

POWER PACKED - by POWERTRAN

Powertran's black boxes are packed with punch. Not only are they superb kits to buy and build they really do the jobl Imaginative and ingenious design goes hand in hand with top quality materials and outstanding performance capability. With their smart black styling the kits harmonise visually as well as musically. Your can buitt each unit independantly for its set task and then gradually increase your array until you have a complete bank of formidable controllable power.

Complete Kit - £49.90 + VAT

Complete Kit - $\mathbf{£ 4 9 . 5 0}+$ VAT

Complete Kit - $\mathbf{£ 1 7 5} .00+$ VAT

Complete Kit - $\mathbf{£ 6 4 . 9 0 + \mathrm { V } \boldsymbol { T }}$

MPA 200 is a low price, high power 100 W amplifier. Its smart styling, professional appearance and performance, make it one of our most popular designs. With adaptable inputs the mixer accepts a variety of sources yet straightforward construction makes it ideal for the first-time builder

CHROMATHEQUE 5000 - a 5-channel lighting system powerful enough for professional discos yet controllable for home-effects. Sound to light, strobe to music level, random or sequential effects - each channel can handle up to 500 W yet minimal wiring is needed with our unique single-board design.

ETI VOCODER - 14 channels, each with independent level control, for maximum versatility and intelligibility; Two input amplifiers - for speech/excitation - each with level control and tone control. The Vocoder is a powerful yet flexible machine that is interesting to build and thanks to our easy to follow construction manual, is within the capability of most enthusiasts.

SP2 200 twice the power with two of the reliable, durable and economic amps from the MPA200; fed by separate power supplies from a common toroidal transformer. Superb finish and quality components throughout - up to leven over!) the standard of high priced factory-built units.

DJ90 Stereo Mixer - this is a really versatile new mixer that enables the constructor DJ to produce a professional performance every time. There are two stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Other 'plus' features are auto-panning for fast or slow, slider controls, multi-mixing, ducking, interrupt, input modulation, in short everything. . .the whole works - AND under f 100 complete! (We have illustrated the DJ90 teamed in our own console with the Chromatheque and an SP2 200 and speakers.

Complete Kit - $\mathbf{£ 9 7 . 5 0}+$ VAT

Digital Delay Line - our latest kit! With its ability to give delay times from 1.6 mSecs to up to 1.6 secs. Many powerful effects including phasing, flanging, A.D.T, chorus, echo \& vibrato are obtained. The basic kit is extended in 400 mS steps up to 1.6 secs. Simply by adding more parts to the PCB. Compare with units costing over $£ 1,000$! Complete kit 1400 mS delay) $£ 130$ + VAT. Parts for extra 400 mS delay £9.50p.

- Component Packs - Most kits are available as separate packs \{e.g. PCB component sets, hardware sets etc). Prices in our FREE catalogue.
- Ordering - Full ordering details, delivery service, and sales counter opening - inside back of this issue.

Ron Harris B.Sc : Editor
Peter Green: Assistant Editor
Nicola Trevett : Editorial Assistant
Rory Holmes
Phil Walker: Project Editors
Alan Griffiths : Divisional Advertisement Manager
T.J. Connell : Managing Director

PUBLISHED BY:
Argus Specialist Publications Ltd. 145 Charing Cross Road, London WC2H OEE DISTRIBUTED BY
Argus Press Sales \& Distribution Ltd
12-18 Paul Street, London EC2A 4JS
(British Isles)
PRINTED BY:
QB Limited, Colchester.
COVERS PRINTED BY
Alabaster Passmore.

OVERSEAS AUSTRALIA - Roger Harrison
EDITIONS
and their
EDITORS
AUSTRALIA - Roger Harrison
CANADA - Halvor Moorshead
CANADA - Halvor Moors
GERMANY - Udo Wittig. HOLLAND - Anton Kriegsman

Member of the
Audit Bureau
of Circulation
Electronics Today is normally published on the first Friday in the month preceding cover date. The contents of this publication including all articies, designs, plans, drawings and programs ond all copyright and other intellectual property rights therein belong to Argus Specialist Pubfications Limited All rights conferred by the Law of Copyrighe and other intellectual property rights and by virtue of international copyright conven tions are specifically reserved to Argus Spectalist Publicationstimited and any reproduction requires the
prior written consent of the Company. ©1982 Argus Specialist Publications Led \square All reasonable care is taken in the preparation of the magazine contents but the publishers cannot be held legally responsible for errors. Where mistakes do occur. a correction will normally be published as soon as possible afterwards. All prices and data contained in advertisements are ac cepted by us in good faith as correct al tume of going to press Neither the advertisers nor the publishers can be held re sponsible. however, for any vatriations affecting price or availability which may occur after the publication has closed tor press
\square Subscription Rates. UK E11.95 including postage. Airmail and other rates upon application to ETI Subscriptions Department, 513 London Road, Thornton Heath, Surrey CR4 GAR

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST
Up-to-the-minute information from the world of electronics, as filtered through our ever-so-slightly warped sense of humour.
TECH TIPS \qquad22

Three more pages of designs submitted by our readers, containing a handful or so of ideas for experimenters.
AUDIOPHILE29

Our intrepid reviewer ventures lower down the price scale to put together a $£ 500$ system that sounds anything but. One for rock aficionados.

DESIGNING MICRO SYSTEMS 34

Part 2 of this series looks at the way the microprocessor interprets and acts on the 'information received'

CONFIGURATIONS
This month lan Sinclair looks at transistor amplifier feedback loops, with plenty of circuits (and design equations) for the home brewer.
READ/WRITE
57
The place where you have your say - but luckily we get the last word! A page of letters from our readership.
DESIGNER'S NOTEBOOK 59
Tim Orr takes over the helm for a while and reveals all about signal measurement techniques. A departure from music but definitely up to this usual standard.

PROJECTS

PLAYMATE PART 2

16This month we've got the overlays, parts list, construction notes and oh the shame of it - a corrected circuit diagram.

ROBOT̄ C̈HASSIS

 .25A tour round the metalwork of the Mobile 2, straight from the designer's mouth. Build a better chassis with ETI.
RUGBY CLOCK PART 2
39
We conclude this excellent timepiece with full construction details and information for setting up and using it.

ACTIVE SPEAKER

\qquad 46
Why build a hi-fi with two power amps when you can build a hi-fi with four? It's cheaper than you think and gets rid of those nasty passive crossovers.

AUTO VOLUME CONTROL

63
Why have a nervous breakdown fiddling with your PA controls when this little circuit will do all the work for you - automatically?
DUAL LOGIC PROBE
68
Another workshop triumph! This clever little gadget not only functions as a logic probe with transition memory, but also has a logic pulser output.

MICROTUTOR PART 2 72
Learn machine code the TANBUG way - here's more on the use of our cheap entry into the world of hexadecimal.
FOIL PATTERNS

INFORMATION

NEXT MONTH'S ETI 10BREADBOARD '8233
BOOKS 15

WATFORD ELECTRONCS
MAIL ORDER, CALLERS WELCOME

Tel. Watford (0923) 40588. Telex: 8956095

VAT

ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURNOF POST. TERMS OF BUSINESS: CASH/CHEQUE/P.OS
OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL IN. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCAT ENQUIRY WELCOME. PGP ADD 50 TO ALL CASH ORDERS. OVER

Export orders no VAT. Applicable to U.K. Customers only. Unlass stated otherwise
all prices are exclusive of $V A T$. Please add 15% tot he total cose Including P\&P
Ne stock thourands more items. It pays o visie uss We are situated behind Warford Foo
Nearest Underground/BR Starion: Watford High Steea.

TANTALUM BEAD CAPACITORS SSV: 0.1uF, 0.22. 033 95p; 0 47, 0.68. $10,1.5$ 16p: 2.2. 3.3 18p; 4.7, 6.8 22p 10 28p: 16V: 2.2, 3.3 36p: 4.7, 6.8. 10 180; 15. 36p: 22 30p; 33, $4740 \mathrm{p} ; 100$ $75 \mathrm{p}: 10 \mathrm{~V}: 15,22,28 \mathrm{p} ; 33,4735 \mathrm{p}: 100$ 50: 6V: 100420 .	

n 38p: 33n 42p; 47n, 100n 42p.		250 V $1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2$. $3 n 3,4 n 7,6 n 8$, $11 \mathrm{n}, 12 \mathrm{n}, 15 \mathrm{n} 7 \mathrm{p}$ $18 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}$, 33n, 39n, 47n 8p $39 \mathrm{n}, 56 \mathrm{n} \quad 12 \mathrm{p}$ $82 \mathrm{n}, 100 \mathrm{n}$ 11p TOOV $100 \mathrm{n}, 120 \mathrm{n} \quad 10 \mathrm{p}$ $\begin{array}{ll}150 \mathrm{n}, 180 \mathrm{n} & 12 p \\ 220 \mathrm{n} .270 \mathrm{n} & 15 p\end{array}$ $\begin{array}{ll}330 \mathrm{n}, 390 \mathrm{n} & 20 p \\ 470 \mathrm{n}, 560 \mathrm{n} & 28 \mathrm{p}\end{array}$ $680 n$ $1 . F 34 p$ $2 u 2$ $500 p$ Telephone Orders by ACCESS accepted. Juat phone your order through. we do the rest.
100n 7p; 150n. 220n 1 u 50 p : 2 u 246 p .	CAPACITORS $1000 \mathrm{pF} / 450 \mathrm{~V}$	
POTENTIOMETERS: Rotary. Carbon, Track $0.25 \mathrm{~W} \log$ \& Lin vatues. 5002. $1 \mathrm{~K} \Omega$ \& 2 KO ILinear only) Single Gang. 5 KO 2Ma Single Gang Loge Lin $5 \mathrm{Kr}-2 \mathrm{Mn}$ Singic Gang D/P Swith $5 K \Omega-2 M O$ Double Gang		
SLIDER POTENTIOMETERS $0-25 W \mathrm{log}$ and linear values 60 mm		
PRESET POTENTIOMETERS O.1W500 5M』 Miniature Vertical \& Horizontal 0.25 W 1000 3.3 Mm noriz. larger 10 p $0.25 \mathrm{~W} 20084.7 \mathrm{M} 2 \mathrm{vert} \quad 10 \mathrm{p}$ Cermet, Precision. multiturn. 0.75 W in $100 \mathrm{a}-100 \mathrm{Ka}$		

POLYSTYRENE CAPACTTORS:	
10pF to InF 8p:	$1.5 n F$ to 12 nF 10 D

SILVER MICA (Values in pF) 2, 3-3. 4.7. 6.8, 8.2, 10. 12, 15, 18	
85, 100, 120, 150, 130 pF	15p each
200, 220, 250, 270, 300	330, 360 ,
350. 470,800, 800, 820	21p exch
1000. 1200, 1800, 2200	30p each
3300. 4700 pF	60p each

MINIATURE TRIMMERS Capacitors $2-6 \mathrm{pF}, 2-10 \mathrm{pF} 22 \mathrm{p}: 2 \cdot 25 \mathrm{pF}, 5-60 \mathrm{pF}$ 30p: 10

RESISTOR
miniature

$\begin{aligned} & \text { RES } \\ & 70 \\ & 100 \\ & 8 \mathrm{C} \\ & 4 \mathrm{K7} . \end{aligned}$

TRANSISTORS C125
C128
C128
C141/2

SIEMENS pcb
Type Miniature
Type Miniarure
poly Capaciors

而

 88ะ \&

With Heathkit, you're all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Digital Clock is there. Follow the steps and you'll end up with a handcrafted, well-designed piece of equipment. One you'll be proud of. Because you built it yourself.
There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30% off to first-timers. Send for your catalogue right now

To Heath Electronics
(UK) Limited, Dept (ET9) Bristol Road, Gloucester GL2 6EE. ET9

To start me off, please send me a copy of the Heathkit catalogue. I enclose 28 p in stamps.

Metal Locator

Windspeed and Direction Indicator

Hax Youbuild onourexperience HEATHKIT

CONNECTOR SYSTEMS

OFFICIAL $3<8$ stockist

UPGRADE IGT MODEL A \rightarrow MODEL 8 G6

MEMORY PACK
$8 \times 4816 A P-100 \mathrm{NS}$
$\times 4816 A P-100 \mathrm{O}$

PRINTER \& USER
PORTS
Cos 70 PL9 10 e9.50 $35^{\prime \prime}$ Printeŕ Lead Complate $£ 13.50$

ANALOGUE PORT

IC73. SK6 £7. 30
All 8BC CONNECTORS AVAILABLE IN STOCX SEND FOR OUR LEAFIET
Telephone for availability of Models A \& B

PRINTERS

SEIKOSHA GPIOCA Dot Matrix Printer, Full Graphics, double-width characters, up to $10^{\prime \prime}$ wide paper, seli-testing parallal interface. f1eq + 66 Carr.
EPSON MX8O FTIIII. This is an upgrade of F/T2 featuring improved graphics, auto underline, super and subscripts. $\mathbf{\sum 3 0}+\mathbb{\text { E }}$ carr.
NEC PC 8023 BE-C 80 Cols. 100 CPS bi-directional, Logic seaking printer with forward reverse line feed, Hi-Res $\&$ Block Graphics, Intornational and Greak charc. Auto-underline. $5375+58$ cars.

FULL Detalls on request

FLOPPY DISC DRIVES

Singig TEAC FD 50A in cabinet with PSU
f150+f6 Carr.
$E 350+29$ Carr.
TWO TEAC FD-50A in cabinet with PSU
Single Drive for Applo It
Siemens FDD $100-5$ Drive housed in atractive case. Drive complete with track zero micro switch, motor control pcb, read. write and control electronics + cable $278+66$ carr.

MONITORS

8MC 12"' Grean Screen 18MHz Bandwidth
$598+25$ Cart.
BMC 14' Colour Monitor (25×40 chars.)
$f 240+£ 6$ Cart

SOFTY II EPROM PROGRAMMER

The complate microprocessor development system for both Engineers and Hobbyists. You can develop programs, debug, verify and commit them to EPROMs. Will accept most +5V EPROMs. Can also be used as a ROMULATOR. Full review in Septomber, 1981 P.E. Built unit complate with PSU and TV lead E1Ex.

MENTA

A sophisticated 280 development system and trainer. Direct interface to TV $\&$ cassette recorfer. Powerful keyboard assembler and program dobugging facility - ideal for both enginaers and students. Audible feedback on keyboard input. Menta + PSU + TV Lead

UV18 up to 6 Eproms 677.50 UV1T with Timer 650
UV140 up to 14 Eproms f81.50 UV141 with Timer 578
UV140 up to 14 Eproms 971.50 UV14i with Tmer 578
All erasers are fited with mains switches and safety interlocks.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

ES

the carpet and cries of "I don't believe it!" The cause of all this excitement? A press release from Seiko announcing the world's first wristwatch TV (was that a strangled cry we heard from Clive Sinclair?). The watch face has a $17 \times 25 \mathrm{~mm}$ LCD screen made up of approximately 32,000 dots, plus an LSI integrated circuit on the same silicon wafer. The rest of the electronics is contained in a pocket receiver, Walkman style, while the TV aerial is built into the headphones. As well as all VHF and UHF TV channels, the wearer can also listen to FM stereo.

Despite all this, the watch still has room inside for - well, the watch. There's a normal 24 hour display, (hours, minutes, seconds), day/date calendar, alarm and stopwatch facilities. The battery that drives the chronograph section has a life of approximately two years, while the TV screen can be expected to operate for more than seven years. The pocket receiver runs off two AA batteries, measures just $145 \times 76 \times 18 \mathrm{~mm}$ and weighs 190 g.

Still pinching ourselves to see if we were awake, we hurried down the corridor to the Which Video office, where we were told that such

Prettier Daisy

CCU Peripherals Limited are Cintroducing an upgraded version of their Daisywriter printer the model 2000. Main differences between this and its little sister the Daisywriter 1000 are a larger buffer, greater baud range and more versatile print. Connectable to any of the usual serial or parallel interfaces, the Daisywriter 2000 has a 16 KByte or 48 KByte buffer memory, whichever the user feels
he needs, to avoid any chance of slowing down his computer or word processor's own operations. A '99 per cent full' signal is fitted to the buffer - just in case. Baud rates are selected automatically or by switch override from 50 to 19,200 . The printer can be used with all the popular word processing packages - Wordstar, Applewriter, Easywriter, Spellbinder, Wordmaster and so on. A thumbwheel selects page length and print settings of 10,12 or 15 pitch are available, all with automatic proportional spacing.

Daisywriters are the first printers to use print wheels enclosed in their own dust-free plastic cassettes. These are available in over 100 different character sets and typestyles covering 15 different language alphabets ad they have a minimum life of 10 million impressions. Reliability of the printer itself is enhanced by a three-chip microprocessor, reducing the mechanical parts, and a linear motor for the drive mechanism. Daisywriter 2000 is available from CPU's network of dealers in the UK, France and Germany at oneoff recommended end-user prices starting around $£ 995$ plus VAT. The lady in the picture seems to be indicating you need your head examined if you don't get one.
a device was not, in fact, a belated April fool, but does exist, although it's going to be something like a year before we'll be able to get our hands on a production model. The price isn't yet decided but it's

Lascar Left Out

Our apologies are due to Lascar Electronics Ltd of Unit 1 , Thomasin Road, Burnt Mills, Basildon, Essex SS13 1LK - we forgot to mention them as suppliers of the DPM200 LCD panel meter used in the Kitchen Scales project and Designer's Notebook last month. Now we've put the record straight, we're off to bed without our suppers

Lock-up Boxes

West Hyde Developments have a new range of housings for applications where security of installation is important, coupled with 'protection to IP65', whatever that is. The hinged lids are fitted with cylinder locks as standard (see the photograph); however, square key locks or slotted-head screws can be supplied to special order should the fancy take you. The enclosure will remain dustproof and hoseproof in temperatures up to $90^{\circ} \mathrm{C}$ due to a neoprene gasket. On the outside the alloy cases have a smart blue/grey stove enamel finish; inside, pads with tapped holes for earthing
estimated to be just over $£ 200$. The thing that really amazed us was the casual way Seiko presented the release for such an incredible piece of technology - no glossy brochure or folders full of advertising hype, just a couple of photocopied sheets and two indifferent black and white photos. We've had better-presented information on cable grommets.

Roadrunner Boards

n our review of the Roadrunner wiring system in the Breadboards article (ETI June 82), we described the boards as 'specially designed'. The manufacturers have asked us to point out that this is a bit ambiguous, and implies that their boards are only suitable for use with the Roadrunner system. In fact they are eminently suitable for circuit-building no matter what method you're using. Sorry about the possible misunderstanding.

Breadboard '82

n November the 5th Breadboard Exhibition hits London once again. This, the most successful show of its type, will offer the electronics enthusiast an opportunity to see for themselves what they've been reading about in their favourite magazines. There's also a chance to examine the wares of the mail order companies - in the silicon, as it were - and the latest hardware and software on offer from the companies that are a household name to the electronics buff.

This year a series of lectures and demonstrations are planned that will give the visitor the chance to learn at first hand how some of those projects and circuits work and how they may be modified to suit their own personal needs. A number of exciting competitions are also planned that should fire the interest, so don't miss BREADBOARD '82.
and PCB-mounting purposes are provided at each end. West Hyde can supply the enclosures ex-stock in a range of six sizes, and can be contacted at Unit 9 , Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET.

MESSAGE PANEL

Everyone must have seen moving message panels, even if you haven't been to Times Square. You know, the boxes in shop windows with messages in lights flowing across them. They're very useful gadgets for advertising displays, exhibitions and the like, but commercial units don't come cheap, so we decided to do something about it. Our giant message panel is composed of 6" by 6" character boards, and you can stack as many of them in a line as you wish. The boards can display the full ASCII character set on a 5 " high 5 by 7 dot matrix (high brightness LEDs) and will scroll the message dot by dot from right to left (or backwards, if that's what you'd prefer!). The system is designed as a peripheral which can be driven from a computer - alternatively you can use our custom controller card. Get the message across with the October ETI.

ROBOT ARM INTERFACE

Next month our robot gets the benefit of grope therapy when we publish the arm controller interface. This project will allow any computer to control up to four radio control servos. The servo timing is all done in hardware and the controller is memory mapped; simply POKE the position into memory and off goes the arm. The interface is cheap and can be used with any $R C$ servo.

PCB PROJECTS

You're our readers, and we love you. Why else would we go to all the trouble of designing a printed circuit board that can be used to build up to six projects? Why else would we give it away when it's worth over $£ 1$? Why else would we sit up for night after night with a roll of sticky tape and a Black and Decker, drilling out the holes and sticking the boards on the cover? Not for us the little plastic screwdrivers that fall to pieces after two week's use - we believe in giving covermounted gifts that are useful. An IF strip tester, a touch switch, a thermostat, a sound-to-light unit, a doorbell, and a porch light controller - you can build them all on our free PCB. Watch out for it on the newsstands.

FREE

PCB

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Making A Beeline

Expand a standard VIC comE puter from 5K to 32 K memory, with 80 column display and word processing capability and the benefits are enormous. Beelines Ltd, the Bolton-based computer research and development specialists have done just that with the Beelines BeeBox System. The BeeBox unit also has RS232 capability, so it interfaces with printers or telephone modems, and it can be fitted with no loss to all the standard VIC features. Thus it will still support disk drives, games and business ROM cartridges, cassette deck, domestic TV output, printer and not impair use as a standard VIC.

TUGging Away

Droducts designed for the Microtan 65 system are constantly emerging from the Tangerine Users Group, otherwise known as TUG, and the latest one is an EPROM Storage Card, otherwise known as ESC. This is built on a high quality PCB and has been specifically designed for mass EPROM storage. Don't let them run around your home messing up the carpets, keep them on this board where you know they're safe. The module accepts $32 / 64 \mathrm{~K}$ of 2716 or 2732 EPROMs respectively, allowing very fast transfer of mass data or stored programmes into user RAM. Programmes can be accessed prize.

The Stripper

Wire strippers are wonderfu things; every hobbyist should have one. Until you've actually used the things you don't realise how interwiring, though never actually being fun, can at least be made tolerable. Good news, then, from AB Engineering - their new wire stripper, the Micro-strip, is selfadjusting for depth of incision and gripping pressure, and can cope with all PVC insulations and some thermo-resisting insulation. A patented self-adjusting floating cam adjusts the stripper's jaws to the correct stripping depth and at the same time sets the gripping pressure exerted by the jaws to prevent damage to the insulation. Using the tool is simplicity itself; a

METAL OXIDE/FIL
RESISTORS

CRICKLEWOOD ELECTRONICS INVITE YOU TO READ OUR ADVERTISEMENT!

Cricklewood,
would like you to read our ad carefully. It may not look very different to the last one, but new
devices have been added and prices have been reduced fover 700 since our first ad). Now we devices have been added and prices have been reduced fover 700 since our first add. Now we
introduce a new range of LEDs, POWERFET amplifier modules, D. Connectors, Soldering trons, Photo-sensitive PCBs, Etch resist transfers and DIL connectors. Our service is prompt, with all FROM SCHOOLS, GOVT. DEPRS. EIC. OVERSEAS ORDERS WELCOME ICWO + ADEQUATE RARRIAGEI OUANTITY DISCOUNTS BY NEGOTIATION TELEX 914977 CRIKEI ADEOUATE
ior immediare service. no extre charge, no minimum order

* THE TRADITIONAL WAY Send cheque, PO or credit card number. Cash not encouraged but * THE IDEAL wAY Call. An in cock tems shipped same day.

Edgware Rd (A5) just 1ξ miles from VAT Please add VAT at the current rate to all orders
Export orders minimum fi.50

POWER AMPS

PRE-AMP MODULES

> SEND COUPON (NO STAMP NECESSARY) FOR YOUR FREE I.L.P. CATALOCUE AND OPEN UP TOA NEW WORLD OF QUALTTY \& VALUE

It's something you have always wanted....something to build your equipment into that's smart, modem, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision afuminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours. FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 4

GRAHAM BELL HOUSE ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 4 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

Did you know

I.L.P. are the world's largest designers and manutacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very
latest super-quality Mosfets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A, N.A.S.A., British Aerospase, Marconi, Racal; Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and cavered by our 5 year no-quibble guarantee?

[^0]Name: \qquad

Address: \qquad -
\qquad
$\longrightarrow-\square=-\operatorname{coc}$

Beginners Guide to Electronics Squires $£ 4.60$
\square Beginners Guide to Transistors Reddihough $£ 4.50$
Beginners Guide to Integrated Circuits Sinclair £4.50
Beginners Guide to Radio King $£ 4.50$
Beginners Guide to Audio Sinclair £4.50
Introducing Amateur Electronics Sinclair £4.50
Introducing Microprocessors $£ 5.20$
Understanding Electronic Circuits Sinclair $\mathbf{£ 5 . 3 0}$
Understanding Electronic Components Sinclair $\mathbf{£ 5 . 3 0}$
\square TV Typewriters Cookbook $£ 9.35$

- CMOS Cookbook $£ 9.85$
\square Active Filter Cookbook $£ 11.30$
\square IC Timer Cookbook $\mathbf{8 8 . 6 5}$
IIC Op-Amp Cookbook $£ 12.20$
- ITL Cookbook £9.15

D MC 6809 Cookbook Carl D. Warren $\mathbf{f 6 . 3 0}$
\square PLL Synthesiser Cookbook Kinley £5.85

- 8085A Cookbook Titus $£ 10.75$
\square How To Build Electronic Kits Chapel $£ 3.45$
110 Electronic Alarm Projects Marston $\mathbf{E 5 . 2 5}$
110 Semiconductor Projects for the Home Constructor Marston $£ 5.25$
$\square 110$ Integrated Circuit Projects for the Home Constructor Marston $£ 5.25$
$\square 110$ Thyristor Projectors Using SCRs Marston $£ 5.25$ 110 Waveform Generator Prajects Marston $£ 5.25$ $\square 99$ Practical Electronic Projects Friedman £4.20
\square What is a Microprocessor? 2 cassette tapes plus a 72-page book $£ 10.00$
\square Beginners Guide to Computers and Microprocessors with projects $\mathbf{£ 6 . 0 5}$
\square Basic Computer Games Ahl $£ 6.05$
D Basic for Home Computers Albrecht $\mathbf{£ 6 . 6 0}$
\square Illustrating Basic Alcock $\mathbf{£ 4 . 2 5}$
\square Troubleshooting Microprocessors and Digital Logic Goodman $£ 6.10$
ㅁ 2-80 Microcomputer Handbook 99.35
Microprocessors in Instruments and Control Bibbero £15.30
\square Basic Basic Coan $£ 9.95$
\square Advanced Basic Coan $£ 9.95$
1001 Things to do with your Personal Computer Sawusch $\mathbf{£ 6 . 0 0}$
\square Microcomputers, Microprocessors, Hardware,
Software and Applications Hilburn $\mathbf{£ 1 7 . 4 0}$
\square Microprocessor Systems Design Klingman £21.95
\square Introduction to Microprocessors Leventhal $£ 11.25$
Microprocessor Technology, Architecture and
Applications $£ 11.30$
\square Basic with Style Nagin $\mathbf{£ 6 . 3 0}$
\square Microcomputer Design Ogdin $£ 9.25$
\square Hands on Basic with a PET Peckham £11.95
6800 Software Gourmet Guide and Cookbook Scelbi £9.30
$\square 8080$ Software Gourmet Guide and Cookbook $£ 9.30$ The 8080A Bugbook Rony $£ 10.05$
8080/8085 Software Design Titus $\mathbf{£ 1 0 . 0 6}$
How to Design, Build and Program your own Working Computer System 87.10
ㅁ Your Own Computer Waite $£ 2.25$
Microcomputer Interfacing Handbook A/D 8 D/A £6.35 \square Crash Course in Microcomputers Frenzel $£ 14.95$
\square Musical Applications of Microprocessors Chamberlain E20.96
The Pascal Handbook Tiberghien £12.45
[50 Baslc Exerclses Lamoitier $£ 11.10$
\square Learning Basic with the Sinclair ZX80 84.95
\square Microprocessors for Hobbylats Coles $£ 4.25$
\square Introduction to Microcomputer Programming Sanderson E6. 25
\square Microprocessors and Microcomputers for Engineering Students and Technicians Woolland $£ 5.95$
\square Using CP/M - Self Teaching Guide Ashley Fernandez £6.95
\square Digital Counter Handbook Frenzel 88.65
- 33 Chailenging Computer Games for TRS80-Apple-Pet Chance $£ 5.75$
\square How to Build Your Own Working Robot Pet Dalesta E5. 75
\square Microprocessor and Digital Computer Technology £16.00
\square Guidebook to Small Computers Barden $£ 4.20$
\square How to Debug Your Personal Computer Huffman $£ 6.30$
\square How to Troubleshoot and Repair Microcomputers Leuk £6.30
$\square 6809$ Microcomputer Programmes and Interfacing with Experiments Staugaard $£ 11.45$
\square Wordprocessors Programmed. Training Guide with Practical Application $£$
\square Digital Circuits and Microcomputers Johnson $£ 9.75$
\square Experiments in Artificial Intelligence for Small Computers $\mathbf{E 7 . 2 5}$

Please send me the books indicated. I enclose cheque/postal order for $£$.

I wish to pay by Access/Barclaycard. Please debit my account.

5	2	2	4												
4	9	2	9												

Signed
Name
Address

PLAYMATE PART 2

For aspiring artistes we conclude our portable guitar amp with added ingredients fuzz and wah. Design and development by Phil Walker.

Before we continue with our analysis of the circuit theory we have to apologise for the manpower shortage last month which meant that the Playmate circuit diagram missed out on our usual thorough checking. Naturally the perversity of the universe ensured that this was the project that had several errors, so we're reprinting the circuit diagram with mistakes and duplicate component numbers corrected and all pots marked CW or CCW to tie up with the front panel wiring diagram. Meanwhile, back to the plot

The State-variable Filter
Things start getting a bit heavy
now! The following equations are
the transfer equations for a state-
variable filter such as that in Fig.
2:-
$V_{x}=\left[(R 1 / R 3) \times V_{\text {in }}+(R 2 / R 3) \times V_{y}\right]$
$+R 5 /(R 4+R 5)$
$\times[1+R 3(R 1+R 3) /(R 1 R 2)] \times V_{o}$
If $R 1=R 2=R 3=R 5$, then:
$V_{x}=-\left(V_{i n}+V_{y}\right)+R 1(1+2) /$
$(R 4+R 1) \times V_{o}$
$V_{x}=\frac{3 R 1 V_{o}}{R 4+R 1}-\left(V_{i n}+V_{y}\right)$
$V_{o}=-1 / s C R \times V_{x}$,
$V_{x}=-s C R V_{o}$
$V_{y}=-1 / s C R \times V_{o}$

Substitute (2) and (3) in (1):-
$=s C R V_{0}=\frac{3 R 1 V_{0}}{(R 1+R 4)}$
$-\left(V_{\text {in }}+(-1) / s C R V_{o}\right)$
$\frac{V_{\text {in }}}{}=(s C R+3 R 1 /(R 1+R 4)+1 / s C R)$ V。
$=j \omega C R+\frac{3 R 1}{(R 1+R 4)}+1 / j \omega C R$
($s=j \omega, \omega=2 \pi f, f=$ frequency)
Compare this with the equation for an LCR tuned circuit:-
$V_{\text {in }}=(j \omega L+1 /(j \omega C)+R) I_{\text {out }}$
$V_{\text {in }}$

From this it is apparent that these responses are similar except that the LCR circuit gives a current output rather than a voltage.
For this type of LCR circuit, the frequency of minimum attenuation or maximum gain (the resonant fre quency) is given by:

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

For our circuit this is: $=$

The ' Q ' factor influencing the bandwidth is given by:-

Figure 4 shows the configuration necessary to use the LM13600 as a filter of this type. Last month

Fig. 1 The correct version of the circuit diagram - sorry . . .
we found that the transfer function of the LM13600 with no diode current is given by:-
$I_{\text {out }}=\frac{l_{a b c}}{26 \times 10^{-3}} \times V_{\text {in }}$
As we are using a capacitative load this output current will generate a voltage of:-
$V_{\text {out }}=I_{\text {out }} \times \frac{1}{j \omega C}$
$=V \times \frac{I_{a b c}}{26 \times 10^{-3}} \times \frac{1}{j \omega C}$
$=V_{\text {in }} \frac{R 1}{R 1+R} \times \frac{l_{a b c}}{26 \times 10^{-3}} \times \frac{1}{j \omega C}$
Since we are not dealing with a normal type of op-amp, analysis of the circuit is not as easy as the normal filter but the result is an equation of much the same form. We do not show all the derivation here as it would occupy most of a page. However, the end result is that the centre frequncy of the filter pass band is proportional to the amplifier bias current. Therefore we have an easy way to control the wah wah effect.

Fig. 2 (Above) Generalised statevariable filter.

Fig. 3 (Right) Generalised LCR tuned circuit.
Fig. 4 (Below) Using the LM13600 as a
 state-variable filter.

ETI SEPTEMBER 1982

PARTS LIST

Resistors (all ${ }_{\text {W }} \mathbf{4} 5$	
R1,3,42,43	47k
$\text { R2, 5,6, } 12,$$21,25,32,37,$	
	10
R4,16	220k
R7,18,34	470k
R8	6 k 8
R9,14,15,33	15k
R10,62-65	47R
R11,17,31,	
36,40,44,45,	
53,67	100k
R13,22,23,	
28,29,35,57,	
58	1k0
R19	10 M
R20	2 M 2
R24,26,39	22k
R27,30,41	5 k 6
R49	4M7
R54	33k
R59,60	2 R 2
R61	6 R8
R66	$1 \mathrm{M0}$

Potentiometers	
RV1,3,7	100k linear
RV2	50k linear dual gang
RV4	100k linear dual gang
RV5	100k logarithmic with two-pole switch
RV6	22k linear
RV8	47 k miniature
	horiz
Capacitors (all polycarbonate	
except where stated)	
C1,5,10-12,	
17,23	680 n
C2	$220 n$
C3	22 u 16 V tantalum
C4,6,9	470 n
C7,8	1 n 5
C13,14	$10 n$
C15	33n
C16	15n
C18	68 p
C19	10u 35 V tantalum
C20	100 n
C21,22,24,	
25	1000 u 10 V axial
	electrolytic
26-29	47 CB 10 V
	PCB electrolytic

Semiconductors	
IC1	CA3140
IC2,4	IM13600
IC3	TL084
IC5	TL082
IC6	741
Q1,2,5	BC212L
Q3,4	BC182L
Q6	BD132
Q7	BD131
D1-5	1N4148

Miscellaneous
 SW1,2 2-pole, 3-way miniature slide switch
 SW3 1-pole, 2-way miniature slide switch

PCBs (see Buylines); case ($220 \times 105 \times$ 230 mm), Vero ref. 75-2443A; wire (single, single screened and double screened); $4^{\prime \prime}$ or $5^{\prime \prime}$ loudspeaker (8 ohms), 5 W); standard $\dot{\psi}^{\prime \prime}$ jack socket for input; stereo jack socket for foot switch (lf required); 75 mm of $12 \times 12 \mathrm{~mm}$ aluminium angle; two PP9 batteries and clips.

Construction

Except for the controls, almost all the components for this project are mounted on the three PCBs. The preamplifier board is the largest and most densely packed. It is advisable to use sockets for the ICs and don't forget the links. The capacitors used in the project should be as smal! as possible otherwise you will have difficulty
fitting them. A fine tipped soldering iron will be useful when assembling the boards and care should be taken to avoid creating short circuits between tracks with accidental solder splashes.

Ensure that all the diodes, transistors and other polarised components (especially IC3) are fitted the correct way round. On the power amplifier board the output transistors are mounted on top of a

Fig. 5 (Above)
Component overlay for the preamplifier board.

Fig. 6 (Right) Overlay for the tone control board.

Fig. 7 (Right) Overlay for the power amp of the Playmate.

SUGGESTED MAINS UNIT

Parts List

R1,2	470R $\frac{1}{4} W$
C1 $\%$	
C1	4700u $25 V$ electrolytic
IC1	7805
IC2	7905
2D1,2	3V9 400 mW zener

BR1 W01 (1 amp bridge rectifier)

T1 9-0-9 12 VA transformer SWI DPDI miniature rocker or slide switch
FS1 1 A 20 mm fuse and holder
LP1 240 V panel neon with integral resistor

short length of $\frac{1}{2}$ " $\times \frac{1^{\prime \prime}}{2}$ aluminium angle which acts as a heatsink. The transistors and the angle are held in position by the transistor mounting screws.

Mount the control switches and potentiometers on the front panel (see photo for our layout) and make the necessary interconnections and fit the three components needed around the balance control. The wiring from the front panel to the preamplifier/effects and the tone control boards should be carried out using thin flexible wire for control signals and miniature screened cable for any sound signals. These should be short but allow enough slack to be able to fit them in position easily. (It is probably easier to connect all the wires to the circuit boards first.) The power amplifier board was fitted to the metal base plate of our case using the angle on which the transistors were mounted. It was positioned so that it fitted neatly between the two batteries in the bottom of the case. Together with the loudspeaker the amplifier board holds the batteries without any further help.

The small loudspeaker for this project was mounted on the plastic case of the box through which a number of holes were drilled to let the sound out. If required a small mains power unit capable of 9-0-9 V at 100 mA or more may be used to power the unit.

A foot pedal control for controlling the wah wah effect could be plugged into a jack socket. This would need to be one of the three-connection or stereo type so that positive and negative supplies as well as the control signal could be connected.

SUGGESTED FOOT PEDAL

sometimes limited, some adjustment of position may be necessary to get best results. If the range of control isn't wide enough, change to a higher value. The link on SW2a should be removed for this circuit. The second diagram shows a simple circuit for use with ordinary jack connectors which can be used if the link between SW2a pole and off position is retained.

ALL CONNECTIONS GO TO PREAMP BOARD EXECPT WHERE STATED
Fig. 8 How to wire the front panel.
Compare with the front panel photo
last month.

BUYLINES

There shouldn't be anything here to cause problems; most of the components are standard items and several mail order companies now stock the

LM13600. Shop around in our advertisements for the best price. The set of three PCBs can be ordered from our PCB Service as advertised on page 87, should you not wish to etch your own.

