 REVIEW-

Much more than just kits quite simply the best way

 to make music ...Powertran have been designing and manufecturing high-quelity electronic kits for more then a decade. Thousands heve been purchesed end assembled by constructors throughout the UK end world-wide. Meny of our regular clients have buit the entire range - severel times! A Powertran kit makes an excellent gift for the electronics enthusiast; and is a gift that, when constructed, may be given again.

Our reputation rests on these unshakeeble foundations - we use the most imaginative and ingenious deaigners; we use high grade components subjected to rigid quallity control; our kits are complete, even screws and wire are Included; we take care with packing and despatch; our instructions are clear and always fully comprehensive and If that weren't enough we back it up with our money-back guarantee. Powertran care and your skill glves you that something special.

Among the most popular of our kits are the fabulous 'Transcendent' range of synthesisers. Designed by the expert in the field, Tim Orr, and featured in Electronics Today International - those kits represent the zenith in both constructional Ingenuity and musical performance. Thanks to our fully illustrated, carefully diagrammed 30 pages plus of constructional notes the 'Transcendent' range is comfortably within the cepability of most enthusiasts. A great many 'first time builders' have completed them without difficulty and are justifiably pleesed with the results.

Check your reactions p. 79

FEATURES

DIGEST 6 Read all about it

ROBOTICS TODAY 17 Meet the Mr Men CROSSOVER NETWORKS

CASIO FX-702P
AUDIOPHILE
WHY CLASS A?
ENGINEER'S CUIDE TO BASIC
TECH TIPS
DESIGNER'S NOTEBOOK
30 Filtering through
42 Put BASIC in your pocket
49 Pickups compared
58 The System A philosophy
62 Arrays and structures
73 All your own work
86 One chip - many waveforms

PROJECTS

COMPUTER EXPANSION SYSTEM 22 For mighty micros
TV SOUND TUNER 37 Quality TV sound
BODYWORK CHECKER COMPONENT TESTER

ALCOHOMETER
FOIL PATTERNS
54 Investigate your vehicle
69 Sorts out your semiconductors
79 Time gentlemen please
95 Board meeting

INFORMATION

Inside story p. 30

BREADBOARD '81 12 Hurry or you'll miss it NEXT MONTH'S ETI 15 See into the future BOOK SERVICE 29 Broaden your mind
SUBSCRIPTIONS 36 Advance booking COME AND JOIN US 40 We need a HE man AMPLIFIER OFFER 47 Low price hi-fi

BINDERS 77 Protect your precious issues
PCB SERVICE 94 Construction made easy NEXT MONTH'S HE 99 What's HE up to?

TV hifi p. 37

Expand your computer p. 22

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H 0EE. Telephone $01.4371002 / 3 / 4 / 5$.
Telex 8811896:

Electronics Today is normally published on the firsifinday in the month precedins cover date \square Argus Specialist Publications Lid 1981: All material is subiect to worldwide copyright proteclion All reasonable cafe is taken in the preparation of the magasine conterts, but the publishers cannot be held legaliy responsible for errors where mistakes do occur, a correction will normally be published as soon as possible afterwards All prices and data contalned in advertisements are accepted by us on good faith as correctat time of going to press Neither the advertisers nor the publishers can b held responsible, however, for any variations affecting price or availability which may occur after the
publication has closed for press \square Subscription Rates UK Eit 25 including povtage Aumail aud oiher fates upon application to $\mathbf{E T I}$ Subscriptions Department, 513 London Road. Thomton Heath, Suriey CR $46 A R$

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Game, Set And Match

Extending the series of features Eon their C80 watch, Casio have decided to include alarm with tone control, day and date indication with time display, and a combat style electronic game. The two new models incorporating these features are called the CA90 and CA901 The first has a black resin case and bracclet; the second. a stainless steel coated case and solid stainless steel bracelet Recommended retail prices are £22.95 (CA90) and £ 3495 (CA901). They should be avarlable irom your friendly neighbourhood Casiostockist or in case of difficulty contact Casio themselves at 28 Scrutton Street, London EC2A 4TY

In-Car Care

The high price of installing in-car sound systems is ofien due to the large proportion of cash earmarked for so-called expert installation. But Greens at Debenhams have cume up with a less expensive alternative. They have introduced Track One - a rance of in-cat entertainment systenis with full installation in. sfructions, backed by a 24 -hour
helpline system. The equipment includes Cilizens' Band radio, stereo and normal radio, and offers a wider range of choice than most high street shops. Each unil is accompanied hy detailed fitting instructions, but should you get into difficulties just ring the number shown on the leaflet and an expert will talk you through to find out where you went wrong. You can find Greens al any of your local Debenhams stores.

Telecom Turnround

I seems that there has been some confusion about the use of the word Illegat' in the article entitfed Telecom Turnround published last month. 'Illegal supplier' and 'illegal equipment' were not clearly detined. in iact, there is nothing illegal about supplying or selling telephone equipment, and likewise the units themselves are not illegal. The law is only broken when an independent supplier publicly states that the equipment he se ${ }^{\text {l', }}$ can be connected to the UK network when it hasn't been approved by British Telecom. And again, the equipment is only illegal once it has been connected and in this case it is the buyer of the equipment who breaks the law, not the supplier.

We apologise to any readers (especially supplierst) who may have been inconvenienced by this misinterpretation.

FM Main Man!

ere is a letter we received from the Electricity Council referring to our article on FM Mains Remote Control. Please note:

Dear Sir
fM Mains Remote Control
The feature in the October 1981 edition of Electronics Today describing a control device which utlises the electrical installation as the medium the possibility of uulising the poware rooms of a house also mentioned ieparate premises.
It ould you please point out to your readers that under section 27 of the Eleciric Lighting (clauses). Act 1899 there is provision which states that if he owner or occupier of premises uses the energy supplied so as to interfere unduly or improperlv' with the efficient supply of energy to ans other person the Board may discontinue the supply. the would also point out that if the power distribution system were to be used in the manner you describe the injected signals would not be restricted to the circuit between the "helpful neighbours' but would be broadcast throughout the surrounding low vollage network and would therefore be 'received' by all the other electricity consumers connected tem of equip. Any detrimental effects the signals may have on any the responsibility of those in by those other consumers must clearly be of whether they have spilled over in generating the signals regardless of whether they have spilled over' from the installation or whether they tours faithiullv.

1) V ford

Head of Distribution Enguneering

New Connections

Following up on our article last month about the new TelecommuniFcatoms bill, we have found British I elecom are now pulling their proverbial receivers out for example, a scheme designed to enable telephone sockets to become as commonplace as power outlets has recently been announced by BT The scheme will be launched nationwide this autumn and follows a successful trial programme in Taunton and Carlisle which has been running since May this year. Instead of having telephones fixed permanently. customers now will be able to unplug them and move them from room to room wherever sockets have been installed This idea will radically change the installation of the telephone service in and afound the home. also simplifying the sale of some Telecom equpment, when phones will be available from sonie 40 shops by next April, mostly within department stores. These will be available for sale to customers to take home and plug in As supplies of the new plugs and sockets become available, customers asking for extension phones will have sockets fitted, and will be supplied with a telephone of their choice, with a plug already connected to it. Engueers will also adapt existing phones on the same line to plug and socket connections This will replace existing extension arrangements Curtomers requiring an extension telephone will pav it connection charge of $£ 25$ with additional exten sion telephow. h. . sions prowided at th. complete with standard telephone and additionai sockets on their own will be charged at $15 p$ a quarter All new installation work on residential and single business lines will incorporate the new system Extra note 1 his means that all telephones approved after the new liberalisation come, into eftect will be Candidates for this kind ot plug and socket connection.

Further update Ferranti have just won a contract to supply British Telecon with the new ZN470AE Microphone Amplifier Integrated Circuit. This wilt be incorporated in the new linear electret microphone manufactured by AP Besson Ltd, which will replace the familiar carbon type, thus offering improved speech quality and long-term relability.

THREE FOR FREE

asc Rom Gsc

Available from selected stockists ELECTRONICS BY NUMBERS

No. 10 SOIL MOISTURE TESTER

No more wilting houseplants with this soll moisture test. Just place the probes into the soil and it will light up to tell you whether the soif is "too wet" or "too dry". You don't even need green fingers.
No. 11 DIGITAL ROULETTE
The suspense and excitement of the casino in your own home. Just press the button, the circle of lighis go round and there is the sound of the roulette wheel as well, both gradually slowing down to reveal the winning number
No. 12 EGG TIMER
How do you like your eggs done, hard or soft. just set the timer and it will sound when the egg is done to your liking. Long battery life because it switches itself off automatically. So get cracking nowl
Want to get started on building exciting projects, but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the Instructions in our FREE -Electronics By Numbers' leaflets, ANYBODY can build electronic projects. For example, toke one of our earlier projects. a L.E.D. Bar Graph:

You will need: One EXP 300 or EXP 350 breadboard 15 silicon diodes
6 resistors 6 Light Emitting Diodes
Just look at the diagram, Select R1, plug it into the lettered and numbered holes on the EXPERIMENTOR BREADBOARD, do the same with all the other components. connect to the battery. and your project's finished. All you have to do is follow the large. clear layouts on the 'Electronics by Numbers' leaflets, and ANYBODY can build partect working project.

EXPERIMENTOR BREADBOARDS
No soldenng moduiar breadboards. simply plug components in and out of letter number ivenimed nickel-silver contact holes. Start small and simpily snap-lock board's toget the to build a breadboard of any size
All EXP Breadhoards have two bus-bars as an integra part of the board, if you need more than 2 buses simply snap on 4 more bus-hars vith the ald of an EXP 48
EXP $325 £ 1.60$ The ideal breadboard for 1 chip circuits inccepts 8, 14, 16 and up to 22 pinics Has 130 contact points including two 10 point hus-bars

EXP 350 E3. 15 Specially designed for working with up 1040 pin ICs perfect for $3 \& 14$ pinics
Has 270 contact poinis including two 20 point bus-hars

EXP 300 £5.75 1 he

 most widely bought bread-voard in the UK With 550 contactpoints. two 40 point
bus-bars, the EXP 300 will accect any size IC and up 10 6×14 pin DIPS. Use this breaoboard with Advenfures in Microelectionics.

EXP 600 E6.30Mosi

MICROPROCESSOR propects in magazines and educational books are buitt on the EXP 600

EXP 660 E3.60 Has $\cdot 6$ " centre
spacing So is perfect for
MICROPROCESSOR applications

EXP 4 E $\mathbf{8 . 3 0}$ Four
more bus-bars in
 "snap-on" unit

The above prices are exclusive of PGP and 15% VAT

THE GSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately global. SPECIALTIES CORPORATION

G.S.C. (UK) Ltd, Dept. $97 T$

Unit 1, Shire Hill Industrial Estate
Saffron Walden. Essex CB11 3AO.
Tet: Saffron Walden (0799) 21682
Telex: 817477

Just clip the coupon
Give us your name and full postal address tin block capitais). Enclose cheque, postal order or credit card number and expry date, indicating in the approprite boxies) the breadboards) you require.

Fril detailed instuctions and layours of Projects 10,11 and 12 . simply take the coupon to your nearest GSC stock ist. or send direct to us, and you will receive the latest 'ELECTRONICS BY NUMBERS' leaflet.

If you have missed projects, 1,2 and 3, or 4,5 and 6 . or 7,8 and 9 . please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assemoled knts.

PB6 Kit. 630 contacts, four 5-way binding posts accepts up to six 14 .pin Dips.
PROTO.BOARD 6 KIT 59.20

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips. with two b.nding posts and sturdy base. Large capactly with Kit economy.
PROTO-BOARD 100 KITE11. 80

Books, Books, Books...

0
nce again its time to get to grips with the ever-increasing pile of ices.

The first one comes from Hodder and Stoughton, and is the latest Teach Yourself book in their Computer Sclence Studies range. Entitled 'Microelectronics and Microcomputers', the book is intended to provide general background and introduction to microcomputers for people who want to come to terms with the increasing impact of computers both at home and at work. All aspects of the subject are covered, although briefly; the book starts with such basic topics as types of electronic com ponents, the use of various number systems (decimal, binary, hex and so on), and simple logic of a microcomputer, peripheral devices and how to use them, programming, system development, data transmission and instrumentation techniques. The final five chapters describe numerous applications in the fields of industry, transport, consumer goods, education and business. No prior knowledge is assumed, although some experience of electronic theory would make the first half of the book easier to grasp. The authors have packed a great deal into the book's 22S pages, and it can be recommended as an introductory text for bewildered businessmen and for people interested in the forceful effects that computers are having on our society. 'Microelectronics and Microcomputers' is written by L.R. Carter and E. Huzan, and costs E1.95.

The rest of the books come from Bernard Babani. 'Audio Projects' (E1.9S), by f:G. Rayer, gets down to the nitty-gritty very quickly - a brief introduction and then it's straight into the projects, over 30 of them, ranging from preamps, mixers and power amps to tone control networks, test gear and a simple tuner. Although constructional details are rudimentary and in some cases non-existent, none of the circuits should be at all difficult to build. '50 Simple LED Circuits Book 2', by R.N. Soar (E1.3S), speaks for itself - the circuits are simple, they use LEDs, and there are 50 of them. A good buy for the absolute beginner; no constructional details are given but anyone should be able to build these circuits on Veroboard without any trouble. If you think BASIC is beyond you, 'An Introduction to BASIC Programming Techniques', by S. Daly, provides a simple guide to this popular high level computer language. The author covers all the statements you're ever likely to meet, keeping the examples simple and pointing out possible machine-dependent variation. In fact the book recommends that you try programming an actual computer as soon as possible - and so do we. This way you quickly find all the quirks of a particular BASIC, and the hands-on approach is definitely the fastest way to learn. 'An Introduction to BASIC Programming Techniques' will cost you E1.95. 'That's it for the time being; more reviews will follow, word blindness permitting!
 add to the protection thev can of fer. The cases can be supplied in three different sizes complete with carrying straps and shock absorbent foam inserts. The foam is easily cut to shape with the knife provided, so it can accommodate various shapes and sizes. There is also a briefcase version fitted with PVC lining and document wallet in the lid, just in case you have any briefs in need of protection! The cases are available ex-stock and prices start at E22. Further details are available from Mike Young, Imhof-Bedco Standard Products Ltd, Ashley Road, Uxbridge, Middlesex UB8 2SQ (telephone Uxbridge (0895) 37123)

Pack Up Your Troubles

Imhof-Bedco, the electronics packaging specialists, have just launched a range of 'camera craft' security cases. Of course, they needn't just be used for carrying cameras, as they are just as useful for carrying any sort of delicate equipment - test gear perhaps? They feature an aluminium frame and facing on rigid wooden panels, combining strength and smart appearance with light weight. Lockable toggle catches, robust hinges
,
which includes VAT and free delivery (RRP is $\mathbf{E 3 4 . 9 5}$). The second offer is an electronics service wallet designed for work with computers, video and audio units. It includes a selected range of 25 precision miniature tools and is contained in a fitted zipper wallet. The tools include miniature soldering iron, desolder braid, solder, soldering tools, range of screwdrivers pliers and cutters, wire strippers, IC extractor, tweezers, scissors and contact cleaners. The kit costs £39.95 including VAT and free postage anywhere in the UK. Both of these items are available mail order from Toolmail Ltd, Parkwood Industrial Estate, Sulton Road, Maidstone, Kent ME15 9LZ.

Mail Order

Toolmail are offering two new helpful aids to the hoobby enthusiast. The first of these is a hobby service case, available for the first time in this country. It has a robust metal frame containing 16 clear styrene drawers (each $51 / 3 \times$ $21 / 4 \times 11 / 2^{\prime \prime}$) for storage of components and small parts, and one strong base drawer ($11 \times 51 / 3 \times 31 / 4{ }^{\prime \prime}$) for the storage of tools and other large or heavy items. The front of the tough vinyl outer case folds down to provide a useful working surface. The case is $12^{\prime \prime}$ high with a comfortable carrying handle. It is available for a limited period at the introductory price of $\mathbf{£ 2 9 . 9 5}$

Heavy Levy

The Government is likely to face strong opposition from Britain's 25 million blank tape users if it goes ahead with its plan to put a levy on the sale of blank tapes. The levy is meant to compensate performers for their loss of sales and royalty payments due to home taping. The six main UK blank tape manufacturers will also be adding their weight to the argument through the auspices of the Tape Manufacturers' Group. The Group has been formed to fight the proposal reported to be contained in a Creen Paper reviewing the whole area of copyright law, which is expected to be published shortly. The TMC includes representatives from BASF,. 3M Maxell, Memorex, Sony and TDK, and Mr Bill Fulton, the Group's Chairman, maintains that the levy plan is unworkable and impractical and that the problem of home taping has been overstated. He also believes that any levy would penalise all tape users, whether or not they were breaking the copyright law, and that the levy would be like imposing a tax on blank tapes therefore effectively subsidising the record companies. The basis on which the levy has been proposed is that the British Phonographic industry claims that it is losing $£ 1$ million a day through breaches of copyright. But the TMC say they haven't produced any hard evidence to back up this fact.

Loudspeakers

looks as if our readers are not as handy with the woodsaw as they are with the soldering iron. Volt Loudspeakers, designers of the V 3 (October '81 ETI), tell us they'e had almost as many enquiries for a

V3

non x and
woodwork kit as they have for the electronics. Consequently they have arranged for a complete set of precut chipboard panels to be made available by Wilmslow Audio. 35/39 Church Street. Wilmsiow, Cheshire (telephone 0625-529599) - contact them for details All you have to do is screw the panels together as described in the original article - now there's no excuse for not building a pair!

Scientific and technical professionals favour the HP 85, they are being joined by increasing numbers of business professionals. Find out why the HP 85 is the professional microcomputer at your nearest Laskys store or write to our Mail Order department for more details.
LASIKYS is the largest specialist Hi-Fi chain in Europe, in July 1980 they acquired Microdigital - an independent, specialist microcomputer store based in Liverpool. Since then specialist microcomputer departments have been set up within selected Lasky's stores under the Microdigital name, these have now been renamed Microcomputers at LASNM/3

The Professional Microcomputer Retailer with 10 Outlets Nationwide \& Mail Order
 BIRMINGHAM
 MANCHESTER

19/2 I Corporation Street. Birmingham. B2 4tP Tel. 021.6326303. Manager: Peter Stallard 300 yards from Bullring Cenire.

BRISTOL

16/20 Penn Street, Bristol, BSI 3AN. Tel 027220421
Opening 16 th October
Between Holidoy Inn and C \& A

CHESTER

The forum, Northgate Street, Chester, CHI 2BZ. Tet: 0244317667 Manager Jeremy Ashcroft Nexp to the Town Hall

EDINBURGH

4 SI. Jomes Cenire, Edinburgh, EHI 3SR Tel: 031.5562914. Manager Colin Droper. East end of Princes Streel, St. James Centre
KINGSTON (Opening early 1982)
38/40 Eden Street, Kingston, Kll IEP Tel 015461271 Opposite Main Post Office

12/14 St. Mary's Gate, Market Street, Manchester, M 1 IPX. Tel 061 . 8326087. Manager Lesly Jacobs Corner of Deansgate.
NOTTINGHAM (Openng eary 1982)
1/4 Smithy Row, Notlingham, NGI 20U. Tel: 0602415150
Manager: Alister Howkes.
Within Market Square, Exchange Buildings, Nollingham

SHEFFIELD

58 leopold Street, Sheffield, S1 2GZ. Tel 0742750971
Monager: Justin Rowles Top of the Moor, opposite Town Hall

LIVERPOOL

33 Dale Street, liverpool, 122 HF . Tel: 051.2362828
Manager: Mark Butler. Between the Town Hall and Magistrates Courts.

LONDON

42 Tottenham Court Road, London W1 9RO. Tet 01.6360845

Mail Order

Microdigital Limited, FREEPOST (No stamp required), Liverpool t2 2AB

NEWS:NEWS:NEWS:NEWS:NEWS:N:Nomer

B-B-Books from B-B-Babani
Dernard Babani Publishing Ltd will be happy to send copies of their new. 1982 catalogue of Radio, Electronic and Computer books to anyone who cares to send them their name and address. So if you want one, write to them at: The Grampians, Shepherds Bush Road, London W6 7NF

Hot Stuff!

©inclair Electronics has just anSnounced the launch of the Thandar TH301 hand•held digital thermometer. It features a large readoul LCD display, a wide temperature range of $-50^{\circ} \mathrm{C}$ to $750^{\circ} \mathrm{C}$ and $1^{\circ} \mathrm{C}$ resolution. It also incorporates the latest lechnology and over 1,000 hours of battery life is obtainable. The unit is housed in a strong Thandar case and is supplied complete with battery and fast response bead thermocouple. The price is $£ 59.50$ including VAT and Sinclair offer a range of

ELCB

B \& R Relays have broadened their range of combined 13 A Earth B Leakage Circuit Breaker (ELCB) socket outlets with the introduction of a new wall mounting version. Based on the successful HO4 portable ELCB with integral 13 A socket, the new model is designed for mounting directly on a convenient single of double outlet box. The new ELCB is simple to install - anyone capable of wiring up a standard socket can do it, be it at home, in the office, workshop or factory. The unit is available in sensitivities ranging from 10 mA to 30 mA , and a test button allows opera. tion to be checked at any time as well as every time the device is switched off. Special socket styles can be supplied to ensure that particular equipment is always plugged into the ELCB and not a non-protected socket outlet. Further information can be obtained from B \& R Relays Ltd, Edinburgh Place. Harlow, Essex CM20 2DJ

Bright Flatpacks

Perdix Components Ltd have just announced the release of two new incandescent digital displays for their Aurora line. The new FFD. 71 ($0.472^{\prime \prime}$ character) and FFD-81 (0.614^{n} character) displays operate from 3.5 V DC with a low current drain of 7 mA while maintaining extremely high brightness levels. The units also feature TTL compatibility, are multiplexible. can operate from $A C$ or $D C$ power and can be filtered to almost any colour. For further information contact Perdix Components Ltd. 98 Crofton Park Road, London SE4.

Drilling Holes

O
K Machine \& Tool (UK) Ltd have launched a lightweight electric drill for drilling, grinding and polishing which is particularly useful on printed circuit boards. The PCB- 258 drill is powered by a high-speed 220-240 V motor and measures 175 mm long $\times 44 \mathrm{~mm}$ diameter. Four different collet sizes are supplied to handle 0.4-3.2 drills. Optional extras include tungsten carbide cutter sets, grinding points, cutters, sanding discs and various drills. A drill stand is also available with a spring. mounted arm which provides good stability and can be used with circuit boards up to $\mathbf{2 8 0} \mathbf{m m}$. Further information and prices can be obtained from OK Machine \& Tool (UK) Lid, Dutton Lane, Eastleigh, Hants SO5 4AA.

New Improved DMMs

Cluke are now manufacturing a new series of digital multimeters. They are intended to replace the existing 8020A series by providing more features at even more competitive prices. The new features include four models instead of the previous three, three of which include a high-speed continuity bleeper as standard, improved calibration specification with two-year calibration guarantee, two-year parts and labour warranty, heavy duty 600 V fuse system to provide greater protection against high energy inputs and improved mechanical design with non-slip feet, tift bail and easier-to-use layout. This new 'B' series will be available direct from Fluke at Watford or through their nationwide network of distributors. Further information from Fluke (G8) Ltd, Colonial Way, Watford, Herts WD2 4TT.

ETI DECEMBER 1381

= 5 GiONG EAMES

COLOUR CARTRIDGE

DATABASE T.V. GAME a

FULLY PROGRAMMABLE
CAATAIDGETV GAME 14 Cartridges available NOW REOUCED TO
a::のロ:: ATARI T.V. GAME
the market with o range of ove The cartridges including SPACE
AO over 112
INVADERS with
=ames on one cartidge

CHESS COMPUTERS

different Chess co of ove Electronic Chess $\quad £ 29.95$ | Chess Travaller | $\mathbf{\ell} 39.95$ |
| :--- | :--- | Chess Challenger $7 \quad \mathbf{6 7 9 . 0 0}$ Sensory Voice $\quad \mathbf{t 2 5 9 . 0 0}$ SpECIAL OFFEAS VOICE C.HESS CHALLENGER

SPEAK \& SPELL

£39.sow

HAND HELD GAMES
EARTH INVADERS

(m)

ADDING MACHINE OLYMPIA HHP 1010

NOW REDUCED TO $\{34$ Vat Uses ordinary gaper No need to buy eupensave thermel poperl Fast add lusung PRINTER CALCULATOR 2 inmes De second. 10 digit capect macharse folls Betiery or mans operated

TELETEXT

24 TUNE ELECTRONIC DOOR BELL
 £12.70 ${ }^{2}$
Parar 28 anteram weres with separjle speed
control end volume control seleci the mosi apprapriste tune for your visporor. With abproprlate

THE OLYMPIA - POST OFFICE APPROVED TELEPHONE ANSWERING MACHINE

WITH REMOTE CALL-IN BLEEPER

This telephone answering machune is manulactured by Oiympia Businass Mactunes. Onn of the
Iargosi Office Equipment manufaciurers in the UK it is full POST OFFICE APPROVED and wwil answer and recoud messages for 24 hours a day With your remote call-in bleeper you c.an receive These messages ty teleophone wherever rouate in the world Theremote call -in blespotr activates the
Answor/Record Unit. which will at your cormmind repeat message acivated tron a amwhere in the world, or on your return io yourtiome or oftico The machine cin also be usod ior message reterral, it rou have an urgent apooinement but arempecting an inportanical
sumply fecord the ophone number' and localion where you can be reached Wwith opional an

SPACE INVADERS

and-held Invaders Gurmess avalable $£ 19.9$ - Invaders Cartidges Jvanable to 1 it
At RADOFIV ACE7AUS M MrlitpS G7000 -Chrt dige Also avninhle for
MATIEL FLENG ROWFRON

MATTEL T.V. GAME

FOR FREE BROCFURES -TEL: 01-301 1111

THE EXHIBITION FOR THE ELECTRONICS ENTHUSIAST

Wednesday 11 th November 10 a.m. 6 p.m. Thursday 12th November 10 a.m. $8 \mathrm{p} . \mathrm{m}$. Friday 13 th November 10 a.m. 6 p.m. Saturday l4th November 10 a.m. 6 p.m. Sunday 15th November 10 a.m. -4 p.m.

COMPONENTS • DEMONSTRATIONS • SPECIAL OFFERS • MAGAZINES • BOOKS

Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year's premier show for the electronics enthusiast. They already know all about the demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see - and to buy from, at fantastic prices.
Even thuse lucky 17,000 would be surprised to hear that this year we've improved BREADBOARD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy!
3READBOARD 81 is the place to be from November 11th to 15 th ai the RHS Hall. Why not come and find out for y'uurself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81. Close to Victoria Station and NCP car parking facilities.

Cost of entry will be $£ 2.00$ for adults and £1.00 for children under 14 yrs and O.A.P.s. ORGANISED BY ARGUS SPECIALIST PUBLICATIONS LTD., 145 CHARING CROSS ROAD, LONDON WC2H OEE.
ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET, WESTMINSTER, LONDON S.W.1.

To avoid queueing, advance tickets will be available trom Advance Tickets BB '81,
ASP Ltd, 145 Charing Croes Road. London WC2H OEE.
"Special Advance Booking Price"
Adulta $\{1.75$ Children under 14 yrs and O.A.P.s 80 p
Plectee send tickets (1) 81.75 tickets (4) 80p To: \qquad
\qquad
\qquad

Advance tickete MUST be ordered BEFORE 20th October 1981.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS Defence Digest

This new regular feature is devoted to defence electronics, its equipment techniques and application. Defence remains one of the largest growth areas in UK industry, with much of the real innovation and investment taking place there.

Defence Digest will thus act as a news (and views) section, containing up-to-date information and explanation of some of the happenings in the different sectors of the defence industry.

Companies with information and articles for these columns are invited to submit them direct to Defence Digest at our editorial address. Indeed, anyone with anything to say on the subject, be it information or opinion, is a potential contributor and should not refrain from putting pen to paper.

Acceleration

T
The picture shows Mr C.M. Davies (left), Director of Aircraft Production, Ministry of Defence (Procurement Executive), receiving from Mr Lester George. Managing Director of Ferranti Instrumentation Ltd, a presentation model of the Ferranti FA2 accelerometer to commemorate the production of the 9,000th instrument. Ferranti inertial grade ac-
celerometers have been in full series production since 1968 and currently exist in five variants. Since that time they have been fitted in the inertial guidance platforms of all British military aircraft including the Nimrod, Jaguar, Buccaneer. Phantom and Tprnado. Other applications have included use in airborne and shipborne radar antennas and sonar arrays. Satellite and rocket applications include Exosat. Skylark. Black Knight and Ariane.

Tracking Helmets

FEerranti is to supply its advanced Felmet Pointing System (HPS) as part of the British Aerospace Dynamics Group Tracked Rapier Missile System for the British Ar. my. The HPS, which was first seen at last year's Farnborough Air Show, is a revolutionary target sighting system which can direct weapon aiming sensors towards any target at which the wearer is looking. The MPS was originally conceived as a pilot's aid but it has received its first major contract as a land-based system. The Ferranti Helmet Pointing System Is a very lightweight, simple system which improves normal weapon aiming. Basically, the entire system consists of the helmet-mounted sight and sensor, a radiator (mounted on a convenient nearby fixed object), a signal processing box, a control unit and an appropriate source of electrical power. The observer's sight is light and compatible with the latest protective masks. in the Tracked Rapier situation, the commander (observer) with his head
out of the cupola, searches for possible targets. The sight on his helmet has an illuminated aiming mark, focused at infinity representing line-of-sight. A tiny sensor, also on the helmet, continuously monitors the angle and position of the Commander's head (and hence his precise sight-line) relative to the radiator fixed to the vehicle, with high accuracy. Once the observer has spolted a larget, he overlays it with the aiming mark, as a means of designating his larget. At the press of a button, the line-of.

sight, as measured by the MPS, is transferred to the optical tracker, directing it to the target, which then appears in the tracker operator's sight. The operator then follows normal procedure through weapon release to target impact. In general use the Ferranti MPS can be used where an observer's sightline needs to be transferred to equipment that must be directed to the same 'target' - whether it be in low-flying aircraft, a ground target or in a commercial application.

The first guided launch of the Hughes Aircraft Company's Advanced Medium-Range Air-to-Air Missile (AMRAAM) was a success with a direct hit on a drone aircraft target. It was tested in Holloman Air Force Base, New Mexico, and fired from a US Air Force $\mathbf{F} 16$ aircraft against an F-102 drone target. It closed in on its target using its radar guidance system, thus proving the missile's capability with this particular aircraft. The next generation AMRAAM missile will pack higher performance into an airframe which is only about half the weight of the missile it will replace - the AIM-7 Sparrow. The missile provides 'launch-and leave' capabilities enabling the pilot to break away immediately after launch to engage other targets. Hughes is one of two contractors selected for a 33 -month prototype validation programme; selection of a winner is expected in October and the winning contractor will then start full-scale development. The AMRAAM program is a joint US Air Force and Navy effort to develop an advanced all-environment missile for operational use between 1985 and 2005.

Hughes Hues

Here a Hughes Aircraft Company engineer uses a full colour display to test a stand-off airborne system ior detecting and tracking massed armour and other forces. The system is called Pave Mover and displays targets and their movements in full colour on a cartographic base, showing roads, railway lines. airfields and rivers. As many as 4,096 colour hues can be displayed. The Pave Mover uses airborne radar to relay target information via data link to a mobile ground-based Data Processing Control Station. Computers in the DPCS process the information and display the target data. Pave Mover's radar can also guide missiles or tactical aircraft to designated targets. Guidance commands and targeting informa tion are supplied by the DPCS. The Pave Mover system is part of a broader Assault Breaker pro gramme for neutralising enemy armour before it reaches the forward edge of the battle area. The system is being developed by Hughes under contract from the US Alr Force and the Defense Advanced Rese arch Projects Agency. It is being evaluated at White Sands Missile Range, New Mexico

STEREO AMPLIFIER KIT

- Featuring tetest SGS/ATES TOA 200610 wett output IC's with in built thermal and short circuir protection.
- Mullard Stereo Preamplifier Module.
- Attractiva black vinyl finish cabinat, $9^{-4} \times 8 \times{ }^{\prime \prime} \times 33^{\prime \prime}$ (approx - $10+10$ Stereo converts to 20 watt Oisco amplifier To complete you just supply connecting wire and solder. Features include din input sockets for ceramle cartridge. mic rophone. tape or tuner. Outputs - tape, speakers and headphones. 8y the press of a button 11 transforms into a 20 watt mono disco amplffier with iwin deck mixing. The kit incorporates a Multard LP1 183 pre:amp module, plus power amp assembly kit and mains power supply. Also features 4 slider evel controls, rotary bass and treble controls and 6 push contrasting cabinel. instructions
zvailable, price
500 . Supplied $\quad £ 14.95$ FREE with the kit. Supplied
SPECIFICATIONS: Suitable for 4 10 8 onm apeakers Frequency response Frequency respons $40 \mathrm{~Hz}-20 \mathrm{KHz}$
PU 150 mV
Mic. 1.5 mV
Gass $\pm 12 \mathrm{db}$ @ 60 Mz
Bass $\pm 12 \mathrm{db} @ 60 \mathrm{Mz}$
Treble $\pm 12 \mathrm{db} @ 10 \mathrm{KHz}$
$0 . i \%$ typically © 8 watt
Mains supply $\quad 220-250$ volts 50 Hz .
STEREOMAGNETIC PRE.AMP CONVERSION KIT Includes FREE Magnetic cartridge with diamond styli. All components including p.c.b. to convert vour ceramic in Aut on the $10+10$ to magretic
Only available with $10+90$ amp. $£ 2.00$ includes p8p
$8^{\prime \prime}$ SPEAKER KIT Two $8^{\prime \prime}$ twin cone domestic speaker $\mathbf{6 4 . 7 5}$ per stereo pair plus $£ 1.70$ plip, when purchased with amplifier. Available separately $£ 6.75$ plus $£ 1.70$ p\&p.

PRACTICAL ELECTRONICS CAR RADIO KIT
 SERIES II

2 WAVE BAND MW - LW

- Easy to build

5 push button
kuning * Modern design
and punched PCB Ready utehed All the alues an itc components to build the radio, you supply only tre wre and the solder. featured in Practical Electronics options, black illuminated tuning scale. The P.E. Travelfer has 6 watt output neg, ground and incorporates an tntegrated clicuit output stage, a Mullard IF Module LPil8i ceramic ilter type pre-aligned and assembled, ande Bird pre.
£10.50
aligned pust button tuning unit.
Plus E2.00 p\&p.
Suitable stainless steel fully retroctable aerial (locking) and peaker ($6^{\prime \prime} \times 4^{\prime \prime}$ app.)
£ 1.95 /pack. Plus $£ 1.15$ p\&p.

