SAVE YOUR LICENCE!

Drive safely with our DIY Alchohmeter

EXCLUSIVE REVIEW - CASIO'S HAND-HELD COMPUTER

Bodywork Checker - find the filler for under a fiver

Expand Your Computer Cheaply - See Inside

NEW • ROBOTICS TODAY news views and projects for home roboticists
Powertran have been designing and manufacturing high-quality electronic kits for more than a decade. Thousands have been purchased and assembled by constructors throughout the UK and world-wide. Many of our regular clients have built the entire range — several times! A Powertran kit makes an excellent gift for the electronics enthusiast; and is a gift that, when constructed, may be given again.

Our reputation rests on these unshakeable foundations — we use the most Imaginative and ingenious designers; we use high grade components subjected to rigid quality control; our kits are complete, even screws and wire are included; we take care with packing and despatch; our instructions are clear and always fully comprehensive . . . and if that weren't enough we back it up with our money-back guarantee. Powertran care and your skill gives you that something special.

Among the most popular of our kits are the fabulous 'Transcendent' range of synthesizers. Designed by the expert in the field, Tim Orr, and featured in Electronics Today International — those kits represent the zenith in both constructional ingenuity and musical performance. Thanks to our fully illustrated, carefully diagrammed 30 pages plus of constructional notes the 'Transcendent' range is comfortably within the capability of most enthusiasts. A great many 'first time builders' have completed them without difficulty and are justifiably pleased with the results.

TRANSCENDENT POLYSYNTH — brilliant design work and high technology components give the home constructor a machine of super versatility and range, unequalled only by factory-made units using thousands of pounds. Despite the advanced electronics the kit is practically complete with minimal wiring and rubber or metal connectors. Sold just £19.95 or give them professional results.

TRANSCENDENT DPX — a variable 5 voice keyboard. The two top octave expanders can be used simultaneously or one, or both at different rates or mixed and stepped in either manner. To add more versatility there is a choice of four voice units, with switching held either above or below the display. The DPX has all our advanced features yet care, and our instructions, unless manual, make it a hit for every musician.

* SPECIAL CHRISTMAS PRICE — COMPLETE KIT £99.95 (VAT)

TRANSCENDENT 2000 — a 3 octave keyboard yet with all the new components and thorough engineering that makes a superb and versatile machine. Quality wood cabinet and quality components throughout — complete down to flat 13 amp plug. Easy plug-in and plug-out! A true professional studio.

* SPECIAL CHRISTMAS PRICE — COMPLETE KIT £159.95 (VAT)

1024 COMPOSER — one of our latest introductions. The Composer consists of a sequencer up to 1024 notes or equal selection of change sequences, with power cord and with trouble-charged battery or rechargeable programme of up to 499.

* SPECIAL CHRISTMAS PRICE — COMPLETE KIT £85.95 (VAT)

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices as advertised until the end of the month following the month of publication of this issue. Errors and VAT rate changes included.

EXPORT ORDERS: No VAT. Postage charged at actual cost plus £1 handling and documentation.

U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage or current sales changed. Cheques, Access, Barclaycard accepted.

SECURITY DELIVERY: For the optional special delivery U.K. mainland only add £3 50 VAT inclusive per kit. FREE ON ORDERS OVER £100

SALES COUNTER: If you prefer to collect kit from the factory, call at 5 week. Counter, Open 8 am - 12 noon, 1 - 4:30 pm Monday Thursday

SUPER CHRISTMAS OFFERS!

MOST PRICES CUT

write or phone for NEW 40 page '81/82 catalogue — FREE!
FEATURES

DIGEST
ROBOTICS TODAY
CROSSOVER NETWORKS
CASIO FX-702P
AUDIOPHILE
WHY CLASS A?
ENGINEER'S GUIDE TO BASIC
TECH TIPS
DESIGNER'S NOTEBOOK

6 Read all about it
17 Meet the Mr Men
30 Filtering through
42 Put BASIC in your pocket
49 Pickups compared
58 The System A philosophy
62 Arrays and structures
73 All your own work

PROJECTS

COMPUTER EXPANSION SYSTEM
TV SOUND TUNER
BODYWORK CHECKER
COMPONENT TESTER
ALCOHOMETER
FOIL PATTERNS

22 For mighty micros
37 Quality TV sound
54 Investigate your vehicle
69 Sorts out your semiconductors
79 Time gentlemen please
95 Board meeting

INFORMATION

BREADBOARD '81
NEXT MONTH'S ETI
BOOK SERVICE
SUBSCRIPTIONS
COME AND JOIN US
AMPLIFIER OFFER
BINDERS
PCB SERVICE
NEXT MONTH'S HE

12 Hurry or you'll miss it
15 See into the future
29 Broaden your mind
36 Advance booking
40 We need a HE man
47 Low price hi-fi
77 Protect your precious issues
94 Construction made easy
99 What's HE up to?

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H 0EE. Telephone 01-437 1002/3/4/5.
Telex 8811896.

Ron Harris B.Sc. Editor
Alan Goldbatt
Paul Wilsom-Patterson
T.J. Connell
Peter Green
Tim Drake
Judith Jacobs
Alison Lilly
Paul Edwards
Rory Holmes

Advertising Manager
Group Art Editor
Managing Director
Assistant Editor
Editorial Assistant
Assistant Art Editor
Drawing Office Manager
Project Editor

PUBLISHED BY
Argus Specialist Publications Ltd
145 Charing Cross Road, London WC2H 0EE

DISTRIBUTED BY
Argus Pres Sales & Distribution Ltd
12-18 Paul Street, London EC2A 4IS (British Isles)

PRINTED BY
QB Limited. Colchester

COVERS PRINTED BY
Alabaster Passmore

Electronics Today is normally published on the first Friday in the month preceding cover date. © Argus Specialist Publications Ltd 1981. All material is subject to worldwide copyright protection. All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legally responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are accepted by us in good faith, as correct at time of going to press. Neither the advertisers nor the publishers can be held responsible, however, for any variations affecting price or availability which may occur after the publication has closed for press. □ Subscription Rates UK: £13.25 including postage. Airmail and other rates upon application to ETI Subscriptions Department, 163 London Road, Thornhill Heath, Surrey C06 6AR.
In-Car Care

The high price of installing in-car
sound systems is often blamed
for the large proportion of cash
earmarked for so-called expert in-
stallation. But Greens at
Debenhams have come up with a
less expensive alternative. They
have introduced Track One — a
range of in-car entertainment
systems with full installation in-
structions, backed by a 24-hour
helpline system. The equipment in-
cludes Citizens' Band radio, stereo
and normal radio, and offers a
wide range of choice rather than
most high street shops. Each unit is ac-
 companied by detailed fitting in-
structions, but should you get into
difficulties just ring the number
shown on the leaflet and an expert
will talk you through to find out
where you went wrong. You can
find Greens at any of your local
Debenhams stores.

Telecom Turnaround

It seems that there has been some confusion about the use of the word
'illegal' in the article entitled Telecom Turnaround published last month.
'Illegal' suppliers and 'illegal equipment' were not clearly defined. In fact,
there is nothing illegal about supplying or selling telephone equipment,
and likewise the units themselves are not illegal. The law is only broken
when an independent supplier publicly states that the equipment he sells
can be connected to the UK network when it hasn't been approved by
British Telecom. And again, the equipment is only illegal once it has been
connected and in this case it is the buyer of the equipment who breaks the
law, not the supplier.

We apologise to any readers (especially suppliers) who may have
been inconvenienced by this misinterpretation.

FM Main Man!

Here is a letter we received from the Electricity Council referring to our
article on FM Mains Remote Control. Please note:

Dear Sir

FM Mains Remote Control

The feature in the October 1981 edition of Electronics Today describing
a control device which utilises the electrical installation as the medium
for communication between separate rooms of a house also mentioned
a separate premises.

It would be possible to point out to your readers that under section 27 of the
Electric Lighting (Clauses) Act 1899 there is provision which states that if
the owner or occupier of premises uses the energy supplied so as to
interfere 'unduly or improperly' with the efficient supply of energy to
any other person the Board may discontinue the supply.

We would also point out that if the power distribution system were to
be used in the manner the you describe the injected signals would not be
broadcast throughout the surrounding low voltage network and would
therefore be received by all the other electricity consumers connected
to that network. Any detrimental effects the signals may have on any
item of equipment being used by such other consumers must clearly be
the responsibility of those involved in generating the signals regardless
of whether they have spilled over from the installation or whether they
have been deliberately injected into the network directly.

Yours faithfully,

D V Lord
Head of Distribution Engineering

In-Car Care

Game, Set And
Match

Extending the series of features
on their CBX watch, Casio have
decided to include alarm with tone
time control, day and date indication
and combat style electronic game. The two
new models incorporating these
features are called the CA90 and
CA91. The first has a black resin
case and bracelet, the second, a
stainless steel coated case and solid
stainless steel bracelet. Recommended retail prices are
£22 95 (CA90) and £34 95 (CA91). They should be available from
your friendly neighbourhood
Casio stockist or in case of difficul-
ty contact Casio themselves at 39
Scuton Street, London EC2A 4TY

New Connections

Following up on our article last month about the new Telecommuni-
cations bill, we have found British Telecom are now pulling their pro-
verbial receivers out. For example, a scheme designed to enable
telephone sockets to become as commonplace as power outlets has
recently been announced by BT. The scheme will be launched nation-
wide this autumn and follows a successful trial programme in Taunton
and Carlisle which has been running since May this year. Instead of hav-
ing telephones fixed permanently, customers now will be able to unplug
them and move them from room to room wherever sockets have been in-
stalled. This idea will radically change the installation of the telephone
service in and around the home, also simplifying the sale of some
Telecom equipment when phones will be available from some 40 shops
by next April, mostly within department stores. These will be available for
sale to customers to take home and plug in. As supplies of the new plugs
and sockets become available, customers asking for extension phones
will have sockets fitted, and will be supplied with a telephone of their
choice, with a plug already connected to it. Engineers will also adapt exist-
ing phones on the same line to plug and socket connections. This will
replace existing extension arrangements. Customers requiring an exten-
sion telephone will pay an extension charge of £25 plus additional ex-
tensions provided at the same price. Additionally, BT have also
introduced a residential extension complete with standard telephone and
additional sockets on the own will be charged at £1 per quarter. All new installation
work on residential and single business lines will incorporate the new
system. Extra note: This means that all telephones approved after the new
liberalisation comes into effect will be candidates for this kind of plug
and socket connection.

Further update: Ferrari have just won a contract to supply British
Telecom with the new ZN470AE Microphone Amplifier Integrated Cir-
cuit. This will be incorporated in the new linear electret microphone
manufactured by AP Beson Ltd, which will replace the familiar carbon
type, thus offering improved speech quality and long-term reliability.
THREE FOR FREE
FROM GSC

EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug
components in and out of letter number identified
nickel silver contact holes. Start small and simply
snap back boards together to build a breadboard of
any size
All EXP breadboards have two bus bars as an integral
part of the board, if you need more than 2 bus bars
simply snap on 4 more bus bars with the aid of an EXP
48
EXP 360 £15 Simply designed for working with up to 40 pin ICs
perfect for 3 to 14 pin ICs Has 270 contact points including
20 point bus bars
EXP 300 £5.75 The ideal breadboard for 1 chip circuits. Accepts up to 22 pin ICs
With 550 contact points, two 40 point bus bars, the EXP 300 will accept all ICs and ICs to 6 x 14 pin DIPs. Use this breadboard with Adventures in Microelectronics.
EXP 600 £30 Microprocessor projects in magazines and educational books are built on the EXP 600
EXP 650 £35 Has 6 centre spacing so is perfect for MICROPROCESSOR applications

PROTO-BOARDS
The ultimate in breadboards for the minimum of cost.
Two easily assembled kits
PB6 Kit. 80 contacts, four 8-way binding posts accepts up to 14 pin DIP.
PROTO-BOARD 8 KIT £2.20
PB10 Kit complete with 760 contacts accepts up to 14 pin DIPs, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.90

Available from selected stockists
ELECTRONICS BY NUMBERS
No. 10 SOIL MOISTURE TESTER
No more watering houseplants with this soil moisture test. Just place the probes into the soil and it will light up to tell you whether the soil is “too wet” or “too dry”. You don’t even need green fingers.
No. 11 DIGITAL ROULETTE
The suspense and excitement of the casino in your own home. Just press the button, the circle of lights spins and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number.
No. 12 EGG TIMER
How do you like your eggs done, hard or soft, just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking ladies!
Want to get started on building exciting projects, but don’t know how? Now using EXPERIMENTOR BREADBOARDS and following the instructions in our FREE ‘Electronics by Numbers’ leaflet, ANYBODY can build electronic projects.
For example, take one of our earlier projects, a L.E.D. Bar Graph.

You will need: One EXP 300 or EXP 350 breadboard 15 silicon diodes 6 resistors 6 Light Emitting Diodes
Just look at the diagram. Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components, connect to the battery, and your project’s finished. All you have to do is follow the large, clear layouts on the ‘Electronics by Numbers’ leaflet, and ANYBODY can build a perfect working project.

Just clip the coupon
Give us your name and full postal address (in block capitals). Enclose cheque, postal order or credit card number and expiry date, write in the appropriate box on the breadboards you require.

For immediate action
The GSC 24 hour (3 days a week service) Telephone (0799) 21682 and give us your Access, American Express or Barclaycard number and your order will be in the post immediately.

THE GSC 24 HOUR SERVICE
TELEPHONE (0799) 21682
With your Access, American Express, Barclaycard number and your order will be in the post immediately

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. 9TT
Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682
Telex: 817477

IT'S EASY WITH G.S.C.
TO RECEIVE YOUR FREE COPY OF PROJECTS 10, 11 and 12

G.S.C. (UK) Ltd, 9TT Unit 1, Shire Hill Estate, Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682
Telex: 817477
Books, Books, Books...

Once again it's time to get to grips with the ever-increasing pile of review books that threaten to overtake ETI's corner of the ASP offices.

The first one comes from Hodder and Stoughton, and is the latest title in their small book in their Computer Science series on 'Microelectronics and Microcomputers'. The book is intended to provide a general background and introduction to microcomputers for people who have come to grips with the increasing impact of computers both at home and at work. All aspects of the subject are covered, although briefly; the book starts with such basic topics as types of electronic components, the use of various number systems (decimal, binary, hex and so on) and simple logic gates. The book is designed for students to use them, programming, system development, data transmission and instrumentation techniques. The final five chapters describe numerous applications in fields of industry, transport, consumer goods, education and business. No prior knowledge is assumed, although some experience of electronic theory would make the first half of the book easier to grasp.

The authors have packed a great deal into the book's 225 pages, and it can be recommended as an introductory text for bewildered businessmen and for people interested in the forceful effects that computers are having on our society. 'Microelectronics and Microcomputers' is written by L.R. Carter and E. Huzan, and costs £1.95.

The rest of the books come from Bernard Babani. 'Audio Projects' (£1.95), by R.G. Rayer, gets down to the nitty-gritty very quickly — a brief introduction in and then it's straight into the projects, over 30 of them, ranging from preamps, mixers and power amps to tone control networks, test gear and a simple tuner. Although constructional details are rudimentary and a few of the cases non-existent, none of the circuits should be difficult to build. '50 Simple LED Circuits Book 2', by R.N. Soar (£1.35), speaks for itself — the circuits are simple, they use LEDs, and there are 50 of them. It would buy for the absolute beginner; no constructional details are given but anyone should be able to build these circuits on Veroboard without any trouble. If you think BASIC is beyond you, 'An Introduction to BASIC Programming Techniques', by S. Daly, provides a simple guide to this popular high level computer language. The author covers all the statements you're ever likely to meet, keeping the examples simple and pointing out possible machine-dependent variation. In fact the book recommends that you try programming an actual computer as soon as possible — and so do we. This way you quickly find all the quirks of a particular BASIC, and the hands-on approach is definitely the fastest way to learn. 'An Introduction to BASIC Programming Techniques' will cost you £1.95. That's it for the time being: more reviews will follow, word blindness permitting.

Mail Order

Toolmail are offering two new helpful aids to the hobby enthusiast, the first of these is a hobby service case, available for the first time in this country. It has a heavy metal frame containing 18 clear styrene drawers (each 5 x 2½ x 1½") for storage of components and small parts, and one subtoplatform drawer (11 x 5½ x 3¼") for the storage of tools and other large or heavy items. The front of the tough outer case folds down to provide a useful working surface. The case is 12" high with a comfortable carrying handle. It is available for a limited period at the introductory price of £29.95 which includes VAT and free delivery (RRP is £34.95). The second offer is an electronics service wallet designed for work with computers, video and audio units. It includes a selected range of 25 precision miniature tools and is contained in a fitted zipper wallet. The tools include miniature soldering iron, desolder braid, solder, soldering tools, range of screwdrivers, pliers and cutters, wire strippers, IC extractor, tweezers, scissors and contact cleaners. The kit costs £39.95 including VAT and free postage anywhere in the UK. Both of these items are available mail order from Toolmail Ltd, Parkwood Industrial Estate, Sutton Road, Maidstone, Kent ME15 9LZ.

Heavy Levy

The Government is likely to face strong opposition from Britain's 25 million blank tape users if it goes ahead with its plan to put a levy on the sale of blank tapes. The levy is meant to compensate performers for their loss of sales and royalty payments due to home taping. The six main UK blank tape manufacturers will also be adding their weight to the argument through the auspices of the Tape Manufacturers' Group. The Group has been formed to fight the proposal reported to be contained in a Green Paper reviewing the whole area of copyright law, which is expected to be published shortly. The TMG includes representatives from JMC, Memorex, Sony and TDK, and Mr Bill Fulton, the Group's Chairman, maintains that the levy plan is unworkable and impractical and that the problem of home taping has been overstated. He also believes that any levy would penalise all tape users, whether or not they were involved in the copyright law, and that the levy would be like imposing a tax on blank tapes therefore effectively subsidising the record companies. The basis on which the levy has been proposed is that the British Phonographic Institute has already proved that losing £1 million a day through breaches of copyright. But the TMG say they haven't produced any hard evidence to back up this fact.

Pack Up Your Troubles

Mike-Bedco, the electronics packaging specialists, have just launched a range of 'camera craft' security cases. Of course, they needn't just be used for carrying cameras, as they are just as useful for carrying any sort of delicate equipment - test gear perhaps? They feature an aluminium frame and facing on rigid wooden panels, combining strength and smart appearance with light weight. Lockable toggle catches, robust hinges and riveted corner reinforcements add to the protection they can offer. The cases can be supplied in three different sizes complete with carrying strap and shock absorbent foam inserts. The foam is easily cut to shape with the knife provided, so it can accommodate various shapes and sizes. There is also a briefcase version fitted with PVC lining and document wallet in the lid, just in case you have any briefs in need of protection! The cases are available ex-stock and prices start at £22. Further details are available from Mike Young, Mike-Bedco Standard Products Ltd, Ashley Road, Uxbridge, Middlesex UB8 2SQ (telephone Uxbridge (0895) 37123).

V3 Loudspeakers

I think as our readers are not as handy with the woodsaw as they are with the soldering iron. Volt Loudspeakers, designers of the V3 (October '81 ETI), tell us they've had almost as many enquiries for a woodwork kit as they have for the electronics. Consequently they have arranged for a complete set of pre-cut chipboard panels to be made available by Wilkinson Audio, 3913 Church Street, Wilmslow, Cheshire (telephone 0625-525599) — contact them for details. All you have to do is screw the panels together as described in the original article — now there's no excuse for not building a pair!
Scientific and technical professionals favour the HP 85, they are being joined by increasing numbers of business professionals. Find out why the HP 85 is the professional microcomputer at your nearest Laskys store or write to our Mail Order department for more details.

Laskys is the largest specialist Hi-Fi chain in Europe, in July 1980 they acquired Microdigital – an independent, specialist microcomputer store based in Liverpool. Since then specialist microcomputer departments have been set up within selected Laskys stores under the Microdigital name, these have now been renamed Microcomputers at **Laskys**

The Professional Microcomputer Retailer with 10 Outlets Nationwide & Mail Order

BIRMINGHAM
19/21 Corporation Street, Birmingham, B2 4LP. Tel 021-632 6303.
Manager Peter Stallard. 300 yards from Bullring Centre.

BRISTOL
16/20 Penn Street, Bristol, BS1 3AN. Tel 0272 20421.
Opening 16th October.
Between Holiday Inn and C & A

CHESTER
The Forum, Northgate Street, Chester, CH1 2BZ. Tel. 0244 317667.
Manager Jeremy Ashcroft. Next to the Town Hall.

EDINBURGH
4 St. James Centre, Edinburgh, EH1 3SR. Tel: 031-556 2914.
Manager Colin Draper. East end of Princes Street, St. James Centre.

KINGSTON (Opening early 1982)
38/40 Eden Street, Kingston. KT1 1EP. Tel 01 546 1271.
Opposite Main Post Office.

MANCHESTER
12/14 St. Mary's Gate, Market Street, Manchester, M1 1PQ. Tel 061-832 5087.
Manager Lesly Jacobs. Corner of Deansgate.

NOTTINGHAM (Opening early 1982)
1/4 Smity Row, Nottingham, NG1 2OU. Tel. 0602 415150.
Manager: Alistair Hawkes.
Within Market Square, Exchange Buildings, Nottingham.

SHEFFIELD
58 Leopold Street, Sheffield, S1 2GZ. Tel. 0742 750971.
Manager: Justin Rowles. Top of the Moor, opposite Town Hall.

LIVERPOOL
33 Dale Street, Liverpool, L2 2HF. Tel. 051-236 2828.
Manager: Mark Butler. Between the Town Hall and Magistrates Courts.

LONDON
42 Tottenham Court Road, London W1 9RD. Tel 01-636 0845.

Mail Order
Microdigital Limited, FREEPOST (No stamp required), Liverpool L2 2AB
B-B-Books from B-B-Babani

Bernard Babani Publishing Ltd will be happy to send copies of their new 1982 catalogue of Radio, Electronic and Computer books to anyone who cares to send them their name and address. So if you want them, write to them at: The Grampians, Shepherds Bush Road, London W6 7NF.

Hot Stuff!

 Sinclair Electronics has just announced the launch of the Thandar TH301 hand-held digital thermometer. It features a large readout LCD display, a wide temperature range of -50°C to 750°C and 1°C resolution. It also incorporates the latest technology and over 1,000 hours of battery life is obtainable. The unit is housed in a strong Thandar case and is supplied complete with battery and fast response bead thermocouple. The price is £59.50 including VAT and Sinclair offer a range of thermocouples as optional accessories, covering a wide range of applications, including mineral filled, pyrolytic, right angle and surface. These all come complete with plug and flexible interconnecting cable. For further details contact Sinclair Electronics Ltd, London Road, St Ives, Huntingdon, Cambridgeshire PE17 4HJ.

Bright Flatpacks

Perdix Components Ltd have just announced the release of two new incandescent digital displays for their Aurora line. The new FFD-71 (0.472" character) and FFD-81 (0.614" character) displays operate from 3.5 V DC with a low current drain of 7 mA while maintaining extremely high brightness levels. The units also feature TTL compatibility, are multiplexable, can operate from AC or DC power, and can be filtered to almost any colour. For further information contact Perdix Components Ltd, 98 Croton Park Road, London SE4.

New Improved DMMs

Fluke are now manufacturing a new series of digital multimeters. They are intended to replace the existing 6030A series by providing more features at even more competitive prices. The new features include four models instead of the previous three, three of which include a high-speed continuity beeper as standard, improved calibration specification with two-year calibration guarantee, two-year parts and labour warranty, heavy duty 600 V fuse system to provide greater protection against high energy inputs and improved mechanical design with non-slip feet, tilt bail and easier-to-use layout. This new "B" series will be available direct from Fluke at Watford or through their nationwide network of distributors. Further information from Fluke GB Ltd, Colonial Way, Watford, Herts WD2 4TT.

Drilling Holes

OK Machine & Tool (UK) Ltd have launched a lightweight electric drill for drilling, grinding and polishing which is particularly useful on printed circuit boards. The FCB-258 drill is powered by a high-speed 220-240 V motor and measures 175 mm long x 44 mm diameter. Four different collect sizes are supplied to handle 0.432" drills. Optional extras include tungsten carbide cutter sets, grinding points, cutters, sanding discs and various drills. A drill stand is also available with a spring-mounted arm which provides good stability and can be used with circuit boards up to 280 mm. Further information and prices can be obtained from OK Machine & Tool (UK) Ltd, Dutton Lane, Eastleigh, Hants SO5 4AA.

ELCB

B & R Relays have broadened their range of combined 13 A Earth Leakage Circuit Breaker (ELCB) socket outlets with the introduction of a new wall mounting version. Based on the successful HO4 portable ELCB with integral 13 A socket, the new model is designed for mounting directly on a convenient single or double outlet box. The new ELCB is simple to install — anyone capable of wiring up a standard socket can do it. It is be at home, in the office, workshop or factory. The unit is available in sensitivities ranging from 10 mA to 30 mA, and a test button allows operation to be checked at any time as well as every time the device is switched off. Special socket styles can be supplied to ensure that particular equipment is always plugged into the ELCB and not a non-protected socket outlet. Further information can be obtained from B & R Relays Ltd, Edin-burgh Place, Harlow, Essex CM20 2D1.
FOR FREE BROCHURES - TEL: 01-301 1111
Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year’s premier show for the electronics enthusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see — and to buy from, at fantastic prices.

Even those lucky 17,000 would be surprised to hear that this year we’ve improved BREADBOARD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy!

BREADBOARD 81 is the place to be from November 11th to 13th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81.

Close to Victoria Station and NCP car parking facilities.

Cost of entry will be £2.00 for adults and £1.00 for children under 14 yrs and O.A.P.s.

ORGANISED BY ARGUS SPECIALIST PUBLICATIONS LTD., 145 CHARING CROSS ROAD, LONDON WC2H 0EE.

ROYAL HORTICULTURAL SOCIETY’S NEW HALL, GREYCOAT STREET, WESTMINSTER, LONDON S.W.1.

To avoid queuing, advance tickets will be available from Advance Tickets BB ’81, ASP Ltd, 145 Charing Cross Road, London WC2H 0EE.

“Special Advance Booking Price”
Adults £1.75 Children under 14 yrs and O.A.P.s 80p

Please send …… tickets @ £1.75 …… tickets @ 80p

To: ……………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

I enclose PO cheque for £…………. (make payable to ASP Ltd.)

Advance tickets MUST be ordered BEFORE 20th October 1981.
Track in Tracking

Ferranti is to supply its advanced Helmet Pointing System (HPS) as part of the British Aerospace Dynamics Group Tracked Rapier Missile System for the British Army. The HPS, which was first seen at last year’s Farnborough Air Show, is a revolutionary target sighting system which can direct weapon aiming sensors towards any target at which the wearer is looking. The HPS was originally conceived as a pilot’s aid but it has received its first major contract as a land-based system. The Ferranti Helmet Pointing System is a very lightweight, simple system which improves normal weapon aiming. Basically, the entire system consists of the helmet-mounted sight and sensor, a radiator (mounted on a convenient nearby fixed object), a signal processing box, a control unit and an appropriate source of electrical power. The observer’s sight is light and compatible with the latest protective masks. In the Tracked Rapier situation, the commander (observer) with his head out of the cupola, searches for possible targets. The sight on his helmet has an illuminated aiming mark, focused at infinity representing line-of-sight. A tiny sensor, also on the helmet, continuously monitors the angle and position of the Commander’s head (and hence his precise sight-line) relative to the radiator fixed to the vehicle, with high accuracy. Once the observer has spotted a target, he overlays it with the aiming mark, as a means of designating his target. At the press of a button, the line-of-sight, as measured by the HPS, is transferred to the optical tracker, directing it to the target, which then appears in the tracker’s sight. The operator then follows normal procedure through weapon release to target impact. In general use the Ferranti HPS can be used where an observer’s sight needs to be transferred to equipment that must be directed to the same ‘target’ — whether it be in low-flying aircraft, a ground target or in a commercial application.

Hughes Hues

Here a Hughes Aircraft Company engineer uses a full-colour display to test a stand-off airborne system for detecting and tracking massed armour and other forces. The system is called Pave Mover and displays targets and their movements in full colour on a cartographic base, showing roads, railway lines, airfields and rivers. As many as 4,096 colour hues can be displayed. The Pave Mover uses airborne radar to relay target information via data link to a mobile ground-based Data Processing Control Station. Computers in the DPCS process the information and display the target data. Pave Mover’s radar can also guide missiles or tactical aircraft to designated targets. Guidance commands and targeting information are supplied by the DPCS. The Pave Mover system is part of a broader Assault Breaker programme for neutralising enemy armour before it reaches the forward edge of the battle area. The system is being developed by Hughes under contract from the US Air Force and the Defense Advanced Research Projects Agency. It is being evaluated at White Sands Missile Range, New Mexico.

Direct Hit

The first guided launch of the Hughes Aircraft Company’s Advanced Medium-Range Air-to-Air Missile (AMRAAM) was a success with a direct hit on a drone aircraft target. It was tested in Holloman Air Force Base, New Mexico, and fired from a US Air Force F-16 aircraft against an F-102 drone target. It closed in on its target using its radar guidance system, thus proving the missile’s capability with this particular aircraft. The next generation AMRAAM missile will pack higher performance into an airframe which is only about half the weight of the missile it will replace — the AIM-7 Sparrow. The missile provides ‘launch and leave’ capabilities enabling the pilot to break away immediately after launch to engage other targets. Hughes is one of six contractors in a 33-month prototype programme; selection of a winner is expected in October and the winning contractor will then start full-scale development. The AMRAAM program is a joint US Air Force and Navy effort to develop an advanced all-weather missile for operational use between 1985 and 2003.
SPECIAL OFFER!

- Matched I.C. 10+10 Stereo Power amplifier kit usually £3.95 + £1.15 p&p
- Mullard LP1182 built c.r.m. suitable for ceramic and auxiliary inputs usually £1.95 + £0.70 p&p
- Matching power speaker kit with transformer usually £3.00 + £1.95 p&p

£21.95 plus £3.80 p&p

STEREO AMPLIFIER KIT

- Features latest SCAL 550/555 10A 2006 10 watt output I.C.'s with In-built thermal and short circuit protection
- Mullard Lambda stereo amplifier module.
- All components are in black anodised cabinet. 5" x 6" x 2.3" (approx)
- 10+10 Stereo converts to a 20 watt Class A Stereo amplifier.

To complete you just supply connector wire and solder. Features include dip inductors for ceramic capacitor, microphone, tape or tuner. Outputs - tape, speakers and headphones. By the press of a button it transfers into a 20 watt mono class A stereo amplifier with twin deck mixing. The kit incorporates a standard LP1182 pre-amplifier module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 button switch controls. Silver finish, parts matching knobs and contrasting cabling. Instructions supplied. USA, price plus 10% p&p.

FREE with the kit.

£14.95 plus £2.90 p&p

SPECIFICATIONS: Suitable for 4 to 8 ohm speakers

- Frequency response: 40Hz - 20kHz
- Input sensitivity: P. U. 150V. A 1volt
- Treble: 250Hz - 19kHz
- O/D: 0% - 1%.

STEREO MAGNETIC PRE-AMP CONVERSION KIT

Includes FREE Magnetic cartridge with diamond stylus. All components including p.c.b. to convert your existing input to audio level.

Only available with 10+10 amp. £2.00 includes p&p.

8" SPEAKER KIT

Two 5" 80 watt ceramic speakers. £14.75 per speaker plus £1.70 p&p when purchased with amplifier. Available separately £8.75 plus £1.70 p&p.

PRACTICAL ELECTRONICS CAR RADIO KIT

SERIES II

2 WAVE BAND

MW - LW

- Easy to build
- 5 push button tuning
- Modern design
- 6 watt output - Ready etched and punched PCB - Incorporates suppression circuits

All the components in this kit can be built with the radio, you supply only the wire and the solder, featured in Practical Electronics March issue. Features - set tuning with 5 push button options, back illuminated tuning scale. The F.E. Traveler has a 6 watt output, top and ground and incorporates an integrated circuit output stage. A Mullard RF Modulator LP1181 stereo filter type are aligned and connected, and all 5 push button tuning units. £10.50 plus £2.00 p&p.