HEM 16 BRAN HITCHIN HERTS. SG5 1JE	NGs			NICSA MPUT 33031 Mon-Fr ay Wed one se	ANB UTERS 31 Fri Sam-5 ednesday service	$\mathrm{y}^{5.30 \mathrm{pm}}$					

RESISTOR KITS $\quad \frac{1}{4}$ W 10 R to 82 K (FL12 RANGR) 10 FLACK VALUR - 600 Resil $£ 5$ + VAT $\frac{1}{2} W 2 R 2$ to 2 M 2 (FL12 RANGR) 10 FLACK VALUR - 730 Resil 55.50 + VAT

FAST RESPONSE STRIP CHART RECORDERS

Series H3020

SPECIAL OFFER

Basic error: 2.5\% Sensitivity: 8 mA F.S.D Response: 0.2 sec . Width of each channel:
Single and three-pen recorders: 80 mm Five-pen recorders: 50 mm

Chart speeds, selected by push buttons: $0.10 .20 .5-1.0-2.5-5.0-12.5-25$ $\mathrm{mm} / \mathrm{sec}$.
Chart drive: $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording: Syphon pen directly attached to moving coil frames. Curvinear co-ordinates.
Equipment: Marker pen, timer pen, paper footage indicator, 5 rolis of paper. connectors, ink etc
H3020-3 (Three pen\}: 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high
inc VAT inc VAT

Carriage: $£ 10.00$ per recorder

MULTIMETER - TYPE U4324 - 20,000 O.P.V.

D.C. Current: $\quad 0.06-0.6-60-600 \mathrm{~mA}-3 \mathrm{~A}$
A.C. Current: $\quad 0.3-3-30-300 \mathrm{~mA}-3 \mathrm{~A}$
D.C. Voltage: $0.6-1.2 \cdot 3 \cdot 12-30-60-120-600-1200 \mathrm{~V}$
A.C. Voltage: $3-6-15-60-150-300-600-900 \mathrm{~V}$

Resistance: $\quad 500 \mathrm{Q}-5-50-500 \mathrm{kO}$
Accuracy: d.C. 2.5% : A.C. 4% (of F.S.D.)
PRICE complete with test leads and fibreboard storage case
$\mathbf{f} 10.50$ inc of VAT
Packing and postage $£ .00$

MULTI-RANGE UNIVERSAL PORTABLE AC/DC RECORDING VOLTAMMETER H390 (SUPPLIED WITH 5 CHART ROLLS)

Measurements	$5-15-150-250-$
ranges, $A C / D C:$	$500 \mathrm{~mA}, 1.5-5 \mathrm{Amps}$
	$5 \cdot 15-150-250-500 \mathrm{~V}$
Accuracy.	$1.5 \% \mathrm{DC}, 2.5 \% \mathrm{AC}$
Chart width:	100 mm
Chart drive:	$220-250 \mathrm{~V}$ AC mains
Chart Speed:	$20-60-180-600-$
	$1800-5400 \mathrm{~mm} /$ hour
PRICE: $£ 70.00$	Carriage f 6.00

TECH TIPS

Cheap Auto-Waa

Tony Allgood, Hornchurch

Although this unit is not capable of fulfilling the specifications of an expensive auto-wa, it has an advantage of being cheap and relatively simple. The basic idea is an expansion of ETI's Spot Design WaaWaa unit from the November 1980 issue.

Q2 is used as a voltage controlled resistor connected to a simple filter network based around Q1. The controlling voltage is applied to the base of Q2 and can be varied manually or automatically through the use of a triangle wave generator consisting of a standard integrator and comparator oscillator. The frequency of the sweeps is determined by the 'speed' potentiometer and can be altered from 0.5 Hz to about 10 Hz .

A 9 V supply was used so the unit can be fully portable if a PP3 battery is used.

Tamper-proof Burglar Alarm

lain S. Campbell, Paisley
Recently I have started to install a burglar alarm in my home and, while planning the installation, I realised that I would require some form of tamper-proof or 'self-activating' bell. In other words, I required the bell to ring if the wires leading to it were cut or short-circuited. I consequently designed the following circuit.

The circuit is a window comparator and works as follows. R4, R5 and R6 are voltage dividers with one-third of the supply voltage across each. R3 is chosen so that $R 1>R 3>\frac{1}{2} R 1$, noting that $R 1=R 2$ (in practice, for R3 I used the next lowest standard value from R1, R2). Both non-inverting inputs of the comparators are thus kept lower than their respective inverting inputs.

If R2 is open-circuited, ie the leads to it are cut, the non-inverting input of IC1 is pulled high, thus taking the output high. If R2 is shortcircuited the voltage across the noninverting input of IC2 and ground is between one-half supply voltage and
just over one-third of the supply (depending on the value of R3), thus taking the output of IC2 high. The two outputs may now be ORed using any general purpose diodes and the output used to drive a suitable load, in my case a TIP122 Darlington transistor and a $1 \frac{1}{2} \mathrm{amp}$ bell.

I would recommend other users to put a monostable between the diodes and the load as well as employing a battery back-up, although these were not necessary in my case. A five minute monostable
should be sufficient to keep the neighbours happy if the alarm is activated or tampered with. When installing this circuit, R2 should be situated inside the burglar alarm control unit across the existing relay contacts or an opto-coupler. When the alarm is activated, R2 is shorted. Tampering with the interconnecting cable can be detected and the bell enclosure may be protected with the appropriate normally-open or normally-closed microswitches.

Low Resolution A-to-D Converter

Paul Hill, London
A simple, low-resolution analogue-to-digital converter (three-bit output) can be built using the LED bargraph driver IC, the LM3914. This ADC can be used in applications where more usual (and more expensive) eight-bit or greater ADCs would give unnecessary accuracy.

The bargraph IC converts the input voltage into a low signal on one of the 10 outputs, depending on its amplitude. The diodes code the outputs to binary-coded decimal, IC2 providing the ADC with TTL outputs.

CMOS

Fuzz/tremolo

S.P. Giles, Edmonton

Fuzz and tremolo have been around for years now in one form or another, but this circuit gives the guitar player the option of either effect, depending on how hard he plucks the strings. When a string is plucked hard, fuzz is

heard at the output, but softer plucking produces tremolo.

IC1a and IC1b form the fuzz circuit, which is not so harsh as the usual op-amp or transistor variety. C3 eliminates a lot of high-frequency rubbish from the output. ICIC is a voltage-controlled amplifier, the gain of which is determined by the voltage fed to the base of Q1 from the low frequency oscillator formed around IC1d and IC1e, thus giving the

required tremolo effect.
The fuzz output at IC1b is rectified by D1 and smoothed by C7 and R8. Part of this is fed direct to 1C2a as the switch control, and the other part is inverted by IC If before being fed as the switch control to IC2b. The DC voltage at point A will follow the strength of the input signal as follows:
Low level input;
A is low (IC2a is off)
B is high (1 C 2 b is on)
Tremolo output.
High level input;
A is high (IC2a is on)
B is low (IC2b is off)
Fuzz output.
If a chord is played hard and allowed to decay naturally it will start as fuzz and change to tremolo as IC2a and IC2b alter state. There is no reason why this principle cannot be applied to any two effects chosen by the constructor.

MINIMUM PAYMENT $£ 20$

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items. ITl is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for at a competitive rate.
Drawings should be-clear as possible and the text should be typed. Text and drawings must be on separate sheets. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International,

BK ELECTRONICS
Prompt Deliveries VAT inclusive prices
Audio Equipment
Test Equipment by Thandar and Leader Hiage each.

STEREO CASSETTE TAPE DECK MODULE. Comprising of a top panel and tape mechan ism coupled to a record/play back printed board assembly. Supplied as one complete unit for horizontal installation into cabinet or console of own choice. These units are brand new, rady buils and tested.
Features:
Festures: Three digit tape counter. Autostop. SIx piano type keys. record, rewind, rast iorwaid, play, stop and eject. Automatic record level control. Main inputs plus secondary inputs for stereo microphones pedance: 68 K . Output level: 200 inV io Im peffance: 68 K . Output level: 400 mV to both pedance: : 10 K . Signal to noise ratio: 45 dB Wow and flutter: 0.1°. Power Supply requirements: $18 \mathrm{~V} D \mathrm{C}$ at 300 mA . Connections The left arid right hand stereo inputs and outpuis are via individual screened leads. all terminated with phono plugs Iphono sockets provicted. Dimensions: Top pancl 5 1/2in x $11 / a i n$. Clearance required under top panel ram supplied complete with crrcuit diabram and connecting diagram. Attractive rice $£ 2570+£ 250$.
Supplementary parts for 18 tase and packing. Supplementary parts for 18V U.C. power supply
(transformet, bridge rectifier and (transformer, bridge rectifier and smoothing
capacitor) $£ 350$.

NEW RANGE QUALITY POWER LOUDSPEAKERS ($15^{\prime \prime}, 12^{\circ}$ and 8°). These disco applications. Both the 12 and 15 ". unts have heavy duty die-cast chassis and aluminium centre domes All three units have white speaker cones and are fitreed with attractive cast aluminium (ground finish) fixing escutcheons.
Spectication and Price.
15" 103 watt R.M.S. Impedance 8uhm 59 as. magnet, 2"aluminum vace coil. Rusonant Frecpuency 20 H , Frequency Price $£ 32$ each. $\mathbf{t} 250$ Parking and Car-

12" 100 watt R.M.S. Imperlance 8 ohm, 50 oz magnet. 2 "atumanum voice cuit Reschinant Frequency 25 Hz Frequency Response to 4 KH , Sensitivily 95 dB . Price £ 23.70 each. 17.50 Packing and Carrlage each

8 . 50 watt R.M.S. Impedance 8 uhms. 20 i2: $11 /{ }^{\prime \prime}$ aluminium voice coil. Resoxant Frequency 40 Hz . Frequercy Response to 6 KHz . Sensitivity 92 dB . Also available with black cane fitterl with black metal protective gnill. Price: White cone $£ 8.90$ each. Black conelyrill $\mathbf{r 9 . 5 0}$ each. P\& P E 1.25 нach
PIEZO ELECTRIC TWEETERS MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be attled to existing speaker systems of up to 100 watts (more if 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER.

TYPE A' IKSN2036A) 3 ', wound with protective wire mesth, ideal for hookshesh and mediunt sızed hi-fi speakers Price $£ 3.45$ each.
TYPE ' B ' (KSN1005A) $3^{\prime \prime}$, " super horn. For gentral purpose speakers, disco ant P.A. systems etc. Price $\mathbf{E} 4.35$ each
TYPE 'C' IKSN6016A)2" - 5" wide dispersion hom, For quality ${ }^{\text {Hit }}$ fis sysiems and quality
TYPE D' IKSN1025AIZ' 6 wide dispersion
horn Upoer Irequency horn. Upper Irequency response relained extending clown to mid range 12 KHz). Suitable
for high quality Hi.fit syslems and upality for high quality Hi.fí syslems and usuality
discos. Price 66.90 each. discis. Price 66.90 each.
TYPE 'E' (KSN1038A) 334 " horn tweeter with attractive siver firisht srim. Suitable for with montior systems etc. Price 44.35 each.
TYPE 'F' (KSNN1057A) Cased version or type 'E'. Free standing satellite iweeter. Perfect
add on tweeter fur conventionsl loudspeaker add on weeter fur conventional loudspeaker systems. Price $\mathbf{f 1 0 . 7 5}$ each.
U.K. post free lor SAE for Piezo leaflets).

ON

1000 MONO DISCO MIXER

A supert fully buitt and rested mixer/ore-amp with integrat power supoly. 4 override switch, all with individual level controls. Two setry of active tone controls (bass and tebie) for Mic. and main inputs. Master volume control. Monior output

Size $221^{-1} \times 47^{\circ} \times 23^{-}-10 n i t o r ~ 500 \mathrm{~mW}$ into 8 ohrms. Supply $220 / 240 \mathrm{~V}$ AC50/60 Hz
1K.WATT SLIDE DIMMER

- Contrós loads up to 1 KW

$$
479^{\prime \prime} \times \frac{13}{16} \times 21 /{ }^{\prime \prime}
$$

- Easy snap in fixing throuğh panel/ cabinet cut out
- Insulated plastic case
- Full wave control using gamp
- Conforms to B5800
- Suitable for both resistan Innumerable apolication industry, the home. and discos thearres etc.
Price: $£ 11.70$ each +50 p PGP

BSR P256 TURNTABLE

 P256 turniable chassis - S shaped tone arm - Belt driven - Aluminium platrer Preciston calibrated counter balance - Anti-- 240 volr AC operation iemplate suppled Comptedy - Cur-out This deck has 3 completely manual designed primarily for disco and studio use where all the advantages of a manual arm Price: $\mathbf{f 2 8 . 5 0}+\mathbf{f 2} .50$ P\&pPuWER AMPLIFIER MGDULES

Matching 3-way loudspeakers and crossover
Build a quality 60 watt RMS system \&ohms Build a quality 60 watt R.M.S. system.

* $10^{\prime \prime}$ Woofer $35 \mathrm{~Hz}-4.5 \mathrm{KHz}$
$\star 3^{\prime \prime}$ Tweeter $2.5 \mathrm{KHz}-19 \mathrm{KHz}$ * $5^{\text {n }}$ Mid Range $600 \mathrm{~Hz}-8 \mathrm{KHz}$
* 3 -way crossover $6 \mathrm{~dB} /$ oct 1.3 and 6 KHz Recommended Cab-size $26^{\prime \prime} \times 13^{\prime \prime} \times 13$ Fittert with attrative cast aluminium fixing es cutcheons and miesin protective g, ills which are remtovable enabling a unique choice of cabinet styling Can be mounted directly on to baffte. All three withut convent:onal speaker fabrics A infee units have alumimium centre domes bines spring loarled loulsoeaker cernimats comecessed muuntina panel ecessed muuntina danel fill Avallatle separately. prices on and p

12" 80 watt R.M.S. loudspeaker.
A superb general purpose twin cone loudspeaker. 50 oz magnel 2 aluminium voice coil. Rolled surfound. Resonant frequency 25 Hz . Frequency response to 13 KHz . Sensitivity $95 d B$. Impedance 80 hm . Attractive blue cone with aluminium
Price $£ 17.99$ each +52.50 PGP. MODULES optional extra.

SPECIFICATON:

 T.H.O.: Less zthan 0.1\% Sizee: OMP 100360

GENERAL PURPOSE 41/2" MINI SPEAKER
General purpose full range loudspeaker, ideal for mini systems elc

- Rolled tabric surtiound ©Twin cone $\quad 80 \mathrm{hm}$ - 1302 magner 15 frequency 01 ". voice coil Price: $£ 6.90$ each $+\mathbf{7 5}$ p PGP

100 WATT R.M.S. AND 300 WATT R.M.S
Power Amplifer Modulas with integral troictal transtomet power supplis, and hess simik. Supplied

Max Output Power: 110 wats R.M.S. 10 MP 1001
310 watts A.M.S. 10 MP 3001 Loads: Open and short crituit proof. 410 H. 16 ohms. Loads: Open end short chicuit proofit 4.16 ohms.
Frequency Response: $20 \mathrm{~Hz}-25 \mathrm{KHz}+3 d \mathrm{~B}$.

OMP $300460 \times 116 \times 72 \mathrm{~mm}$

B.K. ELECTRONICS

37 Whitehouse Meadows, Eastwood, Leigh-on-Sea, Essex SS9 5TY
\star SAE for current ists. Official orders welcome. \star All prices include VAT. \star Mail order only. \star All items packed (where applicablel in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702.527572 .

ROBOTCHASSIS

Unlike most of our other projects, which can generally 'stand alone', the electronic bits and pieces of a robot are useless without suitable mechanics. Here Geoff Chapman of Remcon Electronics describes the construction of the Mobile 2 chassis.

This article describes the construction of the chosen chassis for the ETI Mobile 2 (or Robot Tractor Unit RTU2, as Remcon describe it). Included in the kit from Remcon are all the aluminium body sections (ready punched and drilled), motors, gearboxes and injection moulded components for the tracks - the complete price is £125 including VAT and postage. A more detailed specification of the mechanics was included in last month's article - alternatively you can contact Remcon at 1 Church Road, Bexleyheath, Kent (telephone 01-304 2055).

Chassis Assembly

Taking the base and one of the sides, the side is introduced into the base so that it fits snugly into the notches at the top of this unit. It should be noted how the chassis fits in this position and it is aligned all the way round the base unit to maintain a parallel line. The chassis may be held in position by either the use of simple G cramps while the holes are transferred from the base plate into the chassis side using the special drill provided in the kit. It is recommended that this be carried out at this stage so that any swarf produced can be cleaned away before other assembly takes place. The second side is drilled in a like manner.

We suggest that, although selftapping screws are going to be used for the final assembly, the two side pieces previously drilled should be 'pre-tapped' using one of the self-tapping screws.

This avoids the problem of the screwdriver slipping when the chassis is being assembled and makes for a generally easier job. It is further recommended that the burr pushed through by the self-tapping screw is left on the inside of the chassis side since this assists in locking the screw. The three pieces of the chassis are left disassembled until required at a later stage.

Assembly Of The Track

First separate the moulding from the sprues, using a sharp knife or sidecutters, then count out 47 track plates and 94 side connectors for each track. The track is assembled by slipping the side plates over the circular protrusions on the track plates and tightening up the nuts which are pushed onto the plastic and driven home with the spanner provided (see Fig. 2). Care should be exercised when screwing on the nuts; first to ensure the thread is cut square to the axis of the circular protrusion, and second that the nut is tightened sufficiently to remove any end-play between the side-plate and the track plate. At the same time, it should allow the plates to swing freely, ie it should make a good hinge.

Having assembled both tracks in this fashion, they are then put aside until required later. It is a good idea to spray each of the joints with a small amount of Rocket WD40 to keep friction to a minimum, and to allow the lubricant to 'soak' into the plastic.

The mouldings for the suspension units are a four-piece moulding on one sprue. These pieces should be separated
by cutting with side-cutters as before, but kept together in their sets. The suspension blocks of each set are fitted to the side chassis members so that the bulk of the moulding goes through the side member into what may be termed the 'tray'. The clamp plate of the suspension unit is then slipped over the suspension block and the three selftapping screws inserted through the holes, the clamp plate being pulled up tight by the screws to the inside face of the side-plate. The suspension units are fitted in eight positions; four on each of the side-plates.

The cranked bogey spindles are then inserted through the suspension blocks, and located in position by fitting a 6BA washer and a 6BA stiff nut. The stiff nuts are tightened so that the spindles may rotate without any end-play. The suspension springs are fitted to the spring retaining spacers two spacers per spring. Note that there is a slot partially moulded across the retaining spacer just above its boring. The slot is blind at one end and it is through this blind portion that the end of the spring is pushed so that it is held in position while assembly takes place (see Fig. 6). The second spring retaining spacer is treated in a similar fashion.

With the two retaining spacers fitted to the spring, the spring is then fitted to the suspension unit over the two spindles which carry the bogies; the centre of the spring fits onto the centre stub of the suspension block. The centre coil of the spring is held into position with a 4BA nut and washer which is screwed over the stub and

Fig. 1 The track plates and side connectors.

Fig. 2 The caterpillar track is assembled like this.

Fig. 3 Each suspension unit has a set of four mouldings.

Fig. 4 The mouldings for the bearing unit.
tightened securely, but at the same time allowing the spring to move freely.

Assembly Of The Suspension Units

To retain the assembled smaller bogey on its spindle, the starlock washer is fitted to the shaft. This starlock washer is covered with a chrome button to give an attractive appearance. The other larger-diameter bogey wheel is completed in a similar manner together with the fitting of the star washer. This process is then repeated for all eight suspension units. This completes the suspension unit assembly.

The smaller diameter bogey is fitted to the other axle, again with the rivet side to the side of the chassis. The second smallest bogey is fitted to the same axle, this time with the simulated rivets to the outside.

The bogey wheels are fitted to the suspension units after having separated them from their sprues; note how each bogey wheel is moulded into two pieces. The bogey wheels are fitted to the suspension units by taking the larger diameter bogey wheel first and inserting it over one of the axles. The raised simulated rivets should be against the side member of the chassis.

Flg. 5 Fitting the suspension units.

Assembly Of The Take-up And Shaft Encoder Brackets

There are two brackets in the kit together with two bearing units. Again, the bearing units are separated from their runners by cutting through the sprues with sharp side-cutters. Looking at the take-up brackets, you'll see that on one face there are five holes - three arranged on a pitch circle around a large diameter central hole. It is through these holes that the main bearing unit is fitted and retained by self-tapping screws onto the clamping plate. This is fitted inside the bearing bracket angle.

The two remaining holes are for the 4BA cap screws which retain the take-up bracket on the chassis. If the infra-red shaft encoder detector (not supplied in the kit) is to be fitted, it is recommended that it is fitted at this time; it locates through the three holes on the other face of the take-up bracket using the $6 B A \times 1 / 4$ " screws and nuts provided.

With both take-up brackets thus assembled, they are fitted to the chassis side-plates through the triangular holes which appear at one end. The bulk of the bracket is on the inside of the chassis, the bulk of the bearing is on the outside. The two 4BA Allen cap screws are inserted through the chassis into the brackets and are left untightened so that the brackets can slide freely along the slots located above and below the triangular aperture.

The $1 / 4^{\prime \prime}$ diameter spindles are next located through the main bearing. The spindle is threaded at each end; the longer portion of thread projects outside the chassis while the shorter remains inside. The shaft is located longitudinally within the bearing by the fitting of a nut at each end, these being tightened against the bearing face with a washer interposed to again allow rotation with a minimum of end-play. Two further nuts are fitted on the inside of the spindle; these are to retain the encoder disc which should be fitted now.

Fig. 7 Mounting the bogey wheels.

The two idler sprocket wheels are those with the smaller diameter holes in their centre. They locate over the spindle and are arranged so that the two dog-couplings at the centre are engaged. The two sprocket wheels thus formed, with spokes and sprocket locations aligned, are tightened by a nut fitted on the outside of the spindle. At this stage, the nut should only be tightened lightly. It is recommended that all these nuts be finally locked into place with the use of one of the locking adhesives available, such as Screwlock. Do not use the more permanent adhesives since removal is then virtually impossible.

Setting Up The Gear Ratio

As supplied by Remcon, the drive units are set up with a ratio of $360: 1$. This we found to be too high and used a ratio of $60: 1$ for our Mobile 2. It is therefore necessary to carry out the simple operation of changing the ratio. Before doing this, or indeed opening up the gearbox for any particular reason, please ensure that the area in which you are working is clean and free from dust. The gears are pre-coated with grease and so easily pick up any pieces of swarf or dust which will cause irreparable damage if left in the gearbox.

The four long screws retaining the gearbox plates must first be removed, and the end cap with the output shaft taken off. Inside there are a series of planetary gear platforms, each one being

stamped with a number. The numbers are $3,4,5$ and 6 and refer to the actual ratio of the platform.

Thus to set up the gearbox to a particular ratio, it is simply a question of choosing the multiples of the number to give that ratio. For example, to set up the required ratio of $60: 1$, then gear platforms 3,4 and 5 are used, since $3 \times 4 \times 5$ equals $60: 1$. In the interests of quietness and operating efficiency it is advisable to put the highest step down, namely the largest numbered platform, nearest the motor drive unit.

The gearbox is reassembled but the screws are not fitted, the gear platforms being carefully held in place while they are fitted to the inside of the chassis member, at the opposite end to the take-up sprocket wheel. The long screws are then inserted through the four holes of the chassis and through the gearbox
sections, and the nuts fitted on the inside and tightened.

It will be noted that the screws now protrude further through the nuts than previously; this is because the number 6 section has been omitted. However, it is not recommended that the screws be shortened since at some later stage you may wish to use this particular section of the gearbox.

Having thus fitted the screws through the gearbox and retained them, the sprocket wheel with the larger boring is fitted over the spindle which now protrudes through the outside of the chassis. A back nut is first fitted to the spindle and tightened up against the shoulder of the thread. The two halves of the sprocket wheel are then aligned and fitted on to the main drive spindle. The sprocket is retained in position by the fitting of the 8 mm nut on the outside.

Final Assembly

With both chassis side plates thus assembled, they can be introduced into the chassis pan and the 11 self-tapping screws used to hold each side plate to the pan. The previously assembled tracks are now wrapped around each set of sprockets and bogies and finally closed by fitting the closing nuts to the side plates and track plates.

It will be noted that the track tension is sloppy at this stage - this is adjusted by pulling on the take-up bracket sufficiently to take out the slop from the top of the track and, at the same time, holding the take-up bracket in this taut position while the cap head screws are tightened through the spokes of the idler sprocket.

Do not take all the slack out of the track; experience and the first few runs will show exactly how tight it should be. The tension should be sufficient to give a good drive without too much noise and without too much 'flailing'.

It will also be found that when the track has been run for a few hours it will require further adjustment. This may happen on two or three occasions during its early life.

General Comments

It will be noticed that when you've finished the assembly, four holes remain at one end of the chassis pan. These are the holes which locate the custom box to carry the manipulator, which may be purchased as a separate item from Remcon. There are also some pieces of aluminium strip left over in the kit. These are for making suitable brackets to retain batteries, speed control units, and any other item that the constructor may, wish to locate positively within the chassis.

AUDIOPHIIE

Ever mindful that people lust after low priced(?) hi-fi sound, Ron Harris has put together a system that will rattle your windows, not your bank manager.

There has been a distinct tendency to nag lately. I've noticed this rising tide of grumbling discourse, via the mail, sweep up the sides of my desk in the past month. When it gets to the top I'll have to open a few more, I suppose. Takes the surprise out of life, though, once you know what's in the envelopes. Far better to leave them closed and mysterious. Besides, it's good exercise climbing over them in the mornings to reach my chair.

Believe it or not this is my way of apologizing to readers for taking so long answering their letters recently. There has been something of a panic on around our offices of late and yours truly has been a little tardy in putting the letter-opener to work.

One clear request that has emerged from the SAE-laden wrappers, on more than one occasion, is for a reasonably priced system to play 'rock' music. I can only interpret that, being of soundly warped mind, as meaning a system NOT intended for classical.

The requirement would seem to be for a 'forward' presentation with a good dynamics and tight punchy bass(?). Detail is to be preserved wherever possible and the sound is not to be 'bright' or hard at high volume levels, at which the system should excel.

Doesn't sound much to ask, just the Earth and half the known Universe, is all. Anyway, never being one to refuse a challenge, here goes. Five hundred quids worth of window-rattling, cat-killing, neighbour-baiting, divorceinducing rock. Loud, clean and detailed. I've tried to avoid the obvious few brand names that are consistently trotted out, on the grounds that it's high time we admitted that not all systems begin in Scotland and end up the same.

Lining Up For Lines

Our line-up is: Thorens TD166 II (with either Shure M97EJ or Coral MC88E cartridges), Trio KA- 50 amplifier and JBL Radiance R82 loudspeakers. The option on cartridges is to allow a little 'fine-tuning' to individual taste. The two cartridges sound totally different, but both offer excellent compatibility with the JBLS.

The Shure provides a more forward and exciting presentation, while the Coral is better at retrieving midrange detail and has a slightly better bass control. I was happy with both. Overall the system will cost you iust under $£ 500$ if you shop prudently. Annoy a few retailers and see what discounts you can get on the whole system.

As both the cartridges in use have been previously reviewed in these pages little comment is needed upon

All Decked Out

On the basis of starting at the beginning and going on to the end, let's look at the Thorens TD 166 II first. This is a new addition to the ' 160 ' range of turntables and retails at around $£ 100$, complete with TP11 II pickup arm.

Mechanically, the deck has a lot in common with its big brother. The basic turntable assembly is sprung on a sub-chassis in a manner identical to that of the 160 . I can find few differences beneath the base plate at all, in fact.

It would appear that the 166 II may well be in for a career of being purchased, only to have its arm amputated! Thorens decks in the past have often suffered this fate, right back to the faithful TD150, which performed sterling service in many a system (and still is in some). From my tests on the bench, and from listening to the deck in both this and a reference system, it seems that the 166 II would be excellent value even if it did not come complete with arm. The sound quality is very good, noise is low and unobtrusive and the floating chassis confers good isolation upon the pickup system as a whole.

The arm arrives packaged in a plastic holder, which turns out to be a mounting gauge as well. Two months ago no manufacturer did anything remotely like this, and now both Shure and Thorens have produced products which use the packaging to align the cartridge. To all things
under heaven there is a season . . . etc.
The Thorens gauge works fairly well, but being a cynic I'd still advise the use of an alignment protractor to check setting up on the turntable. These adjustments are so critical to the final sound that anything that remotely resembles a compromise should be viewed with curled lip and raised eyebrows.

Mat Matters

The TD166 is very well constructed, with a good 'feel' to it. The lift/lower control operates smoothly, if a little slowly. The arm appears to be a rigid enough structure to handle medium or high compliance cartridges and exhibited commendably low friction in both vertical and horizontal planes.

The headshell has an ingenious slotted arrangement to allow adjustment of the cartridge, but I'd like to see more contact area between cartridge body and arm, to allow better control of energy transmitted back from the stylus. This is unlikely to be problem with anything other than low compliance cartridges, however, and as you shouldn't be using these anyway, serve you right if you hit trouble.

Mustn't forget the standard gripe about the ribbed Thorens turntable mat. Surely it can't be easier to make these fancy indented things than a nice simple solid piece of rubber with one indent in the centre to accept the label?

After listening for a while with the standard mat, I replaced it with a 'Dumpa' from my own TD160S, to be returned an improved mid-range and cleaner top end. The Coral MC88E picked out the difference very clearly and suggests that if you go for this pickup, it might be worth raiding the piggy bank to get a better mat.

A de-grilled Radiance R82 - the acceptable face of hi-fi. On the backside, so to speak, you'll find the three-position treble control and some unusual rotary-locking speaker terminals.

Silk Purses Again?

The TD166 II is excellent value and is probably the best turntable and arm available in its price range. I wouldn't be suggesting all these little changes if it wasn't. No good fiddling with the listening apparatus of live pork in an attempt to generate natural fibre cash storage equipment, after all.

The arm is capable of carrying pickups of up to around $£ 50$ in value with distinction and the turntable is easily up to being used with a better arm, once the owner begins to aspire to a fi of greater elevation. The obvious candidate that comes to mind is the SME Series IIIS.

Overall a very good product indeed and a worthy addition to the Thorens range.

Briefs On Pickups

Just quickly past the two pickups, then: Shure's M97EJ features much of the technology of the V15 IV line, with its stylus damper and 'side-guard' protection system. An elliptical stylus is employed and tracking proved best at around 1.75 g (at the stylus - add 0.5 g for the stabiliser assembly). Compliance is fairly high (over 20 cu anyway) and gave no resonance problems with the Thorens.

Coral's MC88E is a low-cost high-output moving coil device, having a lot in common with the MC81, their best known pickup. The 88 E also uses an elliptical stylus, but needed 2.2 g to track cleanly in the Thorens arm. Compliance is lower than that of the Shure and again produced no problems with bass resonance. Both are a good match for the deck.

There is little to choose between them in respect of output voltage either, and the Trio amplifier coped with both easily. Speaking of which

Trio KA-50

With the high efficiency of the R82s, high volume levels need not demand hundreds of watts. Peak delivery still needs to be high, though, to ensure clean transients and that good bass control demanded as part of the intitial specification.

A power of around $50-60 \mathrm{~W}$ was though to be adequate, provided the PSU of the chosen unit did not pack up and go home when asked to play peaks.

The eventual choice was the Trio KA-50, rated at 45 W RMS, but easily exceeding that on all counts. There is no shortage of good amplifiers in this price range and the Trio is a solid, well-made product with a creditable performance and sound quality. As you can see from the photos, the appearance is a little different and you will either love it or hate it. The seemingly inevitable peak meters (LEDs) are at least fairly well integrated to the front panel.

On test the KA-50 delivered 56 W into 8 R from 20 Hz to 20 kHz , both channels driven. Peak power output was around 85 W using my normal tests, although I did go through a few fuses getting that reading! Delivery is well maintained into low impedance loads and distortion is suitably non-existent ($<0.06 \%$ THD; $<0.03 \%$ IM). Output impedance wandered about a little with frequency, but the damping factor never fell below 30, even down into the bass (50 Hz).

Technically impeccable then - but since when have the laps made something that wasn't?

Sound Stuff

In use the amp controlled the R82s well and contributed little to the overall sound of the system, as a good amp should. The mid-range, judged against absolute (and far more expensive) standards is a little muddy at times, and highly complex sounds can get a little

The front panel of the Trio amp has clean lines and a sort of classical simplicity. The photo below shows how tidy the inside is, too.
confused. For the money, though, a very good performance is offered, comparable to those NAD boxes which are (rightly) so highly rated.

There is little more to say about the KA-50 really; it did its job well, gave me no trouble and drove the speakers to budgie-killing levels. What more can one ask?

Speakers To Speak Up

JBL's Radiance series is well known by now, especially amongst those who like their music loud. The units chosen for this system, the R82s, are of reasonable proportion ($21 \frac{1}{4}$ " high by $13 \frac{1^{\prime \prime}}{}$ wide by $11^{\prime \prime}$ deep), and are a two unit design filled with three position treble control. It was the JBL's I tried first, disconnecting my more stately KEF 105 II s to wire them up. Rather like replacing Lord Denning with Perry Mason really - one can be relied on for the truth, the whole truth and nothing but. The other makes life interesting, if only at the expense of absolute honesty!

The R82 proved a good all-round speaker, with a very distinctive character. It is forward and a little inclined to aggression if fed low-quality material. The bass is outstanding for the size of enclosure and was cleaned-up considerably by employing open stands of around 12" height.

The treble control I never used anywhere except in 'normal' setting - it is only a marginal adjustment and makes little real difference to the final sound.

Being of the ported or bass reflex design, the R82 needs an amplifier which is capable of controlling it well. This normally means a high damping factor, to absorb the back EMF generated by the bass cone. The Trio coped well, although as would be expected, the vastly more expensive Denon PA 3000 showed that the JBLs are capable of truly outstanding bass response with an amp of very rigid control.

The pivot system of the Thorens arm - which you may wish
to amputate! to amputate!

In summary, the JBL can be described as an exciting speaker to listen to with good dynamics, well extended bass response and a clean top-end. The stereo image does seem to move about a bit unless you're exactly on-axis to the tweeter, however. Whether you consider this a problem will really depend on the room in which the R82 will be operating.

Systematically

Taken together I feel this system has a lot to offer fof that $£ 500$. Lovers of 'middle-of-the-road' or chamber music are unlikely to get on with the presentation, which is difficult to ignore, to put it mildly! Anyone who listens to records will find a wealth of detail pushed out from the speakers in a very entertaining manner, which is neither bright nor hard (as some skeptics might suspect).

Ample Amplifiers

Next month it's back up the scale again, to look at some high-power (high-cost) amplifiers. We have been working on a comparison of some of the bigger beasts around for a while now and I hope to report in detail next time out.

The units concerned at present - and I will add more if Mission and others deliver in time - are: Hitachi 9500 II (a 150 W per side N -channel MOSFET design), Denon PA 3000 (a 180 W Class A monster that is huge and magnificently constructed), Crimson CK1000 (100 W of low-cost power), Carver's Cube (200 W and too small to believe) and hopefully our own System A amps for comparison. Enough people have asked why we don't review them for me to insert them into the blind listening test to see where they come out!

The same preamp is to be used for all the tests and l've chosen the Denon PRA 2000, which is my opinion is the best on the market, bar none. A detailed review of that next month, too.

The idea behind this assembly of high priced watts is is to see just how far amplifier technology has come and to compare the different methods of obtaining high power.

God knows what's going to happen; I don't! I can only promise it will be interesting. The potential disasters are numerous and the chances of everything going smoothly, negligible!

THE MULTI-PURPOSE TIMER HAS ARRIVED

Now you can run your central heating. lighting. hi-fi system and lots
more with just one programmable timer. At your selection it is designed to control four mains outputs indepandently, switching on and off at pre-ser fimes over a 7 day cycle. e.g. to controd your central connect it to your system programme and set it and forget it - the clock will to the rest.
FEATURES INCLUDE:-
O.5" LED 12 hour display.

Day of weok, am/pm and output status indicators.
4 zero voltage switched mains outputs.
Bartary mains operation.
Bettery backup saves atored programmes and continues time keeping during power failurea. (Battery not supplied). 18 programme time sots.
Powerful "Everyday" furction onabling curtput to switch every day but use only one time set. Usatul "sieap" function-wurns on output for one hour. Direct switch control enabling output to be tumed on Inmediately or atter a spocifired time interva Propramme verification progran me ortry.
(Kit includes all components, PCB, assembly and programming instructions).

HOME LIGHTING KITS Theve kitu contain all necossair componenta and fill
instruetions \& are dosioneo to replace standerc wail TDR300K Remote Control f1430 MK6 Transmitter for above $£ 4.20$ TD300K Touchdimmer \& 700
 LO300K Rotary Controlled $£ 3.50$

MINI KITS ME1 TEMPERATURE Unes LM3919 IC to songe termpera heater. 1 KW mac) and triac to swich MiK2 Solld State Relay lowa for switching motors, lights,
heaters, otc. from logic. haaters, otc. from logic. Opto
isclated with zaro voltage swirchin iscuated with zaro voltage switching,
Supplied whithout trisc HMEBAR/DOT DKSPLAY Dispieys an anslogue vortege on a
linear 10 aiement $\overline{\text { ED }}$ diaplay sa a linear 10 oiement LED diaplay ata a
ber or single dot. Ideal for thermometers, leval indicators. etc. May bo stacted to obtain 20 to 100 edernemt
dispirys. Requires 5 -20V supply. displays. Requires 5-20V supply. MEA PROPOTTIONAL TEMPERATURE CONTHOLER Beszed on the SL4 1 zero volugge
switch, this kit mey be wired to forth switch, this kit moy be wired to form onobling the temperature of an emctosure to be maintained to within

$0.5^{\circ} \mathrm{C}$ Max. lood KWW 0.5C. Max. losd Beped on the ZN1034E Timer IC this kit will gwitch a mains lodion (or off) for a prased time from 20 mins , to 35 hri. Longer or shorter periods may | be roslised by minor componient |
| :--- |
| changes. Max. load 1 KW . EM.E0 |

§ 3-NOTE DOOR CHIME JJ δ Based on the SABOO60 IC the klt is suppied with sll
components. Including loudaposker, printed circuit boord, a pre-drilied box ($95 \times 71 \times 35 \mathrm{~mm}$) and full instruc tiona. Requiras only a PP3 9 V bottery ond puzh-switch to completo. AN IDEAL. PROUECT FOR BEGINNERS. Ordor as XK102.