HIGH POWER AMPLIFIER MODULES

READY BUILT OR IN KIT FORM 125 WATT MOOEL £10.50

BUILT 200 WATT MODEL SPECIFICATIONS: Max. output power (RMS) 125 wits 200 wats Operating voltage (OC) $50.80 \mathrm{max} \quad 70.95 \mathrm{max}$ Loads $4-16$ ohms 4.16 ohms
Frequency response
$\begin{array}{cll}\text { measured @ } 100 \text { watts } & 25 \mathrm{~Hz} \cdot 20 \mathrm{KHz} & 25 \mathrm{~Hz}-20 \mathrm{KHz} \\ 400 \mathrm{mV} @ 47 \mathrm{~K} & 400 \mathrm{mV} @ 47 \mathrm{~K}\end{array}$ Sensitivity for 100 wstts $25 \mathrm{~Hz}-20 \mathrm{KHz}$

$400 \mathrm{mV} @ 47 \mathrm{~K}$ Typical T.M.O. © 50 watts. 4 ohms \qquad | $\begin{array}{ll}\text { Typical T.M. } \\ 50 \text { wats. } 4 \text { ohms } & 0.1 \%\end{array}$ | 0.1% |
| :--- | :--- |
| Otmenslons (both models) | 205×90 and $190 \times 36 \mathrm{~mm}$. | The power amp kit is a module for high power applicat ions - disco units. guliar amplifsers. public adde ass systems and even high power domestic systems. The unit is protected against short circuiting of the load and is sate in an open circuit condition. A targe safety margin exists by use of

$30+30$ WATT STEREO AMPLIFIER

Viscount IV unit in teak simulate cabinet, salver finished rotary controls and pushbuttons with matching fascia, mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups, tape and auxiliary Aear panel features fuse holder. OIN speaker and input
socket $30+30$ wetts AMS $60+60$ wats peak. For use with socket $30+30$ wetts
4 to 8 ohm speakers. 4108 ohm speakers.
Si2e $14 y^{\prime} \times 10^{\prime \prime}$ appro $\begin{array}{ll}\text { Si2e } 14 \% \text { " } \times 10 " \text { "approx. } & \text { Plus } 83.80 \rho 8 \mathrm{p} \\ \text { BUILT ANOTESTEO. }\end{array}$
£32.90

PHILIPS BELT DRIVE RECORD PLAYER

HiFi record player deck. 2 speed. damped cueing. outo
shut-olf, belt drive with floating sub chassis to minimise acoustic feedbock. Complete with cartridge
LIMITED STOCK
UNBEATABLE OFFER AT
f27.50
Plus 53.16 pap

CALLERS ONLY

323 Edgware Rd, London w2. Tel: 01.7238432. Open 9.30arn -5.30 pm . Closed all day Thursday. Persons under 16 not served without parents authorisation.

generously rated components, result, a high powered rugged unts. The PC Bosrd is back printed. etched and ready to priil for ease of construction and the aluminium chassis is preformed and ratary to use. Supplled with all parts, circuih ACCESSORIES
Suitable IS coupling electrolytic for 125 W mortel
Sultable LS coupling electrolytic for 200W model
Suitable maint power supply unit for 125 W model
$£ 1.00$ plus $25 p$ p\&p. £1.25 plus 25 p $\&$ p. £7.50 plus $£ 3.15$ p\&p
Suitable Twin transformer power supply for 200 W model £ 13.95 plus $£ 4.00$ p 84

MONO MIXER AMPLIFIERS

50 WATT Sıx individually mixed inputs for two pick ups (Cer. of Mag.), iwo mowing coil microphones and two auxillary for tape, tuner, organs, etc. Eight slider controls - six for lewel and two for master bass and treble. four extra ireble controls for mic and sux inputs. Size: $13 \%^{\prime \prime} \times 6 \%_{2} " \times 3 x^{\prime \prime}$ spp. Power butput 50 watts R.M.S. (continuous) for use with 4 to 8 ohm speakers. Altractive black vinyl case with matching fascia and knobs. Ready to use.
£39.95
 Pus 53.70 p\&

100 WATT
Arushed Aluminium ary controls. Size: approx. $144^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$ Five vertical sliter controls. master volume, tope level, mic level, deck level. PLUS INTEROECK FAOER for perfeci graduated change from record deck No. 110 No. 2, or vice verso. Pre fade level controls (PFI) lets YOU hear the next disc before fading it in. VU meter monitors outpu
$£ 76.00$
100 w AMS output (200 w peak)
Plus $£ 4.60$ p 8 p .
MAIL ORDER ONLY
21E HIGH STREET, ACTON, W3 GNG.
Note: Goods despatched to UK postal addresses only. For further information send for instructions 20p
plus stamped addressed envelope

Dummy Load

We're making audio testing easy! Apart from your multimeter and your oscilloscope what you really need is a dummy load. Our version allows parallel and series connection as well as testing of both channels of a stereo amplifier at the same time. The advantages of using the unit are manifold - not only because the source is presented with an ideal resistive load of the correct value, but also because you can't damage expensive speakers during experimentation. Not only that - you don't annoy the neighbours when you're testing at full power and your eardrums are saved so you can still enjoy the music once you're finished.

Guitar Tuner

Our simple, low cost, easy to use (and all that jazz) Guitar Tuner is just the thing you need if you're a budding musician. Tuning up can be really irritating. but we've made it simple. You just plug the guitar into the unit and the oscillator with six reference frequencies does all the hard work for you. Just play the note and adjust the tuning until the built-in meter zeros, repeat the procedure for all the strings - et viola it's tuned. The tuner can also be shifted one or two octaves down to make it suitable for bass or rhythm guitars. Play it again Sam!

Infant Guard

How do you like your children - fried or boiled? Or perhaps poisoned? Well, we prefer to see healthy specimens of the next generation, so we've designed a special guard for you to fit onto your medicine cabinet. When small inquisitive hands open the cabinet an alarm goes off, which not only puts the child off investigating further, but also warns you about what's happening. When the cabinet is shut, the unit switches itself off. For the adult who doesn't want to be shattered by the sound of the alarm as he/she is reaching for the hangover remedy, there's also a disable button on the outside of the cabinet which prevents the alarm going off when the cabinet is opened by someone who is meant to use it. It's a really useful gadget to have whatever age your children may be, and it's cheap and simple to build

[^0]
Meter Beater

If the bane of your life is the not-so-lovely Rita the Meter Maid then you need our all-singing, all-dancing project. The unit is the same size as a Barclaycard (though you can't get credit with it) and fits neatly onto your keyring. It has an LED display which indicates whether you're setting it for 20, 40,60 or 80 minutes with the touch switch operation, and when you are nearing the time to beat Rita back to the limo, it beeps. We've set it so that for a 20 minute wait, it will go off three minutes before at 40, it goes off six minutes before, and so on. We reckoned that the longer you were leaving the car the further away you might be, cunning eh?

Robotics Today

This month we have an in-depth study on the hobbyist approach to robotics written by one of our readers. It covers just about everything from thoughts on mechanical construction, through data processing and programming to experimental ideas for sensors. For a really down-toearth approach to the exciting subject of Robotics read on.

DC Control of Audio

Taking still further our favourite theme of remote controlling everything in sight, Keith Brindley follows up his article on Veltage-Controlled Audio with this little offering. Using another of Mullard's chips to demonstrate, he delves into the murky depths of voltage-controlled volume and tone for use in preamps and to help put the theory into practice there are loads of good circuits to play with.

> It's Brer Robot time; not only a chance to meet Mic o-mo vise, but introduction to his continental friends Mr. Mouse and Mr. Beaver. Robotics Today looks at how the achievements of the Swiss roll on.

For centuries the Swiss have had a virtual monopoly on the world's timekeeping. A combination of geography, climate and national spirit have by some inexplicable coincidence led to a thriving cottage industry dedicated to high precision mechanics. Up until only 10 years ago it was a virtual certainty that most watches sold throughout the world, particularly those in the middle to upper price bracket, would be Swiss-made.

However, there can be little doubt that the Far Eastern countries, particularly Japan, Hong Kong and Taiwan, now dominate the electronic watch industry, a logical development of their undoubted expertise in miniature electronics. The Swiss, like any country with a international reputation for a particular product, had two choices: they could either resign gracefully, like the British motorcycle industry, or they could re-invest and at least try to regain that which was once theirs. The Swiss have for obvious reasons, chosen the latter path, but along that path have made some very shrewd and hopefully correct predictions about the future of personal timekeeping.

Time Zones

The most obvious decision was not to take on the Far East with purely digital watches. The LCD watch is now made almost exclusively in Hong Kong. No other country could even attempt to compete in the lower price bracket multi-function watch market. The Swiss have an enviable history of being able to work with micromechanics so the logical step was for them to marry the two technologies - mechanics and electronics - to produce watches with analogue displays, hands and faces but with the timekeeping controlled by integrated circuits and quartz crystals.

Fortunately for the Swiss the cottage industry that has developed around watch manufacture lends itself to a kind of co-operative operation where, for instance, a small area might have several factories producing different parts for different watches. Such an arrangement has existed, in fact, since 1939 when a number of companies got together to form ASUAG, which by the time it is translated into English stands for the General Corporation Of Swiss Horological Industries Ltd.

'Mr Mouse' assembling electronic watch chassis. The picture on the previous page is of the 'Mr Beaver' robot.

Within ASUAC are familiar names like Longines and Eterna, plus a dozen or so other companies which most of us will never have heard of but are nonetheless well known with in the watch industry. ASUAG was primarily designed to rationalise the production of watch movements, thus making it easier for the industry as a whole to respond to changes in demand and fashion. As the age of the electronic watch dawned it became necessary for ASUAG to respond by producing electronic watches, so within the group certain companies changed their production from purely mechanical parts to wholly electronic parts. Within these companies diversification into the development of automated watch assembly has led to some exciting developments in robotics

Swiss Success

The micromechanic expertise of one company, SSIH, has been channelled into the development of high precision robots. The term 'high precision' refers to the robots' ability to place miniature parts into assemblies with an accuracy that is measured in microns. So far SSIH have 20 working development machines with a further 200 planned for next year. The two types of robots (known as Mr Beaver and Mr Mouse!) use a combination of electronic and pneumatic power to articulate the arms. The mechanics are controlled by built-in microprocessor systems running on Swiss-developed software.

Although these robots were designed primarily for watch assembly, SSIH see a promising future of Mouse and Beaver in any situation that calls for high-precision, repetitive work. Such work might include the assembly of cameras, another area that would benefit from SSIH development.

At the moment SSIH have the field virtually to themselves. Robotics has, so far, concentrated more upon heawy industrial usage, car assembly and the like, where ultra-high-precision is not required. Doubtless the ability of the Swiss to produce mechanical systems to such high precision will keep other robot manufacturers out of the market for some time. It is tempting to speculate that SSIH have an eye on the Japanese and Hong Kong markets where much of the assembly fordigital watches and similar items is still highly labour intensive. It would indeed be ironic to see the Swiss succeed in this area; Swiss robots assembling Far Eastern watches.

Time In Hand

If you're sweating over a hot keyboard, trying to finish your program for our Armdroid competition before the October 31st deadline, then panic not. There has been a hold-up in the supply of the driver boards to customers, so on the fairly reasonable basis that you can't test the software without the hardware, the closing date for entries has been extended to December 31st. This will allow those of you who want to see what's involved to visit our stand at the Breadboard Exhibition (see page 12) and watch our demonstration. We hope to have two Armdroids running, one under program control and the other with a manual control box so you can play with the system and get the feel of things. There may even be a competition to find the most dextrous manipulator amongst our readers.

Meet The Mouse

On the other hand, if you can't make it to Breadboard (in which case we'll never speak to you again!), cast your eyes across the page and you'll see details of the ACC's conference on robotics. One of the attractions will be this year's winner of the Micromouse competition (together with his designers, of course). We'll be providing some of the speakers at this meeting together with demonstrations of projects old and new, See you there!

This new series will provide a stage upon which our readers may display their robotics achievements. It is intended to cover the practical application of robots in Britain today, be it at hobbyist level or in industry.
Readers in either category are invited to write to the editor of ETI, detailing their experiments, projects, application or usage of robotics. Any articles published will be paid for at commercial rates. It is also hoped to run an 'Ideas Forum' wherein readers can exchange views and ideas but that depends upon the response of our readers - you!

Write to: THE EDITOR, ETI MAGAZINE, 145 CHARING CROSS ROAD, LONDON WC2H OEE and mark your envelope "Robotics Today".

NAMAL assoclates

NO. 1 CLAYGATE ROAD. CAMBRIDGE CB1 4JZ Tel. 0223248257 TLX 817445

COMPUTER I.C.S	7408	13	4526	72	92	. 35
$2144.450 \quad .99$	7414	29	4527	. 99	93	. 35
2114-200LP . 99	7420	12	4528	. 77	95	44
2532 4.10	7442	. 33	4532	88	109	. 22
27081.80	7448	. 38	4541	1.12	112	. 22
2716	7474	. 20	4543	1.12	113	. 22
$2732 \quad 4.10$	7486	20	4555	40	114	. 22
4116-450 . 95	7490	21	4556	45	122	40
4116-200 . 95	74107	20	4558	1.02	123	. 42
$6116 \quad 8.00$	74151	26	74LS SERIES		124	. 99
6800 3.25	74159	58	00	. 10	125	. 26
6802 4.25	74167	1.15	0104	. 12	126	. 26
6809 8.75	74172	2.75	05	. 14	132	48
6810 - 1.30	74178	. 43	08-13	. 12	136	. 25
$6821 \quad 1.70$	74179	. 43	14	42	138	. 36
$6845 \quad 9.75$	74184	. 90	15-22	. 12	145	. 76
$6850 \quad 1.60$	74185	. 90	26	. 16	148	1.08
$80800 \mathrm{~A} \quad 2.20$	74198	. 55	27	. 12	151	. 30
8085 A 6.50	74199	. 56	28	.16	153	. 30
8224	74273	. 80	30	12	154	. 90
8228 - 4.00	74278	88	32	. 12	155	45
$\begin{array}{ll}8255 \\ 780 \mathrm{CPU} & 3.90 \\ 3.75\end{array}$	74284	1.44	33	. 16	156	. 38
Z80 CPU 3.75	74351	. 87	37	. 15	157	. 32
280 ACPU 4.85	C-MOS 4000		38	. 15	158	. 32
Z30 Plo $\quad 3.80$	4000	. 11	40	. 12	160	. 40
280 APIO 4.00	4001	. 11	42	.35	161	. 40
280 CTC $\quad 3.60$	4011	12	47	40	162	. 40
280 ACTC 4.78	4013	. 32	48	. 65	163	. 40
280 ASIO 12.00	4016	. 25	49	. 60	is4	. 48
VOLTAGE REGU:	4020	. 64	51	. 12	166	. 32
$78055 \mathrm{~V}+\quad .48$	4024	. 36	54	. 14	173	. 70
7812 12V , . 48	4047	. 76	55	12	174	48
$781515 \mathrm{~V}+\quad .48$	4060	. 85	73	21	175	. 58
782424 V + 50	4093	. 40	74	16	181	1.45
79055 V , 58	4099	1.20	75	25	190	. 57
$791212 \mathrm{~V} \quad .58$	4508	2.22	76	20	191	. 57
$791515 \mathrm{~V}-\quad .58$	4514	1.50	78	. 20	192	. 65
792424 V - . 58	4516	. 70	83	45	193	. 47
Standerd TTL's	4518	70	85	70	194	40
7400 . 12	4520	. 70	86	. 15	195	. 40
7401 . 12	4521	1.60	90	. 30	196	. 65
7404 . 13	4522	1.20	91	. 78	197	. 65

Sinclar $2 X 81$ Personal the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX 81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer

Every ZXBI comes with a comprehensive specially witien
Every ZX81 comes with a comprehensive, specially- writte irst principles to complex programs.

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4!

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80 $^{\prime}$

New, improved specification

- 280A micro-processor - new faster version of the famous $\mathbf{Z 8 0}$ chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Kit or built -it's up to youl

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

MICROCOMPUTER EXPANSION SYSTEM

Treat your home computer to extra memory and more peripherals with this versatile and simple expansion project. With the modules to be published you'll be able to custom-design your system to meet your requirements - and change it all around at a later date should you so desire. Design by Steve Wilding.

Home computers, like hi-fi, generally have a habit of starting out modestly (assuming your finances are anything like ours). and then growing steadily as you discover a buming need for more memory, more I/O, a printer, and finally the sound generator that tums the system into an all-singing, all-dancing electronic marvel. (Actually, computers almost never dance). To help out those of you in the upgrade market, we present this low-cost, flexible expansion system designed for a number of popular microcomputers on sale in the UK - ones based on the 6502 and Z80 microprocessors.

The system is made up of a motherboard and a range of expansion cards that plug into the motherboard as and when your needs dictate. For example, if your need is purely for RAM memory expansion then a motherboard and four RAM cards will give you an extra 32 K of RAM. The constructional and application details are given for the motherboard and the 8K RAM card in this article - in subsequent articles details of the remaining expansion cards in the range will be provided. These will include an EPROM programmer and an EPROM card for use with 2516 and 2532 single rail EPROMs; a sound board utilising up to three of the popular AY-3-8910 programmable sound generator chips; a parallel I/O card providing two 6520s for uses such as a parallel printer driver (Centronics) and a low cost disc interface.

Two 40-pin input sockets are provided (SK6 and SK7) - these are wired in parallel so that two or more motherboards may be linked together. This allows you to use a larger number of those modular which use less than 8 K of memory.

Vive La Difference

Obviously there are differences between computers and the expansion system must be capabie of adapting to meet varying demands. The important difference for this application is the first free memory location available for expansion in your computer's memory. For RAM expansion to be effective it must run consecutively with the existing RAM. Table 1 gives the first free location for some popular computers.

For the more technically minded an explanation of how compatibility is achieved is given in the How It Works section. Suffice to say here that the system is capable of being moved around in memory to fit the particular computer's requirements. This is achieved by means of selective soldering of wire links as described later in the article.

Construction

Construction is best achieved using a 15 W soldering iron with a fine bit and 22 swg solder. First solder in the four wire links to select the correct location in the memory map for your computer (see Table 2). Solder the DIL. sockets into the board taking care not to make any shorts between pins. Next fit the five edge connectors and lastly the ceramic capacitors - these can be held in place whilst soldering by slightly spreading their legs under the board. The PCB has plated-through holes and so it isn't necessary to solder a connection on both sides of the board; but allow enough time when soldering for solder to run through the hole as this ensures a good connection. Construction of the motherboard is now complete.

Follow the same instructions when constructing the RAM card - solder the IC sockets in first, then the eight ceramic capacitors and construction of the $\bar{R} A M$ card will be complete.

Finally insert all ICs according to the overlay, taking care not to bend any IC legs.

SPECIFICATION

Motherboard: This is the main board of the system. It allows up to five expansion cards to be used at once socket 5 being a duplicate of socket 4 , allowing smaller expansion cards to be used without tying up a whole 8 K block each. Both the control bus and address bus are buffered by the motherboard but the data isn't, as this is already done by many micros. Power requirements are 5 V at 100 mA .
RAM Card: A static RAM expansion card using 162114 L 300 ns RAM chips. Power requirements are 5 V at 650 mA . EPROM Card: Available for either 2516 ($2 \mathrm{~K} \times 8$) 5 V single rail EPROMs or 2532 ($4 \mathrm{~K} \times 8$) 5 V single rail $E P R O M$.
EPROM Programmer: For programming 2516 or 2532 single rail EPROMs for use with the above card. Sound Card: Allocation for up to three A Y-3-8910 three-channel sound chips, allowing the generation of complex waveforms.
PIO Card: This board contains two PIO chips for 32 individual inputs or outputs. 12 of these are used for a Centronics-compatible parallel printer driver, for use with Superboard/UK101 and Watford's WEMON chip. Three connections are for use with a light pen and a further six are for power output applications.

TABLE 1

GROUP	FIRST FREE MEMORY LOCATION	COMPUTERS
1	2000	UK103
		Ohio Superboard 8K PET
		Microtan 65
2	4000	16K PET
3	6000	16K TRS-80
		16K Video Genie
4	8000	32K PET

The photograph above shows a close-up of the wire links around IC4. This board was in use with the 8K PET, a group 1 computer. (Check the links against Table 2 and Fig. 1).

ETI DECEM8ER 1981

NEXT MONTH: Connection details for more machines, details of the
modifications for use with $\mathbf{Z 8 0}$ micros, and the second of the plug-in modules.

TABLE 2

GROUP1				
GROUP 2	GROUP 3	GROUP 4		
Link W to:	A	B	C	D
Link X to:	B	C	D	E
Link Y to:	C	D	E	F
Link Z to:	D	E	F	C

Fig. 1 Table 2 shows which of the lettered holes around IC4 to link in order to locate the expansion system at the correct point in your computer's memory. The 'thin' holes are not through-plated; the rest are.

Fig. 2 Circuit diagram of the motherboard. To avoid large numbers
of confusing lines, the buses are shown as thick black lines instead
$\stackrel{\rightharpoonup}{\circ}$ of eight or 16 thinner ones. SK7 is not shown - it is simply connected
in parallel to SK6 to allow further expansion.

Fig. 3 Circuit diagram of the 8K RAM card

BUYLINES

A complete kil of parts for this project is A complele kil of paris for this project is
available from Watford Electronics, $33 / 35$ Cardiff Road, Watford, Herts. The motherboard costs $£ 39.95$ and the BK RAM card is E29.95 (p\&p 75 p if both are ordered logether). A suitable power supply for the expansion system (5 V al 3 A) is available for $£ 20$ ready-built. The 40 -way jumper lead for use with Superboard/UK101s costs $£ 5.40$ (for a $24^{\prime \prime}$ length). Prices for olher connec-
tors are available on application. All prices exclude VAT.

HOW IT WORKS

The address and part of the control bus from the host computer are buffered using three 8T95s (ICs 1-3), which are bidirectional hex buffers. A 74 LS138 three-loeight decoder (IC4) is used to decode the top three address lines (A13-A 15) into of blocks. Of these, four are to be selecied one for each expancet is a duplicate of socket fourso as to enable the use of two expanslon cards in one 8K block: for example, the sound card and parallel inputtoutpul card use a small fraction of the 8 K a llocated to a socket, so by duplicating socket four we allow more expansion cards to be used at once.
The 8 K blocks are located at $0000-1 \mathrm{FFF}$, 2000-3FFF ...ECOO-FFFF (Hex), so if the system is to be conficured to start at 2000 (group 1), then blocks 2 od 5 st be used. 1 your computer is 10 group 21 be selected similarily for group 3 blocks 4 be 7 re used and for group 4 blocks 5 to 8 .

Once selecled, the four 8K blocks are further decoded into 1K blocks by four more 74LS138s (ICs 7-10). The bus signals and these $1 K$ decodes are then brought to the expansion socket connectors. The DD (data directlon) signal is generated for syslem use with Ohio Superboards and UK 101s.

The RAM card is very straightforward, making use of $162114 \mathrm{~L} 1 \mathrm{~K} \times 4$ static RAMs Each pair of RAMs is selecled by its respec board. As the RAMs are only four bits wide they are enabled in pairs to provide eightbit bytes.

Fig. 4 (Above) Overlay for the motherboard.
Fig. 5 (Below) Overlay for the $8 K$ RAM card.

PROJECT : Computer Expansion

EXPANSION SOCKET PINOUTS

+VE	1	2	+VE
+VE	3	4	+VE
+ VE	5	6	+VE
BD0	7	8	+VE
BD1	9	10	+VE
BD2	11	12	+VE
BD3	13	14	+VE
BD4	15	16	+VE
BD5	17	18	
BD6	19	20	BA3
BD7	27	22	BA4
BAO	23	24	BA5
BAI	25	26	BA6
BA2	27	28	BA7
	29	30	BA8
RW	31	32	BA9
CSO	33	34	
CS1	35	36	
C52	37	38	
C53	39	40	
CS4	41	42	
CS5	43	44	
C56	45	46	Earth
CS7	47	48	Earth
¢2	49	50	Earth
NM	51	52	Earth
IRQ	53	54	Earth
Earth	55	56	Eartin
Earth	57	58	Earth
Earth	59	60	Earth
BDO-7		d d	
BAO-9		d ad	lines
NMI		aska	terrupt
C50-7		lect	
RWW		R	Vrite
б2		d cl	
IRQ		pt re	
Each chip select line enables a 1 K block in the memory. C50 is the lowest and CS7 the highest within the 8 K area assigned to that particular socket.			

Table 3 (opposite) gives the connection details for SK6 (the motherboard input socket) for people who wish to use this project with other systems.

Left: The expansion system connected to the expansion socket of a Superboard via a 40way cable. You'll also have to insert two 8 T 28 buffers into the empty sockets next to the CPU before the system will work.

Top: You probably can't see it in the photo, but the screen of this 8K PET reads '15359 BYTES FREE' - courtesy of the expansion system. This is plugged into the PET using sockets 14 and J9, on the right of the PET at the back (above).

TABLE 3

PIN	FUNCTION	PIN	FUNCTION
1	IRQ	40	
2	NMI	39	
3	DD	38	
4	D0	37	
5	D1	36	D4
6	D2	35	D5
7	D3	34	D6
8		33	D7
9		32	RW
10		31	D2
11		30	
12	A2	29	
13	A1	28	
14	A0	27	A15
15	A3	26	A14
16	A4	25	A13
17	A5	24	A12
18	A6	23	A11
19	A7	22	A10
20	A8	21	A9

CROTECH OSCILLOSCOPES

Aange of Portable Scopes mains and battery operatec. Plus special leatures (UK c/p $£ 3.00$

3030 Single trace 15 MHZ .5 mV .05 mecro secs Plus buitt in component testet. 95 mm lube 3131 Dual trace 15 MHZ , trig to 35 MHZ . 5 mV .0 .5 micro sec 130 mm tube. plus component tester. 3034 Battery.mains dual trace 15 MHZ . trig to 20 MHZ . buill in Nicads. 5 mv .0 .5 micro secs. (Elimunator charger opional $£ 28.75$)
Aiso Avalisole 3033 . single trace 3034 3035.130 mm 3030 3337. dual 30 MHZ . 130 mm

RF AND AUOIO SIGNAL GENERATORS Mains operated (UK C/D $£ 1.00$)
Audlo 20 HZ -200 KHZ 4 band Sine/Square o/p.
IE220 Distortion max 1\% sec
£264. 50 © 56.50
£293.25
E189.75
$£ 408.25$

683.00

A628 Distortion 05-1\% leader
46203 10 H2-1 MH25 band max ols stortion 0.1% Trio
AF All feature Int/Ext. MOD. Vartable output
TEZ $200100 \mathrm{KHZ}-100 \mathrm{MHZ} 6$ band (300 PAHZ harmonics) LS816 $100 \mathrm{KHZ}-100 \mathrm{MHZ} 6$ band (300 MHZ harmonics) Leader SG402 100 KHZ 30 MHZ 6 band protessional trio

THANDAR - SINCLAIR
Reliable low cost portable instruments, bench models alf $255 \times 15 \times 5 \mathrm{~cm}$ Generators mains operated rest battery (supplied). UK c/p Hand models etp, bench £1.15)
OIGITAL MULTIMETERS (3 \% digit LCO)
TM 354 Hand held. OC 2 A . 2 m ohm. $1 \mathrm{mV}-1000 \mathrm{~V}$ DC. 500 v AC
 TM353 Bench. 2A AC/DC. $1000 \mathrm{VAC} / \mathrm{DC}$ 20M ohm ypleal 025 , Now Low Price 586.25 . Typical 0 1\%
¢11385
FAEOUENCY COUMTERS I8 Diolt
PFM200 a Hisnd hidd LEO. 20 MHZ IOmV MHE with TPOOO
TFG40 Bench LCD $40 \mathrm{MHZ}, 40 \mathrm{mV}(400 \mathrm{MHZ}$ with TP600) £ 126.50 TF200 Bench LCD. 200 MHZ . $10-30 \mathrm{mV} 1600 \mathrm{MHZ}$ with (TP600!
TP500 $600 \mathrm{MHZ}+10$ Prescaler $10 \mathrm{mV} \quad \begin{aligned} & \text { M } \\ & £ 43.13\end{aligned}$ GEHERATORS (All bench models) mains operaled
 TG102 Funclion O2 HZ-2 MHZ Sine/SO/Triangle /TTL £166.75 TG105 Pulse 5 MHZ 2 FHZ (200nS-200mS) varrous oulpuis 59.75 OSCILLOSCOPE (Bench model fow Dower portable) 10 MHZ Z trace. 10 mV .0 .1 micro sec Alf tacilities Model SC110
£159.85

(Rech argable battery pack $£ 8.63$. AC adaplor/charger $£ 5.69$ OPTIONAL ITEMS
Carry case (bench only) $£ 6.84$ AC Adaprors (state model) $£ 56$

LCD DIGITAL MULTIMETERS

SPECIAL PURCHASE - LIMITED PERIOD ONLY

6220 Reliable 22 range hand held $31 / 2$ digit LCO with volt/ohms auto range, unit and range signs. 10 amp AC/DC, battery warning. lower power ohms range: Model 6110 Also has range hold, conlmuity buzzer-and improved accuracy. Al models high quality rofaty operation Resolution 0.1 milli volt $10-$-Micro amp: 01 hmm.
.62201000 v OC: $02 / 10 \mathrm{~A}$ AC/DC: 600 v AC: 2 meg ohm Was $£ 55.95$
NOW \&42.95

6110 As above plus 20 mA ACIDC and improved accuracy Was $£ 8595$ NOW 259.95
THIS SPECIAL OFFER IS Quality with value
Abso in stock
182 m 16 range with hife chacker 10 mp DC
$103 m 30$ range wath hite checker 10 amp ACD
0030127 rage pust button $2 A \mathrm{ACJCC}$
MULTIMETERS (UK c/p65p or $£ 1.00$ lor two)
CHOOSE FAOM UKS LARGEST RANGE
kitiol 10 range pocket $1 \mathrm{k} /$ Vois
KTIIOO 12 range pockel TK/Vot
H55 10 range pocket 2KIVOH:
ATI 12 range pocket Detuxe 2K IVoll
ST5 11 range pocket $4 \mathrm{~K} / \mathrm{Volt}$
NH56 22 range pockel 20K / Volt
Yn3*0Th 19 tange plus Hie Test 20K/Vott
\$T303TA 21 range plus Hfe Test $20 \mathrm{~K} / \mathrm{Volt}$
XATS001 16 range - range double $50 \mathrm{~K} / \mathrm{Volt}$

T1020 19 ranoe Delure plus Hite Test 20 k , 16.50 ATC5000 As KRT 5001 plus colour seates $50 \mathrm{~K} / \mathrm{Vot}$ § 16.95 | 708118 range - range double 10A OC SOK $/$ Volt $£ 2085$ |
| :--- | TMK500 23 range. PIus 12A DC Plus Cont. Buzzer 30K $/ \mathrm{V}$ olt

| | $\mathbf{Y 2 2 . 7 5}$ |
| :--- | :--- | :--- |
| | 525 |
| 21 range Deluze $10 A$ | | C7080 26 range large scale 104 DC . 5 KV AC/DC 20Krvolt

£27.50
 AT21023 range Deluxe 12A ACIOC 100 (/Volt $\$ 1.00$ 360 TR 23 range Large scale 10A AC/OC Hie Test 50 Meg ohm. 1 KV ACIDC $100 \mathrm{~K} / \mathrm{Volt}$

OIRECT REAO HV PROBE
(UK c/D 65p) O/40KV: 20K Volt $£ 18.40$

oiscounts

Avallable for UK and Export for small and large quantities For most products Please enquire

OSCILLOSCOPE

 PROBE KITS UK \& ${ }^{5}$ 500 per I to 3 Andild BNC ath or 8 mana $\times 1$ £7.55. $\times 10$ $89.45 \times 1-X 10810.50$
$\times 100$ f8NC ond 516.80

LOGIC PROBES/MONITORS/PULSERS circuit

 powered (UK c/p 60p)LPI DTLTTILCCNOS. 10 MHZ Z Pulse Memory LP2 DTLITTL/CMOS. 1.5MHZ: Puls: LP3 DTL/THLCMOS 50 MHZ Pulse: Memory LMI koglc monitor for 8 to 16 pinlC's OPI Oivital pulser. Single or 100 pos LIPPO7E 50 MHZ: 10M

SAFGAN PORTABLE OSCILLOSCOPE

Range of low cost Dual Trace Scopes manns operaled. Made in UK to exacting stancards Avariable as 10 MHZ 15 MHZ or 20 MHZ Aid feature miv senstivity. 0.5 micro sec 6.4 x Bem display (UK c/p $£ 2.50$

OT 410	Dual 10 MHZ	MHZ
OT4 45	Dual 15 MHZ	$£ 194.35$
OT4 40	Dual 20 MHZ	$£ 201.25$
		$£ 216.20$

 L

electronics today international $: 0018=$

How to order; Make cheques payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service,
Sales Office, 145 Charing Cross Road, London WC2. All prices include P\& P. Prices may be subject to change without notice.

