COMPRESSOR/LIMITER/GATE
Keeping quiet about music
John Linsley Hood examines the evolution and workings of the Nicam 728 stereo TV sound system

Ever since the introduction of high quality stereo VHF FM transmissions, there has been a wish on the part of the engineers working in the TV transmission field to be able to offer a comparably high quality sound system to accompany the 625-line colour TV picture.

The problems here are threefold. Any system has to be fully compatible with existing TV transmissions and TV receivers. Also the system has to slot into the existing 8MHz channel separation allocations, without degradation of the existing pictures — or sound — quality, and without being a nuisance to adjacent channels. Finally there is a reluctance of the TV manufacturers to make, and a similar unwillingness of Joe Public to buy, TV sets which even begin to do justice in terms of speaker size or amplifier performance to the quality of the existing mono TV sound signal, which is fully equal to that of the mono VHF FM transmissions.

Initial thinking on the part of the broadcasting engineers was to expand the existing TV FM sound signal to a stereo version using the well known 'Zenith-GE pilot tone' system used for VHF FM sound broadcasts, and I believe that experimental broadcasts took place in West Germany using such a system in the late 1970s. However, the advent of CD and digitally encoded sound signals encouraged the exploration of this type of signal as a possible option for providing an additional pair of TV sound channels which need not even be in the same language — a useful feature in bi-lingual communities such as Hong Kong.

The problems with digitally encoded signals is that they are very extravagant with broadcast bandwidth, and there is very little additional space to spare within the transmitted TV spectrum (shown in Fig. 1).

Bandwidth increases dramatically with each extra bit of resolution. It is generally acknowledged that 14-bit resolution is about the threshold needed for truly 'Hi-Fi' sound quality, though the existing BBC stereo sound system is only '13-bit' encoded for distribution from studio to transmitter. These broadcasts, nevertheless, seem to have quite a good reputation for audio quality among the 'Hi-Fi' fraternity.

The NICAM System

The solution proposed by the BBC was to use their NICAM-3 system for the compression of a 14-bit encoded sound signal from the studio into a 10-bit signal for transmission — already used by the BBC for their inter-transmitter signal distribution network — which would reduce the required broadcast bandwidth to a level which could be accommodated (just) within the channel separation allocations.

The NICAM system (Near Instantaneous Compressing Audio Multiplex) takes the 14-bit input digital signal (216 or 16384 step resolution) sampled at 32 kHZ (which gives a maximum practicable HF bandwidth of about 14.5 kHz), and breaking it down into 1ms blocks, each containing 32 samples. Each block is then re-coded to 10-bit resolution (1024 steps), using a scale factor determined by the largest signal within that block.

The compression factor used, within one of five ranges, is then signalled by an added 3-bit group so that the correct amplitude range can be restored on decoding the digital signal. A parity bit is then added to each 10-bit sample to check the 6 most significant bits and allow the rejection of any group that has been corrupted by noise or other interference.

The TV Sound Channel

The existing TV sound system is shown in the block diagram of Fig. 2. In this, the signal from the tuner head is amplified by a common IF stage (usually with an IF passband of 33-41 MHz) and fed to a standard AM demodulator to extract the 'negative modulation' picture and 'sync' signals. The sound signal, which is frequency modulated, then appears as an IF sideband centred on 6MHz, and is amplified by a separate 6MHz IF stage and FM demodulator of conventional type.

Ferguson's FV14T NICAM compatible VCR
There are of course some problems, quite apart from the circuit complexity. These stem partly from the digitally encoded signal, and partly from the nature of TV camera techniques.

The 'Hi-Fi' buffs who have listened to the stereo test signals broadcast from Crystal Palace and Wenvoe on NICAM 728 equipped stereo sound video recorders which have been creeping into the shops over the past six months or so have noted that the quantisation noise inherent in the digital signal can cause some degradation in sound quality, due to noise modulation or 'granularity', on the reproduction of the voice or single instruments (as compared with the existing FM TV sound signal heard through comparable audio equipment). With 'pop' music or other sound signals which generally involve high modulation levels, this minor defect is said to be undetectable.

Advantages of NICAM 728

Although this is a very complex system and impracticable to implement without some custom designed ICs, the advantages of the added digitally encoded channel are sufficiently persuasive that, following approval by the DTI in September 1986, it has also been adopted by the European Broadcasting Union as the new TV stereo sound standard, as well as being considered or adopted by Hong Kong, New Zealand, Australia, and Scandinavia.

The advantages are that the bit stream can be divided into two quite separate channels so that in addition to providing a left and right stereo sound channel of precisely equal amplitude and very high stereo separation (depending more on the studio or the subsequent receiver electronics than any shortcomings in the system), it can also provide two unrelated sound channels — even perhaps in different languages — or a stream of data of 704kbits/s for teletext or computer data, or a mono channel plus 325 kbits/s of data.

Additionally the error correction facility offered by the added parity bit allows a good quality, undistorted sound signal to be recovered, with low background noise even when the signal is so weak, or multi-path distortion is so bad, that the actual picture is barely readable.
every millisecond.

Each of these frames has the format shown in Fig. 4 and is built up from an initial 8-bit frame alignment word (FAW), a 5-bit control information word, 11 additional data bits (for a purpose to be invented later), and a final group of 704 bits carrying the sound and parity bits, arranged as 64 x 11 bits, in which the L and R channels are sent alternately.

To prevent the possibility of a transmission error being carried over into successive data blocks (due perhaps to a protracted noise pulse) each 64-bit segment is interleaved with its neighbours to separate adjacent segments by 16 frames. Then to disperse the transmitted energy more uniformly across the additional sound carrier, the whole 704-bit word is scrambled using a pseudo-random number generator. This will also have the effect of lessening any patterning due to sound/vision interference.

So on reception, the frame alignment and control information words must first be interrogated to identify and isolate the frame, to de-scramble and then de-interlace the received 704-bit signal, to check whether it is a sound signal or data that is being received, and whether the digital signal is identical to the normal TV sound (which will allow a reversion to the FM sound channel in the event of the absence of a digital sound signal).

Finally when the data group is identified as a sound signal, the 3-bit scale factor command is used to restore the received 10-bit amplitude range to the original 14-bit resolution. The time delay involved in the temporary storage of received signal during this interrogation process is about 13 ms and the degradation of the S/N ratio is about 3dB. This is unimportant for any single encode/decode process but can become noticeable if these steps are cascaded in the distribution chain feeding the transmitter.

The digital output from the NICAM demultiplexer stage — comprising the 704-bit sandwich of L and R channels — is then fed to a conventional DAC and audio amplifier. A block diagram of the layout of a typical stereo sound equipped TV is shown in Fig. 5.

From the description given above, it will be clear that the construction of a suitable NICAM 728 demultiplexer would be quite complicated if it were to be built using standard microprocessor and memory blocks. Since for commercial validity such things as TV sets must be inexpensive to construct, dedicated ICs will inevitably arise to fill this need. of which one of the first in the UK is the NICAM 728 demultiplexer IC produced as a joint exercise between Ferguson (Thorn-EMI) and Texas Instruments.

At the moment, details of this are available only on a non-disclosure basis, which isn't a lot of use for technical writers. However other ICs from other sources will soon follow, and competitive pressures will lower the walls of secrecy.

When Will Stereo Sound TV Be Available?

Suitable receivers are already appearing and DIY ICs, one hopes, will follow. However, the BBC officially pleads that poverty prevents them from modifying their transmitters, or even using those they have modified, until 1991. The IBA are unlikely to wait for them and expect to commence a stereo service in London and Yorkshire this year. For the meantime, anyone interested in improving the sound quality of an existing TV could do a lot worse than make a receiver to capture the inter-carrier 6MHz FM signal and to feed that to a decent demodulator, AF amplifier and LS unit.
Language Lesson

Last month I discussed interpreters and now I want to go on to compilers. If you remember, an interpreter takes your human readable (machine meaningless) source or input code and at run time resolves each command into a call to a resident machine code routine.

Compilers do this at compile time and create a memory or disk file which consists of pure machine code. This is later called for execution. So at run time, a machine code program is executed, which eliminates the 'what do I do next?' questions of the interpreted languages. However, the real job of compilation involves quite a bit more sophistication than this description suggests. There are strategies used by different compilers (or by the same compiler for different jobs) which yield greater or less efficiency in the executable code.

The lowest level compiler strategy is that used by assemblers. At this level, each machine operation must be understood and utilised by the programmer to generate his routines. This is of course the position of maximal control if the programmer is good enough but the effort/performance ratio is very high.

Assemblers

Various advances in assembler design have led to new features, some of which are good and some not so good. Let's look at a few.

The first to appear was the process of 'linking'. The idea is that equipment-oriented and general purpose routines such as hardware drivers, stack handlers, interrupt control and so on would not be written from scratch by the programmer but would be available as pre-compiled machine code. This code would be written by the assembler creators so that it was relocatable (placeable anywhere in memory in relation to the user code) and would be included in the user program after this was written and debugged by a process of post-linking.

This means calling a special application program which adds the linked code and then scans it, amending any pointers or calls to the linked modules that it finds in the user code. The process was devised not so much as a user convenience but as a memory saver in the old days (20 years ago) when core memory was horrendously expensive. It allowed less memory to be used to compile larger programs.

In spite of the availability of masses of cheap memory these days, linking still persists as a reflex mechanism, although it is really redundant. Its only apparent advantage is that it reduces compile time but it is generally forgotten that the saving is lost as the total job consists of compile plus link time.

The next step forward was the 'macro'. At its simplest, a macro is just an ASCII string which is inserted in the source code when called by a short special instruction. At this level, it simply saves typing. As an example (in trusty 6502) a macro could be:

```
ROL; ROL; ROL; ROL;
```

which will place a set of four left rotates in the code whenever it is called. However, at this level, macros are not unduly useful. They do save typing but great care has to be taken to see that they begin and end at the right points not to confuse the system. They are really limited to the very simple blocks such as that in my example.

A major advance in macros was the development of the object oriented module. This is effectively a black box (a device with a known function but concealed mechanism) with a specific set of input and output parameters. The object oriented module was not specifically designed as a type of assembler macro but it constituted the major breakthrough nevertheless. Now, to call a macro of this type, you would simply instruct:

```
FILL, start, bytes, value
```

where FILL is the name of the macro and start, bytes, and value are three parameters (the start address, extent and content of the memory area you wish to fill). You would not care what the actual code is or whether it was in-line code or a subroutine. You could, however, create routines yourself and use them as macros.

The ultimate assembler of this type would consist of a massive library of routines in source code, requiring the programmer to do little except generate a list of macros in due order. Such an assembler has, as far as I know, not been implemented. All assembler writers have baulked at the massive task of library generation.

The remaining major bugbear of the assemblers is the equation of variables and constants. At some stage in the creation of source code, every human readable (ASCII) reference to a memory address or memory content must be explicitly referenced to a binary (or hex) value.

All assemblers to date require the programmer to perform this task, normally in a ruddy great list at the start of the source code. This time consuming and error prone task is one of the main reasons for assemblers falling into disfavour as high level compilers have developed.

The final nail in the coffin of the assemblers from the point of view of the general programmer is the lack of a debug environment. There are systems (machine code monitors) which allow you to mark chosen points in your code ('breakpoints') and cause the code to pause and display status information but you still have to understand the detail of what is going on to make use of the displayed information.

High Level Compilers

High level compilers score heavily on these points. The programmer does not (apparently) need to understand the details of execution of the routines called. Variable and constant assignments are automatic and a high level test environment is provided.
Let us look at these 'advantages' in more detail.

The strategies employed by high level compilers can be quite sophisticated: in C for example, executable code is installed either in-line or as a subroutine depending on the syntactic context. A PRINT instruction could be compiled as a call to a subroutine accompanied by parameters (what to print, how to print it), the routine being installed by the first call and then referred to by subsequent calls. However, a conditional operation such as \texttt{IF... \texttt{THEN}} would normally be compiled as in-line code each time it is encountered, due to the simplicity of the structure (a subroutine call would take as long as the routine itself to execute, doubling overall execution time).

Variable and constant assignments become 'declarations' in high level compilers. All labels must be listed together with the amount of memory allocated to them (byte, word and long word variables: 1, 2 and 4 bytes respectively) but the actual memory addresses where they are stored are assigned by the compiler and the programmer is not told about it.

This has its pros and cons. It makes programming more error free to someone unfamiliar with processor architecture but it makes the resultant code devilishly difficult to examine at machine level.

The final powerful feature of the high level compilers is the dedicated test environment. The compiler checks for mis-typed instructions, had syntax, unassigned labels, duplicate labels and so on as it proceeds (which is also quite common among assemblers of better quality) but after compilation also provides the facility to single-step and trace execution in terms of the input code, displaying routine and user labels. This is a quick process compared with assembler tracing, as the integrity of each called function can be assumed, so it is unnecessary to visually examine their internal execution.

Conclusions

It would probably seem from the foregoing overview that high level compilation is the best choice for all programming. Wrong! It is the most cost-effective way to write software and so has become the order of the day for commercial purposes. However, the ascendancy of the high level compiler has itself curtailed the development of assemblers.

There is no reason why the advantages currently evident in high level compilers could not be incorporated into an advanced assembler — auto variable assignment, a very large library, an adequate test environment. The additional benefit would be the control available to an experienced programmer, allowing maximisation of software performance. The snag is that nobody has bothered.

The unfortunate result is progressively more and more cumbersome and inefficient software which demands increasingly powerful and memory intensive hardware just to perform adequately. Many high level compiler-generated PC graphics packages now demand 80286/80386 processors to run at an acceptable speed, whereas a clever assembler level programmer could probably produce similar results on the older 8086 generation.

The real problem is that commercial software writing is dedicated to the seller rather than the user of the resultant package — quick production in a high competition marketplace targeted to a non-critical buying public.

The time is long overdue for users to start griping and moaning. They are starting but there is a long way to go. The plain fact is that modern micro hardware could perform a whole lot better if the software writers used its power to the full, rather than relying on that power to compensate for their poor product.
Paul Chappell shows how you can learn all about the dark side of feedback without ever mentioning an op-amp.

So far in the investigation of negative feedback we've seen only the good effects. Now comes the time to remove our rose coloured lenses and see what will really happen to our oven controller.

One implicit assumption I've been making all along is this: the heat output of the element depends only on the current flowing through it at any instant in time. Sounds reasonable if you say it quickly. So let's test it. What I want you to do is to turn on a heating ring on your electric cooker until it glows red. Then turn it off. There's no current flowing in the ring, so it's not giving out any heat, right? So you'll be happy to touch it? I think not.

When you turn on the ring at maximum current, it doesn't immediately start giving out full heat — you can probably rest your hand on it for a few seconds without coming to any harm and it may take a minute or more before it glows red. When you turn it off, it continues to give out heat for several minutes after the current has been removed. The reason is, of course, that it has to heat itself up before it can transfer heat to anything else and this gives it a built-in delay or time constant.

If everything in electronics or physics was instantaneous, we'd already be at the end of the story — you'd know how to make a control system or feedback loop as good as you could ever want it and we could pass on to something else. It's the delays and time constants that mess everything up and lead to the constant refining of control theory.

The practical consequences in our particular control system — the oven — you can imagine for yourself. With a narrow proportional band, the current is reduced a degree or so below the set-point but the heating element still contains enough heat to push the temperature up by perhaps 50°C. The temperature overshoots the mark and continues rising until the heater and oven are at the same temperature.