Suitable tos stable steel fully retractable aerial (locking) and speaker 8" x 4" approx. available as a kit complete £1.95 p&p. £1.15 p&p.

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM

<table>
<thead>
<tr>
<th>MODEL</th>
<th>BUILT</th>
<th>KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 WATT</td>
<td>£14.95</td>
<td>£11.95</td>
</tr>
<tr>
<td>200 WATT</td>
<td>£18.95</td>
<td>£15.95</td>
</tr>
</tbody>
</table>

SPECIFICATIONS: 125 W Model 200 W Model

- Max output power (RMS) 125 watts 200 watts
- Outputting operating volt (IO) 50 - 80 volts 70 - 95 volts
- Total THD 1%, 16 watt 4 - 16 ohms 4 - 16 volts
- Sensitivity for 100 watts 400mV @ 47K 400mV @ 47K
- Frequency response: 25Hz - 20kHz 25Hz - 20kHz

UNBEATABLE OFFER AT

- £72.50

COMPLET

- Plus £15.90 p&p

MONO MIXER AMPLIFIERS

50 WATT

Six individually mixed inputs for two pick up mic. (or, mic), two stereo magnetic microphones and two auxiliary inputs for tape, organ, etc. Eight slider controls for level and two for master bass and treble, four extra pedestal controls for mic and aux inputs. Size: 13/4"x 63/4"x 2" approx. Power button 50 watts RMS, 200 watts peak. £39.95 plus £7.70 p&p.

CALLERS ONLY

323 Edgeware Rd, London W2. Tel: 01-723 8432

Open 9.30am - 5.30pm. Closed all day Thursday. Parcels under 16 not served without parental authorization.

ALL PRICES INCLUDE VAT AT 15%

MAIL ORDER ONLY

21 HIGH STREET, ACTON, W3 6NG

Note: Goods despatched to UK address only.

For further informations for instructions 20p plus stamped addressed envelope.
Dummy Load

We're making audio testing easy! Apart from your multimeter and your oscilloscope what you really need is a dummy load. Our version allows parallel and series connection as well as testing of both channels of a stereo amplifier at the same time. The advantages of using the unit are manifold — not only because the source is presented with an ideal resistive load of the correct value, but also because you can't damage expensive speakers during experimentation. Not only that — you don't annoy the neighbours when you're testing at full power and your eardrums are saved so you can still enjoy the music once you're finished.

Guitar Tuner

Our simple, low cost, easy to use (and all that jazz) Guitar Tuner is just the thing you need if you're a budding musician. Tuning up can be really irritating, but we've made it simple. You just plug the guitar into the unit and the oscillator with six reference frequencies does all the hard work for you. Just play the note and adjust the tuning until the built-in meter zeros, repeat the procedure for all the strings — et viola — it's tuned. The tuner can also be shifted one or two octaves down to make it suitable for bass or rhythm guitars. Play it again Sam!

Infant Guard

How do you like your children — fried or boiled? Or perhaps poisoned? Well, we prefer to see healthy specimens of the next generation, so we've designed a special guard for you to fit onto your medicine cabinet. When small inquisitive hands open the cabinet an alarm goes off, which not only puts the child off investigating further, but also warns you about what's happening. When the cabinet is shut, the unit switches itself off. For the adult who doesn't want to be shattered by the sound of the alarm as he/she is reaching for the hangover remedy, there's also a disable button on the outside of the cabinet which prevents the alarm going off when the cabinet is opened by someone who is meant to use it. It's a really useful gadget to have whatever age your children may be, and it's cheap and simple to build.

Meter Beater

If the bane of your life is the not-so-lovely Rita the Meter Maid then you need our all-singing, all-dancing project. The unit is the same size as a Barclaycard (though you can't get credit with it) and fits neatly onto your keyring. It has an LED display which indicates whether you're setting it for 20, 40, 60 or 80 minutes with the touch switch operation, and when you are nearing the time to beat Rita back to the limo, it beeps. We've set it so that for a 20 minute wait, it will go off three minutes before at 40, it goes off six minutes before, and so on. We reckoned that the longer you were leaving the car the further away you might be, cunning eh?

Robotics Today

This month we have an in-depth study on the hobbyist approach to robotics written by one of our readers. It covers just about everything from thoughts on mechanical construction, through data processing and programming to experimental ideas for sensors. For a really down-to-earth approach to the exciting subject of Robotics read on.....

DC Control of Audio

Taking still further our favourite theme of remote controlling everything in sight, Keith Brindley follows up his article on Voltage-Controlled Audio with this little offering. Using another of Mullard's chips to demonstrate, he delves into the murky depths of voltage-controlled volume and tone for use in preamps and to help put the theory into practice there are loads of good circuits to play with.
DIABLO S30 DISK DRIVES

Another shipment allows us to offer you even more high performance drives and electronically identical, the only difference is the convenience of the changing the deck packs.

S30 front loader, pack change via front door £65 + vat
S30 fixed, pack change via removal of top cover £65 + vat

* From £65 + vat

Mains Filters

Professional type mains filters are used in most ALARM/LOCK modes today the only difference is our price! All electronics are run on a 10/20VA circuit breaker measuring only 3" x 1 1/2" and by addition of a few switches and 5/6 volt power pack a multi-function alarm circuit can be fraction of cost. Other features include snooze timer, silent alarm set, power supply indicator, flashing seconds counter, monitored alarm output etc. Supplied brand new with full data only. Suitable transformer £7.50

MUFFIN FANS

Keep your equipment cool. Padlo fans are available in a wide variety of sizes and shapes. Our standard sizes are 40 x 40 x 10mm. We also offer a range of alternatives to suit your requirements. A.C. 5 V 6 V 12 V 24 V - 0.5 Watt to 8 Watt

RAM SCOOP

| 4146 300 NS | £65.00 | 4164 300 NS x 10 pack | £61.00 |
| 2104 4050 NS x 10 pack | £55.00 |

25 WATTS FANS

54	£19.00
100	£31.00
150	£37.50
200	£46.00
250	£59.00
300	£75.00

RF CONNECTORS

50	£3.00
500	£35.00
1000	£60.00
5000	£125.00
10000	£250.00

WIRE WRAP KITS

50 Pins	£4.50
250 Pins	£14.50
500 Pins	£24.50
1000 Pins	£45.00

Circuit Design & Production

- DEC CORDS 2500-3000-3500
- DATA CARRIERS 10V for £7.50
- DATA CARRIERS 24V for £10.50
- POWER CORDS 500 NS x 100 | £125.00 |
| 5000 NS x 100 | £250.00 |
| 10000 NS x 100 | £500.00 |
| 20000 NS x 100 | £1000.00 |

300 BAUD TERMINALS

Wire Wrap Kits	£4.50
250 Pins	£14.50
500 Pins	£24.50
1000 Pins	£45.00

MULTI FANS

- MU F F I N F A N S
- RS232 send interlace, 110 V, 110 V, 120 V, 120 V, 120 V, 120 V.
- 8 bit paper tape
- timer, am pm, alarm set, power failure indicator, flash

The same module as used in most ALARM/LOCK packs. Available in standard, low power mode, high power mode, and various other specifications.

DIABLO S30 DISK DRIVES

Another shipment allows us to offer you even more high performance drives and electronically identical, the only difference is the convenience of the changing the deck packs.

S30 front loader, pack change via front door £65 + vat
S30 fixed, pack change via removal of top cover £65 + vat

* From £65 + vat

Mains Filters

Professional type mains filters are used in most ALARM/LOCK modes today the only difference is our price! All electronics are run on a 10/20VA circuit breaker measuring only 3" x 1 1/2" and by addition of a few switches and 5/6 volt power pack a multi-function alarm circuit can be fraction of cost. Other features include snooze timer, silent alarm set, power supply indicator, flashing seconds counter, monitored alarm output etc. Supplied brand new with full data only. Suitable transformer £7.50

MUFFIN FANS

Keep your equipment cool. Padlo fans are available in a wide variety of sizes and shapes. Our standard sizes are 40 x 40 x 10mm. We also offer a range of alternatives to suit your requirements. A.C. 5 V 6 V 12 V 24 V - 0.5 Watt to 8 Watt

RAM SCOOP

| 4146 300 NS | £65.00 | 4164 300 NS x 10 pack | £61.00 |
| 2104 4050 NS x 10 pack | £55.00 |

25 WATTS FANS

54	£19.00
100	£31.00
150	£37.50
200	£46.00
250	£59.00
300	£75.00

RF CONNECTORS

50	£3.00
500	£35.00
1000	£60.00
5000	£125.00
10000	£250.00

WIRE WRAP KITS

50 Pins	£4.50
250 Pins	£14.50
500 Pins	£24.50
1000 Pins	£45.00

Circuit Design & Production

- DEC CORDS 2500-3000-3500
- DATA CARRIERS 10V for £7.50
- DATA CARRIERS 24V for £10.50
- POWER CORDS 500 NS x 100 | £125.00 |
| 5000 NS x 100 | £250.00 |
| 10000 NS x 100 | £500.00 |
| 20000 NS x 100 | £1000.00 |

300 BAUD TERMINALS

Wire Wrap Kits	£4.50
250 Pins	£14.50
500 Pins	£24.50
1000 Pins	£45.00

MULTI FANS

- MU F F I N F A N S
- RS232 send interlace, 110 V, 110 V, 120 V, 120 V, 120 V, 120 V.
- 8 bit paper tape
- timer, am pm, alarm set, power failure indicator, flash

The same module as used in most ALARM/LOCK packs. Available in standard, low power mode, high power mode, and various other specifications.
It's Brer Robot time; not only a chance to meet Micro-mouse, but an introduction to his continental friends Mr. Mouse and Mr. Beaver. Robotics Today looks at how the achievements of the Swiss roll on.

For centuries the Swiss have had a virtual monopoly on the world's timekeeping. A combination of geography, climate and national spirit have by some inexplicable coincidence led to a thriving cottage industry dedicated to high precision mechanics. Up until only 10 years ago it was a virtual certainty that most watches sold throughout the world, particularly those in the middle to upper price bracket, would be Swiss-made.

However, there can be little doubt that the Far Eastern countries, particularly Japan, Hong Kong and Taiwan, now dominate the electronic watch industry, a logical development of their undoubted expertise in miniature electronics. The Swiss, like any country with a international reputation for a particular product, had two choices; they could either resign gracefully, like the British motorcycle industry, or they could re-invest and at least try to regain that which was once theirs. The Swiss have, for obvious reasons, chosen the latter path, but along that path have made some very shrewd and hopefully correct predictions about the future of personal timekeeping.

Time Zones

The most obvious decision was not to take on the Far East with purely digital watches. The LCD watch is now made almost exclusively in Hong Kong. No other country could even attempt to compete in the lower price bracket multi-function watch market. The Swiss have an enviable history of being able to work with micromechanics so the logical step was for them to marry the two technologies — mechanics and electronics — to produce watches with analogue displays, hands and faces but with the timekeeping controlled by integrated circuits and quartz crystals.

Fortunately for the Swiss the cottage industry that has developed around watch manufacture lends itself to a kind of co-operative operation where, for instance, a small area might have several factories producing different parts for different watches. Such an arrangement has existed, in fact, since 1939 when a number of companies got together to form ASUAG, which by the time it is translated into English stands for the General Corporation Of Swiss Horological Industries Ltd.
Within ASUAG are familiar names like Longines and Eterna, plus a dozen or so other companies which most of us will never have heard of but are nonetheless well known within the watch industry. ASUAG was primarily designed to rationalise the production of watch movements, thus making it easier for the industry as a whole to respond to changes in demand and fashion. As the age of the electronic watch dawned it became necessary for ASUAG to respond by producing electronic watches, so within the group certain companies changed their production from purely mechanical parts to wholly electronic parts. Within these companies diversification into the development of automated watch assembly has led to some exciting developments in robotics.

Swiss Success

The micromechanic expertise of one company, SSIIH, has been channelled into the development of high precision robots. The term 'high precision' refers to the robots' ability to place miniature parts into assemblies with an accuracy that is measured in microns. So far SSIIH have 20 working development machines with a further 200 planned for next year. The two types of robots (known as Mr Beaver and Mr Mouse) use a combination of electronic and pneumatic power to articulate the arms. The mechanics are controlled by built-in microprocessor systems running on Swiss-developed software.

Although these robots were designed primarily for watch assembly, SSIIH see a promising future of Mouse and Beaver in any situation that calls for high-precision, repetitive work. Such work might include the assembly of cameras, another area that would benefit from SSIIH development.

At the moment SSIIH have the field virtually to themselves. Robotics has, so far, concentrated more upon heavy industrial usage, car assembly and the like, where ultra-high-precision is not required. Doubtless the ability of the Swiss to produce mechanical systems to such high precision will keep other robot manufacturers out of the market for some time. It is tempting to speculate that SSIIH have an eye on the Japanese and Hong Kong markets where much of the assembly for digital watches and similar items is still highly labour intensive. It would indeed be ironic to see the Swiss succeed in this area; Swiss robots assembling Far Eastern watches.

Time In Hand

If you're sweating over a hot keyboard, trying to finish your program for our Armdroid competition before the October 31st deadline, then panic not. There has been a hold-up in the supply of the driver boards to customers, so on the fairly reasonable basis that you can't test the software without the hardware, the closing date for entries has been extended to December 31st. This will allow those of you who want to see what's involved to visit our stand at the Breadboard Exhibition (see page 12) and watch our demonstration. We hope to have two Armdroids running, one under program control and the other with a manual control box so you can play with the system and get the feel of things. There may even be a competition to find the most dextrous manipulator amongst our readers.

Meet The Mouse

On the other hand, if you can't make it to Breadboard (in which case we'll never speak to you again!), cast your eyes across the page and you'll see details of the ACC's conference on robotics. One of the attractions will be this year's winner of the Micro-mouse competition (together with his designers, of course). We'll be providing some of the speakers at this meeting together with demonstrations of projects old and new, See you there!

This new series will provide a stage upon which our readers may display their robotics achievements. It is intended to cover the practical application of robots in Britain today, be it at hobbyist level or in industry.

Readers in either category are invited to write to the editor of ETI, detailing their experiments, projects, application or usage of robotics. Any articles published will be paid for at commercial rates. It is also hoped to run an 'Ideas Forum' wherein readers can exchange views and ideas but that depends upon the response of our readers — you!

Write to: THE EDITOR, ETI MAGAZINE, 145 CHARING CROSS ROAD, LONDON WC2H 0EE and mark your envelope "Robotics Today".
Sinclair ZX81 Personal Computer
the heart of a system
that grows with you.

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand—over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability

With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Kit:

£49.95

Higher specification, lower price — how's it done?

Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4!

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80.

New, improved specification

- Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry, the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animated-display facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: micro-processor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built:

£69.95

Kit or built - it's up to you!

You'll be surprised how easy the ZX81 kit is to build; just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Every ZX81 comes with a comprehensive, specially-written manual - a complete course in BASIC programming, from first principles to complex programs.
Available now - the ZX Printer for only £49.95

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumericics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further instructions.

At last you can have a hard copy of your program listings - particularly useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long x 4 in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.

BY FREEPAGE - use the no-stamp-needed coupon below. You can pay by cheque, postal order, Access, Barclaycard or Trustcard.

Either Way - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

Sinclair ZX81

5 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: (0273) 86104 & 21282.

16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16!

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business & Household management systems for example.
MICROCOMPUTER EXPANSION SYSTEM

Treat your home computer to extra memory and more peripherals with this versatile and simple expansion project. With the modules to be published you’ll be able to custom-design your system to meet your requirements — and change it all around at a later date should you so desire. Design by Steve Wilding.

Home computers, like hi-fi, generally have a habit of starting out modestly (assuming your finances are anything like ours), and then growing steadily as you discover a burning need for more memory, more I/O, a printer, and finally the sound generator that turns the system into an all-singing, all-dancing electronic marvel. (Actually, computers almost never dance.) To help out those of you in the upgrade market, we present this low-cost, flexible expansion system designed for a number of popular microcomputers on sale in the UK — ones based on the 6502 and Z80 microprocessors.

The system is made up of a motherboard and a range of expansion cards that plug into the motherboard as and when you need them. For example, if your need is purely for RAM memory expansion then a motherboard and four RAM cards will give you an extra 32K of RAM. The constructional and application details are given for the motherboard and the 8K RAM card in this article — in subsequent articles details of the remaining expansion cards in the range will be provided. These will include an EPROM programmer and an EPROM card for use with 2516 and 2532 single rail EPROMs; a sound board utilising up to three of the popular AT-3-8910 programmable sound generator chips; a parallel I/O card providing two 6520s for uses such as a parallel printer driver (Centronics) and a low cost disc interface.

Two 40-pin input sockets are provided (SK6 and SK7) — these are wired in parallel so that two or more motherboards may be linked together. This allows you to use a larger number of those modular which use less than 8K of memory.

Vive La Difference

Obviously there are differences between computers and the expansion system must be capable of adapting to meet varying demands. The important difference for this application is the first free memory location available for expansion in your computer's memory. For RAM expansion to be effective it must run consecutively with the existing RAM. Table 1 gives the first free location for some popular computers.

For the more technically minded an explanation of how compatibility is achieved is given in the How It Works section. Suffice to say here that the system is capable of being moved around in memory to fit the particular computer's requirements. This is achieved by means of selective soldering of wire links as described later in the article.

Construction

Construction is best achieved using a 15 W soldering iron with a fine bit and 22 swg solder. First solder in the four wire links to select the correct location in the memory map for your computer (see Table 2). Solder the DIL sockets into the board taking care not to make any shorts between pins. Next fit the five edge connectors and lastly the ceramic capacitors — these can be held in place whilst soldering by slightly spreading their legs under the board. The PCB has plated-through holes and so it isn't necessary to solder a connection on both sides of the board; but allow enough time when soldering for solder to run through the hole as this ensures a good connection. Construction of the motherboard is now complete.

Follow the same instructions when constructing the RAM card — solder the IC sockets in first, then the eight ceramic capacitors and construction of the RAM card will be complete. Finally insert all ICs according to the overlay, taking care not to bend any IC legs.

SPECIFICATION

Motherboard: This is the main board of the system. It allows up to five expansion cards to be used at once — socket 5 being a duplicate of socket 4, allowing smaller expansion cards to be used without tying up a whole 8K block each. Both the control bus and address bus are buffered by the motherboard but the data isn't, as this is already done by many micros. Power requirements are 5 V at 100 mA.

RAM Card: A static RAM expansion card using 16 2114L 300 ns RAM chips. Power requirements are 5 V at 650 mA.

EPROM Card: Available for either 2516 (2K x 8) 5 V single rail EPROMs or 2532 (4K x 8) 5 V single rail EPROMs.

EPROM Programmer: For programming 2516 or 2532 single rail EPROMs for use with the above card.

PIO Card: This board contains two PIO chips for 32 individual inputs or outputs. 12 of these are used for a Centronics-compatible parallel printer driver, for use with Superboard/UK101 and Watford's WEMON chip. Three connections are for use with a light pen and a further six are for power output applications.
TABLE 1

<table>
<thead>
<tr>
<th>GROUP</th>
<th>FIRST FREE MEMORY LOCATION</th>
<th>COMPUTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000</td>
<td>UK101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ohio Superboard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8K PET</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microtan 65</td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
<td>16K PET</td>
</tr>
<tr>
<td>3</td>
<td>6000</td>
<td>16K TRS-80</td>
</tr>
<tr>
<td>4</td>
<td>8000</td>
<td>16K Video Genie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32K PET</td>
</tr>
</tbody>
</table>

The photograph above shows a close-up of the wire links around IC4. This board was in use with the 8K PET, a group 1 computer. (Check the links against Table 2 and Fig. 1.)

ETI DECEMBER 1981

The 8K RAM module plugged into SK1 on the motherboard. Any of the boards in the system may be plugged into any socket to suit your requirements.

TABLE 2

<table>
<thead>
<tr>
<th>GROUP 1</th>
<th>GROUP 2</th>
<th>GROUP 3</th>
<th>GROUP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link W to:</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Link X to:</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Link Y to:</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Link Z to:</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>

NEXT MONTH: Connection details for more machines, details of the modifications for use with Z80 micros, and the second of the plug-in modules.

Fig. 1 Table 2 shows which of the lettered holes around IC4 to link in order to locate the expansion system at the correct point in your computer's memory. The 'thin' holes are not through-plated; the rest are.
Fig. 2 Circuit diagram of the motherboard. To avoid large numbers of confusing lines, the buses are shown as thick black lines instead of eight or 16 thinner ones. SK7 is not shown - it is simply connected in parallel to SK6 to allow further expansion.
Fig. 3 Circuit diagram of the 8K RAM card.

Fig. 3

The address and part of the control bus from the host computer are buffered using three 8T95s (ICs 1-3), which are bidirectional I/O buffers. A 74LS138 three-to-eight decoder (IC4) is used to decode the top three address lines (A13-A15) into 8K blocks. Of these, four are to be selected—one for each expansion card connector socket. The fifth socket is a duplicate of socket four so as to enable the use of two expansion cards in one 8K block; for example, the sound card and parallel input/output card use a small fraction of the 8K allocated to a socket, so by duplicating socket four we allow more expansion cards to be used at once.

The 8K blocks are located at 0000-1FFF, 2000-3FFF ... 1990-FFFF (Hex), so if the system is to be configured to start at 2000 (group 2), then blocks 2 to 5 must be used. If your computer is in group 2 then its first free location is 4000 and blocks 3 to 6 must be selected. Similarly for group 3 blocks 4 to 7 are used, and for group 4 blocks 5 to 8.

Once selected, the four 8K blocks are then further decoded into 1K blocks by four more 74LS138s (ICs 7-10). The bus signals and these 1K decodes are then brought to the expansion socket connectors. The DD (data direction) signal is generated for system use with Ohio Superboards and UK 101s.

The RAM card is very straightforward, making use of 16 21141 1Kx4 static RAMs. Each pair of RAMs is selected by its respective 1K decode generated by the motherboard. As the RAMs are only four bits wide, they are enabled in pairs to provide eight-bit bytes.
Fig. 4 (Above) Overlay for the motherboard.
Fig. 5 (Below) Overlay for the 8K RAM card.

PARTS LIST

MOTHERBOARD

- **Capacitors**
 - C1-10: 100n disc ceramic

- **Semiconductors**
 - IC1-3: 8195
 - IC4-7-10: 74LS138
 - IC5: 74LS320
 - IC6: 74LS04

- **Miscellaneous**
 - SK1,2: 40 pin DIL socket
 - SK3-7: 2 x 30 0.1" edge connectors
 - Double-sided PCB; DIL sockets for ICs; board support system etc.

RAM CARD

- **Capacitors**
 - C1-8: 100n disc ceramic

- **Semiconductors**
 - IC1-16: 2114L

- **Miscellaneous**
 - Double-sided PCB; DIL sockets for ICs.
EXPANSION SOCKET PINOUTS

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+VE</td>
<td>1</td>
</tr>
<tr>
<td>+VE</td>
<td>2</td>
</tr>
<tr>
<td>+VE</td>
<td>3</td>
</tr>
<tr>
<td>+VE</td>
<td>4</td>
</tr>
<tr>
<td>+VE</td>
<td>5</td>
</tr>
<tr>
<td>+VE</td>
<td>6</td>
</tr>
<tr>
<td>BD0</td>
<td>7</td>
</tr>
<tr>
<td>BD1</td>
<td>8</td>
</tr>
<tr>
<td>BD2</td>
<td>9</td>
</tr>
<tr>
<td>BD3</td>
<td>10</td>
</tr>
<tr>
<td>BD4</td>
<td>11</td>
</tr>
<tr>
<td>BD5</td>
<td>12</td>
</tr>
<tr>
<td>BD6</td>
<td>13</td>
</tr>
<tr>
<td>BD7</td>
<td>14</td>
</tr>
<tr>
<td>BA0</td>
<td>15</td>
</tr>
<tr>
<td>BA1</td>
<td>16</td>
</tr>
<tr>
<td>BA2</td>
<td>17</td>
</tr>
<tr>
<td>BA3</td>
<td>18</td>
</tr>
<tr>
<td>RW</td>
<td>19</td>
</tr>
<tr>
<td>CS0</td>
<td>20</td>
</tr>
<tr>
<td>CS1</td>
<td>21</td>
</tr>
<tr>
<td>CS2</td>
<td>22</td>
</tr>
<tr>
<td>CS3</td>
<td>23</td>
</tr>
<tr>
<td>CS4</td>
<td>24</td>
</tr>
<tr>
<td>CS5</td>
<td>25</td>
</tr>
<tr>
<td>CS6</td>
<td>26</td>
</tr>
<tr>
<td>CS7</td>
<td>27</td>
</tr>
<tr>
<td>D0</td>
<td>28</td>
</tr>
<tr>
<td>D1</td>
<td>29</td>
</tr>
<tr>
<td>D2</td>
<td>30</td>
</tr>
<tr>
<td>D3</td>
<td>31</td>
</tr>
<tr>
<td>NM1</td>
<td>32</td>
</tr>
<tr>
<td>NM2</td>
<td>33</td>
</tr>
<tr>
<td>NRQ</td>
<td>34</td>
</tr>
<tr>
<td>CS0</td>
<td>35</td>
</tr>
<tr>
<td>CS1</td>
<td>36</td>
</tr>
<tr>
<td>CS2</td>
<td>37</td>
</tr>
<tr>
<td>CS3</td>
<td>38</td>
</tr>
<tr>
<td>CS4</td>
<td>39</td>
</tr>
<tr>
<td>CS5</td>
<td>40</td>
</tr>
<tr>
<td>CS6</td>
<td>41</td>
</tr>
<tr>
<td>CS7</td>
<td>42</td>
</tr>
<tr>
<td>BA0</td>
<td>43</td>
</tr>
<tr>
<td>BA1</td>
<td>44</td>
</tr>
<tr>
<td>BA2</td>
<td>45</td>
</tr>
<tr>
<td>BA3</td>
<td>46</td>
</tr>
<tr>
<td>BA4</td>
<td>47</td>
</tr>
<tr>
<td>BA5</td>
<td>48</td>
</tr>
<tr>
<td>BA6</td>
<td>49</td>
</tr>
<tr>
<td>BA7</td>
<td>50</td>
</tr>
<tr>
<td>R, W</td>
<td>51</td>
</tr>
<tr>
<td>D0</td>
<td>52</td>
</tr>
<tr>
<td>D1</td>
<td>53</td>
</tr>
<tr>
<td>D2</td>
<td>54</td>
</tr>
<tr>
<td>D3</td>
<td>55</td>
</tr>
<tr>
<td>D4</td>
<td>56</td>
</tr>
<tr>
<td>D5</td>
<td>57</td>
</tr>
<tr>
<td>D6</td>
<td>58</td>
</tr>
<tr>
<td>D7</td>
<td>59</td>
</tr>
<tr>
<td>D8</td>
<td>60</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>PIN</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IRQ</td>
</tr>
<tr>
<td>2</td>
<td>NM1</td>
</tr>
<tr>
<td>3</td>
<td>DD</td>
</tr>
<tr>
<td>4</td>
<td>D0</td>
</tr>
<tr>
<td>5</td>
<td>D1</td>
</tr>
<tr>
<td>6</td>
<td>D2</td>
</tr>
<tr>
<td>7</td>
<td>D3</td>
</tr>
<tr>
<td>8</td>
<td>D4</td>
</tr>
<tr>
<td>9</td>
<td>D5</td>
</tr>
<tr>
<td>10</td>
<td>D6</td>
</tr>
<tr>
<td>11</td>
<td>D7</td>
</tr>
<tr>
<td>12</td>
<td>D8</td>
</tr>
<tr>
<td>13</td>
<td>A2</td>
</tr>
<tr>
<td>14</td>
<td>A3</td>
</tr>
<tr>
<td>15</td>
<td>A4</td>
</tr>
<tr>
<td>16</td>
<td>A5</td>
</tr>
<tr>
<td>17</td>
<td>A6</td>
</tr>
<tr>
<td>18</td>
<td>A7</td>
</tr>
<tr>
<td>19</td>
<td>A8</td>
</tr>
<tr>
<td>20</td>
<td>A9</td>
</tr>
</tbody>
</table>

TABLE 3 (opposite) gives the connection details for SK6 (the motherboard input socket) for people who wish to use this project with other systems.

Fig. 6 Block diagram of the complete system.

Left: The expansion system connected to the expansion socket of a Superboard via a 40-way cable. You'll also have to insert two 8T28 buffers into the empty sockets next to the CPU before the system will work.

ETI DECEMBER 1981
How to order: Make cheques payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, Sales Office, 145 Charing Cross Road, London WC2. All prices include P&P. Prices may be subject to change without notice.

BEGINNERS
- Beginners Guide to Electronics Squires £6.60
- Beginners Guide to Transistors Reddihough £6.60
- Beginners Guide to Integrated Circuits Sinclair £6.60
- Beginners Guide to Radio King £6.60
- Beginners Guide to Audio Sinclair £6.60
- Understanding Electronics Components Sinclair £6.10
- Understanding Electronics Circuits Sinclair £6.10

COOKBOOKS
- TV Tunerpipe Cookbook £7.75
- CMOS Cookbook £8.20
- Active Filter Cookbook £11.30
- IC Timer Cookbook £7.65
- TTL Cookbook £7.10
- 7400 Series Cookbook £7.30
- TTL/CMOS Synthesizer Cookbook Kirby £6.85
- 8085A Cookbook Titles £10.00

APPLICATIONS
- How To Build Electronic Kits Chapel £3.35
- 110 Electronic Alarm Projects Marston £5.25
- 110 Semiconducotr Projects for the Home Constructor Marston £5.25
- 110 Integrated Circuit Projects for the Home Constructor Marston £5.25
- 110 Thyristor Projects Using SCRs Marston £5.25
- 110 Waveform Generator Projects Marston £5.75
- 96 Practical Electronic Projects Friedman £4.20

COMPUTING & MICROPROCESSORS
- What is a Microprocessor 2 cassette tape plus a 72-page book £10.00
- Beginners Guide to Computer and Microprocessors with projects £6.05
- Basic for Home Computers Albrecht £8.60
- Illustrated Basic Access £6.25
- Troubleshooting Microprocessors and Digital Logic Goodwin £6.90
- 285 Microprocessor Handbook £7.10
- Microprocessors in Instruments and Control (0-00) £10.10
- Basic Basic Cram £2.25
- Advanced Basic Cram £6.40
- 1001 Things to Do with your Personal Computer Spence £6.00
- Microcomputers, Microprocessors, Hardware, Software and Applications
- Hilborn £17.60
- Microprocessor System Design Klingman £18.80
- Introduction to Microprocessors
- Microcomputer Technology, Architecture and Applications £11.30
- Basic with Style '87 £5.95
- Microcomputer Design Odland £7.45
- Hands on Basic with a Pat Peckham £11.95
- 6800 Software Gourmet Guide and Cookbook Scibelli £9.20
- 8080 Software Gourmet Guide and Cookbook Scibelli £9.20
- The 8080A Reference Book £8.35
- 8080/8085 Software Design Titus £10.00
- How to Design, Build and Program your Own Working Computer System £7.10
- Your Own Computer Wane £2.25
- Microcomputer Interfacing Handbook A/D & D/A £6.35
- Crash Course in Microcomputers Freeman £12.40
- Basic Applications of Microprocessors Chamberlain £17.50
- The Pascal Handbook Topham £11.35
- 50 Basic Exercises Lambert £6.50
- Learning Basic with the Sinclair Z80 £6.95
- Microprocessors for Hobbyists Hills £6.25
- Introduction to Microcomputer Programming Sanderson £5.25
- Microprocessors and Microcomputers for Engineering Students and Technicians Woodland £6.95
- Using CP/M - Self Teaching Guide Ashley Fernandez £6.95
- Digital Counter Handbook France £8.40
- 33 Challenging Computer Games for TRS80 Apple-Pet-Chance £6.75
- How to Build Your Own Working Robot Pet DaVista £5.75
- Microprocessor and Digital Computer Technology £16.00
- Guidebook to Small Computers Bardon £4.20
- How to Debug your Personal Computer Huffman £6.30
- How to Troubleshoot and Repair Microcomputer Leek £6.30
- 6800 Microcomputer Programming and Interfacing with Experiments $3.89
- Spreads £10.20
- Workbench: Programmed, Training Guide with Practical Application £8.00
- Digital Circuits and Microcomputers Johnson £7.78
- Experiments in Artificial Intelligence for Small Computers £5.60

LOGIC
- Designing with TTL Integrated Circuits Texas Instruments £10.95
- How to Use IC Circuit Logic Elements Scorer £6.95
- 110 CMOS Digital Projects for the Home Constructor Marston £5.25
- Digital ICs - How They Work and How to Use Them Barber £16.30
- Electronic Design with CMOS TTL ICs Mackson £6.95
- Getting Acquainted with the IC Turner £4.20

TEST INSTRUMENTS
- The Oscilloscope in Use Sinclair £6.00
- How to Get More Out of Low-cost Electronic Test Equipment Grant £5.60

OP-AMPS
- Applications of Operational Amplifiers Graham £9.20
- 110 Operational Amplifier Projects for the Home Constructor Marston £5.25
- Designing with Operational Amplifiers Burren Brown £6.50
- Design of Op-Amp Circuits with Experiments £6.95
- Operational Amplifier Design and Application Tolley £6.95
- Op-Amp Handbook Hughe £11.50

COMMUNICATIONS
- Digital Signal Processing, Theory and Applications Rabline £24.40
- Electronic Communication Systems Kennedy £8.95
- Principles of Communication Systems Tuba £8.40

THEORY
- Introduction to Digital Filtering Bigner £12.25
- Transistor Circuit Design Texts Instruments £10.95
- Electronic Circuit Design Handbook Design of active filters, with experiments Berlin £6.80

REFERENCE
- Electronic Engineers Reference Book Turner £41.00
- Electronic Components Catalogue £6.95
- Electronic Diagrams Colour £4.00
- Low Power Digital Design Tuttle £9.25
- International Frantiser Selector Towers £16.70
- International Op-Amp Linear IC Selector Towers £16.70
- International Microprocessor Selector Towers £16.00
- Dictionary of Audia - Radio and Video Roberts £16.80
- Dictionary of Electronics Amos £16.50
- Dictionary of Electrical Engineering Amos £16.00
- Dictionary of Telecommunications Amos £16.00
- Giant Book of Electronic Circuits Collins £6.75
- How to Build Electronic Projects Malcolm £6.45
- Modern Electronic Circuit Reference Manual Marcus £33.50

Send to: ETI Book Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEZ.

