An
EII first!
Digital kitchen scales project Easy-to-build:
LCD display:Accurate
Keep an eye on the revs with our robot controller

Down to video basics with the first-ever circuit level description

POWER PACKED－by POWERTRAN

Powertran＇s black boxes are packed with punch．Not only are they superb kits to buy and build they really do the jobl Imaginative and ingenious design goes hand in hand with top quality materials and outstanding performance capability．With their smart black styling the kits harmonise visually as well as musically．
Your can built each unit independantly for its set task and then gradually increase your array until vou have a complete bank of formidable controllable power．

Complete Kit－$£ 49.90$＋VAT

Complete Kit－£49．50＋VAT

Complete Kit－$£ 175.00$＋VAT

Complete Kit－£64．90＋VAT

MPA 200 is a low price，high power 100 W amplifier．Its smart styling，profes－ sional appearance and performance， make it one of our most popular designs．With adaptable inputs the mix－ er accepts a variety of sources yet straightforward construction makes it ideal for the first－time builder．

CHROMATHEQUE 5000
5－channel lighting system powerful enough for professional discos yet con－ troliable for home－effects．Sound to light，strobe to music level，random or sequential effects－each channel can handle up to 500 W yet minimal wiring is needed with our unique single－board design．

ETI VOCODER－ 14 channels，each with independent level control，for max－ imum versatility and intelligibility；Two input amplifiers－for speech／excitation －each with level control and tone con－ trol．The Vocoder is a powerful yet flexi－ ble machine that is interesting to build and thanks to our easy to follow con－ struction manual，is within the capability of most enthusiasts．

SP2 200 twice the power with two of the reliable，durable and economic amps from the MPA200；fed by separate power supplies from a common toroidal transformer．Superb finish and quality components throughout－up to leven over！！the standard of high priced factory－built units．

DJ90 Stereo Mixer－this is a really versatile new mixer that enables the constructor DJ to produce a professional performance every time．There are two stereo inputs for magnetic cartridges，a stereo auxiliary input and mike in－ put．Other＇plus＇features are auto－panning for fast or slow，slider controls，multi－mixing， ducking，interrupt，input modulation，in short everything．．the whole works－AND－ under $£ 100$ completel（We have illustrated the DJ90 teamed in our own console with the Chromatheque and an SP2 200 and speakers．

Complete Kit－ $\mathbf{£ 9 7 . 5 0}+$ VAT
a

 1

๑
＊ $1=2$
A解解保
30

Digital Delay Line－our latest kitl With its ability to give delay times from 1.6 mSecs to up to 1.6 secs． Many powerful effects including phasing，flanging， A．D．T．，chorus，echo \＆vibrato are obtained．The basic kit is extended in 400 mS steps up to 1.6 secs． Simply by adding more parts to the PCB．Compare with units costing over $£ 1,0001$ Complete kit $(400 \mathrm{mS}$ delay）$£ 130$＋VAT．Parts for extra 400 mS delay £9．50p． request with your first kit order，a tree soldering practice kit with useful tios and illustrations． －Component Packe－Most kits are available as separate
－Ordering－Full ordering details，delivery service，and sales counter opening－inside back of this issue．

The IV display on the cover is an artistrs imprestion The proiect gemerater a black-and-white picture only
Ron Harris B.Sc : Editor
Peter Green : Assistant Editor
Kathryn McFarland: Editorial Assistant
Rory Holmes
Phil Walker: Project Editors
Alan Criffiths: Divisional Advertisement
Managef
T.J. Connell: Managing Director

PUBLISHED BY
Argus Specialist Publications Lid
145 Charing Cross Road. London WC2H OEE
OESICN AND ORICINATION BY
4 M Design \& Print Lid.
145 Charing Cross Road.
London WC2H OE E
DISTRIBUTED Br
Argus Press Sales \& Distribution Ltd.
12-18 Paul Strect, London EC2A 4]S
(Brtish Isles)
PRINTED BY:
QB Limited, Colchester
COVERS PRINTED BY
Aabaster Passmore
OVERSEAS AUSTRALIA - Roger Marrison EDITIONS CANADA - Halvor Moorshedd and thelr CERMANY - Udo Wistie EDITORS HOLLANO - Anton Kriessman

A8C Member of the
Audit Bureau
of Circulation
Electronita Today os normally published on the first fors dy in the todisprecedong sower date the contents ol this putsication unclukieny all arfacies, orswns, plans, tellectioal proverty rishts therein belong to Aryus Specialsst Publications Limuteat All rights conterred by the Law of Copyright and other meneflectual property aighes and by virtue of internatnonal copvilyhi conven. fiom are specatically resenved to Agges Spectalist Publications Limited and any reproduction rmpulres the Porber written consent of the Company, Z21982 Arsus specsalist Publications Led All wasonable care is the publishers cannor be firls lesally respem uble for perors Where mistakes du uccur, a correction will nor. mally top pubthiod as soon as possible afterwards Alt gerces and data contained an advertisements ate ac. orpted by us en good fotith as correct at tome of guing to prell. Nether the alvertisers nor she publishers C an be neld responsuble, howeyer, for amy vatiations stfiecting price or aratiblifity which may oce ur after the publice fion has closed for prest

- Subscription Rates. UK E11.95 including postage. Aurmail and other rates upon application to ETI Subscnptions Department, 513 London Road, Thornton Heath, Surrey CR4 6AR

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

10 AUDIOPHILE
Scopes, synths, sounds. Sinclair, shorts and Its almost been too much for the editor one or two sillies; check out the news this month.
COMPETITION RESULTS
14
Our competitions in the 10th Birthday issue brought a bumper response from our readers. Here are the answers - and the winners.

TECH TIPS 26
Design ideas submitted by you lot out there. Two pages of ingenuity in print.

READ $\overline{\text { WRITE }}$

.35
Praise, protests and problems selected from our mailbag. See what our readers have to say

CROSSWORD

. 37
have a go at our two monthly brain teaser and you could win yourself some cash.
this month - a Carver cube and the new Shure V15 Type V.

DESIGNER'S NOTEBOOK 67

 Nine of the best - this month we're giving you a collection of out-of-the-ordinary design ideas.VIDEO SYSTEMS
Tapes and discs and all the formats; this massive feature explains the lot.

PROJECTS

MIKE SWITCHING UNIT

20
Harassed operators of mixers with several mike inputs will be glad of this project: it's a voice-operated unit for automatic fading.

KITCHENSCALES

\qquad
Drag your kitchen out of the Dark Ages; do
yourself a favour and replace the pointer
on your scales with this digital display module.

LOGIC LOCK PART 2

39
Make your home, office or garden shed really secure; this month we give the constructional details for this superb security device.

TV BARGRAPH

Sixty-four channels on your TV? No problem - this project lets you display up to 64 analogue inputs as a bar graph on any domestic set.
SPEEDCONTROL59

Now that your robot's got get-up-and-go. we discuss ways of keeping it under control.
OSCILLOSCOPE PART 3
The final part gives the calibration procedures that complete the scope.
POLYSTYRENE CUTTER
Take out your frustrations on a slab of polystyrene, sculpt, or create giant lettering for signs; it's all possible with the ETI Hotwire.
ERIES 5000 BRIDGING ADAPTOR . . 85 If the Series 5000 MOSFET amp wasn't loud enough for you, this small module will bridge two amps to double the power.

INFORMATION

NEXT MONTH'S ETI	SUBSCRIPTIONS	57
ZXCOMPUTING	BINDERS	57
BOOK SERVICE	PCB SERVICE	

ETI JULY 1982

WAIFORD ELECTRONICS

 MAIL ORDER，CALLERS WELCOME Tel．Watford（0923）40588．Telex： 8956095ALL DEVICES BRAND NEW，FULL SPEC．AND FULLY GUARANTEEO．ORDERS OESPATCHED BY RETUAN OF POST．TEAMS OF BUSINESS：CASH／CHEOUEIPOO OR BANKERS DRAFT WITH ORDER．GOVEANMENT AND EDUCATIONAL IN
STTUTIONS OFFICIAL ORDERS ACGEPTED．TRADE ANO EXPORT ENOUIAY WELCOME PGP ADO SOP TO ALL CASH OROERS．OVERSE
AT COST．AIR／SURFACE．ACEESS ORDERS WELCOME．

VAT

Nocenal Undergroundury Sterion：Wofford Hiph street

MOU VEstim Capacitorat：Ansel lend $16 \mathrm{p}: 150 \mathrm{n} 20 \mathrm{p} ; 280 \mathrm{~m} 20,700 \mathrm{n} 42 \mathrm{~g}: 870 \mathrm{n}$ $160 \mathrm{v}: 10 \mathrm{mF}, 12 \mathrm{n}, 39 \mathrm{~m}, 100 \mathrm{~m} 11 \mathrm{~m}, 150 \mathrm{n}, 22$ 160v． $10 \mathrm{NE}, 12 \mathrm{n}, 3 \mathrm{my}, 4 \mathrm{sin}$ roove inf the： 10 nk 30p．I5n 40p：22n
POLVESTER RAOIAL LEAO CAPACITO 10n， $36 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{~m}$ trec 33n．47n 88n． 10
TANTALUM BEAD CAPACTIORS 10． 1.5160 c 2.2 .3 .31 1t：4．7． 68220 za 10 2a0：lev： 22,33 16： 4.7 ． 62,10 cop．6y 100420 ．

COMPRESSION TRMMERS

RESISTORS Cirbon film righ Siobility

2\％Mesem
in maen

100.

DIODES

NOISE Dlode

2

M
C
AP
An

Po
10p
N
2
2

COM
1202
1002 Ce
10
ZENEAS
$35 \mathrm{~V} 000 \mathrm{mw} w$

$\frac{1}{2}$
5
Mn－
VARIC
GA1O2
 12888

\qquad

10000riasov	
POTENTIOMETEMS Rater．Cebon． Track 025 W Long 6 Hitiner onty sungte Geng 3 Ma Snots Gang Log of un SKD 2 Na Sngty Gang Lag of Lh skg amal Doutu Gemp	
PRE हIT MOTENTMOMETERS 0 25W 200 n 4.7 MH vil Cornt Preceion．mutioum． 0.75 W is 1000－100kg	$\begin{aligned} & \text { ival phane } \\ & \text { Avrough, orese } \\ & \text { the reet } \end{aligned}$

安家

 ธ～～ี

वロธजs
 RF
CHOK

Sinclair ZX81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZXPrinter offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig. allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to

Every ZX81 comes with a comprehensive, specially- written manuas - a complete course in BASIC programming, from first pinciples to comptex programs.

Higher specification, lower price how's it done?
Quite simply, by design. The $\mathbf{Z X 8 0}$ reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-buitt in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification

- Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Kit or built -it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 700 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

uter-

Available nowthe IX Printer for only 859.5

Designed exclusively for use with the ZX81 (and ZX80 with 8 K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly
useful when writing or editing programs

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions.

How to order your ZX 81

BY PHONE - Access, Barclaycard or Trustcard holders can call
01-200 0200 for personal attention 24 hours a day, every day.
BY FREEPOST - use the no-stampneeded coupon below. You can pay
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.
 Tel: (0276) 66104 \& 21282.

घlIETRONG C.W. 3

 MATO K INTELLIVISIONTHE ULTIMATE T.V. GAME OUR PRICE $£ 156.48$ + vat

6 new caatrioges just releaseo ASTROSMASH : SMAFU • BOWLING PACE ARMADA - BOXING TRIPLE ACTION All 19 current corry nopes. The sht new onet above now retall alk

The Matted insellivisen is the most sduanced IV geme in the worto with o range of ower 25

 convert the Matret inip a futl home computer wath IGR RAMt which will be futy anhandable ane
 ow
MATTEL OWNERS CLUB - Why not join our Mattel Owners Club and recive our negular nowsiorters containing detris of all the whers cartridge releases. Telephone us FREE 16 PARE CARTRIDGE CATALOGUE - If vou are inserested in owning a Mattet, we now have avarlable a 16 page catalogue describing the latest sincartridges carricfoes Telephone us for further dmals

T.V. GAME CARTRIDGES

\%
 EARTH INVADERS
 ค. P P. 226.95 NOW $£ 18.95$ inc. VAT

ELECTRONIC CHESS

computer with $100-200$ has bittery life and Imo lavels of pley
Comes with seonralo cliess SALE PAICE £19.95 GRADUATE CHESS and FIDELITY MINL-SENSORY CHESS COMPUTER
 planied for 1982 for antvenced rhmath pogisere upurnings greatest masier games draughes and MINI.SENSOAY COMPUTER WITH STANDARD CHESS MOLULE WAS 55.50 NOW $£ 49.95^{\text {Vat }}$

PAC MAN 2 OME

 r.a.p cas.96 NOW £24.95 inc VAT SPACE INVADERS
 oplenderi maty

 R.f.p. 224.95 NOW £16.95
STM SPA INVADERS

FOR FRIE BROCHURES-TEL: 01-301 1111

or Accosion invcino min ? ciuths wicovem coushs wicoom

,onvinu civen mitic

coumptrimeses a.vicovin

SILICA SHOP LIMITED HEO682

Explore the Excellence

 of your ZXB With MEMOTECH Add-OnsFigh Resolution Graphics

megotech
goo-ch

\&52.00

- Fully programmable high resolution $(192 \times 248$ pixels).
plus VAT
- Viceo page is both memory and bil mapped.
- Video page can be located anywhere in the RAM
- The number of video pages is imited only by your RAM size (each page occupies about 6.5 K RAM) and pages can overlap. Inslant Inverse video.
- Switching inverse video on and off gives flashing characters'numerals etc. Video pages can be Access to video page is superimposed by similar to plot and unplo soltware switching. commands in BASIC
The pack comes in an elegant aluminium case. anodised black and styted to fit onto the back of the EX81, altowing more add-ons (Memopak RAM. Sinclair prnter, etc) to be connected without a turther power supply. If contains a 2 K EPROM monitor, hotding a full range of graphics subroutines which can be called by the BASIC USA function or by machine code

Memopak 16K Memory Extension £26.00 plus VAT

It is a fact that the ZXB 1 has revotutionised home computing and coupled with the new Memopak 16 K it gives you a massive 16 K of Directly Addressable RAM. which is nether switched nor paged. With the addition of the Memopak 16 K your 2×8 i s entarged memory capacity will enable it to execute longer and more sophisticaled programs, and to hold an extended database
The 16 K and 64 K Memopaks come in atractive custom-designed and engineered cases which ill snugly on to the back of the $\mathrm{ZX81}$ giving firm, wobble-free connections.

A complete range of ZX 81 plug-in peripherals Centronics Interface \& Software Drivers Digitising Tablet RS232 Interface We regret we are as yet unable 10 accept orders or enquiries concerning the above products, but we lil let you know as soon as they become avaliable

[^0]
Memopak 6AK Memory Extension $£ 68.70$ plus VAT

The 64 K Memopak is a pack which extends the memory of the 2×81 by a further 56 K . and logether with the $\mathbf{Z X 8 1}$ gives a lull 64 K . which is netther swiched nor paged, and is directry addressable. The unit is user transparent and accepis BASIC commands such as 10 DIBA A (9000).
BREAKDOWN OF MEMORY AREAS
0-8K . . Sinclair ROM 8-16K .. This section of memory swilches in or out in 4 K blocks to leave space for memory mapping, holds its contents during casselte loads. allows communication between programmes. and can be used to run assembly language routines. $\mathbf{1 6 - 3 2 K}$... This area can be used lor BASIC programmes and assembly tanguage routines. $32-64 \mathrm{~K} \ldots 32 \mathrm{~K}$ ol RAM memory for BASIC variables ano large arrays With the Memopak 64 K extension the $\mathbf{Z} \times 81$ is translormed into a powerful computer. suitable for business, teisure and educational use. at a fraction of the cost of comparable systems.

We want to be sure you are satisfied with your Memopak - so we offer a 14-day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Tel: Oxford (0865) 722102 Telex: 837220 Orchid G

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIG

Precisely Stereo

A fter all the nasty things weive sald about TV sound, It seems the industry has finally got the message. Regular stereo TV transmissions have begun suc* cessfully in West Germanv, and Grundig has launched its first stereo TV in Britain. The sets will give genuine stereo from stereo
video recorders and video dise players, and processes mono broadcasts to give a 'spatial' sound. Despite the four speakers (two forward-facing tweeters, two side-facing woofers), the sets are slightly narrower than conventional mono televisions, and a plug-in board will give stereo broadcast sound when this becomes available. Are you listening, BBC and ITV?

Plugging Telecom

In case you were wondering, this is what British Telecom's new four and six way modular plugs look like. Manufactured by Pressac of Not tingham, the cable connections follow the current trend of being IDC, the blade contacts giving high pressure, gas tight connections.

Scopex Scoop

S- copex are feeling rather pleased With themselves - they've developed the world's first tubeless, dual trace, digital storage, battery portable scope. The Scopex Voyager uses a 128×256 LCD matrix display to replace the normal cathode ray tube; this makes the device only 330 - 260 : 98 mm ! Compare that with your normal digital storage scope. The $64 \times 102 \mathrm{~mm}$ display does not

use the conventional iwisted nematic ICD materlal, but dye-phase-change material which gives a very wide viewing angle, high cor trast and excellent visibility in a range of lighting conditions. Input waveforms can be stored with an equivalent bandwidth of 150 kHz and it's possible to keep the waveform in memory, even with Voyager switched off, for at least 100 days. Thus a waveform may be stored in the lab and compared with one 'or-site' miles away. The Y-amp sensitivity is $10 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$, with a sweep speed from 20 uSJcm to $505 / \mathrm{cm}$. The weight of the Voyager is 2.5 kg , and the price - well, thats E2,500 plus VAT, slightly out of reach of the hobbyist but likely to take industry by storm. Nice to see a British company leaving the Americans and Japanese standing. For more comprehensive details on the Voyager facilities, contact scoper at Pixmore House, Pixmore Avenue, Letchworth, Herts SG6 1HZ.

Osborne On Offer

If there's anyone left who hasn't heard about the Osborne I portable microcomputer (we've seen it on two magazine covers already this month), here's your chance to get hold of one at a special launch price, valid until July 31 st this year. For E1250 plus VAT, Adda Computers will supply the total package in cluding free delivery in London and the Home Counties, 10 free diskettes and a one year parts and labour warranty. The Osborne I weighs only 24 lbs and can fit under an airline seat. It includes 64K of memory, a business keyboard with graphics and 10-key numeric pad, a monitor screen, outputs for separate printers and other peripherals, two disc

Musical Boxes

- B Electronics, designers and manufacturers of modular lighting control and amplifier systems, have been made distributors for the Paia range of kits which are being introduced into the UK. The Paia range is extensive, to say the

Sharp Practice

Pocket computer íreaks will be in terested to know that the Sharp PC-1500 can now be purchased from Tempus. "Suddenly a pocket computer approaches the personal contputer in ability" says the brochure, and ir's certainly a powerful tool for use in business, management, engineering and hobbies. Its small size makes It ideal for portable use (only 195 \& 25.5 : 86 mm), and irs packed full of goodies. The memory contains 16 K of ROM and 3.5 K of RAM, expandable to 7.5 K of RAM with an optional memory module: programs and dafa are retained when the computer is switched off.

Almost any symbol can be displayed on the 7 : $\mathbf{1 5 6}$ dot display area (would you believe circuit diagram symbolsi'), or a 26 -character line when using alphanumerics. For the first lime ever in a pocket conputer there is a QWERTY keyboard layout; with the add-on colour graphic printer/cassette interface (!!!), the PC-1500 can be used as a small personal typewriter. Six userdefinable keys are provided, plus a MODE lock key so you can only RUN the program, avoiding inadvertent erasure. The BASIC features variables, two-dimensional arrays, variable strings and many other advanced features.

Combining the built-in clock and 'beep' functions allows the PC-1500 to act as an alarm clock with on-screen messages! - to remirid you of your schedule. forthcoming extras include an RS-232C interlace. At the moment we don't even have a reproduceable photograph of this wonder device, but hopefully we'll be able to get one for review before too long. Meanwhile, the PC-1500 is available for $£ 169.95$ including VAT, from Tempus, 38 Burleigh Street, Cambridge CB1 1DC.

drives, connections for battery pack Mailmerge, SuperCalc, CPIM operating system and two BASIC languages. Comparable packages cost two to three times as much. Ad da Computers live at Mercury House, Hanger Green, Ealing Lon don W5 3BA.
least - The catalogue has 16 pages crammed with synthesisers (from the tiny to the huge), organs, sequencers, drum synths, string synths. all the special effects you've heard of and some you haven't, plus a selection of books. One of the sequencers is called the 'Orgasmatronic' and there's a kit for an 'EncephaloGratiflcation Generator, but I'm sure the designer has seen his psychiatrist and is OK now. The, calalogue contains endorsements by Larry Fast and Peter Gabriel, which can't be bad, and for more information contact L \& B Electronics, 45 Wortley Road, West Croydon, Surrey CR0 3E B (telephone 01.689 4138).

A Birth In The Family

ur beloved publishers, Argus Specialist Publications (tugs foreloch obsequiously), have added another magazine to the newstands: Friday, 301h April saw the launch of 'ZX Computing', which is aimed specifically at the 400,000 owners of the Sinclair $\mathbf{Z X 8 1}$. The magazine will be published quarterty at a price of E1.75 and is available from leading newsagents everrwhere, as the saying goes. Editor Yim Hartnell has stuffed the first, 132-page issue full of programs, games, ideas and information to reflect the wideranging in terests of $\mathbf{2 \times 8 1}$ owners, and we recommend you sprint down to the corner shop now before they sell out.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Bosom Buddies

ust when we were wondering where all the photos of lovely ladies had disappeared to, this dropped through the letterbor. At $31 / 2^{\text {" }}$ 天 $11 /{ }^{\prime \prime}$, this Standard Telephone and Cables radiopager is probably the smallest in the world. It has four separate tone patterns to indicate messages from different sources and can be muted during meetings to record calls silently for playback later. The plature shows how the unit can be hidden in your cleavage; people with differently-shaped chests can clip it to their clothing.

TK

Transmissions

Demote control is the forte of TK Kelectronics and their latest kit departs from their usual wares in that It uses mains control, not IR or ultrasonics. Any electronic appliance which plugs into the malns can be controlled using a hand-held transmitter, also connected to the mains. Up to a total of 16 receivers can be operated anywhere in the house and switched on and off by more than one transmitter. The recelver may be coded so that you don't Interfere with your neighbours and vice versa. The transmitter has the advantage that it can be activated by logic signals - the computer-controlled hone becomes a reality. The kit contains a transmitter and two recelver units for £ 42 plus VAT, although transmitters and receivers are available separately. TK Electronics are at 11 Boston Road, London W7 35). Enquiries on 01.579 9794: tell 'em ETI sent you.

Credit card customers with poor memories have been accommodated by TK, who've got a new phone number, 5678910 (geddit). Dialling this number and quoting your Access/Barclaycard number will get you same day despatch of components. A $6^{\prime \prime} \times 9^{-1}$ SAE to the above address will secure the free 1982 shortform catalogue.

Shorts

- Triangle Digital Services of 23 Campus Road, Iondon E17 8PG, are now supplying a free handbook on their industrial speech synthesis system. Various products are described included the low cost custom vocabulary service
- We get some amazing stulf sent to us. Would you believe that the Edinburgh District Council is fitting microprocessor-controlled weighing systems in their new abattoir. Obviously a case of steak and chips oh dear, these offal puns.
- Two new high-speed analogue multiplexers from Burr-Brown, the MPC 800 and MPC 801; they provide up to 16 single-ended (eight differential) channels or eight single (four differential) channels respectively. Each chip is self-contained with onboard address decoding for channel selection.
- Crow of Reading have introduced the Barcovision video projector, which can give a maximum picture size of 6 metres diagonal on any flat screen, with viewing angles only restricted by perspective distortion. I want one . . and a videotape of Debble Harry.
- Greenweld have sent us their latest catalogue, and you can have one too for the sum of 50 p plus 25 p postage. Also included are 60 pence worth of discount wouchers, bargaln list, wholesale list and a reply paid envelope.
- Texas' new CCD image sensing chips use a patented new technology to avoid the need for a two-phase clock. The chips are sensitive to light across the visible spectrum, and feature 1728×1 and 128×1 pisel resolution.
- Verospeed are adding more than 100 CMOS devices to their catalogue. Industrial users will now

Amazing Aiwa

New from Aiwa (or leeewaadaah, as their ads on commercial radio would have us believe) is the CSW7 compact/micro stereo radio cassette recorder. This incredibly versallie unit incorporates two tape formats, micro and compact, with a versallle dubbing facility which works from either one to the other. For example, you can record from one tape onto the other in either direction while listening to a completely different
programme on the radio. Vou can make two simultaneous recordings from the radio or an external source. You can combine voice and music from separate recordings. Wow!

The audio output of the CSW7 is $5 \mathbf{W}$ per channel; the radio is fourband with a sleep timer. The microcassette has two playing speeds so you can choose between accurate speech recording or a longer playing time; both lape units offer metal tape compatibillty and editing func tions. The CS-W7 retails at around E190 from authorised Aiwa dealers.

he able to get same day despatch at competitive prices for semiconducfors they require urgently. Speed indeed.

- Kentec of Sevenoaks have in troduced a oneboard Z-80 based computer with 2-4K RAM, 2-8K ROM, 36-key keyboard, NO port and 300 page manual. It's intended to be a low cost development tool; the price is £65 including power supply.
- Lander Microsystems, 32 Clockhouse Lane, Collier Row, Romford, Essex are selling the IM124 EPROM programmer for use with the TRS-30 Model I level II (16K). Most single-supply EPROMs can be blown, without personality modules, and commands include BURN, COPY, EXIT, FILL, LOAD, MEMORY, NEW, PAGE, READ, SAVE, TEST and ZERO.

Wrist Radio

Come back Dick Tracey, all is forgiven. Trafalgar's Radio Watch ' 82 , believe it or not, is the same size as an ordinary digital watch with all the usual functions, but also contains an AM radio with hi-lo volume confrol and high-quality earpiece. Damned if I can see where you plug It in, though. Definitely one of the smallest portable radios, so over to you, Sony. Trafalgar Watch Co Ltd., Trafalgar House, Grenville Place, Hale Lame, London NW7 3SA.

Fore!

Wfe knew the Japanese took every thing seriously, especially their golf, but this is ridiculous. Mitsubishi recently periecled this microcomputerised golfing ald so you can brush up on your strokes at home. Working with Namio Takasu, a Japanese professional golfer, Mifsubishi have designed the G1-500 to display such data as head speed, face angle, hitting area, swing arc, ball direction and other esoteric information every time you swing at the ball. The unit contains four sensors in the mat base, a built-in microcomputer, a charger and carrying case, so the japanese can practice almost anywhere. Brits, however, will have to

NEW AND FREE FROM GSC．

NEW an exciting range of projects to build on the EXP300 breadboards．
NOW anybody can build electronic projects using＂Electronics－by－numbers＂，its as＂Easy as A，B，C with G．S．C！＂
FREE project
MUSICAL DOORBELL OF THE 3RD KIND
You＇ve seen the film，now haunt your visitors with the tune！
Each time the doorbell is pushed the eerie tune plays out，then switches off to conserve battery power．
HOW DO YOU MAKE IT．
Our FREE project gives you clear＂step－by－ step＂instructions．For example＂take
Resistor No． 1 and plug it in to hole numbers 845 and $847^{\prime \prime}$ ．
＂Take IC No． 1 and plug it into hole numbers E35 to E42 and F35 to F42．（pin 1 on the IC goes into F 35 ）＂
＂Take．．＂Well？why not＂clip－the－coupon＂ and get your F REE step－by－step instruction sheet and your FREE 12 projects with each EXP300 bought and your FREE catalogue and．

EXPERIMENTOR BREADBOARDS

The segeat rme of teresitionds from GSC．
Eacti mede is wempted br a letter inumber system EACW RIGKELSIVEA CONT MA：I CARAIES A LIFE TIN GUARANTE： All moduty constuction mans that ay Erpwimentor beadboard can be ing tocker tow thee to butd besedteondes of any．arie．

Exp325

The＇on－ches＇trentiond Tekes 8，is，is and to to 22 an icr then 130 contict patins ancludina 2 bus tows．

Exp360
Ithe bsgimests bresomary For limited cer wod You can hove FREE 12 ＇Eletwoncs ty
Nurrmin＇FROstets

ExP300

The moss＂wrebely boughts bresditiond Don＇t mits out on out＇NE W AND FREE＇pro，acts They can to built on the Expaco

2xps00

The Hubterist micioperocenor＇shend
Exp650
The＇orestiap micumpoceter＇bowrt
ह．⿹勹巳
Shem on reur calro ber bors
P06
Ihe ullurate bremonneat al
P8100

NEW AND FREE FROM G．S．C． 24 HOUR SERVICE
 number and vour ordet will be put m the post immethotery．

TO ORDER UST CLIP THE COUPON

GLOML SRECMLIES COMOAATMOM
CLOML SMCMLIES COMOMATION
ESC Uno 1，STuce thin ind．Essare Satron Whaten．Essex．CB11 3A0． Telephone 10 resi 21 c 3 ？Yeca alifat：

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

COMPETITION RESULTS

The response to the competions in our April '10th Birthday' issue was, quite simply, overwhelming! As each day passed the mounting pile of envelopes had to be transferred to larger and larger cardboard boxes, and the job of sorting out all the winners was no easy matter. Here are the results.

CRIMSON COMPETITION

We had a huge variety of answers. Some people didn't read the question carefully enough - we asked for parameters that would contribute to a good quality sound so, for example, short circuit protection is irrelevant. It's nice to have but doesn't affect the sound one iota. After much braincudgelling our panel of judges came up with the following list which they consider to be the most important parameters:
$H, F, S, E, C, B, A, R, J, N$.
The entry which most closely matched this list came from
Dr. D.B. Smith, Tyne and Wear. He receives a Crimson Elektrik 100 W hi-fi comprising the CK1010 preamp and CK1100 power amplifier.

IGNITION COMPETITION

This was probably the easiest competition and consequently the one that had the most entries. It was also the one with the most correct answers. The first one, who designed the standard ignition circuit, shouldn't have posed much of a problem because he gets a mention every time we publish an article or project on electronic ignition systems. It is, of course, Charles Kettering. There are several correct answers to the second question about cylinder firing order, though most people settled on 1-3-4-2. The winner, picked at random from our box, was Stewart Robertson, Cheshire.
He wins an electronic ignition kit from Electronize Design.

BIRTHDAY COMPETITION

We never realised so many of you kept your issues for ever! Kind of gets you right here. . . Unfortunately we can't reward everybody for being so loyal, but the winning set of answers is as follows:

1. July 72.
2. Halvor Moorshead.
3. March 72. A bit sneaky, this one; the cover date was April 72 but each issue appears a month in advance.
4. The stage dimmer project.
5. May 77.
6. There were three; the LM387, the AY-5-8100 and the SN72560.
7. January 77.
8. Rick Maybury.
9. John Miller-Kirkpatrick started the series back in August 73.
10. February 73.
11. March 76.
12. 1978 (July, August and September)
13. A model train controller.
14. 44 parts. Part 11 was published in two parts.
15. Four editors - Paul Godden, Shaun Kannan, Halvor Moorshead and Ron Harris.
16. Trick question. No-one was Assistant Editor, but Les Bell and Ron Harris were Editorial Assistants.
17. Tim Orr.
18. February 80.
19. January 74.
20. July 79, with the Arak controller; one month before the DPX.
The lucky winner of the 10 -year subscription is
Mr. E. Somerville, Ayrshire. We hope you enjoy reading your ETIs over the next decade.

VERO COMPETITION

Another very popular one. We had a few readers who thought the pile of boxes was incorrectly drawn, so we've reproduced the diagram here with shading added to show the true perspective. We told you there were no concealed box tops, so you know there are no hidden columns at the back; so the pile consists of three columns one block high, three three blocks high, two four blocks high, one five blocks high and one six blocks high. Total number: 31 boxes. Two of the April projects were housed in Verocases, the Solid State Reverb Unit and the Digital Capacitance Meter, while the Vero ' G ' range case is metal, as you can see from the photos of the reverbsunit. The winner of this competition was Mr. C. Castell, Berkshire.
He'll be receiving the Veroboxes worth £50.

CASIO COMPETITION

Judging by the answers we got, this was the question you all found the most difficult - although there was a catch which we hinted at. Working through the question bit by bit, we have: $7 K$ is $7 \times 1024=7168$. The standard audio bandwidth was mentioned on page 45 and is $20,000-20=19,980$. The product of these is $143,216,640$. Now comes the catch. The BASIC used by the microcomputers we tested in the office inserts a space at the beginning of the string when the STRS function is used, to take the place of the sign bit. Hence AS has 10 characters including this leading space, so the BASIC expression we gave evaluates to $6640-216 / 10=6640-21.6=6618.4$ exactly. The UK mains frequency is 50 Hz , yellow/violet/red is the resistor colour code for 4,700 and our modular synthesiser was Project 80 . So the next part of the question works out to $4,750 / 80=59.375$. Dividing this into the previous result gives 111.4677894. The difference between our street number (145) and the TTL prefix (74) is 71 , so the new sum becomes 182.4677894. The CMOS quad EXNOR IC is the 4077 , digit sum 18, while a 555 has eight pins. One divided by the other is 2.25 and the log of this is 0.352182518 . Multiplying our previous result by this gives 64.26196554 , and adding 23 (10111 binary) gives a final result of 87.26196554 . To six decimal places this is 87.261966 and only three people got it exactly right.
The one who got picked out at random was
Mr. P. Sipos, Surrey.
He gets the Casio FX-702P pocket BASIC calculator.

Congratulations to all our winners, then, and commiserations to everyone else; but stick around for another 10 years 'cos our 20th Birthday
Competitions will be bigger and better?