What happens next depends on how quickly the oven is losing heat to the air outside. If you're lucky the temperature might fall back within the proportional band gently enough for the controller to catch and stabilise it. If not, it may overshoot, then overshoot again, and so on.

One way to overcome the problem would be to use a very wide proportional band. As the current decreases, the rate of temperature rise will slow down well below the set point and if slowed down enough to take care of all the delays in the system, the controller will work again.

However (if you remember this far back) the idea of the control system was to get the temperature to set-point quickly, by applying maximum power for as long as possible and to stabilise it against disturbing influences, which worked best when the proportional band was narrow. By widening the prop-band we've almost eliminated these advantages, so we're back to square one.

If you think about it, what we really want is something to leave maximum power for as long as possible and to put the brakes on just before set point is reached. Given the limitations of the heater and oven, this would essentially mean taking off the power about 50°C below the set point so that the overshoot would become a rise towards the set temperature.

How to do it? It's no good putting the proportional band 50°C below set-point because the temperature would just fall back again. What we need is something to shift the proportional band downwards while the temperature is rising, then let it rise as the temperature change rate slows down. Sounds complicated but it's not so very hard in practice.

Figure 1 shows the revised circuit. The gain control on amplifier P (for 'proportional') varies the width of the proportional band, as before. Added to its output is a time-derivative signal from amplifier D. This signal becomes increasingly negative the faster the temperature is rising but will be zero if the temperature has stabilised.

Let's suppose we turn the set-point knob to 300°C and start up the oven. We'll say, for the sake of putting a few figures in, that the gain control on amplifier P is set to 100, giving a proportional band of 20°C. To avoid the overshoot from stored heat in the element, we want to start cutting off the current at, say, 250°C. The output from amplifier P at this point is 50V, so if we adjust the derivative control to give -30V at the output of amplifier D at this temperature, this should do the trick.

If the output of amplifier D remained at -30V, the effect would simply be to push the proportional band downwards by 30°C. By 270° the heater current would be zero, the temperature would continue rising to 300°C or so and then would fall back to around 260°C. But this doesn't happen because as the temperature rise slows down, so the output of amplifier D rises until at the peak of overshoot, when the temperature is not changing at all, its output will be zero. The trick is to adjust the P and D controls so that the peak of what would have been an overshoot actually coincides with the set-point.

In many control situations, a few rough calculations are made to choose fairly sensible initial settings for the controls, then the final adjustments are made by trial and error. You can get anything from an over-damped response to oscillation by fiddling with the pots.

Just to complete the picture, there's one more major fault with the control system. The temperature always stabilises below the set-point. By narrowing the proportional band we can make it end up as close as we like to the set-point but narrowing the proportional band too much makes the system too unstable.

The usual solution to this little niggle is shown in Fig. 2.

Here we have yet another dollop of voltage being
fed into the summer, this time from an amplifier which integrates the difference between the set point and the actual temperature. Suppose that the set point is 300°C and that the temperature, by the action of the P and D sections of the circuit, has settled at 290°C. The integrator will have 10mV across its input so the output will slowly rise as the capacitor charges.

The rise in voltage will cause a slight increase in the heater current, causing a gradual increase in the oven temperature. This reduces the current from the proportional amplifier and also causes the integrators output to rise more slowly, since the voltage between its terminals will have decreased.

If you think about it, you'll see that the circuit will end up exactly at the set-point. The output of amplifier I will now be steady because its inputs are both at the same voltage, the outputs of amps P and D will both be zero — the first because the set point and temperature voltages are equal and the second because the temperature is not changing — so the entire voltage to sustain the fixed temperature is supplied by amp I.

My description of the operation is obviously oversimplified. The integrator capacitor will be charging up the whole time the temperature is below set-point and will have an unsuitable voltage on it initially. The derivative amplifier will also want to have its say as the temperature is varied by the integral amp. The purpose of each part, though, is as I've described it and with careful setting up of the controls it can do just what its supposed to do.

If you were to build a practical version of the control part of this circuit, and put it in a nice box with digital displays, you'd have something instantly recognisable in industry as a PID, or three-term, controller. A number of manufacturers sell them as general-purpose control systems — anything from a few hundred pounds upwards, if you want one. They can cope with 95% of the control requirements in industry, laboratories or wherever the need arises. The circuits are, I should say, a lot more refined than Fig. 2 but my diagram has all the essential ingredients.

Back To Op-amps
We've strayed rather a long way from the supposed topic of these articles — op-amps. My aim was to show you that negative feedback is not something to do with a pair of resistors around an IC — it makes itself felt all over the place.

If you've got an intuitive notion of what its all about and can see that its not necessarily a good thing in all circumstances, then its all been worthwhile! I originally intended to give you a Cooks tour of positional control (servos and the like) too, but we've spent enough time on digressions. In another article, perhaps.

I usually end by telling you where I intend to lead you the following month — and always regret having done it when I come to write the article and find my enthusiasms are everywhere. This time I'll avoid all that. Next month's article will be something about op-amps, probably, and to do with electronics almost certainly. More than that I cannot say. See you then!

Fig. 2 Simplified diagram of a PID controller

A range of commercial PID controllers from Control and Readout

ETI FEBRUARY 1989
Ian Harvey squeezes a high quality compressor/limiter and a noise gate into the same box all ready for the stage or studio.

Go into any recording studio and alongside the racks of flash MIDI samplers, digital reverbs and PCM recorders you will find the humble end of effects units - compressors and gates.

The effectiveness of these units in producing a polished sound is often overlooked and many people opt to spend their money on trendier hardware - hardly surprising as a decent compressor will set you back £200 or more. So here is the DIY answer — a flexible compressor/limiter good enough for semi-professional use, which includes a completely separate noise gate for good measure.

Total cost, including a decent 19in rack case, is about £60 — roughly the price of one of those nasty footpedals...

Compression
Essentially a compressor reduces the dynamics of a signal by turning down the loud bits and turning up the quiet bits (Fig. 1). Extreme compression, where the output level is actually constant for a range of input levels, is called limiting.

A popular and fairly 'musical' way of varying the degree of compression is to have a 'soft knee' characteristic (Fig. 2) where the compression becomes more severe as the input level is turned up. This design is a soft-knee one but has a separate Compression control to allow flexibility with input levels.

An immediate problem is that if a loud signal (like music) is attenuated and a quiet signal (like hiss) is amplified, the signal-to-noise ratio will inevitably be made worse. Guitar-type footpedals usually have a problem with noise anyway, and this factor often makes them unusable for serious recording work.

Care has been taken to keep the noise generated by this design to an absolute minimum but as most input signal sources will not be perfect anyway a basic noise-gate is included to shut off the output when the signal falls below a given level. The Threshold and Gate Time controls set the triggering level and opening time of this gate.

Finally the compressor has Attack and Decay controls which determine how quickly it responds to the input level rising and falling. Generally these will be set to reflect the attack and decay of the signal. A 'fast' signal like percussion needs to be accurately and quickly followed, whereas a 'slow' signal like vocals should receive smooth compression to avoid 'pumping' or 'breathing' effects.

Gating
Fortunately, a gate is a lot simpler. Basically it is a switch which only allows an audio signal through...

Fig. 2. Degree of compression.
when 'triggered'. Triggering occurs when the signal goes above a level set by the Threshold control. The speed with which the gate opens and closes is set by Attack and Decay controls.

With some 'tagged' input signals the gate can be triggered several times in quick succession on the start of a note. This usually sounds naff so to avoid it a Hold Time control is provided which holds the gate open for a certain minimum time once triggered.

Finally an external input socket is provided so the gate can be triggered with a different signal to that being gated.

Construction
Building the unit is relatively straightforward with no non-standard (or at least non-Maplin) parts. Setting up requires a voltmeter and some form of signal source and listening equipment. All components except the mains transformer and front panel controls (Fig 6) mount on one PCB (Fig 5).

Start assembly of the board with the links, resistors and diodes, then the IC sockets, PCB pins for the off-board connections, capacitors and finally IC8 and IC9 (these do not require heatsinking). The PCB, T1 and front panel controls can then be mounted in the chosen case, and lastly everything is wired together.

CW, CCW and W on the overlay diagram refer to the clockwise, counterclockwise and wiper connections to the pots. The input jacks SK1 and SK3 are wired directly to the RV1 and RV7 respectively, signal to the CW end and ground to the CCW end. The CCW and W terminals are then wired to the PCB pins. Do not put any ICs in their sockets at this stage.

A few points. Using an LM833 (or NE5532) for IC1 will give a noticeably better noise performance than the usual TL072 types — definitely worth the extra $5 or so. Don't be tempted to replace C8, C9, C15 or C16 with electrolytic types.

On the prototype, the PCB was mounted on metal spacers so as to connect signal ground (the track around the fixing holes) to the case as in Fig 7a. Mains earth was left unconnected (it should never be directly connected to signal ground), so for safety reasons the mains transformer had to be well isolated from the case. If for any reason isolation is not possible, connect the case to mains earth and mount the PCB on insulating spacers. With either system the signal ground can then be linked to mains earth via a 100R resistor (Fig 7b).

Setting Up
Before inserting any ICs, switch on and check the power LED lights and there are the correct supply voltages present at the IC sockets. These should be +12V to IC1 pin 8, IC2 pin 11, IC3,4, pin 7, IC5 pin 8, IC6,7 pin 7 and −12V to IC1 pin 4, IC2 pin 6, IC3,5,6, pin 4.

If all is well, turn off and insert the ICs. (Note IC3 is orientated opposite to all the others). Set all the front panel controls to minimum (anticlockwise) and internally set PR2 and PR3 fully clockwise and PR1 and PR4 midway. Connect a voltmeter across R21, switch on and adjust PR2 until the meter reads approximately 1.6V.

Now connect a signal source to the compressor input, and an amplifier to the output. Turn up the compressor input level. The signal should be audible at the output and LED1 should light. Turn the Threshold control on the compressor right up until LED1 goes out (reduce the input level if necessary). Adjust PR3 until the output signal is just inaudible.

If the Threshold control is now turned down LED1 will relight and the output will reappear, probably with a noticeable click. PR1 is to be adjusted until this click disappears. To do this it is best to use music with a regular beat as the input and adjust the Threshold until LED1 only triggers on the beat. Keep the input level low so as to hear the click better.

This last step needs to be repeated for the Gate channel. Connect the music to the Ext Trigger input, leave the main input unconnected and monitor the output. Adjust the Gate Threshold until LED2 triggers on the beat and tweak PR4 until the corresponding clicks (this time without the music) at the output disappear. Put the music through the main input (just to check it's working OK) and then you're ready for action!

Applications
The unit is designed mainly for line-level signals, although high-output guitars can be used with success. After plugging it in, the input level controls should be set so that clipping is just avoided. Then the desired degree of compression can be set with the Compression control.

The compressor can be used on almost any signal whilst recording. By keeping the signal level within a restricted range, it will give a better signal-to-noise ratio on tape and when mixing down, it will help preserve the balance — no more accidentally louder-than-average guitar notes sticking out like a sore thumb.

Compression may be used to add sustain to guitar and bass — usually a fast attack and medium fast decay are a good starting point. The short attack time will reduce the transients at the starts of notes, which is useful on bass but is often not desirable on guitar, especially acoustic. Increasing the attack time will allow these transients through without being
Fig. 3 Block diagram of the compressor/limiter/gate

HOW IT WORKS

The unit is based around an LM13700 VCA chip with two separate control blocks— one for the noise-gate function and the other for the actual compression. See Fig. 3 for a simplified diagram. The input amplifier is provided to match the unit to the wide range of levels typical in home recording set-ups, and to give a low-impedance drive to the VCA.

The circuit diagram is shown in Fig. 4. The VCA itself is a fairly conventional LM13700 circuit but with additional treble pre-emphasis and de-emphasis capacitors C2 and C3. These bring the noise level (especially at subjectively more annoying high frequencies) to an acceptable level. Note that the inputs and outputs to the LM13700 are actually current sources and sinks, so the combination C2/R4 and C3/R8 is all that is needed to give a theoretically flat overall frequency response.

The noise-gate control block based around IC3 and IC4 is identical in operation to that in the gate channel, with the exception that certain parameters are not variable. Hold Time is fixed at 100ms by C7/R16 and the Attack and Decay controls are replaced by RV3 and D3 which fixes the decay time at 470ms and the attack time is adjustable from 0 to 470ms.

The compression section uses a precision rectifier and smoothing to convert the output signal to a DC voltage and a block to reduce the gain of the amplifier as this voltage increases. The precision rectifier is based around IC5 and produces a negative output via diodes D4 and D5 to charge smoothing capacitor C9. The diodes ensure that C9 charges via RV4 and discharges via RV5.

The control voltage is applied to the gate of FET Q2, whose source terminal is held at a constant voltage by Q1. As the output level increases, this voltage becomes more negative and cuts off Q2's drain current. The non-linear transfer function of Q2 gives the compressor its 'soft-knee' characteristics. Limiting will occur at the output signal and the control voltage nears the cut-off voltage of the FET.

As there is quite a spread of parameters between different 2N3819s, the source voltage of Q2 must be adjustable to give a known drain current under no signal conditions— when the gate is set to OV, PR2 is used to set this to about 0.75mA. RV1 is used simply to allow this current to be measured without disturbing the circuit.

The output of the noise gate block on C8 is buffered by Q3 and fed to the base of Q1 via PR3 and R20. When the gate is untriggered, Q8 is charged to +12V and Q1's base voltage rises. This increases Q2's source voltage and cuts off its drain current. PR3 controls the amount of cut-off and is normally set to give complete attenuation.

Fig. 3 shows the block diagram of the gate. The input amp and VCA are similar to the compressor. IC6 is used as a comparator and when the input signal goes above the trigger level set by RV8, the output swings to +12V and charges C15. Together with RV9 and Schmitt trigger IC7, this forms a monostable used to set the gate hold time. IC7's output swings between +12V (idle) and OV (triggered), charging and discharging C16 via the attack and decay controls RV10 and RV11. This sets the control current to the LM13700 via C4 and C4 - the maximum current being set by RV4 at 0.75mA approximately.

The control voltage is applied to the gate of FET Q2, whose source terminal is held at a constant voltage by Q1. As the output level increases, this voltage becomes more negative and cuts off Q2's drain current. The non-linear transfer function of Q2 gives the compressor its 'soft-knee' characteristics. Limiting will occur at the output signal and the control voltage nears the cut-off voltage of the FET.

As there is quite a spread of parameters between different 2N3819s, the source voltage of Q2 must be adjustable to give a known drain current under no signal conditions— when the gate is set to OV, PR2 is used to set this to about 0.75mA. RV1 is used simply to allow this current to be measured without disturbing the circuit.

The output of the noise gate block on C8 is buffered by Q3 and fed to the base of Q1 via PR3 and R20. When the gate is untriggered, Q8 is charged to +12V and Q1's base voltage rises. This increases Q2's source voltage and cuts off its drain current. PR3 controls the amount of cut-off and is normally set to give complete attenuation.