Please send me the following books:

I enclose cheque/PO for £

Signed

Name

Address
CROSSOVER NETWORKS

Put down that inductor you’re winding on an old cotton reel and read this article on crossovers and loudspeaker design from KEF Electronics. It'll tell you why you’ve been wasting your time.

The basic requirements for a high-quality loudspeaker include on the one hand a smooth and uncoloured response maintained over an angle of radiation wide enough to cover the listening area, and on the other, freedom from audible non-linear distortion, together with a combination of efficiency and power handling capacity adequate for the conditions of use. For each drive unit in a multi-way system, there is only one frequency band over which all these requirements are simultaneously satisfied; outside this band there will be regions in which some of them cannot be met. A low-frequency drive unit, for example, if allowed to operate in the high-frequency range, would introduce colouration through diaphragm resonance. Again a high-frequency unit, if allowed to operate at low frequencies at which the necessary diaphragm excursion exceeds the linear limit, would introduce distortion products. To avoid degradation of the overall sound quality by such unwanted contributions, it is therefore essential that the output from each drive unit outside its working frequency range should be reduced to a sufficiently low level by adequate attenuation in the crossover filter.

Filtering Through

Filters in practice cannot have an infinitely sharp cut-off, so that there is an overlap region around the nominal crossover frequency in which the total sound output is made up of contributions from two different drive units. Ideally, the combined characteristic of each unit working in conjunction with its associated filter network should be such that the sum of the two contributions gives a flat response over the entire transition region; in addition, if the frequency characteristic of a unit within its working band is not quite flat, the network should be designed to rectify this. Each filter has therefore to be tailored to suit the response of its associated drive unit both in the working band and in the nominal cut-off region; moreover, it must be designed to operate into the input impedance of the unit, which will in general be complex and will contain additional components associated with the fundamental resonance of the diaphragm. Finally, the impedance presented by the filters to the power amplifier must be kept within prescribed limits which apply not only to the magnitude or modulus, but also to the relationship between the resistive and reactive components.

To measure the phase shift in a loudspeaker has been until recent times a very difficult operation, largely because of the additional — and much greater — phase shift associated with the time taken for the sound to reach the measuring microphone; this phase shift depends on the distance of the microphone from the acoustic centre of the drive unit, i.e. that point within the unit at which the sound appears to originate. The exact location of the acoustic centre is initially unknown but can be readily determined by the pulse test method developed by KEF; a short electrical impulse is applied to the unit, and the complete frequency response, in both amplitude and phase, is derived by computer analysis of the resulting transient sound output. This technique allows the phase shift introduced by the drive unit to be separated from the multiple phase rotations associated with the distance of the microphone from the acoustic centre, so that the position of the latter can be accurately calculated.

On Target

In designing crossover filters to suit individual drive units, the method adopted by KEF is to consider the overall electro-acoustic response of the network and unit together, and to make this conform as closely as possible to some known filter function that gives adequate attenuation in the cut-off region together with a smooth transition at crossover; the response-frequency relation to be aimed at is referred to as the Target Function and is represented by the symbol $T(f)$. The response-frequency function of the drive unit alone, already measured under working conditions, is represented by $S(f)$. The next step in design is to compute the frequency characteristic $H(f)$ of a filter that will convert the existing response $S(f)$ into the wanted response $T(f)$; the functions $T(f)$, $S(f)$ and $H(f)$ are in linear units, not dB, so that the conversion is a multiplication process, i.e.

$$T(f) = H(f)S(f)$$

In specifying the function $T(f)$ we can use any of the known forms of filter response, ignoring however the circuit configurations conventionally associated with these. The form commonly adopted is that of the classical Butterworth filter. Figure 1
These curves are of the type described in filter theory as 'maximal flat'; this means that the attenuation within the pass band is kept as small as possible down to the nominal cut-off frequency f_0 — at which the loss is 3 dB — without introducing peaks or ripples in the characteristic. The curves in Fig. 1 represent Butterworth characteristics of the first, second and third order; the higher the order, the greater the cut-off slope — which in the three cases illustrated rises to a maximum of 6 dB and 18 dB per octave respectively; but also the greater number of circuit components required.

Cross Over Choice?

Although a first-order crossover network exhibits such desirable characteristics as unity amplitude and zero phase shift at all frequencies, the relatively slow cut-off rate of 6 dB/octave gives rise to a number of practical difficulties and such designs are not used. Crossover networks of the second order were at one time favoured but now have little application in high-quality systems. The overall frequency response obtained is not flat in the crossover region, but exhibits either a crevasse or a hump, depending on whether the drive units are connected in the same or opposite polarity; moreover, the cut-off slope of 12 dB/octave is still insufficient for many purposes.

Third-order crossovers, on the other hand, satisfy many of the requirements and are widely used. Figure 2 shows a commercial high-frequency drive unit fed through a conventional third-order Butterworth high-pass filter having a nominal cut-off frequency of 3 kHz, and Fig. 3a the measured amplitude and phase response of the filter unit together. Fig. 3b represents the theoretical response of the filter alone when loaded with a resistor numerically equal in value to the nominal impedance of the unit. Comparing curves (a) and (b) it will be seen that the response of the filter/unit combination deviates substantially from that which the filter was intended to produce. At high frequencies the characteristic is modified by the voice coil inductance, which resonates at 5 kHz with the second capacitor of the filter. From 3 kHz downwards, the cut-off slope, which for a third-order filter should be 18 dB/octave, starts off at 12 dB/octave and below 1.2 kHz — the fundamental resonance frequency of the diaphragm — increases suddenly to nearly 30 dB/octave. This large change in slope is reflected in the phase shift in the cut-off region, which far exceeds the proper value; the disparity extends up as far as the crossover frequency and would have a significant effect on the overall loudspeaker response in the transition region.

Figure 4a shows the same high-frequency unit with a new network computed by taking the theoretical filter response of Fig. 3b as the target function; Fig. 4b illustrates a different but equivalent circuit configuration adopted for greater convenience in manufacture. The new network compensates for the electro-acoustic characteristics of the drive unit, including the effects of the voice coil inductance and the fundamental resonance. The voltage at the terminals of the unit varies with frequency in such a way as to produce the acoustic response shown in Fig. 5a; over most of the range from 500 Hz to 20 kHz this response conforms closely to the theoretical Butterworth characteristics, reproduced in Fig. 5b, the residual deviations being within ±1 dB in amplitude and within a few degrees in phase.
Avoiding Interference

For maximum horizontal distribution of sound without interference, the drive units in a multi-way loudspeaker should be mounted one above the other. Because of the unavoidable separation between the units, some interference effects must then occur when the listener is located above or below the design axis and thus no longer equidistant from the different sound sources; the amount of this interference sets a limit to the angle above and below the axis within which the response can be maintained substantially constant.

This situation is further complicated by the phase shift necessarily associated with the high- and low-pass characteristics of the individual filter/unit combinations. The high-frequency drive unit, which at crossover normally has a phase lead over the low-frequency unit, is commonly mounted above the latter; what happens then is illustrated by the polar diagram in Fig. 6, which shows how the loudspeaker response at crossover varies with angle in the vertical plane. It will be seen that the main lobe of the polar characteristic, instead of coinciding with the axis of zero inter-unit time delay, is tilted downwards and has a maximum amplitude 3 dB above the on-axis response; a great deal of sound energy is thus directed away from the listening area and towards the floor, producing unwanted frequency-dependent reflections which modify the relationship between the direct and reflected sound in the room. Worse still, there is a region, just above the axis, where the outputs from the two units are beginning to get out of phase and at one angle almost cancel each other; as a result, a small vertical displacement produces a large change in the response of the system around crossover, and hence in the spectrum of the reproduced sound.

One way of dealing with this situation is to mount the low-frequency drive unit (or mid-range unit in case of a three-way system) above the high-frequency unit, this turning the polar diagram upside down; the main lobe is then directed away from the floor and the cancellation region placed where it can do little harm. This arrangement is adopted in the KEF Calinda and Cantata loudspeakers. A more radical solution, applied in the KEF Model 105 loudspeaker, is to choose for the target functions a form of filter characteristic that keeps the acoustic outputs from the high- and low-frequency drive units in phase over the whole frequency range, so that the main lobe of the polar curve remains symmetrical about the axis of zero inter-unit time delay. The crossover networks used to achieve this end are of a special type of fourth-order filter which is equivalent to two second-order Butterworth filters in cascade and thus gives a cut-off slope of 24 dB/octave.

Time Travel

Before leaving the subject of interference, it may be noted that the acoustic centre of a high-frequency drive unit usually lies approximately in the plane of the panel on which the unit is mounted, while that of a low-frequency or mid-range unit is located further back, a short distance in front of the voice coil. The resulting difference in time delay can be allowed for in the physical positioning of the units in the loudspeaker assembly. It is however possible in some cases to achieve the equivalent result electrically by modifying the amplitude response and hence the phase shift, in the crossover filters in such a way as to introduce a compensating time delay, while still satisfying the basic requirements of flat overall response and adequate cut-off slope. The target functions adopted then differ from the classical forms illustrated above — for example, the high-and low-pass characteristics at crossover may not be of the same order, given the necessary computational facilities, a number of useful variants of this kind can be evolved to meet particular design requirements.

Fig. 5 (a) Measured amplitude and phase response of the high-frequency drive unit with the filter shown in Fig. 4; (b) Theoretical 3rd order Butterworth filter characteristic (as in Fig. 3b).

Fig. 6 90° Vertical plane polar diagram of two-way speaker system. X-Y indicates axis of zero inter-unit time delay.
Network Synthesis

The design of the KEF Model 105.2 loudspeaker provides a good example of modern methods of network synthesis. The mid-range filter only is considered here: a similar procedure is adopted for the high- and low-frequency networks.

The first step is to examine the frequency response curves of a large number of mid-range drive units, measured under standard production test conditions, and to select one specimen, the characteristic of which coincides with the mean of the production spread. This unit is then mounted in the enclosure designed for the complete loudspeaker system, and its response under these conditions measured without a filter, i.e. with constant voltage applied to the input terminals.

Since the filter has to be designed to operate into the complex impedance presented by the input of the drive unit, this impedance must now be measured. For the purpose of network synthesis however it is convenient to represent the result by an equivalent electrical circuit with specified component values rather than by a series of resistance and reactance figures at a number of frequencies; this approach makes it easier to calculate the effect of certain parameters of the unit.

The next step is to decide what circuit configuration will produce the best fit to the desired network response curve while using the minimum number of components — taking into account the actual load imposed by the drive unit and the need to present an acceptable impedance to the power amplifier.

The order of network required can usually be deduced by comparing the slope of the frequency characteristic for the drive unit alone with that of the target function representing the desired overall response curve. In principle, a number of alternative circuit configurations could be considered at this stage, but in the light of the designer's experience the choice will usually be narrowed down to one or two.

Details of each network to be investigated, the response characteristic required and the equivalent circuit for the drive unit input impedance are now fed into a computer; this is programmed to carry out an optimisation routine, which determines the network component values giving the best fit to the desired response curve and also the degree of accuracy achieved. The optimisation process is initiated by assigning approximate values to the various circuit elements; the computer then calculates the effect of making small changes in each element, and retains any of the new values that bring the response nearer to the ideal. This operation is repeated — possibly a thousand or more times — until the residual error in the curve fitting cannot be reduced any further. With the component values thus arrived at, the input impedance of the network is then checked to ensure that it remains within acceptable limits throughout the working frequency range.

The above procedure is repeated, if necessary, for alternative types of network so that a final choice of the optimum circuit configuration can be made.

Choose Your Components

At this stage the designer has to consider ways of utilising readily available circuit components, avoiding the need for non-standard values and close tolerance limits, both of which add considerably to the cost. The computer program is accordingly re-run with the calculated values of capacitors and resistors replaced by the nearest preferred values. Provided that a suitably accurate fit to the target response was achieved in the original calculation, the effect of these changes can be offset without appreciable detriment to the performance of the filter by altering the inductance values in the circuit — a simple matter since the coils are in any case wound to suit the individual design.

The process is now extended to allow for the production spread in component values. By arranging that the deviations of different circuit elements from their nominal values have opposing effects on the overall performance of the filter, it is possible to utilise stock components, having normal commercial tolerances, with very little wastage. The known manufacturing variation in component values, expressed in statistical form is fed into the computer, which calculates the maximum percentage of stock items that can be utilised in this way while keeping the filter characteristics within tolerance. Finally, permissible combinations of component values are worked out and incorporated in the instructions for assembling the networks on the production line.

Experts Rule OK?

It will now be clear why the standard of reproduction potentially attainable with a modern high-quality system cannot be realised by the home constructor with an assemblage of ready-made networks and drive units selected simply on the basis of their nominal frequency range, impedance and sensitivity ratings. Attempts have been made to ameliorate this situation by publishing descriptions of complete loudspeakers incorporating commercially available drive units, and giving circuit details of the filters to be used. The success of such designs however depends on the extent to which the author has taken into account all the factors referred to and has been able to measure the electro-acoustic characteristics of each type of unit specified allowing for manufacturing tolerances — before attempting to determine the appropriate network parameters.

On the other hand, those manufacturers who have good facilities for acoustic measurement, and are aware of the various pitfalls in filter design, and by means of computerised data-handling methods are able to produce the components of a multi-way loudspeaker in matched sets. These techniques ensure that the end product — whether in the form of a kit for assembly in an enclosure of prescribed construction such as the V3 speakers in the October ETI, or a complete system — represents the best combination of performance and cost-effectiveness that modern technology can provide.
22 TONE DOORBURGLAR ALARM

This doorbell is powered from your main or battery back-up facility. It has an electronic tone advance facility and single or dual play option available. A built-in burglar alarm circuit allows generation of 22 different tones. **BATTERY Included**...

DUAL TIME COUNTDOWN ALARM CHRONO

This superb watch has all the features you would expect. It has a select-able 12/24 hour display. Toggles allows you to tune in on different time and same one, chronograph with time facility. 20 min alarm. 30 min accuracy, back light fully adjustable snooze, automatic stop watch at 1 minute. **£9.95 + 95p P&P**

POST OFFICE APPROVED TELEPHONE ANSWERING SYSTEM

BUZZER CONTROL

You will never miss that important call with this machine. You can call your number on any telephone and with the 10 programme you can set the buzzer to ring if any calls have been recorded. You can also check when the ring messages. It comes complete with microphone, cassette, alarm and more control box and vandal proof. We are offering this system at a very low introductory price. Else where it is being sold for £14.95...

FLUORESCENT PORTABLE LIGHT

A van useful battery operated high power fluorescent light to use in the car or at home. It has a socket for 12V DC input for use on the road. Power consumption is 6 watts. Newimson direct in use.

WALKIE TALKIES WITH AM RADIO

These walkie talkies have a built in AM radio. Other features include Microphone, volume control and telescopic aerial. Frequency 56Mhz AM Range, 500ft. Price in our workshop £19.95 per pair.

MINI COM WALKIE TALKIES

These are very neat and very useful walkie talkies made by GENERAL ELECTRIC. LCD Features include Microphone, volume control, and telescopic aerial. Frequency 46Mhz AM Range, 750ft. Price in our workshop £12.95.

CB/TV-1 FM/AM PORTABLE WE

This is a specialists re-choice and a devices the frequency bands which are available on your average receiver. 25 watt and includes 20 channel CB and CB volume and squelch control.

HANDEL SPACE INVADERS

These are for children aged from 4 to 16. **£14.95 + 75p P&P**

MINI LCD DESK CLOCK

This mini LCD is a very versatile clock designed for wall, radio transmitter and pager used. It has a range of 3 miles. It can be used to check whether the vehicle or a personal item is near to the operator. Power requirement is 120V DC.

PHONE YOUR BARCLAYCARD OR ACCESS NUMBER FOR IMMEDIATE DISPATCH

24 hour service

GUARANTEE: All our products are guaranteed for a period of 1 year. We also offer a 10-day money back guarantee. If you are not completely satisfied with our product, return them within 10 days in the same condition as you received it. All our products are fully tested before despatch. Please add £1.25 for watch presentation case.

SANYO

Battery operated minidisc player, ideal for use with their own mini disc player. **£4.95 + 75p P&P**

PUSH BUTTON TELEPHONE

This is a superb compact 10 button with dual line facility. **£23.95 + £1.95 P&P**

LEGAL FM FM TRANSMITTER AND RECEIVER

This portable unit can be used in a car, in the kitchen or in a living room. **£79.95 + £2.95 P & P**

REDUCED PRICES FROM OUR PREVIOUS ADS

SUPERB AIR PUMP

£9.50 + 95p P&P

DORSET CONTROL CAR

£5.95 + 95p P&P

LADY'S SNOOZE ALARM WATCH

£9.90 + 95p P&P

SNOOZE DETECTOR ALARM

£11.95 + £1.95 P&P

SMOKE DETECTOR ALARM

£13.95 + £2.95 P&P

AIRPACT CAR

£12.50 + 95p P&P

LADY'S MF LOCK WATCH

£13.50 + 95p P&P

SUPER CAR LOCK WATCH

£12.50 + 75p P&P

SIMPLE WATCH

£6.95 + 95p P&P

MINI SQUEEZE BOX SET

£5.00 + £1.00 P&P

WIRELESS ALARM BOX

£10.50 + £1.00 P&P

2 STATION INTERCOM BABY ALARM

£19.95 + £2.95 P&P

ELECTRONIC TWINNING WATCH

£13.95 + 95p P&P

CAR STEREO PLAYER, 16W OUTPUT

£14.95 + £1.95 P&P

TALKING ALARM CLOCK/STOPWATCH

This is a superb talking clock with manual alarm. It is ideal for people who are hard of hearing. **£39.95 + £4.95 P&P**
MASTER ELECTRONICS NOW!
The PRACTICAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self-employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

FREE!

Please send your brochure without any obligation to

NAME

ADDRESS

POST NOW TO:
British National Radio & Electronics School
Reading, Berks, RG1 1BR

I am interested in:

- COURSE IN ELECTRONICS as described above
- RADIO AMATEUR LICENCE
- MICROPROCESSORS
- LOGIC COURSE
- OTHER SUBJECTS
This year we present a new twelve-part fiction series — ETI 1991 — available from your newsagent every month.

Forget to buy it this month, or is your newagent sold out?

Why worry? ETI gets to the shops! Stick back and wait for it to come to you. Take an ETI subscription. For only £1.25 we'll send you twelve issues of ETI.

To claim your year's supply of ETI, send your PO or cheque direct to:

ETI Subscriptions Department
ETI, 513 London Road
Thornton Heath, Surrey CR7 6RD
Tel: 01-643 3157
enny at the ready if you want domiciled TV sets, one of the first 1/2 ' Will anyone notice if we save money sion lately... Obviously they haven't watched television lately.

Get In Tune
Naturally the more discerning members of the public (ETI readers, for example) will be dissatisfied with this state of affairs, and the easiest remedy is to build this TV Sound Tuner. The unit is designed round a ready-built and aligned UHF tuner module which is soldered directly onto the PCB containing the IF detector circuitry. The IF board filters out the sound carrier from the video, which is ignored (unless you want to try building a colour television, with Teletext, Prestel, remote control... oh alright, forget it!), and the demodulated audio signal can be fed directly into your hi-fi, free from the abuse it normally receives at the hands of your telly.

Since TV sound is broadcast in mono (at present, anyway), an optional 'stereo simulator' based on a Mullard preamp module has been included in the design. With an eye on the future, four tuning pots are provided so that the fourth TV channel can be catered for when it arrives. The required tuning voltage is fed to the varicaps by a four-way selector switch.

The signal from the aerial has to be split so as to feed both the TV and the Sound Tuner, and first we toyed with the idea of fitting the tuner with 'aerial in' and 'aerial out' sockets, like a video recorder. But splitting a UHF signal involves, among other bits and pieces, the use of a balun coil and winding one of these just isn't worth the effort. Do what we did and buy an aerial splitter from your local accessory shop — it's cheaper, neater, easier and quicker. Ours cost £1.53.

A Classic Case
The kit supplied by RTVC (see Buylines) includes the PCB (which you will have to drill yourself), all the components for this board including the pre-aligned UHF tuner, a rotary switch for channel selection and the mains transformer. It required, the stereo simulator preamplifier module (which is supplied ready-built) can be obtained for an additional charge. Items which are not supplied include aerial and audio sockets, wire, the potentiometer for the stereo blend, mains switch, power-on neon and case. The case we used was from West Hyde Developments' Classic II range — everything fits in quite neatly.

ETI DECEMBER 1981
Assembly of the main board is straightforward. Take the usual precautions with the orientation of the ICs, diodes and electrolytic capacitors. To make life easier the PCB is overprinted with the component positions. The tuner module and the coils will only fit the board one way round, with the exception of L6. This coil should be soldered so that the printing on the can faces away from the tuner module.

L2 is to be wound by the constructor using the 18 swg wire supplied in the kit; it consists of 3 3/4 turns around a 10 mm former (which is removed before soldering the coil to the PCB).

The values of C9 and C16 are not critical and the components supplied with the kit will depend on availability.

We mounted our PCB on stand-off spacers so that the varicap multturn control pots are positioned level with holes drilled in the side of the case — these pots should only need to be set up once, using a small screwdriver. The position of the transformer, preamp board and the other hardware can be seen from the photographs, and the wiring diagram shows how to connect up all the various bits.

Alignment

As only the sound is to be extracted, the only equipment required is a non-metallic tuning tool. While monitoring the audio output tune L6 to receive maximum noise (or station if you were lucky enough to receive it the first time). Tune the selected multturn pot to receive a station and adjust L5, L4, L3 and L1 for maximum output. Note that tuning of L1, L3 and L4 will appear 'flat', particularly in high signal strength areas. (R1 may be reduced should overloading occur).
HOW IT WORKS

The ECL 1083 is a ready built and aligned varicap tuned UHF tuner. Its 38 MHz IF output contains AM modulated video and FM modulated sound carrier frequencies. Pin 1 is the AGC input which is not used. R1 and R2 form a potential divider to preset the gain. The 38 MHz output is connected to IC1 via input-trapping circuitry. IC1 is an IF amplifier and video detector chip tuned by a single coil L5. As the sound carrier is spaced 6 MHz from the vision carrier frequency, the output on pin 12 contains the demodulated video (positive) and the 6 MHz FM modulated sound carrier frequency. The video is removed by using a 6 MHz ceramic filter. The filter also sets the operational frequency of IC2, which is an FM IF amplifier/quadrature detector chip. Detection alignment is obtained by adjustment of a single coil L6, which provides the quadrature signal to the coincidence gate detector. Audio output is recovered at pin 14.

In preference to a multi-secondary transformer a readily available TVS single secondary transformer is used, at the expense of a few extra components. The supply voltage to the ICs and tuner is derived from a full wave voltage doubler. The tuning voltage is further quadrupled, filtered and regulated by IC3.

The stereo simulator is simply a stereo preamplifier with a bass control in one channel and a treble control in the other. A dual pot is used to control the cut and lift of these tone controls, so as the pot is rotated the high and low audio frequencies are directed to opposite speakers and a 'stereo' effect is obtained.

BUYLINES

A kit of parts containing those items listed in the text will be available from RTV Co Ltd, 21E High Street, Acton, London W3 6NG (mail order only). The TV tuner costs £11.45 plus £1.50 p&p; the transformer is £1.50 plus £1.50 p&p (free on transformer if ordered with kit); and the LP1163 preamp costs £1.95 plus 75p p&p. The case is available from West Hyde Developments - order as CL2 AEL.

PROJECT : TV Sound Tuner

Fig. 3 Wiring diagram for the tuner project. Make sure you use shielded cable for the audio connections and UHF coax for the aerial connection, as shown, and don't forget to make the earth connection to the case of the tuner module.
Fig. 4 Component overlay of the tuner board. IC2 comes in a quad-in-line package, so you’ll have to solder it directly rather than use a socket. Do this quickly and carefully! Also make sure that L6 goes in the right way round — with the printing away from the tuner module. CFI can be fitted either way round.

Editorial Assistant for Hobby Electronics

We are looking for a bright, keen person to join the HE editorial team. Basically, the job involves turning bright ideas into intelligible print. No special qualifications are required but a sound understanding of electronics and the ability to write clearly and simply will be necessary.

Essentially, we are looking for someone with an interest in turning their knowledge of electronics into a career in magazine publishing. You supply the enthusiasm and we’ll turn you into a journalist.

The ideal person will probably be young (though we’re prepared for anything), only slightly crazy, with a warped sense of humour and able to cope with situations that would send a professional journalist into fits of hysteria.

Apply in writing enclosing CV, to:
Managing Editor,
Argus Specialist Publications Ltd,
146 Charing Cross Rd, London WC2H OEE

PARTS LIST

Resistors (all 1/5W, 5%)
- R1,9 22k
- R2 5k6
- R3 150R
- R4 100R
- R5 47k
- R6,7 680R
- R8 470R
- R10,11 2k2

Potentiometers
- PR1+ 10k variacap multilim controls
- RV1 220k dual linear pot

Capacitors
- C1,17 120p polystyrene
- C2,4,6,7 10p polystyrene
- C3,23 47u 16 V PCB electrolytic
- C5,8,18 10u 25 V PCB electrolytic
- C9 33-39p polystyrene (see text)
- C12 220u 16 V PCB electrolytic
- C13 47p polystyrene
- C16 18-22p ceramic (see text)
- C19 56m mivar
- C20,21 220u 16 V PCB electrolytic
- C22,24,25 47u 25 V axial electrolytic
- C26 4x0 40 V PCB electrolytic
- C27 470n polyester

Semiconductors
- IC1 TDA440
- IC2 TAA661B
- IC3 TAA550B
- D1+ 1N4001

Coils
- L1 D1 (Tokyo)
- L2 see text
- L3 D3 (Tokyo)
- L4 D99 (Tokyo)
- L5 D10 (Tokyo)
- L6 34721 (Tokyo)

Miscellaneous
- SW1 1-pole 4-way rotary switch
- SW2 miniature DPDT mains switch
- CFI 6 MHz ceramic filter
- UHF tuner ECL 1043 (Mullard) transformer (7V secondaries @ 100 mA minimum): LP1183 preamp if required; mains neon; UHF aerial socket 5 pin DIN socket PCB case.
In addition to items specified in this advertisement, we carry a large range of Thunders (Sinclair) and Leader Test Equipment, including Oscilloscopes, Multimeters, Frequency Counters, Signal Generators etc. Send large SAE for details quoting Ref. ETI 11.

We also stock a comprehensive range of I.L.P. Toroids and Hi Fi Modules, Veroboard, Miniature Mains Transformers, Bahco Tools, Antex Soldering Irons, Solid State Diode Sockets, Omax cutters, etc.

All your electronic needs catered for. Send 75p for our latest catalogue post paid.

Visit Our Stand at BREADBOARD 81
11th-15th November 1981

New "Chip Shop" Electronics Construction Kits, make ideal presents for the younger enthusiast beginner
also
More Advanced "Electronics Construction" Kits
See them at our Stand at "Breadboard" 81
or our shop at 325 Edgeware Road, London NW2

<table>
<thead>
<tr>
<th>CMOS INTEGRATED CIRCUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4031B</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

TRANSPORTS

- **STN 5/4/2**

<table>
<thead>
<tr>
<th>7400</th>
<th>7401</th>
<th>7402</th>
<th>7403</th>
<th>7404</th>
<th>7405</th>
<th>7406</th>
<th>7407</th>
<th>7408</th>
<th>7409</th>
<th>7410</th>
<th>7411</th>
<th>7412</th>
<th>7413</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.07</td>
<td>5.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISCOUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
</tr>
<tr>
<td>ARRANGED</td>
</tr>
<tr>
<td>FOR</td>
</tr>
<tr>
<td>QUANTITY</td>
</tr>
<tr>
<td>PURCHASES</td>
</tr>
</tbody>
</table>

BRIDGE RECTIFIERS

- **MOSFETS**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

CLOCK MODULES

- **MA 100/25**

<table>
<thead>
<tr>
<th>6.86</th>
<th>6.86</th>
<th>6.86</th>
<th>6.86</th>
<th>6.86</th>
<th>6.86</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.12</td>
<td>7.12</td>
<td>7.12</td>
<td>7.12</td>
<td>7.12</td>
<td>7.12</td>
</tr>
</tbody>
</table>

LED DISPLAYS

- **NSN 3616-1, 3615, 3616, Bar Graph**

<table>
<thead>
<tr>
<th>4.95</th>
<th>4.95</th>
<th>4.95</th>
<th>4.95</th>
<th>4.95</th>
<th>4.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
<td>5.09</td>
</tr>
</tbody>
</table>

Please note that all "Mail Orders" should be addressed to:
Kingsgate House, Kingsgate Place, London NW5 4TA quoting Ref: ETI 12

ALL PRICES EXCLUSIVE OF VAT
Don't they ever sleep at Casio? No sooner do we review the FX 602P than its big brother the FX 702P drop through our letterbox. Peter Freebrey has been probing at the push-buttons to make this report.

First the Casio FX 502P, more recently the FX 602P and now we have the FX 702P. If my memory (unfortunately somewhat intermittently volatile!) serves me correctly the FX 502P was hailed as 'better than sliced bread'; sounds a bit crusty now but it helped persuade me to buy one of those little beauties back in 1980! The FX 602P was also rated highly and 'recommended to anyone seeking a powerful portable machine, which has comprehensive control over memory and data space.'