CONFIGURATIONS

You lucky people－not one but two new series on circuit design begin next month．The first one，Configurations，will provide you with the basic design data for many of the commonly－used circuit blocks；often ones which haven＇t received a great deal of attention in the past．The articles are written by lan Sinclair，wellknown man－about－electronics， and he kicks off next month with the biasing arrangements for the single－stage common－mitter amplifier．

DESIGNING MICRO－SYSTEMS

The second series will delve into things digital－specifically， the inner workings of microcomputer chips．Words like microprocessor，RAM，ROM and the like have been bandied about at great length with only scant information as to how they work and how they operate in a system；but we aim to put that right．Starting next month with the CPU，Owen Bishop will take you on a guided tour of the microcomputer and give you the real inside story．The English language cannot do justice to this series；you＇ll have to buy next month＇s ETI to find out just how good it is．

MICROTUTOR

Since we＇re telling you all about the workings of a micro，we may as well give you a project to play with．The Microtutor is a one－board machine code training tool，containing 19 key keypad，cassette interface， 1 K of RAM，extensive $1 / \mathrm{O}$ and a UHF modulator for connection to any domestic TV set．All you need to be up and running is a 9 V supply．The project is professionally designed（by our friends at Tangerine）and the monitor program is similar to TANBUC（used in the Microtan system），so you can move up to greater things as you become more proficient．You won＇t be able to find a cheaper，easier or betterengineered method of getting into machine code programming，so camp outside your newsagent now and make sure of your August ETI．

THE PLAYMATE

A goody for the musicians among you．It＇s a practice amp； it＇s an effects box；it＇s versatile．Not only that，it＇s small and light enough to be easily portable．The amplifier has a power output of a couple of watts，while the built－in effects are fuzz and wah－wah．There＇s a socket to allow a foot pedal to be connected，and another for the guitar，if you plug in a signal generator instead you can generate all sorts of weird and wonderful noises（we know－we＇ve been doing it for the past week．

RUGBY CLOCK

We all know that Rugby is the name of a blood sport，but were you also aware that it＇s a precision timekeeping system？ Digitally－coded time data is broadcast 24 hours a day on 60 kHz －by picking up the radio signals and decoding them you get a digital clock with split－second accuracy that you never have to put right．Our unit features a Z -80 based design with alarm outputs and if the manufacturers ever start making smaller chips we＇ll do a wrist－sized version．

AUTO VOLUME CONTROL

Let us be clear about one thing；this is not a compressor！The auto volume control doesn＇t reduce the dynamic range but varies the overall level，affecting both loud and quiet sounds equally．The operation is therefore exactly the same as an ordinary manual control except that you don＇t have to touch anything．The circuit is amazingly simple（only four transistors）and very small，so you＇ll be able to fit it into almost any piece of equipment．

DATA SHEET

It＇s backl By popular request（our postman has had to retire early due to back trouble）we resume the publication of Data Sheet next month．Find out the facts on new ICs direct from the manufacturer＇s mouth．

CAICKLEWOOD at exiremely competaive prices, and with a 95% stock situation we can delfiver the
 woclets, switches, knobs. panel meters, soldel, solopering wo

ORDERING FROM CRICKLEWOOD IS EASYIII

THE LAZY WAY Phone your order through on Access,

or immediate service; no extra charge, no minimum order uccepted (no coins plesse). AD in stock ieems shlopod same divy
THE IDEAL WAY Call in sind colloce. We are on the main Edgware Ra (A5) just 1) milos from VAT Please add VAT it the currens rate to all orders except books. VAT nat chargeable auroad. POST. PACKING \& INSURANCE Standard wall order charge is 700 (morn for heswer gooda).

MICROPHONE SWITCHING UNTT

Muddled by multiple mike inputs on your mixer? Don't let your brain take the strain; our Voice-Switch unit will do all the work for you. Design by Vivian Capel. Development by Peter Green.

This unit was specifically designed as an addition to public-address microphone mixers, although other applications are possible. With many public-address systems there is a need to operate a number of microphones at the same time, such as when covering debates, multiple interviews, and similar items. If all the microphone channels are left open and faded up, extraneous noises such as foot shuffling, note rustling and even whispered asides can be caught and relayed to the audience, as well as the possibility of acoustic feedback being increased.

To avoid this the operator keeps open only the channel actually in use, and fades up each in turn as required. The snag is that when the debate gets lively, someone often starts speaking before the operator can fade up his microphone and the first few words are lost to the audience.

An additional difficulty can be to identify the microphones if they are passed from one participant to another or there are unexpected changes in seating positions. Thus it sometimes happens that the wrong microphone is faded up and a minor panic ensues until the correct control is found and turned on. Operating the mixing console in such situations can be a harrowing experience!

Vox Popular

Much if not all of this hassle can be avoided by the use of voiceswitched microphone channels. Some expensive professional mixers have this facility, and there is also an Americanmade add-on unit of which one is required for each channel controlled. This makes the set-up rather bulky as well as costly.

With the module here described, although one is required for each channel, it is small enough to be easily accommodated inside most mixers alongside the appropriate input socket
or fader. A switch and sensitivity control must be fitted to the control panel, but connection to the mixer circuitry is simple and needs little disturbance to the existing wiring.

So what exactly does it do? It mutes the channel to which it is connected, opening it only when the microphone picks up sound of a predetermined level. Thus all the channels can be faded up but none will be live until the particular microphone is actually used. Switching is fast, during the first cycle of received sound, so there is no audible loss of starting sound when the sensitivity control is correctly set.

Open Channel

The channel remains open as long as the microphone is being used and for five seconds afterward, after which it mutes. Thus it stays on during pauses in speech or when the voice is dropped providing the break is no longer than five seconds. If the pause is longer, the microphone will come on again as soon as speech is resumed, but in practice five seconds has been found to be about right. Longer or shorter
times can be obtained by changing the value of a capacitor.

In addition, a very useful extra facility is the provision of an LED indicator mounted on the control panel near each fader control. This is switched on when the channel is open and so informs the operator immediately which microphone is being used. Hence he can make instant adjustments to the volume as required, even if his view is blocked and he would otherwise be unsure of which control to operate. This does away with the need for colour-coded cables and other devices previously used to identify microphones on stage.

The supply voltage can be from 9-12 V , and so can be taken from the mixer supply; current required is not large and well within the ability of most mixer mains supply circuits. For battery operated mixers certain steps can be taken to reduce the current needed even further, and these will be described later.

Mounting And Wiring In

The small size will enable the module to be fitted without much trouble. One is needed for each

Fig. 2 A double-pole doublethrow switch with centre off position can be used to include manual muting of all but the main channel. This is how to connect it up.
channel to be controlled. Cenerally, it has been found best to fit them to all microphone channels except the one used for the chairman or main rostrum, as this one is usually in continual use.

The best point for connecting the muting circuit is to the top end of the channel fader. With battery operated mixers it is not necessary to use screened wire for this, but it should be used for mains powered units. Earth the screen at one end only to avoid hum loops. The input terminal on the PCB is wired to the live terminal of the microphone input socket; existing wiring to the socket is not disturbed. In the case of a balanced input, it can be taken to either of the two signal terminals.

Positive supply wires should be taken individually (not looped) to the Voice-Switch control switch. This can be an ordinary miniature on/off toggle switch, the other terminal of which is taken to the positive supply. When in the 'off' position, there is no muting action by the 555 , and the mixer works normally. An additional refinement which has been found useful, though not essential, is to include manual muting of all channels (except the main rostrum channel) in this switch.

Doubling Up

In this case, a double-pole doublethrow switch with a centre 'off' position is required. One pole is wired to switch on the supply to the modules in the down position as with the simple on/off switch. The other pole is made to break the circuit between the isolating resistors that go to the wipers of the faders, and the input to the mixer amplifier, when in the centre 'off'
position. It should be easy to locate the position on the mixer PCB where the resistors from the fader wipers are connected together. The track is cut here and a wire taken from each of the two sides to the switch. The resistor from the main channel will have to be taken to the other side of the cut so that it will not be switched with the others.

One of the two wires coming from the modified PCB is taken to the moving contact of the switch, while the other is connected to both the fixed contacts. Thus the circuit is broken only in the centre 'off' position. The action of the switch is therefore: UP, mixer operating normally; CENTRE, all channels except rostrum muted; DOWN, all channels except rostrum controlled by VoiceSwitch. The purpose of this facility is that when microphones are being handled and passed around, handling noise can switch on the Voice-Switch. It is therefore useful to be able to manually mute them until the participants are settled, when the Voice-Switch can take over. It can be seen now why the main rostrum or chairman's channel needs to be separate and on all the
time, as he will undoubtedly be introducing the programme or participants while they are coming on and taking their places.

Wiring from the positive supply to the switch should be fairly substantial, $13 / 02$ or $16 / 02$, as it is necessary to avoid common-impedance coupling between the units. Likewise the earth wires should be taken individually to an earth point and not connected from one to the other.

Sensitivity Control

Individual sensitivity controls could be fitted if required, but where all microphones are of the same type or the same sensitivity, as will generally be the case, it is sufficient to have a single control for all channels. This means only one control has to be fitted to the control panel in addition to the switch. If desired, the control could be a preset mounted inside the mixer and set up by trial and error. This may be preferable with a permanent installation that is to be operated by unskilled persons. For temporary setups though an external control is best as the acoustics of the hall play a part when establishing the correct setting.

HOW IT WORKS

The heart of the module is a 555 timer (IC1) which performs the switching when triggered by the input signal. Coupling to Q1 is via C1; capacitance of this component must be kept low (820 nf is a maximum). The first transistor is a BC109C or BC108C. It must have the suffix C as this denotes the highest gain obtainable for the type. Considerably amplified, the signal is applied to Q2 which is also a high-gain C-type transistor. Component values here are chosen to deliberately overload the transistor and produce a squared-off wave of high amplitude at its collector.

IC1 needs a negative-going square wave which takes the voltage at the trigger pin from half to less than one-third of the supply rail. As the voltage is held at the half level by R5 and R6, the first negative-going excursion triggers the device.

Normally the output of a 555 is taken from pin 3, but this is of no use for our purpose because the output alternates between positive rail and earth. To mute the channel we need to short the audio signal to earth at some suitable point, then release the short when the voice switch operates. Having the full rail voltage applied in one position of the switch is inconvenient and could cause problems in the mixer circuits.

Instead, the output is taken from pin 7. This is normally used to discharge the timing capacitor after the timing cycle is complete in readiness for the next cycle. It therefore floats during timing, but shorts to negative or earth outside of the timing cycle. It thus can be used for audio muting.

Discharge of the timing capacitor is now carrled out by pin 3 when it goes to negative at the end of timing, and diode Di prevents the capacitor charging from pin 3
when it is positive during timing. In addition the LED indicator is supplied from pin 3 via R8.

The timing network is R7 and C4, which gives the five second delay. It is not necessary for timing to be exact so these need not be close tolerance components. If a longer time is desired, the value of the capacitor should be increased or the resistor decreased, and vice-versa for a shorter time.

If the device timed out every five seconds, although it would switch on again almost immediately there could be perceptible breaks, especially if the event occurred in the middle of a word. So it is necessary to prevent the completion of the timing cycle as long as sound is being picked up by the microphone. This is done by Q3 which is connected across the timing capacitor. Pulses from Q2 are applied to its base via C5 and rectified by D2. The resulting positive-going signal turns Q3 on and thereby keeps discharging the capacitor. It is only when the signals cease that the capacitor is allowed to charge fully and so time out.

Q3 must be of a low-gain variety, that is having the suffix A, otherwise it will turn on with low-level sounds and remain conductive due to ambient noise; hence the unit would fail to switch off. If only higher gain transistors are available, a 33 k resistor (shown dotted) should be included to reduce the input, but this is not required for lowgain transistors.

It is also necessary for C5, the input coupling capacitor, to be of low leakage such as a polycarbonate or mylar type. Any leakage will result in a permanent positive voltage on Q3 base and a failure to switch off.

The design allows for either individual controls or a single one. The control varies the potential applied to the first stage and hence its gain. Wiring from the modules to the control can be looped if this is more convenient. If this is done the decoupling capacitor should be mounted on the first module so that the run from the control is decoupled.

The modules will operate with gain to spare using 200 ohm ribbon microphones which have a low signalvoltage output, so should have plenty of gain for most other available microphones.

To set the sensitivity control, turn it to an advanced position, whereupon the channels will be randomly switched on by sound coming back from the loudspeakers. Turn it down, a little at a time, until each channel only switches on immediately the microphone is used. If the first syllable of speech is lost, the control has been turned down too far.

With a good PA system the loudspeakers are of such a type and angled in such a way as to reduce sound coming back to the platform to a minimum. If poorly installed, returning sound will be excessive and this will not only predispose the system to acoustic feedback, but may make the setting of the Voice-Switch sensitivity control very critical.

LEDs and Battery Operation

The LEDs can be mounted above or below each fader so that a clear indication is given as to which channel is in use. This has been found to be a valuable feature.

For battery mixers the current requirement can be reduced. First a higher value resistor can be placed in series with the LED (R8); say 7 kO instead of 47OR. Light output is
reduced but not too much; a 1 k 2 or even 1 k 5 can be used but at further and noticeable sacrifice of illumination. This is assuming a 9 V battery is fitted. A red LED gives more light per milliamp than the other colours, so one should be used here.

Another current saver is to use a CMOS 555 instead of the bipolar variety. These are more expensive but well worth it in terms of battery saving. The complete module (including LED with R8 equal to 1 k 0) takes 10 mA on and 5 mA off with a bipolar 555 . Using a CMOS 555, these figures are reduced to 5 mA on and 0.3 mA off; this is a total saving of some 50%. The CMOS version has the same packaging and pin connections and can be plugged into this circuit as a direct substitute. (This does not apply to all circuits.)

Operation

When first switched on, all channels come on and the LEDs light up, thus giving a visual check that all are working. To avoid random noise at this stage, the faders should be down. After five seconds the LEDs will go out whereupon the faders can be advanced to the normal operating level. Then, each will come on only when the microphone is used, and a fine adjustment of the fader can be made. There is no need for visual identification of the microphone in use as the LED indicates this.

Should there be spurious triggering, ease the sensitivity control back a shade. If the manual muting facility has been included, the faders can be left up when there are microphone movements or changes of participants, and the charinels manually muted by switch. Any such operations will not affect the main microphone.

Fig. 3 Component overlay for the VoiceSwitch. If the modules are all using a common sensitivity control, then the decoupling capacitor (C6) is only needed on the first module.

PARTS LIST

BUYLINES

[^1]

R $\operatorname{cin}^{5} 1^{4} x^{5}$

 LB ELECTRONICS

 LB ELECTRONICS}

SUPERSALE 8

All fut suec, brand new devces
2114 lisjonai f1.00. 4116 t200nsi Cl. 15,2708 e2.50. 2516 (single raill E2.50, NEC 2732 E8. 50.2532 C6.00 5116.3 E5.50 p\&o 350 on
sbove dovices. suove devicess
Detector. Made for the Lien Detecta, Made for the open
Uriversity, seze: 150mm Iforight $\times 100 \mathrm{~mm}$ (widuh) $x 90 \mathrm{~mm}$ oreightl. Comphtr with 100 microamp motor movemant 90 mm $x 75 \mathrm{~mm}$. Supprind complefe with 4.5 vi and pads, kess batteries (2) 4.5 vi E.jo + $2 \mathrm{p} / \mathrm{p}$

SELF.CONTAINED battery powared digizal recorders Complete with data entry koy bowd with 10 drait LEO displav. some tote exs per symem. Sorv. Somo deta COS per syarem. Sorrv.
caliers ority. ZETTLER Low profile PCB retar $30 \mathrm{~mm} \times 38 \mathrm{~mm} 4.8 / 6.9$ d.c. 35p. D TYPE CONNECTORS 9 Way Socket (soiden) 75 p 15 Way wrowropp phog $[1.00$ 33 Viay Plug (solder) 1180 37 Woy Socket (solderl E9 80 25 Way Plug fsalder) cy 85 25 Way Socket Isotdorl C1.B5 25 Way Plug (m
piorcingl) 52.85
prorcing S2. 85
25 Way Socher
25 Way Socker finsulation
50 Way Plug tso
P/P on sbug troldert 35.00 P/P on sbuve COVERS
37 Woy (P̄(astic) E1.00. 50 Wov〈Ptastic| C1.20. 25 Way (Pluatic)
 (Metell IT open Cl .00 . I5 Woy
(Plastrel 80 p , 15 Way (hietai) 950 (Plastc) 80 p , 15 Way (hionail) 95
P/P on atove $35 p$ P/P on above $35 p$ OISPLAYS
HP 5002/7414.4 digit DIL dispary lull spec $\mathbb{1} 1.50$ eack. D8p 35 p . Large quanfities POA.
LEO 3 Oigh OLL 55p, p\&p 35p
HPEOP2; $7050.4^{\circ 0} \mathrm{CA}$ loft and right
decimol point, high brightnes
only ESp, 12 for 66.50 , ofov 360 . SUPERSAVER 1 DIL header Plugs (No covers) 14 woy $18 p$, 15 woy 250,24 way $95 p$ (all gold plated) pion 3sp Ansloy Hoader pluga, 14 Why 7 7ip is Woy 95p. 24 Wey Cl 50. Insulation piercing typel plp 35p. Anskey 10 Header plugs PCB 65p et Wey pte 51 pio 35 straight SUPERSAVER 2 SUPERSAVER
13 amp plug fitted wish buzzer to nocicate power cut. Brand now. less battery. $\mathbf{2} .50 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$

SUPERSAVER 3

PAICE SMASH FND500 5 ED urpplays, full sper 650 oech, Difo 35p. targe quantries POA

SUPERSAVER 5

3 M 28 way insulotion piercing sockets E1 A0 $/ \mathrm{p} / \mathrm{P} 2 \mathrm{p}$.

SUPEASAVER 6
VIDEO LEAO
\% motres with PL259 plug E1.00 pfo 350

SUPERSAVER 7
Stud mounled rectriers, two to HF 1001250 volts. 50 amo, 4 for C2.00 pf P 3 So

SUPERSAVER 8 ONE ONLY - TEXAS SULENT 700 TERMINAL. RS232 110 band. Ab new - E235. Carriage ot cost SUPERSAVER 9 VELLEMAN EPROM Programme for full descrotive inaflent.

SUPERSAVER 10

Tiangerne Microtan 65 glink PC8. Brand naw plus circuit diegrem

SUPERSAVER
PAPST MINI-FAN 3% " $\times 3$ 1.5° deep $220,50 H 2$. Brend now and boxed. 59.50 ovo $E 1.00$. SUPERSAVER 12
2.5mm power plug and 2 motres of cable. Suitabta for Acom Atom, 20.1 aic. Only Cl .00 per $10 \mathrm{p} / \mathrm{p}$ SUPEPSAVER i4 SUPERSAVER 14 80 X FANS 115 V SO/60HV $820 \mathrm{~mm} \times 120 \mathrm{~mm} \mathrm{~N}^{\mathrm{N}}$
250 V \& 60 . PGP 51.00 .

> SUPERSAVER IS

SK $7 \mathrm{za}^{\prime \prime}$ multiturn trimpors. PCB mounting, per box of 14 £2.50 As above ik and 50 K , p\&p 35 p . SUPERSAVEA 16
OPTRON OPTO SLOTTED SWITCH (TVDe OPB-B1a) E1. pato 35D.
SUPERSAVER 17
VU METER $48 \mathrm{~mm} \times 50 \mathrm{~mm}$ aD prox. overati suze. Foce size $50 \mathrm{~mm} \times 28 \mathrm{~mm}$ approx. Brand new. $E 1.15$ p\&p
SUPERSAVEA IB SALE PCB AMP (LM 380%. Unused $68 \mathrm{~mm} \times 95 \mathrm{~mm}$ ocprox. 9.12 DC. E5p p\& 360.

$$
\text { SUPERSAVER } 19
$$

10 DIGIT (Red) LED daeplay. (.122iv. digit sizel. With tuilt-in aviver chep and buolt-in lens moynifier. Date sheet supplied. Brand now, 11.50 p6p 35p.

SUPERSAVER 20 4 $1 / 2 \operatorname{in}$ JUMPER LEAD. 16 DIL header to 16 OIL masder. 950 nep 300.
SUPERSAVER 21
 30.

SUPERSAVER 22 11b reel of solder is SWG G4r3s欮oy $\mathbf{f 5} .5022$ SWG 60840 E6.50 perp 90p
A TERRIFIC OIVEAWAY. MC 1499 As222 RECEIVER Brend riew 46 p asch. 10 for C1.50. Large quanuties o o.s. perp 30p.

SUPERSAVEA 23 Q Wey OIN 41612 edioe connections to Fit Microtan EtL. plug or soctet

$$
\text { SUPERSAVER } 24
$$ Singer Errog RAte Anolyzer. moder TE 950 RS 232, 9600 Bsud Brand now f200 plip at cost

MICRO REVOLUTION The New 28 Processor, Complote PCE and parte to produce this new CaU. bult in tiny Basic and 4 K . Ram. RS232C output plus User Porta Only Further dotils SAE P'P VAT. Motherboerd plus Eprom Programmer to follow shorthy.

AUGATKC SOGKETS

(The best available)
$2 \mathrm{OH} 20 \mathrm{p} \quad 24 \mathrm{Da} \mathrm{sop}$ 400 Ca 5 p
WE STOCK e vasi range of TTL. CMOS, sOME 7\$LS. MINLATURE TOGGLES, GTC.
PSUe. We have a large stock of
Donwar supplans at very realistic prices (csllers).

SUPERSAVER 25

KEVBOARD Touch sensitive |cepacitant| Alpha numeric 61° $\times 9^{\circ}$ besnd now, belimend to bo ASC 0000 No dats 0.95 Dep

NEW UNES

UECL Edge connector .9715 Way gold pieted (wire wrop) C1.es each No 350.
REG PCB (hess components), 5V 1 amp. ITV 1 amp and heatyink \$60mm $\times 90 \mathrm{~mm}$). Brand new;
$£ 1.00$ Hestsink only, 55 pa P/P $35 p$. FIpsBis \& digit gloss
NEC display Igreen with contre colons and plut and minus
signl, only 11.35 PIP 30 p .

PL259 SOCKET CHASSIS MOUNT. 50 p pg ${ }^{\text {P }}$ 30p. TRANSFORMERS 012. 024 amp E2.50, P\&P 500 Mmp SALE 7410 9p, 241318 p 7416 18D. 7490 280. 74155 45p. 78174 60p. 7418174285 £2.25 PGP 350.
WHY PAY POUNDS? - Just ar. rived Amphenol 36 -way plug ond socket (used) to ith all your printer. Only $\mathbf{E} 2.75$ per pair. PPP $35 a$
Terme cash with order (olficen orders welcomed from col leges. etc). All enquiries as a.e. please All prices inclusive o Postage as shown per item.

During the summer period we will not be advertising, but phasen mila any ordars from previous ade try relephone of
by mail

PLEASE DO NOT ORDER GOOOS FAOM OLD ADVERT PHONE BEFORE OROERING

PURCHASED
FOF CASH
LB DLECTRONICS
11 HERCIES ROAO MILIINGOON, MIDDLESEX UB109LS. ENGLAND
Ai enquirlos E.EA pleas. Telephone answering machine Telephone answering machine
service out of business hours. Namvice out of business hours. Naw retall promisel, now opsn
Mon. Tues. Thurs, Fif, and Sat, 9.30 .6 .00 Lunch 1.2 .15 weekdays. Closed alf day Woc--
nesdey. We are stuated just off nesdey. We are sturted just off the $A A$
Beewer.
ALL PRICES INCLUSIVE OF VAT
UXBRIDGE 55399

4
 GOMPDYING

Britain's Biggest Magazine For The Sinclair User
 Over 100 pages of information and programs for the ZX81 and ZX80 user including a 1 K Chess routine!

ZX Computing is a quarterly magazine with over 100 pages of programs, articles, hints and tips for the ZX81 and ZX80. We've put the magazine together with just one aim in mind - to make sure you get the most use and enjoyment out of your Sinclair computer

In the first issue, as well as a host of 1 K and 16 K programs (the majority dumped directly onto the printer), we've got two articles to help dispel the mysteries of machine code, a chess routine which takes up just 1 K , an explanation of PEEK and POKE, an entire section on business uses of the ZX81 (complete with a program to handle the accounts of up to 100 customers) and a construction article which will show you - even if you've never used a soldering iron before - how to cheaply double the memory on your ZX81.

If you're serious about exploring the full potential of your Sinclair computer, and you want an easy-to-understand series of articles to improve and develop your programming skills, then ZX Computing is for you. Issue one is on sale now.

- Software Reviews - which programs are the best buy?
- Business Routines - put your ZX to work!
- Expansion Systems - how good and how much?
- Machine Code for ZX81- secrets revealed at last!
- DIY Memory Upgrade - cheap way of adding bytes

```
Please use BLOCK CAPJTALS and include post codes.
Name (Mr/Mre/Miss)
delete accordsingly
Address
```


I am enclosing my (delete as necessary) Cheque Postal Order/Internotional Money Order for $\{$
(made poyoble to ASP Lid)

TECH TIPS

Mains Failure Emergency Light

J. P. Macaulay, Crawley

This simple circuit has been found very useful in situations where a coin-slot electricity meter is used. It also would be useful no doubt in the event of another power strike.

The mains is half-wave rectified by D1 and smoothed by C1. The resultant DC is fed through a current limiting resistor R1 to produce a reference voltage of 12 V across ZD1. R3 and C2 form a simple leakage and smoothing circuit.

If B 1 is of the voltage specified the Darlington pair Q1, Q2 are biased hard off. If mains failure occurs the base of Q1 is pulled to ground; the base current flows through R2 and R3. The bias is sufficient to take the Darlington pair into saturation, providing current to the lamp which then lights up. Since the circuit is not isolated from the mains, care must be taken to earth the box in which it is mounted. Connection to the mains can be via a normal mains plug.

If required the alternative load, a relay, can be driven instead of the lamp. This can then be used to switch in an auxiliary power supply. When the mains is reapplied the circuit returns to its original state. Current consumption is zero when the mains is present.

Penalty Kicks

G. Durant and D. Hall, Selby

We designed this following hand held game to be simple for construction, cheap and most of all fun for the operator. The idea of the game is to put yourself in the position of the goal keeper and to guess which way the striker is going to kick the ball, by turning the rotary switch to the marked positions. The shoot button is then pressed; a noise will indicate whether the operator has guessed right.

IC1, a 555 , is wired up as a astable multivibrator running at about 100 Hz feeding the clock input of the 4017. If the 'shoot' button is not operated, the Q output of the latch formed by IC5a,b is low, allowing the 4017 to count. Three LED's are driven by the 4017; in the reset state these are blanked by the latch.

Switch SW1 is turned into the position the 'goalie' thinks the ball will come towards the goal. The 'shoot' button is pressed. IC2 stops counting and one of the LEDs lights.

If you guessed correctly the 'saved' LED is lit via IC3a,b or cand a 1 kHz sound generator built around IC8 is sounded for just over a second, being controlled by IC7, a one-shot monostable.

If you 'let the ball into the goal' a buzzer is triggered, formed by IC6.

Caravan Water Supply Monitor

P. A. J. Thomas, Cowes

Being a keen caravanner I found that knowing how full the water containers were at any time was a problem, since they are opaque (being either plastic or aluminium). I designed the following circuit to give a visual display over the sink inside the caravan. The circuit is duplicated for dinking water and waste water levels, only the colour sequence of the LEDs being reversed. For drinking water, it is; full to halfffull, green; half to one-quarter full, amber; quarter-full to empty, red.

The circuit is based on the L.M3914 dotbar driver using $1 / 6^{\prime \prime}$ stainless steel welding rods as probes. Electroplating is overcome by reversing the polarity through the probes each time the containers are filled (or emptied in the case of the waste container), by using a two pin plug and socket. The probes are spaced $1 / 2^{\prime \prime}$ apart but this isn't critical.

The probes are held in a plastic over-

flow joint connector, used for water tanks, and this is filled with Isopon; the surface nearest the water is smeared with Araldite to prevent the fibreglass tainting the drinking water.

The display, dot or bar mode, gives a linear display of the contents very accurately, thus preventing overflows of waste water or running out of drinking water.

CMOS Sustainer for Electric Guitar

S. P. Giles, Edmonton

believe this must be one of the simplest and cheapest sustainers for electric guitars around. IC1a and IC1b are both CMOS inverters, wired to act as op-amps. Any inverter will do the trick, such as $4009,4049,4069$ or 4007.

The gain of IC1a is determined by the collectoremitter resistance of Q1 plus R2. If the output level is to remain constant while the guitar note decays away, the gain of IC1a must be increased by a corresponding amount. This is achieved by rectifying the output of IC1a through IC1b and D1 and passing the resultant DC voltage, which is smoothed

by C4 and R7, to the base of Q1. This forces the collectoremitter resistance of Q1 to increase in proportion to the input level from the guitar. RV2 can be set to
any desired level and when set high can easily overdrive the input stage of the guitar amplifier giving a valve-type of distortion.

[^2]

Plesse send me the books Indicated. I enclose cheque/postal order for £........
I wish to pay by Access/Barclaycard. Please debit my account.

5	2	2	4												
4	9	2													

Signed
Name
Address
The Pascal Handbook Tiberghien $\mathbf{£ 1 2 , 4 5}$
50 Basic Exercises Lamoitier $\mathbf{1 1} 110$
\square Learning Basic with the Sinctair 2×80 EA.95
\square Microprocessors for Hobbyists Coles $\mathbb{E A} 25$
Introductlon to Microcomputer Programming Sanderson 55.25

Microprocessors and Microcomputers for Engineering Students and Technicians Woolland $\mathbf{5 5 . 9 5}$ c6.95
Digital Counter Handbook Frenzel 88.65
33 Challenging Computer Games for TRS80-Apple-Pet nce 26.75 E5. 75
Microprocessor and Digital Computer Technology
Guld book to Small Computers Bardon 24.20
How to Dabug Your Parsonal Computer Hulman $28, \ldots 0$ E8.30

Expertments Staugaard £11.45
Practical Application \&
\square Digital Circults and Microcomputers Johnson $\mathbf{E 9 . 7 5}$
Experiments in Artificial Intelligence for Small Computers E7.25
of The Oscilloscope in Use Sinclair NEW EDITION 1982 How to Get More Out of Low-cost Electronic Test Equipment Tobery E5.50
\square Digltal Slgnal Processing. Theory and Applications Rabiner $£ 26.40$

Electronic Engineers Reference Book Turner £42.00
Electronic Components Colwell $\mathbb{E} .00$
Electronic Diagrams Colwell $\mathbf{4 . 0 0}$
\square International FET Selector Towers 84.60
\square International Op. Amp Linear IC Selector Towers 88.00 \square Dictionary of Audio - Radio and Video Roberts $£ 16.00$ Dictionary of Electronics Amos E16.00
Dictionary of Electrical Engineering Amos 816.00 Giant Book of Electronic Circuits Collins £12.75 World Radio/TV Handbook Vol. $351981 £ 10.50$
How to Bulld Elecironic Projects Malcoim 26.46
Modern Electronic Clrcuit Reference Manual Marcus £33.50
Microcomputer Dasign Ogdin $\mathbf{1 9 . 2 5}$
\square Hands on Basic with a PET Peckham $\mathbf{1 1 1 . 9 5}$
4. 6800 Software Gourmet Guide and Cookbook Scelbi 59.30

8000 Software Gourmet Guide and Cookbook 59.30
The 8080A Bugbook Rony $£ 10.05$
\square 8080/8085 Software Design Titus $\mathbf{£ 1 0 . 0 5}$
How to Design, Bulld and Program your own Working Computer System $\mathbf{8} .10$
\square Your Own Computer Waite $£ 2.26$
Microcomputer Inferfacing Handbook A/D \& D/A $£ 6.35$
\square Crash Course In Microcomputers Frenzel £14.95

- Musical Appllcations of Mlcroprocessors Chamberlain 120.95

KITCHEN SCALES

We now turn our attention to weighty matters. Surely it's time, in these days of digits with everything, that we got rid of the analogue scales readout? You bet it is. Design and development by Rory Holmes.

At last, the electronics enthusiast can make amends for the state of the kitchen table, sinking beneath an ever-growing pile of constructional debris. The ETI Digital Kitchen Scales offer a means of adding a digital readout to an ordinary mechanical pointer type of instrument.

The mechanics of weighing scales are particularly difficult for the DI.Y
approach, requiring a frictionless movement with only one degree of freedom - vertical displacement. We decided to use the ready-built mechanics of a low cost spring movement scale and concentrated on the electronic problem of measuring displacement with high linearity, high Fesolution, and zero friction!

The resulting design consists of an

Fig. 1 Circuit diagram of the LVDT and associated circuitry.

HOW IT WORKS

The block diagram of Fig. 5 gives an over view of the circuit operation. Essentially, a Linear Variable Differential Transformer (LVDT) is used as a transducer, providing a voltage proportional to the displacement of its moveable core (a spring movement initially provides the linear displacement with weight). The circuitry generates the LVDT drive waveforms and uses a phaselocked detection technique to recover a stable voltage related to position (and thus weight). The voltage measurement obtained is displayed on a $31 / 2$ digit LCD DVM module to give a direct readout in kilograms.

Figure 3 illustrates the principle of the LVDT using an AC excitation signal. All the circultry on the left of the LVDT shown in Fig. 1 is involved in supplying a stable 10 kHz sine wave to drive the prl mary coil. To achieve the required amplitude and frequency stablity the sine wave is generated digitally using an even length walking ring counter based on IC2, the 4018 divide-by-(2 to 10) synchronous counter. IC2 is configured as a five stage divide-by-10 counter by feeding back the QS output on pin 13 to the input on pin 1. The Q1-Q4 outputs are summed with selected resistors R5-8, thus approximating the sine wave. The counter is clocked at pin 14 from a 100 kHz astable oscillator formed from IC3a,b. Since the counter divides by 10 the sine wave generated will always be one-tenth of the clock frequency, ie 10 kHz . The coil excitation frequen. cy thus depends only on the C2/R9 astable time constant, and the amplitude only on the CMOS supply voltage.

The stability of the voltage levels is ensured by using a precision 5 V supply based on the bandgap reference diode D1. The op-amp used to regulate this supply (IC1a) actually powers itself from the 5 V output, thus stabilising its own power ralls. A bias current of about 1.5 mA (also taken from the 5 V rail) is fed to the reference diode through R2, to produce an extremely stable voltage of 1 V 2 at the non-
inverting input of the op-amp. The other (Inverting) input of the op-amp is taken from the R3-R12 potential divider, the ratio of which sets the 5 V output due to negative feedback around the op-amp and series pass transistor Q1. ZD1, a 2V7 zener diode, allows the output of the op-amp to keep the base of Q1 at SV6 while operating well below its own supply rail voltage.