Fig. 3 shows the block diagram of the gate. The input amp and VCA are similar to the compressor. IC6 is used as a comparator and when the input signal goes above the trigger level set by RV8, the output swings to +12V and charges C15. Together with RV9 and Schmitt trigger IC7, this forms a monostable used to set the gate hold time. IC7's output swings between +12V (idle) and OV (triggered), charging and discharging C16 via the attack and decay controls RV10 and RV11. This sets the control current to the LM13700 via C4 and C4 - the maximum current being set by RV4 at 0.75mA approximately.
Fig. 4 Circuit diagram of the complete unit
Fig. 5 The component overlay for the compressor/limiter/gate

PARTS LIST

RESISTORS (all 1/2W 5%)

- R1,14,27,37: 150k
- R2: 68k
- R3,8,12,44: 1k
- R4,7,10,19,23,24, 29,30,33,34,36,41: 10k
- R5,6,31,32: 1k
- R9,15,26,35,39: 3k3
- R13,25,38,40: 47k
- R16: 470k
- R17,20,22,43, R18,42, R21: 2.7k
- R28: 470k
- RV1,2,7,8, RV3,10,30, RV4: 470k log
- RV5, RV6: 100k log
- RV9: 2M0 log
- RV10, RV11: 47k lin
- P1-P11: 10k horz preset

CAPACITORS

- C1,5,6,10,14,19,20: 10µF polyester
- C2: 10µF polyester layer
- C3,11,12: 68µ polyester layer
- C4,13,21,22: 10µF 16V radial electrolytic
- C7: 220µF polyester
- C6,9,16: 10µF polyester layer
- C13,17,1B: 470µ 25V radial electrolytic

SEMICONDUCTORS

- IC1: LM833
- IC2: LM13700
- IC3,4,6,7: 741
- IC5: 1458
- IC8: 7812
- IC9: 7912
- IC10: 828
- IC11: 018
- BC109: D1-3
- BC179: D1-3
- BC199: Red LED
- 2N3819: D13
- 8N3819: W005 bridge

MISCELLANEOUS

- SK1-5: 3/8 jack socket with break contacts
- T1: 12-24V 250mA miniature transformer
- PCB, Case, Knobs to taste, Optional 100R earthing resistor (see text), Nuts and bolts
available with the Ext Trig input such as producing an electronic drum sound by feeding a note from a synth into the main input and using the bass or snare signal to trigger it.

Frequency selective gating can be done by splitting a signal in two, routing one half direct to the input and the other to the Ext Trig input via a graphic or parametric EQ. This can then be used to separate a bass drum from a percussion track by boosting the bass on the EQ. Boosting the midrange will usually get the snare. These can then be fed through further effects and mixed back in with the percussion track.

to give a better bass/snare or whatever. Lastly, remember there are never any rules about using compression or gating, and the more weird and interesting noises you end up with the better.

Happy twiddling.

BUYLINES

All the components for this project are easily available from normal sources. A suitable case (TU size) is available from TJA developments, 19 Welbeck Road, Harrow HA2 6Q.

OUR RANGE OF MICROCONTROLLER AND EXPANSION BOARDS IS VASTLY EXTENDED - SEND FOR DETAILS NOW!

8052-BASIC

MICROCONTROLLER-KIT

FEATURES INCLUDE

- Powerful Enhanced Basic Interpreter
- On board EPROM Programmer
- Program Development from a VDU
- 32K Bytes of CMOS Static RAM
- 32K Bytes of CMOS EPROM (expandable to 66K Bytes)
- Single Unregulated Supply Requirements
- Small Physical Size (80 x 100mm)
- Expansion with range of Compatible Circuit Boards
- Two RS232 Ports

NEW UNBUFFERED 8K VERSION

CALL FOR MORE INFORMATION

Kit including all components full instructions and operating manual — £1929

Manufactured and Fully Tested Circuit Board — £2299

"All prices exclude VAT!"

Packaging and Postage Free (UK only)
FOR FULL DETAILS, PLEASE CONTACT

E TRAK electronics ltd

MONFETH BUSINESS CENTRE
DUNDEE DD5 4P Telephone: 0382 534944

ETI FEBRUARY 1989
Bob Joyce presents the first part of his step-by-step guide to an intelligent text and graphics plotter.

The Intelligent Plotter is a 2-axis plotter based on the 6502 microprocessor. It uses standard plotter pens and has a precise resolution of 0.1mm to produce engineering artwork on foil, paper or other materials.

The design has two separate drives, each with a 1.8° stepper motor driven in half-step mode to provide 400 steps per revolution of the motor. A QWERTY keyboard has been included to allow for text entry and there are two 4-digit displays to show program data, speed parameters and current pen position.

Initial start up accuracy is maintained by single

HOW IT WORKS

The Intelligent Plotter uses a unipolar drive board having a combination of chopper control and RL control. The circuit is shown in Fig. 1. The current through the coils is determined by the sensed inputs of IC1 and switches off the corresponding output transistors when the preseleced current (set by RV1) is reached.

Two 50Ω ceramic resistors are included in series with the motor coils to reduce the heat dissipation of the motor and output stages. A higher resistance value will however cause a reduction in the maximum stepping frequency possible, so a compromise value must be made for each stepper motor. The values given in Parts List are suitable for a 32V supply driving a 5V stepper motor (See Buylines).

Logic signals of 0-5V are used to control movement, direction and type of step:

The L297 can be used in full step mode with pin 19 at 0V or in half step mode with pin 19 at 5V. To rotate the motor a clock signal is applied to a voltage divider (4.7V zener diode clips the input signal if excessive). IC1 inverts the input signal once or twice depending on the position of the DIL switch SW1 thus providing the necessary clock signal to pin 18 of IC2. After 0V volts has been applied the clock signal will cause the motor to move on the rising edge of the next clock pulse.

The four motor drive signals from IC2 are logically ORed with the relevant inhibit signal from IC1 to provide output current limiting and through the power stages of IC5 and IC6 to the bases of the output darlington transistors Q1-Q4 to drive the stepper motor coils.

50Ω resistors (R26, 27) are used to reduce the heat dissipation of the stepper motors and drivers. A higher value will reduce the possible stepping frequency so a compromise value must be found for a particular stepper. The values given here are suitable for a 32V supply driving a 5V stepper motor (See Buylines).

To provide rotation the coils are energised in a set sequence as follows:

<table>
<thead>
<tr>
<th>FULL STEP</th>
<th>HALF STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>coil A</td>
<td>coil A</td>
</tr>
<tr>
<td>01100110010</td>
<td>0011000010</td>
</tr>
<tr>
<td>coil B</td>
<td>coil B</td>
</tr>
<tr>
<td>10011001101</td>
<td>1000001110</td>
</tr>
<tr>
<td>coil C</td>
<td>coil C</td>
</tr>
<tr>
<td>00110011001</td>
<td>0000111000</td>
</tr>
<tr>
<td>coil D</td>
<td>coil D</td>
</tr>
<tr>
<td>11001100110</td>
<td>1110000010</td>
</tr>
</tbody>
</table>

(code repeated every 4 steps)

(code repeated every 8 steps)

The drive board supports both full and half step modes, selected by SW1. For normal operation half step operation is used. The resolution is 0.1mm with a 200 step (1.8°) stepper motor. Thus when it is operating in the half step mode one revolution of the stepper motor produces a linear distance of 200x2x0.1mm = 40.0mm.

The 240V AC mains supply is transformed down to 24V and rectified by BR1. Capacitor C4 provides smoothing to the unregulated DC signal which is passed through R7 and D1 into the 723 voltage regulator (IC3) where the voltage is regulated to about 12V.

Q5 is used to provide increased current capability from the 723 and feeds the auxiliary output. Resistor R21 provides current limitation. The 723 regulated output is applied to IC4 which regulates the 5V supply.

UPDATE

ETI FEBRUARY 1989
Fig. 1 The circuit of the Micro-Writer driver board
key automatic datuming. An inbuilt joystick allows for operation of the Plotter for freehand drawing.

Taking Steps

This first article deals with the stepper drive board. Each direction of movement requires a separate stepper motor so we need two drive boards.

The boards utilise a stepper motor driver IC from SGS, the L297, to perform the necessary conversion from direction, clock and step type (full step or half step) to four coil outputs. These outputs are not able to drive the stepper motors directly — this is done by four darlington power transistors via a couple of logic driver ICs. The 5V input control signals to the drive board can be taken from the Intelligent Plotter micro-processing board, from a computer (using say a BBC user port), or from a square wave oscillator for manual operation.

Stepper motors convert digital signals into rotary motion. The stepper motor rotates a single step with each pulse, thus providing precise positioning without the need for feedback encoders. When stepped at high rates the rotation appears continuous. Reverse stepping is simply a matter of reversing the coil energising sequence.

To obtain maximum speeds the stepper motor must be accelerated (referred to as ramping) into its slow range and decelerated into its base speed to stop or change direction. If the motor is reversed without deceleration, loss of step can occur with a corresponding loss of accuracy.

On the Micro-Writer the base speed, acceleration rate and maximum speed can all be programmed from the keyboard at any time between plotting.

Construction

The component overlay for the drive board is shown in Fig. 2. Solder all components except the power transistors and the voltage regulator (Q1-5 and IC4)
noting polarity of diodes, capacitors and IC holders. The resistor networks (R24 & R25) consist of 7 commoned resistors, the commoned end is marked with a dot. The higher wattage resistors (R7, 10, 12 & 21) should be mounted 1.2mm off the PCB.

The power transistors Q1-5 should be loaded next as shown, ensuring that no shorting occurs.

Testing
Before inserting any ICs into their sockets, closely inspect the PCB tracks for shorts or bad joins. Time spent here is well worth the effort compared with tracing the fault later!

Check each power transistor resistance from base to emitter and collector, any low reading here suggests a fault. Finally check that all polarized components are correctly orientated.

To set up the drive board, firstly check the 3.2V supply before connecting it to the drive board. It should be around 30-33V.

If this is okay discharge the smoothing capacitor C14 with a 100R resistor (not a screwdriver!). Insert IC3 into its socket, connect the power supply to the drive board (either using the optional 32-way connector or direct soldering), then switch on and check the auxiliary 12V output at D10 and the 5V on the + end of C10.

Then insert the rest of the ICs. Don't proceed if the 5V supply is more than 0.25V out. In case of errors check the voltages around IC3 and Q5 for shorts or incorrect value resistors.

Calibration
Rotate RV1 to the anti-clockwise end and connect the motor as shown in Fig. 5. Connect the power supply but not the computer or manual oscillator yet.

Switch on power and try rotating the motor spindle by hand — there should be very little torque. Now increase the current to the motor windings by rotating RV1 clockwise until the motor current to the coils is equal to the manufacturer's data for the motor in use (1A on the specified motor).

Alternatively, rotate RV1 until the motor torque is sufficiently high to be very difficult to rotate, then rotate RV1 one further revolution clockwise.

Switch off power and connect the computer user port to the motor board as shown below in Fig. 6.

Software
To enable the stepper motor drive boards to be checked, I have included a simple BBC computer
REM SINGLE AXIS
REM BASIC STEPPER MOTOR DRIVER
BOB JOYCE
REM
1988

FOR delay=0 TO actualspeed

PRINTTAB(30,4);steps-noofsteps;S

PC(10)
PRINTTAB(30,4);steps-noofsteps;S

INPUTTAB(30,4);dir$

dir=VAL dir$

IF dir>2 PROCerror(dir$):GOTO430
IF dir<1 PROCerror(dir$):GOTO430

PRINTTAB(1,14)CHR$(134);CHR$(141);

MODE7
T
"Enter speed in revs/min.(1 to 48)"

ON ERROR RUN

PROCinit
DEFPROCinput

CLS
VDU7
"Enter speed in revs/min.(1 to 48)"

REPEAT

ENDPROC

PROCinit
DEFPROCinput

CLS
VDU7
"Enter the number of steps"
DEF PROCerror(X$)

ddrb=&FE62
.steps=VAL step$

IF steps<=0 PROCerror(step$):GOT0370

CLS
PRINTTAB(0,6) "Sorry1";CHR$(136);CHR$(129);X$

?ddrb=&FF

PRINTTAB(0,18) ;CHR$(137);CHR$(135)

ENDPROC

IF dir=1 THEN ?orb = ?orb AND &EE

PRINTTAB(1,8)CHR$(134);CHR$(141);"Enter dir 1(cw) 2(acw)"

NEXT

FOR noofsteps = 0 TO steps

ENDPROC

DEF PROCstepper

PRINTTAB(1,14)CHR$(134);CHR$(141);"Enter dir 1(cw) 2(acw)"

$)

CLS
PRINTTAB(1)CHR$(134);CHR$(141);"Enter speed in revs/min.(1 to 48)"

actualspeed = 48/speed

ENDPROC

PRINTTAB(1)CHR$(134);CHR$(141);"Enter speed in revs/min.(1 to 48)"

actualspeed = 48/speed

PRINTTAB(1)CHR$(134);CHR$(141);"Enter speed in revs/min.(1 to 48)"

 actualspeed = 48/speed

FOR delay=1 TO 5000

IF dir=2 THEN ?orb = ?orb OR &11

PRINTTAB(1,8)CHR$(134);CHR$(141);"Enter dir 1(cw) 2(acw)"

NEXT

CLS

FOR noofsteps = 0 TO steps

DRIVE BOARD

STEPPER MOTOR 1.8°

R26 WHITE

BLACK

RED/WHITE

GREEN/WHITE

Fig. 5 The connections to the stepper motor

Fig. 6 Off-board connections for use with a BBC micro

Fig. 7 The flow chart for the BBC program

Listing 1 Basic Checking Program

UPDATE

ETI FEBRUARY 1989

36
Basic program listing (Listing 1).

The flow chart in Fig. 7 shows the sequence of operation of the program. Type in the program carefully (make sure you distinguish between 0 and zero 0). Save it before running to prevent corruption (if you are unsure if the program is running correctly then temporarily remove line 70 (ON ERROR RUN) — most faults should be captured by the operating system and displayed as an error).

To enable full flexibility of speed and operation on a BBC micro. 6502 machine code must be used. The author has written an interrupt-driven machine code program to drive one or both drive boards and change speed and direction independently. This machine code program together with the basic program and a menu control are available on a 40-track disc or cassette — see Buylines for details.

Next month we will move on to the mechanics of the Intelligent Plotter.

MANUAL CONTROL

Figure 8 shows a suggested circuit for stand-alone operation, using the ubiquitous 555 timer IC. The 555 operates in astable multivibrator mode to produce the necessary square wave oscillator. Note the adjustment is via a dual gang. 10K linear pot.

This circuit can be used instead of the microprocessor board or computer if you require simple manual operation only. The connections for such a system are shown in Fig. 9.

NATIONAL COMPONENT CLUB

SPECIAL OFFERS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>555 Timer (IC's)</td>
<td>£1</td>
</tr>
<tr>
<td>5</td>
<td>741 OP-AMPS</td>
<td>£1</td>
</tr>
<tr>
<td>12</td>
<td>LED's (5mm red or green)</td>
<td>£1</td>
</tr>
<tr>
<td>25</td>
<td>General Purpose Transistors (BC548, BC182 etc)</td>
<td>£1</td>
</tr>
<tr>
<td>15</td>
<td>Battery Clips (PP3)</td>
<td>£1</td>
</tr>
<tr>
<td>25</td>
<td>Assorted Pots & Presets</td>
<td>£1</td>
</tr>
<tr>
<td>70</td>
<td>Assorted Capacitors (Picofarads-2200uf)</td>
<td>£1</td>
</tr>
<tr>
<td>25</td>
<td>Electrolytic Capacitors (1uf-2200uf)</td>
<td>£1</td>
</tr>
<tr>
<td>1</td>
<td>6V 1.8VA Power Supply</td>
<td>£1</td>
</tr>
<tr>
<td>?</td>
<td>Mystery Pack</td>
<td>£1</td>
</tr>
<tr>
<td>10</td>
<td>Crocodile Clips (5 red and 5 black)</td>
<td>£1</td>
</tr>
<tr>
<td>1</td>
<td>90db Piezo Sounder</td>
<td>£1</td>
</tr>
</tbody>
</table>

ANY SIX PACKS FOR A FIVER! ALL TWELVE FOR A TENNER!