The FX 702P (RRP £134.95) follows in this fine Casio tradition, offering a lot more than its predecessors in that it has moved away from being an uprated programmable calculator (such as the FX 602P) to what is Casio's answer to the Sharp PC1211 — a fully fledged pocket computer. The FX 702P offers full alphanumeric capabilities and according to the instruction manual 'uses BASIC program language.' Although this may appear to be true at first sight, Casio's BASIC does vary more heavily from the norm on this score. It is generally perfectly understandable to anyone with a knowledge of another dialect of BASIC and would be mastered just as quickly as any other form of BASIC by the newcomer. A number of instruction words are used in a shortened form, for example: PRINT becomes PRT, INPUT is INP, GOSUB is CSB, RETURN becomes RET, and so on. This minor variation was presumably brought about by a desire on Casio's part to save on display space (not to mention keeping the small keyboard clutter down to a minimum), and to follow the successful pattern of their previous programmable calculators. Reasonably logical on such a machine (machine?) but is it still BASIC? I suppose one must concede that it is but do we look to a future generation of pocket computers sporting such commands as PT, GB, RT, IN? There are also one or two small anomalies; on the FX 702P RND (is an instruction to round off a number whereas in some other BASICs RND (is a call for a random number. Also, GET on the FX 702P is a tape handling command only ... not an instruction to 'get' a character from the keyboard, a function which is performed on the FX 702P by Casio's KEY command (not unlike other dialects' INKEY).

All in all slightly different from other BASICS, but perfectly workable once you have handled it for a relatively short time. Having struggled for a long time to familiarise myself with the standard (ugly!) QWERTY keyboard layout, I now have to relearn the positions of the letters of the alphabet!

From the above the FX 702P clearly shows its programmable calculator antecedents; it also has some fairly heavy guns on the statistical analysis front. The obvious question must be how it will compare with the Sharp PC1211. It offers more facilities than the Sharp and is in some ways more versatile. The comprehensive program library supplied with the FX 702P contains mainly scientific applications, many of them rewritten for use on the FX 702P from the previous FX 502 and FX 602 libraries. It will undoubtedly find many supporters from existing Casio programmable owners and I think its popularity will grow as its full capabilities are realised. The review model performed perfectly without a hitch and appears to do all that is claimed of it.

The instruction manual supplied, like many other manuals, is not all that one might expect. In this instance it suffers on two counts; the slightly stilted and occasionally unnecessarily involved English is probably due to inadequate translation facilities, and although all functions are explained somewhere there is no comprehensive index of list of them — so, if I have got it right, treasure the table of functions commands that I've provided!

The FX 702P, like the FX 602P, offers the user the option of
defining the available memories at the expense of program steps. You can choose from 26 memories and 1680 program steps to 226 memories and 80 program steps. As an indication of steps required for a program:

10 PRT,10 GSB and 1000 PRT use four steps
10 PRT* uses six steps
10 PRT "HOW MANY STEPS" uses 22 steps

So it would seem to be something like two steps for line number, two steps for BASIC command words and one step for each character.

The LCD display is very clear and a control for the contrast of the display is provided. 62 characters may be written on one line, 20 of them being displayed at any one time. The display scrolls to the left to enable long strings of text to be read. The characters are made up of a 7 x 5 dot matrix and no confusion arises between any two characters.

Also following previous practice, the FX 702P has a MODE key which defines the current status or mode that the machine is executing, thus:

MODE 0 ... RUN, manual and program calculation mode
MODE 1 ... WRT, program writing, checking and editing mode
MODE 2 ... TRACE, program RUN line by line in debugging mode
MODE 3 ... TRACE off
MODE 4 ... DEG, unit of angular measure will be degrees
MODE 5 ... RAD, unit of angular measure will be radians
MODE 6 ... GRA, unit of angular measure will be grads
MODE 7 ... PRT, print output mode if printer connected
MODE B ... PRT off

In MODE 0 the FX 702P can be used either in the direct mode as a calculator or will RUN any currently stored programs from any one of the 10 'program areas' designated P0-P9. In direct mode and using the minimum number of memories each memory is assigned a label A-Z. You may therefore assign these memories by keying A = 2, B = 5, C = 1.234 etc. Should you use these characters as variables in a program they will either have the value already entered (A = 2, B = 5 etc.) or if re-assigned within the program the original value stored will be lost. Quite straightforward but you must make a note of what variable names and memory locations you have used. Which is normal practise, is it not!

All the normal operators (+ - / * <= >= <>) and punctuation (, : ;) that you would expect to find on a BASIC language computer are available, together with a large number of predefined functions/command words. These are selected either by keying one of the two function select keys F1 and F2 followed by one other key, or by keying in the appropriate keyword using the alpha keys. So the PRINT command may be obtained either by pressing F1 and ; or by pressing PRT. Both result in PRT displayed.

Not only but also — there are some commands available only by keying in the appropriate keyword, for example CLR, CLRL, CNT, MX, MY and so on — wow!

Find The Function

With all computers there are usually a few functions/commands that are either missing or behave in a manner that is not what the user wants or expects. With computers above a certain complexity it is normally possible to persuade them to do what you want even though the specifications would have you believe that a particular facility is not available. The FX702P has a few such grey areas so perhaps the following hints will help.

To utilise MID to string the to be operated upon can only be assigned one name/label — $. This may be up to 30 characters long but must be called $. String variables A$, B$ C$ etc may on-

ly be up to seven characters long so you cannot directly extract a string of over seven characters from the possible input of 30. Should you wish to do so try this: check for the length of the string using LEN, if it is over seven characters long use MID to extract a portion of this string and assign this to A$. Take the next portion of this string and assign to B$, the next C$ and so on. When you need to display or use the length string for further string handling call up A$ + B$ + C$ either as PRT A$ + B$ + C$ or $ = A$ + B$ + C$. This is called string concatenation.

Missing from your BASIC vocabulary is VAL, the BASIC command that returns the numeric representation of a string; if the string is not numeric a zero is returned. This means that if you use the command KEY to enter a character from the keyboard that character can only be string variable and although it may be a numeral 09 you may not perform arithmetic on it directly. One way to overcome this is to use a series of IF commands so:

10 A$ = KEY IF A$ = "" THEN 10
20 IF A$ = "1" : X = 1
30 IF A$ = "2" : X = 2

and so on. You now have X assigned to the numerical value obtained by using the KEY command.

Other common functions missing from Casio’s BASIC are REM, READ, DATA and ON...GOTO. At first sight the missing REM is a nuisance and it means you cannot include any non-operative program information within the program. Fear not, where there is a will there is a way (sometimes!). How about a program line like this:

20 GOTO 30: THIS IS A HIDDEN REM

On executing the GOTO the computer ignores the text after the colon — so who needs a REM command! I’ll let you think of ways around any other missing statements!

Tape Measures

A cassette tape recorder in conjunction with an FA-2 adapter may be used to store programs or data on tape. The paragraph concerning this in the manual is a wonderful example of a (presumably) Japanese/English translation inferring that a magnetic tape recorder may be used to store important programs and data but that another type of recorder can also be used for recording (alto, bass, tenor?)

One could go on for some time praising and explaining the functions and capabilities of the FX 702P, which like all computers has characteristics unique to itself. The proof of the pudding is in the eating. I certainly enjoyed my feast with this latest offering from Casio. Look at the table of Functions/Commands and judge for yourself...
<table>
<thead>
<tr>
<th>COMMAND</th>
<th>KEYING SEQUENCE</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXE</td>
<td>EXE</td>
<td>EXECute, instructs computer to action current instruction, enters program line.</td>
</tr>
<tr>
<td>MODE</td>
<td>MODE</td>
<td>Selects operating MODE — RUN, WRT, debug</td>
</tr>
<tr>
<td>F1</td>
<td>F1</td>
<td>1st Function key (coded red)</td>
</tr>
<tr>
<td>F2</td>
<td>F2</td>
<td>2nd Function key (coded blue)</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>Deletes character to left of cursor</td>
</tr>
<tr>
<td>CLR</td>
<td></td>
<td>Deletes current program area</td>
</tr>
<tr>
<td>CLR ALL</td>
<td></td>
<td>Deletes all program areas</td>
</tr>
<tr>
<td>AC</td>
<td>AC</td>
<td>Clears display, terminates RUNing of program, will switch computer back on after auto shutdown STOP's execution of program</td>
</tr>
<tr>
<td>STOP</td>
<td>STOP</td>
<td>CONTinues execution of STOPped program</td>
</tr>
<tr>
<td>CONT</td>
<td>CONT</td>
<td>Displays result of previous calculation</td>
</tr>
<tr>
<td>ANS</td>
<td>ANS</td>
<td>Input mode for performing statistical calculations</td>
</tr>
<tr>
<td>STAT</td>
<td>STAT</td>
<td>Displays results of statistical calculations</td>
</tr>
<tr>
<td>ASTAT</td>
<td>F1 ANS</td>
<td>Clears statistical summation memory</td>
</tr>
<tr>
<td>SAC</td>
<td>F1</td>
<td>Inserts space at cursor position</td>
</tr>
<tr>
<td>INS</td>
<td>F1 (clear)</td>
<td>Deletes incorrect statistical data</td>
</tr>
<tr>
<td>DEL</td>
<td></td>
<td>Positions cursor to left of display area</td>
</tr>
<tr>
<td>HOME</td>
<td>F1 ←→</td>
<td>Cursor movement left</td>
</tr>
<tr>
<td></td>
<td>←→</td>
<td>Cursor movement right</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>KEYING SEQUENCE</th>
<th>EXAMPLE</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOR</td>
<td>F2 "</td>
<td>FOR $K = n TO m</td>
<td>Increments from $K = n TO $K = m$ during which time program lines up to NEXT K are repeated See FOR</td>
</tr>
<tr>
<td>TO</td>
<td>F2 #</td>
<td>FOR $K = n TO m$ STEP p</td>
<td>Optional increment in FOR...NEXT loop Used in conjunction with FOR...</td>
</tr>
<tr>
<td>STEP</td>
<td>F2 $</td>
<td>NEXT K</td>
<td>Displays value of A Displays string A</td>
</tr>
<tr>
<td>NEXT</td>
<td>F2 ;</td>
<td>PRT A</td>
<td>Displays string enclosed within ""</td>
</tr>
<tr>
<td>PRT</td>
<td>F2</td>
<td>PRT A</td>
<td>Decision/comparative instruction</td>
</tr>
<tr>
<td>IF</td>
<td>F2 A</td>
<td>IF $X = Y$ THEN ...</td>
<td>In conjunction with IF, in example if comparison true jump to line 200</td>
</tr>
<tr>
<td>THEN</td>
<td>F2 B</td>
<td>IF ... THEN 200</td>
<td></td>
</tr>
<tr>
<td>GOTO</td>
<td>F2 C</td>
<td>GOTO $#5$</td>
<td>Jump to execute program area P5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GOTO 200</td>
<td>Jump to line 200</td>
</tr>
<tr>
<td>GSB</td>
<td>F2 D</td>
<td>GSB 500</td>
<td>Jump to subroutine at line 500</td>
</tr>
<tr>
<td>RET</td>
<td>F2 E</td>
<td>RET</td>
<td>End of subroutine RETURNS to program line following associated GSB</td>
</tr>
<tr>
<td>INP</td>
<td>F2 F</td>
<td>INP X</td>
<td>Assigns value of keyboard INPUT to variable, numeric or string</td>
</tr>
<tr>
<td>WAIT</td>
<td>F2 G</td>
<td>WAIT 100</td>
<td>Determines display time when using PRT command, WAIT 100 = approx. 5 seconds</td>
</tr>
<tr>
<td>SET</td>
<td>F2 K</td>
<td>SET $E.n$</td>
<td>Defines number (n) of digits displayed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SET $E.n$</td>
<td>Defines number (n) decimal places displayed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SET N</td>
<td>Cancels SET command</td>
</tr>
<tr>
<td>VAC</td>
<td>F2 L</td>
<td>VAC</td>
<td>Clears data use memory</td>
</tr>
<tr>
<td>STOP</td>
<td>F2 M</td>
<td>STOP</td>
<td>Suspends execution of program</td>
</tr>
<tr>
<td>END</td>
<td>F2 N</td>
<td>END</td>
<td>Terminates execution of program</td>
</tr>
<tr>
<td>SAVE</td>
<td>F2 O</td>
<td>SAVE ["#n"filename"]</td>
<td>Command to SAVE program area n on tape under specified filename</td>
</tr>
<tr>
<td>LOAD</td>
<td>F2 P</td>
<td>LOAD ["#n"filename"]</td>
<td>Command to LOAD from tape specified program to program area n</td>
</tr>
<tr>
<td>PUT</td>
<td>F2 Q</td>
<td>PUT ["filename"] A, Z</td>
<td>Command to save data variables to tape</td>
</tr>
<tr>
<td>GET</td>
<td>F2 R</td>
<td>GET ["filename"] A, Z</td>
<td>Command to read data variables from tape</td>
</tr>
<tr>
<td>VER</td>
<td>F2 S</td>
<td>GET ["filename"]</td>
<td>Verifies program or data written to tape</td>
</tr>
</tbody>
</table>
FEATURE : Casio FX-702P

DEFM F2 T
PASS F2 U
RUN F2 V
LIST F2 W
KEY F1 N

Increase number of memories available by 10 times n.
Designation of password to protect program.
Executes program in specified program area.
In WRT MODE displays specified program line and subsequent lines on keying EXE.
Reads one character from keyboard and assigns it to A$.

FUNCTION KEYING SEQUENCE EXAMPLE RESULT
RPC F2 H A = RPC x,y Converts rectangular to polar coordinates
PRC F2 I A = PRC x,y Converts polar to rectangular coordinates
DMS F2 J A = DMS A Converts decimal to sexagesimal
RAN # F1 . A = RAN # Generates random number where 1 > A > 0
SIN F1 $ A = SIN x A = Sine of angle x
COS F1 : A = COS x A = Cosine of angle x
TAN F1 ; A = TAN x A = Tangent of angle x
LOC F1 A A = LOG x A = Common logarithm of x
LN F1 B A = LN x A = Natural logarithm of x
EXP F1 C A = EXP x Exponential function, A = e raised to the power of x
SQR F1 D A = SQR x A = Square root of x
SCN F1 E A = SCN x A = Sign of x (1, −1 or 0)
INT F1 F A = INT x A = Integer part of x
FRAC F1 G A = FRAC x A = Fractional part of x
ABS F1 H A = ABS x A = Absolute value of x
RND(F1 I A = RND(x,y) Rounding to significant number of digits (x displayed to yth significant place)
 . A = DEC(n,m,o) Sexagesimal to decimal conversion
DEG(F1 J A = DEG(n,m,o) A = Number of characters in string BS
LEN(F1 K A = LEN(BS) Designates location of display, PRINTs X, n spaces from left of display
CSR F1 L PRT CSR n; X Extracts n characters from string $ starting with mth character
MID(F1 M A$ = MID(n,m)

Functions used in performing statistical analysis

FUNCTION KEYING SEQUENCE RESULT
SDX F1 0 Standard deviation of x (x̄, −1)
SDY F1 P Standard deviation of y (ȳ, −1)
SDXN F1 Q Standard deviation of x (σx)
SDYN F1 R Standard deviation of y (σy)
LRA F1 S Constant term (A)
LRB F1 T Regression coefficient (B)
COR F1 U Correlation coefficient (r)
EOX F1 V Estimated value of x (R)
EOY F1 W Estimated value of y (Y)

Statistical functions not having shortened keying sequence (ie have to be entered in full).

FUNCTION RESULT
CNT Number of data (n)
SX Sum of x (Σx)
SY Sum of y (Σy)
SX2 Sum of squares of x (Σx²)
SY2 Sum of squares of y (Σy²)
SX¥ Sum of products of data (Σxy)
MX Mean of x (R)
MY Mean of y (Y)

ETI DECEMBER 1981
Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards, TV messages from friends and superstore mail order catalogues. After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS £8.50

This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. A logical, methodical, step-by-step approach is interspersed with hundreds of printed circuits and practical exercises. Each topic is well explained before moving on to the next. This course is suitable for engineers, students, computer enthusiasts and anyone who wants to improve their knowledge of digital electronics.

DESIGN OF DIGITAL SYSTEMS £14

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for students or engineers wanting to know more about digital electronics, this book is a must for all those who user digital electronics in systems, counters and arithmetic circuits and finally to an understanding of calculator and computer design.

Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique approach. In 50 straightforward lessons you will learn the five essentials of problem definition, flowcharting, coding the program, debugging, and clear documentation. Harder problems are provided with a series of hints so you never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC £10.50

Book 1 Computers and what they do well. READ A DATA PRINT powers. branches variable names. LET, word coding, simple programs.

Book 2 High and low level language. flowcharting, functions REM and documentation INPUT IF THEN, GO TO limitations of computers program definition

Book 3 Computer and interruptions. OOPS NEXT, RESTORE debugging array bubble sorting 156.

Book 4 Advanced SUB routines string variables lies complex programming error checking. Bubble.

THE BASIC HANDBOOK (2ND EDITION) £14.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'diallers' in use today must be programmed often in a unique style to translate instructions so that they can be RUN ON their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

A.N.S. COBOL £5.90

The indispensable guide to the world’s No. 1 business language. After 25 hours with this course, one beginner took a consulting job, documenting of company programs and did invaluable work from the

FLOW CHARTS AND ALGORITHMS

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless administrative aid - presenting simple regulations, government legislation, office procedures etc.

THE ALGORITHM WRITER'S GUIDE £4.00 explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

GUARANTEE No risk to you. If you are not completely satisfied, your money will be refunded upon return of the books in good condition.

CAMBRIDGE LEARNING LIMITED, UNIT 19 RIVERMILL SITE, FREEPOST, ST. IVE'S, HUNTINGDON, CAMBS, PE17 4BR, ENGLAND TELEPHONE: ST. IVE'S (0480) 67446

All prices include worldwide postage (armail is extra - please ask for prepayment invoice). Please allow 28 days for delivery in U.K.
LINSLEY HOOD 75 W AMP KIT

One of the best sounding amplifiers available at any price!
Kit designed for easy construction!
Complete kit - comes with all hardware and wooden sleeve!

Thinking about an amplifier? Then ETI has the answer! Practically every hi-fi enthusiast will have heard of the legendary Linsley Hood 75 design, for many years THE best sounding kit around.

Take a look at the spec below and then take a second look at the price - it's not a mistake! Only ETI could bring you an offer like this; 25% off the list price of this top grade kit, which comes complete down to the last nut, bolt and knob!

The power rating is conservative - some builders have reported an RMS output in excess of 90 W - and the toroidal transformer ensures that good peak delivery is available.

You will not get a chance like this again - a high quality 75 W RMS stereo amplifier kit with excellent construction notes and a design which makes it child's play to build at under £1 per watt! Don't miss out -- order now!

ETI AMPLIFIER OFFER
ARGUS SPECIALIST PUBLICATIONS LTD
145 CHARING CROSS ROAD
LONDON WC2H 0EE

I wish to order amplifier kits and enclose cheque/PO for (Add £2.50 per order for Securicor delivery anywhere in the UK).

I wish to pay by Access/Barclaycard, please debit my account.

I L L 1 . . . I L L 1 . . .

Signed
Name
Address
but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, tape-recorder/radio and lots more. Designed to control four mains outputs independently, switching these on an off on selected days and times in seven-day cycle.

Features include:

- 0.5mn LED 12-hour display
- 1 Day of week, a.m./p.m. and output status indicators
- A 16-bit Voltage Switching Outputs
- * 50/60Hz mains operation
- Memory: stores programmed and continues timing keeping during power failures (battery supplied)
- Display blanking during power failure to conserve battery power
- 18 programme periods
- Powerful "Everyday" function enabling output to switch every day but use only one time set
- Useful "Sleep" function - turns output off for one hour
- Direct switch control enabling output to be turned on immediately or after a selectable time interval
- 20-function keypad for programme entry
- Programming verification at the touch of a button

To control your central heating, for example (including different switching times at weekends) just connect up, set the programme, forget it and forget it. The clock will do the rest. There has never been a clock capable of so much at this price.

CT500K Timer Kit (includes all components, assembly and programming instructions, and an attractive black case) £45.00

The unit has, of course, considerable practical use, especially for the old infirm, to mention just one example, for the old infirm, to mention just one example. It works as a conventional timer, enabling you to switch lights on or off at various set heights or in various rooms, but it also has been designed so that the user can switch in a great many more ways, and it has up to 1,000 different capabilities.

Check: £45.00

Shop now open

NOT JUST ANOTHER CLOCK

but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, tape-recorder/radio and lots more. Designed to control four mains outputs independently, switching these on an off on selected days and times in seven-day cycle.
Mayware are best known for the pickup arm, the Mark III (née Formula 4, but re-named under an international agreement). However, they also market a small range of cartridges and a step-up transformer, the T-24.

I took a look at Mayware's low-cost high-output moving coil some months ago (ETI May '81), and found it a worthy product. Shortly afterwards I was tempted by an offer from Mayware to see what I could glean from a complete pickup of theirs — the Mark III arm, MC-2V cartridge and T-24 II transformer. (Overcoming temptation has never been a strong point of mine — I'm a pushover, in fact. One little exercise of the feminine wiles and logic flee the empty plains of my mind, taking any remaining vestige of willpower with it.)

Thus the Mayware pickup is duly considered herein. As an appropriate complement we have two units from a new range of cartridges from Audio Technica, the AT-3100XE and the more upmarket AT-31E. The now superseded AT-30 set a high standard for its price and I was interested to see what the AT-31E could do in its wake.

Mayware Wares

The MC-2V is a low output (around 0.25 mV) moving coil cartridge with a conical stylus tip — unusual even for these days of the ever-changing shape. Record wear is lower, for a given tracking force, with a conical stylus than with an elliptical tip, so the recommended 2 g downforce of the MC-2V should cause no tremors of uncertainty even in the fainthearted.

The T-24 is matched to the MC-2V, or vice versa, if you prefer it, such that the two constitute one working unit. The T-24 has briefly raised its head before in Audiophile, competing manfully with the incomparable Ortofon T-30 transformer, and gave a good account of itself. Matched up to the MC-2V it did nothing but add to an already favourable impression.

In various forms the Mark III has been around hi-fi emporiums for a while now, but it continues to offer excellent engineering at a good price and deserves more publicity than it receives. Maybe now that Thorens and Mayware share a distributor it will rise into the sight of more enthusiasts, receiving due deference in the process.

Left: The Mayware T-24 II transformer; at £69 it is good value for money.
Below: The response curve for the MC-2V pickup.
Arms And The Man

The Mark III is a unipivot design, with provision of a damping well around the bearing. Silicone fluid is employed to give a variable facility, primarily to control subsonic resonances.

An earlier headshell, which had been rightly criticised for its lack of rigidity, has been replaced here with a strong casting of greater substance. Downforce is applied, curiously, by sliding a rider-weight along the arm tube toward the pickup. Bias compensation is provided by a falling weight and thread arrangement, retained from earlier models.

The counterweight is eccentrically mounted on the arm tube, to provide some lateral balance — a necessity for unpivots, as they lack the stability of designs with ‘twin’ bearings in this plane. If incorrectly set-up they are liable to a strange rocking mode of oscillation.

The Mark III is well presented to the new purchaser and adequate setting up instructions are provided by the sheet accompanying the arm. Alignment and mounting protractors are also thoughtfully present and installation is very straightforward. Instructions are clear and concise, if not up to SME standards. As the arm has no sliding base, adjustments for tracking error are made by the positioning of the cartridge in the headshell itself.

Sound Sense

Before fitting the MC-2V, I put the Mark III through its paces individually, to assess its strengths and weaknesses. Arm tube resonance is relatively minor, set at about 650 Hz, and there is a counterweight resonance at around 60 Hz. Pivot friction is commendably low, at <20 mg in both planes.

Using a reference cartridge of known quality, the Mayware III arm was shown to give a good basic performance with good, well-controlled bass and a clean, well-imaged, sound stage. It had a tendency towards a forward or bright presentation but not unduly so. For the price, an excellent result!

I would comment, though, that even with the low effective mass of 7.5 g, that rider weight is a strange way of adding downforce. Much better to keep it as far back towards the pivot as it will go, thus minimising its addition to effective mass, and applying tracking force by moving the counterweight forward.

Also, with low compliance moving coils, some addition to headshell mass would be beneficial, as it was to prove with the MC-2V (compliance = 8 cu). High compliance units give very good performances, and I tried both the Shure V15 IV and Empire 600 LAC cartridges in the Mark III with textbook results.

Transforming Levels

The T-24 II is a well made little unit with no frills at all, save the gold-plated phono sockets provided for I/O purposes. Finished in matt black, it is small enough to sit unobtrusively in all but the most miniscule hi-fi set-up.

On the test bench it gave an exemplary performance, proving to be flat across 20-20 kHz ± 2 dB and with few phase problems. It will match cartridges of between 3-40 R impedance, although it appeared to operate best with those of low impedance characteristics, such as the MC-2V. Hum pick-up is particularly low and will give no trouble in use, I feel.

All Together Now...

And so, at last, to consideration of the pickup system as a whole. Setting up was simple and the MC-2V reached its best tracking levels at around 2.1 g. It is by no means an excellent tracker, but is more than a match for most MC units in this price class. Listening tests were conducted with the system set up on a Thorens TD 1605, feeding KEF 105 II loudspeakers via a Lecson/Monogram amplifier combination.

The overall impression was one of a well-balanced sound, but one which was not controlled tightly enough, and was a little bright overall, with a slight mid-range hardness. Adding a back-plate between the MC-2V and headshell to increase the mass damping effect greatly ‘tightened-up’ the presentation and gave improved detail all around. The brightness persisted, however, as the only blot on an otherwise impressive performance.

Going through the components, one by one, and fitting them into other systems (as with the arm) showed that, when mounted in an SME series III the MC-2V is a fine cartridge with excellent bass and mid-range, good treble register — but a slightly forward presentation.

Put simply then, both the arm and cartridge are excellent value for money and will perform better than their respective price tags would promise.

Match Of The Day

As a general recommendation, the MC-2V will match any of the higher mass rigid arms perfectly, and is usable in the more versatile low-mass designs, epitomised by the SME III, with the addition of headshell weight. Take care with loudspeaker matching to obtain the best from this high-quality unit, however.

The Mark III arm is ideal for all high-compliance cartridges as it stands, and has the flexibility to support the lower compliance moving-coil designs perfectly adequately. It does have
Audio-Technica's new duo of mobile coils. On the left the up-market AT-31E and on the right the budget AT-3100XE. Both proved to be interesting designs.

Above: The alignment of the motor system of the new AT cartridges. The whole system is replaced with the stylus.

Changing the stylus on the AT-31E means pulling half the body off!

Below: A 'potted-down' version of the test results for this month's three cartridges. As you can see, there is little to choose, on paper, between the MC-2V and the AT-31E. Personally I preferred the AT-31E for its better midrange. An opinion only, and you should listen to both for yourself, if in that field you search for perfection's touch.

this slight tendency towards brightness, though this is not serious and should not deter an intending purchaser, merely engender the requisite care over matching.

The T-24 II transformer can be unreservedly endorsed as providing value for money and a good all-round performance, distinguished by faultless bass response and outstanding transient performance. At £69 including RRP it can be said to be value for money, too.

Technical Audio

Audio Technica have produced a new line in moving coils recently, and the AT-3100XE is a fine example of a budget unit (at under £30) with user replaceable stylus. (Surely one day all cartridges will be made this way?)

The AT-31E is an up-market elliptical unit, designed for the more demanding — and pecunious — enthusiast. Both are low output types, and will need step-up devices. Since the Mayware T-24 II was to hand, I used this to assess the Audio Technica units. Seemed sensible; besides which, AT hadn't sent me one of their AT 650 transformer, so serve 'em right if I don't use it!

AT make great play of their ingenious operating system, employed in this new range, in which the channel coils are wound onto separate formers and mounted in a V configuration, similar to that found in record cutting equipment.

TEST RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Mayware MC-2V</th>
<th>Audio Technica AT-31E</th>
<th>Audio Technica AT-3100XE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency response (see graphs):</td>
<td>20-20 kHz ± 2 dB</td>
<td>20-20 kHz ± 2 dB</td>
<td>20-20 kHz ± 3.5 dB</td>
</tr>
<tr>
<td>Output voltage (at 5 cm/s):</td>
<td>0.2 mV</td>
<td>0.4 mV</td>
<td>0.4 mV</td>
</tr>
<tr>
<td>Channel separation (at 1 kHz):</td>
<td>23 dB</td>
<td>32 dB</td>
<td>29 dB</td>
</tr>
<tr>
<td>Channel balance:</td>
<td>within 1 dB</td>
<td>within 1 dB</td>
<td>within 1.5 dB</td>
</tr>
<tr>
<td>Tracking force (optimum):</td>
<td>2.1 g</td>
<td>1.6 g</td>
<td>1.8 g</td>
</tr>
<tr>
<td>Vertical tracking angle:</td>
<td>20°</td>
<td>20°</td>
<td>20°</td>
</tr>
<tr>
<td>Weight:</td>
<td>6.9 g</td>
<td>5 g</td>
<td>4.3 g</td>
</tr>
<tr>
<td>Typical price:</td>
<td>£29 (or less)</td>
<td>£56 (or less)</td>
<td>£56 (or less)</td>
</tr>
</tbody>
</table>
Claimed benefits are improved separation, better imaging and improved tracking due to reduced weight. Compliance is fairly high for moving coils and this allows a wider choice of arms than is usual. High energy (per weight) samarium-cobalt magnets are used and a spring-terminal set-up allows for user-replaceable styli.

This in itself is achieved in a novel and advantageous manner, where the generator elements are left undistributed — they are simply exchanged wholesale. Normally the stylus is changed, leaving one half of the motor, either coils or magnets, intact. Not so here, and the difference should make for more repeatable results and higher quality control standards.

Book Covers And Judges

If appearances dictated height of fidelity, these units would be well up on the scale. The AT-31E is a striking blue and silver and the 3100 a very prominent black/white/silver. Both arrive neatly packaged on a perspex headshell, with good instruction manuals and the usual hardware (nuts, bolts, cleaning brush and so on).

The AT-30, predecessor to the AT-31E, had some problems with response in the early days which were ironed out in later samples. The AT-31E has no such troubles! As the graph shows the trace is ruler-straight except for a very slight bass rise.

Removing the cartridge from the superb packaging proved entertaining, to put it mildly. To get the unit off that nice shining headshell, you’ve got to pull the stylus assembly off first, else the mounting screw won’t come out. Damn sneaky if you ask me, and should be explained clearly on the box somewhere. Better yet, be sensible AT, and set it up so you don’t need to be able to solve Rubik’s Cube in six seconds flat to play records. Silly people.

Once enthroned in a real headshell, however, the AT-31E made me inclined to forgive AT for the packaging. The imaging is excellent and the channel separation the best I’ve heard from a moving coil. For once, the publicity blurb is true! Tracking was above average, but not yet in the V15 IV class.

The sound quality was such that it reminded me of the Coral MC81 — only more refined! I set up a Coral for comparison and the analogy proved a good one. The AT-31E has all the Coral’s strengths, in terms of mid-range detail and clarity, but none of the vices, ie slight roughness and bass extension worries.

As I was extremely fond of the MC81 (and still am, come to that) I couldn’t be less than enamoured with the AT-31E. It is a fine unit and will be serious competition for the myriad other cartridges in the price bracket. Give it a listen.

AT-3100XE

This too is a low-output design, although a higher output version — the AT-3200XE — is available. A step-up is thus required which will, to some extent, negate the advantage of low cost. We managed to try out the 3100 in a few decks costing between £70 and £150 and in the inevitable SME Series III later on. Time had gotten very short by now, but sufficient listening hours were clocked to facilitate sensible comment.

This unit too is characterised by attention to detail, especially in the mid-range. It handles complex material well, although with some roughness, be it said, in the lower registers. There is a slight rise in the hf end which is not serious, but could accentuate surface noise if the cartridge is not set up PRECISELY.

One should judge against price and competitors, and on that score the AT-3100XE comes out very well. For £30 you would be hard pressed to buy a better sound anywhere.