For a detailed booklet on remote control - send is 30p \& SAE today

OPEN-SESAME*

The XK103 is a general purpose infra-red transmitter receiver with one momentary (normally open) relay con for controlling motorised garage doors and two euxillan outputs for drive/garage lights at \& ronge of up to 40 ft . The unit also has numerous applications in the home fo ewitching lights, N, closing curtains. otc. ldest for age or dizabled persona:
The kit comprises a mains powered receiver, a fou staviring a $9 V$ battery and one opto-isolated solid state switch kit for interfacing the receiver to moins appliances. As with alf our kits, full instructions are supplied. Only $£ 23.75$
Extra Solid State Switch Kits (XK104) and transmithera XK 105) can be supplied.
XK104 $£ 2.40 \quad$ XK105 $£ 10.50$

THE HOME CONTROL CENTRE This Now Rem Col CENTRE

the comforent appliances anywheres you to control up coded pulses into the armchair. The in the house from supply receiver modules mains wiring which transer injocts supply and used to switchnected to the are received Receivers are ad switch on the to the same mains keyboard, followed by aded by means of addressed pushing buttons can by an on means of a a 16 -way. mitter also includen become rather command. Since programme includes a comperather boring. the Since heating. electric favourite micro to intere so you can morning, atc. without rewt, make your switch lights COMPE POSSIBILITES Thing your hou coffee in the pre-drilleds for one tran. The KIT includes all PT THINK transmitter. two raceivers plus a Order as XK112

REMOTE CONTROL KITS

MKE EMPLE INFRA RED TR
plete with hendineld plastic box. Requires a 9 V battery.
E420

Single channel. range approx. 20f. Mains powered with a trisc output to switch loads up to 500 W NWS CODED NNFRA RED THANSMITTER
Based on the SL499. the bit includes all components to make a coded transmitter and oni
Mel 10 Ie-WAYKEVEOARD
For use whth MK8 and MK18 to generate 16 different codes for decoding by the ML928 or ML926
recuiver (MK12) kit. recciver (MK12) kit.15.406
5.40

Mrit 10 Channel + I Anatogua of 12 Receiver
Based on ML922 docoder K. Functions include onstandby output, toggle, control of voiume. tone and lamp brightress. Includes its own msins supply.
MVK 12 16-CHANNGAR RECEVER
MO12 18-CHANNEL RRECEVER
For use with MK8 kit with 16 on/off outputs, which with further interiace circuitry, such as rolays
 MKIS Moina Powerod IR Trinamiktor
Marme antastic MK1712V d.c. MR RECEVER
For use with MK6 or MK16. Relay output with DP 3 Amp change-over contocts, may be used as teched, momentary or "brake beam" receiver, Operates from 6 -13V of Similar to MK8 but with range of approx. 60 Ancillery MOte : MK2 Solld Srate Relay Opto-isolded with zero voltage switching. N
MK15 DUAL LATCHED SOLD STATE REL
triacs required (not suppliod).

We have the SOFTY 2
EPROM programmer in stock at £169

THE KEY TO YOUR SECURITY IS IN OUR LOCK

lectronic git of cor ulieves. house breakers or people tran
lecknic equipment upsets you. we have Just the lit for y 750 ELECTAONIC LOCK KTT includes 10-way keyboard and a special IC which provides a 750ma output to drive a solenoid or relay (not supplied) when four keve are depressed in the
cortect sequence. This gives over 5.000 possible combinations1 The sequence is prowired and may be easily changed by means of a small plug and socket A "SAVE" function is also available en habling the open code to beastored lespeciaily useful in a car when it is teft in 3 garage for servicing as the open code noed not be disclosed). Size: $7 \times 6 \times 3 \mathrm{cma}$. Power Consumption is 40 UA at 5 V to 15 V d.c.
At only $\mathbf{£} \mathbf{1 0 . 5 0}+$ VAT, it will moke :
maller hote in your pocket
Electric Loek Mechaniem
£13.50
than a bunch of keys!
Suitsble for use with existing
door loclas and above electronic
loct tint

24 HOUR CLOCK/APPLIANCE TIMER KIT

on and off at present times onces per

 doy. Kit contains: AY-5-1230 IC display drivers. switchos. LEDs. triacs, PC8s and full instructions.SHORT FORM CATALOGUE - send SAE ($6^{\prime \prime} \times 9^{\prime \prime}$). We also stock Vero, Books, Resistors, Capacitors, Semi-Conductors etc.

CT1000K Basic Kiz
CT 1000 K with wh
(Ready Buit) Overseas Customers
Add $£ 1.50$ (Europe), $£ 4.00$ (slsewhere) for $p \& p$ Send S.A.E. for further STOCK DETAILS
Goods by return subject to availability.
OPEN 10am to 4pm (Sat)

TEL:
01-567 8910 ORDERS
01.5792842 TECHNICAL ARTER 3PM

BRITAIN'S LEADING EXHIBITION FOR ELECTRONICS ENTHUSIASTS
 10-14 NOVEM BER 1982 at:
ROYAL HORTICULTURAL SOCIETY'S NEW HALL
GREYCOAT ST, WESTMINSTER, LONDON SW1.

* COMPUTERS
* AUDIO
* RADIO
* MUSIC
* MAGAZINES

\star LOGIC
* TEST GEAR
\star C.B.
* GAMES
\star BOOKS

MORE
COMPREHENSIVE THAN EVER BEFORE:
\star KITS

* COMPONENTS
* DEMONSTRATIONS
* LECTURES
\star SPECIAL OFFERS SPECIAL TICKET OFFER
For the fifth consecutive year BREADBOARD is back with even more to offer electronics enthusiasts.
This is the best opportunity to update yourself on all the latest equipment, ideas and developments. COME AND SEE THEM IN ACTION.

Book your tickets now at this special low rate.

THE EXHIBITION YOU CAN'T AFFORD TO MISS

DESIGNING MICRO SYSTEMS PART 2

Bemused by those funny-looking groups of hexadecimal numbers that microprocessors use for a language? From voltages to binary, binary to hex, and hex to English - Owen Bishop does the translating.

In describing the many and complex circuits which go to make up the CPU and its peripheral devices we often refer to information being transferred from one to the other. Last month, it was explained that such information consists of either instructions or data. In order to understand how the several parts of a computer interact to form an operating system we need to go into more detail about these instructions and the data. In this month's instalment we pause from considering electronic aspects in order to discuss the nature of the information and the form in which it is transferred.

Information Technology?

The MPU and other integrated circuits composing the micro respond to only one kind of information. This is an electrical signal, a voltage level present on one of its input lines. To the input circuit of the IC, this level is either 0 V (or so close to 0 V that it counts as 0 V), or +5 V (or high enough to count as +5 V). An instruction given to a $\mathrm{Z80}$ MPU is received as a set of such voltages on each of the eight lines of the data bus. For example, the Z80 might receive a set of signals as set out in Table 1. When (and only when) these signals are present, internal logic within the Z80 is set and causes every flip-flop of the accumulator register to change state. Every 'set' flip-flop is reset, every 'reset' flip-flop is set

The description above is in purely electronic terms, which is reasonable enough, for a Z80 MPU is a purely electronic device. When we use it in a computer and communicate with it through the agency of a keyboard, using a high-level language such as BASIC, we tend to forget that it is only a rather complicated electronic circuit. In order to make it do anything at all we have to communicate with it by sending it information (ie what we want it to do) in terms of electrical signals.

Coding For Clarity

Having looked at this from the MPU's point of view, let us look at it from ours. We are somewhat cleverer than CPUs and can take advantage of this to make things simpler for ourselves. For example, it is a cumbersome procedure to state: "To make each 'set' flip-flop become reset, and each 'reset' flip-flop become set, place +5 V on line D0, +5 V on line D1, ..., and $0 V$ on line D8." We need a way of symbolising the actions we want performed on the flip-flops, and we need a way of symbolising the signal levels to be applied to the data bus. In short, we need codes which will relate our requirements to the electronic activities of the computer. Mathematics provides us with ways of coding operations performed on the accumulator or other registers. The information sent on the

	TABLE 1
DATA LINE	vOLTAGE LEVEL
D0	$+5 V$
D1	$+5 V$
D2	$+5 V$
D3	$+5 V$
D4	$0 V$
D5	$+5 V$
D7	$0 V$
D7	$0 V$

data bus is coded in another way, known as machine code. These codes make it much easier for us to follow the workings of the computer, to tell it what to do and to discover what it has done. They make it easier for us to discuss computer activities among ourselves. But keep in mind that these codes are used for our convenience to symbolise events which are essentially electronic.

Bits and Bytes

As mentioned last month, the actions of the electronic circuits of a computer are binary in nature. Voltage levels are 0 V or +5 V ; intermediate voltages are not recognised. Flip-flops are either set or reset; there are no other stable states. Consequently, the simplest way of symbolising voltage levels is to represent them in binary form.

Conventionally, 0 V is represented by the numeral ' 0 ', while +5 V is represented by ' 1 '. Using this convention, we only have to write out a row of eight such binary digits to represent the eight voltage levels on the data bus. In doing this we use another convention, that the digits refer to lines D0 to D7, in numerical order, written from right to left. We usually split the eight binary digits (or bits, a shortened form of the words 'Blnary digiT') into two groups of four bits each. A group of eight bits is referred to as a byte. We can write out the voltage levels of Table 1 as a single byte:

00101111

A set of bits representing a set of voltage levels which are interpreted by the MPU as an instruction is called an op code.

The action of flip-flops is binary too - we can represent the state of the flip-flops of the accumulator or other registers as a set of bits. The accumulator of the commonly-used MPU' has eight flip-flops, so its contents may be represented by a byte. The Z 80 and 6502 are of this type. If the contents of the accumulator are, say, '0101 1100', the op code 00101111 instructs the Z80 to change every ' 0 ' into a ' 1 ' and every ' 1 ' into a ' 0 ', so that the contents become '1010 0011'.

Such an operation has a mathematical name; we call it complementing. If we symbolise the accumulator contents as A, and the inverse of its contents as \bar{A}, the whole operation can be represented by the equation:
(A is replaced by $\overline{\mathrm{A}}$).
We can now state what happens in much simpler (to us!) terms:

Op code 00101111 causes operation A $-\bar{A}$
To the Z80, it is still a set of voltages causing a change of flip-flops.

Helpful Hexadecimal

Putting op codes into binary form is certainly simpler than referring to voltages in terms of their actual values, but it still has features which are inconvenient. For instance, writing out strings of 1 s and 0 s is tedious, and readily subject to error. It is not easy to notice the difference between 10011101 and 1001 1001, and the situation becomes worse when we are dealing with 16 -bit codes. Although many of the early systems used switches to feed in a series of bits to the data lines, we prefer not to have to key in each bit separately. There is a simpler way of doing this.

TABLE 2

BINARY
0
1
10
11
100
101
110
111
1000
1001
1010
1011
1100
1101
1110
1111

HEXADECIMAL	DECIMAL
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
A	10
B	11
C	13
E	14
F	15

The hexadecimal code is a short-hand way of representing the binary code. More than this, it is a number scale in its own right. Whereas the binary scale is based on powers of two, and has only two kinds of figure (0 and 1), the hexadecimal scale is based on powers of 16 and has 16 kinds of figure. We already have 10 kinds of figure (0 to 9) available in our common decimal scale and, rather than invent six new symbols, we have adopted the first six letters of the alphabet for use as figures. Table 2 shows how this is done.

By using hexadecimal coding we are able to save time and confusion in writing out lists of instructions for the computer (programs). We are also able to make use of a 16 -key keyboard for entering these instructions quickly. Against these advantages there is the disadvantage that we begin to lose sight of the binary nature of the operation of the computer. The individual Os and is no longer appear in our reckoning and we are one stage further removed from the working procedures of the MPU.

One source of confusion in using several number scales is that we must be careful to state which scale we are using. For example, the digits ' 11 ' may represent 'three', if they are in the binary scale, 'eleven' if they are in the decimal scale, or 'seventeen' if they are in the hexadecimal scale. In this article we will write all binary numbers in blocks of four bits, and begin them with at least one zero. All hexadecimal numbers will by followed
by the letter H. Thus '0011' represents 'three', '1Y' represents 'eleven', while ' 17 H ' represents 'seventeen'.

Giving Instructions

A byte can represent any number from zero (0000) up to 255 (0000 11111141). It is therefore possible to specify up to 256 different instructions for the MPU, using just one byte. Such a set of op codes is called the instruction set. Examples of the instruction set of the Z80 are listed in Table 3. The $Z 80$ can respond to more op codes than listed there; in fact, its instruction set contains over 500 different instructions. This is more than 256 , so some of these are coded by using two bytes. Such a large instruction set makes it a very powerful MPU.

On the other hand, the 6502 has a relatively restricted set, consisting of only 148 instructions, yet remains a popular MPU in spite of this. There is no doubt that the limited set makes it easier for a programmer to get to know how to use the capabilities of the 6502 to the full. Needless to say, the op codes used by different types of MPU do not mean the same thing. When a $Z 80$ receives the op code 25 H it subtracts 1 from the contents of its H register; in other words, it decrements H . If you present this same op code to a 6502 it performs the logical AND operation on all bits in the accumulator.

Taking Several Bytes

The previous example raises the next point to be considered. An operation such as 'complement' or 'decrement' involves only the register concerned. When we ask the 6502 to AND its accumulator, the MPU must be given something to AND it with. The same applies for instructions such as 'add'. If something is to be added to the accumulator, we must tell the MPU what to add.

TABLE 3	
Z80 OP CODE	INTERPRETATION
00	Do nothing
04	Increment register B
05	Decrement register B
25	Decrement register H
$2 F$	Complement accumulator $5 A$ $5 E$
Load register E with contents of register D Load register E with the contents of a memory register, the address of which is stored in registers H and L. 76 Halt Enable interrupts	
FB	

The instructions which have been mentioned earlier have consisted of a single op code. Most instructions require the op code to be followed by one or more bytes to supply the data upon which the MPU is to operate.

As an example, consider the op code 25 H , which tells the 6502 to AND its accumulator with something. When the 6502 has received this instruction, the next byte fed to its data bus inputs must be a byte which specifies what to AND the accumulator with. The 25 H op code is what is known as a zero-page op code in that the single byte which follows is to be taken as an address located in page zero of memory. Since the address bus has 16 bits, it requires a double-byte to specify any given address. Zeropage addresses in a 6502 system are those which begin with 00 H , for example, the address 0032 H . With zeropage addressing we do not need to send the MPU the first byte $(00 \mathrm{H})$ for it already knows from the op code that a zero-page address is forthcoming. We need only send the second byte (32 H). Thus the full instruction is ' 2532^{\prime}, consisting of op code $(25 \mathrm{H})$ followed by a single operand $(32 \mathrm{H})$. On receiving the second byte the 6502 fetches the
contents of address 0032 H from RAM, and ANDs it with the contents of the accumulator, leaving the result of this logical operation in the accumulator.

Using The (Post?) Code

Zero-page addressing is a feature of the 6502 which allows a certain range of addresses to be passed to the MPU in an economical way. As a second example, suppose that the value to be ANDed with accumulator was stored not in page zero $(0032 \mathrm{H})$, but at an address higher in memory, tor example, 2D 32 H . This address needs two bytes to specify it, so after the MPU has received the AN. Ding op code, it must wait for the next two bytes before proceeding to carry out the instruction. The op code for this procedure is now $2 \mathrm{DH}(0010$ 1101) instead of 25 H (00100101) as before. Looking at the binary code (which is what the MPU is looking at), we see that data line 3 is at +5 V now instead of at 0 V , as before. The effect of this is to make the MPU wait for two bytes and put them together to make up the full 16 -bit address. Then it addresses that unit of memory, fetches the value stored there and ANDs it with the value present in the accumulator.

This second example is a triple-byte instruction, and would be written out as '2D 2D 32'. The first byte (2DH) is interpreted by the MPU as an op code. The next, though it has the same hexadecimal value, is not taken as an op code but as the first byte of a double-byte address. The MPU is able to distinguish between instructions (op codes) and data (eg addresses) by their context. It is rather like our ability to distinguish between the meanings of the word 'lead' in these two sentences:

1) He mended the lead pipe from the kitchen sink.
2) He played the lead guitar in the local pop group.

We know which way to interpret the word 'lead' by its context; by its relation to the other words which occur with it in the same sentence. Similarly, the op code 2DH and the partial address 2DH give rise to precisely the same set of voltages on the data bus, but they are interpreted differently by the MPU according to what has gone before. Information on the data bus can therefore be an instruction (op code) or data (eg an address).

For Immediate Attention

An address is one kind of data, but this is not the only kind. We have mentioned that the MPU fetches a value from a location in memory in order to AND it with the accumulator. This value is transferred from that location to the MPU as a byte on the data bus. Data can include values of this kind, to be used in arithmetical or logical operations, or it might be a value which is part of an instruction. For example, the op code 29 H is yet another instruction to perform the AND operation, but this one ANDs the accumulator with the next value to appear on the data bus. This is often called the intermediate mode. Thus the instruction '29 16' tells the MPU to AND the accumulator with the value 16 H . The MPU knows that 16 H is a value, not part of an address, because of its context: it follows the op code 29 H .

The op code DOH causes the value which follows it to be added to the value held in the program counter register. The effect of this is to make the MPU jump from one part of its program to another. This op code is only obeyed if a given condition holds true. If the result of the most recent operation has left 00 H in the accumulator, the jump is effected. If not, the instruction is ignored.

Talking To The Chips . . .

Ultimately, the only way of sending information to the MPU is by means of voltages on the data lines. The only way that the MPU can send information to other parts of
the micro, and to the world outside (including us) is the same. In the simpler micro systems, including most of those specialised systems used in control applications (eg automatic washing machines and other robots), all communication is at this level.

If the system has a keyboard, it is often a 16 -key hexadecimal one with perhaps a few additional function keys. Readers may remember the Sinclair MK-14, the popular but primitive forerunner of the ZX80 and ZX81. This had a 16-key keypad and a reset button. Visual output was by means of an eight-digit seven-segment LED display, which displayed the figures 0 to 9 and the letters A to F. Unless you were using the tape-recorder input, one had to load a program by laboriously keying in machine code. To write one's own programs it was essential to master the machine code of is MPU, the National SC/MP 8060.

. . . In Machine Code . . .

Nowadays such systems are mainly used for industrial control applications (eg Acorn System 1) and for development of programs to run on other such systems (eg Softy). Most people piefer to be able to instruct the MPU by using a higher level language, such as BASIC, and to receive its output in graphical form on a monitor screen.

At the input and output to the MPU only machine code can be used. Since it is directly understandable by the MPU, a machine code program runs faster than one in a higher level language; it also takes up less storage space in memory. The monitor program stored in ROM (see next month's article) is in machine code. It is common for complex and lengthy software to be in code, simply to make it possible to cram it into RAM. An example is the SCRIPSIT word-processing program which is being used in preparing this article.

Many games programs such as Adventure games and the several versions of Chess are in code. Great complexity can be packed into a reasonable amount of memory and they do not take long to respond to the player's commands. Many utility programs (eg renumbering programs) are written in code because, although they are short and simple, they must be made as compact as possible in order

As an example of the MPU as a general purpose logic chip, we'll consider one operation. The logical operation called AND can be summarised like this:

INPUTS	
A	B
0	0
0	1
1	0
1	1

OUTPUT
Z
0
0
0
1

Output Z is 1 if (and only if) both input A AND input B are 1, otherwise Z is 0 . Many readers will be familiar with the TTL or CMOS logic gates which perform this operation for two (or more) inputs. The 74LS08 has four two-input AND gates; the CD4081 is its CMOS equivalent. When the $\mathbf{Z 8 0}$ CPU receives the instruction $\mathbf{2 9 H}$, its logic circuits in the arithmetic logic unit (ALU, see last month) are configured as eight two-input AND gates. Each gate deals with one bit. The eight bits are ANDed simultaneously: if the accumulator holds

00101101
And the next byte on the data bus is

10110100

then the result of ANDing the corresponding bits is
00100100
This result then replaces the value previously held in the accumulator.
to leave plenty of vacant space in memory for the programs on which they are to operate.

With An Interpreter . . .

One factor in the rise in popularity of the microcomputer is the ease with which people unskilled in (or even totally ignorant of!) machine code are nevertheless able to program the MPU and make it do their bidding. This involves the use of a high-level language, the most popular of which is BASIC. When a BASIC program line is typed in, it is stored in memory. To save space, the words are usually coded so that each word or variable requires only one byte; the handbook usually lists the system of coding used. This gives yet another possible interpretation of a byte on the data line. For example, in the ZX81, the code FBH may be interpreted as:

- An opcode - enable interrupts
- A value - equivalent to 251 in decimal
- A code for the BASIC command 'CLS' (clear screen) The code is interpreted according to context, which includes the mode in which the computer is operating at that time.

Once a BASIC program has been loaded and the RUN command given, the MPU reads the program from memory one byte at a time. It cannot operate directly on the bytes as it reads them. If the byte is FBH, for example, there is no way in which the MPU can directly clear the screen. At this stage the MPU is under the control of a special program called a BASIC interpreter. The interpreter contains the complete set of machine code instructions for the operation of clearing the screen. When FBH has been read, the MPU goes back to the interpreter program to find out what to do and how to do it.

Although the MPU is working just as fast as ever, it has to go back to the interpreter program at every step in order to find out what to do. This is why a program takes so much longer to run when it is written using a BASIC interpreter. The interpreting is done line by line and, moreover, has to be repeated every time the program is run.

LOGICAL

OPERATIONS IN THE MPU

. . . Or By More Basic Means

A faster method is to use à BASIC compiler program. Once the program has been written, the compiler goes through it and converts it into machine code. This is done once and for all, after which only the machine code program is used. The difficulty with this approach is that the program must be recompiled if even a small change is to be made. For this reason most people prefer to put up with the slowness of an interpreter.

Many microcomputers have the BASIC interpreter already stored in ROM, so that it is available immediately the micro is switched on. Other micros have no resident language program. If you want to use a high level language, you have to load the interpreter or compiler program into RAM before you are able to enter your own programs in the high level language.

Those who prefer, or are forced for various reasons, to program in machine code can make use of yet another type of program called an assembler. Instructions to the MPU are typed out in a symbolic form, consisting mainly of abbreviations of the operations which are to be performed. These abbreviations are generally known as mnemonics, which means 'to help the memory'. For example, 'decrement register H^{\prime} is written as 'DEC H^{\prime}. When the assembler is run, the op code 25 H is assembled into the machine code program. The assembler can convert decimal numbers to hexadecimal, removing a constant source of headaches for the programmer, and can calculate the hexadecimal values required in jumping from one part of memory to another. Provided it is well written, an assembler can be of great assistance, yet it is not too far removed from machine code. The programmer is dealing with particular registers within the MPU and specifying each step of operation of the MPU. If it is not well written (and some assemblers are not), then one might just as well learn the commonly-used op codes, have a table of op codes handy, and work out the hexadecimal values on a scrap of paper. Once you have gained a little insight into its peculiarities there is really nothing quite as satisfying as talking direct to your MPU in its own language!

MASHMR THTCHRONICS NOW! The practucat way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any time, for advice or help during your
work. A Certificate is given at the end of every course.
You will do the following: Build a modern oscilloscope
Recognise and handle current electronic components
Read.draw and understand circuit diagrams

- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/computer
 equipment

NewJob?NewCareer?NewHobby?Getinto Mlectronics Now!

RUGBY CLOCK part 2

MSF Rugby is your personal atomic clock/calendar. We conclude this project with the full circuit and construction details. Design and development by Stephen Makumbi.

Construction should be straightforward for a reasonably experienced constructor, but if you haven't constructed a kit before, it is recommended that you buy the ready-built version. The PCBs are double-sided and plated-through so you'll have to buy those even if you want to assemble the components yourself (see Buylines).

It is essential to use a low power soldering iron (15 W). When soldering plated-through holes it is not necessary to have small mountains on top of the joint; sometimes a little crater is satisfactory. The way to do this is to apply the soldering iron on the joint to be soldered, leave it there for about 3 seconds then apply a very small amount of solder. The solder will be drawn through the hole (capillary action), and provided the hole looks filled, the joint should be strong enough.

Starting with the main board, solder all IC sockets then the rest of the components, with the crystal last. Fit the transformer and attach the mains lead but do not insert the ICs yet. Note that one of the transformer fixing screws is attached to the chassis so you will only fit the other screw at this stage. Fit a mains plug with a 3 amp fuse and connect the earth lead to the wide earth track on the PCB round the

The receiver board, mounted in its screened enclosure.
transformer. Connect the mains and switch on. Check that all the voltages from the power supply are correct.

On Display

Next the display board. Follow Fig. 1a to fit the edge connector. Count off 25 soldercon pins and cut the strip; do not remove the top connerting bar yet. Solder the pins into one row and do the same for the

Fig. 1 How to mount the LCD display (a) and the switches (b).
other. Now, using long nosed pliers carefully twist the top connecting bar of the pins from side to side until they snap off.

Follow Fig. 1b to fit the switches They remain hanging in the air until fixed to the front panel of the enclosure.

Next comes the receiver. This should also be quite straightforward. Fit all components following the component overlay diagram, again starting off with the IC sockets.

The aerial is wound on a standard long wave ferrite rod; the long wave winding is wound round a cardboard former. Remove the winding and on the same cardboard wind 400 turns (over the entire length) using 26 swg wire. Use the metal tags of one end to secure the ends of the winding. Attach to this at least a one metre length of double core insulated cable, and solder the other end to the receiver board (secure the screen to an earth track). It is highly recommended that the receiver is fitted inside a metal box for screening purposes. Also two partitions made out of PCB board should be fitted inside (see overlay diagram). If a box is used then these should be soldered on to the sides of

Fig. 2 Component overlay for the main board of the ETI Rugby Clock.

Fig. 3 (Above) Overlay for the display board.

Fig. 4 (Left) The component overlay for the receiver board, showing the connections to the home-wound aerial.

PROJECT : Rugby Clock

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$	
R1,2	1M0
R3,31,33	1k0
R47,9-13,	
18-20,22,	
25-27,29	10k
R8,14-17	100k
R21	300 k
R23,24,30	2M2
R28	470k
R32	2k2
R34	4k7
R35	10R

Potentiometers
PR14 $\quad 47 \mathrm{k}$ miniature horizontal preset
PR5 10k miniature horizontal preset

Capacitors	
C1	30p ceramic
C2,20-22,	
24,25	2 u 216 V tantalum
C $2,5,14-16$	22 n ceramic
C4,18	10 n ceramic
C6,9,10,11-13 100 p silvered mica	
C7,8	50 p ceramic
C17,19	$4 \mathrm{n7}$ ceramic
C23	4700 u 35 V axial
	electrolytic
C26	100 u 16 V tantalum
C27,28	47 u 16 V tantalum
CV1	30 p trimmer
CV2	100 p trimmer

Semiconductors

IC1	280 CPU
IC2	2732
IC3	4118
IC4,19	74LS138
IC5	40498
IC6	74 COO
IC7	$74 \mathrm{CO4}$
IC8	4070B
IC9-14	4056B
IC15	280 CTC
IC17	280 P1O
IC18	74C90
IC20,21	TL074
IC22	NE567
IC23	7805 (TO3)
IC24	$78 \mathrm{L05}$ (TO92)
IC25	78 L 12 (TO92)
IC26	ICL7660CPA
2D1	2V7 400 mW zener
ZD2	5 V 400 mW zener
BR1	1A5 bridge rectifier

Miscellaneous

XTALI $\quad 2 \mathrm{MHz}$ crystal
SWT-5 miniature push-buttons
TX1 PB-2720 buzzer
PCBs (see Buylines); LCD six-digit display; 12 V 500 mA mains transformer, single 54-way $0.1^{\prime \prime}$ edge connector; dual 32 -way edge connector, 26 swg enamelled copper wire; long wave ferrite rod assembly ($3 / 8$ diametert IC sockets and soldercon pins; case to suit.

BUYLINES

A complete kit of parts including the PCBs and case will be available from Technomatic Ltd, 17 Burniey Road, London NW10 (phone 01-452 1500). Technomatic will also be supplying readybuilt units. Prices are $£ 120$ plus VAT for kit, E145 plus VAT for the ready-built version. People who do not wish to buy the complete kit can get the EPROM for E12 and the set of three PCBs for $£ 25$.
the box, otherwise they should be connected to the edges of the PCB (earth track) with short pieces of solid core wire. Finally, make all the interconnections between receiver and main board.

Setting Up

You will need an oscilloscope and possibly an accurate signal generator. Insert all ICs, connect the display board and turn off your television. Move the aerial winding about 3 mm from the end of the ferrite core, and extend the cable fully. Turn PR1-4 to about "5 minutes past", then turn PR5 to about $1 / 4$ turn from left (see layout diagram).

Switch on the mains. If the buzzer sounds press the reset button. The display should be filled with 6 dashes and two colons should be in the middle.

If you have an accurate signal generator, set it to precisely 60 kHz and wrap the output probe round the aerial. A very small amplitude indeed is all that is required. Then adjust PR1-4 for maximum amplitude with the probe at the test point. If you do not have access to a signal generator then put the oscilloscope probe at the test point and adjust PR1-4 until a pulsating signal appears. Adjust the position of
the aerial winding for maximum output, and then continue adjusting the presets for maximum amplitude.

The minimum signal should be about 200 mV peak-to-peak on the test point. Maximum is limited by the point at which the receiver starts oscillating. If this is the case at the point of optimum tuning then reduce the value of R21 slightly. On the other hand if the signal is below 200 mV after being tuned properly, then increase the value of R21 until it is above 200 mV peak-to-peak, say 300. When using a properly screened box amplitudes of above 3 V peak-to-peak are possible! The higher the amplitude the better the ACC effect.

Now carefully turn PR5
clockwise until clear blips are heard from the buzzer every time the carrier is turned off. If you have reached this far well done! - sit back and watch the display. The CPU is now searching for the synchronising pulse. When it thinks it has found one, it will generate a higher tone and an attempt will then be made to read the fast serial code. If it is validated then the right time will occur and the clock will be in Mode 1. If it's not OK (parity error, etc) then the lower tone blip will resume, meaning that it was a false synchronisation pulse (possibly noise).

SPECIFICATIONS

MODE 1 (TIME)
Face 1:

Face 2:
Face $3 ;$
Hours, minutes, seconds (12/24 hour format), default is jumper-selectable.

Face 3; Day of week, alarm tune Day of week, alarm tone on/off, AMMPM indicator.
Elapsed time since transition to automatic crystal back-up.
Face 5: Time difference (GMT/UTC).
Back-up: Automatic crystal clock back-up in the absence of a readable signal.
Error
checking: parity, comparison of atomic time with crystal clock, validation of max/min value of each unit where applicable.
Outputs: All the above information is available on six decoded, unlatched ports.

MODE 2 (ALARM)
General: Eight independent alarms with tune; eight programmable output lines in conjunction with the alarms.
Phase 1: Display/set alarm times (eight faces)
Phase 2: \quad Display/set port lines (eight faces)
Phase 3: Display/enable/disable alarms or ports (eight faces).

Outputs:
maximum of 127 ports. 12 bars of designer's composition, if alarm tone enabled.

MODE 3 (STOPCLOCK)
Ceneral: Stack-orientated upcounter, up to 240 lap times may be stored; laps viewable while count is in progress.
Phase 1: Advance top of stack and reset new top of stack (start/stop).
Phase 2: View next time on stack (view laps).
Phase-3: Advance top of stack and copy the previous one (latch lap).
Phase 4: Display top of stack (view current count).
Resolution: $\quad 1 / 100$ th second
Maximum
count
99 minutes 59.99 seconds.
Output Current count is output on three decoded, unlatched ports every 10 mS .

COMPUTER CONTROL

It is possible to disable the switch debounce software, enabling the unit to be controlled by extemal logic or computer.

Fig. 5 Circuit diagram of the main logic section, with the master clock, address decoding and display driver circuitry.

Fig. 6 The CTC and PIO section of the main board,

HOW IT WORKS

The first CTC in IC15 (CTC 0) generates pulses at rate of 1 kHz on its output pin (7). This is used by the unit as the main timebase. This 1 kHz is fed to the input of the second CTC, which generates an interrupt in multiples of 1 millisecond depending on the initial time constant loaded in its counter (1 count for 1 millise cond)

During the initial synchronization period, this varies considerably depending on the required delay. After synchronisation the delay is set permanently to $\mathbf{5 0} \mathrm{mS}$ ($\mathbf{5 0}$ counts).

From now on every event occurs on a 50 mS boundary ie, the entire second is divided into 20 equal slots, each of 50 ms . Each slot has its own task. Some tasks are carried out at certain slot numbers in a certain second. For instance, in each second between 17 and 51, at the third slot (150 mS) the input data is sampled to get the time and date information. Since this slot is not shared by an other task, the relevant software takes its time about it by implementing a software filter to reject all but the highest noise levels in the signal. This is done by taking samples over a period, counting separately the number of 1 s (carrier on) and 0 s (carrier off) and at the end using the greater of these two counts to decide if the bit is 1 or a 0 .

To explain how the back-up function works we will start off when the clock synchronises on the fast time code on second 0 as described in the text. After verification (parity, BCD validity etc) the time is displayed and the seconds counter (and thus display) advanced every 20th slot (1 second). As it advances through the minute, one of the clock's tasks is to pick up the slow time signal and store it.

At the end of the 59th second, this saved time should equal to the current time plus 1 minute (remember it is still the 59th second). If this is so, then CTC 1 will be stopped. At this time the carrier level should be high, ready for a low which starts second ' $\mathbf{0}$ '. The software loops until the carrier goes to a low level and initiates the

50 ms CTC, thereby synchronising with the radio time. The new time is then once again latched into the display.

If the two times don't match due to a noisy or non-existent signal, then CTC 1 won't be stopped and continues on counting as a normal crystal-controlled clock, until the next 59 th second, when once again a comparison is made.

The CPU will respond to a switch request (a) if a time slot does not have a task delegated to it, (b) if a task is finished inside the 50 mS of allocated slot time, since in those two instances the CPU will be executing one of its only two instructions(!) in the whole of the main program, namely MAIN: EN

Enable interrupt
IR, MAIN
; Jump back to Main
The rest of the program is comprised of interrupt routines which would interrupt this two instruction program.

When the alarm buzzer is active then every 50 mS is utilized by the tone generating software even if the next sound is silence! CTC2 times out at a rate which will be twice the required frequency of the tone, the pulses being output at pin 9 of IC15. These pulses are very short and would produce a harsh sound in the ceramic resonator, thus they are fed to IC18 pin 14 where they are divided by 2 to get the proper frequency as well as giving them an equal mark-space ratio. The other half of IC18 is a divideby-5 counter with input from IC15 pin 7 (1 mS pulses) and output at pin 11 to the input of CTC 3. This division is not implemented in the present application.

CTC
The CTC contains four independení downcounters. The initial count is softwareprogrammable and is automatically reloaded on reaching zero. The counters are decremented by one of two signals:

- The system clock after being divided by either 16 or 256
- An extemal clock applied on the clock/trigger input.

In either mode each channel (except channel 3) generates a short pulse on its output pin when it reaches zero. At the same time it can generate an interrupt request if programmed to do so (including channel 3).
PIO
The PIO provides $161 / \mathrm{O}$ pins divided into ports A and B, each having eight bits. If programmed to run under 'bit mode', a lot of wonderful tricks can be performed. For instance, each bit within a port can be programmed as an input or output; furthermore, all the bits that are programmed as inputs can be programmed to generate an interrupt request to the CPU, on either a negative or positive transition of the input signal. This proved handy in this application because it enabled the same port to be used for monitoring the condition of the switches as well as outputting control levels for the decimal point and colon on the display. This leaves port B completely free for mode 2 programming.
POWER SUPPLY
The 12 V across T 1 secondary is rectified by BR1 and smoothed by C23. IC23 produces 5 V for all the logic and part of the receiver while IC24 produces $5 \mathbf{V}$ for the receiver's bandpass ICs.

IC26 is a DC-to-DC converter which produces an output voltage at pin 5 of opposite polarity to that present on pin 8. This IC was used instead of a conventional centre-tapped transformer splitter in order to reduce the size of the transformer, and save space which would have been taken up by another largish smoothing capacitor.

This IC has poor regulation and to overcome this problem, a higher voltage than is required is input at pin 8 (9 V 3) producing approximately 9 V . This is then regulated by $Z D 2$, a 5 V zener diode. If the output of IC25 was connected directly to pin 8 of IC26, IC2 2 would be damaged since the maximum input voltage is 10 V . ZD1 is added to drop this by 2 V 7 volts to a safe level.

Fig. 7 The receiver board. Two positive supply rails are used to prevent switching spikes on the op-amp supply.

Fig. 8 The power supply section.

INFRA RED IMAGE CONVERTOR typa 9600 (CVITA) 1% "̈ die. Requiras single low current 3 KV
£ 12.50 es. 10 oft f 100
E1250 es. 10 oft f100.