BEGINNERS

Beginnars Gulde to Electronics Squires $£ 4.50$
Beginners Guide to Tranststors Reddihough $£ 4.50$
Beginners Guide to Integrated Circuits Sinclarr $£ 4.50$
Beginners Guide to Radio King $£ 4.50$
Introducing Amateur Electronics Sinclair $\mathbf{£ 4 . 5 0}$
Understanding Electronic Circuits Sinclair $£ 5.10$
Understanding Electronic Components Sinclair $\mathbf{5 5 . 1 0}$

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook f8. 20
Active Filter Cookbook $£ 11.30$
IC Timer Cookbook $£ 765$
IC Op Amp Cook Book $£ 10.70$
TL Cookbook 17.55
MC 6809 Cookbook Carl O. Warren $£ 530$
PLL Synthesiser Cookbook Kintey $£ 5.85$
8085A Cookbook Titus $£ 10.05$

APPLICATIONS

How To Build Electronic Kits Chapel $£ 3.25$
110 Electronic Alarm Projects Marston $£ 5.25$
110 Semiconductor Projects for the Home Constructor Marston $\mathbf{E 6 . 2 5}$ 110 Integrated Circuit Projects for the Home Constructor Maraton $\mathbf{5 5 . 2 5}$ 110 Thyristor Projects Using SCRs Marston 55.25
99 Practical Electronic Projects Friedman $£ 420$

COMPUTING \& MICROPROCESSORS

What is a Microprocessor 2 cesserte rapes plus a 72 -page book $£ 10.00$
Beginners Guide to Computars and Microprocessors with projects $£ 6.05$
Basic Computer Games Ahl $£ 6.05$
Beslc for Home Computers Albrecht $£ 6.60$
Itlustrating Basic Alcock £4.25
roubleshooting Microprocessors and Digital Logic Goodman $\mathbf{5 5 . 9 0}$
-80 Minocasputer Handbook $£ 7.75$
Baslc Basic Coan $\mathbf{E 7} 25$
Advanced Basic Coan $\mathbf{£ 6 . 4 0}$
1001 Things to do with your Personal Computer Sawusch $£ 6.00$
Microcormputers. Mlcroproces sors. Hardware. Software and Applications Hilburn $£ 17.40$
Microprocessor Systems Design Klingman $£ 18.80$
Introduction to Microprocessors Leventhal f 1125
Microprocessor Technology. Archifecture and Applications $£ 11.30$
Basic with Style Nagln $£ 450$
Aicrocomputer Design Oqdin $£ 7.45$
ands on Basic with a Pat Peckham $\mathrm{f11.95}$
800 Soltware Gourmet Guide and Cookbook Scelbl $\mathbf{£ 9 . 2 0}$
The 8080A Bugbook Rony f8. 35
$8080: 8085$ Software Design Titus $£ 7.60$
How to Dasign. Bulld and Program your own Working Computer System £. 710
Your Own Computer Waize $£ 225$
Microcomputer Interfacing Handbook ADO \& D A £6.35
Crash Course in Microcomputers Frenzel $\mathbf{£ 1 2 . 4 0}$
Musical Applications of Microprocessors Chamberlain $£ 17.50$
50 Basic Exercises Lamotier $f 950$
50 Basic Exercises Lamoltier $£ 9.50$
Microprocessors for Hobbyists Coles $£ 4.95$
Introduction to Microcomputer Programming Sanderson $£ 5.25$
Microprocessors and Microcomputers for Engıneering Studenta and Technicians Woolland £5.95
Using CP/M - Self Teaching Guida Ashley Fernandez f6.95
Digital Counter Handbook Frenzel f8.40
33 Challenging Computer Gamien for TRS80.Apple. Pat Chance $\mathbf{£ 5 . 7 5}$ How to Build Your Own Working Robot Pet Dalesta $£ 5.75$
Microprocessor and Computers Garden f 420
Guidebook to Small Computers Barden $£ 4.20$
How to Debug Your Personal Computer Hulfman £6, 30
How to Troublentor Microcomputers Leuk $£ 6.30$ Staupard $£ 1020$.
Wordprocessors Programmed. Training Gulde with Practical Application E Digltat Circuits and Microcomputers Johnson $£ 9.75$
Experiments in Arthiciel Intelligence for Small Computers $\mathbf{£ 5 . 6 0}$

LOGIC

Designing with TTL Integrated Circuits Texas instruments $£ 10.95$ How to Use IC Circult Logic Elements Strater $£ 4.85$
110 CMOS Dighal IC Projects for the Home Constructor Marston $£ 5.25$
Oigitalics - How They Work and How to Use Them Barber $£ 16.30$
Electronic Design with Off the Shelf ICs Melkson $£ 630$
Getting Acqualinted with the IC Turner $£ 4.20$

TEST INSTRUMENTS

The Oscilloscope in Use Sinclair $\mathbf{£ 4} 00$
How to Get More Out of Low-cost Electrontc Test Equipment Genn £5.50

OP-AMPS

Applications of Operational Amplifiers Graems $\mathbf{£ 9 . 2 0}$
110 Operational Amplifier Projects for the Home Constructor Marston $£ 5.25$
Designing with Operational Ampllitiers Burr Erown $£ 26.50$
Oparntional Amplthiers. Oesion and Applications Tobery $£ 8.95$
OpeAmp Handbook Hughes E15.50

COMMUNICATIONS

Digital Signal Processing. Theory and Applicstions Rabiner 24.40 Electronic Communication Systoms Kennedy $£ 8.95$
Principles of Communlcation Systems Taub $£ 8.40$

THEORY

Introduction to Digital Filtering Bognor $£ 12.25$
Electronic Circuit Design Texas instruments $£ 10.95$
experiments:

REFERENCE

Electronic Engineers Reference Book Turner $£ 41.00$ Electronic Components Colwell $£ 4.00$
Eliactronic Oiegrams Colwe I $£ 4.00$
International Pransistor Selector Towers $£ 10.70$ International FET Salector Towers $£ 4.60$
International Op.Amp Linearic Sel ector Towers $\mathbf{5 8 . 0 0}$ Dictionary of Audifi - Radio and Video Roberts $\mathbf{f} 1600$ Dletionary of Electronics Amos $£ 16.00$
Dietionary of Electrical Engineering Amos $£ 16.00$
Dictionary of Telecommunications Amos $£ 16.00$
Giant Book of Elactronic Circuits Collins $£ 5.75$
World Radio:TV Handbook Vol. 351981 £ 10.50
How to Build Electronic Projects Malcolm £6.45
Modern Electronic Circuit Referance Manuill Marcus $£ 33.50$

Send to: ETI Book Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE.

Please send me the following books:
\qquad

I enclose cheque/PO for $£$
Signed
Name .
Address.

CROSSOVER NETWORKS

> Put down that inductor you're winding on an old cotton reel and read this article on crossovers and loudspeaker design from KEF Electronics. It'll tell you why you've been wasting your time.

The basic requirements for a high-quality loudspeaker include on the one hand a smooth and uncoloured response maintained over an angle of radiation wide enough to cover the listening area, and on the other, freedom from audible non-linear distortion, together with a combination of efficiency and power handling capacity adequate for the conditions of use. For each drive unit in a multi-way system, there is only one frequency band over which all these requirements are simultaneously satisfied; outside this band there will be regions in which some of them cannot be met. A low-frequency drive unit, for example, if allowed to operate in the high-frequency range, would introduce colouration through diaphragm resonance. Again a high-frequency unit, if allowed to operate at low frequencies at which the necessary diaphragm excursion exceeds the linear limit, would introduce distortion products. To avoid degradation of the overall sound quality by such unwanted contributions, it is therefore essential that the output from each drive unit outside its working frequency range should be reduced to a sufficiently low level by adequate attenuation in the crossover filter.

Filtering Through

Filters in practice cannot have an infinitely sharp cut-off, so that there is an overlap region around the nominal crossover frequency in which the total sound output is made up of contributions from two different drive units. Ideally, the combined characteristic of each unit working in conjunction with its associated filter network should be such that the sum of the two contributions gives a flat response over the entire transition region; in addition, if the frequency characteristic of a unit within its working band is not quite flat, the network should be designed to rectify this. Each filter has therefore to be tailored to suit the response of its associated drive unit both in the working band and in the nominal cut-off region; moreover, it must be designed to operate into the input impedance of the unit, which will in general be complex and will contain additional components associated with the fundamental resonance of the diaphragm. Finally, the impedance presented by the filters to the power amplifier must be kept within prescribed limits which apply not only to the magnitude or modulus, but also to the relationship between the resistive and reactive components.

To measure the phase shift in a loudspeaker has been until recent times a very difficult operation, largely because of the additional - and much greater - phase shift associated with the time taken for the sound to reach the measuring microphone; this phase shift depends on the distance of the microphone from the acoustic centre of the drive unit, ie that point within the unit at which the sound appears to originate. The exact location of the acoustic centre is initially unknown but can be readily determined by the pulse test method developed by

KEF; a short electrical impulse is applied to the unit, and the complete frequency response, in both amplitude and phase, is derived by computer analysis of the resulting transient sound output. This technique allows the phase shift introduced by the drive unit to be separated from the multiple phase rotations associated with the distance of the microphone from the acoustic centre, so that the position of the latter can be accurately calculated.

On Target

In designing crossover filters to suit individual drive units, the method adopted by KEF is to consider the overall electroacoustic response of the network and unit together, and to make this conform as closely as possible to some known filter function that gives adequate attenuation in the cut-off region together with a smooth transition at crossover; the response/frequency relation to be aimed at is referred to as the Target Function and is represented by the symbol $T(f)$. The response/frequency function of the drive unit alone, already measured under working conditions, is represented by $\mathrm{S}(f)$. The next step in design is to compute the frequency characteristic $H(f)$ of a filter that will convert the existing response $S(f)$ into the wanted reponse $T(f)$; the functions $T(f), S(f)$ and $H(f)$ are in linear units, not dB , so that the conversion is a multiplication process, ie

$$
T(f)=H(f) S(f) \text { and } H(f)=\frac{T(f)}{S(f)}
$$

In specifying the function $T(f)$ we can use any of the known forms of filter response, ignoring however the circuit configurations conventionally associated with these. The form commonly adopted is that of the classical Butterworth filter. Figure 1

Fig. 1 Butterworth high-pass filter characteristics. (a) 1st order, maximum slope cut-off 6dB/octave; (b) 2nd order, 12 dB loctave; (c) 3rd order, 18 dsloctave.
shows three high-pass filters of this type; the corresponding lowpass characteristics are the same but reversed left to right. All these curves are of the type described in filter theory as 'maximally flat'; this means that the attenuation within the pass band is kept as small as possible down to the nominal cut-off frequency f_{3} - at which the loss is 3 dB - without introducing peaks or ripples in the characteristic. The curves in Fig. 1 represent Butterworth characteristics of the first, second and third order; the higher the order, the greater the cut-off slope - which in the three cases illustrated rises to a maximum of 6 dB and 18 dB per octave respectively - but also the greater number of circuit components required.

Cross Over Choice?

Although a first-order crossover network exhibits such desirable characteristics as unity amplitude and zero phase shift at all frequencies, the relatively slow cut-off rate of 6 $\mathrm{dB} / o c t a v e$ gives rise to a number of practical difficulties and such designs are not used. Crossover networks of the second order were at one time favoured but now have little application in high-quality systems. The overall frequency reponse obtained is not flat in the crossover region, but exhibits either a crevasse or a hump, depending on whether the drive units are connected in the same or opposite polarity; moreover, the cutoff slope of $12 \mathrm{~dB} /$ octave is still insufficient for many purposes.

Third-order crossovers, on the other hand, satisfy many of the requirements and are widely used. Figure 2 shows a commercial high-frequency drive unit fed through a conventional

Fig. 2 High-frequency drive unit with conventional 3rd order Butterworth high-pass filter.
third-order Buttenworth high-pass filter having a nominal cut-off frequency of 3 kHz , and Fig. 3a the measured amplitude and phase response of the filter unit together; Fig. 3b represents the theoretical response of the filter alone when loaded with a resistor numerically equal in value to the nominal impedance of the unit. Comparing curves (a) and (b) it will be seen that the response of the filterfunit combination deviates substantially from that which the filter was intended to produce. At high frequencies the characteristic is modified by the voice coil inductance, which resonates at 5 kHz with the second capacitor of the filter. From 3 kHz downwards, the cut-off slope, which for a

Fig. 3 (a) Measured amplitude and phase response of the fig. 2 circuit; (b) Theoretical amplitude and phase response of the filter alone, terminated with the correct resistlve load.
third-order filter should be $18 \mathrm{~dB} /$ octave, starts off at $12 \mathrm{~dB} /$ octave and below 1.2 kHz - the fundamental resonance frequency of the diaphragm - increases suddenly to nearly $30 \mathrm{~dB} / \mathrm{oc}-$ tave. This large change in slope is reflected in the phase shift in the cut-off region, which far exceeds the proper value; the disparity extends up as far as the crossover frequency and would have a significant effect on the overall loudspeaker response in the transition region.

Fig. 4 (a) Computed Acoustic 8 utterworth filter designed to compensate for the non-flat response and complex input impedance of the high-frequency drive unit; (b) Practical realisation of Acoustic Bufterworth filter.

Figure 4 a shows the same high-frequency unit with a new network computed by taking the theoretical filter response of Fig. 3 b as the target function; Fig. 4b illustrates a different but equivalent circuit configuration adopted for greater convenience in manufacture. The new network compensates for the electro-acoustic characteristics of the drive unit, including the effects of the voice coil inductance and the fundamental resonance. The voltage at the terminals of the unit varies with frequency in such a way as to produce the acoustic response shown in Fig. 5 a ; over most of the range from 500 Hz to 20 kHz this response conforms closely to the theoretical Butterworth characteristics, reproduced in Fig. 5b, the residual deviations being within $\pm 1 \mathrm{~dB}$ in amplitude and within a few degrees in phase.

Fig. 5 (a) Measured amplitude and phase response of the highfrequency drive unit with the filter shown in Fig. 4; (b) Theoretical 3rd order Butterworth filter characteristic (as in Fig. 3b).

Avoiding Interference

For maximum horizontal distribution of sound without interference, the drive units in a multi-way loudspeaker should be mounted one above the other. Because of the unavoidable separation between the units, some interference effects mustthen occur when the listener is located above or below the design axis and thus no longer equidistant from the different sound sources; the amount of this interference sets a limit to the angle above and below the axis within which the response can be maintained substantially constant.

This situation is further complicated by the phase shift necessarily associated with the high- and low-pass characteristics of the individual filter/unit combinations. The high-frequency drive unit, which at crossover normally has a phase lead over the low-frequency unit, is commonly mounted above the latter, what happens then is illustrated by the polar diagram in Fig. 6, which shows how the loudspeaker response at crossover varies with angle in the vertical plane. It will be seen that the main lobe of the polar socharacteristic, instead of coinciding with the axis of zero inter-unit time delay, is tilted downwards and has a maximum amplitude 3 dB above the on-axis response; a great deal of sound energy is thus directed away from the listening area and towards the floor, producing unwanted frequency-dependent reflections which modify the relationship between the direct and reflected sound in the room. Worse still, there is a region, just above the axis, where the outputs from the two units are beginning to get out of phase and at one angle almost cancel each other; as a result, a small vertical displacement produces a large change in the response of the system around crossover, and hence in the spectrum of the reproduced sound.

diagram of twow plane polar system. X-Y indicates axis of zero inter-unit time delay.

One way of dealing with this situation is to mount the lowfrequency drive unit (or mid-range unit in case of a threeway system) above the high-frequency unit, this turning the polar diagram upside down; the main lobe is then directed away from the floor and the cancellation region placed where it can do little harm. This arrangement is adopted in the KEF Calinda and Cantata loudspeakers. A more radical solution, applied in the KEF Model 105 loudspeaker, is to choose for the target functions a form of filter characteristic that keeps the acoustic outputs from the high-and low-frequency drive units in phase over the whole frequency range, so that the main lobe of the polar curve remains symmetrical about the axis of zero interunit time delay. The crossover networks used to achieve this end are of a special type of fourth-order filter which is equivalent to two second-order Butterworth filters in cascade and thus gives a cutoff slope of $24 \mathrm{~dB} /$ octave.

Time Travel

Before leaving the subject of interference, it may be noted that the acoustic centre of a high-frequency drive unit usually lies approximately in the plane of the panel on which the unit is mounted, while that of a low-frequency or mid-range unit is located further back, a short distance in front of the voice coil. The resulting difference in time delay can be allowed for in the physical positioning of the units in the loudspeaker assembly. It is however possible in some cases to achieve the equivalent result electrically by modifying the amplitude response, and hence the phase shift, in the crossover filters in such a way as to introduce a compensating time delay, while still satisfying the basic requirements of flat overall response and adequate cutoff slope. The target functions adopted then differ from the classical forms illustrated above - for example, the high-and low-pass characteristics at crossover may not be of the same order; given the necessary computational facilities, a number of useful variants of this kind can be evolved to meet particular design requirements.

FEATURE : Crossover Networks

The KEF Calinda (left) and Cantata (far left) loudspeakers avoid interference effects by putting the mid-range drive unit above the highfrequency unit. The KEF 105 II (lead picture) employs a more radical solution.

Network Synthesis

The design of the KEF Model 105.2 loudspeaker provides a good example of modern methods of network synthesis. The mid-range filter only is considered here: a similar procedure is adopted for the high- and low-frequency networks.

The first step is to examine the frequency response curves of a large number of mid-range drive units, measured under standard production test conditions, and to select one specimen, the characteristic of which coincides with the mean of the production spread. This unit is then mounted in the enclosure designed for the complete loudspeaker system, and its response under these conditions measured without a filter, ie with constant voltage applied to the input terminals.

Since the filter has to be designed to operate into the complex impedance presented by the input of the drive unit, this impedance must now be measured. For the purpose of network synthesis however it is convenient to represent the result by an equivalent electrical circuit with specified component values rather than by a series of resistance and reactance figures at a number of frequencies; this approach makes it easier to calculate the effect of certain parameters of the unit.

The next step is to decide what circuit configuration will produce the best fit to the desired network response curve while using the minimum number of components - taking into account the complex load imposed by the drive unit and the need to present an acceptable impedance to the power amplifier. The order of network required can usually be deduced by comparing the slope of the frequency characteristic for the drive unit alone with that of the target function representing the desired overall response curve. In principle, a number of alternative circuit configurations could be considered at this stage, but in the light of the designer's experience the choice will usually be narrowed down to one or two.

Details of each network to be investigated, the response characteristic required and the equivalent circuit for the drive unit input impedance are now fed into a computer; this is. pro-
grammed to carry out an optimisation routine, which determines the network component values giving the best fit to the desired response curve and also the degree of accuracy achieved. The optimisation process is initiated by assigning approximate values to the various circuit elements; the computer then calculates the effect of making small changes in each element, and retains any of the new values that bring the response nearer to the ideal. This operation is repeated - possibly a thousand or more times - until the residual error in the curve fitting cannot be reduced any further. With the component values thus arrived at, the input impedance of the network is then checked to ensure that it remains within acceptable limits throughout the working frequency range.

The above procedure is repeated, if necessary, for alternative types of network so that a final choice of the optimum circuit configuration can be made.

Choose Your Components

At this stage the designer has to consider ways of utilising readily available circuit components, avoiding the need for non-standard values and close tolerance limits, both of which add considerably to the cost. The computer program is accordingly re-run with the calculated values of capacitors and resistors replaced by the nearest preferred values. Provided that a sufficiently accurate fit to the target response was achieved in the original calculation, the effect of these changes can be offset without appreciable detriment to the performance of the filter by altering the inductance values in the circuit - a simple matter since the coils are in any case wound to suit the individual design.

The process is now extended to allow for the production spread in component values. By arranging that the deviations of different circuit elements from their nominal values have opposing effects on the overall performance of the filter, it is possible to utilise stock components, having normal commercial tolerances, with very little wastage. The known manufacturing variation in component values, expressed in statistical form is fed into the computer, which calculates the maximum percentage of stock items that can be utilised in this way while keeping the filter characteristics within tolerance. Finally, permissible combinations of component values are worked out and incorporated in the instructions for assembling the networks on the production line.

Experts Rule OK?

It will now be clear why the standard of reproduction potentially attainable with a modern high-quality system cannot be realised by the home constructor with an assemblage of ready-made networks and drive units selected simply on the basis of their nominal frequency range, impedance and sensitivity ratings. Attempts have been made to ameliorate this situation by publishing descriptions of complete loudspeakers incorporating commerically available drive units, and giving circuit details of the filters to be used. The success of such designs however depends on the extent to which the author has taken into account all the factors referred to and has been able to measure the electro-acoustic characteristics of each type of unit specified allowing for manufacturing tolerances before attempting to determine the appropriate network parameters.

On the other hand, those manufacturers who have good facilities for acoustic measurement are usually well aware of the various pitfalls in filter design, and by means of computerised data-handling methods are able to produce the components of a multiway loudspeaker in matched sets. These techniques ensure that the end product - whether in the form of a kit for assembly in an enclosure of prescribed construction such as the V3 speakers in the October ETI, or a complete system represents the best combination of performance and costeffectiveness that modern technology can provide.

MASHMTR FTHGYRONICS NOW! The PRACHICAT way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self. employed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is avallable to whom you can write personally at any time, for advice or help during your work. A Certificate is given at the end of every course.
You will do the following
Build a modern oscilloscope

- Recognise and handle current electronic components
Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. Hi-Fi and microprocessor/computer equipment.

NewJob?NewCareer? NewHobby?Getinto Flectronics Now!

SUBSCRIPTIONS

This year we present a new twelve-part, non-fiction series - ETI 1981 available from your newsagent every month.
Forget to buy it this month, or is your newsagent sold out?
Why worry when ETI gets to the shop? Sit back and wait for it to come to you. Take out an ETI Subscription. For only $£ 11.25$ we'll send you twelve issues of ETI.
To claim your years' supply of ETI, send your PO or cheque direct to :

ETI Subscriptions Department,
513 London Road,
Thornton Heath,
Surrey CR4 6AR.
Tel: 01-684 3157

> We can't do much to improve the quality of the programmes on TV but at least we can do something about making the sound a bit higher-fi. Design by Bill Nemes. Development by Rory Holmes.
n the cut-throat world of consumer electronics, one of the questions designers apparently ponder over is 'Will anyone notice if we save money by chopping this out?' In the field of domestic TV sets, one of the first casualties always seems to be the sound quality; small speakers are used for cheapness and to reduce the size of the set, tone controls are rare, and as for separate bass and treble drivers overdrafts at the ready if you want them.

This is a pity really, as the TV companies do their best to transmit the highest quality sound possible, using a FM modulated sound carrier. Perhaps the TV manufacturers think that viewers are going to be so engrossd by what's on the screen that they won't notice the inferior sound reproduction. Obviously they haven't watched television lately...

Get In Tune

Naturally the more discerning members of the public (ETI readers,for example) will be dissatisfied with this state of affairs, and the easiest remedy is to build this TV Sound Tuner. The unit is designed round a ready-built and aligned UHF tuner module which is soldered directly onto the PCB containing the IF detector circuitry. The IF board filters out the sound carrier from the video, which is ignored (unless you want to try building a colour television, with Teletext, Prestel, remote control. oh alright, forget it), and the demodulated audio signal can be fed directly into your hi-fi, free from the abuse it normally receives at the hands of your telly.

Since TV sound is broadcast in mono (at present, anyway), an optional 'stereo simulator' based on a Mullard preamp module has been included in the design. With an eye on the future, four tuning pots are provided so that the fourth TV channel can be catered for when it arrives. The required tuning voltage is fed to the varicaps by a fourway selector switch.

The signal from the aerial has to be split so as to feed both the TV and the Sound Tuner, and first we toyed with the idea of fitting the tuner with 'aerial in' and 'aerial out' sockets, like a video recorder. But splitting a UHF signal involves, among other bits and pieces, the use of a balun coil and winding one of these just isn't worth the effort. Do what we did and buy an aerial splitter from your local accessory shop

- it's cheaper, neater, easier and quicker. Ours cost £1.53.

A Classic Case

The kit supplied by RTVC (see Buylines) includes the PCB (which you will have to drill yourself), all the components for this board including the pre-aligned UHF tuner, a rotary switch for channel selection and the mains transformer. If required, the stereo simulator preamplifièr module (which is supplied ready-built) can be obtained for an additional charge. Items which are not supplied include aerial and audio sockets, wire, the potentiometer for the stereo blend, mains switch, power-on neon and case. The case we used was from West Hyde Developments' Classic II range everything fits in quite neatly.

Assembly of the main board is straightforward. Take the usual precautions with the orientation of the ICs, diodes and electolytic capacitors. To make life easier the PCB is overprinted with the component positions. The tuner module and the coils will only fit the board one way round, with. the exception of L6. This coil should be soldered so that the printing on the can faces away from the tuner module.

L 2 is to be wound by the constructor using the 18 swg wire supplied in the kit; it consists of $31 / 4$ turns around a 10 mm former (which is removed before soldering the coil to the PCB).

The values of C9 and C16 are not critical and the components supplied with the kit will depend on availability

We mounted our PCB on stand-off spacers so that the varicap multiturn control pots are positioned level with holes drilled in the side of the case these pots should only need to be set up once, using a small screwdriver. The position of the transformer, preamp board and the other hardware can be seen from the photographs, and the wiring diagram shows how to connect up all the various bits.

Alignment

As only the sound is to be extracted, the only equipment required is a non-metallic tuning tool. While monitoring the audio output tune L6 to receive maximum noise (or station if you were lucky enough to receive it the first time). Tune the selected multiturn pot to receive a station and adjust L5,L4,L3 and L1 for maximum output Note that tuning of $\mathrm{L} 1, \mathrm{~L} 3$ and L 4 will appear 'flat', particularly in high signal strength areas. (R1 may be reduced should overloading occur).

This is the aerial solitter that we bousht - much easier than making one. The aerial plugs into the socket on the right, while those on the left connect to the TV set and the tuner.

Fig. 1 Bhock diagram of the TV tuner.

Fig. 2 Circuit diagram of the ETI TV Sound Tuner. The optional 'stereo simulator' board is supplied ready-built.

HOW IT WORKS

The ECL 1043 is a ready built and aligned varicaptuned UHF tuner. Its 38 MHz IF output contains AM modulated video and FM modulated sound carrier frequencies. Pin 1 is the AGC input which is not used; R1 and R2 form a potential divider to preset the gain. The 38 MHz output is connected to IC1 via input-trapping circuitry. IC1 is an IF amplifier/video detector chip tuned by a single coil L5. As the sound carrier is spaced 6 MHz from the vision carrier frequency, the output on pin 12 contains the demodulated video (positive) and the 6 MHz FM modulated sound carrier frequency. The video is removed by using a 6 MHz ceramic filter. The filter also sets the operational frequency of IC2, which is an FM IF amplifier! quadrature defector chip. Detection alignmert is obtained by adjustment of a single coil L6, which provides the quadrature signal to the coir cidence gate detector. Audio output is recovered at pin 14.

In preference to a multi-secondary transformer a readily available 7V5 single secon dary transformer is used, at the expense of a few extra components. The supply voltage to the ICs and tuner is derived from a full wave voltage doubler. The tuning voltage is further quadrupt ed, filtered and regulated by IC3.

The stereo simulator is simply a stereo preamplifier with a bass control in one channel and a treble control in the other. A dual pot is used to control the cut and lift of these tone cortrols, so as the pot is rotated the high and low audio frequencies are directed to opposite speakers and a 'stereo' effect is obtained.

BUYLINES

A kit of parts containing those items listed in the text will be available from RTVC Ltd, 21 EHigh Street, Acton, London W3 6NG (mail order only) The TV tuner costs EI 1.45 phus EI .50 plip; the transformer is $£ 1.50$ plus $£ 1.50$ p\&p pip free on transformer if ordered with kit; and the LP1183 preamp costs $£ 1.95$ phus 75p ptap. The case is available from West Hyde Developments order as CL2 AEL

Fig. 3 Wiring diagram for the tuner project. Make sure you use shieided cable for the aucio connections and UHF coax for the aerial connection, as shown, and dort forget to make the earth connection to the case of the tuner motule.

Get a great NEW deal from

 Marshall's```
- marghallilonoowilto
FINGgaft movat
Asso ntitall shoes at LIMOSOATE HLLACE
325 (OGWANE ROAO, LONOON WZ O1 Tras 4242
```



$\qquad$


```
PLEASE AOO POSTAGE/PACKING GOD UNLESS STATEO ALSO 15\% VAT ON TOTAL
```

| RECHARGEABLE NICKEL CADMIUM BATTERIES \& CHARGERS |  |  |  |
| :---: | :---: | :---: | :---: |
| IYPE | VOLTS | AV. CAP. | PRICE |
| S101 (HP7) | 1.25 | 0.5AM | [1.13 |
| Sub C (MP11) | 1.25 | 12 AH | E2.28 |
| Sub D [HP21 | 1.25 | 1.2AH | £256 |
| Penlight 4 Charger for 1.4 HP7. <br> Combitox FW61 Charger for HP7, HP11, MP2 ........................... $\mathbf{E 1 6 . 5 0}$ |  |  |  |
|  |  |  |  |



In addition to items specified in this advertisement, we carry a large range of Thandar (Sinclair) and Leader Test Equip ment including Oscilloscopes Multimeters, Frequency Counters, Signal Generators etc. Send large SAE for details quoting Ref. ETI 11.

We also stock a comprehensive range of I.L.P. Toroids and Hi Fi Modules, Veroboards, Miniature Mains Transformers Bahco Tools, Antex Soldering Irons, Solder, Dil Sockets, Omax cutters, etc.

All your electronic needs catered for. Send 75p for our latest catalogue post paid.

VISIT OUR STAND AT BREAD BOARD 81
11th-15th NOVEMBER 1981

New "Chip Shop" Electronics Construction Kits, make ideal presents for the younger enthusiast beginner
a/so More Advanced "Electronics Construction" Kits

See them at our Stand at "Breadboard" 81 or our shop at 325 Edgware Road, London NW2



# Don't they ever sleep at Casio? No sooner do we review the FX 602P than its big brother the FX 702P drop through our letterbox. Peter Freebrey has been probing at the push-buttons to make this report. 

First the Casio FX 502P, more recently the FX 602P and now we have the FX 702P. If my memory (unfortunately somewhat intermittently volatile!) serves me correctly the FX 502 P was hailed as 'better than sliced bread'; sounds a bit crusty now but it helped persuade me to buy one of those little beauties back in 1980! The FX 602P was also rated highly and 'recommended to anyone seeking a powerful portable machine, which has comprehensive control over memory and data space'

The FX 702P (RRP £134.95) follows in this fine Casio tradition, offering a lot more than its predecessors in that it has moved away from being an uprated programmable calculator (such as the FX 602P) to what is Casio's answer to the Sharp PC1211 - a fully fledged pocket computer. The FX 702P offers full alphanumeric capabilities and according to the instruction manual 'uses BASIC program lanugage'. Although this may appear to be true at first sight, Casio's BASIC does vary more heavily from the norm on this score. It is generally perfectly understandable to anyone with a knowledge of another dialect of BASIC and would be mastered just a quickly as any other form of BASIC by the newcomer. A number of instruction words are used in a shortened form, for example: PRINT becomes PRT, INPUT is INP, GOSUB is CSB, RETURN becomes RET, and so on. This minor variation was presumably brought about by a desire on Casio's part to save on display space (not to mention keeping the small keyboard clutter down to a minimum), and to follow the successful pattern of their previous programmable calculators. Reasonably logical on such a machine (machine?!) but is it still BASIC? I suppose one must concede that it is but do we look to a future generation of pocket computers sporting such commands as PT, CB, RT, IN? There are also one or two small anomalies; on the FX702PRND (is an instruction to round
off a number whereas in some other BASICs RND ( is a call for a random number. Also, GET on the FX 702P is a tape handling command only ... not an instruction to'get' a character from the keyboard, a function which is performed on the FX 702P by Casio's KEY command (not unlike other dialects' INKEY).

All in all slightly different from other BASICs, but perfectly workable once you have handled it for a relatively short time. Having struggled for a long time to familiarise myself with the standard (ugh!) QWERTY keyboard layout, I now have to relearn the positions of the letters of the alphabet!

From the above the FX 702P clearly shows its programmable calculator anticedents; it also has some fairly heavy guns on the statistical analysis front. The obvious question must be how it will compare with the Sharp PC1211. It offers more facilities than the Sharp and is in some ways more versatile. The comprehensive program library supplied with the FX 702 P contains mainly scientific applications, many of them rewritten for use on the FX702P from the previous FX 502 and FX 602 libraries. It will undoubtedly find many supporters from existing Casio programmable owners and I think its popularity will grow as its full capabilities are realised. The review model performed perfectly without a hitch and appears to do all that is claimed of it.

The instruction manual supplied, like many other manuals, is not all that one might expect. In this instance it suffers on two counts; the slightly stilted and occasionally unnecessarily involved English is probably due to inadequate translation facilities, and although all functions are explained somewhere there is no comprehensive index of list of them - so, if I have got it right, treasure the table of functions/commands that l've provided.!

The FX 702P, like the FX 602P, offers the user the option of
defining the available memories at the expense of program steps. You can choose from 26 memories and 1680 program steps to 226 memories and 80 program steps. As an indication of steps required for a program:
10 PRT. 10 CSB and 1000 PRT . . . . . . . . . . . . . usefour steps
10 PRT"""
10 PRT"HOWMANY six steps

So it would seem to be something like two steps for line number, two steps for BASIC command words and one step for each character.

The LCD display is very clear and a control for the contrast of the display is provided. 62 characters may be written on one line, 20 of them being displayed at any one time. The display scrolls to the left to enable long strings of text to be read. The characters are made up of a $7 \times 5$ dot matrix and no confusion arises between any two characters.

Also following previous practise, the FX 702P has a MODE key which defines the current status or mode that the machine is executing, thus:

MODE 0 ... RUN, manual and program calculation mode MODE 1 ... WRT, program writing, checking and editing mode
MODE 2 ... TRACE, program RUN line by line in debugging mode
MODE 3 ... TRACE off
MODE 4 ... DEG, unit of angular measure will be degrees MODE 5 ... RAD, unit of angular measure will be radians MODE 6 ... GRA, unit of angular measure will be grads MODE 7 ... PRT, print output mode if printer connected MODE 8 PRT off

In MODE 0 the FX 702P can be used either in the direct mode as a calculator or will RUN any currently stored programs from any one of the 10 'program areas' designated POPS. In direct mode and using the minimum number of memories each memory is assigned a label A-Z. You may therefore assign these memories by keying $A=2, B=5, C=1.234 \mathrm{etc}$. Should you use these characters as variables in a program they will either have the value already entered $(A=2, B=5 \mathrm{etc})$, or if reassigned within the program the original value stored will be lost. Quite straightforward but you must make a note of what variable names and memory locations you have used. Which is normal practise, is it not ......!

All the normal operators $(+-1 * T=\leq \geq \neq<>$ ) and punctuation ( ., ;: ? !) that you would expect to find on a BÁSIC language computer are available, together with a large number of predefined functions/command words. These are selected either by keying one of the two function select keys F1 and F2 followed by one other key, or by keying in the appropriate keyword using the alpha keys. So the PRINT command may be obtained either by pressing F1 and ; or by pressing PRT. Both result in PRT displayed.

Not only but also - there are some commands available only by keying in the appropriate keyword, for example CLR, CLR ALL, CNT, MX, MY and so on - wow!

## Find The Function

With all computers there are usually a few functions/commands that are either missing or behave in a manner that is not what the user wants or expects. With computers above a certain complexity it is normally possible to persuade them to do what you want even though the specifications would have you believe that a particular facility is not available. The FX702P has a few such grey areas so perhaps the following hints will help.

To utilise MID (the string to be operated upon can only be assigned one name/label - $\$$. This rnay be up to 30 characters long but must becalled $\$$. String variables $A \$, B \$ C$ etc may on-
ly be up to seven characters long so you cannot directly extract a string of over seven characters from the possible input of 30 . Should you wish to do so try this: check for the length of the string using LEN(, if it is over seven characters long use MID( to extract a portion of this string and assign this to A\$. Take the next portion of this string and assign to $\mathrm{B} \$$, the next $\mathrm{C} \$$ and soon. When you need to display or use the overlength string for further string handling call up $\mathrm{A} \$+\mathrm{B} \$+\mathrm{C} \$$ either as PRT $\mathrm{A} \$+\mathrm{B} \$+\mathrm{C} \$$ or $\$=\mathrm{A} \$+\mathrm{B} \$+\mathrm{C} \$$. This is called string concatenation.

Missing from your BASIC vocabulary is VAL, the BASIC command that returns the numeric representation of a string; if the string is not numeric a zero is returned. This means that if you use the command KEY to enter a character from the keyboard that character can only be string variable and although it may be a numeral 0-9 you may not perform arithmetic on it directly. One way to overcome this is to use a series of IF commands so:

```
10 AS = KEY:IF AS = '"." THEN 10
20 IF AS = " '1":X = 1
30 IFAS = "2"; X = 2
```

and so on. You now have $X$ assigned to the numerical value obtained by using the KEY command.

Other common functions missing from Casio's BASIC are REM, READ, DATA and ON...GOTO. At first sight the missing REM is a nuisance and it means you cannot include any nonoperative program information within the program. Fear not, where there is a will there is a way (sometimes!). How about a program line like this:

## 20 COTO 30: THISISA HIDDEN REM

On executing the COTO the computer ignores the text after the colon - so who needs a REM command! I'll let you think of ways around any other missing statements!

## Tape Measures

A cassette tape recorder in conjunction.with an FA-2 adaptor may be used to store programs or data on tape. The paragraph concerning this in the manual is a wonderful example of a (presumably) Japanese/English translation inferring that a magnetic tape recorder may be used to store important programs and data but that another type of recorder can also be used for recording (alto, bass, tenor?)

One could goon for some time praising and explaining the functions and capabilities of the FX 702P, which like all computers has characteristics unique to itself. The proof of the pudding is in the eating; I certainly enjoyed my feast with this latest offering from Casio. Look at the table of Functions/Commands and judge for yourself...


| COMMAND | KEYING SEQUENCE |  | RESULT |
| :---: | :---: | :---: | :---: |
| EXE | EXE |  | EXEcute, instructs computer to action current instruction, enters program line. |
| MODE | MODE |  | Selects operating MODE - RUN, WRT, debug TRACE, unit of angular measure and printer operation |
| F1 | F1 |  | 1st Function key (coded red) |
| F2 | F2 |  | 2nd Function key (coded blue) |
| C | C |  | Deletes character to left of cursor |
| CLR |  |  | Deletes current program area |
| CLR ALL |  |  | Deletes all program areas |
| AC | AC |  | Clears display, terminates RUNing of program, will switch computer back on after auto shutdown |
| STOP | STOP |  | STOPs execution of program |
| CONT | CONT |  | CONTinues execution of STOPped program |
| ANS | ANS |  | Displays result of previous calculation |
| STAT | STAT |  | Input mode for performing statistical calculations |
| ASTAT | F1 ANS |  | Displays results of statistical calculations |
| SAC | F1. |  | Clears statistical summation memory |
| INS | F1 C(clear) |  | Inserts space at cursor position |
| DEL | F1 STAT |  | Deletes incorrect statistical data |
| HOME | F1- |  | Positions cursor to left of display area |
| $\leftarrow$ | $\leftarrow$ |  | Cursor movement left Cursor movement right |
| COMMAND | KEYING SEQUENCE | EXAMPLE | RESULT |
| FOR | F2" | FORK $=\mathrm{n}$ TO m | Increments from $K=n$ TOK $=m$ during which time program lines up to NEXT $K$ are repeated |
| TO | F2 \# |  | See FOR |
| STEP | F2 ${ }^{\text {S }}$ | FORK $=\mathrm{n}$ TO m STEP p | Optional increment in FOR...NEXT loop |
| NEXT | F2: | NEXT K | Used in conjunction with FOR... |
| PRT | F2 : | PRT A PRT AS | Displays value of A <br> Displays string A\$ |
|  |  | PRT "TEXT" | Displays string enclosed within """ |
| IF | F2 A | IF $X=Y$ THEN .... | Decision/comparative instruction |
| THEN | F2 B | IF .... THEN 200 | In conjunction with IF, in example if comparison true jump to line 200 |
| cOTO | F2C | COTO ${ }^{2} 5$ COTO 200 | Jump to execute program area P5 Jump to line 200 |
| CSB | F2 D | CSB 500 | Jump to subroutine at line 500 |
| RET | F2E | RET | End of subroutine RETURNs to program line following associated CSB |
| INP | F2 F | INPX INPX\$ | Assigns value of keyboard INPUT to variable, numeric or string |
| WAIT | F2C | WAIT 100 | Determines display time when using PRT command, WAIT $100=$ approx. 5 seconds |
| SET | F2K | SET E, $n$ SET E, n SET N | Defines number ( n ) of digits displayed Defines.number ( n ) decimal places displayed Cancels SET command |
| VAC | F2 L. | VAC | Clears data use memory |
| STOP | F2 M | STOP | Suspends execution of program |
| END | F2 N | END | Terminates execution of program |
| SAVE | F20 | SAVE [ \#n"filename'] | Command to SAVE program area $n$ on tape under specified filename |
| LOAD | F2 P | LOAD [ \#n"filename"] | Command to LOAD from tape sepcified program to program area $n$ |
| PUT | F2 Q | PUT ["filename"] ${ }^{\text {a }, Z}$ | Command to save data variables to tape |
| CET | F2R | CET ["filename" ] A, Z | Command to read data variables from tape |
| VER | F2S | CET ["filename"] | Verifies program or data written to tape |


| DEFM | F2 T | DEFM $n$ |
| :--- | :--- | :--- |
|  |  |  |
| PASS | F2 U | PASS "password" |
| RUN | F2V | RUN [F1 $n$ ] |
| LIST | F2W | LIST $n$ |
| KEY | F1 N | AS $=$ KEY |

Increase number of memories available by 10 times $n$
Designation of password to protect program
Executes program in specified program area
In WRT MODE displays specified program line and subsequent lines on keying EXE
Reads one character from keyboard and assigns it to As

## FUNCTION <br> KEYING SEQUENCE

## EXAMPLE

$A=R P C x, y$
RPC
PRC
F2 H
DMS
RAN \#
SIN
F2I
$A=P R C X, Y$
$\mathrm{A}=\mathrm{DMSA}$
$A=\operatorname{RAN} \#$
$A=\operatorname{SIN} x$
$A=\cos x$
COS
$A=\operatorname{TAN} x$
TAN
$A=\operatorname{LOC} x$
LOC
$A=L N x$
$A=E X P x$
EXP
$A=S Q R x$
SQR
SCN
$A=\operatorname{SCN} x$
$A=$ INT $x$
$A=$ FRAC $x$
FRAC
$A=A B S x$
$A=R N D(x, y)$
$A=\operatorname{DEC}(\mathrm{n}, \mathrm{m}, \mathrm{o})$
DEC (
$A=\operatorname{LEN}(B S)$
CSR
F1 K
PRT CSR n; X
$A S=M I D(n, m)$

## RESULT

Converts rectangular to polar coordinates
Converts polar to rectangular coordinates
Converts decimal to sexagesimal
Generates random number where $1>A>0$
$A=$ Sine of angle $x$
$A=$ Cosine of angle $x$
$A=$ Tangent of angle $x$
$A=$ Common logarithm of $x$
$A=$ Natural logarithm of $x$
Exponential function, $\mathrm{A}=\mathrm{e}$ raised to the power of x
$A=$ Square root of $x$
$A=\operatorname{Sign}$ of $\mathrm{x}(1,-1$ or 0$)$
$A=$ Integer part of $x$
$A=$ Fractional part of $x$
$A=$ Absolute value of $x$
Rounding to significent number of digits ( $x$ displayed to yth significant place)
Sexagesimal to decimal conversion
$A=$ Number of characters in string BS
Designates location of display, PRINTs $X, n$ spaces from left of display
Extracts n characters from string $\$$ starting with $m$ th character

Functions used in performing statistical analysis

## FUNCTION

## KEYING

 SEQUENCE| SDX | F1 0 |
| :--- | :--- |
| SDY | F1 P |
| SDXN | F1 Q |
| SDYN | F1 R |
| LRA | F1 S |
| LRB | F1 T |
| COR | F1 U |
| EOX | F1 V |
| EOY | F1 W |

## RESULT

Standard deviation of $x\left(x \sigma_{n}-1\right)$
Standard deviation of $y\left(y \sigma_{n}-1\right)$
Standard deviation of $x\left(x \sigma_{n}\right)$
Standard deviation of $y\left(y \sigma_{n}\right)$
Constant term (A)
Regression coefficient (B)
Correlation coefficient (r)
Estimated value of $\mathrm{x}(\mathrm{x})$
Estimated value of $y(\hat{y})$

## Statistical functions not having shortened keying sequence (ie have to be entered in full).

## FUNCTION

CNT
SX
SY
SX2
SY2
SXY
MX
MY

## RESULT

Number of data ( n )
Sum of $x(\Sigma x)$
Sum of $y(\Sigma Y)$
Sum of squares of $x\left(\Sigma x^{2}\right)$
Sum of squares of $y\left(\Sigma y^{2}\right)$
Sum of products of data ( $\Sigma x y$ )
Mean of $x(\bar{x})$
Mean of $y(\bar{y})$

## CAMBRIDGE LEARNING SELF-NSTRUCTION COURSES

It's faster and more thorough than classroom learning: you pace yourself and answer questions on each new aspect as yougo. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With agood self-instruction course you become your own best teacher.

## Understand Digital Electronics

in the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards. TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased your knowledge of the fast-changing world around you.

## DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 8.50$ This course is designed as an

 introduction to digital electronics and is written at a pace that suits the raw beginner No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowiedge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure that the points are understood

Everyone can learn from it
students, engineers, hobbyists. housewives, scientists. Its four A4 volumes consist of:
Book 1 Binery, octal and dacimel number systams, conversion between mumbet systems conversion of tractions, octal-dacimal converseor rabless
Book 2 ANO, OR gates. nverters, NOR and NAND getes truth lables introductike it Bootean akebrs
Book 3 Positive ECL. De Morgana Laws, deangwng loguc cucuits using NOA gates thaal input
gates 4 introduction to pulse driven crecuits, A.S and I K flup flops binary counters shilt

\section*{regelar. haMaddars

## regelar. haMaddars <br> DESIGN OF DIGITAL SYSTEMS £14 <br> This course takes the reader to real

 proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and computer design.

Booh I Octai, hexaciecimal and binary number svitems, conversoon between number srsterss, representation of negetrve numbers, complementury srsterms, bunafy multuplication and diveston
NOR functond ANO lunctions, logic gates. NOT. Enchusive OA, NANO. NOA and baclusive NOR functions: mulipple mput gates. truth wobles. De Morgans Lawt. canonval forms, logr. Book 3 Hall adders and full acdiers, subiraciors send and parallal adders, processens and enthmetic logic unuts IALUsi, multipicalion and division systems
Book 4 Flip flops; shift rigusters, asynchronous and synchronous counters, mus, Jchinson ond eucluave - on terobock counters, random access memories :AAMs) and resd rmily memorres (ROMs)
Book $\$$ Structure of catculators, keyboard entoding. rifacoding display ditio. respristet irtams; conuol unt program ROM, adaress decoding insifuction sets instructuen decoding: controt programme structute
oecoong: controf programme structurt memory ugganuation, character reptespmitition. program slorage, address modes, inpuiloutpui svsiems, proyram inserfupis. interruta prontios; progrsmming. assemblers, computers tiecutive programs, cpporating systems and fime shating

## Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas •presenting safety regufations, government legislation, office procedures etc
THE ALGORITHM WRITER'S GUIDE $£ 4.00$ explains how to define questions, put them in the best order and draw the flow chart, with numerous examples

## GUARANTEE No risk to you.

If you are not completely satisfied, your money will be refunded upon return of the books in good condition.
CAMBRIDGE LEARNING LIMITED, UNIT 19
RIVERMILL SITE, FREEPOST. ST. IVES. HUNTINGDON
CAMBS.. PE1 7 4BR. ENGLAND.
TELEPHONE: ST. IVES (O480) 67446
All prices include woridwide postage (airmall is extra - please ask for prepayment invoicel.
Plase allow 28 days for delivery in U.K.

## Microcomputers are coming - ride the wave! Learn to program.

Millions of jobs are threatened but millions more will be created. Learn BASIC . the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition. flowcharting. coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

## COMPUTER PROGRAMMING IN BASIC

£ 10.50
Bookt Compu:ers and whal they do wull aEAD DATA PRINT Dowers beackets variable names. LET elrors coding simple progrums
Book 2 High and tow levei languages Howitharing. tunctions REM and documwnation HPPUT IF THEN. GO TO imatations of compulers problem detinution
Baok 3 Cumpiners and interpreions loops FOA NEXT AESTOAE debugging arravs bubble sorting i $A B$
Book 4 Arfyanced BASIC subioutines string valtahies tives complex programming ekamples glossary

## THE BASIC HANDBOOK (2ND EDITION)

 £14.50This best-selling American title usefully supplements our BASIC course with an alphatetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear. easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

## A.N.S. COBOL $£ 5.90$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner took a consulting job. documenting oil company programs and did invaluable work from the first day. Need we say more?

## ORDER FORM

Please send me the following books:
Digital Computer Logic \& Electronics (u) $\mathbf{8} .50$
Design of Digital Systems (ir $£ 14.00$
Algorithm Writer's Guide a $£ 4.00$
Computer Programming in BASIC ail $£ 10.50$
BASIC Handbook (ii £ 14.50
ANS COBOL (ii $£ 5.90$
Booklist (Free)
lenclose a ${ }^{\text {c Cheque/P.O. payable to Cambridge Learning Ltd. }}$ for $£$.
Please charge my:

- Access/Americen Express/Barclaycard/Diners' Club/Visa/ Mastercharge/Trustcard

Exp. date.
Credit Card No.
Signature
Telephone orders from credit card holders accepted on 048067446 (Ansa(fone).
Overseas customers (incl. Eire) should send a bank draft in sterling drawn ion a London bank, or quote credit card number.
Name
Address.


# LINSLEY HOOD 75 W AMP 

One of the best sounding amplifiers available at any price!
Kit designed for easy construction!
Complete kit - comes with all hardware and wooden sleeve!


SPECIFICATION

| Input impedance: | magnetic pickup 47 k ceramic pickup 2M0 radio 100 k auxiliary 470 k |
| :---: | :---: |
| Input sensitivities: | adjustable |
| Treble control: | + 15 - 15 at 15 kHz |
| Bass control: | + 16-17 at 50 Hz |
| Power output <br> ( 1 kHz 8 R): | Clipping level 1 channel 78 W RMS Clipping level 2 channels 74 W RMS |
| Harmonic distortion at all levels below clipping: | 0.01\% maximum |
| Stability: | unconditional and unaffected by load |
| Power amp input impedance Output impedance: | $\begin{aligned} & : 220 \mathrm{k} \\ & 0.22 \mathrm{R} \end{aligned}$ |
| Bandwidth ( 3 dB ): | $3 \mathrm{~Hz}-40 \mathrm{kHz}$ |
| Rise time: | 10 microseconds |
| Voltage gain: | 33 (31 d8) |

Thinking about an amplifier? Then ETI has the answer! Practically every hi-fi enthusiast will have heard of the legendary Linsley Hood 75 design, for many years THE best sounding kit around.
Take a look at the spec below and then take a second look at the price - it's not a mistake! Only ETI could bring you an offer like this; $25 \%$ off the list price of this top grade kit, which comes complete down to the last nut, bolt and knob!
The power rating is conservative -- some builders have reported an RMS output in excess of 90 W - and the toroidal transformer ensures that good peak delivery is available.
You will not get a chance like this again - a high quality 75 W RMS stereo amplifier kit with excellent construction notes and a design which makes it child's play to build at under $£ 1$ per watt! Don't miss out - order now!



## NOT JUST ANOTHER CLIOCK


but a PROGRAMMABLE TIMER KIT which can run your central heating, burglar alarm, lighting, tape-recorder/radio and lots more. Designed to control four mains outputs independently, switching these on an off on selected days and times in seven-day cycle.
Features include:
$\star 0.5 \mathrm{in}$. LED 12 -hour display

* Day of week, a.m./p.m. and
output status indicators
- Zero Voltage Switching Outputs
$\star 50 / 60 \mathrm{~Hz}$ mains operation
* Battery back-up saves stored programmes and continues time keeping during power faliures (battary not supplied)
* Display blanking during power failure to conserve battery power * 18 programme time sets
* Powerful "Everyday" function enabling output to switch every day but use only one timo set
* Usoful "sleep" function - turns on output for one hour
* Direct switch control enabling output to be turned on immediately
or after a specified time interval
* 20-function keypad for programme entry
* Programme verification at the touch of a button

To control your central heating, for example (including different switching times at weekends), just connect it to your system, programme it, set it and forget it. The clock will do the rest. There has never been a clock capable of so much at this price.

CT5000K Timer Kit (includes all components, assembly and program. ming instructions, and an attractive black caso)

## £45.00

## TOUNUSTMAVE BETIEB THINAS TO DO








## IF YOU CAN'T (REMOTE) CONTROL YOURSELF



Using infro-red, these KITS range from simple on/otf controiers to coded transmitter/ eccavers nth 16 on/ott outputs or three analogue outputs for controtling TV or hif orratile so you can use thom for controlling anything from garage doors to room lighting ask by adding the required curpurt circuits. i.e. relays, triscs. etc.
I you can design your own system, we stock a wide range of remote control components at very competitve prices.
To help you decide, we have compiled a booklet on remote control. containing circuits,

So DON'T daenta and details of our remote control kht and components.


## THE KEY TO YOUR SECURITY

IS IN OUR LOCK


Hy you have problems whit people tampering with your car.
eiectical and siectronic equipment, of you are just in etectrical and olectronic equipment, of th you are juot in i you.
Our ELECTRONIC LOCK KIT inchudes of 10 way keyboard and aspecial IC which provides a 750 mA output to drive salenord or relay (not suppliedt when four heys are depected in the cortect
sequence Thit gives over 5,000 passible combinational the sequance is pre wired and mey be soquence Thie gives over s,000 passible combinational The sequence as pre wred abd mey be the oben code to be siored fanpecially usptul in a car when it is loth in 8 garage for zervicing se the geen code mesd ner be disclosed. Sire: $7 \times 6 \times 3 \mathrm{cms}$. Power consumption is 40 HA at 5 V , io 18 V . de.
At only E10.50 + VAT, it will make s smalier hole in your posket thans bunch of tovet
LOCK 1.C.e
LS7220 with SAVE memery

.6275
C2250


Prices do not include VAT. Add 50p P\&P + 15\% VAT to total. Overseas customers add £1.50 (Europe) £4 (elsewhere) for P\&P. ACCESS and BARCLAYCARD welcome.
Send s.a.e. for price list and with ali enquiries.
Shop Open: 9 a.m. to 5 p.m. (Mon-Fri) 10 a.m. to 4 p.m. (Sat.) (ETI) 11 BOSTON ROAD, LONDON, W7 3SJ

TEL: 01-579 9794/2842

# AUDIOPHILE 

## Source time again. Audiophile this month goes back to disc playing machinery, giving Ron Harris a chance to assess the complete Mayware pickup system and a new cartridge range from Audio Technica.

Mayware are best known for the pickup arm, the Mark III (née Formula 4, but renamed under an international agreement). However, they also market a small range of cartridges and a step-up transformer, the T-24.

I took a look at Mayware's low-cost high-output moving coil some months ago (ETI May "81), and found it a worthy product. Shortly afterwards I was tempted by an offer from Mayware to see what i could glean from a complete pickup of theirs - the Mark III arm, MC-2V cartridge and T-24 II transformer. (Overcoming temptation has never been a strong point of mine - I'm a pushover, in fact. One little exercise of the feminine wiles and logic flees the empty plains of my mind, taking any remaining vestige of willpower with it )

Thus the Mayware pickup is duly considered herein. As an appropriate complement we have two units from a new range of cartridges from Audio Technica, the AT-3100XE and the more upmarket AT-31E. The now superseded AT-30 set a high standard for its price and I was interested to see what the AT-31E could do in its wake.
tremors of uncertainty even in the fainthearted.
The T-24 is matched to the MC-2V, or vice versa if you prefer it, such that the two constitute one working unit. The T- 24 has briefly raised its head before in Audiophile, competing manfully with the incomparable Ortofon T-30 transformer, and gave a good account of itself. Matched up to the MC-2V it did nothing but add to an already favourable impression.
In various forms the Mark III has been around hi-fi emporiums for a while now, but it continues to offer excellent engineering at a good price and deserves more publicity than it receives. Maybe now that Thorens and Mayware share a distributor it will rise into the sight of more enthusiasts, receiving due defence in the process.
Left: The Mayware 7-24 II Iransformer; at $£ 69$ it is good value for money.
Below: The response curve for the MC-2V pickup.


## Mayware Wares

The MC-2V is a low output (around 0.25 mV ) moving coil cartridge with a conical stylustip - unusual even for these days of the ever-changing shape. Record wear is lower, for a given tracking force, with a conical stylus than with an elliptical tip, so the recommended 2 g downforce of the $\mathrm{MC}-2 \mathrm{~V}$ should cause no

Above: The Mayware Mk III pickup arm. Note the graduations down the arm, used in conjunction with the rider weight to apply tracking force. Why not dispense with the lot and graduate the counterneight side of the pivot, thereby reducing the effective mass? The arm gave a good account of itself with most cartridges, and whilst not as universal as, say, the SME IIt, in my opinion it's excellent value for money and well-engineered.

## Arms And The Man

The Mark III is a unipivot design, with provision of a damping well around the bearing. Silicone fluid is employed to give a variable facility, primarily to control subsonic resonances.

An earlier headshell, which had been rightly criticised for its lack of rigidity, has been replaced here with a strong casting of greater substance. Downforce is applied, curiously, by sliding a rider-weight along the arm tube toward the pickup. Bias compensation is provided by a falling weight and thread arrangement, retained from earlier models.

The counterweight is eccentrically mounted on the arm tube, to provide some lateral balance - a necessity for unipivots, as they lack the stability of designs with 'twin' bearings in this plane. If incorrectly set-up they are liable to a strange rocking mode of oscillation

The Mark III is well presented to the new purchaser and adequate setting-up instructions are provided by the sheet accompanying the arm. Alignment and mounting protractors are also thoughtfully present and installation is very straightforward. Instructions are clear and concise, if not up to SME standards. As the arm has no sliding base, adjustments for tracking error are made by the positioning of the cartridge in the headshell itself.

## Sound Sense

Before fitting the MC-2V, I put the Mark III through its paces individually, to assess its strengths and weaknesses. Arm tube resonance is relatively minor, set at about 650 Hz , and there is a countenweight resonance at around 60 Hz . Pivot friction is commendably low, at $<20 \mathrm{mg}$ in both planes.

Using a reference cartridge of known quality, the Mayware III arm was shown to give a good basic performance with good, well-controlled bass and a clean, well-imaged, sound stage. It had a tendency towards a fonward or bright presentation but not unduly so. For the price, an excellent result.

I would comment, though, that even with the low effective mass of 7.5 g , that rider weight is a strange way of adding downforce. Much better to keep it as far back towards the pivot as it will go, thus minimising its addition to effective mass, and applying tracking force by moving the countenweight forward.

Also, with low compliance moving coils, some addition to headshell mass would be beneficial, as it was to prove with the $\mathrm{MC}-2 \mathrm{~V}$ (compliance $=8 \mathrm{cu}$ ). High compliance units give very good performances, and I tried both the Shure V15 IV and Empire 600 LAC cartridges in the Mark III with textbook results.

## Transforming Levels

The T-24 II is a well-made little unit with no frills at all, save the gold-plated phono sockets provided for I/O purposes. Finished in matt black, it is small enough to sit unobtrusively in all but the most miniscule hi-fi set-up.

On the test bench it gave an exemplary performance, proving to be flat across $20-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$ and with few phase problems. It will match cartridges of between $3-40 \mathrm{R}$ impedance, although it appeared to operate best with those of low impedance characteristics, such as the MC-2V. Hum pick-up is particularly low and will give no trouble in use, I feel

## All Together Now. . .

And so, at last, to consideration of the pickup system as a whole. Setting up was simple and the MC-2V reached its best tracking levels at around 2.1 g . It is by no means an excellent tracker, but is more than a match for most MC units in this price class. Listening tests were conducted with the system set up on a Thorens TD 160S, feeding KEF 105 II loudspeakers via a Lecson/Monogram amplifier combination.

The overall impression was one of a well-balanced sound, but one which was not controlled tightly enough, and was a little bright overall, with a slight midrange hardness. Adding a back-plate between the MC-2V and headshell to increase the mass damping effect greatly 'tightened-up' the presentation and gave improved detail all around. The brightness persisted, however, as the only blot on an othenwise impressive performance.

Going through the components, one by one, and fitting them into other systems (as with the arm) showed that, when mounted in an SME series III the MC-2V is a fine cartridge with excellent bass and mid-range, good treble register - but a slightly fonward presentation.

Put simply then, both the arm and cartridge are excellent value for money and will perform better than their respective price tags would promise.

## Match Of The Day

As a general recommendation, the MC-2V will match any of the higher mass rigid arms perfectly, and is usable in the more versatile low-mass designs, epitomised by the SME III, with the addition of headshell weight. Take care with loudspeaker matching to obtain the best from this high-quality unit, however.

The Mark III arm is ideal for all high-compliance cartridges as it stands, and has the flexibility to support the lower compliance moving-coil designs perfectly adequately. It does have


Audio-Technica's new duo of mobile coils. On the left the up-market AT-31E and on the right the budget AT-3100XE. 8 oth proved to be interesting designs.


Above: The alignment of the motor system of the new AT cartridges. The whole system is replaced with the stylus.


Changing the stylus on the AT-31E means pulling half the body off!

Below: A 'potted-down' version of the tesi results for this month's three cartridges. As you can see, there is litlle to choose, on paper, between the MC-2V and the AT-31E. Personally I preferred the AT-31E for its better midrange. An opinion only, and you should listen to both for yourself, if in that field you search for perfection's touch.
this slight tendency towards brightness, though this is not serious and should not deter an intending purchaser, merely engender the requisite care over matching.

The T-24 II transformer can be unreservedly endorsed as providing value for money and a good all-round performance, distinguished by faultess bass response and outstanding transient performance. At $£ 69$ including RRP it can be said to be value for money, too.

## Technical Audio

Audio Technica have produced a new line in moving coils recently, and the AT-3100XE is a fine example of a budget unit (at under $£ 30$ ) with user replaceable stylus. (Surely one day all cartridges will be made this way?)

The AT-31E- is an up-market elliptical unit, designed for the more demanding - and pecunious - enthusiast. Both are low output types, and will need step-up devices. Since the Mayware T-24 II was to hand, I used this to assess the Audio Technica units. Seemed sensible; besides which, AT hadn't sent me one of their AT 650 transformers, so serve 'em right if I don't use it!

AT make great play of their ingenious operating system, employed in this new range, in which the channel coils are wound onto separate formers and mounted in a $V$ configuration, similar to that found in record cutting equipment.

TEST RESULTS

|  | Mayware MC-2V | Audio Technica AT-31E | Audio Technica AT-3100XE |
| :--- | :--- | :--- | :--- |
| Frequency response (see graphs): | $20-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$ | $20-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$ | $20-20 \mathrm{kHz} \pm 3.5 \mathrm{~dB}$ |
| Output voltage (at $5 \mathrm{cms}-\mathrm{J}$ : | 0.2 mV | 0.4 mV | 0.4 mV |
| Channel separation (at 1 kHz ): | 23 dB | 32 dB | 29 dB |
| Channel balance: | within 1 dB | within 1 dB | 1.8 g |
| Tracking force (optimum): | 2.1 g | 1.6 g | $20^{\circ}$ |
| Vertical tracking angle: | $20^{\circ}$ | $20^{\circ}$ | 4.3 g |
| Weight: | 6.9 g | 5 g | $£ 29$ (or less) |
| Typical price: |  | $£ 56$ (or less) |  |

Claimed benefits are improved separation, better imaging and improved tracking due to reduced weight. Compliance is fairly high for moving coils and this allows a wider choice of arms than is usual. High energy (per weight) samarium-cobalt magnets are used and a spring-terminal setup allows for userreplaceable styli.

This in itself is achieved in a novel and advantageous manner, where the generator elements are left undistributed - they are simply exchanged wholesale. Normally the stylus is changed, leaving one half of the motor, either coils or magnets, intact. Not so here, and the difference should make for more repeatable results and higher quality control standards.

## Book Covers And Judges

If appearances dictated height of fidelity, these units would be well up on the scale. The AT-31E is a striking blue and silver and the 3100 a very prominent black/white/silver. Both arrive neatly packaged on a perspex headshell, with good instruction manuals and the usual hardware (nuts, bolts, cleaning brush and so on).

The AT-30, predecessor to the AT-31E, had some problems with response in the early days which were ironed out in later samples. The AT-31E has no such troubles! As the graph shows the trace is ruler-straight except for a very slight bass rise.

Removing the cartridge from the superb packaging proved entertaining, to put it mildly. To get the unit off that nice shining headshell, you've got to pull the stylus assembly off first, else the mounting screw won't come out. Damn sneaky if you ask me, and should be explained clearly ON THE BOX somewhere. Better yet, be sensible, AT, and set it up so you don't need to be able to solve Rubik's Cube in six seconds flat to play records. Silly people

Once enthroned in a real headshell, however, the AT-31E made me inclined to forgive AT for the packaging. The imaging is excellent and the channel separation the best l've heard from a moving coil. For once, the publicity blurb is true! Tracking was above average, but not yet in the V15 IV class.

The sound quality was such that it reminded me of the Coral MC81 - only more refined! I set up a Coral for comparison and the analogy proved a good one. The AT-31E has all the Coral's strengths, in terms of mid-range detail and clarity, but none of the vices, ie slight roughness and bass extension worries.

As I was extremely fond of the MC81 (and still am, come to that) I couldn't be less than enamoured with the AT-31E. It is a fine unit and will be serious competition for the myriad other cartridges in the price bracket. Give it a listen.


Above: Safely mated with an SME headshell, the AT-31E prepares to make light of tracking and imaging problems. It matched the arm well and did itself proud in both test and living room.

## AT-3100XE

This too is a low-output design, although a higher output version - the AT-3200XE - is available. A stepup is thus required which will, to some extent, negate the advantage of low cost. We managed to try out the 3100 in a few decks costing between $£ 70$ and $£ 150$ and in the inevitable SME Series III later on. Time had gotten very short by now, but sufficient listening hours were clocked to facilitate sensible comment.

This unit too is characterised by attention to detail, especially in the midrange. It handles complex material well, although with some roughness, be it said, in the lower registers. There is a slight rise in the hf end which is not serious, but could accentuate surface noise if the cartridge is not set up PRECISELY.

One should judge against price and competitors, and on that score the AT-3100XE comes out very well. For $£ 30$ you would be hard pressed to buy a better sound anywhere.

## Man Of Letters

## Dear Mr. Harris,

Thank you for producing such a great magazine which I read regularly and with pleasure. Your recent review of the Monogram Amplifier prompts me to tilt at windmills and ask some questions. I refer to the current obsession of manufacturers for more and more watts of output! 400 watts is


Above: Response fraces for the AT-31E and the AT-3100XE. The h.f. rise on the later is almost cerlainly due to an impedance matching problem with my test rig. It was one of those days when the gremlins ruled OK and there was nought to be done! Still, it was a repeatable result so.

## NEWS : Audiophile

powerful stuff, useful perhaps for discos and Hyde Park corner, but hardly conducive to neighbourliness in domestic hi-fi.

It is recognised that Class A amps are superior in range and tonal qualities to the $A B$, but all that heat and metalwork, as well as PSUs needing gun-carriages to move the lot around. Is it worth it all when we consider the notorious inefficiency of the standard design loudspeaker. You rarely get out of a speaker what you put into it.

My own set-up is very modest; a pair of mongrel speakers which satisfy me if no-one else. They have a power rating of 15 watts apiece. The amplifier is also a hybrid - Capricorn preamp construted from your friendly rival, HE (sorry about that), and two ILP power amps, rated output 15 watts each. 1 did not build the HE power amps as / did not have $£ 125$ and could not think of a reason for needing 300 watts. I doubt I am using more than $20 \%$ of my output power in domestic use. The signal source is either radio or stereo tape deck. Which brings me to my questions.

Is the advantage of these larger output amps to be found in their class A quality rather than lots and lots of watts?

With my present speakers would it even be feasible to use power amps with such large outputs?

Thank you for reading this and please could you enlighten me. If the improvement in tonal quality were to be considerable, then I will go for Class A, hot though it may be, but at a more modest price.

Fr. K. Callaghan, Clapham, London.
Oh ye of little faith! Watts the point of me extolling the virtues of good PSUs, high powers and increased dynamic range if you're gonna ignore me totally? I give up. I despair. I resign from the human race (assuming I was ever in it).

High power amps are not a luxury, they ate a necessity if you are to employ anything like the same range in your music as you would experience in the concert hall. Most domestic users probably run their systems under 1 W most of the time, but once a crescendo trots down the wires, or someone hits a bass drum, something like 100 W is needed to maintain the same fidelity levels on the signal.

If your amp is underpowered, the attempt to reach such heights simply boots the output into clipping - which sounds rough and harsh compared to that which has gone before. Even with your modest speakers, higher power would make itself audibly apparent, with a sense of ease and clarity. Start saving the pennies!

Dear Sir,
Having read your column on and off for some time now 1 have come to the conclusion, reluctantly, that you are biased against Linn products for some reason of your own. Answer me straight, is this true? If not, why don't you review one of their new arms, for example?
D. C. Chesterton, Tovil, Kent.

No it is not true. I consider the LP12 greatly overpriced for the performance it offers and refuse to concede that a linn source is the only viable one. The Linn has its own sound, which is pleasant enough, but hardly totally uncoloured. Straight enough?
(P.S. I'd be only too happy to review the Basik (or any other product of theirs...\} should Linn feel able to loan me one!)

## Stop Press

If you like the idea of owning a pair of Volt V3 speakers (see October " 81 ETI ), but don't like the idea of chopping up the chipboard, then take heart. Wilmslow Audio are now offering a complete precut woodwork kit for this project. This news arrived so late we don't know the price yet. so for more information get in touch with Wilmslow, Cheshire (telephone 0625529599 )

ETI

|  |  |  |
| :---: | :---: | :---: |
| DGGITAL ECHO CHAMEER <br>  <br>  <br>  <br>  <br>  |  |  |

A mull purpose mixer-omp, delvers 150 wofts into conms. fully open and short circuit prool there Gre 4 i $D$ channels with mis line selection on eoch The pre omp has locilites for connecting an ectho unit, also
controls a slove socket and a master volume HY-TEX SPECLAL OFFER PRICE ONIY $\leqslant 79.90$ D*O $\varepsilon 250$ Shove version available $\mathbf{5} 59.90$ pto $\$ 200$

 GME ADVANTAOE OF THE GME ADVANICE POUCY.
HY-TEX FETCE

DISCO MIXER
5 channel stereo disco mixer with 7 band graphic equallser built in, l.e.d. display, headphone monitor, cross fade and mic, override controls. And many other features.
Hy-Tek knockdown price $£ 98.67$ p\&p $£ 2.00$

# BSR P 182 TURNTABLE CHASSIS 

'S' Arm, single ploy - ideal for either disco or Hi-Fi use 3 Speed 'Fully automatic. Guaranteed by Hy-Tek for one year Comes complete with a high quality stereo ceromic cartidge.

A suitable power supply is available for just $£ 16.90$
Using Toloroid Transformers p£p each $£ 1.00$. Together $£ \uparrow .50$

* UD 130 MICROPHONE 600/50K Oual PA-Disco mic. Hi-Tek price $£ 7.75$ (p\&p 60 p)
* PIEZO HORNS ( 100 watts, no crossover required). Used throughout the Oisco and Hi-Fi industries. ONLY $£ 4.40$ (inc p\&p)
* GOOOMANS 12HPA $12^{\prime \prime} 90$ watts (8 vhms loudspeaker chassis: all purpose quality speaker. $£ 23.90$ (p\& $\mathrm{p} £ 2.50$ )


THE BANDRIDGE F.E. 5 STEREO EQUAUSER

 IHy. Tek sis virtualir giving sway the tontestec piece of equoment or rest $E 44901$

SHARP RT 10 STEREO CASSETTE DECK
LE.O. V.U. meters, Dolby system, metol and chsome facilithes, and a sott eject system plus sound quality you would expect from the Shorp company.
company. HY-TEX SPECLAL OFFER 547.90 p\&p£200

ar mail order just add postage a packing (ail prices include VAT) and send $\mathrm{PO} /$ cheque made
payable to Hy-Tek Electronics, or phone stating Access/Barclaycard number (Datston address)

# BODYWORK CHECKER 

## Don't go out and buy a second-hand car without building this handy little gadget. It'll point out any problems under the paintwork. Design by Rory Holmes. Development by Tony Alston.

The purpose of this project is to help the selective second-hand car buyer detect the amount of bodyfiller used under well-disguised repair jobs. The unit gives a two-state indication of metal or plastic, ('OK' or 'BAD' respectively).

Our metal detector uses a capacitive sensing principle, which will detect the presence of any conductive object. Because of this the circuitry is much simpler and more reliable than metal detectors working on an inductive principle. It is also more suitable in this type of application where large areas of metal must be checked.