Man Of Letters

Dear Mr. Harris,

Thank you for producing such a great magazine which I read regularly and with pleasure. Your recent review of the Monogram Amplifier prompts me to tilt at windmills and ask some questions. I refer to the current obsession of manufacturers for more and more watts of output! 400 watts is...
High power amps are not a luxury, they are a necessity if you are to employ anything like the same range in your music as you would experience in the concert hall. Most domestic users probably run their systems under 1 W most of the time, but once a crescendo trots along the wires, or someone hits a bass drum, something like 100 W is needed to maintain the same fidelity levels on the signal.

If your amp is underpowered, the attempt to reach such heights simply boots the output into clipping — which sounds rough and harsh compared to that which has gone before. Even with your modest speakers, higher power will make itself audibly apparent, with a sense of ease and clarity. Start saving the pennies!

Dear Sir,
Having read your column on and off for some time now I have come to the conclusion, reluctantly, that you are biased against Linn products for some reason of your own. Answer me straight, is this true? If not, why don't you review one of their new amps, for example?
D. G. Chesterton, Tovil, Kent.

No it is not true. I consider the LP12 greatly overpriced for the performance it offers and refuse to concede that a Linn source is the inevitably the best. The LP12 has its own sort of clarity, which is pleasant enough, but hardly totally uncoloured. Straght enough!
(P.S. I'd be only too happy to review the Basik (or any other product of theirs...) should Linn feel able to loan me one!)

Stop Press

If you like the idea of owning a pair of Volt V3 speakers (see October '81 ETI), but don't like the idea of chopping up the chipboard, then take heart. Wilmslow Audio are now offering a complete precut woodwork kit for this project. This news arrived so late we don't know the price yet, so for more information get in touch with Wilmslow, Cheshire (telephone 0625 529599).
BODYWORK CHECKER

Don’t go out and buy a second-hand car without building this handy little gadget. It’ll point out any problems under the paintwork. Design by Rory Holmes. Development by Tony Alston.

The purpose of this project is to help the selective second-hand car buyer detect the amount of body filler used under well-disguised repair jobs. The unit gives a two-state indication of metal or plastic, ('OK' or 'BAD' respectively).

Our metal detector uses a capacitive sensing principle, which will detect the presence of any conductive object. Because of this the circuitry is much simpler and more reliable than metal detectors working on an inductive principle. It is also more suitable in this type of application where large areas of metal must be checked.

In use the device is switched on and lightly run over the car panels; if it runs over an area of body filler the ‘BAD’ light will come on, otherwise it should read 'OK'.

Construction
The case is the most important part of this project as it is also part of the electronic sensing circuit. Take a careful look at the photographs of the finished project and you can clearly see the sensor area at the bottom rear of the case. First cut a rectangular hole (30 x 35 mm) about 8 mm from the bottom edge of the case and 14 mm from either side — make sure to clean off any burrs from the hole. A piece of single sided copper clad board (24 x 30 mm) is used for the sensor plate — this is centrally glued (copper side out) to a piece of plain paxolin or similar material (35 x 45 mm). This assembly is then glued to the case from the inside, so that the copper clad board will then be flush with case surface.

A small hole is drilled through to the copper side of the sensor plate and a short length of insulated wire, long enough to reach the main PCB, is soldered to the copper surface of the sensor plate.

The components can now be assembled and soldered to the main PCB as shown on the overlay diagram, making sure to correctly orientate D1,D2, IC1 and IC2 and the LEDs. Make sure to fit the link adjacent to IC1.

A short length of insulated wire is connected from the PCB to a solder tag fixed to the case — make sure this is a good connection as it forms part of the detecting circuit. The connecting lead from the sensor plate is soldered to the main PCB as indicated. A further insulated lead is taken from the same point on the PCB and held against the side of the case by a piece of insulating tape to form a capacitive trimming circuit (see photograph and refer to the setting up procedure). The LEDs are.

Fig. 1 This cutaway diagram shows the constructional details for the sensor plate.
directly mounted on the PCB and appropriate holes are drilled in the front case panel to allow these to pass through.

Finally, a piece of felt cut to size is then glued to the rear of the case, covering the sensor plate; this prevents the case from scratching the car bodywork and upsetting your friendly second-hand car dealer!

Setting Up

Setting up the circuit is straightforward; PR1 controls the detecting sensitivity and PR2 the metal/plastic switching threshold. When altering the presets bear in mind that replacing the case lid will slightly offset the adjustments, so replace the lid after each adjustment to check the effect.

Start with maximum sensitivity, ie set PR1 to its full resistance (anti-clockwise). Then place the case, sensor side down, onto a non-conductive object. With the lid off, PR2 can now be adjusted until the switching threshold is found. When the 'OK' LED is on, back off preset PR2 until it just extinguishes and the 'BAD' LED comes on (indicating no metal). The unit can now be placed against a metal surface and the 'OK' LED should relight.

The trimming wire capacitively couples a small degree of HF voltage into the detector, effectively altering the switching threshold. Its effect can be varied by trimming the length. By experimenting with this if necessary, together with PR1 and PR2, a suitable switching action can easily be found.

Note that the human body is a fairly good conductor — you can prove this by holding your hand against the sensor, when the "OK" LED should come on. This resulted in one member of staff wandering round the office, checking out the female employees and reassuring them that all was well!

BUY_LINES

All ICs and other components for this project are readily available. Most mail-order who advertise within these pages, eg Bi-Pak, will be able to supply all that is necessary. The PCB is available from our PCB Service as advertised on page 94.

HOW IT WORKS

CMOS inverter gates IC2a and IC2b form a high frequency oscillator of about 150 kHz. This signal is connected directly to the case, which in turn is capacitively coupled via the sensor to the high-impedance detector circuitry based around IC1. This unusual way of screening the circuit prevents the user's hand from affecting the capacitance between the detector input and the 0 V ground rail.

D1, D2, C1, and PR1 rectify the signal from the sensor and pass this voltage to the positive input of the op-amp, which is configured as a simple comparator. PR1 is used to set the input impedance and hence the sensitivity of the sensor. PR2 sets the switching threshold voltage on the non-inverting input to the comparator. When the coupling capacitance is increased, due to a conductive object lying across the case and sensor, the high frequency signal strength arriving at the detector will increase, raising the voltage on pin 3 of the comparator above the threshold, and switching the output from pin 6 fully positive.

IC2c, d are connected as a Schmitt trigger with R4 supplying positive feedback. This sharpens up the switching action coming from the comparator and further provides suitable drive signals for the two LEDs. These drive signals are buffered and current-limited by IC2e, f which power the LEDs. When metal is detected LED2 is lit and LED1 is off; the converse is true if metal is absent.

PARTS LIST

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>(all 1/4 W, 5%)</td>
</tr>
<tr>
<td>R1</td>
<td>22 kΩ</td>
</tr>
<tr>
<td>R2</td>
<td>6 kΩ</td>
</tr>
<tr>
<td>R3</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>R4</td>
<td>8 MΩ</td>
</tr>
<tr>
<td>Potentiometers</td>
<td>4.7 kΩ miniature horizontal preset</td>
</tr>
<tr>
<td>PR1</td>
<td>4.7 kΩ miniature horizontal preset</td>
</tr>
<tr>
<td>Capacitors</td>
<td>4.7 kΩ disc ceramic</td>
</tr>
<tr>
<td>C1</td>
<td>470 pF polystyrene</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>CA3140</td>
</tr>
<tr>
<td>IC1</td>
<td>4069B</td>
</tr>
<tr>
<td>IC2</td>
<td>470 pF polystyrene</td>
</tr>
<tr>
<td>LED1,2</td>
<td>5 mm red LEDs</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>9V miniature rocker switch</td>
</tr>
<tr>
<td>SW1</td>
<td>Battery and clip (PP3); diecast case, approximate size 114 x 64 x 30 mm (RS 509-939 or similar — see Buy_lines)</td>
</tr>
</tbody>
</table>

Fig. 2 Circuit diagram.

Fig. 3 Component overlay of the ETI Bodywork Checker.

ETI DECEMBER 1981
DIGITAL VOLTMETER MODULE

Fully built & tested

Positive and negative voltages with an FSD of 999mV which is easily extended. Measures only single supply 7 - 12V.

- High overall accuracy 0.1% + 1 digit.
- Large bright 0.32" (11mm) LED displays.
- Supplied with full data and applications information.

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as multimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supplied to security authorities, Government departments, universities, the P.O. and many companies.

Temperature Measurement

£2.15 + VAT

An easily constructed kit using an I.C. probe providing a linear output of 10mV/°C over the temperature range from 0°C to 100°C. The unit is ideal for use in conjunction with the above ultrasonic module providing an accurate digital thermometer suitable for a wide range of applications.

Power Supply

£4.95 + VAT

This fully built mains power supply provides two stabilized isolated outputs of 8V providing current levels of up to 250mA each. The unit is ideally suited for powering the OVM and the Temperature Measurement module.

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- VAT must be added on all items.
- Shop hours 9 - 5.30 (Wed 9 - 1).
- Ex-stock delivery on all items.
- Units on demonstration, callers welcome.
- Post and packing charge 50p per order.
- S.A.E. with all inquiries please.

Exiting Offers!

ULTRASONIC ALARM MODULE

Fully built & tested

A really effective full built module which contains both ultrasonic transmitter and receiver, together with the necessary circuitry for providing the appropriate delay and false alarm suppression. Using this module with a suitable 12V power supply and solar units as shown, a really effective though inexpensive intruder alarm may be constructed. The module, which is supplied with a comprehensive data sheet, is easily mounted in a wide range of enclosures. A ready drilled case, together with all the necessary hardware, is available below.

Power Supply & Relay Unit

£3.95 + VAT

Incorporating a stabilised 12V supply and a L.P.C.S. relay with 3A contacts, this unit is designed to operate in conjunction with the above ultrasonic unit. Fully built and tested, its compact size makes it ideal for constructing the smallest of units.

RISCOMP LIMITED

Dept. E.T.I. 3,
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (0844) 6226

ORDER DETAILS

Order

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX72EP</td>
<td>£115.95</td>
</tr>
<tr>
<td>FA 2 Interface</td>
<td>£18.95</td>
</tr>
<tr>
<td>FP 10 printer SOON</td>
<td></td>
</tr>
</tbody>
</table>

FX82EP

- 10 digit (10 + 2) liquid crystal display.
- 50 scientific functions. Standard deviation.
- Fractions, True algebraic logic.
- FX860 £18.95

FX3600P

- 10 digit (10 + 2) ; 38 step programmable calculator with liquid crystal display.
- Regression analysis. 44 scientific functions. 7 memories, 18 sets of parentheses. True algebraic logic. 6 functions.
- FX3600P £21.95

FX82EP

- 10 digit (10 + 2) programmable with alpha-numeric liquid crystal display.
- Up to 512 program steps and 56 memory registers. 33 parentheses nestable up to 11 levels. Up to 9 subroutines, nestable up to 9.

Sharp PC 1211 computer

- £91.95

Sharp EL 1000 24 digit

- £31.95

Sharp CE 1212 printer

- £71.95

CASIO FX 602P

- Last few at £48.95
- CASIO FX 100 £15.95
- CASIO FX 330 £15.95
- CASIO FX 800 £23.95
- CASIO FX 68 £18.95

CALCULATOR SALES & SERVICE (C.S.S.)

FREEPOST (no stamp required) REDDITCH WORKS, B98 0BP

Telephone (0527) 43189
M ICRO T A N 6 5

M IC R O T A N 6 5 is the most advanced, powerful, expandable microcomputer system. It also happens to be the most cost effective.

MICRO T A N 65 CONTENTS
A 16 bit 4 m K ORK, 32 pin IC Microcontroller, 256 bytes RAM, 256 bytes EPROM, 16 Kbyte Cassette Interface, Colour Monitor, Case, TV lead, all software, and much more. £49.00 + VAT.

MICRO T A N 65 KITS COMPUTER KIT DIVISION LONDON & HOME COUNTIES STOCKISTS
RETAIL SALES & DEMONSTRATIONS
404 EDGWARE RD. LONDON, W2 1ED TEL: 01-402 1622
TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE • TANGERINE

MICRON COMPUTER
FULLY BUILT, TESTED, and housed SYSTEM PACK

MICRON
£95.00
5650 based microcomputer IDLA microprocessor display. Powerful memory: TANEX RAM 8x1024/32 240k, running in 16-bit, 16-channel, I/O expansion memory mapped interface. Full access to microcomputer to fully expand MICRO T A N 65. The MICRO T A N 65 has no User configured system for its excellent performance. We shall attempt to deliver.

KIT FORM £69.00 + VAT at 10% add VAT, total £79.35
MICRON assembled and tested. Specify B, C, D, E, so that assisted and fully built customised for operations. £129.00 + VAT at 10%, total £193.55

MICRON T A N 65 OPTIONS
L (LOW) CASE PACK
The integrated circuits which connect to peripherals on MICRO T A N 65 allowing 125 distinguishable characters. £9.48 + VAT at 10%, total £10.00

GRAPHIC PACK
Five microprocessors which talk to locations on MICRO T A N 65 allowing the display of chunky pictures (8x 8 pixels). Where are the chunky pixels again? They may be a piece of graph paper or anything with 8 x 8 squares. Total of 4096. Each square may be made on or off. £6.52 + VAT at 10%, total £7.50

25 WATT KIPPA!
Imaginative means of sitting up and running. Uses Steck connector style sockets, and connects to MICRO T A N 65 through a 12 pin DIL, silicon ribbon cable. Black and white pictures, with MICRO T A N 65 with no problems. From 20 square metres and above very good value for money. Completely assembled and tested. £10.00 + VAT at 10%, total £11.00

"S" TYPE PLUGS ready to use with a Steck (R) only £1.00 + VAT at 10%, total £1.10

POWER SUPPLIES
MPS-1 120 24V DC Output 5 watts at 3.5 Amps Regulated. MPS-1 will power both MICRO T A N 65 and TANEX fully expanded. Built-in 3-watt silicon output power to board MICRO T A N 65. Available both a fully built and tested unit.
£23.00 + VAT at 10%, total £25.30
MPS-2 5V 12A, 12A, 12V +3V and 12V switch mode PSU £69.13 + VAT at 10%

MINI-SYSTEM RACK
We have produced a mini system rack which accepts MICRO T A N 65, MICRO T A N E and no miniature kit. It has an integral power supply, it plug in the mains and away you go. Finished in MICRO T A N E (black) this puts your expansion boards from panel sockets, 10 cables. Available as an ASSORTED UNIT £56.35 net

FULL SYSTEM RACK
For the man that has everything, this 19 inch wide rack accepts MICRO T A N 65, TANEX and any miniature kit. It has an integral power supply, it plug into the mains and away you go. Finished in MICRO T A N E (black) this puts your expansion boards from panel sockets, 10 cables. Available as an ASSORTED UNIT £36.35 net

NEW PRODUCTS
(ALL VAT EXCL)
SYSTEM NOSEPLUGS / CONNECTORS £4.60
S T E E L I N C H S 2 0 0 £ 1 2 . 0 0
R E M O T E S T E E L I N C H S £ 1 2 . 0 0
S T E E L I N C H S 1 0 0 0 £ 3 0 . 0 0
D E L I B A R A T O R £ 1 0 . 0 0
M A N U F A C T U R E A N D O N D E M O N S T R A T I O N
MICRON COMPUTER

TANEX £43.00
Minimum Config. Set
Contents
£49.00 + VAT at 10%, total £54.90
High qualitySolari based printed circuit board, socket repeat and link. Microcontroller and memory board as well as all software, manual and construction detail. £95.00 + VAT at 10%, total £104.50

TANEX MINIMUM CONFIGURABLE UNIT
£53.00 + VAT at 10%, total £60.00

TANEX EXPANSION
Expanded TANEX 76 RAM for £49.00 + VAT at 10%, total £54.90

TANEX PLC
£79.00 + VAT at 10%, total £87.00

TANEX EXPANDER KIT
£79.00 + VAT at 10%, total £87.00

TANEX EXPANSION OPTIONS
£79.00 + VAT at 10%, total £87.00

TANEX T AN B U G N O W I T H V B U G IC R A M FOR £11.20 + VAT at 10%, total £12.32

TANEX RAM 22 WAY KEYPAD
£79.00 + VAT at 10%, total £87.00

TANEX OPTIONS
MICRO T A N 65 to FULLY EXPAND TANEX £79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX EXPANSION OPTIONS
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
£79.00 + VAT at 10%, total £87.00

TANEX RAM 50 A L R A Y
WHY CLASS A?

The System A has aroused a lot of interest among our readers — and a few questions too. In this article Stan Curtis explains 'Why Class A?'.

Class A is a mode of operation in which all the output devices operate on the linear portions of their transfer characteristics all the time, the mean current drawn from the supply being constant irrespective of the signal. Class B is a mode in which the output devices split the positive and negative portions of the waveform between them, each device operating from an initially cut off condition (or a low standing current in the case of Class AB). No matter how well engineered, this transition from positive to negative (and vice versa) will cause an irregularity or non-linearity in the transfer characteristic which in the worst case, causes a crossover distortion made up of high order harmonics at high peak amplitudes — harmonics which are very offensive to the ear.

The use of a small standing (quiescent) current through the output stage together with the application of large amounts of overall negative feedback minimises these effects but it must be remembered that at the actual transition point the amplifier becomes effectively open loop (ie no overall negative feedback because the output is zero) and has a very low overall gain (which is dependent upon the current through the output devices); hence the intermodulation distortion of a good Class A amplifier is virtually nil at low powers and then rises gradually with increased level (see Fig. 1).

Improper Conduct

The second major problem of Class B amplifiers is their operation at high signal frequencies. Figure 2 shows a typical Class B transistor output stage. As the voltage across the base-emitter junction of Q1 changes from a negative (forward) bias to a positive (reverse) bias, the base current of Q2 will decrease. Because of emitter-base junction capacitance the base current of Q2 will lag the base-emitter voltage of Q1. Thus when the base-emitter voltage of Q1 is zero, there will still be some charge remaining on the base-emitter capacitance of Q2. This charge only leaks away slowly since Q1 is cut off. Thus Q2 remains conducting after Q1 has been cut off and so the conduction angle of each output transistor can be much greater than 180°. This results in the familiar 'notch' distortion, higher current drain from the power supply, lower efficiency and hence increased dissipation by the output transistors.

These problems do not occur in the Class A amplifier because the transistors are always on and so never have to be switched. Thus a Class A amplifier can be designed to have an extended bandwidth with a consequent reduction of high frequency distortion and increased slew-rate.

With all the output transistors conducting in the linear collector region, the distribution of the distortion harmonics is more desirable than the equivalent Class B (or Class AB) amplifier because the non-linearities in the transfer curve are smoother and less abrupt. These low order harmonics (primarily second and third) are far less audibly offensive than those of higher orders. The push-pull output stage of the System A power amp results in a cancellation of the even order harmonics leaving a small amount of the third harmonic which can be reduced to insignificance by the application of a moderate amount of negative feedback.

Heat Treatment

Another advantage of the Class A design is that of thermal equilibrium. The standing dissipation of the amplifier is between two and four times the rated output power. The output stage dissipation is lowest at full output; thus, in the case of a music signal, the amplifier will be operating near its normal running temperature (which is also its maximum temperature). This thermal stability will tend to minimise the temperature dependent variations of gain, VCM, and reverse leakage current, as well as avoiding the danger of thermal shock when the signal level changes suddenly. Conventional Class AB amplifiers have their output stage biasing set by a transistor which is thermally coupled to the heatsinks; but there is a thermal lag between increase in the temperature of the output transistor junction and a proportional increase in the temperature of the heatsink. Thus following a large amplitude signal (and the consequent heating up of the junctions) the bias voltage will be tracking the wrong temperature and so, for a short time, the crossover non-linearity may be far worse than the designer intended.
Driving It Home

Loudspeakers are not the simple resistive loads that engineers desire them to be. This is not the time or the place to go into much detail but suffice it to say that some amplifiers are completely incapable of driving a real loudspeaker with anything like the fidelity they demonstrate on the test bench. For one thing loudspeakers store energy particularly in their resonant conditions, and this same energy can be dissipated in the form of electrical current pushed back into the amplifier. Thus the perfect amplifier needs the ability to sink a lot of current as well as source it; and it should also have a very low output impedance (the theoretical ideal would be zero).

Most amplifiers achieve a low output impedance (ie high damping factor) by applying a large amount of negative feedback. For example the open loop output impedance could be 5R but apply 40 dB of negative feedback and it drops to a respectable 0.05R. But the mathematics show that the important thing is the open loop impedance so efforts must be made to keep this very low. Typical figures that I have measured on commercial amplifiers range mostly from 1R to 5R with a few much higher still and one or two even at near 0.5R. The System A design has the advantage of effectively having three output stages in parallel and so the output impedance of one stage is effectively divided by a factor of three. In fact (skipping the mathematics again) the open loop output impedance of this amplifier is less than 0.1R. As a result the measured 'Interface Intermodulation Distortion' is very low indeed.

Fig. 2 Typical Class B output stage.

Fig. 3 Simplified diagram of the System A output stage; effectively it is three stages in parallel.

ETI DECEMBER 1981
BI-PAK AUDIO
THE PROFESSIONAL APPROACH

HIGH QUALITY MODULES FOR STEREO MONO AND OTHER AUDIO EQUIPMENT

AUDIO AMPLIFIERS
512 watts (96%)
ALSO 5 watts Audio Amp Module 27.5m supply £2.57
ALSO 0.1 watt Audio Amp Module 27.5m supply £4.16

AUDIO AMPLIFIERS
16.35-36 watts (96%)
ALSO 15-15 watts Audio Amp Module 27.5m supply £3.15
ALSO 3 watt Audio Amp Module £8.07

POWER SUPPLIES
PSU 2m Supply Set 3 x 40/12 x 40/12 x 40/12 £1.05
PS400 3.5m Shielded supply Set 2 x 40/12 PA105 to 15 watts £3.38
PS400P05 3.5m Shielded supply Set 2 x 40/12 PA105 to 15 watts £3.38
PS400P105S 8.5m Shielded supply Set 2 x 40/12 PA105 to 15 watts £6.72
SE50 150-550m Shielded power supply 3 x 15V M4016 £3.88

COMPLETE AUDIO CHASSIS
STEREO: 20 Complete 7 watt per channel stereo amp chassis
- includes accessories, power supply, front panel and knobs - includes 220V Transformer £1.05
MAGNETIC CARTRIDGE PRE-AMPLIFIER
Enter the quality of a magnetic cartridge with our ceramic armature using the NPM33 which is a quality pre-amp enabling magnetic cartridges to be used where facilities exist by ceramic cartridge systems. With a 14m input section it is fully in keeping with professional NPM30 stereo Mag Cartridges. Pre-amp input 25m Output 150m £1.12.43

MONO PRE-AMPLIFIER
MK120 available for huge mass MK120 suitable for grade pro amp users. The MK120 and MK120-100 made pre-amplifiers are compatible with the AES/EBU, AES/EBU and AES/EBU power amplifiers and their associated power supplies. MK120 Supply voltage 44/45v inputs. Tape Mag P11 Microphone Max input 100mV 172.15.2000MK120 Sound vintage 44/45v inputs. Microphone Max input 100mV

GE100 MKII 12 Channel Monaural Equaliser
Only £33.95 a 65x65x200 including the 13.0 121.101 toneyider preamplifiers and inlets which are mounted on a board above the chassis. In the range for 125 to 1300 Hz you can cut and boost ±15dB with the 111 filters and with a frequency marked on the printed board. The GE100 uses microswitch controls, P1106.45 systems and circuits. It will also improve the sound reproduction of your existing audio equipment. Power supply for GE100 is E60 from 12VDC Together with Transformer ret £20.16
ME200 MK12 12 channel monaural with 2 filters per channel £1.05

BI-PAK'S COMPLETELY NEW CATALOGUE
Compatibility with BI-PAK's other type of components ensures plug-in play anytime whether it's on our extended range of up to 32 channels, or any size of chassis. This feature allows you to use your BI-PAK components as a complete and professional PA system. It's a complete BI-PAK system. BI-PAK's complete is now available to you. You will be amazed by the sound the BI-PAK system produces. BI-PAK is designed to be used in conjunction with any BI-PAK Component and comes with a free BI-PAK Catalogue. Available at the time of printing BI-PAK's CATALOGUE

BI-KITS
ST40 5 watts per channel Stereo Amplifier Kit consisting of 2 x 80mA integrated 1 x PA10 pre-amplifier 1 x PS10 power supply 1 x 10BA transformer and necessary wiring diagram £19.95
ST40 5 watts per channel Stereo Amplifier Kit consisting of 2 x 80mA integrated 1 x PA10 pre-amplifier 1 x PS10 power supply 1 x 10BA transformer and necessary wiring diagram £19.95
ST40 5 watts per channel Stereo Amplifier Kit consisting of 2 x 80mA integrated 1 x PA10 pre-amplifier 1 x PS10 power supply 1 x 10BA transformer and necessary wiring diagram £19.95
ST40 5 watts per channel Stereo Amplifier Kit consisting of 2 x 80mA integrated 1 x PA10 pre-amplifier 1 x PS10 power supply 1 x 10BA transformer and necessary wiring diagram £19.95

REGULATED VARIABLE STABILISED POWER SUPPLY
Parasitic DC 210 volts and 0.06 Amps Kit includes - 1 x PS200 Module 1 x 20mA 2% SMD transformer 1 x 550 VA Power Transistor 1 x 20VA 2% Ferrule 1 x 100VA 0.1% wounded transformer 1 x 20VA SMD transformer Wiring Diagrams required £59.95 TFL £72.95
SIREN ALARM MODULE
BI-PAK's new alarm siren comes complete with a 12 volt supply slot to fit 1500VA speaker. Ideal for car burglar alarms, house burglar alarms and other security purposes £19.95
SAFETY: 10 watt 35m 3.5m supply to stereo amplifier 0.05m £2.00

BI-PAK's Audio Modules are famous for their variety, quality of design and manufacture and for over 12 years BI-PAK have been the leading manufacturers of high quality audio equipment throughout the world - in fact well over 100,000 modules have been sold - this is why discerning audio enthusiasts and professionals alike turn to BI-PAK modules for their equipment.

This brings us to the end of this issue and we are grateful to our friends at BI-PAK for their support and for their kind co-operation.
Sparkrite

BRAND LEADING ELECTRONICS

NOW AVAILABLE IN KIT FORM

SX1000 Electronic Ignition
- Inductive Discharge
- Extended coil energy storage circuit
- Contact breaker driven
- Three position changeover switch
- Over 130 components to assemble
- Patented clip-to-coil fitting
- Fits all 12V neg. earth vehicles

SX2000 Electronic Ignition
- The brand leading system on the market today
- Unique Reactive Discharge
- Combined Inductive and Capacitive Discharge
- Contact breaker driven
- Three position changeover switch
- Over 130 components to assemble
- Patented clip-to-coil fitting
- Fits all 12V neg. earth vehicles

MAGIDICE Electronic Dice
- Not an auto item but great fun for the family
- Total random selection
- Triggered by waging of hand over dice
- Biased and flashes during a 4 second tumble sequence
- Throws displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and Off switch on base
- Hours of continuous use from PP7 battery
- Over 100 components to assemble
- Supplied in superb presentation gift box

VOYAGER Car Drive Computer
- A most sophisticated accessory
- Utilises a single chip microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd. which affords 12 functions centred on Fuel, Speed, Distance and Time.
- Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-Off-On. Facility to operate LOG and TRIP functions independently or synchronously.
- Large 10mm high 400Hg-Litre display with auto intensity.
- Unique speed and fuel transducers giving a programmed accuracy of + or - 1%.
- Large LOG & TRIP memories 2,000 miles, 180 gallons, 100 hours. Full Imperial and Metric calibrations.
- Over 300 components to assemble. A real challenge for the electronics enthusiast!

AT-80 Electronic Car Security System
- Arms doors, boot, bonnet and has security loop to protect fog/sport lamps, radio/tape, CB equipment
- Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen
- Fits all 12V neg. earth vehicles
- Over 250 components to assemble

TX2002 Electronic Ignition
- The ultimate system
- Switchable contactless, Three position switch with
- Auxiliary back up inductive circuit.
- Reactive Discharge, Combined capacitive and inductive
- Extended coil energy storage circuit
- Magnetic contactless distributor trigger head, Distributor trigger head adapted included.
- Can also be triggered by existing contact breakers.
- Die cast waterproof case with clip-to-coil fitting, fits majority of 4 and 8 cylinder 12V neg. earth vehicles
- Over 150 components to assemble

EDA SPARKRITE LIMITED

82 Bath Street, Walsall, West Midlands, WS1 3DE England. Tel: (0922) 614791

SELF ASSEMBLY KIT | READY BUILT UNITS

<table>
<thead>
<tr>
<th></th>
<th>SX 1000</th>
<th>SX 2000</th>
<th>TX 2002</th>
<th>AT 80</th>
<th>VOYAGER</th>
<th>MAGIDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT</td>
<td>£12.75</td>
<td>£19.95</td>
<td>£29.95</td>
<td>£24.95</td>
<td>£49.95</td>
<td>£12.95</td>
</tr>
<tr>
<td>UNITS</td>
<td>£27.95</td>
<td>£43.75</td>
<td>£62.95</td>
<td>£49.75</td>
<td>£64.75</td>
<td>£19.95</td>
</tr>
</tbody>
</table>

NAME

ADDRESS

I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR £

KOF REF.

CHEQUE NO.

24 hr. Answerphone PHONE YOUR ORDER WITH ACCESS/BARCLAYCARD PAY ONLY SAE IF BROCHURE IS REQUIRED

CUT OUT THE COUPON NOW!

EDA SPARKRITE products and designs are fully covered by one or more World Patents.

Step-by-step fully illustrated assembly and fitting instructions are included together with circuit descriptions. Highest quality components are used throughout.

ETI DECEMBER 1981
In this article a fourth type of variable item, the array, is introduced together with the DIM statement which is a preliminary statement usually required by BASIC before an array can be used. This is followed by a review of the naming conventions employed by different BASICS for all four types of variable. This section is concluded by a description of some problems that can occur with BASICS offering strings and floating-point numbers and how they can be easily and neatly overcome. (This will complement last month’s issue where we looked at a limitation of BASICS which offer only strings and integers.) Finally we introduce the concept of structured programming.

Hip Hip Array

In last month’s issue, the variable was introduced as a box containing a value — string, integer or real. An array simply extends this idea to several boxes, side by side, but all having the same name.

<table>
<thead>
<tr>
<th>A(0)</th>
<th>A(1)</th>
<th>A(2)</th>
<th>etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>7.8</td>
<td>4.0</td>
<td>-3.1</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>etc.</td>
</tr>
</tbody>
</table>

Fig. 1 Real array containing seven elements.

Fig. 1 shows an array, A, seven elements long, with each element containing a single real number. This is known as a real array. It is also possible to have integer arrays, with each element containing an integer, and string arrays, where each element contains a string; the types of array available to the BASIC user will depend on his version of the language. Figures 2 and 3 show two more arrays, B$ and C.

<table>
<thead>
<tr>
<th>B$</th>
<th>FRED</th>
<th>JOE</th>
<th>BOB</th>
<th>null</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$(0)</td>
<td>B$(1)</td>
<td>etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 String array containing four elements.

<table>
<thead>
<tr>
<th>C</th>
<th>-3</th>
<th>26</th>
<th>7</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(0)</td>
<td>C(1)</td>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 Integer array containing five elements.

Each element in an array behaves like a single variable, and is identified by its position relative to the leftmost box using an integer value known as the subscript. The subscript appears in brackets after the variable name. Thus in the first example, the value of A(2) is 4.0. Arrays are used to store data items which are similar in some way or when we wish to carry out a particular operation on several items of data. An example is given in the section on structured programming.

Sizing It Up

The size or length of an array is the number of elements it contains. Before an array is used in BASIC it should be dimensioned using the dimension statement DIM. Thus to create an array A of seven elements we would put the statement DIM A(6) (remember the numbering starts at zero) — preceded by a line number — in the program. If the DIM statement is omitted, an error is produced when an attempt is made to reference the array. A possible exception may occur as most BASICS (of which Research Machines’ extended BASIC, PET and APPLE BASICS are examples) will create an 11 element array automatically on encountering a reference to an undimensioned array name. A dimension error is then only produced if the subscript is too big or too small.