P.O. or Cheque to: NATIONAL COMPONENT CLUB, DEPT ETI, HIGHER ANSFORD, CASTLE CARY, SOMERSET BA7 7JG.

* FREE CLUB MEMBERSHIP *

19” RACK MOUNTING EQUIPMENT CASES

This range of 19” rack equipment cases have been designed with economy and versatility as their objective. These cases are supplied as a flat pack kit with assembly instructions. The NEW IMPROVED DESIGN now features a black powder coat 950W x (15mm) steel front panel with the rear box constructed from 9mm PVC coated steel.

All units are 10” (254mm) deep and are available in the following popular sizes:

<table>
<thead>
<tr>
<th>Type</th>
<th>Height</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>1” (44mm)</td>
<td>21.85</td>
</tr>
<tr>
<td>U2</td>
<td>2” (66mm)</td>
<td>23.00</td>
</tr>
<tr>
<td>U3</td>
<td>5” (133mm)</td>
<td>25.30</td>
</tr>
<tr>
<td>U4</td>
<td>7” (178mm)</td>
<td>27.60</td>
</tr>
<tr>
<td>MSU</td>
<td>Sloped mixer case</td>
<td>28.75</td>
</tr>
</tbody>
</table>

DELIVERY INCLUDED

All prices include VAT.

Blanking Panels, Rack Consoles and Rack Cabinets are also available.

Please send S.A.E. for details.

* TRADE ENQUIRIES WELCOME *

TEL: 0275 825893 FOR ACCESS/CVIS SALES OR CHEQUE WITH ORDER TO:

RACKZ PRODUCTS PO BOX No. 1402, MANGOTSFIELD, BRISTOL ENGLAND. BS17 3RY

BINDERS

FOR YOUR VALUABLE COLLECTION OF ELECTRONICS TODAY INTERNATIONAL MAGAZINES

+ SMART + EASY TO USE + TOP QUALITY

To ASP Readers Services, PO Box 35, Wolsey House, Wolsey Road, Hemel Hempstead, Herts HP2 4SP (0442-41221)

Please supply . . . Electronics Today International Binders £5.95 inc. P&P

Total £ (please make cheques payable to ASP Ltd.)

Name ___

Address ___

Please allow 21 days for delivery
Gary Calland has run out of old boots to throw at moggies but now has a more humane method of ridding himself of pests.

Is your garden the local haunt for the neighbourhood dogs and cats? Do they find your flowerbeds the ideal play area and your dustbin just the place for a small snack? If so, then the Ultrasonic Horn is for you!

Ultrasonics is the region of sound waves above about 20kHz. This high frequency cannot be heard by humans but it can be heard by our animal friends. The ability of animals to hear ultrasonics was first used in the form of dog whistles. However, the ultrasonic signal is relatively quiet and pleasant to the dog. However, the signal from the early ultrasonic television remote control units were quite different and had strange effects on family pets. If loud enough, the ultrasonic signal is piercing and irritating (but harmless) to animals and they tend to get as far away from it as they possibly can.

The Ultrasonic Horn described here is small but produces an extremely loud 23kHz ultrasonic signal and should be enough to scare away even the most determined animal from the property.

Ever had a dog or cat run out in front of your car causing you to dangerously brake or swerve to avoid it? Such incidents could be a thing of the past if the Ultrasonic Horn was fitted to your car. A quick burst of noise will ensure your presence is felt, dissuading the animal to shoot out in front of your car.

Construction

Construction is extremely simple if either the PCB version (Fig. 4) or the stripboard version (Fig. 5) is built. In either case the IC should be mounted in an IC socket to reduce the risk of damage by heat or static electricity. Remember that touching any pins of the CMOS IC may render it useless due to the static charge that exists on a person — this should be avoided!

Note the polarity of the capacitor C2 but the LED may be soldered either way round. If the stripboard version is to be built make sure all the eight breaks are made in their correct positions with a twist drill bit. Both versions are small enough to be mounted in virtually any case.
FEATURES/PROJECTS

10

Competition Results
The lucky winners of November's Clock/Calendar competition and of the competition in the ETI Guide To Making Music special

20

Language Lesson
Mike Barwise concludes the Chip In look at computer languages for the electronic designer with compilers and assemblers

24

Op-Amps
Paul Chappell is still relating the Circuit Theory of op-amps. This month he reveals the dark side of feedback

38

Ultrasonic Horn
Gary Calland takes the 1st Class reins with a simple project to keep the neighbours' pets at bay

12

Reading By Numbers
Martin Pill takes us on a quick tour of analogue to digital converters with advice on choosing and using

16

Voices From The Other Side
John Linsley Hood explains the mysteries of the Near Instantaneous Comanding Audio Multiplex TV sound system soon to be issuing from every transmitter in the land

26

PROJECT
Compressor/Limiter/Gate
Ian Harvey equips himself with a high quality, but simple to build, compressor/limiter and noise gate

40

PROJECT
The Quest-Ion
Never one to avoid unexplored avenues, Paul Chappell goes searching with an ion meter for that ionised air he created recently

32

PROJECT
Intelligent Plotter
Bob Joyce starts to build a stand alone intelligent flatbed plotter. First off is a stepper motor driver board useful to all computer owners

46

PROJECT
ETI Stand-Alone EPROM Programmer
Gordon Bennett adds the bits to Mike Bedford's hardware with the controlling software for this ever-updated project
In Use

Any supply voltage in the range 3-20V can be used. The higher the voltage, the louder the ultrasonic signal. When power is applied, the LED will glow brightly. RV1 should be adjusted until the LED dims slightly. At this point, RV1 is set correctly and the ultrasonic transducer will be fed its required 23kHz signal. LED1 can now be carefully removed as it is no longer needed and only draws more current than needed from the supply. Fit a switch if required into the supply line. The Ultrasonic Horn is now ready for use.

HOW IT WORKS

The Ultrasonic Horn circuit is based around the CMOS 4047 astable/multivibrator IC (see Fig. 1). Here it is wired in the astable mode and produces square waves at a frequency set by C1, R1 and RV1. RV1 allows the frequency of oscillations to be varied from between about 17kHz to about 25kHz so the output frequency can be tuned to the frequency best suited to the ultrasonic transducer.

This is driven in antiphase by the complementary outputs, pin 10 and 11. When pin 10 is high, pin 11 is low and when pin 10 is low, pin 11 is high so by connecting the transducer across these rather than to ground, the voltage fed to the transducer is virtually doubled to twice the supply voltage so producing a louder sound volume. See Fig. 2.

The LED is temporary and is used to tune the 4047 oscillator. The ultrasonic transducer is built to oscillate at one specific resonant frequency. In this case 23kHz. At this frequency, the impedance of the transducer drops sharply as in Fig. 3. As a result, the current through it increases and the current through LED1, connected in parallel, decreases. So the LED dims when the ultrasonic transducer is tuned correctly.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W 5%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>1k</td>
</tr>
<tr>
<td>RV1</td>
<td>2k</td>
</tr>
<tr>
<td></td>
<td>2 horizontal preset</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>4n7</td>
</tr>
<tr>
<td>C2</td>
<td>33\text{μF} axial electrolytic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>4047</td>
</tr>
<tr>
<td>LED1</td>
<td>Any LED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAL1</td>
<td>23kHz piezo transducer</td>
</tr>
<tr>
<td>PCB or Stripboard Case</td>
<td></td>
</tr>
</tbody>
</table>

BUYLINES

The 23kHz piezo transducer is available from Cricklewood Electronics, 40 Cricklewood Broadway, London NW2 3ET. The PCB is available from the ETI PCB Service.
The Quest-Ion is a hand-held meter which sniffs out ions in the air. It can sort out the good ones from the duds if you're thinking of buying a commercial air ioniser, check the efficiency and output level of one you've made yourself, tell you whether the ions are all collecting around the emitter or diffusing throughout the room, do an ion-survey of your house or office — in short it will tell you anything you want to know about ions in the air.

The whys and wherefores of air ions were explained in detail in the Variat-Ion air ioniser project in October 1988. Briefly, the story goes like this. Through various natural processes, air molecules can pick up an electrical charge. If they gain a negative charge they're called negative ions, or neg-ions. With a positive charge they become pos-ions.

Pos-ions are blamed for all kinds of unpleasant things — feelings of depression, headaches, sickness, and so on. Neg-ions, on the other hand, are credited with all kinds of good effects — feeling alert, healthy and ready for anything. So you can see it might be useful to know which variety you're living in.

With so many sources of pos-ions around, many people don't take any chances. They make or buy air ionisers to cancel out the positive charge and fill their houses with an excess of neg-ions. Whether these ionisers work as well as they might depends on how effectively the ions are distributed around the room once they leave the emitter. The only way to be sure is to take reading with an ion meter, which is what this project is all about.

The Circuit

The circuit of the Quest-Ion is shown in Fig. 1. The basic principle of its operation is quite straightforward. The ions are collected by the electrode and cause a current to flow in the resistor chain R2-R8. The voltage developed across these resistors is amplified by IC1 and applied to a string of comparators IC2a-IC6a. The comparators are set to trigger in turn as the voltage at IC1 output rises or falls. Each triggering lights one of the LEDs. The arrangement acts as a dot-mode bar graph display of the ion level.

If you do a few sums you'll find it's far from being either log or linear — the only two varieties available in IC form — hence the multi-IC circuit.

With SW1 pressed to disconnect the collection electrode, RV2 is adjusted so that the amber LED (LED2) is lit. This shows that no ions (or less than 50 million a second — hardly worth bothering about) are being picked up. When SW1 is released the electrode is connected to the circuit and the LED dot moves to register any ions in the air.

The layout of the display is shown in Fig. 2 — if the dot moves up to the red LED it shows that pos-ions are present, if it moves downwards to one of the green LEDs it will show how many neg-ions are being picked up.

With RV1 in the 'calibrated' position (minimum resistance) and assuming that each ion is associated with one electronic charge, it takes 50 million ions per second to shift the display from amber to red (for pos-ions) or to the first green LED (for neg-ions). Anything below this won't register. It would be a fine thing to have a meter that was more sensitive still (you can, in fact, increase the sensitivity by adjusting RV1) but before getting carried away let's look at the difficulties we've already made for ourselves.

First of all, our 50 million ions per second only produce a current of 8pA in the input circuit. Not a lot, really. It is, in fact, pushing ordinary op-amps and PCBs very close to their limits. The problem is that any disturbing factor which can produce a similar current will also register on the display. The list is as...
long as you care to make it. RF mains radiations, changes in op-amps bias current, thermal effects, capacitance effects, and so on.

Something you might not have thought to add to the list is conduction through the PCB itself, or across its surface. In last year's electric fence project I mentioned that materials we normally think of as insulators often turn out not to be when very high voltages are present. The same thing applies when you're dealing with very tiny currents and one of the things you can no longer think of as being a good insulator is the fibre glass that separates tracks on the PCB.

To put some figures to it, a pair of adjacent tracks on a clean, dry PCB may have a resistance of the order of 10^{12} Ohms between them. This means that for every 1V difference in their voltages, a current of 1pA will flow between them. Not very important when your circuit has milliamps flowing around it but when you're dealing with signals at the pA level it makes a huge impact. If the PCB is not clean — if it still has traces of etchant on it, or flux residues from soldering, general dust and dirt, or has absorbed moisture from the air, the situation can be very much worse.

The techniques for dealing with this problem are well known to any instrumentation designer but since ETI has not published a circuit of this nature within living memory, you might like to know a little about the basic principles. In particular, about the guard ring used in the Quest-Ion.

Guard Duty

There are a number of techniques for reducing leakage currents — most of them fairly obvious. If a glass-epoxy PCB has too low a resistance, use a material with a higher one! Polycarbonate and PTFE are better but expensive. Standing the sensitive parts of the circuit on PTFE insulated pins is another possibility. The device used in the Quest-Ion, a guard ring, works in a different way. You won't find it in the parts list — it's etched onto the PCB.

Figure 3a shows the situation we have to deal with. The diagram shows the underside of the PCB around IC1. The + input is right beside the -V supply pin. Assuming that the + input is at about 5V, as it will be in the Quest-Ion, and that the tracks don't run close together for more than about $1/4$in, the current flowing between them might be about 5pA. If the sensitive input track runs for any appreciable distance, as it must in this circuit since it connects to several other components, there will be other tracks in the vicinity which will add or take more current — and who can guess what the overall result might be?

A first line of defence would be to keep the sensitive track as far as possible from any others or even to run it as a PTFE insulated wire, but a better solution is shown in Fig. 3b. What you do is to surround the sensitive input, and anything connected to it, with a complete ring. Then you find a point in the circuit which is at almost the same voltage as the + input, but at a low impedance. Connect this point to the ring. If you do that, virtually no current will flow between the ring and the input because they're near as makes no odds at the same voltage. Any currents flowing to other tracks on the PCB will be absorbed by the guard and won't go where they can do any harm.
Fig. 2 The meter scale

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS (all 1/4W 5% unless specified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 100k</td>
</tr>
<tr>
<td>R2 8 10M</td>
</tr>
<tr>
<td>R9 2k 4%</td>
</tr>
<tr>
<td>R10 6k 1%</td>
</tr>
<tr>
<td>R11, 22, 29 680</td>
</tr>
<tr>
<td>R12, 14 100R 1%</td>
</tr>
<tr>
<td>R13 5k 8%</td>
</tr>
<tr>
<td>R15 15k 1%</td>
</tr>
<tr>
<td>R16 300R 1%</td>
</tr>
<tr>
<td>R17 510R 1%</td>
</tr>
<tr>
<td>R18 1k 0R 1%</td>
</tr>
<tr>
<td>R19 3k 0 1%</td>
</tr>
<tr>
<td>R20 3k 1 1%</td>
</tr>
<tr>
<td>R21 63 8%</td>
</tr>
<tr>
<td>R30, 31 4k 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 1n0 ceramic</td>
</tr>
<tr>
<td>C2 100n ceramic</td>
</tr>
<tr>
<td>C3 4u7 tantalum</td>
</tr>
<tr>
<td>C4, 5 10μF miniature electrolytic or tantalum</td>
</tr>
<tr>
<td>C6 1n0 ceramic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1 CA3140</td>
</tr>
<tr>
<td>IC2 6 1458</td>
</tr>
<tr>
<td>D1 1N4148</td>
</tr>
<tr>
<td>D2 BAT42</td>
</tr>
<tr>
<td>ZD1 6V 8 zener</td>
</tr>
<tr>
<td>LED1 Red rectangular LED, 0.2in long</td>
</tr>
<tr>
<td>LED2 Amber rectangular LED, 0.2in long</td>
</tr>
<tr>
<td>LED3, 8 Green rectangular LED, 0.2in long</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 FP3 battery and clip</td>
</tr>
<tr>
<td>SK1 3.5mm jack socket</td>
</tr>
<tr>
<td>SW2 Miniature push-to-break switch</td>
</tr>
<tr>
<td>PCBa, 3.5mm jack plug, 32Ω, 0.2 wire and croc clip Case.</td>
</tr>
</tbody>
</table>

Construction

The component overlay for the PCB is shown in Fig. 4. Before beginning, wipe the board over with a little isopropanol, particularly the top side which you won't be able to reach once the components are in place.