The 5 V rail supplies all the circuitry but a separate digital ground is used for the logic ICs. This prevents digital nolse from affecting the analogue signal measurement. C1 provides smoothing for the analogue supply rails, while C3 and C4 provide smoothing and decoupling for the digital circuitry.

Capacitor C6 filters the digital sine wave approximation from IC2, which is then attenuated to about 50 mV by the R14/C7 low-pass filter network. The resulting signal, a much better sine wave, is fed to the bandpass filter and coil driver amplifier based around IC1b. IC1b is corfigured as a standard 10 kHz active bandpass filter and gives a very pure sine wave on its output at pin 7 for driving the LVDT.

The LVDT primary coil has few turns and a correspondingly low resistance of about 4 ohms. Since IC1b (part of an LM324) can only supply about 25 mA of output current, the peak sine wave amplitude driving the coil should not be more than about 100 mV . Also, the output impedance of the op-amp should be very low. This is because the excitation voltage must remain constant as the primary coil inductance changes due to the core displacement. DC coupling is thus used between the coil and the op-amp output.

The sine wave swings $\pm 50 \mathrm{mV}$ about a reference level set at $50^{-} \mathrm{mV}$ above the analogue ground. This is only possible due to the ground sensing capability of the LM324 op-amp. Potential divider R13/R4 directly divides the precision 5 V supply. by 100 to provide this reference level at the non-inverting input on pin 5.

The voltage output from the differential secondary of the LVDT fillustrated in Fig. 3) is amplified by IC1c. This op-amp is configured as a non-inverting DC amplifier with a high input impedance and a gain of around 20 , the latter being determined by PR1. The 10 kHz sine wave signal is directly coupled from the coil and will be centred around the 2V5 reference rail provided by the potential divider R17, R18. The secondary is wired 'series opposing' such that there will be no signal when the ferrite core is centred

The phase-locked detection is per formed by multiplying the signal by +1 and -1 on alternate half-cycles of the sine wave to produce a bipolar signal centred about the reference level. IC1d, the last op-amp in the LM324 package, is config ured as a straightforward inverter, AC coupled to the sine wave signal. Two CMOS analogue switches, IC4a, 4b, switch the signal either directly $(x 1)$ or through the inverter $(x-1)$ on each separate halfcycle. They are switched alternately, using logic Inverter IC3c, from pin 4 of IC2, a square wave output of the digital sine wave generator. This produces the wave forms shown in Fig. 4 since the square wave edges correspond to the zero-crossIng points of the sine wave after detection.

The resulting phase-detected signal is low-pass filtered by R28 and C12 to produce a $\pm 100 \mathrm{mV}$ DC voltage, linearly proportional to the displacement of the LVDT. A further voltage is provided by the 10 -turn potentiometer RV1 in confunction with the potential dividers R26 and R27. A reference of $\pm 300 \mathrm{mV}$ (relative to the 2 V 5 rail) is available at the slider of RV1. The two voltages are fed to the differential input of the LCD panel meter. This allows the digital scale to be returned to zero readout, allowing further measurements when, say, 1 kg is already being registered. The diagram of Fig. 2 shows how the LCD voltmeter is wired up for our application to give a 200 mV full scale deflection (corresponding to 2 kg)

Fig. 2 Connection diagram for the DVM module.

easily wound inductive displacement transducer and the associated drive electronics on a small PCB, all supplied from a 9 V battery. An analogue voltage proportional to weight is obtained, which is then displayed on a $31 / 2$ digit LCD panel meter module. Up to 2 kg can be displayed on the scales, but a
zero-offset control allows a given weight to be re-zeroed. This provides the useful facility of weighing and mixing ingredients simultaneously - when preparing cake mixture, for example.

The accuracy and resolution obviously depends a great deal on the initial accuracy of the spring and pivot

Fig. 3 The principle behind the IVDT, using an AC input waveform.

Fig. 5 Block diagram of the Digital Kitchen Scales.

NEXT MONTE

ADVANCED BBC PROGRAMMING

Having received your BBC Micro, worked through the Welcome pack and dipped into the manual, you might be wondering what to do next. Well, if you get hold of next month's issue of Computing Today, you'll find a major feature on advanced programming techniques you can use with this versatile system

The article will be essential reading for those who are merely thinking of buying the system too, as it is intended to show up some of the machine's great strengths over systems supplied with ordinary or Extended BASICs. Indeed, if you are at all interested in producing good, structured pieces of software then this feature is going to be well worth waiting for.

ADDING UTILITIES TO YOUR NASCOM

As well as being one of the very first British personal micros, the NASCOM has always been one of our personal favourites. In our next issue we take a look at how you can build a powerful set of utilitles which, unlike the commercial 'toolkits', can be contigured to suit your own special needs. Indeed, if you take the ideas presented here far enough you could end up with your own special version of BASIC tailored to your own requirements.

SOFTWARE GALORE

Our July issue will also contain a bonus of some eight pages of Softspot material. These are reader's own programs submitted to the magazine and you can be sure that we have picked out some of the more interesting or fun-to-use material from the vast piles sent in over the last lew months.

HANDS-ON A HAND. HELD

If you thought that the PC. 1211 was a great little machine, and lew didn't, just wait till
\% you read our report on the amazing PC-1500. Quite apart from its in built features, it is backed up with a number of "interesting extras including a four-colour printer which simply has to be seen to be believed.

For a look at advanced pocket programming power, you simply can't afford to miss out on our next issue.

WATCHING TANDY'S BASIC AT WORK

The single major failing of most debugging aids you can buy for your system is that they only show you what your program is doing This program actually shows you what the interpreter is doing to your program, with a real-time screen display of those vital scratchpad locations.

If you're bugged by bugs you can't track down, try adding this utility to your library and see just where they are wrecking your code.

Articles described here are in an advanced state of preparation but circumstancon may dictate changes to the final conients.

POWER AMPS

PRE-AMP
MODULES

> SEND COUPON
> (NO STAMP NECESSARY) FOR YOUR FREE I.L.P. CATALOCUE AND OPENUP TOA
> NEW WORLD OF QUALTYY \& VALUE

It's something you have always wanted....something to build your equipment into that's smant, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show in all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED OO IS FILL IN AND FORWARD THE COUPON BELOW TO RECENE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly detasts. wiring and circuit diagrams elc. and lt's yours, FREE. You don't even have to stamp the envelope if you aodress it the way we tell you.

(

FREEPOST 4

GRAHAM BELL HOUSE. ROPER CLOSE. CANTERBURY CT2 TEP Tetephone Sates (0227) 54778 Tochnical Only (0227) 64723 Tetex 965780

FREEPOST

Mark your envelope clearty FREEPOST 4 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

Did you know

I.L.P. are the world's largest designers and maxnutacturers of hi-ff audio modules?
4.L.P. ploneered encapsulated power amps and pre-amps for enhanced thermal stabilitys mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS licicluding the very latest super-quality Mosfets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professiona! applicattons to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal; Ferranti, G.E.C., Rolls
Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

[^3]Name.
Adoress: \qquad
\square
\square

READ/WRITE

Letters for this page should be addressed to Read/Write at our Charing Cross Road address.

Dear Mr Harris,

Further to our telephone discussion about your article 'Engineer's Cuide to Printers', in your May issue; we would like to draw you attention to the fact that you have used a photo of our Printer twice in this issue. Firstly, in the features index and again during the article. Since apparently this photograph was taken from your Press Release file and not specifically obtained for the article we would appreciate some acknowledgement. We would draw your attention to the fact that we offer many other printers and enclose details on this for the interest of your staff and readers.

Yours sincerely,
I. P. Pearce,

Electrographic Peripherals Ltd,
Printinghouse Lane,
Hayes,
Middlesex.

Dear Sir,
Please would you tell me if you know a company who make PCBs to people's designs. I need the PCBs to be of high quality as I am making a 16-bit computer.

Yours faithfully,
Matthew Newman,
Amersham.
Indeed we can. You can try Crofton Electronics, 35 Grosvenor Road, Twickenham, Middlesex TW1 4AD. It's also worth having a look through the Classified ads at the back of the magazine.

Dear Sir,

I always look forward to 'Designer's Notebook' each month. For me, personally, it strikes the right balance between the pragmatic and the theoretic.

A case in point is the May 1982 issue of ETI. Here Don Keighley has expounded upon remote control which has possibilities via encoded and demodulated signals that I had not considered outside the RF spectrum.

May I ask one or two questions? a) If a receiver, IR or ultrasonic was mounted upon a slowly moving object, then I assume the transmitter transducer (IR or ultrasonic) would always have to have line of sight contact? Is this correct?
b) Both Plessey and NEC systems require a demodulating preamp at the beginning of the receiver. Would the TBA120S IC (used for FM limiting and demodulating) be acceptable as such a preamp?
c) Finally, would it be possible to have the address of the Plessey location (they have so many) and Nippon Electronic Company concerning data sheets for these remote control systems. I would like information concerning purpose built preamps and input selectors.

Yours faithfully,
F. Mills,

Dibden Purlieu.
First of all, neither IR nor ultrasonics reflect terribly well so lineof-sight is needed for best results. Second, as far as we can see the IC you mention should be OK, but you'd have to try it to be sure. Third, manufacturers aren't keen on having their addresses published because they'd be deluged in requests for data from hobbyists. (In any case, Plessey are notorious for clinging to their data sheets with a death-like grip). Try asking the companies who actually sell the chips - most of them are quite helpful although they will probably make a small charge.

Dear Sir,
I read with interest Mr. Tilbrook's article on Pickup Amp Design in January 1982 and Mr Butson's comments in the May issue of ETI.

Mr Butson states that the bass turnover frequency prior to 1955 was between 300 Hz to 450 Hz depending on the manufacturer. In fact turnover
frequencies between 250 Hz and 1 kHz were not uncommon. To accommodate Decca Ffrr and other equalisation standards used for 78 RPM discs an adjustable treble filter would also be required.

Enclosed copy, taken from Audio Enthusiasts Handbook by B.B. Babani page 8, shows the replay characteristics required for optimum reproduction of 78 RPM records made to various standards.

A number of LP recording standards were in use before the introduction of the present RIAA curve (see diagrams) and it would indeed be very useful if there would be a pickup amp for equalisation standards for 78 RPM and microgroove records. To my knowledge such an amplifier is not commercially available.

Attempts to imitate these standards by using ordinary treble and bass controls, although often recommended as an alternative to a 'specialist' preamp, can obviously not result in the correct reproduction of records made to others than the present RIAA standard. Furthermore, acoustically recorded 78 RPM discs do not require any equalisation.

Yours sincerely,
Anthony R. C. Crawford, London.

OOPS

We've come across three errors this month. The first one is a small slip in the Parts List of the Capacitance Meter, April '82. The line reading "Q3-7...BC212L" should be deleted. The second error also involves a Parts List (there's a lot of it about!), this time for the Automatic Contrast Meter. The capacitor section is completely wrong, although the correct values are given on the circuit diagram; ie C1,6,10u 35 V tantalum; C2, 22u 25 V tantalum; C3, 68 n ceramic; C4,5,680n polycarbonate; $C 7,220 \mathrm{u} 16 \mathrm{~V}$ axial electrolytic. The third one's a bit more serious and involves the mains connections on the Economical Heater Controller from May '82. The three connections to the transformer (bottom right of overlay) are shown in the wrong order; from left to right they should be neutral, earth, live not earth, live, neutral.

会
 COMPUTER WAREHOUSE

RAM SCOOP A118 200 Ms $:$ for $\mathbf{E 1 2 . 2 5}$ S1BA 200 MS EE SO uech 2102.650 NS \＆tor E5 50

CONNECTOR
\(\begin{array}{llll} \& 1.96 \& 1004 \& 1004
259 \& 1.96 \& 1.10 \& 0.85
255 \& 1.90 \& 1.20 \& 1.04\end{array}\)
$A L L+V A T$ SPECIALS

FC．nitord 50』 BMC PITS 30， 30 BMC Me 50p PLSS PLC 40 ， S0231 3世T 350 in pes min ona

TELETYPE ASR33
I／O TERMINALS

1
 \longrightarrow

From f195：CAA

 Fultr－hedged maustivy siondard ASR33 dere ter：－
 punch sull reasen to of lime ditio peopatation end

KSR33 Wair 20 mu bop mence C $\mathrm{C} 25.00+$ VAT．
Souño proof encolsure 126.00 ＋VAT

DIABLO S30 DISK ORIVES

Another shipment sllows us offer you even greeter sevings on this superb 2.5 MB （formerteu）hard disk drive．Two iy electronically identical，the only difference is the convenience of changing the disk packs
530 front londor，pack change vie fromi door 2550 ＋vet
\＄30 fixed，peck change vie removal of top cover $£ 295$＋wal
＋\＆－15v PSU for 2 drives $£ 125$ vat Carnage a insurance on dinves $£ 15.00$ \＆wan fully OEC RKOS．NOVA TEXAS compatsble thentive inloon

MAINSFILTERS

Protessomus：thpe me，giturs at coad

 Menufactureng ldeil for curng thow unnorving hang

DC SYSTEM SUPPLY

Prulessional fully cosed fan cooled system sucplu

 $5 \vee 911$ ampx $+15-17 v(e)$ amps $-15-17 v 68$ amos protecrent and the 5 woh outpul is fulth；reguluted Sold resled and in a riew or imie usad condivion comptete

NATIONAL MA1012LED CLOCK MODULE

－ 12 HOUR
 ＊ALARM
 $+50 / 60 \mathrm{~Hz}$

The rarme macoue as ussu in mont ALARMICLOCK rabce todiv，the only dimerence is our pricel Alt $3^{\circ} \approx 11^{\circ}$ and by mourted on a PCB nveasuring only 3 ．if and by addition of a fow swithes and 5／is wits AC you live a multo hanction alarm ciocir ar a rimer，am cose Onor famines inctude shoase ing seconds cursor，mootulated afarm output ofs． Supplead brand new with full data only
Suitable trensformer $\$ 1,75$
£5．25
LIETR（INIC
ITGMHTN\＆NTS
（i） 10
Due 10 our masive bula purchasing progrente thergens．we heve thousende of 1 C．＇s．Tramestors Rotys．Capis．P．C．B．＇s，Sub assembles，Swiches ore atc，tulatus 10 our rearemenss Because we con＇t heve sulficient stocks of any one item 80 inctude in our ada，wis ere pocking at these items Into the＂BARGAIN PARCEL OF A LIFETIME＂ Thousands of components st giverway pricest Guarantewd ro ce worth at bast 3 limes whar you oay plus wo aiways nclure sorneining

OLIVETTI TE300

PRINTERTERMINALS

MPU

EXPERIMENTORS 5v＋12v－12v－24v POWER SUPPRY

HIGM SPEED DATA MODEMS

 Supply Unt and hoon wo meit mor of ar powas artores wio wire dempraned whe me rat an are

 cant rantiving ond ghor orian pood alves ot
$+5 v 2$ ancs as
$+12 \mathrm{~F} 800 \mathrm{ma} \mathrm{CC}$
$-12 v-100=0 C \quad+24 y-350$ mex α

 $£ 16.50 \operatorname{coch}+£ 2.50$ tt rengen
 WHILE STOCKS LASTI！

 ongre cive wer 700 sech onited troud rew seplet congrex man PSU
$E 18500+£ 9.50$ corese +VaI

DISTEL ©

＂Dial our Database！＂
Ger information on 1000 s of slock remi mid order ver vour 18.30 O1－689 6800 a a week and all der Sunders ITS FREE！

A complete VO terminel with integral 8 hale paper rape punch and rasder，full AScll und the printer columm parter，and come a sonal TiL or balaricod input－outpur sold in good overall condition but umtested Complete with circuil unguaranteed．Connect direct to vour micro at ONLY $£ 99.00+£ 11.50$ carr \dagger vat

SOFTY 1 \＆ 2
EPAOM BLOWEA nol ror desoners Soltware development wriem musluction sol tor ansgner
 a sul whibl displeying coments on domesse TV recenve，Mery

Sony 2 fex 2110／2132 £169＋VAT

$9 \cdot V 1 \pm=0$

MONOTORS
En－equipment $9^{\prime \prime}$ Motocole Video Mantiors 75Ω composite Ent tostod but onguaramed E39．99＋£150 cornep： + VAT．Complete with circut

SEMICONDUCTOR GRAB BAGS
 IT 34 gmb

Kトリ

 KEYBOARDS

Straight from the U．SA mece by the word timous R CA Co，the vperol senes of cesod froustanding leyborits emeet sil requare Unints of the mass oxasing user，nght down to the pricel Unixing tite intess in swich wistiology Gwerantwo in oxcoss of I milion aperations The keytoord hes a hoot of gethel lasturiss
inctuding ful ASCII 12 A charscter ser，usor defragio keys．
 impervious to lquids and dust．Til or CMOS outputs．evem an
 R．CA bectued guerutte．
ypert 7 bet fuly coded outber with detryes serobe ate
VP5 11 Sume as Vpeor whin numeric per VPent Seriel RSEO2 ZOMA and Til cutput，wht B selectudo But pites．
 Plug ond cobio for VPGOTVPII E2\％5 $\{43.95$
$\{54.95$ Progt vpeis vpers ex 10 Post，Pacting end raurance ORDEA NOW OR SENO FOR OEZAILS．

5V D．C．POWERSUPPLIES
Following the recent＂SELL oUY toment for our or 3 amp PS．U．we have managed to secure a large quan－ ity of ecomputer ivstems PS U．S whth ina forowng mos． 7.2 v ＠ 3 amps and 6.5 v （iv 1 amp．The Sv and 72 v outputs are fuly engutited and adivitabie with vanabin current imiting on the Sv eupply．Unit is seft contained on o P．C．8．manturing only $12^{\circ} \times 5^{-} \times 3^{\circ}$ ． the $7.2 v$ output is deal fon tonding＂on boand＂repu． letors or a further 3 amo LM323K requitator to give an effective 5 v （1） 7 gmp supphy．
Supplied complete with oreutit at only $\mathrm{E10.55}+\mathbf{8 1 . 7 5} \mathrm{pp}$ Believed worting but untested，unguaranteed

TT LWVES AGAUN!

From the past it came, growing daily, striking terror into the hearts of lesser publications, and spreading its influence actoss the country in its quest to infiltrate every town, every home, every mind.
Not a horror story, but a success story. And if electronics theory strikes terror into you, then you need the help of Electronics - It's Easy. Originally a long-tunning series in Electronics Today International, Electronics - It's Easy wes punted as a set of three books. They sold out It was reprinted as a single volume. It sold out Now this phenominally successfut publication is available again, in its third reprint. Electronics - It's Easy is a comprehensive and simply-wriften guide which explains the theory land the practicel of electronics step by step. Every aspect of the subject is covered, starting with the basic principles and working through to the how and why of today's technology.
You can obtan your copy of Electronics - It's Easy by mail order using the coupon below. Make cheques or postal orders pavable to ASP Lid, alternatively you may pay by Access or Barclaycard.

Send to: Sales Office (Specials).
513 London Road, Thornton Heath Surrey CR4 6AR
Please send me.....copies of Electronics | It's Easy. I have enclosed £...... (£4.95 each including p\&p).

FIRST PRIZE: £50
 SECOND PRIZE: £10
 THIRD PRIZE: $£ 5$

CROSSWORD NO. 3 WINNERS
FIRST: S.W. MARLAND, WIGAN
SECOND: TOM BRYANS, CO. DOWN
THIRD: S. A. SELLER, LINLITHGOW

ACross

- Rent man has one leg on transistor. (9)
A. Kenny's show would be no good yithout ht (5)
f. Can this snake perform binary additionl (5)

2. A unir of low capacitance. (9)
3. Needed for a change. (7)
wh. Light Brigade's mount boosts battery. (7)
4. Dig this? (5)
5. FET connection - for water dispersall (5)
6. Power down! Power upl (3,2) 39. Round and round for hum. (4)
7. Stafe of slopage battery across enerator. $(2,5)$
Residue from solder bath. (4)
8. Computer says "come in". (5)
9. Clear, to start again. (5)
10. Medium for conducting electrical energy. (5)
11. Heighten, intensify. (7)
12. Split insulator - needs trusel (7)
13. The medium of transmitting and recelving graphic material, (9)
14. Gelatinous electrolyte of dry cell baftery. (5)
15. Tesan turns round and becomes soldering iron. (5)
16. Shiny light repeller. (9)

ANSWES TO PRLZE CROSSWORO Na. 3

ACROSS 1 Dupleaer, 4 Armature. 9 Ceramic. II Contour. 13 Image. 14 FET, 15 Gap. 16 Level. 17 L-frpe. 19 Tuner. 20 Powed, 21 Rig. 22 Event. 37 Erase. 2 A Abels. 29 Lumen. 30 CRT, 32 Cas 33 Omega. 34 Newtron 36 Tickler, 38 tefi deck. 39 Ide time. DOWiN: 1 Decibels. 2 Par. 3 Encircle. 5 Receiver, 6 UFO. 7 Eurocard. 8 Quad. 10 Mrtal detector. 12 Nepative logic. Y-Him. 23 Terminal. 24 Harmonic. 25 isolated 26 On charge. 31 Peah. 35 UIFF. 37 ISI.

FREE LEAFLETS
 tarnime

INTERAK 1 COMPUTER SYSTEM

 These eran min min

 ${ }^{6} 185$

 than cavercherentime issus

 Acom, mer reanme ber

FEATURED CARD THIS MONTH - VDUK

\qquad
 no mor N

 Sive ao

 - 20100 u mantio vier er

ofscaurtion

 ia tow tox mor

 87R8255i

CRYSTALS
RYSTALS 520201
y Meara tomect

321
3012

MICROPROCESSORS

$2804 \mathrm{CNU}^{280} 0330$	DRNAMICS
2men cric	${ }^{4124}$ uvemasamus
	5254 1512×8.81
-amo 6502	20862 210
$1050181{ }^{1200}$	
6527 (200	25020x x^{815}
6832 16\%	maxa
)	prom washina
gacomeu 1290	EAvi
gaccupu	aexh pro
	U-VIubelizi 81000
	UV PRom eraser
geso, eerima	UW190 (513
$\operatorname{cosen~}_{603}$	
Oesonctar 1150	(PAOMPT [3300
MCum	
scimphram 10	avssm 300
	815 wig7 200
	(120
INS 2556110	1400
	0.
CMOS	
Mac cop izrcecs	ClO_{30}
COP 1904 Re	
	AY.3.010 E30
	50171
21.208003	${ }_{8137}^{8137}$
${ }^{\text {dincen }}$	
eromos axam	
caz	
	SAK500 cien

LOGIC LOCK PART 2

This month we conclude this devilishly cunning device. Full constructional details are given for both the main board and our unique touch keypad. Design and development by Rory Holmes.

The PCB for the combination lock has been designed to fit into a general purpose ABS Verobox $(120 \times 80 \mathrm{~mm})$; Fig. 1 shows the component overlay. The board should be assembled in the normal fashion, inserting Veropins at the five switch connection points. The five-way Molex PCB sockets and the screw ter4minal output sockets are obviously not essential items, but they simplify installation of the lock and we recommend their use. Orientation of transistors, diodes, electrolytics, and ICs should be carefully checked. IC6 is the opto-isolator, it has six pins, although the PCB allows for an eight pin DIL socket. It should be plugged into the six pins nearest the screw terminal connector. Figure 3 illustrates different options for output circuits that may be used for switching either AC or DC solenoids. An opto-thyristor is used for handling mains-operated solenoids, or lower AC voltages, while an opto-transistor isolator of either single or Darlington type is used for switching DC solenoids. For the DC arrangement a socket may be used and a BD139 transistor should be soldered in as shown on the overlay. If the mains
output is used the opto-isolator should be soldered directly to the PCB, and a link is soldered in place of the BD139 across the base and emitter pads.

A PP3 battery connector clip should now be wired to the power supply points shown and the slide switch SW1 connected up to the five terminal pins using insulated wire. Before assembling the box, the keypad should be constructed to allow testing of the lock.

Keypad Construction

The construction method we describe here results in a very neat and attractive little keypad, no more obtrusive than the standard Yale lock fitting. The case for the keypad is nothing other than the familiar volume control knobl The hollow plastic type clad in a spun aluminium shell is used, with an external diameter of 38 mm . The intemal plastic fixing bush is drilled away to allow mounting of the indicator bezel through a central hole. Ideally, the metal bezel should be mounted with an insulating washer or plastic bush, both to prevent contact with the aluminium casing and to provide the required height of 6 mm .

A look inside the lock. The Molex connectors are neat but not essential.

Figure 2 shows a cross-section of the keypad assembly. Eight holes of 5/32" diameter are now drilled evenly around the centre, for taking the touch contacts. These contact pins are made with standard PTFE-insulated leadthrough terminals. The PTFE bush fits easily into the holes and the pins are then tapped home with a hammer, to produce a very firm and waterproof contact. It's a good idea to number the holes on the front panel before mounting the contacts, using Letraset or similar and a protective lacquer spray.

Once complete, a 10-way ribbon cable may be soldered to the contact pins on the inside of the knob. Since the ribbon cable is terminated with two fiveway plugs it's important to observe the LED connecting wires. They are the first and last wires in the ribbon, the LED anode going to the +6 V rail on SK1. The anode should also be soldered to the LED bezel to form the central touch contact. The two plugs wired on the other end of the cable should be marked in some way to . identify which way round they fit the sockets.

Time To Test It

Having assembled the keypad it can be plugged into the main PCB for testing. Set the switch SW1 into the normal 'operate' mode, and put a 6 V battery on the connector clip (four 1V5 AA cells, in the long flat type of plastic battery holder). Now, put the switch in 'program' mode and then back to normal. The LED will illuminate for about six seconds and then go out, ensuring that the lock has reset to its rest state. On connecting new batteries the memory should be zeroed switch to 'program' again and enter 18 zeroes through the keypad, then return to 'operate' mode.

A combination sequence can now be entered by switching back to 'program' mode and touching both the required contact number and the central bezel with two fingers. (The skin resistance must bridge the contact pin to the +6 V rail on the LED bezel; it can be done with one finger, but it's easier with two). Any length of sequence up to 14 digits may

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1-9	10M
R10,11	3M3
R12	47k
R14	100k
R15,18,19	22k
R16,20	220R
R17	2 M 2
Capacitors	
C1-8,15	10n ceramic
C9	2 u 235 V tantalum
C10	33n ceramic
C11	1 l 535 V tantalum
C12,13,15	2 u 2 ceramic
C14	68 n ceramic
C17	220u 16 V axial electrolytic
1 ,	
Semiconductors	
IC1	4532B
IC2	4070B
IC3	5101
IC4	4029B
IC5	4093B
IC6	H11C4 (mains) or CNY17/1V (DC) or TL114 (DC)
Q1,2	BC214L
D1.7	1N4148
LED1	3 mm green LED with bezel

Miscellaneous

SW1
DPDT slide switch
PCB (see Buylines); two off five-way 0.1" PCB plug and sockets (Molex type KK); PCBmounting screw terminals; short length of 10-w ay ribbon cable; knob for keypad (16 x 38 mm diameter, aluminium clad); eight off PTFE-insulated leadthrough terminals; four off IV5 AA batteries, flat style holder and battery clip; case (ABS Verobox ref. $75-2860 \mathrm{~J}, 120 \times 80 \times 35 \mathrm{~mm}$); solenoid door bolt.

Fig. 1 Component overlay for the Logic Lock PCB.

A ribbon cable links the keypad to the main unit.

Fig. 2 (Left) Constructional details for the keypad. The LED indicates that an input has been accepted.
be programmed, with any number of repeated digits. After entering your last digit, switch back to 'operate'; the LED comes on again for six seconds to mark the end of sequence and reset the circuitry.

Now comes the moment of truth! Reenter your combination sequence through the touch pins. As the last number is entered the LED should illuminate, signifying the solenoid activation period. For obvious reasons, errors are not indicated; the lock simply resets. If an error is made or the lock doesn't appear to open just tap in the code again from the start.

Once you are satisfied that the lock is working correctly, the main PCB should be secured in the lid of the Verobox using adhesive pads. It fits exactly between the corner pillars as the internal photograph illustrates. The switch is also secured on the lid alongside the PCB using Superglue. It

SC110 FULLY PORTABLE OSCILLOSCOPE

The now THANDAR SC110 represents break through in Oscilloscope developmont. The SCl 10 is onty 2° thich and weighs under 2 tbs yet ie retarns the

FULL SIZED PERFORMANCE

lom Mz band widh

- 10 mV por div. zencioviver

Ful trigger facilties ave provided includ hag bright line ond euto. with I.V. line

- RUNS ON ORDIN

RUNS CN ORDINARY HP11 (four) batieries or rechergaeblea

- besic prion - E159 UK Port fee
pptrand oxrras -
AC Adoptor 15 ess, Rechurgmon betteries 11xio Probe 29.05 : $\times 10$ Probe $£ 920$ ${ }_{68.80}$.

PFM200A FREQUENCY METER

- Pocker wiro - e Divit LED dieploy Fraguncy range $20 \mathrm{HE}-200 \mathrm{MHz}$ - Renolusion a. 1 Hz \& Sensitivity typically 10 mV rmm - Timestase accuracy 20 pm. Botrayy life 10 Hours ofrequencr: 2 rangas a pote time
- Price Es7.E0 UK Poat frop 1 Opton

LARGE 2SD S.A.E. Arings detais of Osciloscopes. Frequency Meters, Sionet Generators, Function Genarstors, Pulta Ganerators, Anslogus and Digital

An ariose inctude VAT, Official prders wolcome. Man order only, at caller
apoointment. Barctovicand/Access welcume. Cath/cheove only, of caliens by petion Government and Educational Establishments olficial orders weicome

B.K. ELECTRONICS

37 Whitehouse Moedows, Eevtwood, Leight on

POWER DIMMER MODULES

A range of electronic modular dimmers designed to suit your custom channel and facility requirement

- Considerable saving over commercial equipment
- All the commercial factlines and more
- Compatable spocial effocts
- Presel/remote?imester
- Eesity instalied and wira

SPC - Simple bus affective 1000 W controller
513.90
 MBC - Mister doumer Io SPC/RS unite
FS - Aampta comroler for SPU/SPC Unite 120
-720

 MXSL EFFECTS ACCESSORIES
MXSL - Four channel sound to figh \qquad PSU - Supply for MX

MASHFR FTFCHRONICS NOW! The PRACTICAL way!

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is requires, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in efecironics or as a setf employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personatly at any time, for advice or help during your work. A Certificate lis given at the end of every course.

You will do the following:

- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read,draw and understand circuit diagrams - Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips'
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

3 CHANNEL SOUNDUGGHT CHASER 535.70 LB31000SLC

A magh pentormence sound so beht praving tere mo shd lioble wouration. arougrog xetrou
 3 CHANNEL SOUND/LIGHT

LB31000SL

£22.70
AN the sovisurtoges Athe SLC withoul thote

Dant texizate to wite of ohone for inmediste information All prices include VAY, Please include 750 post except power dimmers $\{(1.50$). ChequesiPOIC.O.D.I Access all weicome rel: $01-6894138$ (Mon to Fol 5-9)

149.90

BLUE FASCIAS (White letters)				
Type	Knobe	Lods	Sw	Price
MULTI	5	4	1	8.70
$41000 S L C$	2	4	1	8.20
$31000 S L C$	5	-	1	8.20
$31000 S L$	4	-	1	7.20

\square

PROJECT : Logic Lock Part 2

Fig. 3 (Right) Three possible output circuits that may be used to control mains or DC. driven solenoid bolts. Other possibilities are left to your Ingenuity!
should be raised up on a paxolin spacer in order to clear the rim, with an appropriate slot cut in the main box for the toggle. A thin slot for the ribbon cable is also cut on one side near the base, allowing the five-way plugs to be pushed through one at a time. The specified battery holder fits into the bottom of the box, on the opposite side to the screw terminals. The batteries should be inserted first before securing with adhesive pads; make sure you allow room for the connector clip. The solenoid and power connecting wires pass through another slot cut out next to the screw terminals.

NITS. COWPONENTIS Michoios a paitis

FORGET YOURPEN RING 5 to 10

 IT'S COMPONENT MAIL ORDER MADE EASY ompeesules io 567-8910 101 OUTSIDE LOND O NINE - TEN
cloct will so ins not.
 EATuars wavor:
 O5' LEO 12 how diviter.
 - Dey of wast, envem ind ourper receso indicerors
 A zero rotege rumched m Savath meins ocer stion
 Bathery bectuo wives roreas progiommea and consernuee amery bectivo Mves mores propionmeo and conseinuee Disoloy blentiong during power taturo to connarvo betery p 18 progerammo ime zia
 - Powetcl Evevider' Aunction ensbling oistoul to owiten oviry dey bul uss only one time wel. Direct misch comfol en abling putbut to bo furnesi on immediately or athe st spesibed time interval 20 unnevion taypod tor progremme ener. - Aropermme rvificicion of the souch of a durton. (Kit includes all components, PCB, essembly and programming instructions).

DVM/ULTRA SENSITIVE

 THERMOMETER KIT The now verovin besed on veruion of to lichros pexive) mde $31 / 2$ digie hervid crvitul dapolow. This wit will form ine
난․

 moing ${ }^{10}$ a.ic The benc he hes
 low powe reviremamt-pyling 2 rew
 luovi o mook dor. £15.50

XK102 3-NOTE DOOR CHIME

 Bras on a uingherinto Thion comes complect. ELECTRONIC SOOR
 ont inm Dentry requirs puehbution to complele The unk producese 3 nore. bequenco wheo the puat. Hused to rodicc eny logitin math opolication -romerme. PA memema end tova nieu
 outbut mich man tho inodily molifinel - louse wound io resuired ho ormell noed ar componontumatir tie on $\mathbf{£ 5 . 0 0}$

FOR NEW 82 FREE SHORT FORM CATALOGUE SEND SAE ($6^{\circ} \times 9^{\circ}$) TODAY We also stock:
Vero, Antex Irons,
Babani Books, Resistors Capacitors, \& SemiConductors Etc.