 CENTAUR FANS 115 V Size $4 \% \times 4 \% \times 1 \% / 2{ }^{\prime}$. New 54.50 os. Secondh3nd $E 2.50$ es.
New 25pea. 10 off 2
PULSE TRANSFORMEAS. Sub min Size $4 \times 5 / 16 \times \times$ "Secondary centro tapped. New. Suitable for Thyristor triggering. 20p ea. $10 \mathrm{off} \mathrm{E1.80}$, 100 off E15.
wih puiley \& semiconductor speed contra. New el ea. OIAMOND H CONTROLS ROTARY SWITCH Single pole 10 way. Printed circuir mount New $10 \mathrm{p} 6 a .100$ off E7. 1000 off $E 50$
STEPPING MOTORS - $200 \mathrm{Sta} 20 \mathrm{oz} /$ in torque. 12/2dV input. 5 wire.
STEPPING MOTORS - 200 Steps 2002 /in torque 120 V hpur 3 wire. C 4 STEPPING MOTORS - 5 Vott 3.3 Amp operation 2 Wire. PPS 0.220 RMP 0-250. Used f16 ae
work on 5 V f1.50 es. 5 for 5 Es .
SINGLE PLY TELEPAINTER PAPER rolls for E12 PEP E3. 60 .
BLACX RIBBONS FOR TELEPRINTERS 75 p each or 6 for 54
MIN KEYBOARD Push contacts, marked O-9 \& A-F \& 3 optional. 51. To 00 KEYBOARO PAD Size $3 \times 2 \%_{2} \times 2^{\prime \prime}$ high with 12 Alms Reed Switches Blue keys marked in green. 0.9 \& a star with one blank. $£ 4$ ea. 5 off $£ 15$.
PEP 2.50 . DONT TAX
隹 RAPID DISCHARGE CAPACITORS 8 mtd 4 KV E5 each. PGP $£ 2$.
 30 for El
 One sype 1.50
CAPACITORS at at kin each 3300 pf : $220 \mathrm{nf} 250 \mathrm{~V} ; 0.01 \mathrm{mfd} 160 \mathrm{~V} ; 0.1$ uf 400 V REMO TV TYpe MULTIPLER. Two high voltage outputs \& focus E1 each 10 for 28 .
RANCO 250 V IAA THERMDSTATS with Control Knob calibrated $50-200^{\circ} \mathrm{C}$ F2.50 anch MICROPHONEARPIECE INSERTS. Ex Min. Erand New wrapped. Tho ea. 10 off 56.
TRANSFORMERS - Al Brand New
Auto 240 V Inpur 115 V 1 Amp output $\mathrm{f1} 1.26$ es.
240 V Inpul Sec 6 V 1.86A. Size 2%. $\times 2 \times 2^{\prime}$. Good quality $\mathrm{f1.50} \mathrm{ee}$.
240 V input Sec 12 V rociMA. Size $60 \times 40 \times 42 \mathrm{~mm} 50 \mathrm{pea}$.
240 V Input Sec $12-0.12 \mathrm{~V} 50 \mathrm{MA}$. Size $53 \times 45 \times 40 \mathrm{~mm}$ हI ea.

 Sub.Min $0-120$.
100 off f 46 .

TOROIDAL $0-115-230 \mathrm{~V}$ input. Dutput $13.5-0.13 .5 \mathrm{~V}$ rated 8 VA . 51.70 ea.
10 off 515
TOROIDAL $0-120-240 \mathrm{~V}$ input Output 0.12 V ; 10VA per winding. Encapsulared Idonticai to R.S. Components at t9.40. OUR PRICE E5 ea.

TELEPHONES - PEP E1.50 ea. 5-10 units E6. Over by arrangements. 708 style Black, Grey, Blue. Green £5.50 ea. 10 off £45. Discoloured $£ 4$ ea.
10 off E27.50.

SOME
 GRquire.

TRANSISTOR INVERTOA. 115 V AC 1.7 Amp input. Switching at 20 KHZ . Output windings from Pot Core. Can be rewound or broken for tomponents.
Cirvui: Supplied. $\mathbf{E 1 . 2 5}$ es. Ptp $£ 2.10$ otf $£ 10$ Cartiage $£ 6$.

Convert this unti so a SUPER BATTERY CHARGER. Attractive green ministry quarity case - removable top/bortom plates - heary duty powirer
switches - high power resistors to control current - centre moumted switches - high powor resistors te coniron current - cenlie mounted amp meter - wing nut terminais on front ponen
$£ 3.50$ en. PGP $£ 6$ FOUR UNITS $£ 12$ Carriage 66 .
Miniature VARIAC 0.6 amp in Blue Case size $10 \% \times 6 \mathrm{~K} \times 6 \frac{1}{2}$ " with 20 colourad screw strle 4 mm sockets giving multiple voltege \& current
outputs. As new $112 \mathrm{P} / \mathrm{f}$.
AMPLIFIER BOARO complete with Heat Sink \& two output Tronsistors type 2 N5 293 Circuir supplied 51.60 eat.
CABLE TIES 8 Black 13 cm longor White 9 cm . 60 for 50 .
 Min Potentiometres - Exis. IK Un: $3.3 \mathrm{KK} \mathrm{Lin} ; 4.7 \mathrm{~K} \mathrm{Lin}$. All 15 p each 100 off fl2.
WRE WOUND RESISTORS 4 WATTS - sill si 10p ea; 10 off $88 \mathrm{p}: 100$ off 17 Volues -1RO; 2R2; 2R4; 750R: 22 K - 195: $828 ; 100 \mathrm{R} ; 150 \mathrm{~F} ; 820 \mathrm{~A} ; 9 \mathrm{~K} 1 ; 15 \mathrm{~K}$. MULTICORECABLE. 18 Way. Muti colour. 75 p per metre. 100 metre drum
£55. Car f6.
GEC 4 Button UHF TUNER E1.50 ea. 10 off E12

GEC 8 Button UHFNHF TUNER. G2 ea. 10 ott E15.
SOLID STATE UHF TUNEA $38 M H Z ~ f 1 ~$

SOLID STATE UHF YUNEA 38MHZ E1 es. 10 off fs
British Z^{\prime} window $£ 2$ ea: American 2" $£ 3$ ea; RCA P all tubes $£ 7.50$ eo American by RCA if sa: MuLLARD 150 VPP usefuld 2020 f4 ed. Special HONEYWELL STRIP CHART PAPER 122 fis rolls. Ref no $378528-0100$ EVEN 12/68. 60 P Per rol. 10 molis $£ 4$ PGP $£ 3.50$ BLUE THERMA
ralls f6. Carr. E6.
FOR FULL COMPONENT \& TEST EQUIPMENT UST WRTE OR PHONE

MARCONI AM/FM SIGNAL GENERATOR type TF10668/6S. 10-470MHz in 5 bands.
, $\mathbf{2 5 0}$ each. Cartiage E 6.

WAYNE KERR COMPONENT BRIDGE type B521

 (CT375). Resistance $1 \mathrm{mOhm}-1000 \mathrm{Meg}$ Ohm: Capaci tance $5000 \mathrm{KuF}-1 \mathrm{pF}$; Inductance $1 \mathrm{uH}-500 \mathrm{kH}$. With copy of manual. ONLY $£ 40$ each. Carriage $£ 6$.AVO VALVE TESTER type CT160 (22 valve bases) with copy of manual. $\mathbf{f 2 0}$ each . Carriage $£ 6$.

- AVO TRANSITOR ANALYSER type CT446 with copy of manual $£ \mathbf{O}$ each. Carriage $£ 6$.

AVO SIGNAL GENERATOR No 2 AM/FM. AM $0.45-$
225 MHz ; FM $20-100 \mathrm{MHz}$. With copy of mañual $£ 75$ ach. Carriage $\mathfrak{E 6}$.

MARCONI COUNTER/FREOUENCY METER TF1417/2 with Convertor type TF2400/TM7265-500MHz E 35 each. Carriage f6.
TELETYPE PRINTERS KSR33-ASC:11 Keyboard 5 EO ASR 33 - as above with 8 bit punch and reader $£ 75$. Carriage $£ 6$ each unit

> DATA MODEM
> Collins Tmx 202G
> Complete $115 / 230 \mathrm{~V}$
> ONLY $\ddagger 25$ each p\&p $£ 5$

SINE \& SQUARE WAVE AUDIO GENERATOR Type TE22 20 Hz -200Khz. Portable. As new ONLY $£ 36$ each PGP $£ 4$

SCOPE STYLE CASE size $7 \%^{\prime \prime}+718^{\prime} \times 13 \%^{\prime \prime}$ doep with attractive blue covers Et strap handle. As is a TACHITOSCOPE but ideal to
puarts. $£ 4.50$ each P\&P $£ 2.50$

PLEASE NOTE - WE WIL BE CLOSED TO CALLERS MONDAY AUGUST 9th UNTIL SATURDAY AUGUST 21st INCLUSIVE

MINIMUM ORDER OF GOODS £3. MINIMUM PACKAGING \& POSTAGE £i.50. VÁT at 15% MUST be added to TOTAL of GOODS \& PACKAGING, BUT PLEASE ensure sufficient monies is sent to cover PACKAGING and Postage to avold delays in us dispatching your order. CALLERS VERY WELCOME STRICTL.Y BETWEEN 9am-10m and $2-5 \mathrm{~mm}$ Monday to Saturday inc. BARCLAYCARD (VISA) and ACCESS taken. Officlal orders welcome.

CHILTMEAD LTD

QUALITY DOES NOTHAVE TO COST VERY NUCH!

AUDAX HI-FI - SPECIAL PURCHASES
 HD24S452C 10^{*} high performance bass. Foam suspension.
£1295 E6.95 HDl3825H4C 51/4 Heavy mannet.
HDI 38251 Small IFrais Smalier magnet version HIF2OJSMC 8 " bass mid range foam surround. "square" silver froni 30150 watt system

An entire range of low-cost high-

performance

instruments

sabtronics

Making Performance Affordable

5020A $1 \mathrm{~Hz}-200 \mathrm{KHz}$ Function Generato
2033 3 $1 / 2$-Digit L.C.D. Hand DMM
365-S Protoboard
LP-10 10 MHz Logic Probe
8110A 100 MHz 8 -Digit Frequency Meter 8610 B 600 MHz 9 -Digit Frequency Meter

800081 GHz 9 -Digit Frequency Meter PSC-65 600 MHz Prescaler AT-001 x 1 Passive Probe AT-010 $\times 10$ Passive Probe AT-110 $\times 1: \times 10$ Passive Probe (Switchable)

Also Oscilloscopes $15-30 \mathrm{MHz}$ Single or Dual trace.

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices-no-one can beat our price/performance ratio.

Hllustrated brochure and price list from:

BLACK STAR LTD
9a Crown Street, St. Ives, Cambs. PE17 4EB
Tel: (0480) 62440. Telex: 32339

Marshalis

SPECIALIST ELECTRONIC COMPONENT DISTRIBUTORS Tel: 723-4242

PREMBELYTHE LAMEEST STOCK op les Mramsistors IIRTMIE SOUTH TRAY MS FRRST	SPECIAL OFFER	BAHCO TOOLS SIDE CUTTERS
	STEINAL	2132
	MULTICHECK	
	c7.50	END CUTTERS
HAMDE RANGE OF MECESSORIES	+ VAT	3
	Normal price $£ 10.26$	PLIERS
		2411 E5.75
Sochets	BUY WITH	8
Audio Connectors Kerobeards IC Sochets Solderime equipment Screw drivers (BAHCO) Sifam Krobs etc.	ACCESS	ICE MULTIMETERS Microtest $80 \quad$ £16.c0 Supertest 680 R $=32 \cdot 00$ Supertest 680E £24-50
	BARCLAYCARD	
	A/EXPRESS	
	DINERS	
	Just phone we do the rest	EXPERIMENTER BREADBOARD'S
LAMEE RANGE OF		EXP 325 EXP 600
ICsTransistors	MAIL	EXP 350 EXP 650 EXP 300 EXP 4B
	ORDER	
Capacitors	FASTER	LOGIC PROBES
Dlodes	SERVICE	LP1 E31.00
Thyristors	PHONE	LP2 £18.00
Opto	123-4242	
ResistorsPotentiometersFuses		EXPERIMENTER
		P66 P810
Pridges	CABLE 52.20 metre	PB100 £11.80
Mrese send S.A.E. for list.	Header plugs 14 way, 16 way, 40 way	PLEASE REMEMBER TO ADD 15% VAT

325 EGWARE ROAD LONDON W2 1BN
BARCLAYCARD - ACCESS * DINERS A/EXPRESS

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the
obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and.
thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS logether with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TYPE	$\begin{aligned} & \text { SERES } \\ & \text { No } \end{aligned}$	zecomoary vis	$\begin{gathered} \text { nas } \\ \text { Currem } \end{gathered}$	P9ICE	* 294 TIPE 70 CROOSE FROT:				
\% $30 \times 30 \mathrm{VA}$	54010	6.6	250						
$70 \times 30 \mathrm{~mm}$	${ }_{5 \times 018}$	9.9	156	£5.12		DIX OF PECSTPP FOR SIISLE OR			
sepulation 18\%	18012 18013	$12 \cdot 12$ 15.75	125	23.12		181.	QJInIT	IT 0	DEBA
	trols	18.18	0.83		- 5 THER 30 QUIBELS CURRAKTE				
	${ }_{1} 1015$	22-22	068	ramere					
	1×016	23.25 $30 \cdot 30$	- 050						
	2×10	6.6	¢ 616			$\begin{gathered} \text { Strats } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { SECOMDARY } \\ & \text { Yons } \end{aligned}$	RMS Currem	Price
	20011	9.9	27						
		12. 12	208		225 Va	6x012	12-12	938	
	22014	18\%18	1.38	-0.10	Reputar	${ }^{6 \times 014}$	18.18	525	
	2×015 2×016	22.22 25.25	113 100	- - vatines	Repuration	6x015 60016	22, 22	511 150	¢9.2
	20017.	30.30	0.83	- matsics		68017	$30+30$	375	
	2x028	110	045			6×018	$35 \cdot 35$	3.21	- war
	28029	220	022			${ }^{6.026}$	60.40	281	
	2x030	240	020			5.025	45-63	250	Tomatem
$\begin{gathered} 80 \mathrm{va} \\ 90 \times 30 \mathrm{~mm} \\ 3 \mathrm{Kom} \\ \text { Reguviven } \\ 12 \% \end{gathered}$	32010	$6+6$	684			62033 6×028	50.50 110	225	
	3×011	$9+9$	444			6×028 6×029	220	200	
	3×012 3×013	$12 \cdot 12$ 15.15	333 266	¢6.08		${ }_{68030}^{6 \times 29}$	240	102 093	
	3x013	15.15 15.18	286 222	0.08	300 Va	7×013			
	3x015	22-22	1 at	9.851 6	$110 \times 30 \mathrm{~mm}$	7x014	18.18	${ }_{5} 133$	
	Jx016	25.25	180	atis 16	26 kg	7×015	$22 \cdot 22$	6.82	
	3×017	$30 \cdot 30$	133	Torthent	Requlation	7x016	23.25	600	10.
	3x028	110	0.72 036		6*	7x017	$30+30$ $35+35$	5.00	- OiE 1200
	3×09 3×030	220	0.38 0.33			7×018 78026	$35+35$ $0+10$	428	
$\left\lvert\, \begin{aligned} & 120 \mathrm{VA} \\ & 90=2 \operatorname{chamm} \\ & 12 \mathrm{Kg}_{\mathrm{m}} \\ & \text { Requition } \\ & 11 \% \end{aligned}\right.$	6x010	6.6	10.00			7×025	45.45	333	rotacteos
	4×011	$9 \cdot 9$	666			7×033	S0.50	300	
	${ }^{4 \times 012}$	12-12	500				110	272	
	4x013	$15 \cdot 15$	400	86.90		7×029 7×030	${ }_{240}^{220}$	136	
	${ }^{8} 8014$	15-18	333	26.90		${ }^{7} 030$	240	1.25	
	68015 4016	27 $\mathbf{z}+22$	2.72 $2+0$	\%ent:	500 VA	8 8 016	25.25	10 DO	
	4×16 4×017	20+25 30.30	240 200	-210	$140 \times 60 \mathrm{~mm}$	8×017	$300+30$	833	1
	${ }_{4 \times 018}$	35-35	200 171	-	${ }_{\text {Peputation }}{ }^{\text {a }}$	88018 8×026	$35 \cdot 35$ 40.40	231 685	13.3
	${ }_{4 \times 078}^{4020}$	170	109		4\%	88025 88023	14.40 45.45	6.23	-prosis
	4×029 4×030	220	0.54 0.50			$\mathrm{lx}_{\text {dx } 033}$	50.50	500	-
$\begin{gathered} 160 \mathrm{va} \\ 10 \times 40 \mathrm{mms} \\ \text { i } 8 \mathrm{Kg} \\ \text { Regulaion } \\ 3 \% \end{gathered}$			-89				55.55	454 454 4	Totmeste
	5×018 5×012	$9+9$ $12+12$	889 665			8×029	220	227	
	${ }_{5} 5 \times 13$	$15-15$	5.33			8×030	240	208	
	5x014	18.18	-4	7.91	625 va	9×017	$30 \cdot 30$	1041	
	Sx015	$22-22$ $25-25$	363 308		$120 \times 15 \mathrm{~mm}$	9x018	$35 \cdot 35$	892	
	${ }^{38016}$	25025 $30-30$	320 286	-mers ${ }^{\text {a }}$	Requtaion	¢ 9×026	40.40 45.45	781	216.13
	5×018	35.35	228		${ }_{\text {Reguth }}$	${ }_{4}^{9} \mathbf{9} 02035$	25.45 50.50	688 625	-0:000*00
	5026	$40 \cdot 40$	200			9×042	\$5-53	568	- War
	$5{ }_{5 \times 029}$	220 240	115 072 0.65			9\%028 ${ }^{9}$	110 220	568 284	TOAED.0
	5×3301	240	066			9×029 9×030	220	260	

IMPORTANT: Regulation - All voltagos quoted ara FULL LOAD. Piease add regulation figure to secondary vothage to obtain off load vothage.
The benofits of ILP toroidal transformers
ILP toroidal transformers are only half the weight and height of their laminated equivalents. and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows: For 110 Y primary insert " 0 " in place of " X " in type number
For 220 V primary (Europe) insert "1" in place of " X " in type number
For 240 V primary (UK) insert " 2 " in place of " X " in type number.
How to order Freepost:
Use this coupon. or a separate sheet of paperito order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders.
Aiso avalable at Electrovalue. Maplin and Technomatic

[^1]
ACTIVE SPEAKER

Once upon a time ETI published a design for the most advanced DIY loudspeaker available. Now, history repeats itself . . . Design by Barry Hughes and Paul Hynes.

AIthough it is now some six or seven years since ETI published the ER II high quality loudspeaker system, Badger Sound Services, as suppliers of the more specialised bits for that design, stili receives enquiries. The reason is not hard to find - ER II's combination of $8^{\prime \prime}$ bextrene coned bass drive units, $1^{\prime \prime}$ soft dome tweeter and carefully tailored crossover network were not only capable of seeing off commercially made speakers costing three times as much but the design was then bang up to date. The ER II was one of the earliest systems to exploit the $8^{\prime \prime}$ bextrene-plus- $1^{\prime \prime}$ soft dome approach and the intervening years saw a plethora of commercially made speakers using that combination until it became almost an industry standard!

This adequately demonstrates ETI's policy of keeping that little bit ahead of up-to-date, and if we are to maintain our readers in that happy state then the time has come for an ER II replacement.

Design Philosophy

There can be little doubt that in balancing performance, domestic acceptability, simplicity of woodworking and cost, the medium size, two-way reflex system wins hands down. This particular format has been employed, for example, on several BBC monitors and if carefully designed can produce a very accurate performance.

The construction of a reflex enclosure is illustrated in Fig. 1, and it will be observed that a tubular duct extends into the enclosure. In operation the mass of air in the duct is acoustically coupled to the rear of the bass driver cone, and at low frequencies it becomes virtually a second radiator, reinforcing the output from the bass driver. Above the bass region this effect vanishes and the system behaves as a closed box. The benefits of this system are: - slightly higher efficiency at the bottom end

- lower bass distortion since cone excursion is reduced

- ease of construction when compared with more exotic methods of bass loading.

If reflexing is to work properly y_{7} the system must carefully balance enclosure volume, port characteristics and certain drive unit properties, notably Q , free air resonance and the compliance or 'stiffness' of the suspension. It is not, as commonly thought, just a matter of tuning any old box to a given frequency and then sticking in a drive unit. Some drive units are incapable of satisfactory reflex operation and some would ñeed enormous enclosures.

Advanced Driving

The 2040 II's bass driver is a new high performance unit by IMF Electronics, the $28 / 30$. The $28 / 30$ has a ribbed cone of engineered polymer (for rigid behaviour and reduced colouration), a high temperature voice coil, powerful magnet assembly and a free air resonance of typically 28 Hz . Having the right compliance characteristics, it reflexes nicely in our enclosure.

Our tweeter is also a new
product by IMF Electronics, the TW1500 soft dome unit with a foam diffraction ring. In the authors' view the TW1500 is capable of a subjective performance in advance of previous similar types, offering a smooth, detailed response to beyond audibility without the 'tizziness' of some older competitors. The new drive units are a welcome addition to the amateur's armoury and this design is the first magazine project to employ them.

On Active Service

The only item now left to consider is the crossover network. At the time of the ER II the passive crossover was universally used but the modern trend is towards the active system (known to our American friends as bi-amping).

As with a passive system, a good active crossover is dedicated to the speaker system for which it was designed. The response of the 2040 II active crossover is not flat and its benefits are not transferrable to other speaker systems. Sadly, therefore, and without wishing to be unhelpful, the authors cannot enter into correspondence regarding its application to other systems, the answers to which would involve extensive and expensive measurements.

Speaker Construction

The essential enclosure details and dimensions appear in Fig. 1. For two main reasons, we have not gone into very great detail: first, the precise method of construction is not critical so long as the three guiding principles set out below are observed, and second, every constructor has his own preferred way of going about things.

Every construction question which might arise can be answered by applying three guiding principles: - The enclosure must be to the correct dimensions. Small mistakes in overall size will not matter, however, providing the internal volume does not vary more than 10% either way.

Colour and sound...full-siz 16Kor 48 KRAM...

Proven pedigree

Following the world-beating success of the Sinclair ZX80/ZX81 over 400,000 sold so far - comes the Sinclair ZX Spectrum. The ZX81 is, and will continue to be, the ideal introduction to computing - with up to 16K RAM available, and the ZXP Printer. The ZX Spectrum offers even more computing capability, with colour and sound, up to 48KRAM, and highresolution graphics.

Professional power...

more capacity...personal computer price!

The power of the Sinclair ZX Spectrum comes from a new 16 K BASIC ROM. So, in addition to the features of the ZX81, the ZX Spectrum gives you a full 8 colours, a sound generator, high-resolution graphics and many other features - including the facility to support separate data files.

The storage capacity of any computer is governed by the amount of RAM. The ZX Spectrum comes in two versions - with 16 K , or a really massive 48K, of RAM. Yet even the 48K RAM version costs only £ 175 compared to $£ .125$ for the 16 K.RAM model.

Many people will opt for the full 48 K RAM from the outset, but if you do decide to start with the 16 K version, you will be able to return your ZX Spectrum for a 48KRAM upgrade at a later date - at a cost of around $£ 60$.

A growing system

Your ZX Spectrum comes with a mains adaptor, all the necessary leads to connect to most cassette recorders and TVs (colour or black and white), and two manuals. If you're new to computing, you'll find both manuals of immense help.

Together, they represent a course in BASIC programming from first principles to advanced techniques. But if you already have experience of computers, you can skip much of the groundwork, and move straight into the colourful world of $Z \times$ Spectrum professional-level computing.

Either way, you don't have to stop there. The ZX Printer - available now - is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive extra on-line storage, plus an RS232/ network interface board.

The ZX Printer - available now
Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZXS Sectrum owners the full ASCII character set - including lower-case characters and high-resolution graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your ZX Spectrum and a roll of paper (65 ft long $\times 4$ in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

RS232/network interface board

For around £20, this interfaceávailable later this year-will enable you to connect your ZX Spectrum to a whole range of printers, terminals and other computers. The astonishingly low price is possible only because the operating systems are already designed into the ROM.

zemoving-key keyboard... solution graphics...

ZX Microdrive - coming soon

Designed exclusively for use with the ZX Spectrum, the new ZX Microdrives will revolutionise personal computing.

Each Microdrive can hold up to 100 K bytes on a single interchangeable microfloppy - with a transfer rate of 16 K bytes per second. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum they're available later this year, for around $£ 50$.

Professional performance for only £125 - how's it done?

Quite simply, by commitment and design. Timex and ICL are adopting Sinclair technology and Sinclair BASIC under licence for future products. Sinclair is now world leader in personal computer production.

Key features of the Sinclair ZX Spectrum

Full colour - 8 colours each for foreground, background and border, plus flashing and brightness -intensity control.
Sound -BEEP command with variable pitch and duration.
Massive RAM -16 K or 48 K .
Full-size moving-key keyboard - all keys at normal typewriter pitch, with repeat facility on each key.
High resolution - 256 dots horizontally $\times 192$ vertically, each individually addressable for true high-resolution graphics.

ASCII character set - with upper= and lower-case characters.
Teletext-compatible - user software can generate 40 characters per line or other settings.
High speed LOAD \& SAVE -16 K in 100 seconds via cassette, with VERIFY and MERGE for programs and separate data files.
Sinclair 16 K extended BASIC = incorporating unique 'one-touch' keyword entry, syntax check, and report codes.

Double-manualsystemfor the ZXSpectrum slim introductory manual takes beginners through to programming proficiency. Advanced manual smoothes the way through difficult, complex programs.

Connect up to eight ZX Microdrives to your ZX Spectrum. Each holds up to 100K bytes on any one microfloppy. Each can transfer at 10 K bytes persecond - with an average access time of 3.5 seconds.

The proven ZX printer - full ASCII character set, printing at 50 cps , with $32 \mathrm{cp} /$ and 9 lines per vertical inch. Reproduces exactly what's on the screen at the touch of a button.

ZX Spectrum Available only by mail order and only from

Sinclair Research L.td,
Stanhope Road, Camberley, Surfey. GU15 3PS. Tel: Camberley (0276) 685311.

ZX Spectrum software: how good and how soon?

The ZX Spectrum uses an enhanced version of Sinclair BASIC, fast becoming a world standard, and unlikely to be superseded. Unique features, such as onetouch keyword entry and syntax check and report, are increasingly attracting software originators.

Building the softwarelibrary is

The Sinclair $Z X$ Spectrum can handle sophisticated games programs with highresolution colour graphics and sound.

À range of business software will soon be available, covering both specific applications (eg stock-control and payroll) and general business management systems (eg matrix models).

How to order your ZXSpectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp-needed coupon below. You
aiready far advanced, and a complete catalogue will be available in the next few months. Subjects will include sophisticated games, education, 'housekeeping', and business management. The more complex packages can, of course, be used to their best advantage with the full 48 K RAM version of the ZXSpectrum.

This major advance in computer technology maintains Britain's world-beating position in the field of personal computers.

This second generation of Sinclair personal computers demonstrates continuing commitment. Advanced technology made the $\mathrm{ZX} 80 / 81$ family a price breakthrough: advanced technology makes the $Z X$ Spectrum a breakthrough in price and performance.
can pay by cheque, postal order, Access, Barclaycard or Trustcard.

EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt-and we have no doubt that you will be.

FREEPOST - no stamp needed. Prices apply to UK only. Export prices on appplicátion.

How the ZX Spectrum compares with otherpersonal computers.

	ZX Spectrum	BBC micro model A	$\begin{aligned} & \text { VIC } \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ATARI } \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{TI} \\ & 99 / 4 \mathrm{~A} \end{aligned}$	TRS 80 Colour
Guide price-basic unit inc. VAT	£125	$£ 300$	£190	$£ 300$	£300	$£ 450$
Standard RAM	16 K	16 K	5 K	16 K	16 K	16 K
Standard RAM available using high-resolution graphics	9 K	3K	N/A	7K	14K*	10K
Maximum RAM	48 K	32 K	29 K	32K	48K	32K
Sound generator	\checkmark	,	I	\checkmark	\checkmark	\checkmark
Colours available	8	8	16	16	16	9
Maximum colours on screen at one time	8	4	16	5	16	8
FLASH	\checkmark	\checkmark				
BRIGHT-or equivalent	\checkmark			\checkmark		
High-resolution graphics (>40000 pixels) available forPLOT \& DRAW	\checkmark	\checkmark		\checkmark		\checkmark
User-definable graphics characters	\checkmark				\checkmark	
Full upper/lower case ASCII	\checkmark	\checkmark		r		\checkmark
User-definable character set	\checkmark	\checkmark	\checkmark		\checkmark	
Screen display (columns \times rows)	32×24	40×25	22×23	40×24	32×24	32×16
Auto-repeat on all keys	\checkmark	-			\checkmark	
Cassette interface for all normal recorders	\checkmark	\checkmark			\checkmark	
Baud (data transfer) rate	1500	1200	300	1200	450	1200
LOAD\&SAVE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	J
VERIFY	\checkmark	\checkmark	\checkmark		\checkmark	
MERGE	\checkmark			\checkmark		

Elegant, effective, unique-the ZX Spectrum design.

'Less than half the price of its nearest competitor - and more powerful.

'These two pictures show how it's done. On the right is the PCB from the BBC Model A Microcomputer. On the left is the PCB from the ZX Spectrum.
'It's obvious at a glance that the design of the Spectrum is more
elegant. What may not be so obvious is that it also provides more power.
'The ZX Spectrum has more usable RAM, and higher maximum RAM.
'It offers twice as many colours on the screen at any one time, plus a colour brightness control. It also offers user-definable graphics.
'It has data transfer rate 25\%
faster, supported by a VERIFY facility.
'And it employs a dialect of BASIC (Sinclair BASIC) already în use in over 400,000 computers worldwide.
'We believe the BBC make the world's best TV programmes-and that Sinclair make the world's best computers!'
-Clive Sinclair.

Above left: internal layout of Sinclair ZX Spectrum. Right: internal layout of BBC Micro Model A.
The illustrations are to the same scale, and demonstrate the rate of advance in microcomputer design. The ZX Spectrum uses just 14 chips to provide more power and more user-available RAM.

Sinclair ZX Spectrum-technical data.

Dimensions	
Width	233 mm
Depth	144 mm
Height	30 mm

CPU/ memory

Z80A microprocessor running at 3.5 MHz . 16K-byte ROM containing BASIC interpreter and operating system.

16K-byte RAM (plus optional 32K-byte RAM on intemal expansion board) or 48K-byte RAM.

Keyboard

40-moving-key keyboard with fuli upper and lower case with capitals lock feature. AII BASIC words obtained by single keys, plus 16 graphics characters, 22 colour control codes, and 21 userdefinable graphics characters. All keys have auto repeat.

Display

Memory-mapped display of 256 pixels x 192 pixels; plus one attributes byte percharacter square, defining one of eight foreground colours, one of eight background colours, normal or extra brightness and flashing or steady. Screen border colour also settable to one of eight colours. Will drive a PAL UHF colour TV set, or black and white set (which will give a scale of grey), on channel 36.

Sound

Internal loudspeaker can be operated over more than 10 octaves (actually 130 semitones) via basic BEEP command. Jack sockets at the rear of computer allow connections to external amplifier/ speaker.

Graphics

Point, line, circle and arc dráwing commariṍs in high-resolution graphics.
16 pre-defined graph ics characters plus 21 use definable graphics characters. Also functions to yield character at a given position, attribute at a given position (colours, brightness and flash) and whether a given pixel is set. Text may be written on the screen on 24 lines of 32 characters. Text and ğraphics may be freely mixed

Colours

Foreground and background cölours, brightness and flashing are set by BASIC INK, PAPER, BRIGHT and FLASH commands. OVER may also be set, which performs an exclusive-or operation to overwrite any printing or plotting that is already on the screen. INVERSE will give inverse video printing. These six commands may be set globally to cover all further PRINT, PLOT, DRAW or CIRCLE commands, or locally within these commands to cover only the results of that command. They may also be set locally to cover text printed by an INPUT statement. Colour-control codes, which may be accessed from the keyboard, may be inserted into text or program listing, and when displayed will override the globally set colours until another control code is encountered. Brightness and flashing codes may be inserted into program or text, similarly. Colour-control codes in a program listing have no effect on its executionn. Border colour is set by a BORDER command. The eight colours available are black, blue, red,
magenta, green, cyan, yellow and white. All eigh colours may be present on the screen at once, with some areas flashing and others steady, and any area may be highlighted extra bright.

Screen

The screen is divided into two sections. The top section - normally the first 22 lines - displays the program listing or the results of program or command execution. The bottom section normally the last 2 lines - shows the command or program line currently being entered, or the program line currently being edited. It also shows the report messages. Full editing facilities of cursor left, cursorright, insert and delete (with auto-repeat facility) are available over this line. The bottom section witl expand to accept a current line of up to 22 lines.

Mathematical operations and functions

Arithmetic operations of,,$+- \times, \div$, and raise to a power. Mathematical functions of sine, cosine, tangent and their inverses; natural logs and exponentials; sign function, absolute value function, and integer function; square root function, random number generator, and pi.

Numbers are stored as five bytes of floating point binary - giving a range of $+3 \times 10^{-39}$ to $+7 \times 10^{38}$ accurate to $91 / 2$ decimal digits.

Binary numbers may be entered directly with the BIN function. $=>,<,>=,<=$ and $<>$ may be used to compare string or arithmetic values or variables to yield 0 (false) or 1 (true). Logical operators AND, OR and NOT yield boolean results but will accept 0 (false) and any number (true).

User-definable functions are defined using DEF FN, and called using FN. They may take up to 26 numeric and 26 string arguments, and may yield string or numeric results.

There is a fullDATA mechanism, using the commands READ, DATA and RESTORE.

A real-time clock is obtainable.
String operations and functions
Strings can be concatenated with + . String variables or values may be compared with $=>,<$ $>=,<=,<>$ to give boolean results. String functions are VAL, VALS, STRS and LEN. CHR\$ and CODE convert numbers to ch aracters and vice versâ, using the ASCII code.

A very powerful string slicing mechanism exists, using the form $\mathrm{a} \$$ (xTO y).

Variable names

Numeric - any string starting with a letter (upper and lower case are not distinguished between, and spaces are ignored).
String-A\$ to Z\$.
FOR-NEXT loops - A-Z.
Numeric arrays-A-Z.
String arrays - A\$ to $Z \$$
Simple variables and arrays with the sàme name are allowed and distinguished between.

Arrays

Arrays may be multi-dimensional, with subscripts starting at 1. String arrays, technically character arrays, may have their last subscript omitted, yielding a string.

Expression evaluator

A full expression evaluator is called during program execution whenever an expression, constant or variable is encountered. This allows the use of expressions as arguments to GOTO, GOSUB, etc.

It also operates on commands allowing the ZXSpectrum to operate as a calculator.

Cassette interface

The ZX Spectrum incorporates an advanced cassette interface. A tone leader is recorded before the information to overcome the automatic recording level fluctuations of some tape recorders, and a Schmitt trigger is used to remove noise on playback.

All saved information is started with a header containing information as to its type, title, length and address information. Program, screens, blocks of memory, string and character arrays may all be saved separately.

Programs, blocks of memory and arrays may be verified after saving to confirm successful saving.

Programs and arrays may be merged from tape to combine them with the existing contents of memory. Where two line numbers or variables names coincide, the old one is overwritten.

Programs may be saved with a line number, where execution will start immediately on loading

The cassette interface runs at 1500 baud, through two 3.5 mm jack plugs.

Expansion port

This has the full data, address and control busses from the Z80A, and is used to interface to the ZXPrinter, the RS232 and NET interfaces and the ZX Microdrives.

IN and OUT commands give the I/O port equivalents of PEEK and POKE.

ZX81 compatibility

ZX81 BASIC is essentially a subset of ZX SpectrumBASIC. The differences are as follows.

FAST and SLOW: the ZX Spectrum operates at the speed of the ZX81 in FAST mode with the steady display of SLOW mode, and does not include these commands.

SCROLL: the ZX Spectrum scrolls automatice ally, asking the operator "scroll?" every time a screen is filled.

UNPLOT: the ZX Spectrum can unplot a pixel using PLOT OVER, and thus achieves unplot.

Character set: the ZX Spectrum uses the ASCII character set, as opposed to the ZX8 non-standard set.

ZX81 programs may be typed into the ZX Spectrum with very little change, but may of course now be considerably improved. The ZXSpectrum is fully compatible with the ZXPrinter, which can now print out a full upper and lower case ch aracter set, and the high resolution graphics; using LLIST, LPRINT and COPY. ZX81 software cassettes and the ZX16K RAM pack will not operate with the ZX Spectrum.

From left to right we have a crossover, regulated PSU and Crimson Elektrik CE 1008 power amp.

An internal view of the 2040 II.

- The enclosure must be rigid. Use only the specified timber and do not omit the bracing shelf.
- Despite the presence of a duct tube, the enclosure must be airtight, calling for straight cutting and plenty of glue. 90% of the battle here is to get the panels cut accurately to size by the supplier.

The timber used should be either good quality ply, chipboard of 600 or 750 grade (if offered 'roofing' grade or 'flooring' grade, take flooring grade), or solid timber if well seasoned. Chipboard will be the most readily available and the cheapest. Veneered chipboard such as 'Contiboard' is not suitable but that apart, none of the three timbers has proven sonic advantages.

The method of corner jointing is not important and can be decided by the constructor's skill. The panels can be butt jointed, dovetailed, screwed-and-glued-onto-cornerbattens, pinned-and-glued - or any other method can be used which would produce rigid and airtight

Fig. 1 Speaker dimensions. The front panel template is for the right hand speaker; it should be reversed for the left hand one. If a speaker grille is desired, the frame should be made from timber no larger than $1 \frac{1}{2}{ }^{\prime \prime}$ by $\frac{1}{2}{ }^{\prime \prime}$.
results. If corner battens are used, these should be of about $\frac{3}{4}$ square section. The presence of such battening has no practical effect on performance.

Adhering To Principles

Oddly enough, a domestic loudspeaker does not need to be strong (as opposed to rigid). Many commercially made loudspeakers have glued butt-jointed or mitred corners, with no extra reinforcing, and if properly done this is adequate. Use only water-based adhesives such as Evostik Resin W or similar PVA types. Solvent-based adhesives should not be used since the vapours they release into the enclosure can attack the drivers. The warranty on drivers is void if other than the recommended adhesives are used.