Leave the LEDs till last — they are a bit tricky to put in because the lead length has to be just right to bring them flush with the top surface of the case. There should be no problem with any of the other components as long as you remember to put in the links that run under IC1 and IC2 before you solder in the ICs themselves. You'll see from the photograph that I used sockets in the prototype — this is not recommended for the final version (I removed them from mine after the photograph was taken!) because they give yet another opportunity for leakage currents to make a nuisance of themselves.

With the PCB assembled (all but the LEDs) you can turn your attention to the case top for the bar of LEDs. The position and dimensions of the slot are...
The way I made the hole in the prototype was to use a miniature routing bit in a PCB drill. This is not ideal, since the high speed drill tended to melt rather than cut its way through the plastic, so the job had to be tidied up with a sharp modelling knife. It looks OK as long as you don't inspect it too closely!

An alternative is to use the old trick of drilling a line of holes along the slot, then cutting between them with a sharp knife. With patience you'll end up with a respectable looking hole. For the impatient there are two possible cop-outs. Either use 3mm round LEDs and drill holes 0.2in apart for them, or bodge a slot of roughly the right dimensions and make a paper or plastic label to go over the top. (The latter is a useful standby anyway in case you make a pig's breakfast of the cutting!)

The other holes are much easier: you need one for the jack socket on one side of the case lid, one for the push-switch on the other and if you follow my layout, one for RV2 on the top. My reason for putting the switch and pot in the positions I did was to make the sifting as easy as possible — with the meter held in the palm of the left hand the switch falls comfortably under the thumb and the pot can be adjusted with the right hand without obscuring the LEDs.

If you choose different positions, watch out that the switch body doesn't foul the line of LEDs (which it will if you put it too far back) and that RV2 doesn't try to occupy the same part of the case as the jack socket. It's a basic law of physics that two objects can't be in the same place at the same time but an easy one to overlook!

The other hole in the top of the case is optional. I drilled it so that RV1 could be altered from outside the case while I was experimenting with the circuit — you might prefer to set it up and leave it alone.

My method of making round holes, by the way, is to use the standard ETI drill bit, which has been in the drill so long it's bonded in place. Then I widen them out to suit the switch or socket or whatever with a reamer. I've sung the praises of reamers before — if you haven't already got one, make this the day that you treat yourself. You'll bless the day for ever!

Back to the circuit board, your main task is now to put in the LEDs. The way I'd suggest doing it is like this. Take one of the green LEDs and holding the top and bottom sections of the case together (without the front section on) measure a length of lead so that with the top of the LED flush with the very top of the case, the leads will reach the floor of the bottom section.

Cut the leads to just a teensy bit shorter than this length. Take the red LED and cut its leads to the same length. Push the red LED into the LED1 position and the green LED into the LED8 position so that their leads are only just through the PCB. Rest the PCB on
the supports in the bottom of the case and gently bring the lid down so that the LEDs go through the slot and, with the two case sections together, stand a little proud of the top surface. Push them down so they're flush with the surface, remove the lid and without disturbing the position of the LEDs turn the board on its side and solder them.

Put them back in the case to make absolutely sure they're in the right position (melt the solder again and adjust them a little if necessary). Push all the other LED leads through their respective PCB holes in positions LED2 to LED7, turn the board upside down on a flat surface (of course it won't balance — prop it up!) and adjust all the LEDs so that they are level. Then solder them all in place, trim the leads, and you're through.

Now for the wires: 4in of 3-way ribbon cable for RV2, 4in of 2-way ribbon for the socket, 4in of stranded wire to link switch to PCB, 2½in of stranded wire to run from PCB to rear of collection electrode, and one PP3 battery snap with its leads trimmed to about 2½ to 3 inches. Once all these are in place, it's time to pay attention to finishing the PCB.

As I pointed out earlier, the performance of the meter will depend very much on how carefully you finish off the PCB. The first thing you need to do is to clean away every trace of soldering flux, grease and dirt from the surface of the PCB. Once again, it's a job for IPA, or iso-propanol. This is a good solvent to use because it removes everything you want to remove, and at the same time is nice stuff to handle — no deadly fumes or need to wear gloves as there is with the more aggressive solvents. Don't make the mistake I did, though, and buy cloths impregnated with the stuff — they snag on the solder joints and leave hairs all over the board.

A good stiff brush is the best way to apply it. Look closely at the board and make sure you get off all traces of flux as you go. Rinse the board either with more IPA or with de-ionised water (sold in car accessory shops for topping up batteries). Dab the board dry, then leave it in a warm place for a few hours to dry out thoroughly.

For the best possible performance, the final thing is to cover the board with resin to prevent any moisture absorption. Any PCB lacquer will do, although if you've got a healthy bank balance and want to go for the best, a modified silicone conformal coating is hard to beat. Follow the instructions for whatever brand you use, spray both sides of the board, and allow enough time for the resin to dry before doing anything else to it.

While you've waiting for the main PCB to dry there are a few odd jobs you can be getting on with. Fixing the switch and socket to the case is just a matter of tightening a couple of nuts. The zeroing pot, RV1, will have to be glued. The trick here is to make sure you don't glue the knob to the body of the pot!

Don't try putting any glue on the top surface — it will just squeeze into places you'd rather it didn't go. Hold the pot against the surface of the case, then trace some glue around the outside of the pot body with a matchstick. If you lift the pot just a little away from the surface of the case, then press it back, enough glue will get underneath to form a firm bond. Quick setting Araldite gives a firm bond — you'll have to keep the pot pressed in place for a minute or two until the resin starts to go firm. After that you can leave it to cure on its own.

Making the earth lead is the next job. Use about four feet (more if you like) of 32/0.2 stranded wire. Solder one end to a crocodile clip. Remove the cover from the jack plug, thread the cover onto the wire (easy to forget!) then solder the earth wire to both terminals of the plug. Screw the cover back on and you've got your earth lead. It doubles as an on-off switch — plugging it in turns the meter on by connecting the negative terminal of the battery to the rest of the circuit, which is the reason for shorting the two terminals of the plug together.

The collection electrode is shown in Fig. 6. The part with the starburst pattern is the collecting side, which points outside the case. The plain side with the village pond pattern is the inside. There's nothing very complicated to do here — you need to solder a through-link to join front and rear of the PCB — this goes through the central hole and is soldered on both sides. You need a wire to transfer the current to the circuit via SW1 — about 2½in of stranded wire soldered to the surface of the other copper cile.

There's C6 to be soldered in the position shown and finally the rear connection wire from the main PCB to be soldered anywhere onto the large copper area. Both sides can now be cleaned with IPA, and the rear (but not the front) of the collector can be
sprayed with lacquer.

Once both the PCB and the collector are dry you can put everything into the case. Screw in the main PCB and slot the collector into the front section of the case. Connect up the wires as shown in Fig.7. Bring the top half of the case down over the bottom half, tucking the wires in as you go and guiding the LEDs through their slot. Push on the front of the case. Screw the top and bottom of the case together (inside the battery compartment), fit a PP3 battery and you’re ready to go!

Searching For Ions

The basic procedure for using the meter is this. Plug in the earth lead to turn it on and connect the croc-clip to any earthed object such as the metalwork of electrical equipment, a central heating radiator or any other grounded metal. Now press the collector disconnection switch and adjust the zeroing pot until the amber LED lights. This is best done away from any strong ion sources, or you’ll discover the limits of the switch’s insulation.

Since there is a slight lag in the Quest-ion’s response, the way expert meter handlers do the zeroing is to turn the pot until the LED just lights, then back it off a fraction to prevent the display drifting onto the next LED in line. When the amber LED is firmly on, release the switch and begin your measurements.

While you’re getting used to the meter there are a few things you’ll notice. One is a slight kick in the display, which quickly settles back, whenever you release the disconnection button. This is caused by charge building up on C6 and is a useful feature of the meter, as I’ll explain in a moment. You’ll also notice that the display moves if you move the meter about — with a breeze blowing on the collector it can pick up more ions but comparative measurements are best made in still air unless you want to know the effects of, say, using a fan.

Ioniser Efficiency

One way you might want to use the meter is to compare different ionisers. Close to the emitters there will be enough ions to send the reading way off scale but more important is how far the ions are travelling. If they remain in a cloud around the emitter, that’s no good at all. If you take all readings at a distance of, say, three feet, you’ll be able to make comparisons of the useful ion output of different brands.

If you’ve built your own ioniser you might still get a buzz out of comparing it with others, particularly with commercial models but you’ll probably be more interested to know if there’s any way to improve it. After the initial electrostatic repulsion from the emitter the ions rely on air convection to carry them around, so I’m not giving anything away by pointing out that the largest single improvement you can make is to use a fan to blow the ions where you want them. Blow over the top of the ioniser towards the Quest-ion and up goes the reading by several points — positive proof if any were needed.

The best type of fan to use is the piezo-electric variety — they are almost silent in operation and produce a gentle breeze rather than a gale-force wind, which is exactly what you want. The Quest-ion now comes into its own in telling you where to place the fan for maximum effect. If you have the ioniser by your bedside, for instance, you’ll want the ions around your face as you sleep. Put the Quest-ion on your pillow and adjust the position and direction of the fan until the reading is as high as you can make it.

With the internal emitter version of the Variat-ion, the output depends very strongly on the position of the needle points relative to the holes in the rear panel. You can optimise the output by placing the Quest-ion about three feet away from the ioniser and adjusting the board position for a maximum reading.

So as not to risk shocks or attract sparks, move the board with a plastic knitting needle and keep you hands well away from all of the circuitry. If you use glue that remains liquid for a while, you can do the adjusting and gluing all in one operation.

For experiments with different emitters, go about it just the way you would compare different ionisers. Make all readings at a distance of three feet from the ioniser and see which emitter gives the highest reading.

Ion Surveys

Because of the lower limits of the Quest-ion’s sensitivity (50 million ions per second) it is a little more difficult to make readings of very low ion levels. By turning RV1 fully anti-clockwise you can increase the sensitivity by about 2½ times but that’s the limit for direct reading. For lower ion levels the Quest-ion uses C6 as an integrator: it collects ions over a period of time then displays the total.

The way you go about it is this. Push the collector disconnection button for a set period of time. One minute, say. During this period C6 will charge up as ions reach the collector — the voltage it finally reaches will depend on the number of ions and the length of time the switch is pressed. Not being connected to the PCB, C6 won’t discharge through R2-8 during the integration time. Once your chosen time period has elapsed, release the switch and note the highest level the display reaches. This indicates the ion level.

Using this technique you can track down any sources of positive ions in your home or at work and see just what’s in the air you’re breathing. If it’s not practical to get rid of the offending object (you’re not going to chuck out your TV, now are you?) it will at least tell you the best site for an ioniser.

BUYLINES

A complete parts set for the Quest-ion is available for £19.78, inclusive of postage and VAT, from Specialist Semiconductors, Founders House, Redbrook, Monmouth, Gwent NP5 5LU.

If you prefer to search out components for yourself, the PCBs are available from our PCB service, most components from your usual suppliers and any that you have difficulty with from Specialist Semiconductors.
Gordon Bennett racks his memory to present the complete code and software for last month's EPROM Programmer hardware.

Well there you are then, the hardware all finished, the smoke all cleared, the charred bits replaced and the fire extinguisher recharged, so what happens when you plug in the system ROM and with trembling fingers switch on (you mean your fingers aren't trembling after all that? Ah! you're a stronger man than I, Gunga Din).

The first thing should be the prompt 'R/EAd' appears on the display. If it doesn't then don't despair immediately, switch off and give it a check over — particularly the links associated with the mapping of the system VIA into the I/O page.

If it's all there try switching on again. If there's still no prompt but the display shows a lit digit (normally the one on the right) then one possibility which could give this symptom is a fault with the reset circuit on the single board controller. During software development some trouble was experienced with this not appearing to operate correctly with the above result, due to the processor not entering the ROM at the reset vector.

Mike Bedford, the hardware designer, thinks its something to do with my fingers and as the fault disappeared at a later stage it probably was.

If there is still no prompt, I think it's now a good time to despair!

Looking on the bright side and assuming the prompt is there, try pressing the Fill button, the message 'Addi' should appear, press Enter and the message 'Len' should replace it. Enter again and 'Data' should now be in the display. Another Enter should immediately give the message 'Done' and finally a last press of Enter returns to the prompt 'R/EAd'.

At this point you should be reasonably confident that the system ROM is installed and working.

Onwards by pressing the following keys and seeing what you get — Baud, RS232, Algms, Format, and Device — using the Enter key in between each of these to return to the 'R/EAd' prompt.

Unless you are unbelievably lucky these, with the exception of Algms, will display what can best be described as rubbish. This is because the battery backed RAM will be in a random state and previously stored data (if there was any) such as set up parameters will have been lost. This will show up in the menus displaying rubbish data as the pointers (normally stored in this RAM) to their start addresses are now wrong.

One way around this would be to use the Edit function to set the correct values into the RAM, but this would be a long winded affair requiring the addresses and the data that goes in them to be known.

Don't worry though, there is an initialisation routine tucked away at the end of the Algms menu which does not lose its pointer because it is always set to Fast on power up. The initialisation routine will set all the other pointers to the first item in their respective menus.

The routine is entered by pressing the Algms button and then pressing the Down key, when the message INIT should be displayed, pressing Enter at this point will initialise all the pointers and reset the Algms to Fast. This procedure should not then be necessary again unless the RAM should lose its power for any reason.

Due to the battery backing of the RAM the user can store new set-up values into the programmer, so if development work is being done requiring a certain address range to be programmed into a set of EPROMs, this can be set up once and retained.

<table>
<thead>
<tr>
<th>Function</th>
<th>Display Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog</td>
<td>(M) (E) Len Dest (E)</td>
</tr>
<tr>
<td>Read</td>
<td>(M) (E) Len Dest (M)</td>
</tr>
<tr>
<td>Verify</td>
<td>(M) (E) Len Dest (E)</td>
</tr>
<tr>
<td>Copy memory</td>
<td>(M) (E) Len Dest (M)</td>
</tr>
<tr>
<td>Split program for 16 bit</td>
<td>(M) (E) Len Dest (E)</td>
</tr>
<tr>
<td>Input RS232</td>
<td>Dest (M) Len</td>
</tr>
<tr>
<td>Output RS232</td>
<td>(M) Len</td>
</tr>
<tr>
<td>Fill memory</td>
<td>Add (M) Data</td>
</tr>
<tr>
<td>Search mem</td>
<td>Add (M) Len</td>
</tr>
<tr>
<td>Edit memory</td>
<td>Add (M)</td>
</tr>
<tr>
<td>Test</td>
<td>0/1Ps checksum or ERASEd message</td>
</tr>
<tr>
<td>Device type</td>
<td>3 off (see table 2) (cyclic menu)</td>
</tr>
<tr>
<td>Data format for RS232</td>
<td>Intel, S-rec, Binary (cyclic menu)</td>
</tr>
<tr>
<td>RS232 comms params</td>
<td>No, Data and Stop bits (cyclic menu)</td>
</tr>
<tr>
<td>Baud rate</td>
<td>50-18200 (cyclic menu)</td>
</tr>
<tr>
<td>Algorithm type</td>
<td>SLOW :PULSE :FAST (cyclic menu)</td>
</tr>
</tbody>
</table>

M = source or destination address in programmer memory
E = source of destination address in EPROM

Table 1 Programmer operations and display messages.
through power down so that it is instantly available at switch on for the next session.