THE KEY TO YOUR SECURITY IS IN OUR LOCK

Ite thought of cen thimen, howes braotery of peocte tem
Out ELECTHONIC LOCX KTT inchwdeks 10 way kervoord end o spociel IC which provides

 4un al 5 VV to 35 V de
 uncen hole in your poction
soor late end ebone aterro

FIST SERYIEF-TOP OUALITY-LOW LOW PRIEES

No circuit is complete without a call to ELECTRONICS 11 Boston Road London W7 3SJ

01.5792842 TECHNICAL (NTRA
switches eny soppiance up to tuw CTrocom seacickin on and off ot opeom time once ow CTrocox soicinn 114
 dinpler divers. mmiches. LEDE: trise. pebe end iull hatiustiona

Add 50 p postage \& packing $+15 \%$ VAT to totel.
Overseas Customers:
Add 51.50 (Europe), E 4.00 (el sowheral for plep. Send SA.E. for further STOCK DETAILS. Goode by return subpect to evasitotility.
OPEN Amosmmontinn

AUDIOPHIIE

> Welcome to a geometrically perfect Audiophile. This month Ron Harris has been listening to the hyper-elliptical Shure V15V cartridge and the 'Carver Cube' amplifier. They went down a treat with his speaker cones.

This was to be the month of the great amp lineup, but the launch of a new V15 model is of sufficient interest - and rarity - to warrant immediate attention, is it not? Dissenting voices may pass (quietly) across to the Carver writeup also contained within these pages. See if I care that you choose to ignore half my erudite words of wisdom. Anyway, putting the amp comparison off a month gives me four more weeks to play with some of the best units on the market.

V15V Or Four And A Half?

Not a few people find the release of the V15V a little surprising - me included. For one thing it comes only a short time behind the MV30H - a version of the V15IV. Is that to fade away so soon, never really having had time to shine? For another, the Five will cost around $£ 130$ over the counter and that is quite a pile of green stuff more than the IV. That price also puts it firmly into competition with some excellent $£ 100+$ pickups - the Karat Ruby to name but one.

Herein lies the biggest question mark, for the V 15 V is not a moving-coil, despite the ever-circulating rumours that Shure were about to nail down their magnets and begin waving wire with the best of 'em!

With the hold that moving-coil pickups have on the topend hi-fi market at present, it is a brave move to aim your new flagship straight into battle with them like this.

There are (inevitable?) similarities between the Five and its predecessor. It carries the stabiliser assembly, for one. Output level is similar, as is compliance. Once again this is a unit for low
mass arms and low tracking weights; a combination which may be interpreted as a defiantly rude gesture in the direction of the massive arm and everything-must-be-heavy-to-be-rigid doctrine presently in vogue.

Five, Five, Five

The refinements are legion however. The greatest single advance lies in the cantilever system. In the V15V this is formed from a tube of pure beryllium. The tube wall thickness is only $0.005^{\prime \prime}$, or about $1 / 6$ that of a human hair, as Shure would point out. (I love these silly comparisons! Ever tried playing a record with six hairs twisted together?)

The effective mass of this is reduced to the point where the resonance rises to beyond 33 kHz as opposed to the usual $19-24 \mathrm{kHz}$. This flattens topend response and will tend to improve h.f. separation within the audible range.

Another improvement is the polish used to finish the stylus. Christened the 'Masar' polish, it is claimed to be orders of magnitude better than all that has gone before. Better finish means lower record wear and less surface noise.

As a final mechanical touch, the cantilever itself has been lengthened, thus allowing the vertical tracking angle to be altered. After some careful considerations, including a determination of exactly what cutting angles are used by the major record producing companies, Shure havegone for a VTA of 23°, higher than is considered conventionally accurate. They say this' provides a better match to actual playing conditions and thus lower distortion in practise.

BASIC PROPERTIES OF MATERIALS

MATERIAL	MODULUS (STIFFNESS) dynes/cm² $\times 10^{12}$	DENSITY	RATIO (MODULUS/DENSITM						
ALUMINUM	0.72	2.70							
$\mathrm{~cm}^{2} / \mathrm{sec}^{3}$									
$\times 10^{12}$				$	$	BERYLLIUM	2.9	1.85	1.58
:---:	:---:	:---:	:---:						
BORON	5.5	2.53	2.18						
SAPPHIRE	$3.3-3.9$	$3.9-4.1$	0.93						
DIAMOND	$7.4-10.5$	$3.15-3.5$	2.88						

Left and above: a comparison of materials and cross-sections used for stylus production. Having decided to use beryllium, Shure claim a great advantage for their thin-walled tube approach over that of the 'solid rod' employed by some competitors.

Above left: a conventionally polished stylus tip under extreme magnification. Above right: the V15V MASAR polish under the same power magnification. Note how much smoother the contact area appears. This could lead to lower surface noise and reduced record wear.

Electrickery

Electrically the new V15 exhibits less load dependence than previous models. The inductance has been lowered significantly such that interaction between the cartridge and capactive elements of the amplifier input is reduced.

This filtering effect is one of the better theories advanced to explain the superiority of moving-coil cartridges in some parts of the audio spectrum. They have far less inductance as a rule, since the coils are kept low in tums to help keep down the moving mass. With moving-magnet designs there is less mechanical reason to limit the output voltage (dependent upon the coils) in this manner.

The earlier V15's, especially the III, were rather prone to interaction with the input capacitance. The cartridge required a large amount of capacitance to prevent a high frequency rise and a subsequent subjective 'hardness' upon which many commented, but few bothered to investigate.

A curious photo from the Shure publicity handouts - a V15V in a very strange record deck! It does show the alignment protractor in use though. (No doubt I shall receive irate epistles from said deck's producers now, berating my comments. . .)

Packaging Alignment

Part of the 'package' of the V15V is that the boxitself forms an alignment protractor to simplify the fitting of the cartridge into the pickup arm. An "alignment-stylus" is also present, which greatly simplifies the levelling of the cartridge with respect to the record.

Shure's protractor is a 'two-point' alignment system which operates by holding the cartridge body in a precise location, whilst the arm is set-up for position. The system works well for arms which have slots in the headshell to allow alignment of the cartridge, but with such as the SME Series III, where the entire arm is moved back and forth and the headshell has no adjustment, I found the system a little awkward to use properly.

With the SME especially I found the usual alignment protractors more accurate and just as easy to use. I suspect, however, that this is as much due to my having set up an SME so many times that I could do it behind my back - wearing a blindfold whilst falling off a log in a storm downstream from a waterfall in the dead of night.

The Shure system is a great step forward inasmuch as it provides a universal method of easy alignment which requires no special tools or knowledge. As it comes free with the cartridge you've nothing to lose by trying it, anyway!

The "alignment-stylus" is simply a plastic straight-edge which fits into the body in place of the real thing and allows the user to set the headshell such that it and the cartridge are parallel to the record surfaces. It works well and is another of those clever little ideas that someone should have thought of a long time ago.

In addition V15V owners will receive a copy of the new Shure test record, upon return of the card packed with the cartridge.

Up In Arms

With all this technology and innovation going for it, the Five is clearly an expensive move for Shure and one that deserves serious consideration. As I said earlier, setting up the Five is straightforward, however you do it.

The compliance is high, around $30 \mathrm{c} . \mathrm{u}$. and I could not recommend the use of this cartridge with other than a low mass arm, else the arm/compliance resonance could rise into unsuitable regions.

I tested the V15V in the inevitable SME Series III, to which it is perfectly matched. Allowing for the stabiliser the V15V tracked perfectly at 1 gram. (The stabiliser means that actual downforce is set at 1g5.)

Shure have invented a thing called "Total Trackability Index", designed to show how much better the V15V is than anything else on the market. They don't actually say that themselves, of course, but I can see no other use for it! Americans do possess this in-built love of irrelevant numbers and statistics. Cive them a subject - any subject - and they'll surround it with tables, percentages, averages, indices and other complications which add little to actual understanding. Serve us right for ever giving them independence, I suppose.

Resulting Results

I reproduce Shure's own test results herein, both to show how neatly presented they are and because I could not turn up any significant differences under test between my figures and these. Unusual that, as test methods will usually produce some variations, however minor.

As you can see the Shure acquits itself well technically with little or nothing to criticise. The lower inductance means that capacitance loading can vary from 100 pF to over 400 pF with no perceptible change in performance. The much improved rigidity of the cartridge body allows for better coupling to the headshell and seems to 'clean-up' results on a sweep test, measured against a V15IV.

Subjective testing revealed a character quite unlike any previous Shure cartridge I have heard! At first I had the unworthy thought that they were buying cartridges in and stamping 'Shure' all over them.

I hasten to add that I don't think for one second they are, it is just that it really is that different! Perhaps the easiest way to describe the change is to say that the difference between the V15IV and this new Five is very much that to be expected between otherwise matched units which are of the moving-magnet and moving-coil varieties respectively.

"T SHUFE"

ERRIAL NUMBER
OUTPUT LEVEL $1 \mathrm{kHz}, 5 \mathrm{~cm} / \mathrm{sec}$ peak? LEFT CHANNEL 3.39 mV RICHT CHANNEL
CHANNEL BALANCE E 1 K
SEPARATION 1 kHz : LEFT CHANNEL PIGHT CHANNEL
SEPARATION E 10 kHz LEFT CHANNEL RICHT CHANNEL
PHAEE
400 Hz TRACKABILITY
3.61 m
$\mathrm{kHz}: 0.6 \mathrm{~dB}$
32.6 dB
30.2 dB
26.7 B
19.6 dB
CORRECT
$>25 \mathrm{~cm} / \mathrm{sec}$ peak el gram

FREQUENCY RESPONSE (Relative to i kHz)
LEFT CHANNEL
RICHT CMANNEL

$\begin{array}{r} 1 \mathrm{kHz} \\ 2 \mathrm{KHz} \\ 4 \mathrm{KHz} \\ 6 \mathrm{KHz} \\ 8 \mathrm{KHz} \\ 10 \mathrm{KHz} \\ 12 \mathrm{KHz} \\ 14 \mathrm{KHz} \\ 16 \mathrm{KHz} \\ 8 \\ 20 \mathrm{KHz} \end{array}$	$\begin{aligned} & 8: 0 \\ & -8: \frac{1}{3} \\ & -0: 5 \\ & -0: 5 \\ & -0: 5 \\ & -0: 5 \\ & -0: 5 \\ & -1: 0 \\ & -1: 1 \\ & -1: 4 \end{aligned}$	$d B$ $d 8$ $d B$ $d B$ $d B$	1 2 4 6 8 10 12 14 16 16 20	kHz KHz KHz KHz kHz $\mathrm{KHz}^{\mathrm{KH}}$ $\mathrm{KHz}^{\mathrm{KHz}}$ KHZ kHz ${ }^{\mathrm{KHz}}$ KHz	$\begin{array}{r} 0.0 \\ -0.1 \\ -0: 4 \\ -0.5 \\ -0.6 \\ -0.6 \\ -0.7 \\ -0.6 \\ -1.1 \\ -1: 2 \\ -0.9 \end{array}$	$d B$
	QUALITY CONTROL APPROVAL				8	

Above: the V15V test results as supplied. Our lab found little to disagree with - and these are prettier than ours!

The Five has much of the mid-range quality of the very best moving-coils and a very good tight bass response. The treble is wide-open and clear and does seem to be less dogged by surface noise than other cartridges. (A more polished performance? ...)

In short the Five is a very good design which should appeal equally to followers of both types of cartridge. I was able to A / B the V15V against the Dynavector Karat Ruby, which is probably one of its strongest competitors. Personally, I found the two indistinguishable in the midrange, with the Shure tracking better and having a more extended and better controlled bass but with the Ruby showing a greater imaging capability and more extended treble.

Overall I would take the V15V, but personal preferences will dictate which performance parameters are more important to which listener.

Conclusions

Well, what can I really say? The Five is a highly refined design which offers a lot for its price and which looks as though it could be a serious challenger to pickups already in the $£ 100$ price range! It offers "moving-coil clarity" and "moving magnet" security!

A welcome addition to the hi-fi scene then, and one which is a radical improvement over previous models of this famous line.

Good things come in small packages?

Carver's Cube

At long last I managed to lay hands upon Carver's M-400 amplifier, irreverantly known as the Cube. Many moons ago ETI ran a feature upon the internal mysteries of the beast, but none of us has had the chance to listen to a Cube in other than exhibition conditions, or to put the amp through some tests ourselves.

Finally, as part of the amplifier comparison we're working on, an M-400 was wrenched from the death-like grip of Carver's PR Company and rushed off to a test bench where they couldn't find us for awhile. Furtive this hi-fi game, sometimes.

As you can see from the photos, the Cube is really tiny for all its 200 W per channel RMS abilities. Unusual, too, is the PSU arrangement, which is configured with the two channels connected in anti-phase to each other internally. Could cause havoc with some speaker switching arrangements, that could.

As it is it complicates testing a little. Carver have included some little hints in the manual as to how the M-400 should be bench tested.

Kind of them, that.

A Carver de-cased! Note the huge inductor (rear left) and the cleverly-mounted power meter on the back of the front panel.

Room For Manoeuvre?

This time there was no way liwas gonna hang around with the Cube in its box awaiting lab-time. Once it arrived at ETI, it was photographed hurriedly then whisked off into the mists of Kent to be listened to. (Would it were I could have taken the lady in the photos along with it ...)

The system surrounding the M-400 was a pair of KEF 105 II's, a Denon PRA 2000 - rapidly establishing itself as the best preamp in the Universe - and a Thorens TD160S/SME IIIN15V front end. There was no shortage of power-amps against which to measure the Cube - anything from a Denon 180 W Class A. to a Hitachi 100 W MOSFET design which can presently be found undergoing longterm test for our forthcoming amp comparisons.

In operation, Canver's miniscule monster proved to have a few little foibles. Rather like the late unlamented valve amps the Cube gets better after it's been running a while.

At first switch-on it can sound positively hard and rough on awkward signals, but leave it going 15 minutes or so and the change is remarkable! The upper midrange smooths out and the transfer function becomes wholly more linear.

A decidedly odd little quirk this, one I have never encountered before in modem amplifiers and one which is damned difficult to pin down on the test bench, of which more later. The Carver does have a distinct personality of its own and it is perhaps accurate to dub this personality 'enthusiastic'! The Cube will deliver power into any load in prodigious amounts over 520 W on my usual burst-test scales - without ever sounding strained. It projects the music forward as though eager to have you listen to it and rattles windows with surprising rapidity the first time any real bass appears on the recording.

Character Reference

Usually hi-fi components with this type of fonward presentation are dubbed 'bright', but that implies a frequency balance tending to favour the topend of the audio spectrum and that the Carver does not have. Once it has "warmed up", as it were, the Cube is as linear a device as you'll find anywhere. No part of signal sounds to be emphasised over any other - it's just that all of it gets thrown out of the speaker boxes and laid out before you, larger than lifel

Whilst being initially unsettling, this presentation is very easy to become accustomed to, and makes other units sound flat and lifeless and lacking in dynamics thereafter. The M-400 would be an easy amplifier to become partisan about, I suspect.

Testing Failures

No, not the Cube, me. I tried in vain to get some meaningtul

From this angle you can see the ranks of output transistors lined up along the chassis. Ignore the white gunge, it's heatsink compound.
reasons behind this 'warm up' syndrome down on my results sheets, but apart from some non-linearity in the output stage early on and that at a low level, I failed. The effect goes unproven, therefore, and you will have to listen for yourself to see if you agree as to the magnitude of its existence.

Other tests give the Cube a formidable specification. Burst power over 520 W . noise below the floor of my instruments with distortion barely above it, and a protection circuit which was unfoolable on the bench. It ignored 'music-type' peaks but rapidly shut-off anything remotely resembling trouble.

I would take Carver's claim of "an intelligent PSU" with a sizeable pinch of salt, but all the same the protection is excellent. (It was impossible to clip the M-400 under any real conditions anyway.)

Conclusions

Very entertaining indeed! An approach to hi-fi amplification which is both novel and effective. The Carver M-400 is not the most neutral amp I have ever heard but it is one of the most enjoyable to listen to. It possesses a clear character of its own and prior audition is vital to any intending purchaser.

The advantages of the design are enormous, tiny size, high power and cool running. low distortion and lower noise and a reasonable price tag. I hear Carver are launching another version, the M-1.5, which is rated at 750 W RMS per channel and is barely larger than the $M-400$.

Since, as I said earlier, it was well-nigh impossible to clip the Cube, the advent of this new powerhouse can only mean it's time to head for the bunkers, ear defenders in hand. ETI

MICROCOMPUTER COMPONENTS

MIDWICH COMPUTER CO. LTD.
 DEPT ETI, MEWITT MOUSE, NORTHGATE STREET. BURY ST. EDMUNDS, SUFFOLK IP33 1 HO

 TELEPMONE: (0284) 701321TELEX: 817670

TECHNOMATIC TECHNOMATIC TECHNOMATIC		
	1-24	25-99
2114L-200nS	100p	90 p
2114L-450nS	$90 p$	85p
$2716(+5 v)$	250p	225p
2532	400 p	375 p
2732	400p	375p
6116P-3	500 p	475p

CONNECTOR SYSTEMS

ACORN ATOM

Buit $8 \mathrm{~K}+2 \mathrm{~K} \mathrm{£1} 355 \mathrm{~K}+$ Coloured Card $\mathrm{f} 17512 \mathrm{~K}+12 \mathrm{~K} \mathrm{£} 180$ (p 8 p E 3 /unit)
Atom PSU $£ 7$ (p \& p 70p) 3 A $5 V$ Regulated PSU $£ 24$ (p 8 p $£ 1.50$) F.P. ROM $\geqslant 0$ IK RAM $(2 \times 2114 L) \approx$ Tool Box Room $£ 25$

NEW COLOUR ENCODER CARD £39.00
ATOM SOUND BOARD: Kit comprises of a PSG, VIA and a 2 K ROM with resident demo program. The board plugs onto ATOM BUS to parallel and serial output ports and audio output mini speaker or hi fi amplifier. Complete kit $£ 35.00$
ATOM VISION: An ultrasonic transducer is rotated by a software controlled stepper motor. Data collected by the sensor is processed as displayed on the screen either as a radar type plot or as distance. Complete kit $£ 46.00$
ATOM DISC Module with: PSU for both drive \& $12 \mathrm{~K}+12 \mathrm{~K}$ ATOM, Controller card, Connector cable, instruction manual

PRINTERS

SEIKOSHA GP100A dot matrix printer, full graphics double width characters, up to $10^{\prime \prime}$ wide paper, self testing parallel interface £199 + Carriage £6
EPSON MX80 Friction and Tractor, 9×9 matrix 80 CPS bi-directional with logic seeking, variety of charac.
MX80 F/T $1 £ 350+£ 6$ carr. MX 80 F/T 2 with High Res Graphics $\mathrm{E} 360+\mathrm{E} 6$
BMC 12" Green Screen Monitor $£ 100+£ 6$ carr.
BBC COMPUTER UPGRADE

MEMORY

IC61-68 16K RAM 100nS AP3 E25.60 PRINTER E USER PORTS
IC69, 70, PL9, 10 £8.50 SK 10 with 36° Cable $£ 20$
$36^{\prime \prime}$ Printer Connector Lead Complete $£ 13.50$
SK9 with $36^{\prime \prime}$ Cable £3.30 ANALOGUE PORT
IC73. SK6 £6.80 PL6£1.60 PL6 + Hood with $36^{\prime \prime}$ Cable $£ 5.00$ F.D. PORT

IC77-87 + PL8 £44 SK8 with $36^{\prime \prime}$ Cable $£ 3.50$ BUS PORT
IC71.72 + PL11 £3.30 SK11 with 36° Cable $£ 3.50$ TUBE PORT
PL12 £3.00 SK 12 with 36° Cable $£ 3.90$

SOFTY II

The complete microprocessor development system for both Engineers and Mobbyists. You can develop programs, debug, verity and commit them to EPROMs. Wil accept most +5 V EPROMs. Can also be used as a ROMULATOR. Full review in September ' 81 P.E. Buit unit complete with PSU and TV lead £169

TECHNOMATIC TECHNOMATIC TECHNOMATIC

TV BARGRAPH

It's been some time since we did a really unusual piece of test gear. This month we are setting out to provide a solution to the problem of displaying many variables with good resolution. This sort of requirement can arise with spectrum analysis, statistical measurements, multi-point measurements of temperature, pressure, humidity, speed, current, voltage or indeed anything which can be converted to a proportional voltage.

It was realised some time ago by the electronic games and home computer manufacturers that most of the households who would be interested in their products would own at least one television set. This, we feel, is probably also true for you, our readers. So we have devised this instrument with that in mind.

The main problem in using a television set is that to obtain a high quality display on it the various synchronising signals normally produced by the gentlemen and ladies of the BBC and IBA must now be produced by our humble selves.

At this stage, we can go one of two ways. There are on the market several specially made integrated circuits for controlling VDU systems for home and commercial computers. However, this time we decided to steer clear of these and stay with gates and counters in the standard CMOS range.

The object of this project is to

Lots of information to display? Make better use of the box in the corner; statistics, vital or otherwise, look good on the ETI TV Bargraph. Design and development by Phil Walker.

generate a display on a television screen consisting of a number of vertical columns. The height of each column is proportional to a specific input voltage. The columns may be upwards (positive) or downwards (negative) from a reference level. This reference may be changed if only positive-going signals are to be processed.

In order to generate the sync pulses we must first have some idea of their structure. Figure 1 shows the pattern of synchronising pulses aimed for in this design.

A normal TV picture consists of a total of 625 lines. Of these, $3121 / 2$ are scanned each 20 mS such that each block covers the whole display screen, but the lines of one block fall neatly between those of the
next. This reduces the impression of lines across the screen while also preventing objectionable flicker 'effects.

The apparent complexity of the sync pulse pattern is designed to ensure that a normal TV set can pick out accurately the right moment for line and frame flyback. The last thing necessary for a complete picture is tht the video signal shall appear at the correct times between the line sync pulses, and be blanked during the line flyback and frame flyback periods.

The Circuit

The basic timing for the whole circuit is derived from a 2.5 MHz crystal oscillator. This was found to be essential as minute changes on

ramp signal to which the inputs are compared (see Fig. 5).

Construction

In order to keep costs down the PCBs for this project are singlesided. However, this has meant a number of links on the boards. Most of these are used to complete the power supply lines to the devices. The actual construction of the boards is not difficult but we suggest that IC sockets would be a good idea. Most of the links on the board can be put in place before any other components although the one near IC11 and C1 should be left a little longer to allow C1 to be inserted. Insulated wire is recommended for all the links. The link from CLK to $8,16,32$ or 64 should be made when the number of channels is known. It is easier in fact to put thick wire posts or PCB pins through these holes and link up afterwards.

The eight channel position is useful for setting up the complete system initially and making sure that it works

It is most desirable that a finetipped soldering iron is used during construction and that a check is made for solder bridges, especially where tracks lie between IC pins. It is also most important that all polarised components are fitted the right way round. Especially note that the TL084's and the 4014 on the channel cards are not the same orientation.

Fig. 4 The divideby-5 effect of IC2b.
The completed boards in our prototype were fitted into a metal case made by Newrad; a small aluminium bracket was needed to support the rear of the main board as this overhangs the integral chassis member by about 1 cm . Support for the channel cards is by two pieces of PCB material with suitable holes drilled in them. One end of these members is bolted to the main board while the other is supported on pillars. When fitting the boards it is essential that no part of the 0 V supply line gets linked to the metalwork as this will short-circuit the reference supply.

On the channel cards, it is helpful if the channel inputs are fitted with PCB pins or similar to facilitate connection from the top

Fig. 5 Frame sync generation.

Fig. 6 The UHF coupling coil.
of the board. The 2.5 mm jacks on the front panel used in our model could well be replaced with nineway ' D ' range connectors or anything else of that type, if desired.

The output from the UHF modulator should be DC-isolated from the panel and our method, shown in Fig. 6, was to take about 20 cm of thin twin flexible wire and coil it about itself to a diameter of 1.5 mm (this makes a simple 1:1 transformer). Connect the ends of one wire to the coax socket pin and skirt, and the ends of the other wire to a phono plug pin and skirt. A possible improvement here would be to use a special two-hole ferrite core with two windings of four or five turns through the holes. Capacitance coupling of the UHF signal can cause stability problems in the voltage reference amplifier. Oscillation here may appear as broken or strange-shaped bars or possibly break-up of the picture.

Connection between the main board and channel cards and card to card is by 10 -way jumper wire (or just link them direct). This is probably easiest done with the cards mounted on the support bars. Each channel card adds eight channels to the units' capability.

Fig. 7 Component overlay of the main board.

Fig. 8 Overlay for one of the channel cards.

PARTS LIST

MAIN BOARD	
Resistors (all 1/4 W 5\%)	
R1	1 MO
R2	22k
R3,4,5	10k
R6,7,8	2k2
R9,10,12	10k
R11	100k
R13	Omit or select for reference voltage required
Potentiometer	
PR1	10k miniature horizontal preset
Capacitors	
C1	10p ceramic
C2	$4 \mathrm{n7}$ ceramic
C3	220p ceramic
C4	100n ceramic
C5,6	10u 35 V tantalum bead
C7	10u 25 V PCB aluminium electrolytic
C8	220 u 25 V axial aluminium
	electrolytic
CV1	2-22p miniature trimmer

Semiconductors
IC1 4520B
IC2 4518 B
IC3 40103B
4002 B
4001B
4011B
4012B
4025B

4023B
MC14528 or CD4
1098

MC145
4070 B
TL084
1N4148
$\begin{array}{ll}\text { ZD1 } & \text { 1N4 } 400 \mathrm{~mW} \text { zener } \\ \text { Z1-D4 }\end{array}$

Miscellaneous

UM1233 UHF modulator (Aztec), 8 MHz bandwidth; 2.5000 MHz crystal.

CHANNEL CARD

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)
R101 56k
R102-117 27k
IC101 4014B
IC102,3 TL084

Miscellaneous

PCBs (see Buylines); 2.5 mm jack sockels (eight per channel card); coaxial pane! socket; miniature on/off toggle switch; PP9 battery and battery clips; phono plug; two off coaxial plugs and suitable length of coaxial cable; nuts, bolts, pillars, $12 \times$ 12 mm aluminium angle or similar bracket; two off $12 \times 100 \mathrm{~mm}$ (approx.) pieces of PCB laminate or similar (channel card support); wire, IC sockets etc; case (Newrad NP1426).

BUYLINES

Since we elected to use standard components rather than fancy chips for this project, there should be absolutely no supply problems. The modulator is from Technomatic or Watford, but make sure you get the wide-band (8 MHz) version. The case we used came from Watford. The PCB Service order form is on page 71.

The maximum number of channels sensibly usable is, we feel, 64 , although 128 is possible on a good television set with the modulator specified.

When constructing the case for this project, it was found that the application of a drop of cycle oil to the self-tapping screws holding the extruded front pieces made it very much easier to screw them in. As we assembled and disassembled this part several times during construction, this was most helpful Also, when assembling the chassis member to the side panels of the case, put the piece with the side flanges upwards and bolt it on underneath the lugs on the side panels. This is necessary to allow sufficient room for the battery inside the case.

Setting Up

There is very little in the way of setting up to be done. The basic unit should give some sort of display when powered up although no bars (or very few) will be present.

To see anything more, it is necessary to feed some voltage into the channel inputs. As specified, full-scale should be about 6 V . This sensitivity can be altered by changing the input resistors as required. The reference voltage can be adjusted slightly using R13 or overridden by driving IC12 pin 10. The ramp rate is controlled by PR1 and should provide a fair control range for many purposes enabling the reference voltage crossing to be positioned near mid-screen.

When first trying the board, set CV1 to about half-capacitance (plates half-meshed) and adjust it only if the picture is unstable or cannot be pulled in by the television line and frame hold
controls. (Don't forget to tune it in as accurately as possible).

Use

When fully operational the device should give the required number of bars along the screen, with a vertical height proportional to the input voltage for each one. The vertical resolution is about 270 steps, corresponding to a pair of interlaced lines. In the display mode built into the board, bars are not visible until the input is greater or less than 0 V . They then appear above or below the centre line; if the input sensitivity is too low then extra conditioning amplifiers will be required.

To change the display mode,

Fig. 9 Circuit diagram for the main board of the TV Bargraph.
break the track linking points V and B on the overlay. Linking V to A gives bars which start at the top of the screen and move down for decreasing input, while linking V to C gives bars which start at the bottom and move up with increasing input. Leaving out D5 will give double-width bars which merge with those on either side.

It is possible when using large numbers of channels that some will be off the edges of the display screen; this can only be cured by using a higher quality TV or monitor as the line flyback time in cheaper sets is often longer than that specified (12.8 uS). A way round this is to miss out the channels on the first card and start with the next. The device is ideal where a semigraphical display of multiple inputs is required and has the advantages of easy expansion and no requirement for computing facilities.

Fig. 10 Circuit diagram for one channel card; this provides eight input channels.

HOW IT WORKS

SYNC GENERATOR AND TIMING

IC11a is connected as an inverter and with XTAL1 and associated components forms a crystal-controlled oscillator working at 2.5 MHz . This is divided by 16 in IC1a and 10 in IC2a to give the $15,625 \mathrm{~Hz}$ for the line syne generator. The outputs from IC 2a are decoded by IC6a, 4 a and 4 b to give two outputs. One is during count 1000 for the line sync, the other is at count 0011. The outputs from IC4a and 4 b are disabled for about 1.6 uS after the active clock edge by IC5. This allow the counters and logic to settle and prevents glitches due to propogation delays. It also starts the line sync pulses at the right time relative to the fine flyback blanking pulse taken from IC2a pin 6.

As IC2 is a dual decade counter, counts 1000 and 0011 occur at equal time intervals after each other. These outputs from IC4a and 4 b are combined in IC 5 b to form a pulse chain at exactly double the frequency of the line sync pulses (Fig. 3). The regularity of this signal is important to get correct interlacing of the final picture. This signal triggers the two sections of IC10 and also IC2b. IC2b, IC6c and IC6d divide the input by 5 before driving the clock inputs of IC3 and IC1b. IC3 is a presettable eight-bit down counter which is configured to divide by 125 , giving an output equal to the input clock period each 125 input cycles. Thus we get a low pulse $21 / 2$ line periods long (five double frequency pulses) every $3121 / 2$ line periods ($5 \times 125=625$ double frequency pulses). The low pulse from IC3 is inverted by IC7a and resets IC1b to all zeroes; it then holds it there for $21 / 2$ line periods. At this point IC1b will be incremented by the output from IC2b (ie every $21 / 2$ line periods) until it reaches the all 1 s state. IC7b detects this condition and its output inhibits further counting. The output from IC7b is also used to blank the video signal during the frame flyback period. The actual frame
sync signal is generated during counts 0001 , 0010 and 0011 of IC1b. The logic for this is provided by IC8a and 8b. The output from IC8b determines whether normal line sync or frame sync is required and IC1b pin 11 decides which type of frame sync signal is to be sent. The signals are actually switched and combined in IC9, IC11c, IC5c, d.

IC10a and 10b are monostables triggered by the double tine frequency pulse chain and provide the 2.3 us 'equalising' pulses and 27.6 uS'broad' pulses reqired for proper synchronisation in the 625 line system.

VIDEO AND CHANNEL SAMPLING

Having generated all the sync pulses to stabilize the display format, the video information must be generated. IC12 generates a negative-going ramp signal, synchronised with the frame blanking signal via D2. The frame blanking signal forces the noninverting input of IC12 high, so the output of IC12 goes high to try and reduce the differential voltage between its inputs. However, the inverting input cannot go more than about 0V7 more positive than the cathode of ZD1. This means that C4 will charge very rapidly. When the frame blanking period is over, D2 is effectively out of circuit and the voltage on the non-inverting input to IC12 will be about $10 / 11$ of $\mathrm{V}_{\text {REF }}$. By normal op-amp operation the inverting input to IC12 will also be at this voltage, causing a current of $1 / 11 \mathrm{~V}_{\mathrm{RE}} /(\mathrm{R} 10+\mathrm{PR} 1)$ to flow through C4. The result of this is that the output voltage from IC12 will now fall linearly until it approaches the 0 V rail or another frame blanking pulse occurs.

Another section of IC12 provide a buf. fered reference voltage while a third acts as the comparator - switching as the ramp voltage passes the reference.

The ramp and reference voltages pass to the channel cards where the video signal
is generated. Each input signal is compared with the ramp voltage in a section of IC102 or IC103. The more positive the input signal, the sooner its comparator will switch and the higher up the screen its bar will start.

The outputs of all the eight comparators on each card are fed to the parallel inputs of a 4014 eight-bit shift register (IC101). During the line flyback blanking pulse the data is loaded into the 4014; during the rest of the line time it is clocked out under the control of the channel clock. If more than one channel card is in use the output from each additional card is fed to the serial input of the next card along. This effectively extends the length of the shift register. For best results 8, 16, 32 or 64 channels should be used. Four or 128 channels are possible with modifications while 24, 40, 48, 56 etc will give poor display formats.

The video signal from the channel card(s) returns to the main board and, via IC11b, is mixed with the sync and blanking signals in D3,4,5 and R5,6,7 before going to the UHF modulator.

The line blank signal mentioned above is derived from IC2a pin $6\left(Q_{4}\right)$ while the frame blank signal comes from IC7b. The output of this last device is high for a total of 40 lines in each half frame ($16 \times 2 \mathrm{l} / \mathrm{)}$) leaving $2721 / 2$ lines for the actual display. This is still probably more than a normal portable TV will display vertically.

The feeding of the channel clock signal via D5 into the video mixer causes the bars to be separated and half width. Omitting D5 allows the bars to broaden and. merge with each other. The jumper points V, A, B, C are pre-linked to give a video inversion at $V_{\text {RAMP }}=V_{\text {REF }}$. Alternative effects can be obtained by finking V to one of the other points, when bars starting from the top or bottom of the screen will be obtained instead of starting from the centre line.

WE WILL BEAT BY 5\% ANY LOWER PRICE ADVERTISED BY COMPETITORS*

CASIO AX-5 $£ 19.95$
BLACK RESIN CASE \& STRAP version of the AX-210 " below $A \times 21 a$. The world's most versatile watch ? Anslog Displey Dighel Oispley - Lacal time, 12 or 24 hour - Fult calendiar dinolay - Dual timo. 12 or 24 hou - Countoowin aterm timer with memory function Protessionsi $1 / 100$ second stopwatch Hount time skjnsi Deily saerm elec des Ranid formordfback sartme $9.4 \times 36.4 \times 36 \mathrm{~mm}$ Uavel price: E22.95 Lowest price ensewtiere - $\mathbb{E} 7.95$ PRICE BEATER E26.50

SO METAE WATER RESISTANT

$W .20$
AE casefotrap
812.95

W.21
Resin Rebin
S/ $\$$ trimm
814.95

W 30 All
S/5 E19.95
$12 / 24$ hour time and auto caiender. Alarm and hourly chumes. Prolessional $1 / 100$ second stopwatch to 12 hrs .
Compuct and slim cases, approx. 8 min thick. 5 year cases, spprox.
liftiom bortery.