In use the device is switched on and lightly run over the car panels; if it runs over an area of body-filler the 'BAD' light will come on, otherwise it should read 'OK'.

## Construction

The case is the most important part of this project as it is also part of
the electronic sensing circuit. Take a careful look at the photographs of the finished project and you can clearly see the sensor area at the bottom rear of the case. First cut a rectangular hole $(30 \times 35 \mathrm{~mm})$ about 8 mm from the bottom edge of the case and 14 mm from either side - make sure to clean off any burrs from the hole. A piece of single sided copper clad board ( $24 \times 30$ mm ) is used for the sensor plate - this is centrally glued (copper side out) to a piece of plain paxolin or similar material ( $35 \times 45 \mathrm{~mm}$ ). This assembly is then glued to the case from the inside, so that the copper clad board will then be flush with case surface.

A small hole is drilled through to the copper side of the sensor plate and a short length of insulated wire, long enough to reach the main PCB, is soldered to the copper surface of the sensor plate.

The components can now be assembled and soldered to the main PCB as shown on the overlay diagram,


Fig. 1 This cutaway diagram shows the constructional details for the sensot plate.


making sure to correctly orientate D1,D2, IC1 and IC2 and the LEDs. Make sure to fit the link adjacent to IC1.

A short length of insulated wire is connected from the PCB to a solder tag fixed to the case - make sure this is a good connection as it forms part of the detecting circuit. The connecting lead from the sensor plate is soldered to the main PCB as indicated. A further inswiated lead is taken from this same point on the PCB and held against the side of the case by a piece of insulating tape to form a capacitive trimming circuit (see photograph and refer to the setting up procedure). The LEDs are
directly mounted on the PCB and appropriate holes are drilled in the front case panel to allow these to pass through.

Finally, a piece of felt cut to size is then glued to the rear of the case, covering the sensor plate; this prevents the case from scratching the car bodywork and upsetting your friendly second-hand car dealer!

## Setting Up

Setting up the circuit is straightforward; PR1 controls the detecting sensitivity and PR2 the metal/plastic switching threshold. When altering the presets bear in mind that replacing the case lid will slightly offset the adjustments, so replace the lid after each adjustment to check the effect.

Start with maximum sensitivity, ie set PR1 to its full resistance (anticlockwise). Then place the case, sensor
side down, onto a non-conductive object. With the lid off, PR2 can now be adjusted until the switching threshold is found. When the 'OK' LED is on, back off preset PR2 until it just extinguishes and the 'BAD' LED comes on (indicating no metal). The unit can now be placed against a metal surface and the 'OK' LED should re-light.

The trimming wire capacitively couples a small degree of HF voltage into the detector, effectively aitering the switching threshold. Its effect can be varied by trimming the length. By experimenting with this if necessary, together with PR1 and PR2, a suitable switching action can easily be found.

Note that the human body is a fairly good conductor - you can prove this by holding your hand against the sensor, when the 'OK' LED should come on. This resulted in one member of staff wandering round the office, checking out the female employees and reassuring them that all was well!

## BUYLINES

All ICs and other components for this project are readily available. Most mailorder who advertise within these pages, eg Bi-Pak, will be able to supply all that is necessary. The PCB is available from our PCB Service as advertised on page 94.


## HOW IT WORKS

CMOS inverter gates IC2a and IC2b form a high frequency oscillator of about 150 kHz . This signal is connected directly to the case, which in turn is capacitively coupled via the sensor to the high-impedance detector circuitry based around IC1. This unusual way of screening the circuit prevents the user's hand from affecting the capacitance between the detector input and the 0 V ground rail.

D1, D2, C1, and PR1 rectify the signal from the sensor and pass this voltage to the positive input of the op-amp, which is configured as a simple comparator. PR1 is used to set the input impedance and hence the sensitivity of the sensor. PR2 sets the switching threshold voltage on the non-inverting input to the comparator. When the coupling capacitance is increased, due to a conductive object lying across the case and sensor, the high frequency signal strength arriving at the detector will increase, raising the voltage on pin $\mathbf{3}$ of the comparator above the threshold, and switching the output from pin 6 fully positive.

IC2c,d are connected as a Schmitt trigger with R4 supplying positive feedback. This sharpens up the switching action coming from the comparator and further provides suitable drive signals for the two LEDs. These drive signals are buffered and current-limited by IC2e,f which power the LEDs. When metal is detected LED2 is lit and LED1 is off; the converse is true if metal is absent.


Fig. 2 Circuit diagram.


Fig. 3 Component overlay of the ETI Bodywork Checker.

## 

## DIGITAL VOLTMETER MODULE

## Fully built \& tested

Positive and negatwe voltages with in FSD of 990 mV which is easily extended. Requires only single supply 7 - 12V - High overati necuracy $\$ 0.1 \%+1$ digil Large bright $0.43^{\prime \prime}(11 \mathrm{~mm})$ LEO disploys Supoliad with full datt and appliexton
information. ㄹl.95 information.

Using this fully builk and calibrated module as a bass now mesens thet you can ensily bulid a wide range of accurate equipment guch as multimeters, thermometers. bettery indicators, ste. etc. at a fraction of the cost of ready.mede equipmam. Full detaiks are supplied with aech module showing how to easily extend the voltage range and measure derrent, resistenge and temperature. Fully guaranteed, the unit has been supplifed to electricty suthorities. Government departments, universities, the P.O and many companies

## Temperature Measurement <br> $£ 2.15$ +vat

An easily constructed kit using an I.C. probe providing a linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ove the temperature range from $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The unit f ideal for use in conjunction with the abova OVA module providing an aceurate digital them mometer suitable for a wide range of applications

## Power Supply

$£ 4.95$ +vat
Thin fully buik mains power supply provides nwo stabilised nolared outpurts of 9 V providing corremt levels of up to 250 mA esch. The unit is ideally suited for power ing the OVM and the Temperature Measurement modute.

## ULTRASONIC ALARM MODULE <br> 

Fully built
\& tested


Range adjustable from 5' - 25' A really

Ineorporating a stabilised 12 V supply and a s.p.c.o. relay with $3 A$ contacts, this unit s.p.c.o. reley with $3 A$ contacts, this unit the ebove uttrasonic unit. Fully buite and the sbove utrasonic unit. Fuly buly for constructing the smallest of uruts

affectlve fully built module whech contains both whrasonic transmitter and receiver, together with the necessery circuitry for providing the appropriate delays and falso alarm suppession. Using this module with a sultable 12 V power supply and reloy unit such as that shown. \& resily effective though inexpenaive intruder alarm may be constructed. The modulie, which is supp wide range af enclowures, A dith sinam, is easily moumted in al the necessary handware, is ovailable below

## Power Supply $\&$ Relay Unit <br> $£ 3.95$ +VAT

 vilt

## Hardware Kit £3.95+vat

 A surtuble ready drillod case together with the various mounting pillars, nuts and bolts, and including a mains switch and 2 mm sockets designed to houve the ukrasonic alarm modute, rogether with its asocisted power supply. This hardware kit provides in ideal solution for assembling the economical atarm system. Size $153 \mathrm{~mm} \times 120 \mathrm{~mm} \times 45 \mathrm{~mm}$In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. must be added on all items. ©Shop hours 9-5.30 (Weds. 9-1) e ex-stock delivery on all iterms. - Units on demonstration, callers welcome. $\bullet$ Post and packing charge 50p per order. • S.A.E. with all enquiries please.


## RISCOMP LIMITED

Dept. E.T.I. 3.
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

## PERD PO: $5-7 \mathrm{CE}$ SN: E-







20 digit scrolling display. Up to 1680 programme steps and 226 memories

FX702P £115.95
FA 2 interface £19.96
FP 10 printer SOON

fx-me00 10 digit $(8+2)$ hquid crystal display. 50 scienufic functions. Standerd devistion. functions. Stendard devistion.
Fractions. True algebraic logic. FX 560 £18. 56


T159


TI 88 C


FX 3600P 10 digit $(10+2) 38$ step programmable calculator with liquid crystal display. Regression analysis. 44 scientıfic functions. 7 memories, 18 sets of parentheses. True algebraic logic. 6 functions.
FX 3800P $£ 21.95$


FX-e0xP 10 digit $(10+2)$ programmable with alpho-numeric liquid crystal display. Up to 512 programme stept and 88 mamory registers. 33 parentheses nestable up to 11 levels. Up 109 subroutines, nestable up to 9 FX 602P $\$ 71.95$ FX 601P E61.95 FA 1 interface $£ 19.96$
EL 6101

CASIO FX 502P last few at £a9.95, CASIO FX 100 £15.96, CASIO FX 300 £15.85, CASIO FX 8100 £23.95, CASIO FX 68 £ 18.95
CALCULATOR SALES 8
SERVICE (C.S.S.)
FREEPOST ino stamp
requirad) REDDITCH
WORCS. BS3 0BR
telephone (0527) 43169

## 

 TANGERINE-TANGERINE -TANGERINE-TANGERINE-TANGERINE

Microtan 65 is the masy ado
powitul exp nd ble micto. compurer wailable - in
alio happens to be lie
noss costethectivel


COMPUTER
FULLY
BUILT,
TESTED.
and housed
SYSTEM RACK MICRON
£550 ma

## 6502 basiff mictocompuler VDU alpha numeric display Powehtu

 monitor TAMBUG AK AAM 32 oarallell/ 0 lines 2 TH secrat $1 / 0 \mathrm{hne}$ four 18 Bre coumser timers Cessietie interfact Oats bus buflering Mbmory mapsung contal 71 key ASCll Kerboard inctudinyj numeris kepold Includes cower sunpm diso anctudes the lars: 10K micho SOFT BASIC avalable in the UK All the usual BASIC commands
## arl mandals:

## NCPOTAN-TAKEX-BANC-XBUG

tanraĭ
AvAlable now tanrsm - 40x Bytes on one board. Singla boart of buik memor olfering 7 K Stalit AAM121141 and 32K Dynamic AaM $1 \leq 1161$ Onboad refresth is totelly transparemt to CPU operation and is unafiected by notmin OMS's TANRAM fulim
 6502 mectoprocessor RIC provide 16X RAM 48K RAM, and IK $1 / 0$ - Phars s lot of memay and a lef o! I $0^{\prime}$ Bult and tested TANRAM ASSENBLEO
40K MAM CARD WIth 16 K OYMAMIC MAM $£ 76$ - VAT
 resist and sist setsented camaonemt idenification Full complament al IC socke1s tor maz mum mopansion 64 nay 01 N edge connect IX RAM |2114) 0sa bus bulfering TAMp and users manual EXPAA AAM:
IK STATIC 221141 t2.95 ath 16K DYMAMIC 4116 it 50 each

## MEMDRIES Expano vour System with ouh tance ine

 Discountis 108 APPRONEO CHPS $21021 \mathrm{~K}=1$ Seanc RAM 80p Tim S402 UART C4.50 $\begin{array}{ll}2708 & 63.50 \\ 2716 & 6650\end{array}$ 214TKia Sialc RaM 22.95MK 411616 K . 1 Dmamic RAM

## $1150 \quad$ Anciding var



## NEW MICROTANTEL

 POST OFFICE APPROVED PRESTEL - VIEWOATA

- RM COLDRGPAPHUCS - CAN STOFE PRESTA
- CAN EE USED AS AN EDTTWG IERNENM - CAN BE IMTEFACED WTH PET, NPME

Just connect to the worial sochitl of afict Colpur or blact and white domestic TV recener and to rcut Posi 0 thice mstalled ack soithel and rau are meo the encring wortd of PRISTEL Via simple push buttan use you dre able to vime I 70.000 pages of ap to the monute inloimation on your mimehai!

## TANEX £43.00

## Minimum

 Conlig Kıt
## +VAF 2642.10131 f 4545

High qualty plated thru hole pented cireurl bowd solder resast and suil scrisered component idemiticyion IC sockets for marumum erpansion G4 Way 0 in edge connecior ik raM, cassette inletiace. 16 paratiel 0 inpes. I It serial $1 / 0$ port. no 16 bit counter timenes dara bus butering memofy mappang lagic and disctact components lor marimum erpansion TANEX users manuy ANEX (Minimam cantroutaran) As sembieo

## L53.00 + vat if 95, total 66095

TANEX EXPANSION
Erpanded. TANEX olters 7K RAN
lecalions for 4K EPAOM 1271 ocmions for $10 x$ antended MICROSOFT BASIC. 32 perahell/O ines mo Th setall/0 porss. 3 ind 18 ial $1 / 0$ pon with
a $5232 / 20 \mathrm{ma}$ looo fult mode control and 16 programmable ba ales four 16 bit counter limmes. casselie mierlace databus


EXPANOE O TAMEX KTT |E retudes ROM. XBUG and BASIC:
$\mathbf{8 8 9 . 7 0}+$ VAT t 1346 . total $\{103.16$ EXPANOEOTANEX ASSEMBLEO
$\mathbf{8 9 9 . 7 0}+\mathrm{V}$ A © 1496 total 〔 11466
DPTIONS TO FULLY EXPANOE O TAMEX
IOK Exiended MICROSOFT BASIC in EPROM I wath manuall [ 4900 +VAT O 35. 101 11 (56.35
 SEPTAL NO NT E17天Z UNCL
F522 VIA $1800+$ VAT © 120 tatal 6920

as You can see the prices of our expansion
COMP ONENTS AAE VERY, VEAY COMPETITIVE
TANGERINE DISC SYSTEM
zoc cwntauler chao flsaco - var
DOUBLE SIDED DOUBLE DENSITY DRIVE
£215.00 -VAT
CP/M OISK OPERATING SYSTEM
AVNLABLE JWUNTY E8O - VAT
71 KEY ASCII KEYBOARO E56.34+VAT ND EXTAAS MEEOEO
Jses gold crosspoint hars includes numeric torpord and ribtom cable Avalabla as tully assemblad ane tested SUPER METAL CABINET N TANGERNE/BLACK £20.00 + V A T. 5300 , total $£ 2300$

## PROFESSIONAL ASCII KEYBOARDS Ideal for Tangerine $£ 29.95$ 52 ley 7 be ASCI toded Positue strobe $\cdot 5 \mathrm{~V} \cdot 12 \mathrm{~V}$ Ascil characters Patallel outpuf with sirobe Pcuet light on contel. (G1) $\Pi$ T oulpur <br>  ADD-DN KEYPAD <br> A compact 12 butron keyoad surlable for use with above keybo ard 10 extend ils functio plus four extra keys Supplied brand new with with data $A$ Kx4 non-an keyboard. <br> 

PLUS MAMY NEW GXCITING PRODUCTS W OEvELOPMEN: AUTOMATICAILY FAOM US WHEN AEEEASEO BY TAMEERINE LTD
AMBERINE LTD.

GRITSH DESIGN G MANUFACTUZE ANO ON DEMONSIRAIION HW OUA COMPYTEA OEPT

[^1]
## WHY CLASS A?

## The System A has aroused a lot of interest among our readers - and a few questions too. In this article Stan Curtis explains 'Why Class A?'.

Class $A$ is a mode of operation in which all the output devices operate on the linear portions of their transfer characteristics all the time, the mean current drawn from the supply being constant irrespective of the signal. Class B is a mode in which the output devices split the positive and negative portions of the waveform between them, each device operating from an initially cut off condition (or a low standing current in the case of Class AB). No matter how well engineered, this transition from positive to negative (and vice versa) will cause an irregularity or non-linearity in the transfer characteristic which in the worst case, causes a crossover distortion made up of high order harmonics at high peak amplitudes - harmonics which are very offensive to the ear.

The use of a small standing (quiescent) current through the output stage together with the application of large amounts of overall negative feedback minimises these effects but it must be remembered that at the actual transition point the amplifier becomes effectively open loop(ie no overall negative feedback because the output is zero) and has a very low overall gain (which is dependent upon the current through the output devices); hence the intermodulationdistortion of a good Class A amplifier is virtually nil at low powers and then rises gradually with increased level (see Fig. 1).

## Improper Conduct

The second major problem of Class B amplifiers is their operation at high signal frequencies. Figure 2 shows a typical Class B transistor output stage. As the voltage across the baseemitter junction of $Q 1$ changes from a negative (forward) bias to a positive (reverse) bias, the base current of Q 2 will decrease. Because of emitter-base junction capacitance the base current of Q2 will lag the baseemitter voltage of Q1. Thus when the base-mitter voltage of Q1 is zero, there will still be some charge remaining on the baseemitter capacitance of Q2. This charge only leaks away slowly since Q1 is cut off. Thus Q2 remains conducting after Q1 has been cut off and so the conduction angle of each output transistor can be much greater than $180^{\circ}$. This results in the familiar'notch' distortion, higher current drain from the power supply, lower efficiency and hence increased dissipation by the output transistors.



Fig. 1 Comparitive distortion versus power curves for two typical amplifiers. The vertical scale shows THD in \%.

These problems do not occur in the Class A amplifier because the transistors are always on and so never have to be switched. Thus a Class A amplifier can be designed to have an extended bandwidth with a consequent reduction of high frequency distortion and increased slew-rate.

With all the output transistors conducting in the linear collector region, the distribution of the distortion harmonics is more desirable than the equivalent Class B (or Class AB) amplifier because the non-linearities in the transfer curve are smoother and less abrupt. These low order harmonics (primarily second and third) are far less audibly offensive than those of higher orders. The push-pull output stage of the System A power amp results in a cancellation of the even order harmonics leaving a small amount of the third harmonic which can be reduced to insignificance by the application of a moderate amount of negative feedback.

## Heat Treatment

Another advantage of the Class A design is that of thermal equilibrium. The standing dissipation of the amplifier is between two and four times the rated output power. The output stage dissipation is lowest at full output; thus, in the case of a music signal, the amplifier will be operating near its normal running temperature (which is also its maximum temperature). This thermal stability will tend to minimise the temperature dependent variations of gain, $\mathrm{V}_{\mathrm{Br}}$, and reverse leakage current, as well as avoiding the danger of thermal shock when the signal level changes suddenly. Conventional Class $A B$ amplifiers have their output stage biasing set by a transistor which is thermally coupled to the heatsinks; but there is a thermal lag between increase in the temperature of the output transistor junction and a proportional increase in the temperature of the heatsink. Thus following a large amplitude signal (and the consequent heating up of the junctions) the bias voltage will be tracking the wrong temperature and so, for a short time, the crossover non-linearity may be far worse than the designer intended

ETI DECEMBER 1981

## Driving It Home

Loudspeakers are not the simple resistive loads that engineers desire them to be. This is not the time or the place to go into much detail but suffice it to say, that some amplifiers are completely incapable of driving a real loudspeaker with anything like the fidelity they demonstrate on the test bench. For one thing loudspeakers store energy particularly in their resonant conditions, and this same energy can be dissipated in the form of electrical current pushed back into the amplifier. Thus the perfect amplifier needs the ability to sink a lot of current as well as source it; and it shouid also have a very low output impedance (the theoretical ideal would be zero)

Most amplifiers achieve a low output impedance (ie high damping factor) by applying a large amount of negative feedback. For example the open loop output impedance could be $5 R$ but apply 40 dB of negative feedback and it drops to a respectable 0.05 R. But the mathematics show that the important thing is the open loop impedance so efforts must be made to keep this very low. Typical figures that I have measured on commercial amplifiers range mostly from $1 R$ to $5 R$ with a few much higher still and one or two lower at nearly $0.5 R$. The System A design has the advantage of effectively having three output stages in parallel and so the output impedance of one stage is effectively divided by a factor of three. In fact(skipping the mathematics again) the open loop output impedance of this amplifier is less than 0.1R. As a result the measured 'Interface intermodulation Distortion' is very low indeed


Fig. 2 Typical Class B output stage.


Fig. 3 Simplified diagram of the System A output stage; effectively it is three stages in parallel.


# BHPAKA MONO AND OTHER AUDIO EQUIPMENT 



 modias on wem cavomon！





 Soblead repph Surt 2；Also Palion to 25




 $\operatorname{sen} \mathrm{E}$ ． 15.


COMPLETE AUDIO CHASSIS STRECO 0 D Conotel $?$ towed－ictiones 7 warl per chenal Stereo ump
 MAGNETIC CARTRIDGE PRE－AMPLIFIER
PRE．AMPLIFIER



 apand Stroc Mas Crivite．Preme
－mex 15 mm arpal liom fan．

## MONO PRE．AMPLIFIERS

 minco matuble for and







AUDIO AMPLIFIER
 shart circuil protection




 contruarar upention a high artar leves M1045 50 wall Auso Amp Modce $50 \%$ supm f13．14．
£13． 14.

## AUDIO AMPLIFIER

## 

A power mofthe proving an ounper of ue io 125 w
 artan suge makes 1 entumelr roped mate amage
 lous tumestor poweion crout for use $n$ mem appleasons mat as dice unis sound tentatement

 129.6

## Iransformers wet not trackided with

powe supdion Sewizo Perpe


## TRANSFORMERS



 2N1 2 日而



## ACCESSORIES

1 189 Tedr Cobont Sut Sterco 307201231






 dade for constriving unstionatiod power rupply for A1750 © $1 \%$ wetc 日是
f．12．43．

Sewlen is a food rotige netitere with in outout wituge of
 adro molcrions，the tratisery which prowbers antx arrmis up to 25A copme direct from ontins
 capaziors os convitety the pow suoch．


STEREO PRE－AMPLIFIERS
 M 10 N 20acion




## GE100 MK！ 10 Orymal Mencoy rob

Ont 155 mm a 65 mm a 50 mm induang the $10 \mathrm{I} 10 \times 45 \mathrm{~mm}$ sidee poremsometes and korobs which are meamied

 foct moth heavicy martod on the crail boend the
 mil tiso morive the soand terobucton of rour oisting
 together mit Trenstorner no 2053 GE100 Mall 10 Channd manognole $\mathbf{P A O O}$ ．

日f－PAK＇：COMPLETELYNEW CATALOGUE




 has alnanis bren
WE STIL 00




To recerve your copy send 75 p plus 250 ofo








REGULATED VARIABLE STABHLISED POWER SUPPLY
 －VPSDO Madule 1 － 8 s wh 2 mo zandermer． － 470 atm wimewnd pctentionter， 1 － 7 dm wrewoud poentometr Wrry Dagram

SIREN ALARM MODULE
Arericm Potre mpe screener powered from en
 corm therer brow fown and othe wecurty
 Sron Nom Modios $\mathbf{\$ 3} 8.5$


 UR






 5

Wer wie cietat ore Ring us on ware 3182 mow and cil woul ater ment toter Cood nomsth sent ind Clas Mai

Titi Pouge ado Sop per loul ate．


## MAGIDICE <br> Electronic Dice

- Not an auto item but great fun for the fomily
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds

Auto display of last throw 1 second in 5

- Muting and Dff switch on base

Hours of continuous use from PP7 battery
Over 100 components to assemble

- Supplied in superb presentation glft box


## Electronic Car Security System

- Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment
- Armed and disarmed from outside vehicle using a special Armed and disarmed from outside vehicie using a special mognetic key tob against o Windscreen sensor pad adhere
the inside of the screen . Fits all 12 V neg earth vehicles - Over 250 components to assemble


EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS1 3DE England. Tel: (0922)614791 ©

|  | $\begin{gathered} \text { SELF } \\ \text { ASSEMBLY } \\ \text { KIT } \end{gathered}$ | READY BUITT UNITS |
| :---: | :---: | :---: |
| SX 1000 | £12.75 | $£ 27.95$ |
| SX 2000 | £19.95 | £43.75 |
| TX 2002 | £29.95 | $£ 62.95$ |
| AT. 80 | £24.95 | £49.75 |
| VOYAGER | £49.95 | £84.75 |
| MAGIDICE | £12.95 | £19.95 |

NAME ETI

## VOYAGER Car Drive Computer

- A most sophisticated accessory. Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by eda Sparkrite Lid. Alr on Fuel, Speed. Distance and Time. Visual and Audible alarms warning of Excess Speed. Frost/ice, Lights left-on. Facility to operate LOG and TRIP functions independently or synchronously - Large 10 mm high $400 \mathrm{ft}-\mathrm{L}$ fluorescent display with auto intensity. Unique speed and fuel transducers giving a
programmed accuracy of + or $-1 \%$. Large LOG \& TRIP


## Electronic Ignition

- The ultimate system - Switchable

ADDRESS

## I ENCLOSE CHEQUE(S)/POSTAL ORDERS FOR

$\varepsilon$ $\qquad$ KIT REF.
CHEQUE NO.
24 hr. Answerphone
PHONEYOURDRDERWITHACCESS/BARCLAYCARD
SEND DNLY SAE IF BRDCHURE IS REOUIREO
senowr o

# ENGINEERS GUIDE TO BASIC 

# In the final part of this series, Stewart Fleming looks at arrays, techniques of structured programming, and some simple example programs. 

|$n$ this article a fourth type of variable item, the array, is introduced together with the DIM statement which is a preliminary statement usually required by BASIC before an array can be used. This is followed by a review of the naming conventions employed by different BASICs for all four types of variable. This section is concluded by a description of some problems that can occur with BASICs offering strings and floatingpoint numbers and how they can be easily and neatly overcome.(This will complement last month's issue where we looked at a limitation of BASICs which offer only strings and integers). Finally we introduce the concept of structured programming.

## Hip Hip Array

In last month's issue, the variable was introduced as a box containing a value - string, integer or real. An array simply extends this idea to several boxes, side by side, but all having the same name.


Fig. 1 Real array containing seven elements.
Fig. 1 shows an array, $A$, seven elements long, with each element containing a single real number. This is known as a real array. It is also possible to have integer arrays, with each element containing an integer, and string arrays, where each element contains a string; the types of array available to the BASIC user will depend on his version of the language. Figures 2 and 3 show two more arrays, $\mathrm{B} \$$ and C .

35


Fig. 2 String array containing four elements.
C


Fig. 3 Integer array containing five elements.
Each element in an array behaves like a single variable, and is identified by its position relative to the leftmost box using an integer value known as the subscript. The subscript appears in brackets after the variable name. Thus in the first example, the value of $A(2)$ is 4.0. Arrays are used to store data items which are
similar in some way or when we wish to carry out a particular operation on several items of data. An example is given in the section on structured programming.

## Sizing It Up

The size or length of an array is the number of elements it contains. Before an array is used in BASIC it should be dimensioned using the dimension statement DIM. Thus to create an array A of seven elements we would put the statement DIM A(6)(remember the numbering starts at zero) - preceded by a line number - in the program. If the DIM statement is omitted, an error is produced when an attempt is made to reference the array. A possible exception may occur as most BASICs (of which Research Machines' extended BASIC, PET and APPLE BASICs are examples) will create an 11 element array automatically on encountering a reference to an undimensioned array name. A dimension error is then only produced if the subscript is too big or too small.

Long, thin arrays as above are know as one-dimensional arrays or vectors. Most integer BASICs allow only onedimensional arrays but, as we shall see later, arrays may also be two, three or multi-dimensional (a two-dimensional array is called a matrix). There is a theoretical maximum number of allowed dimensions (eg 88 for Applesoft BASIC) but if you think your program needs that many you can be sure your array is awry!

A final point on arrays also concerns Integer BASICs. As a general rule, BASICs which offer floating-point numbers tend also to offer string arrays - each element of the array being capable of holding a complete string of up to 255 characters. By contrast, integer BASICs (eg the ZX80 4K BASIC and Apple II BASIC) do not allow string arrays, and in addition some (such as Apple II BASIC) require ordinary string variables to be previously DIMensioned for the number of characters the variable is


Fig. 4 The complexity of rewriting a structured program depends on the differences between the BASICs.
likely to contain. Acorn Atom BASIC is an interesting exception since it not only allows individual strings to be stored one character at a time in previously DIMensioned variables, but also allows lots of strings to be stored - one per element - in an array, each element of the array requiring to be separately DIMensioned for the number of characters it is likely to contain!

## The Name Game

The naming conventions for all four types of variables, integers, reals, strings and arrays, varies considerably between BASICs.

Numeric (floating-point) variable names in Research Machines' Extended BASIC(Version 5) and Nascom II BK BASIC begin with a letter and may be optionally followed by an alphanumeric (A to Z, 0 to 9 ). To improve readability, longer variable names such as SUM and AVERACE may be used, but only the first two characters are significant - hence COMET and COEFF are equivalent. String variables are subject to the above restrictions but in addition the name has a dollar sign, $\$$, appended Real arrays have the same naming conventions as real variables; string arrays have the same naming conventions as string variables. Thus $A \$, X 7$ and $X Y$ are all valid but $7 X$ is not. Note that $A$ and $A \$$ are separate variables and both may be used within the same program.

Applesoft BASIC and Commodore PET BASIC(Version 4.0) are similar to the above except that in addition, integer variable names have a percent, $\%$, appended. HenceC\% specifies an integer variable (or array).

Naming conventions for TRS-80Nideo Cenie BASICs are similar to those for the PET except, in addition, ordinary (singleprecision) floating-point variable names may be optionally followed by an exclamation mark (eg D4!) and double-precision variable names must be followed by a hash symbol, \# (eg A A.

With Apple II integer BASIC and Sinclair ZX80 4K integer BASIC, integer variable names start with a letter and may be followed by a number of alphanumerics (up to about 100 in Apple II) all of which are significant. The same applies to string variable names and array names in Apple II BASIC (string variables must also have a $\$$ appended); with the $\mathrm{Z} \times 80$, however, string variable names are restricted to a single letter followed by a $\$$ and integer array names to a single letter. Thus FRED, JOE\$ and ATILLA(1) could all occur in Apple II program but only FRED in a ZX80 4K BASIC program.

Acorn Atom BASIC allows 26 variables which may be used to store integers or strings. These are the letters A to Z. If a variable is to represent a string, it will be preceded by a $\$$. Thus $A$ is an integer variable; $\$ B$ is a string variable. (There is also a variable denoted by © and called the 'print field size'). Unlike most BASICs, the same letter cannot be used to simultaneously represent both types. Thus $A$ and $\$ A$ cannot both be used at the same time to represent a number and string respectively. Atom BASIC has 27 integer arrays AA...ZZ and ©() © . The floatingpoint extension additionally allows the user 27 real variables, $\% \mathrm{~A}, \% \mathrm{~B} . . . \% \mathrm{Z}$ and \% © , and 27 real arrays \%AA, \%BB..... \% ZZ and \% © (6).

A final note concerning variable names: no variable name must be the same as, or contain, a BASIC reserved word. Thus, FOR and ON will be illegal variable names as also will PONY (since it contains ON).

BASIC numeric values are initially set to zero, and string variables to the null string. Note that BASIC numeric arrays may not always be initially set to zero and so it is a good practice to set them to zero prior to use.

## A Real Dilemma

Last month, we considered the limitations that can arise in a BASIC which only offers integers and strings. We shall complete this section by considering two situations that can arise when using a BASIC which offers real (floating-point) numbers.

It is not to be supposed from this that a BASIC which only offers floating-point numbers is necessarily inferior to a BASIC offering integers as well; some BASICs offering both still convert integers to reals before performing any calculations (though ones which can also perform integer arithmetic offer advantages of speed and accuracy in some instances), and the two situations described here can arise with any floating-point BASIC
Surprise Number 1 Consider the following program;

$$
\begin{aligned}
& 10 \text { LET T }=1 / 10 \\
& 20 \text { LET }=0 \\
& 30 \text { FOR }=1 \text { TO } 1000 \\
& 40 \text { LET } S=S+T \\
& 50 \text { NEXT I } \\
& 60 \text { PRINTS } \\
& 70 \text { END }
\end{aligned}
$$

Those with some knowledge of BASIC will recognise this as a program to add up 0.1 a thousand times. What is surprising is that the computer may print 99.9997 or similar, rather than 100 , at line 60 . The reason is that the value of T, 0.1, can only be represented approximately in floating-point form. However, the small error is accumulated 1000 times as line 40 is repeatedly executed, hence the final error. If you suspect that something like this is happening in a program, and you know that the answer should be an integer, add 0.5 to the value and take the integral part:

$$
55 \text { LET } S=\operatorname{INT}(S+0.5)
$$

will do the job.
This formula can always be used to force rounding to the nearest whole number. A general formula for rounding off a value $X$ to $D$ decimal places is:

$$
X=\mathbb{N} T(X \cdot 10 i D+0.5) / \mathbb{N} T(101 D+0.5)
$$

where $X \geq 1$ and $X<999999999$
Actually, the PRINT instruction carries out slight rounding on your behalf, so the problem described here would not have occurred if the 1000 of line 30 had been replaced by, say, 30.

Surprise Number 2 In the following program,

$$
\begin{aligned}
& 10 \text { LET T }=1 / 10 \\
& 20 \text { LET } S=0 \\
& 30 \text { FOR I }=1 \text { TO } 30 \\
& 40 \text { LET } S=S+T \\
& 50 \text { NEXT I } \\
& 60 \text { PRINT } S \\
& 70 \text { DIM A(3) } \\
& 80 \text { LET A(2) }=2 \\
& 90 \text { LET A(3) } 33 \\
& 100 \text { PRINT A(S) } \\
& 110 \text { END }
\end{aligned}
$$

the number 3 will be printed out at line 60 , but 2 at line 100 ! The reason that this occurs is that real numbers are always truncated to the highest whole number in the evaluation of array subscripts. The value of $S$ was very slightly less than 3 , so it was truncated to 2 in line 100 and the value of $A(2)$ was printed. This problem can always be remedied by adding a small number such as 0.1 to the array subscript; ie changing line 100 to

100 PRINT AlS + 0.1)
prints 3 as required.

## Structured Programs

As promised, we now briefly consider structured programming. This is a language-independent approach to programwriting in which all the tasks to be performed by the program are broken down into three types of item. Once the complete task has been specified as combinations cf these three types of item in an algorithm, it may be readily programmed in a suitable language, in our case BASIC.

The three types of item are:

- Processing statements - these are straightforward actions, eg add 1 to $X$.
- Decision structures - these are of two types: The first has the following form:
if logical expression then processing statement $A$ The logical expression is a statement that may be evaluated as either true or false. For example, a decision structure might be

$$
\text { if } X=3 \text { then add } \gamma \text { to } X
$$

The logical expression here is $X=3$. If the current value of the variable $X$ is actually 3 the expression is true, otherwise it is false.

If a logical expression is true, we carry out processing statement $A$ and then go to the next part of the algorithm; if it is false, we go directly to the next part of the algorithm.

The second type of decision structure is

> if logical expression then processing statement $A$ eise processing statement $B$

In this case either processing statement A or processing statement $\mathbf{B}$ is executed (but not both), depending on the truth or otherwise of the logical expression, eg
if the river is $>6 \mathrm{ft}$ wide then [walk to nearest bridge]
else [jump across]

The deviousness of structured programming begins to become apparent when we realise that the processing statements $A$ and B may themselves be lists of processing statements or even another decision or looping structure! Note the use of positioning and brackets to make the algorithm clearer.

- Looping structures - these are also of two types. When we want to perform a processing statement a predetermined number of times, say 50 , we use
loop for $\mathrm{i}=1$ to 50 do processing statement C , eg loop for $i=1$ to 50 do [ add ithelement of array A to T]

When the number of times the statement is to be performed depends on some factor which changes as processing statement C is repeatedly obeyed, we can use the second type;
loop while logical expression to processing statement C, eg loop while there is still food on the plate do continue eating

## Sorting It Out

An algorithm, then, is a list consisting of these three types of item. As each item in the list is obeyed, control passes to the next item in the list until it is exhausted.

Here is an algorithm to read 10 values into an array A, sort them into ascending order and print out the sorted array. The algorithm works by repeatedly comparing adjacent elements in the array and swapping them if they are out of sequence.
dimension the artay A to size 10 put the 10 values into array $A$
loop for $i=1$ to 9 do [pass through the array] print out array A
where [pass through the array] equals
loop for $j=1$ to 9 do lf jth element $>j+1$ th element
then [swap jth and $\mathrm{j}+1$ th elements ]
Note that the processing statement corresponding to loop for i $=1$ to $9 \ldots$ is itself a loop for' structure whose processing statement is actually a decision structure!

## Attention To Detail

Another feature of structured programming is that, at the lowest level, the instructions will be able to be carried out on the computer in the language chosen (it is no good asking the computer to choose its favourite colour, but quite reasonable to get the computer to pick a random number between 1 and 10). The algorithm will hopefully be 'language-independent', however - that is, understandable without reference to any particular programming language or version of a language. The