Similarly all baud rates and formats are retained, the only fixed option being the Algim which is, as mentioned above, always set to Fast on power-up.

In Command
The range of commands available is shown in Table 1, together with the questions that will be asked by each routine, such as 'Src' for the source address. The letter following the source or destination in the table refers to where the address applies, if an 'M' then it refers to memory in the programmer and if an 'E', then the address is in the EPROM.

Where the message 'cyclic menu' is shown this refers to the fact that a menu is displayed by that function. A menu is stepped through by using the up and down keys and the final value left in the display when the enter key is pressed is the one selected.

What I propose to do is to give an explanation of what each button does when pressed and this will I hope form the necessary guide to using the programmer.

Button By Button

- **Device** — This option selects the type of EPROM to be operated upon by the other options on the top row of keys namely Program, Read, Verify and Test. The range available is shown in Table 2. The device is selected from a menu accessed by the up, down and Enter keys. After initialisation the device type is set to 2758.

- **Prog** — This asks for the source address in memory, the length of the area to be programmed and the destination address in the EPROM to which this area is to go.

 From this it is obvious that the same data can be programmed to many different addresses in the EPROM and that the 'zero' position in the memory addressing range has no fixed relationship to the zero address in the EPROM.

 This lack of fixed relationships leads to a vast increase in the flexibility of the machine and holds true for the Read and Verify operations as well as Prog. This is illustrated by Figure 1.

 The MkII propper software required data in memory to be aligned with EPROM addresses before programming, easy to implement and error check. The increased flexibility of the new arrangement leads to difficulties in error checking and it has in most cases been removed. So take care.

- **Read** — This asks for the source address in the EPROM, the length and the destination in memory to which the data will be read. It is obviously possible to read the same information into memory at different locations merely by specifying different destination addresses.

- **Verify** — This option asks for the source address in memory, the length of the data to be verified and the destination address in the EPROM. There is no checking for invalid addresses and if EPROM programming has occurred in lots of different operations, the contents of programmer memory may not reflect the state of the EPROM data at the final point.

 The verification need only be used to check the success of the Read operation as the programming algorithms do an automatic verify of the addresses accessed in the EPROM. If you wish to run a separate verify operation on the blown EPROM you should ensure the verify is only over those addresses just programmed.

 As with the Read and Program, the message 'running' is displayed during operation. The message Pass appears if the data verifies and the message Fail if it doesn't.

 The FAIL message only lasts for a couple of seconds and gives way to a display of the form 'AAAAmmee' showing the address at which the failure occurred, the data read from the programmer memory and the data from the EPROM, in that order, from left to right on the display.

<table>
<thead>
<tr>
<th>EPROM Type</th>
<th>Software Supported</th>
<th>Algorithm FAST/SLOW</th>
<th>Whether Programmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2758</td>
<td>YES</td>
<td>S</td>
<td>NO</td>
</tr>
<tr>
<td>2716</td>
<td>YES</td>
<td>S</td>
<td>YES</td>
</tr>
<tr>
<td>2516</td>
<td>YES</td>
<td>S</td>
<td>YES</td>
</tr>
<tr>
<td>2732</td>
<td>YES</td>
<td>S</td>
<td>YES</td>
</tr>
<tr>
<td>2732A</td>
<td>YES</td>
<td>S</td>
<td>YES</td>
</tr>
<tr>
<td>2532</td>
<td>YES</td>
<td>S</td>
<td>YES</td>
</tr>
<tr>
<td>68732</td>
<td>NO</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2764</td>
<td>YES</td>
<td>F/S</td>
<td>YES</td>
</tr>
<tr>
<td>2764A</td>
<td>YES</td>
<td>F/S</td>
<td>NO</td>
</tr>
<tr>
<td>2564</td>
<td>YES</td>
<td>F/S</td>
<td>NO</td>
</tr>
<tr>
<td>68764</td>
<td>NO</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>27128</td>
<td>YES</td>
<td>F/S</td>
<td>YES</td>
</tr>
<tr>
<td>27128A</td>
<td>YES</td>
<td>F/S</td>
<td>NO</td>
</tr>
<tr>
<td>27256</td>
<td>YES</td>
<td>F/S</td>
<td>YES</td>
</tr>
<tr>
<td>27512</td>
<td>YES</td>
<td>F/S</td>
<td>NO</td>
</tr>
<tr>
<td>2816</td>
<td>NO</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2874</td>
<td>NO</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2 The EPROMs supported by the programmer

- **Test** — This option is slightly different in that it asks no questions but directly enters the routine and displays the message 'testing' until it has finished. It tests if the EPROM is completely blank (all the bits are set to '1').

 If the test is successful then the message 'ERASED' is displayed. If the EPROM fails the test because it holds data at one or more locations then the checksum for the whole EPROM is displayed in the form of 'Cnssss.'

 The 6-digit hexadecimal value is obtained by adding all the bytes in the EPROM, handy for comparing EPROMs to see if they contain any differences. Although it is possible to obtain the same checksums with data from differently coded EPROMS, if they are supposed to be the same it is definitive.

- **Split** — This toggles between 8-bit and 16-bit mode, setting a flag and displaying either the message '8-bit' or '16-bit.'

 Split operation is a special case for the programmer as its use is mainly for producing EPROMs for 16-bit machines. It obviously needs two 8-bit EPROMs to cover the whole width of a 16-bit bus. This means that the date will be split up into a high byte and a low byte, all the high bytes going into one EPROM and all the low bytes into another. The data from a 16-bit machine will appear as one block of contiguous 16-bit words and this is how it should be loaded into the programmer.

 When Split is selected the programmer will then select all the low bytes of data and flow them into contiguous locations in the first EPROM of the type
Listing 1 The used portion of the 2764 control EPROM

<table>
<thead>
<tr>
<th>0000</th>
<th>0001</th>
<th>0002</th>
<th>0003</th>
<th>0004</th>
<th>0005</th>
<th>0006</th>
<th>0007</th>
<th>0008</th>
<th>0009</th>
<th>000A</th>
<th>000B</th>
<th>000C</th>
<th>000D</th>
<th>000E</th>
<th>000F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0011</td>
<td>0012</td>
<td>0013</td>
<td>0014</td>
<td>0015</td>
<td>0016</td>
<td>0017</td>
<td>0018</td>
<td>0019</td>
<td>001A</td>
<td>001B</td>
<td>001C</td>
<td>001D</td>
<td>001E</td>
<td>001F</td>
</tr>
<tr>
<td>0020</td>
<td>0021</td>
<td>0022</td>
<td>0023</td>
<td>0024</td>
<td>0025</td>
<td>0026</td>
<td>0027</td>
<td>0028</td>
<td>0029</td>
<td>002A</td>
<td>002B</td>
<td>002C</td>
<td>002D</td>
<td>002E</td>
<td>002F</td>
</tr>
<tr>
<td>0030</td>
<td>0031</td>
<td>0032</td>
<td>0033</td>
<td>0034</td>
<td>0035</td>
<td>0036</td>
<td>0037</td>
<td>0038</td>
<td>0039</td>
<td>003A</td>
<td>003B</td>
<td>003C</td>
<td>003D</td>
<td>003E</td>
<td>003F</td>
</tr>
<tr>
<td>0040</td>
<td>0041</td>
<td>0042</td>
<td>0043</td>
<td>0044</td>
<td>0045</td>
<td>0046</td>
<td>0047</td>
<td>0048</td>
<td>0049</td>
<td>004A</td>
<td>004B</td>
<td>004C</td>
<td>004D</td>
<td>004E</td>
<td>004F</td>
</tr>
<tr>
<td>0050</td>
<td>0051</td>
<td>0052</td>
<td>0053</td>
<td>0054</td>
<td>0055</td>
<td>0056</td>
<td>0057</td>
<td>0058</td>
<td>0059</td>
<td>005A</td>
<td>005B</td>
<td>005C</td>
<td>005D</td>
<td>005E</td>
<td>005F</td>
</tr>
<tr>
<td>0060</td>
<td>0061</td>
<td>0062</td>
<td>0063</td>
<td>0064</td>
<td>0065</td>
<td>0066</td>
<td>0067</td>
<td>0068</td>
<td>0069</td>
<td>006A</td>
<td>006B</td>
<td>006C</td>
<td>006D</td>
<td>006E</td>
<td>006F</td>
</tr>
<tr>
<td>0070</td>
<td>0071</td>
<td>0072</td>
<td>0073</td>
<td>0074</td>
<td>0075</td>
<td>0076</td>
<td>0077</td>
<td>0078</td>
<td>0079</td>
<td>007A</td>
<td>007B</td>
<td>007C</td>
<td>007D</td>
<td>007E</td>
<td>007F</td>
</tr>
<tr>
<td>0080</td>
<td>0081</td>
<td>0082</td>
<td>0083</td>
<td>0084</td>
<td>0085</td>
<td>0086</td>
<td>0087</td>
<td>0088</td>
<td>0089</td>
<td>008A</td>
<td>008B</td>
<td>008C</td>
<td>008D</td>
<td>008E</td>
<td>008F</td>
</tr>
<tr>
<td>0090</td>
<td>0091</td>
<td>0092</td>
<td>0093</td>
<td>0094</td>
<td>0095</td>
<td>0096</td>
<td>0097</td>
<td>0098</td>
<td>0099</td>
<td>009A</td>
<td>009B</td>
<td>009C</td>
<td>009D</td>
<td>009E</td>
<td>009F</td>
</tr>
<tr>
<td>00A0</td>
<td>00A1</td>
<td>00A2</td>
<td>00A3</td>
<td>00A4</td>
<td>00A5</td>
<td>00A6</td>
<td>00A7</td>
<td>00A8</td>
<td>00A9</td>
<td>00AA</td>
<td>00AB</td>
<td>00AC</td>
<td>00AD</td>
<td>00AE</td>
<td>00AF</td>
</tr>
<tr>
<td>00B0</td>
<td>00B1</td>
<td>00B2</td>
<td>00B3</td>
<td>00B4</td>
<td>00B5</td>
<td>00B6</td>
<td>00B7</td>
<td>00B8</td>
<td>00B9</td>
<td>00BA</td>
<td>00BB</td>
<td>00BC</td>
<td>00BD</td>
<td>00BE</td>
<td>00BF</td>
</tr>
<tr>
<td>00C0</td>
<td>00C1</td>
<td>00C2</td>
<td>00C3</td>
<td>00C4</td>
<td>00C5</td>
<td>00C6</td>
<td>00C7</td>
<td>00C8</td>
<td>00C9</td>
<td>00CA</td>
<td>00CB</td>
<td>00CC</td>
<td>00CD</td>
<td>00CE</td>
<td>00CF</td>
</tr>
<tr>
<td>00D0</td>
<td>00D1</td>
<td>00D2</td>
<td>00D3</td>
<td>00D4</td>
<td>00D5</td>
<td>00D6</td>
<td>00D7</td>
<td>00D8</td>
<td>00D9</td>
<td>00DA</td>
<td>00DB</td>
<td>00DC</td>
<td>00DD</td>
<td>00DE</td>
<td>00DF</td>
</tr>
<tr>
<td>00E0</td>
<td>00E1</td>
<td>00E2</td>
<td>00E3</td>
<td>00E4</td>
<td>00E5</td>
<td>00E6</td>
<td>00E7</td>
<td>00E8</td>
<td>00E9</td>
<td>00EA</td>
<td>00EB</td>
<td>00EC</td>
<td>00ED</td>
<td>00EE</td>
<td>00EF</td>
</tr>
<tr>
<td>00F0</td>
<td>00F1</td>
<td>00F2</td>
<td>00F3</td>
<td>00F4</td>
<td>00F5</td>
<td>00F6</td>
<td>00F7</td>
<td>00F8</td>
<td>00F9</td>
<td>00FA</td>
<td>00FB</td>
<td>00FC</td>
<td>00FD</td>
<td>00FE</td>
<td>00FF</td>
</tr>
</tbody>
</table>

ETI FEBRUARY 1989

48
LOW RISC

Riscom of Buckinghamshire is about to launch a security system. The unit is designed to require no installation procedures, so that it may simply be placed in a convenient position. The unit has an adequate view of the area to be protected, and all the operator needs to do is switch on and get set.

The passive infra-red detector can spot a moving hot thing at 30 feet and triggers a 103dB siren. It can be powered from the mains or from 12V DC battery.

The CPU 9000 costs £677.25 + VAT. Contact Riscom, 51 Poppy Road, Princes Risborough, Bucks HP17 9DB. Tel: (084 44) 6226.

DESKTOP DISCO

Volvomace (better known for its excellent range of BBC micro joystick) has released a new and improved version of its Discolo system. The Discolo 95 is a complete choice of joystick and keyboard, in a budget price.

Volvomace has taken the new model, seen on Lord indicators, and priced it at £179.95, making it the best value for money.

VIDEO BY PHONE

Panasonic is soon to market an impressive variation on the idea of facsimile -- pictures sent across the telephone. Rather than use only flat drawings and printed paper, the WGR-6Z digitises an image with a video camera. A still video image can then be sent down an ordinary telephone line to another machine at the other end in about ten seconds.

The WGR-6Z is on sale in Japan and should be available in this country sometime later this year. The unit (without a video camera) is expected to retail for about £200.

As well as sending facsimiles, the system is expected to find uses for verifying the identity of a caller for security sensitive calls and even for forming the basis of a security alarm system.

Panasonic is on (0753) 731813.

BONEX ON THE GO

A new catalogue of new and components is now available to trick the fancy of electronics designers and enthusiasts.

The Bonex catalogue features 140 pages of components, hardware and semiconductor components with a wide range of kits -- mainly in the amateur radio field.

The 1989 catalogue is £1.50 from Bonex, 12 Elder Way, Langley Business Park, Slough SL3 6EP. Tel: (0753) 499502.

CHEAP CHANNELS COMING

Many major companies have entered the budget end of the satellite TV receiver market to compete with Amstrad's much vaunted £199 receiver for Murdoch's Astra-based channels.

Sir Clive Sinclair's Cambridge Computer is to produce a system using a 60cm flat square dish (similar to the existing Cambridge Computer's C888 and will be available by early 1989 but haven't heard about it anywhere...)

Ferguson is promising equipment for both Astra and the BSb satellite but at present is saying no... except that a receiver for both satellites, with a built-in D-MAC decoder, will be available.

Micro-X has narrowly undercut Amstrad with a basic system for £190 and a tracking system for reception from both satellites for £280 available soon.

The Micro-X system is based on existing electronics used in current up-market systems.

Grundy is another manufacturer not new to STV. The STR20 package will cost £139 and although fixed, can be upgraded with a polariser for £30 and various decoders/descramblers in the future.

There are also systems promised from Solera (for £300, aimed at DBS but without a D-MAC decoder at present), from Alba (£200-300 aimed at Astra viewers) and from NEC. NEC system is based on existing NEC equipment and will cost £699. A cut-down version for £399 is also promised.

Meanwhile, things are far from static on the programme providers front. Rupert Murdoch is now planning to scrambled at least one of his four Astra channels (the Sky Film channel, and possibility Eurosport the sports channel as well).