NEW AND THE VL-5 Bar-coded Programmable Mini Keyboard VL-5
 Even a non-player can become an instant musician!
 The VL-6 cen raad and atore Casiofs uniqua ber-coded music, or athernativaly vou can progrom the memory divectly from the 3 -octave keyboard. Selact one of the 10 instrumem woices and choose one of the 8 auto thythms. then pley beck your stored metody by riveans of the One Key Ply bution, or by the Auro Play button. The 4 note potyphortic minis keyboard cam also be played monuslly.
 Whh inragral amplifier and speaker, Live Out and Hesdphome jacta. Sustain and Pisch control. Powered by 5 AA see batteries, or the optional mains sdaptor, AD-1E (C5). Supplied weth light pen, instruction mamual and music boom. Dirns. $33 \times 320 \times$ $86 \mathrm{~mm}\left(11 \times 12\left[\times 31^{\prime} \mid\right.\right.$ Worgh 510 g (18 os).
 FX-reep Unual price
 c99.95
 Elsewhert 097.95

 FROM CASIOTONE - THE CT 1000P DIGITALIZED SYNTHESIZER(RRP 189.95) ONLY £79.95

PRICEBEATER

£93.00
BASIC progrsmmang. UD 101.680 program steps up to 226 memorize 55 scientific functiona. MICAOL FP. 10 Printer for 601/602i702. Uwatly i44.95, Pito FP. 10 Printer for $601 / 6021702$. Uwalty
Neftharo \& A3.95. PRICEBEATER E 61.76 Neptharo \&a3.95. PRICEBEATER C11.\%
FAZ Casbetle intorticy for $601 / 6021: 1^{\circ}$ \& 19.95

PROGRAMMABLES

FX. 602 P
Uswat price [7]. 95
Price elsewhere $C 71.95$
PRICEBEATER FES.30
Up 10512 steps
Uo to 88 memorins
50 scientific functions

PX. 601128 szeps, 11 mennorins. ecc ONLY $£ 39.96$ FX. 3000 P 38 sieps. 2 memorias. 50 ec functions Price PRICEBEATER EO.

CALCULATORS

Scientifice
FX. 55050 functiont, 8 dight, SOLAR FX 9008 dight version with lees functions FX. 860501 . 10 d . Unhum battery. Walet FX. 8700 C15 9 FX82 $£ 12.95$, FX 100 €i6.95, FX7 $£ 9.95$, FX5 $£ 7.95$ Celculeting starm elock:
CRIculating sierm clocks Gard 12 molody alrms E14.95; ML- 120 wallet verstion E14.95: UC. 360 Card; UC- 385 Wallet $\mathbb{C} 19.95$. BASIC LC. 950 MEric Comersions on wo disoloys
ع16.95; MG-777 3 games dock 514.95 ; MGf880 10 95

WATCHES

Calculator witches CA. 964 alarms. hourty fime signal. slopwatch, wach
resen case: scrap 819.95 CA 951 Metal version C 29.95 resm case scrap 219.95 CA. 951 Metal version C29.95 CA. 851 MEtil vermon E29.95 breplices CA.90/9011 J. 100

Jogger, 1 umm s apwatch, Rewn $\mathrm{C19.95;}$
Others $\mathbf{M M} 400$ Daly/weekly/monthly melody stams, pre and srooze atarma, hourty chimes, stopwetchcas. 85 WS -7050 m wer tesistam ulta slim alis caselbraceion 6 SA.ED As WS-70 but non W/h chrome case -.... 114.98 \$A. 50 G Gobd plated vermon................................ 19.96 GM. 10 tnvader game, atorm, ktopwatch, resin -..tili. 95

This revolutionacy swithesize has 10 presen insarument voices, PLUS variable FEET. ENVELOPE Ond MODULATION - the three elements of sound creethily giving $10 \times 10 \times 10$ options. Each sound has a dightal code ard any 10 sounds may to shored in the battery profected memory for instant welection. The 5 .octove, 8 . notn polyphonic keybourd can be split into 2 and 3 octaves with two diftertent instrument sounds.
There is a pre set arpeggic. of a 127 step programmable arcaggio function which can be uned as a real time sequencer.
Frequancy is dieptoyed digitaly and the wide range pitch comtrol allows ertheposition between -1 cetave and $\$ 0.5$ cereve.
Whh Sutrain and 3 Vibrato functions enc; Integral ampmier/sposixer: Output and Hosidphono jecks: Prolective cast alloy end pletes. Dimensions. $\left.117 \times 916.5 \times 363.5 \mathrm{~mm}(4) \times 38 \times 141^{\prime}\right)$ Weighty $10 \mathrm{Kg}(221 \mathrm{bs})$

SHARP PORTABLE COLOUR COMPUTER

16 K extended BASIC (ROM). 3.5K RAM (expendatiml. 7 $\times 156$ vot matrik liaplay, Clock, cieencers, alam and wound 30 scientitic functions on board.

PMICEBEATERS* PRICEBEATERS PC-1500 Computer (Etsewtiere E188.95) _ume.....fi31.00
 CE. 151 AK RAM module (-47.95) 1795 CE. 156 8K RAM module ... \qquad E5.00 CSR-150 Paper rollit thox of $201 . .$.
PENS EA-850C Coloured EA 850 B Block VICROL 1500 SOFTWARE PAOCOS 'Visicalc' type sersiem C49.96 GRAPHIX for grsphc pressentation. 1819.95 STATIX Adde statintica to the 1500 _ f 19% MORE SOFTWARE AVAILABLE SOON T.B.A.
rice includee VAT and PEP, Send cheques. PO, or phone your ACCESS, VISA or B'CAAD number to:

LEADING CASIO SPECIALISTS
Dopi ETI
38 Burlelgh Street. Cambridge CB1 1DG
Telephone: 0223312866

We bring you the widest ranging and most informative articles you can buy. We publish the most original and ingenious projects anywhere. The only thing we can't do is control the cost of living. Subscribe now and laugh at inflation for the next 12 months.

SUBSCRIPTION ORDER FORM

Cut out and SEND TO : Electronic Today International, 513, LONDON ROAD, THORNTON HEATH, SURREY, ENGLAND.
Please commence my personal subscription to Electronics Today International with the
issue.

ETI JULY 1982

 For the man who has everything else. . .

there is the EII binder. Spend your nights enioving the finer things in life, secure in the knowledge that the finer magazines of life are sate and sound Order one now and let the foneses keep up with you

ETI Binders cost E 4.25 each for UK residents, including postage, packing and VA T. For overseas orders add 30 p Send the completed coupon logether with your remittance to:
ETI Binders, Argus Specialis! Publications Lid, 513 London Rd., Thornton Heath, Surrey CR4 6AR. Please allow three four weeks for fulfillment of order

FAST RESPONSE STRIP CHART RECORDERS

Series H3020

Basic urror: 2.5\%
Sensitivity: 8 mA F.S.D.
Response: 02 sec
Width of each channel:
Single and throe-pen recorders: 80 mm
Five pen recorders: 50 mm

Chart speeds. sefected by push buttons: 0.1 0.2 0.5-1.0-2.5-5.0-12.5-25 $\mathrm{mm} / \mathrm{sec}$
Chart drive: $200-250 \mathrm{~V} 50 \mathrm{H}_{3}$
Recording: Syphon pen directly attached to moving coll trames Curvinear co-ordinates.
Equipment: Marker pen, timer pen, paper footage indicator, 5 rolls of paper, connectors, tink etc.
H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deap $\times 165 \mathrm{~mm}$ high H3020.5 (Five pan): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ PRE EES H3020.5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high inc
 carrying case. Carriege: $£ 10.00$ per recorder

MULTIMETER - TYPE U4324-20.000 O.P.V
D.C. Current: $0.06-0.6-60-600 \mathrm{~mA}-3 \mathrm{~A}$
A.C. Current: $\quad 0.3-3 \cdot 30-300 \mathrm{~mA}-3 \mathrm{~A}$
D.C. Voltage: $0.6-1.2-3 \cdot 12 \cdot 30 \cdot 60 \cdot 120-600-1200 \mathrm{~V}$
A.C. Voltage: $\quad 3.6 \cdot 15-60 \cdot 150 \cdot 300-600 \cdot 900 \mathrm{~V}$ Resistance: $\quad 5000-5-50-500 \mathrm{ka}$ Accuracy: d.C. 2.5% : A.C. 4% (of F.S.D.)

PRICE complete whth test leads and fibreboard storage case $\$ 10.50 \mathrm{unc}$ of VAT

Packing and postage E2.00

MULTI-RANGE UNIVERSAL PORTABLE
AC/DC RECORDING VOLTAMMETER H3sO (SUPPLIED WITH 5 CHART ROLLS) Measurements $\quad 5.15-150.250$. ranges, $A C / D C$: $\quad 500 \mathrm{~mA}, 1.5 .5 \mathrm{Amps}$ 5.15.150-250-500V 1.5\% DC, 2.5\% AC 100 mm 220.250 V AC mains 20-60-180-600. $1800.5400 \mathrm{~mm} /$ hour Carriage $\mathbb{C 6} .00$

TRANSFORMERS

Primer	secondery	Curvene	1.	10.	100
2000	-. 60 -4,3v	$400 \mathrm{~m} / \mathrm{a}$	50p	450	350
2tor.	600\%	100mts	59 p	520	430
240 V	cour	$300 \mathrm{~m} / 8$	689	600	4p
200N:	909:-	200 m	S\%	Top	usp

 eers the edsptons of the UK shaver sockice

MIP	D.C. Voleege	Curromt	$1 *$	$10-$	100
608		$200 \mathrm{~m} / \mathrm{a}$	800	40	320
EMS_{3}	ov	$200 \mathrm{~m} / \mathrm{a}$	c1. 00	800	0
E09	OV	$400 \mathrm{~mm} / \mathrm{a}$	11.50	Cl^{3}	0
ETA	ov	$150 \mathrm{~mm} / 4$	[1.50	[1.8	Nos

Send your orders to:
MARCO TRADING, (Dept. ETI) The Old School, Edstaston, WEM, Shropshire SY4 5RJ Tel: Whixall (094872) 464

EEECTROVALDE

THREE TOp REFUNO VOUCMERS FREE for soending singly at any time on any one C.W.O. IU.K.I oroder minimum fist value E10, This con Qwickly sove you up to Q2. 10 in acdition to the other benpitis you eryoy by buying from Enectoralue. Sind on to Cordogur $a+3$ thow vachars by rearn now fREE UOUCHERS TO SRUE YOU UPTO
-

+ USUAL DISCOUNTS + FREE POSTAGE

DISCOUNTS

St on urgera over rz3 inc. V.A.T. on most coraboue itions bey V.A.T. on most carabluve tions

POSTAGE

 inc. V.A.Y uncer, and 400 haswion

ELECTAOVALUE LTD, Z3E SL Junn Aood. Emphen
H.
 - COMPUTERSISOFTWARE etc.

- capacitorsiresistors
- CONNECTORSSWITCHESIKNOBS
- POTSIFERRITESMMETERS
- BOOKSISOLDER TOOLS

AND MORE AND MORE AND MORE
13 Groen, Egtum, Survey Twal BHB

USED
 EQUIPMENT

 casce. AC/DC Voles, DC curriment, ohros. Absolute Bargsin
500V MEGGER

Tranamionased insulotion Trseet andge with four minan. Inviluantro oinece of thar geosit in
 Recent Style P.O
C 4.15 \& 180 Pt 2 for $59+[250.5$ foce $520+$

COMPACT TELEPHONE With wall mownt bed 58.60 C3. pap as above. Our leeptiol expleins how to use C.P.O. systems.
resettole
UNISELECTORS. 50V. 480 R

- CONNECTOR SOCKETS

GOV BA TRANSFORMEA Ideal Gov an pawar suopt unio for big power nuopry unt of THATI

FREF on request
Lems

MOTOR SPEED CONTROL FOR ROBOTS

With our Mobile Robot moving towards completion, reader C. Fisher of Bristol sends us this discrete circuit, derived from a Motorola design, which offers followers of our Robot a 'cheap and cheerful' alternative method of getting things moving in the living room.
n most DC motor speed control circuits, a voltage proportional to actual motor speed is compared with a voltage proportional to the desired speed and an error, or correction, signal is obtained. The error signal is amplified and used to adjust the speed of the motor in such a way as to reduce the error signal to a near-zero value. Provided that the circuit has been properly designed, the motor will
run at a speed close to that desired.
The voltage supplied to the motor will determine the output power or torque, as well as the speed, so that at low speeds very little torque is produced. The normal method of overcoming this problem is to supply the motor with constant voltage pulses with a duty cycle proportional to the error voltage so that the full torque is produced at low speeds.

ETI JULY 1982

Light Work?

There are a number of ways that can be used to derive a voltage proportional to motor speed. One method which has been favoured in the past, involves measuring the back EMF of the motor. This can lead to problems, as both the input and the output are obtained from the same point, namely the motor.

It is possible to obtain a voltage proportional to motor speed using an opto-electronic tachometer system. A circuit employing this technique is shown in Fig. 1.

The motor armature, or output shaft, is painted with twenty stripes, ten black and ten white. A fibre optics Y -guide is focused on to the pattern and one branch is used to provide illumination from a small DC-driven lamp. The other branch of the Y-guide feeds light reflected from the pattern to a photo-transistor, Q1. The output of Q1 will be a signal with a frequency proportional to motor speed as ten pulses will be produced for each complete rotation of the armature.

The transistor Q 2 is a pulse shaper which feeds a tachometer circuit giving an output directly proportional to input frequency and therefore motor speed.

Comparative Difference

The FET, Q4, acts as a buffer to minimise the loading on the tachometer circuit and provide a fairly low output impedance, which is appropriate to the differential comparator which follows it. In addition, Q4 acts as a level shifter to ensure that there is sufficient output to bias the comparator when the tachometer output is zero. The diode, D3, provides a measure of temperature compensation.

Fig. 1 Complete circuit diagram of the nobot motor speed controller.

A Small Step?

The above method uses a photo-tachometer to obtain its reference for positional control. In our Mobile Robot, we decided to employ an infra-red system.

There are several reasons behind this choice, not least of which is the fact that our Robot employs a combination of on-board and distributed intelligence.

The arm carried by our Mobile is controlled in an entirely different fashion. . .

But then if you want full details of the ETI Mobile Robot, you'll have to buy our August issue, wherein all will be revealed!

The comparator compares the tachometer output with the voltage at the wiper of the speed adjustment potentiometer R13 and produces an error signal if a difference exists. The capacitor, C3, prevents motor speed overshoot if the setting of R13 is changed rapidly.

The network R15, R16, C4 and D4 forms a voltage-stabilising supply circuit for these circuits.

Errors Eliminated

If an error signal exists because the potential at the wiper of R13 is higher than the output of the tachometer, it means that the motor is rotating too slowly. The pulse width modulator formed by a Schmitt trigger circuit will trip and full power will be supplied to the motor. As the motor speed increases the error signal will fall until it is almost zero. At this point the Schmitt trigger will remove power from the motor. The process is continuous and the motor is supplied with a train of pulses, the width of which will be proportional to the error in the motor speed, or the load on the motor.

Feedback for the circuit is obtained by directly measuring the motor speed, and results in accurate speed control over a wide range of output powers, as can be seen in Fig. 2. This drawing also shows the effect of power supply voltage variations. Figure 3 indicates the effect of temperature variations.

Temperature compensation may be improved by removing diode D2 and connecting one or more diodes in series with R9.

Just to prove that robotics is alive and well and living in the Southern Hemisphere, we've included a couple of photographs of the 'Tasman Turtle', a project currently under development by our down-under brethren on the Australian ETI. An obvious proof of Darwin's theory of natural selection, the Turtle bears a resemblance to the Hebot (Hobby Electronics November '79) despite

PROJECT: Robot Module

Fig. 2 How motor speed varies with changes in load and supply voltage for the circuit described.

Fig. 3 How temperature affects the motor speed. The supply is assumed constant at +12 V .

STEREO AMPLIFIER KIT

Fosturing letest SGS/ATES TDA 200610 wert dutput IC's with in-bulle thermal and short oirelitit protection. - Multard Stereo Preamplifier Madule.

- Altractive black vimyl linish cebinat, $9^{\prime \prime}$ x $8 x^{\prime \prime} x 3 x^{\circ}$ (approx).
- $10+10 \$$ terec converti to a 20 watt Disco amptifier

To complete vou just supply connecting wire and solue Features include din input sockets for ceramic cartidot. microphone, tape or tunef. Outputs - tape, spaakars and headphones. By the press of s button it transforms into a 20 watt mono disco amplifier with twin deck mixing. The kit incorporates on Wuttord LP1 183 presamp modute ptus powar anp assembly fer and mains power supply. Also teatures 4 giditer level controbs, rotary bass and treble controls and 6 push button switches. Silver flonish larcie with metching
knobs and contrastimg
cabinet. Instruction
onsilable, price 500 .
Suppled FREE with kit.

£16-50

SPECIFICATIONS:
Frequency response
Inpur sensuitivty
witnble for 4 to 8 ohm speskers $40 \mathrm{~Hz}=201 \mathrm{KHz}$

Tone controds \quad Mic. 1.5 mV . $\pm 12 \mathrm{db}$ e 60 Hz
Distertion
Treble $212 \mathrm{ddb} \Theta 10 \mathrm{KHz}$
0.1 \% ivplicalty 98 matis
$220-250$ volis 50 Hz

Nains suppl
$220-250$ volis 50 Hz .
$8^{\prime \prime}$ SPEAKER KIT Two $8^{\prime \prime}$ 'wan conn domestic
speskers. $£ 4,75$ per stertoo pair plus $£ 1.70$ p\&p. Whun
gurchesed with amplifier. Avoilsble separately $£ 6.75$ ourchased with amplifier. Availstide separately $\mathbf{£ 6 . 7 5}$ sp

PRAGTICAL ELECTRONICS CAB
 RADIO
 KIT series \|

2 WAVE BAND, MIV - LW

- Easy to buald. - 5 push button tuning. - Modern
design. © 6 wart output. A Ready etched and punched PCB. - Incorparatos suppression olreults.
All the electronic components to bulld the ratio, you wupply only the wire and the solder, featured in Practicat Electronecs. Festures Dre-set runing with 5 push button options, bracik illuminathid iuning scaie. The P, E, Travelier has of walt outpur reg. ground ond in. corporetes in Mileg ared circuit output stage, a Mullard asembled and sird oreationed push berton tuning
Suhoble steinfass steel fully retrect.
able aeriai (lockingl and spotaker able asrisi (locking) and wowaker E2.00 nem.

BIRDAUDIO

STEREO CAR RADIOBOOSTER
To boost your car ractio or racio
£9.95
E1.50ponp.

125W HICH POWER AMP MODULE

кіт. £10-50 виіт: £14-25

The power emp kit ts a module for high powst apolica ions = disco units, guiter amplifiers, puhtic address systems and even high power dormestic systems. The unis it protected against short circuitiong of the losd and is aste in en open circuit condition. A large sofety margin ewists by use of generously risted componenti, result, a high powered rugged unit. The PC board is back printed, etched and resdy to drill for ease of construction and the duminium chasas is preformed and rasdy to use. Supgised with all parts, circuil diegrams end instruction ACCESSOAIES: Suitable mblns power wpoly kit with trensformer: K7.50 plus 23.15 pap
Suitable LS couphing electrotytic: © 1.00 plus 250 patp.
SPECIFICATIONS:
Mak. output nower (RMS): 125W Operating voltage (DC): 50.80 max.
Frequency response measured) i) 100 watts: 25 Hz . 20 KHz Sensitivity for 100 wotrs: 400 mV © 47 K . Trpical T.H.D, 50 watts, 4 ahms: 0.1 \%
Dimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

Hl-FI SPEAKERS AT BABGAN PRICES

GOODMANS TWEETERS

8 ohm soft dome radiator fiveet ivetems; with 2 olement crossower

35 WATT MICRO 2.WAY SPEAKER SYSTEM Unit comprties ond 50w (4"sop.) Aude
woft dome tweeter HD100. And ans 5" Auclax bassimidrange 35 w driver HIFIIJSM.
Complete with 2 Total tmpedincer of system 4 ance
£3.50 each (psoctlor a $£ 5.95$ pair (plep Ez)

£7.95

P.E.STEREOTNNERKTT

This katy to bulld 3 bend stereo AM/FM tuner kit is de. wogned in coniunction with Practical Electhonies \{July 81 orates three Mullard modules and alignment tomeorp. FEATURES: VHP, MWH, LW Bands, interstotion muting and AFC On VHF. Tuning mater, Tho back pranied PCB's. Ready made chasis and scele. Aasiat: AM - ferrite rod, FM -75 or 300 ohms. Stebalised power wipply with 'C' core mains transformer, All components supolied ere to P.E, strict specification. Front scate size: 10 X
$\times 2 \mathrm{~K}$ " approx. Complete with diagram and Instructions.

£17.95

Plus C2.50 peip self assembly simulated wood catanct sleeve to suit tunar only Finlon sile: $111 /{ }^{-1} \times 8 \%^{*} \times 3$ \% £ 3.50 Plus E 1.50 p हip.

TVSOUND

TUNER KIT

£11.45

- 1.50 p\&

As featured in E.T.I. December 81 issue. Kle of parts including PCB, UHF tuner and selector iwitch with al components excluafing case

- Transformer $\mathrm{f} 1.50+£ 9.50$ pasp fosp free on trons. ule for simulated stereo operction. E1.05 - $75 p$ otsp

ALL MAIL TO:
21E HIGH STREET, ACTON, W3 6NG Note: Goods despatched to UK Dossal addresses oniv. For further information send for instructions 200 olus stamped addressed envelope. All trems subject to avallablity. Prices correct at $31 / 1 / 82$ and sublect to change withour notice. Please allow 7 working days from recelpt of order for despatch.
ALL PRICES INCLUDE VAT AT 15\%.

SPECIAL OFFERI TUNEA KIT PLUS
Matching l.C. 10 worr per channai poner amp kit. Mullerd LPI 183 butie pre-amp, suiveble for ceramic plel reansforner. Motching itio 4 slicer 21.95 with conerols tor E 21.95

movo
 MIXER ANP
 £39.95

50 WATT Siz individually mixed inouts for two pick ups (Cer. or magul. two moving coli microphones and two anuibiary for tape. tuner, organs, etc. Eltoht stider contmots -six for level and iwo for master thess and treble, four exre treble controls for mic. and wanimputs. Size : $13 x$ x for use with i 8 ohm pueat Aeerecive mech vinyl cose with motchong fascis and knobs. Ready to use.

ALL CALLERS TO: 323 Edgware Rd, London W2. Tefaphone: 01.7238432. Open $9.30-5.30 \mathrm{pm}$. Closed all day Thursday RTVC Limlted reserve the right to update their products without natice.

OSCILLOSCOPE part 3

> In the final part of this project we give the all-important procedures for calibrating the scope timebase, Y-amplifier and frequency response. Once everything's set up, you'll have a scope to rival any other at the price. Design by K. W. Dugge.

To calibrate the timebase, apply a 50 Hz AC voltage to the input; the time selector switch should be on 5 mS /div. Adjust PR4 so that one cycle is exactly four scale divisions long Apply a 5 kHz signal to the input (the frequency should if possible be checked with a counter). The time base switch should be on 50 uS/div. Again, one cycle should be four divisions long. If one cycle is longer than four divisions (sweep too fast) an additional capacitor must be placed in parallel with C20 (2n2). A place is provided for this on the circuit board. If, for example, the sweep time needs to be 10% longer, then the additional capacitor should be 10% of C 20 , ie 220pF.

If the length of one cycle is too short, then an additional capacitor must be placed in parallel with C44 $(220 \mathrm{nF}$). If the period of the 5 kHz signal (which should be four div $\times 50$ uS $=200 \mathrm{uS}$) appears as only 180 uS ($\Delta=-10 \%$) then a value of 10% of $220 \mathrm{nF}(22 \mathrm{nF})$ should be fitted in parallel with C19 and the setting of PR4 repeated

The remaining positions of the time base selector switch do not require adjustment, as they should automatically be correct - apart from unavoidable tolerances - thanks to the fixed resistors associated with the switch. All that is required is that the calibration be checked in each position of the time base selector using single, exactly-known frequencies, in order to track down possible component

failures.
After successful calibration of the time base, the following trimmers should not be touched, because they will influence the calibration; PR10 (time base calibration), PR11 (trace length), PR15 (brightness), PR16 (focush, PR17 (astigmatism) and PR14 (10 V supply voltage).

Y-Calibration

Set the sensitivity on $1 \mathrm{~V} /$ div and the input mode switch on 'DC' Set the trace, using the Y-shift control, to the centre of the screen. Apply $3 \vee D C-$ checked with an accurate multimeter - to the input. With PR8 (Y-output stage gain) set the trace to the top line of the scale. Switch the input mode selector to ' G ': check whether the zero line has shifted. If necessary, reposition the zero line with the Y-shift control and readjust PR8 to bring the 3 V trace back to the top line of the scale. For the fixed linearity check, set the input

SPECIFICATION

Bandwidth: $0.7 .5 \mathrm{MHz}(-3 \mathrm{~dB})$ for six divisıons (one div a 7 mm): $0-10 \mathrm{MHz}$ $(-3 \mathrm{~dB})$ for four divisions.
Input: BNC connector, switchable ACIDC/ground.
Sensitivity: $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ in 12 calibrated $1 / 2 / 5$ steps.
Case Size: approximately $175 \times 105 \times$ 100 mm .
Weight: approximately 1 kg .
to 0 V and the trace to the bottom scale line. Increase the input voltage, for each successive 1 V increase in the input voltage, the trace should move up by one division.

TABLE 1

SW1 on 5 mV , test probe 1:1, adjust CV1. 10 mV , test probe 1:1, adjust CV9 20 mV , test probe $1: 1$, adiust CV5. SW7 on 5 mV , test probe 10.1. adjust trimmer in probe. This trimmer must not now be altered Also, the other trimmers, once set, must not be changed!
SWI on 10 mV , test probe 10:1, adjust CV8.
20 mV , test probe 10:1, adjust CV4.
SW1 on 50 mV , test probe 1:1, adjust CV7.
100 mV , test probe 1:1. check that the adjustment is still correct.
200 mV , test probe 1:1, check that the adjustment is still correct.
500 mV , test probe 1:1, adjust CV3.
1 V. test probe $1: 1$, check that adjustment is still correct.
2 V , test probe 1:1, check that adjustment is still correct.
SW1 on 50 mV , test probe 10:1, adjust CV6. 100 mV , test probe $10: 1$, check. 200 mV , test probe $10: 1$, check. 500 mV , test probe 10:1, adjust CV2. $1 \mathrm{~V}-20 \mathrm{~V}$, test probe $10: 1$, check. input square wave 50 kHz approx. SW1 on $5 \mathrm{mV} / \mathrm{d} \mathrm{lv}$, test probe 1:1, adjust CV10 on the main circuit board) for best waveform.

PROJECT : Scope Part 3

Frequency Response

 AdjustmentClose the case (screw the cover on completely, as the additional capacitance of the cover will affect the calibration). Connect a 500 Hz
(approximately) square wave to the input using a 1:1 test probe; set the input mode switch on 'DC'. Adjust the amplitude of the signal generator during each of the following steps so that the picture size is about three or
four divisions. The adjustments in Table 1 should give the optimum square wave shape (no rounded corners, no overshoot on the edges).

This completes the setting up of the instrument.

An internal view of the power supply board.

Please mention
 E.T.I.when replying to all adverts

AMARAL Limited

26 HIGHFIELDS, EARLEY, READING RG6 2RZ, ENGLAND Tel: National 0734864745 : International +44734864745 Access or Barctoveard Add VAT 15\% 500 pfop, Mail Crotars / Ted orders onty Send SAE for complete les:
CMOS - 4001 15p; 4002 15p; 4006 52p; 4011 15p; 4012 15p; 2013 25pp 401623 p; 4017 46p: 402053 p: 4022 47p; 4023 15p: 402440 p: 4025 15p; 402729 2p: 402850 p 4029 500x 4040 50p: 4048 47p: 4046 07p: 4049 25p: 4050 20p; 4051 52p: 405252 p 4053 47p; 4060 78p: 4006 31p: 4088 15p; 4050 15p: 4070 36p; 4076 56p: 4081 15p: 4082 15p: 4085 39p: 4008 39p: 4511 57p: 451859 p : 4520 57p; 4513 87p: 455543 . $4010617 p$.

 38838 p . $36733 \mathrm{p}: 37381 \mathrm{p}, 34479 \mathrm{p}: 39060 \mathrm{p}$
MICROS ETC - Z80CPU 345p 280ACPU 395p: 280 CTC 295 p : 230 ACTC 295 p

 REGULATORS - T. 020 YYOe 7805 38p. 78123 3p. 781530 p

SINCLAIR

COMPUTERS

 PRINTERS

VIC 20 COMPUTER

UK101 AND
 SUPERBOARD

BATTERY

ELIMINATORS

BATTERY

ELIMINATOR KITS

en corvertor 1A clez.
TV GAMES
BI-PAK AUDIO
MODULES
 f18. AL80 in E6

SWANLEY ELECTRONICS
Pontrge CO.EO an computerse CA. 80 on prinjus. wnd

ancuph thowe ordetions mested whit to olf pricos

MAGENTA ELECTRONICS LTD.

E.T.T. KITS

 As on eritr esp sech
iNEULATION TESTEMMOY, 515 9t AUYORANQING CAPACITANCE METEA Moi
 AUTOMATIC CONTGAST METEE ApN 82 iest HIOH QUALITY PHONO AMPLIFIERS FAD 82 lem MOVINE COIL STAOE. PEST CONTROL FEt 82 GUTA A TUME Hons COMPONENT TESTE OUC \#1
 SOUNO HENDE H OCRM1

 MANDCLAP STNTME StSER AUGBi

NEWI SOUND TO LIGHT LADDER
10 channel drive io ling of sights - very effective. 0.30 watts per channel. Toras 3000 watts. Select ber on dor display mode. Also inctudes 10 channot and chase affects Switch selectsble frequency-low-middle-high. Mono or stereo ingoot aither by direct wise of inlernal mocrophone. Led panel monitoring of status. Kit includes all paris and instruetions. Liphts nol inctuded. Output via 2 PS52 sochets. Pugss oxtra 2.24 aach. Greal new ki © 49.98 Inc vat and postage lless lights

MORE KITS AND COMPONENTS IN OUR LISTS FREE PRICE LISY Frice istancluded atm CONTAINS LOTS MORE KITS. PCES COMPONENTS

1982 ELECTRONICS CATALOGUE
instudedions, Moroduct descriptions, errcuits all included. Up-to-date price liat enciosed. products are stock lines for fast detivery Send 80 p in stemps or 8 dd $80 p$ to ordier MORE KITS FROM H.E. E.E. and E.T.I PROJECTS IN THE PRICE LIST

ZX HARDWARE

PROFESSIONAL 40 KEY KEYBOARD

- All legends and graphics in 2 colours
- No soldering to ZX81, just plug in
- Propert typewriter keys
- RAM/Printer compatable.

Kit £19.95 Built £24.95 Case $£ 10.20$
Repeat key add on TBA
Range of in/out ports, music boards, motherboards, D to A converter board, write for catalogue.
23 way double sided, gold female edge connector, wirewrap type $\mathbf{£ 2 . 9 5}$
Male connector $£ 1.25$
Ribbon cable $£ 1.40$ per metre
Mastering Machine code book $\mathbf{5 5 . 5 0}$
Programming for real applications $\mathbf{£ 6 . 5 0}$
Tape for real applications $\mathbf{E 1 1} 25$

HARRIS \& LOCKYER ASSOCIATES

(Sole distributors for Redditch Electronics) DEPT ???
33 PEDMORE CLOSE, WOODROW. SOUTH REDDITCH, WORCS Tel. (0527) 24452
Prices included VAT + PGP
Overseas add £1.80 postage
Delivery 3 days for in stock items else allow 28 days
Official orders welcome
Send SAE for free catalogue

SOLDERING/TOOLS

ANTE
SOLDERINGIRON STANDEZ. 40 SPARE BITS Smat, standard, brge. For XS And $X 26$ irons 650 rach
SOLDER Handy Eize 99 p SOLDER CARTON E1 84 DESOLDER BRAID 68p DESOLDER PUMP 6848 HEAT SINK TWEEZERS 29 HOW TO SOLDER LEAFLET 12p LOW COST LONG MOSE PU COW COST LONG NOSE PLERS 11.68

HEPING HANOS JIG 56.30

VERO SPOT FACE CUTTER E1.40
VERO SPOT FACE CUTTER EI PIN INSERTION TOOL 1198
VEROPUNS fok of $10010.1{ }^{\circ} 520$ MULTIMETER TVPE I 11.000 opv) MULTMEYER TYPE 2 DO.co © 06.66 wh trancister testor. Very good c14.75 CAOCODILE CLIP TEST LEAD SET. Y leads wth $20 \mathrm{clips}98 p$
RESISTOR COLOUR COOE RESISTOR COLOUR COOE CALCULATOR WIRE PACK TVPE CONNECTING WIRE PACK TVPE
ED. 11 caiours................... $49 p$

SEMICONDUCTOR DATA BOOK.
 GLASS MERCURY TBLT SWITCHES
, SPST pco mounling Slide Switches TH 38 LR . omkreer 3 tor BPWA1 I. R. detector 3 io LM394CH.

LUMINATED MAGNIFIERS Smel I' * ditin 15 m mag. Smal 2" dian (5x maga) CASTIRON VICE SCREWDRIVER SET 1.14 OCEET YOOL SET. UROBREADBOARD SECBREADBOARD SJECBREADBOAMD 5620 IMBOARD 1 BREADOOABD 5 VEROBLOC BREADBOARD . . C 20

MAGENTA ELECTRONICS LTD
 EY14. 135 HUNTER ST., BURTON-ON-TRENT, STAFFS DE14 2ST. 0283 65435 MON. FRI. 95. MAIL OROER ONLY ADD 45D P \& P TO ALL ORDERS

PAICES INC VA

\square

OFFICIAL OADERS WHLCOME
 Doduct iox from prleas shown Payment. ACCESS And BARCLAYCARO (VIPA) OROERS ACGEPTED BYPNONE OR OROERS ACCEPTEO saÉall enquites.