Long, thin arrays as above are known as one-dimensional arrays or vectors. Most integer BASICS allow only one-dimensional arrays but, as we shall see later, arrays may also be two, three or multi-dimensional (a two-dimensional array is called a matrix). There is a theoretical maximum number of allowed dimensions (eg 88 for Applesoft BASIC) but if you think your program needs that many you can be sure your array is awry!

A final point on arrays also concerns Integer BASICS. As a general rule, BASICS which offer floating-point numbers tend also to offer string arrays — each element of the array being capable of holding a complete string of up to 255 characters. By contrast, integer BASICS (eg the ZX80 4K BASIC and Apple II BASIC) do not allow string arrays, and in addition some (such as Apple II BASIC) require ordinary string variables to be previously DIMensioned for the number of characters the variable is
likely to contain. Acorn Atom BASIC is an interesting exception since it not only allows individual strings to be stored one character at a time in previously DIMensioned variables, but also allows lots of strings to be stored — one per element — in an array, each element of the array requiring to be separately DIMensioned for the number of characters it is likely to contain!

The Name Game

The naming conventions for all four types of variables, integers, reals, strings and arrays, varies considerably between BASICS.

Numeric (floating-point) variable names in Research Machines' Extended BASIC (version 5) and Nascom 11.8K BASIC begin with a letter and may be optionally followed by an alphanumeric (A to Z, 0 to 9) to improve readability, longer variable names such as SUM and AVERAGE may be used, but only the first two characters are significant — hence COMET and COEFF are equivalent. String variables are subject to the above restrictions but in addition the name has a dollar sign, $, appended. Real arrays have the same naming conventions as real variables; string arrays have the same naming conventions as string variables. Thus A$ is accepted, while A is not accepted. Note that A, A$ and A are separate variables and both may be used within the same program.

Applesoft BASIC and Commodore PET BASIC (Version 4.0) are similar to the above except that in addition, integer variable names have a percent, %, appended. Hence C% specifies an integer variable (or array).

Naming conventions for TRS-80/Video Genie BASICS are similar to those for the PET except, in addition, ordinary (single-precision) floating-point variable names may be optionally followed by an exclamation mark (eg D1!) and double-precision variable names must be followed by a hash symbol, # (eg A#).

With Apple II integer BASIC and Sinclair ZX80 4K integer BASIC, integer variable names start with a letter and may be followed by a number of alphanumericics (up to about 100 in Apple II) all of which are significant. The same applies to string variable names and array names in Apple II BASIC (string variables must also have a % appended) with the ZX80, however, string variable names are restricted to a single letter followed by a $ and integer array names to a single letter. Thus FRED, JOES$ and ATILLA$ could all occur in Apple II program but only FRED in a ZX80 4K BASIC program.

Acorn Atom BASIC allows 26 variables which may be used to store integers or strings. These are the letters A to Z. If a variable is to represent a number, it will be preceded by a $. Thus A is an integer variable; $B is a string variable. (There is also a variable denoted by @ and called the 'print field size'). Unlike most BASICS, the same letter cannot be used to simultaneously represent both types. Thus A and $A cannot both be used at the same time to represent a number and string respectively. Atom BASIC has 27 integer arrays AA...ZZ and @@. The floating-point extension additionally allows the user 27 real variables, %A, %B,...,%Z and %@, and 27 real arrays %AA, %BB,...,%ZZ and %@@.

A final note concerning variable names: no variable name must be the same as, or contain, a BASIC reserved word. Thus, character A and $A cannot both be used at the same time to represent a number and string respectively. Atom BASIC has 27 integer arrays AA...ZZ and @@. The floating-point extension additionally allows the user 27 real variables, %A, %B,...,%Z and %@, and 27 real arrays %AA, %BB,...,%ZZ and %@@.

It is not to be supposed from this that a BASIC which only offers floating-point numbers is necessarily inferior to a BASIC offering integers as well; some BASICS offering both still convert integers to reals before performing any calculations (though ones which can also perform integer arithmetic offer advantages of speed and accuracy in some instances), and the two situations described here can arise with any floating-point BASIC.

Surprise Number 1

Consider the following program:

```
10 LET T = 1/10
20 LET S = 0
30 FOR I = 1 TO 100
40 LET S = S + T
50 NEXT I
60 PRINT S
70 END
```

Those with some knowledge of BASIC will recognise this as a program to add up 0.1 a thousand times. What is surprising is that the computer may print 99.99999 or similar, rather than 100, at line 60. The reason is that the value of T, 0.1, can only be represented approximately in floating-point form. However, the small error is accumulated 1000 times as line 40 is repeatedly executed, hence the final error. If you suspect that something like this is happening in a program, and you know that the answer should be an integer, add 0.5 to the value and take the integral part:

```
55 LET S = INT(S + 0.5)
```

will do the job.

This formula can always be used to force rounding to the nearest whole number. A general formula for rounding off a value X to D decimal places is:

```
X = INT(X * 10D + 0.5) / INT(10D + 0.5)
```

where X > 1 and X < 9999999999.

Actually, the PRINT instruction carries out slight rounding on your behalf, so the problem described here would not have occurred if the 1000 of line 30 had been replaced by, say, 30.

Surprise Number 2

In the following program,

```
10 LET T = 1/10
20 LET S = 0
30 FOR I = 1 TO 30
40 LET S = S + T
50 NEXT I
60 PRINT S
data.
```

the number 3 will be printed out at line 60, but 2 at line 100! The reason that this occurs is that real numbers are always truncated to the highest whole number in the evaluation of array subscripts. The value of S was very slightly less than 3, so it was truncated to 2 in line 100 and the value of AZ(2) was printed. This problem can always be remedied by adding a small number such as 0.1 to the array subscript; ie changing line 100 to

```
100 PRINT A(I$ + 0.1)
```

prints 3 as required.

Structured Programs

As promised, we now briefly consider structured programming. This is a language-independent approach to program-writing in which all the tasks to be performed by the program are broken down into three types of item. Once the complete task has been specified as combinations of these three types of item in an algorithm, it may be readily programmed in a suitable language, in our case BASIC.

A Real Dilemma

Last month, we considered the limitations that can arise in a BASIC which only offers integers and strings. We shall complete this section by considering two situations that can arise when using a BASIC which offers real (floating-point) numbers.

FEATURE

ETI DECEMBER 1981
Attention To Detail

Another feature of structured programming is that, at the lowest level, the instructions will be able to be carried out on the computer in the language chosen (it is no good asking the computer to choose its favourite colour, but quite reasonable to get the computer to pick a random number between 1 and 10). The algorithm will hopefully be ‘language-independent’, however — that is, understandable without reference to any particular programming language or version of a language. The

```
100 HGR
110 HCOLOR = 3
120 E = 170° F = 10 N = 16 X = 0 Y = 10
125 REM **DRAW HEAD AND BODY**
130 FOR I = 1 TO N
140 X = 10° * COS(I/16.283°/I)/N
150 Y = 10° * SIN(I/16.283°/I)
160 HPLOT X+E, Y+F TO X+I+E, Y+I+F
170 X = X: Y = Y+1
180 NEXT I
190 X = 0: Y = 10
200 HPLOT E, F+Y TO E, F+Y+40
210 G = F+Y+10: H = F+Y+40
219 REM **DRAW ARMS AND LEGS**
220 Y = 0
230 FOR K = 1 TO 2
240 W = 21° (K-1,6)
250 HPLOT E, G TO E = 20°W, G
260 HPLOT E, H TO E = 20°W, H+20
270 HPLOT E+20°W, H+20 TO E+20°W+7, H+20 = 7°W
280 NEXT K
290 Y = 3 - Y
300 HCOLOR = Y
310 FOR K = 1 TO 2
320 W = 2° (K-1,5)
330 HPLOTE, G TO E = 20°W, G+20
340 HPLOT E, H TO E = 20°W, H+20
350 HPLOT E+10°W, H+25 TO E+10°W+10, H+25
360 NEXT K
370 FOR M = 1 TO 100: NEXT M
380 GOTO 230
390 END
```

Program 1. An Apple soft cartoon.

The three types of item are:

- Processing statements — these are straightforward actions, eg add 1 to X
- Decision structures — these are of two types, the first has the following form:

 if logical expression then processing statement A
 The logical expression is a statement that may be evaluated as either true or false. For example, a decision structure might be

 if X = 3 then add Y to X

 The logical expression here is X = 3. If the current value of the variable X is actually 3 the expression is true, otherwise it is false.

 If a logical expression is true, we carry out processing statement A and then go to the next part of the algorithm, if it is false, we go directly to the next part of the algorithm.

The second type of decision structure is

if logical expression then processing statement A
else processing statement B

In this case either processing statement A or processing statement B is executed (but not both), depending on the truth or otherwise of the logical expression, eg

if the river is >6ft wide then walk to nearest bridge
else jump across

The deviousness of structured programming begins to become apparent when we realise that the processing statements A and B may themselves be lists of processing statements or even another decision or looping structure! Note the use of positioning and brackets to make the algorithm clearer.

- Looping structures — these are also of two types. When we want to perform a processing statement a predetermined number of times, say 50, we use

loop for i = 1 to 50 do processing statement C, eg

loop for i = 1 to 50 do [add the element of array A to T]

When the number of times the statement is to be performed depends on some factor which changes as processing statement C is repeatedly obeyed, we can use the second type;

while logical expression do processing statement C, eg

while there is still food on the plate do continue eating

Sorting It Out

An algorithm, then, is a list consisting of these three types of item. As each item in the list is obeyed, control passes to the next item in the list until it is exhausted.

Here is an algorithm to read 10 values into an array A, sort them into ascending order and print out the sorted array. The algorithm works by repeatedly comparing adjacent elements in the array and swapping them if they are out of sequence.

1. dimension the array A to size 10
2. put the 10 values into array A
3. loop for i = 1 to 9 do [pass through the array]
4. print out array A
5. where [pass through the array] equals
6. loop for j = 1 to 9 do if [the element >j + 1th element then [swap jth and j + 1th elements]]

Note that the processing statement corresponding to loop for i = 1 to 9... is itself a 'loop for' structure whose processing statement is actually a decision structure!
algorithmic structure of a program may be its 'lowest common denominator', and hence may be the only basis for the conversion of BASIC programs from one version to another. If the program has been well-structured, this task can be carried out by one module or section at a time, and the new module tested before the new modules are reassembled to give a program which should work first time.

A Graphic Illustration

A particular case to consider is graphics programs or graphics modules within a program. Graphics facilities vary tremendously from one BASIC to another, as illustrated by Programs 1 and 2 which produce cartoons of a man walking. One is written for the Apple II (using Applesoft BASIC) and the other for the TRS-80 Video Genie. Were it not for the underlying algorithm — draw man in position 1, pause, erase man in position 1, draw man in position 2 and so on — one would be hard put to turn the same language, let alone the same task being carried out!

Float On

We conclude this month's article with an algorithm for one of the subroutines used in last month's program for performing floating-point addition. The subroutines make 10 floating-point variables available to the user. In the main program last month we read in two numbers and stored them in the fifth and eighth of the 10 available locations (lines 110 to 140), added them up, and stored the result in the fourth available location (line 150) Then we printed out the contents of the fourth location (line 160). However, we could have performed any number of additions between any of the 10 locations, or we could have incorporated the subroutines for use in any other program.

Algorithm for converting strings to floating-point numbers (subroutine in last month's program).

[Read in the string]
[Work out the sign for the floating-point number]
[Put ASCII code for sign in second location of floating-point number]
[Work out exponent for floating-point number]
[Put exponent in first location of floating-point number]
[Put mantissa in locations 3-10 of floating-point number] where:
[Work out sign for floating-point number]
[If leftmost character of string is ‘+’ or ‘-‘ then I sign = ASCII equivalent of leftmost character of string. Drop leftmost character else I sign = 43 (positive)]
[Work out exponent of floating-point number]
[If string contains an ‘e’ then exponent = (character position of ‘e’ within the string) - 1
Remove ‘e’ from string
else exponent = length of string]]
[loop while leftmost character of string = 0
do I subtract 1 from exponent. Drop leftmost character of string]
[Put mantissa in locations 3-10 of floating-point number]
[loop for i = 3 to 10
do put (ASCII equivalent of leftmost character of string) - 48 into i location of floating-point number]

* Note that dropping the leftmost character of an empty string is considered to still leave an empty string.

FEATURE: Guide to BASIC Part 3

TL CMOS 4140 505

LB ELECTRONICS

TELEPHONE UXBRIDGE 55399

STOP PRESS

**PL 258 SOCKET CHASSIS 5 MOUNT, 50p p&p 30p
TRANSFORMERS O12, O74 1 amp £1.50, 25p p&p 10p
110, 208 1.5 amp £2.50, 50p p&p 20p
T&T, SALE 7410 3p, 7413 1sp, 7416 5.20, 7419 40p, 7414 40p, 7417 40p.
WHY PAY VAT?... Just arrived.
GREAT VALUE Super plug and socket (suit) for all your
printer. Only £1.75 per pp. 35p.

Terms cash with order: offer(s) welcomed from colleges, etc. All enquiries s.a.e.
Less all prices include VAT, unless otherwise stated.

TL CMOS 4140 505

STOP PRESS

**PL 258 SOCKET CHASSIS 5 MOUNT, 50p p&p 30p
TRANSFORMERS O12, O74 1 amp £1.50, 25p p&p 10p
110, 208 1.5 amp £2.50, 50p p&p 20p
T&T, SALE 7410 3p, 7413 1sp, 7416 5.20, 7419 40p, 7414 40p, 7417 40p.
WHY PAY VAT?... Just arrived.
GREAT VALUE Super plug and socket (suit) for all your
printer. Only £1.75 per pp. 35p.

Terms cash with order: offer(s) welcomed from colleges, etc. All enquiries s.a.e.
Less all prices include VAT, unless otherwise stated.

TL CMOS 4140 505

STOP PRESS

**PL 258 SOCKET CHASSIS 5 MOUNT, 50p p&p 30p
TRANSFORMERS O12, O74 1 amp £1.50, 25p p&p 10p
110, 208 1.5 amp £2.50, 50p p&p 20p
T&T, SALE 7410 3p, 7413 1sp, 7416 5.20, 7419 40p, 7414 40p, 7417 40p.
WHY PAY VAT?... Just arrived.
GREAT VALUE Super plug and socket (suit) for all your
printer. Only £1.75 per pp. 35p.

Terms cash with order: offer(s) welcomed from colleges, etc. All enquiries s.a.e.
Less all prices include VAT, unless otherwise stated.

TL CMOS 4140 505

STOP PRESS

**PL 258 SOCKET CHASSIS 5 MOUNT, 50p p&p 30p
TRANSFORMERS O12, O74 1 amp £1.50, 25p p&p 10p
110, 208 1.5 amp £2.50, 50p p&p 20p
T&T, SALE 7410 3p, 7413 1sp, 7416 5.20, 7419 40p, 7414 40p, 7417 40p.
WHY PAY VAT?... Just arrived.
GREAT VALUE Super plug and socket (suit) for all your
printer. Only £1.75 per pp. 35p.

Terms cash with order: offer(s) welcomed from colleges, etc. All enquiries s.a.e.
Less all prices include VAT, unless otherwise stated.

TL CMOS 4140 505

STOP PRESS

**PL 258 SOCKET CHASSIS 5 MOUNT, 50p p&p 30p
TRANSFORMERS O12, O74 1 amp £1.50, 25p p&p 10p
110, 208 1.5 amp £2.50, 50p p&p 20p
T&T, SALE 7410 3p, 7413 1sp, 7416 5.20, 7419 40p, 7414 40p, 7417 40p.
WHY PAY VAT?... Just arrived.
GREAT VALUE Super plug and socket (suit) for all your
printer. Only £1.75 per pp. 35p.

Terms cash with order: offer(s) welcomed from colleges, etc. All enquiries s.a.e.
Less all prices include VAT, unless otherwise stated.
CHORDGATE LTD
75 FARINGDON RD
SWINDON, WILTS. Tel. (0793) 33877
RETAIL SHOP AT ABOVE ADDRESS

SPECIAL OFFERS
1000 Resistors Carbon, Metal Film etc. **£3.95** (At least 50 different values)
1000 Mixed Components Resistors, Semiconductors, Capacitors, Hardware etc. **£3.95**
15 Asst PCBs with loads of components IC's transistors, diodes, resistors, capacitors, etc. **£2.95**
Microwave Intruder Alarm (Doppler) 12V DC supply relay O/P Range approx 30ft. Supplied ex installation untested. Circuit diagram supplied. **£12.50** Swivel Bracket **£2.00**

COMPONENTS
| SUB-MINI TOGGLE SWITCHES | PSP, DT 66p sa. 10 for £5 |
| DP, DT 70p sa. 10 for £6 |
| SLIDER POTS 6mm TRACK 8mm FIXING CENTRES | 5k, 10k, 25k, 50k, 100k, 250k LIN OR LOG. |
| ALL 76p ea. Ars 10 for £3.75 |
| 3.5mm JACK PLUGS STEREO 30p ea. SOCKET TO SUIT 18p ea. |
| 3.5mm JACK PLUGS MONO 16p ea. SOCKET ISW TO SUIT 12p |
| 5 PIN DIN 180° PLUG 16p ea. 10 for £1.85. SOCKET TO SUIT 14p. 10 for £1.25 |
| BLACK PLASTIC PANEL WITH 2 X PHONO SOCKET 1 x 6 PIN DIN SKT & EARTH TERMINAL 30p ea. 2 for 50p. 5 for £1.00 |
| CAR CIGAR LIGHTER ADAPTOR PLUG PUSES 3 AMP 60p ea. |
| BATTERY HANDLES 2 H P7/4 HPT 7-26p set 5 x HPT/4 x 111 - 30p ea. |
| COILED MAINS LEAD 3 CORE 1 AMP 1.85 EXTENDED 95p |
| 8 ROLLS PVC ADHESIVE TAPE DIFFERENT COLOURS 70p |

SPEAKERS
| 1.5" 5 OHM ALL | 2" 20p |
| 2.5" 40 OHM EACH | 2.5" 80 OHM |

PRESS TO BREAK MINI PULL SWITCH 25p
PRESS TO MAKE MIN PULL SWITCH 20p
S.P. C/O MIN PULL SWITCH 80p
BOX 5/8 POWER DARLINGTON TO3 |
SIL. NMP 16 AMP, GAIN 1000, 150 WATTS £10.00 for £6.00
6 AMP 100V BRIDGE RECTIFIER

CMOS IC's
4011 20p	4001 60p
4012 18p	4086 80p
4013 30p	4068 20p
4015 60p	40182 80p
4017 70p	4046 40p
4020 60p	4612 80p
4023 10p	4556 60p
4025 60p	

PLEASE ADD 50p POSTAGE TO ORDERS UNDER £3.00 ON ITEMS IN COMPONENT SECTION.
SPECIAL OFFERS POSTAGE INCLUDED IN PRICE.
MIGHTY NINETY PACKS 10p POSTAGE PER PACK ALL ORDERS.
OVERSEAS INCLUDING EIRE PAYMENT IN STERLING + EXTRA POSTAGE. OFFICIAL ORDERS SCHOOLS, COLLEGES etc. WELCOME.

MIGHTY NINETY PACKS
SUPER VALUE PACKS ALL AT 80p EACH
BUY SIX PACKS AND GET A SEVENTH FREE!
PLEASE ADD 16p PER PACK POSTAGE

| MN1, 300 1/2-watt Resistors pre-formed for PCB Mtg |
| MN2, 200 K & 1/2-watt Resistors |
| MN3, 100 & 1/2-watt Resistors |
| MN4, 50 Wirewound Resistors |
| MN5, 100 metal oxide Resistors. 1%, 2%, 5% and 10% |
| MN7, 12 R-12m potentiometers |
| MN8, 50 preset Electronic Capacitors |
| MN9, 100 assit Ceramic Capacitors |
| MN10, 100 mixed capacitors, Polyester, Polystyrene, Metalised, Radial and Axial types |
| MN11, 20 assit Silver Mica Capacitors |
| MN12, 8 Tantalum Bead Capacitors (useful values) |
| MN13, 20 assit Transistors, BC, 2N Series + Power etc |

| MN14, 40 IN4146 Diodes |
| MN15, 5 Light Sensitive Devices |
| MN16, 20 min. wire-ended Neon |
| MN17, 24 volt Relays. Ex nearly new equip |
| MN18, 3 Encapsulated Reed Relays 9-12 coil, d-pole and t-pole |
| MN19, 2 24 volt Relays. Ex nearly new equip |
| MN20, 1 240-110 to 12 volt. 100mA |
| MN21, 1 240-110 to 24 volt 100mA |
| Transformer |
| MN22, 8 "Lead's with clips, 4 red, 2 yellow, 2 green |
| MN23, 10 assit screws, nuts, washers, self-tappers etc |
| MN24, 100 assit, small springs |
| MN25, 50 assit pop rivets |
| MN26, 50 assit insulated crimp |
| MN27, 200 items, grooves etc, spacers, cable markers, plastic seals, screwing, tie wraps etc |
| MN28, 20 assit fuses, 1k, 2200m |
| MN29, 75mms equipment, wire, assit colours and sizes |
| MN30, 2 x 2m length, 3 core, mains cable |
| MN31, 12 assit, trimmer capacitors, compression film. All-speaced and spaced |
| MN32, 15 30p Beehive trimmers |
| MN33, 20 coil formers, ceramic, plastic, reed relay etc |
| MN34, 25 min. glass reed switch |
| MN35, 10 assit switches, toggle, slide, micro etc |
| MN36, 10 sub-min SP, C/D slide switch |
| MN37, 10 assit audio connectors. Din phono etc |
| MN38, 1 PCB with triac control IC data inc |
| MN39, 1 oscillator PCB loads of components, (no data) |
| MN40, 50 Polystyrene capacitors |
| MN41, 12 BC568 (plastic BC108C) transistors |
| MN42, 10 BC107 Transistors |
| MN43, 10 BC108 Transistors |
| MN44, 10 Screwwels S.P.C.O. mini. slide switches |
| MN45, 35 assit diodes Zener, rect, signal, switching |
| MN46, 15 assit Zener diodes |
| MN47, 3 x 68 mfd 16v tantalum bead capacitors |
| MN48, 200 items 40A assit length screws, nuts & washers |
| MN49, 200 items 8/4A assit length screws nuts & washers |
| MN50, 3 pieces of veroboard useful sizes, min total 35 sq inch |
| MN51, 10 x 0.25" red LED |
| MN52, 10 x 0.125" red LED |
| MN53, 20 x 0.1 mfd 25v ceramic disc caps |
| MN54, 20 x 0.01 mfd 25v ceramic disc caps |
| MN55, 10 watt audio amp board with circuit |
| MN56, 10 x 0.14 pin low profile IC stk |
| MN57, 10 x 0.16 pin low profile IC stk |
| MN58, 2 x CA272 Voltage Regulator |
| MN59, 1 x LM280 2 watt audio amp IC + 550 timer IC |
| MN60, 10 x TTL IC's |
| MN61, 3 x TIP 312 Transistor |
| MN62, 3 x tip 31 Transistor |
| MN63, 30 mixed polyester caps C280, Seimena etc |
| MN64, 5 Per Make to min. switches |
| MN65, 3 24345 FETS |
| MN66, 1 x LM380 2 watt audio amp ic + 550 timer ic |
| MN67, 11 x 04C250s, 50 x 04C150s, 2500 x 04C75, 2500 x 04C120s, 2500 x 04C470s, 2500 x 04C100s, 2500 x 04C470s |
| MN68, 200 assit varisipse, turrent tags, PCB pens etc |
| MN69, 4 min push to break switch |
| MN70, PCB with 3 x 250v AC 4 amp push SW with attractive chrome plastic knobs 1 x BD241, 1 x BC305, 2 x BC547, 1 x BC304, 4 x 1N4002, 2 x CMOS 4002, 200mm fuse holder + 22 resistors, capacitors, diodes etc |

CATALOGUE/SPECIAL OFFERS LIST SEND 60p INCLUDES VERO CAT WORTH 40p PLUS A FREE GIFT WORTH 30p

SEE US AT BREADBOARD 81

ETI DECEMBER 1981
ONE STOP SHOPPING

No need to waste your time and money searching for components.
No need for unfinished projects because you are unable to obtain the last component.
We stock complete sets of parts for F.T.I. projects — leaving you to concentrate on the electronics and construction.

3 WAYS TO BUY:

- FULL KITS — include printed circuit board, all components, hardware, IC sockets, case etc. (Not batteries).
- LESS CASE — as above but less the case.
- PCB + PCB MOUNTED COMPONENTS — PCB plus all the parts which are mounted on the board — plus leads, potentiometers & off-board semi-conductors.

<table>
<thead>
<tr>
<th>Component</th>
<th>FULL</th>
<th>LESS</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSIC PROCESSOR Nov 81</td>
<td>49.98</td>
<td>36.98</td>
<td>31.84</td>
</tr>
<tr>
<td>PHONE BELL SHIFTER Nov 81</td>
<td>19.35</td>
<td>13.61</td>
<td>8.32</td>
</tr>
<tr>
<td>VOICE OVER UNIT Nov 81</td>
<td>27.62</td>
<td>21.22</td>
<td>15.32</td>
</tr>
<tr>
<td>CAR ALARM Nov 81</td>
<td>19.98</td>
<td>16.43</td>
<td>14.60</td>
</tr>
<tr>
<td>ENLARGER JUN 81</td>
<td>26.93</td>
<td>21.85</td>
<td>19.98</td>
</tr>
<tr>
<td>SOUNDBENDER OCT 81</td>
<td>20.76</td>
<td>15.76</td>
<td>11.77</td>
</tr>
<tr>
<td>MICROPOWER THERMAL ALARM OCT 81</td>
<td>9.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROPOWER PENOLUUM OCT 81</td>
<td>5.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAB PSI SEPT 81</td>
<td>37.98</td>
<td>22.40</td>
<td></td>
</tr>
<tr>
<td>WATCHDOG SECURITY ALARM Aug 81</td>
<td>34.33</td>
<td>25.83</td>
<td>19.98</td>
</tr>
<tr>
<td>RECHARGEABLE BATTERY</td>
<td>19.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEARTBEAT MONITOR Aug 81</td>
<td>25.25</td>
<td>21.65</td>
<td>13.80</td>
</tr>
<tr>
<td>HANDCLAP SYNTHESIZER Aug 81</td>
<td>29.98</td>
<td>23.58</td>
<td>18.44</td>
</tr>
<tr>
<td>FLASH SEQUENCER Oct 81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMART BATTERY CHARGER July 81</td>
<td>31.98</td>
<td>26.93</td>
<td>19.98</td>
</tr>
<tr>
<td>W KA PHASE June 81, Less peel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED JEWELLERY June 81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CROSS</td>
<td>2.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPIRAL</td>
<td>8.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALIEN ATTACK Jan 81</td>
<td>19.78</td>
<td>16.47</td>
<td>12.83</td>
</tr>
<tr>
<td>ANTENNA EXTENDER June 81</td>
<td>21.68</td>
<td>16.46</td>
<td>12.83</td>
</tr>
<tr>
<td>MINI ORILL SPEED CONTROLLER June 81</td>
<td>26.13</td>
<td>21.13</td>
<td>12.80</td>
</tr>
<tr>
<td>DIGITAL CLOCK May 81 (round leads)</td>
<td>43.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARAVAN LIGHTS CHECKER April 81</td>
<td>10.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUITAR NOTE EXPANDER - EU April 81</td>
<td>16.47</td>
<td>11.25</td>
<td>6.44</td>
</tr>
<tr>
<td>ORUM MACHINE April 81</td>
<td>59.96</td>
<td>48.94</td>
<td>35.38</td>
</tr>
<tr>
<td>MUSICAL BOX April 81</td>
<td>12.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIP Sockets
TIN and Gold, low profile solder or wirewrap in sizes 8 to 40 way.

ENGINEERS STETHOSCOPE Mar 81 | 19.19 | 14.52 | 11.10 |
SOUND PRESSURE LEVEL METER Feb 81 | 45.75 | | |
PULSE GENERATOR Feb 81 | 52.82 | 35.33 | 16.18 |
INFRARED ALARM Feb 81 | 54.98 | 46.12 | 35.38 |
MULTI-OPTION SIREN Jan 81 | 26.51 | 21.63 | 15.26 |
4 INPUT MIXER Dec 80 | 19.77 | 16.71 | 11.58 |
BENCH AMPLIFIER Dec 80 | 11.51 | 10.61 | 9.29 |
MUSICAL DOORBEL Dec 80 | 11.51 | 10.61 | 9.29 |
AUDIO TEST OSCILLATOR Nov 80 | 18.30 | | |
R.A.A.P. PRE AMP (internal) Nov 80 | 5.83 | | |
2W POWER AMP Nov 80 | 6.09 | | |
METRONOME Nov 80 | | | |
LIGHT SWITCH Nov 80 | 5.83 | | |
TOUCH BUZZER Nov 80 | 6.11 | | |
SUSTAIN/FUZZ BOX Oct 80 | 24.99 | 21.49 | 18.72 |
CASSETTE INTERFACE Oct 80 | | 11.57 | |
ULTRASONIC BURGLAR ALARM Aug 80 | 25.26 | 22.98 | 17.62 |
CAPACITANCE METER Aug 80 | 20.26 | 16.46 | 8.21 |
C MOS LOGIC TESTER Aug 80 | 10.97 | | |
SIGNAL TRACER Mar 80 | 11.90 | | |
TUNING FORK Feb 80 | 13.48 | | |
ACCENTUATED BEAT METRONOME Jan 79 | 17.95 | | |
CLICK ELIMINATOR April 79 | 61.56 | 46.57 | |
GUITAR EFFECTS UNIT Apr 78 | 14.78 | 10.57 | 6.41 |
COMPLEX SOUND GENERATOR Oct 78 | 21.37 | | |
TELEPHONE BELL EXTENDERS Oct 78 | 14.98 | | |

THIS MONTH'S PROJECTS WRITE (SASE OR PHONE FOR PRICES)

If you do not have the issue of E.T.I. which includes the project
you will need to order the instruction reprint as an extra — 45p each.
Reprints available separately 45p each + p&p 40p.

MAGENTA ELECTRONICS LTD.
ET7, 135 HUNTER STREET, BURTON-ON-TRENT, STAFFS, DE14 2ST
0283-652456 8-5 MON-FRI. MAIL ORDER ONLY.

ALL PRICES INCLUDE VAT
ADD 40P P&P TO ALL ORDERS
S.A.E. WITH ALL ENQUIRIES PLEASE

Access and Barleyford (M.R. orders accepted by phone or post)
HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:

INVEST 60p AND MAKE £2.40 net profit

Buy Ambit's new concise component catalogue and get £1 vouchers. Use them for a £1 discount per £10 spent. But even without this, you will still find W&RE offers the low prices, fast service and technical support facility second to none.

Here are some examples from the current issue:

I.C. SOCKETS
A range of high quality, low cost, low profile DIL sockets ideally suited for both the OEM and hobbyist. All types feature double solid plug, beryllium contacts, tin-plated for low contact resistance.