A monthly fee of £12 is envisaged for the film channel but that will also include the subscription to the Disney channel, the cartoon and general entertainment channel with four million subscribers in the US.

The Disney channel gives Murdoch's live channel Astra a package access to an impressive collection of films (the real audience attraction) from Century Fox (a Murdoch owned company) and from Disney and Murdoch has also added yet another clear channel of "classic" films to his Astra empire.

Disney hopes own channel will help to promote the soon-to-be-completed European Disneyland in Paris.

Meanwhile BSb has clinched an 85 million pound deal with Columbia Pictures to use all films on the direct broadcast satellite subscription film channel. Along with deals already struck with other studios such as Cannon, MGM, Universal and Warner, this move gives BSb a reputed 850 films to choose from.

To add to the satellite war, Robert Maxwell has, at the time of writing, all but signed his MTV music channel and a new European news channel to Astra, making nine English speaking channels on that satellite.

SWIFT SATELLITE SETUP

Building DIY Satellite TV installers can find a comprehensive but easy-to-read guide to installation of satellite dish systems in a publication from Swift Satellite TV Services. The 50-page booklet covers a wide range of installation procedures and is aimed specifically at the UK with special emphasis on Astra and DBS reception. The book has been adopted by the Confederation of Aerial Industries.

Called Satellite Television Installation Guide, the book is available for £8.95 plus 95p postage from Swift Television Publications, 17 Pittsburgh, Cricklade, Swindon SN6 6AN.
HOW IT WORKS

For those people who feel that the only real way to build a project is from the bottom up and thus decide to take on the task of building their own custom ROM for the programmer, here is a brief description of the main keyboard and display routines to indicate how it is done. This is followed by the address of a good psychiatrist, whose services you will find essential before the end.

The main keypad of the programmer operates in a pulling mode and is only read when it has been reset by the function in operation at that time. Mostly this is when data is to be input and the program is waiting for data keys to be pressed.

The other time is when the ENTER prompt is on display and a command key is required to initiate an operation.

The keypad returns codes to the program that are produced by sending a mask byte to one of the ports causing the 74LS138 decoder to play a low one on its output lines. The value of this mask is stored in the X register and corresponds to a vertical column on the keypad. Any key pressed will put one of the horizontal rows low and these are connected to another port to produce a byte value as a unique code for any key.

The layout of the keypad and the method of forming the codes is shown in Fig. 1.

Fig. 1 Code forming from the keypad

From this it can be seen that the codes are formed from a four bit mask value X in used for the high nibble and another four bit value read into Y from port A and used as the low nibble to form a byte code which will be one of those shown here.

CODE 33 30 20 10 03 21 11 32 12 20 01 02 03 13 23
INDEX/VALUE 0 1 2 3 4 5 6 7 8 9 A B C D E F

The interpretation of these codes is different, depending on whether the programmer is waiting for a command of alphanumeric input. In the case of the command the index if used to access a table of command sub-routine addresses, otherwise it is used directly.

selected, and then prompt for a change of EPROM with the message 'Change' and blow all the high bytes into this.

It is important to understand that no matter if the block of data is loaded into the programmer on an even numbered address or an odd numbered address, the first byte is treated as the lowest byte and the second byte is the high byte and so on up through the memory. Because of this it is probably wise to always load blocks of data for use with split on even word boundaries.

The Read and Verify options also operate when in split mode, in a similar way as that described for programming.

Talking To The Host

The main method of getting data in and out of the programmer is along the RS232C lines to a host computer, using the In and Out functions.

Routine In will prompt for the destination address in memory where the code is to be loaded and the length of the file to be input (if the length is not known then you may have a problem with hex files).

The Out routine will send the file in the format selected to the host computer and requires only the source address of the data in memory and the length of the data to be sent.

Before using the In and Out options the RS232 and Baud options should be selected to set up the serial command and control words for the 6551, and the Format for send or receive.

- **RS232** — This option allows the setting of the number of bits in the word (currently 7 or 8), the type of parity (odd, even or none) and the number of stop bits (1 or 2). These options are listed in Table 3 showing the form they take on the display.

There are only eight options implemented at present, these being a subset of those available using the 6551 Asynchronous Communications Interface Adapter (ACIA) and corresponding to those obtainable from the 6850 ACIA — these should satisfy most situations.

Directly after initialisation the RS232 parameters are set to 7 bits, odd parity and 1 stop bit.

- **Baud** — Baud rates from 50 to 19200 are listed in Table 4. The default rate is 1200 baud. There may be problems with the higher rates as there is no Xon/Xoff protocol implemented — the only control
line on the RS232 port is the DSR control into the programmer.

<table>
<thead>
<tr>
<th>Word Length</th>
<th>Parity</th>
<th>Stop Bits</th>
<th>Message Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-bit word</td>
<td>Odd parity</td>
<td>1 stop bit</td>
<td>7 Odd 1 default</td>
</tr>
<tr>
<td>7-bit word</td>
<td>Odd parity</td>
<td>2 stop bits</td>
<td>7 Odd 2</td>
</tr>
<tr>
<td>7-bit word</td>
<td>Even parity</td>
<td>1 stop bit</td>
<td>7 EuEn 1</td>
</tr>
<tr>
<td>7-bit word</td>
<td>Even parity</td>
<td>2 stop bits</td>
<td>7 EuEn 2</td>
</tr>
<tr>
<td>8-bit word</td>
<td>Odd parity</td>
<td>1 stop bit</td>
<td>8 Odd 1</td>
</tr>
<tr>
<td>8-bit word</td>
<td>Odd parity</td>
<td>2 stop bits</td>
<td>8 Odd 2</td>
</tr>
<tr>
<td>8-bit word</td>
<td>Even parity</td>
<td>1 stop bit</td>
<td>8 EuEn 1</td>
</tr>
<tr>
<td>8-bit word</td>
<td>Even parity</td>
<td>2 stop bits</td>
<td>8 EuEn 2</td>
</tr>
<tr>
<td>8-bit word</td>
<td>Odd parity</td>
<td>1 stop bit</td>
<td>8 none 1</td>
</tr>
<tr>
<td>8-bit word</td>
<td>Odd parity</td>
<td>2 stop bits</td>
<td>8 none 2</td>
</tr>
</tbody>
</table>

Table 3 The RS232 communications parameters available

I/O I/O, It's Off To Work We Go

The programmer is capable of receiving and sending data to and from a host computer in three different formats — plain hexadecimal with no data checking, Intel encoded data with checksum and Motorola S record data with checksum.

These are selected by the format key in conjunction with the up, down and enter keys, as shown in Table 6. On initialisation the format is set to 'binary' as the default.

The binary data consists of a stream of hexadecimal bytes placed directly into memory until the specified length of data has been received. Sending binary is similar in that a block of memory is sent as normal bytes until the entered length has been transmitted.

No checks are made to see that the data is valid either in reception or transmission, other than those carried out by the UART as part of its internal operation.

The INTEL data format is:

```
: nn aaaatdd cc <CR>
```

where:

- : delimiter character that starts each record
- nn — count of data bytes in the following field
- aaa — load address of the first data byte
dd.dd — data bytes equal in number to nn
- cc — two's complement checksum byte (ex.)

<CR> — carriage return character

Data for decoding and encoding is normally placed in a buffer area from which it can be transferred into memory. The checksum and address can be calculated before transmission. The standard number of data bytes sent by the programmer in each record is fixed at 32, wrapped up with address, byte count and checksum before transmission.

The possible length of record is dependent on the length of buffer reserved. This is currently one page of 256 bytes, so providing the record (including all delineator and checksum bytes) is equal to or less than this it should be received correctly.

Changing The Code

The EDIT, FILL and COPY options together with SEARCH form the main set of commands for the programmer to modify copy and delete sections of code in memory.

The EDIT function allows bytes in the memory to be changed and is highly time effective if only a few changes are required to the code. However, it does not allow insertion of new bytes or removal of an old one, merely the changing of what is present to begin with.

When first entered, EDIT asks for the address at which you wish to start editing. This is displayed in the four digits on the left of the display and the next two digits display the data found in memory at this address. The last two are blank, waiting for input from the user. Pressing the Abort key at this point will cause an exit from the editor and return you to the rEADy mode.

Table 4 Available baud rates

<table>
<thead>
<tr>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 baud</td>
</tr>
<tr>
<td>75 baud</td>
</tr>
<tr>
<td>110 baud</td>
</tr>
<tr>
<td>135 baud</td>
</tr>
<tr>
<td>150 baud</td>
</tr>
<tr>
<td>300 baud</td>
</tr>
<tr>
<td>600 baud</td>
</tr>
<tr>
<td>1200 baud (default)</td>
</tr>
<tr>
<td>1800 baud</td>
</tr>
<tr>
<td>2400 baud</td>
</tr>
<tr>
<td>3600 baud</td>
</tr>
<tr>
<td>4800 baud</td>
</tr>
<tr>
<td>7200 baud</td>
</tr>
<tr>
<td>9600 baud</td>
</tr>
<tr>
<td>19200 baud</td>
</tr>
</tbody>
</table>

Table 5 Message displays and explanation

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>msg1</td>
<td>rEAdy</td>
<td>The main prompt</td>
</tr>
<tr>
<td>msg2</td>
<td>rCr</td>
<td>Request for a source address</td>
</tr>
<tr>
<td>msg3</td>
<td>iAt</td>
<td>Byte found ‘At’</td>
</tr>
<tr>
<td>msg4</td>
<td>rEn</td>
<td>Request for code length</td>
</tr>
<tr>
<td>msg5</td>
<td>dSt</td>
<td>Request for destination address</td>
</tr>
<tr>
<td>msg6</td>
<td>Ccssss</td>
<td>Checksum display</td>
</tr>
<tr>
<td>msg7</td>
<td>CHAnge</td>
<td>Request to change EPROM (split)</td>
</tr>
<tr>
<td>msg8</td>
<td>tEnIng</td>
<td>Test function display</td>
</tr>
<tr>
<td>msg9</td>
<td>mOk</td>
<td>You’re doing something naughty</td>
</tr>
<tr>
<td>msgA</td>
<td>Addr</td>
<td>Request for an Addr word</td>
</tr>
<tr>
<td>msgB</td>
<td>dAtA</td>
<td>Request for data byte</td>
</tr>
<tr>
<td>msgC</td>
<td>PASS</td>
<td>Pass verify</td>
</tr>
<tr>
<td>msgD</td>
<td>FAIL</td>
<td>Fail verify</td>
</tr>
<tr>
<td>msgE</td>
<td>Error</td>
<td>You can’t do what you just did</td>
</tr>
<tr>
<td>msgF</td>
<td>FILLER</td>
<td>EPROM erased correctly</td>
</tr>
<tr>
<td>msgG</td>
<td>bAud</td>
<td>Baud rate</td>
</tr>
<tr>
<td>msgH</td>
<td>StnP</td>
<td>You Aborted something</td>
</tr>
<tr>
<td>msgI</td>
<td>Parity</td>
<td>Parity setting</td>
</tr>
<tr>
<td>msgJ</td>
<td>EuEn</td>
<td>Even parity</td>
</tr>
<tr>
<td>msgK</td>
<td>Odd</td>
<td>Odd parity</td>
</tr>
<tr>
<td>msgL</td>
<td>nonE</td>
<td>No parity</td>
</tr>
<tr>
<td>msgM</td>
<td>16-bit</td>
<td>16 bit split mode set</td>
</tr>
<tr>
<td>msgN</td>
<td>8-bit</td>
<td>8 bit normal mode set</td>
</tr>
<tr>
<td>msgO</td>
<td>dOnE</td>
<td>Operation is finished</td>
</tr>
<tr>
<td>msgP</td>
<td>OutPut</td>
<td>I/O link is outputting data</td>
</tr>
<tr>
<td>msgQ</td>
<td>InPut</td>
<td>I/O link is receiving data</td>
</tr>
<tr>
<td>msgR</td>
<td>running</td>
<td>Function is currently operating</td>
</tr>
<tr>
<td>msgS</td>
<td>bAng</td>
<td>Fast programming algorithm runs out its counter, EPROM faulty</td>
</tr>
</tbody>
</table>

<CR> — carriage return character
prompt with no change made to the data in memory. Pressing **Down** will set the direction that the editor will travel through memory, so that it moves to lower addresses on successive bytes. The default is **Up** to higher addresses.

Pressing **Enter** will display the next byte in memory either above or below the currently displayed one, depending on whether the **Down** key has been pressed or not.

Once the data has been entered the **Abort** key will act as a **Delete** key to remove erroneous characters. Pressing **Enter** now puts the currently displayed data into memory then updates the display to show that it changed correctly and after a short pause (about a second) moves on to the next location.

Fill asks for the address in memory from which the fill operation is going to start and the length of the block to be filled. Then the data byte to be used for filling is requested — any byte value that is required from 00 to FF. In most cases it will be FF to make sure that nothing will be blown into the EPROM where no code is required.

‘Running’ is displayed and ‘done’ on completion — press **Enter** to return to main prompt.

Copy prompts for the source address in memory from which you want to copy, the length of the block of data and the destination address to which the block is to be copied. It should be noted that it operates from the bottom up (from low addresses up memory) and thus it is not able to copy a block that overlaps at the top end of the original block as the data will effectively overwrite itself. It can, however, quite safely move the data down in memory even if overlapping. The method for copying up memory must be to do two copy operations, the first to an address clear of the original block and the second into the required position.

Search asks for the start address that the search is to run from, the length of memory to be searched and the hexadecimal byte that is to be looked for. If the byte is not found in the selected range the programmer displays the message ‘FAIL’ to show that it could not find it.

However, if the byte is found the message ‘At xxxx’ is displayed where ‘xxxx’ is the address in memory at which the byte was found. To search further just repeat the function.

Algm — This allows the setting of the programming algorithm for the programmer with three options displayed in the menu — **FAST**, **SLO** and **PULSE** as shown in Table 6.

The FAST algorithm is always selected by the programmer to start up and operates for all EPROMs larger than a 2732 — automatically defaulting to SLO for 2732 and smaller EPROMs that do not support the FAST programming method.

The SLO algorithm’s programs by using 50ms pulses and typically would take two minutes to program a 2716.

The PULSE option is available for later expansion to micropulse techniques but is not implemented in this design. Selecting it will default to FAST.

The one other function on the Algm button is the ‘Init’ state allowing the programmer to be reset to a known state if for any reason the RAM should become corrupted as discussed earlier.

In use there are more than 30 different messages that might be displayed either for peculiar results of commands or because something went wrong. A list of these is given in Table 5 along with a short comment to explain the prompt or give some idea of what may have been the problem.
Thandar can £100

The idea of further far as CD, ANALYSIS Philips announced the & suffers other than £89 VAT from Thandar Electronics, 2 Glebe Road, Huntingdon PE18 7DX. Tel: (0480) 412451.

Thandar has produced just that. The TAI001 is really a replacement for multiple logic probes but it can be used instead of more complex and expensive logic analysers in many situations.

Each channel of the trigger word can be set to 0, 1 or don't care. The logic status of each channel is continuously shown on the LED display with pulse-stretching to enable short pulses and high frequencies to be clearly displayed. In free run mode signal activity is continuously displayed and the trigger output generated each time the trigger is recognised can be used to trigger an oscilloscope to get a real-time view of the date activity at the trigger point.