ALARNS:

OKITS £32, $£ 50, \mathfrak{£ 7 5}$, E 85 including full instructions 0 CONTROL PANELS £18, £23, £29, £370BELL BOXES $\mathbf{£ 6 . 2 5 , ~ £ 7 . 5 0 \bullet}$ -PRESSURE PADS $£ 1.06, £ 1.45,12.45$ - 4 CORE CABLE 1100 ml E8eSIRENS $£ 7.50$ - CONTACTS $72 \mathrm{p}, 74 \mathrm{p}, 76 \mathrm{p}$
-ULTRASONCIS £34.500 DOOR PHONES $£ 49.42 \circ$
BUY A KIT OR DESIGN YOUR OWN SYSTEM
send sae or phone now for free fully hlustaated catalogue.
IT TELLS YOUALL YOU NEEO TO KNOW Cerrisge Included. VAT Extre 15\%

VERY LOW DISTORTION AUDIO SIGNAL GENERATORS. (.002\%)

Model AO 149ba (bastery model|
£41.50 (p.p. © 2.26)

Orner mosm.

113 A cets owan
113 x
C95 66
C37 58
538
528
Mans wermont arys.
S.A.E. To thit hes of sbove pita function Gerespors wis
veltmexers, M. If sig Gen .

TELERADIO ELECTRONICS,
325, Fore St., London N9 OPE.
01-807 3719.
Closed Thursdays.

Personal Software is a new quarterly publication from the people who b::ag you Computing Today. To celebrate the launch of the BBC M.2crocomputer our first issue will consist of more than 20 programs covering Domestic, Financial, Educational, Games and Scientific areas.
All the programs are fully tested and documented and the listings have been produced directly from the BBC Micro to eliminate errors. As an additional service we are offering copies of the programs on tape through our CT Software organisation.
As well as featuring the best software from previous issues of Computing Today converted for the BBC Micro in order to show off its advanced features, the publication also includes a number of specially commissioned programs which reveal even more special functions.
If you own or have ordered a BBC Micro, or are just looking for a collection of Extended BASIC programs to convert to your system, then you need Personal Software: BBC Programs.
Personal Software will be on sale at your local newsagent from Friday 14th May at $£ 1.95$ or you can order directly from us at $£ 7.80$ per annum or $£ 1.95$ per copy. To ensure a single copy or a complete year's supply fill in the form below - you can even spread the load with your credit card.

SUBSCRIPTION ORDER FORM

Cut out and SEND TO

513 LONDON ROAD. THORNTON HEATH SURREY. CR4 6AR.

Please use BLOCK CAPITALS and include past cudes.
Name (Mr Mis Miss)
doloto accordituin
Address \qquad

Sigãarure
Dote \qquad

[^4]
DESIGNER'S NOTEBOOK

This month we're dipping into the Notebook of Phil Walker, one of ETI's project editors, and showing you some of the unusual techniques he's collected.

We depart from the usual style of Notebook this month to bring you a pot-pourri of small circuits and techniques that you may not have come across before. Ever needed a two-bit DAC? An awkward low-current supply rail? Logic level shifting? Look no further, these are just three of the nine design ideas presented here.

Uprated Zener Diode

This circuit can be used to simulate a high power zener diode where the correct component is not available or too expensive. The configuration increases the allowable dissipation in the circuit up to the limit of the transistor or the diode rating times the transistor current gain. The stabilised voltage is about 0 V 6 to 1 V greater than the nominal zener voltage. The variation of output voltage with load current may not be quite as good as a normal diode but this may well be offset by convenience or cost considerations.

Single Output Pulse From An Input Level Change
When dealing with asynchronous inputs to a digital system it is often necessary to signal that a change of input has occurred. This circuit is mainly concerned with producing a single pulse synchronous with the system clock when the input chianges state. The output is a pulse, one clock period wide, after the input goes from high to low or vice-versa (depending upon which output is used).

If only the falling edge of the input is of interest, then the input signal may be taken to the set inputs of the latches. This will enable the circuit to respond more quickly and reliably to successive pulses. In general the clock frequency should be at least four times the input frequency.

TTL to CMOS Logic Interface

When using mixed logic families it is necessary to transfer the signal from one set of logic levels to another. If all the devices are operated from the same supply rails this is easy, but if the rails are different then some form of interface circuit is needed.

For a TTL to CMOS interface this can be most simply a TTL gate with an open collector output and pull-up resistor, but if this is not available then the following circuit may be used. The circuit operates quite well for low to medium frequencies.

Two Bit A/D Converter

This is a very simple circuit which gives an approximate conversion of an input voltage level to a two bit binary code. Its accuracy is limited by the output circuitry of the op-amps and for best results CMOS types could be used.

As the input voltage rises from 0 V , at first both the A and B outputs are low. This makes the voltage at point X about onequarter the supply voltage. As the input voltage reaches this level, output A will go high. Later, when the input voltage reaches half the supply voltage, output B will go high. This then makes the voltage at point X go to three-quarters of the supply, forcing output A to go low. Still later, as the input voltage continues to rise it will reach this last value and output A will again go high.

The reference for this circuit is the supply rail. If the opamps or comparators used cannot drive to very near the supply rails then adjustments may be made to the resistor values to compensate.

Transistor Function Generator

A one transistor circuit in which the output voltage follows the input up to a threshold set by R1 and R2. The output then falls at a rate determined by R3 and R4 until it is virtually zero. By varying the resistance values many different transfer functions can be obtained.

Secondary Mains Switching

A novel way of switching a mains load without having mains voltages on the switch itself is to put the switch on the secondary of a suitable step-down transformer with the primary connected in series with the load. The transformer primary presents a high impedance when the switch is open and a low impedance when it is closed. The main disadvantages of the arrangement are that the switch must carry a larger current than normal and the transformer must be rated for about the same power as the switched load.

Simple Pulse Burst Generator

Using a 4093 CMOS quad NAND gate package it is very easy to make a circuit which produces bursts of pulses. These bursts have the property that they are composed of complete pulses, all of which have the same duration. The circuit shown here is configured to produce a variable number of pulses in each burst while the repetition rate of the bursts remains roughly constant.

The first IC section produces the variable mark/space ratio burst control signal, the next two sections are the gated oscillator while the last section acts as a buffer and gives the output as positive-going pulses.

The frequency of operation for both sections is determined by the product of the capacitance and the fixed plus variable resistance. If a 50% fixed duty cycle is desired then the resistor/diode combination can be replaced by a fixed resistor in series with a variable resistor.

Bistable Touch Switch For Analogue Signals

This uses two sections of a 4076 or 4066 CMOS switch IC. One section of the device is used as a latch, while the others can be used as a changeover switch or as three make or break switches.

A similar switch can also be made using a 4053 triple 1 of 2 selector. In this case we get two analogue change-over switches with a bistable action. Either of these circuits could be used where audio control or signal selection is required but the hiest of $f i$ is not essential.

Extra Supply Rails

A 555-type timer IC can be used to provide that awkward low current supply rail when an extra battery would be inconvenient. The device is connected as a free-running astable oscillator and drives a simple charge pump. The polarity of the diodes and capacitors in the output circuit determines whether the output is positive or negative. Output impedence of this circuit is usually quite high, being determined by the capacitor values. The capacitor values should not be too high as this will overload the output circuit of the IC.

If the standard type of 555 IC is used the main supply rail should be decoupled at the IC pins with an electrolytic capacitor to prevent the well-known switching spike of the device affecting the rest of the circuitry.

The output voltage from this arrangement will range up to about equal to the input voltage, superimposed on to the relevant supply rail.

ETI

EEECTRONIC IGNITION Makes a good car befter

TOTAL ENERGY DISCHARGE Alectronic ignition gives all the well known advantages of the best capecitive discharge systems.
PEAK PERFORMANCE \longrightarrow higher output voltage under all conditions.
IMPROVED ECONOMY _ no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discherge system's ability to firs fouled plug.
ACCURATE TIMING prevents contact wear and arcing by reducing load to a faw volts and a fraction of an amp.
SMOOTH PERFORMANCE \longrightarrow immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK 3% times the mergy of ordinary capacitive systems - $31 / 2$ times the power of inductive systems.
OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING _ full spark power even with low battery.
CORRECT SPARK POLARITY unlike most ordinary C.D. systenis the correct output polarity is maintained to avoid increased stress on the H.T, system and operate all voltage triggered tachometers.
L.E.D. STATIC TIMING LIGHT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absence of Inverter 'spikes' an the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY un inherently more reliable circuit combened with top quality components - plus the "ultimate Insurance" of a changeover switch to revert instantly back to standard Ignition.
IN KIT FORM
th provides a top performance
dectronic ignition system at less than half the price of competing ready. built systems. The kit includes everything needed, mwen a length of solder and a tiny tube of heatsink compound. Detailed easy to follow instructions, complete with circuit diagram, are provided - all you need is a small soldering iron and a few basic tools.
AS REVIEWED IN
ELECTRONICS TODAY INTERNATIONAL June '81 Issue and EVERYDAY ELECTRONICS December ' 81 Issue

FITS ALL NEGATIVE EARTH VEMICLES.
6 or 12 volt, with or without ballass
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse types (Smiths pre 74) require an adaptor = PRICE 22.95

STANDARD CAR KIT
 £ 14.85
 Assembled and Tested
 £ 24.95

TWIN OUTPUT KIT £22.95
For Motor crcles and CARS with wimi impition sytems
Assembled and Tested £ 34.70

PLUS
£1.00 U.K. P. \& P. Prices Include VAT.

ELECTRONIZE DESIGN

Dept. D. Magnus Road, Wilnecote Tamworth, B77 5BY

TECHNICAL DETAILS

The basic function of a spark Ignition system is of ten lost among claims for longer "burn times' and other marketing fantasies. It is only necessary to consider that, sven in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the fuel is ignited the spark is insignificant and has no effect on the rate of combustion. The essential function of the spark is to start that combustion as quickly as possible and that requires a high power spark.

The traditlonal capecitive discharge system has this high power spark but, due to it's yery short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Bacause of this most manufacturers have abandoned capaclivive dilscharge in favour of the cheaper inductive system with if's low power but very long duration spark which guarantees that sooner or later the fuel will ignite. Howevef, a spark lasting 2000uS at $2000 \mathrm{rtv} / \mathrm{min}$. spans 24 degrees and 'later' could mean the actual fuel ignition polnt is retarded by this amount.

The solution is a very high power, medium charation, spark generated by the TOTAL ENERGY DISCHARGE systam. This gives ignition of the weakest mixtures with the minimum of timing delay and variation for a smooth efficient engine.

SUPER POWER DISCHARGE CIRCUIT A brand new technique prevents energy being reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the weakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems,

HIGH EFFICIENCY INVERTER A high power, rogulated inverter provides a 370 volt energy source - powerful onough to sture twice the energy of other designs and regalsted to provide sufficiont output aven with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by coniact volt drop, contact shuffe, contact bounce, and external transients which, in many designs, can cause timing errors or dimaging unetimed sparks. Only at the correct and precise contact opening is spark produced. Contact wear is almost eliminated by reducing the contact breaker current to a low level - just sufficient to kuep the contacts clean.

TYPICAL SPECIFICATION
TOTAL ORDINARY ENERGY CAPACITIVE OISCMARGE DISCMARGE

SPARK POWER (PEAK)
SPARK ENERGY
140 W 90 W
(STORED ENERGY)
$36 \mathrm{~mJ} \quad 10 \mathrm{~mJ}$
$135 \mathrm{~mJ} \quad 65 \mathrm{~mJ}$
$500 \mu \mathrm{~S} \quad 160 \mu \mathrm{~S}$
OUTPUT VOLTAGE (LOAD 50pF EOUIVALENT TO CLEAN PLUGSI
$38 \mathrm{KV} \quad 26 \mathrm{KV}$
OUTPUT VOLTAGE (LOAD 50pF $+500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGSI

26 KV 17 KV
VOLTAGE RISE TIME TO 20 KV (Loud 50pF)
$25 \mu S \quad 30 \mu S$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called reactive systems.

ETI PCB SERVICE
Up until now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! As of this issue all (non-
copyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our prototypes, so you can be sure it's accurate, and will be finished to the high standard you would expect from ETI.
In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please note that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

SECOND GENERATION POWERFET AMPLIFIERS

NEW DESIGNS

With the introducion of two now bowds PANTECNNIC have puahed forwird the performance and relability of their powerfet amplifiers. Four key improvemami Mave been incorportad in these second geninration moduites -
1.1 The use of H-PAK powerfets, resulting in improved thermal efficiencreand conseruenty enhanced power output capablities.
2.) Low C_{Og} drivers now in power trenistos pectapes. mamlaining the supert H
3.) Seformonce ant improving tirver retatilty.
3.1 Separate diviun and inpul wupply rals atowing at 10% increase in arabsoin ouspul
4.) Arioge mode inpur pin showno instant taid
wahout the noed for oxure crowiry. wathout the nond for extra criccutry.

PFA100 Specification

THO OOM 20 KH

Price $£ 18.45$
Damios byans
тоны sese

PFA100 120W into 8 :

PFA200 Specification

Dotpul Power ima es now Mis - \& Fivl ThD llank it loow ocent fyp

Price 125.95
Danomion form
mall ane
PFA200 180 W into $8:$
300 W into 48
POWER SUPPLY COMPONENTS
Toroidal Maina Tratstorrmens

Voltage	160 VA	225 VA	300 VA	500 VA	625 VA
40.040	11.81	$13-75$	$15-50$	-	-
45.0 .45	-	13.75	$15-50$	$20-45$	-
50.0 .50	-	-	-	$20-5$	27.53

5paciel low thuk windings Caeriage + VAT inclexted

254 900pry 8ridye rectitior	8350
10.000 uF BoV Electromica	4.75
30,000 5 F 75 V EL	111.50

Phone or write for edvice on selecting the nighs companents for you aprticular application.
All prices VAT inc, Carnage 75 . Trade linse avaitab Ask about our presmpa, protection boarde and lower and higher power emp moctike.

THE POWERFET SPECIALISTS pantechnic
(incorporating J.W. Rimmer)
Dept ETI/7. 148 Quarry Sircet. Liverpool L25 6HO
Telophons 0. 240 gesh
Tochnoleat ampuries
37 Gruen tome London Ns 10Y Tel 01 B00 6667 luck sump 10 selected kits for first-time builders

Shortucase Listenter's Receiver
With Heathkit, youre all set for a great deal. And not just big savings.

Whichever kit you choose, you'll find it easy to build. Simple, but detailed instructions take you through every stage. Everything is included. Even the solder you need Disital Chock is there.

Follow the steps and you'll end up with a handcrafted, well-designed piece of equipment. One you'll be proud
of. Because you built it yourself.
There are 10 great kits to start you off. An interesting choice of a digital clock to a metal locator, including a short wave listener's receiver, windspeed and direction indicator, digital readout electronic scale and five more useful kits.

All at 30% off to first-timers. Send for your catalogue right now for a start.

(UK).Limited, Dept (ET7) Bristol Road, Gloucester GL2 6EE. To start me off. please send me a copy of the Heathkit catalogue. I enclose 28p in stamps.

Melal Locator Windspeed and Direction Indicator

Name
Address

HEATD Youbuild onour experience HEATHKIT

POIYSTYRENE CUTTER

The ETI Hotwire is just the thing to get you going. No, it's not for stealing cars, it's for modelling. Turn that waste polystyrene packing into beautiful models with the Hotwire and some imagination. Design and development by Phil Walker.

This easy-to-construct project is a controller for a hot-wire polystyrene cutter. This method of cutting foam polystyrene is probably better than most others as it does not create any rough edges or crumbs; it actually works by melting the material as it comes into contact with the hot wire.

The object of the controller is to maintain the wire at a fairly constant temperature sufficient to melt the polystyrene foam quickly but without charring. This is accomplished by using a simple type of phase controller to regulate the power applied to the wire. The circuit employs a 747 dual op-amp, both parts of which are used as comparators. Speed of operation is not critical here as the circuit is operating at mains frequency $(50 \mathrm{~Hz})$.

Taking A Pulse

The first part of the circuit produces a 100 Hz pulse signal which synchronises the rest of the circuit to the output from the bridge rectifier. The second part generates a variable time delay which is used to regulate
the amount of power developed in the cutting wire. The longer the time delay, the less power is developed and vice versa.

The control element used in this project is a thyristor as this will withstand the high peak currents in the circuit without the necessity for large drive currents.

Construction

This is fairly simple since most of the components are mounted on the PCB. Make sure that the diodes and IC are the right way round. Bolt the small heatsink to the rectifier bridge using some heatsink compound before mounting it on the board. Allow it to stand about 6 mm away from the board to avoid thermal stress effects. The thyristor is mounted on top of the larger heatsink, both being held by the same screw. Heat conductive paste should be used here as well. R9 will get quite hot in operation and should be stood away from the board if possible to allow air flow around it.

When mounting the PCB in the case, it is advisable to do so with the
capacitor Cl at the bottom so that it is not heated by the other components.

Fairly thick wire should be used for connecting to the transformer and output sockets as they will be carrying several amps. RV1 is wired so that minimum resistance occurs at clockwise rotation.

Some Cutting Remarks

In our prototype the cutting head was made from two short pieces of slotted aluminium extrusion of the type sold for shelving systems. These were screwed to a piece of wood to form a handle while also insulating them from each other. The steel wire was clamped with some large nuts and bolts so that it was under some tension. The wires to the control unit were also clamped to the large bolts and held in place along the arms of the head with sticky tape.

It is recommended that the ceramic insulators sold by good electrical shops be used for the ends of the cutting wires in order to keep the metalwork isolated. Plastic connector block could be used but may melt under extreme circumstances.

Once everything is working correctly you can begin to exercise your creative talents on the nearest piece of polystyrene. Apart from a modelling tool, a gadget for $3-D$ doodling and something to keep the kids quiet during the summer holidays, you could use the Hotwire for cutting out large letters - ideal for advertising displays or exhibition stands.

BUYLINES

[^5]
HOW IT WORKS

The 15 V AC from the transformer is rec lified by BR1 to give a raw 100 Hz pulsating DC supply. C1 is charged to the peak voltage of this supply via D1 and provides the power for the circuitry. The raw DC sup ply is taken via R2 to IC1a where it is compared with the voltage across ZD1. The output from IC1a consists of a train of negativegoing pulses which occur around the zero crossings of the AC input. These pulses are used to synchronise the variable time delay circuit by discharging C2 at the zero crossing of the AC input. The capacitor then charges at a rate set by R4 and RV1 until its voltage reaches the level set by R5 and R6. At this point the output of IC1b changes from its low to high state and switches SCR1 into conduction.

Once SCR1 has been switched on it causes the raw DC supply to be applied across R9 and the cutting wire until the voltage falls to zero at the end of the half cy cle. At this time the thyristor turns off, the variable time delay circuit is reset and starts again. The proportion of the total time for which the output is on is determined by the time delay set by RV1; hence this controls the amount of power dissipated in R9 and the cutting wire. The main function of R9 is to reduce the peak surge current which would flow in the circuit, but it willalso give some protection against inadvertent short circuit (the wire itself has a resistance of a couple of ohms). LED1 is incorporated to indicate when the output is operating and gives a visual indication of the power setting.

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$ unless stated other wise)	
R1	6 k 8
R2	3 k 3
R3,7	1k0
R4	5k6
R5	2k2
R6	15k
R8	1k8
R9	1R010 W wirewound
R10	180R 2 W wirewound
Potentiometer	
RV1	100k linear
Capacitors	
	1000u 25 V axial elec. trolytic
	68 n ceramic
Semiconductors	
IC1	747
D1	1N4002
D2	1N4148
BR1	6 A bridge rectifier, square package, 50 V or greater
ZD1	3V6 400 mW zener
SCR1	2N4443 (see Buylines)
LED1	5 mm red LED
Miscellaneous	
	20 mm 1A6 slow-blow fuse and holder
	Double pole rectangular mains rocker switch
	Mains panel-mounting neon Indicator with integral resistor
	15 V 60 VA mains transformer
Heatsinks (fingerstyle TV21 for thyristor,	
TV4 for rectifier); PCB (see Buylines); case	
(Verobox 21039, $180 \times 120 \times 90 \mathrm{~mm}$); panel mounting socket for LED1; two off 4 mm	
banana sockets, grommet, wire, nuts, bolts,	
brackels etc; $0.010^{\prime \prime}$ steel wire (guitar top	

Fig. 1 Circuit diagram of the ETI Hotwire.

The Hotwire PCB. On the left you can see the earth connection to the pot case.

Fig. 2 Component overlay for the polystyrene cutter.

TORODDALS

The toroidal transformer ts now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been quick to recognise the advantages toroidals offer in size，weight，lower radiated feld and． thanks to l．LP．，PRICE．
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．

Trı	$5 \sin s s^{2}$		coms	maxa
30 m	mav10	$0 \cdot 1$	$2{ }^{2}$	
$\pi_{0 \times 1009}$	$\lim _{\substack{\text { and }}} 1$	${ }_{12}^{12.12}$	18	$£ 5.12$
＋6at	120］3	${ }_{1}^{19.15}$	lim	\cdots
	12， 213	\％${ }^{2}$	${ }_{0}^{0.0}$	virem
	${ }^{12505}$		${ }_{80}$	
	Now	$0 \cdot 6$	：${ }^{6}$	
	，	${ }_{12} 9$	2，	
	22013	13.13	10	£5．70
	2013	2in	18	
	20016	20．83		‥ts ${ }^{\text {en }}$
	$c2017 dick$	2180	${ }_{\text {des }}$	－ 600
	Tome			
	20mo	20	：\％	
	－ 610	\％$\because 6$	－64	
	3．711	20， 12	\％ 21	
	3213	S． 13	边	$\underline{8.08}$
	3014	（1）	23	
	${ }_{3}^{32015}$	苭－28	！ 11	－mom
	32314	\％0\％	渻	－ 71
	32329	9	O 2	
	3－374	220	：\％3	
	2x	2．4）	－31	
120 ba	cesy	$0 \cdot 6$	1000	
	4	2：${ }^{2}$	；${ }^{\infty}$	
	cevid	9． 13	4∞	86.90
	2004	120．29		
	＋2\％	${ }^{\text {che }}$	2\％	－wirn
		80．38	？${ }_{\text {2 }}^{10}$	ที¢ $11 \times$
	${ }^{-107081}$	${ }^{10} 10$	10	
	$\operatorname{cosex}_{\operatorname{tax} \text {（ }}$	200	Oso	
	sedir	$0 \cdot 1$		
	Smold	${ }^{12} 12.17$	\％	
	Lratis	－	\％${ }^{\text {\％}}$	£7．91
	50	80\％	300	
	Cund	N： 0	？ 20	Wymbs
	${ }_{0} 0$	${ }_{4}^{40}$	tim	
	¢0\％	20	9	

$\rightarrow 254$ TTPCS TO CBOOSE RHOT！ －ORDERS DCSPATEIED WITHIN 1 DITS of RECEIPT FOE SIMCLI OR shum penirify ordras
＊ 5 teliz no pulable coaranter

（V）		seconown	mas	merir
225 m	60012	12．12	－ 3	
110.0 .3 mm	60513	150．13	150	
	en014 6.615	18.28	628	20
	60916	25.8	450	． 20
	tavis	20920	375	－avere
	40． 40	$15-35$ 3.40	$\begin{aligned} & 311 \\ & 211 \end{aligned}$	$\cdots=16$
	treets	${ }_{4}^{4}$－ 15	89	romen cosem
	60033	50． 90	23	
	tuetis	128	${ }_{10}^{204}$	
	$\mathrm{Sanc}_{\text {Sel3 }}$	220		
	ratil	N 513	40	
	7 2976	40．11	133	
	nals	27027	612	8017
	${ }^{\text {730，}}$	7.829 0.30	880	7
	P610	\％ H 28	＋20	－av
	10036	a） 00	3．ps	－15
	？${ }^{\text {a }}$ ？ 383	4s－63	313	remes ${ }^{\text {a }}$ 20
	1533 3×220	50.10	$\frac{308}{27 \%}$	
	7 ym 38	720	？$\%$	
	7 Tme	20：	135	
	－0．4	\％．85	1000	
	beay	30635 0.15	${ }_{3} 3$	13.53
	－10926	2033	${ }_{6} 83$	13.33
	bear	$5 \mathrm{C}=04$	\％3	－6801
	623	50.30	300	
	disent	42038	： 9	¢retion
	H008	\cdots	？${ }^{\text {\％}}$	
	Cuso	20	300	
	mont	50．30	10.4	
	hoos	20．38	${ }_{10} 18$	¢1613
	bax	4s．0．s	69	2.
	haly	50.56 $\times \times 28$	i_{56}^{28}	－＊＊＊
	mow	$y+35$ 110	36\％	
	tope	10	24	
	hav	49	210	

ImPOnTANT：Abquation－ah voltagas qaised are FULL LDAD．Phase ade regutation lypure to secandary wohagot 10 sote in olil beso whape．
The oenefits of ILP tocoidal ifronslofmers
ILP iorcodal transtiomers are only that the weight and height of their laminuted equmatenss．and are availaole wah 110 V ． 220 V or 240 V primaries cocec as boilows： For 110 V primary inser＂ 0 ＂in place of＂X＂in sype number．
For 220 V primary（Europe）inser＂ 1 ＂in place of＂x＂in type number．
For 240 V primary（UK）insen＂ 2 ＂in place of＂X＂in lyge number．
How to order freepost：
Use inis coupon，or a separate sneet of paper，to ordar these prooucts．or any products from other ILP Electranics advertisements Ho shamp is neeced 11 you acdress to Freeposs Cheques and postal orders mustibe crossed and oayable to ILP Elecironics Lid． Access and Barclaycaro weicome All UK orders sent wethin 7 cays of recelib of or der for single and small quancity orcers．
Also avaiabie al Enctuovalue，Mapon ano Tochnomatic

Prease send
Total purchase price
I enciose Crieque $\square \quad$ Posta Oroers $\square \quad$ Int．Money Order \square
Detut my Access／Barctaycard No．
Name
Acdress

Signature

Posi to，ILP Electroncs LIC，Fresposi． 4 Granam Bell House．Rocer Close Carlerbury Ci2 TEP．Kent．England．
Toteonone Sales（0227）56778：foctritcal（0227）64723：Teien 965780
（as otrision of
H．Elecaronics Ltot

Each kit contains all cabinet components．accurately machined for easy assembly，speaker drive units，crossovers，wadding．grille fabric． ferminals，nuts，bolts，etc．
The cabinets con be painted or stained or finished with iron on veneer or self adhesive woodgrain vynil．
Easy foolproof assembly instructions supplied．Set of constructor leaflets sent free on receipt of large S．A．E．

Prices：CS1 $\mathbf{(8 1 1 0 B / T 2 7 A) ~ £ 1 1 0 \text { pr．inc．VAT．pluscarr．／ins，£ } 5}$ CSIA（8110AT27A）£103pr．inc．VAT．pluscarr．fins £ 5 CS3（8200G／T33A）E129 pe．inc．VAT．pluscarr．／ins．£10 CS5（ $8200 \mathrm{G} / 801398 / T 33 A$ ）£192 pr．inc．VAT．plus carr．Ans $£ 15$ C57（B139B／B110B／T33A）£250 pr．inc．VAT．plus carr．／ins．$£ 15$

35／39 Church Street，Wilmslow，Cheshire SK9 1AS 1982 Catalogue－E1．50 posi free
Lightning service on telephoned credit card ordersi

HAPPY MEMORIES

Part type
4116200 ns
4116250 ns
4816 100ns For BBC comp
4164 200ns
2114 200ns Low power
2114 450ns Low power
4118250 ns
6116 150ns CMOS
2708450 ns
2716450 ns 5 volt
2716 450ns three rail
2732 450ns Intel type
2532 450ns Texas type

1 off	25.99	100 up
0.95	0.85	0.70
0.90	0.80	0.60
3.30	2.95	2.70
6.15	5.25	4.65
1.25	1.15	0.95
1.20	1.10	0.90
3.45	3.15	2.65
4.95	4.45	3.65
2.05	1.95	1.85
2.25	2.15	2.05
6.40	6.00	4.95
4.25	3.95	3.35
4.25	3.95	3.35

Z80A－CPU £4．75；Z80A－PIO £4．95；Z80A－CTC £4．25
Low profile IC sockets：
$\begin{array}{llllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40\end{array}$
$\begin{array}{lllllllll}\text { Pence } 9 & 10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$
Soft－sectored floppy discs per 10 in plastic library case： 5 inch SSSD £17．00； 5 inch SSDD £19．25； 5 inch DSDD £21．00； 8 inch SSSD £19．25； 8 inch SSDD £23．65； 8 inch DSDD £25．50
74LS series TTL，large stocks at low prices with DIY discounts starting at a mix of just 25 pieces． Write or phone for list．
plasese add 30p post \＆peeking to orders under 115 and VAT 10 totel．Actess \＆Barclaycerd welcome． 24 hour serrice on 1054 422）618．Government E Educe－ fional orders wolcome． 15 minimum．Trate accounts operated，＂Dhone or write HAPPY MEMORIES（ETI）
Gladestry，Kinston，Herefordshire HR5 3NY Telephone：（054 422） 618 or 628

Sendow ordor wo Dupith7 B2 PAKPO BOXG WARE HEATS SMOP AT 3 DALDOCK WARE HERIS

 of remas Cims

HENRY's
COMPUTEB KIT DIVISION

404 EDGWARE RD. LONDON W2 1ED TEL: 01.4026822 - TANGERINE - TANGERINE - TANGERINE MICROTAN 65

mecrotan es comtents

[79.00- - [115 Kit. man fing
YOU MAY DEDUCT
110
FROM MICROTAN 65 KITS AND ASSEMBLED UNITS LISTED HERE
ONLY FROM US
DELIVERY EX-STOCK
POST PAID
Limiteo Quantily Availisble