The enclosure should be constructed as a sealed box which helps rigidity and airtightness. There is no need for either front or back to be detachable since all drivers are mounted from the front with wood screws for the tweeter captive 'T nuts' and bolts for the bass driver. In the unlikely event of service attention being needed in the future, either driver can be removed without dismantling the enclosure.

Rebating the drivers is desirable but not essential. The treble driver will be fitted using small wood screws and appropriate pilot holes should be drilled. The bass driver will be installed with boits and captive T nuts (supplied with the driver). To fit the T nuts, drill each fixing hole $\frac{1}{4}$ diameter. The T nut is fitted from the inside of the cabinet shell as shown in Fig. 3, the teeth being engaged in the wood and holding the nut in place. It is most easily fitted by pulling into place with a boit and washer.

Fit two pairs of terminals (one pair for each drive unit) in the speaker back. Colour-coded screw terminals are probably best, but any type which could cause air leaks (eg jack sockets) must be avoided.

Dead Ends

To reduce bass colouration arising through enclosure wall vibration, self-adhesive damping (sound deadening) pads are fitted. Working through the bass driver hole, carefully clean any dust or grease from inside the enclosure walls. Prepare the self-adhesive damping pads by cutting to size (do not remove the backing paper yet). Cut to such sizes as will allow the
pads to be distributed as follows (double thicknesses are used, ie one piece of pad stuck on top of another, so 'one pad' means a full pad cut into two giving two layers):

One and a half pads on the back panel

One and a half pads on each
side panel
Half a pad on the top panel
Half a pad on the bottom panel Neither exact size nor exact positioning are critical. Carefully fix the pads in place.

Using 6 amp colour-coded cable, connect flying leads to the
input terminals
$24^{\prime \prime}$ wide by $1^{\prime \prime}$ thick BAF wadding (bonded acetate fibre) is employed in the enclosures for acoustic damping. Place the wadding in position, working through the bass driver hole, as follows.

Fig. 2 Circuit diagram of the crossover board (two required).

HOW IT WORKS

THE ACTIVE CROSSOVER

The crossover network is usually a passive circuit (see Fig. 4), living in the loudspeaker, which takes the signal from the power amplifier and divides it into frequency hands (a crossover is sometimes called a dividing network). It passes to each speaker drive unit the appropriate band of frequencies; low to the bass driver, high to the treble. The crossover, however, is a much misunderstood animal which does more than just divide up the signals. It carries out all the compensation needed to obtain flat response from the drivers, adjusts for enclosure matters and generally integrates everything to produce optimum balance and performance.

Consequently there can be no such thing as a 'general purpose' crossover. It has to be dedicated to its particular speaker system and crossover design is very much an art in itself.

It will be observed that the passive crossover comes between the power amplifier and the drivers, so that what the crossover divides up is the power output of the amplifier. Although this relatively cheap and effective method has stood the test of time, and has been refined to remarkable precision, there are some disadvantages. Not only can the passive crossover present the amplifier with a sometimes difficult load but interaction can arise between the sections. Mure importantly, however, it
has to use inductors and capacitors of large value which produces energy storage. This is a form of electrical intertia, removing a lot of the immediacy of the music. At the risk of oversimplification, it is rather as though the driver cones are being moved by a piece of rubber!

The modern way to overcome this effect (and some other lesser effects not mentioned) is to use an active system. In an active system the crossover network comes before the power amplifier so that what is divided up is not the outgoing power but the incoming audio signal. Using low value components and active devices, an active crossover is under no power stress and there are no energy storage problems. In an active system, each driver has its own personal power amplifier stage with which it is in direct contact, so that the amplifier has a much improved 'grip' on the driver. Control and transient attack are greatly enhanced, producing a speed and definition hard to equal by passive means. The only drawback is that a twoway speaker system in stereo calls for two stereo power amplifiers.

The circuit of one channel of the crossover appears in Fig. 2. Basically we have a fairly textbook filter, operating at $18 \mathrm{~dB} /$ octave with a crossover point (-3 dB) of 2.5 kHz . The response shape has, however, been tailored to the 2040 II's characteristics in the mid/bass
area and so the filter alone does not produce flat results.

POWER SUPPLY

The crossover network needs a regulated dual rail supply of ± 12 to 15 V at 40 mA total (20 mA per channel). Although the constructor can certainly use his own pet supply for this purpose, the circuit shown in Fig. 6 is advisable for optimum performance.

Although complicated, our power supply is in keeping with the best current commercial practice. The power supply, even for preamplifiers and filters, is now regarded as an important factor in the resolution of fine detail and in securing wide dynamic range. Some manufacturers go to extraordinary lengths to ensure that the supply is as 'stiff' as possible (Crimson Elektrik have even gone back to batteries).

Simple circuits employing threeterminal regulator devices have not proved suitable for our purpose, since the source impedance can become too high at upper audio frequencies. Our circuit has the desirable properties of low output impedance across the audio bandwidth, high power supply rejection and low noise on supply lines. A separate regulator for each channel is specified although as an economy measure, one alone could power both channels if some crosstalk degradation is acce table.

Fig. 3 Fitting the ' T ' nuts to the baffle.

- Take a 6 ft length for each speaker.
- Cut into a 5 ft and a 1 ft length.
- Fold this 5 ft length into a $2 \frac{1}{2} \mathrm{ft} \times$

2 ft piece.

- Place this piece into the bottom of the enclosure, laying it so that it covers the floor, lower sides and lower back.
- Take the remaining $1 \mathrm{ft} \times 2 \mathrm{ft}$ piece and fold it into $1 \mathrm{ft} \times 1 \mathrm{ft}$. Roll this into a sausage and place vertically behind the treble driver hole. Ensure that the end of the duct tube has not been closed by the wadding - there should be a little free space around the inner end of the tube and the end should not be rammed into the wadding.

Making Connections

Connect the bass driver to the flying leads from the bass input

Fig. 4 Block diagram of a passive crossover.

Fig. 5 Block diagram of an active crossover.
terminals, ensuring that the positive terminal connects to the red marked solder tag on the bass driver. Check that a foam gasket is in position on the inside face of the bass driver rim and bolt the driver evenly into place, ensuring that the connecting lead has not become trapped under the driver frame. Airtightness is just as important here as elsewhere.
Repeat the process with the tweeter, again observing polarity and airtightness.

The Electronics

It is now generally accepted that high quality amplifiers can have individual sonic properties quite apart from paper specifications. A major consideration with the 2040 II's electronics has therefore been to ensure the best sonic performance from the electronics, not only as an end in itself but to ensure that we can interface the crossover with high performance pre and power amplifiers without subjectively degrading their performance. A suggested circuit board pattern appears in Fig. 7 - this layout is strongly advised if instability is to be avoided.

We have tried to specify generally available components and substitution is made at your peril! In particular, C12, C13, C14 and C15 MUST be solid tubular tantalum (not bead types) and IC1, IC2 must not be replaced by 741 types. R3, R4, R5 and R6 must be matched as specified. We know solid tantalum capacitors are expensive (sorry!) but they offer low impedance at high frequencies which low cost electrolytics and tantalum beads don't.

The mains transformer should be a good quality type providing 15-0-15 V secondaries at 10 VA with good regulation and an interwinding screen. If a small toroid can be

found, so much the better. Q1 and Q2 require heatsinks and the usual T05 push-fit type will serve.

Cross Over Components?

Construction on the specified board is straightforward but as with the power supply, certain component types should not be substituted. All ICs are FET op-amps which in combining wide
bandwidth, low distortion, high slew rate and adequate noise performance with modest cost have proved admirably suited to our purpose.

Items asterisked in the parts list are frequency-determining components and must be close tolerance types. Although metal oxide resistors are not strictly essential they do represent one of the easier ways of getting hold of 2% resistors.

Mechanical Assembly

The two regulator boards, two crossover boards and mains transformer can be mounted in a single screened case. Having the mains transformer in the same case produced no hum problems in the prototype. We have deliberately avoided specifying a case since in our experience, case cost and availability are a major headache for the constructor. Considerable latitude is possible here and the constructor is free to adopt a case style appropriate to his needs and pocket; but screening is essential.

Providing sensible precautions are taken (eg not putting the transformer next to the input sockets) and overcrowding is avoided, board disposition within the case is not critical. Alternatively the advanced constructor could consider mounting the boards in the amplification and in the interests of such flexibility we have adopted separate channel boards. As with all audio equipment, earthing arrangements are critical and the arrangement shown in Fig. 8 is hum tree and stable.

Picking Your Power Amp
Since the active crossover is connected between pre and power amplifiers, the system cannot be used with integrated amplifiers. The 2040 II system requires four power amplifier channels and so two stereo power amplifiers are called for. In many cases the constructor will be extending an existing system and so we have not specified a particular power amplifier. Essentially the chosen power

Fig. 7 Component overlays for the active crossover (top) and the regulator board (bottom).
amplifier must be of the highest quality. The benefits of active operation would be masked by an inferior amplifier and that germanium job you put together in 1963 will not do. It should be capable of being driven by the preamplifier (the active crossover has little more than unity gain), and of adequate power. The minimum would be 30 W RMS per channel into 8 ohms and a figure of $50-60 \mathrm{~W}$ or so would be desirable. 100 W could be used with care - see below.

Damage is more likely to result from a low-powered amplifier than one of higher output since the heating effect of a clipped signal is considerably in excess of a clean audio output. Too small an amplifier
is the surest way to destroy a tweeter. Unfortunately it is impossible to lay down wattage figures to guarantee against speaker damage. Speakers are killed by people, not by amplifiers, and à little commonsense in operation is the only safeguard.

Clean audio signals are not usually a problem. Usually it is extremes that do the damage clipping, excess bass lift or treble boost, for example, concentrating power into one region rather than over the music spectrum. Within the figures specified, sensible domestic use on speech and music signals should present no problems. If in doubt, a 500 mA quick blow fuse in the tweeter line could help but does not offer a full guarantee.

PARTS LIST

CROSSOVER	
Resistors (all stated)	$\frac{1}{4} \mathrm{~W}, 5 \%$ except where
R1, 3, 19	100k
R2	47k
R4, 9, 16	3 kg
R5	150R
R6, 12, 13,	
14, 15*	10k 2% metal oxide
R7**	12k 2\% metal oxide
R8*	120k 2% metal oxide
R8a*	4k7 2\% metal oxide
R10, 17, 20 ,	
21.	100R
R11	3k3
R12a, 13a,	
14a*	2k7 2\% metal oxide
R15a*	15k 2\% metal oxide
R18*	5k6 2\% metal oxide
R22*	1k8 2\% metal oxide
Potentiometer	
PR1	10k miniature horizontal preset

C1, 12	470n polyester
C2	10p disc ceramic
C3	220 n polyester

C4, 5, 6, 9a,
10a, 10b* 2 n 2
C4a, 5a, 6a* 470p
C7, 9b, 11* 1 no
$\begin{array}{ll}\text { C8 } & \text { 100n polyester } \\ \text { C9* } & 10 n \\ \text { C10 } & 6 n 8 \\ \text { C13-18 } & 100 \mathrm{n} \text { disc ceramic } \\ \text { C19,20 } & 1000 \mathrm{u} 16 \mathrm{~V} \text { axial }\end{array}$ electrolytic

Semiconductors
IC1-3 LF351
Miscellaneous
PCB (see Buylines)
REGULATOR
Resistors (all $\frac{1}{4} \mathbf{W}, 5 \%$ except where
stated)
R1, 2 47R 2 W
R3-6 1k0 2\% metal oxide
RT, 8, 17, 18470 R
R9, 10 47k
$\begin{array}{ll}\text { R11, } 12 & 3 k 3 \\ \text { R13, 14 } & 2 k 2 \frac{1}{2} \text { W }\end{array}$
R15, 16 4R7
Capacitors
C1-3 $\quad 100 \mathrm{n}$ disc ceramic
C4, $5 \quad 2200 \mathrm{u} 25 \mathrm{~V}$ axial electrolytic
C6, $7 \quad 1000 \mathrm{u} 25 \mathrm{~V}$ axial electrolytic
C8-11, 16,
17
470n polyester
C14, $13 \quad 4 \mathrm{u} 725 \mathrm{~V}$ solid tantalum
C14, $15 \quad 47 \mathrm{u} 25 \mathrm{~V}$ solid tantalum
C12-15 must not be substituted with
other types

Semiconductors	
IC1,	LF351
Q1	BSS15
Q2	BSS17
Q3	BC182L
Q4	BC212L
D1-8	1N4002
ZD1, 2	6V9 400 mW zener
LED1, 2	$0.2^{\prime \prime}$ red LEDs

Miscellaneous
PCB (see Buylines)

Fig. 8 Suggested earthing arrangement for the boards.

Unequal Partners

Oddly enough, the bass and treble amplifiers need to be of equal power. While the tweeter may not need as much power in wattage terms as the bass driver, it does need the same voltage swing availability. However, the two amps should be of equal gain. Small variations in power output between bass and treble amplifier would not matter but they must have the same gain, in terms of watts out for millivolts in. The safest course is to use the same amplifier throughout.

Finally the chosen power amps must be relatively free from switchon thumps which could damage the tweeter. Aurak (listed among the suppliers) can supply a muting circuit.

Crimson Commended

To the constructor starting from scratch, we strongly advise the use of Crimson Elektrik components. Their amplifier kits are superb value for money (as was evidenced by the review in the February 1982 ETI), and offer a performance superior to most commercially made amplifiers. Those constructors who wisely have built a Crimson Elektrik kit amplifier need now only build a second power amplifier identical with the first. The constructor 'rolling his own' could well consider a project based on the CE1008 power amplifier module and Crimson Flektrik would be happy to advise.

For Your Listening Pleasure . . .

The speakers should be mounted clear of the floor,
preferably on conventional stands about $10^{\prime \prime}$ high. Corner positions should be avoided. PR1 is a preset allowing adjustment of treble output, enabling compensation for room characteristics and so on. With a two-way system it is a straightforward matter to set balance in this way in the light of personal preference. Normal position is likely to be about one-third of the way round its travel. The speakers will do justice to the very best signal sources but are fully capable of revealing shortcomings in a poor "front end". The computer dictum of "garbage in - garbage out" holds equally true in audio!!

ETI

BUYLINES

This project is a gestalt - the whole is greater than the sum of its parts - and the whole thing comes in various parts! The drive units, BAF wadding, damping pads, and Crimson Elektrik kits are available from Badger Sound Services Ltd, 46 Wood Street, Lytham St. Annes, Lancs FY8 1QG (telephone 0253 729247). The printed circuit boards and electronic components can be obtained from Aurak, 27 Derbe Road, Lytham St. Annes, Lancs FY8 1Nj (telephone 0253 728407 ext. 2). Crimson Elektrik components can be obtained from Crimson Elektrik, 9 Claymill Road, Leicester LE4 7II (telephone 0533 761920). Any enquiries regarding IMF Electronics drive units should please be made to Badger Sound Services and NOT direct to IMF Electronics. Continental customers could approach either Audio Sound 1/S, Bygvaenget, 8, 4900 Nakskov, Denmark or A \& O Electronics, Lenbachstrasse 14, 8130 Starnberg, West Germany. The design is offered as a project for home construction and no licence for commercial manufacture is implied.

Now our name means more,than ever before.

If the name BICC-Vero sounds only half familiar, that's not the only difference you're going to notice.
Because not only have we added to our name we've also added to our technology. Building upon our well established industrial product range and incorporating the very latest ideas and techniques to ensure that you too are working at a state-of-the-art standard.

But you will of course still recognise the old favourites. Products like Veroboard, which pioneered in so many ways, today's thriving pastime of electronics.

Bigger means better in other respects. Being part of the giant BICC-Vero Electronics Group ensures that we're a major force in electronics technology. Our R and D scope is enlarged, and our supply and distribution facilities improved.

And because we're professionals we appreciate the very real professionalism of the hobbyist market - and service it accordingly.

Yes, we're surc you'll notice the difference. As well as that pleasantly familiar personal touch.

BICC-VERO ELECTRONICS LTD.

Industrial Estate, Chandiers Ford, Easileigh, Hampshire SO5 3ZR.
Tel: Chandlers Ford (04215) 62829.

SC110A FULLY PORTABLE OSCILLOSCOPE

The new THANDAR SCIIOA represents a break through in Oscilloscope development. The SCiIIOA is only $2^{"}$ thick and weighs under 2 lbs yet it retains the standard features of a bench oscilloscope.

FULL SIZED PERFORMANCE

- 10 MHz band width
- 10 mV per div. sensituvity
- Full trigger facilities are provided including bright line and auto, with T.V. line and frame filtering
- RUNS ON ORDINARY HP1? (four)
batteries or rechargeables
- Basic price - £159 UK Post free Optiona/ extras -
AC Adaptor 55.69 ; Rechargeable batteries 68.63; X1 Probe 68.05 ; X10 Probe £9.20; X1/X10 Switched Probe E10.90; Carry Case
โ8.86.
PFM200A FREQUENCY

METER

- Pocket size - 8-Digit LED display Frequency range $20 \mathrm{~Hz}-200 \mathrm{MHz}$. Resolution . Tim Sensitivity typically 10 mV rms Timebase accuracy 2 ppm - Battery life
10 hours - Frequency. 2 ranges, 4 gate times 10 hours - Frequency. 2 rarges, 4 gate times Optional extras - AC Adapto

LARGE S.A.E. Brings details of: Oscilloscope, Frequency Meters, Signal Generators, Function Generators, Pulse Generators. Analogue and Digital Muitimeters, Digital Thermometer, C.R.T. Tester, Logic Analyser etc.

All prices include VAT. Official orders welcome. Mail order only, or callers by prio appointment. Barclaycard/Access welcome. Cash/cheque. etc., with order Government and Educational Establishments official orders welcome.

B.K. ELECTRONICS

sa Meadows, Eastwood, Leigh-ortSea, Essex SS9 5TY V/SM Tel: Southend 527572

CONFIGURATIONS

 Our topic this month is twins and triplets. Don't worry, you haven't picked up a copy of 'Mother and Baby' by mistake it's just lan Sinclair explaining transistor amplifier feedback loops.0ne of the major problems about the straightforward transistor amplifier is the calculation of gain. As we saw last month, the gain of the transistor itself is easily calculated, but if we are to allow for the effect of input and output resistance, we have to know a lot about the particular transistor we are using. The task becomes even more difficult when the amplifier operates at high frequencies, so that we have to deal with input and output impedances rather than with pure resistances.

Negative feedback is the main method that we use to get around this problem. To start with, imagine an amplifier whose voltage gain is G - this is sometimes called the 'open loop gain', the gain with no feedback loop connected (Fig. 1). The amplifier has an input connection and a feedback connection, and $1 / n$ of the output signal is fed back to the input. Since the output signal is Vour, the amount fed back is Vour/ n, and so the actual signal available to amplify is $V_{\text {IN }}-V_{\text {out }} / n$, the input voltage minus the feedback signal. This is the signal which appears at the inputs of the amplifier to be amplified, so that with gain G, the output from this must be $V_{\text {out }}=$ $G\left(V_{\text {IN }}-V_{\text {OUT }} / n\right)$.

TOTAL INPUT - $V_{\text {IN }}$ - $(1 / \mathrm{m})$.VOUT
OUTPUT-GXINPUT
SO $V_{\text {OUT }}=G\left(V_{\text {IN }}-V_{\text {OUT }}(n)\right.$
THUS $V_{\text {OUT }}(1+G / n)-G . V_{1 N}$
aND VOUT $N_{\text {IN }}-G /(1+G / n)$
1 FOin >1. THEN VOUT $N_{1 N^{2}}{ }^{2}$
Fig. 1 Principle of negative feedback.

An Open And Closed Case

When we collect terms in this equation and rearrange it to get $V_{\text {out }} / V_{\text {IN }}$ (which is the gain with the feedback connected), we get this figure as $G /(1+G / n)$. This is the gain-with-feedback or closed-loop gain, and this is the equation that should be used in calculations if C is small or n is large. If the ratio G / n is large compared with 1 , however, we can ignore the 1 and rewrite the equation as $\mathrm{G} /(\mathrm{G} / \mathrm{n})$, which is simply n.

This important result shows that if the open-loop gain is large enough the gain when feedback is used is independent of anything except the potential divider that produces the $1 / \mathrm{n}$ of the signal which is fed back. This is the result that is often quoted in textbooks, but with a slightly different proof. One important point is that feedback is useful only if there is gain - if an amplifier has zero gain under certain circumstances, no amount of feedback can produce gain.

Looking On The Negative Side

Given that negative feedback can be useful, let's look at some circuits that make use of it. Since gain is important, there's not too much point in spending time looking at single-transistor stages, though both of the circuits in Fig. 2 are important and are widely used. The equations are approximations which apply to silicon transistors; no bias components have been shown.

Negative feedback really comes into its own when two or more transistor stages are used, and if the feedback path is a DC one then both gain and bias will be controlled by the feedback. This is seldom completely convenient, so that the basic circuits have to be modified to allow for separating bias and signal feedback paths. One of the most-widely-used of these circuits is the feedback pair circuit of Fig. 3. In this circuit, the transistors are directcoupled, and the negative feedback path is from the emitter of Q2 to the base of Q1. Because of the bypass capacitor C2, there is no signal voltage across R6, and the signal voltage that is fed back is the voltage across R 5 only. This value, along with the value of feedback resistor R7, can be chosen to produce the amount of gain that is

Fig. 2 Feedback over a single stage gives rise to these wellknown circuits.

DESIGN EXAMPLE: R2-10k.R4-4k7. $V_{C C}-12 \mathrm{~V}, V_{\mathrm{c} 1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CL}} * 7 \mathrm{~V}$. MAKING IEA $-1 \mathrm{C}_{2}-$ ImA. $\mathrm{V}_{\mathrm{ez}}=1 \mathrm{VE}$. CHOOSE R3 - 220A SO THAT $V_{V 1}-1 \mathrm{~mA} \times 022=0 \mathrm{~V}_{22}$ ANO $\mathrm{V}_{\mathrm{BI}}=0 \mathrm{OV} 2$.
 VALUE OF RT MUST BE 0.58 A $1 / 1000$ = S8k, A.SE SHOULD DO NICELYI

 (RI MEASURED IN KILOHMSS. WE CAN NOW SELECT HE GAINWE NEED
BY SPECIFYING A VALUE OF RI - WHCH MLL INCLUDE THE OUTPUT RESISTANCE OF THE PREVIOUS STAGE.

Fig. 3 A two-transistor negative feedback circuit using emitter-to-base feedback.
desired; providing of course, that the value is small compared to the open-loop gain which will be the product of the open-loop gain figure for each transistor multiplied by the loss for the potential divider effects of input and output resistances.

Getting Good Value(s)

Design of the circuit should start with the load and bias components. The values of the two load resistors R2 and R4 are fixed first; these should be fixed at values which will permit the transistor to operate at suitable currents. Values in the range 1 kO to 12 k are usually suitable, though $R 2$ can be in the range $15 k$ to 47 k if Q1 is operated at low current to reduce noise signals. If you prefer it, write down the desired collector voltages (Q2 must have a higher collector voltage than Q1) and choose current values, then use Ohm's law to calculate the load resistors.

Once the load resistor values, the currents and the voltage levels have been fixed, the bias components can be calculated. The voltage at the emitter of Q2 will be 0V6 less than the base voltage of Q2, and the voltage at the base of Q1 will be 0V6 higher than the emitter voltage of Q1. Subtracting these gives the voltage across R7, and we then have to pick a value which will allow the correct amount of base current to flow. Once this has been done, we can split the total resistance of R5 and R6 (which has to be calculated to produce the correct bias voltage) so as to allow for enough gain for Q2(R4/R6). We can then choose the total figure of gain by selecting R1, which is the sum of a resistor and the output resistance of the circuit that is providing the signal.

Fig. 4
A modified feedback circuit which is easier to design sample voltages are shown.

Though this circuit works well, it is never easy to get the bias spot on by calculation unless you know what base current Q2 requires, and the total gain is rather dependent on the source resistance value. The bias problem can be eased by a modification of the circuit shown in Fig. 4, where R7 has a fairly low value, around 4 k 7 , so that the base voltage at Q1 is practically equal to the voltage across R6. This allows the $h_{\text {ie }}$ value of the transistors to be neglected, but the penalty to be paid is that the gain is lower unless R1 is also small.

Further Feedback

Figure 5 is another direct-coupled two-transistor circuit which uses negative feedback, but this time from the collector of Q2 to the emitter of Q1. As shown the circuit is impractical (because there are no bias components) and a very useful compromise is to combine this circuit for AC feedback with the previous circuit for DC feedback (Fig. 6). The gain of this example is approximately $(R 7+R 3) / R 3$, and the bias is set by the DC network R3, R6, R5. The design procedure is to decide on operating currents and voltage levels as before, calculate load

Fig. 5 An
alternative twotransistor circuit, using collector-toemitter feedback.
resistor values, and then assuming that $\mathrm{V}_{\mathbf{c} 2}$ will be 0 V 6 less than V_{C}, find a value for R5. Make R6 a size that will suit its use as an input load (around 4 k 7) and calculate a value for R3 which will make the emitter voltage of Q1 OV6 less than the emitter voltage of Q2. You can then pick a value for R7 which will give you the gain you want, but remember that R1 (the source resistance of the signal supply stage) will-form a potential divider with R6, so that the overall gain will be lower than the calculated gain from the stage.

Fig. 6 Combining feedback systems, using one for DC and the other for $A C$.

After Twins, Triplets!

On the basis that negative feedback works best when there is plenty of gain, three-transistor amplifiers should perform better than twins. There's a catch, though, concerned with time constants. Each time constant in a signal path will cause phase shift at one of the extremes of frequency, high or low. Coupling capacitors will cause phase shift at low frequencies, as will emitter decoupling capacitors, and stray capacitances will cause phase shifts at high frequencies - usually beyond the audio limits. This phase shift in each time constant will cause a total phase shift over the whole amplifier circuit that can be quite large and when it approaches 180° your negative feedback is in danger of turning into the opposite type - positive feedback. This converts your amplifier into an oscillator if the gain in the amplifying part is greater than the losses in the time constants at the frequency where the 180° phase shift occurs. Calculations on this are far from simple unless you use a computer (and if you ordered the BBC Model B, then it's quicker to work it out on an abacus anyway). Two useful points are (a) to use direct coupling as far as possible, and (b) if you must use time constants, don't use a set of identical time constants.

A Compromising Situation

A circuit which can be a useful compromise is shown in Fig. 7. It uses direct coupling, made possible by having a PNP transistor as the intermediate stage, and the negative feedback is used to stabilise the bias as well as the gain. Looking at bias first, the base voltage of Q1 is set by R1 and R2, and the feedback of bias is achieved by passing all the DC current from Q2 through the emitter resistor of Q1.

FEATURE : Configurations

This would cause the AC gain to be very low, but by using R8, which is coupled to the emitter of Q3 through C2, the amount of AC signal at the emitter of Q3 can be reduced, allowing the amount of AC signal fed back to be controlled. The gain of the stage is given by (R7/R8) $\times($ R9/R4) .

Design starts as usual with biasing. Assuming, as is reasonable, that the first transistor will be run at a lower current than the others to reduce noise, we can choose current levels of 100 uA for Q1 and 1 mA each for the other two. We can then choose voltage levels, making the voltage of the collector of Q1 reasonably high, the collector voltage of Q 2 reasonably low, and the collector voltage of Q3 about midway between V_{Cc} and the collector voltage of Q2. These figures and our selected currents allow us to calculate values for load resistors and for R5.

With this done, we can start to look at R9 and R4. We have to allocate the total voltage at the emitter of Q3 bet-

EXAMPLE: $V_{C C}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{El}}=7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CL}}-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CH}}-7 \mathrm{~V}$.
MAKE $1_{c 1}-0.1 \mathrm{~mA}, 1_{C 2}=1_{c 3^{-1}} \mathrm{mAR}^{\mathrm{CL}}$.
THEN R3- $5 k 0$. AS - 1 k 4 . R6- 3×0. R7-5kO UUSE NEAREST PREFERRED VALUESI ALLOW OVA AT THE EMITRER OF O1 AND $2 V$ ACROSS R9, SO THAT R9 - 2 K 0 ALLOW OVS AT THE EMITER OF OI AND $2 V$ AC
OVA ACROSS RAFOR 1.1 MA MEANS AN $=363 R$.
$V_{b 1}=1 V$ SO THAT R1 $=8 \mathrm{k} 0, R 2-1 \mathrm{kO}$.

Fig. 7
A threetransistor circuit, making use of a PNP transistor to change DC voltage levels and contribute gain.
ween these resistors, and a ratio of something like $5: 1$ is reasonable here - the voltage across $R 9$ being about five times as much as the voltage across R4. I've used 6 in the example. Since R9 carries the allocated current of Q3, its value can be calculated right away, and the value of R4, which carries the current of Q1 as well as that of Q3 can be calculated.

The only remaining factor is R8, whose value then decides the total gain. Calculate the gain contribution of R9/R4, and divide this into the total gain required. This latter figure will then be the ratio R7/R8, and since you have already decided on a value for R7, a value of R8 can be calculated, followed by R1 and R2. C1 and C2 should have values which allow the gain to be maintained at the lowest frequencies at which the amplifier will be used, and the time constants R5-C1 and R8-C2 should be quite different.

Which Do You Prefer?

Finally, an important point. The resistor values which are obtained by calculation are seldom preferred values, so obviously you have to substitute the nearest preferred values. This is not a major worry, because feedback amplifiers are self-correcting, but there will be one resistor in each circuit whose value sets the gain and which will have to be adjusted - R8 is such a value in Fig 7. The other point which is often raised is - why bother about running Q1 at low current to reduce noise? Since this is a feedback amplifier, the feedback will do a pretty good job of noise reduction anyhow. The answer is that you use negative feedback to stabilise gain and operating conditions. It doesn't make a lousy amplifier into a good one; all it can do is to make a sound design easy to analyse and reliable to mass-produce, so you aim to start with a good amplifier and add negative feedback to it.

ETI

TOMORROW'S TOOLS TODAY

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited Dept 9D

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ
Telephone: Saffron Walden (0799) 21682
Telex: 817477

Instant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8 -digit LED display; mains or battery operation; an accuracy of 4 parts per million ± 1 count and totally automatic operation - all this for only $£ 85.00^{*}$ with GSC's new Max-100 frequency counter.
Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range $5 \mathrm{~Hz}-100 \mathrm{MHz}$ *inpur impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to $50 \mathrm{MHz} ; 120 \mathrm{mV}$ r.ms. over full frequency range Timebase accuracy ± 4 parts in 106 (from 5 to $45^{\circ} \mathrm{C}$) *Maximum aging rate 10 parts in 106 per year *Over-frequency indication *Low-battery-power alarm *Operates from dry or rechargeable cells, an external 7.5. to 10VDC supply, or a car battery (via an adaptor) *Dimensions: $45 \times 187 \times 143 \mathrm{~mm}$ *Options: 12 V adaptor; battery eliminator; r.f. antenna, low-loss r.f. tap, carrying case.

Fill in the coupon for further details.
price excludes post, packing and VAT

19" RACK MOUNTING CABINET. Frant Panel $480 \times 150 \mathrm{~mm}$ Real Case $425 \times 250 \times 140 \mathrm{~mm}$				
'Or Free Standing'				
Brushed Ali Front with 'Crome handles'.				
 the leatures vou would eapect fiom a paslessional unit				
 Many sold to 'TANGERINE'users, \& INOUSTRY.				
ADD V.A.T AT STO RATE \& OROERS UNOER $£ 500 . P \& P .50$ P. ABOVEITEM £ 2 PEP				
We EXPORTV Moat Lodge. Stock Chase, MALDON, Essex.U.K. Tel 0621.57242 10am-8pm. mon-				-

It's easy to complain about advertisements.

The Advertising Standards Authority.
If an advertisement is wrong.we're here to put it right.
ASA Ltd, Brook Hruse, Tormington Place London WCIE THN.

VERY LOW DISTORTION AUDIO SIGNAL GENERATORS. (.002\%)

Model AO 149ba (battery model) £41.50 (p.p. £2.25)

Sine/square. iv/600 ohrns. Coarse \& fine attenuation. 10 hz -100khz. Battery or mains versions 146ba Kit model $E 35.65$
150ba (illustrated) with frea. meter. 557.50
146ba Low cost model. Kit $£ 33.25$
Full bists of audio and R.F. sig. generators. Function gen., distortion analyser Frequency meters. Digizal mmt.

TELERADIO ELECTRONICS,

325, Fore St., London N9 OPE.
01-807 3719.
Closed Thursdays.

SECOND GENERATION POWERFET AMPLIFIERS

NEW DESIGNS
With the introduction of two new boards PANTECHNIC have pushed forward the performance and reliability of their powerfet amplifiers. Four key improvements have been incorporated in these second generation modules
1.) The use of H-PAK powerfets, resulting in improved thermal efficiency and
2.) Low COB drivers now in power trensistor pactages
2.)
3.) Separate driver and input supply rails ailowin
a 10% increase in available output
4.) Bridge mode input pin allowing instant bridging between any two amplifiers without the need for extra circuitry

PFA100 Specification
$\begin{array}{ll}\text { Bandwidth } & 10 \mathrm{~Hz} \cdot 100 \times \mathrm{Kz} \pm 198 \\ \text { Ouput Power into } 88 & 100 \mathrm{~W}(\mathrm{Vz}= \pm 50 \mathrm{~V})\end{array}$
Output Power into 80
THD $20 \mathrm{~Hz}-20 \mathrm{KHz})$
THD (1KHz at 100 W$)$
$\begin{array}{ll}\text { THD (1Kltz at } 100 \mathrm{WI} \\ \text { SNR } & 0.000 \\ \text { Slew rate } & 1200\end{array}$
Slew rate
Gain
Rin
Vs max
Price $£ 18.45$
Oistortion figures
worst case
0.008%
004% typ.
004\% typ.
$30 \mathrm{~V} / \mathrm{us}$
$\times 23$
5

PFA200 Specification
Bandwidth $\quad 10 \mathrm{~Hz} \cdot 100 \mathrm{KHz} \pm \mathrm{IdB}_{\mathrm{dB}}$ $T H D(20 \mathrm{~Hz} 200 \mathrm{KHz})$ THD 1 lkHz at $150 \mathrm{~W} 0.002 \%$ typ SNR 1200 dB
$>00 \mathrm{~V} / \mathrm{uS}$ Gain Vs max $\times 23$
30 K
$\pm 7 \mathrm{VV}$ Price $£ 25.95$
PFA200 180W into 8Ω 300 W into 4Ω

Distortion figures
worst case

POWER SUPPLY COMPONENTS
Toroidal Mains Transformers

Voltage	160 VA	225 VA	300 VA	500 VA	625 VA
$40-0-40$	$17-17$	$13-06$	$14-17$	-	-
$45-0.45$	-	$13-06$	114.17	$18-46$	-
$50-0-50$	-	-	-	$18-46$	$121-62$

Special low flux windings. Carriage + VAT included
25A 400PIV Bridge rectifier
10,000 uF 80 V Eectrolytic
30,000 uF $75 V$ Eectrolytics
000 UF $75 V$ Electrolytics $\quad £ 11.50$
Phone or write for advice on selecting the right components for your particular appllcation.
All prices VAT inc. Carriage 75p. Trade lists available Ask about our preamps, protection boards and lower and higher power amp modules.

THE POWERFET SPECIALISTS pantechnic (incorporating J.W. Rimmer)
Dept ETI/9, 148 Quarry Street, Liverpool L256HO Telephone: 051-4288485
Technical enquiries:
367 Green Lanes. London Na 1DY. Tel: 01-800 6667

READ/WRITE

Letters for this page should be addressed to Read/ \bar{W} rite at our Charing Cross Road address.

Dear Sir,
I am a keen constructor and I find ETI an absolute must; however, there are a few points that I would like to mention.

First, I would like to draw your attention to the 'Rapid Electronics' advert in the July 82 issue. If you check this where it is headed 'free diodes' you will find a part which reads ". . . we give you $£ 25$ 1N4148 signal diodes..." This offer being for orders for over $£ 10$, and hoving already decided to send away for some components for the ETI
Fuzz/Sustain Unit (ETI October 80), Rapid Electronics seemed the natural choice as my order was indeed over $£ 10$ before VAT. There was only one item that I needed which Rapid Electronics did not list in their advert, a piece of Veroboard. I would have sent my order to a company that could supply this with my other components but $£ 25$ worth of diodes was tempting.

On receiving my order from Rapid Electronics (which arrived just 48 hours after I sent it), I found that there were only $251 N 4148$ signal diodes and not, as I had supposed, 1250 diodes. From this I concluded that a misprint had occurred in the advert, and probably the $£$ sign in front of the 25 should not have been there. However the mistake occurred, I would just like to point it out so that it may be corrected.

I mentioned earlier that I am building the ETI Fuzz/Sustain Unit. In the text it reads "Note the orientation of IC1 and IC2; they are not mounted in the same direction". I have designed my own Veroboard layout and have put IC1 and IC2 fairly near to one another, so when the text says not in the same direction, does it mean that one chip has to be at 90° in relation to the other? Are the chips at right angles or can one be 180° in relation to the other?

Furthermore, on the actual circuit diagram, 'B' on IC3d is marked as pin 2. Aspin 2 is already used elsewhere, and performs an entirely different function, this arrangement does not seem to make sense. Looking at your PCB layout plan I believe it confirms my suspicions that ' B ' is in fact pin 12. Could you please tell me if this is so? Also, will any red LED be OK for LEDI? You used TIL. 220 or similar. Is the negative end of C9 connected to IC2 pin 3 and the negative end of C10 connected to IC2 pin 2? The circuit has omitted these two numbers. Each half of IC2 has pin 5
marked on it. Is the pin connected to C15 negative on the lower half of IC2 meant to be pin 15?

Finally, I am going to build the effects unit on the same board as some others, and I am looking for a rack mounting box, preferably a sturdy metal one of about $20^{\prime \prime}$ by 7 " and 10 to 12 " deep. Are you in a position to tell me where I might be able to purchase one?

I would like to add that Rapid Electronics offer fine components, and I shall continue to order from them in the future.