In triggered mode the display again continuously tracks the signal activity until the trigger is recognised which halts the analyser and holds the display at the trigger word. The trigger output can be used to start a recording device such as a digital oscilloscope or logic analyser.

A typical application would be checking that correct data is being written to a port in a microprocessor system. With the analyser set to be clocked by the port's latch signal and the trigger word set to don't care, the first word written to the port would be captured on the eight data lines each time the trigger analyser is run. Alternatively, a specific trigger word can be set up to check the required data is being correctly written to the port and the trigger output can be used to trigger an oscilloscope so that actual signal timings can be observed.

The TA100 costs £89 + VAT from Thandar Electronics, 2 Glebe Road, Huntingdon PE18 7DX. Tel: (0480) 412451.

The Queen's speech to parliament in November confirmed the Government's intentions for the privatisation of the electricity generating and supply industry.

The Central Electricity Generating Board will be split into two. The largest, to be known as National Power, will own 70% of the power generating companies including all the nuclear ones.

The smaller company, PowerGen, will own the rest. The National Grid will be nominally owned by the 12 privatised area electricity boards although it will be effectively independent.

The area boards will be responsible for ensuring continuous supply but will be allowed to build a (small) generating station in their area.

The privatisation of the area boards is expected to start in spring of next year with the generating board following suit in 1991 or 1992. The whole sale is expected to raise nearly 30 billion pounds, dwarfing all previous privatisation issues.

However, there is speculation that such a large issue cannot be satisfactorily carried out in this time.

In particular there is still much to be worked out for the contracts between the area boards (the retailers) and the generating companies as to who will bear the risks for capital costs and who will pay for cleaning up the industry in line with Mrs Thatcher's much vaunted 'green' policy.

The retailers will have little in the way of capital but will be required to maintain a supply whereas the generating companies will have a large capital base but be under no financial obligation as to what they do.

Until such points are settled neither the City nor the public are going to be too keen to invest in the new companies.

Philips and Sony have finally announced the official specification for the compact disc interactive system (CD-I). The 'green book' containing the pronouncements of the two companies is now available to licensees worldwide.

The CD-I system is a joint development by Philips and Sony, much like CD video and CD audio itself. The system can use all kinds of information such as music, speech, still images, video, animation, computer graphics and text. It is aimed at applications as diverse as training systems, retail catalogue and ordering systems and sophisticated computer games.

The idea of CD-I goes back almost as far as CD itself. The provisional specification was issued in 1986 and many companies are currently looking at commercial applications. Prototype players and software authoring tools are already in the field so commercial products should be in the shops in the not too distant future.

Further details are available from Philips Electronic and Associated Industries, Philips House, 188 Tottenham Court Road, London W1P 9LE. Tel: 01-436 4044.

ANALYSIS IN MINIATURE

A new channel logic analyser in a hand-held box for less than £100 may seem too much to ask but Thandar has produced just that. The TAI001 is really a replacement for multiple logic probes but it can be used instead of more complex and expensive logic analysers in many situations.

Each channel of the trigger word can be set to 0, 1 or don't care. The logic status of each channel is continuously shown on the LED display with pulse-stretching to enable short pulses and high frequencies to be clearly displayed. In free run mode signal activity is continuously displayed and the trigger output generated each time the trigger is recognised can be used to trigger an oscilloscope to get a real-time view of the date activity at the trigger point.

In triggered mode the display again continuously tracks the signal activity until the trigger is recognised which halts the analyser and holds the display at the trigger word. The trigger output can be used to start a recording device such as a digital oscilloscope or logic analyser.

A typical application would be checking that correct data is being written to a port in a microprocessor system. With the analyser set to be clocked by the port's latch signal and the trigger word set to don't care, the first word written to the port would be captured on the eight data lines each time the trigger analyser is run. Alternatively, a specific trigger word can be set up to check the required data is being correctly written to the port and the trigger output can be used to trigger an oscilloscope so that actual signal timings can be observed.

The TA100 costs £89 + VAT from Thandar Electronics, 2 Glebe Road, Huntingdon PE18 7DX. Tel: (0480) 412451.
Analog to digital converters (ADCs) are devices which, as their name suggests, receive as input an analogue signal and produce a corresponding digital output. Their main use is to allow digital electronics and computers to make use of data obtained from the real world (which is by and large analogue). There are several basic techniques of analogue to digital conversion, each with its peculiar advantages and limitations. The one selected for a particular task will be determined by factors such as speed of conversion required, accuracy and cost.

The first thing to remember with ADCs is that the output will only rarely be exactly equivalent to the input. The reason for this is that the input voltage being analogue can take an infinite range of values, while the output is restricted to moving in discrete steps each equal to one LSB. For example an 8-bit ADC has 28 or 256 possible output codes. If one is used in a voltmeter to measure the 240V mains supply with a full scale of 256V then the resolution of the system would be 1V. If a variable transformer was used to reduce the voltage down to zero it would appear to go down in 1V steps.

![Transfer characteristic of a 3-bit ADC](image1)

Fig. 1 Transfer characteristic of a 3-bit ADC

Ideal Lines

Figure 1 shows the transfer characteristic of a 3-bit ADC. The ideal straight line is shown superimposed on the actual. There are eight possible output codes and each one with the exception of zero and seven exists over an analogue increment of one LSB. The ADC is usually adjusted so that the transitions between the codes occur at +½ LSB on either side of the nominal analogue voltage and therefore the output will always be within +½ LSB of the input. If this were not done the output could at times be almost 1 LSB away from the voltage being measured.

From one point of view, it could be said that all ADCs operate in the same way. Rather than measuring the input voltage in some empirical fashion and then converting it to a digital value they instead compare the unknown input voltage with known internally generated voltages until a match is found. This is rather like weighing vegetables on old fashioned scales which use individual weights and determine the numbers of weights needed to make them balance. The mass of each weight is known and so the weight of the vegetable is known also.

The parallel or flash converter is the simplest type of ADC but it is also the fastest, some examples being able to perform over ten million conversions per second. In an n-bit parallel converter (Fig. 2) the input voltage is fed to one input of each of n voltage comparators, the other inputs of which are connected to an equally spaced reference voltages provided by a resistor ladder. The output of the comparators whose reference voltage is less than the signal voltage will be low whilst the output of those whose reference voltage exceeds the input voltage will be high. This allows an encoder connected to the comparators to produce a coded digital output which corresponds to the signal input voltage.

The reason for the converter's speed is that the delay time between the input and output is only the sum of comparator plus encoder delays. However, the large number of comparators required (16 for a 4-bit converter, 256 for an 8-bit) makes them very expensive and so they are only found in applications which require their exceptional speed. These include radar data processing and digital video systems.

By contrast, single slope integration is slow and not particularly accurate. The signal voltage is applied to one input of a comparator (Fig. 3) whilst the other input is fed from a ramp generator which produces a smoothly increasing voltage rising from 0V to the maximum input voltage. This is easily achieved by
Sloping Off

Single slope integration is relatively simple but cannot be used where high accuracy is required as it puts too severe a requirement on the stability and accuracy of the capacitor and comparator. However, it is widely used where good resolution and the uniform spacing of adjacent levels are more important than absolute accuracy, such as in pulse height analysis where the amplitude of a pulse is held by a peak detector and then converted into a digital value.

Dual slope integration avoids most of the capacitor and integrator problems inherent in single slope integration. The principle is shown in Fig. 4. The input voltage is integrated by charging a capacitor for a fixed time interval with a current proportional to the input voltage. This means the final voltage across the capacitor (and hence the charge stored by it) is also proportional to the input voltage.

The capacitor is then discharged by a constant current until the voltage across it reaches zero. The time taken to discharge the capacitor is recorded by a counter driven from a stable fixed frequency clock. The discharge time is proportional to the input voltage and so the value of the counter can be used as the digital output.

At first sight this method might seem to offer little advantage over single slope integration. In single slope integration you are measuring the time taken to charge a capacitor up towards a fixed maximum value, whereas a dual slope converter seems to do the opposite and measures the time taken to discharge back to zero. However this start and return to zero is what makes the difference. The rate of charge and discharge of the capacitor is inversely proportional to its capacitance. So if over a period of time the value of the capacitor in the single slope converter changes this will affect the resultant output. However with a dual slope converter the change of capacitance will affect the charge and discharge cycles equally and cancel out.

High accuracy converters precede each conversion cycle with an auto zero cycle in which the input is held at zero and the resulting output of the converter is subtracted from the subsequent measurement to cancel out any errors produced by measurements near zero.

Another advantage of dual slope integration is that the clock does not need to have high long term stability as any change in the clock speed will affect charge and discharge cycles equally. In fact, the only critical factor in a dual slope converter with auto zeroing is the discharge current and this is not a problem as precision voltage and current sources are easy to produce.

As always with these things there has to be a snag. With the dual slope converter it is speed. All these charge and discharge cycles take an inordinate amount of time and this means such converters tend to be used in applications where high resolution and low cost are more important than speed. For a fixed cost you will get the greatest precision from a converter that uses this technique.

Another advantage is the excellent rejection of powerline interference which can be obtained by relating the initial conversion time to the powerline frequency of 50Hz. Dual slope converters find their widest application in precision digital multimeters.

![Fig. 4 Dual slope conversion cycle](image)

A To D And Back Again

A number of analogue to digital converters also contain a digital to analogue converter (DAC) DACs have an opposite function to the ADC as they are fed with a digital code as their input and produce a corresponding analogue voltage at the output. Such ADCs work by adjusting the inputs to their DAC until its analogue output equals the input signal voltage. At this point the DAC input code corresponds to the correct value for the ADC output. It's a bit like tuning a musical instrument by comparing it with another which is in tune.

The speed of this type of device is clearly determined by the time taken to find the correct DAC input code and a number of different methods are in use.

The staircase and comparator uses one of the simplest and most straightforward methods, as can be seen in Fig. 5. When the start conversion signal is received, the counter starts counting up from zero, feeding its count into the input of the DAC. The DAC output and the input voltage are fed to two inputs of a comparator. The comparator output will remain low whilst the output from the DAC is below the input voltage but when they become equal, the comparator output will flick high and stop the counter. Thus its count will become the digital output code.

This method is very simple and cheap but it is also slow. The time taken for one conversion increases in proportion to the input voltage so that for a full scale conversion it requires 2ⁿ – 1 clock pulses where n is the number of bits.

All the converters described above assume that nothing is known about the input signal before conversion and that it may be anywhere within the range of the converter. This is often not the case and there are many instances in instrumentation for example...
where there is likely to be little difference between successive readings. The tracking converter is a version of the staircase and comparator which is especially suited to these situations because as its name implies it is designed to follow changing input voltages (Fig. 6).

Like the staircase and comparator this also uses a DAC driving a comparator but there the similarity ends. The DAC inputs are driven by an up-down counter which for the first conversion counts up from zero until the DAC output equals the signal input. However, instead of the counter being reset for the next cycle it merely counts up or down under the control of the comparator until the DAC output is once again equal to the signal input voltage. So the time taken for each conversion is determined by the degree of change of the signal. It is slow in responding to jumps in the input signal but will easily follow a smoothly changing waveform.

Successful approximation is the most popular and widely used ADC technique, as it is relatively accurate, quite fast and cheap. In effect it is a sophisticated version of the staircase and comparator, using a binary search to find the output which most closely approximates the input. As before, the input signal is led to one input of a comparator whose other input goes to the output of a DAC. However, rather than just incrementing the DAC in a serial fashion the much faster binary search-type method is used.

After setting all the bits to zero, each bit in turn is set to one, starting with the MSB. After each bit is set a comparison is done and if the output of the DAC exceeds the signal input then the bit is reset otherwise it is left at one. This continues until the output and input signals are equal.

Another way of looking at the process is to consider weighing a bag of sweets weighing 13g on some old fashioned scales with two pans and a supply of weights. The slowest way of doing it would be to add weights a gramme at a time until the pans balanced. It would be quicker to use successive approximation with weights of 16, 8, 4, 2 and 1 gramme. First try the 16g weight and discard it because it’s too heavy. The 8g weight is tried next and left on the pan as is the 4g. The 2g weight is discarded and the 1g balances the pans.

As can be seen from Fig. 7, this is a much faster way of arriving at the correct value and requires only n clock pulses for n-bit precision.

In The Balance

The A to D conversion technique known as charge balancing uses a capacitor to keep track of the ratio of the input signal to a reference voltage. This method averages the input by integrating it over a fixed time interval for a single measurement. This method has two main advantages. The capacitor is used for both the signal and reference, and so reduces the importance of capacitor stability and accuracy. The same advantage is also conferred on the comparator. The result is that better accuracy can be obtained from a particular quality of component or equivalent accuracy can be obtained at a lower cost. The second advantage is that by choosing the conversion time interval to be a multiple of the power supply time period, the converter becomes insensitive to 50Hz ‘hum’ and its harmonics which may be superimposed on the input signal. Unfortunately, charge balancing converters tend to be slower than those using successive approximation.

Practical ADCs are subject to a number of sources of error. Some of these have already been mentioned, such as the requirement for single slope ADCs to have a very accurate and stable capacitor.

Quantising error is the name given to the feature described earlier — that the output and input can differ by up to $\pm \frac{1}{2}$ LSB, as within these limits you cannot be certain of the exact value of the input. As this is true of all ADCs it is usually taken for granted and not quoted on the data sheet.

The resolution of an ADC is simply the number of output bits the converter has. However, it must be remembered that resolution is not the same as accuracy. The useful resolution is the number of bits at which an ADC has no missing codes. A missing code is an output value (or code) that will never appear no matter what the input. So if the input voltage is increasing smoothly the output will appear to jump at a particular point as the ADC skips over the missing code. The transfer function for a 3-bit ADC with a missing code might look like Fig. 8 rather than Fig. 1 which showed an ideal ADC.

Missing codes can arise through the converter having a non-monotonic internal DAC. Figure 9 illustrates this and shows the transfer function of the reference DAC which is non-monotonic in input code six so that from a point in the center of the staircase decreases. If this was part of, say, a staircase and comparator ADC it would be impossible for the counter to be stopped at this code. If the input signal is less than the DAC output
for code five then the counter will be stopped before code six is reached. Alternatively, if the input signal is greater than output five it must also be greater than output six so the comparator will not change state at output six. Output code six will therefore never appear and will be a missing code. In practice many manufacturers guarantee their ADCs to have no missing codes over their operating temperature range.

Table 1 shows some of the parameters of a selection of ADCs.

There is, of course, no single answer to the choice of an ADC. Selection will depend very much on the exact use to which the device is to be put. However, with the information presented here you should be able to choose the right chip to suit your needs and your pocket.

<table>
<thead>
<tr>
<th>Part No</th>
<th>Conversion Method</th>
<th>Resolution</th>
<th>Conversion Speed</th>
<th>Approximate Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS3300</td>
<td>Parallel (Flash)</td>
<td>6-bit</td>
<td>15MHz</td>
<td>£25</td>
</tr>
<tr>
<td>RS507C</td>
<td>Single slope</td>
<td>7-bit</td>
<td>1ms</td>
<td>£1.50</td>
</tr>
<tr>
<td>ZN439E</td>
<td>Successive</td>
<td>8-bit</td>
<td>5µs</td>
<td>£5</td>
</tr>
<tr>
<td>8703</td>
<td>Charge balanced</td>
<td>8-bit</td>
<td>1.25ms</td>
<td>£12</td>
</tr>
</tbody>
</table>

Table 1. A selection of different types of ADC