PARNDON ELECTRONICS LTD,

 Spectel work pach 60 where 10 oth rech es sg

 C1-60 per hunsered
 ```D1. SWITCHES: Gold alued comecl in fully wealed thaw \\ programmuny peoblerm```

DIL SOCKETS: High qualing hew prowile rorlevis
 22 pin -23 p. 24 pin $-23 p .28$ pin -29 p. 40 pun $=42 \mathrm{p}$.

ALL PRICES INCLUDE V.A.T. POST A PACKING - NOEXTRAS MIN OROER - UK $\$ 1$ OO OVERSEAS IS CASH WTTM ORDER PLEASE

ELECTRONIC Lighyning COMPONENTS

DO YOU NEED:- Electronic components, Tools, Test Equipment, Cases, Cabinets and Hardware etc. IN A HURRY 7m?7m?
THEN YOU NEED; - LIGHTNING Eloctroni Components.
WHY 3 P? Because LIGHTNING Strikes out where others fail: -
Express Despatch
In Depth Stock
All New Guaranteed Goods from Leading Manufacturers
With all that going for us, Going to you can you really afford to be without copy of our brand new exciting CATALOGUE
Many PRices Reduced - Many More Stock Lines
Send for YOUR Copy Now ONLY 70p Post Paid.
LIGHTNING ELECTRONIC COMPONENTS
84 Blichmoor Road. Birchmoor, Tamworth Staffs B78 1AB (NOTE New Address)

VIDEO SYSTEMS

It's probably the most advanced piece of engineering you'll ever have in your home - but it isn't that difficult to understand. Stan Curtis makes the hardware look easy.

Abstract

n a matter of just a few years home video has become big business; second only to home computers as a means of taking away our hard earned money in exchange for boxes of wonder electronics. The pace of development continues with four video recorder formats now in use, three video disc formats imminent in the shops, and new camera/recorder/television technologies just around the corner. This rate of product change (Crundig released then replaced three recorders in 15 months!) coupled with a puzzling reluctance on the part of the manufacturers to release anything resembling technical information has left the electronics enthusiast a little in the dark. Many have just thrown in the towel and work on the basis of "an input socket and an output socket and what's in between is none of my business". Others have made innocent enough enquiries of the so-called technical departments of some of the importing companies. The standard responses vary from a shovel-load of pseudo-scientific mumbo-jumbo to downright suspicion of the "why do you want to know; you're not going to tamper with one of our machines, are you?" kind.

So the time has obviously come for ETI to present a basic primer on the state of today's video technology together with some background on basic video principles. This should, hopefully, deflect the Editor from any more mutterings about a do-it-yourself ETI video recorder! (Don't you bloody believe it! - Ed)

The Basic Principles

Before you can start to understand how video equipment works it is useful to learn a few of the principles and a few of the key words. For example, just how do we get a picture on the television screen? Each complete picture is termed a frame and lasts for $1 / 25$ th of a second; in other words synchronised to the 50 Hz mains supply with 25 frames per second. Each frame consists of 625 horizontal lines (in the UK) which are written across the screen during the frame time. Unfortunately the picture rate of 25 per second causes a flickering effect which is most annoying, so a way had to be found to increase the effective picture rate to 50 per second without increasing the video bandwidth. The answer was interlaced scanning, where the picture is scanned at 50 frames per second rate (to avoid flickering) but on each scan only half the lines are traced out, leaving a gap between each pair for the missing lines. Each scan is called a field and during the second field all the missing lines are scanned. The picture is made up of odd lines, even lines, odd lines, etc so that in every second exactly the same amount of data is transferred (hence the same signal bandwidth) but without the flicker.

That Syncing Feeling

In order that the picture be accurately reconstituted on the screen it is necessary that there be some sort of synchonisation between the signal source and the receiver. The synchronisation is achieved by the use of pulses. There is a sync pulse at the start of each line and a series of sync pulses at the start of each field. These field sync pulses are repeated at half line spacings so that the line sync is not lost and a series of equalising pulses (of opposite mark/space ratio) are also added to maintain the average signal level. This arrangement is probably best understood by
studying the figures given in the TV Bargraph project this month.

Sync pulses and picture signals are kept separate by keeping the former below and the latter above the black level. Thus it is quite simple to separate out the sync pulses at a later time. The combined signal of both picture information and the sync pulses is usually referred to as composite video.

Fig. 1 The bandwidth of signals during video FM recording.
A very wide bandwidth is required to handle this signal which extends down to DC. The DC component must be accurately maintained because any change in its value will affect the average brightness of the signal. The high frequency bandwidth can be calculated by considering the picture resolution. Each of the 625 lines has a duration of 64 microseconds of which 13 microseconds is used for a black margin at either side of the picture. Thus for horizontal resolution of 575 picture elements there will be a need for a bandwidth of about 5.6 MHz . Similarly we can see that if a domestic video cassette recorder has a bandwidth of 3 MHz the horizontal resolution will drop to below 300 picture elements.

The video picture signal varies in DC level at any instant, the voltage determining the grey tone of the picture. The highest DC level represents white while the lowest DC level is black, the greyness varying linearly between these limits. The brightness signal is termed the luminance signal to distinguish it from the colour or chrominance signal.

Hue And Y

Once colour is considered the video theory becomes steadily more complex. Colour has two characteristics; hue which describes its colour (red, yellow, etc) and saturation which describes the percentage depth of the colour. Thus a 10% red will be a faint pink while 100% will be a deep strong red.

The colour camera converts the colours of the subject into three outputs, red, green and blue, from which any of the original hues can be reconstituted. They can also be mixed in the ratio $30 \%-59 \%-11 \%$ to produce the luminance signal (γ) :

$$
Y=0.3 R+0.59 C+0.11 B
$$

The percentages are chosen to follow the sensitivity of the eye. The chrominance signals are then derived by subtracting Y from
each to give the three difference signals $R-Y, G-Y$, and $B-Y$.
Although it is possible to send each of these signals separately it is obviously more convenient to combine them as a single colour signal. The first operational system to do this was the NTSC developed in the early 1950s in the USA. Later came the SECAM system in France and the PAL system developed by Telefunken in Cermany. The three systems are incompatible with each other as many people have learned to their cost when they have imported NTSC equipment from the USA.

Fig. 2 How colours are determined by the phase angle of the sub-carrier signal.

The colour signal is encoded using suppressed carrier quadrature modulation. This means that the $R-Y$ signal is modulated on the 4.43 MHz subcarrier wh:!st the $B-Y$ signal is modulated on the same subcarrier 90° out of phase. When the two subcarriers are combined the result is a single signal whose phase angle varies in relation to the two components (see Fig. 2).

Thus the hue of the colour is defined by the phase angle and the saturation by its amplitude. To do this we have only used the $B-Y$ and $R-Y$ components since the $G-Y$ component can always be derived from the other two.

Suppressing The Truth

Now we come to the suppressed sub-carrier bit. The chosen frequency of 4.43 MHz sits right inside the 5 MHz luminance bandwidth and its presence would therefore cause a visible pattern on the screen. The solution is to suppress the carrier frequency leaving just the sidebands.

Again some sort of synchronising signal is needed to enable the colour signal to be reconstituted accurately. So for colour a 10 cycle burst of 4.43 MHz carrier is inserted ahead of the video picture signal. This gives an accurate reference frequency to enable the suppressed sub-carrier to be reformed by a local oscillator in the TV which is 'kicked' into sync by this colour burst. The phase of this burst also acts as a reference in decoding the difference signals.

Fig. 3 The composite video signal with line sync pulses.
The foregoing applies to both the NTSC and the PAL systems but in the latter the phase of the $R-Y$ signal is reversed on alternate scan-lines and so the reference colour burst changes phase through 90° on alternate scans. This allows phase errors to be averaged over adjacent lines, avoiding the colour shift which has earned NTSC the nickname 'Never The SameColour.

Video Cassette Recorders

The first video cassette recorder appeared in the early 70 s
with Sony's $3 / 4$ " tape U-matic being introduced in 1970 and the Philips NR-1500 system a year or so later. Both systems used the helical scan technique (see the box) and although both aroused some interest in the domestic market the great majority were sold to educational and industrial users. In time the U-matic recorders became the standard format for industrial users while Philips went on to the 1700 series and, to all intents and purposes, had the domestic market entirely to themselves.

However, in late 1975 Sony introduced the first examples of their Betamax home VCRs, whose technology was broadly based upon the U-matics although scaled down to use half-inch tape. Not long afterwards JVC (despite making U-matics under license from Sony) jumped in with their competing system, VHS. Initially this system offered longer recording times than Betamax (two hours) and for a few years a war was waged in the main market (the USA) with each format trying to offer longer play times. Indeed half-speed VCRs went on sale in the USA, and although they offer frugal use of tape the picture quality is truly awful. The broadcast video bandwidth is about 5 MHz and the average VHS recorder can manage about 2.8 MHz . Halve the recording speed and the video bandwidth drops to 1.4 MHz while the video noise level rises. The result is a fuzzy, grainy picture which is almost unviewable. Once VHS reached a playback time of six hours (half-speed) the competition became pointless - after all how many six hour movies do you want to watch?

HELICAL SCANNING

A conventional audio tape recorder uses linear scanning - the tape moves across the recording heads horizontally with the audio signal being recorded along the length of the tape. This system works well at the tape widths and speeds used because of the limited audio bandwidth (only 20 kHz or less). However, a video signal has a much greater bandwidth, as described in the main text; to record the TV pictures requires about 200 times as much information per second, yet the video tape is only four times wider than audio tape and travels about the same speed. How can the machine pack all the extra information on?

The trick is to make the recording head move as well; a speed of approximately 1500 RPM is used. Instead of passing the tape horizontally across the rotating head drum, the tape guides position it at an angle as shown in the diagram. Two tiny recording heads are positioned half-way up the drum and on opposite sides, so that one is always in contact with the tape. The rotation of the drum means that the heads sweep across the tape at about 5 metres per second; 200 times faster than an audio recorder. As the first head passes across the tape it writes a diagonal stripe of information; the slow movement of the tape across the rapidly spinning drum ensures that the second head will write its stripe adjacent to the first, and so on. This technique is called helical scanning and is used by all video recorders of all formats at present.

EEC VCC

Meanwhile back in Europe Philips, working at what seemed to be a leisurely pace, conceived their 2000 system which gradually became known as the VCC (Video Compact Cassette). The system was launched in partnership with Crundig and at once a major blunder was revealed. Somewhere along the line both companies arrived at a different understanding of the same drawing and positioned their audio heads at different points. The result was instant incompatibility between the two compatible models. There were red faces and dark mutterings all round, after which it would appear that Crundig dug their heels in and Philips did some quick mods! In its final form the VCC format offers a tum-over cassette offering four hours recording-time per side - so on the basis of playing time they have really socked it to the Japanese. The picture quality is very good and this is due in part to the clever use of a technique called Dynamic Track Following (DTF) which is explained in the second boxed section.

A more recent format intended for portable recorders is the Funai which also appears under the Technicolour and Crundig brand names. These recorders use an audio-sized cassette filled with $1 / 4$ " metal tape. Although the quality is very good the high writing speed has limited the playing time to 30 minutes. The tape transport mechanism is very small and light with the result that the weight of a typical $1 / 4$ " video recorder is now not much above 3 kg ; hence the Japanese are now designing combined camera/recorders.

DYNAMIC TRACK FOLLOWING

The Philips and Grundig VCC video cassette recorders use an ingenious control system called Dynamic Track Following (DTF). Unlike the VHS and Beta recorders the VCC machines do not have a linear control track recorded on the tape; instead they have an arrangement based around the use of two video heads whose height can be adjusted by the means of a piezo-ceramic element.

During the recording process one head is held in a fixed position and the other is capable of being moved by a special error correcting signal. When the vertical blanking period occurs (and hence no visible picture) Head One is switched to playback and it sweeps the track just recorded by Head Two. One of the recorded signals is of 233 kHz and the detected signal causes Head Two to be moved until this signal reaches its maximum amplitude. When this is achieved the two heads are in their correct relative positions.

During playback the control is maintained by detecting pilot signals recorded along with the video signal. If the playback head reads only one signal then it is tracking correctly. If, however, it is mistracking it will sense two frequencies and an interference (or beat) frequency will occur. Thus if Head One is too high the error signal will be 47 kHz , and too low, 15 kHz . For Head Two too high the error signal will be 15 kHz and too low 47 kHz .

With this system the video heads will always be positioned correctly even with a still frame playback - in consequence a feature which VCC recorders excel at producing.

There is, though, a possibility that as the tape speed drops both heads will be lowered until they run out of their range. This is corrected by the Automatic Tracking Control (ATC) which, when it senses both heads mistracking, feeds a signal to the tape servo system to increase the linear tape speed.

Transports Of Delight

Electronically all these video cassette recorders are basically the same, their main differences being in the design of the tape transport; each format has adopted its own tape path and arguments continue about which is the best arrangement. For example, on Betamax recorders the tape remains wound
around the video head drum at all times and the picture can still be viewed when the tape is being wound or rewound. The normal VHS deck has to unthread the tape for fast wind, rewind, and stop operations and this causes a tedious operating delay if you want to wind, check the picture, wind etc while looking for a particular portion. The latest generation of VHS machines can keep the tape against the head drum for cuing back and forth so the differences between these two formats are gradually becoming fewer.

The linear tape speeds are lowest on the Betamax (1.87 $\mathrm{cm} / \mathrm{sec}$), $2.34 \mathrm{~cm} / \mathrm{sec}$ for VHS, and $2.44 \mathrm{~cm} / \mathrm{sec}$ for the Philips VCC. Similarly there are differences in the writing speed, Betamax being $6.6 \mathrm{~m} / \mathrm{sec}$, VCC $5 \mathrm{~m} / \mathrm{sec}$, and VHS $4.85 \mathrm{~m} / \mathrm{sec}$. The linear speed is important to the fidelity of the soundtrack because the audio signal is recorded conventionally along a narrow track at one edge of the tape. As all three of these VCR formats have a linear speed of about half that of an ordinary audio cassette deck, the audio quality is for the most part pretty indifferent. A typical video recorder can have its audio performance compared to a low-cost cassette deck and still come out badly. Some video recorders now fit Dolby B, which is worth a 10 dB improvement on the signal-to-noise ratio, and Toshiba have a similar noise reduction system.

How Do VCRs Work?

The drawings show the block diagram arrangement of the video record and playback circuits. First of all it must be remembered that the recording process can only handle the wide bandwidth of the video luminance signal (DC to over 3 MHz) by using frequency modulation. The carrier signal frequency will vary with the amplitude of the video signal. Thus the peak white level may shift the carrier to 4 MHz , a black level to 3.3 MHz , and the sync pulses down to 3 MHz . This change in carrier frequency is referred to as 'deviation' and the total modulation is called 'modulation index' (M). Then

$$
M=\frac{\text { deviation }}{\text { centre frequency }}
$$

and for video recording will typically be 0.5 . The FM will be passed through a low-pass filter to remove all components above the maximum deviation to give a band response as shown in Fig. 1. The process of frequency modulation is achieved by letting the luminance signal control the frequency of an oscillator whose output drives the recording head.

Fig. 4 A typical FM modulator used in a home VCR.

Fig. 5 Block diagram of a VCR playback system.

Fig. 6 Block diagram of a VCR recording system.

The chroma or colour signal doesn't modulate the same oscillator, even though on television signals it's modulated on a high-frequency sub-carrier (4.43 MHz). Instead the chroma signal modulates a low-frequency subcarrier of 750 kHz .

Two Heads Are Better Than One

If we now look at the block diagram we can see that on replay the output from the two video heads (altemately as they sweep across the tape) is first fed to a tuned circuit which resonates at about 5 MHz to peak up the frequency response which is falling off rapidly above 3 MHz . The output from the two heads is then balanced and passed through a low-pass filter to remove out-of-band noise, etc. Deemphasis follows to equalise the HF boost applied during recording. There then follow drop-out compensation and noisereduction circuits which we will look at separately as they are of some interest. Then, after limiting to remove any AM components the signal can be demodulated and the chroma component frequency shifted to restore it. The chroma and luminance signals can then be mixed in a video amplifier to give a composite video output

The recording process is almost the reverse with a slight variation. The chroma signal is frequency shifted but the luminance signal must have its maximum and minimum amplitudes defined by DC clamps before modulation in order to establish the maximum deviation. The two FM carriers are mixed at the output and fed to both of the video heads.

Fig. 7 A typical record drive amplifier as used in a IVC VCR.

Noise Coring

Video noise is an unavoidable result of the recording process, although it can be reduced with the best designs of video recorder and high-performance video tape. The effect of the noise is to make the picture grainy and hence lose the sharpness of lines and edges. To improve the subjective appearance of a picture, VCR manufacturers use a videonoise reduction circuit technique which is called noise coring. This works in the same way as a replay-only noise gate in audio. First, the high-frequency video signal is separated from the low freqencies. The HF signal is put through a clipper or limiter
which removes the noise energy located on its average axis. The HF and LF signals are then recombined.

As with so much video circuitry there is virtually no value in drawing a circuit diagram of such a system, because it would consist of just three integrated circuits and a few resistors. For example, JVC use the 9V107 Filter/Amplifier, the SN7667 Limiter, and the VC2011 Mixing Amplifier/Buffer. The latest models use even fewer ICs!

If excessive coring is applied the picture will appear sharp but will also seem very unnatural, because much of the fine picture detail will be lost along with the noise.

Drop-out Compensator

The term drop-out is almost selfexplanatory. When a segment of the tape has shed its oxide or has an embedded impurity then the recording will be interrupted and the signal will drop out. On the television screen these gaps are visible as random white lines that appear fleetingly on the screen. Get enough of them and they'll certainly ruin your viewing, so again the manufacturers have sought ways to minimise their effect. One technique is to substitute a picture line for the missing one but without an expensive memory this seems, at first glance, more than a little difficult.

Fig. 8 Drop-out compensation.
However, as the drawing shows the usual circuit is quite simple. The FM signal is played back through a limiter (to maintain constant amplitude) and then fed to a dropout detector which senses gaps in the signal. If a gap is found a DC control pulse is fed to the switch/mixer to disconnect the direct signal path and to connect instead the output of a 'one line' delay line. Thus the previous signal is substituted for the missing one. In this way the worst drop-outs remain unseen although a long term drop-out cannot be accommodated.

The Video Disc

Quite staggering sums have been spent by the electronics industry in developing and launching three competing video disc systems. It is seen as the Great White Hope for making billions of dollars of profits in the coming decade, although many industry observers feel there will be strong consumer resistance to a playback-only system. My favourite quote was from an RCA spokesman; "What's $£ 200$ million to a company like RCA"! The RCA system is called Selectavision and is made in the USA. From Philips (Holland)Magnavox (USA) Pioneer (Japan) there is the LaserVision system and from JVC (Japan) there is VHD; so called because they haven't thought up a punchy trade name yet. It's no surprise that all three systems are totally incompatible and use completely different approaches.

Just Lasing Around

The Philips system is called LaserVision and is an optical system reading the signal encoded as pits on a reflective disc by means of a laser beam. This system was first launched under the Magnavox label (a subsidary of Philips) in America in late 1978. The system works well and the players have sold steadily but there have been continual problems with disc quality with (according to some observers) a 90% reject rate sometimes occurring. The current models use an expensive gas (neon) laser, although the design originally conceived the use of solid state lasers which will become available at a far lower cost eventually, that is, so Philips are keeping an unusually low profile in their marketing, at least until they can make a worthwhile profit on the players. The difficulty is in manufacturing a solid state laser vihich has a wavelength short enough to focus on the very narrow signal track on the disc. Because the video signal is recorded in an analogue (not digital) form, it is not easy to correct the errors and ghosting which occur if parts of two adjacent tracks are simultaneously illuminated by the laser beam.

Fig. 9 A cross-section through the LaserVision disc.
Two types of disc can be viewed on the LaserVision player. These are CLV (Long Play) which gives a playback time of one hour per side; and CAV (Active Play), giving about 36 minutes per side. The long playing CLV disc keeps each video field the same length but increases the rotational speed as the 'groove lines' get nearer to the centre of the record. Thus the speed at the outer edge is about 500 RPM but by the centre of the disc thia has risen to 1500 RPM. The CAV disc is played with a constant motor speed but the length of the fields decreases closer to the centre as a consequence of the reducing diameter. This is the type of disc which makes LaserVision more interesting. The laser can move across the disc in 24 seconds, passing over some 54,000 separate television frames. Thus with the correct control mechanism the frames can be read one at a time (rather like a massive card index library), watched in fast or slow motion in either direction or be held in a 'still frame' mode - for months if necessary because in the absence of physical contact there is no wear on the disc.

The CLV discs will normally be used for recordings of entertainment because these 'special effects' are not possible. The rotational speed of the disc varies so that there is never a fixed number of picture frames in each rotation of the disc.

The Versatile VHD

The laterunner in the video disc contest is VHD (Video High Density or Video Home Disc) system developed by JVC in Japan and backed in the UK by the Thorn-EMI group. This system is very similar to both LaserVision and Selectavision but uses a $10^{\prime \prime}$ diameter disc instead of one of $12^{\prime \prime}$. The disc (which plays for one hour each side) is pressed from conductive plastic, with the signal pressed in as raised and lowered patterns but no groove as such. The signal is read by a capacitive pickup which follows the spiral track by using a sort of parallel tracking servocontrolled arm. The VHD disc suffers so me wear in use because the tracking stylus slides over its surface and so the repetitive play of, say, a still frame could, as with Selectavision, shorten

VIDEO DISC MANUFACTURE

Of all the video disc types, probably the hardest to manufacture is the optical disc used in the laserVision system.

The original video programme is recorded onto a professional video tape recorder using $1^{\prime \prime}$ or $2^{\prime \prime}$ tape. It is played back on to the disc 'cutting lathe' where a high-power laser beam tracks a modulated light beam over an ultra-smooth glass disc coated with a photo-resist material. The exposed disc is chemically developed, etched, and washed to leave a visible spiral of pits etched into the glass surface. The glass is then coated with a fine coating of silver to form a conductive layer, which also allows the disc to be played as a quality check without damage (there is no physical contact with the disc's treated surface).

The disc is then plated with nickel, followed by a layer of aluminium. The glass master is then removed (and damaged beyond further use) to leave a negative which is referred to as the 'father'. More nickel is electro-deposited onto the record side of the father to produce a positive 'mother', from which a number of nickel negative stampers can be grown again by electroplating.

The video discs proper start off as a blank sheet of 1.3 mm acrylic (Perspex) which are thoroughly washed and then coated with a 30 micron thick layer of photosensitive lacquer. The disc is then gently pressed against one of the negative stampers to give the spiral track of indentations; they can then be exposed to the ultraviolet light which hardens the photo-resist. The discs are then loaded into large vacuum chambers where they are immersed in an aluminium vapour for about 30 minutes. This vapour causes a very fine reflective coating to be deposited on the disc; coating which is then protected by a layer of clear lacquer.

So far one disc side has been produced, so it is glued to another side and the final two-sided disc is balanced electronically to ensure stable rotation in the player.

The entire process is semi-automatic up to the last important stage - final inspection. At present the discs are checked by actually playing them with an operator watching the programme on a television screen. The inspector checks four discs at a time (four screens) in what must be one of the most boring jobs of all time. However It has not yet proved possible to automate this process or to rely upon fast playback during inspection.

the disc's life.

As it stands the VHD system is not ideal for the playback of still-frame pictures. Each rotation of the disc holds in its signal track two full television frames ie four interlaced fields. Thus if the same track is scanned repeatedly there will be some visible 'judder' of the picture as the two different frames alternate. Two solutions exist. The first is to feed the frame into a digital frame store where it is converted from analogue to digital form and loaded into a memory. The 'frozen' picture can then by continually readout from the memory, converted back to an analogue video signal and fed to the television to give a perfect still frame.

This is the approach the television companies take and it's an ideal approach except for one thing - the video frame stores cost $£ 17,000$ and upwards, hardly suitable for fitting inside a $£ 350$ video disc player. So JVC have adopted the somewhat more pragmatic approach of recording each TV frame twice, so that for every rotation of the disc only one picture is seen. Now such a doublingup will mean that the programme will be viewed in slow-motion. Solution? Easy - just double the rotation speed and accept that these discs(Type II) will only run for 30 minutes a side. If we put a three hour blockbuster movie on to these discs we will need three, viewing all six sides, so the early years of video disc may resemble the days when a complete opera could only be heard by playing a stack of 78 RPM records! Already there is talk in Japan of an 'autochanger' video disc player - the jukebox of the future.

The RCA Selectavision Video Disc System

This system uses a flat circular disc of $12^{\prime \prime}$ diameter which has the television sound and picture signals recorded on a spiral groove rather like an audio disc. However, there are 10,000 grooves per inch (compared to 250 on a audio disc) and the information is recorded as frequency-modulated vertical undulations of the V-shaped groove. The plastic disc contains a fine carbon dust to make it conductive and is covered with a film of oil to lubricate the playback stylus and so increase the

Fig. 10 RCA Selectavision groove geometry.

Fig. 11 The RCA stylus.

Fig. 12 The RCA video disc signals.
life of the disc. The stylus runs in the groove but actually senses the signal through the use of capacitive coupling between the stylus and the disc - each being one plate of a capacitor. The stylus is long enough to ride over the signal peaks pressed into the groove, so the disc surfaces rises and falls under the stylus electrode giving a capacitance variation of about $1 \times 10^{-4} \mathrm{pF}$ peak-to-peak. This almost insignificant change in capacitance is what constitutes the output signal.

The capacitance is made part of a 910 MHz resonant circuit which is fed with a signal from a 915 MHz oscillator; a frequency which falls at the half-amplitude point on the resonant curve. As the disc-stylus capacitance varies, so does the resonant frequency and the amplitude of the 915 MHz oscillator output signal. Thus over a period of time the 915 MHz signal is amplitude-modulated by the disc signal which can be simply recovered using a diode detector. The output signal is, in fact, two frequency-modulated carriers, these being 716 kHz (audio) and 5 MHz video. These carriers are fed through limiter amplifiers to take care of the 20 dB or so of level variations that occur, and the constant amplitude signal is fed to phase-locked loops for demodulation. The remaining circuitry contains quite complex arrangements for reconstituting the composite video signal and others that detect and compensate for playback errors.

Fig. 13 The Selectavision playback demodulation system.

Are You Being Servoed?

Early prototypes of the CED disc system (as it was known) used an ultratightweight tone-arm which supported the capacitive pickup in a conventional record player fashion. However the current design of pickup is quite heavy, incorporating the highfrequency resonators and amplifiers; and so it cannot be guided by the extremely small side forces generated by the microscopic groove walls. For this reason the pickup is mounted in a servo-controlled arm which tracks across the disc in response to the stylus motion (see Fig. 14). Obviously no servo or gear-train could follow every small movement of the stylus so the pickup is allowed some 2 mils of free motion.

As the drawing shows, a conducting 'flylead' is positioned in-line with the stylus and its position is detected by two sensors, one to each side. The two sensors are varactors whose capacitance is modulated by a 260 kHz oscillator. Each is of opposite polarity, so with the flylead absolutely central the capacitively coupled 260 kHz variations cancel out. An offset in position will cause a 260 kHz component to be detected by the flylead and result in an error signal being sent to the arm motor which will reposition the arm. The use of these opposing sensors largely cancels out most of the temperature variations and provides a very stable electrical centre.

Fig. 14 The stylus position servo system.

Looking Ahead

Finally, the future. Matsushita and Pioneer (with some work by RCA) have produced optical video disc systems which can record programmes (or data) and subsequently replay them. During recording the laser works at full power and burns into the surface of a blank disc; when switched to low power it reads it back LaserVision-fashion. The Matsushita system puts 15,000 still pictures on to an $8^{\prime \prime}$ disc and although that represents only five minutes or so of a video programme, it will only be a short step to a complete optical record/playback disc. Meanwhile Sharp and Matsushita (Panasonic) are working on a magnetic disc recorder which also uses a laser, but in this case it alters the magnetic characteristics of the disc coating.

Braithwaite kits

> System A Kits are still available Send for details

Moving Coil Head Amps for Only £16

The famous Braithwaite RA14 (Mains) \& 5 T17 (Battery) moving-coil head amps are offered in limited quantities of the incredible price of $£ 16$ ($+£ 1.50$ post) Fully tested and guaranteed
"the promise of high musical enjoyment and excitement"

HIFI ANSWERS

HEMMINGS
ELECTRONICS AND MICROCOMPUTERS 16 BRAND ST.
HITCHIN, HERTS, SG5 1JE

OPEN FRAME MONITORS AVAILABLE FOR OEM'S

 The 'PRINCE' of Monitorsoffers better Monitoring.
24 MHz Bandwidth-ensures a clear crisp display. Available with P4 White P31 Green AND L1 ORANGE

Scan 625 timentso Hz_{8}. Deflaction: 110°. Active raster $240 \times 172 \mathrm{~mm}$ gondwhth 13d81: $10 \mathrm{~Hz}-24 \mathrm{MH}_{2}$ (ar 3 dB polnes). Character desplay vertical frequaney: 50 Mz Horizontal \|meartry: $\ddagger 3 \%$. Vertice in marlity: $\pm \mathbf{2 \%}$. Geomatric Gistortion: $£ 1.5 \%$. EMT fat zero boem currenti, $13 \mathrm{kV}=0.5 \mathrm{kV}$. Pawar drainz 30 watt appron. Voltage Gpply 110 V A.C. $50 \mathrm{~Hz} / 320 \mathrm{~V}$ A.C $50 \mathrm{~Hz} / 240 \mathrm{Y}$ A.C., $50 \mathrm{H}_{4}$ t 105 upon requast. Vireo Inpus: 2 a BNC - or CINCM - or 75 Onms X. Aey inetiation conforms to i. E.C. Spec. No R.D. Ocrose gimensions: 320 n 270 n 265 mm . Weight : $\boldsymbol{7} \mathrm{KO}_{\mathrm{g}}$ soprox, Ambient temparature $0-45^{\circ} \mathrm{C}$
OTHER CROFTON PRODUCTS INCLUOE: COMPUter periphere Cowpmont. Frome gratbeep. Flapoy ditk drives, Floppy disk Computer power suppiles. C.C.T.V. monltors, Uncased monirore
 switchers. Video aipribution amplifions. Camers housingo, Pan an

CROFTON ELECTRONICS LTD

35, Grosvenor Road, Twickenham, Middx, TW1 4AD Telephone: 01.891 1923/1513 Telex: 295093 CROFTN G

(6)

EDMUND SCIENTIFIC ILLUSTRATED CATALOGUE

 Write now, or visit our showroomAt last this famous range of products is now avallable in the U.K. and Ireland from RHEINBERGS SCIENCES LIMITED. Over 2000 products for industry education and the enthusiast.
Microscopic Accessories Solar Energy Magnifiers \& Microscopas
Light
Fibre Oplics
Motore \& Pumps
inirared Products
Polarizing Material
OEM
Optice
Magnats
Laboratory Equipmon
Lesors
Enotography
Educational Kits
Diftraction Gratings
RHEINBERGS SCIENCES LIMITED, Dept. ETI
Sovereign Way, Tonbrifge. Kent TN9 IRN. Tel; 0732357779

SERIES 5000 BRIDGING ADAPTOR

Some like it loud. Here's how to operate the two ETI-5000 MOSFET power amp modules in the Series 5000 power amp in bridge configuration with the addition of a simple, inexpensive module.

This project consists of a unity gain phase inverter that can be installed within the Series 5000 power amp. The input to one of the power amps is disconnected from the input socket and is wired to the output of the bridging adaptor. The input of the bridging adaptor is connected in parallel with the input of the other channel. This leaves one of the input sockets unused, although it could be connected to the other input socket if required.

The bridging adaptor must not degrade the distortion figures of the amplifier to which it is connected. Similarly good noise figures and freedom from slew-induced distortions must be ensured through careful design of the unity gain amplifier stages. Unfortunately, amplifiers with a gain of one tend to be the most difficult to stabilise because of the relatively high amounts of negative feedback. To overcome this problem and to
maintain good noise figures, NE5534N op-amps were used in the design.

Noise Problems

The conventional way to achieve an inverting amplifier is to ground the non-inverting input and insert the input signal into the inverting input via a resistor. In this configuration the inverting input is also connected to the output of the op-amp through another resistor and forms a virtual earth point. The input resistor therefore forms the input resistance of the stage. Since this is connected to the output of the preamplifier the value of this resistor must be high, ie around $10 \mathrm{k}-100 \mathrm{k}$. Unfortunately, this would seriously degrade the noise performance. To overcome this problem the bridging adaptor has been broken into two stages. The first is simply a unity gain buffer. This stage has low noise figures and an output impedance low enough to drive the following inverter stage.