<table>
<thead>
<tr>
<th>Pin</th>
<th>0.3" DIL</th>
<th>0.4" DIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>26</td>
<td>32</td>
</tr>
</tbody>
</table>

DISCRETES
BC556 12p
BC559 12p
BC560 12p
BC630 22p
BC631 22p
BC127 12p
BC129 12p
BC127 12p
BC129 12p
BC127 12p
BC129 12p
BC127 12p
BC129 12p

VOLTAGE REGULATORS
78K1A TO 720 pos 5.08
78K1A TO 220 pos 5.08
78K1A TO 330 pos 5.08
78K1A TO 1500 pos 5.08
78K1A TO 2100 pos 5.08
78K1A TO 3300 pos 5.08
78K1A TO 4700 pos 5.08
78K1A TO 6000 pos 5.08
78K1A TO 8500 pos 5.08
78K1A TO 11000 pos 5.08
78K1A TO 15000 pos 5.08
78K1A TO 21000 pos 5.08
78K1A TO 30000 pos 5.08
78K1A TO 40000 pos 5.08
78K1A TO 50000 pos 5.08
78K1A TO 60000 pos 5.08
78K1A TO 80000 pos 5.08
78K1A TO 100000 pos 5.08
78K1A TO 150000 pos 5.08
78K1A TO 200000 pos 5.08
78K1A TO 300000 pos 5.08
78K1A TO 500000 pos 5.08
78K1A TO 700000 pos 5.08
78K1A TO 1000000 pos 5.08
78K1A TO 1500000 pos 5.08
78K1A TO 2000000 pos 5.08
78K1A TO 3000000 pos 5.08
78K1A TO 5000000 pos 5.08
78K1A TO 7000000 pos 5.08
78K1A TO 10000000 pos 5.08
78K1A TO 15000000 pos 5.08
78K1A TO 20000000 pos 5.08
78K1A TO 30000000 pos 5.08
78K1A TO 50000000 pos 5.08
78K1A TO 70000000 pos 5.08
78K1A TO 100000000 pos 5.08
78K1A TO 150000000 pos 5.08

XTALs
1 MHz 3.00
2 MHz 6.00
3 MHz 9.00
4 MHz 12.00
5 MHz 15.00
6 MHz 18.00
7 MHz 21.00
8 MHz 24.00
9 MHz 27.00
10 MHz 30.00
11 MHz 33.00
12 MHz 36.00

Prices shown exclude VAT. Postage 50p per order (UK), ACCESS BARCLAYCARD may be used with written or telephone orders - official MA details on application, and a special price for those who read our ad carefully - a free 4 or 8MHz crystal filter with every CPU you buy; just clip out the paragraph and attach it to your order, &DE:

AMBIT international
200 North Service Road, Brentwood, Essex

ETI DECEMBER 1981
COMPONENT TESTER

Check out your semiconductors with this cunning but simple project. It's brilliant, even if we do say so ourselves (and we do). Design by Rory Holmes. Development by Tony Alston.

When you've completed your latest design, a brilliant project which not only solves the world energy crisis but proves that Einstein made a small mathematical error as well, it can be very frustrating if you rush to your junk box and discover that you can't breadboard the circuit because the markings have rubbed off your transistors. To help with this problem, we've come up with our latest design, a brilliant project which tells you which lead is which, whether the transistor is OK, what polarity it is and its approximate gain. Diodes and LEDs may also be tested, and for good measure we've thrown in an op-amp checker. The world energy crisis you'll have to figure out for yourself.

Construction

Assembly is straightforward if the recommended PCB is used. Make sure to orientate IC1, IC2, D1 and D2 correctly, and use sockets for the ICs to avoid damage by soldering them. Remember to put the three wire links on the PCB!

Although there are quite a few off-board connecting wires, these should not be a problem if the circuit diagram, overlay and internal photos are studied carefully. Only one transistor test socket is shown on the circuit diagram but several types can be wired in parallel (as we did) to accommodate various types of transistor. The TO-5 and TO-18 types were epoxied to the front panel, as was the eight-pin DIL socket for the op-amp tester. Three insulated test terminals were also included for testing other types of transistors, diodes and LEDs.

TX1 and TX2 are crystal mike inserts, Eyle type MC25 or similar. Warning! — most inserts have one terminal connected to their case and as we've used a metal front panel for this project, TX2 should be insulated from this panel. Otherwise, TX1 and TX2 will be common linked and as the circuit diagram shows that TX1 is connected to 0 V, TX2's connection to IC1, IC2 and C2 will be incorrectly taken to 0 V. We got round the problem when we glued a circular fibre washer to one insert before fixing it to the front panel.

Testing Times

Transistors are plugged into the appropriate socket, and any type may be tested; NPN, PNP, small signal or power. No selection of NPN or PNP is necessary as this is done automatically by the tester. When the push-to-test button is pressed, an intermittent tone is produced. The frequency of the tone is proportional to the gain of the transistor, giving a rough guide. The LEDs also flash alternately in time with the pulsing tone, the LED that is on at the same time as the tone indicates the polarity of the transistor. If the transistor has no gain or is open circuit there will be no tone, although the LEDs will still flash. If the transistor has a large leakage current or is shorted there will be a 'two-tone' sound. If the transistor has been inserted the wrong way there will be either no tone or a very high-pitched tone.

Diodes and LEDs may be tested across the 'C' and 'E' terminals. If it is OK, the LED under test will flash, accompanied by an intermittent high-pitched tone and flashing indicators. Ordinary diodes require a series resistor (any old value) and should then produce an intermittent tone and flashing LEDs as before; the coincidence of flashing LED and tone indicates the anode.

Op-amps are plugged into the IC socket and a push-switch is required; power is only applied when the IC is inserted, and a good IC produces a continuous tone from the second insert.

BUYLINES

No problems with anything used in this project; all components are standard items and are obtainable from the major mail order suppliers advertising in this issue. If you don't want to make your own PCB, you can obtain one from our PCB Service (see page 94).
PROJECT : Component Tester

HOW IT WORKS

The op-amp tester and transistor tester are completely separate circuits; we shall deal with them separately in this text. I.C.1, a Schmitt trigger inverter, forms a low frequency square wave oscillator with a period (determined by R1 and C1) of about 1 second. This square wave is used to switch the polarity of the 'power rails' (labelled 1 and 2 in the diagram) of the test transistor and associated oscillator circuitry.

IC1b is used to buffer the square wave, and its output (on pin 6) is used to drive 'power rail 1'. Thus for half a second in each cycle rail 1 will be positive (high) and rail 2 (low); for the other half second rail 1 goes negative and rail 2 positive. Each power rail drives an LED (LEDs 1 and 2) via inverse gates IC1d and IC2d, such that an LED will be illuminated if its associated power rail is at 0 V. These LEDs will therefore flash alternately when the circuit is operating, providing an indication of the state of the power rails.

The oscillator circuit that is connected across these power rails is essentially the simple current-controlled oscillator shown in Fig. 2, but with some adaptations to enable it to work with either polarity of power supplies. The oscillator of Fig. 2 works as follows. Assume C is initially discharged, so that the input to the Schmitt inverter is low; the output is thus high and the diode, being reverse biased, is effectively out of circuit. Capacitor C will now begin charging up from the current source and the input voltage to the Schmitt will be increasing. When the input passes the Schmitt threshold the inverter output will switch low; the diode is now forward biased and will rapidly discharge the capacitor. The process then repeats, producing a square wave output from the inverter with a frequency that is proportional to C and the current from the source. The bigger the current, the faster the oscillator, and the square wave becomes a sawtooth.

Similarly, power rail 1 must be positive for the oscillator to function if the transistor is N.P.N. Thus the CCO will produce an intermittent frequency for either transistor polarity (assuming the transistor is a good one) with a frequency roughly proportional to the gain. If the frequency is audible when LED1 is on, the transistor is P.N.P., and if LED2 and the tone coincide then it is N.P.N.

When the voltage on the two power rails is reversed a similar action occurs, but with D1 switched out of circuit and D2 providing the discharge path. The intermittent square wave produced at the output of IC1f is fed to crystal detector TX2 which produces an audible note.

If an LED or diode is connected between the C and E terminals of the test socket, it appears to be a large-value current source in one direction only. Hence the circuit reacts as if a high-gain transistor were in circuit, and polarity is indicated as before.

The op-amp under test is configured as a simple RC relaxation oscillator. When the op-amp is plugged in, assume that its output (pin 6) is high (positive saturation). Then C3 will begin charging up to +9 V through R3 with a time constant C3R3. When the voltage on C3 reaches one-third of the positive supply (this fraction is set by R4 and R5), the op-amp output will switch low, with R4 and R5 providing positive feedback for Schmitt trigger action. C3 will then discharge towards -9 V, until the op-amp switches back to positive saturation. This cycle repeats indefinitely, producing a square wave at the op-amp output which is fed to transducer TX1. This produces an audible note if the op-amp is good.

PARTS LIST

- **Resistors** (all 1/8 W, 5%)
 - R1: 470kΩ
 - R2: 1MΩ
 - R3: 10kΩ
 - R4: 47kΩ
 - R5: 22kΩ
- **Capacitors**
 - C1: 1μF 25 V tantalum
 - C2: 10nF disc ceramic
 - C3: 330nF polyester
- **Semiconductors**
 - IC1: 40160B
 - IC2: 4011B
 - D1,2: 1N4148
 - LED1: 0.2" red LED
 - LED2: 0.2" green LED
- **Miscellaneous**
 - PB1: momentary push-button
 - TX1,2: crystal shake inserts
 - 2 off PP3 batteries and clip: transistor sockets; IC sockets: case to suit

Fig. 1 Circuit diagram of the Component Tester.

Fig. 2 Principle of the CCO.

Fig. 3 Component overlay. ETI DECEMBER 1981
YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPUTERS

PET
- 4008 8K RAM
- 4016 16K RAM
- 4032 32K RAM
- 4040 Dual Drive Disk
- 4022 80 column tracks feed.
- 3023 80 column friction feed.
- C2N Cassette Unit.

For the business man we stock the 8000 range inc 8032 and 8050 with daisy wheel printers coming soon.

32K SYSTEM AVAILABLE FROM £1,499.00

UK101
- UK101 Kit inc 8K memory £125
- Ready Built inc 8K memory £175
- Complete in case £189
- 4K Expansion 8x2114 £10
- Parallel Printer Interface £24.50
- Cases for UK101 £19.95
- Chromasonics Sound Kit £24.50
- Colour Kit £69.95

NEW
- 32K Dinamic Memory Board only £89.95
- P.I.O. and Eprom Programmer Kit only £24.50

INC: Demo Tape & Full Documentation Send for details.

VIDEO GENIE £279 EG3003
Utilities 280, 12K level II Basic, In-
tegral Cassette Deck, UHF O/P, 16K
RAM, all TRS80 features. Simply plugs into monitor or UHF TV. With
V.U. Meter. Now with lower case

PARALLEL PRINTER INTERFACE INC CABLE £33.00
C-ROMASIONS PROGRAMMABLE SOUND KIT £24.50
SOUND KIT (FITTING EXTRA) £7.00
LOWER CASE (FITTING EXTRA) £17.00
COLOUR KIT (FITTING EXTRA) £34.95
EXPANSION BOX WITH/WITHOUT RS232 £215/£19.5
35K/32K RAM BOARD £54/£129

NEW GENIE II NOW AVAILABLE £59

APPLE II PLUS
- 48K Machines £398
- Disk Drive with Controller £348
- Disk Drive without Controller £298
- Graphic Tablet £425
- Colour Card £89

Accessory cards, Software
All available — Phone for Details

PRINTERS
INTERFACES AND CABLES FOR APPLE II, PET, TRS80,
RS232, UK101, SHARP
SUPERBOARD ALL AVAILABLE.

EPSON MX80 FT/1 £399
Dot-matrix printer with Pet graphics interface, Centronics
compatible. True bidirectional, 90 cps.

EPSON MX80 FT/2 £440
An FT/1 with high resolution.

SEIKOSHA GP80A £389
Dot-matrix 5 x 7, 80 columns, 30
cps graphics, double width characters.

JUST PHONE FOR FURTHER DETAILS

MONITORS
Green Monitor £99.00
MON19" illust B&W £79.95
Hitachi professional monitors
9" Black & White £99.95
12" Black & White £149.00

TANTEL PRESTEL BY TANTEL
COMMUNICATIONS AT YOUR FINGERTIPS
FOR BUSINESS & HOME. UP TO DATE INFO
100,000 pages of information on Travel, News,
Investment, Holidays, Hotels etc., etc.
ONLY £159
TANTEL IS POST OFFICE APPROVED. SEND FOR DETAILS.
DEMONSTRATION AVAILABLE AT OUR SHOWROOM.
TECH TIPS

Adjustable Sensitivity Continuity Tester

David Wolfe, Cambridge

Continuity testers operate by comparing the resistance between the test probes with a fixed reference resistance (if the probe resistance is less than the reference then the tester indicates this somehow). This is fine if the tester is to be used in only one type of application, but means that the tester is limited to this application. For example, when testing continuity on a circuit board one is generally testing for very low 'hook-up' resistances; when testing long cable runs, however, such as in house wiring, one tests for resistances often up to several kilohms.

This design overcomes this problem by having an adjustable reference. The tested resistance is configured as half of the potentiometer which is adjusted to give the required sensitivity. Obviously by changing the component values, especially that of R2, the range over which the tester can operate can be altered, but it should be remembered that for the tester to discriminate very low resistances the potentiometer must be able to output voltages very close to 0 V.

Continuity can be indicated in several ways depending largely on user preference, but also on parameters such as current consumption and parts availability eg a mechanical 'buzz', an astable driving a loudspeaker or an LED. These would all need a suitable driving circuit as the op-amp could not do this directly. In the prototype a piezo buzzer was used for low current consumption. A CA3140 IC was chosen in this circuit for its ability to operate with inputs near to the negative supply rail.

Micro-power VOX

David Ian, Hampton Court

Previously published voice operated switches seem limited in application due to their disproportionately high current requirements relative to the subsequent switched circuitry, eg battery operated baby alarms, portable transmitters and so on. Including a visible indicator this design has, at 9 V, a quiescent consumption of a meagre 800 µA, rising to a maximum of 1.6 mA when triggered, but is capable of cleanly switching at least 250 mA at up to 30 V.

The 741 is wired as a decoupled, high-gain preamp, with RV1 controlling the switching point over a wide range of audio levels — anything from a whisper to a shout. The resulting voltage level triggers via Q1) the monostable formed by three gates of a 4011. When the output of the third, inverting, gate goes high the N-channel VMOS FET, Q2, is enabled, thus completing the power supply of an external device.

The 'on' resistance of a VMOS FET is less than 2R ("off" is tens of megohms) and quite large currents may be safely handled before a heatsink becomes necessary.

To aid setting to a given sound level the unusual, but current-saving, arrangement at the output of the remaining 4011 gate provides a single flash from LED1 whenever the monostable is triggered. C and R were selected for the particular requirement of an 'on' time of 14 seconds, 1µs and 1MΩ gives approximately one second delay, depending on the individual gate's transition point. Any medium to high impedance microphone could be used; the electret type shown was to hand.

Tech Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 145 Charing Cross Road, London WC2H 0EE.
Four Input Stereo Mixer

R.D. Pearson, Sheffield

The mixer circuit shown was designed to allow four or more inputs to be mixed down, producing a stereo output. Each input has stereo panning and a level control. The gain of the input stages can be boosted according to specific needs by adding RX, making it possible to use a direct input from guitars, microphones and so on. Note that to avoid poor frequency response, the gain of this stage should be kept below 50 (keep RX above 2k2). The input impedance is 100k and should be high enough for most applications.

The two output stages have sufficient gain to compensate for the attenuation of the panning controls. If more than four inputs are used it will be necessary to increase the gain of the output stages by decreasing the value of RX to 6k8 for six inputs or 4k7 for eight inputs.

741 op-amps should prove suitable for most purposes, but if lower noise is desired then a low noise op-amp such as the TL071 may be substituted. The simple zener regulated power supply shown should be suitable for general purpose applications.

Anti-Theft Device

G.J. Phillips B.Sc, Durham

Many audio retailers employ anti-theft devices whereby a loop, made up of lengths of cable joined with plugs and sockets, is passed through the handles of radios and cassette players. If the loop is broken an alarm sounds.

The circuit diagram shows a design which has been built in the lab and functions very well. R1 sets the quiescent current in the loop. The loops could include vibration sensors or any other suitable normally closed contacts. When the loop is broken, the logic 0 at R1 causes the astable multivibrator formed by IC2a,b to be enabled via gate IC1d, which acts as an OR gate for Os at its inputs. The astable frequency is set at approximately 1/4 Hz causing the buzzer to sound intermittently.

The logic 0 at R1 also triggers the monostable formed by IC1a,b,c and the output of this monostable also enables the astable via pin 12 of IC1d. Thus, if a quick-witted thief quickly removes the broken loop or the vibration sensor quickly breaks the loop, the monostable ensures that the alarm continues to sound for approximately 20 seconds. If the loop is left open then the alarm will sound all the time. Unused inputs of the CMOS chips should be tied to Vcc or 0V whereupon the quiescent battery drain will be less than a microamp.

R1 can be replaced with an LDR (ORP12) and a 10M resistor used to replace the loop. The alarm is then triggered by light. Place the device in your components drawer and you'll be able to nab the guy who's been pinching your ICs when no-one's looking.
Active ‘Stereo’ Bass Guitar

J. Smalley, Nottingham

The circuit was designed to increase the musical capability and performance of a single pickup, passive bass guitar. While having a performance advantage over many ‘off the shelf’ active basses, this system also allows the musician to have his favourite bass converted to active status.

For optimum noise and consumption of battery current (650 μA quiescent), the TL064 BIFET quad op-amp was chosen. As a result, the circuit may be broken down as follows: IC1 is a voltage follower and provides a low impedance 0 V rail to bias the remaining amplifiers. IC1b is also a voltage follower and serves to isolate the two filters from the pickup. IC1c,d are the high and low filters respectively. The response of each filter exhibits a shelving curve which rolls at 6 dB/octave. In rough musical terms, the slope break points are arranged so that bass notes are handled by the low filter and the higher notes by the high filter.

C3 or C8 may be adjusted for a different slope position, and the ratio R4:R5 (high) and R13:R14 (low) for an alternative differential gain ratio. R17 and R18 may also be adjusted for pickups with different output levels. SW2 and SW3 allow the filters to be ‘in’ or ‘out’, and SW1a-d allows the original tone circuits to be connected to the output jack, and totally disconnects the electronics. Battery on/off is via a pair of insulated switching contacts on the stereo jack socket. In the instrument modification, the original jack socket is removed and a stereo version fitted in its place.

Musical use is very much a matter of experiment, but best results were obtained when using a stereo lead with a twin channel amplifier.

Heads Or Tails

D. Indyk, London

An ultra-simple heads or tails indicator can be built using a single 4077 EXNOR IC. The circuit is normally in a latched bistable mode; when the switch is closed the circuit will oscillate, it toss the coin. The astable frequency is approximately 5-10 MHz. If desired a small push-to-make switch can be connected in series with the battery as an on/off switch, such that the battery will be disconnected from the circuit unless the device is being held. The LEDs can be any colour.
COMPUTER COMPONENTS

CPU

MEMORIES

INTERFACE ICs

CRYSTALS

SUPPORT DEVICES

ROMs/PROMs

EPROMs

UARtS

CHARACTER GENERATORS

DISC CONTROL

ZERO INSERTION SOURCE

CONNECTOR SYSTEMS EDGE CONNECTORS

2 x 15 pin

150p

2 x 25 pin

310p

2 x 25 pin

330p

4 x 25 pin

200p

2 x 25 pin

180p

1 x 25 pin

750p

EUROCONNECTORS

DIN: 45176 31 Way

180p

DIN: 45176 35 Way

195p

DIN: 45176 40 Way

225p

DIN: 45176 50 Way

200p

10 Way

220p

12 Way

280p

16 Way

160p

16 Way

150p

16 Way

280p

ID CONNECTORS

10 Way

60p

12 Way

80p

16 Way

80p

20 Way

150p

20 Way

140p

IROB CABLES

10 Way

60p

12 Way

80p

16 Way

80p

20 Way

150p

20 Way

140p

ACORN ATOM

PERSONAL COMPUTER

Basic 2K + 8K

Kit 120K

FULLY EXPANDED 12K + 12K

P.S.U.

£12.200R/Pf

£3.00

ACORN SOFTWARE AVAILABLE

Z80/81 USER PORT

(as described in "P.C.W." Oct. 81)

Port module plugs directly into ZX80 or ZX81 to provide 8 input and 8 output lines. These allow input of data from switches, joysticks, etc., and control of up to 8 relays. Also 7-segment LED displays or LED lamps may be used and solenoid buzzers may be directly connected to the port. Variable tone audio output may be produced. The port kit includes plugs, sockets, double sided PCB and all components. Price £11.50. Application notes 40p. + SAE.

MEMORY EXPANSION PCB

A low price versatile system for the ATOM. 4 RAM modules. Compact memory expansion PCB. 8K RAM (2114) plus 2 EPROM sockets for 2716, 2722 or 2732 EPROMs. Alternate every these sockets can be used for 8K RAM. Further 8K of RAMS. Please the notes. Fully decoded and buffered layout. Professional finish. Interfacing instructions supplied. PCB £11.86.

TECHNOMATIC LTD.

MAIL ORDERS TO: 17 BURNLEY ROAD, LONDON NW10 1ED

SHOPS AT: 17 BURNLEY ROAD, LONDON NW10

(Tel: 01-452 4500, 01-450 8587. Telex: 922 806)

306, EDGEWAVE ROAD, LONDON W2 Tel: 01-723 0223

PLEASE ADD 40p P&P & 15% VAT (Export no VAT)

Government, Colleges, etc. ORDERS WELCOME

BARCLAY & ACCESS CARDS ACCEPTED
The Rapid Guarantee

* Same day despatch
* Competitive prices
* Top quality components
* In-depth stock

Stop your powerful pooch carving up your carefully collected ETIs with his canine choppers and live in hardback harmony with a profusion of precious project books by armour-plating your archives.

Invest in an ETI binder. You know it makes sense. You can have any colour you like as long as it's black.

Price U.K. £3.95 including postage, packing and VAT. Overseas orders add 30p. When placing your order now avoid the completed coupon with remittance to:

EASIBIND LTD., 4 UXBRIDGE STREET, LONDON W8 7S2. Tel: 01-727 0585

Please allow 3/4 weeks for fulfillment of order.

It's easy with EASIBIND

Visit our new premises.

Order Form

ELECTRONICS TODAY INTERNATIONAL

<table>
<thead>
<tr>
<th>Enclose p.0.</th>
<th>Cheque Value</th>
</tr>
</thead>
</table>

For binders

Years required

BLOCK LETTERS PLEASE

Name

Address

Date

Registration No. 307469

Your order is acknowledged and will be sent by return of post.

Tel: 0322 863494

Hillcroft House

Station Road

Eynsford, Kent DA4 0EJ
THE BODY OF ANY SYSTEM

Let's face it - you can't produce as crisp an image on a domestic TV as you can on a Crofton monitor.

Bin Crofton Monitors
Typically Pk White..................£64.97
£31 Green..................£79.32

These monitors and Shugart prices are dependent upon scaling/holder conversion rates. Phone us for up to date prices.

SHUGART FLOPPY DISK DRIVES
No case. No power supply.
SA 450 5/en. S.S.S.D..................£145.95
SA 450 5/en. S.S.S.D..................£283.31
SA 400 Bin. S.S.S.D..................£340.52

FLOPPY DISKS - BOXES OF TEN
Single-sided 35/40 Track£26.45
Double-sided 35/40 Track 5/en.£37.95
Single-sided 77 Track£41.40
Double-sided 77 Track 5/en.£47.15
Singel-sided Bin..................£40.25

CALLING ALL ZX81 USERS
Convert your ZX81 to full size QWERTY Keyboard. Ask for details.

SPECIAL OFFER
9½" Miniature CCTV Camera £130
Used Computer Desks £30
(Note: Only personal callers).

ALL THE ABOVE PRICES INCLUDE V.A.T. AND CARRIAGE

ALL MAJOR CREDIT CARDS
ACCEPTED - SMALL SURCHARGE

CROFTON ELECTRONICS LTD.
35 Grosvenor Road, Twickenham, Middlesex, TW1 4AD
01-931 1923/1513

ELECTROVALUE

CATALOGUE 82

Send 70p for your copy now - 64 pages (A4).
More than 6000 stock items from nuts and bolts to complete computer systems.

With it we include a Reclalm Voucher value 70p for spending towards orders value £10 or more.

IN CATALOGUE 82

COMPUTER SYSTEMS

Details of the superb new GEMINI MULTIBOARD SYSTEM, CENTRONIC, EPSOM and OLYMPIA printers;
Also full range of NASCOM computers and accessories.

ELECTROVALUE LTD. 60FT. E.7, 29 St. John's Road, Enfield Green, Enfield, Middlesex EN3 7BH
Phones: Grahame 2890/2891 DRN: London 672, Telex: 61948
Northern Branch: Personal Shopper 200 Barking Lane, Barking, Essex RM7 6BA. Phone: 0803 622 (46)

Happy Memories

Part type............... 1 off 50-99 100 up
4116 200ns............. .95 .85 .75
4116 250ns............. 90 .80 .70
2114 200ns Low power........... 1.25 1.15 1.05
2114 450ns Low power........... 1.20 1.10 1.00
4118 250ns............. 3.45 2.95 2.75
6116 150ns CMOS........... 6.95 6.45 6.95
2706 450ns............. 1.95 1.85 1.75
2716 450ns 5 volt........... 2.25 2.15 1.95
2716 450ns three rail........... 7.40 7.00 6.75
2732 450ns intel type........... 4.50 4.15 3.95
2532 450ns Texas type........... 4.35 4.15 4.00
280A-CPU £5.25
280A-P10 £4.75
280A-CTC £4.75

Low profile IC sockets: PIns 8 14 16 18 20 22 24 28 40
Pence 910 911 913 915 917 919 921 923
Soft-sectored floppy discs per 10 in plastic library case:
5 inch SSD/S £17.00
5 inch SSD/S £21.00
8 inch SSD/S £21.00
8 inch SSD/S £25.65
8 inch SSD/S £31.75
74LS series TTL, large stocks at low prices with DIY discounts available at a mix of just 25 pieces.
Write or phone for list.
Please add 30p post & packing to orders under £15 and VAT to total.
Access & Barclaycard welcome.

EFTI DECEMBER 1981

Happy Memories (ETI), Gladeyton, Kington, Herefordshire HR5 3NY. Tel: (0643) 422168 or 628
ALCOHOMETER

This remarkable reaction timer contains a crystal-controlled counter to determine drunkenness in alliterative alcoholics. Design and development by Rory Holmes.

After building up the prototype we discovered an unusual problem. It appears that some manufacturers produce longer plastic DIL packs than others, and if your 4017s are too long they won't fit the board. The Motorola chips we used (MC14017BCP) are OK, but if yours are too long you can always grind off the ends (carefully)!

If the crystal is a plug mounting type, don't worry, its pins can be cut shorter, and wire links soldered from the pins through the PCB holes. This same procedure will be necessary for the on/off switch (SW1) which is mounted sideways on the board (see photos). A small piece of plain PCB acts as a spacer between the switch and board, to align the switch with the moulded case cutout. It's a good idea to place the board in position on the case to check the exact switch placing, before securing it with superglue.

The display board is mounted above the main board and is held in

Construction

The construction is elegantly simple since all the parts are mounted on two PCBs; nevertheless it's quite intricate, due to the high component packing density. Solder the components into the main board first, not forgetting the orientation of the ICs, capacitors and diodes (see overlay). Use IC sockets, it's always a good precaution. Veropins should be soldered into the holes for the pushbutton switch, and the switch soldered in turn to these, so that the height from the top of the button to the board is 27 mm. Remember to put in all the board links, including the two underneath the board, but do not solder in the vertical links to the display at this stage.

Button Up

When the Alcohometer is switched on the display is blank, except for the decimal point. To play, you hold down the push-button and wait. After a random time period lasting about one and a half to eight seconds, the display lights and starts counting up from zero. Releasing the push-button stops the count and displays your reaction time in seconds. To conserve power the display blanks automatically after a further eight seconds; if you're in a hurry to play again, pressing the push-button blanks the display and starts a new cycle. If you don't react within one second, the display latches at 000 so you can't claim a reaction time of 3 milliseconds just because the counter clocked round once before you noticed.

Brave ETI volunteers found that even one small drink could have a noticeable effect on reaction time, but don't take our word for it — start building one now and be ready for Christmas!

With the top off, you can see how everything fits into the case — just!
place by the vertical wire links (see photograph). Solder in all the components as per the overlay diagram, including the positive rail link, and noting the polarity of C9 and LED1. Sockets should be used for the seven-segment displays, both for protection and to give the required height. Lengths of tinned copper wire (about 2") should now be soldered and all the vertical lead out holes — 23 in total. After completing this carefully check the track side of the board for bad joints, solder bridges and other faults. It will be very difficult to correct mistakes after the boards are soldered together. Also check that all the ICs are plugged into the main board.

Now comes the tricky bit; all the 23 wires coming down from the display board must be inserted into the corresponding hole, vertically beneath, on the main board. It helps to trim the wires to different lengths, starting at about 1" at one end, and increasing to 2" at the other. They can then be inserted one at a time, as the boards are lowered together. When the boards are together the separation (between both parallel component surfaces) should be adjusted to about 13 mm. The wires can be bent under the board to hold this position, and then soldered and cropped.

Vero Intelesting

The case used is a two part moulded Vero case. This case has a built in battery compartment, and ready-made cutouts for the display and on/off switch. There is a small moulded stand-off in the centre of the bottom case half — this should be filed or cut down in size, until it's shallower than the three PCB stand-offs. The board assembly can now be fitted into the bottom case half. The PCB edges may need filing for the good fit against the bottom of the case (be careful not to file away the copper tracks at either edge). An appropriate hole must be drilled in the case front for the push-button, a good method is to put a small blob of ink on the button head and then bring the case halves together in the correct position. The ink will leave a drilling mark. The board can be secured in the bottom of the case using

This photograph shows how the display board is mounted piggyback on the main PCB. If you look carefully you can see how SW1 and PB1 are soldered in place.

Fig. 1 Circuit diagram of the main control and oscillator section.
ordinary adhesive pads, if they are used double thickness. The displays should just come in line under the window when the two case halves are together. A suitably sized piece of red felt plastic or polarising sheet should be cut and glued underneath the display cutout. The battery can be held more securely by sticking a piece of plastic foam into the battery compartment for a compress fit.

Time To Test

You are now ready to test the finished article. With a PP3 (9 V) battery connected to the clip lead, and the power switch in the ‘on’ position, only the discrete decimal point LED should be illuminated. If you have access to a frequency meter you can use the trimmer capacitor to set the frequency of the crystal oscillator to exactly 1 MHz. Otherwise, leave it at about mid position. Now press down the push-button and keep it pressed, nothing should happen. Suddenly, the display will illuminate, and start counting at 1,000 counts per second. Having reached this stage, the idea is to let go of the button pretty smartly. The figure will freeze instantly, and continue to display your reaction time in seconds. After about eight seconds the display will disappear, and you may try again; alternatively, pressing the push-button will reset the display immediately for another attempt.

Note that it is impossible to cheat, except by precognition.

HOW IT WORKS

At some random time after push-button PB1 is pressed, the display comes on and commences counting. Releasing PB1 stops the count, freezing the display, which then shows the time elapsed between the end of the random period and the release of SW1. After a short time the display automatically turns off and resets, ready for the next reaction test. The random time period, which will be between 1½ to 8 seconds, is set up by IC2, a four bit binary counter wired to count down repetitively from 15 to 0. It is clocked at around 2 Hz by the slow oscillator built around IC1a and b, so that a complete count cycle takes about 8 seconds. With PB1 open, the output of IC1d will be high, holding the output of IC3b low in a low state and setting the Q output of IC4a, a NOR latch, to high. Meanwhile IC2 is continuously counting down from 15 to 0. One or other of C and D, the two most significant digit outputs, will be high when the count is above 3, i.e. for about 6½ seconds of the 8 second period. Thus the output of NOR gate IC3a is taken low, enabling IC3b, whenever the count is within that range.

Now, operating PB1 takes IC1d output low, putting a low on the second input (pin 12) of IC1b and the set input of IC4a. With both inputs low, IC3b output will go high; a positive pulse is applied through C4 to the reset input of the latch, allowing the Q output to go low and sending a CLEAR pulse to reset the counter section. If the IC2 count is less than 4 however, IC3a's output will be high, holding IC3b low so that the latch, with its output pulsed low by R6, cannot change state. Thus the random time period, which ends when IC2 clocks down to zero some time after PB1 is pressed, cannot be less than a 3 count, i.e. about 1½ seconds.