Thank you for your help,
Yours sincerely,
John Swaine,
Rochester
You're right, it should have been 25 diodes - but even that's better than a poke in the eye etc. Not our fault, this time - we don't proof-read the ads but the other errors are. ' B ' is pin 12, C9 goes to pin 3 and C10 to pin 2 of IC2. C15 goes to pin 15 of IC2. The LED can be any red type; what's important is its voltage drop so don't use any other colour (this was mentioned in the How It Works box). As to IC orientation, there is no reason why they can't be at 60.5° to each other if you want; the caption was trying to indicate that on our board, pin 1 of the ICs pointed in opposite directions (the caption should have read IC2 and IC3). As for the case, try Relay-A-Quip Products, Moat Lodge, Stock Chase, Malden, Essex CM9 7AA; we used one of their racks for the MOSFET amplifier in the June 82 issue. Height is about $5^{1 / 2 \prime}$, depth is $12^{\prime \prime}$.

Dear Sir,

I have read and studied with interest the articles and discussion on robots. After some thought a couple of circuits have been designed and breadboard-checked for steering and 'target' attainment. But apart from very small and inadequate motors, railway model size, or very large motors, car size, there appears to be nothing available. Even scanning the radio control model magaz ines produced no avenues to try. So your listing, innocently no doubt, DC motors under 'Miscellaneous' in the Parts List has brought my attempts to a halt. Have you any suggestions for sources of suitable motors and gear trains?

None of your advertisers list such animals, Maplin, RS and Watford have nothing either. As it is a field of some potential widespread interest, perhaps a hint or dig in some appropriate ribs will bring a motor or two to light.

Yours sincerely,
John Boyd,
London
No sooner said than done. First of all, you mention RS so you presumably have their catalogue. What about the general purpose DC motors listed on page 140 of the July-October catalogue? Of course we don't know whether they have enough torque for your purposes; we aren't too sure what milliNewtonmetres are in good old Anglo-Saxon terminology. Failing that (and for people without the trade connections to use RS), there are the units that Remcon Electronics are providing for use in our own Mobile 2. These are ideal since they also have a gearbox with variable gear ratios (see the robot article on page 25 for details). You can get in touch with Remcon at 1 Church Road, Bexleyheath, Kent (telephone 01-304 2055). Finally we can suggest J. Bull (Electrical) Ltd, 34-36 America Lane, Haywards Heath, Sussex RH16 3QU. They don't advertise with us, but in our sister magazine, Hobby Electronics, they have a goodly selection of DC motors on offer. Tell 'em ETI sent you!

Dear Sir,

Please forward this info lo your correspondent, Mr. F. Mills of Dibden Purlieu (Read/Write July 82) with my sympathy - I know how bloody difficult it is to get hold of Plessey data and I work for them. Please leave me anonymous.

Data received and passed on, with grateful thanks, no doubt, from Mr. Mills. Ta very much from us, too; we took a few photocopies because it's bound to come in useful one day!

Finally we thought we'd share a little quip with you that was tacked onto the end of one of our contributors' letters. The name has been withheld to protect the guilty.

Idea of the Month: How about forming a BBC Computer Non-Users Group?

NICADS:UK'S LOWEST PRICES

AMBIT'S NEW CONCISE COMPONENT CATALOGUE IS OUT NOW

Ambit's new style catalogue continues to ead the marke with low prices, new items, info. $3 \times$ f1 discount vouchers. Here's a few examples of some super low prices:
$78 \times 1 \mathrm{~A}$ BC237/8/9 3SK51 $10 \mathrm{MHz} \times T A L$

8 Pole 10.7 MHz XTAL filters $£ 14.50$ 2 GHz coax relay 150 W £10.95

+ all the usual stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits atc

Availatile at your newsagent or 1 direct, for 70p inc.

1 TELEPHONE ISTO 02771230909 TELEX 995194 AMBITG POSTCODE CMI4 $4 S G$

DESIGNER'S NOTEBOOK

Tim Orr has taken time off from musical circuits to produce this article on instrumentation techniques. If you're one of those people who isn't quiet sure exactly what a decibel is, you'll find this feature particularly helpful.

The following sections describe several electronic measurement techniques, and by adopting a modular approach it will be possible to construct a wide range of electronic measurement systems. First of all, though, we'll look at some of the units involved and try to clear up some of the confusion about them:

The Decibel

The decibel (dB) is a convenient way of expressing signal gain or loss in a system. When a signal passes through several amplifiers or filters the signal level may alter; the overall system gain is the product of all the individual gains. However, it is easier to add a series of numbers than to multiply them and so it is easier to convert the signal gains into a logarithmic equivalent which can then just be added or subtracted. This is equivalent to multiplying and dividing in the linear world. The calculation of gain in dBs is shown Table 1. The chart shows a range of dB values and their equivalent multiplier. These multipliers are often abbreviated by engineers (see rule of thumb), just to make life easy.


```
dBm IS USED AS A VOLTAGE MEASUREMENT. OdBm IS A SINEWAVE LEVEL THAT DISSIPATES 1 MHLIWATT OF POWER INTO A GOOR LOAD
THE POWER DISSIPATED \(=\frac{V_{P P}{ }^{2}}{8 \times R}\)
FOR \(1 \mathrm{~mW} . V_{P P}{ }^{2}=8 \times R \times 10^{-3}\)
\(V_{P P}=\sqrt{8 \times 600 \times 10^{-3}}-\sqrt{4.8}\)
\(v_{p p}=2.1909 v\)
```


\therefore OdB IS EQUIVALENT TO $2.1909 \mathrm{~V}_{\mathrm{Pp}}$ or $0.7746 \mathrm{~V}_{\text {RMS }}$
THIS IS USUALLY ROUNDED OFF TO $2.2 \mathrm{~V}_{\mathrm{PP}}$ or $0.775 \mathrm{~V}_{\text {RMS }}$
Fig. 1 Everything you ever wanted to know about the dBm !

The dBm

The $d B m$ is used to describe a signal level and not signal gain and loss as for the dB (Fig. 1); it is widely used in audio and telecommunication engineering. For example, microphone amplifiers often have their equivalent input noise voltage expressed in dBm. If, say, this noise is -124 dBm and a microphone is being used that delivers a signal level of -40 dBm , then the signal-to-noise ratio at the output of the amplifier is $124-40=84 \mathrm{~dB}$. Not exactly a difficult calculation! Table 2 shows a chart of dBm signal levels. The dBm is meant to be used for 600 ohm impedances; however the same signal level across any load is referred to as the dBU.

	TABLE	
dBm	\checkmark RMS	$\mathrm{V}_{\text {p-p }}$
+20	$7 V 75$ 6 V 16	22 V
+18 +12	6 V 16 3 V 08	17V47 8 V 76
+10	2V45	6 V 95
+6	1V55	4 V 39
+3	1 V094	3 V 11
0	775 mV	2V2
-3	549 mV	1V56
-6	388 mV	1V1
-10	245 mV	695 mV
-12	197 mV	553 mV
-18	97.6 mV	277 mV
-20	77.5 mV	220 mV
-30	24.5 mV	69.5 mV
-40	7.75 mV	22 mV
-50	2.45 mV	6.95 mV
-60	775 uV	2.2 mV
-70	245 uV	695 uV
-80	77.5 uV	220 uV
-90	24.5 uV	69.5 uV
-100	7.75 uV	22 uV
-110	2.45 uV	6.95 uV
-120	775 nV	2.2 uV
-130	245 nV	695 nV

- USE A TEL LABS QB1 IF POSSIBLE. THIS HAS A TC OF. +3500 PPM $/{ }^{\circ} \mathrm{C}$.

IT COMPENSATES FOR DRIFT IN THE ADS36A
Fig. 2 Circuit for a dB meter using an Analog Devices IC.

Measuring Decibels

The AD536A is an RMS-to-DC converter chip, which is made by Analog Devices. It contains an absolute value circuit, a squarer/divider and a current mirror. With these elements it can compute a true RMS value or a $\log (d B)$ equivalent of the input signal. The circuit in Fig. 2 has a useful operating range of 60 dB . PR1 sets the scale factor of the meter. Insert a 1 V peak-to-peak sine wave and then change it to 100 mV peak-to-peak; this is to a change of 20 dB and so the preset PR1 should be adjusted for a 2 V change in the output voltage. RV1 sets 0 dB by inserting a current that cancels the log output current from the squarer/divider. This can be used to measure absolute voltage in dBm by setting zero at an input voltage of 775 mV RMS. Alternatively it can be used to compute a dB ratio. Insert a signal, set zero and then change the input signal level - the resulting output change will represent the dB change in input level. Note that the input of the AD536A can accept DC signals, but a small DC offset on the input signal will add a large error to low level readings, For the computation of dBs for AC signals it is best to ACcouple the input with a 4 u 7 capacitor.

RMS To DC Conversion

The AD536A calculates the true RMS value of the input signal by converting it to an absolute value. It is then squared, averaged and then square rooted. The result is a DC voltage that is equal to the RMS value of the input signal (Fig. 3). Most moving coil AC voltmeters are:

Fig. 3 The same chip can be used for an RMS to DC f? converter.

Fig. 4 Sine wave level measurement.
calibrated for sine wave operation only; the peak voltage of the sine wave is multiplied by 0.707 to produce the RMS value (Fig. 4). This type of meter will give wrong readings if noise, square waves, triangle waves or any non-sinusoidal signals are measured, as in Fig. 5. To measure any nonsinusoidal waveform a true RMS converter is needed, otherwise the reading could be wrong by a factor of 5 !

Fig. 5 Measuring different waveforms.

Noise Annoys

All electronic components generate noise, and the combined effect of all the noise components in a system gives rise to the phenomena of a noise floor. This is a background noise signal that is forever present. The measurement that is often used to describe the noise performance of a system is called the signal-to-noise ratio which is expressed in dB . This is the ratio between the normal operating signal level and the residual noise level with the signal removed. Measurement of the signal is relatively straightforward; a sine wave signal can easily be measured with an AC voltmeter, to give the RMS value. The noise measurement is more difficult. First, the noise level will probably be very low and so it will need amplification. Second, we will only be interested in noise within a certain bandwidth. Noise outside our selected bandwidth will make the noise reading seem larger than it really is. Therefore we will need to band-limit our amplifier. For audio applications a bandwidth from 20 Hz to 20 kHz is often used.

Finally, noise is a random process and it has a constantly varying ratio between its peak and RMS voltage. A simple rectifying and smoothing process will give an erroneous reading and a true RMS-to-DC converter is need-

PSU FILTERING

Fig. 6 (Above) A low noise 60 dB amplifier and 20 Hz to 20 kHz filter.

Fig. 7 (Right) Meāsuring noisé in opamps.

ed for correct readings. Thus by using a band-limited amplifier with a true RMS converter it is possible to accurately measure the residual noise level. A suitable amplifier and filter for audio work is shown in Fig. 6. The NE5534 op-amps are low noise devices, so they will contribute very little noise to the output signal. The amplifier has a voltage gain of 60 dB and so the output reading must be attenuated by the same amount; Table 1 shows the equivalent is $\times 1000$, so millivolts turn into microvolts.
This calculation assumes a flat noise spectrum.
Figure 7 is a circuit that measures the equivalent input noise of op-amps. The circuit has an overall gain of 100 dB ($\times 100,000$) and so the DVM reading must be attenuated by this factor; additional filtering may be included to remove hum or to produce an A-weighting.

The noise often has an A-weighting frequency response applied to it before measurement (Fig. 8). This curve is similar to the frequency sensitivity of the human ear and so by A-weighting the noise measurement it becomes a subjective quantity. It also improves the apparent noise performance figure. Usually when you make a noise reading there is a mains hum component that is actually bigger than the noise. This can be removed with a 400 Hz high pass filter as in Fig. 10. This filter also removes some of the energy of the noise below 400 Hz , but even so

Fig. ε The IEC ' A ' weighted curve.
the noise reading is still useful. Sophisticated digital multimeters often give you the choice of 400 Hz highpass, 30 kHz and 80 kHz low-pass and A-weighting filters; sometimes they also have the facility for true RMS, dBm and dB ratio measurements.

Noise in op-amps is specified in $n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$. The equivalent input noise voltage is:

$$
\begin{aligned}
E_{\text {IN }} & =E_{n} \times \sqrt{ } \text { BANDWIDTH } \\
& =\left(E_{n} \times 141\right) \mathrm{nV} \text { for a } 20 \mathrm{kHz} \text { bandwidth }
\end{aligned}
$$

where $E_{\text {IN }}$ is the equivalent input noise voltage in V RMS
E_{n} is the input noise in $n V / \sqrt{H z}$.
The calculation assumes a flat noise spectrum.;
Next month Tim Orr looks at the measurement of voltage, current, resistance and temperature.

Fig. 9 An IEC ' A ' weighting circuit.

Fig. 10 A 400 Hz twō pole high pass filter.

MICROCOMPUTER COMPONENTS

 LOWEST PRICES - FASTEST OELIVERYMEMORIES NEW LOWER PRICES

-2114 Low Powe 20

 2732 350ns 2532 SSOns

0.00	- 4116200 ns
270	- 2116 150ns
225	-4418150 ${ }^{\text {ns }}$
3.59	-4/64 20 Ons (T3)
5.85	-4816/4516 100)
3.90	-5516200rs
440	-5116P3 150 ms
1.90	*6116LP 3150ns

BBC MICRO UPGRADE KITS NEW LOWER PRICES

betore ordering	
	E50
	8.45
B8C4 Arsiogut input krt	6.75
(1C73.77 - SK6)	
ESCS Serial VO and AGB kit	
IIC14. $75+5 \mathrm{~K} 3.44$	
B8Cs Expanson tus and tube	

BBC22 Cometctat for unore por wint 33^{-}cabic
 ${ }_{3 O C 66}$ Correctra lo lo Bus 0 ont wint
\qquad

8 BIt MICROPROCESSOR Nadonal INS 80800 AN 40 Pin OIL N. Channet silico N8080 Micro Computer Family
Instiuction Cycle Jime 2 uS
Supplied with turnctional
Block Diagram
BRAND NEW
QRANO NEW -
NOT seconds or reclaims
Not sectonas or reciains /IMI
 Our BHPAK Special Price E2. 00 SO HURRY - LIMITED STOCKS

$$
40 \text { Pin IC Socket to fit SX8000 Offer proce }
$$

5 watt (RMS) Audio Amp
High Quaity audio amplitier Madule Idea! for use in record piayers. tape reconders, stereo amps and cassette playets, etc. Full data and back-up diagrams
with each module. wheach module
Specification

- Power Outpul 5 watts RMS Load Impedance $8-16$ ohms - Frequency response 50 Hz to 25 KHz - 3 db -
 50k ahms distorition less than. 5%
± 2.25

Yos could not Build one
for this pice.
MW398 NI-CAD CHARGER
Universal Ni-Cau battery charger. All plastic case with lith up lid. Charge/Test swith: LED incicators at each of the five charging points. $\begin{array}{ll}\text { Charges:- Power:- } \\ \text { pps } & - \\ \text { gy) }\end{array}$ $\begin{array}{ll}\text { PP3 (9V) } & 220-240 \mathrm{VAC} \\ \text { U12(1.5V penlite) } & 0 . m s:-100 \times 50\end{array}$ $\begin{array}{ll}\text { U12(1.5V penlite) } & \text { Oims:- } \\ \text { U11 (1.5V "C") } & 210 \times 100 \times 50 \mathrm{~mm}\end{array}$ U2 (1.5V $\left.\mathrm{V}^{\circ} \mathrm{O}^{\prime \prime}\right) \quad \mathrm{E} 6.95$
5T21 SCREWDRIVER SET
6 precision screwdrivers in hinged plastic
case. Sizes: $-0.8,1,4,2,2.4$.
2.9 子nd $3.8 \mathrm{~mm} \quad £ 1.75$

ST31 NUT DRIVER SET

5 precision nut drivers in hinged plastic case
With turning rod.
5. 4. 4.5 and 5 mm .
\&1.76
5T41 TOOL SET
5 precision instruments in hinged plastic case.
Crosspoint (Phillips) screwdrivers:
H 0 and H 1 Hex key wrenches
1.5 .2 and $2.5 \mathrm{~mm} \& 1.75$
5 T51 WRENCH SET
5 preciston wrenches in hinged plastic case
Sizes: - 4, 4.5 5. 5.5 and 6 mm , £ 1.75
8UY ALL FOUR SETS: 5 T21-5T51 and get
HEX KEY SET FREE
HEX KEY SET ON RING
Sizes: 1.5. 2. 2.5. 3.
4.5.5.5 and 6 mm .

Made of hardened slee
$H X / 1 . \& 1.25$

POWER SUPPLY OUR PRICE $£ 3.2$

Power supply fits directly into 13 amp socket. Fused for safefy. Polarity reversing socket. Vottage switch. Lead with multi plug. Input:- $240 \mathrm{~V} \mathrm{AC}$.50 Hz Output:-3. 4.5.6. 7.5.9\& 12 V OC Rating: -300 mz MW88

TRIACS - PLASTIC

4 AMP - 400 N - TO202 - TAG 136G.

$803 I 2$ COMPLIMENIARY PNP POWLR TRANSISTORS TO2N3055
Equivalent M12955-80312 - T0
SPFCIN PRICE 60.70 each SPECIN PRICE 50.70 each
10 off 56.50 10 of 56.50
\star All prices exclude VAT and Carriage (0.75 + VAT) on orders under $£ 10$ * On ordery despatched on day of recefot with full refund on OS items if requested \star

MIDWICH COMPUTER CO. LTD.
 DEPT ETI. HEWITT HOUSE, NORTHGATE STREET,
 EURY ST. EDMUNDS, SUFFOLK IF33 1 HO
 TELEPHONE: (0284) 701321 TELEX: 817670

AUTO-VOLUME CONTROL

Having sorted out mike switching in July, we now turn our attention to the other PA nightmare, volume control. This clever little gadget will sort out your problems - automatically. Design by Vivian Capel. Development by Peter Green.

Automatic volume control has been used for years in broadcast radio receivers at least it has been termed automatic volume control although it was actually automatic gain control. AGC responded not to changes in the audio frequency output, but fluctuations in the level of the RF carrier. Part of the carrier appearing at the last IF stage was rectified, applied to a circuit having a time constant sufficient to remove audio modulations, then fed as a DC control potential to the grid circuit of the first IF stage. Thus fading was reduced and strong local carriers did not produce overloading of later stages. This illustrates the rather confused manner in which the term is used.

Expanding On Compression

Another confusion often encountered is between automatic volume control and volume compression. Although both are concerned with audio levels nd their control, there is an important difference that dictates which feature should be used in a particular application.

With volume compression, the dynamic range is reduced and the gain of the circuit varies according to the amplitude of the signal. This reduction may take place over the whole range of signal levels, or it may start at some predetermined threshold below which the circuit behaves normally with linear gain. Above it, the signal produces an output which is proportionally less as the amplitude increases.

Volume compression is used where the dynamic range the range between the loudest and softest signals) is too great for the equipment or system to safely handle. Either the loud signals

Fig. 1 A signal comprising successive loud and soft tones. The loud tone exceeds the overload level of the equipment (a). With volume compression, the loud tone is reduced more than the soft one, reducing dynamic range (b). With automatic volume control, all the signals are equally reduced (c).
would overload the circuit, overmodulate the carrier, or introduce unacceptable distortion, or the soft signals would approach the noise level so that a poor signal-to-noise ratio would result. Broadcast radio transmissions are an example of the use of compression, and the compressed result is generally considered satisfactory for domestic listening.

Orchestral Manoeuvres

It may be worth mentioning at this point that there is often a considerable 'overkill' in the range stipulated in hi-fi circles. Some quote figures around 70 dB as the range between the quietest and loudest sounds produced by a symphony orchestra. Measurements of sound levels made by the author at public symphony concerts failed to produce anything like this. The difference between the quietest passages (whispering strings) and full-blooded climaxes with percussion, brass and everything else playing flat out was little more than 45 dBA .

The opportunity has not arisen for measurements during large scale choral and orchestral works in which a somewhat wider span could be anticipated, but from
theoretical calculation it would not be a lot more. (For example if a choir and orchestra each generated 45 dB , together the combined sound level would be only 48 dB .)

Levelling Off

Automatic volume control does not reduce dynamic range by lessening the amplitude of toud signals more than that of quiet ones. It reduces the overall level (so that both loud and quiet sounds are affected equally) when the level is high, and increases it when the overall level is low. The operation is the same as that of a manual volume control, except it is automatically actuated by the signal.

One common use is the automatic recording level control that is incorporated in most portable cassette recorders. This permits recordings to be made without trial runs and careful watching of the recording level meter. Though very useful for spontaneous recordings it does have its drawbacks in being too inflexible in the form usually used. Fades, either up or down, cannot be executed as there is normally no recording level manual control. The effect is also less than satisfactory when recording music which has sudden changes of volume. The manual override which
accompanied the first automatic level circuits in recorders now seems to have disappeared completely.

PA Problems

Public address systems are another application for which auto level control is ideal. Many platform orators are notoriously bad microphone users; they turn away

Fig. 2 A simple AVC circuit as used in some cassette recorders for recording level control. It can be overloaded as the forward bias is reduced by a strong signal.

Fig. 3 Experimental circuit for controlling the gain of a stage by varying the negative feedback.
and often step away from the rostrum, while at other times some lean forward and shout into the microphone to emphasise a point. As the level varies according to the square of the distance between the lips of the speaker and the microphone, some pretty hefty volume changes take place. With interviews or forums there may be a variety of participants, some softspoken and some loud. Any of these may shift his position during the programme and wind up nearer or further from the microphone. The poor PA operator struggles manfully to compensate by rapid adjustment of the sliders, sometimes the wrong ones, and in the wrong direction. No wonder they sometimes emerge from a session as nervous wrecks!

It was for the purpose of PA control that our unit was designed, and very useful it has proved too. However, there are no doubt other applications for which readers may find it practical. Being
comparatively small it could be built into most existing amplifiers or mixers, drawing only a small
amount of current from the power supply. However, if desired it could be mounted in a separate box with a battery supply.

Alternative Technology

Several methods were tried (and rejected) in order to achieve satisfactory auto-control. The simplest method (which hs been frequently used for cassette recorder ALC circuits) is to rectify part of the output and apply it as negative bias to an early NPN transistor (or positive bias to a PNP device). Thus the forward bias is reduced, reducing the collector current and also the gain of the circuit (Fig. 2).

There are several snags with this arrangement. One is that with the reduction of base current on which the signal current is superimposed, the capability of the circuit to handle large signals is also reduced. Now this occurs precisely at the time when large signals are present at the base, which are not affected by the gain of the following circuit. Hence there is a strong possibility of overloading and distortion, as the

Fig. 4 The circuit of the AVC unit, showing the connections required when it's built into existing equipment.

HOW IT WORKS

The signal is sampled from the output of the mixer or some other convenient high-level point, and is applied to the potentiometer PR1. This permits the amount of AVC to be preset. SW1 shorts the preset wiper to earth, which allows the circuit to be switched out without disturbing the control setting.

O1 amplifies the control signal and the output is applied to Q2; this is an emitter follower with a low impedance output and high current sourcing. The purpose of this is to ensure that the capacitors C4 and C5 charge rapidly at the onset of a sudden loud sound and so achieve a quick reaction. The capacitance of these components has been limited for the same reason.

After rectification by $D 1$, the $D C$ control signal charges C5 through D2 which offers a low impedance path. However, the capacitor cannot discharge back through D2 because of reverse polarity, but does so through R8 and R7. Thus the discharge is con-
siderably slower than the charge, so the control signal doesn't fluctuate with every change in amplitude of the original signal (which would result in volume compression). Instead it maintains a level which corresponds with the average level of the ncoming signal; thus if a quiet signal follows immediately after a loud one, the same dynamic range is maintained and the gain drifts back only slowly to the previous level. Small changes in signal amplitude as in normal speech have little effect.

The rapid initial response greatly reduces the devastating effect of the explosive consonants P and B when spoken too close to the microphone. But because the general overall level is governed by the average input signal, the circuit evens out longer variations which arise when a speaker turns his head away from the microphone to address one section of his audience.

Transistor Q3 drives the control transistor Q4, which behaves as a variable
resistor and is connected as the bottom leg of a potentiometer across the signal source. The upper leg is a fixed resistor, and the tap between them is the variable point for feeding the following amplifier. A shunt resistor is connected across Q4 to maintain the load on the source when the transistor is cut off.
When a large signal is received, Q4 is made conductive and the resistance of the bottom leg reduced, changing the ratio between it and the top leg. When the signal is small the opposite happens and Q4 becomes less conductive, increasing the lower leg resistance. Thus the circuit operates in the same manner as a manual volume control, by reducing the signal applied to the controlled stage rather than changing the gain of the stage itself. Therefore it can't be overloaded and self-generated noise remains the same. Noise from earlier stages is reduced along with the signal, so the drawbacks of other control circuits are eliminated.

Project: Auto Volume Control

stronger the signals are, the smaller the base current becomes.

Overloading is less likely in a cassette recorder when the internal microphone is being used, as closetalking is not usual under these circumstances. But it could occur if a high sensitivity external microphone or auxiliary input were being recorded. It could certainly occur when used as a general automatic volume control for PA or other purposes.

The other drawback is that noise in a transistor is dependent on the current in the base and collector circuits; the larger the current, the greater the noise. As the current varies with the operation of the automatic control, noise will also vary. However, the current, and hence noise, is greatest in the absence of a signal, and least when the signal is at a maximum. This of course is the opposite to what it should be, as noise is relatively unimportant in the presence of large signals which mask it.

Variable Variation

Another circuit which at first seemed promising (Fig. 3) consisted of a transistor used as a variable resistor controlled by a rectified voltage derived from the output, which was connected in series with an emitter bypass capacitor. The signal developed over the emitter resistor by the collector current is in opposition the the applied signal between base and emitter, hence it provides a form of negative feedback. When bypassed with a capacitor having a low reactance compared to the emitter resistor, the feedback disappears.

A variable resistor in series with the capacitor enables the gain of the stage to be varied in sympathy with the signal amplitude by changing the total impedance across the

Fig. 5 Component overlay for the AVC unit.
emitter resistor and hence the amount of negative feedback.

Unfortunately, the circuit proved unsatisfactory in practice because the DC charge in the capacitor changed according to the value of the series resistance.

Design Developed

Finally, the circuit here given was developed, and with some minor modifications over a period of use has proved to be very effective. When the device is built into existing mixers or amplifiers, the top leg resistor of Fig. 4 can be inserted in series with the main volume control at its 'high' end. The transistor is connected across the control which therefore serves as the shunt described in the 'How It Works' section. The value of the top leg resistor should be about a tenth of that of the volume control, so a 25 k control would need a 2 k 2 resistor. This will reduce the gain of the amplifier by an eleventh or less than 1 dB . If the unit is constructed in a separate control box, the shunt resistor can be 47 k and the upper one rather less than a tenth at 3 k 3 .

Fig. 6 Board connections to peripheral components when used as a separate control box. PR1 can be replaced by a manual control on the panel if desired.

Manual Mode

The AVC control is shown as a preset mounted on the circuit board, but if desired it could be an ordinary manual control fitted either to the control panel of the mixer or on the case of a separate unit.

A manual control is useful as different conditions call for different degrees of control. In the lowest positions, operation of the control automatic circuit is not noticeable to an audience, but the operator can see from his output meters that the loudest signals are restrained and kept within the range of the equipment. At the other extreme, if turned fully up, the loud sounds come out quieter than the soft ones! This degree of control would obviously never be used, and the setting will be somewhere well below that.

Modifications

A switch can be incorporated, if desired, to short the wiper of the control to earth. The same effect is obtained by turning down the control to zero, but the separate switch enables a particular control setting to be preserved when the circuit is switched out. Another optional feature is that the switch can be a double pole type with the second pole arranged to switch a LED on and off as an indication that the automatic circuit is in operation.

BUYLINES

[^2]

HAPPY MEMORIES

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD $£ 17.00$; 5 inch SSDD $£ 19.25$; 5 inch DSDD £21.00; 8 inch SSSD £19.25; 8 inch SSDD £23.65; 8 inch DSDD $£ 25.50$
74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or phone for list.
Please add 30p post \& packing to orders under $\mathbf{E 1 5}$ and VAT to total. Access \& Barclaycard welcome. 24 hour service on (054 422) 618. Government \& Educstional orders welcome, £15 minimum. Trade accounts operated, phone or write

HAPPY MEMORIES (ETI)

Gladestry, Kinston, Herefordshire HR5 3NY Telephone: (054 422) 618 or 628

SINCLAIR

COMPUTERS
We are the layding world-wide Sinclair export somark. Write for our surprizingly low prizes.
PRINTERS
Buy any of the betow and got a free interface kit and
word procossor program for UK101 Hord procossor program for Uk 101 a Suporboard Microine 82 A Azss. Epson MuDOT
 nK100/3 $\{42$

VIC 20 COMPUTER
Two specisis offers:- 18 it is bought with the Viczo
wee con supaly the cassotte recorder for
530.43.

 viczo camsome recorrder E35.50. High ressofution ca trige E27.96. Mchine code. migniterosoution car

 Cricge - intro to Basic Par 1 fi3. New low cont memory basro., no reed for a mother-board. cames with 3 K ram on boand + socket for a rom - Sockets
for another 24 K of low current Noos rem iJust plug
 Entra menory chips FA per 2 K .

UK101 AND

SUPERBOARD
32×48 display. expansion kita ukiof 29. Senes

E10. The below accessories suin both the UK 101 and Superboard:- Extin ram $£ 2.10$ per K. Cegmon
$\mathbf{2 1 5 0}$. Wemon $£ 14.96$. Word procestor program E10. Contronics interface kit E10. 610 oxpansion board f17s. Cased minl tloppy disc drives with DOS single $E 275$.
trolicr
5755
GENIE COMPUTERS Gent 116 K EXS9. $48 \mathrm{~K} \mathrm{Kz30}$. EG3014 expander box
16 K E199. 32 K fis9. Mini floppy disc drivas single 16 K E179. 32 K K 189 . Mini floppy disc drivas single
C 999 , dual $\mathrm{E399}$. Douthe densiny convertor $\mathrm{E72}$. Paraflel printer interface $£ 36$. High resolution graphics unit 88.

BATTERY ELIMINATORS
3. way type $6 / 7.5 / 9 \mathrm{y}$
$3 / 6 / 7.5 / 9 \mathrm{~V} 400 \mathrm{ma}$ e3. 50 . Stabilised modet press studs 9 V £4.95. $9 \mathrm{~V}+9 \mathrm{~V}$ es radio trpes witi

BATTERY

ELIMINATOR KITS

 Stabdised power kits 2.18 V 100 mat $83.12,1-30 \mathrm{~V} 1 \mathrm{~A}$
f8.50. 1-30V 2 A
F 15.30 . TKL and comouner supolies
 vertors 1 A E1.62

TV GAMES
AY.3-8550 + kùt 99.28 .
BI-PAK AUDIO
MODULES
PS 12 E1.76. T538 ©2.50. AL60 E5.62. BMT80 £6. 36 .
Stereo $30 £ 15$. AL80 58.56 . (1)

SWANLEY ÉLECTRONICS
DEPT ETI, 32 GOLDSEL RD.. SWANLEY, KENT日R88 $8 E Z$
Tel Swanigy 10322164351

Postage 53.50 on computers, $£ 4.50$ on printers and
50 D on other orders Pleasc odd Vil to all prices except those sections marked with a. Overseas
and official credit orders wotcome.

COMPUTER KIT DIVISION

404 EDGWARE RD, LONDON W2 1ED TEL: $01-4026822$ - TANGERINE - TANGERINE - TANGERINE MICROTAN 65

MCROTAM E CONTENTS

 microprocessor IK monstio TANBUG Now with V Bug IK RAM for user pragramme. stack and display memon vol alphammeric diem of 15 rows by 32 characters. MICROTAN 65 system binder 136 proge. bourd mas hardwarel'softwere mamisal with constivcional detais and sampie programmes. logic and discerte components to foly expand MUCROTAN \&
The MICRATAN Es kit has won widesprasd acctam for its supert prosentation. We pay attertion to detail Kis form $\mathbf{f 6 9 . 0 0}+\mathbf{1 1 0 . 3 5}$ VAT, total 979.35
MCROTAN Es assombled and tesced
Specification as sbove, but assembited and fully bench tested by carsetres
$\mathbf{E 7 9 . 0 0}+$ E11.8. VAT, total 590.85
YOU MAY DEDUCT

£10

FROM MICROTAN 65 KITS AND ASSEMBLED UNITS LISTED HERE
ONLY FROM US
DELIVERY EX-STOCK POST PAID
Limited Quantity Available

DUAL LOGIC PROBE

With all the logic probe designs that have been published, you didn't think we could come up with an original design, did you? Oh ye of little faith . . . this one's cheap, compact, and clever. Design and development by Phil Walker.

This month's 'project par excellence' from the ETI workshop is a very useful dual purpose logic tester. It is designed with CMOS in mind and uses mostly logic ICs of that family. Our prototype gives results with pulses down to 200 nS wide at frequencies from $D C$ to over 2 MHz

The ETI Dicrobe is designed as a dual purpose test instrument. One half of it is a reasonably conventional logic probe giving indications for logic high, low, and pulsing states while also having a transition memory to store those events you might otherwise miss. All these conditions are displayed on a seven-segment LED display to give a practical representation of conditions at the probe tip.

Probing For Pulses

The other half of the unit is a logic pulser which automatically senses the logic level of the secondary probe and gives it a short pulse to the opposite state. This can either be a square wave drive at about 5 Hz or 2 uS pulses, again repeated five times per second.

Two LEDs indicate the logic state on this probe but no indication of pulse conditions is given. The two parts of the instrument can be used independently or together. This enables a considerable amount of useful testing to be carried out with this unit alone.

For instance, the pulser could be applied to a clock input while the primary probe looks at the outputs to see if anything happens. Both probes could be applied to a part of the circuit to see if it is shorted to 0 V or the positive supply; in this case pulses will be seen if everything is OK (even if there is an output from a gate driving it).

On TTL circuits the probe may not operate so quickly due to the low supply voltage but a useful indication of functions should be possible. Bear in mind, however, that the logic high
and low levels for TTL are much lower relative to the supplies than for CMOS.

A Tour Round The Circuit

The primary probe circuit uses a 4049 to sense the input, with the advantage of high speed, high input impedance and CMOS logic thresholds. The output from three sections of this drives the edge detector and two segment drivers. The edge detector drives a set-reset latch (to store the fact that a transition occurred) and a monostable (to give indication of previous conditions).

The secondary probe circuit is a little simpler than the primary probe as it is not designed for high speed. Part of a hex Schmitt trigger senses the input and the result of this is stored on a set-reset latch. Another part of the Schmitt package works as an oscillator at about 5 Hz and drives two other sections via CR networks to provide reset pulses for the set-reset latch and enable pulses for the output circuit.

The output transistors are connected so that they are normally off. When a pulse is to be applied to the output the logic drivers apply base drive to one of the transistors. The particular transistor driven is the one which gives a pulse of the opposite polarity to the normal state
of the circuit point to which the probe is connected. After the pulse the state of the circuit is sensed ready for the next pulse.

The three-position switch allows the secondary probe to act as a straight logic probe or an automatic pulser with short duration or square wave pulsing.

Construction

The PCB for this project has been designed to fit inside a small plastic box made by BICC-Vero Packaging Ltd. There is very little room to spare inside the box so great care must be taken to use small components and make the connecting wires as thin and short as possible.

A fine tipped soldering iron is essential for this project and great care must be taken to avoid solder splashes between tracks. The ICs can be mounted in sockets of the low profile type and the sevensegment display should be mounted in a socket as well. For the display we used some Soldercon connectors; these are taller than the low profile sockets on the other ICs and held it higher above the board to project through the case lid when assembled. Apart from the LEDs and two resistors, all the other components mount normally on the PCB. Take care to get the diodes,

Using the case and construction techniques specified gives a neat little project.

Fig. 1 Complete circuit diagram of the logic probe.

NOTE: k = CATHODE -C7 IS MOUNTED ABOVE R1,D1,D2
transistors, ICs and capacitor the correct way round. The LEDs are mounted so that they will project through the lid.

Two resistors have to be mounted on end so refer to the overlay to see where they should go. Two wire links àre needed near IC1 so don't forget these either. The

Fig. 2 Component overlay. Note that one end of R12 is soldered to two flying leads, not the board.
links are close together and should be made with insulated wire. When wiring up, connect lengths of 6 " or so to all the connection points indicated except the power supply, which should be $18^{\prime \prime}$ or so.

Fit the sockets for the probes into the end of the box where the board mounting pillars àre closest
together. They must be as near to the bottom of the box as possible. Also fit the reset switch into the side of the box in a similar manner. This switch must be very small to fit in the space provided. If a suitable component cannot be obtained, increase the value of R3 to 10 M and use two small bolts as a touch switch. This is suggested only as a last resort!

A small grommet should be inserted in the opposite end of the box to the probe connectors to take the power supply wires. The box lid must have holes cut or drilled in it to clear the display, LEDs and mode switch SW1. SW1 is bolted to the lid and the interpin connections made before wiring to the board.

When fitting the PCB into the box the wires from it must all pass over the ends as there is not enough clearance at the side for them. The probe and switch wires should be short or they will get in the way of the lid. Our prototype used small grommets cut in half as spacers between the PCB and the mounting pillars to get the correct height.

Probing Deeper

The probes themselves were very simple. The main one was a piece of brass threaded rod turned to a point in a drill with a file. This was soldered into a metal tube taken from a piece of plastic connector block. A small piece of thick wire was soldered into the 2 mm plug and then this was soldered into the other end of the metal tube. You may care to experiment with a sewing machine needle instead of the brass rod as these form very durable probe tips.

The other one was simply a piece of wire with a spring probe on the end terminated in another 1 mm plug.

The two probes are interchangeable as required. Powēr supply wires can be terminated in crocodile clips or anything convenient.

What's The Diagnosis?
 The probe is intended for

 diagnostic work on CMOS circuits where the main part is used to look for the effects caused by the pulser probe being applied to an earlier part of the circuit. This let's us find faults in components such as gàtes and mãy counters and other devices. By connecting both probes to the same point, a check can be made to see whether a short circuitexists to either power rail (no pulses detected). It can also be used as a crude signal source if nothing else is available.