Since the input resistor has been kept to a small value in the second stage a good noise figure results.

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$ except where stated)	
R3-6	1k0
R7,10,11	100R
R8,9	1 k 52 W
Capacitors	
C1	220 n polyester
C2	1 no ceramic
C3,4	10 p ceramic
C5	10 n ceramic
C6	100025 V PCB electrolytic
C7,8	1000u 63 V PCB electrolytic
C9,10	10u 25 V tantalum

Semiconductors

Semiconductors	
IC1,2	NE5534N
D1-4	1N4001 or equivalent
ZD1,2	12 V 400 mW zener

Miscellaneous
PCB (see Buylines); mounting hardware; hookup wire.

The board installed in the Series 5000 amp at the left hand end of the chassis.

Fig. 1 Component overlay for the bridging adaptor.

Fig. 2 Singleended power amp showing how current flows in the power supply and the load.

Construction

Construction of the bridging adaptor is not difficult since all components are mounted on the PCB. The components can be mounted on the board in any order, although it is probably best to leave the two large electrolytic capacitors until last. As usual, be careful of the orientation of all polarised components such as the electrolytic capacitors, ICs and diodes.

Solder input and output leads to the board and bolt to the side bars on the left hand side of the power amp (viewed from the front), as shown in the
accompanying photograph. Use twisted pairs of $32 \times 0.2 \mathrm{~mm}$ plasticcovered hookup wire, as with the existing input wiring. Solder the output directly to the input of the power amp closest to the bridging adaptor. Solder the input leads of the bridging adaptor to the input socket of the other power amp. Included here is a block diagram of the Series 5000 power amplifier showing suitable modifications to incorporate the bridging adaptor.

Performance

The prototype bridged Series 5000

HOWBRIDGINGWORKS

The amount of power an amplifier can deliver into a certain load is determined by the simple equation:

$$
P=V^{2} / \mathbf{R}
$$

where V is the supply voltage and R is the resistance of the load. To achieve more power we must either decrease the resistance of the load or increase the supply voltage. Either of these will cause an increase in the amount of current to flow, and this must be catered for in the design. Unfortunatelv, power transistors are limited by the maximum voltage they can withstand so the supply voltage cannot be increased indefinitely. An amplifier with a supply voltage around 50 V is probably capable of supplying around 40 V peak to the load, the remaining 10 V being dropped by the output transistors, driver transistors and the power supply. This corresponds to a power level of around 100 W RMS into an 8 ohm load.

In order to increase this the load could be decreased to 4 ohms, for example. The simple equation above predicts a power level twice that of the 8 ohm case. In practice this ideal is never met since the increased current causes increased voltage drops. In the case of a MOSFET output stage such as the ETI-5000, the relatively high on resistance will cause quite a high voltage drop, decreasing the maximum output power to around 150 W for a 4 ohm load.

In order to increase the power of audio amplifiers it would seem we must increase the supply voltage and design the amplifier so that it is capable of withstanding higher signal currents. A closer inspection of Fig. 2, however, reveals another alternative. The conventional power amplifier consists of the amplifier itself and a power supply, as shown in the digram. The power supply is represented by the pair of capacitors. These correspond to the main storage capacitors in the power amp. The rest of the power supply has been omitted since its purpose is simply to maintain the necessary DC voltage differential between the ends of the capacitors.

In a class 8 output stage only one of the output capacitors is supplying energy to the load at any given time. The arrows in the diagram indicate the direction of the current flow when the power amp is delivering. a positive-going output signal. As can be seen, the large signal current flows from the positive supply capacitor to the power amplifier, through the load and via an earth return path to the eiectrolytic capacitors. Every wire in this current path has resistance, so voltage drops occur at all
points in the circult. These voltage drops can be extremely significant in the performance of the power amplifier.

The distortion figure for the ETI-5000 module, usually around 0.001%, can be degraded to worse than 0.3% if the resistance in the power supply leads exceeds a small fraction of an ohm. If extremely low distortion figures are required the entire heavy current path and earth leads should be wired with one of the very low resistance speaker cables available.

We have seen above that at any given time in a class B power amp only one of the capacitors is supplying power to the load. So the load has access to only one of the supply rails. If both supply rails could be used at the same time the voltage available to the load would be doubled without having to redesign the amplifier, so long as the resulting current were within its capabilities. This is the purpose of the bridge configuration with power amps, sometimes referred to as bridging'. The principle is shown in Fig. 3. Two identical power amplifiers have been used here, the output of each going to opposite ends of the load. The input signal is fed to the input of the first amp in exactly the same way as in the more conventional approach. The arrows indicate the direction of current flow for a positive-going signal voltage. At the same time, the input signal is fed to the second power amp via a unity gain phase inverter. A positive-going input signal voltage becomes a negative-going signal at the input of the second amp. While the output of the first power amp is swinging positive the output of the second amp is swinging negative, so the load experiences double the supply voltage (neglecting for a moment the increased voltage drop due to increased signal current).

In the 4 ohm case discussed earlier the signal current is doubled, while the supply voltage remains much the same; the maximum power is therefore doubled. In the bridge case, however, the maximum signal voltage is doubled, thus also doubling the current. Since power is given by the product of voltage and current the power increases by a factor of four. In a real amplifier, of course, this power is never achieved. Once again the voltage drops across the output transistors, etc will decrease the power considerably, and this is especially true when using MOSFET output devices. To make a closer estimate of the power that can be expected of an amplifler when connected in bridge, determine the power delivered into a load of half that used in the bridge and double this value. If the bridge is to be used
with an 8 ohm load, for example, determine the power delivered by one amplifier into a $\$$ ohm load and double this figure. In the case of the ETI-5000 module the power into 4 ohms is around 150 W RMS, so the power achieved by two 5000 s in bridge should be around 300W RMS. Measurements carried out with the bridging adaptor gave power figures between 280 and 300 W RMS, in good agreement with the estimate.

There are also limitations, however, which must be considered for successful operation of a bridge amplifier. First, since each amp is effectively driving a load half that of the real load, the load resistance connected to a bridge amplifier must be twice the minimum load specified for individual power amps. Since the minimum load recommended for the ETI-5000 module is 4 ohms the minimum load used in bridge should be 8 ohms.

Another problem associated with bridging is that both power amps used should share the same power supply to ensure the integrity of the earthing system. If this condition is not met, the distortion figure and stability margin of the amp will almost certainly be degraded. In Fig. 3, two independent power amplifiers are connected in bridge. This is done by joining their earth reference points together and driving the loudspeaker with out-of-phase signal voltages. Current resulting from a positive-going signal voltage flows from the positive supply through the first power amp and through the loudspeaker to the second power amp, and then to the negative supply rail of the second power amp. The circuit is completed by the connection between the two earth points. The problem is that, since this connection has a finite resistance, a voltage drop will occur across it, varying with the signal voltage and modulating the earth current for the second power amp.

The solution is to operate both power amps from a single power supply. Figure 4 shows a pair of amps connected in bridge and using a common supply. Once again, the arrows show the direction of current resulting from a positive-going signal voltage. Notice that in this case the connection between earth reference points has been eliminated and both power amps have access to the same single reference point. This is one of the reasons the Series 5000 power amplifier was conflgured with a single supply even though two power transformers and a total of four electrolytics were used; the two channels in a stereo power amp could be bridged, forming a mono power amp. For stereo operation two such amplifiers are required.

HOW IT WORKS

The Bridging Adaptor is a unity gain (gain of $x 1$) inverting stage that has its input in parallel with one power amplifier module and its output driving the other power amplifier module. Thus the power amp module it drives operates out of phase with the other power amp module.

The bridging adaptor has two stages - a non-inverting input buffer stage and an inverting output stage. The active device in each stage is an NE5534 high performance op-amp. A on-board rectifier provides dual supply rails regulated by two zeners.

Input is coupled to the non-inverting input of IC1 via an RC network consisting of C1, R2, R3, and C2. Resistor R1 provides a DC return for the input line. Resistor R3 is a low value to ensure good noise performance for IC1, and together with C2, a low pass filter is established to Ilmit the slew rate of incoming signals to prevent slewinduced distortions. Feedback for IC1 is provided by R4, connected between the output and the inverting input. The output
of IC1 drives the inverting input of IC2 via R5. Feedback around IC2 is provided by R6. The feedback constants for both IC1 and IC2 are arranged so that each stage has a gain of one.

The output from IC2 is coupled via R7 and $C 6$, which provide a low frequency rolloff, C6 also providing DC blocking.

The bridging adaptor is powered from the Series 5000 amplifier power supply transformers. Diodes D1 to D4 form a bridge rectifier provlding about $\pm 52 \mathrm{~V} D C$ with respect to the winding centre tap. Capacitors C7 and C8 provide smoothing. Two zener diodes, ZD1 and 2D2, are used to provide regulated positive and negative 12 V DC supply rails for the two ICs. Resistors R8 and R9 provide current droppIng for the two zeners and R10/C9, R11/C 10 provide further filteríng. Capacitor C5 provides a high frequency by pass for the supply rails. Capacitors C3 and C4 provide frequency compensation for IC1 and IC2 respectively.

Fig. 3 (Top left) Two separate bridged power amps showing individual power supply and load currents.

Fig. 4 (Centre left) Bridged power amp and single supply showing load and supply current flow.

Fig. 5 (Bottom left) Circuit diagram of the bridging adaptor.
amp performed favourably and gave distortion figures around the resolution of our THD analyser (approx. 0.003%). Similarly, noise figures were not degraded and the adaptor tested was free of slew-induced distortion. The power output achieved was around 300 W RMS when connected to an 8 ohm load. Connection to a 4 ohm load is not recommended for the reasons given in the accompanying box.

Fig. 6 How to wire the bridging adaptor into the Series 5000 amplifier for bridged operation.

BUYLINES

As usual, we can supply you with the PCBs; the order form is on page 71. Nothing else should cause any problems; the NE5534 is a vailable from Watford Electronics, or as an alternative you could use the TDA1034 from Technomatic.
 R250

 Seconotionionso

 Yo OHA CO

 DOW-T TAKE CHANCES Une the procer EMT Cubl 100 mate 750100 merroo P6P C2.
 muws cap

 on tratiso

 zoov inow 500
 IISV mout Sec
 500 otc C

10 ons

 10 om Cal

SOME ENT TAANSFORMERS \& CNACTTOAS Amorn oveneme -
VAllACS -2 Ano Ex rowamen Cood mondion. E12 C PGP CS

Comer ou um to - SUPER BATEERY CMARGEA, Atricalve green minchan - yig port

 arout do now fiz P/P Ć:

 150 onti2

 csicm cos.

MOR PLL COMPONENT \& TESY EOUIPMENT LIST WIITE OR PMONE

MARCONI AM/FM SIGMAL GENERATOR TOD TF 1088B/6S, 10.470MH2m 5 bends.
2775 weth. Carivge f6.
WAYNE KERR COMPONENT BRIDGE TYDE B521 (CT373). Resiasance 1 monm- 1000 Meg Onm: Cappor. tencen 5000 KuF Ip f: Inductance fut 500 KH . With copy of manual ONLY fio cach. Cerrioge E6.

AVO VALVE TESTER type CT 160 (22 valve bases) with cooy of manual. 120 eech. Carrioge to

AVO TRANSITOR ANALYSER tree CT44\% with COPY of manual $\mathbf{C Z}$ oxech Cariage Re.

AVO SIGNAL GENERATOR NO 2 AMIFM AM 0. ME25MHE: FM $20-100 \mathrm{MiHz}$. With copy of manual ह7s 25Ch, Carrige 20 .

I MARCONI COUNTER/FREQUENCY METEA TF1A17/2 whit Converior moe TF2400: TM7206-5004 Mz. ETs opeh. Carriege 16.
TELETYPE PRINTERS KSR33ASC11 KAYboand E80. ASA33 - ab ebove with B blt punch and reader f76. Carrisge ff each unie.

MULTIMETER Ruswian PYpo 4324 ACJOC

vohis, AC/OC current:
ohms etc.
Erand new, bomed

SINE G SOUARE WAVE AUDIO GENERATOR

 Two TEZ 20 Mz .200 khz , Portable. ONLY As now pech PepSCOPE STYLE CASE अIA 7 $x^{\prime \prime}+718^{\circ} \times 13 x^{\circ}$ done with aftrective blue covers
TACHITOSCOPE but idel for thap hamdle. home cemminuctor for Gerrow 64.50 each PGPP $\mathbb{C 2} .50$.

MINIMUM ORDER OF GOODS E3. MINIMUM PACKAGING \& POSTAGE £1.50. VAT al 15\% MUST De added to TOTAL of GOOOS \& PACKAGINQ, BUT PLEASE ensure sufficient monies is sent to cover PACKAGING and Postage to avoid delays in us dispatching your order. CALLERS VERY WELCOME STRICTLY BETWEEN $9 a m-10 \mathrm{~m}$ and $2-50 \mathrm{~m}$ Mondav to Satur day inc. BARCL AYCARD (VISA) and ACCESS taken. Offictal orders wetcome

CHILTMEAD LTD

It's easy to complain about advertisements.
 The Advertising Standards Authority If an advertisement is wrong, we're here to put it right.

A.S.A. Ltd., Brook House, Torrington Place, London WCIE 7HN.

HIFI STEREO AMPLIFIER KITS

From one of Brition's heading esotanic amplitier menufacturers comes on exciting new pectage of stimno amplifier kitt. dessaned to offor all the advantages of true high fidelity bur without the usual price penaity.
 The, abin

CK 1010 Stereo Pra Amplifier, The CK 1040 WPC Power Amuxfier, The CK 1100 WPC Ponver Amplities,
CK 1010
 mechonices ssaemby of the connoctions and controls to the pro punched chassiza
The CK 1010 wikes is DC wiphy from the CK 1000 , 1100 or if
The CK 1010 takes ita DC supply from the CK 1040,1100 or, if using a difterent power amplifier a PSK power supply kita Inputs for disc. funce and tape are provided and un optional add-on moving col mput con be fitted to Axtund ite versetuity. MCZax:

CK 1040

This is a nominal 40 wort per channd power amplifiw wir which features our dual power supply and the DC outpur for the CK 1010. All componemts suchias heavinta, wire and connectors are included and provection ith orovided trom shorr ehevit outputs.

CK 1100

Simier to the CK 1040 tha model provides onorntrial 100 watts per charnel with extra hastsinhing and thermal cuitutas are provided as atandard.
When correcily wsembled these kites are guarsonteed for two whare

 socarmes the mfirence point for kit impliviers from now an.

PRICES CK 1010 - RRP 59000 CK 1040 - RRP E112.00. CK 1100 - RRP E149.00; MC2K - ARP 235.000 . PSK - RRP C20.00
Bercteverd or Access eccepted, othorwise send C.W.O. C.O.D. 51.00 errus. All prices inetude PEP to anmwhere in the U.K. Export Write for pro-forme SEND FOR FULL DETAILS ON OUR HIFI KIT PRODUCTS BY WRITING TO FREEPOST ADDRESS BELOW
[EC Crimscntikktrik
FREEPOST, 9 CLAYMILL ROAD
LEICESTER LE4 5ZD. ENGLAND
TEL 0533761920, TLX 34594

Please

 mentionE.T.I.

when replying

to all

 adverts| | | | |
| :---: | :---: | :---: | :---: |
| Ereat | | ounity fams -muere moar by nowe Low pown crreurditen thas the if naths Stam namer lisathem
 Sou of on 0 - 15 Ont $80.50 \sim$ uc vaY Brivo Mew sex mes nos momadetres orice | |
| | | | 为 |
| Nall ens
 - ID.silay
 Hen livemety
 cl at $163=5$ chat a 23 5o 11 Bu 04 Porleg | | nemeri pactuane oispuars
 50827650 Hem ano vean imant ant 1, Panct | EX.MOTOROLA
 5+5 WAIT CAR STEREO AMPLIFIERS
 Comblete aed malied unfle Gropan pro tafg wigue is of a fint win cerve one dise bivy t gem incuaces fre swo |
| | | | |
| | | "CHERAY" ADD.ON KEYPAD | |
| | | | | |
| cimiaruan mp.c y_{2} mign. Quality 3m wonces at mot of rems oth mis son reen ant 10 seo axen por ve emert | | | | |
| somerven sindo

 EXPORT
 TELEX 2622 : nal VII.
 enquiries
 Trensonics
 invited.
 Mono 1400 | | | |

Covers im: AMA EDGWARE ROAD. LONDON W2 1ED

PCB FOIIL PATTERNS

We didn't have room for the lon Generator PCBs last month, but we forgot to mention the fact. Anyway, here they are.

QUALITY DOES NOT HAVE TO COST VERY MUCH!
 AUDAX HI-FI - SPECIAL PURCHASES
 HO2O825H4C 8° Bass mid range Bextr ene cone, $40 / 60$ walt sys H024S452C $10^{\prime \prime}$ high performance bass Foam suspension. VAT H013825 HAC $5 \mathrm{~V} / 4$ bass mid range Bextrene cone. $00 / 60$ watt systems Heavy magnel HD13825J Smaller magnet verston.
 E1295
 C6.95
 $30 / 50$ watt system mic range foam surround. "square" silver front MIF2OESM 8^{*} bass I treated cone. 4 ohm $£ 6.95$ a ohm $£ 7.95$
 HIF87BS MO 4" closed back mid range for 30150 wall systems H0100025 HA 1" dome tweeler. 4^{*} Irame for $60 / 80$ wall systems

 All models for 8 ohms unless stated IUK Post etc Speakers $70 p$ iwecters and mid range 50pi

TV SOUND FROM YOUR HI-FI (MK III)
High quality TV sound converter.plugs into aerial socket of your FM tuner 9 volt battery operated (battery not supplied). Nothing 10 look at ...but just listen! Covers all U.K. UHF Channels.
*Fitted slow-motion drive (Mk III] $£ 1150$ Four bution push-button version $£ 1450 \mathrm{c} / \mathrm{D}$ 650. (UK Post etc. 65 p) On Demonstration for callers to 301 Edgware Road.

An entire range of low-cost high= performance instruments

sabtronios

'Waking Performance Affordable

-2010A 3h-Digit LE.D. Bench DMM -2015A 3k-Digit LC.D. Bench DMM 2020 3y-Dtgit LE.D. Bench DMM with Microcomputer Interface
2033 3k-Digit LC.D. Mand DMM
-2035A 3k-Digit LC.D. Hand DMM -2037A 312-Oigit L.C.D. Hand DMM LP. 10 with Tema
LP. 10 10MHz Logic Probe
$5020 \mathrm{~A} 1 \mathrm{~Hz} \cdot 200 \mathrm{KHz}$ Function Generator -8110A 100 MHz 8 -Digil Frequency Meter -8610A 600 MHz 8-Dight Frequency Meter -86108 600 MHz 9-Digit Frequency Meter 80008 1GMz 9-Digit Frequency Meter 870010 MHz Universal Frequency
PSC. 65 Counterfimer
$\begin{array}{ll}\text { PSC- } 55 \\ 9005 & 5 \mathrm{MHz} \text { Single Trace Oscilloscope }\end{array}$ - Also avallable in kit form.

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.

Full colour illustrated brochure and price list from:
BLACK STAR LTD.,
9a Crown Street,St.Ives,
Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339

TheMICRO PROFESSOR solvesthemystery of micro-processors.

Micro-Professor is a low-cost Z80A based microcomputer which provides you with an interesting and inexpenslve way to understand the wortd of microprocessors.
Micro-Professor is a microprocessor learning tool for students, hobbyists and engineers $1 t$ is also an ideal educational tool for teaching in schools and universities.
The main object of Micro-Professor is for the user to understand the software and hardware of a microcomputer eastly and conveniently. Besides the complete hardware/sottware system you have the users experimental manual. It includes sell-learning text with 20 experiments which range from sirnple, software

Use the unigue
Micro. Computer co buly understanid the ingide workings of micropiocessor oe smyly use as a Z80A evaluation syscem

Filght Electronics Ltd.

[^6]A 9V. 0.5A adaptor and 350 page manual is provided. Formal orders requiring

Acc 830 days credit
Please ask for price hst. hewn
programming to designing a complex electronic cost development tool - Process controller game. Completed programes can be stored and - Electronic music box - Timer • Noise generator re-read via the cassette intertace. 2 K bytes of - Home appliance control - Burglar alarm monitor source program with documentation is -System control simulation also provided in the manual.

Tester
Micro-Protessor provides a wide range of other

applications: Low cost prototyping tool \bullet Low
 TECHMICAL SPECIFICATION

CPU 280 A CPU high pertarmance macroprocessor with 150 nstructions
 คAM $2 \times$ bres eapanduole io k ates
ROM 2K bytes of sophisticaled monmor erpandable so $8 K$ oves
INPUT/OUTPUT 24 sysiem INO Iines
DISPLAY B diget 0.5 ' red LED esplay
AUOIO CASSE THE WHYEAFACE 165 bt per second averagn rate for data transler betwoen memony and cassane tape.

EXTENSION CONNECTORS Provides all ouses of CPU channes siones of CTC and I/O port bus of PIO tor user s expansion
COUNTER TIMER CIRCUITS SOchel ts provided Z\$a-CTC IC esve.
PARALLEL I/O CIBCUTTS Soctet is provided $280-\mathrm{P} 10$ KC extra
SPEAKER ANO SPEAKER DAIVER CIRCUTS A2 25° - diameter speater is provided for Users applications.
USER'S ANO EXPERIMENT MANUAL COmplele sell -earning text with expermerns and applcations
OP TIONS 〈Pnces on applicution) z80. CTC EPROM programmer board Prototyphng Bowrd. 280-PIO. Spench symithesiser board. Audio Cassetse 2 K Rem
KEYBOARD 36 keys incluang i9 function keys, 16 nex-digt heys and 1 user dolned key?

SOLAR CELLS

A practical guide to the essential technology of solar power, together with some simple Breadboard-style ideas for experimenters.

SOLAR POWERED RADIO

Ideal for sunny summer days at the beach. Costs little to build, nothing to run!

SUNBURN TIMER

The Sun's power is all too obvious if you stay out too long . . . this year, control your tan with our Sunburn Timer - just dial Rare, Medium or Well-Done!

POPULAR COMPUTING

The HE MicroTrainer

Next month we describe the circuit and commence the construction, beginning with the power supply unit.

INTO RADIO
 Television Interference Filter

Tired of listening to - and looking at - CB-chat while trying to watch Dallas? Our simple TVI Filter will remove the symptoms, if not the cause of your annoyance.

PROJECT: MUSIC

Equalisation - It's Easy

Looking beyond bass and treble, this feature explains what equalisation is and how it is used to compensate for frequency distortion in both recorded and live music.

INTO ELECTRONIC COMPONENTS -

Concluding our long-running and popular beginner's series. If you've followed it so far, don't miss the final chapter!

PEDOMETER/ODOMETER

No, it's not an instrument for detecting smelly feet, but a digital device which can be individually programmed to read the distance travelled by a walker or jogger, or as a bike mileage indicator. Get it?

Then get the July issue of

On sale at your newsagent
Place your order now!

[^7]

FOR YOUR BUSINESS TO BE INCLUDED, CALL ELECTROMART ON 01-437-1002.

TYNE AND WEAR

AITKEN BROS \& CO

S. WALES

CRRDIGRT ELECTROTACS
Chancery Lane, Cardigan,
Tel: Cardigan (0239) 614483
Open: Mon Sat laam-5om. Closed Wed. Electronic components δ Acon compuler stockest.

WILTSHIRE

camab electronics

27 Faringdon Rd. Swindon Tel: (0793) 34917
Oper. 6 days 9 am -5.30 pm
Sueciatists in loud sprakives wide sethetion. $11^{\circ}-18^{\circ}$

YORKSHIRE

ACE MAILTRONIX LTD.
3A Commercial Street, Batley. Tel: (0924) 441129
Open: Mon Fri Gam-5 30pm. (Sat 1 pm)

NOTTINGHAMSHIRE

DAMON electronics

99 Carrington St. Nottingham.
Tel: 53880 (mall order available) Open: 6 days $9.30 \mathrm{am}-5.30 \mathrm{pm}$ Spectalists in T.V. F.M. aerials.

Retail and wholesale.

PLEASE MENTION ELECTRONICS TODAY WHEN USING THESE SHOPSI

TELEPHONE MONITOR KIT, connects between telephone line and your cassette recorder and automatically records all phone useage. Complete kit including case and PCB only £9.95. Dept. ET1. UNITECH (Midlands). FREEPOST, Sutton Coldfield. West Midlands, B7438R.

SPARE PARTS For all digital watches. Batteries, crystals, displays etc. Send SAE for full list. Profords, Copnersdrive, Holmergreen. Bucks HP15 6SGD.

AMAZING ELECTRONICS PLANS. Lasers, Super-powered Cutung Rifle, Pistol, Light Show, Ultrasonic Force Fields, Pocket Defence Weaponry, Giant Tesla, Satellite TV Pyrotechnics, 150 more projects. Catalogue 950 - From Plancentre, 16 Mifl Grove. Bilbrook, Codsall, Wolverhampton.

[^8]

TIME WRONG?

ALWAYS CORRECT with an MSF CLOCK never grains or loses. SELF SETTING at switch-on, 8 digits show Date, Hours. Minutes and Seconds, auto GMT/BST and leap year, also parallel BCD output for com puter or alarm eic
Receives Rugby 60 KHz atomic time signals, builf-in antenna, 1000 Km range.
Fun-to-build kit includes all parts, printed circults, case, instructions, postage eic, £62.80, money back assurance, GET the TIME RIGHT NOW.

CAMBRIDGE KITS
45 (TG) Old School Lane, Milton. Cambridge

PARAPHYSICS JOURNAL (Russian iranslations); Psychotronic Generators. Kirlianography. gravity lasers, telekinesis. Details: SAE $4 \times 9^{\prime \prime}$. Paralab. Downton. Wilts.

DIPLOMA IN ELECTRONICS Full time courses in Electronic Engineering. Also courses leading to CITY AND GUILDS Examinations, Tel: LONDON SCHOOL OF ELECTRONICS: 01-263 5938.

BURGLAR alarm equipment. Ring Bradford (0274) 308920 for our catalogue, or call at our large showrooms opposite Odsal Stadium. C.W. A.S. LId.

Inner London Education Authority London Collect of Furniture 41/47 Commercial Road London EI ILA
Department of Musical Instrument
Technology

LECTURER I in ELECTRONICS

Applications are invited from qualified electronics engineers to lecture on basic electronics and musical applications of electronics. Lectures are to be associated with TEC Diploma and Higher Diploma courses in Musical Instrument Technology.
A background of specific applications of electronics to musical synthesizers. effects units, sound modelling processes and computer control of peripherals associated with musical sounds would be advantageous. Teaching experience, though desirable, it not essential.
Salary: On an incremental scale within the range of $£ 5,034-£ 8,658$ (Plus - 759 Inner London Allowancel. Starting point depending on qualifications, training and experience. Subject to formal approval.
Further details and application form can be obtained from the Senior Administrtive Officer at the College.

FIND-A-FRIEND through FIND-A. FRIEND'S new confidential, inexpensive service. Your ideal friendship/relationship - all ages - countrywide. SAE/Telephone: FIND-A-FRIEND (ETI), Temple House, 43-48 New Street, Birmingham, 82 4LH. 021-429-6346.

VHF/FM TRANSMITTER KIT. NOW IC design - smaller than all imitations. Takes 5 minutes to build this miniature FM bug, receive on domestic radio (VHF 88-108 MHz_{2}. Instructions etc all included. Special Offer $£ 2.75$ (or $£ 4.75$ for twol +25 p P\&P. (Unlicensablel. Cheques/POs Cash to: M Henry, Dept ETI. 30 Westholme Gardens, Ruislip.

OSCILLOSCOPE E12. Easy bult unit plugs into T.V, aerial socket and converts it to large screen oscilloscope. Costs approx. E 12 to make. Circuit and plans $£ 3$. J. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

ELECTRONICS component shop in MAIDSTONE, KENTI Thyronics Control Systems, 8 Sandling Road, Maidstone, Kent. Maidstone 675354.

STOCK CLEARANCE. Mixed Resistor Packs: $\frac{j w / \frac{1}{2} w, ~ p r e-f o r m e d, ~ u n-u s e d . ~}{1-1 \mathrm{lb}}$ pack (2500-plus) $£ 2.50$; 2lb pack $£ 4.60$; Exceeding 2lbs $£ 2.00$ per 1 lb . 2A Mains Filters RS $238-435$, £3.50 each. 16 -pin Headers (without covers) 6 for E1, 8 -pin i/c holders 12 for $\mathrm{E1}$.20 mm Chassis Fuseholders 4 for $£ 1$. General Purpose Diodes $25 \mathrm{v} 50 \mathrm{ma}, 75$ for £1. TTL Sale: 7412, 10 for £1; 7485, 2 for £1: 7491, 4 for £1; 74122,5 for $\mathrm{E1}$; 74123,5 for $\mathrm{E1}$. All prices include VAT/PGP. Linway Electronics, 843 Uxbridge Road, Haves End, Middx UB4 8 HZ .

CIRCUIT DESIGN. Prototype construction, analogue or Digital, Siangle Circuits or Complere Instruments/Systems. Write A. J. ATTWOOD. C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET, or Phone Bradford-on-Tone (082.346) 536.

WANTED: ELECTRONIC COMPONENTS and Test Equipment. Factories cleared. Good prices given. O Services, 29 Lawford Crescent, Yateley, Camberley, Surrey. 0252 871048.

A really compact high performance CCTV camera for only $£ 130.00$ plus VAT plus P/P, Total £152.95. Size $3^{\prime \prime} \times 3^{\prime \prime} \times 9^{\prime \prime} .240 \mathrm{v}$ operation. iv p-p output. Lens extra.

CROFTON ELECTRONICS LIMITEO
35 GROSVENOR ROAD, TVICKENHAM. M MUDLESEX TWI AAD
Telephane 01891 1923/01-891 1513 Telum 295093 CROF TN G

COMPUTER CONTROLLED SOUND IS HEREI

This unique device recaives serial data from any computer, baud rate up to 4800 responds only to its own address code (preset by on-board d.3.1. switch) and is capable of attenuating any audio signal in 1.5 db steps from Odb to infinity. Once the device has been enabled, all other devices will ignore the commands until a new address has been transmitted. These devices can be built into amplifiers, mixers etc, or anywhere computer control of audio signals is required. The kit comes complete with all parts, sockets etc, and is supplied with instructions for use. A 5 V power supply is required. Up to 127 devices can be individually addressed on one loop, Order ref: MED01.

Price $£ 69.50$ + VAT P\&P $\mathbb{£ 1 . 5 0}$
Cheques. pastan arders crossed and payaule to.

MEDIATRONICS

3 Alnwick Drlve, Hollins, Bury, Lancs 061-796 6410

PRINTED CIRCUITS. Make vour own simply, cheaply and quicklyl Golden Fotolac light-sensitive lacquer - now greatly improved and very much faster. Aerosol cans with full instructions, E2.25. Developer 35p. Ferric Chloride 550. Clear acetate sheet for master 14p. Copper-clad fibreglass board, approx. 1 mm thick E1.75 sq. ft. Post/packing 75p. White House Electronics, Castle Drive. Praa Sands, Penzance, Cornwall.

GUITAR/P.A. MUSIC AMPLIFIERS
 100 watt supero trebleitass overcive. 12 months

 guaramee. Unoeatable at EEO, 60 wal EM: 200 wall
 Stoves 100 watt 37 ; 200 want 100 ; 250 watt $\mathrm{ETO}, 300$ wast $\mathrm{E140}$, ture coxes, great sound C12, bass lues (12.50; ovithive fues with tieble and bass boostiors Eze: 100 watt combo, supetib sound, overdive, sture\% conatruction, castors. Unobstaole, froo: two chanre C115: cosss comoo हily; seeters ists. 100 wanl f3er
 Unidyn B cze.

Sond chequa/P.O. 10:
WILLAMSON AMPLIFICATION Cheahires. Teti: 051-308 2004.

PROXIMITY SENSORS infra red. 6 inch range 5 to 15 v supply. Miniature design $6.5 \times$ $5 \times 2 \mathrm{~cm}$. Only $£ 16.50$. Leaflet. Cheshire Micro Design, 86 Close Lane, Alsager, Stoke onTrent, Staffs.

ANY SINGLE SERVICE SHEET E1/L.S.A.E. Largest stockists Service/Repair manuals. Named T.V. Repair data $£ 6.50$ (with clircuits £8.50). S.A.E. pricelists, free publications, quotations. Auseti, 76 Churches Larkhall, Lanarkshire.

CABINET FITTINGS

 Inrides, castors, de. Jocks at sockuts Cemnons. Buldins ravorb erave. Emilar eompression drivens. AM(s mica Cotration apenkers A5S glesstibre horns ADAM HALL (ET SUPPLIES)
 Sowiturito on Ses. Eswex \$52 582

MOS-FET AUDIO MODULES

 Hitachi dences, Hitachispec., glass boards, extruded heatsinks, tested, guaramteed 24 months.120 watis/8 ohms; $120 \mathrm{w} / 2 \mathrm{~A}$ supply; $£ 13.95$ 240 watts/4 ohms: 120 //4A supply: $\mathbf{f 1 9 . 9 5}$ 400 watis/2 ofms: $120 \mathrm{w} / 7 \mathrm{~A}$ supply; f29.95

Power supplies/pre-amps avaliable. Post/ packing 800 . Siamp for details. Quantity discount.

Audio-Tech., 8 Parsons Close, Church Crookham. Aldershot, Hents GU13 OML Tel: 0251422303

CLOSE ENCOUNTERS GROUP Persanal introductions and social events. Meet interesting, attractive people. Local, 051-931 2844 (24 hours)
IMSAI (USA) micro computer development system with programmers front panel (lights and switehes), complete with 8080/Z80 micro's, 32K mem, iwin eight inch floppy disk drives, extensive aocumentation, comprehensive facilities, bargain at $£ 1200$ ono or exchange scale model w.h.y. Phone 093781330.

AERIAL AMPLIFIERS improve weak television reception, Price £6.70, S.A.E. for leaflets. Electronic Mailorder. Ramsbottom, Lancashire BLO 9AGH

COPPER CLAD BOARD double sided fibre glass. 10 sheets $12^{\prime \prime} \times 8^{\prime \prime} £ 6,00$. 5 sheets $1^{\prime \prime} \times 8^{\prime \prime} £ 4.00$. Including P\&P. Complete PCB service. Davron, 1 Bank-1 side, off New Street, Chemsford.
T. \& J. ELECTRONICS COMPONENTS Quality components, competitive prices. lllustrated catalogue 45p. 98 Burrow Road, Chigwell, Essex.

CENTURION BURGLAR ALARM EQUIPMENT Send SAE for free list or a cheque/PO for E 5.95 for our special offer of a full sized decoy bell cover. To Centurion Dept ETI265, Wakefield Rd., Huddersfied W. Yorkshire. Access \& Barclaycard Telephone orders on 0484 -35527.

GRUNDIG CASED PSU $0 / 25 \mathrm{~V}$ 2A. Excellent working condition. Voltage current metered overioad protection. $\mathbb{1 2 0}+\mathbf{~} 5$ S.H.E. 5, St. Joseph's Park, Ballycruttle, Downpatrick BT30 7EN.

600 RESISTORS

 60 visues 10 per value ESINCLWOING VAT PGP COVE COMPONENTS S8 Southwood Rd.. Cove. Farnborough, Hants Guis oss mill Order onty

Please mention

\square when replying

 to all adverts

Diplome Courser

Colour T.V. Servicing
CCTV Engineering
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio. T.V. and Audio. Engineering \& Servicing
Electrical Engineerling, Installations \& Contracting

Orher Cereer Counses

A wide range of other technical and professional courses are avsilable including GCE.

To ICS, Dept. 265W, Intertext House, London SW8 4UU

To ICS. Dept 265W, Intertext House London SW8 4UU or telephone 01-622 9911 (all hours)

PRECISION-by
 THE FIRST WOROS ANO THE LAST WORO IN ELECTRONIC KITS

For more than eleven years Powertran have been designing and manufacturing the finest quality electronic kits. All of our now considerable range have featured in the electronics press and literally thousands have been bought and built by contractors in the UK and World-wide.
Our philosophy is always the same - we offer ingenuity and originality in the construction phase by using only top class designers. We offer machines with power, versatility and performance - capability fully equal to their factory built rivals. We offer only the highest quality materials and components throughout to ensure years of useful and reliable service, we offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the careful first time builder as well as the dedicated enthusiast.
Our hallmark of success lies in the number of our clients who have built our whole range - many assembling several units for others to use often on the professional music scene.
We believe in taking every care throughout - months spent checking and testing the design and development. Vigorous checking of every component, constant pre-despatch quality control, careful packaging. . .even door to door delivery by Securicor!
We are naturally very proud of our Transcendent range of synthesizers designed by Tim Orr and regularly featured in ETI. They represent the best in constructional interest and in musical performance.

TRANSCENDENT POLY5YNTH - A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match. Complete kit $£ 275.00$ plus VAT (single voice). Extra voice (up 10 three more) $\mathbf{4 2 . 0 0}$ plus VAT

EXPANDER - A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.

Complete kit $£ 29.00$ plus VAT
TRANSCENDENT DPX - Offers a five octave keyboard with power to match Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic. Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching An advanced design made simple with our clearly laid out instruction manual.

Complete kit 2295.00 plus VAT.

TRANSCENDENT 2000 - Although only a 3 octave keyboard the ' 2000 teatures the same design ingenuity, careful engineering and quality components of its larger brethren. The kil is well within the scope of the first lime buider buy it, build it play it! You will know you have made the fight choice.

Complete kit $£ 165.00$ plus VAT
1024 COMPOSER - Come nght up to the minute with this new design. It will control your synthesiser with a sequence of up to 1024 notes - or an equal selection of shorter sequences. The Composer ts mains powered with automatically charged battery to preserve your programme atter switch-off

Complete kı! $£ 85.00$ plus VAT)
DEMONSTRATION TAPE - Demonstration tape now available of all three kits (30 minutes).
¢2.00

[^0]:

[^1]: We refuse to believe that you'll have any difficulty in obtaining the parts for this project - everything is so common you'll probably be able to pick them up in Woolworth's! Bi-Pak, Rapid Electronics and Cricklewood are among the mail order companies you may care to try. The addresses are given elsewhere in the issue. People unable to etch their own PCB can obtain one using the order form on page 71.

[^2]: Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer guentes on these items.
 ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be pald for at a competifive rate. Drawings should be as clear as possible and the text should be typed. Text and drawings must be on separate sheetsCircuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-JIPS, Electronics Today Inlernational, 145 Charing Cross Road, London WC2H OEE.

[^3]: TO: I.LP. ELECTRONICS LTD. please semo me ll.p. catalogue. POST PAID BY RETURM

 I havemave not previousiy BUIT WITH ILLP. MODULES

[^4]: Pleasfy commence my subsiraption to Personal Siofiware with the issue

 | SUBSCRIPTION RATES | Itoctry soperapitason |
 | :---: | :---: |
 | 1.7 Ex let 4 assues UK | |

 "ssum \square
 I am enclosung my (delere as necessury) Cheque/Posial Orderifnternational Money Order for δ.
 (made payable (t) ASP L(d) OA
 Debut my AccessiBarcluycord ${ }^{\text {. }}$ ('delete as necessary)

[^5]: All of the parts for this project should be readily available from the usual outlets. The thyristor, SCR1, can be either a 2 N4443 or a 2 N4444 - the latter has a higher voltage rating and a higher price. The PCB can be obtained using the order form on page 71.

[^6]: MICRC.PROFESSOA is a trade mark of munitech industrial Corporation, 280 is a trade mark of Zilog ine.

[^7]: Although these articles are being prepared for the next issue, circumstances may alter the final content.

[^8]: TOP QUALTTV UNBEATABLE PRICES
 We specialise in top quality equipment for groups, disco and Hifi. High power amplifiers up to 600 W , lighting units, consoles, power supplies, etc.
 Send for catalogue 60p from:

 ## SILVERQUEST LTD

 21 Beimont Road, Luton LUíill. Bedfordshire
 Tol: (0582) 37226