```
100 HGR
110 HCOLOR = 3
120E=140:F=60:N = 16:X = 0:Y = 10
```



```
130 FOR I = 1 TON
140 X1 = 10
150 Y1 = 10. SIN((6.283'I)/N)
160 HPLOT X + E,Y + F TOX1 + E, Y1 + F
170 X = X1:Y = Y1
180 NEXT।
190X=0:Y = 10
200 HPLOT E,F+Y TOE,F+Y +40
210G = F+Y + 10:H = F + Y +40
219 REM `'DRAW ARMS AND LEGS
220 Y = 0
230 FORK = 1 TO2
240W = 2* {K - 1.5}
250 HPLOT E, G TO E-20.W, G
2 6 0 \text { HPLOT E, H TO E - 20.W,H+20}
2 7 0 ~ H P L O T ~ E ~ + 2 0 ^ { \circ } \mathrm { W } , \mathrm { H } + 2 0 \text { TOE +20. W + 7, H - 20-7.7.W}
2 8 0 ~ N E X T ~ K ~
290 Y = 3-Y
300 HCOLOR = Y
310 FORK = 1 TO2
320W=2*!}\textrm{W}-1.5
330 HPLOT E, G TO E + 20*W, G + 20
340 HPLOT E, H TO E + 10* W, H + 25
350 HPLOT E+10. W,H +25 TO E + 10. W + 10, H +25
360 NEXT K
370 FORM = 1 TO 100:NEXT M
380 GOTO 230
390 END
Program 1. An Applesoft cartoon
```

100 CLS
110 DIM A(59), B(59)
120 FOR I $=1$ TO 59
130 READ A(1)
140 NEXT ।
150 FORI = 1 TO 59
160 READ B(I)
170 NEXT I
180 FOR I = 1 TO 19
190 SET (All), B(I))
200 NEXT I
210 FORI $=20$ TO 39
220 SET (A(1), B(1))
230 RESET $(\mathrm{A}(\mathrm{I}+20), 8(i+20)\}$
240 NEXT I
250 FOR $M=1$ TO 50: NEXT M
260 FORI $=20$ TO 39
270. RESET (A1) 1 , B(1)

280 SET $(A(1+20), B(1-201)$
290 NEXT I
300 FOR M $=1$ TO 50:NEXT M
310 GOTO 180
320 DATA $64,68,70,72,70,68,64,60,57$
330 DATA $56,57,60,64,64,64,64,64,64$
340 DATA $64,66,69,75,81,62,59,53,47$
350 DATA $67,71,75,80,81, B 2,61,57,53$
360 DATA 48,49,50,66,68,70.72,62,60
370 DATA $58,56,66,68,70,72,74,76,62$
380 DATA $60,58,56,58,60$
390 DATA $19,18,17,15,13,12,11,12,13$
400 DATA $15,17,18,21,25,25,27,29,31$
410 DATA 33,22,22,22,22,22.22,22,22
420 DATA 33,34.35,37.36,35,33,34,35
430 DATA $37,38,39,24,26,28,30,24,26$
440 DATA $28,30,34,36,38,40,40,40,34$
450 DATA $36.38,40,40,40$
460 END
Program 2. A similar program to Program 1, but written for the TRS-
80VVideo Genie.

## FEATURE : Guide To BASIC Part 3

algorithmic structure of a program may be its 'lowest common denominator, and hence may be the only basis for the conversion of BASIC programs from one version to another. If the program has been well-structured, this task can be carried out one module or section at a time, and the new module tested before the new modules are reassembled to give a program which should work first time.

## A Graphic Illustration

A particular case to consider is graphics programs or graphics modules within a program. Graphics facilities vary tremendously from one BASIC to another, as illustrated by Programs 1 and 2 which produce cartoons of a man walking. One is written for the Apple II (using Applesoft BASIC) and the other for the TRS 80 Nideo Genie. Were it not for the underlying algorithm - draw man in position 1, pause, erase man in position 1, draw man in position 2 and so on - one would be hard put to know it was the same language, let alone the same task being carried out!

## Float On

We conclude this month's article with an algorithm for one of the subroutines used in last month's program to perform floating-point addition. (The subroutines make 10 floating-point variables available to the user. In the main program last month we read in two numbers and stored them in the fifth and eighth of the 10 available locations (lines 110 to 140), added them up, and stored the result in the fourth available location (line 150). Then we printed out the contents of the fourth location (line 160). However, we could have performed any number of additions on any of the 10 locations, or we could have incorporated the subroutines for use in any other program.)

Algorithm for converting strings to illating-point numbers (subroutine i in last month's program).
[Read in the string]
[Work out the sign for the floating-point number]
[Put ASCII code for sign in second location of floating-point number]
[Work out exponent for floating-point number]
[Put exponent in first location of floating-point number]
[Put mantissa in locations 3-10 of floating-point number] where:
[Work out sign for floating-point number] equals
[ if leftmost character of string is " + " or " - " then $[$ sign $=$ ASCII equivalent of leftmost character of sting. Drop leftmost character else $[$ sign $=43$ (positive) $]$ ]
[Work out exponent of floating-point number] equals
[ [ if string contains a"."
then [exponent $=$ (character position
of "." within the string) -1 .
Remove "." from string]
else [exponent = length of string]]
loopwhile leftmost character of string
$=0$
do [ subtract 1 from exponent. Drop left-
most character of string ] ]
[Put mantissa in locations 3-10 of floating-point number] equals
[ loop for $i=3$ to 10
do [put (ASCII equivalent of leftmost character of string) -48 in location $i$ of floating-point number. Drop leftmost character*] ]

* Note that dropping the leftmost character of an empty string is considered to still leave an empty string.

ETI

## $\mathrm{K}_{\mathrm{CNO}_{1}}^{\mathrm{AL}^{5}} \mathrm{KEO}^{S}$ <br> SUPERSALE ' 81

All full spec, brand new devices 211466450 nsl I 1.00 .4116 (2000 ns ) 51.15. 2708 f1 85.2516 (single rall) €3 25. NEC 2732 f8. 50 . P/P 35 p on above devices:
Brand new and boxed. Lie Defector. Made tor the Open miversity. size: 150 mm flengith 100 mim (width) $\times 90 \mathrm{~mm}$ (hanght). Complete with 100
rocrosmo motor movement 90 mm rucrosmp motor movenent 90 mm
$\times 75 \mathrm{~mm}$. Supplied complete with leads and pads, loss batteries $i 2 \times$ $45 \mathrm{vI} \mathrm{C7} 50+\mathrm{ER} \mathrm{p} / \mathrm{p}$. MK 1002 P Idual 128 bit Shith Reg) 35 p
UA 7100 C
UA7100C 14 dil 22p. 6 for 61 . PRp 30 p . (All Full Spect 2526 Character Generator $164 \times$ $9 \times 91 f 2.95$. dala \& $p \& p 35 \mathrm{c}$. MM $5240 \mathrm{AA} / \mathrm{J}$ Character Gener ator $\mathfrak{f 3} 50$ - datata $p / \mathrm{p} 35 \rho$. LEAR SIEGLER dor matrix print. head. 7 needle. $\mathbf{5 1 9 . 5 0} \mathrm{p} / \mathrm{p} 50 \mathrm{p}$.
ZETTLER low profile PCB relay $30 \mathrm{~mm} \times 36 \mathrm{~mm} 4.8 / 6.9 \mathrm{v}$ d.c $2 / 2.5$ amps a.c. contacts. $850 \mathrm{p} / \mathrm{c}$ 350.

## D TYPE CONNECTORS

9 Way Sockel Isolder) 75p ${ }^{15} 5$ Way yvirewrop plugg E 100 37 Way Plug Isoidert 1 f 1.80 33 Way Socker (solderl) 11.80 25 Way Plug Isolderif 1. . 85 25 Wor Socket Isolderl) 1886
50 Way Plug fsoldorl 900 P/P on above 35.

## COVERS

37 Way (Plastici) $\mathbf{1 . 0 0}$, 50 Way IPlastic) (1.20, 25 Way (Plastic) Sop. 25 Way (Melal) E 1.26 . 25 Way
IMeral) ITP open $£ 1.00$. 15 Woy (Plasticl 600. 15 Way (Meral) 95p P/P on above 35p

DISPLAYS
MPP 5082 I7414 4 digit DIL display UH spec $\mathbf{1 . 5 0}$ esich, P\&ip 35 p .

##  <br> HP5082/7650 . $4^{\circ} \mathrm{cc}$. lete and

right decimal point, high brightness. only 65p. 12 for 6650 , p6o 36p. SUPERSAVER 1
Ribbon Cable Headers 16 DIL Jermyn, gold-plaled, with cover 45p. 081025 D .
Ansiey Header plugs. 14 Wey 75p. 16 Way 95p. 24 Way E1 80 . (insulation piercing iypel pp 35p.
Ansley 10 Header pluas PCB Mounting. Iin 26 Way 650,40 Way tip'p 35p. SUPERSAVE
E1p $35 p$. SUPERSA VER? Tantalum Capacitors 25 volt. 4.7 UF. 14 for $£ 1$, p\& 1 p $35 p$. PRICE SMASH FNO500 . 5 in LED displays, full spec 50 p ench, p\&p 35p, larqe quantuties POA. SUPERSAVER 5 Battery eliminator 6 VOC 200MA 240 V AC input ideat for anculstors, radio, itc., give woy price 95p each. Large quantries P.O.A. P\&p 35p
SUPERSAVER 6 EAO KEY SWTTCH oblong fas. ia, $25 \mathrm{~mm} \times 18 \mathrm{~mm}$ (approx. fimm hole). foxing supplied. brand new with 2 keys. 295 p\&p 35p.

SUPERSAVER 7
Thyrrstors Type 16 Ria 100 Vorm
 mimited stock, p/p 35p Stud mounted rectfiers, type 40 HF 1001250 volts. 450 amp .4 for e2.50 p/p 350

SUPERSAVER 8 TT 4 cx 250 b brand new full spec 87.50 esch pas $35 p$. SUPERSAVER 9 dight 7 segment OIL LED. 1 SUPERSAVER 10 Tangerine $M$ crotan 65 blank PCB. Tangerine M crotan 65 slank PCB.
Brand new plus circua dragram
f 40 . p/p 50 p ( 6502 based, 1 K on 450.p/p 50p ( 6502 based. 1 K on

## harkis HI 9hocesalz

CMOS 8 Channe! MUX plus over. voltage protection. Full spec. f4 each. p/p
welcome.
SUPERSAVER 12 25 power plug and 2 metres of cable. Only $£ 1.00$ for 10 p/p 250 Trede enquiries weicome.
SUPERSAVER IS BOX FANS $115 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$ $120 \mathrm{~mm} \times 120 \mathrm{~mm}$. New. $£ 4.50$ PIP E1.00.

SUPERSAVER 15 5 K 7/a' muhtiturn trimpols, PCB mounting, per box of $14 £ 2.50$ As above IK and 50K, pio 35p

SUPERSAVER 16 OPTRON OPTO SLOTTEO p\&p35p.
SUPERSAVER 17
VU METER $48 \mathrm{~mm} \times 50 \mathrm{~mm} 3 p$. prox. overall size. Face size $50 \mathrm{~mm} \times 28 \mathrm{~mm}$ approx. Frand new. £1.15 p\&p 30p (Sent at purchaser's risk).
PB AMP SM VER PCB AMP (LM380). Unusud. $65 \mathrm{~mm} \times 95 \mathrm{~mm}$ approx. 9.12 V DC. £ 1.35 p\& $835 p$.
SUPERSAVER 1 10 DIGIT (Red). LED display. (. 122 in . digit slae). With buils-in driver chio and built-In lens magnufie?. Oata sheet supplied. Brand new. f 1.50 p\&p 350 .

SUPERSAVER 20 41 men . JUMPER LEAO. 16 DIL header is 16 DIL header. 95p p\&p 30p
2 ym SUPERSAVER 21 $23 / 2$ In JUMPER LEAO. 14 DIL header io 14 DIL header. 65p pep 30

SUPERSAVER 22

## lo reel of solder 18 SW

 alloy E 6.50 ok p 90 pA SUMMER GIVEAWAY 28 PIO. Only $\mathrm{f3} .75$ of P . 35 p Large quantities P.OA oach Large quantities P.OA. p\&p

Marry Christmas to all our customers and ETI staff.

TMS 4030, $4096 \times 1$ dynamic RAM 200 ns removed from PCBs. 65p each. 16 for $£ 8$, p\&ip 35 p .
GPO LINE MATCHING TRANS. FORMER. With 12 V reed relay etc. removed from equipment. $\mathrm{fi}+40 \mathrm{p}$ pep.

## CMOS SCOOP

CD4012 10 for E1.50, CO4013 10 for E2.25, CO\&O1B 60p each, CD4019 10 for $£ 3.85$, C04022 10 for $\mathrm{£4} 00$, CD4023 10 for $\mathrm{f1}, 30$. CO 4027 10 for f 300 , CO4035 10 for $\mathrm{f6} 00$. CD4049 10 for $\mathrm{E2} 25$ CD4050 10 for $\mathbf{2 2 5 0}$. P/P 35p per
gIVEAWAY 18 pin low protile dil socket 13p EACH of 8 for $£ 1$

## AUGATIC SOCKETS (The besi available)

$16 \mathrm{Dil} 20 \mathrm{p} \quad 24 \mathrm{D}_{11} 50 \mathrm{p}$ $\begin{array}{rrr}28 \text { Dil } & 25 p & 40 \mathrm{Dil} 55 p \\ 20 \text { Oil } & 30 \mathrm{p} & \text { p\&p } 350\end{array}$ WE STOCK a vast range of TTL. CMOS, some 74LS. MINIATURE TOGGLES. etc.
PSUs. We have a large stock of cower supplies at very realistic prices (calfers).

## NEW LINES

GUEST Igold plated) ic test cilp. 40 way. 28 way $£ 4.50$ per pair. P/P 50 p
REG PCB (less componente), 5 V 1 amp. 12 V 1 amp and hearsink $(60 \mathrm{~mm} \times 90 \mathrm{~mm})$. Brand new, 61.00. Heatsink only, 55p. P/P $35 p$
NEC NEC FIPaB13 4 dight glass
display foreen with cente displar lgreen with centre
colons and plug and minus sinn), onlif £1.35. P/P 300.

## TELEPHONE

 UXBRIDGE 55399 PL258 SOCKET CHASSIS MOUNT, 50P PEP 30p.TRANSFORMERS 012, 074,1 amp E2.50, P\&P 50 D . 01250.92 amp E2.50. P\&P 50p. TTL SALE 7410 9p, 741318 p 7416 180. $7490280,7415545 p$ $7417460 \mathrm{p}, 7418174285$ E2.25 PGP 35p.
WHY PAY POUNDS? - Just ar. rived Amphenot 36 -way plug and socket fused) to fit all your print
$35 p$. Term Terms cash with order foflicial leogers welcomed from colplease Ail All enquiries s.a.e. VAT, unless otherwise stated. Postage as shown per itern


PLEASE DO NOT ORDER GOOOS FROM OLD ADVERTS. PHONE BEFORE ORDER NG SURPLUS STOCKS
FORCHASED

LB ELECTRONICS
11 HERCIES ROAD
HILINGDON, MIODLESEX
UB10 9LS ENGLANO
All enquirizes s.s.e. plesse Telephone answering machine service out of business hours. New retal premises. now open Mon. Tues. Thurs, Fri, and Sal, 9.30.6.00 LUnch 1-2.15 weekdays. Closed all day Wed. nesday. We are situated just off the A40 opposite Master
ALL PRICES INCLUSIVE OF VAT
UXBRIDGE 55399

# CHORDGATE LTD <br> 75 FARINGDON RD <br> SWINDON, WILTS. Tel. (0793) 33877 RETAIL SHOP AT ABOVE ADDRESS <br> <br> MIGHTY NINETY PACKS <br> <br> MIGHTY NINETY PACKS <br> <br> SUPER VALUE PACKS ALL AT 90p EACH <br> <br> SUPER VALUE PACKS ALL AT 90p EACH BUY SIX PACKS AND GET A SEVENTH BUY SIX PACKS AND GET A SEVENTH FREEI FREEI <br> <br> PLEASE ADD 15p PER PACK POSTAGE 

 <br> <br> PLEASE ADD 15p PER PACK POSTAGE}

## SPECIAL OFFERS

1000 Resistors Carbon, Metal Film etc.
$£ 3.95$ (At least 50 different values)
1000 Mixed Components Resistors, Semiconductors, Capacitors, Hardware etc. £3.95
15 Asstd PCBs with loads of components IC's transistors, diodes, resistors, capacitors, etc. $£ 2.95$
Microwave Intruder Alarm (Doppler) 12V DC supply relay O/P Range approx 30ft. Supplied ex installation untested. Circuit diagram supplied. £12.50 Swivel bracket $£ 2.00$

## COMPONENTS

SUB-MIN TDGGLE SWITCHES
SP. DT 6Sp ea. 10 for 65
SLIOER POTS 60 mm TRACK 80 mm FIXING CENTRES
SLIOER POTS 60 mm TRACK 80 mm FIXING
5K. 10K. 26K, 50K. 100K, 250 K
3.5 mm JACK PLUGS STEREO 30p ee. SOCKET TO SUIT 18p em
3.5 mm JACK PLUGS MONO 15p ea. SOCKET (SW) TO SUIT 12p

5 PIN DIN $180^{\circ}$ PLUG $18 p$ ea. 10 for $\mathbf{£ 1 . 0 5 . ~ S O C K E T ~ T O ~ S U I T ~} 14 p$. 10 for $£ 1.25$
ELACK PLASTIC PANEL WITH $2 \times$ PHONO SOCKET $1 \times 5$ PIN DIN SKT + EARTH TERMINAL 30 p en. 2 for 50 p. 5 for $£ 1.00$
CAR CIGAR LIGHTER ADAPTOR PLUG FUSES 3 AMP 60p ea.
BATTERY HOLDERS 2 HP7/4 HP7 $225 \mathrm{pea} / 8 \times \mathrm{HP7} / 4 \times \mathrm{U} 11 \cdot 30 \mathrm{pea}$.
COILED MAINS LEAD 3 CORE 1 AMP 1.8 m EXTENOED 55p
6 ROLLS PVC AOHESIVE TAPE OIFFERENT COLOURS 70p


MN1. 300 \%-watt Resistors preformed for P\&C Mig MN2. $200 \%$ \& $1 / 2$-watt Resistors MN3. 1001 \& 2 .watt Resiators MN4. 50 Wirewound Resistors MN5. 100 metal oxide Resistors. 1\%, 2\% and 5\%
MN6. 12 assid potentiomaters MN7. 25 asstd skeleton pro-set Resistors
MNB. 50 asstd Electrolytic Capacitors
MN9. 100 atstd Ceramic Capacitors PIte. disc. tub and monolythic atc. MN1O. 100 mixed capacitors. Polvester, Polystyrene, Metallised, Radial and Axial types
MN11. 20 asstd Sliver Mica Capacitors
MN12. 8 Tantalum Bead Capacitors
(useful values)
MN13. 20 asstd Transistors. BC, 2N Series + Power fic

## SEEUSAT $-8$



## ONE STOP SHOPPING

No need to waste your time and money searching for components.
No need for unfinished projects becouse you are unable to obtain that last component.
We stock complete sets of parts for FTI projects - leaving you to concentrate on the electronics and construction.

## 3 WAYS TO BUY:

FULL KITS - include printed circuit board, all components, hardware. IC sockers, case etc. (Not batteries).
LESS CASE - as above but less the case.
PCB + PCB MOUNTEO COMPONENTS - PCB plus all the parts which are mounted on the board - plus leds, potentiometers + off board semi conductors.

|  | FULL | $\begin{aligned} & \text { LESS } \\ & \text { CASE } \end{aligned}$ | $\begin{aligned} & \text { PCB } \\ & \text { PLUS } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | 49.98 | 36.98 | 31.84 |
| PHONE BELL SHIFTER Nov 81 | 19.35 | 13.61 | 8.32 |
| VOICE OVER UNIT Nov 81 | 27.62 | 21.22 | 15.32 |
| CAR ALARM NOV | 19.98 | 16.45 | 14.80 |
| ENLARGER TIMER Oct 81 | 26.59 | 21.85 | 9.98 |
| SOUNO BENOER Oc | 20.76 | 15.76 | 11.77 |
| MICROPOWER THERMAL ALARM Oct 81 | - | 9.88 |  |
| MICROPOWER PENOULUM Oct 81 | - | 5.50 |  |
| LAB PSU Sept 81 | - | 37.98 | 22.40 |
| WATCHOOG SECURITY ALARM Aug | 43.33 | 35.83 | 19.98 |
| RECHARGEABLE BATTERY | 19.98 | - | 19. |
| HEARTEEAT MONITOR A | 26.26 | 21.65 | 13.80 |
| HANOCLAP SYNTHESISER Aug 81 | 29.98 | 23.58 | 18.44 |
| FLASH SEQUENCER Aug 81. Less flash sockets. | 35.65 | 29.25 | 21.25 |
| SMAPT BATTERY CHARGER July 81 | 31.98 | 25.98 | 9.84 |
| WAH PHASE June 8\%. Less pedal |  | 13.44 | 9.14 |
|  | - | 2.47 | 9.14 |
| Spiral |  | 7.20 | - |
| ALIEN ATACK Star | - | 9.41 | - |
| ALIEN ATTACK Jan 81 | 19.78 | 16.47 | 12.83 |
| ANTENNA EXTENOER June 81 | 21.68 | 16.45 |  |
| MINI ORILL SPEEO CONTROLLER June 81 | 25.13 | 21.13 | 12.60 |
| DIGITAL CLOCK May 81 (round leds) | 43.97 |  |  |
| CARAVANLIGHTS CHËCKER Appril 81 | 10.16 | - |  |
| GUITAR NOTE EXPANOER-ET! April 81 | 16.47 | 11.25 | 6.44 |
| ORUM MACHINE Aprit 81 | 59.98 | 46.94 | 35.38 |
| MUSICAL BOX April 81. | 12.54 |  |  |



## HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:



## INVEST GOp AND MAKE E2.40 net proft

Buy Ambit's new concise component catalogue and get $£ 1$ vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices, fast service and technical support facility second to none Here are some examples from the current issue:


| CMOS |  | 4077 | 0.18 | 4705 | 4.24 | 7447 N | 0.62 | 74153N | 0.55 | 74366 N | 0.85 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4000 | 0.13 | 4078 | 0.18 | 4706 | 4.50 | 7448 N | 0.56 | 74154 N | 0.55 | 74367 N | 085 |
| 4001 | 0.13 | 4081 | 0.18 | 4720 | 4.00 | 7450 | 0.14 | 74156 N | 0.55 | 74368 N | 0.85 |
| 4002 | 0.13 | 4082 | 0.18 | 4723 | 0.95 | 7451 N | 0.14 | 74156 N | 0.55 | 74390 N | 1.85 |
| 4007 | 0.15 | 4093 | 0.41 | 4724 | 095 | 7453 N | 0.14 | 74157 N | 0.56 | 74393 N | 1.85 |
| 4008 | 0.70 | 4099 | 0.93 | 4725 | 2.24 | 7454 N | 0.14 | 74159 N | 1.90 | 74490N | 185 |
| 4008AE | 0.80 | 4175 | 0.90 | 40014 | 0.54 | 7480 N | 0.14 | 74160 N | 0.55 | 74 LSN |  |
| 4009 | 0.30 | 4502 | 0.79 | 40085 | 0.99 | 7470 N | 028 | 74161 N | 0.55 |  |  |
| 4010 | 0.30 | 4503 | 0.48 | 40098 | 0.54 | 7472 N | 0.27 | 74162 N | 0.55 | 74LS00N | 0.11 |
| 4011 AE | 0.24 | 4506 | 0.63 | 40106 | 0.69 | 7473 N | 028 | 74163 N | 0.55 | 74LS01N | 0.11 |
| 4011 | 0.15 | 4507 | 0.38 | 40160 | 0.68 | 7474 N | 028 | 74164 N | 0.55 | 74LS02N | 0.12 |
| 4013 | 0.32 | 4508 | 195 | 40161 | 0.69 | 7475N | 0.35 | 74165 N | 0.55 | 74LSO3N | 0.12 |
| 4015 | 0.64 | 4510 | 0.66 | 40162 | 0.68 | 7476 N | 030 | 74166 N | 0.70 | $74.504 N$ | 0.14 |
| 4016 | 0.30 | 4511 | 0.66 | 40183 | 0.69 | 7480 N | 0.26 | 74167 N | 125 | $74 \mathrm{LSO5N}$ | 0.14 |
| 4017 | 0.45 | 4512 | 0.70 | 40174 | 0.68 | 7481 N | 020 | 74170 N | 1.25 | 74LSOBN | 0.14 |
| 4019 | 0.38 | 4514 | 8.45 | 40175 | 0.69 | 7482 N | 0.75 | 74173N | 1.10 | 74LSO9N | 0.14 |
| 4020 | 0.58 | 4515 | 1.45 | 40192 | 0.75 | 7485 N | 0.75 | 74174 N | 0.75 | 74 LSION | 0.13 |
| 4021 | 0.68 | 4516 | 0.75 | 40153 | 0.75 | 7486 N | 0.24 | 74177 N | 0.75 | 74LSS1N | 0.14 |
| 4022 | 0.64 | 4518 | 0.40 | 40194 | 0.68 | 7489 N | 1.05 | 74176 N | 0.75 | 74LS12N | 0.15 |
| 4023 | 0.15 | 4520 | 0.75 | 40195 | 0.69 | 7490N | 0.30 | 74177 N | 0.75 | 74LS13N | 028 |
| 4024 | 0.45 | 452: | 1.00 |  |  | 7491 N | 0.55 | 74178 N | 0.90 | $74 \mathrm{LS14N}$ | 0.46 |
| 4025 | 0.15 | 4522 | 0.69 | TTL | N | 7492 N | 0.35 | 74179N | 1.35 | 74LS15N | 0.14 |
| 4026 | 8.05 | 4527 | 0.69 | 7400 N | 0.10 | 7493N | 0.35 | 74150 N | 0.75 | 74 LS 20 N | 0.13 |
| 4027 | 0.50 | 4528 | 0.78 | 7401 N | 0.10 | 7494 N | 0.70 | 74181N | 1.22 | 74 S 21 N | 0.15 |
| 4028 | 0.50 | 4529 | 0.89 | 7402 N | 0.20 | 7495 N | 0.60 | $74182 N$ | 0.70 | 74LS22N | 0.15 |
| 4009 | 0.75 | 4531 | 085 | 7403 N | 0.11 | 7496 N | 0.45 | 74134 N | 120 | 74 S 26 N | 0.18 |
| 4030 | 0.35 | 4532 | 1.20 | 7404 N | 0.12 | 7497 N | 1.40 | 74185 N | 120 | 74 LS 27 N | 0.14 |
| 4035 | 0.75 | 4534 | 5.30 | 7405 N | 0.12 | 74100 | 1.10 | 74188 N | 3.00 | $74 \mathrm{LS20N}$ | 0.19 |
| 4040 | 0.68 | 4536 | 3.00 | 7406 N | 022 | 74104 | 0.62 | 74190 N | 0.56 | 74LS30N | 0.13 |
| 4042 | 0.58 | 4538 | 0.97 | 7407 N | 0.22 | 74105 | 0.62 | 74191 N | 0.55 | $74 \mathrm{LS32N}$ | 0.14 |
| 4043 | 0.65 | 4539 | 089 | 7408 N | 0.15 | 74107 | 0.26 | 74892N | 0.56 | $74 \mathrm{LS33N}$ | 0.16 |
| $4043 A E$ | 0.93 | 4543 | 1.05 | 7409 N | 0.15 | 74109 N | 0.35 | 74193 N | 055 | 74LS37N | 0.15 |
| 4044 | 0.64 | 4549 | 3.50 | 7410 N | 0.12 | 74110 N | 0.54 | 74194 N | 055 | 74 LS 38 N | 0.16 |
| 4046 | 0.69 | 4553 | 3.20 | 7411 N | 0.18 | 74111 N | 0.68 | 74195 N | 055 | $74 \mathrm{LS40N}$ | 0.13 |
| 4047 | 0.69 | 4554 | 1.30 | 7412 N | 0.19 | 74112N | 1.70 | 74196 N | 055 | $74 \mathrm{LS42N}$ | 033 |
| 4049 | 0.30 | 4555 | 0.48 | 7413 N | 0.77 | 74116 N | 1.98 | 74197 N | 055 | $74 \mathrm{LS47N}$ | 0.39 |
| 4060 | 0.30 | 4556 | 0.53 | 7414 N | 0.51 | 74118 N | 0.85 | $74198 N$ | 085 | $74 \mathrm{LS48N}$ | 065 |
| 4051 | 0.65 | 4557 | 2.30 | 7416 N | 0.27 | 74119N | 1.20 | 74199 N | 100 | 74LS49N | 0.59 |
| 4052 | 0.65 | 4558 | 0.89 | 7417 N | 027 | 74120 N | 0.95 | 74221 N | 1.00 | $74.551 N$ | 0.14 |
| 4063 | 0.66 | 4559 | 3.80 | 7420 N | 0.13 | 74121 N | 034 | 74246 N | 1.50 | 74.554 N | 0.15 |
| 4054 | 1.30 | 4560 | 1.75 | 7421 N | 028 | 74122 N | 0.34 | 74247 N | 1.51 | 74 LS 55 N | 0.15 |
| 4055 | 1.30 | 4561 | 2.18 | 7423 N | 0.2 | 74123 N | 0.40 | 74248 N | 1.89 | $74.573 N$ | 0.21 |
| 4056 | 1.30 | 4562 | 0.89 | 7425 N | 0.22 | 74125 N | 0.40 | 74249 N | 0.11 | $74 \mathrm{LS74N}$ | 0.18 |
| 4059 | 5.75 | 4566 | 3.80 | 7426 N | 02 | 74126 N | 0.40 | 74251 N | 1.05 | $74.575 N$ | 0.28 |
| 4060 | 0.88 | 4568 | 1.45 | 7427 N | 0.28 | 74928 N | 0.8 | 74285 N | 086 | 74 LS 76 N | 0.19 |
| 4063 | 1.15 | 4569 | 150 | 7430 N | 0.13 | 74132 N | 0.50 | 74273 N | 2.67 | $74.578 N$ | ${ }^{0} 24$ |
| 4086 | 034 | 4572 | 1.95 | 7433 N | 0.23 | 74138 N | 0.65 | 74278 N | 249 | 74.583 N | 0.50 |
| 4067 | 4.30 | 4580 | 325 | 7437 N | 0.20 | 74141 N | 0.45 | 74279 N | 0.89 | $74 \mathrm{LS85N}$ 74 iS 86 N | 0.70 0.18 |
| 4068 | 0.18 | 4581 | 1.50 | 74388 N | 0.28 | 74142 N 74143 N | 1.85 | 74283 N | 1.30 | 74iS88N 74 LSSON | 0.18 0.32 |
| 4069AE | 0.18 0.18 | 45888 | 8.65 | 7840 N | 0.14 0.54 | 74143 N 74144 N | 2.50 2.50 | $74284 N$ $74285 N$ | 350 350 | 74 LSSON 74 LS 91 N | 0.32 0.70 |
| 4070 | 0.18 0.18 | 4583 | 0.80 0.45 | 7491 N 7442 N | 0.54 0.42 | 74144 N 74145 N | 2.50 0.75 | $74285 N$ $74290 N$ | 3.50 1.00 | $741591 N$ 74 LS 92 N | 0.70 0.34 |
| 4071 | 0.18 0.18 | 45884 | 0.45 0.45 | $7442 N$ 7443 N | 0.42 | 74145 N 74147 N | 0.75 1.50 | 74290 N 74293 N | 1.00 1.05 | 74LS93N | 0.34 |
| 4073 | 0.18 | 4702 | 4.50 | 7444 N | 0.62 | 74148 N | 1.09 | 74297N | 2.36 | $74 \mathrm{LS95N}$ | 0.44 |
| 4075 | 0.18 | 4703 | 4.4日 | 7445 N | 0.62 | 74150 N | 0.79 | $74299 N$ | 1.85 | $74 \mathrm{LS96N}$ | 1.20 |
| 4076 | 0.00 | 4704 | 4.24 | 7446 N | 0. | 74151 N | a | 74 |  | 74LS 107 N | 0.25 |


| 74LS109N | 0.25 |
| :---: | :---: |
| 74LSI12N | 0.25 |
| 74SL113N | 025 |
| 74LS114N | 0.25 |
| 74LS122N | 0.40 |
| 74LS 123N | 0.56 |
| 74LS 124N | 180 |
| 74LS125N | 0.29 |
| 74LS126N | 0.29 |
| 74LS132N | 0.45 |
| 74LS133N | 0.30 |
| 74LS136N | 025 |
| 74LS138N | 034 |
| 74LS139N | 036 |
| 74LS145N | 120 |
| 74LS151N | 035 |
| 74LS 153 N | 035 |
| 74L S154N | 099 |
| 74LSI55N | 038 |
| 74LS156N | 038 |
| 74iS157N | 033 |
| 74LS158N | 0.33 |
| 74LS 160 N | 040 |
| 74LS161N | 040 |
| 74LSt62N | 0.40 |
| 74LSIG3N | 040 |
| 74LSIEAN | 046 |
| 74 LS 165 N | 120 |
| 74LS166N | 080 |
| 74LS168N | 085 |
| 74LS169N | O ES |
| 74LS170N | 140 |
| 74LS173N | 0.70 |
| 74LS174N | 055 |
| 74LS175N | 0.56 |
| 74LS 181N | 1.20 |
| 74LS183N | 1.75 |
| 74LS iegn | 128 |
| 74LS190N | 0.56 |
| 74LS 191 N | 0.56 |
| 7415 192 N | 0.56 |
| 74LS193N | 0.59 |
| 74LSI94N | 0.39 |
| 74LS195N | 0.39 |
| 74LS196N | 055 |
| 74LS 197N | 0.65 |
| 74LS200N | 3.45 |
| 74LS202N | 345 |
| 74LS221N | 0.60 |
| 74LS240N | 0.99 |
| 74LS241N | 0.99 |
| 74LS242N | 1.66 |
| 74LS243N | 1.65 |
| 74.S244N | 0.83 |
| $74 \mathrm{LS245N}$ | 1.50 |
| 7415247M | 135 |


| 74LS248N | 1.35 |
| :---: | :---: |
| 74LS 249 N | 1.35 |
| 74 LS 251 N | 0.46 |
| 74LS253N | 0.46 |
| 7415257N | 0.55 |
| 74LS258N | 0.39 |
| 74LS258N | 0.39 |
| 74LS250N | 0.70 |
| 74 LS 266 N | 0.24 |
| 74LS273N | 0.90 |
| 74.5275 N | 3.20 |
| 74LS279N | 035 |
| 74LS280N | 2.05 |
| 74.5283 N | 0.44 |
| 74LS200N | 0.58 |
| 74LS293N | 1.30 |
| 741 S295N | 1.50 |
| 74LS298N | 1.50 |
| 74LS366N | 0.35 |
| 74LS366N | 0.35 |
| 74LS367N | 0.35 |
| $74 \mathrm{LS388N}$ | 035 |
| 74LS373N | 0.78 |
| 74LS374N | 0.78 |
| 74LS375N | 1.15 |
| $74 . S 377 \mathrm{~N}$ | 1.99 |
| 74LS379N | 1.40 |
| 74LS379N | 2.15 |
| 74LS384N | 2.50 |
| 74LS395N | 4.20 |
| 74LS306N | 029 |
| 74LS390N | 0.68 |
| 74LS393N | 0.81 |
| 74LS395N | 2.10 |
| 74LS396N | 1.99 |
| 74LS398N | 2.75 |
| 74LS399N | 2.30 |
| 74LS445N | 1.40 |
| 74.5447 N | 1.95 |
| 74LS490N | 1.10 |
| 74.5668 N | 1.05 |
| $74 \mathrm{LS669N}$ | 1.05 |
| 74LS670N | 1.70 |
| RAM |  |
| 2102 | 1.70 |
| 2112 | 3.40 |
| $2114 / 2$ | 149 |
| 4027 | 5.78 |
| 4116/2 | 159 |
| 4116/3 | 1.49 |
| 4964P | 12.50 |
| 6116p-3 | 12.50 |
| 6116P.4 | 11.25 |
| 8264 | 12.50 |

74 CXX

# COMPONENT TESTER 

# Check out your semiconductors with this cunning but simple project. It's brilliant, even if we do say so ourselves (and we do). Design by Rory Holmes. Development by Tony Alston. 

When you've completed your latest design, a brilliant project which not only solves the world energy crisis but proves that Einstein made a small mathematical error as well, it can be very frustrating if you rush to your junk box and discover that you can't breadboard the circuit because the markings have rubbed off your transistors. To help with this problem we've come up with our latest design, a brilliant project which tells you which lead is which, whether the transistor is OK, what polarity it is and its approximate gain. Diodes and LEDs may also be tested, and for good measure we've thrown in an op-amp checker. The world energy crisis you'll have to figure out for yourself.

## Construction

Assembly is straightforward if the recommended PCB is used. Make sure to orientate IC1, IC2, D1 and D2 correctly, and use sockets for the ICs to avoid damage by soldering them Remember to put the three wire links on the PCB!

Although there are quite a few offboard connecting wires, these should not be a problem if the circuit diagram, overlay and internal photos are studied carefully. Only one transistor test socket is shown on the circuit diagram but several types can be wired in parallel (as we did) to accommodate various types of transistor. The TO-5 and TO-18 types were epoxied to the front panet, as was the eight-pin DIL socket for the op-amp tester. Three insulated test terminals were also included for testing-other types of transistors, diodes and LEDs.

TX1 and TX2 are crystal mike inserts, Eagle type MC25 or similar. Warning! - most inserts have one terminal connected to their case and as we've used a metal front panel for this project, TX2 should be insulated from this panel. Otherwise, TX1 and TX2 will
be common linked and as the circuit diagram shows that TX1 is connected to $0 \mathrm{~V}, \mathrm{TX} 2$ 's connection to $\mathrm{IC1}, \mathrm{IC} 2$ and C 2 will be incorrectly taken to 0 V . We got round the problem when we glued a circular fibre washer to one insert before fixing it to the front panel.

## Testing Times

Transistors are plugged into the appropriate socket, and any type may be tested; NPN, PNP, small signal or power. No selection of NPN or PNP is necessary as this is done automatically by the tester. When the push-totest button is pressed, an intermittent tone is produced. The frequency of the tone is proportional to the gain of the transistor, giving a rough guide. The LEDs also flash alternately in time with the pulsing tone; the LED that is on at the same time as the tone indicates the polarity of the transistor. If the transistor has no gain or is open circuit there will be no tone, although the LEDs will still flash. If the transistor has a large leakage current or is shorted, there will be a 'two-tone' sound. If the

transistor has been inserted the wrong way there will be either no tone or a very high-pitched tone.

Diodes and LEDs may be tested across the ' $C$ ' and ' $E$ ' terminals. If it is OK, the LED under test will flash, accompanied by an intermittent highpitched tone and flashing indicators. Ordinary diodes require a series resistor (any old value) and should then produce an intermittent tone and flashing LEDs as before; the coincidence of flashing LED and tone indicates the anode.

Op-amps are plugged into the IC socket and no push-switch is required; power is only applied when the IC is inserted, and a good IC produces a continuous tone from the second insert.

## BUYLINES

No problems with anything used in this proiect; all components are standard items and are obtainable from the major mail order suppliers advertising in this issue. If you don't want to make your own PCB, you can obtain one from our PCB Service (see page 94).



Fig. 2 Principle of the CCO.

Fig. 1 Circuit diagram of the Component Tester.

## HOW IT WORKS

The op-amp tester and transistor tester are completely separate circuits; we shall deal with the transistor tester first. IC1a, a Schmitt trigger inverter, forms a low frequency square wave oscillator with a period (determined by R1 and C1) of about 1 second. This square wave is used to switch the polarity of the 'power rails' (labelled 1 and 2 in the diagram) of the test transistor and its associated oscillator circuitry.

IC1b is used to buffer the square wave, and its output (on pin 6) is used to dive 'power rail 2'. This switching signal from IC1b is also fed to the input of IC1c, which inverts it and drives 'power rail 1 '. Thus for half a second in each cycle rail 1 will be positive (high) and rail 2 (low); for the other half second rail 1 goes negative and rail 2 positive. Each power rail drives an LED (LEDs 1 and 2) via inverter gates IC1d and IC2d, such that an LED will be illuminated if its associated power rail is at 0 V . These LEDs will therefore flash alternately when the circuit is operating, providing an indication of the state of the power rails.

The oscillator circuit that is connected across these power ralis is essentially the simple current-controlled oscillator shown in Fig. 2, but with some adaptations to enable it to work with either supply polarity. The oscillator of Fig. 2 works as follows. Assume $C$ is initially discharged, so that the input to the Schmitt inverter is low; the output is thus high and the diode, being reverse biased, is effectively out of circuit. Capacitor $C$ will now begin charging up from the current source and the inpul voltage to the Schmitt will be increasing When the input passes the Schmitt threshold the inverter output will switch low; the diode is now forward biased and will rapidly discharge the capacitor. The process then repeats, producing a square wave output from the inverter with a frequency that is proportional to $C$ and the current from the source. The bigger the cur rent from the source, the faster $C$ will charge and the higher the frequency will be.

The current source in our actual circuit is provided by the transistor under test. R2 supplies a small base current to the transistor, and the current flowing from the emitter will be proportional to the gain of the transistor. If the transistor is PNP it will only supply current to the CCO (currentcontrolled oscillator) when power rail 1 is negative with respect to power rail 2.