The pulser works best if the point to which it is attached is static, as it has a fairly slow response time. Note that when it is in the active pulsing mode, the LED display does not give a true picture of the logic level at the pulse probe.

The main probe will catch pulses down to 200 nS with a 9 V supply which should be adequate for a lot of test work.

PARTS LIST

MAIN LOGIC PROBE
This part of the circuit is based around IC1, 2 and 3 . The input from the probe tip passes via a simple protection network R1, D1 and D2 to IC1a. This device senses the logic level at the probe tip while also presenting a very high impedance to the circuit under test. Two more sections of the device, IC1b and IC1C, are used to speed up the transition time when the logic state changes at the input. The output from IC1c is used by IC1f to drive one of the segments of the display. IC1c's output is inverted by IC1d and used by IC1e to drive another segment. These two display segments form the immediate logic state indicator.

The outputs from IC1c and IC1d go to IC2b and IC2C. IC2 is a quad exclusive-OR gate which in this case is being used as a controlled inverter. The outputs from these two sections drive two more segments of the display but these are the ones which indicate the previous logic state.

To detect a transition from one state to another, the output from IC1c is applied to one input of IC2a while the output from IC1d is applied to the other via R2 and C2. These components cause the inputs to IC2a to be slightly out of phase with each other. In their normal rest state the inputs to IC2a would be at opposite logic levels causing the output to be high, but for a short time after a transition the inputs to IC2a will be at the same level and the output will be low during this period.

This low pulse has two effects. The first is to set the latch formed by IC3a and IC3b such that the decimal point LED in the display is lit, indicating that a transition has occurred. The second is to force the output of IC3c high, enabling the astable oscillator formed around IC3d. In fact IC3c and IC3d form a monostable to effectively stretch input pulses and transitions so that they can be seen. The low pulse on IC3c input puts a high on IC3d input which, since C3 has been resting at a high level, will make the output of IC3d go low immediately. This forces IC3c output to remain high via its second input until C3 discharges enough to allow IC3d output to go high again.

The output of IC3c is connected to IC2d which acts as a buffer to drive the centre segment of the display. This flashes to indicate that a transition has occurred. IC3C output also drives IC2b and IC2c, causing them to invert the
signal on their other input while the monostable is active. The effect of this controlled inversion is that the last transition is mimicked on the display.

The transition memory, IC3a,b, can be reset at will by pressing PB1. The decimal point on the display will go dark until another transition occurs at the input.

PULSER PROBE

The input from the probe tip is sensed by IC4c, part of a hex Schmitt trigger. Some protection is provided by R12, R13, D3 and D4 against excess input voltage. The output from IC4c goes to the latch formed by IC5a and IC5b via R15. A low on IC4c output will set the latch such that LED1 is alight and LED2 is off.

IC4a, R11 and C4 form a slow speed oscillator which, via a buffer IC4b, drives the pulse generation circuits. On the rising edge of the output from IC4b, IC4d is driven by C6 and R14 to produce a low pulse of short duration. This pulse tries to reset the IC5a, b latch but will only succeed if IC4c output is high. This updates the latch every cycle of the slow clock.

On the falling edge of the slow clock a signal may be passed to IC4e via C5 and SW1. Position 1 of the switch does not allow the pulse to pass and the circuit acts as a slow logic probe only. Position 2 of the switch allows the signal through but connects R16 into the circuit such that it forms a differentiator with C5 and makes the output from IC4e appear as short pulses. In position 3 the output of IC4b is coupled to IC4e via C5 virtually without change. This means that the pulses will be approximately 50% duty cycle.

The output from IC4e (consisting of a low logic level with or without positivegoing pulses) passes to IC5C and IC5d. The other inputs to these gates are taken from the outputs of the input sense latch, IC5a and IC5b. If the output of IC4e goes high, then one or other of the outputs of IC5C or IC5d will go low. A low level on IC5c will turn Q1 on via R19 and pull the probe to a high level via R21. If IC5d goes low instead, IC4f output will go high and turn Q2 on via R20. This will pull the pulser probe to the negative supply via R22. D6 and D7 provide a small amount of protection for this part of the circuit while D8 provides overall polarity protection for the probe supply.

HOW IT WORKS

Resistors (all $\frac{1}{4} \mathrm{~W}, 5 \%$)	
R1,2,12,13,	
19,20	10k
R3,10,11	1 MO
R4-9,17,18	1k0
R14-16	100k
R21,22	22R

Capacitors (all miniature ceramic except where stated)

C1	100p
C2	68 p
C	100 n

C 3	60 p
C 4	100 n

470n 35 V tantalum bead
C6 4n7
C7 100u 25 V axial
electrolytic
Semiconductors

IC1	4049B
IC2	4070B
IC3	4093B
IC4	401068
IC5	4011B
Q1	BC212L
Q2	BC182L
D1-8	1N4148
LED1	3 mm red LED
LED2	3 mm green LED
DISP1	$0.4^{\prime \prime}$ seven-segment com= mon cathode display (FND357 or similar)

Miscellaneous
SW1
3-position miniature slide switch
PB1 subminiature push-bultor PCB (see Buylines); two off 2 mm sockets and plugs for probes; piece of brass rod or studding for probe; crocodile clips; 10 -way Soldercon strip; low profile IC sockets (if used); small grommets, wire, screws etc; case (100 \times $50 \times 25 \mathrm{~mm}$), Vero ref. $65-2514 \mathrm{~F}$.

MEMOTECH Rxplores the Excellence of your

Memotech's Memopak Range

All five of the currently available Memopaks are housed in elegant black anodised aluminium cases, and are styled to fit wobble-free onto the back of the ZX8I, allowing more add-ons (from Memotech or Sinclair) to be connected.

MEMOPAK 64K MEMORY EXTENSION

The 64K Memopak extends the memory of the ZX81 by 56 K , and with the ZX 81 gives 64 K , which is neither switched nor paged and is directly addressable. The unit is user transparent and accepts commands such as 10 DIM A(9000).
Breakdown of memory areas...0-8K.Sinclair ROM. $8-16 \mathrm{~K}$-This area can be used to hold machine code for communication between programmes or perlpherals. 16.64 K -A straight 48 K for normal Basic use.

MEMOPAK 32 K and 16 K MEMORY EXTENSIONS
These two packs extend and complete the Memotech RAM range (for the time being!) A notable feature of the 32 K pack is that it will run in tandem with the Sinclair 16 K memory extension to give 48K RAM total.

MEMOPAK HIGH RES GRAPHICS PACK

HRG Main Features - - Fully programmable Hi-Res (192×248 pixels) • Vldeo page is both memory and bit mapped and can be located anywhere in RAM. - Number of Video pages is limited only by RAM size (each takes about 6.5K RAM) - Instant inverse video on/off gives flashing characters • Video pages can be superimposed • Video page access is similar to Basic plot/unplot commands • Contains 2K EPROM monitor with full range of graphics subroutines controlled by machine code or USR function

MEMOPAK CENTRONICS TYPE PARALLEL PRINTER INTERFACE

Main Features -• Interfaces $Z \times 81$ and parallel printers of the Centronics type Enables use of a range of.dot matrix and daisy wheel printers with ZX8I • Compatible with ZX8I Basic, prints from LLIST, LPRINT and COPY - Contains firmware to convert ZX8I characters to ASCII code • Gives lower-case characters from ZX8I inverse character set

We want to be sure you are satisfied with your Memopak - so we offer a $\mathbf{1 4 - d a y}$ money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G

MICROTUTOR PART 2

This month we look at the remaining commands provided by the TANBUG monitor on our machine code trainer for easy programming. Design and development by Tangerine Computer Systems.

Having shown how to enter and run machine code programs last month, we now consider the commands which aid in debegging and program writing, and save/load operations using the cassette port.

Single Instruction Mode S Single instruction mode is a

 very powerful debugging aid. When set, TANBUG executes the user program one instruction at a time, re-entering the monitor between each instructioh and printing out the status of all the microprocessor's internal registers as they were after the last instruction executed in the user program. The S command is used in conjunction with the proceed command P and the normal mode command N .
Normal Mode Command \mathbf{N}

The N command is the complement of the S command and is used to cancel the S command so that the microprocessor executes the user program in the normal manner without returning to the monitor between each instruction. RESET automatically sets the normal mode of operation.

Proceed Command \mathbf{P}

The P command is used to instruct TANBUG to execute the next instruction in the user program when in single instruction mode. Pseudo register contents are transferred into the microprocessor's internal registers and the next instruction in the user's program is executed with the monitor. P may also be used with an argument, thus: $\mathrm{P}<$ NUMBER $><\mathrm{CR}>$ where NUMBER is less than or equal to FF. In this case the program executes the specified number of instructions before returning to the monitor.

Each time the monitor is reentered after execution of an instruction or instructions, the status of the microprocessor internal registers as they were in the user program are printed across the

screen in the following order:

- Address of next instruction to be executed.
- Processor status word.
- Stack pointer.
- Index register X.
- Index register Y.
- Accumulator.

Note that these are in the same order as the pseudo registers described last month.

Whenever the user program is entered, the cursor is removed from the display. Whenever the monitor is entered, the cursor returns to the display as a user prompt. While in the monitor between user instructions, any monitor command can be typed. A program must always be started by the G command, then P used if in single instruction mode. A P command used before a G command is issued is likely to cause a program 'crash' and should not be attempted.

As an example consider the simple program which repeatedly adds 1 to the accumulator.

Address	Data	Mnemonic	
100	69	ADC 1	Comment add 1 to
101	01		acc.

Set the single instruction mode and start the program. The user may
wish to initially set the accumulator to 00 by using the M command).

S

G100
0102
20 FF 00
01

TANBUG then responds with the characters shown above.
0102 is the address of the next instruction to be executed.
20 is the processor status word value.
FF is the low byte value of the stack pointer. The high byte is always set to 1 , the stack is therefore pointing at location 1FF.
00 is the value of the index X register.
00 is the value of the index Y register.
01 is the value of the accumulator. It is a 1 as 1 has been added to the accumulator and it is assumed that the user cleared the accumulator before starting the program.
Since the cursor has re-appeared, TANBUG is ready for any monitor command. For example, registers or memory locations can be modified, or the program may be re-started from scratch by typing G $100<C R>$ again. If the user wishes to continue

Fig. 1 Screen display after listing the first 72 bytes of a program which starts at address 00A3.
then type $P<C R>$. The resulting display is
S
G100

0102	20	FF	00	00	01
\mathbf{P}					
0100	20	FF	00	00	01

Since the instruction at location 102 was 'Jump to 100', the status printout shows that this has indeed occurred. Registers, since they were not modified by any program instruction, remain unchanged. To proceed further type $P<C R>$ again: S
G100

0102	20	FF	00	00	01
\mathbf{P}					
0100	20	FF	00	00	01
\mathbf{P}					
0102	20	FF	00	00	02

The add instruction has been executed again, so the accumulator has incremented by 1 to become 2 . Now typing $\mathrm{P} 4<\mathrm{CR}>$ gives this display:
S
G100

0102	20	FF	00	00	01
\mathbf{P}					
0100	20	FF	00	00	01
\mathbf{P}					
0102	20	FF	00	00	02
$\mathbf{P 4}$					
0102	20	FF	00	00	04

TANBUG allowed execution of four instructions before again returning to the monitor. The four instructions were two add instructions and two jump instructions thus giving the accumulator the value 4.

Typing $N<C R>$ then $P<C R>$ removes the single instruction mode
and causes the program to proceed. It now does not return to the monitor but continues to race around this small program loop continually adding and jumping back. To re-enter the monitor, either press the reset button or the interrupt button. The interrupt will cause the processor to break into the program and enter the monitor with the display as described above.

It can be seen that the S and P commands are particularly useful when tracing a program which contains instructions that transfer program control eg jumps, branches and subroutines, since these commands allow the user to interrogate the order of execution of his/her program.

Breakpoint Command B

A breakpoint is a
complementary debugging aid to single instruction mode. Instead of stepping singly through all instructions in a program, the breakpoint facility allows the user to specify the address at which he requires the monitor to be reentered from his/her program. As an example, consider a long program in which a fault is suspected to exist near the end. It would be very tedious and time consuming to single step through the program to
the problem ärea. A breakpoint can be set just previous to where the fault is suspected to exist and the program started with the G command. Normal execution occurs until the breakpoint is reached, then the monitor is re-entered with the same status print-out as for single instruction mode. Any monitor commands can then be used and the program continued.

The format of the breakpoint command is

$$
\mathrm{B}<\mathrm{ADDR}>,<\text { NUMBER }><\mathrm{CR}>
$$

where $<A D D R>$ is the address of any instruction op code (but not argument), <NUMBER $>$ is any number from 0-7 defining one of eight breakpoints. $B<C R>$ removes all breakpoints. As an example consider the following program:
. 100 E8 LOOP: INX
101 C8
1026901
INY
ADC \# 1 104 4C 0001 JMP LOOP
Firstly set index X, index Y and the accumulator to 00 using the R command. To set breakpoint 0 at the jump instruction and start the program type B104,0<CR>G100 $<C R\rangle$. The display will then be B104, 0
G100
010420 FF 010101
The jump instruction was reached and the breakpoint re-directed control back to TANBUG. If it was required, single instruction mode could be set for further debugging. However, assume that we wish to execute the loop again by typing
$\mathrm{P}<\mathrm{CR}>$.
B104,0
G100

0102	20	FF	01	01	01
\mathbf{P}					
0104	20	FF	02	02	02

The proceed command P has gone once through the breakpoint and then re-entered the monitor. If P<NUMBER > < CR > was typed it would have proceeded through the breakpoint <NUMBER > times.

Up to eight breakpoints can be set at eight different locations. The $B<C R>$ command removes all

Fig. 2 Setting the first breakpoint at the start address and running the program gives this register printout.
breakpoints. A single breakpoint can be removed by setting its address to 0 . For example, imagine a breakpoint is set as follows; B102,2, and it is subsequently wished to remove it but leave any others unaltered; type $B 0,2<C R>$ to remove it.

Caution: The breakpoint system works by replacing the user's instruction with a special instruction (BRK) whose op code is 00. Replacement is carried out when G or P is typed. On return to the monitor the original op code is replaced. It is therefore possible to corrupt the user program under some circumstances. The following points should therefore be observed:

- Breakpoints must only be set at the op code part of a user instruction and nowhere else. - If the user program utilises the BRK instruction as part of the user code, then this will cause a break in the normal manner, but note that the BRK instruction will be interpreted by the monitor as a 1-byte no operation.
- If breakpoints are set in the user program and a reset is issued while the microprocessor is executing the user program rather than the monitor, the breakpoints are lost and those locations at which breakpoints were set in the user program will be corrupted. These locations must be re-entered using the M command before restarting the user program.
- Setting more than one breakpoint at the same address causes the user program to be corrupted.
- To use breakpoints, the user must not have modified the interrupt link, ie the interrupt code within TANBUG must be executed.

The status of breakpoints may be inspected by using the M command to examine the breakpoint status table. This is located in RAM locations 20-2F and are as in Table 1.

TABLE 1

Address	Contents
20	PCL B0
21	PCH B0
22	PCL B1
23	PCH B1
24	PCL B2
25	PCL B3
26	PCH B3
27	PCL B4 B4
28	PCL B5
29	PCH B5
$2 A$	PCL B6
$2 B$	PCL B7
$2 C$	PCH B7
$2 D$	
$2 E$	
$2 F$	

For example, typing $\mathrm{M} 20<\mathrm{CR}>$ followed by <LF> gives
M20,00,
M0021,01,
This indicates that breakpoint 0 is set to location 100 by taking the contents of location 20 as PCL and of location 21 as PCH. If the breakpoint is set at location 0 then this particular breakpoint is disabled.

Offset Command O

The offset command O is a program writing aid. It calculates branch offsets for the user for incorporation as arguments in branch instructions. Consider the example:

100	E8	LOOP:
101	INX	
102	69	INY
103	01	ADC $\# 1$

120 DO BNE LOOP 121 (branch argument)
To calculate the number to enter into location 121 is quite tedious without a facility such as the O command. It is used with the following format.

O<ADDR OF BRANCH OP CODE >
<ADDR OF DEST><CR> and in this case it would be necessary to type $0120,100<C R>$. The display would be $0120,100=F 0$

FO is the number that should be entered into location 121 such that if the BNE instruction is true the program counter will jump to the label LOOP.
Note that the maximum branch range is 7 F forwards and backwards. If the range is exceeded a ? is displayed.

Copy Command C

The copy command allows copying of the contents of one block of memory to another. Its format is

C<START ADDR SOURCE> <END ADDR SOURCE>
 <START ADDR DEST><CR>

 Suppose it is required to copy the block of data in locations COO-DOO into a block starting at location 200. This may be achieved by typing CCO0,D00,200<CR>. The display will beCC00,D00,200
As 200 is the starting address of the display memory the user will notice that the top half of the screen has been overwritten with all sorts of
weird and wonderful characters. What this example has done is to take the first 256 bytes of TANBUG and copy them into the top half of the display. The display then scrolled leaving the top seven rows filled with these characters.

The Interrupt Button

Depression of the interrupt button will cause a re-entry into the monitor from the user program. For example, if the trivial program

100	69	LOOP: ADC \# 1
101	01	JMP LOOP
102	$4 C$	
103	00	
104	01	

has been started by typing the G command the program continues to loop around continuously with no exit path to the monitor, except by issuing a reset. Instead of a reset the user can press the interrupt button, TANBUG responding thus
$0100 \quad 20 \quad \mathrm{FF} \quad 01 \quad 0101$

Using the interrupt button has caused a breakpoint to be executed and the monitor invoked. The register print-out above is only typical, the value of each being that when interrupt was depressed. Any monitor command may now be typed, for example P causes the user program to proceed once again.

The interrupt facility is most useful in debugging where the user program gets into an unforseen loop where breakpoints have not been set. It enables the user to rejoin the monitor without using reset and losing the breakpoints that have been set. Notes:

- Interrupts must be enabled for the interrupt facility to operate. TANBUG enables interrupts when entering a user program, so don't disable interrupts if the interrupt facility is required.
- The user must not have modified the interrupt jump link. TANBUG's interrupt code must be executed.

BUYLINES

A complete kit of parts for the ETI Microtutor, including the power supply, is available from Tangerine Computer Systems, The Science Park, Milton Road, Cambridge CB4 4BH for $£ 39.95$ plus VAT. A demonstration tape for the Microtutor is also available for $£ 6.50$ and contains four programs, including Life and a Rubik Cube simulation.

	$\begin{gathered} \hline \text { SELF } \\ \text { ASSEMSLY } \\ \text { KIT } \end{gathered}$	$\begin{aligned} & \text { READY } \\ & \text { BuNT } \\ & \text { BNITS } \\ & \hline \end{aligned}$
5×1000	£12.95	¢25.90
5×2000	£19.95	£39.90
TX 2002	£29.95	E.59.90
TX 1002	£22.95	£45.90
AT. 80	E29.95	¢59.90
VOYAGER	โ59.95	£119.90
MAGIDICE	¢9.95	£19.90

PCB FOIL PATTERNS

Please note that the two boards for the Active Crossover are the copyright of Aurak and may not be manufactured by commercial companies. There were a couple of errors in the PCBs for the Playmate that we published last month, so we're reprinting them here, corrected.

r 1.90
SPC - Simple but effective 1000W cntrofler \qquad 223.90 (2K)
MC - Master dimmer for SPC/RS units versions. ... 87.90 RS - Remote controller for SPU/SPC Units 69.40 SUP/REF - Supply/signals for up to 50 modules $+25 \%$ EFFECTS ACCESSORIES
MXSL - Four channel sound to light
MXLS - Four Channel Sequencer 1536.90 MXLS - Four Channel Sequencer. \qquad

3 CHANNEL SOUND/LIGHT CHASER £35.70 LB31000SLC
.

Mein mpary ax MIXER/PREAMP PEL Ewour E.i.0 LBPA3

£ 36.70
versic or caramic deck All the requirements of a stereo disco preamp on one board, left and right deck mixers/tons controts/misc. mixer/tones $/$ mic. auto fode
over decks/and P.F.L The unit can be uisoct witti over decks/and P.F.L

BLUE FASCIAS IWhite letters)

Type	Knobs	Leds	Sw	Price
MULTI	5	4	1	9.70
41000 SLC	2	4	1	9.20
31000 SLC	5	-	1	8.70
$31000 S L$	4	-	1	7.70

$£ 22.70$
tho SLC withoul chalse
Comtols: Dass/mid/rehts/mager sensitivity.
Dont hesitale to write or ohone for immediate information. All prices include VAT. Piease include 750 oost exceet power dimmer (E1.75). Cheques/PO/C.O.D./ TEL 0 \& 6894139 M
L\& 8 ELECTRONIC 45 Wonley Road. W. Crovdon. Surrey CRO 3EB POWER DIMIMER MODULES
A range of electronic modular dimmers designed to suit your custom channel and facility requirement

- Considerable saving over commercial equipment
Al the commercial faciities and more
Compatable special effect
Preset/remote/master
- Easity installed and wire

ELECTRONIC IGNITION Makes a good car better

TOTAL ENERGY DISCHARGE electronic
ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE \longrightarrow higher output voltage under all conditions.

IMPROVED ECONOMY \longrightarrow no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plugs.
ACCURATE TIMING - prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE - immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK $31 / 2$ times the energy of ordinary capacitive systems $-31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systerns - essential for use on modern cars with weak fuel mixtures.
BETTER STĀR̄ING __ full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimai level.

DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.
IN KIT FORM it provides a top performance electronic ignition system at less than half the price of competing readybuilt systems. The kit includes everything needed, even a length of solder and a tiny tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL June'81 Issue and EVERYDAY ELECTRGNICS December'81 Issue

FITS ALL NEGATIVE EARTH VEHICLES.
6 or 12 volt, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre '74) require an adaptor PRICE $£ 2.95$

STANDARD	14.85	
Assembled and Tested	£24.95	fli.o
TWIN OUTPUT KIT		${ }_{\text {\% }} \mathrm{P}$ P.
For Motor CYCLES and CARS		Prices
Assembled and Tested	£ 34.70	VAT

ELECTRONIZE DESIGN

Dept. D Magnus Road, Wilnecote
Tamworth, B77 5BY
Phone: (0827) 281000

TECHNICAL DETAILS

The basic function of a spark ignition system is often lost among claims for longer 'burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditional capacitive discharge system has this high power spark but, due to it's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. However, a spark lasting $2000 \mu \mathrm{~S}$ at $2000 \mathrm{rev} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition point is retarded by this amount.

The solution is a very high power, medium duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGH EFFICIENCY INVERTER A high power, regulated inverter provides a 370 volt energy source - powerful enough to sture twice the energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop. contact shuffle, contact bounce, and external transients which, in many designs, can cause timing arrors or damaging un-timed sparks. Only at the correct and precise contact opening is a spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)
SPARK ENERGY
(STORED ENERGY)
SPARK DURATION
OUTPUT VOLTAGE (LOAD 50pF EQUIVALENT TO CLEAN PLUGS

TOTAL
ORDINARY DISEHARGE DISACITIVE UTPUT VOLTAGE (LOAD 50pF $+500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)

140 W 90 W
$36 \mathrm{~mJ} \quad 10 \mathrm{~mJ}$
$\begin{array}{ll}135 \mathrm{~mJ} & 65 \mathrm{~mJ}\end{array}$
$500 \mu \mathrm{~S} \quad 160 \mu \mathrm{~S}$
38 KV
26 KV
26 KV 17 KV
OLTAGE RISE TIME TO 20 KV (Load 50pF)
$25 \mu \mathrm{~S} \quad 30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

COMPUMFR MTARM:OUSH

FIMBD DISK DRTVIS

 DISIET ©

 DISIET ©} Oisblo/DRE Serles 302.5 mb . fully refurbished D.media and software compatable. Front load $E 550$. Top load E295.
PSU for 2 drives $£ 125$
Olablo-Dre 44A-4000A or $4000810 \mathrm{mb} 5+5$ removable pack new and refurbished from $\varepsilon 995$
CDC 80 mb removable pack DEC RM03 media and software compatible brand new from $£ \mathbf{2}, 950$.
Honeywell $5+510 \mathrm{mb}$ drives $5450 \mathrm{good} \mathrm{s} / \mathrm{h}$ condition. For more Information on controliars, expansions
go sub systems contact sales office.

The UK's FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS

CALL NOW, IT'S PRE 7 dqy per 01-683 1133 man en parm

COMPUTER 'CAB'

All in one quality computer cabine with integral switched mode PSU. Mains fiteringand winfancooling
Orignally made for the famous
and pounds and designed to run 24 hours per day. The PSU is fully +15 VDC at 1 amp and -15 vDC at 5 amps. The unit is fulty filtering, trip switch 'power on' and 'run' LED's aluminium ront panel and rear cable entrys Giue your system that rofessional finish for only $\mathbf{4 9} 95+59.50 \mathrm{corr}$ -
 Units are ingood but usedcondition 240 or 110 vworking complete with data Large stocks of PDP 8 spares - enqui

COOHLIG FAES

Keop you "Hot Parts" cool

range of professional fans
EIRI g9XVOI Miniature equtpment $\tan 240$
vac working DIM $92 \times 25 \mathrm{~mm}$ BRAND NEW complete with finger guard. Makers price £16 our price 59.95
BUHLER 69.11 .22 microminiature $8-16 \vee D C$ reversible fan Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Uses a brushless DC serva motor almost silent Uses a brushless DC servo motor almost silent running ideal portabie equipment, fife in excess price £32.00 our price E/2.95
Price EJIN/CENTAUR cooling fans DIM $120 \times$
120×38 mm $120 \times 38 \mathrm{~mm}$ tested ex equipment $240 \mathrm{~V} \mathbf{5 6 . 2 5}$ $115 v E 1.95+p 89 £ 1.90$
KOOLTRONICS Powe
KOOLTRONICS Powerful snail type blower gives massive sir movement with centrifugal rotor DIM as a cube $8^{\prime \prime} \times 8^{\prime \prime} \times 6^{n}$ air aperture $2.5^{h} \times$
$25^{\prime \prime}$ with lange fixing BRAND NEW $110 v 50 \mathrm{~Hz}$ \& C working O NLY Es. $95+$ Et.90 p\&p SUPER SCOOP warranty
7100 single sided
200 double sided full techn
of drive.
of drive.
SHUGART s/h 800-2 8" Drive's $\mathbf{1 1 0 v} 50 \mathrm{~Hz}$ motor $£ 160+£ 9.50$ carr

CH2NH:01203789-?

The "Do everything Printer" at a price that will NEVER be epeated Standard Centronics interface, full graphics, 4 type onts with high definition \& proportional pacing for word processor applications, 80-132 olumns, single sheet roll or sprocket paper handling plus ridiculous price of only $\mathbf{\Sigma 2 9 9 . 0 0}$

Options: carriage \& insurance $\& 10.00$ Interface Cable Efa.00 RS232 Converter \&AS.00

8" HLOPIY DISK DRIVES
 disk drives utilise the finest technology to

 being our PRICE and the supert manufacturing quality. The 7100 single sided \& 7200 double sided drive accept hard or soft sectoring IBM or ANS! standard giving a massive $0.8 \mathrm{MB}(7100)$ \& $1.6 \mathrm{MB}(7200)$ of storage Absolutely SHUGART, BASF SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 day$£ 225.00+9.50+$ vat difference on purchase

Removed from working equipment but untested. SA1 20 Alignment disk's $\mathbf{8 9} 95$

I/O THRMCNTAIS
fully fledged industrystandard ASR33 data terminal Many features inciuding ASCI keyboard and printer for data l/O auto data baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage Supplied in Options: Floor stand $£ 1250+$ VAT
KSR33 with 20 ma loop interface $\mathbf{E} \mathbf{1 2 5 . 0 0}+$

SOFIY 2

The amazing SOFTY2. The complete "toolkit" for the open heart software surgeon Copies, Displays, Emulates ROM, RAM and EPROMS include keyboard, UHF modulator. Cassette interface etc. Functions exceedcapabilities of units costing 7 times the price! Onty
E169.00 ppe1.95 Data sheet on request

RCA FUKTY CASED ASGI CODED KHYBOARDS

TAMETRINE OWIO ETG

Straight from the USA made by the word freestanding keytoards meet all requirements of the most exacting user, right down to the pricel Utilising the latest in switch technology Guaranteed in excess of 5 million operations The keyboard has a host of other features including full ASCII 128 character set use delinable keys, upper/lower case rolover protection, single SV rain keyboardimpervious toliquids and dust, THerchord one generator for keypress an on-board tone generator for keypress geedback a
VPeO1 7 bit fully coded output with delayed strobe etc.
VP8 11 Same as VP601 with numeric pad E43.95 £54.95 outputwith 6 selectableBaud Rates EM 26 VP616 Same as VP606, with numeric pad Plug and cable for VP601, VP611 $£ 2.25$ Plug for VP606, VP616 £2.10 Post, Packing and Insurance

MAIIS FILTERS

Professional type mains filters as used by "Main Frame" manufacturers. Ideal for curing fit one now and cure your problems Suppression Devices SA5A
upto 5 mmpload ES.95
Corcominc F1886 up to 20 amp load $\mathbf{£ 9 . 5 0}$
orcom Inc F 1900 upto 30 ampload $£ / 2.25$

DT1O Monlto
a complete MOTOROLA 9^{\prime} oused in an attractive meta case DIM appro
high. The monitor and $11^{\prime \prime}$. video input with has a 75 ohm composite seperate interna bsudwidth of 18 mhz . external use and $12 v D C$ forvideo monitor. The case has sufficient room inside for mounting other units such as $5^{\prime \prime}$ disk drives etc. Internal Supplied in a tested as new or little used condition. 240 v AC operation $\$ 55.00$ Carriage condition. 240vaCoper
MOTOROLA $9^{\prime \prime}$ open chassis monito Standard $240 \vee \mathrm{AC}$ with composite 75 video input, bandwidth in excess of 18 mh Monitors are ex equipment and although unguaranteed they are all tested prior to despatch, and have no visible burns on the screens Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied complete with mains and input lead Ideal ZX81 etc or giving the tele back to the family! Black and White phosphor Es5.00 + £9.00 Cart.

SEMCORDUCHOR CRAB B:CS

Mixed Semls amazing value contents

 include transistors, digital, linear, IC.'s devices guaranteed brand new full spec with manufacturer's markings, fully guaranteed, $50+$ E2.95 100+ES. IS TH 74 Series A gigantic purchase of an "across the board" range of 74 TTL series I.C.'s enables us to offer $100+$ mixed "mostly TTL" grab bags at a price which two or three chips in the bagwould nomally cost to buy. Fully would normally cost to buy. Fulty
quaranteed all 1.C.'s fuil spec. $100+\boldsymbol{E} .90$ guaranteed all LC.'s fuil sp
$200+E 12.30300+E 19.50$

D.C. POWER SUPPLY SPECLALS

Experlmentors PSUEx-GPO unit all silicon electronics. Outputs give $+5 \mathrm{v} @ 2 \mathrm{amps}$.
$+12 \mathrm{v@} 800 \mathrm{ma}-12 \mathrm{v} @ 800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma} .5 \mathrm{v} @ 50 \mathrm{ma}$. floating. $\mathrm{Dim} 160 \times 120 \mathrm{x}$ $+12 \mathrm{v} @ 800 \mathrm{ma}-12 \mathrm{v@}$ @ $800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma}$. $5 \mathrm{v} @ 50 \mathrm{ma}$. floating. $\operatorname{Dim} 160 \times 120 \mathrm{x}$ 350 mm . All outputs fully regulated and short circuit proof. Removed from working equipment, but un
E $14.50+£ 2.50 \mathrm{pp}$

RECHARGEABLE BATTERIES

CYCLON type D001 sealed lead acid maintenance free 2 v 25 ah will deliver at only $\mathbf{2}$. 9
atonly SAFTV 20
size 'C' 1.2v 2 ah. nickel

300 BAUD

DATHE 1101013TG

 Join the communications revolution with ou standard EX GPO 2a/b data MODEMS. Modem operates on standard CCITT tones with full auto answer facilities. Will switch to POWER ONE CP143 super compact unit giving continuous output of $5 \mathrm{v} @ 5 \mathrm{amps}$. dim. $215 \times 67 \times 80 \mathrm{~mm}$. BRAND NEW and guaranteed Only $£ 21.00+£ 1.50 \mathrm{pp}$. CUSTOM POWERCO55 $5 v @ 3$ amp. Very compact unit dim. approx $60 \times 90 \times 190 \mathrm{~mm}$. E11.95 + pp£1.25 E $11.95+$ PpE1. 25MINS SYSTEM PSU Ex equipment unit ideal for the smali micro. Outputs give 5 v @ 3 amps $+12 \mathrm{v} @ 1 \mathrm{amp}$ and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvortage protection and current limit
$+\varepsilon 2.00 \mathrm{pp}$.

+ E2.00 pp. PERIPHERAL

PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give 5 V @ 11 amps $+15-17 \mathrm{~V} @ 8$ amps. $-15-17 \mathrm{~V} @ 8 \mathrm{amps}$ and requlated Fan cooled Supplied tested, with circuites5.00 + 28.50 can
MAIN FRAME SUPPLY. A real beety unt designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps $+12 v @ 5$ amps $-12 v @ 10$ amps All output are fully Supolied with circuit and tested. Ex-Equip. 110 v AC input. Only 21.95 + carr. £10.50.

66\% DISCOUNT
 ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of L.C.'s, Transistors, Relays, Cap's, P.C.8.'s, Sub-assemblies, Switches, etc etc surlplus to our requirements. Because we don't have sufficient stocks of any one item to include in our ads, we are packing all these
items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at tiems into the "BARGAIN PARCEL OF A LIFEDIME" Thousands of components at giveaway prices Guaranteed to be worth at least 3 times what you play plus we always include something from our ads for unbeatable value!! Sold by weight
$2.5 \mathrm{kls} £ 125$ + pp $£ 1.25$
10kls£ 10.25 + pp $£ 2.25$
5kls $55.90+p p £ 1.80$
20kls $£ 17.50$ + pp $£ 4.75$

ANSWER orORIGINATE. StandardRS232 V connections Ideal networks. DISTEL etc Complete with data. Untested but good condition 555.00 carr. 88.50 .

1200 BAUD

DATA PUMP MODEMS
Compact unit for use with private or "Dial up lines De 1200 full uplex (4 wire at any baud duplex (2 wire circuit). Features include remote test tacilities. RS232 vo lines etc Supplied with data in working order, but less case cover $\mathbf{2 6 5 . 0 0}+\mathbf{~} 4.50$ carr.

OLTVFITI TH3 300

 REDUGED TO CLEAR Complete input outputterminal with integral8 hole paper tape punch and reader. Unit operates at 150 baud In standard ASCII. Ideal as a cheap printer for a MICRO etc. 120 with data, untested u. Supplied complete $+£ 11.50$ cart

Please

 mention
when replying

to all adverts

OPEN FRAME MONITORS AVAILABLE FOR OEM'S The 'PRINCE' of Monitors
offers better Monitoring.
24 MHz Bandwidth-ensures a clear crisp display. Available with P4 White P31 Green AND L1 ORANGE

Scan: 625 Ilnes $/ 50 \mathrm{~Hz}$. Deflectlon: 110°. Active raster: $240 \times 172 \mathrm{~mm}$ Bandwidth (3 dB): $10 \mathrm{~Hz}-24 \mathrm{MHz}$ (at 3 dB polnts). Character display: 80 characters $\times 24$ lines. Horizontal frequency: $15625 \mathrm{~Hz} \pm 0,5 \mathrm{KHz}$ Vertical frequency: 50 Hz . Horizontal linearlty: $\pm 3 \%$. Vertical Ilnearlty: $\pm 2 \%$. Geometric distortion: $\pm 1.5 \%$. EHT (at zero beam supply: 110 V A.C. $50 \mathrm{~Hz} / 220 \mathrm{~V}$ A.C. $50 \mathrm{~Hz} / 240 \mathrm{~V}$ A C 50 Hz $\pm 10 \%$ upon request. Video input: $2 \times$ BNC - or CINCH - or PL 259, (composite video) negative sync. Jnput $0.5-4 \mathrm{~V}$ p.p. acrass 75 Ohms. X-Ray radiation: conforms to I.E.C. Spec. No. 65 . Overali dimensions: $320 \times 270 \times 265 \mathrm{~mm}$. Weight: 7 Kg . approx. Ambient temperature: 0-45
OTHER CROFTON PRODUCTS INCLUDE: COmputer periphers equipment. Frame grabber, Floppy disk drlves, Floppy disks. Computer power supplies, C.C.T.V. monitors. Uncased monitors Monitar P.C.B's.. Cathode ray tubes, VHF/UHF modulators, Video switchers. Video distributlon amplifiers, Camera housings, Pan and CROFTON ELECTRONICS LTD
35, Grosvenor Road, Twickenham, Middx, TW1 4AD.
Telephone: 01-891 1923/1513 Telex: 295093 CROFTN G

SUMMERTIME SALE!
 OEDUCT 20\% OFF ALI ORDERS
 All prices include VAT at 15\% - just add 50 p post 1982/3 CATALOGUE
 ELECTRO-DIAL

```
Only 75p inc.post - Look what you getl!
- ist class reply paid envelope
Wholesaie list for bulk buyers
- Bargain List with hundreds of supplus lines. Huge range of components
Low, low prices
ent free to schools, collēges etc.
```


SOLENOIDS AND RELAYS

```
W921 Solenoid rated 48V at \(25 \%\) duty cycle, but work well on 24 V 770 gm pull, 10 mm travell push orp92 Mains 240 V ac 50100
push or puill, 16 mm travel. \(50 \times 20 \times 16 \mathrm{~mm}\). 0 Nht \({ }^{1} 1.50\)
W896 9V DC relay \(500 \mathrm{SPCO} 28 \times 24 \times 19.50 \mathrm{p}\) W733 11 pin plug in relay, 240 V ac. 3 PCO \(5 \AA\) contacts f2.50. Base 1368
tinental" relay \(35 \times\) WB47 37R 5-10V relay, SP 3 A contact. PCB mntg \(11 \times 33 \times 20\). 95p: \(10 / 57.50\)
W893 0 mron LY4 mains relay, \(4 P C O 5 A\) contacts. f2.50
W896 24 V ac coil, but works well on GV DC. \(2 \times\) OA clo contacts. Ex-equip, only 60p
```


PACKS PACKS PACKS

K517 Transistor Pack. 50 assorted full spec marked plastic devices PNP NPN RF AF. Type numbers include BC114, $117,172,182,183$,
$198,235,251,214,255,320, \mathrm{BF} 198,255,394$, 2 N 3904 etc etc. Retail cost $£ 7+$. Special low price 27 s p
K520 Switch Pack. 20 different assorted switches - rocker, slide, push, rotary, toggle, micro etc. Amazing velue at only 200p
K 522 Copper ciad board. All pieces 100 small for our etching kits. Mosstly double sided fibreglass. 250 g (approx 110 sq ins) for 100 p K541 lit's back!! Our most popular pack ever - Vero oftuts. This ins outpur. Uses $2 \times 2 N 5293,2 \times$ BFY50 some time, but we have now buitr up a Input sensitivit iv for 10W orts Smal reasonable stock and can once again offer H/S on board: 9595 . Suitable trans. 100 sq ins of vero cooper clad offcuts, average bridge rect smoothing and o/p capacitor size $4 \times 3^{\prime \prime}$. Offered at around 's the price of ai E5 50. Supolied with circuit/connection size 4×3. 3200 .

