby South Humberside. Hundreds bargains at shop. SAE list.

PROXIMITY SENSORS infra red. 6 inch range 5 to $15 v$ supply. Miniature design $6.5 \times$ $5 \times 2 \mathrm{~cm}$. Only $£ 16.50$. Leaflet. Cheshire Micro Design, 66 Close Lane, Alsager, Stoke-onTrent, Staffs.

ADVERTISEMENT INDEX

A. D. Electronics 91
Ambit Int. 58
Amral Ltd 93
Audio Electronics 28, 65
Audio Video Services 91
Aura Sounds 39
BICC Vero 46
BI-Pak. 16
BK Electronics 46, 77
Black Star 46
BNRS 44
Boss Industrial Mouldings 72
T. J. Brine 83
Broadside Assoc 8
C.S.S. 92
Chiltmead 71
Chordgate Ltd 28
Clef Products 78
Cambridge Kits 78
Crimson Elektric 84
Crofton Electronics 78
Delta-Tech. 84
Display Electronics 34
E.D.A. Sparkrite 35
Electronize Design 91
Electrovalue 88
Enfield Electronics 15
Greenbank Electronics 63
Greenweld 89
Global Spec. Corp 13
Flight Electronics. 18
Happy Memories 72
Henry's Radio 91, 93
ILP. 24, 25
L \& B Electronics 38
Hy-Tek 40
L.E.M. Services 89
Lightning Elec. Comp 92
Mawson Assoc 78
Maplin 100
Magenta Electronics 88
Memotech 9
Midwich Computers 23
Namal Assoc. 90
OTC Australia 93
Parndon Electronics 93
Powertran 2,99
Rapid Electronics. 11
Pantechnic 89
R.T.V.C. 57
Relay a Quip 22
Redditch Electronics 83
Silica Shop 47
Sinclair Research 6,7
Solidstate Security 92
Swanley Electrical 72
Technomatic 28, 29
Tempus 85
TK Electronics 73
Watford Elec 4, 5
West.Hyde Develp. 78
Wilmslow Audio 83
L.C.D. DIGITAL METER MODULEA versatile module which will enable you to constructan accurate digital multimeter, digital thermometer, andmany other useful projects.

* $0.5^{\prime \prime}$ high, $31 / 2$ digit L.C.D
* F.S.D. + 199.9 mV , but may be expanded by external attenuators.
* Decimal point link selectable or externally programmable
* Metal film resistors and 20 cermet potentiometef for high stability
* Accuracy $\pm 0.1 \% \pm 1$ count

Input resistance $-\overrightarrow{100} \mathrm{Mn}$ (protected to 100 v

* Supplied assembled and calibrated, with full technical information. (Not a kit.)

CHANNEL ELECTRONICS 111 Harptree Drive. Walderslade, Chatham, Kent

PRECISION - by

For more than eleven years Powertran have been designing and manufacturing the finest quality electronic kits. All of our now considerable range have featured in the electronics press and literally thousands have been bought and built by contractors in the UK and World-wide.
Our philosophy is always the same - we offer ingenuity and originality in the construction phase by using only top class designers. We offer machines with power, versatility and performance - capability fully equal to their factory built rivals. We offer only the highest quality materials and components throughout to ensure years of useful and reliable service, we offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the careful first time builder as well as the dedicated enthusiast.
Our hallmark of success lies in the number of our clients who have built our whole range - many assembling several units for others to use often on the professional music scene.
We believe in taking every care throughout - months spent checking and testing the design and development. Vigorous checking of every component, constant pre-despatch quality control, careful packaging...even door to door delivery by Securicor!
We are naturally very proud of our Transcendent range of synthesizers designed by Tim Orr and regularly featured in ETI. They represent the best in constructional interest and in musical performance.

TRANSCENDENT POLYSYNTH - A four octave polyphonic Synthesiser with outstanding design characteristics and versatility and performance to match

Complete kit $£ 275.00$ plus VAT (single voice).
Exira voice lup to three morel $\mathbf{4 2 . 0 0}$ plus VAT
EXPANDER - A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.

Complete kit $£ 249.00$ plus VAT.
TRANSCENDENT DPX - Offers a five octave keyboard with power to match. Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.

Complete kit $£ 295.00$ plus VAT

TRANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 '
features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder buy it, build it. . . play it! You will know you have made the right choice.

Complete kit $£ 165.00$ plus VAT
1024 COMPOSER - Come right up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off

Complete kit $\mathbf{£ 8 5 . 0 0}$ plus VAT)
DEMONSTRATION TAPE - Demonsiration tape now available of all three kits (30 minutes)
$£ 2.00$

$T 20+20$ - Originally designed by Texas Engineers This is a 20 watt amplifier with true Hi Fi performance at a minimal cost. New features Include true Toroidal transformer, new wiring, single circuit board and improved presentation. An ideal beginners project. Complete kit £29.50 plus VAT. Also T30 +30 - 30 watt version complete kit $\mathbf{\text { E }} \mathbf{4 . 5 0}$ plus VAT

LINSLEY HOOD 75 DE LUXE - A 75 watt amplifier originally published in Hi-Fi News. Superb performance characteristics with less than $.01 \%$ distortion. Modular construction with 14 interconnecting boards -- virtually no wiring so assembly is easy as is subsequent checking and maintenance. Complete kit $£ 75.00$ plus VAT.

WORLD LEADERS IN ELECTRONIC KITS.

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour ail prices in this advertisement until the end of the month following the will honour ail prices in this advertisement until the end of the month following the
month of pubication of this issue. (Errors and VAT rate changes excluded. EXPORT ORDERS: No VAT. Postage charged at actual cost plus 51 handling and documentation: U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage or at current rate i" changed. Cheques, Access, Barclaycard accepted SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusivel per kit. FREE ON ORDERS OVER f100 SALES COUNTER: if you prefer to collect kit from the factory, call at Sales Counter Open 9a.m-12 noon, 1-4.30p.m. Monday-Thursday.

[^0]: Cambridge Learning Limited, Unit 16 Rivermill Site, FREEPOST
 St Ives, Huntingdon, Cambs, PE17 4BR, England. (Registered
 in England No 1328762)

[^1]: Due to our massive bulk purchasing programme which onables us to bring you the best possible bergans, we have houssnds of IC. s. Transistors. Releys. Cap's.. P.C.B. s. Sub-assombies, Switches, atc. etc. surplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads. We are packing all these items. into the BARGAN Ants a a lir prices! Thousarnds of components at giveaway prices! Guarans we thas include something trom our ads pay plus we always include something from our ads

[^2]: 301 EDGWARE ROAD,LONDON, W2 1BN, ENGLAND. TEL 01-724 3564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD, LONDON W2 WE AEE OPEN 6DAYY A NEEK -CALL N AND SEE FOR YOURSELF'́

[^3]: A word of warning on the location of the strips is in order here. The pins on the press-fix type automatically locate the strips correctly relative to the matrix, but more care is needed with the other sort. The first time I used Roadrunner I glued down the strip centred on a row of holes, then discovered it was unusable. The strip should cover two rows of holes, so that the strip is equidistant from the rows on either side, otherwise half the IC legs are too close for the tool to wrap. (The diagrams explain all). If you're bothered by this, don't worry - just fit the strips after the ICs are in place and you can see exactly what you're doing.

 Naturally Roadrunner is not restricted to ICs or components with thin leads, as are the other systems. Wrapping the wire round the component lead means you can use anything

[^4]: ADD 5\% TO NET ORDER VALUE TO CO
 Please supoly requested items