When IC2 reaches 0, the carry out line (pin 7) goes momentarily low, taking one IC3c input low; the other input (on pin 5) is already held low by the Q output of IC4a. Thus IC3c output goes high and the positive edge through IC5 will reset latch IC4c, so switching the GATE line from the Q output to its active low state. The positive pulse through IC5 also triggers the set input of latch IC4b, taking the Q output high which turns on the display. This is the end of the random period and the start of the reaction timing. The GATE signal starts the counter-timing section simultaneously with the display illumination. The user must now release PB1. As described above the set input of latch IC4a will then go high, taking the Q output high. This holds the set input of latch IC4c high and so takes the GATE line high again, stopping the count and ending the reaction timing. The pin 6 input of IC1c is now held high by the Q output of IC4a. Thus, when the IC2 C/O line goes low again after a further 8 seconds, IC1c will go high and the positive pulse through C2 will reset the latch IC4b, taking a Q output low and turning off the display to conserve power. The latch IC4b can also be reset via D1, which steers a positive pulse derived from C3 and R4 to the reset input. C3 is connected to OVERFLOW, the final divide-by-10 output of the counter section, thereby blanking the display when the count reaches 1 second.

The display has three decimal digits following the decimal point, which are driven by IC8, 9 and 10. These are integral decade counters and seven segment decoder drivers (IC2), which drive common cathode LED displays. Since the readout is in seconds it follows that the clock frequency for the least significant digit must be 1 kHz. IC3d forms a CMOS oscillator, with the frequency set at exactly 1 MHz by the crystal. This output frequency is then divided down to 1 kHz by IC5, 6a and 7 (4017 decade counters) and supplies the C L O C K for IC8 (pin 2). All the pin 15s on ICs 8, 9 and 10 are wired together and form the R 15/CLEAR line (active high). Likewise all pin 3s form the DISPLAY line, a low on these turns off the display. The GATE line goes to pin 2 (theenable) of IC6; when this is taken low the clock is enabled and will start counting. Pin 2 of IC8 and 9 are both wired to ground to permanently enable their clocks. The circuit is powered by one 9 V PP3 battery with an on/off switch SW1 in the negative rail. LED1 indicates power when on and also marks the decimal point. Capacitors C8 through C10 provide supply decoupling for the ICs.
PARTS LIST

Resistors
- 100 kΩ: C11, C10, C9, C8, C7, C6, C5, C4, C3, C2, C1

Capacitors
- 220 nF: C1
- 330 nF: C2, C3, C4, C5
- 470 nF: C6
- 10 μF: C7
- 100 μF: C8
- 220 μF: C9
- 1 μF: C10

Semiconductors
- 40 kΩ: R1
- 1 kΩ: R2, R3
- 1.2 kΩ: R4
- 470 kΩ: R5
- 1 MΩ: R6
- 820 kΩ: R7

Resistors (all values)
- 10 kΩ: R8
- 100 kΩ: R9
- 220 kΩ: R10
- 1 MΩ: R11

Capacitors (all values)
- 220 pF: C12
- 1 nF: C13
- 1 μF: C14
- 10 μF: C15

Miscellaneous
- XTAL: 1 MHz crystal
- LED1: Red LED
- LED2,3: 0.3" segment common cathode LED displays

PROJECT : Alcometer

PARTS LIST

Resistors
- 10 kΩ: IC2
- 100 kΩ: IC3
- 470 kΩ: IC4
- 1 MΩ: IC5

Capacitors
- 220 nF: C1
- 100 μF: C2
- 1 μF: C3

Semiconductors
- 40 kΩ: R1
- 1 kΩ: R2
- 1.2 kΩ: R3
- 470 kΩ: R4
- 1 MΩ: R5
- 820 kΩ: R6

PROJECT : Dominator

PARTS LIST

Resistors
- 10 kΩ: IC2
- 100 kΩ: IC3
- 470 kΩ: IC4
- 1 MΩ: IC5

Capacitors
- 220 nF: C1
- 100 μF: C2
- 1 μF: C3

Semiconductors
- 40 kΩ: R1
- 1 kΩ: R2
- 1.2 kΩ: R3
- 470 kΩ: R4
- 1 MΩ: R5
- 820 kΩ: R6

PROJECT : DTI

PARTS LIST

Resistors
- 10 kΩ: IC2
- 100 kΩ: IC3
- 470 kΩ: IC4
- 1 MΩ: IC5

Capacitors
- 220 nF: C1
- 100 μF: C2
- 1 μF: C3

Semiconductors
- 40 kΩ: R1
- 1 kΩ: R2
- 1.2 kΩ: R3
- 470 kΩ: R4
- 1 MΩ: R5
- 820 kΩ: R6

PROJECT : VTR

PARTS LIST

Resistors
- 10 kΩ: IC2
- 100 kΩ: IC3
- 470 kΩ: IC4
- 1 MΩ: IC5

Capacitors
- 220 nF: C1
- 100 μF: C2
- 1 μF: C3

Semiconductors
- 40 kΩ: R1
- 1 kΩ: R2
- 1.2 kΩ: R3
- 470 kΩ: R4
- 1 MΩ: R5
- 820 kΩ: R6

PROJECT : CT-40

PARTS LIST

Resistors
- 10 kΩ: IC2
- 100 kΩ: IC3
- 470 kΩ: IC4
- 1 MΩ: IC5

Capacitors
- 220 nF: C1
- 100 μF: C2
- 1 μF: C3

Semiconductors
- 40 kΩ: R1
- 1 kΩ: R2
- 1.2 kΩ: R3
- 470 kΩ: R4
- 1 MΩ: R5
- 820 kΩ: R6
New project?.. If you’re about to start on a new project, you’re no doubt looking for the right enclosure. With around 1,000 different cases and 250,000 case parts currently in stock, we must be your number one choice. Why not send for our catalogue, price £1 including P&P.

Specify West Hyde—we’ve a good case for it!

WEST HYDE
West Hyde Developments Limited
Unit 9, Park Street Industrial Estate, Aylesbury, Bucks.
Telephone: 0296 20441. Telex: 83570 W HYDE G.

TWO SIDES TO YOUR SUCCESS FROM VERO

The Low Cost Eurocard Size Microboard

Fully Compatible with indirect connectors and Card Frames to the latest international specifications.

Accepts any integrated circuit package – allows high packing density.

Screen Printed with ‘island’ pattern for ease of use – ideal for solder and wire wrap applications.

Vero Electronics Limited, Retail Dept., Industrial Estate, Chandler’s Ford, Hampshire SO5 3ZR. Tel (04215) 62829

ETI DECEMBER 1981
The XR2206 is a high-quality function generator chip, capable of producing sine, square, triangle, ramp and pulse waveforms. Ray Marston shows how to use the device in this month's edition of Notebook.

The XR2206 integrated circuit is undoubtedly the most useful function generator or waveform generator chip available. It can generate sine, square, triangle, ramp and pulse waveforms at frequencies ranging from a fraction of a hertz to several hundred kilohertz, using a minimum of external circuitry. The frequency can be swept over a 2000:1 range using a single control voltage or resistance, and sine wave distortion can typically be as low as 0.5%. The chip incorporates special built-in modulation facilities that enable the generated waveforms to be subjected to AM or FM control, or to phase-shift or frequency-shift keying.

The XR2206 chip is housed in a standard 16-pin DIL package and can be powered from either single or split supplies in the range 10 to 26 V. The sine wave output of the device has maximum amplitude of about 2\(V_{\text{IN}}\) and output impedance of 600\(\Omega\). The frequency stability of the IC is excellent, being about 20 ppm/°C for thermal changes and 0.01% per supply voltage changes.

Basic Waveform Generators

The XR2206 is a reasonably easy IC to use in basic waveform-generator applications. Figure 2 shows how to connect it for use as a simple wide-range sine wave generator that is powered from a single supply source in the range 12 to 18 V. The main timing resistance comprises R3/RV1; it is connected between pins 7 and 12 (ground) and is automatically selected by leaving pin 9 (FSK input) open circuit. The operating frequency can be varied over a decade range (using RV1) with any given

<table>
<thead>
<tr>
<th>C3</th>
<th>FREQUENCY RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1u0</td>
<td>10 Hz to 100 Hz</td>
</tr>
<tr>
<td>10n</td>
<td>100 Hz to 1 kHz</td>
</tr>
<tr>
<td>10n</td>
<td>1 kHz to 10 kHz</td>
</tr>
<tr>
<td>1n0</td>
<td>10 kHz to 100 kHz</td>
</tr>
</tbody>
</table>

Table 1. Values of C3 for different frequency ranges.
value of C3, as indicated in the diagram. The circuit generates a sine wave output at pin 2, since a 220Ω resistor is wired between pins 13 and 14 of the IC; typically, the sine wave distortion is less than 2.5% with this simple connection.

In Fig. 2, the voltage to pin 3 is biased at half-supply volts by decoupled divider R1-R2, so the pin 2 sine wave is also biased near half-supply volts. PR1 enables the pin 2 sine wave magnitude to be preset to a value at which distortion (due to clipping) is minimal. To set PR1, first disconnect R4 (so that a triangle output is obtained), then adjust PR1 so that no triangle clipping is visible. Now reconnect R4 and check that a decent sine wave is available. Sine wave distortion can be reduced below the typical 2.5% value, if desired, by replacing R4 with a 470Ω preset and adjusting it for minimum distortion. The final sine wave output of the Fig. 2 circuit can be fully varied by RV2.

The Fig. 2 sine wave generator can be modified for split-supply operation by replacing all ground connections with negative-rail ones and by taking level control PR1 to the common supply (ground) line as shown in Fig. 3. This circuit also shows how the total harmonic distortion (THD) of the sine wave can be reduced to a typical value of 0.5% with the use of presets PR2 and PR3; these controls must be adjusted alternately to give the best possible sine wave output. After first setting

PR1 to give a non-clipped triangle waveform as already described.

When using the low-distortion sine wave facility illustrated in Fig. 3, note that the signal appearing on pin 3 of the IC is similar to that of pin 2 but has lower distortion and higher output impedance; also, the pin 3 signal is closely centred on the common or ground line, but the pin 2 signal is offset by a few hundred millivolts. If desired, slight DC offset can be applied to pin 3, to bring output pin 2 to precisely zero offset value, by using the add-on modification shown in Fig. 4.

The XR2206 can be made to generate limited triangle waveforms by using the basic circuits of Figs. 2 and 3 without the sine-shaping resistors. Figure 5 shows the circuit of a variable-frequency split-supply triangle waveform generator. When used with a ±9 V supply, the circuit can typically produce ramp signals with maximum peak-to-peak amplitudes of 12 V before clipping occurs.

![Fig. 5 Variable-frequency split-supply triangle wave generator. See Table 1 for values of C3.](image)

The XR2206 can be made to produce fixed-amplitude square wave signals at pin 11, either independently or simultaneously with sine or triangle waveforms, by wiring 4kΩ load resistor between pins 11 and 4, as shown in the split-supply circuit of Fig. 6. The rise and fall times of the square wave output signals are typically 250 ns and 50 ns respectively. When pin 11 is loaded by 10 pF, Fig. 7 shows how a simple CMOS inverter stage can be used as a buffer between pin 11 and the final square wave output, to give a variable amplitude with improved rise and fall times.

![Fig. 6 Simple fixed-amplitude variable-frequency square wave generator. See Table 1 for values of C3.](image)

![Fig. 7 Add-on variable-amplitude circuit for use with the square wave generator of Fig. 6.](image)

![Fig. 8 Simple split-supply sine/triangle/square wave generator. See Table 1 for values of C3.](image)
Naturally, the basic sine, triangle and square wave generator circuits of Figs. 2 to 6 can be combined in a variety of ways to make multi-function waveform generators. Figure 8 for example, shows how various circuits can be combined to make a simple split-supply sine/triangle/square generator. Here, the fixed-amplitude square wave is taken directly from pin 11 of the IC and is produced simultaneously with the variable-amplitude sine or triangle waveforms, which are selected by SW1.

Pulse And Ramp Generation

All of the circuits that we've looked at so far produce symmetrical output waveforms. The XR2206 can be made to produce non-symmetrical waveforms, such as ramp, sawtooth and pulse waveforms, by shorting the pin 9 FSK terminal to the pin 11 terminal as shown in Fig. 9. Thus the circuit uses R1-RV1 to time one half of the waveform, and R2-RV2 to time the remaining half of the waveform.

The Fig. 9 circuit produces a variable-amplitude variable-slope ramp output waveform from the slider of RV3, and a simultaneous fixed-amplitude pulse or variable mark/space ratio rectangle waveform from pin 11. The rise and fall (or on and off) periods of the waveforms can be independently controlled by RV1 and RV2 and can each be varied over a 100:1 range, giving a total mark/space ratio range of 100:1 to 1:100.

![Fig. 9 Variable pulse and ramp generator circuit. See Table 1 for values of C3.](image)

AM Generation

The amplitude of the pin 2 output signal of the XR2206 can be modulated by applying a DC bias and a modulating signal to pin 1 as shown in Fig. 10. The amplitude of the pin 2 signal varies linearly with the applied voltage on pin 1 when this voltage is within 4 V of the half-supply value of the circuit in split-supply circuits, of course, the half-supply value equals 0 V. When the pin 1 voltage is reduced below the half-supply value the pin 2 signal again rises in direct proportion, but the phase of the output signal is reversed. This last-mentioned phenomenon can be used for phase-shift keyed (PSK) and suppressed carrier AM generation.

The pin 1 terminal of the IC can also be used to facilitate gate-keying or pulsing of the pin 2 output signal. This can be achieved by biasing pin 1 to near half-supply volts to give zero output at pin 2, and then imposing the gate or pulse signal on pin 1 to raise the pin 2 signal to the desired turn-on amplitude. The total dynamic range of amplitude modulation is 55 dB.

FM And Frequency-Sweeping

The frequency of oscillation of the XR2206 is proportional to the total timing current (I1) drawn from pin 7 or 8 and is given by

\[f = \frac{320 \times I_1}{C} \text{ Hz} \]

where I1 is in milliamperes and C is in microfarads.

The timing terminals (pin 7 and 8) are low-impedance points and are internally biased at 3 V with respect to pin 12. The frequency varies linearly with I1, over the current range 1 uA to 3 mA. Consequently, the frequency can be voltage-controlled by applying a voltage in the range 0 to +3 V between pin 12 and the timing terminal via a suitable resistor, so that the timing current is determined by the resistor value and the difference between the internal (+3 V) and external (0 to 3 V) voltages. This simple technique can be used to either frequency-sweep the generated signals using an externally applied sawtooth waveform, or to frequency-modulate the waveforms with an external signal.

![Fig. 10 Addon AM facility for a split-supply circuit.](image)

Figure 11 shows the basic connections of a simple frequency-sweep circuit with a 6:1 range of frequency coverage. The external sawtooth has a peak amplitude of 2V5: when the amplitude is zero, 3 V is developed across R and the frequency is 1/RC, as in the case of a normal resistance-controlled XR2206 circuit. When the sawtooth is at its peak amplitude of 2V5, only 0.5V is developed across R and the frequency falls to 1/6RC. The frequency is thus determined by the instantaneous value of the sawtooth voltage. The frequency can, in theory, be varied over 2000:1 range by using this simple frequency-sweep technique.

Finally, Fig. 12 shows the basic method of applying FM to the standard XR2206 circuit. Here, the external modulation signal is applied to the junction of R1-RV1 via blocking capacitor C1.

![Fig. 12 Simple FM facility for the XR2206.](image)
A moving coil cartridge that breaks the price barrier!

The new MC88E from CORAL

The new MC88E represents a breakthrough in high output moving coil cartridges. No step-up device or amp is required and it is available at a sensational price of only £39.95. The high output voltage of 2.5mV does away with the need for a head amplifier or step-up transformer, which add to the expense of using most previous moving coil cartridges.

We cannot emphasise enough, just how advanced the technology that has produced this breakthrough is—a miniaturised and specially shaped armature; unique coil winding technique; a magnet that is so compact, yet generating high magnetic flux density; compliance of 17 cu's. The result is a cartridge with flat frequency response over the super wide range of 20Hz - 40KHz, removing the distortion caused by certain frequencies, which can be found in many conventional cartridges. Coral’s considerable experience in moving coil cartridges has enabled them to offer the ultimate in quality and performance at this incredibly low price.

- We welcome callers to our South London Showroom for demonstrations.
- Enquiries and information phone: 01-690 8511, Ex. 32.
- All products are only available direct or from selected authorised dealers throughout the U.K.

VIDEOTONE
98 CROFTON PARK ROAD
LONDON SE4.

Send for our free brochure and details of outlets in the U.K.

SAFGAN DT-400 Series
BRITISH MAKE
DUAL TRACE SCOPES

SAFGAN ELECTRONICS LTD
24 GUILDFORD ROAD, WOKING, SURREY
Tel: Woking (04862) 69560

Carriage, England F. W. (130) + VAT. Scotland (130) + VAT
London Stockist: Audio Electronics. Tel: 01-724 3504
North West Stockist: Darenth House, Warrington, Cheshire. Tel: Warr. 4874
Avon Stockist: L. F. Hannay, Bath. Tel: Bath 24611
Cardiff Stockist: Steve & Electronic Supplies. Cardiff. Tel: 0222 11006
Chesterfield Stockist: Kaye Electronics, Chesterfield. Tel: 0246 31888
Newcastle Stockist: A. E. B. & Co., Newcastle. Tel: 0632 26725
Darby Stockist: RTS, Darby. Tel: 032 412223

B.K. ELECTRONICS
A SOUND CHOICE

FACTORY FRESH THANDAR
TEST EQUIPMENT BY SINCLAIR

The very latest TM352 HAND LCD DIGITAL MULTIMETER

- 1¾ digit display
- DC and AC volts
- DC current
- Resistance and diode check
- Audible continuity check
- Hz measurements
- Latest push-button controls for ease of operation
- AC voltage 200V, 200V, 200V, 100V
- DC current 200A, 200A, 20mA, 20mA, 1mA
- Resistance, diode check and continuity test (K2)
- 200Ω, 2000Ω, 20000Ω
- NF measurement 0.1Ω
- Power requirement 9V (9FR5 battery) Price £99.95 (including test leads and battery).
- Carry case £2.95.

SC110 FULLY PORTABLE OSCILLOSCOPE

The new Thandar SC110 represents a breakthrough in oscilloscope development. The SC110 is less than 2½" thick and weighs under 2½ kg—yet it packs the standard features of a bench oscilloscope.

B.K. ELECTRONICS
37 Whitehouse Meadow, Eastwood, Leigh-on-Sea, Essex, SS9 5TY

Tel: Southend 527522

ETI DECEMBER 1981
THE PE RANGER
27 FM CB PORTABLE

The RANGER CB rig has been designed to fit the new legal Home Office specification and starts off as a hand held unit complete with aerial, mic., and rechargeable batteries.

☆ LEGALISATION ☆

SPECIAL OFFER

(KIT) £49.95
(INC. VAT + £2.95 P.P.)

£97/matched pair
(INC. VAT + £5.90 P.P.)

This offer price includes rechargeable batteries, mic., aerial, mains lead and 2 channels.

Extra channels £2.25 each + 50p P.P. + VAT

Extra aerials £3.35 each + 80p P.P. + VAT

(Postage free with kit)

Tunable Whip aerial magnetic or permanent car amount (state which)

Permanent £16.95 - P.P. £1.00

Mobile £16.45 - P.P. £2.90

The unit plugs into the mains, 12V car outlet, or runs on built-in rechargeable batteries (built-in charger).

Up to 5 miles range in town to keep in touch with family and friends.

SPEC.

RF Power Output: 1/4 Watt
AF (Internal speaker) 1/8 Watt
Modulation: FM: freq. 27.6MHz - 28MHz
(CB Band) (Excellent speech quality)
No. of channels (max): 6

Fully protected against bad aerial connection.

Coming soon...

Base/Mobile Add-On Unit to give 4 Watts and 40 Channels

(SAE FOR FURTHER DETAILS)

PHONE YOUR ACCESS/BARCLAYCARD ORDER FOR FAST SERVICE

ETI DECEMBER 1981
Please send me:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX
NAME
ADDRESS
I enclose cheque/PO value £
or debit my ACCESS/BARCLAYCARD account no.

Signature

CHROMATRONICS
ETI PCB SERVICE

Up until now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymore? Now you can buy your boards straight from the designers — us! As of this issue all (non-copyright) PCBs will be available automatically from the ETI PCB service. Each board is produced from the same master used to build our prototypes, so you can be sure it's accurate, and will be finished to the high standard you would expect from ETI.

In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please note that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

<table>
<thead>
<tr>
<th>Month</th>
<th>Board Name</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>APRIL 79</td>
<td>Guitar Effects Unit</td>
<td>£1.98</td>
</tr>
<tr>
<td></td>
<td>Click Eliminator</td>
<td>£4.98</td>
</tr>
<tr>
<td>JUNE 79</td>
<td>Accented Beat Metronome</td>
<td>£2.70</td>
</tr>
<tr>
<td>FEB 80</td>
<td>Tuning Fork</td>
<td>£1.98</td>
</tr>
<tr>
<td>MARCH 80</td>
<td>Signal Tracer</td>
<td>£1.70</td>
</tr>
<tr>
<td>AUGUST 80</td>
<td>CMOS Logic Tester</td>
<td>£1.98</td>
</tr>
<tr>
<td></td>
<td>Capacitance Meter</td>
<td>£2.20</td>
</tr>
<tr>
<td></td>
<td>Ultrasonic Burglar Alarm</td>
<td>£2.15</td>
</tr>
<tr>
<td>OCTOBER 80</td>
<td>Cassette Interface</td>
<td>£2.20</td>
</tr>
<tr>
<td></td>
<td>FuzzSustain Box</td>
<td>£2.45</td>
</tr>
<tr>
<td>NOVEMBER 80</td>
<td>Touch Buzzer</td>
<td>£1.45</td>
</tr>
<tr>
<td></td>
<td>Light Switch</td>
<td>£1.45</td>
</tr>
<tr>
<td></td>
<td>Metronome</td>
<td>£1.45</td>
</tr>
<tr>
<td></td>
<td>2W Power Amp</td>
<td>£1.45</td>
</tr>
<tr>
<td></td>
<td>RIAA Preamp</td>
<td>£1.45</td>
</tr>
<tr>
<td></td>
<td>Audio Test Oscillator</td>
<td>£2.35</td>
</tr>
<tr>
<td>DECEMBER 80</td>
<td>Musical Doorbell</td>
<td>£2.10</td>
</tr>
</tbody>
</table>

Bench Amplifier £1.90
Four Input Mixer £1.98

JANUARY 81
- LED Tacho £3.10
- Multi-Option Siren £2.40
- Universal Timer £2.48

FEBRUARY 81
- Infra-red Alarm (four boards) £4.98
- Pulse Generator £2.68

MARCH 81
- Engineer's Stethoscope £1.99

APRIL 81
- Musical Box £1.98
- Drum Machine (two boards) £4.20
- Guitar Note Expander £2.40

JUNE 81
- Mini-drill Speed Controller £2.20
- Antenna Extender £2.40
- Alien Attack £1.98
- LED Jewellery: Cross £1.70
- Spiral (two boards) £1.98
- Star (two boards) £1.99
- Waa-phase £1.15

JULY 81
- System A A-MW/A-MC £1.99
- System A A PR £3.00

Smart Battery Charger £1.48

AUGUST 81
- System A Power Amp (A-PA) £3.50
- Flash Sequencer £2.58
- Hand-clap Synthesiser £2.98
- Heartbeat Monitor £1.37
- Watchdog Home Security (two boards) £3.98

SEPTEMBER 81
- Mains Audio Link (three boards) £5.51
- Laboratory PSU £3.40

OCTOBER 81
- Enlarger Timer £2.55
- Sound Bender £1.99
- ThermaL Alarm £1.97
- Micropower Pendulum £1.66

NOVEMBER 81
- Music Processor £5.51
- Voice-Over Unit £2.98
- Car Alarm £2.11
- Phone Bell Shifter £2.22

DECEMBER 81
- Alcoholometer (two boards) £3.99
- Bodywork Checker £1.48
- Component Tester £1.12

<table>
<thead>
<tr>
<th>BOARD REQUIRED</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL ENCLOSED £

Send to: ETI PCB SERVICE, ARGUS SPECIALIST PUBLICATIONS LTD, 145 CHARING CROSS ROAD, LONDON WC2H 0EE

Name ...
Address ...

ORDER BY POST WITH BARCLAYCARD/ACCESS, CHEQUE OR POSTAL ORDER

BARCLAYCARD

VISA

4929

5224

Please debit my account
Signature:

ADD 40p per p $0.40

Please allow 14 days for delivery

ETI DECEMBER 1981
The foil patterns for the two computer expansion boards are not included because they're too big, copyright, and not many of our readers can make plated through holes! The PCBs are available from Watford Electronics.

Above: Foil pattern for the Bodywork Checker.
Below: The board for the TV Sound Tuner.
DOSSING DOWN?
This feature could be better described as 'one man's fight against the system', or even, 'how not to knuckle under when your DOS dies!' As you may have already guessed this is the story, with the software to prove it, of one individual's desperate fight to replace his old and dying DOS. The system is NASCOM, the routines are universal— you can re-write them into whatever machine code you wish — and the result is superb. So, if your discs are down in the mouth as a result of an unusable DOS, cheer them up with our next issue.

TRIED AND TRUSTED
Many of the original breed of personal computers have been slowly upgraded or replaced over the years. Not so the Exidy Sorcerer — despite a rather bleak period it's still with us. Continuing our series of re-reviews of popular machines we take a long look at this grand old system through the eyes of a family of dedicated users.

TECHNOLOGY TAKES OVER
Over the next 12 months you are going to hear an awful lot about Information Technology, what IT is, what IT does and how IT is going to affect your lives. Information Technology is already here and working. In this issue we've spoken about the Teletext system, and next month we'll be going over the inner workings of the Prestel system, Britain's leading example of IT. Prepare yourself for the next year — order next month's issue today.

AND THE REST
As if the above were not enough to tempt you, the next issue will also contain a full digital storage 'scope simulator for the classroom, routines to explain how computers crunch numbers, a simple statistics calculator, programs to pack your data tapes more thoroughly and all the usual features that you expect to see each month. A bumper bundle and all for less than the cost of a couple of pints!
BRANDED INTRUDER ALARMS AT DISCOUNT PRICES FOR LIMITED PERIOD ONLY

Alarm with self-contained siren. Keyed and timed entry, using minimal power consumption on stand-by. With circuit fault indicator; 3 reed switches, 1 pressure mat, wire and full installation instructions. **£36.80**

Siren extension unit to increase range **£11.75**

Self-powered siren (sounds if separately attacked) **£25.00**

Self-powered bell (sounds if separately attacked) **£29.00**

Reed switches (surface) **£1.00**

Reed switches (flush) **£0.90**

Pressure Pad — 27” x 15” **£2.20**

Pressure Pad — 22” x 6” **£1.60**

All above prices inclusive of V.A.T. and postage. Terms: Cash with order.

Write to Yale Security Products, Wood Street, Wiftenhall, West Midlands WV13 1LA. Telephone: 0902 66911, Telex: 338251.

MEMOTECH

48K MEMORY EXTENSION FOR THE ZX81

The MEMOTECH memory extension board will allow the ZX81 to run 48K Basic programs which may include up to 16K of assembly code.

The ZX81 sits on a custom built case which contains the MEMOTECH memory and a power supply which not only supplies power to the MEMOTECH memory, but also to the ZX81.

The MEMOTECH memory board has a fully buffered control-data-address bus with PCB 40 way header plug. All leads are provided.

The MEMOTECH memory costs:

£109.00 + 15% VAT in kit form. £129.00 + 15% VAT ready assembled. Please make cheques payable to MEMOTECH. Delivery in two weeks from receipt of order.

MEMOTECH, 103 Walton Street, Oxford.

Kit yourself out with our new catalogue.

It's full of all sorts of exciting possibilities, including a digital barometer. So, if you don't trust the weather forecast, make your own. And get it right.

Like all Heathkits, it contains everything you need, right down to the right kind of solder. Unbeatable comprehensive assembly manual. Diagrams. Highest quality parts. Everything to make a first class professional job. One you'll be proud of. One that will give you far more satisfaction than a ready-made mass-produced shop-bought product can possibly offer.

Because you made it yourself.

To: Heath Electronics (UK) Limited, Dept (ET12), Bristol Road, Gloucester GL2 6EE. Please send me a copy of your new catalogue. I enclose 28p in stamps.

Name:

Address:

NB: If you are already on the Heathkit mailing list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.

You build on our experience

ETI DECEMBER 1981

97
I L
IS SPECIAL OFFERS TO E.T. J.
MORE THAN 25% OFF
EURO INTROKIT
SPECIAL PRICE
MORE THAN 15% OFF
ROAD RUNNER IRON
SPECIAL PRICE
ONLY
£13.75
£5.55

VISIT THE ROAD RUNNER STAND 38
AT BREADBOARD '91

WIRING SIMPLE LOGIC CIRCUITS
WIRING DISCRETE CIRCUITS
REPAIRING AND MODIFYING PCB'S
USE AS A TRAINING AID

EXCLUSIVE OFFERS AND ORDER NOW!

Ideal for:

- Road Runner Intro Kit
- Wiring simple logic circuits
- Wiring discrete circuits
- Repairing and modifying PCB's
- Use as a training aid

More than 25% OFF

Normal Price £8.29
Special Price £6.55

Order by post or phone

Shipping included with ordering. I turn over a copy with each kit.

Order Kit by Phone or Post

Full instructions included. 17V DC Power, battery power, and 10A fuse included.

For more information, visit the Road Runner Stand 38 at Breadboard '91.

SPECIAL OFFERS TO E.T. READERS

Now is the time to buy me - £24.50!

Christmas SALE - I'm the ideal gift for anyone who enjoys electronics - £24.50

For more information, visit the Road Runner Stand 38 at Breadboard '91.
Don’t miss the December issue — out November 13th

We’ve got lots of projects to interest musicians next month:

Drum Synthesiser

Yes, you know the noise — a sort of cross between a bomb hurtling down, and a seagull. Well, this machine can make these and many more sounds to help you keep your rhythm. This one’s a super project; easy-to-build, easier to use and what’s more, we reckon it won’t cost you any more than about £30 - that’s about a fifth the price of commercial counterparts.

Organ Pedalboard

This project was designed to match the HE Electronic Organ (see HE May to August 1981). It’s a 13-note, free-standing, foot-operated pedalboard (phew — what a mouthful), which can be plugged into the same amplifier as your organ, or it can be used with its own internal amplifier.

Now, although it’s primarily intended to complement our organ, you can, of course, use it to accompany yourself while you play any other instrument. Thus you can have bass accompaniment to say, a guitar, flute, piano, or even the HE Drum Synthesiser.

Guitar Graphic Equaliser

For those electric guitarists who enjoy building their own effects boxes, this project’s a must! How do you fancy a 6-channel graphic equaliser to control the tone of your electric guitar? All in a small foot pedal.

It’s battery operated, easy-to-build and sounds great.

Car Electronics

There’s no doubt that, although car manufacturers, overall, tend to be slow to change their ideas about the equipment that goes into their cars, they are at last waking up to the fact that electronics has a large part to play.

Guest writer Bill Mitchell tells you about the possibilities and probabilities of in-car electronics.

News and information, circuits, regular features, your own views — all about the electronics world.
From the people who invented the integrated circuit...

The TI Technical Library

Texas Instruments invented the integrated circuit, the microprocessor and the microcomputer. Today, TI is the world's largest manufacturer of semiconductor devices offering the broadest range of products from a single source. This capability is reflected in the comprehensive list of high-quality technical data books available to our customers. Each one is an easy-to-use complete reference.

8. Interface Circuits 1st edition £5.00.

How to order
Simply use the coupon as follows:
1. Select titles and quantities required.
2. Calculate total order value. Add £1.50 for post and packing.
3. Send the coupon plus your cheque payable to Texas Instruments Limited, PO Box 50, Market Harborough, Leicestershire.

If the coupon has been used by someone else, simply use a piece of paper. Please allow 30 days for delivery.

TEXAS INSTRUMENTS LIMITED