HOME CONSTRUCTOR TURNTABLE KITS from INPUT DESIGN LTD

THE LEADING MANUFACTURERS OF TURNTABLES IN KIT FORM
NORMAL RETAIL PRICE $£ 49.50$
SPECIAL
INTRODUCTORY
OFFER TO READERS
OF ETI

This kit includes AC Synchronous motor (as used on $£ 350$ decks), Pulley, Belt, Drive Hub, Spindle, Bearing, Glass Platter, Felt Mat, Switch, Electronics, Cable and full instructions together with blueprint for plinth assembly.
Any other parts (ie Lid) available as optional extras.
5 YEAR GUARANTEE
MONEY BACK IF NOT SATISFIED
Pay by Barclaycard, Access or CWO. Export: Write for Pro-forma.

INPUT DESIGN LTD

Palace Street, Biggleswade
Beds. SG18 8DP

Bigger and Better for 1982 the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA.
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.

* Lowest prices - Largest stocks *
\star Expert staff - Sound advice *
* Choose your DIY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send $£ 1.50$ for catalogue
(cheque, M.O. or stamps - or phone with your credit card number)

* Access - Visa - American Express accepted *
also Hifi Markets Budget Card.

(b) 0

The firmior Speakers

0625529599

35/39 Church Street. Wilmslow, Cheshire SK9 IAS
\square Lightning service on telephoned credit card orders

AS THINGS GET TOUGH

As a man thinketh, so he will be This is a major breakthrough programme in human development disciplines which is destined to effect the lives of thousands of thinking men and women. It engages a remarkable new concept -

```
A MULTI-DIMENSIONAL APPROACH TO HUMAN SUCCESS AND TOTAL ACHIEVEMENT
```

A must for the Listening Library of every thoughtful man and woman GROWTH and RENEWAL

POSITIVESELF-DISCIPLINE POSITIVESELFESTEEM

SELF-REALIZATION

A lesson in winning - Broadside 1
is not a psychological gimmick but a profound professional in-depth study into the attitudes and the qualities that go into the formation of the total winner. It is a programme based upon years of exhaustive research, using clinically controlled feedback studies, into the every present human desire for success and achievement as the basic motivating winning force that brings men and women alike to the forefront of our society. It is a unique and masterful attempt to define and to formulate into a controlled audio pack, the exact guide lines for creating the winner.

The motivated need

Have you ever given thought as to why some people are more successful than others?
The secret of the successful lies in direct relation to their positive attitudes and their defined purpose control.

WHAT DO YOU DESIRE? UNFORTUNATELY, THIS PROGRAMME CAN ONLY OFFER TOTAL WINNING KNOWLEDGE, THE BASIC ELEMENT SO ABSOLUTELY NECESSARY FOR POSITIVE HUMAN DEVELOPMENT

Abstract

E.T.I. KITS | Full kits include printed circuir boards, components, hardware. I.C. sockets. cases etc. unless stated (not batteries). If you do not have the issue of E.T.I. which | includes the project - you will need to order the instruction reprint at an extra 45p each PCBs included. Reprints available separately 45 p each + p\&p 45p. |
| :---: | :---: |
| INSULATION TESTER May 82. AUTORANGING CAPACTTANCE METER Mar/April 82. ACCURATE-VOLTAGE MONITOR $E 71.99$ ACCURATE-VOLTAGE MONITOR Apr 88 | MANDCLAP SYNTHESISER Aug 81 - 28.98 WAH PHASE June 81. Less pedal $\mathbf{£ 1 3 . 4 4}$ LED JEWELLERY June 81. Cross $£ 247$. Star E9.41. Spiral $£ 7.20$. |
| f13.63 | GUTTAR NOTE EXPANDER April 81 . . E16.47 |
| less extrusion $£ 26.77$ | |
| HIGH QUALITY PHONO AMPLIFIERS 82. Less case | Feb 81. |
| MOVING COIL STAGE £17. | NFRA RED ALARM Feb $8154 .98$ |
| MOVING MAGNET STAGE. $£ 17.68$ | INPUT MIXER Dec 80. . 19.7 |
| PEST CONTROL Feb 82 66.77 | USICAL DOORBELL Dec 80 111.61 |
| GUTTAR TUNER Jan 82 E2898 | NOME Nov 80. E5. 98 |
| ONENT TESTER Dec 81 $\ddagger 7.98$ | LTRASONIC BURGLAR ALARM Aug 80 |
| Nov $81 . .$. 17.98 | |
| ENLARGER TIMER Oct 81 E28.59 | |
| E20.76 | ESTER |
| WATCHDOG SECURITY ALARM Aug 81 | |
| . 843.33 | | SOUND BENDER Oct $81 \ldots . . .20 .76$ WATCHDOG SECURITY ALARM Aug 81

RECHARGEABLE BATTERY extra ... $\mathbf{£ 1 9 . 9 6}$

\section*{ADVENTURES WITH DIGITAL ELECTRONICS}

This book of entertaining and instructive projects is designed for hobbyists, and students. It provides a stepping stone to the microprocessor The first part deals with the properties of some basic ICs used in digitai electronics. The second part gives details of how to buitd eight devices - shooting gallery, 2 way traffic lights, electronic adder, computer space invaders game, etc. For each project there is an explanation of 'how it works' and also suggestions for "things to try' No soldering - all circuits built on 2 Bimboard 1 breadboards Adventures with Digital Electronics book $£ 3.25$. Component pack $\mathbf{£ 4 2 . 5 0}$ ref. ETDC All the components needed including 2 breadboards and hexadecimal keyboard. Available less breadboards $£ 29.58$ ref. ETDF. Both less battery.

MAGENTA ELECTRONICS LTD

HM27. 135 HUNTER ST., BURTON-ON-TRENT, STAFFS, DE14 2ST. 028365435 . MON-FRI 9.5. MAIL ORDER ONLY ADD 45p P\&P TO ALL ORDERS
ADD 45p P\&P TO ALL ORDERS Prices inc. VAT
ACCESS and BARCLAYCARD (VISA) OFFICIAL ORDERS WELCOME
ORDERS ACCEPTEO BY PHONE OR
POST.
SAE ALL ENQUIRIES.
oVerseas payment must be in sterling.
IRISH REPUBLIC and AFPO - UK PRICES EUROPE - UK PRICES $+10 \%$ ELSEWHERE - Write for Quote

Watford Technical Books

If you're into ROBOTS, the simplest is Buster, a sort of machine pet, in Building Your Own Working Robot by David L. Heiserman (£5.70). Or try How to Build Your Own Self-Programming Robot (£6.35) which is about Rodney who retains, says DLH, the essential character of Buster. Robot Intelligence with Experiments ($£ 7.70$) is about simulating self-programmed machine behaviour on a home computer, and DLH's latest book is How to Design \& Build Your Own Custom Robot, 460 pages for just $£ 9.95$ by post. Also in stock, on the subject of robots, Android Design - Practical Approaches for Robot Builders ($£ 10.60$) by Martin Bradley Weinstein is "not so much a do-it-yourself book as it is a background on the tools, materials, and techniques necessary before designing your own android". (For the philosophical, MBW also tells you how to distinguish between automata, robots, androids, cyborgs, mandroids, bionics, mechanoids and robutoids.) Finally on robots, How to Build a Computer Controlled Robot, called Mike and controlled by a KIM-I, by Tod Loofbourrow (f9.60).
Watford Technical Books is new and different. We aim to stock all the books you need on electronics and computing, so why not come and browse in the only bookshop not to stock Not the Edwardian Diary of a Country Parson? There's all the usual collection of cookbooks lincluding some not always so readily availablel, vast assembly language programming books for this or that by Leventhal and co out of Osborne, and piles of project books from Tab, Babani, Newnes etc. If you can't visit Watford and save a little (the prices above include a little p\&p), send SAE for lists or phone Watford 10923) 23324. We're- open till 6.00 (except Weds) and Fridays till 7.00 . Access \& Barclaycard will do very nicely, thank you, including by phone.

105 St Albans Road, Watford WD1 1RD
(2 minutes from Watford Junction)
Tel: WATFORD (0923) 23324

MONTHLY IN
ELECRRONIS TODAY -
YOUR OWN 'WHERE TO
BUY IT' GUIDE

AVON

ANNLEY ELECTRO
190 Bedminster Down Road Bedminster Down, Bristol Tel: 0272632622
Open: Mon-Sat Sam-6.30 pm Wed Sam-2pm

DORSET

D.J. ELECTRONICS

64 Ensbury Park Road, Bournemouth.
Tel: (0202) 515073.
Open: Mon-Sat 9am-6pm.

HERTFORDSHIRE

GODDARDS COMPONENTS 110 London Road, St. Albans.

Tel: St. Albans 64162
Open: Mon-Sat 9.30am-5.30pm ($1 / 2$ day Thur)

LOOKING FOR COMPONENTS! HARDWARE! CASES! TRY YOUR LOCAL LISTED STOCKIST

```
LANCASHIRE
```

ETESON ELECTRONICS
EPOUlton-le-Fylde, Blackpool
Tel: (0253) 885107
Open: 9.30 am -12.30. 1.30-5.30. Closed Wed \& Sun.
Electronic Component Specialists.

MERSEYSIDE

MYCA ELECTRONICS 2 VICTORIA PLACE
SEACOMBE FERRY SQUARE
WALLASEY L44 6NR Tel: 0516388647
Open: Mon-Sat 10am-5.30pm

W. MIDLANDS

PPATTH ELECTRONIC SERVICES 369 Alum Rock Road, B'ham. Tel: 0213272339. Open: $10 a \mathrm{~m}-6 \mathrm{pm}$ weekdays.
Sat $9.30 \mathrm{am}-5 \mathrm{pm}$. Contact Peter A Thomas. Wholesale and retail supplies.

> FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

S. WALES

CAROIGAT ELECTRONILS Chancery Lane, Cardigan, Tel: Cardigan (0239) 614483 Open: Mon-Sat 10am-5pm. Closed Wed. Electronic components \& Acorn computer stockist.

YORKSHIRE

ACE MAILTRONIX LTD. 3A Commercial Street, Batley. Tel: (0924) 441129 Open: Mon-Fri 9am-5.30pm. (Sat 1pm) Retail and wholesale.

> PLEASE MENTION ELECTRONICS TODAY WHEN USING THESE SHOPS!

If you would like your business details to be included in Electromart please fill in the below coupon and post to: Electromart, Electronics Today International, 145 Charing Cross Road, London WC2H OEE

[^3]

AMAZING ELECTRONICS PLANS. Lasers, Super-powered Cutting Rifle, Pistol, Light. Show, Ultrasonic Force fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue £1 - From Plancentre, 46, Bye Street, Ledbury, HR8 2AA.

SOFTWARE ENGINEERING. Microprocessor/Analogue/Digital Systems/Circuits designed. Prototype development to production level. Assembly capacity available. Retreat Electronics, c/o 19 First Avenue, Newport Park, Countess Wear, Exeter, Devon EX2 7DX Phone Topsham (039 287) 7166.

OSCILLOSCOPE £12. Easy built unit plugs into T.V. aerial socket and converts it to large screen oscilloscope. Costs approx. $£ 12$ to make. Circuit and plans $£ 3$. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

PARAPHYSICS JOURNAL (Russian translations); Psychotronic Generators, Kirlianography, gravity lasers, telekinesis. Details: SAE $4 \times 9^{\prime \prime}$. Paralab, Downton, Wilts.

FOR SALE. Maplin 5600 S synthesiser parts. Case, keyboard, panels, finished PCBs. Tel: 8831598 (London).

DIGITAL WATCH REPLACEMENT parts batteries, displays, backlights etc. Also reports pubications, charts. S.a.e. for full list Profords Conersdrive, Holmergreen, Bucks, HP15 6SGD

ELECTRONICS component shop in MAID. STONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

BURGLAR alarm equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W.A.S. Ltd.

WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. Q Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

MOS.FET AUDIO MODULES

Hitachi devices, Hitachi spec., glass boards extruded heatsinks, tested, guaranteed 24 months.
120 watts/ 8 ohms; $120 \mathrm{v} / 2 \mathrm{~A}$ supply; $£ 13.95$ 240 watts/4 ohms; $120 \mathrm{v} / 4 \mathrm{~A}$ supply; $£ 19.95$ 400 watts/2 ohms; $120 \mathrm{v} / 7 \mathrm{~A}$ supply; $£ 29.95$

Power supplies/pre-amps available. Post/ packing 80 p. Stamp for details. Quantity discount.
Audio-Tech., 8 Parsons Close, Church Crookham, Aldershot, Hants GU13 OHL. Tel: 0251422303.
T. \& J. ELECTRONICS COMPONENTS Quality components, competitive prices. Illustrated catalogue 45p. 98 Burrow Road, Chigwell, Essex.

CIRCUIT DESIGN, Prototype construction, analogue or Digital, Siangle Circuits or Complete Instruments/Systems. Write A. J. ATTWOOD. C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082-346) 536.

TRANSCENDED DPX, perfect. Plus extra sounds £235. E.T.I. Reverberation board built 25. Tel. Dartford 032224467.

AERIAL AMPLIFIERS Improve weak ttelevision reception. Price £6.70, S.A.E. for leaflets. Electronic Mailorder, Ramsbottom, Lancashire BLO 9AGH.

PRINTED CIRCUITS. Make vour own simply, cheaply and quickly! Golden Fotolac -light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick f1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

Upshtil now PCBs were alwos the hardet component to obtain for projechal course you could make yourown，but yny Gother ampioret， Now you can buy your boards staightrom the designers－us！As of this issue all Inon－ copyright）PCBS will be availdeleritomatical yotrom the ETI PCB Service．Each 5 ond is produced from the same master used to busd our prototypes，so you＇can be strre ant＇s accurats． and will be finished to the high standerd yoi would expect from ETI．
In addition to the PCBs fe this niontlys projects，we age making available some of the more popular designs from our recent pact see the list below for details．Please note that NO OTAER： BOARDS ARE AV IIDABAE．If it＇s not listed，wedon＇t have it！

APRIL 79Click Eliminator
JUNE 79
\square Accentuated Beat Metronome
FEBRUARY 80Tuning Fork
MARCH 80
\square Signal Tracer
AUGUST 80
－CMOSLogic Tester
Capacitance Meter
Ultrasonic Burglar Alarm

OCTOBER 80

Cassette Interface
Fuzz／Sustain Box
NOVEMBER 80
\square Touch Buzzer
\square Light Switch
\square Metronome
2WPowerAmp
\square RIAA PreamplifierAudio Test Oscillator
DECEMBER 80
ㅁ
Musical Doorbell
Bench Amplifier
Four Input Mixer
JANUARY 81
\square LED Tacho
Multi－Option Siren
Universal Timer
FEBRUARY 81
口
Infra－red Alarm（four boards）
Pulse Cenerator
MARCH 81
Engineer＇s Stethoscope

APRIL 81

£2．64
£6．64
£3．6

UNE 81
Mini－drill Speed Controller
Antenna Extender LED Jewellery：Cross

Spiral（two boards）
$\left.\quad \begin{array}{l}\text { Spiral（two boards } \\ \text { Star（two boards）}\end{array}\right)$
Waa－phase

juIY 80
£2．93 \square System A A－MMNA－MC
£2．87 System AA．PR
Smart Battery Charger AUGUST 81
${ }_{\text {£ } 3.27}^{\square} \square$ System A Power Amp（A－PA）
Flash Sequencer
Hand－clapSynthesiser
£1．93 Heartbeat Monitor
£1．93 Watchdog Home Security
£1．93（twoboards）
£1．93 SEPTEMBER 81
£1．93 D Mains Audio Link（three boards）
£3．13 \square Laboratory PSU
october 81
£2．80 Enlarger Timer
£2．53 ThermalAlarm
£2．64 Micropower Pendulum NOVEMBER 81
£4．13．\square Music Processor
£3．20 Voice－Over Unit
£3．31 प CarAlarm
Chone Bell Shifter JANUARY 82
£6．64 \square Parking Meter Timēr
£3．57 ロ Infant Cuard
Cuitar Tuner（two boards） Musical Box Drum Machine（two boards） Guitar Note Expander
$£ 2.64$
$£ 2.65$
£1．53
$£ 2.64 \square$
$£ 3.60 \square$
$\boxed{\square} .20$

MARCH 82

Infinite Improbability Detector £3．37
$\begin{array}{lr}\text { £5．60 } \square \text { Capacitance Meter（two boards）} & £ 14.19 \\ £ 3.20 \square \text { Robot Motor Controller } & £ 3.80 \\ \text { R }\end{array}$
Light Wand

APRIL 82

$£ 2.93 \square$ Contrast Meter	$£ 2.83$
$£ 3.20 \square$ Sound Effects board	$£ 2.40$
£1．47 \square High Impedance Probe	$£ 1.97$
$£ 2.64 \square$ Guitar Practice Amp	$£ .97$
$£ 2.65 \square$ Accurate Voltage Monitor	$£ 2.05$
$£ 1.53$	

£4．77 口 Ion Generator＇（two boards）	$£ 6.22$
$£ 3.44$ 口 Ion＇Blinker＇	$£ 2.60$

£3．97 ロ MOSFET Amp Module £6．99
£1．83－Logic Lock £3．41

Digital PWM

£3．84

Optical Sensor £1．98
Stylus Timer $£ 2.98$
Oscilloscope（four boards）$£ 13.19$
JULY 82
Mike Switching Unit
TV Bargraph（main board）$£ 4.85$
TV Bargraph（channel card）£2．44
Hotwire
£2．99
Bridging Adaptor
£7．35 AUGUST 82
$£ 3.97 \square$ Playmate（three boards）$£ 7.92$
£2．81
£2．96
Kitchen Scales
Sound Track
£2．37
$£ 1.80$
£5．97
SEPTEMBER 82
\square Auto Volume Control
£2．07
Dual Logic Probe

How to order：indicate the boards required by ticking the boxes and send this page， together with your payment，to：ETI PCB Service，Argus Specialist Publications Ltd， 145 Charing Cross Road，London WC2H OEE．Make cheques payable to ETI PCB Service．Payment in sterling only please． Prices may be subject to change without notice． Total for boards
ε.
Add 45p p\＆p
Total enclosed

Signed

Name
Address．

COMPUTER CONTROLLED SOUND IS HEREI

This unique device receives serial data from any computer, baud rate up to 4800, responds only to its own address code (preset by on-board d.i.l. switch) and is capable of attenuating any audio signal in 1.5 db steps from 0 db to infinity. Once the device has been enabled, all other devices will ignore the commands until a new address has been transmitted. These devices can be built into amplifiers, mixers etc, or anywhere computer contro of audio signals is required. The kit comes complete with all parts, sockets etc, and is supplied with instructions for use. A 5 V power supply is required. Up to 127 devices can be individually addressed on one loop. Order ref: MED01

Price $£ 69.50$ +VAT PGP $£ 1.50$
Cheques, postal orders crossed and payable to:
MEDIATRONICS
3 Alnwick Drive, Hollins, Bury, Lancs $061-7966410$

ANALYSE/DESIGN Complex filters/networks on your $2 \times 81-16 \mathrm{~K}$ friendly program from 129 Northam Road, Southampton SO2 $\mathrm{OOH}-£ 4.95$.

COMPUTER KEYBOARD DUST COVERS Made from transparent silicone rubber. Keys operate with COVER IN PLACE. Fits standard keyboard sizes, four inches by fifteen inches (eg Commodore Pet). Price per cover, £6.90 inclusive. DBM Products PO Box 6, Melton Mowbray Leics LE13 1YL. Telephone 0664 68415 after 2 p.m. (other sizes can be made on request).

FULLTIME/PART TIME courses in analogue and digital electronics and electronic designing. City and Guild courses also available. Fees: Full-time $£ 1300$ pa. Part time $£ 350$ for 6 months. $£ 500$ for 9 months. Please apply to London School of Electronics. 67-83 Seven Sisters Road, London N.7. Tel. 2635937.

KIA AMAZEING AMPLIFICATION Opportunities *30W Fibreglass poweramps $\mathrm{f} 12=$ $£ 199$ + v.c. - Musiccentre stereoamps $£ 26$ $=£ 9+$ preamps -8 Cunliffe Rd, Ilkley return ad for FREE Quality capacitor pak.

PSUs 5V5A $£ 25.99 .1 .2-27 v 1.2 A$ with voltmeter £24.99. (With Torodial transformers), Top brand VHS video cassettes: E120 £7.65, E180 £8.10. Prices include P\&P. Mail order only. Edwards Electrics, 30 St James Square, London SW1.

TOP QUALTTY - UNBEATABLE PRICES We specialise in top quality equipment for groups, disco and HiFi. High power amplifiers up to 600 W , lighting units, consoles, power supplies, etc.
Send for catalogue 60 p from:
SILVERQUEST LTD
21 Belmont Road, Luton LU1 1LL, Bedfordshire
Tel: (0582) 37228

STOCK CLEARANCE. Mixed Resistor Packs: $\frac{1}{4} / \frac{1}{2} w$, pre-formed, un-used. $1-1 \mathrm{lb}$ pack (2500 -plus) $£ 2.50 .50$; 2 lb pack $£ 4.60$; Exceeding 2lbs $£ 2.00$ per lb. 2A Mains Filters RS 238-435, £3.50 each. 16 -pin Headers (without covers) 6 for $£ 1.8-\mathrm{pin} \mathrm{i} / \mathrm{c}$ holders 12 for $£ 1.20 \mathrm{~mm}$ Chassis Fuseholders 4 for $£ 1$ General Purpose Diodes $25 \mathrm{v} 50 \mathrm{ma}, 75$ for £1. TTL Sale: 7412,10 for $\mathrm{f1}$; 7485,2 for £1; 74914 for $£ 1 ; 74122,5$ for $£ 1 ; 74123,5$ for $£ 1,74188$, £2 each. 2N 3055 (full-spec.) 2 for f1, Bridge Rect 26 m B10A, 25A/100v, $11 / 10^{\prime \prime}$ sq., $£ 2.50$ each. All prices include VAT/P\&P. Linway Electronics, 843 Uxbridge Road, HAyes End, Middx UB4 8HZ.

TWO BENCH LOGIC BOARD ENGINEERS FOR NORTH LONDON (NW2)

Must be experienced in computer logic board repairs.
The successful applicants will join a busy team of engineers within an established company in the coin-operated amusement trade. First class salary and conditions. All enquires regarding these positions will be

> treated in strict confidence Tel: $01-450907 / 8 / 9$
asking for Bob Warrington

FIND-A-FRIEND through FIND-AFRIEND'S new confidential, inexpensive service. Your ideal friendship/relationship - all ages - countrywide. Temple House 43-48 Birmingham, B2 4LH. 021-429-6346.

PROXIMITY SENSORS infra red. 6 inch range 5 to 15 v supply. Miniature design $6.5 \times$ $5 \times 2 \mathrm{~cm}$. Only $£ 16.50$. Leaflet. Cheshire Micro Design, 66 Close Lane, Alsager, Stoke-onTrent, Staffs.

ETI'4600 SYNTH, uprated. Four patchboards each 20×11. Separate synth and keyboard cases. 2×16 sequencer with transpose facilities. $£ 550$ ono. Teac 3340 and Akai 4000D £500 ono. Rochdale 79081

TELEPHONE MONITOR KIT, connects between telephone line and your cassette recorder and automatically records all phone useage. Complete kit including case and PCB only £9.95. Dept. ET2, UNITECH (Midlands), FREEPOST, Sutton Coldfield, West Midlands B74 3BR.

WORKBENCHES, secondhảnd. Ex-ITT TV factory. Open or cubicle style. Need space, Details: 0424863464.

TIME WRONG?

ALWAYS CORRECT with an MSF CLOCK - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds. auto GMT/BST, leap year and parallel BCD
Receives Rugby 60 KHz for computer etc
Receives Rugby 60 KHz atomic time signals, buitr-in funtenna, good selectivity, 1000 Km range.
Fun-to-build kir includes alf parts, printed cir cuit, case instructions, postage etc E69.60, money bBC
CAMBRIDGE KITS
45 (TJ) Old School Lane, Mitton, Cambridge

TRANSCENDENT DPX Electronic Piano/ Organ $£ 300$ ono. Phone Manchester 061 4373120.

BUILT TRANSMITTERS $£ 2.9088-110 \mathrm{MHz}$. Range 150 yds. Refund guarantee (Unlicen sable). P. Faherty 37, College Dr., Ruislip.

COPPER CLAD BOARD double sided fibre glass. 20 sheets $12 \times 8^{\prime \prime} £ 10,10$ sheets $12 \times$ $8^{\prime \prime} £ 6,5$ sheets $12 \times 8^{\prime \prime} \mathrm{f} 4$. including P\&P. Davron, Box No. E.T. 202, 145 Charing Cross Road, London W.C. 2.

OPTICAL FIBRES for use in communications, electrical isolation, remote sensing, illurnination, etc. Introductory package contains five sample lengths of Silica, glass and plastic fibres totalling ten metres plus a forty page fibre optics guide with theory, uses, practical circuits, etc. Send $£ 5.99$ to Quantum Jump Ltd., 53 Marlborough Road, Liverpool 13.

A really compact high performance CCTV camera for only $£ 130.00$ plus VAT plus P/P, Total $£ 152.95$. Size 3 " $\times 3$ " $\times 9$ ". 240 v operation. iv p-p output. Lens extra.

CROFTON ELECTRONICS LIMITED

35 GROSVENOR ROAD. TWICKENHAM
MIDDLESEX TWI 4AD
Telephone 01-891 1923/01891 1513 Tele 295093 CROFTN G

USE ELECTRONICS TODAY INTERNATIONAL'S CLASSIFIED (35p per word, minimum 15 words. Box Nos. $£ 2.50$ extra or $£ 10.00$ per single column centimetre - all prepaid).

Just write the details on the form below and send it with your cheque, made payable to A.S.P. Ltd, to Electronics Today International Classified, 145 Charing Cross Road, London WC2 OEE

Please place my ad in the next available issue of E.T.I.:
Name
Address \qquad
Tel. No.
I enclose my cheque/P.O. for the value of $£$.

TT LWES AGAMN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence across the country in its quest to infiltrate every town, every home, every mind
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you neea the help of Electronics - It's Easy. Originally a long-running series in Electronics Today International. Electronics - It's Easy was pınted as a set of three books. They sold out. It was reprinted as a single volume. It sold out. Now this phenominally successful publication is available again, in its third reprint. Electronics - It's Easy is a comprehensive and simply written guide which explains the theory (and the practice) of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology
You can obtain your copy of Electronics - It's Easy by mall order using the coupon below. Make cheques or postal orders payable to ASP Ltd; alternatively you may pay by Access or Barclaycard

Send to: Sales Office (Specials),
513 London Road, Thornton Heath Surrey CR4 6AR
Please send me.....copies of Electronics It's Easy. I have enclosed $£ . .$. . ($£ 4.95$ each including p\&p).

```
NAME
ADDRESS
Please debit my account
| My Access/ Barclaycard No. is
Signature
```


The expert and personal guidance by fully qualified tutors, backed by the I'CS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hoid one of these recognised certificates. ICS can coach you for:

Basic Electronić Engineering (C\&G/ICS)
Radio Amateurs

Certificate Courses

TV \& Audio Servicing
TV, Radio and Audio Engineering
Radio \& Amplifier Construction
Electronic Engineering*
Computer Electronics*
Industrial Electronics*
Radio Frequency Electronics*
Introduction to Microprocessing*
Electrical Engineering*
Electrical Contracting \& Installation
-Qualify for IET Associate Membership
[CACC]
Approved ur CACC

Member of AECC

ADVERTISEMENT INDEX

Active Comp 62
A.D. Elec 78
Ambit Int 58
Audio Elec 44, 46
Armon 77
BICC Vero 52
BI-Pak 62
BK Elec 24, 52
Black Star 44
BNRS 38
Bradley Marshall 45
Broadside Assoc 83
Chiltmead 44
Clef 52
Cricklewood Elec 12, 13
Crimson Elec 81
Crofton Elec 82
Display Elec 80
Electronize Design 79
Electrovalue 58
E.D.A. Sparkrite 75
Grange Enterprises 81
Greenbank 21
Greenweld 82
G.S.C 55
Happy Memories 67
Heath Elec 6
Hemmings 20
Henry's Radio 58, 67
ILP. 14, 45
Input Design 82
L\& B Elec 78
LEM 67
Magenta 84
Maplin 92
Marco Trading 20
Mawson Assoc 78
Memotech 71
Rapid Elec 8
Relay-A-Quip 56
R.T.V.C. 78
Pantechnic 56
Powertran. 2,91
S. Baker 81
Swanley 67
Technomatic 6,7
Teleradio 56
Tempus 28
T. K. Elec 32
Watford Elec 4, 5
Watford Tech Books 84
Wilmslow Audio 82, 84

PRECISION - by

PDURTRTMAM

For more than eleven years Powertran have been designing and manufacturing the finest quality elactronic kits. All of our now considerable range have featured in the electronics press and literally thousands have been bought and built by contractors in the UK and World-wide.
Our philosophy is always the same - we offer ingenuity and originality in the construction phase by using only top class designers. We offer machines with power, versatility and performance - capability fully equal to their factory built rivals. We offer only the highest quality materials and components throughout to ensure years of useful and reliable service, we offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the careful first time builder as well as the dedicated enthusiast.
Our hallmark of success lies in the number of our clients who have built our whole range - many assembling several units for others to use often on the professional music scene.
We believe in taking every care throughout - months spent checking and testing the design and development. Vigorous checking of every component, constant pre-despatch quality control, careful packaging...even door to door delivery by Securicor!
We are naturally very proud of our Transcendent range of synthesizers designed by Tim Oirr and regularly featured in ETI. They represent the best in constructional interest and in musical performance.

TRANSCENDENT POLYSYNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match. Complete kit $\mathbf{2 7 5} .00$ plus VAT (single voice). Extra voice (up to three more) $\mathbf{4 2 . 0 0}$ plus VAT.

EXPANDER - A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.

Complete kit $£ 249.00$ plus VAT
TRANSCENDENT DPX - Offers a five octave keyboard with power to match. Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.

Complete kit $\mathbf{5 2 5 5 . 0 0}$ plus VAT

TRANSCENDENT 2000 - Although only a 3 octave keyboard the '2000'
features the same design ingenuity, careful engineering and quality components of is larger brethren. The kit is well within the scope of the first lime builder buy it, build it play it You will know you have made the right choice.

Complete kit $£ 185.00$ plus VAT
1024 COMPOSER - Come right up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer is mains powered with automatically charged battery to preserve your programme after switch-off Complete kit $£ 85.00$ pius VAT)

DEMONSTRATION TAPE - Demonstration tape now available of all three kits (30 minutes).
$£ 2.00$

Quite simply the best way to make music

T20 +20 - Originally designed by Texas Engineers. This is a 20 watt amplifier with true Hi-Fi performance at a minimal cost New features include true Toroidal transformer, new wiring, single circuit board and improved presentation. An ideal beginners project Complete kit $£ 29.50$ plus VAT. Also T30 + 30-30 watt version complete kt $£ 34.50$ plus VAT

LINSLEY HOOD 75 DE LUXE - A 75 watt amplifier originally published in Hi-Fi News. Superb performance characteristics with less than $.01 \%$ distortion. Modular construction with 14 interconnecting boards - virtually no wring so assembly is easy as is subsequent checking and maintenance. Complete kit $£ 75.00$ plus VAT.

WORLD LEADERS IN ELECTRONIC KITS,

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all pnoes in this advertisement until the end of the month following the mont of publication of this issue. IErrors and VAT rate changes excluded. EXPORT ORD
U.K. ORDERS: Subject to 15% surcharge for VAT. No charge is made for carriage, or at current rate if changed. Cheques. Access. Sarclaycard accepted.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kit. FREE ON ORDERS OVER E100.
SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter. Open $9 a . m .-12$ noorn. 1-4.30p.m. Monday-Fnday

KEYBOARD KIT WITH ELECTRONICS FOR ZX81

＊A full size，full travel 43 －key keyboard that＇s simple to add to your ZX81（no soldering in 2×81 ）．
＊Complete with the electronics to make＂Shift Lock＂，＂Function＂and＂Graphics 2＂single key selections making entry far easier．
＊Powered from 2X81＇s own standard power supply－with special adaptor supplied．
＊Two－colour print for key caps．
＊Amazing low price．
Full details in our projects book．Price 60p．Order As XA03D
Complete kit for only $\mathbf{~} 19.95$ incl．VAT and carriage．Order As LW72P

25W STEREO MOSFET AMPLIFIER
A superb new amplifier at a remarkably low price．

MATINEE ORGAN

Easy－tobuild，superb specrication up to $£ 1,000$ ．Full in our book Price construction detaris Order As XH5ske $£ 2.50$ ．
Compotete $\mathrm{KHS5} \mathrm{~K}$
Completete kits available：
Electronics－ $\mathbf{2} 299.95$ ．
Cabinet－ 599.50 （carriage extra）．
Demo cassette price 11.99 ．Order As XX43W
就
＊Over 26 W per channel into 8Ω at 1 kHz both channels driven：
＊Frequency response 20 Hz to $40 \mathrm{kHz} \pm 1 \mathrm{~dB}$ ．
＊Low distortion，
output stage．
＊Extremely easy to build．Almost everything fits on main pcb． cutting interwiring to just 7 wires iplus toroidal transtormer and mains lead terminations）．
＊Complete kit contains everything you need including pre－ drilled and printed chassis and woodèn cabinet Full details in our projects book．Price 60p．Order As XA03D Complete kit for only $£ 49.95$ incl．VAT and carriage．Order AS LW71N

MAPLIN＇S FANTASTIC PROJECTS

Full details in our project books only 60p each．
In Book 1 （XAO1B）120W rms MOSFET Combo－Amplifier • Universal Timer with 18 program times and 4 outputs－Temperature Gauge－Six Vero Projects
In Book 2 （XAO2C）Home Security System－Train Controller for 14 trains on onexircuit Stopwatch with multiple modes－Miles per－Gallon Meter
In Book 3 （XA03D）ZX81 Keyboard with electronics • Stereo 25W MOSFET Amp̄ififier Doppler Radar Intruder Detector－Remote Control for Train Controller
In Book 4 （XAO4E）${ }^{*}$ Telephone Exchange expandable up to 32 extensions • Ultrasonic Intruder Detector－Frequency Counter 10 Hz to 650 MHz －Remote Control for 25 W Stereo Amplifier
－Projects for book 4 were in an advanced state at the time of writing，but contents may change prior to publication（due 14ih Aug 1982\％．

MORE GREAT KITS FROM MAPLIN

Matinée Organ（see box above）
Spectrum Synthesiser．Full details in book XH56L．Price $\mathbf{f 1 . 0 0}$
3800 Synthesiser $\}$ Full details in book XF11M．Price $£ 2.00$
5600 S Synthesiser 5
LW32K Price 11795°
75W MOSFET Power Amp Kit LW51F．Price $\mathbf{£ 1 1 . 4 9}$
50W Power Amp Kit LW350．Price $\mathbf{f 1 4 . 9 5}$
15W Power Amp Kit Y043W．Price $£ 6.45^{*}$
8W Power Amp Kit LW36P．Price $£ 4.45^{*}$
－Construction details with kit．PPower supply not included－details with kity．

All mail to：
P．O．Box 3，Rayleigh，Essex SS6 8LR
Tel：Sales（0702） 552911 General（0702） 554155

shoos at：

159 King St．Hammersmith，London W6．Tel：01－748092 6
284 London Rd．，Westcliff－on－Sea，Essex．Tel：（0702） 554000
Lynton Square，Perry Barr，Birmingham．Tef：（021）356 7292
Note：Shops closed Mondays

[^0]: To: I.L.P. ELECTRONICS LTD. please send me il.p. catalogue, PDST PAID BY RETURN

 I HAVE/HAVE NOT PREVIOUSLY BUILT WITH LL.P. MODULES

[^1]: Please send
 Total purchase price
 I enclose Cheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order \square
 Debit my Access/Barclaycard No. \qquad
 Name
 Address \qquad

 Signature
 Post to: ILP Electronics Lto. Freepost. 4 Graham Bell House. Roper Close Canterbury CT2 7 EP. Kent. England
 Telephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780.
 (a division of LPP Electronics Lto)

[^2]: All the components for this project are the common-or-garden variety so you should be able to get them from any of the companies advertising components in this issue like Rapid Electronics, Bi Pak, Ace Mailtronix or Electrovalue. People unable to etch their own PCB can find our PCB Service order form on page 87.

[^3]: Please include my business details in the next available issue of ELECTRONICS TODAY
 INTERNATIONAL:
 BUSINESS NAME:
 ADDRESS: \qquad
 OPENING HOURS:
 RETAIL \square WHOLESALE \square MAIL ORDER \square (Please tick)
 \qquad