Similarly, power rail 1 must be positive for the oscillator to function if the transistor is NPN. Thus the CCO will produce an intermittent frequency for either transistor polarity (assuming the transistor is a good one) with a frequency roughly proportional to the gain. If the frequency is audible when LED1 is on, the transistor is PNP, and if LED2 and the tone coincide then it is NPN.

Going back to the oscillator of Fig. 2, we see that if the oscillator is to work when the supply connections are reversed, then the diode polarity must also be reversed. In our circuit this is achieved by using two diodes, D1 and D2. When power rail 1 is at 0 V , the NAND gate IC2b will be disabled and its output (pin 11) will be high. This output is inverted by IC 2c, thus reverse biasing D2 which is now effectively out of circuit. At the same time power rail 2 will be high, enabling NAND gate IC2a whose output (pin 4) will follow the logic level on the output of the Schmitt trigger IC1e via IC1f. Thus when IC1e goes low during an oscillation cycle, the cathode of D1 will also go low, forward biasing the diode and discharging C2 for the next cycle.

When the voltage on the two power rails is reversed a similar action occurs, but with D1 switched out of circuit and D2 providing the discharge path. The intermittent square wave produced at the output of IC1f is fed to crystal transducer TX2 which gives an audible note.

If an LED or diode is connected between the $C$ and $E$ terminals of the test socket, it appears to be a large-value current source in one direction only. Hence the circuit reacts as if a high-gain transistor were in circuit, and polarity is indicated as before.

The op-amp under test is configured as a simple RC relaxation oscillator. When the op-amp is plugged in, assume that its output (pin 6) is high (positive saturation). Then C3 will begin charging up to +9 V through R3 with a time constant C3.R3. When the voltage on C3 reaches one-third of the positive supply (this fraction is set by R4 and R 5), the op-amp output will switch low, with R4 and R5 providing positive feedback for Schmitt trigger action. C3 will then discharge towards -9 V , until the op-amp switches back to positive saturation. This cycle repeats indefinitely, producing a square wave at the op-a mp output which is fed to transducer TX1. This produces an audible note if the op-amp is good.

PARTS LIST

ICTEST


## EHBOMASOMTE electronics

48 JUNCTION ROAD, ARCHWAY LONDON N19 5RD - 100 yards from Archway Station \& 9 Bus Routes TELEPHONE: 01-263 9493/01-263 9495

## YOUR SOUNDEST CONNECTION IN THE WORLD OF COMPUTERS

PET



4008 8K RAM 4016 16K RAM 4032 32K RAM 4040 Dual Drive Disk 402280 column tracks feed. 302380 column friction feed. C2N Cassette Unit.

For the business man we stock the 8000 range inc 8032 and 8050 with daisy wheel printers coming soon

32K SVSTEM AVAILABLE FROM £1.499.00

## VIDEO GENIE



APPLE

## APPLE II PLUS

48 K Machines
Disk Drive with Controller Disk Drive without Controller Graphic Tablet Colour Card 595

Accessory cards, Software All available - Phone for Details


## PRINTERS



EPSON MX80
$£ 359$
Dot-matrix printer with Pet graphics interface. Centronics parallel and serial. Pet and Apple compatible. True bidirectional, 80 cps .

## EP80 MX82 £389

As MX80 plus high Resolution Graphics

INTERFACES AND CABLES FOR APPLE II, PET, TRS 80 , RS232, UK101. SHARP SUPERBOARD SHARL AVAILABLE.
EPSON MX80 FT/1£399
Dual single sheet friction and tractor feed, 9 wire head, true descenders.
EPSON-MX FT/2 £440 An FT/1 with high resolution graphics.
SEIKOSHA GP80A£199
Dot matrix $5 \times 7,80$ columns, 30 cps graphics, double width characters JUST PHONE FOR FURTHER DETAILS

## MONITORS

| Green Mon |
| :---: |
| MONI $9^{\prime \prime}$ (il |
| Hitachipro |
| $9^{\prime \prime}$ Blac |
| $12^{\prime \prime}$ Blac |
| Whcurano |
| V/SA |

VISA enquiries welcome. Official orders welcome.


## Colours <br> 24 total. 8 for characters 8 for border <br> 16 for screen mixed as you wish. Basic colours on program keys are black, white, red, blue, lighi blue, green, yellow and purple. <br> Sound <br> 3 Tone Generator for music, "White Noise" Generato for language and sound effects. Each Generator gives 3 oclaves. Reproduction is through TV

 speaker.Character/Line Display
22 Characters by 23 lines, 64 ASCII characters, pet-type graphic character set.
Keyboard
DIN typewriter keyboard with 8 programmable function possibilities via 4 specral function keys. Colours are directly addressable from the keyboard.
Peripherals/Accessories
VIC Datacassette with special interface
to guarantee high reliability read/write
quality (PET/CBM compatible).
Price only $£ 165.00$.
Cassette recorder $£ 34.75$
With 6 sample
programmes.

## TANTEL

## PRESTEL BY TANTEL

COMMUNICATIONS AT YOUR FINGERTIPS FOR BUSINESS \& HOME. UP TO DATE INFO

180,000 pages of information on Travel, News, investment, Holidays, Hotels Etc., Etc. ONLY £159
TANTEL IS POST DFFICE APPROVEO. SENO FOR OETAILS. OEMONSTRATION AVAILABLE AT OUR SHOWROOM. Please add VAT $15 \%$ to all prices. Postage on computars, printers and cassette decks charged at cost, all other items PEP 30p. Place your order using your Access or Barclaycard (Min. tel. order £5). Export



# TECH TIPS 

# Adjustable Sensitivity Continuity Tester 

David Wolfe, Cambridge

Continuity testers operate by comparing the resistance between the test probes with a fixed reference resistance (if the probe resistance is less than the reference then the tester indicates this somehow). This is fine if the tester is to be used in only one type of application, but means that the tester is limited to this application. For example, when testing continuity on a circuit board one is generally testing for very low 'hookup' resistances; when testing long cable runs, however, such as in house wiring, one tests for resistances often up to several kilohms.

This design overcomes this problem by having an adjustable reference. The

tested resistance is configured as half of the potentiometer which is adjusted to give the required sensitivity. Obviously by changing the component values, especially that of R2, the range over which the tester can operate can be altered, but it should be remembered that for the tester to discriminate very low resistances the potentiomenter must be able to output voltages very close to 0 V .

Continuity can be indicated in
several ways depending largely on user preference, but also on parameters such as current consumption and parts availability eg a mechanical 'buzzer', an astable driving a loudspeaker or an LED. These would all need a suitable driving circuit as the op-amp could not do this directly. In the prototype a piezo buzzer was used for low current consumption. A CA3140 IC was chosen in this circuit for its ability to operate with inputs near to the negative supply rail.

## Micro-power VOX

## David Ian, Hampton Court

Previously published voice operated switches seem limited in application due to their disproportionately high current requirements relative to the subsequently switched circuitry, eg battery operated baby alarms, portable transmitters and so on.

Including a visible indicator this design has, at 9 V , a quiescent consumption of a meagre 800 uA , rising to a maximum of 1.6 mA when triggered, but is capable of cleanly switching at least 250
mA at up to 30 V .
The 741 is wired as a decoupled, high-gain preamp, with RV1 controlling the switching point over a wide range of audio levels - anything from a whisper to a shout. The resulting voltage level triggers (via Q1) the monostable formed by three gates of a 4011. When the output of the third, inverting, gate goes high the N-channel VMOS FET, Q2, is enabled, thus completing the power supply of an external device.

The 'on' resistance of a VMOS FET is less than 2R ("off" is tens of megohms) and quite large currents may be safely
handled before a heatsink becomes necessary.

To aid setting to a given sound level the unusual, but current-saving, arrangement at the output of the remaining 4001 gate provides a single flash from LEDY whenever the monostable is triggered.

C and R were selected for the particular requirement of an 'on' time of 14 seconds; 1u0 and 1M0 gives approximately one second delay, depending on the individual gate's transition point. Any medium to high impedance microphone could be used; the electret type shown was to hand.


Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.
EIt is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possithe and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 145 Charing Cross Road, London WC2H OEE.


## Four Input Stereo Mixer

R.D. Pearson, Sheffield

The mixer circuit shown was designed to allow four or more inputs to be mixed down, producing a stereo output. Each input has stereo panning and a level control. The gain of the input stages can be boosted according to specific needs by adding RX, making it possible to use a direct input from guitars, microphones and so on. Note that to avoid poor frequency response, the gain of this stage should be kept below 50 (keep RX above 2 k 2 ). The input impedance is 100 k and should be high enough for most applications.

The two output stages have sufficient gain to compensate for the attenuation of the panning controls. If more than four inputs are used it will be necessary to increase the gain of the output stages by decreasing the value of RY to 6 k 8 for six inputs or 4 k 7 for eight inputs.

741 op-amps should prove suitable for most purposes, but if lower noise is desired then a low noise op-amp such as the TL071 may be substituted. The simple zener regulated power supply shown should be suitable for general purpose applications.

## Anti-Theft Device

## G.J. Phillips B.Sc, Durham

Many audio retailers employ antitheft devices whereby a loop, made up of lengths of cable joined with plugs and sockets, is passed through the handles of radios and cassette
players. If the loop is broken an alarm sounds.

The circuit diagram shows a design which has been built in the lab and functions very well. R1 sets the quiescent current in the loop. The loops could include vibration sensors or any other suitable normally closed contacts. When the loop is broken,

the logic 0 at R1 causes the astable multivibrator formed by IC2a,b to be enabled via gate ICId, which acts as an OR gate for $0 s$ at its inputs. The astable frequency is set at approximately $1 / 4 \mathrm{~Hz}$ causing the buzzer to sound intermittently.

The logic 0 at R1 also triggers the monostable formed by ICla,b,c and the output of this monostable also enables the astable via pin 12 of 1 Cld . Thus, if a quick-witted thief quickly remakes the broken loop or the vibration sensor quickly breaks the loop, the monostable ensures that the alarm continues to sound for approximately 20 seconds. If the loop is left open then the alarm will sound all the time. Unused inputs of the CMOS chips should be tied to $\mathrm{V}_{\mathrm{cc}}$ or 0 V whereupon the quiescent battery drain will be less than a microamp.

R1 can be replaced with an LDR (ORP12) and a 10 M resistor used to replace the loop. The alarm is then triggered by light. Place the device in your components drawer and you'll be able to nab the guy who's been pinching your ICs when no-one's looking.


| $A$ | $B$ | $C$ | $D$ | MODE |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | $\bar{D}$ | $\bar{C}$ | BISTABLE |
| 0 | 1 | $\bar{D}$ | $\overline{\bar{n}}$ | ASTABLE |
| 1 | 0 | $\bar{D}$ | $\bar{C}$ | ASTABLE |
| 1 | 1 | $D$ | $C$ | BISTABLE |

## Heads Or Tails

D. Indyk,-London

Anultra-simple heads or tails indicator can be built using a single 4077 EXNOR IC. The circuit is normally in a latched bistable mode; when the switch is closed the circuit will oscillate, ie toss the coin. The astable frequency is approximately 5-10 MHz. If desired a small push-tomake switch can be connected in series with the battery as an onloff switch, such that the battery will be disconnected from the circuit unless the device is being held. The LEDs can be any colour.

## Active 'Stereo' Bass Guitar

J. Smalley, Nottingham

The circuit was designed to increase the musical capability and performance of a single pickup, passive bass guitar. While having a performance advantage over many 'off the shelf' active basses, this system also allows the musician to have his favourite bass converted to active status.

For optimum noise and consumption of battery current ( 650 uA quiescent), the TLO64 BIFET quad op-amp was chosen. As a result, the circuit may be broken down as follows: IC1a is a voltage follower and provides' a low impedance 0 V rail to bias the remaining amplifiers. IC1 b is al so a voltage follower and serves to isolate the two filters from the pickup. IC1c,d are the high and low filters respectively. The response of each filter exhibits a sheiving curve which rolls at
 slope break points are arranged so that bass notes are handled by the low filter and the higher notes by the high filter.

C3 or C8 may be adjusted for a different slope position, and the ratio R4:R5 (high) and R13:R14 (low) for an alternative differential gain ratio. R17 and R18 may also be adjusted for pickups with different output levels. SW2 and SW3 allow the filters to be 'in' or "out, and SW1a-d ailows the original tone circuits to be connected to the output jack, and totally disconnects the electronics. Battery on/off is via a pair of insulated switching contacts on the stereo jack socket. In the instrument modification, the original jack socket is removed and a stereo version fitted in its place.

Musical use is very much a matter of experiment, but best results were obtained when using a stereo lead with a twin channel amplifier.

ETI



## The Rapid Guarantee <br> * Same day despatch <br> * Competitive prices <br> * In-depth stock

## IT'S A DOGS LIFE:

Mighty mongrel strikes again!


Stop your powerful pooch carving up your carefully collected ETIs with his canine choppers and live in hardback harmony with a profusion of precious project books by armour-plating your archives.
Invest in an ETI binder. You know it makes sense. You can have any catour you like as long as it's black.

Price U.K. $£ 3.95$ including postage, packing and V.A.T., overseas orders add 30p. Why not place your order now and send the completed coupon with remittance to:
EASIBIND LTD., 4 UXBRIDGE STREET.
LONDON W8 7S2. Tel: 01-7270686
it's easy [CILTCD


Easibind I/dat Lhebridge SLLLOndon.W8 7S2.



AIcohol may be wonderful stuff (well, we think so), but it tends to have unfortunate side effects; too much of it will cloud your judgement, slow your reactions, affect your balance and, worst of all, make you certain that the exact opposite is true. Such a state of mind is dangerous if you intend using that modern offensive weapon, the motor car. The ETI Alcohometer is a crystal-locked reaction timer that is simplicity itself to use (always an advantage when you've had a few], and will prove to over-confident imbibers exactly how much effect the odd lunchtime pint or five has really had. Lots of fun at parties, too although once you have trouble holding the button down, it's probably time to leave. In a taxi.

## Button Up

When the Alcohometer is switched on the display is blank, except for the decimal point. To play, you hold down the pushbutton and wait. After a random time period lasting about one and a half to eight seconds, the display lights and starts counting up from zero. Releasing the pushbutton stops the count and displays your reaction time in seconds. To conserve power the display blanks automatically after a further eight seconds; if you're in a hurry to play again, pressing the push. button blanks the display and starts a new cycle. If you don't react within one second, the display latches at 000 so you can't claim a reaction time of 3 milliseconds just because the counter clocked round once before you noticed.

Brave ETI volunteers found that even one small drink could have a noticeable effect on reaction time, but don't take our word for it - start building one now and be ready for Christmas!

## Construction

The construction is elegantly simple since all the parts are mounted on two PCBs; nevertheless it's quite intricate, due to the high component packing density. Solder the components into the main board first, not forgetting the orientation of the ICs, capacitors and diodes (see overlay). Use IC sockets, it's always a good precaution. Veropins should be soldered into the holes for the pushbutton switch, and the switch soldered in turn to these, so that the height from the top of the button to the board is 27 mm . Remember to put in all the board links, including the two underneath the board, but do not solder in the vertical links to the display at this stage.

After building up the prototype we discovered an unusual problem. It appears that some manufacturers produce longer plastic DIL packs than others, and if your 4017s are too long they won't fit the board. The Motorola chips we used (MC14017BCP) are OK, but if yours are too long you can alwavs grind off the ends (carefully!)

If the crystal is a plug mounting type, don't worry; its pins can be cut shorter, and wire links soldered from the pins through the PCB holes. This same procedure will be necessary for the on/off switch (SW1) which is mounted sideways on the board (see photos). A small piece of plain PCB acts as a spacer between the switch and board, to align the switch with the moulded case cutout. It's a good idea to place the board in position on the case to check the exact switch placing, before securing it with superglue.

The display board is mounted above the main board and is held in


fig. 1 Circuit diagram of the main control and oscillator section.
place by the vertical wire links (see photograph). Solder in all the components as per the overlay diagram, including the positive rail link, and noting the polarity of C9 and LED1. Sockets should be used for the seven-segment displays, both for protection and to give the required height. Lengths of tinned copper wire (about $2^{\prime \prime}$ ) should now be soldered at all the vertical lead out holes - 23 in total. After completing this carefully check the track side of the board for bad joints, solder bridges and other faults. It will be very difficult to correct mistakes after the boards are soldered together. Also check that all the ICs are plugged into the main board.

Now comes the tricky bit; all the 23 wires coming down from the display board must be inserted into the corresponding hole, vertically beneath, on the main board. It helps to trim the wires to different lengths, starting at about $1^{\prime \prime}$ at one end, and increasing to $2^{\prime \prime}$ at the other. They can then be inserted one at a time, as the boards are lowered together. When the boards are together the separation (between both parallel component surfaces) should be adjusted to about 13 mm . The wires can be bent under the board to hold this position, and then soldered and cropped.

## Vero Intelesting

The case used is a two part moulded Verocase. This case has a built in battery compartment, and ready-made cutouts for the display and on/off switch. There is a small moulded stand-off in the centre of the bottom case half - this should be filed or cut down in size, until it's shallower than the three PCB stand-offs. The board assembly can now be fitted into the
bottom case half. The PCB edges may need filing for the good fit against the bottom of the case (be careful not to file away the copper tracks at either edge). An appropriate hole must be drilled in the case front for the pushbutton; a good method is to put a small blob of ink on the button head and then bring the case halves together in the correct position. The ink will leave a drilling mark. The board can be secured in the bottom of the case using


This photograph shows how the display board is mounted piggyback on the main PCB. If you look carefully you can see how SW1 and PB1 are soldered in place.


Fig. 2 Circuit diagram of the counteridisplay section (above) and the supply decoupling capacitors.


## BUYLINES

The case used is one of the Vero range, order code 202-22275G. The two PCBs available from our PCB Service on page 94, and none of the other components shouid cause any problems (although you shouid note the point made in the text about the 4017s).
ordinary adhesive pads, if they are used double thickness. The displays should just come in line under the window when the two case halves are together. A suitably sized piece of red filter plastic or polarising sheet should be cut and glued underneath the display cutout. The battery can be held more securely by sticking a piece of plastic foam into the battery compartment for a compress fit.

## Time To Test

You are now ready to test the finished article. With a PP3 ( 9 V ) battery connected to the clip lead, and the power switch in the 'on' position, only the discrete decimal point LED should be illuminated. If you have access to a frequency meter you can use the trimmer capacitor to set the frequency of the crystal oscillator to exactly 1 MHz . Otherwise, leave it at about mid position. Now press down the push-button and keep it pressed; nothing should happen. . Suddenly, the display will illuminate, and start counting at 1,000 counts per second. Having reached this stage, the idea is to let go of the button pretty smartly. The figure will freeze instantly, and continue to display your reaction time in seconds. After about eight seconds the display will disappear, and you may try again; alternatively, pressing the push-button will reset the display immediately for another attempt.

Note that it is impossible to cheat, except by precognition

## HOW IT WORKS

At some random time after push-button PB1 is pressed, the display comes on and commences counting. Releasing PB1 stops the count, freezing the display, which then shows the time elapsed between the end of the random period and the release of SW1. After a short time the display automatically tums off and resets, ready for the next reaction test. The random time period, which will be between $11 / 2$ to 8 seconds, is set up by IC2, a four bit binary counter wired to count down repetitively from 15 to 0 . $\mathbf{1 t}$ is clocked at around 2 Hz by the slow oscillator built around IC1a and $b$, so that a complete count cycle takes about 8 seconds. With PB1 open, the output of IC1d will be high; this holds the output of IC3b in a low state and sets the $Q$ output of IC4a, a NOR latch, to high. Meanwhile IC2 is continuously counting down from 15 to 0 . One or other of $C$ and $D$, the two most significant digit outputs, will be high when the count is above 3 , ie for about $61 / 2$ seconds of the 8 second period. Thus the output of NOR gate IC3a is taken how, enabling IC 3 b , whenever the count is within that range.

Now, operating PB1 takes ICid output low, putting a low on the second input (pin 12) of IC3b and the set input of IC43. With both inputs low, IC3b output will go high; a positive nulse is applied through C4 to the reset input of the latch, allowing the $\mathbf{Q}$ output to go low and sending a CLEAR pulse to reset the counter section If the IC2 count is less than 4 however, IC 3a's output will be high, hoiding IC3b low so that the latch, with its reset input pulled low by R6, cannot change state. Thus the random time period, which ends when IC2 clocks down to zero some time after PB1 is pushed, cannot be less than a 3 count, ie around $11 / 2$ seconds.

When IC2 reaches 0 , the carry out line (pin 7) goes momentarily low, taking one IC3c input low, the other input (on pin 1 ) is already held low by the $\mathbf{Q}$ output of IC4a. Thus IC3c output goes high and the positive edge through C5 will reset latch IC4c, so switching the GATE line from the $Q$ output to its active low state. The positive pulse through C5 also triggers the set input of latch IC4b, taking the $\mathbf{Q}$ nutput high which turns on
the display. This is the end of the random period and the start of the reaction timing.

The GATE signal starts the counter-timing section simultaneously with the display illumina tion The user must now release PB1. As de scribed above the set input of latch KC4a will then go high, taking the $\mathbf{Q}$ output high. This hoids the set input of latch IC4c high and so takes the GATE line high again, stopping the count and en ding the reaction timing. The pin 6 input of ICIC is now heid high by the Q output of IC4a. Thus, when the IC2 CO line goes bow again after a further 8 seconds, IC1 C will go high and the positive pulse through C2 and D2 will reset the latch IC4b, taking a $Q$ output low and turning off the display to conserve power. The latch IC4b can also be reset via D1, which steers a positive pulse derived from C3 and R4 to the reset input. C3 is con nected to OVERFLOW, the final divide-by- 10 output of the counter section, thereby blanking the display when the count reaches 1 second.

The display has three decimal digits follow. ing the decimal point, which are driven by IC8,9, and 10. These are integral decade counters and seven segment decoder drivers (4026) which drive common cathode LED displays. Since the readout is in seconds it follows that the clock frequency for the least significant digit must be 1 kHz IC3d forms a CMOS oscillator, with the fre quency set at exactly 1 MHz by the cyystal. This output frequency is then divided down to 1 kHz by IC5,6 and 7 ( 4017 decade counters) and supplies the CLOCK for IC8 (pin 2)

All the pin 15s on ICs 8,9 and 10 are wired together and form the RESETKCLEAR line (active high). Likewise all pin 3 s form the DISP LA Y line, a low on these turns off the display. The GATE line goes to pin 2 (the enable) of IC8; when this is taken low the clock is enabled and will start counting. Pin 2 of IC8 and 9 are both wired to ground to permanently enable their clocks. The circuit is powered by one 9 V PP3 battery with an onloff switch SW1 in the negative raif. LED1 in dicates when power is on and also marks the decimal point. Capacitors C8 through C12 pro vide supply decoupling for the ICs.

## PROJECT : Alcohometer

PARTS LIST



Fig. 3 Overlay for the display board. Arrows indicate vertical wire links
Fig. 4 Overlay for the main PCB. Note the insulated wire links under
the board - IC4 pin 5 to IC2 pin 9, and IC4 pin 2 to IC1 pin 6.
AC 14 FOR THE COMPUTER OR VIOEO MAN input sockets Not cased. Used but tested. § 35 each. Carriage E 6 Other monutors available including colour. Please enguire

80 characters $x$ i3 Fin KEYBUATh 600
RS232; standard 240 lines, 6001200 baud;
inches. Very good condtrion Testod
GENERAL PUAPOSE OSCILLOSCOPE TECH TYPE TO 2 Singie beam. Sise approx $6 \times 7 \times 9 k \mathrm{in}$. Wenght 7 lus Ideal for the beginnet or schocl us
ONLY E49.50 bach PGP $\mathbb{S}$
SINE \& SOUARE WAVE AUDIO GENERATOR
TYpo TE22
ONLY $\{55$ each PGP $£ 3$ MULTIMETER
Russien rype $4324 \mathrm{AC} / D C$ volts: $A C / O C$ curtent; ohms, etc. Brand new, boxec RADAR AERULS
Rotary, complete with Wavegurde Couplers These are brand now, Minastry boxed. Very EE5 aach. Carriage E6 METRUFM INSULATIGN RUO COATVFUIVY TESTER 500 voles Co. Batery Operated Sencerd PP/ iBattery nol suppoed. Used bul good conditun now edo on-

$\qquad$
SCOPE STYLE CASE with nttractrve blue covers and sumo handie



 10 of $\mathrm{C15}$. TOROIDAL $0-120-300 \mathrm{~V}$ Inout. Qutput O-12V, YOVA pre mending Encepsulatec Identicul to R.S. Components at C9 40. OUR PRICE ES es
 10 oticer.50.

SOME EHT TRANSFORMERS \& CAPACITORS amers arandoble - please

TRANSISTOR INVERTOR. 115 V AC 1.7 AmD mour. Switching at 20 KHZ . Circul Suophed. 51.25 es PUP 210 ot 10 Cariage 18.
CORvert this und to - SUPER BATTERY CHARGER. Atrretive green (minstry quably case - rwmovable top/bottom purtes - havy duty powor Tmo moter ming nut termanaks on front pand for connecting laact 3.50 ee PaP 73 FOUR UNITS 12 Carrisge fB .

Mimature VAAIAC 0.6 Amp in Bluc Cose se $10 \times \times 6 \% \times 6 h^{\prime \prime}$ moth 20 colound screw inve inm sockets giving multiph vortage 6 current outpuls As NWE $\{15$ en. PbP $\{3$

AMPLIFIER GOARO COMDlote with
CABLE TiES Biact 13 cm long of Whis 9 cm . 50 for 50
TOGGLE SWITCH. Cemero off. 30p en. 1010182.70
 100 off E 12 .

 155. Carr ce

GEC : Butron UHF TUNERE1.S0 an 10 OHf C12

OLID STATE UHF TUNER 38MRZ E1 䚡 10 Off C

 HONE YWELL STRIP CHART PAPER 122t rolls Ret no 378528-0100
 Cary 58.
FOR FULL COMPONENT \& TEST EQUIPMENT LUST WRITE OR PHONE


## ALL GAMES AND CHESS COMPUTERS AT DISCOUNT FOR CHRISTMAS GIFTS

## Incredible ACTIVISION Cartridges for ATARI, VCS

Full range in stock
£16.95
Latest GAME \& WATCH Gold Series
£19.00
LEGAL C.B. Radios
$£ 69.00$
SENSORY ' 8 ' Chess Computers
£109.00 MORPHY ENCORE Chess Computers
Atari, Mattell, Philips TV Games
LOTS MORE IN STOCK - PLEASE PHONE
FOR BEST PRICES IN THE COUNTRYI
ACCESS, BARCLAYCARD, DINERS, AMERICAN EXPRESS

## CIRCOLEC

1 FRANCISCAN ROAD, TOOTING, LONDON SW17 Tel: 01-767 1233
£149.00

## TV SOUND TUNER <br> ETI SEP 80 PROJECT

All parts available/send for list ALSO
No. 1 for Teletext Kits TV Spare Parts and Components

Callers welcome at Shop Premises

MANOR SUPPLIES
172 WEST END LANE, LONDON NW6 1 SD TELEPHONE: 01-794 8751
Near West Hampstead Jubilee \& 8ritish Rail Stations

> If you are looking for amplification, take advantage of the same superb quality Crimson modules that the BBC, IBA, KEF and numerous recording studios have been using for yearsl our expertise in this field of electronic design is internationally renowned, our reputation is based on quality, reliability and value for money and when it comes to technology, our modules feat ure possibly some of the wortd's most advanced audio circuitry yet devised. The Crims on range of audio amplifier modules is avaliable to industry and public alike andis backed by full technical data, free technical advisory service. fast deliverv and a full range of complimentary components avaliable such as toroidal power supplies and heatsinks. etc. SPECIFICATIONS

- Power Output is quoted in WRMS and is given for two modules off the same power supply. Higner oowers can be obtained if using our dual power supplies or One module der PSU or if using a stabilised power supdy.


## Crimson modular audio ampifiers feature <br> - low values of transient and steadystate distortions e enveiope distortion fbetow 500 Wr) less then 0.05\% * on board erectronic protection \& PCB pin and edpe connector termination \& full range of compllmentary components avaliable ie. PSUs, heatsinks, etc.

## PRICES

Power amp modules CE 608 CE1004 CE1008 CE1704 CE1708 CE3004
Pre amp modules CPR1X MC1X REC1
TR6

Power supply modules

|  | Power supply modules |  | Heatsinks |
| :---: | :---: | :---: | :---: |
| E21.00 | CPS80 | E26.24 | HS 50 |
| E24.50 | CPS800 | E31.77 | HS100 |
| E27.50 | CPS150 | E29.74 | HS 50 |
| E35.00 | CP51500 | E36.40 | FM1 |
| E35.00 | CP5250 | E36.83 | FM2 |
| £49.00 | CP52500 | ¢45.34 |  |

E36.00 Active crossavers
E3200 XO2
E $9.30 \times 03$
$\begin{array}{lll}\text { E } 3.30 & \text { MU1 }\end{array}$ NEM CK 1010 contains pre-amp circuit board, all metalwork connectors wire, etc., to make a complete hi-fi pre-amplifier.
CK 1040 contains 2 power amp modules, all metalwork dual power supply, connectors, heatsinks, wire, etc., to make a complete $40 \mathrm{w} / \mathrm{ch} a n n e l$ power amp.
CK 1100 as CK 1040 but at 100 w/ channel
Unlike other module manufacturers CRIMSON have a major share of the esoteric, specia!ist Hi-Fi market. Unlike many manufacturers we acknowledge the massive audible differences that small component/circuit changes can produce. However our amplifiers are technically outstanding have been subjectively 'tuned' to a stunning level of crisp and detailed reproduction.

## [ ( rimsonlakirik

9 Cazmill Road, Lelcester LE4 7JJ. Tel 0533761920 . Telex 34964 chamco C Crimlek
All prices include Vat. Please add E1.10 for orders up
E 1.84
E 2.99
E 4.20
E 36.95
E36.95
$£ 41.52$ ro allow for post and packing (UK only)
Export-NO proolem. Please write quotation or quote vour visa/mastercnarge card number.
Elegant S.mplichy
Adrances in tigh sechnotogy atrould mate life simplert
 oushing ins 1 mn of its component tectrnoiogv
There tre now many hirsl class bevise dower amps on the maruat All af inein ere complex and consequemity expenswe Any adarsongel omprovements in the areas where thev ate compleraty and cost
ump in ea ractnowoy can provide ime sort of qujntur flutter on component performance necessary to reduce the ance more aftordabl
$\qquad$ Sofar 29 semicon
re sombthing special
Thatr enarmous power gains eliminare conveniconel derve circuiter on power amps, pertmiltong durightifuly simpte dus igns Thex freedom from secondiary breathown and ther lendency to



Components available

 sllows the use of ethen onv or twa psors of output devicess prowding rast crDan cability io thase and umproved efficrency. particutatly into iow umperdance hoadsa
The componanis used in the PFA have been chosen with axttome care The lowest noise inp.at devices end lowest distortion oan stage devices wore selected eqsiciess of cost 140 V powet leis

Power Amp PAN 1397
A high quaslity $20 W$ puwner emp Doard based on tha MAl 397 Easoly modulind for bridye cyeration providing high dowers from low tupply voltages
Specilication
Outpur pown
IMO
IMO
IMO


 2 xecond rue up lfur it 1 II +ibs I 11 wl on PAN 13971. (SUitt) 53.95 P/P 40p
Pre-amp PAN 20
Ther dersighis unksue Couatisation is applied Alter A fist pain alage rebulting in une of the

 trol tivel, : cunteet to voul) The inpais ate uncammiten and can be ubed wath ony TOV ionge RIAA mqualisurion is provided for for oifferent mal.alimions

| Stecification |  |
| :---: | :---: |
| ${ }^{8} \mathbf{W}$ |  |
| THO |  |
| At rated 0 a SNA |  |
| SNA | 月5: fin 1um 5 mV 月। 1Cbite trat 100 mV ti.et |
|  | 20 V |
| Oulpur |  |
| ${ }_{\text {Coser }}$ |  |
| lebs controial |  |

THE POWERFET SPECIALISTS J. W. RIMNER
Mail order only to:
Dept ETI/11, 148 Quarry Street, Liverpool L25 GHO
Telephone: 051-428 2651
Technical anquiries:
367 Green Lanes. London N4 1DY. Tel; 01 -800 6667


Just 50 p will bring you the latest Witmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor.
CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

- Lowest prices - Largest stocks *
* Expert staff - Sound advice *
- Choose your DIY HiFi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
- Ampie parking *
* Access Visa American Express accepted *

(825529599
SK9 IAS
35/39 Church Street, Wilmisow, Cheshire

 Component side

The Low Cost Eurocard Size Microboard
Fully Compatible with indirect connectors and Card Frames to the latest international specifications.

Accepts any Integrated circuit package allows high packing density.

Screen Printed with 'island' pattern for ease of use - ideal for solder and wire wrap applications.


# DESIGNER'S NOTEBOOK 

## The XR2206 is a high-quality function generator chip, capable of producing sine, square, triangle, ramp and pulse waveforms. Ray Marston shows how to use the device in this month's edition of Notebook.



Fig. 1 Block diagram and pin notations of the XR2206 function generator IC.

generator $(10 \mathrm{~Hz}$ to 100 kHz$)$. See Table 1 for values of C 3 .

| C3 | FREQUENCY RANGE |
| :--- | :--- |
| 1 uO | 10 Hz TO 100 Hz |
| 100 n | 100 Hz TO 1 kHz |
| 10 n | 1 kHz TO 10 kHz |
| 1 nO | 10 kHz TO 100 kHz |

Table 1. Vaiues of C3 for different frequency ranges.

The XR2206 integrated circuit is undoubtedly the most useful function generator or waveform generator chip available. It can generate sine, square, triangle, ramp and pulse waveforms at frequencies ranging from a fraction of a hertz to several hundred kilohertz, using a minimum of external circuitry. The frequency can be swept over a 2000:1 range using a single control voltage or resistance, and sine wave distortion can typically be as low as $0.5 \%$. The chip incorporates special built-in modulation facilities that enable the generated waveforms to be subjected to AM or FM control, or to phaseshift or frequency-shift keying.

The XR2206 chip is housed in a standard 16 -pin DIL package and can be powered from either single or split supplies in the range 10 to 26 V . The sine wave output of the device has maximum amplitude of about $2 \mathrm{~V}_{\text {RMS }}$ and output impedance of 600 R . The frequency stability of the IC is excellent, being about 20 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for thermal changes and $.01 \% \mathrm{~N}$ for supply voltage changes.


Fig. 3 Hightperiormance split-supply sine wave generator. See Table 1 for values of C3.

## Basic Waveform Generators

The XR2206 is a reasonably easy IC to use in basic waveform-generator applications. Figure 2 shows how to connect it for use as a simple widerange sine wave generator that is powered from a single supply source in the range 12 to 18 V . The main timing resistance comprises R3-RV1; it is connected between pins 7 and 12 (ground) and is automatically selected bv leaving pin 9 (FSK input) open circuit. The operating frequenc can be varied over a decade range (using RV1) with any given
value of C3, as indicated in the diagram. The circuit generates a sine wave output at pin 2 , since a 220 R resistor is wired between pins 13 and 14 of the IC; typically, the sine wave distortion is less than $2.5 \%$ with this simple connection.

In Fig. 2, the voltage to pin 3 is biased at half-supply volts by decoupled divider R1R2, so the pin 2 sine wave is also biased near half-supply volts. PR1 enables the pin 2 sine wave magnitude to be preset to a value at which distortion (due to clipping) is minimal. To set PR1, first disconnect R4 (so that a triangle output is obtained), then adjust PR1 so that no triangle clipping is visible. Now re-connect R4 and check that a decent sine wave is available. Sine wave distortion can be reduced below the typical $2.5 \%$ value, if desired, by replacing R4 with a 470R preset and adjusting it for minimum distortion. The final sine wave output of the Fig. 2 circuit can be fully varied by RV2.

The Fig. 2 sine wave generator can be modified for splitsupply operation by replacing all ground connections with negativerail ones and by taking level control PR1 to the common supply (ground) line as shown in Fig. 3. This circuit also shows how the total harmonic distortion (THD) of the sine wave can be reduced to a typical value of $0.5 \%$ with the use of presets PR2 and PR3; these controls must be adjusted alternately to give the best possible sine wave output. after first setting


Fig 4 Addon modification for applying limited DC offset or nulling to the output of the Fig. 3 circuit.


Fig. 5 Variable-frequency split-supply triangle wave generator. See Table 1 for values of C3.

PR1 to give a non-clipped triangle waveform as already described.

When using the low-distortion sine wave facility illustrated in Fig. 3, note that the signal appearing on pin 3 of the IC is similar to that of pin 2 but has lower distortion and higher output impedance; also, the pin 3 signal is closely centred on the common or ground line, but the pin 2 signal is offset by a few hundred millivolts. If desired, slight DC offset can be applied to pin 3 , to bring output pin 2 to precisely zero offset value, by using the add-on modification shown in Fig. 4.

The XR2206 can be made to generate linear triangle waveforms by using the basic circuits of Figs. 2 and 3 without the sine-shaping resistors. Figure 5 shows the circuit of a variable-frequency split-supply triangle waveform generator. When used with a $\pm 9 \mathrm{~V}$ supply, the circuit can typically produce ramp signals with maximum peak-to-peak amplitudes of 12 V before clipping occurs.


Fig. 6 Simple fixed-amplitude variablefrequency square wave generator. See Table 1 for values of C3.


Fig. 7 Addon variableamplitude circuit for use with the square wave generator of Fig. 6.


Fig. 8 Simple splitsupply sine/triangle/square wave generator. See Table 1 for values of C3.

The XR2206 can be made to produce fixed-amplitude square wave signals at pin 11, either independently or simultaneousily with sine or triangle waveforms, by wiring 4 k 7 load resistor between pins 11 and 4, as shown in the split-supply circuit of Fig. 6. The rise and fall times of the square wave output signals are typically 250 ns and 50 ns respectively when pin 11 is loaded by 10pF. Figure 7 shows how a simple CMOS inverter stage can be used as a buffer between pin 11 and the final square wave output, to give a variable amplitude with improved rise and fall times.

Naturally, the basic sine, triangle and square wave generator circuits of Figs. 2 to 6 can be combined in a variety of ways to make multi-function waveform generators. Figure 8 for example, shows how various circuits can be combined to make a simple split-supply sine/triangle/square generator. Here, the fixed-amplitude square wave is taken directly from pin 11 of the IC and is produced simultaneously with the variable-amplitude sine or triangle waveforms, which are selected by SW1.

## Pulse And Ramp Generation

All of the circuits that we've looked at so far produce symmetrical output waveforms. The XR2206 can be made to produce non-yymmetrical waveforms, such as ramp, sawtooth and pulse waveforms, by shorting the pin 9 FSK terminal to the pin 11 terminal, as shown in Fig. 9 . Thus the circuit uses R1-RV1 to time one half of the waveform, and R2-RV2 to time the remaining half of the waveform.

The Fig. 9 circuit produces a variable-amplitude variableslope ramp output waveform from the slider of RV3, and a simultaneous fixed-amplitude pulse or variable mark/space ratio rectangle waveform from pin 11. The rise and fall (or on and off) periods of the waveforms can be independently controlled by RV1 and RV2 and can each be varied over a 100:1 range, giving a total mark/space ratio range of 100:1 to 1:100.


Fig. 9 Variable pulse and ramp generator circuit. See Table 1 for values of C3.

## AM Generation

The amplitude of the pin 2 output signal of the XR2206 can be modulated by applying a DC bias and a modulating signal to pin 1 as shown in Fig. 10. The amplitude of the pin 2 signal varies linearly with the applied voltage on pin 1 when this voltage is within 4 V of the half-supply value of the circuit; in split-supply circuits, of course, the half-supply value equals 0 V . When the pin 1 voltage is reduced below the half-supply value the pin 2

signal again rises in direct proportion, but the phase of the output signal is reversed. This last-mentioned phenomenon can be used for phase-shift keyed (PSK) and suppressed carrier AM generation.

The pin 1 terminal of the IC can also be used to facilitate gatekeying or pulsing of the pin 2 output signal. This can be achieved by biasing pin 1 to near half-supply volts to give zero output at pin 2 , and then imposing the gate or pulse signaion pin 1 to raise the pin 2 signal to the desired tum on amplitude. The total dynamic range of amplitude modulation is 55 dB .

## FM And Frequency-Sweeping

The frequency of oscillation of the XR2206 is proportional to the total timing current ( $L_{\uparrow}$ ) drawn from pin 7 or 8 and is given by

$$
f=\frac{320 \times I_{I}}{C} \mathrm{~Hz}
$$

where $I_{T}$ is in milliamps and $C$ is in microfarads,
The timing terminals ( pin 7 and 8 ) are low-impedance points and are internally biased at 3 V with respect to pin 12. The frequency varies linearly with $I$, over the current range 1 uA to 3 mA . Consequently, the frequency can be voltage-controlled by applying a voltage in the range 0 to +3 V between pin 12 and the timing terminal via a suitable resistor, so that the timing current is determined by the resistor value and the difference between the internal $(+3 \mathrm{~V})$ and external ( 0 to 3 V ) voltages. This simple technique can be used to either frequency-sweep the generated signals using an externally applied sawtooth waveform, or to frequency-modulate the waveforms with an external signal.


Fig. 11 Frequency-sweep circuit giving a 6:1 frequency range.
Figure 11 shows the basic connections of a simple frequency-sweep circuit with a 6:1 range of frequency coverage. The extemal sawtooth has a peak amplitude of 2 V 5 : when the amplitude is zero, 3 V is developed across R and the frequency is $1 / R C$, as in the case of a normal resistancecontrolled XR2206 circuit. When the sawtooth is at its peak amplitude of 2 V 5 , only 0 V 5 is developed across R and the frequency falls to $1 / 6 R \mathrm{C}$. The frequency is thus determined by the instantaneous value of the sawtooth voltage. The frequency can, in theory, be varied over 2000:1 range by using this simple frequency-sweep technique.

Finally, Fig. 12 shows the basic method of applying FM to the standard XR2206 circuit. Here, the external modulation signal is applied to the junction of R1-RV1 via blocking capacitor C1.


Fig. 12 Simple FM facility for the XR2206.
ETI


##  <br> LIMITED OFFERS WHILSTSTOCKSLAST ■ ORDER BY POST OR <br> PHONE IN WITH <br> BARCLAY - VISA. <br> ACCESS - TRUST CARDS. <br>  <br> WHILE STOCKS LAST! MODEL 6110 <br> $31 / 2$ Digit LCD featuring 23 ranges with volts/ohms autorange. unit and sign indicators. $10 \mathrm{amp} \mathrm{AC} / \mathrm{DC}$ battery warning. low power ohms ranges. Range hold and continuity buzzer. Fuse protected. Resolution $0.1 \mathrm{mVDC} .1 \mathrm{mV} A C .10$ microamp. 0.1 ohms. Supplied with battery and leads <br> Fitted top quality rotary switch <br> Was $£ 8595$ as advertised by us <br> Now $E 59.95$ post pard <br> plus iree carry case <br> RANGES <br> AC/OC Current- $20 \mathrm{~mA} / 200 \mathrm{~mA} / 10 \mathrm{amp}$ OC Voltage (auto) $-200 \mathrm{mV} / 2 \mathrm{~V}$ / $20 \mathrm{~V} / 200 \mathrm{~V} / 1000 \mathrm{~V}$. AC Voltage- $2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 600 \mathrm{~V}$ Resistance (auto) - $200 / 2 \mathrm{~K} / 20 \mathrm{~K}$ $200 \mathrm{~K} / 2000 \mathrm{~K} \mathrm{ohm}$ <br> ALSO AVAILABLE MODEL 6220 <br> As 6110 but without range hold and continuity buzzer Only two AC/OC $200 \mathrm{~mA} / 10 \mathrm{amp}$ ranges i.e. 22 ranges Was $£ 55.95$. Now $£ 42.95$ post paid <br> AUDIOELECTRONICS Cumpert <br> OPEN SIX DAYS A WEEK - CALL IN ANO SEE FOR YOURSEL.F 301 EOGWARE ROAO. LONOON. W2 18N. ENGL ANO TEL 01724355




The new MC88E represents a breakthrough in high output moving coil cartridges. No step-up device or amp is required and it is available at a sensational price of only $£ 39.95$. The high output voltage of 2.5 mV does away with the need for a head amplifier or step-up transformer, which add to the expense of using most previous moving coil cartridges.
We can temphasise enough, just how advanced the technology that has produced this breakthrough is -a miniaturised and specially shaped armature; unique coil winding technique; a magnet that is so compact.
yet generating high magnet. ic flux density; compliance of $17 \mathrm{cu} s$. The result is a cartridge with flat frequency response over the super wide range of $20 \mathrm{~Hz}=40 \mathrm{KHz}$, removing the distortion caused by certain frequencies, which can be found in many conventional cartridges. Coral's considerable experience in moving coil cartridges has enabled them to offer the ultimate in quality and performance at this incredibly low price.




## BUILD THE WORLD FAMOUS CHROMA-CHIME

Give your friends a warm welcome. Yes, think how delighted and amazed they will be to hear the musical Chroma-Chime play when they press your button!
The Chroma-Chime uses a microcomputer to play 24 well-known tunes. The kit is simplicity itself for ease of construction. Absolutely everything needed is supplied, including:
$\star$ Resistors, Capacitors.
Diodes, Transistors,
I.C. Socket and all hardware

* Texas Instruments TMS 1000 microcomputer
* Comprehensive kit manual with full circuit details

Ready built version also avallable. Special offer price \&15.95 incl, p\& p.
Plays 24 well-known tunes including:
Star Spangled Banner, William Tell Overture. Greensleeves, Ruie Britannia,
Colonel Bogey, Oh come all ye faithful, plus many other popular tunes.

+ No previous microcomputer experience necessary
- All programming retained is on chip ROM t Fully guaranteed
* Ideal present any time

-MPCO27A Micro-computer chip avaliable seperately
if required. Full 24 tune spec device fuly guaramteed.
this ung.
but lor other propects mquitrig musical outpul
Cor Horme Mrocem Bores Miems
 £4.95 or 3 for $\$ 12.50$ incl. p\&p.
ALL CHROMATRONICS PAODUCTS SUPPLICO WITM MONEV BACK GUARANTEE
PIFASE ALLOW 7.21 UNVS FOR DFLNEAY CII. 12.81
Please send me:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX
NAME $\qquad$
ADDRESS $\qquad$
$\qquad$

I enclose cheque/PO value $\mathcal{E}$ $\qquad$
$\qquad$
$\qquad$
or debit my ACCESS/BARCLAYCARD account no

## Signature



With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, scclaimed by the press and public for seven vears.

POPULAR HI-FI
"Switching to the Minimaxs" from any of the others produc ed an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.

## HI.FI ANSWERS

Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.
PRACTICAL HI-FI \& Audio "The depth, clarity and openness of sound produced is quite astonishing". JUNE '75 WHAT HI-FI
". . the ability of the Mini-
max to take a lot of power and still sound good could be decisive' - Comparative test. APRIL 1977.

PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker" JANUARY 1981.
Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms. Frequency Response: $80 \mathrm{~Hz}-20 \mathrm{KHz} \pm 5 \mathrm{~dB}$. Finish: natural teak, veneer with black frets. Size: $107 / 8^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ wide, 71/2" deep.
Weight: 4.1 Kgs ( 9 lbs) each.
ONLY £69.95 A PAIR

- We welcome callers to our South London Showroom for demonstrations.
- Enqiries and information phone: 01-6908511, Ex. 32
- All products are only available direct or from selected authorised dealers throughout the U.K.





# ETI PCB SERVICE 

Up until now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! As of this issue all fnoncopyright) PCBs will be available automatically from the ETI PCB service. Each board is produced from the same master used to build our prototypes, so you can be sure it's accurate, and will be finished to the high standard you would expect from ETI.
In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please note that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

| APRIL 79 |  | Bench Amplifier | £1.90 | Smart Battery Charger | £1.48 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Guitar Effects Unit | £1.98 | Four Input Mixer |  |  |  |
| Click Eliminator | £4.98 |  |  | AUGUST 81 | £3.58 |
|  |  | JANUARY 81 |  | System A Power Amp(A-PA) | £2.58 |
| JUNE 79 Accentuated Beat Metronome |  | LED Tacho | £3.10 | Flash Sequencer | £2.98 |
| Accentuated Beat Metronome | £2.70 | Multi-Option Siren | £2.40 | Hand-clap Synthesiser | £1.37 |
|  |  | Universal Timer | £2.48 | Meartbeat Monitor |  |
| Tuning Fork | £1.98 | FEBRUARY 81 |  | (two boards) | £3.98 |
|  |  | infra-redAlarm(four boards) | £4.98 |  |  |
| MARCH 80 |  | Pulse Cenerator | £2.68 | SEPTEMBER 81 |  |
| Signal Tracer | £1.70 |  |  | Mains Audio Link (three boards) | £5.51 |
|  |  | MARCH 81 |  | Laboratory PSU | £3.40 |
| AUGUST 80 |  | Engineer's Stethoscope | £1.99 |  |  |
| CMOS Loyic Tester | £1.98 £2.20 |  |  | OCTOBER 81 |  |
| Capacitance Meter Ultrasonic Burglar Alarm | E2.20 | APRIL 81 |  | Enlarger Timer | £2.55 |
| Ulirasonic Burglar Alarm | £2.15 | Musical Box | £1.98 | Sound Bender | £1.99 |
| OCTOBER 80 |  | Drum Machine (two boards) | £4.20 | Thermal Alarm | £1.97 |
| Cassette interface | £2. 20 | Guitar Note Expander | E2.40 | Micropower Pendulum | £1.66 |
| Fuzz/Sustain Box | £2.45 | JUNE 81 |  |  |  |
|  |  | Mini-drill Speed Controller | £2.20 | NOVEMBER 81 |  |
| NOVEMBER 80 |  | Antenna Extender | £2.40 | Music Processor | £2.98 |
| Touch Buzzer | £1.45 £1.45 | Alien Attack | £1.98 | Car Alarm | £2.11 |
| Metronome | £1.45 | LED Jewellery: Cross | $\underline{1.10}$ | Phone Bell Shifter | £2.22 |
| 2W Power Amp | £1.45 | Spiral(two boards) | E1.98 |  |  |
| RIAA Preamplifler | £1.45 | Weartartwo boards) | £1.99 $\mathbf{E 1 . 1 5}$ |  |  |
| Audio Test Oscillator | £2.35 | Waa-phase | E.15 | DECEMBER 81 |  |
|  |  | JULY 81 |  | Alcohometer (two boards) | f3.99 |
| DECEMBER 80 |  | System A A-MMA-MC | £1.99 | Bodywork Checker | f1.48 |
| Musical Doorbell | £2.10 | System A A-PR | £3.88 | Component Tester |  |

Send to: ETI PCB SERVICE, ARGUS SPECIALIST PUBLICATIONS LTD, 145 CHARING CROSS ROAD, LONDON WC2H OEE
Name


ORDER BY POST WITH BARCLAYCARDIACCESS, CHEQUE OR POSTALORDER


Please debit my account

| BOARDS REQUIRED | PRICE |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## PCB FOIL PATTERNS

The foil patterns for the two computer expansion boards are not included because they're too big, copyright, and not many of our readers can make plated through holes! The PCBs are available from Watford Electronics.


Above: Component Tester PCB.

Above: Foil pattern for the Bodywork Checker.
Below: The board for the TV Sound Tuner.


The two foil patterns for the Alcohometer.


## DOSSING DOWN?

This feature could be better described as 'one man's fight against the system', or even, 'how not to knuckle under when your DOS dies!' As you may have already guessed this is the story, with the software to prove it, of one individual's desperate fight to replace his old and dying DOS. The system is NASCOM, the routines are universal - you can re-write them into whatever machine code you wish - and the result is superb. So, if your discs are down in the mouth as a result of an unusable DOS, cheer them up with our next issue.

## TRIED AND TRUSTED

Many of the original breed of personal computers have been slowly upgraded or replaced over the years. Not so the Exidy Sorcerer - despite a rather bleak period it's still with us. Continuing our series of re-reviews of popular machines we take a long look at this grand old system through the eyes of a family of dedicated users.

## TECHNOLOGY TAKES OVER

Over the next 12 months you are going to hear an awful lot about Information Technology, what IT is, what IT does and how IT is going to affect your lives. Information Technology is already here and working. In this issue we've spoken about the Teletext system, and next month we'll be going over the inner workings of the Prestel system, Britain's leading example of IT. Prepare yourself for the next year - order next month's issue today.

## AND THE REST

As if the above were not enough to tempt you, the next issue will also contain a full digital storage 'scope simulator for the classroom, routines to explain how computers crunch numbers, a simple statistics calculator, programs to pack your data tapes more thoroughly and all the usual features that you expect to see each month $A$ bumper bundle and all for less than the cost of a couple of pints!



The MEMOTECH memory extension board will allow the ZX 81 to run 48 K Basic programs which may include up to 16 K of assembly code.
The ZX81 sits on a custom built case which contains the MEMOTECH memory and a power supply which not only supplies power to the MEMOTECH memory, but also to the ZX81
The MEMOTECH memory board has a fully buffered control-data-address bus with PCB 40 way header plug. All leads are provided
The MEMOTECH memory costs:
$£ 109.00+15$ \% VAT in kit form. $£ 129.00+15 \%$ VAT ready assembled. Please make cheques payable to MEMOTECH. Delivery in two weeks from receipt of order. MEMOTECH, 103 Walton Street, Oxford.


##  <br> WIRING SYSTEM SPECIAL OFFERS TO E．T．I．READERS <br>  <br> EURO INTROKIT SPECIAL PRICE <br> MORE THAN 25\％OFF NORMAL PRICE $£ 18.39$ （inchuding P\＆P and VAT） <br> ROAD RUNNER IRON <br> MORE THAN 15\％OFF <br> NORMAL PRICE $£ 6.58$ <br> （ Including P\＆Pand VAT） £13．75 <br> SPECIAL PRICE ONLY £5．55 <br> IDEAL FOR <br> －WIRING SIMPLE LOGIC CIRCUITS <br> －WIRING MICROS \＆MEMORIES <br> －WIRING DISCRETE CIRCUITS <br> －REPAIRING \＆MODIFYING PCB＇s <br> －USE AS A TRAINING AID <br> SPEED UP YOUR WIRING TECHNIQUE AND OBTAIN A PROFESSIONAL RESULT USING PROBABLY THE MOST VERSATILE SYSTEM AVAILABLE． <br> TAKE ADVANTAGE OF THESE EXCLUSIVE OFFERS AND ORDER NOW！ <br> Kit consists：Single Eurocard，wining pencil，＂ 4 diff coloured enamelied wire bobbins， 1 tinned copper－wire bobbin， $10 \times 6^{\prime}$ glue strips， $30 \times 2$＂press strips， 100 solder pins．＂（ $400{ }^{\circ} \mathrm{C}$ to melt insulation）．Iron： 17 W 240 V High Temperature iron suitable for soldering enameiled wire．

VISIT THE ROADRUNNER STAND 38 AT BREADBOARD＇81

Please sendme $\qquad$ Kit（s）and／or Iron（s） i enciose cheque／P．O．for $£$
or debit my Barclay Card／Access No．

Signature
Name（Please print）
Address
Orders to：
T．J．BRINE ASSOC．，FREEPOST（NO STAMPS）


It＇s true！As a special Christmas offer we＇ve actually cut nearly $£ 5.00$ off the price of＇Speechtime＇－the first ever easy－to－build speaking clock kit．＇Speechtime＇s＇combina－ tion of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own－ equally suitable for beginner or expert． Speechtime also makes a great gift to build for someone eise．Look at these＇plus＇features：
－Accurate to a minute a year－Adjustable voice pitch －Pocket size－approx． $5 \mathrm{in} . \times 21 / 2 \mathrm{in} . \times 1 \mathrm{in}$
－Grained stainless－steel case
－Useful in the home or office

（A Powertran Subsidiary）
PORTWAY INDUSTRIAL ESTATE，ANDOVER，HANTS．，SP10 3NM


> EASY ORDERING BY TELEPHONE - RNNG ANDOVER (O2GA) B4G65 AND GIVE YOUR ACCESS OR BARCLAYCARD NUMBER
 リッド



## Don't miss the December issue - out November 13th

## We've got lots of projects to interest musicians next month:

## Drum Synthesiser

Yes, you know the noise - a sort of cross between a bomb hurtling down, and a seagull.Well, this machine can make these and many more sounds to help you keep your rhythm This one's a super project; easy-to-build, easier to use and what's more, we reckon it won't cost you any more than about $£ 30$ - that's about a fifth the price of commercial counterparts.

## Organ Pedalboard

This project was designed to match the HE Electronic Organ (see HE May to August 1981). It's a 13 -note, free-standing, foot-operated pedalboard (phew - what a mouthful), which can be plugged intothe same amplifier as your organ, or it can be used with its own internal amplifier.

Now, although it's primarily intended to complement our organ, you can, of course, use it to accompany yourself while you play any other instrument. Thus you can have bass accompaniment to say, a guitar, flute, piano, or even the HE Drum Synthesiser.

## Car Electronics

There's no doubt that, although car manufacturers, overall, tend to be slow to change their ideas about the equipment that goes into their cars, they are at last waking up to the fact that electronics has a large part to play.

Guest writer Bill Mitchell tells you about the possibilities and probabilities of in-car electronics.


## Guitar Graphic Equaliser

For those electric guitarists who enjoy building their own effects boxes, this project's a must! How do you fancy a 6 -channel graphic equaliser to control the tone of your electric guitar? All in a small foot pedal!

It's battery operated, easy-to-build and sounds great.

## Plus

News and information, circuits, regular features, your own views - all about the electronics world.


# From the people who invented the integrated circuit... 

# The TI Technical Library 

Texas Instruments invented the integrated circuit. the microprocessor and the microcomputer. Today, TI is the world's largest manufacturer of semiconductor devices offering the broadest range of products from a single source.

This capability is reflected in the
comprehensive list of high-quality technical data books available to our customers. Each one is an easy-to-use complete reference.

1. MOS Memory 1980 edition $£ 3.95$.
2. Bipolar Memories 1981 edropean edition $£ 4.00$. $1976 £ 6.00$. 3. Optoelectronics 19 Theory and Practice 1 st ed
3. Optoelectrontrol Circuits 1980 edion $£ 4.50$.
4. Linear Control Ciars 1977 edition $£ 4.50$. 7. Bipolar Microcomputer Compon.
5. Interface Circuits 1st edition 1980 £6.80. 10. TTL Supplement solid-State Electronics dition $£ 3.95$. 11. Understanding Sigital Electronics 1st edition $£ 3.95$. 12. Understanding Dicroprocessors 1 st edtems 1 st edition $£ 3.95$. 13. Understanding Communications Systedition $£ 3.95$.

To: Texas Instruments Limited, PO Box 50.
Market Harborough, Leicestershire.
Please send me the following publications:


## How to order

Simply use the coupon as follows:

1. Select titles and quantities required.
2. Calculate total order value. Add $£ 1.50$ for post and packing.
3. Send the coupon plus your cheque payable to Texas Instruments Limited, PO Box 50, Market Harborough, Leicestershire.

If the coupon has been used by someone eise, simply use a piece of paper. Please allow 30 days for delivery.

## TEXAS INSTRUMENTS LIMITED


[^0]:    Articles described here are in an advanced state of preparation. However, circumstances may diclate changes to the final contents.

[^1]:     Stockist Enquiries on headed nolepaper to: All orders pre-paid and official advertised here to be forwarded FREE BROCHURE COMPUTER KIT LTD. (Princidal Disiributors in UK) DIRECTLY to Il12 Paddington Green, London, W2. Tele: 01.7235095 COMPUTER DEPT,, 11/12 PADDINGTON GREEN, LONDON W2
    Celex. 262284 Ref 1400 TRANSONICS

